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RESUME

Au cours de nos travaux, nous avons étudié et résolu les problemes suivants :

1. Platitude des systémes de contréle a deux entrées linéarisables dynamiquement
via une pré-intégration :

Nous avons donné une caractérisation géométrique compleéte des systemes affines
par rapport aux contrdles, a deux entrées, définis sur un espace d’état de di-
mension 7, linéarisables dynamiquement via une pré-intégration d’un controle
adéquate. Ils forment une classe particuliere de systémes plats : ils sont de poids
différentiel n 4+ 3. Nous avons décrit les formes normales, compatibles avec les
sorties plates minimales, et présenté un systéme d’EDP a résoudre afin de trouver
toutes les sorties plates minimales. Nous avons illustré nos résultats en analysant
deux exemples : le moteur a induction et le réacteur chimique.

2. Platitude des systemes multi-entrées linéarisables dynamiquement via une pré-
intégration :

Nous avons généralisé les résultats concernants les systemes de contrdle a deux
entrées, plats de poids différentiel n + 3, ou n est la dimension de 'espace d’état.
Nous avons donné une caractérisation géométrique complete des systemes multi-
entrées, affines par rapport aux contrdles, linéarisables dynamiquement via une
pré-intégration d’un controle bien choisi. Ils forment une classe particuliere de
systemes plats : ils ont un poids différentiel de n 4+ m + 1, ot m est le nombre
de controles. Nous avons présenté des formes normales compatibles avec les sor-
ties plates minimales et décrit toutes les sorties plates minimales. Nous avons
appliqué nos résultats a deux exemples : le quadrirotor et le réacteur chimique.

3. Caractérisation des systemes multi-entrées statiquement équivalents a une
forme triangulaire compatible avec la forme multi-chainée et leur platitude x-
maximale :

Nous avons étudié la platitude des systémes affines par rapport aux contrdles,
avec m + 1 entrées, pour m > 1, définis sur un espace d’état de dimension
n = km + 1. Tout d’abord, nous avons donné une description géométrique com-
plete des systéemes multi-entrées statiquement équivalents a une forme triangu-
laire compatible avec la forme chainée, si m = 1, ou avec la forme multi-chainée,
si m > 2. Ensuite, la platitude de ces systemes a été analysée et résolue. Nous
avons discuté les singularités dans ’espace de controle et déterminé toutes les sor-
ties plates, si m = 1, et toutes les sorties plates minimales, si m > 2. Nous avons

7
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appliqué ces résultats au systéme mécanique d’une piece roulant sans glissement
sur une table en mouvement. Nous avons répondu a la question suivante : quelle
doit étre le dynamique de la table pour que ce systeme mécanique soit équivalent
a la forme triangulaire compatible avec la forme chainée ?

Indépendamment des points abordés précédemment dans ce chapitre, nous avons
introduit le concept de platitude x-maximale. Un systeme de controle est x-maxi-
malement plat si le nombre d’états gagnés a chaque dérivation successive des sor-
ties plates est le plus grand possible. Premierement, nous avons montré qu'un
systeme linéaire par rapport aux controles est x-maximalement plat si et seule-
ment s’il est statiquement équivalent a la forme multi-chainée. Deuxiémement,
nous avons généralisé ce résultat aux systemes affines par rapport aux controles
dont le sous-systeme linéaire est statiquement équivalent a la forme multi-chainée.
Nous avons prouvé qu’ils sont x-maximalement plats si et seulement si la dérive
présente une forme triangulaire compatible avec la forme multi-chainée. Nous
avons montré également que cette derniere condition n’est pas nécessaire pour
la x- platitude des systeme affines dont le sous-systeme linéaire est statiquement
équivalente a la forme multi-chainée.



INTRODUCTION

Dans cette thése, nous nous intéressons aux systemes de contrdle nonlinéaires. Le
controle de tels systémes représente un domaine tres actif de recherche en mathé-
matiques appliquées, ainsi qu’en automatique. Un systéme de controle nonlinéaire est
donné par une équation de la forme :

E:x= F(x,u),

ou x est]’état du systéme défini sur un ouvert X de R” (ou plus généralement sur une
variété différentielle X, de dimension n), appelé espace d’état. Les valeurs du con-
trole u (appelé également I'entrée ou la commande) sont dans un sousensemble U de
R™, appelé espace du controle ; dans les problemes abordés dans ce mémoire U est un
ouvert de R", tres souvent R entier. Le point désigne la dérivée par rapport a une
variable indépendante, notée généralement par t et qui représente le temps. Un sys-
teme de contrdle nonlinéaire est donc un systeme d’équations nonlinéaires décrivant
I’évolution temporelle des variables d’état du systeme sous 1’action d’'un nombre fini
de variables indépendantes (les controles) qui peuvent étre choisies librement afin de
réaliser certains objectifs.

Les systemes que nous étudions dans cette thése sont principalement des systemes
affines par rapport aux controles. Ces systemes admettent la forme suivante :

Tk = )+ ) g = £(x) + g(x)u,

i=1

oug = (g1, - ,gm)etu = (uy, - ,uy)" . Siladérive f estidentiquement nulle, i.e.,
le systeme est de la forme suivante :

Siin 1 X = Y_ &i(x)u; = g(x)u,
i—1

alors le systéme sera appelé linéaire par rapport aux controles.

Equivalence des systémes par bouclage statique
Un probléeme important en théorie du controle est de savoir si deux systémes se

ressemblent. Plus précisément, on souhaiterait savoir si les deux systéemes appar-
tiennent a la méme classe pour une certaine relation d’équivalence. En général, une

9
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telle relation d’équivalence est définie par une classe des transformations sur les sys-
temes, deux systemes étant équivalents s’ils peuvent étre transformés 1'un en l'autre
par une transformation de la classe.

Deux systemes sont équivalents dans I'espace d’état, s’ils sont liés par un dif-
téomorphisme (dans 'espace d’état). En conséquence, leurs trajectoires (correspon-
dant aux mémes controles) seront liées par ce méme difféomorphisme. Lorsque nous
considérons 1’équivalence dans l'espace d’état, le controle reste inchangé. Cepen-
dant le role du controle est crucial dans 1’étude des systémes de controle (qu’ils
soient linéaires ou non) et nous souhaitons le prendre en compte dans les rela-
tions d’équivalence. L'équivalence par bouclage augmente la classe des transforma-
tions considérées précédemment (transformations dans 1’espace d’état) en permet-
tant également la transformation des controles.

Considérons deux systétmes & : ¥ = F(x,u),x € X,u € U,etE: ¥ = F(%,i),% €
X, 1 € U. Les systemes E et & sont équivalents par bouclage statique (ou statiquement
équivalents), s’il existe un difféomorphisme x : X x U — X x U de la forme

(%, 1) = x(x,u) = (¢(x), p(x,u))

qui transforme le systtme Een &, i.e.,
D (x)F(x,u) = F(¢(x), p(x, u)).

Remarquons que le difféomorphisme x est triangulaire : en effet, ¢ dépend
uniquement de 1’état et joue le role d"un changement de coordonnées sur X, alors
que 1, appelé le bouclage, change les coordonnées dans 1’espace du contrdle d'une
maniére dépendante de l'état. Les ensembles des trajectoires des deux systémes coin-
cident, cependant ils sont différemment paramétrés par rapport aux controles u et il.

Pour les systemes de la forme X : ¥ = f(x) + Y"1 gi(x)u; = f(x) + g(x)u, afin de
préserver la forme affine du systeme, nous restreignons la classe des bouclages aux
bouclages affines

i = (x,u) = &(x) + B(x)u,
ot & = (&, - ,&m)" et B(x) est une matrice de taille m x m, inversible, et i =

(ily,- -+ ,1y) . Notons par u = a(x) + B(x)i la transformation inverse et soit ¥ un
autre systeme de controle défini par

— F@) + Y. s®)E = F(2) + 3D,

i=1

ou % € Xetd € U. Les systétmes ¥ et & sont équivalents par bouclage statique si et
seulement si

f=:(f +gu)etg=¢.(gh).
Si les transformations précédentes sont définies localement, autour des points xp € X
et ¥y € X fixés, alors X et 2. sont dits localement équivalents par bouclage statique.

Pour les systémes linéaires par rapport aux contrdles, i.e., de la forme 2, : X =
", gi(x)u; = g(x)u, 'équivalence par bouclage statique coincide avec 1" équiva-
lence des distributions engendrées par les champs de vecteurs g; et ;.
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La linéarisation par bouclage statique est un sous-probleme de 1’équivalence par
bouclage statique et consiste a transformer un systeme nonlinéaire sous la forme la
plus simple possible, c’est a dire sous la forme d"un systéme linéaire. Si nous sommes
en mesure de compenser les nonlinéarités par le bouclage, alors le systéme trans-
formé posseéde toutes les propriétés d'un systeme linéaire. Ainsi, nous pouvons ré-
soudre des problemes, tres compliqués en général, qui deviennent plus simples pour
les systémes linéaires. La linéarisation par bouclage statique est donc un outils tres
important et puissant dans 1’étude des systémes nonlinéaires. Du point de vue math-
ématique, si nous souhaitons classifier les systemes de controle nonlinéaires, un des
problemes les plus naturels est alors de caractériser les systémes nonlinéaires qui sont
statiquement équivalents a un systeme linéaire.

Un systeme X est statiquement linéarisable (ou linéarisable par bouclage statique)
s’il est équivalent par bouclage statique a un systeme controlable de la forme

A:z= Az + By,

ou A et B sont des matrices constantes de taille n x n et n X m. Le probleme de la
linéarisation statique d'un systéme avec une seule entrée a été formulé et résolu par
Brockett [4] (pour le bouclage restreint u = « + iI). Ensuite, Jakubczyk et Respondek
[23] et, indépendamment, Hunt et Su [19], voir aussi [20], ont donné les conditions
nécessaires et suffisantes suivantes, résolvant ainsi le probléme de la linéarisation
par bouclage statique d’un systéme affine avec un nombre arbitraire de controles.
Considérons les distributions suivantes, associées au systeme %,

DH_l - Di + [fl Di]/ ou DO = Span {gll o ;gm}

Le systeme X est localement linéarisable si et seulement si pour tout i > 0, les distri-
butions D' sont de rang constant, involutives et D" 1 = TX.

Platitude

La notion de platitude a été introduite en théorie du controle dans les années 1990
par Fliess, Lévine, Martin et Rouchon [13, 14] (voir aussi [2,21, 32, 54]) et a attiré
beaucoup d’attention grace a ces multiple applications dans les problemes de suivi
et de planification de trajectoires [15,22, 36,53, 55,58, 66]. Toutes les solutions d'un
systeme plat peuvent étre paramétrées par un nombre fini de fonctions et de leurs
dérivées. Ceci représente la propriété fondamentale des systemes plats.

Considérons un entier p > —1, nous lui associons X? = X x U x R™ et it =

(u,u,..., u(p)). Sip = —1,alors X1 désigne simplement I'espace d’état X et i !est
vide.
Definition 0.0.1. Le systéeme = est plat en (xo, ag) € XP,oup > —1, ¢'il existe
un voisinage OF de (xo, ﬂg) et m fonctions lisses ¢; = ¢;(x,u, 1, ... ,u(p)), 1<i<
m, définies dans OF, satisfaisant la propriété suivante : il existe un entier s et des
fonctions lisses 7y;, 1 <i <, et 0j,1<j<m, tels que

% = 7i(g, ¢, 9)) etu; =g, g, 9)
le long de chaque trajectoire x(f) définie par un controle u(t) tel que (x(t), u(t), -- -,
ulP)(t)) € OF, otr @ dénote le m-tuple (@1, ..., ¢n) et est appelé sortie plate.
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La platitude est étroitement liée a la linéarisation par bouclage statique ou dy-
namique. Les systémes statiquement linéarisables sont clairement plats. En général,
les systémes plats ne sont pas statiquement linéarisables, cependant ils peuvent étre
vus comme la généralisation des ceux-ci. En effet, un systéme est plat si et seulement
sil est linéarisable par bouclage dynamique inversible et endogene. [13, 14, 32, 55].
Nous expliquons par la suite ces différentes notions.

Le systeme E : % = F(x,u) est linéarisable dynamiquement si et seulement s'il
existe un pré-compensateur inversible et endogene de la forme

O : {y = G(x/y/Z))/yEYC]Rr,UEVCIRm
u = P(x,y,0)

tel que le systeme pré-compensé

zo0: { ¥ 2 Hedo)
J = Glxyo)

soit linéarisable statiquement. Un pré-compensateur © est endogene si 1'état y du
pré-compensateur est une fonction de l'état d’origine x, du controle d’origine u
et ses dérivées, i.e., sil existe une fonction y et un entier p, suffisamment grand,
tels que y = u(x,u,...,ul)). Un pré-compensateur est inversible si on peut ex-
primer le controle du pré-compensateur v comme une fonction de 1’état du pré-
compensateur y, de I'état d’origine x, du contrdle d’origine u et de ses dérivées, i.e.,
v="1(x,yu,..., u(P)), ce qui, dans le cas d'un pré-compensateur endogene, donne
V= v(x,u,...,u(P)).

Remarquons quelques propriétés des systemes linéarisables par bouclage dy-
namique inversible et endogene. Tout d’abord, constatons que la dimension de I'état
n’est pas préservée par bouclage dynamique endogéne. En revanche la dimension
de I'espace du controle est conservée. Deuxiémement, ’hypothese pour ¢ d’étre un
difféomorphisme (hypothese demandée dans le cas de la linéarisation statique) n’est
plus requise. Finalement, les trajectoires de = sont en bijection avec celles d"un sys-
teme trivial, i.e., m fonctions libres @1, - - - , ¢ (les sorties plates) et sans dynamique.

Si ul"), avec r < p, est la dérivée la plus élevée du contrdle impliquée dans les
expressions de @;, alors le systeme est appelé (x,u, - - - ,u("))-plat. Dans le cas partic-
ulier, p; = @;(x), pour 1 < i < m, le systéme est appelé x-plat.

Le nombre minimal de dérivées de ¢; utilisées pour exprimer x et u est appelé le
poids différentiel de la sortie plate ¢ (voir [58]) et est formalisé comme suit.

Par définition, pour toute sortie plate ¢ de &, il existe des entiers sy, ..., sy, tels
que

T 7<§01’¢1""’¢§Sl)""rq’ml qu,...,(l);(i"'))

u = (g1, ¢1,---, gogsl), e Pty Prs e - q),(;’”)).
De plus, nous pouvons choisir (s1, . .., sy ) tels que (voir [58]) si pour un autre m-uplet
(51,...,5m) nous avons

- ’7(4)1; 4)1" : "gofl)" <o Pmy ngﬂ/' . -/¢§"l))

- S(q)l’ (Pl’ s q)gﬁ)’ et (Pm/ 4)711/ ey 4)7(1?”))/
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alors s; < 5;, pour 1 < i < m. Nous appelons Y_/" ;(s; +1) = m+ Y[" ; 5; le poids
différentiel de ¢. Une sortie plate de = est appelée minimale si son poids est le plus
petit parmi toutes les sorties plates de E. Le poids différentiel d"un systeme plat = est
égal au poids d"une sortie plate minimale de E et permet de déterminer la plus petite
dimension possible d'un pré-compensateur linéarisant dynamiquement le systeme.
En effet, la dimension r d’un tel pré-compensateur satisfait r > Y/” ; s; — n. On voit
et on dit que le poids différentiel mesure la plus petite dimension possible d"un pré-
compensateur linéarisant dynamiquement le systéme.

Premiérement, le but de cette thése est de donner une caractérisation complete
des systemes de contrdle qui ne sont pas linéarisables statiquement, mais qui le de-
viennent apres 'application d'un bouclage dynamique aussi simple que possible.
Ce sont les systémes plats qui se rapprochent le plus des systemes linéarisables sta-
tiquement et ils forment une classe particuliere de systemes plats : ils sont de poids
différentiel n + m + 1. D’un c6té, nous souhaiterions donner des conditions néces-
saires et suffisantes vérifiables (par exemple, des conditions de type involutivité) et
d’un autre c6té, nous voudrions décrire et comprendre la géométrie de cette classe
de systémes (présenter des formes normales, donner la description de sorties plates,
etc.). Dans un premier temps, nous donnons des conditions nécessaires et suffisantes
pour qu'un systeme devienne statiquement linéarisable apres la prolongation dun
controle bien choisi (ou de maniere équivalente, pour qu’il soit plat de poids dif-
térentiel n + m + 1). Les conditions présentées sont vérifiables et leur vérification
nécessite uniquement des dérivations et des opérations algébriques, sans nécessiter
la résolution d’EDP ou mettre le systéeme sous une forme normale. Ensuite, nous
présentons les formes normales, donnons la description de sorties plates et en dé-
duisons un systéme d’EDP a résoudre afin de calculer les sorties plates. La platitude
a donc deux niveaux de difficulté : le premier consiste a donner une caractérisation
géométrique des systemes plats (et nos résultats donnent des conditions nécessaires
et suffisantes vérifiables- sans résoudre des EDP- pour caractériser les systemes plats
de poids différentiel n 4 m + 1) alors que le second correspond au calcul des sorties
plates et pour cela nous sommes obligés de résoudre des EDP.

Deuxiemement, nous souhaiterions généraliser la platitude des systemes linéaires
par rapport aux contrdles avec deux entrées, probleme résolu par Martin et Rouchon
[33], au cas affine : nous donnons la caractérisation et analysons la platitude des
systémes statiquement équivalents a une forme triangulaire compatible avec la forme
chainée. Puis, nous étendons ces résultats aux systemes statiquement équivalents a
une forme triangulaire compatible avec la forme multi-chainée.

Troisiemement, nous introduisons le concept de platitude x-maximale (la pro-
priété selon laquelle chaque dérivée successive de ¢ permet de gagner le nombre
maximal de fonctions (composantes) de I'état x). Nous montrons que dans la classe
des systémes linéaires par rapport aux contrdles, un systéme est x-maximalement
plat si et seulement s’il est statiquement équivalent a la forme multi-chainée. Puis
nous généralisons ce résultat en montrant que dans la classe des systémes affines
dont le sous-systeme linéaire est statiquement équivalent a la forme multi-chainée,
les seuls systémes x-maximalement plats sont les systemes statiquement équivalents
a la forme triangulaire compatible avec la forme multi-chainée.

Par la suite, nous présenterons chapitre par chapitre les résultats obtenus dans
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cette theése.

Chapitre 1. Platitude des systemes de contrdle a deux entrées linéarisables dy-
namiquement via une pré-intégration

Les résultats de ce chapitre on été présentés a NOLCOS 2013, [45], et ont été
soumis au European Journal of Control, [44].

Dans ce chapitre nous étudions la platitude des systémes affines par rapport aux
controles, a deux entrées, définis sur un espace d’état de dimension #, linéarisables
dynamiquement via une pré-intégration d’un controle bien choisi. Ce sont les sys-
temes plats qui se rapprochent le plus des systemes linéarisables statiquement.

Les systémes linéarisables par bouclage statique sont plats. Effectivement, ils sont
équivalents par bouclage statique a la forme canonique de Brunovsky :

5 _
2 = 4
(Br) 5 _
pi—1 Qi
. 0
Zpi = U

oul <i<mety!", p; =n (voir [5]) et sont plats avec ¢ = (z},---,z!") une sortie

plate minimale (de poids différentiel n + m). Une facon équivalente de décrire les
systemes statiquement linéarisables est le fait qu’ils sont plats de poids différentiel
n 4 m. Par conséquent, le poids différentiel d"un systeme plat, qui n’est pas linéaris-
able statiquement, est strictement supérieur a n + m et mesure la plus petite dimen-
sion possible d"un pré-compensateur linéarisant dynamiquement le systeme.

En général, les systémes plats ne sont pas linéarisables par bouclage statique, a
I'exception des systemes avec une seule entrée, pour lesquels la platitude se réduit a
la linéarisation par bouclage statique. Les systemes plats peuvent étre vus comme la
généralisation de systemes linéaires. Notamment, ils sont linéarisables par bouclage
dynamique, inversible et endogene (voir [13, 14, 32,55]). Notre objectif est de décrire
completement les plus simples systemes plats qui ne sont pas linéarisables statique-
ment : les systemes affines par rapport aux controles, a deux entrées, linéarisables
dynamiquement via une pré-intégration d’un controle. IIs forment une classe partic-
uliere de systemes plats : ils sont de poids différentiel n 4 3. Dans ce chapitre, nous
donnons une caractérisation géométrique compléte de cette classe de systemes.

Considérons le systeme de controle

£ ¢ k= f(x) + mgi(x) + uga(x), M

ol x € Xetu = (u,up)’ € R2 Nous lui associons les distributions suivantes
D+l = Di + [f, D], ot D = span {g1,¢2}. Supposons que ¥ n’est pas linéarisable
statiquement. Cela se produit s'il existe un entier k tel que la distribution D est non
involutive. Par la suite, k désigne le plus petit entier vérifiant cette propriété.

Proposition 0.0.1. Les conditions suivantes sont équivalentes :
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(i) X est plat au point (xo, i1}y), de poids différentiel n + 3;
(ii) X est x-plat au point (xo, up), de poids différentiel n + 3;

(iii) 11 existe, localement, autour de xo, une transformation inversible u = a(x) + B(x)d
ramenant X sous la forme > : x = f(x) + #i1§1(x) + 1282 (x), telle que la prolongation

2(1,0>:{x = f(x) +ngi(x) +0282(x)
vyio= 7

soit linéarisable statiquement, oit y; = ily, vy = flo, f = f +aget § = gB, avec

g=(81,8)etg=(51,%)

Notre résultat principal est donné par les deux théoremes suivants correspon-
dants au cas k > 1 (Théoreme 0.0.1) et au cas k = 0 (Théoreme 0.0.2). Pour les deux

théoremes, nous supposons DX + [D¥, D¥] # TX. Nous notons par D" I'adhérence
involutive de DF.

Theorem 0.0.1. Supposons k > 1et D* + [DF, D¥| # TX. Le systeme ¥, donné par (1), est
x-plat au point xo € X, de poids différentiel n + 3, si et seulement si les conditions suivantes
sont satisfaites :

(A1) rgD" = 2k +3;

(A2) rg (ﬁk + [f, D)) = 2k + 4, impliquant I'existence d’un champ de vecteurs non nul
gc € DO tel que adi‘ﬁrl gc € D",

(A3) Les distributions H', pour i > k, sont involutives, oil HrE = Dk1 4 span {ad?gc} et
HITL =H + [f, H'], pouri > k;

(A4) 1l existe p tel que HP = TX.

Le Théoreme 0.0.1 donne des conditions nécessaires et suffisantes pour qu’un sys-
teme X soit plat de poids différentiel n + 3, et donc pour qu’il devienne statiquement
linéarisable apres la prolongation d"un contrdle bien choisi. La propriété structurelle
fondamentale de ces systémes est I’existence de la sous-distribution involutive ¥,
de corang un dans D*. Le théoréme précédent nous permet également de définir le
controle a prolonger afin d’obtenir un systeme %) statiquement linéarisable. Le
champ de vecteurs non nul g. € D? peut étre exprimé comme g, = B1g1 + P22, ol
B1 et B2 sont des fonctions qui ne s’annulent pas simultanément. On en déduit que
le contrdle a prolonger afin de linéariser dynamiquement le systeme est donné par

up(t) = Ba(x(t))ur(t) — Br(x(t))ua(t).

Si k = 0, un résultat similaire peut étre formulé, mais dans ce cas, la distribution
HY n’est pas définie de la méme maniére que HF1 mais par H! = G, ou Gl =
DY + [DY, DY) (comparer les conditions (A3) et (A3)’). De plus, les systemes plats
avec k = 0 possedent des singularités dans 1’espace du contrdle (voir Section 1.3
pour la définition de I’ensemble des controles singuliers Us;yg, i.e., les controles pour
lesquels le systeme cesse d’étre plat).
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Theorem 0.0.2. Supposons k = 0 et DY + [D°, D] # TX. Le systeme %, donné par
(1), est x-plat au point (xp,1up) € X x R?, de poids différentiel n + 3, si et seulement si les
conditions suivantes sont satisfaites

(A1)" tk D" = 3 est involutive;

(A2) 1g (D’ + [f, D] = 4, impliquant U'existence d'un champ de vecteurs non nul g, € D°
tel que adsg. € Gl

(A3)" Les distributions H', pour i > 1, sont involutives, ot H' = Gl et H' = H'™1 4
[f, H'7Y, pouri > 2;

(A4)" 1l existe p tel que HP = TX;
(CR) ug ¢ using(XO)'

Si Dk 4 [Dk, Dk] = TX, nous distinguons deux cas (correspondants a la facon dont
DF perd son involutivité) : d"une part [D¥~1, D¥] ¢ D et [adi‘c <1, adﬁi ¢] ¢ DF, d’autre
part [D¥=1,D¥] ¢ DF. Dans le premier cas, nous montrons que le systéeme est plat
de poids différentiel n + 3 sans aucune condition additionnelle. Dans le deuxieme
cas, le systéeme doit vérifier quelques conditions supplémentaires similaires a celle
du Théoreme 0.0.1. Si DF + [Dk, Dk] = TX, la condition (A2), nous permettant de
détinir le champ de vecteurs g. (et, en conséquence, la sous-distribution involutive
#H"), n’a pas de sens. Par conséquent, nous devons définir #* d’une autre maniere.
Pour cela nous utiliserons la distribution caractéristique de D¥ (voir Théoreme 1.3.4,
Section 1.3).

Nous caractérisons ensuite toutes les sorties plates minimales des systémes de
poids différentiel n 4 3. Soit u le plus grand entier tel que corang de l'inclusion
HM 1 C HH soit deux et p le plus petit entier tel que HP = TX.

Proposition 0.0.2. Considérons un systeme de controle X, de la forme (1), x-plat en xq (en
(x0, 1), si k = 0), de poids différentiel n + 3.

(i) Supposons DX + [DX, DX £ TX ou D¥ + [DX, D] = TX et [D*1, DX ¢ D*. Une
paire de fonctions lisses (@1, ¢2), définies dans un voisinage de x, est une sortie x-plate
minimale au point x si et seulement si (a une permutation pres)

d(p1 1 prl
d(pz 1 el
etdpr Ndey ANdLggr A -+ A dL?fyqol(xo) # 0 (a une permutation de ¢y et ¢, pres).

De plus, la pair (@1, ¢2) est unique, a un difféomorphisme pres, i.e., si ($1, ¢2) est une
autre sortie plate minimale, alors il existe des fonctions lisses hy et hy inversibles (hy par
rapport a son premier argument), telles que

g1 = (1)
2 = ha(@2, 91, Lrer, -, L? For1).

Sip=u, alors p; = hi(¢1, ¢2), 1 <i <2, et h = (hy,hy) est un diffeomorphisme.
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(ii) Supposons DF + [D¥, D] = TX et [D*=1, D] < D Une paire de fonctions
lisses (@1, @2) définies dans un voisinage de xq est une sortie x-plate minimale au
point xq si et seulement si (dgy A dgo)(xg) # 0 et la distribution involutive L =

(span {d¢, dg})* satisfait
Plc LDk
De plus, pour toute fonction ¢, satisfaisant

d(Pl J_ Dk_l et (Ladftgl q)ll Ladf(gz(Pl)(xo) ;é (0’ 0)’

il existe @, tel que la pair (@y, @2) soit une sortie x-plate minimale. Etant donné une
telle fonction ¢y, le choix de @y est unique, a un difféomorphisme pres, c’est a dire,
si (@1, @2) est une autre sortie plate minimale, alors il existe une application lisse h,
inversible par rapport a son deuxieme argument, telle que

$2 = h(p1, 92)-

Tout d’abord, la proposition précédente nous permet de vérifier si une paire de
fonctions (@1, ¢2) est une sortie x-plate minimale d’un systeme de poids différen-
tiel n + 3. De plus, elle répond a la question : y-a-t-il beaucoup de paires (@1, ¢2)
qui sont des sorties x-plates minimales ? Finalement, elle nous permet de constru-
ire explicitement un systéme d’équations aux dérivées partielles du premier ordre a
résoudre afin de trouver toutes les sorties plates minimales (voir Section 1.5).

Enfin, nous décrivons les formes normales compatibles avec les sorties plates
minimales et appliquons nos résultats a deux exemples : le moteur a induction et
le réacteur chimique.

Chapitre 2. Platitude des systemes multi-entrées linéarisables dynamiquement
via une pré-intégration

Les résultats de ce chapitre on été présentés a CDC 2013, [46], et ont été soumis
au SIAM Journal on Control and Optimization, [43].

Ce chapitre est dédié a la généralisation des résultats décrits dans le chapitre
précédent. Nous étudions les systemes multi-entrées, affines par rapport aux con-
troles, définis sur un espace d’état de dimension 7, linéarisables dynamiquement via
une pré-intégration d'un contrdle bien choisi. Ils forment la classe des systemes plats
les plus simples, qui ne sont pas linéarisables statiquement. Les systémes statique-
ment linéarisables sont plats et une fagon équivalente de les décrire est la suivante :
ils sont plats de poids différentiel n 4+ m. Par conséquent, pour tout systeme plat,
qui n’est pas statiquement linéarisable, le nombre minimal de dérivées des sorties
plates utilisées pour exprimer toutes les variables d’état et du controle est stricte-
ment supérieur a n + m. Les systémes plats, qui se rapprochent le plus des systémes
linéarisables statiquement sont les systémes linéarisables dynamiquement via une
pré-intégration d’un contréle. Ils forment la classe particuliere des systémes que nous
caractérisons dans ce chapitre : les systemes plats de poids différentiel n + m + 1.
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Considérons un systemes de controle

m
ox=f(x)+ ) uigi(x), )
i=1
ot x € Xetu = (uy, -+ ,uy)’ € R™ Supposons que L n’est pas linéarisable

statiquement. Cela se produit il existe un entier k tel que le distribution D soit non
involutive. Par la suite, k désigne le plus petit entier vérifiant cette propriété.

Proposition 0.0.3. Les conditions suivantes sont équivalentes :

(i) T est plat au point (xo, i1y ), de poids différentiel n +m + 1;
(ii) X est x-plat au point (xo, ug), de poids différentiel n + m + 1;
(iii) 1l existe, localement, autour de xo, une transformation inversible u = a(x) + B(x)i

m
ramenant ¥, sous la forme & : & = f(x) 4+ Y _ #;gi(x), telle que la prolongation
i=1

m
$(10..0 . ) ¥ = Fx) +ngi(x) + ) vigi(x)
‘ i=2
o= 0

est linéarisable statiquement, ot y, = iy, v; = il;, pour2 < i < m, f = f +aget
g =8P avecg = (81, ,&m) et &= (81, &m)-

Notre résultat principal est donné par les deux théorémes suivants correspondant
au cas k > 1 (Théoreme 0.0.3) et au cas k = 0 (Théoreme 0.0.4). Par la suite, nous
supposons rg D¥ — rg D¥=1 > 2 (voir Section 2.7 ol nous montrons que ce cette con-
dition est nécessaire pour la linéarisation dynamique via une pré-intégration, et donc
pour la platitude de poids différentiel n + m 4 1). Pour les deux théoremes, nous
supposons corg (D* C [DF, D¥]) > 2, le cas de ce corang égal a 1 sera discuté plus
tard.

Theorem 0.0.3. Supposons k > 1 et corg (D C [DX, D¥]) > 2. Le systéme %, donné
par (2), est x-plat au point x, de poids différentiel n 4+ m + 1, si et seulement si les conditions
suivantes sont satisfaites :

(A1) Il existe une sous-distribution involutive H* de corang un dans D ;
(A2) Les distributions H', pour i > k + 1, sont involutives, oit H' = H'=1 + [f, H!~1);
(A3) Il existe p tel que HP = TX.

L'existence de la sous-distribution involutive ¥ de corang un dans D* est la
propriété structurelle fondamentale de ces systéemes. Afin de vérifier si les condi-
tions du Théoréme 0.0.3 sont satisfaites, il faut prouver que D admet une sous-
distribution involutive H* de corang un. Nous expliquons en Section 2.3 comment
vérifier 'existence de la sous-distribution involutive H#* et comment la calculer ex-
plicitgment, si elle existe. La condition corg (D¥ C [DF, D¥]) > 2 implique I'unicité
de H*.
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Le théoreme précédent nous permet également de définir le contrdle a prolonger,
qui est défini a une fonction multiplicative pres, pour que le systeme prolongé as-
socié 5100 soit statiquement linéarisable. Nous montrons en Section 2.7 que la
sous-distribution ¥ permet d’identifier une unique sous-distribution involutive
de corang un dans DY telle que H* = DF1 + adiﬁ?—[. C’est la sous-distribution H qui
nous permet ensuite de définir le controle a prolonger. Nous expliquons cela dans la
Section 2.3.

Si k = 0, un résultat similaire peut étre formulé, mais dans ce cas, la distribution
H! n’est pas définie de la méme fagon que H**1, mais comme H! = G! + [f, H),
ot G! = DY + [DY, D] (comparer (A2) et (A2)"). De plus, les systemes plats avec

= 0 possedent des singularités dans 'espace du contrdle (voir Section 2.3 pour la
définition de Uy, 'ensemble des controles singuliers, pour lesquels le systeme cesse
d’étre plat).

Theorem 0.0.4. Supposons k = 0 et corg (DY C [D°, D)) > 2. Le systeme ¥, donné
par (2), est x-plat au point (xo,up), de poids différentiel n + m + 1, si et seulement si les
conditions suivantes sont satisfaites :

(A1) Il existe une sous-distribution involutive H° de corang un dans D°;

(A2)" Les distributions H, pour i > 1, sont involutives, oit H' = G + [f,HO] et H' =
HI=L+ [f, 7Y, pouri > 2;

(A3)" Il existe p tel que HP = TX.

(CR) ug ¢ Using(XO)'

Considérons maintenant le cas corg (DF C [DF, D¥]) = 1. Si la distribution D*
contient une sous-distribution involutive de corang un, celle-ci n’est jamais unique.
La perte d’involutivité de DF peut se réaliser de deux manieres différentes : d’une
part [DF=1, DK] ¢ Dk, d’autre part [D¥1,D¥]  DFetil existe 1 < i,j < m tels que
[adiﬁgi, ad?gj] ¢ DF. Si [DF1,DK] ¢ DF, alors nous définissons la sous-distribution
involutive H* de facon unique, en utilisant la distribution caractéristique C* de D¥
(voir le Théoreme 0.0.5 ci-dessous).

Considérerons une distribution D. Un champ de vecteur ¢ € D est dit caractéris-
tique pour D si [¢, D] C D. La distribution caractéristique C de D est la distribution
générée par tous les champs caractéristiques. L'involutivité de la distribution carac-
téristique C est une conséquence directe de 1'identité de Jacobi.

Si [DF1,DF] C DFetil existe 1 < i,j < m tels que [ads‘fgi,ad?gj] ¢ DX, alors toute

sous-distribution involutive ¥ de corang un dans DF peut étre utilisée pour définir
le contrdle a prolonger (distributions différentes donnant des controles différents)
afin d’obtenir un systéme prolongé £(1.0--0) statiquement linéarisable.

Theorem 0.0.5. Supposons corg (D* C [DF, DY) = 1et [D¥1, DX ¢ DF. Le systeme
Y., donné par (2), est x-plat au point (xg, ug), de poids différentiel n + m + 1, si et seulement
si les conditions suivantes sont satisfaites :
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(C1) rg C* = rg D* — 2, oit C¥ est la distribution caractéristique de D ;
(C2) rg (CkND*1) =rg D1 —1;

(C3) Les distribu'tions Hi pour i > k, sont involutives, ol Hr = Ck 4+ Dk o it] =
H + [f, H');

(C4) Il existe p tel que HP = TX.

Ensuite, nous introduisons deux formes normales, compatibles avec les sorties
plates minimales. Ces résulats ont été présentés a ECC 2014, voir [47].

Finalement, nous caractérisons toutes les sorties plates minimales des systémes
plats de poids différentiel n + m 4 1. Notre résultat (voir Proposition 2.5.1, Section
2.5) nous permet de vérifier si un m-uplet de fonctions (¢1,- - -, ¢m) est une sortie
x-plate minimale de poids différentiel n 4 m 4 1 et répond a la question : y-a-t-il
beaucoup des m-uplets (@1, -, ¢m) qui sont des sorties x-plates minimales ? De
plus, il nous permet de construire explicitement un systeme d’équations aux dérivées
partielles du premier ordre, a résoudre afin de trouver toutes les sorties plates min-
imales. Finalement, nous illustrons nos résultats via deux exemples : le quadrirotor
et le réacteur chimique.

Chapitre 3. Caractérisation des systemes multi-entrées statiquement équiva-
lents a une forme triangulaire compatible avec la forme multi-chainée et leur plat-
itude x-maximale

La premiere partie de ce chapitre est consacrée a la platitude d'une classe partic-
uliére de systéemes affines par rapport aux contrdles, avec m + 1 entrées, ot m > 1,
définis sur un espace d’état de dimension n = km + 1, k > 1. Les résultats de cette
partie ont été réalisés en collaboration avec Shunjie Li (Zhejiang University) et ont
été soumis au International Journal of Control [27].

La platitude des systémes linéaires par rapport aux controles, a deux entrées, i.e.,
de la forme

Yyin ¢ X = Qo (x) + u181(x),

détini sur un ouvert X de R", a été résolue par Martin and Rouchon [34] (voir aussi [8,
29,33,41,61]). Ils ont montré que, sur un ouvert dense X’ de X, le systeme %;;, est plat
si et seulement si la distribution G = span {go, g1} est une structure de Goursat ou,
de maniere équivalente, si et seulement si le systeme est localement équivalent par
bouclage statique a la forme chainée. Giaro, Kumpera et Ruiz [17] sont les premiers a
avoir remarqué 1’existence de points singuliers dans le probléme de la transformation
d’une distribution de rang deux sous la forme normale de Goursat. Puis, Murray [40]
a donné une condition de régularité permettant de transformer un systéme ¥.;;,, sous
la forme chainée autour d'un point arbitraire x*. Li and Respondek [29] on montré
qu'un systéme dont la distribution associée est une structure de Goursat est x-plat
seulement aux points ot la condition de régularité est satisfaite. Ils ont également
décrit toutes les sorties plates.
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Dans ce chapitre, nous généralisons ces résultats : nous caractérisation les sys-
temes affines statiquement équivalents a la forme triangulaire suivante :

(20 = vo z1 = fi(z0,21,22) +z200
Zz = fa(zo,21,22,23)+2300
TChlf: :
Zke1r = falzo, -+ ,zk) +2zxvo
\ Zk = 0

Remarquons que dans le systéme de coordonnées z, dans lequel les champs g et
g2 sont sous la forme chainée, la dérive f a une forme triangulaire tres spéciale. C’est
la raison pour laquelle nous appelons TCh% la forme triangulaire compatible avec la
forme chainée.

Ensuite, nous étendons ces résultats aux systemes statiquement équivalents a
une forme triangulaire compatible avec la forme multi-chainée. Nous caractérisa-
tion les systemes affines avec m + 1 entrées, ou m > 2, statiquement équivalents a
la forme normale obtenue en remplacant, dans TChX, chaque état z; par le vecteur
zi = (24, ,zl,), les fonctions lisses f; par f' = (fi,---, fi) et le contrdle v; par
le vecteur (vq,---,vy). Cette forme sera notée par TChY,. La caractérisation des
systemes statiquement équivalents a la forme multi-chainée a été étudiée et résolue
dans [59] (voir aussi [39,50, 63, 68]). 1l est immédiat que ces systemes sont x-plats et
toutes leurs sorties plates minimales ont été décrites dans [58].

Considérons le systéme affine

£k = flx)+ io wigi(v), ©

défini sur une variété X, de dimension n = km + 1, ot m > 1. Nous lui associons la
distribution G = span {go, - - - , gm} et la suite de distributions définie par

P =getGt =g +[G,G],i>0.

On note par C' la distribution caractéristique de G’. Nous rappelons ci-dessous la
définition de la distribution caractéristique.

Considérerons une distribution D. Un champ de vecteur ¢ € D est dit caractéris-
tique pour D si [¢, D] C D. La distribution caractéristique C de D est la distribution
générée par tous les champs caractéristiques. L'involutivité de la distribution carac-
téristique C est une conséquence directe de 1'identité de Jacobi.

Notre résultat principal est donné par les deux théorémes suivants correspondant
au cas m = 1 (Théoreme 0.0.6), respectivement au cas m > 2 (Théoreme 0.0.7).

Theorem 0.0.6. Considérons le systeme %, donné par (3), avec m = 1, et fixons x* € X.
Le systeme ¥ est statiquement équivalent, autour de x*, i la forme triangulaire TChY si et
seulement si les conditions suivantes sont satisfaites :

(Chl) GF1=TX:
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(Ch2) GK=3 est de rang constant k — 1, contient C*k=2 1a sous-distribution caractéristique de
GK=2 et le corang de Ck=2 dans G*=3 est constant, égal a un;

(Ch3) G%(x*) n’est pas contenue dans C*=2(x*);
(Comp) [f,C'| C G, pour1 <i < k—2,0itC' est la distribution caractéristique de G'.

Les conditions (Ch1)-(Ch3) caractérisent la forme chainée (voir [59]) alors que la
condition de compatibilité (Comp) prend en compte la dérive f et donne les condi-
tions de compatibilité pour que f soit sous la forme triangulaire, dans le bon systeme
de coordonnées, i.e., dans le systéeme des coordonnées z dans lequel les champs con-
trolés g; sont sous la forme chainée.

Nous traitons maintenant le cas m > 2. Afin de simplifier Iécriture, nous utilisons

la notation suivante : 7! = (z%, . ~z,1n,z%, R R ,z’i, ---zh ), pour2 <i <k

Le Théoreme 0.0.7 donne des conditions nécessaires et suffisantes pour qu’un sys-
teme X, avec m > 2, soit statiquement équivalent a la forme triangulaire suivante :

(20=wv0 21 =fl(z0,2%) 420y - 2z, = fh(z0,2%) +z400
= fi(z0,2°) +zjvo - Z = falz0,2°)  +z00
TCHY, : : :
K = N z0,2%) +2kug - 2 = fRY(z0,28) 42k 0
L Z],f =0 [ Zﬁ/l = Um

Theorem 0.0.7. Considérons le systeme X, donné par (3) avec m > 2, et fixons x* € X.
Le systeme ¥ est statiquement équivalent, autour de x*, a la forme triangulaire TChE, si et
seulement si les conditions suivantes sont satisfaites :

(m-Chl) Gk—1=TX;

(m-Ch2) G*=2 est de rang constant (k —1)m + 1 et contient une sous-distribution involutive
L, de corang constant, égal a un, dans Ggk—2.

(m-Ch3) G°(x*) n’est pas contenue dans L(x*);
(m-Comp) [f,C'] C G, pour1 < i <k —2,0itC' est la distribution caractéristique de G'.

Les conditions (m-Ch1)-(m-Ch3) caractérisent la forme multi-chainée et (m-Comp)
prend en compte la dérive f et donne les conditions de compatibilité pour que f soit
sous la forme triangulaire souhaitée dans le bon systeme de coordonnées.

La caractérisation de la forme chainée differe de celle de la forme multi-chainée
(comparer les conditions (Ch1)-(Ch3) et (m-Ch1)-(C-mCh3)), mais les conditions de
compatibilité sont les mémes (comparer (Comp) et (m-Comp)). La sous-distribution
involutive £, qui est cruciale pour la forme multi-chainée, n’est pas présente dans les
conditions de compatibilité, cependant elle joue un role tres important dans le calcul
des sorties plates minimales et des singularités (voir Section 3.1.4).



CONTENTS 23

Ensuite, nous discutons la platitude des systemes de controle statiquement équiv-
alents a TCHX, sim = 1, ou a TCh'fn, sim > 2, et déterminons toutes les sorties
x-plates, si m = 1, et toutes les sorties x-plates minimales, si m > 2 (voir Theo-
rems 3.1.3 et 3.1.4, Section 3.1.4). Les systémes équivalents & TCh! ou a TChE, sont
x-plats et manifestent des singularités (dépendantes de 1’état) dans 1’espace de con-
trole. L'ensemble des contrdles singuliers (pour lesquels le systéme cesse d’étre plat)
est défini de maniere invariante a 1’aide de la dérive f et des distributions caractéris-
tiques C', ainsi que de la sous-distribution involutive £, si m > 2.

Nous montrons que la description des sorties plates des systémes statiquement
équivalents a TCh% (respectivement des sorties plates minimales des systémes sta-
tiquement équivalents a TChK,) coincide avec celle des sorties plates de la forme
chainée (respectivement avec celle des sorties plates minimales pour la forme multi-
chainée). A un cas particulier pres, la dérive (sauf pour ce cas particulier) ne joue
donc aucun role dans la caractérisation des sorties plates, mais elle intervient dans la
définition des controles singuliers. La Proposition 3.1.2 (respectivement la Proposi-
tion 3.1.4), Section 3.1.4, nous permet d’en déduire explicitement un systeme d’EDP
a résoudre afin de trouver toutes les sorties plates (respectivement toutes les sorties
plates minimales).

En fin, nous souhaiterions appliquer ces résultats a un systéeme mécanique : une
piece qui roule sans glissement sur une table en mouvement. Nous nous sommes
posés la question suivante : quand ce systeme est-il statiquement équivalent a la
forme triangulaire compatible avec la forme chainée ? Nous avons montré que le
systéme peut se mettre sous la forme TChY si et seulement si la dynamique de la
table est décrite par les équations suivantes :

X = cyt+e
y o= —cx+f

ol c, e et f sont des constantes réelles.

Dans la deuxiéme partie de ce chapitre, nous introduisons le concept de platitude
x-maximale. Ces résultats ont été réalisés en colaboration avec Shunjie Li et ont été
présentés a MTNS 2014, [42].

Considérons un systeme Z : ¥ = F(x,u),oux € X C R"etu € U C R™, plat au
point (x*,7P*) € XP. Soit (¢1,..., ¢m) une sortie plate. Etant donné que pour tout

I > 0, toutes les dérivées successives des sorties plates (pl(] ), 1<i<m0<j<I,
sont indépendantes, a la dérivation suivante nous obtenons m nouvelles fonctions

indépendantes

q)flﬂ) = (p§l+1)(x, u,i,. ..,u(”HH)), 1<i<m.

Nous nous intéressons au probléme suivant : combien des nouvelles fonctions
dépendantes de 1’état uniquement, obtenons-nous apres chaque dérivation succes-
sive ? Un systéme de controle est x-maximalement plat si le nombre de nouvelles
fonctions d’états indépendantes exprimées a chaque dérivation successive des sor-
ties plates est le plus grand possible. Afin de formaliser ceci, pour deux codistribu-
tions € et F, nous définissons leur intersection ponctuelle £ N F par (£ N F)(x) =
E(x)NF(x),pour x € X, etnous introduisons les notations :
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® = span{de;, - ,dgofj),l <i<mj,
A = dINT*X
= span{dg;,--- ,d(pl(j),l <i<m}NT*X,
et définissons a/(¢) = dimA/(&), ou & = (x,u,u,i,---). Le vecteur
(a%(g),a' (&), - ,aP(Z)) sera appelé x-vecteur de croissance de la suite des codis-
tributions ®° C ®! C - .- C PP, o1 p est le plus petit entier tel que A° = T*X.

Definition 0.0.2. Un systéme E plat en (x*,#7*) € X, pour p > — 1, est appelé
x-maximalement plat en (x*, iiP*) s’il existe une sortie plate en (x*, #"*) pour laquelle
les codistributions A/ ne dépendent pas du contrdle oi1 des dérivées du contrdle et,
si dans un voisinage de x*, la suite (a%(x), a'(x), -+ ,a’(x)) est constante et la plus
grande possible parmi tous les systemes plats avec dimU = m et dim X = n.

Tout d’abord, remarquer que les systemes x-maximalement plats sont simplement
les systemes statiquement linéarisables avec les indices de controlabilité p; = 7=, pour
1 <i < m, (Proposition 3.2.1, Section 3.2.2). En effet, pour ces systemes, le nombre
de nouveaux états gagnés a chaque dérivation successive des sorties plates est m, le
plus grand possible. En général, un systeme plat n’est pas statiquement linéarisables,
néanmoins, nous pouvons nous intéresser a la platitude x-maximale d"une classe par-
ticuliére de systemes. Par la suite, nous supposons que le nombre de controles est
m + 1 (et pas m). Nous verrons que, effectivement, un controle joue un role partic-
ulier.

Un systeme plat X;, : X = Y7, u;9;(x), linéaire par rapport aux controles, définie
sur un espace d’états de dimension n = km + 1, n’est jamais statiquement linéarisable
(sauf s’il a autant d’états que des controles). Par conséquent, il ne peut pas admettre
un x-vecteur de croissance (m + 1, 2(m+1),3(m+1),---). Le x-vecteur de crois-
sance peut commencer par m + 1 (si le systeme est x-plat), mais, étant donné que
le systéme est linéaire par rapport aux contrdles, les dérivées ¢;, pour 0 < i < m,
font nécessairement intervenir le controle. Donc le nombre maximal de nouvelles
fonctions dépendantes uniquement de 1'état que les dérivées ¢;, pour 0 < i < m,
peuvent fournir est au plus m. Ainsi, la deuxieme composante du x-vecteur de crois-
sance peur étre au plus 2m + 1. Le x-vecteur de croissance maximal est donc (m + 1,
2m+1,3m+1,--- ,km+1) etil est réalisé par les systemes statiquement équivalents
a la forme multi-chainée, voir Proposition 3.2.2, Section 3.2.2.

Une question naturelle se pose : a quelles conditions la platitude x-maximale de
Yin est-elle préservée si nous perturbons le systeme ¥;;,, (statiquement équivalent a
la forme multi-chainée) en ajoutant une dérive f et obtenant de cette maniére un sys-
teme affine par rapport aux controles X ¢ : ¥ = f(x) + XL u;gi(x) ? Autrement dit,
quelles sont les conditions satisfaites par la dérive f afin que le x-vecteur de crois-
sance associé au systeme X;¢s (dont le sous-systeme linéaire X);, est statiquement
équivalent a la forme multi-chainée) soit (m +1,2m +1,3m+1,--- ,km+1)?

Le résultat principal de la deuxiéme partie de ce chapitre, donné par le
Théoreme 0.0.8, répond a la question précédente et généralise ainsi la Proposi-
tion 3.2.2. Avant d’énoncer le théoréme, introduisons quelques notations. Un
bouclage statique, inversible, u = a(x) + B(x)il transforme le systéme X,¢¢ sous la
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forme ¢ : % = f(x) + Lty #;gi(x), ot f = f+gaet§ = gB,avecg = (g0, - ,gm)
et §= (8o, - ,&m)- A Lsf, nous associons la (k — 1)-prolongation

( m

= f(x) +11do(x) + Z;ufgi(x)
i(kfl,o,...,o) : 1 y

aff
}]k—z = Yr1
( Yp1 = uh
avec Y1 = fl, uf = il;, pour 1 < i < m, obtenue en prolongeant k — 1 fois le controle
flp comme ul) = u(()k Y. La dérive et les champs de vecteurs contr6lés du systeme
prolongé il(g(n_l’o """ 0) seront notés par fi,J et, respectlvement, par gpi, oul <i < m.

Les distributions du systéme prolongé seront notées en utilisant le sous-index p, i.e.,
0_ i+1 _ i ‘

Le résultat suivant est valide pour les deux cas, m = 1 et m > 2, et caractérise
la forme triangulaire compatible avec la forme multi-chainée du point de vue de la
platitude x-maximale (si m = 1 la forme multi-chainée désigne simplement la forme

chainée). L'ensemble des contrdles singuliers sera noté par U a} fg

Theorem 0.0.8. Considérons la classe € des systeme affine par rapport aux controbles
Taprt & = f(x) + Lo uigi(x) dont le sous-systeme linéaire Xy, = & = Y10 u;gi(x) est
statiquement équivalent a la forme multi-chainée. Pour X, ff € ¢, les conditions suivantes
sont équivalentes:

(Aff1) Yoy est x-maximalement plat en (x*, @™ ), pour r > —1, dans la classe &;
(Aff2) Zy55 est x-maximalement x-plat en (x*,u*) dans la classe &;

(Aff 3) Z,fr admet une sortie plate en (x*,u*) dont le x-vecteur de croissance est constant,
égala (m+1,2m+1,3m+1,--- ,km+ 1) et les codistributions A, pour 0 < j <

k — 1, ne dépendent pas du contrdle ni de ses dérivées;
(Aff4) Ly est localement, autour de x*, statiquement équivalent a la forme triangulaire

compatible avec la forme multi-chainée TChE, et u* ¢ US}’}g (x*);

(Aff5) Le systeme X5 satisfait, autour de (x*,u*), avec u*(x*) ¢ LIZ}’}‘?( *), les condi-
tions suivantes :
(m-Ch1)” GF-1 = TX;

(m-Ch2)" G*=2 est de rang constant (k — 1)m + 1 et, si m > 2, contient une sous-
distribution involutive L de corang constant un dans gk-2.

(m-Ch3)" GO(x*) n’est pas contenue dans L(x*), si m > 2 (ou n'est pas contenue
dans Ck=2(x*), sim = 1);

(m-Comp) [f, Cl] c gt pour1 <i<k—2, o C! est la distribution caractéristique
de G'.
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(Aff 6) Il existe, autour de x*, un bouclage statique inversible u = a(x) + B(x)il, qui trans-
forme le systeme T, ¢s sous la forme Lqpp : % = f(x) + L, 1;8i(x), telle que les

distributions D; associées a la (k — 1)-prolongation igl};l,o,...,o) satisfassent : pour

tout 0 < i < k — 2, les distributions D; N TX ne dépendent pas de y, sont involu-
tives, de rang constant m(i + 1) et D]’;_l NTX =TX.

Nous ne prétendons pas qu’un systeme X, satisfaisant une des conditions ci-
dessus soit x-maximalement plat. De toute évidence, les systémes x-maximalement
plats sont les systémes linéarisables statiquement. Le théoreme précédent décrit
les systemes x-maximalement plats parmi les systemes de la classe ¢ des systéemes
affines dont le sous-systeme linéaire est statiquement équivalent a la forme multi-
chainée. De méme que pour les systemes linéaires, le x-vecteur de croissance com-
mence par m + 1, et, étant donné que le sous-systeme linéaire est statiquement équiv-
alent a la forme multi-chainée, sa deuxiéme composante peut étre au plus 2m + 1. Les
conditions (m-Ch1)’-(m-Ch3)" et (m-Comp) regroupent les deux cas, m = 1 etm > 2,
et donnent les conditions nécessaires et suffisantes pour que le systeme soit statique-
ment équivalent a la forme triangulaire TCHE,.

Supposons maintenant que X, s soit x-plat et que son sous-systeme linéaire soit
statiquement équivalent a la forme multi-chainée. Nous souhaiterions savoir si X ¢
satisfait les conditions du Théoreme 0.0.8. Autrement dit, un systeme x-plat, affine
par rapport aux controles, dont le sous-systeme linéaire est statiquement équiva-
lent & la forme multi-chainée, est-il nécessairement équivalent a la forme triangu-
laire TChK, ? La réponse a cette question est négative comme le démontre 1'exemple
présenté en Section 3.2.4.



1 FLATNESS OF TWO-INPUT
CONTROL-AFFINE SYSTEMS LIN-
EARIZABLE VIA ONE-FOLD PRO-
LONGATION

Abstract

We study flatness of two-input control-affine systems, defined on an n-dimensional state-
space. We give a complete geometric characterization of systems that become static feedback
linearizable after a one-fold prolongation of a suitably chosen control. They form a particular
class of flat systems: they are of differential weight equal to n + 3. We give normal forms
compatible with the minimal flat outputs and provide a system of first order PDE’s to be
solved in order to find all minimal flat outputs. We illustrate our results by two examples:
the induction motor and the polymerization reactor.

1.1 Introduction

In this paper, we study flatness of nonlinear control systems of the form

E: x= F(x,u),

where x is the state defined on a open subset X of R and u is the control taking
values in an open subset U of R (more generally, an n-dimensional manifold X and
an m-dimensional manifold U, respectively). The dynamics F are smooth and the
word smooth will always mean C*-smooth.

The notion of flatness has been introduced in control theory in the 1990’s by Fliess,
Lévine, Martin and Rouchon [13, 14] (see also [21,22,32,54]) and has attracted a lot
of attention because of its multiple applications in the problem of trajectory tracking
and motion planning (see, e.g. [15,26,36,52,55,58, 62]).

The fundamental property of flat systems is that all their solutions may be
parametrized by m functions and their time-derivatives, m being the number of con-
trols. More precisely, the system & : % = F(x,u) is flat if we can find m functions,
pi(x,u,..., u(’)), for some r > 0, called flat outputs, such that

x=79(¢q,...,¢" ) and u = é(¢,..., %)), (1.1)

27
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for a certain integer s and for all solutions of &, where ¢ = (¢1,..., ¢m). There-
fore all state and control variables can be determined from the flat outputs without
integration and all trajectories of the system can be completely parameterized.

It is well known that systems linearizable via invertible static feedback are flat.
Their description (1.1) uses the minimal possible, which is n 4 m, number of time-
derivatives of the components of flat outputs ¢;. For any flat system, that is not static
teedback linearizable, the minimal number of derivatives needed to express x and u
(which will be called the differential weight) is thus bigger than n 4 m and measures
actually the smallest possible dimension of a precompensator linearizing dynami-
cally the system. Any single input-system is flat if and only if it is static feedback
linearizable (and thus of differential weight n+1), see [9,54]. Therefore the simplest
systems for which the differential weight is bigger than n + m are systems with two
controls linearizable via one-dimensional precompensator, thus of differential weight
n + 3. They form the class that we are studying in the paper: our goal is to give
a geometric characterization of two-input control-affine systems that become static
feedback linearizable after a one-fold prolongation of a suitably chosen control.

The paper is organized as follows. In Section 1.2, we recall the definition of flat-
ness and define the notion of differential weight of a flat system. In Section 1.3, we
give our main results. We characterize two-input control-affine systems linearizable
via one-fold prolongation of a suitably chosen control, that is flat systems, of dif-
ferential weight n 4- 3. We present in Section 1.4 normal forms compatible with the
minimal flat outputs and give a system of first order PDE’s to be solved in order to
tind all minimal flat outputs in Section 1.5. We illustrate our results by two examples
in Section 1.6 and provide proofs in Section 1.7.

1.2 Flatness

Flat systems form a class of control systems, whose set of all trajectories can be
parametrized by a finite number of functions and their time-derivatives. Fix an inte-
ger | > —1 and denote Ul = U xR™ and @' = (u, 1/2,...,1/[(1)). For I = —1, the set
U~ is empty and ! in an empty sequence.
Definition 1.2.1. The system E : = F(x,u) is flat at (xo, i) € X x U, for
I > —1, if there exists a neighborhood O' of (xo, i) and m smooth functions
¢; = @i(x,u,1,..., u(l)), 1 < i < m, defined in O/, having the following property:
there exist an integer s and smooth functions y;, 1 < i < 1, and 5]-, 1 <j <m,such
that

xi = (e, ¢, 9")

uj = 5](4), Q... (p(s))
along any trajectory x(t) given by a control u(t) that satisfy (x(t),u(t),...,u!)(t)) €
O!, where ¢ = (¢1,..., ;) and is called a flat output.

When necessary to indicate the number of derivatives of u on which the flat out-
puts ¢; depend, we will say that the system Z is (x,u, - - - , u'")-flat if u(") is the high-
est derivative on which ¢; depend and in the particular case ¢; = ¢;(x), we will say
that the system is x-flat.
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In general, r is smaller than the integer  needed to define the neighborhood O'
which, in turn, is smaller than the number of derivatives of ¢; that are involved (in
our study r = —1 and I = —1 or 0). The minimal number of derivatives of compo-
nents of a flat output, needed to express x and u, will be called the differential weight
of that flat output and is formalized as follows.

By definition, for any flat output ¢ of a flat system = there exist integers sy, ..., sy

such that

r)/((Pl’ (Pl’ Tt (Pgﬂ)’ ceor Pmy quH/ ey (PT(I’Slm))

= 5(4)1/ 4)1/ cccy 90551); cecy q)TH/ (sz sy ¢£;m))
Moreover, we can choose (s1,...,5y) such that (see [58]) if for any other m-tuple
(51,...,5m) we have

’Z’(ﬁl)l; (pll R @(isl)); e Pmy (pm/ ceey (P((n;m)))

- 5((P1/(P1/---/§0151;~~~/(Pm/([.7m/---/§0njm )/
thens; <35, forl <i <m. Wewillcall Y ;(s; +1) = m+ )", s; the differential
weight of ¢. A flat output of E is called minimal if its differential weight is the lowest
among all flat outputs of &. We define the differential weight of a flat system to be
equal to the differential weight of any of its minimal flat outputs.

Consider a control-affine system of the form

Y:x=f(x)+ iuigi(x), (1.2)
i=1

where f and g, ..., gm are smooth vector fields on X. The system X is linearizable
by static feedback if it is equivalent via a diffeomorphism z = ¢(x) and an invertible
feedback transformation, u = a(x) + B(x)v, to a linear controllable system

A :z= Az -+ Bo.

The problem of static feedback linearization was solved by Jakubczyk and Re-
spondek [23] and Hunt and Su [19] who gave geometric necessary and sufficient
conditions. The following theorem recalls their result and, furthermore, gives an
equivalent way of describing static feedback linearizable systems from the point of
view of differential weight.

Define inductively the sequence of distributions D! = D' + [f, D], where D" =
span{g1, -, gm}.
Theorem 1.2.1. The following conditions are equivalent:

(i) X is locally static feedback linearizable, around xy € X;

(ii) X is locally static feedback equivalent, around xo € X, to the Brunovsky canonical form

.1 _ i
(Br) 1 T G
Zo, = Ui

m
where1 <i<m,1<j<p;—1and) p;=n
i=1
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(iii) For anyi > 0, the distributions D! are of constant rank, around xo € X, involutive and
Dl =TX;

(iv) X is flat at xg € X, of differential weight n + m.

The geometry of static feedback linearizable systems is given by the following
sequence of nested involutive distributions:

PPcplc...cp1=TX.

It is well known that a feedback linearizable system is static feedback equivalent to
the Brunovsky canonical form, see [5], and is clearly flat with ¢ = (@1, -+, om) =
(z},---,2M) being a minimal flat output (of differential weight n 4 m). Therefore,
for static feedback linearizable systems, the representation of all states and controls
uses the minimal possible, which is n 4 m, number of time-derivatives of ¢; and an
equivalent way of describing them is that they are flat systems of differential weight
n -+ m.

In general, a flat system is not linearizable by invertible static feedback, with
the exception of the single-input case where flatness reduces to static feedback lin-
earization, see [9]. Flat systems can be seen as a generalization of linear systems.
Namely they are linearizable via dynamic, invertible and endogenous feedback,
see [13,14,32,54]. Our goal in this paper is to describe the simplest flat systems
that are not static feedback linearizable: two-inputs control-affine systems that be-
come static feedback linearizable after one-fold prolongation, which is the simplest
dynamic feedback. They are flat systems of differential weight equal to n + 3. In
this paper, we will completely characterize them and show how their geometry dif-
fers but also how it reminds that given by the involutive distributions D' for static
feedback linearizable systems. We will also give normal forms compatible with the
minimal flat outputs (thus generalizing the Brunovsky normal form) and provide a
system of first order PDE’s to find all minimal flat outputs.

1.3 Main results

Throughout, we will consider two-input control-affine systems of the form

Yox=f(x)+uirgr(x) + upga(x), (1.3)

where x € X, u = (u1,up)" € R? and f, g1, and g, are C®-smooth vector fields on X
and that are not static feedback linearizable.

We make the following assumption:

(Assumption 1) From now on, unless stated otherwise, we assume that all ranks in-
volved are constant in a neighborhood of a given xp € X.

Remark 1.3.1. All results presented here are valid on an open and dense subset of
either X or X x U and hold locally, around a given point of that set.
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Flat systems of differential weight n + 3 form a particular class of dynamic feed-
back linearizable systems, namely, they become static feedback linearizable after one
prolongation of a suitably chosen control. More precisely, we have the following
result:

Proposition 1.3.1. Consider a two-input control-system % : % = f(x) 4+ u191(x) +
U2 (x). The following conditions are equivalent:

(i) X is flat at (xo, 7)), with the differential weight n + 3, for a certain | > 1;
(ii) X is x-flat at (xo, uo), with the differential weight n + 3;

(iit) There exists, around xo, an invertible static feedback transformation u = a(x) + B(x)i,
bringing the system ¥ into the form % : x = f(x) + 6181 (x) + @22 (x), such that the
prolongation

2(1,0%{’3 = f(¥) +181(x) + v282(x)
vio= v

is locally static feedback linearizable, where yy = iiy, vy = iy, f = f +agand § = g,
where g = (g1, g2) and § = (31, 82).

A system X satisfying (iii) will be called dynamically linearizable via invertible
one-fold prolongation. Notice that 3(10) is, indeed, obtained by prolonging the first
control 7; one time as v; = #i; and not prolonging i, (which explains the notation).
The above result asserts that for systems of the differential weight n + 3, flatness and
x-flatness coincide and that, moreover, they are equivalent to linearizability via the
simplest dynamic feedback, namely one-fold prolongation.

Recall that the system . is assumed not static feedback linearizable. This occurs if
there exists an integer k such that D¥ is not involutive. Suppose that k is the smallest
integer satisfying that property. Moreover, the condition rk D¥ — rk D1 = 2 is for
dynamic linearizability via one-fold prolongation and thus for flatness of differential
weight n + m + 1, as asserts Proposition 1.7.1, in Section 1.7. Therefore throughout
we will suppose the following;:

(Assumption 2) k is the smallest integer such that DX is not involutive and
rk DF — rkDF1 =2,

Our main result describing flat systems of differential weight n + 3 is given by two
following theorems corresponding to the first noninvolutive distribution D being
either DY, ie.,, k = 0 (Theorem 1.3.2) or Dk, for k > 1 (Theorem 1.3.1). For both
theorems, we assume that D + [DF, D] # TX. The particular case D¥ + [DF, DF] =
TX (met in applications, see Example 5.1) will be discussed at the end of this section

(in Theorem 1.3.4). We will denote by 5]( the involutive closure of Dk, i.e., the smallest
involutive distribution containing Dk,

Theorem 1.3.1. Assume k > 1and D* + D, D¥| # TX. Consider the two-input control
system X, given by (1.3). The system X is flat at xo, of differential weight n + 3, if and only
if the following conditions hold:
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(A1) Tk D" = 2k +3;

(A2) rk (5]( + [f, D¥]) = 2k + 4, implying the existence of a non-zero vector field g. € D°

such that adi‘ﬁl gc € 5k;

(A3) The distributions H?, for i > k, are involutive, where HE = D1 4 span {adfcgc}
and H' = H' + [f, H', fori > k;

(A4) There exists p such that HP = TX.

The geometry of the systems described by the previous theorem can be summa-
rized by the following sequence of inclusions:

POc...cpt-1 < pk c D
2 2 1
1U |

HEk g fHkJrlg...g%ﬂgyﬂ+1%...%HP:TX

where all the distributions, except Dk are involutive and the integers beneath the
inclusion symbol “C” indicate coranks. According to condition (A1), only one Lie
bracket can stick out from the noninvolutive distribution D¥, thus the loss of involu-
tivity of D is minimal. Moreover, if we take the brackets of D¥ with f, we gain only
one new direction, see (A2), implying the existence of a distinguished vector field
gc in DY that allows us to define the subdistribution H¥. Notice that the existence of
the corank one involutive subdistribution ¥ in D is the main structural property
of flat systems of differential weight n + 3. Indeed, H* takes the role of the noninvo-
lutive distribution D* and moreover, its successive brackets with the drift are again
involutive (replacing the distributions D**).

It is easy to check that D = k. Indeed, by definition, H*1 = DF +
span {ad"+! gc} and is involutive. Moreover rk H**! = 2k + 3, otherwise we obtain

HK+1 = Dk and DF would be involutive. Since D ¢ H**1 and rk HF! = 2k + 3, it
follows that D* = #*+1. Thus the direction completing D to D" has to be colinear
with adﬁf’l gc modulo DF.

Example 1.3.1. The following examples shows that the existence of the involutive
subdistribution H* in D plays indeed a crucial role. If we do not assume its existence

and define the sequence of distributions by # 1 = D' and Hit! = ! + [f, H], for

i > k + 1, then the result is not true anymore as shown by the following two-input
control system:

X1 = Xp zZ1 = %Z% + 27
(§): %2 = x3 2 = z3
X3 = U Z3 = Up

which is not dynamically linearizable via one-fold prolongation. A way to see it is
that the system is composed by two independent single-input subsystems, the first
one linear and the second one that cannot be dynamically linearizable. Another way
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to see it is that (S) is in fact the prolongation (obtained by prolonging twice the first
control) of the following control system

. 5(1:111 21 = %Z%—f—ZZ
(S)Z Zp = Z3

Zz = U

which has been shown in [55] (Theorem 3.1, case 2) not to be linearizable by endoge-
nous dynamic feedback. Hence, (S) is not flat and we deduce that (S) is not flat
as either, and in particular, not ﬂat of differential weight n + 3. The first nonivo-

. . . . 1 9 9
lutive distribution is D span{ 37 Ias’ 23 azz + 235, } so k = 1 and we clearly
J J J

have D' = = span {a—xz, 5% 957 3on 21 Defmmg the sequence H as above, we have

72 = D' and H3 = TX. Moreover, rk (D +[f,D!]) = 6and adfgz =g € D'. Thus
the distinguished vector field defmed by 1tem (A2)is g» = az; and the distribution

H' is given by H! = span {2 7 + 235, 91 and is clearly nonmvolutlve So all

4 823 4 E)zz
conditions, except the involutivity of H!, are verified, however, the system is not flat
of differential weight n + 3, proving that if we skip the assumption of the involutivity

of #1, the result does not hold anymore.

Theorem 1.3.1 enables us to define the control (given up to a multiplicative func-
tion) to be prolonged in order to obtain a locally static feedback linearizable %(1.0).
The vector field g € D (see (A2)) can be expressed as g = B1g1 + P2g2, for
some smooth functions (not vanishing simultaneously) on X. We define the to-be-
prolonged control as u,(t) = Ba(x(t))ui(t) — B1(x(f))uz(t) and it is the control that
needs to be preintegrated in order to dynamically linearize the system, that is, we put

v1 = (Bour — Prun) = Lty

If k = 0, i.e., the first noninvolutive distribution is D = G°, then a similar result
holds, but in the chain of involutive subdistributions H° ¢ H! C H? C --- (playing
the role of H*¥ ¢ H*1 c H*2 c -..), with HO = span {g.}, the distribution H!
is not defined as #**! but as H! = G! = G+ [G°, G'] (compare (A3) and (A3)’).
Moreover, flat systems with k = 0 exhibit a singularity in the control space (created
by one-fold prolongation of the to-be-prolonged control) which is defined by

Using(x) = {u € R*: (g1 A ge A [f + 1181 + U2ge, &) (x) = 0},

and excluded by condition (RC), where the vector fields g; and g, are such that DY =
span {g1, ¢c}. Notice that the set of singular controls is non empty due to condition
(A2).

Theorem 1.3.2. Assume k = 0 and D* + [D, D¥] # TX. Consider the two-input control
system X, given by (1.3). X is flat at (xo, up), of differential weight n + 3, if and only if the
following conditions hold:

(A1) tkD’ =3

(A2)" rk (50 + [f, D°]) = 4, implying the existence of a non-zero vector field g. € D° such
that adsg. € G';
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(A3)" The distributions H, for i > 1, are involutive, where H = Gland H' = HI71 +
[f, HI7Y), fori > 2;

(A4)" There exists p such that HP = TX;

(RC) [ZA0) % usmg(xo).

Recall that we have assumed that the rank of all distributions involved is con-
stant in a neighborhood of xo. Thus item (A1)’ implies that we actually have
= G! = DY+ [DY, D). A similar result can be formulated for the singular case
when both vector fields ad;g; and ad fgz vanish modulo D’ = G! at xp and the di-
rection completing H! = G to H? = G + [f, Q ] is given by ad /| (g1, g2 In this case,
item (A2)’ should be replaced by rk( +[f,D ]) =4andrk (D +f, DO])( 0) =3.

The existence of a non-zero vector field g € DY such that ad 18c € G! is no longer
redundant and we have to add it explicitly in the conditions of the theorem.

The conditions of both theorems are verifiable, i.e., given a two-input control-
affine system, we can easily verify whether it is flat with the differential weight n + 3
and verification involves derivations and algebraic operations only, without solving
PDE’s or bringing the system into a normal form.

The cases k = 0 and k > 1 are similar, but they have slightly different geometries.
Even if at first sight, it seems not possible to merge them (due to the different defi-
nitions of the distributions H! and H**! and to the existence of singularities in the
control space for k = 0), the following result enables us to unify them. Theorem 1.3.3

is based on the observation that in both cases, we actually have H*1 = D (by def-
inition of !, for k = 0, and as a direct consequence of the definition of H**1, for
k > 1, see the comment after Theorem 1.3.1).

Theorem 1.3.3. Assume D* + [D¥, D¥] # TX. Consider the two-input control system X,
given by (1.3). ¥ is x-flat at (xo, uo), of differential weight n + 3, if and only if

(A" kD" = 2k+3;

(A2)” rk (5]( + [f, D)) = 2k + 4, implying the existence of a non-zero vector field g. € D°

such that adﬁ‘f*lgc € ﬁk;

(A3)” The distribution H* = D¥=1 + span {ad fgc} is involutive, where DX~ is empty if
k=0;

(A4)” The distributions H, fori > k + 1, are involutive, where HEHL = 51( and HIH1 =
" [f, H fori>k+1;

(A5)” There exists p such that HP = TX.

(A6)” tk (DF + span {ad?iéugc})(xo, ug) = 2k + 3, where f + gu = f + u191 + Uzge.
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If k = 0, condition (A3)" is clearly verified and item (A6)” immediately implies
that (g1 A ge A [f +u1g1 + uage, cl) (x0,10) # 0, thus ug & Using(xo). Ifk > 1, it
can be easily shown that (A6)” does not depend on the control and that we have

adiﬁ“ gc(x0) & DF(xp). From this and since aal;frl g € D" and 1k D" = 2k + 3, we

deduce that D' = Dk + span {akorl gc} = M+ [f, HY], giving the condition that

HKH = HF 4 [f, HF], which at flrst glance, seems missing in the statement of Theo-
rem 1.3.3.

Let us now consider the case DX + [DF, D¥| = TX. The 1nvolut1v1ty of DF can
be lost in two different ways: either [Dk 1, DY ¢ DF and [adk 81, ad" gz] ¢ DF or
[Dk=1,DK] ¢ DF. As asserts Theorem 1.3.4 below, in the first case, the system is flat
of differential weight n 4 3 without any additional condition whereas in the second
case, the system X has to verify some additional conditions analogous to those of
Theorem 1.3.1. Since the condition (A2), enabling us to compute the involutive sub-
distribution H*, has no sense in that case, we have to define H¥ in another way. To
this end, we introduce the characteristic distribution of D¥, defined as follows. For a
distribution D, we call ¢ € D a characteristic vector field of D if [c, D] C D. The char-
acteristic distribution C of D is the distribution spanned by all its characteristic vector
fields. It follows directly from the Jacobi identity that the characteristic distribution
is always involutive.

In the case k = 0 and DF + [DF, D¥] = TX, the singular controls are not defined
by Usine(x) but as

Using (x) = {u € R* : dimspan {g1, g2, adsg1 + u2(g2, §1], ad g2 + u1[g1, 82]} (x) = 3.

Theorem 1.3.4. Assume k > 0 and D + [DX, D¥| = TX. Then

(i) either [D*=1, D] C D and then ¥ is flat at any xo € X such that D1 (xg) = Ty, X
(flat at any (xo,ug) € X x R?, such that ug ¢ Ugmg( x0), if k = 0). Moreover, if ¥ is
flat, it is flat of differential weight n + 3.

(ii) or [D¥=1,D¥] ¢ Dk, then k > 1 and X is flat of differential weight n + 3 at xo € X if
and only if 2. satisfies around x the following conditions

(C1) tkCF = 2k, where C¥ is the characteristic distribution of Dk .
(C2) rk (CK4+DF1) =2k +1;

(C3) The distribution H* = C* + D" is involutive;

(C4) HKT = TX, where HF1 = HE 4 [, H¥).

The assumptions of Theorem 1.3.4 (i), i.e.,, D* 4 [D¥, D] = TX and [D*¥!, DY
DF, imply that the state-space is of dimension n = 2k + 3 and that the rank of D**!
(which is feedback invariant in this case) is maximal and equal to n = 2k + 3 on an
open and dense subset of X. Although, D¥*!(x() = Ty, X on an open and dense sub-
set of X, in order to prove flatness at xg € X, we have to suppose that that condition
is satisfied at xp and not only on an open and dense subset.
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It can be shown that in the case [D¥"!, D] ¢ DF (no matter whether D* +
[DF, D] = TX or not), the involutive subdistribution 7* can always be defined as
above, i.e., the definition of ¥ given by item (A3) of Theorem 1.3.1 and that pro-
vided by conditions (C1) — (C3) of the above theorem are equivalent if [D*~1, D] ¢
Dk. In other words, under [Dk_l,Dk] 7 Dk, Theorem 1.3.4 holds with no extra
assumptions. This is not valid anymore if [D¥~1, D¥] C Dk; indeed, in that case
Ck = D1, condition (C2) is not verified and (C3) would give H* = DF1.

1.4 Normal forms

The following proposition gives two different (although static feedback equivalent)
normal forms for the class of two-input flat systems of differential weight n + 3 (be-
low Using is to be replaced by U;ing, if DO + [DO,DO] = TX). Fori = 1,2, denote

z; = (24, ,z}).

The integers p; and y; that show up in the normal forms are related to p and u
defined via the nested sequence of distributions D’ and H'. Let u be the smallest
integer such that corank (H# C H"*1) is one and p is the smallest integer such that
HP = TX. It follows that 4 < p and p + p +1 = n. Define two pairs of indices
(p1,p2) and (p1, p2) by p = max(p1,02) = k4 max(p1, 42) and p = min(py, p2) =
k +min(pq, pi2). We have p1 + p2 +1 = nand yy + po + 2k +1 = n, implying p; >
k+1and p; > 1. It follows that 4 > k + 1 and the equality p = k 4 1 holds if and
only if y1 = yp = 1 corresponding to D¥ 4 [D¥, D¥] = TX.

Proposition 1.4.1. Consider a flat two-input control-affine system X, given by (1.3). The
following conditions are equivalent:

(i) Xis flat at xq (at (xo, uo), such that ug = (u19, u20) & Using(x0), if k = 0) of differen-
tial weight n + 3;

(ii) X is locally, around xg, static feedback equivalent to the following normal form in a
neighborhood Z of zg € R":

(.1 1 .2 .2
21 T4 11 =%
D R L N, S,
(NF1) : zﬁ)l_1 =z, 25’2_1 =z,
2o, =11z  =a(z)+b(z)ih
2 =1
\ Pz+1 2
: _ 2 _ -1 =2
where either k > 1 and then a = Z5 41/ b = b(zpl—k+1'2p2—k+1) and
ob Job _ _ 2 _ ;
(az,l;l—kﬂl aziszﬂ)(z()) # (0,0) or k = O and then b = Zo, 41 And a = a(z) is any
function and, moreover, aZ?—”H(zo) + 119 # 0.
02

(iii) X is locally, around xg, static feedback equivalent to the following normal form in a
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neighborhood W of wy € R":
(ol 2 — 2
Wy  =w, (4 = w5
%5 I | 2 — 2
N S
(NF2) - O T P O = Dy 1, iy 41)
: wl — wl wz — wZ
pi+1 H1+2 po+1 Ho+2
S 2 — 2
W4k = 1 wgfrk = Witk
\ w;l/lerkJrl = Uz
‘o i — (L a2 2 1 : o
where d is either of the form d = c(@y,, @}, 1) + Wy W, q, with (awﬁ2+1 +
1 — (! 2 ad
wy, 1)(wo) # 0, 0rd = d(@, 4, @y, ) such that awi—H(wo) # 0 and
2
2 . ~
ﬁ(wo) # 0, if k = 0, we put w%lﬁl = iy and only the case d =
M1
c(@h , @ )+ w? il is possible
H17 a1 pr+171 :

Moreover, the minimal x-flat outputs and the normal forms (NF1) (resp. (NF2)) are
compatible: if (¢1, ¢2) is a minimal x-flat output at xo, then there exists an invertible static
feedback transformation bringing the system % into (NF1) with ¢1 = z} and @ = z3 (resp.
into (NF2) with 1 = wi and ¢p = w?).

Remarks. Each of the above normals forms has its importance and we below dis-
cuss them.

1. Both normal forms are the closest possible to Brunovsky canonical form. In fact,
only one nonlinearity is present, which is due to the fact that the noninvolutiv-
ity of D¥ is minimal: DF is squeezed between two involutive distributions #*
and H**1 and both inclusions are of corank one (see the sequence of inclusions
summarizing the geometry of flat systems of differential weight n 4 3), so only

. . —k .
one direction of D sticks out of Dk.

2. The normal form (NF1) (resp. (NF2)) is valid around zg € R" (resp. wy € R"),
which may be zero or not. Therefore both forms can be used around any point
(equilibrium or not).

3. It is immediate to see that (NF1) and (NF2) are flat with ¢ = (Z%,Z%) (resp.
¢ = (w}, w?)) being minimal flat outputs and a simple computation shows that
their differential weight is, indeed, n + 3.

4. Itis clear that (NF1) becomes locally static feedback linearizable after a one-fold
prolongation of ;. Moreover, if we replace #i; by 111 = B(z)iiy, with B(z) # 0,
and we prolong 7, instead of ii;, the prolonged system is also locally static
teedback linearizable.

5. The normal forms apply to both cases k > 1 and k = 0, independently of
whether D + [D¥, D] # TX or DF + [DF, DF] = TX, the latter correspond-

ingtou; = pup =1
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6. The nonivolutive distribution D¥ is easier to be analyzed with the help of (NF2).
Firstly, the integer k is explicit. Secondly, we see that the involutivity of DF
can be lost in two different ways, either [D*~1, D¥] ¢ D* or [D*1,DF] ¢ DK
and [adﬁi <1, adﬁi ¢2] & DF, corresponding to the two possible definitions of the
function d (see item (iii)).

7. Notice that for k = 0, (NF1) and (NF2) coincide. It is clear from them that in the
case k = 0 (and only in that case!), the precompensator creates singularities in
the control space (depending on the state). Indeed, the controls il satisfying the
condition (20) + 1110 = 0 are singular for (NF1) (resp. 5- —9¢_(wp) + 19 =0

Hp+1

da
8222
for (NF2), the funct10ns a = ¢ being the same), see Section 1.4.1.

A natural question appears: to what extent is the form (NF1) canonical? In other
words, when two systems, both brought into (NF1) determined, respectively, by two
functions a4 and 4, if k = 0, or by b and b, if k > 1, are static feedback equivalent?
In order to answer this question, we define the notion of structure preserving diffeo-
morphism.

Definition 1.4.1. A diffeomorphism ¢ : Z — 7 is called (NF1)-structure preserving
(shortly, SP-diffeomorphism) if there exists a (local) feedback transformation i =
a(z) + B(z)i such that (2,1) = (¢, a + ,Bft) maps (NF1) into

DN

,1<i<2,1<j<pi—1,

1
5 k
A Z = ul
NF1 b1 A
(NFL) z, = a@)+b(2)m
AD PN
Zp2+1 = U

where 4 and b satisfy the same conditions as the functions a and b (see Theorem
1.4.1(ii)).

We will indicate the drift and the control vector fields of the normal form by the
subindex NF, i.e., (NF1) : z = fnp(z) + th1gyp(2) + #19%¢(z). Moreover, we can
almost always suppose that p; > p. Indeed, if p; < py, then around any point at
which the function b does not vanish, we can apply the invertible static feedback
il7 = a+ bil; and @I, = il transforming the system into a new form for which the
chain of pure integrators is of length p; > p>. The following proposition, in which
we assume p1 > P2, gives necessary and sufficient conditions for a diffeomorphism ¢
to preserve the structure of (NF1).

Proposition 1.4.2. Assume D* + [DF, D # TX or D* + [DF,D¥| = TX and
D1, DY ¢ D,

(i) The dzﬁfeomorphzsm 2 = (z) is a SP-diffeomorphism, preserving (NF1), if and only
ifil = L] (pl,forl <i<21<)< pl,andsz = Lp 92, ifk > 1, 0r

L o L?Z @2, if k = 0, where (@1, ¢2) is a minimal xﬂat output of (NF1).

(ii) (NF1) and (NF1), given, respectively, by a and &, if k = 0, or b and b, if k > 1,
are feedback equivalent if and only if there exist two smooth functions ¢i(zi) and

p2+1
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@2z, ,zél_pzﬂ,z%) such that a(z) = a(y(z)), if k = 0, or b(z) = b(v(z)),
ifk > 1, where 2} = ¢} = Lgi(pi,for 1<i<2,1<j<pand2} ;= L%Fq)z, if

k>10r22 =Ly L2 Tgs, ifk =0,

According to item (i), minimal flat outputs determine all structure preserving
diffeomorphisms which have a very particular form. So, to compute them we, first,
have to calculate minimal flat outputs. In Section 1.5 below, we answer the question
of whether a given pair of smooth functions on X is a minimal flat output and provide
a system of PDS’s to be solved in order to find all minimal flat outputs: if D* +
[DX, DK # TX or DF + [DF, D] = TX and [D*1,D¥] ¢ D, the pair (@1, ¢2) is
a minimal flat output at x¢ if and only if (after permuting ¢ and ¢, if necessary)
dp; L Hp_l, dpy L HF1 and dpr Ndgq A deqol VANEIWAN dL?_Mq)l(XQ) # 0 (where p
and yu are defined just before Proposition 1.4.1).

For the particular case p; < py and b(zp) = 0, as well as for the normal form
(NF2), a similar analysis can be done. We do not present those cases here.

1.4.1 Flatness singularities in the control space

For locally static feedback linearizable systems, even if flat outputs are defined locally
around a given xo, they are always global with respect to the control, so we never
face singularities in the control space. For flat systems of differential weight n + 3, a
prolongation may create singularities in the control space and this is always the case
if k = 0. Indeed, we have seen that if the first noninvolutive distribution is D°, then
the system ceases to be flat for some singular controls. Let us now further analyze the
set of singular controls. Recall that an invariant description of the singular controls
is given by

Using(x) = {u € R?: (g1 Age A [f + w181 + uage, 8c]) (x) = 0},
where D? = span {g1, ¢}, if D° + [DY, D°] # TX, or by
Using (x) = {u € R* : dimspan {g1, g2, ad g1 + u2(g2, §1], ad g2 + u1[g1, 82]} (x) = 3,
if DY + [D°, DY) = TX.

The set of singular controls involves both the drift and controlled vector fields.
As for the characterization of flatness of differential weight n + 3, the vector field
gc plays a crucial role in describing singularities and a direct calculation of singular
controls can be performed using Uy, if DY + DY, DO # TX (resp. Ul o if DO +
[D°, DY) = TX). For k > 1, there are no singular controls (like for the static feedback
linearizable case). An explanation of this is that the normal form (NF2) can be seen
as a prolongation of a subsystem which is static feedback linearizable. Indeed, the
normal form (NF2), with k > 1, is the prolongation of the subsystem given by the
first u; equations of the w'-chain and the first y, equations of the w?-chain and for
which w}ll 4 and wiz 1 are the new controls. To obtain (NF2), the first control has to
be prolonged k times, while the second one k 4 1 times. The reduced system is static
feedback linearizable, so without singularities in the control space. Consequently,
(NF2) does not exhibit singularities either.
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1.5 Calculating flat outputs

In this subsection, firstly, we answer the question whether a given pair of smooth
functions on X forms a flat output and, secondly, provide a system of first order
PDS’s to be solved in order to find all minimal flat outputs. In particular, we will
discus uniqueness of flat outputs for flat systems of differential weight n + 3. Recall
the definition of integers y and p given just before the statement of Proposition 1.4.1.

Proposition 1.5.1. Consider the control system X, given by (1.3), that is flat at xq (at
(x0, up), if k = 0), of differential weight n + 3.

(i) Assume DX + [DX, DK| £ TX or DX + [DX, D] = TX and [D*~1, D] ¢ D*. Then
a pair (@1, 2) of smooth functions on a neighborhood of xq is a minimal x-flat output
at xo if and only if (after permuting @1 and ¢y, if necessary)

(Fo1) dey L HPYanddg, 1 HI Y,

(Fo2) dey Ndey A de(pl VANCIEIEIVAN dL?_”(pl(xo) # 0.

Moreover, the pair (@1, ¢2) is unique, up to a nonlinear reparametrization depending
onLrgy,..., Lj’i_” @1, i.e., if (¢1, P2) is another minimal x-flat output, then there exist
smooth maps hy and hy, smoothly invertible (hy with respect to its first argument), such
that

g1 = h(g1)

(Pz = hz((pz, (Plr Lf(pl, ey LJp(_ﬂ(pl).

If o = u, then ¢; = hi(@1, ¢2), 1 <i < 2,and h = (hy, hy) is a diffeomorphism.

(ii) Assume DF + [DF, D¥| = TX and [D¥=1, DX| C DF. Then a pair (@1, @2) of smooth
functions on a neighborhood of x¢ is a minimal x-flat output at xq if and only if

(Fol)’ (dg01 VAN dq)z) (X()) # 0;
(Fo2)" The involutive distribution L = (span {dpq,d¢,})" satisfies

D' cLc D,
implying the existence of a nonzero vector field g, € D° such that L = DF1 +
span {adﬂigc b
(Fo3)’ (Ladfjlgc(Pl/ Ladjkﬁlgcfm)(xo) #(0,0).

Moreover, for any function ¢y, satisfying de; L D1 and (L, dign ®1,
L adtg) ®1)(x0) # (0,0), there exists ¢, such that the pair (@1, ¢2) is a minimal x-flat

output; given any such ¢y, the choice of ¢, is unique, up to a diffeomorphism, that is, if
(@1, @2) is another minimal x-flat output, then there exists a smooth map h, smoothly
invertible with respect to the second argument such that

¢2 = h(@1, ¢2).
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In the case D¥ + [DX, DF| = TX and [D¥"!,D*] C DF, there are as many flat
outputs as functions of three variables. Indeed, the distribution D*~! is involutive
and of corank three. According to item (ii), ¢ can be chosen as any function of
three independent functions, whose differentials span (D*~1)1 and then there exists
a unique ¢, (up to a diffeomorphism) completing it to a minimal x-flat output. This
reminds very much non-uniqueness of flat outputs of two-control driftless systems
[29].

As an immediate corollary of Proposition 1.5.1, we obtain a system of PDE’s
whose solutions give all minimal x-flat outputs. In the case D + [DF, D¥| # TX
or D + [DF, DY = TX and [DF1,DY] ¢ DF, the vector field g. is well de-
fined (and is given up to a multiplicative function). So chose g1 and g. such that

DO = span{gl,gc} and for any 1<j<wu—1land1 <j < pu, denote v = adf gl,
Upyjr = adf gc, Vo = adf gl, Vout1 = adfgc and (only if 1 # pp) complete them
forl1 <i<p—pu byvy 14 = ad? 81, if uy1 > pp, or by vy 14 = adf gc,

iy > p1. We thus have defined n — 1 vector fields vy, ..., v, 1 satisfying HF~1 =
span {vy,..., 02,1} and HP~1 = span {vy,...,v,_1}. In this case the result follows
immediately and is stated as item (i) of proposition below. If D* + [DF, Dk] =TX
and [D¥"1,D¥] C Dk thenfor1 < j < k = p—1, denote w; = adf g1 and

Witj = ﬂd;_lgz. Clearly, D=1 = span {wy, ..., wy} but we have to construct one
more vector field w, as described in item (i) below.

Proposition 1.5.2. Consider the control system X. that is flat at xq (at (xo,up), if k = 0), of
differential weight n + 3.

(i) Assume D¥ + [D¥, DX| £ TX or D* 4 [D¥, DX| = TX and [D*—1, D] ¢ D*. Then
a pair (@1, @2) of smooth functions on a neighborhood of x( is a minimal x-flat output
at xq if and only if (after permuting @1 and ¢, if necessary) they satisfy

LU]'(Pl = 0/ 1§]§n_1/

and dga ANdey AdLggpy A= -+ A dLJe_”q)l(xo) # 0.

(ii) Assume D* + [DF, DX] = TX and [D*¥=1, D¥] C DX. Then a pair (@1, ¢2) of smooth
functions on a neighborhood of xq is a minimal x-flat output at xq if and only if (after
permuting @1 and @y, if necessary) @1 is any function satisfying
and (Lad;g1 ?1, Lad§g2 ¢1)(x0) # (0,0) and, for any ¢ as above, ¢, is given by

Lw§02 - O/

where w = (Lad§g2¢1)ﬂd§r81 - (Lad;gl ¢1)adigr and (dp1 A dgs)(xo) # 0.
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Clearly, the distribution £ spanned by w and D¥~! is of corank two and, as can be
proved, involutive thus implying that for any ¢; we can solve the system of equations
for ¢,. Different choices of ¢; lead, in general, to different involutive distributions £
and thus to different functions ¢, and, as we have mentioned, there are as many
choices as nondegenerate functions of three variables.

1.6 Examples

1.6.1 Induction motor: first model with 6, the mechanical position

Consider the induction motor (called direct-quadrature model in [10]), see [12,35],
described by the following control system with 2 inputs and 6 states:

(0 = w
W = ppgig—
Yo = —1pa +Z7ZIM1d
LiMg O = npw+ '74,;”
Zd = ,Yld + (TL li + an(qu + lIJd + (TLS
- . Mn ¢d nMigyi
\ lq - _,qu B (TLiQLS - npwzd lpd o + O'LS

where 1y, u, are the inputs (the stator voltages), iy and i, are the stator currents,
Yy and p are two well-chosen functions of the rotor fluxes (see [10] for their precise
expression), 0 is the mechanical position of the rotor and w is the rotor speed. All
other parameters of the motor (the inductances Lg and L, the coefficient of mutual
inductance X, the rotor moment of inertia J, the load-torque 17, etc.) can be supposed
constant and known.

After applying a suitable static feedback transformation (which has also a physi-
cal interpretation, see [10] for more details) the model of the induction motor is trans-
formed into the following form:

(0 = w
“:] = Uiy — E
) Ya = —W¢d+77Mld
LM S nMig
L = Npw+ 0
ig = g
\ iq — ﬁq.

This system is not static feedback linearizablee, however it becomes static feed-
back linearizable via one-fold invertible prolongation, thus it is flat, a property that
has been already observed and applied in [12,35].

Indeed, the distribution

R — 9 9 0 o0 L 1Mo
DY = span{gz, 5o 1Mgp, #ags + o o)
2 9 0 9 L IM9
= Span{aid’aiq’alpd’aw w3 ap}
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is not involutive and D' + [D!, D!] = D= span{m, 3t m, %, a} 4+ TX. Itis

easy to see that ad}% € 51, thus aaTd plays the role of the distinguished vector field
¢¢ defined by condition (A2) of Theorem 1.3.1. We can now construct the sequence:

H _SPan{ald a? }gHz:Span{le_-/_/_l_}%H?’:TX/

where all distributions ' are clearly involutive. It follows that all conditions of The-
orem 1.3.1 are verified, therefore the system is flat of differential weight n +3 = 9
and it becomes static feedback linearizable after a one-fold prolongation of 7.

Let us now compute its minimal flat outputs (@7, ¢2). Since k = 1 and D! +
[D!, D] # TX, we are in the first case of Proposition 1.5.1 with p = 2 and y = 1, so
(1, @) should satisfy dp; | H?, dpy | H! and the regularity condition. It follows
that (91, ¢2) = (0, p) and the pair (@1, ¢2) is unique up to a diffeomorphism.

1.6.2 Induction motor: second model, without 6, the mechanical po-
sition

Let us now consider the following model (see [10]), obtained from the first one, for
which we do not take into account 6, the mechanical position of the rotor.

(@ = pypaig—F
Ya = —1a +A721M1d
. - 1 Miyg

. = nyw +
Tivs:q F P w " -

ld - _’)/ld + (TLRL + nPCUZq l/) q + O'Ls
- . Mnywipy 11 Miyig

\ Zq - _’)/Zq O'LRLS - npwld l/J + O’Ls

After applying a suitable static feedback transformation, the system is trans-
formed into the following form:

( w = Wpaiq — %
Ya = —npg+nMiy
21M5 : p = npw+ ’72/;!1
g = U4
\ i.q - a‘?'

We will next compare the two different models of the induction motor. In partic-
ular, we will see how omitting 6 as a state variable changes properties of flatness and
we will show the surprising fact that, contrary to the first case, for the second one the
flat outputs are no longer unique.

As for the first model (with 6, the mechanical position), the system without 6 is not
static feedback linearizable, however it becomes static feedback linearizable via one-
fold invertible prolongation, thus it is flat of differential weight n -3 = 8. Indeed, as
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above, the distribution

0 d d 0 M o 0o d 0 0 M o
1_ —_ — R i .
Py iy ™M e g a0 TP G aiy o a0 o

is not involutive, but now D! + [D!, D1] = D' = TX and [D°, D] c D!. Thus we are
in the first case of Theorem 1.3.4, with k = 1, and the system is flat without additional
conditions.

According to Propositions 1.5.1(ii) and 1.5.2(ii), the system admits many flat out-
puts (their choice being parameterized by a function of three well defined variables)
and let us calculate some of them. Recall that a pair of two independent func-
tions (@1, ¢2) is a minimal x-flat output if and only if the involutive distribution
L = (span{dgi,de,})* satisfies DO C L C D'. Hence the distribution £ has
to be of the form £ = span{al , al ,h}, where h is any vector field of the form

h = [xa + B(% 55+ M 1 ap) such that £ is involutive and for any smooth functions

«, B satlsfylng (a, B) # ( 0).
Let us first take £ = span {%, a%,' %}. The associated flat outputs are indepen-
dent functions of w, p and we can take (¢1, ¢2) = (w, p).

Using the same procedure, let us now give some less intuitive minimal flat out-

— 9 0 9 , 1M

puts. Choose £ = span {5, 90+ w2 9

and ¢, depending on w, 1, p whose differentials annihilate £, that is, satisfying

aq’l + ”%%—% = 0, for1 < i < 2, can be taken as minimal flat outputs. Solv-
d

ing those equations, we get ¢; = @;i(¢4, Z—;\%w — p). We can choose, for instance,

}. Any two independent functions ¢;

(¢1, 92) = (Yu, Z—%w —p)-

’7M 9

= O, for 1 <i < 2. Solving those equations,

Finally, let £ = span {a%, a0, }. The functions ¢, and ¢, depend

’ all’d

on w, ¢d1 Y and Satisfy g% aq)’ + 77M 3901

13 %
we obtain ¢; = ¢;(p + Z—%, P4 — w). We can choose (¢1, ¢2) = (o + Z—%, Pg— w).

Notice that while for the first model (with 6, the mechanical position), the minimal
flat outputs are unique, for the reduced one there are many minimal flat outputs (the
choice being parameterized by a function of three well defined variables w, p, ;).
Recall that for the first case, the minimal flat outputs are (0, p) and can been seen as
the counterparts of (@1, ¢2) = (w, p) for the second model (since § = w).
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1.6.3 Polymerization reactor

Consider the reactor [36,60]:

;

Cn = < — (14 &) + Ru(C, i, G, T)
G = —k(T)Ci+u e — (1 + &)<
Sop:d G = wE+ S (e o)S
= —MyuRy(Cy,C;,Cs, T)— (1+e#+Angm);
T = 0(Cn, Ci, Co, 1, T) 4+ 01 T;
| T = fo(T,T)) + aay

where 11, u; are the control inputs and Cy,, Cii., Csi, Comg, Mm, €, T, V, &1, a4 are
constant positive physical parameters. The functions R;,, k;, 0 and fs are not well-
known and can be considered arbitrary: they derive from experimental data and
semi-empirical considerations and involve kinetic laws, heat transfer coefficients and
reaction enthalpies.

After applying the change of coordinates

Cm =pu+ M, Cyyy

~ Ciig

C, =¢C;,— C

~ Ci Ciig Cs Ciis Csmg

T =T

rIj]' — G(le Ci/ CS/ ;’l/ T) + (XlTjj

and a suitable static feedback transformation, we obtain:
éi - Cs Cm ,'1/7
iPR CS - ﬁl ]’Nf - Iz(cmr Ci/ CS/ ﬁ/ T)

T =T
T; iy

where b is a smooth function depending explicitly on T = T.

) stributi 1 _ 9 9 4 09 9 9
If (aTaCs' aé52) # (0,0), then the distribution D* = span{acs, 3¢, + ac, o’ 3T aT

is noninvolutive, rk D =5and D' # TX. Consequently, we are in the case of
Theorem 1.3.1 with k = 1.

Let us suppose that ;é 0. Therefore, [DY, D!] ¢ D! and the corank one invo-

lutive subdistribution 7—[1 can be computed in two different ways (see the condition
(A3) of Theorem 1.3.1 and the comment following Theorem 1.3.4). We will calcu-
late ! by applying the procedure given by Theorem 1.3.1 (see [46] where we apply
Theorem 1.3.4 to construct H!). The distribution

+ [f, Dl] —span{ac f ﬁ T’ i Jox )

H
QO
?z
QJ
ot
QU
™
3
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is of rank 6 (provided that 2% FTA C does not vanish) and ¢, = aiT]» satisties ad$, € D

S

Therefore, item (A2) of Theorem 1.3.1 is verified and ¢, plays the role of g..
Thus the corank one subdistribution H! is given by

0 d

0
H! =D + span {ads$>} —span{acs 8T 37

P

and is clearly involutive. We have

0 o0 d J 9

22— 14 [f, MY = o’ 9 9 9
Hor I =spantae o6 oty ot o)

involutive and H3 = TX. The system ¥.pr satisfies all conditions of Theorem 1.3.1,
hence the corresponding prolongation (obtained by prolonging )

Cj = G C~m ﬁ N o 3

2(1 0) CS =Y ,lz - lz(cmr Ci/ CS/ ﬁl T)
PR y = v T _ ;
i =

where y = I} and vy = i, is locally static feedback linearizable. Indeed, all its lin-

(1,0)

earizability distributions D! for the prolonged system ¥ pr - fori >0, areinvolutive,
of constant rank and rk D;’, = 7. Therefore, the prolonged system can be brought into

the Brunovsky canonical form with C,, = M;,Cy, + 1, C; = C; — g;is Cs playing the
role of top variables.

Let us now compute the minimal flat outputs (@1, ¢2) of Zpr. We are in the first
case of Proposition 1.5.1, with p = 3 and ;4 = 2 Since the differential of ¢; annihi-

lates H?, it follows that ¢; = ¢1(Cy) w1th L £ 0. The differential of ¢, annihi-
lates ' and satisfies dgy A dgy A dLpgq # 0 " This yields @2 = ¢2(Cy, C;, fi) with
a(”z # 0. Hence, a choice of minimal flat outputs is (@1, ¢2) = (Cy, C;). This is con-

form with the fact that C,, and C; are the top variables of the Brunovsky canonical
form (see the above remark).

1.7 Proofs

1.7.1 Notations and useful results

Consider a control system of the form = : ¥ = f(x) + u191(x) + usha(x). By 20 we

will denote the system X with one-fold prolongation of the first control, that is

5(10) . { = f(x)+1y181(x) + +oaha(x)
lh = n
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with y; = u; and vy = u,. Throughout this section,

n

0
g fi+vig1i) o

stands for the drift and ;
d d
Gl==—, Hy=) hy—
1 E 2 ; 2% 3%
denote the control vector fields of the prolonged system.
To £(10), we associate the distributions D) = span{Gj, Hy} and D;,H = D;, +
[F, D;], for i > 0, (the subindex p referring to the prolonged system 2(1'0)).

We start by stating and proving two propositions needed in the proofs of our main
results, but also having an independent interest.

Proposition 1.7.1. Consider a two-input control-affine system X, given by (1.3), defined
on a n-dimensional manifold X, dynamically linearizable via invertible one-fold prolongation
and let DX be the first noninvolutive distribution. The following conditions are satisfied:

(i) D* is feedback invariant;

(ii) Ifk > 1, then tk DX — rk DF-1 = 2;
(iii) If D" = TX, then n = 2k + 3.

Proof. We first prove (i). It is well known that the involutive distributions D?, for
i < k—1, are feedback invariant. Let us show that this is also the case for the first
noninvolutive distribution D*. By definition DF = D1 4 span {ad* 81 ad fgz} We

first show that DF is invariant under the transformations of type f = f +a191 + a292,
where ®1 and a, are smooth functions. We have:

“df”gi = [f + 191 + 2292, 8] = ad ¢g; mod DY

and by induction, we get adi‘;l Qi = adi‘, o mod D*~2. From this, we deduce

ad;‘r = [f+a181 + tngz,ad; lg;mod D 2] = adfgl mod DF !

which yields

DF = P! 4 span {”dfglfﬂdkgz} D! + span {adjg1, adjga} = D~

Let us now study the transformations involving the controlled vector fields, i.e.,

of the type §1 = B1181 + B2182 and & = P12g1 + P82, where B = (B;j(x)) is an
invertible matrix. We have:

adggy = Pr1adgg1 + Bradsgr mod DO,
adsgr = Proadsg1 + Proadsgr mod DY,
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and by induction, we get

ad§—1g1 = [Suadji_lgl + [321ad§§_1g2 mod DF2,
adi}’lg} = ﬁuad?lgl + ,Bzzadj;’lgz mod DF 2.

It follows that

adk =[f, ,Blladf g1 + ,leadf gz mod DF— ] ﬁlladf,gl + ,821ad§‘,g2 mod Dk 1
adk = [f, /Sp_adf g1+ ,Bzzadf g mod DF2] = ﬁp_ad;gl + ﬁzzadﬂ‘f& mod DF1,
and

Dk = D1 4 span {adi‘cg], ad?gz}
= D1 4 span {,Bnadfc& + ﬁ21ad§-g2, ﬁlzadﬂigl + ﬁzzadfcgz}
= D1 4 span {ad;gl, adi‘;gz}
—= Dk.
The distribution D* is thus invariant under the considered classes of transformations.
We have shown that DF is feedback invariant.

We know turn to item (ii). Assume rk DX — rk D¥"1 = 1 and let I be the small-
est integer such that rk Dl — kD=1 = 1. Ttis clear that 1 < [ < k. Since X is
dynamically linearizable via invertible one-fold prolongation, there exists an invert-
ible static feedback transformation, u(x) = a(x) + B(x)i, bringing ¥ into the form
¥ % = f(x) + 181 (x) + fiahz(x), such that the prolongation

5(10) . { = f(x) +y18i(x) + o2ha(x)
vy = v

with y; = i; and v, = i, is locally static feedback linearizable. For simplicity of
notation, we will drop the tilde, but we will keep distinguishing ¢ from h; (which
could also be denoted g») whose control is not preintegrated.

Since ©(10) is locally static feedback linearizable, for any i > 0 the distributions D;

are involutive, of constant rank, and there exists an integer p such that rk Df, =n+1
We have 5

Dg = span{ﬁ,hz},

D}y = span{m,gl,hz,adfhz+y1[g1,h2]}.

Since k > 1, the distribution D° = span {g1, 1>} is involutive, thus [g1, k] € DY

and D}, = span {%, g1, h2,adghy }. Tt is easy to prove (by an induction argument)
that, for1 <i<I[-—1,

— Span{ lgll /ad}_lglth; e ladjth}/

and thus
- Span{ /gll : /ad;_lgll hzl e Iad}hZ}'
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We distinguish two sub cases: ad;hQ € D' = span{gy, - ,ad}_lgl,

hy, - - ,ad}_lhz} (and in this case rk Dé = 2/ +1) and ad}hg ¢ D'! (and in this
case rk Dé, = 2]+ 2).

Let us first assume ad;hz € D=1, We have:

/ e _ ]71 .>
D, span{ay1}+D , forj>1,

and the involutivity of Dé, implies that of Di—1. For j = k+1, it follows that Dk is
involutive, which contradicts the fact that D* was supposed nonivolutive.

Let us now assume ad}hz ¢ D=1, Since rk D! = 21 + 1, we deduce that D! =

span{g1,- -, ad;_lgl, hy, -+, ad}hz}. Moreover, we have

. o .
D! = span {— )} + D/, forj>1
p p {ayl} ]

and the involutivity of D{, implies that of DJ. For j = k, it follows that DF is in-

volutive, which contradicts the assumption of noninvolutivity of Dk, Therefore,
rk DF — rk DF-1 = 2. Consequently, rk Dk = 2k + 2.

Finally, we prove item (iii). Suppose D' = TX. Due to (ii), tk DF = 2k + 2 (if
k = 0, this is still true, since the controlled vector fields are assumed independent).
For the prolonged system ~(1%), we have

d
Dlr()-i-l = Span {a_yl’gll co ,adﬁ(rglth/ e /ad;(f—i_th}'

The distribution £ = DI;H NTX =span{gy, - -, ad;gl,hz, e ,adiﬁ“hz} is involu-
tive (as intersection of involutive distributions) and its rank is 2k + 3, otherwise we
obtain & = D and D* would be involutive. Since D¥ c £ and € = 2k + 3, we de-

duce ﬁk = £. On the other hand, ﬁk = TX and from this, it follows immediately
that n = 2k + 3.

Proposition 1.7.2. Consider a two-input control system ¥, given by (1.3), and let D* be the
first noninvolutive distribution. Assume k > 1 and D* satisfies the conditions (A1) — (A2)
of Theorem 1.3.1. If the distribution H* = D=1 4 span {adjigc} is involutive, where g is
defined by item (A2), then all distributions H' = D'~! 4 span {ad}gc},for 1<i<k-1,
are involutive.

Proof. Let us first show that under the conditions (A1) — (A2) of Theorem 1.3.1,

. . —k
there exists a non-zero vector field g € D° such that ad?rlgc € D. Due to

(A1) and (A2), we have kD" = 2k +3 and rk (ﬁk + [f,D"])) = 2k + 4, thus
we can always assume (permute g; and g, if necessary) that ad?*lgl Z D
Hence there exists a smooth function «, defined in a neighborhood of xj, such that
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adﬂﬁlgz = (xadi‘cﬂgl mod D". It follows that adt e, = ad;‘(“(txgﬂ mod ﬁkz which

f
gives adiﬁ“ (g2 —ag1) = 0mod D". The vector field 8c = §2 — ag is clearly nonzero

(since g1 and g, are independent everywhere on X) and satisfies aalj‘frl gc € D',

We can now show the involutivity of the distributions 7. Assume that H*~1 =
D*=2 + span {ad?‘l g} is not involutive. Since D¥-2 C H*k~1 C D1, where D2

. . . . . ——k—1
and D¥~1 are involutive and both inclusions are of corank one, it follows rk H =
2k and the new direction completing #*~! to its involutive closure is given by a vec-

tor field of the form [ad}gi, adj‘fl Qc), with1l <i<2and 0 <[ <k —2, and is neces-

sarily collinear with adj‘fl g1 modulo H*~1. Hence, there exists a smooth function ,
defined in a neighborhood of xp, not vanishing at xp, such that [ad}gi,adﬁfl Q] =
ﬁadji_l g1mod H¥~1. From this, applying the Jacobi identity and the involutivity
of HF, it follows

[ad}gl’ ad'];gc] - [f/ [ad}g“ ad;_lgc]] — [ad}"‘lgl, ad’];—lgc]
= [f, ﬁadfc_lgl] mod Hk
= ﬁﬂds‘cgl mod HF.

On the other hand, [ad} <, adi‘, gc] € H¥, and consequently adi‘r g1 € H¥, which contra-

dicts our assumption, otherwise D* = H* and D* would be involutive. Therefore,
HE1 s involutive. Following the same line, we prove that the involutivity of H'
implies that of H1 for1 <i<k—1.

1.7.2 Proof of Proposition 1.3.1
We will show the implications (i) = (ii) = (iii) = (i).

(i) = (ii). Consider a flat control system X : X = f(x) 4+ u191(x) + u2g2(x), of
differential weight n 4 3, and let

g1 = @1(x, i), #5) and @2 = @a(x, 15, 13)

be its minimal flat outputs, defined in O a neighborhood of (xo, il ), with p, 7, s,

g > —1 and at least one of them non negative, and such that ¢; (respectively ¢»)

depends explicitly on ugp) and uér) (respectively on ugs) and uéq)). We can always

suppose (after permuting ¢1 and ¢, or u; and uy, if necessary) that p is the highest
control derivative on which the flat outputs may depend, i.e., p is the maximum of p,
r,s and q.

We will denote by k; (respectively kj) the order of the highest derivative of ¢,
(respectively ¢,) involved in the expression of x and u i.e.,

k k k k
x = (o, 00 g 8 andu = 8(p1, - @1, o, o, 93).

Throughout we will use the following notation gbi.ci = (@i, -, ¢§ki)). Since the differ-
ential weight equals n + 3, we have k; + ko = n + 1.
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There are two cases to be considered: the first corresponds to p > 1, ie., ¢;
involves at least a control derivative; the second deals with p = 0, ie, ¢; =

@1(x, ug, up).

Let us first suppose p > 1. Since qogl) depends explicitly on ugp H), for [ > 0,

(1)

it follows that x and u and ¢, are independent for any [ > 0, and consequently

to express all states x and controls u in function of the flat outputs and their time

derivative, at least, ¢, - - -, q)énH) are used. Therefore, ko > n + 1 and the differential

weight of the system is greater than n + ki + 3. Hence, the only possible case is
k1 = 0,1i.e., v and ¢ involve only ¢; and not its time-derivatives. Thus assume k; = 0.
If s > 1orq > 1, we repeat the same procedure and we find that k, should also be
zero, which is impossible. It follows that s < 0and ! < 0,i.e., 2 = @2(x, 11, 12). If @2
depends explicitly on u; (respectively on u3), we can apply the invertible feedback
v1 = @2(x,uq,up) and vy = uy (respectively vy = @p(x, 11, up) and v1 = uy), then all
states and the remaining control should be expressed only in function of ¢; and its
time derivatives, which is impossible, since k; = 0. Therefore, ¢ = @(x).

Let p be the relative degree of ¢, i.e. (pgp ) is the first derivative of @2 involving

explicitly the control. More precisely, the relative degree p; of a component ¢; = ¢;(x)
of a flat output (¢1, ¢2), defined on a neighborhood X" of xo, is the smallest integer
such that

LeLigi=0,1<j<2,0<q<0 -2,

ngLJ@"flgoi(x) # 0, forsomel < j < 2 and for some x € X.

By introducing z; = Ljf_l(pz, for1 <i < p, we get:

Zz':ZH—l/ for 1 Sigp—l,
. -1 —1
Zp = LJ@q)z +uq1Lg, Lff @2 + ungszc 2.

and according to (Assumption 1), we have (Lg, L?_l 92, Lg, Lje_lqoz) (20) # (0,0) and
assume
Lg, L?_l(pz # 0 (otherwise permute gj and g»). Applying v = L? 2+ 111 Lg, L]p(—l(Pz n

ungzL?_lqoz and vy = uy, we obtain (pép) = vy. If p < n, at least one state and a

control should be expressed using ¢ and its time derivatives, which is impossible. It
follows that p = n, but in this case, the system X would be static feedback equivalent
to the linear single-input system

Zi:Zi+1, fOI‘lSiSTZ—l,
anvl

which gives a contradiction.

We have thus proved that we cannot have p > 1 and then, the only possible case
isp=0,ie, ¢; = ¢i(x,uy,up), forl1 < i < 2, with g% # 0. It is immediate that
rkg—i’; = 1, where % denotes the matrix (g-f;), 1 <i,j < 2, otherwise apply the
invertible static feedback iy = ¢1(x, u1, up) and iy = @y(x, u1, uy), which transforms
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the system ¥ into the form ¥ : ¥ = f(x) + ¢1(x, i1, 12)g1(x) + o (x, i1, 12)g2(x),
where (il1, ilp) is a flat output. It is clear that the state coordinates x cannot be repre-
sented in terms of flat outputs, contradicting the flatness assumption.

Apply the invertible static feedback iy = ¢1(x,uq,u2) and il = up which brings
the system into the form £ : & = f(x) + ¢(x, iy, #12) g1 (%) + i12¢2 (x) with @1 = #; and
@2 = @2(x, 1i1). Since ¢ = iy, all states and the control ii; have to be expressed with
the help of ¢y, it follows that ¢, involves at least n + 1 derivatives, i.e., k; > n, and
since k1 + k; = n+ 1, we deduce k1 < 1.

If ¢ depends explicitly on ii; = ¢1, then q)én) would explicitly depend on (pgn) and

the differential weight would be at least 2n + 2, which contradicts our assumption.
We deduce ¢, = ¢(x).

Now we proceed as above: introduce z; = L;_lcpz, for 1 < i < p, where p is the

relative degree of ¢, and complete them to a coordinate system (z1, - - -, Zos "ty Zn).
We have
Zi:Zi—l—l/ for 1 Sifp—l,

. - -1 B 1
zp = L@ + 9 (x, i1, 112) Lg, Ly @2 + 12 Lg, L 9.

If q)ép ) depends explicitly on 7, apply the invertible static feedback v, = L?(pz +

P(x, ﬁl,ﬁz)LglL?lqoz + ﬁngzL?fl(pz and v = 7. We obtain ¢ = vy, q)gp) = vy. If

p < n, at least one state would not be represented as function of gofj ) , contradicting
the flatness assumption. If p = n, then £ would be static feedback equivalent to a

()

linear single-input control system, which is a impossible. It follows that ¢, = 2z, =
a(z, i), where a is a smooth function depending explicitly on ;.

Moreover, we should be able to express all the remaining coordinates Zo+1," " 1 Zn

and the control i, with the help of qoép +i), for 0 < i < kp — p. Recall that k, > n and

notice that each derivative q0§p+i) involves explicitly qogi). In the best case, k = n and

then the highest derivative of ¢, involved is that of order n — p, i.e., z = y(¢1"°, ¢")
and il = (52(@_1”7‘7, (/52”).

The above expressions involve 2n — p + 2 derivatives of the minimal flat outputs.
Since the differential weight of the system is n + 3, we deduce that p = n — 1 and the
system X can be written as follows:

p

21 = 2
Mg Z.n72 = Zp
Zn1 = a(z, i)
| Zn = b(z, 1, 1)

with a (respectively b) depending explicitly on 7 (respectively #i;) and (¢1, ¢2) =
(i11,z1) being a minimal flat output. It is easy to see that £ is in fact static feedback
linearizable (apply the invertible static feedback v = a(z, 1) and v, = b(z, iy, i),
thus of differential weight n + 2 (with (¢1, ¢2) = (21, zx) an x-flat output of differen-
tial weight n + 2), contradicting the minimality of (@1, ¢2) = (i1, z1).
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This finishes the proof of the second case p = 0. For both cases, p > 1and p =0,
we have found a contradiction with our assumptions. It follows that the minimal flat
outputs ¢1, ¢ depend only on x and thus the system is x-flat.

(ii) = (iii). Let us consider an x-flat control system % : ¥ = f(x) + u191(x) +
uyg2(x) and let (¢1, ¢2) be a minimal x-flat output, defined in a neighborhood X
of xo, whose differential weight is n + 3. We will denote by k; (respectively kj) the
order of the highest derivative of ¢; (respectively ¢;) involved in the expression of

xand uie., x = y(¢*1, 3,*2) and u = 6(¢"1, g.*2), where g5 = (@;, @i, -, @;k)).
We clearly have ky +ky = n + 1.
Let u and p, the relative degree of ¢; and ¢,. We thus have ngL?(pl = 0, for

0O<p=p-2and ngchGDZ = 0,for 0 < g < p—2. Itis well known that dq)gi)
and d(pg) are independent at xp, for any i, j > 0, thus we can put w; = L}—l 1,
zj = Lfflqu, for1 <i<pand1 <j < p,and complete them to a coordinate system
¢ = (wlr oy Wus 21, s Zps 2041, ,Zp-|—1/), wheren = u+p+v.

Consider the decoupling matrix D = (D;;)1<; j<2 given by

-1 —1
D — ( LglL? P1 ngL? P1 )
- -1 -1
Lglee P2 ngL? P2

By definition of the relative degree, we have 1 < rkD(x) < 2 and according to
(Assumption 1), rk D(x) is constant in a neighborhood of xy. It is easy to see that
rkD(x) = 1. Indeed, if rkD(x) = 2, the flatness assumption would imply that
the system X is locally static feedback linearizable thus of differential weight n + 2,
contradicting the fact that X is flat of differential weight n + 3. Therefore, we can
always assume rk D(x) = 1, Vx € X/, where X’ is an open dense subset of X,

and Lg, L?ilqol(xo) # 0 (if not, permute g1 and ¢). Applying the invertible static
feedback transformation

- -1 1
i = L?q)l + LglL? P11y + Lg2L§ P17
iy = uy,
we get:
Wy = w2z = 22
Wy—1 = Wp  Zp1 = Zp
with (@1, ¢2) = (w1,21) and d a smooth function, affine with respect to #; and de-
pending explicitly on 7. Since (pgy ) = il; and q)gp ) =4 (z,1i1), we have to express all
the remaining coordinates Zo+1, " s Zptv and the control i, with the help of qoépﬂ),

for 0 < i < ky — p, but each derivative (pgp i) involves explicitly qogy +i). In the

best case, k; = p + v and then the highest derivative of ¢; involved is that of or-
derpy+v—p=n—p,ie,wehavez = y(¢" *, @ ") and il = 5 (¢1" F, goPT).
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The above expressions involve n 4 v 4 2 derivatives of the minimal flat outputs.
Since the differential weight of the system is n + 3, we deduce that v = 1. Hence,
after applying a static invertible feedback transformation (leaving if; unchanged an
that we continue to denote by ), the system X can be written as follows:

= w2 21 = 22
Wyt = Wy Zp1 = Zp
w, = Wz, = a(wz)+b(wz)i
Zoy1 = U
with ¢; = wy and ¢, = z; being a minimal flat output. Flatness implies (azapil +
%ﬁlo)(go) 75 0, where Co = (ZU(),Z()).
If DO is involutive, then =2~ = 0. It follows that =% (&) # 0 and we can

9Zp11 0Zp41
introduce new coordinates z} =w; torl <i<uy, z]z. = zj, for1 <j<p,and Zp+1 = 4

and apply a suitable invertible static feedback, to get

S S L B
2 = %2 7z = %
s . ) sl 1 2 2
2 zﬁl_1 =z zg_1 = zg .
Z, = v1 Z Zo1 + b(z,,Z5)01
( Zo+1 = U2

where (@1, ¢2) = (z},2%) and Z§ = (2}, ,z;.). Notice that, in this case, the system is

x-flat for any ug € IR?, so we do not face singularities in the control space.

db
92p41
z; = wj, forl < i < p, 2]2 = zj, forl1 <j <p, and Zpt1 = b and apply a suitable

invertible static feedback, to get

If DY is noninvolutive, then (o) # 0 and we can introduce new coordinates

1

2 LS B B
zi = zy 3 = z5
L)1 1 52 2
2 zﬁl_1 Zy zg_1 z5 . ,
z, vz = a(Z, ) 2540
\ Zo+1 = 02

where (@1, ¢2) = (z1,2%). Contrary of the previous case, now, there exist singular

controls: the system is x-flat at (zo, vp) such that (aza% + v10)(z0) # 0.
(3

It is immediate that, for both cases, the prolongation 3(L0)

ing vy is locally static feedback linearizable.

, obtained by prolong-

(iii) = (i). Consider a control systems ¥ : ¥ = f(x) + u191(x) + upg2(x)
dynamically linearizable via one-fold prolongation, i.e., there exists an invertible
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feedback transformation, u = a(x) 4 B(x)#, bringing ¥ into the form £ : % =
f(x) + 181 (x) + dixhy(x), such that the prolongation

2(1,0):{56 = f(x) +1gi(x) +valz(x)
i = 0

where y1 = 11 and vy = iy, is locally static feedback linearizable.

3(10) is equivalent via a diffeomorphism z = ¢(x, y;) and an invertible transfor-
mation, v = a(x,y1) + B(x,y1)7, to the Brunovsky canonical form:

o= 2, 1<j<p-1,

Zfl = 0

where 1 < i < 2and p; +p2 = n+ 1, for which ¢ = (z},z}) is a minimal flat
(-1)
i
expressed as (x,u)! = ')/((/')fl_l, (/‘)‘2)2_1) and uy = 5(@Y", @5?). We deduce that ¢ =
(¢1(x,u1), ¢1(x,u1)) is a minimal flat output of X of differential weight n + 3.

output of differential weight n 4 3. Since z{: = ¢. '/, the original variables can be

1.7.3 Proof of Theorem 1.3.1

Necessity. Consider a control system X : ¥ = f(x) + u191(x) + uzg2(x) and assume
that it is flat of differential weight n + 3. According to Proposition 1.3.1, there exists
an invertible feedback transformation u = «a(x) + B(x)i, bringing ¥ into the form
2 % = f(x)+ @181 (x) + fhahp(x), such that the prolongation

5(10) . { ¥o= f(x)+ngi(x) +oaha(x)
y1 = 0
with y; = 1 and v, = il is locally static feedback linearizable. For simplicity of

notation, we will drop the tilde, but we will keep distinguishing g; from h, (which
could also be denoted g>) whose control is not preintegrated.

Recall that to (10, we associate the distributions Dg = span{Gj, Hy} and
D;H = D; + [F, Dé], for i > 0, where F (respectively G; and H;) denotes the drift
(respectively the control vector fields) of the prolonged system.

Since (1) ig locally static feedback linearizable, for any i > 0 the distributions D;

are involutive, of constant rank, and there exists an integer p such that rk Df, =n+1.

We have . 5
D, = span{y- o},

Drl, = span{m,gl,hz,adfhz—i—yl[gl,hz]}.

Since k > 1, the distribution D° = span {g1, 1>} is involutive, thus [¢1, h,] € DY
and D}O = span {%, §1,h2,adhy }. Tt is easy to prove (by an induction argument)
that, for1 <i <k,

D;} = Spal’l{aiylrgl; T /ad}_lglthI e ,ad;}hz}.
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Since the intersection of involutive distributions is an involutive distribution, it
follows that D;j NTX = span{gy,---, ad}_lgl, hy, -+, ad}hz} is involutive, for 1 <
i < k. We deduce that

HK = span {g1, - - - ,adii_lgl,hg, e ,ad?hZ}

is involutive. It is immediate that D¥~1 ¢ H* ¢ Dk where both inclusions are of
corank one, otherwise H*¥ = Df and DF would be involutive or H¥ = D¥1 and
rk DF — rk D1 would be equal to one, which contradicts our hypotheses. The invo-
lutivity of

d ~
Dyt = span{a—yl,gl, ce ,adi‘( 1g1,adi§g1,hz, ce ,ad?hz,adi‘[“hz}
implies that of DX 4- span {ad;‘(’qhz}. It yields D' =Dk span {ad;‘frlhz} and rk D" =
2k + 3, where D' is the involutive closure of D¥. This gives (Al).
Recall that H' = H!~! + [f,H!"1], fori > k + 1. We thus have

d d
D1 = gpan { — 1} + H  + [f, H¥] = span {—} + H !
71 = span {0} + HE 4 [f 1Y = span {7}
and, by an induction argument,

D;‘,“ = span {%} +HL P> 2,
1

Consequently, the involutivity of D’;J’i implies that of #**7, for i > 1. Moreover,
rk Dg = n + 1, implying that rk Hf = n, i.e., H? = TX, which proves (A3) and (A4).

[t remains to show that rk (5]( + [f, D¥]) = 2k + 4. We have Di*! = span {a%} +

51(. Assume ad?’l g1 € 5k, if not, the rank in question is, indeed, 2k + 4. Hence for

any vector field & € DX, we have [f,¢] € D By successive applications of the Jacobi
identity, it follows immediately that D+ |f, ﬁk] =7

Therefore for the prolonged system we obtain
pk+2 _ o KA Il D = pk+
(2= span {57} + D'+ [£,D'] = D}

thus contradicting the existence of p such that rk Dg = n+ 1 (recall that D =
Dk + [DK, D] # TX) and implying that £(10) is not static feedback linearizable. By

Proposition 1.3.1, the system X would not be x-flat and thus rk (5]( +[f, DK]) =2k +4
and (A2) holds.

Sufficiency. Consider a control system £ : & = f(x) + u181(x) + uzg2(x) sat-
isfying (A1) — (A4). Transform X via a static feedback into the form X : x =
f(x) 4+ 1181 (x) + i12gc(x), where g is defined by condition (A2). For simplicity of
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notation, we will drop the tilde and we will keep distinguishing g1 from g.. By Propo-
sition 1.7.2, the involutivity of H' = D'~! + span {ad} gc} follows for 1 <i < k—1.
It is immediate to see that the prolongation

5 (10) . { x = f(x)+y181(x) +v28:(x)
o= v

with y; = 11 and vy = uy is locally static feedback linearizable. Indeed, the lineariz-
ability distributions D!, associated to ©(10) are of the form

D; = span{aiyl} +H, P> 1.
The involutivity of ' implies that of D;. Moreover, tk HP = n, thus rk D;p7 =n+1

and £(10) is locally static feedback linearizable. By Proposition 1.3.1, the system X is
flat of differential weight n + 3.

1.7.4 Proof of Theorem 1.3.2

Necessity. Consider the control system X : X = f(x) + u191(x) + upg2(x) and assume
that it is flat of differential weight n + 3. According to Proposition 1.3.1, there exists
an invertible feedback transformation u = a(x) + B(x)i, bringing ¥ into the form
Y % = f(x)+ @181 (x) + fhahy(x), such that the prolongation

$(10) , { o= f(x)+ygi(x) + oaha(x)
no o= n
with y; = ij and v, = 1 is locally static feedback linearizable, around (xo, yo). For

simplicity of notation, we will drop the tilde, but we will keep distinguishing ¢; from
hy (which could also be denoted g,) whose control is not preintegrated.

Since (1) ig locally static feedback linearizable, for any i > 0 the distributions D%

are involutive, of constant rank, and there exists an integer p such that rk ng =n+1.

We have 5
Dy = span{y - h},

Drl, = span{m,gl,hz,adfhz—i—yl[gl,hz]}.

Since k = 0, the distribution D' = span{gi,h} is noninvolutive, thus
[g1,h2] ¢ D and D, = span{%,gl,hz, g1, 2] }. We clearly have ad¢hy € G' =
DO + [D°, DY, consequently, a non zero vector field g € D such that adsg. € G,
whose existence is claimed in (A2)’, can be taken as g, = hy. D%, has constant rank
around (xo,Yy10), it follows that rk (span {g1, h2,adsha + y1[g1, h2] } (%0, y10)) = 3.
This yields (g1 A gc A [f + #1081 + 1208¢, §c)) (x0) # 0 and proves (RC).

The involutivity of D}, implies that of #! = G' and gives (A1)'. The rest of the
proof follows the same line as that of Theorem 1.3.1.

Sufficiency. Consider a control system X : ¥ = f(x) 4+ u191(x) + 122 (x) satisfying
(A1) — (A4)" and (RC). Transform X via a static feedback into the form ¥ : ¥ =
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f(x) + 11 (x) + fipgc(x), where g. is defined by condition (A2)’. For simplicity of
notation, we drop the tilde, but we keep distinguishing g; from g.. It is immediate to
see that the prolongation

5(10) . { X = f(x)+y181(x) +v2g8c(x)
i = n

with 1 = u; and v, = uy is locally static feedback linearizable. Indeed, we have

Dg = span {%, ¢}, which is clearly involutive, and

= SPan{ gy 8178 ad¢gc + y1[81,8c]}-

Since uy & Using(xo), Where Using(x) = {u € R : (g1 AgAf+mg +
usge, 8c)) (x) = 0}, it follows that rk (span {g1, gc, ad rgc + y10(81, 8] } (x0)) = 3. Now,
recall that adsg. € G' = span {g1, g, [¢1, 8] }. These observations yield

span {81, 8¢, ad g +y1(81, 8]} = G,

around (xg, y19). Therefore, the distribution D;lg is given by
d
1_ 1
D, = span{ayl}—f—g

and is involutive. Recall that H! = G' and H'*! = H' + [f, H'], thus the linearizabil-
ity distributions Dl associated to 2(1'0), are of the form

. 9 .
T __ 1 >
Dp—span{—ay1}+7{, i>1

The involutivity of H' implies that of D;,. Moreover, tk HP = n, thus rk Dg =n+1

and ~(10) is locally static feedback linearizable. By Proposition 1.3.1, the system X is
flat of differential weight n + 3.

1.7.5 Proof of Theorem 1.3.4

We start by proving the first item (i). Consider a two-input control-affine system
Y:x = f(x)+u1g1(x) + uxg(x), defined on a n-dimensional manifold X. Assume
k > 1. Under the assumptions D' involutive and [D*~1, D¥] C DF, we necessarily
have rk D* = 2k + 2 (otherwise, we would have Df = Dk 14 span {v} where v is
either adi}gl or ad® &2, and the noninvolutivity of Dk would imply [DF—1, D] ¢ DF).

We deduce rk D! = 2(i+1), for 1 < i < k — 1, and since D* + [D¥, DX] = TX,

it follows that n = 2k + 3. It is clear that there exists local coordinates z =
(29,21, , 7 IRy z3, - zé“) in which X (after applying a suitable invertible feed-
back) takes the form:
(20 = a(zO,Z%,z%)
z} = z% z'% = z%
)M
1 1 2 _ 2
2k = Zk Zk Zk+1
( k11 — @1 Zkyp T 02
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with a a smooth function. We have

J 0 0
pk-1 _span{ o ey sy =}
0z} oz}, 925" 0z i+1

8&88 Jdu 0

D Dk 1
+Spam{a T 020 922 T o

Since [D¥1, D¥] € DF, it follows
0% 0%« 0%«

a(zh)?  a(z2)° 02307}

and thus « is an affine function of z% and z% and can be written as
0 =1 =2 0 .1 .2y.1 0 .1 .2\.2 0.1 .2
a(z°,2y,23) = a(z’,21,21) 2, + b(z rZ1rZ1)Zz + (2, 21, 27)

where 4, b, ¢ are smooth and verify ( + a2k — 98 _ p9a)(z5) # 0. The last condi-

9zY 020
tion is due to the fact that [adfgl, adfgz] ¢ Dk,

From DF1(xg) = Ty, X, we deduce rk D*1(zg) = 2k + 3. Suppose adji“gl (z0) &

DK(zp), otherwise permute v; and v,. This condition is invariant with respect to

invertible feedback transformations of the form vy = B1171 + B1202, V2 = P220>.
: . _ 3 0.1 .2 0 .
Since the vector field { = @a(z lele) + 521 is non zero at any zy, there exists

a smooth function ¢ : R3 — R, depending on zo,z%,z%, such that %(20) # 0 and
Lep = Mo+ 28 — 0. We put w! = (2%, 21, 22) and obtain

0z 1 o

(ol Bl ol 2Y,2 1 Al S 52
o= bl(wl,zl,zl)zz+c(w1,zl,zl) , ,
2 = 2 21 = 2

2

1 2 2
G % T

( %kl = 01 Zk1 = 2

k — _ k ab

Since [adfgl,ad 0] = [azl’ 52 + b ] = azl aw ¢ D", we get ﬂ(wo,zo) # 0 and

applying the invertible change of coordmates

= L[E2p,2<i<k+2,

. ]
= 22, 2<i<k+1

=0 =

w

and a suitable invertible static feedback transformation (leaving v, unchanged and

thus preserving the fact that adﬁi“ 91(20) € DF(zp)) we get

¢ 1 12y afml 2
w% = w%w2 + &(w,, wy) , ,
w; = w3 wy = w;
(NF*) :
1 1 .2 .2
w11c+1 = Wiio wlﬁ = Wi
L Wk = 01 Wy = 02
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with (w3 + 88751) (wg) # 0, which is clearly flat of differential weight n +3 = 2k 46
2
1.2

at wp and we can take (@1, ¢2) = (w;, w5) as a minimal x-flat output.

If k = 0and D° + [D?, DY) = TX, the same arguments apply with D! re-
placed by span {g1, g2, ad g1 + u2[g2, 81, ad g2 + u1[g1, g2]} and adi‘ﬁlgl by ad¢gy +
uz[92, ¢1]. We do not develop this case here.

Let us now show (ii).

Necessity. Let us consider a control system X : ¥ = f(x) 4+ u141(x) + upg2(x) and
assume that it is flat of differential weight n +- 3. According to Proposition 1.3.1, there
exists an invertible feedback transformation u = a(x) + B(x)i, bringing ¥ into the
form £ : x = f(x) + #11$1(x) + fIxh2(x), such that the prolongation

5(10) . { = f(x) +ndi(x) + oaha(x)
vio= 0
with y; = i; and vy, = i, is locally static feedback linearizable. For simplicity of

notation, we will drop the tilde, but we will keep distinguishing g; from h; whose
control is not preintegrated.

Since ©(10) ig locally static feedback linearizable, for any i > 0 the distributions D;

are involutive, of constant rank, and there exists an integer p such that rk Dg =n+1.

We have . 5
Dy = span{z- h},

'D; = span{m,gl,hz, adfhz +y1[g1,h2]}.

Since k > 1, the distribution D° = span {g1, h>} is involutive, thus [g1, h] € DY
and Drl7 = span {%, §1,ha,adghy }. It is easy to prove (by an induction argument)
that, for1 <i <k,

D;) = Span {aiyl/gll e /ad}_lglth/ e Iad;h2}'

Since the intersection of involutive distributions is an involutive distribution, it
follows that D;, NTX = span{gy,---, ad}fl 1, ha, -+, ad}hz} is involutive, for 1 <
i < k. We deduce that the distribution

€ =span{g, - ,adj ‘g1, ho, - adihy}

is involutive. Next we will prove that £ = H* = Ck + D¥~1, where C¥ is the charac-
teristic distribution of DF.

It is immediate that D¥"1 ¢ & c D, where both inclusions are of corank one,
otherwise & = DF and D¥ would be involutive, which contradicts our hypotheses.
Applying Jacobi identity, it can be proved that [adﬁ‘flhz, adfcgl] € Dk, which gives
immediately [adﬁ‘flhz, Dk] e Dk ie, adj‘flhz e Ck, where CF is the characteristic
distribution of D¥. Moreover, since D¥ = £ + span {adﬁigl} is noninvolutive and

[ka—ll Dk] 8 Dk we deduce [ad§_1g1, adfcgl] ¢ Dk,
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The involutivity of

Dyt = span{ S ad? 1g1,ad§g1,h2, e ,ad?hz,adi‘cﬂhz}

implies that of DF + span {ad;‘ﬁlhz}. It yields D' = Dk span {ad?*lhz} and

rk@k = 2k + 3, where 5k is the involutive closure of DX. Therefore, rkCk = 2k
(this gives (C1)) and the new direction [adi}fl gl,adiﬁgl] completing DF to D" has

k+1h2

to be collinear with ad ¥ Hence there exists a smooth function a such that

[adﬁihz, ad?gl] = oc[adfc gl,adkgl] mod DF. It follows [a dﬁ‘,hZ — ocad? 81,6107?81] =0
mod DF. It is easy to show that

C* = D*2 4 span {ad;‘flhz, ad?hQ - txadk lorl,

which yields H* = C*¥ 4+ D1 = span {g, - ,ad;‘flgl,hz, e ,adf,hZ} and rk (Ck N
Dk1) = 2k — 1, showing (C2). Now recall that the involutive subdistribution £
is given by £ = span{gy, - - adj‘,_l g1, ho, -+, adk hz} it follows immediately that
we actually have £ = Hk Ck + DF1, implying the involutivity of #* and proving
(C3). Moreover, since D' = TX = Dk + span {adkﬂhz} we deduce that H ! = TX,

which shows (C4).

Sufficiency. Consider a control system X : X = f(x) + u191(x) + uzg2(x) defined
on a n-dimensional manifold X, and satisfying (C1) — (C4). Since rk C¥ = 2k and D*
is not involutive and its rank is at most 2k + 2, we deduce that rk D¥ = 2k + 2 and

we actually have D = span {v1,v,} + C*. Since D* + [DF, D¥] = D = TX, we have
n =2k + 3.

We will prove that conditions (C1) — (C2) enable us to define a nonzero vector
field g. € DV such that the involutive subdistribution #* = D¥~! + C¥ can be written
as

HK = D*1 4 span {ad?gc}.

In order to define g, notice that clearly D¥=2 C C* and since rk (Ck N D¥1) = 2k — 1,
we have

kN D1 = DF2 4 span {0},
with v of the form v = a4 ad?ﬁl g1+ oczadj‘fl g2, where a1 and a; are smooth functions

not vanishing simultaneously. It follows v = ad;‘fl(txl g1 + a2¢2) mod DF~2 and we

put gc = w191 + a29>. We can always suppose ay(xg) # 0 (otherwise permute g7 and

g2). Since ad?l g € Cr, wehave [adiﬁ l¢., DK] € D¥ and it can be shown, by the invo-

lutivity of D¥~! and applying the Jacobi ide}(ntity, that [adﬁ‘fl g1, adiﬁgc] € DF. There-
fore, the new direction completing D* to D = TX is given by [a di‘[ oy, adk gl] and
there exists a smooth function « such that [ad 8cr adi‘c Q1] = «afa d;‘f oy, adk gl] mod Dk,
This gives [ad?gc ocadj‘c 81, adﬂigl] = 0mod D* and it can be easily Ver1f1ed that

Ck = D2 1 span {udﬁ_lgc, tldfrgc - de(r_lgl}r
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which gives, as claimed,
HE = DF1 4 span {ad?gc}.

The involutivity of H* implies that of all distributions H' = D~! + span {ad} <}, for
1 < i < k — 1. The proof of this statement follows by the same line as the proof of
Proposition 1.7.2.

We are now in position to show that the control X is dynamically linearizable via
one-fold prolongation. Transform X via a static feedback into the form ¥ : ¥ = f(x) +
i11§1(x) + i28.(x), where g, is defined as above. Applying the same arguments as in
the proof of Theorem 1.3.1, it is immediate to see that the prolongation

$(10) . { ¥ o= fx)+y181(x) + 028c(x)
y1 = u

with y; = 1 and v, = 1 is locally static feedback linearizable and by Proposi-
tion 1.3.1, the system is flat of differential weight n + 3.

1.7.6 Proof of Proposition 1.4.1
We will prove the implications (i) = (ii) = (iii) = (i).

(i) = (ii). Consider a flat control system X : X = f(x) 4+ u191(x) + u2g2(x), of
differential weight n 4+ 3 and denote by (¢1, ¢2) its minimal flat outputs, defined in
a neighborhood of x¢. By Proposition 1.3.1, it is x-flat and according to the proof of
the implication (i7) = (iii) of Proposition 1.3.1, the system X can be transformed by
a change of coordinates and an invertible static feedback into the form

(51 _ 1 52 )

21 = z; V4] = z5
3 .1 1 .2 2
Z Zf171 -1 Z~Pl 2(2?2 -1 20, 3
Zg, o z;, = a(z)+b(z)ih
2., =1
\ p2+1 2
where P1 + 02 +1= n, (4’1, 902> = (Z%/Z%) and azg—aﬂ(ZO) + azg o (ZO)ﬁIO ?é 0.
[ 0

If the first noninvolutive distribution is D°, then b = 252 ypanda = a(z) is a

da
2
8zp2+1

function satisfying (zo) + 19 # 0. If the first noninvolutive distribution is DF,

- _ .2 _ (sl 22
with k > 1, then we puta = 25 +1 and b = b(zpl,zp2).

Moreover, the involutivity of Difor0<i<k-—1, implies b = b(z,})l—k IRy Zﬁz_k +1).

The involutivity of D¥ can be lost in two different ways: either [D*~1, D¥] ¢ D and
[ads‘fgl, ad?gz] ¢ DF and in this case

o +b 28b = 0 and Za—b(zo) #0
aZp27k+1 azpsz+l

1
azpl—k-‘rl
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or [DF=1, DK] ¢ DF and in this case

ob ob

( 1 +b-
E)zpl_k+1 azpz_kle

)(z0) # 0.

We have obtained the normal form (NF1).

(ii) = (iii). If k = 0, then (NF1) and (NF2) coincide. We can thus suppose k > 1.
Since Dk is noninvolutive, of rank 2k + 2, it follows immediately that p1, p2 > k+1,
thus there exits two integers 1 > 1and pp > 1suchthatp; = y1 +kand p, = pp +k.

By a direct calculation, we can check that the involutive distribution D! is an-
nihilated by p; + py differentials dz}, 1 <i <y, and dz]Z, 1 < j < up. Since rank

D1 = 2k and n = py + pp + 2k + 1, there exists a function ¢ = 1/;(2}{1“,2]242“)

such that dy is independent at zy of dz}, dzjz and annihilates D¥~1. Tt follows
0 )
Lﬂd?lgzl/) = o ﬂllp + b(z} 1 V2+1)az ¢ — 0 and since dy and Ulz1 dz are inde-

pendent at zg, we deduce az%i (z0) 7é O Define zy 14

valid change of coordinates and, after applying a suitable invertible static feedback
transformation, bring the system into the form:

—Lflp,forOS]Sk,a

;a1 o .2 2
21 = % 21 = %
51 1 52 2
M ! Z’fl }2‘ Zﬂ21 2 52
m =yl Fm - d(zmﬂ'z#z'zuzﬂ)
1 52 _ 2
V1+1 u1+2 241 Ho+2
z1 = 9 2 = 22
p1+k 1 ‘1212—|—k Ho+k+1
\ ;llz-l—k—l—l = 0
with 5 1 4_(z9) # 0and (@1, 92) = (z},23).
}4 +

We will next analyze the conditions satisfied by the function d. To simplify the
notation, we will write z (respectively v) instead of Z (respectively ). We have

Dk_l = Span L/.../L/L,.../ d and
P {az;lqﬂ az}:ﬁk 821242+2 82;242+k+1 }
k _ k—1 ) 0
D =D + span{ 1 + 32;141 822 / azﬂzﬂ}
If [DK=1,DX] ¢ D, then it follows immediately that a(Zi’z—”’)z(zo) #+ 0. We have
]11+1

obtained the normal form (NF2) for the case [D¥~1, DX] ¢ DK. On the other hand, if

[DF-1, D¥] ¢ DF and [adﬁ%gl,adkgz] ¢ D, we obtain % = 0. Thus
H1+1

=1 =2 =1 52 =1 52 1
d(zﬂl‘H’Zﬂz-H) = (Zﬂl’zﬂz-H) - dz(zﬂl’zﬂz-H)ZﬂrH'



64 PROOFS

Since [adﬁigl,adﬂigz] ¢ DF,

(z0) # 0.

2
0z}, 41
It is easy to see that Lgl.L;dz =0,forl <i<2and 0 < j < k—1. Moreover,
the functions L?dz are independent, for 0 < j < k, then the following change of

coordinates %2 = L;dz, for 0 < j < k, is valid and, after applying a suitable

po+1+4j
invertible static feedback transformation, it brings the system into the form:
(51 _ 1 2 — 2
“1 = 2 “1 = %
.1 | 2 _ 2
Zﬁtl_l _ Zill Zgz_l _ 1 2 22 2 1
o T Fmtl A = (241 B Zp 1) 2 %0
Z'l — Zl 22 — 22
up+1 Up+2 pua+1 U +2
.1 _ 5 22 )
Lk — U1 7jg2+k = Zuptktl
\ ikl = 92

with (@1, 92) = (z1,23). This is the normal form (NF2) corresponding to the case

[Dk=1, DX ¢ D and [ad?gl,adjigz] ¢ D,

Note that we have also proved that the minimal x-flat outputs and the normal
forms (NF1) (resp. (NF2)) are compatible. Indeeed, if (¢1, ¢2) is a minimal x-flat
output at xp, then there exists an invertible static feedback transformation bringing
the system ¥ into (NF1) with ¢; = z} and ¢, = z7 (resp. into (NF2) with ¢; = w]
and ¢, = w?).

(iii) = (i). Consider a control system X static feedback equivalent to the normal
form (NF2). It is clear that ¥ is flat, with (@1, ¢2) = (w], w?) minimal flat outputs of
differential weight n + 3.

1.7.7 Proof of Proposition 1.5.1

Consider the control system X : ¥ = f(x) + u191(x) + uzg2(x) that is x-flat at xo (at
(x0, up), if k = 0), of differential weight n + 3.

[Dk\/\gk]start by p(rio[\;i)rllglitglf]l g) Dckorresponding to Dk + [DF,DX] # TX or DF +
, =TX an -, )

Necessity. Let the pair (¢, ¢2) be a minimal flat output, defined on a neighbor-
hood X of xg. According to Proposition 1.4.1 and its proof, there exists a valid lo-
cal change of coordinates in which the system, after applying a suitable feedback,
takes the form (NF2), with (1, 92) = (w}, w?). Recall that p and p are defined as
o = k+max(uy, pa), p =k +min(uy, up). Itis easy to check that (after permuting ¢;
and ¢», if necessary)

dpy L He!
dq)z 1 At
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and dpa Adoi ANdLrpr A=+ A dLJp[ "91(xg) # 0 are valid on X. The distributions A’

are feedback invariant which proves necessity of the conditions.

Sufficiency. Since X is x-flat with of differential weight n + 3, it follows, by Propo-
sition 1.4.1, that it is locally static feedback equivalent to (NF2). Bring ¥ into the form
(NF2), around wy. In coordinates w we have

D! = span PR 0 9 9 for0<i<k-1
P {a W i T owy Wi’ aw§2+k+1}’ - ’
ka — ka 1 + span + Jd , ) ,
p {a M <?)w;,1 owy, E)wy +1}

where d satisfies awazd 1(wo) # 0.
Hot

First notice that the new direction completing D* to D = HrH s necessarily =%~ o

}‘2
and is collinear with ad?“l g2. It follows that g, plays the role of g, defined by item
(A2) of Theorem 1.3.1, if DX + [DF, DX] # TX. Moreover, if D* + [DF, D¥] = TX and

[D¥=1, DX ¢ D, then we have [a d? 1g1,adkg1] ¢ DF and [a dji gy, DF] € D, there-

fore the vector field ¢, is such that the distribution #*, defined by conditions(C1) —
(C3) of Theorem 1.3.4 (ii), is given by H¥ = DF=! + span {ad @}

Let us suppose pt; < po. The same reasoning applies if 1 > pp or y; = n and we
do not develop these cases here. We have

Hk+742_1 — Hp_l = Span i e L i e el
P {aw%’ ’ awllxl1+k’ dws’ "9 f:2+k+1 }’
HE+tm=1 — yr=1 — gpan Ll d za + )
p {aw2’ ’ aw;ﬁk/ wﬂ27p+2/ ’ aw;¢2+k+1

Since dg; L HF~1, it follows that we choose ¢; as a function depending on w?

only and satisfying o 2(wo) # 0. We deduce that I F91 forl < j < pp—1,are

independent functions and that L FP1 depend on w%, w%, cee, w]2 1

Sincedg, L HF'anddgs Adgr AdLggy A+ - /\de(_”(pl(wo) # 0, wherep —u =

pa — p1, we choose g2 = ¢ (wi, @2 Wiy py+1) and (wo) # 0. We deduce that Lfgoz,

1 2 2

for1 <j < pj +k—1, are independent funct10ns of wl, S Wi, W W i

We apply the following change of coordinates

i}

t
—N0 ==

= L?lfpl, 1<j<m+k
= L}flfpz, 1<j<uy,
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and an invertible static feedback transformation, to get

¢ 5l — 5l 2 2

Wy = W, Wy = W5
51 -1 ) "
wﬁ‘ = w’fl wg = wﬂ2 .
Cmo T Y Y B d( D41 Diiy1)
Ci+1 = Wyt Whr+1 - 142+2
1 _ 22 _ 2
e = 401 wgz—i—k = Witk
\ Wiptk+1 = 02

This is the normal form (NF2), with ¢; = @} and ¢, = @? as minimal x-flat outputs.

It follows that (@1, ¢2) is also a minimal flat output of the original system X.

Let us now show that the pair (¢1, ¢2) of minimal flat outputs is unique, up to
a diffeomorphism. We have already proved that the minimal x-flat outputs and the
normal form (NF2) are compatible, i.e., if (¢1, ¢7) is a minimal x-flat output at x, we
can introduce new coordinates in which the original system X takes, via an invertible
static feedback transformation, the form (NF2), with ¢; and ¢, playing the role of
the top variables w} and w?. Let (@1, $2) be another minimal flat output. Clearly,
(@1, ¢2) is also a minimal flat output of (NF2). We have just proven that

dpp L He!
dgf)z 1 #HH L

The distribution #f~! is of corank one in TX so d¢; and d@; are collinear and thus
there exists a function 11 such that @; = hy(¢1), where 1} (-) # 0. We have

(HP—1)+ = span{dgs,dg1,dLsgy, - - Lp Po1}

= span {d ¢y, d¢1,dL¢ 1, - - dL el
= span {d ¢y, d¢1,dLser, - - dL o1},

implying that d¢, and d@, are collinear modulo dgq,dLr¢y, - ,dL?_V @1, thus
there exists a function hp, invertible with respect to ¢,, such that ¢§ =
hZ((PZI ®1, qu)ll Tty L'Fl)f—yq)l)'

We now turn to item (ii) corresponding to the case D + [DF,D¥] = TX and
[DF=1, DK c DX,

Necessity. Let the pair (@1, ¢2) be a minimal flat output of %, defined on a neigh-
borhood X of xg. According to Proposition 1.4.1 and its proof, there exists a valid
local change of coordinates in which the system, after applying a suitable feedback,
takes the form

¢ 1 1 2 1 -2 1.2
W] = w% w% = d(zwl,wz) + wyws;
wy = wy Wy = wj

(NF2):

1 A 2 9
Wi = W Zf’léﬂ = Wki2
\ wk—l—Z = Uz
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where (% +wl)(wp) # 0and (g1, p2) = (wi, w?) (permute @ and ¢, if necessary).
2
It is clear that (dg1 A ¢2)(wo) # 0. Moreover, we have

9 0 0 J
- dg1, 92}) " = o Cd e A . 35
(span {d¢1, ¢2}) SPa“{aw%H gl dw?,, aa%}

which is clearly involutive and satisfies D=1 < £ c Dk, where both inclusions are
of corank one. The vector field g» = —9— is such that £ = D¥~1 4 span {adﬂ‘cgz} and

2
CL

since (% + w3)(wp) # 0, we have Ludf[gzq)z(wo) # 0.

Sufficiency. Since X is x-flat at x, with the differential weight n + 3, it follows, by
Proposition 1.4.1 that it can be locally transformed into the form

(ol — ol 02— (ol a2 1,2
Wy = wy Wy = a(zwl, W5) + Wyws
W, = w; W, = Wi
(NF2):
ol g 02— o2
Perr = M B ™ Wi
\ Wigo = W2
Applying the following change of coordinates:
2 1,12
N |
2 g2
Zi = Wi
for 1 <i < k+1, we get the following symmetric form
( 1 1
w = a(wz,z}) + 32323 — 32173
S | 2 L2
. 2 = 2 21 = A
(NF2) :
S | 2 L2
0T A % T Zn
 Zkp1 =M Zkv1 T W2

for which the vector fields g; and g» play the same role (this will be useful for com-
puting the distribution £).

Since the involutive distribution £ = (span {d¢y, ¢, })" satisfies D*~1 C £ c D,
it is immediate that both inclusions are of corank one (otherwise either £ = DF and
DF would be involutive or £ = D¥~! and rk D¥ — rk D! would be equal to one). Tt
follows that £ can be written as

L =D1 4 span {txwdfcgl + “zadﬁgz}/

where a1, ay are two smooth functions non vanishing simultaneously. Since g1, g2

play the same role for the form (NF2), there is no loss in generality in assuming
ap(wp, zg) # 0. Thus,

L=D14+ span {adﬁ‘f(gz +ag1)} = D14 span {adﬁgc}-
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where a = {1 and gc = g» + ag1.

Applying the invertible static feedback transformation if; = v; + avy and il; = vy,
we get

( 1 1
w = a(wzi,z}) + 52325 — 32173
5 I | 2 2
} 2 = 2 21 = 2
(NF2):
5 | 2 2
0T A 07T Fn
( Zky1 = v1t+a(w,z)v; Ziy, = U2

for which g = g, = ang +a(x,z,w) ﬁ, where g, is the vector field defined above.

By an induction argument, it can be shown that

; 0 0 0 0
D' = span { Lo, , R pp—
IR 0z yy 0%, 0z %H
for1<i<k-1,and
d 1,0
ko _ (_1\k¢ Y 229
2drg1 = ( 1)(821*_2 50
0 14,0 0 1,9
k _(_1\k Y 21 Y k—1
adige = (—1) (az% %15, & (81+2218 )) mod D
then
) d 0 0 14,0 0 1,0
L= PSSP A N A Nl 9 1209
Spar‘{a U e ez, a2 e M T

Since £ = (span {dgy,d¢,})* is involutive, we deduce that &, ¢ and @, are functions
of Z%, z% and w, only. Moreover, ¢; satisfies

99; 1 aﬁoz dp; 1 ,0¢; .
B A St 1L 7510 = <i<2
92 27w T 51 Taflgy) T 15152

Since dg1 A dga(wo, z0) # 0and TX = L + span {adfgl, [adfgl, adiﬁgz] }, it follows

L ¢1 L; dk o191
d d
K ( La 81 L[a 181,0d78))] (wo, 20) = 2.
adig P2 Fladkgr adsg,) 2
We have [ad? g1, adk gz] 2 mod span {ad €1} Therefore, the above rank becomes
1,2091 99
% T2550 0
T + 1,209 9 (wo, 20) =
219w ow
This implies
2 w
rk @ 39, (ZU(),Z()) =2,

az% Jw
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thus we can introduce new coordinates @ = @1 (21,23, w) and 21 = ¢a(z1, 22, w):

(= _ 1 2\(991 | 1.29¢1 99y
W = (z-ezn) (G +a2ige) Yoo
1 _ 1 2\(992 | 12092 992 2 _ .2
2 = (moen)(Gi o) tage 4 )
1 1 ) 2
) = Z3 23 = 23
1 1 2 2
z,f = Zkn Zlé = Zk+1
( Zky1 = v1ta(x,z,w)o Ziy, = U

. o . 0

with (@1, 92) = (@,2]). Since (Ladfcglq)l’Ladf[gl(Pz)(wo’ZO) # (0,0), we have (%%1 +

%z%%%, % + %Z%%)(éo) # (0,0), where &y = (@, z9), and we can assume, with-
1

out lose of generality that % + %z%%%(@o) # 0. Therefore, the following change of

coordinates Z} = L}*l(pz, for 2 < i < k+ 1 is valid and brings the system into the

form

@ = a(z,23,@)2+ (2,23, @)

1 _ sl 2 2

2T = 2 21T = %

1 _ sl 2 2

lec = Zkt1 Zlé = Zk1
\ %41 = U1 k1 T 92

with (@1, ¢2) = (@, 21). In these coordinates, we have

d d 0 d d d
Dk: = 1 N AN T A AN T AN Y A 2 s i
PG g ma e,

Since [adﬁ‘(gl, ad;‘(gz] ¢ DF, it follows that %(wo,zo) # 0 and we put 22 = Ljf_la, for

2 <i <k+1, and apply a suitable invertible feedback transformation, to get

;

s 2241 51 52

Z.(i = z%zz—kb(zl,zl,w) , ,
21 = 2 21T = %
1 _ sl 2 _ s
Z.I{ = Zkt1 77'15 = Zkn
k1 T U Zky1 = 02

with (@1, ¢2) = (@, 21). We have £ = D1 4 span {%} = D1 4 span {ad?gz}, SO
1
2 plays the role of the vector field ¢». and from (L, d?t,-lgzc(Pl, L, Hiig,. ¢2)(wo, z0) #
(0,0), it follows that (2} + %)(wo,zo) # 0. This is the normal form (NF2) with
1
(¢1, 92) = (@, 2}) a minimal x-flat output of differential weight n + 3.

It remains to study the uniqueness of (@1, ¢2). The results of Proposition 1.5.2
show that for a given arbitrary function ¢, satisfying

dg; L D¥'and (Ladllggl ?1, Lad]lggz(l’l)(xo) # 0,
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there always exists a function ¢, independent with ¢; such that (¢1, ¢7) is a minimal
flat output of X at xp (respectively at (x, up), if k = 0). We have already proved that
the minimal x-flat outputs and the normal form (NF2) are compatible, i.e., if (¢1, ¢2)
is a minimal x-flat output at xp, we can introduce new coordinates (permute ¢; and
@2, if necessary) w} = ¢1 and w? = ¢, and complete them to a coordinate system in
which the original system X takes, via an invertible static feedback transformation,
the form (NF2) with ¢; = w} and ¢, = w?.

Suppose that there exist another function @ such that (¢1, §2) = (wi, §2) is a
minimal flat output of 2. By Proposition 1.5.2, $; must satisfy

dg, L D*"Vand Ly¢; =0,
where w = (Lad§g2(p1)ad§$g1 - (Ladf[gl(pl)ad§g2 = —aiw%. It follows that ¢, =
h(w}, w?) = h(gq, ¢2), where h is a smooth function such that %(wo) # 0,ie, h
1

is invertible with respect to w? = ;.

1.7.8 Proof of Proposition 1.5.2

Proof of (i). It is an immediate consequence of Proposition 1.5.1 (i).

Proof of (ii). Necessity. Assume that X : ¥ = f(x) 4+ u191(x) + upg2(x) is an x-flat
control system of differential weight n + 3 and such that DX + [D¥, D¥| = TX and
[D¥=1, DX] € D*. Let (¢4, ¢2) be its minimal flat output defined in a neighborhood X
of xo. By Proposition 1.4.1 we can bring X into the form

(ol 1 2 ol 22 1.2
wy = w, Wy = a(®,D3) + wyw;
wy = wy W5 = wj

(NF2)

ol — g 02— g2
U1 = M Wy = Whyy
\ Wiy = W2

with ¢ = w% and ¢y = w% By a direct computation, we get ijgol- =0,forl <;j <2k
and 1 <i < 2, where w; = %,forl <j< k,andwkﬂ- = %,forl <j<k
MWy ioj W15

—%. Thus proves the desired relations on X'.
2

and Ly, ¢ = 0, where w =
It remains to prove that for i = 1 or 2 we have (Lad’}gl @i, Lad?gﬂ’i)(xO) # (0,0).

Bring ¥, locally around xy € X, into the form (NF2), which is always possible by
our assumption. Then the equations, that we have just proved on X, implies that
dp; L D1 for 1 < i < 2. Assume Ladjiglq)i(wo) = Lad§g2¢i(w0) =0,for1 <i<2

(otherwise the condition that we want to show holds). It follows that

L P1 L 1 L & ko 1P1
d d d%qq,ad
f ( aac& aar&2 [a 814 fgz] ( 0) 1

Lodig1 92 Lty P2 Liadtgy adi,] 92

contradicting the independence of flat outputs. Indeed, since (dg A dgy)(wy) # 0
and TX = D! + span {adiﬁgl, ad?gz, [adiigl, adﬂigz] }, the above rank must be 2.
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Sufficiency. In order to find ¢, we have to solve the following system of first order
PDE'’s '

(Ladiiglqol’l‘ad;gzgol)(x()) # (0, 0)/

which always possesses solutions, since Dk-1 = span {w]-, 1 <j < 2k} is involutive.
Moreover, since the corank of D=1 in TX is three, the space of solutions is that of
functions of three variables.

To find the second component of the flat output, ¢,, we have to solve the follow-
ing system of n — 2 = 2k + 1 equations

qu)2 = 0,

where w = (L, diga ¢1)ad§g1 - (L, dign (pl)adfcgz. Notice that ¢ solves this system and

recall that we are looking for a solution ¢, independent with ¢;. By Frobenious the-
orem, the above system has two independent solutions if and only if the distribution

L = span{w, w;, 1 <j <2k} = D1 4 span {w}
is involutive.

Below, we'will prove that £ is, indeed, involutive. To this end, it is sufficient to
show that [ad?gi, w| e L,forany1 <i<2and0 <j<k—1.Since [Dk_l,Dk] c Dk,

it follows that there exist smooth functions a{l and [Bil such that
[ad;gi, ads‘fgl] = aflads‘fgl + ﬁjiladf;gz mod D!
forany 1 <i <,[12and 0 <j <k —1, and thus
L[ad] gindig )= 11 “dk 1+ ’BllLﬂdkgz P1-

On the other hand,

adk

L [ud] 81

f }4)1 = Lud;giLad§g1¢1 — Ladkgl ad] q)l J’[giLadf[glq)l.

We have
adgi,w] = [ad)g; (Loag, 91)adj81 = (Lygs g, 91)ad g2

= (L adkg (pl)[adfgl, Jadigi] — (L adtg, (pl)[ad;gi,adiigﬂ
+(Lad; gzqol)adfg1 (L adg, Ladk 901)11515582

- (Lad"gz%)(“nﬂdkgl + Bladgs) — (L adkglq)l)(“zz“dfgl + Blyadfga)
+(aj 2Ladtg, 91+ ﬁzZLadkgz(Pl)adfgl

( '1 ad?gl ¢1+ ﬁzlLadng(Pl)ﬂdfgz qu Dk-1
= ((; +Bp)L adkgzﬁol)ad;{rgl — ((ay + ﬁﬁg)Lad;gl ¢1)ad§g2 mod Dk1

= (ocll—i—ﬁ] )wmode !
= Omod L,
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forl1 <i <2and 0 <j <k — 1. Consequently, £ is involutive, and the above system
has two independent solutions ¢; and ¢,. Moreover, the involutive distribution £ =
(span {d@q,dg,}) " satisfies D*~1 £ C DK, where both inclusions are of corank
one, and by Proposition 1.5.1, ¢1 and ¢, are minimal flat outputs.



2 MULTI-INPUT CONTROL AFFINE
SYSTEMS LINEARIZABLE VIA
ONE-FOLD PROLONGATION AND
THEIR FLATNESS

Abstract

We study flatness of multi-input control-affine systems. We give a geometric characteri-
zation of systems that become static feedback linearizable after a one-fold prolongation of a
suitably chosen control. They form a particular class of flat systems. Namely those of differ-
ential weight n + m + 1, where n is the dimension of the state-space and m is the number of
controls. We propose conditions (verifiable by differentiation and algebraic operations) de-
scribing that class, construct normal forms and provide a system of PDE’s giving all minimal
flat outputs. We illustrate our results by two examples: the quadrotor helicopter and a poly-
merization reactor.

2.1 Introduction

In this paper, we study flatness of nonlinear control systems of the form
E: x= F(x,u),

where x is the state defined on a open subset X of IR and u is the control taking
values in an open subset U of R" (more generally, an n-dimensional manifold X and
an m-dimensional manifold U, respectively). The dynamics F are smooth and the
word smooth will always mean C*-smooth.

The notion of flatness has been introduced in control theory in the 1990’s, by
Fliess, Lévine, Martin and Rouchon [13,14], see also [21,22,32,54], and has attracted
a lot of attention because of its multiple applications in the problem of constructive
controllability and motion planning (see, e.g. [15,36, 53,55, 58, 62, 66]). Flat systems
form a class of control systems whose set of trajectories can be parametrized by m
functions and their time-derivatives, m being the number of controls. More precisely,
the system & : X = F(x,u) is flat if we can find m functions, ¢;(x,u,..., u(r)), for
some 7 > 0, such that

x=7(p,...,¢" VNandu =d(g,..., "), (2.1)

73
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for a certain integer s, where ¢ = (¢1,..., ¢n) is called a flat output. Therefore the
time-evolution of all state and control variables can be determined from that of flat
outputs without integration and all trajectories of the system can be completely pa-
rameterized. A similar notion, of systems of undetermined differential equations
integrable without integration, has been studied by Hilbert [18] and Cartan [8], see
also [66], where connections between Cartan prolongations and flatness were stud-
ied.

Flatness is closely related to the notion of feedback linearization. It is well known
that systems linearizable via invertible static feedback are flat. Their description (2.1)
uses the minimal possible, which is n + m, number of time-derivatives of the com-
ponents of the flat output ¢. In general, a flat system is not linearizable by static
teedback, with the exception of the single-input case where flatness reduces to static
feedback linearization, see [9] and [54]. For any flat system, that is not static feedback
linearizable, the minimal number of time-derivatives of ¢; needed to express x and u
(which is called the differential weight [58]) is thus bigger than n + m and measures
actually the smallest possible dimension of a precompensator linearizing dynami-
cally the system. Therefore the simplest systems for which the differential weight
is bigger than n 4 m are systems linearizable via one-dimensional precompensator,
thus of differential weight n + m 4+ 1. They form the class that we are studying in the
paper: our goal is to give a geometric characterization of control-affine systems that
become static feedback linearizable after a one-fold prolongation of a suitably chosen
control.

The paper is organized as follows. In Section 2.2, we recall the definition of flat-
ness and define the notion of differential weight of a flat system. In Section 2.3, we
give our main results: we characterize control-affine systems that become static feed-
back linearizable after a one-fold prolongation. They form a particular class of flat
systems, that is, flat systems of differential weight n +m + 1. We present their normal
forms in Section 2.4 and describe all minimal flat outputs in Section 2.5. We illustrate
our results by two examples in Section 2.6 and provide proofs in Section 2.7.

2.2 Flatness

The fundamental property of flat systems is that all their solutions may be
parametrized by a finite number of functions and their time-derivatives. Fix an inte-
ger | > —1 and denote U =UxR™ and @' = (u, u,...,u(l)). For [ = —1, the set
U1 is empty and 7! in an empty sequence.

Definition 2.2.1. The system E : ¥ = F(x,u) is flat at (xo, i) € X x U!, for
I > —1, if there exists a neighborhood O! of (xo, ﬁf)) and m smooth functions
;i = @i(x,u,u,..., uD),1 < i < m, defined in O/, having the following property:
there exist an integer s and smooth functions y;, 1 < i < 1, and 0j,1<j<m, such
that

xi = 7i(9, Qb/---/(P(S_l)) and u; = 6(¢, 4)/---/4’(5))

along any trajectory x(t) given by a control u(t) that satisfies (x(t), u(t), ..., u!) (t)) €
O!, where ¢ = (¢1,...,¢,) and is called a flat output.
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Whenever necessary to specify the number of derivatives of u on which the com-
ponents of the flat outputs ¢ depend, we will say that the system Z is (x, u, - - -, u("))-
flat if the r — th-derivative is the highest involved. In the particular case ¢; = ¢;(x),
for 1 <i < m, we will say that the system is x-flat.

In general, r is smaller than the integer ! needed to define the neighborhood O
which, in turn, is smaller than the numbers of derivatives of ¢ that are involved. In
our study, r is always equal to -1, i.e., the flat outputs depend on x only, and [ is -1
or 0.

The minimal number of derivatives of components of a flat output, needed to ex-
press x and u, will be called the differential weight of that flat output and is formal-
ized as follows. By definition, for any flat output ¢ of E there exist integers sy, ..., sy

such that

r)/(q)]./ 471/ ey (P‘Eﬁ)/' . '/¢MI Qbm/ ccy q)lgl’SIM))

v 5(¢1’¢1""’¢§Sl)""/§0m1 Gbm,...,q);(;m)).

Moreover, we can choose (s1,...,sm) such that (see [58]) if for any other m-tuple
(51,...,5m) we have

?(4)1/ 4)1,. : .,q):(fl)" ' "q)ml (Pm,~ . '/¢£§nl))
(5((P1/(P1,...,q;gsl),,,,,qom,(pm,m,%(;m))/

thens; < 35;, forl <i < m. Wewillcall } ;" (s; + 1) = m + Y_["; s; the differential
weight of ¢. A flat output of & is called minimal if its differential weight is the lowest
among all flat outputs of &. We define the differential weight of a flat system to be
equal to the differential weight of a minimal flat output.

Consider a control-affine system

r:x=f(x)+ i u;gi(x), (2.2)
i—1

where f and g1, - - -, gm are smooth vector fields on X. The system X is linearizable
by static feedback if it is equivalent via a diffeomorphism z = ¢(x) and an invertible
feedback transformation, u = a(x) + B(x)v, to a linear controllable system A : z =
Az + Bo.

The problem of static feedback linearization was solved by Jakubczyk and Re-
spondek [23] and Hunt and Su [19] who gave geometric necessary and sufficient
conditions. The following theorem recalls their result and, furthermore, gives an
equivalent way of describing static feedback linearizable systems from the point of
view of differential weight.

Define inductively the sequence of distributions D! = D' + [f, D], where D' is
given by D = span {g1,- - ,gm}-

Theorem 2.2.1. The following conditions are equivalent:

(i) X is locally static feedback linearizable, around xy € X;
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(ii) X is locally static feedback equivalent, around xo € X, to the Brunovsky canonical form

g+
2 = Z

(Br) : . !
50

L g,
i = Ui

where1 <i<m,1<j<p;—1and };" p; =n;

(iii) For anyi > 0, the distributions Dt are of constant rank, around xo € X, involutive and
Dl =TX;

(iv) X is flat at xg € X, of differential weight n + m.

The geometry of static feedback linearizable systems is given by the following
sequence of nested involutive distributions:

PPcplc...cpr=1TX.

It is well known that a feedback linearizable system is static feedback equivalent to
the Brunovsky canonical form, see [5], and is clearly flat with ¢ = (@1, -+, o) =
(z1,-++,zl,) is a minimal flat output (of differential weight n + m). Therefore, for
static feedback linearizable systems, the representation of all states and controls uses
the minimal possible, which is 4 m, number of time-derivatives of ¢; and an equiv-

alent way of describing them is that they are flat systems of differential weight n 4 m.

In general, a flat system is not linearizable by static feedback, with the exception
of the single-input case. Any single input-system is flat if and only if it is static feed-
back linearizable, see [9,54], and thus of differential weight n + 1. Flat systems can
be seen as a generalization of linear systems. Namely they are linearizable via dy-
namic, invertible and endogenous feedback, see [13,14,32,55]. Our goal is thus to
describe the simplest flat systems that are not static feedback linearizable: control-
affine systems that become static feedback linearizable after one-fold prolongation,
which is the simplest dynamic feedback. They are flat systems of differential weight
n + m + 1, see Proposition 2.3.1 below. In this paper, we will completely character-
ize them and show how their geometry differs and how it reminds that given by
the involutive distributions D' for static feedback linearizable systems. We will also
give normal forms compatible with the minimal flat outputs (thus generalizing the
Brunovsky normal form).

2.3 Main results

Throughout, we deal only with systems that are not static feedback linearizable. This
occurs if there exists an integer k such that DF is not involutive. Suppose that k is
the smallest integer satisfying that property and assume rk DF — rk D¥=1 > 2 (see
Proposition 2.7.1, in Section 2.7, asserting that the latter is necessary for dynamic
linearizability via one-fold prolongation and thus for flatness of differential weight
n+ m+1). We also assume m > 3. The case m = 2 is studied in details in [44,45] and
will be briefly discussed at the end of this section.

We make the following assumption:
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(Assumption 1) From now on, unless stated otherwise, we assume that all ranks in-
volved are constant in a neighborhood of a given xy € X.

Remark 2.3.1. All results presented here are valid on an open and dense subset of
either X or X x U and hold locally, around a given point of that set.

The proofs of all results of this section are given in Section 2.7 (except that of
Proposition 2.3.1 which is presented in Appendix 2.A).

Proposition 2.3.1. Consider a control system & : X = F(x,u). The following conditions
are equivalent:

(i) Eis flat at (xo, 1)), of differential weight n +m + 1, for a certain | > 1;
(ii) Eis x-flat at (xo, up), of differential weight n + m + 1;

(iii) There exists, around x, an invertible static feedback transformation u = (x, i) bring-
ing the system E into & : & = F(x, i) = F(x,¥(x,u)), such that the prolongation

[z

(1,0,...,0) . { X - F‘(xlylleI e zvm)
no= n

is locally static feedback linearizable, with yy = i1, v; = il;, for 2 < i < m.

Moreover, if & is actually a control-affine system of the form ¥ : x = f(x) + Y"1 u;gi(x),
then the equivalence (i) <= (ii) <= (iii) holds with the general feedback u = (x, ii) be-
ing replaced by u = (x, i) = a(x) + B(x)il, thesystem Zby & : % = f(x) + XM, i1;;(x)
and the prolongation Z(1.0--0) py

$(10,..0) . { o= f(x)+ngi(x) + X, vigi(x)
vio= v

withyy = ily, v; = d;, for2 < i <m, f = f +agand § = gB, where g = (g1, ,Lm)
and § = (1, gm).

To simplify the understanding of the paper, from now on, we will consider
only the control-affine case. The generalization for the control-nonlinear systems is
straightforward.

A system X satisfying (iii) will be called dynamically linearizable via invertible
one-fold prolongation. Notice that 5(10--0) is, as indicated by the notation, obtained
by prolonging the control iy as v1 = #i; and keeping v; = ii;, for 2 < i < m. The
above results asserts that for systems of differential weight n + m 4 1, flatness and x-
flatness coincide and that, moreover, these properties are equivalent to linearizability
via the simplest dynamic feedback, namely one-fold preintegration.

Let A and B be two distributions of constant rank and f a vector field. Denote
[A,B] = {[a,b] :a€ A b e B}and [f,B] = {[f,b] : b € B}. Clearly, [A, B] =
[A, B] + A+ B (because we take all 2 € A and all b € B and not just generators)
and although the right hand side is more detailed, we will use the left hand side that
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is more compact. We will use that notation throughout. If A C B, we will write
cork (A C B) to denote rk (B/.A). So, frequently used cork (D* C [DF, D)) simply
means rk ([D¥, D¥]/DF) = 1k (([D¥, D¥] + D) /DK).

Recall that k is the smallest integer such that D is not involutive. The integer k plays
an important role in our study. Our main result describing flat systems of differential
weight n + m + 1 is given by the two following theorems corresponding to the first
noninvolutive distribution D* being either DY ie., k = 0 (Theorem 2.3.2) or DF, for
k > 1 (Theorem 2.3.1). For both theorems, we assume that cork (D* c [D¥, DK]) > 2.
The particular case cork (D*¥ C [D¥, D¥]) = 1 will be discussed at the end of this
section (Theorem 2.3.4).

Theorem 2.3.1. Assume k > 1 and cork (D C [D¥, D¥|) > 2. A control system ¥. given
by (2.2), is flat at x, of differential weight n + m + 1, if and only if it satisfies around x:

(A1) There exists an involutive distribution H* C DX, of corank one;
(A2) The distributions H', for i > k + 1, are involutive, where H! = H!=' + [f, H'~1];
(A3) There exists p such that HP = TX.

The geometry of systems described by the previous theorem can be summarized
by the following sequence of inclusions:

POc...cp-1 c pk c D

1U N
HE ¢ HFlc...cHP=TX

where all distributions, except Dk are involutive, 51{ is the involutive closure of Dk
and the inclusion HXC Dk is of corank one. The main structural condition is the ex-
istence of a corank one involutive subdistribution ¥ in D*. Under the hypotheses
cork (D* C [DK,DK]) > 2, the subdistribution 7 is unique and can be explicitly
calculated [6,50]. Its construction will be described in Proposition 2.3.2, after stat-
ing Theorem 2.3.2. Moreover, under the assumption cork (D* C [DF, DX]) > 2, the
condition (A1) implies (via the Jacobi identity) the inclusion D*~1 C H*. The latter

yields DX ¢ #k+1 which gives D' € HK+1 (since H**1 is involutive by (A2)). Tt is
clear that in the particular case D = TX,wehavep = k+1.

The previous theorem enables us to define, up to a multiplicative function, the
control uy, which is given up to a multiplicative function, to be prolonged in order

to obtain £(10--0) that is locally static feedback linearizable. According to Propo-
sition 2.7.2(ii) in Section 2.7, to H* we can associate a unique corank one subdistri-
bution H in D such that H¥ = D1 4+ adﬁi?—[. Since rtk’H = m — 1, we can find m

functions By, ..., B (not vanishing simultaneously) such that u,(x) = uq(x)B1(x) +
o+ Uy (x)Bm(x) = 0if and only if Y7 ; u;(x)gi(x) € H(x). The to-be-prolonged
control u, (becoming i after feedback) that needs to be preintegrated in order to dy-

namically linearize the system is u, = @ = u1(x)B1(x) + - - + w0y (x)Bm(x) and we

_ d _d~
put 01 = ﬁup = ﬁul.
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If k = 0, i.e., the first noninvolutive distribution is D? = G, then a similar result
holds, but in the chain of involutive subdistributions H° ¢ H! C H? C --- (playing
the role of HK ¢ Hk1 ¢ k2 < ...), the distribution #! is not defined as H! =
HO + [f, H°], butas H! = G + [f, H"], where G! = G° + [G°,G°] = DO + [DP, DY,
(compare (A2) and (A2)) and satisfies an additional nonsingularity condition (RC).
In fact, flat systems with k = 0 exhibit a singularity in the control space (created by
one-fold prolongation of the to-be-prolonged control) defined by

Using(x) = {u(x) € R™ : rkspan{g1, hj, [f + g1 + Y _ uihi, hi], 2 < j < m}(x) < rk H! (x)}
i=2

and excluded by (RC), where HO = span{hy, ..., hy} and DO = span{g1, ha, ..., hm}.

Theorem 2.3.2. Assume k = 0 and cork (D° C [D°, D)) > 2. A system X given by (2.2),
is flat at (xg, uo), of differential weight n + m + 1, if and only if it satisfies:

(A1)’ There exists an involutive distribution H° c DY, of corank one;

(A2)" The distributions ”Hi,for i > 1, are involutive, where H! = G + [f,HO] and H' =
HV 4+ [f, HIY, fori > 2;

(A3)" There exists p such that HP = TX;

(RC) ug ¢ using(XO)'

Similarly to Theorem 2.3.1, if 50 =TX, thenp = 1.

The cases k = 0 and k > 1 are similar, but they have slightly different ge-
ometries. Even if at first sight, it seems not possible to merge them (due to the
different definitions of the distributions H!' and H**! and to the existence of sin-
gularities in the control space for k = 0), the following result enables us to unify
them. Theorem 2.3.3 is based on the observation that in both cases, we actually have
HH1 = DF 4 [DF, DY + [f, H¥] (by definition of H!, for k = 0, and as a direct con-
sequence of the definition of !, for k > 1, see the comments just after Theo-
rem 2.3.1). According to Proposition 2.7.2(ii) in Section 2.7, to H* we can associate
a unique corank one subdistribution H in D° such that H¥ = D1 + adﬂi?—[. Let g1

and hj, for 2 < j < m, be vector fields such that H = span {hy,...,hy} and D° =
span{g1, ha, ..., hm}.

Theorem 2.3.3. Assume cork (DX C [D¥, D¥]) > 2. A system X, given by (2.2), is flat at
(x0, ug), of differential weight n + m + 1, if and only if it satisfies

(A1)” There exists an involutive distribution H* ¢ Dk, of corank one;

(A2)” The distributions Hi fori >k + 1, are involutive, where HHT = Dk [DF, DV +
(f, M) and H+ = Hi 4 [f, 1], fori > k+1;

(A3)” There exists p such that HP = TX;

(A4)” 1k (DX + [f +uig1 + X0y hi, HY]) (0, o) = rk HF 1 (xp).
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If k = 0, condition (A4)” immediately gives ug & Using(xo). If k > 1, it can
be easily shown that (A4)” does not depend on the control and that the directions
in DF + [Dk, Dk] that are not in H¥ are in fact spanned by the vector fields adi}“hj,

implying that D' M = 9k + [f, H¥]. Theorem 2.3.3 is a direct consequence of
Theorems 2.3.1 and Theorem 2.3.2 and we do not present its proof here.

In order to verify the conditions of Theorem 2.3.1 (respectively Theorems 2.3.2
and 2.3.3), we have to check whether the distribution DF (respectively D°) contains
an involutive subdistribution H* (respectively H’) of corank one. Now we will ex-
plain how to do it. Consider a distribution D of rank d, defined on a manifold X of
dimension 1 and define its annihilator D+ = {w € AY(X) :< w, f >=0,Vf € D},
where Al (X) is the space of smooth differentials 1-forms on X. Let wy, ..., ws, where
s = n —d, be differential 1-forms locally spanning the annihilator of D, that is
Dt = T = span{wy,...,ws}. The Engel rank of D equals 1 at x if and only if D
is non involutive and (dw; A dwj)(x) =0modZ, forany 1 <i,j <s. Forany w € Z,
we define W(w) = {f € D : fidw € D'}, where _ is the interior product. The
characteristic distribution C = {f € D : [f, D] C D} of D is given by

C = ﬂle)/\/(wz)

It follows directly from the Jacobi identity that the characteristic distribution is al-
ways involutive. Let rk (D + [D,D]) = d+r. Choose the differential forms
Wi, ..., Wy, ..., wssuch that Z = span{ws,...,ws} and 7t = span {wy41,...,ws},
where 7! is the annihilator of D + [D, D]. Define the distribution

V= iW(wl)

i=1

Although the distributions W(w;) depend on the choice of w;’s, the distribution V
does not and we have the following result [50] based on [6].

Proposition 2.3.2. Consider a distribution D of rank d and let tk (D + [D, D]) = d + .

(i) Assumer > 3. The distribution D contains an involutive subdistribution H of corank
one if and only if it satisfies

(ISD1) The Engel rank of D equals one;
(ISD2) The characteristic distribution C of D has rank d —r — 1.

Moreover, that involutive subdistribution is unique and is given by H = V.

(ii) Assume r = 2. The distribution D contains a corank one subdistribution L satisfying
(L, L] C D ifand only it verifies (ISD1)-(ISD2). In that case, L is unique and given
by L =Y. Moreover, L =V is the involutive distribution H of corank one in D if and
onlyif L = L.

(iii) Assume v = 1. The distribution D contains an involutive subdistribution of corank
one if and only it satisfies the condition (ISD2). In the case r = 1, if an involutive
subdistribution of corank one exists, it is never unique.
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The above conditions are easy to check and a unique involutive subdistribution
of corank one can be constructed if r > 2. As a consequence, the conditions of Theo-
rems 2.3.1,2.3.2 and 2.3.3 are verifiable, i.e., given a control-affine system, we can ver-
ify whether it is flat with the differential weight n + m + 1 and verification involves
differentiation and algebraic operations only, without solving PDE’s or bringing the
system into a normal form.

Let us now consider the case r = 1, that is, cork (DX C [D¥, D¥]) = 1. If the dis-
tribution D contains a corank one involutive subdistribution, the latter is no longer
unique (see (iii) of Proposition 2.3.2). The involutivity of Dk can be lost in two differ-
ent ways: either [DK=1, D¥] ¢ Dk or [D*~1, D¥] C D* and there exist 1 < i,j < m such

that [ad?gi, adi‘[g]-] ¢ DK. As asserts Theorem 2.3.4 below, in the case [D¥~1, D] ¢ DF,

the corank one involutive subdistribution H* can be uniquely identified by another
argument. Namely, H* = C¥ + DF=1, where CF is the characteristic distribution (de-
fined above) of DX, ie, Ck = {f € D* : [f,D*] ¢ DF}. The subdistribution H*
has to verify some additional conditions analogous to those of Theorem 2.3.1. If
[Dk_l, Dk] C DK and there exist 1 < i, j < msuch that [adﬂigi, adf(gj] ¢ Dk, any corank

one involutive subdistribution ¥ may serve to define a control (different distribu-
tions yield different controls) whose prolongation gives a static feedback linearizable
system.

Theorem 2.3.4. Assume cork (D* C [D¥, DY) = 1and [D*1,DF] ¢ DF. A control
system %, given by (2.2), is flat at xo, of differential weight n + m + 1, if and only if the
following conditions are satisfied:

(C1) tk CX = rk DX — 2, where C* is the characteristic distribution of Dk .
(C2) tk (CkND* 1) =rk D1 —1;

(C3) The distribyttions H, for i > k, are involutive, where HE = Ck + DF1 gnd it =
H + [f, 1]

(C4) There exists p such that HP = TX.

It is clear that the above result can be applied only for k > 1, otherwise
[DF=1,D%] ¢ D would not have any sens. It can be shown that in the case
[DF=1,D*] ¢ DF (no matter what is the value of cork (D¥ C [D*, D)), the invo-
lutive subdistribution H¥ can always be defined as above, i.e., the computation of
#H* using the procedure given by Proposition 2.3.2 and that provided by conditions
(C1) — (C3) of the above theorem are equivalent if [D¥~!, D] ¢ D*. This is not
valid anymore if [Dk_l,Dk] C Dk indeed, in that case, we have D¥1 < Ck, the
condition (C2) is not verified and (C3) would give #* = C*. Notice that in the case
[Dk=1, DK] < Dk, the inclusion Ck C H* is always satisfied and is of corank one if
additionally cork (D* C [D¥, DY) = 1, ie., H¥ = C* + span {g}, where g is a vector
field belonging to DF, but not to DF~1,

Let us now compare the above results with the case of two-input control-affine
systems, i.e.,, m = 2, in which any corank one involutive subdistribution HE of Dk

satisfies cork (D¥ c H**1) = 1, therefore, D' = H*1 and we necessarily have
cork (D¥ c [DX,D¥]) = 1. Thus, neither Theorem 2.3.1 (if k > 1) nor Theorem
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2.3.2 (if k = 0) applies to the case m = 2. On the other hand, Theorem 2.3.4 covers
the case m = 2 but only if [D¥~!, D] ¢ DF. In [45], we treat the case m = 2 in
its full generality. Namely, we define (by another method) the involutive subdistri-

bution H* in all cases satisfying D # TX (no mater whether [D*~1, DF] gZ Dk or
[D=1, Dk ¢ DF and [adi‘[gl,adk g2] € D). Moreover, in the particular case D' =TX
and [D*1, D] ¢ D, the subdistribution H* is defined as in Theorem 2.3.4. Finally,

if D= TX and [D*!, D] ¢ D*, we have shown, in [45], that the system is flat of
differential weight n+3 without any additional condition.

2.4 Normal forms

It is well known [19, 23] that any static feedback linearizable and controllable sys-
tem is feedback equivalent to the Brunovsky canonical form that consists of m inde-
pendent chains of integrators of length p; > p2 > --- > p;, (called controllability
indices). We will prove that systems dynamically linearizable via one-fold prolonga-
tion can be brought into a normal form generalizing that of Brunovsky. For multi-
input control systems at most m — 1 components (at most only one component for
each chain) are replaced by arbitrary (nonlinear) functions involving a certain num-
ber of variables that depends on k and on the length of each chain. Each normal form
contains at least one linear chain. We will denote by r the number of linear chains.
We have r > 1.

Before presenting the normal forms, let us introduce some notations. Let z; =
(2]1-1, e, z}d) be a subset of coordinate functions and let p; = (pj1, - - -, pjs) be a multi-

index. Then Z(P,' )

i = denotes the following system

: +1
2 o=z ,1<q<pi-1

Lji
Z; = c]l,lgzgd.
composed by d chains. We will consider two cases: ¢; = #; and ¢; = a; + bjil;. In

the first case, z](.p - il is just the Brunovsky canonical form, the chains will be called

linear and the components pj; of p; (which are simply the controllability indices ) will

](,pf) = a; + b;ily is followed

el pjat1
by the derivation z;-)’ = ii; which stands for (z fl’l PEE ,z?éd )

be called lengths of the linear chains. In the second case, z

= (1/7]'1, s ,ﬁ]‘d),the
chains are nonlinear (for each chain only one component, before the last one, can be
nonlinear) and their lengths are p;; + 1.

Throughout, Z?, where ¢ = (q1,--+,4q4), stands for the subset of coordinates
q _ n qd =1 sq 1 1 1 %I )
z; = Ezjll.“q,rzjd) and z; denotes z1 = (zl,---,zjl,---,z].d,--- ]d) If g <0,

then z;,---,z;" is absent in z9. For an integer s, we will denote by g + s the vec-
torqg+s = (q1+s,---,q94+5). Let B(z) = (B1(z),---,Bp(z)) a p-tuple of smooth

functions. We use the notion a% for the matrix given by (iq) 1<1<p1<i<d.
]
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The following proposition gives two different (although static feedback equiva-
lent) normal forms (NF1) and (NF2) for the class of two-input flat systems of differ-
ential weight 7 4 m + 1. Recall that the first non involutive distribution is D. Before
stating our result, let us discuss the notations used for each normal form.

For (NF1) we define four subsets of coordinates zj, 1 <j < 4, with the following
properties:

(1) dil’l’lZl = dimiil =1.

Thus, according to the above notation, we simply have z; = z1,. The z;-chain is
the special linear chain whose control ii; has to be prolonged in order to obtain a
static feedback linearizable prolongation. Its length p; = p11 satisfies p1; > k+ 1.

(2) dimzy, =dimi, =r— 1.

According to the above notation, we have z, = (z%l, cee, z%r_l) to which we asso-
ciate the lengths po = (021, - - - , P2r—1)- The zp-chains denote the remaining linear
chains. Their lengths 02j, 1 <j <r—1,arearbitrary. If r = 1, ie, dimzy; = 0,
then there is only one linear chain given by z;.

(B) dimzz = dimiiz = p —r, wherer +1 < p < m.

The z3-chains correspond to the nonlinear chains whose lengths are at least k + 2,
ie,p3 >k+1,forl1 <i<p-—r.

(4) dimz4 = dimﬁ4 =m-—-p.

The z4-chains correspond to the nonlinear chains whose lengths are lower than
k+1,ie., psi <k forl <i < m—p. If p= m, there is no nonlinear chain of
length lower than k + 1.

If k > 1, we suppose, without loss of generality, that p31 > p32 > -+ > p3p > k +
1>k >p41 > pg > -+ > pam—p. The integers pj; satisfy Z;-lzl Z?:lnzj pji +m—r=n.

Similarly, for the normal form (NF2), we define four chains w;, 1 <j<4, satisfy-
ing:

(1) dimw; = dimi; = 1.
The wj-chain is the special linear chain whose control has to be prolonged in

order to obtain a static feedback linearizable prolongation. Its length is denoted
by uy + k, where y1 > 1.

(2) dimw, = dimip, =r — 1.

We have wy = (wi;, -, w) ;) to which we associate the lengths yy + k =

(po1+k,- -+, uzr—1+k). The wp-chains denote the remaining linear chains. Their
lengths are arbitrary, i.e., the integers py;, 1 <i <r —1, are such that yip; + k > 1
and can be negative.

(B) dimws = dimwy = dim iz = m —r.

The length of the ws-chains is denoted by 3 and that of all w4-chains equals
k+1.
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The integers ;; satisfy 2?21 ij?wj Wi +rk+(m—r)(k+1) =n.

Proposition 2.4.1. Consider a control-affine system X. that is not static feedback linearizable.
The following conditions are equivalent:

(i) X is flat at xo (at (xo,uo), such that ug & Usine(x0), if k = 0) of differential weight
n+m+1;

(ii) X is locally, around xg, static feedback equivalent to the following normal form in a
neighborhood of zy € R":

(NF1) (pl) = ngZ) = il (p3) =a3(z) + b3(z)ily z (p4) = a4(z) + ba(z)i;
Z-§3+1 — i3 Z.Z4+1 — i,
(a) either k = 0 and then tk — p38+b1 o (20) > 1, and rk p(ﬁ;bﬁ)ﬂ (20, ilg) =
Az 2y 2y ) 9(zy )

m —r, where b = (bz, by) and a + bii; = (az(z) + bz(z )ul,a4( )+ by(z)iiy),
implying that for all pairs of functions (aj;;, bj;), we can always normalize one of

them to zp” ;
Jt
(b) or k > 1 and then az = zp3+1, ay = zi‘*“ by = b3 (‘pl*kﬂ, Zglfk ‘prkﬂ,
ZZ‘**H ), the i-component of by, for 1 < i < m — p, is given by by; = by (2" ° utl

01704 =034 +1 S04 P4i +1 b,
Z2 1 3 1 4 l ) and rk a ‘lek+1 plfk p37k+1 p47k+1 ( ) Z 1'
(7 22 23 24 )

(iii) X is locally, around xg, static feedback equivalent to the following normal form in a
neighborhood of wy € R™:

k . k . 1 _
vy { @ =m @ = wgzs)l =d(@)"", 05, @Y, wy)
wi +) =13

where tk D(wp) = m —r, with D = 2L and vk ——92—(wy) > 1, ifk = 0,

dwy” a(wfl‘1+1’wé’2,w4)
we put w’le = 1y, the functions d; are of the form d; = a;(w) + b;(w)#iy and rk D is
calculated at (wy, tip).

Remarks. Each of the above normals forms has its importance and we below dis-
cuss them.

1. The normal form (NF1) (resp. (NF2)) is valid around zy € R" (resp. wy € R"),
which may be zero or not. Therefore both forms can be used around any point
(equilibrium or not).

2. It is easy to see that (NF1) (resp. (NF2)) is flat with the top variables ¢ =
(z1,22,23,24) (resp. ¢ = (w1, wy, w3) being minimal flat outputs of differen-
tial weight n +m + 1.

3. It is clear that (NF1) becomes locally static feedback linearizable after a one-
fold prolongation of ii;, which is the to-be-prolonged control. Moreover, if we
replace iy by 11 = B(z)#i1, with B(z) # 0, and we prolong i, instead of 7y, the
prolonged system is also locally static feedback linearizable.
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4. The normal forms apply to all cases k > 1 or k = 0, independently of the value
of cork (D* C [DK, DF)).

5. Notice that if p = m, then the length of all nonlinear chains of (NF1) is at least
k 4 2; it r = 1, then only one chain of (NF2) (given by wy) is linear.

6. The nonivolutive distribution D¥ is easier to be analyzed with the help of (NF2),
since the integer k appears explicitly.

7. Itis clear from (NF1) (and from (NF2) as well) that in the case k = 0 (and only

in that case!), the precompensator creates singularities in the control space (de-

pending on state). Indeed, the controls il satisfying rk a(jpgafl—b;i)ﬂ(zo, i) <

)

m — r are singular for (NF1) (we have the same condition for (NF2) with
(z§3+1,zi4+1) replaced by wy). An invariant description of that set of singular

controls is given by Usiyg-

8. The minimal x-flat outputs and the normal forms (NF1) (resp. (NF2)) are
compatible: if ¢ is a minimal x-flat output at xp, then there exists an in-
vertible static feedback transformation bringing the system X into (NF1) with
¢ = (z1,22,23,24) (resp. into (NF2) with ¢ = (wy, wp, w3)).

2.5 Calculating flat outputs

The goal of this section is to answer the question whether a given m-tuple of smooth
functions forms a minimal x-flat output.

Recall that if k = 0, we can construct the following sequence of inclusions of
involutive distributions:

HOcH - cHT  C HP = TX,

where HY is an involutive corank one subdistribution of D°, ’ghe distrjbution ?—[1 is
defined by H! = G! + [f, H?], with G = DO + [D?, DY), and H'™! = H' + [f, H'], for
1 <i <p—1,and p is the smallest integer such that H’ = TX.

If k > 1, according to Proposition 2.7.2 (in Section 2.7 below), we can construct as
for the case k = 0, the following sequence of inclusions of involutive distributions:

HOCch-"CHkC~'~CHP_1CHp:TX,

where HO is the involutive corank one subdistribution of D° associated to HF and
Hi = Di-1 4 ad}H, for 1 <i <k —1 (see Proposition 2.7.2 for details). Fori > 2, we

actually have H' = H'~! + [f, H'~!]. We will denote by r; the corank of the inclusion
HI=1 C H!, fori > 0. We clearly have m > r; > 1y > -+ > rg > 1.

We can now state our result describing all minimal x-flat outputs of differential
weight n + m + 1. The following proposition answers the question whether a given
m-tuple of smooth functions (@1, -, @r,, ¥y, 41, - - , Pm) forms a minimal x-flat out-
put and holds for both cases k = 0 and k > 1. If ry = m, then in the m-tuple

(@1, @ri, Pri+1,7 -+, Pm) the components §; are missing.
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Proposition 2.5.1. Consider the control system ¥, given by (2.2), that is flat at
xo (at (xo,u0), if k = 0), of differential weight n + m + 1.  Then a m-tuplet
(@1, @y Yri41, -+, Ym) of smooth functions defined on a neighborhood of xg is a min-
imal x-flat output at xq if and only if (after permuting them, if necessary):

(FO1) doy, i1, -, d¢Pr,, L Hi,for 0<i<p—1,with ror1 =0;

(FO2) dL(pEji) and di; are independent at xo, where rj 1 +1 < i <r,0<j <I-1,
1<I<pnrn+l1<j<m

2.6 Examples

2.6.1 Quadrotor helicopter

A quadrotor is a four rotor helicopter. Assume that a body frame is fixed at the cen-
ter of gravity of the quadrotor, with the z-axis pointing up-wards. The body frame
is related to the inertial frame by a position vector (x,y, z) and 3 angles (6, ¢, ¢) rep-
resenting pitch, roll and yaw, respectively. The equations of motion are given by the
following control system (see [1, 3]):

(

xl = X2

Xp = uy(cos¢@sinbcosy + sin@siny)

vio= 2

Y2 = up(singsinfcosyp — cos @sinip)
ZQH Z1 = Zp

Zy = —g+uj(cos@cosi)

9 = Ur

p = u3

¢ = Us

The control u; represents the total thrust on the body in the z-axis, uy and u3
are the pitch and roll inputs and uy is the yawing moment. The quadrotor heli-
copter has been shown to be flat, with (x1,y1,z1, ¢) a flat output (see [3]). The
system is not static feedback linearizable, but it becomes static feedback lineariz-
able after a one fold prolongation. To illustrate our results, fix o € X such that
(cos 6 cos P cos ¢(cos psinbcosyp + singsiny))(&o) # 0. Applying the invertible
feedback transformation

il1 = u1(cos ¢ sinf cos P + sin @ sin )
Ui =u;, 2<i<4,

we get:
(41 = x 1 = Y2
x2 — 1’71 y:z — ﬁla(eﬂljz?)
- 0 = i
XQH . . _
Z1 = Zp @ = Uy
Z = —g+mb6,9,¢)
Y = i3
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where
__ sing@sin®cos p—cos @ sin i d h— COS @ cOs P
a= cos ¢ sin 6 cos P+sin ¢ sin ¢ an ~ cos ¢sinfcos P+sin@siny*
The distribution

n{L g9 1p 2 9 9 9
"= spa o oy, oz 967 9y’ 3¢

is not involutive. Indeed, the vector fields g;, 1 < i < 4, [¢1, 2] and [g1, g3] are
independent at &y (provided that cosf cos g cos ¢y # 0, which is verified according
to our assumption), thus we obtain

0 9 9 9 J 0
G =D+ [2°, 2] = span {5, -, > 0, 2 0y

Here k = 0 and cork (D° C [DY, D)) = 2, consequently we are in the case of Theo-
rem 2.3.2. It is immediate to identify the unique corank one involutive subdistribu-
tion of DY, that is H = span {aa—g, %, %}.

We have #' = G' + [f, H?] = G' (since [f, gi] = 0, for 2 < i < 4), which is clearly
involutive, and 7—[2 = TX. The system ZQH satisfies all conditions of Theorem 2.3.2,
hence the corresponding prolongation given by

X1 = X vi = Y

Y o= i ya = ma(6,9,9)
285,0,0):< 0‘71 = U 9 = 0

Z1 = 2Zp ¢ = U4

Z = —g+mb0,9,¢)

(¥ = 0

where v; = ii;, for 2 < i < 4, is locally static feedback linearizable. Indeed, apply-
ing the following change of coordinates § = i1a(6,, ¢) and = —g + 1b(6, ¥, @)
(which is valid in a neighborhood of ¢y and for 71y # 0) and a suitable feedback
transformation, we get

(X1 = X2 1 = W2
Xo = w ]Zz = 0
5(1000) . w =70 0 = 0
oH 3\ . .
21 = 22 P = U4

2= ¢

\ ¢ = 03

which is the Brunovsky canonical form with (x1,y1,z1, ¢) playing the role of the top
variables. From this, it is obvious that (x1,y1, 21, ¢) is a minimal flat output, i.e. of
differential weight n +m 41 = 14.
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2.6.2 Polymerization reactor

The control system that we consider in this example has two-inputs. Recall that, ac-
cording to the statement made at the end of the Section 2.3, Theorem 2.3.4 covers also
the case m = 2, but only if [D¥~1, D¥| ¢ DF (which is the case for the polymerization
reactor), where DF is the first noninvolutive distribution. That is illustrated by the
following example which has been also treated in [45]. In that paper, the involutive
subdistribution ¥, that plays a crucial role in our analyses, was defined by another
method.

Consider the reactor (see [36,60]):

(

T

C;; _ )
i —kcl( )CC+ U~ ~iis (1 + €?H_— ﬁmcm)%
] s C
ZPR s = U2 ‘5715 ‘L”ns (1 €y+1\/lmcm) =

= —MmRm(Cm/ Cl/ CS/ T) (1 +€y+A£IlmCm)%
- Q(Cmr Ci/ Cs, H, T) + DélT]'
L ] — f6(T/ ’T]‘)+IX4M1

where 11, u; are the control inputs and Cyym,, Cii., Csi, Comg, M, €, T, V, a1, ay are
constant positive physical parameters. The functions R, k;, 6 and fs are not well-
known and can be considered arbitrary: they derive from experimental data and
semi-empirical considerations and involve kinetic laws, heat transfer coefficients and
reaction enthalpies.

S == OO0

The system has been proved to be flat [36, 60], see also [44]. Below we will show
how our results apply to it. After applying the change of coordinates

Cn=pn+ MmC
G =G-gc
~ ) = Ci Ciis s Ciis Csmg
C = —k(T)Ci — (1+ &) (3 — gs%) — Tt
El = %(Mmcmms -1+ é)ﬂ - Mmcm)/
T =T
'Tj - G(le Cil CS/ ]’l/ T) + 0(1’1-']‘
and a suitable feedback transformation, we obtain:
éi = Cs Cm - ,ﬂ
i“PR . CS 121 ]’E - ?’(le Ci/ CS/ ﬂ/ T)
T =T
o=

where b is a smooth function depending explicitly on T.

If (a%?é , g%’;) # (0,0), then the distribution D! = span{f 3¢ T ac ac ay aT , 2}

is noninvolutive and cork (D! C [D!, D']) = 1. It follows, see Proposition 2.3. 2(111)
that an involutive subdistribution of corank one in D! cannot be unique. Let us sup-
pose that 2 acz # 0. Therefore, [D?, D] ¢ D'. Consequently, we are in the case of
Theorem 2.3.4, with m = 2.
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The characteristic distribution of D! is:
] 9%b  9%b

?
c' = (o)
Span{aT 3T~ a1aC, ac?) ac,)

and satisfies the conditions (C1) and (C2). Indeed, rkC! = 2 ans rk (C! N DY) = 1.
The corank one subdistribution

o d

1 1 0
:C D — =5 <=7 <m
H + span {acS T, 5T

}

is involutive. We have

3 9 9 9
2 _ 4.1 _ ° ° 9
H=H [ = Span{ac "G, 9T, aT’ o

involutive and H® = TX. The system ¥.pr satisfies all conditions of Theorem 2.3.4,
hence the corresponding prolongation given by ily = y, y = vy, and i, = vy is lo-
cally static feedback linearizable. Indeed, all associated distributions D;, for i > 0,

associated to the prolongation 21(311’20), are involutive, of constant rank and rk D?, =7.

Therefore, the prolonged system can be brought into Brunovsky canonical form with
Cm, C; playing the role of top variables (and thus of minimal flat outputs, of differen-
tial weight n + 3).

2.7 Proofs

2.7.1 Notations and Useful results

Consider a control system of the form

2ok = f0)+ L uig) = F() + g Zuh

where the change of notation is to distinguish the first control (respectively the
first vector field g;) from the remaining controls u; (respectively remaining vector

fields g;), for 2 < i < m. By % (L00) we will denote the system 2. with one-fold
prolongation, that is

(10,0 . { o= f(x)+yigi(x) + L, viki(x)
o= u

with y; = u; and v; = uy, for 2 < i < m. Throughout this section,

1 d
=) (fi +v181) FP
i=1 i
stands for the drift and
G—i H-—ih J for2 <j<m,
! A 1 9x;” J
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denote the control vector fields of the prolonged system.

To (100 we associate the distributions Dg = span{Gy, Hy,---Hy} and
D;H = D; + [F, D;], for i > 0, the subindex p referring to the prolonged system
2(1’0’...,0)'

In our proofs we will need the two following technical results. Consider a control
system %, given by (2.2), and let D* be the first noninvolutive distribution.

Proposition 2.7.1. Assume that X is dynamically linearizable via invertible one-fold pro-
longation. Ifk > 1, then rk D¥ — rk DF=1 > 2,

Proof. Assume rk D¥ — rk D¥=1 = 1 and let I be the smallest integer such that
kD! — kD=1 = 1. Ttis clear that 1 < I < k. Since X is dynamically lin-
earizable via invertible one-fold prolongation, there exists an invertible static feed-
back transformation, u(x) = a(x) + B(x)i, bringing ¥ into the form ¥ : % =
f(x) + 181 (x) + X1, d;h;(x), such that the prolongation

$(10,-0) . { o= fx) +yigi(x) + I, vili(x)
V1= 0
with y; = #; and v; = 7, for 2 < i < m, is locally static feedback linearizable. For

simplicity of notation, we will drop the tildes, but we will keep distinguishing g;
from h; (which could also be denoted g;) whose controls are not preintegrated.

Since L1 0) is locally static feedback linearizable, for any i > 0 the distri-
, Y y
butions D), are involutive, of constant rank, and there exists an integer p such that

rkDf, =n-+ 1. We have

Dg = span{ail,h]-, 2 <j<m},
'D;l? = span{m,gl,h]’,adfhj -I-yl[gl,h]‘], 2<;< m}

Since k > 1, the distribution D° = span { g1,hj,2 <j< m} is involutive, thus
[gl,h]-] e DY, for2 < j < m,and D}? = span{a%,gl,hj, adshj, 2 < j < m}. It is easy
to prove (by an induction argument) that, for 1 <i </,

D;, = span{a%fglz T ,ad}_lgl,h]’, o ’adj‘hf' 2<j<mj.

We have D=1 = span{g¢q,--- Jadl ! 1, hi, - - cadi ", 2 < i < m) and by the
P 8 811 ARG ] y
definition of [ either ad}hj e D71 forall2 < j<m,ie., ad;gl ¢ D=1 or there exists

an integer 2 < s < m such that ad;hs ¢ D1,
In the first case:

/ a ;
Dy, = span {ayl} + DI, forj > 1,

The involutivity of the distribution D), associated to the prolonged system, implies
that of D/~1. For j = k + 1, it contradicts the fact that D is noninvolutive.
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In the second case, there exists an integer 2 < s < m such that ad;hs ¢ D'~1. Since
kD! = kD=1 4+ 1, we deduce that D! = span{g1,- - - ,ad;_lgl, h]-, . ,ad;_lhj,
ad;hs, 2 < j < m}. Moreover, for 2(1’0’“"0), we have

. J .
D) = span {— 1} + D/, forj > 1,
14 p {ayl} ]

and the involutivity of Dj implies that of D/. For j = k, it follows that DX is involutive,
y p INP ]

which contradicts the assumption of noninvolutivity of Dk. Thus I, if it exists, satisfies
| >k+1and rkDf — kD1 > 2.

Proposition 2.7.2. Assume k > 1 and suppose that D contains an involutive subdistribu-
tion H*, of corank one.

(i) If cork (DF C [DX, D)) > 2, then HF satisfies D=1 < HE.

(ii) If HF satisfies D=1 < HEK, then there exists a distribution H, uniguely associated
quely

to H*, such that H c DO, of corank one, and HEk = pk-1 4 adi‘,?—[. Moreover, all
distributions H' = D'~! + ad}?—[,for 0 <i<k—1, where D' is empty and H® =

H, are involutive.

Remark. Notice that for 1 <i < k — 1, we actually have HF = Hi+ | f,Hi] and
if we denote by r; the corank of the inclusion HI=1 < H!, fori > 0, we clearly have
mzry 21> 2"

Proof of (i). Since cork (DF C [DF, D¥]) > 2, according to Proposition 2.3.2, if the
distribution DF contains an involutive subdistribution Hk, of corank one, then HE is
unique. Using Jacobi identity, it is easy to show that D¥=2 C H*. Suppose DF~! ¢
HE, i.e., there exists a vector field v € D¥1, of the form v = Y aiadi‘flgi mod DF2,
satisfying

DF = H¥ 4 span {v},
where «; are smooth functions, not vanishing simultaneously and such that there

exists an integer i verifying a; # 0 and adi‘c_l gi & DF2. The vector field v can also

be written as v = adi‘,_l( " a;g;) mod DF2 and we put ¢ = Y, w;gi, e, v =

ad?‘l gcmod Dk—2_ Therefore,

DF = 1* 4 span {adﬁ‘f—lgc}.

We can always assume, without restriction of generality, that a; is nonzero and
ad?‘lgl ¢ DF=2 and since g, = Y, a;g;, we clearly have D° = span {¢1, 82, -+ , gm}
= span{gc, <2, - ,gm}- By abuse of notation, we will write ¢; instead of g, i.e.,

D* = ¥ + span {ad?‘lgl}.
From this, we deduce that the involutive subdistribution #* is given by

H* = span{g1,--- ,adt?g1,adfg1, gj, - -+ adg), 2 < j < m}.
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Thus, the new directions, completing Dk to 51{, where 51{ is the involutive closure of
Dk are obtained with

[ad?gi, ad;‘flgl]
for some i such that 1 < i < m, and since cork (D* C [D*, DX]) > 2, there are at least
two integers i satisfying this property. Suppose

ladsgs, ady 1] & D,

where s # 1 (according to the above remark, such integer s always exists). Applying
Jacobi identity, we obtain

ladkgs, ady 1] = [[f, ad} " gs], adi g1] = [[f, ady ' 1], ad~ o) + [, [ad} " g1, ad' " g]]
[adiﬁgl,adi‘, lgs] mod DF

and since the vector fields ads‘fgl and ad;‘fl gs belong to H¥, which is involutive,
[ad?gl, d;‘( log] € HE. 1t follows immediately that [adX 8s.0 dk 1¢1] € D¥, which con-

tradicts our assumption. Therefore, the inclusion D=1 Hk holds.

Proof of (ii). Let us first show the existence of the distribution H.

Denote cork (D¥~! € D¥) = r and suppose that the vector fields g; € DY, for
1 <1 <r,satisfy
DF = DF1 4 span {adﬁgi, 1<i<r}.

Thus there exist smooth functions oc;: such that

adfg] Zoc adfgz mod D1,
forr+1 <j < m. It follows

adf Zoc]gl = 0mod D" 1,

Denote hj = 8j— 11 ]gl, for r+1 < j < m. We clearly have DY =

span{g1, -, r yy1, -+ )}, with h; such that adfchj e D1 forr4+1< j<m.

Since DF1 ¢ H¥ and HF C DF, of corank one, there exist smooth functions A;'.,
for1 <i,j <r,such that the r X r-matrix A = (/\;) is invertible and the distributions
H¥ and DF verify

r .
Hk=DF1 ¢ span{) _ A}adiﬁgi, 2<j<r},
i=1

r .
DF = H*! span{)_ /\lladjigi}.

i=1
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Denote §; = Y/_; Aig; and hi =Y Aégi, for2 <j<r. Weput
H = span{h]-, 2<j<m},
which is clearly of corank one in DO = span {J1, h]', 2 < j < m}, and satisfies

Hk = D1 adﬁm.

We will prove next the involutivity of all distributions Hi for0 < i < k—1.
Assume that the distribution #*~! given by

M = D2 4 adl 1 = D2 4 span {ad)y 'y, 2 < j < m}

is not involutive. Since the inclusion k=1  D¥-1is of corank one and D¥~! is invo-
lutive, it follows H = D*~1. Moreover, conditions D¥2 ¢ #¥~1 and D*~2 involu-
tive imply that the new direction completing H*~! to its involutive closure is given

by a vector field of the form [ad}hi,ad;ﬁ_lhj] or of the form [ad}gl,adﬁ‘,_lhj], where

2<i,j<mand0 <[ <k—1,and is necessarily collinear with adff_l g1 mod HET,
Let us suppose that there exists two integers 2 < 1i,j < m such that

[ad}h,-,adfflh]’] ¢ H*1. The same reasoning applies if [ad}gl,ad?lh]’] g HL

Hence, there exists a non zero smooth function « such that

ladch;, ads™'hj] = aady ' gy mod H*

From this, applying Jacobi identity and the involutivity of ¥, it follows

[ad!

Yhi,adkhy) = [[adyhy, (f, ady " h]) = [f, [ad}hy, ad b)) — [adhy, adl i)

f f f f f f
=f, ocadi;*lgl] mod H¥

= txad?g] mod HE.

On the other hand, [ad;hi,adﬁhj] e Mk and consequently adi‘cg] e 1k, which con-

tradicts our assumption, otherwise D*¥ = H* and D* would be involutive. There-
fore, .Hk_l is involutive. Following the same line, the involutivity of H' implies that
of Hi"Y for1 <i<k-—1.

The following result is of independent interest and will be used to obtain the nor-
mal form (NF2), so we will give its proof in Section 2.7.5, where we show Proposi-
tion 2.4.1.

Proposition 2.7.3. Assume that % is dynamically linearizable via invertible one-fold pro-

longation. If D' = H**1 and H<1 # TX, where D" is the involutive closure of DX and
H 1 is defined by item (A2) of Theorem 2.3.1 (resp. by item (A2)' of Theorem 2.3.2, if
k = 0), then the inclusion H¥1  HK+1 4 DK+1is of corank one.
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2.7.2 Proof of Theorem 2.3.1

Necessity. Let us consider a flat control system ¥ : x = f(x) + Y, u;9;(x), of dif-
ferential weight n + m + 1. According to Proposition 2.3.1, there exists an invert-
ible feedback transformation u = a(x) + B(x)il, bringing £ into the form ¥ : % =
f(x) + 1181 (x) + X1 d;h;(x), such that the prolongation

$(1,0,+4,0) . { ¥ o= fx)+ngix) + Ty vili(x)
yl = U1,
with y; = #; and v; = il;, for 2 < j < m, is locally static feedback linearizable. For

simplicity of notation, we will drop the tildes, we will keep distinguishing g1 from £;
(which could also be denoted gj, 2 < j < m) whose controls are not preintegrated.

Since X(10,.0) ig locally static feedback linearizable, D; are involutive, of constant
rank, for any i > 0, and there exists an integer p such that rk DZ = n+ 1. We have

Dg = span{%,h]-,Z <j<m},
'D;] = span{a%,gl,hj,adfhj +y1[g1,hj], 2< ] < m}

Since k > 1, the distribution DY = span {gl,hj, 2 < j < m} is involutive, thus
(g1, h]-] € DY and hence D%, = span {a;;l,gl,hj,adfhj,Z < j < m}.Itis easy to prove
(by an induction argument) that, for 1 <i <k,

i 0 i—1 ] i
D, = span{a—yl,gl,- ad gy by, adihy, 2 < j < mj.
Define

HE = span{gy, - ,adi " gy, hy, - adfhy, 2 < j < m}.

Since the intersection of involutive distributions is an involutive distribution,
HE = D; NTX = span{g1,--- ,ad}_lgl,hj, e ,ad}hj, 2 < j < m} is involutive, for
1 < i < k. We deduce that HF is involutive. It is immediate that D1 ¢ Hk ¢ Dk,
where the second inclusion is of corank one, otherwise HK = DF and DF would be
involutive or #* = D1 and rk D* — rk D¥=1 = 1, which contradicts our hypothesis.
Recall that H' = HI~1 + [f, H'"1], for i > k + 1. We have

d d
DM — gpan {—} + H* + [f, HK] = span {=—} + H/*!
£ = span (57 + MY [f, 1Y) = span (57
and by an induction argument
. Y .
k+i — k+i >
D), span {—ayl} +HT, P> 2

Consequently, the involutivity of D’;ﬁi implies that of H**i, for i > 1. Moreover,
rk Df, = n+ 1, proving that tk H = n,i.e., Hf = TX.

Sufficiency. Consider a control system satisfying (A1) — (A3) and let H° =
span {h;,2 < j < m} be the distribution defined by Proposition 2.7.2(ii). This sys-
tem is static feedback equivalent to X : ¥ = f(x) 4+ u191(x) + ¥/", u;h;(x). By the
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same proposition, the involutivity of H! = D=1 + adj,?—[ follows for0 <i <k —1.1It
is immediate to see that the prolongation

5(1,0,++,0) . { o= f(x) +ygi(x) + L, vihi(x)
Ll = n

with y; = u; and v = uj, for 2 < j < m, is locally static feedback linearizable.

(1,0,---,0)

Indeed, the linearizability distributions Dl associated to X , are of the form

D; = span{a%} +H, i>0,

and the involutivity of ' implies that of D;,, because H' does not depend on v;.

Moreover, tk HP = n, thus rk Df, = n+1and (100 jg locally static feedback
linearizable. By Proposition 2.3.1, the system X is flat of differential weight n 4 m + 1.

2.7.3 Proof of Theorem 2.3.2

Necessity. Let us consider a flat control system ¥ : x = f(x) + Y u;g;(x), of dif-
ferential weight n 4+ m + 1. According to Proposition 2.3.1, there exists an invert-
ible feedback transformation u = a(x) + B(x)il, bringing ¥ into the form £ : % =
f(x) + 11§61 (x) + XM, i1;h;(x), such that the prolongation

$(10,.0) , { o= fx) +ygix) + T, viki(x)
yl = 01,

with y; = i; and v = 1, for 2 < j < m, is locally static feedback linearizable,
around (xg, o). For simplicity of notation, we will drop the tildes, we will keep
distinguishing g7 from h]- (which could also be denoted Sjs 2 < j < m)whose controls
are not preintegrated.

Since %.(10-0) jg locally static feedback linearizable, D;, is involutive, of constant
rank, for any i > 0, and there exists an integer p such that rk D§ =n+ 1. We have

Dg = span{aiyl,hj, 2<j<m}

involutive. It follows immediately that
H? = span {hj, 2 < j < m}

is involutive (as intersection of involutive distributions H° = Dg N TX) and of corank
one in D°. This shows (A1)’. The distribution

d .
D; = span{a—yl,gl,hj, adsh; +y1[g1,hj], 2 < j < m}
is involutive and we deduce that [g1, 1| € D}? and ad¢h; € Dllj. Thus

0 . d
Drl, = span{a—yl,gl,h]', adghj, [g1, 1], 2 < j<m} = span{a—yl} + G+ [f, 1Y,
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where G! = D + [DY, DY].

The involutivity of D}g implies that of H! = G! + [f, H°], because H'! = D; NTX
is the intersection of two involutive distributions. Moreover, D; has constant rank
around (xo, y19), it follows that

rk (span {g1, hj, ad¢hj + y10[g1, hj], 2 < j < m})(x0) = rk H(xp).

Recall that k = 0, i.e., D’ = span {81,hj, 2 < j < m} is noninvolutive and that the
rank of the right hand side could a priori drop at yj9. From this, it is immediate
that ug & Using(x0), where Ugine(xo0) = {uo € R™ : rk(span{g1,hj, [f + u1081 +
YU twighi, ], 2 < j < m}) (x) < kH!(xo)}, implying (RC).

The rest of the proof follows the same line as that of Theorem 2.3.1.
Sufficiency. Consider a control system X : X = f(x) + 1191 (x) + Y15 u;hi(x) sat-

isfying (A1)’ — (A3)’ and (RC), where the corank one involutive subdistribution is
given by H" = span {h;,2 <j < m}. Itis immediate to see that the prolongation

5(1,0,-,0) . { x = f(x)+yigi(x) + i, vihi(x)
L = n

withy; = uy and v; = up, for 2 <i < m, is locally static feedback linearizable, around
(x(li Yo). Indeed, we have Dg = span {%, hi, 2 <j< m}, which is clearly involutive,
an

0 .
’D; = span{a—]h,gl,hj,adfhj —I—yl[gl,h]‘], 2 S] < m}
Since ug & Using(x0), we have
m
rk (span {g1, hj, [f +u181 + Z uihi, hjl,2 < j <m})(xo,up) = rk H(xq),

=2

where H! = G + [f, H"]. Moreover,

m
span{g1, hj, [f + w1g1 + Y wihi, h],2 < j <m}) C H.
=2

1=

This yields
m
span {g1, hj, [f +u1g1 + Y uihi, hj],2 < j <m} =H!,
i=2

around (xg, 1), and the involutivity of H? = span {hj, 2 < j < m} implies

H! = span {81, hj,adch; +uq[g1, hj],2 < j < m},

around (xo, up), and thus

d
1_ J 1
D, —span{ayl}—l— H.
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It follows, by induction, that all linearizability distributions D! associated to
¥ (10, '0), are of the form
D; = span{%} +H, i > 1.
and the involutivity of H' implies that of D;,. Moreover, tk H? = n, thus rk Dg =

n+ 1 and Z(190) is locally static feedback linearizable. By Proposition 2.3.1, the
system X is flat of differential weight n 4+ m + 1.

2.7.4 Proof of Theorem 2.3.4

Before giving the proof of Theorem 2.3.4, notice that under the assumption D' in-
volutive, for all 0 < i < k — 1, we have D¥ 2 < Ck, where C* is the characteristic
distribution of D¥. We will use that property in our proof.

Necessity. Let us consider a flat control system X : X = f(x) 4+ Y1 u;g;(x), of
differential weight n + m + 1, and assume cork (D* C [D¥, D¥]) = 1and [DF-1, DX ¢
DF. We clearly have k > 1, otherwise the condition [D*~1,D¥] ¢ D would not
have any sens. According to Proposition 2.3.1, there exists an invertible feedback
transformation u = a(x) + B(x)il, bringing ¥ into the form & : % = f(x) + i11$1(x) +
Y7, #;h;(x), such that the prolongation

$(1,0,++,0) . { o= flx)+ngi(x) + T, oili(x)
o= o,

with y1 = #; and v; = 7, for 2 < j < m, is locally static feedback linearizable,
around (xg, o). For simplicity of notation, we will drop the tildes, we will keep
distinguishing g from /; (which could also be denoted g;, 2 < j < m) whose controls
are not preintegrated.

Since X(10:.0) jg locally static feedback linearizable, D;ﬂ is involutive, of constant
rank, for any i > 0, and there exists an integer p such that rk Dg =n+1.Sincek > 1,
the distribution D° = span {gy,hj, 2 < j < m} is involutive, thus [g1, ;] € D and
hence D,lj = span {%181, hj, adfh]-,2 <j< m}. It is easy to prove (by an induction
argument) that, for 1 <i <k,

D; _ Span{aiyl'gl' . ,adjflgl,hj, ce ,ad}h]', 2 <j<m}.

~Since the intersection of involutive distributions is an involutive distribution,
’D;, NTM = span{gi,--- ,adlf_lgl,hj, e ,ad}h]-, 2 < j < m} is involutive, for

1 <i < k. We deduce that the distribution
E =span{gqy,--- ,adi‘(—lgl,hj,~- ,adiihj, 2<j<m}

is involutive. Next we will prove that ¥ = H* = Ck + D*1, where C* is the charac-
teristic distribution of DF.
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It is immediate that D¥~1 ¢ £ ¢ D, where the second inclusion is of corank one,
otherwise & = D and DF would be involutive, which contradicts our hypotheses.

Applying the Jacobi identity, it can be proved that [a d;‘f 'hj adﬁigl] € DF, for all
2 < j < m, and since &k is involutive, we immediately have [a d;‘r 1h]-, Dk] e Dk,
for 2 < j < m. Thus ud?‘lh]- e Ck forall 2 < j < m, where Ck is the char-
acteristic distribution of D¥. Moreover, since D¥ = &F + span {adfcgﬂ» is nonin-
volutive and [DF~1,D¥] ¢ Dk, we deduce that the new direction completing D*
to D' is given by [a di‘, ! gl,adj‘fgl] ¢ DF. Hence there exists smooth functions o
such that [adﬁih ad’}gl] = [ad;‘( 1g1,ad’j£g1] mod Dk, for 2 < j < m. It follows
[adfh - zx]adj‘, <1, adsigl] = 0mod DF. It is easy to show that

C* = DF2 4 span {ad;{(_lhj/ad;{rh]‘ adiﬁ lg1,2<j<m}

which yields H¥ = C¥ + D1 = span{gy,--- ,ad;‘flgl,hj, e ,adffhjZ <j<m},
rkCF = rk D¥ — 2 and rk (Ck N DF1) = rk DF-1 — 1.
The rest of the proof follows the same line as that of Theorem 2.3.1.

Sufficiency. Consider a control system X : ¥ = f(x) + Y1 ; u;g;(x) satisfying (C1)-
(C4). We start our proof with the observation that the conditions (C1)-(C2) enable us
to define a distribution # such that # C D, of corank one, and #* = DF-1 + ad??—[

To this aim, let us denote by r the corank of D¥=2 C D¥~1. Assume that the vector
tields g; € DO for1<i<r, satisfy

Dk-1 = pk-2 + span {adk 1g1, 1<i<r}.

Using similar arguments to those used in the proof of Proposition 2.7.2(ii), we
can defined m — r vector fields hj, for r+1 < j < m, such that DY =

span{g1, -, ¢r Hyy1, -+, hw} and adi‘[_lhj eDF2 forr+1< j < m.
It is clear that D¥—2  C¥ and since rk (CK N D*1) = rk D¥1 — 1, we have
CknDF1 = DF2 1 span {c, 1<j<r—1},

where the vector fields cj are of the form
2 )\ladk lo; = adk 1 2 gl ) mod D*2,

with A;'. smooth functions such that the matrix A = (/\i) forl<i<rand1l <j<

r —1,is of full rank. Denote 1,1 = Y;_4 Al i8ir for1 <j <r—1,and suppose, without
loss of generality, that they are independent from g.

Since ad?‘lhj e Ck for2 < j < m, we have [adj‘f_lhj, Dk] C DF. From this, it can

be shown, applying the Jacobi identity, that [ad;‘fl gl,adi‘[hj] € Dk for2 <j<m.
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Therefore, the new direction completing D to D' = Dk [D¥=1,DK] is given
by [ad?‘l gl,adi‘cgl] and there exist smooth functions «; such that [ad thi,ad fgl] =

wila d;ﬁ 1g1,ad§g1] mod D, for 2 < j < m. This gives [adﬁih]’ ad? gl,adi‘[gl] =0
mod DF and it can be easily verified that the characteristic distribution C* is given by

C* = D2 4 span {ad?‘lhj, adi‘ch]' adk

It follows immediately
HE = DF1 4 span {ad?hj, 2<j<m}=D14 adﬂi?—l,
where the corank one subdistribution H of D? is given by
H = span{hj, 2<j<m}.

The involutivity of ¥ implies that of all distributions H' = D=1 + ad}H for0 <i <

k — 1, where D! is empty and H? = H. The proof of this statement follows by the
same method as that used in the proof of Proposition 2.7.2(ii).

We are now in position to show that the control system X : x = f(x) + )" ; u;gi(x)
is dynamically linearizable via one-fold prolongation. Transform Y. via an invertible
static feedback into the form £ : & = f(x) + #11$1(x) + X", #;h;(x), where the vec-
tor fields h; are defined as above. Applying the same arguments as in the proof of
Theorem 2.3.1, it is immediate to see that the prolongation

$.(1,0,.,0) . { o= f(x) +ngi(x) + Ly oihi(x)
yl = 01,

with y; = #; and v; = i}, for 2 < j < m, is locally static feedback linearizable.

2.7.5 Proof of Proposition 2.4.1

Proposition 2.7.3 is used to obtain the normal form (NF2), so we will start with its
proof.

Proof of Proposition 2.7.3. We give the proof of Proposition 2.7.3 only for k > 1.
If k = 0, then the same arguments apply. Since X is dynamically linearizable via
invertible one-fold prolongation, it satifies conditions (A1) — (A3) of Theorem 2.3.1.

We will show that in the case D' = H**1 and H*+!1 # TX, condition (A3) implies
that the inclusion #**1 C H*+1 4 D¥1 s of corank one. Since there exists an integer
o > k+ 2 such that #° = TX and H**! # TX, we clearly have H 1 C #k+2,

D = H*+1 then it follows, from the definition of ¥, that
D' = span {g1, - - ,adffgl,hj, e ,ad;‘flhj,Z <j<m}
with Hk*1 £ TX and H = span {hj,2 < j < m} defined by Proposition 2.7.2(ii).
Thus the distribution Dk+1 associated to the prolonged system %(1.0-0) js

k+1 _ AR
D, = span{ayl}—l—D .
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Assume also ad?’l g1 € H*+1 if not, the inclusion in question is, indeed, of corank

one. Hence for any vector field & € DX, we have [f, &] € D", By successive application
of the Jacobi identity, it follows immediately that D+ [f, ﬁk] =7

Therefore, for the prolonged system we obtain
Dk2 = span{i} +D [f 5](] — pk+l
p ayl 7 p 4

and we deduce H*! = 7*2, which gives a contradiction.

Proof of Proposition 2.4.1.

We will prove the implications (i) = (ii) = (iii) = (i).

(i) = (ii). Consider an x-flat control system ¥ : x = f(x) + /" ; u;gi(x), of dif-
ferential weight n + m + 1 and let (¢1, -+, ¢») be a minimal flat output, defined
in a neighborhood of xy. It can be shown (see proof of Proposition 2.3.1 in Appen-
dices 2.A) that the system X can be transformed by a change of coordinates and an
invertible static feedback, around z(, into the form

]

21

2] = zb z = 1z
. _ i ] _
Zpi—1 Zoi Fp-1 T Zp
. o~ .J . .
L, = Wi Zp = aj(z) + bj(z)il
] _ ~.
Zp]'-‘rl o M]

forl <i<randr+1<j < m where)/ pi+m—r =mn, (1, ,¢m) =

(z}, -+, zl"), the functions aj and b]- are smooth such that DF is noninvolutive and

satisfying the following condition: rk D(zg, ily) = m — r, where D stands for the
a(aj+ﬁ1bj)
azi)l 1

immediate that we can always normalize a; ou b; to z

Jacobi matrix Dj; = ,forr+1 < j,1 < m. Since rk D(zo, ily) = m —r, itis

)
pi+1°

If k = 0, then there exist integers s and q, where2 < s <mandr+1<g <m,
such that gz # 0,2 < s < 7, 01 5= # 0,if r +1 < s < m. This is the form (NF1),

ps+1
for k = 0.

. ob; .
Let us now consider the case k > 1. We have az_i] =0,for2 <i < r and
pi
ob; oa: )
—1- =0,forr+1 <[ < m. It follows that D;; = i, forr+1 <j,I < m,
azi)ﬁl J azlle

thus rk D is calculated at zp only and equals m — r. Hence we can introduce local
coordinates Zi)j 11 = aj(z) (to simplicity we will drop the tilde) and apply a suitable
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invertible feedback that brings the system into the form

2] = Z 7 = %
5 _ i .J _ ]
Zom1 = Zy o = 7
5 — . y) _ ] . ~
Zp, = W %y =zt bi(z)i
Jj o
ij+1 Z/l]

forl <i<randr+1<j<m with (@1, -, Qm) = (z%,--- 2. Since rk Dk —
rk D=1 > 2 and DF is noninvolutive, a direct computation shows that there exists at
least one integer ¥ +1 < j < m such that pj = k+1,if py > k+1, or at least two
integers r +1 < j < m such that p; > k+1,if p1 <k.

Suppose, without loss of generality, p,1 > pr42 > -+ > pp 2 k+1 >k >
Pp+1 = " 2 Pmy wherer +1 < p < m, (if p = m, the length of all chains 7 is greater
than k 4 2). We next prove that we can always assume that p; > k + 1. Indeed, if
p1 < k, the noninvolutive distribution Dk is given by

Dk:pb¢+wmqaa , J Z:b ,rH1<j<p pi>k+1,2<i<r}

—k azp —k+1 J =r+1 az —k

and since the rank of DF is constant in a neighborhood of z, it follows that there
exists at least one integer r + 1 < s < p such that bs(z9) # 0. We apply the invertible
static feedback transformation v; = ZZS 41 1 bs (z)iy and v; = 4, for 2 < i < m and

i # s, to get

1 1 ) -5 S .j _

2] =2z 2=z, Z§ =z, 7 =12,

1 1.s 1 oo s N | bj

Zoy T ThZp41 TRUL Ep TV Zp =01 Zpy = Zoi+1 T 52 p +1 + Ul

]

S — — .
ZPs-‘rl = Us Zp]‘+1 - U]

for2 <i<r,r+1<j<mwithj # sand (¢1, -, ¢m) = (z%,--- ,21"). The
following change of coordinates

gl =25,1<1<p,

Z =12,2<i<n1<I<p,

7 =z,1<1<p,

ZZerl bls ZSH

7 =, r41<j<mj#s1<1<p,
L;+1 Zp41 Z’—iZst relsjsmj#s

is valid and after applying a suitable invertible static feedback, transforms the system
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into

i _ & z] — 4

Z =z, Z = Z

zi — i 2] —

-1 T P Z/?jfl = A

21 ~ 2] ~] (35

o =0 L = I + b;(2)01
,;] o ~
o1 =Y

forl <i<randr+1<j<m withp; =ps >k+1and (¢1,- -, ¢n) playing the
role of top variables. Hence we can always assume that p; > k + 1. Recall that we
assumed Oy 1 > Opy2 > -+ > Pp >k+1 Zkpr+1 > 2 O
The involutivity of Dl for0 <1 < pm — 2, implies that all functions bj, for
r+1<;< mdependonzi),flfl,zi)‘_l, for2 <i<r,j=landr+1<; < m.
i i
We have

Donl —gpan{ B ..., 2 b ... 8 0 .. 3
azPl azpl —om+2 aZ:ZDi az;’l‘ —om+1 azéj+1 azi)] —om+2
d ) m—1 . ) : .
Zl—+bmm+2]-:r+1b]—azj ,2<i<rr+1<j<m}.
p1—pm+1 p]-—pm+1

Since D1 is involutive, it follows that b,, is a function of Zi,, om? Zi)‘* omt17 for2 <
1 m ] m

i <r,j=1landr+1 < j < m. The only z"-coordinate that can be involved in

the expression of by, is z{'. Moreover, by, is no longer present in the expression of D',

for i > py;. Therefore, the involutivity of D', for p,, < i < k, does not imply any

additional condition on by,.

In the same way, by induction, it can be shown that all functions bs, for r +1 <
s < p, depend on Z;’)ﬁk, Z]p]-—k+1' for2 <i<r,j=1landr+1 <j < m, respectively
for2<i<r,j=1and

i

. = =]
all functions by, for p +1 < t < m, depend on Zpi—pi ZPj_Pt+1’

r+1<j<t

The noninvolutivity of the distribution

DK =span{ & ..., 0 0 .. 90 90 ... 2
] 4 7 ] 7
9zp, azp1—k+1 zp; azprk a7*p]-+1 azpjkarl

9 p ._0 ; ;
- +Z':r+1bfazf k,2§ i<rr+1<j<m}.
Pj—

yields the existence of some integers s, i and j, such thatr +1 <s < p,2 <i <,
j=1lorr+1<j<m,satisfying (%, -a#) # (0,0).
azPi*k aZZJ]-—kH

(ii) = (iii). If k = 0, then (NF1) and (NF2) coincide. We can thus suppose k > 1.
Since pj = k+1,forj=1andr+1 < j < p, there exist integers Wi > 1 such that
pj =pj+k forj=1andr+1 <j < p. We distinguish two cases: k = 1and k > 2.

Let us first assume k = 1. Since 1 < p; < k, for p+1 < | < m, it follows that
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p; = 1. Using the above notations (NF1) is given by

2l =z} 2 =z 2 =z
.1 — 7 . 5 7 Y 7
Ly =0 Zy =1 ys+1 Z) 4o+ bsthy z:l1 =z, + bjily
ys+2 = ils Z =1
where all functions bs, for ¥ +1 < s < m, depend on zp , L}H and zll, for2 <i<r,
]
j=landr+1 §]§pandp+1§l§m.
Since the vector field g1 = -4— + YL, bs % oz, is non zero, there exists smooth

;11+
independent functions s, for r +1 < s < m, depending on z' 0i—17 ]y ., and zl, for
2<i<vj= 1andr—|—1 <j<pandp+1<1 < m, suchthatLgltpS = 0 and
the matrix given by (

) forr+1 < s,q < m, is of full rank, where y; = 0,

forp+1<gqg < m. We introduce new coordinates qu 1= Y qu o = Lfl/Jq, for

r+1<gq < m,wherep; =0, for p+1 < g < m, and apply a suitable invertible static
teedback bringing (NF1) into

1 _ -1 i — s — 8
21 =2 S s B
.1 _ 1 i 55 _
Zﬁ‘l S T R T dS(Z) P
. o i S *"S -
Z =0 Zpp T Ui us+1 ys+2 Z1 5!
Zu+2 = =

all smooth functions ds involve only Zé,-—lf ZL}, " and zll, for2 <i<rj=1and

r+l1<j<pandp+1<I< m,andaresuchthatthematrix(aéds ), forr+1 <
;¢t+1

s,t < p,is of full rank.

i - _9d L_a _9 9 9 _0_ p _ods 9
Since D' = Span{al T /aZ ’azl /a T +1/azjy' /a~llazlzl az}tl +ZS r+1 az1 aZ,,,s

] ]
for2<i<r,r+1<;< pandp—l—l < 1 < m} is noninvolutive, it follows that there
exists,i,jandl,withr+1§j§m,2§i§r,r+1§s§p,j=10rr—|—1<j<m,

0%d 0%d 0%d
such that ( : : 24 ) £ (0,0,0), where ! _ . stands for z}
7Yy 7 +1 1
oz l azﬂﬁl aZ;AJHa ;14 +1 " 0z)0z 1 it it

This is the normal form (NF2) for k = 1.

Let us now suppose k > 2. Using the notations p; = pj +k,forj=1landr +1 <
j < p, we have:

2t =z oz =2 2 =z} =2
(NF1) 1 _ g - ] I .
Zuprk ML 2 = W ys+k 2y k1 T bstht lez = Zp 1 T bihy
Lkl = s Zo+1 = Wi
where pr11 > pr2 2 - 2 pp 2 k+12k>ppg 20 2 pm,forr+1 <p<m.

All functions bs, forr +1 < s < p, depend on Z;) ;4 " and z! for2 <i<r,

o —k+1’
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p—|—1<l<mjzlandr+1<j§pandallfunctionsbt,forp—l—lStgm,
dependonzp —pp ;4]+k ot where2 <i<r,p+1<I1<tj=1and

r+1<j<p.

1 and zp o1

The proof of this case (for which we give only the main ideas) consists in redress-
ing all involutive distributions D', for 0 <i < k—1. To this end, we first eliminate
il; from the equations of z° s+ and sz' by introducing the following change of coor-

dinates (which is clearly valid in a neighborhood of zy):

_ 1 ~l _ S 1
bSZ]/llJrk pl ZPZ blz}l1+k

—LfZ

=S _ S
2tk T Ptk

5S
Zetk+1 = szstrk p +1

forr+1<s <pandp+1 <1 < m. Applying a suitable invertible static feedback
transformation, we get:

1 _ 1 51 _ 5S __ 5 3 _ Sl
Z] =z, 1 =1z, 4 =z 1 =2
1 1 1 35 __ 58 1 9 ) 1
V1+k 1™ Zirk Po=1 7 P Zuerk—1 T Ptk +bszy, %5’1—1 = Zp +bizy, i
J— 51 _ . S T 2 &
H1+k =u ZPi =0 ys—i-k - Z;t5+k+1 Zfljl - Zpl+1
Lkl = s Zo4+1 = Yl

Next we eliminate z%ll  from the equations of 2?45 1k—p and Zi)[_l, by applying a simi-

lar change of coordinates (that we will also denote by 2):

=5 — 55 o 1 ~l o 1
Z;ts+k 1 ys—i-k 1 bszyﬁ—k—l ;)1—1 _Zpl l blzyﬁ-k—l
55 5 _
ZVs+k LfZVs+k 1 Zpl o szpl_l
55 LZ 55 Zl _ L2 5l

Hstk+1 = k-1 o1 = HF%p,—1

forr+1 <s < pand p+1 <[ < m. Then we repeat this process p,, — 3 times
transforming the z° and z'-chains into

S

2 =2 Z =12
55 1 .1 _
ﬂs"‘k Pm"‘l Z]/ls+k_Pn1+2 + bsz}ll‘f'k—pm"‘z Z,pl_Pm+1 - Zpl —Pm +2 + blz]/ll-‘rk Y +2
5S i~ J—
Pls"‘k om+2 Z]’ls+k_Pm+3 01—Pm+2 Zpl —om+3
55 __ 58 2l )
ﬂs‘i’k o Zﬂs+k+1 Z?)I — ZPZ‘H
Zyyke1 =0 Zopt1 T U

with z!-chain and z'-chains remaining unchanged. The function by,, associated to the
_] -] .
z"-chain, depends on zp —om? y ke pmt1 and Z o — o417 for2 <i<r,p+1<I1<m,
] =landr+1<j<p. ltis clear that for the z "-chain, the nonlinearities have been
“pushed” to the last possible level, the top equation being 21" = Z7' + bmzy1 ke p2°

Since the vector field ¢ = —4—2—— + Y7 bs—2—— + Y bj=—2— is
H1+k i s=r+1 az# k41 I=p+1 szl —om+1

non zero, there exists a smooth function ¢, depending on the same variables as by,
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such that Lgi[)m = 0 and alp’” (zo) # 0. By introducing 21" = ¢, 25' = L, -+,

25, = L?’” Py and applymg a suitable feedback transformation, we linearize the

z"M_chain.

By repeating this argument for all z!-chains, for p+1 <1 < m,all distributions D,
for 0 < i < pp, can be redressed. We continue to redress the remaining involutive
distributions D!, for pp +1 < i < k—1, by transforming the z°-chains in a very
similar way (that we will not detail here). Finally, we will get

5

i i

_ -1 _ 55 _ _
2l =zl zh =zh 2 =z zh =12,
S _ S
o =z
Z ds(z)
/'\S A
ZusHl T Apgt2
-1 ¥ i As 53 Al _ sl
Z;1u+k—1 Lk P17 Fpi Furk—1 T Fugtk Z_sz—l = lez
. o S K ! : A
Zn+k T 01 Zo;  TUL Zuik T Fpgtktl lez = Zp4+1
/'\S oA A oA
les-‘rk-‘rl = Us Zpl-‘rl =1

where the functions d; involve only Zi for2 <i<r, p +1<1<m,

-
Zpit 17 2o 1k
j=1landr+1 <j < p,and are such that the matrix given by ( ds ), forr+1 <

}lt+1
s,t < p, is of full rank at zy.

A simple computation shows that the noninvolutivity of D¥ implies the existence
ofsomeintegerss,i,jandl,with2 <i<rr+1<s<p,j=landr+1<j<p,

92d, 92d, 92d 51
+1 < I < m, such that 7 , s # (0,0,0), where 2
P (a k92 1141+1 azy 4192 ;14 +1 azllazllliﬂ) ( ) .

1+1

stands for zy 11

We have obtained (NF2), for k > 2.

(iii) = (ii). Consider a control system X static feedback equivalent to the normal
form (NF2). It is clear that the system is flat, with ¢ = (w1, wy, w3) a minimal flat
output of differential weight n + m + 1.

2.7.6 Proof of Proposition 2.5.1

Before giving the proof of Proposition 2.5.1 we will show that for both cases, k = 0
and k > 1, we can identify an involutive distribution £ in C N H° (where C is the
characteristic distribution of DY) of corank r; — 1 in H°, with r; = cork (H? C #H!),
such that [f £ € Gt =D+ [D°, D). For k > 1, we have C = D, CNH? = H" and
gl

Let us first consider the case k = 0. Recall that we can construct the following
sequence of inclusions of involutive distributions:

HOCcH - cHT CHP = TX,
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where 0 is an involutive corank one subdistribution of D°, H! is defined by H! =
G'+ [f, 1Y, with Gt = DO 4 [DY, DY), and H'™! = H' + [f, H],for1 <i<p—1,
and p is the smallest integer such that H° = TX. We denote by r; the corank of the
inclusion H~1 ¢ H!, fori > 0. We clearly havem >r1 >rp > -+ > 1, > 1.

We will show that we can identify an involutive subdistribution £ in C, the char-
acteristic distribution of DY, of corank r; — 1 in H? and such that [f,£] € G,

Let D° = span {g1,h2,- - ,hm}, where H® = span {hy,-- -, hy}. Assume rk G! =
m+p —1,with p —1 > 2 (this is due to the assumption cork (D° C [D?, D]) > 2). By
permuting hj, 2 < j < m, we can suppose that the vector fields [¢1, /], for2 <i < p,
are independent and satisfy [gq,h;] € D°, for2 <i < p. For1 < j < m — p, there

exist some smooth functions oc;. such that

P
[gl,hpﬂ-] = th}[gl,hi] mod DY.
=2

From this, we deduce

P
g1, 7tp4j — ) aihi] = 0mod DO
i=2

and it is immediate that the vector fields fzpﬂ =hyyj— EZP:?_ (x;hi, for1 <j<m-—p,
are characteristic for DY, i.e., [, P°] C D%, and C = span {/p41,- - -, lu}. We have

C C H" and the corank of this inclusion is p — 1. Let us now assume rk (G + [f,C]) =
m+ p —1+ g, i.e., there are g vector fields of the form [f,c], ¢ € C, independent
modulo G!. Since G' + [f,C] € H! = G + [f,H"] and tk H! = m — 1+ 71, we
obviously have p + g < r; < m. Suppose that the vector fields [g1, 1, 4s], for 1 <'s <
g, are independent and [g1, hHS] Z Gl forl <s< g. There exist smooth functions &;
such that, for1 <1 <m— (p+9),

sl = X L Byl mod G,
implying
o hpqi — iﬁ?%ﬁ] = 0mod G".
-
Thus the vector fields i:lp+q+l = hpigy — 22:1 Bihp+s are in C and verify

[f hpige] € G Put & = span{lhyiqi1,-- , m}. The distribution £ satisfies
[f, €] € GL.

We can always assume, without loss of generality, that HY = span{hy, - -, hy,
by, s hpsgr hpigit - ,hm}, where C = span {hPH, ooy} and € =
span{hy 411, B }. If p+q = m, the distribution £ is simply empty.

Now, we prove that the corank of £ in HOisry — 1, i.e., we necessarily have r; =
p +q. Recall that for flat systems of differential weight n 4+ m + 1, the following
regularity condition should be satisfied:

m
rkspan {g1, hj, [f + u1g1 + Y uihi, hy], 2 < j < m}(xo,up) = rk H' (xp).
i=2
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According to the above assumption and notations, this relation can be written as
rkspan {g1, hj, adch; + u1g[g1, hi], adghs,2 <j<m,2 <i<p<s<p+q}(xo) =m—1+ry.

The rank of the left hand side of this expression is at most m + p — 1 + g and since
p + g < ry, it follows that the above equality holds if and only if r{ = p + 4.

Next we prove that the distribution £ = span{h, 4.1, -, hn} is involutive.
First, observe that, since £ C C and [f,£] € G, we have [f, [l;, h]] = [[f, i, h;] +
[, [f,h]]] =0mod G!, forallp+q+1<i,j<m.

Suppose that £ is not involutive. Hence there exist at least two integers p + g +
1 <1i,j < m such that [hi,hj] ¢ &£. Since £ is contained in C, which is involutive,
it follows that there exist smooth functions «;, for p < I < p + g, not vanishing
simultaneously, such that [4;, hj] =y7 +a a1h; + e, where e € £. Then,

I=p+1
ptyg ptyg .
[f, [l’li, h]” = [f, Z wrhy —|—€] = Z ocladfhl mod G-.
I=p+1 I=p+1

Recall that [f, [, hj]] = 0mod G' and the vector fields adhy 1, - - - ,adshy. 4 are inde-

pendent modulo G!, which contradicts the existence of I such that a; # 0. Therefore,
the distribution £ is indeed involutive.

To summarize, we have the following sequence of inclusions of involutive distri-
butions:
gcCc H cCH C--- C HTICH =TX,
q

p—1 st 1 Tp—1 To

withry =p+4.

Let us new consider the case k > 1. According to Proposition 2.7.2 (in Section 2.7.1
above), we can construct as for the case k = 0, the following sequence of inclusions
of involutive distributions:

HOcH c--cH - cHPFVCH =TX,

where #H' is the involutive corank one subdistribution of DY associated to HF (see
Proposition 2.7.2 for details), H' = D'~! + ad}?—[ and p is the smallest integer such

that Hf = TX. We denote by r; the corank of the inclusion H!~! C H!, fori > 0. We
clearly havem >r1 >rp > --- > 71, > 1.

We show that we can identify an involutive distribution £ in H°, of corank
r1 — 1, such that [f,€] € D°. Let D° = span{gi, hy, -+, hn}, where H° =
span {hy,--- ,hy}. Then H! = span {gl,hj,adfh]-,Z < j < m}. Since cork (H° C
7—[1) =ryand go ¢ HO, we deduce that the vector fields ad fh]-, for2 < j < m,add
r1 — 1 new directions. Assume udfhi ¢ DY, for 2 < i < ry, where all ad fhi, for
2 <i < rq, are independent. It follows that there exist smooth functions «; such that

1 .
adsh, 1 =Y ajadshimod D°,
i=2
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forl <1 <m—ry. We deduce

r .
[f, Byt — Y ajhi] = 0mod D°,
i—2

for1 <1 <m—ry. Weputh, ; =h, . — Y. ,alh; for1 <1 < m—ry, and define
E = span{hy 1, -, hy}. Itis clear that £ is of corank r; — 1 in 1O and satisfies
[f,€] € DO If ry = m, the distribution £ is simply empty.

We can always assume, without loss of generality, that HO = span{hy,---, hy,,
heiv1,-+  h}, with € = span{hy, 11, -+, hy}. Forallry +1 <i,j < m, itis easy to
check (by applying Jacobi identity) that [f, [h;, h;]] € D°.

Let us prove that £ is involutive. Suppose that there exist two integers r; +1 <
i,j < msuch that [h;, hj] = Y,L, ahymod &, with a; smooth functions non vanishing
simultaneously. Then,

1 1
[f, [hi b)) = [f, Y ashymod €] = Y wjad phy mod D°.
[=2 [=2

Since there exists I such that a; # 0, it follows that [f, [, hj]] & D°, which contradicts
the above observation. Therefore, the distribution £ is involutive.

Proof of Proposition 2.5.1

We give the idea of the proof for the case k > 1. If k = 0 similar arguments apply.
Consider a control system X : ¥ = f(x) + Y_/" ; u;gi(x) thatis x-flat at x( of differential
weight n + m + 1. Throughout we will use the notations introduced in Section 2.5.

Necessity. Let (@1, -, @r, Py, 41, -+, ¥m) be a minimal flat output, defined on
a neighborhood X of xg. According to Proposition 2.4.1 and its proof, there exists
a valid local change of coordinates in which the system, after applying a suitable
feedback, takes the form (NF1) on A”, an open and dense subset of X, with ¢; and
p; playing the role of top variables. Moreover, if 7y < m — 1, there exist m — rq linear
chains of length 1 and we can always suppose that the flat outputs corresponding to
these chains are ;, for r; +1 < j < m. We easily deduce that the conditions (FO1)-
(FO2) hold on X”. Since all functions ¢; and Vi forl <i<rjandri+1<j<m,
as well as all distributions involved in the above conditions are defined on X, by
continuity (FO1)-(FO2) are valid on &X.

Sufficiency. Bring the system ¥ into the form £ : % = f(x) +
;1:2 iihi(x) + Z;”:rﬁl dhy(x), with H? = span {hy, - -, Hey Bejg1, -,
span {41, -+ , hm}. To simplify notation, we will drop the tildes.
Let ¢1, -, ¢r, Pr,+1, -+, Pm any functions satisfying conditions (FO1)-(FO2).
According to the definition of the sequence of distributions H' and to the condition
(FO1), it can be shown that the differentials d¢;, - - -, def_lq)i are independent at xg

and annihilate the distribution #H°, for rno+1<i<r,withp =1[1<1<p
and 7,41 = 0. Consider some functions ¥, - - - , ¥y, such that their differentials are

independent of dg;, - - - ,d L?iilgoi and such that dy; L &, for 2 < j < ry. Introduce
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z;. = L;_lq)i, 1<j<pi,forr+1<i<r,withp=1[1<1<p,r41 =0, and
w; =1, for 2 < j <rq, and let ws, for r1 +1 < s < m, be any functions completing
them to a coordinate system. In these coordinate the system reads:

g S ; _ 71 .
L =7 Wy = Lgpp+urLlg Py + E]':z uiLppp
. . T
zh =z Ws = as+urbs + 3L, ujcjs + Lty Ujds
i i
szl Zpi
2;71' = LP (Pl —+ Llngl Lf (Pl

forrj 1 +1<i<r,withp;=11<1< 0, Tpr1 = O,and2 <p<ry,r+1<s<m.
There exists an integer i such that Lg, Lff_lfpi(xo) # 0 and we suppose i = 1 (if not

permute the functions ¢;). Moreover, the matrices (Ly, ), for2 < j, p < ry, and (djs),

for ri +1 < j,s < m, are of full rank at xo. We apply the invertible static feedback
transformation

-1
iy = L?q)l + unglL]e P1,
Ip = Lpp+uLlgpp+ Y, uilytpp, 2<p<mn,

~ T m
ds = as+ubs + Y0, ujcis + 100, g uidi, m+1<s<m,
to get
0 S B oo o
zp =z, ) =3z wy = 1
2y =z zb =12} W = il
5 S [ S
2{1)1_1 = 2o, Zp 177,
( Z,, =1 z;)l, = a; + b;iiy

for2<i<r,2<p<randr +1<s<m.

By assumption k > 1, i.e., the first noninvolutive distribution cannot be DO,
so all functions b; depend on z only. Recall that the distribution S is such that
[f,€] € D°. In these coordinates we have H" = span{%, e, aw }and £ =

span{aw?+1 ’E)w }. Tt follows that a“’ =0,for2<i<r,rn+1<s<m More-

over, since cork (1" C H!) = r{, we deduce that the matrix (aa, ), for2 <i,t <ry,is

of full rank at xy. We introduce new coordinates z! 1 = a;, for2 <i <y, and apply

pit
a suitable invertible static feedback transformation to get

(51 1 i i b, —
z% = z% 21 =1z s = Us
: 51 )
Z5 zy Zh =124
% S )
=17 Fo Fpe1 ™ )
3 . -l _ .. —_ 1
Zo, =U1 Zp = Zptb (25, +Zor, )01

51 —
\ ZPi‘H = Ui

for2 <i<rpandr; +1 <s < m. Now, by condition (FO2), dy;, forry +1 < j <m,
and all dzj- are independent. Hence, we can introduce new coordinates @ws; = s
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and apply a suitable invertible static feedback to get exactly the above form with
w replaced by @ and for which z{ = ¢; and @s = 5 is a minimal x-flat output of
differential weight n 4 m + 1.

If 1 = m, there are no functions s and the same proof holds. We will find the
same normal form as above, but without the linear chains of length 1 corresponding
to ;.

Appendices

2.A. Proof of Proposition 2.3.1

We will show the implications (i) = (ii) = (iii) = (i).

(i) = (ii). Consider a control system E : ¥ = F(x,u) and assume that E is flat
at (xo, L_l(l)), of differential weight n +m + 1. Let ¢ = (91, -, ) be a minimal flat
output. We will denote by s; the order of the highest derivative of ¢;, for1 <i < m,
involved in the expression of x and u, i.e.,

X = ’Y((Plzﬁi’lz"';q)§sl)/"' /(Pm,q')m/”‘/(Pr(gm))

u = 5(4)11 4)1’. .. ’q)§51)" L, Pmy (Pm,_ . ’¢£12m))’

where }/" | s; +m = n+ m + 1. We will use the notation d.w.(¢) = n+m + 1.

Denote X = span{dxj,--- ,dx,} and U = span{duy,--- ,du,}. Assume that
there exists ¢; = ¢;(x, u, 1, - - - ,u(r)), wherer > 1.

The differential weight of ¢ being n + m + 1 implies that, clearly, s; = 0. Indeed,
ifs; > 1, thendg; A--- A dgol(sl) # 0mod (X + U) and d.w.(¢) would be n + m +
s;i+1 >n+m+1. Denotey = ¢i(x,u,u,--- ,u(r)). If there exists a flat output
@; such that dp; Ady # 0mod (X + U), then d.w.(¢) would be at least n + m + 2.
We thus have ¢; = ¢;(x,u,1), for 1 < i < m, and we separate the components ¢;
that depend explicitly on # by permuting ¢; such that ¢; = ¢;(x,u), for1 <i < p,

and ¢; = @;(x,u,7), for p+1 < j < m, where %—? # 0. We assume, without loss

of generality, that | = m, i.e., ¢, = 1. Clearly, si =0, forp+1 < j < m (if not
de; Nd¢; # 0mod (X + U ) contradicting d.w.(¢) = n+m+1). Letp;, for1 <i < p,
(pi)

be the smallest integer such that the derivative ¢;""" depends explicitly on the control

u. In particular, p; = 0, if ¢; depends explicitly on u. We have q)gp ) = ci(x,u) and
denote rk (g—;ﬁ) =p; <p,forl <i<pand1 <! < m. By asuitably static feedback,
we get

(51) (ngi) = v;, 1<i<py,

(52) (pgp") = ¢i(x, 01, ,0p,), p1 <i < p.
We will consider separately the cases p; = p and p; < p.

If p1 = p denote z{: = Lg_l)(pi, 1<j<p,1<i<p, (z{ are absent if p; = 0),

and let w be the complementary coordinates, dimz + dimw = n. The system in
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(z, w)-coordinates reads
z = Az+Bv

(5) w = d(z,w,v)
where (A, B) is in Brunovsky canonical form with p — r chains, where r = rk (3(51’)
for1 <i<p 1<1<mie,rkB = p—r. The w-part is nonempty since it has
to involve the controls v, 1, - - - , v, absent in the z-part (recall that p < m) and thus

p

dimw =g >m—p.

Denote ,
® = span{dp!,1<i<p0<j<s},
N = span{de;,p+1<i<m}
(recall that, for p+1 < i < m, ¢; = ¢i(x,u,5) and s; = 0). Clearly,

span {dwy, - - - ,dwg, dvyiq, - - - ,dvy,} N® = 0. Notice that tk V' = m — p. By def-
inition of flatness, we should have X + U/ C ® + N, but there are at leastg > m — p
variables among wy, - -+ ,wq, Vpy1, - -+, Um Whose differentials are lost in @ + N.

Now suppose p; < p. We have dy ¢ X + U and since dw.(¢) = n+m+1,
we deduce ® + N = span {dy} + X + U, so differentiating one more time (52), we
conclude (pfpiﬂ) Ady = 0mod (X +U), for p1 +1 < i < p. It follows that only one
column of the matrix (a—cj), p1+1<i<p 1<1I < pyisnonzero and we may

assume that acl #0, 50

q&”zqwmﬁ,m+1§i§p
Since d.w.(¢) = n + m + 1, it follows, firstly, that # = 17(x, v, 91) and, secondly, that

o¢;

rk(av
]

)=p—p,n+1<i<p p+1<j<m.

Recall that p < m so there are m — p components (after a permutation) v, 1, -, O
such that dv, 1 A --- Advy, # 0mod (X + &), where & = span {d(pg]),l < i<
p,0 < j < s;}. Define z} = Lg_l)q)i, 1 <i < p 0 < j < pj, and put
Z = span {dzf}. Let wy, - -+ ,w, coordinate functions such that dw; A --- A dw,; #
O0mod (Z +span{dc;, p1 +1 < i < p}), where the exterior product is nonzero at one,
and thus at almost any, value of v; (since controls enter independently into the sys-
tem). Clearly, span {dw;, - - - ,dwg, dvy i, - ,dv,} N® = 0. Since s; = 0 for g;,
p+1 < i < m,it follows, like in the case p; = p, that there are at leastq > m —p
variables among w1, - -+ , Wy, Up11, -+, Uy that cannot be expressed as functions of

oV 1<i<m0<j<s.

It remains to consider the case of E being (x, u)-flat. Let p; the relative degree

of ¢;, that is, the smallest integer such that the derivative Q(P /)

1

depends explicitly
(07)
on the control u and let r; denote the rank of the decoupling matrix ; = rk (aq)l ),

1<i,j<m. Putro—rk( ) 1 <i,j < m. Clearly rop < ry and let vy + (m —rz)
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be the number of ¢; whose relative degree p; is zero. After permuting the ¢;’s and
applying a static invertible feedback u = u(x,v), we get

901' - Ui,lﬁigro,

(Pl(pi) = v, r0+1<i<r, wherep; > 1,
q)l(pl) = Cl(x/ Ull e /Url), rl + 1 S Z S 1’2,
i = ni(x,v1,- ,0), n+1<i<m.

The system is (x, u)-flat, so rg > 1. Define z{ = Lg_l)(pi, ro+1<i<r0<j<p,
which are functions on X by the definition of the relative degree. We have

Jo . _j+ . '
Zi. = % ’1§]$pz_1/
2= v, r+1<i<n,
g o= 1<j<p-1,
Z.fl = Ci(x,vl,' c /vrl), &1 + 1 S i S 77.

By d.w.(¢) = n+ m + 1, we can differentiate (pi(p") = Zf " only one time to produce

independent controls and, moreover all ¢; can depend on one (the same for all c;)
control, say, v;. It follows that rk (%) =rp—r;,whereri +1<i<r,rn+1<j<m,
]

at one and thus at almost any value of (v;,9;)). Then there exist functions 2 i+1, for
y I, Yl i

r1+1 < i < rp, independent of z{:, 0 < j < pj, such that rk(%) = 1y — 11,
0z,

forr; +1 < i,j < rp. By applying a static invertible feedback, the overall system
becomes

g+l : j s : o
Z =z ,1<j<p=1, %z =z ,1<j<p-1, @ = d(zw,0)
Zfi = vi/ 7’0+1Sl‘§7"1, Zfl = Ci(Z,w,Ul)

DA v, 11+1<i<ry,

1

where w = (wq,---,wy) are any functions completing z{:’s to a coordinate system.
The system is supposed to be (x, u)-flat with a flat output

pi =1, 1<i<ry, ¢ =Z}, ro+1<i<r, ¢i=niz, w01, ,0r), 2+1<i<m.

Notice that the number of controls equals the number of the components of flat out-
puts and is m > 1.

We will consider the cases depending on whether the control v; (whose deriva-
tion v; is involved since v; is present in all ¢;(z, w, v;)) satisfies 1 < | < ry or
ro+1<1<r.

Consider that case g +1 < | < rq and notice that the first o controls vy, - - - , vy,
and the last m — r, controls v,,1,--- , vy (existing if ro < m) do not affect the z-
subsystem, so they are present in the w-subsystem. Therefore, we have dimw = g >
m— 1y +r1p.

Denote the set of indices I = {1,---,ro} U{rp+1,---,m}. Notice thats; = 0,
for ¢; such thati € I (since ¢; = v;, for 1 < i < rp, and ¢; = @i(z,w,v1,- -+ ,Vy,),
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for r, +1 < i < m). Therefore, for flatness we should have X +U C ® + N, where
® = span {d(pz,ro +1<i<r0<j<p +1}and N = span{dg; i € I}. Clearly,
dwy,- - ,dwg and dv;, i € I, arein X’ + U; are independent modulo ® and thus there
is g 4 ro + (m — ry) of them. Since the controls v;, i € I, are independent, g cannot be
smaller than the cardinality of I, which is rg + m — 1. So for flatness, we need

g+ro+m—ry>2(ro+m—ry) >ro+m—ry,

(ro + m — ry being rk N), which holds if 7y + m — r, = 0. This holds if and only
if , = m and rp = 0, but the latter is impossible since ¢ is an (x, u)-flat output
implying ro > 1.

Now we will consider the case 1 < [ < rg. Without loss of generality we may
assume [y = rg. So we rewrite z'l(pi) = ¢i(z,w,vyy), for r1 +1 < i < rp. We will
distinguishing those flat outputs ¢;, i > r, + 1, that depend on (z, w) and v;, only

from those that depend also on other controls. After a permutation, we may assume

Q; = (Pi(Z,w,UrO), f01‘1’2-|-1 < igr?)/
q)i - (Pi(zr w,01,- 1070_1’ UrO)’ for "3 + 1 S l S n,

where each ¢;, i > r3, depend non trivially on at least one vj, 1<j<r-11I
follows thats; = 0, forrs +1 <i < m,buts; =1, forr, +1 < i < r3 (since we can
differentiate one time v,, = v;).

For flatness, we should have X + U C ® + N, where ® = span {dg,,, d¢,,} +
span {dg\), 1o +1<i<r,0<j<p}+span{dp), 1 +1<i<r,0<j<pi+1}
and N = span {d¢;, dpj,i € [,rp+1<j< r3}. Notice that the definition of both
® and N is slightly different because now 1 < I < rj implying that d¢,, and d¢,,are
added to ® and N contains also d¢,,+1, - - -, ¢y, for which s; = 1.

Notice that the first 7o — 1 controls vy, - ,v,,—1 and the last m — r, controls
Up,+1,° -+ , U (existing if ro < m) do not affect the z-subsystem, so they have to affect
the w-subsystem, implying that dimw =g > rg — 1+ m —r3.

Clearly, dvy, -+ ,dvy—1, Ory41,- -+ , 0 and dwy, - -+ ,dw, are in X + U; are in-
dependent modulo ® and thus there are g+ ryp — 1+ (m — rp) of them. We have
tk N =71y — 1+ (m —r3) +2(r3 — r2). So for flatness, we need

g+ro—1+m—r, >2(ro—1+m—ry) >rog—1+4+ (m—r3)+2(r3 —12),
which is equivalent to
0> —(1’0 - 1) - (m —1’3).
This is the case if and only if rp = 1 and m = r3. This implies that system is of the

form

.j i+1 . .j i+1 . . .
2l=2",1<j<pi—1, 2z =",1<j<pi—1, w=v,rn+1<i<m,

1 1

HMi=v;,2<i<mn, 0 =ci(z,w,01)

Zfi+1zvi/ r1+ 1 < i < 12,

which is, indeed, (x, u)-flat of differential weight n 4+ m + 1, with the flat output being
P1 =101, @; = zl-l,2 <i<r, @ =¢i(wuv) rp+1<i<m, where rk(%) =m— 1o,

)
rn+1<ij<m.
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Now we will show that it is also x-flat with the differential weight n +m + 1. To
this end, observe that (by the definition of the relative degree) 5% # 0, in particular

acrl +1

50, 7 0. Apply the static feedback 91 = ¢, 41(z, w, v1) to get

.Or ~ - 0i ~
2, o 2 = Gi(z,w,v1)
£ = o nt2<i<n
; pi
By permuting z;* , we have
d¢; . ,
rka p=r-rn-Lrn+2<i<nn+l<j<n
Z .

J

Now rename 71 by v;, and v,, by v, as well as Zflrlﬂ by w;. We get the system

o+l . j +1 . ,
zl:zg ,1<j<pi—1, 2 :zf A< j<pi—1,  wn=nm

1 1

z'fi:vi, 2<i<r+1, Zfi =Ci(z, w,v1) wi=v;, 1 +1<i<m.

Z.fiJrl:UZ'/ r1+ 2 < i < 12,

This system is x-flat, with the differential weight n + m + 1 ,with x-flat outputs
being g1 = wy, ¢; = 2},2 <i <1y, ¢ =wj, n+1<i<m

(ii) = (iii). Consider an x-flat control system E of differential weight n 4+ m + 1
and let ¢ = (¢1,-- -, @) be a minimal x-flat output. We will denote by s; the order
of the highest derivative of ¢;, for 1 < i < m, involved in the expression of x and u,
ie.,

. k .
X = 'Y(q)l/q)l/"'/(Pgl)/"'/(Pm,(Pm/"‘/(Pm )

. k . km
u = 5(4)1’4)1,...,qp:(ll),...,qpm,qoml.../q)’(ﬂ ))/

where d.w.(¢) = Y/"s;+m = n+m+ 1. Denote X = span {dxy, - ,dx,} and
U = span{duq,--- ,duy}.
(i)

Let p; be the relative degree of ¢;, for1 <i <m,i.e,, @;"" is the lowest derivative

involving explicitly the control. Define z{: = L;_lgoi, forl <i<mand1l <j <p,
and let w complete them to a coordinate system. Put ¢; = Lffgoi, where ¢; = (z, w, u).

9¢;

Form the decoupling matrix D = (Z:1), for 1 < i,j < m, and denote by r its rank.
]

Flatness of differential weight n 4+ m 4 1 implies 1 < r < m — 1. Indeed, if the rank
were m, by a suitable invertible static feedback we could transform the system into
the form , ,

o= 1<i<p-1,

2t = 0,1 <i<m,

and get a static feedback linearizable system, thus of differential weight n + m. Sup-
pose that the r first lines of D are independent and apply the invertible static feedback
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transformation v; = ¢;, for1 <i < v, v; = u;, forr+1 < i < m. The z-subsystem
reads

.j i+1 . .] i+1 .
o= 27, 1<j<p-1, 2 =7, 1<j<p -1,

o= p,1<i<r, @ = ci(z,wor, - ,0), r+1<i < m.

Observe that, forg > 1, ch) depends on vgq), e, vﬁ‘”. Recall thatd.w.(¢) =n+m+1
(q9)

and notice that, obviously, dv;"’ are independent modulo X + . It follows that in or-
der to produce the remaining controls v, 1, - - - , v;;, we are allowed to differentiate c;,
for r +1 < i < m, only one time and, moreover, only one control among vy, - - - , vy,

say vy, can be presentinall ¢;, forr +1 <i < m. Let Zfi+1, forr+1 <i < m,beany

functions completing zg, for1l <j <p;,1<i<m,toacoordinate system (we replace

w by zfiH). Applying a suitable invertible feedback (to controls v, 1, - - - , v;,) we get
g _j+l . .j g +H .
z; =z ,1<j<pi—1, Z =z ,1sj=pi—1
o= v,1<i<r, # = ci(z,m)
P o rr1<i<m

1

Obviously the system becomes static feedback linearizable via the preintegration
U1 =Y, Y1 =701,0;=0;,2<i<m.

(iii) = (i). Suppose that the first prolongation of & : ¥ = F(x, u), given by

E(LO/"',O) . { X = F(x/ V1,02, /Um)
o= u
where u; = y; and u; == v;,2 <i < m, is locally static feedback linearizable. Hence,
2. is flat.
2(100) §g equivalent via a diffeomorphism z = ¢(x, y1) and an invertible trans-

formation, v = ¢(x, y1,?), to the Brunovsky canonical form

g j+1 .
o=z ,1=sj=sp—1
o= v,1<i<m,

where Y, p; = n+1, for which ¢ = (z},---,z}) is a minimal flat output of dif-

ferential weight n + m + 1. It follows that z = y(¢1, ¢1, -, qogpl_l), e, Qm,

Pms cp,(?f ’"71)), thus for the original variables x and the first component of u,

we have (x,u1)' = ¢~ o (g, ¢, 9 g fm " V). More-

over, v = &(¢1, ¢1,- ,(pﬁ"”, Py Py ,qo,(ﬁm)) and we deduce that u; =

0i(p1, 1, - - ,qogpl), e Om, Py ,¢,Sfm)), for 2 < i < m, yielding that ¢ is a flat

output of = of differential weight n + m + 1.

Notice that if the original system Z is the control-affine system X : ¥ = f(x) +
Y u;igi(x), then the distribution F = Img—i does not depend on u and thus the
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distribution F = Img—s of the system

g+ , j o .
z}.} =z ,1<j7<pi—1, Z;-)} =z JA=sj=pi—1
Zi’ = 7;,1<i<r, Zil = Ci(Z,Ul)

P = o rt1<i<m

does not depend on v (see Lemma 2.7.1 below) implying that c;(z,v1), forr +1 <i <
m, are actually affine functions of vy, that is, ¢;(z, v1) = a;(z) + b;(z)v;.

Lemma 2.7.1. Consider a control system E : X = F(x,u), where x € X and u € U, and
define its associated distribution by F (x,u) = Im9E (x, u). The dependency or not of F on
the control u is invariant by invertible static feedback transformations.

Proof. Apply the invertible static feedback transformation 1 = 1(x, v) that brings the
system E into & : = F(x,v), with F(x,v) = F(x,¢(x,v)). We have & = 3—53—15
implying that F(x,v) = Img—l;(x,v) = Im(g—ig—f)(x,v) = Img—;(x,v) =Im% (x,u) =
F(x,u). Therefore F does not depend on u, i.e., F = F(x), if and only if 7 does not
depend on v and F(x) = F(x). O



3 CONTROL-AFFINE SYSTEMS
COMPATIBLE WITH THE MULTI-
CHAINED FORM AND THEIR x-
MAXIMAL FLATNESS

Abstract

We study flatness of control-affine systems, with m + 1 inputs, defined on a (nm + 1)-
dimensional state-space. In the first part of this paper, we give a complete geometric charac-
terization of systems locally static feedback equivalent to a triangular form compatible with
the chained form, for m = 1, respectively with the m-chained form, for m > 2. They are x-flat
systems. We provide a system of first order PDE’s to be solved in order to find all x-flat out-
puts, for m = 1, respectively all minimal x-flat outputs, for m > 2. We illustrate our results by
by examples, in particular by an application to a mechanical system: the coin rolling without
slipping on a moving table.

In the second part of the paper, we introduce the concept of x-maximal flatness. A control
system is x-maximally flat if the number of new states gained by each successive derivation
of the flat output is the largest possible. Firstly, we show that the only control-linear sys-
tems that are x-maximally flat are those that are static feedback equivalent to the m-chained
form. Secondly, we generalize that result from control-linear systems to control-affine sys-
tems whose control-linear subsystem is static feedback equivalent to the m-chained form. We
prove that they are x-maximally flat if and only if the drift exhibits a triangular form compat-
ible with the m-chained form (and recently characterized in [65] and [27]). We also show that
if we skip the assumption of the x-maximal flatness, the latter condition is not necessary for
x-flatness of control-affine system whose associated control-linear subsystem is static feed-
back equivalent to the m-chained form.
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3.1 Characterization of Control-Affine Systems Com-
patible with the Multi-Chained Form

Abstract

In the first part of the paper, we give a complete geometric characterization of systems
locally static feedback equivalent to a triangular form compatible with the chained form,
for m = 1, respectively with the m-chained form, for m > 2. They are x-flat systems. We
provide a system of first order PDE’s to be solved in order to find all x-flat outputs, form =1,
respectively all minimal x-flat outputs, for m > 2. We illustrate our results by examples, in
particular by an application to a mechanical system: the coin rolling without slipping on a
moving table.

3.1.1 Introduction

The notion of flatness has been introduced in control theory in the 1990’s by Fliess,
Lévine, Martin and Rouchon ( [13,14], see also [21,22,32,54]) and has attracted a lot
of attention because of its multiple applications in the problem of trajectory tracking,
motion planning and constructive controllability (see, e.g. [15,26,36,52,55, 58, 62]).

The fundamental property of flat systems is that all their solutions may be param-
eterized by m functions and their time-derivatives, m being the number of controls.
More precisely, consider a nonlinear control system

E: x= F(x,u)

where x is the state defined on an open subset X of R", u is the control taking values
in an open subset U of R" (more generally, an n-dimensional manifold X and an
m-dimensional manifold U, respectively) and the dynamics F are smooth (the word
smooth will always mean C*-smooth). The system Z is flat if we can find m functions,
ei(x,u,..., u(r)), for some r > 0, called flat outputs, such that

x:'y(go,...,go(s))anduzé(go,...,go(s)), (3.1)

for a certain integer s and suitable maps 7 and 6, where ¢ = (¢1,..., ¢m). There-
fore all state and control variables can be determined from the flat outputs without
integration and all trajectories of the system can be completely parameterized. In
the particular case ¢; = ¢;(x), for 1 < i < m, we will say that the system is x-flat.
The minimal number of derivatives of components of a flat output ¢, needed to ex-
press x and u, will be called the differential weight of ¢ (see Section 3.1.2 for precise
definitions).

The problem of flatness of driftless two-input control-linear systems of the form

Yyin ¢ % = upgo(x) + u181(x),

defined on a open subset X of IR”, has been solved by Martin and Rouchon in [34]
(see also [29,33] and a related result of Cartan [8]). According to their result, on an
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open and dense subset X' of X, the system %;;, is flat if and only if, its associated
distribution G = span {go, g1} can be locally brought into the Goursat normal form,
or equivalently, the control system X;;, is locally static feedback equivalent to the
chained form:

((z0=1vy % = Zp0p
Z = Zz30p
k.
ik .
Zk-1 = ZxUo
Zk = U1

wheren =k + 1.

The first who noticed the existence of singular points in the problem of transform-
ing a distribution of rank two into the Goursat normal form were Giaro, Kumpera
and Ruiz [17]. Murray presented in [40] a regularity condition that guarantees the
teedback equivalence of ¥;;, to the chained form Ch]{ around an arbitrary point x*.
In [29], Li and Respondek studied and solved the following problem: can a driftless
two-input system be locally flat at a singular point of G? In other words, can X;;,
be flat without being locally equivalent to the chained form? Their result shows that
a Goursat structure is x-flat only at regular points of G. They also described all x-
flat outputs and showed that they are parametrized by an arbitrary function of three
variables canonically defined up to a diffemorphism.

In this paper we give a generalization of these results. Our goal is to characterize
control-affine systems that are static feedback equivalent to the following triangular
form

(zo=vy 21 = fi(z0,21,22) +  Z00
Zzy = falzo,21,22,23) + z30p
k. .
TChE : :
Zker = falzo, -+ ,zk)  + zxkvo
Zk = 0

\

compatible with the chained form. Indeed, notice that in the z-coordinates the distri-
bution spanned by the controlled vector fields is in the chained form (Goursat normal
form) and the drift has a triangular structure.

We will completely characterize control-affine systems that are static feedback
equivalent to TChY and show how their geometry differs and how it reminds that
of control-linear systems feedback equivalent to the chained form. Then, we will ex-
tend this result to the triangular form compatible with the m-chained form, i.e., we
will characterize control-affine systems with m + 1 inputs, where m > 2, that are static
feedback equivalent to a normal form obtained by replacing z;, in TCHE, by the vector

zl = (z},-++,2),), the smooth functions fi by fl'=(f],-+, fin) and the control v; by
the control vector (vq,- -+ ,vy). This form will be denoted by TChE,. Its associated
distribution G = span{go, - - - , ¢m }, where g;, for 0 < i < m, are the controlled vector
fields, is called a Cartan distribution (or a contact distribution) for curves [7,48, 67].
The problem of characterizing control-linear systems that are locally static feedback
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equivalent to the m-chained form (or equivalently, that of characterizing Cartan dis-
tributions for curves) has been studied and solved ( [59], see also [39,49,50,63,68]). It
is immediate that systems locally feedback equivalent to the m-chained form are flat
and in [58], all their minimal flat outputs (i.e., those whose differential weight is the
lowest among all flat outputs of the system) have been described.

It is easy to see that the normal form TCh (respectively TChE,) is x-flat at any
point of X x R? (respectively X x R™ 1) satisfying some regularity conditions and
we describe all its x-flat outputs (respectively all its minimal x-flat outputs). Their
description reminds very much that of control-linear systems feedback equivalent to
the chained form, for m = 1, respectively to the m-chained form, for m > 2, although
new phenomena appear related to singularities in the state and control-space.

Since TChY andTCHE, are flat, the paper gives sufficient conditions for a system to
be x-flat. We will also show that these conditions are not necessary for x-flatness of
control-affine system whose associated distribution spanned by the controlled vector
fields G = span{go, - - - ,¢m} is feedback equivalent to the m-chained form. Indeed,
we show that there are x-flat control-affine systems for which there exist local co-
ordinates in which the distribution spanned by the controlled vector fields has the
m-chained structure but the drift is not triangular (see Example 3.1.5.1).

The triangular form TChll< was considered in [30], where its flatness was observed
but its description was not addressed. A characterization of TCh! has been recently
proven by Silveira [64] and by Silveira et al. [65], where a solution dual to ours (us-
ing an approach based on differential forms and codistributions rather than distribu-
tions) is given. Our aim is to treat in a homogeneous way the two-input case of TCh!
and the multi-input case of TCh¥,, using the formalism of vector fields and distribu-
tions, as well as to describe all flat outputs and their singularities (which are more
natural to deal with in the language of vector fields).

The paper is organized as follows. In Section 3.1.2, we recall the definition of flat-
ness and define the notion of differential weight of a flat system. In Section 3.1.3, we
give our main results: we characterize control-affine systems static feedback equiva-
lent to the triangular form TCHE, for m = 1, and to TChl,;, for m > 2. We describe in
Section 3.1.4 all minimal flat outputs including their singularities and we study also
singular control values at which the system ceases to be flat. Moreover, we give also
in that section a system of first order PDE’s to be solved in order to find all x-flat out-
puts, for m = 1, and all minimal x-flat outputs, for m > 2. We illustrate our results
by two examples in Section 3.1.5 and provide proofs in Section 3.1.6.

3.1.2 Flatness

Fix an integer | > —1 and denote U =UxR™"and il = (u, u,...,u(l)). Forl = —1,
the set U~ ! is empty and 1! is an empty sequence.

Definition 3.1.1. The system & : ¥ = F(x,u) is flat at (x*,b_l*l) e X x U, for
I > —1, if there exists a neighborhood Ol of (x*,a*l) and m smooth functions
¢i = @i(x,u,u,..., u(l)), 1 < i < m, defined in O/, having the following property:
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there exist an integer s and smooth functions ;, 1 < i < n, and 5]~, 1 <j < m,such
that

Xi = 7i(@, ¢, ..., 9) and u; = 5(¢, ¢,..., ¢'*))

along any trajectory x(t) given by a control u(t) that satisfy (x(t), u(t),...,ull)(t)) €
O! where ¢ = (¢1,...,9m) and is called flat output.

When necessary to indicate the number of derivatives of # on which the flat out-
puts @; depend, we will say that the system & is (x,u, - - - , u"))-flat if u(") is the high-
est derivative on which ¢; depend and in the particular case ¢; = ¢;(x), we will say
that the system is x-flat. In general, r is smaller than the integer / needed to define
the neighborhood O! which, in turn, is smaller than the number of derivatives of Qi
that are involved. In our study, r is always equal to -1, i.e., the flat outputs depend on
x only, and [ is 0.

The minimal number of derivatives of components of a flat output ¢, needed to
express x and u, will be called the differential weight of that flat output and will be
formalized as follows. By definition, for any flat output ¢ of & there exist integers
S1,...,Sm such that

X - ’Y(gollqbl/"'/q)fl)/'"/GOTI’Z/(PI’H/"'/qu(Tslm))
u - 5(4)1/ (Pll ccy 4)551)/ ey (Pm/ (Pm/ ey qor(;im))/

Moreover, we can choose (s1,...,5n,) such that (see [58]) if for any other m-tuple

(51,...,5m) we have
X = 7(4)1/4’1/---/90551),---,q)mlﬁbmz---/(l)m )

((Pllfplz---/(ngl)/-u/(sz(me--/qu

S

u =
thens; <3§;, for1l <i<m.

We will call 1", (s; + 1) = m + Y ; s; the differential weight of ¢. A flat output
of 2 is called minimal if its differential weight is the lowest among all flat outputs
of E. We define the differential weight of a flat system to be equal to the differential
weight of a minimal flat output.

3.1.3 Main results: characterization of the triangular form

From now on, we will denote the number of controls by m + 1 (and not by m) since, as
we will see below, for all classes of systems that follow one control plays a particular
role.

Consider the control-affine system

Tafp ik = f(x) + ) wigi(x), (3.2)
i=0

defined on an open subset X of IR, where n = km + 1 (or an n-dimensional man-
ifold X), where f and go, - - - , gm are smooth vector fields on X and the number of
controlsism +1 > 2.
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To X, we associate the following distribution G = span {go, - - - , gm }. We define
inductively the derived flag of G by

G'=Gand G =G 4+ [G', G, i > 0.

Let D be a non involutive distribution of rank d, defined on X and define its
annihilator D+ = {w € AYX) :< w,f >= 0,Vf € D}, where Al(X) stands for
the collection of smooth differential 1-forms on X. A vector field ¢ € D is called
characteristic for D if it satisfies [c, D] C D. The characteristic distribution of D,
denoted by C, is the distribution spanned by all its characteristic vector fields, i.e.,

C={ceD:l,D]cCD}

and can be computed as follows. Let wy, ..., w,, where g = n — d, be differential 1-
forms locally spanning the annihilator of D, that is DL = span{wy, ..., wq}. For any

w € D+, we define W(w) = {f € D: fuodw € D*}, where _ is the interior product.
The characteristic distribution of D is given by

C= ﬂ?zll/\/(wl)

It follows directly from the Jacobi identity that the characteristic distribution is al-
ways involutive.

Our main results describing control-affine systems locally static feedback equiva-
lent to the triangular form compatible to the chained form and to the m-chained form,
are given by the two following theorems corresponding to two-input control-affine
systems, i.e., m = 1 (Theorem 3.1.1), and to control-affine systems with m + 1 inputs,
for m > 2 (Theorem 3.1.2). Let us first consider the case m = 1, which has also been
solved, using the formalism of differential forms and codistributions, by Silveira [64]
and by Silveira et al. [65].

Theorem 3.1.1. Consider a two-input control-affine system X, ¢, given by (3.2), form =1,
and fix x* € X, an open subset of R*+1. The system . is locally, around x*, static feedback

equivalent to the triangular form TChY if and only if the following conditions are satisfied:
(Ch1) G =TX;

(Ch2) G*=3 is of constant rank k — 1 and, moreover, the characteristic distribution C*=2 of
G*—2 is contained in G*¥—3 and has constant corank one in GF—3;

(Ch3) GO(x*) is not contained in Ck=2(x*);
(Comp) [f,C'| C G, for 1 <i < k — 2, where C is the characteristic distribution of G'.

It was stated and proved in [59] that items (Ch1)-(Ch3) characterize, locally,
the chained form (or equivalently the Goursat normal form). Therefore, they are

equivalent to the well known conditions describing the chained form [40] (see also
[25,34,37,38,51]):
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(Ch1) tkGi=i+2,for0<i<k-—1,

(Ch2)" tk Gi(x*) = tk G;j(x*) = i +2, for 0 < i < k — 1, where the distributions G; form
the Lie flag of G and are defined by Gy = G and G; 1 = G; + [Go, Gi], i > 0,

and assure the existence of a change of coordinates z = ¢(x) and of an invertible
static feedback transformation of the form u = Bii, bringing the control vector fields
go and g7 into the chained form.

Item (Comp) takes into account the drift and gives the compatibility conditions
for f to have the desired triangular form in the right system of coordinates, i.e., in
coordinates z in which the controlled vector fields are in the chained form.

Since the distribution G, associated to %, Ffr satisfies (Ch1)’, all characteristic dis-

tributions C! of G are well defined, for 1 < i < k — 2. Indeed, recall the following
result due to Cartan [8]:

Lemma 3.1.1. (E. Cartan) Consider a rank two distribution G defined on a manifold X of
dimension k + 1, for k > 3. If G satisfies rk Gl =i+ 2, for 0 <i <k —1, everywhere on X,
then each distribution G, for 0 < i < k — 3, contains a unique involutive subdistribution
C™tY that is characteristic for G i+ gnd has constant corank one in G'.

The conditions of the above theorem are verifiable, i.e., given a two-input control-
affine system and an initial point x*, we can verify whether it is locally static feedback
equivalent, around x*, to TCh’{ and verification (in terms of vector fields of the initial
system) involves derivations and algebraic operations only, without solving PDE’s.

Next, we consider the case m > 2 and extend the above result to a triangular
form compatible with the m-chained form. An (m + 1)-input driftless control system

Y 1 2 = Y, 0igi(z), defined on R¥*1, is said to be in the m-chained form if it is
represented by
Zo=uvy 2 = z3y o = 220
z% = Z?ZJO 2 = 0
k.
Chy,
#1 =z el = 2K oy
g ko
\ = m N = Uy

Denote 2/ = (z},---,2},2%,--- 22, ,2],---z),), for 2 < j < k. Our goal is to

characterize the following triangular normal form

Zo = U Z} = fll(Zo,ZZ) + Z%Uo Z',ln = f%(ZQ,ZZ) + Z%nUQ
= fi(z,2)  + Zw 2 = fiz,2) + Do

TCHY, : : :
#1 = (7,25 + Koy oo 2T = fEl(z0,25) 4+ Zhoo
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with m 4+ 1 inputs, m > 2. Theorem 3.1.2 below gives necessary and sufficient
conditions for a control system to be locally static feedback equivalent to TChE,.

Theorem 3.1.2. Consider a control-affine system X5, given by (3.2), on an open subset X
of R“"F1 for m > 2, and fix x* € X. The system Y5y is locally, around x*, static feedback
equivalent to the triangular form TChY, if and only if the following conditions are satisfied:

(m-Chl) Gk—1=TX;

(m-Ch2) G*=2 is of constant rank (k — 2)m + 1 and contains an involutive subdistribution
L that has constant corank one in GK—2;

(m-Ch3) G°(x*) is not contained in L(x*);
(m-Comp) [f,C'] C G, for 1 < i < k — 2, where C' is the characteristic distribution of G'.

In order to verify the conditions of Theorem 3.1.2, we have to check whether the
distribution G¥~2 contains an involutive subdistribution £ of corank one. Checkable
necessary and sufficient conditions for the existence of such an involutive subdis-
tribution, together with a construction, follow from the work of Bryant [6] and are
given explicitly in [50]. We present in Appendix 3.1.A the conditions for the exis-
tence and construction of £. In our case, if such a distribution exists, it is always
unique. As a consequence, all conditions of Theorem 3.1.2 are verifiable, i.e., given a
control-affine system and an initial point x*, we can verify whether it is locally static
teedback equivalent, around x*, to TChl,; and verification involves derivations and
algebraic operations only, without solving PDE’s.

Conditions (m-Ch1)-(m-Ch3) characterize the m-chained form [59] (see also [49,
50]) and assure the existence of a change of coordinates z = ¢(x) and of an invert-
ible static feedback transformation of the form u = pBii, bringing the control vector
tields g; into the m-chained form. We define the diffeomorphism ¢ and the feedback
transformation B in Appendix 3.1.B. The diffemorphism ¢ defines also the coordi-
nates in which the system takes the triangular form TChE,.

Item (m-Comp) takes into account the drift and gives the compatibility conditions
for f to have the desired triangular form in the right system of coordinates, i.e., in z-
coordinates in which the controlled vector fields are in the m-chained form. Formally
it has the same form as (Comp) in the case m = 1.

The characteristic distributions Cl for1 < i < k —2, are well defined and have
corank one in G'~1. Indeed, recall the following result stated in [59]:

Lemma 3.1.2. Assume that a distribution G defined on a manifold X of dimension km + 1
satisfies the conditions (m-Ch1)-(m-Ch3) of Theorem 3.1.2. Then G' has constant rank
(i+ 1)m+1, for 0 < i < k —2, and contains an involutive subdistribution Ll of corank
one in G'. Moreover L' is the unique corank one subdistribution satisfying this property,
for 0 < i < k— 2, and it coincides with the characteristic distribution C'*1 of Gi*1, for
0<i<k-3.
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It has been shown in [56] (see also [59]) that all information about the distri-
bution G is encoded completely in the existence of the last involutive subdistribu-
tion £K=2 (being, actually, the involutive distribution £ of item (m-Ch2) of Theorem
3.1.2) which implies the existence of all involutive subdistributions £! = C*1, for
0<i<k-3.

The characterization of the chained form (conditions (Ch1)-(Ch3) of Theorem 3.1.1)
and that of the m-chained form ((m-Ch1)-(C-mCh3) of Theorem 3.1.2) are different, but
compatibility conditions are the same, compare (Comp) and (m-Comp). The involutive
subdistribution £, which is crucial for the m-chained form, is absent in the compati-
bility conditions, but plays a very important role in calculating minimal flat outputs
and in describing singularities (see Section 3.1.4).

3.1.4 Flatness and flat outputs description

In this section, firstly, we discuss flatness of control systems static feedback equiv-
alent to TCh, respectively to TChE,. Secondly, we answer the question whether a
given pair (respectively an (m + 1)-tuple) of smooth functions on X is an x-flat out-
put for a system static feedback equivalent to TChX (respectively a minimal x-flat
output for a system static feedback equivalent to TCh,) and, finally, provide a sys-
tem of PDS’s to be solved in order to find all these flat outputs. In particular, we will
discuss their uniqueness, their singularities, and compare their description with that
of flat outputs for the chained form (respectively for the m-chained form).

3.1.4.1 Flatness of control systems static feedback equivalent to TCh’{

Let us first consider the case m = 1. It is clear that TCh% is x-flat, with ¢ = (zg,z1)
being a flat output around any point (z*, v*) satisfying

ofi (z")+0v; #0, for1 <i<k-—1,
9zi11

where v* = (v}, v}). Therefore control systems equivalent to TChX are x-flat and
exhibit a singularity in the control space (depending on the state) which we will de-
scribe in an invariant way as follows. For C!' € C? C --- C C*2, the sequence of
characteristic distributions C! of G, for 1 < i < k — 2, see Lemma 3.1.1, choose vector
fields cy, ..., ck_p such that C' = span {cy,...,c;}. Foreach 0 < i < k — 3, define

Uiy () = {0 () = (w(x) 1 () T ¢ [ + o + wign, €] < G}

The controls ui(x) exist, are smooth, and for any 0 < i < k — 3 define (for any fixed
x € X) a 1-dimensional affine subspace of U = R?. To see those three properties,
notice that [f, ci+1], [0, civ1], and [g1, ¢;11] span a distribution of rank one modulo
G (since all three belong to G'™! and corank(G' C G*1) = 1) and either [go, ¢;.1] or
(g1, ¢it1] (or both) does not vanish modulo G'. To calculate U!. g(x) explicitly, assume

that we have chosen (g9, g1) such that ¢; = ¢;. Then [g1,ci1] = [c1,¢iy1] € G and
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[f, civ1] = a[go, ci11] mod G, for some smooth function a. We put uf(x) = —a(x) and
ul (x) arbitrary. It is clear that the definition of (u}(x), u} (x)) does not depend on the
choice of ¢y, ...,cr_p and is feedback invariant (independently of whether we have
chosen g1 = ¢; or not). Indeed, if u'(x) € U, (x), then for the feedback modified

sing
system x = f+ gil, where f=f+gaand g gB, it is the feedback modified control
i = B~ (—a + u') that, clearly, satisfies ii' € U/,

sing’

Let £ be any involutive distribution of corank two in TX such that £ C GF~2. Fix
| € L such that! ¢ C*~2 and put

k=2 (x) = {0 2(x) = (200, b 72(0) T [f 4 g0 + 20, 1) € G2

If G%(x*) ¢ L(x*), where x* is a nominal point around which we work, then the
controls u*~2(x) exist, are smooth, and (for any fixed x € X) form a 1-dimensional
affine subset of U = R? because G*~2 is of corank one in TX and either [go, ] or [g1, ]
is not in GK=2. If G%(x*) C L(x*), then under the assumption, which we will always
assume, (dpo Adpr ANdgg ANd¢1)(x*, u*) # 0, where the functions ¢y and ¢, are such
that £+ = span {dgg,d¢,}, we have u* ¢ Uﬁ Szng(x*) and in X* x R?, where X* is
a sufficiently small neighborhood of x*, the set Ulzfﬁng (x) consists of two connected
components that define, for each fixed value x € X'*, x # x*, an affine subspace of
U =R

Clearly U’Zjﬁng is feedback invariant and does not depend on the choice of I € L
but it depends on the distribution £. Define

k—2 k—2
usmg uﬁfsing
L

where the intersection is taken over all £ as above, that is, involutive distribution of
corank two in TX, satisfying £ C GF=2  Define

k—2
smg - U sing U usmg

and

L‘ sing - U smg E sing”

We will use both sets in Theorem 3.1.3 descrlbmg controls singular for flatness and
in Proposition 3.1.1 comparing flat outputs of the triangular form TCh! with those of
the associated chained form Chf.

Theorem 3.1.3. Consider a two-input control-affine system X ¢ : X = f(x) + uogo(x) +
u181(x), defined on an open subset X of R+, where k +1 > 4. Assume that ¥, £ is locally,
around x* € X, static feedback equivalent to TChX. Then we have:

(F1) Zq5 is x-flat at any (x*,u*) € X x R? such that u* & Uy g (x*).

(F2) Let @o, @1 be two smooth functions defined in a neighborhood X of x* and g be an
arbitrary vector field in G such that g(x*) ¢ C¥=2(x*). Then the following conditions
are equivalent in X:
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(i) The pair (@o, ¢1) is an x-flat output of Sy 55 at (x*,u*) € X* x R?, where X* is
a neighborhood of x* ;
(ii) The pair (o, ¢1) satisfies the following conditions:
(FO1) (dpo Ader ANdeo Adgr)(x*,u*) # 0, where ¢; = L, @;, fori = 0,1
and Fprp = f + uogo + 1181,
(FO2) Lego = Legr = 0and (Lggo) (i g191) — (Lgg1)(Lic,g)90) = O, for any
c e k2
(FO3) u* ¢ U, (x*), where L = (span{dgo,d¢1})".
(iii) The pair (@o, ¢1) satisfies the following conditions:
(FO1)" (dpo Ndg1 Ndjo Nder)(x*,u*) # 0, where ¢; = Ly, ¢;, fori =0,1,
and Fyer = f + 1080 + U181,
(FO2) L = (span{d¢g,dei})+ C GF2;
(FO3)" u* ¢ U,_, (x%).

Notice that since X, ffis locally, around x*, static feedback equivalent to TCHE, its
associated control-linear system X, : X = upgo(x) + 1141(x) is locally, around x*,
static feedback equivalent to the chained form Ch%. The next result shows how the
similarities and differences between two-input control-linear systems and control-
affine systems locally equivalent to TCh! are reflected by their flatness. It turns out
that flat outputs of ¥, are flat outputs of ¥;¢¢ (independently of the choice of f
although singular control values depend on f) and most of flat outputs of ¥, ¢ are flat
outputs of the corresponding ¥;;, but not all, as the following proposition explains.
Define

Uspar(x) = {(x) = (10(x),101(x)) " (togo +w11) (x) € C'(x) }.

Proposition 3.1.1. Consider a two-input control-affine system L,¢r @ & = f(x) +
uogo(x) + 1191 (x), defined on an open subset X of R¥*1, where k +1 > 4, and its as-
sociated control-linear system ¥y, : X = uggo(x) + u181(x). Assume that L¢¢ is locally,
around x* € X, static feedback equivalent to TChY. Then we have:

(F3) Xy, is x-flat at any (x*,u*) € X x R? such that u* & Ua, (x*).

(F4) A pair (o, ¢1) of smooth functions defined in a neighborhood X of x* is an x-flat
output of Zy;, at (x*,u*) € X* x R? such that X* C X is an open neighborhood
of x* and u* & U, (x*) if and only if it satisfies the conditions (FO1)-(FO2) or,
equivalently, (FO1)'-(FO2)" of Theorem 3.1.3, where ¢;, for i = 0,1, is understood as
@i = Lp,, @i and Fy, = uogo + U181,

(F5) If (9o, ¢1) is a flat output of Xy, at (x*, u*), where u™ & Uepa, (x*), then (@o, ¢1) is a
flat output of Z5¢ at(x*, @), where i* ¢ U, (x*) with L = (span {dgo, doi})*.

(F6) Let g be an arbitrary vector field in G such that g(x*) & C*=2(x*). If (o, ¢1) is a flat
output of Loy at (x*,@%), where i* ¢ U, (x*), with L = (span {doo,de1}) ",
and satisfies (Lg@o, Lgg1)(x*) # (0,0), then (¢o, ¢1) is a flat output of Ly, at
(x*, u*), where u* & Ugpar(x*).
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For a pair of functions (¢o, ¢1), the conditions to be a flat output are, formally, the
same for 2,7 and the associated control-linear system %;;, and are given by (FO1)-
(FO2) (o1, equivalently, by (FO1)’-(FO2)’). Notice, however, that the vector field along
which we differentiate changes from F,f into F;;, and thus the conditions change as
well. This implies that there is more flat outputs for X, than for the associated ¥,
Actually, the condition (FO1) applied to X, implies that (Lggo, Le@1)(x*) # (0,0)
(thus obtaining the same necessary and sufficient conditions as those given in [29] for
two-input control-linear systems ), whereas (FO1) applied to X, still admits systems
for which (Lggo, Lg@1)(x*) = (0,0) as the following example shows.

Example 3.1.1. Consider the control-affine system:

Z0 =0y 21 = 2z + 2209
V) = Z30p
Zk—1 = Zk0o
Zk = U1

which is in the triangular form compatible with the chained form TCh]f . We claim
that it is x-flat with (@o, ¢1) = (21 — 2022, 22) as x-flat output around z* = 0, although
(Lg@o, Le1)(0) = (0,0), for any vector field in G such that g(z*) & C*2(z*), pro-
vided that v§ # 0 and (1 — z5v§) # 0, the latter condition being always satisfied at
z* = 0, but not in a neighborhood.

Indeed, we have ¢g = zp — 202300, P1 = 2300 and it follows that ¢y = zo(1 —

¢1), from which we deduce zg = %, provided that 1 — ¢1 = 1 —z305 # 0. By

differentiating that relation, we get vy = Z9 = L‘ft(l 401) = 60(@3, @3), where q‘){ =

(o1, i, -, q)l(])) From ¢ = z3v9, we compute z3 = (Z’:; = 73(4)0, @?). Then, z3 gives

Z4 = ’74(4_?8, 471) and so on. Finally we get z; = 'yk((pg 1,q)1 Yand v; = (51(gb’(§, gb’l‘)
Thus (o, ¢1) = (21 — 2022, 22) is indeed an x-flat output of the system around z* = 0
such that z3v; # 1.

Let us now consider the chained form Chf and take ¢ = go. We compute
Logo = —z0z300, Lg@1 = 2300 and we clearly have (Lg@o, Lg¢1)(0) = (0,0). Since the
condition (Lg@o, Le¢1)(z*) # (0,0) is necessary for (¢o, ¢1) to be an x-flat output for
the chained form, see [29], we deduce that (¢g, 1) = (21 — 2022, 22) is not an x-flat
output at z* = 0 for Cht. [

For control-linear systems %;;,,, the choice of a flat output is not unique (different
choices are parameterized by an arbitrary function of three variables whose differen-
tials annihilate C*~2, as assures Proposition 3.1.2 below) but all flat outputs exhibit the
same singularity in control space (see item (F4) of Proposition 3.1.1), which is the con-
trol u., where u, € U, such thatu.0go+u.181 € C L (for any x € X, it defines a one-
dimensional linear subspace of U = R?). In the control-affine case, the nature of sin-
gularities changes substantially: each choice of a flat output creates its own singulari-
ties in the control space. More precisely, a flat output (¢o, ¢1) ceases to be a flat output

for controls u* belonging to U, ;. which is the union of Uk Sui o (universal for all
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choices of (o, ¢1) and consisting, for each fixed x € X, of the union of k — 2 one-

dimensional affine subspaces of U = R?) and of U]st%ng, which is a one-dimensional

affine subspace of U = R? that depends on (¢, ¢1) since £ = (span {dgo, dp1})*.
All those k — 1 affine subspaces are, in general, different although some of them may
coincide and, indeed, in the control-linear case all of them coincide and reduce to the
linear-space of U = RR? containing the characteristic controls u, that correspond to
the characteristic distribution C!, that is, the corresponding trajectories remain tan-
gent to C!. Moreover, if we apply an invertible feedback u = Bii (which always exists
and can be explicitly calculated) such that C! = span{§;} and G° = span{gy, &1},
a control i, is characteristic, that is, singular for flatness of %;;,,, if and only if the
feedback modified control is 7, = ,B(’l)uc = (0, ﬁcll)T.

Now it is clear that the control-affine system X,/ is flat if we avoid the univer-

sal singular set Ui-‘*g’ u:

—0 Usjng as well as the set singular for all choices of flat outputs

(@0, 1), that is the set N Uﬁjjng (the intersection taken over all £), which explains

different statements for a fixed choice of (¢g, ¢1) in item (F2)(ii) and an arbitrary
choice of (¢, ¢1) in item (F1).

Notice that Theorem 3.1.3 is valid for any k > 3 (thus for a system defined on a
manifold X of dimension at least 4). In fact, in item (ii), we use the characteristic
distribution C¥=2 of G¥=2, but if dim X = 3, i.e., k = 2, such a distribution does not
exist and item (ii) does not apply to that case. Item (iii), however, is well defined
even for dim X = 3 and remains equivalent to (7).

As an immediate corollary of Theorem 3.1.3, we obtain a system of first order
PDE’s, described by Proposition 3.1.2 below, whose solutions give all x-flat outputs.
Like for systems equivalent to the chained form (see [29]), x-flat outputs for the sys-
tems feedback equivalent to the triangular form TChY are far from being unique:
since the distribution C¥~2 is involutive and of corank three, there are as many func-
tions ¢q satisfying L.gy = 0, for any ¢ € C*2, as functions of three variables. In-
deed, according to the following proposition, ¢g can be chosen as any function of
the three independent functions, whose differentials annihilate C*=2, and if more-
over, < d¢o, g% > (x*) # 0, then there exists a unique ¢; (up to a diffeomorphism)
completing it to an x-flat output.

Proposition 3.1.2. Consider a two-input control-affine system L,¢r @ % = f(x) +
upgo(x) + u191(x), defined on a manifold X, of dimension k +1 > 4, that is locally, around
x* € X, static feedback equivalent to TChE. Let C¥~2 = span{cy, -+ ,cx_»} be the char-
acteristic distribution of GX=2 such that cy_,(x*) & C¥=3(x*) and g be an arbitrary vector

field in G such that g(x*) ¢ C*=2(x*). Then
(i) For any smooth function ¢g such that
(Flat1) Lego=0,1<i<k—2,and <dgy, G2 > (x*) #0,

the distribution £L = C*=2 + span {v} is involutive, where v = (Lg@o)[ck_2, 8] —
(Lice, g1 90)8-

(ii) A pair (@o, ¢1) of smooth functions defined on a neighborhood of x* is an x-flat out-
put at (x*,u*) with u* ¢ Up_gine(x*), if and only if (after permuting @o and @1, if
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necessary) ¢ is any function satisfying (Flat 1) and ¢ satisfies

Lep1=0, for1 <i<k-2,

(dq)o ANde1 Ndgg N dq')l)(x*, u*) # 0,
(Flat 2)
LU(Pl =0.

(iii) If in (Flat 1), we replace < dpg, G¥=2 > (x*) # 0by < dgo, G° > (x*) # 0, then for
any function @q satisfying Lo = 0, for any ¢ € C¥=2, and < dgy, G° > (x*) # 0,
there always exists ¢y such that the pair (po, 1) is an x-flat output of L.¢s; given
any such @q, the choice of ¢y is unique, up to a diffeomorphism, that is, if (¢o, $1) is
another minimal x-flat output, then there exists a smooth map h, smoothly invertible
with respect to the second argument, such that

Remark. Notice that for a function ¢y satisfying < dgo, G¥2 > (x*) # 0 (and
not the stronger condition < dgg, G° > (x*) # 0, or equivalently Lgpo(x*) # 0, see
Proposition 3.1.2(iii)), it can be impossible to find, among all solutions of L. ¢1 =
Lypr =0,1 <i<k—2,afunction ¢; satisfying (dgpo Adgy Adpg ANd¢q)(x*,u*) #0
and therefore item (iii) does not hold, in general, under the weaker condition
< dgy, gk-2 > (x*) # 0. This is, for example, the case of control-linear systems.

As expected, the system of PDE’s allowing us to compute all x-flat outputs of
a system locally static feedback equivalent to TCh% does not depend on the drift f
and it is the same as that provided in [29] for x-flat outputs in the case of control-
linear X;;,, feedback equivalent to the chained form. For more details and the proof
of Proposition 3.1.2 in the case Ly@o(x*) # 0, we refer the reader to [29].

Finally, it turns out that almost all x-flat outputs are compatible with the tri-
angular form TCh! (as are x-flat outputs of the chained form). In fact, for any
given flat output (o, ¢1) of a system X, feedback equivalent to TCHE, verifying
(Lggo, Lgp1)(x*) # (0,0), we can bring X,¢s into TCHX for which @g and ¢; serve as
the two top variables, as the following proposition assures. The following result is
technical and will be useful in our proofs, but it has its own interest.

Proposition 3.1.3. Assume that ¥,¢7 is locally, around x*, static feedback equivalent to

the triangular form TChY and let (@o, 1) be an x-flat output around (x*,u*), such that
(Lg@o, Lgp1)(x*) # (0,0), where g is an arbitrary vector field in G such that g(x*) &
Ck=2(x*). Then we can bring Yoppto TCHY around z* such that zg = @g and z = ¢ (after
permuting ¢o and @1, if necessary).

Remark. The above proposition is valid around z* which is not necessary equal
to 0. If we want to map x* into z* = 0, then an affine transformation of flat outputs
may be needed. More precisely, we can bring X, ¢f to TChY around z* = 0 such that
z0 = @o and z1 = @1 + koo (after permuting ¢y and ¢1), where kg € R.
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3.1.4.2 Flatness of control systems static feedback equivalent to TCh,

We now turn to the case m > 2. It is clear that TChK is x-flat, with =
m ¢
(20,21, -+ ,z),) being a flat output, at any point (z*,0*) € RF¥"+1 x R"*1 satisfying

tk Fl(z*,0") =m, for1 <1 <k—1,
where F! = (Fil].), for1 <[ <k—1,isthe m x m matrix given by

a(f]l + Z§.+100)

I+1
azi

Fj = , for1 <i,j < m.

Therefore, flat systems equivalent to TCh¥, exhibit singularities in the control space
(depending on the state) defined in an invariant way by

m Sll’lg U Sll’lg

where
Usy—sing (¥) = {u(x) € R? : vk (G' + [f + gu, L)) (x) < (i +2)m +1},

with £+l = 1 for 0 < i < k — 3, where C't! is the characteristic distribution of
Gitl and £F-1 = £, the involutive subdistribution of G¥~2 and qu = E;ﬁ:o u;g;. This
singularity is excluded by item (m-F1) of the next theorem describing all minimal

x-flat outputs of control-affine systems feedback equivalent to the triangular form
TCHE,.

Theorem 3.1.4. Consider a control-affine system Ly¢r @ & = f(x) + Yl u;igi(x), with

m > 2, defined on an open subset X of R 1 where k > 2, that is locally, around
x* € X, static feedback equivalent to TChX, and its associated control-linear system

Zlin X = 2?1:0 ul-gi(x).

(m-F1) X5¢ is x-flat, of differential weight (k +1)(m + 1), at any (x*,u*) € X x R™*1
such that u* & Uy _ging(x™).

(m-F2) If (o, -, ¢m) is a minimal x-flat output of L,¢r at (x*,u*), where u* ¢
Um_sing(x*), then there exists an open neighborhood X* of x* and coordinates

(zo,z%, ez, z’{, e ,zk ) on X* in which Toff is locally feedback equiv-
alent to the triangular form TChY,, such that pg = zg and ¢; = z}, for1 <i<m,

after permuting the components ¢; of the flat output ¢, if necessary

(m-F3) Let @, ¢1,- -+, ¢m be m + 1 smooth functions defined in a neighborhood of x*. The
following conditions are equivalent:

(i) The (m + 1)-tuple (@o, @1, , Pm) is a minimal x-flat output of Ly¢¢ at
(x*,u*), where u* & Uy —sing(x*);

(i) The (m + 1)- tuple (90, @1, , @m) is a minimal x-flat output of Xj;, at
(x*,@*), where iT* is such that Y i7g;(x*) & CY(x*), where C* is the char-
acteristic distribution of G 1.
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(iii) The (m + 1)-tuple (¢o, 91, -+, ¢m) satisfies the following conditions in a
neighborhood of x*:

(m-FO1) dgo Ndpy A -~ Ndy(x*) #0;

(m-FO2) L = (span{deo,dgy, - ,don})", where L denotes the involu-
tive subdistribution of corank one in G¥=2.

Moreover, the (m + 1)-tuple (¢o, 1, -+ , Pm) is unique, up to a diffeomorphism,
ie, if (Po, P1,- -, Pm) is another minimal x-flat output, then there exist smooth
maps h; such that ¢; = hi(@o, 1, , ¢m), 0 <i <m,and h = (ho,hy, -, hm)
is a local diffeomorphism.

Theorem 3.1.4 indicates how flatness of control-affine systems locally equivalent
to TCh’fn reminds, but also how it differs from, that of control-linear systems locally
equivalent to the m-chained form ChE,.

While Theorem 3.1.3, associated to the case m = 1, allows us to compute all x-flat
outputs of TChX, Theorem 3.1.4 describes all minimal x-flat outputs of TCh¥,. Func-
tions whose differentials annihilate £ are clearly not the only x-flat outputs of TChE,.
They are, however, the only that possess the minimality property, i.e., when deter-
mining, with their help, all state and control variables, we use the minimal possible
number of derivatives, which is (k + 1)(m + 1), see the proof of Theorem 3.1.4. Ac-
cording to item (ii), their description coincides with that of minimal x-flat outputs
of Xj;;,. Indeed, conditions (m-FO1)-(m-FO2) are the same as those given in [58] for
control-linear systems feedback equivalent to the m-chained form. The presence of
the drift has no influence on characterizing minimal x-flat outputs, but, analogously
to the case m = 1, it plays a role in describing singularities in the control space.

For control-affine systems, it is the drift f, the characteristic distributions C! for
1 < i < k—2, and the involutive subdistribution £ of corank one in G¥~2, that
describe singularities in the control space. Although L is not involved in the compat-
ibility conditions (see item (m-Comp) of Theorem 3.1.2), it plays an important role in
determining the singular controls at which the system ceases to be flat.

The description of the set of singular controls U, ;g is also valid for driftless
systems, i.e., for f = 0, but it is redundant. In fact, the set of singular controls u, for
control-linear systems can be described using the first characteristic distribution C?
only: the singular controls u, are such that the corresponding trajectories are tangent
to the characteristic distribution C!, that is, u, verifying Y™ u. ;(x)gi(x) € C(x).
Clearly, they form, for any x € X, an m-dimensional linear subspace of U = R"*+1. If
we apply an invertible feedback u = Bil such that C! = span {g;, -+, $n} and G" =
span{go} +C 1 then the singular controls i, are of the form i, = (0,1, - , flc,m)-

Finally, it turns out that minimal x-flat outputs and the triangular form TCHE,
are compatible: in fact, for any m + 1 smooth functions ¢g, @1, - - , ¢ that form a
minimal x-flat output of a system %, feedback equivalent to TChE,, we can bring

Y, ¢r into the form TCHE, for which @g, @1, - - - , ¢ play the role of the top variables,
as item (m-F2) assures. An analogous result is also valid for minimal x-flat outputs
and the m-chained form, see [28].

As an immediate corollary of Theorem 3.1.4, we get the following system of PDE’s
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whose solutions give all minimal x-flat outputs for control-affine systems static feed-
back equivalent to TChK,. Denote by vj, for 1 < j < (k—1)m, the vector fields
spanning the distribution £ (for their computation see Appendix 3.1.A).

Proposition 3.1.4. Consider a control-affine system Lq¢p : X = f(x) + /Lo u;8i(x), with
m > 2, defined on an open subset X of R*"*1 where k > 2, that is locally, around x* € X,
static feedback equivalent to TChY,. Let £ = span {vj, 1 < j < (k—1)m} be the involutive
subdistribution of corank one in G¥=2. Then smooth functions @g, @1, - - , @, defined in a
neighborhood of x*, form a minimal x-flat output at (x*,u*), u* & Uy _sing(x*) if and only
i

f

Logi=0,1<j<(k—1)m, 0<i<m,

and dpo Adgq A -+ - ANdgy(x*) # 0.

3.1.5 Examples and applications

3.1.5.1 Example: TCK¥ is not necessary for flatness

In the previous section we have seen that systems locally static feedback equivalent
to the triangular form TChl,‘n, m = 1 orm > 2, are x-flat and we have described all
x-flat outputs. Therefore being static feedback equivalent to TChX, m = 1 or m > 2
is sufficient for x-flatness. A natural question arises: is static feedback equivalence
to TChE, necessary for flatness, provided that the control-linear subsystem is static
feedback equivalent to the chained form? The next example gives a negative answer
to this question. Consider the following control-affine system whose control-linear
part is already in the chained form Ch}, but whose drift f does not satisfy the com-
patibility condition (Comp) and thus the system cannot be transformed into TCh{:

Z()ZZ)() 21 = 23 + 27200
Zp = —z4 + 2309
z3 = a(Z3) + z0g
g = U

where 7 is a smooth function depending on zy, z1, zp, z3. The pair (@o, ¢1) = (z0,21)
is an x-flat output. Indeed, we have ¢y = zp implying ¢o = v and ¢ = z; implying

$1 = 23 + 2200 = 23 + 2240
¢1 = a(@o, 91,22, 23) + 23935 + 22 §o.

These expressions allow us to calculate zp and z3 via the implicit function theorem as

)
),

for some functions 7, 73, where qbl denotes (¢, ¢, - - -, qo(l)). By differentiating z3,
we deduce z4 = 74(@;, §3) which yields v1 = 61(@5, 7). So we have expressed all
state and control variables as functions of ¢y and ¢; and their derivatives proving
that (¢o, 1) = (20, z1) is, indeed, an x-flat output.

B
=N =N

22 = 12(@3,
z3 = 13(P%, ¢
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3.1.5.2 Application to mechanical systems: coin rolling without slipping on a
moving table

Consider a vertical coin of radius R rolling without slipping on a moving table, see
Figure 3.1. Assume that the surface of the table is on the xy-plane and denote by
(x,y) the position of the contact point of the coin with the table, and by 6 and ¢,
respectively, the orientation of the vertical plane containing the coin and the rotation
angle of the coin. Then the configuration space for the system is Q = SE(2) x S! and
is parameterized by the generalized coordinates g = ((x,y,0), ¢).

Figure 3.1 — The coin on a moving table

Assume that the table moves with respect to the inertial frame obeying the differ-
ential equations

Xt = tx(xt,yt)
ye = Blxu ). 3.9

for a smooth vector field (a, ) " on R?.

Therefore the nonholonomic constraints of rolling without slipping can be repre-
sented by

xsin@ — ycoso = 0 (3.4)
(x —a)cosfO+ (y— B)sinf = R¢, '
which leads to the kinematic model of the coin on a moving table as
X cos O(acosf + Bsinf) 0 Rcos®
S y | _ | sinf(acos6+ Bsinb) n 0 i+ Rsin® 1. (3.5)
6 0 1 0
0 0 0 1

The system is control-affine because the nonholonomic constraints are affine (and not
linear) as a result of the motion of the table with respect to the inertial frame.

Remark 3.1.1. Assume that « = —wy;, B = wx;, that is, the motion equation of the
table is

Xy = —wy;

Ye =  wxy,

meaning that the table rotates around its center point with the angular velocity w.
Substituting « = —wy, B = wx into (3.5), we obtain the model of the coin on a
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rotating table as

X w cosB(xsin® — ycosb) 0 Rcos 6

Y wsinf(xsin — ycos ) 0 Rsin@

0 = 0 + 1 | ™ + 0 Up, (3.6)
é 0 0 1

which coincides with the model given by T. Kai [24].

Proposition 3.1.5. The coin on a moving table ¥.,;,, given by (3.5), is feedback equivalent
to the triangular form TCh3 if and only if the motion of the table is described by

Xy = C]/t—l—d
Yyr = —cxtte

where c, d, e € R are constant.
Remark 3.1.2. Notice that introducing ¥; = x; —e/c and §; = y; + d/c, we obtain:
i =
Yt = —cXt.
The only motions of table that lead to the triangular form TCh} are thus constant

speed rotations around a fixed point (e/c, —d/c).

Proof. The system X..,;,, is feedback equivalent to the triangular form TCh’f if and only
if it satisfies the conditions (Ch1)-(Ch3) and (Comp) of Theorem 3.1.2 or, equivalently,
conditions (Ch1)’-(Ch2)” and (Comp). Consider the associated distribution G and the
drift f given by:

0 Rcos 6 cosO(acosf + Bsinb)
G = span{g1, ¢} = span (1) ) RSSHG and f = sinO(w Cosg + Bsin0)
0 1 0

A straightforward calculation shows that

—Rsin6 —Rcos b

R cosf —Rsin6
8= [81,8] = 0 ;8= [81,83] = 0
0 0

Therefore G! = G; = span{g1, 2,83} and G? = G, = span{g1, $2, 93,94} which
gives that rank Gl = G, = 3and rankG? = G, = 4 and thus conditions (Chl)’-
(Ch2)” hold. Moreover, it is easy to see that C! = span {c} where ¢ = g, and a direct
computation gives

YR cos 6

Rsin6
fd=lral=- 75 |
0

where

B u B . : on B .
’y—cos()(axcos@—i—axmn())+51n9(aycos(9+aysm9>.
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The condition (Comp) of Theorem 3.1.2 requires that [f,c] C G! implying that the
vector fields [f, ¢] and g3 are colinear and this is the case if and only if y = 0. We thus
have to solve

cos 0 a—DCCOSG—i—a—‘BsinG +sin @ a—ac059+a—ﬁsin9 = 0.
ox ox oy ay

Dividing the above equation by cos? § and denoting w = tan 6, we get

o on  df B,
ax+(ay+8x)w+8yw =0,

which implies that

w0 o

ox 9y 9y  ox
We get a = a(y), B = B(x) and then by the equality g—; = —g—”;, we have
(y) =—p'(x) =,

where ¢ € IR is a constant. This gives

o« cy+d
B = —cx+e

where ¢, e, f € R are constants and the motion of the table is described by

Xy = CYt + d
yr = —cxt+te, 37)
or, equivalently,
Xy = Cgt
Y = —cXy,
which proves the proposition. O

3.1.6 Proofs

3.1.6.1 Proof of Theorem 3.1.1

Proof. Necessity. Consider a two-input control-affine system X,¢r @ % = f(x) +
upgo(x) + u1g1(x) locally, around x*, static feedback equivalent to TCh’{ and bring
it into the form TCh’{, around z*. By abuse of notation, we continue to denote by
f, go and g1, the drift and the controlled vector fields of TChY. The distribution
G = span {go, g1}, associated to TCHL, is given by

— %P aZk,aZQ 2821 kaZk_l '
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By an induction argument, it is immediate to show that

a Zje—i aZk aZQ 28 Z1 k=i

G' = G; = span { }.

0Zk_i—1

Thus GF~1 = TX and the distribution G¥~3 is of constant rank k — 1. The characteristic
distribution C' of G' is given by

0
0Zk_it1

, 0
e — <i<k-2.
C' = span { ,aZk},l_z_k 2

So it is immediate to see that C¥~2 is contained in G¥—3, this inclusion is of corank one

and G%(z*) ¢ C¥=2(z*). This shows (Ch1)-(Ch3).

Moreover, we have

9 . _0fiq 0

9 4 9
[azk'f] 0z) 0Zj_1 €y
and 9 i 9 9 9
ki
— f]l = modspan{ —, - -+ , —
0Z_iy1 0Zk_jy1 92k P {azk—z’—H azk}

which is clearly in G, for any 2 < i < k — 2. It follows that [f, Clc G forl <i<
k — 2, which shows (Comp). The conditions (Ch1l) — (Ch3) involve the distribution G
only, so they are invariant under feedback of the form g — ¢B. Obviously, [g;, Cl e
G' (since C' is characteristic for G'), for 0 < j<1,1<i<k—2,and thus (Comp) is
invariant under feedback of the form f — f + apgo + 2141.

Sufficiency. ~ Consider a two-input control-affine system X, : ¥ = f(x) +
upgo(x) + u191(x) satisfying the conditions (Ch1)-(Ch3) and (Comp). As proved in
[50], the items (Ch1)-(Ch3) assure the existence of an invertible static feedback trans-
formation u = B and a change of coordinates z = ¢(x) bringing the distribution G°
into the chained form, which transform the system %, into

Zo = ﬂo(Z) + 1y Z1 = m (Z) +  zoi
Zr1 = a1(z) + zdo
Zk = llk(Z) + 1/71

with a; smooth functions. Applying the invertible static feedback vy = ag(z) + i
and vy = ay(z) + i1, we obtain

Zo =00 Z1 = fl(Z) + 2709
Zr1 = fie1(z) + oz
Zk = U1

where f; = a; — z;1a¢. In these coordinates, we have

- 9 9 +zi+ e J
akl aZk aZO 281 k=i

G' = G; = span { },0<i<k-1,

0Zk_i 1
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and

d
0Z_iy1’
From [f,C'] C G, forany 1 < i < k — 2, it follows immediately that

Ci:span{ ---,%},1§i§k—2.
k

%:0, fori+2<j<kand1<i<k-2,
j

which gives the triangular normal form TCh'lc. (]

3.1.6.2 Proof of Theorem 3.1.2

Proof. Necessity. Consider a control-affine system X : ¥ = f(x) + ¥/" ju;gi(x) lo-
cally, around x*, static feedback equivalent to TCh% and bring it into the form TCh'fn,
around z*. To simplify the notation, we continue to write f and g;, 0 < i < m, for the
drift and the controlled vector fields of TChY, and we denote

d d d
span{ﬁ = span{a, e, a}

The distribution G° = span{g;, 0 <i < m}, associated to TChﬁi, is given by
G° = span {go, -2}
"ozk

By an induction argument, it is immediate that

d

'zg/go}/ Oglgk_l

; d
gl = Span{%’ ..
It follows that GF~1 = TX, the distribution G¥~2 has constant rank (k—1)m+1and
contains an involutive subdistribution of constant corank one given by

0 0
Ezspan{@,"- ,@},

and G°(z*) is not contained in £(z*). This shows (m-Ch1)-(m-Ch3). The characteristic
distribution of G' is given by

, 0 0 .
Cl:span{w,~~,a—zk}, 1<i<k-2,

and we have, foranyk —i+1 <[/ <kand1 <j<m,

a . ofit 2

_sz] - I I—
az]. 0z, 1

-1 ,
+---+afm J mod C'
az].

azé ozh !

[

which is clearly in G!. Thus [f, Ci] C G for1 < i < k—2, which proves item
(m — Comp).
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Sufficiency. Consider the control-affine system X,¢r @ & = f(x) + ¥2/Lou;gi(x)
satistfying the conditions (m-Ch1)-(m-Ch3) and (m-Comp). According to Theorem 5.6
in [50], the items (m-Ch1)-(m-Ch3) assure the existence of an invertible static feedback
transformation u = Bii and of a change of coordinates z = ¢(x) (see Appendix 3.1.B
where we explain how to construct the diffeomorphism ¢ and the feedback transfor-
mation) bringing the distribution G° into the m-chained form and thus the system
Zﬂ ff into

(2o =ag(z) +ilp 21 = al(z)+ 224 zZ = al(z)+ 221
22 = a}(z) + 2l 22 = a’(z)+z),il
] : :
A1 = AN+ - AT = ali(z) + ki
\ o = d@)+m o2k = dK(2) F i

with a; smooth functions. Applying the invertible static feedback vy = ag(z) + 7
and v; = ai-‘(z) + 1, for 1 <i < m, we get

(0= 2] = fl@+zv -z, = ful@)+z
% = filz)+zo Zy = fu(z) + 200
U = )y kg o KT = fRel(z) 42k
\ K =y R

with f]? = aj- — z§+1a0. In the z-coordinates, we have

- 0 0 )
g’ =Span{W,--- ,g,go}, 0<i<k-1
The characteristic distribution of G' is given by

; 0 0 .
Clzspan{w,---,g}, 1§l§k—2,

and the corank one involutive subdistribution of G2 by

0 0
L —Span{@,"' ,@}
We have, for1 <i <k -2,
0 m k=il aff o 0 0
— fl = — ——modspan{———, -, ——
[az;c—z-l—l f] I_Zi s_zl aZ;c—H—l azi P {azk—z azk—l}

and since [—2—, f] € G}, for any 1 < j < m, we obtain
P y ]
j

fi
k—i+1
Zj

It follows that f exhibits the desired trangular form TCkE,. O

=0, forany1 <j,I<m, 1<s<k—i—-1
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3.1.6.3 Proof of Theorem 3.1.3

Proof of (F1). Consider the two-input control-affine system X : ¥ = f(x) + upgo(x) +
u141(x) locally, around x*, feedback equivalent to TCh! and bring it into the form
TCHY, around z*. To simplify notation, we continue to denote by f, respectively by
go and g1, the drift, respectively the controlled vector fields of TChX.

It is clear that TChY is x-flat, with ¢ = (z0,2z1) being a flat output, at any point
(z*,v*) satisfying

ofi (z")+0v5#0, for1 <i<k-1,
0z;11

where v* = (v}, v7). Recall that, in coordinates z, we have

, 0 0 0 0 0
= .. — P <i<k—
g span{aZk_i, az azo +z 2821 4. +Zk_laZk_i_1 b, for0<i<k-1,
and
Ci:span{ J ,---,i},lgigk—Z.
9Zk i1 Izk

Notice that for each 0 < i < k — 3, the only nontrivial condition for [f + uhgo +
ulgy, CH1] C Qi to be satisfied for TCh% is [f + vigo + vagl,%] € G' implying
|f, azi_ | — voazk - € G' and hence

9fk—i-1

i _
aZk_i (Z) + UO = 0.

The latter is feedback invariant because [f + ufgo + uig1,C'"!] C G' is feedback
invariant as explained just after the definition of Uém in Section 3.1.4. Another

argument proving feedback invariance is that we look for the vector field f(x) +
uo(x)igo + u1(x)'g1 belonging to the affine distribution f(x) + G°(x) which, obvi-
ously, is feedback invariant. To summarize, v* € U{_3 U/, (z*) if and only if

sing
afk i—1

—0,0<i<k-—
azkl()—l—vOOOz 3.

To analyze the condition [f + uf 2go + u2g1,1] € G¥2, where !l € L and I ¢
Ck=2 takel = %. Then

. . : :
f+ob 20+ ol gl = 1fy g -] o €02

if and only if

The definition of Ui‘jﬂg is feedback invariant (for the some reasons as those giving
invariance of U; ng’ 0 <i<k-—3)and thusv* € Uﬁjjng if and only if %(Z*) + 05 =0,
where £ is such that G°(x*) ¢ L£(x*). If £ is such that G°(x*) € L(x*), we will show
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when proving the equivalence (i) <= (ii), that under the assumption (which we al-
ways assume) (dgg A dey Adgg Adgr)(x*, u*) # 0, where L+ = span{d¢g, dg;}, we
have u* ¢ U’Zjﬁng (x*) and in X* x R?, where X'* is a sufficiently small neighborhood
of x*, the set U’Zjﬁng(x) consists of two connected components that define, for each

fixed value x € X'*, x # x*, an affine subspace of U = R2.

Now observe that the set of the singular control values U’Z:fng (at which (¢o, ¢1)

ceases to be a flat output for TCh¥) is determined by £ which, in turn, is uniquely
associated to the choice of the flat output (¢, ¢1) by £+ = span{dgq, d¢ }. Different
choices of (o, ¢1) lead, in general, to different distributions £ and, consequently,
to different singular control values and the system is not flat only at those that are
singular for all choices of £. Hence

k—2
51”8 U sing U usmg

where

sing L—sing”

uk 2 m uk—2
L

Proof of (F2). It was shown in [29] that conditions (FO2) and (FO2)’ are equivalent
(for control-linear systems X;,, but notice that (FO2) and (FO2)’ do not involve the
drift f). We deduce immediately that (ii) < (iii). We will now prove that (ii) = (i).

First consider the case (Lg¢o, Lgg1)(x*) # (0,0). By [29], a pair (o, ¢1) satisfying
(FO1) — (FO2) forms a flat output of the control-linear system X;;,, and, also by [29],
(90, 1) is compatible with the chained form so there exists a local static feedback
transformation bringing ¥j;, into the chained form with zy = ¢¢ and z; = ¢ + koo,
ko € R, which thus transforms the control-affine system %, into

Zo=fo(z)+vo z1 = fi(z) + z2v9
Zk-1 - fie1(z) + zvo
Z = filz) + o

Replacing v by vg — fo and v; by v1 — f; and using [f, C’] C D', we conclude (repeat-
ing the proof of (F1)) that the system is in the triangular form and thus, flat at (x*, u*)
suchthatu* ¢ U, . = Uk Sut U Uk 2 Where L = (span {dgg,dpi})*.

sing szng

Now consider the case (Lg¢o, ngol)(x*) = (0,0). Since X,¢r : X = f(x) +
upgo(x) + u1g1(x) is locally, around x*, feedback equivalent to TChX, we can assume
that ¥ ¢ is in the triangular form TChY around z* = 0:

(zZo=vy % = fi(zo0,21,22) + 2209
ZZ - f2(20121122/z3) + 2300
k .
TChy :
k1 = fk—l(ZO,---,Zk) +  Zx0o
Zxk = 0
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The characteristic distribution Ck~2 takes the form CfK=2 = span {8%3’ cel, azk}

and the condition L.g; = 0, for any ¢ € C¥~2, given by (FO2) implies that ¢; =
¢i(z0,21,22), for i = 0,1. Condition (FO1) implies that dgg A de1(x*) # 0, that is
equivalent to

a(po a(po a(p()
aZO 821 822 —

aZO 821 aZZ

Notice that the condition (Lg¢o, Le@1)(x*) = (0,0) implies that %%(O) = %(O) =0
and thus we get

990 990
dz1 02y _
dz1 02y

We assume ¢o(0) = ¢1(0) = 0 (if not, replace ¢ by 9o — ¢o(0) and ¢1 by ¢1 — ¢1(0)).
We will introduce new coordinates (Z1,Z;) = (¢o, ¢1) in two steps. Assume that
3—2(0) # 0 (if not, permute ¢y and ¢1) and put Z, = ¢1(zo, z1,22). Then the two first

components become

21 fi(zo, 21, 22) + a(z0, 21, 22) 00

Zy = fa(z0,21,%2,23) + b(z0,21, 22, 23) 00,

where fo = Lrp1, b = Lgypr and a = 22 = ¢ (zO,zl,Zz) is the inverse of ¢; with
aZO + %(Zpllz + a 123 is affine with respect to z3
and aq’l (O) #0so0z; = L1’3b for 3 <i < k, is a valid local change of coordinates in

wh1ch the system, under the feedback 7 = L ka 3p + vOL(’g‘,O_Zb +v1Llg, Lfg,o_e’b, takes
the form

respect to z. Notice that b = Lg @1 =

zo=v0 Z1 = fi(z0,21,2) + a(z0,21,22)00
Z = faz0,21,22,23) + 2309
Zrq = fe1(zo,21,22, -, %)+ Zxoo
5 = 0.

Now put 21 = ¢o(zo,21,22). We get Z; = Lo + voLg,po- Notice that Lg ¢ is affine
with respect to z3 and Ls¢y is, in general, nonlinear with respect to z3 since so is fo
Omitting “ ~ ” we get

Zo=vo 21 = fi1(z0,21,22,23) + (A4 Bz3)vg
zy = fa(z0,21,22,23) + z309
: (3.8)
Zeer = fre1(zoz1, 00, zk) + Zk0o
Zk = 01,

where A and B depend on zy, z1, 22 only Observe that for (3.8), we have ¢y = z;,
@1 = zp and CF2 = span{%,..., a7, . therefore the condition (Lgo)Ljc 91 =
(Lg@1)Lic,q 90 gives A +23B = z3B and thus A = 0 everywhere.
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Notice that the function f,(z, z1, 22, z3) can always be expressed as
f2(20,21,22,23) = f20(z0, 21, 22) + 23 f21(20, 21, 22, 23)
for some smooth functions f,p and f,; and thus
zp = f2(20,21,22,23) + 2300 = fa0(z0,21,22) + 23(f21(20, 21, 22, 23) + o).

Define the new control 9y = f»1(z0,21,22,23) + vp and denote § = fp1, then (3.8)
becomes

fo=0—-n &1 = fi(z0,21,22,23) + 23Bdy
Z = fazo,21,22) + 2309
: (3.9)
1 = frealzo o z) + zdo
Zk = 17y,

where fo = fog and f; = f; — z3By, for i # 2.
Note that Zaff is assumed to be locally, around x* € X, static feedback equiv-
alent to TChlf, hence the conditions | f,Ci] C G'hold, for1 < i < k—2, and

are invariant under change of coordinates and feedback. Clearly, for (3.9), ck-2 —
span {%, ey aizk} and thus [f,CF2] € GF¥=2 implies [f, %] € G¥2 and yields

9
[~ P 5 1 0
f,—]: h | =af z3B | +B| B |,
823 8(2)3 Z3 1

modulo C¥~2, for some smooth functions «, 8 which gives g—zé = 0. Therefore f; =
f1(z0,21,22) and thus (3.9) is, actually, in the following form

o=00—-n z1 = fi(z021,2) + 23B7
Zo = fazo,21,22) + 2309
: (3.10)
1 = frialzo o z) + zdo
Zk = 10y,

with (o, ¢1) = (z1,22). Define a new variable y = z370p. Notice that, although
y = z30p is not a valid control transformation (since z; = 0), it is a system’s variable
under the assumption that the differentials dy = z3dd, + 9pdz3 is nonzero at (z*, 7).
Actually, ¢9 and ¢; are functions of the system variables zg, z1, zo and y. Recall that

®o = z1 and @1 = zp. The condition rkg((g’;’f)) (x*,u*) = 4 together with
A, ¢) 9@ 9)  9(z0,21,2,Y)
a(x,u)  9(z0,21,22,Y) a(x,u)
implies that rkazggjzo—()’(gl)) (z*,v*) = 2. By the implicit function theorem, we can express

zo = Co(po, 91, 9o, ¢1)
y = Cy(po, @1, 9o, 1)
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in a neighborhood of (z*,v*), for some smooth functions (o, Cy-

We have zyp = 99 — 11 = vp and Z; = fz + 230 = fz + 23(00 + 77) Recall that fz
depends on zy, z1, z2 only. So knowing Zy = vy and Z,, we can calculate z3 using the
implicit functions theorem if vy + 1 + 235)—% # 0. Then z3 gives z4 if vo + 17 + % #0
and so on, proving that indeed (¢o, 1) is an x-flat output at (x*, u*).

To conclude the proof, we have to show the implication (i) = (ii). When proving
Proposition 3.1.3, we will show that any flat output (¢o, 1) of a system X ¢ feedback
equivalent to TChY satisfies (dgo A dp1 A dgo Adgr)(x*,u*) # 0and Legg = Legq =
(Lg@0)Licg1#1 — (Lg@1)Lic g0 = O, forany ¢ € C*~2. If (Lgpo, Lgg1) (x*) # (0,0), we
conclude in the same way as for item (F1) that the singular control values v* coincide
with v* € Up_ging(2").

Let us consider the case (Lg¢o, Lg@1)(x*) = (0,0). Since the conditions L.@y =
Legr = (Lgpo)Licg1®1 — (Lgp1)Licq)po = O are valid everywhere on X, we repeat
the proof of (ii) = (i) and bring the system into the form (3.10), around z* = 0,
with (o, ¢1) = (z1,22). Now we will show that the singular control values v* at

which the procedures of calculating zy and vy fail, given by rk (a(’;o 451) (z%,0%) <1

and v = —(17+23a—23)(z*), coincide with v* € Uk 2 (z") and v* € UX3(z%),

—sing sing
respectively.

To this end, calculate U’Zjﬁng(z) = {v(z) = (vo,v1)" : [f+ vogo + v1g1,1] €
G2}, Since dpy = dz; and dg; = dz, we have E (span {doo,dp1})*+ =
span{a%,a%,%, . 'azk} and G52 = £ +span{Bs> + ;2 }. Thus [f + vogo +
v181,1] € GF2, for any I € L, holds (taking the only nontrivial case I = —) if

and only if [f, aiZO] + 050, 820] € G52 which is equivalent to [( fl + voz3 gi)ail +

929 1 ¢ k-2 and thus to (55 o +UoZ3aZO) + 291N (B + )—0 This yields

E)zo 0z dz1 0z 0z 071 0z

e Uy 2smg( *) if and only lf fl( *) — Sﬁﬁ( ) + 0§23 gZB (z*) = 0 which coincides

with rk=72£0 (ZPO’(?)) (z*,0") < 1.

Notice that under the assumption (dgg A de1 Adgo Adgq)(z*,u*) # 0, we have
%( ) — afz( *) # 0 and, since z* = 0, it follows that v, ¢ llk_2 ( *). Moreover,

since aB # 0 (otherwise Gk=1 # TX), for each fixed value x # x* in X *, a sufficiently

aZZ

small neighborhood of x*, we get (vg,v1) € Uﬁjjnq(z ) with vy = IP(ZOZ—?’ZZ), where

P = (%)(5’%)‘1, and vy any. Thus in X* x R?, the set U’Zjﬂg(x) consists of two

connected components that define, for each fixed value x € X*, x # x*, an affine
subspace of U = RRZ.

To analyze v = —(n + z3 32'7 )(z*), notice that for (3 10), C2 =
span{a%,--- =} and G"3 = CF2 4 span{ag + Z3Baz + 2332 }. It follows
that [f + 600 + 9181,C*2] € G" 3 is equivalent to [f + Fpgo + vlgl, 6673] A (8%0 -+
233% + 23%) = 0mod C*2, which yields —337’73 + 50(% + 23322) (2 + 23(B3871 +
233872))) = 0 implying 2357’73 + 7y = 235)—2'73 +1n+7v9 = 0. Thus, indeed, vj =

aZQ
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—(235)—2'73 +7)(z*) if and only if v* € U 3(z*). B

sing

3.1.6.4 Proof of Proposition 3.1.1

Proof. In [29], the equivalence of the following conditions has been proven for any
two-input system feedback equivalent to the chained form and for a pair of smooth
functions (¢, ¢1):

(i) The pair (o, 1) is an x-flat output of Xj;,, at (x*,u*), where u* is such that
ugo(x*) +uigr(x*) & CH(x*);

(ii) The pair (¢, ¢1) satisfies the following conditions:

(FOLjin) doo Ade1(x™) # 0;
(FO2ji,) Lepo = Lepr = LC(%) = 0, for any ¢ € C*~2, where the functions

@0, ¢1 are ordered such that Lo (x*) # 0, which is always possible
due to item (FO3y;,);

(FO34in) (Lgpo(x*), Lgp1(x*)) # (0, 0);

(iii) The pair (¢, ¢1) satisfies the following conditions:

(FOllin), dq)() /\d(pl(x*) 75 0,’
(FO2i,)" L = (span{dgo,dp1})* C GF%;
(FO3yi,)" GO(x*) & L(x*).

In the view of the above, item (F3) is obvious. So is (F6) because (FO1)’ yields
(FO1;3,)’, the condition (Lggo(x*), Le@i(x*)) # (0, 0) implies (FO3y;,)’, and (FO2)’
and (FO2y;,)" coincide.

To show (F5), notice that (FO2)" and (FO2;;,)" coincide. To prove that (¢o, ¢1)
satisfies (F01), we can bring, see [29], the control-linear system ¥;;,, into the chained
form compatible with the flat output (o, ¢1) (which is assumed to be a flat output
of Xj;,,), that is, Ch]{ with zg = ¢o and z; = ¢1. In the z-coordinates, the drift takes
the triangular form for TChlf. By a direct calculation, we can check that (dgg A dgq A
do A der)(z*,0*) # 0, where v* & Up_ino(z*) and £ = (span {d@g, dg1 })*. Hence
(@o, ¢1) is an x-flat output of X ¢f at (x*, ") where #* & Uz _ging(x*).

It remains to prove (F4). If (¢o, 1) is a flat output of X, then the conditions
(FO1;;,) — (FO3y;,) are satisfied and thus so are (FO1) — (FO2) because (FO2) and
(FO2y;,) coincide and (¢, ¢1) being a flat output of ¥;;, satisfies (FO1) with ¢; =
LFlin(Pi’ 1= 0, 1.

To prove the converse, we have to show that condition (FO01) (dgg A dgq A dgg A
dei)(x*,u*) # 0, where ¢;, for i = 0,1 is understood as ¢; = Lr, ¢; and Fj;, =
uogo + 1181, implies that (Lg@o, L) (x*) # (0,0).

Bring ¥j;, into the chained form Ch! around z* = 0 and let (@, ¢1) be a flat

output. Since Lc¢g = Lc¢; = 0, forall c € Ck=2 — span{%, cee, aizk , it follows
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¢; = ¢i(20,21,22), for i = 0,1. Assume (Lg@o, Le@1)(0) = (0,0), otherwise the claim
holds. Thus 375(0) = 0, fori = 0,1, and since (dpyo A dp1)(0) # 0, we deduce
rk (((”0 (Pl)) (0) = 2. Assume that %( ) # 0 (if not, permute ¢y and ¢1) and put

Z = @1. Notice that b = Lg @1 = 3% + 3(5112 + a 173 is affine with respect to z3 and
991

o (0) #0s0z; = Lg?’ b, for 3 < i < k, is a valid local change of coordinates in which
the system, under the feedback 7; = ZJOLfg‘,O’Zb +01Lg, L§;3b/ takes the form

Zp =700 Z1 = a(zo,21,22)v0
V) = 230
Zk—1 = Zko
5 = 0.

where a = z, = ¢, !(z9,21,22). The condition (Lggo)Ly, g] Pp1 = (Lg(pl)L[clg] @o yields

99 (Po
aZO

the dlfferentlals satisfy dgg = (pld _ mod span {d¢ } and since ¢1(0) = 0, we get
(dgo Ndg1)(0) = 0, which contradlcts the independence of flat outputs and their

differentials. Thus (Lg@o, Lgp1)(0) # (0,0). Now it is obvious that LC(ngl) =0is

equivalent to (Lg@o)L(c¢1¢1 = (Lg@1)L,q)90, Where Lgpo(x*) # O (after permuting
@o and @1, if necessary). O

+ aa(PO = 0. So omitting the tildes, we obtain ¢y = 37, 2300 = afo ¢1. Therefore

3.1.6.5 Proof of Proposition 3.1.2

Proof. For the proof of Proposition 3.1.2 in the case Lg@o(x*) # 0, we refer the reader
to [29]. Let us consider the case Lg@o(x*) = 0. Bring the system X, ¢, into the form

TCh'lc, around z — 0. The characteristic distribution C¥~2 takes the form Ck2 =
span {8%3’ e, Bz }, and the condition L.@g = 0, for any ¢ € CK~2, implies that ¢y =
®0(z0,21,22). From < dey, G2 > (0) # 0, we deduce %(0) # 0. Introducing the

new coordinate Z, = ¢ and following exactly the proof of item (F2) of Theorem 3.1.3,
we get (omitting the tildes for Z)

zo = 0o — (20, 21,22,23) 21 fi(z0,21,20,23)  + a(zo,21,22)00

Z = fa(20,21,22) + 230
: (3.11)
Zrr = frio1(zo o, zk) + z0o
Zk = 0y,
with @9 = z,. The condition [f,C*2] € GF=2 implies % = aaag In these

coordinates we have v = (Lg¢o)|ck_2,8] — (L[Ck_2,g] P0)g = 23822 (aZO + aazl +
23%) mod C*~2, The distribution £ = C*~2 + span { -2 oz T 5 9_1 is, indeed, involutive
and of corank two in TX. Thus there exists a smooth function Y = P(zo, zl, zz) such
that 374;(0) # 0 and % alp = 0and we put Z; = ¢. Then Z; = Lgpp + az Y 230 =
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fi(20,21,22,23) + 23B(20,21,22)%. From [f,C¥2] € G*2, it follows that f; =
f1(z0,21,22). We have

2o=00—n Z& = fi(z0,21,2) + 23B7
zo = fa(z0,21,22) +  z3%)
zrr = fio1(zo o, z) + zi0o
Zk = 01,

with ¢ = Z; and @ = 2. The pair (9o, ) = (22, z1) is an x-flat output at (z*, v*), with

0" & Up_ging(2*), lfandonlylf(%— ggx ) £ 0,i.e., (dp Ady Adeo Adeg)(0) # 0.
Il

3.1.6.6 Proof of Proposition 3.1.3

Proof. Consider ¥, static feedback equivalent to TChE and let (¢, 1) be a flat out-
put at (x*,u*), such that (Lg@o, Le@1)(x*) # (0,0), where g is an arbitrary vector
field in G such that g(x*) ¢ C*2(x*). Form the decoupling matrix D = (Dij),

where D; = Lg],qo,-, 0 < i,j < 1. The involutive closure GO of G¥ is TX, so
1 < rkD(x) < 2. If rkD(x) = 2, then via a suitable feedback transformation
¢;i = 9,1 = 0,1, which contradicts flatness. Thus rkD(x) = 1 in a neighborhood
of x*, since (Lg@o, Leg1)(x*) # (0,0). We have dpg Adpq1(x) # 0 so put zg = ¢,
z1 = @1 and, after applying feedback, the first two components of the transformed
system z = f 4 vpgo + v1§1 become zg = vy, 21 = a1(z) + b1(z)vg. The successive

time-derivatives (pgl) of ¢1 = z1 cannot depend on vy, for 0 < [ < k —1 (it would

contradict flatness) and the k-th derivative depends explicitly on vy, otherwise we

would obtain a contradiction with the independence of flat outputs and their time-
(1)

derivatives at (x*,u*). Notice, however, that ¢, is a polynomial of degree I, with
respect to vp, with the leading coefficient being Lglbl. Since (pgl) does not depend
on vy, for1l <[ < k —1, it follows that LglL(lgglbl =0forl <[ < k—2. We claim
that the functions zg, z1, by, ..., Lgo_zbl are independent at any point of an open and
dense X' C X. If not, take x( and its open neighborhood V C X\ X’ and let s be the
largest integer such that zp, z1, by, . . ., LEO by are independent in V. Assume s < k — 3.

Introduce new coordinates z; = Légzbl in V, for2 <i <s. We get:

Zo = 09 Z1 = M (Z) + 2279
Z = m(z) +z30
Zs41 = as41(2) + Zs4200
Zsy2 = 512(2) + bsya(20,- -, Zs42)00
Z = f + S0vo +8101
where Z = (z343,...,2¢). Notice that the vector field [go,g1] is of the form

. . —0 . .
Zl 13 "‘laz , with a; smooth functions. We deduce that G, the involutive closure
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of G¥ = span {go, g1}, satisfies 3 c span {go, %H, = 91 This yields g’ # TX,

which contradicts the fact that for %, £, static teedback equivalent to TCHh*, we have

?0 =TX. Thuss = k—2and we putzp = by,...,z, = ng,o_zbl, and replace v; by

ka 2p, + UO(nglbl) +v1(Lg, L'g,o 2h1). We get

—i+zi+ o4z i and —i
80 = 19z =19z, 81~ 0zk

Using exactly the same arguments as in sufficiency part of the proof of Theorem 3.1.1
(the forms of G' and of C' and the condition [f,C'] € G') we conclude that on X', open
and dense in X, the system is locally in the triangular form

zo=v9 21 = fi1(z0,21,22) + 209
TCHE - _ :
Zre1 = fre1(zoo--o zk) + zZkvo
Zk = 0

The flat output (¢o, ¢1) = (20, 2z1) satisfies
Lego = Legr = (ngo())L[c,g](Pl - (Lg(Pl)L[c,g](PO =0,

where ¢ € CF2 = span{a%, 91 and g is any vector field such that G0 =

©t 0z
span{g,c1} where ¢c; = aizk is the characteristic vector field of G!. In order to
prove that we can bring the system into the triangular form TChY, around any
x* € X (and not only on X’), notice that the characteristic distribution C*2 is de-
fined everywhere (not only on X’) so, by continuity, the conditions Lcgg = Lcgp1 =
(Lg@o)Lic,q)91 — (Lgp1)Lic, g0 = 0 hold everywhere on X implying that if we put
the control system X, ¢, around an arbitrary point x* € X, into the triangular form
TCh’{, then for the flat output (¢o, 1), we have ¢; = ¢;(z0,21,22),0 <i <1, on X’
and thus on X.

Since we have assumed that (Lg¢o, Lg¢1)(x*) # (0,0), we can apply the fol-
lowing change of coordinates (permute ¢ and ¢, if necessary) zop = ¢o, 21 = ¢1

Lg . .
and z; = L’ 21/1 for 2 < i < k, where ¢ = Zogé, in which the control vec-
0

tor fields are in the chained form with (¢o, ¢1) = (zo,z1). The system X,¢ is as-

sumed to be feedback equivalent to the triangular form TCh%, hence satisfies the
compatibility condition (Comp). Using the z-coordinates and applying the feedback
f = f—(Lfpo)go — (L;i L) g1, we transform Y, ¢f into the triangular form TChk
with (¢o, 1) = (2o, Z1) around any x* € X.

Notice that we have proved, in particular, that any flat output (¢, ¢1) of a sys-
tem X, ¢¢ feedback equivalent to TCHX satisfies (dpo A dey Adgo Adgr)(x*,u*) # 0
and Lego = Legr = (Lgpo)Licg1P1 — (Lg@1)Lic @0 = 0, for any ¢ € Ck=2, that is,
conditions (FO1) — (FO2) of Theorem 3.1.3.

]
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3.1.6.7 Proof of Theorem 3.1.4

Proof of (m-F1). Consider a control-affine system XX = f(x)+ X" uigi(x) locally,
around x*, static feedback equivalent to TChY,, and bring it into the form TChE,,
around z* For simplicity of notation, we continue to denote by f, respectively by
gi, for 0 < i < m, the drift, respectively the controlled vector fields of TChE,.

It is clear that TCh@ is x-flat, with ¢ = (zo, z%, cee, z,lﬂ) being a flat output, at any
point (z*,0*) € X x R"*! satisfying

rkFl(z*) =m, forl1 <[ <k-1,
where F!, for 1 <[ < k — 1, is the m x m matrix given by

A(f} + 2 vp)

[+1
azi

Fil]-: ,forl1 <i,j <m.

Moreover, the differential weight of ¢ = (zq,z{,- - ,z},) is (k+1)(m + 1), since ex-

pressing z and v involves (p(j ) for 1 <i<mand0<j <k

Recall that in coordinates z, using the notation span { 91 = span {-% =R %},
we have
gizspan{i‘ i go} 0<i<k-1
aZk_l’ ’ aZk’ ’ >~ > ’
; d d :
C! :Span{w,--- ,g}, 1 S 1 Sk—2,
and
L = span { J }
— PG g
We have C! = spam{a A ik} and thus
O+ [f+gv,C = G°+span{[f +gv, %1 1<j<m}
f1+zv) ) Ofyi +2yv0) 2 :
— Qo—i—span{ L 5kt 44X azkz 00)8251_1,1 <j<mj},
where gv = Y " | ¢;v;. By induction, we obtain
gi_|_ [f+gvlci+l] _
] a( k—i—1 —I—Zkiivo) o) a( k—i—1 —i—Zk*iUo) )
G+ 1 ~1 i + -+ m i —, 1< < .
span { az;‘_’ az’{_l_l az;?_l 9zk-i-1 jsm}

Therefore for any 0 < i < k — 2, we have rk Fi+l(z*,0*) = m if and only if
rk (G' + [f +g9,CH1))(z%,0*) = (i+2)m+1,for 0 < i < k—3,and rk (GF"2 + [f +
gv, L)(z*,v*) = km + 1. It follows that the original system X,¢f is x-flat at (x*, u*)
such that u* & Uy, _sine(x*), of differential weight at most (k +1)(m +1).
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As we have noticed, (¢o, ..., pm) = (20,2}, ...,2},) is an x-flat output of TChE, of

differential weight (k + 1) (m + 1) since expressing z and v involves go(j ) for0 < j <k

1
Now, we will show (which is interesting as an independent observation) that the
differential weight of any x-flat output of Z,¢f : X = f + YL u;g;, with m + 1 controls
and km + 1 states, is at least (k+1)(m + 1). Let (o, ..., ¢m) be an x-flat output of
Y.¢f. Define D = (Djj), where D;; = Lg,¢; and put r(x) = rkD(x). Clearly, r(x)
is constant on an open and dense subset X’ of X (so denote it 7(x) = r) and choose
xo € X'. By a suitable (local) change of coordinates and static invertible feedback, we

get

1 = Al(z) (z)o"

+ Bl(z)
22 = A%(z) + B?*(2)v
where dimz® = r, dimz! = m —r +1, zg = q)o,...,zgfl = @,_1 and z} = ¢,
""Z}l’l — gOm.

Due to flatness we can express (with the help of the flat outputs ¢; and their time-
derivatives) mk + 1 components of z and m + 1 components of v, i.e., m(k + 1) + 2
functions. Using ¢; = z? and ¢; = v?, 0 <i <r—1, we express 2r system variables.
The remaining m(k + 1) + 2 — 2r system variables (that is, the components of z!, 2z
and the remaining components of v) depend on derivatives of ¢;, ¥ < i < m. Denote
by s; the maximal order of the derivative qofsi), r < i < m, that is involved. Put
s = max{s; : ¥ < i < m}. By taking the time-derivatives of ¢; up to order s; < s, we
can express at most (s + 1) (m — r + 1) functions. This number cannot thus be smaller
than the number of functions that remain to be expressed, that is, we need

(s+1)(m—r+1)>mk+1)+2—2r,

which is equivalent to
m(s—k)>(r—1)(s—1).

Now, three cases are possible. It is clear that if s < k, then the left hand side is
negative, so the inequality is not satisfied. If s = k, then either r = 1 or s = 1. The
latter is impossible since s > 2. In the case r = 1, we have dim 29 = dimv® = 1and in
order to express all m(k + 1) + 2 variables of the system, we will use s = k derivatives
o0, 00,d, ..., (v°)5-1). Thus the differential weight of ¢ is at least m(k+1) + 541 =
mk+1)+k+1=m+1)(k+1).

Finally, if s > k, then there exists ¢ s forsomer +1 < j < m+ 1, that we differenti-
ate s times so it involves at least s — 1 time derivatives of ¢; = A]l (z) + B} (z)0", where

A} is the j-th component of A! and B]l is the j-th row of Bl. The involutive closure
8
]

trivially on (at least one) component of (v) (5-1) To summarize, we use mk + 1 func-
tions to express z, m 4 1 functions to express v, and we also use the s — 1 derivatives
a0, 4%,..., (v")5~1), which gives at least (k + 1)(m + 1) + 1 functions (since s > k).
Therefore the differential weight is higher than (k+ 1)(m + 1) on X’ and thus on X.

G of the distribution G° is TX so B]l is nonzero. It implies that ¢.”’ depends non-

It remains to prove that the differential weight of any flat output (not necessary
an x-flat output) cannot be smaller than (k+ 1)(m + 1). Let (¢o,..., ¢m) be an (x,
u, i, ...,uP)-flat output of Y,¢r. Denote by s; the highest derivative of ¢;, for
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0 < i < m, involved in expressing the state x and the control u, that is, by flat-
ness, X +U C ®, where X = span{dxy,--- ,dx,}, U = span{dug,--- ,du,} and

® = span {dqol(ji),O <i <m0 <j; <s;}. Lets; be the largest among the integers
s;. Either ¢;- depends on u(!), with [ > 1 (but not on derivatives of u higher than )
or ¢;+ depends on u (but not on derivatives of u) or ¢;+ depends on x only. Then the

differentials (pfl) are independent modulo X 4 U, for 0 < j < s;+ (in the first case), for

1 <j < sj+ (in the second case) and for 2 < j < s;« (in the third case, since ¢;+ depends

on u because ?O = TX). It follows that X + U/ C ¥ = span {dq),-*,dgbi*,d(pgji),o <i<
m,i ?5 i*,O S ji S Si}.

We claim that s;« > k. If not, then's; < s;x <k —1, for 0 <i < m (recall that s;« =
max{s; : 0 < i < m})which implies rkY < mk+2 < m(k+1)+2 = rk(X +U),
contradicting X +U C Y. Thus s;» > k.

We have X +U C @ (by flatness) and d@;+, - - -, dgol(f ) belong to ® and are in-
dependent modulo X +U, sork® > rk (X +U)+k—1=m(k+1)+2+k—1=
(m+1)(k+ 1) proving that the differential weight of ¢ is at least (m 4 1)(k+1). No-
tice thatrk® = (m +1)(k+1) ifand only if s;+ = s; = k, forany 0 < i < m, implying
that with ¢;, i # i*, we express mk system variables and the remaining two variables
are expressed with ¢;-. We deduce immediately that, in this case, all ¢; depend on x
only.

Proof of (m-F2). Let (@o, - - - , ¢m) be a minimal x-flat output for ¥,¢¢. When prov-
ing (m-F1) we have shown that we can bring the system into the form

zo=1vy 2! = Al(z) + Bl(z)°

22 = A%(z) + B?(z)v
where zp = ¢p and zi = ¢1,...,z}, = @i and dimzy = dimvy = 1, being a conse-
quence of the minimal differential weight (k4 1)(m + 1) of ¢. Fori < i < m, denote

by k; the minimal integer such that (pl(ki) depends explicitly on at least one v}, for

1 <j < m. Since %, 7 1s static teedback equivalent to TChﬁW it follows that k; < k. In
order to prove that k; = k, for 1 < j < m, suppose that there exists k; < k and assume,
for simplicity, that k; < k. Denote gogkl) = v1 (with v; depending on vy, - - -v(()klfl)).
Like in the the proof of (m-F1), notice that due to flatness we can express (with
the help of the flat outputs ¢; and their time-derivatives) mk + 1 components of z
and m + 1 components of v, i.e., m(k + 1) + 2 functions. Using ¢y = zg and ¢ = z],
we can express 2 + k1 +1 = ky + 3 variables of the system. The remaining m(k +

1) +2 — (k1 + 3) system variables depend on derivatives of ¢;, 2 < i < m. Denote

by s; the maximal order of the derivative qogs"), 2 < i < m, that is involved. Put
s = max{s; : 2 < i < m}. By taking the time-derivatives of ¢; up to order s; < s,
we can express at most (s + 1) (m — 1) functions. This number cannot thus be smaller

than the number of functions that remain to be expressed, that is, we need
(s+1)(m—1)>m(k+1)+2— (k1 +3),

which is equivalent to
m(s —k) > s—ky.
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We have k1 < k so the inequality can be satisfied only if s > k, but this give the
differential weight of ¢ at least m(k+1)+2+s—1 > (k+1)(m + 1) + 2, imply-
ing that ¢ is not a minimal flat output. It follows that for all 1 < i < m we must
have k; = k (and the inequality is satisfied only in this case). The distribution £
= (span {d@o, - -+ ,den })* is involutive (as annihilator of exact 1-forms) and satisfies
L C GF2 (because all k; = k), as well as GO(x*) ¢ L(x*) (since go(x*) & L(x*)). Tt
follows that G¥ is in the m-chained form in z-coordinates, where zg = ¢, zg = L]gglq)i,
forl <i <m,1 < j <k (see Appendix B). The compatibility condition (m-Comp)
implies that ;7 is in the triangular form.

Proof of (m-F3). We will prove the implications: (i) = (iii) = (ii) = (i).

(i) = (iii). Assume that the system X,¢r : X = f(x) + Y0 u;8(x) is x-flat at
(x*,u*), where u* & Uy _ging(x*), and let (¢o, - - -, ¢m) be its minimal x-flat output
defined in a neighborhood X" of x*. It is well known that the differentials of flat out-
puts are independent at x*, thus implying (m-FO1). By item (m-F2), that we have just

proven, we can bring X, ¢, around any point x € X into the triangular form com-

patible with the chained form TCHhX,, with (¢o, -, ¢m) = (20,21, ,2},) and x*

transformed into z* € R¥"*1  In coordinates z, the corank one involutive subdistri-
bution £ of G¥=2 is given by

d

0
Ezspan{@,--- ,@},

because it is unique and we immediately have

L+ = span{dgo, - - ,dou},

which gives (m-FO2) on X'*.

(iii) = (ii). Suppose that the (m + 1)-tuple (¢o, - - - , ¢m) fulfills conditions (m-
FO1)-(m-FO2). We apply the change of coordinates and the invertible feedback trans-
formation presented in Appendix 3.1.B (with ¢; replaced by ¢; and 7 by v) that
bring the control-linear system X;;,, : ¥ = Y/" ; u;g;(x) into the m-chained form, with
zo = @o and z] = ¢;, for 1 < i < m.Thus (@o, -, ¢m) = (20,21, - ,z},) is a mini-
mal x-flat output of Chk, at any (z*, v*), with v* # 0. It follows that (¢, - -+ , @) is a
minimal x-flat output of ¥;;,, at any (x*, *), with #* such that Y1 , 17 ¢; (x*) & C!(x*).

(if) = (i). Assume that the system X, : ¥ = Y u;g;i(x) is x-flat at (x*,7*),
where 7* is such that Y/ i7g;(x*) & C!(x*), where C! is the characteristic dis-
tribution of G'. Let (@o, -, ¢y) be its minimal x-flat output defined in a neigh-
borhood X of x*. It is known, see [28], that the minimal flat output satisfies
Lt = span{dgg, - ,den}. By the construction given in Appendix 3.1.B, bring

the system into the m-chained form Ch¥, such that (¢o, -+, ¢m) = (20,2}, ,z})

i osi-2., . . C Lgoi
and z; = Lg, "¢, for2 < j<kand1l < i < m, where ¢; = %. The system

Y, fr is assumed to be feedback equivalent to the triangular form TCHE,, hence sat-
isfies the compatibility condition (m-Comp). Using the z-coordinates and applying
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the feedback f — f — Y «;g;, where oy = Lrgpo and a; = L§_1¢i, we trans-
form %, ff into the triangular form TChlfn. We have proved, when showing (m-F1),

that (@o, -+, ¢m) = (20,21, ,2y,) is an x-flat output of ¢ at (x*,u*) such that
u* & Upy—sing(x™). ]
Appendices

3.1.A. Involutive subdistribution of corank one

Consider a non involutive distribution G of rank d, defined on a manifold X of di-
mension 7 and define its annihilator G+ = {w € AY(X) :< w, f >=0,Yf € G}. Let
w1, ..., ws, where s = n — d, be differential 1-forms locally spanning the annihilator
of G, thatis G+ = 7 = span{wj,...,ws}. The Engel rank of G equals 1 at x if and
only if (dw; A dw;j)(x) = 0modZ, for any 1 < i,j < s. For any w € Z, we define
W(w) = {f € G: fudw € G'}, where _ is the interior product. The characteristic
distribution C = {f € G : [f,G] C G} of G is given by

S
C = mz‘:lw(wi)'
It follows directly from the Jacobi identity that the characteristic distribution
is always involutive. Let rk[G,G] = d +r. Choose the differential forms

W1, ..., Wy, ..., wssuch that Z = span{ws,...,ws} and 7l = span {wy41,...,ws},
where 7! is the annihilator of [G, G]. Define the distribution

;
H = Z W(wi).
i=1
We have the following result proved by Bryant [6], see also [50].

Proposition 3.1.6. Consider a distribution G of rank d and let rk [G,G] = d + 1.

(i) Assumer > 3. The distribution G contains an involutive subdistribution of corank one
if and only if it satisfies
(ISD1) The Engel rank of G equals one;
(ISD2) The characteristic distribution C of G has rank d —r — 1.

Moreover, that involutive subdistribution is unique and is given by H.

(ii)) Assume r = 2. The distribution G contains a corank one subdistribution L satisfy-
ing [L, L] C G if and only it verifies (ISD1)-(ISD2). In that case, H is the unique
distribution with the desired properties.

(iii) Assume r = 1. The distribution G contains an involutive subdistribution of corank
one if and only it satisfies the condition (ISD2). In the case v = 1, if an involutive
subdistribution of corank one exists, it is never unique.
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3.1.B. Constructing coordinates for the m-chained form

In [59], the following characterization of the m-chained form was stated and proved:
An (m + 1)-input driftless control system X;, : X = Y.;" ju;gi(x), with m > 2, de-
fined on a manifold X of dimension km + 1, is locally static feedback equivalent, in
a small neighborhood of a point x* € X, to the m-chained form if and only if its as-
sociated distribution G = span{go,- - - ,gm} satisfies conditions (m-Ch1)-(m-Ch3) of
Theorem 3.1.2.

The prove of this result provides a method to compute the diffeomorphism bring-
ing any control system, for which it is possible, to the m-chained form. Now, we will
explain how to do it.

The involutive subdistribution £ is unique and can be explicitly calculated (see
Appendix 3.1.A). Choose m + 1 independent functions ¢o, ¢1,- - - , $5, whose differ-
entials annihilates £, that is

span {dgo, dp{, - ,dpy} = (L),

and a vector field g € G° (which always exists due to condition (m — Ch3)) such
that g(x*) ¢ L£F2(x*). Without loss of generality, we can assume ¢ = gy and
Loy (x*) # 0 (otherwise permute the vector fields g; or the functions ¢}). Define
the coordinates

20 = ¢o

z} =cp11,1<z<m
ool g cicmo<i<k
z, = ¢ = <i1<m, 2<j)<k,

Lgo 4’0

and the feedback

g = ugLgy¢po and il = Zu ngb], 1<j<m.

In the above coordinates, the distribution G takes the form

_ J 1+1 a
G = span {82’1" azk az Z Z

j=1i=1

and, equivalently, ¥;;,, takes the m-chained form.
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3.2 x-Maximal Flatness of Control-Affine Systems Com-
patible with the Multi-Chained Form

Abstract

In the second part of the paper, we introduce the concept of x-maximal flatness. A control
system is x-maximally flat if the number of new states gained by each successive derivation
of the flat output is the largest possible. Firstly, we show that the only control-linear sys-
tems that are x-maximally flat are those that are static feedback equivalent to the m-chained
form. Secondly, we generalize that result from control-linear systems to control-affine sys-
tems whose control-linear subsystem is static feedback equivalent to the m-chained form. We
prove that they are x-maximally flat if and only if the drift exhibits a triangular form compat-
ible with the m-chained form (and recently characterized in [65] and [27]). We also show that
if we skip the assumption of the x-maximal flatness, the latter condition is not necessary for
x-flatness of control-affine system whose associated control-linear subsystem is static feed-
back equivalent to the m-chained form.

3.2.1 Introduction

We study flatness of nonlinear control systems of the form

E: x= F(x,u),

where x is the state defined on a open subset X of R"” and u is the control taking
values in an open subset U of R (more generally, an n-dimensional manifold X and
an m-dimensional manifold U, respectively). The dynamics F are smooth and the
word smooth will always mean C*-smooth. The system & : ¥ = F(x, u) is flat if we
can find m functions, ¢;(x, u, ..., u(r)), for some r > 0, called flat outputs, such that

X = ’y(go,...,go(sfl)) and u = 5(g0,...,g0(s)), (3.12)

for a certain integer s, where ¢ = (¢1,..., ¢n). Therefore the evolution in time of
all state and control variables can be determined from that of flat outputs without
integration and all trajectories of the system can be completely parameterized.

The differential weight of a flat output ¢ is, roughly speaking, the minimal num-
ber of derivatives of components of ¢, needed to express x and u (see [45, 46, 58].
Here we propose another way of looking at that property. It is well known (see

e.g. [15,22,54]) that for any [ > 0, all time-derivatives 4)51 ), 1<i<m0<L )<,
of flat outputs are independent. So the successive time-derivatives provide m new

independent functions g0§l+1), 1 <i < m. The problem that we are going to study is

how many new functions of the state x do successive derivatives of the flat outputs
provide? The system = will be called x-maximal flat if each successive time-derivative
of the flat output provides the largest possible number of independent functions of
the state.

Observe, first, that x-maximally flat systems are simply static feedback lineariz-
able systems (see Proposition 3.2.1). Secondly, we show that, within the class of
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control-linear systems, the only x-maximally flat systems are those that are static
teedback equivalent to the m-chained form (see Proposition 3.2.2). Thirdly, we gener-
alize that result from control-linear systems to control-affine systems whose control-
linear subsystem is static feedback equivalent to the m-chained form. We prove that
they are x-maximally flat if and only if the drift is triangular in the system of coor-
dinates in which the controlled vector fields are in the m-chained form (see Theorem
3.2.1). In other words, they are x-maximally flat if and only if they are static feedback
equivalent to a triangular form compatible with the m-chained form. That triangular
form has been recently characterized by Silveira, Pereira da Silva and Rouchon [65]
(for m = 2) and by the authors [27] for m > 2. We also show that if we skip the as-
sumption of the x-maximal flatness, the compatibility condition is not necessary for
x-flatness of control-affine system whose associated control-linear subsystem is static
teedback equivalent to the m-chained form.

The paper is organized as follows. In Section 3.2.2, we recall the definition of flat-
ness, we introduce the notion of x-maximally flat system and we study the x-maximal
flatness of general and then of control-linear systems. In Section 3.2.3, we give our
main result: we describe x-maximal flatness of control-affine systems whose control-
linear subsystem is static feedback equivalent to the m-chained form. We illustrate
our results by an example in Section 3.2.4 and provide proofs in Section 3.2.5.

3.2.2 Preliminaries and motivation

The fundamental property of flat systems is that all their solutions can be
parametrized by a finite number of functions and their time-derivatives. Fix an inte-
gerr > —1 and denote X" = X x U x R™ and #i" = (u,u,...,u(r)). Forr = —1, we
put X! = X and @~ ! is empty.

Definition 3.2.1. The system & : x = F(x,u) is flat at (x*, @) € X', for
r > —1, if there exists a neighborhood O" of (x*,7"™) and m smooth functions
¢i = @i(x,u,u,..., u(’)), 1 <i < m, defined in O", having the following property:
there exist an integer s and smooth functions 7;, 1 < i < n, and (5]-, 1 <j<m,such
that

xi =7i(¢, ¢, ..., ¢ V) and u; = (¢, ¢,..., ")

along any trajectory x(t) given by a control u(t) that satisfy (x(t), u(t),...,ul")(t)) €
O", where ¢ = (¢1, ..., ¢m) is called a flat output.

In the particular case ¢; = ¢;(x), for 1 < i < m, we will say that the system is
x-flat. In our study, the flat outputs will always depend on x only and r is 0 or -1.

The notion of differential weight of a flat system, introduced in [58], was dis-
cussed in [45,46] in the context of system linearizable via one-fold prolongation. The
differential weight of a flat output ¢ is, roughly speaking, the minimal number of
derivatives of components of ¢ needed to express x and u and will be formalized as
follows. By definition, for any flat output ¢ of E there exist integers sy, ..., s; such

that _ . (s9) _ (5)
X = 7(?114’1/---/4’1 1---1¢Mr§0m’"'/q0m )

= 5(@1, qbl" : "q)gﬁ)” : 'rﬁomr Qbm/- . -/(Ping))/
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Moreover, we can choose (s1,...,5n,) such that (see [58]) if for any other m-tuple

(51,...,5m) we have

X - 7(4)1/4)1/-"/¢§Sl)/---/¢MI¢m/-"/(P£ljnl))

u = 5((P1/ (pll ey 4)551)/ ey (PWZ/ (PWI/ vy Qor(;im))/
thens; < 35;, forl <i < m. Wewillcall } ;" ;(s; + 1) = Y1 s; + m the differential
weight of ¢. A flat output of & is called minimal if its differential weight is the lowest
among all flat outputs of Z. We define the differential weight of a flat system to be equal
to the differential weight of a minimal flat output. Here we propose another way of
looking at this property. Suppose that the control system E : ¥ = F(x,u) is flat at
(x*,7™) and let (¢1, ..., ¢n) be a flat output around (x*, 7). It is well known (see

e.g. [15,22,54]) that for any | > 0, all time-derivatives goi(j ), 1<i<m,0<j<I offlat
outputs are independent at (x*,#@"™). So successive time-derivatives provide m new

independent functions qole) = gol(lﬂ)(x, u, i, .., ur ) 1 <i < m. The problem

that we are going to study is how many new functions of the state x do successive
derivatives of the flat outputs provide?

To formalize that problem, for any j > 0, we denote
o = span {dg;, - - - ,dgol@,l <i<m},
A = dINTX
= span{dg;,--- ,dq)g]),l <i<m}NT*X,

and define a/(¢) dim A/(¢), where ¢ = (x,u,i,---). The vector
(a%(¢),a (&), - ,af(¢)) will be called the x-growth vector of the nested sequence
of codistributions ® C ®! C ... C ®Ff (equivalently, the growth vector of
AP ¢ A' C .- C AP), where p is the smallest integer such that A° = T*X.
For two codistributions £ and F, we define their pointwise intersection £ N F by

(ENF)(x)=E(x)NF(x), forx € X.

Definition 3.2.2. A system E flat at (x*, #™) € X", forr > — 1, is called x-maximally
flat at (x*,7™) if there exists a flat output at (x*,#’*) for which all codistributions A/
do not depend on the control or the control derivatives and, in a neighborhood of x*,
the sequence (a%(x), al(x),---,a°(x)) is constant and the maximal possible among
all flat systems for which dim U = m and dim X = n.

Flatness is closely related to the notion of feedback linearization. The control sys-
tem E : X = F(x,u) is linearizable by static feedback if it is equivalent via a dif-
feomorphism z = ¢(x) and an invertible feedback transformation, u = (x,v), to
a linear controllable system A : Z = Az + Bv. Jakubczyk and Respondek [23] and
Hunt and Su [19] gave geometric necessary and sufficient conditions for a control
system to be static feedback linearizable. It is well known that systems linearizable
via invertible static feedback are flat. The expression of all states and controls uses the
minimal possible, which is n 4 m, number of time-derivatives of the components of
flat outputs @;. The following proposition gives an equivalent way to describe static
feedback linearizable systems using the notion of x-maximal flatness.

Consider a control system E : ¥ = F(x,u), with m inputs and defined on a state
space of dimension n = km. Let us first introduce some notations. To E, we associate
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F = {F, : u € U}, where F, = F(-,u), i.e., F stands for the family of all vector
tields corresponding to constant controls u of &. Define the following sequence of
distributions on X: DO(x,u) = Im3E (x, u) and D1 (x, u) = Di(x,u) + span {[F,, g :
F, € F, g € D'}, fori > 0. If E is a control-affine system, i.e., of the form x = f (x) +
Y™, u;gi(x), we actually have D° = span {g1, - , g} and D! = DI + [f, D).

Proposition 3.2.1. The following conditions are equivalent:

(i) & is x-maximally flat at (x*, @), for a certain r >-1;
(ii) & is x-maximally x-flat at x*;

(iii) There exists a flat output of B for which the x-growth vector is constant and equals
(m,2m,-- - km);

(iv) E is static feedback equivalent to a linear system and, in particular, to the Brunovsky

canonical form
g+l
(Br)y % _

wherel <i<mand1 <j<k—-1

(v) The distribution DO does not depend on u and for any 0 < i < k — 1, the distributions
D' are involutive and of constant rank (i 4+ 1)m.

According to item (iii) of the above result, a control system is x-maximally flat
if the number of new states (state functions) gained by successive derivations of the
flat output is, at each step, the largest possible, which is m. For x-maximally flat sys-
tems, flatness and x-flatness coincide and moreover, both properties are equivalent
to linearizability via an invertible static feedback transformation, and, in fact, one can
bring the system into the Brunovsky canonical form, see [5], with all controllability
indices equal k. Item (v) recalls the geometric necessary and sufficient conditions for
a general nonlinear control system to be static feedback linearizable, see [57]. If the
considered control system is affine with respect to controls it is clear that D" does not
depend on u.

In general, a flat system is not linearizable by static feedback (with the exception
of the single-input case, where flatness reduces to static feedback linearization, see
[9]) and therefore it is not x-maximally flat. We can be interested, however, in x-
maximal flatness within a particular class of systems €. We will say that the system &
is x-maximally flat within the class € if it satisfies the conditions of Definition 3.2.2
with the sequence (a°,a!, - - -, af) being the maximal possible among all flat systems
belonging to the class € for which dim U = m and dim X = n. From now on, we will
denote the number of controls by m + 1 (and not by m) since, as we will see below,
for all classes of systems that follow one control plays a particular role. Consider a
control-linear system

m
Tiin 1 % =Y u;gi(x),
i=0
where the control u takes values in an open subset U of R"*!, the state space X is
of dimension n = km + 1 and go, - - - , gm are smooth vector fields on X. To X;;,, we
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associate the following distribution G = span{go, - ,gm}. We define inductively
the derived flag of G by G® = G and G'*! = G' + [G',G'], i > 0.

A flat control-linear system X;;,, is never static feedback linearizable (unless the
number of controls, m 4 1, equals the dimension of the state space) and therefore,
according to Proposition 3.2.1, cannot admit a flat output with the x-growth vector
(m+1,2(m+1),3(m+1),---). In fact the x-growth vector may start with m + 1
(if the system is x-flat) but, since the system is control-linear, the derivatives ¢;, for
0 < i < m, necessarily involve the control, hence the second component of the x-
growth vector can be, at most, 2m + 1. So the maximal possible x-growth vector
is(m+1,2m+1,3m+1,---, km+1) and it is, indeed, realized by control-linear
systems static feedback equivalent to the m-chained form. An (m + 1)-input driftless
control system %;;;,, defined on a manifold X of dimension km + 1, is said to be in the
m-chained form if it is represented by

2 1 2

Zo=vy 2z = z3uy --- zl z2,00
Z% = z%vo 2 = z>0
Chk, .
k-1_  _k k-1 k
= 2y oo 2= 2Ky
Kk ko
\ o= 2K = o,

Is is clear from this representation that one control, vy in this case, is indeed “special”.
To simplify the notations, from now on, 7! stands for z' = (Zlir oo, zh ), for1 <i <k,
and 7 denotes the vector (vy, - - - , vy, ). The problem of characterizing systems that are
locally static feedback equivalent to the m-chained form has been studied and solved
in [50] (see also [2,11,16,31,39,49,59,63,68]). It is immediate to see that systems locally
feedback equivalent to the m-chained form are flat with ¢ = (29,21, , z},) being a
flat output, atany point (z*,v*) € X x R™*! with v # 0, and in [58] all their minimal
flat outputs have been described. Flat systems equivalent to Ch¥, exhibit singularities

in the control space defined by Ulsii:g(x) = {u(x) e R"1: ¥ Ju;(x)gi(x) € Cl(x)},
where C! is the characteristic distribution of G, see [58]. Clearly, vj = 0 describes

that singularity for Ch¥,.

_ Aninvertible static feedback u = B(x)# transforms the system X;;, into the form
Zjin + X = YiLo#8i(x), where § = gB, with ¢ = (g0, -+, &m) and § = (o, -, §m)-
To X;,, we associate the (k — 1)-fold prolongation
( m
¥ =yo(x) + ) ulgix)
i=1
& (k—1,0,..,0) 1 =1
z:'lin ) / . Y

Yk—2 = Yk—1

(ko1 = 1)
with vy = 1, uf = 1;, for 1 < i < m, obtained by prolonging k — 1 times the control
flp as uh) = ﬁ(()kfl . Denote the drift and the controlled vector fields of the prolon-
gation il(fn_l’o """ 0 by fp and g,;, 0 < i < m, respectively. The distributions of the

prolongation Will be depoted using the subindex p, i.e,, Dg = span{gy0, " ,§pm}
and D! = D}, + [fp, Dj].
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The following result characterizes control-linear systems that are locally static
feedback equivalent to the m-chained form, from the point of view of x-maximal
flatness.

Proposition 3.2.2. The following conditions are equivalent:

(Lin 1) Xy, is x-maximally flat at (x*, a"™), for a certain r > —1, within the class of control-
linear systems ;

(Lin 2) %y, is x-maximally x-flat at (x*, u*) within the class of control-linear systems €;

(Lin 3) There exist a flat output of Xy, at (x*, u*) for which the x-growth vector is constant
and equals (m +1,2m+1,3m+1,--- ,km+1);

(Lin 4) Xy is locally, around x*, static feedback equivalent to the m-chained form

( ZQ = 00 Zl = ZZUO
22 = 23y
Cht, :
=1 = Zky,
ko =9

and u* ¢ USing(x*).

lin

(Lin 5) Xj;, satisfies, around (x*, u*), u* ¢ Ulsl?:g(x*), the conditions:

(m-Chl) GF-1 = TX;

(m-Ch2) G*=2 is of constant rank (k — 1)m + 1 and contains an involutive subdis-
tribution L that has constant corank one in Gk=2;

(m-Ch3) G°(x*) is not contained in L(x*);

(Lin 6) There exists, around x*, an invertible static feedback transformation u = B(x)ii,
bringing the system Yy, into the form Ly, : X = Y 1;§;(x), such that for any 0 <
i < k — 2, the intersections D;', N TX are involutive, of constant rank m(i 4+ 1), and
D’;A NTX = TX, where D; are the distributions of the (k — 1)-fold prolongation

= (k—1,0,...,0)
Zlin ’

Proposition 3.2.2 states that the only control-linear systems that are x-maximally
flat are those that are locally static feedback equivalent to the m-chained form and,
as expected, x-maximal flatness and x-maximal x-flatness are equivalent. Conditions
(m-Ch1)-(m-Ch3) are formally the same, independently of m = 1 or m > 2. Notice,
however, they are checkable only if m > 2 because in that case £, if it exists, is unique
and can be calculated (see [59] and [27]). If m = 1, then two equivalent verifiable
reformulations of the conditions (m-Ch2)-(m-Ch3) are:

(m-Ch2)” G¥=3 is of constant rank k — 1 and the characteristic distribution Ck=2 of Gk-2 s
contained in G¥=3 and has corank one in GF=3;
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(m-Ch3)" G%(x*) is not contained in C*=2(x*);
or more classically (see [40]):
(m-Ch2)” dim Gi(x) = dim G;(x) =i + 2, for 0 < i < k — 1, in a neighborhood of x*.

Conditions (m-Chl)-(m-Ch3) characterize the m-chained form [59] (see also [49, 50])
and assure the existence of a change of coordinates z = ¢(x) and of an invertible
static feedback transformation of the form u = B(x)i, after which the control vector
tields are in the m-chained form. The set of singular controls Uls il; 8 i.e., the controls
at which the system ceases to be flat, has been described in [49], where it was also

shown that all singular controls u are mapped into v = (v, 7) such that vy = 0.

In item (Lin 6), the system 21(:;—1,0,...,0)

the control iy as ul) = ﬁék_l) and it is clear that if we bring the original system %,

into the m-chained form and we prolong the control vy, the associated prolongation
verifies all conditions of (Lin 6). Moreover, in this case, it is easy to see that the
associated (k — 1)-prolongation is, actually, static feedback linearizable. Since for any
i>0, D;, N TX are involutive, it can be shown that all distributions D;, are, in fact,

involutive and thus il(f{nfl’o""’o) is static feedback linearizable. Notice that item (Lin 6)

is actually the dual of (Lin 3). Indeed, in the sequence of involutive distributions

D; N TX at each step we gain m new directions, which is the maximal possible and

which is also the case for the x-growth vector (a®,a',a%,---).

is obtained by prolonging (k — 1)-times

A natural question arises: under which conditions is x-maximal flatness of ¥;;,
conserved if we perturb the system by adding a drift f, thus obtaining a control-
affine system X ¢ : & = f(x) + ¥/ #;gi(x)? In other words, what are the conditions
that the drift f should satisfy in order that the x-growth vector associated to X,¢f
(whose control-linear subsystem X;, is static feedback equivalence to the m-chained
form) is given by (m +1,2m +1,3m +1, - - - ,km + 1)? The next section of this paper
answers that question and therefore generalizes Proposition 3.2.2 to the control-affine
case.

3.2.3 Main result : x-maximal flatness

The purpose of this paper is to generalize Proposition 3.2.2 from control-linear sys-
tems X;;,, to control-affine systems

Zaff X = f(X) + i}uigi(x)

defined on an open subset X of R¥"*1, with f and go, - - - ,gm smooth vector fields
on X and such that the associated control-linear subsystem X;, : x = Y/ u;gi(x)
satisfies Proposition 3.2.2.

In order to describe x-maximal flatness of control-affine systems whose control-
linear subsystem is static feedback equivalent to the m-chained form, consider the
following triangular form generalizing the m-chained form:
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(zo=wvy z} = fl(z0,2%)+ 209
ZZZ = fl.z(zo,z3) + 21-300
TCHE, :
Z'i'(_lz ik_l(Zo, Zk) + Z?UQ
\ Zi-c = 0;
where 1 < i < m and %/ denotes z7 = (z%,- oz, z%,~ ez, ,z]i,' . ~z{;1), for2 <

j < k. This form has been recently introduced and characterized by Silveira, Pereira
da Silva and Rouchon [65] (for m = 1) and by the authors [27] for m > 1. It not
only exhibits a formal compatibility of the triangular structure of the drift with the
structure of the controlled chains but also a striking compatibility of its x-maximal
flatness with that of the m-chained form. This is seen in Theorem 3.2.1 below, which
is the main result of the paper, where counterparts of conditions (Lin 1)-(Lin 6) are
given as (Aff 1)-(Aff 6) for the control-affine case.

It is clear, see [27], that TCh’,§1 is x-flat, with ¢ = (zo, z%, e, zb) being a flat output,
at any point (z*,v*) € X x R™"! satisfying rk F/(z*) = m, for 1 < j < k — 1, where
. ; j o it
Fl,for1 <j<k—1,isthem x mmatrixgivenbyFi]q = W forl1 <i,g <m.
Therefore, flat systems equivalent to TCh¥, exhibit singularities in the control space
(depending on the state) defined by (see [27])

U (x) = UE U, (x),

with Uémg( x) = {u(x) € R* : tk(G' + [f +gu, L1])(x) < (i+2)m+ 1}, for
0 <i < k-2, where gu =Y ,u;g;, the distribution Li=CT for0<i<k-—3,is
the characteristic distribution of G/t and £¥~2 = L is the involutive subdistribution

of corank one in G¥=2, if m > 2. If m = 1, then Ué‘m; ﬂ Uk 2n where the intersec-

tion is taken over all involutive distributions £ of corank one in G¥~2 and satisfying
G%(x*) ¢ L(x*), where x* is a nominal point around which we work.

An invertible static feedback u = a(x) + B(x)il, transforms the system X7 into
the form £,¢r : % = f(x) + L @1:gi(x), where f = f+ag and § = gB, with
§=1(g0,--,gm)and § = (S0, - , §m). To £,5¢, we associate the (k — 1)-fold prolon-

gation )

m
X :f(x)+y1g0(x)+2ufgi(x)
i(k—Lo,...,o) 1 : Y2

aff
Yk—2 = Y1
\ Yk—1 = ug
with y; = ilp, u! = ii;, for 1 < i < m, obtained by prolonging (k — 1)-times the
control iy as uj = u(()k Y. The linearizability distributions of the prolonged system

iil};l,o,...,o) will be denoted using the subindex p, i.e., Dg = span{gpo, - - ,&pm} and

D;’jl — D;, + [fp,D;]. Recall that z/ stands for z/ = (z]i, . ,zin), for1 <j<k andd
denotes the vector (v1, -+, V).
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Theorem 3.2.1. Consider the class € of control-affine system Lo @ % = f(x) +
Yt o uigi(x) whose control-linear subsystem Xy, = %X = Y./"u;g;i(x) is static feedback
equivalent to the m-chained form, that is, satisfies the conditions (m-Ch1)-(m-Ch3) of Propo-
sition 3.2.2. For X4¢¢ € €, the following conditions are equivalent:

(Aff1) Zyf5 is x-maximally flat at (x*,a"™), for a certain r > —1, within the class
(Aff2) Ly¢5 is x-maximally x-flat at (x*, u*) within the class ;

(Aff 3) There exists a flat output of X5 ¢ at (x*, u*) for which the x-growth vector is constant

and equals (m +1,2m +1,3m +1,--- ,km + 1) and all codistributions Aj(x),for
0 <j <k —1, do not depend on the control or control derivatives;

(Aff4) Lyfy is locally, around x*, static feedback equivalent to the triangular form TCHE,
compatible with the m-chained form, given by

Zo = 0o b = fl(Zo,Zl,ZZ) + ZZZ)Q
22 = f%(z0,7',72%,2%) + 2309
TCH, :
#1220, 71, -, 2K) + 2o

k=3

and u* ¢ UZ?}g(X*);

(Aff 5) System ¢ satisfies, around (x*, u*), with u*(x*) ¢ UZ;'}g(x*), the following con-
dition:

(m-Comp) [f, Cl] c gt forl <i <k—2, where C' is the characteristic distribution
of G.

(Aff 6) There exists, around x*, an invertible static feedback transformation u = w(x) +
B(x)il, bringing the system L5 into the form L,p : & = f(x) + L1ty iigi(x),
such that for any 0 < i < k — 2, the intersections D;, N TX do not depend on y,
are involutive, of constants rank m(i + 1) and D’r‘fl N TX = TX, where D;', are the

distributions of the (k — 1)-fold prolongation 21(17};1,0,...,0).

Remarks:

1) We do not claim that X, ¢¢ satisfying one of the above conditions is x-maximally
flat. Clearly, x-maximally flat control-affine systems are those that are static feed-
back linearizable, as assured by Proposition 3.2.1. The above theorem describes x-
maximally flat systems within the class € of control-affine ones whose control-linear
subsystem is static feedback equivalent to the m-chained form.

2) Theorem 3.2.1 generalizes Proposition 3.2.2 and shows how x-maximal flat-
ness of control-affine systems compatible with the m-chained form reminds, but also
how it differs from, that of control-linear systems. As for control-linear systems, x-
maximal flatness and x-maximal x-flatness are equivalent. Thus the x-growth vector
starts with m + 1, but since the control-linear subsystem is static feedback equiva-
lent to the m-chained form, the second component can be at most 2m + 1. Condition
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(Aff 6) of the above result is very similar to condition (Lin 6) of Proposition 3.2.2 but,
in addition to (Lin 6), it requires that the involutive distributions D; N TX, associ-

. & (k=1,0,...,0)
ated to the prolongation X,

systems, adding that condition would be redundant, because it is a consequence of
the involutivity and the proper growth vector of D}, N TX, but for control-affine sys-

tems just involutivity and rank conditions do not give the desired triangular form.

Actually, for any x-flat system whose prolongation igl};l,o,...,O)

, do not depend on y = #lp. For control-linear

possesses involutive

distributions D;, N TX of proper growth vector, the dependence (or not) on y = i
distinguishes between a general x-flat system and the class treated here.

3) According to item (Aff 4), the only x-maximally flat control-affine systems,
compatible with the m-chain form, are those that are static feedback equivalent to
the triangular form TCHE,. Ttem (Aff 5), together with (m-Ch1)-(m-Ch3) assumed for
the control-linear subsystem %;,,, provide an invariant geometric characterization of
TChE,. For two-input control systems, an equivalent description was given in [65].
In [27], the authors show that conditions (m-Chl)-(m-Ch3) and (m-Comp) are nec-
essary and sufficient for a control affine system to be static feedback equivalent to
TCHE,, for any m > 1, and discuss flatness of that class of systems. While conditions
(m-Ch1)-(m-Ch3) characterize the m-chained form, (m-Comp) takes into account the
drift and gives the compatibility condition for the drift f to have the desired trian-
gular form in the right coordinates, i.e., in those in which the controlled vector fields
are in the m-chained form. The involutive subdistribution £ (which, for m > 2, is
crucial for the m-chained form) is absent in the compatibility conditions, but plays
a very important role in calculating minimal flat outputs and in describing singular-
ities (see [27]). In order to verify the conditions (m-Ch1)-(m-Ch3), we have to verify
whether the distribution G¥=2 contains an involutive subdistribution £ of corank one.
Checkable necessary and sufficient conditions for the existence of L (together with a
construction), based on the work of Bryant [6], were given in [50] and is discussed
in [27].

4) A natural question is whether the above theorem describes flat systems whose
x-growth vector is (m +1,2m +1,3m +1,--- ,km + 1) (without assuming that their
control-linear subsystem is static feedback equivalent to the m-chained form). The
answer is negative and the problem of characterizing those systems will be discussed
elsewhere.

5) Now assume that X ¢ is x-flat with X, being static feedback equivalent to the
m-chained form. Does X, ¥ satisfy the conditions of Theorem 3.2.1? In other words,

are x-flat control-affine systems necessarily static feedback equivalent to TCh¥, if the
control-linear subsystem is static feedback equivalent to Ch%,? The answer is negative
as shown by the following example.
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3.2.4 Example

Consider the following control-affine system whose associated distribution G is al-
ready in the chained form:

Zp = v Z1 = 23+ 2200
Zp = —z4+ 2309
2 .
z3 = b(z0,21,22,23) + 2400
g = 0

where b is a smooth function non involving z4. Let us show that the pair (¢o, ¢1) =
(zo,21) is an x-flat output. Indeed, we have ¢y = zp, implying ¢9 = vy, and
¢1 = z1, implying ¢1 = z3 + z2¢9 and ¢ = b((p(), (p1,22,23) + qu% + z2¢p. From
these two relations, we express z, and z3, via the implicit function theorem, as:
72 = 72(@3,@%) and z3 = 73(@3, #?), where @ denotes (¢, ¢, -, ¢1)) and 7,
and 73 are smooth functions. By differentiating z3, we deduce zs = 74(@3, ¢3)
which yields v; = 6(#3, §7). So we have determined all state and control vari-
ables with the help of ¢y and ¢; and their time-derivatives and it follows that
(90, 1) = (z0,21) is, indeed, an x-flat output. However, the first derivative of
¢ = (¢o, 1) gives no function depending only on the state z and the system is
clearly not x-maximally flat. Moreover, the x-growth vector of the system is the max-
imal possible, i.e., equals (m +1,2m+1,--- ,km+1) = (2,3,4,5), but the codis-
tribution A! = span {dzg, dz1, dz3 + vodza} depends on the control. Equivalently, if
we study the prolongation Z(39) of the system, obtained by prolonging the control
vo three times, we have D; NTX = span {3%4/]/1% — aizz}, where y; = vy, which
clearly depends on y. The above example shows that there are x-flat control-affine
systems whose linear subsystem is static feedback equivalent to the m-chained form
and whose drift is not compatible with the latter, i.e., the drift f does not admit the
desired triangular form in the system of coordinates in which the controlled vector
tields exhibit the m-chained structure.

3.2.5 Proof of Theorem 3.2.1

(Aff1) = (Aff2). Assume that X is x-maximally flat at (x*, #"*) and let (¢o, - - - , Pm)
be a flat output such that the associated x-growth vector (ag, a1, ap, - - - ) is the max-
imal possible at any x in a neighborhood of x*. We deduce immediately that
ap = m + 1 implying that all components ¢; of the flat output are functions of x
only and thus the system is x-maximally x-flat.

(Aff 2) = (Aff 3). Assume that Z,¢r : & = f(x) + 1L, u;gi(x) is x-maximally x-
flat at (x*, u*) and let ¢ = (¢o, - - - , pm) be an x-flat output such that the associated
x-growth vector (ag, a1, 4z, - - -) is the maximal possible at any x in a neighborhood
of x*. There exists open neighborhoods X of x* and i/ of u* such that ¢ is an x-flat
output for any (x,u) € X x U.

Recall that the control-linear subsystem X;;,, : ¥ = Y_/* , u;g;(x) is static feedback

equivalent to the m-chained form. Thus 50, the involutive closure of the distribution
Gl = span{go,- - ,9m}, satisfies G = GF-1 = TX. Therefore, on an open and dense
subset X’ of X, for any flat output ¢;, 0 < i < m, there exists at least one vector
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field gj, 0 < j < m, such that nggoi(x) # 0. If not, then there exists i such that
Lg;pi = 0on X, for 0 < j < m, and by successive applications of Jacobi identity, it
can be shown that Ly¢; = 0 for any ¢ € G = TX, implying that g; is identically
zero, which contradicts flatness of ¢ = (¢o,---, ¢m). Consequently, a; can be at
most 2m + 1 and the largest possible constant (see Definition 3.2.2) x-growth vector
is(m+1,2m+1,3m+1,--- ,km+1).

(Aff 3) = (Aff 4). Let ¢ = (¢@o,---,¢m) be a flat output at (x*,u*) such that
condition (Aff 3) is satisfied. Since ap = m + 1, it follows that ¢; = ¢;(x),0 <i < m
(in other words the system is actually x-flat in a neighborhood of x*).

There exists an open neighborhood & of x* and an open neighborhood U of u*
such that ¢ is an x-flat output at any (x,u) € X x U. Since the differentials of the
components of flat outputs are independent at x*, we can introduce new coordi-
nates zgp = ¢y, z} = ¢;, for1 < i < m, and complete them to a coordinate sys-
tem (zo,z%, . ,2%1, Z%, cee, z]{, cee, zl,;) We have just seen that for any flat output ¢;,

0 <i < m, there exists at least one vector field g;, 0 < j < m, such that ng pi(x) #0,
on an open and dense subset X’ of X'

Let us now show that there exist integers i and j such that Ly ¢;(x*) # 0. Suppose

that for any flat output ¢;, we have Ly ¢;(x*) = 0, for 0 < j < m. We can always
assume u* = 0 (otherwise, apply the invertible feedback i = u — u™* transforming

u* into @ = 0). We get ¢; = fi(z) + 271:08;”]'/ for 0 < i < m, where g/(z*) = 0,
for 0 < i,j < m. This yields d¢; = dfi(z) + Z;”Zo(u]-dgg + ggdu]-), which evaluated
at (z*,u*) = (z%,0) gives d¢;(z*,0) = dfi(z*), for 0 < i < m. Thus ®'(z*) =
span {d¢;(z*),d¢;(z*), 0 < i < m} = span{dzg,dz},dfi(z*), 0 < i < m} and is
clearly of dimension 2m + 2, because the differentials of flat outputs and their deriva-
tives are independent everywhere. It follows that Al(z*) = ®1(z*) N T*Z(z*) =
®!(z*) and a!(z*) = dim A!(z*) = 2m + 2, contradicting the fact that a! is constant
and equals 2m + 1.

Without loss of generality, suppose Lg,@o(x*) # 0. After applying around x* a
suitable invertible feedback, u = a(x) + B(x)v, transforming u* into v*, we get ¢pg =
Z0 = 0o, @i = Z} = al-l(z) + bi1 (z)vo, 1 <i < m,where a} and b} are smooth functions.
We continue to denote by f and by g;, 0 < i < m, the drift and, respectively, the
controlled vector fields of the feedback modified system. Since the x-growth vector

grows always by m, it is immediate that aaLglj) =0,forl <il<mandanyl <j <
k — 1. Now, using the fact that the control-linear subsystem X, : x = Y1 ; u;g;(x) is
static feedback equivalent to the m-chained form, it can be shown that Zy = ¢, Z} =
®i, 212 = Ley@i, -+, zf = Lgo’lgoi, for 1 <i < m, is a valid local change of coordinates
(to simplify notation, we continue to write z instead of Z) in which ¥, is in the m-

chained form, and after applying a suitable invertible feedback transformation, the
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system X, takes the form

\

where1 <i g m. Since dvy € ®! the codistribution A = &1 NT*X is given by Al =
span {dzg,dz}, w;, 1 <i < m}, where w; is the 1-form appearing as the i-th line of the

vector Q) = (55 of + vold)dz? + Zk 3 E;f -dz/, where Id denotes the identity matrix, af ]1

the matrix f = (aJ;f ),for1 <i,qg <k anddz = (dzl,dzz,--- ,dzm)T,forZ <j<m.
q

of!

52 T vo)dzi2 + 17;, where 7; is a 1-form

Notice that each w; can be written as w; = (

not involving vg. Since the codistribution A! = span {dzo, dz}, (% +v9)dz? +1; 1 <
i < m} does not depend on v, we have Al(z, ) = Al(z,9), for any fixed ¢y # 0.
It follows that ((5% ff + Go)dz? + 1) — ((% + 09)dz? +1;) = (6o — 0p)dz? € Al, for
1 < i < m, thus dzi e Al and ni € Al for 1 < i < m. From this and the fact that
Al is of rank 2m + 1, we deduce A! = span {dz,dz},dz?, 1 < i < m}, and since

n; € A, 1 <i < m, it follows that ; cannot involve dzq, for j > 3. Hence Zfz =0, for
Zq

1<iqg<m3<j<kie,fl = fl(zo,2" 2%), implying Q = (% + vold)dz?, and
the matrix (ﬁ +vgld) is of full rank at (z*, vj). By induction, we show that the drift

f is triangular and that the regularity condition u* ¢ U, f f is satisfied.
(Aff 4) = (Aff 5). See [27].

(Aff 5) = (Aff 6). In [27], we have shown that conditions (m-Ch1)-(m-Ch3) and
(m-Comp) of item (Aff 5) assure the existence of a change of coordinates z = ¢(x) and
of an invertible feedback transformation and u = a(x) + B(x)v that transform the
system X, ¢¢ into TCHE,. Bring the system into TChX, and prolong (k — 1)-times the
control vg. The obtained prolongation

(20 =1z = fl(z0,2%) +2in
o=y 2 =fHz0,22)+ 2N

k1 k—1

— k
Ye—2= V-1 % i (20,2 ) +zin
R sk P

CYk-1=Y% T

where 1 <i <m,y; = vpand vf = v;, for 1 <i < m, clearly satisfies (Aff 6).

(Aff 6) = (Aff 1). Assume that there exists, around x*, an invertible static feedback
transformation u = a(x) + B(x)il, such that distributions D), associated to the (k —1)-

fold prolongation Z(l} fl A.--0) , defined just before Theorem 3.2.1, do not depend on y,



are involutive and of constants rank m(i+ 1), forany 0 < i < k—2, and D’;—l NTX =
TX. For simplicity of notation, we will drop the tildes.

Recall that the linear-control sub-system associated to X, is assumed to satisfy
the conditions describing the m-chained form. An equivalent way to characterize the
m-chained form is the following (see [59]): for 0 < i < k — 1, each element G of the
derived flag has constant rank (i + 1)m + 1, contains an involutive subdistribution
L' C G' of corank one and each element G; of the Lie flag, where G;.1 = G; + [Go, Gi
and Gy = span {go, - - - , gm }, has constant rank (i + 1)m + 1. Moreover, the involutive
subdistribution £, for 0 < i < k — 3, is the characteristic distribution C'*1 of Gi*1, i.e.,
C'*1 = L. We will use that characterization to prove that control systems verifying
item (Aff 6) are, in fact, feedback equivalent to TCh% and hence, x-maximally flat. To
this end, we will show that the involutive distributions Dé NTX, for0 <i<k-—2,

are, in fact, of corank one in G, so let us denote £} = D; NTX.

For Zgl};l,o,...,o)’ we have Dg = span {ay;L_l, g, 1 < i < m}, thus the distribution

L0 = Dg NTX =span{g;, 1 < i < m} is involutive and of corank one in G°. From
this and since rkG! = rkG; = 2m + 1, it follows that we necessarily have G! =
span {0, g, [0, &il, 1 < i < m}, where all brackets [g, g;| are independent modulo
G%. We have D}j = span{ayl%l, aﬁi,gi,adfgi +v1(90,8i], 1 < i < m}, thus the
distribution £! = Dil, NTX = span{g;,adsg; + y1[go,&il, 1 < i < m}, does not
depend on y, is involutive and of rank 2m. Since £! does not depend on y, we have
LYx,51) = LY(x,71), for any fixed §; # ;. It follows that (adsg; + 71(0, &]) —
(adsgi + 71(80, &) = (71 — 1) (g0, &i] € L', for 1 <i < m, thus L! = span {g;, adyg;,
[g0,gi], 1 < i < m}. Since rkG' = rk (span {go, i, [g0,%i],1 < i < m}) = 2m, we
obtain adsg; € G' and we actually have £' = span {g;, [g0,&i], 1 <i < m}. Thus we
have just shown that [f, £°] C G!. From the fact that £ is involutive, we deduce that
L! is the corank one involutive subdistribution of G'.

Repeating this argument, we prove that the involutive distributions £’ = D; N
TX, for 0 < i < k — 2, are of corank one in G’ and [f, £~ c g According to the
above remark, we deduce that C' = £71 = D;’l N TX and that we actually have
[f, L7 = [f,C'] C G'. 1t follows that the system X, satisfies item (Aff 5) and thus,

see [27], is static feedback equivalent the form TChﬁﬂ which is clearly x-maximally
flat.
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