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Spatial information and end-to-end learning for visual recognition
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In this thesis, we present our research on visual recognition and machine learning. Two types of visual recognition problems are investigated: action recognition and human body part segmentation problem. Our objective is to combine spatial information such as label conguration in feature space, or spatial layout of labels into an end-to-end framework to improve recognition performance.

For human action recognition, we apply the bag-of-words model and reformulate it as a neural network for end-to-end learning. We propose two algorithms to make use of label conguration in feature space to optimize the codebook. One is based on classical error backpropagation. The codewords are adjusted by using gradient descent algorithm. The other is based on cluster reassignments, where the cluster labels are reassigned for all the feature vectors in a Voronoi diagram. As a result, the codebook is learned in a supervised way. We demonstrate the eectiveness of the proposed algorithms on the standard KTH human action dataset. For human body part segmentation, we treat the segmentation problem as classication problem, where a classier acts on each pixel. Two machine learning frameworks are adopted: randomized decision forests and convolutional neural networks. We integrate a priori information on the spatial part layout in terms of pairs of labels or pairs of pixels into both frameworks in the training procedure to make the classier more discriminative, but pixelwise classication is still performed in the testing stage. Three algorithms are proposed: (i) Spatial part layout is integrated into randomized decision forest training procedure; (ii) Spatial pre-training is proposed for the feature learning in the ConvNets; (iii) Spatial learning is proposed in the logistical regression (LR) or multilayer perceptron (MLP) for classication.

Acknowledgments

In this moment, I would like to express my sincere appreciations to numerous people who have given me helps and supports throughout my study during the past three and half years.

First of all, my most sincere and deep gratitude is for my supervisors, Prof. Atilla Baskurt and Dr. Christian Wolf, without whose constant guidance and assistances this thesis would not be possible. Les algorithmes de classication restent inchangés, ce qui permet d'obtenir une amélioration du taux de classication sans augmentation de la complexité de calcul lors de la phase de test.

Nous proposons trois algorithmes diérents intégrant ce principe dans trois modèles :

-l'apprentissage du modèle de prédiction des forêts aléatoires;

-l'apprentissage du modèle de prédiction des réseaux de neurones (et de la régression logistique);

List of Figures The general visual recognition framework. BoW is the abbrev.

for bag-of-words [START_REF] Csurka | Visual categorization with bags of keypoints[END_REF]] models, and DPM for deformable part based models [START_REF] Felzenszwalb | Object detection with discriminatively trained part based models[END_REF] the log-polar coordinate on the shape, (c) the shape context of the given point. This gure is reproduced from [START_REF] Belongie | Shape matching and object recognition using shape contexts[END_REF] sticks. This gure is reproduced from [START_REF] Gorelick | Actions as space-time shapes[END_REF] (best viewed in color). . . . . . . . . . . . . . . . . . . . . . . 16

2.5

The examples of eigenfaces. (This gure is reproduced from [START_REF] Heseltine | Face Recognition : A Comparison of Appearance-Based Approaches 2 The Direct Correlation Method[END_REF]].) . . . . . . . . . . . . . . . . . . . . . . 16

2.6 MEI (left) and MHI (right) of a person raising both hands.

This gure is reproduced from [START_REF] Bobick | The recognition of human movement using temporal templates[END_REF]. . . . 19

2.7

Illustration of Harris3D interest points of a walking action. This gure is reproduced from [Laptev, 2005] detector [START_REF] Dollar | Behavior Recognition via Sparse Spatio-Temporal Features[END_REF]. This gure is reproduced from [START_REF] Niebles | Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words[END_REF] . . . . . . . . . . . . . . . . . . . . . . . 22

2.9

The SIFT descriptors. This gure shows a 2*2 subregions from a 8*8 neighborhood. This gure is reproduced from [Lowe, 2004] This gure is reproduced from [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF] (b)non-linear embedding, this gure is reproduced from [Bengio, 2009]; (c) DrLIM results, this gure is reproduced from [START_REF] Hadsell | Dimensionality reduction by learning an invariant mapping[END_REF] 

3.4

The KTH dataset [START_REF] Schuldt | Recognizing human actions: a local SVM approach[END_REF]. . . . . . . . . . . . . .

3.5

A schematic illustration of the early stopping strategy during MLP learning with 150 codewords . . . . . . . . . . . . . . . .

3.6

Supervised learning with error backpropagation (section 3.3.2): errors on the test set over dierent iterations. . . . . . . . . .

3.7

Supervised learning with cluster reassignment (section 3.3.3): errors on the test set over dierent iterations. . . . . . . . . .

3.8

Confusion matrix for a codebook with 150 codewords according to dierent learning algorithms and after retraining with List of Tables Evaluation of dierent baselines on the CDC4CV dataset. In our implementation of [START_REF] Farabet | Scene parsing with multiscale feature learning, purity trees, and 123 optimal covers[END_REF], only the multi- 

Visual recognition problem

The ultimate goal of articial intelligence (AI), to enable machines to behave like human being, has driven an enormous amount of research from dierent communities to advance the frontier since the mid-20th century. Machine learning, as a core branch of articial intelligence, is a highly active research direction. A notable denition of machine learning from Mitchell [Mitchell, 1997] is: A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P , if its performance at tasks in T , as measured by P , improves with experience E.

This denition basically outlines the general methodology for machine learning: The regularities or models are learned from the experience in any way whatsoever, and then are employed to predict current data or future data. In the recent decades, remarkable progresses on articial intelligence have been achieved and it seems that the pace toward the ultimate goal is accelerating.

Humans are able to perform many dierent tasks, from recognizing objects, understanding languages to complex logical reasoning and decision making etc. The common strategy is to learn an ecient model which is oriented to one particular task, for example, visual recognition, natural language understanding, scene understanding, and migrate them together in the nal step.

Among the versatile abilities of human beings, the human visual system is one of the most outstanding ones after millions of years of evolution. The whole system contains billions of neurons, connecting from the retina to ventral cortical areas, and further to more abstract areas in the brain, which are responsible for decision making. It not only enables us to perceive the colorful world, but also can rapidly direct our attention to interesting objects in the environment, segment the scene, recognize and track objects of interest. This remarkable function is of signicance in an evolutionary perspective because it helps humans survive in the brutal biological law. Therefore, it attracts much attention of researchers from dierent disciplines, such as the neurobiology community to understand the scheme of our visual system, the computer vision community to design and implement computational models for vision tasks, the machine learning community to provide statistical and structural models for learning which can be applied to dierent problems. This thesis mainly focuses on visual recognition, including object segmentation as a preliminary step for recognition, and video understanding, in particular, pose estimation and action recognition. It investigates several popular models in the computer vision and machine learning communities, and then proposes several models.

Visual recognition is one of the fundamental problems in computer vision.

It is more often quoted as object recognition, where object varies according to the media containing it. There are several dierent recognition problems as follows:

1. Object in a traditional image actually is the reection of a real 3D object on the imaging plane, since an image is the projection of a 3D scene on the imaging plane. This recognition problem covers various specic tasks like face recognition, person recognition and specic recognition from learned examples. Figure 1.1 shows several objects to be detected in images and their groundtruth bounding boxes [START_REF] Everingham | The pascal visual object classes (voc) challenge[END_REF]. It has been well studied for decades, and some applications have been successfully employed in real life.

2. Another source are depth images, in which each pixel delivers the distance to the camera. Combined with traditional RGB images, they provide more information about the scene. Figure 1.2 displays the output shot by a moving Kinect in the LIRIS HARL dataset [START_REF] Wolf | The liris human activities dataset and the icpr 2012 human activities recognition and localization competition[END_REF].

At the same time, real-time 3D representations of objects become possible, which allows new possibilities for object recognition. [ [START_REF] Wolf | The liris human activities dataset and the icpr 2012 human activities recognition and localization competition[END_REF] tential applications such as security and surveillance, human-computer interaction, content-based video analysis, as shown in gure 1.3.

Visual recognition, as a crucial problem of visual systems, has continued to attract remarkable interest since its beginning, not only due to the basic research of seeking a pure interpretation of human vision cognition system, but also because of promising applications in dierent domains. Of course, the development of articial visual recognition system goes along with the demand of other related industries. The earliest applications of visual recognition were limited character recognition for oce automation tasks, for example, automated teller machines (ATMs) for banks. Compared to the early very limited applications to promote production eciency, visual recognition is Figure 1.3:

The video of action Long jump in the Olympic dataset [START_REF] Niebles | Modeling temporal structure of decomposable motion segments for activity classication[END_REF].

widely used in numerous applications nowadays, such as military, security, health care, movies and entertainment, gaming etc. We will describe some applications in the following:

Human-computer interaction (HCI): It is a basic application that aims to improve the interaction between users and computers by making computers more usable for users and understanding users' behaviors [START_REF] Sinhal | Human Computer Interaction: Overview on State of the Art[END_REF]. One example for entertainment are game console systems based on gesture recognition. The seminal technology is the Xbox 360 gaming system equipped with Kinect, in which the key intelligence part is accurate gesture and pose recognition. Figure 1.4 demonstrates how the players control the actions in the game through physical movement in front of Kinect. The success of Kinect further promotes a series of consumer technologies related to human-computer interaction.

In chapters 4 and 5 we propose human body segmentation algorithms, which improve upon the existing algorithms for the Kinect system.

Health care: This application has a large promising market because of the problem of the aging global population. Installed in homes or hospitals, visual recognition systems can help elderly, disabled or chronically sick people to live independently. Typical tasks are the recognitions of events like falling, or the verication of drug intake. Assistance with machine interaction is another possibility in this context. Figure 1.5 shows a real system for disabled people. 

Scientic challenges

As mentioned earlier, we introduce contributions to the visual recognition problem in dierent domains. Three dierent types of media (i.e. images, depth images, videos) associated with visual recognition will be dealt with.

Although each has its specic characteristics and also induces particular challenges for each sub-problem, there are some common challenges for visual recognition. Besides the above mentioned challenges, real-time processing is often required in the practical applications of visual recognition. Moreover, some applications are installed on mobile platforms. Both requirements further limit the complexity of the algorithm. However, the model with less complexity usually yields more errors, therefore, in a real algorithm design, the cost between complexities and errors should be seriously considered and the best trade-o strategy is adopted according to the needs.

From the above discussion, we can conclude that visual recognition is a dicult task, but a large amount of applications encourage the researchers in computer vision and machine learning communities to seek more ecient and eective representations and learning algorithms to achieve the level of the human visual system. In this thesis, we address visual recognition mainly by using machine learning algorithms, or employing the machine learning framework to improve the models populated in computer vision community. 

Our contributions

In sections 1.1 and 1.2, we have briey discussed visual recognition and its challenges. In this thesis, we focus on the role of learning for visual recognition, for example, learning a more discriminative representation for objects through end-to-end learning.

Figure 1.6 shows a common framework for visual recognition. It can be rened to several cases according to specic recognition problems:

-In the case of bag-of-words models, which will be described in more detail in section 2.3.2.2 of chapter 2, the representation corresponds to a histogram, which is calculated from a set of descriptors pooled from sparse primitives. The descriptors are usually handcrafted. The pooling process is calculated through a codebook (dictionary), which is classically learned in an unsupervised way through clustering. This is shown in gure 1.7a. The black path shows the data ow during the testing procedure. The red path shows the data ow during the unsupervised codebook training used for pooling and the blue path shows the data ow during the supervised classier learning.

-The case of object segmentation by classication is shown in gure 1.7b.

In this case, the generic framework shown in gure 1.6 is applied inde- pendently to each pixel of an image. Here we do not deal with regularization like it is performed in discrete models (MRF, CRF etc.) or continuous-discrete formulations (Mumford-Shah functional etc.). The feature in this case can either be handcrafted (HOG, SIFT etc., see section 2.2 chapter 2) or learned in an end-to-end training setup (see section 2.4 of chapter 2). In this case, the features are learned together with the prediction model (see section 2.3 of chapter 2).

The goal of our work is the integration of as much as information as possible into the learning process. We proceed by dierent ways: (i) integrating additional constraints (related to prior information) into the learning algorithm; (ii) coupling stages which are classically performed separately. A large emphasis is put on geometric and spatial information. Here our contributions are given as follows:

• We propose an end-to-end training approach for BoW models. In the framework shown in gure 1.8a, the dictionary is learned together with the prediction model in a supervised way, i.e. including training labels.

We impose spatial constraints on label congurations in feature space. In this way, the features are directly related to the classication problem, and they are updated as learning becomes more discriminative. We experimented this approach on the bag-of-words (BoW) model for action recognition.

• We integrate prior information in terms of spatial label layout of parts into dierent machines, i.e. Randomized Decision Forest (RDF), Convolutonal Neural Networks (CNN), and classiers such as logistical regression (LR) or multilayer perceptron (MLP). respectively, as shown in gure 1.8(b). This concerns applications, where a classier takes decisions on labels, which can be spatially interpreted, for instance where objects are segmented into meaningful parts. Labels here refer to parts, which are located in the human body. Spatial relationships can signicantly improve performance in this case when the size of available training instances is very limited.

Traditionally, these constraints are injected using models which require to solve a combinational problem, e.g. graphical models like MRFs and CRFs. The additional computational burden makes real-time operation impossible. We propose to integrate these constraints directly into the learning algorithm of a traditional classier (RDF, CNN, LR or MLP). Classication still proceeds independently pixel per pixel, which means that the computational complexity is equivalent to the classical approaches.

• All the frameworks we propose do end-to-end training as shown in gures 1.8(a) and 1.8(b). Representations are automatically learned, rather than hand-engineered 1 .

• We employ our spatial learning algorithms on specic problems, namely human body part estimation and segmentation. Visual recognition of human parts is an important intermediate step, which can be used for person recognition or human pose estimation. It is necessary to mention that our algorithms can be used for the segmentation of any other objects, articulated or not.

In the case of BoW model, the dictionary of the representation is learned, while the low-level features stay handcrafted.

Overview

Here we overview the contents in the following chapters:

Chapter 2 discusses the state-of-the-art on visual recognition. We present popular feature extraction techniques, and widely used models in computer vision. We also review common machine learning algorithms for visual recognition with a focus on the ones related to the thesis.

Chapter 3 proposes two algorithms for end-to-end learning of bag-of-words (BoW) models on action recognition, where the dictionaries are learned in a supervised way. The codebook for BoW models are updated through error backpropagation. One algorithm described in section 3.3.2 is based on classical error backpropagation, the other described in section 3.3.3 is based on cluster reassignments. We apply both algorithms to the human action recognition problem, and show that our end-to-end learning technique makes the BoW model more discriminative.

Chapter 4 proposes spatial learning algorithms for Randomized Decision

Forests in section 4.3 and for Convolutional Neural Networks and LR/MLP classier in section 4.4, respectively. We integrate the spatial layout of object congurations in terms of pairwise relationship of neighbors and non-neighbors into the learning machines with dierent architectures. In other words, we attempt to learn structural machines for recognition. The learned machines demonstrate better performance on object segmentation problems.

Chapter 5 presents one application for the algorithms proposed in chapter 4, namely segmentation of humans into body parts. Part segmentation is an important research area in computer vision, which can be regarded as the bridge between low level image processing to high level scene understanding.

In this work we consider it as a problem of classication, which is addressed by our algorithms. 

State of the art

The visual recognition problem is sometimes quoted as the object recognition problem (the word object being interpreted in a very large sense such as object, activity, gesture etc.), i.e. how to make a machine recognize objects in an image or in a video without any other assistance. The ultimate goal is to produce an articial visual system having a performance equivalent to the human visual system, which is capable of recognizing as many as millions of objects. However, this powerful and universal visual system has not been reported until now.

The type of the input depends on the sensing device. for bag-of-words [START_REF] Csurka | Visual categorization with bags of keypoints[END_REF]] models, and DPM for deformable part based models [START_REF] Felzenszwalb | Object detection with discriminatively trained part based models[END_REF].

a traditional camera, a classical problem in computer vision. It can also be a depth image of an object, where each pixel value corresponds to the distance to the depth-sensing camera. Moreover, it can be a spatio-temporal object in videos such as an action and an activity associated with one or several persons.

There is a large amount of literature on visual recognition, and various methods have been introduced for the object recognition problem Visual recognition can be performed through dierent families of approaches. Figure 2.1 gives a taxonomy of some frequent ones. They all resolve the same main problem, which is to identify (detect) the region containing the object of interest and then to recognize the object itself. This is a chicken-andegg problem, since detecting an object theoretically requires its recognition, whereas recognition requires extracting features from the detected region. We would not talk more about this, several techniques thus are presented to avoid this dilemma.

Matching is a prototype based technique, which is performed by searching for instances of a model (image, point etc.) in the scene through similarity, and by thresholding the similarity, taking into account structural information.

According to the used features, there are global matching and local matching techniques. Another simple solution is to slide a window over the image or video, and to recognize the presence of the object by classication. It is also further divided into local sparse features based (e.g. bag-of-words models [START_REF] Csurka | Visual categorization with bags of keypoints[END_REF]) and local dense features based (e.g. deformable part

based models [START_REF] Felzenszwalb | Object detection with discriminatively trained part based models[END_REF]). Another possibility is to rst oversegment an image into a set of candidate object segments, fuse small regions together and followed by a classication step.

Existing methods can also be organized by the dierences in feature types, where most types of methods require a specic type of features, for instance, local matching requires local features. Figure 2.2 shows a taxonomy of feature types.

The next three sections are dedicated to these aspects:

-Section 2.2 will describe dierent feature types, as shown in gure 2.2.

-Section 2.3 will describe dierent recognition techniques, as shown in gure 2.1.

-Section 2.4 will describe feature learning techniques, where features are not handcrafted, but learned.

Features and techniques will be presented for both, spatial data and spatiotemporal data, i.e. for object recognition and for activity recognition.

Type of features

As mentioned in Chapter 1, features and representations should possibly be as invariant and as discriminative as possible, to make the subsequent recognition stage less dicult. One advantage of this framework is that it can be composed of an end-to-end framework where features are learned together with the prediction model, as a result, the features are learned to best suit the classication stage.

In this section, we will present several types of global and local features.

Automatic feature learning will be discussed in its own dedicated section 2.4.

Global features

Global features are extracted on the whole area covered by the object of interest, which is therefore described by a single representation (mostly vectorial).

The research on global representations dominated the beginning of object recognition.

Shape based features

Shape is an important property of an object, it is related to contours for 2 dimensional objects and to surfaces for 3 dimensional objects. The earlier shape features focus on low level information such as edge or texture. Snakes introduced in [START_REF] Kass | Snakes: Active contour models[END_REF] apply energy minimization to contour construction and the edges are the features. Active Shape Models [START_REF] Cootes | Active shape models-their training and application[END_REF] integrate global shape constraints into snake constructions to capture the deformable shape.

Shape context is a contour based descriptor, which describes a coarse distribution of all other points with respect to a given point on the shape [START_REF] Belongie | Shape matching and object recognition using shape contexts[END_REF]. It works well on poorly textural objects, such as letters, sketches, and is widely adopted by the community. The main computation steps are as follows: an edge image of an object is rstly obtained and its This gure is reproduced from [START_REF] Belongie | Shape matching and object recognition using shape contexts[END_REF].

shape is discretized into a number of points. A log-polar coordinate system is put on the shape with its origin at a given point. The shape context for the given point is a histogram, where each bin in the log-polar coordinate counts the number of points falling in that bin. Each point's shape context features are composed of the relative position information of all other points w.r.t itself; therefore, shape context is very rich and discriminative. It is very suitable for point-to-point matching problems.

Shape based features can be also used to describe spatio-temporal objects.

Gorelick et al. [START_REF] Gorelick | Actions as space-time shapes[END_REF] propose a global descriptor for spacetime data. They stack 2D object shapes to form a volumetric space-time shape. Space-time saliency and space-time orientation is extracted from the space-time shape volume, serving as features. Space-time saliency indicates which portion of human action has the highest likelihood of action occurrence, and space-time orientation estimates the local orientation and aspect ratio of dierent space-time parts. Figure 2.4 shows the space-time saliency of waving hands and walking and the space-time orientations of plates and sticks for walking. Their method does not require prior video alignment and has proper robustness to partial occlusions, imperfections in the extracted silhouettes.

Another similar space-time volume is extracted from 2D contours for actions in [START_REF] Yilmaz | Actions as objects: A novel action representation[END_REF]. Several geometry properties are computed to describe the space-time volume, such as peaks, pits, valleys and ridges. These features are quite invariant because the convex and concave parts of the object are view invariant. indicate vertical sticks. This gure is reproduced from [START_REF] Gorelick | Actions as space-time shapes[END_REF] (best viewed in color). 

Appearance based features

The appearance of an object is expressed in terms of pixel intensities, which is also a clue for global features. The earlier work investigated low image features based on intensity and texture for visual recognition. However, they are high dimensional vectors and sensitive to the noise and lighting conditions. Dimension reduction techniques are common to use. The appealing concept for face recognition is eigenfaces [START_REF] Turk | Face recognition using eigenfaces[END_REF],

which means that eigenvectors of face images are used for recognition. A set of eigenfaces can be derived by performing principle component analysis (PCA) on a large collection of face images. These eigenfaces build a basis and other face images can be represented by a set of reconstruction coecients. Eigenfaces provide a compact representation of face appearance, while simultaneously reducing the dimensions. The follow-up work in [Murase andNayar, 1995, Leonardis and[START_REF] Leonardis | [END_REF] extend it to general visual recognition system instead of specic to face recognition.

An alternative to eigenfaces are sherfaces [START_REF] Belhumeur | Eigenfaces vs. sherfaces: Recognition using class specic linear projection[END_REF],

which use linear discriminant analysis (LDA) for reduction. Another fur-ther alternative is Active Appearance Models proposed by Cootes et al.

[ [START_REF] Cootes | Active appearance models[END_REF], which is a statistical learning method for shapes and textures of faces. PCA is performed on a set of landmarks on the face to encapsulate the variation of dierent faces.

More recently, these kinds of techniques are used in conjunction with deep learning. The combination is also sometimes called intelligent dimensionality reduction and briey described in section 2.4.2.

Moment based features

Moments are an extensively used concept in dierent disciplines. In mathematics, a moment is used to measure the characteristics of the shape of a set of points, such as: mean, variance, and skewness. Moment invariants can also be applied to two-dimensional images, where they measure the content of images with respect to dierent axes.

Hu moments were rst introduced for visual pattern recognition [Hu, 1962].

They are derived from the theory of algebraic invariants. For a gray image of size N * M , the image intensities in the image coordinate (x, y) are represented by a function f (x, y), the moment of order (p + q) is dened by:

m pq = M -1 ∑ x=0 N -1 ∑ y=0
x p y q f (x, y),

(2.1)

where p, q = 0, 1, 2, 3, • • • .

In order to achieve translation invariance, the central moment µ pq is given by:

µ pq = M -1 ∑ x=0 N -1 ∑ y=0 (x -x) p (y -ȳ) q f (x, y), (2.2)
where x = m 10 m 00

and ȳ = m 10 m 00 . To be further scale invariant, the central moment is once again normalized by:

µ pq = µ pq µ γ 00 , γ = 1 + (p + q)/2.
(2.

3)

The seven Hu moments are given as:

                             M 1 = µ 20 -µ 02 M 2 = (µ 20 -µ 02 ) 2 + 4µ 2 11 M 3 = (µ 30 -µ 12 ) 2 + (3µ 21 -µ 03 ) 2 M 4 = (µ 30 + µ 12 ) 2 + (3µ 21 -µ 03 ) 2 M 5 = (µ 30 -3µ 12 )(µ 30 + µ 12 )[(µ 30 + µ 12 ) 2 -3(µ 21 + µ 03 ) 2 ] +(3µ 21 -µ 03 )(µ 21 + µ 03 )[3(µ 30 + µ 12 ) 2 -(µ 21 + µ 03 ) 2 ] M 6 = (µ 20 -µ 02 )[(µ 30 + µ 12 ) 2 -(µ 12 + µ 03 ) 2 ] + 4µ 11 (µ 12 + µ 30 )(µ 21 + µ 03 )] M 7 = (3µ 21 -µ 03 )(µ 30 + µ 12 )[(µ 30 + µ 12 ) 2 -3(µ 21 + µ 03 ) 2 ] +(3µ 21 -µ 30 )(µ 21 + µ 03 )[3(µ 30 + µ 12 ) 2 -(µ 21 + µ 03 ) 2 ]
Although Hu moments are invariant to scale, translation, and rotation, one problem is that they are derived from low order moments, whose capacity of describing a shape is very limited. Another disadvantage is their diculty to reconstruct the image. An example of their usage is their application to action recognition in [START_REF] Bobick | The recognition of human movement using temporal templates[END_REF].

Zernike moments [Teague, 1980] have been proposed to overcome these disadvantages.

They are computed based on the basis set of orthogonal Zernike polynomials.

Interesting readers can nd more details in [START_REF] Teh | On Image Analysis by the Methods of Moments[END_REF]. They have been successfully applied to object recognition [START_REF] Revaud | Improving zernike moments comparison for optimal similarity and rotation angle retrieval[END_REF], Ta et al., 2008]. 

Motion features

D(x, y, t) = { 1, |I(x, y, t) -I(x, y, t -1)| > T 0, otherwise (2.4)
Then the MHI function is dened by: where τ is the total number of frames. MHI are constructed by giving the sequence frames decaying weights with higher weight given to new frames and low weight given to older frames. MEI can be obtained through setting the same value for the pixels above zero in MHI. Figure 2.6 illustrates MEI and MHI of a person raising both hands. MEI and MHI are not suitable to complex actions due to over-writing over time. Several extensions on these features exist in [Weinland et al., 2006, Hu and[START_REF] Hu | [END_REF]. They also have been extended to depth videos in [START_REF] Roh | Viewindependent human action recognition with volume motion template on single stereo camera[END_REF], where they are called Volume Motion Template.

h τ = { τ, if D(x, y, t) = 1 max(0, h τ (x, y, t -1)), otherwise (2.5)
Global features are not restricted to the above mentioned ones. More types of global features for visual recognition can be found in [Poppe, 2010]. -How can we detect interesting local primitives, e.g. point locations?

Several measure criteria are proposed to constrain the interest points in image or video.

-How can the area around each point be described locally?

Here we would like to point out that interest points and descriptors are independent: once interest points are detected, any descriptor techniques can been applied. In the following, several well-known interest point detectors are presented as well as descriptors.

Interest point detectors

The work on interesting points can be traced back to [Moravec, 1981] on stereo matching using corner detection. His corners are detected by shifting a local window in the image to determine the average intensity changes.

It was improved by Harris and Stephens to discriminate corners and edges [START_REF] Harris | A combined corner and edge detector[END_REF]. The basic idea to nd the point whose value is above the threshold with Harris measure, which is dened on the rst order derivatives as follows:

µ = G(x, y) * [ L 2 x L x L y L x L y L 2 y ] (2.6) det(µ) -α trace 2 (µ) > threshold (2.7)
where G(x, y) is two-dimensional Gaussian function, L x and L y are the Gaussian derivatives on the image along with x and y direction, α is a parameter to control the interesting point types, e.g. isotropic points, or edge points.

Harris's detector was rst employed to image matching problems. The work in [START_REF] Schmid | Local Greyvalue Invariants for Image Retrieval[END_REF]] extended Harris's detector to the general recognition problem for image retrieval. It had been widely used in the community due to the fact that it can produce repeatable corners and for some time hardware implementations were available.

Arguably, the most widely used interest point detector is the SIFT detector introduced by Lowe [Lowe, 2004]. He proposes a scale-invariant keypoint detector by searching over all scales and image locations, implemented as a dierence-of-gaussian operation:

D(x, y, σ) = (G(x, y, kσ) -G(x, y, σ)) * I(x, y) (2.8)
where G(x, y, kσ) is a two-dimensional Gaussian function with scale σ, k is a constant to dene its nearby scale, * is the convolution operation. The detected local extrema are further rejected if they have low contrast by equation (2.9) or are located along an edge by equation (2.10).

D(x)

= D + 1 2 ∂D T ∂x x,
(2.9)

Tr(H) Det(H) < (r + 1) 2 r .
(2.10)

Here, x is the oset of the local extrema, and H is the 2 × 2 Hessian matrix of the local extrema.

Mikolajczyk and Schmid [START_REF] Mikolajczyk | An ane invariant interest point detector[END_REF] propose an algorithm to address ane invariant interest points. Interest point candidates are rst detected by using multi-scale Harris detector, and then for each point an iterative procedure is performed to simultaneously modify the position, scale and shape of the point neighborhood, and an ane transformation is estimated to obtain ane invariant interest points.

Additional work on 2D interest point detectors includes SURF (Speeded up robust features) [START_REF] Bay | Surf: Speeded up robust features[END_REF], FAST (Features from Accelerated Segment

Test) [START_REF] Rosten | Machine learning for high-speed corner detection[END_REF] etc.

We temporally turn our attention to present some work on 3D interest point detector for action/activity recognition. Laptev [Laptev, 2005] extends the 2D Harris detector to 3D space-time detector. Space-time interest points (STIP) are those points where the local neighborhood has a signicant variation in both the spatial and the temporal domain. Similarly, the spatiotemporal second-moment matrix is a 3-by-3 matrix composed of rst order spatial and temporal derivatives as following:

µ = G(x, y) *   L 2 x L x L y L x L t I x I y I 2 y L y L t L x L t L y L t L 2 t   (2.11)
One drawback of this method is that it provides a relatively small number of stable interest points (see gure 2.7); it also consumes expensive computational resources due to a iterative searching procedure in a 5 dimensional space over (x, y, t, σ, τ ). tor [START_REF] Dollar | Behavior Recognition via Sparse Spatio-Temporal Features[END_REF]. This gure is reproduced from [START_REF] Niebles | Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words[END_REF] Dollar et al. [START_REF] Dollar | Behavior Recognition via Sparse Spatio-Temporal Features[END_REF] apply two linear separable Gaussian lters in the space dimensions and a Gabor lter on the temporal dimension individually to obtain dense interest points. The form of the response function is given as: R = (I * g * h ev ) 2 + (I * g * h od ) 2

(2.12)

Where g is the 2D spatial Gaussian smoothing kernel and, h ev (t; τ, ω) = -cos(2πtω) exp(-t 2 /τ 2 ) and h od (t; τ, ω) = -sin(2πtω) exp(-t 2 /τ 2 ) are a pair of 1D Gabor lters applied temporally. The local maxima of the response function are selected as spatio-temporal interest points. Figure 2.8 shows the interest point of a walking action.

As mentioned above, Laptev's detector is scale-invariant, yet it detects very sparse interest points. Dollar's detector extracts a more dense set of interest points, yet they are not scale-invariant. [START_REF] Willems | An ecient dense and scale-invariant spatio-temporal interest point detector[END_REF] therefore propose an ecient dense and scale-invariant spatio-temporal interest point detector, which uses the determinant of the Hessian as saliency measure. There are other attempts to detect the corners in the video: Yu et al. [START_REF] Yu | Real-time Action Recognition by Spatiotemporal Semantic and Structural Forests[END_REF] propose V-FAST which actually is the extension FAST corner detection. The FAST detector is applied to the three planes: XY , Y T and XT . Saliency is detected if n contiguous pixels on the circle are all brighter or darker than a center pixel. [START_REF] Le | Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis[END_REF] obtain interest points by thresholding the responses from an Independent Subspace Analysis (ISA) network. [START_REF] Everts | Evaluation of color stips for human action recognition[END_REF] investigate multi-color Figure 2.9: The SIFT descriptors. This gure shows a 2*2 subregions from a 8*8 neighborhood. This gure is reproduced from [Lowe, 2004]. channel spatio-temporal interest points, compared to intensity-based STIP in [Laptev, 2005]. They are invariant to highlights and shadows and perform better on action recognition than their intensity-based counterparts.

Descriptors

Descriptors are local in an image or video, i.e. in this case, they describe a local neighborhood around each primitive (e.g. point). We will review some popular local descriptors in this section.

SIFT and its extensions SIFT (Scale Invariant Feature Transform) in [Lowe, 2004] is a very successful local descriptor due to its robustness and discriminative power. It rst computes the gradient magnitude and orientation at each pixel in the 16*16 neighborhood centered around an interest point. They are weighted by a Gaussian window overlaid on this neighborhood, giving more emphasis to the pixels near the center and less emphasis to the ones far from the center. For each 4*4 subregion, an orientation histogram of 8 bins is accumulated, resulting in a descriptor of size 4*4*8 for each interest point. The contribution to each bin for each pixel is also weighted by the gradient magnitude. Figure 2.9 illustrate the scheme of SIFT features. [START_REF] Ke | PCA-SIFT: A more distinctive representation for local image descriptors[END_REF]] developed a descriptor similar to the SIFT descriptor. It applies Principal Components Analysis (PCA) to the normalized image gradient patches and gives a more distinctive and more compact descriptor. It performs better than the SIFT descriptor in accuracy or eciency. [START_REF] Mikolajczyk | Performance evaluation of local descriptors[END_REF] propose Gradient location-orientation histograms (GLOH). They rst compute SIFT descriptors for a log-polar location grid with 3 bins in radial direction and 8 bins in orientation, and then apply PCA to get a compact descriptor, which shows better performance than the SIFT descriptor.

Although SIFT and its extensions are very discriminant, it is com-putationally demanding, and also requires a large amount of memory to store the descriptors due to its 128-vector. Much work has been done to improve its eciency while preserving its power.

The SURF descriptor [START_REF] Bay | Surf: Speeded up robust features[END_REF]] makes use of integral images to speed up histogram computation, yielding good approximation to SIFT. However, its descriptor length is an issue. Binary Robust Independent Elementary Features (also BRIEF) [START_REF] Calonder | Brief: Binary robust independent elementary features[END_REF] addresses both issues by building a string of binary values based on intensity dierence comparison, but the experiments show that BRIEF is very sensitive to rotation. ORB (Oriented FAST and Rotated BRIEF) [START_REF] Rublee | ORB: an efcient alternative to SIFT or SURF[END_REF] is proposed to make it rotation invariance. SIFT have also been extended to spatio-temporal space for action recognition [START_REF] Scovanner | A 3dimensional sift descriptor and its application to action recognition[END_REF].

HOG and HOF Histograms of oriented gradients (HOG) [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] for text detection. In [START_REF] Dalal | Human detection using oriented histograms of ow and appearance[END_REF], Histograms of Flow (HOF) are proposed for videos and are computed from optical ow instead of gradient direction, keeping the rule of the technique similar to HOG. HOG and HOF features are often combined to a single descriptor for activity recognition from videos [START_REF] Laptev | Learning realistic human actions from movies[END_REF]. HOG3D descriptor [START_REF] Klaser | A spatio-temporal descriptor based on 3d-gradients[END_REF] is another extension of HOG, which computes histograms of 3D gradient orientations for video.

LBP and its extensions Local binary patterns (LBP) are a highly successful descriptor, which has originally been proposed by Ojala et al.

[ [START_REF] Ojala | A comparative study of texture measures with classication based on featured distributions[END_REF] for texture classication, and extended to various applications, for example, face recognition [START_REF] Ahonen | Face description with local binary patterns: application to face recognition[END_REF] and human detection [Huang, 2008]. Advantages are robustness to illumination changes and computation eciency. LBP is also employed as descriptor for interest points.

LBP describes each pixel by a vector of binary values from its neighborhood. A set of binary values form a binary number, serving as features. N pixels are sampled on the circle with radius R centered at a given pixel. Each sampled pixel is compared to the gray value of the center pixel, if the intensity is higher or equal, the output is set to 1, otherwise to 0. A series of bits from 

LBP R,N = N -1 ∑ i=0 s(n i -n c )2 i , s(x) = { 1, x ≥ 0, 0, otherwise (2.13)
where n c is the gray-scale value of the center pixel and n i is the gray-scale value for N pixels equally sampled on the circle with a radius R. Figure 2.10 shows an illustration of LBP features with R = 1 and N = 8. It can be seen that multi-scale LBPs are easy to extract by changing the radius R.

One extension is uniform LBP, which is a special case of LBP. A local binary pattern is called uniform LBP if and only if at most two times bitwise transition between 0 and 1 occurs in the binary pattern, for instance, the LBP 00011100 has two transitions, whereas 00010110 has four transitions. Rotation invariant LBP can be achieved by two dierent ways: one is by rotation invariant mapping, based on the fact that patch rotation will induce a circular rotation by the same angles of the LBP codes. In detail, each LBP binary code is mapped to its minimum value, which is obtained by circular LBP rotation:

LBP ri R,N = min i ROR(LBP R,N , i), (2.14)
where ROR(x, i) is the bit values after bitwise shift version by i steps for code x. Another way is to perform the Discrete Fourier Transform on the uniform LBP histogram, where each bin is the number of occurrence of the uniform LBP in image. More illustration of these features can be found in [START_REF] Ahonen | Rotation invariant image description with local binary pattern histogram fourier features[END_REF]. each feature in HOG. This gure is reproduced from [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF].

have been introduced by Liao [START_REF] Liao | Dominant local binary patterns for texture classication[END_REF], making use of the dominant local binary patterns, which frequently occur in the image to capture the texture information.

Raw data is not suitable to describe the local content. However, recent work by [START_REF] Song | Ane transforms between image space and color space for invariant local descriptors[END_REF] proposes to learn ane transformations between image space and color space, which are used to construct descriptors combining color and spatial information. As a result, the descriptors are invariant to ane transformations and photometric changes.

Local dense features

The above descriptors are computed locally on interest point locations, so their discriminative abilities also rely on the interest point detection. At the same time, there are some descriptors which are computed densely in the image without interest point detection.

Local dense features are obtained by computing local features for each pixel in the image. All descriptors described in section 2.2.2.2 can be adopted.

The common practice is that an image is divided into a batch of grids; for each grid, a vector of local descriptor is extracted, and all the descriptors are eventually aggregated into one vector. The used lters usually describe the content, for example edge orientation and strength, in the local neighborhood.

The lters can be Gabor lters [START_REF] Kamarainen | Local and global Gabor features for object recognition[END_REF], steerable lters [START_REF] Yokono | Oriented lters for object recognition: an empirical study[END_REF], or complex exponential functions, etc. Gabor lters are discovered to model the behavior of simple cell in the visual cortex of mammalian brains, therefore they are biologically inspired. Steerable lters are Gaussian derivative lters, which are specic to particular orientation and frequency. Figure 2.12 shows one example of steerable lters.

The lters also can be learned in a supervised or an unsupervised way, e.g. with Convolutional Neural Networks (CNN) [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF], where the lters are considered as the connections between the layers. The learned lters in the CNN can, however, often similar to Gabor-like lters, as shown in gure 2.13. Section 2.4 is devoted to this direction of automatic feature Chapter 2. State of the art learning.

Visual recognition: methods

In section 2.2, we discussed the popular global and local features for visual recognition in the literature. This section focuses on models and methods.

A large number of approaches have been proposed for the recognition stage.

In this section, we restrict our scope to three families of techniques, which covers a large part of the state of the art: matching, sliding windows 

Matching

Matching is a exible and powerful technique, which has proved to be eective in many computer vision tasks. The philosophy of matching is that a decision is made for a new instance according to its similarity to a pattern. The pattern can be a training instance, or a learned model/prototype. Classication is frequently done through the KNN classier working on distances dened on the matching results. It is able to obtain comparable results on a general dataset, where machine learning techniques also work well, but it can also handle with a special case one-shot learning problem, i.e. only one example is available in the training set. An important advantage is the possibility of dening distances on non-vectorial/structural data.

Global matching

Global matching is one type of matching schemes, where the similarity between two images is computed globally without local neighborhood correspondence problem. The distance between two images indicates the similarity: the less distance and the more similarity.

Intensity matching The initial idea is to sum all the gray-scale differences of pairs of pixels from the same locations in two images:

D(I x , I y ) = N ∑ i=1 |x i -y i | 2 = ||X -Y|| p (2.15)
where I x , I y are two images, x i , y i are gray-scale values for pixel i, X, Y are vectorized pixel values, p is the norm (e.g. p = 2 is Euclidean distance).

However, matching based on the pixel values rarely works well due to that the pixel values contain little information about the object. Three distance metrics are also proposed for object matching in the following.

Feature matching In principle, most global features described in section 2.2.1 can also be used for global matching in a straightforward way, if they are of vectorial nature. In this case a distance can be dened, e.g.

through any normed dierence (e.g. L2-norm).

Chamfer matching It is widely used for edge based object recognition due to its tolerance to misalignment in scale and position. The main computation is the chamfer distance, which was rst introduced by [START_REF] Barrow | Parametric correspondence and chamfer matching: two new techniques for image matching[END_REF] to compare the shapes of two collections of shape fragments. Given an image I, an edge map E is rst computed for I. The basic chamfer distance of a template T at location x in the edge map is calculated by:

D T,E cham (x) = 1 |T | ∑ xt∈T min xe∈E ||(x t + x) -x e || 2 ,
(2.16)

where ||.|| 2 is L2 norm and |T | is the number of edge points in the template, x e is an edge point in the edge map E. Equation 2.16 computes the mean of the distances between each point on the template to its closest point in the edge map. Equation 2.16 can be eciently computed through a distance transformation (DT). For the edge map E, the distance transform is rst performed to get a distance map, each value on each pixel gives the distance to its nearest edge:

DT E (x) = min xe∈E ||x -x e || 2
(2.17)

The distance between the template T and the image is the mean distance value over the template point locations in the distance map, showing as follows:

D T,E cham (x) = 1 |T | ∑ xt∈T DT E (x t + x).
(2.18)

Finally, the matching values usually are truncated to a threshold.

The original chamfer distance needs a good initialization for a template. Another drawback is that it suers from cluttered background. One modication is hierarchical chamfer matching [Borgefors, 1988], which performs coarse-to-ne chamfer matching. Shotton et al. [Shotton et al., 2008a] proposed oriented chamfer matching (OCM) to compute edge orientation mismatching between the template and the image. Integrated with original chamfer distance, a higher discriminative power is achieved. Ma et al. [START_REF] Ma | Boosting chamfer matching by learning chamfer distance normalization[END_REF] signicantly boost the performance of oriented chamfer matching to discriminate the false positive from the background clutter by comparing the matching score to normalizers, which are learned.

Hausdor Distance It is another distance metric widely used for image matching.

For two sets of points [START_REF] Huttenlocher | Comparing images using the hausdor distance[END_REF] is dened as:

A = {a 1 , a 2 , • • • , a p } and B = {b 1 , b 2 , • • • , b q }, the Hausdor distance
H(A, B) = max(h(A, B), h(B, A)), (2.19) where h(A, B) = max a∈A min b∈B ||a -b|| 2 (2.20) ||.|| 2 is the L2 norm. The Hausdor distance in essence is a max-min distance.
The directed distance h(A, B) gives the maximum distance from all the points in A to its nearest points in B. To make the distance symmetric, the maximum between two permutations is taken. It measures the degree of mismatch between two point sets. The authors in [START_REF] Huttenlocher | Comparing images using the hausdor distance[END_REF]] also dene several partial Hausdor distances, which are based on the percentile rankings:

h K (A, B) = K th a∈A h(A, B), (2.21)
where K th a∈A denotes the K th ranked values of h(A, B). Several extensions to the Hausdor distance have been proposed in [Sim et al., 1999, Dubuisson andJain, 1994]. A general Hausdor distance from two sets of points to two sets of curves, so-called as Curve segment Hausdor Distance (CsHD) is proposed to recognize shapes in [START_REF] Yu | Shape recognition using curve segment hausdor distance[END_REF].

Global matching techniques, such as the ones discussed above, dene a measure criteria between an object and a template without solving a feature correspondence problem. They work well for rigid object, but are not suitable to non-rigid objects. Local matching is capable of calculating non-rigid object matchings, which is presented in the next subsection. Another possible way is to learn a deformable template for the object. This will be discussed in section 2.3.2.3 on deformable models.

Local matching

Local matching matches two collections of local features, which requires to solve a correspondence problem. The intuition is that an object is matched to a template, if enough points (or other local primitives) extracted from the object in the scene are matched well to points on the model. The matching score of object matching can be related to the matching scores of all the local points. Another advantage is that local point matching inherently indicates the object's structure and position, which can also be integrated into the score.

One possible technique for solving the point correspondence problem is RANSAC (RANdom SAmpling AConsensus). It is an iterative method which estimates parameters of a global and rigid model from observed data, which may contain outliers (e.g. ane, homography etc.). The parameterized model can be tted to the observation through inlier correspondence. However, this method can not handle non-rigid transformations of an object. Graph matching thus is an alternative method, which is very suitable to non-rigid transformations.

The object can be represented as a graph, which consists of a set of vertices, and a set of edges between the vertices. Each vertex is often an interest point (please refer section 2.2.2.1), region of interest, etc. The vertices in the graph are connected in several ways:

• Full connection: Every pair of nodes in the graph is connected through an edge. This often is not the optimal choice for large graphs, as the edge number grows exponentially, and edges do not code any information.

• Proximity: The neighbor nodes are connected according to their distance in the image or video.

• Adjacency: The edges are estimated from the adjacency relations of the vertices.

Features can be extracted from each vertex and used to measure the similarity of two nodes. Given two feature vectors F i and F j , dierent metrics are adopted:

• L-norm: D(F i , F j ) = ||F i -F j || p , amongst Euclidean distance is widely used.
• χ 2 test statistic distance: This distance is a natural choice for two histogram-type features such as HOG, SIFT:

D(F i , F j ) = 1 2 K ∑ k=1 [F i (k) -F j (k)] 2 F i (k) + F j (k) .
(2.22)

Here we briey review the philosophy of graph matching. Let G m = (V m , E m , F m ) and G s = (V s , E s , F s ) be two graphs extracted from the model and scene, respectively, where V is a set of vertices, E is the edges between the vertices, and F is the unary measurement, i.e. descriptor associated with each vertex (please refer to section 2.2.2.2). The number of the nodes are respectively denoted as N m = |V m | and N s = |V s |. The aim of graph matching is to determine a mapping x i from the vertex i in the model to a vertex in the scene.

The two most frequent formulations for graph matching are the following:

1. Exact matching searches for a structure preserving correspondence. Examples are graph isomorphism and sub-graph isomorphism.

2. Inexact matching minimizes an energy function which models the quality of the matching, often taking into account geometric and appearance information associated with the graphs.

Here we focus on the second type only, as it is arguably more frequent in computer vision. The energy functions can be expressed in two ways: Summation form The mapping cost is expressed as the summation of each correspondence cost, dened as:

E(x) = λ 1 ∑ i∈V ψ 1 (i, x i ) + λ 2 ∑ ij∈E ψ 2 (i, j, x i , x j ) (2.23)
which computes the energy for the potential mapping of two graphs. A node

i ∈ {1, • • • , N m } in the model is assigned to a node x i ∈ {1, • • • , N s } in the scene.
Noted that in equation (2.23) two functions are dened: ψ 1 is the unary potential function, which measures the distance between the features of node i in the model and its corresponding node x i . ψ 2 is a pairwise potential function, dening the compatibility of pairs of nodes (i.e. edges) in the model and its corresponding edges.

The graph matching problem can be reformulated to minimize the energy function expressed in equation (2.23):

x = arg min x E(x) (2.24)
In above equation, x is the only variable to minimize, and also x should be a discrete value in {1, 2, • • • , N s }. The minimization in equation (2.24) in general is a NP-hard problem [START_REF] Torresani | Feature correspondence via graph matching: Models and global optimization[END_REF].

Matrix form Equation (2.24) can also be formulated in a matrix form: The mapping variable

x is reshaped to a N m × N s assignment matrix X, in which X ij is set to 1 if node v m i in the model is mapped to v s j in the scene. X ∈ {0, 1} N m ×N s is further reshaped to vector x = {0, 1} N s N m , which
is the row-wise vectorized replica of X. An anity matrix A encodes cost ψ 1 (i; j) from equation (2.23) in its diagonal elements and cost ψ 2 (i, j, x i , x j )

from equation (2.23) in its o-diagonal elements. The optimal solution for assignment is achieved by minimizing:

E(x) = x T Ax, (2.25)
One constraint can be imposed on X to ensure one-to-one correspondences such that each row contain at most a single 1.

The solutions to solve equation (2.24) and (2.25) are beyond the scope of this chapter.

They are mostly based on discrete optimization (relaxation, Lagrangian algorithms, graph cuts, local/tabu search etc.) or a combination of these, or on continuous optimization techniques applied to a relaxed version of the problem [START_REF] Torresani | Feature correspondence via graph matching: Models and global optimization[END_REF], Duchenne et al., 2009, Marius et al., 2011, Lee et al., 2011, Lin et al., 2009].

Sliding windows

In section 2.3.1, matching techniques have been discussed for visual recognition. One advantage of these methods is that matching can tell us more information about an object, not only the presence of the object in the image, but also its location i.e. where it occurs in the image. However, it suers from heavy computation burden, since it requires to solve a discrete optimization problem.

In this section, an alternative framework the sliding window technique, is discussed. This system slides a window over an image. For each window, a classier determines whether an object is present at this location. The window's position is assigned to be the object's location. Machine learning tools can be applied to classication, which can be rapidly executed in the test stage. Sliding window technique is a trade-o method, which performs object detection task in image/video. In the following, bag-of-words models (BoWs) and deformable part based models (DPMs) are respectively reviewed, since they can be easily employed in each window.

Based on global features

In principle, any global features (described in section 2.2.1) can be combined with the sliding window technique and any learning machines can be adopted for object detection and recognition. In particular, appearance and shape features are widely used. The feature extractor can also be automatically learned, which is discussed in a dedicated section 2.4.

Bag-of-Words models

The bag-of-words (BoW) model has been widely used in computer vision [START_REF] Csurka | Visual categorization with bags of keypoints[END_REF], Dollar et al., 2005] in last decade. This popular model originates in natural language processing, where it is used to analyze the content of documents. The model is global in nature, since a single vector describes the content. However, this content is obtained by pooling descriptors from local primitives. Each document is expressed as a histogram of frequencies of orderless words, which are taken from a dictionary. Similarly, an image or video can also be regarded as a document. However, BoW models can not be directly employed in this case, since dictionaries about objects are not available. In order to employ the BoW model in computer vision applications, a dictionary must be built, and each word in the dictionary, named as visual concept, describes local characteristics of the object.

BoW models have been designed to model whole documents. In principle, they can also be applied to sliding windows, provided the window contains a suciently large amount of local primitives (e.g. key points) to allow calculating reliable statistics (histograms). In the video case (activity recognition), the 3D window can often cover the whole image and several frames, and is shifted temporally over the video. given as follows:

• The training stage comprises two parts:

1. The unsupervised clustering part, which calculates the dictionary.

Clustering techniques are applied on the extracted feature vectors, and the cluster centers are regarded as codewords. Sivic and Zisserman [START_REF] Sivic | Video Google: A text retrieval approach to object matching in videos[END_REF]] and Csurka et al.

[ [START_REF] Csurka | Visual categorization with bags of keypoints[END_REF] rst introduce bag-of-features models into computer vision community, which have the same meaning as bag-of-words models.

They use SIFT features to construct codebooks. They have been successfully used for object retrieval problems and visual categorization problems. A texture vocabulary (i.e. texton) [START_REF] Leung | Representing and recognizing the visual appearance of materials using three-dimensional textons[END_REF]] is learned to recognize the texture objects. Matikainen et al. [START_REF] Matikainen | Trajectons: Action recognition through the motion analysis of tracked features[END_REF]] learn a trajectons vocabulary based on trajectory snippets of tracked features. Each action is represented as a histogram of trajectons. A mid-level sparse visual vocabulary is learned in [START_REF] Boureau | Learning mid-level features for recognition[END_REF].

The BoW models have also been extended to the video case for activity recognition. Visual concepts are detected around space-time interest points [Laptev, 2005, Dollar et al., 2005]. Semantic visual codebook by using diusion distance has been proposed for action recognition [START_REF] Liu | Learning semantic visual vocabularies using diusion distance[END_REF].

BoW without structural information optimized models

Traditional codebooks are constructed by classical k-means clustering.

There have been several attempts to optimize the codebook. Jurie and Triggs [START_REF] Jurie | Creating ecient codebooks for visual recognition[END_REF] show that cluster centers by k-means are exclusively around dense regions in feature space. They propose scalable acceptanceradius based clusters to capture non-uniform feature distributions. Ballan et al. [START_REF] Ballan | Eective codebooks for human action categorization[END_REF] extend this work to human action recognition. Moosmann et al. [START_REF] Moosmann | Fast discriminative visual codebooks using randomized clustering forests[END_REF] learn a discriminative visual codebook by means of randomized clustering forests.

Liu and Shah [Liu and Shah, 2008] learn an optimal codebook by information maximization. Considering two random variables X = {x 1 , x 2 , . . . , x n } and Y = {y 1 , y 2 , . . . , y m }, X indicates codewords and Y indicates videos.

Their goal is to nd an optimal codebook X with maximum mutual information given the initial codebook X :

I( X; Y ) = ∑ y∈Y,x∈ X p(x, y) log p(x,

y) p(x)p(y) .

(2.26)

where p(x, y) is the joint distribution of X and Y , p(x) and p(y) are probability distributions of X and Y respectively. The function is dened as follows:

max(I( X; Y ) -λ -1 I( X; X)) (2.27)
Here, I( X, X) measures the compactness of the new codebook X compared to X, which can be computed by a similar equation to (2.26) given the mapping p(x|x). λ -1 is a Lagrange multiplier.

Equation (2.27) is solved by a greedy bottom-up pairwise merging procedure. The cost of merging two codewords x1 and x2 is expressed as:

I(x 1 , x2 ) = I( Xbef ; Y ) -I( Xaft ; Y ) (2.28)
where I( Xbef ; Y ) and I( Xaft ; Y ) denote the mutual information before and after merging. Two codewords with minimum loss of equation (2.28) are merged at each step. The merging operation is continued until

I(x 1 , x2 ) is
larger than a predened threshold or numer of clusters is obtained.

The aforementioned approaches of codebook optimization proceed by unsupervised learning on the feature space, they are not oriented to classication stage. On the contrast, our codebook optimization by an end-to-end framework introduced in chapter 3 is based on supervised learning, which makes it possible to use the backpropagated errors from the classier to update the codewords. Goh et al. [START_REF] Goh | Unsupervised and supervised visual codes with restricted boltzmann machines[END_REF] propose to learn a visual codebook by the framework of Restricted Boltzmann Machines (RBMs) (see section 2.4.2.2) in a supervised way for image category classication.

BoW with structural information

The BoW model based on interest points usually ignores the spatial (or geometric) information, i.e. the spatial or spatial-temporal relationships between the interest points. These relationships contain many important complementary clues for recognition. The codewords in BoW models are orderless. Other work attempts to introduce structural information into BoW models.

Grauman and Darrell [START_REF] Grauman | The pyramid match kernel: discriminative classication with sets of image features[END_REF] propose a pyramid match kernel, which maps unordered features to multi-resolution histograms and implicitly nds correspondences on the nest resolution. Lazebnik and

Schmid [START_REF] Lazebnik | Beyond bags of features : Spatial pyramid matching for recognizing natural scene categories[END_REF] partition the image into increasingly ne sub-regions and compute a BoW model for each sub-region, and use the pyramid kernel in [START_REF] Grauman | The pyramid match kernel: discriminative classication with sets of image features[END_REF] to train a SVM for recognition.

Cao et al. [START_REF] Cao | Spatial-bag-of-features[END_REF] encode geometric information of objects into ordered BoW models. A histogram transformation is applied to get a spatial bag-of-features, which is tolerant to variations in translation, rotation, and scale.

The main distinction between video and image is that the video also contains temporal information, which describes continuous information of the action. Some work exploits encoding the spatio-temporal relationships into codewords to improve the BoW models for action recognition.

Oikonomopoulos et al. [START_REF] Oikonomopoulos | An implicit spatiotemporal shape model for human activity localization and recognition[END_REF] [ [START_REF] Matikainen | Representing pairwise spatial and temporal relations for action recognition[END_REF] express pairwise relationships with a sequence code map and estimate the relative location and temporal relationship probabilities from a training dataset. Ryoo and Aggarwal [START_REF] Ryoo | Spatiotemporal relationship match: Video structure comparison for recognition of complex human activities[END_REF] dene the spatio-temporal relationship of pairs of neighboring local features such as near, far etc, creating a 3D histogram (two codeword dimensions and one relationship dimension). Ta et al. [START_REF] Ta | Pairwise features for human action recognition[END_REF]] also propose pairwise features, which encode both appearance descriptors and spatiotemporal relationships between spatio-temporal interest points. In contrast to [START_REF] Ryoo | Spatiotemporal relationship match: Video structure comparison for recognition of complex human activities[END_REF], the structural information is discovered by clustering in a space-time geometric space.

Gaidon et al. [START_REF] Gaidon | A time series kernel for action recognition[END_REF] propose a new kernel which addresses the dynamics and temporal structure of actions on bags of words. They compute the Hilbert-Schmidt distance between two auto-correlations of actions and provide a kernelized formulation. In contrast to the previous works, their method does not align two videos to compute their similarity. Bettadapura et al. [START_REF] Bettadapura | Augmenting bag-of-words: Data-driven discovery of temporal and structural information for activity recognition[END_REF] augment BoW models integrating temporal structure by quantizing time and dening temporal events for activity recogni-tion. Three n-grams encoding schemes are used to represent BoW models. To capture global structure, randomly regular expressions are created and treated as new words, adding into the original BoW models. Li et al. [START_REF] Li | Recognizing activities via bag of words for attribute dynamics[END_REF] represent an activity as short-term segments, which are characterized by the dynamics of attributes (i.e. the score evolution of attribute detectors along the activity). They learn a dictionary of attribute dynamics. The activity is represented as bag of attribute dynamic words.

Deformable part based models (DPMs)

DPMs have rst been proposed in [START_REF] Fischler | The representation and matching of pictorial structures[END_REF]. A recent version by Felzenszwalb et al. [START_REF] Felzenszwalb | Object detection with discriminatively trained part based models[END_REF] has achieved stateof-the-art results for object localization on many categories in the recently PASCAL VOC challenges. DPM is a kind of part based models. An object is represented as a set of meaningful parts and their associated spatial structure.

Compared to low-level feature based models such as bag-of-words models, part based models, as a middle-level representation, are able to better express the structural properties of objects.

A large body of work has addressed these models. A part can be regarded as a constellation of low level features, such as interest points, edges etc. Fergus et al. [START_REF] Fergus | Object class recognition by unsupervised scale-invariant learning[END_REF] propose a model of constellations of parts, which is expressed as a joint probability from all aspects of the object: appearance, shape, scale and occlusion. They rst compute the local saliency for each location and scale in an image and the regions whose saliency is above a threshold are considered as parts for recognition. In the process of learning, the parameters for the probability are estimated by expectation-maximization. In the recognition step, a new image is recognized in a Bayesian manner. Fergus et al. [START_REF] Fergus | A visual category lter for google images[END_REF] extend their method by integrating curve segments into the framework: Each part can be either dened by a region or curve. Curve segments are obtained by rst employing the canny detector and decomposing the curve into independent segments at bi-tangent points.

Parts also can be learned in a hierarchical structure, where low level features in child nodes are merged into a father node, as a part. Mikolajczyk et al. [START_REF] Mikolajczyk | Multiple object class detection with a generative model[END_REF] propose a hierarchical representation through codebooks learned from shared appearance features around edge points. A joint appearance-geometry probability distribution is learned for each cluster in the hierarchical tree. Recognition is done in a Bayesian way. Zhu et al.

[ [START_REF] Zhu | Part and appearance sharing: Recursive compositional models for multi-view multi-object detection[END_REF] the boundary segments at the leaf nodes, and also pairwise spatial relations between the parent node and their children nodes.

Pictorial structures [Fischler andElschlager, 1973, Felzenszwalb andHuttenlocher, 2005] are another kind of part based models, where an object is modeled as a set of parts and their structure is captured by a set of springs connections in terms of Gaussian distribution between pairs of parts. The original pictorial structure [START_REF] Fischler | The representation and matching of pictorial structures[END_REF] is an energy based function, which is the sum of the mismatch cost of each part, and also deformation cost between pairs of parts. The best conguration of an object is the one with minimal energy. Felzenszwalb and Huttenlocher [START_REF] Felzenszwalb | Pictorial Structures for Object Recognition[END_REF] reformulate the pictorial structure in a statistical framework. The detection problem transfers to maximum a posterior (MAP) estimation.

The parameters can be learned by using maximum likelihood estimation. In their star shaped model, only root/part relationships are included, pairwise part relationships are not modeled. This allows ecient inference through dynamic programming.

The aforementioned part based models are learned in a generative way.

Felzenszwalb et al. [START_REF] Felzenszwalb | Object detection with discriminatively trained part based models[END_REF] attempt to learn deformable part based models in a discriminative way. Learning and testing are relatively ecient. The advantage of DPMs is that the parts are considered as latent variables in the learning stage and can be inferred eciently without part annotations for each training image. We briey review the latter formulation of DPMs as follows:

A DPM is composed of a root lter P 0 and a set of part lters P i , i ∈ (1, . . . , n). Each part lter also denes a two-dimensional vector a i = a ix , a iy specifying the anchor position relative to the root, and four quadratic deformation coecients d i taking into account the cost of the part relative to its anchor position. Figure 2.14 shows a learned DPM for category person.

The score of a hypothesis in a window is the sum of the scores from the root lter and part lters, minus the deformation cost of each part real (i.e. inferred) location w.r.t the anchor position, and plus a bias b, shown as follows:

f (P 0 , . . . , P n ) = n ∑ i=0 P i • φ(x, z i ) - n ∑ i=1 d i • ψ(z i ) + b. (2.29)
where z i is the inferred part location, and φ(x, z i ) are local dense features extracted from z i , ψ(z i ) is the displacement of the inferred position z i w.r.t the anchor position a i by:

ψ(z i ) = [(z ix -a ix ) 2 , (z ix -a ix ), (z iy -a iy ) 2 , (z iy -a iy )]
(2.30)

The real part locations, treated as latent variables, are inferred in the learning and test stage to maximize the score. Equation (2.29) can be rewritten as:

f (P 0 , . . . , P n ) = max z∈Z(x) ( n ∑ i=0 P i • φ(x, z i ) - n ∑ i=1 d i • ψ(z i ) + b).
(2.31) where Z(x) is a collection of all the possible positions for the parts. The objective function to minimize is the hinge loss, which is expressed by:

L(β) = 1 2 ||β|| 2 + C N ∑ i=1 max(0, 1 -y i f (x i )) (2.32)
where β is the set of learning parameters containing (P 0 , P 1 , • Other follow-up work has be done to further improve DPM models by sharing parts between object classes [START_REF] Ott | Shared parts for deformable part-based models[END_REF], through visual mixture models [START_REF] Divvala | How important are "deformable parts" in the deformable parts model? ECCV Workshops[END_REF] where the components for each class are dened by visual similarity instead of height-width ratio of the groundtruth bounding box, etc. DPMs have also been extended to spatio-temporal data for activity recognition [START_REF] Tian | Spatiotemporal deformable part models for action detection[END_REF]. DPMs are accelerated by replacing the convolution operations by locality-sensitive hashing, which enables to eciently perform the detection of 100000 objects on a single machine [START_REF] Dean | Fast , accurate detection of 100 , 000 object classes on a single machine[END_REF]. [START_REF] Sharma | Expanded parts model for human attribute and action recognition in still images[END_REF] discriminatively learn a collection of part templates in the images, and each part explains each image individually. The best set of part templates is chosen for each image. This is in contrast with other part based models which use all the parts for each image. At the same time, a large set of part templates also are able to encode the variance of humans in the dataset, avoiding highly structured model learning.

Segmentation for visual recognition

Segmentation is a fundamental problem in the community. It aims to segment an object into several meaningful parts, which is used to obtain more information about object, such as the spatial layout, or object pose. Segmentation plays several roles in visual recognition, which are addressed in the following.

Segmentation for selective candidate regions

The sliding window technique presented in section 2.3.2 is often applied to object detection in images/videos. However, it has several drawbacks: on one hand, it works best on objects with a xed aspect ratio. For general objects, exhaustive search has to be performed over location, scale, aspect ratio, which is apparently computationally expensive. DPMs can be eciently performed through generalized distance transformation [START_REF] Felzenszwalb | Object detection with discriminatively trained part based models[END_REF], but are still quite expensive.

Recently, an alternate way in favor of a segmentation based pre-precessing step has been proposed to overcome the drawbacks of sliding window techniques. The core is to rst over-segment an image into thousands of object segments (i.e. regions) candidates, which cover most of the objects in the image. Wang et al.

[ [START_REF] Wang | Regionlets for generic object detection[END_REF] apply the selective search approach [van de Sande et al., 2011] to get a set of small regions (named as regionlets) in the bounding box. Several groups containing regionlets are organized [ [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF] 

Segmentation as goal in itself

Segmentation sometimes can be cast as a classication problem, in which case, each pixel in an image is classied and assigned to a label. It is frequently used for some applications, for instance, human pose estimation. Part segmentation is a intuitive approach to obtain human parts, allowing to estimate joint positions from the segmentation.

The seminal work by Shotton et al. [START_REF] Shotton | Real-time human pose recognition in parts from single depth images[END_REF] for human pose estimation in depth images utilizes this pipeline. They treat the segmentation problem as a classication problem. For each image, background is subtracted and each pixel is annotated to one of N labels (N indicates the part number of human body). A randomized forest with N labels is learned. Each pixel in the test image is classied to one of N labels. Mean-shift with a weighted

Gaussian kernel is applied nally to nd the joint positions between the parts.

There is another visual recognition task scene full labeling, where segmentation is needed. It attempts to label each pixel in the image with a category. This is a very challenging task due to its combination of segmentation and recognition. A common strategy is to pre-segment an image into super-pixels or other region candidates, and extract features from the candidates and nally make a classication. The dierence here from selective search approach [van de Sande et al., 2011] is that we assign a label for each region, rather than some particular regions with high condence to determine the bounding box of object. Socher et al. [START_REF] Socher | Parsing natural scenes and natural language with recursive neural networks[END_REF] propose a max-margin structure prediction based on recursive neural networks to label the image. The image is rst over-segmented into small regions. Visual features are extracted from the regions. A neural network is trained to output a higher value when the neighboring region should be merged and also a label for the region. Farabet et al. [START_REF] Farabet | Scene parsing with multiscale feature learning, purity trees, and 123 optimal covers[END_REF] adopt the same idea, but they dier from [START_REF] Socher | Parsing natural scenes and natural language with recursive neural networks[END_REF] in that: 1): the features are learned in the framework of convolutional neural networks, rather than hand-engineered features; 2) For a hierarchical segmentation tree, a classier is learned to nd a subset of nodes, which optimally covers the image and also maximizes the purity of the nodes, where purity is dened as a quantity that is inversely proportional to the entropy of the class distribution for each node.

It is also worth mentioning several recent work on scene full labeling. Pinheiro and Collobert [START_REF] Pinheiro | Recurrent convolutional neural networks for scene parsing[END_REF] proposed in [START_REF] Farabet | Scene parsing with multiscale feature learning, purity trees, and 123 optimal covers[END_REF] has been extended to indoor scene segmentation with RGB-D images [START_REF] Couprie | Indoor semantic segmentation using depth information[END_REF].

Our work in chapters 4 and 5 focuses on part segmentation as a classication problem. We learn a classication machinery targeted to pixels, rather than regions, and employ it on each pixel in image to estimate parts.

Feature/Representation learning

In section 2.3, we briey reviewed three kinds of recognition techniques. Different features can be adopted in these techniques. Generally speaking, feature extraction is an independent module compared to the following recognition module in the dominant pipeline shown in gure 1.6 in chapter 1. However, the presented extractors produce hand-crafted features (refer to section 2.2), which have the following drawbacks:

• Hand-crafted features usually are designed for specic properties such as HOG/HOF for appearance and shape context for shape.

• A certain amount of pre-processing needs to be performed to prepare for hand-crafted feature calculation. For examples, the gradient is computed rst for each pixel and aggregated into a histogram of gradient orientation for a block; others require optical ow etc. However, preprocessing is mostly expensive and depends on numerous parameters which need to be tuned.

• In this classical framework, feature computation is independent from the following classication stage. Performance can be improved by learning the features as well as the classier together, resulting in an end-to-end framework.

Given the aforementioned arguments on the hand-crafted features, feature learning techniques have received much consideration lately. Feature learning can be operated in dierent ways as shown in gure 2.17:

• In the following section, we briey present common strategies used for feature learning. In this section, we will present two unsupervised feature learning paradigms: auto-encoding and transformation learning. Auto-encoding tries to preserve as much as information about the input from the representation, while the latter tries to learn a transformation between neighboring (or consecutive) images, which can be very useful to capture the temporal relationship between frames in video.

Auto-encoding

Auto-encoding is based on the following principle: an encoder encodes the input data into a compact code, which is smaller than the input data. A decoder tries to reconstruct the data with minimum error. As the code is small, the encoder and decoder need to nd patterns and structures in the data in order to be ecient. This structure is postulated to be useful for recognition.

In more detail, let x be the raw data, an encoder rst maps x to a representation code z through a non-linear activation function f , typically a sigmoid function:

z = Enc(x, W e ) = f (W e * x + b e ) (2.33)
where W e are the parameters of the encoder. A decoder reconstructs the input to be y from z through another activation function g, typically an identity function (i.e. linear case) or sigmoid function:

y = Dec(z, W d ) = g(W d * z + b d ) (2.34)
where W d are the parameters of the decoder. In general, for a set of training examples, the loss function is expressed by sum of error or cross-entropy:

L = { ∑ N i=1 ||x i -y i || 2 if linear case ∑ N i=1 x i log(y i ) + (1 -x i ) log(1 -y i ) if sigmoid case (2.35)
The learning procedure attempts to minimize the loss function over the parameters W e and W d on the training set. Gradient descent can be applied to minimize the error. Dierent training algorithms have been developed according to dierent regularization items added into equation (2.35): regularized auto-encoder with weight decay [START_REF] Lee | Sparse deep belief net model for visual area v2[END_REF], denoising auto-encoder [START_REF] Vincent | Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[END_REF], contractive auto-encoder [START_REF] Rifai | Contractive auto-encoders: Explicit invariance during feature extraction[END_REF].

Visible units

Hidden units 

E = N ∑ i=1 (E C + E D ) = N ∑ i=1 1 2 ||z -Enc(x, W e )|| 2 + 1 2 ||x -Dec(ẑ, W d )|| 2 (2.36)
where E C is the prediction error between the encoder output code and the optimal code. E D is the reconstruction error using the sparsied code ẑ.

The training procedure not only learns to minimize the reconstruction error, but also makes the predicted code as much as close to the optimal code.

This algorithm simplies the code optimization procedure and reconstruction problem.

Models for unsupervised feature/representation learning

The framework of CovNets can also be used for unsupervised learning [START_REF] Ranzato | Unsupervised learning of invariant feature hierarchies with applications to object recognition[END_REF]. In the auto-encoder, W e can be specied as a stack of lters, composed of a non-linear embedding function. The feature maps are the output codes. Similarly, W d is also a set of lters to reconstruct the input.

Besides ConvNets, Restricted Boltzmann Machines (RBMs) can be regarded as a special encoder-decoder model. They have been initially used to learn the model distribution of binary images (i.e. only two states for each pixel), and several extensions are made to make it applicable for real valued data. RBM is a type of graphical model, which has two set of nodes: visible nodes and hidden nodes. Each visible node connects to each hidden node and vice-versa. There are no intra-visible or intra-hidden connections. Figure 2.20 shows a simple RBM architecture. The energy of a RBM is expressed by:

E(v, h) = - V ∑ i=1 H ∑ j=1 v i h j w ij - V ∑ i=1 v i b v i - H ∑ j=1 h j b h j (2.37)
where v and h are binary state vectors for visible nodes and hidden nodes. v i is the state of visible node i, and h j is the state of hidden node j, b v i and b h j are the biases for each visible node and hidden node, w ij are the weights between the visible nodes and hidden nodes. Intuitively speaking, the weights store information producing invisible state estimations from observed data, which can be reconstructed from the binary hidden states. The learning criteria maximizes the log probability of the training set under the model's distribution: (v,h) (2.38)

N ∑ i=1 log p(v c ) = N ∑ i=1 log ∑ h p(v, h) = N ∑ i=1 log ∑ h e -E(v,h) ∑ v ∑ h e -E
The learning algorithm to maximize equation (2.38) can be formated as:

w ij = ε w (E data [v i h j ] -E model [v i h j ]).
(2.39)

where E data is the expectation when the visible nodes are clamped to the data, which is easy to computed, while E model is the expectation when the visible nodes are unclamped. The approximation can be obtained through Markov Chain Monte Carlo (MCMC) to get the reconstruction given the hidden units. Contrastive divergence, which performs one step of MCMC sampling in inference [Hinton, 1995], is an ecient algorithm to train a RBM.

A stack of auto-encoders [START_REF] Vincent | Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[END_REF] and RBMs [Hinton et al., 2006] al. [Taylor et al., 2011a]. In these conditional RBMs, the current hidden and visible units are conditioned by past observations.

Transformation learning

Another aspect of unsupervised learning is to learn an image transformation given pairs of images. This can be very useful in various applications involving dynamic context, for instance to capture the motion information between subsequent frames in the video.

Memisevic and Hinton [START_REF] Memisevic | Unsupervised learning of image transformations[END_REF] the next image (or patch). In order to capture the relations between the input and the output, a hidden binary variable is introduced to connect the input and output. The energy function as shown in equation (2.37) is changed to associate with the input, output and hidden variable. The weights are also changed to three-way tensor variables.

Taylor et al. [START_REF] Taylor | Convolutional learning of spatio-temporal features[END_REF] extend this work to convolutional gated

Restricted Boltzmann Machines (convGRBMs) and use them to learn spatiotemporal features in video. Their method is able to learn the ow elds between pairs of input frames. They apply their model for action recognition, and obtain competitive performance on benchmark datasets.

Weakly-supervised learning

Weakly-supervised learning is a type of learning, which does not use label information in the feature learning stage in a direct way, i.e. classication error is not directly minimized. Instead this label information can provide some other information such as information on neighborhood relationships. We refer this kind of information as neighborhood relationship, which is dened either by manual labels (i.e. the instances with same label are neighbors) or the distances between the input data. The neighboring instances from the same category in the input space should generate the neighboring outputs in the output space. These methods try to learn a mapping function from highdimensional input data to low-dimensional output, at the same time, similar inputs are mapped to close points and dissimilar inputs to distant points in the low-dimensional space.

Neighborhood Components Analysis (NCA) [START_REF] Goldberger | Neighbourhood component analysis[END_REF] and its variants [START_REF] Salakhutdinov | Learning a nonlinear embedding by preserving class neighbourhood structure[END_REF] implicitly learn a mapping function from high dimensional space to low dimensional space while preserving the neighbourhood relationship. However, NCA is optimized for nearest neighbor classication. Dimensionality Reduction by Learning an Invariant Mapping (DrLIM) proposed by Hadsell et al. [START_REF] Hadsell | Dimensionality reduction by learning an invariant mapping[END_REF]] is an online, non-probabilistic energy based method which explicitly learns a non-linear invariant embedding function. The framework is a tying siamese architecture.

The training thus works on pairs, embedding the pair of instances with same label to close outputs and pair of instances with dierent labels to distant outputs. But testing still works on single input and gives a feature mapping.

The energy on N pairs of instances is dened by:

L(W ) = N ∑ i=1 L(W, (Y, X 1 , X 2 ) i ), (2.40)
where W is the learned coecients, Y indicates the status of the pair (X 1 , X 2 ),

i.e. if they are from the same label, Y = 0, otherwise 1. The energy from a pair therefore is:

L(W, (Y, X 1 , X 2 ) i ) = (1 -Y )L S (D i W ) + Y L D (D i W )
(2.41)

D i W = ||G W (X 1 ) -G W (X 2 )
|| 2 is the distance after mapping. L S and L D are the loss for similar pairs and dissimilar pairs, having the following forms:

L S (D i W ) = 1 2 (D W ) 2 , (2.42) L D (D i W ) = 1 2 (max(0, m -D W )) 2 (2.43)
where m is a margin. L S would push together similar instances, and L D would pull apart the dissimilar instances if they were close enough. The mapping function G W is formulated as a convolutional neural network (refer to gure 2.18) in their framework. It is trained by error backpropagation. Figure 2.19c

shows the results learned by DrLIM. Taylor et al. [Taylor et al., 2011b] extend their work to soft similarity between pairs of input.

Our work on spatial pre-training presented in chapter 4.4.1 is very similar to DrLIM, in that both employ the siamese architecture. But ours diers from DrLIM in that: (i) we aim to perform pixelwise feature embedding, while DrLIM is operated on the whole image. (ii) There is no structural information on labels in DrLIM, i.e. similar pairs and dissimilar pairs, while we discriminate the pairs of pixels according to their spatial label layout: pairs of pixels with same label, pairs of pixels with neighboring labels, pairs of pixels with non-neighboring labels. The energy function 2.41 is also adapted.

Conclusion

In this chapter, we presented the state-of-the-art of visual recognition. We discussed the common used feature types, three families of recognition techniques, i.e. matching, sliding window technique, and segmentation followed by classication. We also reviewed feature learning techniques for recognition.

In next chapter, we will present our rst contribution supervised end-toend learning for bag-of-words models. The codebook used for BoW models is optimized with the classier training in an end-to-end framework. A priori information of label spatial conguration in feature space is integrated into optimize the codebook. We employ this approach on human action recognition. 

Introduction

The bag-of-words (BoW) model has been widely used in computer vision applications such as object class [START_REF] Csurka | Visual categorization with bags of keypoints[END_REF], Lowe, 2004] or human action recognition [START_REF] Dollar | Behavior Recognition via Sparse Spatio-Temporal Features[END_REF]. In these applications the objective is to recognize high level information (objects, actions) from a large quantity of low level data, e.g. image or video pixels. BoW has proved to be an ecient representation in this context. This popular model was rst introduced in natural language processing, in which each document is expressed as a histogram of frequencies of orderless words. In order to employ the BoW model in computer vision applications, an image or a video is treated as a document, which can be considered as a collection of interesting local events often called visual concepts [START_REF] Csurka | Visual categorization with bags of keypoints[END_REF]. Information on the presence of these visual concepts, i.e. whether each one of them is present or not, and with which frequency, serves as an indicator of the contents.

Visual concepts can be generated in dierent ways, usually through the extraction of discriminant and invariant descriptors (features) around local primitives like interest points, patches, regions, edges etc., followed by clustering in order to identify clusters in feature space of descriptors. The thus obtained clusters are considered as visual concepts, or visual codewords. A set of such visual codewords produces a visual codebook.

Traditionally, a visual codebook is learned by unsupervised clustering or vector quantization of feature vectors extracted from the local primitives in the image or video, often with algorithms such as k-means [START_REF] Csurka | Visual categorization with bags of keypoints[END_REF] or random forests [START_REF] Moosmann | Fast discriminative visual codebooks using randomized clustering forests[END_REF]. In order to create a more discriminative codebook, several attempts have been made to reveal the semantic relations between the codewords of k-means.

In the work of Liu and Shah [Liu and Shah, 2008], they iteratively obtain an optimal and compact codebook via maximal mutual information. At each iteration they merge two clusters which have minimum loss in mutual information. The iterative procedure continues until a threshold of maximal mutual information or minimum cluster number is achieved. The optimal codebook size is found by unsupervised learning. In [START_REF] Liu | Learning semantic visual vocabularies using diusion distance[END_REF], Liu uses a diusion map to embed a mid-level codebook into a semantic codebook. However, it is not appropriate to measure semantic distances using diusion distances.

In recent work, Sagha [START_REF] Sagha | Embedding visual words into concept space for action and scene recognition[END_REF] proposes a concept space to illustrate the semantic relations between the visual codewords. They apply generative models such as latent semantic analysis (LSA) and probabilistic latent semantic analysis (pLSA) to discover the latent semantic relations between the initial codewords. In contrast to the unsupervised pLSA learning framework in which the number of latent topics is equal to the number of classes [START_REF] Niebles | Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words[END_REF], the number of topics is variable in this method.

In all methods mentioned above, the codebooks are created by unsupervised methods, and the label information of feature vectors is ignored in the codebook creation. Intuitively, the discriminative power of the codewords could be increased by learning using the label information.

In contrast to unsupervised codebook learning, we propose a supervised learning and codebook optimization framework in this chapter. The whole sequence, codebook creation and class learning, is formulated as an articial neural network, and the error gradient information is used to update the codebook cluster centers as well as the classical multilayer perceptron (MLP)

weights for class recognition.

Our work is very close to the recent work by Goh et al. [START_REF] Goh | Unsupervised and supervised visual codes with restricted boltzmann machines[END_REF].

Both adopt an end-to-end framework to learn a discriminative visual codebook for BoW models in a supervised way. However, unlike our framework which integrates BoW model construction and codebook learning together, they instead learn a visual dictionary in an end-to-end framework, and then train another classier (i.e SVM) for classication. In their codebook learning stage, they resort to RBMs (see 2.4.2.2) to rst pre-train the codebook in an unsupervised way, and to ne-tune the codebook for each input feature vector associated with the image category label by error backpropagation in a supervised way. In contrast, we build a BoW model for each input entity in our framework.

The learning and optimization framework we present in this work is well suited for any application for which bag of words models can be successfully used. We restrict ourselves here to human action recognition in videos, for which BoW models and extensions are widely used [START_REF] Csurka | Visual categorization with bags of keypoints[END_REF], Niebles et al., 2008, Gilbert et al., 2011, Laptev, 2005, Schuldt et al., 2004].

The improvements we propose make the codebook more discriminative, and therefore are likely to improve many of the existing extensions of the basic BoW model, such as, for instance, correlograms [Liu and Shah, 2008], topic models [START_REF] Niebles | Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words[END_REF], local grouping and compound features [START_REF] Gilbert | Mined Hierarchical Compound Features[END_REF], spatial co-occurrences of pairs of features [START_REF] Oikonomopoulos | An implicit spatiotemporal shape model for human activity localization and recognition[END_REF], Ryoo and Aggarwal, 2009[START_REF] Ta | Pairwise features for human action recognition[END_REF] and parts based models [START_REF] Mikolajczyk | Action recognition with appearancemotion features and fast search trees[END_REF]. To the best of our knowledge, this is the rst attempt to combine codebook learning with action classication in a unied framework.

The chapter is organized as follows. Our formulation of the BoW model and the subsequent classication phase as a unique global neural model is presented in section 3.2. Section 3.3 describes the integrated and joint learning algorithm which updates the cluster centers as well as the MLP weights dis-criminating between the targeted classes. Two dierent learning algorithms are presented, a classical backpropagation algorithm as well as cluster reassignment algorithm specic to the BoW model. Section 3.4 briey reviews the literature for human action recognition. In section 3.5 we evaluate the proposed approach on the public KTH human action dataset [START_REF] Schuldt | Recognizing human actions: a local SVM approach[END_REF]. Section 3.6 gives our conclusion.

The neural model

In our application, visual concepts are dened on the local primitives (i.e. space-time interest points). A large amount of work exits on space-time interest point detectors using dierent criteria. We adopted Laptev's method to obtain space-time interest points and describe them by histogram of gradient (HOG) and histogram of optical ow (HOF) features (refer to section 2.2.2). In this formulation, the cluster centers are coded into the weights of the network, in particular into the weights between the rst layer a and the second layer b : w cc (where "cc" stands for cluster centers). The connections of the second layer are such that the units of this layer calculate distances between the input and the dierent cluster centers. Stimulating the network therefore is equivalent of projecting a new input to cluster centers (calculating distances to the dierent centers). At the same time, changing weights w cc in the neural model is equivalent to changing cluster center positions in feature space.

In Figure 3.1, there are three kinds of dierent weights: w cc ij , w e ij and w f ij . In the following sections of this chapter, the same subscript index notation is used unless otherwise specied, i.e. the weight w ij denotes the connection between the unit i in the current layer to the unit j in the previous layer. Note that subscripts ij are indices which can take integer values. On the other hand, superscripts are not indices, i.e. they can not take any values. w e merely means the symbol denoting the weights for layer e. 

b i = ||a -w cc i• || (3.1)
The N nodes of the third layer compute an indicator of the nearest cluster center. The nearest corresponding node will be assigned 1, the other nodes 0.

The minimum distance will result in the largest value. This is approximated through a softmin function g b (x), similar to the classical softmax:

c i = g b (b i ) = exp (-b i /T ) N ∑ j=1 exp (-b j /T ) (3.2)
where T is a parameter controlling the stability of the softmin function.

The network layers described above propagate the stimulation of a single feature vector corresponding to a single local primitive. As mentioned before, in our stimulation strategy, multiple feature vectors of the same entity (a video in our case) are presented iteratively, resulting in dierent values for dierent feature vectors, which we will denote as c i (p). The nodes of the next layer integrate the responses for a single video over all P points:

d i = P ∑ p=1 c i (p) (3.3)
Whenever it is clear from the context, c i (p) will be abbreviated as c i . The next two layers, e and f , are the hidden and output layer of a classical MLP with weights w e , w f and activation functions for dierent layers. They respectively have N e and C nodes, where N e is empirically chosen and C is the class label size:

ēi = M ∑ j=1 w e ij d j , e i = g( ēi ) (3.4) fi = N e ∑ j=1 w f ij e j , f i = g( fi ) (3.5)
where ēi and fi is the linear combination of the output in the previous layer, and e i and f i is the values after applying a nonlinear activation function. Figure 3.2 illustrates the operations in equation 3.4 when M = 3. Here we use the same notation g to denote the activation functions for dierent layers.

However the choice of activation function depends on the specic situation, for instance, the sigmoid function is commonly adopted for the hidden layer and the softmax function for the output layer. The last layer is thus the output layer with the set of nodes f = [f 1 , . . . f C ] T , giving the condence value for each of the C class labels. 

MLP learning

In the proposed framework, we adopt a MLP network (i.e. layers d, e and f ) with one output unit for each class. No activation functions are used in the layer d of the MLP. Sigmoid and softmax activation functions are respectively employed in the hidden layer e and output layer f . An 1-of-c coding scheme is used to describe the target outputs, which is coded as a binary indicator vector of dimension (the number of action classes). The weights w e and w f are adjusted by the classical backpropagation algorithm:

The dierent input vectors a forward propagate through the network, until all the input vectors over the whole video are summed in the integration layer, producing a bag-of-words representation d of the video, and then the activations of all hidden and output layer units are computed. Given the desired output (the target) t j from the groundtruth and the response f j for each unit, the goal is to minimize a loss. Here the classical cross-entropy loss has been chosen [Bishop, 1994]:

E = - C ∑ j=1 t j ln f j (3.6)
We remind the reader, that the target value t j is related to the label of the video activity class. For instance, if a video is known to be of class 3, then, according to the classical 1-of-c coding scheme, the ground truth vector t is set as

t = [0, 0, 1, 0, 0, . . . , 0] T (3.7)
where the size of t is equal to C, the number of activity classes.

The goal is to calculate the derivatives of loss with respect to all dierent weights of the model (w e ij , w f ij and w cc ij ). For this reason, we start by calculating the derivatives of the loss w.r.t. dierent intermediate values, starting with the network outputs f j , which can be given as follows:

∂E ∂f j = -t j f j (3.8)
Let us recall from the beginning of this subsection that we use a softmax activation function in the last layer. Therefore, the network output f j is given as follows from the linear input fj (we recall the notation f j and fj which are illustrated in Figure 3.2):

f j = exp( fj ) ∑ C k=1 exp( fk ) (3.9)
The derivative of the loss E w.r.t fj requires the derivative of the softmax func- tion, which is hard to calculate, and whose derivation is beyond the scope of this paper. Fortunately it is well known, we refer the reader to [Bishop, 1994].

We can give the derivative of E w.r.t. the linear network outputs fj as follows (a known result):

∂E ∂ fj = (f j -t j ) (3.10)
In the following, we will abbreviate the derivative of the loss as follows:

δ f j = ∂E ∂ fj ∀j = {1, • • • , C} (3.11)
We can now backpropagate the errors in the output layer f into the hidden layer e, which sequentially pass through linear combinations and activation function of layer e. The error δ e j for each unit j in the hidden layer e is calculated according to the chain rule for partial derivatives:

δ e j = g ( ēj ) C ∑ i=1 w f ij δ f i , ∀j = {1, • • • , N e } (3.12)
where the sum runs over all the C units in the output layer f connecting to the unit j in the hidden layer e. g ( ēj ) is the derivative value of activation function at ēj employed in the hidden layer (i.e. sigmoid function), which is computed as follows:

g ( ēj ) = g( ēj )(1 -g( ēj )).

(3.13)

We next backpropagate the errors in the hidden layer e to the input layer d of the MLP. The error δ d j for each unit j in the layer d is calculated by:

δ d j = Ne ∑ i=1 w e ij δ e i , ∀j = {1, • • • , M } (3.14)
where the chain rule is once again employed. The derivative of the activation function is not involved, because no activation function is adopted in the layer

d.

Lastly we compute the increments for all the weights of the MLP (i.e. w e and w f ). It can be obtained by multiplying the error at the output end of the weight (i.e. the unit indicated by the rst index of the weight) by the value at the input end of the weight (i.e. the unit indicated by the second index of the weight). For instance, for the weight w f ij connecting the unit i in the layer f to the unit j in the layer e, the error of its output end is δ f i , and the value of its input end is e j . The increments are calculated by:

∆w f ij = ηδ f i e j ∆w e ij = ηδ e i d j , (3.15)
where η is a learning parameter.

Supervised codebook learning with error backpropagation

The classical error backpropagation algorithm can be adapted to our novel formulation. In particular, the errors in layer d are continued backpropagating into layer c and then into layer b, which can directly act on the cluster centers w cc ij . The goal of the derivations in this section is to relate the loss coming from the right side of the network to the weights w cc ij . The particularity of our model allows a geometric interpretation of this update, which corresponds to a movement of a cluster center, i.e. an M -dimensional vector in M dimensional feature space.

We therefore rst recall the goal of the following derivations, namely to calculate the derivative of the loss E with respect to the parameter w cc ij :

∂E ∂w cc ij (3.16)
A particularity of our model is the integrator between the per-feature-vector part and the per-video part. As mentioned before, the network output is calculated over multiple stimulations of the left side of the network, one for each feature vector. The loss E has been calculated on the right side of the network for each video. We will denote by p the index of the feature vectors and for clarity we temporarily add the dependency on the feature vector to the notation. The feature vector indexed by p is denoted as a(p) with values a(p) = [a 1 (p), a 2 (p), . . . a M (p)]; the value of unit i of layer b obtained when the network was stimulated with feature vector a(p) is therefore b i (p) etc.

The error

δ c i (p) = ∂E c i (p)
of layer c (nearest distance indicator for each feature point) is supposed to be backpropagated from the succeeding layer d (bag of words, i.e. the histogram). The hickup here is the unconventionnal structure of our model, in particular the integrator between the right per-video part and the left per-feature-vector part. We circumvented this problem by taking the error on the right layer d and equally distributing it over the corresponding feature points p:

δ c i (p) = δ d i d i ∀p = {1, . . . , P } (3.17)
The special case of d i = 0 for unit i is a singularity. However it has a meaningful explanation from a model perspective, i.e. d i = 0 means that there is no feature vector belonging to this cluster center for the input, and the unit i in the layer d can thus be ignored in the classication. We therefore do not update the weights in this case.

Let us recall that the goal is to update the weights w cc , which correspond to the encoded cluster centers. We therefore need to backpropagate the error further to the previous layer b. Let 

b i = ||a -w cc i• || 2 = M ∑ j=1 (a j -w cc ij ) 2 .
(3.18)

The equation above can be interpreted as a common neural network layer with an uncommon activation function. Indeed, in traditional MLPs, the activation function consists of a non-linearity acting on the linear sum of the input variables, and the coecients are the parameters of the model. In our case, the activation function acts on a sum of a two-order polynomial of input variables. Since b i is dierentiable with respect to w cc ij , and the softmin component is also dierentiable, we thus can resort to gradient descent to adjust the cluster centers. Calculating the gradient requires the following derivates :

∂E ∂w cc ij = P ∑ p=1 ∂E(p) ∂w cc ij = P ∑ p=1 ∂E(p) ∂b i (p) ∂b i (p) ∂w cc ij (3.19)
In the following, only the values for a single feature vector p will be considered. For clarity we therefore remove (again) the index p from the notation; in particular E(p) will be noted as E.

According to the chain rule, the derivative of E with respect to b i can be decomposed of two parts: the derivative of E with respect to the units in the layer c, and the derivative of the softmin function between layer b and layer c. We should consider the input node i in the layer b to all the output units in the layer c. So we have

∂E ∂b i = N ∑ k=1 ∂E ∂c k ∂c k ∂b i .
(3.20)

Let us recall the softmin function in layer c:

c k = exp (-b k /T ) N ∑ i=1 exp (-b i /T ) (3.21)
The derivative involves a rather long series of algebra, which we will not reproduce here. It can be given as:

∂c k ∂b i = - 1 T (c k ∆ ik -c k c i ) (3.22)
where ∆ ik is the Kronecker delta function with ∆ ik = 1 if i = k and 0 else. It can be seen that the computations of the partial derivatives of c k with respect to b i are not complex, which only need the current values of layer c.

Substituting equations (3.17 

∂E ∂b i = - N ∑ k=1 δ c k T (c k ∆ ik -c k c i ).
(3.23) 

∂E ∂w cc ij = 2 T (a j -w cc ij ) N ∑ k=1 δ c k T (c k ∆ ik -c k c i ).
(3.25)

In order to update the weights, one step of gradient descent algorithm is performed as follows:

∆w cc ij ←-α∆w cc ij -η b P ∑ p=1 ∂E(p) ∂w cc ij (3.26)
where α and η b are learning parameters and the feature vector index p has been used again to distinguish the batch entries. The cluster centers are adjusted after stimulation for each input feature vector.

Supervised codebook learning through cluster reassignment

In the previous subsection we have presented a learning algorithm which adopted gradient descent after classical error backpropagation to the particular functional form of our NN architecture. The BoW in layer d was interpreted as a general numerical vector without any special structure.

In this subsection we propose another algorithm which uses our prior knowledge that the information stored in layer d is a BoW, i.e. a histogram.

Instead of simply backprojecting an error of this layer through the softmin function which, after all, is an approximation of the required minimum function, we change it by moving input feature vectors from one histogram bin to another one.

This strategy is illustrated in Figure 3. 

δ d = {δ d 0 , δ d 1 , • • • , δ d N }.
A positive error of a value (histogram bin) of the BoW, e.g. δ d i > 0, indicates that at least one feature vector has been assigned to the cluster center corresponding to this bin which should been assigned to a dierent cluster according to the ground truth. In the same sense, a negative error δ d j < 0 indicates that at least one feature vector should be added to this histogram bin of the BoW.

In the following we suppose that the solution to this problem is specied as a multi set x = {x 1 , x 2 , . . . , x D } of indices indicating from where a vector is moved, and a multi set y = {y 1 , y 2 , . . . , y D } of indices indicating to which cluster a vector is moved, where D shows the movement number. For instance, x 1 = 5 and y 1 = 7 indicate that the rst move will go from cluster 5 to cluster 7. and then for each pair of clusters a feature vector is chosen such that its move from cluster i to cluster j minimizes (3.28). We added an additional constraint requiring that the chosen feature vector to move which is (naturally) closest to cluster center A also be second closest to cluster center B. The details of the update algorithm are given as follows:

1. Randomly choose a pair (i, j) of histogram bins (thus of cluster centers),

where the error of one bin is positive and the other is negative, i.e. 3. Pick a single feature vector f such that:

δ d i > 0 ∧ δ d j < 0.
• it falls into the Voronoi cell i (distance between f and cluster center w cc i ) is minimum, i.e. nearest).

• its distance to cluster center w cc j is second nearest.

• if several vectors satisfy the above two criteria, choose the one minimizing the distance to the border of the two Voronoi cells, i.e.

the one minimizing |b i -b j |.

4. The chosen feature vector f is reassigned from histogram bin i to histogram bin j with the following consequences:

• the two centers w cc i and w cc j are recalculated as the means of the feature vectors of their respective Voronoi cells.

• the errors of the BoW layer of the corresponding bins are updated:

δ d [t+1] i = δ d [t] i -1 δ d [t+1] j = δ d [t] j + 1 (3.29)
5. The reassignments are continued (back to step 1) until the error of layer d is zero or none of the feature vectors satisfy the above conditions.

BoW models for human action recognition

Along with the wide use of portable imaging devices, a great mass of videos have been created everyday, thus analyzing so many videos manually frameby-frame seems impossible. In order to alleviate human labors, video analysis automatically by the machine is necessary. Recognizing human actions from videos is one of such directions, which has become an active research topic in computer vision community over the past three decades due to a big amount of potential promising applications, for instance, video surveillance, contentbased video retrieval, human-computer interaction and so on.

An action is typically considered as a simple motion pattern performed by a single person, usually having a short duration of time, such as walking, bending, jumping etc. An activity is a more complex motion pattern, composing of a number of sequential actions performed by several persons.

It is often associated with interactions between several persons or between humans and objects, of course having a relative longer duration. Examples of activities include two lovers kissing, a team playing football etc. Activity recognition to some extent is more challenging than action recognition. Some researchers also stated the hierarchy relationship between the terms Action and Activity. However these two terms are frequently used interchangeably in most literature. Unless otherwise specied, we ignore their dierence and consider the two terms as the same thing in the following.

Action recognition is a challenging problem. Actions in videos present larger variations than objects in images because of several reasons: (i) videos also vary in the time dimension; (ii) relevant motion information is mixed with irrelevant appearance information in the signal; (iii) activities are inherently and highly articulated.

Due to its huge promising applications in various domains, the amount of literature on action recognition sky-rocketed in the last years and it is not possible anymore to give an exhaustive account in this thesis.

We refer the interested reader to some very recently published surveys [START_REF] Aggarwal | Human activity analysis: A review[END_REF], Turaga et al., 2008, Weinland et al., 2011].

While early work on modeling human activities focused on articulated motion (e.g. [START_REF] Goncalves | Unsupervised learning of human motion[END_REF]), most recent work on activity and event recognition does not explicitly model the human body. Instead, the current state of the art focuses on sparse local features like interest points and space-time interest points [START_REF] Csurka | Visual categorization with bags of keypoints[END_REF], Lowe, 2004], or on motion segmentation through background subtraction [Wang andGeng, 2008, Weinland et al., 2007],

dense optical ow [START_REF] Sukthankar | Efcient Visual Event Detection Using Volumetric Features[END_REF] or other holistic features [Mikolajczyk andUemura, 2008, Zhang et al., 2008], with possible hybrid methods [START_REF] Bregonzio | Recognising Action as Clouds of Space-Time Interest Points[END_REF], Liu et al., 2008, Sun et al., 2009] and classication through dense matching [START_REF] Seo | [END_REF]Milanfar, 2010, Shechtman and[START_REF] Shechtman | [END_REF]. Fully taking into account spatial relationships through graph matching has recently been proposed [Ta et al., 2010a],

but this requires matching against several graph models per action class.

Pure statistical and unstructured machine learning without feature extraction is dicult in this context due to several reasons: (i) the non-rigid nature of the relevant information and (ii) the mixture of relevant motion information and irrelevant texture information in the signal (iii) the high dimension of the feature space in which the data is embedded. For these reasons, machine learn-ing of human actions has been dominated by methods learning the temporal evolution of features like HMMs, Semi-Markov models and dynamic belief networks [START_REF] Abdelkader | Silhouette-based Gesture and Action Recognition via Modeling Trajectories on Riemannian shape manifolds[END_REF], Boiman and Irani, 2007, Cuntoor et al., 2008, Shi et al., 2010, Xiang and Gong, 2008a[START_REF] Xiang | Incremental and adaptive abnormal behaviour detection[END_REF], Zhang and Gatica-Perez, 2005, Zhou and Kimber, 2006]. Typically, a vectorial description is created frame per frame and its temporal evolution is modeled and learned, such as Transferable Belief model [START_REF] Ramasso | Human action recognition in videos based on the transferable belief model[END_REF], Ramasso et al., 2009]. Other learning-based methods include biologically-inspired ones [START_REF] Jhuang | A Biologically Inspired System for Action Recognition[END_REF], convolutional deep learning [START_REF] Taylor | Convolutional learning of spatio-temporal features[END_REF], Baccouche et al., 2011], methods based on topic models [START_REF] Niebles | Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words[END_REF], boosting low-level features [START_REF] Fathi | Action recognition by learning mid-level motion features[END_REF], trajectory matching [START_REF] Dyana | Trajectory representation using Gabor features for motion-based video retrieval[END_REF], statistics calculated on the results of tracking [START_REF] Stauer | Learning patterns of activity using real-time tracking[END_REF], learning of spatio-temporal predicates and grammars [START_REF] Ryoo | Spatiotemporal relationship match: Video structure comparison for recognition of complex human activities[END_REF], Ryoo and Aggarwal, 2011, Wang et al., 2010] and other probabilistic graphical models [START_REF] Niebles | A hierarchical model of shape and appearance for human action classication[END_REF]]. Among them, the bag-of-words (BoW) model is one of the most popular models due to its simplicity. The next section will present experiments applying the proposed model to human action recognition.

Experimental Results

The proposed model and learning algorithms have been evaluated on the publicly available KTH action dataset [START_REF] Schuldt | Recognizing human actions: a local SVM approach[END_REF] by the 3D Harris-corner detector proposed by Laptev [START_REF] Laptev | Learning realistic human actions from movies[END_REF]. A space-time cuboid was extracted around each interest point and described by features of type histogram of gradient (HOG) and histogram of oriented ow (HOF) descriptors, which were obtained from the software supplied by Laptev [START_REF] Laptev | Learning realistic human actions from movies[END_REF].

As usual, a cross-validation scheme and early stopping strategy are employed to control the learning phase. The dataset is divided into three independent sets: training (12 people), validation (4 people) and test (9 people),

as in [START_REF] Schuldt | Recognizing human actions: a local SVM approach[END_REF]. The MLP is trained on the training set and evaluated on the validation set for stopping to avoid over-tting. Unless said In our baseline experiments, the cluster centers were learned by k-means and then the MLP part was trained given the BoW models. To cope for random initialization of the MLP weights, we repeated our baseline experiments in order to obtain statistically sound results: rst a codebook is created using k-means clustering. Then, for each run, the cluster centers were kept xed and the MLP weights were randomly initialized between -0.5 and 0.5 and learned. We ran 100 runs for each codebook in our experiments. Dierent MLP architectures were explored with numbers of hidden units of 25, 75, 100 for 50, 150, 300 codewords. Figure 3.5 shows an example using 150 codewords,

where learning stops at the 54 th iteration.

Table 3.1 shows error rates (on the test set) of the learned MLP with dierent codebooks. A local running mean lter was applied to the results.

From the table, we can see that the MLP learning is robust. On the other hand, a larger codebook is more discriminative, resulting in lower error.

Supervised codebook learning with error backpropagation Re- sults with supervised learning through the backpropagation method (section 3.3.2) are shown in Figure 3.6. We repeated the above experiments with the same architecture, except that the cluster centers were adjusted by using a gradient descent algorithm according to the back-propagated errors of the optimal MLP in each iteration and the BoW entities of the videos were recomputed. We tried several values and selected the best parameters for gradient descent. α was set to 0.00001 for all the codebooks and η b varied for dierent codebooks. The MLP was retrained and the error rates are depicted in Figure 3.6, again after applying a local running mean to smooth the data. It can be seen that the error decreases at the beginning and converges for 50 codewords and for 150 codewords. However, for 300 codewords the error oscillates after 120 iterations due to the non-adaptive characteristics of gradient descent.

Comparative results are presented in sults with supervised learning through the cluster reassignment method (section 3.3.3) are shown in Figure 3.7. We again repeated the above experiments with the same neural architecture. At each iteration, the cluster centers were adjusted using the Voronoi cell updates. and then the MLP is retrained.

Figure 3.7 shows the results, which are obtained by applying a local running mean. As we can see the classication accuracy on the test set increases as the cluster centers are adjusted. The improvement is higher with smaller codebook, which is also observed from Figure 3.6. The learned codebooks through cluster reassignment therefore improve by 1.7% for 50 codewords and 0.8% for 300 codewords with respect to the baseline codebooks obtained with k-means clustering.

From Table 3.2, we can see that both methods clearly improve the discriminative quality of the codebook when the codebook size is small. This is an important advantage since larger codebooks signicantly increase the computational complexity of the classication algorithm due to the nearest neighbor search necessary when the feature vectors are projected on the codebook. Indexed data-structures like KD-trees are not always helpful in these situations since visual data is generally embedded in feature spaces of very high dimensions 162 dimensions for the HoG/HoF features we employed in our experiments.

The performance improvement can be explained by the nature of the features it creates. The k-means algorithm clusters features based on the appearance of the cuboids only. When the codebook is small, the intra-cluster variance is large, which lowers discriminative power. Our methods regroup the Retraining with SVM classiers The experiments above show that the combined codebook and MLP learning outperforms the classical sequential steps k-means clustering followed by MLP learning. However, the question arises whether the improvement is due to a better codebook or to the integration of the two methods. We therefore performed an additional experiment with a two-step learning process:

1. Codebook learning according to one of the three methods (k -means; supervised codebook learning with error backpropagation; supervised codebook learning with cluster reassignment).

2. Class label retraining with Support Vector Machines (SVM) on the learned codebook.

We trained an SVM with a radial basis function kernel on the training set and validation set, which were the same with the ones used in the above experiments [START_REF] Chang | LIBSVM: A library for support vector machines[END_REF]. The errors are shown in the lower block of Table 3.2. Classication time includes the projection of feature vectors on the codebook and the classication with MLP and SVM classiers. The SVM outperforms the MLP by up to 2% with dierent codebooks. However, the recognition of the MLP is faster due to its simple calculations which do not need inner-products of high dimensional vectors. As shown in Table 3.3, the MLP gains more benets from computational complexity with respect to the Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0038/these.pdf © [M. Jiu], [2014], INSA de Lyon, tous droits réservés costs from error with two codebooks when compared to the SVM. We can also see that the classication performance of our two joint supervised methods is maintained after retraining with a dierent classier, indicating a real gain in discriminative power of the codebooks.

Figure 3.8 shows the recognition results for dierent learning methods on 150 codewords and after retraining with the SVM classier. Not surprisingly, the largest error is between the classes running and jogging, which are indeed very similar in behavior. The supervised codebook learning methods can achieve signicant gains on some of these classes, as the recognition rate jumps from 65 to 78 for jogging with error backpropagation conrmed by a z-test as described in [Dietterich, 1998].

In this chapter we proposed two dierent joint supervised learning algorithms. The reformulated backpropagation algorithm adjusts the cluster centers directly through gradient descent algorithm. In contrast to cluster reassignment, two more parameters besides the learning rate η in MLP learning need to be set: the momentum coecient α and the learning rate η b . The drawback of a gradient descent algorithm applied to a non-linear system are well-known: it is dicult to learn a set of optimal parameters, the algorithms Figure 3.6, the error with 300 codewords began to converge after 60 iterations, but it begin to diverge from 120 iterations.

In comparison, the cluster reassignment algorithm adjusts the cluster centers indirectly by rearranging the cluster labels for all the feature vectors. It does not need any more learning parameters except η in MLP learning, and is easier to control, but needs more iterations to converge, fortunately often to a better solution. From gure 3.7 we can see that the errors converge after 100 iterations. This can also be observed for the errors on 300 codewords it becomes constant after 140 iterations compared with the errors on 300 codewords in Figure 3.6.

Conclusion

In this chapter we proposed a joint supervised codebook learning and optimization framework, which can be applied to any method based on bag of words models such as object class recognition or human action recognition.

The codebook learning process and the recognition phase are integrated into a uniform framework. The codebook therefore is created in a goal-directed way and is more discriminative than classicial ones. We have presented two algorithms to update the cluster centers (codewords) through the back-propagated errors: one is based on classical error backpropagation, in which the codewords are adjusted using a gradient descent algorithm. The other is based on cluster reassignments, in which we reassign the cluster labels for all the feature vectors based on the errors. Our framework has been tested on the public KTH action dataset, and we have obtained very promising and close results for both methods. At the same time, they demonstrated that error backpropagation learned the optimal codebook faster than cluster reassignment. However it may suer more from over-tting, while cluster reassignment is easier to control. The experiments on the KTH human action dataset have conrmed that our framework is able to optimize the codebooks and that it makes them more discriminative. It is also able to increase the speed of a method by decreasing the codebook size while keeping its discriminative power.

Introduction

Object recognition is one of the fundamental problems in computer vision, as well as related problems like face detection and recognition, person detection, and associated pose estimation. Local representations as collections of descriptors extracted from local image patches [START_REF] Csurka | Visual categorization with bags of keypoints[END_REF] are very popular.

This representation is robust to occlusions and permits non-rigid matching of articulated objects, like humans and animals. However, the representation is inherently structural and is therefore dicult to use in a statistical learning framework.

In the literature, many vision recognition problems can be solved in part by an initial step which segments an image, a video, or their constituent objects into regions, which are called parts in this context. This general class of problems corresponds to various applications in computer vision. For example, pose estimation methods are also often naturally solved through a decomposition into body parts. A preliminary pixel classication step segments the object into body parts, from which joint positions can be estimated in a second step. In this case, the subject is each pixel, the recognition techniques presented in section 2.3 are applied to the pixel and give a label it belongs to.

In this chapter, we will propose new ways of integrating spatial relationships into segmentation algorithms, or more precisely, into training algorithms of various learning machines. We will rst briey review important work modeling spatial relationships in computer vision.

For object recognition tasks, the known methods in the literature vary in their degree of usage of spatial relationships, between methods not using them at all, for instance the bag-of-words model [START_REF] Sivic | Video Google: A text retrieval approach to object matching in videos[END_REF],

and rigid matching methods using all available information, e.g. based on

RANSAC [START_REF] Fischler | Random sample consensus: A paradigm for model tting with applications to image analysis and automated cartography[END_REF]. The former suers from low discriminative power, whereas the latter only works for rigid transformations and cannot be used for articulated objects.

Methods for non-rigid matching exist. Graph-matching and hyper-graph matching, for instance, restrict the verication of spatial constraints to neighbors in the graph (see section 2.3.1.2 in chapter 2). However, non trivial formulations require minimizing a complex energy functions and are NP-hard [START_REF] Torresani | Feature correspondence via graph matching: Models and global optimization[END_REF], Duchenne et al., 2009]. Pictorial structures, have been introduced as early as in 1973 [START_REF] Fischler | The representation and matching of pictorial structures[END_REF]. The more recent seminal work creates a Bayesian parts based model of the object and its parts, where the possible relative part locations are modeled as a tree structured Markov random eld [START_REF] Felzenszwalb | Pictorial Structures for Object Recognition[END_REF]. The absence of cycles makes minimization of the underlying energy function relatively fast of course much slower than a model without pairwise terms. In [START_REF] Felzenszwalb | Dynamic programming and graph algorithms in computer vision[END_REF] the Bayesian model is replaced with a more powerful discriminative model, where scale and relative position of each part are treated as latent variables and searched by Latent SVM.

The most existing segmentation algorithms typically consider local appearance information, and frequently also model the spatial relationships between dierent pixels or dierent parts. Unfortunately, considering these relationships within the segmentation process mostly amounts to solving constraint satisfaction problems or performing inference in a graphical model with cycles and a non sub-modular energy function, both of which are intractable in the general case. We address the problem of eciently modeling spatial relationships without the need for solving complex combinatorial problems.

A similar problem occurs in tasks where joint object recognition and segmentation is required. Layout CRFs and extensions model the object as a collection of local parts (patches or even individual pixels), which are related through an energy function [START_REF] Winn | The layout consistent random eld for recognizing and segmenting partially occluded objects[END_REF]]. However, unlike pictorial structures, the energy function here contains cycles which pixelwise independent classication including spatial constraints N . makes minimization more complex, for instance through graph cuts techniques. Furthermore, the large number of labels makes the expansion move algorithms inecient [START_REF] Kolmogorov | What energy functions can be minimized via graph cuts[END_REF]]. In the original paper [START_REF] Winn | The layout consistent random eld for recognizing and segmenting partially occluded objects[END_REF], and as in one of several contributions in this chapter, the unary terms are based on randomized decision forests. Another related application which could benet from this contribution is full scene labeling [START_REF] Farabet | Scene parsing with multiscale feature learning, purity trees, and 123 optimal covers[END_REF].
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In all cases, the underlying discrete optimization problem is very similar:

an energy function encoding the spatial relationships in pairwise terms needs to be minimized. A typical dependency graph for this kind of problem is shown in Figure 4.1(b): unary terms relate each label y i to a feature vector Z i , and pairwise terms encode prior knowledge on the possible congurations of neighboring labels y i and y j .

Classical learning machines working on data embedded in a vector space, like neural networks, SVM, randomized decision trees, Adaboost etc., are in principal capable of learning arbitrary complex decision functions, if the underyling prediction model (architecture) is complex enough. The well-known system described in [START_REF] Shotton | Real-time human pose recognition in parts from single depth images[END_REF], installed on millions of gaming con- In reality the available amount of training data and computational complexity limit the complexity which can be learned. In most cases only few data are available with respect to the complexity of the problem. It is therefore often useful to impose some structure on the model, or process which is rened to as structural risk minimization in machine learning. In this chapter we propose to use prior knowledge in the form of the spatial layout of the labels to add structure to the decision function learned by the learning machinery, which is evalutated on an application of human part estimation in the depth image.

In this chapter, we propose two methods which segment an image or an object into parts through pixelwise classication, integrating the spatial layout of the part labels on two dierent learning machineries (i.e. Randomized decision forests and Convolutional neural networks), as shown in gure 4.1(c).

Like methods which ignore the spatial layout, they are extremely fast as no additional step needs to be added to pixelwise classication and no energy minimization is necessary during testing. The (slight) additional computational load only concerns learning at an oine stage. The goal is not to compete with methods based on energy minimization, which is impossible through pixelwise classication only. Instead, we aim to improve the performance of pixelwise classication by using all of the available information during learning.

In each of the problems that we consider, the labels we aim to predict have spatial structure. Figure 4.2 illustrates the kind of spatial information we would like to integrate into the classication and learning process. We suppose that class labels correspond to parts of an object or of a human, and that these class labels/parts have neighborhood/adjacency relationships between them. In gure 4.2a, for instance, we can see that the part head is a neighbor of part neck, but not of part shoulder.

In gure 1.8b in chapter 1, we showed the end-to-end framework for the segmentation problems considered here. Our proposed methods use dierent energy functions to enforce a spatial consistency in learned features which reects the spatial layout of labels. Unlike combinatorial methods, our energy function is minimized during training (i.e. while learning features) but is unused at test time. It is based on two main assumptions. First, dierent high-dimensional features with the same label are embedded into a lower-dimensional manifold which preserves the original semantic meaning. Second is our belief that greater loss should be incurred when misclassication occurs between features coming from non-neighbor labels than features coming from the same or neighboring labels. In other words, the geometry of learned features, to some extent, reects the spatial layout of labels. We will show that this new loss function increases the classication performance of the learned prediction model.

Another way of looking at our contributions is to interpret it as a way of structuring the prediction model of a learning machine. Although classical techniques working on data represented in a vector space are capable of learning arbitrary complex decision functions if enough training data and computational resources are available, these strict conditions are not easily achieved.

It is therefore often useful to impose some structure on the model. We already mentioned structured models based on energy minimization and their computational disadvantages. Manifold learning is another technique which assumes that the data, although represented in a high dimensional space, is distributed according to a lower dimensional manifold in that space. Semisupervised learning uses a large amount of additional training data, which is unlabeled, to help the learning machine better infer the structure of the decision function. In this work, we propose to use prior knowledge in the form of the spatial layout of the labels to add structure to the task of learning the decision function. [START_REF] Shotton | Semantic texton forests for image categorization and segmentation[END_REF] use bag of semantic textons and region priors in the segmentation, which allows to exploit both texture and semantic context. Heitz and Koller [START_REF] Heitz | Learning spatial context: Using stu to nd things[END_REF] propose to combine the objects in the spatial context (e.g. tree, sky) to improve the detection. Divvala and Hoiem [START_REF] Divvala | An empirical study of context in object detection[END_REF] investigate dierent sources of context and the ways to utilize them to leverage the recognition. However, our methods dier from them in the ways how we treat context in the learning procedure, most existing work extracts features from the context and the object respectively and learns them together, whereas we explicitly model the spatial relationships between labels, not features.

One of our contributions based on ConvNets (see gure 4.3b) also learns a feature extractor from raw data combining the spatial layout of labels, in order to produce a better decision function for segmentation. It is equivalent to learning a mapping function from high dimensional space to a low-dimensional manifold space, which is related to dimensionality reduction.

Unsupervised approaches for learning a mapping capturing global structure are well-known; most notably Principal Component Analysis (PCA) [Jollie, 1986] and Multi-Dimensional Scaling [START_REF] Cox | Multidimensional scaling[END_REF]. However, our aim is to embed based on the spatial layout of part labels, so we restrict our discussion to supervised methods. Neighborhood Components Analysis (NCA) [START_REF] Goldberger | Neighbourhood component analysis[END_REF] implicitly learn a mapping function from high dimensional space to low dimensional space while preserving the neighborhood relationship dened by class labels. However, NCA is optimized for nearest neighbor classication and does not take into account structure within the labels, only their identity. DrLIM [START_REF] Hadsell | Dimensionality reduction by learning an invariant mapping[END_REF]] is an online, nonprobabilistic method which explicitly learns a non-linear invariant embedding function. In particular, pairwise distance in feature space are, respectively, minimized or maximized according to label information. More details can be found in section 2.4.3 of chapter 2 . Similarly, we parameterize our embedding with a convolutional neural network (ConvNet) [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]], however, like NCA, DrLIM does not consider structure in the labels. Our method differs from NCA and DrLIM by incorporating the spatial layout of labels into an energy function, rather than a binary notion of neighbors dened by data points with the same label.

Farabet et al. [START_REF] Farabet | Scene parsing with multiscale feature learning, purity trees, and 123 optimal covers[END_REF] have recently introduced multi-scale

ConvNets and applied them successfuly to Full Scene Labeling. Our work is similar in its motivation and the fact that we adopt their multi-scale approach to learn scale-invariant features. However, the way in which we approach the problem is very dierent. They apply sophisticated machinery based on optimal purity cover to search the best spatial grouping of feature vectors from which to predict a label. Our model has no such notion of adaptive pooling.

Instead, we use weakly-supervised learning to introduce spatial context into the features. We believe the two approaches are complimentary, and although beyond the scope of this thesis, could be applied together. 

Problem formulation

We consider problems where the pixels i of an image are classied as belonging to one of L target labels by a learning machine whose alphabet is L = {1 . . . L}. To this end, descriptors Z i are extracted on each pixel i and a local patch around it, and the learning machine takes a decision y i ∈ L for each pixel. A powerful prior can be dened over the set of possible labellings for a spatial object. Beyond the classical Potts model known from image restoration [START_REF] Geman | Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images[END_REF], which favors equal labels for neighboring pixels over unequal labels, additional (soft) constraints can be imposed. Labels of neighboring pixels can be supposed to be equal, or at least compatible, i.e. belonging to parts which are neighbors in the spatial layout of the object. If the constraints are supposed to be hard, the resulting problem is a constraint satisfaction problem. In computer vision this kind of constraints is often modeled soft through the energy potentials of a global energy function:

E(l 1 , . . . , l N ) = ∑ i U (y i , Z i ) + µ ∑ i∼j D(y i , y j ) (4.1)
where the unary terms U (•) integrate condence of a pixelwise employed learning machine and the pairwise terms D(•, •) are over couples of neighbors i ∼ j.

In the case of certain simple models like the Potts model, the energy function is submodular and the exact solution can be calculated in polynomial time using graph cuts [START_REF] Kolmogorov | What energy functions can be minimized via graph cuts[END_REF]. Taking the spatial layout of the object parts into account results in non-submodular energy functions which are dicult to solve. Let's note that even the complexity of the submodular problem (quadratic on the number of pixels in the worst case) is far beyond the complexity of pixelwise classication with unary terms only.

The goal of our work is to improve the learning machine in the case where it is the only source of information, i.e. no pairwise terms are used for classication. Traditional learning algorithm in this context are supervised and use as only input the training feature vectors Z i as well as the training labels y i , where i is over the pixels of the training set. We propose to provide the learning machine with additional information, namely the spatial layout of the labels of the alphabet L. Some pairs of labels are closer than other pairs in that they correspond to neighboring parts. The risk associated for misclassifying a label with a neighboring label should therefore be lower than the risk of misclassifying a label with a not neighboring label.

Spatial randomized decision forests

In this section we focus on randomized decision forests (RDF) as learning machines, because they have shown to outperform other learning machines in this kind of problem and they have become very popular in computer vision lately [START_REF] Shotton | Real-time human pose recognition in parts from single depth images[END_REF]. Decision trees, as simple tree structured classiers with decision and terminal nodes, suer from over-tting. Randomized decision forests, on the other hand, overcome this drawback by integrating distributions over several trees.

One of the classical learning algorithm for RDFs [START_REF] Lepetit | Point matching as a classication problem for fast and robust object pose estimation[END_REF] trains each tree separately, layer by layer, which allows the training of deep trees with a complex prediction model. The drawback of this approach is the absence of any gradient on the error during training. Instead, training maximizes the gain in information based on Shannon entropy. In the following we give a short description of the classical training procedure.

We describe the version of the learning algorithm from [START_REF] Shotton | Real-time human pose recognition in parts from single depth images[END_REF] which jointly learns features and the parameters of the tree, i.e. the thresholds for each decision node. We denote by θ the set of all learned parameters (features and thresholds) for each decision node. We will not explain the specic nature of the features here, the reader is referred to section 5.2.2 in chapter 5 conceiving these details. We only suppose that the features are vectorial, and that one value is used per node of each tree a classical assumption in this context. For each tree, a subset of training instances is randomly sampled with replacement.

1. Randomly sample a set of candidates θ for each node. This includes candidates for the threshold τ , and candidates for parameters related to the feature values used for this node. 3. Choose θ with the largest gain in information:

θ * = arg max θ G(θ) = arg max θ H(Q) - ∑ s∈{l,r} |Q s (θ)| |Q| H(Q s (θ)) (4.2)
where H(Q) is the Shannon entropy from class distribution of set Q.

4. Recurse the left and right child until the predened level or largest gain is arrived.

Spatial learning for randomized decision forests

In what follows we will integrate the additional information on the spatial layout of the object parts into the training algorithm, which will be done 

H(Q ) = ∑ k -p(k) log p(k) (4.3)
where k is over the new alphabet. This can be expressed in terms of the original distribution over the original alphabet:

H(Q ) = ∑ i,j
-p(i)p(j) log[p(i)p(j)] We can now separate the new pairwise labels into two dierent subsets, the set of neighboring labels L 1 , and the set of not neighboring labels L 2 , with L = L 1 ∪ L 2 and L 1 ∩ L 2 = ∅. We suppose that each original label is neighbor of itself. In the same way, a distribution Q over the new alphabet can be split into two dierent distributions Q 1 and Q 2 from these two subsets.

Then a learning criterion can be dened using the gain in information obtained by parameters θ as a sum over two parts of the histogram Q , each part being calculated over one subset of the labels:

G (θ) = λ G 1 (θ) + (1 -λ) G 2 (θ) (4.5)
where

G i (θ) = H(Q i ) - ∑ s∈{l,r} |Q i s (θ)| |Q i | H(Q i s (θ)) (4.6)
Here, λ is a weight, and λ < 0.5 in order to give separation of non neighboring labels a higher priority.

To be better explain the motivation of this choice, let's consider a simple parts based model with three parts numbered from 1 to 3 shown in gure 4.4a. We suppose that part 1 is a neighbor of 2, that 2 is a neighbor of 3, but that 1 is not a neighbor of 3. Let's also consider two cases where a set of tree parameters θ splits a label distribution Q into two distributions, the left distribution Q l (θ) and the right one Q r (θ).

The distributions for the two dierent cases are given in gure 4.4b and 4.4c, respectively. We can see that the child distributions for the second case are permuted versions of the child distributions of the rst case. Here, we did not compare the the individual values for Shannon entropy gain between classical measure and spatial measure, as the former is calculated from the unary distribution and the latter on a pairwise distribution. However, the dierence between two cases can be observed using the same measure. It can been seen that the classical measure is equal for both cases: the entropy gains are both 0.37. If we take into account the spatial layout of the dierent parts, we can see that the entropy gain is actually higher in the second case (G (θ)=0.31) than the rst case (G (θ)=0.22) when setting λ=0.3. In the rst case, the highest gain in information is obtained for parts 2 and 3, which are equally probable in the parent distribution Q, whereas a high dierence in probability is obtained for the child distributions Q l (θ) and Q r (θ). However, the highest gain comes from parts 1 and 3 which are not neighbors in the second case. This is consistent with what we advocate above that a higher priority is set to non-neighbor labels.

Spatial learning in ConvNets

We have proposed an algorithm for integrating spatial information into Randomized Decision Forest in section 4.3.

In the recent years, deep neural learning has gained momentum, especially due to some major successes [START_REF] Krizhevsky | Imagenet classication with deep convolutional neural networks[END_REF].

ConvNets are a successful deep architecture widely studied in various applications, such as object recognition [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF], Jarrett and Kavukcuoglu, 2009, Krizhevsky et al., 2012],

scene parsing [START_REF] Grangier | Deep convolutional networks for scene parsing[END_REF], Farabet et al., 2012] and connectomics [START_REF] Turaga | Convolutional networks can learn to generate anity graphs for image segmentation[END_REF]. By parameter tying and feature pooling, ConvNets can automatically learn shift-invariant, discriminative low-and mid-level features from the raw pixels, avoiding the problem of generalization with handengineered features.

Apart the structure classier learning of the ConvNets, another key aspect of our technique is end-to-end feature learning. The dominant methodology in computer vision, though changing in light of recent successes [START_REF] Krizhevsky | Imagenet classication with deep convolutional neural networks[END_REF], is to extract engineered features such as SIFT [Lowe, 2004] or HOG [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF], pool responses, and learn a classier from this xed representation. Our objective is to apply learning at all stages of the pipeline, from pixels to labels. However, compared to contemporary Deep Learning approaches, we learn representations that are informed by the spatial structure of the part labels instead of simply their identity.

We are given a set of M images {X 1 , . . . , X M } and their associated labeled groundtruths. In our notation, the pixels of an image are indexed by a linear index: X m = {X m (i)}. We seek to learn a segmentation model consisting of two parts:

• A parametric mapping function Z = f (X|θ f ) which embeds each image X to a feature representation. This representation consists of Q maps, each of which have the same dimensions as X, and therefore can be indexed linearly: [START_REF] Hinton | Reducing the dimensionality of data with neural networks[END_REF] or supervised [START_REF] Salakhutdinov | Learning a nonlinear embedding by preserving class neighbourhood structure[END_REF] manner based on auto-encoding or some other kind of inductive principle. Then, the classier and the embedding are jointly learned in a supervised way by minimizing some classication-based loss 1 . Our method proceeds in a similar way. We assume that the spatial part layout remains consistent across the dierent images of a corpus. In particular, adjacency information of parts is assumed not to vary across images. In body part estimation, for example, we suppose that the upper arm and the forearm are always adjacent. The next two subsections will describe how spatial constraints can be integrated into, respectively, the training procedure for the embedding f (•), as well as the training procedure for the classier g(•). The two contributions can be applied independently, or combined. The result is a method proceeding as illustrated in Figure 4.1c: the information on the neighborhood layout is injected into a classier working independently for each pixel i.

Z(i) ∈ R Q . The

Spatial pre-training

Common ways of learning the embedding function f (•) are to minimize reconstruction error in an unsupervised auto-encoding setting [START_REF] Hinton | Reducing the dimensionality of data with neural networks[END_REF], or in a supervised setting, map pixels with the same labels to close-by points in feature space and pixels with dierent

If pre-training is supervised, the common setting is to perform classication by k-nearest neighbor search in embedded space, requiring no additional learning step. labels to distant points [START_REF] Salakhutdinov | Learning a nonlinear embedding by preserving class neighbourhood structure[END_REF], Hadsell et al., 2006, Taylor et al., 2011b].

Given the availability of ground-truth data (i.e. the part labels), we advocate its use in the pre-training step as supervised or semi-supervised training has been shown to produce a more discriminative embedding [START_REF] Salakhutdinov | Learning a nonlinear embedding by preserving class neighbourhood structure[END_REF]. However, instead of using classication loss as a training criteria, we aim to benet from the knowledge of the neighborhood layout of the parts in the corpus. We introduce a new energy function which exploits the spatial layout of dierent parts:

E = ∑ i,j
δ y(i),y(j) L S (i, j)

+ ∑ i,j
ν y(i),y(j) L D (i, j) (4.7) where y(i) and y(j) are the ground truth labels for pixels indexed by i and j, respectively; δ a,b is the Kronecker delta dened as δ a,b =1 if a=b and 0 otherwise; ν a,b is dened as ν a,b =1 if parts a and b are not neighbors in the corpus, and 0 otherwise. Figure 4.5 shows three spatial relations for pairwise pixels. L S and L D are measured between pairs of features indexed by i and j in the feature space, which is embedded from raw data X through the embedding function. Note that we simply ignore contributions from pairs which have dierent labels but whose respective parts are neighbors in the corpus.

As the exact boundaries between neighbors (given a human annotator) are somewhat arbitrary and often noisy, we choose to remain agnostic toward the relationship between features across a single boundary. We have chosen this scheme for simplicity, though we admit there are many other ways to design an energy function based on preserving spatial relationships. For example, if we could quantify the distance between labels (e.g. mean distance between body parts), such a soft neighbour criterion could be incorporated into the energy function. This is reserved for future work. L S is the loss component for a pair of pixels having the same label, which has the eect of pushing their associated embeddings together. L D is a contrastive loss component for a pair having dierent labels which pulls their embeddings apart. Similar to [START_REF] Hadsell | Dimensionality reduction by learning an invariant mapping[END_REF], L S and L D are set to

L S (i, j) = 1 2 (d(i, j)) 2 , (4.8) L D (i, j) = 1 2 [max(0, α -d(i, j)] 2 , (4.9)
where α > 0 is a margin. It controls the contrastive scope such that only dissimilar inputs which lie close-by in the embedded space contribute to the energy.

The gradient of Equation (4.7) with respect to the parameters can be computed via the chain rule (backpropagation): this is equivalent to maximizing the log probability the net assigns to the true class. In the multi-class setting, this involves normalizing the outputs of the network via a softmax function and comparing them to the groundtruth label.

∂E ∂θ f = ∂E ∂Z(i) ∂Z(i) ∂θ f + ∂E ∂Z(j) ∂Z(j) ∂θ f (4.
However, minimizing cross-entropy does not take into account the layout of the part labels.

We propose the following new loss function, which is based on the ranking of class labels according to network output. For each input vector, a forward pass gives a network response for each class label, which can be used to rank the class labels in decreasing order. A loss can be dened based on the dierence between this ranking and a desired target ranking, which is dened by the following properties:

• The highest ranked class label should be the target groundtruth label.

This constraint is related to the entropy loss in traditional neural network learning;

• The next highest-ranked class labels should be neighbors of the groundtruth label in the class neighborhood denition of the corpus.

We advocate that better generalization to unseen data can be achieved by forcing the net to learn these constraints.

An example for this is given in Figure 4.6, where the groundtruth label for the pixel is 1. The actual output ranks the groundtruth label at second place.

The target ranking ranks groundtruth label 1 at rst place, followed by labels 3 and 2 which, in this example, are neighbors of label 1.

Learning to rank is a classical problem in machine learning which has been addressed in the literature [START_REF] Burges | Learning to rank using gradient descent[END_REF], Freund et al., 2003, Dekel et al., 2004]. We adopt a loss function similar in spirit to RankNet [START_REF] Burges | Learning to rank using gradient descent[END_REF], dened on pairwise constraints. Given a pair of labels (u, v), we denote by g u (Z(i)) and g v (Z(i)) the respective topmost (i.e. classication) layer outputs for location i and by o uv (i) = g u (Z(i)) -g v (Z(i)) their dierence. The probability of label u being ranked higher than v is mapped through a logistic function:

P uv (i) = e ouv(i) 1 + e ouv(i) (4.11) Given a target probability Puv (i), the loss function C uv (i) is the cross entropy loss [START_REF] Burges | Learning to rank using gradient descent[END_REF]:

C uv (i) = -Puv (i) log P uv (i) - ( 1 -Puv (i) ) log (1 -P uv (i)) (4.
12)

The target probability Puv (i) is set to λ>0.5 if class u is ranked higher in the desired ranking, and to 1-λ otherwise.

Given the properties of the desired ranking described above, the following two sets of pairwise constraints have been derived:

1. A set of L -1 constraints, where each constraint species that the groundtruth label is to be ranked higher than one of the other labels;

2. A set of constraints each one specifying that a label u, which is a neighbor of the groundtruth label, should be ranked higher than another label v, which is not a neighbor of the groundtruth label.

The loss function E for a single pixel is the sum over the pairwise constraints of the pairwise loss C uv :

E(i; l) = ∑ u =l C lu (i) + ∑ (u,v):ν u,l =0,ν v,l =1
C uv (i) (4.13) where i is the index of the pixel, and we use the shortform l = y(i) as its ground truth label. This loss function based on rankings provides a principled way of combining classication loss and spatial layout. Two types of constraints can be set through the λ parameter controlling the target probability Puv . Varying this parameter, dierent priorities could be given to dierent constraints.

It is important to note that this formulation allows one to include unlabeled data into the learning procedure in a semi-supervised setting. In this case, labeled images will be presented to the network with the loss function described above, whereas the loss function for unlabeled data does not contain the pairwise constraints including the groundtruth label -we consider neighbours of the network's strongest output instead of the ground truth neighbours.

As in Section 4.4.1, we would like to avoid confusion created by the term pairwise", which here involves pairs of labels selected during training, which typically are of low cardinality compared to pixels. Testing proceeds independently for each pixel, conforming to the objectives of our work. The output of the rst stage is fed as input to the convolutional layer at the second stage, where each feature map is connected to several maps in the previous stage. Connectivity is chosen uniform randomly before learning begins.

The gradient of the energy function is computed with respect to the network output, and backpropagation is applied to update the parameters θ f . The parameters θ f consist of the lters and element-wise additive and multiplicative biases at the feature maps.

Many visual recognition problems require a large context due to complex interactions of dierent parts. However, the contextual size of ConvNets is limited by the lter size and sampling rate. Simply selecting larger lters does not address the fact that important cues may be observed at dierent scales. To overcome this dilemma, multiscale ConvNets [START_REF] Farabet | Scene parsing with multiscale feature learning, purity trees, and 123 optimal covers[END_REF] are employed in our architecture, as shown in Figure 4.7. We use the notation f s (θ s f ), ∀s ∈ {1, . . . , N } to denote the output produced by each scale ConvNet where s indexes the scales and N is the total number of scales. By employing the weight sharing across scales, ConvNets can learn scale-invariant features.

A multiscale Laplacian pyramid X s , ∀s ∈ {1, . . . , N } is constructed for each image X in the pre-processing stage, where X 1 has the same size as the original image. Local contrast normalization is applied to the Laplacian images to ensure that the local neighborhood has zero mean and standard deviation. A batch consisting of pairs of patches 2 is randomly extracted from each scale image X s . The patches are processed by the corresponding ConvNet f s , where the learned parameters θ s f are shared across the scales. The training procedure of the above architecture contains two steps. The rst step is the spatial deep learning described in section 4.4.1, where the labels are only used to dene spatial layout. We therefore call this stage weakly supervised pre-training. At this stage, the ConvNet parameters are initialized such that the features are consistent with the spatial arrangement of the labels. The second step is supervised spatial learning in section 4.4.2.

A logistic regression layer parameterized with θ g is connected to the topmost feature maps of the ConvNet to predict the labels. We also apply a ne-tuning scheme in which the gradients from the LR are back-propagated to update the ConvNet parameters θ f .

Conclusion

In this chapter, we discussed the integration of spatial information on part layout into machine learning. We proposed three dierent algorithms, one for randomized decision forest and two for a deep architecture. Here we surmise that a learning machine can be improved when it is given a priori information on the object structure.

In next chapter, we will demonstrate one application of human body part estimation by employing the proposed algorithms. It is worth noting that our algorithms can not only be used for human body part estimation, moreover, they could be applied to any object segmentation problem with an apparent spatial conguration.

Since our loss function operates on pairs of features, i.e. particular locations i and j in the feature maps, we do not perform a full convolution while training. Instead, we extract patches corresponding to the receptive elds at locations i and j and map these patches to their respective feature vectors. We dene a spatial layout of 28 neighborhood relations among the 11 parts calculated from a canonical pose where a subject stretches his or her arms.

The spatial layout of human body and part adjacency matrix are shown in gure 5.2. It is worth noting that the spatial relationship matrix is symmetrical. Our spatial relationships are very simple, they are expressed as binary values. Soft relationships may be one possible extension, which could take into account part occlusion in real images. Further research can go to this direction. We adopt the same spatial relationships in the following experiments, unless otherwise specied. This chapter will discuss two sets of experiments:

-Section 5.2 presents experiments using spatial learning for randomized decision forest, introduced in section 4.3 of chapter 4. This part is completed by an additional contribution, namely edge features which complement existing depth features, and whose parameters can be learned easily as the latter ones.

-Section 5.3 describes experiments using spatial learning with ConvNets, as introduced in section 4.4 of chapter 4.

-Section 5.4 gives our discussion and conclusion. 
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Experiments for spatial randomized decision forest

Depth images are dierent from RGB images with dierent properties. There is no texture, which makes it easier to extract shape information. On the other hand, classical appearance features such as HOG/HOF, SIFT etc. are not optimal for this kind of images. Shotton et al. [START_REF] Shotton | Real-time human pose recognition in parts from single depth images[END_REF] propose a depth comparison feature, which uses a set of depth dierences around the given pixel as features. At the same time, they take advantage of randomized decision forest to learn the best osets for nodes, which are involved in feature selection. We rst present depth comparison features in section 5.2.1 and then introduce our complementary edge features in section 5.2.2.

Depth features

In [START_REF] Shotton | Real-time human pose recognition in parts from single depth images[END_REF], depth features have been proposed for pose estimation from Kinect depth images. One of their main advantages is their simplicity and their computational eciency. Briey, at a given pixel x, the depth dierence between two osets centered at x is computed: 

f θ (I, x) = d I (x + u d I (x) ) -d I (x + v d I (x) ) ( 

Edge features

The depth comparison features described above capture simple dierences between pairs of neighboring pixels. One weakness is their inability to capture richer shape information. Here we extend this concept further by introducing edge comparison features extracted from edges. We propose two dierent types of features based on edges, the rst using edge magnitude, and the second using edge orientation. Our features capture slightly richer information, such as dierences in distances to part borders, and dierences in part orientation.

In principle, these features can be extracted from grayscale, RGB or depth images, where an extraction from grayscale or RGB requires to solve a correspondence problem between RGB and depth coordinate systems, if the edge features are to be combined with the existing depth features. This can be done easily with calibrated Kinect sensors. In our experiments we calculated edges from the depth images, mainly because the used dataset did not provide RGB data. As will can be seen, even edge information from depth images signicantly improves performance. In our settings, we need features whose positions can be sampled by the training algorithm. However, contours are usually sparsely distributed, which means that comparison features can not directly be applied to edge images. Our solution to this problem is inspired by chamfer distance matching, which is a classical method to measure the similarity between contours [START_REF] Barrow | Parametric correspondence and chamfer matching: two new techniques for image matching[END_REF]. We compute a distance transform on the edge image, where the value of each pixel is the distance to its nearest edge. Given a grayscale image I and its binary edge image E, the distance transform DT E is computed as:

DT E (x) = min x :E(x )=1 ||x -x || (5.2)
The distance transform can be calculated in linear time using a two-pass algorithm. Figure 5.3 shows a depth image and its edge image and distance image.

The edge magnitude feature is dened as:

f EM θ (x) = DT E (x + u) + DT E (x + v) (5.3)
where u and v are osets similar to the ones in equation 5.1. This feature indicates the existence of edges near two osets.

Edge orientation features can be computed in a similar way. In the procedure of distance image, we can get another orientation image O E , in which the value of each pixel is the orientation of its nearest edge:

O E (x) = Orientation ( arg min x :E(x )=1 ||x -x || ) (5.4)
The feature is computed as the dierence in orientation for two osets:

f EO θ (x) = O E (x + u) -O E (x + v) (5.5)
where the minus operator takes into account the circular nature of angles. We discretize the orientation to alleviate the eect of noise. The objective of both features is to capture the edge distribution at specic locations in the image, which will be learned by the RDF.

Results

Unless otherwise specied, the following parameters have been used for RDF learning: 3 trees each with a depth of 9; 2000 randomly selected pixels per image, randomly distributed over the body; 4000 candidate pairs of osets; 22 candidate thresholds; osets and thresholds have been learned separately for each node in the forest. For spatial learning, 28 pairs of neighbors have been identied between the 11 parts based on a pose where the subject stretches his arms. The parameter λ was set to 0.4.

During learning, depth features are mixed with edge features. More precisely, for each tree node, the learning algorithm selects one of the two features.

This choice is integrated into the learning algorithm described in section 4. [START_REF] Ferrari | Progressive search space reduction for human pose estimation[END_REF]. In the following, we denote them by the pair of neighboring parts. At part level, we report our results of pairs of parts according to the estimation metric by [START_REF] Ferrari | Progressive search space reduction for human pose estimation[END_REF]: a pair of groundtruth parts is matched to a detected pair if and only if the endpoints of the detected pairs lie within a circle of radius r=50% of the length of the groundtruth pair and centered on it. Table 5.2 shows our results on part level using several settings. It demonstrates that spatial learning improves recognition performance for most of the parts.

The experiments at both pixelwise and part level demonstrate that spatial learning makes randomized decision forests more discriminative by integrating the spatial layout into its prediction model. This proposition is very simple and fast to implement, as the standard pipeline can be still used. Only the learning method has been changed, the testing code is unchanged.

Experiments for spatial ConvNets

In this section, we present experiments on the same dataset using a combination of ConvNets for feature learning and logistical regression (LR) for classication.

Unless otherwise specied, we use a 2-stage ConvNet in all of the experiments below. The rst convolutional layer consists of 8 lters of size 9 × 9, followed by an element-wise tanh function and a 2×2 non-overlapping average The receptive eld for a single ConvNet on a single scale is 28 × 28. We resort to a multiscale setting with a pyramid of 3 scales, with each scale consisting of 2 convolutional layers [START_REF] Farabet | Scene parsing with multiscale feature learning, purity trees, and 123 optimal covers[END_REF]. The total receptive eld is of size 112 × 112, thus a large spatial context is used to learn better features, comparable to a best probe distance of 120 × 120 of the randomized decision forest described earlier.

Local contrast normalization is applied to the inputs of the ConvNet, and the pixels from the background or the context are set to an arbitrary high value (in our case, 4) to distinguish from the zero-distributed pixels of the object. The margin α for pre-training was set to 1.25 [START_REF] Hadsell | Dimensionality reduction by learning an invariant mapping[END_REF], and λ was set constant to 1 for all constraints in all experiments, i.e. Puv = 1 if u is ranked higher than v, otherwise 0. Weakly-supervised feature learning and supervised learning each used 30 epochs through the entire dataset, where mini-batch gradient descent is adopted. End-to-end ne-tuning, if applied, used another 30 epochs. Dierent learning hyper-parameters (such as learning rates for dierent layers) were chosen empirically, e.g. ε 1 is set to 10 -6 for the rst convolutional layer and ε 2 to 10 -5 for the second convolutional layer. When performing classication, we consider each pixel in isolation, applying its corresponding 32-dimensional feature vector as input to an LR.

The parameters of the LR are shared at each pixel location. In the following experiments, we report mean pixel-wise accuracy.

Results

For the application of part estimation from depth images, our baselines are the algorithms based on randomized decision forests described in the last section, as well as single-and multi-scale ConvNets with supervised end-to-end training without any spatial context. From table 5.3, which gives performance results on 4 dierent baseline algorithms, it is clear that the large receptive eld of the multiscale architecture is necessary to reliably estimate body part labels, and also that the Deep Learning-based architecture outperforms random forests on the CDC4CV dataset.

We investigate the performance of dierent combinations of our framework based on spatial pre-training of the purely convolutional layers (which we call ConvNet) and the classication layer (which we call LR). As a non-spatial baseline, we also implemented a pixel-wise version of DrLIM [START_REF] Hadsell | Dimensionality reduction by learning an invariant mapping[END_REF], a similar pre-training strategy in which spatial layout is not taken into consideration, i.e. δ a,b =1 if a=b and 0 otherwise; ν a,b =1 if Table 5.3: Evaluation of dierent baselines on the CDC4CV dataset. In our implementation of [START_REF] Farabet | Scene parsing with multiscale feature learning, purity trees, and 123 optimal covers[END_REF], only the multiscale ConvNets have been used. Purity trees and CRFs have not been implemented, to make the work comparable to the rest of this chapter.

Methods Accuracy

Randomized forest [START_REF] Shotton | Real-time human pose recognition in parts from single depth images[END_REF] with the same objective used to train the LR. 

66.92%

Examples of segmentation results are shown in Figure 5.5. From visual inspection we can see that the segmentation results produced by spatial learning are better than the ones by the non spatial methods. In particular, the segmentation produced by spatial learning is more consistent (less noisy), especially for the arms.

Spatial distribution of the error

The proposed method injects neighborhood relationships into the training algorithm. The question arises, whether the benet of the proposed method only applies to pixels at the boundaries, which would imply a rather trivial improvement. To rule this out, an in-depth analysis has been performed

to verify that the proposed methods generally improve classication error independent of the pixels' positions in the part.

For each pixel in the test images the distance to the nearest part boundary was calculated using a distance transform, which allowed us to calculate histograms over these distances, where each bin corresponds to a range of H d (i) = (H s (i) -H b (i))/H g (i).

(5.6)

Our method gains over a very large majority of distances except for a few outliers. We see a strong bimodality, i.e. our method wins close-to and away from the borders. Moreover, the mode corresponding to pixels near the center of parts shows an even higher proportion of improvement than the mode closer to the border. In particular, the classication rates are signicantly improved between distance 50 and 60, which is more or less half of the receptive size.

At the same time, this analysis veries that our system indeed does benet from the multi-scale framework.
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Discussion and conclusion

The experiments above demonstrate that even pixelwise independent classication indeed benets from the a priori additional information contained in the spatial part layout.

The quantitative evaluation measures presented in the dierent tables report pixelwise classication accuracy. This proves that the proposed learning algorithms improve pixelwise classication, although the injected additional information does not specically state this. An additional advantage of our methods are not captured by this evaluation: if a pixel is wrongly classied, then spatial learning will increase the probability that the wrong part label is a neighbor of the correct part label. In some applications this can be an advantage, for instance if the segmentation is post-processed to estimate joint positions, as in [START_REF] Shotton | Real-time human pose recognition in parts from single depth images[END_REF].

Currently, we demonstrated a single application of the proposed methods to human part estimation in depth images. The approach is, however, not specic to pose estimation, and can be applied to other problems, as for instance object segmentation from RGB images, or semantic full scene labeling.

In these cases, the context may be dynamic and the spatial layout might be more dicult to extract from the corpus, requiring learning techniques. This is reserved for future work.

Two dierent methods have seen introduced: one based on randomized decision forests, and a second one based on a combination of convolutional neural networks and logistical regression (or MLPs). The latter deep learning method achieves better results than the RDF based method, which is mostly explained by the more powerful features learned by the ConvNets. However, this classication performance comes at a cost, as the method is computationally more complex. Table 5.5 gives running times for testing and for training. Note that testing times seem to be comparable for the RDF and ConvNets methods, RDFs being roughly twice as fast as ConvNets. However, the ConvNets method was implemented with GPU support for convolutions. While GPU implementation is certainly possible for the RDF method to make it real-time, which has not been done in our experiments.

Indeed, the main computational complexity of the deep learning method comes from the convolution operations, which can be signicantly accelerated by parallel computation, e.g. on multi-core CPUs or GPUs. We implemented the system in MATLAB with multi-threaded convolutions provided by the GPU (CUDA) library (for training and testing), and the testing time by the IPP framework is also given as a comparison.

The RDF method has been implemented on our mobile robotics platform VOIR (Vision and Observation In Robotics), as illustrated in gure 5.7. A video is available online at http://liris.cnrs.fr/voir. In this chapter, we rst conclude our work and review the dierent contributions. We then discuss some limitations, and nally introduce perspectives and future work.

Summary of our contributions

In this thesis, we have presented several contributions on visual recognition.

Our objective was to combine the available information, such as spatial con- 

General conclusion

From the results we have obtained, we can conclude that visual recognition can be improved by adding information and constraints such as labels, and spatial layout into dierent learning stages i.e. into the feature learning stage, into the classication stage or into both. An end-to-end framework is very interesting for feature learning because it connects the path from the raw input data to recognition results. It is goal-oriented, since classication error is directly used for learning all of dierent parameters of the system. We draw the following conclusions:

-Our algorithms work better in the case of small and medium amount of training data. A large amount of training data allows the classier to better generalize and produce optimal performance. On the other hand, a priori information is additionally provided to the small/medium training data to help to generalize the learned machine, playing a similar role as regularization terms.

-In the training procedure, pairs of entities are fed into the learning.

However, testing is still performed on the single entity (pixel), therefore there is no additional computation cost.

-End-to-end learning can be useful, but sometimes should be completed by pre-training (unsupervised learning or weakly supervised learning).

-It is not always clear when end-to-end is better, which thus depends on the complexity of the problems (i.e. the function to minimize), the amount of available data, the amount of available training time etc.

Limitations and Future work

Limitations of supervised end-to-end learning for bag-of-words models In the current work, the input is comprised of extracted features, and the BoW model construction is formulated as a neural network. The dictionary is coded into the weights between the layers. Low level features like HOG/HOF are chosen, rather than learned. A feature learning module could be added at the beginning, e.g. a convolutional layer as described in section 4.4.1. The error backpropagation scheme can be applied to learn the lters in the convolutional layer. The advantage would be to learn the features and the dictionary together in a longer end-to-end learning scheme.

Limitations of spatial learning

In this thesis, we also proposed three spatial learning algorithms for two dierent frameworks: spatial learning for randomized decision forests, spatial learning for pre-training ConvNets, and spatial learning for supervised learning of LR and MLP classiers. They dier from each other, but they share a minor common limitation: constant spatial part layout structure, as shown in gure 5.2 for human upper body part segmentation. The reason is that the spatial layout depends on inherent object properties, even for a non-rigid object. The spatial layout is correct for all the objects in the same category.

However, in reality, due to occlusions induced by dierent object poses, some parts may be not visible in the image, their spatial relations to other parts still occur in the energy function. At the same time, some new spatial relations emerge due to dynamic poses, on the contrary, which are ignored in the energy function. Figure 6.1 and 6.2 show two limitation cases, respectively.

A possible solution to deal with occlusion and dynamic pose is to adopt a dynamic spatial layout for each image. In principle, the spatial layout could been detected for each image by neighborhood search algorithms. But energy divergence might be a problem in this context.

Limitations of spatial ConvNets learning

We proposed a ranking technique in the spatial supervised learning of LR The exact probabilities are hyperparameters, which could be learned over the validation data. Additional constraints will be required to ensure that the learned ranking measure is valid, as suggested in [START_REF] Burges | Learning to rank using gradient descent[END_REF] in a dierent context.

Other types of spatial information

The current pipeline presented in chapter 4 is used to classify pixels for human part estimation. It works for simple parts and for rigid objects (faces etc.).

The variance in pose and occlusion is not large. The parts and their a priori information of spatial layout are given as groundtruth.

If we aim to recognize non-rigid objects (and not just their parts), in this context, a possible solution is rst to detect parts, and then to treat constellation of the features from dierent parts as the object features, which are fed into a classier. The features also can be learned in an end-to-end way.

This framework is a combination of DPMs (see section 2.3.2.3 of chapter 2) and deep feature learning (see section 2.4 of chapter 2). However, it requires to solve a combinational problem over part positions, which makes it dicult to calculate gradients used for feature learning. 

  Secondly, I would like to sincerely acknowledge our collaborators Prof. Christopher Garcia and Dr. Graham Taylor of University of Guelph, Canada. I learned too much from discussion with them. Besides, I would like to sincerely acknowledge Prof. Michèle Rombaut, Prof. Matthieu Cord, Prof. Cordelia Schmid and Prof. Alain Trémeau for their kindness to become my thesis reviewers and examiners and for their time on constructive and meticulous assessment of this thesis work. I also want to thank all the members I have met/worked with in the Bâtment Jules Verne, INSA de Lyon, including Guillaume Lavoué, Eric Lombardi, Julien Mille, Stefan Duner, Yuyao Zhang, Peng Wang, Oya Celiktutan, Louisa Kessi, Thomas Konidaris, Lilei Zheng, Jinjiang Guo, Vincent Vidal et al. for their kind help, constructive discussions and also the enjoyable time they have brought to me. In addition, I would like to thank all my friends, especially Zhenzhong Guo, Huagui Zhang et al., for sharing their enjoyable time with me during my stay in Lyon! Certainly, all my family members as well as Wanying Chen deserve the most important appreciations for their endless loves, their understandings and supports over all the past years of my study till completing my Ph.D.Finally, China Scholarship Council (CSC) for providing the scholarship is gratefully acknowledged. v Résumé Dans cette thèse nous étudions les algorithmes d'apprentissage automatique pour la reconnaissance visuelle. Un accent particulier est mis sur l'apprentissage automatique de représentations, c.à.d. l'apprentissage automatique d'extracteurs de caractéristiques; nous insistons également sur l'apprentissage conjoint de ces dernières avec le modèle de prédiction des problèmes traités, tels que la reconnaissance d'objets, la reconnaissance d'activités humaines, ou la segmentation d'objets. Dans ce contexte, nous proposons plusieurs contributions : Une première contribution concerne les modèles de type bags of words (BoW), où le dictionnaire est classiquement appris de manière non supervisée et de manière autonome. Nous proposons d'apprendre le dictionnaire de manière supervisée, c.à.d. en intégrant les étiquettes de classes issues de la base d'apprentissage. Pour cela, l'extraction de caractéristiques et la prédiction de la classe sont formulées en un seul modèle global de type réseau de neurones (end-to-end training). Deux algorithmes d'apprentissage diérents sont proposés pour ce modèle : le premier est basé sur la retro-propagation du gradient de l'erreur, et le second procède par des mises à jour dans le diagramme de Voronoi calculé dans l'espace des caractéristiques. 'apprentissage supervisé et non-supervisé. Elle se place dans le cadre d'applications nécessitant une segmentation d'un objet en un ensemble de régions avec des relations de voisinage dénies a priori. Un exemple est la segmentation du corps humain en parties ou la segmentation d'objets spéciques. Nous proposons une nouvelle approche intégrant les relations spatiales dans l'algorithme d'apprentissage du modèle de prédication. Contrairement aux méthodes existantes, les relations spatiales sont uniquement utilisées lors de la phase d'apprentissage.

  : (a) the shape of letter A, (b)

  . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Space-time shape features. left: space-time saliency, the color indicates the saliency strength: from red (high) to blue (low); right: space-time orientations of plates and sticks: the red regions indicate horizontal plates, the blue regions indicate plates in temporal direction, and the green regions indicate vertical

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.10 Illustration of the LBP descriptor. The values in the left grid are gray-scale values, and the values in the right grid is the binary mask after thresholding by the center gray values. . . 25 2.11 The visualization of the HOG descriptor: (a) an image window with a person, (b) the HOG feature for each cell; (c) the learned weights for each feature in HOG. This gure is reproduced from [Dalal and Triggs, 2005]. . . . . . . . . . . . . . . . . . . . . 26 2.12 First and second order steerable lters. (a-b) Gaussian basis, (c-d) Gaussian oriented lters. This gure is reproduced from [Villamizar et al., 2006]. . . . . . . . . . . . . . . . . . . . . . 27 2.13 The Gabor-like lters learned by the CNN. This gure is reproduced from [Ranzato et al., 2007]. . . . . . . . . . . . . . 27 2.14 A DPM for category person: (a) the root lter, (b) the part lters, and (c) the gray scaled deformation cost. . . . . . . . 39 2.15 R-CNN: Regions with convolutional neural network features.

  the dierent layers of the neural network. The left part is stimulated per interest point. The right part is a classical MLP taking decisions for each video. . . . . . . . . notation used for units in this chapter: symbols with bars (e.g. ēi ) indicate the result of the linear com- binations performed by each unit. Symbols without bars indicate the output of the unit after the activation function, e.g. e i = g( ēi ). The chosen activation function depends on the layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Two dierent ways to learn the cluster centers illustrated through a Voronoi diagram of the feature space, for simplicity in 2D. Cluster centers are green and large, training points are blue and small. Recall that Voronoi cells do not correspond to decision areas of prediction model for actions. A video is represented by a bag of multiple points, i.e. a histogram of cluster indicators/Voronoi cells. (a) The method described in section 3.3.2 directly updates the cluster centers w cc ij by gradient de- scent on the loss of the video. The error is equally distributed over the clusters/Voronoi cells; (b) The method described in section 3.3.3 indirectly updates the cluster centers by passes individual feature vectors from one Voronoi to another one according to the error in the BoW layer. . . . . . . . . . . . . .

  SVMS. The codebook has been learned with: (a) k-means (b) error backpropagation (section 3.3.2) (c) cluster reassignment (section 3.3.3). . . . . . . . . . . . . . . . . . . . . . . . . . . .4.1Dierent ways to include spatial layout, or not, into learning parts labels y i from features Z i for pixels i: (a) pixelwise independent classication, where spatial layout information is not taken into account; (b) A Markov random eld with pairwise terms coding spatial constraints; (c) our method: pixelwise independent classication including spatial constraints N . . . . 4.2 Part layouts from human body and motorcycle. . . . . . . . . distances to part boundaries: (a) H g the histogram of all pixels; (b) H s the histogram of pixels for which the proposed method outperforms the baseline; (c) H b the histogram of pixels for which the baseline outperforms the proposed method; (d) H d is the normalized dierence histogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.7 The VOIR platform. . . . . . . . . . . . . . . . . . . . . . . . 112 6.1 The motorbike on the right is severely self-occluded, compared to the one on the left. Most of the spatial part relations are useless in the energy function. . . . . . . . . . . . . . . . . . 116 6.2 In comparison to the left person, new part spatial layout relations emerge due to pose changes in the right person, e.g. the left lower arm and the right lower arm is not taken into account in the model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.3 The framework of combination of DPMs and deep feature learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

  ConvNets have been used. Purity trees and CRFs have not been implemented, to make the work comparable to the rest of this chapter. . . . . . . . . . . . . . . . . . . . . . . . . 108 5.4 Results of dierent combinations of classical and spatial learning on the CDC4CV dataset. . . . . . . . . . . . . . . . . . . . 108 5.5 Running times on the CDC4CV dataset of our proposed methods. For the ConvNets method, training includes pre-training, LR learning and ne-tuning, and testing time on one image is given. The resolution of testing depth image is 320*240. . recognition problem . . . . . . . . . . . . . . . . 1 1.2 Scientic challenges . . . . . . . . . . . . . . . . . . . . 5 1.3 Our contributions . . . . . . . . . . . . . . . . . . . . . 7 1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.

  Figure 1.1: The images in PASCAL VOC dataset.[[START_REF] Everingham | The pascal visual object classes (voc) challenge[END_REF] 

Surveillance:

  Visual recognition has been widely used in various surveillance applications. Ecient recognition and query algorithms in large scale databases enable surveillance systems to be installed in many public environments, such as highways, airports, train stations etc. Current research focuses on the prediction of crime by detecting abnormal events. Biometrics: It refers to the identication of humans by their biological properties such as ngerprints, faces etc. In normal cases, this biometric information is unique. Some countries employ systems where users are asked to provide ngerprints on entry, which are compared to information in the passport. The Federal Bureau of Investigation (FBI) of United States is planning to build up its next generation identication biometrics database, containing multimodal biometric identiers such as face-recognition-ready photos, and voice data.Robotics: Visual recognition systems are usually considered as sub-systems in robotics, which allow robots to perform tasks in dangerous situations or in unreachable places to replace humans.
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 14 Figure 1.4: Schematic diagram of Microsoft's Kinect game controller system, (taken from www.edition.cnn.com).

Figure

  Figure 1.5: Gazing detection system for the disabled person [Sinhal et al., 2008].

Figure 1 .Figure 1

 11 Figure 1.6 shows a frequent framework for visual recognition. A test image is rst processed by a feature extraction module and represented by features, which are then classied to give a decision in a classication module. The parameters are learned in the training stage which is not shown in gure 1.6. The use of features instead of raw pixel values is necessary. Compared to the high-dimensional raw data, low-dimensional features are preferable. Besides, raw pixel values are sensitive to objects' variation.Generally, we seek a (learned or handcrafted) discriminative representation (features) which is able to cope with dierent variations in the data, depending on intrinsic and extrinsic factors:
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 17 Figure 1.7: Two frameworks for specic recognition problems. (best viewed in color).
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 18 Figure 1.8: Our improved frameworks. (best viewed in color).
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 21 Figure 2.1: The general visual recognition framework. BoW is the abbrev.

Figure 2 .Figure 2

 22 Figure 2.2 shows a taxonomy of dierent feature types. They can be global or local; they can be handcrafted, i.e. designed in all details; or they can be automatically learned in an unsupervised or a supervised manner.

  Figure 2.3: Shape context illustration: (a) the shape of letter A, (b) the log-polar coordinate on the shape, (c) the shape context of the given point.
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 24 Figure 2.4: Space-time shape features. left: space-time saliency, the color indicates the saliency strength: from red (high) to blue (low); right: space-time orientations of plates and sticks: the red regions indicate horizontal plates, the blue regions indicate plates in temporal direction, and the green regions

Figure 2 . 5 :

 25 Figure 2.5: The examples of eigenfaces. (This gure is reproduced from [Heseltine et al., 2003].)
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 2 Figure 2.6: MEI (left) and MHI (right) of a person raising both hands. This gure is reproduced from [Bobick and Davis, 2001].
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 27 Figure 2.7: Illustration of Harris3D interest points of a walking action. Thisgure is reproduced from[Laptev, 2005].
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 2 Figure 2.8: Illustration of interest points of a walking action by Dollar's detec-

Figure 2 .

 2 Figure 2.10: Illustration of the LBP descriptor. The values in the left grid are gray-scale values, and the values in the right grid is the binary mask after thresholding by the center gray values.

  The uniform LBPs allow to build a macro representation for texture, because most of the local binary patterns in natural image are uniform, as observed by Ojala et al. Each uniform LBP has a separate label and the rest non-uniform LBP share one label.

[

  Figure 2.11: The visualization of the HOG descriptor: (a) an image window with a person, (b) the HOG feature for each cell; (c) the learned weights for

  Figure 2.11 shows an example of dense HOG features. Compared to global features and local sparse features, local dense features are capable of capturing the global character of the object, and also integrating local properties. At the same time, local dense features also combine information from the context, which seems to be an important supplementary cue for visual recognition.

Figure

  Figure 2.12: First and second order steerable lters. (a-b) Gaussian basis, (c-d) Gaussian oriented lters.This gure is reproduced from[START_REF] Villamizar | Orientation invariant features for multiclass object recognition. 11th Iberoamerican Congress on Pattern Recognition[END_REF]].

Figure 2 .

 2 Figure2.13: The Gabor-like lters learned by the CNN. This gure is reproduced from[START_REF] Ranzato | Unsupervised learning of invariant feature hierarchies with applications to object recognition[END_REF].

  , and segmentation followed by classication, which are shown in gure 2.1. The research on visual recognition is strongly inspired by research in machine learning, especially learning machines for classication such as support vector machines (SVMs) and randomized decision forests (RDF) etc. Object models can be learned eciently and eectively, if the representation is based on vectorial global features. However, they are not suited to local representations based on local features, since local features are inherently structural and not capable of describing the global characters of the object in a simple numerical(vectorial) way, unless some grouping techniques are employed on the local features such as Bag-of-Words (BoW) models. On the other hand, there are other techniques, for instance, recognition based on matching, which are capable of directly dealing with structural data.

  Visual concepts traditionally are constructed by extracting features from the local primitives like interest points, patches, regions, etc (refer to section 2.2.2). Each visual primitive can not serve as a codeword due to a large amount of visual primitives in image/video. Therefore, further special procedure should be performed. The codebook is constructed oine. A collection of feature vectors are extracted from the training set, and a clustering technique such as k-means is applied on the feature vectors. The obtained cluster centers are viewed as the codewords. Thus, codewords (visual concepts) are dened as frequently occurring visual patterns. A set of codewords produces a codebook. The codebook is stored and can be retrieved in the training/test stage. The procedure of BoW models (refer to gure 1.7(a) in chapter 1) is

2.

  The supervised training part calculates the prediction model. For each training image, each extracted feature vector is projected to the codeword with nearest distance in the codebook. A histogram, where each bin counts frequencies of each codeword occurring in the image, serves as an indicator of the content. Each training image is represented as a histogram. A set of histograms and their associated class labels are used to learn the prediction model of a learning machine such as SVM, NN, etc. • In the test stage, for a new test image, a similar procedure is performed, without codebook construction. A histogram is constructed from all the feature vectors to represent the test image, which is eventually fed into a learning machine for classication. BoW models have several advantages: (i) they are very simple and easy to implement; (ii) they are robust to background clutter and occlusion in the image; (iii) they are also invariant to viewpoint changes. 1. BoW without structural information In classical BoW models, an image is represented as a histogram of occurrences of codewords, which are independently extracted. The histogram contains no information of the location of each point of interest, and no information about the relationships between the points. Therefore, the classical BoW model is a model without any structural information. They mainly dier from each other in the way how features and codebooks are obtained.

  take spatial cooccurrences of pairs of codewords into account, exploring the relative positions of codeword pairs with respect to the object's center to create a spatiotemporal model. Finally they propose a probabilistic spatio-temporal voting framework for localizing and recognizing human action. Matikainen et al.

  Figure 2.14: A DPM for category person: (a) the root lter, (b) the part lters, and (c) the gray scaled deformation cost.

  The regions are converted to bounding boxes and the features are extracted from the bounding box and then fed to a classication machine. Segmentation as Selective Search [van deSande et al., 2011] is one of recent algorithms to generate regions/bounding boxes. They start with oversegmentation, a set of small regions are obtained. A hierarchical segmentation tree is constructed through grouping of similar regions in a greedy algorithm. Bounding boxes containing regions across the tree are considered for the sequent classication. Selective search enables to use more expensive features for each region and improves the state-of-the-art for 8 out of 20 classes on Pascal VOC 2007 dataset.

Figure 2 .

 2 Figure 2.15: R-CNN: Regions with convolutional neural network features.This gure is reproduced from[START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF].

  propose to apply recurrent convolutional neural networks to this task. The output of a ConvNet is fed to another ConvNet with tied parameters, which allows to model context and long range dependencies. Kontschieder et al. [Kontschieder et al., 2013] propose a new geodesic forest, achieving spatially consistent semantic image segmentation by encoding long range, soft connectivity features via generalized geodesic distance transforms. Shapovalov et al. [Shapovalov et al., 2013] propose spatial inference machines, taking into account mid-range and long-range dependencies for semantic segmentation of 3D point clouds. The framework

  Supervised learning: The labels of the training examples or the variables induced from the labels (e.g. sensitivity functions in a neural network) are directly used in the feature learning stage. • Unsupervised learning: The labels of the training examples are not used for feature learning. Other criteria such as reconstruction error, or image transformations are adopted. • Weakly-supervised learning: Compared to unsupervised learning, the labels of the training examples are known in the learning, but they are not associated with feature learning and no classication error is calculated. The availability of the labels is often necessary to generate new training examples (e.g. pairs of examples from the same labels or dierent labels).

Figure 2

 2 Figure 2.17: The feature learning criteria, where backpropa means backpropagation, Trans means transformation.

Figure

  Figure 2.20: The Restricted Boltzmann Machine architecture [Hinton et al., 2006].

  (called deep belief nets) can be constructed to learn high level features, where the output of the current level can be fed as the input of next level. It is trained layer by layer, i.e. the weights of the current layer are xed when training the next layer. When all the layers are learned, another round of supervised learning is performed to ne-tune all the weights. Here unsupervised learning helps the parameters locate at a good start-point and further supervised learning can be continued to improve the performance. RBMs have been extended to temporal data by Taylor et
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  The BoW for a new image or video is calculated in a similar way: extraction of descriptors on local primitives, projection of the descriptors on the codebook precalculated on a training set, calculation of a histogram of the occurrences of each codeword of the codebook. An image or video is classied passing the BoW model to any learning machine, for instance a support vector machine (SVM) or a neural network (NN).The traditional method of codebook creation through unsupervised clustering ignores the class labels of the feature vectors in the training set. Of course the labels are used for classication of the BoW models, but not for the creation of the codebook. As a consequence, the visual codebook is less discriminative. In section 2.3.2.2 of chapter 2 we gave a short state of the art on BoW models and their extensions. We here rene this state of the art and briey put into the context the work relevant to this chapter.

  Space-time interest points are calculated on each video and discriminant and invariant features are calculated on a space-time cuboid around each interest point location. Initially, a video is therefore described as a collection of feature vectors. In traditional ways to translate this description into a BoW model, codebook creation and learning of the BoW models of the training set are treated as two dierent phases addressed with two dierent methods. Here we present a novel formulation as a single articial neural network. In classical neural networks, each entity is classied separately by the learned NN after a stimulation phase. In our proposed model, for each video multiple feature vectors (one per interest point) are presented sequentially while the NN integrates this information internally. Classication is done after all feature vectors have been presented. The scheme in Figure 3.1 illustrates this concept. The box indicated as ∑ corresponds to the module which integrates responses over individual interest points for each video. We rst give an overview of its purpose before explaining each layer in detail.The goal of our proposed model is to express several parts into a single model, which are classically separated: (i) clustering; (ii) feature vector projection on a codebook; (iii) class prediction. For the bag-of-words model, a codebook is traditionally constructed by k-means algorithm on the feature space, where each cluster center is represented by a vector in the feature space and considered as a codeword. Feature vector projection on the codebook is completed by computing the distances between the feature vector and dierent codewords and selecting the one with minimal distance. Since the procedure only involves vector inner product, it thus can be reformulated as a neural model.

Figure 3

 3 Figure 3.1: A scheme of the dierent layers of the neural network. The left part is stimulated per interest point. The right part is a classical MLP taking decisions for each video.

  As a summary, the global model can be linked to classical BoW models in the following way: -Projecting feature vectors on a learned codebook through the nearest neighbor criterion corresponds to stimulating our network up to layer c; -Calculating a single bag-of-words for a video corresponds to integrating several instances of layer c into a single instance of layer d; -Learning a prediction model of a classier corresponds to updating weights w e ij and w f ij for dierent ij; -Learning cluster centers (a.k.a. clustering) corresponds to updating weights w cc ij for dierent ij.

3. 2 . 1

 21 The layers of the proposed NN model The input layer consists of a set a of M input nodes a = [a 1 , . . . a M ] T corresponding to the feature values of length M assigned to a single local primitive, i.e. an interest point. The N nodes of the second layer b = [b 1 , . . . b N ] T correspond to the distances of the input feature vectors to each of N cluster centers. To each node i and each distance b i is thus assigned a cluster center w cc i• , i.e. a vector of dimension M , denoted by w cc i• = [w cc i1 , w cc i2 , • • • , w cc iM ] T , which is involved in the distance computation:

Figure 3 . 2 :

 32 Figure 3.2: Illustration of the notation used for units in this chapter: symbols with bars (e.g. ēi ) indicate the result of the linear combinations performed by each unit. Symbols without bars indicate the output of the unit after the activation function, e.g. e i = g( ēi ). The chosen activation function depends on the layer.

  Assuming a set of video les with interest points and their corresponding feature vectors, as well as a groundtruth action label per video, backpropagation propagates the error between the stimulated response and the groundtruth back to the input layers, adjusting weights during the process. Here the groundtruth of course indicates the action class of a video, and not a cluster center. In our case, this means adjusting two dierent types of parameters, namely the weights of the MLP as well as the cluster centers w cc . The weights of the MLP are updated with a classical error backpropagation scheme, which is recalled in section 3.3.1. The cluster centers can be updated by two algorithms, which are respectively addressed in section 3.3.2 and 3.3.3. These two dierent types of weights are sequentially and iteratively learned. At any time the proposed system only learns one type of weights. The former is used to learn an optimal MLP model and the latter makes use of the backward errors of the optimal MLP. The pseudo code of the proposed framework is shown in Algorithm 1.

  us recall the denition of layer b by reproducing equation (3.1):

  ) and (3.22) into equation (3.20), we obtain

  Figure 3.3: Two dierent ways to learn the cluster centers illustrated through a Voronoi diagram of the feature space, for simplicity in 2D. Cluster centers are green and large, training points are blue and small. Recall that Voronoi cells do not correspond to decision areas of prediction model for actions. A video is represented by a bag of multiple points, i.e. a histogram of cluster indicators/Voronoi cells. (a) The method described in section 3.3.2 directly updates the cluster centers w cc ij by gradient descent on the loss of the video. The error is equally distributed over the clusters/Voronoi cells; (b) The method described in section 3.3.3 indirectly updates the cluster centers by passes individual feature vectors from one Voronoi to another one according to the error in the BoW layer.

A

  good solution should minimize two criteria. First, the error should be low, i.e. we should minimize min s : x s = k}| + |{y s : y s = k}| ] (3.27)where |{x s : x s = k}| is the number of source indices equal to k, and the second expression can be understood in a similar way. Secondly, the feature vector movements performed by the solution should be minimal, i.e. be to minimize an energy function consisting of a weighted linear combination of (3.27) and (3.28). Instead, we opted for an iterative greedy solution, where cluster pairs (i, j) are chosen decreasing(3.27) 
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  Calculate the Voronoi diagram of the cluster centers in feature space and determine all the feature vectors of the training set falling into the sets of w cc i and w cc j , respectively.

Figure 3 . 4 .

 34 Figure 3.4. For video representation, space-time interest points were detected

Figure 3 . 4 :

 34 Figure 3.4: The KTH dataset[START_REF] Schuldt | Recognizing human actions: a local SVM approach[END_REF].

  Figure 3.5: A schematic illustration of the early stopping strategy during MLP learning with 150 codewords

Figure 3

 3 Figure 3.6: Supervised learning with error backpropagation (section 3.3.2): errors on the test set over dierent iterations.

  Figure 3.7: Supervised learning with cluster reassignment (section 3.3.3): errors on the test set over dierent iterations.

  Figure 3.8: Confusion matrix for a codebook with 150 codewords according to dierent learning algorithms and after retraining with SVMS. The codebook has been learned with: (a) k-means (b) error backpropagation (section 3.3.2) (c) cluster reassignment (section 3.3.3).
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 41 Figure 4.1: Dierent ways to include spatial layout, or not, into learning parts labels y i from features Z i for pixels i: (a) pixelwise independent classication, where spatial layout information is not taken into account; (b) A Markov random eld with pairwise terms coding spatial constraints; (c) our method:

Figure 4 . 2 :

 42 Figure 4.2: Part layouts from human body and motorcycle.

Figure 4 .

 4 3 shows the two dierent learning frameworks into which we integrate these spatial constraints. Ran-dom decision forests learn the whole set of parameters (parameters related to the feature extractor and parameters of the prediction model) jointly through maximization of entropy gain[START_REF] Shotton | Real-time human pose recognition in parts from single depth images[END_REF]. In section 4.3 we propose a way how the spatial information can be introduced into these criteria. Another popular framework is based on the combination of Convolutional Neural Networks (CNN) for feature learning and logistical regression (LR) or MLPs for classication. In section 4.4 we present contributions for the integration of spatial information into two dierent training algorithms: (i) Weakly supervised dimensionality reduction for feature pre-training [Hadsell et al., 2006]; (ii) Error backpropagation for joint LR/MLP weight learning and ne-tuning of CNN parameters (end-to-end training).
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 43 Figure 4.3: Spatial relationships are integrated into dierent models and training algorithms. (a) RDFs learn all parameters jointly; (b) CNN + LR/MLP, the feature extractor parameters are pre-trained by dimensionality reduction and then learned (ne-tuned) together with the weights of the prediction model.

2.

  Partition the set of input vectors into two sets, one for the left child and one for the right child according to the threshold τ ∈ θ. Denote by Q the label distribution of the parent and by Q l (θ) and Q r (θ) the label distributions of the left and the right child node, respectively.

Figure 4 . 4 :

 44 Figure 4.4: An example of three parts: (a) part layout; (b) a parent distribution and its two child distributions for a given θ; (c) a second more favorable case. The entropy gain for the spatial learning cases are given with λ = 0.3.
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 45 Figure 4.5: Three spatial relations: (a) shows two pixels from the same label: i.e. δ a,b = 1; (b) shows two pixels from neighboring labels: i.e. ν a,b = 0; (c) shows two pixels from non-neighboring labels: i.e. ν a,b = 1.

Figure 4

 4 Figure 4.6: The proposed loss function based on dierences in ranking.

Figure 4

 4 Figure 4.7: Multiscale ConvNets framework [Farabet et al., 2012]. LCN means local contrast normalization. Each ConvNet contains several layers of convolutions and pooling described in 4.4.3.

  . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2 Experiments for spatial randomized decision forest . 101 5.2.1 Depth features . . . . . . . . . . . . . . . . . . . . . . 102 5.2.2 Edge features . . . . . . . . . . . . . . . . . . . . . . . 102 5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3 Experiments for spatial ConvNets . . . . . . . . . . . 105 5.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.3.2 Spatial distribution of the error . . . . . . . . . . . . . 108 5.4 Discussion and conclusion . . . . . . . . . . . . . . . . 111 5.1 Introduction This chapter discusses one application of the algorithms introduced in chapter 4 to human body estimation for depth images. This kind of technique is frequently employed as a preliminary step of human pose estimation. Many applications associated with human-computer interaction depend on human pose estimation. The proposed algorithm has been evaluated on the CDC4CV Poselets dataset [Holt et al., 2011]. Our goal is not to beat the state of the art in pose estimation, but to show that spatial learning is able to improve pixelwise classication of parts based models. The dataset contains upper body poses taken with Kinect and consists of 345 training and 347 test depth images. The authors also supplied corresponding annotation les which contain the locations of 10 articulated parts: head(H), neck(N), left shoulder(LS), right shoulder(RS), left elbow(LE), left hand(LHA), right elbow(RE), right hand(RHA), left hip(LH), right hip(RH). We created groundtruth segmentations through nearest neighbor labeling. In our experiments, the left/right

Figure 5

 5 Figure 5.1: The depth images (the rst row) and their groundtruth (the second row) in CDC4CV Poselets dataset. [Holt et al., 2011].

Figure 5

 5 Figure 5.2: A spatial layout for the human body: (a) An illustration of human upper body model, (b) An adjacency matrix showing the spatial relationships. 1 indicates the relation of neighbors, otherwise non-neighbors.

  5.1) where d I (x) is the depth at pixel x in image I, parameters θ = (u, v) are two osets which are normalized by the current depth for depth-invariance. A single feature vector contains several dierences, each comparison value being calculated from a dierent pair of osets u and v. These osets are learned during training together with the prediction model, as described in section 4.3 of chapter 4.

  Figure 5.3: Illustration of edge features: (a) an input depth image; (b) an edge map E; (c) the distance transform DT E .
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 54 Figure 5.4: Examples of the pixelwise classication: each row is an example, each column is a kind of classication results, (a) test depth image; (b) part segmentation; (c) classical classication; (d) spatial learning with depth features; (e) spatial learning with depth features and edge features.

3 of chapter 4

 4 in the same way as training of all other parameters (osets u and v and threshold τ ): it is learned to maximize the gain in entropy, i.e. maximizing equation 4.6.We evaluate our method at two levels: pixelwise classication error and part recognition and localization. Pixelwise decisions are directly provided by the random forest. Part localizations are obtained from the pixelwise results through pixel pooling. We create a posterior probability map for each part from the classication results: After non-maximum suppression and low pass ltering, the location with largest response is used as an estimate of

Figure 5 . 4

 54 Figure 5.4 shows some classication examples, which demonstrate that spatial learning makes the randomized forest more discriminative. The segmentation output is cleaner, especially at the borders.

  Figure 5.5: Classication examples from the CDC4CV dataset. (a) input depth image; (b) groundtruth segmentation; (c) appropriate baseline: randomized forest for CDC4CV; (d) DrLIM+LR without spatial learning; (e) our method (spatial pre-training and spatial LR learning).

  distances. Distribution H g gives the number of pixels of the test images over distances, shown in Figure 5.6(a). This histogram largely depends on the sizes of the dierent body parts, and we can see that the pixel count decreases with distance. Distributions H s and H b are over pixels which are better classied by the baseline or by the proposed method, respectively: • Distribution H s , shown in Figure 5.6(b), is the distribution of pixels which have been correctly classied by the proposed method but wrongly classied by the baseline method (DrLIM and classical LR with netuning); • Distribution H b , shown in Figure 5.6(c), is the distribution of pixels which have been correctly classied by the baseline method (DrLIM and classical LR with ne-tuning) but wrongly classied by the proposed method. The normalized histogram H d , shown in Figure 5.6(d), illustrates the contribution of the proposed spatial learning method as a function of the the pixels' Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0038/these.pdf © [M. Jiu], [2014], INSA de Lyon, tous droits réservés

  Figure 5.6: Histograms over dierent distances to part boundaries: (a) H g the histogram of all pixels; (b) H s the histogram of pixels for which the proposed method outperforms the baseline; (c) H b the histogram of pixels for which the baseline outperforms the proposed method; (d) H d is the normalized dierence histogram.

Figure 5

 5 Figure 5.7: The VOIR platform.

  gurations of labels in feature space, or spatial layouts of objects, to improve the performance of recognition algorithms. Two types of visual recognition problems have been investigated: action recognition and human body part segmentation. These two problems dier from each other in nature. However, they are actually related to each other: human body part segmentation can be treated as a preliminary step for action recognition, due to its relation to human pose.We resolve the two visual recognition problems by machine learning approaches, which is a common choice in computer vision. Features are rst extracted from the input image/video and then machine learning techniques are employed to learn a classier for classication. Our contributions provide more available information in the learning stage, resulting in a better representation of the object, or a better classier. We briey summarize them in the following: Supervised end-to-end learning for BoW models: We applied BoW models to action recognition. Each video is represented as a histogram of occurrence of codewords in a pre-learned codebook. We reformulated Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0038/these.pdf © [M. Jiu], [2014], INSA de Lyon, tous droits réservés the BoW model as a neural network in an end-to-end training framework with two modules (see gure 3.1). The rst module creates and learns BoW models, and the second module is a two-layer Multi-Layer Perceptron(MLP), which assigns a label to each input video. The gradient information computed from the MLP module is back-propagated to the BoW module and used to learn the codebook. However, this kind of backpropagation is not straight forward in the network architecture due to the pooling process over interest points. We proposed two algorithms to make use of the gradient information to optimize the codebook. One is based on classical error backpropagation, and the other is based on cluster reassignments, in which we reassign the cluster labels for all the feature vectors based on the errors in a Voronoi diagram. In this way, the codebook is learned in a supervised way according to the gradient information from the MLP. We demonstrated the eectiveness of the proposed algorithms on the standard KTH human action dataset.Spatial learning for randomized decision forest: The randomized decision forest (RDF) is a simple method for classication. The feature vector of each entity (object/pixel etc.) is passed down the tree through a comparison between each feature value with a threshold. The threshold for each node (as well as feature parameters) are chosen maximizing the entropy gain from the parent to children nodes. RDFs work well when a large amount of training data is available. However, when the training data is very limited, the performance drops. We proposed to integrate the spatial layout of objects into RDF learning. The original label set is split into two sets of label pairs: neighboring labels and non-neighboring labels. The gain in entropy is adopted to each set.We applied our algorithm to the human part estimation problem and demonstrated that our algorithm is more discriminative than classical RDF learning. A by-product are edge features, similar to the existing depth comparison features, which are capable of improving classication performance. Spatial learning for convolutional neural networks: Compared to feature threshold learning in RDFs, convolutional neural networks can learn features through end-to-end training even in the existing literature. We proposed spatial learning for the feature learning module and for the classication module, respectively. For the feature learning module, our algorithm operates on pairs of pixels. The pairs are divided into three sets: the same label, neighboring labels, non-neighboring labels. A loss function is minimized in order to make the mapped feature vectors close for pairs of pixels with the same label and distant for pairs of pixels Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0038/these.pdf © [M. Jiu], [2014], INSA de Lyon, tous droits réservés with non-neighboring labels. For the classication stage, we structured the outputs by a ranking technique. We aim to rank the response from the groundtruth label highest, to rank the responses from the labels which are neighbors of the groundtruth label next, and nally to rank which are not neighbors last. Weakly-supervised learning and supervised learning have been combined to further improve the recognition performance. Experiments on human part estimation in depth images demonstrated the eectiveness of our algorithms.
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 61 Figure 6.1: The motorbike on the right is severely self-occluded, compared to the one on the left. Most of the spatial part relations are useless in the energy function.
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 62 Figure 6.2: In comparison to the left person, new part spatial layout relations emerge due to pose changes in the right person, e.g. the left lower arm and the right lower arm is not taken into account in the model.

FigureFigure 6 . 3 :

 63 Figure 6.3: The framework of combination of DPMs and deep feature learning.
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  Bags-of-words computation (w cc , F val ); MLP learning (w e,f , w cc , B tr , L tr ) ; Cluster center learning (w e,f , F tr , L tr ) { section 3.3.2 or

	Algorithm 1: The iterative codebook learning framework
	Input: F tr (training features), F val (validation features)
	Output: w cc (optimal codebook)
	w cc ← k-means ;
	repeat
	B tr ← Bags-of-words computation (w cc , F tr );
	"
	w e,f ← random ;
	%
	3.3.3 } ;

! B val ← # w e,f ← $ w cc ← E ← Validation error (w e,f , w cc , B val , L val ) ; & until convergence(E) ; ' 3.3 Joint codebook and class label learning

  From equation (3.18), we can get the derivative of b i with respect to w cc

			ij :
	∂b i ij ∂w cc	= -2(a j -w cc ij ).	(3.24)
	Now equations (3.23) and (3.24) are substituted into equation (3.19), which
	gives us the nal goal, namely the derivatives of the loss E with respect to
	the cluster centers w cc ij :		

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0038/these.pdf © [M. Jiu], [2014], INSA de Lyon, tous droits réservés

Table 3 .

 3 1: Errors in(%) on the test by the MLP with classical unsupervised learned codebook : mean and standard deviation over 100 independent runs.

	Codebook size	50	150	300
	Error rate	20.86(±0.06)	18.34(±0.02)	16.86(±0.05)

Table 3

 3 

	.2. We can see that supervised

Table 3 .

 3 2: Error in (%) on the test with dierent methods, dierent classiers and dierent codebook sizes: mean and standard deviation over 3 independent runs.

	Classier		Codebook size			50	150	300
			k-means 19.31(±0.26) 17.44(±0.31) 16.98(±0.64)
	MLP	error backpropagation	17.19(±0.51) 16.56(±0.07) 16.13(±0.12)
		cluster reassignment	17.57(±0.11)	16.29(±0.53) 16.18(±0.07)
		recognition time per video(ms)		1.679	4.696	9.294
			k-means 17.16(±0.66) 15.47(±1.06)	15.7(±0.24)
	SVM	error backpropagation	15.94(±0.25) 15.30(±0.33) 14.54(±0.41)
		cluster reassignment	16.80(±0.16)	14.89(±0.24) 14.89(±0.24)
		recognition time per video(ms)		1.797	4.905	10.488
	Table 3.3: Cost-benet table (in %) of the MLP compared to the SVM with
	the results of cluster reassignment method.	
	Codebook size	50			150	300
		Classier	SVM	MLP	SVM	MLP	SVM	MLP
		Error	100	107	100		109	100	105
		Time	100	88	100		96	100	93

  without using any information on the training error. Let us rst recall that the target alphabet of the learning machine is L = {1 . . . L}, and then imagine that we create groups of pairs of two labels, giving rise to a new alphabet L = {11, 12, . . . 1L, 21, 22, . . . 2L, . . . , LL}. Each of the new labels is a combination of two original labels. Assuming independent and identically distributed (i.i.d.) original labels, the probability of a new label ij consisting of the pair of original labels i and j is the product of the original probabilities, i.e. p(ij) = p(i)p(j). The Shannon entropy of a distribution Q over the new alphabet is therefore

  parameters θ f are learned from training data, taking into account Euclidean distances of pairs of features in the embedding space: d(i, j) = ||Z(i) -Z(j)|| 2 (see Section 4.4.1).• A classier ŷ(i) = g(Z(i)|θ g ) which classies the features Z(i) given trained parameters θ g giving an estimate ŷ(i) of the part label (see Sec-

		tion 4.4.2).					
	These two parts are illustrated in gure 4.3b.	As is common in
	the	Deep	Learning	literature,	the	embedding	can	be	pre-trained
	in	an	unsupervised					

Table 5 .

 5 1: Results on body part classication in pixelwise level.

	Accuracy

Table 5 .

 5 1 shows classication accuracies of three dierent settings. A baseline has been created with classical RDF learning and depth features. Spatial learning with depth features only and with depth and edge features together are also shown in table 5.1. We can see that that spatial learning can obtain a performance gain, although no pairwise terms have been used during testing.

Table 5 .

 5 2: Correct rate(%) on pairs of parts for dierent feature settings in part level: D=deph features; E=edge features. The second convolutional layer consists of 32 lters of size 9 × 9, each of which combines 4 feature maps of the previous layer, with the same activation and pooling operator. The output is a set of 32 feature maps.

	Spatial D+E	Spatial D	Classical D	Spatial E	Classical E	
	λ = 0.4 89.05	λ = 0.4 88.47	85.30	λ = 0.4 52.45	46.69	H-N
	0	1.15	0.29	0	0.29	LS-RS
	53.31	34.58	39.77	25.65	20.46	LS-LUA
	0.86	0.28	1.15	1.44	2.02	LUA-LFA
	0	0.28	0.29	0	0	RS-RUA
	25.65	10.66	17.58	14.41	21.90	RUA-RFA
	72.91	67.72	49.86	82.13	77.81	LS-LH
	0	5.18	0.29	0.86	1.15	RS-RH
	13.54	28.24	16.14	22.48	19.88	LH-RH
	28.37	26.29	23.41	22.16	21.13	Ave.

  = b and 0 otherwise in equation 4.7. The results are shown in Table 5.4. For each setting (ne-tuning or no ne-tuning), spatial training outperforms non spatial training, and in many cases, the gains are high. Fine-tuning means end-to-end training of the LR (top two layers) and ConvNet (remaining layers)

	]	60.30%
	Spatial RDF (Section 4.3 of chapter 4)	61.05%
	Single-scale (vanilla) ConvNet [LeCun et al., 1998]	47.17%
	Multi-scale ConvNet [Farabet et al., 2012]	62.54%

a

Table 5 .

 5 4: Results of dierent combinations of classical and spatial learning on the CDC4CV dataset.

	Convolutional layers	LR	Fine-tuning	Accuracy
	DrLIM [Hadsell et al., 2006]	classical	no	35.10%
	DrLIM [Hadsell et al., 2006]	spatial	no	41.05%
	spatial	classical	no	38.60%
	spatial	spatial	no	41.65%
	DrLIM [Hadsell et al., 2006]	classical	yes	64.39%
	DrLIM [Hadsell et al., 2006]	spatial	yes	65.12%
	spatial	classical	yes	65.18%
	spatial	spatial	yes	

  Table 5.5: Running times on the CDC4CV dataset of our proposed methods. For the ConvNets method, training includes pre-training, LR learning and ne-tuning, and testing time on one image is given. The resolution of testing depth image is 320*240.

	Task	Method	Machine	Architecture	Time
	Testing	spatial ConvNet Xeon E56620, 8 cores, 2.4GHz MATLAB+IPP	00.41 sec
	Testing	spatial ConvNet Xeon E56620, 8 cores, 2.4GHz MATLAB+GPU 00.31 sec
	Testing	spatial RDF	Xeon E56620, 8 cores, 2.4GHz C++ / CPU only 00.18 sec
	Testing	classical RDF	Xeon E56620, 8 cores, 2.4GHz C++ / CPU only 00.18 sec
	Training spatial ConvNet Xeon E56620, 8 cores, 2.4GHz MATLAB+GPU 36.00 h
	Training spatial RDF	Xeon E56620, 8 cores, 2.4GHz C++ / CPU only 15.8 h

  The ConvNets method can be easily extended to semi-supervised learning, taking advantage of additional unlabeled training data. On this unlabeled data, the loss function would not include any terms based on classication loss (which require the ground truth part label), but only terms based on the spatial layout of the parts, as mentioned in Section 4.4.2 of chapter 4.It is worth noting that the two proposed contributions of the ConvNets based method can be applied independently. In particular, the supervised spatial learning algorithm can be combined with any supervised or unsupervised training algorithms for ConvNets, for example auto-encoding or other algorithms reviewed in Section 2.4 of chapter 2. Summary of our contributions . . . . . . . . . . . . . . 113 6.2 Limitations and Future work . . . . . . . . . . . . . . . 115 6.3 Other types of spatial information . . . . . . . . . . . 117
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