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ABSTRACT 

 

Complex diseases such as cardiovascular disease (CVD) are influenced by both genetic and environmental 

factors. Estimation of an individual’s cardiovascular risk usually involves measurement of risk factors correlated 

with risk of CVD (e.g. age, sex, smoking, blood pressure, and total cholesterol).  Lately, several biomarkers have 

been evaluated for their ability to improve prediction of cardiovascular disease beyond traditional risk factors. The 

interest in novel loci is propelled notably by emerging discoveries from the advent of genome-wide association 

studies (GWAS) of genetic variants associated with risk for common diseases. GWAS has greatly enhanced our 

knowledge of the genetic architecture of cardiovascular disease, yielding over 50 variants confirmed to be 

associated with CVD to date, as well as over 200 associated with traditional cardiovascular risk factors (e.g. lipids, 

blood pressure, body mass index, and type 2 diabetes mellitus). This recent and continuing success in discovering 

increasing numbers of robustly associated genetic markers has led to reassessment of whether genetic data can 

provide clinically useful information by refining risk prediction and moderating disease risk through a more 

efficient application of prevention strategies. In this thesis, we first address novel approach to survey the genetic 

architecture of hypertension (i.e. major risk factor for premature CVD), then construct risk prediction models for 

coronary artery disease (CAD; i.e. most common type of CVD) and finally establish a common genetic basis of the 

strongest predictor of clinical complications of CAD, subclinical atherosclerosis, to add incremental prognostic 

value above traditional risk scores across a range of ages. 

 

We show that, for first visit measurements, the heritability is ~25%/~45% and ~30%/~37% for systolic 

(SBP) and diastolic blood pressure (DBP) in European (N=8,901) and African (N=2,860) ancestry individuals 

from the Atherosclerosis Risk in Communities (ARIC) cohort, respectively, in accord with prior studies. Then we 

present a means to combine a polygenic risk score - genetic effects among an ensemble of markers - with an 

independent assessment of clinical risk using a log-link function. We apply the method to the prediction of 

coronary heart disease (CHD) in the ARIC cohort. The addition of a genetic risk score (GRS) to a clinical risk 

score (CRS) improves both discrimination and calibration for CHD in ARIC and subsequently reveal how this 

genetic information influences risk assessment and thus potentially clinical management. Finally, Among 1561 

cases and 5068 controls, from several clinical and genetic datasets available through the NCBI's database of 

Genotypes and Phenotypes (dbGAP), we found a one SD increase in the genetic risk score of 49 CAD SNPs was 

associated with a 28% increased risk of having advanced subclinical coronary atherosclerosis (p = 1.43 x 10-16).  

This increase in risk was significant in every 15-year age stratum (.01 > p > 9.4 x 10-7) and was remarkably 

similar across all age strata (p test of heterogeneity = 0.98).  We obtained near identical results and levels of 

significance when we restricted the genetic risk score to 32 SNPs not associated with traditional risk factors. 

 

Accordingly, common variation largely recapitulates the known heritability of blood pressure traits. The vast 

majority of this heritability varies by chromosome, depending on its length, and is largely concentrated in intronic 

and intergenic regions of the genome but widely distributed across the common allele frequency spectrum. 

Respectively, our proposed method to combine genetic information at established susceptibility loci with a non-

genetic risk prediction tool facilitates the standardized incorporation of a GRS in risk assessment. Lastly, multi-

locus GRS derived from the high-risk alleles of SNPs associated with clinical complications of CAD is strongly 

associated with the presence of advanced subclinical atherosclerosis. This susceptibility to plaque formation is life 

long, remarkably homogenous, and not driven by exposure to traditional risk factors. 
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CHAPTER 1: INTRODUCTION 

1.1 Blood pressure, major cardiovascular risk factor  

“The measurement of [blood pressure] is likely the clinical procedure of greatest 

importance that is performed in the sloppiest manner.”
 1
  

 

Blood pressure is the pressure within the major arterial system of the body 

measured in millimeters of mercury (mm Hg) with a sphygmomanometer and usually 

expressed as the systolic - contraction of the ventricles, heart beats - over the diastolic 

pressure (filling of the heart with blood between ventricles contractions, heart rests 

between beats). In other words, systolic pressure is the maximum blood pressure and 

diastolic pressure is the minimum pressure recorded just prior to the next contraction.  

 

Optimal blood pressure is less than 120 mm Hg systolic and 80 mm Hg and 

ideally perfused adequately vital organs
2
 without causing damages. Organs inadequately 

perfused experience ischemic damage and are unable to perform efficiently. For instance, 

poor renal perfusion may trigger renal failure with thorough metabolic outcomes. In 

contrast, elevated blood pressures may cause end organ damage with harmful 

consequences such as heart attack, stroke, kidney failure and dissecting aneurysm. Blood 

pressure is considered high if it is 140 mm Hg systolic and/or 90 mm Hg diastolic or 

higher
2
. 

 

Low blood pressure is manifested by fatigue or shortness of breath on effort. 

Since perfusion pressure is inadequate, the increased oxygen and nutrient demand by 

exercising muscles cannot be satisfied and can cause symptoms of dizziness and fainting. 

The most frequent causes of low blood pressure are due to dehydration or reduced blood 

volume.  
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1.2 Hypertension, major Cardiovascular Disease risk factor  

Untreated high blood pressure (BP) is an important major cardiovascular risk 

factor for ischemic heart disease, cardiac and renal failure and accounts for a large 

fraction of morbidity and mortality worldwide
3
. In North America, nearly one third of the 

adults over 20 years of age suffer from Hypertension (HTN)
 3
. 

 

Essentially, blood pressure is a quantitative trait controlled by cardiac output
4
, 

peripheral vascular resistance and blood volume. This trait varies between subjects by a 

variety of environmental and physiologic factors such as age, BMI (body mass index), 

smoking and physical activity; yet adjustment for these covariates only explain a small 

proportion of blood pressure variability. Application of genetics and genomics offer 

subsequently a major opportunity to elucidate the remaining fraction of blood pressure 

variation.  

1.3 The Genetics of Hypertension  

The nature of the inherited basis of hypertension has been questioned in the 

1950s, since the classic work of Lord Robert Platt and Sir George Pickering
5
. Platt 

claimed that hypertension was influenced by a single Mendelian genetic variant 

responsible of a dichotomous frequency distribution curve of blood pressure levels. 

Pickering, while recognizing the importance of inherited factors in blood pressure 

regulation, countered that multifactorial genetic inheritance drove a continuous, unimodal 

blood pressure distribution with the hypertensive and non-hypertensive segments defined 

by an arbitrary line. Platt’s hypothesis is supported by rare variants with large effects that 

cause monogenic hypertension syndromes, whereas Pickering’s theory is substantiated by 

variants (polygenic) with small effect sizes that collectively contribute to essential 

hypertension.  

 

Over the years, researchers have gained insight into the genetic architecture of 

hypertension as a result of technologic advances that permit the genotyping of million 

single nucleotide polymorphisms (SNPs) on a single microarray
6
. These genomic tools 

enable the investigation of a considerable proportion of the common human genetic 
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variation throughout the genome. According to numerous studies, it appears that common 

variants act on common disease at many loci
7-10

, explaining little individually but 

explaining a much larger share of the trait or disease collectively. Previous investigations 

of complex genetic disease by candidate gene studies or linkage analysis were not 

designed toward identification of variants with these features
11

. The genome-wide 

association study (GWAS) offers the first opportunity to test such hypotheses
12, 13

. 

1.4 Genome-Wide Association Studies (GWAS) of Hypertension  

Association testing of every single SNP against blood pressure traits opens the 

way for an unbiased interrogation of genetic causes of these traits. The basic 

methodology used to test for association between blood pressure and hundreds of 

thousands of SNPs disseminated throughout the human genome is rudimentary: an 

association statistic is calculated to assess the relationship between each SNP and the 

phenotype of interest, generally by linear regression for continuous phenotypes or by 

logistic regression for dichotomous phenotypes. In other words, it compares the 

frequency of SNPs in cases and controls; high frequency of the SNP in cases suggests 

close proximity to a genetic risk variant. The number of tests performed is equivalent to 

the number of SNPs; although the number of independent tests is lower since many SNPs 

are correlated. Given the large numbers of tests carried-out, highly significant results can 

be obtained by chance. Subsequently this burden of multiple testing required stringent 

thresholds
14, 15

, current practice seems to prefer a threshold of P = 5 × 10
−8

 (based on an 

adjusted p-value of 0.05 for one-million tests).   

 

In order to infer genotypes at un-typed SNPs, genotypes used for GWAS are 

imputed to the 1000 Genomes Project datasets
15, 16

, bringing the number of variants up to 

∼30 million. Imputation backbone of the 1000 Genomes project, therefore increase 

statistical power and extend the allele frequency spectrum analyzed. 

 

The first GWAS to identify HTN variants was carried out by the Wellcome Trust 

Case Control Consortium (WTCCC) in 2007 using 2,000 cases and 3,000 shared 

controls
17

. From this large-scale analysis no variants reached genome-wide significance, 
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calling out the need for larger sample sizes. Since then, several consortia and individual 

studies have identified over 49 variants associated with SBP, DBP, or HTN
18-28

. These 

discovery efforts were carried out using samples of European descent, such as the 

CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) 

consortium, the Global BP Gen (Global BP Genetics) consortium, and the ICBP 

(International Consortium for BP).  

 

To date, several loci have been identified for SBP, DBP, and HTN as a result of 

the contribution of the ICBP effort and many other studies. The ICBP-GWAS experiment 

of 2011 included 69 395 individuals and further replication genotyping in up to 133 661 

subjects
18

. This study described 29 SNPs with genome-wide significance and replicated 

13 loci identified in previous effort. As of now, 49 causal variants are associated to blood 

pressure traits and interestingly all of the alleles increasing SBP/DBP also increased the 

risk of HTN. Of the 49 variants significantly associated with SBP, DBP and HTN, a 

minority is near a gene related to BP. The remaining variants are localized in genomic 

regions that were previously unsuspected for their link with BP. The effect sizes for each 

individual genetic variant are small, typically 1 mmHg for SBP and 0.5 mmHg for DBP. 

Even collectively, the variance tagged by the 49 associated SNPs explains only 1-2% of 

the expected narrow-sense heritability (h
2
) for SBP and DBP

18
, defined as the ratio of the 

additive genetic values (combined effect of all loci) to the total phenotypic variance.  

1.5 The Heritability (h
2
) of Hypertension  

Heritability is often estimated to summarize the proportion of phenotypic 

variation due to variation in genetic factors
29, 30

. Given its definition the heritability 

always lies between 0 and 1. Current estimate of the heritability of BP is approximately 

25 times larger than the variation accounted by GWAS SNPs
18

. This mismatch between 

the high heritability estimates from quantitative genetic analyses and the small fraction of 

variance explained through GWAS findings has been designated as the ‘missing 

heritability’
31, 32

. This discrepancy is likely due to rare genetic variants (“common 

disease–rare variant” hypothesis
33, 34

) or because genotyped SNPs are in incomplete 

linkage disequilibrium (LD) with the causal variants
35

. Since non-additive genetic effects 
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(gene-by-gene or gene-by-environment interactions) do not contribute to the narrow-

sense heritability. Part of these “missing” genetic factors contribute to the estimated 

genetic effect, but are not detected in GWAS analyses, which capture only additive 

effects of common SNPs with minor allele frequencies (MAF) of 5%. Lack of complete 

LD might, for instance, occur if causal variants have lower MAF than genotyped SNPs. 

A second suggested explanation is that multiple additional common genetic variants 

contributing to the genetic effect observed in quantitative genetic studies have such small 

effect sizes (fail to pass stringent significance thresholds) that they remain undetected in 

large data sets used in contemporary GWAS analyses.  

1.6 The hunt for missing Heritability 

GWASs have successfully identified thousands of SNPs significantly associated 

with complex traits and diseases in human by examining each SNP individually for 

significance; yet these variants typically account for only a small fraction of the genetic 

variation
36

. Alternatively, the narrow sense heritability explained by the common SNPs 

may be estimated by adapting a linear mixed-effects model for all SNPs 

simultaneously
37

. The effects of the SNPs are treated statistically as random, and the 

variance explained by all the SNPs together is estimated. This approach subsequently 

decomposes the phenotypic variance into genetic and residual variance components. 

Usually, the estimate of heritability is applied to related individuals where the genetic 

relationships are assessed by using family pedigree or SNP data. Recent study pointed out 

that heritability could be estimated using genetic relationships obtained from autosomal 

SNPs for unrelated individuals since degree of genetic resemblance for common SNPs at 

the whole-genome level is normally distributed among unrelated individuals
35

. The main 

difference between the latter and the former estimates is due to the difference in LD 

between the common SNP and the rest of the genome, with the assumption that closely 

related individuals would be in greater LD than unrelated subjects. Thus, heritability 

estimated with the genetic relationships of unrelated individuals is attributed to the 

common variants while that estimated with genetic relationships of related individuals is 

attributed to the entire genome. Furthermore, estimate of the genetic variance using 

common markers in unrelated individuals is directly comparable to results from GWAS, 
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since both are based on the same experimental design.  While the method does not 

identify single variants, it quantifies the overall contribution from the additive effects of 

SNPs in currently available DNA array. 

 

This alternative approach designed to overcome the weaknesses of GWAS can 

provide an unbiased estimate of the variance explained by all SNPs, given that only a 

small fraction of the BP heritability is currently explained by genome-wide significant 

SNPs
18

.  

 

Untreated elevated blood pressure is not only a well-established cardiovascular 

risk factor but predisposes to and accelerates atherosclerosis
38-40

. 

1.7 Development of Atherosclerosis 

Atherosclerosis is a degenerative inflammatory disorder characterized by the 

progressive deposition of lipids and fibrous matrix in the arterial wall, which accounts for 

substantial cardiovascular morbidity and mortality
3, 41, 42

. The first stages of 

atherosclerosis are characterized by the loss of the normal barrier function of the 

endothelium, lipoprotein abnormalities that promote the accumulation of lipoproteins, 

particularly low-density lipoproteins (LDL), in the intimal region
43

. In response to the 

lipoprotein accumulation, dysfunctional endothelial cells express a number of adhesion 

molecules and selectins that promote the binding of circulating monocytes to vascular 

endothelial cells
42, 43

. Monocytes are then exposed to chemokine that induces the 

transmigration of bound monocytes into the sub-endothelial space. In the inflamed 

intima, a cytokine or growth factor give rise to the differentiation of monocytes into 

macrophages. This step is critical for the development of atherosclerosis
44

. Macrophages 

are subsequently exposed to modified LDL and express scavenger receptors that bind and 

promote the ingestion of oxidized LDL. As the macrophage progressively accumulates 

cholesterol, the macrophage takes on the appearance of a lipid-laden foam cell. In 

concert, T-lymphocytes infiltrate the developing lesion site from both the intimal and 

adventitial aspects of the vessel wall, where it secretes inflammatory cytokines and 

growth factors
45

. This provides a signal for smooth muscle cells to alter their 
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cytoskeleton, migrate from the media into the intimal space, where they proliferate and 

secrete extracellular matrix components that form a fibrous cap over the developing 

lesion
42, 43, 46

. The ongoing inflammatory response in the vascular wall continues to 

provide signals for further LDL uptake and leucocyte infiltration, creating conditions for 

further growth of the atherosclerotic lesion
47

. Over time, the atherosclerotic lesion 

continues to expand at its base via the same mechanisms that led to formation of the 

initial fatty streak.  

1.8 The most common type of Cardiovascular Disease   

The stability of the advanced atherosclerotic lesion or plaque (lipid core bounded 

by a fibrous cap) depends on its cellular and extracellular contents. Plaques with small 

lipid cores, thick fibrous caps, few inflammatory cells and a preponderance of smooth 

muscle cells are typically stable; conversely, those with large lipid cores, thin fibrous 

caps, numerous macrophages and relatively few smooth muscle cells are most likely to 

rupture (vulnerable plaque). Atherosclerotic lesion rupture usually are caused by resident 

activated macrophages, T cells, at sites of plaque rupture that secrete several types of 

molecules such as cytokines and vasoactive molecules that can destabilize lesions, which 

inhibit the formation of stable fibrous caps, attack collagen in the cap, and initiate 

thrombus (blood clot) formation
47, 48

. Thereafter, the disrupted plaque serves as a scaffold 

to allow platelet aggregation and coagulation. The thrombus size depends on the extent of 

plaque rupture as well as activity of the endogenous fibrinolytic pathway. When 

sufficiently large, the thrombus can either partially or completely occlude the coronary 

vessel lumen and precipitate an acute coronary event (e.g. unstable angina, myocardial 

infarction (MI), and sudden death). Coronary artery disease (CAD) is almost always due 

to atheromatous narrowing and subsequent occlusion of the vessel
49

. 

1.9 The strongest predictor of Coronary Artery Disease: CAC   

The prevalence and extent of atherosclerosis development increase with age
50

. 

Age is used as a surrogate for coronary plaque burden, but plaque burden is the true risk 

factor for coronary heart disease related morbidity and mortality
51

. Because plaque 

burden can vary among individuals at any given age, accurate measurement of subclinical 
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atherosclerosis may provide a better method for predicting risk for acute cardiovascular 

events.  

A variety of invasive and non-invasive techniques are available to measure 

atherosclerosis and subclinical atherosclerosis. These techniques can ascertain parameters 

such as luminal diameter or stenosis, vessel wall thickness, plaque volume, and the 

specific distribution and localization of atherosclerotic disease. Accordingly, Computed 

Tomography (CT) Scan is the only noninvasive test to evaluate the lumen and wall of the 

coronary artery with high sensitivity and specificity for calcium detection, and capable of 

quantifying coronary artery calcification (CAC)
 52

. This measures is translated into an 

Agatston score, calculated by multiplying the lesion area by a density factor derived from 

the maximal Hounsfield units in this area. Coronary calcium reflects plaque burden, 

because calcium deposits are related to the lipid and apoptotic remnants of the plaque. 

This calcification of the atherosclerotic plaque (deposition of calcium phosphate in the 

vessel wall) is limited to the sub-intimal space and can appear as early as the second 

decade of life, soon after the formation of fatty streaks
53

. First seen in the lipid core of the 

atheroma it occurs via an active process that resembles bone formation and is controlled 

by complex enzymatic and cellular pathways, including osteoblast-like cells, cytokines, 

transcription factors and bone morphogenetic proteins, which are typically involved in 

bone calcification, are also involved in the process of vascular calcification. 

Subsequently, the presence of calcium in coronary arteries is pathognomonic of 

atherosclerosis
54

. CAC is an independent cardiovascular risk factor that adds prognostic 

information when considered in conjunction with other risk factors.  

 

However, although CT scan can localize coronary plaques within the coronary 

tree and provide a quantitative measure of relative disease severity, it can be used to 

ascertain highly vulnerable patient rather than the susceptibility of individual plaques to 

rupture. 

1.10 Genome-Wide Association Studies of CAD   

In late 2007, three independent GWAS for CAD identified a significant 

association signal on chromosome 9p21
55-57

. No prior genetic studies had implicated this 
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region of the genome. Moreover, the SNPs in the locus that were associated with 

coronary disease were not associated with any traditional cardiovascular risk factors. 

Thus, it appears that the genetic mechanism underlying the association signal is operating 

through a novel pathway. Subsequent studies established an association between the 9p21 

locus with MI and other vascular phenotypes such as abdominal aortic aneurysm, 

intracranial aneurysm, and peripheral arterial disease, suggesting that the sequence 

variations may interfere with vascular tissue development
58-60

. The 9p21 locus illustrates 

the difficulty of linking some of the genetic associations identified by GWAS with 

pathological mechanism. No annotated genes are present in the minimal region of 

association as defined by linkage disequilibrium, the closest genes to the locus, 

CDKN2A, CDKN2B, and ARF, are more than 100 kb away from the index SNPs (SNPs 

with the highest level of association), making it unclear how the causal DNA variant(s) 

might influence coronary disease. 

 

One possibility is that the loci harbor non-gene transcripts that regulate other 

genes or lies in a regulatory element (e.g., a transcriptional enhancer) that affects the 

transcription of a gene or genes that are ultimately responsible for the phenotype
61

.  

 

Lately, a large consortium of investigators focused on coronary disease (the Coronary 

Artery DIsease Genome-Wide Replication and Meta-analysis plus The Coronary Artery 

Disease (C4D) Genetics, or CARDIoGRAMplusC4D Consortium) has assembled 63,746 

cases of coronary disease and 130,681 control samples and discovered 15 additional 

associated loci
62

, reaching genome-wide significance, taking the number of susceptibility 

loci for CAD to 46
55, 63-70

, and a further 104 independent variants (r2 < 0.2) strongly 

associated with CAD at a 5% false discovery rate (FDR). 

 

GWAS results represent a rich source of information for treatment research that 

forms bridges between genome science and clinical and public health practice
71, 72

. Given 

the large number of genome-wide studies, sufficient data exist to support such 

translational research for a number of common chronic health conditions, including 

CAD
73, 74

. Infrastructure is now in place at the start of the translational pipeline, with 
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GWAS data extracted and curated in continuously updated catalog
75, 76

. Likewise, at the 

other end of the pipeline, evidence from translational research is estimated to establish 

the clinical benefit of genomic information and issue guidelines for clinical practice
77

. 

However, significant gaps remain in the middle of the translational pipeline, and 

approaches are needed to support research at this intersection, so that population-based 

samples with rich environmental and phenotypic measurements can be used to follow up 

disease markers identified in GWAS. In accordance, systematic approaches are needed to 

scrutinize the results of various association studies and distill the most promising set of 

markers for further investigation. 

1.11 Clinical and Genetic Risk Assessment of Cardiovascular Disease   

CAD is a public health problem, which is highly prevalent; it is a significant 

source of morbidity and mortality under strong genetic influence and lately GWAS 

started to elucidate its molecular genetic roots. Consequently, risk assessment plays a 

critical clinical role in prevention strategies and in therapy for CAD at the individual 

level, and is key to future efforts in personalized medicine in this area. Current risk 

prediction models are established on traditional risk factors (TRFs) such as age, sex, 

smoking, lipid levels, and blood pressure, and although extensively validated, these 

models have limitations
78

. Lately, multiple studies have evaluated the ability of 

“emerging risk factors,” including biomarkers, and genetic variants, to improve CHD risk 

assessment beyond the use of TRFs
79

. Of the biomarkers that could be objectively and 

systematically measured, genetic variants have some unique features in that they do not 

change over time. Subsequently, multi-locus profiles of genetic risk, so-called “genetic 

risk scores” (GRS) can be used to translate discoveries from GWAS into tools for 

population health research
80, 81

. GRS summarize risk-associated variation across the 

genome by aggregating information from multiple-risk SNPs (summing up the number of 

disease-associated alleles). Since GRS pool information from numerous SNPs, each 

individual SNP is less important to the summary measurement, and thereby counteract 

the lack of linkage for any one SNP. For the same reason, GRS is less sensitive to minor 

allele frequencies for individual SNPs. As the number of SNPs included in a GRS 

increases, the distribution of values approaches normality, even when individual risk 
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alleles are relatively uncommon
82

. Therefore, the GRS can be an efficient and effective 

means of constructing genome-wide risk measurements from GWAS findings. 

 

To address these challenges, data from the population-based Atherosclerosis Risk 

in the Communities (ARIC) Study were used to estimate the genomic contributions to 

blood pressure heritability. Then, we proposed a method to facilitate the standardized 

incorporation of a GRS in risk assessment for complex traits with CAD as example. 

Finally, I examined the association between a GRS of high-risk alleles associated with 

clinically significant complications of CAD and the presence of subclinical 

atherosclerosis. 
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CHAPTER 2:  THE HERITABILITY OF BLOOD PRESSURE 

 

Preface to the Manuscript 

 

This manuscript presents the first part of a study investigating the genetic basis of 

cardiovascular disease by examining the heritability of the leading cardiovascular risk 

factor. 

 

This study focuses on determining whether common variant capture a large 

proportion of blood pressure traits variability. We felt that it was important to answer this 

question first because such estimate could establish the total contribution of genotyped 

markers on current SNP arrays for blood pressure.  

 

We utilized data on genotyped common SNPs and imputed SNPs respectively, in 

European ancestry and African ancestry from ARIC population, separately, and a mixed 

linear model for analyses. 

 

Subjects under anti-hypertensive treatments were adjusted for potential 

medication effects by adding 10 and 5 mm Hg to observed systolic (SBP) and diastolic 

(DBP) blood pressure measurements, respectively. 

 

 The variance explained by common variant in this study was a function of 

chromosome size, minor allele frequency (MAF), functional annotation (coding, intronic 

and intergenic; cardiovascular/renal or other genes), and markers enriched for functional 

candidates (GWAS blood pressure loci; Cardio-Metabochip SNPs) respectively. These 

genomic partitions reflect actual genetic architecture of blood pressure variance from 

several angles.  
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 In this context, the general objective of this first study is to estimate the 

proportion of variance tagged by common SNPs for blood pressure traits. 

 

The specific objective of this first study is: 

 

1. To identify the extent to which common variants can explain the amounts and 

distribution of SBP and DBP variation within the genome and with respect to 

allele frequency, coding versus non-coding DNA and sites of gene expression. 

 

2. To compare the variance explained by directly genotyped SNPs to the variance 

explained by genotyped and imputed SNPs. 

 

3. To compare the genetic variance captured by common SNPs for European 

ancestry to the genetic variance attributed by common SNPs for African ancestry.  

 

4. To compare whether more stringent definition of unrelated individuals affect the 

estimate of blood pressure heritability. 
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2.1 Abstract: 

 

Blood pressure (BP) is a heritable trait with multiple environmental and genetic 

contributions with current heritability estimates from twin and family studies being ~ 

40%.  Here, we use genome-wide polymorphism data from the Atherosclerosis Risk in 

Communities  (ARIC) study to estimate BP heritability from genomic relatedness among 

cohort members. We utilized data on 656,362 and 772,638 genotyped common single 

nucleotide polymorphisms (SNPs), and up to 7,558,733 and 9,578,528 imputed SNPs, in 

8,901 European ancestry (EA) and 2,860 African Ancestry (AA) ARIC participants, 

respectively, and a mixed linear model for analyses. We show that, for first visit 

measurements, the heritability is ~25%/~45% and ~30%/~37% for systolic (SBP) and 

diastolic blood pressure (DBP) in European and African ancestry individuals, 

respectively, in accord with prior studies. A new finding is that common variation largely 

recapitulates the known heritability of BP traits. The vast majority of this heritability 

varies by chromosome, depending on its length, and is largely concentrated in intronic 

and intergenic regions of the genome but widely distributed across the common allele 

frequency spectrum. Interestingly, the majority of this heritability arises from loci 

harboring currently known cardiovascular and renal genes. Recent meta-analyses of 

large-scale genome-wide association studies (GWASs) and admixture mapping have 

identified ~50 loci associated with BP and hypertension (HTN) and yet they account for 

only a small fraction (~2%) of the heritability. Consequently, elucidation of BP genes 

will require focused analysis of cis-regulatory elements controlling cardiovascular and 

renal gene expression. 
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2.2 Introduction: 

 

 Blood pressure (BP) is an established risk factor for multiple cardiovascular 

diseases (CVD) and, worldwide, about one-tenth of adult global death is attributable to 

high blood pressure or essential hypertension
83

. It’s a truism that BP, studied through 

systolic (SBP) or diastolic (DBP) measures or clinically defined hypertension (HTN), is a 

complex, polygenic trait that is influenced by both genetic and environmental factors
84

. 

BP heritability is moderate, and ~40% across studies (18), and has classically been 

estimated from twin and family studies. Molecular genetic analyses of BP genetics have 

been challenging with the exception of Mendelian hypo- and hypertension syndromes 

that show large BP variation in individuals harboring loss- and gain-of-function 

mutations in numerous renal genes
85

.  These latter studies convincingly demonstrate that 

renal salt-water homeostasis is key to maintaining blood pressure control and is rate 

limiting. Nevertheless, it is unknown whether loss of renal salt-water homeostasis is 

primary or secondary to elevated BP arising from other mechanisms. Several 

environmental factors that influence BP levels, such as alcohol consumption, dietary salt-

intake, physical activity and stress, are also known but the biochemical paths of their 

action remain incompletely described.  Identification of the genes that influence inter-

individual variation in BP thus remains a key and important challenge since this can lead 

to discovery of new etiological pathways. 

 

  In recent years, genetic advancements have made it feasible to conduct a 

comprehensive search for genes underlying a trait. To date, large-scale genome-wide 

association studies (GWAS), and other genome-wide analyses, have identified ~50 single 

nucleotide polymorphisms (SNPs) associated (P < 5 × 10
-8

) with genetic risk factors 

contributing to inter-individual variation in BP
18-20, 22, 23, 25-28, 86

. By design, the vast 

majority of these genetic variants is common (>10%) in the general population and have 

small (<0.05σ, where σ
2 

is the residual phenotype variance) allelic effects, and 

collectively these loci explain only a small (<5%) fraction of the phenotypic variance (i.e. 

heritability)
 87

. This substantial gap between the overall and identified heritability has led 

to a great deal of speculation as to the causes for this “missing” heritability, including our 

failure to assess effects at rare variants and copy number polymorphisms
88, 89

. 
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Nevertheless, before we entertain new genetic hypotheses for complex trait 

architecture it is first necessary to answer what is the total contribution of all common 

genetic variation to BP heritability? The typical approach to providing this answer has 

been through summing the contributions of individual SNPs showing genome-wide 

significant associations: this approach leads to a severe underestimate since GWASs 

suffer from a high false negative rate in its attempt to control the false positive rate. This 

false negative rate arises from the majority of genetic effects being too small to reach 

statistical significance and incomplete linkage disequilibrium between genotyped markers 

and causal variants. 

 

 Newer statistical methods allow a robust answer to this question by estimating the 

trait residual variance explained by all common SNPs taken together and by considering 

them as random effects in a mixed linear model
35, 37

.  Indeed, these analyses can be 

conducted on all genomic polymorphisms or those restricted to specific subgroups, such 

as individual chromosomes, allele frequency class or functional annotation, to assess 

relative contributions from these subgroups.  Visscher and colleagues have demonstrated 

that some complex traits arise largely from allelic effects of common variants
35, 90-93

. We 

use their approach to ask: is inter-individual BP variation mostly due to polymorphic 

additive genetic factors?   We also investigate the proportion of inter-individual BP 

variation captured by common SNPs as a function of chromosome size, minor allele 

frequency (MAF) of genotyped variants, by functional annotation (coding, intronic and 

intergenic; cardiovascular, renal or other genes), and by markers enriched for functional 

candidates (GWAS BP Loci; Cardio-Metabochip SNPs).  Finally, we also used 

longitudinal phenotype data, and assessing the effect of long-term average (LTA) BP, to 

detect additional genetic variance through reducing measurement error
94

. These analyses 

demonstrate that the majority (>50%) of both SBP and DBP heritability is from common 

(MAF>10%) genetic variation almost exclusively in non-coding (intronic and intergenic) 

DNA and at loci enriched for cardiovascular and renal genes.  Consequently, genetic 

etiologies of BP and HTN are addressable through independent identification of 

cardiovascular and renal genes and focused identification of the underlying variants and 
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genes.  We propose specific approaches for identifying the causal factors for BP, 

approaches that do not depend merely on larger GWAS studies but require specific 

understanding of the cis-regulatory architecture of the human genome. 

 2.3 Results: 

The majority of our analyses are on the full set of 8,901 EA and 2,860 AA 

unrelated individuals within ARIC (Table 1; Table 2). The pairwise genomic relationship 

matrix (GRM) was estimated for these individuals using the high quality (call rate > 

95%; MAF ≥ 1%; HWE P > 10
-6

) autosomal genotypes at 656,362 and 772,638 directly 

genotyped SNPs and also including all 7,558,733 and 9,578,528 imputed markers with 

MAF ≥ 1% (imputation R
2
 ≥ 0.3) in EA and AA participants, respectively. To avoid 

phenotypic resemblance due to non-additive genetic effects and common environmental 

influences, we excluded one of each pair of individuals with an estimated genetic 

relationship > 0.025 (equivalent to 2
nd

 cousins). Consequently, we created a second 

dataset that included only 6,914 and 1,763 genetically “unrelated” EA and AA 

participants, correspondingly, to assess whether they impacted our conclusions. The BP 

distributions of the 8,901 EA and 2,860 AA individuals are not statistically different from 

the 6,914 EA and 1,763 AA, respectively, suggesting that the use of either set would be 

representative of the population’s BP features (Table 1, Table 2). Relatedness between 

participants using genotyped and genotyped and imputed SNPs followed normal 

distributions with mean -0.00015 (s.d.= 0.0044) and -0.00014 (s.d.=0.0043), respectively, 

and showed trivial differences. Consequently, for the remaining analyses we used the set 

of 8,901 EA and 2,860 AA individuals to maximize the available sample sizes. 

 

 The GRMs were fitted to a mixed linear model (MLM) to SBP and DBP and 

restricted maximum likelihood (REML) methods were used to estimate the proportion of 

variance explained by genetic markers. Two types of analyses were performed that 

estimated the proportion of variance explained by the sum of that on individual 

chromosomes and by the whole-genome: for the first analysis, we fit 22 pairwise 

relationship matrices simultaneously (joint analysis) while in the second we merged these 

relationship matrices into one GRM (combined analysis). Estimates from both analyses 
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were very similar. The phenotypic variance explained by only genotyped SNPs (~600k 

SNPs in EA, ~700k SNPs in AA) was 0.25 in EA (SE = 0.05, P = 2x10
-8

) and 0.45 in AA 

(SE = 0.12, P = 1.1x10
-5

) for systolic and was 0.31 in EA (SE = 0.05, P = 2 x10
-15

) and 

0.29 in AA for diastolic (SE = 0.11, P = 7 x10
-5

) blood pressure, and were highly 

significant (Table 3; Table 4). These estimates were nearly identical to the variance 

explained by considering all imputed and genotyped SNPs (~7m SNPs in EA, ~9m in 

AA), and were 0.23 in EA (SE = 0.05, P = 7 x10
-7

) and 0.40 in AA (SE = 0.23, P = 4x10
-

3
) for SBP and 0.32 in EA (SE = 0.05, P = 3x10

-14
) and 0.37 in AA (SE = 1.2, P = 1x10

-3
) 

for DBP and, once again, were highly significant (Supplementary Table 1; 

Supplementary Table 2). Therefore, the estimated variances are stable, largely from the 

effects of polymorphisms (MAF ≥ 1%) and do not appear to be dependent on the number 

of SNPs used. This result is not surprising since imputation increased the numbers of 

markers but included those that were highly correlated to the primary genotyped set of 

common alleles.  

 

The apportioning of variance explained by individual chromosomes clearly 

demonstrated that although there is a general yet significant correlation between 

chromosome length and variance explained (SBP r cor  = 0.26 (EA) / 0.56 (AA); DBP r cor  

= 0.31 (EA) / 0.42 (AA)), individual chromosomes differed considerably in their 

contributions to BP variation (Figure 1, Figure 2). Moreover, there is a high but not 

absolute concordance between the variances explained for both SBP and DBP by each 

chromosome.  In EA the highest proportion of genetic variance captured by chromosome 

for SBP is from three chromosomes: chromosomes 2 (h
2
~3%; SE ~0.011), 4 (h

2
~2.5%; 

SE ~0.011) and 12 (h
2
~2.2%; SE ~0.012). Likewise, in AA the three chromosomes that 

account for the largest fraction of genetic variance for SBP were chromosomes 2 

(h
2
~11%; SE ~0.04), 5 (h

2
~5.9%; SE ~0.04) and 11 (h

2
~5.1%; SE ~0.03), capturing 

nearly half of the genetic variance.  With respect to DBP, the most prominent 

contributions of genetic variation were from four chromosomes in EA: chromosomes 2 

(h
2
~3.1%; SE ~0.015), 4 (h

2
~2.5%; SE ~0.014), 11 (h

2
~3%; SE ~0.013) and 16 

(h
2
~2.3%; SE ~0.013); whereas for AA, five chromosomes accounted for the highest 

variances, namely, chromosomes 2 (h
2
~4%; SE ~0.04), 3 (h

2
~3.6%; SE ~0.032), 5 
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(h
2
~6.2%; SE ~0.038), 11 (h

2
~3.5%; SE ~0.03) and 13 (h

2
~5.4%; SE ~0.033),  tagging 

over 65% of the genetic variance.  

 

Blood pressure is a naturally varying phenotype. Thus, we assessed whether using 

the BP measurements from multiple (2-4) visits across time, as a Long Term Average 

(LTA), would lead to different conclusions by reducing measurement error
95, 96

.  We used 

the same set of directly genotyped SNPs and LTA for SBP and DBP for similar analyses 

in EA and AA subjects (Supplementary Table 3).  The proportion of genetic variance 

captured by chromosome for SBP showed a high correlation with first visit measurements 

BP (EA: rcor ~ 0.73, P = 8.84 x10
-5

; AA: rcor ~ 0.78, P = 1.28 x10
-5

) with greater variation 

explained by chromosomes 4 (~40% increase in both EA and AA), 10 (~40% increase in 

EA), 16 (~100% increase in AA) and 17 (~60% increase in EA). For DBP, the LTA 

measurements are smaller than those from first visit values in EA (rcor ~ 0.54, P = 9.4 

x10
-3

) with the majority of the variation explained by chromosomes 2, 6, 10 and 11 (~ 

50% to 75% decrease). In contrast, in AA, the variance explained by DBP-LTA is 50% 

more than first visit (rcor ~ 0.65, P = 9.4 x10
-4

), with the majority of the variation 

explained by chromosomes 1, 3 and 13 (~ 30% to 75% increase).  Consequently, the 

pattern of the variance explained by each chromosome through the whole-genome differs 

significantly between BP-LTA measurements versus first visit measurements for DBP 

more than SBP.
 

 

A second feature of the chromosome-specific and whole-genome estimates of the 

BP heritability is that the latter is expected to be the sum of the chromosome-specific 

estimates unless there are very strong interaction effects.  In these data, the chromosome 

sum and whole genome estimates are both 25% (EA)/45% (AA) for SBP and 

31%(EA)/29%(AA) for DBP for directly genotyped SNPs (Table 3; Table 4); for the 

genotyped and imputed SNPs these comparisons are somewhat more discrepant at 

23%(EA)/49%(AA) and 32%(EA)/37%(AA) for SBP and DBP, respectively.  These 

observations suggest that BP variation is essentially additive in nature and largely arise 

from the contribution of polymorphisms (MAF ≥ 1%).   

 



 

 

 23 

If genetic effects are approximately equal for all contributory alleles then the 

variation in contribution by these loci is highly dependent on their frequency 

(proportional to heterozygosity). Therefore, we analyzed the variance contributions by 

minor allele frequency (MAF) by binning each allele into five equal 10% frequency 

classes between 0 and 50%. These analyses (Table 5, Table 6) once again demonstrate 

that the heritability estimates do not significantly differ irrespective of whether we 

consider genotyped or genotyped and imputed SNPs or whether chromosome-sum or 

whole-genome estimates are considered. Moreover, the values are nearly identical to 

those latter obtained (Table 3,4; Figure 1, 2).  Given the standard errors of the estimates, 

the general conclusions is that the variance explained, for both SBP and DBP, is roughly 

equivalent for all MAF classes with minor differences. For SBP, the estimated genetic 

variance for the five MAF categories ranged from 0.0 to  0.08 (SE 0.02–0.03) the highest 

proportion being from SNPs with MAFs 0.1-0.2; for DBP, the estimated genetic variance 

for the five MAF categories ranged from  0.03 to 0.073 (SE 0.02–0.03) in EA and from 

0.0 to 0.28 (SE 0.14–0.13), the highest proportion being from SNPs with MAFs 0.1-0.2 

in EA and with MAFs 0.2-0.3 in AA; for DBP, the estimated genetic variance for the five 

MAF categories ranged from  0.03 to 0.073 (SE 0.02–0.03) in EA and from  0.0 to 0.11 

(SE 0.1–0.13) in AA, the highest proportion being from SNPs with MAFs 0.2-0.3 in EA 

and AA. The only noticeable feature is the low heritability for SBP for uncommon alleles 

(MAF <10%) but the substantial heritability for DBP for this same class. The more 

remarkable feature is the rough equivalency of heritability by MAF class despite there 

being a greater number of polymorphisms as MAF decreases and the consequent 

expectation that there are larger numbers of causal alleles at lower MAFs, alleles that are 

also considered to be of larger effect
35

. These results suggest that either an equivalent 

number of causal alleles exist irrespective of allele frequency or that causal alleles of 

higher frequencies explain more of the phenotypic variation. 

 

We also investigated the likely locations of these common alleles modulating BP 

variation: were they preferentially located within genes in exons, introns and UTRs or 

were largely in the non-coding intergenic regions (Figure 3, Figure 4). Overall, 

irrespective of whether only genotyped SNPs or both genotyped and imputed SNPs were 
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analyzed, or SBP or DBP were considered, the contribution of SNPs within exons and 

UTRs were small, and less than 10% of the total, while intronic and intergenic regions 

contributed equally. Intriguingly, addition of the imputed variants increased the variation 

explained by exons and UTRs probably reflecting the increase in lower frequency alleles 

associated with functional genic regions
97

 Accordingly, the fraction of alleles under 5% 

and 1% MAF in the genotyped and imputed data were 48% and 30%, respectively, in 

contrast to values of 9% and 0.2% for the genotyped-only SNPs. A second functional 

annotation that can be used to identify specific genomic locations associated with BP 

variation is the expression site of the gene (Figure 5). Do known cardiovascular and renal 

genes explain a significant fraction of BP heritability? Our analyses show that ~5,000 

annotated cardiovascular and renal genes harboring 237,173 genotyped SNPs explained 

~7-10% of SBP/DBP variance in EA. Thus, these candidate genes explain a third of the 

SBP/DBP variance and is greater than that expected either from their proportional gene 

number (25%) or the number of SNPs within these genes (~35%).  

 

We also estimated the genetic variance captured by known genome-wide 

significant BP Loci (identified in EA), including markers in strong LD, and discovered 

that GWAS loci account for a small proportion of BP variance in EA (~1% for 

SBP/DBP), as expected. Finally, we used the Cardio-Metabochip SNPs, or genetic 

variants selected based on GWAS meta-analyses of 23 cardiovascular and metabolic 

traits
98

. This analysis shows that over 50% of the BP variance in EA was explained by 

these set of SNPs despite them accounting for only 5% of the genotyped SNPs; in AA, 

these markers explained 20% and 45% of the variance for SBP and DBP, respectively 

(Supplementary Table 4). Similarly there is a high concordance between the variance 

explained by each chromosome for all genotyped SNPs and those genotyped markers 

from the Cardio-Metabochip array (EA: r cor ~0.65, p= 6.91 x 10
-4

; AA: r cor ~0.58, p= 

1.41 x 10
-3

).  The highest proportion of genetic variance captured by chromosome for 

SBP in the Cardio-Metabochip is from four chromosomes in EA: chromosomes 1 

(h
2
~1.6%; SE ~0.006), 2 (h

2
~1.6%; SE ~0.006), 3 (h

2
~1.6%; SE ~0.005) and 4 (h

2
~1.9%; 

SE ~0.006). In comparison, for AA, four different chromosomes accounted for the 

majority of the variance: chromosomes 2(h
2
~3.7%; SE ~0.02), 12 (h

2
~2.3%; SE ~0.014), 
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13 (h
2
~1.7%; SE ~0.013) and 18 (h

2
~1.7%; SE ~0.01) With respect to DBP, the most 

prominent contributions of genetic variation were from four chromosomes in EA: 

chromosomes 1 (h
2
~2.2%; SE ~0.006), 2 (h

2
~1.5%; SE ~0.006), 3 (h

2
~2.4%; SE ~0.006) 

and 4 (h
2
~1.7%; SE ~0.006). Where in AA, the most prominent proportion of genetic 

variation was from four other chromosomes: chromosomes 2 (h
2
~2.5%; SE ~0.017), 5 

(h
2
~3%; SE ~0.017), 12 (h

2
~1.4%; SE ~0.012) and 18 (h

2
~2.6%; SE ~0.012) 

2.4 Discussion: 

 There is still considerable debate as to the relative importance of common versus 

rare variants in the inter-individual variation of complex traits
88

. Contemporary statistical 

methods now allow a direct estimate of the heritability from genome-wide marker data 

from unrelated phenotyped individuals
35, 37

. These estimates can be compared to the 

classical estimates obtained from family and twin data, and these methods also allow 

heritability estimates from any subset of the genome to test genetic and etiological 

hypotheses. In this study, we explored this question for systolic (SBP) and diastolic blood 

pressure (DBP) by identifying the extent to which common variants can explain the 

amounts and distribution of SBP and DBP variation within the genome and with respect 

to allele frequency, coding versus non-coding DNA and sites of gene expression. We 

used single nucleotide polymorphism (SNP) data from the population cohort ARIC 

(Atherosclerosis Risk in Communities) to demonstrate that the heritability for SBP and 

DBP is 25% (EA)/45% (AA) and 30% (EA and AA), respectively (Table 3, Table 4). 

These estimates were robust and did not depend on whether we used directly genotyped 

SNPs or included a larger number of imputed SNPs (Table 3, Table 4) or whether we 

used a more stringent definition of unrelated individuals in the estimation 

(Supplementary Tables 1 and 2). These estimates compare favorably to estimates 

obtained from family
99

 and twin studies
100

 of adults, that vary between 42% and 39-40% 

for SBP and DBP, respectively. One aspect to consider is that these genome-wide 

heritability estimates are quite accurate and have coefficients of variation of <15%.  

Clearly, these estimates can be made more accurate with increasing numbers of samples.  

However, increasing numbers of SNPs, beyond the basic set of 600k polymorphic 

genotyped markers, apparently do not matter much since imputation did not affect the 
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estimates greatly (Table 3, Table 4). Thus, the heritability estimates are not greatly 

affected by numbers of SNPs. 

 

The BP heritability estimates provided here strongly assert that the majority of 

inter-individual variation in BP can be attributed to polymorphisms since the directly 

genotyped SNPs used had 1% or greater allele frequency. Genome-wide association 

studies, to date, have identified ~50 BP loci with a combined effect of ~2% of the 

phenotypic variance
2-14

. It is well known that current GWAS are underpowered and that 

many BP loci remain undetected after stringent control for statistical significance. Our 

results suggest that the vast majority of these causal factors are indeed common 

(polymorphic) and remain undetected: there may indeed be up to 1000 or more BP loci 

leading to inter-individual phenotypic variation.  The typical SBP/DBP allelic effect is 

~0.05σ (where σ
2
 is the phenotypic variance) so that the variance explained per SNP is 

2pq(0.05σ)
2
 or 0.0008 or 0.08% of the variance for detected alleles (average allele 

frequency ~20%). If this value were typical, then 300 such loci would explain 25% of the 

phenotypic variance; one would infer a larger number of genes since most loci would 

explain a smaller variance and there is likely a statistical distribution of allelic effects. 

 

 Our analyses also shed light on some of the properties of these putative causal BP 

alleles.  First, the additive chromosomal-level and the joint genome-level analyses 

provide near identical estimates suggesting that BP alleles are additive in genetic action 

(Figure 1,2), which is not surprising given their small effects since interaction effects will 

be notoriously difficult to identify at such effect sizes. The numbers of such factors are 

generally proportional to chromosome size although some individual chromosomes do 

harbor a surfeit of BP loci. The reasons for such spacial clustering are unknown and will 

be important to unravel. Second, the vast majority of these causal alleles reside in non-

coding DNA, within introns and inter-genic DNA (Figure 3,4). These common BP alleles 

are under-represented within coding regions and there is a tendency for rarer alleles to be 

within genes. Third, causal alleles are widely distributed throughout the allele frequency 

spectrum with a tendency of a deficiency of rarer allele contributors to SBP and a greater 

presence for DBP. Fourth, mapping of susceptibility loci, associated with one or more 
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metabolic and cardiovascular traits, explained over half of the proportion of BP variance 

tagged by common SNPs. Fifth, LTA measurement, expected to describe a more accurate 

estimate of an individual’s long-term BP value, captured additional variance as compared 

to single visit BP. These conclusions are quantitatively an underestimate of the additive 

genomic influence because it is limited to SNPs with a minor allele frequency beyond 1% 

and other SNPs reliably (R
2  

> 0.3) imputed from them; rarer variants and not well-

imputed SNPs are, therefore, excluded. Also, causal SNPs that were not highly correlated 

with the SNPs on the genotyping array or after imputation were also missed.  

 

 The above conclusions would need to be replicated in independent sets of 

individuals. Nevertheless, the main challenge in complex trait genetics remains the 

specific identification of the causal non-coding alleles and the genes they affect 

underlying SBP and DBP variability.  Although GWAS are increasing in sample size and 

identifying a greater number of loci it is unlikely that they can achieve saturation 

identification. Our analyses suggest that the vast majority of these alleles are common, 

distributed across the genome, non-coding and not associated with known cardiovascular 

or renal genes.  We propose that alternate methods be considered.  One such method 

might be the partitioning of the genome and its variation into three segments: coding, 

regulatory and unknown functions.  Searches for genetic variation, either by the analyses 

methods here or by direct GWAS, affecting phenotypes within these segments may lead 

to the identification of a larger number of causal factors. 

  

 In conclusion, we estimated additive genetic variation that is captured by 

genotyped and imputed SNPs for BP, and partitioned this variation according to 

chromosome, MAF, gene annotation. We provide compelling evidence that a substantial 

proportion of variance for blood pressure trait is explained by common SNPs, and 

thereby, give insights into the genetic architecture of BP trait. However, it is likely that 

variants other than the ones considered here and those with small effect need to be 

considered in addition to common SNPs.  
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2.5 Materials and Methods: 

In the present study, phenotype data were available for 15,792 participants from 

the ARIC (Atherosclerosis Risk in Communities) study. ARIC is a population-based, 

prospective epidemiologic study of cardiovascular disease in European ancestry (EA) and 

African ancestry (AA) volunteers aged 45-64 years at baseline (1987-89), conducted in 

four US communities
101

. This analysis is focused on both European ancestry (EA) and 

African ancestry (AA) study participants. Cohort members completed up to four clinic 

examinations between 1987 and 1998, that were conducted approximately three years 

apart. Clinical examinations for ARIC participants assessed cardiovascular risk factors 

and diet, undertook various clinical and laboratory measurements, and measured 

numerous social variables (education, income, etc.). Genome-wide SNP genotypes in 

9,747 self-identified EA and 3,207 self-identified AA subjects were obtained using the 

Affymetrix Gene Chip Human Mapping Array Set 6.0. The genotype data were used to 

exclude some samples from analyses for the following reasons: 1) discordance with 

previous genotype data (n=171 in EA; n=11 in AA), 2) mismatch between genotype- and 

phenotype-based gender (n=12 in EA), 3) previously unrecognized but suspected first or 

second degree relative of another participant (n=355 in EA), 4) genetic outlier as assessed 

by average Identity by State (IBS) statistics ( >8 standard deviations along any of first 10 

principal components in EIGENSTRAT with 5 iterations  using PLINK) (n=308 in EA; 

n=336 in AA). This led to an exclusion of 846 EA and 347 AA participants, resulting in a 

retained dataset of 8,901 and 2,860 unrelated EA and AA subjects, respectively. In 

parallel, to check if shared environmental effects and/or causal variants not captured 

could further bias our variance estimates, we also tested a more stringent cut-off, after 

estimation of the pairwise genetic relationship using all autosomal markers, by excluding 

one of each pair of individuals with an estimated genetic relatedness of >0.025 (kinship 

less than 2
nd

 cousins). This led to an exclusion of 2,833 unrelated EA and 1,123 unrelated 

AA subjects, respectively, resulting in a retained dataset of correspondingly 6,914 and 

1,763 genetically “unrelated” EA and AA participants 
90

.  

 

Blood pressures were measured by a random zero mercury sphygmomanometer 

following a standard protocol described elsewhere
102

. The phenotypes used for this 
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analysis were SBP, DBP and HTN at the first examination (visit). Subjects under 

antihypertensive treatments were adjusted for potential medication effects by adding 10 

and 5 mm Hg to observed SBP and DBP measurements, respectively. Hypertensive 

participants were defined as either having SBP ≥ 140 mm Hg or DBP ≥ 90 mmHg or 

using an antihypertensive drug at the time of examination. We fit regression models for 

SBP, DBP and HTN, separately, after adjusting for the following covariates: sex, age, age 

squared and body mass index (BMI). The blood pressure traits analyzed here were the 

residuals from this regression. 

 

To obtain the long-term averaged (LTA) BP traits, we averaged repeated BP 

measurements for study participants; individuals with four repeated BP measures at least 

1 year apart were included in our analyses. At each study visit, we fit a linear regression 

model by using covariate adjustment in a manner identical to what has been done in first 

visit to generate visit-specific BP residuals. These residual values were subsequently 

averaged over all available visits, and the final averaged residual was the LTA trait 

analyzed (formulated LTA SBP, LTA DBP).  

 

Quality control on genotypes has been described elsewhere
101

.  Nevertheless, after 

pruning 308 EA and 334 AA individual participants from the raw data as genetic outliers, 

we performed imputation in EA and AA subjects to the 1000 Genomes reference panel. 

Imputation in EA participants was performed using a hidden Markov model as 

implemented in the software packages MaCH (v1.0.16) and Minimac (v4.6)
 103

. Each 

chromosome was first phased to estimate haplotypes using MaCH and then the phased 

haplotypes were used, along with the 1000G Interim Phase I Haplotype reference panel, 

resulting in >37 million SNPs for imputation using Minimac. Imputation in AA 

participants was completed with IMPUTE version 2 (v2.1.2) and involved a two-step 

procedure for each chromosome: phasing to generate haplotype followed by imputation 

using similar reference panels.  Measured SNPs used for imputation were restricted to 

those with the following features: MAF >0.5%, missing data per SNP < 5%, and Hardy-

Weinberg equilibrium (HWE) P >10
-5

. Of the 839,048 genotyped markers, 656,362 and 

772,638 genotyped autosomal SNPs in EA and AA, respectively, passed the initial 
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quality filters and were used for imputation. In this study, sex chromosomes were 

excluded from the analysis of blood pressure.  

 

Descriptive statistics and regression of the phenotype on age, age-squared, sex, 

BMI and PCs, were carried out using R version 2.6.0 (The R Foundation for Statistical 

Computing). The statistical method utilized here is detailed in Yang et al
37

. Briefly, a 

genetic relationship matrix (GRM) for each pair of individuals was calculated as the sum 

of the products of SNP coefficients between two individuals scaled by the SNP 

heterozygosity for all genotyped and imputed SNPs across the genome. Subsequently, the 

GRM was used in a linear mixed model to estimate the variance captured by all the 

autosomal SNPs via restricted maximum likelihood analysis. This was expressed as a 

linear function of the total amount of the additive effects due to SNPs associated with 

causal markers and residual effects: ! = !!!+ !!!

!

!!!
+ !!!where ! is an ! × 1 vector 

of systolic or diastolic blood pressure measurements with ! being the sample size, ! a 

vector for fixed effects such as sex, age, age squared and BMI, ! the genotype incidence 

matrix relating to individuals, !! a vector of random additive genetic effects partitioned 

on aggregate of all autosomal SNPs estimated from whole-genome markers (! = 1; 

! = !!!+ !!!
!

!!! + !! ). The proportion of variance explained by whole-genome 

markers is the narrow-sense heritability, i.e., ℎ! = !!!
!/!!!

!  where !!
!  is the total 

phenotypic variance. 

 

The variance estimate from the entire genome can also be partitioned into non-

overlapping subsets of SNPs defined by any specific criteria:  if p such classes are 

considered then !"# !! = ! !!!

!

!!!
+ !!!

!  where !!!is the GRM estimated from the 

whole-genome genotyped or imputed markers, !!
!  is the variance explained by all SNPs, 

and ! is a vector of random error effects. The specific partitions we considered were 

chromosomal number (! = 22; autosomes), minor allele frequency (MAF) class (! = 5; 

0-50% in 10% intervals), functional annotation based on location (! = 4; UTRs, coding, 

intronic, intergenic), and functional annotation based on gene expression related to 

known cardiovascular or renal associated-genes
104

and genes annotated by traits and 

Cardiovascular and Renal Genes related from EMBL-EBI
105, 106

. Finally, the variance 
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estimate from the entire genome was partitioned by blood pressure loci (using NHGRI 

GWAS catalog
107

 - http://www.genome.gov/gwastudies - and literature SNPs 

(3,5,6,7,8,10,11,12,13,14)) including markers with strong LD (LD ≥ 0.8) using SNAP
108

 

and by Cardio-Metabochip SNPs
98

respectively. 
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Legends to Figures: 

 

Figure 1: Estimates of the variance explained by SNPS by chromosome (h
2

c) for SBP 

(red) and DBP (blue) by joint analysis of 8,901 EA individuals. The trait analyzed is first-

visit SBP and DBP with analyses for genotyped SNPs only. 

 

Figure 2: Estimates of the variance explained by SNPS by chromosome (h
2

c) for SBP 

(red) and DBP (blue) by joint analysis of 2,860 AA individuals. The trait analyzed is 

first-visit SBP and DBP with analyses for genotyped SNPs only. 

 

Figure 3: Estimates of the variance explained of SBP (red) and DBP (blue) by functional 

annotation class (UTR, exon, intron, intergenic) by joint analysis using genotyped or all 

(genotyped and imputed) SNPs in 8,901 EA individuals.  

 

Figure 4: Estimates of the variance explained of SBP (red) and DBP (blue) by functional 

annotation class (UTR, exon, intron, intergenic) by joint analysis using genotyped or all 

(genotyped and imputed) SNPs in 2,860 AA individuals.  

 

Figure 5: Proportion of the genetic variance explained by SNPs for SBP and DBP for 

genotyped SNPs within known gene annotations (Cardio-Metabochip=Markers 

associated with metabolic traits; Cardio-Metabochip.CV=Markers associated with 

cardiovascular traits; Cardio/Renal Genes= Cardiovascular and Renal SNPs; Non-

Annotated=Marker with no known association with cardiovascular or renal tissue). 
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Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y=-0.0029 + 6.5e-05, r=0.264 

y=-0.0033 + 8.1e-05, r=0.31 
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Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y=-0.0126 + 2.5e-04, r=0.56 

y=-0.005 + 1.4e-04, r=0.42 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Legends to Tables: 

 

Table 1: Summary statistics of ARIC European ancestry (EA) subjects used. 

 

Table 2: Summary statistics of ARIC African ancestry (AA) subjects used. 

 

Table 3: Proportion of the genetic variance explained by each chromosome and the 

whole genome using 8,901 EA individuals.  The trait analyzed is first-visit SBP and DBP 

with separate analyses for genotyped SNPs only and all genotyped and imputed SNPs. 

The heritability (h
2
), its standard error (SE) and significance value (P) are shown. 

 

Table 4: Proportion of the genetic variance explained by each chromosome and the 

whole genome using 2,860 AA individuals.  The trait analyzed is first-visit SBP and DBP 

with separate analyses for genotyped SNPs only and all genotyped and imputed SNPs. 

The heritability (h
2
), its standard error (SE) and significance value (P) are shown. 

 

Table 5:  Proportion of the genetic variance explained as a function of minor allele 

frequency (MAF) class of 8,901 EA individuals. The trait analyzed is first-visit SBP and 

DBP with separate analyses for genotyped SNPs only and all genotyped and imputed 

SNPs. The heritability (h
2
), its standard error (SE) and significance value (P) are shown. 

 

Table 6:  Proportion of the genetic variance explained as a function of minor allele 

frequency (MAF) class of 2,860 AA individuals. The trait analyzed is first-visit SBP and 

DBP with separate analyses for genotyped SNPs only and all genotyped and imputed 

SNPs. The heritability (h
2
), its standard error (SE) and significance value (P) are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 39 

ARIC European ancestry (EA) subjects 

 

ARIC European ancestry (EA) unrelated subjects  

             Trait N Mean SE Min Max 

 

Trait N Mean SE Min Max 

SBP 8901 121.29 19.44 61 221 

 

SBP 6914 120.81 19.12 61 207 

DBP 8901 73.54 11.52 12 139 

 

DBP 6914 73.50 11.40 12 128 

AGE 8901 54.27 5.70 44 66 

 

AGE 6914 54.20 5.71 44 66 

BMI 8901 26.97 4.83 14.38 56.26 

 

BMI 6914 26.84 4.70 14.91 53.87 

Trait Males Mean SE Min Max 

 

Trait Males Mean SE Min Max 

SBP 4197 122.99 18.28 61 203 

 

SBP 3275 122.89 18.14 61 201 

DBP 4197 75.59 11.37 12 130 

 

DBP 3275 75.64 11.26 12 123 

AGE 4197 54.67 5.70 44 66 

 

AGE 3275 54.64 5.69 44 66 

BMI 4197 27.46 3.96 17.21 56.26 

 

BMI 3275 27.45 3.95 17.21 53.87 

Trait Females Mean SE Min Max 

 

Trait Females Mean SE Min Max 

SBP 4704 119.76 20.30 72 221 

 

SBP 3639 118.93 19.77 72 207 

DBP 4704 71.71 11.34 27 139 

 

DBP 3639 71.57 11.18 27 128 

AGE 4704 53.90 5.67 44 66 

 

AGE 3639 53.81 5.70 44 66 

BMI 4704 26.54 5.46 14.38 55.20 

 

BMI 3639 26.29 5.23 14.91 51.36 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. 
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ARIC African ancestry (AA) subjects 

 

ARIC African ancestry (AA) unrelated subjects  

             Trait N Mean SE Min Max 

 

Trait N Mean SE Min Max 

SBP 2871 111.93 23.49 73 257 

 

SBP 1737 135.02 23.57 84 257 

DBP 2871 84.01 13.70 34 152 

 

DBP 1737 84.16 13.87 34 152 

AGE 2871 24.32 5.76 44 66 

 

AGE 1737 53.35 5.76 44 66 

BMI 2871 25.42 6.06 14.20 59.33 

 

BMI 1737 29.66 6.01 15.46 59.33 

Trait Males Mean SE Min Max 

 

Trait Males Mean SE Min Max 

SBP 1068 135.52 23.14 88 241 

 

SBP 676 135.28 22.87 88 235 

DBP 1068 86.29 14.19 51 149 

 

DBP 676 86.11 14.23 51 138 

AGE 1068 53.71 5.94 44 66 

 

AGE 676 53.68 5.97 44 66 

BMI 1068 28.01 4.84 15.46 54.40 

 

BMI 676 28.21 4.85 15.46 51.16 

Trait Females Mean SE Min Max 

 

Trait Females Mean SE Min Max 

SBP 1803 134.24 23.69 73 257 

 

SBP 1061 134.86 24.01 84 257 

DBP 1803 82.64 13.35 34 152 

 

DBP 1061 82.92 13.51 34 152 

AGE 1803 53.19 5.64 44 65 

 

AGE 1061 53.15 5.61 44 65 

BMI 1803 30.69 6.47 14.20 59.33 

 

BMI 1061 30.59 6.48 16.24 59.33 

 

Table 2. 
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EA cases (N=8,901) SBP   DBP 

SNPs Genotyped  

 

Genotyped + imputed 

 

Genotyped    Genotyped + imputed 

Chr L (Mb) h
2
 SE P   h

2
 SE P   h

2
 SE P 

 

h
2
 SE P 

1  249.25  0.0108 0.0110  

 

0.0111 0.0117  

 

0.0159 0.0110  

 

0.0080 0.0116  

2  243.20  0.0272 0.0113  

 

0.0289 0.0123  

 

0.0265 0.0113  

 

0.0290 0.0124  

3  198.02  0.0097 0.0100  

 

0.0087 0.0102  

 

0.0226 0.0103  

 

0.0200 0.0104  

4  191.15  0.0256 0.0105  

 

0.0254 0.0113  

 

0.0269 0.0105  

 

0.0240 0.0112  

5  180.92  0.0150 0.0098  

 

0.0128 0.0101  

 

0.0121 0.0096  

 

0.0121 0.0100  

6  171.12  0.0026 0.0092  

 

0.0000 0.0090  

 

0.0197 0.0099  

 

0.0184 0.0095  

7  159.14  0.0030 0.0088  

 

0.0000 0.0095  

 

0.0198 0.0098  

 

0.0238 0.0108  

8  146.36  0.0101 0.0084  

 

0.0111 0.0089  

 

0.0123 0.0088  

 

0.0088 0.0089  

9  141.21  0.0110 0.0086  

 

0.0094 0.0092  

 

0.0008 0.0081  

 

0.0031 0.0090  

10  135.53  0.0137 0.0094  

 

0.0116 0.0099  

 

0.0150 0.0093  

 

0.0136 0.0098  

11  135.01  0.0219 0.0088  

 

0.0201 0.0091  

 

0.0299 0.0094  

 

0.0305 0.0101  

12  133.85  0.0199 0.0092  

 

0.0231 0.0101  

 

0.0182 0.0090  

 

0.0226 0.0099  

13  115.17  0.0167 0.0082  

 

0.0135 0.0083  

 

0.0122 0.0080  

 

0.0094 0.0080  

14  107.35  0.0144 0.0078  

 

0.0173 0.0083  

 

0.0000 0.0069  

 

0.0000 0.0073  

15  102.53  0.0123 0.0078  

 

0.0093 0.0075  

 

0.0109 0.0075  

 

0.0105 0.0074  

16  90.35  0.0080 0.0076  

 

0.0052 0.0083  

 

0.0214 0.0083  

 

0.0268 0.0094  

17  81.20  0.0089 0.0069  

 

0.0091 0.0073  

 

0.0095 0.0071  

 

0.0082 0.0072  

18  78.08  0.0035 0.0071  

 

0.0035 0.0076  

 

0.0026 0.0069  

 

0.0025 0.0075  

19  59.13  0.0000 0.0053  

 

0.0000 0.0057  

 

0.0039 0.0055  

 

0.0059 0.0060  

20  63.03  0.0041 0.0065  

 

0.0045 0.0072  

 

0.0048 0.0068  

 

0.0124 0.0078  

21  48.13  0.0067 0.0054  

 

0.0074 0.0059  

 

0.0138 0.0060  

 

0.0139 0.0063  

22  51.30  0.0067 0.0054  

 

0.0021 0.0055  

 

0.0103 0.0056  

 

0.0124 0.0063  

Total  2,881.03  0.2516       0.2340       0.3093   

 

  0.3157   

 Combined   0.2547 0.0377 1.0x10
-13

   0.2299 0.0395 9.0x10
-11

   0.3080 0.036 2.0x10
-16

   0.304 0.038 2.0x10
-16

 

 

Table 3. 
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AA cases (N=2,860) SBP   DBP 

SNPs Genotyped  

 

Genotyped + imputed 

 

Genotyped    Genotyped + imputed 

Chr L (Mb) h
2
 SE P   h

2
 SE P   h

2
 SE P 

 

h
2
 SE P 

1  249.25  0.0344 0.0338  

 

0.0261 0.0381  

 

0.0120 0.0281  

 

0.0041 0.0358  

2  243.20  0.1122 0.0455  

 

0.1305 0.0514  

 

0.0407 0.0420  

 

0.0420 0.0488  

3  198.02  0.0001 0.0300  

 

0.0000 0.0391  

 

0.0364 0.0323  

 

0.0390 0.0380  

4  191.15  0.0220 0.0381  

 

0.0166 0.0419  

 

0.0000 0.0380  

 

0.0000 0.0448  

5  180.92  0.0591 0.0401  

 

0.0717 0.0453  

 

0.0627 0.0389  

 

0.0874 0.0450  

6  171.12  0.0000 0.0301  

 

0.0000 0.0370  

 

0.0000 0.0278  

 

0.0000 0.0365  

7  159.14  0.0090 0.0309  

 

0.0306 0.0377  

 

0.0046 0.0313  

 

0.0000 0.0359  

8  146.36  0.0189 0.0270  

 

0.0539 0.0384  

 

0.0007 0.0253  

 

0.0361 0.0376  

9  141.21  0.0069 0.0248  

 

0.0186 0.0343  

 

0.0000 0.0213  

 

0.0102 0.0330  

10  135.53  0.0254 0.0351  

 

0.0195 0.0375  

 

0.0198 0.0326  

 

0.0364 0.0379  

11  135.01  0.0516 0.0339  

 

0.0645 0.0342  

 

0.0359 0.0302  

 

0.0517 0.0334  

12  133.85  0.0255 0.0317  

 

0.0214 0.0314  

 

0.0068 0.0242  

 

0.0048 0.0266  

13  115.17  0.0209 0.0314  

 

0.0000 0.0317  

 

0.0541 0.0338  

 

0.0359 0.0344  

14  107.35  0.0000 0.0212  

 

0.0000 0.0282  

 

0.0000 0.0231  

 

0.0000 0.0291  

15  102.53  0.0203 0.0250  

 

0.0048 0.0238  

 

0.0063 0.0196  

 

0.0059 0.0263  

16  90.35  0.0000 0.0290  

 

0.0042 0.0316  

 

0.0000 0.0277  

 

0.0000 0.0303  

17  81.20  0.0065 0.0219  

 

0.0034 0.0256  

 

0.0005 0.0206  

 

0.0066 0.0242  

18  78.08  0.0000 0.0275  

 

0.0000 0.0300  

 

0.0000 0.0250  

 

0.0046 0.0303  

19  59.13  0.0254 0.0219  

 

0.0270 0.0210  

 

0.0020 0.0137  

 

0.0076 0.0178  

20  63.03  0.0120 0.0230  

 

0.0101 0.0257  

 

0.0095 0.0222  

 

0.0120 0.0257  

21  48.13  0.0001 0.0121  

 

0.0000 0.0159  

 

0.0000 0.0146  

 

0.0000 0.0195  

22  51.30  0.0000 0.0212  

 

0.0016 0.0211  

 

0.0008 0.0163  

 

0.0061 0.0202  

Total  2,881.03  0.4501       0.5045       0.293   

 

  0.391   

 Combined   0.4577 0.1168 1.1x10
-5

   0.4987 0.1259 7.9x10
-6

   0.2939 0.1071 7.0x10
-5

   0.3741 0.121 3.9x10
-5

 

 

Table 4. 
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EA cases (N=8,901) SBP   DBP 

SNPs Genotyped  

 

Genotyped + imputed 

 

Genotyped  

 

Genotyped + imputed 

MAF h
2
 (s.e) P   h

2
 (s.e) P   h

2
 (s.e) P   h

2
 (s.e) P 

0 - 0.1 0.000 0.028 

  

0.022 0.035 

  

0.062 0.029 

  

0.094 0.038 

 0.1 - 0.2 0.078 0.029 

  

0.065 0.027 

  

0.067 0.029 

  

0.069 0.028 

 0.2 - 0.3 0.032 0.028 

  

0.055 0.026 

  

0.073 0.029 

  

0.071 0.027 

 0.3 - 0.4 0.067 0.028 

  

0.032 0.025 

  

0.071 0.028 

  

0.051 0.025 

 0.4 - 0.5 0.058 0.024 

  

0.033 0.022 

  

0.033 0.024 

  

0.011 0.022 

 Total 0.2357       0.2077       0.3062       0.2955     

Combined 0.2547 0.0377 1.0x10
-13

   0.2295 0.0395 1.0x10
-10

   0.3079 0.0367 2.0x10
-15

   0.3039 0.0387 2.0x10
-16

 

Table 5. 
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AA cases (N=2,860) SBP   DBP 

SNPs Genotyped  

 

Genotyped + imputed 

 

Genotyped  

 

Genotyped + imputed 

MAF h
2
 (s.e) P   h

2
 (s.e) P   h

2
 (s.e) P   h

2
 (s.e) P 

0 - 0.1 0.0048 0.1045 

  

0.2422 0.1562 

  

0.0000 0.1061 

  

0.1040 0.1525 

 0.1 - 0.2 0.0000 0.1418 

  

0.0230 0.1112 

  

0.0971 0.1393 

  

0.0732 0.1102 

 0.2 - 0.3 0.2899 0.1315 

  

0.0742 0.0948 

  

0.1077 0.1310 

  

0.1010 0.0970 

 0.3 - 0.4 0.1142 0.1224 

  

0.0229 0.0842 

  

0.0200 0.1183 

  

0.0000 0.0835 

 0.4 - 0.5 0.0430 0.1075 

  

0.1159 0.0745 

  

0.0960 0.1099 

  

0.0631 0.0735 

 Total 0.4519       0.4781       0.3208       0.3414     

Combined 04577 0.1168 1.1x10
-5

   0.4987 0.1259 7.9x10
-6

   0.2939 0.1071 7.0x10
-5

   0.3741 0.121 3.9x10
-5

 

 

Table 6. 
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Legend to Supplementary Table: 

 

Table S1:  Proportion of the genetic variance explained by each chromosome and the 

whole genome using 6,914 EA unrelated individuals.  The trait analyzed is first-visit SBP 

and DBP with separate analyses for genotyped SNPs only and all genotyped and imputed 

SNPs. The heritability (h
2
), its standard error (SE) and significance value (P) are shown. 

 

Table S2:  Proportion of the genetic variance explained by each chromosome and the 

whole genome using 1,763 AA unrelated individuals.  The trait analyzed is first-visit SBP 

and DBP with separate analyses for genotyped SNPs only and all genotyped and imputed 

SNPs. The heritability (h
2
), its standard error (SE) and significance value (P) are shown. 

 

Table S3:  Proportion of the genetic variance explained by each chromosome using 8,874 

EA and 2,749 AA unrelated individuals respectively.  The trait analyzed is long-term 

average SBP and DBP for genotyped SNPs only. The heritability (h
2
), its standard error 

(SE) and significance value (P) are shown. 

 

Table S4:  Proportion of the genetic variance explained by each chromosome using 8,901 

EA and 2,860 AA unrelated individuals respectively.  The trait analyzed is first-visit SBP 

and DBP for Cardio-Metabochip genotyped SNPs only. The heritability (h
2
), its standard 

error (SE) and significance value (P) are shown 

 

Table S5:  Estimates of the SBP and DBP heritability from classical family and twin 

studies; the trait measured, relatives utilized, sample size, heritability estimate and 

citation to the study are provided. 
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Table S1. 

 

 

 

TRAIT (N=6,914) SBP   DBP 

SNPs Genotyped  

 

Genotyped + imputed 

 

Genotyped    Genotyped + imputed 

Chr L (Mb) h
2
 SE P   h

2
 SE P   h

2
 SE P 

 

h
2
 SE P 

1  249.25  0.0091 0.0139  

 

0.0113 0.0148  

 

0.0127 0.0137  

 

0.0061 0.0144  

2  243.20  0.0387 0.0148  

 

0.0397 0.0162  

 

0.0302 0.0146  

 

0.0331 0.0160  

3  198.02  0.0104 0.0128  

 

0.0043 0.0127  

 

0.0266 0.0133  

 

0.0259 0.0137  

4  191.15  0.0348 0.0136  

 

0.0317 0.0146  

 

0.0477 0.0141  

 

0.0419 0.0150  

5  180.92  0.0049 0.0119  

 

0.0071 0.0122  

 

0.0038 0.0118  

 

0.0054 0.0125  

6  171.12  0.0000 0.0117  

 

0.0000 0.0113  

 

0.0147 0.0122  

 

0.0204 0.0121  

7  159.14  0.0054 0.0116  

 

0.0098 0.0125  

 

0.0135 0.0122  

 

0.0169 0.0133  

8  146.36  0.0080 0.0103  

 

0.0169 0.0118  

 

0.0083 0.0105  

 

0.0105 0.0114  

9  141.21  0.0189 0.0113  

 

0.0131 0.0119  

 

0.0012 0.0103  

 

0.0000 0.0113  

10  135.53  0.0108 0.0118  

 

0.0085 0.0123  

 

0.0316 0.0126  

 

0.0247 0.0130  

11  135.01  0.0196 0.0111  

 

0.0145 0.0107  

 

0.0186 0.0115  

 

0.0169 0.0119  

12  133.85  0.0256 0.0120  

 

0.0261 0.0130  

 

0.0145 0.0112  

 

0.0222 0.0124  

13  115.17  0.0219 0.0105  

 

0.0153 0.0105  

 

0.0238 0.0106  

 

0.0207 0.0108  

14  107.35  0.0156 0.0098  

 

0.0163 0.0102  

 

0.0020 0.0090  

 

0.0000 0.0094  

15  102.53  0.0039 0.0093  

 

0.0005 0.0084  

 

0.0140 0.0095  

 

0.0132 0.0094  

16  90.35  0.0048 0.0094  

 

0.0000 0.0105  

 

0.0218 0.0103  

 

0.0261 0.0116  

17  81.20  0.0079 0.0087  

 

0.0080 0.0090  

 

0.0062 0.0086  

 

0.0042 0.0084  

18  78.08  0.0000 0.0091  

 

0.0000 0.0097  

 

0.0000 0.0090  

 

0.0000 0.0097  

19  59.13  0.0003 0.0066  

 

0.0000 0.0073  

 

0.0040 0.0070  

 

0.0025 0.0075  

20  63.03  0.0012 0.0081  

 

0.0016 0.0087  

 

0.0022 0.0081  

 

0.0059 0.0089  

21  48.13  0.0052 0.0068  

 

0.0085 0.0075  

 

0.0108 0.0072  

 

0.0136 0.0078  

22  51.30  0.0074 0.0070  

 

0.0053 0.0074  

 

0.0143 0.0074  

 

0.0209 0.0085  

Total  2,881.03  0.2542       0.2386       0.3226       0.3310     

Combined   0.2528 0.0487 2.0x10
-8

   0.2319 0.0511 7.0x10
-7

   0.3158 0.0470 2.0x10
-15

   0.3198 0.0498 3.0x10
-14
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Table S2. 

 

 

 

TRAIT (N=1,737) SBP   DBP 

SNPs Genotyped  

 

Genotyped + imputed 

 

Genotyped    Genotyped + imputed 

Chr L (Mb) h
2
 SE P   h

2
 SE P   h

2
 SE P 

 

h
2
 SE P 

1  249.25  0.0000 0.0557  

 

0.0000 0.0731  

 

0.0000 0.0513  

 

0.0029 0.0648  

2  243.20  0.0282 0.0698  

 

0.1053 0.0870  

 

0.0000 0.0692  

 

0.0275 0.0843  

3  198.02  0.0000 0.0570  

 

0.0000 0.0700  

 

0.0535 0.0543  

 

0.0681 0.0640  

4  191.15  0.0000 0.0638  

 

0.0000 0.0734  

 

0.0000 0.0586  

 

0.0000 0.0683  

5  180.92  0.0220 0.0570  

 

0.0000 0.0658  

 

0.0213 0.0480  

 

0.0175 0.0623  

6  171.12  0.0000 0.0587  

 

0.0000 0.0673  

 

0.0039 0.0429  

 

0.0000 0.0552  

7  159.14  0.0151 0.0567  

 

0.0000 0.0633  

 

0.0239 0.0563  

 

0.0000 0.0631  

8  146.36  0.0519 0.0527  

 

0.0801 0.0637  

 

0.0123 0.0512  

 

0.0498 0.0609  

9  141.21  0.0015 0.0353  

 

0.0143 0.0533  

 

0.0025 0.0333  

 

0.0188 0.0519  

10  135.53  0.0000 0.0578  

 

0.0000 0.0625  

 

0.0000 0.0382  

 

0.0031 0.0505  

11  135.01  0.0248 0.0530  

 

0.0603 0.0516  

 

0.0322 0.0476  

 

0.0371 0.0496  

12  133.85  0.0635 0.0510  

 

0.0277 0.0474  

 

0.0197 0.0417  

 

0.0153 0.0467  

13  115.17  0.0342 0.0485  

 

0.0139 0.0522  

 

0.0638 0.0534  

 

0.0137 0.0535  

14  107.35  0.0661 0.0491  

 

0.0229 0.0444  

 

0.0141 0.0342  

 

0.0036 0.0419  

15  102.53  0.0314 0.0396  

 

0.0188 0.0412  

 

0.0186 0.0332  

 

0.0197 0.0419  

16  90.35  0.0000 0.0305  

 

0.0000 0.0400  

 

0.0000 0.0279  

 

0.0000 0.0414  

17  81.20  0.0082 0.0377  

 

0.0000 0.0396  

 

0.0248 0.0409  

 

0.0000 0.0412  

18  78.08  0.0000 0.0407  

 

0.0000 0.0466  

 

0.0000 0.0359  

 

0.0157 0.0464  

19  59.13  0.0162 0.0332  

 

0.0029 0.0282  

 

0.0292 0.0339  

 

0.0535 0.0351  

20  63.03  0.0120 0.0396  

 

0.0027 0.0458  

 

0.0008 0.0390  

 

0.0082 0.0475  

21  48.13  0.0064 0.0245  

 

0.0069 0.0321  

 

0.0194 0.0291  

 

0.0026 0.0260  

22  51.30  0.0570 0.0406  

 

0.0124 0.0360  

 

0.0396 0.0376  

 

0.0127 0.0338  

Total  2,881.03  0.4386       0.3679       0.3796       0.3698     

Combined   0.4246 0.2051 2.0x10
-3

   0.4095 0.2361 4.0x10
-3

   0.3861 0.1885 3.0x10
-3

   0.3785 0.2152 1.0x10
-3
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Table S3. 

 

 

 

 

TRAIT SBP - LTA   DBP - LTA 

SNPs EA cases (N=8,874) 
 

AA cases (N=2,749) 
 

EA cases (N=8,874)   AA cases (N=2,749) 

Chr L (Mb) h
2
 SE P   h

2
 SE P   h

2
 SE P 

 

h
2
 SE P 

1  249.25  0.0013 0.0111  

 

0.0459 0.0402  

 

0.0102 0.0114  

 

0.0469 0.0421   

2  243.20  0.0242 0.0118  

 

0.0698 0.0448  

 

0.0107 0.0115  

 

0.0188 0.0384   

3  198.02  0.0157 0.0103  

 

0.0000 0.0302  

 

0.0268 0.0108  

 

0.0814 0.0388   

4  191.15  0.0390 0.0115  

 

0.0471 0.0417  

 

0.0230 0.0108  

 

0.0011 0.0352   

5  180.92  0.0126 0.0102  

 

0.0690 0.0426  

 

0.0238 0.0105  

 

0.0457 0.0369   

6  171.12  0.0000 0.0094  

 

0.0000 0.0313  

 

0.0024 0.0094  

 

0.0019 0.0263   

7  159.14  0.0077 0.0097  

 

0.0202 0.0354  

 

0.0160 0.0101  

 

0.0195 0.0345   

8  146.36  0.0168 0.0092  

 

0.0267 0.0294  

 

0.0118 0.0089  

 

0.0151 0.0311   

9  141.21  0.0197 0.0094  

 

0.0286 0.0302  

 

0.0057 0.0087  

 

0.0224 0.0267   

10  135.53  0.0247 0.0103  

 

0.0152 0.0332  

 

0.0003 0.0088  

 

0.0226 0.0328   

11  135.01  0.0177 0.0089  

 

0.0642 0.0366  

 

0.0176 0.0092  

 

0.0033 0.0243   

12  133.85  0.0215 0.0098  

 

0.0129 0.0287  

 

0.0250 0.0099  

 

0.0320 0.0322   

13  115.17  0.0060 0.0079  

 

0.0343 0.0339  

 

0.0032 0.0078  

 

0.0792 0.0357   

14  107.35  0.0200 0.0084  

 

0.0000 0.0186  

 

0.0070 0.0079  

 

0.0000 0.0216   

15  102.53  0.0021 0.0075  

 

0.0162 0.0270  

 

0.0120 0.0079  

 

0.0000 0.0258   

16  90.35  0.0081 0.0078  

 

0.0460 0.0331  

 

0.0176 0.0085  

 

0.0000 0.0268   

17  81.20  0.0193 0.0080  

 

0.0094 0.0220  

 

0.0111 0.0077  

 

0.0008 0.0183   

18  78.08  0.0044 0.0075  

 

0.0035 0.0287  

 

0.0008 0.0070  

 

0.0110 0.0283   

19  59.13  0.0000 0.0053  

 

0.0296 0.0225  

 

0.0111 0.0065  

 

0.0219 0.0204   

20  63.03  0.0042 0.0068  

 

0.0104 0.0232  

 

0.0056 0.0072  

 

0.0000 0.0208   

21  48.13  0.0057 0.0057  

 

0.0051 0.0146  

 

0.0105 0.0060  

 

0.0045 0.0162   

22  51.30  0.0054 0.0055  

 

0.0011 0.0190  

 

0.0112 0.0060  

 

0.0189 0.0232   

Total  2,881.03  0.2761       0.5524       0.2631       0.4469     

Combined   0.2760 0.04 2.0x10
-13

   0.509 0.12 1.58x10
-6

   0.2578 0.04 1.00x10
-11

   0.4568 0.11 3.53x10
-7
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Table S4. 

 

 

TRAIT (N=1,737) SBP -  Metabochip   DBP -  Metabochip 

SNPs EA cases (N=8,901)  
 

AA cases (N=2,860) 
 

EA cases (N=8,901)   AA cases (N=2,860) 

Chr L (Mb) h
2
 SE P   h

2
 SE P   h

2
 SE P 

 

h
2
 SE P 

1  249.25  0.0139 0.0063  

 

0.0000 0.0158  

 

0.0173 0.0064  

 

0.0000 0.0152   

2  243.20  0.0139 0.0060  

 

0.0370 0.0195  

 

0.0125 0.0058  

 

0.0260 0.0176   

3  198.02  0.0149 0.0058  

 

0.0070 0.0156  

 

0.0215 0.0064  

 

0.0054 0.0136   

4  191.15  0.0182 0.0060  

 

0.0000 0.0157  

 

0.0145 0.0058  

 

0.0026 0.0156   

5  180.92  0.0052 0.0044  

 

0.0149 0.0162  

 

0.0051 0.0046  

 

0.0307 0.0171   

6  171.12  0.0032 0.0039  

 

0.0000 0.0161  

 

0.0023 0.0038  

 

0.0000 0.0144   

7  159.14  0.0078 0.0044  

 

0.0000 0.0143  

 

0.0072 0.0046  

 

0.0000 0.0139   

8  146.36  0.0027 0.0038  

 

0.0000 0.0113  

 

0.0027 0.0039  

 

0.0000 0.0104   

9  141.21  0.0039 0.0045  

 

0.0000 0.0129  

 

0.0028 0.0044  

 

0.0000 0.0126   

10  135.53  0.0097 0.0047  

 

0.0034 0.0112  

 

0.0097 0.0049  

 

0.0000 0.0146   

11  135.01  0.0103 0.0045  

 

0.0000 0.0133  

 

0.0080 0.0046  

 

0.0006 0.0110   

12  133.85  0.0129 0.0052  

 

0.0234 0.0142  

 

0.0113 0.0049  

 

0.0149 0.0128   

13  115.17  0.0095 0.0043  

 

0.0171 0.0133  

 

0.0021 0.0037  

 

0.0082 0.0120   

14  107.35  0.0093 0.0042  

 

0.0054 0.0124  

 

0.0029 0.0037  

 

0.0000 0.0120   

15  102.53  0.0148 0.0050  

 

0.0064 0.0103  

 

0.0102 0.0045  

 

0.0000 0.0094   

16  90.35  0.0026 0.0038  

 

0.0046 0.0123  

 

0.0110 0.0045  

 

0.0059 0.0115   

17  81.20  0.0032 0.0033  

 

0.0023 0.0103  

 

0.0018 0.0029  

 

0.0003 0.0088   

18  78.08  0.0039 0.0037  

 

0.0169 0.0118  

 

0.0016 0.0033  

 

0.0261 0.0123   

19  59.13  0.0004 0.0025  

 

0.0012 0.0084  

 

0.0021 0.0026  

 

0.0000 0.0085   

20  63.03  0.0089 0.0039  

 

0.0005 0.0100  

 

0.0055 0.0035  

 

0.0016 0.0095   

21  48.13  0.0043 0.0029  

 

0.0000 0.0089  

 

0.0074 0.0033  

 

0.0011 0.0086   

22  51.30  0.0035 0.0028  

 

0.0000 0.0078  

 

0.0035 0.0028  

 

0.0000 0.0078   

Total  2,881.03  0.1772       0.1401       0.1630       0.1201     

Combined   0.1772 0.04 2.0x10
-12

   0.1401 0.058 1.68x10
-6

   0.1630 0.04 1.40x10
-9

   0.1201 0.059 9.58x10
-7
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Abbreviations: 

 

BP Blood Pressure 

ARIC Atherosclerosis Risk in Communities 

SNP Single Nucleotide Polymorphisms 

EA European Ancestry 

AA African Ancestry 

SBP Systolic Blood Pressure 

DBP Diastolic Blood Pressure 

GWAS Genome-Wide Association Studies 

HTN Hypertension 

CVD Cardiovascular Disease 

MAF Minor Allele Frequency 

BMI Body-Mass Index 

HWE Hardy-Weinberg Equilibrium 

GRM Genetic Relationship Matrix 

CK Known Cardiovascular/Renal Genes 

MLM Mixed Linear Model 

REML Restricted Maximum Likelihood 

LTA 

 

Long-Term Average 
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CHAPTER 3: CLINICAL AND GENETIC RISK ASSESSMENT OF 

CARDIOVASCULAR DISEASE 

 

Preface to the Manuscript 

 

This manuscript presents the second part of a study investigating the genetic basis of 

cardiovascular disease by examining a clinical and genetic risk assessment of the most 

common cardiovascular disease. 

 

This second study is a methodological paper that explores whether genetic risk 

score with an independent clinical risk score improves both discrimination and 

calibration for coronary heart disease. The first manuscript showed that a strong genetic 

basis is captured by common variants to explain blood pressure variability. Given these 

findings and the fact that a vast majority of enriched markers tagged most of the blood 

pressure genetic variance, we felt that it was important to answer this question next 

because such combination could and illustrate a means to present genetic risk information 

to subjects and/or their health care provider.   

  

We illustrate this approach in the context of coronary heart disease using a genetic 

risk score constructed from the most promising association signals reported to date for 

this disease. We demonstrate how one might interpret a genetic risk score and easily 

incorporate it into a clinical risk assessment.  

 

 We selected genotyped and imputed markers from the most recent and largest 

multi–stage meta-analysis of GWAS for coronary artery disease conducted by the 

CARDIoGRAMplusC4D consortium to construct the weighted genetic risk score in 

White/European subjects from ARIC population. Then we calculated two clinical risk 

scores to assess clinical risk at 10 years. The first was the well-known "external" 
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Framingham Risk Score for 10-year risk of coronary heart disease. The second score was 

developed "internally" within the ARIC and tested and incorporated the same FRS risk 

factor variables using cross-validation. Subjects with one or more missing FRS risk 

factors were excluded from the analysis. 

 

 In this context, the general objective of this second study provides a means to 

communicate the effect on risk of genetic data when combined with clinical data. 

 

The specific objective of this second study is: 

 

1. To aggregate a collection of genetic alleles associated with coronary artery 

disease into a single number, which can then be used for genetic risk assessment. 

 

2. To present a simple method to combine a clinical and genetic assessment. 

 

3. To evaluate the performance of clinical and genetic risk scores under different 

constructions based on metrics of effect change, discrimination, and calibration. 

 

4. To illustrate one means to provide a risk report about an individual’s clinical and 

genetic risk of disease. 
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3.1 Abstract 

Purpose: Genetic risk assessment is becoming an important component of clinical 

decision-making. Genetic Risk Scores (GRSs) allow the composite assessment of genetic 

risk in complex traits.  A technically and clinically pertinent question is how to most 

easily and effectively combine a GRS with an assessment of clinical risk derived from 

established non-genetic risk factors as well as to clearly present this information to 

patient and health care providers.    

 

Materials &Methods: We illustrate a means to combine a GRS with an independent 

assessment of clinical risk using a log-link function. We apply the method to the 

prediction of coronary heart disease (CHD) in the Atherosclerosis Risk in Communities 

(ARIC) cohort. We evaluate different constructions based on metrics of effect change, 

discrimination, and calibration. 

 

Results: The addition of a GRS to a clinical risk score (CRS) improves both 

discrimination and calibration for CHD in ARIC. Results are similar regardless of 

whether external vs. internal coefficients are used for the CRS, risk factor single 

nucleotide polymorphisms (SNPs) are included in the GRS, or subjects with diabetes at 

baseline are excluded. We outline how to report the construction and the performance of 

a GRS using our method and illustrate a means to present genetic risk information to 

subjects and/or their health care provider.   

 

Conclusion: The proposed method facilitates the standardized incorporation of a GRS in 

risk assessment. 

 

Keywords: genetic risk scores; personalized medicine; coronary heart disease; electronic 

health records 
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3.2  Introduction   

As genotyping technologies become more common, the interpretation of genetic risk is 

becoming a bigger component of clinical decision-making. A particular challenge is the 

interpretation of such genetic information in the context of other clinical health 

information. Recently, the electronic MEdical Records and GEnomics (eMERGE) 

network outlined challenges and opportunities for integrating genetic data into an 

electronic health records
109

 system. One issue identified was the automated interpretation 

of genetic data
110-113

. The sheer size of genomic data provides many interpretative 

challenges, particularly in the age of whole genome sequencing with billions of variant 

base pairs, many of which are de novo.  

 

 Genetic Risk Scores (GRSs) are one tool for automating the rendition of one's 

genetic risk. They provide a means to aggregate the health related risk of a collection of 

genetic alleles into a single number, which can then be used for risk assessment. Using 

results from genome-wide association studies, one typically combines the observed (or 

meta-analyzed) log odds-ratio of the risk associated single nucleotide polymorphisms 

(SNPs). Such scores have been formulated for a variety of complex traits including 

coronary heart disease (CHD), diabetes, multiple sclerosis and schizophrenia
109, 114, 115

. 

Overall, GRSs have been shown to modestly improve risk assessment using both 

traditional and more recently developed model performance metrics
116, 117

. 

 

 We anticipate individuals will increasingly approach their physicians with 

questions regarding their genetic risk of common diseases as high density genetic 

profiling becomes progressively more routinely available. In this paper, we consider the 

emerging scenario where a hospital system decides to incorporate genetic data into their 

EHR for the purposes of clinical risk assessment. One obstacle hampering the effective 

incorporation of GRSs into clinical practice is the lack of clarity in how to most readily 

combine a GRS with a clinical risk assessment. Here, we describe a relatively 

straightforward method to combine genetic information at established susceptibility loci 

with a non-genetic risk prediction tool. We illustrate this approach in the context of CHD 

using a GRS constructed from the most promising association signals reported to date for 
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this disease.  We emphasize that the goal of this study is neither to validate the utility of a 

GRS in risk prediction nor to assess the best way to construct a GRS but rather to 

demonstrate how one might interpret a GRS and easily incorporate it into a clinical risk 

assessment. A GRS can be constructed in a variety of ways
118

.  One may select SNPs and 

define their respective high-risk allele either through the investigation of SNP effects 

within the cohort itself or within external studies that are typically much larger but not 

necessarily prospective in nature. One may also weigh the high-risk allele by its effect 

size observed internally or externally. In this study, we used the weighted approach 

deriving both the SNPs and weights from external sources. Lastly, we illustrate one way 

to present risk prediction analyses incorporating GRSs to patients and health care 

providers.  

3.3 Methods 

3.3.1 SNP Selection & Weighting 

We selected SNPs from the most recent and largest multi–stage meta-analysis of GWAS 

for coronary artery disease conducted by the CARDIoGRAMplusC4D consortium to 

construct the GRS
119

. The study included 63,746 cases and 130,681 controls. The vast 

majority of the subjects included in this meta-analysis reported white/European ancestry. 

The meta-analysis added 15 new CHD susceptibility loci and confirmed nearly all loci 

that had previously reached genome-wide significance. The investigators also identified 

secondary signals at four established loci.  Supplementary table 9 of the 

CARDIoGRAMplusC4D manuscript lists all uncorrelated SNPs (r2<0.2) with an 

estimated FDR <5%
119

. From this list, we selected the 50 SNPs identified by the 

consortium as validated SNPs because they had reached a genome-wide level of 

statistical significance in either the CARDIOGRAMplusC4D meta-analysis or in any 

previous GWAS. 

 

 We expect a subset of SNPs to be influencing the risk of CHD through traditional 

risk factors as the CARDIOGRAMplusC4D meta-analysis adjusted only for age and sex. 

Indeed, the CARDIoGRAMplusC4D investigators determined that 12 and 5 of these 50 

SNPs likely influence CHD risk through effects on lipids and blood pressure based on 
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their strong association with these traits in the Global Lipids Genetics Consortium and 

the International Consortium of Blood Pressure meta-analyses of GWAS, respectively
119

. 

For the purposes of this study, we classified these 17 SNPs as "risk factor SNPs". The 

remaining 33 SNPs were classified as "non-risk factor SNPs".  

3.3.2 Prospective Cohort for testing Genetic Risk Scores 

We selected the AtherosclerosisRisk in Communities Study (ARIC) study to develop and 

test a GRS constructed with the 50 SNPs of interest. The ARIC Study is an ongoing 

prospective investigation of atherosclerosis and its clinical sequelae involving 15,792 

white and black persons aged 45–64 years at recruitment (1987–1989
120

). Detailed 

descriptions of the study designs, IRB consent process, sampling procedures, methods, 

definitions of cardiovascular outcomes, and approach to statistical analyses is published 

elsewhere
121, 122

. 

 

 We selected ARIC for several reasons including the availability of individual 

level genome-wide data for all participants through the National Institutes of Health 

(National Human Genome Research Institute) controlled access database of Genotypes 

and Phenotypes (dbGaP), a prolonged follow up with > 1000 incident cases, and no 

overlap of incident cases with prevalent cases that were included in the 

CARDIoGRAMplusC4D consortium study
119

. The Affymetrix 6.0 array was used to 

genotype all participants of the ARIC study.  

 

 All white/Europeans without a history of CHD, myocardial infarction, or heart 

failure at baseline among the ARIC cohort subjects in dbGAP were eligible for study 

inclusion. Incident CHD was defined by the recording for the first time of either non-fatal 

or fatal myocardial infarction (“mi04”, “fatchd04”), CHD related revascularization 

procedure (“in_by04p”), or silent MI detected by ECG (“in_04s”). 

 

 The outcome of interest was incident CHD within 10 years. Those without a 

positive event who died or were lost to follow up prior to their 10th year anniversary of 

follow up were removed from analysis. All others were deemed event free at 10-years 
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regardless of whether they developed incident CHD sometime after their 10 year 

anniversary of follow up. 

3.3.3 Clinical Risk Score Assessment 

We calculated two clinical risk scores (CRSs) to assess clinical risk at 10 years. The first 

was the well-known "external" Framingham Risk Score (FRS) for 10-year risk of CHD. 

The score is based on one's gender, age, total cholesterol, HDL cholesterol, blood 

pressure, and diabetes and smoking status. Ten-year risk of CHD was calculated using 

the published regression coefficients
123

. The second score was developed "internally" 

within the ARIC and tested and incorporated the same FRS risk factor variables using 

cross-validation (see below). Subjects with one or more missing FRS risk factors were 

excluded from the analysis. 

3.3.4 Imputation of ARIC raw genotype data to 1000 genomes  

We imputed individual level genotype data from ARIC to the latest build of the 1000 

genomes project (1kGP) used a hidden Markov model to minimize the need to use proxy 

SNPs in the construction of the GRS
124, 125

. We first phased each chromosome using 

MaCH (v1.0.16) by running 20 rounds of the Markov sampler and considering 200 

haplotypes (states) when updating each individual.  We then used phased haplotypes in 

each chromosome and the latest release of the 1kGPcosmopolitan panel (version 3 March 

2012 release, 246 AFR + 181 AMR + 286 ASN + 379 EUR) to impute all SNPs in the 

cosmopolitan panel using the OpenMP protocol based multi-threaded version of Minimac 

(v4.6) with 20 rounds and 300 states for each chromosome. Genotyped SNPs used for 

imputation were restricted to those with the following features: MAF >0.1%, missing 

data per SNP < 2%, and Hardy-Weinberg equilibrium (HWE) p >10
-6

. Of the 841,820 

autosomal genotyped markers, 543,653 passed the initial quality filters and were used for 

the imputation of over 37 million SNPs in ARIC. We used GTOOL (Genetics Software 

Suite, (c) 2007, The University of Oxford) to convert Minimac dosage files to best guess 

genotype calls. 
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3.3.5 GRS Construction 

We calculated the GRS for an individual in the typical approach as a weighted sum of the 

number of high-risk alleles [1]: 

 

 

 

 

where the inside summation, RAij, is the count of high risk alleles and the weight, wi, is 

the meta-analyzed log odds-ratio for SNP i. We used the corresponding "combined beta" 

(i.e. the beta across the stage 1 and 2 CARDIOGRAMplusC4D meta-analysis) to weigh 

the SNP when constructing the GRS. We carefully identified the high-risk allele for each 

SNP. We used the GTOOL genotype calls to count high-risk alleles for all SNPs in each 

individual after first dropping SNPs with a low imputation quality (r
2
< 0.3). 

 

 There are two primary assumptions in such a construction. Since this summation 

is over marginal effects, each effect is assumed to be independent. The second is that the 

effects are linearly additive, i.e. there are no interactions. For the first assumption, care 

was taken to select SNPs that are not in linkage disequilibrium (i.e. correlated) with one 

another in white/European descent participants (r
2
<0.2). While the second assumption is 

likely violated, it is also reasonable to assume that marginal effects capture a majority of 

genetic risk for CHD
126, 127

. When using the GRS we standardize it to have a mean of 0 

and standard deviation of 1. 

3.3.6 Combining Clinical and Genetic Risk 

We present a simple and easy way to combine one's CRS and GRS by using the 

following model [2]:  
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This is a standard generalized linear model, where the outcome is a binary (0 – 1) 

indicator for incident CHD within 10 years and the predictor variables are the CRS and 

GRS, respectively. The CRS represents either a calculated risk due to non-genetic clinical 

factors (as in FRS) or a summation over multiple clinical risk factors (when using internal 

coefficients).  We emphasize the use of a log link function instead of the more frequently 

used logistic link function (as in logistic regression).  This allows the two coefficients of 

interest (β1 and β2) to represent log relative risks (RR), making the following 

transformation more straightforward. However, we note that using the logistic link one 

could perform a similar transformation. After exponentiating equation [2] we obtain: 

 

 

In the second line, we have combined the intercept (α) with the effect due to clinical 

factors. This is generally well captured by a CRS (like FRS) that incorporates the 

prevalence of disease in the general population. Since we are multiplying the estimated 

effects for the GRS and CRS, the primary assumption is that the GRS is linearly 

independent of the CRS. This assumption would potentially be violated if the GRS 

consisted of SNPs that were thought to act entirely or largely through effects on non-

genetic clinical risk factors measured at baseline. However the impact is mitigated by 

controlling for the CRS while estimating the RR for the GRS in equation [2]. Therefore, 

to calculate a probability of CHD based on clinical and genetic factors, we must: 

(1) Estimate the RR for a one-unit change in GRS on the probability of CHD within 

10 years controlled for CRS. 

(2) For a given individual: 

a) Calculate the probability of CHD based on clinical factors via a FRS or 

Internal Score 

b) Calculate the GRS (based on equation 1) and standardize it using population 

mean and standard deviation (SD) 
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c) Multiply the probability from a) by the RR from [1] raised to the value of 

standardized GRS from b) (based on second line of equation 3)  

3.3.7 Evaluation of performance of risk scores  

We used 10-fold cross-validation to test both the CRS and GRS, dividing the cohort into 

a series of independent training and test sets. We created a series of updated risk scores: 

(1) CRS based solely on the FRS (no genetic information considered) 

(2) CRS based solely on the internal coefficients  (no genetic information considered) 

(3) CRS updated with a GRS constructed using all SNPs of interest that were either 

well genotyped or well imputed in ARIC. 

(4) CRS updated with a GRS constructed using only "non–risk factor" SNPs among 

the SNPs in (3) 

(5) CRS updated with a GRS constructed using only "risk factor" SNPs among the 

SNPs in (3) 

 

The overall relative risk for a standardized one-unit change in GRS was estimated while 

incorporating the CRS (either FRS or internal). Within each of the 10 folds, the training 

(9/10) and test (1/10), we created a standardized score based on the mean and standard 

deviation from the training set. The models were estimated on the training split and 

applied to the test split. We used three forms of assessment. First, we calculated the c-

statistic to assess discrimination of the various risk scores. Discrimination refers to a 

model’s ability to separate subjects into distinct groups, in this case, those with CHD 

from those without. Secondly, we calculated the RR for a one standard deviation change 

in GRS. Finally, we calculated the calibration slope to assess each models overall 

calibration
128

.The calibration of a model is the extent to which the predicted probability 

reflects the true underlying probability. The calibration slope is a more interpretable 

statistic than the more typical Hosmer-Lemeshow statistic, representing the degree of 

miscalibration
129

. A calibration slope of 1.0 indicates perfect calibration while values less 

than 1.0 suggest over-fitting and above 1.0 poorer calibration. For example a calibration 

slope of 2.0 indicates a 2-fold increase in miscalibration. We chose not to assess our 

models using the Net Reclassification Index (NRI) or the clinical NRI due to recent 
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concerns about the utility and validity of this metric combined with changing clinical 

guidelines for cardiovascular disease risk assessment
130-134

. 

 

 In a sensitivity analysis, we repeated the above comparisons but restricted the 

cohort to those without prevalent diabetes. We also considered a risk prediction model 

using only a GRS adjusted for age and gender and no other clinical risk factors to provide 

a perspective on the overall impact of clinical risk factors compared to the genetic risk 

score. Finally, we assessed the potential for population stratification by performing a 

principal components analysis (PCA) with 741 ancestry informative markers (AIMs) 

using EIGENTRAT
135

 followed by a regression of CHD status onto all significant 

components, adjusted for the clinical factors. 

 

All analyses were performed in R 3.0.1
136

. 

3.3.8 Risk Reports 

 Using the generated information, we illustrate one means to provide a risk report 

about an individual’s clinical and genetic risk of disease. Three key pieces of information 

are included: 

(1) The number of risk alleles 

(2) How the individual's GRS compares to the distribution of GRSs in a comparative 

population. 

(3) The change in one's overall risk after accounting for genetic risk 

 

The number of risk alleles represents a simple count of the number of alleles that have 

been associated with an increased risk of CHD. The GRS comparison to the general 

population is based on the individual's standardized GRS. Finally the updated risk is 

calculated from equation (3).  A fourth piece of information that can be included in the 

risk report is a statement of how the individual's change in overall risk after accounting 

for genetic risk influences clinical management.  This may be based on some well-

accepted guidelines whose recommendations can be easily and reliably automated.  
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3.4 Results 

3.4.1 ARIC cohort exclusions 

Of the 12,771 from the ARIC cohort with phenotypic and genotypic data, 9,633 (75%) 

were white/European (see Figure 1). Among the remaining subjects, 721 (7.5%) had a 

history of CHD or CHF at baseline and were excluded from further analysis. Lastly, we 

excluded 380 people who were lost to follow-up or died of non-CHD related factors 

within 10 years and 41 people with missing covariate information, comprising a final 

cohort of 8,491.Table 1 shows the baseline characteristics for the ARIC subcohort used in 

our analyses. The predicted 10-year risk of developing CHD based on the FRS in this 

subcohort is 7.4% (interquartile range 4.3% to 12.3%).  This predicted risk coincided 

very well with the observed proportion that developed CHD (7.3%). 

3.4.2 Risk Scores 

The 50 SNPs of interest for construction of the GRS are listed in supplemental Table 1 

along with their relationship to risk factors, weights, high risk allele based on the 1000G 

reference + strand, imputation quality metrics, and genotype quality control metrics.  Of 

the 50 SNPs, five had an estimated imputation accuracy r
2 
< 0.3.  These five SNPs, which 

included two SNPs in the APOE locus, were dropped from the GRS.  The average r
2
 of 

the remaining 45 SNPs was 0.857 (range: 0.361 to 0.999).  The unstandardized mean 

value of the GRS was 3.17 (SD: 0.347) for all SNPs, 1.95 (0.307) for non-risk factor 

SNPs alone, and 1.22 (0.160) for risk factor SNPs alone.  Interestingly, there was no 

difference in the unstandardized scores and standard deviations derived from the entire 

cohort compared to the scores derived from the subset of subjects without diabetes at 

baseline when considering up to three significant figures.  After standardization, the mean 

and SD of all GRS was 0 and 1 as expected. 

3.4.3 Performance of risk scores and sensitivity analyses 

Table 2 summarizes the c-statistics for the 8 risk scores (as well as the age and sex only 

scores) and the associated RR for a 1-unit change in the risk score. Adding a GRS 

improves overall risk discrimination. As expected, the risk score using internal weights 

demonstrates the best discrimination and calibration. The calibration slope statistics 
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improved (i.e. they become smaller) with the addition of the GRS.A GRS restricted to 

SNPs that were not related to traditional risk factors performed essentially equally well to 

a GRS constructed from all SNPs combined, adding about 1 point to the c-statistic. This 

result suggests that the addition of CHD SNPs that are associated with CHD as well as 

risk factors will neither aid nor hurt risk assessment. Finally, creating a risk score only 

with age and sex performed worse than the risk scores with additional clinical factors. 

However, the improvement in both discrimination and calibration after adding the GRS is 

comparable to the scores with the full clinical factors. 

 

 Table 3 summarizes the same risk score comparisons presented in Table 2 after 

removing 626 ARIC participants (7.4%) who reported having diabetes at baseline.  We 

found the general trend of results to be similar to the full cohort despite a smaller sample 

size.  There was a modest improvement in discrimination by about 1 point in the c-

statistic as well as improvement in calibration. 

 PCA revealed eight significant principal components. Only component 3 had a 

nominal associationwith CHD (p = 0.023, not corrected for number of components 

tested) suggesting that the addition of PCs into our model for this sample of self reported 

white/Europeanswould not materially influence our results (Supplemental Table 2). 

3.4.4 Risk Reports 

In figure 2, we illustrate a sample report for an individual to show how the addition of a 

GRS to the model can change the risk assessment that may be used for clinical decision-

making. The goal of this report would be to facilitate a conversation around the risk of 

CHD due to genetics above beyond the known clinical risk factors.  At baseline, the 

participant's estimated risk of CHD at 10 years is 5.5% based on traditional Framingham 

risk factors. The participant carries 49 of 90 potential risk alleles resulting in a weighted 

standardized GRS of 1.26 which places the individual in the 89th percentile of genetic 

risk (i.e. only 11% of the population has a higher risk based on alleles inherited at these 

45 SNPs). Combining the participant's genetic risk with their clinical risk results in a final 

predicted risk of CHD of 7.6% given each SD increase in one's GRS leads to a 38% 

increase in risk of CHD (Table 2).   This magnitude of increased risk may affect the 
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decision to treat this patient with statins
137

. Ultimately, this person did develop CHD 

suggesting that the upward adjustment of risk was appropriate. 

3.5  Discussion 

Genetic risk assessment will become an increasingly important component of overall 

clinical risk assessment. In this context, we ask the question: how can one most easily 

and effectively incorporate a GRS into an existing clinical risk assessment of a complex 

trait without compromising effectiveness?  We present a straightforward means to 

combine genetic risk with clinical risk for a given disease where large-scale cohorts with 

prolonged follow up exist and can be used to evaluate novel biomarkers.  Our approach 

requires knowing only three pieces of information: 1) an individual's GRS, 2) an 

individual's CRS, and 3) the RR associated with a 1-unit change in standardized GRS 

within the cohort.  Recent studies demonstrate an increasing clinical utility of GRSs for 

CHD
115, 138-142

. Using our method, we were able to confirm this trend and demonstrate 

comparable or slightly improved discrimination even when comparing our results to the 

subset of studies that used a GRS constructed with a similar set of SNPs
115, 138, 139, 141-143

. 

We should stress that evidence in the form of a well-executed clinical trial that clearly 

demonstrates the value of a GRS in improving CHD outcomes does not yet exist
144

. Thus, 

we are not endorsing or negating the use of any specific GRS in the primary prevention 

of CHD on the basis of our results. Ongoing trials are examining the ability of 

information from GRS to improve outcomes
145, 146

. 

 

 Our approach makes the simplifying assumption that the GRS is largely 

independent of the CRS.  This assumption appears reasonable when one reliably restricts 

SNPs included in the GRS to those influencing risk independent of variables included in 

the CRS. We tested this assumption by creating two subset GRSs, one restricted to SNPs 

associated with risk factors and one restricted to SNPs that appear to influence risk of 

CHD independent of all established risk factors. The non-risk factor GRS performed 

noticeably better than the risk factor GRS confirming the consequence of grossly 

violating this assumption. However, we detected no notable difference between the non–

risk factor GRS compared to the full GRS.  Thus, our approach appears robust to small 
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violations of this assumption. This confirms others’ and our experiences with GRSs that 

they are fairly robust to alternative constructions
114, 147

. 

 

 An important consideration is the construction of the CRS.  We suspect that the 

ability to derive and make use of such internal coefficients will be facilitated by the 

increasing availability of EHR with prolonged follow up of individuals receiving care as 

members of a large-scale health maintenance organization
148-152

. As expected, the use of 

internal coefficients led to a slightly more effective CRS compared to the FRS that was 

developed in a different cohort than ARIC. Despite this observation, we observed a 

negligible difference in the RR suggesting that perhaps under some circumstances one 

can develop a GRS using an internal CRS and apply it successfully in other cohorts (or 

vice-versa). We also note that while the GRS improves calibration, the risk scores overall 

are still poorly calibrated (> 1), particularly the one using the FRS. This reflects other 

work that has shown that the external coefficients applied to new populations can often 

lead to poorly calibrated models
131

. Finally, the risk score using only age and sex, not 

surprisingly, performed the worst. Moreover, the improvement in both discrimination 

(68.9 vs. 77.3) and calibration (11.22 vs. 4.34) after adding additional clinical factors is 

much greater than after the addition of a GRS highlighting the relative importance of 

clinical factors collectively at this point in time over the GRS in risk assessment for 

CHD.  However, one should not automatically assume that the current GRS is not 

clinically useful given its ΔAUC as it is in the same range as that seen for the addition of 

any single modifiable traditional risk factor to a model that includes all other traditional 

risk factors. 

 

 Several steps need to be followed in reporting of a GRS for a trait using our 

method to facilitate its testing in additional populations or to easily disseminate its use. 

First, the cohort in whom the GRS was derived including the age range, sex distribution, 

risk factor profile, and the ethnicity of its members must be clearly described. The GRS 

we present here is most relevant to white/Europeans in the age range of 45 to 64 and free 

of CHD at the time of clinical risk assessment given the eligibility criteria of the ARIC 

study and the fact that the SNPs used in the GRS were derived from large-scale case-
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control studies that included subjects in the same race/ethnic group and age range
119, 120

. 

A different sets of SNPs with different weights will likely be necessary for different 

race/ethnic groups and possibly different age ranges although we expect substantial 

overlap across race/ethnic groups in the genomic regions contributing at least one SNP to 

the GRS
145, 153

. Second, one must reliably identify and report which allele was coded as 

the high-risk allele as this allele is not necessarily the minor allele.  Errors in this context 

due to inadvertent strand flipping either in the original study reporting the susceptibility 

variant or in the construction of the GRS may have a profound negative impact on the 

performance of the GRS.  Third, the effect estimate for each SNP (generally a log odds 

ratio) used in the weighting of the GRS should be clearly presented.  Lastly, the relative 

risk for a one-unit change in GRS should be calculated and clearly presented along with 

the mean and SD of the GRS to facilitate standardization of the score.  

 We suggest a means to communicate the effect on risk of someone's genetic data 

when combined with his or her clinical data. Our presentation includes both a 

contextualization relative to the general population and a statement on how one's 

inherited variants update one's clinical risk that is based strictly on traditional non-genetic 

risk factor data.  In ongoing clinical investigation, we have applied a similar reporting 

system within a cardiology clinic
145

. Such a report can easily be automated and 

incorporated into an EHR. Moreover, it can also easily be updated as new susceptibility 

SNPs are discovered and/or weights refined. Given genome wide genotyping or 

sequencing is likely to become routine in the near future, more research is needed to 

identify the optimal way to communicate this information to subjects at risk and health 

care providers.  

 

 Risk scores are likely to evolve over time and practice guidelines may adopt 

different risk scores. For example, the FRS that we used here forms the basis of the Adult 

Treatment Panel III (ATPIII) guidelines
154

.  Recently, ACC/AHA released new 

cardiovascular prevention guidelines, with new categories of risk, with a change in the 

relevant endpoints and in the risk calculation formulas
132, 137

. As of this writing, there is 

still large controversy about the accuracy of the new calculations and the validity of the 
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guidelines
130, 131, 134, 155

. Regardless, our proposed methods can be used to incorporate 

GRS in any sets of non-genetic predictive models. 

 

 In conclusion, we present a simple but effective means to combine a CRS with a 

GRS and illustrate one way to present such information to an individual interested in 

understanding how this genetic information influences their risk assessment and thus 

potentially their clinical management. Furthermore, we highlight information that should 

be included in all reports of GRSs to facilitate the timely assessment of a new GRS by 

other investigators in additional populations or, alternatively, to easily incorporate it into 

clinical practice if its efficacy is no longer in question. We expect the importance of such 

research to grow over time and hope that future studies will more clearly delineate the 

optimal way to implement a GRS and how to most effectively disseminate a well-

established GRS to patients and their health care providers. 
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Figure Legends 

 

Figure 1.  Atherosclerosis Risk in Communities (ARIC) cohort inclusion and exclusion 

criteria applied to data obtained from the NCBI’s database of genotypes and phenotypes 

(dbGAP).  

 

Figure 2.  A sample report on CHD risk for an individual in the ARIC study where the 

incorporation of genetic risk into the model of clinical risk potentially influences clinical 

management based on current guidelines. 
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9,633 White/European
721 Prevalent

 CHD
(7.5%)

380 Lost to follow
up within 10 yrs

(4.3%)
8912 Without

Prevalent CHD

41 missing 
Covariates

(0.5%)

8491 Final Cohort
7865 Without  

Prevalent Diabetes

 Figure 1. 
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Figure 2. 
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 mean (IQR)

Age$(years) 54$(49,59)

SBP$(mm/Hg) 116$(106,$128)

DBP$(mm/Hg) 71$(65,$78)

HDL$(mg/dL) 48$(39,$61)

TC$(mg/dL) 211$(187,$238)

count (%)

white/European 8491$(100)

Male 3848$(45)

Diabetes 626$(7.4)

Smoking$status

Current 2010$(24)

Former 2914$(34)

Never 3567$(42)

Table$1:$Characteristics$of$the$ARIC$subcohort$

used$in$analyses$(n=8491)

IQR$=$interYquartile$range,$SBP$=$Systolic$Blood$

Pressure,$DBP$=$Diastolic$Blood$Pressure,$HDL$=$

HighYDensity$Lipoprotein$Cholesterol,$TC$=$Total$

Cholesterol
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Relative Risk 

(95% CI)
C-statistic* Calibration Slope

Using FRS for clinical risk score

FRS$alone -- 75.8 7.32

+$full$GRS 1.29$(1.20,$1.40) 76.8 6.26

+$GRS$restricted$to$non$risk$factor$SNPs 1.29$(1.20,$1.40) 76.8 6.29

+$GRS$restricted$to$risk$factor$SNPs 1.06$(0.98,$1.14) 75.8 7.22

Using internal coefficients for clinical risk score

Internal$coefficients$alone -- 77.3 4.34

+$full$GRS 1.28$(1.19,1.38) 78.3 4.17

+$GRS$restricted$to$non$risk$factor$SNPs 1.29$(1.20,$1.39) 78.3 4.18

+$GRS$restricted$to$risk$factor$SNPs 1.05$(0.97,$1.13) 77.4 4.31

Using only age and sex

Internal$coefficients$alone -- 68.9 11.22

+$full$GRS 1.31$(1.22,1.41) 70.4 9.26

+$GRS$restricted$to$non$risk$factor$SNPs 1.29$(1.20,1.39) 70.1 9.69

+$GRS$restricted$to$risk$factor$SNPs 1.11$(1.03,$1.20) 69.2 10.79

Table 2.  Relative Risks and discrimination metrics for a genetic risk score derived from 50 

genome wide significant susceptibility alleles for CHD in the full ARIC sample (n=8491) of 

white/Europeans subjects

CHD$=$Coronary$Heart$Disease,$ARIC$=$Atherosclerosis$Risk$in$Communities,$FRS$=$Framingham$Risk$

score,$SNPs$=$Single$Nucleotide$Polymorphism,$GRS$=$genetic$risk$score,$*performance$of$second$

model$listed$to$first$model$listed
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Relative Risk 

(95% CI)
C-statistic* Calibration Slope

Using FRS for clinical risk score

FRS$alone -- 75.2 8.84

+$full$GRS 1.28$(1.17,$1.39) 76.2 7.02

+$GRS$restricted$to$non$risk$factor$SNPs 1.30$(1.20,$1.41) 76.3 7.22

+$GRS$restricted$to$risk$factor$SNPs 1.02$(0.94,$1.11) 75.1 8.67

Using internal coefficients for clinical risk score

Internal$coefficients$alone -- 76.7 6.11

+$full$GRS 1.28$(1.18,$1.39) 77.6 5.39

+$GRS$restricted$to$non$risk$factor$SNPs 1.30$(1.20,$1.42) 77.7 5.40

+$GRS$restricted$to$risk$factor$SNPs 1.03$(0.95,$1.12) 76.6 6.00

Using only age and gender

Internal$coefficients$alone -- 70.5 12.86

+$full$GRS 1.30$(1.20,1.41) 71.8 10.49

+$GRS$restricted$to$non$risk$factor$SNPs 1.28$(1.18,1.39) 71.6 10.92

+$GRS$restricted$to$risk$factor$SNPs 1.10$(1.01,$1.19) 70.7 12.44

Table 3.  Relative Risks and discrimination metrics for a genetic risk score derived from 50 

genome wide significant susceptibility alleles for CHD in the ARIC subset of white/Europeans 

with no diabetes at baseline (n=7865)

CHD$=$Coronary$Heart$Disease,$ARIC$=$Atherosclerosis$Risk$in$Communities,$FRS$=$Framingham$Risk$

score,$SNPs$=$Single$Nucleotide$Polymorphism,$GRS$=$genetic$risk$score,$*performance$of$second$

model$listed$to$first$model$listed
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Chr Position SNP Nearest.Transcript

Meta3

Analysis.

Beta*

Associated.Risk.

Factor(s)

HIGH.RISK.

allele.

Other.

allele

in.

ARIC?**
A1 A2 MAF NCHROBS N_MISS N_GENO F_MISS

1 55,496,039...... rs11206510 PCSK9 0.055 TC,LDL T C 1 G A 0.192 19256 5 9633 0.0005

1 56,962,821...... rs17114036 PPAP2B 0.106 A G 0

1 109,821,511... rs602633 PSRC1/SORT1 0.116 LDL,TC,HDL G T 0

1 154,422,067... rs4845625 IL6R 0.049 T C 0

2 19,942,473...... rs16986953 AK097927 0.104 A G 0

2 21,286,057...... rs515135 APOB 0.075 LDL,TC C T 0

2 44,073,881...... rs6544713 ABCG5/ABCG8 0.061 LDL,TC T C 0

2 85,809,989...... rs1561198 GGCX/VAMP10/VAMP8 0.052 T C 1 T C 0.4579 19258 4 9633 0.0004

2 145,801,461... rs2252641 ZEB23AC074093.1 0.048 C T 1 G A 0.4545 19262 2 9633 0.0002

2 203,880,992... rs2351524 WDR12/ALS2CR16 0.115 T C 1 A G 0.1319 19236 15 9633 0.0016

3 138,119,952... rs2306374 MRAS 0.073 C T 1 G A 0.1567 19248 9 9633 0.0009

4 148,288,067... rs1429141 EDNRA 0.066 T C 0

4 156,635,309... rs7692387 GUCY1A3 0.065 DBP G A 0

5 131,667,353... rs273909 SLC22A4/SLC22A5 0.077 G A 0

6 12,962,995...... rs13211739 PHACTR1 0.058 G A 0

6 34,898,455...... rs12205331 ANKS1A 0.042 C T 0

6 39,174,922...... rs10947789 KCNK5 0.060 T C 0

6 134,214,525... rs12190287 TCF21 0.072 C G 2 C G 0.3766 19248 9 9633 0.0009

6 160,863,532... rs2048327 SLC22A3/LPAL2/LPA 0.060 TC,LDL C T 1 C T 0.3683 19264 1 9633 0.0001

6 161,143,608... rs4252120 PLG 0.062 T C 1 G A 0.3019 19090 88 9633 0.0091

7 19,036,775...... rs2023938 HDAC9 0.073 C T 0

7 129,663,496... rs11556924 ZC3HC1 0.083 DBP C T 1 T C 0.3826 19166 50 9633 0.0052

8 19,813,180...... rs264 LPL 0.071 HDL,TG G A 0

8 126,490,972... rs2954029 TRIB1 0.048 TC,LDL.,HDL, A T 0

9 22,003,223...... rs3217992 CDKN2BAS/MTAP/CDKN2B 0.145 T C 2 A G 0.3755 18850 208 9633 0.0216

9 22,125,503...... rs1333049 CDKN2BAS 0.207 C G 0 C G 0.4781 19256 5 9633 0.0005

9 136,154,867... rs495828 ABO 0.066 LDL,TC T G 0

10 30,335,122...... rs2505083 KIAA1462 0.061 C T 1 C T 0.4218 19116 75 9633 0.0078

10 44,539,913...... rs2047009 CXCL12/AX747950 0.053 G T 1 A C 0.4841 19260 3 9633 0.0003

10 44,753,867...... rs501120 CXCL12 0.067 T C 0

10 90,989,109...... rs11203042 LIPA 0.039 T C 0

10 91,005,854...... rs2246833 LIPA 0.055 T C 1 T C 0.3412 19146 60 9633 0.0062

10 104,652,323... rs11191447 CYP17A1/CNNM2/NT5C2 0.087 SBP,DBP C T 0

11 103,660,567... rs974819 PDGFD 0.065 T C 0

11 116,611,733... rs9326246 ZNF259/APO5A/APOA1 0.086 TC,HDL,LDL, C G 0

12 111,884,608... rs3184504 SH2B3 0.068 DBP,TC,SBP,LDL,HDL T C 0

13 28,973,621...... rs9319428 FLT1 0.055 A G 0

13 110,960,712... rs4773144 COL4A1/COL4A2 0.068 G A 1 G A 0.4432 18932 167 9633 0.0173

13 111,049,623... rs9515203 COL4A1/COL4A2 0.079 T C 1 C T 0.2621 19244 11 9633 0.0011

14 100,133,942... rs2895811 HHIPL1 0.056 C T 0

15 79,006,582...... rs11072794 ADAMTS7/DQ582071 0.066 T C 1 A G 0.254 19244 11 9633 0.0011

15 79,141,784...... rs7173743 ADAMTS7/MRG15 0.065 T C 0

15 91,416,550...... rs17514846 FES/FURIN 0.058 SBP A C 0

17 2,117,945........ rs2281727 SMG6 0.050 G A 0

17 17,543,722...... rs12936587 RAI1/PEMT/RASD1 0.055 G A 0

17 47,005,193...... rs15563 UBE2Z 0.037 G A 1 A G 0.4634 19252 7 9633 0.0007

19 11,163,601...... rs1122608 LDLR/SMARCA4 0.092 LDL ,TC G T 1 T G 0.2484 19200 33 9633 0.0034

19 45,395,619...... rs2075650 APOE/APOC1/TOMM40 0.106 LDL ,TC,TG,HDL, G A 0

19 45,415,640...... rs445925 APOE/APOC1/TOMM40 0.119 LDL ,TC,TG,HDL G A 0

21 35,599,128...... rs9982601 KCNE2/C21orf82 0.119 T C 0

*for.the.high.risk.allele.compared.to.the.other.allele,.**Genotyped.in.ARIC.and.pass.QC.for.imputation.(0.=.no,.1.=.yes,.2.=.yes.but.does.not.pass.QC.for.imputation)

LDL.=.low.density.cholesterol,.HDL.=.high.density.cholesterol,.TC.=.total.cholesterol,.TG.=.triglycerides,.SBP.=.systolic.blood.pressure,.DBP.=.diastolic.blood.pressure,.A1.=.first.allele.in.ARIC,.A2.=.second.alle

Table.S1...Single.nucleotide.polymorphisms.considered.for.construction.of.Genetic.Risk.Score,.summary.of.location,.high.risk.allele,.betas.used.as.weights,.relationship.to.Framingham.Risk.fac

1000G.+.strand.

reference
Information.for.Genotyped.SNPs.in.ARIC

Freq1 MAF AvgCall Rsq LooRsq EmpR EmpRsq

High.risk.

count.in.

GRS?

0.829 0.171 0.860 0.291 0.291 0.000 0.0000 No

0.911 0.089 0.994 0.946 3 3 3 Yes

0.777 0.223 0.994 0.972 3 3 3 Yes

0.580 0.420 0.995 0.979 3 3 3 Yes

0.931 0.069 0.994 0.920 3 3 3 Yes

0.828 0.172 0.976 0.869 3 3 3 Yes

0.738 0.262 0.850 0.478 3 3 3 Yes

0.542 0.458 0.999 0.998 0.897 0.954 0.9106 Yes

0.453 0.453 0.996 0.987 0.987 0.000 0.0000 Yes

0.873 0.127 0.985 0.881 0.881 0.000 0.0000 Yes

0.845 0.155 0.999 0.996 0.996 0.000 0.0000 Yes

0.835 0.165 0.999 0.996 3 3 3 Yes

0.814 0.186 0.994 0.962 3 3 3 Yes

0.885 0.115 0.981 0.861 3 3 3 Yes

0.774 0.226 0.982 0.915 3 3 3 Yes

0.796 0.204 0.994 0.966 3 3 3 Yes

0.766 0.234 0.989 0.944 3 3 3 Yes

0.641 0.359 0.908 0.691 3 3 3 Yes

0.632 0.368 1.000 1.000 0.987 0.996 0.9915 Yes

0.700 0.300 0.998 0.990 0.990 0.000 0.0000 Yes

0.906 0.094 0.994 0.939 3 3 3 Yes

0.618 0.382 0.999 0.996 0.311 0.902 0.8144 Yes

0.866 0.134 0.979 0.863 3 3 3 Yes

0.532 0.468 0.986 0.948 3 3 3 Yes

0.641 0.359 0.973 0.897 3 3 3 Yes

0.528 0.472 0.921 0.720 3 3 3 Yes

0.772 0.228 0.961 0.825 3 3 3 Yes

0.581 0.420 0.998 0.992 0.640 0.880 0.7748 Yes

0.485 0.485 0.999 0.997 0.997 0.000 0.0000 Yes

0.868 0.132 1.000 0.999 3 3 3 Yes

0.557 0.443 0.979 0.928 3 3 3 Yes

0.659 0.341 0.999 0.997 0.959 0.982 0.9636 Yes

0.912 0.088 0.999 0.991 3 3 3 Yes

0.711 0.289 0.989 0.950 3 3 3 Yes

0.929 0.071 0.994 0.928 3 3 3 Yes

0.518 0.482 0.762 0.361 3 3 3 Yes

0.695 0.305 0.997 0.990 3 3 3 Yes

0.562 0.438 0.999 0.996 0.810 0.895 0.8008 Yes

0.737 0.263 0.998 0.991 0.797 0.926 0.8568 Yes

0.617 0.383 0.824 0.478 3 3 3 Yes

0.660 0.340 0.770 0.231 0.231 0.000 0.0000 No

0.543 0.457 0.734 0.266 3 3 3 No

0.517 0.483 0.853 0.609 3 3 3 Yes

0.651 0.349 0.952 0.812 3 3 3 Yes

0.552 0.448 0.971 0.912 3 3 3 Yes

0.463 0.463 1.000 1.000 0.993 0.999 0.9982 Yes

0.753 0.247 0.991 0.955 0.471 0.903 0.8161 Yes

0.868 0.132 0.868 0.032 3 3 3 No

0.869 0.131 0.870 0.030 3 3 3 No

0.866 0.134 0.988 0.926 3 3 3 Yes

.allele.in.ARIC,.MAF.=.minor.allele.frequency,.

Risk.factor(s),.imputation.metrics,.and.genotype.metrics



 

 

 77 

CHAPTER 4: GENETIC RISK ASSESSMENT OF CORONARY 

PLAQUE BURDEN 

 

Preface to the Manuscript 

 

This manuscript presents the last part of a study investigating the genetic basis of 

cardiovascular disease by examining a multi-locus genetic risk score of the strongest 

predictor of the major cause of death of cardiovascular disease. 

 

This third and last study focuses on determining whether CAD associated loci 

collectively facilitate the formation of coronary plaque in a monotonic fashion throughout 

the life course. The second manuscript showed the benefit to combine genetic 

information at established susceptibility loci in any sets of non-genetic predictive models. 

Given these findings and the fact that genetic risk score improves overall risk 

discrimination, we felt that it was important to answer this question last because this 

genetic risk assessment could add incremental prognostic value to the most common type 

of cardiovascular disease above traditional risk scores across a range of ages. 

 

 We selected genotyped and imputed independent markers from the 

CARDIOGRAMplusC4D report that had reached genome-wide significance at any time 

during the GWAS era to construct the genetic risk score in White/European subjects from 

dbGaP genetic data (SEA, FHS, and MESA) as well as from the Stanford-Kaiser 

ADVANCE study. We stratified white/European subjects within each study into one of 

five age groups (≤30, 31-45, 46-60, 61-75, >75 years) and defined cases as subjects with 

either any raised lesions in their right coronary artery on autopsy (SEA study) or with an 

age and sex specific CAC score >75th percentile (all other studies, age > 30 years) 
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 In this context, the general objective of this third study is to show that 

susceptibility alleles for clinical CAD uncovered through large-scale meta-analysis of 

GWAS predispose an individual to clinical complications of CAD from birth through the 

modulation of the rate of formation of coronary plaque.  

The specific objective of this second study is: 

 

1. To identify cohorts of subjects with subclinical atherosclerosis identified by either 

pathologic examination of the coronary arteries or by radiographic assessment of 

coronary artery calcification.  

 

2. To test association between a multi-locus genetic risk score based on 

susceptibility variants for CAD with the presence of subclinical atherosclerosis 

among subjects with no previous history of clinical CAD, for each 15-year age 

categories. 

 

3. To compare association between weighted and un-weighted genetic risk score 

with development of plaque. 

 

4. To compare association between a genetic risk score including all susceptibility 

variants for CAD to a restricted genetic risk score to non-risk factor SNPs with 

the presence of subclinical atherosclerosis. 
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4.1 Abstract 

Recent genome wide association studies (GWAS) have identified 49 single 

nucleotide polymorphisms (SNPs) associated with clinically significant complications of 

CAD including myocardial infarction (MI), CABG, PCI, and/or angina. The mechanism 

by which these loci influence the risk of clinical CAD remains largely unclear. We 

hypothesized that variants at these loci collectively facilitate the formation of coronary 

plaque in a monotonic fashion throughout the life course. We used genetic data from 

dbGAP (SEA, FHS, and MESA) as well as from the Stanford-Kaiser ADVANCE study 

imputed to the 1000 genomes project to examine the association between a genetic risk 

score (GRS) of high-risk alleles at these 49 SNPs and the presence of subclinical 

atherosclerosis.  Subclinical atherosclerosis was identified by either pathologic 

examination of the coronary arteries or by radiographic assessment of coronary artery 

calcification (CAC).  We stratified white/European subjects within each study into one of 

five age groups (≤30, 31-45, 46-60, 61-75, >75 years) and defined cases as subjects with 

either any raised lesions in their right coronary artery on autopsy (SEA, 26.7% subjects 

aged 18 to 30 years at time of unexpected death) or with an age and sex specific CAC 

score >75th percentile (all other studies, age > 30 years). Among 1561 cases and 5068 

controls, we found a one SD increase in the GRS was associated with a 28% increased 

risk of having advanced subclinical coronary atherosclerosis (p = 1.43 x 10-16).  This 

increase in risk was significant in every age stratum (.01 > p > 9.4 x 10-7) and was 

remarkably similar across all age strata (p test of heterogeneity = 0.98).  We obtained 

near identical results and levels of significance when we restricted the GRS to 32 SNPs 

not associated with traditional risk factors.  Our findings strongly support the notion that 

susceptibility alleles for clinical CAD uncovered through large-scale meta-analysis of 

GWAS uniformly promote the development of coronary atherosclerosis from birth. This 

predisposition is sustained at a constant level throughout one's lifetime.  Given it is 

observed at the earliest stage of plaque formation, it is unlikely to involve a concurrent 

predisposition to plaque rupture and/or thrombosis.  
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4.2 Introduction 

Coronary artery disease (CAD) is a primary cause of death and disability 

worldwide
156

.  Development of CAD is triggered by complex interactions of many 

environmental and inherited factors.  Established traditional risk factors, including age, 

sex, high cholesterol, diabetes, smoking, and elevated blood pressure, explain only a 

fraction of the variability in disease risk and have limitations in their ability to 

discriminate individuals likely to experience CAD
157, 158

.  More recently, coronary arterial 

calcification (CAC) as measured by computed tomography (CT) has been established as a 

major predictor for clinical complications of CAD including myocardial infarction (MI), 

independent of traditional risk factors
159-163

.  CAC quantifies the degree of calcified 

plaque within the vessel wall of coronary arteries and has been shown to be highly 

correlated with the overall plaque burden of both calcified and non-calcified plaque
164-166

.   

The search for new predictors that may identify individuals who have an inherited 

predisposition to develop CAD has recently accelerated dramatically. Genome wide 

association studies (GWAS) over the last 7 years have identified 49 susceptibility 

variants robustly associated with clinically significant complications of CAD including 

myocardial infarction (MI), coronary artery bypass graft surgery (CABG), percutaneous 

coronary intervention (PCI), and/or angina
62-66, 68, 70, 167-169

; yet these SNPs account for 

small proportion of the overall genetic variance of CAD underscoring the polygenic 

nature of the disease.  While the effect on risk of each of these variants is small, they are 

independent and additive. Accordingly, the relatively small effects of the high-risk alleles 

at these 49 identified loci can be aggregated into a single powerful predictor of clinical 

CAD through a multi-locus genetic risk score (GRS)
 170

.  Morrison et al. was among the 

first to illustrate the concept of GRS in the context of predicting CAD prior to the GWAS 

era, utilizing SNPs within candidate genes
80

. Over the years, several studies have 

examined the utility of combining multiple causal variants to improve the identification 

of subjects at increased risk of clinical CAD
115, 143, 170-172

. 

The mechanism by which CAD loci discovered through GWAS influence the risk 

of clinical CAD remains largely unclear. We hypothesized that variants at these loci 

collectively facilitate the formation of coronary plaque in a monotonic fashion throughout 
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the life course.  To test this hypothesis, we investigated the association between a GRS 

based on the 49 susceptibility variants for CAD with the presence of subclinical 

atherosclerosis among subjects with no previous history of clinical CAD.  Subclinical 

atherosclerosis was estimated in most subjects using CAC and in the youngest subjects 

through pathologic examination of the coronary arteries. 

4.3 Material and Methods 

4.3.1 Study Population 

The Atherosclerotic Disease, VAscular functioN, and genetiC Epidemiology 

(ADVANCE)
 173-175

 study served as our initial cohort for this analysis. ADVANCE 

included a subset of 479 participants from the Coronary Artery Risk Development in 

Young Adults Study (CARDIA)
 176

, study originally recruited at the Oakland field center 

who attended the study’s Year 15 examination in 2000–2001. We extended our analyses 

to several clinical and genetic datasets available through the NCBI's database of 

Genotypes and Phenotypes (dbGAP) including the SNPs and the Extent of 

Atherosclerosis (SEA)
 177

, the Multi Ethnic Study of Atherosclerosis (MESA)
 178

, the 

Framingham Heart Study (FHS)
 179

, and the Cardiovascular Health Study (CHS)
 180, 181

. 

As all SNPs to be tested were identified in European and/or South Asian populations, we 

restricted our analyses to study participants who self-reported European ancestry. 

Detailed descriptions of the design and methods for the five studies have been published 

elsewhere
182-188

. The subset of participants from these studies all had either a post mortem 

pathologic determination of the degree of subclinical coronary atherosclerosis (SEA) or 

an assessment of subclinical coronary atherosclerosis through a CAC study at a point in 

time when they reported no history of clinical CAD. We stratified subjects within each 

study into one of five age groups at the time of assessment of subclinical coronary 

atherosclerosis (≤30, 31-45, 46-60, 61-75, >75 years) . 

4.3.2 Case definition 

In the majority of subjects with a measure of CAC, we defined cases within each 

study and age stratum as those subjects possessing an age and sex specific CAC score 

greater than the 75 percentile
189

.  For some younger subgroups where the 75% percentile 
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CAC score was still 0, we defined cases as subjects with a CAC score > 0.  For 

participants in SEA, we defined cases as subjects with any raised lesions in their right 

coronary artery on autopsy.  

4.3.3 SNP Selection and Imputation  

For the construction of the GRS, we selected independent SNPs (LD-pruned, r
2
 < 

0.2) from Supplementary Table 9 of the CARDIOGRAMplusC4D report that had reached 

genome-wide significance at any time during the GWAS era (referred to as either 

"known" or "novel" CAD GWAS SNPs).  Of the 153 "low FDR" SNPs for CAD 

included in this table, 49 SNPs met these criteria (Supplemental Table). As expected, 

only a small fraction of the 49 SNPs were genotyped in participants of the five studies 

given the various arrays used. To minimize the need to search for proxies, we used the 

genotype data within each study to impute the SNPs in the latest release of the 1000 

Genomes Project reference haplotypes. Each study was imputed separately using MaCH 

(v1.0.18.c)
 103

 and Minimac (2013-07-17) software
190

.  A two-stage imputation procedure 

was followed. First, we used MaCH to phase individuals across chromosome to estimate 

the haplotypes. Phasing did not require reference panels as input. We excluded SNPs 

with minor allele frequency (MAF) < 0.01, Hardy-Weinberg equilibrium P < 1 × 10
−6

, 

call rate < 95% or large allele frequency discrepancies compared to the 1000 Genomes 

Project reference data using PLINK
191

. To ensure good quality of phased haplotypes, 

MaCH was run with the 20 rounds and 200 states for parameter estimation. Then, the 

phased haplotypes were compared to 1000 Genomes Project haplotypes (version 3 March 

2012 release, 2184 haplotypes) Cosmopolitan panel (246 AFR + 181 AMR + 286 ASN + 

379 EUR) for imputation using the OpenMP protocol based multi-threaded version of 

Minimac software with 20 rounds and 300 states for each chromosome.  

 

 

4.3.4 Construction of the GRS 

Next, we calculated both weighted and un-weighted GRS for each individual 

using their imputed genotype dosage of the number of high-risk alleles for each of the 40 
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SNPs. We then combined the information on the 49 SNPs using an allele count model.  

Our weighted multilocus GRSs (wGRSs) was calculated by taking the sum of the product 

for each SNP of the high risk allele dosage with the effect size observed (β) in the 

CARDIOGRAMplusC4D meta-analysis (PMID 23202125). The value of the weighted 

risk score on n SNPs is formulated as follow: 

!"#$ = ! !!!!!"

!

!

! 

Where, !!" is the dose of the coded allele at the j-th SNP in the i-th subject, and ! is the 

effect of the j-th SNP. GRS scores were then standardized to a mean of zero and SD = 1. 

  

We further calculated an un-weighted and weighted GRS restricted to the 32 

SNPs that appears not be related to traditional risk factors as per the assessment of the 

CARDIoGRAM+C4D consortium which reported that 17 of the 49 SNPs also showed 

significant trends for association for either lipids (n = 12 SNPs) or blood pressure (n = 5).  

4.3.5 Statistical Analysis 

We used logistic regression to estimate the association between a GRS and case-

control status. Despite the use of age and sex specific CAC score cutoffs to define cases, 

we further adjusted for age and sex to account for any residual confounding by these 

variables with the 15-year age categories. We also estimated the ORs for case-control 

status for subjects with the highest quintile of GRS compared to subjects within the 

lowest quintile of GRS to quantify the added risk in the extremes of the GRS.  

 

A fixed-effect meta-regression model was used for estimating the overall effect 

within each age stratum and across all age-strata combined. The calculations yielded chi-

squared statistic and is its degrees of freedom for testing the heterogeneity and the overall 

estimate for the fixed-effect model. To assess inconsistency across cohorts, a statistic 

describing the percentage of the variability in effect estimates due to heterogeneity rather 

than sampling error was calculated as follow: 
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ℐ
!
= !

! − !"

!
!×!100 

 

Here ! is the chi-squared statistic and !" is its degrees of freedom.  

Calculations were performed with the metafor package 1.9-4 in R
136

 (version 3.0.2)
 192

.  

 

4.4 Results 

Characteristics of the participants included in this study are summarized in Table 

1, stratified by study and age-stratum.   After quality control, we identified a total of 6 

910 participants of white/European ancestry from all studies covering a very broad age 

range at the time of assessment of subclinical atherosclerosis (18 to >85). The largest 

cohort was Framingham Heart Study contributing a total of 3 131 individuals, and the 

two smallest cohorts contributing were CARDIA and CHS with 286 and 151 individuals 

(Table 1). A total of a 1 561 (23%) of subjects across all cohorts were defined as cases 

based on our case definitions.  

Table 1 summarizes descriptive statistics for the 6 populations tested as well as 

quality of the imputation for the 49 SNPs used in the construction of the GRSs.  The 

proportion of well-imputed SNPs was high (>93.9%) except SEA where only 34.69% of 

the SNPs had an imputation -R
2
 score > 0.3. Imputation quality index ranged from 

26.97% (SEA) to 96.87% (ADVANCE). None of the SNP showed significant departures 

from Hardy-Weinberg equilibrium in any population cohort. The overall mean 49 SNPs 

GRS was 48.9±4.1 risk alleles and the mean 32 SNPs GRS was 29.5±3.5 risk alleles 

(Table 1).  Reassuringly, we found similar mean GRS across studies and across all age-

strata.  

Figure 1 summarizes our association results for our un-weighted GRS including 

all 49 SNPs. We found that this GRS was significantly associated with case-control status 

across all age groups and studies combined even after adjusting for age and sex, as well 

as in the meta-analysis. The meta-analysis results demonstrated a 28% increase in risk of 

being a case with each SD increase in the GRS (95% CI: 1.21-1.36, p=1.43×10
-16

). . The 

increase in risk was significant in every age stratum (meta-analysis .01 > p > 9.4 x 10
-7

)
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and was remarkably similar across all age strata (p test of heterogeneity = 0.98).  

Association results for the GRS restricted to the 32 non-risk factor SNPs (GRS32NRF) 

did not differ substantially from our primary analysis that included all 49 SNPs (OR 1.29 

per SD increase in the GRS, 95% CI 1.22-1.38; p=6.6×10
-18

) (Figure 2). Once again, the 

increase in risk was significant in every age stratum (.014 > p > 2.73 x 10
-7

)
 
and was 

remarkably similar across all age strata. Effect estimates were consistent across all 

cohorts. Results were similar for our analyses using the weighted GRS (supplemental 

Figures 1, 2) but with evidence of increased heterogeneity in the ORs observed.  The p 

value for the test of heterogeneity was still not significant (p = 0.55 and 0.23).  The 

largest changes in the ORs occurred in the strata with the smallest number of cases.  

Figure 3 summarizes the distribution of degree of raised lesions in the SEA 

participants. A large majority of subjects had only 1 to 30% of their RCA covered with 

raised lesions. Table 2 summarizes the association results for SEA using 3 additional 

imputation quality cutoffs including r
2
> 0.3, r

2
>0.5, and r

2
>0.8.  The strongest association 

was observed for a cutoff of r
2
 > 0.3 which allowed for 17 of the 49 SNPs to be used in 

the construction of the GRS.  

Participants in the highest quintile of GRS had almost double the risk of advanced 

subclinical coronary atherosclerosis compared with those in the lowest quintile (OR 1.88, 

95% CI 1.80 – 1.96, p=5.5×10
-14

). We obtained similar for the GRS32 (OR 1.80, 95% CI 

1.72 – 1.88, p=4.6×10
-12

).  

4.5 Discussion 

We found that a multi-locus GRS derived from the high risk alleles of 

SNPs associated with clinical complications of CAD is strongly associated with 

the presence of advanced subclinical atherosclerosis as estimated by either the 

direct visualization of raised lesions within the right coronary artery or the degree 

of CAC within all three coronary arteries combined.  Among subjects without a 

history of clinical CAD, the association is evident starting in young adulthood and 

persists throughout the life course to a degree that is remarkably homogenous.  An 
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increase in the GRS by one standard deviation was associated with a ~30% 

increase in the risk of being in the quartile with the highest degree of subclinical 

coronary atherosclerosis.  

 Our findings have several important implications.  First, they reinforce 

findings from several epidemiological studies demonstrating that a subclinical 

measure of plaque burden within the coronaries not only adds incremental 

prognostic value above traditional risk scores across a range of ages but also is the 

single strongest predictor of clinical complications of CAD in previously 

asymptomatic persons
193-202

. Second, they are consistent with a hypothesis that 

GWAS susceptibility loci for CAD discovered to date predispose an individual to 

clinical complications of CAD from birth through the modulation of the rate of 

formation of coronary plaque.  This predisposition appears monotonic and 

continues unabated throughout one's lifespan with evidence of predisposition 

persistent into the 9th decade of life.  Third, this predisposition is not likely to 

involve a specific predisposition to intra-plaque rupture, intraluminal plaque 

rupture, or thrombosis because it appears at a very young age when plaques are 

generally too small to be prone to any of these structural complications
203

.  This 

hypothesis is best supported by the associations observed in SEA, which were 

largely driven by the presence of minimally raised lesions in a small fraction of the 

overall surface area of the right coronary artery.   

 We performed three sensitivity analyses.  First, we repeated all analyses 

after removing 17 SNPs from the GRS that are most likely influencing clinical 

CAD through effects on traditional risk factors including dyslipidemia or elevated 

blood pressure
62

. Dyslipidemia in particular has already been unequivocally tightly 

linked to the rate of development of subclinical atherosclerosis both in human and 

animal studies
204-207

.   We performed this sensitivity analysis to ensure that the 

effect of this subgroup of 17 SNPs was not driving our overall results.  We found 
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that the strength of the associations overall and within each age stratum as well as 

the homogeneity of effects persisted even after excluding these SNPs from the 

GRS.   These findings suggest that most, if not all, of the novel mechanisms 

predisposing to clinical complications of CAD uncovered by GWA studies to date 

involve physiological processes that facilitate the formation of coronary plaque.    

 Second, we tested whether weighting the high-risk alleles in the GRS by 

the effect size observed for those alleles in GWA studies influenced our results
208

.  

While this approach slightly increased the overall effect size and the statistical 

significance of the association between our GRS and subclinical CAD, it 

introduced some heterogeneity although our test of heterogeneity remained 

insignificant.  Compared to a non-weighted GRS, a weighted GRS would be 

expected to improve an association when risk loci with a range of effects 

contribute to disease and when the GRS is being tested on the exact same 

phenotype that was used to identify the high risk alleles
208

.   Conceivably, a 

weighted GRS may be less helpful and possibly even harmful in a situation where 

it is being tested on a phenotype that is different from the one used to identify the 

high-risk alleles as was done in this analysis.   

 Our third sensitivity analysis was focused on SEA.  This study was unique 

not only because of the method of assessment of subclinical atherosclerosis but 

also because of the platform used for genome wide genotyping which was an early 

GWAS array by Perlegen that included only ~106000 SNPs.  Furthermore, only 

~2/3 of these SNPs passed our standard pre-imputation quality control.  

Consequently, the mean imputation quality for SEA was significantly lower than 

all other studies with only ~1/3 of SNPs having an imputation r
2
 > 0.3.  In the 4 

models we tested, we invariable found the highest point estimates and the lowest p 

values for the analyses that restricted the GRS to the subset of SNPs with an 

imputation r
2
 > 0.3 although these differences were not large when compared to 
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the models that used all 49 SNPs.  Imposing an even higher imputation score 

threshold led to a further substantial restriction of SNPs as well as a noticeable 

degradation of the association signal.  These circumstances suggest that the 

statistical significance of the association we observed in SEA with the GRS 

incorporating all 49 or all 33 non-risk factor SNPs likely represents a substantial 

underestimate of the true p value given the greater difficulty in accurately 

imputing genotypes.  

 Our study has a couple of important limitations.  First, power was more 

limited in the extreme age categories where overall number of subjects available 

for study was lower.   Nevertheless, we observed nominally significant 

associations in these age strata both in our main analysis and in our sensitivity 

analyses.  Second, identification of the quartile of subjects with the highest degree 

of subclinical atherosclerosis was hampered in the younger age strata (30 to 45, 45 

to 60 years) by a low prevalence of subjects with any CAC.  Thus, the percentile 

of subjects with CAC > 0 was less than 25 and the size of the case group ranged 

from 11.9% to 24.1% of the stratum.   We elected not to reclassify a random set of 

subjects with a CAC = 0 into the case group. Conceivably, the ORs of association 

in these strata may be biased towards the null because the control group includes 

some subjects with a burden of disease that is within the top quartile. We suspect 

this bias, if present, is minimal and would not change our conclusions.  Of note, 

this issue was not a problem in SEA given the presence of any raised plaque was 

coincidently observed in about one quartile of the cohort.  

 Why would contemporary GWA studies of CAD involving predominantly 

(and often exclusively) subjects with clinical complications of CAD be identifying 

only loci predisposing to plaque formation?  We propose two reasons.   First, case-

control GWA studies that have identified the 49 loci for CAD may not allow for 

the detection of other types of susceptibility loci.   A key design principle in case-
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control studies is the requirement for controls to be at risk of the outcome
209

.  Risk 

factors for the outcome of interest cannot be identified if controls are not at risk.  

For example, the most appropriate controls for a study trying to identify whether 

using a cell phone while driving increases the risk of a car accident are drivers 

with a cell phone who did not get into an accident.  Subjects who do not drive or 

do not own a cell phone are not appropriate controls as they are not at risk of 

suffering a car accident while using a cell phone.   Similarly, loci that predispose 

to plaque rupture and/or thrombosis cannot be identified if controls are not at risk 

of these complications because they have minimal or no underlying 

atherosclerosis.  A more effective design to identify such loci would be to compare 

subjects with a critical amount of CAD and one or more well-documented MIs to 

subjects with a similar amount of CAD but no history of MI.   Such a design has 

been used in the recent past to identify one locus  (ABO) that may predispose to 

MI
210

.  However, the same locus was later identified in a more conventional GWA 

case-control study of CAD casting doubt on its specificity for susceptibility to 

plaque rupture or thrombosis
63

.   Furthermore, such a design may also be 

substantially underpowered due to misclassification of controls as many ruptures 

are observed even in the absence of clinical symptoms
211-213

.  

 In summary, we have shown that susceptibility loci for CAD discovered to 

date through GWAS appear to predispose to clinical CAD by exclusively 

facilitating the formation of coronary artery plaque and not by promoting plaque 

rupture or thrombosis.  This susceptibility to plaque formation is life long, 

remarkably homogenous, and not driven by exposure to traditional risk factors. 

The identification of loci that predispose to plaque rupture or thrombosis is 

extremely challenging given non-invasive tools to reliably classify whether 

someone with CAD has suffered such an event do not exist.  Investigators 

examining the mechanism of associations of established CAD loci should take 

these observations into consideration when designing their experiments.   
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Legends to Figures: 

 

Figure 1: The forest plot show the meta-analysis of the association of the un-weighted 

genetic risk score of 49 SNPs with CAC. The horizontal axis indicates the odds ratio for 

CAC per SD unit increase in the standardized genetic risk score. SEA indicates SNPs and 

the Extent of Atherosclerosis; ADVANCE-CARDIA, Atherosclerotic Disease, VAscular 

functioN, and genetiC Epidemiology-Coronary Artery Risk Development in Young 

Adults Study; FHS, Framingham Heart Study; MESA, Multi Ethnic Study of 

Atherosclerosis; ADVANCE, Atherosclerotic Disease VAscular functioN and genetiC 

Epidemiology; CHS, Cardiovascular Health Study.    

 

Figure 2: The forest plot show the meta-analysis of the association of the un-weighted 

genetic risk score of 32 non-risk factors SNPs with CAC. The horizontal axis indicates 

the odds ratio for CAC per SD unit increase in the standardized genetic risk score. SEA 

indicates SNPs and the Extent of Atherosclerosis; ADVANCE-CARDIA, Atherosclerotic 

Disease, VAscular functioN, and genetiC Epidemiology-Coronary Artery Risk 

Development in Young Adults Study; FHS, Framingham Heart Study; MESA, Multi 

Ethnic Study of Atherosclerosis; ADVANCE, Atherosclerotic Disease VAscular 

functioN and genetiC Epidemiology; CHS, Cardiovascular Health Study.    

 

Figure 3: Distribution of the percentage of Raised Coronary Artery (RCA) lesions in 

SEA (SNPs and the Extent of Atherosclerosis) study. 
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  Figure 1.     
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  Figure 2.     
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  Figure 3.     
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Legends to Tables: 

 

Table 1: Descriptive statistics for each study per 15-year age categories and quality of 

the imputation for the 49 SNPs used in the construction of the genetic risk score. SEA 

indicates SNPs and the Extent of Atherosclerosis; ADVANCE-CARDIA, Atherosclerotic 

Disease, VAscular functioN, and genetiC Epidemiology-Coronary Artery Risk 

Development in Young Adults Study; FHS, Framingham Heart Study; MESA, Multi 

Ethnic Study of Atherosclerosis; ADVANCE, Atherosclerotic Disease VAscular 

functioN and genetiC Epidemiology; CHS, Cardiovascular Health Study.    

 

Table 2: Beta coefficient for the association between the genetic risk score of 49 and 33 

SNPs respectively and CAC, using different cutoffs of imputation-R
2
 for both weighted 

and un-weighted score. 
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AGE < 30 30-45 45-60 60-75 > 75 

STUDY SEA 
ADVANCE-

CARDIA 
FHS FHS MESA ADVANCE FHS MESA CHS FHS MESA 

N 564 151 1035 1332 904 633 631 956 286 133 285 

Age (mean) 26.69 41.17 40.48 51.53 52.68 65.82 66.54 67.86 80.11 78.33 78.96 

Age (s.d.) 5.01 2.98 3.01 4.27 4.506701 2.88 4.36 4.17 3.54 2.46 2.32 

Female % 22.70 31.79 40.58 51.35 52 36.49 54.35 48.74 62.23 54.88 53.68 

N0 of Cases 151 18 159 321 202 159 158 230 72 34 72 

% Cases 26.8% 11.9% 15.4% 24.1% 22.3% 25.1% 25.0% 24.1% 25.2% 25.6% 25.3% 

CAC (mean)/  

Cases 
15.22%* 52.21 107.3 270.4 208.5 979.7 988.6 860.6 1742.8 1785 1406 

CAC (mean)/ 

Controls 
0.041%*

 
0 0 5.42 2.723 83.05 92.71 61.55 296.24 306.5 158.7 

Platform Perlegen HumanHap550v1.1 

Affymetrix 

500K 

+50K 

Affymetrix 

500K 

+50K 

Affymetrix 

6.0 
Metabochip 

Affymetrix 

500K 

+50K 

Affymetrix 

6.0 

Human 

CNV370v1 

Affymetrix 

500K 

+50K 

Affymetrix 

6.0 

N0 of SNPs on 

Array 
106,285 561,466 549,782 549,782 909,622 196,725 549,782 909,622 339,971 549,782 909,622 

N0 of 49 GRS SNPs 

on Array 
0 21 11 11 18 45 11 18 12 11 18 

N0 of SNP used for 

Imputation 
66,166 513,729 284,965 284,965 604,312 107,809 284,965 604,312 275,298 284,965 604,312 

Average R
2
 for 

imputed SNPs 
0.2697 0.8803 0.853 0.853 0.8652 96.87 0.853 0.8652 0.7968 0.853 0.8652 

Proportion of 

Imputed SNPs with 

R
2
> 0.3 

34.69 100 93.87 93.87 95.91 100 93.87 95.91 95.91 93.87 95.91 

GRS (mean) 48.78 49.1 48.87 48.87 49.2 49.11 48.87 49.2 48.59 48.87 49.2 

GRS (s.d.) 2.48 3.91 4.22 4.22 4.28 4.60 4.22 4.28 3.85 4.22 4.28 

Table 1. 
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SEA #SNPs Estimate Std.Error z_value p  Imputed-R
2 

GRS49 17 0.253 0.099 2.562 1.04 x10
-2

 * 0 

GRS49-weighted 17 0.202 0.098 2.06 3.94 x10
-2

 * 0 

 13 0.236 0.098 2.393 1.67 x10
-2

 * 0 

GRS32-weighted 13 0.182 0.098 1.856 6.34 x10
-2

 . 0 

GRS49 17 0.306 0.099 3.075 2.11 x10
-3

 ** 0.3 

GRS49-weighted 17 0.249 0.098 2.528 1.15 x10
-2

 * 0.3 

GRS32 13 0.304 0.099 3.078 2.09 x10
-3

 ** 0.3 

GRS32-weighted 13 0.245 0.098 2.49 1.28 x10
-2

 * 0.3 

GRS49 10 0.272 0.099 2.753 5.9 x10
-3

 ** 0.5 

GRS49-weighted 10 0.212 0.098 2.168 3.01 x10
-2

 * 0.5 

GRS32 8 0.237 0.098 2.411 1.59 x10
-2

 * 0.5 

GRS32-weighted 8 0.184 0.097 1.89 5.88 x10
-2

 . 0.5 

GRS49 4 0.271 0.098 2.751 5.94 x10
-3

 ** 0.8 

GRS49-weighted 4 0.244 0.098 2.498 1.25 x10
-2

 * 0.8 

GRS32 3 0.198 0.097 2.046 4.08 x10
-2

 * 0.8 

Table 2. 
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Legend to Supplementary Figures: 

 

Figure 1: The forest plot show the meta-analysis of the association of the weighted 

genetic risk score of 49 SNPs with CAC. The horizontal axis indicates the odds ratio for 

CAC per SD unit increase in the standardized genetic risk score. SEA indicates SNPs and 

the Extent of Atherosclerosis; ADVANCE-CARDIA, Atherosclerotic Disease, VAscular 

functioN, and genetiC Epidemiology-Coronary Artery Risk Development in Young 

Adults Study; FHS, Framingham Heart Study; MESA, Multi Ethnic Study of 

Atherosclerosis; ADVANCE, Atherosclerotic Disease VAscular functioN and genetiC 

Epidemiology; CHS, Cardiovascular Health Study.    

 

Figure 2: The forest plot show the meta-analysis of the association of the weighted 

genetic risk score of 32 non-risk factors SNPs with CAC. The horizontal axis indicates 

the odds ratio for CAC per SD unit increase in the standardized genetic risk score. SEA 

indicates SNPs and the Extent of Atherosclerosis; ADVANCE-CARDIA, Atherosclerotic 

Disease, VAscular functioN, and genetiC Epidemiology-Coronary Artery Risk 

Development in Young Adults Study; FHS, Framingham Heart Study; MESA, Multi 

Ethnic Study of Atherosclerosis; ADVANCE, Atherosclerotic Disease VAscular 

functioN and genetiC Epidemiology; CHS, Cardiovascular Health Study.    
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Figure S1. 
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Figure S2. 
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CHAPTER 5: DISCUSSION 

Since 2007, the GWAS approach has yielded more candidate regulators of 

cardiovascular traits and diseases than all of the genetics studies of the preceding era, yet 

the relative importance of these new loci to disease pathogenesis awaits future studies. 

We now have in hand a long list of genetic loci, harboring hundreds of genes, that 

enhanced our understanding of the genetic underpinnings of cardiovascular disease 

(CVD), but new approaches are needed to expose the missing variance
32, 88

. Focused 

studies investigating epistasis, gene-gene and/or gene-environment interactions, and rare 

variants in systematic and biologically plausible ways (such as through emphasis on 

genes in pathways) constitute novel alternative approaches
214

. For instance, most GWAS 

to date have been conducted in middle-aged and older adults so that the cumulative 

effects of multiple environmental effects or other gene-gene or gene-environment 

interactions in older age may have attenuated a modest but real genetic effect that may be 

more perceptible earlier in life. Such incomplete understanding of genetic and 

environmental causes and their interactions appeared to have puzzled those who 

attempted to identify a set of markers that could adequately explain or predict even a 

small fraction of complex diseases
215, 216

. Although, exhaustive epistasis examination 

imposes multiple comparisons, the examination between functionally related genes 

clustered in pathways would help reduce the multiples testing burden.  

 

Next-generation re-sequencing approaches will be key to the discovery of rare 

and low frequency variants with potentially larger effects that influence CVD. With the 

expectation that many more yet undiscovered loci, possibly including variants in the rare 

allele spectrum that might have larger effect sizes
217

, will contribute to explain the 

missing heritability for CVD. Another approach to discovering rare variants is to re-

sequence genes harboring common variants
218

 associated with CVD (as identified in 

GWAS). Since, most disease susceptibility loci identified by GWASs were found to be 

downstream targets of driver genes or were found in the boundary of gene regulatory 

networks
219

, suggesting that major driver genes are often missed in traditional SNP 

analyses. Accordingly, genes harboring one trait-associated variant (of any allele 
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frequency) are more likely to contain additional variants altering their expression and/or 

function.  

 

Additional insights into the lack of Blood Pressure (BP) variation may be 

explained through the study of ambulatory BP
220

 or other approaches that provide more 

frequent measurements. Epigenetic modifications (including DNA methylation, histone 

modification, and alteration of microRNA expression) are also likely to contribute, as 

microRNAs have already been implicated in hypertension
221, 222

 and could be key BP 

regulators by simultaneously influencing multiple genes. Epigenetic modifications 

constitute one hypothesized mechanism by which environmental factors interact with 

genes to influence BP. For instance, dietary factors cause epigenetic modifications. 

Therefore, increasing BMI through poor diet may influence BP through epigenetic 

modifications that alter expression patterns in the cell. Lastly, interrogating noncoding 

regions (such as regulatory elements) and structural variants by whole genome 

sequencing
223

 may help reveal the “dark matter” of hypertension pathophysiology. 

 

However, until there is direct molecular genetic evidence for these additional 

sources of genetic influence, missing heritability
88

 is not clarified, and questions will 

remain about whether the heritability of BP have been overestimated by quantitative 

genetic studies.  

 

The next principal challenges will be to define which of the susceptible markers 

are truly causal and to delineate the molecular mechanisms by which they influence 

atherosclerosis. Such study will ultimately yield important new genetic, epidemiological, 

and functional insights into the development of CVD. 

 

One strategy to identify causal genes is to perform deep re-sequencing of positional 

candidate genes in the hopes of uncovering “smoking-gun” mutations (nonsense 

mutations that yield truncated protein products or missense mutations that alter amino 

acids critical to protein function) that are clearly linked to phenotype.  
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Future efforts along these lines might involve choosing the top and bottom strata 

of a prospective cohort study, or recruiting individuals who present to clinics with 

extreme phenotype (for qualitative traits: extreme presentations of disease or health), and 

sequencing all of the novel GWAS-nominated positional susceptible markers in these 

individuals, followed by genotype replication in a full prospective cohort study to 

confirm association. One important shortcoming of the re-sequencing strategy is that the 

failure to find smoking-gun mutations in a gene does not rule out its being a causal gene 

but may simply reflect that there are no naturally occurring mutations in the gene to be 

found in the study population. This could be because the gene is so important to normal 

development and function that a rare variant greatly perturbing the gene's function would 

not be tolerated in a viable organism. Another possibility is that variants do exist but in 

populations different from the study population (e.g., a different ethnic group). Multi-

ethnic replications are useful in uncovering true susceptibility genes by identifying 

multiple significant top hits within a specific region, which is particularly valuable given 

allelic heterogeneity of the genetic effects
224

 (different alleles may cause the disease in 

different populations).  

 

Furthermore, causal variants likely exist in genes not identified by GWAS studies. 

This last point will soon be addressed by next-generation sequencing technology that will 

allow for whole-exome sequencing
225

 (i.e., all exons of all genes in the genome) and, 

ultimately, whole-genome sequencing. Application of this approach to complex traits 

such as blood pressure and coronary disease is likely to expand the identification of genes 

and variants. 

 

Undertaking functional validation in appropriate model systems is a parallel 

strategy to identify causal genes. For loci where there are obvious gene candidates, 

investigators can use mice as a model in which to study gene function and determine 

whether the genes influence atherosclerotic plaque formation or CAD risk factors 

(assuming that the genes have mouse orthologs) by using methods to reliably overexpress 

(e.g. viral vectors) and knock down (e.g. antisense/double-stranded RNAs) candidate 

genes. This somatic approach is preferable to generating transgenic or knockout mice for 
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each candidate gene (time-intensive). Furthermore, the ability to modulate specific traits 

in directions predicted to be favorable for MI risk by a somatic approach in mice 

forecasts a parallel strategy in humans that could be of therapeutic value. 

 

Loci in which there are no clear gene candidates (e.g. the 9p21 locus for MI, for 

which there is no annotated coding gene within the ∼58-kb span) may not be suitable for 

investigation in mice or other animal models. These loci most likely harbor non-genic 

regulatory elements, such as transcriptional enhancers, repressors, microRNAs that have 

long-range effects on distant genes; these elements may function quite differently in 

mice. It may ultimately prove necessary to study these loci in a human model system, 

such as human embryonic stem cells, to determine how they influence atherosclerotic 

disease. 

 

In order to utilize the new genetic information for treatment and prevention of 

CAD, it will be necessary to understand the functions of the gene(s) near the disease-

associated loci and the mechanisms through which they affect coronary risk. As 

mentioned before, most genes discovered so far do not fit into traditional risk 

mechanisms. 

 

Modern genetics open up an entirely new sight on the biology of CAD. It appears 

that its genetically triggered pathogenesis is largely independent of that mediated through 

traditional risk factors. Nevertheless, it may be that genetic risk variants require a specific 

environment to come into effect. Indeed, it is likely that genetic factors are embedded in a 

network that also includes modifiable co-factors. A better knowledge of these interactions 

will be crucial to gain the greatest benefit from this emerging information on the genetic 

predisposition to CAD. 

 

Clinicians may expect that addition of genetic information significantly will 

improve the predictive accuracy of risk scores. Nevertheless, data from future studies 

need to be awaited to learn which specific groups within our population benefit from 

determination of genetic risk. Any clinical application of genetic testing will require that 
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individuals receive not only precise estimations of risk but also profit from specific 

interventions that lower the overall risk of CAD. 

 

The contribution of genes to the development and progression of CAD, and 

response to risk factor modification and lifestyle choices are evident. Individuals with a 

genetic susceptibility for CAD generally have a higher risk to develop disease at an 

earlier age. The family history is still the best method for initial identification and 

stratification of genetic risk for CAD, which can be polished through biochemical and 

DNA testing. Knowledge of genetic susceptibility to CAD has importance in providing 

risk information and can influence lifestyle choices and management options. Genetically 

susceptible individuals will benefit the most from treatment of established CAD risk 

factors. In addition, numerous emerging risk factors are modifiable, and targeting these 

risk factors with specific therapies may result in improved CAD prevention. Family-

based prevention is the most effective for genetically predisposed individuals, since many 

established and emerging risk factors aggregate in families and most are open to lifestyle 

changes. Early detection of CAD may be appropriate for genetically susceptible 

individuals to guide decision-making about risk factor modification. Genetic evaluation, 

including pedigree analysis, genotyping, genetic counseling, and personalized 

recommendations for early detection, risk modification, and prevention strategies that are 

targeted to the genetic risk will result in improved health promotion and CAD prevention 

efforts. Translational research in CAD genomics will ultimately help to address a public 

health priority. Since CAD's genetic roots are diffuse, multifactorial, and 

nondeterministic because many variants scattered across the genome contribute to small 

risks for CAD. Thus, a polygenic risk score (summarize genetic effects among an 

ensemble of markers) may be useful. Lately there has been a growing interest in 

gathering multiple genetic markers into a single score for predicting disease risk. Even if 

many of the individual markers have no or small detected effect, the combined score 

could be a robust predictor of disease. This permitted researchers to validate that some 

diseases have a solid genetic basis, even if few actual genes have been discovered, and it 

has also revealed a common genetic basis for distinct diseases. Future studies are needed 
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that investigate the clinical utility of these approaches and the associated ethical, legal, 

and social issues. 
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