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Abstract

The development of autonomous vehicles capable of getting around on urban roads can

provide important benefits in reducing accidents, in increasing life comfort and also in providing

cost savings. Intelligent vehicles for example often base their decisions on observations obtained

from various sensors such as LIDAR, GPS and Cameras. Actually, camera sensors have been re-

ceiving large attention due to they are cheap, easy to employ and provide rich data information.

Inner-city environments represent an interesting but also very challenging scenario in this con-

text, where the road layout may be very complex, the presence of objects such as trees, bicycles,

cars might generate partial observations and also these observations are often noisy or even

missing due to heavy occlusions. Thus, perception process by nature needs to be able to deal

with uncertainties in the knowledge of the world around the car. While highway navigation and

autonomous driving using a prior knowledge of the environment have been demonstrating suc-

cessfully, understanding and navigating general inner-city scenarios with little prior knowledge

remains an unsolved problem. In this thesis, this perception problem is analyzed for driving in

the inner-city environments associated with the capacity to perform a safe displacement based

on decision-making process in autonomous navigation. It is designed a perception system that

allows robotic-cars to drive autonomously on roads, without the need to adapt the infrastruc-

ture, without requiring previous knowledge of the environment and considering the presence

of dynamic objects such as cars. It is proposed a novel method based on machine learning to

extract the semantic context using a pair of stereo images, which is merged in an evidential grid

to model the uncertainties of an unknown urban environment, applying the Dempster-Shafer

theory. To make decisions in path-planning, it is applied the virtual tentacle approach to gen-

erate possible paths starting from ego-referenced car and based on it, two news strategies are

proposed. First one, a new strategy to select the correct path to better avoid obstacles and to

follow the local task in the context of hybrid navigation, and second, a new closed loop control

based on visual odometry and virtual tentacle is modeled to path-following execution. Finally, a

complete automotive system integrating the perception, path-planning and control modules are

implemented and experimentally validated in real situations using an experimental autonom-

ous car, where the results show that the developed approach successfully performs a safe local

navigation based on camera sensors.
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Resumo

O desenvolvimento de veículos autônomos capazes de se locomover em ruas urbanas pode

proporcionar importantes benefícios na redução de acidentes, no aumentando da qualidade de

vida e também na redução de custos. Veículos inteligentes, por exemplo, frequentemente ba-

seiam suas decisões em observações obtidas a partir de vários sensores tais como LIDAR, GPS e

câmeras. Atualmente, sensores de câmera têm recebido grande atenção pelo motivo de que eles

são de baixo custo, fáceis de utilizar e fornecem dados com rica informação. Ambientes urbanos

representam um interessante mas também desafiador cenário neste contexto, onde o traçado das

ruas podem ser muito complexos, a presença de objetos tais como árvores, bicicletas, veículos

podem gerar observações parciais e também estas observações são muitas vezes ruidosas ou

ainda perdidas devido a completas oclusões. Portanto, o processo de percepção por natureza

precisa ser capaz de lidar com a incerteza no conhecimento do mundo em torno do veículo.

Nesta tese, este problema de percepção é analisado para a condução nos ambientes urbanos as-

sociado com a capacidade de realizar um deslocamento seguro baseado no processo de tomada

de decisão em navegação autônoma. Projeta-se um sistema de percepção que permita veículos

robóticos a trafegar autonomamente nas ruas, sem a necessidade de adaptar a infraestrutura,

sem o conhecimento prévio do ambiente e considerando a presença de objetos dinâmicos tais

como veículos. Propõe-se um novo método baseado em aprendizado de máquina para extrair

o contexto semântico usando um par de imagens estéreo, a qual é vinculada a uma grade de

ocupação evidencial que modela as incertezas de um ambiente urbano desconhecido, aplicando

a teoria de Dempster-Shafer. Para a tomada de decisão no planejamento do caminho, aplica-se

a abordagem dos tentáculos virtuais para gerar possíveis caminhos a partir do centro de referen-

cia do veículo e com base nisto, duas novas estratégias são propostas. Em primeiro, uma nova

estratégia para escolher o caminho correto para melhor evitar obstáculos e seguir a tarefa local

no contexto da navegação hibrida e, em segundo, um novo controle de malha fechada baseado

na odometria visual e o tentáculo virtual é modelado para execução do seguimento de caminho.

Finalmente, um completo sistema automotivo integrando os modelos de percepção, planeja-

mento e controle são implementados e validados experimentalmente em condições reais usando

um veículo autônomo experimental, onde os resultados mostram que a abordagem desenvolvida

realiza com sucesso uma segura navegação local com base em sensores de câmera.
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Résumé

Le développement de véhicules autonomes capables de se déplacer sur les routes urbaines

peuvent fournir des avantages importants en matière de réduction des accidents, en augmentant

le confort et aussi, permettant des réductions de coûts. Les véhicules Intelligents par exemple

fondent souvent leurs décisions sur les observations obtenues à partir de différents capteurs tels

que les LIDAR, les GPS et les Caméras. En fait, les capteurs de la caméra ont reçu grande at-

tention en raison du fait de qu’ils ne sont pas cher, facile à utiliser et fournissent des données

avec de riches informations. Les environnements urbains représentent des scénarios intéress-

ant mais aussi très difficile dans ce contexte, où le tracé de la route peut être très complexe,

la présence d’objets tels que des arbres, des vélos, des voitures peuvent générer des observa-

tions partielles et aussi ces observations sont souvent bruyants ou même manquant en raison de

occlusions complètes. Donc, le processus de perception par nature doit être capable de traiter

des incertitudes dans la connaissance du monde autour de la voiture. Tandis que la navigation

routière et la conduite autonome en utilisant une connaissance préalable de l’environnement ont

démontré avec succès, la compréhension et la navigation des scénarios généraux du environ-

nement urbaine avec peu de connaissances reste un problème non résolu. Dans cette thèse, on

analyse ce problème de perception pour la conduite dans les milieux urbains basée sur la con-

aissance de l’environnement pour aussi prendre des décisions dans la navigation autonome. Il

est conçu un système de perception robotique, qui permettre aux voitures de se conduire sur

les routes, sans la nécessité d’adapter l’infrastructure, sans exiger l’apprentissage précédente

de l’environnement, et en tenant en compte la présence d’objets dynamiques tels que les voit-

ures. On propose un nouveau procédé basé sur l’apprentissage par la machine pour extraire le

contexte sémantique en utilisant une paire d’images stéréo qui est fusionnée dans une grille

d’occupation évidentielle pour modéliser les incertitudes d’un environnement urbain inconnu,

en utilisant la théorie de Dempster-Shafer. Pour prendre des décisions dans la planification des

chemin, il est appliqué l’approche de tentacule virtuel pour générer les possibles chemins à

partir du centre de référence de la voiture et sur cette base, deux nouvelles stratégies sont pro-

posées. Première, une nouvelle stratégie pour sélectionner le chemin correct pour mieux éviter

les obstacles et de suivre la tâche locale dans le contexte de la navigation hybride, et seconde, un

nouveau contrôle en boucle fermée basé sur l’odométrie visuelle et tentacule virtuel est modél-

isée pour l’exécution du suivi de chemin. Finalement, un système complet automobile intégrant
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les modules de perception, de planification et de contrôle sont mis en place et validé expéri-

mentalement dans des situations réelles en utilisant une voiture autonome expérimentale, où les

résultats montrent que l’approche développée effectue avec succès une navigation locale fiable

basé sur des capteurs de la caméra.
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CHAPTER 1

General Introduction

Learn from yesterday, live for today, hope for tomorrow.
The important thing is not to stop questioning.

(Albert Einstein)

1.1 Context and Motivation

This thesis concerns a doctorate in “cotutelle”, under the scientific cooperation between

the Department of Computational Mechanics of the Mechanical Engineering Faculty from

Universidade Estadual de Campinas (DMC/FEM/UNICAMP) in São Paulo - Brazil and the

Heudiasyc Laboratory, UMR7253 CNRS/UTC at the Université de Technologie de Compiègne

(Heudiasyc/CNRS/UTC) in Compiègne - France. Justifying the scientific cooperation between

the institutions over several years, UNICAMP has been working jointly with UTC in the

exchange program between engineering students, called BRAFITEC (GELAS et al., 2007).

Among one of the visits made by the program coordinator of the UTC at UNICAMP in 2008,

professor Dr. Alessandro CORREA VICTORINO proposed a scientific cooperation more spe-

cifically inclined to Research and Technological Development between both institutions. After

this visit, UTC received the first doctoral student in the scheme of “cotutelle”, Arthur de Mir-

anda Neto, to work in the Heudiasyc Laboratory. As a determining factor in this collaboration,

the Heudiasyc laboratory has currently two labels, the LABEX MS2T and the ROBOTEX,

which classify the laboratory as being a center of excellence in research and also in equipments

inside and outside France. A consequence, this thesis is the second of more three “cotutelles”
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1 General Introduction

that have been in progress, consolidating this cooperation toward the sharing and transference

research of Technology and Innovation.

In this sense, this thesis is linked to the VERVE project1 ( Novel Vehicle Dynamics

Control Technique for Enhancing Active Safety and Range Extension of Intelligent Electric

Vehicles) from Heudiasyc - UTC and also, it is linked with the Autonomous Mobility Labor-

atory (LMA) team consolidated by the Ministerial Order N° 429 MCT as part of the National

Research in Brazil.

This research received a scholarship from Coordination Improvement of higher Education

Personnel (CAPES) under the process BEX N°9129/12-0 and National Council for Scientific

and Technological Development (CNPq) under the process Nº209656/2013-1 in Brazil. It is

important to mention that the experimental part of this work was carried out and funded in

the framework of the Equipex ROBOTEX (Reference ANR-10-EQPX-44-01). It was supported

by the French Government, through the program "Investments for the future" managed by the

National Agency for Research in France.

Right behind almost every research work, no matter the subject, there is always a so-

cial context which motivates it. Considering the causes of death around the world, According

to Bhalla et al. (2014), injuries and air pollution generated by motorized road transport were as-

sociated with six of the top 10 causes of death, including ischemic heart disease, stroke, lower

respiratory infections, etc., in 2010 (BHALLA et al., 2014). The statistics indicates that the

total number of road traffic accidents in the world remains unacceptably high at 1.24 million of

deaths per year (WHO, 2013). While the total number of fatal traffic accidents has been slightly

decreasing over the last couple of years, still more than 36.499 fatalities have been reported in

Brazil and more than 3.992 cases have been registered in France in 2013 (WHO, 2013). Aside

from the accidents in road transports, there is the undesirable side effect of significant source of

energy consumption (KOJIMA; RYAN, 2010).

It is expected that the development of robots capable of self-driving is a viable solution

to the problems mentioned. A robot is free of distractions and capable of making objective

decisions at every moment in time, ensuring a higher degree of safety. This advanced techno-

logy to address the development of autonomous cars would not only potentially reduce traffic

1<http://www.hds.utc.fr/heudiasyc/catalogue-131/projets-133/projets-aser/article/verve/> accessed on:
05/08/14
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1.2 Autonomous Vehicles

accidents, but also considerably improve the global energy consumption while offering better

driving comfort.

1.2 Autonomous Vehicles

For several years the design of autonomous vehicles is an area of particularly active re-

search in the field of mobile robotics. In 1939, General Motors participated in an exhibition at

the New York’s World Fair with the philosophy of “Building the World of Tomorrow”, which

had the most popular exhibit entitled “Futurama”. The industrial designer Bel Geddes had pro-

posed exhibit a world 20 years into the future featuring automated highways as a solution to

traffic congestion of the day which cars were powered by circuits embedded in the roadway

and controlled by radio. According to Geiger (2013), much of these projections are like modern

production lines working today. In the 1970s the first mobile robot was created, such as the

robot “Shakey” by SRI (NILSSON, 1984). The first driverless car was demonstrated in 1977

by the Tsukuba Mechanical Engineering Lab, that ran at 30 km/h on a dedicated track at Ja-

pan (BENENSON, 2008). In 1986, a team of engineers leaded by professor Ernst Dickmanns

equipped a Mercedes-Benz van with cameras and other sensors. Their experiments which were

based on well-marked streets without traffic, successfully demonstrated a driverless car capable

of driving in highway (DICKMANNS; MYSLIWETZ, 1992).

Afterwards, the European Commission began funding major research initiatives such as

Eureka PROMETHEUS project, CyberCars and CyberMove, as well as Bodega, MobiVIP in

France. They all have the objective of studying the problem of autonomous navigation in urban

environments. In 1995, a semi-autonomous car driving up to 175 km/h in highway from Munich

in Germany to Odense in Denmark, was demonstrated as one of the results of the Eureka project,

where this semi-autonomous car had about 5% of human intervention to accomplishment of the

complete experiment. Considerable results can be also seen by the research group of Alberto

Broggi in 1996 and 2010 (BROGGI et al., 2012), amongst others. With the Grand Cooperat-

ive Driving Challenge in 2011, the AnnieWay team from Karlsruher Institut für Technologie

(KIT), leaded by Christoph Stiller, has reached the state-of-art in autonomous platooning sys-

tems (GEIGER et al., 2012).
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The USA, the most notable developments came firstly from the Carnegie Mellon

University (CMU) Navlab project, which achieved 98% autonomous driving with manual

longitudinal control using the RALPH (Rapidly Adapting Lateral Position Handler) soft-

ware (POMERLEAU, 1995). Later, contributions in three widely known Defense Advanced

Research Projects Agency, DARPA-sponsored competitions: Two “Grand Challenges” in 2004

and 2005 (BUEHLER et al., 2007), and a “Urban Challenge” in 2007 (BUEHLER et al., 2010).

These competitions have enlarged the scope and boosted the production of new researches in

perception, control and motion planning. These areas cover probabilistic localization methods,

mapping techniques, tracking strategies, global and local planning and the decision management

through behavioral and deliberative hierarchies. The DARPA challenges have demonstrated that

embedded robotic system can completely operate a passenger car traveling over significant dis-

tances and manage complex situations arising from quasi-urban real conditions. In august 2012,

the Google enterprise announced that its google driverless car, a Toyota Prius equipped with

self-driving capabilities (WIKIPEDIA, 2012) which has completed over 300.000 miles without

accident, under the guidance of Sebastian Thrun and the current team lead Chris Urmson.

While one might think the problem is solved, some of the aforementioned projects are

targeted at tasks like highways driving, lane keeping/following, contrasting with this thesis that

deals with the more challenging task of understanding urban scene situations. And others, that

use more constraints like digital maps, or then, using expensive laser sensors to interpret the

environment. Therefore, there is indeed an important work, particularly on improving the ro-

bustness and reliability of the techniques used.

1.3 Conception and challenges of autonomous vehicle in

urban environment

After two decades of research progress, autonomous car has demonstrated enough tech-

nology to deal in indoor environments as well as in controlled outdoor environment. However,

designing an autonomous car to drive in a dynamic urban environment is still a challenge. Even

when the feasibility of the robotic task has been demonstrated with a prototype, defining the
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Trajectory Planning

Perception Control

Route Planning

Service Layer

V2V & V2I
Communication

Figure 1.1 - Main areas that model a type of the automatic car concept. Adapted Source: (BENENSON,
2008)

best methods to accomplish this task, with the lowest constraints and the lowest costs, remains

an open issues.

In this context, this thesis focuses on the scenario of autonomous car in inner-city scen-

arios, since it is the most challenging and the one with higher potential impact on daily life.

In his work, Benenson (2008) explains that the development of autonomous car can be decom-

posed in several areas of research and development. These areas are roughly grouped in six

fields of research that interact among them. As can be seen in Figure 1.1, developing such a ro-

bot presents multiple theoretical and practical challenges at different levels. A brief descriptions

of the mentioned fields of research are given here, highlighting their conceptions and challenges.

First of all, the mechanics of the car should be automated. All vehicle controls, such as

throttle, braking and steering can be controlled by electronic devices that can be coupled, or

even replaced by some specific mechanical components. Nowadays the automotive industry has

produced its commercial cars including several functionalities, starting from the automation

of actuators, called by “drive-by-wire”, until sophisticated onboard computers that manage a

complete automatic car system. In this sense, it is acceptable to consider that the mechanical

and automation issues are in an advanced stage, and today, the biggest challenging is centralized

at the signal and information processing layer.

The Service layer covers a wide area of research. It can include Human-Machine Interface

(HMI) that explores new ideas focused on innovative interaction and visualization strategies to
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keep increasing amount of information in vehicles easily accessible (SPIES et al., 2009). It

can consider the new concept that autonomous vehicles will provide large savings by allowing

travelers to rely on shared, self-driving taxis instead of personal vehicles, reducing ownership

and parking costs (FAGNANT; KOCKELMAN, 2013; LITMAN, 2014). Consider for example

the self-driving taxis. A business service model could be employed to process a request of a

customer that is using a mobile device. This leads to the development and design of the hardware

infrastructure, the software layer and the communication system required to accomplish this

task. According to Benenson (2008), to complete a request for a self-driving car it is required

to specify the HMI encounter location:

“Where is the user calling from?”

Trying to solve this question, the system could specify its location using GPS, WiFi loc-

alization and/or explicitly constructing an application to interact with the user demanding his

information. Then, defined the two points, where the customer and the self-driving car are loc-

ated, it is possible to generate a navigation plan to be executed by the autonomous taxis.

Navigation can be roughly described as the process of determining a suitable and safe

path between a starting and a goal point for a robot traveling between them (LATOMBE, 1991;

CHOSET et al., 2005). Among existing ways to structure a navigation, the concept applied in

this work considers an abstraction in multilevel organization. It means that there are two distinct

layers to make the navigation procedure (BENENSON, 2008), defined as global navigation or

route planning, and the local navigation or trajectory planning, as illustrated in Figure 1.1. At

the route planning, challenges are concerned to solve multiple related optimization problems to

find the best solution from all feasible paths between these two points in a given map. This field

of research tries to estimate the solution depending in what situation the problem is conditioned.

Taking the last cited example, some questions arise (BENENSON, 2008):

“Which is the best path to reach point B from A?”

“How to predict the traffic flow?”

“Which vehicle should serve a request?”

These logistic aspects impose a complex challenge to be solved and suboptimal solutions

can be demonstrated (AWASTHI, 2004; AZI et al., 2007; POLIMENI; VITETTA, 2012). An

application example in this field is given by Google Maps, as shown in Figure 1.2.
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Figure 1.2 - A example of Route Planning given by Google Maps

At the trajectory planning, a safe trajectory has to be molded as a sequence of states in

time conditioned to some aspects that should be taken into account, the accomplishment of

the objective defined at the route planning, the obstacle avoidance and geometric restrictions

of the car. Therefore, safe trajectory planning of nonholonomic robot in uncertain dynamic

environment is an interesting challenge to be solved and recently it has been the focus of several

researches with different strategies. In this case, the questions that arise are:

“How to reach a goal from where I am?” (Localization and planning)

“How to find a safe trajectory in an uncertain dynamic environment?” (Perception and

planning)

Figure 1.3 shows a typical scenario of a local environment where the trajectory planning

is conditioned. As can be seen, to perform the trajectory planning, the robot should be able

to perceive the environment around it and then control its movements to follow the estimated

trajectory.

The perception module is responsible to build a consistent representation of the environ-

ment, transforming data acquired from sensors in useful information. Depending on how robust

and rich this representation is modeled, it directly impacts on the performance of the trajectory

and control procedures. In the work of Levitt and Lawton (1990), some questions in the scope of
7
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Figure 1.3 - An example of Trajectory Planning made at local environment.

Figure 1.4 - An example of urban scenario.

navigation, intrinsically related to the perception of the robot, are globally defined, as explained

by Benenson (2008):

“Where I am?” (localization)

“What is around me?” (exoperception, obstacles detection)

“Are there indications on the road?” (application of specific perception)

The actual research in autonomous navigation addresses several fields of the perception

that includes scene understanding, map representation and localization. In the next section the

key elements to perform a safe navigation are discussed, considering these mentioned aspects,

using strategies to lead with images acquired from urban scenario such as this one illustrated by

Figure 1.4.

The Control module is responsible to ensure that the physical trajectory defined by the

8
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Figure 1.5 - Vehicle to Vehicle Communication example 2.

planner is followed, having a closed control loop along its displacement. It is deeply coupled

to the perception and trajectory modules. Poor environment model leads to divergence between

reality and estimated observation. It forces the trajectory to perform abrupt paths, making hard

its execution. Considering the geometric restrictions of the car, and its dynamics, the model that

governs a nonholonomic car becomes a problem not trivial. Different models using linear and

non-linear methods are found in literature (LAUMOND, 1998). However, non-linear control of

nonholonomic robots is still an open problem for the general case (BENENSON, 2008).

To finish the explanation of Figure 1.1, the last module concerns the communication

among vehicles. According to Santa et al. (2013), communication architectures integrating

Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications will be the key

of success for the next generation of cars. They aim at improvements in transportation, greater

energy efficiency, less road construction, reducing collisions and safety of vehicle occupants, as

illustrated in Figure 1.5.

In V2I, the infrastructure plays a coordination role by gathering global or local inform-

ation on traffic and road conditions and then suggesting or imposing certain behaviors on a

group of vehicles. In the case of V2V, it is more difficult due to its decentralized structure, it

aims at organizing the interaction among vehicles and possibly develop collaborations among

2Source: <http://www.safercar.gov/v2v/index.html> Accessed on: 22/07/2014
9
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them (WEIß, 2011). Actually, this field of research has been centralized at defining patterns of

communication and also studying security assessment of Vehicle Services, since many applica-

tions will be offered to the drivers and smaller hand-held devices like Android and iPhones will

be seamlessly integrated into the vehicles’ networks. Thus, some questions arise to be answered:

“What is the best communication technology to be used for vehicular communication

architecture?”

“How to design security systems able to void possible attacks?”

“How to manage decentralized structure among vehicles?”

Large discussion about challenges in this field can be seen in an Intermediate Report on

the Security of the Connected Car (2012). Such a communication system is likely to interact at

multiple levels of the self-driving cars.

1.4 Key elements for autonomous navigation

Based on the conceptions explained before, it is possible to derive some capabilities that

are essential to the autonomous navigation and used in this study. Among all tasks, the autonom-

ous navigation should be able to accomplish the following tasks:

To achieve these tasks, the vehicle needs to know its position, characterize its environ-

ment, plan its trajectory and follow it in a controlled way. Therefore, the autonomous vehicle is

facing with the problems of localization, perception and planning.

1.4.1 Localization

The location task in urban environment is not trivial and it serves to answer the essential

question mentioned before, “Where I am?”. Two approaches can be used:

It can be located in a relative way, with respect to its previous position (generally considering

10
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its initial position). To do this, it must know its movement and, in this case, it is denoted by

odometry. This technique consists of estimating the movement of the vehicle on an short instant

of time using proprioceptive sensors. Thus, the displacement of the vehicle can be obtained by:

- Encoders placed on the wheels of the vehicle: speed measurement.

- Inertial units: measuring acceleration (accelerometers) and angular velocity (gyroscopes).

- Or exteroceptive sensors: Camera, LIDAR, sonar.

Furthermore, the vehicle may also be located in an absolute manner. In this case, the

principal method used by excellence is the global positioning by satellites (GPS, GLONASS,

GALILEO, etc). It provides a georeferenced position of receiver by measuring the time of re-

ception of signals transmitted by satellites, enabling its localization. It should be mentioned that

both approaches can be fused as well.

1.4.2 Environment perception

As mentioned, the environment perception can be defined as a complex process to model

a consistent representation of the environment, transforming the data acquired from sensors in

useful information. Then, the perception is employed to solve three kinds of problems:

Ego-Localization: As it was already considered in section 1.4.1, the perception can be

used to self-localization of the environment by answering the question “where am I in my local

environment?”. This problem is mainly based on the detection and correspondence of natural

features of the environment in the referential of the vehicle, where the absolute position is

known or estimated. In the case where the position of the detected elements are unknown, but

they are static and incremental, it is possible to model the perception to build a map in which

these elements are positioned relative to the vehicle, and then, based on this map, it is possible

to locate itself. This problem is known as Simultaneous Localization and Mapping (SLAM) and

had its formalism firstly defined by Smith and Cheeseman (1986)

Object detection, tracking and recognition: The main role of perception is to detect

and characterize the obstacles in the environment of the vehicle. This action can be broken into

11
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two basic tasks: the detection and localization of objects in the environment.

The detection process answers the following question: “What is around me?”. If there

are elements present in the scene, this process is frequently complemented by the location task,

which answers the subsequent question: “Where are these elements located?”.

These two tasks are the basis of any perception system. They require the use of extero-

ceptive sensors to gather data about the vehicle’s environment. Once defined these tasks, it is

possible to classify these elements using a machine learning process to provide a better under-

standing of the scene. Further, the tracking of mobile objects might be applied to establish a

temporal relationship between detections of the sensor and also to increase the robustness of

the detection front to measurement errors and occlusions.

Determining the free area of the road: The perception is also useful for determining

the free areas, which means, the area where the vehicle can move without collision. In several

works, the free area is defined using the dual of the obstacle detection. This area is determined

implicitly, derived from the detection and tracking of obstacles. However, this is not always

true, considering the urban environment. In this type of scenario, the free space is composed

by the street and infrastructure elements such as sidewalk. Thereby, the navigable area must be

explicitly determined, preventing the autonomous vehicle to drive over a sidewalk for example.

In the field of driverless cars, there are many approaches including this one, that use the

explicit representation of the navigable space to perform the trajectory planning (URMSON et

al., 2007; MONTEMERLO et al., 2008; CHERUBINI; CHAUMETTE, 2011).

1.5 Problematic of the thesis

In this thesis, the main difficulties associated to the perception in urban environment are

analyzed. This problem is closely related to the problematic of autonomous navigation. There-

fore, it is proposed a perception-planning method able to deal with an heterogeneous environ-

ment populated by static and moving objects. This scenario poses an interesting problem and

is challenging due to the heavy occlusions caused by objects in the scene, difficulties caused

12
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by the sensor noise leading to inaccurate, sporadic measurements and noisy depth estimates as

well as limited camera field of view. Other, even if these problems are clarified in the percep-

tion, another two interesting issues arise in the planning and navigation process. The first one

is associated with the fact that trajectory planning tries to reach a precise point on a local map,

while current route planning provides information within a few meters of error (taking into

account any route planning generated by a common commercial navigation product). In this

sense, the low precision way points have to be matched to the centimetric precision map used

for trajectory computation. The second one is related with the capability that the vehicle passes

from one region to another, defined by the route planning (for example switching between two

streets). Since the trajectory planning method tries to reach a goal defined by a specific vehicle

state (a specific point on the road), its extension to consider the notion of “goal region” is non

trivial.

The comprehension of this thesis tries to mold the work around the following statement:

“Perception in inner-city scenarios can be done without the need for adapting the

infrastructure to ensure integrity on the local navigation process.”

In particular, the proposed method tries to answer the following questions:

• “Where are the streets?” (Different from free space that does not distinguish street

and sidewalk)

• “Where are the vehicles located?” (Differentiation of the various obstacles classes)

• “Which car is moving?”

• “What is the current traffic situation?”

• “How to find a safe trajectory to reach a defined goal in an uncertain environment?”

• “How to bind the route planning in the trajectory planning?” (Association of global

and local navigation)

Under these circumstances, it is tried to answer the aforementioned questions using visual

measurements alone, which provide substantial information of the environment such as texture

and deep at low-cost, never get outdated (as map do) and mimic the human perception process.

Further, cameras are already onboarded on standard vehicles differently from laser scans, that

are still more expensive. It should be mentioned that cameras still have some restrictions such

as weather and nighttime environments.
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This thesis, as part of the field of visual perception for car-like robot, or the so called

intelligent vehicles, is associated to the field of mobile robotics and computer vision. It deals,

in context of SLAM, with the challenge of semantic context association in the local dynamic

evidential grid. Considering the semantic context, it also addresses the problem of segmenta-

tion process and recognition of road detection and urban scene understanding. In the field of

navigation, this work seeks to solve the last two concerned questions. Following these mul-

tidisciplinary domains that are merged to reach those objectives, this work proposes a solution

system depicted in Figure 1.6. As can be seen, a set of tasks have been designed for accomplish-

ment of an appropriate perception scheme which allows its validation into a safe displacement

based on decision-making process in autonomous navigation. The solution approach is divided

into four main tasks defined as (I) Semantic Context, (II) Dynamic Evidential Grid, (III) Local

Navigation and (IV) Global Navigation.

The (I) Semantic Context task aims to urban road scene understanding. In this layer, it is

developed four modules that produce meta-knowledge from a pair of stereo images. The first

module, the Image Segmentation, is used to obtain the super-pixel segments. The Texton Map

and Dispton Map modules are employed to compose a set of features to represent each super-

pixel segment into the Machine Learning module. This last module receives these computed

information and then it constructs feature descriptors for the whole super-pixel segments, ad-

dressing these vectors to be classified in a proposed classifier. Using this structure, the principle

to get the meta-knowledge is applied for two complementary contexts. The first one concerns

only Road Detection. In autonomous navigation, the basic and principal capability of such sys-

tem is to recognize precisely the road in front of the vehicle, where any driving maneuver or

vehicle control should be performed. The second context is characterized as an extension of

road detection, considering more elements to be classified and in this case, performing the se-

mantic urban road scene understanding. The output result of the (I) Semantic Context task is

illustrated in Figure 1.6(a). Early road detection approaches, specifically related to vision-based

principle, seek to use a large diversity of features ranging from spatial ray features, color, tex-

ture or then applying techniques in 3D data information such as V-disparity map. These features

alone are not sufficient to deal in the context of inner-city scenarios yet. As a contribution, this

thesis aims to combine 2D and 3D data, enhancing the detection and reducing the drawback of

each approach running separately. In this sense, one of the proposed classifiers has become a

cutting-edge approach in the field of road detection, where it will be detailed in Chapter 3.
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The (II) Dynamic Evidential Grid task aims to perform a local perception mapping and

characterization of static and moving obstacles using the output responses leveraged by the

layer (I). The (II) Dynamic Evidential Grid layer comprises three modules responsible to model

a dynamic local occupancy grid, applying the Dempster-Shafer Theory. The Structure from

Motion (SfM) module is applied to get the rigid transformation between two successive pair

of images. The Sensor Grid module builds a novel inverse sensor model that projects 3D point

obtained from the disparity map into a metric grid, taking into account the noise in the stereo

measurements and the uncertainty linked with stereo geometry reconstruction, where exponen-

tial error is observed increasing the distance. Furthermore, the meta-knowledge extracted from

urban road scene understanding is associated into this proposed inverse sensor model, where

it provides a better and reliable representativeness of navigable, infrastructure and obstacles

areas. After that, the Perception Grid module performs the temporal fusion and mobile cells

detection. There are several approaches in the field of occupancy grids that propose an inverse

sensor model using laser sensors and also incorporating meta-knowledge information extracted

from digital maps, which requires in this case a precise global localization to associate these in-

formation. Other approaches, taking advantage of the stereo vision to propose an inverse sensor

model, are based on epipolar geometry techniques together with V-disparity methods. They ex-

tract 3D points and distinguish these points in obstacles and non-obstacles to reproject in the

grid. Differently, this work proposes a method that takes into account the semantic context in-

formation with epipolar geometry to generate the inverse sensor model. Compared with studied

approaches, it does not require neither some prior digital map information, nor a precise global

pose estimation. The proposed Dynamic local Perception grid contributes to the grid-based ap-

proaches and allows to account semantic, dynamic and uncertainty aspects in the representation

directly. The output result of this layer (II) can be seen in Figure 1.6(b) and it will be detailed

in Chapter 4.

The proposed navigation adopts an hybrid approach. This hybrid approach mimics the

conception like humans may drive in urban environments. The (IV) Global Navigation layer

has the Route Planning module that uses a topological representation to generate the complete

route planning. It is usually run as a planning phase before the robot-like car begins its jour-

ney. The actual approach considers only a local navigation task at the moment although it uses

this theoretical concept to model a framework that binds the route planning in the context of

path-planning, performing in this way a deliberative-reactive navigation. In this case, a met-

ric representation principle is employed to local navigation task, which is more appropriate to
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Figure 1.6 - The proposed solution for autonomous navigation using only a pair of stereo camera sensor.

reactive issues and is more robust to localization errors. Therefore, the (III) Local Navigation

layer has two modules to accomplishment of this task. The first one, Path-Planning module, is

responsible to generate the correct path by where the vehicle should go, applying a new exten-

sion of the virtual tentacles approach. The Path-Following module uses a simple proportional

control to ensure the real execution of the desired commands based on a new closed loop control

scheme. While the virtual tentacles approach is able to deal in the context of global navigation

using the trajectory planning by precise GPS information, its original version is not modeled to

deal with hybrid navigation strategy, becoming necessary some improvements to cope with it.

As contributions in this field, a new strategy to select the correct path to better avoid obstacles

and to follow the local task in the context of hybrid navigation is proposed, introducing the

notion of mutant point, as can be seen into the output result of the Path-Planning module in

Figure 1.6(c). Further, at the best of us knowledge this work is the first one to apply a specific

path-following scheme, it means, a new closed loop control based on visual odometry and vir-

tual tentacle is modeled to path-following execution, which is illustrated in Figure 1.6(d). These

concepts and developments will be better explained in Chapter 5.
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1.6 Contributions

Besides the aforementioned contributions, others works have been published along the

period of doctorate, where several research lines were studied:

• VITOR, G. B.; VICTORINO, A. C.; FERREIRA, J. V. A histogram-based joint

boosting classification for determining urban road (extended abstract). In: Interna-

tional IEEE Conference on Intelligent Transportation Systems (ITSC). [S.l.:

s.n.], 2014.

• VITOR, G. B.; VICTORINO, A. C.; FERREIRA, J. V. Comprehensive perform-

ance analysis of road detection algorithms using the common urban kitti-road

benchmark. In: Workshop on Benchmarking Road Terrain and Lane Detection

Algorithms for In-Vehicle Application on IEEE Intelligent Vehicles Sym-

posium (IV). [S.l.: s.n.], 2014.

• VITOR, G. B.; VICTORINO, A. C.; FERREIRA, J. V. A probabilistic distribution

approach for the classification of urban roads in complex environments. In: Work-

shop on Modelling, Estimation, Perception and Control of All Terrain Mobile

Robots on IEEE International Conference on Robotics and Automation

(ICRA). [S.l.: s.n.], 2014.

• LIMA, D. A.; VITOR, G. B.; VICTORINO, A. C.; FERREIRA, J. V. A disparity

map refinement to enhance weakly-textured urban environment data. In: Interna-

tional Conference on Advanced Robotics (ICAR), 2013 IEEE. [S.l.: s.n.], 2013.

• VITOR, G. B.; LIMA, D. A.; VICTORINO, A. C.; FERREIRA, J. V. A 2d/3d vis-

ion based approach applied to road detection in urban environments. In: Intelligent

Vehicles Symposium (IV), 2013 IEEE. [S.l.: s.n.], 2013. p. 952–957.

• BELENO, R. D. H.; VITOR, G. B.; FERREIRA, J. V.; MEIRELLES, P. S.

Planeacion y seguimiento de trayectorias de un vehiculo terrestre com base

en el control de dirección en un ambiente real. In: Primer Congreso Inter-
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nacional sobre Tecnologias Avanzadas de Mecatronica, Diseño y Manofactura

(AMDM). [S.l.: s.n.], 2013.

• BELENO, R.; VITOR, G. B.; FERREIRA, J. V.; MEIRELLES, P. Proposta de

uma plataforma de testes para o desenvolvimento de veículos autônomos. In: XIX

Congresso Brasileiro de Automática (CBA). [S.l.: s.n.], 2012. v. 1, p. 2735–2742.

ISBN 978-85-8001-069-5.

• VITOR, G. B.; BELENO, R. D. H.; FERREIRA, J. V. Fuzzy application for

mobile robot navigation using computer vision in real-time. In: In proceedings on

Congreso Internacional de Innovación y Tecnología: Sistemas Mecatrónicos.

[S.l.: s.n.], 2011.

• KORBES, A.; VITOR, G.; LOTUFO, R. de A.; FERREIRA, J. Advances on water-

shed processing on gpu architecture. In: SOILLE, P.; PESARESI, M.; OUZOUNIS,

G. (Ed.). Mathematical Morphology and Its Applications to Image and Signal

Processing. [S.l.]: Springer Berlin / Heidelberg, 2011, (Lecture Notes in Computer

Science, v. 6671). p. 260–271. ISBN 978-3-642-21568-1.

• VITOR, G. B.; KöRBES, A.; LOTUFO, R. D.; FERREIRA, J. V. Analysis

of a step-based watershed algorithm using cuda. International Journal of

Natural Computing Research (IJNCR), IGI Global Disseminator of Know-

ledge, v. 1, p. 16–28, 2010. Available from: <<http://www.igi-global.com/article/

analysis-step-based-watershed-algorithm/52612>>.

1.7 Outline of the manuscript

This thesis contains a detailed description of the methods, theoretical concepts, experi-

mental observations, results and conclusions of this research. Every chapter constitutes a small

step towards the implementation of a complete system for safe autonomous navigation in urban

environment. Following the proposed system, the manuscript is divided as follows:
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1.7 Outline of the manuscript

- In Chapter 2, it is presented the related works in the principal areas that concern the scope

of this thesis, considering the key tasks presented in section 1.4 and positioning the

proposed approach with respect to previous works.

- In Chapter 3, it is addressed the Urban Road Scene Understanding to autonomous driving

(introduced by the I- Semantic Context in Figure 1.6). In this case, two phases are

proposed to accomplish this task, that are the road detection and then the Urban

Scene Understanding. A meaningful performance analysis considering three pro-

posed algorithms are produced, highlighting the pros and cons of each one. Based

on this fair performance comparison, the best algorithm is chosen to compose the

process explained in the next chapter.

- In Chapter 4, it is described the formalism of occupancy grid based on Dempster-Shafer

theory to manage uncertainties come from the dynamic urban environment (em-

phasized by the II - Dynamic Evidential grid in Figure 1.6). Additionally, the com-

plete Local Dynamic Perception is detailed associating the meta-knowledge extrac-

ted from the semantic context to the evidential grid. Results demonstrated the viab-

ility of this new approach.

- In Chapter 5, it is discussed the navigation approach using virtual tentacles to determine

the best trajectory as well as the detailed experimental platform. The approach con-

siders a local navigation task, and gives a framework to bind the route planning in

the context of trajectory planning. The experimental result was implemented using

the PACPUS framework and tested with the ZOE platform in the test track of the

Heudiasyc Laboratory.

- In Chapter 6, the conclusions and perspectives are presented.
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CHAPTER 2

Related Works

We cannot solve our problems with the same thinking we
used when we created them.

(Albert Einstein)

This work is more centralized at modeling the local environment at the time that the nav-

igation is happening, using visual strategies. It necessarily falls in the problem of SLAM. Once

the robot has handled properly these two tasks (localization and mapping), it can perform other

tasks more or less complex depending on what it is designed (CHAPOULIE, 2012). So, this

chapter presents the principal works in literature, taking into account the three fundamental

tasks that the autonomous vehicles must do for driving, it means localization methods, per-

ception tasks and trajectory planning, as described in section 1.4. It starts with an overview of

the development of localization systems followed by environment perception which highlights

the research in road detection, semantic image recognition and geometric representation of the

environment. Finally, it is presented approaches developed to trajectory planning.

2.1 Localization

To locate a vehicle, the primordial system is the GPS. It provides a georeferenced position

of the receiver by measuring the time of reception of signals transmitted by satellites, enabling

its localization. Despite this system be employed in a extensive range of applications such as

maritime, aerial and terrestrial transports, low-cost sensors commonly found in commerce have
21
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a low precision in order of few tens of meters. This effect restricts its direct application in

autonomous vehicle due to the requirement on accuracy of the trajectory planning in the order

of centimeters, as example to distinguish the traffic lane from the sidewalk.

A feasible solution to estimate the 3D pose of the vehicle can be performed by cameras.

This kind of exteroceptive sensor provides a rich information (geometric and photometric), is

precise, low-cost sensor and easily embedded in vehicle. Visual localization can be estimated

considering the camera displacement relative to a fixed referential. This referential might be,

for example, the first image of a sequence or, then, a known object that is tracked along the

image sequence, enabling the extraction of the relative position between the camera and the

object. According to Meilland (2012), the strategies to estimate the camera movement between

two sequence of images can be divided to two groups, feature-based methods and image-based

methods.

In Feature-based methods, a sparse set of points is extracted per image frame and the

points are matched temporally based on their feature descriptor. Frequently, the feature ex-

traction is based on the points of Harris and Stephens (1988), SIFT (Scale Invariant Features

Transform) proposed by Lowe (2004) or SURF (Speeded-Up Robust Features) demonstrated

in Bay et al. (2008). The matching process is performed using SSD (Sum of Squared Differ-

ences) or SAD (Sum of absolute differences) and also employing some technique to improve

the robustness, such as RANSAC (Random Sample Consensus) established in (FISCHLER;

BOLLES, 1981). This strategy is the most commonly used for pose estimation between im-

ages, thanks to the reduction of feature points contained in the images (GEIGER et al., 2011;

BADINO; KANADE, 2011; BADINO et al., 2013). Differently from the feature-based methods,

Image-based methods are not used for the feature extraction. The displacement of the camera

is obtained directly from the raw image data, minimizing the error between the two images

by a process of image registration (TYKKALA; COMPORT, 2011). This kind of strategy is

frequently applied for both planar surface and multi planar surfaces (SILVEIRA et al., 2008;

DAME; MARCHAND, 2010).

To reach the problem of SLAM in the scope of localization, classically, the methods em-

ploy variations of these two strategies explained before, adding some estimator such as Kalman

filter, Particle filter or then changing the configuration of the cameras to gather some benefit

for example using mono, stereo or omnidirectional approach (MONTEMERLO et al., 2002;
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DAVISON; MURRAY, 2002; THRUN, 2002; DURRANT-WHYTE; BAILEY, 2006; KLEIN;

MURRAY, 2007; COMPORT et al., 2010; WU; QIN, 2011). However, these approaches present

a problem of drift, generated by the integration error, for long distances. To avoid it, some ap-

proaches like Williams et al. (2009) and Chapoulie et al. (2011) use the loop-closure detection

to identify places by where the vehicle has already passed. Other approaches divide the loc-

alization into two steps. Firstly they consider a model of map built off-line using a technique

of learning such as image memory, where the map model is represented by a graph containing

key-images extracted from a learning process before the navigation. Secondly, it is performed

an localization ego-centered (relative localization), associating the image acquired on-line with

the database modeled, enabling a global localization inside this learned model (MEILLAND et

al., 2010; MEILLAND, 2012).

Based on these aforementioned approaches, this thesis uses a solution of localization ego-

referenced to perform an accurate navigation, avoiding propagation errors related to reconstruc-

tion and geometric approximation. The global localization can be expressed by a common GPS,

where the required precision to navigate is already solved by the ego-localization.

2.2 Environment Perception

One major challenge for intelligent autonomous driving systems is the requirement to

perceive and interpret the environment (GEIGER, 2013). It is aimed on cheap and reliable visual

perception and this section surveys the current state-of-the-art in this field. The spectrum of the

referenced works ranges from very task-specific methods (e.g. road detection) to more general

urban scene understanding approaches (e.g. semantic image recognition), positioning this work

among the existent approaches concerned to geometric representation of the environment.
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2.2.1 Road Detection

Research into Intelligent Transportation Systems (ITSs) has seen considerable develop-

ment over the last few decades, particularly in fields of vehicle safety and autonomous driving.

The latest driving-assistance systems include many vision-based applications such as lane de-

tection (ASSIDIQ et al., 2008), road detection (KUEHNL et al., 2012) and pedestrian detec-

tion (BROGGI et al., 2009), providing drivers with useful information. Current vision-based

solutions for Intelligent Vehicles are mostly focused on the detection of obstacles such as ped-

estrians, bicyclists and other cars (BEHLEY et al., 2013). However, research into Advanced

Driving Assistance Systems (ADAS) is making steady progress toward the implementation of

systems for urban road scene understanding and not merely obstacle detection. The system for

urban road scene understanding can be done by archiving both object recognition and semantic

segmentation in inner-city scenarios. A method to automatically classify each pixel and then

extract the meaningful regions of a inner-city scene would be particularly helpful in ADAS and

also in application of autonomous driving.

Several approaches specifically related to vision-based for road detection have been pro-

posed, varying from mono to stereo or omnidirectional vision sources. These specific methods

are useful in cases of less structured roads, for example when driving on dirty roads, as required

during the navigation in inner-city scenarios. They aim at solving several challenging problems

such as the continuous change of backgrounds in different environments (inner-city, highway,

off-road), the different road types (shape and color), the presence of different objects (signs,

vehicles, pedestrian) and also the different imaging conditions (variation of illumination and

weather conditions).

Early approaches directly classify each pixel using the gray value structure tensor as

feature (ZHANG; NAGEL, 1994). To increase robustness, approaches using Mono vision are

based on color (ALVAREZ et al., 2009; ALVAREZ; LOPEZ, 2011; TAN et al., 2006), tex-

ture (RASMUSSEN, 2004; KONG et al., 2010) or the combination of both (STURGESS et al.,

2009) (YUN et al., 2007). Despite the rich amount of information present in the color feature,

which imposes less physical restrictions by performing the detection according to some similar-

ity, it may fail due to high intra-class variability present in the dynamic nature of the scenes. The

texture is scale-dependent and is affected by the strong perspective in road image. Techniques
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such as V-disparity Map (LABAYRADE et al., 2002; BROGGI et al., 2005) are examples of

approaches that use 3D information as a source. However, these techniques must deal with dif-

ferent noise sources, such as shadow, road texture, light variations, that make hard to create

the disparity map. An alternative to overcome these constraints is to combine 2D and 3D data,

enhancing the detection and reducing the drawback of each approach running separately. Some

works that use this approach are shown in (SOQUET et al., 2007a; VITOR et al., 2013).

This work details a novel method aimed to inner-city scenarios, merging 2D and 3D in-

formation. In fact, it is presented three approaches that were developed during this PhD course

that are a extension of the works (VITOR et al., 2014a) and (VITOR et al., 2014c).

2.2.2 Semantic Image Recognition

While the approaches described so far are largely rooted in the domain of robotics and

intelligent vehicles, the perceptual side of scene understanding has received a lot of attention in

the computer vision and machine learning communities as well.

Seeking to enlarge this road detection concept to scene understanding, the idea is to ex-

pand this pixel based classification to be used to identify multiple scene elements in the field of

view, including the road surface. Therefore, it is introduced the most important developments

in this field, where the principle of all works are to partition the input image into disjoint re-

gions and assign an unique class label (e.g., car, build, vegetation, sidewalk, sky, etc.) to each of

them (KUMAR; HEBERT, 2003a; KUMAR; HEBERT, 2003b; TU et al., 2005; BILESCHI,

2006; WOJEK; SCHIELE, 2008; BROSTOW et al., 2008; LADICKY et al., 2009; BACH-

MANN; LULCHEVA, 2009; STURGESS et al., 2009; DESAI et al., 2009; ESS et al., 2009;

GOULD et al., 2009; ZHANG et al., 2010; LADICKÝ et al., 2010; FLOROS; LEIBE, 2012;

GUO; HOIEM, 2012; ZHU et al., 2012). These approaches commonly employ offline training

or learning using a variety of feature representations like appearance, color, shape or depth to

model each class in the scene. These features are then combined to build a spatial smoothness

prior for a Markov Random Field (MRF) or Conditional Random Field (CRF) optimization to

infer the semantic information for each pixel or super-pixel (i.e., pixel sets with homogeneous
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attributes).

While these models handle directly at the pixel and/or super-pixel-level, they provide

useful cues which are exploited as features in the same proposed framework of road detection,

developed in this thesis. It is aimed to infer the full layout of the scene into an occupancy grid

representation including the accurate position and meta-knowledge of buildings, the street, the

sidewalk and all vehicles, as reviewed in the next section.

2.2.3 Geometric representation model of the environment

All these road and obstacle detection methods presented, including localization methods,

require a special modeling of the environment. It is denoted by mapping in the context of SLAM.

Although most of these representations are metric, there are also approaches using topological

representations in 2D space and also in 3D space that have demonstrated outstanding results re-

cently, as can be seen in the work of Meilland et al. (2014). Here, it is presented the main modes

of geometric representation and their use into existing perception systems, which are divided in

Feature-based and grid-based approaches. It should be mentioned that the map-building is dir-

ectly associated with vehicle location, as previously presented in section 2.1. Therefore, these

approaches have the same meaning as before.

Feature-based approach: This method uses geometric features to represent the envir-

onment. The type of feature used is dependent on the target application, the environment con-

sidered, the accuracy required and the computational power. In many cases, the bird’s eye view

modeling is employed. As explained, this method depends on the feature extraction and match-

ing to ensure the consistency of the mapping at each instant of time.

Many Feature-based SLAM systems, such as Montemerlo et al. (2002), use a represent-

ation of the environment based on natural features. In this kind of approach, the environment

is represented by a state vector containing the coordinates of these landmarks. The state vector

is filtered over time using Kalman filter (KALMAN, 1960) or particle filter (JULIER; UHL-

MANN, 2004). The upgrade process between detections is resumed to the problem already

referred of data association, that is processed in different ways (SHALOM et al., 2000; HäH-
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NEL et al., 2003). In others, this representation concerns the obstacle detection using 2D or

3D shape-models. It depends on the application. In Petrovskaya and Thrun (2009) and Fayad

and Cherfaoui (2007), they are interested in vehicle detection using laser sensors, which objects

are modeled as rectangular boxes and also performing the tracking over time. As observed, the

problem of SLAM considers that the keypoints are fixed. To avoid the impropriety with the

inclusion of moving entities, the SLAMMOT algorithm, as presented in (LIN; WANG, 2010),

is proposed as a form to improve the mapping, avoiding the usage of these keypoints in the

localization process. According to Moras (2013), some pros and cons can be highlighted for

feature-based representation:

- Advantages:

• Simple representation

• Easy propagation over the time

• Mobile objects are considered

• Low memory consumption

- Disadvantages:

• A non exhaustive representation, and therefore, inadequate to naviga-

tion

• Very high sensitivity to the results of the matching process.

Grid-based approach: This approach works without an object-model: the environment

is modeled as a grid of cells, where each one contains information whether the given associated

portion of the environment is occupied or not. The occupancy state of each cell is independently

evaluated. The update process takes into account all modeled cell of the grid. In general, the cells

are square but some work such as Herrmann et al. (2010) considers different geometry to the

grid.

Works on occupancy grids using 2D grid to build and update the map of the environment

were early proposed by Elfes (ELFES, 1989a; ELFES, 1989b; ELFES, 1991). Initially restricted

by the computational complexity, this approach has been widely used for navigation recently. In

the works of Thrun et al. (1998), Bourgault et al. (2002), Steux and Hamzaoui (2010), Levinson

and Thrun (2010), they have modeled a fixed grid that allows the correction of the position from

each new measurement. In Coué et al. (2006), the mobile object tracking using a grid referenced

in the vehicle is done. The update process is performed taking into account the occupation and
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also the speed vector of each cell. Then, considering the occupation, speed vector and position

of the cells, the object can be regrouped. In the work of Gate (2009) is used the grid to perform

the SLAMMOT. Alternatively, there are some works that consider the 3D space in which the

grid is represented as a cube (MIYASAKA et al., 2009), or then, defining the grid as being a

QuadTree (XIE et al., 2010), with the objective of reducing the memory space and the calculus

for homogeneous areas. Predominantly, the approaches for grid-based representation have the

following aspects (MORAS, 2013):

- Advantages:

• A comprehensive representation that allows autonomous driving

• No assumption on the geometry of the elements in the environment

- Disadvantages:

• It has a complex propagation over time

• It is difficult to take into account moving objects

• It has considerable computational cost and memory usage

Almost all previous works use the probabilistic model to represent the occupancy uncer-

tainties in the grid. According to work of Moras (2013), how to represent these uncertainties has

important implications on how to process the information contained in the grids. In this sense,

in addiction to the probabilistic model, two more approaches are presented in literature such as

accumulation methods and evidential methods. For completeness, a brief introduction is given

considering the three methodologies.

The formalism of accumulation is quite simple, inspired on the principle of voting: more

the cell is seen as occupied, more it is likely to be occupied. Although relatively little used, it

is possible to find original contributions using this formalism. In Borenstein and Koren (1991),

the accumulation grids are used for the navigation of an experimental indoor robot equipped

with sonar. In Xie et al. (2010), the accumulation grids are used to perform the mapping of

an external environment equipped with a scanning laser rangefinder. The localization is online

guaranteed by grid matching using multiresolution grids (QuadTree).

The probabilistic approach is based on Bayes’ theory (BAYES; PRICE, 1763) and is the

most used in the field of robotics. It was the first formalism of uncertainty management used

in occupancy grids. The first one that proposed this scheme was Elfes in his works (ELFES,
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1989b; ELFES, 1989a). This kind of approach defines the state of a cell from two exclusive

possibilities, occupied O or free F . Each cell of the occupancy grid contains a probability of

occupancy P (O) and/or non-occupancy P (F ), and it assumes that all cells are independent of

each other. Different formulations exist, using either a direct sensor model or a inverse sensor

model (THRUN et al., 2005), and also, considering static or dynamic environment as previously

explained.

The third one, the evidential approach, is derived from the theory of Dempster-Shafer and

Transferable Belief Model (TBM) (DEMPSTER, 1986; SHAFER, 1976; SMETS; KENNES,

1994), which is a generalization of probabilities. The underlying problem of all grid-based ap-

proaches is related to the conflicts generated by the sensitive presence of moving objects in the

scene (MORAS et al., 2011a)(MORAS et al., 2011b). The approaches proposed by (MORAS et

al., 2012)(KURDEJ et al., 2014) have presented satisfactory results using heuristics combining

several sources of information. Nevertheless, these approaches consider the following hypo-

thesis: (i) They are restricted to places where prior digital map information of the environment

should be given. (ii) The precise pose estimation of the ego-car should also be supplied (using

differential GPS) in order to combine and update the evidential grid. (iii) The perception system

is not able to accurately distinguish the feasible navigable area in urban scenarios, it means the

street area.

A reliable perception with the annotation of relevant objects could be used as a source

to improve safety in urban scenarios. In general, the proposed vision-based approaches to the

perception lacks the ability to annotate the environment with semantic information and keep a

satisfactory level of precision. Based on preceding works and considering these assumptions

that are required to perform the mapping, the proposed work uses the evidential method to deal

with the uncertainties in a grid-based approach. This grid is built online, performing a local

ego-centered mapping to avoid drift errors and providing the required accuracy to autonomous

navigation. It is also introduced the Semantic Context associating automatic meta-knowledge

on grid, enabling to manage uncertainties of different entities in a complex urban scenario using

only a pair of stereo cameras.
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2.3 Trajectory Planning

As introduced in chapter 1, several approaches use a conception of path planning divided

to two stages, the route planning or global path planning and trajectory planning or local naviga-

tion. According to Victorino (2002), the task of navigation for intelligent systems must use both

approaches, where these two processes are complementary. The route planning is concerned

with long range planning and is a slow, deliberative process which finds the most efficient path to

a long term goal (LUETTEL et al., 2012). The trajectory planning operates with the available in-

formation acquired from sensors, at real-time, leading into an effective and appropriate configur-

ation that enables a reactive mechanism to take into account the environment uncertainty (GIES-

BRECHT, 2004). Some authors denote this conception as being a hybrid approach having two

levels: reactive and deliberative (ARKIN, 1990; OREBäCK; CHRISTENSEN, 2003). Based on

the principle depicted by Fulgenzi et al.( 2008, 2009), the deliberative level has the task of de-

termining and offering to the reactive level, those behavioural patterns that are required for the

vehicle to achieve its objectives. The reactive level has to execute these behavioural patterns by

ensuring safe and real-time constraints.

Interested on trajectory planning, many reactive approaches have been proposed to deal

with the problem of autonomous vehicle navigation for urban scenario. As depicted in the work

of (AYARI et al., 2012), among all methods proposed to trajectory planning, the most important

methods are denoted by Potential Fields, Vector Field Diagram, Dynamic Window, Curvature

Velocity, Nearness Diagram, Elastic Bands and the Velocity Obstacles method. Each one of

them has a formalism that is briefly described in the following.

The Potential Field methods (PFM) has been suggested by Andrews and Hogan (1983)

and Khatib (1985). The idea of these methods are imaginary forces acting on a robot, where

obstacles exert repulsive forces onto the robot while the goal applies an attractive force to the

robot. The sum of all forces, the resultant force, determines the subsequent direction and speed

of its displacement.

The Vector Field Histogram (VFH) was firstly proposed by Borenstein and Koren (1991)

and then enhanced by Ulrich and Borenstein (2000). It uses a statistical representation of the

robot’s environment through a histogram to represent the obstacle’s density and therefore the ro-
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2.3 Trajectory Planning

bot can move in the direction where there are less obstacles, in order to minimise its interaction

with them.

The Dynamic Window approach (DWA) and Curvature-Velocity method (CVM), de-

veloped respectively by Fox et al. (1997) and Simmons (1996), are based on the steer angle

field approach (FEITEN et al., 1994). They assume that the robot moves in circular paths where

a search in the space of translational and rotational velocities is employed to determine the mo-

tion commands. This search considers only motion commands which obstacles would not cause

a collision within a certain time period, taking into account the kinematic and/or the dynamics

of the robot. In accordance with these restrictions, the motion command is designated based on

an objective function that maximizes both aspects, the robot safety and the goal.

The Nearness Diagram (ND) observed in the works of Minguez and Montano (2000),

Minguez and Montano (2004), consists on an strategy called divide and conquer to simplify

the navigation. In this sense, two polar diagrams are used. The first one extracts information of

the environment and identifies the immediate goal valley, and the second one defines the safety

level between the robot and the obstacles by classifying the closest one.

The Elastic Bands approach (EBA) was proposed by Quinlan and Khatib (1993) with the

idea of closing the gap between global path planning and real-time robot control. This method

provides a global trajectory that can be modified by using a deformable collision-free path

considering artificial forces which depend on the layout of the obstacles in the path.

The Velocity Obstacle (VO) proposed by Fiorini and Shillert (1998), maps the dynamic

environment into the robot velocity space. Using this velocity space, the distance difference

between robot and obstacle is applied in a function that minimizes its conflict at real-time.

In addition, considerable works have been arisen to overcome some drawbacks observed

in these previous methods such as infinite loop or local minimum, or then new conception about

reactive approaches. Some of them include behavior-based Fuzzy Logic (ZHU; YANG, 2004;

WANG; LIU, 2005; MOTLAGH et al., 2009), a improved ND navigation (MINGUEZ, 2005),

obstacle-restriction method (MINGUEZ, 2005), the virtual wall (ORDONEZ et al., 2008), the

Closest gap (MUJAHAD et al., 2010; MUJAHED et al., 2013) and a improved DWA (MAROTI

et al., 2013).
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2 Related Works

Looking at the finalists of the DARPA Urban Challenge, an interesting technique that

called attention for this field of research was the method named "tentacles", which had its imple-

mentation proposed by the team AnnieWAY (HUNDELSHAUSEN et al., 2009). This method is

driven by its simplicity, although safe and attends with its objective. Its idea consists on a set of

virtual antennae (arc of circle) associating the kinematic constraints of the vehicle projected in

an occupancy grid. The best command is defined at real-time, minimizing a linear function com-

posed by the called perceptual primitives, which are functions that perform a given task based

on the occupancy grid, such as the use of a longitudinal histogram for classifying tentacles, de-

termining the distance to the first obstacle along the tentacle, and a speed-dependent evaluation

length (noted crash distance). Recent developments using this method can be observed in the

works of Yu et al. (2012), Ke-ke et al. (2011), Cherubini et al. (2012). They differentiate their

approach by changing or adding some perceptual primitive function that composes the linear

system, consequently impacting in a different result and functionality.

The proposed method used in this thesis is mainly inspired from Hundelshausen et al.

(2009) and Cherubini et al. (2012). In this sense, the tentacle generation follows the definitions

explained in the work of Cherubini et al., but, instead of considering three areas of risk (col-

lision, dangerous central and dangerous external areas), here, it is considered only two areas.

Based on Hundelshausen et al., it is used the definitions of the crash distance as well the Clear-

ance Value that composes the linear system. However, in this work two functions are imple-

mented to deal with the specific constraints of the proposed system. The first function models a

gaussian distribution based in the previous "best" tentacle to perform a smooth transition. The

second function defines a "mutant" point that ponders the proposed method, recognizing the

information delivered by the route planning, distinguishing from Hundelshausen et al. that uses

the direct information of the GPS and also from Cherubini et al. that left the tentacle method

purely reactive, since the visual task and the obstacle avoidance task are defined in different

state spaces.
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CHAPTER 3

Semantic Road Scene Understanding

As far as the laws of mathematics refer to reality, they
are not certain; as far as they are certain, they do not
refer to reality.

(Albert Einstein)

This chapter addresses the Urban Road Scene Understanding for autonomous driving.

In this case, two phases are proposed to accomplishment of this task, the Road Detection and

the Urban Scene Understanding. The first one is motivated by the autonomous navigation, i.e,

the basic and principal capability of such system is to recognize precisely the road in front of

the ego-car where any driving maneuver or vehicle control should be performed. After that,

the scene understanding could be done to infer potential risks associated with obstacles, as

previously mentioned.

Based on previous works, the proposed approach takes into account all these techniques to

build the solution diagram presented in Figure 3.1. In this context, this chapter presents, in sec-

tion 3.1, a detailed description of the Image Segmentation module used to obtain the super-pixel

images. Furthermore, in-depth details the composed feature descriptor provided by Texton and

Dispton maps, merging appearance, color, shape, context and depth information are explained

in section 3.2 and section 3.3. Section 3.4 presents three different methods based on machine

learning to perform the Road Detection and also the Urban Road Scene Understanding. Addi-

tionally, in section 4.5 is provided the quantitative and qualitative results about these proposed

machine learning methods, followed by the conclusion presented in section 4.6.
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Image Capture

Image 
Segmentation

Texton Map

Dispton Map

SfM Perception Grid

I. Semantic Context

II. Dynamic Evidential Grid

Mach. Learning

Sensor Grid

Path-PlanningPath-FollowingPID Control

III. Local Navigation

Route Planning

IV. Global Navigation

Figure 3.1 - The proposed solution to Urban Road Scene Understanding.

3.1 Super-Pixel Segmentation

Among some approaches used for generating super-pixel images, the most observed

nowadays in literature is the mean-shift algorithm (COMANICIU; MEER, 2002; LADICKY

et al., 2009) and SLIC approach (ACHANTA et al., 2012). In this thesis work however,

it is explored another methodology based on Watershed Transform that since (BEUCHER;

BILODEAU, 1994) has been applied to semantic context, specially for road detection. The com-

bination of Watershed Transform with other filters has presented encouraging results in (VITOR

et al., 2013). It is performed in a gradient image and its direct application produces a constraint

of over-segmentation. In order to avoid this constraint and obtain a reasonable flexibility to

determine the segmentation level, three pre-filters were added: the Morphological Gradient

Adjusted, the Morphological Reconstruction Area Closing and the Morphological Reconstruc-

tion Hmin. The proposed image segmentation sequence can be seen in the diagram of Fig-

ure 3.2. These three filter algorithms take advantage in the domain of morphological image

processing (SERRA, 1982), which has received considerable attention in the past few decades,

especially after their theoretical foundations have been demonstrated. These theoretical found-

ations are known as connected operators (SERRA; SALEMBIER, 1993) and geodesic recon-

struction process (VINCENT, 1993b). The interest above all is due to its fundamental property

of simplifying an image without corrupting contour information (DARBON; AKGUL, 2005).

Therefore, the next subsections explain these algorithms used to process the Super-Pixel Seg-

mentation Module.
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3.1 Super-Pixel Segmentation

Image Capture
Morphological 

Gradient Adjusted

Image Segmentation

Area Closing 
Filter

Hmin Filter
Watershed 
Transform

Super-pixel 
Result

Figure 3.2 - The proposed solution to Super-pixel Segmentation module.

3.1.1 Morphological Gradient Adjusted

In general, gradient operators are used for image segmentation because they enhance in-

tensity variations, also called as edge detectors (RIVEST et al., 1993). Between many gradient

operators as Sobel, Prewitt and Roberts, the chosen one was the Morphological gradient due its

good approximation of edges in urban environments, focus of this application.

This filter detects the intensity variations of pixel values in a given neighbourhood. It is

obtained by the arithmetic difference between an extensive operator and an anti-extensive oper-

ator. In other words, it is given by the difference between dilation and erosion (DOUGHERTY;

LOTUFO, 2003), where the classical formulation is defined as (3.1):

gradMorph(f) = (f ⊕ ge)− (f � gi), (3.1)

where here f is the image function, ge and gi are structuring elements centered at the origin,

and the operators ⊕ and � are respectively dilation and erosion.

In the work of (VITOR et al., 2013), was observed that the low-contrast of higher fre-

quency in shadow areas of the image provides a not correct segmentation by merging different

regions such as road, sidewalk and/or obstacles present in these areas. To avoid this drawback,

it is performed an enhancement on the gradient where the shadow occurs, as illustrated in Fig-

ure 3.3, by applying a non-linear transformation defined in (3.2):

MGAdj =



c [(f ⊕ ge)− (f � gi)]

γ , if {∀x|f(x) < ρ}

(f ⊕ ge)− (f � gi) , otherwise
(3.2)
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3 Semantic Road Scene Understanding

As can be seen in Equation (3.2), the non-linear transformation at low-contrast of high

frequency is dependent on three parameters, the threshold ρ, the factor γ and the constant of

normalization c. These parameters control the quality of the final enhancement gradient for the

dark areas of the current image, at the same time keeping the maximum intensity variation of

the image unchanged. The first parameter is the threshold intensity value ρ, that is responsible

for creating a set of pixels with grayscale lower intensities than the chosen limit, which is cor-

respondent to a dark area that may be withholding information. Thus, the estimation of those

dark areas, the grayscale lower intensities can be obtained applying a threshold value heuristic-

ally fixed to ρ = 50, as can be seen in Figure 3.3(d). The second parameter is the factor γ, that

is responsible for controling the intensity of the gradient on the dark areas. This enhancement

is obtained by applying a function for all pixels belonging to the dark regions. The value of

the factor γ can range from 1.0 to 0.01, where γ = 1.0 produces a linear transformation in the

input data and values of γ tending to 0.01 will produce an abrupt exponential transformation

in the gradient input value, like these ones depicted in Figure 3.3(e). Based on the output res-

ult observed, a satisfactory value was fixed to γ = 0.45 for all images. The third parameter is

the constant of normalization c defined by the Equation (3.3) which is used to keep the same

maximum intensity variations obtained from the gradient image calculated by (3.1) .

c =
max(gradMorph(f))

max(gradMorph(f))γ
(3.3)

The developed method can be summarized as follows. The grayscale current image, exem-

plified by Figure 3.3(a), is divided into two groups by a threshold value ρ separating the image

in dark and light regions. After obtained the morphological gradient from the current image

(Figure 3.3(b)), the pixels of the dark regions receive a non-linear transformation to highlight

their values of high frequency. As a consequence of this process with the heuristic values set, it

is possible to obtain the final enhancement gradient for the dark areas of the current image as

shown in Figure 3.3(c).
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3.1 Super-Pixel Segmentation

Figure 3.3 - Enhancing the contrast of higher frequency in shadow areas. (a) Original image, (b) gradient
image, (c) the gradient image with shadow area enhanced, (d) the division of the two groups
based on the image histogram and (e) presents different output results ranging the parameter
γ.

3.1.2 Morphological Reconstruction Area Closing

Mathematical Morphology is a Set Theory applied to image processing. Its concep-

tion is linked to connexity and connected components. The connexity concept is defined

by pixel adjacency and the connected component is defined by the union of these adjacent

pixels (DOUGHERTY; LOTUFO, 2003). Since area closing is seen as the complement of area

opening, by simplicity, here is presented the definitions for area opening (MEIJSTER; WILKIN-

SON, 2002). The conception of this Area Opening filter is to remove from a binary image,

the connected components of areas with number of pixels smaller than a parameter λ. Before

demonstrating the grayscale area opening, some definitions should be done in the binary area

opening. First, the connected opening Cx(X) of a set X ⊆ M at point x ∈ X is the connec-

ted component of X containing x if x ∈ X and 0 otherwise, and M being the binary image,

M ⊂ R2. Thus, the binary area opening is defined over subsets of M (VINCENT, 1993a).

ξaλ(X) = {x ∈ X | Area(Cx(X)) ≥ λ} (3.4)

The term ξaλ(X) denotes the morphological area opening with respect to the structure
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element a and the parameter λ. The function Area(.) calculates the number of elements in a

connected component of Cx(X). Its dual binary area closing is obtained as:

φaλ(X) = [ξaλ(Xc)]c (3.5)

where Xc denotes the complement of X in M . Extending the filter for a mapping f : M → R,

in a grayscale image, the area opening ξaλ(f) is given by:

(ξaλ(f))(x) = sup{h ≤ f(x) | x ∈ ξaλ(Th(f))} (3.6)

In Equation 3.6, Th(f) represents the threshold of f at value h:

Th(f) = {x ∈M | f(x) ≥ h} (3.7)

As mentioned before, the complement of the Equation 3.4 can be similarly extended to

the conception of area closing to mappings from M → R.

3.1.3 Morphological Reconstruction Hmin

Among several descriptions, the morphological grayscale reconstruction can be obtained

by successive geodesic dilations. This principle employs two subsets of R2, called mask image

and marker image. Both subsets must have the same size. Moreover, the mask image must have

intensity values higher than or equal to those from marker image (VINCENT, 1993b).

In the geodesic dilation, the marker image is dilated following the dilation part demon-

strated in Equation (3.1), where the resulting image is restricted to maintain under the mask

image. Mathematically, defining mask image as I and marker image as M , observing that both

have the same size and M < I , the geodesic dilation process considering only one amplitude,

is defined as (3.8):
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I

M = I-h

h

δ (n)
I

(M)

Grayscale 
reconstruction

Filter Out

Figure 3.4 - Resulting morphological reconstruction based on height attribute. Adapted source: (VIN-
CENT, 1993b)

δ
(1)
I (M) = (M ⊕ ge) ∧ I (3.8)

where ∧ operator denotes the minimum of the intersection between the dilated M and I . There-

fore, the geodesic dilation taking n amplitudes of M , considering the mask image I , is obtained

by processing n successive geodesic dilations of amplitude 1 (3.9):

δ
(n)
I (M) = δ

(1)
I (M) ◦ δ(1)

I (M) ◦ δ(1)
I (M) ◦ . . . ◦ δ(1)

I (M)︸ ︷︷ ︸
n times

(3.9)

The morphological reconstruction by geodesic dilation is defined in eq (3.9). According

to (VINCENT, 1993b), the desired reconstruction of a image by its marker, is performed by

n successive dilation until its stabilization. Figure 3.4 shows an example of the morphological

reconstruction to 1D having a signal I and ist marker obtained by M = I − h.

In their book, (DOUGHERTY; LOTUFO, 2003) explain that the attribution of the mask

image subtracted by a value h to marker image M , defines then the morphological reconstruc-

tion by a height attribute h, being called H-maxima or Hmax and defined by Equation (3.10).

Hmaxah(I) = I∆a(I − h) (3.10)

In this definition, ∆ stands for morphological reconstruction with the structure element

or connexity neighborhood a. As seen in Figure 3.4, this operator removes domes of an image

based on a given attribute, in this case the height attribute. Figure 3.5 demonstrates the concep-

tion of possible filters using volume, area or height attribute. When the dome extraction with
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Figure 3.5 - Characteristics of connected component in a grayscale image: a) Input signal b) height at-
tribute c) area attribute d) volume attribute e) regional maxima and local maxima of the
grayscale image.

attribute h is set to 1, it is considered a regional maxima. A regional maximaRM of a grayscale

image I is defined as a set of pixels with a given value which all pixels in its neighborhood must

have a value strictly minor.

The regional maxima should not be mistaken with local maxima, as can be seen in Fig-

ure 3.5e. Every pixel belonging to a regional maxima necessarily is a local maxima, once there

is no other neighbor pixel with higher value. The converse is not true, as can be seen in the same

Figure. Such definitions are also valid to characterize regional minima.

Properly performing the reconstruction H-maxima or Hmax, it is possible to take the H-

minima or Hmin from its complement. Then, by duality, the Hmin is defined by eq (3.11), where

an example of this filter applied to 1D signal can be seen in Figure 3.6.

Hminah(I) = [Ic∆a(I
c − h)]c (3.11)
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0 320

255

Figure 3.6 - Example of morphological reconstruction Hmin. The 1D input signal in blue and its result
in green.

3.1.4 Super-Pixel by Watershed Transform

Studying different approaches, the Watershed Transform has different definitions at the

literature, each one producing a different solution set, presented in (ROERDINK; MEIJSTER,

2001). The definitions are based on regional or global elements, such as influence zones and

shortest-path forests with maximum or sum of weights of edges, or on local elements, such

as the steepest descent paths. In this work, the local condition definition was used, called LC-

WT (Local Condition Watershed Transform) (AUDIGIER; LOTUFO, 2010), with the purpose

of simulating the behaviour of a drop of water on a surface. This definition seems to be the

steepest descent paths, where the information from neighbours is used to create a path to the

corresponding minimum, through an arrowing technique.

The arrowing is the algorithmic representation of the drop of water, where, for every

pixel in the image (taking an image as a graph), an arrow is drawn from the current to the

next one, which creates a path that ultimately leads to a regional minimum. The arrow points

to the direction that a drop of water would flow, considering the image as a surface. For the

LC-WT definition, every pixel that does not belong to a regional minima will have one and

only one arrow. The union-find technique for Watershed transform is based on the algorithm for

disjoint sets. Given that the regions of the output image form a partition and these are disjoint

by definition, the union-find algorithm process paths to identify the roots - or representatives

- for every pixel. At the end, all pixels that falls into the same minimum are labeled with its

representative.

The goal of the filters presented in subsection 3.1.2 and subsection 3.1.3 is to control the
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3 Semantic Road Scene Understanding

segmentation level of the Watershed Transform by acting on the regional minimum of GMAdj .

The procedure is similar to (VITOR et al., 2013), where the parameter λ of AreaClose determ-

ines the area of regional minimum to be cut out, and the parameter h of Hmin determines the

height from regional minimum to be also cut out. The influence of these parameters exempli-

fied by a synthetic image can be observed in Figure 3.7. Considering this image as a surface

(Figure 3.7b), the Watershed Transform simulates the behavior of a drop of water slipping on it,

which creates a path that lastly leads to a regional minimum. At the end, all path of pixels that

fall into the same minimum are labeled with its representative (Figure 3.7c). When the regional

minimum is removed, the drop of water’s path is changed. The last two rows show the result of

the synthetic image after applying the Hmin set to h = 1 and AreaClose set to λ = 32. A slight

change on the signs could be observed when the regional minimum was removed, resulting in

an variation in the image segmentation.

After demonstrating the conception and influence of these filters jointly with Watershed

Transform, the final outcome applied in a sample image can be observed in Figure 3.8. Notice

that the machine learning’s procedure, to be described in subsection 3.4, is performed using

each super-pixel of the resulting segmented image. Therefore, the analysis of these parameters

is done to understand their sensibility in the final result of the segmentation.

3.2 Texton Maps

In the last decade, Textons have been proven effective for generic feature representation

of object (LADICKY et al., 2009)(KRÄHENBÜHL; KOLTUN, 2012), where a class demands

different appearances to have a compact representation maintaining their efficiency. Thereby,

the methodology applied for this mapping module is to learn a dictionary of Textons using

a textonization technique (SHOTTON et al., 2009), which allows to perform a dense-texture-

based feature extraction for all pixels. The process of textonization generates the Texton Map,

having the same size of the image. The Textons contained in the dictionary have their value

associated with all pixels in this map. It can be seen as a pre-classification or a transformation

from feature’s space to the texton’s space. Thus, this process is done by applying the K-Means

algorithm on a given feature’s space. Denoting a dictionary as D, each texton’s element xj ∈

42



3.2 Texton Maps

(a) Synthetic Image

(d) Hmin Result

(g) AreaClose Result

(b) Surface Image (c) Watershed Result(b) Surface Image (c) Watershed Result

(f) Watershed Result I

(i) Watershed Result II(h) Area Close Analysis

(e) Hmin Analysis
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Figure 3.7 - Process of Image Segmentation. (a) Shows the synthetic image, (b) its surface perception
and (c) the segmentation result. Figure (d and g) show the hmin result setted h = 1 and
AreaClose setted λ = 32, (e and h) the signs alteration on regional minimum taking from a
row and a col. Figure (f and i) show the final impact of these filters on segmentation, where
the orange color represents the regional minimums

D = {x1,x2,...,xK} represents a cluster generated by the algorithm, employing the Euclidian-

distance as a metric. Finally, it is obtained the Texton Map T ∈ N2 with the pixel i having value

xj ∈ D.

In this work, the textonization is executed in various feature’s spaces. As it can be seen

in (LADICKY et al., 2009), four methods were used to extract the feature descriptor: (i) a set of

Filter Bank, (ii) the histograms of oriented gradient (HOG), (iii) the normalized pixel location

(NpL) and (iv) CIELAB color.

Method (i) is defined by convolutions with gaussian kernel (G), first derivative of gaussian
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(a)

(b)

(c)

Figure 3.8 - Example of an influence surface for the parameters λ and h on the number of segments in
an given image. In (a) λ1 = 5, h1 = 2 and 4090 segments; (b) λ2 = 30, h2 = 5 and 427
segments; (c) λ3 = 80, h3 = 15 and 73 segments.

kernel (DoG) and laplacian of gaussian kernel (LoG), totalizing a set of 17-dimensional features.

The gaussian kernel is modeled according to Equation (3.12), having three different scales to

standard deviations (σ). These different scales are convolving with each channel of the Lab

Color space, extracting in this case, 9 features.

G(x,y;σ) =
1

2πσ2
e−

x2+y2

2σ2 (3.12)

The second one, DoG kernel, is applied on lightness (L) channel of Lab Color space

considering two different σ, to x-direction and also to y-direction. Its model is given by Equa-

tion (3.13).

DoG(x,y;σ) =
xy

σ4

[
1

2πσ2

]
e−

x2+y2

2σ2 (3.13)

To conclude the 17-dimensional feature extraction of filter bank, the LoG is modeled by

Equation (3.14), following the same condition explained before, considering the (L) channel and

applying four different σ to build this kernel. Globally, the composed filter banks are variations

of these three kernels presented in Figure 3.9.

LoG(x,y;σ) =
−1

πσ4

[
−1

x2 + y2

2σ2

]
e−

x2+y2

2σ2 (3.14)
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(a) (b) (c)
Figure 3.9 - Composing filter bank set that extracts 17-dimensional features of (a) Gaussian kernel (G),

(b) Derivative of Gaussian kernel (DoG) and (c) Laplacian of Gaussian kernel (LoG).

In (ii), the method uses the algorithm proposed by (DALAL; TRIGGS, 2005). The al-

gorithm extracts a feature vector containing 81 features for each pixel of whole image. Each

element of this vector is a histogram bin of gradient orientations. The pseudo algorithm 1 sum-

marizes the Histogram of Oriented Gradient feature descriptor process.

Algorithm 1 HOG algorithm:
1: Compute gradients for each pixel of an image.
2: Perform binning of gradients orientation (from 0 to 180 degrees, opposite directions count

as the same).
3: Collect the histogram within a cell of pixels.
4: Weight the histogram by blocks and cells for local normalization of the contrasts.
5: Normalize the histogram by L2-norm or L1-norm.

In (iii), the feature descriptor is extracted taking the normalized location of pixels in a

image. Considering an image resolution of (H) rows by (W) columns, the extracted feature is

modeled dividing the x,y positions of the pixel by its resolution in each direction (eq (3.15)). In

this case, the resulting feature descriptor defined by (NpL), has a vector containing 2 elements.

NpL(x,y;H,W ) =
[ x
W

;
y

H

]
(3.15)

The last feature space mentioned (iv), takes direct access of the pixel values obtained by

each channel of the CIELAB Color image.

After detailing the extraction of vector’s features in their respective spaces, all feature’s

descriptor are whitened (to give zero mean and unit covariance). The textonization process is

applied to learn the dictionaries of textons for each feature’s descriptor. The learning procedure

using K-means algorithm was configured assigningDb = 400 clusters to Filter Bank,Dg = 150

clusters to HOG,Dl = 144 clusters to NpL andDc = 128 clusters to CIELAb color. The output
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3 Semantic Road Scene Understanding

Figure 3.10 - The texton maps resulting from the textonization process using different features.

result for this module can be seen in Figure 3.10.

3.3 Dispton Maps

Based on the approach explained in section 3.2, Texton Maps are able to discriminate

between class of similar textures. However this technique lacks spacial information. This sec-

tion presents an approach to build two additional dictionaries over the 3D information from the

Stereo Vision. This method is called Dispton Map and it aims at creating meaningful clusters

based on the Disparity Map, denoted by I∆. Attempting to have the same functional advantage

provided by the usage of U-Disparity and V-Disparity algorithm to filter and extract the navig-

able area and obstacles in literature (LABAYRADE et al., 2002)(SOQUET et al., 2007b), this

work addresses another way to embed these information in a dictionary of Dispton, generating

the Dispton Maps from I∆. This approach applies the Semi-Global Block Matching algorithm

(SGBM) to compute the I∆, where its result can be seen in Figure 3.11.

Firstly, the technique consists in putting in evidence the peaks of the U-V Disparity maps,

which concentrates the relevant information to start the process of Disptonization. Defining U-

Disparity as Iu∆ and V-Disparity as Iv∆, they are obtained from a histogram for each column,

Iu∆ = {hist(I∆(: ,u))|∀u ∈ {0..width− 1}} and for each row, Iv∆ = {hist(I∆(v, :))|∀v ∈

{0..height − 1}}. Like Watershed Transform, they can be seen as surfaces to apply the Hmin

and filter the regional minimum (in this case considered as noise) of these surfaces. The result
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3.3 Dispton Maps

Figure 3.11 - The disparity map result applying SGBM algorithm. (a) Left image (b) Right image (c)
Disparity result applying SGBM algorithm.

V-Disparity U-Disparity

(a)

(b)

(d)

(c)

(e)

(f)

(g) (h)

(i) (j)

Figure 3.12 - The desired lines detection applying the Hmin filter. (a) and (f) show the V-Disparity and U-
Disparity maps, (b) and (c) present the binarization and the detected line segments without
applying the Hmin filter. (d) and (e) present the results using the Hmin filter. The same
process was performed to U-Disparity map.

maps, denoted Ihu∆ and Ihv∆ are then binarized. Additionally, the Hough Transform is executed

to detect line segments, characterized by lu and lv. The result of this procedure is depicted in

Figure 3.12. The V-Disparity map and the U-Disparity map in (a) and (f) are obtained from

the disparity map showed in Figure 3.12. Where (b) and (c) present the binarization result and

the detected line segments without apply the Hmin. (d) and (e) present the binarization result

and the detected line segments applying the Hmin filter. The same process can be seen at U-

Disparity map, where (g) and (i) without applying the Hmin filter and, (h) and (j) with applying

the Hmin filter. This technique notably improves the detection of the desired lines.

After that, to build the dictionary of U-Dispton (Du) is applied the clusterization where

the points from each line segment luj , supplies seeds to perform the clusterization of dispton’s

element j ∈ {1..NumberOfLines}. In Equation (3.16), the clusterization process of a line

segment luj , denoted by Λ(Ihu∆)(luj ), is given by:
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3 Semantic Road Scene Understanding

Λ(Ihη∆)(lηj ) =

C
η
j , if {x} ∈ Nx(I

h
η∆) 6= 0

0 , otherwise
(3.16)

where the cluster Cη
j is defined in Equation (3.17). Note that the variable (η) can be either u or

v.

Cη
j = {j|x1W + x2 ∈ {lηj } ⊂ Nx(I

h
η∆)} (3.17)

Here, W is the number of image columns, and x1 and x2 are the row and column coordinates

respectively, and the term Nx(.) represents the neighbors of the x element. There are two ad-

ditional clusters given by Cu
1 = {Iu∆(v, :)|v ∈ {0,1,..,τ}} and Cu

2 = (Iu∆ ∩ Cu
1 )′, where (′)

represents its complement. Therefore, the Du is given by the union of all clusters (3.18). Each

color of Figure 3.13a represents a defined cluster, which the dictionary was built.

Du = {
⋃
∀j∈lu

Λ(Ihu∆)(luj ) ∪ Cu
1 ∪ Cu

2 } (3.18)

Finally, with the U-Dispton dictionary, it is possible to obtain the U-Dispton map (Dmu)

by applying the following Equation (3.19), where this map is presented in Figure 3.13b.

Dmη = {Dη(I∆(x))|∀x; I∆(x) 6= 0} (3.19)

In order to build the V-Dispton dictionary (Dv), the clusters are created separately. Fol-

lowing Hu and Uchimura (2005), a road is modeled as a plane so that it can be represented by

straight slope line segments in the V-disparity map. In this sense, the goal of the first cluster

is to provide a curve fitting of these line segments to represent the surface of navigable area.

From lv set, a subset lvs is obtained by filtering out the line segments with a given vertical

orientation (3.20):

lvs = {lvi |∀lvi ;Ang(lvi ) < 90°− ψ} (3.20)

The function Ang(.) represents the angle of inclination with the reference defined on the
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3.3 Dispton Maps

Figure 3.13 - Disptonization process to U-Dispton map. a) the U learnt dictionary and b) the U-Dispton
map result.

bottom-left image and ψ an input parameter. Thus, the road surface can be formed by a suc-

cession of plane’s parts, being projected as a piecewise linear curve (HAUTIERE et al., 2006).

In order to connect the line segments that represent the surface, the algorithm sorts the lvs set

based on the distance from the line segment to the reference. Starting from the first line segment

lvs0 to the last one lvsn , the constraints that define whether two line segments can be connected,

are given by Equation (3.21), where lvc is the set of connected line segments,

lvc = min(dist(lvsi ,l
vs
j ))

∀l
vs
j ∈ {lvs > lvsi } and

if lvsj ⊂ AreaSupport(ls−i ,ls+i )
(3.21)

and the function dist(.) between two line segments is calculated considering the Euclidian

distance from the nearest points of the current line segments, limited by a given maximum

distance ε between them. The function AreaSupport(.) delimits the search area by two line

segments as given by Equation (3.22).
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(a) (b)

Figure 3.14 - Merging lines approach. (a) The detected line segments by Hough transform and (b) the
linked lines in white and the support lines in blue

AreaSupport(ls1,ls2) =

1 , if right(l,ls1) and left(l,ls2)

0 , otherwise
(3.22)

This area is defined by a translation from lvsi given by the σ parameter, then ls−i = lvsi − σ

and ls+i = lvsi +σ. The other two functions in this Equation return true for the case when the line

segment is on right and left of the reference lines. Figure 3.14 shows this process. As a result, the

cluster Cv
1 is obtained applying the Equation (3.16) on the lvc set (Λ(Ihv∆)(lvcj )) with one more

constraint, where all pixels cannot cross out the line (llim1) formed by the first and last points

of lvc (added a small shift constraint). In addiction, the second cluster is generated taking those

pixels which cross out the first one and is restricted to another shifted line llim2 = llim1 + σ2,

resulting the Equation (3.23):

Cv
2 = {Λ(Ihv∆)(lvcj )| if AreaSupport(llim1,llim2)} (3.23)

To finish the Disptonization, the last two clusters are generated by Cv
3 = {Iv∆(: ,u)|∀u ∈

{1,..,τ}}, where τ defines the max disparity to be considered as background or infinity, and

Cv
4 = {(Iv∆ ∩ (Cv

1 ∪ Cv
2 ∪ Cv

3 ))′}. The V-Dispton dictionary (Dv) is defined as:

Dv = {Cv
1 ∪ Cv

2 ∪ Cv
3 ∪ Cv

4} (3.24)

The generation of V-Diston map is obtained by the Equation (3.19) and its map is presen-

ted in Figure 3.15. Algorithm 2 summarizes the Disptonization process.
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3.3 Dispton Maps

Figure 3.15 - Disptonization process to V-Dispton map. a) the V learnt dictionary and b) the V-Dispton
map result.

Algorithm 2 Disptonization algorithm:
1: Process Iu∆ and Iv∆ from I∆;
2: Apply the Hmin filter on Iu∆ and Iv∆;
3: Binarize and obtain the line segments by Hough Transf. for lu and lv;
4: Determine the U-Dispton dictionary Du by Equation (3.18):
5: - Apply the clusterization on lu, Equation (3.16);
6: Determine the V-Dispton dictionary Dv by Equation (3.24):
7: - Filter out the vertical lines to take lvs, Equation (3.20);
8: - Find out the connected lines lvc, Equation (3.21);
9: - Define the clusterization to Cv

1 ,C
v
2 ,C

v
3 ,C

v
4 ;

10: Generate the UV-Dispton map by Equation (3.19)

Note that the V-Dispton map has 4-dimensional clusters and the U-Dispton map has

N-dimensional clusters. Intuitively, they aim at storing important information such as navigable

area, sidewalk, obstacles and background. The N-dimensional structure from U-Dispton map

dynamically retrieve the representation of all possible different obstacles in the scene. With

the Texton maps and Dispton maps, the next section explains how they are combined with the

super-pixel image to perform the classification.
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3 Semantic Road Scene Understanding

3.4 Machine Learning for Urban Road Scene Understand-

ing

Based on super-pixel image, Texton maps and Dispton maps previously described in sec-

tions 3.1, 3.2 and 3.3, this section introduces three methods that were implemented in this PhD

thesis. Basically, these algorithms can be seen as an evolution conditioned on experiences ac-

quired with several research and learning. The first method implemented, the Artificial Neural

Network, is presented in subsection 3.4.1, followed by the Histogram-Based Joint Boosting, that

is presented in subsection 3.4.2. The last proposed algorithm, the Probabilistic Joint Boosting,

is shown in subsection 3.4.3.

3.4.1 Artificial Neural Network

Artificial Neural Network (ANN) has been utilized in several applications as a good tool

for data classification. Its wide utilization is based in three fundamentals properties: adaptability,

ability to learn by examples and ability of generalization (SHINZATO; WOLF, 2011). This

section describes the implementation of a Multilayer Perceptron (MLP) to perform a non-linear

input-output mapping (HAYKIN, 1998) that models the road pattern. The algorithm executes

the 2D image segmentation, presented in section 3.1, and a specific approach using 3D image

processing to compose a feature’s descriptor (different from those explained in sections 3.2

and 3.3). The specific approach will be briefly explained in this section and was not described

before because it was used only for this method.

The 3D image processing algorithm, specific for the ANN implementation, uses the rec-

tified pair of stereo images to allow an easy pre-classification of the image data into drivable

and non-drivable areas. The approach takes advantage of the Epipolar geometry (FAUGERAS,

1993). First, the disparity map (I4) of the stereo pair is built using the Sum of Absolute Dif-

ferences (SAD) correlation algorithm. As described in (LABAYRADE et al., 2002), the world

environment can be approximated by horizontal and vertical planes related to the camera. Based

52



3.4 Machine Learning for Urban Road Scene Understanding

on this assumption, each disparity map (I4) is then projected in the v-disparity map (Iv4) (SO-

QUET et al., 2007a), where each line on Iv4 represent these planes. The next step is the exe-

cution of the Hough Transform with an auxiliary algorithm to detect the lines associated with

the drivable area. In Iv4, the continuous slope lines represent the drivable area, while the non-

drivable areas are approximately represented by vertical lines. As a result, the lines from Hough

transform are filtered out considering a given parameter of inclination performed by the auxili-

ary algorithm. Finally, the detected lines are reprojected into the image, as can be seen in Fig-

ure 3.16b, which generates an estimation of drivable and non-drivable area. Just for information,

this technique was the basis for arising the development of the Dispton concept, inspired by the

Texton concept. A detailed description of the 3D image processing can be found in (VITOR et

al., 2013).

Over the results extracted from the 2D and 3D modules, other 2D and 3D features were

extracted to build the final feature’s descriptor of each super-pixel segment, which is the input

data of the ANN. The first set of features consider the percentage of the drivable and non-

drivable areas. It is based on the intersection of the resulting pre-classification of 3D image

processing with the respective super-pixel. The second set of features is based on statistical

measures, as proposed by (SHINZATO; WOLF, 2011), like mean, probability, entropy and

variance. These values were calculated by the RGB1 and HSV2 color space values of each

super-pixel segment.

The network training is based on the Backpropagation technique and its structure was

projected with three layers, namely input, output and hidden layers. The size of the input layer

corresponds to the number of features extracted which was defined in the experiments with six

neurons in its final version. The hidden layer was defined with 30 neurons, where each neuron

uses the sigmoid activation function. Finally, the output layer has two neurons to classify the

feature’s descriptor as road surface or non-road surface, which response vary from 0.0 to 1.0.

The setup of the output layer containing two neurons is chosen to model the uncertainty for

each class separately. The methodology for training, validation and testing for this ANN uses

the cross validation method and its configuration is detailed in subsection 3.5.1. Figure 3.16

presents all processes performed by this first approach.

1Abbreviation for red, green and blue color space.
2Abbreviation for hue, saturation and value color space.
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Image Capture

2D Image Processing 3D Image Processing

Artificial Neural Network

(a) (b)

(c)

Figure 3.16 - The process overview for the ANN approach. (a) The 2D segmentation process to get the
super-pixel. (b) The 3D process to obtain an estimation of the drivable and non-divable
areas. (c) The final result applying the ANN, which the left image represents the lines of
the super-pixel and the right image has the classification of non-road surface (red) and road
surface (original color).

3.4.2 Histogram-Based Joint Boosting

This section presents the second method to represent and compute the classification of

semantic context, including in this case not only the road class, but also more elements present in

the scene such as vehicle, sidewalk, vegetation, building, etc. Therefore, here will be described

the conception applied for a set of classes, where the road recognition can be thought as a set of

classes containing only two classes, road and non-road.

The Histogram-based Joint Boosting, or simply HistonBoost, is executed using an adapted

version of the Joint Boosting algorithm (TORRALBA et al., 2007). In fact, the algorithm is de-

rived from TextonBoost (SHOTTON et al., 2007), which iteratively builds a strong classifier as a

sum of week classifiers, simultaneously selecting discriminative features. The difference in this

implementation is the shape filters utilized and consequently the representation of weak classi-

fiers. Thus, the novelty proposed in this thesis is to build a multi normalized-histogram of the
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Figure 3.17 - The process of Road Recognition. For each spi is constructed the multi-normalized histo-
gram from the Texton maps and the Dispton maps, which are classified with Joint Boosting
algorithm.

clusters features from the specific super-pixel segment as shown in section 3.1. The represent-

ative Textons and Disptons histograms for all segments are generated in which each histogram

bin represents the cumulative number of a given cluster on their respective regions, as can be

seen in Figure 3.17. According to (LADICKY et al., 2009), the distributions of dense feature

responses are more discriminative than any feature alone, representing many classification and

recognition problems. Formally, the super-pixel segment {spi|i ∈ {1,..,NumOfSegments}}

has 6-tuples containing the histogram {gf |f ∈ {1,..,NumOfHistFeature}}.

In this method, the weak classifiers are modeled as comparisons of this multi normalized-

histogram to a decision stump based on a threshold, where each weak classifier is shared

between a set of classes, allowing a single normalized-histogram response to help classify sev-

eral classes at once. In case of only two classes are being considered, it is highlighted that this

sharing does not have effect in the classification. Therefore, the weak classifiers are defined by

wc containing 3-tuples [type feature f , random normalized histogram g, threshold θ ], where

the comparison response is given by the χ2 metric (Equation (3.25)) to express how well the

data feature and weak classifier match:

d(wc,spi) =
∑
I

[wc.g(I) + sp.gf (I)]
2

wc.g(I) + sp.gf (I)
(3.25)
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Thereby, the Joint Boosting algorithm is an additive model of the form H(cl) =∑M
m=1 hm(cl), that sum the classification confidence of M joint weak classifiers. In this case,

H(cl) represents the output value to the ‘strong’ learned classifier, given the class cl, and each

weak-learner is modeled as a decision stump of the form:

h(cl) =

aδ(d(wc,spi) > θ) + b , if {cl ∈ L}

κcl , otherwise
(3.26)

Where δ(.) is a 0-1 indicator function. The share is given by those classes (cl ∈ L), that the

weak learner gives h(cl) ∈ {a+ b, b} depending on the comparison of d(wc,spi) to a threshold

θ. The constant kcl ensures that asymmetrical sets of positive and negative training examples

do not adversely affect the learning procedure, considering those classes that do not share the

normalized-histogram feature (cl /∈ L). Thus, the resulting classification output is defined by

the probability conversion given by (3.27):

P =
1

Z
exp−H(cl) (3.27)

In Equation 3.27, Z represents the normalization factor into the classes cl ∈ L. Once

explained this method, the learning procedure will be briefly described here, taking into account

that an excellent detailed treatment of the learning algorithm is given in (TORRALBA et al.,

2007) and has an optimized version with some improvements explained in (SHOTTON et al.,

2007). Each training example spi (a super-pixel in a training image) is paired with a target value

zcli ∈ {−1, + 1} ( +1 if the majority of pixels belonging to spi vote to ground truth class cl,

-1 otherwise) and assigned a weight wcli specifying its classification accuracy for class cl after

m−1 rounds of boosting. Roundm chooses a new weak learner by minimizing an error function

Jwse incorporating the weights eq (3.28):

Jwse =
∑
l

∑
i

wcli (zcli − hmi (cl)) (3.28)

The training examples are then re-weighted (3.29)

wcli = wcli e
−zcli h

m
i (cl) (3.29)
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to reflect the new classification accuracy and maintain the invariant wcli = e−z
cl
i Hi(cl). This

procedure emphasizes poorly classified examples in subsequent rounds, and ensures that over

many rounds, the classification for each training example approaches the target value.

Minimizing the error function Jwse unfortunately requires an expensive brute-force search

over the possible weak learners hmi to find the optimal combination of the sharing set L, multi

normalized-histogram features, and thresholds θ. However, given these parameters, a closed

form solution does exist for a, b and {kcl}cl /∈L:

b =

∑
cl∈L

∑
iw

cl
i z

cl
i [d(wc,spi) ≤ θ]∑

cl∈L
∑

iw
cl
i [d(wc,spi) ≤ θ]

(3.30)

a+ b =

∑
cl∈L

∑
iw

cl
i z

cl
i [d(wc,spi) > θ]∑

cl∈L
∑

iw
cl
i [d(wc,spi) > θ]

(3.31)

kcl =

∑
iw

cl
i z

cl
i∑

iw
cl
i

(3.32)

3.4.3 Probabilistic Joint Boosting

This section presents the third approach to compute the classification of the semantic

context. As shown in previous section 3.4.2, this third method is a variant of Histogram-based

Joint Boosting, defined by Probabilistic Joint Boosting or its short name, ProbBoost. The rep-

resentation of weak classifiers using another shape filter has been improved. Thus, the novelty

in this case, is to build a set of probability distribution of the Texton and Dispton maps from the

decomposition of the scene into a number of semantically consistent regions, supplied by the

super-pixel segmentation result shown in section 3.1, to model the weak classifier.

The process could be formally explained taking into account the maps {M f : f ∈ {F}}

where F = {b,c,g,l,v,u} is the set of Textons and Disptons. Each element i in the map

M f ∈ N2 belongs to exactly one region, identified by its region-correspondence variable Sr ∈

{1,...,NumSegments}. The r-th region is then simply the set of elements ir whose region-

correspondence variable equals r, i.e., ir = {i : M f
i = r}. We use Xf

i = {Xf
1 ,X

f
2 ,...,X

f
N} to

denote the set of random variables corresponding to the f -th value of i-th element intoM f . Any

possible assignment to the random variables Xf
i = xfj takes values from j ∈ Df , which Df is
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defined by the constructed dictionary for each f ∈ F generated in the sections 3.2 and 3.3.

The probability of the Xf
i if given by P (Xf

i = xfj ), and the associated set of probability

distribution under the Sr is denoted by P (Xr), as can be seen in the Equation (3.33):

P (Xr) = {
⋃
f∈F

{
1

Z

∑
ir

P (xfj )

}
|∀j ∈ Df} (3.33)

In Equation (3.33), Z is a normalization factor for each probability distribution set. Us-

ing the probability representation of Textons and Disptons, the weak classifiers are modeled as

comparisons of this probability distribution response to a decision stump based on a threshold,

where each weak classifier is shared between a set of classes, allowing a single probability to

help classify several classes at once. As mentioned before, in case of only two classes are being

considered, it is highlighted that this sharing does not have effect in the classification. Accord-

ingly, the weak classifiers are defined by wc containing 2-tuples [xrand, P (xrandom)], where the

first component represents a random possible assignment {xrand : xfj ∈ Df} and its value of

probability randomly defined. To express how well the probability distribution of P (Xr) at a

given xfj matches the weak classifier, a comparison response is given by Equation (3.34):

d(wc,Sr) = 1−
√

[P (xrand)− P (Xr = xfj )]
2 (3.34)

As explained previously, the Joint Boosting algorithm is an additive model of the form

H(cl) =
∑M

m=1 hm(cl), that sum the classification confidence ofM joint weak classifiers.H(cl)

represents the output value to the ’strong’ learned classifier, given the class cl, and each weak-

learner is modeled as a decision stump of the form:

h(cl) =

aδ(d(wc,Sr) > θ) + b , if {cl ∈ L}

κcl , otherwise
(3.35)

where δ(.) is a 0-1 indicator function. The share is given by those classes (cl ∈ L), that the

weak learner gives h(cl) ∈ {a + b, b} depending on the comparison of d(wc,Sr) to a threshold

θ. The constant kcl ensures that asymmetrical sets of positive and negative training examples

do not adversely affect the learning procedure, considering those classes that do not share the
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probability distribution feature (cl /∈ L). As before, the resulting classification output is defined

by the probability conversion given by Equation (3.27). The learning procedure is identical as

presented in the previous section (3.4.2), being in this case omitted here.

3.5 Experimental Results

Experiments were carried out in real conditions. A fair performance comparison among

those proposed methods was done, using the common Kitti benchmark3 (GEIGER et al., 2013).

Aimed in applications to Advanced Driver Assistance Systems (ADAS) and any driving man-

euver or vehicle control to autonomous navigation, the experiments were conducted in two

phases. The first phase, shown in subsection 3.5.1, performs a meaningful evaluation centered

at road recognition. The second one, presented in subsection 3.5.2, extends this pattern recog-

nition to multi-class classification in urban scenarios.

The validation platform has been implemented in C++ and the experiments were executed

in one equipment with an Intel Xeon E5-1650 processor with 3.20Ghz and with 16Gb DDR3,

running the version 7 of the Windows OS.

In order to judge the quality of the proposed algorithms for use in automotive applications,

all evaluations are based on the perspective space and also in the metric space, called Bird’s Eye

View (BEV). An exemplary detailed treatment of performance measure and evaluation is given

in (FRITSCH et al., 2013), but here, it will be briefly described for completeness. The pixel-

based analysis is evaluated employing the F-measure derived from the Precision and Recall

values (Equation 3.36-3.37). It makes use of the harmonic mean (F1-measure, β = 1), while

an unbalanced F-measure using a different weighting of Precision and Recall could also be

applied. In addition, accuracy is also evaluated.

3<http://www.cvlibs.net/datasets/kitti/> accessed on: 05/07/2014
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Precision =
TP

TP + FP
(3.36)

Recall =
TP

TP + FN
(3.37)

F −measure = (1 + β2)
PrecisionRecall

β2Precision+Recall
(3.38)

Accuracy =
TP + TN

TP + FP + TN + FN
(3.39)

For methods that provide outputs as confidence maps (in contrast to binary road classific-

ation), the classification threshold τ is chosen to maximize the F-measure, yielding Fmax:

Fmax = argmax
τ

F-measure (3.40)

According to (FRITSCH et al., 2013), in order to provide insights into the performance

over the full recall range, the average precision (AP), based on the work of (EVERINGHAM et

al., 2010), is computed for different recall values r:

AP =
1

11

∑
r∈0,0.1,··· ,1

max
r̃:r̃>r

Precision(r̃) (3.41)

Considering both measures it provides insights into an algorithm’s optimal (Fmax) and

average (AP) performance.

3.5.1 Road Recognition

In this section the results are presented, using a specific dataset of the Kitti Benchmark,

called Urban Kitti-Road.In brief, this dataset consists of ' 600 frames (375x1242 px) recorded

in five different days and containing relatively low traffic density (FRITSCH et al., 2013), rep-

resenting a typical road scene in inner-city. Data is categorized in three sets having each one a

subset of training images and a subset of test images exclusively for evaluation performance.

Table 3.1 shows the dataset statistics of Urban Kitti-Road benchmark showing the number of

frames used in each case and Figure 3.18 illustrates some examples images for each category.
60



3.5 Experimental Results

UM

UU

UMM

Figure 3.18 - Example test images from the different categories of the Urban Kitti-Road dataset. Note
the high variability of the dataset. Source: (FRITSCH et al., 2013)

Emphasizing that the evaluation process is done on the metric space in order to capture the fact

that vehicle control happens in the 2D environment. Further, the evaluation in perspective space

is biased by the fact that the pixel’s value in near range is more homogenous and covers a larger

area of the evaluated perspective pixels.

Table 3.1 - Number of the frames of the KITTI-ROAD dataset. Source: (FRITSCH et al., 2013)
Abbreviation train test description

UU 98 100 urban unmarked
UM 95 96 urban marked two-way road

UMM 96 94 urban marked multi-lane road
URBAN 289 290 all three urban subsets

Each proposed algorithm had its own learning process for each category. A sample set

for each category was built, extracting ' 128000 samples from the UU image training set,

' 126000 samples from the UM image training set and ' 117000 samples from the UMM

image training set. These sets were used to perform the feature’s descriptor using the ANN

approach, the HistonBoost approach and the ProbBoost approach.

The methodology for training the ANN algorithm uses the cross validation method, split-

ting the training images in training, validation and test subsets, containing ' 15% ,' 7% and

' 78% respectively. The time for training each category takes around 24 hours and the clas-

sification time for a single image takes around 3 seconds. It should be mentioned that some

adaptations from the first version proposed in (VITOR et al., 2013) were required: (i) it does

not use the moving average technique, because it is applicable only for image sequences, (ii) the

learning process does not use the strategy of training with subclass (shadow area, normal area

and land marks), where it would improve the final result of road detection. In the case of the

learning process to HistonBoost, the training images were splitted into training subset contain-

ing' 40%, and the test subset with' 60%. The time for training each category of this approach
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takes around 72 hours and the classification time for a single image takes around 2.5 minutes in

a naive implementation. The learning procedure applied to ProbBoost considers the complete

sample training set. To this approach, the time for training each category takes around 7 hours

and the classification time for a single image takes the same time as HistonBoost, around 2.5

minutes.

Table 3.2 - Results (%) of pixel-based for URBAN UNMARKED road area evaluation.
Source: The KITTI Vision Benchmark Suite.<http://www.cvlibs.net/datasets/kitti/eval_road.
php> accessed: 05/07/2014

Metric space - Testing set
Rank Method Setting MaxF AP PRE REC FPR FNR

1 RES3D-Velo (SHINZATO et al., 2014) 83.78 % 73.29 % 78.63 % 89.65 % 8.11 % 10.35 %
2 SPRAY (KUEHNL et al., 2012) 82.63 % 87.30 % 82.32 % 82.94 % 5.93 % 17.06 %
3 ProbBoost (VITOR et al., 2014c) 80.29 % 69.05 % 85.58 % 75.61 % 4.24 % 24.39 %
4 MDE 79.34 % 80.04 % 82.25 % 76.63 % 5.50 % 23.37 %
5 BM (WANG et al., 2014) 78.15 % 62.68 % 71.06 % 86.82 % 11.76 % 13.18 %
6 RES3D-Stereo 78.15 % 73.55 % 77.89 % 78.42 % 7.41 % 21.58 %
7 SP + BL (EINECKE; EGGERT, 2014) 74.42 % 80.10 % 66.04 % 85.24 % 14.58 % 14.76 %
8 SP (EINECKE; EGGERT, 2014) 73.63 % 69.87 % 65.43 % 84.18 % 14.80 % 15.82 %
9 HistonBoost (VITOR et al., 2014a) 73.51 % 63.07 % 77.36 % 70.03 % 6.82 % 29.97 %

10 CN (ALVAREZ et al., 2012) 71.48 % 66.30 % 72.09 % 70.88 % 9.13 % 29.12 %
11 BL (FRITSCH et al., 2013) 69.49 % 73.84 % 65.73 % 73.70 % 12.78 % 26.30 %
12 ANN (VITOR et al., 2013) 54.17 % 36.86 % 39.50 % 86.19 % 43.92 % 13.81 %

For all quantitative evaluation, a distinguished study including a majority of proposed

algorithm found in literature is demonstrated, comparing these developed algorithms with the

state-of-art approach in this field. A remark is that the baseline (BL) to road area is provided

as a lower bound (FRITSCH et al., 2013), by averaging all ground truth road maps from the

present validation set. The Table 3.2 presents the quantitative evaluation for the UU category.

As can be seen by the Fmax measure, the ProbBoost reaches 80.29% for this category, showing

an expressive evaluation compared with HistonBoost and ANN. It has a gain of 6.78% from

HistonBoost and 26.12% from ANN. To this category, the RES3D-Velo (SHINZATO et al.,

2014), which is the first in the rank at the moment (looking to the site 4), shows an improvement

of 3.49% with respect to ProbBoost. It is important to mention that this technique uses the

Velodyne laser as sensor to detect the road, which is more robust to noise (this information is

showed on the third columns of table called "Setting", where denotes Laser sensor, denotes

stereo camera sensor and empty denotes mono-camera sensor). Considering algorithms that use

camera as sensor, the SPRAY algorithm (KUEHNL et al., 2012) presents a gain of 2.34% from

ProbBoost, being this proposed method comparable with the state-of-art approaches to this

category.

4<http://www.cvlibs.net/datasets/kitti/eval_road.php> accessed on:10/09/2014
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Figure 3.19 - The result process for Urban Unmarked (UU) in the BEV space. The columns present
the original image, followed by ANN, HistonBoost, ProbBoost and SPRAY results. Green
color represents True Positive, red one represents True Negative and blue defines False
Negative.

Qualitative results to UU category can be seen in Figures 3.19 and 3.20. The Figure 3.19

presents the final road recognition in the metric space, where the evaluation process was done,

comparing these three algorithms together with the SPRAY algorithm. Figure 3.20 is showing

the same result in perspective space, where a slight difference between the SPRAY algorithm

and the ProbBoost algorithm may be observed.

With respect to UM category, Table 3.3 shows that the evolution between these proposed

algorithm remained the same, but with different gains. As can be seen by the Fmax measure,

ProbBoost had a improvement of 3.89% from HistonBoost and 24.96% from ANN. A curi-

ous phenomenon was that SPRAY and ProbBoost algorithms overcame the RES3D-Velo in

3.97% and 3.35% respectively. To this category, the difference between SPRAY and ProbBoost

is only 0.62%. Example processing results for the different evaluated methods are depicted in

Figure 3.21 to metric space and Figure 3.22 to perspective space.
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Figure 3.20 - The result process for Urban Unmarked (UU) in the perspective space. The rows present
the original image, followed by ANN, HistonBoost and ProbBoost results. Green color
represents True Positive, red one represents False Negative and blue defines True Negative.

Table 3.3 - Results (%) of pixel-based for URBAN MARKED road area evaluation.
Source: The KITTI Vision Benchmark Suite.<http://www.cvlibs.net/datasets/kitti/eval_road.
php> accessed: 05/07/2014

Metric space - Testing set
Rank Method Setting MaxF AP PRE REC FPR FNR

1 SPRAY (KUEHNL et al., 2012) 88.22 % 91.32 % 88.63 % 87.80 % 5.20 % 12.20 %
2 ProbBoost (VITOR et al., 2014c) 87.60 % 76.04 % 85.92 % 89.36 % 6.76 % 10.64 %
3 SP + BL (EINECKE; EGGERT, 2014) 85.66 % 88.98 % 84.11 % 87.28 % 7.62 % 12.72 %
4 RES3D-Velo (SHINZATO et al., 2014) 84.25 % 74.95 % 76.07 % 94.41 % 13.71 % 5.59 %
5 HistonBoost (VITOR et al., 2014a) 83.71 % 73.31 % 82.58 % 84.87 % 8.27 % 15.13 %
6 MDE 83.40 % 86.61 % 83.45 % 83.35 % 7.63 % 16.65 %
7 BL (FRITSCH et al., 2013) 82.53 % 85.59 % 79.24 % 86.11 % 10.41 % 13.89 %
8 BM (WANG et al., 2014) 79.19 % 66.78 % 70.29 % 90.66 % 17.69 % 9.34 %
9 RES3D-Stereo 79.01 % 80.21 % 76.64 % 81.54 % 11.47 % 18.46 %

10 SP (EINECKE; EGGERT, 2014) 78.49 % 76.85 % 72.77 % 85.20 % 14.72 % 14.80 %
11 ICF 74.14 % 58.41 % 64.37 % 87.40 % 22.34 % 12.60 %
12 CN (ALVAREZ et al., 2012) 73.97 % 73.64 % 69.93 % 78.51 % 15.59 % 21.49 %
13 ANN (VITOR et al., 2013) 62.64 % 46.80 % 50.18 % 83.34 % 38.21 % 16.66 %

Taking into account the UMM category, two attractive results are necessary to be emphas-

ized, as depicted in Table 3.4 by the Fmax measure. The first one, that should be highlighted, is

that the results of ANN approach overcome the baseline(BL) approach in 4.92%. The second

one is that the response of ProbBoost algorithm outperforms all other methods for this specific

category. It obtained a gain of 1.7% from the SPRAY method. The result for this category can

be seen in Figures 3.23 and 3.24.

To conclude the evaluation process, Table 3.5 presents the final results merging UU, UM

and UMM categories. As can be seen by the Fmax measure, considering all categories together,
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3.5 Experimental Results

Figure 3.21 - The result process for Urban Marked (UM) in the BEV space. The columns present the ori-
ginal image, followed by ANN, HistonBoost, ProbBoost and SPRAY results. Green color
represents True Positive, red one represents True Negative and blue defines False Negative.

the ProbBoost algorithm has presented expressive results, becoming the first one of the ranking

at the present moment. It represents the cutting-edge approach to field of road detection con-

sidering this challenging urban Kitti-road benchmark, where can be considerable an impressive

result given the complexity of the scenarios. However, in this current implementation, the pro-

cessing time is still an issue if compared with other approaches and also if aimed to autonomous

navigation which demands real-time processing. It should be mentioned that improvements on

real-time processing can be reached using for example the benefits of GPU cards.

Compared to other approaches, ANN outcomes presents the worst results. It can be ex-

plained by the higher complexity of the Kitti-road dataset, or, the training process used for

ANN was not adequate, having low expressiveness if observed the strategy of subclasses used

in (VITOR et al., 2013).
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3 Semantic Road Scene Understanding

Figure 3.22 - The result process for Urban Marked (UM) in the perspective image. The rows present
the original image, followed by ANN, HistonBoost, ProbBoost and SPRAY results. Green
color represents True Positive, red one represents False Negative and blue defines True
Negative.

Table 3.4 - Results (%) of pixel-based for URBAN MARKED MULTI-LANE road area evaluation.
Source: The KITTI Vision Benchmark Suite.<http://www.cvlibs.net/datasets/kitti/eval_road.
php> accessed: 05/07/2014

Metric space - Testing set
Rank Method Setting MaxF AP PRE REC FPR FNR

1 ProbBoost (VITOR et al., 2014c) 90.12 % 85.04 % 88.15 % 92.18 % 14.50 % 7.82 %
2 SPRAY (KUEHNL et al., 2012) 88.42 % 93.56 % 88.31 % 88.53 % 13.71 % 11.47 %
3 HistonBoost (VITOR et al., 2014a) 87.70 % 81.59 % 84.36 % 91.32 % 19.81 % 8.68 %
4 RES3D-Velo (SHINZATO et al., 2014) 87.64 % 85.81 % 86.70 % 88.60 % 15.91 % 11.40 %
5 BM (WANG et al., 2014) 86.56 % 80.49 % 83.15 % 90.26 % 21.40 % 9.74 %
6 CN (ALVAREZ et al., 2012) 85.77 % 84.91 % 83.37 % 88.30 % 20.61 % 11.70 %
7 MDE 84.49 % 89.57 % 88.24 % 81.04 % 12.63 % 18.96 %
8 SP (EINECKE; EGGERT, 2014) 81.95 % 83.09 % 76.77 % 87.88 % 31.11 % 12.12 %
9 SP + BL (EINECKE; EGGERT, 2014) 81.62 % 85.53 % 75.65 % 88.62 % 33.38 % 11.38 %

10 RES3D-Stereo 81.31 % 85.43 % 80.04 % 82.62 % 24.11 % 17.38 %
11 ANN (VITOR et al., 2013) 81.09 % 68.93 % 70.43 % 95.56 % 46.94 % 4.44 %
12 BL (FRITSCH et al., 2013) 76.17 % 78.42 % 65.02 % 91.95 % 57.89 % 8.05 %

3.5.2 Urban Street Scene Understanding

Giving continuity to Semantic Context recognition, this section explores the applicability

of two algorithms, the HistonBoost and the ProbBoost, in the task of Urban Street scene under-

standing. To demonstrate the viability of extending the results to multi-class classification, this

experiment uses another dataset publicly available at KITTI benchmark. This dataset is com-

posed by 446 images acquired in a inner-city scenario, having a sequence image of 0:45’min.

66

http://www.cvlibs.net/datasets/kitti/eval_road.php
http://www.cvlibs.net/datasets/kitti/eval_road.php


3.5 Experimental Results

Figure 3.23 - The result process for Urban Marked Multi-lane (UMM) in the metric space. The columns
present the original image, followed by ANN, HistonBoost, ProbBoost and SPRAY results.
Green color represents True Positive, red one represents True Negative and blue defines
False Negative.

The images include common objects such as cars, trees, building at a resolution of 1392x512

pixels. It was manually annotated 90 images, randomly selected, to supply the quantitative eval-

uation and also for training the final classifiers. The scene was labeled into seven semantic

classes, i.e., Building, Vehicle, Sky, Sidewalk, Road, Vegetation and Void. This specific dataset

is quite challenging and even objects of the same class in the scene have different appearance.

The quantitative evaluation was performed using a strategy defined by One against All.

It means that each class is evaluated separately. Based on this approach, it was applied the

same evaluation measures explained before, and the final evaluation was given by the average

obtained from all classes measures output. Restrictively for evaluation analysis, the 90 images

that were hand-labelled to provide the ground truth for training procedure, 67% of these images

were taken for training the algorithms and 33% to comparative evaluation. In this case, the

learning process to both algorithms use a sample set extracted from these training set, having
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Figure 3.24 - The result process for Urban Marked Multi-lane (UMM) in the perspective image. The
rows present the original image, followed by ANN, HistonBoost, ProbBoost and SPRAY
results. Green color represents True Positive, red one represents False Negative and blue
defines True Negative.

Table 3.5 - Results (%) of pixel-based for complete URBAN ROAD area evaluation, performed on the
metric space (BEV).
Source: The KITTI Vision Benchmark Suite.<http://www.cvlibs.net/datasets/kitti/eval_road.
php> accessed: 05/07/2014

Rank Method Setting MaxF AP PRE REC FPR FNR
1 ProbBoost (VITOR et al., 2014c) 87.21 % 77.79 % 86.96 % 87.47 % 7.55 % 12.53 %
2 SPRAY (KUEHNL et al., 2012) 86.33 % 90.91 % 86.78 % 85.89 % 7.53 % 14.11 %
3 RES3D-Velo (SHINZATO et al., 2014) 85.49 % 79.03 % 79.93 % 91.88 % 13.28 % 8.12 %
4 HistonBoost (VITOR et al., 2014a) 83.41 % 74.06 % 82.39 % 84.46 % 10.39 % 15.54 %
5 MDE 82.72 % 87.58 % 85.44 % 80.17 % 7.87 % 19.83 %
6 BM (WANG et al., 2014) 82.32 % 68.95 % 76.15 % 89.56 % 16.15 % 10.44 %
7 RES3D-Stereo 79.91 % 81.56 % 78.55 % 81.32 % 12.79 % 18.68 %
8 SP + BL (EINECKE; EGGERT, 2014) 79.48 % 83.93 % 73.59 % 86.40 % 17.85 % 13.60 %
9 CN (ALVAREZ et al., 2012) 78.92 % 79.14 % 76.25 % 81.79 % 14.67 % 18.21 %

10 SP (EINECKE; EGGERT, 2014) 78.75 % 77.66 % 72.41 % 86.30 % 18.93 % 13.70 %
11 BL (FRITSCH et al., 2013) 75.61 % 79.72 % 68.93 % 83.73 % 21.73 % 16.27 %
12 ANN (VITOR et al., 2013) 68.12 % 51.52 % 54.85 % 89.85 % 42.59 % 10.15 %

� 750000 samples to perform the procedure. Take note that the other subset was used only for

evaluation proceeding.

Table 3.6 and 3.7 depict the evaluation result to each class of both algorithms respectively.

Based on the same principle presented before, it is proposed a baseline for each class to provide

the lower bound comparison. It is obtained by averaging all ground truth road maps from the

present validation set. and its results are depicted in Table 3.8. Considering these Tables, as can

be seen by the Fmax measure, the ProbBoost approach reached values more than 88% for all

classes (except to sidewalk that receives 74.99%). This behavior is not the same to HistonBoost,
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Table 3.6 - HistonBoost Results (%) of pixel-based for Urban Street evaluation, performed on the per-
spective space.

Class MaxF AP PRE REC FPR FNR
road 87.50% 75.58% 87.80% 87.20% 3.13% 12.80%

sidewalk 45.80% 33.21% 76.24% 32.73% 0.96% 67.27%
vehicle 69.30% 56.67% 81.94% 60.04% 1.88% 39.95%
building 76.30% 63.58% 79.21% 73.60% 5.41% 26.40%

sky 57.89% 49.74% 99.22% 40.87% 0.03% 59.13%
Vegetation 84.40% 75.63% 86.37% 82.52% 4.89% 17.48%

Table 3.7 - ProbBoost Results (%) of pixel-based for Urban Street evaluation, performed on the perspect-
ive space.

Class MaxF AP PRE REC FPR FNR
road 93.32% 86.64% 93.25% 93.40% 1.75% 6.60 %

sidewalk 74.99% 54.92% 81.37% 69.55% 1.50% 30.45%
vehicle 88.20% 73.98% 87.65% 88.75% 1.78% 11.25%
building 88.02% 76.82% 89.02% 87.05% 3.01% 12.95%

sky 95.33% 87.07% 94.93% 95.74% 0.48% 4.26%
Vegetation 90.73% 85.00% 90.77% 90.69% 3.46% 9.31%

Table 3.8 - Baseline Comparator (%) to pixel-based for Urban Street evaluation, performed on the per-
spective space.

Class MaxF AP PRE REC FPR FNR
road 81.52% 87.95% 82.42% 80.64% 4.45% 19.36%

sidewalk 45.65% 37.76% 33.81% 70.22% 12.98% 29.78%
vehicle 52.53% 47.90% 38.32% 83.51% 19.12% 16.49%
building 61.53% 60.57% 52.79% 73.76% 18.49% 26.24%

sky 52.48% 47.56% 40.12% 75.88% 10.52% 24.12%
Vegetation 56.64% 51.83% 43.74% 80.33% 38.77% 19.67%

that its threshold to all classes is 57.89% (except to sidewalk that receives in this case 45.80%).

Observing the baseline, which restricts the lower bound for each class, the both algorithms

performed better than the baseline taking into account all classes.

In general, Table 3.9 demonstrates the results for the three approaches extracted from the

average of all classes. In this case, is possible to see the performance among them. Comparing

the Fmax measure, the ProbBoost algorithm reached an improvement of 18.23% from Histon-

Boost and from Baseline this percentage is approximately 30% in the perspective space. The

results express a satisfactory performance to ProbBoost even considering the task of multi-class

recognition.

Figure 3.25 presents the result process for two scenarios. The first row shows the original

image followed by the ground truth and these approaches. As can be seen, these approaches

were able to detect several obstacles such as vehicles, trees and sidewalks. Even with differ-
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Table 3.9 - Comparison Results (%) of pixel-based for Urban Street evaluation, performed on the per-
spective space.
Method MaxF AP PRE REC FPR FNR

HistonBoost 70.20 % 59.07% 85.13 % 62.83% 2.72% 37.17 %
ProbBoost 88.43% 77.41% 89.50% 87.53% 2.00% 12.47%
BaseLine 58.39% 55.60% 48.53% 77.39% 17.39% 22.61%
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Figure 3.25 - The Urban Scene Understanding results. The first row shows the original image followed
by the ground truth, HistonBoost and ProbBoost results.

ent conditions such as shadow areas and areas with high luminosity provided by the sun, the

algorithms could generate outcomes with satisfactory approximations for the road area. The

complete video results using the ProbBoost algorithm is public available in Vitor (2014f) 5 and

the HistonBoost algorithm in Vitor (2014e) 6.

5<http://youtu.be/JxXIhpsC9Gk> accessed on: 05/08/2014
6<http://youtu.be/MsR3U5RUtxk> accessed on: 05/08/2014
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3.6 Conclusion
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Figure 3.26 - Other Urban Scene Understanding results. The first row shows the original image followed
by the ground truth, HistonBoost and ProbBoost results.

3.6 Conclusion

In this chapter was presented a new semantic context recognition method for urban traffic

scenes. Experiments were divided into two phases. The first phase, focused at the task of road

recognition for automotive application such as ADAS systems and autonomous navigation. In

this phase, the meaningful performance analysis merging three distinct proposed algorithms

with other excellent methods found in literature were validated. The first proposed algorithm,

called ANN, constructs a feature’s descriptor extracting statistical measures of 2D and 3D in-

formation to be classified using an Artificial Neural Network. The second algorithm, defined

as HistonBoost, constructs a multi normalized-histogram feature’s descriptor using by extract-

ing information from Texton and Dispton maps, and then the output of this process supplies

the multi normalized-histogram Joint Boosting classifier. The third proposed algorithm, called

ProbBoost, was an improvement with respect of the second one, where this one replaced the

multi normalized-histogram features by the creation of a probabilistic distribution based on

Texton and Dispton maps to model the probabilistic weak classifiers used in the Joint Boosting
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classifier.

The experiments conducted on real driving situations demonstrate the qualitative and

quantitative evaluation of these algorithm to detect road despite the presence of shadows and

other objects in the scene, inherent from the complexity of inner-city environments. The Prob-

Boost method copes better than HistonBoost and ANN methods for all dataset used. Further,

considering all categories unified, the results also provide the benefits over existing methods, be-

coming the cutting-edge approach in urban road recognition found in literature until the present

moment (10/2014). Details are available at Urban Kitti-Road dataset7.

The second phase, focused at the task of multi-class recognition in urban scenario. Using

the same principle of evaluation applied to road detection, in this phase was studied the mean-

ingful performance analysis extending the HistonBoost and ProbBoost algorithms to act in this

task of multi detection. Presented in the results, the ProbBoost performs better than Histon-

Boost even considering multiple classes. So, this chapter presented a solid algorithm that plays

important role in the task of Urban Road Scene Understanding.

7<http://www.cvlibs.net/datasets/kitti/eval_road.php> Accessed on: 10/09/2014
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CHAPTER 4

Dynamic Evidential Grid using Semantic

Context

I believe in evidence. I believe in observation,
measurement, and reasoning, confirmed by independent
observers. I’ll believe anything, no matter how wild and
ridiculous, if there is evidence for it. The wilder and more
ridiculous something is, however, the firmer and more
solid the evidence will have to be.

(Isaac Asimov)

This chapter presents an approach dedicated to local perception mapping and character-

ization of static and moving obstacles using only a pair of stereo vision cameras to model the

occupancy grid (evidential grid). This kind of sensor provides different measurement charac-

teristics if compared to laser scanners. Moreover, cameras are already onboarded on standard

vehicles differently from laser scans, in general, more expensive. Figure 4.1 shows a rude block

diagram of the proposed system linked with the previous diagram described in chapter 3 which

is responsible to provide the semantic context of the image. For the second part (II) in Figure 4.1,

a Structure from Motion (SfM) is applied to get the rigid transformation between two success-

ive images, the Sensor Grid models an inverse sensor grid and the Perception Grid performs the

temporal fusion and mobile cells detection.

Differently from others works, it does not require some prior digital map information,

neither a precise pose estimation is needed, nor the tracking of vehicles. The main contributions

of this chapter are the proposed technique to build a new sensor model that provides reliable

urban environment sensing despite the uncertainty in distance measurement associated with
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Image Capture

Image 
Segmentation

Texton Map

Dispton Map

SfM Perception Grid

I. Semantic Context

II. Dynamic Evidential Grid

Mach. Learning

Sensor Grid

Path-PlanningPath-FollowingPID Control

III. Local Navigation

Route Planning

IV. Global Navigation

Figure 4.1 - The proposed solution to Evidential grid adding the semantic context.

the stereo geometry and the combination/update rules for meta-knowledge that incorporate the

semantic context on evidential grids.

4.1 Occupancy Grid to robotic perception

An autonomous robot must be able to understand the transversality and occupation of

space around itself. Among representation models of the environment, discrete approaches have

frequently been used in the field of robotic, particularly through of the occupancy grid repres-

entation shown in Elfes (1989b). The main idea of this formalism is to model the environment

without making any assumptions about the geometry of the elements present into the scene.

Thus, this section starts by providing a detailed description about principle and definitions in-

volving the representation of metric grids (section 4.1.1). Then, the conception of occupancy

grid associated with this metric grids is described in section 4.1.2. Finally, in section 4.1.3 is

demonstrated the system architecture based on egocentric referential approach that binds the

occupancy grid with the like-car robot, providing intuition about the system evolution along the

time.
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E

R0

(a)

(b)

(c)

(d)

Figure 4.2 - The approximative representation of a 2D space. (a) The 2D space E associated to a ref-
erence R0; (b) The continuous function f(x,y) :→ [0,1] (c) and (d) represent different
approximation in function of the resolution step r.

4.1.1 Principle and Definitions

As previously mentioned, in this work is used a representation of the environment based

on a grid. This grid is modeled considering a 2D dimensional space E associated to a reference

R0(0,�x,�y). Given a continuous function f(x,y) : E → [0,1] defined by every point P (xp,yp) of

E, a model can be defined to estimate this function f . A possible method consists of modeling

a discrete approximation performing a sampling in E. This discretization permits the construc-

tion of a matrix representation denoted by G, which performs a regular sampling in f , having

its own referential relative to the axes of R0 in the space. Considering a regular sampling, the

discretization step has a dimension of a cell, where its size expresses the quality of an approx-

imation, i.e, how smaller the cell size is, better will be the approximation of a function. In this

case is defined the grid resolution as being the number of cell by unit length. The resolution r is

similar to a spatial frequency that can be expressed as a function of sampling step r = 1
∆

, where

∆ is the size step. Figure 4.2 depicts a practical example considering different approximation

to a function.

Taking into account that the function f is not constant along the time, it is made an ap-

proximation to each instant t of sampling (temporal). Then, it is considered that all cells are

simultaneously sampled and independents in the time (f(x,y,t)). In the same way to spatial

sampling, the temporal refresh rate is determinant with respect to the dynamics of the function.
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E

R0

RM
RM

RA

RA
RRMMRRMRMRMRM

A00

Figure 4.3 - The referential correspondence between 2D space and the defined grid. RA represents the
oriented reference of the grid and RM represents the oriented reference of the 2D space.

The definition of the grid can be analogously represented like image processing, and its

formalism explained here, was inspired and based on the work of Moras (2013). Considering

a rectangular domain D = [a,b] × [c,d] ⊂ E2 having a reference RM to allow the localization

of all cells in the space, and given the function f(x,y) : D → [0,1] to be approximated by a

discrete method. The grid GA, where A represents the reference, can be defined as a partitioning

of D in an set of rectangular cells GA
ij with dimension ∆x × ∆y arranged, by convention, in a

matrix along the axes of reference RA:

GA =


GA

ij|∀(i,j) ∈ Z,


xij

yij


 ∈ D


 (4.1)

where each GA
ij corresponds to the index cell (i,j). The grid is defined by its intrinsic character-

istics:

- The reference RA to localize the cells;

- The relative position of RA from a point M of the spatial reference RM(M,�x,�y).

- A spatial domain DA corresponding to rectangle of work according to the axes of the

reference RM .

- A resolution ∆A(∆A
x ,∆

A
y ) defined as being the cell size.

The referential RM is by convention oriented as addressed in Figure 4.3, observed its

relative position from RA.

Given a cell GA
ij of the grid A with index (i,j), is defined:
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- CA
ij as being its center

- SAij as being its surface, SAij = [cAij.x−
∆A
x

2
,cAij.x+ ∆A

x

2
]× [cAij.y −

∆A
y

2
,cAij.y +

∆A
y

2
]

- IAij as being its value.

Similarly to the grid GA, is defined:

- CA = {CA
ij} as being the whole set of centers,

- SA = {SAij} as being the whole set of Surfaces,

- IA = {IAij} as being the whole set of values.

Finally, it is defined the belonging notion of a point P to a cell P ∈ SAij , or to abuse of

notation P ∈ GA
ij as follows:

∀P =

x
y

 ∈ E2, P ∈ SAij ⇐⇒
cAij.x−

∆A
x

2
< x ≤ cAij.x+ ∆A

x

2

cAij.y −
∆A
y

2
< y ≤ cAij.y +

∆A
y

2

(4.2)

which can be also expressed by:

∀P =

x
y

 ∈ E2, P ∈ GA
ij ⇐⇒

round(Mx) =0 x− i.∆x

round(My) =0 y − j.∆y

(4.3)

In Equation (4.3), round() is the function to round a number to the nearest integer.

(Mx,My) are coordinates of the point in the referential RM , and (0x,0y) are coordinates of

point A00 in the referential RM .

To extend the previous notation, it is defined to the point P with coordinates1 [x y 1]T :

- CA(x,y) as being the center of the cell containing P,

- SA(x,y) as being the surface of the cell containing P,

- IA(x,y) as being the value of the cell containing P.

1Homogeneous coordinates
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4.1.2 The conception of Occupancy grid

The defined metric grid is the basis to represent the environment around the car, in the

discrete form. Occupancy grid is a way to model the dynamic environment using the metric

grid basis. In this first moment, the Occupancy grid is defined using a deterministic approach

to formalize the conception about it, but, in section 4.2 is demonstrated the formalism that

considers the uncertainties associated with the environment.

The function that represents a occupied space in the environment is characterized by

O(P,t) at time instant t. Taken into account the metric grid, the Occupancy grid GO is defined

considering the referential RO of domain D and resolution ∆, where the estimated function is

the occupied function O(x,y,t). Each cell GO
ij has a binary value meaning its occupation in the

space, that is denoted by extension O(GO
ij,t).

Each occupancy cell of the grid has a surface which is referenced in the physic world

and it generalizes all information of the points therein contained. In this sense, a function F is

defined to represent the occupation of that cell, taking all points belonging to the surface SOij as

depicted in Equation (4.4):

IOij = O(GO
ij,t) = F ({O(P,t)|P ∈ SOij}) (4.4)

Considering the definition explained in the work of Moras (2013), each point belonging

to the same cell has a different value of occupation, arising three possible cases:

- The cell is empty: All its points are free. ∀P ∈ SOij , O(P,t) = 0. In this case F =

({0, . . . ,0}) = 0.

- The cell is occupied: All its points are occupied. ∀P ∈ SOij , O(P,t) = 1. In this case

F = ({1, . . . ,1}) = 1.

- The cell is partially occupied: ∃P1,P2 ∈ SOij , O(P1,t) = 0&O(P2,t) = 1. In this case, an

approximation should be done to describe the situation of the cell, carrying with it an error of

approximation. Various strategies are considered as:
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4.1 Occupancy Grid to robotic perception

(a) (b)
Figure 4.4 - Example of occupancy grids found in literature. (a) probabilistic Occupancy grid proposed

by Thrun et al. (2005) and (b) Evidential Occupancy grid proposed by Moras (2013).

− The cell is free if it contains at least a free point, O(GO
ij) = 0⇔ ∃P ∈ SOij , O(P ) =

0

− The cell is occupied if it contains at least a occupied point, O(GO
ij) = 1 ⇔ ∃P ∈

SOij , O(P ) = 1

− The cell is occupied if it contains the majority of occupied points,

O(GO
ij) = 1⇔

1 , if {
∫
SOij
O(P )dP >

∫
SFij
F (P )dP}

0 , otherwise

Generally, in applications to autonomous navigation where the safety must be considered,

the second strategy is more appropriate and prudent for these applications. Following the words

of Moras (2013), this kind of model is a powerful geometric modeling to represent the environ-

ment. since it makes no assumption about the shape of elements that compose the environment.

Figure 4.4 presents some examples of the occupancy grid used in robotics.

Observed the errors of approximation and discretization, as well as the uncertainties of

measures, in section 4.2 is presented a different formalism for improving the modeling and rep-

resentation of these uncertainties, estimating a value of belief for every cells in the Occupancy

grid.
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4.1.3 The system architecture based on egocentric referential ap-

proach

In robotics, two strategies are usually used to define the spatial position of a robot and the

elements that compose this spatial environment. These two strategies are denoted by Allocentric

frame of reference and Egocentric frame of reference.

In allocentric frame of reference, all objects in the environment have a spatial position

with reference to a fixed point, where this point of reference does not move along of the time.

This kind of strategy is quite used in cartography or in approaches based on simultaneous loc-

alization and mapping (SLAM). In the Egocentric frame of reference, all objects in the envir-

onment have a spatial position with reference to a relative point that moves along of the time.

In this work, the egocentric frame of reference is adopted due to the navigation procedure that

considers the planning of navigation composed by two layers, the local navigation and global

navigation, which is better detailed in Chapter 5.

Consider a car-like robot that operates within a finite domain D of a world plan. As

previously explained, this domain is defined in an euclidian space having two dimensions E2,

as can be seen in Figure 4.5. In this case, the Egocentric frame of reference is determined

associating the reference RM to the fixed point M defined as being the center of the car-like

robot in the spatial environment. By simplicity, it will be called and referenced by ego-car. So,

the Occupancy grid that is relative to the reference RM , will move together with the ego-car.

This approach has the advantage of always covering the same area around the ego-car and does

not limit its field of evolution.

To make the perception more reliable while the ego-car is displacing in the environment,

a temporal filter can be applied to take into account observed redundancies providing the Occu-

pancy grid more robust to noises and with more complete information. This temporal filter uses

the formalism of the predictor-corrector type, as showed in Figure 4.6.

Based on predictor-corrector approach, the principle of the system proposes the utilization

of two distinct Occupancy grids denoted by Sensor Grid and Perception Grid to perform the

sequential updating, as depicted in Figure 4.7. The Sensor Grid (SG) is built from the measured
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RM

D

Figure 4.5 - Egocentric frame of reference for car-like robot. The irregular surface symbolizes the evolu-
tion field of the car-like robot embedded in the domainD, having a relative point of reference
fixed at the center of the robot.

Ego-Motion  Mt Prediction Correction Measure  Zt

GtGt-1

Ĝt

Figure 4.6 - Temporal filter based on predictor-corrector approach.

GPGt-1 GPGt

GSGt-1 GSGtMt-1

Z t-2

Mt

Z t-1 Z t

Figure 4.7 - The sequential update to Occupancy Grid.

Zt and merged in the Perception Grid. The Perception Grid (PG) is a grid that maintains the cell

state between the different instants of time, realizing in this way a Dynamic Local Perception.

To perform the merging of the SG and the PG, it should be ensured that these two grids have a

spatial and temporal coherence. In each time that a new SG is disposed, the current position is

estimated and the prediction of PG must be done to the current time. The variableMt represents

the rigid transformation M = [R|T ] and the measure Zt is obtained by a Stereo camera.

Prediction of the grid is realized when a new measure is available. It is required due to the

displacement of the ego-car and also the elements of the scene that compose the dynamic envir-

onment. Improper prediction may cause inconsistency to PG. Therefore, the vehicle movement
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Figure 4.8 - Visual Odometry approach Geiger et al. (2011). This method uses the active feature match
search strategy by leveraging the motion estimate from the last frame. This reduces the
problem of ambiguities and improves performance especially in challenging scenarios.

(ego-motion) between two sequential measure sampling should be compensated. This is reached

applying the rigid transformation that includes the car geometry and the disposition of camera

sensors. The bilinear interpolation method is used to better fit the values among the cells of the

grid. In fact, the matrix of the rotation and translation that composes the rigid transformation

is obtained employing a technique of Visual Odometry based on Structure from Motion (SfM)

proposed in the distinguished work of Geiger et al. (2011) and applied to this work. Figure 4.8

presents the principle to recover the rigid transformation between two pair of consecutive stereo

images acquired from a calibrated stereo system.

Despite the ego-motion compensation has been done, the information contained in the

previous grid is not more completely valid for the reason that the scene has changed from

an instant to other. The dynamic of the scene between these two instant of time is kept fixe,

increasing in this way the uncertain of the grid. An advantage of this action is that when the SG

and PG are merged, a conflict between the values of a same cell will happen. These conflicting

cells signalize a possible moving object in the scene. The mechanism that manages uncertainties

in the form of evidences, is the same that provides this detection procedure.

A brief notion about the system architecture was established. Details about specific meth-

ods is given in the next sections. In section 4.2 is presented the formalism based on evidence

theory to manage the uncertainties and also to detect the mobile cells. Section 4.3 presents the
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inverse model sensor to model the SG, followed by section 4.4 that explains the complete Local

Dynamic Perception proposed in this chapter.

4.2 Fundamentals of Evidential Grid

In the previous subsections are presented the principle of occupancy grids to navigation.

These grids are used to estimate the occupation of space with uncertainties. How to represent

these uncertainties have important implications on how to handle the information in the grid and

then reasoning about the data. In this thesis, the tool to manage uncertainties associated to the

occupancy grid reposes under a mathematical theory of evidence (SHAFER, 1976). Specific-

ally, the occupancy grid uses the formalism of the Dempster-Shafer Theory (DST) to model the

uncertainties, which is a generalization of the Bayesian Theory of subjective probability (DE-

MPSTER, 1968). The DST model associated in the Occupancy grid takes the name of Evidential

Occupancy grid or then Evidential grid. As previously explained, there are some works which

take advantage of evidential grids in the context of mobile perception (MORAS et al., 2011a;

KURDEJ et al., 2014) and autonomous vehicles (PAGAC et al., 1998; YANG; AITKEN, 2006).

The reasons for this choice are that the approach allows faster convergence (CANAS; MA-

TELLáN, 2006), conflict detection, fusion of unreliable sources, etc (MORAS, 2013).

In the evidential grid, uncertainties are modeled as a belief function. The con-

cerned proposition is defined by Free and Occupied, having a set composed by Ω =

{Occupied(O), F ree(F )}. The frame of discernment (FOD) of Ω is the set of all possible sub-

sets of Ω and denoted by 2Ω = {Occupied(O), F ree(F ), unknown(Ω), conflict(∅)} There

are various forms to represent the belief function such as mass, belief, plausibility and com-

munality, and all these representation are equivalents (MORAS, 2013). In this approach is used

the mass function mΩ, having the following property given by Equation (4.5):

m : 2Ω → [0...1]∑
A∈2Ω m(A) = 1

(4.5)

The mass function of all cells of the evidential grid is a vector containing four masses that
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Figure 4.9 - Comparison of belief transition in Bayes’s theorem and DST. (a) The belief transition in

probabilistic approach. (b) In DST approach, the transitions are: fusion(1,2), conflict gener-
ation(3,4) and conflict normalization(5,6,7). Adapted source from Moras (2013)

represent the belief for each element in 2Ω:

IOij = { m(F ) m(O) m(Ω) m(∅) } (4.6)

In Equation (4.6), the mass of each element corresponds a belief level that the cell (Gij)

is in a given state. All cells of the grid is initialized with a mass function called Basic Belief

Assignment (BBA).

Before explaining the mechanism of decision and fusion in evidential grid, an brief com-

parative between DST and Bayes’ theorem should be mentioned. In Bayes’ theorem, the prob-

abilistic method describes the occupation of a cell using only one probability value by cell, being

that the belief function requires the computation of three masses (the fourth mass is obtained

by the condition of Equantion 4.5) (YAGER et al., 1994). In this case, the computation cost

required by the evidential approach is higher, considering the memory usage and processing

time. However, in probabilistic approach, the belief transition is possible only between the two

states and symmetrically restricted. In evidential approach, the belief can be transferred among

the four states, which each one of these transition has a different meaning, dynamic and im-

portance. Figure 4.9 presents the comparison of belief transition between Bayes’ theorem and

DST.

As a simple example extracted of Nguyen et al. (2012), considering that one cell contains

3D points from obstacles, according to Bayes’ theorem, P (O) would be somewhere greater than

0.5. Let it assumes P (O) = 0.6. According to the DST, it has a belief mass m(O) = 0.6. The

fewer 3D points from obstacles one cell has, the less certain it can be that the cell is occupied.
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This uncertainty can be represented with m(Ω). Since there is no evidence detected that a cell is

free, it hasm(Ω) = 1.0−m(O) = 0.4. After Bayes’ theorem, it has P (F ) = 1.0−P (O) = 0.4.

This means that the uncertainty is automatically represented as free, which is not quite correct.

Thus, these comparatives illustrate the applicability and interest of the DST approach.

In applications of autonomous vehicle, the navigation needs to take decisions based on a

higher level of confidence provided by the perception module, as for example the navigable area

where the vehicle could maneuver. However, evidential grid does not model directly the occu-

pancy state of the cell, instead this estimation is given by a function that models its confidence.

In this case, a decision function should be modeled to serve this purpose.

To that end, the formalism of belief function has several methods to supply this require-

ment, using the methodology denoted by Transferable Belief Model (TBM) described in the

work of Yager et al. (1994) and Smets (1989). Accordingly with the TBM, a solution is to use

the upper and lower bounds, also called belief bel(A) and plausibility pl(A). The belief bel(A)

for a set A is defined as the sum of all the masses of subsets of the set of interest (Equation 4.7),

and this function states the certainty level to a given state.

bel(A) =
∑

X|∅6=X⊆A

m(X) (4.7)

The plausibility function pl(A) states the plausibility level to a given state, and it is ob-

tained as the sum of all the masses of the sets X that intersect the set of interest A, Equation (4.8):

pl(A) =
∑

X|X∩A6=∅

m(X) (4.8)

These two functions represent the limits of the belief values to each state, verifying this

property in Equation (4.9)

pl(A) = bel(Ω)− bel(A) = 1− bel(A) (4.9)

Therefore, looking at the last example area, a decision maker can be given by Equa-

tion (4.10):
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decision(F,th) =

1 , if pl(F ) > th

0 , otherwise
(4.10)

In Equation (4.10), the function pl(F ) is given by pl(F ) = 1− bel(F ).

The updating procedure showed in Figure 4.14, is formalized using the Dempster’s rule

of combination. This fusion operator allows the merging of two independents mass function

defined in the same FOD. Further, it assumes that all sources are reliable and its result leverages

a more informative mass function than the two previous sources (DEMPSTER, 1968). In this

sense, two reliable sources can be merged performing two steps: the conjunctive combination

rule followed by the normalization of the conflicting mass function m(∅). In Equation 4.11, the

result is denoted by m1 ⊗m2(A), taking m1 and m2 as mass function of two reliable sources

applying the conjunctive rule ⊗.

m1,2(∅) = 0

m1,2(A) = (m1 ⊗m2)(A) = 1
1−(m1⊗m2)(∅)

∑
B∩C=A6=∅m1(B).m2(C)

(4.11)

where

(m1 ⊗m2)(∅) =
∑

B∩C=∅

m1(B).m2(C) (4.12)

It is observed that the merging process using the Dempster’s rule of combination works

only with independent mass functions defined in the same FOD. To include the meta-knowledge

extracted from Urban Road Scene Understanding, presented in Chapter 3, it is essential to ex-

tend the FOD to incorporate this information. A problem arises when the set Ω = {F,O} passes

to represent Ω = {F,O,...,Cn}, where in this case the FOD exponentially increase to 2Ω, de-

pending of the number of propositions Cn added in the set. This phenomenon impacts directly

on the time to processing any calculus on the grid. A proposed alternative to avoid this problem,

is to maintain the propositions of Free and Occupied, and then, generates a refinement in the

Occupied proposition as follows.

The refinement consists in expanding a subset of propositions with respect to the Occupied
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proposition. This subset is defined by r(O) = {V,B, T, S} which denotes respectively (V )

vehicle, (B) building, (T ) vegetation and (S) sidewalk. It assumes that each proposition in the

occupied refinement subset is represented by {ori|∀i ∈ r(O)}. It should be mentioned that

the set r(O) is not the same that is classified in the chapter 3, i.e, the set r(O) considers only

meta-knowledge defined as obstacle, avoiding in this case the classes sky, road and void. The

combination rule to occupied refinement proposition, denoted by Prop(O), is obtained by the

ro argument of the highest mass function between the two evidences conditioned to the fact that

the argmax[m1 ⊗m2(A)] = O. The fusion rule to proposition refinement is given by (4.13):

Prop1 ⊗ Prop2(A) =

or
∣∣∣∣∣∣ argmax[m1(A),m2(A)] and

argmax[m1 ⊗m2(A)] = O

 (4.13)

After demonstrating the procedure to update two grids merging its evidences, at the mo-

ment is possible to introduce the conflict analysis used by Moras et al. (2011a) and Kurdej et

al. (2014) to detect mobile cells. In fact, the conflict is determined when two information are

merged. In DST, it is explicitly represented by m(∅). If the mass function resulting from the

fusion of Dempster’s rule (before the normalization) has m(∅) 6= 0, it means that at least the

merged information is partially in contradiction. According to Moras (2013), the conflict can

have different causes: a difference of expert opinion or an improper system modeling. In the

present case, the conflict source arises from two principal errors:

- The assumption that the grid is static, being that the observed scene contains dynamic

elements.

- The geometric approximation due to the discretization in sensor model and during the grid

propagation.

Considering these errors, Moras (2013) proposes in his work the decomposition of the

term (mPG
t−1 ⊗mSG

t )(∅) in two others terms (Equation 4.14):

(mPG
t−1 ⊗mSG

t )(∅) = mPG
t−1(F ).mSG

t (O)︸ ︷︷ ︸
T1

+mPG
t−1(O).mSG

t (F )︸ ︷︷ ︸
T2

(4.14)

The first term T1 corresponds a cell that was previously free with a certain confidence

level mPG
t−1(F ) and, at current time t, it is observed as occupied with confidence level mSG

t (O).
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T1
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Figure 4.10 - The conflict analysis example generated by a mobile object. Red cells represent occupied
area, green cells represent free area. Cyan cells represent the conflict depicted by T2 and
violet cells represent the conflict explained by T1.

If it is considered that the conflict comes from a object in movement into the scene, the term T1

means that a free cell becomes occupied and therefore, that an object is entering in that space

represented by the cell. In the same way, the term T2 means that an occupied cell becomes free

and consequently, that an object is going out from that space represented by the cell.

Taking into account the generated conflict in the cells due to a moving object, it is possible

to analyze the terms T1 and T2 to provide insights not only to conflict itself, but also to determine

the direction and sense of an object in movement, as illustrated in Figure 4.10.

4.3 Sensor Grid Model

In this section the method to build the Sensor Grid (SG) is presented. The Sensor Grid is

built at each instant that the sensor provides a new measurement. It transforms the acquired data

information to its representation in the evidential grid. Therefore, it implements in some form,

the sensor model used in the algorithm.

The general conception is depicted in diagram of Figure 4.11. Applying the SGBM al-

gorithm in an stereo pair of rectified images, the disparity map I∆ is obtained. Based on the

Epipolar Geometry and camera calibration, 3D reconstruction is performed obtaining the 3D

points with referential in the camera. After that, an affine transformation using homogeneous
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Figure 4.11 - The architecture of the Sensor Grid Model

coordinates is calculated to represent the points in the referential of the grid RG. Due to re-

strictions on camera position and the grid dimensions, only 3D points that fall in this region

of interest (ROI) are considered. An improvement is done in the ROI to consider also specific

points that have a Semantic Context associated, observed in the Semantic Urban Road Scene

Understanding and denoted by IR. Finally, the Inverse Sensor Model using a gaussian to rep-

resent the uncertainties associated with the points is computed.

The principle of 3D reconstruction is to recover metric points from associated pixels

of an rectified pair of stereo images, and also, incorporating the meta-knowledge linked with

the Semantic Context. The 3D reconstruction applies the methodology explained in the book

of Faugeras (1993), to get the points in the 3D cartesian space relative to the left camera, with

homogeneous coordinates [Xc, Y c, Zc,W ]T . Incorporating the meta-knowledge associated with

the semantic context, a 5-tuples denoted by P c, which c represents the referential of the cam-

era Rc, is defined containing the homogeneous 3D point and the information of the occupied

refinement proposition denoted by ro. This transformation is shown in Equation (4.15):
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P c =



Xc

Y c

Zc

W

or


=



u.Zc

fx

v.Zc

fy

f.b
d

1

IRij


(4.15)

where

u = i− cx
v = j − cy

(4.16)

In Equation 4.15, f,fx,fy represent the focal length in pixels and are obtained by the off-

line calibration process. b represents the baseline of the stereo cameras (in meters). d represents

the value of disparity obtained from I∆. IRij represents the value of the semantic context at index

position i,j. Finally, in Equation (4.16), cx and cy are the coordinates of the optical axis in the

image plane.

The set points P c should be expressed in coordinates of the grid to compute the following

steps. To do this, two relations should be defined, from the referential of the camera to the

referential of the vehicle and from the referential of the vehicle to the referential of the grid.

The coordinate systems of these three referentials are defined as illustrated in Figure 4.12, i.e:

− Camera: x = right, y = down, z = forward

− Vehicle: x = forward, y = left, z = up

− grid: x = right, y = backward, z = up

The first transformation is obtained defining the position of the camera with respect to

the center of the ego-car. Let that the left camera is fixed at point 0Pm in the vehicle reference

RM . The affine transformation is built applying the translation of the point 0Pm followed by

two rotation, β = −90 degrees in the Y axis and α = 90 degrees in the X axis. Therefore, the

affine transformation from camera to vehicle is obtained by Equation (4.17):
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Figure 4.12 - The defined coordinate Systems. (a) Camera coordinate system, (b) vehicle coordinate sys-
tem, (c) grid coordinate system.

Mcam_car =




1 0 0 0

0 cos(−α) −sin(−α) 0

0 sin(−α) cos(−α) 0

0 0 0 1




︸ ︷︷ ︸
Rx

∗




cos(−β) 0 sin(−β) 0

0 1 0 0

−sin(−β) 0 cos(−β) 0

0 0 0 1




︸ ︷︷ ︸
Ry

∗




1 0 0 −0Pm
x

0 1 0 −0Pm
y

0 0 1 −0Pm
z

0 0 0 1




︸ ︷︷ ︸
T

(4.17)

The second transformation is obtained defining the position of the ego-car with respect to

the origin of the grid. Let that the ego-car is fixed at point 0P g in the grid reference RG. The

affine transformation is built applying the translation of the point 0P g followed by a rotation of

θ = −90 degrees in the Z axis, then the Y axis should be inverted and finally, a scale factor

considering the discretization (∆x,∆y) in the grid. Therefore, the affine transformation from

vehicle to grid is obtained by Equation (4.18):

Mcar_grid =




1/∆x 0 0 0

0 1/∆y 0 0

0 0 1 0

0 0 0 1




︸ ︷︷ ︸
resolution factor

∗




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1




︸ ︷︷ ︸
invert Y axis

∗




cos(−θ) −sin(−θ) 0 0

sin(−θ) cos(−θ) 0 0

0 0 1 0

0 0 0 1




︸ ︷︷ ︸
Rz

∗




1 0 0 −0P g
x

0 1 0 −0P g
y

0 0 1 −0P g
z

0 0 0 1




︸ ︷︷ ︸
T

(4.18)

To finish the affine transformation between the referential of camera and the referential

of the grid, the final transformation is simply multiply these two previous matrices. So, the set

points P c is represented in the referential of the grid as being P g and is obtained by Equa-

tion (4.19):

91



4 Dynamic Evidential Grid using Semantic Context

P g = Mcar_grid ∗Mcam_car ∗ P c (4.19)

Due to the restrictions on camera position and the grid dimension, the set formed by all

reconstructed points Pg suffer a filtering molded by a ROI. The ROI is defined considering the

following restrictions:

− Assuming that the plane formed by the optical axis (Z axis) with the horizontal axis

(X axis) is parallel to the road surface, a value of height from the road surface is

defined where the points that transcend this threshold are not considered;

− Observing the grid dimensions, all points out of this condition: 0 ≤ P g ≤ Gridsize

are also discarded;

− For the remaining points inside the ROI, only those that have their semantic context

associated with obstacles are considered.

So, taking into account the defined ROI, the selected set of points can be projected in the

grid. Therefore, this selected set, denoted P s, is defined by (4.20):

P s = {P g | ∀P g ⊆ ROI and or ∈ r(O)} (4.20)

To perform the projection of P s set in the grid, a inverse sensor model is described consid-

ering the noise in stereo measurements and also considering the uncertainty linked with stereo

geometry reconstruction, where exponential error is observed when increasing the distance.

This method approximate the uncertainties using a Gaussian distribution, as can be seen in Fig-

ure 4.13. The inverse sensor model defined by ψprobO (GSG, P s), has the prob index representing

the probability distribution, and O index representing the Occupied proposition. The function

can be described by the following Equation (4.21):

ψprobO (GSG, P s) =

min(
∑

GSGij ∩AG

k.exp(−α.Dx2+2β.Dx.Dy+γ.Dy2), ϑO) |∀P s
n ∈ {P s}

 (4.21)

where
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α =
cos2θ

2σ2
x

+
sin2θ

2σ2
y

(4.22)

β = −sin2θ

4σ2
x

+
sin2θ

4σ2
y

(4.23)

γ =
sin2θ

2σ2
x

+
cos2θ

2σ2
y

(4.24)

In Equation (4.21), κ is a constant representing the percentage that a single 3-D point

could contribute to the occupancy level of a cell Gij . ϑO is a parameter that belongs to [0, 1]

and reflects the confidence in the measurement (1 if confident). This confidence is linked to

the principle of measurement (false alarm or miss detection). Dx and Dy are the difference

between the coordinates of the P s
n and Cij , i.e, Dx = Cij.x − P S

n .x and Dy = Cij.y − P S
n .y.

The index GSG
ij ∩AG at the sum in Equation (4.21), represents the area of the gaussian AG that

its distribution overlaps the cells of the grid GSG. The parameters σ and θ model the dispersion

of the distribution in function of the distance and its orientation with reference to ego-car. The

dispersion of the gaussian considering the distance Z of the camera is modeled taking each

value of disparity {di ∈ {d}}, as depicted in Equation (4.26):

σy =


√∑

n∈N(d)

[(
f.b
di

)
−
(
f.b
dn

)]2

card(N(d))− 1
|∀di ∈ {d}

 (4.25)

σx =

{
σy
di
|∀di ∈ {d}

}
(4.26)

In Equation (4.26), N(d) represents the neighborhoods of the disparity and card(N(d))

represents the cardinality of the set N(d). In the case of the parameter θ, it is modeled by

Equation (4.27):

θ =

∣∣∣∣arctan(0P g.x− P s
x

0P g.y − P s
y

)∣∣∣∣ (4.27)

The inverse sensor model proposed to project the meta-knowledge information in the grid

is based on the principle of voting. This method assumes that the better semantic information

which represents the cell is defined by the sum of votes that a given meta-knowledge received

from those points belonging to the cell. Therefore, to model the occupied refinement subset

with proposition {or ∈ r(O)}, in this case denoted as ψpropO (GSG, P s), is described by (4.28):
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Figure 4.13 - The model of uncertainty associated with stereo geometry reconstruction and noise in

stereo measurements.

ψprop
O (GSG, P s) =

{
argmax

ro
(ω(GSG

ij ,P s))|∀Gij ∈ GSG

}
(4.28)

where

ω(GSG
ij ,P s) =




∑
P s
n⊆SSG

ij

δ(P s
n.or,orl)|∀orl ∈ r(O)


 (4.29)

δ(or,orl) =



1 , if or = orl

0 , otherwise
(4.30)

In Equation (4.29), the index P s
n ⊆ SSG

ij represents all 3D points P s
n ∈ {P s} that are

contained in the surface of the cell SSG
ij .

Until this point, the solution is able to manage the probability of occupied areas using

3D points that belong to obstacles. It is also able to perform the occupied refinement which

determines the best proposition that represents those occupied areas. Based on the principle that

the obstacles were already processed, a simple but effective method which model the free areas

is applied. The objective of this method is that, if it exist a light ray from camera sensor to a

detected obstacle point, it can be stated with a given probability that every cell that lies along

this line is free. So, the solution for free areas, defined by ψprob
F (GSG,FL), which {FL} denotes

the set of Free Lines, is modeled by a function that attributes the free probability for all cells

which intercept the line generated from camera sensor position to all first obstacle detected.

This technique is done by the Bresenham algorithm (BRESENHAM, 1965), and described by
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Equation (4.31):

ψprobF (GSG,FL) =

{
max
fl∩GSGij

(1,0− ϑF ))|∀fl ∈ {FL}

}
(4.31)

In Equation (4.31), ϑF is a parameter that belongs to [0, 1] and reflects the confidence in

the measurement of the Free area (0 if confident). As previously explained, this confidence is

linked to the principle of measurement (false alarm or miss detection).

To conclude the inverse sensor model for all states, the function that models the unknown

state (Ω) should respect the property presented in Equation (4.5), and is defined by the following

Equation (4.32):

ψprobΩ (GSG) = 1.0− ψprobO (GSG,P s)− ψprobF (GSG,FL) (4.32)

Therefore,the resulting evidential grid modeled to represent the sensor grid at each instant

of a measurement, has its BBA defined as Equation (4.33) :

mSG(O) = ψprobO (GSG, P s)

mSG(F ) = ψprobF (GSG, FL)

mSG(Ω) = ψprobΩ (GSG)

mSG(∅) = 0

PropSG(O) = ψpropO (GSG, P s)

(4.33)

4.4 Dynamic Local Perception Grid

As introduced in previous sections, the Perception grid (PG) is responsible for building

the final representation of the environment along the time. The complete Dynamic Local Per-

ception (DLP) proposed in this work is a new conception involving the Semantic Urban Road

Scene Understanding with Occupancy grids. Its architecture is detailed in Figure 4.14. At each

instant t that a measure is acquired, the meta-knowledge IRt representing the Urban Road Scene

Understanding is archived. By simplicity, this process is renamed to Semantic Context. The IRt
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Figure 4.14 - Detailed system architecture proposed to Dynamic Local Perception.

jointly with the Disparity Image I∆
t supply the necessary information to construct the GSG

t , per-

forming the novel Inverse Sensor Model. Following, the prediction of the ĜPG
t is estimated and

then the GSG
t is updated with this estimation using the methodology based on DST to manage

the uncertainties of the system. Inside the updating procedure, it is possible to detect the mobile

cells based on GPG
t .

Launched the conception of the DLP, the details of the system architecture are presen-

ted. The Semantic Context is presented in Chapter 3. The Inverse Sensor Model is depicted in

section 4.3.

The prediction process estimates the grid GPG to ĜPG in function of the displacement

generated by the ego-car at instant t − 1 to t. The rigid transformation (Mt = [R|T ]) that rep-

resents this displacement is performed in two consecutive images, as explained in section 4.1.3.

Thus, GPG
t−1 → GPG

t uses the affine transformation function f(GPG
t−1,Mt) to evolute the cell

information, given by Equation (4.34).

m̂PG
t = B(f(mPG

t−1,Mt))

ˆProp
PG

t = $(f(PropPGt−1,Mt))
(4.34)

where
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$(f) = {max(
∑

x=Ncell

δ(orj,orx)) | ∀j ∈ r(O)} (4.35)

In Equation (4.34), the function B(.) applies the bilinear interpolation in the mass func-

tion, and the function $(.) realizes the same process as B(.), but on occupied refinement pro-

position. Following Equation (4.35), the Ncell stands for all neighbors of the cell on grid, and

δ(.) is defined in Equation (4.30). In this process, there are some cells that disappear and other

cells that come within the scope of the new grid. These new cells are initialized with the un-

known mass function (Ω = 1.0).

When the ĜPG
t is computed, the fusion process with GSG

t can be done. Each cell refers to

an occupancy mass function defined on 2Ω plus the refinement r(O), shown in Equations (4.11)

and (4.13) of section 4.2. The mass function mPG
t at time t = 0, has its values representing no

prior information (4.36):

mPG
t (O) = 0.0

mPG
t (F ) = 0.0

mPG
t (Ω) = 1.0

mPG
t (∅) = 0.0

PropPGt (O) = ({})

(4.36)

However, the updating mechanism is achieved in two steps in order to keep the conflicting

information and also to combine the proposition refinement. The first step, the fusion process

uses the Equation (4.11) without the normalization factor, to merge the mass function. The

Equation (4.13) is applied to get de associated proposition, as demonstrated in Equation (4.37).

m′PGt = m̂PG
t ⊗mSG

t

PropPGt = ˆProp
PG

t ⊗ PropSGt
(4.37)

In Equation (4.37),m′PGt is the conjuctive fusion, i.e, the Dempster’s rule without the nor-

malization factor. The second step, the updating process is done normalizing the mass function

by the conflict mass, as shown in Equation (4.38). It should be mentioned that the conflict mass

m′PGt (∅) is stored for mobile detection analysis.
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m
PG
t (A) = m′PGt (A)

1−m′PGt (∅) A 6= ∅

mPG
t (∅) = 0 A = ∅

(4.38)

The detection of a mobile object is reached by analyzing the conflict mass m′PGt . If GPG
t−1

andGSG
t contradicts themselves, it means that a conflict occurred and it can be analyzed follow-

ing the Equation (4.14). As previously explained, the first term T1 detects the generated conflict

when a moving object leaves the cell and the second term T2 detects the generated conflict

when a moving object appears in the cell. Due to noises and imprecise measurements arising

from data acquisition, bad displacement estimation, etc, many false-positive detections may ap-

pear. In this case, using the meta-knowledge associated in the GPG
t , the detection of mobile

obstacles can be improved by restricting that only the r(O) ⊃ V could generate this conflict.

m′
PGr
t (∅) = {m′PGij |PropPGt (O) ⊆ {V }} (4.39)

4.5 Experimental Results

In this section are presented experiments using two dataset acquired in urban conditions.

The first one is a continuation of the outcomes presented in the previous chapter 3, using the

Kitti benchmark depicted in section 3.5.2. In this dataset, the used sensor camera is character-

ized by two PointGrey Flea2 color cameras model FL2-14S3C-C, with focal length of 4 mm

and horizontal opening angle of ∼90 degrees. The baseline of the stereo camera rigs is approx-

imately 54 cm. The left calibrated camera has the principal point in cx = 609.5593 px. and

cy = 172.8540 px. as well as the focal length fx = fy = 721.5377 px. The mounting positions

of the sensors with respect to the vehicle body is demonstrated in Figure 4.15(a), given in the

work of Geiger et al. (2013).

The second dataset was acquired at the test track of the Heudiasyc Laboratory using a

moving platform called ZOE. This dataset is composed of 473 sequential images with resolution

of 640x480. The sensor camera used in this case is characterized by a PointGrey Bumblebee x3

color model BBX3-13S2C-60, with focal length of 6mm and horizontal opening angle of ∼43
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Figure 4.15 - Sensor Setup. This figure illustrates the dimensions and mounting positions of the sensors
(red) with respect to the vehicle body. Heights above ground are measured with respect to
the road surface. (a) Using the KITTI Benchmark (GEIGER et al., 2013) (b) The ZOE plat-
form where the second dataset was acquired, at Heudiasyc Laboratory (c) Local Perception
Grid setup.

degrees. The baseline of the stereo camera is approximately 24 cm. The calibrated left camera

has the principal point in cx = 325.6 px. and cy = 244.90464 px. as well as the focal length

fx = 807.7376 px. and fy = 807.7392 px. The mounting position of the sensor with respect to

the vehicle body considers the same disposition as the previous one, but attempting to horizontal

angle of vision that in this case is very restrict. It is demonstrated in Figure 4.15(b).

For both datasets, the grids are defined to cover an area of 39.9m x 53.1m with resolu-

tion of 0.3m x 0.3m. The center of the ego-car was positioned on the grids with coordinates

(20m, 50m), remembering that the reference is fixed on left-up of the grid. The transforma-

tions between referential were modeled considering the car geometry and disposition of sensor

cameras shown before.

Validation and performance analysis of this kind of perception systems is quite difficult to

be archived. Moras (2013) proposed a scheme to perform the validation of results. As that work

used a scanner laser rangefinder, its methodology allows a qualitative validation by projecting

the estimated local grid as being a transparency in the image, at the same instant of time that

the laser sensor acquired the measurement. So, the author argues that it enables a dense visual
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Figure 4.16 - The proposed visualization method using the HSV color space.

analysis. Therefore, the accuracy of the approach was analyzed by correspondence between the

results obtained and the observed scene. It is noted that the hidden cells can not be evaluated

in this way. Thus, the validation analysis performed in this work considers the same principle,

although, instead of the grid to be built by the scanner laser rangefinder, it is built by stereo

images.

A simple method is created in order to better visualize the various information contained

in the DLP. This method proposes to give a different meaning for the HSV color space. The idea

is to represent the four states of the evidential grid considering also the semantic context such

as building, sidewalk, road, vegetation and vehicle. To do this, the colors in the Hue axis which

ranges from 0 - 360 degrees is changed to represent the semantic context. Consequently, it is

defined a fixed value of degree to each class. Therefore, 0°, 60°, 90°, 120° and 300° represent

respectively building, sidewalk, road, vegetation and vehicle. The set of degrees {0°, 60°, 120°,

300°} belongs to occupied state (O) and the degree 90° belongs to free state (F ). Following,

the Saturation axis that ranges from 0 - 100% is changed to represent the conflict state (∅), but

inverting the values of the axis, i.e, the value of Saturation S = 1 − m(∅). It means that the

higher is the conflict, the closest of the white color it will be. To finish the proposed conception

of visualization, the unknown state (Ω) is presented by the Value axis, modeled in the same form

of conflict state. It means that the complete ignorance is represented by the black color. In this

sense, the variations of the colors are proportional to the value mass of these respective states.

Figure 4.16 presents the HSV color space with its axis representing the arranged visualization.

To illustrate the results of the method, the following figures show the original left image,

the semantic context result where the meta-knowledge is based and the final outcome of the

DLP. Supplementary, the disparity map is added to contextualize the metric information in the

grid. It should be mentioned that all semantic context results is generated by the ProbBoost
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Figure 4.17 - DLP result highlighting the road detection. The yellow circle highlights the presence of
shadow area jointly with higher influence of the sun, and more, the sidewalk that is quite
similar to the road.

algorithm, due to the solid performance presented in the previous chapter.

In the first example of Figure 4.17 is presented the robustness to the detection of road,

the principal element to perform the autonomous navigation. As can be seen, this figure shows

a typical scenario frequently found in urban area. The yellow circle highlights a problem that

a perception system using camera sensor should manage. The presence of shadow area jointly

with higher influence of the sun provide a challenging task to be treated, considering also the

sidewalk that is quite similar to the road. Taking into account these mentioned factors, the DLP

system is able to maintain a high confidence about the free space without using any other sensor

or prior digital map to build this perception.

In the example of Figure 4.18 is demonstrated the conflicting cells that are able to detect

a mobile object. In this first case represented by number 1, a moving car is passing by the ego-

car, also in movement. At this instant, the cells in white represent clearly a object in movement.

Although, due to inaccuracies in the estimation of the ego-motion and errors produced by the

phenomenon of discretization and transformation between grids, some wrong conflicting cells

arise, as emphasized in the second case. In this case, using the semantic context to improve

the detection (as presented by Equation 4.39), it is possible to distinguish these two kinds of
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Figure 4.18 - DLP result highlighting the distinction between mobile and static cells. The yellow ellipse
highlights the presence of a mobile object, and the green ellipse show the conflicting cells
that can be filter out considering the meta-knowledge of the scene.

conflict considering that only cells recognized as vehicle could be in movement. The resulting

output of the DLP presents the new conception to improve substantially the representation and

understanding of dynamic urban environments.

The example illustrated in Figure 4.19 demonstrates the multi-detection of mobile objects

in a challenging complex scenario. In this environment, the DLP system presents an outstanding

approach, detecting all vehicles in the scene. As can be seen in the cases 1, 2 and 4, they are

correctly detected as mobile vehicles. However two wrong cases should be mentioned. Ana-

lyzing the third case, the semantic context result correctly detected the occluded vehicle but it

was not able to detect the vertical signs before the car. At the same time, looking the disparity

map result, it is possible to see that the distance relation from the vertical signs to stereo camera

was performed correctly. Consequently, the projection into the Perception Grid correctly maps

the position of object but associating a wrong meta-knowledge, and therefore, impacting in the

process of filter out the conflicting noise cells. To finish this example, the case represented by

number 5 demonstrates an important factor of risk that was not recognized. At the moment, the

proposed system is not able to deal with pedestrian recognition. In this case, same that it was

detected as being an obstacle badly classified, its occupied area in the grid is not adequate to

represent this kind of obstacle (as discretized), due to each cell to represent a space of 0.3x0.3m,
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Figure 4.19 - DLP result highlighting the multi-detection of mobile objects. The yellow ellipse high-
lights the presence of mobile vehicles, and the red ellipse show the wrong case to pedestrian
recognition.

and its projection is represented by only 2 or 3 cells, becoming hard its discrimination consid-

ering noises.

The last example is illustrated by Figure 4.20 using the dataset of the Heudiasyc Laborat-

ory in the test track. The idea here is to show some restrictions when changing completely the

experimental platform. As can be seen, the DLP is quite similar as obtained with the previous

dataset, but, in this platform the sensor camera has a limitation with respect to the Horizontal

Field of View (HFOV). This factor strongly affects the perception around the ego-car. A con-

sequence of this restriction is that the road is not observed in sharp curves, becoming a hard

task to the navigable process to generate a reliable trajectory.

The videos containing the complete result of the DLP for both experiments are available.

The first one using the sequence of images from Kitti can be found in Vitor (2014d) 2, and the

second one using the sequence of images from Heudiasyc can be seen in Vitor (2014c) 3.

2<http://youtu.be/H_zJjX8uMtI> Accessed: 20/07/2014
3<http://youtu.be/chLqC1r974k> Accessed: 04/08/2014
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Figure 4.20 - DLP result highlighting the HFOV of the Sensor camera from ZOE platform at Heudiasic
laboratory. The restricted HFOV of the camera limits the perception system to detect the
road with sharp curves,becoming a hard task to the navigable process to generate a reliable
trajectory.

4.6 Conclusion

In this chapter, a new perception scheme based on dynamic mapping and relative localiz-

ation using only a pair of stereo cameras has been introduced. The advantages of using a stereo

camera is, in addition to the possibility to measure distances, the availability of image informa-

tion. Therefore, the proposed approach, denominated by Dynamic Local Perception, combines

the evidential occupancy grid with the meta-knowledge molded by a machine learning to char-

acterize the uncertainties of the occupied areas and incorporating also the semantic context,

associated with these areas to improve the representation of dynamic urban environment along

the time.

In synthesis, this chapter contributes to this line of research by offering a novel technique

that does not require inertial sensors, laser sensors and also a prior digital mapping to leverage a

robust system of perception. Further, a new inverse sensor model that considers uncertainties in

distance measurements and improves the occupancy grid with associated meta-knowledge. At

the end, working with the DST, the prediction and updating processes are modeled to combine
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semantic context to discriminate static and mobile objects in the scene, making this solution a

promising approach towards urban scene understanding.
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CHAPTER 5

Autonomous Navigation

I am enough of an artist to draw freely upon my
imagination. Imagination is more important than
knowledge. Knowledge is limited. Imagination encircles
the world

(Albert Einstein)

In this chapter the DLP is used to perform the autonomous navigation in urban envir-

onment. The proposed navigation adopts an hybrid approach. The route planning uses a topo-

logical representation to generate the complete path planning, and the path-planning uses the

local metric representation to perform the precise navigation. Whilst the actual approach con-

siders a local navigation task, it gives a framework to bind the route planning in the context of

path-planning, performing in this way a deliberative-reactive navigation. Further, it is detailed

the experimental platform as well as the complete automotive system integrating the proposed

perception, planning and control modules, using the PACPUS framework embedded in the ZOE

platform of the Heudiasyc Laboratory. Therefore, it starts by discussing the conception of the

hybrid navigation approach in section 5.1. The kinematic model of the vehicle is then presented

in section 5.2, followed by the path-planning using virtual tentacles (section 5.3) and its basic

control (section 5.4). After that, the experimental platform is introduced in section 5.5, embed-

ding the proposed system detailed in section 5.6. Finally, it is demonstrated the results for the

path-planning as well as the autonomous navigation experiment carried out in the test track of

the laboratory. A brief overview of the system is illustrated in Figure 5.1.
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Figure 5.1 - The proposed solution to path-planning used in the autonomous navigation.

5.1 Conception of the proposed hybrid navigation

The proposed navigation has an hybrid approach. This hybrid approach mimics the con-

ception like humans may drive in urban environment. A topological representation is used to

perform the route planning, which is usually run as a planning phase before the robot-like car

begins its journey. A metric representation is employed to local navigation, which is more ap-

propriated to reactive issues and is more robust to localization errors.

The topological principle operates on landmarks and identifiable locations such as inter-

sections. Its directions are modeled by some terms such as “go ahead”, “Take the 1st left onto

Solferino avenue”, etc. Usually, its representation is based on graph theory, where nodes of this

graph could be associated to landmarks and connected edges between these nodes representing

the relative path to reach the final objective. In this sense, landmarks may be represented by

waypoints of a global positioning by satellites or then by a principle of image memory. In both

cases, the requirement to accomplish a navigation considering the present scope, is to model

landmarks as being intersections in the environment. For example using image memory, one

or a set of images may be used to identify if the vehicle is close to a intersection. Similarly

using waypoints of a common GPS for example, the idea is to check if the local navigation is

approaching an intersection and then to inform the direction from that current situation which

the vehicle must follow.

An example regarding this concept is illustrated in Figure 5.2. As can be seen, the route
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Figure 5.2 - Example of an hybrid navigation conception.

planning in Figure 5.2(a) uses the topological representation to model a graph containing five

landmarks. In this specific example, these landmarks are associated with waypoints of the GPS

fixed at the intersections. Considering that the vehicle’s position is oriented in direction of the

path and near from waypoint 1. The route planning generates the list of waypoints representing

the graph, which each node has the attributes of latitude, longitude and direction, as depicted

in Table 5.1. From this point, the local navigation is actioned. Assume in a given instant that

the vehicle is navigating in the path between the nodes 3 to 4. At the moment that the system

detects its approximation from the waypoint 4, independent of the position’s error leveraged by

this kind of sensor (as illustrated in Figure 5.2(b)), the local navigation knows that it should turn

left. Analysing the local scenario of this intersection, and observed by the point of view of the

vehicle, the proposed DLP represents the metric space of the environment around the vehicle

exactly at this intersection, as demonstrated in Figure 5.2(c). It provides an interesting way to

model the path-planning taking into account the information produced by the route planning
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(i.e. Turn left).

Table 5.1 - Example of waypoints from topological route planning shown in Figure 5.2
Waypoint Latitude Longitude Direction

1 49.010411 8.436024599999996 go ahead
2 49.0103407 8.434537999999975 turn left
3 49.0096828 8.434577600000011 turn left
4 49.0088916 8.439693799999986 turn left
5 49.0101118 8.440546100000006 stop

In this case, as the information has a semantic meaning, this work introduces a simple but

effective form to convert this qualitative data into a quantitative measuring without losing the

representativeness. Since all urban constraints are related in the local scenario, a point is created

to represent the semantic meaning and attempting those urban constraints such as forcing the

path-planning to generate a path that maintains the vehicle at the right side of the street for

example, or then driving the path during a turn. This point is called mutant point because it

changes its representativeness according to a given criteria. Figure 5.2(c) shown the result of

this approach. Using the virtual tentacle is possible to apply the mutant point to ponder the

elaboration of the path tending to turn left as can be seen in the example.

Although the procedure of route planning still was not implemented in this work, its prin-

ciple was explained as support to contextualize the local navigation and their interaction. Intro-

duced this conception of hybrid navigation, the next sections concern is how the path-planning

models and selects the appropriated command and path to follow, considering geometric re-

strictions of a nonholonomic robot-like car, avoiding obstacles and contemplating the target

task.

5.2 Kinematic Model of the vehicle

The vehicle used in the experiments is modeled using a front-wheel-steering that takes

into account the Ackerman condition, as illustrated in Figure 5.3. The kinematic model is

defined by Equation (5.1):
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Figure 5.3 - A front-wheel-steering kinematic vehicle and steer angles of the inner and outer wheels.




ẋ = V cos(ψ)

ẏ = V sin(ψ)

ψ̇ = V
l
tan(δ)

(5.1)

where (x,y) are the cartesian coordinates, V corresponds to the longitudinal velocity of the

vehicle, ψ̇ is the angular velocity, ψ the orientation, δ is the steering angle of the wheels and l

is the length between the axis of the wheels called of the wheelbase (JAZAR, 2008).

The method based on virtual tentacles projects arcs of circle considering the vehicle’s geo-

metry. Analysing Figure 5.3, the required parameters of the vehicle’s geometry can be defined

to give the basis of the tentacles generation in subsection 5.3.1. From the triangles ∆OAD and

∆OBC is possible to calculate the inner and outer steer angles δi and δo, as given by Equa-

tion (5.2):

tan(δi) = l
R1−w

2

tan(δo) = l
R1+

w
2

(5.2)
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where

R1 = 1
2
w + l

tan(δi)

= −1
2
w + l

tan(δo)

(5.3)

To find the vehicle’s turning radius R, the bicycle model is considered. The radius of

rotation R is perpendicular to the vehicle’s velocity vector v at the mass center C, being then

described by Equations (5.5):

R2 = a2
2 +R2

1

cot(δ) = R1

l

= 1
2
(cot(δi) + cot(δo))

(5.4)

Therefore:

R =
√
a2

2 + l2cot2(δ) (5.5)

5.3 Path-planning approach

This section presents the detailed strategy for the path-planning. The proposed architec-

ture is composed by three principal blocks, as can be seen in Figure 5.4. The path generation

block is responsible to perform the requirement space of the vehicle during a turn, providing

the representative set of cells in the grid (denoted by A), related to these areas. As it uses a

ego-referenced grid, this process is calculated only at the initialization and considers a discret-

ized set of steering angles δ that is represented by those virtual tentacles. During the navig-

ation, the set of cells representing the intersection of obstacle with the area of the vehicle’s

path is obtained by the obstacle detection block, using the current DLP (GPG
t ) and defined by

OPt = {A ∩ O|∀O ∈ r(O)}. After that, in the tentacle selection block, a linear system is ap-

plied to extract the best tentacle that represents the longitudinal velocity and the steering angle

of the wheels, denoted by T bt = {Vt, δt}, where the complete set of tentacles is defined by {T}.
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Figure 5.4 - The proposed architecture for path-planning.

5.3.1 Tentacle structure and generation

In this system, a set of tentacles containing 41 elements is modeled. As mentioned, all

tentacles are represented in the local coordinate system of the vehicle. They start at the vehicle’s

center of gravity and take the shape of circular-arc areas. Each circular-arc segment represents

the path corresponding to a specific steering angle. Thus, the motion path of the vehicle can be

approximately disassembled to many circular-arc segments with different curvature.

The detailed geometry of the used tentacles is as follow. Based on Equation (5.5), the set

of radius {R}, taking each steering angle δk of the kth tentacle ranging from 0 to number of

tentacles n is given by Equation (5.6):

{R} =


√
a2

2 + l2cot2(δk) |∀k < n−1
2
∈ n

∞ |k = n−1
2
∈ n√

a2
2 + l2cot2(δk) |∀k > n−1

2
∈ n

(5.6)

After the initialization of n which must be a odd number, and δ ∈ [δ−max,δmax] with δmax

being the maximal front wheel angle of the vehicle, the projected shapes of virtual tentacles on

the grid are shown in Figure 5.5.

In order to ensure the safety and feasibility of the path, each tentacle k is characterized
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(a) (b)
Figure 5.5 - The projected shapes of virtual tentacles on the grid. (a) the shapes of virtual tentacles and

(b) its projection on the DLP.

by two classification areas, similar from the work of Cherubini et al. (2012) denoted by dan-

gerous central area and dangerous external area. These areas represent an overestimated space

required to the vehicle during its turn. In this way, the space requirement is modeled defining

the minimum radius Rmin and the maximum radius Rmax. The Rmin is estimated by the dis-

tance between the origin point and a point in the inner side of the vehicle at the location of the

rear axle, whereas the Rmax is estimated considering the outer point of the front of the vehicle.

Therefore, the required space for turning is a ring with a width ∆R, which is a function of the

vehicle’s geometry illustrated in Figure 5.6. It is represented by Equation (5.7).

∆R = Rmax −Rmin

=
√

(Rmin + w)2 + (l + g)2 −Rmin

(5.7)

The required space ∆R can be calculated based on the steer angle by substituting Rmin

Rmin = R1 − 1
2
w

= l
tan δi

= l
tan δo

− w

(5.8)

and getting the Equation (5.9)(JAZAR, 2008).
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Figure 5.6 - The required space for a turning two-axle vehicle. In red the central dangerous area and
green the external dangerous area.

∆R =

√(
l

tan(δi)
+ 2w

)2

+ (l + g)2 − l
tan(δi)

=

√(
l

tan(δo)
+ w

)2

+ (l + g)2 − l
tan(δo)

+ w

(5.9)

To finish, the central dangerous area for each tentacle k is defined as being {CDAk =

∆Rk|∀k ∈ {T}}. The external dangerous area EDA is calculated maintaining the height of the

vehicle and increasing its width. In this case, it is estimated using a constant ε to ensure that, in

the presence of disturbances, the current overestimated path is included in the classification area.

The EDA is given by Equation (5.10) and the conception of these two areas are represented in

the Figure 5.6.

EDA =

(√(
l

tan(δi)
+ 2w

)2

+ (l + g)2 + ε

)
−

(
l

tan(δi)
− ε

)

=

(√(
l

tan(δo)
+ w

)2

+ (l + g)2 + ε

)
−

(
l

tan(δo)
+ w − ε

) (5.10)

5.3.2 The best tentacle classification

With the description of the tentacle-related data structures and their computation being

completed, in each time cycle of the navigation, a set of obstacles that lies in the tentacle’s area
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is extracted. It means, among all obstacles present in theGPG, only the ones which are contained

in the central dangerous and external dangerous area are considered for further processing. This

set is then obtained by (5.11). The set for each tentacle is characterized by OP t
k and all sets are

defined by OPt.

OPt = {(CDAk ∪ EDAk) ∩O|∀O ∈ r(O) and ∀k ∈ {T}} (5.11)

In this case, all tentacles (T ) jointly with OPt are used to select the best tentacle which

derives the final path to drive at instant t. To decide on the best tentacle, three functions are

linearly combined to derive a single decision value, which is maximized considering the safety

and goal task provided by the route planning. So, this linear system composed by the Clear-

ance function Fclearance(T,OPt), the Smoothness function Fsmoothness(T,T bt−1,σ) and the Target

function Ftarget(T,pm), is modeled by Equation (5.12).

T bt = argmax
Tk∈T

αFclearance(T,OPt) + βFsmoothness(T,T
b
t−1,σ) + γFtarget(T,pm) (5.12)

Where T bt is the best tentacle at current time, T bt−1 is the best tentacle at instant t−1 and pm is the

mutant point explained in section 5.1. The α, β and γ are parameters that can be used to change

the behavior of the selection mechanism. An important aspect after the best tentacle T bt to be

selected, is to verify if its traversability is higher than a distance crash lc required to stop the

vehicle without hits the nearest obstacle lying in that path. Similar to work of Hundelshausen et

al. (2009), the crash distance is the distance the vehicle needs to stop using a constant convenient

deceleration a plus a security distance ls. It depends on the longitudinal velocity V of the vehicle

and is calculated by Equation (5.13).

lc = ls +
v2

2a
(5.13)

Experiments performed in this work, considered ls = 1.5 m and a = 1.5 m/s2, due the

low velocity of the vehicle. Therefore, if the distance of the nearest obstacle is less than crash

distance, the velocity parameter of the tentacle is setted to T bt .V = 0.0 m/s. Following, it is

detailed the three functions used in Equation (5.12).
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Clearance Function

This first function is responsible to express how far the vehicle could drive along a tentacle

before hitting an obstacle, in others words, the risk of collision. The output value of this function

is a normalized value ranging from 0 to 1, where a value of 1 designates a preference for such

a tentacle. The first step to calculate the clearance value is to extract the minimum curvature

length of tentacle’s arc between the intersection of this arc with any limit border of the vehicle

and the set of obstacles. This is reached by Equation (5.14):

Hk = {min[D(OP t
k,Pv)]|∀k ∈ {T}} (5.14)

Where Hk is the resulting distance of the nearest obstacle lying in the kth tentacle, Pv is

the intersection point of the arc with the limit border of the vehicle. D(.) function is the length

arc given by D = 2πr( θ
360

), having radius r and the central angle of the arc in degrees θ. After

this step, the clearance value can be directly calculated using a sigmoid-like function defined in

Equation (5.15).

Fclearance(T,OPt) =

1 ,Free Tentacle

3− 2
1+ecclearance.Hk

, otherwise
(5.15)

where the constant cclearance is given by Equation (5.16).

cclearance =
ln(1

3
)

−µ
(5.16)

In Equation (5.16), µ = 15m. This constant gives the sense of what is the middle distance

in the path from a obstacle. Figure 5.7 illustrates the output value of clearance function ranging

the distance Hk of the nearest obstacle lying in the kth tentacle.

Smoothness Function:

The second function is responsible by pondering the choice of the current tentacle based

on the previous one, preferring smooth paths. This is reached modelling a normal distribution,

taking into account the former selected tentacle T bt−1 as being the mean of this distribution and
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Figure 5.7 - Plot of Clearance function output shown in Equation (5.15). It shows that the greater the
distance to the first obstacle, the higher is the change in the output result and the change of
impact in the overall tentacle selection process.

defining a parameter σ to represent the standard deviation from T bt−1. Therefore, the smoothness

function is obtained by Equation (5.17):

Fsmoothness(T,T
b
t−1,σ) =

1

σ
√

2π
e−

(Tk−T
b
t−1)2

2σ2 (5.17)

Target Function:

This last function has the objective of representing the semantic information leveraged by

the route planning to accomplishment of the task. This is done positioning the mutant point in

any place in the navigable area where it may represent the semantic information. As example, if

the route planning is telling “go ahead”, the mutant point could be positioned further away from

the navigable area. Another case, if it is detected that the vehicle reached an intersection area,

and the route planning is telling to “turn right”, so the mutant point could be placed at the further

right side of the navigable area. The idea behind it is that after this point be placed (different

from waypoint of the GPS proposed in literature), a measure can be performed combining this

information together with the previous functions to compose the linear system that results in an

optimal solution, given the appropriate configuration of the weights.

In this sense, the measurement is modeled considering the euclidian distance from the

mutant point to the tentacle’s closest point. As tentacles are represented by circular-arc seg-
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ments, the Equation is given by the distance from the point to the circle, as depicted in Equa-

tion (5.18). In case where the tentacle represents the steering angle equal to zero, this function

uses the distance to the straight line.

Ftarget(T,pm) =





(m∗pm.x)−(pm.y+b)√
1−m2 , if δi = 0∣∣∣

√∑
(pm − po)2 − r

∣∣∣ , otherwise
(5.18)

In Equation (5.18), the (x,y) are the coordinates of the mutant point pm. m and b are the

constants parameters of the line. po is the tentacle’s origin point and r its radius.

5.4 Path-following Control

The path-following control for this system is implemented to ensure that the vehicle is

following the designed path along its navigation. In this case, as the projected path is always

referenced at the current pose of the vehicle inside the grid, the control is derived from the

relative vehicle’s orientation variation ψ.

It can be implemented based on the relative displacement of the vehicle between two con-

secutive time interval, assuming that the optical axis of the camera is parallel to the longitudinal

axis of the vehicle. Given the measurement of the 3D rigid transformation obtained by the visual

odometry, it is reduced to 2 dimensions and represented in the grid’s coordinate. From rotation

matrix R and the translation vector �t, it is possible to associate the path command generated

by the virtual tentacle with this information, according to the block diagram model shown in

Figure 5.8.

Controller Vehicle

Visual 
Odometry

[R|t]

ueδd

δo

-

+

Figure 5.8 - Simplified block diagram of the closed-loop control developed to path-following.
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As seen in Figure 5.8, the reference value, defined as desired reference of the wheels

orientation δd, is set using the wheel orientation δ of the best tentacle T b
t at instant t. Also,

to apply the control it is necessary to obtain the observed wheels orientation δo that will be

demonstrated here by a sequence of operations.

First it is possible to obtain the observed vehicle’s orientation variation ψo directly meas-

ured from the rotation matrix R obtained from the extracted information [R|�t] of the visual

odometry, shown in Equation (5.19).

Rψo =


cos(ψ) − sin(ψ)

sin(ψ) cos(ψ)


 (5.19)

Then it is necessary to obtain a relation between the vehicle’s orientation variation ψo in

function of the parameters of the tentacle to obtain the observed turning radius Ro, as shown in

Figure 5.9.
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Figure 5.9 - Controlling of the path.

The observed vehicle’s orientation variation ψo is formed assuming the distance between
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two points expressed by ~t ( d =
√
~t2x + ~t2y ), jointly with the observed turning radius Ro of the

observed tentacle, and depicted in Equation (5.19) :

ψo
2

= sin−1

(
d/2

Ro

)
(5.20)

Finally, with the observed turning radius Ro and the Equation (5.5) it is possible to obtain

the observed wheel orientation δo.

The operation procedure in the time domain can be describe as follows. If the vehicle

starts from point A at a desired steering angle δd(t − 1) of the wheels at a time instant (t −

1), it will follow the observed tentacle resulting to a point B at a time instant t. Therefore,

if you manage to observe the vehicle’s orientation variation ψo(t) at a time instant (t) with

Equation (5.19), it is possible to obtain by Equation (5.20) the observed turning radius Ro(t).

With the observed turning radius Ro(t) it is possible to obtain by Equation (5.5) the observed

steering angle δo(t) shown on Figure 5.10. So, with the observed steering angle δo(t) and the

next desired steering angle δd(t) it is possible to apply the path-following control according

to Figure 5.9 and calculate the error e(t). Then using a proportional control with gain kp, it is

possible to apply the steering output u(t) calculated by Equation (5.21), which is proportional to

the error e(t) calculated by the difference between the desired reference δd(t) and the observed

δo(t) orientations, to achieve point C.

u(t) = kp e(t) = kp(δd(t)− δo(t)) (5.21)

5.5 Vehicle Platform

The experimental vehicle belonging to the Heudiasyc Laboratory is used for the imple-

mentation and the validation of the global system in real-life conditions. The experimental plat-

form consists of an electric vehicle called ZOE and for the experiments, it was equipped with a

stereo camera sensor, two embedded computers and two CAN-bus 1. As previously presented in
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Figure 5.10 - Controlling of the path in the time domain.

Chapter 4, the used sensor camera is characterized by a PointGrey Bumblebee x3 color model

BBX3-13S2C-60, with focal length of 6mm and horizontal opening angle of ∼43 degrees.

The baseline of the stereo camera is approximately 24 cm. The first computer is responsible

to process the complete system (except the low PID control) and has an Intel Xeon E5-1650

processor with 3.20Ghz and with 16Gb DDR3, running the version 7 of the Windows OS. The

second computer is an EffiBox Intel Core i5-3610ME processor with 2.70Ghz and with 4Gb,

also running the version 7 of the Windows OS. It is responsible to run the low PID control and to

communicate via CAN-Bus with the embedded sensors and actuators used to drive the vehicle.

A CAN-bus is employed only for listening the data information delivered from the car, and the

other one is employed to send the steering angle, braking and acceleration data signal.

Figure 5.11 presents the experimental platform as well as the designed configuration for

the hardware interaction. The stereo camera is connected via firewire IEEE-1394b with the first

computer. Then, an User Datagram Protocol (UDP) communication was created to exchange

information between these two computers. Lastly, the second computer sends the data signal by

CAN-Bus to the car.

122



5.6 Proposed System Architecture

ZOE

UDP communication

Firewire 1394b

CAN- Bus

(a) (b)
Figure 5.11 - (a) The experimental platform Zoe. (b) The designed configuration for the hardware inter-

action.

5.6 Proposed System Architecture

The Heudiasyc laboratory supports a software framework called Perception et Assistance

pour une Conduite Plus sûre (PACPUS), which provides standard operating system services

such as hardware abstraction, low-level device control, implementation of commonly used func-

tionality, message-passing between processes and package management.

The system architecture designed on the PACPUS is based on components. Components

are process that run in parallel under the framework. As can be seen in Figure 5.12, it was

developed 13 components that perform each one, one or two specific tasks of the proposed ap-

proach. The components starting from Image Caption until Path-Following Control are placed

on the Xeon computer, including the component manager. Only the PID control component runs

in the second dedicated computer. It was required due to restrictions on the communication with

the CAN-Bus, which must maintain an exclusive process to exchange information on the port

to preserve an open connection with the car. As these components run in parallel, the synchron-

ization among them should be done to protect the temporal consistency of data exchange. The

function of the component manager is exactly to ensure this requirement. In this way, a multi-

processed pipeline is implemented to minimize the time cost in sequential data stream, it means,

multiple independent tasks are overlapped in the time execution.

The synchronization was divided in four stages. The first stage is triggered by the Com-

ponent Manager after it receives a response signal from the Image Caption component telling
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Figure 5.12 - The designed software architecture based on PACPUS framework.

that the current image t is available. It should be mentioned that the Image Caption compon-

ent runs freely, without any synchronism. The first stage contemplates the components of the

segmentation, texton, dispton and SFM processes. The second stage is triggered after almost all

components of the first stage conclude their tasks, except the SFM process. This stage considers

the component of the Machine Learning and Sensor Grid Tasks. Following, the third stage is

triggered by the Component Manager that received the concluded signals from the SFM com-

ponent and the second stage. Finally, the fourth stage is dependent only of the third stage. An

execution example of this designed multiprocessed pipeline is illustrated in Figure 5.13.

5.7 Experimental Results

This section presents the results obtained with the proposed method detailed until here.

The results are organized in two experiments. The first one, described in subsection 5.7.1, is

124



5.7 Experimental Results

P00

P01

P02

P12

P03

P04

P05

P06

P07

P08

P09

P10

P11

st
ag

e 
1

st
ag

e 
2

st
ag

e 
3

st
ag

e 
4

Component Manager

Image Caption

Segmentation Module

HoG Texton

Filter Bank Texton

Location Texton

LAB Color Texton

UV Dispton

SFM

Machine Learning / Sensor Grid

Perception Grid / Trajectory Planning

Trajectory Control

PID Control

Component Legend: Time

Figure 5.13 - Execution example of the designed multiprocessed pipeline.

aimed at the presentation of the path-planning using the proposed virtual tentacles, showing its

response for two distinct scenarios as well as with different hardware. The second one, reported

in subsection 5.7.2, shows the complete local navigation system obtained at the test track of

the Heudiasyc Laboratory. These experiments highlight the capabilities of this kind of hybrid

navigation.

These two experiments use the mutant point placed further away of the navigable area. As

the route planning was not implemented yet, positioning the mutant point in this way, it means

that the route planning is telling to always “go ahead” to path-planning, although, an analysis

was done to get a feeling of this concept.
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Figure 5.14 - Path-planning in a straight street.

5.7.1 Path-planning results

This section presents two essays. The first essay was carried out using the Kitti platform.

As the path-planning does not require the effective execution of the command, the fundamental

step is to analyse the coherent response that this module is delivering at real urban scenario.

Therefore, a qualitative study is employed to validate the method.

The video sequence using the Kitti platform was acquired in German and represents the

local scenario of the mentioned example given in section 5.1. In this case, this video sequence

corresponds to the route planning indicated by the waypoints number 3, 4 and 5 in Figure 5.2.

For all the results presented below, figures contain the original image acquired at the same

instant that the local navigation grid is displayed. In this grid, in which colors are represented

as explained in chapter 4, the projected tentacles are signaled by circular-arcs into the navigable

area defined by the SpringGreen color. It should be mentioned that each tentacle has its associ-

ated central dangerous and external dangerous areas which are not being displayed. Lastly, the

best tentacle is displayed with silver color including the CDA.
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Figure 5.14 shows a example of local navigation between the waypoints 3 and 4. This

specific scenario is frequently observed in inner-city. The configuration of the parameters α,

β and γ are setted respectively to 1.0, 0.5 and 0.0. With this configuration, the path-planning

becomes a reactive system. As can be observed, the output response is appropriated for this

situation, where the selected tentacle does not go in direction of collision with the other car,

nor planning a path that goes up on sidewalk. The complete result for this sequence is public

available in Vitor (2014h) 2.

In order to analyse the impact of the mutant point in the proposed mechanism of selec-

tion, the configuration presented in the previous example was changed to α = 1.0, β = 0.5 and

γ = 0.5. This current configuration is defined as being 1 and the previous as being 2. The idea

is to verify if the mutant point exercises the influence under the selection of the best tentacle

as a form to guide the path in function of the information delivered by the route planning. Fig-

ure 5.15 illustrates a sequence of images in a crucial area of intersection, confronting these two

configurations side to side. As explained before, the mutant point is representing the informa-

tion of “go ahead” placed further away of the navigable area. As can be seen in this example, in

the way as the vehicle runs in the direction to the intersection, the configuration 2 results in the

optimal solution without taking into account the target function. In this case the better output

indicates that the vehicle should turn left to avoid possible collision in a precipitated time. The

interesting fact is that the configuration 1 maintains the best tentacle appointing to “go ahead”

until it is no more possible to do it. At the end, as this point is placed further way from the

navigable area, in case where it does not have option, the solution is “go ahead” where the nav-

igable area exists. It has the same human feeling when telling “go ahead” in a curve street. The

semantic information of “go ahead” is not always to follow a straight line. The video result of

this example can be found in Vitor (2014b) 3.

The second essay was carried out with a database acquired at the test track (Hediasyc

lab.), as mentioned before. The setup car was defined as shown in chapter 4. The configuration

of the tentacles’ selection mechanism is the same as previously explained, in configuration

1. Figure 5.16 shows images in different parts of the test track. As can be seen, this is less

challenging due to the observed scenario. However, an interesting factor is that this test track

has two sharp curves and the HFOV of the used camera sensor is not able to get sufficient

2<http://youtu.be/dBXHgGdbk80> accessed on: 04/08/2014
3<http://youtu.be/5PGnfB3djzQ> accessed on: 01/10/2014
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5 Autonomous Navigation

Figure 5.15 - The comparison of distinct configuration to Path-planning. The numbers indicate the frame
sequence in video.

Figure 5.16 - Path-planning carried out in the test track of Heudiasyc Laboratory. The numbers indicate
the frame sequence in video.

information in these areas, becoming a difficult task to path-planning. Despite this restriction,

the output result is coherent with the expected response, given this partial occlusion in sharp

curves. The video result of this experiment can be found in Vitor (2014g) 4.

4<http://youtu.be/YKYCwdUEaVs> accessed on: 04/08/2014
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Figure 5.17 - Image Satellite of the test track.

5.7.2 Local autonomous navigation

After the path-planning was observed, this section presents the complete system using

the PACPUS framework embedded in the ZOE platform. The autonomous navigation was per-

formed in the test track which consists of a closed circuit where 1 loop corresponds to more

than 250m, containing two turns of 360° degrees, with radius of approximately 4 and 7 meters,

as can be seen in Figure 5.17.

Firstly, the performance analysis in function of the time consumption was validated. Fig-

ure 5.18 presents the time in seconds for each component that run in the main computer. These

measurements were performed considering the mean time of a sequence of images with res-

olution 320x240px. Using the pipeline approach detailed in section 5.6, the overall time con-

sumption was reduced more than 50%, leveraging a total time of approximately 2.76s for each

image, considering the complete approach.

After the time of the system was validated, it enables the autonomous navigation system

to run between 1 and 3km/h. The experiments presented here consider common and neces-

sary tasks required to perform a satisfactory local navigation. The first example presents the

autonomous vehicle changing its path in function of an obstruction in the path. As can be seen

in Figure 5.19, the first time the vehicle follows the straight path observed in the environment. In
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Figure 5.18 - Time consumption for each system component.

Figure 5.19 - The autonomous vehicle finding an alternative path.

a second time, the same path was blocked to avoid its passage. As a consequence, the autonom-

ous vehicle found an alternative path avoiding that obstructed one.

The example illustrated in Figure 5.20 presents the autonomous system during right and

left turns. As previously mentioned, even with the restrictions of the camera sensors, this present

result was the first one at the Heudiasyc Laboratory to conclude the task using this kind of
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Figure 5.20 - The autonomous vehicle enabled to perform sharp curves in presence of partial occlusions.

Figure 5.21 - The autonomous vehicle enabled to perform obstacle avoidance.

sensor. Even in sharp curves where occlusion frequently occur as it is observed in these experi-

ments.

To finish, Figure 5.21 depicts the obstacle avoidance. During the autonomous navigation,

a person stopped in front of the vehicle. In this case, independently if the system’s classification

is not trained to understand what is a pedestrian, it is capable to distinguish between obstacle

and navigable area. It is the fundamental aspect required in an autonomous system, it means,

safety. The complete video containing these results can be seen in Vitor (2014a) 5.

5.8 Conclusion

In this chapter, a hybrid navigation approach concerning global and local navigation is

discussed. A new form to associate the route planning in the framework of the trajectory plan-

ning is proposed, using the conceit of mutant point to influence the selection mechanism of the

5<http://youtu.be/shw1IRYd2T4> accessed on: 04/08/2014
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virtual tentacles, arising in this way a interesting deliberative-reactive system acting in the local

navigation.

A new path-following control based on virtual tentacles using ego-centered conception

is developed, where, jointly with the DLP and trajectory planning provide a robust system to

automatically control a vehicle in real environment. Although the autonomous navigation has

been tested in real conditions of a closed test track, since the trajectory planning and trajectory

control are modeled directly using the proposed DLP, these obtained outcomes realized in the

urban scenario using the database of the KITTI benchmark justify the application for inner-city

scenes in urban environment. It means that the same autonomous vehicle using the proposed

system will ensure its applicability in working out of the test track.

It is important to notice that the system is not totally dependent of a global and precise

GPS, and also that it could use some image memory approach which indicates the direction in

an intersection. It does not require any previous map to perform a safe navigation, although it

could be interesting to improve robustness specially at intersections. It uses only a pair of stereo

cameras to project the path avoiding obstacles. And lastly, this conception is closer from the hu-

man discernments. However, several improvements must be done to ensure the same robustness

in real-time, since the complete system is running at 2.76s in the current implementation. A

careful performance analysis should be done to verify the real advantages and drawbacks of the

trajectory control, and finally, it should be necessary to include more sensors to improve errors

given by the stereo geometry as well as in environments where cameras are not appropriated.
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CHAPTER 6

General Conclusion and Perspective

If we knew what it was we were doing, it would not be
called research, would it?

(Albert Einstein)

6.1 Conclusions

The main contributions of this thesis are described in the following.

Urban road scene understanding

The requirement to perform safe autonomous navigation in urban environment is directly

related with its capability to recognize precisely the road in front of the car, where any driving

maneuver or vehicle control should be done. And also, it needs to infer potential risks associated

with obstacles present in the scene. These aspects promoted a strong study concerning the road

recognition in inner-city scenario as well as the elements that compose this one. To be able

to deal with this challenge, three algorithms were proposed, denominated ANN, HistonBoost

and ProbBoost. These algorithms can be seen as an evolution of the understanding about the

problem, becoming the ProbBoost a cutting-edge approach in this field. In this algorithm, a

combination of 2D/3D information provided by the Texton maps and the new one Dispton

maps, together with the segmentation procedure using the Watershed Transform showed to be

an interesting feature descriptor technique for this kind of problem. Further, this ProbBoost
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algorithm was extrapolated to work with not only road recognition, but also with a set of

elements contained in the urban road environment. Based on a standard performance analysis,

the method has proved to deal also with this challenge of urban road scene understanding,

which has reached an improvement of 18.23% from HistonBoost and 30% from the Baseline.

Dynamic evidential grid using semantic context

Following, a dynamic local perception system is developed to build the representative

model of the environment around the car. The metric representation based on occupancy grid

is implemented. It uses the evidential formalism leveraged by the Dempster-Shafer Theory,

which has been receiving considerable attention recently. This formalism permits to manage

uncertainties associated with the grid discretization, partial observation of the environment and

also dynamic elements present in the scene. In this context, it is created a new inverse model

sensor using only a pair of stereo cameras, where meta-knowledge of the scene associated with

depth information are taken into account to provide a better and reliable representativeness of

navigable, infrastructure and obstacle areas. To the best of our knowledge, this approach is the

first one to associate the semantic context extracted from machine learning procedure to build

an inverse model sensor that uses the meta-knowledge to influence the elaboration of the belief

mass into the evidential grid.

Hybrid navigation binding route planning with trajectory planning

An hybrid navigation approach is considered in this thesis. It is composed by two levels,

the route planning and the trajectory planning. As discussed, the route planning uses a principle

of topological representation and it is responsible to generate the complete path using graph

theory. The trajectory planning uses the dynamic local perception grid to define the trajectory

path by where the car should go, considering the fundamental requisites such as safety and

objectivity. Therefore, in this work is implemented the virtual tentacle approach, creating a

new selection mechanism to deal with reactive issues required in the local environment and

including a measurement based on the defined mutant point, which is responsible to represent

the semantic information provided by the route planning. Consequently, it introduces a novel
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method to manage and bind the route planning information into the framework of trajectory

planning.

Path-Planing Control

Boosted by the fact that all system has been done into a local environment and with the

relative reference centered on the car, how to model a controller that ensures the execution of

the path with respect to the best tentacle generated by the trajectory planning is the question.

With this specific challenge in hands, a new method that controls the path execution is pro-

posed. It considers the output result of the tentacle’s selection mechanism, the visual odometry

and the kinematic model of the car, always recognized in the local scope. A brief description

is as follow. The tentacle’s selection mechanism provides a desired steering angle of the

wheels. After the displacement of the vehicle, the observed distance travelled and the observed

vehicle’s orientation are calculated by the visual odometry. With these two information, the

real executed curvature of the vehicle is derived and the observed steering angle of the wheels

is extracted using the radius of this curvature in the kinematic Equations. In this way, this

observed feedback signal can be employed to close the loop of the controller.

Autonomous Navigation

The aforementioned approaches constitute a set of tasks desired for accomplishment of an

autonomous system. Considering the overall system, the approach is done using only a pair of

stereo images. It does not require any prior digital map to perform the navigation. It is not totally

dependent on global and precise positioning system by satellites. The Module independency of

this approach leverages the usage of parallelization and improvement on resources usage. And

lastly, it has an interesting aspect to follow the human sense.
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6.2 Perspectives

These proposed methods have been validated on a sufficient numbers of experiments

which have allowed the identification of several points that should be improved. Among them,

the principal ones are highlighted.

Concerning the road detection, the high level of complexity to build and test a recogni-

tion model is due to the different characteristics present in inner-city environments. We believe

that an alternative to model a complex road pattern should take into account the learning of

intra-classes pattern derived from the main class such as normal area, shadow area, horizontal

land mark if exist, area with influence of sun, etc. Thereby, an strategy using any kind of un-

supervised classifier to leave arise clusters of these intra-classes automatically, and after that,

merging this result process in a supervised method could be interesting to improve the result

of road recognition. In the case of multi-class recognition, an attractive method that has been

demonstrating excellent results is to model a probabilistic approach based on CRF to better

formalize the relationship among neighbours pixels, filtering out inconsistencies intra-classes.

Regarding the dynamic local perception system, two issues were observed. The first one is

related to the formalism used to manage the meta-knowledge associated with the belief masses.

Actually, the proposed method uses a principle based on voting, which is not quite appropriated

for this end. An improvement might be to use a probabilistic formalism to upgrade and merge

these information. The second one is related to the temporal information propagated into the

grid. The mechanism of contextual discounting may be used in order to represent the variation

in information lifetime of objects present in the environment.

To finish, the complete system should be optimized, for example, implementing this pro-

posed solution in GPU architecture, leveraging the real-time required to perform an autonomous

navigation at higher speeds, as well as integrating the route planning to validate the proposed

hybrid conception.
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