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RRESUME 

Les robots vont peu à peu intégrer nos foyers sous la forme d’assistants et de compagnons, 

humanoïdes ou non. Afin de remplir leur rôle efficacement ils devront s’adapter à 

l’utilisateur, notamment en apprenant de celui-ci le savoir ou les capacités qui leur font 

défaut. Dans ce but, leur manière d’interagir doit être naturelle et évoquer les mêmes 

mécanismes coopératifs que ceux présent chez l’homme. Au centre de ces mécanisme se 

trouve le concept d’action : qu’est-ce qu’une action, comment les humains les reconnaissent, 

comment les produire ou les décrire ? La modélisation de toutes ces fonctionnalités 

constituera la fondation de cette thèse et permettra la mise en place de mécanismes 

coopératifs de plus haut niveau, en particulier les plan partagés qui permettent à plusieurs 

individus d’œuvrer de concert afin d’atteindre un but commun. Finalement, je présenterai 

une différence fondamentale entre la représentation de la connaissance chez l’homme et 

chez la machine, toujours dans le cadre de l’interaction coopérative : la dissociation possible 

entre le corps d’un robot et sa cognition, ce qui n’est pas imaginable chez l’homme. Cette 

dissociation m’amènera notamment à explorer le « shared experience framework », une 

situation dans laquelle une cognition artificielle centrale gère l’expérience partagée de 

multiples individus ayant chacun une identité propre. Cela m’amènera finalement à 

questionner les différentes philosophies de l’esprit du point de vue de l’attribution d’un 

esprit à une machine et de ce que cela impliquerai quant à l’esprit humain. 
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AABSTRACT 

Robots will gradually integrate our homes wielding the role of companions, humanoids or 

not. In order to cope with this status they will have to adapt to the user, especially by 

learning knowledge or skills from him that they may lack. In this context, their interaction 

should be natural and evoke the same cooperative mechanisms that humans use.  At the 

core of those mechanisms is the concept of action: what is an action, how do humans 

recognize them, how they produce or describe them? The modeling of aspects of these 

functionalities will be the basis of this thesis and will allow the implementation of higher 

level cooperative mechanisms.   One of these is the ability to handle “shared plans” which 

allow two (or more) individuals to cooperate in order to reach a goal shared by all.  

Throughout the thesis I will attempt to make links between the human development of 

these capabilities, their neurophysiology, and their robotic implementation.  As a result of 

this work, I will present a fundamental difference between the representation of knowledge 

in humans and machines, still in the framework of cooperative interaction: the possible 

dissociation of a robot body and its cognition, which is not easily imaginable for humans. 

This dissociation will lead me to explore the “shared experience framework, a situation 

where a central artificial cognition manages the shared knowledge of multiple beings, each 

of them owning some kind of individuality. In the end this phenomenon will interrogate the 

various philosophies of mind by asking the question of the attribution of a mind to a 

machine and the consequences of such a possibility regarding the human mind. 
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PPreface 

Robots. Before addressing any specific, focused and specialized sub-topics, this thesis 

is about robots. From books, cinema and video games, robots are already present in our 

imagination, somehow known by people. However, robots living an imaginary world of 

science fiction are not the ones that I know. I have to start this thesis by a cynical statement: 

robotics is an illusion. 

  Doing a PhD in robotics  can be seen mostly as spending countless hours of writing 

austere code behind a computer screen, but it is also conducting a constant social and 

psychological experiment each time someone questions you about your job. What I 

discovered through this dialog is that working as a “cognitive roboticist” is similar to being an 

illusionist. When one goes to a magic show, he really sees that the assistant girl is cut in two 

pieces and glued again after a while. His eyes send the information to his brain about what is 

going on in front of him, and a part of his brain believes that the girl is cut. However, if you 

ask him after the show if he actually thinks that the lady was sliced in half, he will say “No! 

Of course there is a trick!”. In the case of robots, I observed an even more paradoxical 

situation. When I have to do a demonstration to naïve people, or journalists, I’m always 

astonished by how easy it is to “trick” them.  

A simple dialog between you and the machine in English and one will ask you “Does 

he understand French as well?”. I’d like to answer “Yes, he can understand and speak all 

languages in the world”, however the only thing that I can honestly say is “It doesn’t 

understand English. It’s only translating a sequence of sounds to a text in English, this text 

triggers a text reply in English which is translated back into a sound that you truly 

understand”. The fact is that the Chinese Room experiment (Searle 1980) is less popular than 

Wall-E...   

Another funny question often raised is “If you had to compare it to a child, how old 

would your robot be?”. Well, this kind of child is able to process differential equations in a 

matter of nano seconds, while at the same time destroying his whole arm by pushing it 
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through a wooden table that it doesn’t perceive and without feeling any pain. It is a child 

that can record his whole life in high definition video, while not being able to tell you 

anything about what he did in the past day. What age would you give to such a child? 

Examples I could produce to make my point are legion: “He is looking at you! He likes 

you!”, “He looks so sad!”, “Which toy does he prefer?”… The fact is that people naturally 

assign agency, feelings and human-like intelligence to a (humanoid) robot. Every single 

motion or sound made by the robot is instantly imbued with intentionality, suggesting that 

the observer unconsciously assigns some high level cognition to the machine. This is what 

happens during the show, people believe in “magic” because their own brains suggest to 

them much more than they actually see. But then, after the show, comes this question that I 

used to ask to naïve subjects: “Do you think that a robot can be intelligent?” or even a more 

delicate one “Do you think that a robot can be conscious?”. The answer is always a too 

strong “No”, served with plenty of justifications involving often a fuzzy concept of “soul” and 

a raging indignation that we can even think about machines being our equal. My point is not 

to evoke a precocious remake of the Valladolid debate1 but to highlight a few points about 

the upcoming integration of robots into our society. First is that the illusion of intelligence is 

born easily in the eye of humans; while at the same time they are firmly convinced that this 

very thing they experience cannot be true. 

The main difference between difference between the robotics researcher and the 

illusionist stands in their approach of building the illusion. The magician uses a mind trick to 

present something that he knows to be a “lie” as a true fact. The robotic researcher tries to 

create real magic, not to have the people think he is flying, but to fly for real. When I design 

the brain of a robot, I do not want people to think it is intelligent, I want it to be so. This 

thesis is about my efforts helping to reach this goal, to be able to meet one day a robot that I 

will consider as being the equal of humans in terms of intelligence and consciousness. 

Agreeing on the fact that we are still at the babblings of robotics, my very hope is to see this 

day. It is both a hope and a fear. I fear that when this time comes, only the magician will 

know that his magic is real. Because for most of people, intelligence and consciousness are 

                                                      
1 The Valladolid debate (1550-1551) is famous historical debate which purpose was to determine if America’s 
natives had a soul or not and therefore if they could be subject to slavery or not. 
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something magic, and we can only recreate an illusion of magic. A hope, because mankind 

used to consider natural phenomena as magic, until they were explained by science and 

mastered by technology. So perhaps building a conscious machine will make people 

understand their own consciousness without considering it as a thing of magic, sacred or at 

least impossible to engineer.  
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IIntroduction 

One starts to write this thesis using a highly technological device while drinking a 

homebrewed coffee. None of this could have been possible without the collaboration of 

hundreds of people. Even this activity, writing a thesis, is somehow part of a general 

cooperative plan: taking a step towards a higher level of knowledge in the EU Cognitive 

Robotics community. It is the result of a thinking process, which leads to ideas.  Those ideas 

are written down in order to save them, to share them more easily with others, to avoid 

someone else wasting time in the thinking process. At a more practical level, we see results 

of cooperation everywhere: the machine which made the coffee, the water that arrived 

from the tube and the coffee beans that were planted, picked and roasted; all of those 

required at some point many people to work together. 

Mankind has been able to achieve great things that are not within the reach of a single being 

(Tomasello 1999). Through cooperation, we are able to jump over a wall that is too high or 

to build the Great Wall. However, in both cases the same principles apply: a long chain of 

cognitive processes. At the “lowest” level, parts of our cortex refine our raw sensorial 

experience of the world. All our different sensory signals are merged through a learning of 

the correlations between elements composing the reality. In Chapter 1, I will describe a 

cortical model which allows a generic transformation from raw sensory data to the symbolic 

level. I will show that an object, an action or any concept can be represented as a pattern of 

cortical activity. The model described will be using a modified version of Kohonen Self 

Organizing Maps (Kohonen 1990), however it will be the only part of this thesis which will be 

about neural modeling. Having reached this point, I would like to speak about my position 

regarding neural networks. In the past, the artificial intelligence field has seen quite an 

opposition between classic AI (symbolic) and connectionism with (Fodor 1975) Before 

starting my PhD I was on the connectionist side, I believed that all problems in AI could be 

solved using neural networks and that it would be easier to model cognition this way. Having 

been working three years with a robot I still think that every problem can be solved using a 

neural model, however I also know that the optimal way to solve problems is not always the 

one that the nature choose. Neural networks are mathematical tools; they are good at 
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performing transformations between spaces when we do not have a clear idea about how to 

formalize this operation. It is the case when we try to model the perception: no model 

nowadays can provide us a full “symbolization” of the world experienced through the 

sensory apparatus of a robot, the symbol grounding problem is not yet solved(Harnad 1990). 

Therefore the best systems dealing in that field are mostly neuro inspired, even if their 

performances are too unpredictable. However when it comes to higher level cognitive 

functions, the brain processes are in some manner manipulating symbols, concepts. I’m not 

oversimplifying the cortical computations; I’m simply arguing that symbols are present in the 

brain, wielding the form of complex and distributed pattern of activity2. If we assume a 

complete symbolized representation of the real world then software engineering provides us 

many excellent ways to model cognition. Who never dreamt of being able to use a debugger 

to inspect the brain in a given state, having variables containing the “apple” or “eat” 

concepts instead of multidimensional vectors representing the same meaning? After the first 

chapter, I will assume that my models can be built among this symbolization and I will use 

mainly software engineering to model cooperation. This thesis will follow a bottom up plan, 

going from the lowest level of cognition (close to the sensors) to a fairly high level 

(cooperative interaction and language manipulation).   

Chapter 2 will describe the concept of action. While it is quite easy to get an intuition 

about what the symbol of an object could be, the nature of an action is a bit more difficult to 

handle. Actions are not only a motor sequence, neither a simple sequence of behaviors. An 

action can be perceived, executed and described; it is deeply linked to the real world which 

makes it possible or not and which will be modified along its execution. An action is a way to 

change the world; it is the very first element which makes a body appearing to be animated. 

A stone could be the smartest thing in our universe while we would have no idea because it 

is unable to act. Since action is the main “building block” of any intelligent behavior, I will 

examine which insights are given by both neurophysiology and developmental psychology. 

Based on this literature, I present a data structure which can be used to generically 

represent an action in order to allow its recognition, execution and verbal description. 

                                                      
2 The extensive problem of symbol grounding, and the academic debate concerning the challenges between 
symbolic and connectionist approaches will not be addressed in any detail here. 
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Moreover, I will present imitation, one of the basic requirements of cooperating abilities 

which is intrinsically matched when using this action model. 

Once given a way to manipulate actions as symbols, it becomes possible to handle them 

in order to build a meaningful interaction between the robot and a human counterpart. In 

Chapter 3, I will focus on cooperation and again base my implementation work on studies 

performed in the fields of neurophysiology and developmental psychology. Along their 

development, children learn to interact with others in order to reach goals that are beyond 

their individual abilities. They demonstrate early an ability to share their goal with somebody 

else, using gaze, gestures and later on language. Once the goal is defined, a shared plan is 

constructed with the help of the partner; by assigning specific actions to each participant 

children find a path to reach their goal together. As mentioned above, having an exhaustive 

data structure (or representation) for action allows for their straight forward manipulation. 

Therefore a shared plan can be seen as a sequence of actions, each action being assigned to 

a specific agent. However, while this implementation is fairly simple, it is powerful: the goal 

of a shared plan can be determined by summing up all the goals of the component actions, 

the description and verbal negotiation for establishing the plan can be built using the actions 

specific descriptions, etc. Moreover, such a shared plan can be seen as a path between two 

world states. By knowing the current state of the world, and the desired goal, many planning 

algorithms can be used to create a shared plan. While this is not the point focused upon in 

this thesis, I will briefly discuss how to generate a goal directed shared plan using this 

information. 

A prevalent approach to building cognitive systems today is to examine human brain 

function, and to attempt to mimic that process. It is a fair approach, since we have no clear 

alternative guides about how to build intelligent systems.  However we have to keep in mind 

that human cognition is built on the top of the animal body limitations. In the last chapter of 

this thesis I will see “beyond the body” and describe which unique features an artificial 

cognitive machine can realize. Whether artificial symbols represent objects, actions or plans, 

they can be represented in a well defined software data structure which can be stored in 

memory, written in a file or exchanged through the network. The knowledge and cognitive 

working material of a robot is a collection of those representations, most of which is fully 

unembodied, opening up to manipulation of knowledge as if it was any other kind of data.  
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Chapter 4 will introduce the basis of an abstract (unembodied) cognitive machine with 

distributed bodies: while possibilities are endless, already a few achievements and problems 

are within our reach. I’ll present them along with Central Cognition, a system designed to 

handle a centralized abstract cognitive machine while controlling multiple robotic bodies in 

parallel. Based on the possibility of such an architecture, I’ll pursue a reflection about what 

could become a “Shared Experience Framework”, applying and extending the Cartesian 

dualism to artificial cognitive machines and asking new questions about what are the mind, 

the body and the individuals. While this chapter will be mainly about the technical feasibility 

of such a framework, I’ll pursue a deeper philosophical interrogation about those concepts 

within the final discussion of the thesis.  
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Introduction 

The common approach to study the cortex is to divide it into areas (Brodmann 1909; Amunts, 

Schleicher et al. 1999) and to determine how those areas are connected both in term of 

anatomical (Felleman and Van Essen 1991; Markov, Ercsey-Ravasz et al. 2010) and functional 

connectivity (Cordes, Haughton et al. 2000). Although the neuroscience community doesn’t 

always agree on the exact segmentation details, many researchers try to draw the 

connectivity map of the cortex (Braitenberg and Schüz 1998; Guye, Parker et al. 2003). From 

outside the community, one can imagine that the motivation guiding this research is that 

from the structure of the cortical network one could infer the functional dynamics and the 

respective role of each area. Due to historical reasons, the primary areas (vision mainly) 

which are “close to the sensors” have been studied more intensively than the rest of the 

cortex. They are generally thought as being organized in a hierarchical way (Felleman and 

Van Essen 1991), with leaves (the bottom levels of the hierarchy) being the areas closest to 

the sensors. Although cortex is clearly not a mathematical hierarchy (Markov, Ercsey-Ravasz 

et al. 2010; Vezoli, Gariel et al. 2010) there is a hierarchical flavor in its global organization: 

areas close to sensors merge into amodal zones which often send feedback to the bottom 

and continue to merge together upper in the stream3.  This framework has built up the idea 

of convergence zones (Damasio 1989; Damasio and Damasio 1994). In a nutshell this theory 

holds that some cortical areas could act as pool of pointers to other areas, therefore linking 

several cortical network together. These zones would be responsible for linking together 

representations from various sensory modalities of the same concepts. A concrete example 

is that seeing a photo of a very dirty and wet dog could give you a sensation of its smell. The 

olfactive representation of such the odor associated to the dog in the picture could be 

activated because those two modalities (olfactive and visual) are linked in some high level 

conceptual convergence zone. This example is quite naïve and convergences zones are 

dealing which much more distributed and functional linking of concepts and functions; 

however the main idea is there: they merge networks of lower level cortical areas into 

amodal higher level concepts and solve this way the binding problem by allowing the 

extraction of units and regularities from the complex and not segmented raw sensor 

                                                      
3 This is currently written in a naive manner.  We will benefit from constructive input from the committee to 
improve these paragraphs. 
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information. The feedback process is also important; it could be a basis for explanations of 

certain perceptual illusions: we never perceive reality as the pure raw signal coming from 

our sensors; instead we perceive sensory information mixed with feedback data coming 

from higher levels in the stream. Indeed we do not perceive the world as it is, but as we 

think it is. Most illusions are based on the regularities our brain is used to experience in the 

world and on consistency between our different sensors. A well known evidence of this is 

the McGurk effect (McGurk and MacDonald 1976) which makes us “hear what we see”, thus 

providing evidence that regularity in visuo-audio patterns shapes our perception. The 

convergence zone framework and the feedback influence could explain this effect in an 

elegant way as well as many other illusions.  As it is quite generic and relatively easy to 

implement, the convergence zones framework served as a basis mainly for theoretical 

models (Moll and Miikkulainen 1997; Howe and Miikkulainen 2000). Moll’s model provides a 

very good starting point for an implementation on a robot, but it lacks a major feature of 

cortical computation: topographical organization. It is a well-known phenomenon that some 

areas of the cortex will get activation in similar locations while presented two stimuli that 

are similar. Mostly studied within the visual cortex (Kosslyn, Thompson et al. 1995; Schall, 

Morel et al. 1995; Engel, Glover et al. 1997), this topographical organization also occurs in 

the motor cortex with the somatotopic (Buccino, Binkofski et al. 2001) mapping and the 

famous “homunculus” (Metman, Bellevich et al. 1993; Aflalo and Graziano 2006). Indeed it is 

quite appealing to consider that that this mechanism of convergence is quite generic and 

spread throughout the cortex, although no clear evidence of this has been systematically 

investigated. From a pure modeling point of view, this property is also interesting : 

topographical organization or neural maps allow an easy representation and understanding 

of what is going on in the network, which is one of the reasons that made the Self Organizing 

Map of Kohonen so famous (Kohonen 1990). In this chapter I will present a neural network 

model called Multi Modal Convergence Maps (MMCM) which fuses ideas from Kohonen’s 

SOM and from the Convergence Zone Framework. It allows the learning and recall of multi-

modal traces together with a spatially topographic storage in a self-organizing map of 

neurons. The model is used to process low level sensory information coming from the robot 

sensory apparatus and merge it into amodal representations which are used in turn to 

influence what the robot perceives.  
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Neuroanatomy of Multimodal Associative Areas 

Investigation of the human being likely started with the study of the body. From the physical 

and chemical properties of organs scientists could begin to attempt to understand some of 

their functionalities. When it came to the brain, we were facing a totally different problem: it 

is not a single organ, but a complex system made by the massive connections between 

smaller organs units (neurons). To understand its functionality we need to investigate the 

anatomical structure as well as the process of communication among the network of 

neurons. It has been suggested that the brain is anatomically connected in a way that is 

correlated with  and facilitates its functional connectivity (Sporns, Tononi et al. 2000). 

Cortex is  divided into multiple areas which the scientific community more or less agree on, 

they are defined by their cyto-architecture (type of neurons and other neuronal material 

composing it), by their connectivity pattern and by the cognitive function they are involved 

in (Brodmann 1909; Amunts, Schleicher et al. 1999). Areas are connected together, but 

despite numerous studies, establishing a connectivity matrix is a huge task that has not been 

achieved yet on human. Historically, the cortex has been thought as being a hierarchy 

(Felleman and Van Essen 1991); while it is now clear that this is not the case in the 

mathematical definition of this term (average connectivity rate of 66% (Markov, Ercsey-

Ravasz et al. 2010)), a “hierarchical flavor” is still present in our understanding of the early 

areas connectivity. Studies by Kennedy’s team on the monkey provide us with a partial 

connectivity matrix summarizing which and how areas are connected. Statistical analysis of 

this matrix gives interesting results: it seems that a general pattern of connectivity exists. 

Indeed within an area or among areas, the strength of connectivity between two locations 

seems to be dependent of the distance in the way represented in Figure 1. From the earlier 

sensory area point of view this organization produces indeed a “hierarchical gradient” of 

connections to the other areas if we consider that position in the hierarchy is defined by the 

distance to the sensory cortex. This semi-hierarchical pattern is a well suited design for the 

multi-modal integration that I will develop in this chapter.  After the initial sensory cortex 

(with V1, A1, S1, G1, O1) where each sensor modality is clearly identified, areas start to be 

more and more amodal. The premotor cortex of the monkey for example is well known to 

merge inputs coming from vision and proprioception (Graziano 1999; Maravita, Spence et al. 

2003). Merging proprioception with vision is important for biological systems; both 
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modalities can contribute to a better estimation of the physical body status within the 

environment, therefore allowing a finer motor control.  

 

Figure 1: Extracted from (Markov, Misery et al. 2011). The FLN is a measure of connectivity strength. The strength of 
connection between cortical areas is a matter of their relative distance. Original legend: Lognormal distribution of FLN 
values. The observed means (points) ordered by magnitude and SDs (error bars) of the logarithm of the FLNe for the 
cortical areas projecting on injection sites. (A) V1 (n = 5), (B) V2 (n = 3), and (C) V4 (n = 3). The relative variability 
increases as the size of the projection decreases. Over most of the range, the variability is less than an order of 
magnitude. The curves are the expected lognormal distribution for an ordered sample of size, n, equal to the number of 
source areas. The gray envelope around each curve indicates the 0.025 and 0.975 quantiles obtained by resampling n 
points from a lognormal distribution 10 000 times and ordering them. 
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This context leads to the strong intuition that multi-sensory merging is a core principle of 

cortical computations.  When a subject interacts with the physical world, the changes 

induced are perceived by its sensors, the same action (in the broad sense, any motor act) 

will produce the same effects, therefore producing a coherence relation between the 

corresponding sensor activation. When I move my hand in front of my eyes, I will always see 

it evolving in the same trajectory, with the same shapes, and feel the same exact 

proprioceptive percepts, i.e. the visual and proprioceptive images are correlated. Since 

proprioception and vision provide input to the same area, according to the most basic 

Hebbian rule, visuo-proprioceptive regular patterns will be coded within this multimodal 

area. This is one of the most obvious relations between our sensory spaces; however it is 

interesting to look at the case of blind people. Neuroimagery tells us that the dorsal stream 

which merges proprioception and vision in sighted people seems to merge auditory and 

proprioception in congenitally blinds (Fiehler and Rösler 2010); while another study shows 

that early vision during child development shapes definitively the tactile perception of non-

congenital blinds (Röder, Rösler et al. 2004).  To demonstrate another such combination, 

visual and auditory signal integration was found in monkey for person identification (face + 

voice) (Ghazanfar, Maier et al. 2005). Multimodal areas are not predefined to use a specific 

combination of modalities; they are a mechanism to merge the modalities which express the 

most pattern co-activation regularity. Listing in an exhaustive way all the multimodal areas 

and their input would be a huge and meaningless task, even “modal areas” where found to 

integrate information coming from  each other (Cappe and Barone 2005). 

Literature about multimodal integration in the brain is vast, and a standalone topic 

(Meredith and Stein 1986; Lipton, Alvarez et al. 1999; Sommer and Wennekers 2003; 

Ménard and Frezza-Buet 2005), however the objective here is not to dress a map of the 

multimodal streams in the brain, but to enlighten the fact that merging of multiple 

modalities is likely one of the core mechanism induced by cortical connectivity. This principle 

is the core of the Convergence Zone Theory (Damasio and Damasio 1994) which I will use as 

a basis for modeling multimodality convergence. 

Psychophysics: Illusions 

As stated in the introduction, one of the most common and impressive manifestations of the 

multimodal integration is the perceptual dependency created among different sensory 
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modalities. It is reasonable to assume that our percepts are based on quite high level areas 

and do not come directly from the raw sensor input, therefore they encode multimodal 

traces. From a computational point of view, it means that activity in one modality can 

produce a form of recall on the other, therefore biasing the perception to a more regular 

pattern. Most perceptual illusions are indeed inherent to this phenomenon: the ventriloquist 

and McGurk show the link between auditory and visual percepts (McGurk and MacDonald 

1976; Bonath, Noesselt et al. 2007), the rubber hand experiment is about vision, 

proprioception and touch (Botvinick and Cohen 1998), etc. Taking as an example the rubber 

hand experiment, in a nutshell the subject is being presented a fake hand as being its own, 

therefore integrating the fake hand displacement as a displacement of its own limb. Refer to 

(Botvinick and Cohen 1998; Ehrsson, Spence et al. 2004; Tsakiris and Haggard 2005) for 

details and variations).  In this setup the subject feels a fake hand as being his own, because 

sensory input coming from proprioception and vision are coherent. The small displacement 

induced in the vision creates a shift in the proprioception. Indeed given the visual input, the 

proprioception should not be what the body experiences; the subject therefore feels neither 

the reality nor the exact vector matching the vision but a mixture of both. In this experiment 

the illusion is induced after short training, a sort of priming so that the subject can associate 

the fake hand with his own. Indeed psychophysics demonstrates two types of illusions, one 

induced by such priming and another related to long term experience of world regularities. 

While the first shows that multimodal integration is subject to short term adaptation, the 

second type demonstrates that our experience shapes our perceptual system all along our 

lives. An entertaining example based on the single visual modality is presented in Figure 2 : 

the balls seem to be flying or not according to the position of their shadow, while if you hide 

the shadow they will be on the same level. Knowing that our brain is used to perceive a 

consistency between the height of an object and the position of its shadow, we can assume 

that integrative systems is indeed trying to make us perceive the situation in the image as it 

should be according to the laws of physics. Shadow position and spatial position are so 

tightly coupled in the world that only manipulating the perception of the shadow induces a 

major shift in the percept and the estimated position of the object. This illusion is so 

common and useful that it has been studied (Kersten, Mamassian et al. 1997; Mamassian, 

Knill et al. 1998) and exploited for artistic purposes. This example is probably not the best 

one, but the point is easy to grasp: the brain is “fooling us” to perceive not the real world, 
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but the world shaped as we are used to experience it. Illusions happens when those two 

worlds do not match, therefore modulating the percept to be a mixture of both.  

 

Figure 2: A long term knowledge induced illusion. Our experience of the world shapes our understanding of a perceptual 
stimulus so that the physics law are consistent with our daily experience. (Picture from Lawrence Cormack) 

 

Indeed illusions do not rely only on early sensory integration; they also touch the “semantic” 

level with interferences to and from language. Reading “blue” takes longer than reading 

“blue”, and YouTube had quite a buzz about hearing “fake speech” in songs by 

synchronously reading a text (the illusion might not work for non-native French speakers but 

one can check in case 4). This last case is an impressive illusion: despite the “sexual and 

comic” connotation of the video it is an effect that is worthy of a serious investigation, 

though to our knowledge no such study has been performed. In the illusion, one reads a text 

(in French) while listening to a foreign song. The sonority of the text is close to the lyrics of 

the song, therefore if one reads it a few second before the audio comes, one actually hears 

what was just read. The auditory percept is “fooled” by vision, but passing via the language 

level, which therefore demonstrates a three step chain vision->word->audition. Indeed it is 

tempting to suppose that while learning to read, a multimodal area becomes a convergence 

zone for written words and their audio representations. 

                                                      
4 http://youtu.be/w9u4GroWCQY 
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To conclude this section on illusions, let us consider memories. French literature has a well-

known description, by Proust, of what an adult feels when he happens to smell the odor of a 

cake he used to eat when he was a child. The odor triggers in the reader the “awakening” of 

dreams where he experiences his childhood, completely disconnected from reality. 

Memories can be induced on demand, or suggested by environmental factors; however it is 

clear that in both cases our percepts correspond to an illusion between the multimodal 

pattern of activation we experienced and the real world. Could we therefore say that the 

recall process is a “mind induced” illusion, a memory driven activation of a coherent pattern 

of sensory inputs? This is beyond the scope of this chapter, so we let this question pending 

and propose a model that can cope with this principle of perceiving each sensory modality 

shaped by others and by previous experience. 
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Model: Multi Modal Convergence Maps 

The Convergence Zone Framework (CVZ) (Damasio 1989; Damasio and Damasio 1994) makes 

use of a standard and generic computational mechanism within the cortex: integration of 

multiple modalities within a single area. This integration derives a memory capability 

allowing multimodal traces to be recalled using a partial cue (unimodal stimulation for 

example). The original model formalization was performed by Moll (Moll and Miikkulainen 

1997) and is quite similar to Minerva2 (Hintzman 1984) apart the fact that the former uses a 

neural network while Minerva2 uses “brute force” storage of all the episodic traces. Both 

models enter the category of Mixture of Experts models (Jacobs, Jordan et al. 1991; Jordan 

and Jacobs 1994) in which a pool of computational units (experts) are trained to respond to 

multimodal patterns. When a partial or noisy input signal is presented all the experts 

examine it and respond with their level of confidence (activation) about this input being 

their pattern or not. By a linear combination of their responses and their specific pattern the 

missing or wrong information can be filled in. Another model which can be considered as a 

special type of Mixture of Experts is the Self Organizing Map (SOM) from Kohonen (Kohonen 

1990).  While the formalisms are different, the core principle is the same: a pool of neurons 

is trained so that each of them tunes its receptive field (prototypical vector) in order to be 

mostly activated by a specific input vector. The SOM is particularly well known because of 

the direct visually meaningful 2-D map representation, allowing an understanding of the 

network computation and the possibility to map high dimensional data into a 2D space. They 

are indeed based on the lateral organization of connectivity within cortical areas, which 

induces through learning a topographical mapping between the input vector and the neural 

map. However, despite the fact that they are bidirectional by nature and allow recall, SOMs 

were never really used as a basis for multimodal integration but mainly to operate vector 

quantization on high dimensional datasets (Kaski, Kangas et al. 1998). In this section, I will 

present a model fusing ideas from the CVZ and from SOM. I will first provide preliminary 

explanation on those two models and finally present the Multi Modal Convergence Maps 

which I’ll link to some very similar models in the recent literature on modeling multimodality. 
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Convergence Zone & Self Organizing Map 

CVZ 

A direct model of CVZ has been established by Moll (Moll, Miikkulainen et al. 1994; Moll and 

Miikkulainen 1997) where multiple modality specific layers are linked through a binding layer 

(the convergence zone). Each unit of modality vectors is connected toward all neurons of the 

binding layer with weight being 0 or 1 (connected or not). To store a new pattern, modalities 

are set and a random pool of binding neurons is chosen, links between input neurons 

activated and those are set to 1. For retrieval a partial set of the input vectors (e.g. one 

modality) is activated, the neurons of the binding layer connected with weights of 1 are 

found and activate back all the input units that they encode for, the process is summarized 

in Figure 3. 

 

Figure 3 Taken from (Moll and Miikkulainen 1997). A stored pattern is retrieved by presenting a partial representation as 
a cue. The size of the square indicate the level of activation of the unit. 

 The focus in Moll’s research is to show that such a model can store a large amount of traces 

within a reasonable number of neurons. Because of this they argue that it is a good 
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representation of episodic memory storage within the human brain. However, the current 

interest is more in the properties emerging from the mixture between multiple modalities: 

how the model behaves in case of incoherent input activity (illusion) and how one modality 

can cause a drift in the other one. Indeed this model doesn’t hold any temporal or spatial 

relation amongst the stimuli: two stimuli close in time do not have to possess any kind of 

proximity (while it is typically the case in the real world) and there is no point in trying to find 

spatial clustering within the binding layer since the position of neurons isn’t used at all. 

Therefore, a multimodal pattern is a hard to imagine “binding constellation” and it is difficult 

to label those binding neurons to the concept they are related with. Moreover, even if the 

learning process is fast, there is no evidence about how it behaves against catastrophic 

forgetting (French 2003) and no benefit from past experience when learning a new trace. 

The SOM can cope with those points, although it is not designed to handle multiple 

modalities.  

SOM 

Self-Organizing Maps were introduced by Kohonen (Kohonen 1990) and have been 

intensively used and adapted to a huge diversity of problems, see (Kaski, Kangas et al. 1998) 

for a review.  

The main purpose of SOMs is to perform a vector quantization and to represent high 

dimensional data. A SOM is a 2 (or more) dimension map of artificial neurons. An input 

vector is connected to the map so that each component of this input vector is connected to 

each node of the map (see a partial representation of the connections Figure 4). In this 

context, each neuron of the map owns a vector of connections that has the size of the input 

vector, and each connection has a weight. The main idea is to fill the input vector with values 

and to compare these values with the vector of weights of each neuron. Each neuron is 

activated by the similarity between its weight vector and the input vector. One neuron will 

more be activated than all the other, we call it the winner. 
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Figure 4: Schematic representation of a self organizing map. A single input vector has each of its neurons 

connected to each neuron in the map. 

The main idea is to train the map so that 2 neurons that are close on the map will encode 

similar input vectors. To do so input vectors from a training set are presented, the winner 

neuron is calculated and its weights are adjust so they will be closer to the input values.  

While this general process is very similar to the CVZ, the learning point is quite important in 

SOM. Indeed not only the winner neuron is learning, but also its neighbors so that a region 

instead of a single neuron will learn to respond to this input. The learning rate of neighbors 

depends of their distance to the winner, this learning function is inspired from the lateral 

connectivity pattern and the resulting inhibition. The learning rate function is often called 

the “Mexican hat” because the learning rate is distributed like a sombrero whose center is 

the position of the winner neuron (Figure 5). 

 

Figure 5: Neighbourhood function or Mexican Hat function (Credit for picture to Daneel Reventlov) 
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Learning will therefore have a tendency to shape the map so that two similar inputs will be 

stored within the same region of the map. A concrete example demonstrating this principle 

is the application of SOM to image compression (Dekker 1994; Pei and Lo 1998). An image is 

composed of pixels, which hold in most of the cases three channels (R,G,B) accounting for 

255*255*255 possible colors. However, when considering a single picture, it is clear that all 

those colors are not used. By considering each pixel as a 3 component vector and 

sequentially presenting pixels from an image to a SOM it is easy to get a compact palette of 

the colors used. Indeed after learning, the map will store gradient of colors in several regions 

which are composing the most representative palette for this image, therefore the number 

of color coding the image is the number of neurons forming the map, which can be used to 

greatly increase the compression. After training the map can be represented by painting 

each neuron to the color its weights are encoding for, providing meaningful representation 

and understanding of the map encoding Figure 6. 

 

Figure 6: SOM used for color clusterization. Credits to Andrew Kirillov5 for the demo application. 

                                                      
5 http://www.aforgenet.com 
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MMCM 

Core Principles 

The Convergence zone principle is to store in one place references to multiple lower level 

activity patterns. It can be seen as a sort of hub, a map of pointers, or more generally as an 

associative memory. The input patterns are divided into multiple independent units (vectors 

or maps) depending of the modality they represent, which is something the standard SOM 

doesn’t take into account. On the other side, the initial CVZ model lacks of the self organizing 

and topographical property inherent to cortical maps. The Multi Modal Convergence Maps 

are designed to cope with both of these requirements in a unified model merging SOM and 

CVZ. In a nutshell, it can be seen as a SOM using multiple modalities from which contribution 

to the network activity can be tuned. A schematic overview of a simple MMCM is presented 

in Figure 7 and describes in a simplified way the flow of information through the network. 

 

Figure 7: Schematic representation of a MMCM linking three modalities. Each modality is assigned a color, 

the arrows of the respective colors represent the possible interaction between modalities created by the 

convergence map. 

Each modality is taken into account during the map activity calculation according to the 

equation (1) & (2), with  being the ith component of the input vector perceived by 

modality m and  the Influence factor of the modality m. Modality influence is a number in 

[0,1] which represents how much a modality contributes to the map activity, in comparison 

to the others. In our implementation, the “map” is in fact a cube, neurons are distributed 

along 3 dimensions which means that represents the activity of the (x,y) neuron of the 
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layer z. This third dimension idea came from the fact that the cortical maps are divided in 6 

layers (Brodmann 1909); while this has not been extensively examined, we can consider that 

adding a dimension allows a higher storage capacity by providing more nonlinear 

transformations to be represented while keeping the topographical properties of such 

representations. We will come back to this point in the parameters explanation, but to give 

the main idea the third dimension seems to increase the encoding potential of the network. 

 
 

 
 

To ground the discussion in reality, consider that a robot is looking at its hand, which is 

changing postures, and listening to an observer say the names of these postures.  If we take 

the map from Figure 7, at each step three vectors are obtained from the robot sensors: the 

image (visual modality), the joint encoders (motor modality, similar to proprioception) and 

the words recognized by the spoken interaction (language modality). All the respective 

modalities inputs are activated according to these vectors, and then the map activity is 

calculated. The most activated neuron of the map (i.e. the winner) is recorded and its 

weights give the prediction for each modality. If the learning mode is on, the weights of each 

neuron in the map are adjusted according to the equations (3), (4) and (5).6 

 

 

 

 

                                                      
6 Note that the modalities influence is not taken into account during the learning, at the time of writing this 
function is not implemented, however it could be an interesting way to guide learning. For example, it could be 
a model for what happens in congenitally blinds (influence of vision during learning 0) who are given back the 
sight by technological means (influence of 1 during perception) and experience meaningless percepts.  
For more info about artificial retinas see: Dobelle, W. H. (2000). "Artificial vision for the blind by connecting a 
television camera to the visual cortex." ASAIO journal 46(1): 3. 
 , Humayun, M. S., J. D. Weiland, et al. (2003). "Visual perception in a blind subject with a chronic 
microelectronic retinal prosthesis." Vision research 43(24): 2573-2581. 
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To summarize the equations, the winner weights are modified to better match all the input 

vectors so that next time those inputs are presented this neuron activity will be higher. The 

other neurons of the maps also learn with a rate depending on the distance separating them 

from the winner on the map. Figure 8 represents the distance function presented in 

equation (3) with various values for sigma, we could also have used a Mexican Hat presented 

in Figure 5, the main requirement is that the function represent a decreasing gradient from 

the winner node to its far neighborhood. 

 

Figure 8: Neighborhood function used in the MMCM Library, accounting for only 2 dimensions and different values of 
sigma (represented for x and y ranging from -1 to 1). The Z axis represent the learning rate, the center of the dome is the 

winner. 

 This neighborhood learning creates the self-organization of the map: inputs that are similar 

will activate close regions on the map. At the modalities level, the input vectors are being 

classified in regions on the map, for example all visual pattern of the hand seen from the 

back will be stored on the top right corner, while the hand seen from the front will be on the 

other side of the map. Since each modality will have a tendency to create its own regions 

resulting from clustering of the inputs, the map will organize itself in multiple superposed 

partitions. This arrangement can be seen as an associative mapping linking vectors of 

different modalities that are often sensed together: assuming that we train the MMCM of 

Figure 7, the robot is looking at its hand while sensing it and feeling it occurring in consistent 

activation of the map coming from vision and proprioception as described in Figure 9. For 

more explanation about this figure and the associated experiment, please consult the 

experimental results section of this chapter; the most important thing to understand at this 
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point is that the convergence map creates a spatial organization of regularities extracted 

from the sensed modalities. 

 

Figure 9: Visualization of the map activity when stimulated by vision (left) or proprioception (right). The most active spot 
is the same for both modalities, because vision is consistent with proprioception. In the case of an illusion those two 

spots would be different and the percept would be a mean of both. 

 

Enactive Perception: shaping the world 

The word “enaction” will be employed to explain a psychophysical phenomenon and a 

mechanism of the MMCM model. This word refers to a well-specified philosophical concept 

(Maturana and Varela 1987), however here we will use only a part of it: the fact that physical 

experience of the world shapes perception. We will not consider high level considerations 

such as mind, consciousness and the link between body and mind, but instead focus on very 

low level perception.  Even prior to action, though actions are tightly linked to perceptions 
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since they modify them, let us consider the pure perceptual question. How does the brain 

treat the information coming from the sensors to produce a percept, and to what extent is 

this percept actually different from the raw sensory information? A major point of the 

enaction concept is that we perceive the world from our point of view, and this point of view 

is biased by the previous experience we had of the world. Enaction is a concept that involves 

a whole species and that is developed through evolution, although we can apply the same 

idea at the individual scale. Through its life an individual experiences the world, acts on it, 

perceives it, and regularities are extracted.  The brain is shaped to perceive this world as it 

appears every day, its weights are modified so that the position of a shadow and the 

respective height of its owner object are interdependent (Figure 2), because this is a physical 

law inherent to our universe.  This basic knowledge that we are not even conscious of 

possessing is so deeply trusted that it can produce the illusions mentioned above and in 

Figure 2. We do not perceive the raw information coming from our various sensors as it 

comes, instead our brain always attempts to make it close to a phenomenon we are used to 

experiencing, it tries to shape our perception of the world so it looks like the world we know. 

This is what I call Enactive Perception, the fact that our brain is always mixing the reality with 

the archetype of reality it possesses, while at the same time building this archetype to cope 

better with its new experience.  The benefit of such a shaping of our perception by our 

knowledge is not trivial; however it is an undeniable aspect of our cognition which is likely to 

be due to the feedback stream connecting most of the cortical areas with lower areas of the 

hierarchy. According to anatomical results, convergence zones, if they exist, are not different 

from others areas, therefore they are sending feedback information to the modalities they 

are fed by. The MMCM model take this process into account by considering that a 

perception (either modal or amodal) is the result of merging a “real stimulus” and the 

associated prediction of this stimulus. 

Using the MMCM it is possible to link multiple different modalities according to the way we 

experienced them. It is possible to predict one modality from the activation of the map. We 

use this prediction capability to embed the MMCM into a dynamic model which can 

represent the enaction. The main idea is that the map doesn’t perceive directly the sensory 

data (reality), but the existing map memory altered by those sensory inputs. Indeed there is 

growing feeling in neuroscience field that our brain computation are mainly  “internal” and 
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only driven by the input coming from our sensory system (Raichle, MacLeod et al. 2001). The 

Figure 10 represents schematically how the MMCM model takes into account the enactive 

perception. 

 

Figure 10: Enactive MMCM. The map does not perceive the input directly, but it uses a mixture of real and 

predicted inputs. This process adds a temporal sensitivity to the system. 

At any time the system experience the world, so the stimuli vectors are set by the sensory 

input (St). However, this raw sensory data is not used alone to stimulate the MMCM, instead 

we use a mixture of this sensory input and the prediction (Pr) made by the system at the 

previous time step. This perceived vector (Pe) is calculated using the equation 6. 

 

 

Rho is a parameter of the system which vary in [0,1] and represents the weight of the reality 

in the perception of the system. The smaller it is the more the system will be influenced by 

its memory. Adding this prediction to the inputs gives the ability to the MMCM not only to 

act as a static associative memory, but also to process temporal information. This means 

that the system should be able to learn sequences of stimuli; while it has still to be tested 

and could be very much dependent from the value of Rho (if we set it to 1 for example the 

system loses completely this capability.)  
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Parameter Influences 

The MMCM possesses several parameters that can have a major influence on the model 

behavior and computation achieved. In this last part we consider all those parameters and 

provide information about their role and the way they are intended to be tuned. 

Modality Influences 

Each sensory modality has an influence on the perception which tells how much it “drives” 

the percept in comparison to other modalities. While some research has attempted to 

quantify those influences in the human cognition (Burns, Razzaque et al. 2005), it is likely the 

“weight” of each modality is not absolute but depends of the task, the subject and his will. In 

the model, a number between 0 and 1 is associated to each modality and represent its level 

of contribution to the final percept. We can see in equations (3) and (4) that we are 

operating a sort of softmax function to calculate to which proportion each modality 

contributes to the final activation of the map. An influence of 0 means that the modality is 

not taken into account at all, for a vision based example it would mean that I close my eyes. 

Setting a modality influence to 0 can be useful if I want to make predictions of those 

modality based purely on the other; for example I could predict what my hand would look 

like based solely on proprioceptive cues. Of course it is possible to set influences to 

intermediate values (for example vision to 1 and proprioception to 0.5) in order to test 

hypothesis on the psychophysics results or just to “trust more” one sense in comparison to 

the others. 

Enaction Factor 

The enaction factor, as I described before represents to what extent the previous knowledge 

contributes to the perception of reality. Perception is a mixture of what our brain predicts 

about what we should perceive and what really comes from our sensors. However, while the 

model is quite adapted to represent static associative memory, using its capability to be 

enactive turns it into a temporal model. Indeed the map makes prediction for each modality 

based on the sum of all perceptions which have an influence superior to 0.  If all modalities 

are taken into account it means that the perception is dependent on itself. To cope with this 

problem we consider that perceptions in the world are continuous through time. What our 

eyes see won’t be radically different from one image to another:  olfactive and tactile 
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information doesn’t “jump” from state to the other, there is a sort of perceptive continuum 

inherent to the physical world. Therefore, we can consider that the percept experienced at 

time t is very much related to the percept we experienced at time t-1. Given that assumption, 

the model defines the perception at time t as a mixture between the real modality signal 

(coming from the sensor) at time t and the prediction made for this modality at time t-1. The 

enaction factor is a number ranging from 0 to 1, with 0 meaning that the previous prediction 

is not taken into account at all and 1 meaning that only the last prediction is considered, 

therefore running the system in a “reverberative state” with no influence at all from the 

reality. Such a system has a strong analogy with dreaming: we used to say that “feeling cold 

makes you dream of snow”, indeed with an enaction factor close to 1 the reality just has a 

driving effect on the perception, therefore leaving the system in its self-induced state. With 

non-extreme values, the enaction factor can be a way to break or create illusions (which are 

basically occurring because our brain trusts more what it used to know that what it actually 

sees). 

Learning Rate 

The learning rate, as in every learning machine system, is a key factor. It represents the 

amount of modification applied to the weights of the winner neuron during learning. It is 

ranging from 0 to 1 with 1 meaning that the weights are adjusted in one shot so that the 

winner neuron encoded vector will match exactly the input presented.  We never want this 

to happen; instead a smooth modification of weights should be applied. Moreover the 

learning occurs on the winner neurons but also in its neighborhood, meaning that a too high 

learning rate can easily destroy previous knowledge stored by the map. However, a too low 

value would induce a very slow learning. Indeed all the generic problems of learning rate in 

neural networks apply to the MMCM model and it is likely that the best (but not yet 

implemented) solution would be an adaptive learning rate based the prediction quality (the 

difference between prediction of the network and the real sensor input). Considerations 

about adaptive learning rate and how to tune it have been investigated and are not the 

focus in the current study, see (Jacobs 1988; Magoulas, Vrahatis et al. 1999; Plagianakos, 

Magoulas et al. 2001) for references. 
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Sigma 

Sigma is meaningless for the size of the neighborhood affected by learning. As depicted on 

Figure 8, the closer a neuron is from the winner, the higher its learning rate will be, 

according to a Gaussian like function. Sigma has no “absolute” value and should be chosen 

according the size of the convergence map used. In many SOM algorithms, it is set initially to 

encompass nearly all the map and it decreases over time so that the clustering becomes 

finer. Indeed the adaptation of sigma is a critical parameter for all models of the mixture of 

experts type.  For example, in the model MOSAIC (Kawato 1999; Lallée, Diard et al. 2009) the 

value of sigma is “hand tuned” over the course of the simulation in order to allow proper 

learning. However hand tuning cannot be a solution, Sigma must be set in an automatic way 

by the system. A good prediction should have a smaller neighborhood in order to refine the 

learning and to tackle catastrophic forgetting. Typically the neighborhood range should be 

decreasing while prediction quality increases; this would allow initially the whole map to be 

shaped by global regularities, while detail learning would be encoded at the local level. 

However, it supposes that the training samples are presented “homogeneously”. A good 

work around is to define a large neighborhood while keeping the learning rate quite low, this 

way all the map learns, but the adaptation is slow and does not overwrite existing 

knowledge. However, probably that the best solution would be to base the calculation of 

sigma on the prediction quality and the “possibility to learn” in a similar way to what is 

achieved on intrinsic motivation to learn by Kaplan (Oudeyer, Kaplan et al. 2007).  Their idea 

is that the agent should choose the action which allows him to learn the most. Not the one 

from which he can predict flawlessly the consequences, nor the one that he is unable to 

understand at all, but the one which he understand enough to verify its prediction. Similarly 

the learning rate and size of neighborhood in MMCM and mixture of expert models could be 

low for very poor and very high prediction quality, while the average predictability should be 

assigned much higher values. 

Similar Models 

Robotics and computer science in general is thought of as permanently “reinventing the 

wheel”. The same concepts are rediscovered again and again, systems with similar purposes 

are re-engineered and we often decide to do by ourselves something that has already been 

done by others.  However, science is about understanding, about grasping what is really 
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behind the system and this cannot be achieved just by reading and accepting the word of 

others. The MMCM model was motivated by historical bibliography, including the CVZ and 

SOM models and its design derives from those bases. Indeed these were the only necessary 

and the most relevant material to the problem of multimodal convergence. Afterwards, I 

discovered the Multimodal Self Organizing Map (Papliński and Gustafsson 2005; Papliński 

and Gustafsson 2006) which is very similar to the MMCM.  The principal difference stands in 

the integration of feedback (enactive perception in my case) and the impossibility to 

modulate separately the influence of each modality.  Moreover, while the model has been 

tested extensively on a theoretical sample case (classifying animals based on modalities 

coding for their attributes) it hasn’t been applied to real modeling of multimodal sensory 

convergence in an embodied robotic framework. However, I have no doubt about the 

capability of this model to cope with a robotics implementation. Another self-organizing 

multimodal model close to the MMCM is being investigated by Mathieu Lefort (Lefort, 

Boniface et al. 2010; Lefort, Boniface et al. 2010; Lefort, Boniface et al. 2011), it focuses 

more on low level mimicking of neural process with the modeling of cortical columns. 

Although this model also seems very well suited to robotics and embodied multimodal 

integration, it hasn’t been applied to this topic so far. 

Despite that this field of research is quite small, there is an increasing interest in modeling 

cortical associative maps within the convergence zone framework. Multimodal association 

can be modeled using various mathematical tools, some of them probably more efficient or 

formalizable than MMCM. However a strong point of SOM and MMCM is the ease of 

understanding the ongoing process and the relatively intuitive functioning of the multimodal 

association. Moreover, MMCM includes core specificities like the enactive perception or the 

independent modalities influences which make it a unique tool to model several 

psychophysics results observed on human. 

Experiments 

One of the principal multimodal integration domains studied in primates is that which 

merges vision and proprioception in the context of grasping. In many body configurations, 

the hands of a subject are within his visual field, therefore making them the best candidates 

for the integration of those two modalities (vision and proprioception) which are indeed 

tightly linked for those limbs. With eyes closed and the hand moving, it should thus be 
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possible to get a fairly good mental image of the appearance of the hand just based on the 

body feeling, although the reverse operation needs a bit more of experimental setup to be 

investigated, it is also clear that vision contributes to proprioception. The following 

experiments describe various ways to model, demonstrate and use this integration within 

embodied framework of the iCub robot. 

Conducted: Proprioception enhance vision speed 

 

Figure 11: Summary of the experimental process. 

The main application of MMCM on a real robotic platform has been achieved on the iCub 

(both simulator and real robot) and results have been presented in (Lallée, Metta et al. 

2009). Our goal was to efficiently grasp objects recognized using vision; the main problem in 

grasping at this time was the inconsistency between the coordinates of an object obtained 

through vision and the position of the hand when commanding its Cartesian controller to 

move to reach this point. Due to minute errors in calibration, those two positions where not 

identical, therefore resulting in a hand displaced relative to the target of the reach (see 

Figure 12) and the robot failing to grasp. The solution found was to proceed to an initial 

reach of the object, visually detect the hand and the target, calculate the difference and 

reduce it by repeating this process in a closed loop. However, the hand is a deformable 
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object: according to its kinematic configuration it can correspond to a functionally infinite 

space of different visual appearances, thus rendering the recognition problem not-trivial.  

 

Figure 12: Status of target and hand after the initial grasp of the iCub. The distance between the hand and the ball needs 
to be reduced using a closed loop (error reducing) control. Visual recognition is achieved using Spikenet (Thorpe, 

Guyonneau et al. 2004). 

 

The visual system of the robot is based on a robust pattern matching system (Spikenet 

(Thorpe, Guyonneau et al. 2004)), which means that an object was visually defined as 

database or set of models (patterns) which were extracted from images of the object. In 

order for an object to be recognized it should be modeled from several view points and in all 

possible configurations, which results for the hand in the creation of an extensive number of 

models (see Figure 13). Of course, the performance of such a system in term of recognition 

time depends mainly on the number of models it is asked to check for: in the case of the 

hand the system became intractable. 
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Figure 13: iCub visual models of the hand in a few configurations. The visual pattern changes dramatically from on 
configuration to the other and a huge amount of models is needed to recognize the hand in every posture. 

However, not all the models are relevant in every situation: since the recognized item (the 

hand) belongs to the robot, it is possible to take advantage of the embodiment information 

in order to reduce the complexity of the recognition process. Indeed, given a kinematic 

configuration, or a proprioceptive vector, the model database can be reduced to a subset of 

relevant models. The MMCM was used to identify this subset: a map linking vision and 

proprioceptive modalities was built, in the following manner. 

The robot gazed forward, and with its hand in its visual field, rotated the hand about the 

wrist while opening and closing the fist.  Proprioceptive signals were collected from the joint 

angle sensors, and visual signals from the vision recognition system.  The vision modality was 

a vector of M components, M being the size of the full database of hand models. At each 

time step, the visual modality was obtained by setting the units corresponding to recognized 

models to 1 and all the other to 0. The proprioceptive modality was a vector of 16 

components corresponding to the encoders of the robot arm scaled between on [0,1]. The 

experiment was divided in two phases 1-Learning, 2-Recognition. During the learning phase, 

the robot was looking at its hand while moving it in a semi-babbling mode as depicted in 

Figure 14. The full model database was loaded in the vision system, occurring in a slow 

recognition, and both visual and proprioceptive modalities were feeding the convergence 

map. The convergence map, MMCM, learnt to associate a kinematic arm configuration with 

its subset of activated models in approximately 8 minutes of babbling. 
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Figure 14: iCub robot and simulator learning to visually recognize their hand based on their proprioception. 

Once the map has learned, its predictive capabilities can be used.  The influence of the vision 

modality is set to 0 so that the map gets its activation only from the proprioception. At each 

time step, the proprioception is sensed and the vision vector is predicted therefore 

producing the subset of models which should be recognized in this configuration. The visual 

system restricts the database of recognizable models this subset in order to allow a faster 

recognition than if it was using the whole database. The effects of this pre-selection of visual 

patterns are presented on Figure 15. 

 

Figure 15: Effects of proprioceptive gating on visual recognition time. Experiment was conducted twice: once on the 
simulator and once on the real robot, similar highly significant reduction of recognition time was found.  Gating is the 
reduction of the set of recognition candidates, by the predicted candidates from the MMCM based on the proprioceptive 
position of the hand. 
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The effect of this pre-selection is of course dependent of the number of models present 

within the database, in our conditions. 

To be conducted 

Although the MMCM library software developed in the thesis provides everything needed 

for the design of many experiments, time constraints and focus on higher level cognition 

didn’t allow them to occur. However, a few of them were (and are still) planned with the 

collaboration of Alessandro Farnè who has conducted research on integration of 

proprioception and vision in the human. As mentioned above, psychophysics provides us a 

lot of insights on the interferences between modalities.  In this section I will present two 

experiments that have been designed to test those hypotheses although they haven’t been 

conducted at the time of writing.  

Experiment  1: The rubber hand experiment 

One of the most famous and studied experiments in vision and proprioception is the rubber 

hand. In this experiment the subject is habituated to see a rubber hand which is not his own 

while tactile contacts are done synchronously on the fake and real hand. This way both 

vision and tactile information are congruent, encouraging the subject to feel the rubber 

hand as his own. The matching between modalities allows bypassing the “plastic” aspect of 

the hand: if I see something touching the hand and I feel it at the same time, then it must be 

my hand. After this training phase, if the hand is presented shifted, then motor commands of 

the subject will be impaired based on this displacement. This effect has been studied both 

from psychophysics and neurophysiology sides (Botvinick and Cohen 1998; Ehrsson, Spence 

et al. 2004; Ehrsson, Holmes et al. 2005; Tsakiris and Haggard 2005) and are often targeted 

at finding how body ownership feeling is handled by the brain.  

The hand is a part of the body that one perceives from his birth using three modalities: 

vision, proprioception and touch.  The signals coming from those sensors are linked within a 

convergence zone (more likely a network of areas (Maravita, Spence et al. 2003)) which is 

able to learn regularities in the relative relations between those senses. We have seen in the 

experiment conducted on the iCub that proprioception and vision of the hand are directly 

related; extending this, in the case of touch a contact will be detected both on the visual 

percept and in a tactile way. We can model this three modality convergence using a MMCM 
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therefore allowing to replicate the rubber hand experiment on the robot and retrieve the 

shift of perception directly in the network activity. Detailed setup of the modalities coding is 

presented in Figure 16 and assumes some simplifications on the visual and tactile 

components. 

 

Figure 16: Modality coding for the rubber hand experiment simulation. 

Vision represents the position of the hand in the visual field and a Boolean value describing 

whether there is a contact between the hand and something else. The tactile part receives a 

Boolean which is the result of a contact detection using the iCub skin. Finally proprioception 

is the vector representing each joint angle of the robot arm. 

The rubber hand experiment in human needs to fool the visual part by using a fake hand. 

With our robotic design we could reproduce the experiment by directly cheating on the 

perception of the robot. For example we can add to the sensed hand position an offset 

which would act as the displacement of the fake hand in human. Moreover other 

perceptions could be modified this way: we could probably show that a disturbance in the 

proprioceptive feeling produces a shift in the visual localization of the hand. 

In order to make the experiment closer to that on humans, we could also add another visual 

component which would code for the “visual similarity” of the hand. We could play on this 

parameter to give testable predictions on human in order to further validate the model.  

Experiment 2: Rock, Paper, Scissor experiment 

Another experiment could add a flavor of “reinforcement learning” to the MMCM model. 

Assuming we would like to teach the rules of the “rock, paper and scissor” game to the robot 
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which means, given a sign, which one should be used in order to win.  Using exactly the 

same map pattern as in the previous experiment (same modality sizes) and the coding 

presented in Figure 17, we can implicitly teach the game’s rules by demonstrating the game. 

The learning phase would unfold as: 

Repeat: 

1. Human moves in either rock, paper or scissor posture. 

2. Vision modality is set accordingly, Reward is set to 1 and proprioception is 

predicted. 

3. The robot posture (rock, paper, scissor) which is the closest from this 

prediction is commanded. 

4. The human says to the robot either “you loose” or “you win”. 

5. Proprioception is set to the played posture, vision is set to the human move 

and reward is set to the result of the game. The map learns. 

 

 

Figure 17: Modality coding for learning the Rock, Paper, Scissor game.  After the map has learnt, the rules of the game 
are coded within it. 

After a few rounds the robot should start to do the move which should beat the human. 

Because we ask the robot move (proprioception) based on what the human did and an 

intention to win the game (reward is set to 1 before the prediction). The omnidirectionality 

of the map allows also some other use: say if the robot won the game based on his move 

and the human one, or predict what the human would have to play in order to win/loose the 
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game. This experiment would be less related to human data, indeed its main purpose is to 

show that MMCM model can be used to model rules and logic operations. 

Due to the possibility to set modalities influence to 0 in order to make predictions, MMCM 

model is more than a simple auto associative memory. Indeed it can also be used as an 

hetero associative memory and therefore be used to model functions instead of only cue 

based pattern retrieval.  
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Discussion 

Multimodal fusion is a core principle of cortical computation. It can serve as a basic principle 

to explain many behavioral results and as a source of inspiration for the emergence of 

concepts from sensorial data.  The MMCM model has been designed to reproduce this 

behavioral data and turns out to be generic enough to cope with a quite large range of 

problems. A detailed description of the software produced (MMCMLib) is provided as an 

Annex, however a few notes on this.  It uses the YARP library, which allows message passing 

over the network. Each modality can be set remotely, and its prediction can be read as well.  

This mechanism is fairly important in the case of a hierarchy of maps.  The current work does 

not address using  the MMCM map as a building block for more complex hierarchical 

networks, however the software has been designed so that one map can serve as a modality 

for another. By allowing maps to be connected remotely, the hierarchy processing can be 

easily parallelized over multiple computers, therefore solving computational issues which 

may occur. Future work will focus on achieving the experiments presented in this chapter, 

however it is quite appealing to imagine more complex processes like the one depicted in 

Figure 18.  

 

Figure 18: A potential hierarchical organization of MMCM. Using this kind of arrangement high level amodal concepts 
could be coded in a cortex-like fashion. 
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Since a map of neuron can be used as a modality input for another map, the question of how 

to interpret a given map activation can be asked. It can be described as multimodal percept, 

compressing vectors of low level features, but I prefer to refer to it as a concept. When one 

is asked about giving a definition of a dog, he says that a dog is its image, its smell, semantic 

information (number of legs, color, can bark, etc.), everything that all dog possess and which 

can be coded as activation of modalities. Of course those modalities will always be 

congruent when observing a dog, therefore strengthening the concept of dog in the subject. 

There is no doubt that in some place in the cortex, a population of neurons is coding for the 

dog concept, but I do not say that those are the “dog neurons”. Those neurons are nothing 

by themselves, but they link together a rich hierarchy of amodal neurons in order to be 

finally expressed as modal neurons. When I want to imagine a dog, my brain may be 

activating this initial population and the feedback cascade could be the origin of this dog 

mental image that appears if I wish to see it. Although MMCM can be clearly qualified as a 

“connectionist” model, it is solving the symbol grounding problem exactly as described in 

(Harnad 1990) by using an hybrid symbolic/non symbolic representation. Modalities, when 

linked to the sensors, are clearly providing non symbolic information to the maps, however 

after learning and convergence, a given map activation can clearly be understood as the 

neural code of a symbol grounding the associated modality activities. Moreover, this neural 

code itself can be used as non-symbolic information feeding a higher level map, while still 

being interpretable as a pure symbol. Indeed MMCM provide a tool to symbolize the 

embodied experience of the robot and enable higher cognitive functions to work on those 

symbols. Although it is in theory possible to implement also those functions using an 

enormous hierarchy of neural maps, once the world symbolization has been achieved, 

cognition can be achieved using classical software engineering methods as we will see in the 

next chapters. Finally the MMCM can be used as a model of multimodal integration in the 

cortex and allows producing and verifying several hypotheses about modalities interaction 

and their behavioral consequences. It can also provide a very good model of the synesthesia 

phenomenon (Cytowic 2002; Nunn, Gregory et al. 2002) which it will explain in two ways: 

first synesthesia could be the result of a wrong connectivity pattern (two cortical areas that 

are not supposed to be connected occurring in being linked). Another option, assuming the 

enormous rate of connectivity in the brain, is that an abnormally high correlation between 

statistically unrelated modalities is experienced early on during development, therefore 
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allowing the child cortex to encode relations between modalities that are unrelated. 

Although the first hypothesis might be tested using emerging imagery techniques like DTI, 

the second one is likely to be impossible to test. Although it is beyond the scope of this 

thesis, it could be exciting to design a robot with synesthetic capabilities, and to see if it is 

possible to “cure” it by imposing an “unassociative training”. Due to plasticity of the model, 

such a treatment should be possible; therefore it could be a good investigation to carry on in 

the human case. 
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CChapter II 

Symbolic Action Definition, from Primitives to meaning 
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Introduction 

As mentioned above, one way to benchmark the intelligence of an agent is to 

examine and quantify the characteristics of its interaction with the world, thus, the central 

importance of action.  Before the more scholarly treatment below, we begin with some 

intuitions.  Every action has consequences, an effect on the surrounding world, and a 

principal activity of living beings consists in choosing which action to perform at any given 

time. The pool of possible actions is defined by the agent himself (a fish will never be able to 

grasp an apple) and by the state of the world (one will never be able to grasp an apple while 

standing in front of a banana tree).  Among all the possible actions, defining the right one is 

a matter of goal, of which world state we would like to approach. We are able to make this 

choice because we know what we can possibly do and which effect it may have on the world. 

Of course, whenever we act we don’t always check all our possibilities, nor what could be 

the consequences of them, our behavior is triggered by the world state and our inner 

universe. Rather than how one will choose the sequence of actions that should lead to the 

goal, this chapter will focus on a single action.  We will try to grasp what is the concept of 

action and derive an acceptable model for it. As stated before, an action possesses 

preconditions or requirements and consequences, but those are not sufficient. If I decide to 

grasp an apple while you are observing me, my brain will send highly complex commands to 

my muscles in order to execute my will. At the same time, your cortex will treat the sensory 

information received and you will notice that I just grasped an apple. You may even notify 

your neighbor who was not looking by telling “Hey! Stéphane grasped an apple!”.  These are 

basic functions of an action: we can execute it, perceive it or describe it. We want the robot 

to manipulate actions as humans do.  That is why it should possess these three abilities. So 

logically this chapter will be articulated around these major axes: 

1) Perceptual: when an agent performs an action it can be perceived and recognized 

by surrounding agents. 

2) Motor: actions are the way for agents to interact with the world; their 

representations need to embed which command has to be sent to the effectors 

(muscles, motors…) in order to produce the action. 

3) Descriptive: for human beings, actions can be described using spoken language. 

This ability requires linking the data structure recognized by (1) and produced by 
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(2) with symbolic representations (words) for both the action and the potential 

arguments. 

For each of those aspects of action, the literature is reviewed to outline how they are 

achieved in the human in term of cortical connectivity and how the child learns them. Indeed, 

we don’t simply want the robot to be able to recognize, execute or describe a specific action: 

we want it also to be able to learn how to do that for every possible action in its sensory-

motor and perceptual space. On one side, neurophysiology gives us directions about the 

flow of information within the brain and it can be used to extract which concepts are shared 

among different functionalities, therefore it is clearly a useful guide to the software 

conception at the structural level. On the other hand the psychological experiments carried 

out with children inform us with important information about which behaviors are making 

use of these structures to perform an efficient learning through interactions with other 

agents. My goal in this chapter is to give a symbolic definition of action, but also to show 

how it can be used in order to allow the robot to populate a knowledge base through its 

interaction with human beings. 
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Action Definition: Perceptive Level 

To perceive and furthermore recognize an action, an agent needs to interpret the 

stream of his perceptions and match what is being perceived with some symbolic 

representation it has previously stored. It is important to notice that the term perception is 

not linked with any specific modality or sensor. Much of the work on action perception is 

done on vision and we will use this specific modality in our explanations for ease; however 

an action can be recognized using other type of information (e.g. consider hearing someone 

climbing wooden stairs). 

Anatomical 

Anatomical neural networks involved in action perception have been studied under a variety 

of different conditions. Decety and Grezes (Decety, Grezes et al. 1997) have shown that the 

content of action (determining whether it is meaningful or not) as well as the observation 

strategy (do we watch the action in order to recognize or to imitate) do not involve the same 

cortical structures. In this specific study the actions used were pantomimes, which are 

sequences of motions performed by an agent, however objects were not present and only 

suggested by the motion pattern. In one condition the pattern was that of an object directed 

action, so called a meaningful action. In the other condition meaningless actions are 

arbitrary patterns of motion. In the case of meaningful actions they observed “in the left 

hemisphere a ventral visual pathway which includes inferotemporal areas, part of the 

hippocampus and terminates in the ventral part of the prefrontal motor cortex”; on the 

other hand the meaningless actions (sequences of motion) produced activation in the right 

hemisphere along a “dorsal pathway including occipitoparietal areas and is connected with 

premotor cortex cuneus and the inferior temporal gyrus. Thus, the ventral stream also 

contributes during the observation of meaningless action.” In this section of my thesis I will 

mainly put the emphasis on so called “meaningful actions”, because this kind of actions 

embeds semantic information. Indeed, Decety et al. reported that observation of meaningful 

actions (on both recognition and imitation purposes) involved the temporal area 21 

(semantic object processing). Area 45 of the left inferior frontal gyrus is also involved,  it is 

known to be used in tool recognition (Perani, Cappa et al. 1995)  and to represent grasping 

movement (it is the human analogous of the ventral area 6 of the monkey) and more 

generally hand related movements (Grafton, Arbib et al. 1996). 
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Meaningful actions have a semantic value and they often involve objects. In order to 

interpret a sequence of motion resulting in object manipulation, it is required to have a way 

to access information about objects.  This is why the action recognition network involves 

areas that are known to process information about objects identity and properties: it is 

required to interpret an action in a semantic way. In the implementation part we will see 

that the action recognition system of the robot is based on perceptual events about objects. 

The fact that some of the above studies rely on pure motion of human limbs, without 

involving objects, is not in contradiction with our approach. Those studies involve “imagined 

objects” and therefore they recorded activation in object related areas of the cortex. 

Moreover, for within our system an agent limb (the human hand for example) is just a 

specific object. Indeed, the robot perceives as object every “world entity”. The work of 

Decety and Grezes give us important insights about how the brain is segregating meaningful 

from meaningless actions during observation. At this stage we can already extract parts of 

the network responsible for goal attribution process and therefore the classification of 

actions as being goal directed or not.  It is important to note that goal directedness can 

emerge from pantomime motion, showing that the goal attribution is based on 

interpretation of physical trajectories among the entities present. 

Although in this thesis action recognition modeling will be based mostly on objects’ physical 

relations (Faillenot, Toni et al. 1997; Shmuelof and Zohary 2005), it is likely that a great part 

of understanding others action in animals is achieved using a mirror system mechanism. This 

is developed further in an Annex, however in the mirror system, the cortical body 

representation is similarly activated when both producing and observing an action (Rizzolatti 

and Arbib 1998; Decety, Chaminade et al. 2002; Rizzolatti and Craighero 2004).  Indeed there 

is a growing amount of evidence arguing that one understands others behavior by mapping 

their actions and body schemas on one’s own, simulating what others are doing using ones 

self-representation, a kind of understanding through physical empathy (Grezes and Decety 

2001; Calvo-Merino, Glaser et al. 2005; Calvo-Merino, Grèzes et al. 2006). 

Developmental Psychology 

The action recognition skill is acquired very early in the child development. Although we 

cannot really speak about “recognition”, it has been shown by Woodward (Csibra, Gergely et 

al. 1999; Woodward 1999; Király, Jovanovic et al. 2003) that infants are able to detect 
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actions and even classify them regarding their goal-directedness starting from the age of 6 

months. Mandler (Mandler 1992)  suggested that the infant begins to construct meaning 

from the scene based on the extraction of perceptual primitives.  From simple 

representations such as contact, support and attachment (Talmy 1988) the infant could 

construct progressively more elaborate representations of visuo-spatial meaning.  In this 

context, the physical event "collision" can be derived from the perceptual primitive 

"contact".  Kotovsky & Baillargeon (Kotovsky and Baillargeon 1998)  observed that at 6 

months, infants demonstrate sensitivity to the parameters of objects involved in a collision, 

and the resulting effect on the collision, suggesting indeed that infants can represent contact 

as an event predicate involving agent and patient arguments. (Allen 1984; Mandler 1992; 

Allen and Ferguson 1994; Siskind 1998). Indeed, even the basic definition of what an object 

is will rely on those physical attributes and relations that are inherent to all physical entities. 

For example, isolating an object within a scene, or a small independent part in a bigger 

object is based on physical bounds and co-motion, and those are perceived and used during 

early infancy (Kellman, Spelke et al. 1986; Spelke 1990; Spelke, Vishton et al. 1995). Indeed 

those physical properties are intrinsically linked to the notion of perceptual primitives: it is 

not clear if we know there is an object A and we can observe that it is moving, or if we know 

that this shape is an object because it is made of points that are all moving in a coherent and 

natural way. Spelke isolated a reduced set of (Spelke, Vishton et al. 1995) physical behaviors 

that characterize an object for infants and those are mainly related to the perceptual 

primitives we are interested in, as if these early perception primitives was not a 

consequence, but a cause of object perception. That is to say that the ability to perceive 

physical relations between objects like contact, occlusion or co-motion seem to be present 

very early in infants cognition and is likely to serve as a building block for higher level 

perceptual constructs like an action. Indeed, a framework integrating the perception to the 

action based on the fact that an action can be described as a succession of events has been 

designed by Hommel et al. (Hommel, Müsseler et al. 2001). According to the Theory of Event 

Coding an action is made both of event codes and action codes which are more or less 

similar to our definitions of perceptual and motor primitives. 
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Robotic Implementation 

While many action recognition systems are based on kinematic motion pattern (Gavrila 

1999; Moeslund and Granum 2001; Schuldt, Laptev et al. 2004), only a few take as input 

objects perceptual events. Siskind (Siskind 1998; Siskind 2001)  demonstrated that force 

dynamic primitives of contact, support and attachment can be extracted from video 

sequences and used to recognize events including pick-up, put-down, and stack based on 

their characterization in an event logic. Related results have been achieved by Steels and 

Baillie (Steels and Baillie 2003). The use of these intermediate representations renders the 

systems robust to variability in motion and view parameters.  Based on previous work, 

we(Dominey and Boucher 2005; Dominey and Boucher 2005) have used a related approach 

to categorize movements including touch, push, give, take and take-from in the context of 

linking these action representations to language (Lallée, Madden et al. 2010) (attached as 

Appendix 3).  This section provides a deeper explanation about these perceptual events: 

how can they be detected, how can they be characterized and what can we use them for. 

 We call perceptual primitives those intermediate representations; they are events 

that produce a salient physical change in the world state which mean that some properties 

of one or more objects are changed enough and in a sufficient fast way to attract attention 

and to serve as a base for encoding meaningful segments of observation. They can be 

computed given the evolution of the world state through time. In order to understand the 

notion of world state for the system, we will explain how objects are represented within our 

robotic cognitive architecture. A data structure called Egosphere contains the status of every 

object perceived by the robot.  At the symbolic level, objects are structures containing a 

name and a list of properties (position, orientation, isVisible, isMoving, isContainedBy, 

isTouching, etc.). A perceptual primitive can therefore be described as a salient change 

within the spatial properties of an object. Indeed, these events can be seen as the derivative 

of world state over time:  changes that occur among the status of objects. At the physical 

properties level, an object can appear or fade (visibility), it can start to move or stop 

(motion) and a physical contact can be established or broken between two objects (collision). 

Subsequently, the data structure modeling a primitive should provide us information about 

which object properties are altered and in which way. While the full Action data structure is 

quite complex (See for reference Figure 25 on page 79), the perceptual side is simple: a 
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perceptual primitive is only a list of object properties modifications. A property modification 

is described by the name of the object, the property and its new value (e.g: (name toy 

(isVisible true) ) will describe a toy appearing). Using a list instead of a single property 

modification allows us to characterize all the physical primitives (which are basically a single 

property modification) as well as more evolved consequences of action. Indeed I will now 

describe the process of recognition and demonstrate that an action should be described as 

being the sum of all the perceptual primitives triggered by its execution. 

 

Figure 19: Visual/name binding (A, B) and use of those bindings to proceed to action learning and recognition (C) on the 
BERT2 platform in Bristol. 

Let’s setup a simple situation as the one presented Figure 19. Subject is facing the robot and 

a set of objects are lying on the table between them. When the subject grasps the toy 

(Figure 19.C) the Egosphere dataflow along the action is the one described on the Figure 20.  
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Figure 20 : Evolution of the Egosphere status (perceptions of the robot) over the grasp(toy) action. Several perceptual 
primitives are detected. 

It shows that 4 perceptual events are triggered, in that order: motion of the hand, contact 

between hand and toy, co-motion of hand and toy, stop of motion. 

The role of the Action Recognizer is to catch those events and interpret them. The 

first problem appearing is the segmentation of the continuous events stream.  We need to 

parse the stream coming out of Primitive Recognizer in order to segment a sub-sequence of 

events which could potentially describe an action. We assume that only one action will occur 

at a given time, and that two actions will be separated by a small delay. Typically the 

beginning of a segment is an event being received after 3s without events, and the end 

occurs when no event is received for 3s. This timing interval is a parameter of the system, 

and the value of 3s has been determined experimentally. This segmentation is quite artificial 

in our implementation since we just detect “paquets” of events which occur in the same 

time interval; however a statistical segmentation could also be used and would probably be 

more robust. This segmentation problem has been investigated by many researchers and the 
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statistical analysis solution seems promising and biologically plausible (Rui and Anandan 

2000; Saylor, Baldwin et al. 2007; Baldwin, Andersson et al. 2008; Shi, Wang et al. 2008).  

Once a segment (a sequence of events) has been detected, the recognition process 

can be applied: the goal is to match a sum of perceptual changes with the name of an action 

and its arguments. For manipulation ease I defined a few mathematical / programming 

operators that can be applied on the Perceptual Primitives.  

Two perceptual primitives can be added, and the result of this addition will be a third 

primitive containing the sum of their Properties Changes (e.g hand( isMoving 1) + toy 

(isVisible 0) = (hand (isMoving 1) toy (isVisible 0)) ). The addition of primitives is a base for 

any teleological reasoning capability as we will see later on in Chapter 3: understanding the 

overall effect of a sequence of primitives (i.e the global change of world state induced by this 

sequence of primitives) is a matter of adding all those primitives together. The addition 

process is fairly simple and a few examples are given in Table 1. 

A B A+B 

Toy (isVisible 1) Toy (isMoving 1) Toy ((isVisible 1) (isMoving 1)) 

Toy (isVisible 1) Box (isVisible 0) Toy (isVisible 1) Box(isVisible 0) 

Toy (isVisible 1) Toy (isVisible 0) Nothing 

Toy (isVisible 1) Toy (isVisible 0) Box(isVisible 0) Box (isVisible 0) 

Table 1 Examples of the + operator on Perceptual Primitives 

It is also possible to test the equality of two primitives, by checking if all their property 

changes matches. However the equality test is not sufficient since we are working with 

relative arguments: we want another operation that will classify (toy (isMoving 1) ) and (box 

(isMoving 1) ) as being equal under the condition (original argument toy = box). Therefore 

we discriminate the absolute equality (strict equality for both properties variations and 

arguments) from the relative equality (properties variations match, but arguments are 

changed). These equality operators work for both a single primitive and a sequence of 

primitive (i.e a perceptual action) as it is described in Table 2. 
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 Stored Pattern 

Sequence A 

Observed 

Sequence B 

Observed 

Sequence C 

 Box isMoving 1 Hat isMoving 1 Hat isMoving 1 

 Toy isVisible 0 Head isVisible 0 Head isVisible 0 

 Box isMoving 0 Hat isMoving 0 Head isMoving 0 

Recognition Cover(Box,Toy) Cover(Hat,Head) None 

Table 2 : Using the relative equality, A == B but A != C. The arguments are set by taking each argument of the current 
element of the sequence in the temporal order and matching it with the original argument (Box Hat, Toy Head). 
Using absolute equality give us A != B and A != C 

Those two operations were proven to be a very handy tool for the action recognition process. 

Indeed the recognition process can be asked to perform two different tasks: recognize any 

action, or wait for a specific action to be recognized. Figure 20 shows that the perceptual 

aspect of an action can be reduced to a list (sequence) of Perceptual Primitives. The action 

recognition process stores a database of all known actions using the arguments used when 

they have been teach for the first time. Whenever a segment of primitives is isolated, it is 

tested against all known actions using the relative equality, therefore providing an argument 

independent recognition of action. Testing if the detected action is the one we were waiting 

for is just a matter of using the absolute equality operator between them. A detailed 

explanation of the recognition algorithm will be presented in the experiment description 

about imitation. 
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Action Definition: Motor Level 

How does an animal proceed from the desire of an action (walking, grasping, etc.) to a motor 

command that will make the muscles follow the right pattern to produce right motion? This 

question has been, and is still being investigated. It is broadly accepted that high level 

commands are decomposed hierarchically into low level controllers that we will call Motor 

Primitives. We will go though neuro-anatomical and developmental literature to identify 

evidence for those primitives, then we will explain how those results are implemented into 

our robotic architecture and what the advantages of such an approach are. 

Anatomical 

Many studies demonstrated that animals use a hierarchical decomposition for achieving 

desired motion. This decomposition occurs at multiple scales, ranging from the effective 

motor activation to generation of higher level commands which I would be tempted to call 

planning. A remarkable review  on motor primitives has been provided by Flash & Hochner 

(Flash and Hochner 2005). They describe the different levels of compositionality in 

movement generation both in vertebrates and invertebrates. Their definition of motor 

primitives is clear and general: “Motor or movement primitives refer loosely to building 

blocks at different levels of the motor hierarchy. Motor primitives might be equivalent to 

‘motor schemas’ (Arbib 1998), ‘prototypes’(Jeannerod, Arbib et al. 1995), or ‘control 

modules’(Schaal, Ijspeert et al. 2003).” 

At the lowest level, Mussa-Ivaldi has shown evidence that the frog’s spinal cord stores a pool 

of motor primitives (Mussa-Ivaldi, Giszter et al. 1994). Mixtures of those primitives are called 

in linear combinations by the central nervous system in order to execute more complex 

behaviors. In the human, the same process of primitive encoding may occur in Purkinje cells 

in the cerebellum (Mussa-Ivaldi and Bizzi 2000). At the cortical level, electric stimulation of 

the premotor and motor cortex in the monkey resulted in arm movements which were 

similar to the standard behavior of the animal (Flash and Hochner 2005), suggesting that 

those parts of the cortex may be maps encoding for different combinations of standardized 

primitives. 

In our case, the Motor Primitive concept is situated at a higher level that has not really been 

investigated in biological beings. We considered as primitives chunks of actions, like “grasp” 
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or “release”, which are often referred as complete actions in the literature. However, the 

main idea is to use compositionality, which is to compose with building blocks in order to 

achieve a more complex behavior. What Flash & Hochner (Flash and Hochner 2005) have 

shown is that this principle is present at many level in biological beings, both on motor, 

language and sensory sides ; we just extend this idea one level higher. One could argue the 

fact that at this level, what we call primitive is already a complex sensory-motor process 

involving both motor control and perceptual feedback; indeed it is the case but the 

compositionality principle is still valid: those sensory-motor processes can be seen as atomic 

functions which can be sequenced to produce complex behaviors. Maps of those high level 

primitives’ symbols can be found in the cortex; indeed in the part Action Definition: 

Descriptive Level we will see that this symbolic definitions are located in language areas 

which are known to be involved in the composition process. A feedback mechanism similar 

to the one of the MMCM (see first chapter) could be activating lower level motor primitives 

in a sequence. 

Devlopmental Psychology 

The motor development may be a principle source of pride for parents during the first year 

of their child. At those times a child learns to fix his balance in order to sit properly, to 

control each of its limbs as a semi-independent effector and to coordinate all of them in 

order to grasp an object or to crawl on the floor. Since motor development is one of the 

oldest fields in developmental psychology, the amount of literature on the topic is vast and 

not all authors are in agreement. Thelen synthesized more than 50 years of literature in 

(Thelen 1995) from which I would like to emphasis the part on composing evolved behavior 

on the top of simple motor primitives. We will see all along this thesis that compositionality 

is a generic computational mechanism used in many places of the human cognition. Based 

on small building blocks, we can produce higher level structures which can be used as 

building blocks in a recursive fashion. Although this principle is referred to differently by 

different researchers, it was first pointed at by Bernstein (Bernstein 1927) by asking a 

question about redundancy in ways to achieve a motion pattern and how does the brain 

handle it. Hypotheses have been made and the one which seemed the most interesting and 

congruent with our framework is the work of Sporns and Edelman (Sporns and Edelman 

1993) which describes how this problem is likely to be solved by using a “repertoire of 
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motion patterns”. For easy referencing we present in Figure 21 a quite self-explanatory 

picture coming from (Bernstein 1967): it describes primitives as pattern of movements 

(making a circle, a letter, a segment…) that are independent from the collection of muscles 

used to produce them. They are high level commands to motor controllers and can be 

executed with various parameters including the spatial position, the speed, etc. Moreover 

we can see on this example (drawing a star) an expression of the compositionality principle: 

the motor primitive used could be “draw a segment”, this primitive repeated five times with 

various spatial parameters produces a star. In addition, the “draw a star” action is another 

chunk of motor command that can be called and that wraps those lower level commands.   
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Figure 21: Figure taken from (Bernstein 1967; Sporns and Edelman 1993). Represent well the concept of motor primitives 
used to compose higher level action (writing a word, drawing a shape). 

The fact that primitives are not a frozen sequence of postures (for example a simple 

sequence of joints in a robot) but are adapted to a spatial target and more generally to the 

environmental context is a quite important element regarding the perception of the 

produced action. Studies of human infants (Csibra, Gergely et al. 1999; Király, Jovanovic et al. 

2003) demonstrated their ability to attribute goal directedness for novel actions early 

assuming two conditions: first the action has to produce a salient effect on the world state. 

The second condition is that the agent is able to achieve the same state change in different 

ways (such as avoiding an obstacle instead of using a straight trajectory), in other words the 
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action is demonstrated to possess equifinal variations. Our implementation of action, both in 

the context of perception ((Lallée, Lemaignan et al. 2010), Appendix 1) and execution is 

based on actions seen as state changes. One of the strong implications of this is the 

equifinality of action. That is, the same action “put the box on the toy” may be realized in a 

variety of ways (with one hand, or the other) but with the equivalent final outcome, one of 

the key characteristics that allow action to be considered goal directed.  If the robot is able 

to demonstrate equifinal means of achieving his actions, then humans may be more likely to 

attribute a goal to them. This assumption has been shown to be true in infants (Király, 

Jovanovic et al. 2003; Kamewari, Kato et al. 2005) and would need to be tested on adults, 

however assuming the fact that the human teleological system seems to be built on those 

core capabilities it is likely that a benefactor effect could be found also on adults. 

Robotic Implementation 

Motor primitives   rely on the idea that complex motor tasks may be achieved by the 

combination of simple parameterized controllers we call primitives. Using hierarchies of 

primitives for control in robotics is becoming a widely used method (Firby 1992; Williamson 

1996; Mataric, Williamson et al. 1998; Mussa-Ivaldi and Bizzi 2000; Morrow and Khosla 

2002; Thomas, Finkemeyer et al. 2003; Paine and Tani 2004; Sentis and Khatib 2005). In our 

approach, what we call a Motor Primitive is already a fairly high level procedure, the first 

level of symbolic actions. Most of the experiments conducted within this thesis implied a 

robot and a human interacting together in a shared work space over a table. Focusing on this 

limited interaction, we were able to define a pool of motor primitives that were enough to 

compose evolved actions and cooperative games.  The identified set was: 

 Grasp (object) 

 Release (location) 

 Touch (object) 

 Look-At (object) 

 

Of course this pool is not complete enough to cope with real world human robot 

interaction, for example with a mobile platform the primitive Move-To(location) would be 

essential.  For historical reasons primitives composing this set have as special status, they 

have been defined as functions of an abstract class, so that each of several different robots 
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can inherit it and have implemented its own controllers. This provides platform abstraction 

on the motor side of the action definition. However it is a handy tool in interaction with a 

robot to be able to define new primitives so we decided to implement the ability to teach 

new primitives to the robot within the interaction framework. In the end a motor primitive is 

what makes the robot motors to move: a sequence of either joint angles or velocities over 

time. So if I want to teach the robot how to “wave to Peter” I can either wave myself to 

Peter and have the robot to imitate me at the joint level, or I can physically take its arm and 

move it the way I want. The first way (imitation) is likely to be the most commonly used for 

humans to learn primitives from others (Meltzoff and Moore 1989), although many 

primitives are probably discovered by lonely interaction with the world on the basis of an 

existing “innate pool” of very basic motor controllers. The second way (kinesthetic teaching) 

can appear a bit artificial and not inspired by human behaviors, however some reeducation 

therapies use it. In both cases the goal is to have the limbs of the subject to move so it can 

perceive it and record the motion pattern. Basically when the robot learns a primitive, it is 

placed in a “recorder mode” which will record joint angles or velocities of the robot limbs at 

a given rate. As shown in Figure 22, the primitive motion is then demonstrated either using 

imitation (the demonstrator skeleton is tracked using Kinect for example and then mapped 

to the robot one) or by physical interaction (the robot body is set to compliant mode, and 

the desired motion is achieved by moving it manually). The recorder keeps track of the 

demonstrated trajectory and links it to the primitive name, making it straightforward to 

playback later.  
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Figure 22: Nao learning to open and close the box using two different modalities (visually based imitation and compliant 
kinesthetic teaching) 

However, while recording an animation (wave, dance, etc.) relies on this simple process, 

teaching a primitive that takes an argument is a bit more difficult. Assume that we want to 

teach the robot how to grasp. We can say to him “I will teach you how to grasp the toy”, 

then the system will prepare the primitive grasp(toy) to be learnt. Since the primitive has an 

argument, the limbs trajectory is not absolute: it is relative to the object position. That is the 

reason why in the case of primitives taking an argument, the pattern recorded is composed 

of displacements between the position of the robot’s end effector and the position of the 

argument (see Figure 23). However, this solution has two major issues: it requires that the 

robot has a cartesian controller7 implemented (which is the case for most robots today, at 

least the humanoids one) and it cannot cope with primitives that could use more than one 

argument. Anyway, this last remark is not really a problem, indeed we argue that using 

                                                      
7 In robotics, this is a controller that can calculate the robot joint angle trajectory necessary to reach a target 
point in cartesian (working) space from the current position. 
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multiple arguments is beyond the complexity scope of primitives; such commands should be 

regarded as actions and built on top of motor primitives. 

Since motor primitives will be the basis for action, they also embed some « built in » 

reasoning knowledge. At the physical level, motor primitives are constrained; they require a 

certain state of the world in order to be executed. For example, I cannot grasp a toy if there 

is no toy or if it is stuck under another object. For this reason the Motor Primitive data 

structure also embeds a list of (pre) conditions. Those conditions are what the robot needs 

to check in the world state before a motor primitive is executed. While the natural way to 

learn those conditions would be again trial and error and statistcal learning, we decided to 

speed up this process by hard coding some basic conditions into the pool of primitive 

defined above. Most of them possess the conditions (argument isVisible==1) and (argument 

isContained == 0). However, hard coding is possible only if you designed the system: the final 

user should be able, after having taught a primitive, to specify to the robot under which 

condition it can be executed. It can be done using speech by telling sentences of the form: 

If you want to primitiveName the argument, then the argument should be condition 

If you want to primitiveName the argument, then the argument should not be condition 

As we will see later on, those conditions on primitives will serve as a basis for determining if 

an action is possible or not, therefore opening the door to reasoning. Indeed an action will 

always be achievable under the sum of the conditions of the primitives it is composed of and 

possibly its own conditions. 
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Figure 23 : Teaching of argument dependent primitives. At each time step the displacement vector between the target 
and the hand effector is computed and recorded. This same vector is replayed later on, relatively to the position of the 
new object. 
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Action Definition: Descriptive Level 

Actions are sequences of motion that have an effect on the world and that can be either 

executed or perceived by an agent. The auditory aspect is also deeply linked to the action 

representation (Kohler, Keysers et al. 2002). In the case of agents endowed with speech 

(humans, robots), an action can also be linked with a spoken representation so that the 

agent is able to describe or hear what is going on. Humans are able to describe actions that 

are part of their repertoire using the label they associated to this action; they are also able 

to describe an action they do not know by splitting it into pieces they are able to describe or 

by commenting on the perceptual effects produced. In this section we will first study the 

neural correlates of this ability, and then how we implemented it in the robot architecture. 

Anatomical 

The vast action recognition and production cortical network involves Broca’s area, which is 

known to be dedicated to language processing. Arbib exposed a theory arguing that 

language might have evolved from gesture imitation instead of pure vocalization (Arbib 

2005) ; the motor theory of language fits perfectly with this approach. Assuming that 

animals from the same species have a tendency to imitate each other, due to the mirror 

system, imitation of the speech production system motor activity would facilitate the 

vocabulary grounding. Moreover, the hierarchical organization of motor primitives into more 

complex actions and the grammar produced and used in language are both making use of 

the compositionality principle. A specifically important cortical area involved in the binding 

between language and action is the left inferior frontal girus (LIFG) (Hagoort and Van 

Berkum 2007; Willems, Özyürek et al. 2007; Hagoort, Baggio et al. 2009). As we will see later, 

this area may be dealing with the compositionality principle in general, for speech, primitives, 

shared plans, etc.  

A number of studies have started to establish the link between action and language.  

Tettamanti  et al. (Tettamanti, Buccino et al. 2005) demonstrate how action verbs activate 

the area of the premotor cortex associated with exectution of these actions.  Similar resutls 

have been observed by Pulvermuller (Pulvermüller 1999; Pulvermüller 2005). We can 

consider that these are consistent with an em bodied view of cognition (Zwaan and Madden 

2005; Barsalou 2008). This view would account to say that words are cues that re-activate 

sensorimotor representations. Therefore  the co-activation of the motor primitive “grasp” 
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and the perceptual primitive “apple” given by speech may lead to the physical act of 

grasping an apple if there is one available.  Again the anatomy of an action description 

cannot be viewed as a single area: at best it is a convergence zone where a specific pattern 

of activation links together the physical reprepresentation of an action parametrized by the 

other sensory traces of the arguments involved. Indeed an action is probably stored within a 

quite large set of cortical areas where different subregions codes for different combinations 

of arguments. This is purely speculative, however it would be consistent with the various 

findings about convergence zones and hierachical traces storage presented in Chapter 1 . 

Developmental 

 I’ve recently been watching a three month old baby and his parents. Apart from 

storytelling, their spoken “interaction” was mainly the caregiver describing what he was 

doing or what the child was doing in simple sentences of the type subject verb [object]. 

Adults rarely describe their physical actions when interacting together, unless they want to 

teach (e.g. how to fix a robot shoulder).  There is an assumption that our actions are self-

explanatory. In the case of a baby/adult interaction it is quite amazing to see how parents 

often verbally describe their actions or the actions of the child, with sentences that are used 

in return by the child (Gleitman 1990; Mintz 2003). When a baby grasps an object, he may 

learn to associate visual, proprioceptive, tactile modalities consequences allowing him to use 

the grasp action in appropriate situations, however it is hard to imagine how he may learn 

the spoken description of this act unless someone tells him. Therefore the adult tendency to 

describe low level actions in the context of interaction with a baby could be facilitating the 

acquisition of perceptuo-motor acts linked and labeled as a meaningful action, indeed this 

joint attention process can be valuable for both action and object labeling (Tomasello and 

Farrar 1986). While such an exhaustive description of the world state is required for 

vocabulary acquisition, such useless description are kept silent at later age, allowing the 

children to learn what doesn’t need to be told (Aukrust 1996). 

On the motor side, I also noticed that when the child was doing some specific posture, 

like joining hands in a “clap”-like movement, the caregiver was imitating him. In this case he 

didn’t say anything to describe this action, but if those two behaviors are combined, it is a 

way to relate an action spoken description and the corresponding motor act. Children 

imitate adults from a very early age (12 days)(Meltzoff and Moore 1977), however I was not 
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able to find in the literature studies about adults imitating babies. Maybe is it too evident to 

be investigated, however the adult tendency to do “low level action naming” and to imitate 

low level actions of their baby seems an optimal behavior to ground action and language. 

Indeed while grounding of nouns is natural and just a link between perceptions (visual and 

sound for example), verbs are usually though as being more difficult to learn (Gentner 2006) 

because they refer to concepts that are more abstract or that are continuous sequences of 

perceptions. However, it appears that the same mechanism of co-occurrence of spoken 

description and the object of interest (an object, an action, a more abstract concept) in 

various contexts provides a unified way to teach children vocabulary and language (Maguire, 

Hirsh-Pasek et al. 2006). Moreover, this is a valuable mechanism to model the mapping 

between the self and the other: the way to teach artificial systems by imitation is mainly by 

having the system to perceive the caregiver and try to reproduce what it sees; a design 

where the system produces a behavior that is afterward imitated (in an improved form) by 

the caregiver could be a nice alternative (refer to Annex 1: A Theory of Mirror Development 

for a motor mapping experiment based on this principle). 

Implementation 

While the previous parts of this chapter described how the motor and perceptual parts of an 

action were embed into a single data structure, it still lacks of information about the spoken 

description of an act. In this part we give details about the implementation of the ability to 

generate sentences that describe an action. Those sentences can afterward be used either 

for expression (text to speech) or understanding (speech recognition). 

The Action data structure contains a label for easy access and dictionary-like storage of the 

set of known actions, this label is a verb describing the action.  While storing a verb to 

describe an action can be enough to use grammars in order to produce spoken sentences, 

this approach turned out to be problematic. A grammar can be used to recognize or produce 

sentences in a generic way; however this genericity has a tendency to produce syntactic 

errors. Verbs involve prepositions (to pull from the box, to cover with the box), use different 

number of arguments (to wave at someone, to put the toy in the box) and therefore won’t 

use exactly the same generative grammars. In order to produce correct sentences, they need 

to be split into classes (verbs with 0,1,2 arguments, followed by certain prepositions, etc.) 

after analysis of the verb type.   This corresponds to the link between syntax and semantics 
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that is captured in certain lexical function grammars (reference).  However, in the case of 

action learning the robot can benefit from heuristic that allows it to produce the right 

sentence. When the human teaches an action to the robot, he is first asked the name of this 

action, through open dictation or spelling the verb can be learnt. Then, he is asked to use 

this word in a sentence, to describe the action that has just been taught. At this point a 

grammar allowing all possible constructions (even those that are semantically wrong or that 

use unadapt prepositions) is used to recognize the description coming from the human. The 

exact sentence said will be stored and used later on for synthesis. For example, if I teach to 

the robot the action “Stéphane put the toy in the box”, this very string will be stored. Then 

the arguments Stéphane, toy and box will be automatically extracted and stored as the 

“original” arguments, which will allow by simple string replacement to have the robot to 

describe “Peter put the tomato in the fridge”.  Indeed a “verb specific” grammar is somehow 

created online, without the need to define which type is the verb and how it should be used. 

This corresponds to the notion of grammatical construction as defined by Goldberg (1998). 

Moreover, since the sentence can be matched to an existing grammar, it is easy to assign to 

each argument a role in the sentence, which will allow generating other forms of spoken 

manipulation. The action put(Peter,tomato,fridge) can therefore be described, ordered or  

asked in any tense using the appropriate constructions (“Peter put the tomato in the fridge”, 

“Does Peter put the tomato in the fridge?”, “Was Peter put-ing the tomato in the fridge?”). 

It is also important to notice that the argument type is also important in the case of future 

recognition of the spoken description. Currently the system distinguishes clearly agents and 

objects, and they are stored in different vocabulary lists. At time of recognition this 

information will be used to generate a bit more accurate and restrictive grammar (which 

reduces drastically the risk of false recognition). In practice, the two actions initially 

described by “Stéphane put the toy in the box” and “Stéphane give the toy to Peter” will 

respectively produce the grammars “AGENT put the OBJECT in the OBJECT” and “AGENT give 

the OBJECT to AGENT”. Although a neural or statistical learning system may link more 

robustly action verbs with an argument (Dominey and Boucher 2005) structured sentences, 

and the related link words, our representation can easily be integrated with any speech 

recognition software since for a specific action, a grammatically correct sentence can be 
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generated and that human users are most likely to produce those kinds of correct 

expressions. 
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Action Definition: Brain encoding and datastructure 

Anatomical Networks 

Grezes and Decety produced a synthetic review of imaging studies about action processing 

in human and monkey. They isolated the networks involved in different types of processing 

(motor execution, mental simulation, observation which embedded perception and 

recognition and silent verbalization) and described a cortical map of them which can be seen 

on (Grezes and Decety 2001). It is not surprising that many of the different processes use 

overlapping regions although the authors noted a relative independence of the silent 

verbalization network (which corresponds to our Descriptive Aspect of the definition).  

 

Figure 24: Extracted from (Grezes and Decety 2001). Show different cortical networks involved in the action definition 
and processing. 

Naturally, real motor execution of an action and its mental simulation rely globally on the 

same pathway (which is mainly composed of motor and premotor cortices and of the DLPFC). 

Several authors ((Leonardo, Fieldman et al. 1995; Porro, Francescato et al. 1996; Roth, 

Decety et al. 1996; Lotze, Montoya et al. 1999)) reported a weaker activity in case of mental 

simulation, which may account for the hypothesis that a small activity of the action network 

can evok a mental definition, while a stronger one may lead to a physical execution. 

Indeed the DLPFC seems to show a convergence of every process; it could be a good 

candidate for storing a relatively amodal symbolic representation of action. The fact the 
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Broca’s area is included in this part of the cortex could explain our ability to manipulate 

those action concepts in grammar-like generative processes, and to translate these 

generated chains of actions to/from natural language. 

In a paper about shared intentionality (I’ll come back on this topic in the next chapter), 

Beccio and Bertone (Becchio and Bertone 2005) give an interesting summary of the action 

representation within its neural substrate. Of particular interest is their argument that the 

same representation is shared among the processes of production, recognition or 

imagination (and I would argue that it also encompasses description). They write: “At an 

intra-individual level, neural representations are shared in the sense that they are activated 

in different modalities of action. The same representation is activated when the subject 

executes the action, observes/hears another individual performing the same action, or 

simply imagines doing the action.”  

Within the context of modeling cooperation in robotics, Dominey and Warneken also 

studied the neural substrate of the action representation (Dominey and Warneken 2009), 

highlighting the role of BA46 in the ability to compose sequences of actions and claiming 

that the whole system can provide a “bird’s eye view” (subject independent) representation 

of actions. 

All of this anatomical evidence tends to show that it is possible to isolate an intricate set of 

cortical networks which deal with the whole concept of action and where different sub-

networks are responsible for managing specific aspects of this concept. This is a key point 

that is also one of the most natural ways to implement all those processes on a machine. All 

of the possible action manipulations (observing, producing and verbalizing) are sharing a 

common structure while each of them is relying on a specific part of this data structure. 

Implemented Datastructure 

I gave in this chapter details about how the three aspects of an action have been 

implemented in our system. Although the definition is clear now and seems quite logical, it 

required a successive elaboration over duration of this PhD to deliver this stable, synthetic 

representation of the action concept in term of data structure. The Figure 25 shows a class 

diagram that has never been implemented in such a clean way; however it is the final one 

achieved after the process of ordering ideas through writing this manuscript. An action is 



Towards a distributed, embodied & computational theory of cooperative interaction Page 78 
 

defined by three aspects: perceptual, motor and descriptive; however it is more than just 

linking perceptual events, motor commands and a sentence together: an action is a building 

block that can be chained with others in order to reach a goal. It can be seen as the basic 

element for teleological reasoning (cite our paper and one or more of the motivating papers 

on teleological reasoning), and therefore it should be characterized in term of conditions and 

consequences. We used to implement an action by specifying its “preconditions required, 

preconditions forbidden, post conditions added, post conditions removed”. Those were 

basically the conditions and effects of an action upon the world state, they were part of the 

Primitive Action class which was a monolithic, stand-alone structure. However, I came to the 

conclusion that the three aspects mentioned above should be conceptually separated while 

all being linked within a higher level structure. This decision implies reconsidering where the 

“teleological material” (conditions & effects) are stored. What I will argue is that most of this 

is directly provided by the primitives (perceptual and motor) composing an action. Indeed, 

what one can do and the consequences it may have are immediately given by the physical 

world. My range of action is initially bounded to what my body can do given a specific 

physical state of the world; the consequences of my action will be detected as perceptual 

primitives characterizing the changes induced in this physical world by my motor primitive. 

However, all the teleological material that an action concept can embed is not restricted to 

this primary stage: higher level conditions and consequences can be specific to an action 

regardless of the primitives composing it. An example if the action “cover toy with box”. The 

motor primitives composing it could be “grasp(box), release (box,toy)” therefore producing 

the perceptual primitive (toy (isVisible 0)).However, when I execute this action, despite the 

fact that the toy disappears from my sight, I know that the toy is still there, that it is “inside” 

the box. One could argue that this is a phenomenon described as object permanency in 

humans (Spelke 1990); nonetheless in our model it seems quite related to the action 

concept. Indeed it is quite logical to say that the action cover(toy,box) possesses  the 

consequence (toy (isIn box)). This kind of properties belongs to the semantic level more than 

to the physical world state, however if we consider the world state in the broad sense it may 

include both levels. Moreover, having actions embedding this kind of semantic conditions or 

consequences allows to populate the world state with a semantic layer: when the robot 

recognizes an action (done by itself or another), then the semantic consequences are added 

to the world state, while executing an action can be constrained by certain semantic 
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conditions (e.g: I could grasp the box in any case, yet I could uncover the toy with the box 

only if the toy is inside the box). 

If I had to identify the most important element of this thesis, I would say that it is this very 

concept of action and how it is modeled. Action is a building block for every robot behavior: 

a robot can execute an action, it can wait for another agent to perform it or it can speak and 

give/ask information about it.  Every behavior can be seen as multiple action tracks going on 

in parallel, and we will see in the next chapter that cooperative abilities can be modeled 

using only a few more concepts in addition to that of action. This data structure should be 

seen as a tool, a tool is a useless artifact by itself, but it becomes very powerful if you are 

making the right use of it. In the last part of this chapter I will show a direct application of 

the action concept: modeling of the learning by imitation process. 

 

Figure 25 : Class diagram of the Action concept. An action can be executed, recognized or described. 
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Experimental Results:  Application to Imitation 

We already discussed the fact that children and adults have the ability to imitate actions of 

each other, and it is noteworthy that learning by imitation is a major area of research in 

robot cognition today (Alissandrakis, Nehaniv et al. 2002; Demiris and Johnson 2003; 

Dillmann 2004; Calinon, Guenter et al. 2005; Argall, Chernova et al. 2009). It requires being 

able to recognize an action produced by someone and reproduce it using our own motor 

representations. The action definition presented above allows naturally the robot to imitate 

his human counterpart: in ( (Lallée, Lemaignan et al. 2011), Appendix 2) we described an 

experiment where the robot watches the user covering one object with another and then 

performs the same action.  

Recognition Process Details 

I have described in details the data structure used to store and manipulate action definitions 

within the architecture, I will now explain how the recognition algorithm performs on 

building and using this structure. After a learning phase, the robot is able to proceed to a 

previously demonstrated action as show on Figure 26. 

 

Figure 26: Imitation, observation phase. 
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Learning 

In order to be able to recognize an action, first the system has to learn it. Although one could 

produce the appropriate definition by writing the representation apriori, the most natural 

way to train the system is to perform an action in front of the robot. First the robot is asked 

to pay attention to the environment by the spoken command “Watch”, and then the user 

covers a small toy with a box. If we take a close up look to what happens in term of 

perceptual primitives we get the following sequence: 

 Beginning of action 

 Move(userHand, true) 

 Contact(userHand,box, true) 

 Move(box,true)  

 Contact(box, toy, true) 

 Visibility(toy, false) 

 Contact(userHand, box, false) 

 Move(userHand, false) 

 End of action 

 2s without any perceptual change 

Those primitives are detected by the Primitive Recognizer module (see Figure 38 on page 

120 for a diagram of the whole cognitive architecture), which is constantly monitoring the 

world state to detect changes. The Action Recognition module catches this stream of 

primitives and segments it in order to extract meaningful packets. When a primitive is 

caught, the segmentation process starts to record the stream until nothing comes in for a 

given time delay (2s in our experiments). This segment is used to build the early definition of 

an unknown action by calculating the state changed produced and setting appropriately the 

pre-conditions and post-conditions. I defined specific operators for primitives facilitate this 
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calculation: two primitives A and B can be summed and the result is a primitive C. The details 

for pre-conditions and post-conditions sum are given in equations (7)-(10) with: 

 PrCRx being the Pre Conditions Required for x 

 PrCFx being the Pre Conditions Forbidden for x 

 PoCAx being the Post Conditions Added by x 

 PoCRx being the Post Conditions Removed by x 

 

 

 

 

The sum of all the primitives composing the segment is calculated, and the result is a new 

primitive which will serve as the basis for the new action. In our example the new primitive 

effects are: 

Post Condition Added: contact(box,toy) 

Post Condition Removed: visibility(toy) 

This partial action definition is then processed by the recognition algorithm, and if no action 

is recognized the user is asked to provide details about what he did in the form of a spoken 

sentence (e.g. “Stéphane covered the toy with the box”). This sentence is parsed and 

synthesized in the form (subject, verb, object1, object2). Then the algorithm names this 

action, goes through all the pre-conditions and post-conditions, and it replaces the objects 

names by their role in the sentence (in our example the action adds contact(object2,object1) 

and removes visibility(object1) ). At this point the action definition is ready; however the 

user is given the possibility to “edit” it by adding more pre or post conditions using the 

following grammars: 

“If I want to action the object [with the object], then the object needs to be relation [with the 

object]” (pre-condition required) 

“If I want to action the object [with the object], then the object should not be relation [with 

the object]” (pre-condition forbidden)  
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“If I action the object [with the object], then the object will become relation [with the object]” 

(post-condition added) 

“If I action the object [with the object], then the object will no longer be relation [with the 

object]” (post-condition removed) 

The action is then added to the recognizer database so that next time it is observed the 

system will recognize and describe it. 

Recognition 

After the segmentation has occurred, the recognizer tries to match the unknown action with 

existing action definitions in its database. The problem is to compare two action definitions 

based on their pre-conditions and post-conditions, in order to determine if they are 

equivalent or not. The recognition algorithm we used is quite simple, while not extremely 

robust. We define a similarity measurement between two actions based on the differences 

of their effects, and then when the recognition occurs we go through all actions of the 

database and calculate their similarities against the current action. All actions for which 

similarity is above a certain threshold are accepted as candidate templates for being 

recognized. The distance measurement is given in equation //ref. 

 

A similarity of 100 means that the two actions have the same consequences on the world: all 

the relations they add or remove are the strictly the same. Each relation that is added or 

removed by one action and not the other will make the similarity decrease. All the actions of 

the database which are similar enough are stored, and for each of them the pre-conditions 

(required and forbidden) are searched for in the world state. If any required condition is 

missing or if any forbidden condition has been found, the action is discarded and cannot be 

recognized. In the end the most similar of the actions left is said to be the one which has 

been recognized, its arguments are set to match the ones from the perceived action and the 

action is described by the robot using spoken sentences of type: 

“I recognized that the subject action-ed the object [with the object]” 
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Execution Process Details 

After the recognition occurred, if the robot is in imitation mode, it will ask to the user 

whether it should execute the same action. When the user acknowledge, the robot will look 

into the action definition if the motor command to execute this action is known or not. Here 

again a learning process can occur, allowing the robot to learn what to do in order to 

execute the given action.  After this learning phase, the robot is able to reproduce any action  

it has previously learnt to recognize (see Figure 27 as a sequel of Figure 26).  

 

Figure 27: Imitation of a previously recognized action by executing each motor primitive which is composing it. 

Learning 

The motor sequence for an action is indeed a list of motor primitives as described in Action 

Definition: Motor Level. The robot will ask to the user what to do and expect primitive 

commands of type: 

 Grasp (object) 
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 Release (location) 

 Touch (object) 

 Look-At (object) 

When the user finished enumerating the successive primitives to perform, he can say 

“Finished” and the robot will update his action definition with the motor part. During the 

process a mapping of primitives arguments to their role in the sentence occurs, so that the 

grasp(toy) of the action cover(object1,object2) will become grasp(object1). 

The learning process for motor commands may appear somewhat artificial in the last 

experiments; indeed it required to teach by language the sequence of primitives composing 

an action. Due to time constraints we implemented only direct spoken interaction learning. 

If we consider each motor primitive as a non-composite action that can be recognized, 

therefore it is possible to extract directly the list of primitive which should be achieved in 

order to execute a recognizable action. We presented in a previous experiment that such a 

learning can be achieved using observation (Lallée, Warneken et al. 2009), while this has 

been realized in the context of shared plans, the same principle applies to composite 

actions: their motor component can be learned by adding those primitives of which they are 

composed. Indeed we will see in  

 

 

 

 

Chapter III 

Cooperation, using Actions to compose Shared Plans that all the mechanisms are 

already in place to use this kind of learning. 

Execution 

When the motor part of the action is known, it is straightforward to execute it. The robot 

goes through the list of primitives and sends each of them sequentially to the motor 

command module. This module is robot specific and its only role is to implement the motor 
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execution of the primitive pool. When a primitive has been sent, the robot will await its end 

before proceeding to the next one. Note that during the execution, robot perception is likely 

to be corrupted by its motion (i.e. many object false recognition may occur, and false 

perceptual primitives will be triggered). This is problematic because we sometime want the 

robot to be able to experience the world by itself, for example by trying the execution of a 

random sequence of primitives and learning at the same time the perceptual outcome. To 

avoid this problem, when an action is executed the perception process is modified: the 

world state is recorded when the execution starts and again when it ends. By performing the 

subtraction of those two world states the robot gets the perceptual change (in terms of 

perceptual primitives) that the motor sequence produced. 
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Discussion 

In this chapter I presented the data structure defining an action and how it is manipulated 

both in term of perception, execution and verbalization. Actions are characterized using 

primitives, this allows a symbolic representation which is easy to handle, modify and 

interpret. However this gain in clarity results in a loss in robustness. Many of the mirroring 

skills demonstrated in the literature(Johnson and Demiris 2005; Metta, Sandini et al. 2006) 

use the perceived motor state of the agent (i.e. its kinematic evolution over the action) to 

both recognize and execute actions. This has been combined with goal-based 

representations (Calinon, Guenter et al. 2005).  Our system is based on the fact that each 

action can be recognized by its perceptual consequences in the world state (object states) 

and then performed by executing the associated motor commands. Those motor commands 

are not robot specific, but the primitives they call are, which implicitly solves the 

correspondence problem described in (Alissandrakis, Nehaniv et al. 2002; Nehaniv and 

Dautenhahn 2002). Although we cannot argue that our system can cope with the same 

range of actions as a “trajectory based” systems, it is complimentary with such systems, and 

can be used at a higher level, for actions involving multiple arguments and symbolic goal 

achievement more than precise motor imitation. Indeed, this approach also emphasis the 

equifinal means of an action since the user can demonstrate an action and then the robot 

will achieve the same result with completely different trajectories. 

Aspects of this work can thus be considered in the context of learning by imitation or 

demonstration, which is a major area of research in robot cognition today (Alissandrakis, 

Nehaniv et al. 2002; Nehaniv and Dautenhahn 2002; Calinon, Guenter et al. 2005; Johnson 

and Demiris 2005; Metta, Sandini et al. 2006).  Our novel contributions to this domain 

include (1) the encoding of action in terms of perceptual state changes and composed motor 

primitives that can achieve these state changes, in a manner that allows the robot to learn 

new actions as perception – execution pairs, and then use this knowledge to perceive and 

imitate. (2)  These actions can take several arguments, e.g. AGENT put the OBJECT on the 

RECIPIENT, which allows for the generalization of learned actions to entirely new contexts, 

with new objects and agents.  This yields the equifinal component of action where the same 

goal can be achieved by different means. (3) We use spoken language interaction and visual 

perception to provide learning input to the system.  In our long term research program, this 



Towards a distributed, embodied & computational theory of cooperative interaction Page 88 
 

provides the basis for learning to perform cooperative shared tasks purely through 

observation. 

In our system actions are encoded using the effect they produce on the state of the world, 

the latter being abstracted in terms of unspecific quantities like relative position and 

orientation of objects and their visibility. The particular type of encoding we adopt for 

actions is therefore completely independent of the robot platforms, and can be transferred 

between robots with different embodiments or perceptual systems as we will see in Chapter 

V. 
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CChapter III 

Cooperation, using Actions to compose Shared Plans 
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Introduction 

Collaboration is one of the hall-marks of human social life. By pooling their efforts in 

joint cooperative activities, people can produce outcomes that lie beyond the means of 

individuals, reaching from simple acts of lifting heavy objects together, over hunting in a 

group to the building of towers. One important aspect of collaborative activities is division of 

labor and the assignment of who performs which role in the joint activity. Indeed, it is likely 

that one of the other hall-marks  ( human language) evolved in part in order to support the 

human ability and need to organize cooperative behavior (Tomasello 2009).  Here we 

consider collaboration in terms of two individuals who have a shared plan that involves 

actions performed by both, in a structured temporal sequence, in order to achieve a shared 

goal which is the desired outcome of their shared intention. The previous sentence 

purposely used an amount of undefined vocabulary: intention, goal, plan -  all of these can 

be qualified as being “shared” and those notions have been defined previously in the 

literature. I would like to first introduce those terms that I will use intensively in this chapter; 

however, looking at the literature it appears that just giving such a definition is already the 

matter of a complete thesis. The definition of shared intentionality has been debated 

extensively (Cohen and Levesque 1990; Bratman 1992; Bratman 1993; Velleman 1997) and 

some philosophers are still arguing whether it is possible to share an intention. I base my 

work in part on an existing framework about intention, goal and planning in the context of 

cooperation as defined by Tomasello and colleagues (Tomasello, Carpenter et al. 2005).  In 

this context, as developed in the previous chapter, the core advancement achieved by this 

thesis was to give a synthetic definition of action that is effective in the domain of human-

robot cooperation. Acting can be achieved within the context of a plan, a shared plan or a 

single action, but in all of those cases the main question stay “which action should I choose 

given the current state of the world and the state I would like to get closer to?” (With the 

“state of the world” ranging from the internal mental state of the subject to the mental state 

of others passing by the physical state of the environment). Therefore, it is the very concept 

of action which will drive my dissertation on cooperation and shared plans and I’ll try to 

show how such concepts can naturally emerge from a single action. The notions of goal and 

intention are indeed quite intuitive, and this may be the reason that makes their 

formalization so difficult. For the following chapter I will consider a goal as being the state of 

the world that an agent wants to reach, and an intention the actual will to follow a plan 
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toward this goal. One of the main questions animating the debate going on between 

philosophers is if an intention, a goal and a plan can be shared amongst multiple beings. 

Indeed it has been argued by Tomasello et al. (Tomasello, Carpenter et al. 2005) that human 

is the only animal species which demonstrates the ability to cooperate while sharing an 

intention and a goal. Moreover, children appear to show an intrinsic desire to share mental 

states and intentions of others. Despite the fact that my mentors probably biased me 

regarding the existence of this shared intentionality, I will try to study and model 

cooperative activities in a neutral way along this chapter. However, the last part of this 

chapter will show through a human robot interaction experiment that shared intentionality 

is requirement for successful cooperation.  

Let’s call the roadmap of multiple beings acting together toward the same goal a 

shared plan. Shared Plans can be observed in most of the activities which involve more than 

one human being. They range from low level sequences of motion, performed by two 

partners in an organized and relatively simple rule based reactive system (e.g. dancing), to 

high level strategies performed by thousands of people working toward the same goal by 

accomplishing a hierarchy of tasks (e.g. military strategy, economical strategy etc.). While it 

is common to classify actions according to the fact that they are goal directed or not, it 

appears that Shared Plans are always considered as being a way to achieve a shared goal, 

with a goal being a particular state of the world, or a modification of this state. I do agree 

with this view, although in the case of a Shared Plan like dance, the goal is something more 

abstract than the physical world state. The notion of Shared Plans has been initially 

formalized by Grosz and Sidner (Grosz 1988). More than a succession of actions attributed to 

agents, it models how intentions, beliefs and sub-goals evolve during collaboration. In their 

paper from 1988 the formalism was intended to model Plans shared by two individuals, 

however Plans can be shared within larger groups which led them to extend their model 

(Grosz and Kraus 1993). In the computational world, shared plans theory of Grosz has been 

used as a basis for implementation of artificial collaborative systems. Collagen (Collaborative 

Agent) is one of those systems, which controls the behavior of a virtual agent interacting 

with a computer user in order to help him using a program (which in some case simulates a 

real situation). The gap between such a system and human robot interaction is indeed very 

small: the virtual agent of their system and the user are interacting through speech, 
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manipulation of the interface and pointing. If we replace the graphical interface by a physical 

setup, then all the theory applies directly to human-robot interaction. A schematic view of 

the interactions between the agent and the user is represented in Figure 28. The core 

capabilities required for collaboration appear clearly: each agent must be able to perform 

actions, to recognize actions and to communicate with other agents. Communication is not 

considered as an action because it is mainly used to supervise the shared plan execution (to 

gather/provide information). Since all those requirements are embedded in our action 

definition (Chapter II), it can be directly applied to Shared Plan management. 

 

Figure 28: Collaborative interactions overview. Extracted from (Rich, Sidner et al. 2001) 
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Shared Plans: Neurophysiology 

Studies about shared plans and intentionality within the neural substrate are tightly coupled 

with studying the mirror system. As mentioned above, plans (shared or not) are sequences 

of actions that are surrounded with notions of intention and goal, which means that the 

neural network encoding the notion of Action is likely to be involved in the one dealing with 

shared plans. Indeed Becchio and Bertone raise an interesting point in (Becchio and Bertone 

2005) by observing that since the brain is using the same cortical network for both 

production and recognition of action, then the main problem is not how to have a shared 

representation of an action with someone else, but to differentiate between our own 

actions and those of others. Sharing a plan with someone else raises a difficult problem: how 

to distinguish between self and other? Apart from metaphysical considerations, 

distinguishing between myself, other A and other B, consists mainly in being able to assign 

the right agent to each action observed or imagined (note that a self-produced action is also 

observed). Indeed, brain imagery provides important insight about how it is possible to make 

this distinction in human beings: several PET studies  (Ruby and Decety 2001; Farrer, Franck 

et al. 2003) demonstrated that neural networks involved in mental simulation of actions 

done by self and others are overlapping : the superior temporal sulcus, the medial prefrontal 

cortex and the inferior parietal lobule are activated for both observed and initiated actions. 

However, the inferior parietal lobule has a lateralized activation: the left part seems to be 

assigned to actions done by the self, while the right one would code for actions done by 

others (Chaminade and Decety 2002; Decety, Chaminade et al. 2002; Becchio and Bertone 

2005). It is important to note that those studies are done on the case of imitation in order to 

keep the same baseline for the action and to distinguish between self and other. However 

what is particularly interesting in those studies is that if self and other have two distinct 

statuses, it means that only the self is not encoded like all other possible agents. When I 

observe A or B producing an action, then the “others” area will be activated, producing the 

important information that this action is not mine and the treatment of “who is this other” 

will be done but of less importance for the action. When using an action concept (whether 

to observe, imagine or describe) there must be an initial test: is this action related to myself? 

The processing of the action symbol will be completely different if the agent is me, while it 
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will be similar among other agents. It is something that is quite straightforward and that we 

will retrieve also on the implementation side. 

Another characteristic of shared plans is that they intrinsically require the “we-mode” 

defined by Tuomela (Tuomela 2001; Tuomela 2005). Searle (Searle 1990) noted that a 

concurrent activity of people which may look like a shared plan may not really be defined as 

a cooperative activity. Indeed he give the example of people sitting in a park, then the 

weather starts to rain and everybody stand up and looks for a cover. However it is not 

possible in any case that those people have a kind of cooperative behavior, they are just 

acting on their own, and the global picture of their concurrent actions may look like 

cooperation. The “we mode” involves that the agents share the desire to accomplish an 

action or a plan together more than in an individual way. The neural basis of this 

phenomenon have been investigated in a review by Becchio and Bertone (Becchio and 

Bertone 2004) which led them to conclude that “in different areas of the brain neural 

representations underling the self and the other’s behaviour share a common, we-centric 

code.” Indeed, the term “we centric” code has been defined in one of their previous papers 

(for Italian readers : (Becchio and Bertone 2002) ) and used as a basic principle in (Gallese 

2003), it sums up the idea that the cortical representations of actions are mostly 

independent from their subject. Indeed this “we-centric” term highlights the fact that the 

agent is only another parameter of an action, the brain structure coding an action stay the 

same while all the possible parameters may be stored in another area and just “linked”. In 

Figure 29 I give a schematic view of my understanding of this phenomenon, it is applicable 

both for the cortical organization and for my implementation within the robotic system. The 

hierarchical structures Primitives, Actions and Plans are completely abstract from Agents or 

Objects which are just linked as arguments (parameters), they are therefore “we centric” in 

the sense that the same structure, cortical code, can be used both for an action done by 

myself and by others. Given that a plan is a parameterized sequence of actions, the “we 

mode” can be seen as a composition involving some actions done by the self and some done 

by others.  
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Figure 29: Cortico-inspired model for shared plans 

  

This self/other consideration, and more generally speaking the attribution of agency to an 

action; relies more on the action concept than on the plans definition. As I said a Plan is a 

goal directed sequence of actions, those actions may depend on some specific conditions, on 

the people presents, on the objects available, etc. Indeed again we can identify the parallel 

between planning and language: action is to sentence as plan is to paragraph. Plans are 

hierarchical organizations of actions in a grammar like format; therefore my expectation 

would be that Broca’s area is involved in the manipulation of plans. A very good overview of 

the role of Broca’s area is given in (Hagoort 2005) from which I took Figure 30 ; the paper 

describes a framework to model hierarchical speech processing and production, most of 

their ideas directly apply to the case of shared plan comprehension and execution. The key 

point is the process of “Unification”, how to combine multiple elements into one bigger 

concept. We already seen this notion when talking about actions composed of multiple 

primitives; the same mechanism is present in building plans, as described in Figure 29 a plan 

is a composition of multiple actions and/or plans (it is a recursive structure). When dealing 

with action perception we already noted that the left inferior frontal girus (LIFG) was 
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involved, it is also the case in speech unification (Hagoort 2005). Later work from the same 

authors (Hagoort and Van Berkum 2007; Willems, Özyürek et al. 2007; Hagoort, Baggio et al. 

2009) show that this network is also involved in the binding between language and action, 

and that it more generally deals with unification processes in a generic way. For Hagoort, 

unification is one element of a three parts model called MUC (Memory, Unification, Control). 

 

Figure 30 From (Hagoort 2005) Lateral view of the left hemisphere. Lateral view of the left hemisphere. Brodmann’s 
areas (BA) are marked by number. Classically, Broca’s area comprises BA 44 and BA 45. Adjacent language relevant 
cortex also includes BA 47 and ventral BA 6 (grey oval).(Decety and Sommerville 2003; Becchio and Bertone 2005; 

Knoblauch, Markert et al. 2005)  
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Shared Plans: Child Development 

Learning a shared plan by observation 

“Human children at 14-24 months display a remarkable ability to observe adults perform a 

cooperative task (with only 1 or two demonstrations) and then to engage themselves in that 

task, taking the role of either of the demonstrating adults (Warneken, Chen et al. 2006; 

Warneken and Tomasello 2007). Tasks typically involve retrieval of a toy from a physical 

device which requires both agents to manipulate it in a temporally organized and 

synchronized manner. By definition, the goal directed tasks require two agents to collaborate 

– as the physical constraints of the task are such that an individual agent cannot achieve the 

goal. The behavioral data indicate that the children have understood the task in terms of a 

coordinated succession of actions, rather than a set of specific motor trajectories. This 

research has identified three principal characteristics for collaboration (1) agents are 

mutually responsive and coordinated in their actions; (2) they have a common shared action 

plan for the joint enterprise. (These provide a “birds eye view” of the collaboration and can 

be demonstrated by the agents’ ability to reverse roles.), and (3) a mutual commitment to 

subsume their individual actions to the joint goal (Tomasello 1999).” (from (Lallée, Warneken 

et al. 2009)) 

Cooperation in its most simple form occurs early in child development. From soon after birth 

toddlers are already able to coordinate their interaction with another person in a turn-taking 

way (Trevarthen 1979). This early turn-taking ability may be a basis for later coordinated 

execution of shared plans. From 6 months those coordinated interactions can become triadic 

by involving manipulation of an object (Tomasello 1995), however the cooperative games at 

this age seems quite “frozen” and the child cannot generalize the game principle over 

different objects/agents until he his 18 months of age (Hay 1979; Ross 1982). Starting from 

20-24 month, children are able to extract individual’s actions in terms of their object 

manipulation goals and attribute these to the appropriate agent, forming a “bird’s eye view” 

of the collaborative action. Warneken, Chen and Tomasello (Warneken, Chen et al. 2006) 

have studied several cooperation situations where two individuals have to reach a common 

shared goal which is impossible to achieve alone. In one of the situations, two children are 

confronted to an unknown “transparent chest” device which is locking a toy. Their goal is to 

retrieve the toy lying inside, however to do this one of them has to activate a mechanism 
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which will make the toy accessible to the second one. The experiment occurs in two phases: 

first two adults demonstrate a successful shared plan to realize this joint task, and then the 

children have to act on their own. As we said, children of 24 months are able to build a 

Shared Plan representation based on the adults’ demonstration: after one or two 

observations of the plan, they are able to engage it with a partner in any of the roles, thus 

executing the same sequence of actions they observed with the role of agents being a 

parameter they can change according to the situation. This generalization capability appears 

at 20-24 months, when children becomes generally capable of generating coordinated acts 

in non-ritualized contexts (Eckerman 1993). Being able to learn a plan by observation of two 

agents cooperating implies that the child understand several notions: 

 He understands who is the agent performing the action, and that this agent is the 

same over multiple actions (agency attribution) 

 He understands that the two agents performing the plan have a special relationship 

and are not acting on their own but in a collaborative way (shared intentionality 

detection) 

 He understands that the first actions need to be achieved in order to allow the 

following parts of the plan to occur (causal relations along the sequence of action 

implementing the shared intentionality) 

 

Execution of a shared plan 

A shared plan is the commitment of multiple agents to achieve a predefined sequence of 

actions which is aimed at moving the world state closer to their goal. The plan can be 

generated by learning or by social elaboration through dialog (spoken or not). Both ways will 

end up in the creation of a representation of this plan which will be shared among the 

agents who are committed to it. Before this exact roadmap is generated, agents share the 

intention to reach their shared goal, while not having yet a plan to achieve it, this is call Goal 

Intentionality. Whenever the plan is produced and the participants agreed on achieving it 

when the initial conditions are met, this Goal Intention turns out into an Implementation 

Intention. 
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Goal Intentions and Implementation Intentions are concepts that has been defined by 

multiple researchers over the last century (see (Gollwitzer 1993) for a review ; see (Ach 

1935; Lewin 1951) for historical basis). Tomasello’s group have led several experiments on 

children using such shared plans by cooperating in order to play a game or reach a reward 

(Warneken, Chen et al. 2006; Hamann, Warneken et al. 2011).  Apart from the initial 

implanted intention, participants are always monitoring the status of others in order to 

adapt the plan in case of difficulty or to share information about the progression status 

through gaze, body and spoken language. When executing a shared plan, one should not just 

execute in a “brute” way all the actions he has attributed, instead he should be synchronized 

and coordinated with his partner, by recognizing their actions, sharing their attention and  

informing them about his own state. As we will see in a further described experiment on 

naïve subjects interacting with a robot, those behavioral components are somehow required 

in order to involve the partners into the shared plan execution. 
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Shared Plans: Implementation 

A significant open challenge in human-robot interaction is how to transfer task knowledge 

from the humans to the robot. This is particularly challenging in the domain of collaborative 

interaction in which the robot and human should take turns in a structured shared plan as 

seen in previous work (Dominey, Mallet et al. 2007; Dominey, Mallet et al. 2007). 

Interestingly, human infants display a remarkable capacity to learn collaborative behavior 

from a single demonstration, and to use this knowledge to take either agent’s role in the 

collaborative behavior; implementation of this behavior provides the robot with a powerful 

way to learn from observation. 

Learning a shared plan by observation 

Our desire was to mimic the ability of children to learn a shared plan by a single observation 

of other agents’ performance. The task was to give this ability to the robot as a new tool for 

learning by demonstration. Given the fact that the system possesses a capability to 

recognize an action, including arguments and agents, learning a plan by observation is quite 

straightforward. The setup experiment that we presented in (Lallée, Warneken et al. 2009) 

was composed of a two handed box (which cannot be lifted with only one hand) and plastic 

toy. First the robot had to observe two humans (Larry & Robert) performing the task: one of 

them lifted the box, then the second one was able to grasp the toy and finally the first one 

released the box on the table. After that the robot was placed on one side of the table, in 

front of a human with the box covering the toy on the table and asked to execute the plan 

demonstrated. 

Three software modules are involved while learning from observation:  

 Action Recognizer is used in recognition mode to detect which action is done and 

who did it 

 Spoken Interaction is used to confirm the action recognition results and to filter the 

communication between Action Recognizer and Shared Plan Manager 

 Shared Plan Manager’s role is to manage Plans, which includes atomic actions 

recognized by Action Recognizer and more complex hierarchical arrangements of 

those actions. It is responsible for creating new plans and using information coming 

from the Action Recognizer. 
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First the Shared Plan Manager is instructed that a new plan will be learned, this plan is given 

a name and the modules starts to listen for action definitions as input. During the 

demonstration, the Action Recognizer detects the three atomic actions: 

 Lift(Larry, box) 

 Grasp(Robert, toy) 

 Release(Larry, box) 

Each action definition is broadcasted and the Spoken Interaction module catches and 

expresses them so that one user can confirm the perception (e.g “I saw that Larry lift-ed the 

box. Is it right?”). While the scenario could be more natural and fluent without this 

confirmation phase, the recognition system is too sensible to perceptual noise to operate 

without user interaction. The validated actions are sent one by one to the Shared Plan 

Manager, which is instructed to append them to the new Shared Plan.  Each step in a plan is 

called a sub-plan and those sub-plans are recursively stored in list of plans, thus allowing 

hierarchical definitions. A requirement for this system to work is that each recognizable 

action (i.e actions that are known by Action Recognizer) has a corresponding atomic plan in 

Shared Plan Manager; indeed any plan can be part of the sub-plans list, however the 

hierarchical leaves have to be plans corresponding to atomic actions. 

Execution of a shared plan 

The first step in a shared plan execution is to actually share the plan and agree on the 

respective roles of each agent. In our case there was not any question regarding which plan 

was about to be executed 

Generation of a plan: teleological reasoning 

Our action definition can be understood as a function which adds or removes relations 

between objects in the world state. Given a sequence of actions (a plan) P which will change 

the world from a state S1 to a state S2, we name this modification dS. Although our actual 

definition of dS could be understood as purely perceptual it can also be seen as a goal. If we 

assume that dS are the effects of a goal-directed plan, considering that it is also a path from 

S1 to S2, then we can establish that: 
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1) Reaching S2 is the Goal Intention associated with P. P being one of the multiple 

equifinal plans which can lead to S2. 

2) The planned execution of those actions when their pre-conditions will be verified 

is an Implementation Intention 

This framework is consistent with our action definition and thus can help us to formalize the 

robot wills and acts. What we called a Plan corresponds indeed to an Implementation 

Intention, however any plan possess an underlying Goal Intention. When observing the 

effects of a plan it is possible to extract the goal intention which motivated the agent to 

execute it. It is also possible to record that this specific Implementation Intention was one of 

the possible ways to reach this goal state assuming a specific start state given by the current 

context. 

 

Figure 31: Different intention types. Goal Intention represents the commitment to reach end state Sn 

without a specific plan or starting condition. An Implemented Intention represent the commitment to reach 

Sn using a specific plan whenever the state S1 is observed. 

Within our implementation, we can get the system to express the goal associated with a 

specific plan or action by verbalization of the post conditions. Let say that a plan P is 

composed of the actions [ uncover(robot, toy, box) ;  give(robot, toy, human)].  

Uncover(toy, box) will produce the following changes: 

 Add visibility(toy) 

 Remove is-covered(toy, box) 

Give(toy, human) will furthermore change the world with: 

 Remove visibility(toy) 

 Add possession(human, toy) 
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If we sum all these changes, then what is remaining is that P breaks the covering relation 

from the box regarding the toy, and that it creates a possession relation from human toward 

the toy. Therefore the goals of this plan can be verbalized as: 

“The robot had the goal intention to make the human to possess the toy” and 

“The robot had the goal intention to have the box to not cover the toy”. 

Of course the goal of the plan that we would naturally extract is only the first one (human 

possess the toy). Indeed the extraction process can be refined if we take into account the 

pre-conditions of each action composing the plan: assuming that give(robot,toy,human) will 

first implement a grasp(robot, toy), then its forbidding pre-conditions will contain is-

covered(toy,any). If we remove from the exhaustive list the sub-goals (i.e. goals that were 

requirements for later actions), it is possible to reduce the goal intention of a plan to its 

simplest definition (in this case make the human to possess the toy). Being able to extract 

the goal intention from an observed plan is important to attribute concepts like intentions, 

desires and beliefs to the human agents. Although I didn’t have time to go that far and to 

push the experiments in this direction, goal attribution through action observation is a direct 

way to understand other’s mind and willing. 

We’ve spoken earlier about certain experiments (Csibra, Gergely et al. 1999; Király, 

Jovanovic et al. 2003; Csibra 2008) that aimed to test the requirement for an action to be 

tagged as “goal directed” in infants. This implies the idea that not all actions are goal 

directed, however some sort of goal can be extracted from any action represented in my 

definition. Indeed being able to measure the “goal directedness” potential of an action could 

be a way to record and store only useful actions. Although the idea is interesting, it is 

difficult to implement “equifinality perception” in our current definition since the 

representation used is mainly symbolic while this core capability in infants is mainly based 

on meaningful trajectories of the agent. One way could be to say that an action definition of 

the database is tagged as a goal oriented action if and only if there is another action in the 

database which possesses the same Goal Intention (resulting state) but using a different 

Implementation Intention. 
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Being able to retrieve the goal of an observed plan is a useful feature, however a major 

question remains: how to produce an appropriate plan given a specific goal? This question 

has been central within the field of classical AI and planning is now considered as a 

standalone topic. The focus of this thesis is not task planning, however within the project 

architecture (see Chapter IV) we created an interface between this action and plan definition 

with a partner’s planner, HATP (Human Aware Task Planner). Although the Action Definition 

format was not conceived with the goal of interfacing with an external planner, it was quite 

a bet to try to convert my plan definition to a HATP formatting.  Fortunately, they were both 

grounded in the Shared Plans Theory framework (Grosz 1988; Grosz and Kraus 1993) thus 

the mapping between these two systems is quite direct. While planning is not the main focus 

of this thesis, we implemented all the bases required in order to produce teleological 

reasoning and therefore to extract, given an action or a plan, its consequences or its 

requirements.  A snapshot of the robot cognitive system is given in Figure 32, it includes the 

representation of the action “cover” with its requirements and effects.  
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Figure 32 Learning and generalizing “Cover Arg1 with Arg2”.  A.  Robot setup and visual scene before the action.  B.  
Vision: Robot’s view of scene after the block is put on the sign.  C. Temporal Segmentation: Time ordered sequence of 
perceptual events observed during the action.  D.  Knowledge Base: Abstract pattern template for cover, along with the 
resulting state changes, and required initial state.  E.  Relations encoded in the World State after the “cover” is 
recognized in a new action “covers the star with the block”. 

Such a representation has been used to extract meaning from those conditions, allowing the 

robot to verbalize them in order to answer to some specific questions. Although at the time 

of writing those capabilities range are in single action, the extension to a plan is just a matter 

of backward/forward chaining. An example of the produced rules is given in Figure 33. 
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Figure 33 Interaction fragment where the robot performs basic goal-based reasoning about how to solve the task of 
getting the star when it is covered by the block, and then uses it to cover the sign. 

  

  

Robot : Recognized  cover star with block 

User : What are the conditions to cover the sign with star? 

Robot : If you want to cover the sign with the star then  

Robot : sign needs to be visible 

Robot : star needs to be visible 

 

The sign is visible, but the star is covered with the block, so the user asks the robot how to 

make the sign visible: 

User : How can I see the star? 

Robot : You can uncover the star 

The user can now uncover the star by removing the block, and then achieve the final goal 

which is to cover the sign with the star 
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Experiments 

Teaching a shared plan to the robot and using to test naïve subjects 

The current experiment examines how naïve subjects are able to cooperate with the robot in 

different experimental conditions that manipulate the shared plan.  What does it means to 

share a plan with someone? Although the answer has been given in psychological terms, 

shared intentionality and commitment to pursue a goal are not notions that can clearly be 

implemented on a robot. It is something to notice how two people work together toward 

achieving something, about them transferring their own goal to the other using natural 

interaction and language, about adapting to a change in the environmental conditions, etc. 

However such behaviors are so natural to us that it is hard to not lose of sight most of its 

complexity. When individual A has to interact with B then it is required that both A and B 

express many cues to show their awareness about what is going on and about their partner 

state. I would like to come back to Figure 34, which has been taken from the “core paper” 

about shared intentionality (Tomasello, Carpenter et al. 2005), in order to come back to a so 

obvious fact that it is easy to forget: when X people shared a goal or an intention, it means 

that X different mental constructs for goal and intention are built. Every single agent 

possesses its own goal and intention, which are supposed to be the same  or at least similar 

among all the population in the case of cooperation. A key factor in order to have the agent 

A to successfully go through the shared plan with B is that A believes that they are both 

sharing goal and intention, therefore that:  

1. B has the ability to hold a goal and has the intention to reach it  

2. B’s goal and intentions are the same as A’s 

Subsequently B needs to somehow express his intentions and mental state so that A can 

trust they are both sharing a goal. From the robot side, it is hard to say that the robot is 

holding a goal or an intention: when it executes a plan systematically proceeded through a 

sequence of commands while monitoring its partner’s activity in order to know when it 

should act, and when the shared plan is complete.  In the current experiment, we 

manipulate the shared plan, such that in some conditions the robot attributes action to itself 

and the human, and in others, there is no shared plan, just a sequence of actions, with no 

specification of who should do what.  As I said in the preface, the main question in human 
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robot interaction at this moment is how a naïve human will respond to the robot in these 

different conditions.  

An agent has basically three ways to express its intentions and mental states: it can speak, 

gaze and physically interact with the world (including facial and body expression). If we want 

a robot to be attributed intentionality and goals then it needs to express them using those 

behavioral cues. 

 

 

Figure 34 Taken from (Tomasello, Carpenter et al. 2005) Shared intentionality relies on sharing attention. Attention is the 
very first way to express our intentions. 

The very last experiment conducted in this thesis was to have naïve subjects to interact with 

the iCub during simple cooperative games. Games were indeed shared plans similar to 

children experiments conducted by Katharina Hamann (Hamann, Warneken et al. 2011): the 

goal is to retrieve a toy hidden under a box through cooperation with a partner. In every trial 

agent A has to move the box, agent B take the toy and finally agent A replace the box where 

it was. As in every shared plan the role reversal is possible, so agent A can be either the 

robot or the human. 

Our main focus in this experiment is to test how the means of expressing intentionality and 

mental state impact on the execution of the plan and on the interpretation of the human. 

Therefore we designed several conditions regarding this: intentions of the robot can be 
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expressed by speech, gaze or both. Concretely, at each step of the shared plan the robot is 

faced to an action which has to be executed either by him or by his partner. In every case the 

robot describes the action, for example if the current action is (uncover, human, toy, box) 

then the robot will say : “Now you uncover the toy with the box” while looking sequentially 

at the human, the toy, the box and back to the human. This will happen in the “full cues” 

condition, the spoken part and the gaze part can be separately disabled. 

On every subject, several trials occurred in various conditions. At the time of writing the data 

is still being studied, however we were already able to extract from videos a major effect of 

gaze in sharing intentionality. Even without speech, the subject is able to understand the 

expectations of the robot. For example in Figure 35 he has no way to know in advance who’s 

the one going first, if he waits for a behavior of the robot he will be instructed either by the 

robot making the action or by the a succession of “gaze(box) gaze(subject)” (like a dog which 

is asking  you to open the food can). The subject reacts really fast to produce the action. 

 
Figure 35 Left: In the shared plan, with gaze, no language condition, after uncovering the box, the robot indicates to 
the user “it’s your turn” with a clearly defined gaze action.  This reliably triggers the subject’s response.  Right:  The 
robot uses gaze to indicate to the human where to place the object.  Again, this reliably elicits the correct response. 

We also tested another condition, which show the importance of beliefs attributed to the 

robot. After a training phase where the subject has to interact a few times in “speech + gaze” 

condition, he has a strong representation of the shared plan between him and the robot. During 

the test phase, we introduced a condition called “solo”. In this case the robot is using only 

gaze, and rather than using a shared plan, it uses a plan it which it is the actor of all actions. 

As depicted on Figure 36 the first action is done by the robot (because the subject didn’t 

choose to act first), therefore the subject, according to the shared plan he has in mind, should 

do the next action. Indeed in the this case he actually started to move the arm in order to do 
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his action, but the robot started to move also causing him to cancel his motion and show an 

incomprehension facial expression. 

 
Figure 36 Left:  In the no-shared plan condition, the box has tipped over, and the human is placing it in its correct 
upright position.  This indicates that the human is actively ready to cooperate.  Right:  When his “turn” to move the 
toy block at the center comes, the human begins to effect that move, but then sees that the robot is to make the same 
move.  This “collision” results in the human withdrawing his initiated movement 

Indeed we can extract two ideas from this HRI scenario: 

1) The privileged way to express our direct intentionality relies in the gaze and body 

language. Our gaze is always targeted toward what we are speaking, or thinking 

about, allowing the observer to also look at it and therefore share our attention. 

Given the context, gaze can describe an action that we expect to happen next, could 

it be done by us or by our partner. In this case the observer is able to understand our 

intentionality and act accordingly. In the solo condition at some point the 

intentionality of the robot and the subject did not match. The contextual cues of the 

robot intentionality were not enough discriminating to overcome the shared plan 

representation that the subject was maintaining, creating the collision of Figure 36. 

The robot describes other’s action by looking at him and at the object he will 

manipulate, however it describes its own action by looking at the object and then 

acting. It is quite reasonable to predict that the same kind of collision would happen 

in the case of a “programed” human / naïve human interaction. Keeping in mind that 

the shared plan representation gives a form of priming effect about the next action 

to be executed, a form of prediction of the partner’s intentions which we take into 

account while acting. To come back to the first chapter, the perceived intention of 
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our partner is a mixture between what we think it should be, and what he actually 

described using his gaze. 

2) The robot, based on his behavior, is attributed intuitively intentionality. There is no 

evidence that could be investigated about the attribution of goal, however since the 

subject surely has a goal in the context of a shared plan, he may consider that his 

goal is shared by the robot. But is it possible to affirm that the subject believes that 

robot possesses the ability to pursue a goal? A data structure may hold the 

consequences of a plan, but does it allow saying that it represents a goal? Executing 

such a plan is just the consequence of choosing a random set of conditions. It would 

be a good question to ask to the subject afterward. It is the same concerning 

intentionality: by using gaze the robot expresses the next action he is supposed to do 

(or wait for), making the subject to attribute him an intention.  However, it is likely 

that many people would be outraged if we were attributing the robot “intentionality”. 

Addendum : At the time of writing 11 naïve subjects (Figure 37) have been recorded and 

the data is being analyzed.  During this experiment the robot did more than 250 motor 

actions and the system handled various unpredicted behaviors of the subjects without a 

single crash. 

 

Figure 37: The 10 naive subjects of the last CHRIS experiment. 
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Discussion 

Cooperation is one of the most powerful applications of our cognitive skills, by having our 

body expressing our mental state we are able to share desires, intentions and emotions.  On 

the opposite side, having our counterparts sharing their mental state the same way enable 

us to understand will of others. Using those abilities we are able to express and receive 

concepts including an action or a shared plan.  However, this communication process can be 

subject to noise and only reflects the mental state at a given time. Although we call this plan 

“shared”, it is a fact that each participant owns his own representation of the plan, that he 

believes the other shares. This phenomenon occurred in the experiment presented; at some 

point the robot mental representation of the shared plan was not the same as the subject.  

Communication is a two edged blade: it allows transmitting mental states to others by 

physical interaction; however it can be misunderstood therefore creating incoherencies in 

our understanding of others. In the next chapter I will describe how two robots could really 

share the same plan, the exact same mental construct, but it is something impossible to 

achieve with two humans. However, robots will have to interact and to cooperate with 

humans so it is required that they are able to communicate concepts using the “human way”.  

By building a robot and testing how subjects understand his goals and intentions according 

to his physical behavior, it will give us important insights about what the robot should 

analyze on the human body in order gain empathy and understand his needs. At the time of 

writing, the human was taken into account only based on the physical changes happening in 

objects on the table: his gaze was not monitored, his face was not analyzed, his hands were 

not tracked. Therefore, the robot had only very few cues about the human status which 

disabled any possibility of a more “aware” interaction. Since communication seems to be so 

rooted in motor expression, it is a requirement that a communicating robot is able to 

understand and express ideas through his body as well as his speech. This is a really strong 

argument in favor of humanoid robots, especially those with a human-like face. A robot 

having a mouth, eyes and arms used in a meaningful way will be much more likely to be 

attributed to goals and intentionality than a “wheeled platform with a screen”. And as I 

mentioned at the early beginning of this thesis, while it will be progressively difficult to be 

sure if the robot really possess a goal, intentionality or a consciousness, we can at least make 

it act as if this was the case.  
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Introduction 

Robot cognition is a whole new area of research. New robots are popping out every month 

around the world, each one of them having his own body, his own particular features, his 

own software, to name a few. Although the situation is evolving very fast, there is still a huge 

diversity in the software used worldwide to implement robot cognition, and many parts of 

those implementations are redundant. Usage of a middleware can partially cope with this 

problem while shifting it to another level: multiple middleware exists, they are not written to 

be compatible and the choice of one of them is a crucial point in robotic architecture. 

Moreover, at a “higher scale”, software is not the only major issue that robotic research is 

facing: heterogeneity is also appearing within the different architectures implementing 

robot cognition.  

We have seen how humans were able to cooperate in order to achieve a shared physical 

goal, to teach or to learn. The concept of communication is central to all those activities; in 

order to share his intentions an agent has to be able to communicate with others. I would 

argue that the communication methods used by an animal species derive directly from its 

sensory apparatus. As human, our main communicative senses are: 

 Audition, we developed spoken language, 

 Vision,  we developed body language, writing, sign language,  

 Tactile sensing, we developed brail writing. 

Of course the sensory apparatus is not the only requirement for a communication mean to 

emerge: the body should possess an organ able to produce a stimulus perceptible by those 

sensors. Spoken and sign languages are the most convenient: our body can both create a 

stimulus (sound or visual posture) and perceive it as the other agents around. The writing 

case is a bit special since it uses a physical artifact to transmit a message at a higher distance 

than the simple range of the voice. Other animal species use other sensory modalities to 

communicate and transmit knowledge: fishes use electricity (Hopkins 1974), insects use 

pheromones (Wyatt 2003) and chemical communication is spread among the animal 

kingdom (Taga and Bassler 2003; Wyatt 2003). But despite the means used, the process of 

communication is always transmitting an idea from one individual to another, which means 

give a form to the contents of the mind so that it can be transmitted as a physical signal, 
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send it to the receiver who will have to perceive it and reinterpret it as an idea. Today’s 

technology (wifi, bluetooth, more generally wireless technologies) allows transmitting any 

kind of digital data between two remote devices in an imperceptible and quasi 

instantaneous manner, clearly more efficient than any of our naturally evolved means. The 

end point users of these devices are humans, who still have to use their own sensory 

apparatus to format and read the messages transmitted over the network. It means that for 

any thought we would like to share, we have first to express it in some media (it could be 

text, sound, image or video); then we should transform this message to a digital format 

before sending it. On the other side, the recipient will have to do the reverse process: after 

the raw data has been played by the device, the message has still to be sensed and 

understood. Indeed we can see our sensory apparatus as a modem (Modulation-

Demodulation) interfacing our minds with the physical world. The contents of “minds” of a 

robot will always be some kind of data structure stored within a digital memory, therefore if 

a robot has to transmit any kind of idea to another, it could just send this “data structure” 

over the network, allowing an instant and noiseless communication, like the old human 

dream of telepathy. However, this will be possible only if the two robots share the same 

data structure, which leads to the problem I mentioned before: robots are facing the 

heterogeneity of their cognitive architectures. 

Thus robots can only share knowledge between them using the “natural mans”. When 

watching Star Wars, I always wondered why C3PO and R2D2 were speaking together, why 

did they have to talk? Maybe did the robotic revolution of the Star Wars world miss the 

opportunity to invent a platform independent cognitive architecture? Fortunately in our 

world a few projects, including CHRIS (Cooperative Human Robot Interactive System) which 

supported this thesis, are trying to cope with this problem at various scales. The impact and 

importance of such a unified robot cognitive architecture is beyond the scope of imagination. 

A shared knowledge representation would produce an explosion of robot learning: by 

allowing robots to learn instantly from the experiences of others despite their geographical 

location, the teaching curve of “newborn” robots will be inexistent. Of course such a shared 

experience framework is impossible to achieve with no human in the loop, and many 

technical issues will have to be identified and solved by human operation. In this chapter I 

will identify some of the initial problems identified while working on the merging of 
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experience and propose solutions or ideas to cope with them. In this chapter, I’ll focus on 

the technical feasibility of what I named the Shared Experience Framework, while I’ll keep all 

the various philosophical discussions raised for the later discussion. 
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Various scales of heterogeneity 

Robotics is facing a significant of problems, some of them are inevitable such as hardware 

limits, perception and manipulation issues, however others are created by us and the 

current technical situation. Among them is the incredible diversity and lack of homogeneity 

in all domains of robotic research, from the hardware used to build the robot to the 

cognitive architecture implementing its “brain”, passing by the middleware linking both of 

them. In this chapter I will review the heterogeneity problem at each level, and point at the 

solutions that are rising to face it. 

Robots hardware heterogeneity 

When one thinks about the differences between two robots, the first thing noticed is of 

course the body. When it comes to building robots, the shape of the machine is limited only 

by the imagination, and certain physical constraints. Most of the bodies are inspired by 

nature and mimic various living beings like dogs, spiders or humans. However, there is also 

the possibility to create other “things” like wheeled platforms carrying a tactile table, or 

swarm of miniature robots. Obviously, one major issue concerning this body shape is that 

not all of the robots can act in the same environment, and that all the actions described 

cannot be implemented in the same way. There is nothing that we can change at this level: 

although a humanoid and a dog can both grasp a ball, each of them will need a specific 

implementation of the action grasp. The bodies’ heterogeneity is a problem we will have to 

face, although the use of motor primitives with a robot specific implementation is already a 

partial solution ( (Lallée, Lemaignan et al. 2010; Lallée, Lemaignan et al. 2011), attached as 

appendixes 1&2).  

However, apart from the global body shape, the hardware heterogeneity can be a problem 

of another kind. During my PhD I worked extensively with the Italian Institute of Technology 

on the iCub robot. We had an older version of the robot in our lab in Lyon, while they had a 

brand new version which was using a more advanced control method called torque sensing. 

We had this software module implementing the motor primitives that I described before, 

but it turned out that a grasp using torque sensing and an “old style” grasp were different 

enough to require two different implementations. Fortunately the calls to the specific 

implementation was platform independent, however this example shows that an upgrade of 

the robot hardware changed it, from a software point of view, into a different robot.  Even 
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more dramatic, within the CHRIS project, the architecture we developed was required to run 

on truly different robots including iCub and the humanoid robot Bert, although the 

preliminary definition of motor primitive interfaces allowed us to control and exchange plans 

seamlessly between the two platforms. 

Robots Software heterogeneity 

The number of new “cognitive” robots is increasing each year, both as commercial products 

and research platforms. Each robot possesses its own software architecture, thus resulting in 

a huge loss of time and money. I will describe in details the implications of this problem, and 

the various software architectures engineered to cope with it.  

Problem 

When one starts to work in cognitive robotics, like starting a PhD, he is often introduced to 

the specific software employed by his laboratory or on the robot that he will use. Most of 

the time the algorithms developed to handle various aspects of the robot cognition are more 

or less independent from the platform used; for example the Self Localization And Mapping 

(SLAM) algorithm used for navigation of mobile robots does not change from one robot to 

the other if we consider that the motor commands are implemented in other robot 

controllers which are just called by the algorithm. However, if one has implemented such an 

algorithm on one robot, and he wants to use it on another robot, he will then need to re-

write most part of his code so that it will fit the new robot software architecture and be able 

to access the new robot sensors and motors. Developing on two different robots is like 

developing on PC and Macintosh: even if the programming language is the same and the 

algorithms are identical, the ways to access the platforms are so different that nearly all the 

code needs to be rewritten to achieve the same result on both. PC and Mac are the two 

main platforms available on the market, making this effort acceptable, however in the case 

of robots the number of different platforms increases each year. This is the reason making 

many developers, researchers and students in different laboratories to solve the same 

problems, using the same algorithms but at the same time preventing them to efficiently 

share the results of their work. On computers side the hardware is very different and the 

same kind of problem occurred at some point, however abstraction layers have been 

implemented to allow the developers to write software without caring about the hardware 

which will run their code. Multimedia abstraction layers like DirectX or OpenGL became a 
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requirement because of the diversity of hardware which spread in homes. The “boom of 

domestic robots” has not occurred yet and robots are still confined to laboratories, since 

researchers like to reinvent the wheel the problem is not really one at the moment, however 

it will be as soon as robots will become commercial products. 

The existing solutions 

Many solutions are emerging to cope with this problem of software heterogeneity; they take 

the form of collections of software libraries and programs built with the idea of handling 

robotic development. Each of them has pros and cons and choosing one is a matter of 

technical integration (most of these environments have been designed for a specific robot, 

even if they can handle in theory any kind of robot), of taste and of politics (sometime a 

project or a laboratory will choose one as the standard platform). I won’t enter the details of 

every solution here, good surveys are available (Biggs and MacDonald 2003; Kramer and 

Scheutz 2007) and the main systems are presented through academic publications :  

 URBI (Baillie 2005) 

 ROS (Quigley, Gerkey et al. 2009) 

 Player/Stage (Gerkey, Vaughan et al. 2003) 

 YARP (Fitzpatrick, Metta et al. 2007) 

Cognitive Architecture heterogeneity 

During the course of this PhD I worked within the CHRIS project, which led to several papers 

on aspects of cooperative human-robot interaction (Lallée, Metta et al. 2009; Lallée, 

Warneken et al. 2009; Lallée, Lemaignan et al. 2010; Lallée, Madden et al. 2010; Lallée, 

Lemaignan et al. 2011), some of them being attached to this thesis as appendixes, and a 

quite large collection of software modules. When the project started, we had a clear view of 

one scenario we wanted to achieve which was prototypical of the interactions we were 

interested in: a human and a robot, cooperating toward the goal of building a small Ikea-like 

table ( (Lallée, Lemaignan et al. 2010; Lallée, Lemaignan et al. 2011) attached as appendixes 

1&2). In the end we managed to achieve in reality what we had initially hand coded at the 

project outset (our initial wizard of Oz HRI).  Because of the nature of the project, from a 

software point of view, the design of the architecture progressed concurrently (or rather, 

step-wise) with its implementation. This caused an intensive use of modularity (division of 
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the architecture in independent software modules communicating over YARP (Fitzpatrick, 

Metta et al. 2007)). From the software engineering point of view I learned during this PhD 

that modularity is a two-edged blade: it helps to maintain on going and long term 

developments by really separating independent modules and allows replacing / recoding 

one of them and maintaining interfaces. However, sometimes the design of the architecture 

is done sub-optimally. This can be because we do things to solve a specific case instead of a 

more generic one, or because we do not catch the “global picture”, or even for political 

reasons. In the end it can result in the division in independent modules of a function that 

could benefit from being integrated. The CHRIS architecture in the end of the project is 

represented in Figure 38, in this figure each box represents an independent software module 

and all the communication between modules is done through exchange of messages on the 

network using YARP. I will not explain the architecture in detail here (for reference (Lallée, 

Lemaignan et al. 2011) attached as appendix 2).  However I would like to emphasis that 

while it allowed us to successfully cope with all the aspects covered in this thesis, the 

architecture has been inherited and improved.  

 

Figure 38: CHRIS architecture in the last year of the project (2011) 

At first, the “Knowledge Base” idea seemed nice, it was designed to store semantic and 

stable properties for objects and the various action definitions in independent modules. 

With time we realized that every objects properties and relations between objects should be 
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stored together in a compact and accessible way, thus merging the Egosphere and the 

knowledge base. Moreover, there was no reason to keep the definitions of actions and plans 

separated from their manager module. We could have tried to change the architecture; 

however it would have required a huge transformation of many modules and created 

several inconsistencies. The best choice at this point was to use concepts and a few modules 

from CHRIS and wrap them in a freshly brewed architecture for a new project called EFAA 

(EU FP7 Experimental Functional Android Assistant). Built on the experience of CHRIS, the 

EFAA architecture (Figure 39) can cope with the same range of tasks, however further 

developments and maintenance are made easier by a smarter design and a smaller number 

of modules. The major improvement is the implementation of the Egosphere by a module 

called Object Properties Collector (OPC): where in CHRIS only spatial information was stored, 

EFAA extends the concept by storing all properties about objects (spatial, semantic, relations, 

affordances, etc.). Therefore all other software modules can update and access them in real 

time. Although there is no doubt that the EFAA architecture is an evolved version of the 

CHRIS one, we encountered a well know problem in software development: backward 

compatibility. Data structure formats and communication protocols have changed ending in 

an impossibility to use the old knowledge base: action definitions, plans and knowledge 

about objects is impossible to transfer from one version of the architecture to another. 

While in this case it is not really a problem since in a sense CHRIS serves as a point of 

departure for EFAA, I fear that such inconsistencies between different cognitive 

architectures will become an issue. At the time of writing there is no consensus or attempt 

of formalization of a standard knowledge base format. I mentioned in the introduction of 

this chapter that robots should be able to exchange or share knowledge in real time 

bypassing human like communication means.  The first step toward this direction is to define 

such formalism. It is not my goal to do so here, it is a daunting task that should be the 

outcome of an international project involving the major actors of robotics today. However, 

such a project will take years to deliver a usable format while we should start to think about 

the implications and requirements of a shared experience framework. In the following part 

of this chapter I will describe another cognitive architecture, which I designed independently, 

based on the knowledge I acquired during CHRIS. The core principle of CHRIS and EFAA is to 

abstract the cognition of the robot from the perceptive and motor layers.  In doing so, the 

cognitive machine becomes robot independent and the same software/knowledge can be 
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used on different robots without any change. However the sharing experience and 

perceptions over a community of robots requires more than “platform independent 

software”, it needs something like a server to make the sharing of experience among the 

robots transparent and automatic. The architecture that I will present is called Central 

Cognition; it is a standalone software which embeds the knowledge base implementation 

(Egosphere, actions, shared plans) within a multi-robot control system. Within this 

framework, all the experiments done by individuals are shared by the whole system in real 

time. 

 

Figure 39: Status of the EFAA architecture at the time of writing. 
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Shared experience framework 

Central Cognition 

Central Cognition is a software system designed to maintain a shared knowledge base 

between multiple robots, while at the same time supervising the behavior of those 

individuals (Figure 40). On the perceptual side it implements a list of perceptions, which are 

interfaces to sensor dependent APIs (application program interfaces). At the moment, visual 

object recognition is provided using iCub and Nao cameras, while agent recognition is 

provided by the Kinect API (Kinect is an inexpensive rgb/depth camera). More interestingly, 

it also reads from the OPC (object property collector), which is the EFAA Egosphere. Indeed 

since they use a similar format for storing properties (see Appendix 4, the EFAA’s OPC 

Specification), EFAA Egosphere can update central cognition Egosphere in a kind of 

“composite perception”. As a concrete example, the OPC is updated by a tactile table and an 

environment initialization file; therefore, central cognition will also perceive the information 

coming from those sources. This mechanism is quite important, since all robots in the world 

cannot (should not?) be controlled by a single software, multiple “control points” should be 

able to share information among them. Indeed the Egosphere concept can be extended 

hierarchically if we assume that an Egosphere (a list of properties for objects) can serve as 

the perception of another one. As an example, the Egosphere built by the sensors of a 

platform in Italy and a another one in France could contribute to a European merged 

Egosphere, therefore allowing French robots to “see” what’s going on in the Italian lab. In a 

more domestic application, let’s assume that you are looking for your passport.  You ask 

your robot assistant in the kitchen and it will tell you in that your passport is seen by your 

robot dog on the living room table. While this is already a nice feature, it could be nice to 

have the dog to bring the passport. Two remarks on this point: first, the perceptions are 

shared.  This means that a command heard by one robot is also heard by others, therefore I 

can ask to the dog directly as if it was next to me. The second note is about how the control 

of robots is done, it is achieved through what I called Local Cognitions. 
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Figure 40: Central Cognition architecture at the time of writing. The use of the OPC from EFAA as a perception and of the 

PMP for iCub implementation provides a step toward backward compatibility. 

While Central Cognition is the entity storing all the shared knowledge base, it also keeps 

track of all robots. For the system a robot is the implementation of motor primitives’ 

interfaces (including text to speech). Every robot is associated to a Local Cognition, which is 

an update loop defining its behavior: it is responsible for taking a look at the Egosphere, 

listen to possible human commands and reacting appropriately. I decided to lock the control 

of the robot at the local cognition level because this allows an easy customization and 

definition of “characters” which are important for acceptation of machines as friends. 

Indeed the “speech style” is local: iCub could say “Good Evening Stéphane” while our 

Mexican Nao (Pedro) could say “Hola buddy!”. However a behavior is not restricted to 

speech, indeed it defines all the interactions that the robot will have with its environment. 

For example I implemented a very basic behavior that does not involve any human robot 

interaction and just make the robot to focus his attention on the various objects present in 

his proximal environment. A more evolved cognition could be a needs-driven one like it is 

the case for the artificial intelligence of the Sims (www.thesims3.com) or the life simulation 

Creatures (Grand and Cliff 1998): in those models the agents possess a list of needs (hunger, 

entertainment, social, etc.) and each action has an impact on those needs, therefore 

allowing the agent to choose the best action in order to satisfy its needs. I won’t give any 

more insight on this model, although it is probably the most promising system for an 

autonomous agent; what I want to emphasis here is that the behavior is what makes your 

robot “unique”. Although the same Local Cognition can be attributed to multiple robots 

(they will have the same behavior), a unique Local Cognition can be handmade for each 

robot, making them individuals rather than a single omniscient entity. It will likely be easier 

to interact with and socially accept robots if they are perceived as individuals.  We will return 

to this notion, but quite intuitively we can say that people strongly bind one mind to one 

body, since all biological organisms know are done that way. Moreover, having this kind of 
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distributed control allows an easy maintenance of the robots pool available to Central 

Cognition. Indeed Central Cognition (CC) is a “computer voice”, a virtual agent in some sort, 

which you can interact with as with any other robot, although CC has “administrative 

privileges” over the other robots.  

By interacting with CC you can ask to “wake up” or “put to sleep” any of the robots 

controlled, you can also access the Knowledge Base, ask for the content of the Egosphere or 

the definition of plans, etc. Indeed CC, despite its centralizing role and its ability to manage 

the state of every robot, is not the system managing the behavior of every single robot. The 

true behavioral choices are done within each Local Cognition, while the possibility for 

Central Cognition to directly require the execution of a plan or a primitive action on a 

specific robot is left open. Indeed at initialization CC delegates the behavior handling of each 

robot to a Local Cognition (it can change the associated cognition at runtime), however it has 

access to all the capabilities of the pool of robots, to the Egosphere and the whole 

Knowledge Base, it can be therefore considered as another “robot” whose body will be a 

distributed system of sensors and multiples robots. I will discuss more in detail the problem 

“One mind over several bodies” in the last chapter, for now I will just present several 

technical and concrete aspects of the knowledge sharing process. 

Experience Sharing 

Throughout the thesis I have described various processes of learning for the robots. 

Robots can learn from interacting with their environment on their own, from the formal 

teaching of a human or by observation. All the knowledge gathered by this learning is 

formatted and stored in the shared memory of CC, no matter who created it and how, every 

individual robot who is part of CC can access it and use it, likewise for the real time 

perceptions of others robots. Such a merging/sharing of information is not a trivial task, 

indeed very little research has been conducted on this topic. 

At the perception level the problem of sensor fusion appears. Multiple sensors can perceive 

environments which overlap; therefore the same object can be detected by multiple sources, 

while in the Egosphere only one representation for this object has to be stored. I solved this 

problem by having the Egosphere responsible for its own updates: it is attached to a list of 

perceptions, which are polled for perceived objects at a given rate. If the same object is 
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being perceived by multiple perceptions then a mean of the contradictory information is 

calculated while the properties are concatenated. Again we face the problems described in 

chapter 1 about fusing information in a hierarchical bottom-up flow of integration. While 

those are quite hard in the case of extracting symbols from raw sensory information, when 

dealing with perceptions that are already producing symbols the problem is much easier. 

Indeed individual objects are assigned a unique name; therefore it is easy to match multiple 

instances of the same object perceived on several sources and to merge this information. Of 

course several synchronization mechanisms are in place to avoid robots or other software 

threads to read from the Egosphere during the update loop, but apart from these critical 

time windows, the sum of information coming from all the sensors is available at any time by 

every piece of software linked to CC. The question of the sharing the results of learning is a 

bit more novel and rise interesting issues. 

Assume that I teach the action “swap A and B” to the robot. I will go through a quite painful 

process of describing the new composite action swap in terms of sub actions and primitives, 

or I will demonstrate it. Both ways will end in having a compact action definition created, 

that the robot will commit to the shared knowledge base so it can be used by other robots. 

Let’s assume that we are working with a large community of users and robots, there is quite 

a risk that other people will try to teach the action swap either at the same time as me, or 

before me but in a fashion that I do agree with. Those problems are well known in every 

software development team and are at the origins of the need for versioning systems. When 

two or more people collaborate on a shared document, they have to synchronize their work 

either by having a shared plan (Chapter 3) or by merging their modifications together 

afterward. Those two methods are not very comfortable for human beings and clearly 

unusable for the purpose of the Shared Experience Framework. This issue has arisen during 

the CHRIS project where the knowledge base was mainly stored in text files and the 

synchronization over multiple laboratories was achieved using the merging functions of SVN 

(Collins-Sussman, Fitzpatrick et al. 2004). In CC there has been no need yet for this kind of 

mechanism since the system is a standalone piece of software which is not handling the 

commitments of multiple users (that is, I was keeping the system in a coherent state and 

didn’t produce any conflict on purpose). Future work will probably see the appearance of 

such problems and at some point a merging mechanism for knowledge bases will be 
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required, as the tools that are being developed in the ontologies communities (Noy and 

Musen 2004; Völkel and Groza 2006).  Our partners in the CHRIS project developed a module 

dedicated to ontology management, ORO. Open Robot Ontology (Lemaignan, Ros et al. 

2010) can store concepts and link them to store knowledge and reason about it.  Such an 

ontology capability could likely be an effective approach to storage of knowledge in the case 

of cognitive robotics, particularly with the merging processes mentioned above. With the 

ability to merge multiple knowledge bases, a collective memory of every robot could emerge 

allowing an omniscient robot swarm (Waibel, Beetz et al. 2011). 
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Discussion 

I presented in this chapter the foundations of what could be the future of robotics. It is 

interesting to note that at this point I’m becoming unable to find any scholarly references 

about the topic I’m developing: all the questions revealed by such a central cognitive 

architecture come from science fiction books and movies. Even within this literature, only 

very few deal with the topic of a centralized memory. Most of the time it’s just to mention 

this “exponential learning”, described by the T-800 in Terminator when speaking about 

Skynet, which turns the system into an evil artificial genius who decides to destroy humanity. 

A more interesting case is described in Ghost In The Shell: Stand Alone Complex (based on 

(Oshii, Shirow et al. 2004)) and invites us to follow the evolution of intelligent tanks. All the 

tanks act as friends to the human characters, they are given orders by speech, are fully 

independent and communicate together in wireless chat but still being individuals during the 

day. Each tank takes its own decisions, has its own perceptions and collects its own 

memories. However at night, all the tanks’ memories are “synchronized”, therefore allowing 

each individual to gain the knowledge gained by others during the day. It is hard to not think 

about a “shared dreaming process”. The main interrogation about this in the story is the 

question of individuality: is each tank a standalone individual? Are they all part of a complex 

system? After the synchronization process, we can say that there is only one memory which 

is shared by all the tanks, therefore there producing a single complex individual; however as 

soon as they start to perceive again on their own they become different beings. At some 

point in the story all the tanks are physically destroyed and it turns out that their “brain”, 

their central cognition is located in a satellite which allows them to continue to live in the 

network. They have no body anymore, however their cognition is still there, providing an 

ability to reason and speak. At some point they even gain a “new body” by hacking the 

satellite control system in order to be able to move it. In this case robotic bodies can be seen 

as a way to harvest knowledge about the world but the mind could be an independent 

cognitive process which does not require a body to exist (apart from the computational 

substrate of course, which could be neurons or silicon). The development of a collective 

cognition opens various reconsiderations of the body concept and its relation with the mind. 

It seems logical that the relation one body / one mind is not true in the case of artificial life: 

multiple bodies can be associated to multiple minds, with all the possible combinations 
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implied. One mind can control multiple bodies (which can therefore be seen as a single 

distributed body) and one body can be controlled or contribute to multiple minds, etc. 

All throughout this thesis, I never doubted that a mind can emerge on a machine, although it 

is a strong position, I would like in the final discussion to speak about this idea and why 

people say “No, a machine will never be intelligent nor conscious”. 
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DDiscussion 

The domain of abstract artificial cognitive machines targeted toward human-robot 

interaction is only babbling yet and produced solutions are research products more than an 

engineered, ready to use, systems. In the world’s largest conferences of field, like IROS, most 

of the works presented deal with very specialized aspect of human robot interaction. Indeed 

only very few groups pursue the goal of integrating capabilities ranging from precise motor 

control to action recognition or spoken language understanding and programming. The 

major contribution of the CHRIS project (and subsequently of this thesis) is to show how all 

those standalone capabilities can be merged together in an integrated cognitive architecture, 

and how such an architecture can lead to real world application. Developing, maintaining 

and even using such architecture requires a huge amount of work including mostly system 

engineering and human-human cooperation but it is necessary in order for robotics to take 

off and stop demonstrating capabilities on “toy cases scenarios”.  Cognitive architecture 

design is quite appealing from a theoretical point of view, it allows to draw nice diagrams 

with boxes related to psychological or neurological concepts (long term memory, 

dopaminergic system, etc.), however despite their undeniable interest as high level models 

of the though those systems are most of the time far of being usable in a technical point of 

view. Surveys of such system are available (Chong, Tan et al. 2007; Vernon, Metta et al. 

2007; Langley, Laird et al. 2009) and they provide ways to benchmark other candidates. 

However it is important to keep in mind that a nice cognitive design and abilities that it 

should grant to the system in theory is often very far from the real world application: many 

systems described by elegant papers are just not able to produce any kind of live 

demonstration. Cognitive architectures applied to the control of a real robot start to  appear 

but are still not numerous (Scassellati 1999; Benjamin, Lyons et al. 2004; Cassimatis, Trafton 

et al. 2004; Burghart, Mikut et al. 2005; Vernon, Metta et al. 2007; Vernon, Metta et al. 

2007) and most of the time they are not available as open source engines that everyone can 

use (or even if they are, they are so complex and undocumented that it is impossible to 

adapt them to another platform). This limitation comes mainly from the fact that such 

architectures are designed to handle one specific robot; therefore they are not thought to be 

used by other laboratories on other robots. When it comes to the abstract cognitive 
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machines, those that are truly independent of the robot platform used, the state of the art is 

even more reduced. To my knowledge the only project similar to what we achieved in CHRIS 

is RoboEarth which focus on the development of a standard language for robot to store and 

exchange knowledge on a cloud-based server (Tenorth, Perzylo et al. ; Zweigle, van de 

Molengraft et al. 2009; Guizzo 2011; Waibel, Beetz et al. 2011). Our approaches are indeed 

very similar and both projects hold the ambition of managing robot knowledge in hardware 

abstracted way, allowing multiple robots being to use and contribute to a common memory. 

Moreover their system seems to be robust, able to produce demonstrations and includes a 

cloud (web) component that our actual implementation is lacking. The specify of our 

architecture is its unique ability to learn, execute and edit plans that are shared by multiple 

individuals and which have been demonstrated to be an essential component of cooperation 

in humans (Tomasello, Carpenter et al. 2005; Warneken, Chen et al. 2006; Dominey and 

Warneken 2009; Tomasello 2009), this ability is grounded within a spoken interaction 

framework inherited from spoken language programming (Dominey, Alvarez et al. 2005; 

Dominey, Mallet et al. 2007; Lallee, Yoshida et al. 2010) which allow to easily produce new 

knowledge. Indeed it would be a great achievement to interface our system with the 

RoboEarth API so that both can benefit from each other’s specificities, but as every 

integration activity such a project would require time, cooperative peoples and cooperative 

robots.  
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PPerspectives and Inquiries  

This thesis aimed to cover all the requirements for developing the cognition of a robot 

companion, starting from the lowest level perception-motor loop and cortico-inspired 

associative maps in order to classify the raw information from sensors into concepts and 

symbols. We have then seen how such symbols could be assembled into an action definition 

and then how those actions could be used in a cooperation landscape through shared plans, 

imitation, learning from observation, etc. The last chapter dealt with problems and 

possibilities introduced by the development of an artificial cognition: the dissociation 

between the mind and the body. However the original title of this thesis was “Toward a 

distributed, embodied and computational theory of mind”, which is a bit inconsistent with 

my previous statement that mind and body may be independents. Indeed I’m facing a 

paradox here: I generally agree with the theory that cognition is partially situated, embodied, 

that our mind is shaped by our body and that our body is controlled in a mind dependent 

way (Wilson 2002; Anderson 2003). Many psychophysics and neurophysiological 

experiments account for the theory of embodied cognition, indeed my multimodal 

convergence model and my Annex 1: A Theory of Mirror Development also suggests that this 

framework is the right one to explain biological cognition.  Humans and other animal species 

which possess a cortex are developing their behavior through their interaction with the 

world. Assuming that we can call “mind” the dynamics of the brain processes, then the mind 

is shaped by the body in the sense that all interactions with the world (perception and 

action) occurs through the physical envelope and are linked by the brain. The mind is for a 

large part the knowledge of all regularities extracted from this perception of our universe’s 

rules. Early on it extracts physic rules, it learns that a part of the physical world is an entity 

that can be moved by sending signals to muscles and that this entity is continuously sending 

back information about its state within the surrounding environment. It learns that any 

command sent to the entity will affect the stream of afferent perceptions, and that the 

command type is directly impacting this change. Moreover at least a part of the mind is 

directly shaped by the body, which is indeed the substrate (neurons) that makes possible 

those computations; the sensorimotor organs directly impact the material available for the 

foundation of the mind.  
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Solipsism claims that the only thing that we can be sure to exist is our own mind, we 

cannot have any certitude about the world, about others mind, or even about our body. 

Although what would be a mind which never commanded and observed a body interacting 

with the world? Can it be the world or some evil genius ((Descartes and Moriarty 2008), 

something is sending information to our sensors, and this information is consistent with the 

orders sent to our motors. In this sense the body is required in order to create the mind, it is 

the tool used to gather regularities of the world and to build causal relationships. However, 

once concepts and rules are acquired, is the body still required in order to have the mind 

running? When a concept representing a world object has been created in mind, one can 

reason about it without the need of the body. Think about dreams or just “in bed” 

imagination: one can close his eyes, relax his body, and have his mind feeding itself with 

mental perceptions. Indeed during sleep the thalamus, which is the gatekeeper between our 

sensors and our brain, is modulating our perceptions and make them less influent to our 

mind (Llinás and Ribary 1994; Magnin, Rey et al. 2010). By reducing this impact, it allows the 

very spirit to take control of what the mind perceives by making its percepts mainly based on 

feedback. However, this is not inconsistent with the embodied framework: even during 

these sleeping phases the body is still shaping the mind and the oneiric representation of our 

self is grounded in the daily perception of our physical envelop. Our dreams include 

ourselves, objects, and persons and are generally compliant to physical rules. This is easily 

explainable; by considering the convergence zone principle we see that every single concept 

or symbol in the brain is indeed related directly or indirectly to a pattern of activity of our 

sensory layer. In all our life’s experience information about our body is present, this entity is 

an actor of all our memories, and it is in the background of every sensory trace that our 

brain recorded.  As the tool to perceive and act on the world, the body is the core 

component of the cognition. As I said earlier there is no doubt that biological beings 

cognition is fully embodied, but has it to be the case in machines? 

 It is still early to say that the robotic system built along this thesis can be attributed a 

mind; however we can reasonably say that it is maintaining a sum of its past experience 

which composes a mental landscape of world grounded memories. This knowledge base 

could serve as a base for reasoning, and older traces could be evoked as the result of a 

mental supervisor process. In the following of this discussion I’ll call that the “mind” of the 
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robot: the sum of its memories and the process handling how, why and when it is accessed. 

My first question about this artificial mind asks about the embodied qualification. In 

biological being there is no clear separation between the sensory motor apparatus and the 

so called symbolic level: all symbols manipulated by the brain are derivate of sensory motor 

representations. An artificial cognition is not bound to these requirements: sensory motor 

primitive are at some point pure amodal symbols that the brain can reason about. Of course, 

in order to be perceived or executed, those concepts need to have some link to a body: the 

visual representation of an object need to be stored in a sensor dependent way (an image 

pattern for example), and the “grasp” motor command needs to be interfaced by a 

controller specific to a robotic body. However, if the sensor or the controller changes, then 

assuming that the new one holds the same interface, then the mind will still be able to 

perceive and send the same commands. Moreover, even in the absence of sensor or body, 

the artificial cognition can still manipulate the symbolic layer to produce a mental simulation 

of an action in order for example to calculate the consequences of a plan. A robot body 

(collection of sensors and effectors) is required to express the computations of the mind in 

the physical world and to initially build this mind; however the mind can exist as a 

standalone computational process, abstracted from the body. I have described the Shared 

Experience Framework, which allows multiple robot bodies to contribute by their 

perceptions and knowledge to a centralized knowledge base. However every robot behavior 

is handled by a separate process, which allows each of them to share knowledge of others 

and at the same time to use it in its own way and to express its own “mind” by commanding 

the body it is attached to.  

Indeed for humans, the concept of mind seems intuitively linked to the one of 

individual, which is natural since our reasoning processes are based on the fact that we are 

individuals. Depending on the mind definition used it can be extended to communities of 

beings which creates the emergence of a collective mind, which is more than the sum of all 

the minds composing it. Indeed the idea of a distributed mind is growing and being tested in 

multiple scientific fields (see (Heylighen, Heath et al. 2004) and (Weick and Roberts 1993) for 

references on this topic). The collective mind, if it can exist in communities of biological 

beings, is fairly limited in its possibilities by the fact that two agents need to use 

conventional communication means. When I mention an “embodied, distributed, 
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computational theory of mind” I had a view of something deeper than just the processes 

resulting from the communication of multiple agents. The Shared Experience Framework 

provides a mental material that is the same for every individual contributing to it, while at 

the same time allowing each of them to build its own behavior. In this case, where is exactly 

the mind? All agents possess the same knowledge and only the way they use it is different, 

therefore could we say that the mind is simply the process of using knowledge to trigger 

some behavior? It would mean that every robot of the system owns its own mind, but it 

would also mean that the mind is a process which can be abstracted from the knowledge it 

works on, therefore creating dissociation between the body, the experience and the mind 

(see Figure 41, right part). But can we really say that in biological beings the mind is not just 

created by the sum of all experiences? Is there really a process that is independent of the 

memory and that handle the behavior, or is every single act we do just the consequence of a 

memory echo?  In the left side of Figure 41 I depicted the mind and the experience as 

separated, however I did so just to make the parallel with the Shared Experience Framework. 

I cannot and do not want to give an answer to this question. We reached a point where the 

implementation of cognition on machines doesn’t have to cope with the same requirements 

as the wet brain. The Shared Experience Framework opens various philosophical questions 

about the gap between an individual and a community of robots. For example, it is the core 

of the so called “Stand Alone/Complex” problem introduced at different levels by Arthur 

Koestler (Koestler 1968) and Masamune Shirow (Shirow, Oshii et al. 1995) (Ghost In The 

Shell). It will also question heavily the existing philosophies of the mind and the body: a body 

is required to gather knowledge about the world and to support the creation of a mind, but 

has the mind to own only one body? Is it transferable from one body to another? Once born, 

does it need any body to survive? Studying body, mind and consciousness under the 

engineered light of robotic allows not being dazzled by the sacred light of the Human. 

Bernard Werber, in “L’Encyclopedie du Savoir Relatif et Absolu” said with reason that 

in order to understand a system you have to extract yourself from it. All through this thesis I 

tried to avoid referring to mind, spirit or consciousness because they are concepts that we 

experience so intimately that they wield for almost everybody a “sacred” aspect. They are 

the essence of what we are and it appears to be impossible to reason outside of them. Even 

when Descartes doubted about everything, he reached the famous statement “I think 
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therefore I am”, therefore considering the thinking process and being conscious of this 

process as the core of our reality. 

 

Figure 41: The different interaction between the being components in both living things and in the Shared Experience 
Framework. Mind have to been understood as the process responsible for taking decisions based on the past experience 
and the current sensed world. 

However mind and consciousness are not elements that we attribute only to our very selves: 

they are also characteristics of other individuals. We consider that the behavior of others is a 

direct expression of their mind; therefore if this behavior is something that makes sense to 

us we assume that the individual responsible for this body owns a mind. If the body is unable 

to act, as in coma, we have many difficulties to decide if we should attribute spirit or 

consciousness to the inanimate envelop. Neuroimagery starts to investigate ways to test if 

the so called consciousness if still present in the brain (Laureys, Boly et al. 2006), indeed 

corticothalamic disconnections could be responsible of “consciousness loss”. Interestingly 

the thalamus is the interface between the cortex and the body, which could therefore be the 

link between body and mind. But most people haven’t such ways to investigate the 

consciousness of others, and being honest, we decide to attribute the conscious privilege to 

someone based on his physical interaction with the world. Therefore what about the case of 

artificial beings? Could they be considered as owning a mind whenever their behavior will 

become plausible? 
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I said in the preface that robotics was an illusion: by improving the behaviors of 

robots so that they interact with the world as humans do it, we implicitly fool observers to 

have them to attribute intentionality to a machine. Solipsism states that we cannot be sure 

about the existence of others and it is indeed true: how can we be sure about the existence 

of our neighbor’s mind apart from observing that his behavior is coherent? The only thing 

we can be sure about is that some process makes him act as if something was controlling his 

body in a similar way our mind controls ours. I summarized this idea in Figure 42 where I 

represented schematically that we are maintaining a model of the self and the other, while 

the first is the source of our behavior, the second is only a reconstruction based on the 

observation of other’s behavior. Naturally we try to have this behavior to fit a model of a 

“like us”, we assume that others mind is shaped as our own although if we take time to think 

about it we have no evidence of this. We attribute mind to people based on their behavior, 

although those controllers could be very much different to the thing we experience as our 

own mind. Therefore could we have the same argument about our own consciousness? 

What if this strong feeling that we are some mind-embedded envelop was only the result of 

ourselves perceiving our own behavior as an appropriate one? When one acts wrongly while 

being drunk, it is a common afterward justification to say “I was not myself”, underlying that 

our own mind was not controlling our behavior at this time. We observed our acts, but since 

they were not making sense we do not attribute them as our own decisions. It is a strong 

assumption, but if consciousness and mind are only the result of one observing that his own 

behavior matches what he expects, what could forbid a robot to hold them? One could 

argue that we can still be sure of our mind existence even without acting, by the thinking 

process, by mental imagery. What is thinking? We can guide it by will, we can force 

ourselves to think about a specific idea, let say a dog, and we know that we are conscious 

because the sensory traces composing the dog concept activates in our mental percepts.  If 

we consider the ability to focus our computations on a specific topic as a mental behavior, as 

our way to act on our direct mind perceptions, therefore the same idea applies: we know 

that we are thinking because the direction we imposed to our thoughts is the same as the 

one we perceived. We are able to perceive the effects of our mental actions on our thoughts, 

on our mental percepts, therefore we assume that we are conscious and that we are behind 

the commands. So what if the consciousness was just the mind’s ability to perceive itself? 



To
w

ar
ds

 a
 d

is
tr

ib
ut

ed
, e

m
bo

di
ed

 &
 co

m
pu

ta
tio

na
l t

he
or

y 
of

 co
op

er
at

iv
e 

in
te

ra
ct

io
n 

Pa
ge

 1
38

 
 

 

Fi
gu

re
 4

2I
nt

en
tio

na
lit

y 
an

d 
go

al
 o

f o
th

er
s a

re
 re

co
ns

tr
uc

te
d 

fr
om

 th
e 

ob
se

rv
at

io
n 

of
 th

ei
r a

ct
io

ns
 a

nd
 b

eh
av

io
r. 

Ho
w

ev
er

, b
ei

ng
 a

tt
rib

ut
ed

 a
 m

in
d 

is
n’

t a
 n

ec
es

sa
ry

 c
on

di
tio

n 
to

 p
ro

ve
 it

s 
ex

is
te

nc
e.



Towards a distributed, embodied & computational theory of cooperative interaction Page 139 
 

AAnnex 1: A Theory of Mirror Development 

Since Rizzolati discovered neurons that react both to observed and produced actions 

(Pellegrino, Fadiga et al. 1992; Rizzolatti and Arbib 1998; Rizzolatti and Craighero 2004), the 

cognitive science community has powerful theoretical object to manipulate: it is a system 

that could be an explanation for all the primates unique cognitive skills, although ethics, 

technical feasibility and the general feeling that the explanation for cognition cannot be 

simple are forbidding any global theory of mirror development to emerge.  Indeed many 

objections have been made to calm down the “mirror neurons excitement” (Dinstein, 

Thomas et al. 2008; Hickok 2009; Lingnau, Gesierich et al. 2009), producing again a sort of 

“war of philosophies” which science is fund of. As a “pacifist scientist”, in this annex I will not 

make any claim about the human cognition, I will just describe which mechanisms related to 

imitation and mirroring could help us to build robots that learn, maybe not as human do but 

at least in the same conditions as humans. 

Learning is a matter of consistency and convergence. One of the most basic properties of 

neurons is the Hebbian reinforcement, the fact that two cells that are often activated 

together will strengthen their connection so that they will be more likely to be activated 

together, etc. Indeed this virtuous circle effect can be witnessed in many aspect of what I call 

mirror development. Let’s assume that a newborn possess a basic untrained motor mirror 

system, which means that the observation of a body and the self-proprioception activate the 

same cortical area, but maybe not in consistent ways. However, the expression of the baby 

will be perceived and, through a controlled echopraxia (unconscious imitation (Buccino, 

Binkofski et al. 2001)), the caregiver will imitate the baby. However according to my MMCM 

model, such an imitation would be pulled toward a posture known by the caregiver, 

therefore having him to express a mixture of the baby’s posture and of a posture he is used 

to take. The inverse phenomenon occurs: the newborn perceives the adult and therefore 

moves toward this usual posture which acts as an attractor. The loop is described in Figure 
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43 and has been used as a teaching mechanism to have a MMCM map to learn the mapping 

between robot encoders and human skeleton recognized by Kinect (Figure 44).  

 

Figure 43: Convergence phenomenon of imitation. Postures known by the caregiver act as attractor and are teached to 
the baby through imitation. 
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In this experiment the robot was moving sequentially into different arm postures and the 

user had to imitate it, producing pairs of kinematic vectors that were taught online to a 

convergence map. After the map had learned, it could be used to have an imitation of the 

human by the robot, or to cause a drift in robot motor control based on human perception, 

as in echopraxia. At the time of writing no further investigation has been achieved and the 

experiment status is more a “proof of concept” (See video at 

http://youtu.be/uUquQdnGohE) than a real way to teach useful postures to the robot. 

However it could be used to test predictions of the MMCM model in against human 

imitation. 
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Figure 44: using the mutual imitation cycle to teach a MMCM to solve the correspondence problem between human and 
robot kinematics. 

The same kind of converging imitation is also the basis of the motor theory of speech (for 

the motor part and how to produce sounds (Liberman and Mattingly 1985)) and of the 

talking heads experiment (Steels, Kaplan et al. 2002). As for the posture, the spoken name of 

an object will be driving the imitation loop between the child and the caregiver. For example, 

whenever the child will say something that sounds at least a bit like “mum” the mother will 

repeat the correct word and this correct representation both on motor and audio modalities 

will bring the children a step closer to a good pronunciation.  
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Another famous example of this phenomenon is imitation of facial expressions (Meltzoff and 

Moore 1983; Carr, Iacoboni et al. 2003). This two way imitation (child does something, adult 

imitates, or reversal) is a perfect process to learn behaviors and self to other mapping at the 

same time. The caregiver is already shaped to produce meaningful postures in appropriate 

situations, when the child imitates him he shapes himself to produce this kind of useful 

behaviors. The mirror system could be a very good hypothesis to explain why this tendency 

to imitate appears, because a simple innate hard wiring of other and self-perception could 

lead to those mirror development loops and therefore to the creation of the mirror system 

by synaptic plasticity. 
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AAnnex 2: Central Cognition, Implementation Details 

Implementation details about the different cognitive architectures described in this 

manuscript are given in the related papers ((Lallée, Lemaignan et al. 2010; Lallee, Madden et 

al. 2010; Lallée, Lemaignan et al. 2011) attached as appendixes 1, 2 & 3), however Central 

Cognition, the software designed for handling the Shared Experience Framework hasn’t been 

extensively detailed yet. In this annex I give a few technical explanations about the software 

engineering involved in this project. 

Central Cognition is a C# program which core functionalities are standalone, they do not 

make use of any library and are therefore very easy to install, run and maintain. Some low 

level interfaces (like the specific robots controllers or sensors API) require to link CC against 

third part library for controlling specific hardware, however the .NET framework allows this 

integration with a minimum amount of effort. I’ll first present the core functionalities of CC 

and then present how it can be used to handle a group of iCub and Naos. 

Core 

The main functionality of CC is to provide a way to store knowledge (including objects, 

actions, plans and semantic relations) in a robot independent way.  A few static classes are 

devoted to this job, the most important one being the Egosphere which is in charge of 

storing the list of every world object (in the broad sense) known by the robot, including 

objects that are not present at a given time. The concept is similar to the one of the CHRIS’s 

Egosphere (which was representing objects using an ID and their spatial position and 

orientation) or to EFAA’s OPC, however the way to represent the information is much more 

optimized and intuitive. The Egosphere by itself is simply a dictionary of WorldObjects 

indexed on their names, the interesting fact is the datastructure representing a 

WorldObject: it is actually a class which is a part of an inheritance hierarchy as described in 

Figure 45. Having those items being real objects within the code allows easy management 

and interesting linkage of functionalities. For example the grammar management maintains 

list of vocabulary which is made of WorldObject, therefore when the sentence “iCub take toy” 

is recognized, the words “iCub” and “toy” provide a direct access to the mental 

representations of those objects. 
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Figure 45: Inheritance among the classes representing every concept known by the robot. The Egosphere is a collection 
of WorldObject which represent both artefacts (item it is possible to manipulate) and agents (robots and humans). 

Three main types of objects coexist now in the Egosphere: Artefact, Human and Robot. An 

artifact is basically only spatial information (position, orientation, size) and an affordance (a 

grasping configuration to be used by the robot when grasping those objects). Human are 

specific entities, but at the moment they do no hold special properties apart the fact of 

being an agent (therefore contribute to the vocabulary list for generative spoken grammars). 

Robot is the most interesting class, since it handle both the robot spatial information, but 

also an interface to be implemented by the final robot type (iCub, Nao, virtual avatar…). A 

basic motor primitive set needs to be implemented; optionally the robot can implement 

custom primitives, which allow recording/replaying of motor postures (for example to teach 

the robot how to wave). 

 

Figure 46 : The functions to be implemented by specific robots. It includes both a basic set of primitives, and the ability to 
build custom primitives (sequences of postures that are recorder, assigned to a name and replayed on demand). 

abstract BehavioralErrors lookAt(WorldObject where, bool waitActionDone); 
 
abstract BehavioralErrors reachAt(WorldObject where, bool waitActionDone); 
 
abstract BehavioralErrors graspAt(WorldObject where, bool waitActionDone); 
 
abstract BehavioralErrors release(WorldObject what, bool waitActionDone); 
 
abstract BehavioralErrors     executeCustomPrimitive(string p); 
 
abstract MotorPrimitive.PrimitiveInstance  learnCustomPrimitive(string p); 
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Speech capabilities are also provided to every robot by providing him with an instance of 

SpeechRecognizer (Microsoft Speech API) that can be attached to the robot specific 

microphone, it also provides a standard text to speech, which can be overridden (for 

example the input of the Say command in the case of iCub is forwarded to a module 

responsible for moving the lips). 

Another main static class for CC is the SharedPlanManager. It maintains a representation of 

the plans known by CC.  A specific shared plan can be retrieved by every robot and then can 

ask for its execution. The plan is achieved action by action: if the robot is the subject of an 

action then the according motor primitives are fired; in the case of the action to be 

accomplished by another agent, then the robot puts itself in waiting mode, waiting for the 

central ActionRecognition module to detect this action. A re-engagement mechanism is also 

implemented so that after the while the robot will ask to the user to execute its part. The 

action recognition at the moment is not implemented in CC, only the robots actions are 

forced to be recognized when achieved so that robots can synchronize themselves, in a 

human action case the user is expected to say “done” when the action is accomplished. An 

effective action recognition based on Kinects input will be the next improvement of CC. 

Indeed since multiple sensors (Kinects, robot cameras, tactile table…) can feed the 

Egosphere, a unifying mechanism was needed. Here again an abstract class, Perception, 

provide the necessary interface to have any kind of sensor to feed the Egosphere with a 

single format. Perceptions are basically threads that call periodically an Update function 

which returns the list of WorldObject perceived. The Egosphere is responsible for handling 

those signals and managing different perceptions which update the same objects (it does a 

mean of their different information, therefore granting a more accurate localization). 

 

Extension 

As example of how sensors can implement Perception or Robot, CC provides a few ready to 

use classes. 
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Perceptions 

Spikenet 

Spikenet perception is a template matching visual system which tries to recognize objects on 

a Yarp stream of images. It is based on a commercial system (Spikenet (Thorpe, Guyonneau 

et al. 2004)) that we have been using along the CHRIS project. Model files can be learnt, 

loaded or saved at runtime. 

OPC 

CC is mainly is sequel of the CHRIS project, however it is also compliant with the EFAA 

project, which uses a module called OPC as an Egosphere. The project related sensors 

(Reactable & Kinects) have already modules feeding the OPC. Therefore instead of coding a 

new implementation of that module for CC, it was easier to have a special perception which 

uses the OPC as the source of its data. OPC_Perception is polling the OPC, retrieving the 

objects and forwarding them to CC’s Egosphere which allows a transparent integration of all 

the EFAA’s sensors (see Figure 47). 

 

Figure 47: Integration of the EFAA's OPC in CC through the use of a single perception. 
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Robots 

iCub 

The main robot tested with CC is the iCub. There are even two different implementations of 

the robot using different motor controllers (respectively CHRIS and EFAA controllers). They 

both override the custom primitive learning by allowing the user to put the robot arms in a 

compliant mode, allowing kinesthetic teaching by recording sequence of joints angles for 

later replay. 

 

Nao 

The Nao’s implementation is mainly based on the work done for the Robocup@Home 2011 

competition. The motor implementation for basic and custom primitives was directly 

imported as a .NET library to allow execution of Choregraphe based actions (standard 

primitives) as well as kinesthetic teach actions. 
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AAppendix 1 

Towards a Platform-Independent Cooperative Human-Robot 

Interaction System: I. Perception 
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AAppendix 2 

Towards a Platform-Independent Cooperative Human-Robot 

Interaction System: II. Perception, Execution and Imitation 

of Goal Directed Actions 
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AAppendix 3 

Linking Language with Embodied and Teleological 

Representations of Action for Humanoid Cognition 
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AAppendix 4  

The EFAA’s OPC format specification 

This document has been produced to define the OPC object properties formalization and 

share them among the project partners.  It defines various keywords designing object 

properties that can be updated or queried by other modules. 

IDs 

Items are assigned a unique ID returned by the OPC when something is added to the 

database. ID is a property of an object and allows storing every object, even those which 

don’t have any name. Any ID is unique within the OPC. 

Entity 

Entity defines the type of the item. Here are the different entities defined within the 

efaaHelpers.h header file: 

#define EFAA_OPC_ENTITY_OBJECT              ("object") 
#define EFAA_OPC_ENTITY_TABLE               ("rt_table") 
#define EFAA_OPC_ENTITY_ROBOT               ("robot") 
#define EFAA_OPC_ENTITY_CURSOR              ("cursor") 
#define EFAA_OPC_ENTITY_MATH                ("math") 
#define EFAA_OPC_ENTITY_LOCATION            ("location") 
#define EFAA_OPC_ENTITY_EMO_ROBOT           ("emo_robot") 
#define EFAA_OPC_ENTITY_EMO_HUMAN           ("emo_human") 
#define EFAA_OPC_ENTITY_BODY_PART           ("body_part") 

Spatial Properties 

The position of an object in the robot reference frame is coded by 3 properties of double 

type. The unit is meter. 

#define EFAA_OPC_OBJECT_ROBOTPOSX_TAG       ("robot_position_x") 
#define EFAA_OPC_OBJECT_ROBOTPOSY_TAG       ("robot_position_y") 
#define EFAA_OPC_OBJECT_ROBOTPOSZ_TAG       ("robot_position_z") 
The dimensions of an object (bouding box) are coded by 3 properties of integer type. 
The unit is mm. 

#define EFAA_OPC_OBJECT_RTDIMX_TAG          ("rt_dim_x") 
#define EFAA_OPC_OBJECT_RTDIMY_TAG          ("rt_dim_y") 
#define EFAA_OPC_OBJECT_RTDIMZ_TAG          ("rt_dim_z") 

Affordances & PMP 
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For now the grasping configuration can be a property of an entity with the following tag & 

values. It can be used to send the proper command to PMP depending on the target. 

#define EFAA_OPC_OBJECT_GRASPCONF_TAG       ("graspConfiguration") 
#define EFAA_OPC_OBJECT_GRASPCONF_UP        ("up") 
#define EFAA_OPC_OBJECT_GRASPCONF_SIDE      ("side") 
#define EFAA_OPC_OBJECT_GRASPCONF_TOP       ("top") 

Spatial relations 

Spatial relations between objects are currently checked by the objRelationFinder 
module. It pushes properties of type list which store the list of IDs of objects. 

e.g.: ((id 1) (contains (3 4 5)) (isContained (6))) states that object 1 contains 
objects 3, 4 and 5 and is contained within object 6. 

#define EFAA_OPC_OBJECT_SPATIAL_CONTAINS    ("contains") 
#define EFAA_OPC_OBJECT_SPATIAL_CONTAINED   ("isContained") 
#define EFAA_OPC_OBJECT_SPATIAL_INTERSECTS  ("intersects") 
  

The entity « body part » (human awareness) 

The human detection modules will detect the humans (using the kinect for example), split it 

into part and push those parts into the OPC so higher level modules can use this information. 

A body part possesses a name, the «robot_position_...» property and an «owner» property. 

The «owner» property is of the string type and refers to the name of the human whom those 

parts belong to. The different body part names can be: 

#define EFAA_OPC_BODY_PART_TYPE_HEAD  ("head") 
#define EFAA_OPC_BODY_PART_TYPE_HAND_L  ("handLeft") 
#define EFAA_OPC_BODY_PART_TYPE_HAND_R  ("handRight") 

For example, to get the ID of Ilaria’s face you can send the query: 

ask ((entity==body_part)&&(name==head)&&(owner==Illaria)&&(isPresent==1)) 

iCubGUI 

Every entity present in the OPC that has its spatial properties (robot_position_x, 

robot_position_y, robot_position_z) set and the tag (isPresent 1) will be displayed in the GUI. 

Module responsible for this display is objLocationTransformer. The color of an object within 

the GUI is coded by 4 properties of integer type value: 

#define EFAA_OPC_OBJECT_GUI_COLOR_R         ("color_r") 
#define EFAA_OPC_OBJECT_GUI_COLOR_G         ("color_g") 
#define EFAA_OPC_OBJECT_GUI_COLOR_B         ("color_b") 
#define EFAA_OPC_OBJECT_GUI_COLOR_ALPHA    ("color_aplha") 
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