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Résumé

Les écoulements diphasiques dans les circuits primaire et secondaire des centrales de type réacteur à eau pressurisée (REP) appartiennent à des régimes très variés allant du faible nombre de Mach (en régime nominal) jusqu'aux ondes de chocs (pour certains cas accidentels). Ces diérents régimes d'écoulements peuvent également apparaître simultanément ou successivement. Calculer des solutions approchées précises de ces écoulements peut s'avérer délicat dans certains régimes. Par exemple, les schémas numériques classiques de type volumes nis sont trop diusifs dans le régime des faibles nombre de Mach et requièrent alors d'utiliser une discrétisation extrêmement ne pour calculer de bonnes solutions approchées.

On s'intéresse dans le cadre de cette thèse à la conception et à l'étude de méthodes numériques robustes et stables à grand pas de temps, capables de calculer des solutions approchées précises quel que soit le régime d'écoulement, y compris sur maillage grossier. Un des points importants de cette thèse est la stratégie en trois étapes qui permet de construire de tels schémas :

1. Utiliser un splitting d'opérateur pour séparer la résolution approchée des phénomènes rapides de celles des phénomènes lents. On utilisera notamment une approche Lagrange-Projection qui permettra de décomposer naturellement les ondes acoustiques et les ondes matières. On construit ainsi des schémas semi-implicites stables à grand pas de temps.

2. Utiliser un solveur de relaxation de type Suliciu pour traiter les ondes acoustiques. Ce solveur est robuste et permet de gérer les non-linéarités issues de la loi de pression. On obtient ainsi un schéma implicite peu coûteux en temps de calcul, qui nécessite seulement la résolution d'un système linéaire.

3. Introduire une modication des ux numériques à partir de l'analyse du comportement de l'erreur de troncature du schéma en fonction du nombre de Mach. Cette stratégie anti-diusive permet en particulier d'améliorer la précision du schéma dans le régime des faibles nombres de Mach.

Deux approches sont utilisées pour analyser la capacité du schéma numérique à gérer plusieurs régimes d'écoulement. La première approche est celle des schémas asymptotic preserving que l'on a utilisée pour traiter le système de la dynamique des gaz avec termes sources raides. Une seconde approche basée sur la notion de schéma tout-régime a ensuite été utilisée pour le système de la dynamique des gaz à bas nombre de Mach ainsi que pour les systèmes diphasiques homogénéisés HRM et HEM à bas nombre de Mach.

Des propriétés garantissant la stabilité et la robustesse des schémas ont également été obtenues. On a en particulier étudié l'obtention d'inégalités d'entropie discrètes. Finalement, l'implémentation de ces méthodes a permis de mener des expériences numériques en 1D et 2D sur maillage non structuré, qui conrment le gain en précision et en temps de calcul des schémas asymptotic preserving et tout-régime ainsi construits par rapport à des schémas numériques classiques.

3. Introduce a modication of numerical uxes based on the behavior of the truncation error with respect to the Mach number. This anti-diusive strategy improves the accuracy of the numerical scheme in the low Mach regime.

Two approaches have been used to assess the ability of our numerical schemes to deal with a wide range of ow regimes. The rst approach, based on the asymptotic preserving property, has been used for the gas dynamics equations with sti source terms. The second approach, based on the all-regime property, has been used for the gas dynamics equations and the homogeneous two-phase ows models HRM and HEM in the low Mach regime.

We also obtained some robustness and stability properties for our numerical schemes. In particular, some discrete entropy inequalities are shown. Numerical evidences, in 1D and in 2D on unstructured meshes, assess the gain in term of accuracy and CPU time of those asymptotic preserving and all-regime numerical schemes in comparison with classical nite volume methods. 
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Formulation mathématique

Dans le cadre de cette thèse on s'intéressera à des systèmes d'équations aux dérivées partielles modélisant la dynamique d'un ou plusieurs uides, notés S , qui dépendent d'un paramètre représentant par exemple le nombre de Mach. On considèrera des schémas numériques S h,∆t où h est le pas de maillage et ∆t le pas de temps, qui permettent de calculer des solutions approchées de S . Pour les systèmes que l'on va considérer, on observera à l'aide de simulations que les méthodes numériques usuelles nécessitent de choisir ∆t = O( h) pour des raisons de stabilité et h = O( ) pour des raisons de précision alors que les variations caractéristiques en temps et en espace de la solution sont d'ordre 1 par rapport à . Ces contraintes sur la discrétisation en temps et en espace sont donc coûteuses en terme de temps de calcul et de stockage de données pour des faibles valeurs de . On va détailler ici quelques méthodes proposées dans la littérature pour construire des méthodes qui s'aranchissent de ces contraintes sur la nesse de la discrétisation à utiliser pour calculer des solutions approchées précises de S .

1. Construction d'un schéma numérique pour le régime 1 à l'aide du système limite.

Une première méthode consiste à étudier la limite S 0 du système S quand tend vers zéro. La nature du système S 0 peut être diérente de celle du système S . On construit alors un schéma numérique S 0 h,∆t stable et consistant avec S 0 . Ce schéma permet de calculer de bonnes approximations des solutions du système S 0 pour un pas d'espace et un pas de temps donnés, indépendants du paramètre que l'on a fait tendre vers 0. Ce sont également de bonnes approximations des solutions de S tant que 1.

2. Couplage d'un schéma pour le régime 1 avec un schéma pour le régime d'ordre 1. Un inconvénient de la méthode précédente est que le schéma S 0 h,∆t est consistant avec S 0 et non pas avec S . C'est pourquoi ce schéma numérique n'est pas en mesure de calculer de bonnes approximations des solutions de S lorsque est d'ordre 1. Une façon de palier à ce problème est d'utiliser le schéma S 0 h,∆t consistant avec S 0 dans les régions où 1 et un schéma S h,∆t consistant avec S dans les régions où est d'ordre 1. La construction d'une telle stratégie numérique pose néanmoins les questions suivantes : Quel indicateur choisir pour délimiter les régions où utiliser S 0 h,∆t des régions où utiliser S h,∆t ? Comment coupler les schémas S 0 h,∆t et S h,∆t consistants respectivement avec les systèmes S 0 et S qui sont de natures potentiellement diérentes et peuvent ne pas avoir le même nombre d'équations ? 3. Construction de schémas asymptotic preserving. On considère un schéma S h,∆t consistant avec S et on dénit au moins formellement S 0 h,∆t = lim →0 S h,∆t . Un schéma est dit asymptotic preserving ou préservant l'asymptotique si le schéma S 0 h,∆t est consistant avec le système limite S 0 . Un tel schéma ne nécessite pas de couplage entre deux schémas numériques distincts car il eectue naturellement la transition entre consistance avec S pour > 0 et consistance avec S 0 lorsque tend vers zéro. Un point délicat est de savoir comment construire de tels schémas numériques. En eet, pour les systèmes considérés au cours de cette thèse, les méthodes numériques classiques ne préservent pas l'asymptotique. Par ailleurs, cette propriété se concentre sur la capacité du schéma numérique à reproduire le comportement du système continu quand on passe à la limite tend vers zéro, ce qui soulève la question du comportement des schémas préservant l'asymptotique dans les régimes intermédiaires. 4. Construction de schémas tout-régime. Un schéma numérique S h,∆t est dit tout-régime s'il permet de calculer des solutions approchées précises avec un pas de temps et un pas de maillage indépendants de . Pour construire un tel schéma, on s'intéresse au comportement vis-à-vis du paramètre des propriétés de stabilité et de consistance du schéma S h,∆t étudié comme discrétisation du système S . Ainsi, ces études ne nécessitent pas de faire tendre vers 0 pour essayer de retrouver le comportement du système limite S 0 , mais sont plutôt basées sur des propriétés uniformes par rapport au paramètre , qui garantissent le bon comportement du schéma numérique quel que soit le régime considéré.

On s'intéresse dans le cadre de cette thèse à la conception et à l'étude de méthodes numériques robustes et stables à grand pas de temps, capables de calculer des solutions approchées précises quelque soit le régime d'écoulement, y compris sur maillage grossier. Un des points importants de cette thèse est la stratégie en trois étapes qui permet de construire de tels schémas :

1. Utiliser un splitting d'opérateur pour séparer la résolution approchée des phénomènes rapides de celles des phénomènes lents. On utilisera notamment une approche Lagrange-Projection qui permettra de décomposer naturellement les ondes acoustiques et les ondes matières. On construit ainsi des schémas semi-implicites stables à grand pas de temps.

2. Utiliser un solveur de relaxation de type Suliciu pour traiter les ondes acoustiques. Ce solveur est robuste et permet de gérer les non-linéarités issues de la loi de pression. On obtient ainsi un schéma implicite peu coûteux en temps de calcul, qui nécessite seulement la résolution d'un système linéaire.

3. Introduire une modication des ux numériques à partir de l'analyse du comportement de l'erreur de troncature du schéma en fonction du nombre de Mach. Cette stratégie anti-diusive permet en particulier d'améliorer la précision du schéma dans le régime des faibles nombres de Mach.

Deux approches sont utilisées pour analyser la capacité du schéma numérique à gérer plusieurs régimes d'écoulement. La première approche est celle des schémas asymptotic preserving que l'on a utilisée pour traiter le système de la dynamique des gaz avec termes sources raides. Une seconde approche basée sur la notion de schéma tout-régime a ensuite été utilisée pour le système de la dynamique des gaz à bas nombre de Mach ainsi que pour les systèmes diphasiques homogénéisés HRM et HEM à bas nombre de Mach.

Des propriétés garantissant la stabilité et la robustesse des schémas ont également été obtenues. On a en particulier étudié l'obtention d'inégalités d'entropie discrètes. Finalement, l'implémentation de ces méthodes à permis de mener des expériences numériques en 1D et 2D sur maillage non structuré, qui viennent conrmer le gain en précision et en temps de calcul des schémas asymptotic preserving et toutrégime ainsi construits par rapport à des schémas numériques classiques.

Ce manuscrit de thèse se présente comme suit. Dans les chapitres 1 et 2, on considère la construction et l'étude de schémas asymptotic preserving pour le système de la dynamique des gaz avec termes sources raides. On introduira notamment la décomposition Lagrange-Projection mentionnée ci-dessus. Ensuite on propose des schémas tout-régime, où le nombre de Mach M jouera le rôle du paramètre , pour le système de la dynamique des gaz dans le chapitre 3 et les systèmes diphasiques homogénéisés HRM et HEM dans le chapitre 4 basés sur la même décomposition Lagrange-Projection. Finalement, le chapitre 5 présente certains aspects de programmation qui ont permis d'obtenir les résultats numériques présentés dans les chapitres précédents. Dans les cinq sections ci-dessous, on présente les principaux résultats obtenus au cours de cette thèse, qui sont présentés plus en détails au cours des cinq chapitres de ce manuscrit. 0.3 Chapitre 1 : Schémas préservant l'asymptotique et stables à grand pas de temps pour le système de la dynamique des gaz avec termes sources raides Dans ce premier chapitre, on considère le système hyperbolique de la dynamique des gaz avec termes sources raides en une dimension d'espace

     ∂ t ρ + ∂ x (ρu) = 0, ∂ t (ρu) + ∂ x (ρu 2 + p) = ρ(g -α u), ∂ t (ρE) + ∂ x ((ρE + p)u) = ρu(g -α u). (1) 
Le paramètre inue sur le coecient de friction dans les termes sources. En considérant le comportement en temps long t = t et le développement asymptotique pour la vitesse u = u 0 + u 1 + O( 2 ). On obtient en faisant tendre vers zéro dans (1) le système parabolique limite

     ∂ t ρ + ∂ x (ρu 1 ) = 0, ∂ x p = ρ(g -αu 1
), ∂ t (ρe) + ∂ x ((ρe + p)u 1 ) = ρu 1 (g -αu 1 ).

(

) 2 
Plusieurs schémas numériques asymptotic preserving pour ce système ont été proposés dans la littérature. Le but de notre étude est de proposer un schéma numérique pour le système (1) qui réponde à deux objectifs. Tout d'abord, le schéma doit être asymptotic preserving pour éviter les contraintes sur la discrétisation lorsque 1. De plus, dans les applications qui nous intéressent, l'amplitude des ondes (rapides) acoustiques est faible mais ce sont ces ondes qui pilotent le choix du pas de temps. On proposera donc une méthode stable à grand pas de temps où la condition de stabilité CFL fera intervenir uniquement la vitesse des ondes (lentes) matières.

Pour atteindre ce second objectif, on introduit un splitting d'opérateurs de type Lagrange-Projection qui permet naturellement de résoudre séparément les phénomènes rapides, à savoir les ondes acoustiques et les termes sources, et les phénomènes lents, à savoir les ondes matières. On construit alors un schéma semi-implicite en traitant implicitement les phénomènes rapides pour éviter les contraintes sur le choix du pas de temps et explicitement les phénomènes lents an de rester précis.

Il reste à choisir des schémas numériques pour ces deux étapes qui permettent d'obtenir la propriété asymptotic preserving. Pour la première étape, on propose un schéma prenant en compte simultanément les termes sources et les termes acoustiques grâce à la notion de consistance au sens intégral avec terme source. On utilise un solveur de Riemann approché, basé sur une approche de relaxation en pression qui permet de gérer à moindre coût les non-linéarités issues de la loi d'état du uide. On obtient ainsi un schéma numérique implicite qui nécessite seulement la résolution d'un système linéaire penta-diagonal et est donc peu coûteux en temps de calcul. L'étape de transport est ensuite résolue avec un schéma décentré amont explicite qui permet de rester précis pour la résolution des ondes matières. C'est cette étape qui détermine le pas de temps du schéma complet qui est donc dirigé par la vitesse des ondes (lentes) matières.

On prouve certaines propriétés de ce schéma numérique. Il est en particulier conservatif et préserve la positivité de la densité. Le schéma est asymptotic preserving. On dispose également d'une inégalité d'entropie discrète pour une version explicite du schéma. Des résultats numériques viennent conrmer le bon comportement du schéma et montrent en particulier le gain en précision et en temps de calcul par rapport à un schéma qui n'est pas asymptotic preserving quand est faible. 0.4 Chapitre 2 : Schémas de splitting d'opérateur préservant l'asymptotique pour le système de la dynamique des gaz avec termes sources raides

On considère à nouveau le système de la dynamique des gaz avec termes sources raides (1) et sa limite quand tend vers zéro (2). Dans le chapitre 1, on a construit un schéma asymptotic preserving grâce à la théorie de la consistance au sens intégral avec termes sources qui traitait simultanément les termes sources et les termes convectifs. La propriété asymptotic preserving était alors montrée par le calcul mais ne jouait pas de rôle explicite dans la construction du schéma.

On va s'intéresser ici à un autre processus de construction de schéma asymptotic preserving, où l'étude de l'erreur de troncature du schéma va permettre de modier un schéma numérique pour le rendre asymptotic preserving. Cette méthode de construction est plus facilement transposable à d'autres systèmes et d'autres asymptotiques que celle du chapitre 1, on l'utilisera en particulier dans les chapitres 3 et 4 pour traiter l'asymptotique des faibles nombres de Mach.

On utilise à nouveau un splitting d'opérateur mais on sépare cette fois-ci le système (1) en trois sous-systèmes contenant respectivement les termes associés aux trois vitesses du système, à savoir les ondes acoustiques, les termes sources et les ondes de transport. La résolution des termes sources est ainsi eectuée dans une étape à part que l'on résout implicitement an d'éviter la forte contrainte sur le pas de temps lié à . Les étapes acoustiques et de transport sont quant à elles traitées de manière explicite.

On utilise alors des schémas numériques pour résoudre de manière approchée chacune de ces étapes. 

     ∂ t ρ + ∇ • (ρu) = 0, ∂ t (ρu) + ∇ • (ρu ⊗ u) + ∇p = 0, ∂ t (ρE) + ∇ • [(ρE + p)u] = 0. (3) 
On introduit des grandeurs caractéristiques pour adimensionner le système (3) et on obtient

     ∂ t ρ + ∇ • (ρu) = 0, ∂ t (ρu) + ∇ • (ρu ⊗ u) + 1 M 2 ∇p = 0, ∂ t (ρE) + ∇ • [(ρE + p)u] = 0, (4) 
où le nombre de Mach M = u0 c0 , u 0 et c 0 sont respectivement une vitesse du uide et une vitesse du son caractéristiques. Le nombre de Mach M joue ici le rôle du paramètre dont dépend le système. Dans les chapitres 1 et 2, le paramètre apparait dans les termes sources tandis qu'ici il intervient dans les termes de ux. Sous certaines conditions, un système limite quand M tend vers zéro peut être obtenu (voir l'annexe 3.D pour plus de détails). Néanmoins, on privilégie ici l'approche des schémas tout-régime qui ne nécessitent pas d'utiliser le système limite. En eet, on étudie le comportement par rapport à M de la condition de stabilité CFL et de l'erreur de troncature du schéma comme discrétisation du système (4).

On considère tout d'abord un splitting d'opérateurs Lagrange-Projection qui permet de découpler la résolution des ondes acoustiques de celles des ondes matières. Dans le régime des faibles nombres de Mach, c'est l'étape acoustique qui contient les phénomènes rapides que l'on souhaite traiter implicitement pour éviter les contraintes sur le pas de temps liées à la vitesse du son dans le uide. On utilise un solveur de relaxation en pression pour l'étape acoustique an d'obtenir un schéma implicite peu coûteux en temps de calcul. L'étape de transport est ensuite eectuée à l'aide d'un schéma décentré amont explicite. L'analyse de l'erreur de troncature du schéma suggère d'introduire une modication θ(M ) an de contrôler la diusion numérique introduite par la discrétisation du gradient de pression qui peut venir polluer la solution approchée dans le régime des faibles nombres de Mach (M 1). On propose ensuite un solveur de Riemann approché permettant de retrouver les ux numériques du schéma modié. On utilise ce résultat an d'étudier les propriétés de stabilité de ce schéma numérique anti-diusif, on obtient en particulier une inégalité d'entropie discrète. 

           ∂ t (ρY ) + ∇ . (ρY u) = λ 0 ρ (Y * (ρ, e) -Y ) , ∂ t ρ + ∇ . (ρu) = 0, ∂ t (ρu) + ∇ . (ρu ⊗ u) + ∇p = 0, ∂ t (ρE) + ∇ . [(ρE + p) u] = 0, (5) 
ainsi qu'au système diphasique homogénéisé HEM que l'on obtient formellement pour λ 0 = +∞. Comme précédemment, on introduit des grandeurs caractéristiques pour adimensionner ce système et on obtient Large time step and asymptotic preserving numerical schemes for the gas dynamics equations with source terms

           ∂ t (ρY ) + ∇ . (ρY u) = λ 0 T ρ (Y * (ρ, e) -Y ) , ∂ t ρ + ∇ . (ρu) = 0, ∂ t (ρu) + ∇ . (ρu ⊗ u) + 1 M 2 ∇p = 0, ∂ t (ρE) + ∇ . [(ρE + p) u] = 0.

Introduction

Motivation. In this paper, we consider the system of gas dynamics in Eulerian coordinates with external body forces and friction terms in one space dimension. Our rst motivation is the simulation of the ow in the core of a nuclear reactor whose geometry is composed of many channels. From a practical point of view, this very complex geometry is not resolved but is very often taken into account by means of a subgrid model in order to save computational cost. More precisely, the core is modelled as a porous medium in many industrial codes and the friction coecient is associated with the medium porosity and is used to model the wall-friction inuence of the channels upon the uid. We refer for instance the reader to [2], [START_REF] Sha | Porous-media formulation for multiphase ow with heat transfer[END_REF], [START_REF] Robbe | A porosity method to describe the inuence of internal structures on a uid ow in case of fast dynamics problems[END_REF] and the references therein.

First feature and diculty. In such applications, the ow is subsonic as the uid velocity is low and stationary or nearly stationary ow proles are of particular interest. These proles express the balance between gravity, friction and a pressure drop between the inlet and the outlet of the core. From a numerical point of view, we are thus naturally interested in the development of numerical schemes able to reach such stationary solutions as quickly as possible, that is to say using large time steps in the frame of a time-marching strategy which considers a stationary solution as limit of unsteady processes when time t goes to ∞. As acoustic waves are not predominant in our industrial processes unlike transport waves, we rst more precisely require our method to enable the use of large time steps in order to avoid classic Courant-Friedrichs-Lewy (CFL) restriction based on the (fast) acoustic waves of the model. Second, we want our method to accurately approximate (slow) waves that account for material transport as this one is actually predominant. Classic means to full our rst requirement for avoiding CFL based on the acoustic waves, consists in deriving an implicit in time discretization. Unfortunately and apart from the question of boundary conditions which deserves a particular attention, this usually induces more numerical diusion, including for the approximation of the material waves. In order to meet both rst and second needs, we will propose a mixed implicit-explicit strategy : the terms responsible for the acoustic waves receive a time implicit treatment while the ones responsible for the transport waves are treated by an explicit update. This task is achieved by means of a Lagrange-Projection [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF] algorithm as in Coquel et al. [19].

This approach provides a natural decoupling of the acoustic waves and the material waves. On the other hand, an approximation based on a now well-known relaxation strategy introduced by Suliciu [START_REF] Suliciu | On the thermodynamics of uids with relaxation and phase transitions. Fluids with relaxation[END_REF] and Jin and Xin [START_REF] Jin | The relaxation schemes for systems of conservation laws in arbitrary space dimension[END_REF], see also for instance [20,18,17,8], will provide us with a simple mean to circumvent the nonlinearities involved with the equation of state of the uid.

Even though the uid velocity can be very small in practice for certain ow congurations, we do not consider in this paper the nearly incompressible regime of low Mach numbers. It is indeed well-known that when the Mach number is small, standard shock-capturing methods that work correctly when the Mach number is of order one are not accurate and need a great attention. We refer for instance the reader to Dellacherie et al. [25,26] (and the references therein) for recent contributions on this topic, and to Haack, Jin and Liu [START_REF] Haack | An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equation[END_REF] for a new numerical method for the isentropic Euler and Navier-Stokes equations that is valid for all Mach numbers and whose ideas are close to the ones proposed here. In the present paper, we focus on the subsonic regime with moderate dierence between the speeds of the ow and the acoustic waves and postpone to a future work the extension of our strategy to the case of several space dimensions and the low Mach regime.

Second feature and diculty. Another feature encountered in our target applications is the use of coarse or very coarse spacial discretizations in order to save computational cost. Therefore, we need to build a numerical scheme that is as accurate as possible for a given coarse space discretization and large time steps. The accuracy of the classic splitting strategy with pointwise (implicit) evaluation of the source term turns out to be severely aected in this context and does not provide satisfactory results. For such goal, we propose to develop a so-called asymptotic-preserving scheme introduced in the pioneer work of Jin [START_REF] Jin | Runge-Kutta methods for hyperbolic conservation laws with sti relaxation terms[END_REF] and Jin and Levermore [START_REF] Jin | Numerical Schemes for Hyperbolic Conservation Laws with Sti Relaxation Terms[END_REF]. When one considers the solutions of our system of gas dynamics in Eulerian coordinates with external body forces and friction terms in the asymptotic regime obtained for both long time and large friction coecients α, the solutions of the system are expected to behave like the solutions of a typical parabolic system, see for instance [START_REF] Hsiao | Convergence to nonlinear diusion waves for solutions of a system of hyperbolic conservation laws with damping[END_REF][START_REF] Junca | Strong relaxation of the isothermal Euler system to the heat equation[END_REF]21,[START_REF] Lin | The strong relaxation limit of the multidimensional Euler equations[END_REF][START_REF] Marcati | The one-dimensional Darcys law as the limit of a compressible Euler ow[END_REF]... Therefore, we aim at deriving a scheme that preserves this property for the discrete approximation of the solution. Such property is referred to as an asymptotic preserving (AP) property. Observe that while the magnitude of the friction coecient α used in our target applications may be considered 0.5 up to 1.0, which is by no mean a large value, the large friction coecient limit α → ∞ is of real interest as it can be considered as a model worst-case scenario for testing the accuracy of the method in the presence of friction source term and coarse meshes.

Since its introduction in Jin [START_REF] Jin | Runge-Kutta methods for hyperbolic conservation laws with sti relaxation terms[END_REF] and Jin and Levermore [START_REF] Jin | Numerical Schemes for Hyperbolic Conservation Laws with Sti Relaxation Terms[END_REF], the notion of AP numerical schemes has been investigated and implemented in the past years in a wide range of context. In collisional kinetic theory with applications to plasmas, semiconductors, rareed gas dynamics, radiative transfer (to mention only a few of them), let us quote for instance (see also the references therein) Klar [START_REF] Klar | An asymptotic-induced scheme for nonstationary transport equations in the diusive limit[END_REF], Jin [START_REF] Jin | Ecient asymptotic-preserving (AP) schemes for some multiscale kinetic equations[END_REF], Jin, Pareschi and Toscani [START_REF] Jin | Uniformly accurate diusive relaxation schemes for multiscale transport equations[END_REF], Naldi and Pareschi [START_REF] Naldi | Numerical schemes for hyperbolic systems of conservation laws with sti diusive relaxation[END_REF], Gosse and Toscani [START_REF] Gosse | Asymptotic-preserving and well-balanced schemes for radiative transfer and the Rosseland approximation[END_REF], Buet et al. [12,11], Berthon et al. [3,5] Carillo, Goudon and Latte and Vecil [14,15], Degond et al. [24], [23], Filbet and Jin [29], Crouseilles

and Lemou [22], Dimarco and Pareschi [28], Després, Buet and Franck [27]. For problems similar to our model and related methods, we can quote for instance Bouchut, Ounaissa and Perthame [9], Berthon and Turpault [5] and Chalons et al. [16]. Without being exhaustive, we also refer the reader to [4,1] and [27] for the recent development of asymptotic-preserving nite volume schemes on unstructured meshes.

Let us briey discuss the methods proposed in [9,5,16] as they are certainly the closest to the one proposed here, at least in its explicit version. In [9], the authors extend the so-called USI (Upwinding Sources at Interfaces) approach initiated by Cargo and Le Roux [13], Greenberg and Le Roux [START_REF] Greenberg | A well-balanced scheme for the numerical processing of source terms in hyperbolic equations[END_REF], Gosse and Le Roux [START_REF] Gosse | A well-balanced scheme designed for inhomogeneous scalar conservation laws[END_REF] (see also Gosse [33], Perthame and Simeoni [START_REF] Perthame | A kinetic scheme for the Saint-Venant system with a source term[END_REF], Jin [START_REF] Jin | A steady-state capturing method for hyperbolic systems with geometrical source terms[END_REF], Katsaounis, Perthame and Simeoni [START_REF] Th | Upwinding Sources at Interfaces in Conservation Laws[END_REF], R. Botchorishvili, B.Perthame and A.Vasseur [7]...) whose principle is to upwind the sources at interfaces, to the Euler equations with high friction in the barotropic case and without gravity. The approach then uses a classic nite volume scheme together with the upwinding of source terms involving the reconstruction of interface variables while preserving Darcy steady states. In order to prove the AP property, a restrictive hypothesis for the basic scheme which is not valid for all schemes is assumed.

In [5], the authors modify the well-known HLL Approximate Riemann Solver (ARS) for the associated homogeneous hyperbolic system by introducing a free parameter into the source term in order to obtain the AP property. The resulting numerical procedure is robust as the source term discretization preserves the physical admissible states and can be applied to several models of physical interest. In [16], the authors derive an explicit asymptotic-preserving scheme for the same ow model as the one considered here, the scheme being also well-balanced when the model is written in Lagrangian coordinates. The method is a Godunov-type method based on the denition of a relevant ARS. For dening such an ARS, the eects of both gravity and friction source terms are incorporated into the solver thanks to the concept of simple Approximate Riemann Solver and consistency with the integral form introduced by Gallice [30,31]. This powerful method allows to account for both source terms and convective uxes at the same time. In particular, the source terms are taken into account at interfaces. This method therefore also falls into the general framework of USI schemes.

In this paper, we extend this approach within a mixed implicit-explicit framework for designing an AP scheme which is stable for large time steps in order to meet both requirements discussed in the previous paragraphs.

Outline of the paper. The outline of the paper is as follows. In the next section, we give the model under consideration and its parabolic-type asymptotic limit. In section 1.3, we rst briey recall the Lagrange-Projection decomposition and the pressure relaxation strategy. We then recall the concepts of simple Approximate Riemann Solver and consistency in the integral sense in section 1.4. The last part of this section gives the explicit in time numerical scheme and section 1.5 focuses on the Lagrangian system. At the end of this section, an important discussion is proposed on the denition of the time step and the interfacial velocities in the asymptotic regime. In particular, we explain why the proposed strategy is well suited to preserve the asymptotic limit, unlike the classic splitting strategy, and why an implicit treatment is needed for the time step not to be zero in the asymptotic regime. At last, the proposed implicit in time scheme for the Lagrangian system is given in section 1.6 and the overall mixed implicit-explicit scheme is described in section 1.7. Finally, section 1.8 gives the main properties of the mixed implicit-explicit scheme, including a discussion on the scheme obtained in the asymptotic limit, and the last section provides some numerical illustrations.

Governing equations and asymptotic behaviour

The gas dynamics equations with gravity and friction terms in Eulerian coordinates are given by

     ∂ t ρ + ∂ x (ρu) = 0, ∂ t (ρu) + ∂ x (ρu 2 + p) = ρ(g -αu), ∂ t (ρE) + ∂ x ((ρE + p)u) = ρu(g -αu), (1.1) 
where ρ, u and E denote the density, the velocity and the total energy of the uid, g the gravitational acceleration and α the friction parameter. The pressure law p = p(ρ, e) is assumed to be a given function of the density ρ and the internal energy e dened by e = E -u 2 2 , satisfying the usual Weyl assumptions [START_REF] Weyl | Shock waves in arbitrary uids[END_REF]. Under these assumptions and when the source terms are omitted, (1.1) is shown to be strictly hyperbolic over the phase space Ω given by Ω = {(ρ, ρu, ρE) T ∈ R 3 , ρ > 0, e > 0}, with eigenvalues given by λ

1 = u -c < λ 2 = u < λ 3 = u + c, where c = [(∂p/∂ρ) + (p/ρ 2 )(∂p/∂ ) ρ ] 1/2
is the sound speed. Moreover, the characteristic elds associated with λ 1 and λ 3 are genuinely non linear while the characteristic eld associated with λ 2 is linearly degenerate.

Let us also recall that λ 1 and λ 3 give rise to the so-called acoustic waves, while λ 2 is associated to the transport phenomenon. We refer for instance the reader to [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF] for more details. Let s = s(ρ, e) be the strictly convex mathematical specic entropy which satises ∂ e s(ρ, e) < 0 and

-T ds = de + pd 1 ρ , (1.2) 
where T > 0 is the temperature. We obtain for a smooth solution of (1.1) the following equation ∂ t (ρs) + ∂ x (ρsu) = 0. We are particularly interested in studying the long time behavior of (1.1) when the friction parameter goes to innity. Let us assume that (1.1) is in dimensionless form and let be a dimensionless and small positive parameter. We model this ow regime by replacing α with α/ with a slight abuse of notation and by performing the change of variable t = t in the system (1.1). We obtain the system

∂ t ρ + ∂ x (ρu) = 0, ∂ t (ρu) + ∂ x (ρu 2 + p) = ρ g - α u , ∂ t (ρE) + ∂ x ((ρE + p)u) = ρu g - α u .
Let us assume that the velocity u admits an asymptotic expansion in powers of of the following form

u = u 0 + u 1 + O( 2 ). (1.3)
Multiplying the second equation by and letting go to 0 rst gives u 0 = 0. Then inserting u = u 1 +O( ). The long time behaviour of the solutions of (1.1) for large friction coecients is then given by the following system of partial dierential equations

     ∂ t ρ + ∂ x (ρu 1 ) = 0, ∂ x p = ρ(g -αu 1 ), ∂ t (ρe) + ∂ x ((ρe + p)u 1 ) = ρu 1 (g -αu 1 ), (1.4) 
where we note that in comparison to (1.1) the ow speed u has been replaced by its rst order corrector u 1 in both the mass ux of the rst equation and the friction term of the second equation. This observation will play a crucial role in the forthcoming developments. In addition, we note that this model has to be understood as the diusive or parabolic limit of the hyperbolic model (1.1) since the second derivative of the pressure p naturally appears in the rst equation of the limit system using its second equation :

∂ t ρ + ∂ x ρg-∂xp α = 0.
The formal derivation of (1.4) proposed here can be given a rigorous meaning from the analysis point of view. Such a problem has indeed been studied by many authors and at least in the simplied situation of the barotropic case, many contributions are concerned with the existence and convergence of the solutions of the gaz dynamics equations to the Darcy's law in (1.4). To mention only a few of them, let us quote for instance [START_REF] Hsiao | Convergence to nonlinear diusion waves for solutions of a system of hyperbolic conservation laws with damping[END_REF][START_REF] Junca | Strong relaxation of the isothermal Euler system to the heat equation[END_REF]21,[START_REF] Lin | The strong relaxation limit of the multidimensional Euler equations[END_REF][START_REF] Marcati | The one-dimensional Darcys law as the limit of a compressible Euler ow[END_REF]. Note that these works essentially dier from the underlying assumptions (Lagrangian or Eulerian coordinates, smooth or possibly discontinuous solutions, one or several space dimensions, linear or non linear pressure laws...) and techniques. See also the references therein and [6] for further results.

From a numerical point of view and as already said in the previous section, one of our objectives is to preserve this asymptotic behaviour at the discrete level. In other words, we aim at proposing a consistent numerical scheme for (1.1) leading to a consistent numerical scheme for (1.4) when goes to zero and up to the expected changes of variables. Before proceeding and to conclude this section, let us formally rephrase this property in terms of limits with respect to the small parameter and to the time and space steps ∆t, ∆x used in the numerical approximation. Let us denote M the initial model (1.1), M 0 the limit model (1.4), S ∆t,∆x a consistent numerical scheme for (1.1) and S 0 ∆t,∆x its asymptotic limit. Recall that consistency of S ∆t,∆x means that lim ∆t,∆x→0 S ∆t,∆x = M , for all > 0. By denition and with a little abuse in the notations, S ∆t,∆x is said to be asymptotic preserving if S 0 ∆t,∆x is consistent with M 0 , that is lim S ∆t,∆x . From a practical point of view this equality formally means that for large friction coecients, or equivalently for small values of , an asymptotic preserving scheme is expected to give good numerical results even for reasonable mesh sizes (with respect to ). This will be observed in the last section devoted to the numerical experiments.

1.3 Lagrange-Projection approach and relaxation procedure

In this section we briey recall the so-called Lagrange-Projection strategy applied to (1.1) and propose a relaxation procedure for approximating the solutions of the underlying Lagrangian system. As motivated in the introduction, these are two key ingredients of the method we propose, together with the notion of consistency in the integral sense that will be recalled in the next section. Let us begin with the Lagrange-Projection decomposition.

Lagrange-Projection decomposition

We describe here a procedure that allows to approximate the evolution of the system (1.1) over a time interval [t 0 , t 0 + ∆t]. The guideline of the method consists in decoupling the terms responsible for the acoustic waves and the transport waves. By using the chain rule for the space derivatives we split up the operators of system (1.1) and obtain two subsystems. The rst subsystem describes the transport process and reads

     ∂ t ρ + u∂ x ρ = 0, ∂ t (ρu) + u∂ x (ρu) = 0, ∂ t (ρE) + u∂ x (ρE) = 0. (1.5) 
The second subsystem accounts for acoustic, gravity and friction eects, namely

∂ t ρ + ρ∂ x u = 0, ∂ t (ρu) + ρu∂ x u + ∂ x p = ρ(g -αu), ∂ t (ρE) + ρE∂ x u + ∂ x (pu) = ρu(g -αu).
If we note τ = 1 ρ the specic volume, the above system also reads

       ∂ t τ -τ ∂ x u = 0, ∂ t u + τ ∂ x p = g -αu, ∂ t E + τ ∂ x (pu) = u(g -αu).
(1.6)

Then for t ∈ [t 0 , t 0 + ∆t], we propose to approximate τ (x, t)∂ x • by τ (x, t 0 )∂ x • in (1.6
). If one introduces the mass variable m dened by dm = τ (x, t 0 ) -1 dx, we obtain

     ∂ t τ -∂ m u = 0, ∂ t u + ∂ m p = g -αu, ∂ t E + ∂ m (pu) = u(g -αu), (1.7) 
that will be referred to as the Lagrangian system. Let us note that system (1.7) is consistent with the usual form of the gas dynamics equations in Lagrangian coordinates with friction and gravity terms.

We refer for instance the reader to [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF] for more details. It is worth noticing that (1.7) is easily shown to be hyperbolic over the phase space Ω Lag given by Ω Lag = {(τ, u, E) T ∈ R 3 , τ > 0, e > 0}, with eigenvalues given by λ Lag is linearly degenerate. Importantly, we note that the sound speed only appears in the characteristic speeds of this Lagrangian model. The ow speed u is no longer present but is on the other hand the unique characteristic velocity of the rst subsystem (1.5).

System (1.7) (respectively (1.5)) then only contains the so-called acoustic (resp. material or transport) waves. From a numerical point of view, the scheme associated with this decomposition simply consists of an usual two-step splitting strategy where (1.7) is solved in the rst step and (1.5) in the second one. Both steps will be solved over the same time interval. Recall that the idea will be here to propose a time implicit treatment of the Lagrangian system (1.7) to avoid a too restrictive CFL condition involving the sound speed c and an explicit treatment of the transport part (1.5) to keep accuracy on the material waves. A key ingredient to get a low cost implicit scheme for the Lagrangian system will rely on a relevant pressure relaxation approximation described in the next section.

Relaxation approximation

We propose in this section a relaxation approximation of the Lagragian system (1.7). The main objective is to overcome the non linearities that make dicult the resolution of this system. From a numerical point of view, this strategy will be used to design a low cost time implicit treatment. We rst consider the model neglecting the source terms and then extend the approach to the full model.

Relaxation approximation of the homogeneous model

The design principle of the so-called pressure relaxation methods is to introduce a larger system than the original one but easier to solve. More precisely, the objective is to discard the non linearities induced by the pressure law p = p(ρ, e). Such a strategy is now well known in the literature and we refer for instance the reader to [START_REF] Suliciu | On the thermodynamics of uids with relaxation and phase transitions. Fluids with relaxation[END_REF][START_REF] Jin | The relaxation schemes for systems of conservation laws in arbitrary space dimension[END_REF]20,18,17,8] and the references therein. To do so, we introduce a new variable Π that can be seen as a linearization of the pressure p and that is considered as a new unknown. In particular, it evolves according to its own partial dierential equation. More precisely, we propose the following relaxation system for (1.7) when the source terms are omitted :

           ∂ t τ -∂ m u = 0, ∂ t u + ∂ m Π = 0, ∂ t Π + a 2 ∂ m u = λ(p -Π), ∂ t E + ∂ m (Πu) = 0, (1.8)
where a is a constant to be precised and λ the relaxation parameter. At least formally, we observe that in the asymptotic regime λ → +∞ we have Π → p and we recover the initial system (1.7) without the source terms. In order to prevent this relaxation procedure from forming instabilities, it is now well established that a must be chosen suciently large and according to the subcharacteristic condition

a > max (ρc) , (1.9) 
for all the states under consideration (see for instance [17] for a rigorous proof). In addition, it can be easily proved that (1.8) with λ = 0 is strictly hyperbolic with three eigenvalues given by -a, 0 and a which are nothing but approximations of the exact eigenvalues -ρc, 0 and ρc for system (1.7). Then and in particular, the subcharacteristic condition means that information propagates faster in the relaxation model. More importantly, the characteristic elds associated with these new eigenvalues are shown to be linearly degenerate. This property allows to solve analytically the Riemann problem associated with (1.8) when λ = 0, that is when considering an initial data made of two constant states separated by an initial discontinuity. This property justies by itself the introduction of the proposed relaxation model and its simplicity. If we go further into the details and as it is customary, the exact Riemann solutions are self-similar and made of three contact discontinuities propagating with velocities -a, a and 0 and separating two intermediate states.

From a numerical point of view, the numerical strategy for approximating the solutions of (1.7) using

(1.8) consists in rst solving (1.8) with λ = 0, that is

           ∂ t τ -∂ m u = 0, ∂ t u + ∂ m Π = 0, ∂ t Π + a 2 ∂ m u = 0, ∂ t E + ∂ m (Πu) = 0, (1.10) 
and then to take into account the source term ∂ t τ = 0, ∂ t u = 0, ∂ t Π = λ(p -Π), ∂ t E = 0, in the asymptotic regime λ → +∞. Which amounts to set Π = p(ρ, E), before solving again (1.10) as the time goes on. The new variable Π is said to be at equilibrium. Importantly, note that λ does not appear explicitly in the scheme, but its value is always implicitly equal to ∞ which is expressed by the relation

Π = p(ρ, E).
In particular, no confusion can be made in regards to the order of the limits in λ and when the AP property will be considered.

To conclude this section, notice that the self-similar Riemann solutions associated with (1.10) being explicitly known, it is natural to use an exact Godunov scheme to numerically solve (1.10). See for instance the references above for more details.

Relaxation approximation of the Lagrangian system with source terms

Let a be a real parameter chosen in agreement with the subcharacteristic condition (1.9). In order to approximate the solution of (1.7), we propose to supplement (1.10) with the friction and gravity terms so that we have to solve

           ∂ t τ -∂ m u = 0, ∂ t u + ∂ m Π = g -αu, ∂ t Π + a 2 ∂ m u = 0, ∂ t E + ∂ m (Πu) = u(g -αu).
(1.11)

Let us underline that the solutions of the Riemann problem associated with (1.11) are neither self-similar nor explicitly known anymore. This makes the use of the exact Godunov method quite a complex task. In what follows, we decide nevertheless to approximate the non self-similar Riemann solutions to (1.11) by self-similar approximate Riemann solutions and to use an approximate Godunov-type method for solving (1.11). In order to guarantee the consistency of the proposed self-similar approximate Riemann solutions to (1.11) with the exact ones, we will impose a generalized notion of consistency in the integral sense due to Gallice [30,31] and adapted to systems with source terms. This is recalled in the next section.

To conclude this section, let us observe that (1.11) can be given the following equivalent form

           ∂ t τ -∂ m u = 0, ∂ t - → w + a∂ m - → w = a(g -αu), ∂ t ← - w -a∂ m ← - w = -a(g -αu), ∂ t E + ∂ m (Πu) = u(g -αu), (1.12)
where the new variables -→ w and ←w are dened by -→ w = Π + au, ←w = Π -au. These quantities are nothing but the strong Riemann invariants associated with the characteristic speeds ±a of the relaxation system (1.11) when the source terms are omitted. The closure relations for (1.12) are naturally given by

u = - → w -← - w 2a , Π = - → w + ← - w 2 .
This new formulation will be used hereafter to dene the proposed implicit in time numerical strategy. 1.4 Consistency in the integral sense and explicit in time Godunovtype scheme

We briey recall in this section the notion of consistency in the integral sense of a self-similar approximate Riemann solver for a given set of hyperbolic equations with source terms that we write in the condensed form

∂ t U + ∂ x F(U) = S(U), (1.13) 
supplemented with the validity of an entropy inequality

∂ t η + ∂ x q ≤ 0, (1.14) 
where (η, q) is a strictly convex entropy-entropy ux pair. We also derive the corresponding explicit in time Godunov-type scheme for approximating the solutions to (1.13) and refer to [30,31] for the details.

Solving the Riemann problem amounts to nd the solution to (1.13) with the following piecewise

constant initial data U(x, t = 0) = U L if x < 0, U R if x > 0,
for any given U L and U R in the phase space. Unlike the homogeneous case corresponding to the choice S(U) = 0, the exact Riemann solution that we denote U(x, t; U L , U R ) is not self-similar. Notice however that an approximate Riemann solver W( x t ; U L , U R ) may be self-similar as in the homogeneous case provided that some consistency relations are imposed. More precisely, let us consider a simple approximate Riemann solver W( x t ; U L , U R ) made of l + 1 intermediate states U k separated by discontinuities propagating with velocities λ k , namely

W x t ; U L , U R =                    U 1 = U L , x t < λ 1 , . . . U k , λ k-1 < x t < λ k , . . . U l+1 = U R , x t > λ l .
(1.15)

From Gallice [30,31], if ∆x = 1 2 (∆x L + ∆x R ) with ∆x L > 0, ∆x R > 0 and ∆t > 0 are respectively space and time steps that verify the CFL condition

max 1≤k≤l |λ k | ∆t min(∆x L , ∆x R ) ≤ 1 2 , (1.16) 
the approximate Riemann solver is said to be consistent with the integral form of (1.13) over the interval

[ -∆x L 2 , ∆x R 2 ]
if the integral of (1.15) approximates correctly the integral of the exact solution in the sense that there exists a function S such that

F(U R ) -F(U L ) -∆x S(∆x, ∆t; U L , U R ) = l k=1 λ k (U k+1 -U k ), (1.17) 
where S(∆x, ∆t; U L , U R ) is consistent with the source terms S(U) in the sense that

lim U L ,U R →U ∆t,∆x→0 S(∆x, ∆t; U L , U R ) = S(U).
Hereafter and using very classic notations, (∆x j ) j∈Z and ∆t represent the constant time and variable space steps of the mesh under consideration for dening the approximate solutions. More precisely and in order to dene the Godunov-type scheme associated with this approximate Riemann solver, we dene the mesh interfaces x j+1/2 = x j-1/2 + ∆x j for j ∈ Z, and the intermediate times t n = n∆t for n ∈ N. Note that ∆x in (1.17) then plays the role of ∆x j+1/2 = 1 2 (∆x j + ∆x j+1 ). In the sequel, U n j denotes the approximate value of U at time t n and on the cell [x j-1/2 , x j+1/2 ). For n = 0 and j ∈ Z, we set

U 0 j = 1 ∆x x j+1/2
x j-1/2 U 0 (x) dx where U 0 (x) is the initial condition. Then, the explicit in time Godunov-type scheme reads

                   U n+1 j = U n j - ∆t ∆x j (F n j+ 1 2 -F n j-1 2 ) + ∆t 2 ( ∆x j+1/2 ∆x j S n j+ 1 2 + ∆x j-1/2 ∆x j S n j-1 2
),

F n j+ 1 2 = F(U n j , U n j+1 ), S n j+ 1 2 = S(∆x j+1/2 , ∆t; U n j , U n j+1 ), (1.18) 
with

F(U L , U R ) = 1 2 F(U L ) + F(U R ) - l k=1 |λ k |(U k+1 -U k ) .
As far as the consistency with the entropy inequality (1.14) is concerned, the simple approximate Riemann solver is said to be consistent with the integral form of (1.14) if and only if there exists a function σ such that under the CFL condition (1.16) we have

q(U R ) -q(U L ) -∆x σ(∆x, ∆t; U L , U R ) ≤ l k=1 λ k η(U k+1 ) -η(U k ) , (1.19) 
with lim

U L ,U R →U ∆t,∆x→0
σ(∆x, ∆t; U L , U R ) = 0. Then, the numerical scheme dened by (1.18) satises the following discrete entropy inequality

                   η(U n+1 j ) ≤ η(U n j ) - ∆t ∆x j (q n j+ 1 2 -q n j-1 2 ) + ∆t 2 ( ∆x j-1/2 ∆x j σ n j-1 2 + ∆x j+1/2 ∆x j σ n j+ 1 2
),

q n j+ 1 2 = q(U n j , U n j+1 ), σ n j+ 1 2 = σ(∆x j+1/2 , ∆t; U n j , U n j+1 ), (1.20) 
with

q(U L , U R ) = 1 2 q(U L ) + q(U R ) - l k=1 |λ k | S(U k+1 ) -S(U k ) . (1.21) 
The CFL condition associated with this explicit in time Godunov-type scheme naturally reads

max 1≤k≤l | λ k (U n j , U n j+1 ) | ∆t min(∆x j , ∆x j+1 ) ≤ 1 2
, for all j. Again, we refer to [30,31,16] for more details.

To conclude this section, let us observe that the numerical ux F(U L , U R ) and the entropy numerical ux q(U L , U R ) are clearly consistent in the classic senses F(U, U) = F(U) and q(U, U) = q(U) provided that the intermediate states of the approximate Riemann solver are such that U k = U for all k = 1, ..., l as soon as U := U L = U R .

1.5 Application to the Lagrangian system and explicit in time Godunov-type scheme

We suppose again that a is a parameter that complies with the subcharacteristic constraint (1.9). We consider a step ∆m of the space variable expressed through the mass variable and a time step ∆t. The objective of this section is to dene a consistent simple approximate Riemann solver for (1.12). We have in this case

U =       τ - → w ← - w E       , F(U) =       -u a - → w -a ← - w Πu       , S(U) =       0 a(g -αu) -a(g -αu) u(g -αu)       , F(U L , U R ) =       F τ (U L , U R ) F - → w (U L , U R ) F ← - w (U L , U R ) F E (U L , U R )       .
Note in particular that introducing the notation F(U) = (F τ , F -→ w , F ←w , F E ) T , the energy ux satises the relation

F E = - F - → w + F ← - w 2a F τ . (1.22)
This relation will be used in the calculations below.

In order to mimic the self-similar solution to (1.12) when the source terms are omitted, we propose to consider a simple approximate Riemann solver made of 3 waves, namely a stationary wave and two waves propagating with velocities ±a :

W m t ; U L , U R =            U L , m t < -a, U * L , -a < m t < 0, U * R , 0 < m t < a, U R , m t > a.
Following [16], we dene S as follows S(∆m, ∆t;

U L , U R ) =       0 a(g -αũ) -a(g -αũ) ũ(g -αũ)      
, where ũ represents a consistent approximation of the velocity u, in the sense that lim

U L ,U R →U ∆t,∆x→0
ũ(∆m, ∆t; U L , U R ) = u. The denition of ũ will be specied later on. We now turn to the denition of the intermediate states U * L and U * R . Each state containing four components, eight relations are expected. As motivated in the previous section, we rst impose the consistency relations (1.17) which gives here

             (u L -u R ) = -a(τ * L -τ L ) + a(τ R -τ * R ), a( - → w R -- → w L ) -∆m a(g -αũ) = -a( - → w * L -- → w L ) + a( - → w R -- → w * R ), -a( ← - w R -← - w L ) + ∆m a(g -αũ) = -a( ← - w * L -← - w L ) + a( ← - w R -← - w * R ), (Π R u R -Π L u L ) -∆m ũ(g -αũ) = -a(E * L -E L ) + a(E R -E * R ).
(1.23)

Then, we make the natural choice of imposing the Rankine Hugoniot relations associated with the mass conservation across each wave of the approximate Riemann solver. We get

     u L -aτ L = u * L -aτ * L , u R + aτ R = u * R + aτ * R , u * L = u * R .
(1.24)

Note that (1.24) provides only two independent relations since the rst equation of (1.23) is a linear combination of the three equations in (1.24). Then, two equations are still missing. In the sequel we note

u * = u * L = u * R .
In order to account for the source terms, we propose to impose a generalized jump condition across the stationary wave and associated with the momentum equation in (1.11). This amounts to take into account the source term at the interface of the initial condition. More precisely, we impose Π * R -Π * L = ∆m(g-αũ). So that only one equation is now missing. At last and in regards to the energy equation, we then propose to mimic the relation (1.22) at the discrete level by imposing the following relation on the numerical ux of the Godunov-type method :

F E (U L , U R ) = -F τ (U L , U R ) × F - → w (U L ,U R )+F ← - w (U L ,U R ) 2a
. It remains to dene ũ and following [16] we set ũ = u * . This choice aims at proposing the same approximation of the velocity u in the mass ux at the interface (that is u * ) as in the friction term (that is ũ). As mentioned in section 1.2, this is also true at the continuous level for the parabolic system (1.4). It turns out to be essential in order to obtain the asymptotic preserving property.

At this point, we can now dene the intermediate states U * L and U * R . We have after easy calculations

                       u * = 1 2a + α∆m a(u R + u L ) -(Π R -Π L ) + g∆m , τ * L = τ L + u * -u L a , τ * R = τ R + u R -u * a , Π * R = Π R + Π L 2 -a u R -u L 2 + (g -αu * )∆m 2 , Π * L = Π * R -(g -αu * )∆m, E * L = E L + 1 a p L u L -u * (p * - ∆m 2 g -αu * ) , E * R = E R -1 a p R u R -u * (p * + ∆m 2 g -αu * ) , (1.25) 
where we have set

p * = Π R +Π L 2 -a u R -u L 2 = - → w L + ← - w R 2
. We nd the numerical ux of the Godunov-type scheme

     F τ (U L , U R ) = -u * , F - → w (U L , U R ) = a - → w L + a(g -αu * )∆m 2 = a 2 u * + ap * , F ← - w (U L , U R ) = -a ← - w R + a(g -αu * )∆m 2 = a 2 u * -ap * , F E (U L , U R ) = p * u * .
We now use the above ux denition to derive an explicit in time Godunov-type scheme for (1.12).

We consider the approximate variable U n j known for j ∈ Z and we set ∆m j = ρ n j ∆x, ∆m j+1/2 = ∆mj +∆mj+1 2

. The superscript Lag will denote the updated values after the approximation of (1.12). Following (1.18), we are led to the following scheme

                                     τ Lag j = τ n j + ∆t ∆m j (u * j+ 1 2 -u * j-1 2 ), - → w Lag j = - → w n j -a ∆t ∆m j ( - → w n j -- → w n j-1 ) + ∆t a ∆m j-1/2 ∆m j (g -αu * j-1 2 ), ← - w Lag j = ← - w n j + a ∆t ∆m j ( ← - w n j+1 -← - w n j ) -∆t a ∆m j+1/2 ∆m j (g -αu * j+ 1 2
),

E Lag j = E n j - ∆t ∆m j ((up) * j+ 1 2 -(up) * j-1 2 ) + g ∆t ∆m j ∆m j+1/2 u * j+ 1 2 + ∆m j-1/2 u * j-1 2 2 -α ∆t ∆m j ∆m j+1/2 (u * j+ 1 2 ) 2 + ∆m j-1/2 (u * j-1 2 ) 2 2 , (1.26) 
where

u * j+ 1 2 = 1 2a + α∆m j+1/2 ( - → w n j -← - w n j+1 + g∆m j+1/2 ), p * j+ 1 2 = - → w n j + ← - w n j+1 2 . (1.27)
Notice that the source terms clearly appear to receive an upwind treatment in (1.26). This scheme is easily shown to be stable under the CFL condition given by

max j∈Z ∆t ∆m j a ≤ 1 2 , (1.28) 
for all j. Let us note that as a satises the subcharacteristic condition (1.9) this CFL condition naturally involves the sound speed c.

Remarks on ∆t and u

* j+ 1 2 . About ∆t.
If we perform the scale change

∆t → ∆t , α → α , (1.29) 
in the scheme (1.26), we obtain the CFL condition max

j∈Z ∆t ∆m j a ≤ 2
, which is too restrictive in the asymptotic limit as lim →0 ∆t = 0. One way to overcome this diculty is to treat implicitly the centered part of the source term as in [START_REF] Gosse | Space Localization and Well-Balanced Schemes for Discrete Kinetic Models in Diusive Regimes[END_REF]10]. This gives an hyperbolic CFL condition that converges towards a parabolic CFL condition associated to the limit system in the asymptotic limit 2∆t

< ∆m a + α(∆x) 2 a 2
. As motivated before, here we will make the choice to get rid of (1.28) by treating implicitly both the uxes and the whole source terms to construct a numerical scheme that has no CFL condition either in classic or asymptotic regime. A rigorous proof of the non-linear stability of the scheme is an open problem. This scheme is presented in the next section.

About u * j+ 1 2 .
Let us underline here the importance to choose a specic covolume ux u * j+ 1 2 to obtain the asymptotic preserving property. Assuming asymptotic expansions u n j = u n,(0) j + O( ) , similar to (1.3) at the continuous level, the key property to obtain the asymptotic preserving property will be seen in proof 1.8.1 to be If u n,(0) j = 0 ∀j, then

u * j+ 1 2 = 0 + v * j+ 1 2 + O( ), (1.30) 
where v *

j+ 1 2 is consistent with u 1 = 1 α g -1 ρ ∂ x p
. Indeed, considering the scale change (1.29), the rst equation of (1.26) gives,

τ Lag j = τ n j + ∆t ∆m j ( u * j+ 1 2 - u * j-1 2 ) = τ n j + ∆t ∆m j (v * j+ 1 2 -v * j-1 2 ) + O( ),
which is consistent with the rst equation of (1.38).

If one uses a more natural denition of the interfacial velocity u * j+ 1

2

, which corresponds to the interfacial velocity associated with the relaxation scheme applied to (1.8), instead of (1.27) if we set

u * ,classic j+ 1 2 = - → w n j -← - w n j+1 2a = 1 2 u n j+1 + u n j - 1 2a Π n j+1 -Π n j ,
then we have

u * ,classic j+ 1 2 = 1 2 u n,(0) j+1 + u n,(0) j + 1 2 u n,(1) j+1 + u n,(1) j - 1 2a Π n j+1 -Π n j + O( ) = v * j+ 1 2 + O( ∆x ) + O( )
Thus this classic ux does not verify the property (1.30) because of the term 1 2a

Π n j+1 -Π n j = O( ∆x ). Therefore the numerical diusion becomes of order O( ∆x ) and we cannot recover the good asymptotic behaviour of the covolume ux with the more natural choice of u * ,classic

j+ 1 2 . While the specic choice u * j+ 1 2 in (1.27) gives u * j+ 1 2 = 1 α∆m j+1/2 1 1 + 2a α∆m j+1/2 a(u n j+1 + u n j ) -(Π n j+1 -Π n j ) + g∆m j+1/2 = 1 α∆m j+1/2 a(u n,(0) j+1 + u n,(0) j ) -(Π n j+1 -Π n j ) + g∆m j+1/2 + O (∆x) 2 = v * j+ 1 2 + O (∆x) 2
which veries (1.30). The consistency with u 1 arises from the specic form of non centered terms in

u * j+ 1 2
which coincides with the equation veried by u 1 . This will be the key ingredient to prove the asymptotic preserving property in Lagrangian coordinates. Asymptotic expansion as goes to zero have been performed for a given ∆x so that we have in particular ∆x and O (∆x

) 2 = O( ). Of course, if we set ∆x = 0 for a given in (1.27) it is clear that u * j+ 1 2 is consistent with u.

Implicit in time Godunov-type scheme for the Lagrangian system

We follow here a standard approach for deriving an implicit in time Godunov-type scheme from (1.26) by simply replacing the terms evaluated at time t n with the terms noted with the superscript Lag . We get

       - → w Lag j = - → w n j -a ∆t ∆m j ( - → w Lag j -- → w Lag j-1 ) + ∆t a ∆m j-1/2 ∆m j (g -αu * j-1 2 ), ← - w Lag j = ← - w n j + a ∆t ∆m j ( ← - w Lag j+1 -← - w Lag j ) -∆t a ∆m j+1/2 ∆m j (g -αu * j+ 1 2 ), (1.31) 
with

u * j+ 1 2 = 1 2a + α∆m j+1/2 ( - → w Lag j -← - w Lag j+1 + g∆m j+1/2 ), (1.32) 
and

                 τ Lag j = τ n j + ∆t ∆m j (u * j+ 1 2 -u * j-1 2
),

E Lag j = E n j - ∆t ∆m j ((up) * j+ 1 2 -(up) * j-1 2 ) + g ∆t ∆m j ∆m j+1/2 u * j+ 1 2 + ∆m j-1/2 u * j-1 2 2 -α ∆t ∆m j ∆m j+1/2 (u * j+ 1 2 ) 2 + ∆m j-1/2 (u * j-1 2 ) 2 2 , (1.33) 
with p *

j+ 1 2 = - → w Lag j + ← - w Lag j+1 2 .
It is important to notice that (1.31) is independent of (1.33). More precisely, once (1.31) is solved, the update values (1.33) for τ and E follow explicitly. As far as - → w and ←w are concerned, the update formulas (1.31) are coupled and require the resolution of a linear system. The corresponding matrix is shown to be pentadiagonal and strictly diagonally dominant. Therefore, it is invertible and (1.31) can be solved for any ∆t > 0. The proposed implicit in time numerical scheme for solving the Lagrangian system is then actually cheap thanks to the relaxation strategy.

1.7 Implicit-explicit in time Godunov-type scheme for the Eulerian system (1.1)

In order to complete the denition of our numerical scheme, it remains to dene the second step of the operator splitting associated with the Lagrange-Projection decomposition, which corresponds to the Eulerian projection (1.5). Following [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF], we consider a very classic upwind and explicit in time numerical scheme given by

X n+1 j = X Lag j + ∆t ∆x (u * j-1 2 ) + X Lag j-1 + (u * j+ 1 2 ) --(u * j-1 2 ) + X Lag j -(u * j+ 1 2 ) -X Lag j+1 , (1.34) 
where X ∈ {ρ, ρu, ρE} and u + = u+|u| 2 , u -= u-|u| 2 , for all u. The update formula (1.34) is shown to be stable under the CFL condition given by

∆t ∆x (u * j-1 2 ) + -(u * j+ 1 2 ) -< 1, (1.35) 
see again [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF]. Note that this CFL condition involves only the ow speed and is not based on the acoustic waves.

Note that, if (1.30) holds and (1.29) is performed, the CFL condition (1.35) becomes as goes to zero

∆t ∆x (v * j-1 2 ) + -(v * j+ 1 2 ) -< 1, (1.36) 
which will allow a strictly positive time step in the asymptotic regime.

For the sake of clarity, let us briey recall the dierent steps of the overall method called LP-IMEX, suppose that at the instant n we know (ρ n j , (ρu) n j , (ρE) n j ) for j ∈ Z, we perform the following steps :

(i) compute (τ n j , -→ w n j , ←w n j , E n j ) at equilibrium by evaluating Π n j = p(ρ n j , e n j ),

(ii) compute (τ Lag j , - → w Lag j , ← - w Lag j , E Lag j
) thanks to the implicit scheme dened by (1.31)-(1.33),

(iii) evaluate (ρ Lag j , (ρu) Lag j , (ρE

) Lag j ) thanks to (τ Lag j , - → w Lag j , ← - w Lag j , E Lag j ), (iv) compute (ρ n+1 j , (ρu) n+1 j , (ρE) n+1 j 
) thanks to the explicit scheme dened by (1.34) and (1.32). In the numerical experiments and for the sake of comparison, we will also consider the following explicitexplicit numerical scheme that will be referred to as the LP-EXEX scheme. Suppose that at the instant n we know (ρ n j , (ρu) n j , (ρE) n j ) for j ∈ Z, we perform the following steps :

(i) compute (τ n j , - → w n j , ← - w n j , E n j ) at equilibrium by evaluating Π n j = p(ρ n j , e n j ), (ii) compute (τ Lag j , - → w Lag j , ← - w Lag j , E Lag j
) thanks to the explicit scheme dened by (1.26),

(iii) evaluate (ρ Lag j , (ρu) Lag j , (ρE) Lag j ) thanks to (τ Lag j , - → w Lag j , ← - w Lag j , E Lag j ), (iv) compute (ρ n+1 j , (ρu) n+1 j , (ρE) n+1 j 
) thanks to the explicit scheme dened by (1.34) and (1.27).

Main properties

We give in this section the main properties of the proposed numerical scheme.

Theorem 1. Under the CFL condition (1.35), the implicit-explicit in time numerical scheme LP-IMEX is well dened and satises the following stability properties : (i) it is a conservative scheme for the density ρ. It is also a conservative scheme for ρu and ρE when the source terms are omitted, (ii) the density ρ n j is positive for all j and n > 0 provided that ρ 0 j is positive for all j, (iii) it is asymptotic preserving. In addition, under the CFL condition (1.28), the explicit-explicit overall numerical scheme LP-EXEX (iv) satises an entropy inequality.

This result is worth a few comments. We rst note that the overall numerical scheme is stable under the CFL condition (1.35) which only involves the ow speed and not the acoustic waves. It is then less restrictive than the classic CFL restrictions of the usual explicit Godunov-type numerical schemes. The CFL condition (1.35) involves however the solution computed at the end of the Lagrangian step and then is not determined explicitly. Finding an explicit formula for the time step restriction that guarantees (1.35) and then the stability of the scheme is an open question at the moment.

Properties (i) and (ii) are obtained from standard manipulations [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF]19]. We rst prove (iii), then comment on the limit system we obtain, and at last we prove (iv).

Proof of (iii)

This section aims at proving that the proposed LP-IMEX numerical scheme is asymptotic preserving.

More precisely and similarly to the continuous analysis proposed in section 1.2, we aim at proving that if we perform the scale change

∆t → ∆t , α → α , (1.37) 
which corresponds to the study of the large time behaviour for a large friction coecient, then we get a consistent approximation of (1.4) when goes to zero. We propose a two-part proof : we rst prove the property in Lagrangian coordinates and then consider the Eulerian framework.

Asymptotic preserving property in Lagrangian coordinates

In Lagrangian coordinates, the limit system (1.4) reads

     ∂ t τ -∂ m u 1 = 0, ∂ m p = g -αu 1 , ∂ t e + ∂ m pu 1 = u 1 (g -αu 1 ). (1.38) 
Let us perform the scale change (1.37) in (1.31)-(1.33). We get

                                     - → w Lag j = - → w n j -a ∆t ∆m j ( - → w Lag j -- → w Lag j-1 ) + ∆ta ∆m j-1/2 ∆m j (g - α u * j-1 2 ), ← - w Lag j = ← - w n j + a ∆t ∆m j ( ← - w Lag j+1 -← - w Lag j ) - ∆ta ∆m j+1/2 ∆m j (g - α u * j+ 1 2 ), τ Lag j = τ n j + ∆t ∆m j (u * j+ 1 2 -u * j-1 2
),

E Lag j = E n j - ∆t ∆m j (up) * j+ 1 2 -(up) * j-1 2 + g∆t ∆m j ∆m j+1/2 u * j+ 1 2 + ∆m j-1/2 u * j-1 2 2 - α∆t 2 ∆m j ∆m j+1/2 (u * j+ 1 2 ) 2 + ∆m j-1/2 (u * j-1 2 ) 2 2 , with u * j+ 1 2 = 2a +α∆m j+1/2 ( - → w Lag j -← - w Lag j+1 + g∆m j+1/2 ) and p * j+ 1 2 = - → w Lag j + ← - w Lag j+1 2
. This system may be recast in variables (u, Π, τ, E)

                                               u Lag j = u n j - ∆t ∆m j p * j+ 1 2 -p * j-1 2 + g∆t ∆m j ∆m j+1/2 + ∆m j-1/2 2 - α∆t ∆m j ∆m j+1/2 u * j+ 1 2 + ∆m j-1/2 u * j-1 2 2 , Π Lag j = Π n j -a 2 ∆t ∆m j u * j+ 1 2 -u * j-1 2 , τ Lag j = τ n j + ∆t ∆m j u * j+ 1 2 -u * j-1 2 , E Lag j = E n j - ∆t ∆m j (up) * j+ 1 2 -(up) * j-1 2 + g∆t ∆m j ∆m j+1/2 u * j+ 1 2 + ∆m j-1/2 u * j-1 2 2 - α∆t 2 ∆m j ∆m j+1/2 (u * j+ 1 2 ) 2 + ∆m j-1/2 (u * j-1 2 ) 2 2 , (1.39) 
with p *

j+ 1 2 = 1 2 Π Lag j+1 + Π Lag j -a 2 u Lag j+1 -u Lag j , and u * j+ 1 2 = α∆m j+1/2 1 (1+ 2a α∆m j+1/2 ) a(u Lag j+1 + u Lag j ) -(Π Lag j+1 -Π Lag j ) + g∆m j+1/2
. Asymptotic development as goes to zero are performed for a given ∆x so that we have in particular

∆x and O ∆x = O( ). Of course, if we set ∆x = 0 for a given in (1.27) it is clear that u * j+ 1 2 is consistent with u. Besides, the CFL condition (1.36) gives O( ∆t ∆x ) = O(1). Let us assume that the following discrete asymptotic development similar to (1.3) u Lag j = u Lag,(0) j + O( ), then u * j+ 1 2 = α∆m j+1/2 a(u Lag,(0) j+1 + u Lag,(0) j ) -(Π Lag j+1 -Π Lag j ) + g∆m j+1/2 + O 2 . (1.40)
Multiplying the rst equation of (1.39) by , we obtain 4a∆t ∆mj u

Lag,(0)

j = O( ), that implies u Lag,(0) j = 0 (1.41)
Now that we have (1.41), property (1.30) is easily proved with (1.40) and we obtain

u * j+ 1 2 = v * j+ 1 2 + O ( ) , where v * j+ 1 2 = 1 α∆m j+1/2 g∆m j+1/2 -(Π Lag j+1 -Π Lag j ) ,
is consistent with u 1 thanks to the second equation of (1.38).

We also have from (1.41) p * 

j+ 1 2 = P * j+1/2 + O( ), where P * j+1/2 = Π Lag j +Π Lag
                                                 τ Lag j =τ n j + ∆t ∆m j v * j+ 1 2 -v * j-1 2 + O( ), v * j+ 1 2 = 1 α g - Π Lag j+1 -Π Lag j ∆m j+ 1 2 , P * j+ 1 2 = Π Lag j + Π Lag j+1 2 , Π Lag j =Π n j -a 2 ∆t ∆m j v * j+ 1 2 -v * j-1 2 + O( ), e Lag j =e n j - ∆t ∆m j (vP ) * j+ 1 2 -(vP ) * j-1 2 + g ∆t ∆m j ∆m j+1/2 v * j+ 1 2 + ∆m j-1/2 v * j-1 2 2 -α ∆t ∆m j ∆m j+1/2 (v * j+ 1 
2

) 2 + ∆m j-1/2 (v * j-1 2 ) 2 2 + O( ), (1.42) 
which is consistent with (1.38) when tends to 0. Let us remark that the scheme for the variable Π is consistent with the limit pressure equation

∂ t Π + a 2 ∂ m u 1 = 0.
This limit scheme is implicit, as was the scheme (1.31)- (1.33). We assume that the scheme is stable with no CFL condition, a rigorous proof of this assertion is an open problem.

Asymptotic Preserving property in Eulerian coordinates

It remains to prove that after the Eulerian projection, the overall scheme is consistent with (1.4). In

(1.34) we perform the scale change (1.29). We have for X ∈ {ρ, ρu, ρE} :

X n+1 j = X Lag j + ∆t ∆x (v * j-1 2 ) + X Lag j-1 + (v * j+ 1 2 ) --(v * j-1 2 ) + X Lag j -(v * j+ 1 2 ) -X Lag j+1 + O ( ) . (1.43)
Since we have u

Lag,(0) j = 0, then (ρu)

Lag,(0) j = 0 for all j ∈ Z and considering X = ρu in the previous equality gives (ρu) n+1,(0) j = 0 and then u n+1,(0) j = 0.

(1.44)

Let us remark that the rst equation in (1.42) reads also ( just multiply by ρ n j ρ Lag j )

ρ n j = ρ Lag j 1 + ∆t ∆x (v * j+ 1 2 -v * j-1 2 ) + O ( ) .
Then, for X ∈ {ρ, ρE} the Eulerian projection (1.43) may be recast into

(X) n+1 j = (X) Lag j 1 + ∆t ∆x (v * j+ 1 2 -v * j-1 2 ) -L a ((X) Lag , v * ) + O ( ) = ρ n j X Lag j ρ Lag j -L a ((X) Lag , v * ) + O ( ) , (1.45) 
where the advection operator L a ((X) Lag , v * ) is consistent with ∂ x (Xv) and is dened by

L a ((X) Lag , v * ) = ∆t ∆x (X) Lag j (v * j+ 1 2 ) + + (X) Lag j+1 (v * j+ 1 2 ) --(X) Lag j (v * j-1 2 ) -+ (X) Lag j-1 (v * j-1 2 ) + .
Taking X = ρ in (1.45) gives with (1.42)

                         ρ n+1 j =ρ n j -L a (ρ Lag , v * ) + O ( ) , v * j+ 1 2 = 1 α g -2 Π Lag j+1 -Π Lag j (ρ n j + ρ n j+1 )∆x , P * j+ 1 2 = Π Lag j + Π Lag j+1 2 Π Lag j =Π n j -a 2 ∆t ∆m j (v * j+ 1 2 -v * j-1 2 ) + O( ).
(1.46)

Then taking X = ρE in (1.45), that is X = ρe + O( ) thanks to (1.41) and (1.44), we inject the last equation of (1.42)

         (ρe) n+1 j =(ρe) n j - ∆t ∆x (vP ) * j+ 1 2 -(vP ) * j-1 2 +ρ n j ∆t g v * j+ 1 2 + v * j-1 2 2 -α (v * j+ 1 2 ) 2 + (v * j-1 2 ) 2 2 -L a ((ρe) Lag , v * ) + O( ).
(1.47)

This limit scheme (1.46)-(1.47) is clearly consistent with (1.4) when goes to zero. Hence, the overall scheme is asymptotic preserving and the proof is completed. We recall that the limit scheme CFL condition reads (1.36) and that Π is consistent with the limit pressure equation We consider here the parabolic problem

∂ t Π + a 2 ∂ m u 1 = 0.
∂ t ρ + ∂ x (ρu 1 ) = 0, u 1 = 1 α g - 1 ρ ∂ x p
which corresponds to (1.4) in the barotropic case. An approach to discretize this convective diusive system, is to split it into two sub system

∂ t τ -∂ m u 1 = 0, u 1 = 1 α (g -∂ m p) , and ∂ t ρ + u 1 ∂ x ρ = 0, u 1 = 1 α g -1 ρ ∂ x p .
Following this splitting of operator, a two step implicit-explicit numerical strategy consists in solving the rst system with an implicit scheme and then solving the second system with an explicit scheme. In the implicit step we may use a linearisation of the pressure given by its own evolution law to obtain a linear scheme.

Since the rst step scheme is implicit, we assume that it has no CFL restriction. The second step scheme is explicit and stable under the CFL condition ∆t ∆x (u

1 j-1 2 ) + -(u 1 j+ 1 2
) -< 1, Thus the overall scheme for the parabolic problem is stable under this hyperbolic CFL condition in O( ∆t ∆x ). The limit scheme (1.42)-(1.46)-(1.47) corresponds to such a splitting of operator discretization of the parabolic limit system (1.4). It is thus natural to recover an hyperbolic CFL condition.

Proof of (iv)

We now prove that the explicit scheme LP-EXEX satises a discrete entropy inequality. As above, we rst prove such an inequality in Lagrangian coordinates considering the scheme (1.26) that may be recast into

                                     τ Lag j =τ n j + ∆t ∆m j (u * j+ 1 2 -u * j-1 2 ), u Lag j =u n j - ∆t ∆m j (p * j+ 1 2 -p * j-1 2 ) + ∆t ∆m j ∆m j-1/2 g -αu j-1 2 , + ∆t ∆m j ∆m j+1/2 g -αu j+ 1 2 E Lag j =E n j - ∆t ∆m j (up) * j+ 1 2 -(up) * j-1 2 + g ∆t ∆m j ∆m j+1/2 u * j+ 1 2 + ∆m j-1/2 u * j-1 2 2 -α ∆t ∆m j ∆m j+1/2 (u * j+ 1 2 ) 2 + ∆m j-1/2 (u * j-1 2 ) 2 2 , (1.48) with        u * j+ 1 2 = 1 2a + α∆m j+1/2 a(u n j+1 + u n j ) -p(ρ n j+1 , e n j+1 ) -p(ρ n j , e n j ) + g∆m j+1/2 , p * j+ 1 2 = p(ρ n j+1 , e n j+1 ) + p(ρ n j , e n j ) 2 - a(u n j+1 -u n j ) 2 .
Then we take the Eulerian projection (1.34) into account to obtain a discrete entropy inequality for the overall scheme in Eulerian coordinates.

Let s = s(ρ, e) be the strictly convex mathematical entropy. The entropy inequality associated with (1.1) writes

∂ t (ρs) + ∂ x (ρus) ≤ 0.
In Lagrangian coordinates, (1.7) is associated with the following entropy inequality

∂ t s ≤ 0. (1.49)
In the sequel and with a little abuse in the notations, we will consider the pressure as a function of the density and the entropy p = p(ρ, s).

Entropy inequality in Lagrangian coordinates

The scheme (1.48) is a Godunov-type scheme. We prove here that the associated approximate Riemann solver is consistent with the entropy inequality (1.49). Let us check that

0 ≤ -a(s * L -s L ) + a(s R -s * R ), (1.50) 
where

s * L = s(ρ * L , e * L ) and s * R = s(ρ * R , e * R ) so that (1.19) is veried with η = s, q = 0 and σ(∆m, ∆t; U L , U R ) = 0. Let us rst prove the following result. Proposition 1. If a > 0 is such that      ρ * L > 0, ρ * R > 0, ρ 2 ∂ ρ p(ρ, s L ) ≤ a 2 , ∀ρ ∈ I(ρ L , ρ * L ), ρ 2 ∂ ρ p(ρ, s R ) ≤ a 2 , ∀ρ ∈ I(ρ R , ρ * R ),
then we have

e * L ≥ e(ρ * L , s L ), e * R ≥ e(ρ * R , s R ).
Proof. Recall that we have

     E * L = E L + 1 a p L u L -u * [p * - ∆m 2 (g -αu * )] , E * R = E R + 1 a u * [p * + ∆m 2 (g -αu * )] -p R u R ,
and

Π * R = p * + ∆m 2 (g -αu * ), Π * L = p * -∆m 2 (g -αu * ), which gives      E * L = E L - 1 a (Π * L u * -Π L u L ), E * R = E R + 1 a (Π * R u * -Π R u R ), so that e * R = E * R -1 2 u * 2 = e R + 1 2 (u 2 R -u * 2 ) + 1 a (Π * R u * -Π R u R ). Using the denitions of u * and Π * R given in (1.25), straightforward calculations then lead to e * R = e R + 1 2a 2 (Π * 2 R -Π 2 R ) and Π * R = Π R + a(u * -u R ).
The latter equality, together with the last two equalities in (1.24), gives

Π * R a 2 = 1 ρ R + p R a 2 -1 ρ * R . It is then not dicult to check that        e * R -e(ρ * R , s R ) = 1 2a 2 (p(ρ * R , s R ) -Π * R ) 2 + φ(ρ R ), φ(ρ) = e(ρ, s R ) - p(ρ, s R ) 2 2a 2 -e(ρ * R , s R ) + p(ρ * R , s R ) 2 2a 2 + p(ρ * R , s R ) 1 ρ + p(ρ, s R ) a 2 - 1 ρ * R - p(ρ * R , s R ) a 2 ,
with, using the well-known relation

(1.2), φ (ρ) = (p(ρ, s R ) -p(ρ * R , s R ))( 1 ρ 2 - 1 a 2 ∂ ρ p(ρ, s R )), φ(ρ * R ) = 0. Therefore φ(ρ) ≥ 0 for all ρ ∈ I(ρ R , ρ * R ) since ∂ ρ p ≥ 0
under the assumptions of Weyl and by (1.9). We have thus proved in particular that

e * R ≥ e(ρ * R , s R ).
The proof of the second inequality follows the same idea and the proof of the proposition is then completed.

In order to get (1.50), we then note that we have ∂ e s(ρ, e) < 0 where s = s(ρ, e(ρ, s)). So that

s R -s * R = s(ρ * R , e(ρ * R , s R )) -s(ρ * R , e * R ) = ∂ e s(ρ * R , e * L )(e(ρ * R , s R ) -e * R ) ≥ 0, s R -s * R ≥ 0.
We get in the same way s L -s * L ≥ 0 which gives (1.50) since a > 0. Then, under the CFL condition (1.28), the scheme in Lagrangian coordinates satises the discrete entropy inequality (1.20) which reads

s Lag j ≤ s n j - ∆t ∆m j (q n j+ 1 2 -q n j-1 2 ), (1.51) 
where q n j+ 1 2 naturally follows from (1.21).

Entropy inequality in Eulerian coordinates

Let us now prove an entropy inequality for the whole Lagrange-Projection scheme. We rst recall that the function ρs = ρs(ρ, ρu, ρE) is strictly convex by assumption, see [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF]. The Eulerian projection (1.34) being a convex combination for each X = ρ, ρu, ρE, we thus have

(ρs) n+1 j ≤ (ρs) Lag j + ∆t ∆x (u * j-1 2 ) + (ρs) Lag j-1 + (u * j+ 1 2 ) --(u * j-1 2 ) + (ρs) Lag j -(u * j+ 1 2 ) -(ρs) Lag j+1 .
Then using the rst equation of (1.48) in (1.51), together with the denition of ∆m j , we have

(ρs) Lag j ≤ (ρs) n j - ∆t ∆x (q n j+ 1 2 -q n j-1 2 ) - ∆t ∆x (ρs) Lag j (u * j+ 1 2 -u * j-1 2
).

Then using these two inequalities together with the simple relation u = u + + u -, we get

(ρs) n+1 j ≤ (ρs) n j - ∆t ∆x (g n j+ 1 2 -g n j-1 2
),

where

g n j+ 1 2 = (u * j+ 1 2 ) + (ρs) Lag j + (u * j+ 1 2 ) -(ρs) Lag j+1 + q n j+ 1 2
. Which is nothing but the expected discrete entropy inequality for the whole Lagrange-Projection scheme (note indeed that g n j+ 1 2 is clearly consistent with the entropy ux ρsu).

Numerical results

For the sake of stressing the importance of the source term discretization, we propose to also consider in the following a simpler approximation strategy that will be referred to as the LP-EXEX SP scheme. In this scheme, the source terms will be treated by means of a separate operator splitting. Suppose that for some instant n we know (ρ n j , (ρu) n j , (ρE) n j ) for j ∈ Z, the LP-EXEX SP numerical scheme reads :

(i) compute (τ n j , - → w n j , ← - w n j , E n j ) at equilibrium by evaluating Π n j = p(ρ n j , e n j ), (ii) compute (τ Lag j , - → w Lag j , ← - w Lag j , E Lag j
) thanks to the use the explicit scheme dened by (1.26) with α = 0 and g = 0, so that the gravity and friction terms are not taken into account yet

(iii) evaluate (ρ Lag j , (ρu) Lag j , (ρE) Lag j ) thanks to (τ Lag j , - → w Lag j , ← - w Lag j , E Lag j ), (iv) compute (ρ n+1, j , (ρu) n+1, j , (ρE) n+1, j
) thanks to the explicit scheme dened by (1.34) and (1.27), (v) account for the gravity and friction terms by integrating the system of ordinary dierential equations

d dt    ρ ρu ρE    =    0 ρ(g -αu) ρu(g -αu)    .
The update in term of the variable ρ, u, and e then reads

ρ n+1 j = ρ n+1, j , u n+1 j = u n+1, j e -α∆t + g α (1 -e -α∆t ), e n+1 j = e n+1, j . (vi) evaluate (ρ n+1 j , (ρu) n+1 j , (ρE) n+1 j 
). We propose to test both LP-EXEX SP and LP-IMEX scheme against a test case that has been proposed in [16]. In the sequel, we shall consider that the uid is equipped with a perfect gas equation of state p = (γ -1)ρe and we set the gravity acceleration, the friction coecient and the specic heat ratio to the following values g = 9.81 m • s -2 , α = 10 6 s -1 , γ = 1.4.

The initial condition is dened by

(ρ, u, p) = (1.0, 0, 10000.0), if x ∈[0, 0.35] ∩ [0.65, 1], (ρ, u, p) = (2.0, 0, 26390.2), if x ∈[0.35, 0.65].
At the boundaries, we impose periodic boundary conditions thanks to a ctious cell at each end of the domain. In the sequel, both LP-EXEX and LP-EXEX SP computations will be performed with a time step dened by ∆t = min(ρ n j )∆x 2a , in order to agree with the classic acoustic CFL (1.28). The choice of the time step for the LP-IMEX scheme will be specied case by case. For each test, we will compute a reference solution thanks to the LP-EXEX scheme over a 10 000-cell grid. If we refer to this solution thanks to the superscript ref and if Y denote a uid variable, for the sake of comparison we shall consi-der in the sequel the L 1 relative error with respect to the reference solution at the instant t dened by

err(Y, t) = Y (•,t)-Y ref (•,t) L 1 ([0,1]) Y ref (•,t) L 1 ([0,1]) .
1.9.1 Test case 1 : sensitivity with respect to the space step for large friction

We run our numerical tests with the LP-EXEX SP scheme using a spatial discretization over 100 cells, 1000 cells and 10 000 cells. This leads to time step values ∆t that are respectively of magnitude 10 α , 1 α and 1 10α . In gure 1.1, we display the result obtained at t = 0.01 s and we can see that there is a large amount of numerical diusion due to the discretization of the source term with large values of α. It is necessary to choose small values of ∆t relatively to 1 α in order to preserve the accuracy of the solution. We now consider the same test performed with the LP-IMEX scheme. We now choose ∆t in agreement with the CFL condition (1.35) by setting

∆t = min ∆x 2 max u n j , 1 α , (1.52) 
so that we always have ∆t ≤ 1 α . The results obtained with LP-IMEX scheme at instant t = 0.01 s are presented in gure 1.2 for discretization grids of 100 cells and 1000 cells. It is clear that the approximate solution is much more accurate than the one computed with the LP-EXEX SP scheme, even for coarse mesh. Let us note that for the relatively large space steps that have been used here, choice (1.52) imposes ∆t = 1 α . Table 1.1 displays the relative error obtained with both the LP-EXEX SP and the LP-IMEX scheme. It shows that the asymptotic preserving property signicantly lessen the numerical diusion and improve accuracy by several orders of magnitude. 1.9.2 Test case 2 : sensitivity with respect to the time step

We are now interested in testing the LP-IMEX scheme in situations where ∆t is much bigger than 1 α . In order to proceed, we relax the previous time step choice (1.52) by suppressing the control of with respect to 1 α . We simply choose to dene ∆t in agreement with the CFL condition (1.35) based on the material velocity by setting ∆t = min ∆x 2 max u n j .

(1.53)

The test is performed with a 1000-cell mesh. The graph of the approximate solution at t = 0.01 s are displayed in gure 1.3. For this grid choice, we obtain that the magnitude of ∆t is 1000 α . Let us underline that these time steps are 1000 times larger than the time steps used in section 1.9.1. It appears that even for such relatively large time step and space step the approximate solution remains very accurate. This results is the consequence of the good behaviour of the numerical scheme for large friction coecients.

We compare in table 1.2 the relative errors of the uid variables for this choice of time step values. We can verify here that the LP-IMEX scheme enables the use of time steps that are much larger than the acoustic based time step and also much larger than 1 α while preserving accurate simulation results. 1.9.3 Test case 3 : sensitivity with respect to the friction parameter α Previous tests use a single value of the friction parameter equal to 10 6 s -1 . Here, we run tests with the LP-IMEX scheme using a spatial discretization over 1000 cells and friction parameter values 10 5 s -1 , 10 6 s -1 and 10 7 s -1 . We can observe on gure 1.4, gure 1.3 and gure 1.5, that numerical results are close to their respective reference solution for each value of α. Besides, numerical simulations took respectively 37, 14 and 5 iterations to reach time 0.01s for the friction parameter 10 5 s -1 , 10 6 s -1 and 10 7 s -1 . This conrms the good behavior of the LP-IMEX scheme CFL condition (1.35) for large friction parameter. Indeed, the larger the friction parameter the smaller the velocity and so the bigger the time step. 

Conclusion

We designed a large time step and asymptotic preserving scheme for the gas dynamics equations with gravity and linear friction. The stability is proved under a time step CFL restriction based on the velocity u only and not on the sound speed c. The scheme gives very good results and combines accuracy thanks to the asymptotic preserving property and eciency thanks to the large time step stability condition.

Future developments include an extension to several space dimensions and high-order accuracy, to low-Mach number ows and to more complicated systems of partial dierential equations used in the modeling of two phase ows. Les annexes viennent compléter l'article Operator-splitting-based asymptotic preserving scheme for the gas dynamics equations with sti source terms, en apportant un éclairage particulier sur le traitement des conditions aux limites dans la section 2.A, la précision des schémas dans les régimes intermédiaires dans la section 2.B et l'extension à l'ordre 2 en espace dans la section 2.C.

Operator-splitting-based asymptotic preserving scheme for the gas dynamics equations with sti source terms Abstract We propose a numerical scheme for the gas dynamics equations with external forces and friction terms that is able to accurately approximate the ow in the large friction regime with a coarse spatial discretization. The key idea is to use a classic convection/source operator splitting and then to reduce the numerical diusion involved with the approximation of the convective terms when the friction eects are dominant. The overall resulting scheme satises a discrete entropy inequality under a condition on the numerical diusion reduction. Numerical tests are proposed in 1D and 2D that show a gain of accuracy.

Introduction

We are interested in the simulation of subsonic compressible ows where the driving phenomena are sti source terms and material transport. Such a ow conguration may be encountered in several industrial processes like the ows within the core of a nuclear reactor. We consider the gas dynamics equations with external forces and friction and propose a formal asymptotic analysis for large friction. In this context, it is well known that classic operator splitting techniques fail to produce accurate approximate solutions when the small scales are not resolved, that is to say when coarse meshes are used. For a solution whose long-time behaviour is governed by the solution of a parabolic system, asymptotic preserving numerical schemes may be used to transpose this feature to the discrete setting without using very ne meshes (see e.g. [1,4,5,8,14,15,16] and the references therein). The present work is dedicated to the short time behaviour of the solution and relies on a careful asymptotic analysis of the classic operator splitting technique. In particular, we focus on the numerical diusion created by the upwind part of the numerical ux function associated with the treatment of the convective part. This numerical diusion is indeed what prevents the scheme from computing accurate solutions in the asymptotic limit of large friction coecients. Based on this analysis, we propose a numerical diusion reduction technique : the resulting scheme is an operator splitting algorithm with a good asymptotic behaviour. It satises a discrete entropy inequality under a condition on the correction. The proposed diusion reduction technique is similar to the one used for the low Mach limit in [9].

Governing equations and large friction asymptotic behaviour

Governing equations. The gas dynamics equations with gravity and friction terms in Eulerian coordinates are given by

     ∂ t ρ + ∂ x (ρu) = 0, ∂ t (ρu) + ∂ x (ρu 2 + p) = ρ(g -αu), ∂ t (ρE) + ∂ x ((ρE + p)u) = ρu(g -αu), (2.1) 
where ρ, u and E denote the density, the velocity and the total energy of the uid, g the gravitational acceleration and α a friction parameter. The pressure law p = p(ρ, e) is assumed to be a given function of the density ρ and the internal energy e = E -u 2 2 that satises the usual Weyl assumptions [21]. The sound speed c is given by c = [ ∂p ∂ρ e

+ p ρ 2 ∂p ∂e ρ ] 1/2 .
Large friction asymptotic behaviour. We are interested in the behaviour of (2.1) when the friction parameter α goes to innity. We model this ow regime by simply replacing α with α in (2.1), where > 0 denotes a small parameter. The asymptotic regime is obtained when → 0.

Let us then assume that the velocity u admits an asymptotic expansion in powers of of the form

u = u 0 + u 1 + O( 2 ).
Multiplying the second equation of (2.1) by and letting go to 0 gives u 0 = 0.

Then system (2.1) reads

     ∂ t ρ + ∂ x (ρu 1 ) = O( 2 ), ∂ x p = ρ(g -αu 1 ) + O( ), ∂ t (ρE) + ∂ x ((ρE + p)u 1 ) = ρu 1 (g -αu 1 ) + O( 2 ).
(2.2)

Note that compared to (2.1), the uxes now involve the rst order corrector u 1 (or equivalently the small scale contribution u 1 ) instead of u. From a numerical point of view, our objective is to propose numerical uxes that are able to capture those small scales in the limit → 0.

Lagrange-Source-Projection operator splitting. We rst propose an operator splitting between the terms accounting for the transport waves, the acoustic waves and the source terms. More precisely and using the chain rule for the space derivatives we split up the system (2.1) into the following three subsystems. The rst subsystem describes the transport process and reads

     ∂ t ρ + u∂ x ρ = 0, ∂ t (ρu) + u∂ x (ρu) = 0, ∂ t (ρE) + u∂ x (ρE) = 0.
(2.

3)

The second subsystem governs the acoustic phenomena, namely

     ∂ t ρ + ρ∂ x u = 0, ∂ t (ρu) + ρu∂ x u + ∂ x p = 0, ∂ t (ρE) + ρE∂ x u + ∂ x (pu) = 0,
Or equivalently with τ = 1 ρ the specic volume and the mass variable m such that τ ∂

x = ∂ m      ∂ t τ -∂ m u = 0, ∂ t u + ∂ m p = 0, ∂ t E + ∂ m (pu) = 0.
(2.4)

The third subsystem accounts for gravity and friction eects and reads

     ∂ t τ = 0, ∂ t u = g -αu, ∂ t E = u(g -αu).
(2.5)

Let us mention that the acoustic/transport splitting provides a simple setting for our analysis, however it does not play a crucial role in the forthcoming developments and it could be replaced by a classic Eulerian nite volume discretization.

Naive operator splitting numerical scheme

We begin with a natural discretization of (2.1) based on the previous Lagrange/Source/Projection decomposition. Let ∆x and ∆t represent the constant time and space steps. We set x j+ 1 2 = x j-1 2 + ∆x and t n = t n-1 + ∆t. In the sequel, X n j denotes the approximate value of X at time t n within the cell [x j-1 2 , x j+ 1 2 ). We propose a three-step numerical strategy based on the splitting of operator (2.4),(2.5), (2.3).

Regarding the Lagrange step (2.4) and using clear notations, we propose the following update formulas

         τ Lag j = τ n j + ∆t ρ n j ∆x u * j+ 1 2 -u * j-1 2 , u Lag j = u n j -∆t ρ n j ∆x p * j+ 1 2 -p * j-1 2 , E Lag j = E n j -∆t ρ n j ∆x (pu) * j+ 1 2 -(pu) * j-1 2 , (2.6) 
where the numerical uxes are dened by

       u * j+ 1 2 = 1 2 u n j+1 + u n j -1 2a Π n j+1 -Π n j , p * j+ 1 2 = 1 2 Π n j+1 + Π n j -a 2 u n j+1 -u n j , Π n j = p(ρ n j , e n j ), (2.7) 
and associated with a classic pressure relaxation process (see [3,6,7,17,18] ). In order to ensure stability, the parameter a must be chosen suciently large according to the so-called subcharacteristic condition a > ρc. This scheme is shown to be nonlinearly stable under the CFL condition 2a∆t ≤ ρ n j ∆x.

(2.8)

For the system (2.5), we propose a point-wise implicit evaluation

     τ j = τ Lag j , u j = u Lag j + g∆t -α∆tu j , E j = E Lag j + g∆tu j -α∆t(u j ) 2 .
(2.9) This implicit treatment is particularly important in the large friction regime since an explicit scheme would require ∆t = O( 1 α ), leading to ∆t = 0 in the limit α → +∞. Regarding the transport step (2.4), we consider a standard upwind and time-explicit numerical scheme given by

X n+1 j = X j - ∆t ∆x (u * j-1 2 ) + X j -X j-1 + (u * j+ 1 2 ) -X j+1 -X j , (2.10) 
where X ∈ {ρ, ρu, ρE} and u ± = u±|u| 2 (see for instance [13]). The update formula (2.10) is shown to be stable under the CFL condition

∆t (u * j-1 2 ) + -(u * j+ 1 2 ) -< ∆x. (2.11)
For the sake of clarity, let us briey recall the dierent steps of the overall method that shall be referred to as LSP-IMEX. Assume that (ρ n j , (ρu

) n j , (ρE) n j ) is known, (ρ n+1 j , (ρu) n+1 j , (ρE) n+1 j 
) is computed by the following three steps :

(i) compute (τ Lag j , u Lag j , E Lag j ) from (ρ n j , (ρu) n j , (ρE) n j ) with (2.6)-(2.7), (ii) compute (τ j , u j , E j ) from (τ Lag j , u Lag j , E Lag j ) with (2.9), (iii) compute (ρ n+1 j , (ρu) n+1 j , (ρE) n+1 j 
) from (τ j , u j , E j ) with (2.10).

Asymptotic analysis. Let us study the asymptotic behaviour of this scheme in the large friction limit. For the sake of simplicity, we focus only on the rst equation governing the evolution of τ . Let us rst observe that for the continuous setting in Lagrangian coordinates, the rst equation of (2.2) reads

∂ t τ + ∂ m u 1 = O( 2 ).
(2.12)

We now perform a similar asymptotic analysis in the discrete setting by replacing α with α and assuming expansions of the form u n j = u n,(0) j

+ u n, (1) j 
+ O( 2 ). Injecting these expansions in the rst equation of (2.7) gives

u * j+ 1 2 = 1 2 u n,(0) j+1 + u n,(0) j - ∆x 2a Π n j+1 -Π n j ∆x + 2 u n,(1) j+1 + u n, (1) j 
+ O( 2 ).

Then, if u n,(0) j = 0 the rst equation of (2.6) reads

τ Lag j = τ n j + ∆t ρ n j ∆x 1 2 u n,(1) j+1 + u n,(1) j - 1 2 u n,(1) j + u n,(1) j-1 - ∆t∆x ρ n j Π n j+1 -2Π n j + Π n j-1 2a(∆x) 2 + O( 2 ).
The above equation is clearly not consistent with (2.12) because of the third term which is of order 1 with respect to . This term is dominant compared to the eects of order we are interested in. Nonetheless, it is important to note that this problem no longer occurs if ∆x = O( ). In other words, such a scheme requires a ne mesh to get accurate numerical results in the regime → 0. Moreover, the second equation of (2.9) leads to

u j = u Lag j + g∆t 1 + α -1 ∆t ,
which implies that u (0) j = 0. Then (2.10) gives u n+1,(0) j = 0.

It is important to emphasize that the bad asymptotic behaviour of the scheme comes from the upwind part of the numerical uxes and not from the source terms discretization based on an operator splitting technique. The non-centred part of the ux u * j+ 1 2 may be interpreted as numerical diusion that becomes predominant in the asymptotic regime → 0 and prevents the scheme from capturing the right interface velocity of order . As briey discussed above, a possible way to circumvent this diculty consists in using a grid size of order to reduce the importance of the non-centred term in u * j+ 1

2

. Of course, this cannot be envisaged in practice. In the next section, we propose a correction of u * j+ 1 2 involving the friction parameter α to obtain a scheme that provides good numerical results for large friction test cases with coarse meshes.

The proposed correction can be easily understood as a numerical diusion reduction technique.

2.4 Suitable operator splitting numerical scheme and numerical diusion reduction technique.

Numerical diusion reduction technique. We propose a correction of the previous scheme to obtain the expected large friction asymptotic behaviour. We replace the denition of the relaxation uxes

(2.7) by    u * j+ 1 2 = 1 2 u n j+1 + u n j - θ j+ 1 2 2a Π n j+1 -Π n j , p * j+ 1 2 = 1 2 Π n j+1 + Π n j -a 2 u n j+1 -u n j , Π n j = p(ρ n j , e n j ), (2.13) 
and still use (2.6)-(2.9) and (2.10). This scheme will be referred to as LSP-IMEX COR. We recover the LSP-IMEX scheme by choosing θ j+ 1 2 = 1. In order to obtain a good asymptotic behaviour, θ j+ 1 2 = O( ) is expected. Since the parameter θ j+ 1 2 allows to reduce the importance of the non-centred terms, it may be interpreted as a numerical diusion reduction technique. As those non-centred terms are crucial for the sake of stability, a condition on this correction to obtain a discrete entropy inequality is expected and given in Theorem 2.

Asymptotic analysis We replace α by α and assume the same asymptotic expansions as before that we inject in the rst equation of (2.13) to obtain

u * j+ 1 2 = 1 2 u n,(0) j+1 + u n,(0) j + 2 u n,(1) j+1 + u n,(1) j - θ j+ 1 2 ∆x 2a Π n j+1 -Π n j ∆x + O( 2 ) If u n, (0) j 
= 0 and θ j+ 1 2 = θj+ 1 2 = O( ) then the rst equation of (2.6) reads

τ Lag j = τ n j + ∆t ρ n j ∆x 1 2 u n,(1) j+1 + u n,(1) j - 1 2 u n,(1) j + u n,(1) j-1 - ∆t ρ n j θj+ 1 2 (Π n j+1 -Π n j ) ∆x -θj-1 2 (Π n j -Π n j-1 ) ∆x + O( 2 ),
that is consistent with (2.12) as the third term is of order O( ) and consistent with 0. A straight forward analysis, similar to the one just performed for the density in Lagrangian coordinates, proves that the overall numerical scheme is consistent in the asymptotic limit with (2.2).

Main properties. We now give the main properties of the LSP-IMEX COR scheme.

Theorem 2. Under the CFL condition (2.8) and (2.11) the numerical scheme LSP-IMEX COR is welldened and satises the following properties (i) it is a conservative scheme for the density ρ. It is also a conservative scheme for ρu and ρE when the source terms are omitted.

(ii) ρ 0 j > 0 for all j implies that ρ n j > 0 for all j and n > 0. (iii) it preserves the large friction asymptotic behaviour in the sense that the scheme is consistent with (2.2) in the asymptotic limit → 0.

(iv) in addition, under the following condition on the correction

θ j+ 1 2 1 2 (u j -u Lag j ) 2 + a∆t ρ n j ∆x 1 2a 2 (p(ρ R, * j-1 2 , s n j ) -p * j-1 2 ) 2 - γ j-1 2 a (p(ρ R, * j-1 2 , s n j ) -p * j-1 2 ) + a∆t ρ n j ∆x 1 2a 2 (p(ρ L, * j+ 1 2 , s n j ) -p * j+ 1 
2

) 2 + γ j+ 1 2 a (p(ρ L, * j+ 1 2 , s n j ) -p * j+ 1 2 ) ≥ 0,
where

γ j+ 1 2 = 1-θ j+ 1 2 2a Π n j+1 -Π n j , ρ R, * j-1 2 = ρ n j 1+ρ n j a -1 u n j -(u * j-1 2 +γ j- 1 2 ) 
, and ρ L, *

j+ 1 2 = ρ n j 1-ρ n j a -1 u n j -(u * j+ 1 2 +γ j+ 1 2 )
, it veries a discrete entropy inequality

(ρs) n+1 j ≤ (ρs) n j - ∆t ∆x G j+ 1 2 -G j-1 2
where s n j = s(ρ n j , e n j ), s denotes the mathematical entropy associated to the Euler system and

G j+ 1 2 = (u * j+ 1 2 ) + (ρs) Lag j + (u * j+ 1 2 ) -(ρs) Lag j+1 .
Note that, this condition in (iv) is of course true for θ j+ 1 2 = 1 so that the LSP-IMEX scheme veries this discrete entropy inequality.

Numerical results

We propose to test both LSP-IMEX and LSP-IMEX COR scheme against a test case that has been proposed in [5] and [8]. The friction coecient is given by α = 10 6 s -1 . Both LSP-IMEX and LSP-IMEX COR computations are performed with a time step dened by 2a∆t = min(ρ n j )∆x which complies with (2.8) and (2.11).

We run our numerical test using a spatial discretization over 100 cells, 1000 cells and 10 000 cells for LSP-IMEX scheme. In gure 2.1, we can see that there is a large amount of numerical diusion for coarse meshes and so the numerical solution is not accurate.

Then we set θ j+ 1 2 = min 2a α(ρ n j+1 +ρ n j )∆x , 1 . This choice is nondimensional and veries θ j+ 1 2 = O( ) so that the correct asymptotic behaviour is expected when → 0. Moreover, we recover θ j+ 1 2 = 1 when α → 0 or ∆x → 0. In other words, the correction is not activated when the friction parameter is not large enough or when we use a ne discretization. We run the same test for LSP-IMEX COR scheme. In gure 2.2, we observe that the approximate solutions are much more accurate than the one computed without the correction, especially for a coarse mesh. Let us note J = max(j ∈ N/j∆x ≤ 1), by plotting n → j (ρs) n+1 j -(ρs) n j + ((ρus) n J -(ρus) n 0 ), we observe in gure 2.3 that the average entropy inequality is veried.

We derive a multi-dimensional version of the LSP-IMEX COR scheme by using the 1D uxes of the scheme and the rotational invariance of the equations. We consider the 2D domain [0.1] 2 , discretized over a 5000-triangle grid. The friction parameter is set to α = 10 6 s -1 and the initial condition reads (ρ, u, p) = (1.0, 0, 10000.0), if (x -0.5) 2 + (y -0.5) 2 ≥ 0.3, (ρ, u, p) = (2.0, 0, 26390.2), if (x -0.5) 2 + (y -0.5) 2 < 0.3.

In gure 2.4, we observe that LSP-IMEX scheme leads to a large amount of numerical diusion while LSP-IMEX COR scheme with θ = 1 α∆t gives much more accurate numerical results. 

Annexes

Ces annexes viennent compléter l'article Operator-splitting-based asymptotic preserving scheme for the gas dynamics equations with sti source terms. L'annexe 2.A précise la manière d'imposer les conditions aux limites pour le schéma LSP-IMEX, ainsi que pour les schémas basés sur le splitting d'opérateur Lagrange-Projection proposés dans les chapitres suivants. L'annexe 2.B introduit la notion de régime intermédiaire qui permet de distinguer les schémas préservant l'asymptotique des schémas dits toutrégime. Finalement, un premier pas vers l'extension à des schémas préservant l'asymptotique d'ordre élevé est proposé dans l'annexe 2.C, avec un schéma d'ordre 2 en espace.

2.A Conditions aux limites

Le schéma de splitting d'opérateur Lagrange/Source/Projection (2.6)-(2.9)-(2.10) est une discrétisation en trois étapes du système de la dynamique des gaz avec gravité et friction (2.1). Ce schéma a été écrit et étudié pour un domaine inni x ∈ R et donc une innité de cellules j ∈ Z. En pratique, le domaine d'étude est ni x ∈ [x 0 , x L ] où x 0 et x L sont deux réels, et on a un nombre N ni de cellules 1 ≤ j ≤ N . Lors de la modélisation du problème, des conditions à imposer aux bords du domaine, en x = x 0 et x = x L viennent s'ajouter au système d'équations aux dérivées partielles (2.1). Il faut alors discrétiser ces conditions aux limites pour pouvoir mettre à jour la solution approchée dans les cellules j = 1 et j = N . Sans perte de généralité, on considère dans la suite les conditions aux limites en x 0 .

Une méthode pour traiter les conditions aux limites des systèmes hyperboliques est le formalisme des demi-problèmes de Riemann [10,11,12]. Pour mettre à jour la solution dans la cellule j = 1, on calcule en x 0 un ux de frontière à l'aide du schéma de Godunov. Pour calculer ce ux, on résout un problème de Riemann en x 0 entre :

• un état droit entièrement connu car situé dans le domaine physique x > x 0 ;

• un état gauche admissible, choisi de manière à imposer les conditions aux limites en x = x 0 . Cet état n'est que partiellement connu.

La résolution analytique du problème de Riemann pour des états droit et gauche quelconques permet alors de déterminer le nombre et les quantités de l'état gauche qui doivent être xées an de connaître la solution dans le domaine physique x > x 0 et donc le ux de frontière. Pour avoir un problème bien posé, il est nécessaire que les conditions aux limites que l'on souhaite imposer permettent de xer ces quantités de l'état gauche.

Nous allons utiliser ce formalisme pour le schéma de l'étape Lagrangienne (2.6) puis pour le schéma de l'étape de projection (2.10). Nous présenterons ensuite les relations permettant de dénir les ux de frontières pour quelques choix classiques de conditions aux limites pour le système de la dynamique des gaz.

Remarque. Le schéma pour les termes sources (2.9) a un stencil de taille un, il n'est donc pas nécessaire d'imposer de conditions aux limites pour eectuer cette étape.

Conditions aux limites pour l'étape Lagrangienne (2.6)

Le système de relaxation homogène en coordonnées Lagrangienne s'écrit

           ∂ t τ -∂ m u = 0, ∂ t u + ∂ m Π = 0, ∂ t Π + a 2 ∂ m u = 0, ∂ t E + ∂ m (pu) = 0.
( • ←w = Π -au pour le champ -a ;

• I = Π + a 2 τ et S = E -u 2 2 -Π 2 2a 2 pour le champ 0 ; • - → w = Π + au pour le champ a.
Ces invariants de Riemann forts permettent de résoudre analytiquement le problème de Riemann. On utilisera le jeu de variables V = (I, -→ w , ←w , S) T pour imposer les conditions aux limites. On considère le problème de Riemann au temps t n et au niveau de l'interface 1/2, c'est à dire en x 0 . La solution est autosimilaire, composée de trois ondes de vitesse -a, 0 et a : 

V m t , V L , V R =            V L , m t < -a, V * L , -a < m t < 0, V * R , 0 < m t < a, V R , a < m t . Comme ← - w est
V * L = (I L , ← - w R , - → w L , S L ) T , V * R = (I R , ← - w R , - → w L , S R ) T ,
et on a ainsi résolu de manière analytique le problème de Riemann. On peut alors dénir une vitesse et une pression à l'interface par

u * = u * L = u * R = - → w L -← - w R 2a , Π * = Π * L = Π * R = - → w L + ← - w R 2 .
Ces deux grandeurs permettent d'évaluer le ux (u * , Π * , a 2 u * , Π * u * ) au niveau de l'interface et sont donc les grandeurs que l'on doit calculer pour mettre à jour le schéma Lagrangien (2.6).

Pour connaître la solution dans le domaine physique m t > 0, il sut donc de connaître les valeurs de V R et -→ w L . Les valeurs de I L , ←w L et S L ne sont pas utilisées pour calculer la solution dans cette partie du domaine et donc ne sont pas nécessaires pour évaluer le ux d'interface en x 0 . Ainsi, lors de l'étape Lagrangienne, une seule caractéristique est entrante au domaine et il sut donc d'imposer une quantité au bord permettant de xer la valeur de -→ w .

Conditions aux limites pour l'étape de projection (2.10)

Pour l'étape de projection, le ux du schéma décentré amont (2.10) à l'interface 1/2 peut être vu comme le ux du schéma de Godunov du système 

∂ t U + u * 1/2 ∂ x U = 0, où u * 1/
U x t , U L , U R = U L , x t < u * 1/2 , U R , u * 1/2 < x t .
Pour connaître la solution dans le domaine physique x t > 0, il y a deux cas de gure :

• si u * 1/2 ≤ 0, il sut de connaître U R .
Il n'est donc pas nécessaire d'imposer des conditions aux limites pour l'étape de projection car l'unique caractéristique est sortante au domaine. 

• si 0 < u * 1/2 , il faut connaître U R et U L .
- → w L = - → w R .
• Étape de projection : on impose ∂ x U = 0 en x 0 , une discrétisation naturelle de cette condition est :

U L = U R .

Conditions à la limite de type paroi

La condition à la limite de type paroi s'écrit au niveau continu u = 0, en x = x 0 .

• Étape Lagrangienne : une discrétisation naturelle de cette condition est d'imposer

u * 1/2 = 0. Or comme u * 1/2 = - → w L -← - w R 2a
, on est amené à imposer la condition

- → w L = ← - w R .
• Étape de projection : comme u * 1/2 = 0, il n'est pas nécessaire d'imposer de quantité lors de cette étape.

Conditions à la limite de sortie subsonique (pression imposée)

Dans le cas d'une sortie subsonique (u * 1/2 ≤ 0), on souhaite imposer une pression en sortie p = p out , en x = x 0 .

• Étape Lagrangienne : une discrétisation naturelle de cette condition est d'imposer

p * 1/2 = p out . Comme p * 1/2 = - → w L + ← - w R 2
, on est amené à imposer la condition

- → w L = 2p out -← - w R .
• Étape de projection : comme u * 1/2 ≤ 0, il n'est pas nécessaire d'imposer de quantités lors de cette étape.

Condition à la limite d'entrée subsonique (débit-enthalpie imposés)

Dans le cas d'une entrée subsonique (u * 1/2 > 0), on souhaite imposer un débit et une enthalpie

ρu = Q in , en x = x 0 , h = h in , en x = x 0 .
On a par dénition des variables et des invariants de Riemann de l'étape Lagrangienne :

     ρu = a - → w -← - w 2 I - - → w + ← - w 2 -1 , h = E -u 2 2 + Πτ = S + I 2a 2 - → w + ← - w 2 -1 2a 2 - → w + ← - w 2 2 .
• Étape Lagrangienne : on utilise une technique d'annulation des ondes pour la variable I, on a alors la relation I L = I R . Cela est dû au fait que I est un invariant de Riemann fort pour le second champ et est donc lié au degré de multiplicité supplémentaire introduit par le processus de relaxation. On

impose alors le débit ρ * L u * L = Q in et l'enthalpie h * L = h in , on obtient les relations    (a + Q in ) - → w L = 2Q in I L + (a -Q in ) ← - w R , S L = h in -I L 2a 2 - → w L + ← - w R 2 + 1 2a 2 - → w L + ← - w R 2 2 .
La première relation est la seule nécessaire pour calculer le ux d'interface lors de l'étape Lagrangienne. La suivante permet de dénir complètement l'état V * L dont on va se servir lors de l'étape de projection.

• Étape de projection : le champ est entrant (u * 1/2 > 0), il faut déterminer un état U L à advecter dans le domaine. On choisit ici de xer

U L = U(V * L )
où V * L a été déterminé lors de l'étape Lagrangienne.

Généralisation pour les schémas implicites et multi-dimensionnels Néanmoins, au vu de l'analyse de l'erreur de troncature menée dans la section 2.4, le choix θ = O( ) est nécessaire pour avoir un bon comportement en régime asymptotique → 0. L'idée est alors de choisir la valeur de θ en fonction du régime dans lequel on se trouve an d'obtenir de bons résultats numériques quel que soit le régime de considéré. Un tel schéma est dit tout-régime.

Pour construire un tel schéma, un choix naturel est de prendre la plus petite valeur de θ vériant un certain critère de stabilité. En eet, tant que le schéma reste stable, plus la valeur de θ est faible plus la diusion numérique est faible et on s'attend donc à calculer des solutions approchées plus précises. Ainsi, la propriété asymptotic preserving n'est pas susante pour garantir le bon comportement d'un schéma numérique en régime intermédiaire, qui correspond ici à une valeur de telle que 0 < 1. Il est donc nécessaire de chercher d'autres propriétés permettant de construire des schémas tout-régime. Par exemple, dans les chapitres 3 et 4, on regardera des propriétés d'uniformité de l'erreur de troncature et de la condition CFL par rapport au petit paramètre qui sera joué par le nombre de Mach M .

Approche à xé

On considère une valeur de xée et on fait varier le pas d'espace ∆x. Le schéma (2.6)-(2.13)-(2.9)-(2.10) est consistant quel que soit le choix de θ d'ordre 1 par rapport à ∆x. On s'attend donc à obtenir de bons résultats numériques à condition que l'on rane susamment. Néanmoins, le schéma LSP-IMEX, obtenu pour θ = 1, requiert d'utiliser un pas d'espace ∆x de l'ordre de pour calculer des solutions approchées susamment précises, tandis que le schéma LSP-IMEX COR, obtenu pour θ = θ COR , permet de calculer de bonnes solutions approchées même avec un maillage grossier, c'est à dire un pas d'espace ∆x d'ordre 1 par rapport à .

On trace des courbes de convergence en norme L 1 pour étudier l'inuence du choix de la modication θ sur la précision des solutions approchées pour divers maillages. On considère le cas test de la section 2.5 et on calcule une solution de référence sur un maillage n de 2.10 5 mailles. avec une méthode d'ordre 2 en espace LSP-IMEX-OD2X qui sera présentée dans la section 2.C. On peut alors calculer pour une grandeur Y l'erreur relative L 1 au temps nal t f = 0.01s :

err(Y ) = Y (•, t f ) -Y ref (•, t f ) L 1 ([0,1]) Y ref (•, t f ) L 1 ([0,1]
) . 

On calcule cette erreur pour les variables

σ i = minmod w i -w i-1 ∆x , w i+1 -w i ∆x ,
où la fonction minmod est un limiteur de pente qui évite les oscillations lorsque la solution n'est plus régulière,

minmod(a, b) =      a, si |a| ≤ |b| et a.b ≥ 0, b, si |b| ≤ |a| et a.b ≥ 0, 0, si a.b ≤ 0.
Cette reconstruction permet de dénir des valeurs au niveau des interfaces de la maille i :

• w L i = wi -∆x 2 au niveau de l'interface i -1 2 ; • w R i = wi ∆x 2
au niveau de l'interface i + 1 2 . On utilise alors ces valeurs plutôt que les valeurs aux centres des mailles pour exprimer les ux numériques et on obtient ainsi une méthode d'ordre 2 en espace. On précise maintenant la dénition des schémas numériques d'ordre 2 pour les diérentes étapes du schéma Lagrange-Source-Projection. L'étape Lagrangienne (2.6)-(2.7) devient

         τ Lag j = τ n j + ∆t ρ n j ∆x u * ,2 j+ 1 2 -u * ,2 j-1 2 , u Lag j = u n j -∆t ρ n j ∆x p * ,2 j+ 1 2 -p * ,2 j-1 2 , E Lag j = E n j -∆t ρ n j ∆x (pu) * ,2 j+ 1 2 -(pu) * ,2 j-1 2 , (2.15) 
où les ux numériques sont donnés par

       u * ,2 j+ 1 2 = 1 2 u n,L j+1 + u n,R j - θ j+ 1 2 2a Π n,L j+1 -Π n,R j , p * ,2 j+ 1 2 = 1 2 Π n,L j+1 + Π n,R j -a 2 u n,L j+1 -u n,R j ,
Π n j = p(ρ n j , e n j ).

(2.16)

On remarque que pour calculer les ux numériques de l'étape Lagrangienne, il sut d'eectuer une reconstruction ane par morceaux pour les variables u et Π. Pour l'étape des termes sources, on garde le schéma (2.9)

     τ j = τ Lag j , u j = u Lag j + g∆t -α∆tu j , E j = E Lag j + g∆tu j -α∆t(u j ) 2 .
(2.17) En eet, comme les termes sources sont centrés, il n'est pas nécessaire d'utiliser les valeurs reconstruites aux interfaces. L'étape de projection (2.10) devient pour X ∈ {ρ, ρu, ρE} Les annexes viennent compléter l'article An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes, en apportant un éclairage particulier sur l'obtention du système adimensionné de la dynamique des gaz et de sa limite en régime bas Mach dans la section 3.D, un résultat de stabilité L 2 dans le cas barotrope linéarisé dans la section 3.E, l'inuence de la forme du maillage sur les résultats numériques à bas nombre de Mach dans la section 3.F et la comparaison à un schéma en coordonnée Eulérienne avec correction bas Mach dans la section 3.G. and a transport step. For one-dimensional problems, this strategy is equivalent to an explicit Lagrange-Projection [16,13] method, however the present splitting does not involve any moving Lagrangian mesh and can be naturally expressed for multi-dimensional problems. Following simple lines inspired by [11,10] we investigate the dependence of the truncation error with respect to the Mach number. Let us mention that our study does not involve a Taylor expansion in the vicinity of the zero-Mach limit, nor a near-divergence free condition for the velocity eld. Although this analysis is by no mean a thorough explanation of the low Mach regime behavior of our solver, it is enough to suggest simple means to obtain a truncation error with a uniform dependence on the Mach number for M < 1. The cure simply relies on modifying the pressure terms in the ux of the acoustic operator that is coherent with the correction proposed by [11,10,19,25,15].

X n+1 j = X j - ∆t ∆x (u * ,2 j-1 2 ) + X L j -X R j-1 + (u * ,2 j+ 1 2 ) -X L j+1 -X R j . ( 2 
Although this modied scheme is based on a modied ux denition, one can shows that it can also be rephrased as a simple approximate Riemann solver in the sense of Harten, Lax and van Leer [18] that is consistent with the integral form of the gas dynamics equation. This scheme is endowed with good stability properties under a CFL condition that involves the Mach number as the time step is still constrained by the sound velocity.

We propose to circumvent this time-step restriction by implementing a mixed implicit-explicit method following the ideas developped by [6] for one-dimensional problems using a genuine Lagrange-Projection framework. This idea was also used in [4] and consists in using an implicit update for the acoustic step and an explicit march in time for the transport step. This enables stability under a CFL condition that only involves the (slow) material waves without the (fast) acoustic waves. Finally, let us mention that the overall procedure is a conservative discretization that relies on a Suliciu relaxation approach [28] that allows to cope with compressible uids equipped with very general Equation of State (EOS).

The paper is structured as follows : we rst present the operator splitting considering only onedimensional problems. Then we study the behavior of the scheme in the low Mach regime. This allows to lead to an explicit corrected scheme for the sole acoustic step that preserves the accuracy of the scheme at low Mach. Interestingly, we show that this ux-based corrected method may be expressed thanks to an approximate Riemann solver for the acoustic step. Next and thanks to this property, we investigate the ability of the corrected scheme to satisfy to a discrete entropy inequality. Afterwards, we present the extension of the operator splitting method to unstructured meshes either with a semi-implicit or full-explicit march in time. Finally we present numerical results involving low Mach and multi-regime ows.

Governing equations

We are interested in the two-dimensional gas dynamics equations

       ∂ t ρ + ∇ • (ρu) = 0, ∂ t (ρu) + ∇ • (ρu ⊗ u) + ∇p = 0, ∂ t (ρE) + ∇ • [(ρE + p)u] = 0, (3.1a) (3.1b) (3.1c)
where ρ, u = (u 1 , u 2 ) t , E denote respectively the density, the velocity vector and the total energy of the uid. Let e = E -|u| 2 2 be the specic internal energy of the uid and s its specic entropy. We note τ = 1/ρ and we suppose given an Equation of State (EOS) through the mapping (τ, s) → e EOS which satises to the usual Weyl assumptions [31] ∂ τ e EOS < 0, ∂ s e EOS > 0, ∂ τ τ e EOS > 0

∂ ss e EOS > 0, ∂ τ τ e EOS ∂ ss e EOS > (∂ τ s e EOS ) 2 , ∂ τ τ τ e EOS < 0.

(3.

2)

The entropy s = s EOS (τ, e) veries e = e EOS (τ, s) thanks to (3.2) and we can dene the pressure p = -∂ τ e EOS and the sound velocity c = τ ∂ τ τ e EOS . The above assumptions imply that (τ, s) → e EOS and (τ, e) → -s EOS are strictly convex. Using a slight abuse of notation, we shall also consider p as a function of (τ, e) and note p = p EOS (τ, e).

Acoustic/transport operator splitting strategy for the onedimensional problem

In this section we will consider for the sake of simplicity one-dimensional problems and propose a two-step approximation strategy based on an operator splitting. The aim of this splitting is to decouple acoustic and transport phenomena. Using this guideline we will propose an explicit numerical solver.

We shall propose two simple extensions of this method to two-dimensional problems discretized over unstructured grids using either an explicit or a semi-implicit time update in section 3.5.4.

Before going any further, we introduce classical notations for the one-dimensional setting : let ∆t > 0 and ∆x > 0 be respectively the time and space steps. We dene the Eulerian mesh interfaces x j+1/2 = j∆x for j ∈ Z, and the intermediate times t n = n∆t for n ∈ N. If b is a uid parameter, in the sequel, we will note b n j (resp. b n+1 j

) the approximate value b respectively within the j th cell [x j-1/2 , x j+1/2 ) at instant

t = t n (resp. t = t n+1 ).
For one-dimensional problems, (3.1) supplemented with a passive scalar variable v (that will account for the transverse velocity in two-dimensional problems) reads

             ∂ t ρ + ∂ x (ρu) = 0, ∂ t (ρu) + ∂ x (ρu 2 + p) = 0, ∂ t (ρv) + ∂ x (ρuv) = 0, ∂ t (ρE) + ∂ x [(ρE + p)u] = 0. (3.3a) (3.3b) (3.3c) (3.3d)
Our discretization strategy of (3.3) consists in approximating successively the solutions of the following systems (3.4) and (3.5) where

             ∂ t ρ + ρ∂ x u = 0, ∂ t (ρu) + ρu∂ x u + ∂ x p = 0, ∂ t (ρv) + ρv∂ x u = 0, ∂ t (ρE) + ρE∂ x u + ∂ x (pu) = 0, (3.4a) (3.4b) (3.4c) (3.4d) and              ∂ t ρ + u∂ x ρ = 0, ∂ t (ρu) + u∂ x (ρu) = 0, ∂ t (ρv) + u∂ x (ρv) = 0, ∂ t (ρE) + u∂ x (ρE) = 0. (3.5a) (3.5b) (3.5c) (3.5d)
In the sequel, system (3.4) and (3.5) will be respectively referred to as the acoustic system and the transport system.

Given a uid state (ρ, ρu, ρv, ρE) n j , j ∈ Z at instant t n , this splitting algorithm can be decomposed as follows.

1. Update the uid state (ρ, ρu, ρv, ρE) n j to the value (ρ, ρu, ρv, ρE) n+1- j by approximating the solution of (3.4) ;

2. Update the uid state (ρ, ρu, ρv, ρE) n+1- j to the value (ρ, ρu, ρv, ρE) n+1 j by approximating the solution of (3.5).

Properties and approximation of the one-dimensional acoustic system

First, we notice that the acoustic system (3.4) reads equivalently

∂ t τ -τ ∂ x u = 0, ∂ t u + τ ∂ x p = 0, ∂ t v = 0, ∂ t E + τ ∂ x (pu) = 0. (3.6)
The acoustic system (3.6) is a quasilinear system that can be simply checked to be strictly hyperbolic.

Indeed, the Jacobian of the system (3.6) has three eigenvalues (λ 1 , λ 2 , λ 3 ) = (-c, 0, +c). The waves associated with λ 1 and λ 3 are genuinely nonlinear waves while the wave of velocity λ 2 = 0 is a stationnary contact discontinuity.

In order to derive an update process from (ρ, ρu, ρv, ρE) n j to (ρ, ρu, ρv, ρE) n+1- j , we will perform several approximations. We notice that for a smooth solution (3.6) we also have ∂ t p + τ (ρc) 2 ∂ x u = 0 and we thus choose to perform a Suliciu-type approximation of (3.6) for t ∈ [t n , t n + ∆t) by introducing a surrogate pressure Π and considering the relaxed system

                   ∂ t τ -τ ∂ x u = 0, ∂ t u + τ ∂ x Π = 0, ∂ t v = 0, ∂ t E + τ ∂ x (Πu) = 0, ∂ t Π + τ a 2 ∂ x u = ν(Π -p), (3.7a) 
(3.7b) (3.7c) (3.7d) (3.7e)
where a > 0 is a parameter whose choice will be specied later. In the regime ν → +∞ we formally recover (3.6). In our numerical solver context, we classically mimic the ν → +∞ regime enforcing at each time step Π n j = p EOS (τ n j , e n j ) and then solving (3.7) with ν = 0. At last, for t ∈ [t n , t n +∆t) we choose to approximate τ (x, t)∂ x by τ (x, t n )∂ x in (3.7). If one introduces the mass variable m dened by dm = ρ(x, t n )dx our approximation of (3.6) (up to an abuse of notation) can be expressed in the following fully conservative form

∂ t W + ∂ m F(W) = 0, (3.8) 
where W = (τ, u, v, E, Π) T and F(W) = (-u, Π, 0, Πu, a 2 u) T . Let us remark that (3.8) is consistent with a Suliciu relaxation of the gas dynamics equation written in Lagrangian coordinates using a mass variable formulation. The solution of the Riemann problem associated with (3.8) can be derived explicitly (see section 3.C). This allows to write an exact Godunov solver for (3.8) that turns out to be an approximate Riemann solver for (3.6) following the Harten-Lax-van Leer formalism (see section 3.B and [18,1]). It provides us with the update formula

           W n+1- j = W n j - ∆t ∆x F j+1/2 -F j-1/2 , F j+1/2 = F(W n j , W n j+1 ), F(W L , W R ) = (-u * , Π * , 0, Π * u * , a 2 u * ) T , (3.9a) (3.9b) (3.9c) where        u * = (u R + u L ) 2 - 1 2a (Π R -Π L ), Π * = (Π R + Π L ) 2 - a 2 (u R -u L ). (3.10a) (3.10b)
The update of the conservative variables is obtained by setting

ρ n+1- j = 1/τ n+1- j , (ρu) n+1- j = ρ n+1- j × u n+1- j , (ρv) n+1- j = ρ n+1- j × v n+1- j and (ρE) n+1- j = ρ n+1- j × E n+1- j
. This can be summed up by the following update formulas

                           L j ρ n+1- j = ρ n j , L j (ρu) n+1- j = (ρu) n j - ∆t ∆x (Π * j+1/2 -Π * j-1/2 ), L j (ρv) n+1- j = (ρv) n j , L j (ρE) n+1- j = (ρE) n j - ∆t ∆x (Π * j+1/2 u * j+1/2 -Π * j-1/2 u * j-1/2 ), L j = 1 + ∆t ∆x (u * j+1/2 -u * j-1/2 ). (3.11a) (3.11b) (3.11c) (3.11d) (3.11e) 
Let us remark that (3.9) also proposes an update relation for Π. However in this case Π is just a disposable intermediate value whose role only consists in providing a formula for the interface pressure terms and the udpated value Π n+1- k will be discarded. Indeed in this explicit scheme, Π is updated after each time step by the equilibrium formula Π n j = p EOS (τ n j , e n j ). However, this will no longer be the case for semi-implicit strategy as we will see in section 3.5.4.

Let us nally note that the relaxation scheme (3.9) is equivalent to the acoustic scheme [12]. In order to avoid numerical instabilities, the parameter a must complies with the subcharacteristic condition

a > max ρc, (3.12) 
for all possible values of ρc when considering a solution of the equilibrium system (3.6). In practice we will choose a value a LR for each interface by setting

a LR = K max(ρ n L c n L , ρ n R c n R ), (3.13) 
where K ≥ 1, LR = j + 1/2, L = j and R = j + 1. We refer the reader to [1, 3, 2, 13] and the reference therein for more details.

Properties and approximation of the one-dimensional transport system

The transport system equation discretization is quite simple. Indeed, system (3.5) is a quasi-linear hyperbolic system that only involves the transport of the conservative variables with the velocity u. We choose to approximate the solution of (3.5) thanks to a standard upwind Finite-Volume approximation for ϕ ∈ {ρ, ρu, ρv, ρE}

ϕ n+1 j = ϕ n+1- j - ∆t ∆x u * j+1/2 ϕ n+1- j+1/2 -u * j-1/2 ϕ n+1- j-1/2 + ∆t ∆x ϕ n+1- j u * j+1/2 -u * j-1/2 , (3.14) 
where

ϕ n+1- j+1/2 =    ϕ n+1- j , if u * j+1/2 ≥ 0, ϕ n+1- j+1 , if u * j+1/2 < 0.
Let us nally remark that (3.14) can be recast into

ϕ n+1 j = ϕ n+1- j L j + ∆t ∆x u * j+1/2 ϕ n+1- j+1/2 -u * j-1/2 ϕ n+1- j-1/2 .
(3.15)

Properties of the operator splitting scheme

We present here a few properties of the operator splitting scheme dened by (3.9) and (3.14). Let us rst remark that this algorithm performs the same update as a classical Lagrange-Remap (or equivalently Lagrange-Projection) algorithm for one-dimensional problems (see appendix 3.A) although the design of our algorithm does not involve a moving mesh for following the variables in a Lagrangian reference frame.

This feature will be the key element of the multi-dimensional extension of the present scheme. It is also interesting to mention that the operator splitting strategy also provided a mean of treating the waves of the gas dynamics system (3.3) separately : the acoustic step only involves acoustic waves while freezing the transport waves. The transport step only deals with the contact discontinuity of the material transport.

Let us mention that a similar operator splitting was used in [14].

The overall update from variable at instant t n to variables at instant t n+1 is fully conservative with respect to ρ, ρu, ρv and ρE. Indeed, we have

                               ρ n+1 j = ρ n j + ∆t ∆x u * j+1/2 ρ n+1- j+1/2 -u * j-1/2 ρ n+1- j-1/2 , (ρu) n+1 j = (ρu) n j + ∆t ∆x u * j+1/2 (ρu) n+1- j+1/2 + Π * j+1/2 -u * j-1/2 (ρu) n+1- j-1/2 -Π * j-1/2 , (ρv) n+1 j = (ρv) n j + ∆t ∆x u * j+1/2 (ρv) n+1- j+1/2 -u * j-1/2 (ρv) n+1- j-1/2 -, (ρE) n+1 j = (ρE) n j + ∆t ∆x u * j+1/2 (ρE) n+1- j+1/2 + Π * j+1/2 u * j+1/2 - ∆t ∆x u * j-1/2 (ρE) n+1- j-1/2 + Π * j-1/2 u * j-1/2 . (3.16a) (3.16b) (3.16c) (3.16d)
The scheme (3.9)-(3.10) for the acoustic step is stable under the Courant-Friedrichs-Lewy (CFL)

condition ∆t ∆x max j∈Z max(τ n j , τ n j+1 )a j+1/2 ≤ 1 2 . (3.17)
If one notes b ± = b±|b| 2 , then a classical result states that the CFL condition associated with the transport scheme (3.14) reads

∆t max j∈Z (u * j-1 2 ) + -(u * j+ 1 2 ) -< ∆x. (3.18)
Entropy-related stability properties of the scheme will be examined in section 3.5.3.

One can also remark that both the acoustic steps and the transport steps are achieved thanks to genuine Godunov solvers applied to simplied subsystems.

Behavior of the scheme with respect to the Mach regime

We are now interested in the behavior of the numerical scheme with respect to the variations of the Mach regime. In order to characterize the Mach regime of the ow, we consider a classical rescaling of the equations (3.3) : let us introduce the following non-dimensional quantities :

x = x L , t = t T , ρ = ρ ρ 0 , ũ = u u 0 , ṽ = v v 0 , ẽ = e e 0 , p = p p 0 , c = c c 0 . (3.19)
The parameters L, T , u 0 = v 0 = L T , ρ 0 , e 0 = p 0 ρ 0 , p 0 and c 0 = p0 ρ0 denote respectively a characteristic length, time, velocity, density, internal energy, pressure and sound speed. If M = u0 c0 is the so-called Mach-number then system (3.3) reads

               ∂ t ρ + ∂ x( ρũ) = 0, ∂ t( ρũ) + ∂ x( ρũ 2 ) + 1 M 2 ∂ x p = 0, ∂ t( ρṽ) + ∂ x( ρũṽ) = 0, ∂ t( ρ Ẽ) + ∂ x[( ρ Ẽ + p)ũ] = 0, (3.20a) (3.20b) (3.20c) (3.20d)
where Ẽ = ẽ + 1 2 M 2 ũ2 . For a given small value of the Mach number, we distinguish two cases : the term ∂ x p remains of magnitude O(M 2 ). Then the variations of ρũ are of order 1 which implies that all the tilde variables will remain of order 1. We shall refer this case as the low Mach regime ; the term ∂ x p does not remain of magnitude O(M 2 ). Then the variations of ρũ will reach a magnitude O(1/M ) or O(1/M 2 ). These large magnitude variations of the momentum will induce a growth of the Mach number and thus a change of Mach regime.

Before going any further, let us underline that in the present approach we do not intend to study the behavior of the rescaled system (3.3) in the limit regime M → 0. This delicate question has been widely investigated over the past years and is still a rich eld of research [17,11,20]. We focus here on a simpler task that consists in examining the consistency of a rescaled approximate solution provided by the splitting operator algorithm with the solution of (3.20) in the low Mach regime. The framework we will place ourselves in does not require sophisticated hypotheses and may deal with the evaluation of a local behavior of the solution (a few neighbouring cells in the discrete setting). More precisely, if one considers smooth solutions of (3.20) and considers the truncation error of the rescaled numerical scheme in the sense of Finite Dierence, how does it depends on M in the low Mach regime ?

Introducing the rescaling dened earlier into (3.10) we get

ũ * j+1/2 = 1 2 (ũ n j + ũn j+1 ) - 1 2ã j+1/2 M ( Πn j+1 -Πn j ), Π * j+1/2 = 1 2 ( Πn j + Πn j+1 ) - ãj+1/2 M 2 (ũ n j+1 -ũn j ),
for (3.11) we have

                             Lj ρn+1- j = ρn j , Lj (ρũ) n+1- j = (ρũ) n j - ∆ t M 2 ∆x ( Π * j+1/2 -Π * j-1/2 ), Lj (ρṽ) n+1- j = (ρṽ) n j , Lj (ρ Ẽ) n+1- j = (ρ Ẽ) n j - ∆ t ∆x ( Π * j+1/2 ũ * j+1/2 -Π * j-1/2 ũ * j-1/2 ), Lj = L j = 1 + ∆ t ∆x (ũ * j+1/2 -ũ * j-1/2 ), (3.21a) (3.21b) (3.21c) (3.21d) (3.21e)
and nally if φ ∈ {ρ, ρũ, ρṽ, ρ Ẽ} the rescaling of (3.15), reads

1 ∆ t ( φn+1 j -Lj φn+1- j ) + 1 ∆x φn+1- j+1/2 ũ * j+1/2 -ũ * j-1/2 φn+1- j-1/2 = 0. (3.22)
Note that the CFL restriction of the acoustic step reads now

∆ t ∆x max(τ n j , τ n j+1 )ã n j+1/2 ≤ M 2 , (3.23)
while the CFL restriction associated with the transport step is

(ũ * j-1/2 ) + -(ũ * j+1/2 ) -∆ t ∆x ≤ 1. (3.24)
In order to evaluate the truncation error (in the Finite Dierence sense) in the low Mach regime, we use the classical tool of equivalent equations. Let (x, t) → b be a parameter of (rescaled) functions that describe a smooth ow. With a classical slight abuse of notation, we consider that φ(x j , t n ) = φn j so that we can substitute these functions into the discrete update formula when φ ∈ {ρ, ũ, ṽ, Ẽ, Π}. We suppose that we are in low Mach regime, namely ∂ x p = O(M 2 ). This hypothesis yields that Πn j+1 = Πn j +O(M 2 ∆x) for the discrete unknowns. We have the following result. Proposition 2. In the low Mach regime, the rescaled discretization of the acoustic step is consistent with

∂ t τ -τ ∂ x ũ = O(∆ t) + O(M ∆x), ∂ t ũ + τ M 2 ∂ x p = O(∆ t) + O ∆x M , ∂ t ṽ = O(∆ t), ∂ t Ẽ + τ ∂ x( pũ) = O(∆ t) + O(M ∆x).
The rescaled discretization of the transport step is consistent with

∂ t φ + ũ∂ x φ = O(∆ t) + O(∆x) + O(M ∆x),
and the equivalent equation veried by the rescaled scheme reads

                 ∂ t ρ + ∂ x( ρũ) = O(∆ t) + O(∆x) + O(M ∆x), ∂ t( ρũ) + ∂ x( ρũ 2 ) + 1 M 2 ∂ x p = O(∆ t) + O(∆x) + O(M ∆x) + O ∆x M , ∂ t( ρṽ) + ∂ x( ρũṽ) = O(∆ t) + O(∆x) + O(M ∆x), ∂ t( ρ Ẽ) + ∂ x[( ρ Ẽ + p)ũ] = O(∆ t) + O(∆x) + O(M ∆x). (3.25a) (3.25b) (3.25c) (3.

25d)

Proof. There exists three smooth functions A, B and C of magnitude 1 with respect to M such that

ũ * j+1/2 = ũn j+1 + ũn j 2 + M ∆xA(x j+1/2 , t n ) + O(M ∆x 2 ), Π * j+1/2 = Πn j+1 + Πn j 2 + M ∆xB(x i+1/2 , t n ) + O(M ∆x 2 ), Π * j+1/2 ũ * j+1/2 = (ũ n j+1 + ũn j )( Πn j+1 + Πn j ) 4 + M ∆xC(x i+1/2 , t n ) + O(M ∆x 2 ).
Injecting the above relation into (3.21) we get Let us remark that (3.27) is indeed consistent at order 1 with respect to ∆x with

                                       Lj = 1 + ∆ t ũn j+1 -ũn j-1 2∆x + O(M ∆x∆ t). Lj ρn+1- j = ρn j , Lj (ρũ) n+1- j = (ρũ) n j - ∆ t M 2 Πn j+1 -Πn j-1 2∆x + O ∆x∆ t M , Lj (ρ j ṽ) n+1-= (ρṽ) n j , L j (ρ Ẽ) n+1- j = (ρ Ẽ) n j -∆ t (ũ n j+1 + ũn j )( Πn j+1 + Πn j ) 4∆x - (ũ n j-1 + ũn j )( Πn j-1 + Πn j ) 4∆x + O(M ∆x∆ t), (3.26a) (3.26b) (3.26c) (3.26d) (3.26e) This yields                        Lj ρn+1- j = ρn j , Lj (ρũ) n+1- j = (ρũ) n j - ∆ t M 2 ∂ x p + O ∆x∆ t M + O ∆x 2 ∆ t , Lj (ρ j ṽ) n+1-= (ρṽ) n j , L j (ρ Ẽ) n+1- j = (ρ Ẽ) n j -∆ t∂ x( pũ) + O(M ∆x∆ t) + O(∆x 2 ∆ t), Lj = 1 + ∆ t∂ x ũ + O(M ∆x∆ t) + O(∆x 2 ∆ t).
∂ t τ -τ ∂ x ũ = O(∆ t) + O(M ∆x), ∂ t ũ + τ M 2 ∂ x p = O(∆ t) + O ∆x M , ∂ t ṽ = O(∆ t), ∂ t Ẽ + τ ∂ x( pũ) = O(∆ t) + O(M ∆x).
Now we turn to the transport step. Accounting for the low Mach hypothesis, (3.22) becomes

1 ∆ t ( φn+1 j -Lj φn+1- j ) + 1 2∆x φn+1- j+1/2 (ũ n j+1 + ũn j ) -φn+1- j-1/2 (ũ n j + ũn j-1 ) = O(M ∆x), hence 1 ∆ t ( φn+1 j -Lj φn+1- j ) + ∂ x( φũ) = O(∆x) + O(M ∆x), (3.28) 
which is consistent with

∂ t φ + ũ∂ x φ = O(∆ t) + O(∆x) + O(M ∆x).
Finally, using (3.27) into (3.28) we nally obtain the desired result.

Remark 2. It is important to note that the analysis we proposed in this section cannot be considered as an exhaustive explanation for the behavior of the numerical scheme in the Low Mach regime. It just merely provides magnitude estimate of the truncation error. Considering the same lines with additional hypotheses : ρ, ũ, ṽ, Ẽ are solution of the rescaled gas dynamics equations in the low Mach regime with well-prepared conditions [11], then one can show that the O(∆x/M ) term in (3.25b) does vanish [11] for one-dimensional problems set over the whole real line. The analysis is delicate and depends on many hypotheses : for two-dimensional problems same results can be obtained for discretization over a triangular mesh with periodic boundary conditions. However, this no longer works for two-dimensional Cartesian meshes where the classical Godunov-type solvers perform poorly with periodic boundary conditions. More general boundary conditions require a specic study for each case [11,10].

Low Mach correction

The equivalent equation (3.25) satised by the rescaled scheme is clearly not satisfactory because of the term O( ∆x M ) which behaves badly when M ∆x. This suggests to modify the scheme accordingly.

Correction of the low Mach behavior : a simple ux modication

In the light of the previous asymptotic analysis, we propose to leave the projection step unchanged and rather focus on the acoustic step of the scheme. In the acoustic step, we suggest to simply replace

Π * j+1/2 by Π * ,θ j+1/2 = 1 2 (Π n j + Π n j+1 ) -θ j+1/2 a j+1/2 2 (u n j+1 -u n j ). (3.29)
The associated dimensionless ux reads

Π * ,θ j+1/2 = 1 2 ( Πn j + Πn j+1 ) -θ j+1/2 ãj+1/2 M 2 (ũ n j+1 -ũn j ). (3.30)
This yields the following modied scheme for the acoustic step.

           W n+1- j = W n j - ∆t ∆x F j+1/2 -F j-1/2 , F j+1/2 = F θ (W n j , W n j+1 ), F θ (W L , W R ) = (-u * , Π * ,θ , 0, Π * ,θ u * , a 2 u * ) T . (3.31a) (3.31b) (3.31c)
Let us underline that this modication solely alters the non-centered terms of the pressure ux. In other words this does not modify the ultimate consistency of Π * ,θ j+1/2 with the pressure value, it does impact the numerical dissipation involved with the discretization of the pressure terms. This approach complies with several previous works that have been investigating the approximation of the low Mach regime like [19,25,15]. While such modication is usually delicate with regards to the stability of the numerical scheme, we will nevertheless see that the resulting modied numerical scheme is still endowed with stability properties (see section 3.5.3).

In the sequel, in order to perform an equivalent equation analysis with the modied pressure ux, we consider a smooth function x → θ such that θ j+1/2 = θ(x j+1/2 ). We have the following consistency properties for the numerical scheme with the modied pressure ux Π * ,θ j+1/2 . Proposition 3. In the low Mach regime, the rescaled discretization (3.31) of the acoustic step is consistent with

∂ t τ -τ ∂ x ũ = O(∆ t) + O(M ∆x), ∂ t ũ + τ M 2 ∂ x p = O(∆ t) + O θ∆x M , ∂ t ṽ = O(∆ t), ∂ t Ẽ + τ ∂ x( pũ) = O(∆ t) + O(M ∆x) + O(M θ∆x).
The rescaled discretization of the transport step is consistent with

∂ t φ + ũ∂ x φ = +O(∆ t) + O(∆x) + O(M ∆x),
and the equivalent equation veried by the rescaled scheme reads

                 ∂ t ρ + ∂ x( ρũ) = O(∆ t) + O(∆x) + O(M ∆x), ∂ t( ρũ) + ∂ x( ρũ 2 ) 1 M 2 + ∂ x p = O(∆ t) + O(∆x) + O θ∆x M , ∂ t( ρṽ) + ∂ x( ρũṽ) = O(∆ t) + O(∆x) + O(M ∆x). ∂ t( ρ Ẽ) + ∂ x[( ρ Ẽ + p)ũ] = O(∆ t) + O(∆x) + O(M ∆x) + O(M θ∆x). (3.32a) (3.32b) (3.32c) (3.32d)
As a consequence, provided that we impose the asymptotic behavior θ j+1/2 = O(M ), the truncation error is uniform with respect to M .

Proof. Following similar lines as in the proof of proposition 2 and using the same notations, there exists four smooth functions A, B, C and D of magnitude 1 with respect to M such that

ũ * j+1/2 = ũn j+1 + ũn j 2 + M ∆xA(x j+1/2 , t n ) + O(M ∆x 2 ), Π * ,θ j+1/2 = pn j+1 + pn j 2 + θ j+1/2 M ∆xB(x i+1/2 , t n ) + O(M ∆x 2 ), Π * ,θ j+1/2 ũ * j+1/2 = (ũ n j+1 + ũn j )(p n j+1 + pn j ) 4 + M ∆xC(x i+1/2 , t n ) + M θ j+1/2 ∆xD(x i+1/2 , t n ) + O(M ∆x 2 ).
The rest of the analysis follows the same line as the proof of proposition 2. Using (3.21) we get Remark 3. In the light of the truncation error that appears in (3.25), one can see that it is not necessary to involve a correction for the energy ux term in (3.31c). It would be possible to consider a numerical scheme with the denition (3.10a) for the velocity at the interface, the modied pressure (3.29) for interface pressure terms and Π * u * for the energy ux.

                       Lj ρn+1- j = ρn j , Lj (ρũ) n+1- j = (ρũ) n j - ∆ t M 2 ∂ x p + O θ∆x∆ t M + O ∆x 2 ∆ t , Lj (ρ j ṽ) n+1-= (ρṽ) n j , L j (ρ Ẽ) n+1- j = (ρ Ẽ) n j -∆ t∂ x( pũ) + O(M ∆x∆ t) + O(M θ∆x∆ t) + O(∆x 2 ∆ t), Lj = 1 + ∆ t∂ x ũ + O(M ∆x∆ t) + O(∆x 2 ∆ t).

Approximate Riemann solver for the modied acoustic scheme

The modied numerical scheme (3.31) for the acoustic step belongs to the category of ux-based solver. Indeed, this solver relies on an update formula (3.31a) that involves the modied ux (3.31c). We will prove in this section that this modied ux solver can also be obtained thanks to an approximate Riemann solver in the sense of Harten, Lax and van Leer [18,1], see also Annex B for a quick refresh on this, that is consistent with the integral form of (3.8). This formalism is useful to establish stability properties. We have the following proposition.

Proposition 4. There exists a simple approximate Riemann solver that is an approximation of the Riemann problem associated with the relaxed acoustic problem (3.8) and whose associated ux matches the ux of the modied acoustic solver. More precisely, there exists a self-similar function .35) such that

W θ RP m t ; W L , W R = (τ, u, v, E, Π) m t ; W L , W R =                W L , if m/t < -a, W * ,θ L , if -a ≤ m/t < 0, W * ,θ R , if 0 ≤ m/t < +a, W R , if +a ≤ m/t. ( 3 
F θ (W R , W L ) = F(W L ) - 0 -∞ [W θ RP (ξ; W L , W R ) -W L ] dξ = F(W R ) + +∞ 0 [W θ RP (ξ; W L , W R ) -W R ] dξ = 1 2 (F(W L ) + F(W R )) - a 2 W * ,θ L -W L - a 2 W R -W * ,θ R . (3.36)
The states W * ,θ

L = (τ * ,θ L , u * ,θ L , v * ,θ L , Π * ,θ L ) T and W * ,θ R = (τ * ,θ R , u * ,θ R , v * ,θ R , Π * ,θ R ) T are given by τ * ,θ L = τ L + 1 a (u * -u L ), τ * ,θ R = τ R + 1 a (u R -u * ), u * ,θ L = u * + 1 2 (θ -1)(u R -u L ), u * ,θ R = u * + 1 2 (1 -θ)(u R -u L ), v * ,θ L = v L , v * ,θ R = v R , E * ,θ L = E L + 1 a (Π L u L -Π * ,θ u * ), E * ,θ R = E R + 1 a (Π * ,θ u * -Π R u R ) Π * ,θ L = Π * , Π * ,θ R = Π * . (3.37a) (3.37b) (3.37c) (3.37d) (3.37e)
Proof. Suppose that W θ RP is consistent with the integral form of the relaxed acoustic problem (3.8) then for a given W L and W R we have

F(W R ) -F(W L ) = -a(W * ,θ L -W L ) + a(W R -W * ,θ R ),
which reads

W * ,θ R + W * ,θ L = W R + W L - 1 a (F(W R ) -F(W L )). (3.38)
If the resulting ux of this approximate Riemann solver is F θ (W L , W R ) then (3.36) is veried and yields

2F θ (W L , W R ) = F(W R ) + F(W L ) -a(W * ,θ L -W L ) -a(W R -W * ,θ R )
or equivalently 

W * ,θ R -W * ,θ L = W R -W L + 1 a 2F θ (W L , W R ) -F(W L ) -F(W R ) . ( 3 
W * ,θ L = W L - 1 a (F θ (W L , W R ) -F(W L )), W * ,θ R = W R + 1 a (F θ (W L , W R ) -F(W R )).
This yields the desired results.

Using this approximate Riemann solver, we can deduce that the modied acoustic solver (3.31) is stable under the same CFL conditions (3.17) that does not depend on the modication θ. Moreover, when θ = 1 the self-similar function W θ RP dened in proposition 4 degenerates to the exact solution of the Riemann problem associated with relaxed acoustic system (3.8).

Finally, if one takes into account the equilibrium projection step of the relaxation strategy into the approximate Riemann solver of proposition 4, we have Π L = p EOS (τ L , e L ), and Π R = p EOS (τ R , e R ). Under this assumption, it is easy to check that the rst coordinates (τ, u, v, E) of the self similar function

W θ
RP are consistent with the integral form of the acoustic system (3.6).

Properties of the modied operator splitting scheme

We start this section by examining the ability of the modied operator splitting scheme to satises a discrete entropy inequality. In the sequel, I(b, b ) ⊂ R will denote the interval whose bounds are b ∈ R and b ∈ R. We consider the following slightly more restrictive subcharacteristic condition

τ * L > 0, -∂ τ p EOS (τ, s L ) ≤ a 2 , ∀τ ∈ I(τ L , τ * L ), τ * R > 0, -∂ τ p EOS (τ, s R ) ≤ a 2 , ∀τ ∈ I(τ R , τ * R ), (3.40) 
and we start with the two following technical results. we also refer the reader to Annex B for a quick refresh on this topic.

Lemma 1. Consider the solution of Riemann problem for the relaxed acoustic system (3.8). Suppose that

(3.40) is veried. Let s k = s EOS (τ k , e k ), k = L, R, we have e * k -e EOS (τ * k , s k ) - p EOS (τ * k , s k ) -Π * 2 2a 2 ≥ 0. (3.41) 
Proof. We consider the case k = R and set for τ ∈ I(τ R , τ * R )

φ(τ ) = e EOS (τ, s R ) - p EOS (τ, s R ) 2 2a 2 -e EOS (τ * R , s R ) + p EOS (τ * R , s R ) 2 2a 2 + p EOS (τ * R , s R ) τ + p EOS (τ, s R ) a 2 -τ * R - p EOS (τ * R , s R ) a 2 .
We have

φ (τ ) = p EOS (τ, s R ) -p EOS (τ * R , s R ) 1 -ρ 2 c 2 (τ, s R )/a 2 . If τ R > τ > τ * R (resp. τ R < τ < τ * R ) the Weyl assumptions (3.2) provides p EOS (τ, s R )-p EOS (τ * R , s R ) < 0 (resp. p EOS (τ, s R )-p EOS (τ * R , s R ) > 0)
and together with hypothesis (3.40) 

this yields φ (τ ) ≥ 0 (resp. φ (τ ) ≤ 0). As φ(τ * R ) = 0 we obtain that φ(τ R ) > φ(τ * R ) = 0 for τ ∈ I(τ R , τ * R ). Using the Riemann invariant jump relation (e * R -Π * 2a 2 ) = (e R -Π R 2a 2 ), one obtains 0 < φ(τ R ) = e * R -e EOS (τ * R , s R ) -1 2a 2 (p EOS (τ * R , s R ) -Π * ) 2 .
The same lines applies for the case k = L. Lemma 2. Let θ ∈ R, and e * ,θ

k = E * ,θ k -(u * ,θ k ) 2 /2 for k = L, R then we have e * ,θ k -e EOS (τ * ,θ k , s k ) - 1 2a 2 p EOS (τ * ,θ k , s k ) -Π * 2 + (1 -θ) 2 (u R -u L ) 2 8 ≥ 0, k = L, R. (3.42)
Proof. One has u * ,θ It is now clear that the inequalities

R = u * + (1 -θ)(u R -u L )/2 and Π * ,θ = Π * + (1 -θ)a(u R -u L )/
- 1 2a 2 p EOS (τ * ,θ k , s R ) -Π * 2 + (1 -θ) 2 (u R -u L ) 2 8 ≤ 0, k = L, R (3.43) 
can help us equip the modied numerical scheme with a discrete entropy inequality.

Proposition 5. Let s * ,θ

k = s EOS (τ * ,θ k , e * ,θ k ) for k = L, R.
If assumption (3.43) is veried, we have

0 ≤ -a(s * ,θ L -s L ) + a(s R -s * ,θ R ). (3.44)
Inequality (3.44) implies that the modied scheme (3.31) for the acoustic step is consistent with the integral form of the entropy inequality

∂ t s(τ, e) ≤ 0. (3.45)
Moreover, the explicit modied scheme (3.31) is equipped with a discrete entropy inequality. Indeed there exists a numerical ux function q n j+1/2 = q(W n j , W n j+1 ) that is consistent with 0 when ∆t and ∆x tend to 0 such that

s(τ n+1- j , e n+1- j ) -s(τ n j , e n j ) + τ n j ∆t ∆x (q n j+1/2 -q n j-1/2 ) ≤ 0. (3.46)
Proof. Let k = L, R, under hypothesis (3.43), we have that e * ,θ

k ≥ e EOS (τ * ,θ k , s k ). According to (3.2) → s EOS (τ * ,θ k , ) is increasing, thus s EOS (τ * ,θ k , e * ,θ k ) = s * ,θ k ≥ s EOS (τ * ,θ k , e EOS (τ * ,θ k , s k )) = s k . Inequality (3.
44) follows trivially. Relation (3.44) expresses the consistency with the integral form of (3.45) and it provides the entropy inequality (3.46) (see [1] and Annex B).

We can now state the following entropic property for the full modied operator splitting explicit scheme composed by (3.31) and (3.14). Proposition 6. If the assumptions (3.43), (3.17) and (3.18) are veried, then the explicit scheme dened by (3.31) and (3.14) veries the following discrete entropy inequality where the numerical entropy ux is dened by

g n j+1/2 = (u * j+1/2 ) + ρ n+1- j s(τ n+1- j , e n+1- j ) + (u * j+1/2 ) -ρ n+1- j s(τ n+1- j+1 , e n+1- j+1 ) + q n j+1/2 . (3.48)
Proof. Let φ ∈ (ρ, ρu, ρv, ρE), under the CFL assumption (3.18) the transport scheme (3.14) expresses

φ n+1 j as a convex combination of φ n+1- i , i = j -1, j, j + 1, indeed one has φ n+1 j = ∆t ∆x (u * j-1/2 ) + φ n+1- j-1 + 1 - ∆t ∆x ((u * j+1/2 ) --(u * j-1/2 ) + ) φ n+1- j + ∆t ∆x (u * j+1/2 ) -φ n+1- j+1 .
As the mapping (ρ, ρu, ρv, ρE) → -(ρs)(τ, e) is a strictly convex function (see for example [16]) we obtain that

-(ρs)(τ n+1 j , e n+1 j ) ≤ - ∆t ∆x (u * j-1/2 ) + (ρs)(τ n+1- j-1 , e n+1- j-1 ) - ∆t ∆x (u * j+1/2 ) -(ρs)(τ n+1- j-1 , e n+1- j+1 ) -1 - ∆t ∆x ((u * j+1/2 ) --(u * j-1/2 ) + ) (ρs)(τ n+1- j , e n+1- j
).

Using relation (3.46) one obtains (3.47).

We now sum up the main properties of the modied operator splitting scheme.

Theorem 3. Suppose that (3.17), (3.18) (3.12) are satised, the explicit scheme dened by (3.31) and

(3.14) veries 1. the scheme is conservative with respect to the density ρ, the momentum ρu and total energy ρE, 2. the density ρ n j is positive for all j and n > 0 provided that ρ 0 j is positive for all j, 3. if θ = O(M ), then the truncation error of the numerical scheme is uniform with respect to M < 1, 4. if (3.43) is veried then the numerical scheme is equipped with a discrete entropy inequality, 5. if (3.43) is veried then e n j > 0 for all j ∈ Z and all n ∈ N.

It is clear from (3.32b) that the choice θ = O(M ) is natural for the modied scheme to have an equivalent equation which is satisfactory when M ∆x (uniform consistency w.r.t. M ). At this stage θ = O(M ) is not made precise, see section 3.6 below. Let us now discuss the new condition which is related to the correction θ.

Behavior of condition (3.43) in the low-Mach regime for a perfect gas equation of state

We have just seen that the scheme is entropic provided that (3.43) is satised. In this section, we study the compatibility in the low Mach regime between the condition (3.43) that is required to obtain a discrete entropy inequality and the condition θ = O(M ) that is required to have uniform consistency with respect to M (see section 3.5). If |u R -u L | = 0, any value of θ ∈ R veries condition (3.43), we can then assume that |u R -u L | > 0. We consider the case of a Perfect Gas EOS dened by p EOS (ρ, e) = (γ -1)ρe, where γ is the specic heat ratio. First, let us recall that τ * ,θ

k = τ * k and Π k = p EOS (τ k , s k ), k = R, L. For k = R, relation (3.43) reads |1 -θ| ≤ 2 a |p EOS (τ * R , s R ) -Π * | |u R -u L | . (3.49) 
Let us remark that the right hand side of this inequality does not depend on θ. The Perfect Gas assumption provides that

p EOS (τ * R , s R ) = Π R (τ R /τ * R )
γ , therefore thanks to the denition of Π * we get

p EOS (τ * R , s R ) -Π * = Π R (τ R /τ * R ) γ - Π L + Π R 2 + a 2 (u R -u L ). (3.50) 
The denition of τ * ,θ R = τ * R by (3.37) using the dimensionless parameters dened by (3.19) gives τ * R = τR + ( ΠR -ΠL )/(2ã 2 ) + M (ũ R -ũL )/(2ã). If one now supposes that the ow is locally in the low Mach regime, then we have

∂ x Π = O(M 2 ), therefore Π R -Π L = O(M 2 ∆x). Thus we obtain τ * R τR = 1 + M ũR -ũL 2ãτ R + O(M 2 ∆x).
Injecting the above relation into (3.50), we obtain

p EOS (τ * R , s R ) -Π * p 0 = - M 2 1 - γ ΠR ã2 τR ã(ũ R -ũL ) + O(M 2 ∆x).
Using the fact that γp

EOS (τ R , s R ) = γΠ R = ρ R (c R ) 2
for a Perfect Gas in the previous relation allows to recast (3.49) into

|1 -θ| ≤ 1 - ρR cR ã 2 + O M ∆x |ũ R -ũL | . (3.51) 
Let us recall that by denition : ã = K max(ρ R cR , ρL cL ) with K ≥ 1. Suppose without loss of

Ω k Ω j n jk N S Figure 3.1 the face Γ jk = Ω j ∩ Ω k dened the segment (N S) has a unit normal vector n jk oriented from Ω j to Ω k . generality that ρR cR = max(ρ R cR , ρL cL ) then (ρ R cR ) 2 /ã 2 = 1/K and the condition (3.51) becomes |1 -θ| ≤ 1 - 1 K 2 + O M ∆x |ũ R -ũL | .
Behavior when M → 0. When M → 0 the above inequality yields that θ ≥ (1/K) 2 if one wants to enforce uniform consistency with respect to M by setting θ = O(M ). This leads to a contradiction. As a conclusion, a correction scheme with θ = O(M ) does not provide an entropic scheme in the asymptotic limit M → 0. On the contrary, θ = 1 which correspond to the classic unmodied scheme is still entropic. Nevertheless, it is reasonable to consider that in the limit M → 0, the solution of the gas dynamics equation is smooth and therefore the consistency with an entropy criterion is a less critical matter.

Extension to several space dimensions with unstructured grids

Without loss of generality, we suppose that Ω ⊂ R 2 is a polygonal domain that is covered by a set of N polygonal cells (Ω j ) 1≤j≤N . Let Γ be a face of a cell Ω j , 1 ≤ j ≤ N . If Γ ⊂ ∂Ω, we suppose that there exists a single k > N that will help to index ghost values for boundary conditions and we shall note Γ = Γ jk . If Γ ∩ ∂Ω = ∅, we suppose that the mesh is admissible in the sense that there exists a single 1 ≤ k ≤ N such that Γ = Ω j ∩ Ω k . Moreover, for 1 ≤ j ≤ N and 1 ≤ k ≤ N we suppose that Ω i ∩ Ω j can either be empty, a vertex or a single face of the mesh. If Γ jk be the face of a cell Ω j then n jk will denote the unit vector normal to Γ jk pointing out of Ω j . We dene N (j) the set of indices k such that Γ jk is a face of

Ω j . Let E = {(j, k) | 1 ≤ j, k ≤ N, k ∈ N (j)} and E ext = {(j, k) | 1 ≤ j ≤ N, k ∈ N (j), Γ jk ⊂ ∂Ω}.
In sequel x = (x 1 , x 2 ) ∈ R 2 will denote the space variable.

We will now present a natural extension of our discretization strategy for the case of multi-dimensional problems with unstructured grids. Within this framework, the classical Lagrange-Remap algorithm involves tracking a genuine multi-dimensional moving mesh. This task is a very delicate matter as the mesh may be dramatically distorted during the simulation. We will here present a much simpler approach that relies on the alternative guideline proposed in section 3.3. A similar approach was used to derive an explicit scheme for two-component interface problems in [14].

Consider the operator splitting of (3.1) into the following systems

       ∂ t ρ + ρdiv(u) = 0, ∂ t (ρu) + ρudiv(u) + ∇p = 0, ∂ t (ρE) + ρEdiv(u) + div(P u) = 0, (3.52a) (3.52b) (3.52c) 
and

       ∂ t ρ + (u • ∇)ρ = 0, ∂ t (ρu) + (u • ∇)ρu = 0, ∂ t (ρE) + (u • ∇)ρE = 0. (3.53a) (3.53b) (3.53c) 
Before going any further, let us note that we obtain similar properties as for the systems (3.4) and (3.5).

Indeed system (3.52) is a quasilinear hyperbolic system that involves the two nonlinear acoustic waves of velocity ±c and two null velocity contact discontinuities waves. System (3.52) only involves acoustic phenomena while freezing the material transport, while (3.53) is pure multi-dimensional transport system at the material velocity u.

We adopt the same strategy as in section 3.3 : given a uid state (ρ, ρu, ρE) n j , update the uid state to the value (ρ, ρu, ρE) n+1- j by approximating the solution of (3.52), update the uid state to the value (ρ, ρu, ρE) n+1 j by approximating the solution of (3.53).

Approximation of the acoustic system (3.52) System (3.52) can be expressed

∂ t τ -τ (x, t)div(u) = 0, ∂ t u + τ (x, t)∇p = 0, E t + τ (x, t)div(pu) = 0.
Using the same lines as in section 3.3 we consider a Suliciu-type relaxation approximation

∂ t τ -τ (x, t)div(u) = 0, ∂ t u + τ (x, t)∇Π = 0, E t + τ (x, t)div(pu) = 0, Π t + τ (x, t)a 2 div(u) = ν(p -Π),
in the regime ν → +∞. Once again, for t ∈ [t n , t n +∆t), this task is achieved by setting Π(x, t n ) = p(x, t n ) and then solving the relaxation system for ν = 0. We approximate again τ (x, t)∂ xr by τ (x, t n )∂ xr for r = 1, 2 when t ∈ [t n , t n + ∆t). In the regime λ = 0 our approximation of (3.52) becomes

∂ t τ -τ (x, t n )div(u) = 0, ∂ t u + τ (x, t n )∇Π = 0, E t + τ (x, t n )div(pu) = 0, Π t + τ (x, t n )a 2 div(u) = 0. (3.54) 
If b is a ow parameter and b n j is an approximation of 1 |Ωj | Ωj b(x, t n ) dx, we solve (3.54) thanks to the following classical Finite-Volume method

                             u n+1- j = u n j -τ n j ∆t k∈N (j) σ jk Π * ,θ jk n jk , Π n+1- j = Π n j -τ n j ∆t k∈N (j) σ jk (a jk ) 2 u * jk , τ n+1- j = τ n j + τ n j ∆t k∈N (j) σ jk u * jk , E n+1- j = E n j -τ n j ∆t k∈N (j) σ jk Π * ,θ jk u * jk , (3.55a) (3.55b) (3.55c) (3.55d) 
where

σ jk = |Γ jk |/|Ω j |.
The three scalar quantities a jk , Π * ,θ jk and u * jk that respectively represent an average sound velocity, a pressure and the normal velocity at the face Γ jk . In order to dene these quantities, we classicaly take advantage of the fact that (3.54) is rotational invariant. This allows to associate in the referential of each face Γ jk a Suliciu-type relaxation approximation of a one-dimensional Riemann problem in the frame of the face. Noting ∈ {n, n + 1-}, this leads us to set

a jk ≥ max[(ρc) n j , (ρc) n k ], u * jk = 1 2 n T jk (u j + u k ) - 1 2a jk (Π k -Π j ), Π * ,θ jk = 1 2 (Π j + Π k ) - a jk θ jk 2 n T jk (u k -u j ). (3.56a) (3.56b) (3.56c) 
When = n the solver is explicit and when = n + 1-, the solver is implicit.

Approximation of the transport system (3.53) In order to approximate the solution of (3.53), we simply use an upwind Finite-Volume scheme. Let ϕ ∈ {ρ, ρu 1 , ρu 2 , ρE}, we set

ϕ n+1 j = ϕ n+1- j -∆t k∈N (j) σ jk u * jk ϕ n+1- jk + ∆tϕ n+1- j k∈N (j) σ jk u * jk , (3.57) 
where ϕ n+1- jk is dened by the upwind choice with respect to the sign of u * jk , namely

ϕ n+1- jk =    ϕ n+1- j , if u * jk > 0, ϕ n+1- k , if u * jk ≤ 0.
Proposition 7. The overall numerical scheme composed by the discretization steps (

(3.57) is conservative with respect to the variable ρ, ρu and ρE, for both the implicit solver and the explicit solver. The update of these variables from t n to t n+1 reads

ρ n+1 j -ρ n j + ∆t k∈N (j) σ jk ρ n+1- jk u * jk = 0, (ρu) n+1 j -(ρu) n j + ∆t k∈N (j) σ jk (ρu) n+1- jk u * jk + Π * ,θ jk n jk = 0, (ρE) n+1 j -(ρE) n j + ∆t k∈N (j) σ jk (ρE) n+1- jk + Π * ,θ jk u * jk = 0. (3.58a) (3.58b) (3.58c) 
The semi-implicit solver obtained for = n + 1-can be decomposed along the following steps : the acoustic step rst involves solving the linear system (3.55a)-(3.55b) for computing the acoustic velocity u n+1- j and pressure term Π n+1- j . The acoustic step is completed by the update of τ n+1- j and E n+1- j thanks to the explicit procedures (3.55c) and (3.55d). The last stage of the semi-implicit solver is achieved thanks to the explicit transport scheme (3.57).

We want now to investigate further the implicit system involved with the semi-implicit method for the specic case of wall-boundary conditions that we implement by imposing ghost values Π n+1- k and n T jk u n+1- k for a boundary face Γ jk ⊂ ∂Ω, where 1 ≤ j ≤ N and k ∈ N (j), k > N with

Π n+1- k = Π n+1- j , n T jk u n+1- k = -n T jk u n+1- j . (3.59) 
We have the following proposition.

Proposition 8. We consider the case of the semi-implicit solver with implementation of wall boundary conditions (3.59) and a uniform choice of a, i.e. a jk = a for all 1 ≤ j ≤ N and k ∈ N (j). If τ n j > 0 for all 1 ≤ j ≤ N , then the linear system (3.55a)-(3.55b) always possesses a single solution for any ∆t > 0 and θ jk > 0.

Proof. For the sake of readability, we shall note here u n+1- j = u j and Π n+1- j = Π j . The nite-dimension linear system (3.55a)-(3.55b) reads

             |Ω j |u j + τ n j ∆t k∈N (j) |Γ jk | 1 2 (Π j + Π k ) - aθ jk 2 n T jk (u k -u j ) n jk = |Ω j |u n j , |Ω j |Π j + τ n j ∆t k∈N (j) |Γ jk |a 2 1 2 n T jk (u j + u k ) - 1 2a (Π k -Π j ) = |Ω j |Π n j . (3.60a) (3.60b) 
This system admits a unique solution if and only if u j = 0, Π j = 0, 1 ≤ j ≤ N is the only solution of the particular case obtained for u n j = 0, Π n j = 0, 1 ≤ j ≤ N . Thus, let us now suppose that the right members of (3.60) are null, we proceed using an energy estimate type proof. Let us multiply (3.60a) by 2u T j τ n j ∆t and sum over j, we obtain

0 = N j=1 2|Ω j ||u j | 2 τ n j ∆t + N j=1 k∈N (j) |Γ jk |(Π j + Π k )(u T j n jk ) - N j=1 k∈N (j) |Γ jk |aθ jk (u T j n jk )(u k -u j ) T n jk . (3.61) 
Accounting for the fact that k∈N (j)

|Γ jk |n jk = 0, the second term of (3.61) veries

N j=1 k∈N (j) |Γ jk |(Π j + Π k )(u T j n jk ) = N j=1 k∈N (j) |Γ jk |Π k u T j n jk .
Using boundary conditions (3.59), the third term of (3.61) reads

N j=1 k∈N (j) |Γ jk |aθ jk (u T j n jk )(u k -u j ) T n jk = (j,k)∈E |Γ jk |aθ jk (u T j n jk )(u k -u j ) T n jk + (u T k n kj )(u j -u k ) T n kj + (j,k)∈E ext |Γ jk |aθ jk (u T j n jk )(u k -u j ) T n jk = - (j,k)∈E |Γ jk |aθ jk (u k -u j ) T n jk 2 -2 (j,k)∈E ext |Γ jk |aθ jk [(u T j n jk )] 2 .
Finally we see that (3.61) is equivalent to

0 = N j=1 2|Ω j ||u j | 2 τ n j ∆t + N j=1 k∈N (j) |Γ jk |Π k u T j n jk + (j,k)∈E |Γ jk |aθ jk (u k -u j ) T n jk 2 + 2 (j,k)∈E ext |Γ jk |aθ jk [(u T j n jk )] 2 .
(3.62)

Let us turn to the pressure equation (3.60b), we multiply by 2Π j τ n j a 2 ∆t and sum over all 1 ≤ j ≤ N , this yields

0 = N j=1 2|Ω j |Π 2 j τ n j a 2 ∆t + N j=1 k∈N (j) |Γ jk |n T jk (u j + u k )Π j - N j=1 k∈N (j) 1 a |Γ jk |(Π k -Π j )Π j . (3.63) 
Using once again k∈N (j)

|Γ jk |n jk = 0, we have for the second term of (3.63) that N j=1 k∈N (j)

|Γ jk |n T jk (u j + u k )Π j = N j=1 k∈N (j) |Γ jk |n T jk u k Π j .
Accounting for (3.59), the third term of (3.63) veries

N j=1 k∈N (j) |Γ jk | a (Π k -Π j )Π j = 1 a (j,k)∈E |Γ jk | (Π k -Π j )Π j -(Π j -Π k )Π k + 1 a (j,k)∈E ext |Γ jk |(Π k -Π j )Π j = - 1 a (j,k)∈E |Γ jk |(Π k -Π j ) 2 .
Then, we see that (3.63) also reads

0 = N j=1 2|Ω j |Π 2 j τ n j a 2 ∆t + N j=1 k∈N (j) |Γ jk |n T jk u k Π j + 1 a (j,k)∈E |Γ jk |(Π k -Π j ) 2 . (3.64) 
We now remark that N j=1 k∈N (j)

|Γ jk |n T jk u k Π j = (j,k)∈E |Γ jk |(n T jk u k Π j + n T kj u j Π k ) + (j,k)∈E ext |Γ jk |n T jk u k Π j = (j,k)∈E |Γ jk |n T jk (u k Π j -u j Π k ) - (j,k)∈E ext |Γ jk |n T jk u j Π j ,
and also that

N j=1 k∈N (j) |Γ jk |Π k u T j n jk = (j,k)∈E |Γ jk |(Π k u T j n jk + Π j u T k n kj ) + (j,k)∈E ext |Γ jk |Π k u T j n jk = (j,k)∈E |Γ jk |n T jk (Π k u j -Π j u k ) + (j,k)∈E ext |Γ jk |Π j n T jk u j . Therefore N j=1 k∈N (j) |Γ jk |Π j u T k n jk + N j=1 k∈N (j) |Γ jk |Π k u T j n jk = 0.
Thus, summing (3.62) and (3.64), we obtain

0 = N j=1 2|Ω j | τ n j ∆t |u j | 2 + Π 2 j a 2 + (j,k)∈E |Γ jk | aθ jk (u k -u j ) T n jk 2 + (Π k -Π j ) 2 a + 2 (j,k)∈E ext |Γ jk | aθ jk [(u T j n jk )] 2 .
This implies that |u j | = Π j = 0 for all 1 ≤ j ≤ N . Remark 4. It is possible to derive a similar proof for the case of periodic boundary conditions.

We now examine the stability of the multi-dimensional operator splitting strategy (3.55), (3.56) and

(3.57). The acoustic step (3.55) in the explicit cases = n is stable under the CFL condition

∆t max 1≤j≤N τ n j max k∈N (j) σ jk a jk ≤ 1 2 . (3.65) 
For both the explicit scheme = n and semi-implicit scheme = n + 1-, the transport step (3.57) is stable under the CFL condition

∆t max 1≤j≤N   k∈N (j) σ jk (n T jk u * ,θ jk )   ≤ 1. (3.66) 
When one uses the semi-implicit scheme = n + 1-, the condition (3.66) becomes implicit as the computation of u * ,θ jk depends on a given ∆t. In our simulations with the semi-implicit scheme, we chose to compute ∆t thanks to the CFL condition (3.66) with the value u * ,θ jk given by the fully explicit scheme = n. It is then possible to check a posteriori that this ∆t value matches (3.66).

We gather thereafter the properties of the explicit and semi-implicit multi-dimensional schemes.

Theorem 4. Suppose that (3.65), (3.66) and (3.12) are satised. The explicit scheme dened by (3.55) and (3.57) with = n veries 1. the scheme is conservative with respect to the density ρ, the momentum ρu and total energy ρE, 2. the density ρ n j is positive for all j and n > 0 provided that ρ 0 j is positive for all j, 3. if θ = O(M ), then the truncation error of the numerical scheme is uniform with respect to M < 1, 4. if (3.43) is veried then the numerical scheme is equipped with a discrete entropy inequality, 5. if (3.43) is veried then e n j > 0 for all j ∈ Z and all n ∈ N.

Theorem 5. Suppose that (3.66) and (3.12) are satised. The semi-implicit scheme dened by (3.55) and (3.57) with = n + 1-veries 1. the scheme is conservative with respect to the density ρ, the momentum ρu and total energy ρE, 2. the density ρ n j is positive for all j and n > 0 provided that ρ 0 j is positive for all j, 3. if θ = O(M ), then the truncation error of the numerical scheme is uniform with respect to M < 1.

Let us note that the implicit treatment of the acoustic step leads to a CFL restriction (3.66) based only on (slow) material waves.

Numerical results

In this section, we present numerical results computed thanks to the general operator splitting strategy jk |/max(c n j , c n k ), 1 and = n, EX(θ = 0) : the explicit modied operator splitting scheme with centered pressure gradient θ jk = 0 and = n, IMEX(θ = 1) : the semi-implicit operator splitting scheme with θ jk = 1 and = n + 1-, IMEX(θ = O(M )) : the modied semi-implicit operator splitting scheme with = n + 1-and a low Mach correction θ jk dened as in the case of EX(θ = O(M )), IMEX(θ = 0) : the modied semi-implicit operator splitting scheme with a centered pressure gradient θ ij = 0 and = n + 1-.

Remark 5. The choice of the modication θ jk = min

|u * jk | max(c n j ,c n k )
, 1 corresponds to a low Mach correction. Indeed, this choice is non-dimensional, in (0, 1), such that θ = O(M ) in the low Mach regime and θ = 1 for large Mach numbers. In this latter case, we then recover the classical scheme without modication.

In the sequel, we shall consider that the uid follows a perfect gas equation of state p = (γ -1)ρe with a specic heat ratio γ = 1.4. We will test schemes on both low Mach and order 1 Mach number test cases.

Low Mach number examples

In this section we will consider low Mach tests and try to examine two questions : the accuracy gain for simulations on coarse grid in the low Mach regime thanks to the proposed correction, then the benet of using a semi-implicit strategy in term of CPU time.

Vortex in a Box

We consider a test performed in [5]. The computational domain is Ω = [0, 1] 2 with an initial condition given by

ρ 0 (x 1 , x 2 ) = 1 - 1 2 tanh x 2 - 1 2 , u 0 (x 1 , x 2 ) = 2 sin 2 (πx 1 ) sin(πx 2 ) cos(πx 2 ), p 0 (x 1 , x 2 ) = 1000, v 0 (x 1 , x 2 ) = -2 sin(πx 1 ) cos(πx 1 ) sin 2 (πx 2 ).
No-slip boundary conditions are imposed on the domain boundaries. The Mach number for the resulting ows is of order 0.026, so that we are in the low Mach regime. Results are displayed in table 3.1 and gures 3.1 and 3.2.

We rst use the schemes EX(θ = 1) with a 400 × 400-cell and a 50 × 50-cell mesh. As expected the scheme performs poorly on the coarse mesh and the gain of accuracy is obvious when one renes the mesh : a mesh size of order M is required, but it comes at a much higher price in terms of CPU time as we can see on table 3.1. The EX(θ = O(M )) scheme gives good results even with the coarse 50 × 50-cell grid. With the low Mach correction scheme the connection between the accuracy of the solution and the mesh size does not seem to be constrained by M . Therefore, for a given target accuracy on a relatively coarse mesh, this numerical scheme is also much cheaper in term of CPU time.

Let us now turn to the semi-implicit strategies where the time step was chosen in agreement with the material CFL condition (3.66). While the IMEX(θ = 1) scheme is not CPU intensive on a coarse mesh the results are very altered by the numerical diusion. The IMEX(θ = O(M )) scheme performs fast and allows to recover numerical results that are as good as EX(θ = O(M )). As with the EX(θ = M ) scheme the accuracy seems much less constrained by the Mach number when it comes to choosing the mesh size.

As we can see in table 3.1, the IMEX(θ = O(M )) scheme is 3.34 times faster than the EX(θ = O(M )). 

Compressible ow examples

In this section, we assess the ability of our operator splitting scheme to handle cases where the ow may not remain uniformly in the same Mach regime over the whole computational domain Ω. We will see that even with a centred pressure discretization (which corresponds to the choice θ = 0), the solution remains stable but may be less precise in area where the Mach number is of order 1. The semi-implicit scheme becomes slower than the explicit scheme when the Mach number is of order 1 as the benet from using a material CFL (3.66) condition instead of an acoustic CFL (3.65) becomes less benecial but requires solving a linear system.

1D Sod shock tube

We consider a variant of the classical Sod shock tube [27], that consists in solving the one-dimensional Riemann problem over Ω = [0, 1] dened by the initial conditions (ρ, u, P ) = (1.0, 0.0, 10 5 ) for x < 0.5 and (ρ, u, P ) = (0.1, 0.0, 10 4 ) for x > 0.5.

We impose Neumann boundary conditions during the test. The domain is discretized over a 1000-cell grid. This resulting Mach number veries 0 < M < 0.95, so that we have both low Mach and order 1 Mach values. We plot the solution at t = 3.1 × 10 -4 s.

Figure 3.6 displays the results obtained with EX(θ) and IMEX(θ) for θ = 1 and θ = 0. We use as reference solution an approximation computed with EX(θ = 1) using a 10 000-cell mesh. All schemes show a good agreement with the reference solution. The schemes EX(θ = 0) and IMEX(θ = 0) schemes are slightly less diused than the EX(θ = 1) and IMEX(θ = 1) schemes results. Let us underline that despite part of the solutions clearly do not belong to the low Mach regime since M 0.95, the schemes EX(θ = 0) and IMEX(θ = 0) are stable and provide good numerical results while involving a centered pressure discretization with θ ij = 0. 

2D-Riemann problem

We consider a 2D Riemann problem that consists of 4 shock waves [23]. We consider the domain

Ω = [0, 1] 2 . The initial condition is (ρ, u 1 , u 2 , P )(x 1 , x 2 , t = 0) =               
(0.1380, 1.206, 1.206, 0.029), for x 1 < 0.5, x 2 < 0.5 (0.5323, 0.000, 1.206, 0.300), for x 1 > 0.5, x 2 < 0.5 (0.5323, 1.206, 0.000, 0.300), for x 1 < 0.5, x 2 > 0.5

(1.5000, 0.000, 0.000, 1.500), for x 1 > 0.5, x 2 > 0.5

We impose Neumann boundary conditions. This conguration leads to a Mach number that ranges from 10 -5 to 3.15, i.e. according to the regions of the computation domain, the ow belongs to the low Mach regime or the order 1 Mach regime. We consider as a reference solution the approximation obtained with EX(θ = 1) for a 200 × 200-cell Cartesian mesh. Figures 3.7, 3.8, 3.9 and 3.10 display the result at t = 0.4 s. We observe in gure 3.7 and gure 3.8 that EX(θ = 0) and IMEX(θ = 0) schemes are stable for this test case with both low Mach and order 1 Mach number values regions. Both gures show that the wave pattern at the center of the domain shape is better captured with coarse meshes when one uses the corrected schemes (θ = 0). A 1D cut along the axis y = x as depicted in gure 3.9, also corroborates this observation : the approximation obtained with EX(θ = 0) and IMEX(θ = 0) schemes are closer to the 200 × 200-cell reference solution thanks to the numerical diusion reduction. Nonetheless, we observe on a 1D cut along the x = 0.75 axis in gure 3.10 a spurious overshot for both density and pressure located at the shock front with EX(θ = 0) and IMEX(θ = 0). This suggests that a small value of θ allows to improve the precision of the scheme by reducing the numerical diusion but it may cause overshoots if the value of θ becomes too small relatively to the local behavior of ow. In all our numerical experiments the scheme seems to remain stable for any value of θ ∈ (0, 1). Let us note that even if the pressure gradient is given a centred treatment (θ = 0), the transport step introduce some numerical diusion (independent of M ) that stabilize the scheme see (3.32). In table 3.3 we observe that the choice of θ does not impact the number of time steps and CPU time. For this case, while the number of time steps is slightly reduced by about 30%, the semi-implicit schemes are much slower due to the time required for solving the linear system involved with the schemes. As a partial conclusion of this section, we can observe that for tests that strongly involve the compressibility of the uid both semi-implicit and explicit schemes seem to be very robust, independantly of the choice of θ within [0, 1]. However, if the low Mach correction is too important, i.e. the value of θ is too close to 0 we witnessed a deterioration of the numerical approximation with the appearance of overshoots in the vicinity of shock fronts.

Then some numerical criterion may be constructed with good properties, θ ij = min

|u * ij | max(c n i ,c n j ) , 1 for instance.
We also observed that the benet in terms of CPU time of the semi-implicit scheme vanishes when the Mach number becomes of order 1.

The implementation of the criterion on θ to recover a discrete entropy inequality does not allow to recover a good low Mach behaviour as it was expected from its low Mach analysis. Finding from a theoretical point of view a criterion on θ that allows to recover a good low Mach behaviour and avoid spurious phenomenon that may occur if θ is too small for a given conguration is still an open problem. Remark 6. The robustness of the scheme with respect to the modication θ ≥ 0 seems to be linked to the Lagrange-Projection decomposition approach. Indeed, numerical evidences not presented here show that a modied relaxation scheme written in Eulerian coordinates is unstable outside of the low-Mach regime for value of θ that are too small.

Conclusion

We proposed a conservative operator splitting based Lagrange-Projection like numerical strategy for approximating the gas dynamics that decouples acoustic and transport phenomenons. The operator splitting scheme is positive for the density, the internal energy and entropic under classical CFL conditions.

For one-dimensional problem, this procedure is equivalent to a Lagrange-Projection discretization. We presented an analysis of the way the truncation error depends on the Mach number for one-dimensional problems. In the low Mach regime, the truncation error of the scheme showed to be non-uniform with respect to the Mach number M . This allowed us to modify the operator splitting scheme in order to recover a uniform truncation error in term of M by altering the numerical ux in the acoustic approximation. We showed that this modication can be obtained thanks to a simple approximate Riemann solver that is consistent with the integral form of the PDEs. This modied operator splitting scheme is conservative and endowed with good stability properties with respect to the positivity of the density, the internal energy under classical acoustic CFL conditions that depend on M . The resulting scheme allows to deal with tests where the ow regime may vary from low to high Mach values.

We showed that this splitting strategy has a natural extension to multi-dimensional problems discretized over unstructured meshes. A simple and ecient semi-implicit scheme that is stable under CFL conditions based on the material velocity is also proposed and leads to an all-regime numerical scheme, following the ideas paved by [6] for one-dimensional problems.

Future developments include extensions to high-order methods and approximation of other systems for the simulation of multi-material ows. Annexes 3.A Classical Lagrange-Projection for one-dimensional gas dynamics

In this section we briey recall the classical Lagrange-Projection (or Lagrange-Remap) procedure for deriving a Finite Volume discretization within a one-dimensional framework. For a detailed description we refer the reader to [16,13]. Let (X, t)R × [t n , t n + ∆t) → χ be the mapping dened by

∂ t χ = u(χ(X, t), t), χ(X, t = t n ) = X.
The pair (X, t) is usually referred to as the Lagrangian system of coordinates : a particle of uid at the position X at instant t = t n will be located at x = χ(X, t), t ∈ [t n , t n + ∆t]. If (x, t) → b is a mapping that provides an Eulerian representation of a parameter b, one denes a Lagrangian representation of b as the function (X, t) → b Lag by setting b Lag (X, t) = b(χ(X, t), t). The system (3.3) is equivalent to

   ∂ t V Lag (X, t) + τ Lag (X, t n )∂ X F Lag (V Lag )(X, t) = 0, V Lag = (τ Lag , u Lag , v Lag , E Lag ) T , F Lag (V Lag ) = (-u Lag , p Lag , 0, p Lag u Lag ) T .
(3.67)

It is common to introduce a mass coordinate m dened by dm = ρ(X, t n )dX in order to obtain the equivalent conservation laws (with a slight abuse of notation) Before going any further, we introduce classical notations : let ∆t > 0 and ∆x > 0 be respectively the time and space steps. We dene the Eulerian mesh interfaces x j+1/2 = j∆x for j ∈ Z, and the intermediate times t n = n∆t for n ∈ N. If b is a uid parameter, in the sequel, we will note b n j (resp. b n+1 j ) the approximate value b respectively within the j th Eulerian cell [x j-1/2 , x j+1/2 ) at instant t = t n (resp. t = t n+1 ). We need to introduce a moving Lagrangian mesh (with respect to the Eulerian mesh) whose cell j at instant t n is [x j-1/2 , x j+1/2 ) and at instant t = t n+1 is [x * j-1/2 , x * j+1/2 ). The value of the parameter b at instant t n (resp. t = t n+1 ) in the Lagrangian cell j is noted b Lag j (resp. b n+1- j ). Given a uid state (ρ, ρu, ρv, ρE) n j , j ∈ Z at instant t n , the Lagrange-Projection strategy proposes the following update procedure.

∂ t V Lag (m, t) + ∂ m F Lag (V Lag )(m, t) = 0. ( 3 
1. Build the discrete Lagrangian uid state at instant t n by setting (V Lag ) j = (τ n j , u n j , v n j , E n j ) ; 2. Update the Lagrangian uid state into the value (V Lag The Lagrangian step (t n → t n+1-)

We propose to approximate the solution of (3.68) using the acoustic scheme [12,13]. This leads to ).

                     τ n+1- j = τ n j + ∆t ∆x τ n j (u * j+1/2 -u * j-1/2 ), u n+1- j =u n j - ∆t ∆x τ n j (p * j+1/2 -p * j-1/2 ), v n+1- j = v n j , E n+1- j = E n j - ∆t ∆x τ n j (pu) * j+1/2 -(pu) * j-1/2 , (3.69a) 
(3.70)

The acoustic scheme (3.69) with (3.70) provides the same update of the ow variable as the scheme (3.9) with (3.10). Let us mention that a direct proof of stability for the acoustic scheme is available in [12] under the CFL criterion (3.17).

The projection (or remapping) step (t n+1-→ t n+1 )

The aim of this step is to project the solution obtained at the end of the Lagrangian step onto the Eulerian cells

[x j-1/2 , x j+1/2 ). If one notes [x * j-1/2 ,x * j+1/2 ) the characteristic function of [x * j-1/2 , x * j+1/2
), a standard way to achieve to goal consists in : rst, approximating the position of the Lagrangian mesh interfaces at instant t n+1 by setting x * j+1/2 = x j+1/2 + u * j+1/2 ∆t ; second reaveraging the conservative variable unknowns over the Eulerian mesh by setting [16] 

ϕ n+1 j = 1 ∆x x j+1/2 x j-1/2   j∈Z ϕ n+1- j [x * j-1/2 ,x * j+1/2 ) (x)
  dx, where ϕ ∈ {ρ, ρu, ρv, ρE}.

(3.71)

Noting ∆x * j = x * j+1/2 -x * j-1/2 and ε(j, n) = -sign(u * j+1/2 )1/2 one obtains the update formula

ϕ n+1 j = 1 ∆x ∆x * j ϕ n+1- j -∆t u * j+1/2 ϕ n+1- j+1/2+ε(j,n) -u * j-1/2 ϕ n+1- j-1/2+ε(j-1,n) = ∆t ∆x (u * j+1/2 -u * j-1/2 )ϕ n+1- j - ∆t ∆x u * j+1/2 ϕ n+1- j+1/2+ε(j,n) -u * j-1/2 ϕ n+1- j-1/2+ε(j-1,n) . (3.72)
The update formula (3.72) matches the classic upwind scheme. Consequently this is the same numerical scheme as (3.14).

3.B Approximate Riemann solvers : Harten Lax and van Leer formalism

We briey recall the Harten, Lax and van Leer formalism associated with the numerical approximation of the solutions (x, t) ∈ R × [0, +∞) → U ∈ R m of the general hyperbolic system of conservation laws

∂ t U + ∂ x G(U) = 0, x ∈ R, t > 0, (3.73) 
by means of the so-called approximate Riemann solvers and Godunov-type methods, where G : R m → R m is a smooth function. System (3.73) is supplemented with the validity of an entropy inequality

∂ t η(U) + ∂ x q(U) ≤ 0, (3.74) 
where U → (η, q) is a strictly convex entropy-entropy ux pair (see [16]).

Solving the Riemann problem amounts to nd the solution of (3.73) with the following piecewise constant initial data

U(x, t = 0) =    U L , if x < 0, U R , if x > 0,
for any given U L and U R in the phase space. 

≤ • • • ≤ λ l , namely U RP x t ; U L , U R =                      U 1 = U L , if x/t < λ 1 , . . . U k , if λ k-1 < x/t < λ k , . . . U l+1 = U R , if x/t > λ l .
(3.75)

From [18,1], if ∆x = 1 2 (∆x L + ∆x R ) with ∆x L > 0, ∆x R > 0 and ∆t > 0 are respectively space and time steps that verify the CFL condition

max 1≤k≤l |λ k | ∆t min(∆x L , ∆x R ) ≤ 1 2 , (3.76) 
such an approximate Riemann solver is said to be consistent with the integral form of (3.73) over the interval

[ -∆x L 2 , ∆x R 2 ] × [0, ∆t] if [ -∆x L 2 , ∆x R 2 ]×[0,∆t] [∂ t U RP + ∂ x G(U RP )] dxdt = 0, in other words if G(U R ) -G(U L ) = l k=1 λ k (U k+1 -U k ). (3.77) 
Regarding the consistency with the entropy inequality (3.74), the simple approximate Riemann solver is said to be consistent with the integral form of (3.74) if and only if under the CFL condition (3.76)

we have

q(U R ) -q(U L ) ≤ l k=1 λ k η(U k+1 ) -η(U k ) . (3.78)
Hereafter and using classic notations, (∆x j ) j∈Z and ∆t represent the space steps and constant time step of the mesh under consideration to dene the approximate solutions. More precisely, we dene the mesh interfaces x j+1/2 = x j-1/2 + ∆x j for j ∈ Z, the intermediate times t n = n∆t for n ∈ N, and we note U n j the approximate value of U at time t n and on the cell [x j-1/2 , x j+1/2 ). For n = 0 and j ∈ Z, we set U 0 j = 1 ∆x x j+1/2

x j-1/2 U 0 (x) dx where U 0 (x) is the initial condition. Then, the explicit in time Godunov-type scheme reads

       U n+1 j = U n j - ∆t ∆x j (G n j+ 1 2 -G n j-1 2 ), G n j+ 1 2 = G(U n j , U n j+1 ), (3.79a) (3.79b) 
with

G(U L , U R ) = 1 2 G(U L ) + G(U R ) - l k=1 |λ k |(U k+1 -U k ) . (3.80)
Moreover, if the simple approximate Riemann solver is consistent with the entropy inequality (3.74), then the numerical scheme dened by (3.79) satises the following discrete entropy inequality

       η(U n+1 j ) ≤ η(U n j ) - ∆t ∆x j (q n j+ 1 2 -q n j-1 2
),

q n j+ 1 2 = q(U n j , U n j+1 ), with q(U L , U R ) = 1 2 q(U L ) + q(U R ) - l k=1 |λ k | S(U k+1 ) -S(U k ) . (3.82)
The CFL condition associated with this (explicit in time) Godunov-type scheme reads

max 1≤k≤l | λ k (U n j , U n j+1 ) | ∆t min(∆x j , ∆x j+1 ) ≤ 1 2 ,
for all j. Again, we refer to [18,1] for more details. To conclude this paragraph, let us observe that the numerical ux G(U L , U R ) and the entropy numerical ux q(U L , U R ) are clearly consistent in the classical sense, namely G(U, U) = G(U) and q(U, U) = q(U) provided that the intermediate states of the approximate Riemann solver are such that U k = U for all k = 1, ..., l as soon as U L = U R = U.

3.C Riemann problem for the relaxation approximation of the acoustic system

We consider the Suliciu relaxation approximation of the Lagrangian gas dynamics equations expressed using a mass coordinate. The system reads

                   ∂ t τ -∂ m u = 0, ∂ t u + ∂ m Π = 0, ∂ t v = 0, ∂ t E + ∂ m (Πu) = 0, ∂ t Π + a 2 ∂ m u = λ(p -Π), (3.83a) 
(3.83b) (3.83c) (3.83d) (3.83e)
where a is a constant that veries the subcharacteristic condition a > max (ρc) in order to prevent instabilities (see for instance [3] for a rigorous proof). It is easy to prove that the convective part of (3.83) is strictly hyperbolic with three eigenvalues given by -a, 0 and a which correspond to linearizations of the exact eigenvalues -ρc, 0 and ρc for system (3.67). Interestingly, the characteristic elds are linearly degenerate, which allows to solve analytically the Riemann problem associated with (3.83) with λ = 0.

More precisely, the exact Riemann solution

W( m t ; U L , U R ) = (τ, u, v, E, Π) T ( m t ; U L , U R )
associated with given left state U L = (τ, u, v, E, Π) T L and right state U R = (τ, u, v, E, Π) T R , is made of three contact discontinuities propagating with velocities -a, a and 0 and separating two intermediate states U * L and U * R , namely

W m t ; U L , U R =                U L , if m t < -a, U * L , if -a < m t < 0, U * R , if 0 < m t < a, U R , if m t > a.
(3.84)

The intermediate states are easily recovered from the following formulas

                     u * = u * L = u * R = u R + u L 2 - Π R -Π L 2a , Π * L = Π * R = Π * = Π R + Π L 2 -a u R -u L 2 , v * L = v L , v * R = v R , τ * L = τ L + u * -u L a , τ * R = τ R + u R -u * a , E * L = E L + 1 a p L u L -u * Π * , E * R = E R - 1 a p R u R -u * Π * . (3.85a) (3.85b) (3.85c) (3.85d) 
Then, setting U L = (τ, u, v, E) T , the classical scheme can be understood in the Harten, Lax and van Leer formalism by considering the following approximate Riemann solver W m t ; U L , U R obtained by simply extracting the rst four components from W m t ; U L , U R , in which we take Π at equilibrium, namely

Π L = p L , Π R = p R .
More precisely, we have (3.86) where the intermediate states are given by (3.85), together with Π L = p L and Π R = p R .

W m t ; U L , U R =            U L , m t < -a, U * L , -a < m t < 0, U * R , 0 < m t < a, U R , m t > a,

3.D Adimensionnement et système limite

On s'intéresse ici à l'obtention du système adimensionné (3.20), puis on considère sa limite lorsque le nombre de Mach M tend vers zéro. On injecte les expressions des grandeurs adimensionnées dénies par (3.19) avec u 0 = v 0 dans le système de la dynamique des gaz (3.1) pour obtenir 

                           L u 0 T ∂ t ρ + ∇ • (ρũ) = 0, L u 0 T ∂ t( ρũ) + ∇ • (ρũ ⊗ ũ) + p 0 ρ 0 (u 0 ) 2 ∇p = 0, L u 0 T ∂ t( ρẽ) + ∇ • (ρẽũ) + p 0 ρ 0 e 0 ∇ • (pũ) + Lu 0 e 0 T ∂ t ρ |ũ| 2 2 + (u 0 ) 2 e 0 ∇ • ρ |ũ| 2 2 ũ = 0.
                       ∂ t ρ + ∇ • (ρũ) = 0, ∂ t( ρũ) + ∇ • (ρũ ⊗ ũ) + 1 M 2 ∇p = 0, ∂ t( ρẽ) + ∇ • (ρẽũ) + p 0 ρ 0 e 0 ∇ • (pũ) + p 0 ρ 0 e 0 M 2 ∂ t ρ |ũ| 2 2 + ∇ • ρ |ũ| 2 2 ũ = 0. (3.88a) (3.88b) (3.88c) 
On dénit le rapport K = p0 ρ0e0 et on obtient nalement le système adimensionné

                     ∂ t ρ + ∇ • (ρũ) = 0, ∂ t( ρũ) + ∇ • (ρũ ⊗ ũ) + 1 M 2 ∇p = 0, ∂ t( ρẽ) + ∇ • (ρẽũ) + K ∇ • (pũ) +KM 2 ∂ t ρ |ũ| 2 2 + ∇ • ρ |ũ| 2 2 ũ = 0. (3.89a) (3.89b) (3.89c)
Remarque 1. L'introduction des grandeurs caractéristiques p 0 , ρ 0 et e 0 pour la pression, la densité et l'énergie interne est liée au comportement thermodynamique du gaz considéré. En eet, on a p 0 p(ρ 0 , e 0 ) et donc K p(ρ0,e0) ρ0e0 . Pour une loi d'état de type gaz parfait, il est naturel de considérer p 0 = ρ 0 e 0 et donc K = 1.

On s'intéresse maintenant à la limite à bas nombre de Mach du système (3.89). Des manipulations classiques montrent que les solutions régulières de (3.89) sont équivalentes aux solutions régulières du 

système suivant            ∂ t ρ + ∇ • (ρũ) = 0, ∂ t ũ + ũ • ∇ ũ + 1 M 2 ρ ∇p = 0, ∂ t p + K ũ • ∇p + ρc 2 ∇ • ũ = 0.
           ∂ t ρ0 + ∇ • (ρ 0 ũ0 ) = 0, ∂ t ũ0 + ũ0 • ∇ ũ0 + 1 ρ0 ∇p 2 = 0, ∂ t p0 + ρ0 c2 0 ∇ • ũ0 = 0. (3.92a) (3.92b) (3.92c)
Ce système n'est pas fermé à cause de l'inconnue supplémentaire p2 . An de dénir le système limite de (3.90), on suppose que l'écoulement est étudié dans un domaine ni D pour la variable spatiale. On intègre sur D l'équation (3.92c)

∂ t p0 D 1 ρ0 c2 0 dx + D ∇ • ũ0 dx = 0.
On considère de plus des conditions aux limites périodiques ou de glissement (ũ • n = 0, où n est la normale unitaire sortante au domaine), on obtient ∂ t p0 = 0, ainsi p0 est une constante en temps et en espace. D'après (3.92c), on a directement ∇ • ũ0 = 0. Le comportement asymptotique quand M tend vers 0 est donc dirigé par le système suivant (3.20). Plus précisément, on étudie l'ordre de grandeur par rapport au nombre de Mach M de la condition de stabilité CFL et de l'erreur de troncature du schéma numérique.

           ∂ t ρ0 + ∇ • (ρ 0 ũ0 ) = 0, ∂ t ũ0 + ũ0 • ∇ ũ0 + 1 ρ0 ∇p 2 = 0, ∇ • ũ0 = 0. ( 3 
3.E Un résultat de stabilité L 2

On présente ici un résultat de stabilité L 2 d'un schéma modié, en suivant l'approche proposé précédemment dans ce chapitre, pour le p-système barotrope. On considère le p-système barotrope en une dimension d'espace

∂ t τ -∂ m u = 0, ∂ t u + ∂ m p(τ ) = 0, (3.94a) (3.94b)
où la loi de pression est linéarisée p(τ ) = p 0 + a(τ 0 -τ ), et où p 0 , τ 0 et a > 0 sont respectivement une pression, un covolume et le carré d'une vitesse du son Lagrangienne de référence.

Le système (3.94) se réécrit

∂ t τ -∂ m u = 0, ∂ t u -a∂ m τ = 0. (3.95a) (3.95b)
On obtient en multipliant (3.95a) par aτ et (3.95b) par u, puis en sommant

∂ t aτ 2 2 + u 2 2 -a∂ m (τ u) = 0.
On considère des conditions aux limites périodiques et on intègre cette égalité sur le domaine [m 0 , m L ] pour obtenir la conservation d'énergie suivante

d dt m L m0 aτ 2 2 + u 2 2 dm = 0. (3.96) 
On essaye de montrer un équivalent de cette égalité d'énergie pour le schéma numérique semi-discret

suivant        dτ j dt = 1 ∆m u * j+ 1 2 -u * j-1 2 , du j dt = - 1 ∆m p * ,θ j+ 1 2 -p * ,θ j-1 2 , (3.97a) 
(3.97b) où              u * j+ 1 2 = u j+1 + u j 2 - Π j+1 -Π j 2a , p * ,θ j+ 1 2 = Π j+1 + Π j 2 -aθ u j+1 -u j 2 , Π j = p(τ j ) = p 0 + a(τ 0 -τ j ). (3.98a) (3.98b) (3.98c) 
La constante θ permet de réduire la diusion numérique du schéma en régime bas Mach à l'image de ce qui a été proposé précédemment dans ce chapitre.

On injecte (3.98) dans (3.97) pour obtenir

         dτ j dt = 1 ∆m u j+1 -u j-1 2 + τ j+1 -2τ j + τ j-1 2 , du j dt = a ∆m τ j+1 -τ j-1 2 + θ u j+1 -2u j + u j-1 2 . (3.99a) (3.99b)
On multiplie (3.99a) par aτ j et (3.99b) par u j puis on somme pour obtenir

d dt a(τ j ) 2 2 + (u j ) 2 2 = aτ j ∆m u j+1 -u j-1 2 + au j ∆m τ j+1 -τ j-1 2 + aτ j ∆m τ j+1 -2τ j + τ j-1 2 + θ au j ∆m u j+1 -2u j + u j-1 2 .
On somme cette égalité sur les cellules du domaine 1 ≤ j ≤ N pour obtenir

d dt   N j=1 a(τ j ) 2 2 + (u j ) 2 2   = N j=1 aτ j ∆m u j+1 -u j-1 2 + N j=1 au j ∆m τ j+1 -τ j-1 2 + N j=1 aτ j ∆m τ j+1 -2τ j + τ j-1 2 + N j=1 θ au j ∆m u j+1 -2u j + u j-1 2 . (3.100)
En considérant des conditions aux limites périodiques,

u 0 = u N , τ 0 = τ N , u N +1 = u 1 et τ N +1 = τ 1 , on a l'égalité suivante N j=1 aτ j ∆m u j+1 -u j-1 2 + N j=1 au j ∆m τ j+1 -τ j-1 2 = 0.
Par ailleurs, on a

N j=1 τ j (τ j+1 -2τ j + τ j-1 ) = N j=1 τ j (τ j+1 -τ j ) - N j=1 τ j (τ j -τ j-1 ) = - N j=1 (τ j+1 -τ j ) 2 .
De même, on montre que

N j=1 u j (u j+1 -2u j + u j-1 ) = - N j=1 (u j+1 -u j ) 2 .
En injectant ces trois égalités dans (3.100), on a nalement

d dt   N j=1 a(τ j ) 2 2 + (u j ) 2 2   = - a ∆m N j=1 (τ j+1 -τ j ) 2 - aθ ∆m N j=1 (u j+1 -u j ) 2 (3.101)
Ainsi pour toute valeur positive de la modication θ ≥ 0, on a l'inégalité d'énergie suivante

d dt   N j=1 a(τ j ) 2 2 + (u j ) 2 2   ≤ 0.
Ce résultat de stabilité du schéma (3.97)-(3.98) pour toute valeur de θ ≥ 0 est indépendante du régime du nombre de Mach considéré. On peut en particulier choisir θ = O(M ) en régime bas Mach pour obtenir un bon comportement du schéma numérique dans ce régime. Le choix θ = 0 est optimal au sens où il permet de réduire le plus possible la diusion numérique tout en restant stable. On obtient ainsi un schéma numérique anti-diusif.

L'obtention d'un résultat de stabilité similaire pour le schéma Lagrangien (3.55)-(3.56) est un problème ouvert. Les résultats numériques obtenus dans la section 3.6.2 montrent la stabilité des schémas EX(θ = 0) et IMEX(θ = 0) pour les cas tests considérés. On considère une solution de référence calculée avec le schéma EX(θ = 1) sur un maillage triangulaire n de 40000 cellules. On trace la coupe 1D en y = 0.5 des solutions approchées obtenues précédemment. On observe sur la gure 3.F. Les annexes viennent compléter l'article An all-regime Lagrange-Projection like scheme for 2D homogeneous models for two-phase ows on unstructured meshes, en apportant un éclairage particulier sur l'obtention d'un solver de Riemann approché pour le schéma acoustique modié dans la section (4.A) et la preuve d'une inégalité d'entropie discrète multi-d sur maillage non structuré dans la section (4.B).

La démonstration de cette inégalité d'entropie discrète peut être facilement adaptée au schéma proposé dans le chapitre 3 pour le système de la dynamique des gaz, généralisant ainsi le résultat obtenu en une dimension d'espace au cours de ce chapitre. explicit update for the transport step. Then, a modication of uxes for the acoustic step allow to recover a truncation error that is uniform with respect to the Mach number. The resulting scheme allows to cope with unstructured meshes and compressible ows equipped with very general Equation of State (EOS).

Finally, let us mention that the overall procedure is shown to be a conservative discretization (except for the mass fraction due to phase transition) and endowed with good stability properties with respect to the positivity of the density and ensuring that the mass fraction remains in the interval (0, 1). We also prove the validity of a discrete entropy inequality in 2D and for general meshes.

Governing equations and low-Mach number regime

Governing equations. We are interested in the two-dimensional homogeneous relaxation model (HRM)

           ∂ t (ρY ) + ∇ • (ρY u) = λ 0 ρ (Y * (ρ, e) -Y ) , ∂ t ρ + ∇ • (ρu) = 0, ∂ t (ρu) + ∇ • (ρu ⊗ u) + ∇p = 0, ∂ t (ρE) + ∇ • [(ρE + p) u] = 0, (4.1) 
where Y , ρ, u = (u, v) t , E denote the mass fraction, the density, the velocity vector and the total energy of the mixture. The pressure p = p(ρ, e, Y ) is assumed to be a given function of the density ρ, the internal energy e = E -|u| 2

2

of the mixture and the mass fraction Y . The mass fraction at thermodynamic equilibrium Y * (ρ, e) is a given function of the density and the internal energy of the mixture. For HRM, the thermodynamic equilibrium Y = Y * (ρ, e) is not instantaneously achieved but is reached at speed λ 0 > 0. We refer for instance the reader to [4,16,10,1] and the references therein. Remark 7. We note that in the limit λ 0 → ∞, HRM converges at least formally toward the homogeneous equilibrium model (HEM) given by

           Y = Y * (ρ, e), ∂ t ρ + ∇ • (ρu) = 0, ∂ t (ρu) + ∇ • (ρu ⊗ u) + ∇p HEM = 0, ∂ t (ρE) + ∇ • ρE + p HEM u = 0, (4.2) 
where p HEM (ρ, e) = p(ρ, e, Y * (ρ, e)).

Dimensionless governing equations. We are now interested in the behavior of the HRM system with respect to the variation of the Mach regime. In order to characterize the Mach regime of the ow, we consider a rescaling of the equations. Let us introduce the following non-dimensional quantities :

x = x L , t = t T , ρ = ρ ρ 0 , ũ = u u 0 , ṽ = v v 0 , ẽ = e e 0 , p = p p 0 , c = c c 0 
The parameters L, T , u 0 = v 0 = L T , ρ 0 , e 0 = ρ 0 p 0 and c 0 = p0 ρ0 denote respectively a characteristic length, time, velocity, density, internal energy, pressure, and sound speed of the mixture. If M = u0 c0 is the so-called Mach-number then system (4.1) reads

           ∂ t( ρY ) + ∇ • (ρY ũ) -λ 0 T ρ (Y * (ρ 0 ρ, e 0 ẽ) -Y ) = 0, ∂ t ρ + ∇ • (ρũ) = 0, ∂ t( ρũ) + ∇ • (ρũ ⊗ ũ) + 1 M 2 ∇p = 0, ∂ t( ρẽ) + ∇ • [(ρẽ + p)ũ] + M 2 2 ∂ t( ρ|ũ| 2 ) + ∇ • (ρ|ũ| 2 ũ) = 0, (4.3)
This system motivates the following denition. Denition 6. In the following, the ow is said to be in the low-Mach regime if and only if the Mach number M 1 and ∇p = O(M 2 ). Remark 8. If the term ∇p does not remain of magnitude O(M 2 ) then the variation of ρũ will reach a magnitude O 1 M or O 1 M 2 . These large magnitude variations of the momentum will induce a growth of the Mach number and thus change the Mach regime.

Remark 9. The source term in the mass fraction equation may be sti if the relaxation toward thermodynamic equilibrium is much faster than the convective part of the system (λ 0 T 1).

Acoustic-transport-phase transition operator splitting strategy

In this section, we propose a three-step approximation strategy based on an operator splitting for approximating the solutions of (4.1). The aim of this splitting is to decouple acoustic, transport and phase transition phenomena. Using the chain rule for the space derivatives, we split system (4.1) into the following three subsystems. The rst subsystem describe the transport process and reads

           ∂ t (ρY ) + u • ∇(ρY ) = 0, ∂ t ρ + u • ∇(ρ) = 0, ∂ t (ρu) + u • ∇(ρu) = 0, ∂ t (ρE) + u • ∇ ρE = 0. (4.4) 
The second subsystem governs the acoustic phenomena, namely

∂ t (ρY ) + (ρY )∇ • u = 0, ∂ t ρ + ρ∇ • u = 0, ∂ t (ρu) + (ρu)∇ • u + ∇p = 0, ∂ t (ρE) + (ρE)∇ • u + ∇ • [pu] = 0,
Or equivalently with τ = 1 ρ the specic volume

           ∂ t Y = 0, ∂ t τ -τ ∇ • u = 0, ∂ t u + τ ∇p = 0, ∂ t E + τ ∇ • (pu) = 0. (4.5)
This system is nothing but the gas dynamics equations in Lagrangian coordinates, so that the proposed transport-acoustic decomposition is nothing but the natural (and physically relevant) Lagrange-Projection strategy. This is an original approach for treating low Mach regimes that was rst proposed in [8].

The third subsystem accounts for mass transfer between phases and reads

           ∂ t (ρY ) = λ 0 ρ (Y * (ρ, e) -Y ) , ∂ t ρ = 0, ∂ t (ρu) = 0, ∂ t (ρE) = 0, or equivalently            ∂ t Y = λ 0 (Y * (ρ, e) -Y ) , ∂ t ρ = 0, ∂ t (ρu) = 0, ∂ t (ρE) = 0. (4.6)
Let us mention that this transport/acoustic/phase transition splitting separates physical phenomena that happen at speed u 0 /c 0 /λ 0 that may dier from several order of magnitude. From a numerical point of view, such a decomposition is very helpful to design large time step implicit-explicit strategy with CFL restriction based only on the slow phenomenon [11,7,8].

Numerical scheme

Let us suppose that the domain Ω ⊂ R 2 is discretized by N cells Ω i . Let Γ ij be the common edge of two neighbouring cells Ω i and Ω j and n ij be the unit vector normal to Γ ij pointing from Ω i to Ω j . We dene N (i) the set of indices 1 ≤ j ≤ N such that Ω i and Ω j have a common face. Let ∆t > 0 be the time step, we dene the intermediate times 

t n = n∆t for n ∈ N. If b is a uid parameter,
                             u n+1- i = u n i -τ n i ∆t j∈N (i) σ ij p * ,θ ij n ij , Π n+1- i = Π n i -τ n i ∆t j∈N (i) σ ij (a ij ) 2 u * ij , Y n+1- i = Y n i , τ n+1- i = τ n i + τ n i ∆t j∈N (i) σ ij u * ij , E n+1- i = E n i -τ n i ∆t j∈N (i) σ ij p * ,θ ij u * ij , (4.7) 
where σ ij = |Γ ij |/|Ω i | and Π is an unknown associated with the so-called Suliciu relaxation approximation and given at time t n by Π n i = p(ρ n i , e n i , Y n i ), see [22,5,6]. The three scalar quantities a ij , p * ,θ ij , and u * ij represent respectively an average sound velocity, a pressure and normal velocity at the face Γ ij and are given by

     a ij = max (ρc) n i , (ρc) n j , u * ij = 1 2 n T ij u n i + u n j -1 2aij Π n j -Π n i , p * ,θ ij = 1 2 Π n i + Π n j - aij θij 2 n T ij u n j -u n i . (4.8) 
Remark that the modication of classical uxes thanks to θ ij will allow to avoid spurious numerical diusion in the low Mach regime, as proposed recently in [8] such a modication is the key point to make the scheme accurate in the low Mach regime. The classical Suliciu relaxation uxes correspond to the choice θ ij = 1.

At this stage, the CFL restriction of this explicit scheme is based on the (fast) acoustic waves and reads

∆t max 1≤j≤N τ n j max i∈N (j) σ ij a ij ≤ 1 2 . ( 4.9) 
To obtain a time step denition based only on the slow waves, following ideas developed in [11,7,8], we propose to use an implicit scheme for the acoustic step. We use (4.7) with a new denition of the pressure and normal velocity at the interface Γ ij given by Transport step (Projection step). In order to approximate the solutions of (4.4), we simply use an upwind Finite-Volume scheme : Let ϕ ∈ {ρY, ρ, ρu, ρE}, we set

     a ij = max (ρc) n i , (ρc) n j , u * ij = 1 2 n T ij u n+1- i + u n+1- j -1 2aij Π n+1- j -Π n+1- i , p * ,θ ij = 1 2 Π n+1- i + Π n+1- j - aij θij 2 n T ij u n+1- j -u n+1- i . ( 4 
ϕ i = ϕ n+1- i -∆t   j∈N (i) (σ ij u * ij ϕ n+1- ij )   + ∆tϕ n+1- i   j∈N (i) (σ ij u * ij )   , (4.11) 
where ϕ n+1- ij is dened by the upwind choice with respect to the sign of u * ij , namely

ϕ n+1- ij = ϕ n+1- i , if u * ij > 0, ϕ n+1- j , if u * ij ≤ 0.
(4.12)

The CFL restriction of this explicit scheme is based on the (slow) material waves and reads

∆t max 1≤j≤N   i∈N (j) (σ ij |u * ij |)   ≤ 1. (4.13) 
Phase transition step (Source terms step). To approximate system (4.6), we propose a pointwise implicit evaluation

Y n+1 i = Y i + λ 0 ∆t Y * (ρ i , e i ) -Y n+1 i , ϕ n+1 i = ϕ i , ϕ ∈ {ρ, ρu, ρE}. (4.14)
The implicit treatment is particularly important for large values of λ 0 to avoid a CFL restriction based on the (fast) phase transition phenomenon. Remark 10. In the limit λ 0 → +∞, this step may be replaced by the projection on the thermodynamic equilibrium

Y n+1 i = Y * (ρ i , e i ), ϕ n+1 i = ϕ i , ϕ ∈ {ρ, ρu, ρE}. (4.15) 
(iv) if θ = O(M ), then the truncation error of the numerical scheme is uniform with respect to M < 1.

(v) it is stable in the uniform sense with respect to the Mach number M .

Remark 11. For the LPS-EX(θ) scheme, we may prove the positivity of the internal energy and a discrete entropy inequality under a condition on the modication θ, see appendix 4.B for more details. Under this condition, we have in particular e i > 0 for all i and n ≥ 0.

Proof of property (i) is easily obtained from (4.16) and is thus left to the reader (see also [8]).

Proof of properties (ii) and (iii). Let us consider that Y n i ∈ [0, 1], ρ n i > 0 and e i > 0 for all i, we are going to show that Y n+1 i ∈ [0, 1] and ρ n+1 i > 0 for all i : Acoustic step : the mass fraction is unchanged in this step

Y n+1- i = Y n i . Thus, we have Y n+1- i ∈ [0, 1] for all i.
The density is given by

ρ n+1- i = ρ n i   1 + ∆t j∈N (i) σ ij u * ij   -1
, so that we have ρ n+1- i > 0 for all i thanks to the CFL condition (4.13). Transport step : the upwind choice (4.12) is such that

u * ij ϕ n+1- ij = (u * ij ) + ϕ n+1- i + (u * ij ) -ϕ n+1- j ,
where u + = u+|u| 2 and u -= u-|u| 2 . Injecting those expressions in the transport step (4.11) for the density and the mass fraction holds

               ρ i =   1 + ∆t j∈N (i) σ ij (u * ij ) -   ρ n+1- i -∆t j∈N (i) σ ij u * ij -ρ n+1- j , Y i = ρ n+1- i ρ i   1 + ∆t j∈N (i) σ ij (u * ij ) -   Y n+1- i -∆t j∈N (i) σ ij u * ij - ρ n+1- j ρ i Y n+1- j .
As (u * ij ) -≤ 0, under the CFL condition (4.13), ρ i (resp. Y i ) is a convex combination of ρ n+1- i (resp. Y n+1- i

) and ρ n+1- j (resp. Y n+1- j ) for j ∈ N (i). Thus, we have ρ i > 0 and Y i ∈ [0, 1] for all i. Phase transition step : the density is unchanged in this step ρ n+1 i = ρ i , so that ρ n+1 i > 0 for all i. The mass fraction update writes for HRM

Y n+1 i = 1 1 + λ 0 ∆t Y i + λ 0 ∆t 1 + λ 0 ∆t Y * (ρ i , e i ),
and for HEM

Y n+1 i = Y * (ρ i , e i ),
In both cases, Y n+1 i may be seen as a convex combination of Y * (ρ i , e i ) and Y i . We assumed that e i > 0 and proved that ρ i > 0 for all i, so that Y * (ρ i , e i ) ∈ [0, 1] by denition of the function Y * . Thus Y n+1 i ∈ [0, 1] for all i. This conclude the proof.

Behavior with respect to the Mach regime. In order to prove (iv) and (v), we are now interested in the behavior of the numerical scheme with respect to the Mach regime. Namely, we study the dependence with respect to the Mach number M of both the CFL stability condition and the truncation error. Introducing the rescaling and tilde variables dened earlier into (4.8) we get The rescaling of the acoustic step (4.7) reads

                               ũn+1- i = ũn i - 1 M 2 τ n i ∆ t j∈N (i) σij p * ,θ ij n ij , Πn+1- i = Πn i -τ n i ∆ t j∈N (i) σij (ã ij ) 2 ũ * ij , Y n+1- i = Y n i , τ n+1- i = τ n i + τ n i ∆ t j∈N (i) σij ũ * ij , Ẽn+1- i = Ẽn i -τ n i ∆ t j∈N (i) σij p * ,θ ij ũ * ij , (4.19) 
where σij = Proof of property (iv). In order to evaluate the truncation error in the low Mach regime, we use the classical tool of equivalent equation. With a slight abuse of notation, we consider φ(x i , t n ) = φn i so that we can substitute these functions in discrete formulas.

We assume that we are in low Mach regime, namely M 1 and ∇p = O(M 2 ). This hypothesis yields that for j ∈ N (i), we have Πn j = Πn i +O(M 2h ) and Πn+1j = Πn+1i +O(M 2h ) for the discrete unknowns. The rescaled discretization of the acoustic step (4.19) is consistent with

             ∂ tY = O ∆ t , ∂ t τ -τ ∇ • ũ = O ∆ t + O M h , ∂ t ũ + τ M 2 ∇p(ρ, ẽ, Y ) = O ∆ t + O θ M h , ∂ t Ẽ + τ ∇ • p(ρ, ẽ, Y )ũ = O ∆ t + O M h + O θM h .
for both the implicit solver (4.18) and the explicit solver (4.17).

The rescaled discretization of the transport step (4.22) is consistent with So that the equivalent equation veried by the overall rescaled scheme reads

∂ t φ + ũ • ∇ φ = O ∆ t + O h + O M h f or φ ∈ {ρY
               ∂ t (ρY ) + ∇ • (ρY u) = λ 0 ρ (Y * (ρ, e) -Y ) + O ∆ t + O h + O M h , ∂ t ρ + ∇ • (ρu) = O ∆ t + O h + O M h , ∂ t (ρu) + ∇ • (ρu ⊗ u) + ∇p = O ∆ t + O θ h M + O h + O M h , ∂ t (ρE) + ∇ • [(ρE + p) u] = O ∆ t + O h + O M h + O θM h .
As a consequence, provided that we impose the asymptotic behavior θ = O(M ), the truncation error of scheme (4.19)-(4.21)-(4.23) is uniform with respect to M for both the implicit solver (4.18) and the explicit solver (4.17). This concludes the proof of property (iv).

Let us note that the classical Suliciu relaxation uxes obtained for θ = 1 do not have a truncation error that is uniform with respect to the Mach number.

Numerical results

We propose to test both LPS-IMEX(θ) and LPS-EX(θ) scheme against low Mach number test cases and order 1 Mach number test cases. LPS-EX(θ) computations are performed with a time step satisfying both (4.9) and (4.13), while LPS-IMEX(θ) computations are performed with a time step dened by an explicit evaluation of (4.13) (explicit means here that u * dened by (4.8) is used to evaluate ∆t). We consider a mixture of two perfect gas with dierent adiabatic coecients γ 1 > γ 2 > 1. The pressure, sound speed and mass fraction of the mixture are given by telle que

           W n+1- j = W n j - ∆t ∆m F j+1/2 -F j-1/2 , F j+1/2 = F θ (W n j , W n j+1 ), F θ (W L , W R ) = (0, -u * , Π * ,θ , 0, Π * ,θ u * , a 2 u * ) T ,        u * = (u R + u L ) 2 - 1 2a (Π R -Π L ), Π * ,θ = (Π R + Π L ) 2 -θ a 2 (u R -u L ). u v
F θ (W R , W L ) = F(W L ) - 0 -∞ [W θ RP (ξ; W L , W R ) -W L ] dξ = F(W R ) + +∞ 0 [W θ RP (ξ; W L , W R ) -W R ] dξ = 1 2 (F(W L ) + F(W R )) - a 2 W * ,θ L -W L - a 2 W R -W * ,θ R . (4.28) 
Les états W * ,θ L = (Y * ,θ L , τ * ,θ L , u * ,θ L , v * ,θ L , E * ,θ L , Π * ,θ Par ailleurs, si on prend en compte la projection sur l'état d'équilibre de la stratégie de relaxation, on a Π L = p(τ L , e L , Y L ), et Π R = p(τ R , e R , Y R ). On peut alors montrer que les premières coordonnées (Y, τ, u, v, E) de la fonction auto-similaire W θ RP sont consistantes au sens intégral avec le système

L ) T et W * ,θ R = (Y * ,θ R , τ * ,θ R , u * ,θ R , v * ,θ R , E * ,θ R , Π * ,θ R ) T sont don- nés par Y * ,θ L = Y L , Y * ,θ R = Y R , τ * ,θ L = τ L + 1 a (u * -u L ), τ * ,θ R = τ R + 1 a (u R -u * ), u * ,θ L = u * + 1 2 (θ -1)(u R -u L ), u * ,θ R = u * + 1 2 (1 -θ)(u R -u L ), v * ,θ L = v L , v * ,θ R = v
∂ t V + ∂ m F(V) = 0, (4.32) 
où V = (Y, τ, u, v, E) T et F(V) = (0, -u, p, 0, pu) T .

Finalement, le schéma numérique (4.7)-(4.8) peut se réécrire à l'aide des états intermédiaires du solver de Riemann approché de la proposition 9 sous la forme • nbSaveMax, le nombre de solutions intermédiaires que l'on souhaite sauvegarder,

W n+1- i =   1 -τ n i ∆t j∈N (i) σ ij a ij   W n i + τ n i ∆t j∈N (i) σ ij a ij W n, * ,θ ij , ( 4 
• maillage, le type de maillage et la liste des chiers du maillage,

• solver, le choix du solver utilisé pour calculer le pas de temps et mettre à jour la solution,

• eos, le choix de l'équation d'état utilisée pour calculer la thermodynamique.

On utilise nalement ParaView pour acher les données sauvegardées au format VTK.

Structures de données

La structure de données principale de YAFiVoC est problem_t. Elle contient des pointeurs vers toutes les autres données et en particulier vers :

• les arguments passés à l'exécutable,

• le temps actuel, le pas de temps et le temps nal,

• la solution actuelle,

• le maillage,

• les données du solver de type solverData_t (la dénition de ce type est spécique à chaque solver an de répondre aux besoins des diérentes méthodes numériques).

Une autre structure importante est mesh_t. Comme son nom l'indique, ce type correspond au maillage et contient :

• une liste des noeuds de type node_t,

• une liste des côtés de type edge_t,

• une liste des cellules de type cell_t,

• des listes qui contiennent les côtés situés sur le bord du domaine classés par région. Ces structures de données permettent d'accéder aux informations usuelles sur la connectivité des éléments du maillage.

La structure varArray_t permet de créer des tableaux de données associés à un nombre d'éléments nbElts (par exemple le nombre de cellules ou le nombre de faces du maillage) et à un certain nombre de variables nbV ar.

Implémentation de la méthode IMEX(θ)

On présente ici, dans un soucis d'illustration, l'implémentation du schéma numérique IMEX(θ) introduit au cours du chapitre 3. Pour ajouter IMEX(θ) à la liste des solvers disponibles dans YAFiVoC, on crée les chiers suivants :

• LagProjIMEXSolver.h qui contient la dénition du type solverData_t et la déclaration des fonctions spéciques à ce solver,

• DeneFluxes.c qui contient la dénition des fonctions spéciques à ce solver, • LagProjIMEXSolver.c qui contient la dénition de la fonction MySolver qui est appelée dans la boucle principale en temps pour passer la solution du temps t n au temps t n+1 . Cette fonction appelle les fonctions dénies dans DeneFluxes.c et utilise la donnée de type solverData_t, • Initialize_FinalizeSolver.c qui contient les constructeurs et destructeurs associés au type sol-verData_t. C'est dans ce constructeur que l'on peut lire les arguments passés dans le document de conguration cong.cfg à l'aide du SimpleCongReader de YAFiVoC, • CMakeLists.txt qui est nécessaire pour compiler le code avec CMake. Une seconde piste est l'obtention d'un critère sur le choix de la modication θ( ), garantissant certaines propriétés de stabilité (L 2 , TVD, ...), moins restrictif que le critère garantissant l'inégalité d'entropie discrète obtenu au cours de cette thèse. On pourrait alors choisir une valeur optimale du paramètre θ qui pilote la stratégie anti-diusive, en prennant la plus petite valeur vériant ce critère de stabilité. La troisième piste est l'extension des méthodes construites au cours de cette thèse à des systèmes diphasiques plus complexes comme par exemple le système de Baer-Nunziato. Ce type de système soulève de nouvelles questions liées aux termes non conservatifs ainsi qu'à la nécessité d'utiliser deux paramètres, à savoir le nombre de Mach dans chaque phase, au lieu d'un.
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L

  'analyse de l'erreur de troncature de ces diérents schémas quand tend vers zéro montre l'utilité d'introduire un nouveau degré de liberté θ( ) dans l'étape acoustique an d'obtenir des ux numériques consistants avec les ux du système limite (2) quand tend vers zéro. Le schéma ainsi construit est conservatif et préserve la positivité de la densité. Par ailleurs, pourvu que θ( ) = O( ) le schéma ainsi construit est bien asymptotic preserving. Des résultats numériques montrent le bon comportement du schéma lorsque 1, pourvu que la condition sur la modication θ( ) soit vériée. Une généralisation de cette méthode à deux dimensions d'espace et aux maillages non structurés permet d'obtenir des résultats numériques similaires. Finalement, des études annexes viennent compléter ces analyses en apportant un éclairage sur l'implémentation des conditions aux limites, le comportement du schéma en régime intermédiaire et l'extension à l'ordre 2 en espace. 0.5 Chapitre 3 : Schémas Lagrange-Projection tout-régime pour le système de la dynamique des gaz sur maillage non structuré Dans le chapitre 3, on considère le système de la dynamique des gaz en deux dimensions d'espace

  Le schéma numérique est écrit en deux dimensions d'espace et sur maillage non structuré. Il permet de calculer des solutions approchées précises dans le régime des faibles nombres de Mach pourvu que θ(M ) = O(M ). Il est de plus conservatif et présente de bonnes propriétés de stabilité. On montre par exemple que le schéma préserve la positivité de la densité et on exhibe une inégalité d'entropie discrète pour la version explicite du schéma. Des tests numériques en régime bas Mach et en régime compressible montrent le gain en précision et en temps de calcul ainsi que la robustesse du schéma tout-régime ainsi construit. Des études annexes viennent apporter un éclairage sur l'adimensionnement du système de la dynamique des gaz, un résultat de stabilité L 2 , l'inuence de la forme du maillage sur le comportement du schéma à bas nombre de Mach et la comparaison avec un schéma doté d'une correction bas Mach écrit directement en coordonnée Eulérienne (par opposition au formalisme Lagrange-Projection proposé ici). 0.6 Chapitre 4 : Schémas Lagrange-Projection tout-régime pour les modèles diphasiques homogénéisés HEM et HRM sur maillage non structuré Dans le chapitre 4, on s'intéresse au système diphasique homogénéisé HRM

( 6 )

 6 Le nombre de Mach M associé au mélange joue ici le rôle du paramètre .On propose pour les systèmes HRM et HEM une méthode numérique inspirée de celle présentée au cours du chapitre 3 pour le système de la dynamique des gaz. La diérence entre les systèmes (5) et (3) est la nouvelle variable Y qui correspond à la fraction de masse d'un des deux constituants du mélange. Cette nouvelle variable, en plus d'être transportée à la vitesse du mélange, fait apparaître un terme source qui correspond aux transitions de phases. Par ailleurs, la loi de pression de mélange dans (5) est une fonction de la fraction de masse, ainsi que de la densité et de l'énergie interne du mélange. On considère un splitting d'opérateurs Lagrange-Projection-Source où on sépare le système (5) en trois sous-systèmes contenant respectivement les termes acoustiques, les termes de transport et les termes sources. Il est à noter que la vitesse de relaxation vers l'équilibre thermodynamique λ 0 peut s'avérer grande devant la vitesse des ondes matières. C'est pourquoi on traitera implicitement les phénomènes de transition de phase. Comme précédemment, on traite implicitement l'étape acoustique, à l'aide d'un schéma de relaxation en pression, et explicitement l'étape de transport, an d'éviter la forte contrainte sur le pas de temps liée à la vitesse du son du mélange dans le régime des faibles nombres de Mach. L'analyse de l'erreur de troncature du schéma suggère, comme dans le chapitre 3, de modier celui-ci à l'aide d'un nouveau degré de liberté θ(M ) pour le rendre plus précis dans le régime des faibles nombres de Mach. On obtient, pourvu que θ(M ) = O(M ), de bonnes propriétés de stabilité et de consistance du schéma modié, quel que soit le régime considéré. Cela conrme le caractère tout-régime du schéma modié en deux dimensions d'espace et sur maillage non structuré ainsi construit. Les simulations numériques conrment le bon comportement du schéma que ce soit en régime bas Mach ou en régime compressible. Des études annexes viennent compléter cette étude en proposant un solveur de Riemann approché permettant de retrouver les ux du schéma modié, on utilise alors ce résultat pour prouver une inégalité d'entropie discrète pour une version explicite du schéma. Chapitre 1 Schémas préservant l'asymptotique et stables à grand pas de temps pour le système de la dynamique des gaz avec termes sources raides Ce chapitre a fait l'objet d'une publication dont les références sont : C. Chalons, M. Girardin and S.Kokh, Large time step and asymptotic preserving numerical schemes for the gas dynamics equations with source terms, SIAM J. Sci. Comput., 35(6) : a2874a2902, (2013).

  ∆t,∆x→0 S 0 ∆t,∆x = M 0 , or equivalently lim ∆t,∆x→0 lim →0 S ∆t,∆x = lim →0 M . In other words, the asymptotic preserving property is formally equivalent to the following order of limits interchange property : lim

1 = -ρc < λ Lag 2 = 0 < λ Lag 3 =

 123 ρc, where c still denotes the sound speed. Here again, the extreme characteristic elds associated with λ Lag 1 and λ Lag 3 are genuinely non linear while the intermediate characteristic eld associated with λ Lag 2

j+1 2 . 1 2 and p * j+ 1 2

 211 By reinjecting those expressions of u * j+ in the last three equations of (1.39), we obtain nally

  The non-linear stability of the limit scheme (1.42)-(1.46)-(1.47) is still an open problem. 1.8.2 Comments on the limit system (1.42)-(1.46)-(1.47)

Figure 1 . 1

 11 Figure 1.1 Prole at time t = 0.01 s of the velocity (left) and the density (right) obtained for a 100cell, 1000-cell and 10 000-cell grid with the LP-EXEX SP scheme and the reference solution (LP-EXEX scheme with 10 000-cell mesh).

Figure 1 . 2

 12 Figure 1.2 Prole at time t = 0.01 s of the velocity (left) and the density (right) obtained for a 100-cell and 1000-cell grid with the LP-IMEX scheme and the reference solution (LP-EXEX scheme with 10 000-cell mesh).

Figure 1 . 3

 13 Figure 1.3 Prole at time t = 0.01 s of the velocity (left) and the density (right) obtained for a 1000-cell grid with the LP-IMEX scheme and the reference solution (LP-EXEX scheme with 10 000-cell mesh).

Figure 1 . 4

 14 Figure 1.4 Prole at time t = 0.01 s of the velocity (left) and the density (right) obtained for a 1000cell grid and 10 5 s -1 friction parameter with the LP-IMEX scheme and the reference solution (LP-EXEX scheme with 10 000-cell mesh).

Figure 1 . 5

 15 Figure 1.5 Prole at time t = 0.01 s of the velocity (left) and the density (right) obtained for a 1000cell grid and 10 7 s -1 friction parameter with the LP-IMEX scheme and the reference solution (LP-EXEX scheme with 10 000-cell mesh).

Chapitre 2 Schémas

 2 de splitting d'opérateur préservant l'asymptotique pour le système de la dynamique des gaz avec termes sources raides Ce chapitre a fait l'objet d'une publication dont les références sont : C. Chalons, M. Girardin and S. Kokh, Operator-splitting-based asymptotic preserving scheme for the gas dynamics equations with sti source terms, AIMS on Applied Mathematics, Proceedings of the 2012 International Conference on Hyperbolic Problems : Theory, Numerics, Applications, 8 : 607614 , (2014).Dans le chapitre 1, on a proposé un schéma numérique basé sur la consistance au sens intégral. Le calcul a montré que ce schéma est asymptotic preserving. Ce processus de construction est spécique à ce système et cette asymptotique. Dans ce chapitre, on va s'intéresser à une méthode de construction de schémas préservant l'asymptotique plus générale qui pourra être utilisée pour étudier d'autres systèmes et d'autres régimes asymptotiques, comme par exemple le régime des faibles nombres de Mach.

Figure 2 . 1

 21 Figure 2.1 Prole at time t = 0.01s of the velocity (left) and the pressure (right) obtained for a 100cell, 1000-cell and 10 000-cell grid with the LSP-IMEX scheme and the reference solution (LSP-IMEX COR scheme with 10 000-cell mesh).

un 1 -

 1 invariant de Riemann fort, il est constant à la traversée des 2-ondes et 3-ondes, ←w * L = ←w * R = ←w R . I et S sont des 2-invariants de Riemann fort, ils sont donc constants à la traversée des 1-ondes et des 3-ondes, I * L = I L , I * R = I R , S * L = S L et S * R = S R . Finalement -→ w est un 3-invariant de Riemann fort, il est donc constant à la traversée des 1-ondes et des 2-ondes : -→ w * L = -→ w * R = -→ w L . Les états intermédiaires sont donc donnés par

  Il est nécessaire d'imposer les quatre grandeurs de U L pour calculer le ux d'interface en x 0 . L'unique champ de multiplicité quatre est entrant au domaine. Conditions aux limites pour le schéma Lagrange-Projection (2.6)-(2.10) On a vu précédemment les quantités qu'il était nécessaire de connaître lors de l'étape Lagrangienne et de l'étape de projection pour pouvoir calculer le ux d'interface de ces deux étapes. Nous allons utiliser ces résultats pour imposer des conditions aux limites usuelles pour le système de la dynamique des gaz. 1. Condition à la limite de type Neumann La condition à la limite de type Neumann s'écrit au niveau continu pour ϕ ∈ {ρ, ρu, ρE} ∂ x ϕ = 0, en x = x 0 • Étape Lagrangienne : on impose ∂ x u = 0 et ∂ x p = 0 en x 0 , on a donc aussi ∂ x -→ w = 0. Une discrétisation naturelle de cette condition est :

  On s'est intéressé précédemment aux conditions aux limites d'un schéma Lagrange-Projection explicite en une dimension d'espace. Dans les chapitres 3 et 4, on va construire des schémas où l'étape Lagrangienne sera traitée de façon implicite. On prendra alors des évaluations implicites des relations écrites ci-dessus pour l'étape Lagrangienne. Par ailleurs les schémas seront écrits en deux dimensions d'espace et sur maillage non structuré, on utilise l'invariance par rotation des systèmes d'équations pour se ramener à un système quasi 1D le long de la normale au domaine. On utilisera alors les relations précédentes pour calculer les ux de frontières.2.B Régime intermédiaire et précision pour les schémas asymptotic preservingOn a étudié précédemment le comportement du schéma (2.6)-(2.13)-(2.9)-(2.10) dans deux régimes particuliers, d'une part le régime classique d'ordre 1, et d'autre part le régime asymptotique → 0. On va s'intéresser ici au régime intermédiaire situé entre le régime classique et le régime asymptotique. Approche à ∆x xé On considère un pas d'espace ∆x xé et on fait varier la valeur de . Lorsque est d'ordre 1, c'est à dire en régime classique, le schéma LSP-IMEX obtenu pour θ = 1 donne de bons résultats numériques.

  Néanmoins, compte tenu de la nature non linéaire du système d'équations et de l'importance du caractère entropique des solutions dans certains régimes, il est dicile d'obtenir un tel critère en pratique. On est alors amené à dénir la valeur de θ de manière empirique, on a fait le choix par exemple pour le schéma LSP-IMEX COR de xer θ COR = min( a αρ∆x , 1). Ce choix permet d'eectuer la transition entre θ = O( ) en régime asymptotique et θ = 1 en régime classique. Des résultats numériques obtenus avec ce schéma sont présentés dans la section 2.5. D'autres choix sont possibles pour θ. On considère ici en particulierθ CU T OF F = 1, si > , ,si≤ , où on se donne une valeur > 0. Ce choix coïncide avec le schéma LSP-IMEX, c'est à dire θ = 1, pour supérieur à , mais est asymptotic preserving car on a bien θ CU T OF F = O( ) lorsque → 0. Ainsi, si on choisit une valeur 1, le schéma obtenu avec θ CU T OF F est bien asymptotic preserving mais calcule des solutions approchées aussi mauvaises que le schéma LSP-IMEX pour des cas tests où > .

  u et p, les schémas LSP-IMEX, LSP-IMEX COR et LSP-IMEX COR2 qui correspondent respectivement aux choix θ = 1, θ = θ COR et θ = α , et des maillages allant de 100 mailles à 100000 mailles.

Figure 2 .

 2 Figure 2.B.1 Courbes de convergence en norme L 1 pour la vitesse (gauche) et la pression (droite) des schémas LSP-IMEX, LSP-IMEX COR et LSP-IMEX COR2. Le cas test considéré est celui de la section 2.5.

Figure 2 .

 2 Figure 2.C.1 Prol au temps t = 0.01s de la vitesse (gauche) et la pression (droite) obtenus avec un maillage de 100 mailles et 1000 mailles pour le schéma LSP-IMEX-OD2X et une solution de référence (LSP-IMEX-OD2X avec un maillage de 2.10 5 mailles).

Figure 2 .

 2 Figure 2.C.2 Prol au temps t = 0.01s de la vitesse (gauche) et la pression (droite) obtenus avec un maillage de 100 mailles et 1000 mailles pour le schéma LSP-IMEX-OD2X COR et une solution de référence (LSP-IMEX-OD2X avec un maillage de 2.10 5 mailles).

Figure 2 .

 2 Figure 2.C.3 Courbes de convergence en norme L 1 pour la vitesse (gauche) et la pression (droite) des schémas LSP-IMEX, LSP-IMEX COR, LSP-IMEX-OD2X et LSP-IMEX-OD2X COR. Le cas test considéré est celui de la section 2.5.

Remark 1 .

 1 For smooth solutions in the low Mach regime, we have ∂ xx p = O(M 2 ). We used this relation to obtain the term O ∆x 2 ∆ t in (3.27b).

  x( φũ) = O(∆x) + O(M ∆x). (3.34) Relations (3.33) and (3.34) provides the desired results.

2

 2 and together with(3.37) one obtains e * ,θR = e * R -(1 -θ) 2 (u R -u L ) 2 /8.Injecting this relation into (3.41) and noticing that τ * ,θ R = τ * R provides the desired result for k = R. The case k = L is obtained with the same lines.

( 3 .

 3 55), (3.56) and (3.57) with the following schemes : EX(θ = 1) : the explicit operator splitting scheme obtained for θ jk = 1 and = n, EX(θ = O(M )) : the explicit modied operator splitting scheme obtained with the low Mach correction θ jk = min |u *

Table 3 . 1

 31 Vortex in a box test case. Comparison of the number of iterations and CPU time of EX(θ = 1), EX(θ = O(M )), IMEX(θ = 1) and IMEX(θ = O(M )) schemes to obtain solutions of gure 3.1 and gure 3.2. Numerical scheme EX(θ = 1) EX(θ = 1) EX(θ = O(M )) IMEX(θ = 1) IMEX(θ = O(M )) Mesh

Figure 3 . 1

 31 Figure 3.1 Vortex in a box test case with a Cartesian mesh. Prole at time t = 0.125 s of the velocity magnitude for (a) EX(θ = 1), (b) EX(θ = O(M )) with a 50 × 50-cell Cartesian mesh, (c) velocity magnitude obtained with EX(θ = 1) using a 400 × 400 Cartesian mesh and (d) Mach number obtained with EX(θ = 1) using a 400 × 400 Cartesian mesh.

Figure 3 . 2

 32 Figure 3.2 Vortex in a box test case with a Cartesian mesh. Prole at time t = 0.125 s of the velocity magnitude for the IMEX(θ = 1) scheme (left) and the IMEX(θ = O(M )) scheme (right) on a 50 × 50-cell Cartesian mesh.

Figure 3 . 5

 35 Figure 3.5 Backward facing step test case. Mapping at t = 50 s of the velocity magnitude and stream lines obtained with the IMEX(θ = 1) scheme (top) and the IMEX(θ = O(M )) scheme (bottom) using a 220 × 20-cell Cartesian mesh.

Figure 3 . 6 1D

 36 Figure 3.6 1D Sod shock tube test case. Prole at t = 3.1 × 10 -4 s of the density (top left), velocity magnitude (top right), pressure (bottom left) and Mach number (bottom right) for the EX(θ = 1), EX(θ = 0), IMEX(θ = 1), IMEX(θ = 0) using a 1000-cell grid, together with reference solution.

Figure 3 . 7 2D

 37 Figure 3.7 2D Riemann problem with a Cartesian mesh. Prole at t = 0.4 s of the velocity magnitude for (a) EX(θ = 1), (b) EX(θ = 0) with a 50 × 50-cell mesh, (c) velocity magnitude and (d) Mach number with EX(θ = 1) using a 200 × 200 mesh.

Figure 3 . 8 2D

 38 Figure 3.8 2D Riemann problem test case. Prole at t = 0.4 s of the velocity magnitude for IMEX(θ = 1) (left) and IMEX(θ = 0) (right) on a 50 × 50-cell Cartesian mesh.

Figure 3 . 9 2D

 39 Figure 3.9 2D Riemann problem test case. Cut prole along y = x at t = 0.4 s of the density, velocity magnitude, pressure and Mach number for EX(θ = 1), EX(θ = 0), IMEX(θ = 1) and IMEX(θ = 0) using a 50 × 50 mesh together with the 200 × 200-cell reference solution.

Figure 3 .

 3 Figure 3.10 2D Riemann problem test case. Cut prole along x = 0.75 at t = 0.4 s of the density, velocity magnitude, pressure and Mach number for EX(θ = 1), EX(θ = 0), IMEX(θ = 1) and IMEX(θ = 0) using a 50 × 50 mesh together with the 200 × 200-cell reference solution.

1 = -ρc < λ Lag 2 = 0 < λ Lag 3 =

 123 .68) Straightforward calculations show that (3.68) (which is nothing but (3.6)) is hyperbolic over the phase space Ω Lag = {(τ Lag , u Lag , v Lag , E Lag ) T ∈ R 4 , τ Lag > 0, e Lag > 0}, with eigenvalues given by λ Lag ρc, where c still denotes the Eulerian sound speed. Here again, the extreme characteristic elds associated with λ Lag 1 and λ Lag 3 are genuinely non linear while the intermediate characteristic eld associated with λ Lag 2 is linearly degenerate. It is important to note that the material transport phenomenons are frozen in system (3.68) which explains why the characteristics speeds of the system only involve the sound velocity c.

3 .

 3 Build the updated value (ρ, ρu, ρv, ρE) n+1 j by remapping the Lagrangian state (V Lag ) n+1- j onto the Eulerian mesh.

  que les grandeurs caractéristiques spatiale et temporelle sont associées au phénomène de transport, c'est à dire u 0 = L T . Par ailleurs, on dénit une vitesse caractéristique du son c 0 = p0 ρ0 . On a alors p0 ρ0(u0) 2 = 1 M 2 , où M = u0 c0 est le nombre de Mach. Le système (3.87) devient

  K est d'ordre 1 par rapport au nombre de Mach M et que l'on a les développements asymptotiques + M ρ1 + M 2 ρ2 + ... ũ = ũ0 + M ũ1 + M 2 ũ2 + ... p = p0 + M p1 + M 2 p2 + ... c = c0 + M c1 + M 2 c2 + ... En faisant tendre M vers 0 dans (3.90b), on obtient à l'ordre -2 et -1 en M ∇p 0 = 0, ∇p 1 = 0. (3.91) Le système (3.90) donne ensuite à l'ordre 0 en M

  3 que les schémas EX(θ = O(M )) et IMEX(θ = O(M )) sont moins diusifs que les schémas EX(θ = 1) et IMEX(θ = 1), que ce soit sur maillage cartésien ou triangulaire. Néanmoins, le gain de précision est plus important dans le cas des maillages cartésiens car la solution obtenue pour θ = 1 est très diusée. On a donc observé que : à bas nombre de Mach, les résultats sont corrects sur maillage triangulaire même sans correction, néanmoins la correction permet d'améliorer la précision des solutions approchées, sur maillage cartésien il est primordial d'utiliser une correction à bas nombre de Mach pour éviter la forte diusion numérique dans ce régime.

Figure 3 .F. 1

 31 Figure 3.F.1 Cas test du vortex dans une boîte. Prol au temps t = 0.125 s de la norme du vecteur vitesse pour les schémas EX(θ = 1) (gauche) et EX(θ = O(M )) (droite) pour un maillage triangulaire de 2450 cellules.

Figure 3 .

 3 Figure 3.F.2 Cas test du vortex dans une boîte. Prol au temps t = 0.125 s de la norme du vecteur vitesse pour les schémas IMEX(θ = 1) (gauche) et IMEX(θ = O(M )) (droite) pour un maillage triangulaire de 2450 cellules.

Figure 3 .F. 3

 33 Figure 3.F.3 Cas test du vortex dans une boîte. Prol le long de l'axe y = 0.5 au temps t = 0.125 s de la norme du vecteur vitesse pour les schémas EX(θ = 1), EX(θ = O(M )), IMEX(θ = 1) et IMEX(θ = O(M )) pour un maillage cartésien de 2500 cellules (gauche) et un maillage triangulaire de 2450 cellules (droite), la solution de référence est calculée à l'aide du schéma EX(θ = 1) sur un maillage triangulaire de 40000 cellules.

σijL=

  and ãij = aij ρ0c0 . Note that the CFL restriction of the explicit acoustic step reads now the transport step (4.11) reads for φ ∈ {ρY, ρ, ρũ, ρ Ẽ} φi = φn+1-Y i + λ 0 T ∆ t Y * (ρ i , e i ) -Y n+1 i , φn+1 i = φi , φ ∈ {ρ, ρũ, ρ Ẽ}. (4.23)Proof of property (v). We dene h = h/L where h is the mesh size. The acoustic CFL restriction (4.20)is very restrictive in low Mach regime as ∆ t = O M h , while the transport CFL restriction (4.22) is uniform with respect to the Mach number ∆ t = O h . Thus the LPS-IMEX(θ) scheme is stable in the uniform sense with respect to the Mach number M , while the LPS-EX(θ) scheme is not.

2 if ρ * 1 ≤

 21 , e, Y ) = (γ mix (Y ) -1)ρe, c 2 (ρ, e, Y ) = γ mix (Y ) p(ρ,e,Y ) ρ , Y * (ρ, e) = ρ ≤ ρ * 2 , 0 if ρ * 2 < ρ, ∂ t W + ∂ m F(W) = 0, W = (Y, τ, u, v, E, Π) T F(W) = (0, -u, Π, 0, Πu, a 2 u) T m dm = ρ(x, t n )dx

  u L -Π * ,θ u * ), E * ,θ R = E R + 1 a (Π * ,θ u * -Π R u R ) Π * ,θ L = Π * ,θ=1 , Π * ,θ R = Π * ,θ=1 . les grandeurs Π * = Π * ,θ R = Π * ,θ L , (Y * L , τ * L , v * L ) = (Y * ,θ L , τ * ,θ L , v * ,θ L ) et (Y * R , τ * R , v * R ) = (Y * ,θ R , τ * ,θ R , v * ,θR ) qui sont indépendantes de θ. Démonstration. La consistance au sens intégral de W θ RP avec le système (4.24), pour des étatsW L et W R donnés, s'écrit : F(W R ) -F(W L ) = -a(W * ,θ L -W L ) + a(W R -W * ,θ R ), ce qui donne W * ,θ R + W * ,θ L = W R + W L -1 a (F(W R ) -F(W L )). (4.30)Si le ux de ce solver de Riemann approché est F θ (W L , W R ), alors la formule (4.28) est vériée et on a2F θ (W L , W R ) = F(W R ) + F(W L ) -a(W * ,θ L -W L ) -a(W R -W * ,θ R )ou de manière équivalenteW * ,θ R -W * ,θ L = W R -W L + 1 a 2F θ (W L , W R ) -F(W L ) -F(W R ) . (4.31)On utilise (4.30) et (4.31) pour obtenirW * ,θ L = W L -1 a (F θ (W L , W R ) -F(W L )), W * ,θ R = W R + 1 a (F θ (W L , W R ) -F(W R )).Les états W * ,θ L et W * ,θ R ainsi dénis en fonction de W L et W R correspondent à (4.29) et vérient bien (4.30) et(4.31), fournissant ainsi le résultat recherché.En utilisant ce solver de Riemann approché, on montre que le schéma acoustique modié (4.25) est stable sous la condition CFL 2a∆t ≤ ∆m, qui ne dépend pas de la modication θ. De plus, pour θ = 1 la fonction auto-similaire W θ RP dénie dans la proposition 9 dégénère vers la solution exacte du problème de Riemann associé au système (4.24).

L

  est donné par(4.29) pourW L = W n i et W R = W n j , avec u = n T ij u et v = ||u -(n T ij u)n ij ||.Cette écriture est utile pour étudier les propriétés de stabilité du schéma acoustique. On montre en particulier une inégalité d'entropie discrète dans la section suivante.

4 .

 4 B Inégalité d'entropie discrète Dans cette section, on montre une inégalité d'entropie discrète pour le schéma LPS-EX(θ). On considère le système HRM (4.1). On note τ = 1/ρ et s l'entropie spécique. On suppose donnée une équation d'état de mélange (τ, s, Y ) → e EOS qui satisfait ∂ τ e EOS < 0, ∂ s e EOS > 0, ∂ τ τ e EOS > 0. (4.34) L'entropie de mélange s = s EOS (τ, e, Y ) vérie e = e EOS (τ, s, Y ), on peut dénir la pression p = -∂ τ e EOS et la vitesse du son de mélange c = τ ∂ τ τ e EOS . On considère aussi p comme une fonction de (τ, e, Y ) que l'on note p = p EOS (τ, e, Y ). On suppose de plus que (τ, e, Y ) → -s EOS est convexe. (4.35) Finalement, comme Y * (ρ, e) correspond à l'équilibre thermodynamique, on suppose que la fonction Y → s EOS (τ, e, Y ) est maximale en Y = Y * (ρ, e). Dans la suite, on note I(b, b) ⊂ R l'intervalle entre b ∈ R et b ∈ R. On considère la condition sous-caractéristique τ * L > 0, -∂ τ p EOS (τ, s L , Y L ) ≤ a 2 , ∀τ ∈ I(τ L , τ * L ), τ * R > 0, -∂ τ p EOS (τ, s R , Y R ) ≤ a 2 , ∀τ ∈ I(τ R , τ * R ),(4.36)et on commence par prouver deux résultats techniques.

1 2a 2 1 2a 2 pσ)σ)

 1212 (τ * R , s R , Y R ) > 0) en utilisant aussi la condition sous-caractéristique (4.36) on a φ (τ ) ≥ 0 (resp. φ (τ ) ≤ 0). Comme φ(τ * R ) = 0 , on obtient φ(τ R ) > φ(τ * R ) = 0 pour τ ∈ I(τ R , τ * R ). En utilisant la relation de saut(e * R -Π * 2a 2 ) = (e R -Π R 2a 2 ), on a 0 < φ(τ R ) = e * R -e EOS (τ * R , s R , Y R ) -(p EOS (τ * R , s R , Y R ) -Π * ) 2 . Le même raisonnement s'applique pour k = L. Lemme 2. Soient θ ∈ R et e * ,θ k = E * ,θ k -(u * ,θ k ) 2 /2 -(v * k ) 2 /2 pour k = L, R, on a e * ,θ k -e EOS (τ k , s k , Y k ) -1 2a 2 p EOS (τ k , s k , Y k ) -Π * 2 + (1 -θ) 2 (u R -u L ) 2 8 ≥ 0, k = L, R. (4.38)Démonstration. On a u * ,θR = u * + (1 -θ)(u R -u L )/2, v * R = v R et Π * ,θ = Π * + (1 -θ)a(u R -u L )/2. En utilisant (4.29) on obtient e * ,θ R = e * R -(1 -θ) 2 (u R -u L ) 2 /8. On injecte cette relation dans (4.37) pour obtenir le résultat voulu. Il est maintenant clair que l'inégalité-EOS (τ * k , s k , Y k ) -Π * 2 + (1 -θ) 2 (u R -u L ) 2 8 ≤ 0, k = L, R(4.39)peut aider à obtenir une inégalité d'entropie discrète pour le schéma numérique modié.Proposition 10. Soit s * ,θk = s EOS (τ * ,θ k , e * ,θ k , Y * ,θ k ) pour k = L, R.Si la condition (4.39) est vériée, on a s * ,θ k ≥ s k . (4.40) L'inégalité (4.40) implique que le schéma modié (4.33) pour l'étape acoustique (qui peut aussi s'écrire (4.7)-(4.8)) vérie l'inégalité d'entropie discrète suivante s EOS (τ n+1- k = L, R, sous l'hypothèse (4.39), on a e * ,θ k≥ e EOS (τ * k , s k , Y k ). De plus, on a Y * ,θ k = Y k , τ * ,θ k = τ * k et donc e EOS (τ * k , s k , Y k ) = e EOS (τ * ,θ k , s k , Y * ,θ k ). D'après les conditions sur la loi d'état (4.34) → s EOS (τ * ,θ k , , Y * ,θ k ) est croissante, donc s EOS (τ * ,θ k , e * ,θ k , Y * ,θ k ) ≥ s EOS (τ * ,θ k , e EOS (τ * ,θ k , s k , Y * ,θ k ), Y * ,θ k ) = s k eton a bien l'inégalité (4.40). Sous la condition de stabilité CFL (4.9), le schéma (4.33) pour l'étape acoustique est une combinaison convexe. De plus, comme les fonctions u → -u 2 2 et v → -v 2 2 sont concaves, on a (4.33) pour les variables τ et Y sont des combinaisons convexes, on utilise le fait que la fonction (τ, s, Y ) → s EOS est concave pour obtenir s EOS (τ n+1- j ij a ij s n, * ,θ ij , où s n, * ,θ ij = s EOS (τ n, * ,θ ij , e n, * ,θ ij , Y n, * ,θ ij). On injecte l'inégalité (4.40) pour obtenirs EOS (τ n+1- j , ẽn+1j , Y n+1- j ) ≥ s EOS (τ n j , e n j , Y n j ). (4.43) On utilise alors (4.42) et (4.43) pour obtenir l'inégalité d'entropie discrète voulue (4.41). On peut maintenant proposer une inégalité d'entropie discrète pour le schéma LPS-EX(θ). Proposition 11. Si les conditions (4.39), (4.9) et (4.13) sont vériées, alors le schéma LPS-EX(θ) constitué des étapes (4.7)-(4.11)-(4.14) vérie l'inégalité d'entropie discrète suivante 'après la proposition 10, on a directement pour l'étape acoustique (4.7) s EOS (τ n+1- j ≥ s EOS (τ n j , e n j , Y n j ). (4.45) L'étape de projection (4.11) peut se réécrire pour ϕ ∈ {ρY, ρ, ρu, ρE} sous la forme combinaison convexe sous la condition CFL (4.13). Comme (ρY, ρ, ρu, ρv, ρE) → (ρs EOS )(τ, e, Y ) est concave, on a alors directement ρ i s EOS (τ i , e i , Y i ) ij u * ij -ρ n+1- j s EOS (τ n+1- j , e n+1- j , Y n+1- j ). (4.46) Pour l'étape de transition de phase (4.14), on a la combinaison convexe suivante 0 ∆t Y i + λ 0 ∆t 1 + λ 0 ∆t Y * (ρ i , e i ). Comme (τ, e, Y ) → s EOS (τ, e, Y ) est concave, on a donc s EOS (τ n+1 i (ρ i , e i )). On injecte dans cette équation τ n+1 i = τ i , e n+1 i = e i et le fait que la fonction Y → s EOS (τ, e, Y ) est maximale en Y = Y * (ρ, e) pour obtenir ≥ ρ i s EOS (τ i , e i , Y i ). (4.47) On combine (4.45), (4.46), (4.47) et le schéma acoustique pour τ (4.7) an d'obtenir l'inégalité d'entropie discrète pour le schéma complet (4.44). On a montré dans la proposition 11 une inégalité d'entropie discrète pour le schéma LPS-EX(θ) sous la condition (4.39) sur la modication θ. L'étude des propriétés de stabilité L 2 des schémas LPS-EX(θ) et LPS-IMEX(θ) pour toute valeur de θ ≥ 0 est un problème ouvert.
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  2 ) in the rst equation, dividing by and letting go to 0 gives∂ t ρ + ∂ x ρu 1 = 0. If we now insert u = u 1 + O(2) in the second equation and let go to 0, we get ∂ x p = ρg -ραu 1 . At last, inserting u = u 1 + O(2) in the third equation, dividing by and letting go to 0 gives ∂ t (ρe) + ∂ x (ρeu 1 + pu 1 ) = ρu 1 (g -αu1 

Table 1 .

 1 1 Comparison of the relative errors between the approximated solutions obtained with both LP-EXEX SP and LP-IMEX schemes. The space domain is discretized with a 1 000-cell space discretization and ∆t = 1 α for both schemes.

	numerical scheme	err(ρ, t = 0.01)	err(u, t = 0.01)	err(P, t = 0.01)

LP-EXEX SP 1.686931 × 10 -2 6.858335 × 10 -1 2.539820 × 10 -2 LP-IMEX 3.959560 × 10 -4 1.195630 × 10 -2 5.635518 × 10 -4

Table 1 .

 1 2 Comparison of the relative L 1 -errors obtained with the LP-IMEX scheme for a 1 000-cell space discretization and two dierent ∆t values.

	numerical scheme	∆t	err(ρ, t = 0.01)	err(u, t = 0.01)	err(P, t = 0.01)
	LP-IMEX	1 α	3.959560 × 10 -4 1.195630 × 10 -2 5.635518 × 10 -4
	LP-IMEX 1000 α	2.607495 × 10 -3 1.099137 × 10 -1 3.288768 × 10 -3

  .14) La résolution du problème de Riemann pour le système de relaxation homogène (2.14) étant plus aisé que pour le système de la dynamique des gaz en coordonnées Lagrangienne (2.4), on préférera utiliser ce système pour imposer les conditions aux limites. Le système (2.14) est hyperbolique, les trois champs caractéristiques -a, 0 et a sont linéairement dégénérés et on dispose de quatre invariants de Riemann forts :

  2 est la vitesse d'interface calculée lors de l'étape Lagrangienne et U = (ρ, ρu, ρE) T . Ce système est hyperbolique et l'unique champ caractéristique u * 1/2 est linéairement dégénéré. On considère le problème de Riemann au temps t n au niveau de l'interface 1/2. La solution est autosimilaire, composée d'une seule onde de vitesse u * 1/2 :

  palier et on ne gagne donc pas en précision lorsque l'on rane en maillage. Ceci est dû à la transition entre θ = O( ) quand ∆x et θ = 1 quand ∆x . Cette observation motive le choix θ = α qui correspond à une volonté de corriger le schéma de manière uniforme par rapport à . On observe en eet sur la gure 2.B.1 que le schéma LSP-IMEX COR2 permet d'obtenir de meilleurs résultats que le schéma LSP-IMEX COR, quel que soit le régime et en particulier pour le régime intermédiaire ∆x . Ainsi, pour une variable w, à partir de la connaissance des valeurs des w i au centre des mailles, on construit dans chaque maille la fonction wi (x) = w i + σ i x, où σ i correspond à la pente dans la maille i et est évaluée à partir des valeurs des w i , w i-1 et w i+1 . En eet, on xe ici

	2.C Extension à l'ordre 2 en espace
	On construit ici une extension du schéma (2.6)-(2.13)-(2.9)-(2.10) à l'ordre 2 en espace. Ceci permet
	d'améliorer la précision des approximations des solutions régulières. Pour obtenir un tel schéma on utilise
	l'approche MUSCL classique, voir [20, 19] ainsi que [2] pour une application à un schéma Lagrange-
	Projection. Cette approche consiste à eectuer une reconstruction des variables à l'aide des fonctions
	anes par morceaux et non pas constantes par morceaux comme c'est le cas pour des méthodes d'ordre
	1.

1 que le schéma LSP-IMEX ne calcule pas de bonnes approximations quand ∆x, contrairement au schéma LSP-IMEX COR qui est bien plus précis pour ces maillages grossiers. Compte tenu du choix de θ COR , ces deux schémas coïncident quand ∆x . Le comportement du schéma LSP-IMEX COR en régime intermédiaire, c'est à dire pour ∆x , n'est pas satisfaisant car on observe un

  )∆x , 1 . On considère le cas test de la section 2.5. Sur la gure 2.C.1, on observe que le schéma LSP-IMEX OD2X est très diusif sur maillage grossier et ne permet donc pas de calculer des solutions approchées précises. Pour le schéma LSP-IMEX-OD2X COR, on observe gure 2.C.2 qu'il permet de calculer des solutions approchées précises même sur maillage grossier. Par ailleurs, si on compare les résultats de la gure 2.C.2 à ceux de la gure 2.1, on observe que, bien que très diusés, les résultats obtenus avec LSP-IMEX-OD2X sont meilleurs que ceux obtenus avec la méthode d'ordre 1 LSP-IMEX. Ceci est conrmé pour les schémas LSP-IMEX-OD2X COR et LSP-IMEX COR, à l'aide des courbes de convergence en norme L 1 gure 2.C.3.

		.18)
	Par analogie avec les schémas d'ordre 1, on dénit les schémas LSP-IMEX-OD2X et LSP-IMEX-
	OD2X COR à partir de (2.15)-(2.16)-(2.17)-(2.18) pour des valeurs respectives de θ j+ 1 2 = 1 et θ j+ 1 2 =
	min	2a j+1 +ρ n α(ρ n j

Table 3 .

 3 3 2D Riemann problem test case. Comparison of the number of time steps and CPU time necessary for reaching t = 0.4 s with a 50×50-cell Cartesian grid with EX(θ = 1), EX(θ = 0), IMEX(θ = 1) and IMEX(θ = 0).

	Numerical scheme	EX(θ = 1) EX(θ = 0) IMEX(θ = 1) IMEX(θ = 0)
	Number of iterations	323	343	216	218
	CPU time (s)	2.59	2.79	10.28	10.33

  It is well-known that the exact Riemann solution U(x/t; U L , U R ) is self-similar, i.e. depends only on the ration x/t. In order to approximate this solution, we consider a (self-similar) simple approximate Riemann solver U RP ( x t ; U L , U R ) made of l + 1 intermediate states U k separated by discontinuities propagating with velocities λ 1

  Le système limite(3.93) requiert des arguments globaux pour être valide, à cause de l'intégration sur le domaine D (il faut alors utiliser les conditions aux limites pour fermer le système). En particulier, ce cadre ne permet pas de considérer le cas d'un nombre de Mach variant des petites aux grandes valeurs en fonction de la région du domaine D dans laquelle on se trouve. C'est pourquoi le système(3.93) n'a pas été évoqué dans le cadre de l'article An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes où le comportement en fonction du nombre de Mach est étudié à l'aide du système adimensionné

	.93a)
	(3.93b)
	(3.93c)
	L'inconnue supplémentaire p2 correspond au multiplicateur de Lagrange associé à la contrainte d'in-
	compressibilité (3.93c). En eet, le terme de transport de (3.93b) ne préserve pas l'espace des champs de
	vitesse à divergence nulle. Le système (3.93) permet alors d'étudier le caractère asymptotic preserving des
	schémas numériques, l'obtention d'un bon équivalent discret de la condition d'incompressibilité (3.93c)
	jouant un rôle primordial.
	Remarque 2. (importante)

  3.F Inuence de la forme des cellules du maillage sur les résultats numériques à bas nombre de Mach Les schémas EX(θ) et IMEX(θ) ont été écrits pour des maillages non structurés, on étudie ici l'inuence de la forme du maillage sur le comportement de ces schémas numériques à bas nombre de Mach. On considère en particulier deux types de maillage, les maillages cartésiens et les maillages triangulaires. En se plaçant dans le cas test du vortex dans une boîte, on a vu dans la section 3.6.1 les résultats obtenus sur un maillage cartésien de 2500 cellules. On s'intéresse ici aux résultats obtenus sur un maillage triangulaire de 2450 cellules. On observe sur la gure 3.F.1 que les résultats obtenus sur un maillage triangulaire avec les schémas EX(θ = 1) et EX(θ = O(M )) sont de bonnes approximations. On obtient sur la gure 3.F.2 des résultats similaires pour les schémas IMEX(θ = 1) et IMEX(θ = O(M )). En comparant les résultats des gures 3.F.1 et 3.F.2 obtenus sur des maillages triangulaires à ceux des gures 3.1 et 3.2 obtenus sur des maillages cartésiens, on observe que les schémas EX(θ = 1) et IMEX(θ = 1) sont nettement plus précis sur maillage triangulaire que sur maillage cartésien à nombre de degré de liberté xé.

  in the sequel, we will note b n i (resp. b n+1

	i by
	approximating the solution of (4.4) ;
	3. Phase transition step : Update the uid state (Y , ρ, ρu, ρv, ρE) i to the value (Y, ρ, ρu, ρv, ρE) n+1 i
	by approximating the solution of (4.6).
	Let us enter the details of each step.
	Acoustic step (Lagrange step). Regarding the acoustic step (4.5) we propose the following update
	formulas

i

) the approximate value of b within the cell Ω i at instant t = t n (resp. t = t n+1 ).

Given a uid state (Y, ρ, ρu, ρv, ρE

) n i , 1 ≤ i ≤ N at instant t n ,

this splitting algorithm may be decomposed as follows 1. Acoustic step : Update the uid state (Y, ρ, ρu, ρv, ρE) n i to the value (Y, ρ, ρu, ρv, ρE) n+1- i by approximating the solution of (4.5) ; 2. Transport step : Update the uid state (Y, ρ, ρu, ρv, ρE) n+1- i to the value (Y , ρ, ρu, ρv, ρE)

  .10) Thanks to the Suliciu-type relaxation strategy, scheme (4.7)-(4.10) is valid for any pressure law and only requires to solve a linear problem with respect to variables u and Π. Then other update formulas for variables Y , τ and E are evaluated explicitly, while the scheme is actually implicit.

  , ρ, ρũ, ρ Ẽ}The rescaled discretization of the phase transition step (4.23) is consistent with∂ t( ρY ) = λ 0 T (ρY * (ρ, ẽ) -ρY ) + O ∆ t , ∂ t φ = O ∆ t for φ ∈ {ρ, ρũ, ρ Ẽ}.

  Proposition 9. Il existe un solver de Riemann approché simple pour le système (4.24) dont le ux numérique associé au sens de Harten, Lax, Van Leer correspond à celui du solver acoustique modié (4.25)-(4.26). Plus précisément il existe une fonction auto-similaire R , if 0 ≤ m/t < +a, W R , if +a ≤ m/t.

	W θ RP	m t	; W L , W R = (Y, τ, u, v, E, Π)	m t	; W L , W R =	   W L ,             W * ,θ L , if -a ≤ m/t < 0, if m/t < -a, W * ,θ	(4.27)

  Lemme 1. On considère la solution du problème de Riemann(4.24) donnée par(4.29) pour θ = 1. On suppose que(4.36) est vériée. Soits k = s EOS (τ k , e k , Y k ), k = L, R et e * EOS (τ * k , s k , Y k ) -p EOS (τ * k , s k , Y k ) -Π * 2 2a 2 ≥ 0. (4.37) Démonstration. On considère le cas k = R et on dénit pour τ ∈ I(τ R , τ * R ) φ(τ ) = e EOS (τ, s R , Y R ) -p EOS (τ, s R , Y R ) 2 2a 2 -e EOS (τ * R , s R , Y R ) + p EOS (τ * R , s R , Y R ) 2 2a 2 + p EOS (τ * R , s R , Y R ) τ + p EOS (τ, s R , Y R ) On a φ (τ ) = p EOS (τ, s R , Y R ) -p EOS (τ * R , s R , Y R ) 1 -ρ 2 c 2 (τ, s R , Y R )/a 2 . Si τ R > τ > τ * R (resp. τ R < τ < τ * R ), les conditions sur l'équation d'état (4.34) donnent p EOS (τ, s R , Y R ) -p EOS (τ * R , s R , Y R ) < 0 (resp. p EOS (τ, s R , Y R ) -p EOS

		k = E * ,θ=1 k	-(u * ,θ=1 k	) 2 /2-(v * k ) 2 /2,
	on a			
	e * k -e a 2	-τ * R -	p EOS (τ * R , s R , Y R ) a 2	.

  Il faut ensuite ajouter le dossier contenant tout ces chiers à la liste des dossiers à parcourir dans le CMakeLists.txtPerspectivesOn détaille ici trois pistes de réexions qui constituent le prolongement naturel des travaux menés au cours de cette thèse.Une première piste est la montée en ordre en temps et en espace de schémas asymptotic preserving ou tout-régime. De premiers éléments sur la montée à l'ordre deux en espace ont été donnés dans l'annexe 2.C. Néanmoins, on a constaté lorsqu'on s'est intéressé aux régimes intermédiaires dans l'annexe 2.B, que l'ordre de convergence d'un schéma pouvait être diérent sur maillage grossier h et sur maillage n h . De plus, l'ordre de convergence d'un schéma modié sur maillage grossier h dépend fortement du choix de la modication θ( ).
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An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes

Abstract

We propose an all-regime Lagrange-Projection like numerical scheme for the gas dynamics equations. By all-regime, we mean that the numerical scheme is able to compute accurate approximate solutions with an under-resolved discretization, i.e. a mesh size and time step much bigger than the Mach number M .

The key idea is to decouple acoustic and transport phenomenon and then alter the numerical ux in the acoustic approximation to obtain a uniform truncation error in term of M . This modied scheme is conservative and endowed with good stability properties with respect to the positivity of the density and the internal energy. A discrete entropy inequality under a condition on the modication is obtained thanks to a reinterpretation of the modied scheme in the Harten Lax and van Leer formalism. A natural extension to multi-dimensional problems discretized over unstructured mesh is proposed. Then a simple and ecient semi implicit scheme is also proposed. The resulting scheme is stable under a CFL condition driven by the (slow) material waves and not by the (fast) acoustic waves and so veries the all-regime property. Numerical evidences are proposed and show the ability of the scheme to deal with tests where the ow regime may vary from low to high Mach values.

Introduction

In this paper, we consider the system of gas dynamics in two space dimension in situations when the ow regime may vary in terms of Mach number M across the computational domain. We propose a collocated Finite Volume method that addresses two important issues.

The rst issue concerns the lack of accuracy in the low Mach regime of Godunov-type schemes. While these methods performs well at capturing shocks, they may generate spurious numerical diusion when they are used for simulating low Mach ows over relatively coarse mesh, i.e. mesh size much bigger the Mach number. Improvements of Godunov-type schemes more generally of collocated methods have been proposed by many authors like [30,17,22,5,9,7,29,19,25,24,15,11,8,20]. The analysis of these authors may rely on dierent arguments like the analysis of the viscosity matrix [30], an asymptotic expansion in terms of Mach number [17], a detailed study in [11] that seek for invariance properties of the numerical scheme transposing the framework of Schochet [26] to the discrete setting, and also an analysis based on the so-called Asymptotic Preserving property [21] in [20]. Nevertheless the resulting cure usually boils down to reduce the numerical diusion in the momentum equation for low Mach number values.

The second problem we address deals with subsonic ow when the uid velocity is slow and the acoustic waves are not driving phenomenons. In this case, the Courant-Friedrichs-Lewy (CFL) condition on the time step for explicit Godunov-type methods that involves the (fast) acoustic wave velocity may lead to very small time steps choices and thus costly computations. It seems natural to seek for numerical schemes that enable the use of a large time steps that are not constrained by the sound velocity. This question has been examined by several authors like [22,7,8,9,20] (see also [4,6]) who derived mixed implicit-explicit strategies that allows to choose the time step independently of the Mach Number.

Numerical schemes that can tackle both issues, namely : accuracy for mesh sizes that do not depend on the Mach number and also stability for time steps that are not constrained by the Mach value are usually referred to as all-regime, like the methods proposed by [22,7,8,9,20].

In the present work, we rst propose an operator splitting strategy that allows to decouple the acoustic and the transport phenomenons. The approximation algorithm is split into two steps : an acoustic step EX(θ = O(M )), IMEX(θ = 1) and IMEX(θ = O(M )) schemes to obtain solutions of gure 3.3 and gure 3.5.

Numerical scheme EX(θ

Number of time steps 

Backward facing step

We consider now the case of an inviscid ow passing a backward facing step as derived from [7]. The computational domain is Ω = [0, 18] × [0, 2] \ (0, 4) × (0, 1). The initial condition is given by

We impose an inlet boundary condition at {0} × 

3.G Un schéma en coordonnée Eulérienne avec correction bas Mach

On considère dans cette section un schéma en coordonnée Eulérienne avec correction bas Mach pour le système de la dynamique des gaz 3.1. Ce schéma a été proposé par P.-A. Raviart et s'écrit On s'intéresse aux résultats obtenus, pour le cas test du vortex dans une boîte, avec les schémas An all-regime Lagrange-Projection like scheme for 2D homogeneous models for two-phase ows on unstructured meshes

Abstract

We propose an all regime Lagrange-Projection like numerical scheme for 2D homogeneous models for twophase ows. By all regime, we mean that the numerical scheme is able to compute accurate approximate solutions with an under-resolved discretization, i.e. a mesh size and time step much bigger than the Mach number M of the mixture. The key idea is to decouple acoustic, transport and phase transition phenomenon using a Lagrange-Projection decomposition in order to treat implicitly (fast) acoustic and phase transition phenomenon and explicitly the (slow) transport phenomena. Then, extending a strategy developed in the case of the usual gas dynamics equations, we alter the numerical ux in the acoustic approximation to obtain an uniform truncation error in term of M . This modied scheme is conservative and endowed with good stability properties with respect to the positivity of the density and preserving the mass fraction within the interval (0, 1). Numerical evidences are proposed and show the ability of the scheme to deal with tests where the ow regime may vary from low to high Mach values.

Introduction

We are interested in the simulation of two-phase ows in situations where the ow regime may vary in terms of Mach number M across the computational domain. Among the numerous models that describe two-phase ows we consider here an Homogeneous Relaxation Model frequently referred to as HRM and its related Homogeneous Equilibrium Model HEM, see [4,16,10, 1] and references therein. We propose a collocated Finite Volume method that addresses two important issues.

The rst issue concerns the lack of accuracy in the low-Mach regime of Godunov-type schemes when using an under-resolved mesh. This problem has been widely investigated in the case of the gas dynamics equations, see [23,18,13,15,14,12,21,9,3,8]. The analysis of these authors may rely on dierent arguments like the analysis of the viscosity matrix [23], an asymptotic expansion in terms of Mach number [18], a detailed study in [15] that seek for invariance properties of the numerical scheme transposing the framework of Schochet to the discrete setting, and also an analysis based on the so-called Asymptotic Preserving property in [21]. Nevertheless the resulting cure usually boils down to reduce the numerical diusion in the momentum equation for low Mach number values. Some works have been devoted to the extension of those strategies to two-phase ows [10,2,17,20].

The second problem we address is the CFL restriction on the time step for explicit Finite Volume methods that involve the (fast) acoustic and phase transition phenomena. It seems natural to seek for numerical schemes that enable the use of large time steps constrained only by the (slow) material phenomena, see [13,11,21,7,8].

Numerical schemes that can tackle both issues, namely : accuracy for mesh sizes that do not depend on the Mach number and also stability for time steps that are not constrained by the Mach value are usually referred to as all regime, like the methods proposed in [13,21,8].

In the present work, we propose an extension of the method proposed in [8] for the gas dynamics equations to the case of homogeneous models for two-phase ows. An operator splitting strategy allows to decouple the acoustic, transport and phase transition phenomena. The approximation algorithm is split into three steps : an acoustic step, a transport step and a phase transition step. A mixed implicitexplicit method is obtained by using implicit updates for the acoustic and phase transition steps, and an to obtain a numerical scheme for the HEM system (4.2).

Overall numerical scheme. 

For the sake of clarity, let us briey recall the dierent steps of the method that shall be referred to as We also dene the method that shall be referred to as LPS-EX(θ). Assume that (ρY, ρ, ρu, ρE) n j is known, (ρY, ρ, ρu, ρE) n+1 j is computed by the following three steps :

(i) compute (ρY, ρ, ρu, ρE) The dierence between those two methods is that the Lagrange step is implicit for the LPS-IMEX(θ) scheme and explicit for the LPS-EX(θ) scheme. The source terms step is treated implicitly and the transport step explicitly in both schemes.

Main properties

We now give the main properties of the LPS-EX(θ) and LPS-IMEX(θ) schemes.

Theorem 7. Under the acoustic CFL condition (4.9) and the material CFL condition (4.13), the LPS-EX(θ) scheme is well-dened and satises the following properties (i) it is a conservative scheme for ρ, ρu and ρE. It is also a conservative scheme for ρY when there is no mass transfer between phases (λ 0 = 0).

(ii) the density ρ n i is positive for all i and n > 0 provided that ρ 0 i is positive for all i. (iii) Y n i ∈ [0, 1] for all i and n > 0 provided that Y 0 i ∈ [0, 1] for all i and e i > 0 for all i and n ≥ 0. (iv) if θ = O(M ), then the truncation error of the numerical scheme is uniform with respect to M < 1.

Theorem 8. Under the material CFL condition (4.13), the LPS-IMEX(θ) scheme is well-dened and satisfy the following properties (i) it is a conservative scheme for ρ, ρu and ρE. It is also a conservative scheme for ρY when there is no mass transfer between phases (λ 0 = 0).

(ii) the density ρ n i is positive for all i and n > 0 provided that ρ 0 i is positive for all i. (iii) Y n i ∈ [0, 1] for all i and n > 0 provided that Y 0 i ∈ [0, 1] for all i and e i > 0 for all i and n ≥ 0.

where

We refer for instance the reader to [1] and the references therein. We assume that λ 0 → ∞, so that the thermodynamic equilibrium is instantaneously achieved.

Low Mach number examples

We consider low Mach test cases and try to examine two questions : the accuracy gain for simulations on coarse grid in the low Mach regime, then the benet of using a semi-implicit strategy in term of CPU time.

Bubble in a vortex test case. The computational domain is Ω = [0, 1] 2 . The adiabatic coecients are γ 1 = 2, γ 2 = 1.4, which gives ρ * 

We impose no-slip boundary conditions. The Mach number for the resulting ows is of order 10 -4 in phase 1 (Y = 1) and 10 -3 in phase 2 (Y = 0) so that pure phases are in the low Mach regime. Nevertheless, since the sound speed of the mixture is smaller than the sound speed of pure phase, we observed a Mach number that goes up to 10 -1 in the mixture. We plot the solution at time t = 0.5s. 

) is an evaluation of the Mach number on each interface at time t n . We use as a reference solution an approximation computed with LPS-EX(θ = 1) using a 1.6 × 10 5 -cell triangular mesh. The choice θ ij = M ij leads to approximation that are much more accurate than θ ij = 1. On gures (4.2)-(4.3), we obtain similar results for the LPS-IMEX(θ) scheme. The LPS-IMEX(θ) and LPS-EX(θ) schemes for θ ij = M n ij require respectively 2479s=41min19s and 16465s=4h34min25s of CPU time, so that using an implicit solver for the acoustic step is 6.6 times faster. 

YAFiVoC

YAFiVoC (Yet Another Finite Volume Code) est une bibliothèque dédiée à l'implémentation de méthodes de type volumes nis en 2D et sur maillages non-structurés. Cette bibliothèque permet d'eectuer les opérations de base relatives à ces méthodes :

• lecture de chier de conguration,

• lecture de maillage,

• lecture de données décrivant la condition initiale,

• sauvegarde des données,

• système de stockage des données via des tableaux dont les éléments sont des vecteurs d'inconnues,

• interface de programmation (API, Application Programming Interface) pour accéder aux éléments du maillage, de la géométrie, aux éléments décrivant les conditions aux limites, l'accès aux inconnues associés aux faces et aux arêtes, syntaxe non-ambigue pour les boucles,

• un système de description des lois d'états via des pointeurs de fonction dont l'aectation est réalisé dynamiquement par un système de plugins,

• un système de description via pointeur de fonction de la mise à jour du temps t n au temps t n+1 des variables dont l'aectation est réalisé dynamiquement par un système de plugins. • VTK (legacy unstructured mesh en ASCII) pour la donnée initiale et la sauvegarde de données à un temps ultérieur,

• format du maillage 2D Triangle pour les maillages triangulaires,

• format interne à YAFiVoC (inspiré du format 2D Triangle) pour les maillages de quadrangles. Il n'y a pas véritablement de logiciel de maillage sous-jacent à proprement parlé, mais des modules python permettant de créer des maillages de quadrangle au format correspondant.

Un aspect important de YAFiVoC est sa modularité. En eet, l'utilisation de pointeurs de fonctions permet de séparer les chiers contenant le code associé aux fonctionnalités mentionnées précédemment des chiers contenant le code associé à un solver ou une loi d'état spécique. Pour implémenter un nouveau schéma numérique, il sut de créer à partir d'un template de base les chiers qui précisent la dénition de la fonction permettant de mettre à jour la solution entre les temps

De même, pour implémenter une nouvelle loi d'état, on crée à partir d'un template de base les chiers qui précisent la dénition des fonctions thermodynamiques (pression, vitesse du son, enthalpie, etc.).

Une fois les chiers de notre nouveau solver ou de notre nouvelle loi d'état créés, il faut les ajouter dans le chier CMakeLists.txt utilisé par CMake lors de la compilation.

Une fois la compilation eectuée, on crée dans un même directory (dit directory d'exécution)

• un chier de conguration,

• un chier qui décrit l'état initial du uide,

• des chiers qui décrivent le maillage.

On exécute alors le binaire principal YAFiVoC.exe en lui donnant comme argument le directory d'exécution. Le chier de conguration permet de xer certains paramètres de la simulation tels que

• tMax, le temps nal de la simulation, principal.

Pour le solver IMEX(θ), la structure de donnée SolverData_t contient :

• aRelax, le coecient de relaxation a jk sur chaque face du maillage,

• theta, la modication θ jk sur chaque face du maillage,

• UStar, la valeur de la vitesse d'interface u * jk sur chaque face du maillage,

• PStar, la valeur de la pression d'interface Π * ,θ jk sur chaque face du maillage,

• upwindVal, la valeur décentrée amont ϕ n+1- jk sur chaque face du maillage pour ϕ ∈ {ρ, ρu, ρE},

• A,x et b, qui sont respectivement la matrice, la solution et le membre de droite du système linéaire A x=b que l'on doit résoudre lors de l'étape Lagrangienne. On utilise la bibliothèque PETSc, et plus précisément les types Mat et Vec pour le stockage et l'assemblage des matrices et des vecteurs, • coefCFL, coecient utilisé pour calculer le pas de temps à partir de la condition de stabilité CFL,

• coeftheta, coecient utilisé pour choisir la valeur de la modication θ jk , • coefBC, coecient utilisé pour savoir quelles conditions aux limites doivent être imposées. Les valeurs de coefCFL, coeftheta et coefBC sont lues dans le chier de conguration cong.cfg.

Dans DeneFluxes.c, on dénit les fonctions suivantes :

• void DeneRelaxationParameter(problem_t* pb) Cette fonction calcule aRelax, le coecient de relaxation sur chaque face avec (3.56a).

• void DeneModicationParameter(problem_t* pb) Cette fonction calcule theta, la modication sur chaque face en fonction du choix précisé dans le chier de conguration grâce à coeftheta.

• void ComputeTimeStep(problem_t* pb) Cette fonction calcule le pas de temps pb→dt à partir d'une évaluation explicite de la condition CFL (3.66).

• void AssembleMatrixAndRHS(problem_t* pb) Cette fonction assemble la matrice A et le membre de droite b du système linéaire (3.60).

• void SolveLinearSystem(problem_t* pb) Cette fonction calcule x la solution approchée du système linéaire Ax = b. On utilise pour cela la bibliothèque PETSc, et plus précisément le type KSP. La méthode de Krylov retenue est BICG-Stab avec un préconditionneur de Jacobi. On initialise cette méthode itérative à l'aide de la solution au temps t n .

• void ComputeUStarAndPStar(problem_t* pb) Cette fonction calcule UStar et PStar sur chaque face à l'aide de la solution du problème linéaire x et des formules (3.56b)-(3.56c).

• void UpdateLagrangian(problem_t* pb)

Cette fonction calcule la solution à la n de l'étape Lagrangienne à l'aide de (3.55).

• void ComputeUpwindVal(problem_t* pb) Cette fonction calcule upwindVal, les valeurs décentrées amont sur chaque face pour l'étape de projection (3.57).

• void UpdateProjection(problem_t* pb)

Cette fonction calcule la solution à la n de l'étape de projection à l'aide de (3.57).

Finalement