
HAL Id: tel-01127450
https://theses.hal.science/tel-01127450

Submitted on 7 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluation of a multiple criticality real-time virtual
machine system and configuration of an RTOS’s

resources allocation techniques
Mohamed El Mehdi Aichouch

To cite this version:
Mohamed El Mehdi Aichouch. Evaluation of a multiple criticality real-time virtual machine system
and configuration of an RTOS’s resources allocation techniques. Electronics. INSA de Rennes, 2014.
English. �NNT : 2014ISAR0014�. �tel-01127450�

https://theses.hal.science/tel-01127450
https://hal.archives-ouvertes.fr

Evaluation of a Multiple
Criticality Rea-Time Virtual

Machine System and
Configuration of an RTOS’s

Resources Allocation
Techniques

Thèse soutenue le 28.05.2014
devant le jury composé de :

Isabelle Puaut

Professeur à l’université de Rennes 1 / Président

Laurent Pautet

Professeur à Télécom Paris-Tech / rapporteur

François Verdier
Professeur à l’université de Nice-Sophia Antipolis / rapporteur

Jean-Luc Béchennec

Chargé de recherche à l’IRRCyN CNRS UMR 6597 à Nantes / examinateur

Jean-Christophe Prévotet

Maître de conférence à l’INSA de Rennes / Co-encadrant de thèse

Fabienne Nouvel
Maître de conférence à l’INSA de Rennes / Directeur de thèse

THESE INSA Rennes
sous le sceau de l’Université européenne de Bretagne

pour obtenir le titre de

DOCTEUR DE L’INSA DE RENNES

Spécialité : Electronique et Télécommunication

présentée par

Mohamed El Mehdi Aichouch
ECOLE DOCTORALE : Matisse

LABORATOIRE : IETR

Evaluation of a Multiple-Criticality Real-Time

Virtual Machine System

and Configuration of an RTOS’s Resources Allocation Techniques.

Mohamed El Mehdi Aichouch

A dissertation submitted to the faculty of the INSA de Rennes in partial fulfillment of the

requirements for the degree of Doctor of Philosophy in the Department of Electronic and

Telecommunication.

INSA de Rennes

2014

Approved by:

Isabelle Puaut

Jean-Luc Béchennec

Laurent Pautet

François Verdier

Jean-Christophe Prévotet

Fabienne Nouvel

©2014

Mohamed El Mehdi Aichouch

ALL RIGHTS RESERVED

ii

ABSTRACT

Mohamed El Mehdi Aichouch

Evaluation of a Multiple-Criticality Real-Time Virtual Machine System

and Configuration of an RTOS’s Resources Allocation Techniques.

In the domain of server and mainframe systems, virtualizing a computing system’s physical

resources to achieve improved sharing and utilization has been well established for decades. Full

virtualization of all system resources, including processor, memory and I/O devices makes it pos-

sible to run multiple operating systems on a single physical platform. Recently, the availability of

full virtualization on physical platforms that target embedded systems creates new uses cases in the

domain of real-time embedded systems. In a non virtualized system, a single OS controls all hard-

ware platform resources. A virtualized system includes a new layer of software, the virtual machine

monitor (VMM). The VMM’s principal role is to arbitrate accesses to the underlying physical host

platform’s resources so that multiple operating systems can share them. The VMM presents to each

OS a set of virtual platform interfaces that constitute a virtual machine.

Given the existence of a multitude of VMMs that have been proved efficient in the domain

of server and mainframe systems, there is a trend to reuse the existing work. However, there is a

difference in the performance metric required by these two domains.

In this dissertation we use an existing VMM to evaluate the performance of a real-time operating

system. We observed that the virtual machine monitor affects the internal overheads and latencies

of the guest operating system. This observation led us to conduct further investigation in order to

answer the following question: what are the hardware mechanisms and software implementations

that could prevent the system from meeting its deadlines and guaranteeing its real-time constraints?

Our analysis revealed that hardware mechanisms that allow a VMM to provide an efficient way

to virtualize the memory management unit, and the device interrupts, are necessary to limit the

overhead of the virtualization on real-time systems. More importantly, the scheduling of virtual

iii

machines by the VMM is essential to guarantee the temporal constraints of the system and have to

be configured carefully.

In a second work, and starting from a previous project aiming at helping a system designer

to explore a software-hardware co-design of a solution using high-level simulation models, we

proposed a methodology that allow the transformation of a simulation model into an executable

program on a real hardware. The idea is to provide the system designer with the necessary tools to

rapidly explore the design space and validate it, and then to generate a configuration that could be

used directly on top of a real hardware.

We used a model-driven engineering approach to perform a model-to-model transformation to

convert the simulation model into an executable model. And we used a middleware able to sup-

port a variety of resources allocation techniques in order to implement the configuration previously

selected by the system designer during the simulation phase. We proposed a prototype that imple-

ments our methodology and validate our concepts. The results of the experiments confirmed the

viability of the approach.

iv

To my parents, Abdelhamid and Kalthoum.

v

ACKNOWLEDGEMENTS

I would like to thank my advisors, Fabienne Nouvel and Jean-Christophe Prévotet for their

unwavering support, for their help, and their precious advices.

I would like to express my thanks and appreciation to all the members of my committe, Pro-

fessor Isabelle Puaut, Professor François Verdier, Professor Laurent Pautet, and Doctor Jean-Luc

Béchennec for their guidance and advice. Your acceptance to be present in my committe is great

honor for me.

I would also like to express my thanks and appreciation to all my colleagues. Very special

thanks to Yaset Oliva, Yvan Kokar, Thierry Dubois, Tony Makdissy, Nicolas Cornillet, Jordan Lo-

randel, Philippe Tanguy, Simon Mener, Vincent Callec, Abdallah Hamini, Ahmed Jaban, Saber

Dakhli, Imen Ben Trad, Rida El Chall, Hiba Bawab, Hua Fu, Jean-Christophe Sibel, Ming Liu, Hui

Ji, Linning Peng, Tian Xia, Ali Cheaito, Mohamed Maaz, Roua Youssef, Hussein Kudoh, Hanna

Farhat, Bachir Habib, Georges Da Silva, Sofiane Chaabane, Morad Larbi, and Abdul Fall. — thank

y’all for your kindness and the great moment we shared in our beautiful work place.

I am deeply thankful to my colleague and friend Yaset Oliva for reviewing my research papers

and giving me many precious adivces. Thank you very much for the interesting discussions, and for

your help when I came to Rennes.

I would like also to thank all the professors, research scientists, and technical staff at the In-

stitut d’Électronique et de Télécommunication de Rennes. I would like also to thank all the SRC

department staff at the INSA de Rennes.

I am deeply thankful to my professor Benoı̂t Miramond, thank you for inviting me to join your

research team and for your encouragement that motivated me to continue in this scientific research

field.

I am deeply thankful to my friend Mac Mollisson, from the real-time system group at the

University of North Carolina at Chappel Hill, thank you very much for your support regarding the

library, and thanks a lot for the great discussions and feedback regarding my research work.

vi

Foremost, I am greatly indebted to my parents Abdelhamid and Kalthoum for their unwavering

support, understanding, and encouragement, both during my research study and before.

I am also greatly indebted to my sister Nesrine and my brother-in-law Aimed, for their love and

continuous support, for their help, and the wonderful times we spent together. I am also grateful

to all my family members and friends. Thank you very much for your generosity and friendship. I

could not finished this without you — thank y’all for your trust that this was indeed the right way.

vii

TABLE OF CONTENTS

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

LIST OF ABBREVIATIONS . xvii

1 Introduction . 1

2 Related Work . 3

2.1 Real-Time OS alongside General-Purpose OS . 4

2.1.1 Dual-Kernel Design . 5

2.1.2 Native Real-Time Linux . 6

2.2 Virtual Machine Systems . 7

2.3 Real-Time Virtual Machine Systems . 9

2.3.1 Linux Kernel-based Virtual Machine . 9

2.3.2 Microkernel Support for Virtualization . 13

2.3.2.1 OKL4 microvisor . 14

2.3.2.2 Nova microhypervisor . 15

2.3.2.3 L4Fiasco microkernel . 16

2.3.3 Xen . 19

2.3.4 RT-Xen . 23

2.3.5 Real-Time Xen-ARM . 30

2.3.6 Virtualization for safety-critical system . 32

2.4 RTOS Configuration . 40

2.4.1 Composite . 40

viii

2.4.2 ExSched . 42

2.4.3 LITMUSRT . 44

2.4.4 Microkernel . 46

2.4.5 OveRSoC RTOS Model . 47

3 Virtualization and Real-Time Systems . 50

3.1 Hardware-Assisted Virtualization . 50

3.1.1 Resource Virtualization - Processors . 51

3.1.1.1 Conditions for ISA Virtualization . 51

3.1.1.2 Intel Virtualization Extension . 52

3.1.1.3 ARM Virtualization Extension . 53

3.2 Linux Kernel Virtual Machine . 54

3.2.1 Qemu . 55

3.2.2 Virtual Machine Process . 55

3.3 Scheduling Latency Evaluation . 57

3.4 Fine-Grained Overheads and Latencies Evaluation . 62

3.4.1 Overheads and Latencies . 62

3.4.2 Hardware platform . 63

3.4.3 LITMUSRT and Feather Trace toolkit . 64

3.4.4 Synthetic Workloads . 66

3.5 Results . 67

3.6 Emulation of the I/O interrupts . 74

3.6.1 Comparison with ARM I/O virtualization . 75

3.6.2 Comparison with Custom ARM Hardware Architecture . 77

3.7 Summary . 77

4 Real-Time Scheduling of Virtual Machines. 79

4.1 Real-Time Task Model . 79

4.1.1 Temporal Correctness . 80

ix

4.1.2 Schedulability Test . 81

4.2 Real-Time Scheduling . 81

4.2.1 Fixed-Priority Scheduling . 82

4.2.2 Dynamic-Priority Scheduling . 84

4.3 Algorithmic Analysis . 85

4.4 Computing of the Efficient Scheduling Parameters . 87

4.4.1 Execution Length of a Virtual Machine . 88

4.4.2 Schedulability Condition on a VM . 89

4.4.3 Computing of the Highest-Priority VM’s Parameters . 92

4.5 Overhead-aware Schedulability Analysis . 96

4.6 Empirical Evaluation . 98

4.7 Summary . 103

5 RTOS Models Transformation and Configuration . 105

5.1 Software/Hardware Co-design Process . 105

5.2 OveRSoC Methodology . 106

5.2.1 From Simulation Models to Executable Models . 111

5.3 Model Driven Engineering . 112

5.3.1 Model Driven Architecture . 113

5.3.2 Domain Specific Language . 114

5.4 RTOS-specific Modeling Language . 115

5.4.1 RTOS Meta-Model . 115

5.4.2 Concrete Syntax . 117

5.4.3 Model-to-Code Transformation . 118

5.4.4 Test of the Transformation . 120

5.4.5 Model-To-Model Transformation . 120

5.4.6 Limitation of the Approach . 121

5.5 Summary . 122

x

6 RTOS Configuration using User-Level Library . 123

6.1 User-Level Scheduling on top of Microkernel . 125

6.2 Tasks Model and Thread Mechanisms . 126

6.2.1 Sporadic Task Model . 126

6.2.2 Thread library . 126

6.3 Nova Microkernel and Runtime Environment . 128

6.4 Library Implementation . 129

6.5 Experiments . 132

6.5.1 Overheads and Latencies . 132

6.5.2 Experiment Setup . 132

6.5.3 Experimental Workloads and Execution Trace . 132

6.5.4 Measured Results . 134

6.5.5 Comparison with Similar Approaches . 136

6.6 Summary . 138

7 Conclusions . 139

7.1 Open Question and Future Works . 141

8 Résumé de la thèse . 142

8.1 Etat de l’art sur la virtualisation . 143

8.1.1 Linux Kernel Virtual Machine . 144

8.1.2 Virtualisation basée sur le Micro-noyau . 145

8.1.3 Xen . 146

8.1.4 Virtualisation pour les systèmes critiques . 149

8.2 Etat de l’art sur la configuration des systèmes d’exploitation . 150

8.3 Impact de la Virtualisation sur les Systèmes Temps-Réel . 152

8.4 Ordonnancement Temps-Réel des Machines Virtuelles . 152

8.5 Transformation d’un modèle d’OS Temps-Réel . 153

8.6 Utilisation d’une Libraire pour la Configuration d’OS . 153

xi

8.7 Conclusion et futurs travaux . 155

BIBLIOGRAPHY . 156

xii

LIST OF TABLES

4.1 Example of real-time task set schedulable under RM scheduling. 82

4.2 Task set of simple real-time automotive application . 94

4.3 Simplified real-time applications. 99

4.4 Real-Time Virtual Machine System configuration. 99

6.1 Example of real-time task set schedulable under RM scheduling. 133

6.2 Overheads comparison. 137

xiii

LIST OF FIGURES

2.1 The native and the dual-kernel design of real-time Linux.. 4

2.2 Native and Hosted VM Systems. 8

2.3 kvm software architecture. 10

2.4 Comparison of the TCB of three different virtual machine systems. 15

2.5 Nova software architecture. 16

2.6 Hierarchical Scheduling Framework concept. 17

2.7 Xen software architecture. 20

2.8 Request bound function. 27

2.9 Schematic of the overall architecture of HijackCOS
Linux. 41

2.10 Schematic of the overall architecture of ExSched. 43

2.11 Schematic of the overall architecture of LITMUSRT. 45

3.1 Virtual Machine System Concept. 50

3.2 Intel ISA’s operation modes and privilege levels. 53

3.3 ARM ISA’s operation modes and privilege levels. 54

3.4 Linux Kernel Virtual Machine and Qemu. 55

3.5 Scheduling of the kvm and Qemu threads . 56

3.6 The relationship between the scheduling of the kvm threads and the ksoftirq thread . . 56

3.7 Scheduling latency of a real-time Linux running natively on an Intel hardware. 59

3.8 Scheduling latency of a real-time Linux running on a virtual machine. 59

3.9 Scheduling latency of a real-time Linux measured on a recent Intel core i7 hardware. 61

3.10 Timeline illustrating release delay under fixed-priority scheduling 63

3.11 Architecture of the native and the virtual platform used in the experiments. 64

3.12 Feather trace toolkit. 65

3.13 Scheduling overhead . 68

3.14 Event latency . 69

xiv

3.15 Context-switch overhead . 70

3.16 Release overhead . 71

3.17 Distribution of release latency at n equals 14 tasks per processor, in the virtual case. . 72

3.18 Distribution of the context-switch overhead for n equals 10 tasks per processor. 72

3.19 Distribution of the context-switch overhead for n equals 20 tasks per processor 73

3.20 Scheduling overhead at n equals 5 tasks per processor measured in the virtual case. . . 73

3.21 Scheduling of virtual machines according to the fixed-priority algorithm. 75

4.1 Illustration of the temporal properties of a periodic task. 80

4.2 Scheduling of the task set from Table 3.1 according to the RM algorithm. 83

4.3 Scheduling of the task set from Table 3.1 according to the EDF policy.. 85

4.4 Scheduling of virtual machines according to SCHED FIFO scheduling algorithm. . . 86

4.5 Scheduling of virtual machines according to the RM algorithm.. 87

4.6 Vl execution length. 88

4.7 Schedulability condition for a task Ti at a time t+ ·Πi . 90

4.8 Schedulability condition for a task Ti at a time t+ 2 ·Πi . 91

4.9 Schedulability condition of task Ti executed on the virtual machine Vl. 91

4.10 Overhead related to release event. 96

4.11 Scheduling of virtual machines using the periodic resource model 99

4.12 Real-Time application executed on two VMs scheduled by SCHED DEADLINE . . . 102

4.13 Scheduling of virtual machines VM1 and VM2 using the same priority. 103

5.1 System-level design flow for SoCs. 106

5.2 OveRSoC Development Tool. 108

5.3 OveRSoC’s Library and design Tool. 109

5.4 OveRSoC component designer. 110

5.5 Model-Driven software development process. 113

5.6 Hierarchical Modeling Levels. 114

5.7 Meta Object Facility language. 116

xv

5.8 RTOS structure meta-model. 116

5.9 RTOS-specific language tool. 117

5.10 Extended RTOS meta-model. 119

5.11 Model-to-Model transformation process. 121

6.1 Xilinx Zinq 7000. 124

6.2 Many-to-Many model. 127

6.3 Set of registers that constitute the CPU user-context. 128

6.4 Schematic architecture of the user-level library . 130

6.5 Scheduling trace of a task set according to the RM algorithm. 133

6.6 Context-Switch overhead of the FP scheduler. 134

6.7 Scheduling overhead of the FP scheduler. 135

6.8 Scheduling overhead of the EDF scheduler. 135

8.1 Architecture logicielle des systèmes supportant des machines virtuelles. 143

xvi

LIST OF ABBREVIATIONS

ABD All But Dissertation

BW Bandwidth

CBS Constant Bandwidth Server

DMR Deadline Miss Ratio

DS Deferable Server

EDF Earliest Deadline First

FP Fixed-Priority

G-EDF Global Earliest Deadline First

G-FP Global Fixed Priority

HRT Hard Real-Time

HSF Hierarchical Scheduling Framework

I/O Input/Output

IPC Inter-Process Communication

IPI Inter-Processor Interrupt

KVM Kernel Virtual Machine

LoC Lines of Code

PRM Periodic Resource Model

PS Periodic Server

RBF Request Bound Function

RM Rate-Monotonic

SBF Supply Bound Function

SEDF Simple Earliest Deadline First

SMI System Management Interrupts

SoC System-on-Chip

SRT Soft Real-Time

TLB Translation Lookaside Buffer

TSC Timestamp Counter

VM Virtual Machine

xvii

VMM Virtual Machine Monitor

WCET Worst-Case Execution Time

WSS Working Set Size

xviii

CHAPTER 1

Introduction

Multicore chips enabled with hardware-assisted virtualization mechanisms are commonly en-

countered in servers and personal computers. Such platforms offer a considerable processing ca-

pacity while reducing the space required to deploy the system. As a result, these platforms are also

considered to be deployed in real-time embedded systems.

A key requirement when building safety-critical applications is isolation, i.e. the failure of

one component should not crash the whole system. The easiest and historically most-commonly

used way to ensure isolation is to employ a dedicated processor for each functionality. However,

this approach has led to an increasingly unmanageable proliferation of such systems, to the effect

that some modern cars may contain more than one hundred Electronic Control Unit. For example,

the number of ECUs in the car has grown to the level where the complexity of the electrical and

electronic system is difficult to manage. Every embedded system requires wiring and cooling, adds

weight, requires space, drains power, and must be purchased, transported, tested, and documented,

etc. Thus, instead of embedding one hundred networked, slow uniprocessors throughout a car, it

would be desirable to use only ten (or fewer) shared, but ten-times as powerful, multicore processors

that are highly utilized.

While in one case the migration of legacy applications from uniprocessors to multicore plat-

forms requires the use of one operating system to manage all the applications, in other case, the use

of several operating systems is necessary. For example, in the automotive domain, one real-time op-

erating system (RTOS) will be used for real-time tasks, and a general-purpose operating system will

be used to support in-vehicle infotainment applications. Each operating system will be executed in a

separate and secure virtual machine. A virtual machine (VM) is a hardware and software technique

that ”gives the impression” to the operating system that it is running on the real hardware while in

reality it is not. Thus, multiple virtual machines could be deployed on a physical machine, and are

controlled by a Virtual Machine Monitor (VMM).

In addition to dependability requirements, the correctness of real-time systems is dependent on

the system’s ability to meet application temporal constraints. Expressed in terms of tasks deadlines,

applications’ resources requirements define the service levels required from the system. To behave

in a predictable manner and support the correctness of these applications, the system must contain

resource management policies capable of dealing with specific applications temporal constraints.

The goal of this dissertation is, first, to determine how to securely deploy multiple operating

systems on a same hardware platform while preserving the temporal correctness of the system. Sec-

ond, how to easily configure the real-time operating systems in order to adapt it to the applications

requirements.

This dissertation is organized as follows: in Chapter 2 we review the studies related to our work

on the use of virtualization in real-time systems, and the configuration of the resources allocation

techniques of an RTOS. In Chapter 3 we evaluate the overheads and latencies of an RTOS that is

deployed on a virtual machine. Then, in Chapter 4 we analyze the role of scheduling in maintaining

the performance of real-time virtual machine system. Next, in Chapter 5 we present a transformation

of an RTOS simulation model into an executable programs on a real hardware, then we define

in Chapter 6 a method to preserve its configurability feature. We conclude this dissertation in

Chapter 7.

2

CHAPTER 2

Related Work

There are multiple applications of a software architecture able to co-locate a real-time operat-

ing system and a general-purpose operating system. For example, in the automotive domain, an

AUTOSAR compliant RTOS and a Linux Genivi operating system that support in-vehicle infotain-

ment application, could be co-located on the same electronic control unit (ECU) (Heiser, 2011).

Multicore chips enabled with instruction set architecture (ISA) that support virtualization offer

an efficient solution to fulfill such a requirement. New processors extended with this virtualization

feature allow to execute multiple virtual machines on the same real hardware. Thus, it is possible to

execute multiple unmodified operating systems at the same speed rate as on the native hardware.

This dissertation addresses two fundamental questions to the design of a real-time virtual ma-

chine system: what is the order of magnitude of the overheads and latencies of an RTOS running in

a Virtual Machine, and how these overheads and latencies impact the temporal characteristics of a

real-time system.

The third question addressed in this thesis is: how to transform a component-based RTOS model

from its simulation form into an executable program, while preserving the configurability property

offered by its design? By configurability of the RTOS we mean changing for instance its internal

resources allocation policy and adapting the operating system by selecting the appropriate services

required by the application.

In this chapter, we first present some approaches that investigated the combination of an RTOS

and general-purpose OS without using virtualization, then we review the research studies that in-

vestigated the use of virtualization in real-time systems. Second, we discuss different proposed

solutions to enable the configuration of a real-time operating system.

2.1 Real-Time OS alongside General-Purpose OS

Running a real-time OS alongside a general-purpose OS could be achieved by ”re-tailoring” an ex-

isting general-purpose OS to acquire the desired real-time features, for example, a real-time sched-

uler, temporal isolation, or low interrupt latency. One advantage of this approach is that it greatly

reduces the development costs since basic OS functionality such as memory management, device

drivers, and process abstraction, do not have to be re-implemented.

Due to its open source nature, Linux, is the most frequently chosen operating system when com-

bining a general-purpose and a real-time operating system. There are two variants of solution based

on Linux. In a native design, the Linux kernel is the only kernel responsible for meeting the real-

time requirements. The real-time tasks are regular Linux processes as indicated in Figure 2.1(a). In

contrast, in a dual-kernel design, a specialized hard real-time-capable kernel is inserted between the

Linux and the hardware. Such an implementation follows the classical microkernel design in which

Linux is an OS server and is scheduled as a background, non-real-time thread by the microkernel.

Real-Time tasks are not Linux processes, they are specialized threads managed directly by the small

kernel besides the Linux kernel as depicted in Figure 2.1(b). In the next two sections we first review

the dual-kernel variant, then we discuss the native-kernel variant.

Native Linux with Real-Time extension

(a) Native Design

Hardware (I/O device)

RT task

Non RT task Non RT task

(b) Dual Kernel Design

Figure 2.1: In a native real-time Linux, real-time tasks are processes of the Linux kernel. While in

dual kernel design the real-time tasks are managed by a special real-time kernel isolated from Linux.

Linux is executed as a non real-time task of that small kernel.

4

2.1.1 Dual-Kernel Design

In the early versions of Linux, all system calls and interrupts handling were executed as one non

preemptive section. This greatly simplified synchronization requirements on a uniprocessor. How-

ever, it could lead to excessively long non preemptive section in the case of a real-time system. For

example, when a high priority real-time job is released, the corresponding real-time process could

be delayed if the kernel were executing on behalf of a lower-priority task. As a result, a non preemp-

tive kernel with long code paths may cause real-time tasks to incur unacceptable delay in the worst

case.

Consequently, real-time Linux variants, in particular those focused on hard real-time applica-

tions, chose to work around the Linux kernel and its internal limitations using a dual-kernel design

approach. In this approach, Linux is executed as a real-time background task of a small real-time

kernel. In this case, the Linux kernel is not in full control of the hardware, does not have the right

to disable interrupts, and thus can be preempted at any time.

There are two key advantages to such dual-kernel design. First, low interrupt latencies can be

guaranteed to real-time tasks regardless of any deficiencies in the Linux kernel. Second, only rela-

tively small changes to the Linux kernel are required, which means that integrating improvements

made in newer Linux versions is relatively easy.

A disadvantage of the dual-kernel design is that real-time tasks execute directly on top of the

small kernel and cannot make use of the Linux services such as device drivers, POSIX IPC, syn-

chronization primitives, file-systems, etc. This limitation is fundamental since a dual-kernel does

not improve Linux’s real-time capabilities, rather, it enables real-time tasks to safely co-exist with

the Linux kernel.

There are two main classes of dual-kernel Linux. L4Linux (Lackorzynski, 2014) is an exam-

ple of a dual-kernel system where both Linux and real-time tasks are executed in private address

spaces and thus isolated from each other. Also several commercial RTOSs offer Linux dual-kernel

support as well, among them Green Hills’s INTEGRITY, Sysgo AG’s PikeOS, and LynxWorks’s

Lynx OS. In contrast, real-time tasks execute in kernel mode in RT-Linux (Zijlstra, 2008) and are

thus not isolated from the Linux kernel. Besides RT-Linux, two other well-known real-time Linux

based on the dual-kernel design approach that omit isolation are the Real-Time Application Inter-

5

face (RTAI) (Cloutier et al., 2008), which targets industrial applications, and the Xenomai project,

which targets similar use cases but also focuses on providing RTOS compatibility layers (so-called

skins) to support legacy applications (Gerum, 2008).

2.1.2 Native Real-Time Linux

In a native design, one kernel is present and in full control of the hardware platform. Only the Linux

kernel is modified in order to enhance its real-time capabilities. This design is preferred to the dual-

kernel design in the vast majority of applications if timing constraints can be met, that is, if Linux’s

limitation such as high interrupt latencies can be addressed. In the case of applications with very

stringent constraints (e.g. engine control software), a dual-kernel approach may be the only feasible

design.

Multiple works attempted to integrate a real-time infrastructure to the Linux kernel. For exam-

ple, the Kansas University Real-Time Linux (KURT Linux), developed by Srinivasan et al. (1998)

provided the high-resolution (software) timers based on hardware timers operating in one-shot mode

(”UTIME” patch). Later, this design was re-implemented in a POSIX-compliant way and merged

into a standard Linux under the name hrtimers (Gleixner and Niehaus, 2006).

Linux versions higher than 3.0 are suited for use in real-time systems, and the current native real-

time Linux design focus on scheduling and locking algorithmic changes. Linux 3.0 gained several

improvements over the course of several versions that greatly improved its viability as an RTOS,

namely high-resolution timers, priority inheritance, mostly preemptable kernel execution, much-

shortened non-preemptive sections, and an improved lower-overhead fixed-priority scheduler. Main-

line Linux is now almost POSIX-compliant and supports fixed-priority scheduling (SCHED FIFO

and SCHED RR) with 100 distinct priorities, processor affinity masks, and the priority inheritance

protocol.

However, the Linux kernel still contains some limitations in terms of non-preemptive code paths

that are long in the context of real-time systems and architectural design choices that were made

with throughput in mind. For example, interrupts are, by default, not serviced using split interrupt

handling; rather, Interrupt Service Routines (ISRs) are typically executed immediately when an

interrupt is raised and are not subject to scheduling. Executing ISRs right away benefits network and

disk bandwidth, but can also delay real-time tasks. Thus, while API-compatible, current mainline

6

Linux is not yet comparable to purpose-built RTOSs such as VxWorks or QNX Neutrino in terms

of predictability and interrupt latency.

Moving beyond this limitations is the goal of the PREEMPT RT patch, which is the de facto

real-time standard variant of Linux. It changes the Linux core infrastructure significantly by reduc-

ing the number and the length of non-preemptive critical sections, converting most spin-locks in

the kernel to semaphores, and further enables the priority inheritance protocol by default for all

semaphores in the kernel. One important feature introduced by the patch is to force split interrupt

handling for all ISRs except timers. The PREEMPT RT patch is under active development, and

besides serving as a staging ground for real-time features that are intended to be incorporated into

mainline Linux at a later point, it is also widely used in industrial projects.

Summary. While real-time Linux variants offer a good approach to co-locate a real-time OS and a

general purpose OS, such a design could be problematic in the case where a legacy application has

already been developed and certified on a existing RTOS. In this situation, adopting a design based

on a real-time Linux variant would require the porting of the application using a new API, and going

through a new certification process if the application is used in a safety-critical system. This extra

work increases the development cost and the already tight time-to-market.

An alternative solution could be provided by the use of the virtual machine concept. By using a

Virtual Machine System, it is possible to run the existing RTOS and the application in a virtual ma-

chine alongside a general-purpose operating system on the same hardware. We study this approach

in the next section.

2.2 Virtual Machine Systems

A Virtual Machine System is a concept intended to host multiple operating systems simultaneously

on a single hardware platform. Each guest operating system is executed in a separate and secure

Virtual Machine (VM). The virtual machine is the abstraction of the hardware resources provided

to the guest operating systems, and managed by a low-complexity kernel referred to as a Virtual

Machine Monitor (VMM).

The virtual machine monitor must ensure that a temporal or local fault in one virtual machine

(e.g., an infinite loop, out-of-bounds array access, exhaustion of assigned resources) does not af-

7

fect the operation of other correct virtual machines. This requirement is referred to as logical and

temporal isolation in the real-time community, and as space and time partitioning in the RTOS

industry.

Virtualization can be implemented in different ways. The classic approach to design a virtual

machine system is to place the VMM on bare hardware whereas the virtual machine fits on top. The

VMM runs in the most highly privileged level1, while all guest operating systems run with lesser

privileges, as shown in Figure 2.2. Then, in a completely transparent way, the VMM can intercept

and implement all the guest OS’s actions that interact with the hardware resources.

An alternative implementation builds the VMM on top of an existing host operating system, re-

sulting in what is called a hosted VM as shown in Figure 2.2c and Figure 2.2d. In this configuration,

the installation process is similar to installing a typical application program.

Hardware Hardware Hardware Hardware

OS

Applications

VMM

Guest OS

Host OS

VMM

Host OS

VMM

Guest Apps

Guest Apps Guest Apps

Guest OS Guest OS

Non privileged
modes

Privileged
modes

a. Traditional
system

b. Native VM
system

c. User-mode
hosted VM
system

d. Hosted VM
system

Figure 2.2: Native and Hosted VM Systems.

Executing multiple guest operating systems by a VMM is similar to the execution of multiple

user processes by an operating system in a conventional time-sharing system. The VMM moves

the entire guest registers’ contents into the host’s registers after saving the registers of the previous

guest into memory. Then, the execution can proceed at the same speed rate as on a machine running

the guest natively. Once the VMM gives the resources to a guest virtual machine, it is important

that the VMM could get them back so they can be later assigned to a different VM. Again, this step

1This level (reserved for the most privileged code, data, and stacks) is used for the segments containing the critical

software, usually the kernel of an operating system. The other privilege levels are used for less critical software. For

instance, the x86 Intel architecture has 4 privilege levels. Linux on the x86 architecture uses the highest privilege level,

and the applications use the lowest one, the other intermediate levels are not used.

8

is similar to an operating system that regains control of all the hardware resources when it executes

multiple user jobs concurrently on a machine.

Virtual Machine Systems have been widely deployed in the domain of enterprise server. Given

this success, these systems are also increasingly deployed in the embedded real-time systems. A

considerable research effort has been spent in adapting existing virtual machine systems used in the

server domain to the real-time embedded system domain.

With regards to the questions of this thesis, we are interested in investigating the capability

of the existing systems that were initially designed for the server domain to support the real-time

embedded systems demands. While reviewing the existing work in this direction, our approach is to

understand the limitation of the initial implementation targeting the server domain and how it was

adapted to fulfil the requirements of the real-time systems.

2.3 Real-Time Virtual Machine Systems

In this section, we review how existing Virtual Machine Systems have been adapted to real-time

systems. For each solution, we first describe its design and implementation, then we discuss its

real-time performance.

2.3.1 Linux Kernel-based Virtual Machine

Linux Kernel Virtual Machine (shortened as kvm) is a hosted VM system (Kivity et al., 2007). Its

main task is to manage unprivileged access to hardware features that can only be used directly by

the privileged kernel. Its tremendous success is in large part due to its relative simplicity compared

to other approaches. This simplicity is achieved by leveraging the functionality already provided

by the Linux kernel, and relying on hardware-assisted virtualization, which allows it to be ported to

wide range of architectures such as x86, PowerPC, ARM and IBM s390.

Under kvm, when a virtual machine is created, a data structure is instantiated to hold in memory

the CPU registers used by the guest operating system, and acts as a virtual CPU (vCPU). A virtual

CPU is associated to a regular Linux process and scheduled by the Linux kernel scheduler alongside

the other processes. The spatial isolation between virtual machines relies on the Linux’s virtual

memory management, for each virtual machine a separate memory address space is created. Each

9

guest operating system has its own memory separated from the other guests. Figure 2.3 illustrates

the integration of kvm into the Linux kernel.

Figure 2.3: kvm software architecture.

kvm is a hosted-VM system that requires two components: a VMM-native (VMM-n) and a

VMM-user (VMM-u) components (see Figure 2.2d):

VMM-n (native). This component runs natively on the hardware and has characteristics similar to

the VMM on a native VM system. It is the component that intercepts traps due to the privileged

instructions executed by a guest operating system running in a virtual machine.

VMM-u (user). This component runs as a user-level process on the host operating system. It

makes resource requests to the host OS, in particular, memory and I/O requests, on behalf of the

native mode VMM using system library functions supplied by the host operating system.

An important task of kvm is to provide fast virtualization for frequently accessed guest devices.

Specially, the interrupt and timer controllers are provided by the VMM-n component. The advantage

is that no consultation of the VMM-u component is required if a guest accesses any of these devices,

which reduces the virtualization overhead.

As mentioned earlier, kvm creates for each virtual machine a virtual CPU to hold the guest

CPU state. When the guest operating system executes a privileged instruction2, the hardware virtu-

alization mechanism triggers an ”exit ” from the virtual CPU execution context to the VMM. If the

privileged instruction could not be handled by the VMM-n component, the exit event is propagated

to the VMM-u component.

2Some of the system instructions called ”privileged instructions” are protected from use by application programs.

They control system functions (such as the loading of system registers). They can be executed only at the most privileged

level. If one of these instructions is executed at lower privilege level, a general-protection exception is generated. The

x86 WRMSR instruction (write model specific registers) is an example.

10

The VMM-u component attach to the virtual CPU’s execution context one of its threads. And

when the Linux kernel schedules the thread, it results in running the guest code. Thus, any modifi-

cation applied to the Linux scheduler influences also the scheduling of the virtual machines.

Consequently, a virtual machine process could also be preempted by the host interrupts and

processes which represents a problem in the case where a real-time application is executed in the

virtual machine. Because, if the thread associated to the virtual machine is preempted by another

process or an interrupt running in the host, the response time of the currently running real-time task

in the guest OS could be affected. A simple solution to this problem is to raise the priority of the

virtual machine thread and to configure it as a real-time thread3.

The evaluation of the real-time capability of kvm has been investigated from an implementa-

tion perspective. Multiple studies (Bing, 2010; Forsberg, 2011; Åsberg et al., 2011; Kiszka, 2010;

Ramachandran, 2013; Zhang et al., 2010b,a; Zuo et al., 2010) measured the scheduling latency of

the guest operating system. The measurement of this latency usually used the cyclictest benchmark

from the rt-test project (Molnar, 2004). Concretely, it repeats the measurement of the sleep() sys-

tem call latency during a specified duration, for example 15 minutes, or one hour. Then, the results

of the minimum, the maximum and the average latency are reported at the end of the experiment.

Testing this benchmark on an operating system that is running on a real hardware and on a

virtual machine allow to observe the effect of virtualization mechanism on the operating system

performance, and whether the raise of the priority of the virtual machine’s process results in an

improved performance or not.

The comparison of the measurements of the latency from a native OS vs. an unprioritized guest

OS, and vs. a prioritized guest OS, showed that the probability of the multiple milliseconds latency

was much higher in the unprioritized guest than on the native OS. The maximum latency exceeded

the 100ms (Zhang et al., 2010b). However, the prioritization of the guest OS, that is, configuring

the virtual machine thread as a real-time thread and raising its priority, significantly decreased the

average latency.

3In Linux, the threads that are configured to be scheduled under the SCHED FIFO or SCHED RR scheduling classes

are considered real-time as threads and treated prior to the regular non-real-time processes.

11

Being integrated to the Linux kernel, kvm benefits from the real-time properties of the Linux

kernel. Any improvements to the real-time capability of Linux through scheduling algorithms, syn-

chronization, preemption, low latency, or drivers will bring better performance to kvm.

One promising solution in this direction is the use of the PREEMPT RT real-time patch to

configure the host Linux kernel. In this configuration, the host system is enabled with real-time

capability which improves the response time of the virtual machine thread.

The repeating of the precedent experiment (the cyclictest benchmark) using the configured host

OS (Linux configured with the real-time PREEMPT RT patch) revealed that the application of the

PREEMPT RT patch reduced the average-case latency to less than 1ms , and removed the 100ms

maximum latency observed in the non-prioritized guest OS.

Cucinotta et al. (2009a) evaluated the real-time capability of kvm from a theoretical perspec-

tive. The authors investigated the problem of guaranteeing temporal isolation among multiple VMs

managed by Linux and kvm, and experimented two test cases. First, they executed two real-time

tasks, T1 = (30ms , 150ms) and T2 = (50ms , 200ms), on a real hardware. Second, they executed

the same task set on a virtual machine using kvm. Then, they measured the response time of all the

jobs of the two tasks. The observation of the results showed that when the task set is executed inside

a virtual machine most of the deadlines were easily missed.

The authors attributed this result due to the general-purpose scheduling used to allocate the host

CPU resources to the virtual machines. They stated that simple solution based on a proportional-

fair share algorithm may fail to guarantee a sufficient degree of isolation, and do not generally

provide enough control over the granularity of the CPU allocation to the various VMs. The authors

also declared that using a fixed-priority algorithm would create a second problem because in the

case where a higher priority VM consumes more CPU time than expected it could prevent a lower

priority VM from running.

The alternative solution proposed by Cucinotta et al. (2009a) is to use the well established real-

time scheduling techniques, in particular the resource reservation to schedule the virtual machines.

Such a technique associates to each VM a reservation tuple (Θ,Π), where Θ is the processor time

reserved for a VM every Π time units.

The proposed approach suits the needs of concurrently running VMs, because it allows to con-

trol the amount of time required by each VM, and guarantees the respect of deadlines for the tasks

12

running inside the VM. This approach relies on the hard reservation variant4 of the Constant Band-

width Server (CBS) scheduling policy (Abeni and Buttazzo, 1998). It was implemented using kvm

and the AQuoSA framework (Cucinotta et al., 2009b) for Linux kernel.

Given a task set τ = {T1, ..., Tn}, a virtual machine VMk that is allocated a resource reservation

(Θ,Π), and using a CBS algorithm to schedule the virtual machine and fixed-priority algorithm to

schedule the the task set τ , it is possible to guarantee the schedulability of the task set τ if and only

if:

∀i∃t ∈ P k : eki +
∑

j<i

⌈

t

T k
j

⌉

· ekj ≤ Zk(t), (2.1)

where eki is the worst case execution time of a task τki in a virtual machine VMk. Zk(t) is a charac-

teristic function indicating the amount of time allocated to the VMk by the root scheduler, and P k

is a set of appropriate scheduling points.

To evaluate this approach two experiments were conducted. In the first experiment two sim-

ple real-time task sets were used in order to easily understand the behavior of the system, and in

the second experiment multiple web servers were executed in virtual machines to demonstrate the

effectiveness of the approach in a real-world service oriented architecture scenario.

In the first test, two task set were used, τa = {T1(30ms , 150ms), T2(50ms , 200ms)} was

executed on the virtual machine VMa, and τb = {T3(30ms , 120ms), T4(40ms , 240ms)} on VMb.

The results of the tests showed that when the two VMs were executed without CBS the dead-

lines were easily missed. However, by allocating a resource reservation (a = (28ms , 50ms)) for

VMa and (b = (52ms , 120ms)) for VMb, all deadlines have been respected. However, the article

does not demonstrate how the parameters (Θ,Π) of each resource reservation were calculated.

2.3.2 Microkernel Support for Virtualization

Similar to monolithic operating system, microkernel-based operating systems were also extended

to provide the virtual machine monitor functionality. OKL4 microvisor from Open Kernel Labs,

L4Fiasco and Nova microhypervisor from the Technische Universitaet Dresden are examples of

4In the particular case of a hard reservation, the VM is not allowed to execute more than Θ time units every Π.

13

microkernel-based operating systems that are derived from the L4 microkernel family (Liedtke,

1996).

2.3.2.1 OKL4 microvisor

The OKL4 microvisor is considered as the first commercial VMM deployed on a mobile phone (the

Motorola QA4). A prototype based on OKL4 (Varanasi and Heiser, 2011) was recently ported to

the ARM Cortex A15, in order to benefit from the support of the new hardware instruction set that

allows the execution of unmodified guest operating system binaries inside a virtual machine. The

developed microkernel was evaluated on the ARM Fast Models simulator due to the unavailability

of hardware implementation of the architecture that supports the virtualization extension.

The evaluation of the VMM implementation on the CPU simulator (not cycle-accurate) allowed

to estimate its low-level performances. Using a number of micro-benchmarks the execution time

measured in CPU cycles of the VMM routines were calculated based on the instructions count from

collected traces, and the weighting of the instructions by their known latencies in cycles from the

ARM Cortex A9 processor and an equivalent memory system.

For example, the IRQ (interrupt request) entry, which is the entry to the VMM IRQ routine

upon the arrival of an interrupt, is estimated to 239 instructions, which is approximated to 700

cycles. As a comparison to x86 architecture, the same operation measured using the Nova mi-

crohypervisor, would costs 4,000 cycles. Switching between virtual machines contexts was done

efficiently using the ARM’s multi-register operations to save and restore state. Part of this state is

kept in co-processor (MMU) and external core such as virtual interrupt and devices registers which

are more expensive to access than internal registers. As a result, the overhead of switching between

VMs was estimated to 2842 instructions which is equal to 7555 cycles.

The estimated performances of this VMM prototype, and its approximated 6,000 lines of code

for its fully-functional version, allowed to take the decision of turning this prototype into a commer-

cial product. However, due to the fact that this implementation is at prototype level, no real-time

performance evaluation were conducted yet.

14

2.3.2.2 Nova microhypervisor

The Nova microhypervisor (Steinberg and Kauer, 2010) is the third generation of the L4 micro-

kernel that supports virtualization since its design phase, and not as an extension of existing L4

microkernel versions such as L4Fiasco.

Like all the variants of L4 microkernel, Nova is designed based on the principle of small trusted

computing base (TCB). These systems take an extreme approach to the principle of least privilege by

using small kernel that implements only a minimal set of abstractions. Liedtke (1996) recommended

three key abstractions that should be provided by a microkernel: address spaces, threads, and inter-

process communication. The other functionality should be implemented at user-level.

The main characteristic of Nova is its TCB size. The TCB is the part of the software that runs

at the highest privilege level, and must be trusted. Comparing to Linux-kvm and Xen, the TCB

of Nova is at least an order of magnitude smaller than these systems. Figure 2.4 summarizes the

comparison of the total sizes of Nova, kvm and Xen.

 0

 100000

 200000

 300000

 400000

 500000

Nova: microkernel+VMM Xen+Linux+Qemu kvm+Linux+Qemu

L
in

e
s
 o

f
C

o
d
e

virtual machine systems

Comparison of TCB size of Nova, kvm, and Xen

Figure 2.4: Comparison of the TCB of three different virtual machine systems.

The size of the Nova’s TCB is 9,000 lines of code (LoC), whereas the Xen’s TCB is equal to

300,000 LoC, and the kvm is 220,000 LoC. This is because Xen VMM is about 100,000 LoC, and

uses a privileged domain5, called dom0, which is a Linux kernel (200,000 LoC) and all its device

drivers. In order to emulate devices, the Qemu hardware emulator is executed as a user application

on top of Linux. kvm however is part of the Linux kernel, thus its TCB size is equal to the sum of

5In the context of Xen, a domain is equivalent to a virtual machine.

15

Linux kernel source code plus the required file-system, plus device drivers, and the source code of

kvm itself (20,000 LoC). In total it is estimated to be 220,000 LoC.

Small TCB is an important security requirement of safety-critical systems. The VMM is re-

sponsible for controlling the platform, and if an adversary manages to compromise it, subverting

the security of all hosted operating systems would be easy. Reducing the TCB will reduce the attack

surface significantly, and thereby improves the security of the system.

To achieve such a feature, the Nova VMM was designed as a decomposed virtualization archi-

tecture that minimizes the amount of code in the privileged VMM as illustrated in Figure 2.5. By

implementing the part of the VMM that emulates the instructions at user-level, it was possible to

trade improved security for a slight decrease in performance.

Figure 2.5: Nova software architecture.

Regarding the real-time characteristics, Nova implements a fair share scheduling using a pre-

emptive priority-driven round-robin policy with one run-queue per CPU. When invoked, the sched-

uler selects the highest-priority thread from the run-queue and dispatches it. Once dispatched, the

thread can run until its time quantum is depleted or until it is preempted by the release of a higher-

priority scheduling context.

2.3.2.3 L4Fiasco microkernel

The problem of using a microkernel in a real-time virtual machine system has been explored by

Yang et al. (2011). The authors used the L4Fiasco microkernel as a VMM and the paravirtualized6

6Paravirtualization is a technique for reducing the performance overhead of virtualization by making a guest operating

system aware of the virtualization environment. It replaces privileged instructions in the guest OS with hyper-calls to the

virtual machine monitor.

16

L4Linux, a modified version of Linux kernel, in which the HAL (hardware abstraction layer) in

Linux have been replaced by a set of calls using the microkernel API (application programming

interface). The L4Linux is considered by the microkernel as a user-level thread. The Linux kernel

uses the set of hyper-calls provided by L4Fiasco to request the privileged operations that it is not

able to perform due to its unprivileged status.

The authors argued that a two-level Hierarchical Scheduling Framework (HSF) is naturally

suited to build a real-time virtual machine system. In such a design, the root scheduling level is

the microkernel scheduler and the second level scheduler is located at the L4Linux scheduler as

illustrated in Figure 2.6.

Figure 2.6: Hierarchical Scheduling Framework concept.

The root scheduler in the microkernel schedules the L4Linux server7 using a periodic resource

model (PRM), denoted by the tuple Γ = (Θ,Π). And the scheduler of L4Linux schedules the

real-time tasks. Both scheduling levels employ the fixed-priority rate-monotonic policy.

The L4Linux server is composed by several L4Fiasco threads such as the Linux kernel thread,

the timer interrupt thread, and an idle thread. For each real-time task created by L4Linux, an

L4Fiasco shadow thread is created and attached to it. Releasing a real-time task in L4Linux re-

leases a shadow thread in L4Fiasco that executes the user-code on behalf of the task.

7In the context of hierarchical scheduling theory a server is synonym of component.

17

In the implementation, the Linux kernel thread and the L4Fiasco shadow threads are considered

as one scheduling group, and scheduled together using the same execution budget from their associ-

ated PRM. However the corresponding interrupt timer thread is treated independently and given a

higher priority to ensure that it is scheduled as soon as an interrupt is triggered.

To preserve the execution budget associated to each PRM, a real-time timeout has been cre-

ated and set equal to Θ to prevent that the current L4Linux kernel thread and subsequent shadow

L4Fiasco threads from being disturbed by other VM’s threads during this amount of time, except by

other interrupt threads.

The PRM associated to each virtual machine is calculated dynamically by the L4Linux each

time a new real-time task is created. The PRM is then given to the VMM which will take into

account the new value at the next scheduling period. In the implementation the Π was fixed to

500ms .

To calculate the PRM, the authors fixed the period Π and used the periodic capacity bound for

rate-monotonic scheduling as defined by Theorem 2.1 to determine Θ.

Theorem 2.1 (Shin and Lee (2003)). For a given workload W, a period Π, and under the fixed-

priority rate-monotonic policy, the execution time Θ is:

Θ = max
∀Ti∈W

(

−(pi − 2Π) +
√

(pi − 2Π) + 8Π · Ii
4

)

, (2.2)

where,

Ii = ei +
∑

Tk∈high−priority(W,Ti)

⌈

pi

pk

⌉

· ek, (2.3)

and pi, ei are the period and the execution time of a task Ti respectively. The PRM is calculated

at runtime by the L4Linux server and given to the L4Fiasco through the l4-rt-change-timeslice()

hypercall.

The evaluation of the HSF implementation and its comparison with the round-robin scheduling

policy and the RM scheduling policy already implemented in L4Fiasco using two virtual machine

showed that the HSF was able to avoid any deadline miss of the real-time tasks running in the VMs.

Two scenarios have been evaluated, first, the task sets τa = {T1(1, 0.2), T2(1.2, 0.2), T3(1.5, 0.2)}

and τb = {T4(20, 2), T5(30, 2)} were executed in VMa and VMb respectively. Second, the task sets

18

τa = {T1(8, 1.5), T2(10, 2)} and τb = {T3(2, 0.1), T4(3, 0.1)} were executed in VMa and VMb

respectively.

In the first scenario, the tasks T2 and T3 miss some deadlines under the round-robin scheduling

and this could be explained by the fact that if all tasks are released at the same time, and the CPU

time is shared fairly among the two VMs, the execution of VMb delayed the execution of the tasks

in VMa.

In the second scenario the task T3 and T4 incur some deadline miss under the RM scheduling.

The reason for this is because VMa has given a higher priority than VMb, because VMa’s CPU

utilization = 0.39 and VMb’s CPU utilization = 0.28, and VMa retains the CPU for 3.5 second

which delays the execution of T3 and T4 jobs.

With regards to overheads, three operations have been measured, the selecting of a next thread

in the ready queue, the setting of the real-time timeout, and the calculation of the periodic resource

model interface on a dual-core Intel 2.0GHz machine. The setting of the timer is done every 500ms

and is estimated to 500µs when two VMs are running. Setting a real-time timeout prevent other

VM’s tasks from disturbing the execution of the current selected VM. The overhead of selecting the

next ready task is less than 25µs when two VMs are running. This overhead and the overhead of

calculating the PRM depend linearly on the number of running VMs. The most expensive opera-

tion is the calculation of PRM due to IPC communication, however the authors argued that this is

reasonable because it occurs only when a new task is spawned.

2.3.3 Xen

Xen is a native VM system (Barham et al., 2003) that was initially designed to host multiple com-

modity operating system instances on a modern server. The Xen VMM is responsible for the CPU

scheduling and the memory allocation. Xen uses a special guest operating system called driver do-

main containing the device drivers to provide access to the actual hardware I/O devices. Xen VMM

grants the driver domain direct access to the devices and does not allow the other guest domains to

access them directly. Therefore, all I/O requests must pass through the driver domain. Figure 2.7

illustrates the software architecture of Xen.

19

Figure 2.7: Xen software architecture.

The Xen VMM protects the guest domains from each other and shares I/O resources through

the driver domain. This enables each guest operating system to behave as if it was running directly

on the hardware without worrying about protection and fairness.

In the Xen terminology a virtual machine is also called a domain. The default scheduler in Xen

is the Credit Scheduler. The domains in Xen are scheduled according to their state. Each domain

could be in the UNDER state or in the OVER state. In the UNDER state, domains still have a

remaining credits, and in the OVER state domains have gone over their credit allocation. Credits are

periodically debited every 10ms . When a scheduler interrupt occurs the currently running domain is

debited 100 credits. The domains’ credits are replenished when the sum of the credits of all domains

in the system goes negative. When making scheduling decisions, domains in the UNDER state are

prioritized over the domains in the OVER state. If there is no domains in the UNDER state and the

processors would be idle, the domains in the OVER state could be executed.

The Credit scheduler selects a domain to run depending on its state. It does not considers the

absolute number of credits that remain for a domain. Rather, domains in the same state are selected

according to the first-in first-out policy. Domains are always inserted at the end of the run queue

after the domains in the same state. The scheduler selects the domain at the head of the run queue.

A selected domains is allowed to run for 30ms as long as its credit allows.

Xen provides a real-time scheduler called the simple earliest deadline first (SEDF). It schedules

domains according to two parameters: the slice and the period. Runnable domains are allowed to

execute periodically for an amount of time units given by their slice. The SEDF scheduler maintains

for each domains a deadline, the time at which the current domain’s period ends, and the amount of

20

processing time the domain is due before the deadline passes. The domains are ordered in the run

queue according to their deadlines.

According to the SEDF scheduler, a domain can only be activated once if it blocks during its

period, independently of whether it has used its whole slice or not. This could represent a problem

with regards to the worst-case execution time. For example, in the case of a driver domain that

is reacting to multiple networking packets, if it finishes processing all pending packets and blocks

itself for the remainder of its current period, then if packets arrive while driver domain is blocked,

they will be delayed until the next activation of the driver domain by the Xen scheduler irrespective

of whether the driver domain has used its complete slice in the current period or not.

Masrur et al. (2010) proposed an improvement of the SEDF by allowing the driver domain

to utilize its complete slice within its period independently of its current state (waiting or blocked).

Moreover, the critical domains are given higher fixed-priority than the other domains which improve

their response time and avoid any deadline miss.

They experimented their implementation by running in each real time domain only one task

because they used a standard operating system available for Xen which does not have real-time

capabilities. Thus, by running one real-time task per domain, they can still guarantee correct tim-

ing behavior, because the real-time task will be scheduled whenever the corresponding domain is

scheduled by Xen independently of the scheduler used by the OS in the domain. Using one task per

domain allows for a higher CPU utilization, because it is possible to select the slice and the period

of each VM to fit the specific requirements of the only task running on it.

In a second work (Masrur et al., 2011), the authors proposed a two-level hierarchical scheduling

architecture in Xen. The domains were scheduled under the rate-monotonic policy (RM), and the

tasks in each domain were scheduled under the deadline-monotonic policy (DM), resulting in a DM

over RM hierarchical scheduling.

They proposed a method to calculate the optimal time-slice and period for each domain in order

to provide a schedulability condition for a set of real-time tasks running in a set of domains to

meet their deadlines. The period of a domain is specified by the minimum deadline that has to be

scheduled on that domain. And the selection of an efficient time slice requires an iterative procedure.

Using the minimum requirements for a VM and the schedulability condition of a task running on

that VM, they compute the initial domain’s time slice. Then, this value is improved towards the

21

optimum in a reduced number of subsequent steps. In their experimental setup they compared the

case where one real-time task was executed per domain to the case where all application’s tasks

were executed in one domain. They observed that the average response time improves when only

one task is executed in one domain.

By providing isolation and managing the access to the hardware resources, a virtual machine

monitor allows multiple virtual machines to share the same physical machine safely and fairly. The

scheduler within the VMM is responsible for maintaining the overall fairness and performance char-

acteristics of the virtual machine system. Traditionally, maintaining the fair share of the processor

resources among the domains was the main focus of the VMM scheduler, and the scheduling of

I/O resources was left as a secondary concern. This could result in poor and unpredictable I/O per-

formance, making the virtual machine system less desirable for application whose performance is

critically dependent on I/O latency and bandwidth.

Ongaro et al. (2008) explored the relationship between domains scheduling in a VMM and I/O

performance. To verify the correctness of their assumptions, the Xen scheduler was used. They

examined a number of new and existing extensions to Xen’s Credit scheduler targeted at improving

the I/O performance.

They analyzed the impact of VMM scheduling on I/O performance using multiple guest do-

mains concurrently running different types of applications. They concurrently tested processor-

intensive, latency-intensive, and bandwidth-intensive applications to quantify the impacts of differ-

ent scheduler configurations on processor and I/O performance. Their tests revealed several insights

into the key problems in VMM scheduling.

For instance, they observed that both the Credit scheduler and the SEDF scheduler within

Xen achieve a good performance of fairly sharing processor resources among compute-intensive

domains. However, the schedulers do not achieve the same performance when bandwidth-intensive

and latency-intensive domains are executed.

The Credit scheduler in Xen uses the credit/debit system to fairly share the processor resources.

It is invoked whenever an I/O event is sent and boosts the priority of an idle domain receiving that

I/O event. However, the domains are not sorted in a run queue according to their remaining credits.

To improve the I/O performance, two key optimizations were proposed. First, avoid preempting

the driver domain while it is de-multiplexing I/O packets. Second, sort the run queue using the

22

domains remaining credits. These optimizations come from the observation that the I/O-intensive

domains will often consume less credits than the compute-intensive domains. In fact, I/O-intensive

domains are not debited any credit if they happen to block before the occurring of the scheduler

interrupt. When they become runnable later, their remaining credit do not influence their order in

the run queue, it only determines their state (UNDER or OVER) as mentioned earlier. A domain

is always enqueued after the last domain in the same state. In the case where there is multiple

compute-intensive domains that are inserted in the run queue before the I/O-intensive domain, it

will wait for all the preceding domains to finish before it can run, which could increase its response

time. However, by sorting the run queue based on remaining credits allows infrequently running,

but latency-sensitive domains to run sooner. These two optimizations have a positive effect on the

I/O performance of the virtual machine system.

2.3.4 RT-Xen

RT-Xen (Xi et al., 2011) integrates the fixed-priority hierarchical real-time scheduling theory into

the Xen VMM. The first reason for adopting the hierarchical scheduling theory is because the two-

level scheduling model proposed by this theory could be easily applied to the scheduling framework

of a virtual machine system (see Figure 2.6). In the case of RT-Xen, the root level refers to the

scheduling of virtual machines by the virtual machine monitor, and the second level corresponds

to the scheduling of the tasks by the guest operating system. The second reason is the availability

of a rich body of schedulability analysis tools that allow the formal verification of the scheduling

parameters at design phase.

Four different scheduling algorithms have been implemented within Xen’s scheduler, specif-

ically, the deferrable server, periodic server, polling server and sporadic server. An empirical

evaluation have been conducted and showed that the deferrable servers outperforms Xen’s default

Credit Scheduler. Recall that the Credit scheduler is the default scheduler in Xen, and provides a

form of fair share scheduling.

In the hierarchical scheduling theory, the scheduling abstraction is called a server. And in the

case of RT-Xen, it corresponds to a virtual CPU (vCPU). Each vCPU is characterized by a budget,

a period, and a priority. These parameters are specified by the developer at design phase. The four

server algorithms implemented by RT-Xen differ in the way the budget is consumed and replenished.

23

But all four algorithms uses the preemptive fixed-priority scheduling algorithm to select the eligible

vCPU.

In the case of the deferrable server algorithm, the vCPU executes the ready tasks until either

the tasks complete or the budget is exhausted. If the vCPU is idle, its budget is preserved until the

next period, when it is replenished. In the periodic server, if the vCPU has no task to run its idle

budget is consumed, as if it had an idle task that consumed its budget. The polling server differs

from the periodic server in the way that it discards its remaining budget immediately when it has no

tasks to run. And finally, the sporadic servers differ from the other in the way it is invoked. While

all the other servers are invoked periodically, the sporadic server is not invoked with a fixed period,

but rather, its budget is continuously replenished as it is used.

Four different measurements have been conducted to evaluate the performance of RT-XEN. The

deadline miss ratio (DMR) was used as a metric to evaluate the performance. The DMR is equal to

the total number of jobs that missed their deadlines, divided by the total number of jobs executed

by one guest OS.

Three different scheduling quantum were used to find the most appropriate value that leads to

an acceptable overhead. The scheduling quantum is the time interval at which the scheduling of a

virtual machine is triggered. The values of 1ms , 100µs, and 10µs, were used in the experimentation.

Recall that the default scheduling quantum in Xen is 10ms . It should be noted that while finer

grained quantum results in the more precise scheduling, it also incurs a larger overhead. The results

of the experiments showed that at 1µs the guest OS cannot even be booted while the 1ms gives a

better DMR than the 100µs.

In a second experimentation, the overhead of the context-switch between the virtual machines,

and the scheduling latency of VMs were evaluated. The four different fixed-priority scheduling

servers, the Xen Credit scheduler and the SEDF scheduler were evaluated. The results showed that

the scheduling latency in the four scheduling servers is higher than the Credit and SEDF ones. The

reason of this is attributed to the management of the three different queues, notably the run queue,

ready queue, and replenishment queue, used to implement the hierarchical scheduling framework.

However, the tests showed that the scheduling overhead ranges from 0.21% to 0.23% of the CPU

time which demonstrates the feasibility of supporting the fixed-priority servers in a VMM. Among

24

the four scheduling servers, the sporadic server algorithm has the higher overhead due to its complex

budget management functionality.

In a third experimentation, the impact of an overloaded domain was evaluated. The goal of this

measurement is to evaluate the capability of the RT-Xen VMM to guarantee the partitioning of the

CPU time between the guest operating systems. In the experiment, five guest domains were run

on top of RT-Xen. One of the five domains was configured as an overloaded domain. The results

showed that only under the Credit scheduler, the first guest domain misses almost all deadlines.

The first reason for this is due to the fact that all five domains were treated equally in a round-

robin fashion by the Credit Scheduler, causing the first domain to miss deadlines. Meanwhile under

the fixed-priority schedulers, that domain has the the highest priority, was scheduled prior to the

other, and able to meet all deadlines. The second reason is due to the fact that the first domain

has the smallest period, and its tasks have the tightest deadlines, which makes it more susceptible

to deadline misses. The authors argued that this observation illustrates the inability of the Credit

Scheduler to provide a finer grained scheduling, and confirmed its inability to deliver real-time

performance.

Another set of experiments were conducted to compare the soft real-time performance of dif-

ferent servers. In this case, five domains were configured to run with fixed budget and priority,

but periods varied according to three different policies: decreasing, even, and increasing share

(= budget
period). In the decreasing case, the first domain has the largest share and highest priority, for

instance the following values: (12 ,
1
5 ,

1
8 ,

1
10 ,

1
20) are the shares of domains 1 to 5 respectively. In the

even case, all domains have the same shares. And the increasing is the opposite of the decreasing

case. The total system load was varied from 30% to 100% in a step of 5, and for each value, five

real-time task sets were generated randomly and distributed among the five domains.

Again the metric of the deadline miss ratio was used to evaluate the performance of the dif-

ferent configurations. The results of the experiments showed that the Credit scheduler incurs the

highest capacity loss. The SEDF scheduler delivers a good performance in the most cases. And the

deferrable server delivers the best performance among all the RT-Xen servers. In contrast, when the

system is overloaded, that is, when total system load reaches 100%, the periodic server delivers the

worst performance. This is due to the fact that in a the periodic server, a vCPU continue to execute

an IDLE task until its budget is completely depleted. While at the same time, lower priority domains

25

with positive budget could execute a waiting tasks but they are not allowed to until the IDLE vCPU

exhausts its budget.

Based on the RT-Xen work, Lee et al. (2011) built the Compositional Scheduling Architecture

(CSA) which is an implementation of the Compositional Scheduling Framework (CSF). In the CSF,

a system consists of a set of components, where each component is composed of either a set of

subcomponents or a set of tasks. A component is defined by a tuple C = (W,Γ, A), where W

(Workload) is the set of tasks, Γ is a resource interface, and A is a scheduling algorithm used to

schedule W . A periodic task Ti in a component is defined by (ei, pi), where ei is the worst-case exe-

cution time, and pi is the period and deadline. The resource interface Γ is defined by the periodic re-

source model (PRM), Γ = (Θ,Π), where Π is the resource period and Θ the execution budget. The

Compositional Scheduling Framework is similar to the Hierarchical Scheduling Framework. In fact,

this second work complements the initial work of RT-Xen by providing two new work-conserving

periodic server algorithms to improve the soft real-time performance. Moreover, it proposes a new

method to select the optimal periodic resource model parameter for a given scheduling quantum for

the rate monotonic scheduling.

A periodic resource model Γ is optimal for a workload W if it has the smallest bandwidth

among all PRMs that can feasibly schedule W . The bandwidth of Γ is given by bw(Γ) = Θ
Π .

The minimum resource guaranteed by a PRM Γ is given by the supply bound function (sbfΓ),

which gives the minimum number of execution units provided by Γ over any time interval of length

t, for all t ≥ 0.

sbfΓ(t) =

y ·Θ+max(0, t− x− y ·Π), if t ≥ Π−Θ

0, otherwise

(2.4)

where x and y are given by:

• x = (Π−Θ) and y =
⌊

t
Π

⌋

, if W is harmonic; and

• x = 2 · (Π−Θ) and y =
⌊

t−Π−Θ
Π

⌋

, otherwise.

26

Note that a workload is harmonic if its tasks are pairwise divisible. The resource demand of a

component C = (W,Γ, A) with W = (T1, T2, · · · , Tn), and A is a rate-monotonic algorithm, is

calculated using the request bound function (rbfW,i) of W , given by:

rbfW,i(t) =
∑

k≤1

⌈

t

pi

⌉

· ei, for all 1 ≤ i ≤ n. (2.5)

Figure 2.8 illustrates the shape of the rbfW,i for a task τi during an interval of time t = 5 · pi.

Between the interval [0, pi] the rbfW,i = 0, because there is no job of task τi that arrived. Between

the interval [pi, 2 · pi] the rbfW,i = ei because only one job of task τi has arrived and requires and

an execution time equals ei. And between the interval [2pi, 3pi] the rbfW,i is equal to 2 · ei because

two jobs of task τi have arrived and require an execution time equals to 2 · ei. Similarly, the rest of

the graph could be interpreted.

0 5 10 15 20 25 30

job scheduled

release

time

not scheduled

deadline

completion1e

2e

3e

4e

re
q
u

es
t

b
o
u

n
d

 f
u

n
ct

io
n

0 p 2p 3p 4p 5p time

Figure 2.8: Request bound function.

Using the functions sbfΓ and rbfW,i, the Lemma 2.1 defines the schedulability condition:

Lemma 2.1. Given a component C = (W,Γ, A) with W = (T1, T2, · · · , Tn) and Ti = (ei, pi) for

all 1 ≤ i ≤ n. Then, C is schedulable if and only if,

∀1 ≤ i ≤, ∃t ∈ [0, pi], sbfΓ(t) ≥ rbfW,i(t)

Then, the necessary schedulability condition for C is bw(Γ) ≥ bw(W), where bw(Γ) = Θ
Π ,

and bw(W) =
∑n

i=1
ei
pi

. The difference, bw(Γ) − bw(W), is the resource interface overhead of

C. And, Γ is optimal for W if and only if it has the smallest interface overhead compared to all

interfaces that can feasibly schedule W .

27

The periodic server policy is used to implement the periodic resource model (Γ = (Θ,Π)) of

a component. Recall that the periodic server policy used in the initial work on RT-Xen is a non-

conserving work policy, that is, when a higher priority component is IDLE, it continues executing

until its budget is consumed, while a lower-priority component is ready to execute a workload. In

RT-Xen this is realized by running the IDLE virtual CPU while the higher priority domain idles

away its budget.

To enhance the non-work-conserving aspect of the periodic server (PS), two variants have been

proposed. The first is the work-conserving periodic server (WCPS) and the second is the capacity

reclaiming periodic server (CRPS).

The WCPS allows a lower priority non-idle component to run if the currently running com-

ponent still has a budget and is IDLE. In this case, both the budget of higher priority component

and the lower priority component are consumed. And the lower priority component continue exe-

cuting until, its budget is consumed, or the budget of the higher priority component is consumed,

or new tasks are ready to execute in the higher priority component. In term of schedulability, this

does not have any negative effects because it is only the idle budget time that is given to an another

component.

Similar to the WCPS, CRPS is a work-conserving policy. The budget of a component is re-

plenished to full capacity every period. The idle time of a component is given to another component

independently from its priority, lower or higher. However, only the given budget is consumed and

not the budget of the receiver like in the WCPS. In this way, a component could benefit from an

extra budget, that could be used to improve its tasks’ response time.

To guarantee the real-time constraints in RT-Xen, a schedulability analysis based on the Com-

positional Scheduling Framework theory is used. Given the period and budget of each component, a

system is schedulable if and only if, all components are feasibly scheduled by the VMM’s scheduler.

In theory, the calculation of the budget and period of each component assume that these parameters

could be assigned real values. These values are computed by iterating over the resource period from

1 to a manually chosen value, while assuming rational values for the budget. But in practice, a real

system such as Xen must deal with quantized scheduling. For instance, the scheduling quantum in

RT-Xen is 1ms . Thus, to use this approach in RT-Xen, and given the time granularity of RT-Xen,

the resource budget needs to be scaled to a multiple of the time unit, here equals to 1ms . For exam-

28

ple, if the optimal PRM of a component is (0.6, 1), then after rounding up the budget we get (1, 1).

However, this PRM is not optimal because, the bandwidth is equal to (1 = 1
1), if the PRM is (1,1),

while a PRM of (3, 4) gives a more optimal bandwidth (0.75 = 3
4).

To address this issue, a method to calculate the optimal bandwidth interface of a component

has been developed. It extends the compositional scheduling framework theory by fixing an upper

bound on the period of the optimal PRM of a component. Theorem 2.2 computes this upper bound

based on an initial feasible PRM, Γc, for a workload W = {(ei, pi); 1 ≤ i ≤ n} under RM policy.

Theorem 2.2 (Lee et al. (2011)). Suppose Γc = (Θc,Πc) is the minimum bandwidth PRM among

all PRMs that can feasibly schedule a workload W and whose period is at most Πc. Then, the

optimal PRM, Γopt = (Θopt,Πopt) for W , satisfies Πc ≤ Πopt ≤ MaxResourcePeriod(K,W),

where K =
Θopt

Πopt
and:

MaxResourcePeriod(K,W) = min
1≤i≤n

(

max
t∈CrTW,i(t)

K · t− rbfW,i(t)

K(1−K)

)

The CrTW,i denotes the set of time-coordinates of the critical points. A critical point is a

meeting point between the upper supply bound functions and a step-point of rbfW,i. The upper

supply bound functions (usbfΓ) is the minimum-slopped linear function that upper bounds sbfΓ.

The usbfΓ of a PRM, Γ = (Θ,Π), is defined by:

∀t ≥ 0, usbfΓ(t) = max(
Θ

Π
(t− (Π−Θ)), 0).

A set of experiments allowed to compare the soft real-time performance of the three periodic

server policies. These three algorithms differ in the way the idle budget is reused in the system. A

set of synthetic workload has been generated and distributed among five different domains. The

total system workload was varied from 0.7 to 1.0 in a step of 0.1. And three different period interval

have been used, [350 ms , 650 ms], [550 ms , 650 ms] and [100 ms , 1100 ms]. The optimal

periodic resource model of each domain was computed using the condition of Theorem 2.2. The

deadline miss ratio (DMR) and the responsiveness (= job’s response time
job’s deadline

) were the metrics used to

evaluate the run-time performance of the tasks executed by the system.

29

The results of the experiments showed that the CRPS achieved the better performance com-

paring to PS and WCPS in terms of deadline miss ratio. This is explained by the fact that the

CRPS benefits from its dual work conserving and capacity reclaiming strategy in improving the

performance of low priority domains.

To validate these results, a set experiments have been conduct using real world workload from

the avionics domains. The results showed that the CRPS and WCPS outperforms the PS in terms

of deadline miss ratio. In terms of responsiveness, the CRPS achieves better performance over

WCPS and PS in particular when the total interface overhead is high, that is, the difference between

the periodic resource model given to a domain URM , and the total workload of a domain UW ,

(URM − UW), is high. Conversely, if this difference is low then there is no much improvement in

the responsiveness. This is explained by the fact that if the interface overhead is high means that the

domain was given more resources than it really utilizes, resulting in a more available idle time. And

as mentioned before, the WCPS and CRPS take their advantage from the reuse of this idle time.

In the case where there is no idle time, all the policies behaves similarly.

2.3.5 Real-Time Xen-ARM

Hwang et al. (2008) ported the Xen virtual machine monitor to the ARM architecture. Xen-ARM

has been adapted to be suitable for usage in mobile smart phones subject to real-time constraints

(Yoo and Yoo, 2013). One of the limitation of the Xen-ARM is the size of the scheduling tick and its

integer value. In the case of mobile phones, the tick size affects the overall response time, context-

switch overhead and battery lifetime. Small tick size is harmful because tick interferes with CPUs

power saving mode, and it incurs considerable TLB and cache flush overheads. In contrast, large

scheduling tick size is bad for responsiveness because it implies longer scheduling latency. The

default scheduling tick in Xen-ARM is an integer value equals to 10ms .

The real-time scheduler in Xen SEDF (simple earliest deadline first) requires that each virtual

machine VMk have to be assigned a period Πk and a budget Θk. The value of these parameters

have to be presented with the integer number of ticks. However, existing compositional scheduling

studies assume that the execution time, Θk, is a real number, which could not be used in Xen. Thus,

the budget of a virtual machine have to be rounded up in order to be used in Xen. For example, if

a VM has a budget equals to Θ = 17.6, then a new Θ′ = ⌈Θ⌉ = 18 must be used instead. This

30

additional amount of CPU bandwidth given to a VM is identified as the quantization overhead, and

considered as a CPU wastage.

In compositional scheduling, the ratio (ΘΠ) is the CPU bandwidth. The quantization overhead

could be defined as follows:

∆(Π) =
Θ′

Π
−

Θ

Π
=

Θ′ −Θ

Π
(2.6)

The task set executed by a guest OS is denoted, τk = {Ti(pi, ei, di)}, where each task Ti(ei, pi, di)

consists of an execution time, ei, a period, pi, and deadline, di. The total workload of this task set

is calculated by :

UW =
∑

i

ei

pi
(2.7)

To ensure the intra-VM schedulability, the virtual machine must be allocated a periodic resource

model Γk = (Θk,Πk), which the ratio Θk

Πk
must be greater than the UW :

Θk

Πk
≥ UW (2.8)

The difference between the periodic resource model Γk reserved to a VM (VMk), and the total

workload executed by VMk, is defined as the abstraction overhead, Ψ, and derived as follows:

Ψ(Πk) =
Θk

Πk
− UW (2.9)

To find an optimal scheduling period that satisfies the two constraints (Equation (2.6) and Equa-

tion (2.9)), Seehwan Yoo and Chuk Yoo proposed a new algorithm called SH-Quantization. The

algorithm has three input parameters, the total utilization of workload in the guest OS, UW , the min-

imum period of tasks in the guest OS, Pmin, and the intra-VM scheduling algorithm, A. It returns

a pair (Θ,Π) that is optimal with regards to the two constraints.

The idea of the algorithm is first, to calculate a set of pair (Θ,Π) that meets the intra-VM

schedulability. Second, for each pair in this set, it finds the scheduling parameter Θ that has the

minimum quantization overhead. Note that the algorithm searches the scheduling parameter only

when the lower bound of abstraction overhead is smaller than the upper bound of the quantization

overhead.

31

To validate the algorithm, an implementation has been proposed in Xen-ARM VMM. A new

system call was introduced into Xen-ARM programming interface to allow the guest OSs to request

from Xen-ARM the computation of their resource interface (Θ,Π) using the SH-Quantization algo-

rithm at run-time. To use this system call, the real-time OS, µcOS-II, has been modified to request

the service from Xen-ARM each time the input parameters (UW , Pmin,A) are changed.

The implementation has been evaluated on a Freescale’s imx21-ADS ARM hardware platform,

containing a 266MHz ARM9 processor and 64MB memory size.

A set of experiments was conducted to validate the viability of the SH-Quantization algorithm

with multiple virtual machines. A test with two virtual machines and a second test with three VMs

were conducted, and the results showed that no deadline miss is observed in both cases.

Also a set of experiments using a real world workload from the avionics domain were conducted.

The results revealed that in some cases the quantization overhead could be larger than the abstraction

overhead. A second interesting remark from the results is that, depending on the workload, the gap

between the total workload utilization UW and the total CPU bandwidth that take into account the

abstraction overhead and the quantization overhead could reach 45.7%. Which means that the two

overheads have significant impact on actual CPU bandwidth allocation.

2.3.6 Virtualization for safety-critical system

XtartuM is a native-VM system designed to meet safety-critical real-time application requirements

in the aerospace domain. Initially implemented on the x86 architecture, it has been ported to the

LEON2 (Masmano et al., 2009), LEON3 (Masmano et al., 2010) and LEON4 (Carrascosa et al.,

2013) 32-bit processors compliant with the Sparc V8 ISA (instruction set architecture). The port

to the LEON3 processor enabled the implementation of full spatial isolation through the use of

the MMU8. While the precedent version provided only read-only memory access to the partition9,

which reported as very problematic in the case of a trap raised by a partition when it is trying to write

in write-protected memory area. This trap is received several cycles later, which complicated the

emulating of the instruction and finding the offending partition, while an MMU trap is synchronous.

The port to the LEON4 added the support of SMP multicore to XtartuM.

8Memory Management Unit.

9In the context of XtartuM a partition is equivalent to a virtual machine.

32

XtartuM uses paravirtualization and dedicated device techniques to allow a modified guest

operating system to access the hardware platform. Paravirtualization is a technique common to

many virtual machine monitors, it allows a modified guest OS to request services from the VMM

through a set of special system calls, referred to as hyper-calls. In the case of XtartuM, privileged

instructions of a guest OS are replaced by these hyper-calls, for instance to enable or disable the

interrupts and to use a virtual timer device.

The use of paravirtualization is due to the fact that the Sparc V8 ISA provides only two privilege

levels, user and supervisor mode. This prevents a guest operating system to run correctly because it

is executed at user mode and not at supervisor mode in order for XtartuM to guarantee the spatial

isolation. Thus the guest operating system needs to be ported on top of XtartuM.

To enforce the temporal isolation between the partitions, XtartuM implements a cyclic schedul-

ing policy as recommended by the ARINC 653 specification. Each cycle is divided into slots and

each slot is allocated to a partition. The duration of a slot given to a partition is defined statically

at design time. The cycle is then repeated periodically. The VMM ensures that a partition starts at

a specified time and runs for a specified amount of time slot. Each partition schedules its internal

tasks using its own policy.

To improve the responsiveness of a partition XtartuM allows the direct management of interrupt

of non critical devices by the partition itself. Furthermore, each partition is given a priority to allow

the VMM to prioritize the events and interrupts directed to that partition. The interrupt destinated to

high priority partitions are treated before the one of the low priority partitions. In addition, XtartuM

assigns the system resources such as memory, I/O registers, and devices to specific partitions. In

order to reduce design complexity and increase the reliability of the implementation, the VMM is

designed as a monolithic, non-preemptable kernel. The authors argued that this restriction does not

impact the performance of a small VMM implemented using simple and fast code.

A development board including a LEON3 50MHz with 128MB of RAM and 16MB of flash

PROM has been used to evaluate the performance of XtartuM. The idea of the experiment is to mea-

sure the performance loss due to partition context-switches performed by XtartuM. This overhead is

the time needed to stop the execution of a partition and to resume the next partition in the scheduling

plan.

33

The scenario consists of several bare partitions that increase an integer counter and a (reader)

partition that reads the counter values of the other partitions. This partition is executed in last slot

in the cycle with enough time to print all counter values through the serial port.

To measure the duration of the context-switch one tracing-point was inserted in the XtartuM

kernel before and after the context-switch. The results showed that the overhead of a context-switch

was equal to 100µs in average and 116µs in maximum.

However, repeating the same scenario and increasing the number of partition context-switches

did not affect the individual performance of a partition. That is, the difference between 3 context-

switches and 150 context-switches for the same duration of the experiment results in only 0.8% of

performance loss.

The authors argued that the support of MMU in the LEON3 is beneficial to the VMM even if

it adds more CPU cycles to the overhead in comparison to the LEON2, due to the translation from

virtual to physical space. And this though the presence of a TLB10 which mitigates this effect. And

the flush of the whole TLB is avoided at a context-switch due to the context tag provided by the

Sparc V8 implementation. But due to the small size of LEON3’s TLB, the size of the memory

page must be selected carefully. For instance, as the LEON3’s TLB has 32 entries, it covers only

to 128KB of memory if the page size is 4KB (4KB*32), which could generate some TLB miss and

therefore increase the overhead. However, the authors indicated that the overhead of a page fault is

not considered since there is no page fault.

The port of XtartuM to multicore processor modified many of its properties. The major mod-

ification concerned the implementation of a fine-grained synchronization mechanism that grants

exclusive access to the critical sections of XtartuM by protecting shared data structures through

spin-locks to avoid the race conditions.

The second major modification concern the scheduling, which however is independent from

the port to multicore version, is the use of fixed priority scheduling. This is because in cyclic

scheduling, each core has its own cyclic plan, and this could cause a delay problem when handling

asynchronous interrupt. Because an interrupt allocated to one partition may stay pending until the

partition is scheduled.

10Translation Lookaside Buffer.

34

To evaluate the multicore implementation of XtartuM, a quad-core 32-bits LEON4 50MHz

processor with (4*4KB) instruction and data L1-cache, and a shared 256KB L2-cache, an MMU,

an ioMMU, and two shared FPUs has been used.

The Dhrystone and CoreMark benchmarks were used to evaluate the performance of XtartuM

on the multicore. The comparison of the benchmarks executed natively on the hardware and on a

partition revealed that the performance loss is about 1% for the CoreMark. In the case of Dhrystone,

the performance loss was negligible because this benchmark executes only simple integer operation

and do not require the intervention of the VMM.

While the CoreMark test executes a set of algorithms that generate almost 2235 stack window

overflow and underflow that cause traps which are handled by the VMM. And the handling of a trap

forces the VMM to perform a switch context. Note that in the experiment the partition running the

benchmark was allocated 30 second of time slot, which is sufficient to complete the execution of

the test without preempting the partition.

A second test using the CoreMark benchmark and varying the partition time slot from 30 second

to 1000ms , 500ms , 100ms and to 10ms revealed that the performance loss increase with the de-

crease of the time slot duration. At 10ms time slot the performance loss reaches 2.5%. This is

attributed to the overhead of context-switch at the end of each slot, which is estimated to 151µs.

In comparison with our precedent analysis of kvm and microkernel-based virtual machine sys-

tems, the review of XtartuM clarified multiple points regarding the overhead induced by the virtu-

alization. We believe that the simple memory management model and a set of simple test cases is

essential to understand the overhead of virtualization because the degree of uncertainty regarding

the source of overheads increase significantly with the complexity of the hardware, the software im-

plementation, the guest OS and the test cases. In the following paragraph, we continue our review

of another simple virtual machine system similar to XtartuM.

Tavares et al. (2012) developed a native-VM system compliant with the ARINC 653 standard

and targeting an aerospace application. It was implemented on the PowerPC 405 processor embed-

ded in a Xilinx FPGA. The temporal isolation between virtual machine is guaranteed through the

use of a real-time scheduler that allocates to each VM a fixed time slot. Spatial isolation is realized

by running the guest operating system at user-mode and the VMM at privileged mode of the proces-

35

sor, and through the use of the Memory Management Unit to control the virtual to physical memory

mapping of the guests.

Traditionally, when an operating system is supposed to run at privileged mode because it uses

a set of privileged instruction to control the hardware and access all the registers. However, by

running the operating system in user-mode, will force every execution of a privileged instruction by

this guest OS to generate an exception. This exception is captured by the VMM and emulated. The

VMM uses the user privilege bit, the instruction address translation bit, and data address translation

bit in the Machine State Register of the processor to determine what is the original processor mode

of the code that generates the exception. If the code that generates the exception was supposed

to run in user mode then the exception is forwarded to guest operating system. And if the code

that generates the exception was supposed to run at privileged mode, that is, the exception was

generated by the kernel of the guest OS then the instruction is decoded and inspected to determine

the operation. The operation is then executed by the VMM on behalf of the guest OS and the result

is delivered to the VM if it is still schedulable, otherwise it will be delivered the next time the VM

is activated.

The VMM intercepts all address space updates and emulates them because the guest operating

systems are not allowed to use the Memory Management Unit. The implementation of the VMM

benefits from the PowerPC 405 software-managed and tagged TLB to separate VM’s address spaces

and virtualize the MMU.

The VMM reserves statically at compilation time for each VM an address space in the real

physical memory. Specifically, the VMM uses the first 64KB page of the physical address space

(0x00000000 - 0x0000FFFF), and then, it allocates for the first VM the first 64KB page of the

second 16MB page which corresponds to the physical address space (0x01000000 - 0x0100FFFF),

but the VM is allowed to access the whole 16MB page real addresses (0x01000000 - 0x01FFFFFF).

Similarly, it allocates for the second VM the physical address space (0x02000000 - 0x02FFFFFF),

and for the third VM the physical memory address space (0x03000000 - 0x03FFFFFF).

Then using a set of mapping operations, the VMM translates the real addresses of a VM into

virtual addresses of the VMM if the VM is running in real mode, or the virtual addresses of a VM

into virtual addresses of the VMM if the VM is running in virtual mode.

36

Using the TID bit in the TLB register to tag each TLB entry, the VMM avoids to flush all

the TLB when performing VM context-switch. The VMM also provides a hypercall to the guest

operating systems to request an MMU update and minimize the number of VM exit/entry to and

from the VMM. However, this optimization forces the modification of the guest OS source code.

The evaluation of the VMM showed that the most expensive operation is the saving of the

virtual machine CPU state, which was estimated to 2963 cycles, followed by the programmable

interrupt timer which is equal to 1393 cycles. The instruction decoding overhead is equal to 351

cycles.

Researchers from the real-time system group at the Commissariat à l’Energie Atomique (CEA-

List) developed PharOS (Lemerre et al., 2011) a real-time operating system for mixed-criticality

system targeting the automotive domain. PharOS combines two real-time programming paradigms:

the time-triggered and the event-triggered models. The time-triggered tasks are defined using the

time-constrained automata model to specify their temporal requirements. Temporal isolation among

time-triggered tasks is then ensured by PharOS kernel using these informations. The isolation be-

tween time-triggered and event-triggered tasks is realized by running the tasks from the two models

onto separate cores of the hardware, that is, a set of cores is reserved to time-triggered tasks and

the other set is dedicated to the event-triggered tasks. The spatial isolation between the tasks was

ensured by associating for each task a memory context and protecting each context using a hardware

memory protection unit.

PharOS was also used as a virtual machine monitor to build an automotive mixed-criticality

system. The Trampoline RTOS was used as a para-virtualized guest on top of PharOS. Trampoline

(Bechennec et al., 2006) is an RTOS compliant with the OSEK/VDX automotive standard for soft-

ware development. Trampoline was modified in order to replace its privileged instructions by a set

of hyper-calls to PharOS. The Trampoline guest was encapsulated in a time-triggered task that is

executed periodically every 10ms and given a 10% of the CPU resource. For each release of the

Trampoline task, the PharOS emulates a timer interrupt to signal the scheduling tick for Trampoline.

The prototype was evaluated using two real-time applications, a first set of six critical tasks

controlling some system commands, a CAN bus communication and a sensor signal mechanisms

were implemented directly on PharOS, and a second set of tasks implementing a diagnostic and

aliveness monitoring function was implemented on top of Trampoline.

37

A first test consists of verifying the spatial isolation between Trampoline and PharOS by making

a memory read/write operation from Trampoline tasks to protected memory in PharOS. The test

showed that the error was detected and the Trampoline task was restarted. A second test consists

of verifying the temporal isolation by inserting an infinite loop into a Trampoline task and showing

that this erroneous behavior did not affect the other tasks of PharOS. However, no overheads or

latencies measurement was conducted using this prototype.

Meanwhile, in a discussion with our industrial colleagues, they were interested in developing

a solution for automotive application using the Trampoline as an AUTOSAR compliant RTOS and

Linux-Genivi as an infotainment OS, but using POK as a virtual machine monitor. Although, they

were aware that Trampoline was already para-virtualized on top of PharOS, they suggested to in-

vestigate POK as a virtual machine monitor. POK (Delange and Lec, 2011) is a real-time operating

system compliant with the ARINC 653 avionic standard. This property allows it to securely co-

locate multiple applications on the same processor. Note that these applications were previously

deployed on separate hardware. POK already provides time and space isolation through the use of

partitions. Each partition is allocated a certain amount of CPU resource as if it was running on a ded-

icated processor, and is given a unique memory segment that is protected from the other partitions.

If we suppose that a partition contains a guest operating system and its application, POK could be

considered as virtual machine monitor similar to XtratuM. Obviously, this requires that the guest

OS need to be para-virtualized using POK API, or extending POK to implement the new hardware

assisted virtualization mechanisms to support unmodified guests.

Summary. The review of these studies regarding the existing virtual machine system aimed to

understand how these systems have been designed and adapted to respect the real-time system re-

quirements.

From the discussed studies we observed that the real-time issues in a virtual machine system

were treated from two main perspectives, first from a scheduling theory perspective, and second

from an implementation perspective.

From the scheduling perspective, the researchers were aware that there is an overhead when

using a virtual machine system to build a real-time system. But they were more concerned about

building new theoretical tools that take into account this overhead and allow to build more efficient

real-time virtual machine systems.

38

Specifically, the Hierarchical Scheduling Framework was a common solution adopted by mul-

tiple studies. The HSF is a design that decomposes the scheduling into two levels, one global-level

for scheduling virtual machines, and a second local-level for scheduling real-time tasks inside each

virtual machine. The HSF benefits from a solid theoretical background that gives the system de-

signer a set of analytical tool to verify the correctness of the system. The experimentation of the

HSF in practice showed the effectiveness of such a design in improving the real-time performance

of a virtual machine system.

From an implementation perspective, the studies used simple hardware mechanisms, such as

simple memory management model, and simple software implementation of the VMM, and were

more focused on low-level overhead measurement without paying enough attention to real-time

performance at application level. We argued that this perspective is very useful because in a virtual

machine system built upon complex hardware mechanisms, and a complex software implementation,

there is a lot of uncertainty about the source of the overhead.

However, we believe that both approaches are necessary and we aimed at combining these two

approaches to help reducing the degree of uncertainty about the source of virtualization overhead.

In our work, we initially treated the problem of adapting a virtual machine system to real-

time system from a practical perspective. We were more concerned about virtualization overhead

and its impact on real-time properties. Our assumption is: if the current and the future hardware

architectures allow to run a guest operating system without any modification to its source code, then

we should be able to obtain the same performance as if the operating system was running on a real

hardware. Because the guest operating system is supposed to run on a virtual hardware at the same

speed rate as if it was running on a real hardware. And if this assumption is not verified, then our

question is: what are the hardware mechanisms and the software implementation that prevent the

guest operating system from achieving the required real-time performances?

The idea behind this question comes from the fact that we are considering the problem from

an operating system developer perspective. As an OS developer, our main objective is to support

as much applications as possible, thus, if we are able to state that the guest OS that is running on a

virtual hardware present the same characteristics as on a real hardware, then we can state that the

guest OS is able to support the same range of application that it is able to support as if it was running

on a real hardware. Otherwise, we have to evaluate the degree of performance decrease.

39

Therefore, in our work we are more concerned about evaluating the fine-grained internal over-

heads and latencies of an RTOS. Because the application performance depends on these fine-grained

overheads and latencies.

While paravirtualization could be an efficient solution to reduce the virtualization overhead,

we do not consider it in our evaluation of the virtual machine system, because we neither want to

depend on the availability of source code for the guest operating systems nor make the extra effort

of porting operating systems to a paravirtualization interface especially when architectures such as

Intel x86, ARM, and PowerPC provide hardware virtualization extensions that allow to avoid such

a porting effort.

We are more interested in using overhead-aware scheduling algorithm based on solid theoretical

foundation to resolve the real-time issue in a virtual machine system.

In the next chapter, we present our methodology to evaluate a virtual machine system. We first

define the hardware and the software mechanisms required to build an efficient real-time virtual

machine system then we present the results of the evaluation.

2.4 RTOS Configuration

In this section, we review most relevant work with respect to RTOS configuration. By configuration

we mean the adaptation of the RTOS internal resource allocation techniques such as the scheduling

and synchronization mechanisms to the requirements of the supported application.

2.4.1 Composite

The Composite component-based OS (Parmer, 2010) is a research operating system focused on

reliability, predictability, and configuration. The configuration is enabled by the use of user-level

components, where each component is independent from the others, and interacts with them through

a contractually-specified interface. Each component defines one specific functionality.

Composite uses user-level components to implement scheduling policy, memory management,

and synchronization. The decoupling of the component’s interface from its implementation enables

those policies to be changed and used in a system that provides behavior adapted towards the appli-

cation’s goals.

40

The communication between components relies on a set of optimized Inter-Process Commu-

nications. The invocation of functions in a component interface involves two system calls and

switching between two protection domains11, and back.

A prototype of Composite has been implemented using the HijackCOS
Linux (Parmer et al., 2012)

module. HijackCOS
Linux is an interposition layer inserted between the hardware and each OS to mul-

tiplex the hardware between them. In such design, Linux acts as the host OS, and manages the re-

sources that cannot be shared such as device drivers. HijackCOS
Linux intercepts the kernel entry points,

and multiplexes hardware events to either Linux or Composite. HijackCOS
Linux is implemented as Linux

kernel module, and Composite is executed as the highest priority task in Linux. Figure 2.9 illustrates

the overall architecture of HijackCOS
Linux.

COS

Hardware (I/O devices)

schedule / dispatch

Host Linux kernel

background task

IDT

Kernel module

syscall interception

interrupts

interrupts descriptor table

Figure 2.9: Schematic of the overall architecture of HijackCOS
Linux.

Inside HijackCOS
Linux there is a Hardware Abstraction Layer responsible for the page-table and

physical memory management. It also provides facilities to retrieve information about the timer

interrupts (e.g. frequency), and specify the handler function. It allows Composite to notify Linux if

there is no current activity.

The second major role of HijackCOS
Linux is to multiplex between Composite and Linux. In par-

ticular, Hijack intercepts the system calls, interrupts, and exceptions, then it dispatch them to the

appropriate handler. Depending on the OS that a user-process that generated the event belongs to,

HijackCOS
Linux decides where to redirect it. For instance, a system call executed by a Linux process is

redirected to the Linux kernel, otherwise it is dispatched to the Composite kernel.

The reason of co-locating the Composite OS and the Linux is to benefit from the support for the

architectures and device drivers provided by Linux. Moreover, using the configuration of Composite

11A protection domain is equivalent to an address space.

41

and co-locating it with Linux, allows to build new system requiring adaptation that could be difficult

to integrate into Linux.

Dividing the system into components provides the opportunity for increased system fault isola-

tion as each component is placed into its own hardware-provided protection domain at user-level. A

fault due to malicious or erroneous code in any component is prevented from trivially propagating

and corrupting the memory of other components or the trusted kernel.

One notable limitation in this approach is the expensiveness of the switching between hardware

protection domains in comparison with function call. This is mainly due to overheads in crossing

between protection levels, and the necessary invalidation of hardware caches. Communication be-

tween separate protection domains requires these switches and imposes significant overhead on the

system. This overhead prevents some applications from meeting performance or predictability con-

straints, depending on the inter-component communication patterns and overheads of the system.

The Mutable Protection Domains (Parmer et al., 2012) was proposed as a solution to dynami-

cally leverage the trade-off between the granularity of fault isolation, and the performance of the

system. Mutable Protection Domains allows protection boundaries to be placed and removed dy-

namically as the performance bottlenecks of the system change. When there are large communica-

tions overheads between two components due to protection domain switches, the protection domain

boundary is removed, if necessary. In areas of the system where protection domain boundaries have

been removed, but there is little inter-component communication, boundaries are re-installed.

2.4.2 ExSched

The ExSched framework (Åsberg et al., 2012) is an approach to easily support new multicore schedul-

ing algorithms into Linux without modifying the kernel. The authors argued that adopting an ap-

proach based on non-intrusive solution will benefit to academia and industry. Easier installation

of frameworks and schedulers on various software platforms could increase the re-usability of al-

ready implemented solutions in academia. In the industry, this would make it easier to update to

new kernel versions since loadable kernel-modules require much less (or no) kernel modifications

compared to patches.

The ExSched framework provides a set of services to implement different schedulers as external

plug-ins for different OS platforms. It also provides an API (Application Programming Interface)

42

for user programs. Neither scheduler plug-ins nor user programs will access OS native functions.

The core component of ExSched is a kernel-space module that controls the CPU scheduler via

scheduler-related functions exported by the underlying OS.

Hardware (I/O devices)

Exsched Library

Host Linux kernel Exsched core Kernel module

schedule()

wake_up_process()

sched_setscheduler()
ioctl()

user space

Exsched plugin

Figure 2.10: Schematic of the overall architecture of ExSched.

As an example, to switch between tasks, to migrate tasks to other cores, and to change the

priorities of tasks, ExSched relies on the primitives of the underlying OS. The ExSched core is

built as a character device and its installation creates an accessible device file /dev/exsched. The

scheduler plug-ins request the ExSched kernel module using the ioctl() system call. In return, the

ExSched core calls back the scheduler plug-ins using an appropriate set of functions implemented

in the plug-ins. Figure 2.10 depicts the overall architecture of ExSched.

The ExSched framework has been implemented in the Linux kernel and in VxWorks. In

Linux, ExSched uses a real-time scheduling class, rt sched class to isolate real-time tasks from

non-real-time tasks. The non-real-time tasks are scheduled by the fair share scheduling class,

fair sched class, in Linux.

The implementation of the ExSched core module relies on the primitives functions exported

by the underling OS platform. In Linux, it uses the schedule() function to switch between the

current and the highest-priority ready task. It uses also the sched setscheduler(task, policy, prio)

function to set the scheduling policy and the priority of the task, and the setup timer(timer, func,

arg) function is used to associate the timer object with a given function and its argument.

The VxWorks implementation of ExSched do not differ much from Linux except that there is

no need to ioctl() calls because VxWorks does not support user-space mode. Furthermore, there is

no need for scheduling class because all tasks in VxWorks are real-time tasks.

43

The ExSched framework has been used to develop six different schedulers, two are hierarchi-

cal schedulers and four of them targeted the multicore scheduling algorithms (Åsberg et al., 2012).

The two hierarchical scheduling plug-ins in ExSched differ in the policy employed at the global

scheduling level, one plug in uses the EDF and the second uses the FP policy.

ExSched comes with two global multicore scheduling plug-ins. The G-FP (global fixed-priority)

scheduler selects the highest priority tasks and dispatch them in global scheduling fashion on the

available cores. The FP-US classifies tasks as heavy and light tasks based on the CPU utilization

factors. The heavy tasks are statically assigned the highest priorities, and light tasks are not changed.

ExSched also provides two partitioned scheduling plug-ins. The FP-FF uses a fixed-priority first-fit

heuristic to assign tasks to CPUs. And the FP-PM is a semi-partitioned scheduling that migrates

tasks across multiple CPUs if the tasks cannot be assigned to any CPU by a first-fit allocation.

The results of the overhead measurement of the implemented multicore scheduling algorithms

as ExSched plug-ins validate the theoretical assumption of the corresponding algorithms.

One limitation of the ExSched framework raises when the underlying operating system do not

provide such primitives functions. For instance, the schedule() function or a similar primitive is

not available by default in every operating system. This prevents from easily porting and reusing

the ExSched framework. A second limitation of the Exsched is that core module is executed at

kernel-space, this represents a risk because a fault in the module is not isolated from the rest of the

kernel and could crash the whole system.

2.4.3 LITMUSRT

LITMUSRT (Brandenburg, 2011) is a native real-time Linux kernel, developed essentially to explore

the implementation of the state-of-the-art multiprocessor scheduling algorithms and synchronization

protocols.

The software architecture of LITMUSRT is almost similar to the architecture of ExSched.

LITMUSRT is composed of four parts: the core infrastructure, a set of scheduler plug-ins, the user-

space interface, and the user-space library. The core infrastructure is the connection layer between

scheduler plug-ins and the Linux scheduling hierarchy, as shown in Figure 2.11.

44

From one side, the core infrastructure is integrated in the Linux kernel by implementing the

Linux scheduling interface consisting of 22 functions. From the other side, the core interface pro-

vides an interface to the scheduler plug-ins.

Whenever a scheduling decision is required, the Linux scheduler uses the set of its interface

functions to request LITMUSRT which process to dispatch, LITMUSRT in its turn, invokes the

functions of its interface with the active scheduler plug-in to select the highest priority real-time

task to schedule.

Hardware (I/O devices)

liblitmus

Linux Scheduler pluging

system calls

user space

kernel space

process management

and scheduling

file system

system calls

integration
default Linux

P-FP

P-EDF

C-EDF

G-EDF

PD2

active plug-in

Figure 2.11: Schematic of the overall architecture of LITMUSRT.

This layer of indirection between the scheduler plug-ins and Linux is required to factor the

common functionality of multiple plug-ins, such as migration mechanisms, tracing, and debugging.

It also avoids to change every scheduler plug-in each time the Linux scheduling interface changes

because this interface changes frequently between versions.

The user-space interface and library are useful to program real-time application and to configure

the needed scheduler plug-in. Since the real-time tasks are regular Linux processes, the user-space

library provides system calls to create the real-time tasks by specifying the task execution time and

period. It also allows to create, lock, and unlock the real-time semaphores.

The flexibility of the LITMUSRT infrastructure allows to implement multiple scheduling poli-

cies. Global scheduling policy such as the G-FP (global fixed priority) and the G-EDF (global

earliest deadline first) have been developed. In global scheduling, the tasks are allowed to migrate

between processors at runtime. The P-FP (partitioned fixed priority) and the P-EDF (partitioned

earliest deadline first) scheduling algorithms have been also implemented. In the case of partitioned

scheduling, tasks are statically mapped to processor and never migrate.

45

Moreover, clustered scheduling algorithm has been integrated. This hybrid scheduling policy

combines global and partitioned policies. Here, a cluster is a set of CPU cores that are grouped

together according to their cache hierarchy. The task set is then partitioned into multiple task subsets.

Each task subset is associated to a cluster, and tasks migrate among the cores within the cluster.

Nevertheless, they are not authorized to migrate to core in other clusters.

The LITMUSRT user can simply change the scheduler at runtime using the tool provided by

the user-space library. In comparison with ExSched, the LITMUSRT core infrastructure requires

the source code modification (patch) of the Linux kernel. In contrast, ExSched core infrastructure

is implemented as a module, that could be integrated into Linux without any need to patch or to

compile the kernel.

While LITMUSRT offers an efficient and valuable platform to test new scheduling algorithms

and synchronization protocols, it remains a research operating system.

2.4.4 Microkernel

The microkernel design principles recommend to implement in the kernel only the necessary ab-

stractions to build a complete operating system. The necessary abstractions are, the address spaces,

the threads, and the inter-process communication. The rest of the ”primitives” such as, memory

management, networking, file system, device drivers, paging, and more, should be implemented by

servers outside the kernel. Nowadays, commercial products based on microkernel design approach

exists. Microkernel-based RTOS such as QNX Neutrino and PikeOS have been certified to be used

in real-time safety-critical systems. Their wide adoption in domains such as avionics, automotive,

medical devices, and military system validates the efficiency of their design approach.

Among the advantages of such a design, we can mention the flexibility and extensibility offered

to the system. It is possible to easily and effectively adapt it to new hardware or new applications.

Only small set of servers need to be modified or added to the system, and this without affecting

the correctness of the already developed kernel and other servers. Another advantage concerns the

safety of the system. Erroneous functionality in servers are isolated as normal application malfunc-

tion.

With respect to our configuration requirement, the microkernel approach offers an interesting

opportunity to integrate new strategies to the operating system. For example, by implementing

46

new different scheduling policies in different user-level servers. It is possible to select the needed

resources allocation strategy just by including in the final system the server that implements the

strategy without any need to modify the kernel.

Based on the advantages that offer this design in terms of general flexibility and power, we

decided to use a microkernel-based OS as an implementation platform for our second requirement,

which is the configuration of the operating system without modifying its internal structure and

implementation.

2.4.5 OveRSoC RTOS Model

In the OveRSoC project (Miramond et al., 2009), a real-time operating system for Reconfigurable

System-on-Chip platform has been designed. The RTOS and the RSoC hardware platform have

been implemented using SystemC (Accellera, 2014) system-level simulation language.

The OveRSoC component-based RTOS model offer an easy way to configure the operating

system by allowing the user to change each component independently from the other components.

Using the OveRSoC RTOS model, industry practitioners would benefit from the ability to select and

deploy resource allocation techniques commensurate with their particular applications.

The results of the experiments we made using the OveRSoC RTOS model, lead us to propose a

transformation from the simulation model into an executable model, in order to run the RTOS on a

real hardware.

The specification of our work is to transform the OveRSoC RTOS model into an executable

model, and to preserve the configuration characteristic offered by its design.

To implement this specification we proposed a two-step approach. First, the OveRSoC RTOS

model could be transformed into executable programs on a real hardware by implementing some

of its components simply using some modules from an existing real-time operating system. More

precisely, by reusing functionalities such as the boot-loader, the process abstraction, the memory

management service, and the drivers from an existing RTOS. Second, in order to preserve the cus-

tomization property of the OveRSoC RTOS model, a middleware could be deployed on top of the

RTOS in order to implement the customized functionalities from the OveRSoC OS model that are

not supported natively by the RTOS.

47

We will detail this idea in the Chapters 5 and 6. In Chapter 5 we explain how the OveRSoC

RTOS model could be transformed automatically into an executable model. Then, in the Chapter 6

we present the implementation of the middleware on top of an existing operating system.

Summary. The leader of the software team at SpaceX (Rose, 2013), a company that build space

vehicles such as the Falcon, Dragon and Grasshopper vehicles used by the NASA, declared that the

Linux operating system was embedded in the space vehicles to control the flight software and put

the spacecraft into orbit. Linux is also used to control ground station and by the developers to build

the software.

The team leader also mentioned that using Linux to build safety-critical software does not mean

that they use an ”off-the-shelf distribution kernel”. Instead, they spend a lot of time evaluating a

kernel for their needs, and one of the area they focus on is scheduler performance and wake up

latency. For instance, they stress the network and test the scheduler performance. However, the

developer declared that once a kernel is chosen ”they try not to change it”.

The leader of the PREEMPT RT project (Gleixner, 2013) announced that in the future there

will be two options for the real-time Linux patch, whether the 100% of the patch gets integrated

into the mainline Linux kernel, or to decide that the 95% of the real-time work already upstream

is sufficient and to drop further efforts. Unfortunately, the later option is a serious problem for the

future of a real-time Linux. The reason for this decision is attributed to the fact that updating the

5% of the patch for each new kernel release is no longer acceptable, and making the rest of the code

ready for mainline requires more of an effort from a wider group than is currently involved.

The PREEMPT RT was started by RedHat and IBM after obtaining a contract from the US

Navy. Today, the patch is essentially maintained by permanent engineer paid by RedHat and some

developers from the community. According to the project leader, this is not sufficient and the whole

problem is the lack of permanent developer and contribution from companies such as Wind River

and Intel, that uses the real-time patch.

Researchers at the real-time system group at the Scuola Superiore Sant’Anna in Piza and engi-

neers from the Evidence Company developed SCHED DEADLINE (Faggioli et al., 2009), a patch

to the Linux kernel that implements the EDF real-time scheduling algorithm. The research work

started in 2009, was then maintained by researchers (Lelli et al., 2011) until it has been recently

48

merged into the mainline Linux kernel (LWN, 2014). This success rewards the tremendous research

effort spent in developing this Linux patch.

These examples illustrate the main problems encountered in practice when new real-time func-

tionality and features need to be integrated into an operating system kernel. In one case, modifying

a kernel to integrate a new scheduling algorithm or any other techniques is not considered as a good

idea from an industrial perspective. In a second case, maintaining a patch updated with each new

release of the kernel could be, at long term, not a good plan. In a third case, the longevity of an effort

to mainline a single scheduling algorithm demonstrated the difficulty of integrating the advance in

the real-time research theory into practice.

We believe that using a middleware to deploy a new scheduling and synchronization techniques

on a real-time operating system is more effective in overcoming the problem of integrating the real-

time theory advances in practice. Through the use of a middleware, it is possible to implement new

resource allocation techniques at user-level, thus avoiding the modification of the kernel, and the

problems related to the kernel-level approach.

In Chapter 5, we will present a model-driven engineering technique to automatically transform

an RTOS model into a source code that is executable on a real hardware. Next in Chapter 6, we

present a prototype to demonstrate the feasibility of the configuration of an operating system without

the modification of its kernel through the use of middleware.

49

CHAPTER 3

Virtualization and Real-Time Systems

In this chapter, we evaluate the ability of a virtual machine system to co-locate a real-time

operating system and a general-purpose operating system. This will allow us to answer the question

of: what is the overhead of virtualization on a guest RTOS?

Before presenting the evaluation, we define the mechanisms provided by the hardware architec-

ture to build a virtual machine system, and discuss how these elements are involved in the virtual-

ization overhead. First we measure the overall overhead, then we decompose this overall overhead

into a set of finer-grained overheads and latencies. Next, we analyze the results of the evaluation

and we discuss how a set of hardware and software mechanisms need to be improved in order to

reduce the virtualization overhead.

3.1 Hardware-Assisted Virtualization

In order to understand the evaluation of a virtual machine system, it is essential to understand first

the hardware mechanisms required to build such a system (see Figure 3.1). In this section, we

present the efficient virtualization of a processor.

Guest OS

Hardware (I/O devices)

Guest OS Guest OS

Figure 3.1: Virtual Machine System Concept.

3.1.1 Resource Virtualization - Processors

There are two ways of virtualizing a processor. The first is emulation, and the second is direct

native execution on the host machine. Emulation involves examining each guest instruction in

turn, and emulating on virtualized resources the exact actions that would have been performed on

real resources. Emulation is the only processor virtualization mechanism available when the ISA

(instruction set architecture) of the guest program is different from the ISA of the host machine.

The second processor virtualization method uses direct native execution on the host machine.

This method is possible only if the ISA of the host machine is similar to the ISA of the guest program.

In this case, the guest program will often run on a virtual machine at about the same speed as on a

native hardware, unless there are memory or I/O resource limitations. The overhead of emulating

any remaining instructions depends on several factors, including the actual number of instructions

that must be emulated, the complexity of discovering the instructions that must be emulated and the

data structures and algorithms used for emulation.

3.1.1.1 Conditions for ISA Virtualization

In a virtual machine environment, an operating system running on a guest virtual machine should not

be allowed to change hardware resources in a way that affects the other virtual machines. Hence,

even the operating system on a virtual machine must execute in a mode that disables the direct

modifications of system resources (for example the CPU timer interval). Consequently, all of the

guest operating system software is forced to execute in user mode. This represents a problem that

prevents the construction of an efficient virtual machine monitor. But before explaining the reason

of this problem we need to define two terms.

Sensitive instruction. A sensitive instruction is an instruction that attempts to read or change the

resource-related registers and memory locations in the system, for example, the physical memory

assigned to a program. The POPF, Intel IA-32 instruction is an example. This instruction pops a

word from the top of a stack in memory, increments the stack pointer by 2, and stores the value in

the lower 16 bits of the EFLAGS register. One of the bits in the EFLAGS register is IF, the interrupt-

enable flag that is not modified when POPF is executed in user mode. The interrupt-enable flag can

only be modified in privileged mode.

51

Privileged instruction. A privileged instruction is defined as one that traps if the machine is in user

mode and does not trap if the machine is in kernel mode.

The reason why a VMM could not be constructed efficiently is due to the fact that if a sensitive

instruction such as POPF is executed by the guest operating system, and that this guest OS is

running in user mode, this instruction will not trap. So the VMM could not take control of the

machine and execute on behalf of the guest OS. The only way to force the control back to the

VMM, is the use of emulation. It would be possible for a VMM to intercept POPF and other

sensitive instructions if all guest software were intercepted instruction by instruction. The VMM

could then examine the action desired by the virtual machine that issued the sensitive instruction

and reformulate the request in the context of the virtual machine system as a whole. The use of

interpretation clearly leads to inefficiency, in particular when the frequency of sensitive instructions

requiring interpretation is relatively high.

To avoid this problem, it is necessary for an ISA to be efficiently virtualizable that all the

sensitive instructions are a subset of the privileged instructions (Popek and Goldberg, 1974). More

precisely, if a sensitive instruction is a privileged instruction, then it will always trap when executed

in user mode. All non-privileged instructions can be executed natively on the host platform and no

emulation is required.

3.1.1.2 Intel Virtualization Extension

To enhance the performance of virtual machine implementations, hardware manufacturers devel-

oped a dedicated technology for their processors. The main feature is the inclusion of a new pro-

cessor operating mode. For example, the Intel VT-x feature has added a new processor mode called

VMX. In this mode, the processor can be in either VMX root operation or VMX non root operation.

In both cases, all four IA-32 privilege levels (rings) are available for software. In addition to the

usual four rings, VT-x, provides four new less privileged rings of protection for the execution of

guest software, as shown in Figure 3.2.

The processor in the VMX root operation behaves similarly to a normal processor without the

VT-x technology. The main difference relies in the addition of a set of new VMX instructions.

The behavior of the processor in a non-root operation is limited in some respects. The limita-

tions are such that critical shared resources are kept under the control of a monitor running in VMX

52

Direct

execution

of User

Requests

Figure 3.2: Intel ISA’s operation modes and privilege levels.

root operation. This limitation of control extends also to non-root operation in ring 0, which, in

normal processors, is the most privileged level. Thus the intention is for the VMM to work in VMX

root operation, while the virtual machine itself, including the guest operating system and applica-

tion, work in VMX non-root operation. Because VMX non-root operation includes all four IA-32

privilege levels (rings), guest software can run in the rings in which it was originally intended to run,

that is, the guest operating system kernel can run in ring 0 and guest applications can run in ring 3.

A key aspect of the VT-x technology that allows faster virtual machine systems to be built is

the elimination of the need to run all guest code in the user mode, essentially by providing a new

mode of operation specifically for the VMM. For code regions that do not contain instructions that

affect any critical shared resources, the hardware executes as efficiently as it would have on a normal

machine. It is only in few cases where this is not possible that a certain degree of emulation must

be performed by the VMM. Thus, once in the virtual machine, the exits back to the monitor are far

less frequent in the hardware-assisted virtualization case than in the emulation case.

3.1.1.3 ARM Virtualization Extension

In the ARM architecture there are two CPU mode, kernel and user. With the support of hardware

virtualization, ARM introduced a third CPU mode called Hyp mode (see Figure 3.3). This mode

allows a guest operating system to run inside a virtual machine as it would run on a physical machine

but, if it executes a sensitive instruction, the processor traps to the Hyp mode and a virtual machine

monitor takes control over the guest OS execution in order to emulate the required operation.

In contrast, Intel has a root mode and non-root modes which are orthogonal to CPU protec-

tion modes, and can trap operation from non-root to root mode. As mentioned above, Intel’s root

53

Direct

execution

of User

Requests

Figure 3.3: ARM ISA’s operation modes and privilege levels.

mode supports the same four CPU privilege levels of user and kernel mode as in its non-root-mode,

whereas ARM’Hyp mode is a strictly different CPU mode with its own set of features.

Another noticeable difference between ARM and Intel in terms of CPU virtualization is that

Intel provides specific hardware support for virtual machine CPU data structure which is automati-

cally saved and restored when switching to and from root-operation mode using a single instruction.

This is used to automatically save and restore guest state when switching between guest and VMM

execution. In contrast, ARM do not provide any such feature and saving or restoring the guest

context need to be realized in software.

In the next section, we revisit the implementation of kvm, a virtual machine system that sup-

ports the hardware-assisted virtualization. kvm is integrated into the mainline Linux kernel and

support Intel and ARM architectures.

3.2 Linux Kernel Virtual Machine

In our experiments we used the hosted virtual machine system Linux Kernel-based Virtual Machine

(kvm) (Kivity et al., 2007). In kvm the host is the Linux operating system and the virtual machine

monitor is composed of two components, the Kernel Virtual Machine (alias kvm) is the privileged

component, and Qemu the unprivileged component. The software architecture of Linux, kvm and

Qemu is illustrated in Figure 3.4.

kvm virtualizes the processor by creating a virtual machine data structure to hold the virtual

CPU registers. It also virtualizes the memory by configuring the MMU hardware to translate the

guest virtual addresses to host physical addresses if the architecture supports the nested paging.

Otherwise it uses a shadow page table to emulate a hardware MMU. kvm traps the I/O instructions

54

and forwards them to Qemu which feeds them into a device model in order to emulate their behavior,

and possibly triggers real I/O such as transmitting a network packet.

Hardware

Linux kvm driver

Qemu

KVM

Guest OS

Applications

Host Applications
User mode

Privileged
mode

Virtual Machine

Figure 3.4: Linux Kernel Virtual Machine and Qemu.

3.2.1 Qemu

Qemu is a computer emulator software (Bellard, 2005) usually used to emulate a hardware archi-

tecture on another different architecture, for example emulating a Power-PC ISA using an IA-32

ISA.

When Qemu is executed with the -enable-kvm option, the CPU emulation mechanism of Qemu

is disabled. The Qemu software invokes the services provided by kvm to execute the code of the

guest operating system natively on the hardware. This operation is only possible when the guest OS

is targeted for the same architecture of the host machine processor. For example, the guest OS is an

x86 version of Linux and the host machine processor is an x86.

Qemu is used by kvm to emulate I/O devices. When a guest I/O operation, such as sending a

packed on the network, or reading from disk is encountered, it traps to the kvm code which forwards

it to Qemu. If the requested device is supported by the Linux host OS, the request is then converted

into a Linux host OS system call. Now kvm, through Qemu, acts as a user-level application under

Linux. When the application returns from the system call, the control gets back to kvm and then

into the guest OS running on the virtual machine.

3.2.2 Virtual Machine Process

Starting a virtual machine under kvm could be done by starting a Qemu user process. When the

Qemu process starts executing, it requests the creation of the virtual machine data structure. kvm

55

creates a virtual machine data structure and associates it to the Qemu process. Then, when the Qemu

process is scheduled by the Linux kernel, it requests from the host to start executing the code of the

guest operating system.

Figure 3.5: Scheduling of the ”I/O thread” (qemu-system-x86-2080) and the ”virtual CPU thread”

(qemu-system-x86-2082) created by kvm and Qemu. The guest OS executes one task doing a set

of arithmetic computation for 500ms periodically every 1000ms .

Figure 3.6: Here we zoomed into one 500ms execution to show how the ksoftirq which is a Linux

host thread handles the periodic timer interrupt every 1ms . Actually, it is a virtual timer interrupt

generated by the guest OS every 1ms to mark the scheduling tick.

After that, the processor starts executing the guest OS code until it encounters a sensitive in-

struction, an I/O operation, or until the occurrence of an interrupt. The Linux operating system

schedules this virtual machine process as it schedules the other regular processes. Figure 3.5 shows

how the Linux kernel installed on a quad-core Intel core-i7 hardware, schedules the kvm and Qemu

processes. Figure 3.6 shows how the ksoftirq thread of the Linux kernel is scheduled to handle the

virtual timer interrupt generated by a guest operating system running on a kvm virtual machine.

In the next section, we present an evaluation of the virtualization overhead on a real-time oper-

ating system using kvm virtual machine system.

56

3.3 Scheduling Latency Evaluation

One of the most used metric to evaluate the real-time capability of a real-time operating system is

the scheduling latency. The scheduling latency is a delay incurred by a real-time task when it is

released. In general, a real-time task is activated in response to external events (e.g., when a sensor

triggers) or by periodic timer expirations (e.g., once every 10ms). Following the activation of a task,

the OS kernel go through the following sequences of steps:

1. the processor is interrupted and the control is transferred to an interrupt handler to acknowl-

edge the timer or device interrupt,

2. the interrupt handler identifies the task to release and adds it to the ready queue,

3. then the scheduler is invoked to decide if the resumed task should be scheduled immediately

and on which processor,

4. and if the resumed task has a higher priority than the currently running task then, a context-

switch is performed after the task have been dispatched.

While in theory, a highest priority task is dispatched immediately after its release, in practice,

the precedent steps are subject to delays. Step 1 is delayed if interrupts are disabled by critical

section in the kernel. Step 2 is delayed due to cache misses, bus memory contention, and in mul-

tiprocessor lock contention. Step 3 is delayed if preemption are temporarily disabled by critical

sections in the kernel. And step 4 is delayed due to a TLB flush on hardware without tagged TLB.

As a result, there is always a delay incurred even by the highest priority task. This delay, known

as the scheduling latency, impacts the response time of all tasks and imposes a lower bound on

deadlines that can be supported by the operating system. For this reason, it is mandatory to estimate

the scheduling latency to decide whether the system is able to meet the temporal requirements.

The cyclictest benchmark (Molnar, 2004) was developed to measure the scheduling latency of

the Linux kernel and its real-time variant PREEMPT RT. It is used as the standard metric to evalu-

ate the real-time performance of the mainline Linux before and after applying of the PREEMPT RT

patch to the kernel. Recall that PREEMPT RT aims at improving the real-time latency by reducing

57

the number and the length of critical sections in the kernel that mask interrupts or disable preemp-

tion.

In our evaluation, we measured the real-time performance of Linux-PREEMPT RT. We used

Linux-PREEMPT RT as a guest RTOS, i.e., the RTOS that is installed on a virtual machine. We

used Linux-kvm as a hosted virtual machine system. We installed Linux-kvm on a hardware plat-

form consisted of a quad-core Intel Q6600 2.4GHz with 4GB RAM, enabled with hardware-assisted

virtualization. We configured the host Linux kernel with the PREEMPT RT patch to improve its

responsiveness. Note that in this experiment, the host OS and the guest OS are both real-time Linux.

In order to provide the virtual machine with maximum resources from the host platform, we

raised the SCHED FIFO1 real-time scheduling priority of the virtual machine process using the

”chrt ” Linux command. We pinned the virtual machine process to the first core of the machine

using ”taskset ” Linux command to avoid any migration overhead from affecting the measurement,

and we configured the kvm virtual machine with the option that locks the code of Qemu and the

guest OS in cache memory and prevent any contention in the memory hierarchy from disturbing the

measurement.

We configured cyclictest to create one thread, thus it uses one processor of our quad-core

hardware. This thread executes a while() loop in which it records the current time, then calls the

sleep() function to wait for a specified amount of time (in our experiment it is equals to 10ms), after

its wake up it records the current time again. Then it calculates the difference between its effective

wake up time and its supposed wake up time, this difference represents the scheduling latency. The

thread repeats these operations periodically every 10ms until the end of the experiment.

We executed cyclictest for more than 24 hours, which generate 10 millions samples per con-

figuration. The result of each execution is a histogram of observed scheduling latencies, where the

x-axis represents the measured delay and the y-axis the absolute frequency of the corresponding

value plotted on a log scale. Sample were grouped in buckets of size 1µs. Figure 3.7 shows the

histogram of the experiment from the real hardware and Figure 3.8 shows the result from the virtual

machine. Figure 3.9(a) and Figure 3.9(b) show the same experiment but using a more recent Intel

1The SCHED FIFO is a POSIX’s implementation of a real-time first-in first-out scheduling algorithm in Linux. The

priorities range between 0 to 99, with 99 being the highest priority and 0 the lowest.

58

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 100 200 300 400 500 600 700 800 900 1000

n
u
m

b
e
r

o
f
s
a
m

p
le

s

latency in microseconds (bin size = 1.00us)

measurement of cyclictest using Linux/PREEMPT_RT on top of an intel 2.4 GHz CPU
min=6us max=415us avg=23us

samples: total=10000000

Figure 3.7: Scheduling latency of a real-time Linux running natively on an quad-core Intel 2.4GHz

hardware. Here, cyclictest is executed on the real-time Linux installed on the real hardware.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 100 200 300 400 500 600 700 800 900 1000

n
u
m

b
e
r

o
f
s
a
m

p
le

s

latency in microseconds (bin size = 1.00us)

measurement of cyclictest using Linux/PREEMPT_RT running atop of Linux-KVM
min=20us max=12668us avg=75us

samples: total=10000000

Figure 3.8: Scheduling latency of a real-time Linux running on a virtual machine. Here, cyclictest

is tested on the real-time Linux executed on the virtual machine, the host OS is also a real-time

Linux and the real hardware is the same as above.

59

core i7 2.6GHz 8GB RAM hardware platform and during a shorter period of time (three hours in

virtual, and six hours in native case).

As can be seen in Figure 3.7 and Figure 3.8, the shape of the two histograms shows that both

configurations exhibited comparable latencies with a slight shift in the virtual machine. Scheduling

latencies under the virtualized RTOS are higher than the native RTOS, with an average of 75µs,

while it is centered around 23µs in the native case. This suggests that the additional latency is

added by the virtualization overhead.

The histograms from Figure 3.9(a) and Figure 3.9(b) show clearly that the virtualization over-

head added approximately 100µs to the scheduling latency in the average case.

However, comparing the maximum latencies, it can be seen that there is a considerable differ-

ence between the two maximum scheduling latencies. The maximum observed latency is around

415µs in the native case, while it reaches the 12668µs in the virtual case as indicated in Figure 3.7

and Figure 3.8.

Given the distribution of the latencies, this worrying high latency seems to be an outlier, and

we are tempted to say that it does not reflect the performance of the virtual machine system, but it

is very difficult to confirm this conclusion. Especially, when it is difficult to reproduce it, that is,

running the experiment for more longer time may lead to higher maximum as it may lead to lower

maximum.

It is also very difficult to track down the source of such a very high latency. As we locked the

code of kvm virtual machine, and the code of cyclictest in cache memory, we may eliminate the

cache miss and page fault from the list of the sources that caused such a delay.

Kiszka (2011) conducted a similar experiment but by adding a disk I/O and a network workload

on the host in order to measure the maximum latency in an overloaded situation. He observed a

higher maximum latency than the one we obtained, and he suggested that this could be caused by

the global mutex lock in Qemu. This lock protects access to the device emulation layer, which allow

only one thread to request an emulated device. As solution, Kiszka (2011) proposed a complete re-

engineering of a list of software modules in Qemu. However, this is not the case in our experiment

because we executed cyclictest alone, without any background that could pollute the cache memory

or generate any resources contention.

60

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 0 50 100 150 200

n
u
m

b
e
r

o
f
s
a
m

p
le

s

latency in microseconds (bin size = 1.00us)

measurement of cyclictest using Linux/PREEMPT_RT tested natively on a real hardware Intel core i7 2.6GHz
min=4us max=69us avg=6us

samples: total=2805731

(a) On a real hardware

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 50 100 150 200

n
u
m

b
e
r

o
f
s
a
m

p
le

s

latency in microseconds (bin size = 1.00us)

measurement of cyclictest using Linux/PREEMPT_RT running atop of Linux-KVM
min=27us max=5566us avg=97us

samples: total=1080000

(b) On a virtual machine

Figure 3.9: Scheduling latency of a real-time Linux measured on a recent Intel core i7 2.6GHz

hardware.

61

Zuo et al. (2010) suggested that such a delay may be caused by the handling of a non-mask-

able interrupt in the Intel x86 architecture, namely the SMI (system management interrupt). Such

an interrupt forces the processor to interrupt the current running process, saves its context, and

enters the system management mode to execute a code of separate operating environment such as a

firmware. In their experiment, the authors found out that the USB legacy device was the main source

of SMI in their platform. And disabling this device in the BIOS lowered the maximum latency to

below 1ms . We believe that this does not apply in our case because our hardware platform was not

accessed during all the experiment.

It is clear that optimization of the software design and implementation, and judicious configu-

ration of the hardware platform allow better performance, but in our case we are more concerned by

investigating the common problems and overheads related to the hardware virtualization extension,

such as CPU virtualization, Memory Management Unit and I/O virtualization, and their efficient

use by the virtual machine monitors in general.

Given the degree of uncertainty regarding the cause of such a maximum latency, we preferred

to decompose this scheduling latency into finer-grained overheads and latencies as defined in the

different four steps described above in order to investigate the reason of the virtualization overhead.

3.4 Fine-Grained Overheads and Latencies Evaluation

In this section we present our evaluation of a virtualized RTOS. First, we define the overheads and

latencies that are of interest. Second, we describe the hardware platform and the RTOS that we used

in our experiments. Then, we present the synthetic workloads used to measure the overheads and

latencies.

3.4.1 Overheads and Latencies

In the previous section we presented the scheduling latency which is the delay incurred by a real-

time task when it is released. We described also how this delay could be divided into four steps. In

the following list of overheads and latencies, we re-define each step using an overhead or latency

internal to the operating system kernel, then we will measure each overhead and latency separately

in order to observe where the bottleneck is.

62

• Event Latency (∆event) is the delay from the raising of the interrupt signal by the hardware

device until the start of execution of the associated interrupt service routine (ISR).

• Release Overhead (∆release) is the delay to execute the release ISR. The release ISR deter-

mines that a job Ji has been released and updates the process implementing a task Ti to reflect

the parameters of the newly-released job.

• Scheduling overhead (∆sched) is the time taken to perform a process selection.

• Context-switch overhead (∆cxs) is the time required to perform a context switching.

Figure 3.10 illustrates how these overheads and latencies are ordered on a timeline.

t0

release

signal

release signal

handler
scheduler

invocked

context switched;

job start execution

t1 t2 t3 t4 t5

event latency release overhead process scheduling context switch

time

j
o
b

c
o
m
p
l
e
t
e

Figure 3.10: The delay from the raising of an interrupt by hardware until the associated task’s job

starts executing, detailed in terms of separated overheads and latencies internal to the RTOS kernel.

3.4.2 Hardware platform

Our evaluation compares two different configurations, the native and the virtual configurations. In

the native configuration, we are more concerned about the native RTOS, and we used a dual-core

Intel 1.86 GHz as a hardware platform. On this platform we installed a real-time Linux, LITMUSRT

(Brandenburg et al., 2007) as a native RTOS that we configured with the P-FP (partitioned-fixed

priority) scheduler plug-in.

In the second configuration, we used the quad-core Intel 2.4GHz enabled with the VT-x feature

to support hardware virtualization. As a host operating system, we used a real-time Linux by con-

figuring a stock Linux kernel with the PREEMPT RT patch. We used the hosted VM system kvm.

We installed the LITMUSRT real-time operating system on a virtual machine.

63

Note that in both configurations, only one core of the machine was used as a virtual CPU.

We should note also that the difference in the CPU frequency between both host hardware did not

influenced the conclusion drawn from the results, as we will see in the results section there is no

diffrence in average-case, and the only notable difference is in the worst-case which is independante

form the underlying hardware as we will explain later.

Litmus^RT

(a) Native Platform

Litmus^RT

Intel quad core 2.4 GHz 4GB RAM

(b) Virtual Platform

Figure 3.11: Architecture of the native and the virtual platform used in the experiments.

3.4.3 LITMUSRT and Feather Trace toolkit

LITMUSRT (see Section 2.4.3) is a native real-time Linux version. It extends the Linux kernel with

multiprocessor real-time scheduling policies and locking protocols. With regard to our purpose

LITMUSRT kernel source code is instrumented in the way that permits the measurement of each

overhead and latency separately. In LITMUSRT, the Feather-Trace (Brandenburg and Anderson,

2007) infrastructure is used to trace the duration of each step.

Feather-Trace is a light-weight event tracing toolkit based on a static instrumentation of the

kernel. Its main characteristic is the low level overhead that it introduces, which is an important

feature in our case because it ensures that the measurement’s traces do not disturb the results.

Feather-Trace relies on two components: static triggers, and a wait free multi-writer, single-

reader FIFO buffer. Feather-Trace works by directly rewriting the kernel’s code.

When a trigger is activated, a parameter of an x86 jump instruction (JMP) is rewritten to call a

user-provided function instead. To enable an event, the offset parameter of the jump instruction is

set to zero, which effectively disables the jump (see Figure 3.12). As a result, the code that directly

follows the jump instruction pushes the required context information on the stack and transfers

64

control to a call-back function. No operating system support is necessary and no locking or mutual

exclusion support is required.

If a tracing event is disabled, then only one additional instruction is executed compared to the

case where the kernel code is not instrumented. On the other hand, if a tracing event is enabled then,

only one additional instruction is executed compared to a normal function call.

JMP OFFSET

push arguments

call callback

cleanup stack

JMP 0

push arguments

call callback

cleanup stack

Figure 3.12: (a) If the jump is enabled the code does not trigger the tracing, (b) otherwise the jump

is disabled and the tracing code is executed.

Testing whether a given event is enabled with only a single instruction that does not access

memory and which has no effects on either branch prediction or pipelining in both the enabled and

the disabled case is arguably optimal.

The second component of Feather-Trace is the wait free multi-writer, single-reader FIFO buffer.

The buffer is implemented without any need for locks, each read and write operation completes

in a bounded number of steps, and the support for arbitrarily many writers makes the collect of

performance data an operation with very little overhead. Moreover, to improve performance, a

single reader is used to flush the content of the buffer from memory to stable storage. The reader

could execute safely in parallel with multiple writers.

In LITMUSRT, Feather-Trace is used to record timestamp at various points during the execution

of the scheduler. For example, there is a trigger just before a context-switch, and one just after it.

When a trigger calls a function, it records the current time based on the number of cycles provided in

the TSC register. These timestamps are then exported to user space by means of the Feather-Trace

character device. Based on the recorded pairs of timestamps before and after an event, it is later

65

possible to reconstruct how long each event took. Using these overhead samples, it is then possible

to compute overhead statistics such as average and maximum observed overheads.

3.4.4 Synthetic Workloads

The experimental methodology we used in our evaluation is inspired by the methodology used to

evaluate the LITMUSRT kernel (Brandenburg, 2011). To measure the overheads and latencies we

used a synthetic task set system. Each task set has a size n = m ∗ k, where m is the number of

processors, and k is the number of tasks per processor and ranges from 1 to 20. For each value of n,

5 task sets systems were generated and each task set within a system was executed for 60 seconds.

The task sets were generated by randomly choosing their CPU utilization of each included task

until the CPU utilization capacity was reached. The utilization of each task was randomly generated

using one of the following distributions: light uniform, light bimodal, light exponential, medium

uniform, and medium bimodal, as proposed by Baker (2005). The task periods were generated

using a uniform distribution within a [10ms , 100ms] range. Then, the utilization and the period

values were used to compute the execution time of each task.

These distributions are well known to stress specific sources of algorithmic and overhead-

related capacity loss. For example, using light utilization distributions produces task sets with many

tasks where each task has a low CPU utilization which results in a large number of interrupt sources

and long ready queues. Using medium utilization distribution produces task set with a mix of low

and high CPU utilization tasks.

In addition to real-time workload, m background tasks were launched that create memory and

cache contention by repeatedly accessing large arrays. This avoids the underestimation of the worst-

case overheads.

The measurements of overheads and latencies results in a large log events records. From this

large log events, we extract the measurement for each overhead and latency. Then, for each overhead

and latency the average-case and the worst-case statistics are distilled.

66

3.5 Results

In total, the overhead experiments resulted in 1GB of events records, which contained more than

500 thousands valid overhead samples. Figure 3.13(b), Figure 3.14(b), Figure 3.15(b), and Fig-

ure 3.16(b) show the average-case (green curve) and the worst-case (red curve) trends of all the

overheads and latencies from the virtualized RTOS. Figure 3.13(a), Figure 3.14(a), Figure 3.15(a),

and Figure 3.16(a) show the similar measurements from the native RTOS. The values of overheads

and latencies in the graphs are given in microsecond and plotted as a function of the number of tasks

per processor.

By comparing the results between the native case and the virtual case we can observe that in the

average-case the delays are in the same order-of-magnitude. This similarity is explained by the fact

that in most cases the guest code is executed natively on the machine, therefore it runs at the same

speed as the native code.

However, by analyzing Figure 3.13(b), Figure 3.14(b), Figure 3.15(b), and Figure 3.16(b), we

can see that the worst-case values of the virtualized RTOS are very far from the average-case over-

heads. While most worst-case overheads and latencies could be attributed to virtualization overhead,

for example when the VMM intervene to handle a page fault generated by the guest, or to emulate

an I/O operation, other very high worst-case values could not be intuitively explained.

In an attempt to further understand the cause of such high overhead, we plotted the distribution

of the occurrence of the worst-case values that are far from the average case. Figure 3.17 shows

the histogram of the event latency for n = 14 tasks per processor in the virtual case. Figure 3.18

and Figure 3.19 show the histogram of the ∆cxs at n = 10 and n = 20 tasks respectively, and

Figure 3.20 shows the distribution of the scheduling overhead at n = 5 tasks per processor.

Given the average case values and the low probabilities of the very high maximum values

observed, it is difficult to say that the worst-case observed overheads and latencies are caused by

the virtualization overhead. Nevertheless, it is still difficult to say definitely what causes these

worst-case measured values.

The variability in the worst-case values is more important in the virtual case than in the native

case. We conjecture that this could be attributed to the fact that the virtual machine process is subject

to scheduling by the host operating system.

67

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o
v
e
rh

e
a
d
 i
n
 m

ic
ro

s
e
c
o
n
d
s

number of tasks per processor

measured scheduling overhead under P-FP scheduling

maximum
average

std. deviation

(a) Scheduling overhead in the native case

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o
v
e
rh

e
a
d
 i
n
 m

ic
ro

s
e
c
o
n
d
s

number of tasks per processor

measured scheduling overhead under P-FP scheduling

maximum
average

std. deviation

(b) Scheduling overhead in the virtual case

Figure 3.13: In the average case, the scheduling overhead of the virtualized RTOS is roughly com-

parable to scheduling overhead from native RTOS. A key observation from Figure 3.13(b) and

Figure 3.13(a) is that, in the average-case the scheduling overhead (∆sched) under either config-

uration (native and virtual) does not appear to be correlated to the task set size. This is because

in LITMUSRT the partitioned fixed-priority scheduler is efficiently implemented using a bit-field-

based ready queues to enable fast lookup of ready processes. As a result, the runtime complexity

of finding the next highest-priority job does not depend on the number of ready tasks. Another

contributing factor is that task sets with high task counts also have a high utilization, which means

that the background processes that creates memory contention executes less frequently and results

in an increased cache hit rate.

68

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o
v
e
rh

e
a
d
 i
n
 m

ic
ro

s
e
c
o
n
d
s

number of tasks per processor

measured event latency under P-FP scheduling

maximum
average

std. deviation

(a) Event latency in the native case

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o
v
e
rh

e
a
d
 i
n
 m

ic
ro

s
e
c
o
n
d
s

number of tasks per processor

measured event latency under P-FP scheduling

maximum
average

std. deviation

(b) Event latency in the virtual case

Figure 3.14: In the virtualized RTOS we observed an increase of the event latency in the average-

case in comparison to the native RTOS. Recall that the event latency is the delay from the raising

of the interrupt signal by a hardware device until the start execution of the associated ISR. This

difference is due to the fact that the event latency is related to the virtualization of a device interrupt

(in this case a timer) as we will explain in details in the next section.

69

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o
v
e
rh

e
a
d
 i
n
 m

ic
ro

s
e
c
o
n
d
s

number of tasks per processor

measured context-switch overhead under P-FP scheduling

maximum
average

std. deviation

(a) Context-Switch overhead in the native case

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o
v
e
rh

e
a
d
 i
n
 m

ic
ro

s
e
c
o
n
d
s

number of tasks per processor

measured context-switch overhead under P-FP scheduling

maximum
average

std. deviation

(b) Context-Switch overhead in the virtual case

Figure 3.15: Measurement of the context-switch overhead (∆cxs). As in the event latency case

(∆event), we can see that even in the native case (Figure 3.15(a) at n = 8 and n = 13) the worst-

case context-switch overhead appears to be different from the overall trend. In our experiment, this

variation in the worst-case overhead trend occurred frequently in the measurements of event latency

and context-switch overhead because they are strongly affected by interrupt delivery. In contrast,

this variation occurred rarely in the measurements of scheduling overhead since interrupt delivery

is disabled throughout most parts of the measured scheduling code path.

70

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o
v
e
rh

e
a
d
 i
n
 m

ic
ro

s
e
c
o
n
d
s

number of tasks per processor

measured release interrupt overhead under P-FP scheduling

maximum
average

std. deviation

(a) Release overhead in the native case

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o
v
e
rh

e
a
d
 i
n
 m

ic
ro

s
e
c
o
n
d
s

number of tasks per processor

measured release interrupt overhead under P-FP scheduling

maximum
average

std. deviation

(b) Release overhead in the virtual case

Figure 3.16: Release overhead (∆rel) is the delay to execute the job release handler. This function

is executed while the interrupts are disabled, which explain the little variation in the worst-case

values throughout the experiment. However, in the virtual case (Figure 3.16(b)), we can see that the

worst-case is very high in comparison to the average-case. We explain this by the fact that even if

the release handler is executed while interrupts are disabled in the guest operating system, it does

not mean that the guest operating system could not be preempted by the virtual machine monitor.

The guest OS is not allowed to disable the interrupt in the system, and therefore it is subject to

perturbation from the host workload. This preemption of the guest operating system could delay the

response time of the kernel critical functions.

71

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

0.50 23.50 46.50 69.50 92.50 115.50 138.50 161.50 184.50 207.50

n
u
m

b
e
r

o
f
s
a
m

p
le

s

overhead in microseconds (bin size = 1.00us)

P-FP: measured event latency for 14 tasks per processor (host=kvm-Qemu)
min=10.74us max=229.53us avg=24.64us median=21.30us stdev=8.21us

samples: total=13151
[IQR filter not applied]

Figure 3.17: The maximum observed event latency occurred at n = 14 (see Figure 3.14(b)) and is

equal to 229.53 µs. By looking at the histogram of samples this values is not visible due to its very

low occurrence.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

0.50 38.50 76.50 114.50 152.50 190.50 228.50 266.50 304.50 342.50

n
u
m

b
e
r

o
f
s
a
m

p
le

s

overhead in microseconds (bin size = 1.00us)

P-FP: measured context-switch overhead for 10 tasks per processor (host=kvm-Qemu)
min=3.72us max=374.20us avg=6.61us median=5.41us stdev=6.18us

samples: total=26246
[IQR filter not applied]

Figure 3.18: Distribution of the context-switch overhead for n equals 10 tasks per processor.

72

 0

 5000

 10000

 15000

 20000

 25000

0.50 7.50 14.50 21.50 28.50 35.50 42.50 49.50 56.50 63.50

n
u
m

b
e
r

o
f
s
a
m

p
le

s

overhead in microseconds (bin size = 1.00us)

P-FP: measured context-switch overhead for 20 tasks per processor (host=kvm-Qemu)
min=3.67us max=63.83us avg=5.42us median=4.87us stdev=1.96us

samples: total=49650
[IQR filter not applied]

Figure 3.19: Distribution of the context-switch overhead for n equals 20 tasks per processor. Here,

we can clearly see that most of values are centered around 5.42µs, which is the average case context-

switch overhead at n = 20 tasks.

 0

 2000

 4000

 6000

 8000

 10000

 12000

0.50 10.50 20.50 30.50 40.50 50.50 60.50 70.50 80.50 90.50

n
u
m

b
e
r

o
f
s
a
m

p
le

s

overhead in microseconds (bin size = 1.00us)

P-FP: measured scheduling overhead for 5 tasks per processor (host=kvm-Qemu)
min=0.92us max=93.38us avg=2.18us median=1.85us stdev=1.84us

samples: total=18009
[IQR filter not applied]

Figure 3.20: Distribution of scheduling overhead at n equals 5 tasks per processor, in the virtual

case.

73

For instance, the handling of an interrupt by the host OS could preempt the virtual machine

process and delay its execution. When the host OS finishes servicing the interrupt a scheduling is

required to re-schedule the virtual machine process. This duration is added to the waiting delay.

After that a context-switch needs to be performed by the host OS.

If the elected process is the virtual machine process, the cost of the context-switch is higher

than the simple context-switch between two user processes or between an ISR and another kernel

routine, because restoring the context of a virtual machine involves much more registers to load.

The duration of the context-switch is also added to the waiting delay of the virtual machine process.

This delay could also be increased if there is a cache-miss or a page fault generated by the

execution of the code while the virtual machine was waiting.

Note that this delay could be worse if the interrupt releases a task in the host OS that has a higher

priority than the virtual machine. In the next chapter, we will investigate this case in more details

and propose a method to alleviate it. We will show how this delay could not be upper-bounded

without a proper scheduling of the virtual machine process by the host OS scheduler.

However, one of the performance degradation that we measured in our experiment and that we

are able to attribute to virtualization overhead is the event latency (∆event). A pairwise comparison

between Figure 3.14(b) and Figure 3.14(a) illustrates how the virtualization increased the (∆event) in

average-case. In the next section, we explain the reasons of this increase, and discuss how assistance

from the hardware architecture allows to build an efficient solution that reduces the ∆event delay.

3.6 Emulation of the I/O interrupts

Among the measurements of the fine-grained overheads and latencies previously presented, the

event latency (∆event) is the feature in the virtual RTOS that is largely impacted by the virtual

machine system in the average case. Here we explain the reason of this degradation.

When an interrupt is raised by a physical device, it is intercepted by the virtual machine monitor,

converted into a virtual interrupt, and injected into the virtual machine as a pending virtual interrupt.

On the next activation of the guest virtual machine, the virtual interrupt is delivered to it, which

transfers it to its appropriate ISR in the guest OS. As the event latency is the delay from the raising

of the interrupt signal by the hardware device until the start of execution of the associated interrupt

74

service routine (ISR), we can see from Figure 3.21 how this delay is increased due the emulation of

the I/O interrupt by the virtual machine monitor and the multiple VM exits and entries that induces.

Set APIC timer

time

emulate APIC access IRQ Handler vIRQ inject

tim
e
r in

te
rru

p
t

IRQ Handler End Of Interrupt

Direct End of

Interrupt

V
M

 E
x
it

V
M

 E
n
te

r

executed by guest

executed by host

V
M

 E
x
it

V
M

 E
x
it

V
M

 E
n
te

r

V
M

 E
n
te

r

Figure 3.21: Scheduling of virtual machines according to the fixed-priority algorithm.

To avoid this overhead, hardware manufacturers added a new feature to their processors to en-

able the virtualization of interrupts. For example, the Intel VT-d (Intel Virtualization Technology

for Directed I/O) (Intel, 2012) enables the virtualization of the Advanced Programmable Interrupt

Controller (APIC). When this feature is used, the processor will emulate many accesses to the APIC,

tracks the state of a virtual APIC, and delivers virtual interrupts, all in VMX non root operation with-

out any exit from the virtual machine to the virtual machine monitor. Currently, a patch (Sekiyama,

2012) is under development to support this feature in kvm.

The primary evaluation of this feature using the cyclictest benchmark revealed that the schedul-

ing latency was lowered after the application of the patch.

3.6.1 Comparison with ARM I/O virtualization

In order to improve performance, the ARM architecture allows many traps to be configured so they

trap directly into a VM’s kernel mode instead of going through the virtual machine monitor. Recall

that in the ARM architecture there are three processor modes. The kernel mode and the user mode

are used by the guest OS running in the virtual machine, and the Hyp Mode is reserved to the VMM

(see Figure 3.3).

For example, traps caused by normal system calls or undefined exceptions from user mode in

the guest OS can be configured to trap to a VM’s kernel mode so that they are handled by the guest

75

OS without the intervention of the VMM. This avoids going to the Hyp mode on each system call

or undefined exception, reducing virtualization overhead.

ARM architecture provides the Generic Interrupt Controller (GIC) and the Virtual GIC (VGIC).

Interrupts could be configured to trap to Hyp mode or kernel mode. This allows to re-direct

the interrupts into guest OS without the intervention of the VMM. However, this is not a good idea

because it prevents the VMM from taking control over the hardware. In the other hand, letting the

VMM receiving all the interrupts results in higher latency as we have previously showed on the Intel

architecture, where the acknowledge and the end of interrupt operations must go through the VMM.

To resolve this problem, ARM has provided the hardware support for virtual interrupts to reduce

the number of traps to Hyp mode. Hardware interrupts trap to Hyp mode to retain VMM control,

but virtual interrupts trap to kernel mode so that guest OSes can acknowledge, mask, and signal

their completion without trapping into VMM.

Each CPU has a virtual CPU interface that the guest OS can interact with through memory-

mapped I/O without trapping to Hyp mode, and a virtual CPU control interface, which can be

programmed to raise virtual interrupts using a set of list registers, which are only accessed by the

VMM. When a virtual device triggers an interrupt, it is treated as a virtual interrupt and the GIC

traps to the VM directly in kernel mode.

In addition to the the counter that measures the time, and a timer for each CPU, ARM also

provides a virtual counter and a virtual timer which allows a VM to access, program, and cancel

virtual timers without causing traps to Hyp mode. In this way the VMM can be configured to use

physical timers while VMs are configured to use virtual timers. Such a functionality is not present

in the x86 hardware virtualization, forcing the VMM to emulate the virtual timer in software.

Unfortunately, due to architecture limitation virtual timer can not raise virtual interrupt, instead

hardware interrupt is raised which trap to the VMM. This will force the VMM to create a corre-

sponding virtual interrupt, inject it to the VM, and performing the hardware acknowledgement and

completion.

We believe that the assistance from the ARM hardware architecture to virtualize the interrupts

would lower the event latency (∆event) observed in our evaluation and facilitate the implementation

of the virtual machine monitor because the emulation of interrupt is no longer required.

76

3.6.2 Comparison with Custom ARM Hardware Architecture

Given that the virtualization extension provided by ARM is only available on the ARM v8 in-

struction set architecture, Garcia et al. (2013) modified the ARM v5TE architecture and micro-

architecture to improve the management of the interrupts. More specifically, an Atmel AT91SAM9XE,

which implements the ARM v5TE ISA, was cloned and implemented on a Virtex 5 FPGA (field

programmable gate array) in order to test some hardware design decisions such as adding a new

processor mode reserved to the execution of a virtual machine monitor, called a Hypervisor mode,

or an efficient management of virtual interrupts.

The Atmel AT91SAM9XE processor provides an Advanced Interrupt Controller (AIC) and a

Programmable Interrupt Timer (PIT). The PIT was extended with an additional Timer counter, ac-

cessible in Hypervisor CPU mode, and used to drive the VMM’s scheduling tick. Through this

extension the VMM’s timer interrupt bypasses the AIC and feeds the processor causing a transition

to the Hypervisor CPU mode. The virtual Timer counter is used whenever a virtual machine proces-

sor context is restored by the VMM to update the standard timer counter which simplify the guest

time-keeping.

The results of the evaluation of the hardware implementation on a Xilinx ML505 board with

caches disabled showed that the number of instructions required to adjust the PIT counter when a

guest context is restored dropped from 15 to 2. The time required to deliver an urgent interrupt

to a real-time guest dropped from 6692 clock cycles to 12, because the VMM do not execute its

scheduling function to select the guest to which the interrupt should be delivered.

3.7 Summary

In this chapter we evaluated the impact of the virtualization overhead on a hosted RTOS. We first

evaluated the scheduling latency of a real-time operating system that was running on a bare hardware

and on a virtual machine. We showed that in the average case this metric was approximately similar

in both configurations, however, we observed a very high maximum in the virtual case comparing

to the native case.

77

Then we divided this scheduling latency into a set of fine-grained overheads and latencies, and

we measured separately each of these delays. The results of this evaluation confirmed the results of

the first evaluation, and showed that the average-case overheads and latencies of a virtualized RTOS

are similar to a native RTOS, except for the event latency where we observed a slight increase in the

virtual case.

This second evaluation showed that the worst-case overheads and latencies were very far from

the average-case. The analysis of the probabilities of these worst-case values led us to conjecture

that these events are caused by two combined factors: interference from the interrupts that occurred

in the host OS and virtualization overhead, such as switching between two worlds (the virtual ma-

chine and the virtual machine monitor), emulation of code, page-fault, cache miss, etc.

Given the average-case performance and the lower probability of the very high overheads and

latencies, we can conclude that a soft real-time application should present the same performance

when it is running on a virtual machine as it is running on a native RTOS.

In the next chapter, we show how the scheduling of the virtual machines affects the performance,

and we argue that a non appropriate scheduling could even be more ”harmful” to the real-time

performance than the virtualization overhead. We will provide an overhead-aware schedulability

analysis that allows to guarantee the timing requirements for the hosted real-time applications, and

we present an empirical evaluation of the method.

78

CHAPTER 4

Real-Time Scheduling of Virtual Machines

In this chapter, we show how the scheduling of the virtual machines is responsible for guaran-

teeing the timing requirements of the guest OS and its application. First, we define a set of basic

concepts as a background for real-time scheduling theory. Then we present a schedulability analysis

in the context of a virtual machine system. After that we extend this schedulability analysis by inte-

grating the overheads measured in the previous chapter. Finally, we present an empirical evaluation

of the proposed method.

4.1 Real-Time Task Model

In the following subsections, we summarize the main theoretical background necessary to under-

stand the schedulability analysis in the context of a virtual machine system. We refer the interested

reader to (Brandenburg, 2011), who survey the major real-time theoretical frameworks.

Under the periodic task model (Liu and Layland, 1973), a real-time workload consists of a set

of n sequential tasks τ = {T1, ..., Tn}. Each task Ti is repeatedly released after the arrival of an

asynchronous event, such as a device interrupts. When it is released, the task Ti executes a job to

process the triggering event.

Each task Ti is characterized by three parameters (ei, pi, di). Its maximum execution require-

ment ei, its period, pi (with pi > ei), and its relative deadline di, (with di > ei). A task Ti releases

a job at least every pi time units, executes for at most ei time units, and each job execution should

not exceed a di time units after its release.

The period pi of a task Ti determines the successive arrival of jobs, such that ai+j ≥ aj + pi. A

job Ji,j executes at most ei time units, then completes or finishes after fi,j time units. A job Ji,j is

said to be pending from its release to its completion.

The response time ri,j measures how long Ji,j remains pending, and defined by ri,j = fi,j−ai,j .

Figure 4.1 illustrates all the task’s temporal parameters that we defined above.

ri

di

pi

fi,jai,j
time

di,j

scheduling on processor 1

scheduling on processor 2

ai,j+1

Ti

release deadline

Figure 4.1: Illustration of the temporal properties of a periodic task.

The utilization of a task Ti, ui =
ei
pi

, is the fraction of one processor that Ti requires. If Ti is not

allocated this required amount of processing time, its jobs may miss their deadlines. And the total

utilization of a task set τ is given by:

usum(τ) =
∑

Ti∈τ

ui.

4.1.1 Temporal Correctness

The ability of a real-time system to satisfy a temporal specification determines its temporal correct-

ness. In a periodic task model, timeliness requirements are expressed as deadline constraints. In

a hard real-time (HRT), each job must complete by its deadline, and in the soft real-time (SRT), a

limited number of missed deadlines is tolerated by the system.

In the HRT case, the maximum response time ri of a task Ti must be bound by its relative

deadline di, which means that all jobs must complete by their absolute deadlines. The response

time of a job depends on the scheduling algorithm, its processor requirement, and on the concrete

release times and the execution of higher-priority jobs that prevent it from being scheduled. The

HRT schedulability of a task set is defined by:

Definition 4.1. Given a scheduling algorithm A, a task set τ is HRT schedulable if and only if, the

condition ri ≤ di is satisfied by all the released jobs, for each task Ti ∈ τ .

80

And for the systems that can tolerate some deadline misses, the SRT schedulability of task set

is defined by:

Definition 4.2. Given a scheduling algorithm A, a task set τ is SRT schedulable if and only if, there

exists a constant B such that ri ≤ di +B for each task Ti ∈ τ and for each release of a job Ji,j .

4.1.2 Schedulability Test

The feasibility of task sets and optimality of scheduling algorithms are both defined in terms of

schedulability. A task set is said to be feasible if there exist a scheduling algorithm that could

schedule it, and a scheduling algorithm is optimal if it can successfully schedule all feasible task

sets.

Definition 4.3. A task set τ is HRT (respectively, SRT) feasible if and only if there exists a schedul-

ing algorithm A such that τ is HRT (respectively, SRT) schedulable under A, with respect to an

implementation on a given platform.

Definition 4.4. A scheduling algorithm A is optimal in an HRT (respectively, SRT) sense if and only

if every task set τ that is HRT (respectively, SRT) feasible is HRT (respectively, SRT) schedulable

under A, with respect to an implementation on a given platform.

The schedulability test for a scheduling algorithm A is to determine a priori, during the de-

sign phase whether a task set will be schedulable under A, either in a HRT or SRT sense, when

implemented on a given platform.

4.2 Real-Time Scheduling

In general, a scheduler is responsible for assigning the pending job to processors if the number of

pending jobs exceeds the number of processors m. A static scheduler uses a priority table dedicated

to a task set as an allocation policy to assign the pending jobs to processors. In contrast, dynamic

scheduler makes online scheduling decisions based on the current system state such as the set of

pending jobs and their parameters.

81

4.2.1 Fixed-Priority Scheduling

In the fixed-priority scheduling (FP), tasks are in general indexed in order of decreasing prior-

ity. The question is then how to determine the priority of tasks in a task set. As an answer,

Liu and Layland (1973) proposed the rate-monotonic (RM) priority assignment. Under RM schedul-

ing, the priority of a task is determined by its period. Hence, given the periods pi and pj , of the

tasks Ti and Tj respectively, if pi < pj , then the priority of task Ti is higher than the priority of task

Tj .

Theorem 4.1 (Liu and Layland (1973)). On a uniprocessor, a set of n implicit-deadline1 periodic

tasks τ = {T1, ..., Tn} is schedulable under RM scheduling if usum(τ) ≤ n(21/n − 1).

The limit n(21/n−1) converges to ln2 ≈ 0.69 for n → ∞. Liu and Layland demonstrated that

this is the highest-achievable utilization bound for RM.

prioi ei pi ui
T1 1 1 4 1

4 = 45
180 ≈ 0.25

T2 2 1 5 1
5 = 36

180 ≈ 0.20
T3 3 3 9 1

3 = 60
180 ≈ 0.33

T4 4 3 18 1
6 = 30

180 ≈ 0.17

usum(τ) ≈ 0.95

Table 4.1: Example of real-time task set schedulable under RM scheduling.

Example 4.1. Figure 4.2 shows the scheduling of the task set defined in Table 4.1 according to the

RM scheduler. All tasks are released at time 0. At time 4, the job J3,1 is preempted by the job J1,2

because task T1 has a higher priority than task T3. Job J4,1 starts execution only at time 7 when all

higher priority tasks completes their first jobs. However it completes just before its deadline at time

18. ♦

Note that by applying Theorem 4.1 to the task set from table Table 4.1 we obtain the bound

4(21/4 − 1) ≈ 0.76. This limit is lower than usum(τ) ≈ 0.95, which exceeds the limit given by

the theorem, but the task set seems to be schedulable in the example shown in Figure 4.2. This is

because theorem Theorem 4.1 is not an equivalence.

1An implicit deadlines task set τ , is characterized by the property of di = pi, for each Ti ∈ τ .

82

0 5 10 15 20 25 30

T1

T2

T3

T4

job scheduled

release

time

not scheduled

deadline

completion

Figure 4.2: Scheduling of the task set from Table 3.1 according to the RM algorithm.

Theorem 4.2 (Joseph and Pandya (1986)). Let τ = {T1, ..., Tn} denote a set of constrained-deadline2

sporadic3 tasks indexed in order of decreasing priority. On a uniprocessor, under FP scheduling, the

response time ri of task Ti ∈ τ is bounded by the smallest Ri, where Ri ≤ ei, that satisfies the

following equation:

Ri = ei +

i−1
∑

h=1

⌈

Ri

ph

⌉

· eh.

Each Ri can be computed by using ei as an initial value for Ri and by repeatedly re-evaluating

the right-hand side until it and the left-hand side converge. Convergence is guaranteed as long as

usum(τ) ≤ 1 (Joseph and Pandya, 1986).

Example 4.2. Consider the task set τ from Example 4.1 with parameters as given in Table 4.1.

Applying Theorem 4.2 to each Ti ∈ τ yields the following response-time bounds:

R1 = e1

R2 = e2 +

⌈

R2

p1

⌉

· e1

R3 = e3 +

⌈

R3

p1

⌉

· e1 +

⌈

R3

p2

⌉

· e2

R4 = e4 +

⌈

R4

p1

⌉

· e1 +

⌈

R4

p2

⌉

· e2 +

⌈

R4

p3

⌉

· e3

Replacing the parameters by their actual values and iterating from Ri = 1 we obtain:

2A constraint-deadlines task set τ is characterized by di ≤ pi for each Ti ∈ τ .

3The periodic task model is generalized by the sporadic task model (Mok, 1983). In this case, the jobs of a task Ti are

not released at fixed time multiple of the period pi of the task, instead, the jobs are released at least pi time units and not

necessarily a multiple of pi.

83

R1 = 1

R2 = 1 =⇒ 1 +

⌈

1

4

⌉

· 1 = 2 6= 1

R2 = 2 =⇒ 1 +

⌈

2

4

⌉

· 1 = 2

R3 = 1 =⇒ 3 +

⌈

1

4

⌉

· 1 +

⌈

1

5

⌉

· 1 = 5 6= 1

R3 = 2 =⇒ 3 +

⌈

2

4

⌉

· 1 +

⌈

2

5

⌉

· 1 = 5 6= 2

R3 = 3 =⇒ 3 +

⌈

3

4

⌉

· 1 +

⌈

3

5

⌉

· 1 = 5 6= 3

R3 = 4 =⇒ 3 +

⌈

4

4

⌉

· 1 +

⌈

4

5

⌉

· 1 = 5 6= 4

R3 = 5 =⇒ 3 +

⌈

5

4

⌉

· 1 +

⌈

5

5

⌉

· 1 = 6 6= 5

R3 = 6 =⇒ 3 +

⌈

6

4

⌉

· 1 +

⌈

6

5

⌉

· 1 = 7 6= 6

R3 = 7 =⇒ 3 +

⌈

7

4

⌉

· 1 +

⌈

7

5

⌉

· 1 = 7

R4 = 18 =⇒ 3 +

⌈

18

4

⌉

· 1 +

⌈

18

5

⌉

· 1 +

⌈

18

9

⌉

· 3 = 18

As we can see from the application of the theorem that the task’s response time is equal to the

actual response time of its first job in Figure 4.2. This is due to the fact that the newly-released job’s

response time is maximized when all tasks release a job at the same time, which is the case in the

example of Table 4.1 where all tasks release jobs at time 0. Given that Ri ≤ di = pi for each Ti,

the task set is HRT schedulable under RM scheduling. ♦

4.2.2 Dynamic-Priority Scheduling

One of the most known example of dynamic priority real-time scheduling is the earliest-deadline-

first policy. According to the EDF policy, a job is prioritized by its absolute deadline. If there are

multiple equal absolute deadlines, the jobs are then selected using their index in the list of the ready

tasks.

84

Theorem 4.3 (Liu and Layland (1973); Liu (1969)). On a uniprocessor, a set of n implicit-deadline

periodic tasks τ = {T1, ..., Tn} is HRT schedulable under EDF if usum(τ) ≤ 1.

Example 4.3. Figure 4.3 depicts the EDF schedule of the task set shown in Table 4.1 that we

previously used in Example 4.1. With the exception of the scheduling of the second job of task

T2, most of the scheduling decisions taken by EDF is similar to those taken by FP. At time 5,

Deadline(J3,1, 5) = 9 < 10 = Deadline(J2,2, 5), which results in J3,1 having a higher priority

than J2,2. Thus, the allocations of the jobs on the processor are switched in comparison with the FP

schedule depicted in Figure 4.2. ♦

0 5 10 15 20 25 30

T1

T2

T3

T4

job scheduled

release

time

scheduled later

deadline

completion

Figure 4.3: Scheduling of the task set from Table 3.1 according to the EDF policy.

4.3 Algorithmic Analysis

kvm and the Linux host scheduler employ the POSIX SCHED FIFO (fixed-priority first-in first-

out) algorithm when scheduling the virtual machines. While this policy is efficient in the case where

there is only one virtual machine that is running on a CPU, it could create a problematic situation

in the case where there are multiple virtual machines that share the CPU. Thereby, preventing a

real-time system from executing correctly.

To illustrate this observation, we experimented the situation of two virtual machines sharing the

same CPU as presented in Figure 4.4. We set to VM1 and VM2 the same priority. VM1 is executing

one periodic task (500ms , 1000ms) and VM2 is executing an endless while loop.

According to the POSIX SCHED FIFO algorithm, when VM1 is scheduled by the host OS, it

starts running and executes the code of the guest operating system. Then the scheduler of the guest

OS schedules the periodic task. After the completion of the first job of the task, the guest operating

85

system arms a timer for the next release of the periodic task, enqueues it to the waiting list and

switches to the idle task.

Figure 4.4: Scheduling of virtual machines according to SCHED FIFO scheduling algorithm. The

process ”qemu-system-x86-2108 ” is the vCPU of VM1 and ”qemu-system-x86-2202 ” rep-

resents the vCPU of VM2. This experiment shows how the VM1 process is starved by the VM2

process because it never releases the CPU.

At this time, the host OS detected the internal idle state of the guest operating system, preempts

VM1 process and schedules VM2. Conforming to the Linux’s documentation, there is no time slice

in the SCHED FIFO scheduling algorithm, that is, a process is allowed to execute until it explicitly

releases the CPU or be preempted by a higher priority process. This results in the situation where

the CPU is not allocated to VM1, and the periodic task is never executed.

As a side note from the observation of the scheduling diagram in Figure 4.4, we can better

understand the reason of the rare very high overhead and latency measured in the previous chapter.

If we assume that the guest OS running on VM1 was executing a routine such as the scheduling,

it is easy to see how this routine would be delayed by the execution of another workload on the

host (in this case VM2). While in this extreme situation the overhead would be extremely high, we

conjecture that what happened in the rare cases where we recorded a very high overhead and latency

the situation was similar but in which a process executed by the host OS would delay the execution

of the guest OS by a more reasonable amount of time.

This problem could be resolved by adopting a scheduling method that enforces the temporal

isolation between the virtual machines. Such a scheduling method defines for each virtual machine

86

a tuple (Θ, Π), where the budget Θ and the period Π together represent the CPU share that a VM

requests. The VM will receive at least Θ units of time in each period of length Π.

Figure 4.5 shows an example of the algorithm that shares the CPU between two virtual ma-

chines. For example, by assigning (Θ = 2,Π = 4) to each virtual machine and setting a higher

priority to VM1 than VM2, 50% of the CPU time is allocated to VM1 and VM2. Given these tempo-

ral parameters, the algorithm prevents VM1 from over utilizing the CPU resources after consuming

its budget and allocates to VM2 the remaining CPU time. Hence it allows the real-time task T2 to

run and respect all its deadline.

0 5 10 15 20 25 30

T1

VM2

VM1

T2

scheduled on VM2

scheduled on VM1

release

time

not scheduled

completion

deadline

Figure 4.5: Scheduling of virtual machines according to the RM algorithm.

4.4 Computing of the Efficient Scheduling Parameters

The simple scheduling scenario illustrated in Figure 4.5 demonstrated the ability of an algorithm

that uses the periodic resource model (Θ,Π) to ensure the temporal isolation between the VMs.

From this scenario, we can intuitively deduce the requirements in terms of budget and period for a

virtual machine to guarantee the real-time requirement.

In general terms, we denote V the set of all virtual machines, Vl, in the system. Each Vl is

assigned a budget Θl and a period Πl. The VM scheduler then allows every VM to run a maximum

amount of time Θl every Πl time units. In the simple case where a VM is executing one real-time

task, the budget and period can be set according to the task parameter. And the inequality, Θl ≤ Πl,

must hold for all VMs in order to respect all the timing requirements.

However, in the other case where a virtual machine executes multiple real-time tasks, the period

and the budget for each VM must be calculated in order to respect the schedulability of all the tasks,

and the optimal utilization of the CPU resources.

87

Masrur et al. (2011) developed an analytical method to compute the efficient budget and period

of a virtual machine. In the following sections we provide the intuition and the equations of the

method, and we refer the interested reader to (Masrur et al., 2010, 2011) for a detailed discussion of

the mathematical proof.

4.4.1 Execution Length of a Virtual Machine

The execution length is the largest amount of time that it takes a virtual machine to execute its

assigned budget. The execution length depends on the scheduling of virtual machines, impacts

the schedulability of real-time tasks running on them, and is the first parameter to define in the

schedulability analysis.

First, we consider that the virtual machines are scheduled according to fixed-priority rate-

monotonic (RM) algorithm. Second, we assume that every virtual machine Vl can finishes executing

its assigned budget Θl within Πl time units from its release.

V 's execution length

t t + 2t + Π
t

V 's execution Higher-priority execution

Ω

Θ

Figure 4.6: Vl execution length.

As we can see in Figure 4.6, the execution length of a VM depends on the interference from the

execution of the other higher-priority VMs. To determine the time at which the VM finish executing,

we can use the worst-case response time analysis (Lehoczky et al., 1989; Audsley et al., 1993):

t(c+1) = Θl +
l−1
∑

j=1

⌈

t(c)

Πj

⌉

·Θj . (4.1)

According to the rate-monotonic algorithm, the VMs with shorter periods are the highest pri-

ority VMs. Then, using this policy, the VMs are sorted by decreasing priority. That is, the highest

priority VMs are scheduled before the lowest priority VMs. Thus, the second term at the right of

88

Equation (4.1) corresponds to all higher-priority VMs in the system. This equation can be verified

iteratively starting from t(1) = Θl and until t(c+1) = t(c) is satisfied for some c ≥ 1. The value of

t(c+1) is equal to the Vl’s worst-case response time, denoted by Ωl. From Figure 4.6 we define the

Vl’s execution length Ll by:

Ll = Πl −Θl +Ωl. (4.2)

We denote by dl,min = min
|τl|
i=1(di) the smallest deadline in the task set τl, where |τl| is the

number of tasks in τl. And we denote by el,min the worst-case execution time of the task with

dl,min. The task with dl,min is the highest priority task in Vl and its execution is not interrupted

once Vl starts running.

We assume that Θl is at least equal to el,min:

el,min ≤ Θl. (4.3)

Given the precedent two equations we can derive a necessary condition to ensure that Vl guarantee

that all dl,min are respected, that is, the execution length Ll must be less than or equal to dl,min:

Πl −Θl +Ωl ≤ dl,min. (4.4)

4.4.2 Schedulability Condition on a VM

After defining the condition that allows a VM to meet all deadlines of the highest-priority task, in

this section we analyze the schedulability of a real-time task set running in a VM.

The worst-case execution demand of a task Ti ∈ τ , within di time units is denoted by ωi and

given by:

ωi = ei +
i−1
∑

j=1

⌈

di

pj

⌉

· ej . (4.5)

If we assume that all tasks in τl are sorted by decreasing priority, which corresponds to increas-

ing period under RM algorithm, then, the second term at the right of Equation (4.5) determines the

worst-case execution demand of all the (i− 1) higher-priority tasks on Vl.

89

And if we assume that the worst-case execution demand within di time units of a task Ti ∈ τl,

is less than or equal to di, that is, ωi ≤ di. Then, the necessary schedulability condition for a task

Ti to meet its deadline on Vl is:

kl,i ·Θl +min(Θl, αl(ti − kl,i ·Πl)) ≥ ωi, (4.6)

where ti is equal to di − (Πl − Θl) and kl,i is computed by
⌊

ti
Πl

⌋

. The function αl(t) returns the

amount of time that Vl is able to run in a time interval of length t. This function takes into account

that Vl is released together with all higher-priority VMs at the beginning of the interval of length t.

To understand the schedulability condition let us examine the inequality in the simple case

where min(Θl, αl(ti − kl,i ·Πl)) = 0, then, we obtain this inequality:

kl,i ·Θl ≥ ωi. (4.7)

As we assumed that ωi ≤ di, and if Vl can execute ωi time units before di expires, then the previous

condition holds, and the task Ti respects its deadline. Figure 4.7 illustrates this simple example

where the virtual machine is scheduled at time t + Π, and finishes executing before the expiration

of the deadline di of a task Ti.

ti

t t+2Πt+Π

Θ

V 's execution priority VM execution

t+3Π t+k.Π

di

worst-case release of task

t-Π

t+(k+1).Π

...

Figure 4.7: Schedulability condition of task Ti, in the case where the virtual machine Vl executes

its time slice Θl before the expiration of the deadline di of task Ti, and this time slice covers the

worst-case execution demand of task Ti.

Figure 4.8 illustrates a second example, in which the execution of the VM Vl is interleaved by

the execution of a higher priority VM. In this case the term min(Θl, αl(ti − kl,i · Πl)) depends on

the value returned by αl(t). The function αl(t) returns the maximum value of a variable El that can

90

be calculated using the following equation:

t(c+1) = El +
l−1
∑

j=1

⌈

t(c)

Πj

⌉

·Θj . (4.8)

The value of El is at maximum equal to Θl because Vl could not execute more than Θl during an

interval of time equal to Πl. Again, as we assumed that ωi ≤ di, and if Vl can execute ωi time units

before di expires, then the schedulability condition holds, and the task Ti will respect its deadline.

ti

t t+2Πt+Π

Θ

V 's execution Higher-priority VM execution

t+3Π t+k.Π

di

worst-case release of task

ti-2.Π

t+(k+1).Π

...

Figure 4.8: Schedulability condition of task Ti, in the case where the execution of virtual machine

Vl is interleaved by the execution of higher priority VM. Even though there is an interference the

virtual machine Vl completes the execution of its time slice Θl before the expiration of the deadline

di of task Ti, and this time slice covers the worst-case execution demand of task Ti.

Figure 4.9 illustrates the general case, as we can see Vl is executed kl,i times within ti. The

term min(Θl, αl(ti − kl,i · Πl)) represents the Vl’s additional execution time in the time interval

[ti − kl,i · Πl] assuming the worst-case situation, that is, Vl is released at the same time with higher

priority VMs.

ti

t' t'+2Πt'+Π

Θ

V 's execution Higher-priority VM execution

t'+3Π t'+k.Π

i

worst-case release of task

ti-kl,i.Π

t'+(k+1).Π

...

Figure 4.9: Schedulability condition of task Ti executed on the virtual machine Vl.

And given that the Vl worst-case execute time is Θl in a period Πl, and ti − kl,i · Πl < Πl (see

Figure 4.9), the Vl additional execution time is lower than, or equal to Θl at maximum.

91

4.4.3 Computing of the Highest-Priority VM’s Parameters

Using the minimum execution length of a VM and the schedulability condition, we present in this

section the method to calculate the budget Θl and the period Πl of a virtual machine Vl such that all

deadlines are respected.

Assuming that all VMs are scheduled under RM algorithm, that is, Πl specifies the priority of

a Vl. So, if Πl verifies the Equation (4.4), then Vl is able to schedule the task with the minimum

deadline dl,min. And therefore, Vl is the highest priority VM.

Now, the idea of the algorithm is to calculate the period and the budget of a Vl in order to

respect the deadline of all the tasks. Starting by calculating the parameters of the highest priority

VM, then to continue with the lower priority VMs according to decreasing priorities. The reason

for this order stems from the fact that the algorithm uses the worst-case response time analysis, in

which the computing of the lower priority VM’s parameters depends on the highest priority VM’s

values.

Given that the VMs are sorted by decreasing priority, we set the virtual machine V1 as the

highest priority VM. We assigned to V1 the highest priority task that has the minimum deadline

d1,min. The budget of V1 is Θ1 and represents its worst-case response time Ω1 because there is

no interference with other VMs when V1 starts executing which results in L1 = Π1, and using

Equation (4.2) we obtain:

Π1 = Π1 −Θ1 +Ω1. (4.9)

By selecting Θ1 to be equal to e1,min, the worst-case execution time of the task with minimal

deadline, it is clear that for the highest priority task to respect its deadline, Π1 must verify the

necessary condition given by Equation (4.4). So, by replacing in Equation (4.4) the new value of Π1

we obtain:

92

Π1 −Θ1 +Ω1 ≤ dl,min (4.10)

Π1 −Θ1 +Ω1 −Θ1 +Ω1 ≤ dl,min (4.11)

Π1 ≤ d1,min. (4.12)

After setting Π1 to be equal to d1,min, the idea is to recompute the value of Θ1 in order for V1

to guarantee a deadline di ≥ d1,min. In the case of V1, the function α1(ti − k1,i · Π1) reduces to

ti−k1,i ·Π1 because V1 is the highest priority VM and there is no interference from other VMs. So,

by replacing the values of Θ1 and Π1 in Equation (4.6) we obtain:

k1,i ·Θ1 +min(Θ1, αl(ti − k1,i ·Π1)) ≥ ωi. (4.13)

If we suppose that the term min(Θ1, αl(ti − k1,i.Π1)) is equal to zero, and replacing k1,i by
⌊

ti
Πl

⌋

where ti = di − (Π1 −Θ1), we obtain:

⌊

di − (Π1 −Θ1)

Π1

⌋

·Θ1 ≥ ωi. (4.14)

After removing the floor function, and transforming the inequation we obtain the following

quadratic equation on Θ1:

(Θ1)
2 + (di −Π1) ·Θ1 − ωi ·Π1 = 0. (4.15)

The solutions for this quadratic equation could be positive or negative. If at least one solution is

positive, it means that a task Ti could be scheduled on V1. The solution found is an approximation

of Θ1, that allows the scheduling of Ti. To verify that the new values of Θ1 are optimal or not,

we can use Equation (4.6). If k1,i · Θ1 + min(Θ1, αl(ti − k1,i.Π1)) == ωi, then the solution is

a minimum possible budget that allows the scheduling of Ti. Otherwise it can be reduced without

affecting the scheduling of Ti.

In the case where the new value of Θ1 do not verify Equation (4.6), the value of Θ1 need to be

increased, while respecting the condition of being lower than or equal to Π1.

93

So, if the solution of Equation (4.15) is not the minimal value of Θ1, or the value of Θ1 does

not verify Equation (4.6), we can replace in the following Equation the solution found in order to

calculate the difference between the approximation of Θ1 given by the solution, and the correct

value of Θ1:

∆Θ1
= ωi − k1,l ·Θ1 −min(Θ1, ti − k1,i ·Π1). (4.16)

If ∆Θ1
is positive then the Θ1 needs to be increased, and if it is negative then Θ1 could be

decreased.

An optimization could also be applied in order to distribute the ∆Θ1
between all the V1 execu-

tions before di. This could done by: first calculating the number of times that V1 executes before

di. Then, recomputing Θ1 by adding to the current approximation of Θ1 found using the solution

of the quadratic equation, the value of
∆Θ1

η1
, where η1 is:

η1 = k1,i +

⌈

min(Θ1, ti − k1,i ·Π1)

Θ1

⌉

. (4.17)

The same principle could be applied to calculate the parameters of a lower priority VM (Masrur et al.,

2011).

Example 4.4 illustrates the use of the precedent equations to compute the budget and period of

a highest priority VM.

priorityi ei pi di ui
T1 1 1 5 2.5 1

5 = 8
40 ≈ 0.20

T2 2 2 5 5 2
5 = 16

40 ≈ 0.40
T3 3 1 20 7 1

20 = 2
40 ≈ 0.05

T4 4 3 20 10 3
20 = 6

40 ≈ 0.15
T5 5 4 40 40 4

40 = 4
40 ≈ 0.10

usum(τ) ≈ 0.90

Table 4.2: Task set of the simplistic automotive applications as proposed by (Masrur et al., 2011).

The first two tasks implements the Electronic Stability Control software (ESC), and the second two

tasks implements the Engine Management software (EM).

Example 4.4. The example of the task set in Table 4.2 represents two applications, the first appli-

cation includes tasks T1, T2, and the second application includes tasks T3, T4, and T5.

94

We design the scheduling by running the ESC application on VM1 and the EM application on

VM2. We give to VM1 a higher priority than VM2.

To compute the budget and the period for VM1 we use the parameters of task T1 because it is the

highest priority task, thus Θ1 = 1 and Π1 = 2.5. Now, to ensure that T2 could be scheduled by VM1,

we need to recompute the Θ1 using the quadratic Equation (4.15). But we need first to compute ω2,

the worst-case execution demand of task T2 using Equation (4.5). In this case the (ω2 = 1+ 2 = 3)

because only tasks T1 and T2 are running on VM1, and task T2 can only be delayed by the execution

of task T1.

Using the deadline of task T2, d2 = 5 and replacing in Equation (4.15) we obtain:

Θ2 + (5− 2.5) ·Θ− 3 · 2.5 = 0.

This equation has a negative root, −4.26, and a positive root, 1.76. Obviously, only the positive root

could be used. Now the new value of Θ1 is 1.76. Next, we need to verify that this value respects the

schedulability condition. Thus we need to compute t2 = d2 − (Π1 −Θ1) and k1,2 =
⌊

t2
Π1

⌋

. Which

results in t2 = 5− (2.5− 1.76) = 4.26 and k1,2 =
4.26
2.5 = 1.

To verify that the schedulability condition holds, we replace in Equation (4.6):

1 · 1.76 + min(1.76, 4.26− 1 · 2.5) ≥ 3,

3.52 ≥ 3.

As the comparison holds, and ∆Θ1
= 3−3.52 = −0.52 is negative, we need to increase Θ1 by ∆Θ1

.

But instead of adding the complete amount of time ∆Θ1
to Θ1, this amount could be distributed by

a number of times that VM1 need to execute before d2. The number is given by:

η1 = k1,i +

⌈

min(Θ1, ti − k1,i ·Π1)

Θ1

⌉

η1 = 1 +

⌈

min(1.76, 426− 1 · 2.5)

1.76

⌉

η1 = 2

95

Using η1 we recompute the new value of Θ1:

Θ1 = 1.76 +
(−0.52)

2
= 1.5

Verifying again the value of Θ1 in Equation (4.6) :

1 · 1.5 + min(1.5, 4.26− 1 · 2.5) ≥ 3,

3 == 3.

As we can see, the new value is minimum possible value of Θ1, and in order for VM1 to schedule

tasks T1 and T2, its parameters must be set as Θ1 = 1.5 and Π1 = 2.5. ♦

4.5 Overhead-aware Schedulability Analysis

In the previous chapter we measured the overheads and latencies of a guest RTOS. However, the

theoretical method presented in the the previous sections does not take into account the overhead

observed in practice. In this section, we integrate these overheads into a schedulability analysis.

Our measurement indicates that in practice the execution of a task is delayed by a set of over-

heads and latencies. Figure 4.10 illustrates the timeline of a task’s release event. As we can see the

task’s execution is delayed by its own event latency (∆event), release overhead (∆rel), scheduling

overhead(∆sched), and context switch overhead (∆cxs). These overheads and latencies need to be

accounted for the execution time of a real-time task. We define the overhead related to a release

event by:

Δevent Δrel Δsched Δcxs

CPU

ei

Figure 4.10: Overhead related to release event. The execution of a task Ti is delayed by the over-

heads and latencies internal to the RTOS when it is released.

∆relEv = ∆event +∆rel +∆sched +∆cxs

96

Consequently, the task’s execution time needs to be inflated by this overhead as follows:

e′i = ei +∆relEv

This method is then used to recompute the parameters of all the tasks τi in a workload τ =

{τ1, τ2, · · · , τn} of each component C in the system. Using these inflated tasks’ parameters and the

method presented in the previous section we can compute the periodic resource model Γ = (Θ,Π)

for each component C. To validate this overhead-aware schedulability analysis we use Lemma 4.1:

Lemma 4.1 (Phan et al. (2013)). A Component C = 〈τ,A〉 is schedulable by a periodic resource

model Γ in presence of inflatable overheads if its inflated workload τ ′ is schedulable by Γ under the

algorithm A when there are zero overheads.

The proof of the Lemma 4.1 relies on the overhead accounting technique. As we have shown

above, the WCET e′i of a task is composed by the original WCET ei and the ∆relEv. This means

that the task’s WCET never exceeds e′i in presence of overhead. Suppose that the inflated execution

time e′i of all tasks in τ ′ are used to compute the periodic resource model Γ = (Θ,Π), and this PRM

verifies the schedulability condition in a VM (see Equation (4.6)), that is, all tasks in τ ′ meet their

deadline, then τ ′ is schedulable under algorithm A. So, if τ ′ is schedulable under A assuming zero

overhead, then τ is schedulable under A in presence of inflatable overheads.

From our overhead measurement we used the worst-case observed value when executing 20

tasks per processor as an estimation of the overheads and latencies. Thus, ∆sched equals to 75µs,

∆event equals to 250µs, ∆cxs equals to 20µs, and ∆rel equals to 40µs. In total, the ∆relEv equals

to 385µs, could be used to inflate the tasks’ execution time.

In the next section, we present an implementation of the periodic resource model, and we

use the overhead-aware schedulability analysis to compute the PRM parameters Γ = (Θ,Π) for

each components in the system. Then we experiment this method using a case-study real-time

application.

97

4.6 Empirical Evaluation

In order to evaluate the presented method it is necessary to implement the periodic resource model

(PRM), because this model permits to assign a budget Θ and a period Π to the virtual machines,

and thus guarantees that the resources required by each virtual machine will be provided by the

host. To experiment the use of the periodic resource model on top Linux kvm we used two different

implementations: the Vsched user-level library and SCHED DEADLINE real-time scheduling

class internal to Linux kernel.

The Vsched library (Lin and Dinda, 2005) is a user-level library that implements an EDF real-

time scheduling algorithm that co-exists with the default scheduling classes of Linux. The Vsched

library allows to attribute to each virtual machine a PRM interface (Θ,Π).

The SCHED DEADLINE (LWN, 2014) scheduling class is an implementation of the EDF

scheduling algorithm in Linux, this policy is reinforced by the Constant Bandwidth Server mecha-

nism that ensures the temporal isolation between processes using a PRM interface and thus prevents

a misbehaving process from affecting the correctness of the others.

In a first experiment we used Vsched to run two virtual machines on the same CPU in order

to verify that the temporal isolation is guaranteed among the VMs. We reused the same test-case

that we already presented in Section 4.3 when we analyzed the problem of the scheduling of virtual

machines (see Figure 4.4). In that case we demonstrated how one virtual machine was exposed to

a starvation problem when executed on the same CPU with a second virtual machine that has the

same priority. The virtual machines were scheduled using the SCHED FIFO real-time scheduling

algorithm. The experiment consisted of two virtual machines, VM1 was executing a periodic task

T1(500ms , 1000ms) and VM2 was executing a process that performs an endless while() loop.

We repeated this experiment but we configured the PRM interface for each virtual machine in

a way that ensures the proportional share of the CPU resource between the two VMs, each virtual

machine was executed for 200ms every 250ms , VM1 (200ms , 250ms) and VM2 (200ms , 250ms).

We ran the workload for 10 one-minute runs. Figure 4.11 shows the correctness of the scheduling.

Moreover, we evaluated the real-time performance of the guest OS running on VM1. We mea-

sured the deadline miss ratio metric, which is the number of deadline misses divided by the total

98

number of completed jobs of the periodic task. The obtained results indicate that no deadline was

missed during the experiment.

Figure 4.11: Scheduling of virtual machines using the periodic resource model. The CPU was

allocated in fair-share fashion to both virtual machines.

Application Task execution time period

Task set 1 T1 300ms 1500ms

T2 500ms 2000ms

Task set 2 T3 300ms 1200ms

T4 400ms 2400ms

Table 4.3: Simplified real-time applications.

In a second experiment we tested two real-time applications. We designed the system to use

two virtual machines, VM1 executed task set 1 and VM2 executed task set 2, the parameters of

the tasks are given in Table 4.3. Each virtual machine was executing a real-time Linux. The recent

integration of SCHED DEADLINE to the mainline Linux allowed us to use it instead of Vsched as

an implementation of the periodic resource model for the scheduling of virtual machines. Table 4.4

summarizes the platform setup.

Hardware Intel core i7 2.6GHz VT-x 8GB RAM

VMM kvm and Qemu

Host OS Linux-3.14.rc6

Guest RTOS Linux-3.4 PREEMPT RT

Table 4.4: Real-Time Virtual Machine System configuration.

The PRM parameters of each virtual machine were computed based on the necessary condi-

tion, defined by Equation (4.4) and the schedulability condition defined by Equation (4.6). The

99

period of the virtual machines VM1 and VM2 was set according to the necessary condition using

Equation (4.4):

Πl ≤ di,min.

Recall that di,min is the deadline of the highest priority task Ti executed on a virtual machine

Vl. As in our experiment we used the period of a task as its deadline, so, di,min is 1500ms in the

case of VM1, and is 1200ms in the case of VM2 (see Table 4.3). So, we assigned Π1 = 200ms for

VM1, and Π2 = 200ms for VM2, in order to verify the necessary condition.

The budget of VM1 and VM2 was set according to the schedulability condition which is derived

from Equation (4.6):

kl,i ·Θl ≥ ωi,

where ωi is the worst-case execution demand of a task Ti executed on the virtual machine that

we calculated using Equation (4.5), and kl,i is the number of times that the virtual machine Vl

needs to execute before the expiration of the deadline di of a task Ti, and calculated using: kl,i =
⌊

di−(Πl+Θl)
Πl

⌋

.

The same budget was set to both virtual machines, VM1 (160ms , 200ms) and VM2 (160ms ,

200ms). This budget verifies the schedulability condition in both cases. For instance, in the case of

VM1, and task T1 we have k1,1 =
⌊

1500−(200+160)
200

⌋

= 5, and ω1 = 300 because T1 is the highest

priority task in VM1, then replacing this value in the schedulability condition we obtain:

5 · 160 ≥ 300

800 ≥ 300

In the case of task T2 the worst-case execution demand is (ω2 = (300 + 500) = 800) because

T2 has lower priority than T1 then could only execute after T1 finishes executing, and k1,2 =
⌊

2000−(200+160)
200

⌋

= 8. These values verify the schedulability condition:

100

8 · 160 ≥ 800

1280 ≥ 800

As we can see from the above inequations, the budget Θ = 160ms could be reduced without

affecting the schedulability condition, however we kept its value sufficiently high to integrate the

virtualization overhead which we estimated to be equal to 385µs in the previous section.

Note that the original theoritical method that we used to calculate the budget and the period of

the virtual machines assumes that the virtual machines are scheduled according to a fixed-priority

rate-monotinic scheduling. Where the virtual machine that execute the highest priority task would

be assigned the highest priority. However, in our experimentation we did not affect a priority to

any virtual machine because we used the SCHED DEADLINE scheduling class in Linux since it

is the only scheduling class that implements the PRM interface, and this scheduling class employs

dynamic priority scheduling. Thus, in our setup we set the same budget and period to each virtual

machine to force the scheduler to attribute the same priority to both virtual machines at runtime.

Periodic Task Model Implementation in Linux. We implemented the periodic real-time tasks

using Linux processes. Knowing that the minimal scheduling tick (jiffy) in Linux kernel that could

be configured is 1ms , we used this quantum as lower execution bound for the real-time task. We first

calibrated the amount of work that needs exactly 1µs on one core, and then scaled it to generate any

workload specified at a millisecond resolution. Using POSIX interfaces, every task was scheduled

using SCHED FIFO algorithm, and the priority was set according to the rate-monotonic policy.

We used a real-time clock to trigger interrupts to release each job of a task, and recorded the

first job release time. When each job finished, its finish time was recorded using the x86 RDTSC

instruction, which reads the TSC register (timestamp counter) and provides the number of cycles

since the boot of the machine.

After all tasks finished, we used the first job’s release time to calculate every job’s release

time and deadline, and compared each deadline with the corresponding job’s finish time. Then we

calculated the deadline miss ratio (DMR) for each individual task. For data collection, we stored the

dispatch time and the finish time of every job in locked memory to avoid memory paging overhead.

101

Results. After executing this workload for 10 one-minute runs, we used the DMR metric to verify

that no deadline was missed. As in the first experiment we did not observed any deadline miss in

both task set, thus we present the results using two different metrics in order to observe the behavior

of the system. The first metric is the job’s response time of a periodic task, which is the difference

between the job’s finish time minus the job’s dispatch time. The second metric is the job’s release

delay, which is the difference between the job’s actual dispatch time minus its ”theoretical” release

time.

We present the average-case response time and release delay results in Figure 4.12(a), Fig-

ure 4.12(b) for VM1, and Figure 4.12(c), Figure 4.12(d) for VM2.

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8 9 10

a
v
e
ra

g
e
 r

e
s
p
o
n
s
e
-t

im
e
 i
n
 m

ill
e
s
e
c
o
n
d
s

Number of runs

Task set 1 executed on a Linux-PREEMPT_RT using one kvm VM
 VM1(160ms, 200ms), task1(300ms, 1500ms) & task2(500ms, 2000ms)

deadline task 1: 1500.0 ms

deadline task 2: 2000.0 ms

task 1 [dmr 0.0%]
task 2 [dmr 0.0%]

(a) Response Time

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8 9 10

a
v
e
ra

g
e
 r

e
le

a
s
e
-d

e
la

y
 i
n
 m

ill
e
s
e
c
o
n
d
s

Number of runs

Task set 1 tested on a Linux-PREEMPT_RT using kvm VM
 VM (160ms, 200ms), task1(300ms, 1500ms) & task2(500ms, 2000ms)

deadline task 1: 1500.0 ms

deadline task 2: 2000.0 ms

task 1 [dmr 0.0%]
task 2 [dmr 0.0%]

(b) Release delay

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8 9 10

a
v
e
ra

g
e
 r

e
s
p
o
n
s
e
-t

im
e
 i
n
 m

ill
e
s
e
c
o
n
d
s

Number of runs

Task set 2 executed on a Linux-PREEMPT_RT using kvm VM
 VM(160, 200), task3(300ms, 1200ms) & task4(400ms, 2400ms)

deadline task 3: 1200.0 ms

deadline task 4: 2400.0 ms
task 3 [dmr 0.0%]
task 4 [dmr 0.0%]

(c) Response Time

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8 9 10

a
v
e
ra

g
e
 r

e
le

a
s
e
-d

e
la

y
 i
n
 m

ill
e
s
e
c
o
n
d
s

Number of runs

Task set 2 executed on a Linux-PREEMPT_RT using one kvm VM
 VM(160ms, 200ms), task3(300ms, 1200ms) & task4(400ms, 2400ms)

deadline task 3: 1200.0 ms

deadline task 4: 2400.0 ms
task 3 [dmr 0.0%]
task 4 [dmr 0.0 %]

(d) Release delay

Figure 4.12: Two tasks set of the the synthetic real-time application executed on two separate virtual

machines that were scheduled by SCHED DEADLINE.

Note that observing the response time alone is not sufficient to see that the task did not miss

its deadline. It is also necessary to observe the tasks’ release delay to see at what time the jobs

were actually dispatched. Because if a job is dispatched too late it could miss its deadline even if its

response time corresponds to its execution time.

102

Comparing the trend of the response time and the release delay with the deadline of all tasks

demonstrate that no deadline miss occurred. This proves the efficiency of the method to guarantee

the respect of the tasks’ deadlines even in the presence of virtualization overhead.

We can also see how the observed response time of a task Ti differs from its worst-case exe-

cution time ei. For example the wcet e1 of task T1 is 300ms , while its response time is 500ms

(see Figure 4.12(a)). This is because when VM1 is scheduled executes task T1 for 160ms then it

is preempted by VM2. Then it is re-re-activated and it finishes executing task T1. As indicated in

Figure 4.13, at t = 60 we can see that task T1 is released it waits until the activation of VM1, then

it is executed for 160ms . After that it is suspended for 160ms because VM1 is preempted by VM2,

and finally it continues executing to finish at time t = 65.

0 5 10 15 20 25 30

T1

VM2

VM1

T3

scheduled on VM2

scheduled on VM1

release

time

not scheduled

completion

deadline

35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135

Figure 4.13: Scheduling of virtual machines VM1 and VM2 using the same priority. Here the

scheduling graph shows the execution of both virtual machines and their highest priority tasks (T1

and T3) during the hyperperiod, which is the smallest interval of time after which the periodic

pattern of all tasks is repeated and calculated using the least common multiple of all tasks’ period

(in this case it is equal to 12000ms).

Moreover, we can observe how the release time of a task influences its response time, for

example from Figure 4.12(c) and Figure 4.12(d) we can see that when the jobs of task T3 and T4 are

released at the same time (case number 1, 2, 5, . . .) the response time of task T4 is higher than the

case where the jobs are not released at the same time (case number 3, 4, 6, and 8). This is explained

by the fact that when both tasks are released at the same time, task T4 is delayed by the execution

of task T3 and the virtual machine VM2 shares the CPU with virtual machine VM1.

4.7 Summary

In this chapter, we examined how the scheduling of virtual machines could affect the real-time

performance of a guest RTOS and its applications. We argued for the adoption of the periodic

resource model interface to specify for each virtual machine a budget and a period. This interface

103

guarantees that the CPU resource will be provided by the host when it is required by a virtual

machine and reinforces the predictability of the system. In other words, the very high worst-case

overheads and latencies observed in our first evaluation of a virtual machine system had no effect

on the predictability of the real-time application executed by a guest RTOS if the virtual machine

monitor uses the periodic resources model to schedule the virtual machines.

We analyzed an analytical method that allows to compute the PRM interface for each virtual

machine in order to meet the timing requirements of all real-time periodic tasks running on the guest

OS. We also extended this method to integrate the overhead incurred by the virtualization system.

We experimented two different implementations that use the periodic resource model interface

to allocate the CPU resource for each virtual machine, we showed how temporal isolation was

guaranteed in both cases.

In our experiment we used a user-level library to evaluate in practice the theoretical technique

regarding the periodic scheduling of virtual machines. The Vsched user-level library allowed us

to reduce the development time because we employed it at the early stage of our research experi-

ment that was started before the integration of the SCHED DEADLINE scheduling class into the

mainline Linux. The results of the evaluation revealed that such an approach offers a good tradeoff

between flexibility and performance.

This raises the question of adopting a user-level approach to configure an RTOS? A question

that we explore in the next two chapters.

104

CHAPTER 5

RTOS Models Transformation and Configuration

In this chapter we present our work aiming at transforming a simulation RTOS model into

an executable RTOS model and enabling its configuration. In Section 5.1 we review the classical

system-level design flow for System-On-Chip. In Section 5.2 we present the OveRSoC methodol-

ogy, and discuss a solution to transform a simulation model into a model that is executable on a

real hardware. In Section 5.3 we review the model-driven engineering approach, show how to use

this method to create a model-to-model transformation and finally we discuss the limitation of the

approach and its improvement.

5.1 Software/Hardware Co-design Process

Usually, when developing application-specific System-On-Chip, system designers start by writing

the software models of the system in a high-level programming language such as C in order to

validate the specifications. On the other hand, they implement the hardware part using hardware

description language such as VHDL, or Verilog, then they verify their design using a simulation

tool before using a high-level synthesis tool to transform the description into a configuration of a

programmable hardware circuit (e.g. FPGAs, field programmable gate array).

Testing the software and the hardware together allows to verify the specification, and if the

results are conform to the specification, then the hardware design is used to create the ASIC (appli-

cation specific integrated circuit) System-On-Chip.

In order to accelerate this design flow (see Figure 5.1), and to explore the design space which

allows to decide early what functionality should be implemented in software or in hardware, system

designers may use system-level simulation library such as SystemC. This C++ library allows to

create accurate models of the system. Since the software and the hardware are both defined at the

Specification

Time

Register Transfer Level

architecture

Hardware-software integration

Abstract platformSoftware models Hardware models

Performance analysis

hardware-software

partitioning

Abstract Architecutre

IP Core

Software design

Hardware design

a
r
c
h

it
e
c
tu

r
e
 e

x
p

lo
r
a
ti

o
n

a
r
c
h

it
e
c
tu

r
e
 d

e
s
ig

n

Figure 5.1: System-level design flow for SoCs.

same level, it is possible to test and simulate the whole system using the software and the hardware

models.

For example, the ARM Fast Models (ARM, 2014) are SystemC models of the CPU created by

ARM, and used to validate the latest developed ARM instruction set architecture before licencing the

IP (intellectual property) of the hardware logic to chip founder such as Freescale, Texas Instruments,

Samsung, Qualcomm, etc. A second example is the SoCLib library (Lip6, 2014) which is an open

platform for virtual prototyping of multiprocessor System-on-Chip.

A system developer may then use SystemC models as a virtual platform to accelerate the devel-

opment phase and test the complete software and hardware system months before the availability of

the hardware prototypes.

5.2 OveRSoC Methodology

The OveRSoC methodology (Miramond et al., 2009) aims to build a platform that permits the

software-hardware co-design of real-time operating systems for embedded reconfigurable system-

106

on-chip platforms. Such a heterogeneous platform combines a multitude of hardware units, for

instance general processing units (e.g. CPU), reconfigurable hardware units (e.g. FPGA), and even

computation specific hardware units (e.g. DSP, GPU). Furthermore, the OveRSoC methodology em-

phasizes that the use of dynamically reconfigurable hardware units permits to adapt the architecture

to various incoming tasks at runtime.

This heterogeneity complicates the design process because the system designer have to decide

in one hand, how the application should be partitioned onto the processing cores, and on the other

hand, how the dynamically reconfigurable hardware resources should be managed, what services

should be provided to the programmer, where they should be implemented, etc.

With regards to these questions, the use of an RTOS is more commonly adopted by the different

approaches. In one approach, an existing RTOS (e.g.. VxWorks, µcOS-II, QNX Neutrino, etc.) is

modified to integrate the new services that permit the management of all the hardware architecture.

In a second approach, an RTOS is created from scratch, and integrates the support of all the required

services.

The OveRSoC methodology adopted an approach in which high-level SystemC models of the

RTOS and the reconfigurable system-on-chip (RSoC) hardware are developed together in order to

explore the efficiency of different critical design choices. Once the candidate design solution is

validated, then it is refined towards low-level abstraction down to real hardware implementation.

The OveRSoC framework proposes a set of RTOS’s services required to explore the manage-

ment of the reconfigurable hardware unit as well as the standard OS services such as tasks manage-

ment, scheduling, and synchronization.

Through the use of an API implemented by these services a programmer may then create an

application composed by a set of software and hardware tasks. The functional behavior of each

task should be written in pure C code independently of its nature software or hardware. The system

designer may then use the models provided by the OveRSoC framework to compose the complete

RSoC platform. Figure 5.2 illustrates an example of a graphical RSoC platform model created using

the Dogme tool (Aichouch et al., 2008).

Figure 5.3(b) shows all the available components proposed by the framework. Some compo-

nents are stand-alone, that is, they could be used directly to provide a set of services, e.g. the ”ba-

sic PE” represents a processor. In contrast, the other components are behavioral components, that

107

Figure 5.2: OveRSoC development tool. In the hardware model, two Processing Elements (PEs) and

one reconfigurable hardware unit (named ”my simple ardos 1” in the figure) are instantiated. These

hardware components are needed to execute the software and hardware tasks of the application.

Also one communication element (”THE ORB” in the figure) and one synchronization mechanism

(”SampleSemHWOS” in the figure) represent a communication medias and a locking mechanism.

Alongside the hardware part, the system designer deploys two operating systems (named ”Sample”

and ”SampleDuo” in the figure) on the two distinct processors (PEs).

108

(a) OveRSoC’s Library. (b) OveRSoC’s design toolbox.

Figure 5.3: OveRSoC’s Library and design Tool.

109

is, they are intend to build a structural component, e.g. the ”basic scheduler” is a sub-component

of the ”OS component”.

Figure 5.4 shows the internal view of the OS component. A structural component does not

implement any functional behavior, all the services that it provides are implemented by the sub-

component that it contains. All these components are defined using SystemC models stored in a

library, that is shown partially in a tree view in Figure 5.3(a). This library could be enriched by new

developed models simply by adding the new SystemC definition and the XML description of the

model to the library.

Figure 5.4: OveRSoC graphical component designer.

Once the platform is completely defined, the system designer may adjust some attributes regard-

ing the available resources, specify a set of metrics to evaluate the resources utilization, necessary

110

to validate the design, then request an automatic generation of the structural source code of the

platform.

The Dogme tool generates the main module of the platform and a module for each structural

component, that is, all the components present in the platform are instantiated, as well as their

inter-connection, and the sub-components contained by a structural component.

The generated SystemC source code combined with the source code of the application are then

compiled into one binary code given as an input to the SystemC simulation engine. The SystemC

models are then simulated at high level during a specified amount of time.

After the end of the simulation, the system designer uses the set of the recorded metrics to

check the respect of the timing constraints and the correctness of the functional behavior. After the

analysis of the performance, the designer may then decide whether the platform is valid or some

adjustment of the attributes are needed, and iterate over the global simulation to explore the new

design.

Based on the new overall performance, the designer may decide to validate the design choices

and continue to the next step where the models are progressively refined.

5.2.1 From Simulation Models to Executable Models

One of the ultimate goal of the OveRSoC methodology is to produce a binary code that could be

used on real hardware.

Obviously, once a platform model is validated, a part of the hardware models could be replaced

by the corresponding hardware (e.g. CPU, DSP, Memory, etc.), a second part could be automatically

synthesized into hardware circuit configuration, and a third part that could not be synthesized needs

to be refined into a hardware description that could be synthesized.

Then, simulation models that are intended to be implemented in software have to be transformed

into a source code that could be compiled and executed on a real hardware.

So, the transformation mainly concerns the conversion of the RTOS simulation software models

into an RTOS executable software models. Such a transformation implies the complete re-writing

of the software in order to make it executable on real hardware. Unfortunately, this operation is a

difficult and time-consuming engineering effort.

111

To simplify this operation, we proposed a method based on a model-driven engineering tech-

nique. Given that the software simulation models are composed by structural and behavioral compo-

nents, thus it is possible to use a model-to-model transformation technique in order to automatically

create an executable model representing the structural part of the simulation model.

Thereafter, using the information extracted from the structural executable model, and an exist-

ing source code that could be executed on a real hardware, it is possible to automatically generate

programs that are executable on real hardware.

In the next section we review the necessary background to understand the model-driven engi-

neering approach, and present how to use a model-to-model transformation technique to convert

simulation models into executable models.

5.3 Model Driven Engineering

The Model-Driven Engineering (MDE) is an approach for software development, which is based

on models as a first artifact in the development process. Then, a transformation is applied on these

models to map the information from one model to another or to generate executable programs.

A model is an abstraction, a sufficient simplification to understand the real system. In this

context, a system may be defined using different sub-models connected to each others.

The definition of a modeling language, called meta-modeling, is the key issue of the model-

driven engineering. A modeling language defines the rules and constraints that are required to

build a specific model. Once a model is completely defined, it is often necessary to apply models’

transformation in order to generate custom code, documentation, test, validation, verification and

binary code (see Figure 5.5).

After the adoption of the object oriented approach by the software industry, the model-driven

approach may be seen as the continuity of the initial approach. While the object oriented approach is

founded on the notion of ”an object that inherits from” and ”an object is an instance of one particular

class”, in MDE the main concept is a model. The standards consortium, Object Management Group

(OMG, 2014), defines a model by:

Definition 5.1. A model is an abstraction of a system, modeled upon a set of facts which was built

for particular intend. A model should be used to answer the question about the modeled system.

112

Figure 5.5: Model-Driven software development process.

In the MDE approach, the notion of model refers explicitly to the notion of well-formed lan-

guage. More specifically, an operational model is a model that can be manipulated by a computer.

This well-formed language should be clearly defined, and the definition of a modeling language has

been formalized using particular models, called meta-model:

Definition 5.2. A meta-model is a specific model defining a language to describe other models.

The Object Management Group uses these two notions to define the set of the Unified Modeling

Language standards. UML is the most widely used standard for describing systems in terms of

object concepts. UML is very popular in the specification and design of software, most often to

be written using an object-oriented language. UML emphasizes the idea that complex systems are

best described through a number of different views, as no single view can capture all aspects of

such system completely. Moreover, it includes several different types of model diagrams to capture

usage scenarios, class structures, behaviors, and implementations.

5.3.1 Model Driven Architecture

The adoption of UML has been a major point in the transition towards model-driven engineering.

After the acceptance of the key concept of meta-model, many meta-models have emerged. In order

to avoid the multiplicity of these meta-models within a domain and to circumvent the incompatibil-

ity between them, the OMG proposed a standard language to define meta-models. This language

constitutes a model itself and is referred to as meta-meta-model named MetaObject Facility (MOF):

113

Definition 5.3. The meta-meta-model MOF is a model that defines a modeling language, that is,

the necessary modeling element to define a modeling language. And it should have the ability to

define itself.

Using these definitions of the different abstraction levels, the OMG has organized these notions

of modeling hierarchically. The ”real world” is represented at the lower level (M3), the models

representing this reality are based at level (M2), the meta-model used to define these models are at

level (M1), and finally, the meta-meta-model, unique and self-defined, is represented at the top level

(M0).

M0: Meta-Meta-Model (eg. MOF, Ecore)

M2: Model (eg. UML models)

Figure 5.6: Hierarchical Modeling Levels.

The Model-driven Architecture (MDA) relies on the UML standard to describe the different

phases of the development project cycle. In MDA, a Computational Independent Model (CIM) is

elaborated in order to specify the solution to the requirement. Then, a Platform-Independent Model

(PIM) of the system is developed and the model is transformed to obtain a Platform-Specific Model

(PSM). This facilitates early validation and implementation on different platforms. All these con-

cepts inherently increase productivity, reduce software development time and provide high quality

products.

5.3.2 Domain Specific Language

In the MDA approach, it may be noticed that the model-driven engineering is tightly associated to

UML. However, an important point here is to separate the MDA approach from the UML formalism.

The reason is that the model-driven engineering scope is wider than UML. Sometimes UML must be

reduced or extended through mechanisms like profiles (e.g. UML-Marte, SysML, etc.). The model-

driven approach encourages the creation of domain-specific language that the user can handle easily.

114

Definition 5.4. A Domain-Specific Language (DSL) is a language designed to be useful for a spe-

cific set of tasks, as opposed to a general purpose language.

With DSL, software designers are currently able to create models very rapidly and efficiently.

They are also capable of generating executable code from the defined models in a very simple

manner.

Summary. In this section, we reviewed the basic concepts of the model-driven engineering ap-

proach. In the next section, we present the RTOS meta-model, and define the domain-specific lan-

guage used to create RTOS models. Finally we show how it is used to transform RTOS simulation

models into executable models.

5.4 RTOS-specific Modeling Language

A modeling language like any other language has two main properties, a semantic and a concrete

syntax. The semantic of a modeling language is defined by a meta-model, and specifies the meaning

of each ”word” in the model. The concrete syntax is the way how a model is created or written, it

could be in textual or graphical form.

5.4.1 RTOS Meta-Model

The meta-model forms the set of concepts, rules, constraints, constructions, and all the elements that

define the semantic of the modeling language. To define these elements in our RTOS meta-model we

used the meta-meta-modeling language, MetaObject Facility. The MOF standard is implemented

by frameworks such as the Eclipse Modeling Framework (Steinberg et al., 2008; Gronback, 2009),

referred to as Ecore language, and the Microsoft Visualization and Modeling SDK (Cook et al.,

2007).

MOF is defined by a set of basic concepts inspired from the object oriented approach. Figure 5.7

shows how these concepts are constructed. The concept of Class is used to represent real world

objects. A Class is characterized by properties called references, if their type is a complex type,

referred to as a ”TypedElement”, and attributes if their type is primitive type, called a ”DataType”

(e.g. Boolean, String, Int, etc.).

115

Figure 5.7: Meta Object Facility language.

To create a meta-model that define the structure of an RTOS, we were inspired by the con-

struction of an RTOS in its most abstract form. That is, if we observe an RTOS from an abstract

perspective, we may see that it is composed by a set of services, and each of these services provides

a set of operations.

So, an RTOS meta-model could be defined by three main classes: the ”RTOSModel”, ”Service”

and ”Operation”, and two containment relationships between them. The ”RTOSModel” class has a

list of ”Service” objects, and the ”Service” class contains a list of ”Operation” objects as depicted

in Figure 5.8. These three entities and their relationships are sufficient to define the structure of an

RTOS in its abstract form.

RTOSModel

Service

Operation

RTOSModel 1

operations *

service 1
services *

Figure 5.8: A meta-model reflecting an abstract RTOS structure.

To create our RTOS meta-model we used the Microsoft Visualization and Modeling framework,

the reason for this is simply due to the familiarity with the underlying programming language used

116

to define models transformation. For more implementation details we refer the interested reader to

the project public source code repository1.

5.4.2 Concrete Syntax

Using the concrete syntax, the user can create a model of the RTOS structure. We defined the

concrete syntax using a graphical notation, then we created a mapping between this notation and the

RTOS meta-model elements. We decided that the ”RTOSModel” class should appear as the diagram

containing the ”Service” models. And we associated a rectangular shape with compartment to the

”Service” class in order to display its ”Operation” list. Figure 5.9 illustrates a model of the µcOS-II

RTOS created graphically using the associated modeling tool.

Figure 5.9: RTOS-specific modeling language tool.

1See http://code.google.com/p/rtos-dsl/.

117

5.4.3 Model-to-Code Transformation

Being able to represent the structure of an RTOS, the next step is to produce the final source code.

Our assumption was that the behavioral of each service present in the RTOS simulation model

is already defined by its corresponding service from an existing RTOS that is executable on real

hardware. Thus, the idea is to parse the RTOS model representing the structure, and to generate

the source code for each service present in the RTOS structural model using a set of existing source

code templates.

In order to generate the source code of the RTOS model, we use a transformation based on

source code template . The key to this technique is that some elements in the source code that are

outside of special control markers (#+ and #) are provided directly to the output source file, whereas

elements of code within these markers are evaluated and used to add structure and dynamic behavior.

Listing 5.1 describes a simple example of a source code template.

Listing 5.1: Example of template source code

<#+

/ * i f GEN FLAG EN i s f a l s e t h e n t h e f l a g i s d i s a b l e d i n t h e

g e n e r a t e d code * /

i f (GEN FLAG EN == f a l s e) {

#>

d e f i n e OS FLAG EN 0u

<#+

}

/ * o t h e r w i s e t h e f l a g i s e n a b l e d i n t h e g e n e r a t e d code * /

e l s e {

#>

d e f i n e OS FLAG EN 1u

<#+

}

#>

118

The example shows a small if and else branch test depending on the value of the parameter

GEN FLAG EN which is true if the RTOS structural model contains an ”Event Flag Manager”

service. Note that in the above example, the only code that is executed is the code surrounded by

the control markers (#+ and #). The code generator reads an RTOS structural model as an input,

iterates over each ”Service” to generate the output source code of the ”Service” depending on a

source code template and the parameters that are defined by the developer.

In our implementation, we created a template based on the µcOS-II source code. µcOS-II

is a preemptive, real-time multi-tasking kernel for microprocessors and micro-controllers. It is

implemented in ANSI C and certified by the Federal Aviation Administration for use in software

intended to be deployed in avionics equipment. It has been massively used in many embedded and

safety critical systems products worldwide. The main services provided by µcOS-II are depicted in

Figure 5.10.

µcOS-II is implemented as a monolithic kernel, i.e., it is built from a number of functions that

share common global variables and data types such as task control block, event control block, etc. It

is a highly configurable kernel, whose configuration relies on more than 70 parameters. Since the

kernel is provided with its source files, configuration is performed via conditional compilation at

pre-compilation time, based on #define constants.

TaskManager

Service

Time

Global Variables

rep
res

en
ts

MemoryManager

CPUManager

SemaphoreManager

Port Core Task

Timer Flag Memory

MBox MQueue Semaphore Mutex

RTOS meta-model Extended

µcOS-II modules

Figure 5.10: Extended RTOS meta-model.

The selection of µcOS-II is based on two main reasons. First, the modularity of µcOS-II allows

the designer to add or remove services depending on the RTOS model. Second, the source code of

119

µcOS-II has been ported onto multiple embedded platforms (DSPs, micro-controllers, soft cores in

FPGAs, etc.).

However, in order for the code generator to produce the source code from an RTOS model using

a set of templates built from the existing µcOS-II source code, the RTOS meta-model needs to be

extended. Because the µcOS-II RTOS has different modules, and each module has a set of source

files, thus each module needs to be explicitly represented by a meta-model entity which includes

information about the source files wherein the module is defined.

For instance, the Task module is represented by the ”Task Manager” class. Each ”ServiceMan-

ager” class inherits from the abstract ”Service” class. Figure 5.10 shows the inheritance relationship

and the mapping between the RTOS meta-model entities and the µcOS-II modules.

5.4.4 Test of the Transformation

We have tested our prototype to generate a specific µcOS-II version compliant with the x86 archi-

tectures. First, we created a minimal RTOS model containing the following services: Task, Time,

and Core management with the rate-monotonic scheduling policy (see Figure 5.9). Then, we have

transformed the model into source code.

A typical real-time application has been written according to the proposed API and a first test

has been led with a RM scheduling policy.

After executing the code, performances in terms of execution time and deadlines respect have

been analyzed and compared to the classical µcOS-II kernel.

Note that, if the results do not meet specific constraints that are required by the application (for

example, deadline constraints), it is very simple to generate another version of the OS with other

services’ attributes until a satisfactory solution is reached. In a second example, we have tested the

same application but with a different scheduling policy. An EDF scheduler has been used and a new

simulation has been performed.

5.4.5 Model-To-Model Transformation

After creating a model representing the structure of an RTOS and generating the final source code

that is executable on a real hardware, we need now to find a mechanism to transform an OveR-

120

SoC simulation model into a structural RTOS model. This technique is called a model-to-model

transformation in the model-driven engineering discipline.

This technique relies on the fact that any meta-model is mandatory defined using the MetaOb-

ject Facility language. So, it is possible to create a mapping between each element from a meta-

model A and each element from a meta-model B as long as both meta-models are defined using

the MOF standard.

Concretely, we create a mapping between the ”Component” entity present in the OverSoC meta-

model and the ”Service” entity present in the structural RTOS meta-model. After that, this rule is

used by a transformation engine to convert a model instance of the OveRSoC meta-model into a

model instance of the structural RTOS meta-model, as illustrated in Figure 5.11.

OveRSoC RTOS model

OveRSoC RTOS

meta-model

M ta Obj ct Fac l ty

RTOS structure

meta-model

RTOS structure model

Transformation Engine

conforms to conforms to

c
o
n
fo

rm
s
 t

o

c
o
n
fo

rm
s
 t

o

mapping

transformation

conforms to

Figure 5.11: Model-to-Model transformation process.

This process could be automatically applied on any simulation model instance of the OveRSoC

meta-model. Giving this model as an input to the transformation engine, produce as an output a

model instance of the structural RTOS meta-model. After that, it is possible to use the developed

code generator to automatically produce the final executable programs.

5.4.6 Limitation of the Approach

One major limitation of the presented approach is related to the modification of the source code of

the existing RTOS (in our case µcOS-II). This modification is necessary because the final source

121

code should be able to provide any property that was configured in the OveRSoC RTOS simulation

model. For instance, if the designer selects a rate-monotonic scheduling policy in the RTOS simula-

tion model, then the final executable source code should include the same policy, and if the designer

selects an EDF policy then this policy should as well be supported by the final RTOS source code.

Changing the scheduling policy is a straightforward operation in the RTOS simulation model

because the RTOS simulation model relies on the component-based design, where each component

is independent from the others and communicates through a set of ports and interfaces, thus chang-

ing the internal implementation of one component does not break the whole system as long as the

the interfaces are preserved. In contrast, this operation could be very complex in the case of a

monolithic RTOS, first due to implementation problems such as the function calls dependency and

data structures dependency between the modules, and second due to the fundamental problems that

we mentioned in our reviewing of the state-of-the-art related to RTOS configuration through kernel

level modification (see Section 2.4).

As a solution we proposed a method that avoids the modification of the RTOS internal kernel

when it came to implement a new scheduling policy or synchronization protocol. The idea is to

implement the RTOS features that are subject to configuration at middleware level without changing

anything in the RTOS kernel.

5.5 Summary

We have revisited the OveRSoC methodology and proposed a method to transform OveRSoC sim-

ulation models into executable models on a real hardware. The method decomposes the OveRSoC

simulation models into two separate parts: structural and behavioral. We reviewed the model-driven

engineering approach and demonstrated how it could be used to easily transform the simulation mod-

els into executable models. We have further discussed the limitation of the proposed method and

mentioned the potential solution, that we present in the next chapter.

122

CHAPTER 6

RTOS Configuration using User-Level Library

A limitation of the method presented in the previous chapter is that the configuration of the

RTOS executable model required the modification of the RTOS internal kernel. As discussed in

Chapter 2, this approach suffers from a set of drawbacks related to its adoption by industrial practi-

tioner, and its maintenance and integration with the open source operating system projects. In this

chapter we present a potential solution to overcome these problems.

The idea is to implement the scheduling algorithms and the synchronization protocols outside

the kernel. This means that the kernel is no longer responsible for taking the decision related to

selecting the next task to run, preempting the currently running tasks, or context-switching between

them.

Fundamentally, the idea relies on the separation between the abstractions and the policies. That

is, the RTOS kernel is responsible for providing abstractions of the hardware resources and the

mechanisms to control them, in the opposite, a user-level library implements the policies to allo-

cate and manage these resources. This design known as a middleware in the software engineering

terminology.

Recently, Mollison and Anderson (2013) implemented a middleware that runs on top of POSIX

RTOS allowing researchers and integrators to develop and evaluate new scheduling and locking

techniques for multicore hardware.

The user-level library has been evaluated on top of a real-time Linux kernel configured by the

PREEMPT RT patch. The results of the evaluation showed that the overheads and latencies of

the library were similar to the same measurements from a kernel-level approach. Furthermore, a

robustness test was conducted in which a real-time application has been executed by the user-level

library. The experiment proved that the library was able to guarantee the respect of the application

deadlines during twenty four hours of experiment.

This promising design corresponds to our requirement, first because it avoids any modification

to the RTOS kernel, second it permits to build a library that assembles all the new developed resource

allocation techniques and thereby facilitates their reuse and sharing across multiple projects.

However, this approach becomes more effective if it could be used on top of different RTOSes,

or at least easily ported to new RTOSes and platforms. More specifically, we declared in Chapter 5

that our requirement is to use a RTOS to manage a heterogeneous hardware platform composed

by CPUs, FPGAs, DSPs, etc. In practice such a platform is known as a hybrid platform, the Xil-

inx Zynq 7000 computing board is an example. It combines two ARM Cortex A9 CPUs and a

reconfigurable hardware circuit (FPGA), as illustrated in Figure 6.1.

Figure 6.1: Block diagram of the Xilinx Zynq 7000 System-On-Chip.

Recently, Pham et al. (2013) proposed a solution based on a microkernel operating system to

manage efficiently this hybrid platform. In the proposed solution, a microkernel has been adapted to

manage the FPGA as a hardware accelerator able to execute concurrently multiple compute intense

tasks in hardware. The framework schedules concurrently software tasks on the CPUs and hardware

124

tasks on the FPGA. The microkernel uses the dynamic partial reconfiguration property of the FPGA

to adapt the hardware architecture at runtime to the hardware task selected for execution. This

solution complies with our requirement, therefore it is necessary to investigate the portability of the

user-level library not only on other commercial RTOSes but also on microkernel-based operating

systems.

In this chapter, we present the adaptation of the user-level library (Mollison and Anderson,

2013) to a microkernel-based OS. In Section 6.1 we review other approaches to user-level schedul-

ing on top of microkernels. In Section 6.2 we present the abstractions and mechanisms required by

the user-level library. And we present how these abstraction are implemented by the Nova microker-

nel, then we describe the implementation of the user-level library on top of the Nova microkernel.

Finally, we show the results of our experiments.

6.1 User-Level Scheduling on top of Microkernel

The user-level scheduling concept resembles the scheduling scheme of the hierarchical scheduling

framework (HSF) (Deng and Liu, 1997). Recall that in the HSF model, there are two scheduling

levels; a global scheduling is implemented at the operating system level wherein a set of components

share the CPU resource according to a periodic resource model (PRM), defined by a budget and a

period. And a local scheduling is implemented at component level, in which a set of real-time

tasks are scheduled according to the component specific policy, as we have previously illustrated in

Figure 2.6. Note that the scheduling policy used at each level is not necessarily the same, for instance

it might be possible to schedule the components in round-robin manner, and let each component

schedule locally its set of tasks according to its specific policy, e.g. RM or EDF.

Multiple works have focused on analyzing hierarchically scheduled systems using monolithic

RTOSes. For instance, Behnam et al. (2008) implemented HSF on VxWorks, van den Heuvel et al.

(2009) supported HSF on µcOS-II, and Inam et al. (2011) deployed it on the FreeRTOS. Here, we

review some studies that are based on a user-level scheduling that are dependent on the underlying

microkernel.

Recently, Åsberg and Nolte (2012) presented a user-mode approach to partitioned scheduling

in the seL4 microkernel without requiring kernel modifications. The proposed approach relies on the

125

microkernel provided API to implement mechanisms such as thread suspension (seL4 TCB Suspend())

and thread context switch (seL4 TCB ReadRegisters(), seL4 TCB WriteRegisters()) at user-

level. Also an efficient implementation of the EDF scheduling algorithm has been proposed. The

results of the experiments of this approach showed that the performance are at the same order-of-

magnitude as the performance from a kernel-level approach.

Stoess (2007) proposed a user-controlled scheduling for microkernel-based systems. The ap-

proach was implemented on top of the L4Ka::Pistachio microkernel and required some kernel-level

adaptation. Also, it used the ExchangeRegisters() system call that allows a thread to read or

modify parts of the execution and communication state of another thread, provided both threads are

executing within the same address space. To that end, it also allows the invoker to suspend or re-

sume other threads. Ruocco (2006) proposed a user-level fine-grained adaptive real-time scheduling

via temporal reflection. It was evaluated on top of a L4-embedded microkernel without changing its

implementation.

6.2 Tasks Model and Thread Mechanisms

In this section, we first revisit shortly the real-time task model used as an abstraction to create the ap-

plication, second we define the standard operating systems abstractions and mechanisms necessary

to build a user-level library.

6.2.1 Sporadic Task Model

The basic entity of computational work is the task, which is a series of sequential instructions. A

task T is defined by its worst case execution time (WCET), Te, its period, Tp, and its deadline,

Td. The processor utilization required by a task T is given by Tu = Te

Tp
. Each successive job of

a sporadic task T is released at least Tp time units after its predecessor. If each successive job is

released precisely Tp time units after its predecessor the sporadic task becomes a periodic task.

6.2.2 Thread library

A thread library provides the programmer with an API for creating and managing threads. There

are two primary ways of implementing a thread library. The first approach is to provide a library

126

entirely at user-level with no kernel support. Then, all code and data structures of the library exist at

user-level. This means that invoking a function in the library results in a local function call at user-

level and not a system call. Many such libraries are available, such as the GNU Portable Threads,

”Pthreads”, refers to the ”POSIX IEEE standard 1003.1” (IEEE, 2014) defining an API for thread

creation and synchronization. A POSIX-compliant threading implementation can make use of either

user-level threads or kernel-level threads:

• User threads are supported above the kernel and are managed without kernel intervention.

• kernel threads are supported and managed directly by the operating system.

Ultimately, a relationship must exist between user threads and kernel threads. The user-level library

used in this paper make use of the many-to-many model to establish a relationship.

The many-to-many model, shown in Figure 6.2, multiplexes many user-level threads to a smaller

or equal number of kernel threads. The number of kernel threads may be specific to either a partic-

ular application or particular machine.

user-level thread

kernel-threadkernel-thread kernel-thread

Figure 6.2: Many-to-Many model.

Beside the thread concept, two essential building blocks are required by the user-level library:

User-Context. The processor user-context is a data structure that contains the thread’s machine

registers, the current execution stack, and in some operating systems the signal mask (see Figure 6.3).

It allows threads to be preempted and switched among in an arbitrary order. The user-level library

that we present here relies on the POSIX API ”ucontext t ” (POSIX, 2014) to implement the user-

level threads. In our adaption of the user-level library to the Nova microkernel, we ported the GNU

C Library (glibc)’s ucontext t implementation to the Nova microkernel.

127

Signal Handling. A signal is used in UNIX systems to notify a process that a particular event

has occurred. A signal may be received either synchronously or asynchronously, depending on the

source and the reason of the event being signaled. Every signal has a default signal handler that is

ran by the kernel. This default action can be overridden by a user-defined signal handler. In the

case of the Nova microkernel, the signal mechanisms are yet not supported. Instead, we used the

Inter-Process Communication (IPC) mechanisms as a substitution for the signal handling.

R8

R9

R10

R11

R12

R13

R14

R15

RAX

RBX

RCX

RDX

RDI

RSI

RSP

RIP

EFL

ERR

CR2

S
e
t

o
f

x
8
6
 6

4
b

it
 m

a
c
h

in
e
 r

e
g

is
te

r
s

s
a
v
e
d

 b
y
 a

 u
s
e
r
-l

e
v
e
l
c
o
n

te
x
t

CS

DS

GS

FS

S
e
t

o
f

x
8
6
 6

4
b

it
 m

a
c
h

in
e
 r

e
g

is
te

r
s

n

o
t

u
s
e
d

CR3

Figure 6.3: Set of registers that constitute the CPU user-context.

6.3 Nova Microkernel and Runtime Environment

Prior to presenting the implementation of the user-level library on top of the microkernel, we de-

fine the programming abstractions provided by the Nova microkernel used as ”bricks” to build the

library.

Protection-Domain. It is the kernel object that implements the spatial isolation. Each protection-

domain consists of three spaces: the memory space handles the page table, the I/O space handles

the I/O permission bitmap, and the capability space controls access to kernel objects.

Execution-Context. A process in a protection domain is called an execution-context. An execution-

context executes program code, manipulates data and uses portals to send messages to other execution-

contexts. Each execution-context has its own CPU/FPU registers state.

128

Scheduling Context. In addition to the spatial isolation implemented by protection domains, the

Nova microkernel enforces temporal isolation through the scheduling contexts. This entity com-

bines a time quantum with a priority to ensure that no execution-context can monopolize the CPU

for more than its allocated time share.

Portal. Communication between protection domains is controlled by portals. Each portal represents

a dedicated entry point into the protection domain in which the portal was created.

Global-Thread. In the Nova microkernel an execution-context object could not be instantiated

directly by a user application. Instead, a Global-Thread object defined by the Nova Runtime Envi-

ronment (NRE) should be used. The Global-Thread associates an instance of an Execution-Context

to an instance of Scheduling-Context. It is the entity used by a Nova application to execute code.

Local-Thread. A Local-Thread is also an execution-context but without a scheduling-context. It is

used to execute code when there is a communication between threads through the portals.

6.4 Library Implementation

In this section, we describe the blocks on which we constructed the user-level library. First, we

present how the Nova objects are used, then we present how mechanisms such as the preemption,

task context-switch, time management and interrupt handling are supported at user-level.

Kernel-level Elements. The user-level library creates a Global-Thread instance that will act as

a ”virtual CPU”. Note that this Global-Thread is a kernel-level thread that is managed by the

Nova microkernel. In the library’s terminology we refer to this instance as a worker-thread. To

create the worker-thread, we used the GlobalThread::create() system call, it is equivalent to the

pthread create() in a POSIX RTOS.

The worker-thread is scheduled natively by the underlying microkernel scheduler. To ensure

that the worker-thread will always be scheduled over the rest workload of the microkernel it is

assigned the highest priority in the system.

The Nova microkernel schedules the Global-Threads in a round-robin fashion. Each Global-

Thread has a priority and a time-slice. Thus, a Global-Thread is executed until it finishes its time-

slice, the default time-slice in Nova is 10ms . A Global-Thread could be preempted by a highest

priority Global-Thread even if its time slice is not consumed. When a Global-Thread finishes its

129

budget it is inserted at the end of the ready-queue, and a Global-Thread that is at the same priority

level is picked and dispatched on the CPU.

User-level Elements. The user-level library uses a set of user-level threads. A user-level thread is

an entity that is not scheduled by the Nova microkernel. The user-level thread is the basic unit of

the real-time computational work, and represents a real-time task of the application.

As mentioned earlier, the library implements the user-level thread by the mean of the POSIX

ucontext t data structure. This data structure is used to store the current execution context of a CPU

to memory, and to load the previously-stored context onto CPU. The ucontext t object is created

using the POSIX getcontext() and makecontext() functions. Figure 6.4 illustrates the overall

architecture of the library.

Scheduling. The scheduling algorithm of the library is defined in the schedule() function. It

selects the highest priority real-time task from the ready queue and binds it to the worker-thread.

When the microkernel schedules the worker-thread, the processor of the machine will subsequently

executes one job of the real-time task. This level of indirection between the kernel and the real-time

task allows to change the scheduling algorithm of the underlying microkernel without modifying its

internal kernel.

CPU

Figure 6.4: Schematic of overall architecture. The worker-thread acts as a ”virtual CPU” for the

real-time task.

Preemption mechanism. The Global-Thread created by the library and used as a worker-thread is

executed endlessly by the microkernel. To interrupt this worker-thread, the library uses the timer

130

interrupt. At system initialization, the library arms a timer to fire at the time of the earliest job

release. Each time the timer fires, it is re-armed to fire again at the time of the subsequent job

release.

Given that the worker-thread executes continuously the real-time workload, or just idle if there

is no task ready to run, it cannot listen to the timer interrupt. Thus, the library creates a second

Global-Thread instance that is used to endlessly listen to timer interrupts and to asynchronously

suspends the worker-thread. We refer to this second Global-Thread as the listener-thread.

When a timer fires, a message is sent to the listener-thread. And when the listener-thread

receives the timer signal, then it uses a Portal object to send a message to the worker-thread which

will be interrupted. The transmission of this preemption signal causes the library-defined function

exception-handler() to run asynchronously forcing the worker-thread to interrupt the currently

running real-time task and jump to the scheduler() function.

Exception handling. Since the POSIX signal handling was not supported by the Nova microkernel,

we implemented an equivalent mechanism that allows to asynchronously suspend the worker-thread

from the listener-thread. To that end, we used a Local-Thread object and a Portal object in order to

send an IPC message from the listener-thread to the worker-thread.

When the message is received by the worker-thread, its execution flow is suspended and redi-

rected to the exception-handler() function. This function reads the machine registers state using

a UtcbExcFrameRef data structure provided by Nova, which was previously filled by Nova when

the exception occurred, stores it into memory, and loads the machine instruction pointer register

(EIP) with the address of the scheduler() function and the stack pointer register (ESP) with a new

address in order to redirect the execution of the worker-thread and forces it to do a rescheduling if

it is necessary.

Context-Switch. In order to initialize the contexts used by the real-time tasks, the library relies on

the POSIX getcontext() and makecontext() functions which create and initialize the u context

data structure. The x86 assembly function, fast swapcontext(), is called by the schedule() func-

tion to perform a context switch at user-level.

Time Measurement. The library relies on the x86 per-processor register known as the timestamp

counter (TSC) to measure the time in order to make scheduling decisions. The TSC register records

the number of CPU cycles that have elapsed since the processor is initialized at boot time.

131

6.5 Experiments

Our evaluation of the library consists in measuring a set of overheads. The measurement aims to

demonstrate the performance of the user-level library on top of the microkernel. In the following

subsections, we describe the overheads and latencies that are of interest, then we present the mea-

sured results. In addition, we present the hardware platform, and experimental workload.

6.5.1 Overheads and Latencies

We evaluated the library using the same set of overheads and latencies that we used to evaluate a

guest RTOS running in a virtual machine presented in Chapter 3:

• Event Latency is the amount of time that elapses between the periodic release time of a

real-time task and the corresponding invocation of the release handler.

• Release Overhead is the time taken to execute the release handler.

• Scheduling overhead is the duration of the schedule() function.

• Context switch overhead is the time taken to make a context switch.

6.5.2 Experiment Setup

We ported the user-level library to the x86 64-bit architecture. We evaluated the library in the Quick

EMUlator (Qemu). Qemu is a machine emulator that emulates real hardware accurately down to

CPU cycle level. We configured Qemu to emulate an Intel Nehalem Core i7 processor with SMP

1. The Nova microkernel was configured to run only the drivers that are required by the user-level

library notably, the advanced programmable interrupt controller, the timer device, and the serial port

for debugging and retrieving experiment results.

6.5.3 Experimental Workloads and Execution Trace

We tested a synthetic workload to observe how the user-level library controls the physical CPU. We

analyzed the correctness of the scheduling using the Grasp visualization tool (Holenderski et al.,

132

2006). The Grasp tool takes as an entry the scheduling events recorded during the experiments. The

real-time task set used as test case is defined in Table 6.1:

Task Tei (ms) Tpi (ms) Tui Tprioi

T1 10 150 0.06 2

T2 10 140 0.07 1

T3 20 400 0.05 3

T4 50 560 0.08 4

Table 6.1: Example of real-time task set schedulable under RM scheduling.

Figure 6.5 shows the execution trace under the rate-monotonic fixed-priority scheduling algo-

rithm. All the tasks are simultaneously released. First, task T2 starts executing before the others

because it has the highest priority. Second, task T1 starts executing followed by task T3. Task T4 is

executed after T3 but it is preempted by T2, then it continues executing until its completion. After

that, the worker-thread becomes idle because there is no ready task to run. This simple test case

allows to verify the correctness of the library’s behavior, that the preemption mechanism and task

context-switches are performed correctly, and that the interrupts are handled correctly as well.

Figure 6.5: Scheduling trace of a task set according to the RM algorithm.

Execution trace of the task set presented in Table 6.1 scheduled according to the RM algorithm

using the user-level library on top of Nova.

133

6.5.4 Measured Results

In order to measure the overheads and latencies of the library, we recorded every scheduling events

that happened during the execution of a synthetic task sets system. The task sets system we used is

a composition of 20 task sets, each task set has a size n, where n ranges from n = 2 to n = 20 in

step of 2.

The task sets are generated by randomly choosing the utilization of each task it includes until

the CPU utilization capacity is reached. The utilization of each task is randomly generated using

one of the following distributions: light uniform, light bimodal, light exponential, medium uniform,

and medium bimodal. Task periods are generated using a uniform distribution with range [100ms ,

800ms]. Then, the utilization and the period values are used to calculate the execution cost of each

task. Each task executes the same function that performs a set of arithmetic operations on a large

array in memory during 30 seconds.

After the termination of the execution, we applied a statistic analysis to extract the average- and

the worst-case overheads. We presented the measured overheads as a function of number of tasks

in Figure 6.8, Figure 6.6, and Figure 6.7.

Figure 6.6 shows the measured context-switch triggered by the library to switch between two

user-level threads after a scheduling decision has been made. In the average case the context-switch

is constant relative to the number of tasks.

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 6 8 10 12 14 16 18 20

o
v
e
rh

e
a
d
 i
n
 m

ic
ro

s
e
c
o
n
d
s

number of tasks per processor

measured context-switch overhead under FP scheduling

maximum
average

Figure 6.6: Context-Switch overhead of the FP scheduler.

134

Figure 6.7 shows the measured scheduling overhead under the fixed-priority (FP) algorithm,

and Figure 6.8 shows the scheduling overhead under the earliest-deadline-first (EDF) algorithm.

We compared the FP and the EDF scheduler because in our first prototype we implemented the FP

scheduler using a sorted linked list, where the dequeuing of the highest priority job from the ready

queue requires O(n) time. And we implemented the EDF scheduler using a binomial heap, which

results in O(log(n)) when dequeuing the highest priority job from the ready queue.

 0

 100

 200

 300

 400

 500

 2 4 6 8 10 12 14 16 18 20

o
v
e
rh

e
a
d
 i
n
 m

ic
ro

s
e
c
o
n
d
s

number of tasks per processor

measured scheduling overhead under FP scheduling

maximum
average

Figure 6.7: Scheduling overhead of the FP scheduler.

 0

 100

 200

 300

 400

 500

 2 4 6 8 10 12 14 16 18 20

o
v
e
rh

e
a
d
 i
n
 m

ic
ro

s
e
c
o
n
d
s

number of tasks per processor

measured scheduling overhead under EDF scheduling

maximum
average

Figure 6.8: Scheduling overhead of the EDF scheduler.

As we can see, in practice we do not observe a significant difference between both implementa-

tions. This could be explained by the fact that the more-frequent invocation of the scheduler likely

results in an increased cache hit rate, which lowers the cost of scheduler invocation on average.

135

The observation of the overheads in the average shows that the performance of user-level li-

brary are in the same order of magnitude as the overheads from a kernel-level approach. However,

the overheads in the worst-case are generally far from the average-case. We suspect that the max-

imum overheads observed are caused by the preemption of the worker-thread when executing the

switch-context and scheduling code executed by other workload running the microkernel. Also

more investigations are required to determine with certainty the cause of the delays.

6.5.5 Comparison with Similar Approaches

As a comparison, we evaluated the library on top of a Linux kernel configured with PREEMPT RT

real-time patch and we tested it on a real hardware Intel Core i7 2.6GHz. The measurement showed

that the context switch overhead is equal to 0.50µs in the average-case, and 21.34µs in the worst-

case, the scheduling overhead is equal to 0.89µs in the average-case and to 21.71µs in the worst-

case.

We also compared the library to a native RTOS, LITMUSRT, which we installed on an Intel

Core 2 2.4GHz real hardware, we observed that the context-switch overhead is equal to 1.83µs in

average, and 8.07µs in the worst-case. The average scheduling overhead in LITMUSRT is around

3.78µs and the maximum is equal to 18.36µs.

These comparisons show that the user-level library performed competitively to the kernel-based

approach. The reason for this similarity is related to the fact that in the average-case, the execu-

tion cost of the scheduling function and context-switch is independent from the level of privilege

that these functions are executed at. For instance, the scheduling function is whether executed at

privileged-level or unprivileged-level does not impact its execution cost because the code runs at the

same processor speed rate in the both privilege-levels.

However, the difference emerges in the worst case because the user-level library’s functions are

more subject to interruption than the kernel-level functions due to the preemption caused by the

execution of other threads. For example, in our experiment the timer driver thread was assigned the

same priority as the worker-thread of the library.

As a comparison with other user-level implementation on other microkernel version, we can

mention the user-level scheduling on the seL4 microkernel (Åsberg and Nolte, 2012), that was tested

136

Measurement Platform Time (µs)

library Scheduling Intel Core 2 2.4GHz (Nova) 8.01

library Context switch Intel Core 2 2.4GHz (Nova) 2.72

library Scheduling Intel Core i7 2.6GHz (Linux/PREEMPT RT) 0.89

library Context switch Intel Core i7 2.6GHz (Linux/PREEMPT RT) 0.50

Scheduling Intel Core 2 2.4GHz (LITMUSRT) 1.83

Context switch Intel Core 2 2.4GHz (LITMUSRT) 3.78

PS Scheduling (Åsberg and Nolte, 2012) Intel P3 533MHz (seL4) 213

PS Context switch (Åsberg and Nolte, 2012) Intel P3 533MHz (seL4) 109

Set timer (Yang et al., 2011) AMD Athlon 2GHz (L4Fiasco) 236

System call (Blackham et al., 2011) ARM-A8 800MHz (seL4) 20

IPC (Hessel et al., 2008) ARM-11 416MHz (L4Fiasco) 35/54

Table 6.2: Overheads comparison.

on a Qemu emulator of the Intel P3 533MHz, where the overhead of invoking the scheduler was

equal to 213µs, and the context-switch equals to 109µs.

In the L4Fiasco microkernel (Yang et al., 2011), the overhead of setting a timer in a hierarchical

scheduling framework takes in average 236µs on 2GHz AMD Athlon processor. The measured

time of a system call (seL4 Send(), seL Wait(), seL4 ReplyWait()) in seL4 on an ARM Cortex-

A8 800MHz takes approximately 20µs. And the duration of an IPC in the L4Fiasco microkernel

(Hessel et al., 2008) running on an ARM1176 416MHz processor varied between 35µs and 54µs.

Table 6.2 summarizes all these comparisons.

One critical metric for our user-level library performance is the signal latency, which is the

duration of the transmission of the preemption signal from the listener-thread to the worker-thread.

We observed that the signal latency takes 89.42µs in average case and a maximum of 445.66µs.

The maximum signal latency observed could be explained by the fact that, in a microkernel-based

OS, the operation of sending a message from one thread to another involves two IPC calls, plus one

invocation of the kernel scheduler and one context-switch.

Based on these measurements, the overheads and latencies of the user-level library do not seem

overwhelming, i.e., the overheads are at least not orders of magnitude larger than general system

overheads in kernel-level implementation and other user-level implementations.

137

6.6 Summary

The Nova microkernel is a high performance kernel, its small trusted computing base makes it

suitable for safety-critical systems. That means, if an application behaves correctly, in terms of

functionality, then it will never be disrupted or fail due to a faulty kernel or other error-prone appli-

cations. However, in order to make it more suited for real-time systems, new resources allocation

methods and techniques need to be supported by the microkernel.

We have ported a user-level library to implement new resource allocation techniques at user-

level on top of the Nova microkernel. This solution also simplifies the configuration of the operat-

ing system by avoiding the changing of its internal kernel, and thus resolves the problem defined

in Section 5.4.6 that raised after the transformation from a component-based RTOS model to an

executable RTOS model.

The evaluation of the user-level library on top of the Nova microkernel revealed that the average-

case overheads of a scheduler invocation and an execution of a context-switch were similar to the

same overheads from kernel-level implementation.

However, worst-case observed overheads and latencies are higher than the same metrics from a

kernel-level implementation. Further investigations need to be pursued in a future work as well as

contributing to the development of the Nova microkernel to allow its deployment on a real hardware.

After that, more engineering effort is needed to support multicore hardware platform and enable all

the features offered by the library.

138

CHAPTER 7

Conclusions

The research work presented in this dissertation attempted to answer two main questions, first

how to co-locate a real-time OS and a general-purpose OS on a common hardware platform, sec-

ond how to transform a component-based RTOS simulation model into an RTOS executable model

without loosing the degree of configuration offered by the initial design.

The availability of new hardware platforms that support virtualization oriented our work to-

wards the use of a virtual machine system as an answer to the first question. But it created a new

subsequent question regarding the overhead of running an RTOS on a virtual machine. In Chapter 3

we conducted two evaluations in order to measure the overhead of a guest RTOS running on a virtual

machine.

These evaluations focused on analyzing how the virtualization of the main three hardware re-

sources notably the processor, the memory management unit, and the I/O impacted the performance

of the guest RTOS.

In the first evaluation we measured the global scheduling latency of a guest RTOS, and com-

pared it to a native RTOS. The result showed that the scheduling latency of the guest RTOS incurred

a slight increase in the average case comparing to a native RTOS. However we observed a maximum

scheduling latency on the guest RTOS that is two orders of magnitude higher than the native RTOS.

Although the probability of such a delay is low, it does not represent a confident worst-case result.

This leads us to conduct a second evaluation in which we decomposed the global scheduling latency

in a set of fine-grained overheads and latencies internal to the RTOS kernel, and we measured each

overhead individually.

The results of this evaluation showed that all kernel overheads of a guest RTOS are comparable

to a Native RTOS in the average-case, except for the event-latency, where we observed a slight in-

crease comparing to the same latency from a native RTOS. This observation explained the difference

between the global scheduling latencies measured in the first evaluation. An increase that is related

to the virtualization of I/O interrupts, and could be alleviated with an assistant from the underlying

hardware.

We observed that some worst-case values of the kernel overheads were very far from the

average-case values, and their probability was also very low, this result resembles the result from

the first evaluation.

While it is difficult to state with certainty that there is an upper limit for the overhead of a guest

RTOS, we are able to state that a real-time application that is running on a guest RTOS should

expose the same performance as if it was running on a native RTOS, except in extreme rare case

where its timing requirement may not be respected.

This suggested that beside the overhead of the virtualization, the scheduling of the virtual ma-

chines by the host system is involved as well in guaranteeing the quality of service required by a

guest RTOS and the real-time application running on top.

In Chapter 4 we analyzed how the scheduling of virtual machines impacts a guest real-time

application, we analyzed a scheduling technique based on the periodic resource model (PRM) that

guarantee the temporal isolation among the virtual machines hosted by the system, and we reviewed

a method to calculate the optimal scheduling parameters to allocate efficiently the CPU resource for

all the hosted virtual machines.

Furthermore, we proposed an extension of this scheduling technique by integrating the over-

heads measured in our evaluation, and we showed that it is possible to guarantee the temporal

isolation between the virtual machines.

Based on these results, our answer to the first question is as follows: the hardware support for

the virtualization of the CPU and the memory management unit permit to run an RTOS on a virtual

machine at the same speed rate as on a real hardware. The performance of a guest RTOS could

also be improved if the I/O are virtualized efficiently. It is also necessary to configure carefully the

scheduling of virtual machines to avoid any overhead from affecting the predictability of the system.

In our work pertaining to the transformation from an RTOS simulation model to an RTOS

model executable on a real hardware, we proposed a method based on a model-driven engineering

technique. We showed how a model-to-model transformation is used to extract the structural part

140

of a component-based RTOS model, then we used a model-to-code transformation to automatically

generate the source code of the executable programs.

We analyzed the limitation of the proposed method concerning the support of configuration in

the RTOS executable model. Then we proposed a solution based on the adoption of a middleware

design in which the resource allocation policies could be supported at user-level library that could

be reused across a variety of operating systems.

7.1 Open Question and Future Works

First, our research team is currently porting the Nova microkernel to the ARM architecture, there-

after the periodic resource model should be implemented on the x86 version and the ARM version

in order to make the microkernel suitable for use in real-time systems.

Second, more engineering effort is required to enable the full-support of the multi-core hard-

ware by the microkernel version of the user-level library.

One open research problem concerns the major limitation of the user-level library, this limita-

tion is related to providing strong memory isolation to the user-level threads managed by the library.

In the current version of the library, the user-level threads created by the library are in the same

memory address space, this means that there are no physical barriers between the tasks that could

prevent a ”misbehaving” task from corrupting the memory of another task. While, this problem

could be alleviated by partitioning the application using multiple group of tasks, wherein the tasks

in one group trust each others, and let the library schedules the task groups. It would be more secure

to make the underlying operating system support the memory isolation at user-level. This could

be achieved by providing system calls that could be used by a user-level library to ensure spatial

isolation between its managed threads.

141

CHAPTER 8

Résumé de la thèse

Nos travaux de recherche explorent les solutions qui permettent de faire co-habiter sur une

même unité de calcul plusieurs systèmes d’exploitation. Dans le domaine des serveurs d’entreprise,

il existe une solution qui a fait ses preuves, la virtualisation. Elle consiste à ”faire croire” au système

d’exploitation qu’il contrôle réellement le matériel, mais en réalité il ne contrôle qu’une machine

virtuelle. Cette solution a récemment sucité l’intérêt de la communauté des chercheurs dans le

domaine des systèmes temps-réel embarqués. Notamment, le support de la virtualisation par des

processeurs historiquement destinés à être utilisés dans des systèmes-sur-puce a permis de nouvelle

applications dans les domaines de l’automobile, de l’avionique et des télécommunication mobiles.

Utiliser la virtualisation pour faire co-habiter plusieurs systèmes d’exploitation pour des appli-

cations temps-réel embarquées semble être une solution valide. La question que cette thèse cherche

à résoudre est : quel est le surcoût de la virtualisation sur un système d’exploitation temps-réel ?

Le deuxième axe de recherche de nos travaux concerne l’exploration et le co-design logiciel/-

matériel pour des systèmes-sur-puces reconfigurables. En particulier, notre travail vise à proposer

une méthode qui permet de générer automatiquement des programmes executables sur une cible

matérielle à partir de modèles de simulation. Ces modèles de simulation ont été développés pour

explorer les differents choix de conception logiciel et matériel à haut-niveau, c’est à dire, avant

l’implementation sur une puce de silicium. Une fois que le choix de conception validé au niveau

simulation, une solution doit être implémentée. Après partitionnement, une partie de la solution

sera implémentée en logiciel, et une partie sera implémentée en matériel sur une puce de silicium.

C’est la partie logicielle qui nous intéresse dans cette thèse. Notamment, dans la phase d’exploration

tous les modèles ont été décrits dans un langage de simulation appelé SystemC, y compris les

modèles qui répresentent le logiciel parce qu’à ce stade nous ne savons pas quel composant allait

être implémenté en logiciel ou en matériel. Le but de notre travail dans cette thèse est de proposer

une méthode qui permet de générer automatiquement à partir des modèles de simulation les pro-

grammes qui seront exécutés sur la puce électronique. Pour cela, nous avons adopté une technique

issue de l’ingénierie-dirigée par les modèles.

8.1 Etat de l’art sur la virtualisation

Il existe une multitude de solutions qui proposent l’utilisation de machines virtuelles pour faire

co-habiter sur une même platforme matérielle plusieurs systèmes d’exploitation. Chaque solution

adopte une architecture logicielle différente, la Figure 8.1 récapitule toutes les architectures.

Hardware Hardware Hardware Hardware

OS

Applications

VMM

Guest OS

Host OS

VMM

Host OS

VMM

Guest Apps

Guest Apps Guest Apps

Guest OS Guest OS

Non privileged
modes

Privileged
modes

a. Traditional
system

b. Native VM
system

c. User-mode
hosted VM
system

d. Hosted VM
system

Figure 8.1: Architecture logicielle des systèmes supportant des machines virtuelles.

Parmi les architectures présentées sur la Figure 8.1, deux sont utilisées pour rendre compatible

la virtualisation avec les contraintes d’un système temps-réel. Notamment le système de machine

virtuelle natif (Figure 8.1b) et le système de machine virtuelle hybride (Figure 8.1d). Dans le pre-

mier cas, toutes les machines virtuelles sont contrôlées par un hyperviseur (appelé aussi Virtual

Machine Monitor), il s’agit d’un composant logiciel installé directement sur le matériel. Dans le

second cas, un système d’exploitation standard est installé sur le matériel puis étendu par une partie

de l’hyperviseur, l’autre partie de l’hyperviseur est implémentée sous forme d’application ”utilisa-

teur classique”.

Nous allons dans les sections suivantes examiner des implémentations de ces deux architectures

et voir comment elles ont été adaptées aux contraintes d’un système temps-réel.

143

8.1.1 Linux Kernel Virtual Machine

Le système d’exploitation Linux a été étendu pour pouvoir supporter l’exécution de plusieurs ma-

chines virtuelles. Il s’agit d’un hyperviseur de type hybride, où la partie qui se charge de contrôler

la virtualisation du matériel (appelée kvm) est intégrée au noyau Linux, et la partie qui se charge de

virtualiser les périphériques d’entrée/sortie (I/O) est implémentée par l’émulateur Qemu. Le mod-

ule kvm est responsable de la virtualisation du processeur, de l’unité de gestion mémoire (MMU) et

du timer. Qemu s’occupe d’émuler le disque, la carte réseau, l’écran VGA, etc.

Le noyau Linux est responsable de l’ordonnacement des machines virtuelles ainsi que des al-

locations mémoires demandées par les systèmes d’exploitation invités, c.-à-d. fonctionnant sur les

machines virtuelles.

Deux principales méthodes ont été utilisées pour rendre Linux-kvm compatible avec les con-

traintes temps-réel. D’une part, le noyau Linux a été configuré par le patch temps-réel, ”PRE-

EMPT RT”, afin d’améliorer sa ”préemptabilité” et réduire sa latence d’ordonnancement (schedul-

ing latency).

D’autre part, l’ordonnancement dans le noyau Linux a été modifié (Cucinotta et al., 2009a) afin

d’intégrer l’activation périodique des machines virtuelles selon l’algorithme CBS (Constant Band-

width Server), chaque machine virtuelle se voit attribuer un couple appelé periodic resource model

(PRM) défini par un budget et une période, (Θ,Π). Ensuite l’ordonnanceur alloue le processeur à

la machine virtuelle pour une durée égale à son budget à chaque activation de sa période.

Plusieurs études (Bing, 2010; Kiszka, 2010; Zhang et al., 2010b; Zuo et al., 2010) ont évalué la

première méthode en utilisant le benchmark cyclictest pour mesurer la latence d’ordonnancement

d’un système d’exploitation invité. Les résultats de ces évaluations ont montré que l’utilisation d’un

noyau Linux temps-réel a considérablement amélioré cette latence.

Cependant, la majorité de ces analyses n’expliquent pas clairement comment la virtualisation

du processeur, la virtualisation de la MMU ainsi que des interruptions influencent le surcoût subi

par l’OS invité.

D’autre part, l’évaluation de la méthode qui repose sur un ordonnancement de type CBS a

montré que ce type d’ordonnancement est nécessaire pour garantir le respect des contraintes tem-

144

porelles d’une application. Mais, cette étude n’a malheureusement pas mesuré le surcoût subi par

un système d’exploitation temps-réel (RTOS).

Dans notre étude (voir Section 8.3), nous avons cherché à determiner comment les mécanismes

de virtualisation offerts par le matériel sous-jacent, notamment la virtualisation du CPU, de MMU,

et des périphériques d’entrée/sortie, impactent le surcoût subi par l’OS dû à la virtualisation. Notre

méthode vise à concilier les deux méthodes, c.-à-d. investiguer le rôle de l’ordonnancement des

machines virtuelles dans le surcoût subi par l’OS en tenant compte de l’influence des mécanismes

matériels liés à la virtualisation.

8.1.2 Virtualisation basée sur le Micro-noyau

Plusieurs systèmes d’exploitation de type micro-noyau ont été utilisés en tant que hyperviseur. Le

microkernel OKL4 développé par Open Kernel Labs a été porté sur le nouveau jeu d’instruction

ARMv8 afin de pouvoir supporter l’exécution de systèmes d’exploitation invités sans aucune modi-

fication à leur code source (Varanasi and Heiser, 2011). L’évaluation des fonctionalités unitaires de

ce prototype en utilisant un modèle SystemC du processeur ARM Cortex A15 a donné des perfor-

mances jugées intéressantes ce qui a encouragé le développement d’un produit commercial à partir

de ce prototype. Cependant, aucune mesure du surcoût de la virtualisation sur un RTOS n’a été

effectuée.

Le microhypervisor Nova est la 3ème generation des microkernel L4 (Liedtke, 1996), sa par-

ticularité est qu’il intégre le support de la virtualisation dès sa phase de conception. Nova exploite

les mécanismes matériels offerts par la récente architecture x86 pour proposer une virtualisation

efficace du processeur et de la MMU. Une comparaison de la compilation du code source du noyau

Linux faite sur une machine virtuelle exécutée par Nova, par Linux-kvm, et par Xen a montré que

Nova permet d’atteindre les meilleures performances. Ici aussi aucune évaluation du surcoût de la

virtualisation sur un RTOS n’a été effectuée.

Le microkernel L4Fiasco a été adapté par Yang et al. (2011) afin de le rendre compatible avec

les contraintes d’un système temps-réel. Le framework HSF (Hierarchical Scheduling Frame-

work) a été implémenté. Il consiste à proposer deux niveaux d’ordonnancement, un premier niveau

implémenté par l’hyperviseur afin d’allouer les ressources CPU aux machines virtuelles, et un sec-

145

ond niveau d’ordonnancement implémenté par chaque système d’exploitation invité pour arbitrer

l’exécution des tâches temps-réel.

L’ordonnancement des machines virtuelles dans le framework HSF utilise le modèle PRM, le

même qui est utilisé par le framework CBS, où chaque machine virtuelle se voit attribuer un couple

Γ = (Θ,Π). Le calcul du PRM est réalisé en fixant d’abord la période Π et en calculant la valeur

de Θ en utilisant le théorème 2.1 dans le cas d’un ordonnancement de type rate-monotonic.

L’évaluation de l’ordonnancement HSF et sa comparaison avec l’ordonnancement rate-monotonic

et round-robin a montré que le HSF est plus apte à garantir le respect des échéances des tâches

temps-réel.

Cependant, le test des propriétés temps-réel de l’hyperviseur L4Fiasco repose sur l’utilisation

d’une version particulière de Linux en tant que système d’exploitation invité, c’est le L4Linux. Le

L4Linux est un Linux para-virtualisé, c.-à-d. qui a été modifié afin de remplacer certaines fonction-

alités ”sensibles” de sa ”HAL” (hardware abstraction Layer) par des appels systèmes à l’hyperviseur

(hyper-calls). Ces fonctionalités sensibles sont des opérations qui nécessitent un privilège, celui-ci

est accordé au système d’exploitation uniquement lorsqu’il a le droit de contrôler le matériel. Ce

n’est pas le cas lorsque le système d’exploitation s’exécute sur une machine virtuelle, car seul

l’hyperviseur a ce privilège.

Dans notre étude, nous nous sommes plus intéressés à évaluer des systèmes d’exploitation

non modifiés et voir comment les avancés technologiques proposées par les récentes architectures

matérielles influencent les propriétés temps-réel d’un hyperviseur.

8.1.3 Xen

Xen est un hyperviseur de type natif déstiné initialement à être utilisé sur des machines-serveurs

d’entreprise, il est de plus en plus utilisé dans le domaine des systèmes temps-réel, notamment sa

version temps-réel, RT-Xen (Xi et al., 2011), et embarqué, Xen-ARM (Yoo and Yoo, 2013).

Dans le projet RT-Xen, quatre nouveaux algorithmes ont été implémentés, le Defferable Server,

le Periodic Server, le Polling Server et le Sporadic Server. Ces algorithmes reposent tous sur la

théorie d’ordonnancement hiérarchique que nous avons déjà rencontré lorsque nous avons décrit les

frameworks HSF et CBS (voir Section 8.1.1 et Section 8.1.2).

146

Dans RT-Xen, le mot server est synonyme du mot composant utilisé par la théorie, et du mot

machine virtuelle utilisé en pratique. Chaque composant géré par RT-Xen est défini par un budget,

une période, et une priorité. La différence entre tous les algorithmes mentionnés est la façon dont

le budget de chaque composant est depensé ou renouvellé. Dans le Periodic Server le budget du

composant est consommé lorsque le composant en question est ”idle”, c.-à-d. lorsqu’il n’exécute

aucune tâche, alors que dans le Polling Server il est préservé. Dans le Defferable Server, le budget

est utilisé par un autre composant moins prioritaire mais qui en a réellement besoin, c.-à-d. qu’il

a des tâches à exécuter mais sa période n’est pas encore arrivée. Alors que tous ces algorithmes

renouvellent les budgets des composants de façon périodique (à intervalle fixe), le Sporadic Server

les renouvelle au fur et à mesure qu’ils sont épuisés.

Les composants sont triés par ordre de priorité fixe selon une politique de type rate-monotonic,

le composant ayant la plus haute priorité est celui qui a la plus petite période.

Une évaluation empirique a montré que le Defferable Server permet d’atteindre les meilleures

performances en terme de respect des échéances à cause de sa meilleure gestion du budget non

consommé. Les résultats ont montré qu’il est meilleur que le Credit Scheduler et le SEDF, les

deux algorithmes d’ordonnancement par défaut dans Xen. En contre partie, la mesure du surcoût

de ces algorithmes a montré qu’il est supérieur à celui de Credit Scheduler et SEDF parce que

la gestion des listes des composants telle que run-queue, ready-queue, et replenishment-queue, est

plus couteuse que la gestion d’une liste simple selon une politique round-robin ou rate-monotonic

dans le cas de Credit Scheduler par exemple. Mais, ce surcoût varie entre 0.21% et 0.23% du temps

CPU ce qui est favorable à l’utilisation de ces algorithmes.

Une seconde étude a complété ces premiers travaux dans RT-Xen en proposant deux nouveaux

algorithmes, le work-conserving periodic server (WCPS) et le capacity reclaiming periodic server

(CRPS) pour améliorer l’algorithme Periodic Server.

L’idée consiste à ne pas gaspiller le budget d’un composant lorsqu’il est ”idle” en le donnant à

un autre composant. Le CRPS diffère du WCPS dans le fait que lorsqu’un composant prête son

budget non utilisé à un autre, seul le budget qui a été donné est consommé alors que dans le cas du

WCPS le budget de celui qui donne et le budget de celui qui reçoit sont consommés.

De plus, une méthode analytique a été proposée pour calculer le modèle de ressources, PRM,

définit par Γ = (Θ,Π), pour chaque composant. Cette méthode permet d’assurer que ces paramétres

147

garantissent une utilisation efficace des resources de calculs (CPU) et ”l’ordonnançabilité” des com-

posants et de leurs tâches temps-réel, alors que dans les premiers travaux le modèle PRM est fixé

manuellement par le developpeur dans la phase de conception.

L’évaluation empirique a montré que le CRPS est meilleur que le WCPS et le Periodic Server

dû à sa politique efficace pour la consommation du budget non utilisé.

D’autre part, l’utilisation de Xen sur des systèmes embarqués comme les smartphones a révélé

un problème lié au quantum d’ordonnancement, qui est une valeur entière par défaut égale à 10ms .

Lorsque cette valeur est augmentée, elle risque de rallonger le temps de réponse d’un système

d’exploitation invité car le temps de ré-ordonnancement est plus long, et lorsqu’elle est diminuée

elle risque d’allourdir le surcoût dû à la virtualisation car il y a plus de changement de contexte

entre les machines virtuelles. Elle intérfère également avec le système de gestion d’énergie puisque

à chaque ”tick” d’ordonnancement le système est réveillé ce qui peut nuire à la batterie.

Dans le cadre d’un ordonanncement hiérarchique, un composant se voit attribué un budget qui

doit avoir une valeur entière multiple du quantum d’ordonnancement. Or les méthodes théoriques

qui calculent le PRM (Θ,Π) d’un composant supposent que cette valeur soit réelle, ce qui oblige

à l’arrondir pour qu’elle soit multiple du quantum d’ordonnancement, la quantité ajoutée est con-

sidérée alors comme un surcoût appelé ”quantization overhead”, définie par :

∆(Π) =
Θ′

Π
−

Θ

Π
=

Θ′ −Θ

Π
(8.1)

Comme on peut le voir dans l’équation 8.1, augmenter la période Π implique la diminution du

”quantization overhead” :

∀α ≥ α ∗ , ∆(Π) > ∆(Π + α) (8.2)

D’autre part, le PRM donné à un composant doit être supérieur à la charge totale demandée par

les tâches exécutées par le composant :

UW =
∑

i

ei

pi
(8.3)

148

Θ

Π
≥ UW (8.4)

La différence entre le ratio du PRM et la charge totale est aussi considérée comme un surcoût

appelé ”abstraction overhead” :

Ψ(Π) =
Θ

Π
− UW (8.5)

Comme on peut le voir augmenter la période Π implique l’augmentation du ”abstraction over-

head” :

∀α ≥ α ∗ , Ψ(Π) > Ψ(Π + α) (8.6)

Seehwan Yoo and Chuk Yoo ont proposé l’algorithme nommé SH-Quantization (Yoo and Yoo,

2013) qui permet de calculer la période et le budget d’un composant de façon optimale par rapport

aux deux contraintes ”quantization overhead” et ”abstraction overhead”.

8.1.4 Virtualisation pour les systèmes critiques

Plusieurs travaux de recheche ont considéré l’utilisation d’un hyperviseur dans le domaine des

systèmes critiques. L’un des principaux besoins concerne les systèmes avioniques et le respect de la

norme ARINC 653 qui régit le développement logiciel de ces systèmes. Cette norme préconise le

partitionnement temporel et spatial entre les différentes applications exécutées sur une seule plate-

forme matérielle. Ce qui correspond naturellemet aux spécifications d’un hyperviseur puisqu’il est

capable d’isoler les machines virtuelles en utilisant une MMU, et garantir pour chaque machine

virtuelle les ressources CPU qui lui sont allouées et empêcher tout dépassement par exemple en

spécifiant pour chaque machine virtuelle un PRM (Θ,Π).

XtratuM est un hyperviseur de type natif destiné à être utilisé dans des applications aérospatiales

(Masmano et al., 2009, 2010; Carrascosa et al., 2013). La dernière version de XtratuM est disponible

sur l’architecture Sparc V8. Elle bénéficie de la MMU et du multicoeur offert par cette architec-

ture. Cependant, le système d’exploitation invité qui est géré par XtratuM est para-virtualisé afin

qu’il puisse utiliser les hyper-calls proposés par l’hyperviseur pour demander l’exécution d’une

149

opération ”privilégiée” sur le matériel. Cette modification du système d’exploitation est inévitable

car l’architecture Sparc V8 n’a que deux niveaux de privilège : ”user” et ”supervisor”, forçant le

système d’exploitation invité à s’exécuter au niveau ”user” et l’hyperviseur au niveau ”supervisor”.

Un autre hyperviseur destiné également pour une application aérospatiale a été dévelopé par

Tavares et al. (2012). Il est compatible avec l’architecture PowerPC 405 disponible sur un FPGA

Xilinx. Contrairement à XtratuM, il bénéficie d’une propriété offerte par cette architecture matérielle;

les instructions ”sensitive”1 du jeu d’instruction sont aussi des instructions privilégiées, ce qui

permet à l’hyperviseur d’intercepter toutes les instructions ”sensitive” exécutées par un système

d’exploitation invité parce qu’une instruction privilégiée génére une exception lorsqu’elle est exécutée

dans un niveau de privilége différent du niveau ”supervisor”, ce qui est le cas de l’OS invité.

L’évaluation des deux hyperviseurs s’est limitée à la mesure de certaines opérations de bas-

niveau tel que le changement de contexte, ou la prise en compte d’interruptions, mais aucune

évaluation de l’impact de la virtualisation sur un RTOS ou une application temps-réel n’a été con-

duite en utilisant ces hyperviseurs.

8.2 Etat de l’art sur la configuration des systèmes d’exploitation

Notre intérêt pour la configuration d’OS émerge d’un besoin industriel qui vise à transformer

le système d’exploitation temps-réel développé dans le projet OveRSoC (Miramond et al., 2009),

depuis sa ”forme” simulable vers une ”forme” exécutable sur une plate-forme réelle. Le modèle

représentant le système d’exploitation temps-réel (RTOS) ainsi que les modèles qui représentent

la plate-forme SoC reconfigurable (RSoC) sont décrits dans un langage de simulation (logiciel/-

matériel) appelé SystemC.

La particularité de l’OS ”OveRSoC” réside dans son architecture basée sur l’approche com-

posant. Spécifiquement, l’OS est composé d’un ensemble de services où chaque service est un com-

posant indépendant des autres composants. Les composants sont connectés entre-eux par l’intermédiaire

d’interfaces et de ”ports”. Ceci permet de remplacer le comportement d’un composant par un autre

sans ”casser” tout l’ensemble à condition de ne pas modifier les interfaces.

1Une instruction qui manipule l’état du matériel.

150

Cette facilité de modification des services de l’OS lui confère une grande capacité d’adaptation

notamment par rapport au besoin de l’application. L’objectif de notre travail serait donc de trans-

former automatiquement le modèle d’OS simulable vers un modèle exécutable sans perdre en ca-

pacité d’adaptation.

Plusieurs travaux de recheche ont étudié la configuration, par exemple Composite (Parmer,

2010) qui est un OS basé sur l’approche composant. Composite repose sur un module intégré au

noyau Linux appelé HijackCOS
Linux (Parmer et al., 2012) afin de ”pirater” les fonctionalités clés du

noyau et prendre le contrôle de la machine. Il exporte ensuite au niveau utilisateur (user-level) un

certain nombre de services qui permettent à des composants définis au niveau utilisateur de prendre

des décisions sur l’allocation des ressources matérielles.

Un deuxième exemple est le système d’exploitation LITMUSRT qui est une modification (patch)

du noyau Linux. Il modifie le noyau Linux afin de détourner la gestion d’interruption et l’ordonnancement

vers ses propres fonctions. Ces fonctions appellent ensuite des fonctions qui sont définies dans des

extensions (plug-ins) au niveau utilisateur. Les plug-ins décident alors de la politique de gestion des

ressources en utilisant des algorithmes d’ordonnacement temps-réel pour le multicoeur ou bien des

protocoles de synchronisation des ressources partagées.

Un troixième exemple est le framework ExSched qui est une extension (module) ajouté au

noyau Linux. Il permet également de remplacer des fonctionalités clés du noyau Linux comme

l’ordonnancement sans modifier le noyau. Il dépend des fonctions offertes par Linux comme par

exemple la fonction schedule(), à l’aide de cette fonction il est capable de demander un ordon-

nancement d’un jeu de tâches qui a été préalablement trié par l’un de ses plug-ins suivant une

politque d’allocation de ressources propre à chaque plug-in. ExSched a également été porté pour

être compatible avec le RTOS VxWorks.

Dans notre étude, nous avons décidé d’implémenter la configuration en utilisant une approche

de type middleware, c.-à-d. en n’utilisant que des mécanismes (compatibles avec le standard

POSIX) accessibles depuis le niveau-utilisateur (user-level) et ceci dans le but d’éviter toute dépendance

avec le noyau du système d’exploitation sous-jacent.

151

8.3 Impact de la Virtualisation sur les Systèmes Temps-Réel

Notre étude de l’impact de la virtualisation nous a amené à conduire trois évaluations progressives.

Dans une première évaluation, nous avons mesuré la latence d’ordonnancement qui est un délai

séparant le déclenchement d’une interruption (par exemple suite à un évenement issu d’un capteur,

ou une interruption timer) et le début de l’exécution du ”job” de la tâche qui lui correspond. Ensuite

nous avons décomposé ce délai en un ensemble de surcoûts (overheads) et de latences (latencies)

internes au système d’exploitation, afin de determiner l’opération la plus pénalisée par la virtualisa-

tion. Enfin nous avons conduit deux études de cas en utilisant une applications temps-réel simple

pour valider les conclusions déduites des deux premières évaluations.

La conclusion que nous avons retenue des deux premières évaluations est qu’un système d’exploitation

doit exposer les même performances lorsqu’il exécuté sur une machine virtuelle que lorsqu’il est

exécuté sur une machine réelle. Seulement dans des cas rares il est susceptible de subir une

dégradation dans ses performances.

La troixième expérience a corroboré cette conclusion, le test de plusieurs applications temps-

réel a démontré que les échéances ont été respectées aussi bien en exécutant les applications sur une

machine réelle que sur une machine virtuelle.

8.4 Ordonnancement Temps-Réel des Machines Virtuelles

Nous avons analysé comment l’ordonnancement des machines virtuelles peut causer le non respect

des échéances des tâches temps-réel. Nous avons alors étudié la méthode qui permet d’éviter ce

problème et qui repose essentiellement sur l’utilisation du modèle PRM (periodic resource model)

afin d’attribuer à chaque machine virtuelle un couple (Θ,Π) définissant le partage des ressources

matérielles et force chaque machine virtuelle à garantir le respect des contraintes temporelles des

tâches qu’elle exécute.

152

8.5 Transformation d’un modèle d’OS Temps-Réel

La transformation d’un modèle d’OS simulable vers un modèle d’OS exécutable est basée sur une

technique issue de l’ingénieurie-dirigée par les modèles. Cette technique fait appel à une double

transformation : une ”Model-to-Model” et une ”Model-to-Code”.

Dans un premier temps, le modèle d’OS simulable est transformé vers un modèle OS abstrait

qui reflète uniquement la structure de l’OS, ensuite le modèle abstrait est transformé en un code

source qui sera par la suite compilé en programmes qui s’exécuteront sur la plate-forme matérielle.

La transformation ”Model-to-Model” a nécessité la création d’un meta-modèle, c.-à-d. un lan-

gage de modélisation (grammaire + syntaxe) pour décrire la structure d’un OS. Ceci nous a permis

d’extraire les informations nécessaires sur les composants de l’OS depuis le modèle simulable.

Le modèle d’OS qui représente la structure de l’OS est ensuite transformé automatiquement

en un code source, la génération de code source repose sur un ensemble de code source existant

et paramétré (template). Le code source existant vient d’un RTOS existant qui propose les même

fonctionalités que celles qui sont proposées par les composants formant le modèle d’OS simulable.

La limite de notre méthode vient du fait que le RTOS choisi comme base pour créer les tem-

plates utilisés par le générateur de code est un RTOS monolithique. Or, à l’origine le modèle d’OS

simulable utilisé en entrée est un modèle basé sur les composants, offrant par conséquent une grande

facilité d’adaptation, ce qui résulte en une perte de degré de configuration dans la transformation

d’un modèle d’OS basé sur les composants vers un modèle d’OS monolithique.

Pour remédier à ce manque nous avons utilisé un middleware qui sera déployé sur le RTOS

monolithique afin de le doter d’une capacité de configuration.

8.6 Utilisation d’une Libraire pour la Configuration d’OS

Doter un OS d’une capacité d’adaptabilité sans modifier son code source interne peut être réaliser en

utilisant un middleware. Ce middleware s’interpose entre l’OS et l’application afin de connaı̂tre le

besoin en termes de ressources de l’application et de demander à l’OS l’allocation des ces ressources

selon une politique qui est défini par le middleware et non pas par l’OS.

153

En utilisant les abstractions des ressources matérielles (processus) fournies par l’OS et en

donnant une priorité maximale au processus qui constitue le middleware par rapport au reste des

programmes exécutés par l’OS, le middleware est capable de prendre le contrôle de la machine.

Une fois que le programme middleware a pris le contrôle de la machine, il est capable d’exécuter

n’importe quel travail suivant sa propre ”politique”.

Pour exécuter plusieurs tâches, le middleware utilise une structure de données connue sous le

nom de ”u context” dans la norme POSIX, et qui sert de ”recipient” pour sauvegarder le contexte

processeur (registres) d’une tâche exécutée par le processus middleware.

La norme POSIX prévoit un ensemble de fonctions qui permettent de créer des structures

”u context” et de faire des changements de contexte processeur (registres) depuis le niveau-utilisateur.

En utilisant ces fonctions, un middleware peut multiplexer sur un processus plusieurs tâches (multi-

tâches). Par la suite, lorsque le processus est exécuté par l’OS sous-jacent, c’est en réalité le code

de la tâche élue par le middleware qui est exécuté.

Pour interrompre (de manière asynchrone) le travail d’un processus, le middleware utilise les

interruptions logicielles d’un ”timer”. Lorsqu’un ”timer” se déclenche, il envoie un signal au pro-

cessus middleware pour l’interrompre. A ce moment, l’exécution du processus est dirigée vers une

fonction particulière du middleware timer handler() qui va gérer la suite de l’exécution. Cette fonc-

tion re-programme d’abord le timer pour un prochain réveil ensuite appelle la fonction schedule()

du middleware pour choisir la prochaine tâche à exécuter.

Pour contrôler le temps d’exécution de chaque tâche, le middleware peut utiliser un registre

particulier de la machine, par exemple sur l’architecture x86 le registre TSC compte le nombre de

cycle processeur depuis le démarrage de la machine.

En étant capable de réaliser la préemption, la mesure du temps, le changement de contexte pro-

cesseur au niveau utilisateur, un middleware peut implémenter n’importe quelle politique d’allocation

de ressources.

Une implémentation de ce middleware a été proposée par Mollison and Anderson (2013). Dans

sa version initiale, le middleware a été testé sur un système d’exploitation Linux temps-réel pour une

architecture x86 32-bit. Les performances de son évaluation nous ont incité à le considérer comme

une solution potentielle à notre problème de configuration d’OS. Cependant, il était nécessaire de

vérifier la portabilité de cette approche sur un autre OS et notamment sur un micro-noyau afin que

154

cette solution soit optimale pour notre besoin. Nous avons implémenté le middleware sur le micro-

noyau Nova pour une architecture x86 64-bit. L’évaluation des performances du middleware sur le

micro-noyau a démontré la validité de l’approche.

8.7 Conclusion et futurs travaux

Dans cette thèse nous avons répondu à la question de l’impact de la virtualisation sur les pro-

priétés d’un système temps-réel. L’utilisation des mécanismes matérielles pour virtualiser le pro-

cesseur, la MMU et les périphériques d’entré/sortie permet de garantir à un système d’exploitation

les même performances d’une machine réelle. Ces performances peuvent être altérées dans des

cas extrêmement rares. Pour éviter cette dégradation dans les performances et garantir le respect

des contraintes temps-réel il est nécessaire d’adopter un ordonnancement temps-réel au niveau de

l’hyperviseur.

Nous avons également montré comment il est possible de transformer un modèle de RTOS simu-

lable vers des programmes exécutables sur une cible matérielle. Et nous avons proposé une méthode

qui évite la perte de la capacité de configuration d’un modèle de RTOS lorsqu’il est transformé vers

un autre modèle.

Il serait aussi intéressant dans le futur d’améliorer l’implémentation du middleware sur le micro-

noyau afin de proposer un framework complet capable de supporter un ensemble riche de politique

d’allocation de ressources pour les architectures multicoeurs.

155

BIBLIOGRAPHY

Abeni, L. and Buttazzo, G. (1998). Integrating multimedia applications in hard real-time systems.

Real-Time Systems Symposium, pages 4–13.

Accellera (2014). IEEE 1666-2011: SystemC. http://www.accellera.org/home/.

Aichouch, M., Miramond, B., and Huck, E. (2008). Oversoc platform design simulator. Conference

on Design and Architectures for Signal and Image Processing (DASIP).

ARM (2014). Fast Models. http://www.arm.com/products/tools/models/fast-models/.

Åsberg, M., Forsberg, N., Nolte, T., and Kato, S. (2011). Towards real-time scheduling of virtual

machines without kernel modifications. Emerging Technologies Factory Automation (ETFA),

2011 IEEE 16th Conference on, pages 1–4.

Åsberg, M. and Nolte, T. (2012). Towards a user-mode approach to partitioned scheduling in the

sel4 microkernel. 5th International Workshop on Compositional Theory and Technology for

Real-Time Embedded Systems (CRTS’12).

Åsberg, M., Nolte, T., Kato, S., and Rajkumar, R. (2012). Exsched: An external cpu scheduler

framework for real-time systems. Embedded and Real-Time Computing Systems and Applica-

tions (RTCSA), 2012 IEEE 18th International Conference on, pages 240–249.

Audsley, N., Burns, A., Richardson, M., Tindell, K., and Wellings, A. J. (1993). Applying new

scheduling theory to static priority pre-emptive scheduling. Software Engineering Journal,

8(5):284–292.

Baker, T. P. (2005). A comparison of global and partitioned edf schedulability tests for multiproces-

sors. Technical report, In International Conf. on Real-Time and Network Systems.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., and

Warfield, A. (2003). Xen and the art of virtualization. Proceedings of the 19th ACM symposium

on Operating systems principles.

Bechennec, J.-L., Briday, M., Faucou, S., and Trinquet, Y. (2006). Trampoline an open source imple-

mentation of the osek/vdx rtos specification. Emerging Technologies and Factory Automation,

2006. ETFA ’06. IEEE Conference on, pages 62–69.

Behnam, M., Nolte, T., Shin, I., Åsberg, M., and Bril, R. J. (2008). Towards hierarchical scheduling

on top of vxworks. pages 63–72.

Bellard, F. (2005). Qemu, a fast and portable dynamic translator. Proceedings of the Linux Sympo-

sium.

Bing, Z. (2010). Scheduling policy optimization in kernel-based virtual machine. Computational

Intelligence and Software Engineering (CiSE), 2010 International Conference on.

Blackham, B., Shi, Y., Chattopadhyay, S., Roychoudhury, A., and Heiser, G. (2011). Timing analy-

sis of a protected operating system kernel. pages 339–348.

156

Brandenburg, B. and Anderson, J. (2007). Feather-Trace: A lightweight event tracing toolkit. Pro-

ceedings of the Third International Workshop on Operating Systems Platforms for Embedded

Real-Time Applications, pages 19–28.

Brandenburg, B., Block, A., Calandrino, J., Devi, U., Leontyev, H., and Anderson, J. (2007). LIT-

MUSˆRT: A Status Report. Proceedings of the 9th Real-Time Linux Workshop, pages 107–123.

Brandenburg, B. B. (2011). Scheduling and Locking in Multiprocessor Real-Time Operating Sys-

tems. PhD thesis, The University of North Carolina at Chapel Hill.

Carrascosa, E., Masmano, M., Balbastre, P., and Crespo, A. (2013). XtratuM hypervisor redesign

for LEON4 multicore processor. Workshop on Virtualizatio for Real-Time Embedded Systems.

Cloutier, P., Mantegazza, P., Papacharalambous, S., Soanes, I., Hughes, S., and Yaghmour, K.

(2008). Diapm-rtai position paper. In Real-Time Linux Workshop, 3.

Cook, S., Jones, G., Stuart, K., and Cameron Wills, A. (2007). Domain-Specific Language Devel-

opment with Visual Studio DSL Tools. Addison-Wesley.

Cucinotta, T., Anastasi, G., and Abeni, L. (2009a). Respecting temporal constraints in virtualised

services. Computer Software and

Cucinotta, T., Palopoli, L., Marzario, L., and Lipari, G. (2009b). Aquosa – adaptive quality of

service architecture. software – practice and experience. Technical report.

Delange, J. and Lec, L. (2011). POK, an ARINC653-compliant operating system released under

the BSD license. 13th Real-Time Linux Workshop.

Deng, Z. and Liu, J. W. S. (1997). Scheduling real-time applications in an open environment. pages

308–319.

Faggioli, D., Checconi, F., Trimarchi, M., and Scordino, C. (2009). An edf scheduling class for the

linux kernel.

Forsberg, N. (2011). Evaluation of real-time performance in virtualized environment. Technical

report.

Garcia, P., Gomes, T., Salgado, F., Monteiro, J., and Tavares, A. (2013). Towards Hardware Embed-

ded Virtualization Technology: Architectural Enhancements to an ARM SoC. Workshop on

Virtualizatio for Real-Time Embedded Systems.

Gerum, P. (2008). The Xenomai real-time system. O’Reilly Media, 2nd edition.

Gleixner, T. (2013). The future of realtime Linux. http://lwn.net/Articles/572740/.

Fifteenth Real-Time Linux Workshop.

Gleixner, T. and Niehaus, D. (2006). Hrtimers and beyond: Transforming the linux time subsystems.

In Proceedings of the 2006 Linux Symposium, pages 333–346.

Gronback, R. (2009). Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit. Pear-

son.

Heiser, G. (2011). Virtualizing embedded systems: Why bother? Proceedings of the 48th Design

Automation Conference, pages 901–905.

157

Hessel, S., Bruns, F., Bilgic, A., Lackorzynski, A., Härtig, H., and Hausner, J. (2008). Acceleration

of the l4/fiasco microkernel using scratchpad memory. pages 6–10.

Holenderski, M., van den Heuvel, M. M. H. P., Bril, R. J., and Lukkien, J. J. (2006). Grasp: Tracing,

Visualizing and Measuring the Behavior of Real-Time Systems. Proceedings of the Interna-

tional Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems.

Hwang, J.-y., Suh, S.-b., Heo, S.-k., Park, C.-j., Ryu, J.-m., Park, S.-y., Kim, C.-r., and History, A. V.

(2008). Xen on ARM : System Virtualization using Xen Hypervisor for ARM-based Secure

Mobile Phones. pages 257–261.

IEEE (2014). Pthreads. http://standards.ieee.org/findstds/

standard/1003.1c-1995.html.

Inam, R., Maki-Turja, J., Sjodin, M., Ashjaei, S. M. H., and Afshar, S. (2011). Support for hier-

archical scheduling in freertos. In Emerging Technologies Factory Automation (ETFA), 2011

IEEE 16th Conference on, pages 1–10.

Intel (2012). Intel 64 and IA-32 Architectures Software Developer’s Manual. Intel Corporation.

Joseph, M. and Pandya, P. (1986). Finding response times in a real-time system. The Computer

Journal, 29(5):390–395.

Kiszka, J. (2010). Towards linux as a real-time hypervisor. Proceedings of the 11th Real-Time Linux

Workshop.

Kiszka, J. (2011). Using kvm as a real-time hypervisor. http://www.linux-

kvm.org/wiki/images/0/03/KVM-Forum-2011-RT-KVM.pdf.

Kivity, A., Kamay, Y., Laor, D., and Lublin, U. (2007). kvm: the linux virtual machine monitor.

Proceedings of the Linux Symposium.

Lackorzynski (2014). Running Linux on top of L4. http://os.inf.tu-

dresden.de/L4/LinuxOnL4/overview.shtml.

Lee, J., Xi, S., Gill, C., Chen, S., Lee, I., Chen, S., Phan, L. T., and Sokolsky, O. (2011). Realizing

compositional scheduling through virtualization. Proceedings of the 2012 IEEE 18th Real

Time and Embedded Technology and Applications Symposium.

Lehoczky, J., Sha, L., and Ding, Y. (1989). The rate monotonic scheduling algorithm: exact charac-

terization and average case behavior. pages 166–171.

Lelli, J., Lipari, G., Faggioli, D., and Cucinotta, T. (2011). An efficient and scalable implementation

of global edf in linux. pages 6–15.

Lemerre, M., Ohayon, E., Chabrol, D., Jan, M., and Jacques, M.-B. (2011). Method and tools for

mixed-criticality real-time applications within pharos. In Object/Component/Service-Oriented

Real-Time Distributed Computing Workshops (ISORCW), 2011 14th IEEE International Sym-

posium on, pages 41–48.

Liedtke, J. (1996). Toward real microkernels. Commun. ACM, 39(9):70–77.

Lin, B. and Dinda, P. A. (2005). Vsched: Mixing batch and interactive virtual machines using

periodic real-time scheduling. page 8.

158

Lip6 (2014). SocLib. http://www.soclib.fr/trac/dev.

Liu, C. L. (1969). Scheduling Algorithms for Multiprocessors in a Hard Real-Time Environment.

JPL Space Programs Summary 37-60, II:28–31.

Liu, C. L. and Layland, J. W. (1973). Scheduling algorithms for multiprogramming in a hard-real-

time environment. J. ACM, 20(1):46–61.

LWN (2014). Deadline Scheduler Merged for 3.14. http://lwn.net/Articles/581491/.

Linux Weekly News.

Masmano, M., Ripoll, I., and Crespo, A. (2009). Xtratum: a hypervisor for safety critical embedded

systems. Proceedings of the 11th Real-Time Linux Workshop.

Masmano, M., Ripoll, I., Peiró, S., and Crespo, A. (2010). Xtratum for leon3: an open source

hypervisor for high integrity systems. Embedded and Real-Time Software and Systems.

Masrur, A., Drossler, S., Pfeuffer, T., and Chakraborty, S. (2010). Vm-based real-time services for

automotive control applications. Embedded and Real-Time Computing Systems and Applica-

tions (RTCSA), 2010 IEEE 16th International Conference on, pages 218–223.

Masrur, A., Pfeuffer, T., Geier, M., Drossler, S., and Chakraborty, S. (2011). Designing vm sched-

ulers for embedded real-time applications. Hardware/Software Codesign and System Synthesis

(CODES+ISSS), 2011 Proceedings of the 9th International Conference on, pages 29–38.

Miramond, B., Huck, E., Verdier, F., Benkhelifa, A., Granado, B., Lefebvre, T., Aı̈chouch, M.,

Prevotet, J. C., Oliva, Y., Chillet, D., and Pillement, S. (2009). OveRSoC: A Framework

for the Exploration of RTOS for RSoC Platforms. International Journal of Reconfigurable

Computing, 2009:1–22.

Mok, A. (1983). Fundamental Design Problems of Distributed Systems for the Hard Real-Time

Environment. PhD thesis, Massachusetts Institute of Technology.

Mollison, M. S. and Anderson, J. H. (2013). Bringing Theory Into Practice : A Userspace Library

for Multicore Real-Time Scheduling. Proceedings of the 19th IEEE Real-Time and Embedded

Technology and Applications Symposium.

Molnar, I. (2004). CONFIG PREEMPT REALTIME, Fully Preemptible Kernel, VP-2.6.9-rc4-

mm1-T4. http://lwn.net/Articles/105948/.

OMG (2014). Object Managemet Group. http://www.omg.org.

Ongaro, D., Cox, A. L., and Rixner, S. (2008). Scheduling i/o in virtual machine monitors. Pro-

ceedings of the Fourth ACM SIGPLAN/SIGOPS International Conference on Virtual Execution

Environments, pages 1–10.

Parmer, G. (2010). Composite: A Component-Based Operating System for Predictible and Depend-

able Computing. PhD thesis, Boston University.

Parmer, G., Wang, Q., Song, J., Hossain, T., and Wu, Y. Y. (2012). HijackCOS
Linux: Practical, Pre-

dictable, and Efficient OS Co-Location using Linux. Proceedings of the 14th Real-Time Linux

Workshop.

159

Pham, K. D., Jain, A., Cui, J., Fahmy, S., and Maskell, D. (2013). Microkernel hypervisor for a

hybrid arm-fpga platform. Application-Specific Systems, Architectures and Processors (ASAP),

2013 IEEE 24th International Conference on, pages 219–226.

Phan, L. T. X., Xu, M., Lee, J., Lee, I., and Sokolsky, O. (2013). Overhead-aware compositional

analysis of real-time systems. 2013 IEEE 19th Real-Time and Embedded Technology and

Applications Symposium (RTAS), pages 237–246.

Popek, G. J. and Goldberg, R. P. (1974). Formal requirements for virtualizable third generation

architectures. Commun. ACM, 17(7):412–421.

POSIX (2014). POSIX user context API. http://pubs.opengroup.org/onlinepubs/009695399/

basedefs/ucontext.h.html.

Ramachandran, M. (2013). Challenges in virtualizing real-time systems using kvm/qemu solution.

Proceedings of the 14th Real-Time Linux Workshop.

Rose, R. (2013). ELC: SpaceX lessons learned. http://lwn.net/Articles/540368/.

Embedded Linux Conference.

Ruocco, S. (2006). User-level fine-grained adaptive real-time scheduling via temporal reflection.

Sekiyama, T. (2012). KVM: x86: CPU isolation and direct interrupts handling by guests.

https://lkml.org/lkml/2012/6/28/30.

Shin, I. and Lee, I. (2003). Periodic resource model for compositional real-time guarantees. Real-

Time Systems Symposium, 2003. RTSS 2003. 24th IEEE, pages 2–13.

Srinivasan, B., Pather, S., Hill, R., Ansari, F., and Niehaus, D. (1998). A firm real-time system

implementation using commercial off-the-shelf hardware and free software. Real-Time Tech-

nology and Applications Symposium, 1998. Proceedings. Fourth IEEE, pages 112–119.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks, E. (2008). EMG Eclipse Modeling Frame-

work. Pearson.

Steinberg, U. and Kauer, B. (2010). NOVA: a microhypervisor-based secure virtualization archi-

tecture. Proceedings of the 5th European conference on Computer systems, ser. EuroSys ’10.

ACM.

Stoess, J. (2007). Towards effective user-controlled scheduling for microkernel-based systems.

SIGOPS Oper. Syst. Rev., 41(4):59–68.

Tavares, a., Carvalho, a., Rodrigues, P., Garcia, P., Gomes, T., Cabral, J., Cardoso, P., Montenegro,

S., and Ekpanyapong, M. (2012). A customizable and ARINC 653 quasi-compliant hypervisor.

2012 IEEE International Conference on Industrial Technology, pages 140–147.

van den Heuvel, M. M. H. P., Holenderski, M., Cools, W., Bril, R. J., and Lukkien, J. J. (2009).

Virtual timers in hierarchical real-time systems. Work-in-Progress (WiP) session of the 30th

IEEE Real-time Systems Symposium (RTSS), pages 37–40.

Varanasi, P. and Heiser, G. (2011). Hardware-supported virtualization on ARM. Proceedings of the

Second Asia-Pacific Workshop on Systems.

160

Xi, S., Wilson, J., Lu, C., and Gill, C. (2011). RT-Xen: Towards Real-time Hypervisor Scheduling

in Xen. Embedded Software (EMSOFT), 2011 Proceedings of the International Conference on,

pages 39–48.

Yang, J., Kim, H., Park, S., Hong, C., and Shin, I. (2011). Implementation of compositional schedul-

ing framework on virtualization. ACM SIGBED Review, 8(1):30–37.

Yoo, S. and Yoo, C. (2013). Real-time Scheduling for Xen-ARM Virtual Machines. IEEE Transac-

tions on Mobile Computing, pages 1–1.

Zhang, B., Wang, X., Lai, R., Yang, L., Wang, Z., Luo, Y., and Li, X. (2010a). Evaluating and Op-

timizing I/O Virtualization in Kernel-based Virtual Machine (KVM)., volume 6289 of Lecture

Notes in Computer Science. Springer.

Zhang, J., Chen, K., Zuo, B., Ma, R., Dong, Y., and Guan, H. (2010b). Performance analysis towards

a KVM-Based embedded real-time virtualization architecture. 5th International Conference on

Computer Sciences and Convergence Information Technology, pages 421–426.

Zijlstra, P. (2008). Linux-rt: Turning a general purpose os into a real-time os.

http://www.test.org/doe/. Keynote, Fourth International Workshop on Operating

Systems Platforms for Embedded Real-Time Applications.

Zuo, B., Chen, K., Liang, A., Guan, H., Zhang, J., Ma, R., and Yang, H. (2010). Performance

Tuning Towards a KVM-Based Low Latency Virtualization System. 2010 2nd International

Conference on Information Engineering and Computer Science, pages 1–4.

161

Résumé

L’utilisation de la virtualisation dans le domaine des serveurs
d’entreprise est aujourd’hui une méthode courante. La
virtualisation est une technique qui permet de faire fonctionner
sur une seule machine réelle plusieurs systèmes d’exploitation.

Cette technique est train d’être adoptée dans le développement
des systèmes embarqués suite à la disponibilité de nouveaux
processeurs classiquement destiné à ce domaine.

Cependant, il y a une différence de contraintes entre les
applications d’entreprise et les applications embarquées, celle-
ci doivent respecter des contraintes de temps-réel en réalisant
leurs tâches.

Dans nos travaux de recherche nous avons étudié l’impact de la
virtualisation sur un système d’exploitation temps-réel. Nous
avons mesuré le surcoût et la latence des fonctions internes du
système d’exploitation déployé sur une machine virtuelle, et
nous les avons comparés à celles du système installé sur une
machine réelle. Les résultats ont montré que ces métriques
sont plus élevées lorsque la virtualisation est utilisée.

Notre analyse a révélé que la puce électronique doit inclure des
mécanismes matériels qui assistent le logiciel de contrôle des
machines virtuelles afin de réduire le surcoût de la virtualisation,
mais il est aussi essentiel de choisir une politique d’allocation
des ressources efficace afin de garantir le respect des
contraintes de temps-réel demandées par les machines
virtuelles.

Notre second axe de recherche concerne la transformation d’un
modèle de simulation d’un système d’exploitation vers des
programmes exécutables sur un système-sur-puce. Cette
transformation doit également préserver une caractéristique
offerte par ce modèle qui est la facilité de configuration des
techniques d’allocation de ressources.

Pour transformer le modèle de système d’exploitation nous
avons utilisé des techniques de l’ingénierie-dirigée par les
modèles. Où dans un premier temps le modèle initiale est
transformé vers un autre modèle, ensuite ce second modèle est
à son tour transformé automatiquement en un code source.

Pour assurer la configuration du système d’exploitation finale
nous avons utilisé une librairie placée entre le système
d’exploitation et l’application afin d’identifier les besoins de
celle-ci en termes de ressources et adapter le système à ces
besoins. L’évaluation des performances de la librairie a
démontré la viabilité de l’approche.

N° d’ordre : 14ISAR11 / D14-11

Abstract

In the domain of server and mainframe systems, virtualizing a
computing system’s physical resources to achieve improved
sharing and utilization has been well established for decades.

Full virtualization of all system resources makes it possible to run
multiple guest operating systems on a single physical platform.
Recently, the availability of full virtualization on physical platforms
that target embedded systems creates new use-cases in the
domain of real-time embedded systems.

In this dissertation we use an existing “virtual machines monitor”
to evaluate the performance of a real-time operating system. We
observed that the virtual machine monitor affects the internal
overheads and latencies of the guest OS.

Our analysis revealed that the hardware mechanisms that allow a
virtual machine monitor to provide an efficient way to virtualize the
processor, the memory management unit, and the input/output
devices, are necessary to limit the overhead of the virtualization.
More importantly, the scheduling of virtual machines by the VMM
is essential to guarantee the temporal constraints of the system
and have to be configured carefully.

In a second work and starting from a previous project aiming at
allowing a system designer to explore a software-hardware co-
design of a solution using high-level simulation models, we
proposed a methodology that allows the transformation of a
simulation model into a binary executable on a physical platform.

The idea is to provide the system designer with the necessary
tools to rapidly explore the design space and validate it, and then
to generate a configuration that could be used directly on top of a
physical platform.

We used a model-driven engineering approach to perform a
model-to-model transformation to convert the simulation model
into an executable model. And we used a middleware able to
support a variety of the resources allocation techniques in order
to implement the configuration previously selected by the system
designer at simulation phase. We proposed a prototype that
implements our methodology and validate our concepts. The
results of the experiments confirmed the viability of this approach.

