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RESUME

Les robots vont peu a peu intégrer nos foyers sous la forme d’assistants et de compagnons,
humanoides ou non. Afin de remplir leur role efficacement ils devront s’adapter a
I"utilisateur, notamment en apprenant de celui-ci le savoir ou les capacités qui leur font
défaut. Dans ce but, leur maniere d’interagir doit étre naturelle et évoquer les mémes
mécanismes coopératifs que ceux présent chez 'homme. Au centre de ces mécanisme se
trouve le concept d’action : qu’est-ce qu’une action, comment les humains les reconnaissent,
comment les produire ou les décrire ? La modélisation de toutes ces fonctionnalités
constituera la fondation de cette these et permettra la mise en place de mécanismes
coopératifs de plus haut niveau, en particulier les plan partagés qui permettent a plusieurs
individus d’ceuvrer de concert afin d’atteindre un but commun. Finalement, je présenterai
une différence fondamentale entre la représentation de la connaissance chez 'homme et
chez la machine, toujours dans le cadre de I'interaction coopérative : la dissociation possible
entre le corps d’un robot et sa cognition, ce qui n’est pas imaginable chez I'homme. Cette
dissociation m’amenera notamment a explorer le « shared experience framework », une
situation dans laquelle une cognition artificielle centrale gere I'expérience partagée de
multiples individus ayant chacun une identité propre. Cela m’amenera finalement a
guestionner les différentes philosophies de I'esprit du point de vue de |'attribution d’un

esprit a une machine et de ce que cela impliquerai quant a I'esprit humain.

Towards a distributed, embodied & computational theory of cooperative interaction Page 3



ABSTRACT

Robots will gradually integrate our homes wielding the role of companions, humanoids or
not. In order to cope with this status they will have to adapt to the user, especially by
learning knowledge or skills from him that they may lack. In this context, their interaction
should be natural and evoke the same cooperative mechanisms that humans use. At the
core of those mechanisms is the concept of action: what is an action, how do humans
recognize them, how they produce or describe them? The modeling of aspects of these
functionalities will be the basis of this thesis and will allow the implementation of higher
level cooperative mechanisms. One of these is the ability to handle “shared plans” which
allow two (or more) individuals to cooperate in order to reach a goal shared by all.
Throughout the thesis | will attempt to make links between the human development of
these capabilities, their neurophysiology, and their robotic implementation. As a result of
this work, | will present a fundamental difference between the representation of knowledge
in humans and machines, still in the framework of cooperative interaction: the possible
dissociation of a robot body and its cognition, which is not easily imaginable for humans.
This dissociation will lead me to explore the “shared experience framework, a situation
where a central artificial cognition manages the shared knowledge of multiple beings, each
of them owning some kind of individuality. In the end this phenomenon will interrogate the
various philosophies of mind by asking the question of the attribution of a mind to a

machine and the consequences of such a possibility regarding the human mind.
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Preface

Robots. Before addressing any specific, focused and specialized sub-topics, this thesis
is about robots. From books, cinema and video games, robots are already present in our
imagination, somehow known by people. However, robots living an imaginary world of
science fiction are not the ones that | know. | have to start this thesis by a cynical statement:

robotics is an illusion.

Doing a PhD in robotics can be seen mostly as spending countless hours of writing
austere code behind a computer screen, but it is also conducting a constant social and
psychological experiment each time someone questions you about your job. What |
discovered through this dialog is that working as a “cognitive roboticist” is similar to being an
illusionist. When one goes to a magic show, he really sees that the assistant girl is cut in two
pieces and glued again after a while. His eyes send the information to his brain about what is
going on in front of him, and a part of his brain believes that the girl is cut. However, if you
ask him after the show if he actually thinks that the lady was sliced in half, he will say “No!
Of course there is a trick!”. In the case of robots, | observed an even more paradoxical
situation. When | have to do a demonstration to naive people, or journalists, I'm always

astonished by how easy it is to “trick” them.

A simple dialog between you and the machine in English and one will ask you “Does
he understand French as well?”. I'd like to answer “Yes, he can understand and speak all
languages in the world”, however the only thing that | can honestly say is “It doesn’t
understand English. It’s only translating a sequence of sounds to a text in English, this text
triggers a text reply in English which is translated back into a sound that you truly
understand”. The fact is that the Chinese Room experiment (Searle 1980) is less popular than

Wall-E...

Another funny question often raised is “If you had to compare it to a child, how old
would your robot be?”. Well, this kind of child is able to process differential equations in a

matter of nano seconds, while at the same time destroying his whole arm by pushing it
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through a wooden table that it doesn’t perceive and without feeling any pain. It is a child
that can record his whole life in high definition video, while not being able to tell you

anything about what he did in the past day. What age would you give to such a child?

Examples | could produce to make my point are legion: “He is looking at you! He likes
you!”, “He looks so sad!”, “Which toy does he prefer?”... The fact is that people naturally
assign agency, feelings and human-like intelligence to a (humanoid) robot. Every single
motion or sound made by the robot is instantly imbued with intentionality, suggesting that
the observer unconsciously assigns some high level cognition to the machine. This is what
happens during the show, people believe in “magic” because their own brains suggest to
them much more than they actually see. But then, after the show, comes this question that |
used to ask to naive subjects: “Do you think that a robot can be intelligent?” or even a more
delicate one “Do you think that a robot can be conscious?”. The answer is always a too
strong “No”, served with plenty of justifications involving often a fuzzy concept of “soul” and
a raging indignation that we can even think about machines being our equal. My point is not
to evoke a precocious remake of the Valladolid debate® but to highlight a few points about
the upcoming integration of robots into our society. First is that the illusion of intelligence is
born easily in the eye of humans; while at the same time they are firmly convinced that this

very thing they experience cannot be true.

The main difference between difference between the robotics researcher and the
illusionist stands in their approach of building the illusion. The magician uses a mind trick to
present something that he knows to be a “lie” as a true fact. The robotic researcher tries to
create real magic, not to have the people think he is flying, but to fly for real. When | design
the brain of a robot, | do not want people to think it is intelligent, | want it to be so. This
thesis is about my efforts helping to reach this goal, to be able to meet one day a robot that |
will consider as being the equal of humans in terms of intelligence and consciousness.
Agreeing on the fact that we are still at the babblings of robotics, my very hope is to see this
day. It is both a hope and a fear. | fear that when this time comes, only the magician will

know that his magic is real. Because for most of people, intelligence and consciousness are

! The Valladolid debate (1550-1551) is famous historical debate which purpose was to determine if America’s
natives had a soul or not and therefore if they could be subject to slavery or not.
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something magic, and we can only recreate an illusion of magic. A hope, because mankind
used to consider natural phenomena as magic, until they were explained by science and
mastered by technology. So perhaps building a conscious machine will make people
understand their own consciousness without considering it as a thing of magic, sacred or at

least impossible to engineer.
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Introduction

One starts to write this thesis using a highly technological device while drinking a
homebrewed coffee. None of this could have been possible without the collaboration of
hundreds of people. Even this activity, writing a thesis, is somehow part of a general
cooperative plan: taking a step towards a higher level of knowledge in the EU Cognitive
Robotics community. It is the result of a thinking process, which leads to ideas. Those ideas
are written down in order to save them, to share them more easily with others, to avoid
someone else wasting time in the thinking process. At a more practical level, we see results
of cooperation everywhere: the machine which made the coffee, the water that arrived
from the tube and the coffee beans that were planted, picked and roasted; all of those

required at some point many people to work together.

Mankind has been able to achieve great things that are not within the reach of a single being
(Tomasello 1999). Through cooperation, we are able to jump over a wall that is too high or
to build the Great Wall. However, in both cases the same principles apply: a long chain of
cognitive processes. At the “lowest” level, parts of our cortex refine our raw sensorial
experience of the world. All our different sensory signals are merged through a learning of
the correlations between elements composing the reality. In Chapter 1, | will describe a
cortical model which allows a generic transformation from raw sensory data to the symbolic
level. | will show that an object, an action or any concept can be represented as a pattern of
cortical activity. The model described will be using a modified version of Kohonen Self
Organizing Maps (Kohonen 1990), however it will be the only part of this thesis which will be
about neural modeling. Having reached this point, | would like to speak about my position
regarding neural networks. In the past, the artificial intelligence field has seen quite an
opposition between classic Al (symbolic) and connectionism with (Fodor 1975) Before
starting my PhD | was on the connectionist side, | believed that all problems in Al could be
solved using neural networks and that it would be easier to model cognition this way. Having
been working three years with a robot | still think that every problem can be solved using a
neural model, however | also know that the optimal way to solve problems is not always the

one that the nature choose. Neural networks are mathematical tools; they are good at
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performing transformations between spaces when we do not have a clear idea about how to
formalize this operation. It is the case when we try to model the perception: no model

| "

nowadays can provide us a full “symbolization” of the world experienced through the
sensory apparatus of a robot, the symbol grounding problem is not yet solved(Harnad 1990).
Therefore the best systems dealing in that field are mostly neuro inspired, even if their
performances are too unpredictable. However when it comes to higher level cognitive
functions, the brain processes are in some manner manipulating symbols, concepts. I'm not
oversimplifying the cortical computations; I’'m simply arguing that symbols are present in the
brain, wielding the form of complex and distributed pattern of activity’. If we assume a
complete symbolized representation of the real world then software engineering provides us
many excellent ways to model cognition. Who never dreamt of being able to use a debugger
to inspect the brain in a given state, having variables containing the “apple” or “eat”
concepts instead of multidimensional vectors representing the same meaning? After the first
chapter, | will assume that my models can be built among this symbolization and | will use
mainly software engineering to model cooperation. This thesis will follow a bottom up plan,
going from the lowest level of cognition (close to the sensors) to a fairly high level

(cooperative interaction and language manipulation).

Chapter 2 will describe the concept of action. While it is quite easy to get an intuition
about what the symbol of an object could be, the nature of an action is a bit more difficult to
handle. Actions are not only a motor sequence, neither a simple sequence of behaviors. An
action can be perceived, executed and described; it is deeply linked to the real world which
makes it possible or not and which will be modified along its execution. An action is a way to
change the world; it is the very first element which makes a body appearing to be animated.
A stone could be the smartest thing in our universe while we would have no idea because it
is unable to act. Since action is the main “building block” of any intelligent behavior, | will
examine which insights are given by both neurophysiology and developmental psychology.
Based on this literature, | present a data structure which can be used to generically

represent an action in order to allow its recognition, execution and verbal description.

’The extensive problem of symbol grounding, and the academic debate concerning the challenges between
symbolic and connectionist approaches will not be addressed in any detail here.
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Moreover, | will present imitation, one of the basic requirements of cooperating abilities

which is intrinsically matched when using this action model.

Once given a way to manipulate actions as symbols, it becomes possible to handle them
in order to build a meaningful interaction between the robot and a human counterpart. In
Chapter 3, | will focus on cooperation and again base my implementation work on studies
performed in the fields of neurophysiology and developmental psychology. Along their
development, children learn to interact with others in order to reach goals that are beyond
their individual abilities. They demonstrate early an ability to share their goal with somebody
else, using gaze, gestures and later on language. Once the goal is defined, a shared plan is
constructed with the help of the partner; by assigning specific actions to each participant
children find a path to reach their goal together. As mentioned above, having an exhaustive
data structure (or representation) for action allows for their straight forward manipulation.
Therefore a shared plan can be seen as a sequence of actions, each action being assigned to
a specific agent. However, while this implementation is fairly simple, it is powerful: the goal
of a shared plan can be determined by summing up all the goals of the component actions,
the description and verbal negotiation for establishing the plan can be built using the actions
specific descriptions, etc. Moreover, such a shared plan can be seen as a path between two
world states. By knowing the current state of the world, and the desired goal, many planning
algorithms can be used to create a shared plan. While this is not the point focused upon in
this thesis, | will briefly discuss how to generate a goal directed shared plan using this

information.

A prevalent approach to building cognitive systems today is to examine human brain
function, and to attempt to mimic that process. It is a fair approach, since we have no clear
alternative guides about how to build intelligent systems. However we have to keep in mind
that human cognition is built on the top of the animal body limitations. In the last chapter of
this thesis | will see “beyond the body” and describe which unique features an artificial
cognitive machine can realize. Whether artificial symbols represent objects, actions or plans,
they can be represented in a well defined software data structure which can be stored in
memory, written in a file or exchanged through the network. The knowledge and cognitive
working material of a robot is a collection of those representations, most of which is fully

unembodied, opening up to manipulation of knowledge as if it was any other kind of data.
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Chapter 4 will introduce the basis of an abstract (unembodied) cognitive machine with
distributed bodies: while possibilities are endless, already a few achievements and problems
are within our reach. I'll present them along with Central Cognition, a system designed to
handle a centralized abstract cognitive machine while controlling multiple robotic bodies in
parallel. Based on the possibility of such an architecture, I'll pursue a reflection about what
could become a “Shared Experience Framework”, applying and extending the Cartesian
dualism to artificial cognitive machines and asking new questions about what are the mind,
the body and the individuals. While this chapter will be mainly about the technical feasibility
of such a framework, I'll pursue a deeper philosophical interrogation about those concepts

within the final discussion of the thesis.
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Chapterl
Embodied action, merging multiple sensory modalities
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Introduction

The common approach to study the cortex is to divide it into areas (Brodmann 1909; Amunts,
Schleicher et al. 1999) and to determine how those areas are connected both in term of
anatomical (Felleman and Van Essen 1991; Markov, Ercsey-Ravasz et al. 2010) and functional
connectivity (Cordes, Haughton et al. 2000). Although the neuroscience community doesn’t
always agree on the exact segmentation details, many researchers try to draw the
connectivity map of the cortex (Braitenberg and Schiiz 1998; Guye, Parker et al. 2003). From
outside the community, one can imagine that the motivation guiding this research is that
from the structure of the cortical network one could infer the functional dynamics and the
respective role of each area. Due to historical reasons, the primary areas (vision mainly)
which are “close to the sensors” have been studied more intensively than the rest of the
cortex. They are generally thought as being organized in a hierarchical way (Felleman and
Van Essen 1991), with leaves (the bottom levels of the hierarchy) being the areas closest to
the sensors. Although cortex is clearly not a mathematical hierarchy (Markov, Ercsey-Ravasz
et al. 2010; Vezoli, Gariel et al. 2010) there is a hierarchical flavor in its global organization:
areas close to sensors merge into amodal zones which often send feedback to the bottom
and continue to merge together upper in the stream?®. This framework has built up the idea
of convergence zones (Damasio 1989; Damasio and Damasio 1994). In a nutshell this theory
holds that some cortical areas could act as pool of pointers to other areas, therefore linking
several cortical network together. These zones would be responsible for linking together
representations from various sensory modalities of the same concepts. A concrete example
is that seeing a photo of a very dirty and wet dog could give you a sensation of its smell. The
olfactive representation of such the odor associated to the dog in the picture could be
activated because those two modalities (olfactive and visual) are linked in some high level
conceptual convergence zone. This example is quite naive and convergences zones are
dealing which much more distributed and functional linking of concepts and functions;
however the main idea is there: they merge networks of lower level cortical areas into
amodal higher level concepts and solve this way the binding problem by allowing the

extraction of units and regularities from the complex and not segmented raw sensor

> This is currently written in a naive manner. We will benefit from constructive input from the committee to
improve these paragraphs.
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information. The feedback process is also important; it could be a basis for explanations of
certain perceptual illusions: we never perceive reality as the pure raw signal coming from
our sensors; instead we perceive sensory information mixed with feedback data coming
from higher levels in the stream. Indeed we do not perceive the world as it is, but as we
think it is. Most illusions are based on the regularities our brain is used to experience in the
world and on consistency between our different sensors. A well known evidence of this is
the McGurk effect (McGurk and MacDonald 1976) which makes us “hear what we see”, thus
providing evidence that regularity in visuo-audio patterns shapes our perception. The
convergence zone framework and the feedback influence could explain this effect in an
elegant way as well as many other illusions. As it is quite generic and relatively easy to
implement, the convergence zones framework served as a basis mainly for theoretical
models (Moll and Miikkulainen 1997; Howe and Miikkulainen 2000). Moll’s model provides a
very good starting point for an implementation on a robot, but it lacks a major feature of
cortical computation: topographical organization. It is a well-known phenomenon that some
areas of the cortex will get activation in similar locations while presented two stimuli that
are similar. Mostly studied within the visual cortex (Kosslyn, Thompson et al. 1995; Schall,
Morel et al. 1995; Engel, Glover et al. 1997), this topographical organization also occurs in
the motor cortex with the somatotopic (Buccino, Binkofski et al. 2001) mapping and the
famous “homunculus” (Metman, Bellevich et al. 1993; Aflalo and Graziano 2006). Indeed it is
quite appealing to consider that that this mechanism of convergence is quite generic and
spread throughout the cortex, although no clear evidence of this has been systematically
investigated. From a pure modeling point of view, this property is also interesting :
topographical organization or neural maps allow an easy representation and understanding
of what is going on in the network, which is one of the reasons that made the Self Organizing
Map of Kohonen so famous (Kohonen 1990). In this chapter | will present a neural network
model called Multi Modal Convergence Maps (MMCM) which fuses ideas from Kohonen’s
SOM and from the Convergence Zone Framework. It allows the learning and recall of multi-
modal traces together with a spatially topographic storage in a self-organizing map of
neurons. The model is used to process low level sensory information coming from the robot
sensory apparatus and merge it into amodal representations which are used in turn to

influence what the robot perceives.
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Neuroanatomy of Multimodal Associative Areas

Investigation of the human being likely started with the study of the body. From the physical
and chemical properties of organs scientists could begin to attempt to understand some of
their functionalities. When it came to the brain, we were facing a totally different problem: it
is not a single organ, but a complex system made by the massive connections between
smaller organs units (neurons). To understand its functionality we need to investigate the
anatomical structure as well as the process of communication among the network of
neurons. It has been suggested that the brain is anatomically connected in a way that is

correlated with and facilitates its functional connectivity (Sporns, Tononi et al. 2000).

Cortex is divided into multiple areas which the scientific community more or less agree on,
they are defined by their cyto-architecture (type of neurons and other neuronal material
composing it), by their connectivity pattern and by the cognitive function they are involved
in (Brodmann 1909; Amunts, Schleicher et al. 1999). Areas are connected together, but
despite numerous studies, establishing a connectivity matrix is a huge task that has not been
achieved yet on human. Historically, the cortex has been thought as being a hierarchy
(Felleman and Van Essen 1991); while it is now clear that this is not the case in the
mathematical definition of this term (average connectivity rate of 66% (Markov, Ercsey-
Ravasz et al. 2010)), a “hierarchical flavor” is still present in our understanding of the early
areas connectivity. Studies by Kennedy’s team on the monkey provide us with a partial
connectivity matrix summarizing which and how areas are connected. Statistical analysis of
this matrix gives interesting results: it seems that a general pattern of connectivity exists.
Indeed within an area or among areas, the strength of connectivity between two locations
seems to be dependent of the distance in the way represented in Figure 1. From the earlier
sensory area point of view this organization produces indeed a “hierarchical gradient” of
connections to the other areas if we consider that position in the hierarchy is defined by the
distance to the sensory cortex. This semi-hierarchical pattern is a well suited design for the
multi-modal integration that | will develop in this chapter. After the initial sensory cortex
(with V1, A1, S1, G1, O1) where each sensor modality is clearly identified, areas start to be
more and more amodal. The premotor cortex of the monkey for example is well known to
merge inputs coming from vision and proprioception (Graziano 1999; Maravita, Spence et al.

2003). Merging proprioception with vision is important for biological systems; both
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modalities can contribute to a better estimation of the physical body status within the

environment, therefore allowing a finer motor control.
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Figure 1: Extracted from (Markov, Misery et al. 2011). The FLN is a measure of connectivity strength. The strength of
connection between cortical areas is a matter of their relative distance. Original legend: Lognormal distribution of FLN
values. The observed means (points) ordered by magnitude and SDs (error bars) of the logarithm of the FLNe for the
cortical areas projecting on injection sites. (A) V1 (n = 5), (B) V2 (n = 3), and (C) V4 (n = 3). The relative variability
increases as the size of the projection decreases. Over most of the range, the variability is less than an order of
magnitude. The curves are the expected lognormal distribution for an ordered sample of size, n, equal to the number of
source areas. The gray envelope around each curve indicates the 0.025 and 0.975 quantiles obtained by resampling n
points from a lognormal distribution 10 000 times and ordering them.
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This context leads to the strong intuition that multi-sensory merging is a core principle of
cortical computations. When a subject interacts with the physical world, the changes
induced are perceived by its sensors, the same action (in the broad sense, any motor act)
will produce the same effects, therefore producing a coherence relation between the
corresponding sensor activation. When | move my hand in front of my eyes, | will always see
it evolving in the same trajectory, with the same shapes, and feel the same exact
proprioceptive percepts, i.e. the visual and proprioceptive images are correlated. Since
proprioception and vision provide input to the same area, according to the most basic
Hebbian rule, visuo-proprioceptive regular patterns will be coded within this multimodal
area. This is one of the most obvious relations between our sensory spaces; however it is
interesting to look at the case of blind people. Neuroimagery tells us that the dorsal stream
which merges proprioception and vision in sighted people seems to merge auditory and
proprioception in congenitally blinds (Fiehler and Rosler 2010); while another study shows
that early vision during child development shapes definitively the tactile perception of non-
congenital blinds (Réder, Rosler et al. 2004). To demonstrate another such combination,
visual and auditory signal integration was found in monkey for person identification (face +
voice) (Ghazanfar, Maier et al. 2005). Multimodal areas are not predefined to use a specific
combination of modalities; they are a mechanism to merge the modalities which express the
most pattern co-activation regularity. Listing in an exhaustive way all the multimodal areas
and their input would be a huge and meaningless task, even “modal areas” where found to

integrate information coming from each other (Cappe and Barone 2005).

Literature about multimodal integration in the brain is vast, and a standalone topic
(Meredith and Stein 1986; Lipton, Alvarez et al. 1999; Sommer and Wennekers 2003;
Ménard and Frezza-Buet 2005), however the objective here is not to dress a map of the
multimodal streams in the brain, but to enlighten the fact that merging of multiple
modalities is likely one of the core mechanism induced by cortical connectivity. This principle
is the core of the Convergence Zone Theory (Damasio and Damasio 1994) which | will use as

a basis for modeling multimodality convergence.

Psychophysics: Illusions
As stated in the introduction, one of the most common and impressive manifestations of the

multimodal integration is the perceptual dependency created among different sensory
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modalities. It is reasonable to assume that our percepts are based on quite high level areas
and do not come directly from the raw sensor input, therefore they encode multimodal
traces. From a computational point of view, it means that activity in one modality can
produce a form of recall on the other, therefore biasing the perception to a more regular
pattern. Most perceptual illusions are indeed inherent to this phenomenon: the ventriloquist
and McGurk show the link between auditory and visual percepts (McGurk and MacDonald
1976; Bonath, Noesselt et al. 2007), the rubber hand experiment is about vision,
proprioception and touch (Botvinick and Cohen 1998), etc. Taking as an example the rubber
hand experiment, in a nutshell the subject is being presented a fake hand as being its own,
therefore integrating the fake hand displacement as a displacement of its own limb. Refer to
(Botvinick and Cohen 1998; Ehrsson, Spence et al. 2004; Tsakiris and Haggard 2005) for
details and variations). In this setup the subject feels a fake hand as being his own, because
sensory input coming from proprioception and vision are coherent. The small displacement
induced in the vision creates a shift in the proprioception. Indeed given the visual input, the
proprioception should not be what the body experiences; the subject therefore feels neither
the reality nor the exact vector matching the vision but a mixture of both. In this experiment
the illusion is induced after short training, a sort of priming so that the subject can associate
the fake hand with his own. Indeed psychophysics demonstrates two types of illusions, one
induced by such priming and another related to long term experience of world regularities.
While the first shows that multimodal integration is subject to short term adaptation, the
second type demonstrates that our experience shapes our perceptual system all along our
lives. An entertaining example based on the single visual modality is presented in Figure 2 :
the balls seem to be flying or not according to the position of their shadow, while if you hide
the shadow they will be on the same level. Knowing that our brain is used to perceive a
consistency between the height of an object and the position of its shadow, we can assume
that integrative systems is indeed trying to make us perceive the situation in the image as it
should be according to the laws of physics. Shadow position and spatial position are so
tightly coupled in the world that only manipulating the perception of the shadow induces a
major shift in the percept and the estimated position of the object. This illusion is so
common and useful that it has been studied (Kersten, Mamassian et al. 1997; Mamassian,
Knill et al. 1998) and exploited for artistic purposes. This example is probably not the best

one, but the point is easy to grasp: the brain is “fooling us” to perceive not the real world,
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but the world shaped as we are used to experience it. lllusions happens when those two

worlds do not match, therefore modulating the percept to be a mixture of both.

Figure 2: A long term knowledge induced illusion. Our experience of the world shapes our understanding of a perceptual
stimulus so that the physics law are consistent with our daily experience. (Picture from Lawrence Cormack)

Indeed illusions do not rely only on early sensory integration; they also touch the “semantic”
level with interferences to and from language. Reading “blue” takes longer than reading
“blue”, and YouTube had quite a buzz about hearing “fake speech” in songs by
synchronously reading a text (the illusion might not work for non-native French speakers but
one can check in case ?). This last case is an impressive illusion: despite the “sexual and
comic” connotation of the video it is an effect that is worthy of a serious investigation,
though to our knowledge no such study has been performed. In the illusion, one reads a text
(in French) while listening to a foreign song. The sonority of the text is close to the lyrics of
the song, therefore if one reads it a few second before the audio comes, one actually hears
what was just read. The auditory percept is “fooled” by vision, but passing via the language
level, which therefore demonstrates a three step chain vision->word->audition. Indeed it is
tempting to suppose that while learning to read, a multimodal area becomes a convergence

zone for written words and their audio representations.

4 http://youtu.be/w9u4GroWwCQY
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To conclude this section on illusions, let us consider memories. French literature has a well-
known description, by Proust, of what an adult feels when he happens to smell the odor of a
cake he used to eat when he was a child. The odor triggers in the reader the “awakening” of
dreams where he experiences his childhood, completely disconnected from reality.
Memories can be induced on demand, or suggested by environmental factors; however it is
clear that in both cases our percepts correspond to an illusion between the multimodal
pattern of activation we experienced and the real world. Could we therefore say that the
recall process is a “mind induced” illusion, a memory driven activation of a coherent pattern
of sensory inputs? This is beyond the scope of this chapter, so we let this question pending
and propose a model that can cope with this principle of perceiving each sensory modality

shaped by others and by previous experience.
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Model: Multi Modal Convergence Maps

The Convergence Zone Framework (CVZ) (Damasio 1989; Damasio and Damasio 1994) makes
use of a standard and generic computational mechanism within the cortex: integration of
multiple modalities within a single area. This integration derives a memory capability
allowing multimodal traces to be recalled using a partial cue (unimodal stimulation for
example). The original model formalization was performed by Moll (Moll and Miikkulainen
1997) and is quite similar to Minerva2 (Hintzman 1984) apart the fact that the former uses a
neural network while Minerva2 uses “brute force” storage of all the episodic traces. Both
models enter the category of Mixture of Experts models (Jacobs, Jordan et al. 1991; Jordan
and Jacobs 1994) in which a pool of computational units (experts) are trained to respond to
multimodal patterns. When a partial or noisy input signal is presented all the experts
examine it and respond with their level of confidence (activation) about this input being
their pattern or not. By a linear combination of their responses and their specific pattern the
missing or wrong information can be filled in. Another model which can be considered as a
special type of Mixture of Experts is the Self Organizing Map (SOM) from Kohonen (Kohonen
1990). While the formalisms are different, the core principle is the same: a pool of neurons
is trained so that each of them tunes its receptive field (prototypical vector) in order to be
mostly activated by a specific input vector. The SOM is particularly well known because of
the direct visually meaningful 2-D map representation, allowing an understanding of the
network computation and the possibility to map high dimensional data into a 2D space. They
are indeed based on the lateral organization of connectivity within cortical areas, which
induces through learning a topographical mapping between the input vector and the neural
map. However, despite the fact that they are bidirectional by nature and allow recall, SOMs
were never really used as a basis for multimodal integration but mainly to operate vector
guantization on high dimensional datasets (Kaski, Kangas et al. 1998). In this section, | will
present a model fusing ideas from the CVZ and from SOM. | will first provide preliminary
explanation on those two models and finally present the Multi Modal Convergence Maps

which I'll link to some very similar models in the recent literature on modeling multimodality.
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Convergence Zone & Self Organizing Map

CVZ

A direct model of CVZ has been established by Moll (Moll, Miikkulainen et al. 1994; Moll and
Miikkulainen 1997) where multiple modality specific layers are linked through a binding layer
(the convergence zone). Each unit of modality vectors is connected toward all neurons of the
binding layer with weight being 0 or 1 (connected or not). To store a new pattern, modalities
are set and a random pool of binding neurons is chosen, links between input neurons
activated and those are set to 1. For retrieval a partial set of the input vectors (e.g. one
modality) is activated, the neurons of the binding layer connected with weights of 1 are
found and activate back all the input units that they encode for, the process is summarized

in Figure 3.

Binding Layer Binding Layer
B |
m B g
|
|
|
|
Feature Map 1 Feature Map 2 Feature Map 3 Feature Map 4 Feature Map 1 Feature Map 2 Feature Map 3 Feature Map 4
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(¢} Binding pattern activates feature units, {di Less active Teature units are turned off,
Figure 3 Taken from (Moll and Miikkulainen 1997). A stored pattern is retrieved by presenting a partial representation as
a cue. The size of the square indicate the level of activation of the unit.

The focus in Moll’s research is to show that such a model can store a large amount of traces

within a reasonable number of neurons. Because of this they argue that it is a good
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representation of episodic memory storage within the human brain. However, the current
interest is more in the properties emerging from the mixture between multiple modalities:
how the model behaves in case of incoherent input activity (illusion) and how one modality
can cause a drift in the other one. Indeed this model doesn’t hold any temporal or spatial
relation amongst the stimuli: two stimuli close in time do not have to possess any kind of
proximity (while it is typically the case in the real world) and there is no point in trying to find
spatial clustering within the binding layer since the position of neurons isn’t used at all.
Therefore, a multimodal pattern is a hard to imagine “binding constellation” and it is difficult
to label those binding neurons to the concept they are related with. Moreover, even if the
learning process is fast, there is no evidence about how it behaves against catastrophic
forgetting (French 2003) and no benefit from past experience when learning a new trace.
The SOM can cope with those points, although it is not designed to handle multiple

modalities.

SOM
Self-Organizing Maps were introduced by Kohonen (Kohonen 1990) and have been
intensively used and adapted to a huge diversity of problems, see (Kaski, Kangas et al. 1998)

for a review.

The main purpose of SOMs is to perform a vector quantization and to represent high
dimensional data. A SOM is a 2 (or more) dimension map of artificial neurons. An input
vector is connected to the map so that each component of this input vector is connected to
each node of the map (see a partial representation of the connections Figure 4). In this
context, each neuron of the map owns a vector of connections that has the size of the input
vector, and each connection has a weight. The main idea is to fill the input vector with values
and to compare these values with the vector of weights of each neuron. Each neuron is
activated by the similarity between its weight vector and the input vector. One neuron will

more be activated than all the other, we call it the winner.
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Figure 4: Schematic representation of a self organizing map. A single input vector has each of its neurons

connected to each neuron in the map.

The main idea is to train the map so that 2 neurons that are close on the map will encode
similar input vectors. To do so input vectors from a training set are presented, the winner
neuron is calculated and its weights are adjust so they will be closer to the input values.
While this general process is very similar to the CVZ, the learning point is quite important in
SOM. Indeed not only the winner neuron is learning, but also its neighbors so that a region
instead of a single neuron will learn to respond to this input. The learning rate of neighbors
depends of their distance to the winner, this learning function is inspired from the lateral
connectivity pattern and the resulting inhibition. The learning rate function is often called
the “Mexican hat” because the learning rate is distributed like a sombrero whose center is

the position of the winner neuron (Figure 5).

Figure 5: Neighbourhood function or Mexican Hat function (Credit for picture to Daneel Reventlov)
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Learning will therefore have a tendency to shape the map so that two similar inputs will be
stored within the same region of the map. A concrete example demonstrating this principle
is the application of SOM to image compression (Dekker 1994; Pei and Lo 1998). An image is
composed of pixels, which hold in most of the cases three channels (R,G,B) accounting for
255*255*255 possible colors. However, when considering a single picture, it is clear that all
those colors are not used. By considering each pixel as a 3 component vector and
sequentially presenting pixels from an image to a SOM it is easy to get a compact palette of
the colors used. Indeed after learning, the map will store gradient of colors in several regions
which are composing the most representative palette for this image, therefore the number
of color coding the image is the number of neurons forming the map, which can be used to
greatly increase the compression. After training the map can be represented by painting
each neuron to the color its weights are encoding for, providing meaningful representation

and understanding of the map encoding Figure 6.
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—Map ~MNewral Network ————

Iteraions: ISUUU ‘
Initial learning rate: IIJ.1
Initial radius: I1 5

Curren iteration: IEUOD

Randomize | Start Stop

Figure 6: SOM used for color clusterization. Credits to Andrew Kirillov® for the demo application.

> http://www.aforgenet.com
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MMCM

Core Principles

The Convergence zone principle is to store in one place references to multiple lower level
activity patterns. It can be seen as a sort of hub, a map of pointers, or more generally as an
associative memory. The input patterns are divided into multiple independent units (vectors
or maps) depending of the modality they represent, which is something the standard SOM
doesn’t take into account. On the other side, the initial CVZ model lacks of the self organizing
and topographical property inherent to cortical maps. The Multi Modal Convergence Maps
are designed to cope with both of these requirements in a unified model merging SOM and
CVZ. In a nutshell, it can be seen as a SOM using multiple modalities from which contribution
to the network activity can be tuned. A schematic overview of a simple MMCM is presented

in Figure 7 and describes in a simplified way the flow of information through the network.
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Figure 7: Schematic representation of a MMCM linking three modalities. Each modality is assigned a color,
the arrows of the respective colors represent the possible interaction between modalities created by the

convergence map.

Each modality is taken into account during the map activity calculation according to the
equation (1) & (2), with P/" being the i component of the input vector perceived by
modality m and I™ the Influence factor of the modality m. Modality influence is a number in
[0,1] which represents how much a modality contributes to the map activity, in comparison
to the others. In our implementation, the “map” is in fact a cube, neurons are distributed

along 3 dimensions which means that A, represents the activity of the (x,y) neuron of the
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layer z. This third dimension idea came from the fact that the cortical maps are divided in 6
layers (Brodmann 1909); while this has not been extensively examined, we can consider that
adding a dimension allows a higher storage capacity by providing more nonlinear
transformations to be represented while keeping the topographical properties of such
representations. We will come back to this point in the parameters explanation, but to give

the main idea the third dimension seems to increase the encoding potential of the network.

am = x ZoonlWiey: = P M
n

A = Lma™ (2)
xXyz — Zm Im

To ground the discussion in reality, consider that a robot is looking at its hand, which is
changing postures, and listening to an observer say the names of these postures. If we take
the map from Figure 7, at each step three vectors are obtained from the robot sensors: the
image (visual modality), the joint encoders (motor modality, similar to proprioception) and
the words recognized by the spoken interaction (language modality). All the respective
modalities inputs are activated according to these vectors, and then the map activity is
calculated. The most activated neuron of the map (i.e. the winner) is recorded and its
weights give the prediction for each modality. If the learning mode is on, the weights of each

neuron in the map are adjusted according to the equations (3), (4) and (5).°

1 —((=2xwin)*+(=Ywin)*+(Z=2win)*) (3)
Dyy, = Ee 202
Eixyz = Wi?yz - Pim (4)

® Note that the modalities influence is not taken into account during the learning, at the time of writing this
function is not implemented, however it could be an interesting way to guide learning. For example, it could be
a model for what happens in congenitally blinds (influence of vision during learning 0) who are given back the
sight by technological means (influence of 1 during perception) and experience meaningless percepts.
For more info about artificial retinas see: Dobelle, W. H. (2000). "Artificial vision for the blind by connecting a
television camera to the visual cortex." ASAIO journal 46(1): 3.

, Humayun, M. S., J. D. Weiland, et al. (2003). "Visual perception in a blind subject with a chronic
microelectronic retinal prosthesis." Vision research 43(24): 2573-2581.
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AWixyz = A Dyyz. Eixy, (5)
To summarize the equations, the winner weights are modified to better match all the input
vectors so that next time those inputs are presented this neuron activity will be higher. The
other neurons of the maps also learn with a rate depending on the distance separating them
from the winner on the map. Figure 8 represents the distance function presented in
equation (3) with various values for sigma, we could also have used a Mexican Hat presented
in Figure 5, the main requirement is that the function represent a decreasing gradient from

the winner node to its far neighborhood.

\\'\\1

Sigma =0.5 Sigma =0.3 Sigma =0.1

Figure 8: Neighborhood function used in the MMCM Library, accounting for only 2 dimensions and different values of
sigma (represented for x and y ranging from -1 to 1). The Z axis represent the learning rate, the center of the dome is the
winner.

This neighborhood learning creates the self-organization of the map: inputs that are similar
will activate close regions on the map. At the modalities level, the input vectors are being
classified in regions on the map, for example all visual pattern of the hand seen from the
back will be stored on the top right corner, while the hand seen from the front will be on the
other side of the map. Since each modality will have a tendency to create its own regions
resulting from clustering of the inputs, the map will organize itself in multiple superposed
partitions. This arrangement can be seen as an associative mapping linking vectors of
different modalities that are often sensed together: assuming that we train the MMCM of
Figure 7, the robot is looking at its hand while sensing it and feeling it occurring in consistent
activation of the map coming from vision and proprioception as described in Figure 9. For
more explanation about this figure and the associated experiment, please consult the

experimental results section of this chapter; the most important thing to understand at this
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point is that the convergence map creates a spatial organization of regularities extracted

from the sensed modalities.
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Figure 9: Visualization of the map activity when stimulated by vision (left) or proprioception (right). The most active spot
is the same for both modalities, because vision is consistent with proprioception. In the case of an illusion those two
spots would be different and the percept would be a mean of both.

Enactive Perception: shaping the world

The word “enaction” will be employed to explain a psychophysical phenomenon and a
mechanism of the MMCM model. This word refers to a well-specified philosophical concept
(Maturana and Varela 1987), however here we will use only a part of it: the fact that physical
experience of the world shapes perception. We will not consider high level considerations
such as mind, consciousness and the link between body and mind, but instead focus on very

low level perception. Even prior to action, though actions are tightly linked to perceptions
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since they modify them, let us consider the pure perceptual question. How does the brain
treat the information coming from the sensors to produce a percept, and to what extent is
this percept actually different from the raw sensory information? A major point of the
enaction concept is that we perceive the world from our point of view, and this point of view
is biased by the previous experience we had of the world. Enaction is a concept that involves
a whole species and that is developed through evolution, although we can apply the same
idea at the individual scale. Through its life an individual experiences the world, acts on it,
perceives it, and regularities are extracted. The brain is shaped to perceive this world as it
appears every day, its weights are modified so that the position of a shadow and the
respective height of its owner object are interdependent (Figure 2), because this is a physical
law inherent to our universe. This basic knowledge that we are not even conscious of
possessing is so deeply trusted that it can produce the illusions mentioned above and in
Figure 2. We do not perceive the raw information coming from our various sensors as it
comes, instead our brain always attempts to make it close to a phenomenon we are used to
experiencing, it tries to shape our perception of the world so it looks like the world we know.
This is what | call Enactive Perception, the fact that our brain is always mixing the reality with
the archetype of reality it possesses, while at the same time building this archetype to cope
better with its new experience. The benefit of such a shaping of our perception by our
knowledge is not trivial; however it is an undeniable aspect of our cognition which is likely to
be due to the feedback stream connecting most of the cortical areas with lower areas of the
hierarchy. According to anatomical results, convergence zones, if they exist, are not different
from others areas, therefore they are sending feedback information to the modalities they
are fed by. The MMCM model take this process into account by considering that a
perception (either modal or amodal) is the result of merging a “real stimulus” and the

associated prediction of this stimulus.

Using the MMCM it is possible to link multiple different modalities according to the way we
experienced them. It is possible to predict one modality from the activation of the map. We
use this prediction capability to embed the MMCM into a dynamic model which can
represent the enaction. The main idea is that the map doesn’t perceive directly the sensory
data (reality), but the existing map memory altered by those sensory inputs. Indeed there is

I”

growing feeling in neuroscience field that our brain computation are mainly “internal” and
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only driven by the input coming from our sensory system (Raichle, MacLeod et al. 2001). The

Figure 10 represents schematically how the MMCM model takes into account the enactive

perception.
Visual Perception Motor Perception
Visual Stimulus Visual Prediction Motor Prediction Motor Stimulus

Figure 10: Enactive MMCM. The map does not perceive the input directly, but it uses a mixture of real and

predicted inputs. This process adds a temporal sensitivity to the system.

At any time the system experience the world, so the stimuli vectors are set by the sensory
input (St). However, this raw sensory data is not used alone to stimulate the MMCM, instead
we use a mixture of this sensory input and the prediction (Pr) made by the system at the

previous time step. This perceived vector (Pe) is calculated using the equation 6.

Pe; = pS¢ + (1 — p)Pre_ (6)

Rho is a parameter of the system which vary in [0,1] and represents the weight of the reality
in the perception of the system. The smaller it is the more the system will be influenced by
its memory. Adding this prediction to the inputs gives the ability to the MMCM not only to
act as a static associative memory, but also to process temporal information. This means
that the system should be able to learn sequences of stimuli; while it has still to be tested
and could be very much dependent from the value of Rho (if we set it to 1 for example the

system loses completely this capability.)
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Parameter Influences
The MMCM possesses several parameters that can have a major influence on the model
behavior and computation achieved. In this last part we consider all those parameters and

provide information about their role and the way they are intended to be tuned.

Modality Influences

Each sensory modality has an influence on the perception which tells how much it “drives”
the percept in comparison to other modalities. While some research has attempted to
guantify those influences in the human cognition (Burns, Razzaque et al. 2005), it is likely the
“weight” of each modality is not absolute but depends of the task, the subject and his will. In
the model, a number between 0 and 1 is associated to each modality and represent its level
of contribution to the final percept. We can see in equations (3) and (4) that we are
operating a sort of softmax function to calculate to which proportion each modality
contributes to the final activation of the map. An influence of 0 means that the modality is
not taken into account at all, for a vision based example it would mean that | close my eyes.
Setting a modality influence to 0 can be useful if | want to make predictions of those
modality based purely on the other; for example | could predict what my hand would look
like based solely on proprioceptive cues. Of course it is possible to set influences to
intermediate values (for example vision to 1 and proprioception to 0.5) in order to test
hypothesis on the psychophysics results or just to “trust more” one sense in comparison to

the others.

Enaction Factor

The enaction factor, as | described before represents to what extent the previous knowledge
contributes to the perception of reality. Perception is a mixture of what our brain predicts
about what we should perceive and what really comes from our sensors. However, while the
model is quite adapted to represent static associative memory, using its capability to be
enactive turns it into a temporal model. Indeed the map makes prediction for each modality
based on the sum of all perceptions which have an influence superior to 0. If all modalities
are taken into account it means that the perception is dependent on itself. To cope with this
problem we consider that perceptions in the world are continuous through time. What our

eyes see won’t be radically different from one image to another: olfactive and tactile
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information doesn’t “jump” from state to the other, there is a sort of perceptive continuum
inherent to the physical world. Therefore, we can consider that the percept experienced at
time tis very much related to the percept we experienced at time t-1. Given that assumption,
the model defines the perception at time t as a mixture between the real modality signal
(coming from the sensor) at time t and the prediction made for this modality at time t-1. The
enaction factor is a number ranging from 0 to 1, with 0 meaning that the previous prediction
is not taken into account at all and 1 meaning that only the last prediction is considered,
therefore running the system in a “reverberative state” with no influence at all from the
reality. Such a system has a strong analogy with dreaming: we used to say that “feeling cold
makes you dream of snow”, indeed with an enaction factor close to 1 the reality just has a
driving effect on the perception, therefore leaving the system in its self-induced state. With
non-extreme values, the enaction factor can be a way to break or create illusions (which are
basically occurring because our brain trusts more what it used to know that what it actually

sees).

Learning Rate

The learning rate, as in every learning machine system, is a key factor. It represents the
amount of modification applied to the weights of the winner neuron during learning. It is
ranging from 0 to 1 with 1 meaning that the weights are adjusted in one shot so that the
winner neuron encoded vector will match exactly the input presented. We never want this
to happen; instead a smooth modification of weights should be applied. Moreover the
learning occurs on the winner neurons but also in its neighborhood, meaning that a too high
learning rate can easily destroy previous knowledge stored by the map. However, a too low
value would induce a very slow learning. Indeed all the generic problems of learning rate in
neural networks apply to the MMCM model and it is likely that the best (but not yet
implemented) solution would be an adaptive learning rate based the prediction quality (the
difference between prediction of the network and the real sensor input). Considerations
about adaptive learning rate and how to tune it have been investigated and are not the
focus in the current study, see (Jacobs 1988; Magoulas, Vrahatis et al. 1999; Plagianakos,

Magoulas et al. 2001) for references.
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Sigma

Sigma is meaningless for the size of the neighborhood affected by learning. As depicted on
Figure 8, the closer a neuron is from the winner, the higher its learning rate will be,
according to a Gaussian like function. Sigma has no “absolute” value and should be chosen
according the size of the convergence map used. In many SOM algorithms, it is set initially to
encompass nearly all the map and it decreases over time so that the clustering becomes
finer. Indeed the adaptation of sigma is a critical parameter for all models of the mixture of
experts type. For example, in the model MOSAIC (Kawato 1999; Lallée, Diard et al. 2009) the
value of sigma is “hand tuned” over the course of the simulation in order to allow proper
learning. However hand tuning cannot be a solution, Sigma must be set in an automatic way
by the system. A good prediction should have a smaller neighborhood in order to refine the
learning and to tackle catastrophic forgetting. Typically the neighborhood range should be
decreasing while prediction quality increases; this would allow initially the whole map to be
shaped by global regularities, while detail learning would be encoded at the local level.
However, it supposes that the training samples are presented “homogeneously”. A good
work around is to define a large neighborhood while keeping the learning rate quite low, this
way all the map learns, but the adaptation is slow and does not overwrite existing
knowledge. However, probably that the best solution would be to base the calculation of
sigma on the prediction quality and the “possibility to learn” in a similar way to what is
achieved on intrinsic motivation to learn by Kaplan (Oudeyer, Kaplan et al. 2007). Their idea
is that the agent should choose the action which allows him to learn the most. Not the one
from which he can predict flawlessly the consequences, nor the one that he is unable to
understand at all, but the one which he understand enough to verify its prediction. Similarly
the learning rate and size of neighborhood in MMCM and mixture of expert models could be
low for very poor and very high prediction quality, while the average predictability should be

assigned much higher values.

Similar Models
Robotics and computer science in general is thought of as permanently “reinventing the

III

wheel”. The same concepts are rediscovered again and again, systems with similar purposes
are re-engineered and we often decide to do by ourselves something that has already been

done by others. However, science is about understanding, about grasping what is really
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behind the system and this cannot be achieved just by reading and accepting the word of
others. The MMCM model was motivated by historical bibliography, including the CVZ and
SOM models and its design derives from those bases. Indeed these were the only necessary
and the most relevant material to the problem of multimodal convergence. Afterwards, |
discovered the Multimodal Self Organizing Map (Paplinski and Gustafsson 2005; Paplinski
and Gustafsson 2006) which is very similar to the MMCM. The principal difference stands in
the integration of feedback (enactive perception in my case) and the impossibility to
modulate separately the influence of each modality. Moreover, while the model has been
tested extensively on a theoretical sample case (classifying animals based on modalities
coding for their attributes) it hasn’t been applied to real modeling of multimodal sensory
convergence in an embodied robotic framework. However, | have no doubt about the
capability of this model to cope with a robotics implementation. Another self-organizing
multimodal model close to the MMCM is being investigated by Mathieu Lefort (Lefort,
Boniface et al. 2010; Lefort, Boniface et al. 2010; Lefort, Boniface et al. 2011), it focuses
more on low level mimicking of neural process with the modeling of cortical columns.
Although this model also seems very well suited to robotics and embodied multimodal

integration, it hasn’t been applied to this topic so far.

Despite that this field of research is quite small, there is an increasing interest in modeling
cortical associative maps within the convergence zone framework. Multimodal association
can be modeled using various mathematical tools, some of them probably more efficient or
formalizable than MMCM. However a strong point of SOM and MMCM is the ease of
understanding the ongoing process and the relatively intuitive functioning of the multimodal
association. Moreover, MMCM includes core specificities like the enactive perception or the
independent modalities influences which make it a unique tool to model several

psychophysics results observed on human.

Experiments

One of the principal multimodal integration domains studied in primates is that which
merges vision and proprioception in the context of grasping. In many body configurations,
the hands of a subject are within his visual field, therefore making them the best candidates
for the integration of those two modalities (vision and proprioception) which are indeed

tightly linked for those limbs. With eyes closed and the hand moving, it should thus be
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possible to get a fairly good mental image of the appearance of the hand just based on the
body feeling, although the reverse operation needs a bit more of experimental setup to be
investigated, it is also clear that vision contributes to proprioception. The following
experiments describe various ways to model, demonstrate and use this integration within

embodied framework of the iCub robot.

Conducted: Proprioception enhance vision speed

Training phase

1) Sensory Inputs activate the map
2) Auto organisation : co-occurrent inputs = same region

Hand Posture 3
Hand Posture 2
Hand Posture 1

- R .
EmmEEE = Vision

Proprioception SEEEEE
Area 5 MMCM

Usage phase

1) Proprioception activate the map

2) Map activate a subset of visual models

3) Recognition system use only these models

Figure 11: Summary of the experimental process.

The main application of MMCM on a real robotic platform has been achieved on the iCub
(both simulator and real robot) and results have been presented in (Lallée, Metta et al.
2009). Our goal was to efficiently grasp objects recognized using vision; the main problem in
grasping at this time was the inconsistency between the coordinates of an object obtained
through vision and the position of the hand when commanding its Cartesian controller to
move to reach this point. Due to minute errors in calibration, those two positions where not
identical, therefore resulting in a hand displaced relative to the target of the reach (see
Figure 12) and the robot failing to grasp. The solution found was to proceed to an initial
reach of the object, visually detect the hand and the target, calculate the difference and

reduce it by repeating this process in a closed loop. However, the hand is a deformable
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object: according to its kinematic configuration it can correspond to a functionally infinite

space of different visual appearances, thus rendering the recognition problem not-trivial.

Figure 12: Status of target and hand after the initial grasp of the iCub. The distance between the hand and the ball needs
to be reduced using a closed loop (error reducing) control. Visual recognition is achieved using Spikenet (Thorpe,
Guyonneau et al. 2004).

The visual system of the robot is based on a robust pattern matching system (Spikenet
(Thorpe, Guyonneau et al. 2004)), which means that an object was visually defined as
database or set of models (patterns) which were extracted from images of the object. In
order for an object to be recognized it should be modeled from several view points and in all
possible configurations, which results for the hand in the creation of an extensive number of
models (see Figure 13). Of course, the performance of such a system in term of recognition
time depends mainly on the number of models it is asked to check for: in the case of the

hand the system became intractable.
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(132).ppm < hand (252).ppm

Figure 13: iCub visual models of the hand in a few configurations. The visual pattern changes dramatically from on
configuration to the other and a huge amount of models is needed to recognize the hand in every posture.

However, not all the models are relevant in every situation: since the recognized item (the
hand) belongs to the robot, it is possible to take advantage of the embodiment information
in order to reduce the complexity of the recognition process. Indeed, given a kinematic
configuration, or a proprioceptive vector, the model database can be reduced to a subset of
relevant models. The MMCM was used to identify this subset: a map linking vision and

proprioceptive modalities was built, in the following manner.

The robot gazed forward, and with its hand in its visual field, rotated the hand about the
wrist while opening and closing the fist. Proprioceptive signals were collected from the joint
angle sensors, and visual signals from the vision recognition system. The vision modality was
a vector of M components, M being the size of the full database of hand models. At each
time step, the visual modality was obtained by setting the units corresponding to recognized
models to 1 and all the other to 0. The proprioceptive modality was a vector of 16
components corresponding to the encoders of the robot arm scaled between on [0,1]. The
experiment was divided in two phases 1-Learning, 2-Recognition. During the learning phase,
the robot was looking at its hand while moving it in a semi-babbling mode as depicted in
Figure 14. The full model database was loaded in the vision system, occurring in a slow
recognition, and both visual and proprioceptive modalities were feeding the convergence
map. The convergence map, MMCM, learnt to associate a kinematic arm configuration with

its subset of activated models in approximately 8 minutes of babbling.
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Figure 14: iCub robot and simulator learning to visually recognize their hand based on their proprioception.

Once the map has learned, its predictive capabilities can be used. The influence of the vision
modality is set to 0 so that the map gets its activation only from the proprioception. At each
time step, the proprioception is sensed and the vision vector is predicted therefore
producing the subset of models which should be recognized in this configuration. The visual
system restricts the database of recognizable models this subset in order to allow a faster
recognition than if it was using the whole database. The effects of this pre-selection of visual

patterns are presented on Figure 15.
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Figure 15: Effects of proprioceptive gating on visual recognition time. Experiment was conducted twice: once on the
simulator and once on the real robot, similar highly significant reduction of recognition time was found. Gating is the
reduction of the set of recognition candidates, by the predicted candidates from the MMCM based on the proprioceptive
position of the hand.
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The effect of this pre-selection is of course dependent of the number of models present

within the database, in our conditions.

To be conducted
Although the MMCM library software developed in the thesis provides everything needed
for the design of many experiments, time constraints and focus on higher level cognition
didn’t allow them to occur. However, a few of them were (and are still) planned with the
collaboration of Alessandro Farné who has conducted research on integration of
proprioception and vision in the human. As mentioned above, psychophysics provides us a
lot of insights on the interferences between modalities. In this section | will present two
experiments that have been designed to test those hypotheses although they haven’t been

conducted at the time of writing.

Experiment 1: The rubber hand experiment

One of the most famous and studied experiments in vision and proprioception is the rubber
hand. In this experiment the subject is habituated to see a rubber hand which is not his own
while tactile contacts are done synchronously on the fake and real hand. This way both
vision and tactile information are congruent, encouraging the subject to feel the rubber
hand as his own. The matching between modalities allows bypassing the “plastic” aspect of
the hand: if | see something touching the hand and | feel it at the same time, then it must be
my hand. After this training phase, if the hand is presented shifted, then motor commands of
the subject will be impaired based on this displacement. This effect has been studied both
from psychophysics and neurophysiology sides (Botvinick and Cohen 1998; Ehrsson, Spence
et al. 2004; Ehrsson, Holmes et al. 2005; Tsakiris and Haggard 2005) and are often targeted

at finding how body ownership feeling is handled by the brain.

The hand is a part of the body that one perceives from his birth using three modalities:
vision, proprioception and touch. The signals coming from those sensors are linked within a
convergence zone (more likely a network of areas (Maravita, Spence et al. 2003)) which is
able to learn regularities in the relative relations between those senses. We have seen in the
experiment conducted on the iCub that proprioception and vision of the hand are directly
related; extending this, in the case of touch a contact will be detected both on the visual

percept and in a tactile way. We can model this three modality convergence using a MMCM
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therefore allowing to replicate the rubber hand experiment on the robot and retrieve the
shift of perception directly in the network activity. Detailed setup of the modalities coding is
presented in Figure 16 and assumes some simplifications on the visual and tactile

components.

Proprioception: Vision: Tactile:
16 encoders Hand position and Touch detection (0/1)
Touch detection (0/1)

Figure 16: Modality coding for the rubber hand experiment simulation.

Vision represents the position of the hand in the visual field and a Boolean value describing
whether there is a contact between the hand and something else. The tactile part receives a
Boolean which is the result of a contact detection using the iCub skin. Finally proprioception

is the vector representing each joint angle of the robot arm.

The rubber hand experiment in human needs to fool the visual part by using a fake hand.
With our robotic design we could reproduce the experiment by directly cheating on the
perception of the robot. For example we can add to the sensed hand position an offset
which would act as the displacement of the fake hand in human. Moreover other
perceptions could be modified this way: we could probably show that a disturbance in the

proprioceptive feeling produces a shift in the visual localization of the hand.

In order to make the experiment closer to that on humans, we could also add another visual
component which would code for the “visual similarity” of the hand. We could play on this

parameter to give testable predictions on human in order to further validate the model.

Experiment 2: Rock, Paper, Scissor experiment
Another experiment could add a flavor of “reinforcement learning” to the MMCM model.

Assuming we would like to teach the rules of the “rock, paper and scissor” game to the robot
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which means, given a sign, which one should be used in order to win. Using exactly the
same map pattern as in the previous experiment (same modality sizes) and the coding
presented in Figure 17, we can implicitly teach the game’s rules by demonstrating the game.

The learning phase would unfold as:
Repeat:

1. Human moves in either rock, paper or scissor posture.

2. Vision modality is set accordingly, Reward is set to 1 and proprioception is
predicted.

3. The robot posture (rock, paper, scissor) which is the closest from this
prediction is commanded.

4. The human says to the robot either “you loose” or “you win”.

5. Proprioception is set to the played posture, vision is set to the human move

and reward is set to the result of the game. The map learns.

DOOOOOOO

Proprioception: Vision: Reward:
16 encoders Human move Lost=0
Victory=1

Figure 17: Modality coding for learning the Rock, Paper, Scissor game. After the map has learnt, the rules of the game
are coded within it.

After a few rounds the robot should start to do the move which should beat the human.
Because we ask the robot move (proprioception) based on what the human did and an
intention to win the game (reward is set to 1 before the prediction). The omnidirectionality
of the map allows also some other use: say if the robot won the game based on his move

and the human one, or predict what the human would have to play in order to win/loose the

Towards a distributed, embodied & computational theory of cooperative interaction Page 46



game. This experiment would be less related to human data, indeed its main purpose is to

show that MMCM model can be used to model rules and logic operations.

Due to the possibility to set modalities influence to 0 in order to make predictions, MMCM
model is more than a simple auto associative memory. Indeed it can also be used as an
hetero associative memory and therefore be used to model functions instead of only cue

based pattern retrieval.
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Discussion

Multimodal fusion is a core principle of cortical computation. It can serve as a basic principle
to explain many behavioral results and as a source of inspiration for the emergence of
concepts from sensorial data. The MMCM model has been designed to reproduce this
behavioral data and turns out to be generic enough to cope with a quite large range of
problems. A detailed description of the software produced (MMCMLIb) is provided as an
Annex, however a few notes on this. It uses the YARP library, which allows message passing
over the network. Each modality can be set remotely, and its prediction can be read as well.
This mechanism is fairly important in the case of a hierarchy of maps. The current work does
not address using the MMCM map as a building block for more complex hierarchical
networks, however the software has been designed so that one map can serve as a modality
for another. By allowing maps to be connected remotely, the hierarchy processing can be
easily parallelized over multiple computers, therefore solving computational issues which
may occur. Future work will focus on achieving the experiments presented in this chapter,
however it is quite appealing to imagine more complex processes like the one depicted in

Figure 18.

Concept Map

Visio-
Proprioceptive
Map

Full Arm
Posture

Head Posture Hand Posture Arm Posture
Map Map Map

Shape Map

Visual Matrix Robot head Encs. Robot hand Encs. Robot arm Encs.

Figure 18: A potential hierarchical organization of MMCM. Using this kind of arrangement high level amodal concepts
could be coded in a cortex-like fashion.

Towards a distributed, embodied & computational theory of cooperative interaction Page 48



Since a map of neuron can be used as a modality input for another map, the question of how
to interpret a given map activation can be asked. It can be described as multimodal percept,
compressing vectors of low level features, but | prefer to refer to it as a concept. When one
is asked about giving a definition of a dog, he says that a dog is its image, its smell, semantic
information (number of legs, color, can bark, etc.), everything that all dog possess and which
can be coded as activation of modalities. Of course those modalities will always be
congruent when observing a dog, therefore strengthening the concept of dog in the subject.
There is no doubt that in some place in the cortex, a population of neurons is coding for the
dog concept, but | do not say that those are the “dog neurons”. Those neurons are nothing
by themselves, but they link together a rich hierarchy of amodal neurons in order to be
finally expressed as modal neurons. When | want to imagine a dog, my brain may be
activating this initial population and the feedback cascade could be the origin of this dog
mental image that appears if | wish to see it. Although MMCM can be clearly qualified as a
“connectionist” model, it is solving the symbol grounding problem exactly as described in
(Harnad 1990) by using an hybrid symbolic/non symbolic representation. Modalities, when
linked to the sensors, are clearly providing non symbolic information to the maps, however
after learning and convergence, a given map activation can clearly be understood as the
neural code of a symbol grounding the associated modality activities. Moreover, this neural
code itself can be used as non-symbolic information feeding a higher level map, while still
being interpretable as a pure symbol. Indeed MMCM provide a tool to symbolize the
embodied experience of the robot and enable higher cognitive functions to work on those
symbols. Although it is in theory possible to implement also those functions using an
enormous hierarchy of neural maps, once the world symbolization has been achieved,
cognition can be achieved using classical software engineering methods as we will see in the
next chapters. Finally the MMCM can be used as a model of multimodal integration in the
cortex and allows producing and verifying several hypotheses about modalities interaction
and their behavioral consequences. It can also provide a very good model of the synesthesia
phenomenon (Cytowic 2002; Nunn, Gregory et al. 2002) which it will explain in two ways:
first synesthesia could be the result of a wrong connectivity pattern (two cortical areas that
are not supposed to be connected occurring in being linked). Another option, assuming the
enormous rate of connectivity in the brain, is that an abnormally high correlation between

statistically unrelated modalities is experienced early on during development, therefore
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allowing the child cortex to encode relations between modalities that are unrelated.
Although the first hypothesis might be tested using emerging imagery techniques like DTI,
the second one is likely to be impossible to test. Although it is beyond the scope of this
thesis, it could be exciting to design a robot with synesthetic capabilities, and to see if it is
possible to “cure” it by imposing an “unassociative training”. Due to plasticity of the model,
such a treatment should be possible; therefore it could be a good investigation to carry on in

the human case.
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Chapter Il
Symbolic Action Definition, from Primitives to meaning
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Introduction

As mentioned above, one way to benchmark the intelligence of an agent is to
examine and quantify the characteristics of its interaction with the world, thus, the central
importance of action. Before the more scholarly treatment below, we begin with some
intuitions. Every action has consequences, an effect on the surrounding world, and a
principal activity of living beings consists in choosing which action to perform at any given
time. The pool of possible actions is defined by the agent himself (a fish will never be able to
grasp an apple) and by the state of the world (one will never be able to grasp an apple while
standing in front of a banana tree). Among all the possible actions, defining the right one is
a matter of goal, of which world state we would like to approach. We are able to make this
choice because we know what we can possibly do and which effect it may have on the world.
Of course, whenever we act we don’t always check all our possibilities, nor what could be
the consequences of them, our behavior is triggered by the world state and our inner
universe. Rather than how one will choose the sequence of actions that should lead to the
goal, this chapter will focus on a single action. We will try to grasp what is the concept of
action and derive an acceptable model for it. As stated before, an action possesses
preconditions or requirements and consequences, but those are not sufficient. If | decide to
grasp an apple while you are observing me, my brain will send highly complex commands to
my muscles in order to execute my will. At the same time, your cortex will treat the sensory
information received and you will notice that | just grasped an apple. You may even notify
your neighbor who was not looking by telling “Hey! Stéphane grasped an apple!”. These are
basic functions of an action: we can execute it, perceive it or describe it. We want the robot
to manipulate actions as humans do. That is why it should possess these three abilities. So

logically this chapter will be articulated around these major axes:

1) Perceptual: when an agent performs an action it can be perceived and recognized
by surrounding agents.

2) Motor: actions are the way for agents to interact with the world; their
representations need to embed which command has to be sent to the effectors
(muscles, motors...) in order to produce the action.

3) Descriptive: for human beings, actions can be described using spoken language.

This ability requires linking the data structure recognized by (1) and produced by
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(2) with symbolic representations (words) for both the action and the potential

arguments.

For each of those aspects of action, the literature is reviewed to outline how they are
achieved in the human in term of cortical connectivity and how the child learns them. Indeed,
we don’t simply want the robot to be able to recognize, execute or describe a specific action:
we want it also to be able to learn how to do that for every possible action in its sensory-
motor and perceptual space. On one side, neurophysiology gives us directions about the
flow of information within the brain and it can be used to extract which concepts are shared
among different functionalities, therefore it is clearly a useful guide to the software
conception at the structural level. On the other hand the psychological experiments carried
out with children inform us with important information about which behaviors are making
use of these structures to perform an efficient learning through interactions with other
agents. My goal in this chapter is to give a symbolic definition of action, but also to show
how it can be used in order to allow the robot to populate a knowledge base through its

interaction with human beings.
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Action Definition: Perceptive Level

To perceive and furthermore recognize an action, an agent needs to interpret the
stream of his perceptions and match what is being perceived with some symbolic
representation it has previously stored. It is important to notice that the term perception is
not linked with any specific modality or sensor. Much of the work on action perception is
done on vision and we will use this specific modality in our explanations for ease; however
an action can be recognized using other type of information (e.g. consider hearing someone

climbing wooden stairs).

Anatomical
Anatomical neural networks involved in action perception have been studied under a variety
of different conditions. Decety and Grezes (Decety, Grezes et al. 1997) have shown that the
content of action (determining whether it is meaningful or not) as well as the observation
strategy (do we watch the action in order to recognize or to imitate) do not involve the same
cortical structures. In this specific study the actions used were pantomimes, which are
sequences of motions performed by an agent, however objects were not present and only
suggested by the motion pattern. In one condition the pattern was that of an object directed
action, so called a meaningful action. In the other condition meaningless actions are
arbitrary patterns of motion. In the case of meaningful actions they observed “in the left
hemisphere a ventral visual pathway which includes inferotemporal areas, part of the
hippocampus and terminates in the ventral part of the prefrontal motor cortex”; on the
other hand the meaningless actions (sequences of motion) produced activation in the right
hemisphere along a “dorsal pathway including occipitoparietal areas and is connected with
premotor cortex cuneus and the inferior temporal gyrus. Thus, the ventral stream also
contributes during the observation of meaningless action.” In this section of my thesis | will
mainly put the emphasis on so called “meaningful actions”, because this kind of actions
embeds semantic information. Indeed, Decety et al. reported that observation of meaningful
actions (on both recognition and imitation purposes) involved the temporal area 21
(semantic object processing). Area 45 of the left inferior frontal gyrus is also involved, it is
known to be used in tool recognition (Perani, Cappa et al. 1995) and to represent grasping
movement (it is the human analogous of the ventral area 6 of the monkey) and more

generally hand related movements (Grafton, Arbib et al. 1996).
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Meaningful actions have a semantic value and they often involve objects. In order to
interpret a sequence of motion resulting in object manipulation, it is required to have a way
to access information about objects. This is why the action recognition network involves
areas that are known to process information about objects identity and properties: it is
required to interpret an action in a semantic way. In the implementation part we will see
that the action recognition system of the robot is based on perceptual events about objects.
The fact that some of the above studies rely on pure motion of human limbs, without
involving objects, is not in contradiction with our approach. Those studies involve “imagined
objects” and therefore they recorded activation in object related areas of the cortex.
Moreover, for within our system an agent limb (the human hand for example) is just a
specific object. Indeed, the robot perceives as object every “world entity”. The work of
Decety and Grezes give us important insights about how the brain is segregating meaningful
from meaningless actions during observation. At this stage we can already extract parts of
the network responsible for goal attribution process and therefore the classification of
actions as being goal directed or not. It is important to note that goal directedness can
emerge from pantomime motion, showing that the goal attribution is based on

interpretation of physical trajectories among the entities present.

Although in this thesis action recognition modeling will be based mostly on objects’ physical
relations (Faillenot, Toni et al. 1997; Shmuelof and Zohary 2005), it is likely that a great part
of understanding others action in animals is achieved using a mirror system mechanism. This
is developed further in an Annex, however in the mirror system, the cortical body
representation is similarly activated when both producing and observing an action (Rizzolatti
and Arbib 1998; Decety, Chaminade et al. 2002; Rizzolatti and Craighero 2004). Indeed there
is a growing amount of evidence arguing that one understands others behavior by mapping
their actions and body schemas on one’s own, simulating what others are doing using ones
self-representation, a kind of understanding through physical empathy (Grezes and Decety

2001; Calvo-Merino, Glaser et al. 2005; Calvo-Merino, Grézes et al. 2006).

Developmental Psychology
The action recognition skill is acquired very early in the child development. Although we
cannot really speak about “recognition”, it has been shown by Woodward (Csibra, Gergely et

al. 1999; Woodward 1999; Kiraly, Jovanovic et al. 2003) that infants are able to detect
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actions and even classify them regarding their goal-directedness starting from the age of 6
months. Mandler (Mandler 1992) suggested that the infant begins to construct meaning
from the scene based on the extraction of perceptual primitives. From simple
representations such as contact, support and attachment (Talmy 1988) the infant could
construct progressively more elaborate representations of visuo-spatial meaning. In this
context, the physical event "collision" can be derived from the perceptual primitive
"contact". Kotovsky & Baillargeon (Kotovsky and Baillargeon 1998) observed that at 6
months, infants demonstrate sensitivity to the parameters of objects involved in a collision,
and the resulting effect on the collision, suggesting indeed that infants can represent contact
as an event predicate involving agent and patient arguments. (Allen 1984; Mandler 1992;
Allen and Ferguson 1994; Siskind 1998). Indeed, even the basic definition of what an object
is will rely on those physical attributes and relations that are inherent to all physical entities.
For example, isolating an object within a scene, or a small independent part in a bigger
object is based on physical bounds and co-motion, and those are perceived and used during
early infancy (Kellman, Spelke et al. 1986; Spelke 1990; Spelke, Vishton et al. 1995). Indeed
those physical properties are intrinsically linked to the notion of perceptual primitives: it is
not clear if we know there is an object A and we can observe that it is moving, or if we know
that this shape is an object because it is made of points that are all moving in a coherent and
natural way. Spelke isolated a reduced set of (Spelke, Vishton et al. 1995) physical behaviors
that characterize an object for infants and those are mainly related to the perceptual
primitives we are interested in, as if these early perception primitives was not a
consequence, but a cause of object perception. That is to say that the ability to perceive
physical relations between objects like contact, occlusion or co-motion seem to be present
very early in infants cognition and is likely to serve as a building block for higher level
perceptual constructs like an action. Indeed, a framework integrating the perception to the
action based on the fact that an action can be described as a succession of events has been
designed by Hommel et al. (Hommel, Misseler et al. 2001). According to the Theory of Event
Coding an action is made both of event codes and action codes which are more or less

similar to our definitions of perceptual and motor primitives.
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Robotic Implementation
While many action recognition systems are based on kinematic motion pattern (Gavrila
1999; Moeslund and Granum 2001; Schuldt, Laptev et al. 2004), only a few take as input
objects perceptual events. Siskind (Siskind 1998; Siskind 2001) demonstrated that force
dynamic primitives of contact, support and attachment can be extracted from video
sequences and used to recognize events including pick-up, put-down, and stack based on
their characterization in an event logic. Related results have been achieved by Steels and
Baillie (Steels and Baillie 2003). The use of these intermediate representations renders the
systems robust to variability in motion and view parameters. Based on previous work,
we(Dominey and Boucher 2005; Dominey and Boucher 2005) have used a related approach
to categorize movements including touch, push, give, take and take-from in the context of
linking these action representations to language (Lallée, Madden et al. 2010) (attached as
Appendix 3). This section provides a deeper explanation about these perceptual events:

how can they be detected, how can they be characterized and what can we use them for.

We call perceptual primitives those intermediate representations; they are events
that produce a salient physical change in the world state which mean that some properties
of one or more objects are changed enough and in a sufficient fast way to attract attention
and to serve as a base for encoding meaningful segments of observation. They can be
computed given the evolution of the world state through time. In order to understand the
notion of world state for the system, we will explain how objects are represented within our
robotic cognitive architecture. A data structure called Egosphere contains the status of every
object perceived by the robot. At the symbolic level, objects are structures containing a
name and a list of properties (position, orientation, isVisible, isMoving, isContainedBy,
isTouching, etc.). A perceptual primitive can therefore be described as a salient change
within the spatial properties of an object. Indeed, these events can be seen as the derivative
of world state over time: changes that occur among the status of objects. At the physical
properties level, an object can appear or fade (visibility), it can start to move or stop
(motion) and a physical contact can be established or broken between two objects (collision).
Subsequently, the data structure modeling a primitive should provide us information about
which object properties are altered and in which way. While the full Action data structure is

quite complex (See for reference Figure 25 on page 79), the perceptual side is simple: a
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perceptual primitive is only a list of object properties modifications. A property modification
is described by the name of the object, the property and its new value (e.g: (name toy
(isVisible true) ) will describe a toy appearing). Using a list instead of a single property
modification allows us to characterize all the physical primitives (which are basically a single
property modification) as well as more evolved consequences of action. Indeed | will now
describe the process of recognition and demonstrate that an action should be described as

being the sum of all the perceptual primitives triggered by its execution.

Robot: "Say the name of this object” Robot: “The object label is coca can =y Robot: "Recognized take(Robert, coffee cup)”
3 '] -

Figure 19: Visual/name binding (A, B) and use of those bindings to proceed to action learning and recognition (C) on the
BERT2 platform in Bristol.

Let’s setup a simple situation as the one presented Figure 19. Subject is facing the robot and
a set of objects are lying on the table between them. When the subject grasps the toy

(Figure 19.C) the Egosphere dataflow along the action is the one described on the Figure 20.
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Primitive Fired
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isTouching (Toy) Primitive Fired Hand

Primitive Fired isMoving 0

Toy Toy
_H:qn d_ 1 isTouching isVisible 0 Toy
isMoving (Hand) isMoving 1 isMoving 0

Egosphere Egosphere Egosphere Egosphere Egosphere

Hand Hand Hand Hand Hand

+ isVisible1 + isVisible 1 * isVisible 1 « isVisible 1 «  jsVisible 1

* isMoving 0 * isMoving * isMoving 1 * isMoving 1 *  isMoving

+  isTouching () + isTouching () * isTouching + isTouching *  isTouching

Toy Toy (Toy) (Toy)

+  isVisible 1 +  isVisible 1 Toy

+ isMoving 0 +  isMoving O isVisible 1 « isVisible isVisible 0

* isTouching () + isTouching () isMoving 0 * isMoving isMoving
isTouching * isTouching isTouching

(GELL)] (Hand)

Reach the toy Close the Move back Stop
hand

Figure 20 : Evolution of the Egosphere status (perceptions of the robot) over the grasp(toy) action. Several perceptual
primitives are detected.

It shows that 4 perceptual events are triggered, in that order: motion of the hand, contact

between hand and toy, co-motion of hand and toy, stop of motion.

The role of the Action Recognizer is to catch those events and interpret them. The
first problem appearing is the segmentation of the continuous events stream. We need to
parse the stream coming out of Primitive Recognizer in order to segment a sub-sequence of
events which could potentially describe an action. We assume that only one action will occur
at a given time, and that two actions will be separated by a small delay. Typically the
beginning of a segment is an event being received after 3s without events, and the end
occurs when no event is received for 3s. This timing interval is a parameter of the system,
and the value of 3s has been determined experimentally. This segmentation is quite artificial
in our implementation since we just detect “paquets” of events which occur in the same
time interval; however a statistical segmentation could also be used and would probably be

more robust. This segmentation problem has been investigated by many researchers and the
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statistical analysis solution seems promising and biologically plausible (Rui and Anandan

2000; Saylor, Baldwin et al. 2007; Baldwin, Andersson et al. 2008; Shi, Wang et al. 2008).

Once a segment (a sequence of events) has been detected, the recognition process
can be applied: the goal is to match a sum of perceptual changes with the name of an action
and its arguments. For manipulation ease | defined a few mathematical / programming

operators that can be applied on the Perceptual Primitives.

Two perceptual primitives can be added, and the result of this addition will be a third
primitive containing the sum of their Properties Changes (e.g hand( isMoving 1) + toy
(isVisible 0) = (hand (isMoving 1) toy (isVisible 0)) ). The addition of primitives is a base for
any teleological reasoning capability as we will see later on in Chapter 3: understanding the
overall effect of a sequence of primitives (i.e the global change of world state induced by this
sequence of primitives) is a matter of adding all those primitives together. The addition

process is fairly simple and a few examples are given in Table 1.

A B A+B

Toy (isVisible 1) | Toy (isMoving 1) Toy ((isVisible 1) (isMoving 1))
Toy (isVisible 1) | Box (isVisible 0) Toy (isVisible 1) Box(isVisible 0)
Toy (isVisible 1) | Toy (isVisible 0) Nothing

Toy (isVisible 1) | Toy (isVisible 0) Box(isVisible 0) | Box (isVisible 0)

Table 1 Examples of the + operator on Perceptual Primitives

It is also possible to test the equality of two primitives, by checking if all their property
changes matches. However the equality test is not sufficient since we are working with
relative arguments: we want another operation that will classify (toy (isMoving 1) ) and (box
(isMoving 1) ) as being equal under the condition (original argument toy = box). Therefore
we discriminate the absolute equality (strict equality for both properties variations and
arguments) from the relative equality (properties variations match, but arguments are
changed). These equality operators work for both a single primitive and a sequence of

primitive (i.e a perceptual action) as it is described in Table 2.
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Stored Pattern Observed Observed

Sequence A Sequence B Sequence C

Box isMoving 1 | HatisMoving 1 Hat isMoving 1

Toy isVisible 0 Head isVisible 0 | Head isVisible O

Box isMoving 0 | Hat isMoving O Head isMoving 0

Recognition Cover(Box,Toy) | Cover(Hat,Head) | None

Table 2 : Using the relative equality, A == B but A != C. The arguments are set by taking each argument of the current
element of the sequence in the temporal order and matching it with the original argument (Box = Hat, Toy=>Head).
Using absolute equality giveus A!l=Band A !=C

Those two operations were proven to be a very handy tool for the action recognition process.
Indeed the recognition process can be asked to perform two different tasks: recognize any
action, or wait for a specific action to be recognized. Figure 20 shows that the perceptual
aspect of an action can be reduced to a list (sequence) of Perceptual Primitives. The action
recognition process stores a database of all known actions using the arguments used when
they have been teach for the first time. Whenever a segment of primitives is isolated, it is
tested against all known actions using the relative equality, therefore providing an argument
independent recognition of action. Testing if the detected action is the one we were waiting
for is just a matter of using the absolute equality operator between them. A detailed
explanation of the recognition algorithm will be presented in the experiment description

about imitation.
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Action Definition: Motor Level

How does an animal proceed from the desire of an action (walking, grasping, etc.) to a motor
command that will make the muscles follow the right pattern to produce right motion? This
question has been, and is still being investigated. It is broadly accepted that high level
commands are decomposed hierarchically into low level controllers that we will call Motor
Primitives. We will go though neuro-anatomical and developmental literature to identify
evidence for those primitives, then we will explain how those results are implemented into

our robotic architecture and what the advantages of such an approach are.

Anatomical
Many studies demonstrated that animals use a hierarchical decomposition for achieving
desired motion. This decomposition occurs at multiple scales, ranging from the effective
motor activation to generation of higher level commands which | would be tempted to call
planning. A remarkable review on motor primitives has been provided by Flash & Hochner
(Flash and Hochner 2005). They describe the different levels of compositionality in
movement generation both in vertebrates and invertebrates. Their definition of motor
primitives is clear and general: “Motor or movement primitives refer loosely to building
blocks at different levels of the motor hierarchy. Motor primitives might be equivalent to
‘motor schemas’ (Arbib 1998), ‘prototypes’(Jeannerod, Arbib et al. 1995), or ‘control

modules’(Schaal, ljspeert et al. 2003).”

At the lowest level, Mussa-lvaldi has shown evidence that the frog’s spinal cord stores a pool
of motor primitives (Mussa-Ivaldi, Giszter et al. 1994). Mixtures of those primitives are called
in linear combinations by the central nervous system in order to execute more complex
behaviors. In the human, the same process of primitive encoding may occur in Purkinje cells
in the cerebellum (Mussa-lvaldi and Bizzi 2000). At the cortical level, electric stimulation of
the premotor and motor cortex in the monkey resulted in arm movements which were
similar to the standard behavior of the animal (Flash and Hochner 2005), suggesting that
those parts of the cortex may be maps encoding for different combinations of standardized

primitives.

In our case, the Motor Primitive concept is situated at a higher level that has not really been

investigated in biological beings. We considered as primitives chunks of actions, like “grasp”
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or “release”, which are often referred as complete actions in the literature. However, the
main idea is to use compositionality, which is to compose with building blocks in order to
achieve a more complex behavior. What Flash & Hochner (Flash and Hochner 2005) have
shown is that this principle is present at many level in biological beings, both on motor,
language and sensory sides ; we just extend this idea one level higher. One could argue the
fact that at this level, what we call primitive is already a complex sensory-motor process
involving both motor control and perceptual feedback; indeed it is the case but the
compositionality principle is still valid: those sensory-motor processes can be seen as atomic
functions which can be sequenced to produce complex behaviors. Maps of those high level
primitives’ symbols can be found in the cortex; indeed in the part Action Definition:
Descriptive Level we will see that this symbolic definitions are located in language areas
which are known to be involved in the composition process. A feedback mechanism similar
to the one of the MMCM (see first chapter) could be activating lower level motor primitives

in a sequence.

Devlopmental Psychology
The motor development may be a principle source of pride for parents during the first year
of their child. At those times a child learns to fix his balance in order to sit properly, to
control each of its limbs as a semi-independent effector and to coordinate all of them in
order to grasp an object or to crawl on the floor. Since motor development is one of the
oldest fields in developmental psychology, the amount of literature on the topic is vast and
not all authors are in agreement. Thelen synthesized more than 50 years of literature in
(Thelen 1995) from which | would like to emphasis the part on composing evolved behavior
on the top of simple motor primitives. We will see all along this thesis that compositionality
is a generic computational mechanism used in many places of the human cognition. Based
on small building blocks, we can produce higher level structures which can be used as
building blocks in a recursive fashion. Although this principle is referred to differently by
different researchers, it was first pointed at by Bernstein (Bernstein 1927) by asking a
guestion about redundancy in ways to achieve a motion pattern and how does the brain
handle it. Hypotheses have been made and the one which seemed the most interesting and
congruent with our framework is the work of Sporns and Edelman (Sporns and Edelman

1993) which describes how this problem is likely to be solved by using a “repertoire of
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motion patterns”. For easy referencing we present in Figure 21 a quite self-explanatory
picture coming from (Bernstein 1967): it describes primitives as pattern of movements
(making a circle, a letter, a segment...) that are independent from the collection of muscles
used to produce them. They are high level commands to motor controllers and can be
executed with various parameters including the spatial position, the speed, etc. Moreover
we can see on this example (drawing a star) an expression of the compositionality principle:
the motor primitive used could be “draw a segment”, this primitive repeated five times with
various spatial parameters produces a star. In addition, the “draw a star” action is another

chunk of motor command that can be called and that wraps those lower level commands.
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FiG. 1.—A, An equivalence class of movements according to N. A. Bernstein. Movements with
topologically identical trajectories are executed by different sets of motor commands and under partici-
pation of different muscle groups. From Bernstein {1967), reproduced with permission. B, Motor equiv-
alence according to K. Lashley. This Figure shows “the writing of two individuals, blindfolded, using
right and left hands in various positions, as well as other muscle groups, unpracticed. In spite of
clumsiness, the general features of the writing, individual differences in the forming of letters, and the
like, are characteristically maintained. The mechanics of writing is a sequence of moverments in relation
to body position, not a set pattern of special groups of muscles™ (Lashley, 1942, quoted after Pribram,
1969, p. 248). From Pribram, 1969, reproduced with permission. C, “Topology’ according to Bernstein
{1967}, This term is adopted for all qualitative aspects of spatial configuration or forms of movements,
in contrast to quantitative metric aspects. Examples include 1-5, topological class of five-pointed stars;
6, topological class of figure eights with four angles; 7-14, topological class of [etters A. From Bernstein
{1967), reproduced with permission.

Figure 21: Figure taken from (Bernstein 1967; Sporns and Edelman 1993). Represent well the concept of motor primitives
used to compose higher level action (writing a word, drawing a shape).

The fact that primitives are not a frozen sequence of postures (for example a simple
sequence of joints in a robot) but are adapted to a spatial target and more generally to the
environmental context is a quite important element regarding the perception of the
produced action. Studies of human infants (Csibra, Gergely et al. 1999; Kirdly, Jovanovic et al.
2003) demonstrated their ability to attribute goal directedness for novel actions early
assuming two conditions: first the action has to produce a salient effect on the world state.
The second condition is that the agent is able to achieve the same state change in different

ways (such as avoiding an obstacle instead of using a straight trajectory), in other words the
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action is demonstrated to possess equifinal variations. Our implementation of action, both in
the context of perception ((Lallée, Lemaignan et al. 2010), Appendix 1) and execution is
based on actions seen as state changes. One of the strong implications of this is the
equifinality of action. That is, the same action “put the box on the toy” may be realized in a
variety of ways (with one hand, or the other) but with the equivalent final outcome, one of
the key characteristics that allow action to be considered goal directed. If the robot is able
to demonstrate equifinal means of achieving his actions, then humans may be more likely to
attribute a goal to them. This assumption has been shown to be true in infants (Kirdly,
Jovanovic et al. 2003; Kamewari, Kato et al. 2005) and would need to be tested on adults,
however assuming the fact that the human teleological system seems to be built on those

core capabilities it is likely that a benefactor effect could be found also on adults.

Robotic Implementation

Motor primitives rely on the idea that complex motor tasks may be achieved by the
combination of simple parameterized controllers we call primitives. Using hierarchies of
primitives for control in robotics is becoming a widely used method (Firby 1992; Williamson
1996; Mataric, Williamson et al. 1998; Mussa-lvaldi and Bizzi 2000; Morrow and Khosla
2002; Thomas, Finkemeyer et al. 2003; Paine and Tani 2004; Sentis and Khatib 2005). In our
approach, what we call a Motor Primitive is already a fairly high level procedure, the first
level of symbolic actions. Most of the experiments conducted within this thesis implied a
robot and a human interacting together in a shared work space over a table. Focusing on this
limited interaction, we were able to define a pool of motor primitives that were enough to

compose evolved actions and cooperative games. The identified set was:

e Grasp (object)
e Release (location)
e Touch (object)

e Look-At (object)

Of course this pool is not complete enough to cope with real world human robot
interaction, for example with a mobile platform the primitive Move-To(location) would be
essential. For historical reasons primitives composing this set have as special status, they

have been defined as functions of an abstract class, so that each of several different robots
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can inherit it and have implemented its own controllers. This provides platform abstraction
on the motor side of the action definition. However it is a handy tool in interaction with a
robot to be able to define new primitives so we decided to implement the ability to teach
new primitives to the robot within the interaction framework. In the end a motor primitive is
what makes the robot motors to move: a sequence of either joint angles or velocities over
time. So if | want to teach the robot how to “wave to Peter” | can either wave myself to
Peter and have the robot to imitate me at the joint level, or | can physically take its arm and
move it the way | want. The first way (imitation) is likely to be the most commonly used for
humans to learn primitives from others (Meltzoff and Moore 1989), although many
primitives are probably discovered by lonely interaction with the world on the basis of an
existing “innate pool” of very basic motor controllers. The second way (kinesthetic teaching)
can appear a bit artificial and not inspired by human behaviors, however some reeducation
therapies use it. In both cases the goal is to have the limbs of the subject to move so it can
perceive it and record the motion pattern. Basically when the robot learns a primitive, it is
placed in a “recorder mode” which will record joint angles or velocities of the robot limbs at
a given rate. As shown in Figure 22, the primitive motion is then demonstrated either using
imitation (the demonstrator skeleton is tracked using Kinect for example and then mapped
to the robot one) or by physical interaction (the robot body is set to compliant mode, and
the desired motion is achieved by moving it manually). The recorder keeps track of the
demonstrated trajectory and links it to the primitive name, making it straightforward to

playback later.
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Learn to open the box: visually based imitation

Figure 22: Nao learning to open and close the box using two different modalities (visually based imitation and compliant
kinesthetic teaching)

However, while recording an animation (wave, dance, etc.) relies on this simple process,
teaching a primitive that takes an argument is a bit more difficult. Assume that we want to
teach the robot how to grasp. We can say to him “I will teach you how to grasp the toy”,
then the system will prepare the primitive grasp(toy) to be learnt. Since the primitive has an
argument, the limbs trajectory is not absolute: it is relative to the object position. That is the
reason why in the case of primitives taking an argument, the pattern recorded is composed
of displacements between the position of the robot’s end effector and the position of the
argument (see Figure 23). However, this solution has two major issues: it requires that the
robot has a cartesian controller’ implemented (which is the case for most robots today, at
least the humanoids one) and it cannot cope with primitives that could use more than one

argument. Anyway, this last remark is not really a problem, indeed we argue that using

”In robotics, this is a controller that can calculate the robot joint angle trajectory necessary to reach a target
point in cartesian (working) space from the current position.
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multiple arguments is beyond the complexity scope of primitives; such commands should be

regarded as actions and built on top of motor primitives.

Since motor primitives will be the basis for action, they also embed some « built in »
reasoning knowledge. At the physical level, motor primitives are constrained; they require a
certain state of the world in order to be executed. For example, | cannot grasp a toy if there
is no toy or if it is stuck under another object. For this reason the Motor Primitive data
structure also embeds a list of (pre) conditions. Those conditions are what the robot needs
to check in the world state before a motor primitive is executed. While the natural way to
learn those conditions would be again trial and error and statistcal learning, we decided to
speed up this process by hard coding some basic conditions into the pool of primitive
defined above. Most of them possess the conditions (argument isVisible==1) and (argument
isContained == 0). However, hard coding is possible only if you designed the system: the final
user should be able, after having taught a primitive, to specify to the robot under which

condition it can be executed. It can be done using speech by telling sentences of the form:
If you want to primitiveName the argument, then the argument should be condition
If you want to primitiveName the argument, then the argument should not be condition

As we will see later on, those conditions on primitives will serve as a basis for determining if
an action is possible or not, therefore opening the door to reasoning. Indeed an action will
always be achievable under the sum of the conditions of the primitives it is composed of and

possibly its own conditions.
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Figure 23 : Teaching of argument dependent primitives. At each time step the displacement vector between the target
and the hand effector is computed and recorded. This same vector is replayed later on, relatively to the position of the
new object.
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Action Definition: Descriptive Level

Actions are sequences of motion that have an effect on the world and that can be either
executed or perceived by an agent. The auditory aspect is also deeply linked to the action
representation (Kohler, Keysers et al. 2002). In the case of agents endowed with speech
(humans, robots), an action can also be linked with a spoken representation so that the
agent is able to describe or hear what is going on. Humans are able to describe actions that
are part of their repertoire using the label they associated to this action; they are also able
to describe an action they do not know by splitting it into pieces they are able to describe or
by commenting on the perceptual effects produced. In this section we will first study the

neural correlates of this ability, and then how we implemented it in the robot architecture.

Anatomical
The vast action recognition and production cortical network involves Broca’s area, which is
known to be dedicated to language processing. Arbib exposed a theory arguing that
language might have evolved from gesture imitation instead of pure vocalization (Arbib
2005) ; the motor theory of language fits perfectly with this approach. Assuming that
animals from the same species have a tendency to imitate each other, due to the mirror
system, imitation of the speech production system motor activity would facilitate the
vocabulary grounding. Moreover, the hierarchical organization of motor primitives into more
complex actions and the grammar produced and used in language are both making use of
the compositionality principle. A specifically important cortical area involved in the binding
between language and action is the left inferior frontal girus (LIFG) (Hagoort and Van
Berkum 2007; Willems, Ozyiirek et al. 2007; Hagoort, Baggio et al. 2009). As we will see later,
this area may be dealing with the compositionality principle in general, for speech, primitives,

shared plans, etc.

A number of studies have started to establish the link between action and language.
Tettamanti et al. (Tettamanti, Buccino et al. 2005) demonstrate how action verbs activate
the area of the premotor cortex associated with exectution of these actions. Similar resutls
have been observed by Pulvermuller (Pulvermiller 1999; Pulvermdiiller 2005). We can
consider that these are consistent with an em bodied view of cognition (Zwaan and Madden
2005; Barsalou 2008). This view would account to say that words are cues that re-activate

sensorimotor representations. Therefore the co-activation of the motor primitive “grasp”
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and the perceptual primitive “apple” given by speech may lead to the physical act of
grasping an apple if there is one available. Again the anatomy of an action description
cannot be viewed as a single area: at best it is a convergence zone where a specific pattern
of activation links together the physical reprepresentation of an action parametrized by the
other sensory traces of the arguments involved. Indeed an action is probably stored within a
quite large set of cortical areas where different subregions codes for different combinations
of arguments. This is purely speculative, however it would be consistent with the various

findings about convergence zones and hierachical traces storage presented in Chapter 1.

Developmental

I’'ve recently been watching a three month old baby and his parents. Apart from
storytelling, their spoken “interaction” was mainly the caregiver describing what he was
doing or what the child was doing in simple sentences of the type subject verb [object].
Adults rarely describe their physical actions when interacting together, unless they want to
teach (e.g. how to fix a robot shoulder). There is an assumption that our actions are self-
explanatory. In the case of a baby/adult interaction it is quite amazing to see how parents
often verbally describe their actions or the actions of the child, with sentences that are used
in return by the child (Gleitman 1990; Mintz 2003). When a baby grasps an object, he may
learn to associate visual, proprioceptive, tactile modalities consequences allowing him to use
the grasp action in appropriate situations, however it is hard to imagine how he may learn
the spoken description of this act unless someone tells him. Therefore the adult tendency to
describe low level actions in the context of interaction with a baby could be facilitating the
acquisition of perceptuo-motor acts linked and labeled as a meaningful action, indeed this
joint attention process can be valuable for both action and object labeling (Tomasello and
Farrar 1986). While such an exhaustive description of the world state is required for
vocabulary acquisition, such useless description are kept silent at later age, allowing the

children to learn what doesn’t need to be told (Aukrust 1996).

On the motor side, | also noticed that when the child was doing some specific posture,
like joining hands in a “clap”-like movement, the caregiver was imitating him. In this case he
didn’t say anything to describe this action, but if those two behaviors are combined, it is a
way to relate an action spoken description and the corresponding motor act. Children

imitate adults from a very early age (12 days)(Meltzoff and Moore 1977), however | was not
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able to find in the literature studies about adults imitating babies. Maybe is it too evident to
be investigated, however the adult tendency to do “low level action naming” and to imitate
low level actions of their baby seems an optimal behavior to ground action and language.
Indeed while grounding of nouns is natural and just a link between perceptions (visual and
sound for example), verbs are usually though as being more difficult to learn (Gentner 2006)
because they refer to concepts that are more abstract or that are continuous sequences of
perceptions. However, it appears that the same mechanism of co-occurrence of spoken
description and the object of interest (an object, an action, a more abstract concept) in
various contexts provides a unified way to teach children vocabulary and language (Maguire,
Hirsh-Pasek et al. 2006). Moreover, this is a valuable mechanism to model the mapping
between the self and the other: the way to teach artificial systems by imitation is mainly by
having the system to perceive the caregiver and try to reproduce what it sees; a design
where the system produces a behavior that is afterward imitated (in an improved form) by
the caregiver could be a nice alternative (refer to Annex 1: A Theory of Mirror Development

for a motor mapping experiment based on this principle).

Implementation
While the previous parts of this chapter described how the motor and perceptual parts of an
action were embed into a single data structure, it still lacks of information about the spoken
description of an act. In this part we give details about the implementation of the ability to
generate sentences that describe an action. Those sentences can afterward be used either

for expression (text to speech) or understanding (speech recognition).

The Action data structure contains a label for easy access and dictionary-like storage of the
set of known actions, this label is a verb describing the action. While storing a verb to
describe an action can be enough to use grammars in order to produce spoken sentences,
this approach turned out to be problematic. A grammar can be used to recognize or produce
sentences in a generic way; however this genericity has a tendency to produce syntactic
errors. Verbs involve prepositions (to pull from the box, to cover with the box), use different
number of arguments (to wave at someone, to put the toy in the box) and therefore won’t
use exactly the same generative grammars. In order to produce correct sentences, they need
to be split into classes (verbs with 0,1,2 arguments, followed by certain prepositions, etc.)

after analysis of the verb type. This corresponds to the link between syntax and semantics

Towards a distributed, embodied & computational theory of cooperative interaction Page 73



that is captured in certain lexical function grammars (reference). However, in the case of
action learning the robot can benefit from heuristic that allows it to produce the right
sentence. When the human teaches an action to the robot, he is first asked the name of this
action, through open dictation or spelling the verb can be learnt. Then, he is asked to use
this word in a sentence, to describe the action that has just been taught. At this point a
grammar allowing all possible constructions (even those that are semantically wrong or that
use unadapt prepositions) is used to recognize the description coming from the human. The
exact sentence said will be stored and used later on for synthesis. For example, if | teach to
the robot the action “Stéphane put the toy in the box”, this very string will be stored. Then
the arguments Stéphane, toy and box will be automatically extracted and stored as the
“original” arguments, which will allow by simple string replacement to have the robot to
describe “Peter put the tomato in the fridge”. Indeed a “verb specific” grammar is somehow
created online, without the need to define which type is the verb and how it should be used.
This corresponds to the notion of grammatical construction as defined by Goldberg (1998).
Moreover, since the sentence can be matched to an existing grammar, it is easy to assign to
each argument a role in the sentence, which will allow generating other forms of spoken
manipulation. The action put(Peter,tomato,fridge) can therefore be described, ordered or
asked in any tense using the appropriate constructions (“Peter put the tomato in the fridge”,

“Does Peter put the tomato in the fridge?”, “Was Peter put-ing the tomato in the fridge?”).

It is also important to notice that the argument type is also important in the case of future
recognition of the spoken description. Currently the system distinguishes clearly agents and
objects, and they are stored in different vocabulary lists. At time of recognition this
information will be used to generate a bit more accurate and restrictive grammar (which
reduces drastically the risk of false recognition). In practice, the two actions initially
described by “Stéphane put the toy in the box” and “Stéphane give the toy to Peter” will
respectively produce the grammars “AGENT put the OBJECT in the OBJECT” and “AGENT give
the OBJECT to AGENT”. Although a neural or statistical learning system may link more
robustly action verbs with an argument (Dominey and Boucher 2005) structured sentences,
and the related link words, our representation can easily be integrated with any speech

recognition software since for a specific action, a grammatically correct sentence can be
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generated and that human users are most likely to produce those kinds of correct

expressions.
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Action Definition: Brain encoding and datastructure

Anatomical Networks
Grezes and Decety produced a synthetic review of imaging studies about action processing
in human and monkey. They isolated the networks involved in different types of processing
(motor execution, mental simulation, observation which embedded perception and
recognition and silent verbalization) and described a cortical map of them which can be seen
on (Grezes and Decety 2001). It is not surprising that many of the different processes use
overlapping regions although the authors noted a relative independence of the silent

verbalization network (which corresponds to our Descriptive Aspect of the definition).
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Figure 24: Extracted from (Grezes and Decety 2001). Show different cortical networks involved in the action definition
and processing.

Naturally, real motor execution of an action and its mental simulation rely globally on the
same pathway (which is mainly composed of motor and premotor cortices and of the DLPFC).
Several authors ((Leonardo, Fieldman et al. 1995; Porro, Francescato et al. 1996; Roth,
Decety et al. 1996; Lotze, Montoya et al. 1999)) reported a weaker activity in case of mental
simulation, which may account for the hypothesis that a small activity of the action network

can evok a mental definition, while a stronger one may lead to a physical execution.

Indeed the DLPFC seems to show a convergence of every process; it could be a good

candidate for storing a relatively amodal symbolic representation of action. The fact the
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Broca’s area is included in this part of the cortex could explain our ability to manipulate
those action concepts in grammar-like generative processes, and to translate these

generated chains of actions to/from natural language.

In a paper about shared intentionality (I'll come back on this topic in the next chapter),
Beccio and Bertone (Becchio and Bertone 2005) give an interesting summary of the action
representation within its neural substrate. Of particular interest is their argument that the
same representation is shared among the processes of production, recognition or
imagination (and | would argue that it also encompasses description). They write: “At an
intra-individual level, neural representations are shared in the sense that they are activated
in different modalities of action. The same representation is activated when the subject
executes the action, observes/hears another individual performing the same action, or

simply imagines doing the action.”

Within the context of modeling cooperation in robotics, Dominey and Warneken also
studied the neural substrate of the action representation (Dominey and Warneken 2009),
highlighting the role of BA46 in the ability to compose sequences of actions and claiming
that the whole system can provide a “bird’s eye view” (subject independent) representation

of actions.

All of this anatomical evidence tends to show that it is possible to isolate an intricate set of
cortical networks which deal with the whole concept of action and where different sub-
networks are responsible for managing specific aspects of this concept. This is a key point
that is also one of the most natural ways to implement all those processes on a machine. All
of the possible action manipulations (observing, producing and verbalizing) are sharing a

common structure while each of them is relying on a specific part of this data structure.

Implemented Datastructure
| gave in this chapter details about how the three aspects of an action have been
implemented in our system. Although the definition is clear now and seems quite logical, it
required a successive elaboration over duration of this PhD to deliver this stable, synthetic
representation of the action concept in term of data structure. The Figure 25 shows a class
diagram that has never been implemented in such a clean way; however it is the final one

achieved after the process of ordering ideas through writing this manuscript. An action is
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defined by three aspects: perceptual, motor and descriptive; however it is more than just
linking perceptual events, motor commands and a sentence together: an action is a building
block that can be chained with others in order to reach a goal. It can be seen as the basic
element for teleological reasoning (cite our paper and one or more of the motivating papers
on teleological reasoning), and therefore it should be characterized in term of conditions and
consequences. We used to implement an action by specifying its “preconditions required,
preconditions forbidden, post conditions added, post conditions removed”. Those were
basically the conditions and effects of an action upon the world state, they were part of the
Primitive Action class which was a monolithic, stand-alone structure. However, | came to the
conclusion that the three aspects mentioned above should be conceptually separated while
all being linked within a higher level structure. This decision implies reconsidering where the

I"

“teleological material” (conditions & effects) are stored. What | will argue is that most of this
is directly provided by the primitives (perceptual and motor) composing an action. Indeed,
what one can do and the consequences it may have are immediately given by the physical
world. My range of action is initially bounded to what my body can do given a specific
physical state of the world; the consequences of my action will be detected as perceptual
primitives characterizing the changes induced in this physical world by my motor primitive.
However, all the teleological material that an action concept can embed is not restricted to
this primary stage: higher level conditions and consequences can be specific to an action
regardless of the primitives composing it. An example if the action “cover toy with box”. The
motor primitives composing it could be “grasp(box), release (box,toy)” therefore producing
the perceptual primitive (toy (isVisible 0)).However, when | execute this action, despite the
fact that the toy disappears from my sight, | know that the toy is still there, that it is “inside”
the box. One could argue that this is a phenomenon described as object permanency in
humans (Spelke 1990); nonetheless in our model it seems quite related to the action
concept. Indeed it is quite logical to say that the action cover(toy,box) possesses the
consequence (toy (isln box)). This kind of properties belongs to the semantic level more than
to the physical world state, however if we consider the world state in the broad sense it may
include both levels. Moreover, having actions embedding this kind of semantic conditions or
consequences allows to populate the world state with a semantic layer: when the robot
recognizes an action (done by itself or another), then the semantic consequences are added

to the world state, while executing an action can be constrained by certain semantic
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conditions (e.g: | could grasp the box in any case, yet | could uncover the toy with the box

only if the toy is inside the box).

If I had to identify the most important element of this thesis, | would say that it is this very
concept of action and how it is modeled. Action is a building block for every robot behavior:
a robot can execute an action, it can wait for another agent to perform it or it can speak and
give/ask information about it. Every behavior can be seen as multiple action tracks going on
in parallel, and we will see in the next chapter that cooperative abilities can be modeled
using only a few more concepts in addition to that of action. This data structure should be
seen as a tool, a tool is a useless artifact by itself, but it becomes very powerful if you are
making the right use of it. In the last part of this chapter | will show a direct application of

the action concept: modeling of the learning by imitation process.

originalDescription : description :

originalArguments : TG -
List< > List< >
perceptualPrimitives :
List<
semanticConditions:
List<
semanticEffects:

List<
motorCommand :

Pair< ’
conditions : Methods
List< execute(arguments)
wait(arguments)
describe(arguments)

effects:
List<

Figure 25 : Class diagram of the Action concept. An action can be executed, recognized or described.
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Experimental Results: Application to Imitation

We already discussed the fact that children and adults have the ability to imitate actions of
each other, and it is noteworthy that learning by imitation is a major area of research in
robot cognition today (Alissandrakis, Nehaniv et al. 2002; Demiris and Johnson 2003;
Dillmann 2004; Calinon, Guenter et al. 2005; Argall, Chernova et al. 2009). It requires being
able to recognize an action produced by someone and reproduce it using our own motor
representations. The action definition presented above allows naturally the robot to imitate
his human counterpart: in ( (Lallée, Lemaignan et al. 2011), Appendix 2) we described an
experiment where the robot watches the user covering one object with another and then

performs the same action.

Recognition Process Details
| have described in details the data structure used to store and manipulate action definitions
within the architecture, | will now explain how the recognition algorithm performs on
building and using this structure. After a learning phase, the robot is able to proceed to a

previously demonstrated action as show on Figure 26.

A) iCub recognizes an action done

4 wxognized that the human- hand covesed the oy with the

* Robot: « | recognized that the humand hand covered the toy with the box. »

Figure 26: Imitation, observation phase.
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Learning

In order to be able to recognize an action, first the system has to learn it. Although one could
produce the appropriate definition by writing the representation apriori, the most natural
way to train the system is to perform an action in front of the robot. First the robot is asked
to pay attention to the environment by the spoken command “Watch”, and then the user
covers a small toy with a box. If we take a close up look to what happens in term of

perceptual primitives we get the following sequence:

= Beginning of action

= Move(userHand, true)

= Contact(userHand,box, true)
= Move(box,true)

= Contact(box, toy, true)

= Visibility(toy, false)

= Contact(userHand, box, false)
= Move(userHand, false)

= End of action

= 2s without any perceptual change

Those primitives are detected by the Primitive Recognizer module (see Figure 38 on page
120 for a diagram of the whole cognitive architecture), which is constantly monitoring the
world state to detect changes. The Action Recognition module catches this stream of
primitives and segments it in order to extract meaningful packets. When a primitive is
caught, the segmentation process starts to record the stream until nothing comes in for a
given time delay (2s in our experiments). This segment is used to build the early definition of
an unknown action by calculating the state changed produced and setting appropriately the

pre-conditions and post-conditions. | defined specific operators for primitives facilitate this

Towards a distributed, embodied & computational theory of cooperative interaction Page 81



calculation: two primitives A and B can be summed and the result is a primitive C. The details

for pre-conditions and post-conditions sum are given in equations (7)-(10) with:

e PrCRx being the Pre Conditions Required for x
e PrCFx being the Pre Conditions Forbidden for x
e PoCAXx being the Post Conditions Added by x

e PoCRx being the Post Conditions Removed by x

PrCR. = PrCR, U PrCR, 7

PrCF, = PrCR; UPTrCR¢ (8)
PoCA. = PoCA,PoCA, — PoCR, U PoCR, 9
PoCR. = PoCR, U PoCRy, — PoCA, U PoCA, (10)

The sum of all the primitives composing the segment is calculated, and the result is a new
primitive which will serve as the basis for the new action. In our example the new primitive

effects are:
Post Condition Added: contact(box,toy)
Post Condition Removed: visibility(toy)

This partial action definition is then processed by the recognition algorithm, and if no action
is recognized the user is asked to provide details about what he did in the form of a spoken
sentence (e.g. “Stéphane covered the toy with the box”). This sentence is parsed and
synthesized in the form (subject, verb, objectl, object2). Then the algorithm names this
action, goes through all the pre-conditions and post-conditions, and it replaces the objects
names by their role in the sentence (in our example the action adds contact(object2,object1)
and removes visibility(object1) ). At this point the action definition is ready; however the
user is given the possibility to “edit” it by adding more pre or post conditions using the

following grammars:

“If | want to action the object [with the object], then the object needs to be relation [with the

object]” (pre-condition required)

“If I want to action the object [with the object], then the object should not be relation [with

the object]” (pre-condition forbidden)
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“If | action the object [with the object], then the object will become relation [with the object]”

(post-condition added)

“If | action the object [with the object], then the object will no longer be relation [with the

object]” (post-condition removed)

The action is then added to the recognizer database so that next time it is observed the

system will recognize and describe it.

Recognition

After the segmentation has occurred, the recognizer tries to match the unknown action with
existing action definitions in its database. The problem is to compare two action definitions
based on their pre-conditions and post-conditions, in order to determine if they are
equivalent or not. The recognition algorithm we used is quite simple, while not extremely
robust. We define a similarity measurement between two actions based on the differences
of their effects, and then when the recognition occurs we go through all actions of the
database and calculate their similarities against the current action. All actions for which
similarity is above a certain threshold are accepted as candidate templates for being

recognized. The distance measurement is given in equation //ref.
Sap = 100 — (#(PoCA, A PoCAp) + #(PoCR, A PoCRy))

A similarity of 100 means that the two actions have the same consequences on the world: all
the relations they add or remove are the strictly the same. Each relation that is added or
removed by one action and not the other will make the similarity decrease. All the actions of
the database which are similar enough are stored, and for each of them the pre-conditions
(required and forbidden) are searched for in the world state. If any required condition is
missing or if any forbidden condition has been found, the action is discarded and cannot be
recognized. In the end the most similar of the actions left is said to be the one which has
been recognized, its arguments are set to match the ones from the perceived action and the

action is described by the robot using spoken sentences of type:

“I recognized that the subject action-ed the object [with the object]”
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Execution Process Details
After the recognition occurred, if the robot is in imitation mode, it will ask to the user
whether it should execute the same action. When the user acknowledge, the robot will look
into the action definition if the motor command to execute this action is known or not. Here
again a learning process can occur, allowing the robot to learn what to do in order to
execute the given action. After this learning phase, the robot is able to reproduce any action

it has previously learnt to recognize (see Figure 27 as a sequel of Figure 26).

B) iCub |m|tates the recognized actlon cover by decomposmg it.

Figure 27: Imitation of a previously recognized action by executing each motor primitive which is composing it.
Learning

The motor sequence for an action is indeed a list of motor primitives as described in Action
Definition: Motor Level. The robot will ask to the user what to do and expect primitive

commands of type:

e Grasp (object)
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e Release (location)

e Touch (object)

e Look-At (object)
When the user finished enumerating the successive primitives to perform, he can say
“Finished” and the robot will update his action definition with the motor part. During the
process a mapping of primitives arguments to their role in the sentence occurs, so that the

grasp(toy) of the action cover(object1,object2?) will become grasp(object1).

The learning process for motor commands may appear somewhat artificial in the last
experiments; indeed it required to teach by language the sequence of primitives composing
an action. Due to time constraints we implemented only direct spoken interaction learning.
If we consider each motor primitive as a non-composite action that can be recognized,
therefore it is possible to extract directly the list of primitive which should be achieved in
order to execute a recognizable action. We presented in a previous experiment that such a
learning can be achieved using observation (Lallée, Warneken et al. 2009), while this has
been realized in the context of shared plans, the same principle applies to composite
actions: their motor component can be learned by adding those primitives of which they are

composed. Indeed we will see in

Chapter 1
Cooperation, using Actions to compose Shared Plans that all the mechanisms are

already in place to use this kind of learning.

Execution
When the motor part of the action is known, it is straightforward to execute it. The robot
goes through the list of primitives and sends each of them sequentially to the motor

command module. This module is robot specific and its only role is to implement the motor

Towards a distributed, embodied & computational theory of cooperative interaction Page 85



execution of the primitive pool. When a primitive has been sent, the robot will await its end
before proceeding to the next one. Note that during the execution, robot perception is likely
to be corrupted by its motion (i.e. many object false recognition may occur, and false
perceptual primitives will be triggered). This is problematic because we sometime want the
robot to be able to experience the world by itself, for example by trying the execution of a
random sequence of primitives and learning at the same time the perceptual outcome. To
avoid this problem, when an action is executed the perception process is modified: the
world state is recorded when the execution starts and again when it ends. By performing the
subtraction of those two world states the robot gets the perceptual change (in terms of

perceptual primitives) that the motor sequence produced.
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Discussion

In this chapter | presented the data structure defining an action and how it is manipulated
both in term of perception, execution and verbalization. Actions are characterized using
primitives, this allows a symbolic representation which is easy to handle, modify and
interpret. However this gain in clarity results in a loss in robustness. Many of the mirroring
skills demonstrated in the literature(Johnson and Demiris 2005; Metta, Sandini et al. 2006)
use the perceived motor state of the agent (i.e. its kinematic evolution over the action) to
both recognize and execute actions. This has been combined with goal-based
representations (Calinon, Guenter et al. 2005). Our system is based on the fact that each
action can be recognized by its perceptual consequences in the world state (object states)
and then performed by executing the associated motor commands. Those motor commands
are not robot specific, but the primitives they call are, which implicitly solves the
correspondence problem described in (Alissandrakis, Nehaniv et al. 2002; Nehaniv and
Dautenhahn 2002). Although we cannot argue that our system can cope with the same
range of actions as a “trajectory based” systems, it is complimentary with such systems, and
can be used at a higher level, for actions involving multiple arguments and symbolic goal
achievement more than precise motor imitation. Indeed, this approach also emphasis the
equifinal means of an action since the user can demonstrate an action and then the robot

will achieve the same result with completely different trajectories.

Aspects of this work can thus be considered in the context of learning by imitation or
demonstration, which is a major area of research in robot cognition today (Alissandrakis,
Nehaniv et al. 2002; Nehaniv and Dautenhahn 2002; Calinon, Guenter et al. 2005; Johnson
and Demiris 2005; Metta, Sandini et al. 2006). Our novel contributions to this domain
include (1) the encoding of action in terms of perceptual state changes and composed motor
primitives that can achieve these state changes, in a manner that allows the robot to learn
new actions as perception — execution pairs, and then use this knowledge to perceive and
imitate. (2) These actions can take several arguments, e.g. AGENT put the OBJECT on the
RECIPIENT, which allows for the generalization of learned actions to entirely new contexts,
with new objects and agents. This yields the equifinal component of action where the same
goal can be achieved by different means. (3) We use spoken language interaction and visual

perception to provide learning input to the system. In our long term research program, this
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provides the basis for learning to perform cooperative shared tasks purely through

observation.

In our system actions are encoded using the effect they produce on the state of the world,
the latter being abstracted in terms of unspecific quantities like relative position and
orientation of objects and their visibility. The particular type of encoding we adopt for
actions is therefore completely independent of the robot platforms, and can be transferred
between robots with different embodiments or perceptual systems as we will see in Chapter

V.
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Chapter i
Cooperation, using Actions to compose Shared Plans
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Introduction

Collaboration is one of the hall-marks of human social life. By pooling their efforts in
joint cooperative activities, people can produce outcomes that lie beyond the means of
individuals, reaching from simple acts of lifting heavy objects together, over hunting in a
group to the building of towers. One important aspect of collaborative activities is division of
labor and the assignment of who performs which role in the joint activity. Indeed, it is likely
that one of the other hall-marks ( human language) evolved in part in order to support the
human ability and need to organize cooperative behavior (Tomasello 2009). Here we
consider collaboration in terms of two individuals who have a shared plan that involves
actions performed by both, in a structured temporal sequence, in order to achieve a shared
goal which is the desired outcome of their shared intention. The previous sentence
purposely used an amount of undefined vocabulary: intention, goal, plan - all of these can
be qualified as being “shared” and those notions have been defined previously in the
literature. | would like to first introduce those terms that | will use intensively in this chapter;
however, looking at the literature it appears that just giving such a definition is already the
matter of a complete thesis. The definition of shared intentionality has been debated
extensively (Cohen and Levesque 1990; Bratman 1992; Bratman 1993; Velleman 1997) and
some philosophers are still arguing whether it is possible to share an intention. | base my
work in part on an existing framework about intention, goal and planning in the context of
cooperation as defined by Tomasello and colleagues (Tomasello, Carpenter et al. 2005). In
this context, as developed in the previous chapter, the core advancement achieved by this
thesis was to give a synthetic definition of action that is effective in the domain of human-
robot cooperation. Acting can be achieved within the context of a plan, a shared plan or a
single action, but in all of those cases the main question stay “which action should | choose
given the current state of the world and the state | would like to get closer to?” (With the
“state of the world” ranging from the internal mental state of the subject to the mental state
of others passing by the physical state of the environment). Therefore, it is the very concept
of action which will drive my dissertation on cooperation and shared plans and I'll try to
show how such concepts can naturally emerge from a single action. The notions of goal and
intention are indeed quite intuitive, and this may be the reason that makes their
formalization so difficult. For the following chapter | will consider a goal as being the state of

the world that an agent wants to reach, and an intention the actual will to follow a plan
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toward this goal. One of the main questions animating the debate going on between
philosophers is if an intention, a goal and a plan can be shared amongst multiple beings.
Indeed it has been argued by Tomasello et al. (Tomasello, Carpenter et al. 2005) that human
is the only animal species which demonstrates the ability to cooperate while sharing an
intention and a goal. Moreover, children appear to show an intrinsic desire to share mental
states and intentions of others. Despite the fact that my mentors probably biased me
regarding the existence of this shared intentionality, | will try to study and model
cooperative activities in a neutral way along this chapter. However, the last part of this
chapter will show through a human robot interaction experiment that shared intentionality

is requirement for successful cooperation.

Let’s call the roadmap of multiple beings acting together toward the same goal a
shared plan. Shared Plans can be observed in most of the activities which involve more than
one human being. They range from low level sequences of motion, performed by two
partners in an organized and relatively simple rule based reactive system (e.g. dancing), to
high level strategies performed by thousands of people working toward the same goal by
accomplishing a hierarchy of tasks (e.g. military strategy, economical strategy etc.). While it
is common to classify actions according to the fact that they are goal directed or not, it
appears that Shared Plans are always considered as being a way to achieve a shared goal,
with a goal being a particular state of the world, or a modification of this state. | do agree
with this view, although in the case of a Shared Plan like dance, the goal is something more
abstract than the physical world state. The notion of Shared Plans has been initially
formalized by Grosz and Sidner (Grosz 1988). More than a succession of actions attributed to
agents, it models how intentions, beliefs and sub-goals evolve during collaboration. In their
paper from 1988 the formalism was intended to model Plans shared by two individuals,
however Plans can be shared within larger groups which led them to extend their model
(Grosz and Kraus 1993). In the computational world, shared plans theory of Grosz has been
used as a basis for implementation of artificial collaborative systems. Collagen (Collaborative
Agent) is one of those systems, which controls the behavior of a virtual agent interacting
with a computer user in order to help him using a program (which in some case simulates a
real situation). The gap between such a system and human robot interaction is indeed very

small: the virtual agent of their system and the user are interacting through speech,
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manipulation of the interface and pointing. If we replace the graphical interface by a physical
setup, then all the theory applies directly to human-robot interaction. A schematic view of
the interactions between the agent and the user is represented in Figure 28. The core
capabilities required for collaboration appear clearly: each agent must be able to perform
actions, to recognize actions and to communicate with other agents. Communication is not
considered as an action because it is mainly used to supervise the shared plan execution (to
gather/provide information). Since all those requirements are embedded in our action

definition (Chapter Il), it can be directly applied to Shared Plan management.

Lizar Agent
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Figure 28: Collaborative interactions overview. Extracted from (Rich, Sidner et al. 2001)
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Shared Plans: Neurophysiology

Studies about shared plans and intentionality within the neural substrate are tightly coupled
with studying the mirror system. As mentioned above, plans (shared or not) are sequences
of actions that are surrounded with notions of intention and goal, which means that the
neural network encoding the notion of Action is likely to be involved in the one dealing with
shared plans. Indeed Becchio and Bertone raise an interesting point in (Becchio and Bertone
2005) by observing that since the brain is using the same cortical network for both
production and recognition of action, then the main problem is not how to have a shared
representation of an action with someone else, but to differentiate between our own
actions and those of others. Sharing a plan with someone else raises a difficult problem: how
to distinguish between self and other? Apart from metaphysical considerations,
distinguishing between myself, other A and other B, consists mainly in being able to assign
the right agent to each action observed or imagined (note that a self-produced action is also
observed). Indeed, brain imagery provides important insight about how it is possible to make
this distinction in human beings: several PET studies (Ruby and Decety 2001; Farrer, Franck
et al. 2003) demonstrated that neural networks involved in mental simulation of actions
done by self and others are overlapping : the superior temporal sulcus, the medial prefrontal
cortex and the inferior parietal lobule are activated for both observed and initiated actions.
However, the inferior parietal lobule has a lateralized activation: the left part seems to be
assigned to actions done by the self, while the right one would code for actions done by
others (Chaminade and Decety 2002; Decety, Chaminade et al. 2002; Becchio and Bertone
2005). It is important to note that those studies are done on the case of imitation in order to
keep the same baseline for the action and to distinguish between self and other. However
what is particularly interesting in those studies is that if self and other have two distinct
statuses, it means that only the self is not encoded like all other possible agents. When |
observe A or B producing an action, then the “others” area will be activated, producing the
important information that this action is not mine and the treatment of “who is this other”
will be done but of less importance for the action. When using an action concept (whether
to observe, imagine or describe) there must be an initial test: is this action related to myself?

The processing of the action symbol will be completely different if the agent is me, while it
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will be similar among other agents. It is something that is quite straightforward and that we

will retrieve also on the implementation side.

Another characteristic of shared plans is that they intrinsically require the “we-mode”
defined by Tuomela (Tuomela 2001; Tuomela 2005). Searle (Searle 1990) noted that a
concurrent activity of people which may look like a shared plan may not really be defined as
a cooperative activity. Indeed he give the example of people sitting in a park, then the
weather starts to rain and everybody stand up and looks for a cover. However it is not
possible in any case that those people have a kind of cooperative behavior, they are just
acting on their own, and the global picture of their concurrent actions may look like
cooperation. The “we mode” involves that the agents share the desire to accomplish an
action or a plan together more than in an individual way. The neural basis of this
phenomenon have been investigated in a review by Becchio and Bertone (Becchio and
Bertone 2004) which led them to conclude that “in different areas of the brain neural
representations underling the self and the other’s behaviour share a common, we-centric
code.” Indeed, the term “we centric” code has been defined in one of their previous papers
(for Italian readers : (Becchio and Bertone 2002) ) and used as a basic principle in (Gallese
2003), it sums up the idea that the cortical representations of actions are mostly
independent from their subject. Indeed this “we-centric” term highlights the fact that the
agent is only another parameter of an action, the brain structure coding an action stay the
same while all the possible parameters may be stored in another area and just “linked”. In
Figure 29 | give a schematic view of my understanding of this phenomenon, it is applicable
both for the cortical organization and for my implementation within the robotic system. The
hierarchical structures Primitives, Actions and Plans are completely abstract from Agents or
Objects which are just linked as arguments (parameters), they are therefore “we centric” in
the sense that the same structure, cortical code, can be used both for an action done by
myself and by others. Given that a plan is a parameterized sequence of actions, the “we
mode” can be seen as a composition involving some actions done by the self and some done

by others.
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Figure 29: Cortico-inspired model for shared plans

This self/other consideration, and more generally speaking the attribution of agency to an
action; relies more on the action concept than on the plans definition. As | said a Plan is a
goal directed sequence of actions, those actions may depend on some specific conditions, on
the people presents, on the objects available, etc. Indeed again we can identify the parallel
between planning and language: action is to sentence as plan is to paragraph. Plans are
hierarchical organizations of actions in a grammar like format; therefore my expectation
would be that Broca’s area is involved in the manipulation of plans. A very good overview of
the role of Broca’s area is given in (Hagoort 2005) from which | took Figure 30 ; the paper
describes a framework to model hierarchical speech processing and production, most of
their ideas directly apply to the case of shared plan comprehension and execution. The key
point is the process of “Unification”, how to combine multiple elements into one bigger
concept. We already seen this notion when talking about actions composed of multiple
primitives; the same mechanism is present in building plans, as described in Figure 29 a plan
is a composition of multiple actions and/or plans (it is a recursive structure). When dealing

with action perception we already noted that the left inferior frontal girus (LIFG) was
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involved, it is also the case in speech unification (Hagoort 2005). Later work from the same
authors (Hagoort and Van Berkum 2007; Willems, Ozyiirek et al. 2007; Hagoort, Baggio et al.
2009) show that this network is also involved in the binding between language and action,
and that it more generally deals with unification processes in a generic way. For Hagoort,

unification is one element of a three parts model called MUC (Memory, Unification, Control).

Figure 30 From (Hagoort 2005) Lateral view of the left hemisphere. Lateral view of the left hemisphere. Brodmann’s
areas (BA) are marked by number. Classically, Broca’s area comprises BA 44 and BA 45. Adjacent language relevant
cortex also includes BA 47 and ventral BA 6 (grey oval).(Decety and Sommerville 2003; Becchio and Bertone 2005;
Knoblauch, Markert et al. 2005)
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Shared Plans: Child Development

Learning a shared plan by observation
“Human children at 14-24 months display a remarkable ability to observe adults perform a
cooperative task (with only 1 or two demonstrations) and then to engage themselves in that
task, taking the role of either of the demonstrating adults (Warneken, Chen et al. 2006;
Warneken and Tomasello 2007). Tasks typically involve retrieval of a toy from a physical
device which requires both agents to manipulate it in a temporally organized and
synchronized manner. By definition, the goal directed tasks require two agents to collaborate
— as the physical constraints of the task are such that an individual agent cannot achieve the
goal. The behavioral data indicate that the children have understood the task in terms of a
coordinated succession of actions, rather than a set of specific motor trajectories. This
research has identified three principal characteristics for collaboration (1) agents are
mutually responsive and coordinated in their actions; (2) they have a common shared action
plan for the joint enterprise. (These provide a “birds eye view” of the collaboration and can
be demonstrated by the agents’ ability to reverse roles.), and (3) a mutual commitment to
subsume their individual actions to the joint goal (Tomasello 1999).” (from (Lallée, Warneken

et al. 2009))

Cooperation in its most simple form occurs early in child development. From soon after birth
toddlers are already able to coordinate their interaction with another person in a turn-taking
way (Trevarthen 1979). This early turn-taking ability may be a basis for later coordinated
execution of shared plans. From 6 months those coordinated interactions can become triadic
by involving manipulation of an object (Tomasello 1995), however the cooperative games at
this age seems quite “frozen” and the child cannot generalize the game principle over
different objects/agents until he his 18 months of age (Hay 1979; Ross 1982). Starting from
20-24 month, children are able to extract individual’s actions in terms of their object
manipulation goals and attribute these to the appropriate agent, forming a “bird’s eye view”
of the collaborative action. Warneken, Chen and Tomasello (Warneken, Chen et al. 2006)
have studied several cooperation situations where two individuals have to reach a common
shared goal which is impossible to achieve alone. In one of the situations, two children are
confronted to an unknown “transparent chest” device which is locking a toy. Their goal is to

retrieve the toy lying inside, however to do this one of them has to activate a mechanism
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which will make the toy accessible to the second one. The experiment occurs in two phases:
first two adults demonstrate a successful shared plan to realize this joint task, and then the
children have to act on their own. As we said, children of 24 months are able to build a
Shared Plan representation based on the adults’ demonstration: after one or two
observations of the plan, they are able to engage it with a partner in any of the roles, thus
executing the same sequence of actions they observed with the role of agents being a
parameter they can change according to the situation. This generalization capability appears
at 20-24 months, when children becomes generally capable of generating coordinated acts
in non-ritualized contexts (Eckerman 1993). Being able to learn a plan by observation of two

agents cooperating implies that the child understand several notions:

e He understands who is the agent performing the action, and that this agent is the
same over multiple actions (agency attribution)

e He understands that the two agents performing the plan have a special relationship
and are not acting on their own but in a collaborative way (shared intentionality
detection)

e He understands that the first actions need to be achieved in order to allow the
following parts of the plan to occur (causal relations along the sequence of action

implementing the shared intentionality)

Execution of a shared plan
A shared plan is the commitment of multiple agents to achieve a predefined sequence of
actions which is aimed at moving the world state closer to their goal. The plan can be
generated by learning or by social elaboration through dialog (spoken or not). Both ways will
end up in the creation of a representation of this plan which will be shared among the
agents who are committed to it. Before this exact roadmap is generated, agents share the
intention to reach their shared goal, while not having yet a plan to achieve it, this is call Goal
Intentionality. Whenever the plan is produced and the participants agreed on achieving it
when the initial conditions are met, this Goal Intention turns out into an Implementation

Intention.
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Goal Intentions and Implementation Intentions are concepts that has been defined by
multiple researchers over the last century (see (Gollwitzer 1993) for a review ; see (Ach
1935; Lewin 1951) for historical basis). Tomasello’s group have led several experiments on
children using such shared plans by cooperating in order to play a game or reach a reward
(Warneken, Chen et al. 2006; Hamann, Warneken et al. 2011). Apart from the initial
implanted intention, participants are always monitoring the status of others in order to
adapt the plan in case of difficulty or to share information about the progression status
through gaze, body and spoken language. When executing a shared plan, one should not just
execute in a “brute” way all the actions he has attributed, instead he should be synchronized
and coordinated with his partner, by recognizing their actions, sharing their attention and
informing them about his own state. As we will see in a further described experiment on
naive subjects interacting with a robot, those behavioral components are somehow required

in order to involve the partners into the shared plan execution.
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Shared Plans: Implementation

A significant open challenge in human-robot interaction is how to transfer task knowledge
from the humans to the robot. This is particularly challenging in the domain of collaborative
interaction in which the robot and human should take turns in a structured shared plan as
seen in previous work (Dominey, Mallet et al. 2007; Dominey, Mallet et al. 2007).
Interestingly, human infants display a remarkable capacity to learn collaborative behavior
from a single demonstration, and to use this knowledge to take either agent’s role in the
collaborative behavior; implementation of this behavior provides the robot with a powerful

way to learn from observation.

Learning a shared plan by observation
Our desire was to mimic the ability of children to learn a shared plan by a single observation
of other agents’ performance. The task was to give this ability to the robot as a new tool for
learning by demonstration. Given the fact that the system possesses a capability to
recognize an action, including arguments and agents, learning a plan by observation is quite
straightforward. The setup experiment that we presented in (Lallée, Warneken et al. 2009)
was composed of a two handed box (which cannot be lifted with only one hand) and plastic
toy. First the robot had to observe two humans (Larry & Robert) performing the task: one of
them lifted the box, then the second one was able to grasp the toy and finally the first one
released the box on the table. After that the robot was placed on one side of the table, in
front of a human with the box covering the toy on the table and asked to execute the plan

demonstrated.
Three software modules are involved while learning from observation:

e Action Recognizer is used in recognition mode to detect which action is done and
who did it

e Spoken Interaction is used to confirm the action recognition results and to filter the
communication between Action Recognizer and Shared Plan Manager

e Shared Plan Manager’s role is to manage Plans, which includes atomic actions
recognized by Action Recognizer and more complex hierarchical arrangements of
those actions. It is responsible for creating new plans and using information coming

from the Action Recognizer.
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First the Shared Plan Manager is instructed that a new plan will be learned, this plan is given
a name and the modules starts to listen for action definitions as input. During the

demonstration, the Action Recognizer detects the three atomic actions:

e Lift(Larry, box)
e Grasp(Robert, toy)

e Release(Larry, box)

Each action definition is broadcasted and the Spoken Interaction module catches and
expresses them so that one user can confirm the perception (e.g “l saw that Larry lift-ed the
box. Is it right?”). While the scenario could be more natural and fluent without this
confirmation phase, the recognition system is too sensible to perceptual noise to operate
without user interaction. The validated actions are sent one by one to the Shared Plan
Manager, which is instructed to append them to the new Shared Plan. Each step in a plan is
called a sub-plan and those sub-plans are recursively stored in list of plans, thus allowing
hierarchical definitions. A requirement for this system to work is that each recognizable
action (i.e actions that are known by Action Recognizer) has a corresponding atomic plan in
Shared Plan Manager; indeed any plan can be part of the sub-plans list, however the

hierarchical leaves have to be plans corresponding to atomic actions.

Execution of a shared plan
The first step in a shared plan execution is to actually share the plan and agree on the
respective roles of each agent. In our case there was not any question regarding which plan

was about to be executed

Generation of a plan: teleological reasoning
Our action definition can be understood as a function which adds or removes relations
between objects in the world state. Given a sequence of actions (a plan) P which will change
the world from a state S1 to a state S2, we name this modification dS. Although our actual
definition of dS could be understood as purely perceptual it can also be seen as a goal. If we
assume that dS are the effects of a goal-directed plan, considering that it is also a path from

S1to S2, then we can establish that:
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1) Reaching S2 is the Goal Intention associated with P. P being one of the multiple
equifinal plans which can lead to S2.
2) The planned execution of those actions when their pre-conditions will be verified

is an Implementation Intention

This framework is consistent with our action definition and thus can help us to formalize the
robot wills and acts. What we called a Plan corresponds indeed to an Implementation
Intention, however any plan possess an underlying Goal Intention. When observing the
effects of a plan it is possible to extract the goal intention which motivated the agent to
execute it. It is also possible to record that this specific Implementation Intention was one of
the possible ways to reach this goal state assuming a specific start state given by the current

context.
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Figure 31: Different intention types. Goal Intention represents the commitment to reach end state Sn
without a specific plan or starting condition. An Implemented Intention represent the commitment to reach

Sn using a specific plan whenever the state S1 is observed.

Within our implementation, we can get the system to express the goal associated with a
specific plan or action by verbalization of the post conditions. Let say that a plan P is

composed of the actions [ uncover(robot, toy, box) ; give(robot, toy, human)].
Uncover(toy, box) will produce the following changes:

e Add visibility(toy)

e Remove is-covered(toy, box)
Give(toy, human) will furthermore change the world with:

e Remove visibility(toy)

e Add possession(human, toy)
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If we sum all these changes, then what is remaining is that P breaks the covering relation
from the box regarding the toy, and that it creates a possession relation from human toward

the toy. Therefore the goals of this plan can be verbalized as:

“The robot had the goal intention to make the human to possess the toy” and

“The robot had the goal intention to have the box to not cover the toy”.

Of course the goal of the plan that we would naturally extract is only the first one (human
possess the toy). Indeed the extraction process can be refined if we take into account the
pre-conditions of each action composing the plan: assuming that give(robot,toy,human) will
first implement a grasp(robot, toy), then its forbidding pre-conditions will contain is-
covered(toy,any). If we remove from the exhaustive list the sub-goals (i.e. goals that were
requirements for later actions), it is possible to reduce the goal intention of a plan to its
simplest definition (in this case make the human to possess the toy). Being able to extract
the goal intention from an observed plan is important to attribute concepts like intentions,
desires and beliefs to the human agents. Although | didn’t have time to go that far and to
push the experiments in this direction, goal attribution through action observation is a direct

way to understand other’s mind and willing.

We've spoken earlier about certain experiments (Csibra, Gergely et al. 1999; Kiraly,
Jovanovic et al. 2003; Csibra 2008) that aimed to test the requirement for an action to be
tagged as “goal directed” in infants. This implies the idea that not all actions are goal
directed, however some sort of goal can be extracted from any action represented in my
definition. Indeed being able to measure the “goal directedness” potential of an action could
be a way to record and store only useful actions. Although the idea is interesting, it is
difficult to implement “equifinality perception” in our current definition since the
representation used is mainly symbolic while this core capability in infants is mainly based
on meaningful trajectories of the agent. One way could be to say that an action definition of
the database is tagged as a goal oriented action if and only if there is another action in the
database which possesses the same Goal Intention (resulting state) but using a different

Implementation Intention.
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Being able to retrieve the goal of an observed plan is a useful feature, however a major
guestion remains: how to produce an appropriate plan given a specific goal? This question
has been central within the field of classical Al and planning is now considered as a
standalone topic. The focus of this thesis is not task planning, however within the project
architecture (see Chapter IV) we created an interface between this action and plan definition
with a partner’s planner, HATP (Human Aware Task Planner). Although the Action Definition
format was not conceived with the goal of interfacing with an external planner, it was quite
a bet to try to convert my plan definition to a HATP formatting. Fortunately, they were both
grounded in the Shared Plans Theory framework (Grosz 1988; Grosz and Kraus 1993) thus
the mapping between these two systems is quite direct. While planning is not the main focus
of this thesis, we implemented all the bases required in order to produce teleological
reasoning and therefore to extract, given an action or a plan, its consequences or its
requirements. A snapshot of the robot cognitive system is given in Figure 32, it includes the

representation of the action “cover” with its requirements and effects.
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Figure 32 Learning and generalizing “Cover Argl with Arg2”. A. Robot setup and visual scene before the action. B.
Vision: Robot’s view of scene after the block is put on the sign. C. Temporal Segmentation: Time ordered sequence of
perceptual events observed during the action. D. Knowledge Base: Abstract pattern template for cover, along with the
resulting state changes, and required initial state. E. Relations encoded in the World State after the “cover” is
recognized in a new action “covers the star with the block”.

Such a representation has been used to extract meaning from those conditions, allowing the
robot to verbalize them in order to answer to some specific questions. Although at the time
of writing those capabilities range are in single action, the extension to a plan is just a matter

of backward/forward chaining. An example of the produced rules is given in Figure 33.
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Robot : Recognized cover star with block

User : What are the conditions to cover the sign with star?

Robot : If you want to cover the sign with the star then

Robot : sign needs to be visible

Robot : star needs to be visible

The sign is visible, but the star is covered with the block, so the user asks the robot how to

make the sign visible:

User : How can | see the star?

Robot : You can uncover the star

The user can now uncover the star by removing the block, and then achieve the final goal

which is to cover the sign with the star

Figure 33 Interaction fragment where the robot performs basic goal-based reasoning about how to solve the task of
getting the star when it is covered by the block, and then uses it to cover the sign.
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Experiments

Teaching a shared plan to the robot and using to test naive subjects
The current experiment examines how naive subjects are able to cooperate with the robot in
different experimental conditions that manipulate the shared plan. What does it means to
share a plan with someone? Although the answer has been given in psychological terms,
shared intentionality and commitment to pursue a goal are not notions that can clearly be
implemented on a robot. It is something to notice how two people work together toward
achieving something, about them transferring their own goal to the other using natural
interaction and language, about adapting to a change in the environmental conditions, etc.
However such behaviors are so natural to us that it is hard to not lose of sight most of its
complexity. When individual A has to interact with B then it is required that both A and B
express many cues to show their awareness about what is going on and about their partner
state. | would like to come back to Figure 34, which has been taken from the “core paper”
about shared intentionality (Tomasello, Carpenter et al. 2005), in order to come back to a so
obvious fact that it is easy to forget: when X people shared a goal or an intention, it means
that X different mental constructs for goal and intention are built. Every single agent
possesses its own goal and intention, which are supposed to be the same or at least similar
among all the population in the case of cooperation. A key factor in order to have the agent
A to successfully go through the shared plan with B is that A believes that they are both

sharing goal and intention, therefore that:

1. B has the ability to hold a goal and has the intention to reach it

2. B’s goal and intentions are the same as A’s

Subsequently B needs to somehow express his intentions and mental state so that A can
trust they are both sharing a goal. From the robot side, it is hard to say that the robot is
holding a goal or an intention: when it executes a plan systematically proceeded through a
sequence of commands while monitoring its partner’s activity in order to know when it
should act, and when the shared plan is complete. In the current experiment, we
manipulate the shared plan, such that in some conditions the robot attributes action to itself
and the human, and in others, there is no shared plan, just a sequence of actions, with no

specification of who should do what. As | said in the preface, the main question in human
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robot interaction at this moment is how a naive human will respond to the robot in these

different conditions.

An agent has basically three ways to express its intentions and mental states: it can speak,
gaze and physically interact with the world (including facial and body expression). If we want
a robot to be attributed intentionality and goals then it needs to express them using those

behavioral cues.
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Figure 34 Taken from (Tomasello, Carpenter et al. 2005) Shared intentionality relies on sharing attention. Attention is the
very first way to express our intentions.

The very last experiment conducted in this thesis was to have naive subjects to interact with
the iCub during simple cooperative games. Games were indeed shared plans similar to
children experiments conducted by Katharina Hamann (Hamann, Warneken et al. 2011): the
goal is to retrieve a toy hidden under a box through cooperation with a partner. In every trial
agent A has to move the box, agent B take the toy and finally agent A replace the box where
it was. As in every shared plan the role reversal is possible, so agent A can be either the

robot or the human.

Our main focus in this experiment is to test how the means of expressing intentionality and
mental state impact on the execution of the plan and on the interpretation of the human.

Therefore we designed several conditions regarding this: intentions of the robot can be
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expressed by speech, gaze or both. Concretely, at each step of the shared plan the robot is
faced to an action which has to be executed either by him or by his partner. In every case the
robot describes the action, for example if the current action is (uncover, human, toy, box)
then the robot will say : “Now you uncover the toy with the box” while looking sequentially
at the human, the toy, the box and back to the human. This will happen in the “full cues”

condition, the spoken part and the gaze part can be separately disabled.

On every subject, several trials occurred in various conditions. At the time of writing the data
is still being studied, however we were already able to extract from videos a major effect of
gaze in sharing intentionality. Even without speech, the subject is able to understand the
expectations of the robot. For example in Figure 35 he has no way to know in advance who’s
the one going first, if he waits for a behavior of the robot he will be instructed either by the
robot making the action or by the a succession of “gaze(box) gaze(subject)” (like a dog which

is asking you to open the food can). The subject reacts really fast to produce the action.

Figure 35 Left: In the shared plan, with gaze, no language condition, after uncovering the box, the robot indicates to
the user “it’s your turn” with a clearly defined gaze action. This reliably triggers the subject’s response. Right: The
robot uses gaze to indicate to the human where to place the object. Again, this reliably elicits the correct response.

We also tested another condition, which show the importance of beliefs attributed to the
robot. After a training phase where the subject has to interact a few times in “speech + gaze”
condition, he has a strong representation of the shared plan between him and the robot. During
the test phase, we introduced a condition called “solo”. In this case the robot is using only
gaze, and rather than using a shared plan, it uses a plan it which it is the actor of all actions.
As depicted on Figure 36 the first action is done by the robot (because the subject didn’t
choose to act first), therefore the subject, according to the shared plan he has in mind, should

do the next action. Indeed in the this case he actually started to move the arm in order to do
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his action, but the robot started to move also causing him to cancel his motion and show an

incomprehension facial expression.

... but "collide

Figure 36 Left: In the no-shared plan condition, the box has tipped over, and the human is placing it in its correct
upright position. This indicates that the human is actively ready to cooperate. Right: When his “turn” to move the
toy block at the center comes, the human begins to effect that move, but then sees that the robot is to make the same
move. This “collision” results in the human withdrawing his initiated movement

Indeed we can extract two ideas from this HRI scenario:

1) The privileged way to express our direct intentionality relies in the gaze and body
language. Our gaze is always targeted toward what we are speaking, or thinking
about, allowing the observer to also look at it and therefore share our attention.
Given the context, gaze can describe an action that we expect to happen next, could
it be done by us or by our partner. In this case the observer is able to understand our
intentionality and act accordingly. In the solo condition at some point the
intentionality of the robot and the subject did not match. The contextual cues of the
robot intentionality were not enough discriminating to overcome the shared plan
representation that the subject was maintaining, creating the collision of Figure 36.
The robot describes other’s action by looking at him and at the object he will
manipulate, however it describes its own action by looking at the object and then
acting. It is quite reasonable to predict that the same kind of collision would happen
in the case of a “programed” human / naive human interaction. Keeping in mind that
the shared plan representation gives a form of priming effect about the next action
to be executed, a form of prediction of the partner’s intentions which we take into

account while acting. To come back to the first chapter, the perceived intention of
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our partner is a mixture between what we think it should be, and what he actually
described using his gaze.

2) The robot, based on his behavior, is attributed intuitively intentionality. There is no
evidence that could be investigated about the attribution of goal, however since the
subject surely has a goal in the context of a shared plan, he may consider that his
goal is shared by the robot. But is it possible to affirm that the subject believes that
robot possesses the ability to pursue a goal? A data structure may hold the
consequences of a plan, but does it allow saying that it represents a goal? Executing
such a plan is just the consequence of choosing a random set of conditions. It would
be a good question to ask to the subject afterward. It is the same concerning
intentionality: by using gaze the robot expresses the next action he is supposed to do
(or wait for), making the subject to attribute him an intention. However, it is likely

that many people would be outraged if we were attributing the robot “intentionality”.

Addendum : At the time of writing 11 naive subjects (Figure 37) have been recorded and
the data is being analyzed. During this experiment the robot did more than 250 motor
actions and the system handled various unpredicted behaviors of the subjects without a

single crash.

Figure 37: The 10 naive subjects of the last CHRIS experiment.
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Discussion

Cooperation is one of the most powerful applications of our cognitive skills, by having our
body expressing our mental state we are able to share desires, intentions and emotions. On
the opposite side, having our counterparts sharing their mental state the same way enable
us to understand will of others. Using those abilities we are able to express and receive
concepts including an action or a shared plan. However, this communication process can be
subject to noise and only reflects the mental state at a given time. Although we call this plan
“shared”, it is a fact that each participant owns his own representation of the plan, that he
believes the other shares. This phenomenon occurred in the experiment presented; at some
point the robot mental representation of the shared plan was not the same as the subject.
Communication is a two edged blade: it allows transmitting mental states to others by
physical interaction; however it can be misunderstood therefore creating incoherencies in
our understanding of others. In the next chapter | will describe how two robots could really
share the same plan, the exact same mental construct, but it is something impossible to
achieve with two humans. However, robots will have to interact and to cooperate with
humans so it is required that they are able to communicate concepts using the “human way”.
By building a robot and testing how subjects understand his goals and intentions according
to his physical behavior, it will give us important insights about what the robot should
analyze on the human body in order gain empathy and understand his needs. At the time of
writing, the human was taken into account only based on the physical changes happening in
objects on the table: his gaze was not monitored, his face was not analyzed, his hands were
not tracked. Therefore, the robot had only very few cues about the human status which
disabled any possibility of a more “aware” interaction. Since communication seems to be so
rooted in motor expression, it is a requirement that a communicating robot is able to
understand and express ideas through his body as well as his speech. This is a really strong
argument in favor of humanoid robots, especially those with a human-like face. A robot
having a mouth, eyes and arms used in a meaningful way will be much more likely to be
attributed to goals and intentionality than a “wheeled platform with a screen”. And as |
mentioned at the early beginning of this thesis, while it will be progressively difficult to be
sure if the robot really possess a goal, intentionality or a consciousness, we can at least make

it act as if this was the case.
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Chapter IV
Abstract Cognitive Machine(s)
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Introduction

Robot cognition is a whole new area of research. New robots are popping out every month
around the world, each one of them having his own body, his own particular features, his
own software, to name a few. Although the situation is evolving very fast, there is still a huge
diversity in the software used worldwide to implement robot cognition, and many parts of
those implementations are redundant. Usage of a middleware can partially cope with this
problem while shifting it to another level: multiple middleware exists, they are not written to
be compatible and the choice of one of them is a crucial point in robotic architecture.
Moreover, at a “higher scale”, software is not the only major issue that robotic research is
facing: heterogeneity is also appearing within the different architectures implementing

robot cognition.

We have seen how humans were able to cooperate in order to achieve a shared physical
goal, to teach or to learn. The concept of communication is central to all those activities; in
order to share his intentions an agent has to be able to communicate with others. | would
argue that the communication methods used by an animal species derive directly from its

sensory apparatus. As human, our main communicative senses are:

e Audition, we developed spoken language,
e Vision, we developed body language, writing, sign language,

e Tactile sensing, we developed brail writing.

Of course the sensory apparatus is not the only requirement for a communication mean to
emerge: the body should possess an organ able to produce a stimulus perceptible by those
sensors. Spoken and sign languages are the most convenient: our body can both create a
stimulus (sound or visual posture) and perceive it as the other agents around. The writing
case is a bit special since it uses a physical artifact to transmit a message at a higher distance
than the simple range of the voice. Other animal species use other sensory modalities to
communicate and transmit knowledge: fishes use electricity (Hopkins 1974), insects use
pheromones (Wyatt 2003) and chemical communication is spread among the animal
kingdom (Taga and Bassler 2003; Wyatt 2003). But despite the means used, the process of
communication is always transmitting an idea from one individual to another, which means

give a form to the contents of the mind so that it can be transmitted as a physical signal,
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send it to the receiver who will have to perceive it and reinterpret it as an idea. Today’s
technology (wifi, bluetooth, more generally wireless technologies) allows transmitting any
kind of digital data between two remote devices in an imperceptible and quasi
instantaneous manner, clearly more efficient than any of our naturally evolved means. The
end point users of these devices are humans, who still have to use their own sensory
apparatus to format and read the messages transmitted over the network. It means that for
any thought we would like to share, we have first to express it in some media (it could be
text, sound, image or video); then we should transform this message to a digital format
before sending it. On the other side, the recipient will have to do the reverse process: after
the raw data has been played by the device, the message has still to be sensed and
understood. Indeed we can see our sensory apparatus as a modem (Modulation-
Demodulation) interfacing our minds with the physical world. The contents of “minds” of a
robot will always be some kind of data structure stored within a digital memory, therefore if
a robot has to transmit any kind of idea to another, it could just send this “data structure”
over the network, allowing an instant and noiseless communication, like the old human
dream of telepathy. However, this will be possible only if the two robots share the same
data structure, which leads to the problem | mentioned before: robots are facing the

heterogeneity of their cognitive architectures.

Thus robots can only share knowledge between them using the “natural mans”. When
watching Star Wars, | always wondered why C3PO and R2D2 were speaking together, why
did they have to talk? Maybe did the robotic revolution of the Star Wars world miss the
opportunity to invent a platform independent cognitive architecture? Fortunately in our
world a few projects, including CHRIS (Cooperative Human Robot Interactive System) which
supported this thesis, are trying to cope with this problem at various scales. The impact and
importance of such a unified robot cognitive architecture is beyond the scope of imagination.
A shared knowledge representation would produce an explosion of robot learning: by
allowing robots to learn instantly from the experiences of others despite their geographical
location, the teaching curve of “newborn” robots will be inexistent. Of course such a shared
experience framework is impossible to achieve with no human in the loop, and many
technical issues will have to be identified and solved by human operation. In this chapter |

will identify some of the initial problems identified while working on the merging of
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experience and propose solutions or ideas to cope with them. In this chapter, I'll focus on
the technical feasibility of what | named the Shared Experience Framework, while I'll keep all

the various philosophical discussions raised for the later discussion.
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Various scales of heterogeneity

Robotics is facing a significant of problems, some of them are inevitable such as hardware
limits, perception and manipulation issues, however others are created by us and the
current technical situation. Among them is the incredible diversity and lack of homogeneity
in all domains of robotic research, from the hardware used to build the robot to the
cognitive architecture implementing its “brain”, passing by the middleware linking both of
them. In this chapter | will review the heterogeneity problem at each level, and point at the

solutions that are rising to face it.

Robots hardware heterogeneity
When one thinks about the differences between two robots, the first thing noticed is of
course the body. When it comes to building robots, the shape of the machine is limited only
by the imagination, and certain physical constraints. Most of the bodies are inspired by
nature and mimic various living beings like dogs, spiders or humans. However, there is also
the possibility to create other “things” like wheeled platforms carrying a tactile table, or
swarm of miniature robots. Obviously, one major issue concerning this body shape is that
not all of the robots can act in the same environment, and that all the actions described
cannot be implemented in the same way. There is nothing that we can change at this level:
although a humanoid and a dog can both grasp a ball, each of them will need a specific
implementation of the action grasp. The bodies’ heterogeneity is a problem we will have to
face, although the use of motor primitives with a robot specific implementation is already a
partial solution ( (Lallée, Lemaignan et al. 2010; Lallée, Lemaignan et al. 2011), attached as

appendixes 1&2).

However, apart from the global body shape, the hardware heterogeneity can be a problem
of another kind. During my PhD | worked extensively with the Italian Institute of Technology
on the iCub robot. We had an older version of the robot in our lab in Lyon, while they had a
brand new version which was using a more advanced control method called torque sensing.
We had this software module implementing the motor primitives that | described before,
but it turned out that a grasp using torque sensing and an “old style” grasp were different
enough to require two different implementations. Fortunately the calls to the specific
implementation was platform independent, however this example shows that an upgrade of

the robot hardware changed it, from a software point of view, into a different robot. Even
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more dramatic, within the CHRIS project, the architecture we developed was required to run
on truly different robots including iCub and the humanoid robot Bert, although the
preliminary definition of motor primitive interfaces allowed us to control and exchange plans

seamlessly between the two platforms.

Robots Software heterogeneity
The number of new “cognitive” robots is increasing each year, both as commercial products
and research platforms. Each robot possesses its own software architecture, thus resulting in
a huge loss of time and money. | will describe in details the implications of this problem, and

the various software architectures engineered to cope with it.

Problem

When one starts to work in cognitive robotics, like starting a PhD, he is often introduced to
the specific software employed by his laboratory or on the robot that he will use. Most of
the time the algorithms developed to handle various aspects of the robot cognition are more
or less independent from the platform used; for example the Self Localization And Mapping
(SLAM) algorithm used for navigation of mobile robots does not change from one robot to
the other if we consider that the motor commands are implemented in other robot
controllers which are just called by the algorithm. However, if one has implemented such an
algorithm on one robot, and he wants to use it on another robot, he will then need to re-
write most part of his code so that it will fit the new robot software architecture and be able
to access the new robot sensors and motors. Developing on two different robots is like
developing on PC and Macintosh: even if the programming language is the same and the
algorithms are identical, the ways to access the platforms are so different that nearly all the
code needs to be rewritten to achieve the same result on both. PC and Mac are the two
main platforms available on the market, making this effort acceptable, however in the case
of robots the number of different platforms increases each year. This is the reason making
many developers, researchers and students in different laboratories to solve the same
problems, using the same algorithms but at the same time preventing them to efficiently
share the results of their work. On computers side the hardware is very different and the
same kind of problem occurred at some point, however abstraction layers have been
implemented to allow the developers to write software without caring about the hardware

which will run their code. Multimedia abstraction layers like DirectX or OpenGL became a

Towards a distributed, embodied & computational theory of cooperative interaction Page 118



requirement because of the diversity of hardware which spread in homes. The “boom of
domestic robots” has not occurred yet and robots are still confined to laboratories, since
researchers like to reinvent the wheel the problem is not really one at the moment, however

it will be as soon as robots will become commercial products.

The existing solutions

Many solutions are emerging to cope with this problem of software heterogeneity; they take
the form of collections of software libraries and programs built with the idea of handling
robotic development. Each of them has pros and cons and choosing one is a matter of
technical integration (most of these environments have been designed for a specific robot,
even if they can handle in theory any kind of robot), of taste and of politics (sometime a
project or a laboratory will choose one as the standard platform). | won’t enter the details of
every solution here, good surveys are available (Biggs and MacDonald 2003; Kramer and

Scheutz 2007) and the main systems are presented through academic publications :

e URBI (Baillie 2005)

e ROS (Quigley, Gerkey et al. 2009)

e Player/Stage (Gerkey, Vaughan et al. 2003)
e YARP (Fitzpatrick, Metta et al. 2007)

Cognitive Architecture heterogeneity
During the course of this PhD | worked within the CHRIS project, which led to several papers
on aspects of cooperative human-robot interaction (Lallée, Metta et al. 2009; Lallée,
Warneken et al. 2009; Lallée, Lemaignan et al. 2010; Lallée, Madden et al. 2010; Lallée,
Lemaignan et al. 2011), some of them being attached to this thesis as appendixes, and a
quite large collection of software modules. When the project started, we had a clear view of
one scenario we wanted to achieve which was prototypical of the interactions we were
interested in: a human and a robot, cooperating toward the goal of building a small Ikea-like
table ( (Lallée, Lemaignan et al. 2010; Lallée, Lemaignan et al. 2011) attached as appendixes
1&2). In the end we managed to achieve in reality what we had initially hand coded at the
project outset (our initial wizard of Oz HRI). Because of the nature of the project, from a
software point of view, the design of the architecture progressed concurrently (or rather,

step-wise) with its implementation. This caused an intensive use of modularity (division of
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the architecture in independent software modules communicating over YARP (Fitzpatrick,
Metta et al. 2007)). From the software engineering point of view | learned during this PhD
that modularity is a two-edged blade: it helps to maintain on going and long term
developments by really separating independent modules and allows replacing / recoding
one of them and maintaining interfaces. However, sometimes the design of the architecture
is done sub-optimally. This can be because we do things to solve a specific case instead of a
more generic one, or because we do not catch the “global picture”, or even for political
reasons. In the end it can result in the division in independent modules of a function that
could benefit from being integrated. The CHRIS architecture in the end of the project is
represented in Figure 38, in this figure each box represents an independent software module
and all the communication between modules is done through exchange of messages on the
network using YARP. | will not explain the architecture in detail here (for reference (Lallée,
Lemaignan et al. 2011) attached as appendix 2). However | would like to emphasis that

while it allowed us to successfully cope with all the aspects covered in this thesis, the

architecture has been inherited and improved.
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Figure 38: CHRIS architecture in the last year of the project (2011)

At first, the “Knowledge Base” idea seemed nice, it was designed to store semantic and
stable properties for objects and the various action definitions in independent modules.

With time we realized that every objects properties and relations between objects should be
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stored together in a compact and accessible way, thus merging the Egosphere and the
knowledge base. Moreover, there was no reason to keep the definitions of actions and plans
separated from their manager module. We could have tried to change the architecture;
however it would have required a huge transformation of many modules and created
several inconsistencies. The best choice at this point was to use concepts and a few modules
from CHRIS and wrap them in a freshly brewed architecture for a new project called EFAA
(EU FP7 Experimental Functional Android Assistant). Built on the experience of CHRIS, the
EFAA architecture (Figure 39) can cope with the same range of tasks, however further
developments and maintenance are made easier by a smarter design and a smaller number
of modules. The major improvement is the implementation of the Egosphere by a module
called Object Properties Collector (OPC): where in CHRIS only spatial information was stored,
EFAA extends the concept by storing all properties about objects (spatial, semantic, relations,
affordances, etc.). Therefore all other software modules can update and access them in real
time. Although there is no doubt that the EFAA architecture is an evolved version of the
CHRIS one, we encountered a well know problem in software development: backward
compatibility. Data structure formats and communication protocols have changed ending in
an impossibility to use the old knowledge base: action definitions, plans and knowledge
about objects is impossible to transfer from one version of the architecture to another.
While in this case it is not really a problem since in a sense CHRIS serves as a point of
departure for EFAA, | fear that such inconsistencies between different cognitive
architectures will become an issue. At the time of writing there is no consensus or attempt
of formalization of a standard knowledge base format. | mentioned in the introduction of
this chapter that robots should be able to exchange or share knowledge in real time
bypassing human like communication means. The first step toward this direction is to define
such formalism. It is not my goal to do so here, it is a daunting task that should be the
outcome of an international project involving the major actors of robotics today. However,
such a project will take years to deliver a usable format while we should start to think about
the implications and requirements of a shared experience framework. In the following part
of this chapter | will describe another cognitive architecture, which | designed independently,
based on the knowledge | acquired during CHRIS. The core principle of CHRIS and EFAA is to
abstract the cognition of the robot from the perceptive and motor layers. In doing so, the

cognitive machine becomes robot independent and the same software/knowledge can be
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used on different robots without any change. However the sharing experience and
perceptions over a community of robots requires more than “platform independent
software”, it needs something like a server to make the sharing of experience among the
robots transparent and automatic. The architecture that | will present is called Central
Cognition; it is a standalone software which embeds the knowledge base implementation
(Egosphere, actions, shared plans) within a multi-robot control system. Within this
framework, all the experiments done by individuals are shared by the whole system in real

time.

.................................................................................
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Figure 39: Status of the EFAA architecture at the time of writing.
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Shared experience framework

Central Cognition
Central Cognition is a software system designed to maintain a shared knowledge base
between multiple robots, while at the same time supervising the behavior of those
individuals (Figure 40). On the perceptual side it implements a list of perceptions, which are
interfaces to sensor dependent APIs (application program interfaces). At the moment, visual
object recognition is provided using iCub and Nao cameras, while agent recognition is
provided by the Kinect API (Kinect is an inexpensive rgb/depth camera). More interestingly,
it also reads from the OPC (object property collector), which is the EFAA Egosphere. Indeed
since they use a similar format for storing properties (see Appendix 4, the EFAA’s OPC
Specification), EFAA Egosphere can update central cognition Egosphere in a kind of
“composite perception”. As a concrete example, the OPC is updated by a tactile table and an
environment initialization file; therefore, central cognition will also perceive the information
coming from those sources. This mechanism is quite important, since all robots in the world
cannot (should not?) be controlled by a single software, multiple “control points” should be
able to share information among them. Indeed the Egosphere concept can be extended
hierarchically if we assume that an Egosphere (a list of properties for objects) can serve as
the perception of another one. As an example, the Egosphere built by the sensors of a
platform in Italy and a another one in France could contribute to a European merged
Egosphere, therefore allowing French robots to “see” what’s going on in the Italian lab. In a
more domestic application, let’s assume that you are looking for your passport. You ask
your robot assistant in the kitchen and it will tell you in that your passport is seen by your
robot dog on the living room table. While this is already a nice feature, it could be nice to
have the dog to bring the passport. Two remarks on this point: first, the perceptions are
shared. This means that a command heard by one robot is also heard by others, therefore |
can ask to the dog directly as if it was next to me. The second note is about how the control

of robots is done, it is achieved through what | called Local Cognitions.
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Figure 40: Central Cognition architecture at the time of writing. The use of the OPC from EFAA as a perception and of the

PMP for iCub implementation provides a step toward backward compatibility.

While Central Cognition is the entity storing all the shared knowledge base, it also keeps
track of all robots. For the system a robot is the implementation of motor primitives’
interfaces (including text to speech). Every robot is associated to a Local Cognition, which is
an update loop defining its behavior: it is responsible for taking a look at the Egosphere,
listen to possible human commands and reacting appropriately. | decided to lock the control
of the robot at the local cognition level because this allows an easy customization and
definition of “characters” which are important for acceptation of machines as friends.
Indeed the “speech style” is local: iCub could say “Good Evening Stéphane” while our
Mexican Nao (Pedro) could say “Hola buddy!”. However a behavior is not restricted to
speech, indeed it defines all the interactions that the robot will have with its environment.
For example | implemented a very basic behavior that does not involve any human robot
interaction and just make the robot to focus his attention on the various objects present in
his proximal environment. A more evolved cognition could be a needs-driven one like it is
the case for the artificial intelligence of the Sims (www.thesims3.com) or the life simulation
Creatures (Grand and Cliff 1998): in those models the agents possess a list of needs (hunger,
entertainment, social, etc.) and each action has an impact on those needs, therefore
allowing the agent to choose the best action in order to satisfy its needs. | won’t give any
more insight on this model, although it is probably the most promising system for an
autonomous agent; what | want to emphasis here is that the behavior is what makes your
robot “unique”. Although the same Local Cognition can be attributed to multiple robots
(they will have the same behavior), a unique Local Cognition can be handmade for each
robot, making them individuals rather than a single omniscient entity. It will likely be easier
to interact with and socially accept robots if they are perceived as individuals. We will return
to this notion, but quite intuitively we can say that people strongly bind one mind to one

body, since all biological organisms know are done that way. Moreover, having this kind of
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distributed control allows an easy maintenance of the robots pool available to Central
Cognition. Indeed Central Cognition (CC) is a “computer voice”, a virtual agent in some sort,
which you can interact with as with any other robot, although CC has “administrative

privileges” over the other robots.

By interacting with CC you can ask to “wake up” or “put to sleep” any of the robots
controlled, you can also access the Knowledge Base, ask for the content of the Egosphere or
the definition of plans, etc. Indeed CC, despite its centralizing role and its ability to manage
the state of every robot, is not the system managing the behavior of every single robot. The
true behavioral choices are done within each Local Cognition, while the possibility for
Central Cognition to directly require the execution of a plan or a primitive action on a
specific robot is left open. Indeed at initialization CC delegates the behavior handling of each
robot to a Local Cognition (it can change the associated cognition at runtime), however it has
access to all the capabilities of the pool of robots, to the Egosphere and the whole
Knowledge Base, it can be therefore considered as another “robot” whose body will be a
distributed system of sensors and multiples robots. | will discuss more in detail the problem
“One mind over several bodies” in the last chapter, for now | will just present several

technical and concrete aspects of the knowledge sharing process.

Experience Sharing

Throughout the thesis | have described various processes of learning for the robots.
Robots can learn from interacting with their environment on their own, from the formal
teaching of a human or by observation. All the knowledge gathered by this learning is
formatted and stored in the shared memory of CC, no matter who created it and how, every
individual robot who is part of CC can access it and use it, likewise for the real time
perceptions of others robots. Such a merging/sharing of information is not a trivial task,

indeed very little research has been conducted on this topic.

At the perception level the problem of sensor fusion appears. Multiple sensors can perceive
environments which overlap; therefore the same object can be detected by multiple sources,
while in the Egosphere only one representation for this object has to be stored. | solved this
problem by having the Egosphere responsible for its own updates: it is attached to a list of

perceptions, which are polled for perceived objects at a given rate. If the same object is
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being perceived by multiple perceptions then a mean of the contradictory information is
calculated while the properties are concatenated. Again we face the problems described in
chapter 1 about fusing information in a hierarchical bottom-up flow of integration. While
those are quite hard in the case of extracting symbols from raw sensory information, when
dealing with perceptions that are already producing symbols the problem is much easier.
Indeed individual objects are assigned a unique name; therefore it is easy to match multiple
instances of the same object perceived on several sources and to merge this information. Of
course several synchronization mechanisms are in place to avoid robots or other software
threads to read from the Egosphere during the update loop, but apart from these critical
time windows, the sum of information coming from all the sensors is available at any time by
every piece of software linked to CC. The question of the sharing the results of learning is a

bit more novel and rise interesting issues.

Assume that | teach the action “swap A and B” to the robot. | will go through a quite painful
process of describing the new composite action swap in terms of sub actions and primitives,
or | will demonstrate it. Both ways will end in having a compact action definition created,
that the robot will commit to the shared knowledge base so it can be used by other robots.
Let’s assume that we are working with a large community of users and robots, there is quite
a risk that other people will try to teach the action swap either at the same time as me, or
before me but in a fashion that | do agree with. Those problems are well known in every
software development team and are at the origins of the need for versioning systems. When
two or more people collaborate on a shared document, they have to synchronize their work
either by having a shared plan (Chapter 3) or by merging their modifications together
afterward. Those two methods are not very comfortable for human beings and clearly
unusable for the purpose of the Shared Experience Framework. This issue has arisen during
the CHRIS project where the knowledge base was mainly stored in text files and the
synchronization over multiple laboratories was achieved using the merging functions of SVN
(Collins-Sussman, Fitzpatrick et al. 2004). In CC there has been no need yet for this kind of
mechanism since the system is a standalone piece of software which is not handling the
commitments of multiple users (that is, | was keeping the system in a coherent state and
didn’t produce any conflict on purpose). Future work will probably see the appearance of

such problems and at some point a merging mechanism for knowledge bases will be
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required, as the tools that are being developed in the ontologies communities (Noy and
Musen 2004; Volkel and Groza 2006). Our partners in the CHRIS project developed a module
dedicated to ontology management, ORO. Open Robot Ontology (Lemaignan, Ros et al.
2010) can store concepts and link them to store knowledge and reason about it. Such an
ontology capability could likely be an effective approach to storage of knowledge in the case
of cognitive robotics, particularly with the merging processes mentioned above. With the
ability to merge multiple knowledge bases, a collective memory of every robot could emerge

allowing an omniscient robot swarm (Waibel, Beetz et al. 2011).
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Discussion

| presented in this chapter the foundations of what could be the future of robotics. It is
interesting to note that at this point I’'m becoming unable to find any scholarly references
about the topic I'm developing: all the questions revealed by such a central cognitive
architecture come from science fiction books and movies. Even within this literature, only
very few deal with the topic of a centralized memory. Most of the time it’s just to mention
this “exponential learning”, described by the T-800 in Terminator when speaking about
Skynet, which turns the system into an evil artificial genius who decides to destroy humanity.
A more interesting case is described in Ghost In The Shell: Stand Alone Complex (based on
(Oshii, Shirow et al. 2004)) and invites us to follow the evolution of intelligent tanks. All the
tanks act as friends to the human characters, they are given orders by speech, are fully
independent and communicate together in wireless chat but still being individuals during the
day. Each tank takes its own decisions, has its own perceptions and collects its own
memories. However at night, all the tanks’ memories are “synchronized”, therefore allowing
each individual to gain the knowledge gained by others during the day. It is hard to not think
about a “shared dreaming process”. The main interrogation about this in the story is the
question of individuality: is each tank a standalone individual? Are they all part of a complex
system? After the synchronization process, we can say that there is only one memory which
is shared by all the tanks, therefore there producing a single complex individual; however as
soon as they start to perceive again on their own they become different beings. At some
point in the story all the tanks are physically destroyed and it turns out that their “brain”,
their central cognition is located in a satellite which allows them to continue to live in the
network. They have no body anymore, however their cognition is still there, providing an
ability to reason and speak. At some point they even gain a “new body” by hacking the
satellite control system in order to be able to move it. In this case robotic bodies can be seen
as a way to harvest knowledge about the world but the mind could be an independent
cognitive process which does not require a body to exist (apart from the computational
substrate of course, which could be neurons or silicon). The development of a collective
cognition opens various reconsiderations of the body concept and its relation with the mind.
It seems logical that the relation one body / one mind is not true in the case of artificial life:

multiple bodies can be associated to multiple minds, with all the possible combinations
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implied. One mind can control multiple bodies (which can therefore be seen as a single

distributed body) and one body can be controlled or contribute to multiple minds, etc.

All throughout this thesis, | never doubted that a mind can emerge on a machine, although it
is a strong position, | would like in the final discussion to speak about this idea and why

people say “No, a machine will never be intelligent nor conscious”.
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Discussion

The domain of abstract artificial cognitive machines targeted toward human-robot
interaction is only babbling yet and produced solutions are research products more than an
engineered, ready to use, systems. In the world’s largest conferences of field, like IROS, most
of the works presented deal with very specialized aspect of human robot interaction. Indeed
only very few groups pursue the goal of integrating capabilities ranging from precise motor
control to action recognition or spoken language understanding and programming. The
major contribution of the CHRIS project (and subsequently of this thesis) is to show how all
those standalone capabilities can be merged together in an integrated cognitive architecture,
and how such an architecture can lead to real world application. Developing, maintaining
and even using such architecture requires a huge amount of work including mostly system
engineering and human-human cooperation but it is necessary in order for robotics to take
off and stop demonstrating capabilities on “toy cases scenarios”. Cognitive architecture
design is quite appealing from a theoretical point of view, it allows to draw nice diagrams
with boxes related to psychological or neurological concepts (long term memory,
dopaminergic system, etc.), however despite their undeniable interest as high level models
of the though those systems are most of the time far of being usable in a technical point of
view. Surveys of such system are available (Chong, Tan et al. 2007; Vernon, Metta et al.
2007; Langley, Laird et al. 2009) and they provide ways to benchmark other candidates.
However it is important to keep in mind that a nice cognitive design and abilities that it
should grant to the system in theory is often very far from the real world application: many
systems described by elegant papers are just not able to produce any kind of live
demonstration. Cognitive architectures applied to the control of a real robot start to appear
but are still not numerous (Scassellati 1999; Benjamin, Lyons et al. 2004; Cassimatis, Trafton
et al. 2004; Burghart, Mikut et al. 2005; Vernon, Metta et al. 2007; Vernon, Metta et al.
2007) and most of the time they are not available as open source engines that everyone can
use (or even if they are, they are so complex and undocumented that it is impossible to
adapt them to another platform). This limitation comes mainly from the fact that such
architectures are designed to handle one specific robot; therefore they are not thought to be

used by other laboratories on other robots. When it comes to the abstract cognitive
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machines, those that are truly independent of the robot platform used, the state of the art is
even more reduced. To my knowledge the only project similar to what we achieved in CHRIS
is RoboEarth which focus on the development of a standard language for robot to store and
exchange knowledge on a cloud-based server (Tenorth, Perzylo et al. ; Zweigle, van de
Molengraft et al. 2009; Guizzo 2011; Waibel, Beetz et al. 2011). Our approaches are indeed
very similar and both projects hold the ambition of managing robot knowledge in hardware
abstracted way, allowing multiple robots being to use and contribute to a common memory.
Moreover their system seems to be robust, able to produce demonstrations and includes a
cloud (web) component that our actual implementation is lacking. The specify of our
architecture is its unique ability to learn, execute and edit plans that are shared by multiple
individuals and which have been demonstrated to be an essential component of cooperation
in humans (Tomasello, Carpenter et al. 2005; Warneken, Chen et al. 2006; Dominey and
Warneken 2009; Tomasello 2009), this ability is grounded within a spoken interaction
framework inherited from spoken language programming (Dominey, Alvarez et al. 2005;
Dominey, Mallet et al. 2007; Lallee, Yoshida et al. 2010) which allow to easily produce new
knowledge. Indeed it would be a great achievement to interface our system with the
RoboEarth APl so that both can benefit from each other’s specificities, but as every
integration activity such a project would require time, cooperative peoples and cooperative

robots.
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Perspectives and Inquiries

This thesis aimed to cover all the requirements for developing the cognition of a robot
companion, starting from the lowest level perception-motor loop and cortico-inspired
associative maps in order to classify the raw information from sensors into concepts and
symbols. We have then seen how such symbols could be assembled into an action definition
and then how those actions could be used in a cooperation landscape through shared plans,
imitation, learning from observation, etc. The last chapter dealt with problems and
possibilities introduced by the development of an artificial cognition: the dissociation
between the mind and the body. However the original title of this thesis was “Toward a
distributed, embodied and computational theory of mind”, which is a bit inconsistent with
my previous statement that mind and body may be independents. Indeed I'm facing a
paradox here: | generally agree with the theory that cognition is partially situated, embodied,
that our mind is shaped by our body and that our body is controlled in a mind dependent
way (Wilson 2002; Anderson 2003). Many psychophysics and neurophysiological
experiments account for the theory of embodied cognition, indeed my multimodal
convergence model and my Annex 1: A Theory of Mirror Development also suggests that this
framework is the right one to explain biological cognition. Humans and other animal species
which possess a cortex are developing their behavior through their interaction with the

III

world. Assuming that we can call “mind” the dynamics of the brain processes, then the mind
is shaped by the body in the sense that all interactions with the world (perception and
action) occurs through the physical envelope and are linked by the brain. The mind is for a
large part the knowledge of all regularities extracted from this perception of our universe’s
rules. Early on it extracts physic rules, it learns that a part of the physical world is an entity
that can be moved by sending signals to muscles and that this entity is continuously sending
back information about its state within the surrounding environment. It learns that any
command sent to the entity will affect the stream of afferent perceptions, and that the
command type is directly impacting this change. Moreover at least a part of the mind is
directly shaped by the body, which is indeed the substrate (neurons) that makes possible

those computations; the sensorimotor organs directly impact the material available for the

foundation of the mind.

Towards a distributed, embodied & computational theory of cooperative interaction Page 132



Solipsism claims that the only thing that we can be sure to exist is our own mind, we
cannot have any certitude about the world, about others mind, or even about our body.
Although what would be a mind which never commanded and observed a body interacting
with the world? Can it be the world or some evil genius ((Descartes and Moriarty 2008),
something is sending information to our sensors, and this information is consistent with the
orders sent to our motors. In this sense the body is required in order to create the mind, it is
the tool used to gather regularities of the world and to build causal relationships. However,
once concepts and rules are acquired, is the body still required in order to have the mind
running? When a concept representing a world object has been created in mind, one can
reason about it without the need of the body. Think about dreams or just “in bed”
imagination: one can close his eyes, relax his body, and have his mind feeding itself with
mental perceptions. Indeed during sleep the thalamus, which is the gatekeeper between our
sensors and our brain, is modulating our perceptions and make them less influent to our
mind (Llinds and Ribary 1994; Magnin, Rey et al. 2010). By reducing this impact, it allows the
very spirit to take control of what the mind perceives by making its percepts mainly based on
feedback. However, this is not inconsistent with the embodied framework: even during
these sleeping phases the body is still shaping the mind and the oneiric representation of our
self is grounded in the daily perception of our physical envelop. Our dreams include
ourselves, objects, and persons and are generally compliant to physical rules. This is easily
explainable; by considering the convergence zone principle we see that every single concept
or symbol in the brain is indeed related directly or indirectly to a pattern of activity of our
sensory layer. In all our life’s experience information about our body is present, this entity is
an actor of all our memories, and it is in the background of every sensory trace that our
brain recorded. As the tool to perceive and act on the world, the body is the core
component of the cognition. As | said earlier there is no doubt that biological beings

cognition is fully embodied, but has it to be the case in machines?

It is still early to say that the robotic system built along this thesis can be attributed a
mind; however we can reasonably say that it is maintaining a sum of its past experience
which composes a mental landscape of world grounded memories. This knowledge base
could serve as a base for reasoning, and older traces could be evoked as the result of a

mental supervisor process. In the following of this discussion I'll call that the “mind” of the
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robot: the sum of its memories and the process handling how, why and when it is accessed.
My first question about this artificial mind asks about the embodied qualification. In
biological being there is no clear separation between the sensory motor apparatus and the
so called symbolic level: all symbols manipulated by the brain are derivate of sensory motor
representations. An artificial cognition is not bound to these requirements: sensory motor
primitive are at some point pure amodal symbols that the brain can reason about. Of course,
in order to be perceived or executed, those concepts need to have some link to a body: the
visual representation of an object need to be stored in a sensor dependent way (an image
pattern for example), and the “grasp” motor command needs to be interfaced by a
controller specific to a robotic body. However, if the sensor or the controller changes, then
assuming that the new one holds the same interface, then the mind will still be able to
perceive and send the same commands. Moreover, even in the absence of sensor or body,
the artificial cognition can still manipulate the symbolic layer to produce a mental simulation
of an action in order for example to calculate the consequences of a plan. A robot body
(collection of sensors and effectors) is required to express the computations of the mind in
the physical world and to initially build this mind; however the mind can exist as a
standalone computational process, abstracted from the body. | have described the Shared
Experience Framework, which allows multiple robot bodies to contribute by their
perceptions and knowledge to a centralized knowledge base. However every robot behavior
is handled by a separate process, which allows each of them to share knowledge of others
and at the same time to use it in its own way and to express its own “mind” by commanding

the body it is attached to.

Indeed for humans, the concept of mind seems intuitively linked to the one of
individual, which is natural since our reasoning processes are based on the fact that we are
individuals. Depending on the mind definition used it can be extended to communities of
beings which creates the emergence of a collective mind, which is more than the sum of all
the minds composing it. Indeed the idea of a distributed mind is growing and being tested in
multiple scientific fields (see (Heylighen, Heath et al. 2004) and (Weick and Roberts 1993) for
references on this topic). The collective mind, if it can exist in communities of biological
beings, is fairly limited in its possibilities by the fact that two agents need to use

conventional communication means. When | mention an “embodied, distributed,
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computational theory of mind” | had a view of something deeper than just the processes
resulting from the communication of multiple agents. The Shared Experience Framework
provides a mental material that is the same for every individual contributing to it, while at
the same time allowing each of them to build its own behavior. In this case, where is exactly
the mind? All agents possess the same knowledge and only the way they use it is different,
therefore could we say that the mind is simply the process of using knowledge to trigger
some behavior? It would mean that every robot of the system owns its own mind, but it
would also mean that the mind is a process which can be abstracted from the knowledge it
works on, therefore creating dissociation between the body, the experience and the mind
(see Figure 41, right part). But can we really say that in biological beings the mind is not just
created by the sum of all experiences? Is there really a process that is independent of the
memory and that handle the behavior, or is every single act we do just the consequence of a
memory echo? In the left side of Figure 41 | depicted the mind and the experience as
separated, however | did so just to make the parallel with the Shared Experience Framework.
| cannot and do not want to give an answer to this question. We reached a point where the
implementation of cognition on machines doesn’t have to cope with the same requirements
as the wet brain. The Shared Experience Framework opens various philosophical questions
about the gap between an individual and a community of robots. For example, it is the core
of the so called “Stand Alone/Complex” problem introduced at different levels by Arthur
Koestler (Koestler 1968) and Masamune Shirow (Shirow, Oshii et al. 1995) (Ghost In The
Shell). It will also question heavily the existing philosophies of the mind and the body: a body
is required to gather knowledge about the world and to support the creation of a mind, but
has the mind to own only one body? Is it transferable from one body to another? Once born,
does it need any body to survive? Studying body, mind and consciousness under the

engineered light of robotic allows not being dazzled by the sacred light of the Human.

Bernard Werber, in “L’Encyclopedie du Savoir Relatif et Absolu” said with reason that
in order to understand a system you have to extract yourself from it. All through this thesis |
tried to avoid referring to mind, spirit or consciousness because they are concepts that we
experience so intimately that they wield for almost everybody a “sacred” aspect. They are
the essence of what we are and it appears to be impossible to reason outside of them. Even

when Descartes doubted about everything, he reached the famous statement “I think
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therefore | am”, therefore considering the thinking process and being conscious of this

process as the core of our reality.
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Figure 41: The different interaction between the being components in both living things and in the Shared Experience
Framework. Mind have to been understood as the process responsible for taking decisions based on the past experience
and the current sensed world.

However mind and consciousness are not elements that we attribute only to our very selves:
they are also characteristics of other individuals. We consider that the behavior of others is a
direct expression of their mind; therefore if this behavior is something that makes sense to
us we assume that the individual responsible for this body owns a mind. If the body is unable
to act, as in coma, we have many difficulties to decide if we should attribute spirit or
consciousness to the inanimate envelop. Neuroimagery starts to investigate ways to test if
the so called consciousness if still present in the brain (Laureys, Boly et al. 2006), indeed
corticothalamic disconnections could be responsible of “consciousness loss”. Interestingly
the thalamus is the interface between the cortex and the body, which could therefore be the
link between body and mind. But most people haven’t such ways to investigate the
consciousness of others, and being honest, we decide to attribute the conscious privilege to
someone based on his physical interaction with the world. Therefore what about the case of

artificial beings? Could they be considered as owning a mind whenever their behavior will

become plausible?
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| said in the preface that robotics was an illusion: by improving the behaviors of
robots so that they interact with the world as humans do it, we implicitly fool observers to
have them to attribute intentionality to a machine. Solipsism states that we cannot be sure
about the existence of others and it is indeed true: how can we be sure about the existence
of our neighbor’s mind apart from observing that his behavior is coherent? The only thing
we can be sure about is that some process makes him act as if something was controlling his
body in a similar way our mind controls ours. | summarized this idea in Figure 42 where |
represented schematically that we are maintaining a model of the self and the other, while
the first is the source of our behavior, the second is only a reconstruction based on the
observation of other’s behavior. Naturally we try to have this behavior to fit a model of a
“like us”, we assume that others mind is shaped as our own although if we take time to think
about it we have no evidence of this. We attribute mind to people based on their behavior,
although those controllers could be very much different to the thing we experience as our
own mind. Therefore could we have the same argument about our own consciousness?
What if this strong feeling that we are some mind-embedded envelop was only the result of
ourselves perceiving our own behavior as an appropriate one? When one acts wrongly while
being drunk, it is a common afterward justification to say “l was not myself”, underlying that
our own mind was not controlling our behavior at this time. We observed our acts, but since
they were not making sense we do not attribute them as our own decisions. It is a strong
assumption, but if consciousness and mind are only the result of one observing that his own
behavior matches what he expects, what could forbid a robot to hold them? One could
argue that we can still be sure of our mind existence even without acting, by the thinking
process, by mental imagery. What is thinking? We can guide it by will, we can force
ourselves to think about a specific idea, let say a dog, and we know that we are conscious
because the sensory traces composing the dog concept activates in our mental percepts. If
we consider the ability to focus our computations on a specific topic as a mental behavior, as
our way to act on our direct mind perceptions, therefore the same idea applies: we know
that we are thinking because the direction we imposed to our thoughts is the same as the
one we perceived. We are able to perceive the effects of our mental actions on our thoughts,
on our mental percepts, therefore we assume that we are conscious and that we are behind

the commands. So what if the consciousness was just the mind’s ability to perceive itself?
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Annex 1: A Theory of Mirror Development

Since Rizzolati discovered neurons that react both to observed and produced actions
(Pellegrino, Fadiga et al. 1992; Rizzolatti and Arbib 1998; Rizzolatti and Craighero 2004), the
cognitive science community has powerful theoretical object to manipulate: it is a system
that could be an explanation for all the primates unique cognitive skills, although ethics,
technical feasibility and the general feeling that the explanation for cognition cannot be
simple are forbidding any global theory of mirror development to emerge. Indeed many
objections have been made to calm down the “mirror neurons excitement” (Dinstein,
Thomas et al. 2008; Hickok 2009; Lingnau, Gesierich et al. 2009), producing again a sort of
“war of philosophies” which science is fund of. As a “pacifist scientist”, in this annex | will not
make any claim about the human cognition, | will just describe which mechanisms related to
imitation and mirroring could help us to build robots that learn, maybe not as human do but

at least in the same conditions as humans.

Learning is a matter of consistency and convergence. One of the most basic properties of
neurons is the Hebbian reinforcement, the fact that two cells that are often activated
together will strengthen their connection so that they will be more likely to be activated
together, etc. Indeed this virtuous circle effect can be witnessed in many aspect of what | call
mirror development. Let’s assume that a newborn possess a basic untrained motor mirror
system, which means that the observation of a body and the self-proprioception activate the
same cortical area, but maybe not in consistent ways. However, the expression of the baby
will be perceived and, through a controlled echopraxia (unconscious imitation (Buccino,
Binkofski et al. 2001)), the caregiver will imitate the baby. However according to my MMCM
model, such an imitation would be pulled toward a posture known by the caregiver,
therefore having him to express a mixture of the baby’s posture and of a posture he is used
to take. The inverse phenomenon occurs: the newborn perceives the adult and therefore

moves toward this usual posture which acts as an attractor. The loop is described in Figure
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43 and has been used as a teaching mechanism to have a MMCM map to learn the mapping

between robot encoders and human skeleton recognized by Kinect (Figure 44).
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Figure 43: Convergence phenomenon of imitation. Postures known by the caregiver act as attractor and are teached to

the baby through imitation.
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In this experiment the robot was moving sequentially into different arm postures and the
user had to imitate it, producing pairs of kinematic vectors that were taught online to a
convergence map. After the map had learned, it could be used to have an imitation of the
human by the robot, or to cause a drift in robot motor control based on human perception,
as in echopraxia. At the time of writing no further investigation has been achieved and the
experiment status is more a  “proof of concept” (See video at

http://youtu.be/uUquQdnGohE) than a real way to teach useful postures to the robot.

However it could be used to test predictions of the MMCM model in against human

imitation.
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Figure 44: using the mutual imitation cycle to teach a MMCM to solve the correspondence problem between human and
robot kinematics.

The same kind of converging imitation is also the basis of the motor theory of speech (for
the motor part and how to produce sounds (Liberman and Mattingly 1985)) and of the
talking heads experiment (Steels, Kaplan et al. 2002). As for the posture, the spoken name of
an object will be driving the imitation loop between the child and the caregiver. For example,
whenever the child will say something that sounds at least a bit like “mum” the mother will
repeat the correct word and this correct representation both on motor and audio modalities

will bring the children a step closer to a good pronunciation.
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Another famous example of this phenomenon is imitation of facial expressions (Meltzoff and
Moore 1983; Carr, lacoboni et al. 2003). This two way imitation (child does something, adult
imitates, or reversal) is a perfect process to learn behaviors and self to other mapping at the
same time. The caregiver is already shaped to produce meaningful postures in appropriate
situations, when the child imitates him he shapes himself to produce this kind of useful
behaviors. The mirror system could be a very good hypothesis to explain why this tendency
to imitate appears, because a simple innate hard wiring of other and self-perception could
lead to those mirror development loops and therefore to the creation of the mirror system

by synaptic plasticity.
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Annex 2: Central Cognition, Implementation Detalls

Implementation details about the different cognitive architectures described in this
manuscript are given in the related papers ((Lallée, Lemaignan et al. 2010; Lallee, Madden et
al. 2010; Lallée, Lemaignan et al. 2011) attached as appendixes 1, 2 & 3), however Central
Cognition, the software designed for handling the Shared Experience Framework hasn’t been
extensively detailed yet. In this annex | give a few technical explanations about the software

engineering involved in this project.

Central Cognition is a CH# program which core functionalities are standalone, they do not
make use of any library and are therefore very easy to install, run and maintain. Some low
level interfaces (like the specific robots controllers or sensors API) require to link CC against
third part library for controlling specific hardware, however the .NET framework allows this
integration with a minimum amount of effort. I'll first present the core functionalities of CC

and then present how it can be used to handle a group of iCub and Naos.

Core

The main functionality of CC is to provide a way to store knowledge (including objects,
actions, plans and semantic relations) in a robot independent way. A few static classes are
devoted to this job, the most important one being the Egosphere which is in charge of
storing the list of every world object (in the broad sense) known by the robot, including
objects that are not present at a given time. The concept is similar to the one of the CHRIS’s
Egosphere (which was representing objects using an ID and their spatial position and
orientation) or to EFAA’s OPC, however the way to represent the information is much more
optimized and intuitive. The Egosphere by itself is simply a dictionary of WorldObjects
indexed on their names, the interesting fact is the datastructure representing a
WorldObject: it is actually a class which is a part of an inheritance hierarchy as described in
Figure 45. Having those items being real objects within the code allows easy management
and interesting linkage of functionalities. For example the grammar management maintains
list of vocabulary which is made of WorldObject, therefore when the sentence “iCub take toy”
is recognized, the words “iCub” and “toy” provide a direct access to the mental

representations of those objects.
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Figure 45: Inheritance among the classes representing every concept known by the robot. The Egosphere is a collection
of WorldObject which represent both artefacts (item it is possible to manipulate) and agents (robots and humans).

Three main types of objects coexist now in the Egosphere: Artefact, Human and Robot. An
artifact is basically only spatial information (position, orientation, size) and an affordance (a
grasping configuration to be used by the robot when grasping those objects). Human are
specific entities, but at the moment they do no hold special properties apart the fact of
being an agent (therefore contribute to the vocabulary list for generative spoken grammars).
Robot is the most interesting class, since it handle both the robot spatial information, but
also an interface to be implemented by the final robot type (iCub, Nao, virtual avatar...). A
basic motor primitive set needs to be implemented; optionally the robot can implement
custom primitives, which allow recording/replaying of motor postures (for example to teach

the robot how to wave).

abstract BehavioralErrors
abstract BehavioralErrors
abstract BehavioralErrors
abstract BehavioralErrors
abstract BehavioralErrors

abstract

MotorPrimitive.PrimitiveInstance

lookAt(WorldObject where, bool waitActionDone);
reachAt(WorldObject where, bool waitActionDone);
graspAt(WorldObject where, bool waitActionDone);
release(WorldObject what, bool waitActionDone);
executeCustomPrimitive(string p);

learnCustomPrimitive(string p):

Figure 46 : The functions to be implemented by specific robots. It includes both a basic set of primitives, and the ability to
build custom primitives (sequences of postures that are recorder, assigned to a name and replayed on demand).
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Speech capabilities are also provided to every robot by providing him with an instance of
SpeechRecognizer (Microsoft Speech API) that can be attached to the robot specific
microphone, it also provides a standard text to speech, which can be overridden (for
example the input of the Say command in the case of iCub is forwarded to a module

responsible for moving the lips).

Another main static class for CC is the SharedPlanManager. It maintains a representation of
the plans known by CC. A specific shared plan can be retrieved by every robot and then can
ask for its execution. The plan is achieved action by action: if the robot is the subject of an
action then the according motor primitives are fired; in the case of the action to be
accomplished by another agent, then the robot puts itself in waiting mode, waiting for the
central ActionRecognition module to detect this action. A re-engagement mechanism is also
implemented so that after the while the robot will ask to the user to execute its part. The
action recognition at the moment is not implemented in CC, only the robots actions are
forced to be recognized when achieved so that robots can synchronize themselves, in a
human action case the user is expected to say “done” when the action is accomplished. An

effective action recognition based on Kinects input will be the next improvement of CC.

Indeed since multiple sensors (Kinects, robot cameras, tactile table..) can feed the
Egosphere, a unifying mechanism was needed. Here again an abstract class, Perception,
provide the necessary interface to have any kind of sensor to feed the Egosphere with a
single format. Perceptions are basically threads that call periodically an Update function
which returns the list of WorldObject perceived. The Egosphere is responsible for handling
those signals and managing different perceptions which update the same objects (it does a

mean of their different information, therefore granting a more accurate localization).

Extension
As example of how sensors can implement Perception or Robot, CC provides a few ready to

use classes.
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Perceptions

Spikenet

Spikenet perception is a template matching visual system which tries to recognize objects on
a Yarp stream of images. It is based on a commercial system (Spikenet (Thorpe, Guyonneau
et al. 2004)) that we have been using along the CHRIS project. Model files can be learnt,

loaded or saved at runtime.

OPC

CC is mainly is sequel of the CHRIS project, however it is also compliant with the EFAA
project, which uses a module called OPC as an Egosphere. The project related sensors
(Reactable & Kinects) have already modules feeding the OPC. Therefore instead of coding a
new implementation of that module for CC, it was easier to have a special perception which
uses the OPC as the source of its data. OPC_Perception is polling the OPC, retrieving the
objects and forwarding them to CC’s Egosphere which allows a transparent integration of all

the EFAA’s sensors (see Figure 47).

kinect2opc ‘ reactable2opc

I

OPC A Perception_OPC || Perception_Spikenet

attentionSelector
Egosphere

pmpActions

|

Central Cognition

Motor cmd

|

Shared plans

Behavior handler

EFAA

Figure 47: Integration of the EFAA's OPC in CC through the use of a single perception.
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Robots

iCub

The main robot tested with CC is the iCub. There are even two different implementations of
the robot using different motor controllers (respectively CHRIS and EFAA controllers). They
both override the custom primitive learning by allowing the user to put the robot arms in a
compliant mode, allowing kinesthetic teaching by recording sequence of joints angles for

later replay.

Nao

The Nao’s implementation is mainly based on the work done for the Robocup@Home 2011
competition. The motor implementation for basic and custom primitives was directly
imported as a .NET library to allow execution of Choregraphe based actions (standard

primitives) as well as kinesthetic teach actions.
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Towards a Platform-Independent Cooperative Human-Robot
Interaction System: I. Perception

Stephane Lallée, Séverin L emaiznan Alexander Lenz, Chris Melhuish Lorenzo Natale, Sergey
Skachek, Tijn van Der Zant, Felix Warneken, Peter Ford Dominey

Abstraci— One of the long term cbjectives of robotics and
artificial cognitive systems is that robots will inereasingly be
capable of interacting in a cooperative and adaptive manner
with ther hummn counterparis in open-endal tasls that ean
change in reaktime, In such situations, an important aspect of
the rabot behavior will be the ability to acquire new lmowledge
of the cooperative tasks by observing humans. At least two
significant challenges can be ddentified in this context, The first
challenpe concerns development of methods to allow the
characterization of human actions such that robotic systems can
observe and learn new actions, and more complex behaviors
made up of those actions. T he second challenge is associated
with the insnense heterogensity and diversify of robots amd
their parceptual and motor systams. The associatel question is
whether the identified methods for action perception can be
generalized across the diffarent perceptual systems inherent to
distinct robot platforms. The current research addresses these
tw o challenges, We pressnt results from a cooperative hunen-
robot interaction system that has been specifically dereloped for
partability between different bumanoid platforms, Within this
architecturs, the physical details of the perceptual system (ag.
video camera vs IR video with reflecting markers) are
encapsulated at the lowest level Actions are then automatically
characterized in terms of perceptual primifives related to
motion, contect and visbidiy, The resulting system is
denonsiratal o perform robust object and action learning and
recognition on two distinet robotic platformas. Perhaps nwst
intarastingly, we demonstrate that lmowledge acquired about
action recognition with one robot can be directly imported and
successfully used on a second distinct robot platform for action
recopnition  This will bave interesting implications for the
accumulation of shared Imowledge hetween distinet
heterogeneous robotie systems.

Manuscript reczired Manch 10, 2010. This work wes fully supported by
Eusopazn FBT ICT project CHEIS).

Sephans Lalles, Tijn van Der Zantand Peer Ford Dominey ae with the
St=m Call & Brain Fesearch Institote, INSEFM U 845, Bron, France.
(stephane latles {@inserm fr; robotij ilcom;

peter dominey@insgom fr).
Severin Lemaignen iz with LAAS, CWES, Toolous, France,

{zeverin. emaisnanlzs s fry Alswander Lenz, Chis Melhuizh and Sergey
Skachek are with BRL, Bristol, United Km;dcms. (alew enz (@bl ac uk ;
Chris. M thuishiTbrl ac uk; Sermen. Slac brlacuk).

Losenzo Natale is with T, Genoa, Italy. (o nze natate (@it if).

Felin Warnsken i with Hmwd.Uﬂwerstt} Cambeides, TTEA
{warne keng@asih harvand 2 du)

[ INTRODUCTION

QOPFERATION is 2 hallmark of human cognition. Earlyin

their development, human children begin to engage in
cooperative activities with other people. Critically, from
early on, children are able to cooperate in novel situations,
based upon social-cognitive capacitizs such as representing
other people's intentions, visual perspective-taking, and
imitation [1, 2]. The premise of our rzsearch is that similar
skills arz required alse for human-robot cooperation.
Specifically, in the CHRIS project’, we derive the
fundamental skills which enable voung children to engage in
cooperative activities and implement thess in an integrated
system capable of running on several rebotic platforms to
study human-robot  interactions. The current ressarch
reports on this integrated system and resulting experiments
with 1Cub [3] and the BERT2 robot platforms.

The novelty of the current research is twofold: First, we
present an on-line learning methed for recognition of simple
human action related to object manipulation. Some ressarch
has already been done in the area of action learning and
racognition by robots [4-7], however our approach is based
on detzction of simple percephual primitives that can be
processed independently from the perceptal system used.
Second, we demonstrate that this platform-indspendent
architecture operates successfully on two wvery distinet
phyzical robot platforms, using highly distinct perceptual
systems.  Finally we demonstrate that because of the
percepmal  abstraction in the architectwre, knowledge
acquirzd about rzcognizable actions on one robot can be
vezd to recognize actions (with a completely different
perczpmal sy=ztem) on a different robot.

II. CoNTEXT HUMAN / ROEOT COOPERATION

A Cooperation regquire menis

Studizs of human infants [2, 8, 9] show that recognizing
actions is a fask that gradually develops over the second and
third vear of life. From around 14-18 months of age, infants
begin to engage in novel cooperative tasks with adults, in
which they have to cellaberate jointly to achieve a shared

' www cheigfpT.en
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goal (such as one agent holding something in place so that
anether agent can manipulate the object). It has bean argued
that from this sarly age, infants are alrzady able to rzpresent
a shared plan of action (an action plan encompassing both
the child's and the pariner's actions taken to bring about a
certain changs in the world), and are able to reverse
complementary roles if necessary. In other terms, infants are
taking a "bird's eye view' on the secial situation, reprasenting
not only their own actions, but both their own and the
partnet's actions as part of a shared plan [10]. Such a shared
plan allows the child to demonstrate “role reversal” where
she can take on the rele of either partner in a cooperative
activity. We have recently implemented this type of shared
planning in robotic systems which could observe actions,
attribute roles, and then use the resulting shared plan to
perform the cooperative task, taking the role of either one of
the two participants[11, 12]. This basic representational
capacity appears te be in place in human development very
eatly on. However, over develepment. children become
increasingly skilled in coordinating their actions with
differant  secial partners.  They start to cooperate
mueezssfully with more competent adults early in the second
vear of lifz, and gradually becoming able to cooperate also
with peers around 2 wvears of age [9]. Importantly
cooperating in fairly simple novel situations does not require
extensive learning [2]. In more challenging tasks with
complementary actions that require a multi-step sequence
and a goal that is not transparent, direct instructions appears
te be necessarv[13]. Thus, we have used spoken language
il human-robet cooperation in order to make the nature of
the tasks explicit, so that they can be used by the robot to
learn the structure of the task [14, 15] A crucial aspect of this
human cooperative behavier is the ability to observe and
understand new actions in real time, during the courss of
obeervation of an ongoing cooperation. Children can be
exposad to novel physical devices and within a fw trails of
observation, lzarn new actions involved in manipulating
these devices [1, 2].

B, Extracting Meaning from Perception

FEobots will have to demonstrate similar learning
capabilities in order to face novel sifuations they will
encounter in the real world. Exhaustive knowledge about the
world cannot be provided a priori by the programmer, thus
the robots nesd an ability to learn. An important aspect
of human secial life is our ability to learn from others
through observation and instruction [16], which is a faster
and meore accurate way of acquiring knowledge about
complex entities than individual learning, such as trial-and-
error learning. Mandler [17] suggested that the infant begins
te construct meaning from the scens based on the extraction
of perceptual primitives. From simple representations such

as contact, support and attachment [18] the infant could
construct progressively morz elaborate representations of
visnospatial meaning. In thiz context. the physical event
"collision” can be derived from the percepmal primitive
"contact”. Kotowsky & Baillargeon [19] observed that at 6
months, infants demenstrate sensifivity to the parameters of
objects involved in a collision, and the resulting effect on the
collision, suggesting indeed that infants can represent contact
as an event predicate with agent and patient arguments.
Siskind [20] demonstrated that foree dynamic primitives of
contact, support and attachment can be extracted from video
event sequences and used to recognize eventsincluding pick-
up, put-down, and stack based on their characterization in an
event logic. Related results have besn achieved by Steels
and Bailli= [21]. The usz of these intermediate
representations renders the systems robust to variability in
motion and view parameters. We have used a related
approach to categoriz movements including touch, push,
give, take and take-from in the context of link these action
representations to language [22]. In the current research, we
extend these ideas, so that arbitrary novel actions including
cover, uncover, iake, put and fouch can be learned in real-
time with a few examples each, based on invariant sequences
of primitive events specific to each action. We subszquently
demonstrate that using the same architecture, such actions
can be learned on a different robot platform vsing an entirely
different perceptual system. Finally, and perthaps most
interestingly, we demonstrate that knowledge of action
rzcognition lzarned on one of the rebots transfers directly for
successful use on the other.

II. Tue CHRIS ARCHITECTURE

In order to be platform-independent, a cognitive architec turs
should abstract away from platform-specific rapresentations
at the lowest level possible. An overview of our architectirs
in this context is presented in Figursl.
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Figurz 1 Ovverview of the Softwane Aschitecture. Each block iz 2 snd
alone software modulke that execote a certain function. The interface
tetwesn the platform gpecific software and e generic achitectors i he
Emoephers, which allow abstraction from low level peception. Asows
meprezent e flow of nformation (date, commands), which ae ranspored
over the network via TARD. All the feft past i robot independant and been
tested on the iCub and BERT robot.

Bobot specific components, for the 3D-perception and Motor
command levels, illustrated on the right, are iselated from
the rest of the system at the lowest level.

A Scens Perception
1) EgoSphere

The first layer of abstraction betwesen the sensory
perception systems, the higher level cognitive architecture
and motor control elements is formed by the EgoSphers.
Unlike the sensory ego-sphers (SES) by Peters [23] which
implements short term memeory, associations, direction of
attention in addition to localization, our simpler
implementation selely acts asa fst, dynamic, asmchronous
storage of object positions and orientations. The object
positions are stored in spherical coordinates (radivs, azimuth
and elevation) and the object orientation is stored as
rotations of the object refersnce fame about the three axss
(%, %.2) of a right-handed Cartesian world-frame systzm. The
origin of the world frame can be chosen arbitrarily and, for
our experimental work, we located it at the centre of the
robot’s base-frame. Other stored object properties are a
visibility flag and the ebjectID. The objectID iz a unique
identifier of an ebject which acts asz a shared key across
zeveral databaszez (described in mors dztail in B below). The
robot-specific 3D perception system adds objects to the
EgoSphers when they are first perceived, and maintains
position, orientation or visibility of these objects over time.
Modules (2.g. Primitive Detection in Fig 1) requiring spatial
information about objects in the scens can query the
EgoSphers. No assumptions are made about the nature of an
object and any further information (2.2, object namea, object

type) will have to be queried from the Knowledge Base using
the objectID. This architscture makes the EgoSphers
particularly useful for storing multi-medal information.

The EgoSphere iz implemented in C++ as a cliznt-server
system using the YARP infrastructure. Softwars modules
raquiring access to the EgoSphers include a client class
which provides metheds like addObject()), setObject(),
getObject() or getNumberOfObjects(), ete. Clearly, at the
current state, the EgoSphere i3 merely a convenient
abstraction layer. With increasing complexity of human-
robot interaction tasks during the course of our research, we
plan to add further complexity (human focus of attention,
confidence, timeliness ate.) whilst preserving modularify.

2} Primitive Detection

The robot should be able to recognize actions performed
by other agents in order to leamn, to cooperate or for safety
reasons. A few systems are performing action lzarning and
recognition [4-7, 24 23], howewver nons of them is
completely platform independent. Since our system is taking
inputs from the Egosphers, it allows applying learning and
rzcognition algorithm that are not at all related to a specific
robot Moreover, our algorithm is using a novel approach :
we have previously demoenstrated [22] that actions involving
change of possession could be described in term of
percepmal primitives such as comtact. Hers we extznd the
primitives to include motion and visibility. Thus an action
such as “Larry talkes the ball” can be characterized in terms
of a s=quence of percaptial primitives:

+ Motion: Larry's hand staris io move
« Contact: There is a physical comtact between
Larry's hand and the ball
« Motion: Both Lary's hand and the ball start to
move together and then they both stop.

We refer to these low level events as Perceptual Primitives.
Dominey & Boucher [22] demonstrated that a vanety of
actions could be recognized with the single primitive
corntactixy). Here we extend this approach by including in
addition the primitives visiblefx) and movingy). Thess
primitives and their corresponding arguments and tuth
values ars computed in the Primitive Detection meduls,
which polls the EgoSphere for changes in position and
visibility. Contact is recognized by a minimum distance
threshold which is determined empirically. Likewise motion
is detected when the position of an object changes over an
empirically determined threshold. Visibility is directly
available from the EgoSphere.

3) Action Recognifion

Thus, when a physical action occurs, values encoding
object positions in the EgoSphers changes accordingly.
Primifive Detzction transforms this position information into
sequences of perceptual primitives. Action Fecognition
reads this stream of percepmal primitives and groups the
elements inte candidate actions  Based on empirical
measures we determined that primitives which are separated
by less than one sec. belong to a common action. A
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primitive sequence for an action may last several seconds,
but mo successive primitives are separated by more than 1
sec. This limitation on fast successive actions is considered
in the discussion section. When an action is performed and
processed, its primitive sequence is thus segmented by the
Action Recognition module, which tries to recognize it. The
Action Recognition module generates and manipulates the
Action Definitions  database of primitive sequences as
follows, It tries to match the current sequence by an
exhaustive search through the database. If the sequence is
not recognized, the Action Recognition module iriggers the
Spoken  Language
description of the action, providing the action name, agent
and object of the action. It then associates this description
with the recorded scquence for future recognition,  If the
sequence s recognized. the Spoken Language Imterface
extracis the action and arguments and reports. The system
thus provides object independent action recognition (i.e. il it
has learned “Larry takes the ball”, it is able to recognize
“Robert takes the coffee-cup™). The module also detects and
stores within an action definition the mital state of the
objects concerned by the action, and the consequences of
this action on the world (i.e. if Larry covers the ball with a
box. then the ball will not be visible anymore) which will
allow creation of new inference rules within the QRO
madule of the Knowledge Base, described below.
B, Knowledge Base

Through interaction with the user and the physical world,
the system acquires new knowledge, and it is also initialized
with certain background knowledge.
1) Ohject Properties Database

The OFDE is the common namespace manager for objects
that can be perceived by the system. It contains physical
parameters of objects, including their perceptual signature as
defined by the EgoSphere. Each object that is known to the
system (that can be perceived and represented in the
EgoSphere) has a unique identifier (the objectID) which
es us an index into the OPDB and the Knowledge Base
in general.
2 The Open Robor Ohtology

ORO (the "OpenRobot Ontology” server) is the semantic
layer of the system. [t has been designed to integrate easily in
different robotic architectures by ensuring a limited set of
architecture requirements. ORO is built around a socket-
based scrver that stores, manages, processcs and exposcs
knowledge. ORO is portable (written in Java), and can be
easily extended with plug-ins, making it suitable to new
applications. In the frame of the CHRIS project. a YARP
bridge has been added. thus exposing the ORO RPC methods
in a network-transparent way. ORO relies internally on the
OWL ontologics dialect to store knowledge as RDF triples
It uses the open-source Jena® RDF graph library for storage

Interaction to ask the user for a

s

2 .
= hiepaena.sourceforge,net

and manipulation of statements and the equally open-source
Pellet” first order logic reasoner to classify/apply rules and
compute inferences on the knowledge base,

Figure 2: Specific Robotic Platforms. A
Spikenet™ with the video image from the iCubLyon(] robot, pictured in

Viston processing using

B. C. The Vieon™ configuration for visual perception with the Bert
Rabot, pictured in D

Besides simply storing and reasoning about knowledge,
ORO  offers  several useful features for human-robot
interaction: events registration (e.g. "Tell me when any kind
of tablewarc appears on  the table.”), categorization
capabilities, independent cognitive models for each agent the
robot knows and different profiles of memory (short-term,
episadie, long-term). The server loads an initial ontology at
startup, the so-called OpenRobots Common-Sense Cntology.
This initial ontology contains a set of concepts (over 400 in
the last version), relationships between concepts and rules
that defines the cultural background of the robot, ie. the
concepts the robot knows a priori. This common-sense
knowledge is very focused on the requirement of our
scenarios, namely, human-robot interaction with some well-
known everyday objects (cups, cans, etc.). It contains as well
broader concepts like agents, objects, location, etc. The
common-sense  ontology relies heavily on the de-facto
standard OpenCwe  upper-ontology  for the naming of
concepls, thus ensuring a good compatibility with other
knowledge sources (including Intemet-based ones, like
WordNet® or DBPedia™). The ontology then dynamically
evolves as the robot acquires new facts: these are provided
cither from the EgoSphere via the primitive detection
module, or via spoken language interaction with human.

3 Action Definitions

Actions that have been learned are stored in the Action

Definitions Database. Actions are defined in terms of three

hitp rkparsia,com/pellet
! htptwordner princeton.edu
¥ hitp/dbpedia,or

Towards a distributed, embodied & computational theory of cooperative interaction

Page 153



types of information. The Enabling State defines the state of
the objects invelved in the action befors the action tales
place. The Primitive Sequence is the time ordered set of
primitive events that make up the dynamic compenent of the
action. Finally, the Resuling State is the (potentially) new
state of affairs after the action is complzted. The action
recognition capability described above relies primarily on
the Primitive S2quence for action recognition.

C. Spoken Language Interaction

The spoken language interaction is provided by the
CSLU Toolkit [26] Rapid Application Development (RAD)
state-based dislog system which combines state-of-the-art
speech synthesiz (Festival) and recegnition (Sphinx-IT
recognizer) in a GUI programming envirenment. Our system
iz thus state based, with the user indicating the nature of the
current task (including whether he wants interact in the
context of object recognition, action recognition or action
sequence rzcognition tasks). In each of these subdomains
the usar can then indicate that he is ready to show the robota
new example (object, action or action sequence) and the
robot will attempt to recognize or learn whatis shown. FAD
scripts are in done in TCL which allews communication of
speech data to other modules through YARP.

D T4RF

Software modules in the architecture are interconnectsd
using YARP [27], an open source library written to support
software development in robotics In brief YARP provides
an intrcommunication laver that allews processes running
on differant machines to exchange data. Data travels through
named connsction points called ports. Communication is
platform and transport independent: processes are not aware
of the details of the undeslying operating system or protocel
and can be relocated at will across the available machines on
the network. More importantly sinee connsctions are
established at runtime it is easy to dynamically modify how
data travels across processes, add new modules or remove
existing ones. Interface betwesen medules is specified in
terms of YARF ports (2. port names) and the type of data
these ports receive or send (respectively for input or output
ports).  This modwler approach allows minimizing the
dependency  betwesn algorithm  and  the underlying
hardware/robot;  different hardware devices becoms
interchangeable as long as they export the same interface.

Fimally, YARP is written in C++ soitis normallyussdaza
library in C++ code. However, any application that has a
TCP/IP interface can talk to ¥ ARP modules vsing a standard
data format Within the CHEIS project this turned out to be
of fundamental importance as it allowsd to “glue” together
different applications (2.g. the RAD toolkit, the ORO server
or the VICON sistem) infe a single integrated, working
mystam.

IV. INTECRATION PLATFORMS

The CHEIS Softwars Architecturs has been successfully
tested on two different platforms illustrated in Figure 2.

A Platform iCubLyon0l

1) Robot Platform

The iCub [3] i an opsn-source robotic platform shaped as
thrze and a half year-old child (zbout 104cm tall), with 33
degrees-of-freedom (DOF) distributed on the head, arms,
hands and legs. The curmrent work was performed on the
iCubLyvon0l at the INSERIMM laboratery in Lyon, France.
The DOF are distributed over the full bedy: & for the head, 3
for the waist, 6 in each leg and 7 for each arm. The iCub has
been specifically designed to study manipulation, for this
reason the number of DOF of the hands has been maximized
with respect to the constraint of the small size. The hands of
the iCub have five fingers and 19 joints. All the code and
documentation iz provided open source by the RobotCub
Consortivm, together with the hardwars decumentation and
CAD drawings. The robot hardware is based on high-
performance electric motors controlled by a DSP-based
custom electronics. From the sensory point of view the robot
is equipped with cameras, microphones, gyroscope, position
sensors in all Joints, fores/torque sensors in 2ach limb.
2) 3D Spatial- Temporal Object Perception

The iCubLyvon0l platform employs wvisien based

perception operating on the image streams fom the robot’s
stereo cameras. Objects are recognized based on detection of
pradefined object templates vsing the commercial system
Spikenat [28]. Ituses a spiking neural network technology to
provide fast recognition of objectsin an image. By doing this
with the two ztereo cameraz of the robot, we can estimate the
Cartzsian coordinates of the objects and feed the EgoSphere.
To do so, a simple wrapper around the Spikenet APT s used
for retrieving the camera images, processing them and
broadcasting the results over the network wia YARP.
Another module iz then used to r=ad this data, filter the noiss
and update the EgoSphers appropriately.  Once in the
EgoSphere, the spatial-temporal object information is
platform-independent.
B Platform BERT2 BRL

1) Robot Platform

BERT2 (Bristol-Elumotion-Robot-Torso-2) is an upper-
body humanoid robot designed, and currently still under
construction, at Bristol Robotics Laberatory in close co-
operation with their mechanical enginssring  partner
Elumotion® The torso comprises four joints (hip rotation,
hip flexion, neck rotation and neck flexien). Each arm is
equipped with 7 DOF. The wrist provides a mounting
interface for a sophisticated humanoid hand or a smple
gripper. Each of these 18 joints iz actuated by a brushless
DC moter via 2 Harmonic Drive (TM) gear box. One of the

¢ www elumotion.com
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main metivations that guided the design of BERT2 was the
suitability to interact with humans safely and naturally vsing
Expressive Face and Gaze Tracking. One important non-
verbal communication channel we have focused on is facial
expression with a particular emphasis on gaze, as used in
human-human interaction [29].
2) 3D Spatial-Temporal Object Perception

The BERT2 platform uses the VICON motien capturs
system (with 8 stationary IR, cameras) and light reflective
markers arranged into unique patterns, to  distinguish
between scens objects and to detect their position and
orientation in 3D space. This provides reliable and robust
360 degree scene perception. The human interacting with the
robot also wears a garment equipped with markers, thus
body posifions and postirss are also available o the robot
Thers are several layers of abstraction in BERT2 VICON
perception. At the lowest level there is VICOIN hard ware and
software together with VICON object and actor model
templates, which store information about the marker
tepelogy of the objects to be captured. The VICON software
broadeasts this captured data on the network, using TCP/IP.
This data is picked up by the modole “ViconLink™, which is
an easily reconfigurable data bridge between the VICON
software and the YARP framework. The next layer of
abstraction iz the “Object Provider™ medule. Its main
purpose is to update the EgoSphers with the most recent
object positions and to filter the noise in the VICON
data. Again, once in the EgoSphere the spatial-temporal
object information is platform-independent.

V. EXPERIMENTS

Diverse experiments have been performed in a distributed
manner on the two platforms. The first goal of these
experiments is to show the portability of the full cognitive
system between multiple robots, more than giving precise
benchmatks of the skills provided by the system. The
experiments reported on hers are those which were run on
the iCub and BERT2 platforms using the identical CHRIS
architecture (se2 accompanying vidso).

A Object learning

The goal of the experimant is to allow the user to teach the
sstem the name and propertiss of new objects. In these
experiments, two ssts of objects have been pre-specified
respectively for each of the two 3D percaption systems. This
cotresponds to wimual templates for Spikenst on the iCub,
and reflective marker topologies for VICON on BERT2.
Initially the objects can thus be recognized and tracked, but
thew have no associated semantics. In the experiment. the
human moves an object to indicate the focus to the robot,
which then asks for the name and the type of the object
Learning the object’s type (ie. “cup”) links its semantics to
the other concepis the robot already knows, including initial
commeonsense knowledge from ORO. When an object
moves, the platform specific perception sistems identifirand

accurately localize the object. The respective object
perception module then updates the EgoSphere in real time.
At this peint we are entering the platform-independent
CHEIS architecturz. The Primitive Detection module
ragularly polls the EgoSphers for visibility and object
coordinates, and sends extracted primitives to other
interested modules. In thiz case, it sends to ORO a
notification when an object starts or stops moving. In
parallel, the Speken Language Interaction system manages
the verbal human-robot interaction. It queries CORO fo know
which objects are currently moving and if the names of these
objects are known. If they are vnknown then it asks to the
huoman for more information as described in the dialog
below.

*  [Eobot] Imtialiang... abour 5 e . What's next?

+  [Homan] mova an objest

+  [Robot] doss rat kronwe the objest What is it called?

+  [Homan]coffezcup

+  [Robot] Did vou say coffes eup?

*  [Foman]ys

+  [Robot] Ok Now I Inow. What lind of objact is coffes

cup?

*  [Hsman]acup

*  [Eobot] Did vou savcop?

*  [Foman]ys

* [Robot] 2o coffescupis 2 cop. What's next 7

During this interaction, two new statements ars added to

the OR.O database. The first associates the objectID for the
racognized object with the label “coffee cup”. The second
associates this objectiD with the type “cup” which allows the
system to exploit inheritance of knowlzdge about cups from
the preloaded ontology The robot is then able to use this
additional knowledge in order to reason and describe
objects. The next time a human shows the coffes cup, the
robot will say “this is a coffez cup”. In addition, we could
ask to the robot “could you show me a cup? to have the
robot to point to the coffes cup or to a t=a cup. exploiting the
tvpe information. This naming experiment was successfully
complzted for multiple objects on the iCub and BERT2
platforms.

B detion learning

As described above, an important skill in cooperation is
the robot’s ability to understand its partner’s actions, or the
actions of two humans cooperating whils the robot learns by
observing. In the “watch action”™ meode, the robot tries to
racognize and describe the actions it sees. It can then stors
the recognized actions in a plan that can be executed later, or
it can ask for mors information if the observed action is not
known or uncertain. Regarding the flow of information
through the system, it is the same as in the object naming
experiment but it now includes the Action Recognition
module. Under control of the Speken Language Interface,
Action Recognition receives primitive events from Primitive
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Defection. It compares the segmented primitive event
ssquences with known actions in the Action Database, and
provides in real ime actions that are recognized or a special
event if an action has bezn ssgmented but not recognized.
Theze recognitions are then procassad by Spoken Language
Interaction which manages the sifuation either by announcing
the nams and arguments of the recognized action, or
prompting the user to describe the action and its arguments,
as illustrated in this dialog excerpt.

*  [Robot] Initializing... abowr 5 sec .. What's naxt?

*  [Heman] Watch my actions

*  [Robot] Ok Show me something

*  [Heman] pres a eaffes cup on the tabls

+  [Robot] Whathappensd?

*  [Heman] John pots the coffes cop

*  [Robot] Ok Show me somsthing

*  [Homan] remowes the coffes cup from the tabls

+  [Robot] Whathappensd?

*  [Homan] John tal=s the coffee cup

+  [Robet] Ok Show me somathing

*  [Heman] pur a book an the tabls

*  [Robot] Iz John pets the book

At this peint the robot is able to recognize the two simpls
actions puf and fake independently of the object targeted by
the action. In this scenaric a single dzmonstration was
sufficient. In practice the robet may need to see the same
action several times before being able to recognize it. Lallee
et al [30] preformed extensive tzsting of this system on the
iCubLyon(l platform. In over 100 action presentatiens,
with the actions cover, uncover, put fake and fouch on
average the system required less than three examples to
correctly learn a given action so that it could subsequently be
recognized without error. The crucial experiment here
invelved performing the same action learning tests on the
BERT platform. where wvisual perception based on pattern
matching with Spikenst would be replaced by reflective
marker tracking provided by VICON. We tested BERT with
the actions puf, fake, and fowch. These actions were
sucezssfully leamed, and generalized to new ebjects. This
indicatas that by abstracting 3D spatial-temporal information
in the EgoSphere, the CHREIS architecturs is indesd
platform-independent. Our final experiment replies to the
quastion  “can  knowledge about the spatial-temporal
characteristics of an action lzarned on one platform be used
for action recognition on another?”

C. Enowledge transmission between Robots

Following an intsraction session with humans, the robot
Knowledge Base acquires new knowledge (of object and
action definitions) through learning. This acquired
knowledge is stored prior to system shutdown and reloaded
at smubssquent system startop, thus allowing progressive
accumulation of experience owver extendsd time. In the
current experiment, we took the Action Recognition database

that was gensrated while actions were being learnsd on
BERT, and loaded it at startup on the iCubLyondl. We then
tested the Action Recognition capability. by performing pus
and fake actions. Ina set of 20 trials (10 sach for pawr and
iake) we observed an overall recognition accuracy of 83%.
The errors were dus to neiss in the visien system which
produces false indications of motion (se2 discussion).
Importantly, the iCob was abls to recognize actions that had
been learned on BERT, thus expleiting the experience of a
different robot.

VL
We present an architecturs that exploits the idea of
abstracting the cognitive architecture from the robot specific
body and sensors. It should be noted that the cognitive
function of the robot can still be considered embodied as the
architecturs acquires all its information from interaction
between the robot and the world, via the low lewel
abstraction of the EgoSphere. Thanks to this abstraction, we
were able to provide to different robots the same high level
capabilities for perception and reasoning, and to shars
knowlzdge acquired via different sansors.

Drscirsson

A, Limitations and future deve lopment:

The work described hers emphasizes abstraction at the
sensory level (and dees net address metor control). by
requiring a common format for spatial input to the system
from diverse sensors. A parallel approach is to be taken at
the motor command level (Mbtor Command Interface, Fig
1). Thizs iz bazed on the definition of a set of actions
including give, iake, puwi, point and their arguments. Their
initial and final states are defined in a platform independent
manner, but the specific joint-level implementation is
specified in the context of the corresponding robot platforms.
This will provide a capability consistent with that described
by Demiris & Johnsoen [31] where action execution and
performance  can  moutally  benefit  from  shared
representations. Action Fecognition provides real-time
formation and recognition of sequential patterns of primitive
events (motion, visibility and contact) specific to different
actions. It is thus sensitive to neise in the 3D perception
sensors. We are currently rendering this approach meors
robust. This includes the use of a probabilistic approach for
mafching the segmented primifive event sequences with the
learned actions, optimization of spatio-temporal filtering to
raduce false motion from visual jitter, and inclusion of the
initial-to-final state transitions as additional components in
definition of an action. Likewize, in the current version,
successve actions (2.g. taking an object, then putting it at a
new location) should be ssparated by at least one szcond, so
that the system can automatically distinguish and segment
the perceptnal primitive sequences. This is consistent with
our current constraint that when demenstrating action, users
chow actions one after another, and wait to z2e if the robot
racognizes, before proceeding. Fufure wotk will address
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more fluent action sequences in the context of lzaming from
demonstration [32].The speech that we have used hers is
relatively primitive and sometimes ungrammatical. We have
previously explored the mors extensive possibilities of
relating the argument structurs of grammatical sentences to
the argument structure of actions in terms of exscution [13,
33, 34]. We are now extending thess approaches to action
obsarvation and description with the use of mors appropriate
ErAMMAr.

B Conclusions

While robetic platforms are becoming increasingly
complex, the development of cognifive sistems can be
advanced by the development of more standard ways to
access the sensorv-motor laver. Cur system independent
architecture contributes to the deployment of cognitive
abilities on diverse robot platforms that can interface with
the abstraction layer defined by the EgoSphere and the motor
command interfice. We believe that the continued
development of incrsasingly well defined and standard
interfaces between robot platforms and cognitive system can
accelerate the development of robot intzlligence, and we are
taking a first step in that dirsction. In deing so we have alzo
taking the first steps towards the idza of having different
learning machinzs (the robets individuals) updating and
sharing a commeon global knowledge base, thus leveraging
experience from multiple sources [21]. Further work will
ivestigate methods to enhance this ability and to allow robot
platforms distributed over the world to take advantage of it.
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Appendix 2
Towards a Platform-Independent Cooperative Human-Robot
Interaction System: Il. Perception, Execution and Imitation

of Goal Directed Actions
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Abstracte— If robots are to cooperate with humans in an
increasingly buman-like manner, then significant progress
mmust be made in their abilities to obsarve and learn to perform
movel goal directed actions in a flexible and ad aptive manmer,
The current research addresses this challenge, In CHRIS.I [1],
we developed a platform-indep endent percepiual system that
learns from cbhservation to recognize human acfions in a way
which sbhstracted from the specifies of the robotic platform,
learning actions including “put X on Y™ and “talke X", Inthe
current research, we extend this system from action percep tion
to execution, consistent with current d evelopmental research in
buman und erstanding of goal directed action and telealogical
reasoning, We demonsirate the platform independence with
exp eriments on three different robots. In Experiments 1 and 2
we comp lete our previous study of perception of actions “put™
and “take” demonstrating bow the system learms to execute
these same actions, along with new related actions “cover™ and
“uncover” based on the composition of action prinytives “grasp
X" and “release X at YY" Significantly, these compositional
action execution specifications lesrned on one iCub robot are
then exeruted on another, based on the absiraction layer of
motor primitives. Experiment 3 further valid ates the platform-
independence of the system, as a new action that is learned on
the iCub in Lyon is then exwecuted on the Jido robot in
Toulouse. In Experiment 4 weertended the d efinition of action
perception to include the notion of apency, again inspired by
developmental studies of agency attribution, exploiting the
Kinect motion eapture system for trackinge human motion.
Finally in Experiment 5 we demonstrate how the combined
representation of action in terms of perception and execution
provides the basis for imnitation. T lds provides the basis for an
open ended cooperation capability where new actions can be
learned and integrated into shared plans for cooperation. Part
of the novelty of this research is the robois’ use of spoken
language undersianding and visual perception to generate
action represeniations in a platform independ ent manner based

Manuzoript received March 15, 2011, Thiz work was fully supportad by
Eusopean FB7ICT project CHEIS). Stephans Lalles, Jean-David boucher
and Peter Ford Dominey ar2 with the Stem Cell & Brain Fezsarch Instimte,
TINSEFM UB44, Eron, France, (zephans lallse inserm fry. Severin
Lemaziznan, Emesh Akin Sizbot and Rachid Alamiare with LAAS, CHES,
Touvloze, France, Alstander Lenz, Chriz Matheizh and Sergey Skachek
arz with BRL, Briztol, United Kingdom. Ugo Battacini Losenzo Natzlz and
Giorgio Metta are with 1T, Genoa, Itaty. Jzzmin Steinwendar and
Eatharina Hamann ase with Max Planck Institute, Leipzig, Germany. Felix
Warneken iz with Harvasd University, Cambridge, R4

Towards a distributed, embodied & computational theory of cooperative interaction

on physical state changes, This provides a flexible capability
for goal-directed action imitation.

I. INTRODUCTION

For embedied agents that peresive and act in the werld,
thers is a streng coupling or symmetry betwzen perception
and execution which is constructed arcund the notion of goal
directed action. Hommel et al [2] propese a philosophy for
the cognitive mechanisms vnderlying perception and action
- the Theory of Event Coding. According to this theory, the
stimulus representations underlving action perception, and
the sensorimotor representations underlying action are not
coded separately, but instead are encoded in a commeon
reprezentational format. In this context it has now becoms
clearly established that neurons in the paristal and the
premotor  cortices encede simple actions both for the
execution of these actions as well as for the perception of
these same actions when they performed by a szcond agent
[3]. This research corroborates the emphasis from behavioral
studies on the importance of the goal (rather than the details
of the means) in action perception [4].

Within a sensorimotor architecturs a number of benefits
detive from such a format, including the direct relation
betwezn actien perception and execution that can prowvids
the basis for imitation. This is consistent with our previous
research in the domain of robot perception and action in the
context of cooperation ([3, 8]). The current research extends
our previous work on the leaming of composite actions by
exploiting this proposed rzlation bebtwezen action execution
and perception. Part of the novelty of the current reszarch is
that the action reperfeirs is open: the robot can leam new
actions in both dimensions of perception and exzcution. The
leamed actions take arguments including agent, object and
recipient. MMaintaining this symmetry of action perception
and execution lavs the framework for imitation and the use
of imitation in cooperation [3, 6].

We look to human development to extract requirsments
on how to implement such an action representation. In this
context. two important skills for infants are the ability te
detect an action as being goal directed and to determine its
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agency. Studies of infant action perception [4, 7] have led to
the extraction of a core set of conditions which allows the
infant to identify goal-directed actions In the current
reszarch, we implement in our system the ability to address
aspects of these human requirsments both in terms of
perception (detect and represent salient actions gffecis) and
execution (ability to achizve a geal through an action using
equifinal variations). We demonstrate how those capabilities
can be usad by the robot to imitate or mitror human actions
(which involve beth recognition and execution) in a way that
should match the human requirements for goal atfribution.

Learning by imitation is a major arsa of research in robot
cognition today [8-12]. Our novel contribution to this
domain iz the encoding of action in t2rms of perceptual state
changes and composed moter primitives that can achisve
these state changes, in a manner that allows the robet to
learn new actions as perception — execution pairs, and then
use this knowledge to perceive and imitate. These actions
can fake several arguments eg AGENT put the
QBJECT on the RECIPIENT. This allows for the
generalization of learned actions to entirsly new contexts,
with new objects and agents. In our long-term ressarch
program, this provides the basis for learning to perform joint
cooperative tasks purely through observation.

I. CoNTEXT GOAL DIRECTED ACTIONS

A Goals attribution requirements

Studies of human infanis [4, 13-13] indicate that their
ability to determine the goal of an action begins to develop
between 6 and 9 months demonstrated by the ability of
infants to encods behaviors such as a hand grasping for an
object az being dirscted at the goal-object rather than
encoding the hand’s specific movemant. An important issue
that has been dizscussed within the field is the difference
between actions that are familiar to the infant and mors
unfamiliar actions which may not include human features
(like a robotc gripper grasping a toy). Woodward [14]
initially argued that only obsarved actions that the infant is
able to exscute herself are represented as goal-dirscted.
However later studies [4, 7] demonstrated that indeed infants
are able to attribute goal directedness for novel actions early
assuming two conditions: fist the action has to producs a
mlient effect on the world state (like the motion from ons
place to another). The szcond condition is that the agent is
able to achieve the same state change in different ways (=uch
as avoiding an obstacle instead of using a straight
trajectory). in other words the action iz demonstrated to
possess equifinal variations.

Towards a distributed, embodied & computational theory of cooperative interaction

B Implementing those requiremenis

Our implementation of action. both in the context of
perception from CHRISI [1] and execution is based on
actions as state changes. One of the strong implications of
thiz is the equifinality of action. That is the same action “put
the box on the toy” may be realized in a variety of ways
(with ene hand. or the other) but with the equivalent final
outcome, one of the key characteristics that allow action te
be considersd goal directed. If the robot is able to
demonstrate equifinal means of achieving his actions, then
humans may be more likely to attribute a goal to them. This
assumption has been shown to be true in infants [4, 16] and
would need to be tested on adults, however assuming the
fact that all our telzological system seems to be built on
those core capabilities it is likely that a benefactor effect
could be found alzo on adults.

In our action recognition system [1] we exploited
Mandler's [17] suggestion that the infant begins to construct
meaning from the scens based on the extraction of
percepiual primitives. From simple representations such as
contact, support and attachment [18] the infant could
construct progressively more elaborate representations of
visuospatial meaning. In this context, the phyzical event
"collision” can be derived from the perceptual primitive
"contact”. Kotovsky & Baillargeon [19] observed that at 6
months, infants demonstrate senstivity to the parameters of
objects invelved in a collision, and the resulting effect on the
collision, suggesting indsed that infants can represent
contact as an event pradicate with agent and patient
arguments,

In this paper we describe an evolution of the action
recognition system described in [1]. This new system is still
based on sequences of perceptual event primitives (visibility,
moetion, contact), however thoss primitives are now
represented in terms of the impact they have on the world
state. Primitives can be queved and their effects added so
thata sequence of them will be a way to reach an end state
from an initial state. If a sequence produces no change in the
world state, then it will not be taken into account by the
gystem, which mimies the ability of children to emphasis
actions that produce a salisnt effect on the world. This
rejection of “uszlzss” actions allow the system te be more
stable: for example an object which appears and then
disappears quickly may be only a false recognition of the
perezpiual system.

These requirements are implementsd on both the
percepial and executive components of the system. In
CHRISI [1] we presented a system architecture for
cooperation. Here we zom in on the action related
components which handle the complete link from perception
to motor commands in term of actions.
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II. EXPERMMENTAL PLATFORMS

A crucial aspect of our rescarch is that the architecture
should allow knowledge acquired on one robot to be used on
physically distinet platforms.  In the current study this is
demonsirated using  two  different version of the 1Cub
platform in Lyon France, and Genoa Italy, respectively, and
the Jido robot in Toulouwse, France,

The iCub [20] is an open-source robotie platform shaped
as three and a half vear-old child (about 104em tall), with 53
degrees of freedom distributed on the head, arms, hands and
legs. The head has 6 degrees of freedom (roll, pan and tilt in
the neck. tilt and independent pan in the eyes). Three
degrees of freedom are allocated to the waist, and 6 to each
leg (three, one and two respectively for the hip, knee and
ankle). The arms have 7 degrees of freedom, three in the
shoulder, one in the elbow and three in the wrist. The iCub
has been specifically designed to study manipulation, for
this reason the number of degrees of freedom of the hands
has been maximized with respect to the constraint of the
small size. The hands of the iCub have five fingers and 19
joints. All the code and documentation is provided open
source by the RobotCub Consortium, together with the
hardware documentation and CAD drawings. The robot
hardware is based on high-performance electric motors
controlled by a DSP-based custom electronics. From the
sensory point of view the robot is equipped with cameras,
microphones, gyroscopes, position sensors in all joints,
force/torque sensors in each limb.

While both iCubs are instances of the iCub, they are
distinet in the implementation of moter control as the
iCubGenoall is equipped with force sensors that allow force
control; the iCubLyon01 is only controlled in velocity and
position modes.  Thus, the essential role of the motor
primitive pool as the common abstraction layer across robots
is maintained. lido, on the other hand is an entirelv different
robot, which allows us to wuly explore the platform
independence of our system,

lido 15 a fully-equipped mobile manipulator that has been
constructed in the framework of Cogniron (IST FET project:
www.cogniron.org).  Jido, a MP-L655  platform  from
Neobotix, is a mobile robot designed to interact with human
beings. It is presented on figure 3. Jido is equipped with: (i)
a 6-DOF arm, (i) a pantilt unit system at the top of a mast
(dedicated 1o human-robot interaction mechanisms), (i) a
3D swissranger camera and (iv) a stereo camera, both
embedded on the pan tilt unit, (v) a second video system
fixed on the arm wrist for object grasping, (vi) two laser
scanners, (vil) one panel PC with tactile screen for
interaction purpose. and (vili) one screen to provide
feedback to the robot user. Jido has been endowed with
functions enabling to act as robot companion and especially
to exchange objects with human beings. So, it embeds robust
and ep cient basic navigation and object recognition
abilities,
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IV, THE CHRIS ARCHITECTURE — FOCUS ON ACTION

In order to be platform-independent, action representation is
abstracted from platform-specificities at the lowest level
possible.  An overview of the CHRIS architecture in this
context is presented in Figurel.
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|5PaAE)
Sliprizan & iatar Commantd Femen naber
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Figure 1: CHRIS Architeciure. Amows represent the flow of information
(data, commands), which are transported  over the nework via YARP
Perceprual information enters Scene Perception, Ohject positons from
Egosphere are processed by Primitive Recognizer and Action Recognizer
for leamning and secognition, and enter SPARK  for inference of spatial
relations which are stored in ORO. Shared Plan Manager links perceputal
and exectutive action representations and plans, Supervisor manages HRI,
the leaming of new action execution, and venficiation from ORO that
execution precomditions hold

A Abstraction of Action Perception and Execution

Twe layers of abstractions are required in order to have a
platform independent architecture: perceptual and motor,
Both of them rely on the Egosphere module.

I Scene Perception

The first layer of abstraction between the sensory
perception  systems and the higher level cognitive
architecture and motor control elements is formed at the
level of the Egosphere which serves as a fast, dynamic,
asynchronous storage of object positions and orientations.
The ohject positions are stored in spherical coordinates
(radius, azimuth and elevation) and the object orientation is
stored as rotations of the object reference frame about the
three axes (x,y.z) of a right-handed Cartesian world-frame
system, The origin of the world frame can be chosen
arhitrarily and. for our experimental work, we located it at
the centre of the robot’s base-frame. Other stored object
properties are a visibility flag and the objectlD. The
ohjectlD) is a unique Wentifier of an object which acts as a
shared key across several databases (see [1] for details). The
robot-specific 3D perception system adds objects to the
Egosphere when they are first perceived. and maintains
position, orientation or visibility of these objects over time.
Modules requiring spatial information about objects in the
scene can  query the Egosphere. The Egosphere is
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implemented in C++ as a client-server system using the
TARP infrastructurs. Softwars modules raquiring access to
the Egosphers include a client class which provides methods
like addObject(), setObject(), getObject() or
getNumberOfObjects(), ete.  The Egosphers is thus a
convenient abstraction layer. With incrzasing complexity of
homan-robot interaction tasks during the course of our
research, we will add further complexity (human focus of
attzntion, confidence, timeliness etc)) whilst preserving
modularity.  This is exemplified by the spatial reazoning
(2.g. visibility by line of sight) provided by Spark. Within
the Jido platform-indspendent component, the functionality
of the EgoSphere is preserved within Spark.

2) Perceptual Primifives, Events and State Changes
The action rzcognition capability iz based on the

extraction of meaningful primitive events from the flow of
object positions and visibilities representad in the Egosphers
and Spark. Again we based owr system findings from
developmental psychology. We implementzd perceptual
primitives similar to those deseribed in [21-23]. We have
previously used this primitives based appreach in [26, 27]
and we identified a core set of primitive events that are
ample and provide a solid basiz for action construction.
There are six primitive event divided in three catzgories:

+ Visibility (object appears or disappears)

+ Mbtion (object starts or stops moving)

+ Confact (contact made or broken between 2 objects)

Each of these primitive eventis coded in terms of the state

change it effects on the world (s.g: if an object appears
visibility(object) will be added to the world statz). The
Primitive Fecognizer extracts those & primitives by
constantly monitoring the Egosphers. It then broadcasts the
detected events to the Action Recognizer.

3) Motor Primitives

The currsnt  research  exfends  this  notion of
compostionality for action perception from CHEISI [1] to
action execution. As for the perceptual system, the action
execution system requirss a  suitable abstraction that
provides a platform independent interface to the robot motor
capabilities.  Mbtor primitives  rely on the idea that
complex motor tasks may be achieved by the combination of
ample parameterized controllers we call primitives. This
framework iz consistent with stmdies of biclogical metion
[28], which demonstrate that motion of biological beings is
achisved by high level motor commands triggering a
squence of motor primitives lzading finally to an effective
motion of the museles. Using hierarchies of primitives for
control in robotics is becoming a widely used method [29-
36]. In owr approach, what we call a Motor Primitive is
already a symbolic action. The implementation of thoss
actions is robot specific, what is important is that all robots
thare the zame moter interface, as a pool of Mbotor
Primitives. In the current system the primitives that ars
implemented on the robot are:
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+  Grasp (object)

» Release (location)
+ Touch (object)

+ Lock-At (object)

We do not claim the completeness of thiz pool for all
possible interactions, but thess primitives were sufficient in
the contzxt of rebot and human interaction through
manipulation of objzcts on a table. The arguments for these
primitives ar= objects whose Cartesian coordinates are
recovered from the Egosphere.

B. Action Representation

The concept of Action and its representation is at the center
of owr architecture. Inspired by the perception-sxecution
symmetry [2] we imposs the raquirement that the same data
structure shall accommedate both the perceptual and
executive components of action. It also includes tzlzological
information, that iz, the state changes that are induced by
thataction.

1) Action Representation for Perception

Ouwr representation of action started with a purely
percepiual definition [1, 6, 37]. Specifically the Action
Recognizer module is constantly monitering the flow of
pereepial primitives sent by the Primifive Becognizer
module. We malke the assumption that two actions will be
separated by a temporal delay, so we can use this delay fo
segment meaningful sequences of primitives. When such an
independent sequence is detected, it is tagged as being a
potential action which is then evalvated by the recognition
process. The action dafa structure is similar to that for events
since actions are composed of primitive events, and both
produce a salisnt change (or changes) in the world state. The
Action Fecognizer stores a list of all the known actions and
compares them with the incoming potential actions. All the
primitives contained in the received sequence are added so
that the global werld state change of this sequence is
obtained, then ifa known action creates the same change in
the environment it is recognized as being the observed
action. We have to stress the fact that this “world change™ is
argument indspendant: if the system has learnt an action
cover(object A, object B) then it will recognize a
cover(tay, box) as well as a cover(bowl, plate).

Actions possess characteristics in addition to those of
event primitives. The state change produced by an event
primitive iz called post-condition, because it is applied after
the primitive occurrad. In addition to post-conditions an
action has pre-conditions which can either allew or prevent
it to occur (for example covering the bowd needs the bowl to
be visible and uncover the bowl needs the bowl to be
coverzd). Those pre/post conditions are a useful mechanism
that allows forwardbackward chaining and  finally
telzological reasoning (see [37] for more details about this
aspect). Actions alse contain a field describing the executing
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agent. Agency detection is based on motion primitives
assorciated with human hands that are detected using the
Kinect device which provides information about human
hands to the Egosphere (see below),

2} Action Representation for Execufion

In order to bridge the gap between perception and
execution, the Shared Plan Manager module combines motor
representations with perceptual representations of action.
While we currently address the learning of single actions as
the simplest motor plans, the system is designed to naturally
extend o more complex shared plans, based on our earlier
work [6],

When the user asks the robot to perform an action the
Shared Plan Manager searches for a plan with that name. 1t
no such plan is found. then the Shared Plan Manager asks
the user to enumerate the motor primitives (described above)
that constitute that action.

The system can thus learn to perform complex actions
such as put the box on the toy as a composite
sequence of grasp box, release box on toyG

We implement a form of argument binding so that this
newly leamed action can generalize across all objects. That
is the robot can then perform the action put the toy on
table.

tha

Figure 2: Experinents on iCubLyond] and iCubGenoad]. A, Experiments
1 and 2 where human teaches mbot new actions. Mete i nght foreground
the representation of the spatial environment in SPARK. B. Replication of
actions leamned m Lyon with iCubLyoen0| transferred to 1CubGenoal] in
Genoa. O, Human demonstrates the “eover the toy with the box™ action,
and the iCubGenoal] recognizes and imitates that action.

O Supervision

Action perception and execution are coordinated by the HRI
Supervisor. The Supervisor manages spoken language
interaction with the CSLU Toolkit [38] Rapid Application
Development (RAD)  state-based  dialog  swystem  which
combines state-of-the-art speech synthesis (Festival) and
recognition {Sphinx-11 recognizer) in a GUI programming
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environment. Our system is thus state based, with the user
indicating the nature of the current task (including whether
he wants interact in the context of action recognition,
execution or imitation tasks). In each of these subdomains,
the user can then indicate that he is ready to show the robot a
new example and the robot will attempt to recognize,
perform or learn what is shown,

A principal function of the Supervisor is to verify that
preconditions for action execution are met before the
execulion is initiated. This primarily concerns the constraint
that objects to be manipulated should be wvisible. This
information is computed by the SPARK (Spatial Reasoning
and Knowledge) module and made available to the system in
ORO (the Open Robot Ontology) which provides central
component of the Knowledge base of the system, See
CHRIS.I[1] for details.

V. EXPERIMENTS
A Experviment |- Completing Pevception with Execution

In CHRIS.I we demonstrated a capability to learn to
recognize actions including take and put. Here we first
demonstrate how these action definitions can be completed
with the execution compaonent.

H: Put the toy on the left

R: T don't know how to put.
H: Grasp the toy.

R: Grasping the toy.

H: Release left

R: Releasing left

H: Finish learning.

Based on this learning we then demonstrated that the
acquired execution knowledge could generalize to new
instances of the action. We demonstrated that the robot
comrectly performed the command to put the box in the
middle.  This is illustrated in Fig 2A. In order to
demonstrate that this knowledge could be exploited on a
different robot, the learned definitions were shared via the
SVN repository.  Figure 2B illustrates the iCubGenoa(]
using action definitions acquired in Lyon in order to perform
the take and put actions.

B.  Experiment 2- Learning New Actions

This experiment tests the ability of the system to learn
new actions, both in terms of perception and execution,
Here we focus on two actions which are cover X with
Y, and uncover X with Y. We chose these actions as
they will provide the basis for future work in shared
planning for cooperation.

H: Cover the toy with the box.
R: T do not know how to cover,
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H: Grasp the box.

R: Grasping the box.

H: Release the box on the toy.
R: Releasing the box on the toy.
H: Finish learning.

This dialog fragment illustrates how the system can
acquire new sequences of action primitives in order to learn
new composite actions. Here, “cover X with ¥ is learned
as the concatenation of grasp X and release X at Y. We
demonstrated this same concatenative leamning for the
actions, put, take, cover and uncover, Note that put and
cover have similar definitions, with reversed ordering of the
arguments, demonstrating the flexibility of the argument
hinding capability.

Figure 3: Ahove - Expenimental platform Jido. The action of tking the box
and putting it on the red-mat (cover X with Y) that was learned on
1CubLyondl ] was suceessfully executed in the Jide environment m
Toulouse. A - B. Jido reaching for box and grasping. © — D, Jido puts box
on red table mat,
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C. Experiment 3 — Cross platfors generalization

The Shared Plan Manager creates permanent definitions
of these new actions, which can then be transferred via the
SWN system for use on other robots at other sites. We could
thus test the definition of Cover X with ¥ that was
learned on the 1Cub in Lyon on the Jido robot in Toulouse,

Via the RAD Supervisor, the human asked Jido cover the
red table-mat with the box (see Figure 3). The Supervisor
retrieved the composite action definition, communicated the
corresponding motor primitives corresponding to grasp X
and release X on ¥ to Jido, Jido was thus able to
produce the cover X with ¥ action, based on learning
that had occurred on a morphologically distinet robot, Thus,
despite this morphological difference, because of the
abstraction at both perceptual and execution levels, action
knowledge acquired on one platform can be exploited on
another.

D Experiment 4 - Agency assignment with Kinect

In behavior that involves object manipulation, the human
hand has a special status as an agent. Indeed it has been
shown that infants may prefer to assign agency to well
known agents however they also rely on naive physics and
assign agency to objects that are moving on their own and in
specific ways [4. 39]. In order to achieve accurate hand
tracking we demonstrate here how the Kinect motion tracker
can provide this capability. A module has been developed
using the Kinect device in combination with OpenNI
drivers' in order to track the user hands and add them to the
Egosphere as standard objects. Since this module is on the
platform specific side of the Egosphere, then no change is
required to use its imformation. We achieved the same result
using our standard vision system and visual markers on the
human hand; however the approach with the Kineet is much
more natural and robust. In the experiment the user was
ieaching system how to recognize cover and uneover and the
system recognized these actions, and which hand performed
them so it could describe it in the following way: “1 detected
that the human fand covered the oy with the box™,

E. Experiment 5 — Goal Directed Action Imitation

This experiment, illustrated in detail in Figure 4, brings all
of the functionality together. To arrive at this point, the
robot should be able to hoth recognize and exccute a set of
actions, Here we demonstrate this with the cover the
toy with the box action. This is illustrated briefly in
Figure 2C and 2D. Figure 2C illustrates the human user
showing the action to the robot. Figure 2D illustraies the
robot now performing the recognized action.  Full detail of

! Kineet is a hardware product by Microsoft (higp/wwsxbox. com/en-
Uskineet). OpenNLorg release open source drivers for the Kineet device

(htnp opeii. org
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the experiment is provided in Figure 4. A video

demonstrating this experiment is attached with the paper.

Figure 4: Experiment 5. Imitation. A. Calibration of hand recognition with
Kinect, B-Ix. Human covers tay with box. E. Human repositions objects. I,
Raobot grasps box. G-1. Robot covers toy with box, completing the imitation.

VI Discussion

Many of the mirroring skills demonstrated in the
lierature [40, 41] use the perceived motor state of the agent
(Le. it kinematic evolution over the action) to both
recognize and execute actions. This has been combined with
goal-based representations [10], Our system is based on the
fact that each action can be recognized by its perceptual
consequences in changes in the world state (object siaies)
and then performed by executing the associated motor
commands. Those motor commands are not robot specific,
but the primitives they call are, which mnplicitly solves the
correspondence problem deseribed in [8, 42]. Although we
cannot argue that our system can cope with the same range
of actions as a “trajectory  based”  systems, it s
complimentary with such systems, and can be used at a
higher level, for actions involving muliiple arguments and
symbolic goal achievement more than precise motor
imitation. Indeed, this approach alse emphasis the equifinal
means of an action since the user can demonstrate an action
and then the robot will achieve the same result with
completely different trajectories.

Aspects of this work can thus be considered in the context
of learning by imitation or demonstration, which is a major
area of research in robot cognition today [8, 10, 40-42], Cur
novel contributions to this domain include (1) the encoding
of action in terms of perceptual state changes and composed
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motor primitives that can achieve these state changes, in a
manner that allows the robot to learn mew actions as
perceplion — execution pairs, and then use this knowledge o
perceive and imitate. (2) These actions can take several
arguments, e.g. AGENT put the OBJECT en the
RECIFIENT, which allows for the generalization of
learned actions to entirely new contexts, with new objects
and agents. This yields the equifinal component of action
where the same goal can be achieved by different means. (3)
We use spoken language interaction and visual perception to
provide learning input to the system. In our long term
research program, this provides that basis for learning to
perform  cooperative  shared  fasks  purely  through
ohservation,

In our sysiem actions are encoded vsing the effect they
produce on the state of the world, the latter being abstracted
in terms of unspecific quantities like relative position and
orientation of objects and their visibility. The particular type
of enceding we adopt for actions is therefore completely
independent of the robot platforms, and can therefore be
transferred between robots with different embodiments or
perceptual systems. In previous work we showed how motor
skills could be transferred between robots; this paper extends
this work to action recognition and mirroring.

Cur approach to action representation is consistent with
and inspired by the ‘teleclogical framework' [43, 44] that
represents actions by relating three relevant aspects of reality
(action, goal-state, and situational constraints) through the
inferential ‘principle of rational action’, which assumes that:
(a) the basic function of actions is to bring about future goal
states; and that (b) agents will always perform the most
efficient means action available to them within the
constraints of the given simation. This approach is
complimentary to existing approaches that take the “means™
(e.g; aspects of demonstrated trajectories) into account [29,
16, 45]. Future research should consider how to combine
these approaches.
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Appendix 3
Linking Language with Embodied and Teleological

Representations of Action for Humanoid Cognition
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Abstract:

The current research extends our framework for embodied language and action
comprehension to include a teleological representation that allows goal-based reasoning for
novel actions. The objective of this work is to implement and demonstrate the advantages of
a hybrid, embodied-teleological approach to action-language interaction, both from a
theoretical perspective, and via results from human-robot interaction experiments with the
iCub robot. We first demonstrate how a framework for embodied language comprehension
allows the system to develop a baseline set of representations for understanding goal-directed
actions such as “take”, “cover”, and “give”. Spoken language and visual perception are input
modes for these representations, and the generation of spoken language is the output mode.
Moving towards a teleological (goal-based reasoning) approach, a crucial component of the
new system is the representation of the subcomponents of these actions, which includes
relations between initial enabling states, and final resulting states for these actions. We
demonstrate how grammatical categories including causal connectives (e.g. because, if-then)
can allow spoken language to enrich the learned set of state-action-state (SAS)
representations. We then examine how this enriched SAS inventory enhances the robot’s
ability to understand perceived actions in which the environment inhibits goal achievement.
The paper addresses how language comes to reflect the structure of action, and how it can
subsequently be used as an input and output vector for embodied and teleological aspects of
action.
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1. Introduction — A framework for language and action

One of the central functions of language is to coordinate cooperative activity (Tomasello
2008). In this sense, much of language is about coordinating action. Indeed, as emphasized
by Goldberg (1995, p. 5) “constructions involving basic argument structure are shown to be
associated with dynamic scenes: experientially grounded gestalts, such as that of someone
volitionally transferring something to someone else, someone causing something to move or
change state ...”. Interestingly, this characterization is highly compatible with the embodied
language comprehension framework, which holds that understanding language involves
activation of experiential sensorimotor representations (Barsalou 1999, Bergen & Chang
2005, Fischer & Zwaan 2008, Zwaan & Madden 2005). We have pursued this approach in

developing neurally inspired systems that make this link between language and action.

In this context, we first developed an action recognition system that extracted simple
perceptual primitives from the visual scene, including contact or collision (Kotovsky &
Baillargeon 1998), and composed these primitives into templates for recognizing events like
give, take, touch and push. Siskind and collegues (Fern et al 2002) developed a related action
learning capability in the context of force dynamics. A premise of this approach is that it is
not so much the details of spatial trajectories of actions, but more their resulting states which
characterize action in the context of perception and recognition (Bekkering et al. 2000). The
resulting system provided predicate-argument representations of visually perceived events,
which could then be used in order to learn the mapping between sentences and meaning. We
demonstrated that naive humans could narrate their actions which were perceived by the event
recognition system, thus providing sentence-meaning inputs to the grammatical construction
model, which was able to learn a set of grammatical constructions that could then be used to
describe new instances of the same types of events (Dominey & Boucher 20053).

We subsequently extended the grammatical construction framework to robot action control.
We demonstrated that the robot could learn new behaviors (e.g. Give me the object, where
object could be any one of a number of objects that the robot could see) by exploiting
grammatical constructions that define the mapping from sentences to predicate-argument
representations of action commands. This work also began to extend the language-action
framework to multiple-action sequences, corresponding to more complex behaviors involved
in cooperative activity (Dominey, Mallet & Yoshida. 2009). Cooperation — a hallmark of
human cognition (see Tomasello et al. 2005) — crucially involves the construction of action
plans that specify the respective contribution of both agents, and the representation of this
shared plan by both agents. Dominey and Warneken (2009) provided the Cooperator — a
6DEF arm and monocular vision robot - with this capability, and demonstrated that the
resulting system could engage in cooperative activity, help the human, and perform role
reversal, indicating indeed that it had a “bird’s eye view” of the cooperative activity. More
recently, Lallee et al. (2009) extended this work so that the robot could acquire shared plans
by observing two humans perform a cooperative activity.

An important aspect of this research is that the source of meaning in language is derived
directly from sensory-motor experience, consistent with embodied language processing
theories (Barsalou 1999, Bergen & Chang 2005, Zwaan & Madden 2005). However, we also
postulated that some aspects of language comprehension must rely on a form of “hybrid”
system in which meaning might not be expanded completely into its sensory-motor
manifestation (Madden et al. 2009). This would be particularly useful when performing goal-
based inferencing and reasoning. Indeed, Hauser and Wood (2009) argue that understanding
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action likely involves goal-based teleological reasoning processes that are distinct from the
embodied simulation mechanisms for action perception. This is consistent with a hybrid
approach to action understanding that we have recently proposed (Madden et al. 2009). In
that model, action perception and execution take place in an embodied sensorimotor context,
while certain aspects of planning of cooperative activities are implemented in an amodal
system that does not rely on embodied simulation.

A fundamental limitation of this approach to date is that the system has no sense of the
underlying goals for the individual or joint actions. This is related to the emphasis that we
have placed on recognition and performance of actions, and shared action sequences, without
deeply addressing the enabling and resulting states linked to these actions. In the current
research, we extend our hybrid comprehension to address aspects of goal based reasoning,
thus taking a first step towards the type of teleological reasoning advocated by Hauser and
Wood (2009).

2. A new framework for action and language — combing teleological and embodied
mechanisms

In Lallee et al. (2009) the iCub robot could observe two human agents perform a cooperative
task, and then create a cooperative plan, which includes the interleaved temporal sequence of
coordinated actions. It could then use that plan to take the role of either of the two agents in
the learned cooperative task. This is illustrated in Figure 1. A limitation of this work is that
the task is represented as a sequence of actions, but without explicit knowledge of the results
of those actions, and the link between them. In the current work, this limitation is addressed
by allowing the robot to learn for each action, what is the enabling state of the world which
must hold for that action to be possible, and what is the resulting state that holds once the
action has been performed. We will refer to this as the SpASy state-action-state representation
of action. This is consistent with our knowledge that humans tend to represent actions in
terms of goals — states that result from performance of the action (Woodward 1998).

Figure 1. On-line learning of a cooperative task. A-B: Larry (left of robot) lifts the box that covers
the toy. C-D: This allows Robert (right of robot) to take the toy. E: Larry replaces the box. F: Robot
now participates. G: Human takes box, so Robot can take the toy. H: Robot takes box so human can
take the toy.
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Interestingly, we quickly encountered limitations of the perceptual system, in the sense that
when an action causes an object to be occluded, the visual disappearance of that object is
quite different from the physical disappearance of the object, yet both result in a visual
disappearance. The ability to keep track of objects when they are hidden during a perceived
action, and the more general notion of object constancy is one of the signatures of core object
cognition (Spelke 1990, see Carey 2009). This introduces the notion that human cognition is
built around a limited set of “core systems™ for representing objects, actions, number and
space (Spelke & Kinzler 2007). Robot cognition clearly provides a testing ground for debates
in this domain, and the current study uses this platform to investigate the nature of the core
system for agency. Embodied theories hold that actions are interpreted by mental simulation
of the observed action, while teleological theories hold that this is not sufficient, and that a
generative, rationality-based inferential process is also at work in action understanding
(Gergely & Csibra 2003).

Event understanding often involves inferences of links between intentions, actions, and
outcomes. Language can play an important role in helping children learn about relations
between actions and their consequences (Bonawitz et al. 2009). This section provides an
overview of how language is used to enrich perceptual representations of action, and some of
the corresponding neurophysiological mechanisms that provide some of these capabilities. It
is our belief that understanding these neurophysiological mechanisms can provide strong
guidelines in constructing a system for robot event cognition in the context of human-robot
cooperation.

2.1 Aspects of Language and Causality

One of the hallmarks of human cognition is the ability to understand goal-directed events.
This ability surely entails the representation of events in terms of their causes and effects or
goals (Bekkering et al. 2000, Sommerville and Woodward 2005), but how does it work?
Although some theorists have postulated that causality itself is a conceptual primitive, it has
become evident that causality can be decomposed into constituent elements (see Carey, 2009
for discussion). According to physicalist models of causality, causes and effects are
understood in terms of transfer or exchange of physical quantities in the world, such as
energy, momentum, impact forces, chemical and electrical forces (Talmy, 1988; Wolft, 2007),
and nonphysical causation (e.g., forcing someone to decide) is understood by analogy to these
physical forces. In this sense, physicalist models necessitate the ability to perceive
kinematics, and dynamic forces, in order to represent causal relationships between entities.
That is, to understand causality, one must have a body, and thus any implementation model of
causal understanding necessitates an embodied system, to sense physical forces. Dynamic
forces are invisible, such as the difference in the feeling of contact when an object is moving
fast or slow, and how a pan feels when it is hot or cold. Because invisible dynamic forces
map so well onto our experience of kinematic forces, or visual experience of forces (shape,
size, position, direction, velocity, accelerations), humans often rely solely on visual
information when attributing causal relationships in the world. In the same vein, causal
understanding in non-human systems can be implemented through the use of kinematics as
perceived via vision. Siskind (2002, Fern et al. 2001) has exploited the mapping of force
dynamic properties into the visual domain, for primitives including contact, support and
attachment. This results in robust systems in which event definitions are prespecified or
learned, and then used for real-time event classification. Dominey & Boucher (2005)
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employed a related method for the recognition of events including give, take, push, touch in
the context of grounded language acquisition.

In the context of development, once a toddler is able to sense and understand physical forces
in the environment, he has the tools to understand causal relationships. Pioneering studies
have shown that this understanding of causality and causal language is acquired very early in
development, as infants may already perceive cause-effect relationships at only 27 weeks
(Leslie & Keeble, 1987), and toddlers can already express many types of causal language by
the age of 2-3 years (Hood, Bloom, Brainerd, 1979; Bowerman, 1974). At this stage,
exposure to language may help to accelerate the development of causal understanding. One
study has shown that when toddlers are exposed to a causal relationship between 2 events
accompanied by a causal description, they are more likely to initiate the first event to generate
the second, and expect that the predictive relations will involve physical contact, compared to
when they are exposed to the causal situation in the absence of causal language (Bonawitz et
al 2009). That is, though the toddler associates the two events in either case, this association
will not be used as a causal link unless this link is established explicitly via causal language
such as “the block makes the light turn on™.

In this way, language is used as a tool to further conceptual understanding of goal-directed
events and actions by helping children integrate information about prediction, intervention,
and contact causality. Thus, we can exploit language in our current system as a vector for
establishing causal links between actions and their resulting states. In particular we are
interested in the states that result from the “cover” and “give” actions which involve states
related to the covered object being present, but invisible in the first case, and notions of
change of possession in the second.

2.2 Cortical networks for language comprehension

In our effort to develop a system that can understand events and the state-transition relations
between events, we can exploit knowledge of how language and event comprehension are
implemented in the human nervous system. Language comprehension involves a cascade of
computational operations starting from the decoding of speech in sensory areas to the
emergence of embodied representations of the meaning of events corresponding to sensory-
motor simulations (Barsalou 1999, Bergen & Chang 2005, Zwaan & Madden 2005, Rizzolatti
& Fabbri-Destro 2009 for review). These representations are triggered via: observation of
others engaged in sensory-motor events; imagination of events and the evocation of these
experiences through language. Therefore, we consider the existence of two parallel but
interacting systems: one system for language processing, ultimately feeding information
processes into a second system, dedicated to the processing of sensory-motor events. These
systems are highly interconnected and their parallel and cooperative work can ultimately
bootstrap meaning representations. The second system will also accomodate the
representation of elaborated events that implicates processes derived from a system
sometimes referred to as a “‘social perception” network (Decety & Grezes, 2006; see Wible,
Preus & Hashimoto, 2009 for review). This second network is directly involved in
teleological aspects of reasoning, including agency judgments, attributing goals and intentions
to agents, inferring rationality about ongoing events and predicting outcomes of the ongoing
simulation (Hauser & Wood, 2009). We will present these two systems and show how they
interact to form complex meaning representations through language comprehension.
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One central view in the recent models of the cortical processing of language is that it occurs
along two main pathways, mostly lateralized to the left cortical hemisphere (Hickok &
Poeppel, 2007; Ullman, 2004). The first route is referred to as the ventral-stream. It is
dedicated to the recognition of complex auditory (or visual) objects involving different
locations along the temporal lobe and the ventralmost part of the prefrontal cortex (BA
45/46). The second one is named the dorsal-stream and is dedicated to the connection between
the language system and the sensory-motor system, that is both implicated in the
transformation of phonetic codes into speech gestures for speech production, but also in the
temporal and structural decoding of complex sentences (Hoen et al., 2006; Meltzer et al.,
2009). It implicates regions in the posterior part of the temporo-parietal junction, parietal and
premotor regions and reaches the dorsal part of the prefrontal cortex (BA 44).

In the ventral pathway, speech sounds are decoded in or nearby primary auditory regions of
the dorsal superior temporal gyrus (BA 41/42), before phonological codes can be retrieved
from the middle posterior superior temporal sulcus (mp-STS - BA 22), and words recognized
in regions located in the posterior middle temporal gyrus (pMTG — BA 22/37) (see Hickok &
Poeppel, 2007 for review and Scott et al., 2006; Obleser et al., 2007). Then, these lexical
symbols can trigger the reactivation of long-term stored sensory-motor experiences, either via
implications of long-term autobiographic memory systems in the middle-temporal gyrus or in
long-term sensory-motor memories, with a widespread storage inside the sensory-motor
system. Therefore, complex meaning representation can actually engage locations from the
ventral pathway but also memories stored inside the dorsal pathway (Hauk, Shtyrov &
Pulvermiiller, 2008; e.g. Tettamanti et al., 2005). This primary network feeds representation
into a secondary-extended cortical network, whenever language leads to complex mental
representations of complex events. Our initial computational models predicted dual structure-
content pathway distinction (Dominey et al. 2003), which was subsequently confirmed in
neuroimaging studies demonstrating the existence and functional implication of these two
systems (Hoen et al., 2006), leading to further specification of the model (Dominey, Hoen
and Inui, 2009).

2.3 Towards a Neurophysiological Model of Embodied and Teleological Event
Comprehension

More recently, we extended this to a hybrid system in which sentence processing interacts
both with a widespread embodied sensory-motor system, and with a more amodal system to
account for complex event representation and scenario constructions operating on symbolic
information (Madden, Hoen & Dominey, 2009). This second network, seems to engage
bilateral parietal-prefrontal connections including bilateral activations in the parietal lobule
for the perception and monitoring of event boundaries (Speer, Zacks & Reynolds, 2007) as
well as dorsal prefrontal regions seemingly implicated in the global coherence monitoring of
the ongoing mental representation elaboration (Mason & Just, 2006). The monitoring of
complex event representation includes the ability of deciding if ongoing linguistic information
can be inserted in the current representation and how it modifies the global meaning of this
representation. These aspects rely on information and knowledge that are not primary
characteristics of the language system per se but rather include general knowledge about
causal relations between events, intentionality and agency judgments etc. These properties are
sometimes called teleological reasoning and different authors have now shown that processes
involving teleological reasoning are sustained by a distributed neural network, sometimes
referred to as a “social perception” cognitive network that is closely related to the language
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system (Wible, Preus & Hashimoto, 2009). This social perception network is implicated in
teleological reasoning as determining agency or intentionality relations and involves regions
as the right inferior parietal lobule (IP), the superior temporal sulcus (STS) and ventral
premotor regions. All these regions are part of the well known mirror system (Decety and
Grezes 2006). The TPJ or IP and STS regions, in addition to being part of the mirror system,
are also heavily involved in other social cognition functions. Decety and Grezes, in an
extensive review, (Decety and Grezes 2006) have designated the right temporo-parietal
junction (TPJ) as the “social brain region. Theory of mind is the ability to attribute and
represent other's mental states or beliefs and intentions or to “read their mind” (“predict the
goal of the observed action and, thus, to “read” the intention of the acting individual” — from
Decety and Grezes 2006). Therefore, it scems that regions that are implicated in social-
cognition, that is to say regions implicated in agency, intentionality judgements on others are
also implicated in the same judgements on a simulation / representation of mental simulations
triggered by language.

Figure 2. Cortical networks for language processing (Simplified). Ventral stream areas
(Green) are part of a first network dedicated to speech decoding and phonological/lexical
processing along the superior temporal sulcus (STS), middle temporal gyrus (MTG) and
ventral prefrontal cortex (Pfc). Dorsal stream areas (Blue) constitute a sensory-motor interface
implicated both in the transcription of phonological codes into articulatory codes (adapted
from Hickock and Poeppel, 2007) but also in the temporal / structural organisation of complex
sentence comprehension, and engage the left temporo-parietal junction, the parietal lobule and
dorsal prefrontal regions (Hoen et al., 2006; Meltzer et al., 2009). The social perception or
teleological cognition network (Oranges) is implicated in complex event representation and
the attribution of agency, theory of mind in the right TPG (Orange, from Decety and Lamm,
2007), causality and intentionality in the posterior STS (Dark orange, from Saxe et al., 2004;
Brass et al., 2007), and also comprises areas implicated in the global monitoring of the
coherence of event representation (light Orange - from Mason & Just, 2006). Networks are
shown in their specialized hemispheres but most contributions are bilateral.

Figure 2 illustrates a summary representation of the cortical areas involved in the hybrid,
embodied-teleological model of language and event processing. The language circuit
involves the frontal language system including BA44 and 45 with a link to embodied
representations in the premotor areas, and in the more posterior parietal areas — both of which
include mirror neuron activity in the context of action representation. This corresponds to the
embodied component of the hybrid system. The teleological reasoning functions are
implemented in a complimentary network that includes STS and TPJ/IP. In the current
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research, while we do not model this hybrid system directly in terms of neural networks, we
directly incorporate this hybrid architecture into the cognitive system for the robot.

3. Material and Methods

This section will present in three parts the physical platform, the behavioral scenarios, and the
system architecture.

3.1 The iCub Humanoid and System Infrastructure

The current research is performed with the iCub, a humanoid robot developed as part of the
RobotCub project (Tsagarakis et al. 2007). The iCub is approximately 1m tall, roughly the
size and shape of a three-year-old child,, and its kinematic structure has a total of 53 degrees
of freedom controlled by electric motors, primarily located in the upper torso. The robot
hands are extremely dexterous and allow manipulation of objects thanks to their 18 degrees of
freedom in total. The robot head is equipped with cameras, microphones, gyroscopes & linear
accelerometers. The iCub is illustrated in Figures 1 and 4.

Spoken language processing and overall system coordination is implemented in the CSLU
Rad toolkit. The system is provided with an “innate™ recognition vocabulary including a set
of action names (give, take, touch, cover, uncover), derived predicates (on, has), object names
(block, star, sign), and causal language connectives (if-then, because). Vision is provided by
a template-matching system (Spikenet™). State and action management are developed in C#.
Interprocess communication is realized via the yarp protocol.

3.2 Experimental Scenarios

In this section we describe the experimental human-robot interaction scenarios that define the
functional requirements for the system. The current scenarios concentrate on action
understanding in the embodied and teleological frameworks. They demonstrate how language
can be used (1) to enrich the representation of action and its consequences, and (2) to provide
access to the structured representation of action definitions, and current knowledge of the
robot.

3.2.1 Learning New Actions

In this scenario, the human performs physical actions with a set of visible objects in the
robot’s field of view. Typical actions include covering (and uncovering) one object with
another, putting one object next to another, and briefly touching one object with another. For
actions that the robot has not seen before, the robot should ask the human to describe the
action. The robot should learn the action description (e.g. “The block covered the star™), and
be capable of generalizing this knowledge to examples of the same action performed on
different objects. For learned actions, the robot should be able to report on what it has seen.
This should take place in a real-time, on-line manner. Knowledge thus acquired should be
available for future use.

3.2.2 Learning the non-perceptual consequences of actions on objects

The causal relations between actions and the resulting states are not always trivial. When one
object covers another, the second object “disappears™ but is still physically present, beneath
the covering object. In this scenario actions are performed that cause state changes, in terms
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of the appearance and disappearance of objects. The robot should detect these changes and
attempt to determine their cause. The cause may be known, based on prior experience. If not,
then the robot should ask the human for clarification.

3.2.3 Use of Causal Constructions to Interrogate Sz ASg representations

The links between actions and their enabling and resulting states correspond directly to
grammatical expressions with the if-then construction. The sentence “If you want to take the
block then the block must be visible” expresses an enabling relation, where the state “block
visible” enables the action “take the block”. In contrast, the sentence “If you cover the star
with the block, then the star is under the block™, or “If you cover the star with the block then
the star is not visible” expresses a causal relation. This scenario should demonstrate how by
using these forms of grammatical constructions, we can interrogate the system related to these
enabling and causal relations.

3.2.4 Transfer of causal knowledge to new situations.

Here we want to demonstrate that if the robot learns about new action relations in one context
then it can use this knowledge in another context. Concretely, in the cooperative task where
Larry uncovers the toy so that Robot can pick it up, the robot should be able to begin to make
the link between the resulting state of the “‘uncover” action as the enabling state of the
subsequent “take” action. In this experiment, through a process of interrogation we will
demonstrate that the robot has the knowledge necessary to form a plan for getting access to a
covered object, by linking goals with resulting states of actions, and then establishing the
enabling state as a new goal.

3.2.5 Extended usage

The goal of this experiment is to analyse the performance of the system under extended use,
in order to observe the evolution of the KnowledgeBase, and the recognition capabilities of
the system. We start with a naive system (i.e. an empty KnowledgeBase), and then for the
five actions cover, uncover, give, take, and touch, we expose the robot to each action with the
block and the sign, and then in the transfer condition test the ability to recognize these actions
with a new configuration (i.e. with the block and the star). We repeat this exhaustive
exposure five times, in Phases 1 — 5. The dependant measure will be the number of
presentations required for the five actions to be recognized in the training configuration, and
transfer configuration, in each of the 5 phases.

3.3 Cognitive System Architecture

We developed a cognitive system architecture to respond to the requirements implied in
Section 3.2, guided by knowledge of the cognitive linguistic mechanism in humans and their
functional neurophysiology, and by our previous work in this area. The resulting system is
not neuro-mimetic but its architecture is consistent with and inspired by our knowledge of the
corresponding human system. We describe the architecture in the context of processing a new
action, as in 3.2.1, and illustrated in Figure 4.

The human picks up the block and places it on the sign. Vision provides the front end of the
perceptual system. Video data from the eyes of the iCub are processed by the Spikenet vision
software which provides robust recognition for pretrained templates that recognize all objects
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in the scene. Each template is associated with a name and the camera coordinates of the
recognized location. One to 4 templates were required per object.

Based on our previous work, inspired by human developmental studies, we identified three
perceptual primitives to be extracted from the object recognition, which would form the basis
for generic action recognition — these are visible(object, true/false), movingfobject, true/false),
and contact(objl,obj2, true/false). These primitives are easily extracted from the Spikenet
output based on position and its first derivative, and are provided as input to Temporal
Segmentation. The temporal segmentation function returns the most recent set of segmented
primitives that occurred within specified time window. This corresponds to our hypothesis
that a given complex action will be constituted by a pattern of primitives that occur in a
limited time window, separated in time by periods with no action. The resulting pattern of
primitives for contact is illustrated in Figure 4C.

When the robot detects changes in the visual scene, the above processing is initiated. The
Action Management function matches the resulting segmented perceptual primitives with
currently defined action in the Knowledge Base. Each action in the Knowledge Base is
defined by its pattern of action primitives, its name, the arguments it takes, any preconditions
(i.e. the enabling state Sg in the SgASg representation), and the resulting state. Thus, during
action recognition, the Action Management function compares this set of segmented
primitives with existing action patterns in the Knowledge Base. If no match is found then the
system prompts the human to specify the action and its arguments, e.g. “I cover the sign with
the block™.

The State Management determines that as a result of the action, the World State has changed,
and interrogates the user about this. The user then has the opportunity to describe any new
relations that result from this action but that are not directly perceptible. When the block
covers the sign, the sign is no longer visible, but still present. The State Management asks
“Why is the sign no longer visible?”” Thus the human can explain this loss of vision by saying
“Because the block is on the sign.” The action manager binds this relation in a generic way
(i.e. it generalizes to new objects when the event “cover” is perceived) to the definition of
“cover” (see Figure 4D).

If a match is found, then the system maps the concrete arguments in the current action
segment with the abstract arguments in the action pattern. It can then describe what
happened.  For a recognized action, State Management updates the world state with any
resulting states associated with that action. In the case of Cover, this includes encoding of the
derived predicate on(block, star).

Temporal Execution
Segmentation Primitives

W

World

State
Objects

Relations. ..

Action State
Managemept[{ Manggement

Spoken
Language

Figure 3. Cognitive System Architecture. See text for description.
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4. Results:
4.1 & 4.2 Learning new actions and their derived consequences

Here we present results from an interaction scenario in which the user teaches the robot 4 new
actions: Cover, uncover, give and take. In order to explain the system level functionality,
details for learning are illustrated in Figure 4 for the action “Cover”. The corresponding
dialog is presented in Table 1.

D
ern
i moving 4758.29253 Arg2 null False 0.0 0.0
i visibility 4758.090338 Arg1 null False 0.0 0.0
contact 4755.976991 Argl Arg2 True 0.0 0.0
contact 4755.975684 &rg2 &rgl True 0.00.0
‘o moving 4755.773468 Arg2 null True 0.0 0.0
[=]- State Changes
Add contact Arg2 Argl
Add contact Argl Arg2
Remove visibility Zrg1 null
Lo ddd on Arg2 Aral
[=] Initial State
visibility &rg1 null
visibility Arg2 null

Figure 4. Learning and generalizing “Cover Argl with Arg2”. A. Robot setup and visual
scene before the action. B. Vision: Robot’s view of scene after the block is put on the sign.
C. Temporal Segmentation: Time ordered sequence of perceptual events observed during the
action. D. Knowledge Base: Abstract pattern template for cover, along with the resulting
state changes, and required initial state. E. Relations encoded in the World State after the
“cover” is recognized in a new action “covers the star with the block™.

For new actions (that have not yet been defined in KB) the system uses the set of observed
primitives from Temporal Segmentation to generate a generic pattern of primitives to define
the action (Figure 4C). If any unexpected perceptual changes occur, the system asks the
human why this is the case, and the human can respond by describing any new relation that
holds. For example, when the block covers the sign, the sign becomes not visible. The
system asks the human why, and the human responds that this is “because the block is on the
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sign”. This new relation on(block, sign) is added as part of the generic definition of the cover

action, illustrated in Figure 4D.

Learning "Cover" (0:42)

12:22:22 User : watch <user then places the block on the sign>
12:22:31 Robot : Need to Learn this cne

12:22:58 User : cover the sign with the block

12:23:00 ERobot Did you say cover sign block ?

12:23:02 User : yes

12:23:04 Robot : Adding cover sign block

Learning Resulting Predicate "on" (0:17)

12:23:12 User : because the block is on the sign
12:23:15 Robot Did you say because block on sign ?
12:23:17 User : yes

12:23:25 Robot : What should I do now ?

Transfer "Cover" to new situation (0:16)

12:24:07 Robot : What should I do now ?

12:24:09 User : watch

12:24:21 Robot Recognized cover star block
12:24:23 Robot : What should I do now ?

User can interrogate the World State:

12:24:26 User : Tell about star

12:24:28 Robot I will query info about the star
12:24:30 Robot star contact block

12:24:33 Robot : block on star

12:23:08 Robot : Why are the sign and the block close one each other ?

Table 1. Interaction Fragment as Robot Learns Meaning of “Cover”. Completion time
(seconds).

Table 1 provides a record of the interaction in which the robot learns the meaning of “cover”
and then displays this knowledge by recognizing cover in a new example. We observed that
executing a given action like cover may sometimes lead to a different ordering of the
segmented primitive events, e.g. detecting of the end of the block’s movement may occur
before or after the sign being visually obstructed. This is accommodated by encoding
multiple patterns for a give action in the database. This redundant coding captures the
physical redundancy that is expressed in the observations made by the system. The result is
that when any of the appropriate patterns for an action are recognized, the action is

recognized.

Enabling State

Action

Resulting State

Visible Argl Cover Argl with Arg2 Contact Argl Arg2
Visible Arg2 Visible Arg2

On Arg2 Argl
Visible Arg2 True Uncover Argl with Arg2 Visible Argl
On Arg2 Argl Visible Arg2
Visible Argl Give Argl to Arg2 Contact Argl Arg2
Visible Arg2 Visible Argl

Visible Arg2

Has Arg2 Argl
Contact Argl Arg2 Take Argl from Arg2 Visible Argl
Visible Argl Visible Arg2
Visible Arg2
On Arg2 Argl

Table 2: Enabling State — Action — Resulting State (SeASg) representation for the learned

actions.
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A total of 5 distinct actions were learned and validated in this manner. The resulting
definitions are summarized in Table 2. Figure 5 provides some performance statistics for
learning these actions and then using the learned definitions to recognize new actions.
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Figure 5. Performance effects for learning and transfer. Interaction times were recorded for
the learning of four novel actions, learning the derived predicates for those actions, and then
using the resulting definitions to recognize new instances of the four actions (Action,
Predicate, and Transfer, respectively). Recognition in transfer to new actions (15.5 sec) was
significantly faster than initial action learning time (29.25) p < 0.05..

4.2.3 Use of Causal Constructions to Interrogate SpASy representations
This experiment demonstrates how the “if-then™ construction can be used to extract the link

between actions, the required enabling states, and the resulting states. Results are presented in
Table 3.

13:43:10 User : What are the conditions for cover the sign with the block?
13:43:12 Robeot : If you want to cover the block with the sign then
13:43:14 Robot : sign need to be wvisible

13:43:16 Robot : block need to be wvisible

13:43:23 User : What are the consequences of cover the sign with the block?
13:43:26 Robot : If you cover the sign with the bleock then

13:43:28 Robot : block will be contact with sign

13:43:30 Robot : sign will be contact with block

13:43:32 Robot : sign will no longer be visible

13:43:34 Robot : block will be on sign

The block is currently con the sign.

13:43:40 User : How can I make the sign wvisible?

13:43:43 Robot : If you want to make the sign visible then
13:43:45 Robot : You can uncover the sign

Table 3. Interaction fragment as robot explains the preconditions and results of the cover
action.
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4.2.4 Use of causal knowledge in teleological reasoning.

Here we consider a scenario similar to “uncover the block™ scenario introduced in Section 1,
and Figure 1. In this context, an object is covered by another, and the user’s goal is to use the
first object in a new task. The goal then is to find out how to gain access to the first object
that is currently covered. The robot observes one human put the toy on the table, and another
human cover the toy with the box. The objective is to begin to perform teleological reasoning
about action sequences that have never been observed.

18:03:50 Robot : Recognized cover star with block

18:04:05 User : What are the conditions to cover the sign with star
18:04:07 Robot : If you want to cover the sign with the star then
18:04:09 Robot : sign needs to be wvisible

18:04:11 Robot : star needs to be wvisible

The sign is wvisible, but the star is covered with the block, so the user
asks the robot how to make the sign wvisible:

18:04:18 User : How can I see the star
18:04:23 Robot : You can uncover the star

The user can now uncover the star by removing the block, and then achieve
the final gecal which is to cover the sign with the star

Table 4. Interaction fragment where the robot performs basic goal-based reasoning about
how to solve the task of getting the star when it is covered by the block, and then uses it to
cover the sign.

This experiment demonstrates how the State-Action-State (SgASg) representation provides
the required information for goal-based reasoning.

4.2.5 Usage Study

We performed 6 additional experiments, which involved processing of 111 separate actions,
to begin to evaluate the robustness of the system. Experiments 1-4 each started with an empty
Knowledge Base, and examined the abililty to learn the 5 actions, and then transfer this
knowledge to new object configurations. The key performance indices are (1) how many
trials are required to learn an action with one set of objects, and (2) how well does this
learning transfer to recognition of the same actions with different objects? Over the four
experiments, a given action required 1.35 demonstrations to be learned accurately. This
learning then transferred to new conditions on 70% of the new trials. 30% of the trials
required additional learning before the actions were recognized under new conditions. Thus
there is a significant effect of training on the ability to recognize new instances of learned
action patterns (p < 0.05). Closer investigation revealed that in Exp 2 the vision system was
generating false movement recognition which lead to a number of irrelevant patterns being
learned. When only Experiment 1, 3 and 4 are considered, an average of 1.13 trials are
required for learning, and the knowledge transfers to 100% of the new trials with no
additional learning.

In Experiments 5 and 6 we retained the Knowledge Base from Experiment 4, and then tested
it with a new user, and examined the evolution over two complete tests with the 5 actions and
the two object configurations. In Experiment 5, a total of 6 additional demonstrations were
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required to recognize the 3 actions in the two different object configurations. In Experiment 6
only 1 additional demonstration was required during the recognition of the 10 distinct actions.
Overall these tests indicate that when the vision system is properly calibrated, the system is
quite robust in the ability to learn generalized action recognition patterns.

5. Discussion

Part of the stated objective of this work has been to implement, and demonstrate the
advantages of, a hybrid embodied-teleological approach to action-language interaction, both
from a theoretical perspective and via results from human-robot interaction experiments with
the iCub robot. This objective was motivated by our observation that true cooperation
requires not only that the robot can learn shared action sequences, but that it represents how
those actions are linked in a chain of state changes that lead to the goal. This means that the
robot must be able to represent actions in terms of the states that allow them to be performed,
the states that result from their performance including the “unseen” predicates, for example,
related to object permanence.

We developed a perceptual system that extracts patterns of spatio-temporal visual properties
in order to encode actions in terms of these patterns. We re-discovered that action and
meaning are not purely perceptual (Carey 2009), and that additional properties related to
object permanence and physical possession also form part of the meaning of action. Based on
studies indicating that language can be used by toddlers to accelerate the acquisition of such
knowledge (Bonawitz et al. 2009), when our cognitive system encounters unexpected results
from an action, it interrogates the user, much like a developing child (Hood et al. 1979). This
allows the user to explain, for example, that when the block covers the star, the star is not
visible (but still there) because the block is on the star. We refer to these additional predicates
(on, has) as derived predicates. This demonstrates that language can play an essential role
refining the understanding of the meaning of action which is first approximated purely from
the perceptual stream, by introducing derived predicates that become part of the meaning of
the action. These predicates are encoded in the state changes that are to be introduced
whenever the action is recognized. Thus, when the give and take actions are recognized, the
derived predicate /as (indicating possession) will be appropriately updated. We believe that
this is a fundamental development in the link between language and action, because it goes
beyond a purely identity mapping between sentences and meaning, and instead uses language
to change and enrich forever the meaning of action as part of a developmental/learning
process.

A crucial component of the new system is the representation of actions which includes the
link to initial enabling states, and final resulting states. The resulting system produces a
Knowledge Base that encodes the representation of action meanings, and a World State that
encodes the current state of the world. As mentioned above, we demonstrate how
grammatical constructions that exploit causal connectives (e.g. because) can allow spoken
language to enrich the learned set of state-action-state (SAS) representations, by inserting
derived predicates into the action definition. We also demonstrated how the causal
connective “if — then” can be employed by the robot to inform the user about the links
between enabling states and actions, and between actions and resulting states. Again, this
extends the language — action interface beyond veridical action descriptions (or commands) to
transmit more subtle knowledge about enabling and resulting states of actions, how to reach
goals etc.
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Indeed, in the context of the “hybrid” embodied and teleological system, we demonstrated
how representations of enabling and resulting states provides the system with the knowledge
necessary to make the link between goals as the resulting states of actions, and the intervening
actions that are required. This is part of the basis of a teleological reasoning capability
(Csibra 2003). In the current system, we have not implemented a full blown reasoning
capability, that can perform forward and backward chaining on the states and action
representations. This is part of our ongoing research.

In Foundations of Language, Jackendoff (2002) indicates that while languages may vary in
their surface structure, the organization of the conceptual structure that they express appears
more universal. We extended this notion to consider that indeed, the compositional structure
of syntax is derived from that of the conceptual system (Dominey 2003), and Jackendoff
agreed (Jackendoff 2003). In this context, one of the most promising results of the current
research is the continued observation that language reflects the structure of conceptual
representations. We have previously demonstrated this in situations where multiple actions
are linked by shared states, resulting in descriptions such as “Larry took the toy that Robert
uncovered with the box™ (Dominey & Boucher 2005). The current work extends this to
include functional and causal links between elements in the SAS representations (e.g. the if-
then constructions in Tables 3 and 4).

We are currently working to integrate this SgASy framework into our existing cooperative
action framework (Dominey, Mallet & Yoshida 2009, Dominey & Warneken 2009). We will
first demonstrate that the mechanism presented here for learning the perceptual patterns
associated with perceived actions can be applied to learning motor patterns associated with
executed actions. This will result in further enriched action representations that include the
enabling and resulting states, the perceptual primitive patterns, and the action primitive
patterns. We will then use these representations in the context of learning cooperative tasks
by observation. This will yield a situation in which the robot can represent the trajectory from
initial state to final goal state via coordinated action sequence, and will thus provide the basis
for intentional reasoning, and the extension of the teleological reasoning to cooperative
activity.
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Appendix 4
The EFAA’s OPC format specification

This document has been produced to define the OPC object properties formalization and
share them among the project partners. It defines various keywords designing object

properties that can be updated or queried by other modules.

ltems are assigned a unique ID returned by the OPC when something is added to the
database. ID is a property of an object and allows storing every object, even those which

don’t have any name. Any ID is unique within the OPC.

Entity defines the type of the item. Here are the different entities defined within the

efaaHelpers.h header file:

#define EFAA_OPC_ENTITY_OBJECT ("object™)
#define EFAA_OPC_ENTITY_TABLE ("rt_table")
#define EFAA_OPC_ENTITY_ROBOT ("robot")
#define EFAA_OPC_ENTITY_CURSOR ("cursor"
#define EFAA_OPC_ENTITY_MATH ("math")
#define EFAA_OPC_ENTITY_LOCATION ("location")
#tdefine EFAA_OPC_ENTITY_EMO_ROBOT ("emo_robot")
#tdefine EFAA_OPC_ENTITY_EMO_HUMAN ("emo_human")
#define EFAA_OPC_ENTITY_BODY_PART ("body_part")

The position of an object in the robot reference frame is coded by 3 properties of double

type. The unit is meter.

#tdefine EFAA_OPC_OBJECT_ROBOTPOSX_TAG ("robot_position_x")
#define EFAA_OPC_OBJECT_ROBOTPOSY_ TAG ("robot_position_y")
#tdefine EFAA_OPC_OBJECT_ROBOTPOSZ_TAG ("robot_position_z")

The dimensions of an object (bouding box) are coded by 3 properties of integer type.
The unit is mm.

#define EFAA_OPC_OBJECT RTDIMX_TAG ("rt_dim x")
#define EFAA_OPC_OBJECT_RTDIMY_ TAG ("rt_dim_y")
#define EFAA_OPC_OBJECT RTDIMZ_TAG ("rt_dim_z")

Towards a distributed, embodied & computational theory of cooperative interaction Page 187




For now the grasping configuration can be a property of an entity with the following tag &

values. It can be used to send the proper command to PMP depending on the target.

#define EFAA_OPC_OBJECT_GRASPCONF_TAG ("graspConfiguration")
#define EFAA_OPC_OBJECT_GRASPCONF_UP ("up™)

#define EFAA_OPC_OBJECT_GRASPCONF_SIDE ("side")

#define EFAA_OPC_OBJECT_GRASPCONF_TOP ("top")

Spatial relations between objects are currently checked by the objRelationFinder
module. It pushes properties of type list which store the list of IDs of objects.

e.g.: ((id 1) (contains (3 4 5)) (isContained (6))) states that object 1 contains
objects 3, 4 and 5 and is contained within object 6.

#define EFAA_OPC_OBJECT_SPATIAL_CONTAINS ("contains™)
#define EFAA_OPC_OBJECT_SPATIAL_CONTAINED ("isContained")
#tdefine EFAA_OPC_OBJECT_SPATIAL_INTERSECTS ("intersects")

The human detection modules will detect the humans (using the kinect for example), split it
into part and push those parts into the OPC so higher level modules can use this information.
A body part possesses a name, the «robot_position_...» property and an «owner» property.
The «owner» property is of the string type and refers to the name of the human whom those

parts belong to. The different body part names can be:

#define EFAA_OPC_BODY_PART_TYPE_HEAD ("head")
#define EFAA_OPC_BODY_PART_TYPE_HAND_ L ("handLeft")
#define EFAA_OPC_BODY_PART_TYPE_HAND_R ("handRight")

For example, to get the ID of llaria’s face you can send the query:

ask ((entity==body part)&&(name==head)&&(owner==I1laria)&&(isPresent==1))

Every entity present in the OPC that has its spatial properties (robot position x,
robot_position_y, robot_position_z) set and the tag (isPresent 1) will be displayed in the GUI.
Module responsible for this display is objLocationTransformer. The color of an object within

the GUI is coded by 4 properties of integer type value:

#tdefine EFAA_OPC_OBJECT_GUI_COLOR_R ("color_r")
#define EFAA_OPC_OBJECT_GUI_COLOR G ("color_g")
#define EFAA_OPC_OBJECT_GUI_COLOR_B ("color_b")
#define EFAA_OPC_OBJECT_GUI_COLOR_ALPHA ("color_aplha")
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