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viene proposto un innovativo approccio al peer rewiring basato su SA. Questo approccio è stato validato attraverso uno studio sperimentale estensivo degli eetti delle connessioni della rete su (i) la costruzione di SON e (ii) la IR nelle SON.
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Abstract: A Peer-to-Peer (P2P) platform is considered for collaborative Information Retrieval (IR). Each peer hosts a collection of text documents with subjects related to its owner's interests. Without a global indexing mechanism, peers locally index their documents, and provide the service to answer queries. A decentralized protocol is designed, enabling the peers to collaboratively forward queries from the initiator to the peers with relevant documents.

Semantic Overlay Network (SON) is one of the state-of-the-art solutions, where peers with semantically similar resources are clustered. IR can then be eciently performed by forwarding queries to the relevant peer clusters in an informed way. SONs are built and maintained mainly via peer rewiring. Specically, each peer periodically sends walkers to its neighborhood. The walkers walk along peer connections, aiming at discovering more similar peers to replace less similar neighbors of its initiator. The P2P network hence gradually evolves from a random overlay network to a SON.

Random and greedy walk can be applied individually or integrated in peer rewiring as a constant strategy during the progress of network evolution. However, the evolution of the network topology may aect their performance. For example, when peers are randomly connected with each other, random walk performs better than greedy walk for exploring similar peers. But as peer clusters gradually emerge in the network, a walker can explore more similar peers by following a greedy strategy. This thesis proposes an evolving walking strategy based on Simulated Annealing (SA), which evolves from a random walk to a greedy walk along the progress of network evolution. According to the simulation results, SA-based strategy outperforms current approaches, both in the eciency to build a SON and the eectiveness of the subsequent IR.

This thesis contains several advancements with respect to the state-of-the-art in this eld. First of all, we identify a generic peer rewiring pattern and formalize it as a three-step procedure. Our technique provides a consistent framework for peer rewiring, while allowing enough exibility for the users/designers to specify its properties. Secondly, we formalize SON construction as a combinatorial optimization problem, with peer rewiring as its decentralized local search solution. Based on this model, we propose a novel SA-based approach to peer rewiring. Our approach is validated via an extensive experimental study on the eect of network rewiring on (i) SON building and (ii) IR in SONs.

Résumé: Nous considérons une plate-forme pair-à-pair pour la Recherche d'Information (RI) collaborative. Chaque pair héberge une collection de documents textuels qui traitent de ses sujets d'intérêt. En l'absence d'un mécanisme d'indexation global, les pairs indexent localement leurs documents et s'associent pour fournir un service distribué de réponse à des requêtes. Notre objectif est de concevoir un protocole décentralisé qui permette aux pairs de collaborer an de transmettre une requête depuis son émetteur jusqu'aux pairs en possession de documents pertinents.

Les réseaux logiques sémantiques (Semantic Overlay Networks, SON) représentent la solution de référence de l'état de l'art. Dans les SONs, les pairs qui possèdent des ressources sémantiques similaires sont regroupés en clusters. Les opérations de RI seront alors ecaces puisqu'une requête sera transmise aux clusters de pairs qui hébergent les ressources pertinentes. La plupart des approches actuelles consistent en une reconguration dynamique du réseau de pairs (peer rewiring). Pour ce faire, chaque pair exécute périodiquement un algorithme de marche aléatoire ou gloutonne sur le réseau pair-à-pair an de renouveler les pairs de son cluster. Ainsi, un réseau à la structure initialement aléatoire évolue progressivement vers un réseau logique sémantique.

Jusqu'à présent, les approches existantes n'ont pas considéré que l'évolution de la topologie du réseau puisse inuer sur les performances de l'algorithme de reconguration dynamique du réseau. Cependant, s'il est vrai que, pour une conguration initiale aléatoire des pairs, une marche aléatoire sera ecace pour découvrir les pairs similaires, lorsque des clusters commencent à émerger une approche gloutonne devient alors mieux adaptée. Ainsi, nous proposons une stratégie mixe qui applique un algorithme de recuit simulé (Simulated Annealing, SA) an de faire évoluer une stratégie de marche aléatoire vers une stratégie gloutonne lors de la construction du SON. Les résultats de nos évaluations montrent que cette stratégie améliore les approches actuelles aussi bien pour la performance de la construction du SON que pour la pertinence des résultats retournés aux requêtes circulant sur le réseau pair-à-pair.

Cette thèse contient plusieurs avancées concernant l'état de l'art dans ce domaine. D'abbord, nous modélisions formellement la reconguration dynamique d'un réseau en un SON. Nous identions un schéma générique pour la reconguration d'un réseau pair-à-pair, et après le formalisons en une procédure constituée de trois étapes. Ce framework cohérent ore à ses utilisateurs (i.e. concepteurs du réseau) de quoi le paramétrer. Ensuite, le problème de la construction d'un SON est modélisé sous la forme d'un problème d'optimisation combinatoire pour lequel les opérations de reconguration du réseau correspondent à la recherche vi décentralisée d'une solution locale. Fondée sur ce modèle, une solution concrète à base de recuit simulé est proposée. Nous menons une étude expérimentale poussée sur la construction du SON et la RI sur SONs, et validions notre approche.

Mot-clés: Réseau Pair-à-Pair, Recherche d'Information, Réseaux Logiques Sémantiques, Recâblage des Pairs, Recherche Locale, Recuit Simulé Abstract: L'oggetto dello studio è una piattaforma Peer-to-Peer (P2P) per Information Retrieval (IR).

Ogni peer ospita una collezione di documenti testuali con contenuti relativi agli interessi del suo proprietario. Senza l'utilizzo di un meccanismo di indicizzazione globale, i peer indicizzano localmente i loro documenti e forniscono il servizio di risposta a interrogazioni (query). La rete è dotata di un protocollo decentralizzato che rende possibile l'inoltro collaborativo delle query dal peer iniziatore ai peer con i documenti rilevanti.

Le Semantic Overlay Network (SON) sono una delle soluzioni allo stato dell'arte, dove i peer con risorse semanticamente simili sono raggruppati, formando un cluster. L'IR viene quindi realizzata ecientemente inoltrando le query ai cluster che si sanno essere rilevanti. Le SON sono costruite e mantenute principalmente attraverso l'operazione di peer rewiring. Nello specico, ogni peer periodicamente invia un walker ai suoi vicini. Il walker segue le connessioni dei peer, con lo scopo di scoprire dei peer più simili al peer iniziatore di quanto non lo siano gli attuali vicini, per rimpiazzarli. La rete P2P network quindi evolve gradualmente da una rete casuale ad una SON.

Esplorazioni casuali e greedy possono essere applicate individualmente o in maniera integrata nel peer rewiring come una strategia generale durante l'evoluzione della rete. Tuttavia, l'evoluzione della topologia della rete può inuenzare le prestazioni di queste modalità esplorative. Per esempio, quando i peer sono connessi casualmente l'esplorazione casuale opera meglio della esplorazione greedy per raggiungere peer simili, ma quando i cluster emergono gradualmente un walker può esplorare più peer simili utilizzando una strategia greedy. Questa tesi propone una strategia esplorativa basata su Simulated Annealing (SA), la quale evolve da una esplorazione casuale ad una di tipo greedy, seguendo l'evoluzione della topologia della rete. I risultati delle simulazioni dimostrano che la strategia basata su SA raggiunge migliori prestazioni rispetto agli approcci correntemente utilizzati, sia in termini di ecienza nella costruzione della SON, sia nell'ecacia della successiva IR.

Questa tesi propone diversi avanzamenti rispetto allo stato dell'arte in questo campo. Prima di tutto, si identica un modello generico per il peer rewriting, formalizzato come una procedura in tre passi. La tecnica proposta fornisce una soluzione consistente per il peer rewiring, permettendo allo stesso tempo abbastanza essibilità per gli utenti e i progettisti nella specica delle proprietà del sistema. In secondo luogo, la costruzione della SON viene formalizzata come un problema di ottimizzazione conbinatorica, con il peer rewiring come strumento per la riceca locale della soluzione, in modalità decentralizzata. Sulla base di questo modello List of Figures Glauber dynamics in dierent random network topology with 25000 peers (Random network topology 1 is the one we used to achieve the previous simulation results). . . . . . . . . . . . . . . . . . . . . . . . 111 5.16 Clustering eciency of SA-based local search with Glauber dynamics in dierent random network topology with 25000 peers (Random network 1 is the one we used to achieve the previous simulation results).112 5.17 Relative intr-cluster similarity and clustering eciency of SA-based local search with Glauber dynamics in random network topologies with dierent size (Network with 25000 peers is the one we used to achieve the previous simulation results). . . . . . . . . . . . . . . . . 113

List of Tables A large number of P2P based systems have been developed for content (e.g., document) sharing, delivering and searching in last decades, such as P2P le sharing systems (e.g., [BitTorrent 2013]), P2P web search (e.g., [YaCy 2011]), and P2P social networks (e.g., [START_REF] Peerson | PeerSoN[END_REF]). With the content distributed in peers, all of these systems must provide a basic and necessary searching service, which is dened as Peer-to-Peer Information Retrieval (P2P-IR). It involves forwarding the information requests from their initiators to the peers having the relevant contents, and then getting the relevant contents back to the initiators. When an information request is issued by one peer, how to eciently get the relevant content in other peers is still an open question.

One paradigm to perform P2P-IR is to build a Semantic Overlay Network (SON), an overlay network where peers with semantically similar content are clustered together [Crespo 2002b]. Queries can be forwarded to relevant peer clusters in an informed way instead of being blindly ooded over the whole network. Moreover, range queries or other advanced queries can be allowed in SONs [START_REF] Doulkeridis | [END_REF]].

Chapter 1. Introduction

The choice of the specic paradigm to build SONs partially depends on the underlying network infrastructure. This choice in turn aects the robustness of the network against peers' dynamics behaviors (join/leaving the network, updating the content), the autonomy of the peers over their content, and even the performance of P2P-IR [Raftopoulou 2009a]. In general, similar peers can be clustered in structured P2P overlay networks, super-peer based P2P overlay networks, or unstructured P2P overlay networks. Among them, unstructured P2P overlay networks have the advantages of allowing high robustness to the dynamics and high autonomy of the peers. In this unstructured infrastructure, peers randomly connect to a limited number of other peers as their neighbors. They can leave or join the network without causing much workload to the network. However, peers can only communicate with their neighbors, which constitute the only knowledge they have about the network. Also, no central server exists to control the whole network and globally manage the resources in the network. All these factors make the clustering of similar peers to form a SON a challenging task, especially when the size of the network is large, and the peers frequently leave/join the network or update their contents. This thesis considers an application of P2P-IR in which peers have full autonomy over their contents and can freely join/leave the network. Therefore, we focus on building SONs in unstructured P2P networks.

1.1 Peer-to-Peer Information Retrieval

Reference Scenario

Let's consider a decentralized system for sharing personal expertise among researchers. Each researcher has a collection of text documents about his/her speciality (could be more than one speciality), and keeps them in a personal computer or privately somewhere in a server (e.g., cloud). An software agent is used to manage the documents (e.g., indexing and querying) for each researcher. It has full autonomy over these documents (e.g., which le to share, which search technique for indexing and querying).

A large number of software agents self-organize into a P2P networkSON where software agents are called peers. Each peer has a limited number of connections to other peers which are called the peer's neighbors. By keeping a connection to a peer, it means the keeper can directly send messages to the peer, although the messages may go through several routers in the physical network. The connections are directed: peer A connecting to peer B does not necessarily mean that peer B connects to peer A. They are self-organized by the peers themselves in such a way that peers with similar contents are connected and thus clustered, so that these 1.2. Problem Statement 3 peers can access each other within few hops; the peer clusters are connected so that message can be forwarded from one cluster to another. With the self-organized SON, researchers can ask relevant information from other researchers by sending a request to the network. The request is post-processed by the software agent into a query. Query routing is then performed in the following ways: one or more relevant peer clusters are rstly identied according to the connections among peer clusters. Then the query is forwarded to the relevant cluster(s). Once a query reaches a relevant cluster, it is diused among the peers in the cluster via the connections that cluster them up. These peers perform local IR and then return the relevant documents to the query initiator.

Besides the full autonomy over their documents collections, peers can autonomously join/leave the network or update their contents. The self-organized SON has a mechanism to eciently restore the SON topology changed by these dynamic behaviors, so that keep it robust against these behaviors. Therefore the performance of the target tasks (e.g., IR) can not be aected.

The same P2P-IR scenario is also suitable to interest-based P2P social network, where users host web pages or documents which are related to their interests. By sending a query to the relevant user clusters in which users share the similar interest, the query initiator can get relevant information. Self-organized SON can also be applied to P2P Information Filtering, in which documents are recommended among peers sharing similar interest.

Problem Statement

The problem is how to build the SON given a randomly connected P2P overlay network and certain requirements and constraints.

Let's represent a self-organized P2P overlay network as G = P, L with P representing all the peers and L representing all the connections. Each peer p i has a collection of text documents D i in one/multiple themes, and a limited number of connections to the other peers (a limited number of neighbors). Initially, the neighbors of each peer are randomly sampled from the network. The connections must be rewired to the appropriate peers, in order to build SON that has the following properties:

Clustered: Each peer has a set of connections to the peers with similar document collections. Through these connections, peers are clustered, in such a way that each peer can access all the similar peers in the network by one or few hops. This property is used for diusing information such as queries within a cluster.
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Connected: Each peer has a set of connections to the peers with dierent document collections. These connections make the whole network connected. The property is used for identifying the peer clusters that are relevant to a query.

The following hypotheses of operational constraints are made according to the reference scenario:

No coordinators: Neither a central point nor powerful and stable peers exist to facilitate the SON construction;

Peer autonomy: Peers have full autonomy over their documents. They locally manage and index the documents they would like to share. Other peers can not access these contents unless they send a query to the peers to request relevant documents;

Limited connections: Each peer only keeps a limited number of connections to the other peers, considering that maintaining the connections consumes the resources of the peer as well as the networking facility.

In addition, in order to maintain its topology when dynamic behaviors like joining/leaving the network or updating contents happen, the SON must be able to perform the following operations:

Joining new peers: new connections must be added in the network in order to associate the new peers with the other similar peers in the network;

Recovering broken connections: old connections must be rewired when one of the connected peer leave the network and break the connection;

Rewiring changed connections: old connections must be rewired, when one of the connected peer updates its content and thus change their similarity.

With the above constraints of local operations and network dynamics, it is challenging to design a protocol to build a SON eciently. By eciently, it means to build a SON with a high quality of peer clusters and with a low cost of time and trac.

Methodology

Given a random P2P overlay network as previously described, the SON is built via peer rewiring: peers rewire their connections so that each peer has a set of connections to peers with similar contents (called short-range links) and a set of 1.3. Methodology 5 connections to peers with dierent contents (called long-range links). Similar peers are then clustered up by short-range links and peer clusters are connected by longrange links. Long-range links can be easily obtained, since there are usually much more peers with dierent contents than peers with similar contents. So the rewiring mainly focuses on building short-range links.

We identify and formalize peer rewiring as a three-step procedure repeatedly performed by each peer that initially connects to some random peers. A peer that rewires its connections is called rewiring peer. The three-step procedure is described as follows:

Rewiring initiation: the rewiring peer initiates a walker, which is actually a message carrying the necessary information about the rewiring peer.

Peer collection: the walker walks along peer connections, collects the information of the peers it accesses, and returns to the rewiring peer when its time to live (TTL) equals to 0.

Link update: the original peer selectively sets new links and discards old ones, according to the information of the explored peers.

Each peer repeatedly discovers more similar peers from its neighborhood (a set of peers that can be accessed within a given number of hops). The walker takes its steps according to a certain strategy and collects the information of the peers it explores. These peers are then used to update the peer's short-range links until the rewiring peer links to either semantically nearest peers (s-NN selection) [Voulgaris 2007] or the peers whose average similarity to the rewiring peer is below a given threshold (range-based selection) [Schmitz 2004, Raftopoulou 2008a].

Based on the formalization, peer rewiring is modeled as a decentralized local search approach to a combinatorial optimization problem, which refers to the task of building SONs. A Simulated Annealing (SA)-based decentralized local search approach is then employed. It guides the walker to take its steps to other peers according to a certain probability. The probability is controlled by two factors. One is the similarity between these peers and the rewiring peer; the other is a gradually decreasing parameter called temperature. When the temperature is high, the probability to step on any peer is almost the same, so peers are almost randomly explored in the neighborhood. As the temperature decreases, the probability to step on similar peers increases, and the probability to step on dissimilar peers decreases. Therefore, the strategy the walker employs gradually changes from random walk to greedy walk, which matches with the evolution of the network topology: from a random network to a SON. In other words, random walk is employed when the peers 6 Chapter 1. Introduction are randomly connected; as peer clusters gradually emerge in the network, random walk is gradually replaced by greedy walk.

To rewire the links introduced or destroyed by dynamic behaviors, the walker is also guided by SA with an initial temperature decided by the context. If the quality of the short-range links does not improve because the current temperature is too low, the temperature is reset to a higher value to allow an extensive exploration in the neighborhood.

Contributions

We have three main contributions, which are described in the following.

Generic Models for Building SONs

We identify a generic framework for building SONs in self-organized P2P networks, where no central controller nor coordinators exist and frequent dynamic behaviors happen. We identify a generic peer rewiring pattern and formalize it as a threestep procedure that is initiated independently and periodically by each peer. Our technique provides a consistent framework for peer rewiring, while allows enough exibility for the users/designers to specify its properties.

We model the building of SONs as a combinatorial optimization problem, and the process of rewiring peer connections as its decentralized local search solution.

In the combinatorial optimization problem, an objective function is dened to measure the tness of the SON, which involves the similarity between peers and their neighbors, and the number of accessible similar peers in their neighborhood. In the decentralized local search solution, each peer independently optimizes the conguration of its neighbors, by searching better congurations from a local search space (its neighborhood).

This optimization model reveals an explicit gap between building SONs (the combinatorial combination problem) and its state of the art solution: peer rewiring (the decentralized local search solution). Optimizing the conguration of peer's neighbors may not guarantee a global optimum of the combinatorial optimization problem: it depends on the specic local search strategy. This model is useful for better analyzing the state of the art approaches and designing a better decentralized local search strategy to reach the global optimum. We propose a novel Simulated Annealing (SA)-based decentralized local search solution to the combinatorial optimization problem described above. The approach 1.5. Organization of the Thesis 7 employs SA to implement an evolving local search strategy that matches with the evolution of the P2P overlay network topology. It extends the traditional way to use random search and greedy search individually or to integrate them with xed probability [Schmitz 2004, Voulgaris 2007, Parreira 2007, Raftopoulou 2008a].

With the evolution of the P2P overlay network topology from a random connected network to a SON, peers' neighborhood structures are changing over the time. Consequently, it is more rational to allow more random searches in the beginning and more greedy searches in the end, since similar peers are gradually linked up in the neighborhood. The proposed SA-based approach implements this idea and takes the existing research one step further.

Extensive Experimental Study

We make an extensive experimental study about the eect of the network conguration and the local search conguration on the performance of building SONs and the subsequent IR. Specically, we simulate dierent walking strategies, such as greedy walk, random walk, SA-based walk to gure out how they aect the performance of building SONs. The same strategies are used to discover similar peers for the new peers who join the network at dierent times (e.g., in the beginning where the network is still randomly connected; when similar peers start to become clustered; when the peers are well clustered). Their performance is studied and analyzed to nd the relation between the strategy's performance and the joining time.

Moreover, we study the minimum number of links each peer should keep in order to maintain the whole network connected. A connected network can allow a peer to access all the other peers by following certain connections. It is the pre-requisite for peer rewiring and the subsequent IR task. With this minimum limit, we study how the number of links each peer keeps can aect the performance of peer rewiring and the subsequent IR. These experimental studies provide new insights into the fundamental issues related to network design and SON organization.

Organization of the Thesis

The thesis has six chapters. In Chapter 2, we give an overview of the state of the art about P2P Information Retrieval, SONs and the evaluation of the SON construction. Based on this overview, we point out the position of this thesis. In Chapter 3, we present the generic mechanism to build SONs and perform IR in SONs 

Introduction

P2P networks are a type of overlay networks designed as an alternative to the conventional Client-Server infrastructure. In the latter infrastructure, servers are designed to oer services like storage and search to clients. The clients communicate with the servers to get services, and they do not oer any service. In P2P networks, instead, a peer acts both as a server and a client. When it oers services to other peers, the peer acts as a server; when it requests services from other peers, it acts as a client [Wang 2003].

Information Retrieval over P2P networks (P2P-IR) involves forwarding a query from its initiator to peers with relevant documents (query routing), performing local IR in these peers, and then returning the relevant documents to the peer that initiates the query. A lot of works in this eld focus on how to achieve ecient query routing. To this end, the underlying overlay network matters a lot. Based on the same overlay network, the way to organize the resources matters too. This thesis specially focuses on IR in unstructured P2P networks, an overlay network where peers only know their neighbors and their dynamic behaviors do not cause much 10 Chapter 2. State of the Art workload on the network. In the lack of a central server, peers autonomously rewire their connections to form a SON that facilitates ecient P2P-IR performance (it will be described in Chapter 3).

In this chapter, we rstly introduce a list of concepts which will be repeatedly used in the thesis, then we review the state of the art in P2P-IR and SONs. We start from the introduction and analysis of dierent P2P overlay networks. We then give an overview of IR in P2P networks in which SONs play an important part. A detailed overview is presented about building SONs, specially building SONs in unstructured P2P overlay networks. In this detailed review, we also present how the documents of a peer are described and how similarity between peers is measured in the state of the art. Finally, we present metrics to evaluate the protocols to build SONs and the quality of the resulting SONs.

Clarifying the Concepts

Some concepts are claried as follows. They will be repeatedly used in this thesis.

Overlay Network An overlay network is a computer network built on the top of another network, particularly a physical network [START_REF] Jannotti | [END_REF]]. Nodes in the overlay are connected by virtual or logical links, each corresponding to a paththrough one or multiple physical linksin the underlying network. P2P overlay networks are one of the typical examples. P2P Overlay Network A P2P overlay network [START_REF] Lua | [END_REF]] can be represented as a graph G = P, L , where P is a non-empty countable set, called peers, and L is a set of pairs of dierent peers, called links. Throughout this thesis, we will refer to a peer as p i by its order i in the set P . The link l i,j joins the peers p i and p j , which are dened as connected. The link is directed, and p j is called the neighbor of p i . For the sake of being concise, P2P networks will be used frequently to refer to P2P Overlay Networks.

Peers Peers refer to the nodes in a P2P overlay network. They have three roles in the network: (i) as resource provider to provide hardware resources (like processing power, storage capacity and network link capacity), services and content (text documents in this thesis); (ii) as resource consumers to access the resources provided by all the peers in the network; (iii) as message transmitters to forward a message to the next hop, to enable the communication between peers [START_REF] Lua | [END_REF]]. Peers are also featured by their autonomously dynamic behaviors: (i) joining/leaving the network; (ii) changing their content without the permission of a central control point.

Clarifying the Concepts
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P2P Information Retrieval (P2P-IR) P2P-IR involves four steps: (i) query initiation: a peer issues a query when its user has an information request.

We call this peer query initiator; (ii) query routing: a peer forwards the query to one or more of its neighbors once it receives a query, until the peers with relevant documents are reached or the time to live (TTL) of the query is equal to 0; (iii) local IR: when a peer receives a query, it performs IR against its text documents and sends the relevant documents back to the query initiator; (iv) postprocessing: once the query initiator receives these documents, postprocessing like ranking and replication removal can be performed to rene the results [START_REF] Tigelaar | [END_REF]].

Semantic Overlay Networks (SONs) SONs are dened as a type of P2P overlay networks for organizing peers in thematic clusters with similar contents, so that queries can be selectively forwarded to only those peers having content within specic topics [Crespo 2002b]. In its original proposal, a global classication hierarchy was used to organize the thematic peer clusters, each corresponding to one class in the classication hierarchy and called a SON. However, SONs do not necessarily imply the use of semantics in the traditional sense (e.g., ontology). Peers can form clusters by connecting to the other similar peers [Tang 2003a, Voulgaris 2007, Raftopoulou 2009b]. The peer cluster generated in this way is not well dened as in the original proposal. Instead, all the peers are somehow connected with each other. For clarifying the presentation, in this thesis, we call the whole network with peers clustered a SON.

Peer Rewiring Peer rewiring refers to the process in which a peer removes an existing or dead link and builds a new one to another peer [START_REF] Raftopoulou | Peer rewiring in semantic overlay networks under churn[END_REF].

A rewiring peer refers to the peer that performs the operation of removing/building links.

Neighborhood The neighborhood of a peer refers to the set of peers that can be accessed by this peer within a given number of hops. Specically, if a peer p i initiates a message with time to live (TTL) γ, and forwards it to other peers along all the possible links until its TTL equals 0, the peers the message visits are called the neighborhood of p i . γ is called the radius of the neighborhood.

The message that is forwarded along the possible links is also mentioned as a walker that walks along the possible pathes; forwarding the message to another peer is regarded as the walker going a step further. Short-range Links are links that connect the peers within a thematic clus-12 Chapter 2. State of the Art ter [Raftopoulou 2008a]. The number of short-range links is limited due to the cost for maintaining them. The peers the short-range links point to are called short-range contacts. Long-range Links are links that connect peers of dierent clusters [Raftopoulou 2008a].

The number of long-range links is limited due to the cost for maintaining them. The peers the long-range links point to are called long-range contacts.

P2P Overlay Networks

In a P2P network, peers form a self-organizing network that is overlayed on the Internet Protocol (IP) network. Data is still exchanged over the underlying TCP/IP network, but in P2P overlay networks peers communicate with each other directly via the logical links (each of which corresponds to a path through the underlying physical network). In [Buford 2010], a list of properties are dened for a typical P2P overlay network. We list the most signicant ones:

Resource sharing: each peer marks a part/all of its local resource as `shared', as a contribution of the system resources.

Networked: peers are interconnected with other peers, so as to form a connected graph.

Decentralization: no central control point exists, and the behavior of the system is embodied by the collective behaviors of the participant peers. Some P2P systems however use a central server as a booster or a directory server of the system resources, e.g., the initial version of Napster1 (it pioneered the idea of P2P le sharing with a centralized search facility).

Autonomy: behaviors of a peer in the P2P system are determined locally, and there is no single administration for the P2P system.

A typical P2P Overlay Network should also have the properties of Symmetry, Self-organization and Scalability. Symmetry implies that all the peers have equal roles; Self-organization lets peers to use local knowledge and local operations to collaboratively maintain the network architecture, no peer dominates the system; Scalability requires that the workload at each peer and the response time of the system do not grow more than linearly with respect to the overlay network size. In 2.3. P2P Overlay Networks 13 addition, a P2P overlay network should be resilient against peers dynamic behaviors. For example, it should be able to facilitate new peers joining the network, and maintain the network stability when peers leave or change their resources. However, these properties are not exhibited in some P2P systems, according to the requirements of the specic application [Buford 2010].

With the above features, a P2P overlay network oers various services like routing architecture, search of data items, and fault tolerance [START_REF] Lua | [END_REF]]. Based on how peers are connected to each other in the P2P overlay network, and how resources are indexed and searched, P2P overlay networks are classied as unstructured, structured, and hybrid.

Unstructured P2P Overlay Network: The notion of unstructured P2P overlay network describes a type of P2P overlay networks in which no global structure is imposed and peers randomly connect to each other. Peers locally index their resources and play equal roles. In order to search information, the query has to be forwarded from the initiator to the peers with relevant documents. Since peers has no global information about the network and the connections are random, the query has to be forwarded blindly or only using local information [Fletcher 2005]. A traditional way is ooding the query through the network, and blindly nding those peers that have the relevant information [START_REF] Kalogeraki | [END_REF].

Typical Examples of unstructured P2P overlay networks includes the initial versions of Gnutella2 and FreeNet3 .

Structured P2P Overlay Network: Oppositely to unstructured P2P overlay network, a strict global structure is imposed on a structured P2P overlay network. Peers are arranged into a specic topology based on this global structure. Structured P2P overlay networks commonly implement a Distributed Hashing Table (DHT), in which a constant hashing function is used to assign each le to a particular peer. Thanks to the existence of the global structure, query forwarding can be performed in a deterministic way [START_REF] Dhara | [END_REF]]. Chord [START_REF] Stoica | [END_REF]] and CAN [START_REF] Ratnasamy | [END_REF]] are two commonly used protocols in structured P2P network.

In Chord, a constant hashing function is used to generate an m-bit ID for each peer. All the peers form a Ring topology. The peers in the Ring are ordered by their IDs in a clockwise order. The same hashing function is used to generate an ID for each le. The ID is called key. Each peer keeps a hashing table for storing 14 Chapter 2. State of the Art key, f ile inf ormation pairs. The le information, which contains the le's name and the IP address of the peer where the le is stored, is used to locate the le. A key, f ile inf ormation pair is stored in its rst successor peer, dened as the peer in the Ring whose ID is equal to or follow the key. The predecessor peer, on the contrary, is the peer in the Ring whose ID is smaller than the key.

Each peer keeps a routing table to enable nding a le when its key is given. The routing table consists of the information of the other peers in the Ring, including the rst predecessor of the peer, a list of its successors, and a nger table with m entries. The ith entry in the nger table points to the peer whose ID is the closest to (id + 2 i-1 ) mod 2 m , with id as the ID of the peer. The searching procedure for a le location is as follows: upon receiving a lookup request (a key), the peer rst checks if the key falls between its ID and its successor's ID. If it does, it returns the successor as the destination peer and terminates the searching service. If the key does not belong to the current peer, the peer forwards the request to the peer in its nger table with the ID the closest to and lower than the key. The forwarding process proceeds recursively until the destination peer is found.

In CAN, the IDs of peers and IDs (keys) of les are generated as a point in an m-dimensional space using a constant hashing function. Unlike in Chord where each peer stores the keys in an ID interval, peers in CAN store the keys in a region of the m-dimensional space. Specically, the entire m-dimensional space is divided into zones where each node owns one zone. The node that owns a zone is responsible for the keys belonging to that zone. Similar to Chord, each peer keeps a routing table for lookup service. This table contains the information of its neighbors in the m-dimensional space. Neighboring nodes are the nodes whose zones are adjacent to each other. Given a key, searching the locations of the relevant les starts with forming a CAN message carrying the destination coordinates. The message is then forwarded toward the peer which owns the destination zone in a greedy fashion: the peer always forwards the message to the neighbor that is the closest to the destination.

Hybrid P2P Overlay Network: The unstructured and structured P2P overlay networks treat participant peers equally, and are referred as pure/at P2P overlay networks. Hybrid P2P overlay networks, on the other hand, consider the heterogeneity of the participant peers. Powerful peers (e.g., with high storage, large bandwidth) are used as super-peers. They collaboratively perform the majority of the tasks, as a central server [START_REF] Darlagiannis | Hybrid Peer-to-Peer Systems[END_REF]]. So a hybrid overlay network is a combination of a at P2P overlay network and a conventional Client-Server network.

Each super-peer manages a set of normal peers and holds a directory of their resources. A normal peer can submits information request to the super-peer and get relevant documents returned. For the communication between super-peers, both unstructured and structured P2P infrastructure can be used [START_REF] Eberspächer | [END_REF]]. Searching is performed in the following way. When a peer has an information request, it rstly sends the request to its super-peer. The super-peer then decides to forward this request to the other peers it manages or to the other super-peers managing other peers. If the relevant documents are located in the peers it manages, it takes the former action. It sends the request directly to the relevant peers. The peers receiving the request perform local IR and send relevant documents directly to the request initiator. Otherwise, the super-peer forwards the request message to the other super-peer(s) based on the routing mechanism of the super-peer overlay network. The other super-peers do the similar operation until the peers with relevant documents are found or the request time is out. An example of this type of hybrid P2P overlay networks is JXTA [Traversat 2003].

Analysis of P2P Overlay Network Architecture: Each of the above three overlay network architectures has its advantages and disadvantages. We analyze and compare them according to their tolerance to dynamic behaviors of peers, routing eciency and the search service they can provide. The comparison summary is presented in Table 2.1. Unstructured P2P overlay network are highly robust against dynamic behaviors of peers, because peers are less dependent on each other as in structured P2P overlay network [START_REF][END_REF]]. Moreover, each peer can specify its local IR service, which allows more advanced searches for the coming queries. However, the lack of a global structure results in low routing eciency, especially for unpopular resources [Buford 2010].

Chapter 2. State of the Art

Structured P2P overlay networks have a higher routing performance comparing with unstructured P2P overlay network, due to its global structure and DHT. However, the structure imposed on the network requires a higher cost for topology maintenance, especially with frequent dynamic behaviors in the network. For example, in Chord, the joining or leaving action of a peer requires O(log 2 size of the network) messages [START_REF] Stoica | [END_REF]]. In CAN, the same action requires O(number of dimensions) messages [START_REF] Ratnasamy | [END_REF]]. In addition, the global structure in structured P2P overlay networks limits the search service they can provide (only matching in Chord and point/range query in CAN).

While both unstructured and structured P2P overlay networks have their advantages and disadvantages in nature, hybrid P2P overlay networks combine most of their advantages, avoid some of their disadvantages and provide better performance [Schollmeier 2001], thanks to the employment of super-peers. Super-peers refer to the most powerful and stable peers in the network. They provide ecient routing performance. At the same time, the normal peers have more exibility to join or leave the network without causing too much cost for maintaining the network topology. No global structure exists in the network, so advanced search service is possible, because the normal peers can specify the search services they provide. However, since hybrid P2P overlay network is composed of heterogenous peers, its application is limited to the situation where super-peers exist.

Although the dierent P2P overlay network architectures have dierent properties, they share a common operation called bootstrapping. It is executed when a peer joins the P2P overlay network for the rst time. It is used to help the new peer to connect to the other peers in the network. A common approach for bootstrapping is through a bootstrapping server [START_REF] Cramer | [END_REF]]. The bootstrapping server keeps a list of existing peers. When being contacted by a new peer, the bootstrapping server replies it with one or a set of randomly selected peers. The new peer contacts these peers and builds connections with them.

P2P Information Retrieval

To search documents stored distributively in peers, a query should be rstly issued by one peer. Then the query should be forwarded to peers where relevant documents are stored. The implementation of this task heavily depends on the P2P overlay network architecture. In Table 2.2, we classify P2P-IR into two categories according to their indexing techniques. One uses global indexing, and the other uses local indexing. Global indexing aims to use a consistent mechanism to index all the documents in the network. It can be implemented by a central server or by 2.4. P2P Information Retrieval employing structured P2P overlay network, for instance, Chord and CAN. While global indexing may require a well-organized P2P overlay network and perform IR eciently, local indexing is implemented over unstructured P2P networks or superpeer P2P overlay networks. In local indexing, peers index their documents locally and perform local IR in order to nd documents relevant to a query. The network topology is loosely organized because peers are not strictly dependent on each other as in structured P2P networks. 

Global Indexing

The simplest way to implement global indexing is to use a central server. This approach avoids most problems regarding query routing and index placement. However, it has the problem of single point failure and other legal problems [START_REF] Risson | Survey of research towards robust peerto-peer networks: search methods[END_REF]]. The most famous example of this type of network is Napster. It is the pioneering P2P le sharing system whose original version ran into legal diculties and then ceased operations.

Besides, Chord and CAN are two systems commonly used for global indexing in P2P overlay networks. In Chord based IR, documents are indexed by their component terms [Reynolds 2003]. The indices are stored in a HDT, where keys are the hashing function values of terms. To index a document in Chord, a set of encoded term, documentinf ormation pairs are published in a DHT. The document information refers to the name of the document as well as the IP address of the peer that kept it. When a query is issued, a hash value is generated for each of its component terms. These hashing values are used to query the DHT to get the the information of the documents that contain the terms. The relevant documents are those containing all the component terms of the query. Trac cost is spent for publishing documents to DHT, querying the DHT, contacting the peers holding the relevant document, and transferring the documents to the query initiator. To save trac cost for publishing documents, [START_REF] Papapetrou | [END_REF][START_REF] Papapetrou | [END_REF] form the peers into groups in a self-organized fashion. Instead of each individual peer submitting index information, all peers of a group cooperate to publish the Chapter 2. State of the Art index updates to the DHT in batches. In [START_REF] Podnar | [END_REF]], documents are indexed with highly discriminative keys, in order to save bandwidth consumption.

In CAN based IR [Tang 2003a, Tang 2003b], content-based full-text search is implemented via a distributed lookup table that supports multi-dimensional document/query representation. Documents in the network are indexed according to their vector representations (based on Latent Semantic Analysis: an advanced document indexing and ranking algorithm) in such a way that documents with similar vector representations are indexed in the lookup table of the same/adjacent peers. So the relevant documents of a given query can be found in the same/adjacent peers, which achieves both eciency and accuracy.

Local Indexing

While global indexing has to be based on a global lookup table which requires a strictly organized network topology, local indexing can be implemented in a loosely organized P2P network. A peer simply indexes its local les and waits for queries from the other peers. When it receives a query, local IR is performed, and then the relevant documents are returned to the query initiator. Local indexing enables rich queries (not limited to a keyword lookup) and advanced retrieval technique.

To forward a query to target peers, a simple way is ooding. Normally, a TTL is dened to limit the hops the message is ooded, in order to save the trac cost. However, it still generates a large volume of query trac with no guarantee that a match will be found, even if it does exist in the network. There have been a lot of attempts to improve this ooding approach. For example: forwarding queries by a random walk [START_REF] Lv | Search and replication in unstructured peer-to-peer networks[END_REF]], an informed walk [START_REF] Adamic | [END_REF]], or by clustering peers according to their content [Crespo 2002b] or interest [START_REF] Sripanidkulchai | [END_REF]].

A variant, or rather an optimized methodology, of local indexing is aggregated local indexing. A super-peer based P2P overlay network is employed for this. A superpeer holds the index of both its own content as well as an aggregation/summary of the indices of all the peers it manages. This architecture introduces a hierarchy among peers and by doing so takes advantage of their inherent heterogeneity. It has been used by FastTrack and in recent versions of Gnutella. Query routing is performed by the super-peers which are in charge of sending the query to target peers. Since these super-peers have more computing power and high stability, communication among them has lower susceptibility to bottlenecks and thus query routing can be better performed compared to local indexing. For example, in [START_REF] Balke | [END_REF]], a super-peer backbone is organized in the HyperCuP topology for optimizing the necessary query routing. In [START_REF][END_REF]], a super-peer based P2P network architecture is also used to improve the querying performance. P2P-IR with local indexing avoids index publishing or updating, while that with global indexing must perform it. Thus, the cost for local indexing is cheaper, and the impact of churn on the network is lower. But for query routing, local indexing costs more than global indexing does, and makes unpopular data unreachable [START_REF] Tigelaar | [END_REF]]. On the other hand, global indexing provides ecient query routing, but it only supports exact matching or point/range queries.

Semantic Overlay Networks (SONs)

SONs were rstly proposed and dened as overlay networks where nodes connect to other nodes that have semantically similar content [Crespo 2002b, Garcia-Molina 2003]. In SONs, nodes with semantically similar content are clustered together. This allows a exible network organization that improves query performance while maintaining a high degree of node autonomy [Crespo 2002b]. The SONs in this proposal are organized based on unstructured P2P network architecture, which guarantees network exibility and node autonomy.

The concept of SON is also used in P2P-IR proposals based on CAN and superpeer based architecture. For example, in [Tang 2003b, Tang 2003a], the authors propose an approach to cluster the documents using LSA and CAN-based P2P overlay network, so that semantically similar documents are indexed in neighboring peers. In [Doulkeridis 2008[START_REF] Löser | [END_REF][START_REF] Kurve | Optimizing cluster formation in super-peer networks via local incentive design. Peer-to-Peer Networking and Applications[END_REF]], a super-peer based architecture is used to cluster the peers with similar content. Super-peers are used to manage the peer clusters. These works follow the principle of SONs to make peers with similar content neighbor to each other. They improve query performance, but allow a low degree of node autonomy due to either the global indexing as in [Tang 2003a, Tang 2003b] or aggregated local indexing as in [Doulkeridis 2008]. In other words, the documents in each peer are indexed and managed not only by the peer itself but also by the other peers.

Many studies show that peer search systems perform better when the content in peers are clustered and queries are sent to relevant clusters. In SON systems, a query are processed by rstly identifying the relevant peer clusters; then it is directly forwarded to those relevant clusters. Local search is only performed in the peers in those relevant clusters, so the search services of other peers can be freed for answering the other queries [Crespo 2002b]. Moreover, the peers in the same cluster can answer each other's query, if the query is about the same theme of the cluster [START_REF] Sripanidkulchai | [END_REF]].

Based on the state of the art, we generalize a classication about P2P overlay networks and P2P-IR. Figure 2 

Using Coordinators

In this technique, a central server or powerful and stable peers are required to be the coordinators. This technique can build SONs and perform the target tasks in SONs eciently due to the global information as well as the facility the coordinators have, but its application is limited because heterogeneous peers are required. For example, a central controller is used in [START_REF] Bawa | [END_REF]] to cluster the peers into topicbased groups each called segment. Two types of links between peers are dened, one for connecting peers whose documents are in the same segment, the other for connecting peers whose documents are in dierent segments. The central controller is a distinguished peer in charge of clustering documents and assign segment ID for new peers. Following a similar line, [Klampanos 2004] proposes a two-stage clustering procedure: individual peer documents are locally clustered using a hierarchical clustering algorithm; then a global clustering algorithm is performed in the controller based on the local clusters.

Coordinators are also used in [Doulkeridis 2006[START_REF] Doulkeridis | [END_REF], Doulkeridis 2008] where a hierarchy clustering approach is proposed based on peer coordinators to generate SONs. As in [Klampanos 2004], peers locally cluster their documents. Then the peers in local regions are grouped (called zones), forming clusters based on data stored on these peers. These zones are merged and clustered recursively until global zones and clusters are obtained. Local grouping and zone merging are performed by peer coordinators. In [START_REF] Triantallou | [END_REF]], a P2P architecture where nodes are logically organized into a xed number of clusters is presented. The information of clusters are calculated during the bootstrapping of the system and each node has the information of the clusters in the whole network.

Using Query Feedbacks

For this second technique, building SONs does not impose much workload on the system, because it takes advantage of the querying histories. A heuristic is used to detect the peers that share interests: peers that have content that we are looking for share similar interests [START_REF] Sripanidkulchai | [END_REF]]. When a peer joins the system, it may not have any information about other peers' interests. Its rst attempt to locate content is executed through ooding. The lookup returns a set of peers that store the content, which are the potential candidates of `shortcuts'. As more lookups are performed, peers can build a list of `shortcuts' that can be used to forward later queries. In [START_REF] Sripanidkulchai | [END_REF]], a content location solution is proposed in which peers loosely organize themselves into an interest-based structure on top of the existing Gnutella network. A similar proposal is made in [Tempich 2004]. It denes a method for query routing that lets peers observe which queries were successfully answered by other peers. The peers memorize their observations, and subsequently use the information to select peers to forward requests to. [START_REF] Sedmidubsky | Adaptive approximate similarity searching through metric social networks[END_REF] proposes two algorithms to improve the connection built based on the querying feedbacks as well as the later querying routing. One is used to manage query histories of individual peers with the possibility to tune the trade-o between the extent of the history and the level of the query-answer approximation; the other is to limits the exploration of the network in query routing.

In addition to nd peers with similar interests, query histories can also be used to associate a peer with relevant peer clusters. [START_REF] Koloniari | Georgia Koloniari and Evaggelia Pitoura. Recall-based cluster reformulation by selsh peers[END_REF]] models the clusterreformulation problem as a game where peers determine their cluster membership based on potential gain in the recall of their queries. This work assumes that each cluster has a unique identier, and that all the peers in the cluster are aware of this unique identier.

However, accumulating query feedbacks takes time. When no queries or only a small number of queries are generated, IR has to be performed by ooding or random walk. Moreover, a peer may issue the queries that are not related with its content, hence the peers answering the queries can not be considered to share the similar interests to this peer. In this case, the query has to be forwarded in a blind way such as ooding or random walk. This problem can be observed in [START_REF] Cholvi | [END_REF]]. The basic premise of this work is that le requests have a high probability of being fullled within the community they originate from, therefore increasing the search eciency. To this end, peers perform local dynamic topology adaptations, based on the query trac patterns, in order to spontaneously create communities of peers that share similar interests. Similar to the other works mentioned above, dynamic topology adaptation is implemented by directing acquaintance links toward the peers that have returned relevant results in the past. A similar work is [Cohen 2007], where peers self-organize into overlapped groups by taking into account previous query satisfaction. Each peer can belong to dierent groups, by connecting to a set of peers that also belong to the same group. Hence, each groups can be regarded as an overlay, which is unstructured P2P network with peers containing similar items. Users decide which group to use for searching.

Proactively Discovering Acquaintances

Oppositely to the technique using querying feedbacks to build interest-based connection between peers, [Voulgaris 2007] proposes a proactive method to build semantic overlays. It is a two-layered approach combining two epidemic protocols, one allowing each peer to proactively nd and dynamically maintain a list of similar peers; the other allowing each peer to maintain a list of random peers. For this technique, workload is required for proactively discovering peers with similar contents or similar interests, called acquaintances. Proactive acquaintance discovering is performed in an unstructured P2P network, so it allows peer autonomy, and tolerates dynamic behaviors.

However, if the way to discover acquaintances is not appropriately designed, more workload is needed, and the cluster quality is not be guaranteed as in the technique using coordinators. This factor is studied in [Raftopoulou 2008c, Raftopoulou 2008a]. The authors propose iCluster, which designs a mechanism to discover similar peers in one's neighborhood. The discovering is performed by forwarding a message along peer's connection. The peers the message visits are discovered peers. It can be implemented by forwarding the message randomly or to the most similar peer among the current accessible peers. Other possibilities to discovering similar peers are also proposed. Their performances are demonstrated according to simulated experiments, which shows that random walk can achieve the best cluster quality comparing to the other discovering approaches.

Another typical approach to proactively build SONs is proposed in [Parreira 2007]. It follows the spirit of peer autonomy and creates semantic overlay networks based on the notion of `peer-to-peer dating'. Peers periodically select a peer to `date' with, and decide weather or not to regard it as a `friend' based on certain similarity estimation. A list of peers are managed as the `dating' candidates, which include random peers provided by the underlying network infrastructure, the peer's current `friends' as well as their `friends'. These candidates are Chapter 2. State of the Art probabilistically selected with respect to their types (random peers, `friends' or the `friends' of a `friend').

The works in proactive acquaintance discovering dier not only in the specic protocols to discover the acquaintance, but also in the way they measure the similarity between two peers. A statistical language model is employed in [Linari 2006] to calculate the similarity. Peers in the network are represented by a statistical Language Model derived from their local data collections. A symmetrized and `metricized' related measure, the square root of the Jensen-Shannon divergence, is used to approximate peer similarity before it is contacted. It hence maps the problem of forming SONs to a metric search problem. The peers periodically meet peers that are randomly picked or suggested by other peers. The search strategy exploits the triangular inequality to eciently prune the search space and relies on a priority queue to visit the most promising peers rst. In [Li 2008] where a framework called Semantic Small World (SSW) is proposed, peers and their documents are projected into a high-dimensional space generated by Latent Semantic Analysis (LSA). The similarity between two peers is then calculated based on their locations in this space. Thanks to LSA, this measurement can reect the semantic similarity. However, the workload to use LSA is heavy because the LSA model has to be computed in a central point with the document collection of the whole network (or document samples) and updated as the content in the network changes. Besides, [START_REF] Penzo | [END_REF]] and [Schmitz 2004] employ ontology to describe the content in each peer, and measure peer similarity based on their representative concepts. [START_REF] Penzo | [END_REF]] addresses the issue of SON creation in a Peer Data Management System (PDMS) where peers have dierent schemas and they are connected through schema mappings. Each peer is represented by a set of concepts. Each concept will be associated to at most one SON. Heterogeneity is solved using the WordNet as background thesaurus. A distance function is dened among sets of concepts according to their relation in the ontology. A similar approach is also described in [Schmitz 2004].

Besides evaluating peer similarity based on their interests or contents, some works also consider other criteria. For example, [Löser 2007] proposes a system called INGA, where peers create and maintain shortcuts to other peers based on four layers: (i) at the content provider layer, shortcuts are created to remote peers which have successfully answered a query, (ii) at the recommender layer, information is maintained about remote peers who have issued a query, (iii) at the bootstrapping layer, shortcuts to well connected remote peers are kept, and (iv) at the network layer, connections are maintained to peers of the underlying network topology; [Parreira 2007] describes three measurements that can be used to identify good friends: (i) credits about peer's cooperation history, (ii) amount of the overlapped documents between peers, and (iii) the semantic similarity of the contents of peers; [Bertier 2010] presents Gossple, an internet-scale protocol that discovers connections between users and leverages them to enhance navigation within the Web 2.0. A set of social anonymous acquaintances are discovered for each peer by a gossip protocol. The acquaintances are dened as the users that share the similar tags over their contents.

Evaluation of SONs

Semantic overlay networks have been studied mainly for subsequent tasks of information retrieval or information ltering, hence their evaluation has been oriented towards the performance of these tasks. In summary, the following aspects are evaluated: convergence speed to generate the SON, the quality of peer clusters, querying performance in SONs, and the workload required for generating the SON and querying.

In Figure 2.2, we present an overview about the evaluation metrics in the state of the art involving all the aspects. However, works that evaluate all the aspects are rare: usually the focus is only on some of the aspects. For example, only clustering quality and network workload are evaluated in [START_REF] Eisenhardt | [END_REF]], since it aims to clustering documents rather than to P2P-IR. The evaluation of this work is performed by comparing the resulting document clusters with the ground truth. It also evaluated the time to take for one iteration of k-means clustering. Only workload is considered in [START_REF] Banaei-Kashani | SWAM: a family of access methods for similarity-search in peer-to-peer data networks[END_REF][START_REF] Bawa | [END_REF]]. The former evaluates the proposed Small-World Access Methods (SWAM) by communication cost, computation cost, and query time. In the latter the quality of the proposed approach is evaluated by the average number of sites that are probed to answer a query and by the bandwidth and latency consumed for a query. Only IR performance is evaluated in [START_REF] Doulkeridis | [END_REF], Doulkeridis 2008], where the metrics of recall and precision are employed.

Most of the works focus on the evaluation of querying performance and workload in the network. Querying performance aims to evaluate the quality of the search results to a given query. The most commonly used metrics are recall and precision. Recall is dened as the fraction of relevant instances that are retrieved; precision is dened as the fraction of retrieved instances that are relevant. They are used in [Klampanos 2004, Bertier 2010]. In [Tempich 2004, Löser 2007[START_REF] Sedmidubsky | Adaptive approximate similarity searching through metric social networks[END_REF]], however, only recall is used as the metric for querying performance. Other works like [Li 2008[START_REF] Sripanidkulchai | [END_REF][START_REF] Cholvi | [END_REF]] use search failure ratio and success rate. They use these metrics instead of recall and precision, because the searching task is designed to search the exact le given its name as a Workload, on the other hand, focuses on the trac spent for building a SON and perform querying. To this end, various measurements are used in the literature. In summary, the following metrics are commonly used: (i) the average or minimum search path length to reply a query [Li 2008[START_REF] Sripanidkulchai | [END_REF][START_REF] Cholvi | [END_REF]]; (ii) the number of messages required for answering a query [Li 2008[START_REF] Sripanidkulchai | [END_REF], Tempich 2004, Löser 2007, Raftopoulou 2008c]; (iii) maintenance cost for keeping the network robust against peers' dynamic behaviors [Li 2008, Bertier 2010]. Besides, in [Li 2008] index load is also evaluated, because the network topology in this approach is constructed by indexing similar documents in the same/adjacent peers. Peers adaptively self-organize themselves in order to maintain the topology; in [START_REF] Cholvi | [END_REF]], a measurement called in-degree is employed to evaluate the number of the peers that chose one peer as their acquaintance.

Convergence speed is used to measure the time required to build a SON. In [Voulgaris 2007], the author used real world traces from the eDonkey le sharing system. The convergence speed on cold start, on adaptivity to changes in user interests is studied to evaluate the proposal. [Bertier 2010] evaluates the quality of a node's semantic neighbors through its ability to provide the node with interesting items. The author also considers the time required to build a network of Gossple from a random network, then considers the maintenance of this network by evaluating convergence in a dynamic scenario where nodes join an existing stable network. Some works directly focus on the clustering qualityhow well the similar peers 2.6. Summary 27 are clusteredrather than evaluate it according to the IR performance. For example, [START_REF] Penzo | [END_REF]] evaluates the resulting clusters by their internal quality and external quality, which are quantied by Silhouette indices and Rand index respectively. Similarly in [Raftopoulou 2009a], several metrics are used to this end: clustering coecient, generalized clustering coecient, and clustering eciency. The former two aim to quantify how the neighbors of a peer are connected with each other; the latter is rather designed for the subsequent task like IR; it measures how many similar peers a peer can access within certain number of hops.

The evaluations are often performed via two sets of experiments. One starts from a random peer conguration and examines whether the peer relocation protocol leads to the desired cluster conguration for the given data content and workload. The other starts from a `good' cluster conguration for a given content and workload, and examines how well the periodic reformulation protocol adapts to changes of the content and the workload [START_REF] Koloniari | Georgia Koloniari and Evaggelia Pitoura. Recall-based cluster reformulation by selsh peers[END_REF], Bertier 2010, Voulgaris 2007[START_REF] Raftopoulou | Peer rewiring in semantic overlay networks under churn[END_REF]].

To summarize, the evaluation works in the state of the art mainly focus on the performance of IR in generated SONs, such as IR recall/precision and searching cost. Comparatively, the quality of peer clusters and the convergence speed to build SONs are less considered. However, if we consider SONs as a general P2P network topology that can be used not only for IR but also other applications like recommendation [START_REF] Kim | [END_REF]], it is more meaningful to directly evaluate the quality of peer clusters to demonstrate its potential performance on the target task. The convergence speed also matters, because it indicates the time a peer has to wait until peer clusters emerge in the network and benet the peers's target task like IR.

Summary

An overview and analysis of P2P-IR and SONs were presented in this chapter. We briey introduced P2P overlay networks, and gave an analysis about these P2P overlay networks. We then introduced P2P-IR, focusing on how the contents in the network are organized and indexed. Among the works on P2P-IR, SONs outperform the others with respect to their performance in target tasks like IR.

We reviewed the methodology to build SONs in unstructured P2P network, which is commonly implemented by using powerful and stable peers as coordinators, feedbacks of querying history, or proactive acquaintance discovering. The application of the rst approach is limited in the network with a certain number of powerful and stable peers. Given an unstructured P2P network where peers have equal roles, this approach is not suitable to reorganize it into a SON. The second approach Chapter 2. State of the Art builds SONs in such a passive way that acquaintances may not be found quickly. Moreover, the premise of this approachtwo peers share similar interests if one previously answered the other's queryis not always true in the reality, considering the fact that a peer may issue casual queries which are not relevant to its interests. In the third approach of proactive acquaintance discovering, no constraints are imposed on the peers and building SONs can be done eciently if the right discovering strategy is used. However, works using this approach independently demonstrate their acquaintance discovering strategies. A generic framework is missed to formalize the principles shared among these works. These shared principles will be useful for studying the essential point of this approach. It would be also useful for designing a better discovering strategy, so that the decentralized discovering behaviors can more eciently generate a network topology with globally better peer clusters.

An overview of the evaluation metrics for SONs was presented in the end. Many works focus on the evaluation of the IR performance in SONs and the workload of building the SONs. However, a direct evaluation of the cluster quality in a SON may be more worthwhile, considering that a good cluster quality would benet not only IR, but also the other target tasks like collaborative ltering and recommendation. In this chapter, we present a methodology to build SONs in unstructured P2P networks. Briey, the connections between peers should be congured in such a way that similar peers are linked up and thus form a cluster. Since there is no centralized controller, the conguration is performed in such a way that peers autonomously rewire their links by removing the old links and building new ones to peers with more similar contents. To do this, a peer must discover the peers with more similar contents from its neighborhood, and uses them to replace its less similar neighbors. In Section 3.1, we identify and formalize a generic procedure of peer rewiring, and then describe the process of IR in the resulting SONs. In Section 3.2, we describe our optimization model to build SONs. The task of building SONs is modeled as a combinatorial optimization problem, and peer rewiring is modeled as a decentralized local search solution. Based on this model, we study how a decentralized local search approach (peer rewiring) can result in a global optimum of the system (SON). 30 Chapter 3. Optimization Model for Building SONs

Methodology

To cluster peers with similar content, a similarity metric must be dened. In this section, we rstly introduce the similarity measurement between peers, and then present the generic procedure of peer rewiring. Finally we introduce IR in the achieved SON.

Similarity Measurement

To evaluate the similarity between peers, each peer is represented by a formal description of its content. We call it the peer prole, in the similar way as [Bertier 2010]. Depending on the target application, a prole can be a term vector that summarizes the frequent terms in the peer's content [Raftopoulou 2008a], a set of tags the user employs to annotate the content [Bertier 2010], or topics/concepts derived from an ontology [Schmitz 2004] or machine learning techniques like Latent Dirichlet Allocation (LDA) [START_REF] Draidi | [END_REF]. A peer may have multiple proles, each corresponding to one of its interests. Since the number of proles has no signicant eect on our study, we assume that each peer p i only has one interest. So each peer only has one prole. The similarity between two peers is calculated as the semantic similarity between their proles.

Comparing to a peer prole described with terms/tags, topics can exhibit the semantics in the content; comparing to the topics derived from an ontology, LDA [START_REF] Blei | [END_REF]] is a more generic approach to model the topics in documents. So we follow the idea in [START_REF] Draidi | [END_REF]] to represent the prole of a peer p i as a set of topics. Formally, it is described as: P rof p i = {topic i 1 , topic i 2 , topic i 3 ...}, where each element refers to the ID of a topic. To implement this, LDA is used to model all the topics in the network. The model is in turn used to infer the topics associated with an individual peer. More details about this implementation are provided in Chapter 5.

We employ Jaccard distance [START_REF] Levandowsky | Distance between sets[END_REF]], one of the classic measurements for the distance between two sets, to evaluate the similarity between peer proles, as showed in Equation 3.1. A small Jaccard distance refers to high similarity between two peers. In the rest of the thesis, we will interchangeably use `similarity' and `distance' when referring to the metric of Jaccard distance.

Dis(p i , p j ) = 1 - |P rof p i ∩ P rof p j | |P rof p i ∪ P rof p j | . (3.1)
Jaccard distance is a symmetric metric which satises the triangle inequality [START_REF] Levandowsky | Distance between sets[END_REF]]: Dis(p a , p b ) + Dis(p b , p c ) ≥ Dis(p a , p c ). In other words, if Dis(p a , p b ) + Dis(p b , p c ) < x, Dis(p a , p c ) is also below x. Given x < 1.0, these three peers are similar to each other with a certain value of similarity. The smaller x is, the more similar they are. With this feature, peers with similar contents can be clustered. This will be useful in building SONs, as stated in [Linari 2006].

Besides the above techniques to generate peer prole and calculate peer similarity, other techniques can also be used, if they satisfy the following properties : (i) the representation of peer prole and the similarity measurement exhibit the semantics in the documents; (ii) the similarity measurement satises the triangle inequality. In this thesis, we use LDA and Jaccard distance to calculate peer prole and peer similarity, because they embody the properties described above. It is out of the scope of the thesis to study the dierent techniques.

Denition of Links

To build SONs in unstructured P2P networks, each peer p i maintains a set of links to the peers that have similar contents to p i . In [Linari 2006, Voulgaris 2007], the links point to k most similar peers; in [Raftopoulou 2008a, Schmitz 2004], they point to a set of peers whose average similarity to p i is above a predened threshold; in [START_REF] Sripanidkulchai | [END_REF]], these links point to the peers that answered p i 's queries, since the authors assume that peers share the similar interests if one can answer the other's queries. Besides maintaining links to the similar peers, in [Raftopoulou 2008a], each peer also maintains a set of links pointing to the peers with dierent contents, in order to keep the whole network a connected component. For the same object, peers in [Voulgaris 2007] keep a set of links to some random peers. Similarly, in [Linari 2006[START_REF] Sripanidkulchai | [END_REF]], an underlying random overlay network is used to keep the whole network connected.

Although building SONs mainly aims to cluster similar peers up, maintaining the whole network connected is also important. A connected network can oer an underlying infrastructure to discover similar peers in the network. After a SON is built, the whole network should still be connected, so that peer clusters can communicate with each other.

In this thesis, we follow the way used in [Raftopoulou 2008a] to dene the links into short-range links and long-range links: the former point to the similar peers; the latter point to peers with dierent contents. These peers are called short-range contacts and long-range contacts, respectively. Formally, p i 's short-range contacts and long-range contacts are represented as P i short and P i long . Short-range links are used to cluster semantically similar peers, while long-range links are used to keep peer clusters connected and thus provide paths between peer clusters. Regarding IR, short-range links are used to search information within a peer cluster, while long-range links are used to forward the query to the relevant peer clusters.
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Each peer p i keeps the information of its contacts in a routing table, where each entry stores the information of one contact. The entry contains the type of the contact (Short-range or Long-range), its IP address, its peer prole, its similarity to p i , the last time it was contacted, and other application-related information if necessary. An example of routing table is given in Table 3.1: Table 3 For each peer p i , the number of its contacts in P i short and P i long is represented as s and l. The values of s and l are pre-xed by the network designer or the user. A threshold θ is dened to distinguish the short-range contacts P i short and long-range contacts P i long . Formally, the short-range contacts of p i should meet the following requirement:

P i short = p j 1 |P i short | p j ∈P i short Dis(p i , p j ) ≤ θ , (3.2) 
where

1 |P i short | p j ∈P i short
Dis(p i , p j ) refers to the average distance between p i and its short-range contacts. It is called intra-cluster distance. To facilitate the presentation, we formally dene the intra-cluster distance between p i and its shortrange contacts as follows:

IntraDis(p i ) = 1 |P i short | p j ∈P i short Dis(p i , p j ). (3.3) 
Based on the same threshold θ, long-range links should respect the following constraint:

P i long = {p j | Dis(p i , p j ) > θ and Dis(p j , p k ) > θ, p k ∈ P i long -{p j }}, (3.4) 
where the distance among p i and the clusters it links to is above the threshold θ. This constraint makes the peer clusters with dierent content connected and avoids the redundancy in the long-range links, such that there do not exist two long-range links pointing to the same peer cluster. The reason of using θ is to control the quality of peer clusters formed by shortrange links. Its value must be decided carefully, because a very large θ results in loose clusters while a very small θ makes it dicult to connect similar peers together. This can aect the subsequent query routing performance, as explained in [Schmitz 2004, Raftopoulou 2008a].

Building SONs via Peer Rewiring

When a peer joins an unstructured P2P network, it initializes its short-range links and long-range links by connecting to s + l random peers that are provided by a bootstrapping server. For building SONs in unstructured P2P networks, peers must rewire their short-range links to similar peers. Long-range links can also be rewired along the same procedure. The protocols of peer rewiring have been proposed and framed diversely in the state of the art. A generic methodology is required to provide a consistent framework for this task, while allow enough exibility for the protocol designer to specify its properties.

In this subsection, we identify and formalize peer rewiring as a periodical threestep procedure. A single three-step procedure is called a rewiring cycle, involving the steps of rewiring initiation, peer collection and link update. The peer that initiates the rewiring process is called rewiring peer. For each peer p i , the object of its periodical rewiring cycles is to discover more similar peers in the neighborhood by a walker, to use them to replace current less similar short-range contacts, and nally to achieve such links that satisfy the requirement of short-range contacts.

Rewiring Initiation

In initiating step, the rewiring peer p i rstly checks its current links. According to the situation of current links, it decides weather or not to initiate a walker, for exploring p i 's neighborhood and collecting the information of peers in the next step.

If p i 's current links meet the predened criteria and all of them are online, p i does not initiate the walker and the rewiring cycle terminates.

The walker is actually a message R i called rewiring message initialized by the rewiring peer p i . It is described as a tuple IP p i , P rof p i , T T L R i , C :

• IP p i : IP address of the rewiring peer p i ;

• P rof p i : prole of p i ;

• T T L R i : time to live (TTL) of the message R i ;

• C: an initially empty list for storing the information of collected peers.

The properties that can be specied by the designer include: the value of T T L R i , the other data structure included in the tuple to carry more information, the criteria of good links, and the exception management. The exception refers to the case where 34 Chapter 3. Optimization Model for Building SONs the short-range links of some peers never meet the criteria. For example, a peer may never achieve a set of short-range contacts with intra-cluster distance below the threshold θ, because such peers do not exist in the network. In this case, the peer can either continue to perform peer rewiring or stop the process. The former choice is employed in this thesis. For the criteria of links, we use Equation 3.2 and 3.4 in this thesis.

Peer Collection

Peer collection aims to discover more similar peers in p i 's neighborhood and then to collect their information, in order to update p i 's current contacts in the next step. This is implemented by a walker that walks along the links and collects the information of the peers it accesses. The walking process is actually a procedure in which the rewiring message R i is forwarded from one peer to another. We regard it as a walker walking along a path, for the sake of both clear presentation and later usage. During the walking process, information about the visited peers is recorded in R i .C (as well as the neighbors of the visited peers, depending on the specic rewiring protocol).

When a peer p j receives a rewiring message R i , it rstly reduces its TTL by 1. It then calculates Dis(p i , p j ) and appends a tuple IP p j , P rof p j , Dis(p i , p j ) to the element C of R i . p j then forwards R i to one of its neighbors (or n of its neighbors, depending on the specic rewiring protocol). The forwarding process continues recursively until T T L R i becomes 0. When T T L R i equals to 0, the rewiring message is sent back to p i . Each time the rewiring message is forwarded from one peer to another peer, it can be considered as the walker takes its step to the next stop.

The key to peer rewiring is the strategy to choose the peers from a set of candidates (p j 's neighbors) and forwards R i to them. In general, dierent strategies may dier from each other with respect to their performance in the eciency and eectiveness of building SONs. This will be studied in Chapter 4.

Link Update

Link update is performed in p i after it receives the returned rewiring message R i . According to the information of the peers collected in R i .C, p i selectively sets new links and discards old ones.

To update short-range links, old links corresponding to less similar peers are replaced with new ones corresponding to more similar peers. The implementation details are showed in Algorithm 1. Firstly, the collected peers P i collected as well as the short-range contacts P i short are ordered according to their distance to the rewiring peer p i (line 23). Then the peers with lowest value of distance in P i collected is used to replace the short-range contacts with the highest value of distance, if only the former distance is lower than the latter (line 67 Long-range links of p i can also be updated with the information of the collected peers. The details to update long-range contacts are presented in Algorithm 2. The idea is to replace a current long-range contact with a collected peer, in such a way that the collected peer's distance to p i and the other long-range contacts is above the threshold θ. Specically, we pick up the collected peers one by one. For each collected peer p m , we check its distance to p i and p i 's long-range contacts (line 49), and record the long-range contact in peerT oU pdate if the distance is below or equal to θ. p m will not be used to update p i 's current long-range contact if more than one long-range contact is recorded in peerT oU pdate, because replacing one of them with p m still results in more than one link pointing to the same peer cluster, and this does not make any improvement to the conguration of the long-range contacts Chapter 3. Optimization Model for Building SONs dened in Equation 3.3. If peerT oU pdate is empty, it implies that p m is from a peer cluster which is dierent from all the peer clusters p i 's current long-range contacts belong. In this case, a random long-range contact is selected and replaced by p m just for refreshing the links. Long-range links can also be updated by initiating a special rewiring cycle. In this special rewiring cycle, the rewiring message is forwarded either randomly or to the peer whose distance to the rewiring peer is above θ. When the rewiring message is returned to p i , the same algorithm 2 is used to update p i 's long-range links. The long-range links are initially random and then connect the peers with dierent content, peers always can access peers with dierent contents. Moreover, there are usually much more peers with dierent contents than peers with similar contents in the network. These factors make it much less dicult to discover peers with dierent contents than nding similar peers, so we will not focus too much on rewiring long-range links in the rest of the thesis.

To maintain the links, each peer periodically sends a `hello' message to its contacts, to check if the contacts are still online or changed their proles. Note that in the above algorithms, contacts are updated by only considering their distances to the rewiring peer, as well as to each other when updating long-range contacts. Updating the contacts that are not online is not presented, because it is a trivial task. But in the real application, this should be considered.

The generated SON is evaluated with respect to clustering eciency and its performance for target tasks like IR and information ltering. A good SON should allow a peer to access its similar peers within one or few hops along the short-range links. It should also provide good performance for the subsequent tasks.

Searching in SONs

Searching in SONs involves (i) forwarding a query from its initiator to relevant peer cluster(s), and (ii) nding relevant documents stored in the peers of the cluster(s).

The rst step is called inter-cluster search and the second step intra-cluster search.

The searching is performed via an approach similar to the line in [Raftopoulou 2008a]. Specically, when a peer p i initiates a query q i , it also computes a topic-based representation for it. The query is integrated in a query message Q i , which contains the following information:

• IP p i : IP address of the query initiator p i ;

• q i : the query issued by p i , which is used to perform local IR in relevant peers;

• P rof q i : topic-based representation of q i ; • T T L Q i : time to live of this query message;

• D q i : an initially empty list for storing the information of the relevant documents.

When a query is initiated by a peer p i , one or more relevant peer clusters are discovered rstly, as showed in Algorithm 3. Specically, when a peer p k receives a query (p i is also considered as such a p k ), it calculates the distance between its prole and that of the query. If the distance is below or equal to θ, we consider Chapter 3. Optimization Model for Building SONs that p k is the member of a relevant peer cluster. Through p k , intra-cluster search is performed as described in Algorithm 4. Otherwise, p k forwards the query to n q of its contacts which are most similar to Q i . The forwarding process continues until T T L Q i equals to 0 or p k is the member of a relevant peer cluster.

Algorithm 3: INTER_CLUSTER_SEARCH

(p i ,Q i ) 1 p i initiates a query Q i = IP p i , q i , P rof q i , T T L Q i , D q i ; 2 while T T L Q i > 0 do 3 for each peer p k that hosts Q i do // P rof q i is used to calculate this distance 4 if Dis(p k , q i ) ≤ θ then 5 INTRA_CLUSTER_SEARCH(p i ,Q i ); 6 else 7 T T L Q i = T T L Q i -1; 8 p k forwards Q i to n q contacts that are the most similar to q i ; 9 end 10 end 11 end Algorithm 4: INTRA_CLUSTER_SEARCH(p i ,Q i ) 1 Q i = IP p i , q i , P rof q i , T T L Q i , D q i ; 2 Reset T T L Q i as k q i ; 3 while T T L Q i ≥ 0 do 4 for each peer p k that receives Q i do 5
p k performs local IR and returns the relevant documents to p i or save them in

D q i ; 6 T T L Q i = T T L Q i -1; 7 if T T L Q i < 0 and D q i is
not empty then 8 return D q i to p i 9 else 10 p k forwards Q i to its short-range contacts whose distance to q i is below or equal to θ; Note that when the distance between the query and the initiator p i is below or equal to θ, we consider the initiator p i is the member of a relevant peer cluster to the query. In this case, the query will be diused along p i 's short-range links.

Once a relevant peer cluster is found at p k , intra-cluster search is performed. p j spreads the query to the peers that its short-range links connect to. The T T L Q i is reset to be a smaller value than the initial T T L Q i in Algorithm 3, because the peers in a cluster can be accessed within less hops. A simple and intuitive way to spread the query is ooding, as presented in [Raftopoulou 2008a]. However, ooding the query in a large peer cluster is expensive. Moreover, some peers may not have the relevant documents even though they are in the same cluster of p k . Information like querying history can be introduced to improve the performance [Tempich 2004], but it takes time to accumulate query feedbacks. In this thesis, we employ a more intuitive approach, as described in Algorithm 4. The idea is to forward the query only to the peers whose distance to the query prole is below or equal to θ. When a peer in the cluster receives a query, it performs local IR and returns the relevant documents to the query initiator p i . A document is relevant to the query if its similarity to the query is above a threshold. More details about this will be explained in Chapter 5.

Building SONs as an Optimization Model

Building SONs: Combinatorial Optimization Problem

In previous section, we have built SONs by connecting similar peers via short-range links and peers with dierent contents via long-range links. In this section, we model this process as a combinatorial optimization problem in a graph G = P, L .

G is the graph representation of the P2P network. P is the peers in the network, and L is the short-range links in the network. Given a number of peers and the number of short-range links for each peer, the task is to nd the optimal graph conguration such that the similar peers are clustered up and then similar peers can access each other in one or few hops. Long-range links are not considered in this model, because (i) they do not imply the quality of peer clusters; (ii) it is not dicult to achieve optimal long-range links to keep the peer clusters and thus the whole network connected (refer to Section 3.1.3.3).

Formally, the optimal graph conguration should be the one satisfying the following two properties: Property 1 Intra-cluster distance at each peer should be below or equal to a threshold θ, following Equation 3.2. This property aims to control the quality of the peer's short-range contacts. 40 Chapter 3. Optimization Model for Building SONs Property 2 Each peer should be able to access all the other similar peers within a few hops. To simplify, similar peers with a distance below or equal to θ should be accessible within γ hops.

To quantify these properties of the graph, an objective function is dened with the following principles:

Principle 1 The value of the objective function should characterize the tness of the graph conguration.

Principle 2 The objective function should be a proper integration of two parts, each corresponding to one of the two properties of the graph conguration.

We qualify the property 1 for each peer with the following equation:

IntraDis(p i ) = 0, if IntraDis(p i ) ≤ θ θ -IntraDis(p i ), if IntraDis(p i ) > θ (3.5)
where IntraDis(p i ) is called the relative intra-cluster similarity of p i . Ideally, the optimum of this equation is 0. It corresponds to the fact that p i has obtained the optimal short-range contacts: the intra-cluster distance at p i is below or equal to threshold θ. In reality, the optimum of this equation may be negative for some peers, when there do not exist such peers in the network whose average distance to p i is equal or below to θ. But this will not aect the property of this equation in measuring the tness of p i 's short-range contacts.

For each peer, property 2 is qualied as:

C(p i ) = |{p j | H(p i , p j ) ≤ γ, Dis(p i , p j ) ≤ θ}| |{p k | p k ∈ G.P, Dis(p i , p k ) ≤ θ}| . (3.6)
where H(p i , p j ) refers to the number of hops from p i to p j . This is called clustering eciency, proposed by [Raftopoulou 2008b] to quantify the connections of the similar peers. It is calculated as the number of peers {p j } that can be reached from p i within γ hops following short-range links and whose distance to p i is below or equal to θ, divided by the total number of peers in the network whose distance to p i is below or equal to θ.

This metric is similar to the recall metric used in IR 1 . Another metric similar to the precision metric2 can also be used, which is calculated by replacing 3.6. Both of these two measurement focus on the similar peers that can be accessed within γ hops and whose distance to p i is below or equal to θ. But recall evaluates if p i can access all the peers in the network whose distance to p i is below or equal to θ, while precision evaluates if all the peers that p i can access are similar to p i (e.g., with a distance below or equal to θ).

|{p k | p k ∈ G.P, Dis(p i , p k ) ≤ θ}| with |{p k | H(p i , p k ) ≤ γ}| in Equation
We focus on the recall in this thesis. For each peer p i , the recall can show if most of its similar peers are clustered in its neighborhood. This is important for the target task like IR, because a higher recall can allow the queries to be diused, within few hops, to most of the peers that are similar the query and thus have the potential to answer the queries.

Relative intra-cluster similarity IntraDis(p i ) and clustering eciency C(p i ) are used to qualify the property 1 and 2 for each peer. They are complementary to each other: the former measures the local cluster quality between a peer and a limited number of short-range contacts; the later shows how each peer connects to all the peers that are similar to it. By considering the P2P network as a single system with component peers, we dene the objective function as:

O(G) = 1 N N i=1 (IntraDis(p i )) + 1 N N i=1 (C(p i )), (3.7) 
where N represents the total number of peers in the network. The two components of this object function are called relative intra-cluster similarity of the network and clustering eciency of the network, respectively. Ideally, the maximum value of 1 N N i=1 (IntraDis(p i )) should be 0, which means that intra-cluster distance of all peers is below or equal to θ. In reality, however, there may be peers such that their average distance to the most similar peers is larger than θ. This can happen when the peer proles are not uniformly distributed in the topical space. In that case, the optimum of this function would be smaller than 0. The maximum value of

1 N N i=1 (C(p i )) is 1.
An optimal network conguration should be the one optimize both of the two components of the object function. However, a network with the optimal relative intra-cluster similarity does not necessarily imply that it also has an optimal clustering eciency (will be discussed in Section 3.2.3), so we keep this two components to be independent by simply summing them in the objective function.

Peer Rewiring: Decentralized Local Search Solution

In order to optimize the objective function of the graph conguration in the previous subsection, an intuitive way is to exhaustively enumerate the possible graph congurations and calculate their objective function values. Thus the highest value will be found as the optimum of the objective function. The corresponding graph conguration is the optimum conguration.
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However, exhaustive enumeration of all possible graph congurations is not possible, because the number of possible graph congurations is too large. For a network with N peers, if each peer has M short-range links, its short-range links can have

C M
N -1 possible congurations. Then for the short-range links of all the peers, there exist (C M N -1 ) N congurations. In addition, when changes happen in the network like peer joining, leaving and updating their content, the current conguration may not be the optimum anymore. Additional computation is required to recompute the optimal conguration. A classical solution for combinatorial optimization problem is using local search [START_REF] Kolen | [END_REF]]. The local search approach assumes a space where all possible graph congurations reside. Each graph conguration has a set of other graph congurations as its neighbors in the space. A neighbor refers to a conguration that is reachable from the current conguration via a well-dened move. Specically, given an initial graph conguration, local search refers to move from the current conguration to one of its neighbors. Current graph conguration is iteratively replaced by a new conguration, until the optimum conguration is achieved or a recursion bound is elapsed.

In a P2P network setting, no central point controls the local search to move the graph from one conguration to another. Instead, each peer is allowed to autonomously rewire its links to peers that are discovered in its neighborhood. So the only possible way is to let each peer optimize its local conguration (shortrange links). Local optimizations move the global network conguration from one to another. If local optimizations are properly performed, a global optimal network conguration can be obtained (will be explained in Section 3.2.3). In the state of the art in SONs in unstructured P2P networks, peer rewiring is employed in this way, but it has never been framed as an optimization model, and it is not clear how peer rewiring results in the global optimization with similar peers clustered via the short-range links. In order to have a more clear idea about the relation between local optimizations and global optimization, as well as to explore better solutions to the optimization problem, we formalize the generic peer rewiring procedure into a decentralized local search solution to the optimization problem of building SONs.

In this decentralized local search solution, each peer independently performs local search to nd optimal short-range contacts. Local search refers to the process in which each peer explores peers from its neighborhood, uses them to update its short-range links, and then achieves a better conguration of its short-range links. The local search is performed repeatedly until the rewiring peer achieves the optimal short-range links. By `decentralized', we mean that each peer independently performs the rewiring process. The behaviors of all peers are expected to enable the emergence of peer clusters; By `local', we refer to the fact that peers can only explore peers in their neighborhood.

Similar to the optimization for the network conguration, an objective function is required for the local search operations of each peer. According to the details of peer rewiring, we dene this objective function as:

O(p i ) = IntraDis(p i ).
(3.8)

It corresponds to an evaluation of the local conguration of peer p i (its shortrange links). Starting from an initial conguration of short-range links that point to some random peers, p i recursively changes its conguration to a new one with a higher value of O(p i ), like moving in a conguration space. A neighbor of the current conguration is obtained by updating the current short-range contacts with peers explored in p i 's neighborhood. Exploring peers in the neighborhood is performed by a walker based on certain strategy, which is the key to the performance of this decentralized local search solution.

Formally, the local search of each peer p i involves the following elements:

Current conguration S i : p i 's current short-range links.

Conguration space CS: if there are N peers in the network, there are C s N -1 possible congurations for each peer p i , where s refers to the number of shortrange links and is xed.

Objective function O(S i ): O(S i ) = IntraDis(p i ). The target of local search is to nd a S i so that the objective function reaches its optimum (in the reality, the optimum may not be 0 if no such peers exist in the network). There may exists more than one optimal conguration, if there are more than s peers that are similar to p i in the network in terms of θ.

Neighboring conguration S i : a conguration that is reachable from the current conguration S i . It is obtained by replacing the less similar short-range contacts with peers explored in p i 's neighborhood. Once a peer p e is explored, a possible neighboring conguration is generated since p e can be used to replace the least similar short-range contact in the current conguration S i . To facilitate presenting the idea, we characterize a neighboring conguration S i by {p e }, the explored peers that can be used to replace current short-range contacts.

With the above elements, local search of each peer is described as a periodical process, each round of the search corresponds to one rewiring cycle, that is composed of a sequence of operations: initiating a walker; using the walker to explore portant role in this algorithm, because the strategy they use to select one of the contacts determines the eciency to achieve the optimal conguration of the shortrange links. It also aects the eectiveness of the resulting SON topology. This will be discussed in the next subsection.

In the classic local search approaches, the current conguration is updated once a neighboring conguration is found. But in our local search process, the current conguration is updated after T T L R i neighboring congurations are found, since the information of the neighboring congurations are returned to p i after every T T L R i local search steps (the walker returns to p i after its TTL is run out), and only p i can updating its conguration. However, our local search process still can be analogized to the classic local search approach, if we consider the T T L R i neighboring congurations as a single neighboring conguration characterized by all the explored peers. Note that a peer p i may never achieve the optimum of its objective function due to the fact that there may not exist a set of peers in the network whose average distance to p i is below θ. Certain mechanism must be designed to deal with this exception. For instance, the peer can stop the optimization process if its conguration is not improved in a certain number of continues local search steps. In addition, more than one peer can be selected as the walker's next step in each local search step. In that case, the walker copies itself and each copy goes to a dierent peer. Moreover, P i collected can collect not only the information of the explored peer, but also the information of the other contacts of the walker's host peer. These are the properties that can be specied by the algorithm designer. However, they do not aect the essential principle of this decentralized local search solution. So we will consider the basic conguration such that: peers keep optimizing their conguration; only one peer is selected as the walker's next step; only the information of the peer the walker visits is collected and returned. Optimization of the Relative Intra-cluster Similarity: In a network with N peers, if each peer p i has a set of s peers as its short-range contacts, there are C s N -1 possible peer sets for p i 's short-range contacts. Assuming M is the number of the sets each with s peers whose average distance to p i is below or equal to θ, the probability that a set of peers meets the criteria of short-range contacts is M/C s N -1 . In other words, given a set of peers as p i 's short-range contacts, with the probability of M/C s N -1 , they can optimize p i 's relative intra-cluster similarity. In unstructured P2P network, since peers can continuously rewire their links and obtain new shortrange contacts, they can try a large number of the short-range contact conguration. In this case, the probability becomes higher to have the short-range contacts that can optimize peers' relative intra-cluster similarity.

Specically, achieving the short-range contacts satisfying the criteria depends on the following factors: it is possible for a peer to access such peers in the network within the number of hops equal to the TTL of the walker for peer rewiring; the right walking strategy is designed for the walker to discover them. The former requirement can be satised if a proper TTL of the walker is set, since both long-range and short-range links make the whole network a connected component. The latter requirement will be studied in the next chapter, where dierent walking strategies are analyzed and an novel strategy is proposed.

Optimization of the Clustering Eciency: the decentralized local search focuses only on optimizing the average intra-cluster distance between the peers and their short-range contacts. Oppositely, clustering eciency considers the connection 48 Chapter 3. Optimization Model for Building SONs between a peer p i and all the other peers that are similar to it. This is important because the number of all the peers that are similar to p i may be much larger than the number of its short-range links. In an optimized SON, these similar peers are supposed to be accessible from one another along the short-range links. To make sure that decentralized local search solution also results in high clustering eciency, isolated similar peers should be avoided. Isolated similar peers refer to a set of peers with similar content, such that some of them are not accessible by following the short-range links of the others.

To avoid isolated similar peers, one way is to allow the walker to visit the contacts with dissimilar contents which may connect to a similar peer. To this end, some steps to the peers with dierent contents should be taken during the local search, so that a similar peer may be discovered through a step to a dissimilar peer. For example, let p a and p c are two similar peers that belong to two sets of isolated similar peers. They are isolated by p b that is not similar to both p a and p c , which means that p b is one of p a 's contacts and p c is one of p b 's contacts. When p a sends a walker to perform local search for rewiring its short-rang contacts, the walks to p b and then p c can help to discover p c and then remove the isolation.

A simple way to avoid isolated similar peers is to let the walkers always take random steps, so that isolated similar peers can be gradually removed if enough amount of random steps are taken. Useless random steps can also be taken in this way, which is a waste of time and trac. However, it is challenging to decide when to use random walk and how many random walks to use, because each peer does not know the topology of its neighborhood except its direct neighbors. In the next chapter, we propose a novel decentralized local search approach to tackle this challenge.

Related Work

Study on evolutionary P2P topology is not new. It is about (re)organize the links between peers to achieve a certain network topology, in order to optimize the performance of a certain task [Sakaryan 2003a]. In [START_REF] Merz | Evolutionary local search for designing peer-to-peer overlay topologies based on minimum routing cost spanning trees[END_REF]], an evolutionary local search approach is proposed to design a P2P topology named minimum routing cost spanning trees. Given an initial topology, a local search is used to nd a better topology in the neighboring topologies, which refer to a set of topologies that are reachable from the current one by a well-dened 'move'. The local search is performed by a central controller, who has the knowledge of the whole network and knows how to perform the `moves'. Similar works are proposed in [START_REF] Wolf | [END_REF][START_REF] Wi±niewski | Evolutionary algorithm for P2P multicasting network design problem[END_REF]]. [Ohnishi 2012] uses an evolutionary algorithm (EA) inspired by biological genetics and evolution to adapt a P2P topology for quick, accurate, and reliable searches. A 3.3. Summary 49 super-peer is used to manage the global knowledge of the network and perform EA in a centralized way. [Sakaryan 2003b[START_REF] Sakaryan | German Sakaryan. A content-oriented approach to topology evolution and search in peer-to-peer systems[END_REF] proposes to use decentralized algorithms to self-organize a static P2P network into communities each sharing similar content. It states that the algorithm is executed locally on every peer and each peer gets the information about other peers by traveling search messages. However, no detailed information is presented.

The idea of P2P topology with communities is quite similar to SONs [Crespo 2002b], where peers with similar content are `clustered' up. It is studied in a lot of works such as [Schmitz 2004, Voulgaris 2007, Parreira 2007, Raftopoulou 2008a].

These works follow the idea of [START_REF] Sakaryan | German Sakaryan. A content-oriented approach to topology evolution and search in peer-to-peer systems[END_REF]], and allow each peer to reconstruct its links to peers with similar content. Specifically, each peer explores the information about other peers (not its current neighbors) via gossiping [Voulgaris 2007, Parreira 2007] or traveling search messages [Schmitz 2004, Raftopoulou 2008a]. With the explored information, it reconstructs its links to peers with (more) similar content.

In this thesis, we take the current research one step further by rstly identifying a generic pattern of peer rewiring. The generic pattern is formalized as a three-step procedure that is repeatedly and independently performed by each peer. We then associate local link reconstruction with the global network evolution by modeling them as optimization models. We model the building of a SON as a combinatorial optimization problem, and peer rewiring as its decentralized local search solution. This modeling reveals an observable gap between the combinatorial combination problem and the decentralized local search solution. This motivates us nding local solutions with desirable properties that can lead to a global topology that is optimal or close to the optimum.

Summary

In this chapter, we presented a generic procedure framework for building SONs by peer rewiring. It formalizes the task of building SONs in unstructured P2P networks into a generic framework, and allows enough exibility for the designer to specify its properties. It also allows peers' dynamic behaviors like changing content, joining or leaving the network. Then we modeled the problem of building SONs as a combinatorial optimization task, with peer rewiring as its decentralized local search solution. In the end, an analysis was made based on the optimization model, which revealed a gap between the local search solution and the global optimization task that has to be lled carefully through the identication of eective local search procedure. 

Introduction

In the last chapter, building SONs based on peer rewiring is modeled as an combinatorial optimization problem with a decentralized local search solution. In this chapter, we study the possible ways to perform the decentralized local search. The local search aims to explore peers from the neighborhood of a rewiring peer p i , and then to use them to optimize p i 's current conguration of the short-range links as well as the quality of peer clusters. It is repetitively performed, until the optimum is achieved.

The local search is autonomously performed by each peer. A single local search process of peer p i is implemented by letting a walker walking along the links in p i 's neighborhood. The information of the visited peers is collected by the walker and returned to p i for updating its current links. Traditional ways for a walker taking its steps include random walk, greedy walk or both [Schmitz 2004, Raftopoulou 2009a].

Chapter 4. Simulated Annealing based Local Search for SONs

Random walk means the walker takes its next step randomly, while greedy walk means the walker steps to the peer which is the most similar to the rewiring peer. These strategies are individually applied or integrated in the local search process [Schmitz 2004, Parreira 2007, Raftopoulou 2009a], and are kept constant as the network evolves from a randomly connected network to a SON.

However, the evolution of p i 's neighborhood structure may aect the performance of the local search strategy. For example, before peer clusters emerge in the network, p i 's neighborhood contains random peers connected with each other. So following a link to a dissimilar peer, the walker may access a similar peer afterwards; while following a link to a similar peer, it may meet no more similar peers. As peer clusters gradually emerge, peers similar to peer p i start to be accumulated in its neighborhood. Then following a link to a similar peer, the walker can access other similar or more similar peers with a high probability. This phenomena motivates an evolving local search strategy, which evolves from a random strategy to greedy strategy.

To this end, we propose to use Simulated Annealing (SA) to guide the walker to explore the peer's neighborhood. SA is a metaheuristic based local search approach which allows a `bad' search being accepted with a decreasing probability. In this thesis, the `bad' search refers to the exploration of a peer that is not useful for improving the quality of p i 's short-range contacts.

In this chapter, we will rstly present an overview of local search in Section 4.2, and then detail the idea of an evolving local search strategy in Section 4.3. Then we introduce SA in Section 4.4. We present how SA is adapted and applied in our task in Section 4.5.

Local Search: an Overview

Local search is used to nd a solution among a large number of candidate solutions to optimize a quality criterion [Aarts 2003]. It moves from one solution to a neighboring one in the solution space until it arrives at the optimal solution. Neighboring solutions refer to the solutions that can be reached from the current solution according to a well-dened move, which is dependent on the specic application. The number of neighboring solutions is often much less than the total number of the solutions in the solution space. Therefore, when moving from one solution to one of its neighbors, only local information is available and considered. A good solution is the one that improves the quality criterion, while a bad solution is the one worsening the criterion.

Since local search aims at optimizing a given criterion, an intuitive way to move 4.3. Motivation 53 from one solution to another is hill climbing. Hill climbing is an algorithm in which the initial arbitrary solution iteratively moves to a better solution selected from the local search space. It is good for nding a local optimum (the best solution among the neighboring solutions), but it is not guaranteed to nd the best solution (the global optimum) out of all possible solutions (the search space). To overcome the problem of local optimum in hill climbing, the following improvement can be made: repeated local search using random restarts [Lourenço 2010]; iterated local search employing a perturbation leading to new restarts [Lourenço 2010], tabu search [START_REF] Glover | [END_REF]], or simulated annealing [Kirkpatrick 1983b]. In the rst two approaches, a certain number of restarts are tried in order to nd the global optimum, but the local search heuristic keeps the same for each restart. In tabu search, a memory structure is used to describe the visited solutions or user-dened rules. If a potential solution has been previously visited within a certain short-term period or if it has violated a rule, it is marked as `tabu' (forbidden) so that the algorithm does not consider it.

Simulated annealing is applied in local search approaches with the property of accepting bad solutions with a certain probability [START_REF] Battiti | Reacting on the Annealing Schedule[END_REF]]. Comparing to the other local search approaches aiming to improve the approach of hill climbing, SA has the following features: (i) rather than restarting from a new solution when it is stuck in a local optimum using hill climbing, SA can manage to jump out of the local optimum by accepting a bad solution from the neighborhood. Through the bad solution and its neighborhood, better solution may be found. (ii) SA accepts bad solutions with a decreasing probability, controlled by a parameter called temperature.

When the temperature is high, the probability to accept bad solutions is almost the same as the probability to accept good solutions, so the local search is similar to random walk; as the temperature goes to 0, less bad solutions are accepted, and more moves to good solutions are accepted. When this SA-based local search is applied in a combinatorial optimization problem, the gross features of the eventual status of the system appears at high temperatures thanks to the high probability to accept bad solutions, while ne details develop at low temperatures by only moving to the good solutions, as stated in [Kirkpatrick 1983a].

Motivation

We aim to eciently build a P2P network with similar peers clustered, by letting each peer p i to optimize the conguration of its short-range contacts as explained in Section 3.1.2. The conguration of p i 's short-range contacts is optimized when the intra-cluster distance (see Equation 3.3) is above a given threshold θ. The 54 Chapter 4. Simulated Annealing based Local Search for SONs optimization is performed as follows: p i sends a walker and lets it walk along the links in p i 's neighborhood. The walker collects the information of the peers it explores for updating p i 's current short-range contacts. The exploration of a peer is considered as a local search step to nd a neighboring conguration. For each explored peer, we call it good peer if the quality of p i 's intra-cluster distance is improved by replacing one of its contacts with the explored peer. Otherwise, we call it a bad peer.

The peers are explored in sequence as the walker takes its steps along the links. Their information is then returned to p i by the walker, when its time to live (TTL) equals to 0. The good peers are then used by p i to replace its short-range links. The walker explores the peers by following the links from one peer to another. For each step/hop it takes, the walker has more than one potential peers to step on, since each peer has more than one links. Therefore, the walker must decide which link to follow. Taking one step forward is one local search step, as formalized in Chapter 3. It is performed by either random walk or a mixture of random walk and greedy walk in the literature. In random walk, the walker takes its step by random. Random walk allows the walker randomly step to a peer that is even not similar to p i and hence oers an extensive search. Therefore, p i can have the chance to explore a large number of peers in the network via random walk, and then has a high possibility to achieve the optimal short-range contacts. However, the exploring process takes time because some random steps may end up without nding any good peers. So a combination of random walk and greedy walk is often used as a compromise [Schmitz 2004, Voulgaris 2007, Raftopoulou 2008a, Raftopoulou 2009a], and each is employed with a xed probability; in [Raftopoulou 2009a], the author also proposed to perform random walk when p i 's intra-cluster distance is above a threshold and greedy walk when it is below a threshold. But this strategy does not significantly outperforms the other strategies.

However, as the local search drives the network gradually towards a SON, the evolution of the network (specically the neighborhood structure) may aect the performance of the local search strategy. For example, before peer clusters emerge in the network, p i 's neighborhood consists of random peers connected with each other. So following a link to a dissimilar peer, the walker may access a similar peer afterwards; while following a link to a similar peer, it may meet no more similar peers. As peer clusters gradually emerge, peers similar to peer p i start to be accumulated in its neighborhood. Then following a link to a similar peer, the walker can access other similar or more similar peers with a high possibility. This phenomena motivates an evolving local search strategy, which evolves from a random strategy to greedy strategy.

Simulated Annealing (SA) 55

In this thesis, the local search strategy is considered in an evolving way. According to our observation, as peers perform repeated local search process, the structure of p i 's neighborhood gradually changes: the number of random peers decreases and the number of similar peers increases. In the beginning, random walk may be the best way to explore good peers. Gradually, the walker can access more and more good peers by following a link to a good peer. So it can be better if the probability to use dierent local search strategies can be gradually controlled. In the controlled local search strategy, random walk is used with a high probability in the beginning. As the neighborhood structure evolves, less random walk is taken while more greedy walk is performed. To this end, SA can be used because it can accept bad solutions with a decreasing probability, and thus a evolving local search strategy is possible to be implemented. The other local search approaches like iterative local search and tabu search do not have this property.

Simulated Annealing (SA)

SA originally comes from annealing in metallurgy, a technique involving heating and controlled cooling of a material to a low energy state, which refers to a highly ordered state such as a crystal lattice. To accomplish this, the material is heated into a temperature that allows many atomic rearrangements. The material is then cooled carefully until it freezes into a good crystal. This notion of cooling is employed in the Simulated Annealing algorithm to solve optimization problems. It conducts a poor solution to iteratively move to another solution, until an optimal solution (or a solution close to the optimum) is reached [START_REF] Rutenbar | Simulated annealing algorithms: an overview[END_REF]].

To implement SA in an optimization task, a sequence of local search steps are performed until the optimum is achieved. An objective function is dened to quantify the tness of the solutions. At each single search step, SA randomly picks up one of the neighboring solutions S of the current solution S, and probabilistically decides between moving to S or staying at S. If it decides to move to the neighboring solution S , the current solution is updated as S . This step is repeated until the solution is optimal according to a certain criterion, or until a given computation budget has been exhausted. Following the description in [START_REF] Henderson | [END_REF]], we present a detailed SA-based maximizing process in Algorithm 6.

SA starts from an initial solution S 0 and keeps moving to other solutions either until tM ax steps are performed or an optimal solution is found. The optimal solution is quantied as the optimal value eM ax of its objective function. The value of the objective function is called energy, calculated by calling ENERGY().

The call NEIGHBOR(S) (line 10) generates a neighboring solution S of current 56 Chapter 4. Simulated Annealing based Local Search for SONs solution S; the call P(E, E , T t ) returns a probability. If the probability is larger than the value returned by RANDOM() (line 10), we move the current solution E to the neighboring solution S (line 11). This is also mentioned as the neighboring solution S is accepted with the probability P(E, E , T t ).

Algorithm 6: Simulated Annealing (SA) 1 S = S 0 ; // current solution 2 E = ENERGY(S); // current energy 3 relaxationT ime = 0; // counter for relaxation time 4 t = 0; // current step of cooling schedule 5 while t < tM ax and E < eM ax do 6 T t = TEMPERATURE(t); // T t = T 0 , if t = 0 16 end 17 return S

The probability to accept a neighboring solution is controlled by the energy of the current solution E, the energy of the neighboring solution E , and the current temperature T t . In traditional SA algorithm, this is implemented by Metropolis dynamics [START_REF] Metropolis | Equation of State Calculations by Fast Computing Machines[END_REF]], which always accepts the good solution, and accepts the bad solution with a given probability between 0 and 1. Consider a minimizing problem, Metropolis dynamics can be formally described in the following equation:

P (E, E , T t ) =    1, if E ≤ E e -(E -E)/Tt , if E > E (4.1)
The process that Metropolis dynamics is repeatedly used to accept/refuse neighboring solutions can be regarded as simulating a Markov chain [START_REF] Bertsimas | [END_REF]]. Similar to Metropolis dynamics, Glauber dynamics can also be used to accept/refuse a state transition in a system with multiple elements, and to simulate a Markov chain [Levin 2009]. Consider a minimizing problem, Glauber dynamics accepts both good and bad solutions with a probability dened as follows:

P (E, E , T t ) = 1

1 + e (E -E)/Tt . (4.2)

Figure 4.1 shows, for a given value of -(E -E)/T t , the probability distribution of Metropolis dynamics and Glauber dynamics.

T t is a parameter in analogy with the temperature in physical annealing. In optimization problems, however, the temperature is rather a controlling parameter to drive the initial solution to the optimum [Kirkpatrick 1983a]. Starting from a heuristic high value, the temperature is controlled by a cooling schedule. The cooling schedule determines when the current temperature should be lowered, and how much it should be lowered. In Algorithm 6, the former is implemented by a relaxation time rT ime, which refers to the number of attempts of local search that are performed before the temperature is lowered; the latter is implemented by the call TEMPERATURE(), which yields a lower temperature given the current annealing step t.

A high temperature tends to allow more bad moves from current solution, while a low temperature allows less. Similar to the physical annealing process, cooling schedule gradually decreases the temperature T t as the system approaches to its optimal solution. An eective cooling schedule is essential to reduce the 58 Chapter 4. Simulated Annealing based Local Search for SONs amount of time required to nd an optimal solution. However, how the temperature is specically scheduled often depends on the specic optimization problem [START_REF] Bertsimas | [END_REF]]. The commonly used cooling schedules include exponential schedule in Equation 4.3, linear schedule in Equation 4.4, and logarithmic schedule in Equation 4.5 [Nourani 1998].

T t = T 0 a t 0 < a < 1, t > 0 (4.3) T t = T 0 -a × t (4.4) T t = a log (t + 1)
t > 0 (4.5)

SA-based Decentralized Local Search

Although SA has been applied in the local search approach for the optimization problems, applying SA in the decentralized local search in this thesis is not trivial. First of all, the local search mechanism in this thesis is not exactly the same to the traditional local search. It allows a exible local search strategy, but does not move to the other solutions immediately. Secondly, we must formalize the denition of solution and energy in our task so that SA can be applied. Moreover, the P2P system we aim to optimize has a variable size and state because of peers' dynamics behaviors. In this section, we will present how the SA is adapted into our task.

Applying SA to Decentralized Local Search

SA is applied to guide a walker exploring p i 's neighborhood. Specically, the walker takes its next step to a good or bad peer by a probability controlled by SA. A good peer is dened as the peer whose similarity to p i is higher than p max , the peer that is p i 's short-range contact that has the least similarity (also mentioned as the biggest distance) to p i . So by replacing the peer p max with the good peer, the intracluster distance is decreased between p i and its short-range contacts; a bad peer is dened as the peer whose similarity to p i is not higher than the similarity between p i and p max . According to the principle of SA, at a high temperature, bad peers are accepted as the walker's next step with high probability; as the temperature decreases, the probability to accept bad peers decreases, thus more good peers are accepted. The temperature decreasing process corresponds to the evolution of peer's neighborhood structure. A higher temperature implies a neighborhood structure with a lot random connections between random peers, as the temperature decreases, 4.5. SA-based Decentralized Local Search 59 similar peers emerge in the neighborhood and gradually connect with each other. So at a high temperature, a step to a bad peer is helpful to discover good peers in the next step. While as the neighborhood structure evolves, a step to a good peer is more helpful to discover good peers in the next step.

We make a formal analogy between SA and our task in Table 4.1. The aim of our task is to search good peers to replace a peer p i 's current short-range contacts. So when a walker decides to step on a peer p r , the current solution refers to the current conguration of peer p i 's short-range links. A new solution refers to a new conguration where the most distant short-range contact p max is replaced by p r . Let peer p r is the host peer of the walker R i , a possible new solution can be generated by taking any of p r 's neighbors as R i 's next step. The energy of a solution is measured by intra-cluster distance, the average distance between p i and the short-range contacts in the conguration. So the goal becomes to minimize the solution until its energy achieve the intracluster distance threshold θ. The probability to accept a neighbor solution is dened by Metropolis or Glauber dynamics. As stated previously, exploring peer's neighborhood is a repeated local search process. The temperature is cooling down as peer's neighborhood is repeatedly explored. In a single local search iteration, the walker continuously takes a number of steps. The number of steps is equal to the walker's TTL, which can be specied by the system designer. To calculate the probability of taking p r as the next step, the energy dierence ∆E and current temperature are required. The latter is controlled by cooling schedule, and the former is calculated by Equation 4.6. Since the number of the short-range links s is kept the same, the equation can be simplied as ∆E = Dis(p r , p i ) -Dis(p max , p i ): Algorithm 7 details the repeated local search algorithm using SA: p i periodically starts local search process until the optimum is achieved or a time budget is nished. In each local search iteration, a number of local search steps are performed sequently. The searched solutions are returned to p i , and p i decides to stay with the current solution or move to the other solutions. This corresponds to the exploring behaviors of the walker in p i 's neighborhood. It is implemented in line 411. New solutions featured by p r are collected by the walker (by storing the information of p r in R i ). p r is selected from the neighbors of the walker's current host peer p r , based on SA. This implementation is described in Algorithm 8.

Algorithm 8: LOCAL_SEARCH(R i , p r , T t ) 1 Input: R i , p r , T t ; // the walk, the walker's current host peer, and the current temperature 2 checkedP eer = {}; // record the searched peers 3 while p r : randomly selected from Current solution is not changed until a set of new solutions are collected by the walker. This is in accordance with the process of peer rewiring described in Chapter 3, where peer p i does not update its neighbors until the walker nishes exploring the neighborhood. It updates them when it nally receives the returned walker which carries the information of the new solutions. Note that this does not aect the fact that bad peers (bad solution) can be accepted as the walker's next step and an extensive local search can be performed, because the peers are explored in sequence and accepting bad peers may result in a set of good peers as the walker's future steps. The number of local search steps is the TTL of the walker.

T t is used to control the exploration where local search is performed. With the returned explored peers whose information is stored in R i , p i updates its short-range contacts. Long-range contacts can also be updated in the meanwhile, but it is an operation specied by the protocol designer as stated in Chapter 3. If the energy of discovered solutions is not better than the current energy, p i keeps its current short-range links, and the energy of current solution does not change.

The temperature during a single search process remains the same. This process is then repeated with a decreased temperature generated by TEMPERATURE(t), until the intra-cluster distance is optimized to be equal to or below θ.

Peers are accepted as the walker's next step according to the probability decided 62 Chapter 4. Simulated Annealing based Local Search for SONs by either Metropolis or Glauber dynamics, as showed in lines 56 in Algorithm 8. The probability is calculated based on two inputs: the current temperature and the energy dierence between the current solution and the new solution.

Since the energy dierence should be calculated when a walker selects a peer as its next step, the rewiring message carried by the walker has to include the information of the distance between its initiator p i and the least similar distant short-range contact p max = Dis(p max , p i ), represented as d max . The rewiring message is then reformatted as a tuple IP p i , P rof p i , T T L R i , d max , C . If no peer is selected as the walker's next step by Metropolis or Glauber dynamics, a random one is pick instead (line 8).

Enhanced SA-based Decentralized Local Search

In the previous subsection, we apply SA in the local search task for peer rewiring without changing any detail of the task. We use the probability controlled by SA to select a peer as the walker's next step. The selected peer corresponds to a new solution, which is not used to replace the current solution immediately but kept in the rewiring message until it returns to the rewiring peer. This is not exactly what traditional SA does in local search, where the new solution replaces the current one once it is accepted.

In addition, the walker only collects the information of the peer that is selected as its next step, even thought the whole local search space can be easily accessed, since each peer has a good knowledge about its neighbors. Instead of only collecting the information of the walker's next step, the walker can also collect the information of the other good solutions in the current local search space, which may accelerate the optimization process.

In this subsection, we propose an enhanced algorithm (Algorithm 9) to the previous algorithm (Algorithm 7). Instead of keeping the current solution unchanged during a single round of exploration, we propose to perform solution transition immediately after each single step of the walker. To implement this, additional information has to be included in the rewiring message R i . Specically, we append to R i a ranked list of distance values between p i and its short-range contacts. After each walk step to p r , the biggest distance value is replaced by the distance between p i and p r , if the latter is smaller than the former. The replacement can be regarded as removing an old short-range link and building a new one (although the real replacing operation will take place after R i returns to p i ). By doing this, the current solution is updated in real time, which may be helpful to the subsequent exploration process. In addition, except collecting the information of the peer p r (the next step of the 4.5. SA-based Decentralized Local Search 63 walker R i ), the walker is also allowed to collect the information of the other good solutions in the local search space. These additional good solutions are also returned to p i in order to speed up the optimization process of its short-range links.

Algorithm 9 describes the details of this enhanced SA-based local search. The real-time update for the solution is performed in lines 68. Lines 1014 show how the walker collects the information of other good solutions.

Algorithm 9: ENHANCED_EXPLORATION(p i , T t ) 1 rankedDis = SORT(Dis(p j , p i ), ∀p j ∈ P i short ); // generate the ordered distance list 

2 R i = IP (p i ), P rof p i , T T L R i ,

Cooling Schedule

A cooling schedule is used to control the cooling rate of the temperature. In physical annealing process, it is assumed that cooling rate should be low enough for letting the probability distribution of the system state to be near thermodynamic equilibrium [START_REF] Bertsimas | [END_REF]]. A relaxation time is dened to indicate the time one must wait for the equilibrium to be restored after the change of temperature. It strongly depends on the `topography' of the energy function and on current temperature. In SA algorithm, these congurations about cooling schedule do not have the exact meaning as that in physical annealing process [Brooks 1995], they are rather controlling parameters that are often achieved by empirical study. Adaptive simulated annealing algorithms [START_REF] Ingber | [END_REF]] are proposed to automate the cooling schedule by connecting it to the search progress. However, we are more interested in observing the performance of SA-based local search given an appropriate cooling schedule. Hence, in this thesis, the appropriate cooling schedule is set by trial-and-error in a preliminary experiment: the cooling schedule that achieves the best local search result is used for our study.

Some heuristics can be used to choose the appropriate cooling schedule function as well as the relaxation time at any temperature. We consider to keep the same temperature while the walker is sent to explore the neighborhood, and decrease it when another walker is sent to perform another iteration of neighborhood exploration. For each temperature, the relaxation time is set as the T T L of a walker, which refers to the number of the attempts of local search. During the time a peer performs the local search to update its short-range contacts (the current solution), other peers in the network must also updates their congurations of the short-range contacts considering that peers rewire their connections in parallel. The updated congurations change the topology of network. Therefore, the temperature must change between any two iteration of local search in order to reect the change of the system. However, the temperature in a single iteration of local search should remain the same, because no neighboring solution is returned to the rewiring peer and allows it to update its current solution before the T T L of the walker reaches 0, and thus it can be assumed that no signicant changes happen in the network topology during this period of time.

For choosing the proper cooling schedule function, we need to consider the eect of temperatures on the energy dierences. A proper cooling schedule should be able to control the temperature so that the probability to accept any solution has the intrinsic principles of SA [Brooks 1995]: (i) the probability is almost the same to accept any bad solution in the beginning of the cooling schedule, no matter how much the resulting energy dierence is; (ii) as temperature decreased, the value of the energy dierence must also eect the probability. For example, the probability to accept a bad solution with energy dierence 0.1 must be smaller than the probability to accept a bad solution with energy dierence 0.5. Now let's consider how the cooling schedule can respect the above principle in our task. In our task, since the Jaccard distance between two peers ranges between 0 and 1, the absolute value of the energy dierence achieved in each local search step is also in the same range. In Tables 4.2 and4.3, the probability to accept a solution is listed given a range of temperature and a certain value of energy dierence for Metropolis and Glauber dynamics, respectively. Since the probability distributions of Metropolis and Glauber dynamics are monotonically increasing (Figure 4.1), we can observe, given a range of energy dierence [-0.2, -1.0], any temperature above 10 generates the probability ranges [0.90, 1) for accepting bad solution in Metropolis dynamics,and [0.47,0.5) for accepting bad solution in Glauber dynamics. A wider range of probability can only be achieved with a temperature smaller than 2. For example, when the temperature is 0.5, with 66 Chapter 4. Simulated Annealing based Local Search for SONs Metropolis dynamics, an energy dierence -0.2 corresponds to a probability 0.67, while an energy dierence -0.1 corresponds to a probability 0.13.

Assuming that the cooling schedule starts from a quite high initial temperature, like 500, we can observe that it works almost the same when the scheduled temperature is above 10, since the temperature above 10 allows to accept any bad solutions with a probability close to 1 (Metropolis dynamics) or 0.5 (Glauber dynamics). Local search in this case is like random walk. When the temperature is cooled to be below 2, the probability to take bad solutions starts to decrease. When the temperature becomes very low, the probability to take bad solutions is close to 0. Particularly in Glauber dynamics, when the temperature decreases, the probability to take good solutions also changes. It gradually increases as the temperature decreases. When the temperature becomes very low, the probability to take good solutions is close to 1. Local search in this case becomes greedy walk, so that only good solutions are accepted.

In order to allow a gradual evolution of the local search strategy (from random to greedy) with Metropolis or Glauber dynamics, the cooling rate should be carefully controlled to avoid too many random walks or too many greedy walks. For example, with the linear cooling schedule showed in Figure 4.2, the temperature remains high for a long time, allowing a large number of random walks; as the temperature becomes low, it continuously decreases with the same rate, which only allows a small number of greedy walks before it reaches 0. Instead, with the logarithmic cooling schedule, the temperature decreases very rapidly to the temperature which allows greedy walks. So there are not enough random walks to extensively explore the neighborhood to allow the peer clusters to emerge. If we consider a cooling schedule which allows a high cooling rate when the temperature is above 2 and a slow cooling rate when the temperature is below 2, some useless random walks can be avoided, and greedy walks are gradually allowed. Good peers can be discovered more eciently in this way. So both of these two cooling schedules are not appropriate for our task. Only the exponential cooling schedule is in accord with our requirement, which starts from a high temperature, and has a proper cooling speed in the beginning and slows down after the temperature become low.

As a conclusion, we give a general picture about SA-based local search for all peers in unstructured P2P network. From unstructured network to SONs, P2P network gradually changes its topology. The initial random links are gradually changed to be links between similar peers. This is analogized to a cooling process from a high temperature to a low one. For each peer in the network, at a high temperature, it explores the neighborhood almost randomly; as the temperature decreases, it tends to guide the walker to the good peers with a higher probability. Given a random P2P network, peers perform SA-based peer rewiring independently until their intra-cluster distance reaches the threshold θ. The cooling schedule for SA-based peer rewiring is set as Equation 4.3. The same initial temperature and same cooling rate are set for each peer, considering that they reside in the same system.

Cooling Schedule with Peers' Dynamic Behaviors

The P2P network we study consists of dynamic behaviors like peer joining/leaving and content updating. In Figure 4.3, we demonstrate the possible dynamic behaviors of peers during the process of network topology evolution. These dynamics behaviors result in new situations for peers rewiring.

The rst situation is caused by new peers joining the network during the network evolution. SA-based peer rewiring of these new peers has to be treated dierently, because their initial temperature depends on the state of the network when they join. For example, if the peer clusters already emerge in the network, the new peer does not need a high initial temperature to randomly explore its neighborhood; if the peers are still randomly connected with each other when a new peer join the network, it should start peer rewiring at a high temperature, because random walk is necessary in this case to explore possible good peers in its neighborhood. Therefore, given a new peer joining the network during the network evolution, a reasonable initial temperature should be set by considering the network state.

The second situation is that existing links that met the requirement can be changed. For example, a short-range contact may leave the network; or it may change its content and accordingly change its prole. This may cause the intracluster distance above the threshold θ. In this case, peers have to restart peer rewiring to rewire the links. SA-based peer rewiring in this case also needs an appropriate initial temperature according to the network topology of that moment.

Therefore, a consistent cooling schedule schema is proposed in Algorithm 10. It integrates peers' dynamic behaviors in the process of generating SONs from a random P2P network. In this algorithm, the initial temperature for a new peer is decided by the temperature of its neighbors, which implies the situation of current network topology. Specically, it is calculated as the average temperature of the peers's neighbors, which includes its long-range contacts and short-range contacts (line 11). The traditional cooling schedule decreases the temperature monotonically, and the probability to accept bad solutions also decreases. When the temperature is close to 0, only good solutions are accepted, since a temperature close to 0 also results in the probability to accept bad solutions close to 0 (line 9). Cooling the temperature in this way works perfectly for generating SONs when no dynamic behaviors exist in the network, because as the similar peers are gradually clustered, stepping on good peers can explore more good/better peers, and the necessity to step on bad peers to explore good peers decreases. However, if the dynamics in the network happen when the temperature is very low and it involves a large number of peers, the network must be recongured into an optimum state. To this end, certain bad peers should be accepted when the walker explores the neighborhood in order to reconnected the isolated similar peers. But with a low temperature close to 0, bad peers are not possible to be accepted as the walker's next step. Therefore, the temperature must be reset to be a high value in order to allow bad peers to be accepted. Formally, in order to decide when to reset the temperature, certain information has to be recorded in the peer's last ξ local search iterations: the improvement the peer achieves over its intra-cluster distance and the number of bad peers that are accepted. If the peer's intra-cluster distance has not been improved and no bad peers are accepted in the last ξ local search iterations (line 6), we follow the idea from [START_REF] Battiti | Reacting on the Annealing Schedule[END_REF]], to increase the temperature by a heating factor h larger than one at each iteration during the processing of reheating (line 7).

Summary

In this chapter, a SA-based approach was introduced in the decentralized local search task for building SONs. Firstly, we presented our motivation to use SA instead of other local search approaches. Then we recast SA into our task, with each peer performing a SA-based local search algorithm to optimize the conguration of its short-range links. An appropriate cooling schedule was then selected for the proposed approach. We concluded the chapter with the proposal of a dynamic cooling schedule, which adaptively sets the peers' temperature according to the situation of their neighborhood that is aected by the network evolution as well as the dynamic behaviors of peers. In this chapter, we evaluate our approach, Simulated Annealing (SA) based decentralized local search approach, by simulating it to build Semantic Overlay Networks (SONs). Firstly, we introduce how we prepare the content in peers for the simulation (Section 5.1). The properties of the required data are identied, and a proper data set is chosen based on an overview of the related work. The data set is distributed in the peers of a simulated P2P network, according to the category information of its documents. Peer proles are then calculated. In Section 5.2, we detail the conguration of the P2P network connections and our approach. We then present the simulation procedure, from which, the results are evaluated by the metrics introduced in Section 5.3, and presented and analyzed in Section 5.4. We nally summary our simulation results in Section 5.5.
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Chapter 5. Evaluation

Data Preparation

There exist many data sets for evaluating Information Retrieval (IR) in SONs. This rises the problem of how to properly choose the data set. We rstly identify the properties of the data set required in this thesis, then review the related works about data preparation. Based on the review, Reuters corpus [corpus 2011] is chosen for evaluating our proposal. Details are then described about how Reuters corpus is distributed to peers, how each peer calculates its prole, and how queries and reference assessment are achieved.

Data Requirement

We identify 3 properties of the data that is required for evaluating our approach:

• Property 1: The data should be a collection of text documents over which text-based IR can be performed, since we build SONs for the application of full-text P2P-IR. It should have queries and relevance assessment in order to evaluate the performance of IR.

• Property 2: The documents in each peer is assumed to represent the user's interests. So additional information like topics or categories about the documents should be available or easily obtained, in order to facilitate distributing the documents to peers.

• Property 3: The document collection should be large enough to be distributed to a P2P network with a large number of peers, so that our approach can be evaluated in not only the networks with small size but also the networks with large size.

Related Work

There are mainly four sources of data sets for IR in P2P networks. One of the resources is from TREC1 , which provides data collections for evaluating centralized text Information Retrieval. For IR in P2P networks, TREC 5, 6 and 9 are commonly used. For example, TREC 5 is used in [START_REF] Balke | [END_REF]]. In this work, documents were randomly distributed to peers, and queries with 2 words on average were randomly generated from the documents. The P2P-IR results are compared to a ground truth, which is generated by evaluating the same queries against the whole TREC 5 document collection in a centralized way. TREC 62 and TREC 93 are used 5.1. Data Preparation 73 in [Raftopoulou 2008a]. Based on the category information of the corpus, each peer keeps a set of documents in one category. This corresponds to the assumption that each peer has one interest. ClueWeb12 data set 4 is another data set published by TREC. It is comprised of roughly 1 billion web pages. It is also used for IR in P2P networks [START_REF] Ke | [END_REF]]. In this work, the web pages belonging to the same web site were distributed to one peer.

Free resources like Wikipedia 5 , MEDLINE 6 and Reuters [Lewis 2004] have been also used. In [START_REF] Podnar | [END_REF][START_REF] Skobeltsyn | Distributed cache table: efcient query-driven processing of multi-term queries in P2P networks[END_REF]], the authors crawled Wikipedia documents and distributed them randomly over peers. They used the real query logs of Wikipedia for IR in P2P networks. The ground truth relevant documents were generated by a centralized search engine using the BM25 relevance schema 7 . In [START_REF] Papapetrou | [END_REF]], MEDLINE and Reuters were used. The authors deploy documents to peers based on the category information of documents. Reuters-21578, a sub collection of Reuters, was used in [START_REF] Doulkeridis | [END_REF]].

In the works dealing with the general task of IR in P2P networks, real text documents are not used for the evaluation. Instead, articial data is often produced to validate the proposed approaches, such as in [Crespo 2002a, Kumar 2005a[START_REF][END_REF], Kim 2011].

Another alternative of data set is real traces from P2P le sharing systems or Online Social Networks (OSN). The latter is becoming a main data source for IR in P2P networks, due to the recently emerging research in social networks. For example, in [START_REF] Bender | [END_REF]], the authors crawled a part of del.icio.us 8 , and assume each peer corresponds to a user. The documents in each peer were the bookmarks the user shared. The tags annotated to the bookmarks were used as queries, and the ground truth relevant documents are the bookmarks that contain the same tags. Real traces crawled from CiteULike 9 was used in the similar way in [Bertier 2010].

We summarize the data sets used in the literature in Table 5.1. Except TREC, MEDLINE, Reuters and ClueWeb09, all the other data sets are the traces from P2P le sharing systems or OSN and are not published. So it is dicult to reproduce them. In the works using TREC, MEDLINE, Reuters or ClueWeb09, documents are distributed either by random or by the additional information like category or URL. Among them, works using MEDLINE, Reuters and TREC-9/6 distribute documents to peers according to their categories, which can make sure 4 http://www.lemurproject.org/clueweb12.php/ 5 http://www.wikipedia.org/, available for download from http://download.wikimedia.org 6 Medline database, US National Library of Medicine, http://www.ncbi.nlm.nih.gov/ 7 BM25 is a ranking function used by search engines to rank matching documents according to their relevance to a given search query 8 https://delicious.com/ 9 http://www.citeulike.org/faq/data.adp 74 Chapter 5. Evaluation the documents in each peer have central topics. These central topics can be considered as the user's interests. In addition, most of the date sets are used to simulate the networks ranging from 100 to 10000. For simulating the networks with more than 10000 peers, Reuters and traces from eDonkey and OSN are used in [Voulgaris 2007, Bertier 2010[START_REF] Doulkeridis | [END_REF]. For query and relevant documents (ground truth), most of the works obtain the queries and relevant documents based on the data set they use and the searching task they target.

We choose Reuters for our simulation, considering that (i) Reuters is a freely available full-text data set, so that full-text P2P-IR can be performed and the simulation can be reproduced easily; (ii) Documents in Reuters have the additional information about their category, and the category information can be used for distributing documents to peers. (iii) Reuters has more than 800,000 text documents which can be distributed to a large number of peers, while the other two data sets MEDLINE and TREC-9/6, which also have category information for documents, have 348,566 and 30,000/556,078 documents, respectively. 

Using Reuters Corpus

Reuters corpus is a collection of news articles in dierent categories. It consists of 804,414 news articles belonging to 103 categories (an article may belong to several categories). The 103 categories are hierarchical. By removing the categories on higher hierarchy, we get 77 categories. Since we assume each peer has one interest (as described in Section 3.1.1 in Chapter 3), we assign each peer a collection of documents D which are randomly extracted from one random category. For the value of |D|, we follow the strategy in [START_REF] Papapetrou | [END_REF]] which also use Reuters and the category information to distribute documents, and assign each peer 20 documents from the same category. To avoid duplicated documents returned to the same query during IR, peers in the same category are not allowed to share common documents. This could in turn results in worse IR performance, since there is only one copy of the relevant document in the network. Therefore, it is a tradeo between trac cost and IR performance.

Although it has no available queries and relevance assessment, a set of articial queries and relevant documents can be generated easily, as showed in the works like [START_REF] Balke | [END_REF][START_REF] Podnar | [END_REF][START_REF] Papapetrou | [END_REF]. A set of documents can be randomly selected as queries for searching other similar les, and the corresponding relevant documents of each query can be obtained by a centralized search engine. The results archived by the centralized search engine are used as the relevance assessment, because more advanced searching techniques can be used in a centralized search engine, so the results are more close to the ideal performance. Moreover, even with the same searching techniques, a centralized search engine can provide ideal ground truth to P2P-IR, to evaluate if the query routing in P2P-IR guarantees that the query can reach all the peers storing the ground truth relevant documents. In this thesis, we randomly chose 100 documents from Reuters corpus as representative possible queries in the network, considering that there are 77 categories in the network. For each query, we employ Lucene10 to perform IR over the whole document collection. The top 100 documents returned by Lucene are used as the ground truth.

Generating Peer Prole

Peer prole is represented as a set of topics for describing the interest of the peer. We use Latent Dirichlet Allocation (LDA) to generate representative topics for each peer, as stated in Section 3.1.1 in Chapter 3.

LDA is trained on a collection of documents sampled from peers. We use Java-based package MALLET11 to train LDA model and infer topics for new documents. Specically, we use the same server that works as a bootstrap server of the P2P network to train LDA model, and share the trained model to all peers in the network. The peers use the model to infer the topics of their documents locally once they join the network. The inferred topics with a probabilistic weight above threshold 0.1 are regarded as the peer's topics. For the implementing details, we follow the work proposed in [START_REF] Draidi | [END_REF]].

Experimental Setup

The simulation is performed in four parts. In the rst part, we simulate the process of network topology evolution from a random P2P network to a SON where peers with similar content are clustered up. In the second part, IR over the generated P2P network topologies is simulated. An evolution of IR performance is expected during the evolution of the network topology. In the third part, we simulate the topology evolution with dynamic behaviors of the peers. Peer joining is the focus of this thesis. We simulate the behavior of peer joining at dierent times during the network evolution process. The new peers are initially connected to some random peers. They then use local search to build short-range links to similar peers. We are interested in how the status of the network topology and the local search strategy would aect the eciency to build short-range links for the new peers that join the network at dierent times. In the last part, the SA-based local search is simulated with dierent congurations.

In the rest of this section, parameters used for the simulation are described, followed with a detailed simulation procedure.

Conguring the Network: Setting Parameters

The conguration for the network and peer rewiring must be set before the simulation. All the parameters and their baseline values are listed in Table 5.2.

The parameters are carefully congured, by considering their potential eect on the quality of peer clusters and IR results, as well as the required time and trac cost. A detailed discursion based on experimental study will be presented in Section 5.4.5, a brief description about them is presented in the following:

Network size N refers to the scale of the network we study. In this thesis, we are interested in studying the evolution of overlay network with large number of 
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peers. As the simulated networks in the state of the art often has 100-10000 peers, we simulate P2P networks with up to 25000 peers.

Number of long-range contacts l is to make the whole network connected. The number of long-range contacts aects the shortest path length between any two peers, and may hence aect the performance of peer clustering and IR. Experiments in Section 5.4.5 show that in order to make the network be a connected component, the minimum number of random links each peer should keeps is 11; in Table 5.14 in the same section, an explicit IR improvement can be observed when we change the value of l from 10 to 15. So l is set as 15 in the simulation, so that a good IR performance can be obtained while the maintenance cost of the links remains low. The value of l is the same for all the peers, since we assume peers have equal capability to maintain their links (considering maintaining a link requires periodical message exchanges).

Number of short-range contacts s is to make the peers with similar contents connected. It may aect the quality of peer clusters and the performance of intra-cluster IR. It is set as 15 after a tradeo between the IR performance and the cost to maintain the links, as showed in Table 5.12 and Table 5.13 in Section 5.4.5. Similarly, the value of s is the same for each peer.

Intra-similarity threshold θ may aect the performance of Information Retrieval. It is set as 0.5, which achieves the best IR performance according to experimental study (part of the experimental results are reported in Table 5.12, Section 5.4.5). TTL of query message k q aects the performance of IR. To choose the value for these two TTL, a tradeo has to be made between the trac cost and the performance. According to experiments and a careful tradeo, we set k c as 7, and k q as 3 and 4.

TTL of clustering message

For SA-based local optimization, the following parameters are set:

Initial temperature T 0 is a simulated value to indicate the initial state of the system. We tried 50,100,500,1000 as an initial temperature, the overall performance with initial temperature 100 is better than the others with respect to their convergence speed in building SONs.

Cooling schedule T (t) controls the cooling process of the temperature. It decides how the temperature decreases step by step. In Chapter 4, a specic analysis is made for selecting the appropriate cooling schedule, and the exponential cooling schedule is chosen.

Relaxation time k r is set to be equal to k c , as discussed in Section 4.5.3 of Chapter 4. It indicates the number of local search steps performed at a given temperature. This parameter may aect the quality of peer clusters.

Simulation Procedure

To start, we initiate a random P2P network with 25000 peers, each has s + l links, as illustrated in Algorithm 11.

Then we execute peer rewiring repeatedly and independently in each peer. To facilitate observation, a predened time interval τ is assigned as the period of rewiring cycles. During this period, each peer is randomly scheduled to initiate a peer rewiring cycle. After a period of τ , these peers can initiate another cycle of peer rewiring. Note that in each period, the order to initiate rewiring cycle might aect the rewiring performance of individually peer, but has slight eect on the overall clustering performance of the network thanks to the randomness. This will be discussed in detail in Section 5.4.5.

The baseline parameter sets are presented in Table 5.2. Table 5.3 summaries all the approaches we implement for peer rewiring. We implement the baseline local search approaches using random walk, greedy walk, and random/greedy walk each is employed with equal probability. These approaches are commonly used in the state of the art, such as in [Voulgaris 2007, Parreira 2007[START_REF] Raftopoulou | Peer rewiring in semantic overlay networks under churn[END_REF]. SA-based Algorithm 11: Generating random P2P network 1 Initiation: G = P, L ; // P refers to all the peers in the network, L is empty 2 for p i ∈ P do 3 j = 0; // use j to count the number of the links p i already has // p i has to build s + l links, s short-range links and l long-range links 4 while j < s + l do 5

Randomly select a peer p j from P -{p i };

6 if p i , p j is not linked then 7 L = L ∪ { p i , p j }; 8 j++;
approach is simulated with dierent value of a in the cooling schedule, and with both Metropolis and Glauber dynamics.

While the network topology evolves from a random network to a SON, IR is performed over a set of network topology sampled from the network evolution. In this thesis, the performance of IR is mainly to verify the quality of peer clusters, so only the IR performance within the clusters are considered. In each sampled network topology, 100 queries (100 random documents as described in Section 5.1.3) are initiated by the peers which have the queries' original copy in their document collections. Since the queries are randomly sampled, they can represent the possible queries in the simulated P2P network. Therefore, the P2P-IR result of these queries can exhibit the overall IR performance in the network. Since a query is also a part of its initiator's content, we consider the query, the query initiator and the peer cluster it belongs to share the similar topics. Therefore, the relevant documents to the query can be found in the peers that are in the same cluster with the initiator. To implement this, the query is diused to the query initiator's neighborhood along the short-range links: it is forwarded to the peers that have a distance below or equal to θ to the query initiator (Algorithm 3 in Chapter 3). The query can be forwarded up to k q hops maximally. For rening the performance, more complicated query routing strategy can be used within the peer cluster, such as the querying routing based on a routing table [Kumar 2005b] or social relations [START_REF] Bender | [END_REF]]. However, this is not the focus of this thesis.

Besides simulating peer rewiring in a static network with a xed number of peers, we also simulate the rewiring process in the network with dynamics. There are three types of dynamics: new peers joining the network, peers leaving the network and 80 Chapter 5. Evaluation Metropolis dynamics Glauber dynamics peers changing their content. For peers leaving the network and peers changing their content, the aected peers may simply rewire their links by explore similar peers via its current similar neighbors. But for new peers joining the network, they have to build connection to similar peers or peer clusters through their initially random links. In this thesis, we focus on simulating the rewiring process for new peers, because this is more challenging to nd similar peers along random links than nd similar peers via existing similar neighbors. In total, 365 new peers are simulated to join the network at a certain time during the network evolution. The contents of the new peers are duplicated from the contents of a set of existing peers, which are sampled uniquely from the 77 categories they belong to. The unique sampling makes the rewiring behaviors of these 365 new peers representative to the overall joining behaviors in the network. Dierent local search strategies are simulated to rewire the links of the new peers, including random walk, greedy walk, random/greedy walk and our SA-based local search.

In the end, we conduct the simulation of building SONs with various network congurations, in order to study how the network conguration aect the quality of the resulting SONs and the IR performance in SONs. We also perform the simulation in various random networks, in order to verify the robustness of our approach.

Metrics

We aim to evaluate the eciency and eectiveness of the proposed peer clustering approach. The former involves in the time consumed for clustering peers, and the latter refers to the quality of peer clusters. The consumed time is evaluated as the number of rewiring cycles the peers take in order to achieve the short-range links meeting a certain criterion. For the quality of peer clusters, we employ three metrics: relative intr-cluster similarity, clustering eciency and IR performance. As stated in Chapter 3, we dene the task of peer clustering as an optimization problem with the objective function:
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O(G) = 1 N N i=1 (IntraDis(p i )) + 1 N N i=1 (C(p i )), (5.1) 
It contains relative intra-cluster similarity of the network, which is the average value of each peer's relative intra-cluster similarity:

IntraDis(p i ) = 0, if IntraDis(p i ) ≤ θ θ -IntraDis(p i ), if IntraDis(p i ) > θ (5.2)
and clustering eciency of the network, which is the average value of each peer's clustering eciency:

C(p i ) = |{p j | H(p i , p j ) ≤ γ, Dis(p i , p j ) ≤ θ}| |{p k | p k ∈ G.P, Dis(p i , p k ) ≤ θ}| . (5.3) 
Relative intra-cluster similarity and clustering eciency are integrated in this objective function. They evaluate peer clusters from both local and global viewpoints, since the former only considers the peer and its short-range contacts, while the latter considers the peer and all the other similar peers in the network. In order to study the relationship between these two elements, we consider them as two dierent metrics.

To evaluate the quality of the peer clusters, we also evaluate the potential IR performance within the peer clusters. Since peers in a cluster have the content with similar topics, we expect that all the relevant documents for a query are located in the peer cluster. Therefore, for each query, we calculate the recall of the relevant documents, that is the number of the relevant documents that can be retrieved from the peer's neighborhood, divided by the total number of relevant documents in the network. The overall IR performance is measured as the average recall of all queries. Assuming q i is a query initiated by p i , D q i is its relevant documents located in the network, and p k is any peer that receives the query q i in the relevant peer cluster, the recall of q i is calculated as:

R(q i ) = |{d j | d j ∈ D q i ∧ d j is stored in p k }| |D q i | .
(5.4)

Results and Analysis

Building SONs from Random Networks

In this section, we present the simulation results of building SONs from random networks, using the local search strategies showed in Table 5. 

Relative Intra-cluster Similarity

Figure 5.1 shows the comparison of random walk, greedy walk and random/greedy walk with respect to the maximization process on the relative intra-cluster similarity of the network. Even though the greedy walk reaches a relatively high value very quickly, it ultimately performs the worst, because it is stuck in that status without getting much improvement ever since.

Comparatively, random walk and random/greedy walk perform better. They achieve almost the same relative intra-cluster similarity after 100 rewiring cycles, but the latter has a high optimization speed than the former in the beginning. As showed in the gure, up to 70 rewiring cycles, random walk keeps achieving a lower relative intra-cluster similarity than random/greedy walk. This is due to the feature of greedy walk, which can collect good peers eciently when peer clusters emerge in the network. However, greedy walk alone is not able to optimize the relative intra-cluster similarity, because of its drawback of not being able to jump out of the local optima. Figure 5.2 shows the optimization of relative intra-cluster similarity via SA-based local search with Glauber dynamics and Metropolis dynamics. The result of random walk is also presented for comparison. The following conclusions can be drawn from these two gures: (i) Using Glauber dynamics, SA-based local search can achieve a higher value of relative intra-cluster similarity, as well as higher convergence speed of optimization. In other words, SA-based local search with Glauber dynamics takes (ii) Using Metropolis dynamics, SA-based local search performs slightly better than the random walk approach. (iii) In the results of SA-based local search with Glauber dynamics, with the same initial temperature T 0 = 100, small values of a can achieve higher convergence speed of optimization than large values.

More detailed comparing results are listed in Table 5.4 and Table 5.5, which describe the relative intra-cluster similarity of the network after dierent numbers of rewiring cycles. In Table 5.4, detailed results of SA-based local search with Glauber dynamics are presented. We can observe that SA-based local search with Glauber dynamics achieves the relative intra-cluster similarity -0.0051 after 100 rewiring cycles, while random walk achieves -0.03 after the same number of rewiring cycles. The standard deviation of the former is also smaller than that of random walk. Moreover, a high convergence speed can be observed with a = 0.1 and a = 0.3. For example, with a = 0.1, the relative intra-cluster similarity reaches -0.0364 with standard deviation 0.1038 after 40 rewiring cycles. The similar result is achieved by random walk after 100 rewiring cycles, by SA-based local search with a = 0.5 and a = 0.7, and by SA-based local search with a = 0.9 after 70 rewiring cycles. Table 5.5 presents the results of SA-based local search with Metropolis dynamics. No big dierence can be observed between the approaches with dierent parameters. SA-based local search with Metropolis dynamics performs slightly better than random walk, and Metropolis dynamics with small a is slightly faster than that with large a. For example, when the rewiring cycles are between 20-70, the relative intra-cluster similarity with a = 0.1 is slightly higher than that with a = 0.9. Now we explain (i) why small values of a perform better than high values of a and (ii) why the performances of Glauber dynamics is better than Metropolis dynamics. The dierent performance of dierent a is caused by the cooling schedule controlled by a. A cooling schedule with various a is showed in Figure 5.3. From this gure, it is clear that a cooling schedule with a large value of a decreases the temperature slowly. With a = 0.9, for example, we can observe that the temperature becomes below 2 after about 40 rewiring cycles. With a = 0.7, the temperature becomes below 2 after about 10 rewiring cycles. As we discussed in Chapter 4, a temperature higher than 2 results in almost a random walk for the local search. This can explain why the performance of SA-based local search is similar to that of random walk in the early phase of rewiring, specially for a = 0.9. After the temperature becomes below 2, more greedy walks and less random walks are taken. This trend continues as the temperature continues to decrease. This explicitly makes the performance with a = 0.9 start to be dierent from the random walk. Take an example in Table 5.4, from RC = 40, the performances of SA-based local search with a = 0.9 and random walk start to show explicit dierence.

The dierent performance of Glauber dynamics and Metropolis dynamics can be explained by their dierent principles. In Glauber dynamics, both good and bad peers are accepted with some probability. In the beginning, good and bad peers are accepted with the similar probability. As the rewiring proceeds, less bad peers while more good peers are accepted. At the same temperature, the better the peer is, the higher the probability is to accept it. In Metropolis dynamics, instead, good peer is always accepted with probability 1, no matter how much improvement it Average distance between the peers and their updated contacts Random walk SA-based(Metropolis, a=0.9) SA-based(Glauber, a=0.9) (b) a=0.9

Figure 5.4: Analysis of peer rewiring behaviors: average distance between peers and their updated contacts causes. Bad peers are accepted with high probability in the beginning and then are accepted with a gradually lowered probability. How these dierent principles make the rewiring performance dierent? We show an experimental analysis in Figure 5.4.

Figure 5.4 presents the peer rewiring behaviors of Glauber and Metropolis dynamics in the network: the average Jaccard distance between the peers and their updated contacts after each rewiring cycle. Only the behaviors with a = 0.1 and a = 0.9 are showed (Figure 5.4(a) and Figure 5.4(b), respectively), since these two values are typical among all the values. The similar pattern can be observed from these two gures: the average Jaccard distance in the algorithm with Glauber dynamics is generally smaller than that in the algorithm with Metropolis and random walk. It implies that the good peers accepted by Glauber dynamics have better quality than the good peers accepted by Metropolis dynamics, with respect to their distance to the rewiring peers. This allows SA-based local search with Glauber dynamics achieves the higher relative intra-cluster similarity using less rewiring cycles.

Clustering Eciency

Figure 5.5 and 5.6 report the optimization process of clustering eciency with dierent local search strategies. The clustering eciency is calculated within the neighborhood with radius of γ = 3 and γ = 4 respectively. For the strategies of random walk, greedy walk and random/greedy walk, Figure 5.5 shows the compared results. Random walk performs the best. According to the clustering eciency with γ = 3 in Table 5.6, random walk achieves the clustering eciency 0.6997 on average after 100 rewiring cycles. It is much higher than that of greedy walk and random/greedy walk. The reason of its high clustering eciency mainly lies in its capability to nd good peers by accessing bad peers. This capability is enabled by the fact that the walker for exploration the neighborhood can randomly steps to any possible peer, and can make connected the similar peers that are isolated by dissimilar peers. In this way, a higher clustering eciency can be achieved because the similar peers can access each other within few hops via their short-range links. In addition, in Figure 5.5(b), the clustering eciency decreases in the beginning, and increases afterwards. The same happens for the SA-based algorithm when γ = 4. The explanation will be given when we discuss the result of SA-based algorithms.

Comparing the results in 5.5 to the optimizing results of relative intra-cluster similarity in Figure 5.1, we can observe that, with the baseline approaches, a better performance in optimizing relative intra-cluster similarity does not imply a better performance in optimizing clustering eciency. Specically, random/greedy walk have a general better performance than random walk in optimizing the relative intra-cluster similarity; but in optimizing the clustering eciency, random walk performs much better, because it better connects all the similar peers rather than only the peers and their short-range contacts.

In Figure 5.6, the results of SA-based local search are demonstrated, with the results of random walk as the reference. For SA-based local search, the rst thing we can observe is that Glauber dynamics outperforms random walk in terms of clustering eciency and convergence speed. This observation is similar to our observation about their performance in optimizing the relative intra-cluster similarity, in which Glauber dynamics also outperforms random walk. Similar convergence pattern of clustering eciency can also be observed from Table 5.7: SA-based local search with Glauber dynamics achieves the clustering eciency 0.69 at 50 rewiring cycles Furthermore, we can observe that small values of a perform better in general, but the highest clustering eciency is always achieved by a = 0.9 after a certain number of rewiring cycles. For example, when γ = 3, with Glauber dynamics, a = 0.9 starts to achieve explicit better clustering eciency after about 70 rewiring cycles; with Metropolis dynamics, a = 0.9 starts to outperform after about 55 rewiring cycles. When γ = 4, with Glauber dynamics, after about 70 rewiring cycles, a = 0.7 also performs better than the smaller values of a.

These improvements are probably because that a = 0.9 allows more random walks than the other values of a in the beginning of the rewiring process, which make similar peers be better connected. However according to the values showed in the tables, these improvements are so slight that they can be almost ignored.

In addition, the clustering eciency decreases in the initial 10 rewiring cycles when γ = 4. This could be explained by the eect of clustering peers in a network. In our simulation, each peer has 15 connection as short-range links. These links are generated randomly in the beginning. Ideally, one peer may have contacts to 15 4 = 50625 peers within 4 hops if no two peers can be reached repeatedly by taking the dierent paths. This number is even larger than the size of our network. Then, when similar peers are gradually connected, neighbors of a peer can become neighbors among themselves. Before the peer clusters are better formed, this can temporarily decrease the number of similar peers that can be accessed within 4 hops. This can be demonstrated by the analysis of the simulation results. Figure 5.7 illustrates the histogram of the clustering eciency of all the peers and its evolution during the peer rewiring process. Since a lot of SA-based local search approaches perform similarly, only some are sampled and illustrated. From the gure we can observe: with γ = 3, the peaks of the histogram evolve from low clustering eciency to high clustering eciency; while with γ = 4, there are the peaks that move to the lower values of the clustering eciency in the beginning of the evolution. It implies that in the beginning of the rewiring processes, a lot of peers can access less similar peers with their non-optimized short-range links, comparing to the number of the similar peers they can access with the random links before peer rewiring.

For SA-based local search with Glauber dynamics, the performance dierences with various values of a can be explained by their cooling schedule. As we discussed in Section 5.4.1.1, when the temperature is above 2, the walking strategy of the rewiring message is close to a random walk, because only the very good (bad) peers are accepted (refused) with high (low) probability, the probability to accept the other peers are similar. A cooling schedule with dierent parameter is showed in Figure 5.3. From this gure, the cooling schedule with a = 0.9 decreases the temperature the most slowly. We can observe the temperature becomes below 2 after 40 rewiring cycles. This explains why its performance is similar to random walk in the beginning. After that, more greedy walks and less random walks are taken because of the decreasing temperature. This explicitly makes the performance with a = 0.9 dierent from the random walk. Moreover, the large number of random walks in the initial phase contributes a lot to avoid isolated peer cluster, which helps the approach achieves a better cluster eciency in the end.

To summarize, our approach, SA-based local search with Glauber dynamics, shows its explicit advancement in optimizing clustering eciency of the simulated SONs, thanks to its evolving local search strategy controlled by Glauber dynamics. This evolving local strategy allows a certain number of random walks to make con-94 Chapter 5. Evaluation nected the similar peers in the network in the beginning, and then allows more greedy walks to eciently nd the optimal short-range contacts for each peer. Therefore, both random walk and greedy walk are properly employed during the evolution of the network topology, and then the performance of building SONs as well as the quality of the resulting SONs are improved.

Information Retrieval in SONs

In order to verify the quality of the resulting SONs in the section above (Section 5.4.1), IR is performed within the generated peer clusters.

Since the query a peer initiates is from its own document collections (the conguration of IR are described previously in Section 5.2.2), the query is similar to the peer's documents. So it can be answered within the same peer cluster of the initiator. It is implemented by letting a peer to issue a query which is actually a document from its local content, and forwarding the query to the peers with a distance below θ along the initiator's short-range links. By doing this, the query is diused in the peer cluster where the query initiator belongs to.

A maximum number of hops k q is set for the query forwarding. In this simulation, we set is as 3 and 4. The performance with k q = 4 is better than that with k q = 3, but the performance dierence between dierent approaches shows the similar pattern with k q = 3 and k q = 4. As stated in Section 5.3, we are mainly interested in how many relevant documents can be reached in the initiator's neighborhood, only IR recall is reported.

Figure 5.8 presents the IR recall with random walk, greedy walk and random/greedy walk. The best performance is achieved by random walk, as we expected, because it has a higher clustering eciency and has good performance in avoiding isolated similar peer clusters. We can also observe a large standard deviation for the IR recall in Table 5.9. The similar observation can also be observed in the results achieved by performing IR in SONs generated by SA-based local search. This could be due to the heterogeneity of the queries we set up. The queries are the documents randomly extracted from the document collection of the whole network, where some queries have the relevant documents with high similarity, while others have the relevant documents with low similarity. At the same time, due to the non-uniform distribution of the documents with respect to their topics, in the network, we have peer clusters with dierent size. Some clusters may contain a large number of similar peers, while others are composed of only a few peers. This heterogeneity could make the location distribution of the relevant documents of the queries dierent from one another. The IR recall keeps increasing as the network topology evolves from a random network to a SON, as we can observe from Figure 5.9. It implies that the network evolution makes it possible to access more peers storing the relevant documents. Moreover, the general IR performance with k q = 4 is better than that with k q = 3, since the similar peers accessed within 4 hops obviously are more than the peers accessed within 3 hops. This explanation can be conrmed by the results in Figure 5.6, which shows that the clustering eciency with γ = 3 is about 0.72, while the clustering eciency with γ = 4 is about 0.95.

However, the overall IR recall is low even when the nal clustering eciency with γ = 4 is about 0.95. This is the result of a tradeo: the queries are only forwarded to the peers whose distance to the query initiator is below the threshold 0.5, in order to save the trac cost. However, the relevant documents may be also stored in the peers whose distance to the query initiator is above 0.5. Moreover, in our simulation setting, two peers in the same category do not share any document, this could also be the reason of the low IR recall.

For SA-based local search, its IR recall is illustrated in Figure 5.9. The general IR recall of SA-based local search is higher than that of random walk. Among SA-based local search with dierent congurations, Glauber dynamics achieves good results with a = 0.1, a = 0.3, a = 0.5 and a = 0.7. SA-based local search with Metropolis does not show much IR improvement over random work, since it does not show much advancement over random walk in optimizing the clustering eciency and the relative intra-cluster similarity.

More specic details about these results are presented in Table 5.10 and 5.11. Since the results with k q = 3 and k q = 4 show the similar pattern regarding the IR performance with dierent approaches, only the IR results with k q = 4 are displayed in the table. We can observe from Table 5.10 that: to achieve the IR recall of 0.3609 with a deviation of 0.3086, random walk has to perform 100 rewiring cycles, while SA-based local search just needs 50 or 60 rewiring cycles. We can also observe the eect of many random walks in the beginning of SA-based local search with a = 0.9. It results in IR recalls similar to the results achieved by random walk. The data in Table 5.11 conrms our observation that SA-based local search with Metropolis dynamics is not much advanced than random walk.

An overall low IR recall can also be observed from the results of SA-based algorithms, since the same tradeo is used in order to save trac cost: the queries are only forwarded to the peers whose distance to the query initiator is below the threshold 0.5. The other peers that are similar to the query initiator are not accessed even though they have the relevant documents. In general, from these results, we can conclude that network topology with similar peers clustered (SON) can im- prove the subsequent IR performance. We can also conclude that the higher the clustering eciency is, the better the IR performance it. However, a high clustering eciency has limited eect on the IR performance if the querying routing technique is not properly designed. In order to have really good IR performance within a peer cluster, more advanced query routing techniques should be considered, such as routing table [Kumar 2005b] or additional relations among peers like social relations [START_REF] Bender | [END_REF]]. In this section, we present the simulation results of the enhanced SA-based local search: its performance in building SONs and the IR recall in the resulting SONs. Enhanced SA-based Local Search aims to improve the performance of SA-based Local Search, by allowing the walkers to collect the information of more peers in a single local search process (the algorithm is presented in Chapter 4). SA-based Local Search with Glauber dynamics and with a = 0.7 is chosen as the baseline, since it shows a good performance in building SONs and results in a relatively high IR recall after 100 rewiring cycles. We implement enhanced SA-based local search using the same conguration of the baseline SA-based Local Search algorithm.

In Figure 5.10 and 5.11,compared results are presented for the SA-based local search and enhanced SA-based local search. We can observe that enhanced SAbased local search greatly improves the optimization process of relative intra-cluster similarity. Within less than 10 rewiring cycles, it achieves a quite high relative intra-cluster similarity which is very close to the optimum. As we stated before, in the very beginning of peer rewiring, peers are explored with a local search strategy similar to random walk. With random walk in a random network, an extensive search space is explored. Statistically, a large search space provides more good peers. Consequently enhanced SA-based local search is able to collect all the good peers in the extensive search space. This enables enhanced SA-based local search to nd the appropriate short-range contacts quickly.

However, this good result has a cost: the quick optimization drives the network topology into a local minimum quickly, and makes it not be able to jump out from it. More specically, enhanced SA-based local search tends to take all the similar neighbors of its neighbors as its own neighbors. This operation can easily results in the following connection conguration: peer p a has short-range contact p b , p b 's short-range contact p c is also p a 's short-range contacts. If too many of this type of links appear in the network, peers can have the diculty to explore the other part of the network and access the other similar peers in the network. This can be observed in Figure 5.11, which presents the optimization process of clustering With γ = 3, enhanced SA-based local search reaches a quite high clustering eciency in a short time, but stops to make explicit improvement since then. Besides of the reason of the shrimped exploring space, this is also because as most of the peers achieve the required short-range links in the beginning, less peers start rewiring process in the network.

Regarding the IR recall of these two approaches (Figure 5.12), we can observe that enhanced SA-based local search can achieve an acceptable IR performance, but it is not able to break its maximum performance to make further improvement. New peers are assumed to join the network during the evolution of the network towards SONs. In this experiment, the network evolution is implemented via SAbased local search with Glauber dynamics and a = 0.1, T 0 = 100, since it achieved good performance in building a SON. We conduct the new peers to join the network after 10, 20, 30, ... 80 rewiring cycles. The setup of the new peers was presented in Section 5.2.2. The rewiring behaviors of the new peers are then recoded and displayed in Figure 5.13 and 5.14. The following facts can be observed:

(i) the best optimization performance is showed in SA-based local search, particularly when the number of rewiring cycles reach 100. In addition, when the new peers join the network at or before 50 rewiring cycles, SA-based local search achieves almost the same relative intra-cluster similarity and clustering eciency. When they join the network after 60 rewiring cycles, the optimization result at rewiring cycle 100 degrades. This is due to two reasons: less rewiring cycles are performed; the temperature of the system becomes so low that good peers are explored with probability of 1, while no bad peers are explored.

(ii) greedy walk tends to outperform the other strategies in optimizing the relative intra-cluster similarity in the initial phase of peer rewiring, and then is surpassed by the other approaches. This is because greedy walk tends to get stuck in local optimum and not be able to jump out of it. This conclusion is similar to the one we summarized by simulating the network evolution from a random network to a SON (Figure 5.1). From the simulation results in Figure 5.5, we also observed greedy walk performs the worst in optimizing the clustering eciency. However, Figure 5.14 shows that greedy walk achieves comparable clustering eciency for 104 Chapter 5. Evaluation the new peers, with respect to random walk and random/greedy walk. This results from the continuously changing situation of the network topology while the new peers rewire their links. As we described in the beginning of this section, as the new peers join the network and rewire their links, the peers in the network are becoming well clustered, due to our well-performed SA-based local search. The gradually clustered peers make it possible that greedy walk can keep nding good peers from the neighborhood. Oppositely, in the simulation of the network evolution from a random network to a SON, all the peers use greedy walk to rewire their links, so the network topology does not evolve well, and peers are not clustered well. Greedy walk in this case achieves bad results without any doubt.

(iii) random walk shows no advantage comparing with other approaches. Specially, when the new peers join the network after 60 rewiring cycles, random walk performs the worst. This is partially because greedy walk performs better for the new peers. In addition, it is also because random walk does not play the similar role in random networks and SONs. In a random network, random walk has the potential to explore more good peers, while in a SON, its potential is degraded due to the emergence of peer clusters.

(iv) but still, random walk plays an important role in making similar peers accessible to each other. That explains the good performance of random/greedy walk.

Similar conclusions can be drawn for the performance of clustering eciency and IR recall within 4 hops, which is not presented for avoiding repetition. In this subsection, we present how the number of links and the TTL of the walkers and queries aect the performance of peer clustering and the subsequent IR. Since the performance of these two tasks are correlated in the way that high clustering eciency indicate better IR performance (Figure 5.6 and Figure 5.9), only the eect of the parameters on the performance of IR is reported, in order to avoid redundance. IR in this subsection is performed by ooding the queries to all the peers within k q hops along the short-range links, since short-range links are supposed to point to similar peers. We made this choice because this can exhibit the potential of a peer's neighborhood to answer its query which shares the similar topics with the peers in the neighborhood. In other words, a high IR recall by ooding can guarantee that the peers with the relevant documents is within the neighborhood. With this 106 Chapter 5. Evaluation guarantee, advanced query routing approach can be designed to only forward the query to the peers with relevant documents within k q hops, while reduce the trac cost caused by ooding.

We rstly check the performance with dierent values of number of short-range contacts s, intra-similarity threshold θ, and TTL of query message k q , by xing the other parameters: the network size N , the number of long-range links l, the TTL of the walkers k c and the maximum hops the queries are forwarded. These constant parameters make sure that the results with dierent s, θ and k q are comparable. IR performance after 100 rewiring cycles is reported. The rewiring is performed using random walk, considering random walk is the best baseline approach and its performance over dierent parameters can be representative. Table 5.12 shows the results with dierent combination of s and θ. We can observe the best performance is achieved by θ = 0.5. This observation conrms that it is necessary to dene a distance threshold between each peer and its short-range contacts, because a proper threshold can control the quality of the similar peers a peer can access via the short-range links. This is very important for IR. In addition, the results indicate that the larger the value of s is, the better the performance is. This is self-explaining, considering the fact that the more connections a peer has, the more peers it can access. So the more short-range contacts a peer has, the more similar peers it can access within k q hops, and consequently the more relevant documents can be found.

With parameter θ xed as 0.5, the performance of dierent values of s and k q is reported in Table 5.13. The conclusion is: the higher the values of s and k q are, the better the IR recall is. The explanation is quite obvious: with high values of s and k q , more relevant peers are contacted, and surely the IR recall is better. In addition, we can also observe that when the value of s is small, increasing the value of k q does not improve the IR recall as much as when the value of s is large. Similarly, when 108 Chapter 5. Evaluation the value of k q is small, increasing the value of s also does not improve the IR recall as much as when he value of k q is large. Therefore, a proper combination of s and k q must be chosen in order to obtain acceptable IR performance.

Regarding the number of long-range contacts l and the TTL of clustering message k c , dierent combinations of their values are studied with other parameters xed as N = 25000, s = 15, k q = 4, θ = 0.5, since these parameters can generate quite good IR performance. From the result in Table 5.14, similar conclusion can be drawn: the larger l and k c are, the better the IR performance is. With larger l and k c , larger number of similar peers are clustered in the way that they can access each other within k q hops. However, the IR improvement cause by larger l and k c is not as explicit as in Table 5.13, especially when l > 15 and k c > 7. Since the long-range links are used to keep peer cluster as well as the whole network connected, this observation may implies that the IR performance would not be greatly improved by the increasing number of the long-range links once the TTL of the rewiring message can allow one peer to access the other peers in the network.

According to the above evaluation with dierent parameters, only the threshold for intra-cluster distance can be decided by experimental results, because there exists a value which achieves the best performance when the other parameters about the network are xed. For the other parameters, the performance always gets better when the value of the parameter increases.

Since large parameters results in more maintenance cost and trac cost, like large l and k c , the appropriate parameters should be decided with a tradeo between the cost and the IR performance. For example, for the number of long-range links, we expect a minimum number which makes all the peers are connected, formally called a strongly connected component [START_REF] Dorogovtsev | [END_REF]]. This provides the possibility to cluster all the similar peers using peer rewiring, since a peer can access all the other peers. At the same time, a small number of long-range links requires a low maintenance load. In Table 5.15, we present the required number of links for each peer in order to have a strongly connected component. To implement this, we randomly build P2P networks with N peers and l connections for each peer using Algorithm 11. We then use the open source library iGraph12 to check the number of strongly connected components in the generated random network. We can observe that a strongly connected component can be generated with l > 10 for each peer.

Network Topology/Size VS. Performance

In this subsection, a set of simulations is made to study the eect of network topology and network size on the performance of building SONs. Since SA-based local search with Glauber dynamics showed a good performance in building SONs and the subsequent IR, we also use it to build SONs in 4 random networks with 25000 peers (peers are the same for all the networks) and 30 random connections (s + l) for each peer. The conguration of the other parameters follows the conguration in 110 Chapter 5. Evaluation Table 5.2. We execute the same SA-base local search in another 2 random networks, with 10000 and 5000 peers, respectively, and compare their results with the results we achieved in the network with 25000 peers. The networks with 5000 and 10000 peers are generated with the same number of random connections for each peer. In order to keep a similar distribution of the peer clusters, these 5000 and 10000 peers are peers that are randomly sampled from the network with 25000 peers. For each peer in these three networks, there are on average 131, 262 and 656 peers whose distance to this peer is below the threshold θ = 0.5. The performance of building SONs is exhibited by the relative intra-cluster similarity of the network, and the clustering eciency of the network with γ = 4.

In Figure 5.15 and 5.16, we show the results of SA-based local search with Glauber dynamics in four initially dierent random networks with 25,000 peers. No signicant dierence can be observed from these results. Therefore, we can verify that the performance of our approach is robust to the randomness of the initial networks.

Figure 5.17 shows the results of the same approach in 3 random networks that have 5000, 10000 and 25000 peers, respectively. The approach shows the same performance in optimizing the relative intra-cluster similarity in these 3 networks. For the results of optimizing the clustering eciency, however, signicant dierences can be observed. After 100 rewiring cycles, the clustering eciency of about 0.95, 0.89, and 0.7 are achieved for the networks with 5000, 10000, and 25000 peers, respectively. For each peer in these three networks, on average, it has respectively 131, 262 and 656 peers whose distance is below or equal to the threshold θ = 0.5. The resulting clustering eciency thus implies that each peer can access about 124, 235, and 459 of these peers, respectively.

Besides, according to the previous simulation (Figure 5.6), we can observe that in the network with 25000 peers, if the clustering coecients is calculated with γ = 4, the SA-based local search approach with Glauber dynamics can achieve a clustering eciency 0.97. So if we use γ = 4 rather than γ = 3 to calculate the clustering eciency in this subsection, we may achieve the similar clustering eciency for these three networks. Furthermore, if we consider to use a larger number of shortrange contacts, the resulting clustering eciency could also be similar in these three networks.

Therefore, we can conclude that our approach allows each peer to access more similar peers as the network size and the number of similar peers increase. It exhibit a quite steady performance in both relative intra-cluster similarity and clustering eciency. In this chapter, the proposal of this thesis was validated by extensive simulation experiments. Random P2P networks were rstly generated, with each peer hosting a set of text documents in a single subject. Peer rewiring was then performed in the networks, aiming at transforming the random networks to SONs. The optimization progress of a SON was evaluated by tracing the evolution of relative intra-cluster similarity, clustering eciency and the subsequent IR recall. Then new peers were simulated to join the network along the evolution of its topology. The peer rewiring behavior of the new peers was evaluated by the evolution of their intra-cluster similarity and clustering eciency. The state-of-the-art approaches were implemented as baselines. In the end, experiments were made to study the eect of the parameters over the performance of peer rewiring approaches.

According to the simulation, we come to the following conclusions: (i) with an appropriate cooling schedule and Glauber dynamics, our SA-based local search has higher convergence speed comparing to the state of the art approaches. It uses less rewiring cycles than the approaches in the state of the art to generate the SONs with a certain quality. For example, the random walk takes 100 rewiring cycles to achieve a SON with relative intra-cluster similarity -0.03, our approach takes 40 rewiring cycles (Table 5.4); the random walk takes 100 rewiring cycles to achieve a SON with clustering eciency 0.69, our approach takes 50 rewiring cycles to achieve that (Table 5.7). (ii) the simulation veries our statement in Chapter 3: a high relative intra-cluster similarity does not necessarily imply a high clustering eciency, although both of them are used to quantify the peer clusters in the network. The optimization of these two objects depends on the specic local search algorithm. For example, greedy walk achieves a higher relative intra-cluster similarity than random walk after 100 rewiring cycles, but it obtains lower clustering eciency than random walk (Figure 5.1 and Figure 5.5); SA-based local search approach with Glauber dynamics, however, optimize both the intra-cluster similarity and clustering eciency (Figure 5.2 and Figure 5.6), thanks to its appropriate usage of the random and greedy walk. (iii) SA-based local search with Metropolis dynamics does not outperform the state of the art approaches, because it always accepts good solutions without considering the improvements they make and hence does not have the advantage to eciently discover better solutions. Instead, SA-based local search with Glauber dynamics has high probability to take better solutions, so its performance is better than the state of the art approaches. (iv) Since clustering eciency can decrease the number of the hops a peer needs to access another similar peer by following the short-range links, a high clustering eciency usually allows a 5.5. Summary 115 good IR performance within a peer cluster. However, its eect over the subsequent IR performance also depends on the specic query routing approach. Readers can refer to Figure 5.6 and Figure 5.9 to revisit the experimental proof. (v) SA-based local search with Glauber dynamics outperforms the other approaches in joining new peers. It spends less rewiring cycles to achieve a certain relative intra-cluster similarity and clustering eciency, and obtain higher relative intra-cluster similarity and clustering eciency after certain number of rewiring cycles (Figure 5.13 and Figure 5.14).

Our experimental study about the congurations and their eects on the performance of building SONs and IR demonstrates that: (i) it is necessary to dene a distance threshold between each peer and its short-range contacts, because a proper threshold can control the quality of the similar peers a peer can access via the shortrange links, and then aect the performance of target tasks like IR (Table 5.12); (ii) a proper combination of the number of short-range links s and the TTL of the query message k q must be chosen in order to obtain acceptable IR performance (Table 5.13), while increasing the number of the long-range links after a certain value does not improve much of the performance in building SONs, if only the TTL of the walker and its walking strategy allow it to access all(most) of the peers in the network (Table 5.14); (iii) the performance of our SA-based approach remains the same for the networks with initially dierent random topology, according to the results in Figure 5.15 and Figure 5.16;(iv) our approach shows a high potential to allow peers to access more similar peers in the network as the network size and the number of similar peers increase, but more investigations are required in order to prove its scalability. 

Conclusions

This thesis studied the task of building Semantic Overlay Networks (SONs) in unstructured P2P networks, for the application of P2P-IR. This task aims to cluster peers with semantically similar content (Chapter 1). It is a challenging task because no central coordinator or global structure exists to facilitate the clustering. Peers only have a limited local knowledge about their neighbors. With the local knowledge, peers are allowed to perform local operations to rewiring their connections to similar peers. These local operations make it dicult to globally cluster up all the similar peers in the network. Moreover, the dynamic behaviors of the peers require a robust rewiring mechanism which can eciently maintain the network topology.

We identied and formalized peer rewiring as a repeated local search process performed by each peer. The peer periodically sends a walker to its neighborhood. The walker walks through the neighborhood via a certain local search strategy, collects information about the peers it explores, and returns with the information to its initiator. The collected information is used to update current connections to more similar peers (Chapter 3).

In order to better understand peer rewiring towards SONs, we recast peer rewiring as a decentralized local search solution to a combinatorial optimization problem: building SONs in which similar peers are clustered. Our optimization model reveals an observable gap between the combinatorial combination problem 118 Chapter 6. Conclusions and Future Work and the decentralized local search solution: the local solution does not necessarily result in a global optimum topology. This motivates us to nd a local solution with desirable properties that can lead to a global topology that is optimal or close to the optimum. Specically, in order to better cluster the similar peers, while individual peers aims at rewiring their short-range links to achieve an optimized conguration of these links, they must play certain number of random walks properly to make connected the isolated similar peers (Chapter 3).

The traditional strategy to explore peers in a neighborhood is designed to be static. It does not consider the correlation between the strategy and the evolving network topology. In this thesis, we proposed an evolving walking strategy based on Simulated Annealing (SA), to consider the evolution of the network topology to improve the performance of peer rewiring (Chapter 4). Thanks to SA, a parameter called temperature was used to indicate the network topology state. A high temperature indicates an random network, while a low temperature indicates the emergence of peer clusters. With a high temperature, a random strategy was used to explore peers in the neighborhood to cluster up the isolated similar peers, while with a low temperature, more greedy strategy and less random strategy was used to speed up the clustering process and rene the peer connections. The strategy gradually changes as the temperature gradually decreases (as the network topology gradually evolves into a SON).

Our extensive simulations (Chapter 5) showed that the proposed approach can greatly improve the convergence time of building SONs as well as the IR performance in it. Specically, we obtained the following conclusions:

(i) with an appropriate cooling schedule and Glauber dynamics, our SA-based local search shows higher convergence speed and results in higher quality of peer clusters. Specically, our approach requires less rewiring cycles than the approaches in the state of the art to generate the SONs with a certain quality. For example, the random walk takes 100 rewiring cycles to achieve a SON with clustering eciency 0.69, our approach takes 50 rewiring cycles to achieve it; our approach results in a clustering eciency of 0.73 after 100 rewiring cycles, while random walk only achieves a clustering eciency of 0.69.

(ii) properly accepting bad peers (or performing random walks) is important to perform the decentralized local search task in our study. It can decide if a decentralized local search algorithm can optimize both the relative intra-cluster similarity and the clustering eciency in the object function. For example, greedy walk achieves a higher relative intra-cluster similarity than random walk after 100 rewiring cycles, but it obtains lower clustering eciency than random walk; SAbased local search approach with Glauber dynamics, however, optimizes both the 6.2. Future Work 119 intra-cluster similarity and clustering eciency, thanks to its appropriate usage of the random and greedy walk.

(iii) SA-based local search with Metropolis dynamics does not outperform the state of the art approaches, because it always accepts good solutions without considering the improvements they make and hence does not have the advantage to eciently discover better solutions. Instead, SA-based local search with Glauber dynamics has high probability to take better solutions, so its performance is better than the state of the art approaches.

(iv) Since clustering eciency can decrease the number of the hops a peer needs to access another similar peer by following the short-range links, a high clustering eciency usually allows a good IR performance within a peer cluster. However, its eect over the subsequent IR performance also depends on the specic query routing approach.

(v) SA-based local search with Glauber dynamics outperforms the other approaches in discovering similar peers for new peers. It spends less rewiring cycles to achieve a certain relative intra-cluster similarity and clustering eciency for the new peers, and obtain higher relative intra-cluster similarity and clustering eciency after a certain number of rewiring cycles.

Our experimental study about the congurations demonstrated that: (i) it is necessary to dene a distance threshold between each peer and its short-range contacts, because a proper threshold can control the quality of the similar peers a peer can access via the short-range links, and then aect the performance of target tasks like IR; (ii) a proper combination of the number of short-range links s and the TTL of the query message k q must be chosen in order to obtain acceptable IR performance, while increasing the number of the long-range links after a certain value does not improve much of the performance in building SONs; (iii) Our approach can build SONs from random networks, but how the networks are randomly congured does not aect the performance of our approach, if only the number of the connections for each peer is the same; (iv) our approach shows a high potential to allow peers to access more similar peers in the network as the network size and the number of similar peers increase, but more investigations are required in order to prove its scalability.

6.2 Future Work

Designing Adaptive Cooling Schedule

In our SA-based decentralized local search approach, the parameters for cooling schedule have been achieved by trial-and-error. This takes time and depends on 120 Chapter 6. Conclusions and Future Work the specic network conguration. In other words, the same experimental eort is required in order to nd the proper cooling schedule when SA-based decentralized local search is used in another network topology. An adaptive cooling schedule will be useful to avoid this eort.

Besides, an adaptive cooling schedule is necessary when more dynamic behaviors happen in the network, like peer leaving and changing their content. The frequency and the amount of these dynamic behaviors could heavily aect the network topology, and hence require a cooling schedule that is adaptive to these changes.

To achieve a proper adaptive cooling schedule, the cooling schedule must adjust the temperature's rate of decrease based on the information obtained during the algorithm's execution [START_REF] Bertsimas | [END_REF]]. Some fast simulated annealing approaches in other applications can be studied [Ingber 1989, Ingber 1996] and adapted into our task.

Rening Peer Prole and Similarity Measurement

In this thesis, peer prole is designed to be represented as a set of topics. The similarity between two peer proles is the Jaccard distance between two topic sets. However, more information can be integrated to generate a richer peer prole: (i) besides representing the peer prole as a set of topics, a real value can also be assigned to each topic of the prole, to quantify its contrition(weight) to represent the peer's content/interest. These values can be used to rene the similarity between two peer proles. This idea is similar to using the term frequency instead of only terms to better compare the similarity of two documents [START_REF] Turney | [END_REF]]; (ii) the topics can also be associated with some time-related information, such as when the topic emerges in the peer prole, when the user updates some documents about this topic. With the time-related information, we can determine if the topic is still an active topis in the peer prole, or if the topic emerges recently [START_REF] Wang | [END_REF]]. This could be also useful to rene the similarity between two peer proles.

With a richer peer prole explained above, a new similarity measurement can be designed. Obviously, it will not be a trivial task, because more information is involved. For example, if a topic in a peer prole A is quite new and with a low quantied contribution, it is not equivalent to the same topic in another prole B with long life span and a high quantied contribution. Moreover, the similarity measurement may not be symmetric: if B shares A's topics and these topics are active topics with high weight in B's prole, for prole A, prole B might be a very similar prole, because it has the potential to answer A's queries in terms of these topics; while for prole B, A may be not a very similar one, because the same topics are not important topics in A, and thus A does not show the advantage to 6.2. Future Work 121 answer B's queries in terms of these topics. Although it is not a trivial task, a measurement based on the richer proles can better evaluate the similarity between two peer proles, and thus benet the subsequent task of IR or collaborate ltering.

Rening Neighborhood Exploration

When peers rewire current connections to similar peers, they perform local search, which evolves from random walk to greedy walk, in their neighborhood in order to nd the good peers. Random walk is used to search the neighborhood by randomly following the links, while greedy walk only follows the links that point to the most similar peer in the current local space. In other words, in this thesis, only prole similarity is considered when peers explore their neighborhood to rewiring current connections.

However, in a real P2P social network [START_REF] Mani | [END_REF][START_REF] Durr | [END_REF], rather than keeping the same number of connections, peers may have dierent number of connections according to the popularity of their interests. In this case, peers in the network are featured by another property: peer centrality. The peer centrality can be quantied as the number of the connections or the number of pathes that pass it [Freeman 1979]. A high peer centrality exhibits a strong capability to access other peers in the network [Freeman 1979].

If two of a peer's contacts have the same similarity to the peer but dierent centrality, the peer is probably able to nd more similar peers through the contact with high centrality rather than through the contact with low centrality. Let's consider peer p i sends a walker R i to explore its neighborhood, and the walker has to choose between peer p j and p k as its next step. If p j and p k have the same similarity to p i , the state of the art approaches as well as our proposal will allow the walker randomly to choose one of them as its next step, while a rational choice can be made based on the peers' centrality. If the walker chooses the peer with higher centrality as its next step, more similar peers could be found since the peer with higher centrality can access more peers in the network. Therefore, by integrating peer centrality into the operation of neighborhood exploration, building SONs is expected to be more ecient.

Improving IR Performance within Peer Clusters

We considered IR as the target application of SONs in this thesis. We focused on generating and maintaining high-quality SONs, and employed the most intuitive approach to perform IR within a cluster: the queries are ooded to the peers whose similarity to the query initiator is above a threshold. This can verify the quality 122 Chapter 6. Conclusions and Future Work of the generated peer clusters. However, it is costly to ood a query to all the similar peers (in terms of a similarity threshold) within a cluster. In addition, the overall IR performance is low by using the intuitive IR, because the relevant documents may be also kept in the peers with a similarity below the threshold to the query initiator. Therefore, more rened query forwarding can be applied within a peer cluster. For example, peers can record the information of the queries they answered or forwarded, manage the information is a routing table, and then the table can be used to answer/forward the future queries more precisely [Kumar 2005b, Valdez 2010].

To take one more step forward, semantic query routing could be possible by inferring semantic relationship between terms. An initial proposal is outlined as follows: each peer records the queries it treats (forwarding and answering) as query feedback as well as their initiators. Peers can exchange their query feedback if necessary. With the query feedback, a term-peer frequency matrix can be achieved. The matrix provides the information of term co-occurrence in certain peers. If two terms appears almost in the same peers, a latent semantic relationship may exist between them. To infer latent semantic relationship between the terms based on query feedback, approaches in the eld of social tagging could be introduced [START_REF] Markines | [END_REF]]. The latent semantic relationship can be used for query routing or query extension. 
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  .1: Example of a routing table

	Type	IP	Prole Similarity	Last contact
	Link A Short-range IP pa P rof pa	0.2	14:59,10/18/2013
	Link B Long-range IP p b P rof p b	0	14:00,10/18/2013

Algorithm 5 :

 5 Local search process of p i 1 Current conguration of p i : S i = P i short ; 2 Initiate a rewiring message R i as a walker; 3 Initiate R i 's host peer p r as p i ; Discussion: From Decentralized Local Search to Global Optimization With the building of SONs modeled as a combinatorial optimization problem and peer rewiring modeled as a decentralized local optimization solution to it, an explicit dierence between their objective functions can be observed. The former aims to optimize the quality of peer clusters from a global point of view, so it takes cluster eciency into consideration in its objective function, while the latter only aims to optimize the quality of individual peers and their direct short-range contacts. There is no explicit proof showing that the decentralized local search solution always leads to the global optimization. There exists a lot of local search strategies, whose eect on this global optimization problem is still not clear. In the remaining of this subsection, we briey analyze the link between decentralized local search and global optimization. A formal theoretical study for this problem should be conducted, which could be part of the future works.

		3.2.3
	8	P i collected = P i collected ∪ {p e } ;
	9 10	p r = p e end
		// accept/refuse the neighboring configurations, each peer in
	11	P i collected implies a possible neighboring configuration for p e ∈ P i collected do
	12	nd the least similar peer p max in S i ;
		// form the neighboring configuration by replacing p max
		with p e
	13 14	S i = (P i short -{p max }) ∪ {p e } ; if O(S i ) is improved then
	15 16 17 18 end end end S i = S i ; 19 return S i ;

4 while O(S i ) < 0 do // explore peers (neighboring configurations) 5 P i collected = {} ; 6 for i = [1 : T T L R i ] do 7 p e = LOCAL_SEARCH(R i , p r ) ;

Table 4 .

 4 1: Exploring a peer p i 's neighborhood with SA

	A solution	The conguration of p i 's short-range con-
		tacts
	Current solution	S = p i 's current short-range contacts
		P i short
	Current energy	E = IntraDis(p i )
	Neighboring solution	(P i short -{p max }) ∪ {p r }, p r is R i 's next
		stop, p max is p i 's least similar short-range
		contact
	Energy of neighboring solution 1 s	p k ∈(P i
	Time budget	tM ax
	Relaxation time	T T L of the walker R i

short -{pmax})∪{p r } Dis(p k , p i )

  rankedDis, C ; // initiate the walker, containing rankedDis
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	13 14	end end
	15	p r = p r ;
	16 17 end T T L R i = T T L R i -1; 18 return R i

3 p r = p i ; // initiate the host peer of the walker

4 while T T L R i > 0 do 5 p r = LOCAL_SEARCH(R i , p r , T t ); // updating rankedDis in R i if Dis(p r , p i ) is

smaller than one of the elements in rankedDis 6 if Dis(p r , p i ) < MAX(R i .rankedDis) then 7 R i .rankedDis = (R i .rankedDis -{M AX(R i .rankedDis)}) ∪ {Dis(p r , p i )}; 8 end // collect information of p r in R i 9 Append IP p r , Dis(p r , p i ) to R i .C; // continuing appending p r 's other short-range contacts to R i if they are good peers 10 for p j in P r short -{p r } do 11 if Dis(p j , p i ) < MAX(R i .rankedDis) then 12 Append IP p j , Dis(p j , p i ) to R i .C;

Table 4 .

 4 2:The probability of Metropolis dynamics given the value of the temperature and the energy dierence

					E
			0.2	0.4	0.6	0.8	1.0
		0.5 0.67 0.44 0.30 0.20 0.13
		1	0.81 0.67 0.54 0.44 0.36
	T t	2	0.90 0.81 0.74 0.67 0.60
		10 0.98 0.96 0.94 0.92 0.90
		50 0.99 0.99 0.98 0.98 0.98

Table 4 . 3 :

 43 The probability of Glauber dynamics given the value of the temperature and the energy dierence

	E

Table 5 .

 5 1: Data sets used in state of the art (N/A: information is not available)

		Data set	Distribution	Query	Relevant	No. of peers
			strategy		documents	
	[Tang 2003b]	TREC-7,8	Random	Predened Predened 1000-10,000
	[Balke 2005]	TREC-5	Random	Random	N/A	100-2000
				words		
	[Papapetrou 2007] MEDLINE	Category	N/A	N/A	500-5000
	[Papapetrou 2010] Reuters	Category	N/A	N/A	1000-5000
	[Podnar 2007,	Wikipedia	Random	Query log Centralized	4-28,1-1000
	Skobeltsyn 2006]				BM25	
	[Zhang 2007]	Gnutella trace User	Query log Term	1706
					matching	
	[Voulgaris 2007]	eDonkey trace User	File name exact	11,872
					searching	
	[Bender 2007,	OSN trace	User	Tags	Tag match 13,515/100,000
	Bertier 2010]					
	[Raftopoulou 2010] TREC-9/6	Category	N/A	N/A	2000
	[Doulkeridis 2010] Reuters	N/A	Random	Key word	2000-20,000
				words	match	
	[Ke 2010]	ClueWeb09	Web	Documents Exact	100-10,000
			site(URL)		searching	

Table 5 .

 5 2: Parameters for the network conguration and SA-based local optimization

	5.2. Experimental Setup

Table 5 .

 5 3: A summary of local search strategies

	Baseline	Random walk Greedy walk
		Random/Greedy walk
	SA-based local search	

Table 5 .

 5 6: Clustering eciency/standard deviation of random and greedy walk (RC: rewiring cycles, γ = 3) standard deviation, while random walk achieves it after 100 rewiring cycles with a larger deviation. Similar to its performance in optimizing relative intra-cluster similarity, SA-based local search with Metropolis does not show much advancement. Its clustering eciency with γ = 4 is showed in Table5.8. From the table, we can see quite equal performances of SA-based local search with Metropolis and random walk. Since the results with γ = 3 and γ = 4 almost shows the same pattern, the results of Glauber dynamics with γ = 4 and the results of Metropolis dynamics with γ = 3 are not presented to avoid the redundance.

			Local search approaches	
		Random walk	Random/greedy walk	Greedy walk
	RC = 0	0.1338/0.0188	0.1338/0.0188	0.1338/0.0188
	RC = 10	0.1604/0.0448	0.1424/0.0452	0.1349/0.0405
	RC = 20	0.2781/0.1433	0.1811/0.0782	0.1531/0.0481
	RC = 30	0.4100/0.1997	0.2202/0.0939	0.1643/0.0550
	RC = 40	0.5049/0.2084	0.2477/0.0980	0.1721/0.0614
	RC = 50	0.5714/0.2045	0.2722/0.0985	0.1775/0.0666
	RC = 60	0.6152/0.1967	0.2909/0.0973	0.1808/0.0692
	RC = 70	0.6456/0.1868	0.3044/0.0951	0.1828/0.0708
	RC = 80	0.6686/0.1770	0.3145/0.0935	0.1845/0.0725
	RC = 90	0.6865/0.1679	0.3233/0.0919	0.1861/0.0740
	RC = 100 0.6997/0.1616	0.3307/0.0919	0.1873/0.0755
	with a small			

Table 5

 5 

	.8: Clustering eciency/standard deviation of SA-based local search with
	Metropolis dynamics (RC: rewiring cycles γ = 4)			
		SA-based local search, Metropolis dynamics, T 0 = 100 Random
		a = 0.1	a = 0.3	a = 0.5	a = 0.7	a = 0.9	walk
	RC = 0	0.8635	0.8635	0.8635	0.8635	0.8635	0.8635
		/0.0218	/0.0218	/0.0218	/0.0218	/0.0218	/0.0218
	RC = 10	0.8606	0.8603	0.8605	0.8606	0.8604	0.8604
		/0.0467	/0.0476	/0.0484	/0.0477	/0.0471	/0.0478
	RC = 20	0.8670	0.8661	0.8666	0.8680	0.8683	0.8688
		/0.1078	/0.1084	/0.1088	/0.1083	/0.1079	/0.1084
	RC = 30	0.8826	0.8808	0.8826	0.8816	0.8881	0.8877
		/0.1409	/0.1404	/0.1400	/0.1408	/0.1371	/0.1379
	RC = 40	0.9027	0.9022	0.9024	0.9031	0.9120	0.9118
		/0.1491	/0.1471	/0.1486	/0.1472	/0.1419	/0.1416
	RC = 50	0.9185	0.9180	0.9193	0.9198	0.9277	0.9283
		/0.1433	/0.1410	/0.1414	/0.1412	/0.1364	/0.1364
	RC = 60	0.9315	0.9319	0.9318	0.9325	0.9397	0.9402
		/0.1318	/0.1290	/0.1303	/0.1306	/0.1259	/0.1265
	RC = 70	0.9412	0.9422	0.9419	0.9422	0.9496	0.9501
		/0.1205	/0.1179	/0.1184	/0.1185	/0.1144	/0.1151
	RC = 80	0.9483	0.9499	0.9493	0.9492	0.9572	0.9573
		/0.1100	/0.1076	/0.1082	/0.1084	/0.1036	/0.1055
	RC = 90	0.9539	0.9546	0.9547	0.9544	0.9622	0.9629
		/0.1008	/0.1003	/0.1001	/0.1001	/0.0956	/0.0966
	RC = 100 0.9576	0.9584	0.9586	0.9583	0.9656	0.9668
		/0.0943	/0.0937	/0.0934	/0.0933	/0.0891	/0.0902

Table 5 .

 5 9: IR recall/standard deviation in SONs generated with 100 rewiring cycles via random walk and greedy walk

			Local search approaches	
		Random walk	Random/greedy walk	Greedy walk
	k q = 3	0.2205 /0.1935	0.1010 /0.0951	0.0483 /0.0665
	k q = 4	0.3609 /0.3086	0.1993 /0.1900	0.0900 /0.1215

Table 5 .

 5 11: IR recall/standard deviation in SONs generated with 100 rewiring cycles via SA-based local search with Metropolis dynamics (k q = 4) SA-based local search with Metropolis dynamics, T 0 = 100 Random

		a = 0.1	a = 0.3	a = 0.5	a = 0.7	a = 0.9	walk
	RC = 0	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012
		/0.0045	/0.0045	/0.0045	/0.0045	/0.0045	/0.0045
	RC = 10	0.0393	0.0380	0.0449	0.0384	0.0479	0.0464
		/0.0860	/0.0902	/0.1162	/0.0843	/0.1098	/0.1172
	RC = 20	0.1484	0.1607	0.1624	0.1452	0.1502	0.1517
		/0.2364	/0.2456	/0.2503	/0.2374	/0.2399	/0.2461
	RC = 30	0.2439	0.2488	0.2510	0.2450	0.2321	0.2302
		/0.2808	/0.2943	/0.2924	/0.2807	/0.2898	/0.2952
	RC = 40	0.2918	0.2927	0.3011	0.2972	0.2862	0.2750
		/0.2970	/0.3040	/0.3086	/0.3015	/0.3030	/0.3127
	RC = 50	0.3193	0.3159	0.3221	0.3262	0.3167	0.3071
		/0.3028	/0.3047	/0.3121	/0.2993	/0.3076	/0.3121
	RC = 60	0.3352	0.3301	0.3377	0.3386	0.3346	0.3311
		/0.3050	/0.3034	/0.3096	/0.3015	/0.3076	/0.3094
	RC = 70	0.3465	0.3392	0.3510	0.3485	0.3489	0.3428
		/0.3017	/0.3021	/0.3087	/0.3005	/0.3063	/0.3087
	RC = 80	0.3563	0.3430	0.3590	0.3546	0.3569	0.3507
		/0.3009	/0.3015	/0.3071	/0.2996	/0.3056	/0.3106
	RC = 90	0.3619	0.3492	0.3634	0.3588	0.3644	0.3562
	/0.3027 RC = 100 0.3656 /0.3028	/0.3001 0.3547 /0.2988	/0.3072 0.3669 /0.3086	/0.3002 0.3655 /0.3019	/0.3039 0.3678 /0.3049	/0.3093 0.3609 /0.3086

Table 5 .

 5 12: IR recall of s and θ with N = 25000, l = 15, k c = 7, k q = 3

				s	
		5	10	15	20	25
		0.2 0.031 0.065 0.089 0.106 0.121
		0.3 0.028 0.053 0.080 0.098 0.117
	θ	0.4 0.032 0.087 0.140 0.176 0.219 0.5 0.051 0.163 0.257 0.336 0.424
		0.6 0.035 0.096 0.168 0.246 0.306
		0.7 0.039 0.112 0.201 0.292 0.387

Table 5 .

 5 13: IR recall of s and k q with N = 25000, l = 15, k c = 7, θ = 0.5

				s	
		5	10	15	20	25
	k q	2 0.023 0.053 0.072 0.103 0.133 3 0.051 0.163 0.257 0.336 0.424 4 0.107 0.320 0.490 0.560 0.658
		5 0.197 0.477 0.657 0.738 0.843

Table 5 .

 5 14: IR recall of l and k c with N = 25000, s = 15, k q = 4, θ = 0.5

				l	
		5	10	15	20	25
		3 0.261 0.308 0.349 0.385 0.402
		4 0.307 0.351 0.392 0.409 0.437
	k c	5 0.338 0.377 0.421 0.449 0.463 6 0.384 0.421 0.446 0.458 0.489 7 0.413 0.439 0.490 0.500 0.510
		8 0.445 0.475 0.506 0.517 0.530

Table 5 .

 5 15: Number of strongly connected components with dierent values of N and l

	5.4. Results and Analysis
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  peers, referring to the peers collected for p i P r possible host peers of the rewiring message in the next step p r possible host peer of the rewiring message in the next step n r number of peers a rewiring message is sent to in parallel

		E	energy of new solution
		S optimal	optimal solution
		a	parameter for exponential cooling schedule
		tM ax	maximum steps of simulated annealing
	R i	rewiring message (walker) send by p i eM ax maximum value of the object function
	p r	host peer of the rewiring message rT ime time to relax at each temperature
	p e	any explored peer
	P i collected a set of q i query initiated by p i
	Q i	query message initiated by p i
	γ	hop limit for the metric of clustering eciency
	S 0	initial solution
	S	current solution
	S	neighboring solution
	S 0 i	initial solution for peer i
	S i	current solution for peer i
	S i	neighboring solution for peer i
	T 0	initial temperature for cooling schedule
	t	current annealing step
	T t	current temperature
	T t+1	temperature for next step
	E	energy of current solution
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Chapter 5. Evaluation