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This dissertation is dedicated to the ab initio study of the electronic structures of the polar diatomic molecules YN, YS, ZrN, and ZrS. The identification of these molecules in the spectra of stars as well as the lack in literature on the electronic structures of these molecules motivated the present study. Theoretical calculations are useful in this respect since they can provide important data for the properties of the ground and excited electronic states that are not available from experimental means. In the present work the ab initio calculations were performed at the complete active space self-consistent field method (CASSCF) followed by multireference single and double configuration interaction method (MRSDCI). The Davidson correction noted as (MRSDCI+Q) was then invoked in order to account for unlinked quadruple clusters. The calculations were performed on two stages in the first spin orbit effects were neglected while in the second type of calculations spin orbit effects were included by the method of effective core potentials. All of the calculations were done by using the computational physical chemistry program MOLPRO and by taking advantage of the graphical user interface Gabedit. In the present work potential energy curves were constructed and spectroscopic constants computed, along with permanent electric dipole moments, internal molecular electric fields, and vibrationalrotational energy structures. We detected in the ZrS molecule several degenerate vibrational energy levels which can be used to search for possible variations of the fine structure constant α and the electron to proton mass ratio μ in three S-type stars, named Rand, RCas, and χCyg. A comparison with experimental and theoretical data for most of the calculated constants demonstrated a good accuracy for our predictions giving a percentage relative difference that ranged between 0.1% and 10%. Finally, we expect that the results of the present work should invoke further experimental investigations for these molecules.

Introduction

n recent years, there has been a growing interest in the electronic structure of polar diatomic molecules, particularly due to their importance in astrophysics [1], ultra cold interactions [2], chemistry [3], quantum computing [4][5][6], precision measurements [7] and metallurgy [3]. The recent advancements in computational sciences, have lead to the surge of interest in using molecules for experimental precision measurements, especially where they offer new properties that are not available from atoms and atomic ions. Indeed, several diatomic molecules have been suggested as model systems to test one of the fundamental physical concepts of the standard model (SM), the constancy of physical laws and the structure of fundamental interactions. Diatomic molecules such as Cs 2 [8], CaH, MgH, CaH + [9,10],Cl 2 + , IrC, HfF + , SiBr, LaS, and LuO [11], that have a near cancellation between the hyperfine structure and rotational intervals or between the fine structure and vibrational intervals have been proposed as model systems to test any spatial and temporal variations in two fundamental constants of the standard model, the fine structure constant α and the electron to proton mass ratio μ. Other polar diatomic molecules such as HfF + [12], HI + [13], YbF [14], PbO [15], ThO [16], ThF [16], and BaF [17] have been also suggested as laboratory candidates to search for the electric dipole moment of the electron (eEDM). A fundamental property, whose existence, shall provide an evidence of CP-violation (charge conjugation and parity) in lepton particles, with deep implications for our understanding of particle physics and cosmology [18,20]. In this regard, diatomic molecules are very promising, particularly due to their large internal electric field E mol ≈ 10 9 V/cm, which is 4 to 5 orders of magnitude larger than any typical laboratory field in an EDM experiment [19]. In quantum computing, the use of polar arrays of trapped diatomic molecules as qubits looks very promising, particularly due to the feasibility by which such I simple systems may be scaled up to form large networks of coupled qubits [20][21][22][23][24][25][26][27][28][29][30][31][32][33]. Many linear molecules that have a variety of long lived internal electronic states have been proposed as a mean to address and manipulate qubit states 1 , 0 [34]. Another promising new approach for realizing a quantum computer is based on using the vibrational states of molecules to represent qubits [35]. In this approach, quantum logic operations are performed to induce the desired vibrational transitions [36], where by using more vibrational states it may be possible to represent quantum information units having more than two qubit states (i.e. 0 , 1 , 2 , 3 ) [36]. In spectroscopic studies, the electronic structure of transition metal diatomic molecules should form a viable tool to test for the abundance of transition metal diatomics in the spectra of stars [37,42]. Many transition metal diatomic oxides, sulfides and nitrides have been detected in the spectra of S and M type stars [43,44]. Precise spectroscopic data are necessary for a meaningful search for these molecules in complex stellar spectra. In industrial processes such as catalysis and organometallic chemistry, Transition metal nitrides are important in the fixation of nitrogen in industrial, inorganic and biological systems [45,46]. In high temperature material applications, within the group of refractory metal nitrides (Ti, Zr, Hf, Nb) titanium and zirconium nitrides are the most promising hardening additives, which are used for raising the high-temperature strength of sintered molybdenum and provide high enough ductility parameters at a temperature up to 2000°C [47]. In ultra-cold interactions the recent experimental achievements in producing an ultra-cold sample of the heternonuclear diatomic molecule SrF by researchers at Yale [48] offers a new possibility for producing ultra-cold samples of several heteronuclear diatomics as the transition metal diatomics of interest in the present work. Such achievements in ultracold techniques on new molecules are hindered by the lack in the spectroscopic studies of their electronic structures. In these respects, theoretical investigations for the spectroscopic properties of heteronuclear diatomic molecules are extremely useful in any future production of ultracold samples of heteronuclear diatomic molecules. Transition metal diatomics represent simple metal systems where d electrons participate in the bonding [49].

These molecules provide models for understanding the bonding and reactivity in transition metal systems [50]. The spectroscopic study of transition metal diatomics is difficult particularly due to the high density of low-lying electronic states associated with partially occupied d orbitals [51,52]. 

Chapter One

Many Body Problems in Atoms and Molecules

omputational physical chemistry is primarily concerned with the properties of single molecules and with their arrangement in periodic trends, homologous series, functional groups, and crystals. Theoretical calculations have emerged as an important tool for investigating a wide range of problems in Molecular Physics, Material Science and Chemistry. Within the recent development of computational methods and more powerful computers, it has become possible to solve physical and chemical problems that only a few years ago seemed far beyond the reach of a rigorous quantum-mechanical treatment.

In this section, we turn our attention to the development of approximations which are more accurate than the independent particle model and can take account of electron correlation effects.

The Hartree-Fock theory followed by the methods of Complete Active Space Self Consistent Field (CASSCF) and Multi-reference Configuration Interaction (MRCI) play a pivotal role in the development of approximate treatments of correlation effects. A key feature of these calculations is the use of the method of second quantization. We therefore start by introducing the second quantization formalism in quantum mechanics.

I. Second Quantization and Many Body Problems

Second quantization forms the basis of a very powerful technique for developing a theoretical description of many-body systems. Many-particle physics is formulated in the second quantization representation, which is also known by the occupation number representation. In the second quantization formalism theoretical expressions are written in terms of matrix elements of C operators in a given basis and are manipulated using the algebra of creation and annihilation operators.

In this section, we briefly describe the second quantization formalism giving sufficient details for the application which we describe. First, let us observe that the Schrödinger equation can be easily written down for an atom or, more particularly, a molecule of arbitrary complexity. The difficulty is usually said to lie not in writing down the appropriate eigenvalue problem but in the development of accurate approximations to the solutions of this molecular Schrödinger equation.

However, the Schrödinger equation for a system of arbitrary complexity has another problem associated with it, namely, it applies to a fixed number of particles. In other words the Schrödinger equation applies to systems in which the number of particles is conserved. However, in many physical processes the number of particles is not conserved and particles can be created or destroyed. Then there arises the need for a new approach in quantum mechanics, namely the second quantization approach, which allows for the creation and destruction of particles.

Let us digress and turn our attention to the equations of motion in relativistic quantum mechanics. In particular, if following Dirac we write down the eigen-problem for the hydrogen atom, we find a very different set of solutions to those found in the non-relativistic (Schrödinger) case. Solutions of the Dirac equation for the hydrogen atom lead to a spectrum which is divided into two branches a positive energy branch and a negative energy branch. The Dirac spectrum for the hydrogen atom is shown schematically in Figure 1.

Fig. 1. The Dirac spectrum for the ground state of the hydrogen atom consists of a positive energy branch P and a negative energy branch N. A single electron occupies the lowest energy level in the positive energy branch. The negative energy branch N is assumed to be full of positrons in the ground state.

In the non-relativistic formalism, the ground state of the hydrogen atom consists of a single electron occupying the lowest energy level in the spectrum. In the relativistic formalism, the ground state of the hydrogen atom consists of a single electron occupying the lowest energy level in the positive energy branch of the Dirac spectrum. Dirac famously conjectured that this electron is prevented from decaying into one of the negative energy states because these states are themselves filled with electrons. A consequence of this conjecture is that even the simple hydrogenic atom is an infinity many bodied problem. The electrons filling the negative branch of the Dirac spectrum are not directly observable. They are positrons. A direct consequence of the Dirac picture is that the number of electrons in a relativistic system is not conserved. A single excitation can lead to the formation of an electron-positron pair. In the Dirac picture, it is the total charge of the system which is conserved. Therefore the use of second quantization is mandatory in the description of many body problems.

The development of quantum electrodynamics saw the introduction of diagrammatic techniques.

In particular, Feynman [1] in a paper entitled "Space Time approach to Quantum Electrodynamics", introduced diagrams which provide not only a pictorial representation of the microscopic processes but also a precise graphical algebra which is entirely equivalent to other formulations. It is thus not surprising that second quantization and diagrammatic formulations emerged as a powerful approach to the quantum many-body problem in non-relativistic quantum mechanics. Having seen that the second quantization approach to quantum mechanics is extremely useful in many body problems, we now turn our attention to the mathematical formalism of second quantization.

II. Ladder Operators in the Simple Harmonic Oscillator

The basic idea behind the second quantization formalism is to rewrite quantum mechanics in terms of the creation and annihilation operators, which allow for particle creation and destruction.

It is therefore useful to first review the use of ladder operators in the simple harmonic oscillator.

First we consider the Hamiltonian for the simple harmonic oscillator . Instead, we can also solve the eigenvalue problem algebraically by introducing the creation and annihilation operators a + and a, as ,

2 a p ix a p i , 1 (4) 2 1 
where the + superscript denotes that a + is the Hermitian conjugate of a. We also know the commutator , ,

) x p xp px i

which follows from the Heisenberg uncertainty principle, and so it is natural to look at the commutation properties of a and a + 1 , , ,

) 2 a a p ix p ix i x p

Then the Hamiltonian for the simple harmonic oscillator can be written in terms of the creation and annihilation operators , 1

H a a where also the following commutation relations apply , , , , but since 0 was defined as the lowest energy, then this is not possible, and the only way out is to set 0 0 a . Thus the ground state eigenfunction is defined by the action of the down ladder operator a, giving a zero eigenvalue. Similarly Having seen the importance of the creation and annihilation operators in the simplest case of the harmonic oscillator, we now focus on the use of the creation and annihition operators in N-body problems of quantum mechanics.

III. The Fock Space in Quantum Theory

Consider the N-particle Hamiltonian operator of particles , 1 ,

, 1 2

N H T x V x x k k l k
k ll with T being the one electron operator term, and V is the two electron contribution to the total energy. This Hamiltonian operator generates the dynamics of the system through the Schrödinger equation .

(16) i H t t H For systems with a variable number of particles the explicit dependence on the particle number is inconvenient. Evolution of the quantum system may be represented in a form independent of the particle number in a Fock space with the operators written in their second quantized forms.

It is usually convenient to express wave functions of many particle systems as linear combinations of one particle wave function products of the form , , 1, , . 1 11 22

(17)

x x C N x x x n NN n
Thus, if Ψ is symmetric under an arbitrary exchange x i ↔x k , the coefficients C(n 1 ,…,n N ) must be symmetric under the exchange n j ↔n k . A set of N particle basis states with well defined permutation symmetry is the properly symmetrized tensor product , ,

1 1 1 1 1 ! 1 ' (19) 1 1 ' ! P Q N N Q N Q P P PQ N P N P N Q P P N 1 1 ! 1 P Q N , , 1 P Q P 1 1 Q N PQ N P P Q Q Q P 1 1 1 Q P N N , , 1 
N
where P'=P+Q denotes the permutation resulting from the composition of the permutations P and Q. Since P and Q are arbitrary permutations, P' spans the space of all possible permutations as well. It is easy to see that Eq (19) is nothing but the familiar inner product or Slater determinant . 1 

1 1 , , , , (20) 1 1 
1

N N N N N N 1 , N , , 1 , N N , , 1 
1 1 1 . N 1
N N Note that the interchange of the coordinates of two electrons corresponds to interchanging two rows in the Slater determinant which changes the sign of the determinant, thus satisfying the antisymmetry condition. In addition, having two electrons occupying the same spin orbital corresponds to having two identical columns in the determinant, which makes it zero, as required by the Pauli principal. Let us denote by a complete set of orthonormal one particle states, which satisfy 1.

(21)

N-particle states can then be constructed 1 ,

N N . The N-particle states for a system of fermions are complete and orthonormal , 1 , , , ,

, ! 1

I N N N N 1 , I N , , 1 , N , , 1 1 , , N 1 , , N , I
where the sum runs over all the α's and the operator I is the identity operator in the space of Nparticle states.

We will now consider the more general problem in which the number of particles N is not fixed.

Rather, we will consider an enlarged space of states in which the number of particles is allowed to fluctuate. Thus let us denote by H 0 the Hilbert space with no particles, H 1 the Hilbert space with only one particle, and in general H N the Hilbert space for N-particles. The direct sum of these spaces H, gives , (23) 

0 1 H H H H N H N H
which is usually called the Fock space.

An arbitrary state in Fock space is the sum over the subspaces H N .

The subspace with no particles is a one dimensional space spanned by the vector vac which is the vacuum state. The subspaces with well-defined number of particles are defined to be orthogonal to each other in the sense that the inner product in Fock space , (24) 0 j j j vanishes if and belong to different subspaces.

IV. N-particle wave functions

Let us consider now the problem of a system of N non-relativistic particles. The wave function for this system is Ψ(x 1 , x 2 ,…, x N ). If the particles are identical then the probability density 2 , , , 1 2 x x

x N 2 , x , N must be invariant under arbitrary exchanges of the labels that we use to identify the particles. In quantum mechanics, however, the particles do not have well defined trajectories. Only the states of a physical system are well defined. Thus even though at some initial time t 0 the N particles may be found around a set of positions x 1 , …, x N , they will become delocalized as the system evolves. Furthermore the Hamiltonian itself is invariant under Chapter One. Many Body Problems in Atoms and Molecules 14 permutation of the particles and the probability density of any eigenstate must remain invariant under any exchange of particle pairs. If we denote by P ij the operator that exchanges the labels of particles i and j, then the wave function must change under the action of P ij , at most by a phase factor e iθ . Hence we must require that , , ,

i P x x e x x ij N N , 1 i x x N , 1 x x , 1 i i x e i e i i (25) 1 1 
under a further exchange operation, the particles return to their initial labels and we recover the original state. This sample argument requires that θ = 0, or π. We then conclude that there are two possibilities, either Ψ is even under particle-permutations, or odd. Systems of identical particles which have even (symmetric) wave functions relative to a pair wise permutations of the particles are called bosons. On the other hand systems of identical particles with odd (antisymmetric) wave functions with respect to pair permutations of particles are called

Fermions. The Hamiltonian operator H for an N-electron system is invariant relative to the exchange of any two electrons (fermions). So, if P ij is an operator which permutes the electron indices i and j, then , 0, (26) H P ij so that the exact wave function, Ψ, is a solution of the Schrödinger equation

, ( 27 
) H E
and P ij Ψ is also a solution since .

(28) HP P H P ij ij ij ij From the indistinguishability of particles follows that if two coordinates in an N-particle state are interchanged. The same physical state results and the corresponding state function can at most differ from the original one by a simple factor λ .

(

29) P ij

If the same two coordinates are interchanged a second time we end with the exact same state function. Applying P ij to this equation from the left we get 2 2 , (30) P ij so that λ 2 = 1 or λ = ±1, and we conclude that only two species of particles are thus possible in quantum mechanics, the so called bosons (λ=1) symmetric under particle exchange and fermions (λ=-1) antisymmetric under particle exchange .

(

31) P ij

For fermions, the antisymmetry requirement of the N particle wavefunction immediately leads to the Pauli Exclusion Principle stating that two fermions cannot occupy the same state. It thus explains the periodic table of elements.

In the first quantization approach to quantum mechanics, N-particle wave functions are written as a single Slater determinant or as a linear combination of Slater determinants which are convenient for constructing many-electron wave functions that are antisymmetric with respect to the exchange of any two electrons. These N-electron wave functions are written as

1 1 2 1 1 1 2 2 2 2 1 2 1 2 (32) 
! ,

N N N N N N A A A A A A A A A A A A A A A A A A x x x x x x N x x x N A x A A x A , N A N N x A
or more compactly as x represents spin-orbitals and x represents the electronic space and spin coordinates.

In second quantization, however, N-particle wave functions are written in the occupation number representation, which is a definition entirely equivalent to Slater determinants. We can completely specify a Slater determinant by recording which of the spin-orbitals where the indices n i can have the value 0 or 1 depending on whether the spin-orbital i A is occupied or unoccupied, that is whether it occurs in the Slater determinant or not. Eventually, each spin orbital could only hold one electron. This is mainly due to restrictions imposed by the Pauli Exclusion Principle, that no two electrons could have the same four quantum numbers.

The numbers n i are called occupation numbers and their representation of Slater determinants is accordingly called the occupation number representation.

Slater Determinant

On-Vectors Number of electrons 3 1 0,0,1,0

1 1 2 1 2
Fig. 2 A comparison between the conventional notation used in first quantization (Slater Determinants) and its Second Quantization analogue (On-Vectors).

The Slater determinant wave functions represented above can be written in the occupation number representation as a product of creation operators acting on the vacuum state vac (36) a a a a a a i j i j j i

It is evident that since an unoccupied state cannot contain the same spin orbital twice (Pauli Exclusion Principle), then we must demand that ,1 , 0

i i a ,1 , 0 i ,1 .
The Fermion annihilation operator a p , which is the adjoint of the creation operator a p + can be thought of as annihilating an electron in Φ p and is defined to yield zero when operating on the vacuum state.

N-particle states can be written by the action of a product of creation operators on the vacuum state .

, , 0, 0 (37)

1 1 ! a N j n n N j n j , 0, 0 . 1 ! a N j , N j n
Othonormality restrictions must also apply on the ON vectors, in other words, the ON vectors must also satisfy the following relations , (

38) k k i j ij

with the Kronecker delta ij defined by .

1 when i = j (39) 0 when i j ij

V. The Creation and Annihilation Operators in Second Quantization

In second quantization, all operators and states can be constructed from a set of elementary creation and annihilation operators. In this section we introduce these operators and explore their basic algebraic properties. In general, the effect of the creation and annihilation operators 

a n i i i i a i i 1 0 1 i i 0 1 i 0 0, i 0
where the phase-factor Γ(n) depends on the number of electrons found before the created or the annihilated electron: Γ(n) = 1 for an even number of electrons and Γ(n) = -1 for an odd number of electrons.

Sometimes in quantum mechanics, the need of transformations between position space (x, y, z) and momentum space (p x , p y , p z ), arises. Then the Fourier transform that changes position space into momentum space can be written as . , ( 

V. 1. Products of Creation and Annihilation Operators

The creation and annihilation operators introduced earlier change the number of particles in a state and therefore couple ON vectors belonging to different subspaces. We now turn to focus on the products of creation and annihilation operators i a and j a which are usually written as ,0 , ,

) i j a a n a i i i i i i ,1 , 0 i i i ,1 ,1 ,0 , i 0 ,1 , 0 1 , 0 (46 
,1 ,1 ,0 , 0 0 ,0 , 0 , ,1 , ,1 , 0, (47) j i j a a n n i j i j i i j 0 0 1 , ,1 , 0, j i ,1 i j ,0 , 0 , 0 ,0 , 0 , ,1 , ,1 , 1 1 0 0 ,1 ,0 , 0 , , 0

with the anticommutator relations given by , 0 (48) a a a a a a i j i j j i . , (49) ij i a a a a a a i j i j j

Then by conjugating the last expression, we get the anticommutation relations * , 0.

(50) a a a a a a i j i j j i

These anticommutation rules ( 48)- (50) are very important in second quantization, particularly since all other operators in quantum mechanics can be constructed from a simple product of these operators. For example, the number operator (N), which counts the number of electrons, can be written as a simple product of a creation and an annihilation operator ( 

VI. Configuration State Functions

In the first quantization formalism of quantum mechanics, N-particle fermion wave functions were expressed by using the conventional notation of Slater determinants. Slater determinants however are eigen functions of the projected spin operator S z , only. The exact nonrelativistic wave function of the Schrödinger equation is an eigen function of the total and projected spins (S z , S 2 ). Such spin adapted functions are called configuration state functions (CSF), which can be constructed from a linear combination of Slater determinants as , (54) CSF C i i i where the i s represent Slater determinants, with coefficients C i fixed by the spin symmetry of the wave function. In order to distinguish between orbitals of different occupancies, we use the following conventions: orbitals that are doubly occupied in all determinants are called inactive and are labeled by i, j, k. Partially occupied orbitals are known as active and are distinguished by the labels v, w, x, y, z. For the virtual orbitals, which are unoccupied in all determinants, we use the indices a, b, c, d. Within the occupation number representation, each determinant i in (54) is written as a product of creation operators working on the vacuum state, and ( 54 

VII. The Representation of One and Two Electron Operators

Expectation values correspond to observables and should therefore be independent of the representation given to the operators and states. Then we require that the second quantization representation of one and two electron operators must be equivalent to its counterpart in first

quantization. An operator in the Fock space can be thus constructed in second quantization by requiring its matrix elements between ON vectors to be equal to the corresponding matrix elements between Slater determinants of the first quantization operator.

In first quantization one electron operators (kinetic energy) are written as 

, ( 59 
2 c c g g x x i j i j where the ½ term avoids counting the electron-electron interactions twice. In a manner similar to the arguments above, the second quantization representation of a two electron operator can then be written as . 1 (63) 2 g g a a a a p R PQRS S Q PQRS The annihilation operators in the above expression must appear to the right of the creation operators in order to ensure a zero eigen value, especially when g acts on an ON vector with less than two electrons.

The expectation values of the parameters PQRS g may be determined by evaluating the matrix element of g between two ON vectors and setting the result equal to the matrix elements corresponding to Slater determinants in first quantization. Then the two electron operator g may act between two:

1. Identical ON vectors . 1 1 (64) 2 2 k g k g k a a a a k k k g g P R P R PPRR PRRP PQRS S Q PR PQRS 2.
ON vectors differing in one pair of occupation numbers , 0 , 1 , , , , 1 , 0 , , (65)

1 1 2 1 2 1 k . ( 66 
) 2 1 k k k k k k I J M I J M k k g k k g g I J R IJRR IRRJ R , 0 0 k k k 0 1 1 0 I J M I J M , , 0 , , 0 , 2 1 , , , , ,
, , , 1 , 0 , , 0 , , 1 , , , , , 1 , , 0 1 0 1 1 1

3. ON vectors differing in two pairs of occupation numbers , , 0 , 0 , 1 , 1 , , , 1 , 1 , 0 , 0 , (67)

1 1 1 1 2 1 1 1 k g (68) IKJL 2 1 k k k k k k I J K L M I J K L M k k k k g k g I J K L ILJK , 1 , 1 , 0 , 0 , ( 67 
1 1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 I J K L M , 1 , 1 , 0 , 0 , , 1 , 0 , 0 , 1 1 , 0 , , , , , 0 , , , , 1 , 1 , 0 , 0 , , , 0 , 1 , 1 , , , , 0 0 1 1 0 0 1 1 0 1 1 0 1 1
where I < J, and K < L. 

1 2 1 2 1 2 1 2 c g x x g x x x (70) 
x dx dx P R PQRS Q S Then the recipe for constructing a two electron second quantization operator is therefore given by expressions (63) and (70). This construction renders 1 2 , c g x x symmetric with respect to the exchange of any two electrons. It should be noted that the order of the creation and annihilation operators appearing in Eq (63) must be presented in order to guarantee that the proper sign will result when expectation values of such operators are evaluated. These spin orbitals Φ R , appearing in Eq (70), are in most practical applications obtained as linear combinations of atomic orbital basis functions

, (71) C a R Ra a
where the summation runs over all spins α and β. The χ a are usually taken to be Slater type orbitals or contracted Gaussian atomic orbitals, and the C Ra are the linear orbital expansion coefficients.

VIII. The Molecular Electronic Hamiltonian

Combining the previous results of section VII we may now construct the full second quantization representation of the electronic Hamiltonian operator in the Born-Oppenheimer approximation.

In the absence of external fields the second quantization nonrelativistic and spin free molecular Hamiltonian is given by

1 (72) 2 H h a a g a a a a h P PR PQ Q PQRS S Q nucl PQ PQRS
where in atomic units

* * 1 2 1 2 1 2 (74) 12 1 . 2 x x x x dx dx P R Q S g PQRS r Z Z I J h nucl I J R IJ ( 75 
)
Here the Z I ' s represent the nuclear charges, r I , r 12 , and R IJ represent the electron-nuclear, the electron-electron, and the internuclear separations. The scalar term in (72) represents the nuclear

0 1 * 2 , ( 73 
) 2 x Z l h x x d x P PQ Q l r l
repulsion energy and it is simply added to the Hamiltonian and gives the same contribution to the Hamiltonian as in first quantization.

Acting on the vacuum state the second quantization Hamiltonian (72) produces a linear combination of the original state with states generated by single ( P Q a a ) and double electron excitations ( P R S Q a a a a ). With each of these excitations there is an associated amplitude h PQ or g PQRS , which represents the probability for one and two electron interactions. These probabilities are best calculated from the spin-orbitals and the one and two electron operators, according to equations ( 73) and (74).

VIII. 1. The Hamiltonian of a Two Body Interaction

As an example of the electronic Hamiltonian discussed in the previous section we shall consider the example of a two body interaction whose Hamiltonian operator can be written as a summation of one and two electron operators

, 2 2 (76) 1 2 V p H x y i m 2 p x y x
where the two electron interaction operator V is written as 

1 3 3 d . ( 77 
.

ik y ik y ik x ik x k k k k i k k y i k k x k k k k V a k a k a k a k d x d ye e e e V x y V a k a k a k a k d x d ye e V x y k x ik x k k y ik V k y ik x ik x ik y k ik k y ik k y k k y i k k x x

y x x y x

Change the variables r x y r x y x , so that x y r x r y . (79)

3 3 2 3 1 4 1 4 4 2 3 1 1 2 3 4 i k k k k y i k k r V a k a k a k a k d ye d re V r k k k k r k k k k i k k i k k k k k k y i k k y i k k y i k k y i k k k k k y i k y i y i y i (79)
r

The first integral to the right gives

0 3 3 2 3 1 4 1. ( 80 
) i k k k k y i y d ye d ye y k k k k k k k k k k
This is due to the law of momentum conservation which according to Fig

2 gives 0. (81) 2 3 1 4 k k k k 0 k k k k k k k
This means that if two particles interact the total momentum in the system cannot change.

Finally, we change the variables again to 1 4

q k k q k k k which with (81) leads to the final form of the two term interaction

, ( 82 
) 1 2 2 1 1 2 V a k q a k V q a k q a k k k q k q a k V q a k q a k k k V k q a k V q a k with , . 3 (83) iq r V q d rV r e 3 iq r . d rV r e 3 q q r
being the Fourier transform of the interaction potential V(r). One can think of this as one particle with initial momentum 1 k k interacting with another particle with initial momentum 2 k k by exchanging a virtual particle with momentum q q , finally giving two particles with momentums 1 k q k q and 2 k q k q. Actually, this is the Coulomb interaction occurring between two electrons with V(k) representing the Coulomb two electron operator. The whole process could be visualized with the aid of the Feynman diagram shown in Figure 2.

IX. Spin in Second Quantization

In quantum mechanics and particle physics, spin is a fundamental characteristic property of elementary particles. All elementary particles of a given kind, Fermions let us say, have a spin quantum number which forms an important part of a particle's quantum state. When combined with the antisymmetry requirement of the fermionic wave functions the spin of electrons result in the Pauli Exclusion Principle which in turn underlies the periodic table of chemical elements. Thus the spin of a particle is an important intrinsic degree of freedom. In the formalism of second quantization presented so far there were no reference to electron spin. In the present section we develop the theory of second quantization so as to allow for an explicit description of electron spin.

IX. 1. Spin Functions

The spin coordinate of an electron can take only two values m s = 1/2 and m s = -1/2, representing the two allowed values of the projected spin angular momentum S z of the electron. The spin space is accordingly spanned by two functions, which are taken to be the eigen functions α(m s )

and β(m s ) of the projected spin angular momentum operator S z

In addition, these spin eigen functions form an orthonormal set, which is in accordance with the general theory of angular momentum in quantum mechanics. In general, the functional form of the spin functions is given by the following equations

1 1 1 1 1 , 0 , 0 , 1, (86) 2 
2 2 2 where the completeness of the spin functions leads to the following identity

IX. 2. Spin Operators

Our previous definition of one and two electron operators neglected the effect of electronic spin. However, spin is an important physical property that must be included in the definition of one and two electron operators. First let us consider one electron operators of the form , (89) 1

N c c f
f r i i which may be written in the spin orbital basis as . (90) , f f a a p q p q p q The integrals entering the second quantization operator f vanish for opposite spins. First due to that the spin eigenfunctions are orthogonal and second due to that the first quantization operator The expression of the molecular Hamiltonian given in Eq (100) is different from the spin free Hamiltonian operator given in equation ( 72) by its dependence on the single and double excitation operators (E pq , e pqrs ), which in turn depend on the spin through the operators a a p q a a p q appearing in expression ( 94) and (99).

c f is spin free , * * , * (91) 
c f r m f r r m d r d m p q s q s s P c r f r r dr f q p q P with the notation * . ( 92 

IX. 3. Spin Orbit Fine Structure Operator

The phenomenon of spin orbit coupling (SOC) arises from the interaction of the intrinsic magnetic moment of an electron with its orbital angular momentum. The best known example of this is that spin orbit interactions cause energy shifts in electronic states interacting with magnetic fields which is mainly detectable by a splitting of spectral lines. (98) , pq rs qr ps

E E E

Using some semiclassical electrodynamics and non relativistic quantum mechanics, we derive a relatively simple and quantitative description of the spin orbit operator for an electron bound to a nucleus. In general, the energy of a magnetic moment in a magnetic field is given by . , (103) V B so where μ is the magnetic moment of the particle and B is the magnetic field it experiences. Even if there is no magnetic field in the rest frame of the nucleus, there is a magnetic field in the rest frame of the electron Finally, the effective spin orbit interaction operator derived in Eq (108) can be written in its second quantization analogue as

, * * (109) c V r m V r m drdm a a so p s s o q s s

p q pq

This term added to the electronic Hamiltonian allows for the inclusion of spin orbit effects in the electronic structure calculations.

X. The Variation Principle

Having established the general form of the wave function, still we need to test its quality. In this section we will discuss an important theorem, called the variation principle, which is a simple iterative procedure used to test the validity of the given wave function.

First, let us choose a normalized function Φ that satisfies the appropriate boundary conditions =1.

(110) =1.

The variation principle states that the expectation value of the Hamiltonian is an upper bound to the exact ground state energy , (111) 0 H , 0 H where ε 0 is the exact ground state energy. The above equality holds (left side = right side) only when the wave function Φ is identical to the true exact wave function of the system. The variation principle for the ground state informs us that the energy of the approximate wave function is always high. Thus one can measure the quality of a wave function, by referring to its energy. The lower the energy the better is the wave function. This is the main idea behind the variation theorem in which we take a normalized trial wave function that depends on certain coefficients that can be varied until the energy expectation value reaches a minimum.

The process of energy minimization can be greatly simplified if we write the wave function as a linear combination of trial basis functions [2] , 112 1 
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Then the problem of energy minimization, reduces to finding the optimum set of coefficients (c i )

for which Eq(113) is a minimum i.e. 

N i j i j i j ij ij i i L c c c E H E c c H E S c
, N , , , , , Since the trial function is normalized we have merely added zero to Eq(113), and so the minimum of L and H occurs at the same values of the coefficients. To proceed further, we need to minimize the Lagrange function with respect to the c k coefficients i.e.

0 c k but 2 0 (116) c k , L L c H c H ES c j kj i ik ij k j i L 0 c k 0 0 L 0 , ij k S c i ik j kj c 2 j kj i ik c c 2 j kj c k j j j
and since H ij =H ji , then we have

2 2 0 0 (117) , H c Ec S H c ES c ij j i ij ij j ij i j j 0 , H c ij j i i ij j ij i c j ij j i ij S S 2 0 0 i ij ij j ij i c S c S c 2 0 i ij
and finally, we can write the secular equation in matrix notation, as where S is an identity matrix that represents the overlap integral i j i j .

XI. The Underlying Theoretical Basis -The Born Oppenheimer Approximation

The task of solving the electronic Schrödinger equation for a N particle system is very complicated, so that the task of finding a solution for larger molecules becomes impossible. To overcome this difficulty we must adopt the Born-Oppenheimer approximation [3], which separates the electronic from nuclear motions in the Schrödinger equation.

In view of the fact that, the nuclei are much heavier than the electrons and their speeds are slower, Born and Oppenheimer showed in 1927 [3] that molecular problems could be much simplified by treating the electrons as moving in the field of fixed nuclei. Within this approximation the kinetic energy of the nuclei can be neglected while the nuclear repulsion terms appearing in the Schrödinger equation can be considered constant. Any constant added to an operator only adds to the operator's eigenvalues and has no effect on the operator's eigenfunctions. Thus the electronic Hamiltonian describing the motion of N electrons in the field of M fixed nuclei can be written as
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By the virtue of this approximation, it is possible to decouple electronic from nuclear motion in the Schrödinger equation [4,5]. This indicates that the molecular Hamiltonian can be written as , (120) where the electronic wave function

, , (122) 
elec elec i A r R
depends parametrically on the nuclear coordinates (R A ) and explicitly on the electronic coordinates (r i ). By a parametric dependence we mean that, for different nuclear arrangements, Φ elec is a different function.

After calculating the electronic energy eigen values (ε elec ), we should include the constant nuclear repulsion term in the expression of the total molecular energy ε tot , 1 .

(123)
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In fact, the total molecular energy ε tot (R) calculated above provides a potential energy curve (PEC) for molecular vibrations and rotations Fig. 2.

Where in order to describe nuclear vibrations and rotations, we should solve the nuclear

Schrödinger equation nucl H , ( 124 
) nucl nucl , nucl nucl
whose Hamiltonian is given by
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The solutions of the above nuclear equation give the eigen functions and eigen values of the vibrational and rotational energy levels of a molecule.

XII. The Hartree Fock Approximation

The simplest kind of ab-initio calculations is a Hartree-Fock (HF) calculation. It was first proposed by Hartree in 1928 [6] to solve atomic problems, then it was latter generalized to tackle physical system. The variational theorem discussed in the previous section states that the energy calculated from the equation E H must be greater or equal to the true ground-state energy of the molecule Eq(111). In practice, any molecular wave function we use is always only an approximation to the true wave function of the system, therefore the variationally calculated molecular energy will always be greater than the true energy. In general the Hartree Fock (HF) method is variational, so the correct energy always lies below any calculated energy by HF method, then the better the wave function is the lower is the energy.

In the Hartree Fock approximation the electronic wave function is approximated by a single configuration of spin orbitals (i.e. by a single Slater determinant) and the energy is optimized with respect to variations of these spin orbitals. In this method the ground state wave function can then be written as 

XIII. The Roothaan-Hall Self Consistent Field Equation

In this section we present the Roothaan-Hall formulation of the Hartree Fock theory, in which the molecular orbitals (MOs) are expanded in a set of atomic orbitals (AOs) whose expansion coefficients are used as the variational parameters [7,8].

In most applications of Hartree Fock theory to molecular systems, the MOs Φ p are expanded in a set of Gaussian type AOs (χ μ ), with coefficients C μp .

(131) C p p

In this case, we are expanding the molecular orbital (MO) Φ in terms of a set of basis functions.

Usually, these basis functions are located on atoms, and thus could be regarded as atomic orbitals. Therefore, one could write the MOs as a linear combination of atomic orbitals (LCAO), and the set of basis functions is called a basis set.

Conventionally, there is no upper limit to the size of a basis set and the number of basis functions m in the expansion can be much bigger than the number n of electron pairs in the molecule [10].

However, only the n occupied orbitals are used to construct the Slater determinant, which represents the HF wave functions. Now, if we substitute the expansion (131) in to the HF Equation (129) we get

1 1 1 1 1 1 , ( 132 
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where, 1 f is the Fock operator for the 1 st electron in Ψ a .

Then multiply equation (132) by the basis function * 1 j from the left and integrate,

* * 1 1 1 1 1 1 1 1 1 , ( 133 
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where by identifying the following terms: 

XIV. Post Hartree Fock Calculations

The Hartree Fock method relies on averages [11], it does not consider the instantaneous electrostatic interaction between the electrons nor does it take into account the quantum mechanical effects on electron distributions. This is because the effect of the n-1 electrons on an electron of interest is treated in an average way. In fact, the HF method overestimates the electron-electron repulsion and so gives higher electronic energies than the correct ones, even with the largest basis sets. In brief, we summarize these deficiencies by saying that the HF method ignores electron correlation [10].

Actually, the HF method allows for some electron correlation, two electrons of the same spin cannot be in the same place because their spatial and spin coordinates would then be the same and the Slater determinant (32) representing the molecular wave function would vanish, since a determinant with two identical rows or columns is zero. This is a consequence of the Pauli exclusion principal, where in the neighborhood of each electron there would still be a region unfriendly to other electrons of the same spin. This region is called a Fermi hole and the HF method overestimates the size of a Fermi hole [12].

XIV. 1. Multi Configuration Self Consistent Field Theory MCSCF

The first step in post Hartree Fock quantum mechanical calculations is the Multi Configuration Self Consistent Field (MCSCF) method, which involves a generalization of the Hartree Fock wave function to systems dominated by more than one electronic configuration. This model is useful in describing the electronic structure of bonded molecular systems, and in particular excited states [13].

In MCSCF theory, the wave function is written as a linear combination of determinants or 
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This method allows for a highly flexible description of the electronic system, where both the one and N-electron functions, MOs and CSFs, may adapt to the physical situation. Usually, the greatest difficulty faced in setting up an MCSCF calculation is the selection of configuration space which contributes appreciable to the wave function. Indeed, even for small systems, it is often impossible to generate an MCSCF configuration space sufficiently flexible to describe the physical process and yet sufficiently small to be computationally tractable.

The selection of MCSCF configurations is usually not carried out by inspection of the individual configurations. Instead, whole classes of configurations are simultaneously selected and classified into three sets:

1. A set of inactive orbitals composed of the lowest energy spin orbitals which are doubly occupied in all determinants.

2. A set of virtual orbitals composed of very high energy spin orbitals which are unoccupied in all determinants.

3. A set of active orbitals which are energetically intermediate between the inactive and virtual orbitals.

The active electrons are those that are not in the doubly occupied inactive orbitals, but rather to which excitations are allowed. The single, double, and triple, etc., excited determinants are those that arise from all possible ways of distributing the active electrons over all the active orbitals. This method is known as the complete active space self consistent method CASSCF [13,14].

XIV.2. Configuration Interaction

The configuration interaction (CI) wave function consists of a linear combination of Slater determinants, the expansion coefficients of which are variationally determined. Owing to the simple structure of the wave function, the CI method has been extensively and successfully applied in quantum mechanical calculations [15]. The method is flexible and can give highly accurate wave functions for small closed and open shell molecular systems with electron correlation and it may be used to describe complex electronic structure problems such as bond breakings and excited states. The principle shortcomings of the CI method is that it is difficult to implement for large molecules because of the rapid growth in the number of configurations needed to recover a substantial part of the correlation energy for larger systems.

In the treatment of electron correlations it is important to distinguish between static and dynamical correlations. Static correlation effects are best treated in the complete active space self-consistent field method CASSCF, by retaining in the CAS reference space the configurations arising from the distribution of valence electrons in all possible ways among the active orbitals, while keeping the core orbitals doubly occupied in all configurations. Dynamic correlations, on the other hand, are subsequently treated by including in the wave function expansion all configurations generated from the reference space by carrying out excitations up to a given excitation level.

In the CI method, the wave function is constructed as a linear combination of determinants or configuration state functions CSFs ) avoid counting similar determinants twice in the summation. If every possible determinant was included in the expansion, then the wave function would be the full CI FCI wave functions. Full CI calculations are possible only for very small molecules because the promotion of electrons into virtual orbitals can generate a large number of states unless we have only a few electrons and orbitals [17,18]. Even when CI calculations are prerformed for relatively moderate sized molecules, a large number of these determinants still exist. However, a significant number of them can be eliminated by exploiting the following facts:

1. There is no mixing of wave functions with different spins (i.e. Owing to its formal and conceptual simplicity, the CI method has been extensively and successfully applied in quantum chemistry. However, for even the simplest systems, it is not possible to carry out full configuration interaction FCI, particularly due to the large number of determinants included in the expansion. It then becomes necessary to truncate the CI expansion so that only a small set of the determinants is included. The truncated CI expansion should preferably recover a large part of the correlation energy and provide a uniform description of the electronic structure over the whole potential energy surface.

XIV. 3. Multireference CI Wave Function MRSDCI

The Multireference CI (MRCI) wave function is generated by including in the wave function all configurations arising from the single and double excitations from the reference space, thus resulting in the multireference singles and doubles configuration interaction (MRSDCI) wave function 1 , 0 , (143)

A A B X X MRSDCI I I J AI A B I J
where, the single and double excitation operators are given in second quantization by , .
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The construction of a multireference CI wave function begins with the generation of a set of orbitals and a reference space of configurations 0 , which are best generated by the CASSCF method. The CASSCF method writes the wave function as a linear combination of determinants or CSFs, whose expansion coefficients are optimized simultaneously with the MOs according to the variation principle. The fully optimized wave functions in the CASSCF method are then used as a reference state in the MRSDCI technique, in which single and double excitations are included.

XIV. 4. Davidson's Correction

Configuration interaction calculations that include single, double, triple, and quadruple excitations are designated SDTQCI. However, large basis sets involve too many determinants to be computationally practicable. As the quadruply excited determinants can be important in computing the correlation energy, a simple formula known as the Davidson correction has been proposed for estimating the contribution of quadruply excited determinants to the correlation energy [10,19,20], this is given by the following relation 2 0

1

(145)

Davidson DCI SCF E c E E
where DCI E is the correlation energy computed in CI calculation using the ground state wave function 0 0 and all its double excitations; 0 c is the coefficient of 0 0 for the normalized wave function. E SCF is the ground state energy obtained in HF-SCF calculations. The Davidson correction can be computed without additional labor since the c 0 is already computed in DCI calculations. However, in spite of its usefulness for small molecules, the Davidson correction fails for relatively large molecules [17].

XV. Spin Orbit Effects

The nonrelativistic Schrödinger picture discussed in the previous sections is not complete and additional terms are needed to account for the intrinsic magnetic moment of the electron (spin).

In atomic and molecular systems, the exact solution of the non-relativistic Schrödinger equation doesn't reproduce the real experimental energies. The difference arises from relativistic effects, which increase with the 4 th power of the nuclear charge (Z 4 ) [21]. Relativistic effects can be neglected in most cases for lighter atoms, but have to be included when dealing with heavy elements. In non-relativistic quantum mechanics, the velocity of light can be assumed to be infinite, so that any finite velocity of particles is very small and the mass of the particle can be approximated by its rest mass. For most measurements on the lighter elements in the periodic table, non-relativistic quantum mechanics is sufficient, since the velocity of an electron is small compared to the speed of light. For the heavier elements in the periodic table the picture is entirely different. As a result for the heavy atoms, the inner electrons attain such high velocities, comparable to that of light, and non-relativistic quantum mechanics is far from adequate. We can divide relativistic effects in to several categories such as the mass-velocity correction, Darwin correction, spin-orbit correction, spin-spin interaction, and Breit interaction [21,22].

Of all the different kinds of relativistic effects the spin-orbit interaction represented by the Briet-Pauli Hamiltonian is the most important part [21], which mainly arises from the interaction of the intrinsic magnetic moment of the electron with the magnetic moment arising from orbital motions. These effects alter the spectroscopic properties of molecules containing heavy elements to a considerable extent. Even if a molecule has a closed shell ground state the excited states may stem from open shell electronic configurations, in which case the spin-orbit interaction not only splits the excited states, but mixes different excited states which would not mix in the absence of spin-orbit interaction. Indeed, the yellow color of gold is due to orbital mixing occurring between the 5d 10 and 6s 1 orbitals [23]. This relativistic effect allows gold to absorb light in the violet and blue regions of the spectrum while it allows for the reflection to occur in the yellow and red regions [23].

Spectroscopically, the magnitude of the spin orbit coupling Hamiltonian H SO in atoms is measured as a splitting in the spectral lines of the multiplet components

1 1 1 1 (146) 2
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where l is the orbital angular momentum quantum number and s is the spin quantum number and j is the total angular moment j = l + s, and A is the magnitude of the spin-orbit coupling constant. Expanding (146), we get In heteronuclear diatomic molecules the orbital angular momentum along the internuclear axis Λ couples to the electronic spin (S) through its projection along the internuclear axis ∑ = S, S-1, …, -S+1, -S. Then the total electronic angular momentum about the internuclear axis, denoted by Ω, is obtained by adding the values of Λ and ∑ to give the electronic states resulting from the interaction of spin and orbital angular momentums
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As an example, consider in Fig. 3 the relative orientations of the vectors Λ and ∑ for a 3 Δ state

The spin-orbit splitting between the Ω and Ω-1 levels arising from the same term Λ is calculated by using the formula

0 0 1 , (152) 2 SO SO E H
where the spin-orbit coupling operator H SO is derived from the Breit-Pauli Hamiltonian [24] defined by The above spin-orbit coupling operator is composed of a one and two-electron parts. The l l and s s operators are the orbital and spin angular momentum operators, respectively, and the summation over the index (i) refers to electrons and that over (I) refers to nuclei. Finally, the entire Breit-Pauli operator may be approximated by pseudo-effective core potential operators that are extracted from relativistic wavefunctions for atoms. The pseudopotential approximation accounts for the most important relativistic effects and decreases the computational costs of calculations involving heavy elements [25]. The pseudopotential approximation relies on the separation between core and valence electrons in the electronic Hamiltonian. In this case, the valence electrons can be treated as if they were moving in an effective potential, generated by the core electrons and the nuclei. This procedure utilizes the fact that only valence electrons take part in chemical bond formation. With this assumption, calculations can be done using the valence basis set only. The cores (inner-shell electrons and the atomic nucleus) of the individual atoms are approximated through a non-local effective potential.

Separating core and valence electrons leads to an electronic Hamiltonian which describes only the valence electrons. In contrast to all-electron calculations, within the pseudopotential procedure only the valence electrons or the electrons (n-1) th shell, are explicitly considered. In this case the electronic Hamiltonian can be reduced to an atomic valence operator, H val given by,
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H Vr r where the indices i and j denote only valence electrons, and the V(r i ) operator represents a onecomponent, (spin-orbit-averaged) relativistic pseudopotential [26] 2 exp , (155
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where P l is the projection operator onto the subspace with angular symmetry l , , 1

.
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In Eq (155) the pseudopotential parameters, the coefficients, A lk and the exponential parameters, α lk are adjusted to total-valence energies derived from numerical all-electron calculations. The pseudopotentials for atoms can be used for molecules containing heavy atoms. These potentials can easily be implemented in quantum mechanical programs. The pseudopotential approximation is not exact. However, its main advantage is the ease with which relativistic effects can be included in the calculations. Indeed, a significant reduction of the computational effort can be achieved by a restriction of the actual spin orbit calculations to the valence electron system and the implicit inclusion of the influence of the chemically inert atomic cores by means of suitable parameterized effective core potentials [27].

Chapter Two

Canonical Function's Approach for Molecular Vibrations and Rotations

uch attention has recently been focused on the optimal control of quantum systems, and extensive theoretical works have been performed [1 -10]. The research on realizing quantum computers using the molecular internal degrees of freedom (electronic, vibrational, and rotational) has only begun since the beginning of the century and the proposed chemical system has been the molecular rovibrational modes of diatomic molecules [11,12-22, 23, 24, 25]. In the present work we explore the vibrational energy structures of the diatomic molecules YN, YS, ZrN, and ZrS, by solving the vibrational Schrödinger equation within the canonical functions approach. The theoretical backgrounds of our rovibrational calculations are listed in this chapter, while the results of these calculations are shown in chapter three of this thesis.

I. Canonical Function's Approach

In view of the fact that in a molecule, the nuclei are much heavier than the electrons and their speeds are slower, Born and Oppenheimer showed in 1927 [26] that molecular problems could be much simplified by treating the electrons as moving in the field of fixed nuclei. In section XI of chapter one of this thesis we discussed the theoretical basis of the Born-Oppenheimer approximation. Within this approximation the kinetic energy of the nuclei is neglected and the nuclear repulsion energy is considered constant. This allows for decoupling the electronic and nuclear wavefunctions in the Schrödinger equation. where v and J represent respectively the vibrational and rotational quantum numbers. μ and represent the reduced mass and planks constant.

The above equation could be simply written, as [27] '' , 

) e f x k E U x x r 4 
However, equation ( 2) is equivalent to the Volterra integral equation [28] ' ' 0 0 0 , (5)

x x x x t f t t d t
in the sense that any solution of equation ( 5) is a solution to equation (2).

Within the formulation of the canonical function's approach [29,30], one considers the canonical functions α(r) and β(r) defined by

' 0 0 , ( 6 
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and 1 0 0 0 where with x =1 ,

x i i i i x A x A x t f t A t dt A ( 8 
)
1 0 0 0 0 where with B .

x i i i i x B x B x x t f t B t dt x r r x (9)
Then the initial values of ' 0 and 0 can be deduced from and x

x by using Eq (6) and by using the following boundary condition [31] -0, 

II. The Rotational Schrödinger Equation

The vibration-rotation energies of a diatomic molecule are usually written as

2 3 , ( 12 
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where, B v , D v , H v , …, represent the rotational constants. One can write [27] 0 0
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Then the energy factor f x given earlier in equations ( 3) and ( 4) could be expanded as [27] .
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Now by replacing f x by its value in the function A n (r) in equation ( 8), one finds [32] The functions G n (r) and H n (r) play the role of the function f x and the canonical functions of pure vibration [27] 
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Then by taking advantage of the limits in equation (11), and by replacing α(r) and β(r) by their expressions in equation ( 17) and ( 18), we get [27] '
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where the coefficients I n are deduced from the values of the coefficients G n and H n at the boundaries -r and . The vibrational-rotational wavefunctions defined in equation ( 6) can be written as
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where from Eq(13), if n=0 then e 0 = E V , which indicates that the term with n=0 is a purely vibrational term. In addition, the first two terms of expression (21) are not related to the rotational quantum number J, since 0 1 , and with n =0 these two terms could be assigned to a purely vibrational wavefunction 0 x . Accordingly, the vibro-rotational wave function x

given in equation ( 21) could be refined as
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The second term of the above equation is a purely rotational function n x , since it depends directly on . Thus the rotational effect in the vibration-rotation wavefunction x is separated from the pure vibration wavefunction 0 x [27]. The terms n x in the above equation are called the rotational harmonics that depend on C n (x), G n (x), and I n (x).

Finally, by replacing the wave function's expression of equation (22) in equation ( 3), we find
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The first of these equations is called the radial Schrödinger equation of pure vibration for J = 0.

All of the other equations are called the rotational Schrödinger equations for J>0 nuclear rotations. The rotational Schrödinger equations allow us to successively determine the rotational harmonics 1 2 , , , and n d , and .

III. Finding the Pure Vibrational Wavefunction

The pure vibrational Schrödinger equation was given by The two canonical functions α(r) and β(r), associated with ε 0 (r), are given by [29] 
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If we take λ = 0 in equation (21), one can write φ 0 (r 0 ) = 1 for the wave function. Then by using the conditions applicable on φ 0 at the limits (10), with the relations between φ 0 , α 0 , and β 0 and by considering the initial condition of φ' 0 (r 0 ) given by [27] The remaining part of this chapter is devoted for calculating the rotational harmonics φ 1 , φ 2 , …, φ n , described in Ref [27] and whose corresponding eigenvalues are ε 1 , ε 2 , …, ε n .

IV. Canonical Formulation for the First Rotational Harmonic

Formerly, we found a solution to the vibrational Schrödinger equation (24-a). Now, in this section we will concentrate on finding a solution to the rotational Schrödinger equation (24-b)

'' 1 0 1 1 0 . (32) x x x x x
The solution of the above equation is equivalent to the solution of the Voltera integral equation [27,33] (i) for r = r 0
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The derivation of the σ 1 (r) For the other higher order derivatives of σ 1 (r), we find
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Then the first rotational harmonic φ 1 (r) written in equation (34), gives 

V. Numerical Methods

For a potential function given by U(r), and a vibrational energy value E, the function φ 0 is given by [27] 0 0 0 0 , (44) r r l r

where the functions α 0 (r) and β 0 (r) are given by the expression ( 28) and ( 29), in terms of the functions U(r) and E = ε 0 . The study of these expressions is available independent on the form of the potential considered. For a numerical potential of type RKR [34,35] defined by the turning points and by the polynomial interpolation of the calculated potential energy curves. Once the formulation of the potential is specified, the calculations can be carried out for the canonical functions α 0 (r), β 0 (r), and the parameters l 0 and φ 0 .

Within a specified interval [r i , r i+1 ] delimited by the abscissa of two successive points P i , P i+1 .

The potential function U(r) is written as The functions α 0 (r) and β 0 (r) are given by the same function y(r). Then by substituting equation (47) 
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The equations (47 -50) are sufficient for calculating α 0 (r) and β 0 (r) at each point r of the potential energy curve. The values of y and y' at an origin r 0 are passed in between successive intervals (r i -r i-1 ), in order to calculate the values of α 0 (r) and β 0 (r) at each point. From these we calculate the ratios At the points r i > r o and r j < r 0 were 0 0 l E l E the vibrational energy E v for a v vibrational level is found and its value is then determined at the points r i and r j of the potential energy surface.

The numerical values of the pure vibrational wave function φ 0 are then determined by using in equation ( 44) the values of α 0 , β 0 and l 0 .

Chapter Three

Results and Discussions

etal-ligand bonding underlies the vast physical and chemical properties that a material has. The spectroscopic study of heavy polar diatomic molecules is important in such diverse fields as astrophysics [1], ultracold interactions [2], organometallic chemistry [3], quantum computing [4][5][6], precision measurements [7], and metallurgy [3].

The present investigation is devoted to the prediction for the electronic structures of the transition metal nitrides and sulfides of Yttrium and Zirconium. Our interest in transition of the present work to the experimental and theoretical results in literature. The small relative difference of less than 10% obtained in the present calculations reflects the accuracy of our computational approach in representing the true physical systems.

I. The Computational Approach

In the present work ab initio investigations for the lowest lying molecular states of the molecules YN, ZrN, YS, and ZrS have been performed at the Complete Active Space Self Consistent Field (CASSCF) method followed by the Multi Reference Single and Double Excitation Configuration Interaction (MRSDCI) method. The Davidson correction, noted as MRSDCI+Q was then invoked in order to account for unlinked quadruple clusters. The ab initio MRSDCI+Q calculations were performed on two stages. In the first, electronic structure calculations were carried out ignoring the effect of relativistic spin orbit coupling.

M

While in the second type of calculations spin orbit relativistic effects were added through the inclusion of effective core potentials (ECP) in the expression of the molecular Hamiltonian.

Both types of calculations were performed in the C 2v point group. The molecular electronic states, represented by the projection component of the orbital angular momentum (Λ = 0, 1, 2, 3, 4) on the internuclear axis, are classified into four symmetric representations of the point group C 2v according to ∑ ± , Π, Δ, Φ, and Γ electronic states denoted as a1, a2, b1, and b2 symmetries, respectively. Further inclusion of spin orbit interactions couples the orbital angular momentum Λ with the spin angular momentum S through its projection ∑ on the internuclear axis. This produces a total angular momentum along the internuclear axis Ω = |Λ±∑|, that characterizes the spin orbit electronic states. In this approach, spin orbit states with a well-defined quantum number Ω = 0, 1/2, 1, 3/2,… may arise from the spin orbit splitting in the parent ∑ ± , Π, Δ, Φ, and Γ electronic states.

First we start with the CASSCF method to generate the molecular orbitals which were then used in higher level MRSDCI calculations. In all of the subsequent calculations, the CASSCF configuration space was divided into a set of inactive, active, and virtual molecular orbitals.

The set of inactive molecular orbitals is composed of the lowest spin molecular orbitals which are doubly occupied in all determinants. While, the active molecular orbitals are in the energetically intermediate region, between the inactive doubly occupied orbitals and the virtual unoccupied orbitals. Then the single, and double excited determinants in MRSDCI calculations are generated from the reference CASSCF configuration by distributing the active electrons in all possible ways over all of the active molecular space. All of the calculations were done via the computational chemistry program MOLPRO [8] and by taking advantage of the graphical user interface GABEDIT [9].

The Yttrium and Zirconium species are treated in all electron schemes. The 39 electrons of the yttrium atom are considered using a contracted Gaussian basis set from literature [10,11] for s, p, d functions and to which we have added one f function (27s 20p 17d 1f / 12s 7p 7d 1f). The exponent of this f-function was taken to be 0.26. The 40 electrons of the Zirconium atom were considered, using a contracted Gaussian basis set from literature [12,13] for s, p, d functions (27s 20p 17d / 18s 16p 11d 1f) and to which we have added one f function with exponent 0.08, in order to facilitate the representation of the valence orbitals on Zirconium.

On the other hand, the Nitrogen atom is treated, in all electron scheme, as a system of seven electrons by using the Rydberg2 (Dunning-Hay DZP + Rydberg) [14] basis set from literature (9s, 5p, 1d). The Sulfur atom is treated as a system of 16 electrons by using the Rydberg4 (Dunning-Hay DZP + Rydberg) [15][16] contracted basis set (11s,7p / 6s,4p).
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Among the 56 electrons considered for Zirconium monosulfide ZrS, 48 electrons were frozen in subsequent calculations so that 8 valence electrons were distributed over all the active molecular orbitals. The CASSCF active configuration space contains 4σ(Zr: 5s, 4d 0 , 5p z , S: 3p z ), 3π(Zr: 4d ±2 , 5p x,y , S: 3p x,y ), and 1δ(Zr: 4d ±1 ) molecular orbitals. This corresponds to five a1, three b2, three b1, and one a2 orbital denoted as [5,3,3,1]. In Zirconium mononitride ZrN, the CASSCF active space included a CI space of configurations obtained by freezing 40 electrons and by distributing seven valence electrons among the active orbitals (Zr: 4d, 5s, 5p, N: 2s, 2p) in all possible ways. The CASSCF active space contains 4σ(Zr: 5s, 4d 0 , 5p z , N: For the most part spin orbit coupling (SO) is simply ignored for light elements. However, for intermediate weight main group elements SO interactions become significant and can actually grow to the order of a few hundreds to a few thousand of cm -1 [17]. Transition metal compounds have a rich set of electronic states owing to unfilled d shells, and therefore SO effects are commonplace. In this work, the energies for the SO molecular states Ω are obtained from the treatment of the total Hamiltonian H t = H e + W SO , where H e is the Hamiltonian in the Born-Oppenheimer approximation for calculating the energies of the molecular states labeled 2s+1 Λ ± , and where W SO is the spin orbit pseudopotential used to represent SO coupling. The semi-empirical spin orbit pseudopotential ( PS SO W ) used in our calculations was designed from Effective Core Potentials ECP to represent the spin orbit effects in Yttrium and Zirconium [18]. The impact of the SO relativistic effect on molecular properties increases with nuclear charge Z to an extent that molecules containing heavy elements cannot be described correctly even in a qualitative manner without SO effects.

Owing to the relatively small charge and size of Nitrogen and Sulfur with respect to the heavy metals Yttrium and Zirconium, spin orbit effects have been neglected in sulfur and nitrogen. The energies for the molecular states Ω including the spin orbit effects have been obtained by diagonalizing the total Hamiltonian H t in the basis of Λ∑ states yielding the spin orbit electronic states

Ω = |Λ±∑| = 0 + , 0 -, 1/2, 1, 3/2, 2, …

II. Electronic Structure Calculations

Studies of small units containing a non-metal atom and a transition-metal atom are of immense scientific and technological interests. With the present investigation, we begin a systematic study of the transition metal nitrides and sulfides of Yttrium and Zirconium (YN, ZrN, ZrS, YS) in order to elucidate their electronic structures and explore their bonding characteristics.

III. A. The Structure of Yttrium Nitride YN

III. A. 1. Preliminary Works on YN

Of all the transition metal nitrides, the YN molecule is the least one characterized. To the best of our knowledge only five papers have been published on the electronic structure of Yttrium mononitride. To our knowledge, experimental investigations of the Yttrium mononitride were done by three groups: First, Ram and Bernath [19] studied the vibrational structure of the electronic transition (1) 1 Σ + ←X 1 Σ + , reporting several vibrational levels and spectroscopic constants. Further, rotational analysis resulted in accurate rotational constants of the six lowest vibrational levels of the A 1 Σ + and X 1 Σ + states. Then, Jakubek et. al [20] studied the electronic structure of the YN molecule by laser excitation spectroscopy, reporting several spectroscopic constants for the ground and 3 newly observed excited states (B1, C1, D1).

The assignment of these states could not be done based on the preexisting ab initio calculations of Shim et. al [21]. Jakubek et. al. [22] then reinvestigated the YN molecule by a Laser induced fluorescence spectroscopy, for the ground X 1 ∑ + and the two excited states

(1) 1 ∑ + and (1) 3 ∑ + ; RKR potential energy curves were constructed based on calculated vibrational constants. To the best of our knowledge only two theoretical papers have been published, so far, on the electronic structure of YN. First Shim et. al [21] performed an allelectron CASSCF ab initio calculations for nine electronic states (singlet, triplet, and quintet)

of the YN molecule. Shim et. al [21] results are questionable as they fail to reproduce the experimental results available in Ref [19,20,22]. Recently, Duo et. al [23] performed CASSCF/CASPT2 calculations for the low lying 14 (singlet, triplet, quintet) electronic states of the YN molecule. The calculated spectroscopic constants are in good agreement with experimental results, however, many experimentally available excited electronic states B1, C1, and D1 [20] could not be assigned clearly.

III. A. 2. Results on YN

For the first part of our calculations without spin orbit effects we draw in Figures 12345the potential energy curves for the 25 low-lying singlet, triplet, and quintet electronic states 2s+1 Λ (±) of the YN molecule as a function of the internuclear distance range 1.3Å ≤ R ≤ 3Å. In 
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Fig. 1: Potential energy curves for the 1 Σ ± and 1 Δ states of the molecule YN.
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≤ δT e /T e ≤ 15.3% (Ref. [22]) for the states (2) 1 Σ + , (2) 1 Π, (1) 3 Σ + , and (2) 3 Σ + . This agreement deteriorates by comparing our values to those calculated by Shim and Gingerich [21] with relative difference of 39%≤ δT e /T e ≤ 46% for the states (1) 1 Δ, (1) 1 Π, (1) 3 Σ + , (1) 3 Π and (2) 5 Π.

The comparison between the experimental energy levels obtained for YN [19,20,22] to those of ScN [24] shows that the electronic states 2s+1 Λ (±) in YN are much lower than their counterparts in ScN. This suggests that the lowest (1) 1 Π and (1) 3 Π states of ScN must lie in a higher energy region than the (1) 1 Π and (1) 3 Π states in YN. But since the energies of the (1) 1 Π and (1) 3 Π states in ScN are 7443 cm 1 and 7331 cm 1 respectively [24], then it is unlikely to have the energies of these states in YN at a higher energy region of 9915 cm -1 and 9290 cm -1 , as it has been calculated by Shim and Gingerich [21]. Unfortunately, the positions of the low-lying excited states calculated by Shim and Gingerich [21] are approximately twice the corresponding values obtained for ScN [24]. These discrepancies in the calculated energy position are presumably due to a problem in presenting the ground state wavefunctions by Shim and Gingerich [21]. In order to confirm the accuracy of our predictions for the states (2) 1 Σ + , (1) 1 Π and (1) 3 Π we repeated the calculation of the transition energy T e and the equilibrium internuclear distance R e (Table II) by using different basis sets and with different active spaces. The investigated energy values confirm that the (1) 1 Π and (1) 3 Π states lie at a lower energy value of ≈ 5000 cm -1 , than that originally predicted by Shim and Gingerich [21].

Table II:

Comparison between theoretical results obtained for the (1) 1 [8].

The comparison between our calculated values of T e by using the methods of CASSCF/MRDSCI+Q to those calculated by Dou et al. [23] by using the methods of CASSCF/CASPT2, shows a very good agreement with a percentage relative difference of 0.0% ≤ δT e /T e ≤ 10.4%, except for the values of the two states (1) 3 Σ + and (1) 3 Δ where the relative differences are respectively, 17.8% and 19.0%. The comparison between the calculated values of the vibrational harmonic frequency ω e in the present work with those obtained experimentally in literature shows a very good agreement with a relative difference of 0.6% ≤ δω e /ω e ≤ 5.1% for the states X 1 Σ + ,(2) 1 Σ + , (1) 3 Σ + , and (2) 3 Σ + , except for the value of ω e in Ref [19]for the state (2) 1 Σ + where a relative difference of δω e /ω e =19.1% was obtained.

The agreement is also very good by comparing our values with those calculated by Shim and Gingerich [21] and Dou et al. [23] with relative differences of 0.2% ≤ δω e /ω e ≤ 9.5% except for the values given by Shim and Gingerich [21] for the states X 1 Σ + and (2) 5 Π where the relative differences are respectively δω e /ω e = 18.6% and δω e /ω e = 26.6% and those given by Dou et al. [23] for the states (2) 1 Π, (2) 3 Π, (1) 5 Π where the relative differences are respectively, δω e /ω e = 32%, δω e /ω e = 41% and δω e /ω e = 44%. A very good agreement is obtained by comparing the experimental values in literature for the rotational constant B e with our calculated values with relative differences of 1.1% ≤ δB e /B e ≤ 4.6%. The experimental and theoretical values in literature for the internuclear distance at equilibrium R e are in good agreement with our calculated values with relative differences of 0.3% ≤ δR e /R e ≤ 9.2%. 12345) one observes certain regions of crossings and avoided crossings among the potential energy curves of the investigated electronic states. These are regions at which the electronic states perturb one another and are important in deciding the channel of molecular dissociation in photo dissociation dynamics [25]. In Table III we report the positions of these crossings R c and avoided crossings R av together with the energy gap separations ∆E av , recorded between the different potential energy curves of the investigated electronic state in the YN molecule.

Upon close examination of the drawn potential energy curves in Figures (

Within the investigated electronic states of YN three avoided crossings have been detected to occur between the potential energy curves of the states (1) 1 

∆ -(2) 1 ∆, (1) 3 ∆ -(2) 3 ∆, and (2) 3 ∏ -(3) 3 ∏.
The magnitude of the energy gap between the interacting states at these regions ranged between 550cm -1 and 611 cm -1 . There are two other avoided crossings noticeably appearing in Figures 2 and3 and occurring between the (2) 1 ∏ and the (3) 1 ∏ state at R = 2.18 Å, and between the (2) 3 ∆ state and the (3) 3 ∆ state at R = 2.16 Å but unfortunately the potential energy curve of the two excited states (3) 1 ∏, (3) 3 ∆ weren't very clear at these regions, mainly because they were mixed with higher excited electronic states.

The inclusion of relativistic spin orbit effects in molecular electronic structure calculations greatly enhances the accuracy of nonrelativistic ab initio results. In heavy elements spin orbit effects may induce splittings that can reach the order of 1000 cm -1 . These splittings may change the shape of the potential energy curves, and could thus modify the values of the 
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) 3 ∑ + 1.80/2.30 (2) 1 ∏ 2.40 (1) 3 Φ 1.84/1.94 (2) 3 Π 1.94 (3) 3 Π 2.04 (3) 3 Π 2.20 (1) 5 ∆ 2.22 (1) 3 Φ 2.30 (1) 5 Φ 2.55 (4) 3 Π 2.42 (2) 1 ∏ (2) 3 ∑ + 2.04/2.30 (1) 3 ∆ 2.30 (1) 3 ∆ 2.11 (2) 3 ∆ 2.36 (2) 3 ∆ 2.18 (2) 3 ∑ + 2.42 ( 
(2) 1 ∆ 2.14 550

(1) 1 Φ

(2) 3 ∆ 2.08/2.12 (2) 3 ∑ + 1.9 / 2.12 (4) 3 Π 1.80
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66 spectroscopic constants appreciably. In Figures 6 -13 we draw the potential energy curves for the spin orbit electronic states Ω=0 + , 0 -, 1, 2, 3, 4, resulting from the interaction of the orbital angular momentum Λ with the spin angular momentum S projected along the internuclear distance ∑. Then by fitting the calculated potential energy curves around their equilibrium into a polynomial in R several spectroscopic constants T e , R e , ω e , D e , and B e were calculated. These results for the spin orbit electronic states Ω of YN are shown in Table IV. 

[(X) 1 ∑ + ], (2)0 + [(2) 1 ∑ + ], (6)1[(2) 1 ∏], (7)1[(2) 3 ∑ + ], (9)1[(3) 3 ∑ + ]
, and (7)2[(2) 3 ∆] with a percentage relative error of 2.8% (Ref [20]) ≤ δT e /T e ≤ 9.3% (Ref [20]), and 0.9% (Ref [22]) ≤ δω e /ω e ≤ 10% (Ref [20]), and 3.5% (Ref [19]) ≤ δB e /B e ≤ 12% (Ref [20]), and 1.7% (Ref [19]) ≤ δR e /R e ≤ 3.3% (Ref [20]). The agreement is also very good by comparing the values of the present work to the recent theoretical results of Duo et. al. [23] in literature for the singlet [22] f. Ref [23] and (3)2[(1) A recent spectroscopic investigation of the YN molecule [20] detected three new Ω = 1 (B1, C1, D1) electronic states within the energy region of 18000 cm -1 →19000cm -1 , but the exact identities of these states could not be determined based on earlier ab initio results. A more recent sophisticated ab initio investigation of the electronic structure of YN was done by Duo et. al [23], in which they assign the B1 state to be the D 1 ∏ state. However, further assignments of the unknown states C1 and D1 could not be determined. In this work we assign the newly observed B1, C1, and D1 (Ω = 1) states to be the (6

states (1)0 + [(X) 1 ∑ + ], (2)0 + [(2) 1 ∑ + ], (3)1[(1) 1 ∏], (6)1[(2) 1 ∏],
)1[(2) 1 ∏] , (7)1[(2) 3 ∑ + ],
and the (9)1[(3) 3 ∑ + ] states, respectively, since their spectroscopic constants (T e , ω e r e ) agree with our calculated values for each of the assigned states. The (9)1[(3) 

(6) 1[(2) 1 ∏], (7) 1 [(2) 3 ∑ + ], (9) 1 [(3) 3 ∑ + ]}
is logical, particularly since these states have Ω = 1 in agreement with the experimental predictions provided in Ref [20].

The composition in percentage of the spin orbit Ω state-wave functions in terms of the Λ parent states, calculated at the equilibrium internuclear distance of the ground state R = 1.85 Å, are presented in Table V. For each state Ω there is a predominant component Λ with a contribution larger than 80% so that a main parent 2s+1 Λ state may be identified.

Nevertheless, there are states for which a small but significant contribution of other 2s+1 Λ states is obtained.

Transition metal compounds have a rich set of electronic states owing to unfilled d shells, and therefore spin orbit effects are commonplace. In Appendix I we draw the parent electronic Λ states together with their respective daughter states Ω and their energy separation. This representation allows for a clear estimation of the spin orbit splitting in the electronic states of YN.

III. A. 3. The Nature of Bonding in Yttrium Nitride

Molecular electronic states of 3 Δ symmetries arising from σ and δ molecular orbitals have been proposed to be important in the search for the electric dipole moment of the electron (eEDM). A property, whose existence along the spin axis of the electron should provide evidence of parity and time reversal invariance [27]. In this regards, molecular orbitals of σ symmetry are important since they allow for electrons to penetrate closer to the heavy atomic nucleus, a place at which relativistic effects become significant [27]. Other electronic states, such as the 3 Δ state, arising from the occupation of both σ and δ molecular orbitals were also suggested to create larger electric fields sufficient to produce a measureable eEDM signal [27]. Then understanding the composition of molecular electronic states in terms of molecular orbital configurations is of significant importance. 
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In the present calculations, the choice of the active space allows for the determination of the bonding molecular orbitals (σ, π, δ) participating in the formation of molecular states, denoted by ∑, Π, Δ, Φ, … In multiconfigurational quantum chemistry, a single chemical bond is described by a pair of orbitals, a bonding and an antibonding one. Usually, their occupation numbers add up to 2.0 [28]. Thus, two electrons reside in two orbitals. If the occupation number of the bonding orbital, η b , is close to two and the corresponding antibonding orbital has a small occupation number, η ab , then there is a fully developed chemical bond with a bond order equal to one. This is the situation for the chemical bonds in most normal molecules at their equilibrium geometry. However, in transition metal compounds with multiple metal-ligand bonds, one often sees occupation numbers η b which are smaller than two. If the two occupation numbers (η b and η ab ) are both close to one, then we have no chemical bond [28]. We can therefore define a quantity called the effective bond order EBO which quantifies the formation of a chemical bond [29]. The EBO for a single bond is defined by

EBO = (η b -η ab ) / 2 . ( 1 
)
For a fully developed single bond the EBO will be close to one, while for a dissociated bond the EBO will be close to zero. In multiply bonded systems, one has to add up the individual values for each pair of bonding and antibonding orbitals to obtain the total EBO. Thus the EBO gives us a mean to quantify the bond order concept from optimized wave functions.

In our multi-configurational treatment of the wave function in the ground state X 1 ∑ + we obtained the occupation numbers of the 6 valence electrons distributed over the chosen active space as η b = 1.39576 (10σ), η b = 0.53874 (11σ), η ab = 0.16036 (12σ), η ab = 0.02265 (13σ), η ab = 0.26255 (3δ), η b = 3.14946 (5π), η ab = 0.37884 (6π), η ab = 0.09164 (7π). Then by applying equation ( 1) we obtain an effective bond order (EBO) of ≈ 2. Thus, indicating that the bond in the ground state of YN is a double bond.

The Y-N bond is formed from 3 valence electrons on nitrogen 2p 3 and 3 valence electrons on Yttrium 5s 2 and 4d 1 orbitals. Thus it is not surprising that such a bond is difficult to quantify theoretically because of the strong correlation effects that occur due to the crowdedness of the electrons in the bonding region. However, our MRSDCI+Q calculations yielded accurate spectroscopic constants with experimental results. We can thus conclude that the electronic structure of YN is well described at this level of theory. In particular we can gain significant insight into the nature of the Y-N bond by analyzing the orbital compositions of electronic states 2s+1 Λ in terms of their molecular orbital configurations. Table VI shows the leading configurations of the electronic states of YN. The ground state of YN has the leading configuration of 11σ 2 5π 4 (56%), where the 11σ orbital is formed from the combination of 2p z on Nitrogen and the 3d 0 orbital on Yttrium, and the 5π orbital is formed from the combination of 3d ±1 on Yttrium and 2p x,y on Nitrogen. Other combinations of molecular orbitals such as 11σ 1 12σ 1 5π 4 (15%), 11σ 1 13σ 1 5π 4 (13%), and 11σ 1 5π 3 6π 1 (7%) participate in forming the ground state, but with smaller contributions.

Table VI:

Leading Configurations with percentage composition of the parent states 2s+1 Λ ± of the molecule YN.

Label Leading Configurations with percentage composition 3 2 δ 1 (81%), 11σ 1 5π 3 6π 2 (4%), 11σ 1 13σ 1 5π 3 1δ 1 (2%) Leading configuration with weights less than 2% have been omitted.

X 1 ∑ + 11σ 2 5π 4 (56%), 11σ 1 12σ 1 5π 4 (15%), 11σ 1 13σ 1 5π 4 (13%), 11σ 1 5π 3 6π 1 (7%) (2) 1 ∑ + 11σ 1 12σ 1 5π 4 (75%), 11σ 2 5π 4 (13%) (1) 1 ∆ 11σ 2 5π 3 6π 1 (93%) (3) 1 ∑ + 11σ 2 5π 3 6π 1 (84%), 11σ 1 13σ 1 5π 4 (9%) (4) 1 ∑ + 11σ 1 13σ 1 5π 4 (62%), 11σ 2 5π 4 (4%), 11σ 2 5π 3 6π 1 (5%) (2) 1 ∆ 11σ 1 12σ 1 5π 3 6π 1 (70%), 11σ 1 12σ 1 5π 3 6π 1 (22%) (5) 1 ∑ + 11σ 1 12σ 1 5π 3 6π 1 (87%) (1) 1 ∏ 11σ 2 12σ 1 5π 3 (91%) (2) 1 ∏ 11σ 1 5π 4 6π 1 (91%) (1) 1 Φ 11σ 1 5π 3 6π 1 2δ 1 (91%) (3) 1 ∏ 11σ 1 13σ 1 5π 3 (84%), 11σ 1 14σ 1 5π 3 (3%), 11σ 1 5π 3 2δ 1 (6%) (2) 1 Φ 11σ 1 12σ 1 5π 3 2δ 1 (90%) (4) 1 ∏ 11σ 1 12σ 2 5π 3 (85%) (1) 3 ∑ + 11σ 1 12σ 1 5π 4 (90%), 11σ 1 13σ 1 5π 4 (2%) (2) 3 ∑ + 11σ 2 5π 3 6π 1 (47%), 11σ 2 5π 3 6π 1 (40%) (3) 3 ∑ + 11σ 2 5π 3 6π 1 (43%), 11σ 2 5π 3 6π 1 (50%) (1) 3 ∆ 11σ 2 5π 3 6π 1 (95%) (2) 3 ∆ 11σ 1 12σ 1 5π 3 6π 1 (95%) (1) 3 ∏ 11σ 2 12σ 1 5π 3 (92%) (2) 3 ∏ 11σ 1 5π 4 6π 1 (91%) (3) 3 ∏ 11σ 1 12σ 2 5π 3 (72%), 11σ 2 5π 3 2 δ 1 (13%), 11σ 1 5π 3 6π 2 (2%) (1) 3 Φ 11σ 2 5π 3 2 δ 1 (76%), 11σ 2 13σ 1 5π 3 (2%), 11σ 1 12σ 2 5π 3 (11%) (4) 3 ∏ 11σ 2 13σ 1 5π 3 (87%) (2) 3 Φ 11σ 1 12σ 1 5π 3 2 δ 1 (91%) (3) 3 Φ 11σ 1 12σ 1 5π
These results agree very well with the recent CASPT2 calculations of Duo et. al [23] on the ground state of YN suggesting that the ground state is formed mainly from the mixing between the two configurations 11σ 2 5π 4 (77%) and 11σ 1 12σ 1 5π 4 (10%). Other results in Ref. [20,22] suggest that the leading configurations of the X 1 ∑ + and (1) 1 ∑ + states in YN are strongly mixed between the molecular orbital configurations 11σ 2 5π 4 and 11σ 1 12σ 1 5π 4 on Yttrium and Nitrogen in agreement with our conclusions. The (2) 1 ∑ + and (1) 3 ∑ + states can be interpreted by analyzing their leading orbital configurations. The (2) 1 ∑ + is formed from a combination between the 11σ 1 12σ 1 5π 4 (75%) and the 11σ 2 5π 4 (13%) configurations, which mainly arise from the promotion of an electron from the 11σ orbital in the ground state configuration into the 12σ bonding orbital in the (2) 1 ∑ + state. The leading configuration 11σ 1 12σ 1 5π 4 (90%) of the (1) 3 ∑ + state of YN is similar to that of the (2) 1 ∑ + state, but with a slight difference: The 11σ 1 and 12σ 1 electronspins pair in the same or in the opposite directions to produce a total spin of S= ½ +½ = 1 and S = ½ -½ = 0, giving a triplet and a singlet multiplicity states, the (1) 3 ∑ + and the (2) 1 ∑ + states, respectively. These predictions for the leading configurations of the (1) 3 ∑ + state are in agreement with both Jakubek et. al [22] and Duo et. al [23] results.

III. A. 4. The Vibrational Structure of Yttrium Nitride

Exploring the vibrational structures of diatomic molecules has received great attention in recent years [30]. In fundamental concepts, the search for spatial and temporal variations of the fine structure constant α and the proton to electron mass ratio μ = m p /m e has been proposed in transitions between nearly degenerate vibrational energy levels of diatomic molecules. Degeneracies of the order <10cm -1 between vibrational energy levels have been proposed to enhance the measurement sensitivity of α and μ by several orders of magnitude [30]. In fact, the search for transitions between the almost degenerate vibrational energy levels in ultra-cold CaH + has been applied to measure variations in μ [31]. In Quantum Computing femtosecond laser induced transitions between vibrational-vibrational and vibrational-rotational energy levels in several heteronuclear diatomic molecules have been proposed to produce the quantum bits 1 and 0 [32,33]. In Tables VII and VIII, the vibrational calculations are performed for several low lying electronic states X 1 ∑ + , (1) 1 ∏, (1) 3 ∏, (1) 3 ∑ + , and (2) 1 ∑ + and are shown together with the available experimental and theoretical values in literature. All of the vibrational energy levels E v were calculated with respect to the zero vibrational energy level of the ground state. The zero point energy or the difference in energy between the v = 0 vibrational level and the transition energy at the equilibrium internuclear distance for the ground state is calculated to be 303.56 cm -1 , considered zero in this work.

Table VII:

Values of the Eigen-values E v , the abscissas of the turning point R min , R max , and the rotational constants B v for the different vibrational levels of the X 1 ∑ + , (1) 1 ∏, and (1) 3 ∏ states in YN. The comparison between the values of E v , and B v in the present work with the experimental values available in Ref [20,22] for the states X 1 ∑ + , (1) 3 ∑ + , and (1) 1 ∑ + shows a very good agreement, with a relative difference of 0.05% ≤δE v ≤ 16%, and δB v = 5.7%. The values of the turning points R min and R max evaluated for the corresponding vibrational levels are also in

X 1 ∑ + v E v (cm -1 ) δE v /E v R min (Å) δR min /R min R max (Å) δR max /R max B v ×10 1 (cm -1 ) δB v /B v 0 0 a 0 b 1.
(1) 1 ∏ (1) 3 ∏ v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 7 (cm -1 ) E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10

Table VIII:

Values of the Eigen-values E v , the abscissas of the turning point R min , R max , and the rotational constants B v for the different vibrational levels of the (1) 3 ∑ + , and (2) 1 ∑ + states in YN.

(1) 3 good agreement with the experimental values calculated in Ref [22], with a percentage relative difference of 0.0% ≤δR min ≤ 10% and 1.5% ≤δR max ≤ 3.7%.

∑ + (2) 1 ∑ + v E v (cm -1 ) δE v / E v R min (Å) δR min / R min R max (Å) δR max / R max B v ×10 1 (cm -1 ) E v (cm -1 ) δE v / E v R min (Å) δR min /R min R max (Å) δR max /R max B v ×10
In Tables IX the vibrational energy levels are shown for the spin orbit states (6)1[(2) 1 ∏] , (7) 1 [(2) 3 ∑ + ], and (9) 1 [(3) 3 ∑ + ], which have been respectively assigned in the present work to be the B1, C1, and D1 states experimentally reported in Ref [20].

Table IX:

Values of the Eigen-values E v , the abscissas of the turning point R min , R max , and the rotational constants B v for the different vibrational levels of the ( 6 The comparison between the present values for the vibrational structure in YN (Table IX) to the experimental values reported in Ref [20] for the B1, C1, and D1 states shows a very good agreement, with a percentage relative difference of 1.9% ≤ δE v ≤ 8.2%, and 5.2% ≤ δB v ≤ 11.3%. These results further confirm our previous assignments of the B1, C1, and D1 states.

)1[(2) 1 ∏] , (7)1 [(2) 3 ∑ + ], and (9)1[(3) 3 ∑ + ] states in YN. (6)1[(2) 1 ∏] B1 v E v (cm -1 ) δE v /E v R min (Å) R max (Å) B v ×10
(9) 1 [(3) 3 ∑ + ] D1 (7) 1 [(2) 3 ∑ + ] C1 v E v (cm -1 ) δE v /E v R min (Å) R max (Å) B v ×10 1 (cm -1 ) δB v /B v E v (cm -1 ) δE v /E v R min (Å) R max (Å) B v ×10
The experimentally available {(0-0), (1-1), (2-2), (3-3), (4-4), and (5-5)} vibrational energy band transitions [19] for the (2) 1 ∑ + ــــ X 1 ∑ + system are reproduced in our calculations with a very high accuracy. These results are shown in Table X, where a percentage relative difference of 0.9% ≤ δE v-v' ≤ 3.4% was obtained.

Vibrational energy level calculations were then followed by rotational energy level calculations by using the formula: 2 , and the results of E v , B v , and D v for the corresponding vibrational levels are obtained from the results of the present work.

E J = E v +B v J(J+1)-D v J 2 (J+1)
The rotational energy calculations have been performed for the rotational energy levels in the v = 0 and v = 1 vibrational levels of the (2) 1 ∑ + and X 1 ∑ + states. Rotational spectroscopic lines denoted by P(J) and R(J) branches, corresponding to the transitions ΔJ = -1 and ΔJ = +1, respectively, have been calculated by using the relations E J+1 -E J in the R(J) branch and E J-1 -E J in the P(J) branch. These results are shown in Table XI together with the experimental spectroscopic P(J) and R(J) branches available in Ref [19].

Table X:

Comparison between our results of the vibrational energy bands for the (2) 1 ∑ + ــــ X 1 ∑ + transition and experimental results in Ref [49] 

Table XI:

Rotational energy band transitions between the sub-rotational energy levels of the vibrational energy bands (0 -0) and (1 -1) of the (2) 1 ∑ + -X 1 ∑ + system for the YN molecule. 

0 -0 Band 1 -1 Band J R(J) branch E J+1 -E J P(J) branch E J-1 -E J R (J) branch E J+1 -E J P(J) branch E J-1 -E J 2 

III. A. 5. The Permanent Dipole Moment of YN

The electric dipole moment μ is the most fundamental electrostatic property of a neutral molecule. It is of great utility in the construction of the molecular orbital based models of bonding. Fermi and Teller established long ago [36] that a neutral closed shell molecule with values of μ greater than 1.625 Debye can capture an electron in its electrostatic dipole field resulting in bound electronic states for the anion. Accordingly, the description of the mobility of electrons through a polar gas relies upon knowledge of μ [37]. It has been realized for decades that the multipole moments of which μ is the leading term for electrically neutral systems, have proved useful in accounting for intermolecular forces and therefore have helped in the search for an understanding of the macroscopic properties of imperfect gases liquids and solids [38]. Recently, the availability of experimentally well determined values for μ has become increasingly more important in the assessment of ab initi electronic structure calculations for molecules. The dipole moment operator is among the most reliably predicted physical properties because the quantum mechanical operator is a simple sum of one-electron operators. The expectation value of this operator is sensitive to the nature of the most chemically relevant valence electrons [38]. Accordingly, a comparison of the experimental and theoretical values of μ is a sensitive test to the general predictive quality of the computational methodology. In Table XII we report the values of μ calculated at the equilibrium internuclear distance of the ground state R =1.84Å of YN. The results of the permanent electric dipole moment reported in the present work do not agree with the theoretical results of Shim et. al. [21], with a relative difference of 30.4% ≤ δμ ≤ 38.4%. This is not surprising, as Shim et. al. [21] results fail to reproduce the experimental results in literature [19,20,22]. Indeed, we can assert that our results for the permanent dipole moments are much better than those reported by Shim et. al. [21],

particularly due to that our results succeed in reproducing the experimental results for the spectroscopic constants of YN [19,20,22] (Tables I andIV).

The variation of the permanent electric dipole moment with molecular geometry enters into the description of light-matter interaction in resonant spectroscopy [38]. Figure 12 shows the variation of the permanent dipole moment as a function of the internuclear distance for several low lying experimentally detected electronic states in YN.

III. A. 6. The Internal Molecular Electric Fields in YN

It has been proposed in recent years that heavy polar diatomic molecules have large internal molecular electric fields in GV/cm that are 4 to 5 times larger than any laboratory electric field [39]. These large internal electric fields are very useful in the search for the electric dipole moment of the electron eEDM. A fundamental physical property, whose measurement shall dramatically influence all the popular extensions of the standard model [27]. The measurement of an electric dipole moment of the electron d e requires extremely large electric fields to observe the energy shift due to different alignments of d e . The current upper limit on the electron eEDM 1.6×10 -27 e.cm, comes from measurements in thallium atoms [40]. In this Fig. 12. Variation of the permanent dipole moment in (Debye) as a function of the internuclear distance R (Å) for the states (X) 1 Σ + , (1) 1 Σ + , (1) 3 Σ + , (1) 1 Π, and (2) 1 Π. 

X 1 Σ + (1) 1 Σ + (2) 1 Π (1) 3 Σ + (1) 1 Π R (Å)
experiment, an effective electric field is generated inside the atom. The magnitude of this electric field(on the order of 70 MV/cm) is far larger than the field that could be applied directly in the laboratory [27]. The new generation of electron eEDM experiments, employing polar diatomic molecules, is expected to reach sensitivity of 10 -30 -10 -28 e.cm [41]. In this respect, many diatomic molecules, with 3 Δ and 2,3 ∑ molecular symmetries, have been proposed as model candidates to measure the electron's eEDM. Molecules such as, BaF [42], YbF [43,44], HgF [45], PbF [45], PbO [46], HBr + [47], HI + [47], PtH + [27], HfH + [27] have been already proposed as a mean to measure the electron's eEDM. In these systems molecular electric fields as large as 99 GV/cm were detected in HgF [45] and as small as 0.02 GV/cm in HBr + [47]. Ab initio calculations are very useful in this respect, particularly due to the relative ease by which internal molecular electric fields can be computed. The quality of the electric field results largely depends on the methods and the basis sets used. In the present work we have computed the internal molecular electric fields E molecular for the various electronic states of the molecule YN at the highest level of theory MRSDCI. The computed values for the internal molecular electric field along the internuclear axis are reported in Table XIII at the equilibrium internuclear distance of the ground state and in units of GV/cm.

The values of E molecular for the various states of YN are reported here for the first time in literature.

Table XIII:

Internal Molecular Electric Field for the electronic states of YN at R = 1.84Å.

State 2s+1 Λ ± |E molecular |(GV/cm) State 2s+1 Λ ± |E molecular |(GV/cm) X 1 Σ + 0.124 (1) 3 Π 0.237 (2) 1 Σ + 0.017 (1) 3 Φ 0.011 (1) 1 Δ 0.069 (2) 3 Π 0.054 (2) 1 Δ 0.049 (2) 3 Φ 0.002 (1) 1 ∑ - 0.065 (3) 3 Φ 0.270 (1) 1 Π 0.237 (3) 3 Π 0.339 (1) 1 Φ 0.011 (1) 5 ∆ 0.187 (2) 1 Π 0.054 (1) 5 Φ 0.179 (2) 1 Φ 0.002 (1) 5 ∑ + 0.184 (1) 3 Σ + 0.124 (2) 5 ∆ 0.242 (2) 3 Σ + 0.017 (1) 5 ∏ 0.204 (1) 3 Δ 0.069 (2) 5 ∏ 0.017 (2) 3 Δ 0.049
The values of the internal molecular fields are largely dependent on the charge distribution in each of the molecular orbital configurations of each state. This gives a molecular electric field in YN that varies between 0.002 GV/cm for the (2) 1 Φ state and 0.339 GV/cm for the (3) 3 Π state.

III. B. The Structure of Zirconium Nitride ZrN

III. B. 1. Preliminary Works on ZrN

Zirconium nitride is an interesting and versatile material owing to its low electrical resistivity, good corrosion resistance, low formation energy, and high mechanical properties [48 -50].

Typically, ZrN and TiN possessing the best mechanical properties are deposited by physical vapor deposition to coat medical devices, industrial parts, automotive, aerospace components and other parts subject to high wear and corrosive environments [51 -54]. In high temperature material applications, within the group of refractory metal nitrides Ti, Zr, Hf, and Nb titanium and zirconium nitrides are the most promising hardening additives, which are used for raising the high-temperature strength of sintered molybdenum and provide high enough ductility parameters at a temperature up to 2000°C [55]. Understanding the formation and nature of the Zirconium-nitrogen bond is thus an active area of research with many applications in several areas of science. In astrophysics, transition metal atoms are relatively abundant in cool M-and S-type stars [START_REF] Jascheck | The Behavior of Chemical Elements in Stars[END_REF]. In fact, diatomic transition metal hydrides and oxides have been detected in the spectra of stellar atmospheres [57 -61] and since the nitrides and oxides often have similar bond energies [62], the nitrides are also of potential astrophysical importance.

To the best of our knowledge the electronic structures and vibrational spectra of the ZrN molecule have been topics of research for a considerable period of time [63 -71]. Bates and

Dunn [63] performed a spectroscopic study for the (0,0) band in the (1) 2 ∏ -X 2 ∑ + and (2) 2 ∑ + -X 2 ∑ + transitions. Recently, Cheung and coworkers [64 -68] studied the (0,0), (1,1), and

(2,2) vibrational bands of the (1) 2 ∏ -X 2 ∑ + transition for various isotopomers of ZrN 90 ZrN, 91 ZrN, 92 ZrN, 94 ZrN, 96 ZrN. More recently, Chen et. al. [69] performed a laser spectroscopic study for the (0,0) vibrational band in the (2) 2 ∑ + -X 2 ∑ + system. These spectroscopic studies [69] were then followed by ab initio MRCI calculations on the low-lying 5 doublet states and 2 low-lying quartet states. Haiyang et. al. [70] studied the magnetic hyperfine structure of the X 2 ∑ + state for the isotopomer 91 ZrN, recording the laser induced fluorescence spectrum of the (1) 2 Π ــ X 2 ∑ + vibrational transition (0 -0). Gary et. al. [71] performed an infrared spectroscopic and density functional investigation for the reaction between transition metals, Ti, Zr, and Hf with nitrogen atoms. They reported the value of the harmonicity constant ω e = 991cm -1 in the ground state of ZrN. Devore et. al. [72] performed an infrared vibrational spectroscopy of the group IV transition metal gaseous nitrides TiN, ZrN, and HfN. The ground state in each of the three molecules was detected to be of 2 ∑ symmetry. Infrared spectroscopic analysis yielded vibrational frequencies and rotational P and R branches in the ground state of ZrN. A common feature exists between the different experimental studies on the ZrN molecule. It is the existence of strong severe perturbations in the experimental spectra. These perturbations could not be resolved easily and resulted in a limited partial analysis of the obtained spectrum. This is not surprising, as several perturbations have been also detected in the spectrum of the isoelectronic molecules TiN [73,74] and ScO [75,76],

which are similar to ZrN. As the identity of the perturbing states in ZrN could not be identified, there arises the need for a high quality ab initio investigation for the electronic structure of the neutral ZrN molecule. Although the atomic structure of Nitrogen is relatively simple with 4 S as its ground electronic state. The electronic structure of Zirconium is more complicated with 3 F as the ground state. These combinations of atomic orbitals on Zr and N will result in a plenty of molecular states, which could also split due to spin orbit coupling. In 

III. B. 2. Results on ZrN

The potential energy curves for 21 low-lying electronic states 2s+1 Λ (±) of the molecule ZrN have been obtained from MRSDCI +Q calculations performed at 40 internuclear distances equally distributed between 1.3 Å and 2.5 Å. Figures 13141516show the potential energy curves of 12 low-lying doublet and 9 low-lying quartet states. The energy scale of all figures is relative to the minimum energy of the ground electronic state predicted here to be a X 2 ∑ + state. The spectroscopic constants obtained from all of these curves are given in Table XIV where R e is the equilibrium internuclear distance, ω e is the harmonic frequencies around the equilibrium, T e is the transition energy relative to the ground state, B e is the rotational constant, and D e is the centrifugal distortion constant. The ground state of ZrN is a X 2 ∑ + state resulting from the distribution of 7 valence electrons over the active space of molecular orbitals 1σ 2 1π 4 2σ 1 leading in to an orbital angular momentum Λ = Σλ i = 0, with one unpaired electron (S = ½), giving a doublet multiplicity (2s+1) ground state X 2 ∑ + . E (cm -1 ) E (cm -1 )

X 2 Σ + (1) 2 Δ (2) 2 Δ (2) 2 Σ + (3) 2 Δ (3) 2 Σ +
(1) 2 Π (2) 2 Π (1) 2 Φ (3) 2 Π (2) 2 Φ (4) 2 Π R (Å)
Chapter Three: Results and Discussion 

E (cm -1 ) (1) 4 Π (1) 4 Φ (2) 4 Π (2) 4 Φ ( 

The comparison between the values of the present work to the theoretical results available in

Ref [69] shows a very good agreement with a percentage relative difference of 2.5% ≤ δT e /T e ≤ 11%, 2.0% ≤ δω e /ω e ≤ 7.4%, and 1.4% ≤ δR e /R e ≤ 3% for the states X 2 Σ + , (1) 2 Δ, (2) 2 Σ + ,

(3) 2 Σ + , (1) 2 Π, (1) 4 Δ. The experimental results available on ZrN for the states X 2 Σ + , (3) 2 Σ + , and

(1) 2 Π are reproduced in our calculations with percentage relative differences of 3.4% (Ref [64]) ≤ δT e /T e ≤ 6.2% (Ref [63]), 0.8% (Ref [71]) ≤ δω e /ω e ≤ 4.5% (Ref [66]), 2.1% (Ref [72]) ≤ δB e /B e ≤ 9.8% (Ref [72]), and 1.5% (Ref [66]) ≤ δR e /R e ≤ 2.1% (Ref [67]). The experimental values of the centrifugal distortion constant D e are reproduced in our calculations for the ground X 2 Σ + state with a relative difference of 9.3% (Ref [68])≤ δD e /D e ≤ 10% (Ref [65]), except for the (1) 2 Π state where a relative difference of 17% (Ref [64]) ≤ δD e /D e ≤ 18.3% (Ref [65]) has been obtained.

In the results of Table XIV the transition energy T e = 16905.1cm -1 of the experimentally detected (1) 2 ∏ state in Ref [64] has been estimated by using the following relation T e = T vω e (v+1/2), where T v is the experimentally determined vibrational energy level in Ref [64],

and ω e is the experimentally available harmonic vibrational frequency in Ref [66]. The other transition energy value (17318.76 cm -1 ) of the (1) 2 ∏ state listed in table XIV has been averaged over the two spin component states ∏ 1/2 and ∏ 3/2 listed in Ref [65] by using the following relation (T 1/2 + T 3/2 )/2.

A good theoretical determination of spectroscopic constants for a molecule containing heavy elements requires the inclusion of spin orbit coupling and other scalar relativistic effects in the electronic structure calculations. In this study we try to fully explore the electronic structure of the molecule ZrN with spin orbit effects, at the complete active space (CASSCF) method and Multi-reference single and double configuration interaction (MRSDCI) method, for the lowest lying 49 spin orbit states Ω (±) . We also compute the entire potential energy curves of these states and perform numerical fitting to obtain the spectroscopic constants of Chapter Three: Results and Discussion [65] f. Ref [64] g. Ref [68] h. Ref [67] i. Ref [71] k. Ref [63] Note: Theo and Exp represent theoretical and experimental results, respectively.

The comparison between the values of the present work and the results available in literature shows a very good agreement. The ground state has been predicted in ZrN to be a Ω = 1/2 (X 2 ∑ + ) state with ω e = 972 cm -1 in agreement with previous experimental and theoretical observations [63 -71]. Our results for the (1)1/2 [X 2 ∑ + ], (4)1/2[(2) 2 ∑ + ], and (9

)1/2[(3) 2 ∑ + ]
states are in excellent agreement with the theoretical calculations without spin orbit effects of the parent states X 2 ∑ + , (2) 2 ∑ + , and (3) 2 ∑ + respectively, with relative differences of δT e /T e = 3.5% (Ref [69], 4.2%(Ref [69]) ≤ δω e /ω e ≤ 8.6%(Ref [69]), and 1.5%(Ref [69]) ≤ δR e /R e ≤ 7.7%(Ref [69]). However, a less agreement exists between our T e value in the (9)1/2[(3) 2 ∑ + ] state and the T e value of the parent state (3) 2 ∑ + , reported in literature [63,69], with a percentage relative difference of 15.2% (Ref [63,69]) ≤ δT e /T e ≤ 19%(Ref [69]). Actually, our result for the T e value in the parent (3) 2 ∑ + state, initially located in our calculations at 23604.08cm -1 , is in very good agreement with the experimental results available for this state [63,69] (Table XIV). However, when spin orbit interactions are taken into account the (9)1/2[(3) 2 ∑ + ] state is shifted by -2682.6cm -1 into a lower energy region. This places the (9)1/2[(3) 2 ∑ + ] state at T e =20921.51cm -1 which creates the large difference between our T e value for the spin orbit state (9)1/2[(3) 2 ∑ + ] and its parent state (3) 2 ∑ + reported in Table XIV.

The experimental results available on the spin orbit component Ω states of ZrN are reproduced in our calculations to a very high accuracy, with a percentage relative difference of 5.2% (Ref [65]) ≤ δT e /T e ≤ 5.7% (Ref [65]), 1.1% (Ref [66]) ≤ δω e /ω e ≤ 5.6% (Ref [66]), 1.6% (Ref [71]) ≤ δR e /R e ≤ 1.9% (Ref [65]), 2.1% (Ref [65]) ≤ δB e /B e ≤ 8.4% (Ref [71]), and 5.8% (Ref [65]) ≤ δD e /D e ≤ 7.1% (Ref [65]).

One of the important applications of molecular quantum chemistry is to study non-adiabatic transitions. It is quite common for ground and especially excited state potential energy curves of molecules to make a crossing or an avoided crossing. Such crossings or avoided crossings, known as conical intersections [77] can dramatically alter the stability of molecules owing to 

III. B. 3. The Bonding Nature in ZrN

The complexity of transition metal-containing molecules makes the study of diatomics like ZrN ideal prototype for the better understanding of the bonding in larger molecular systems.

Ab initio multi configuration calculations are very useful in this respect since their basic principle involves the mixing of s, p, and d atomic orbitals to form molecular σ, π, and δ orbitals. In Table XIX, we report the percentage composition of each molecular electronic state in terms of molecular orbital configurations. The percentage weights of each molecular orbital configuration are calculated as the squares of the corresponding CI coefficients.

Configuration weights lower than 2% percent have been omitted from the results of Table XIX.

The (1) 2 ∏ state arises from the promotion of the 2σ 1 electron in the ground electronic state into a 2π 1 orbital with an increase in energy of about 16317.00 cm -1 . The (2) 2 ∑ + state (1σ 2 1π 4 3σ 1 ) arises from the promotion of a 2σ 1 electron in the ground state into a 3σ 1 orbital with a corresponding energy increase of 17595.15 cm -1 . The (3) 2 ∑ + state (1σ 1 1π 4 2σ 1 3σ 1 ) arises from the promotion of the 1σ 1 electron in the ground state into the 3σ 1 molecular orbital with an energy increase of 23604.08 cm -1 . The lowest quartet state (1) 4 ∆ state (1σ 2 1π 2 2σ 1 3σ 2 )

Table XIX:

Leading Configurations with percentage composition of the parent electronic states 2s+1 Λ ± in the molecule ZrN. 4 2 π 1 1δ 1 Weights (in percent) are obtained from the square of the corresponding configuration interaction coefficients (CMRCI); weights lower than 2% are not reported.

Electronic State Weight X 2 ∑ + 89% 1σ 2 1π 4 2σ 1 (2) 2 ∑ + 88% 1σ 2 1π 4 3σ 1 (3) 2 ∑ + 95% 1σ 1 1π 4 2σ 1 3σ 1 (1) 2 ∆ 86% 1σ 2 1π 3 3σ 1 3 π 1 (2) 2 ∆ 72% 1σ 2 1π 3 2σ 1 2 π 1 , 12% 1σ 2 1π 3 3σ 1 2 π 1 (1) 2 ∏ 85% 1σ 2 1π 4 2 π 1 , 3% 1σ 2 1π 4 3 π 1 (2) 2 ∏ 66% 1σ 2 1π 3 2σ 2 , 13% 1σ 2 1π 3 2σ 1 4σ 1 (1) 2 Φ 50% 1σ 2 1π 3 2σ 1 4σ 1 , 49% 1σ 2 1π 3 2σ 1 1 δ 1 (3) 2 ∏ 41% 1σ 2 1π 3 2σ 1 3σ 1 , 40%1σ 2 1π 3 2σ 1 1 δ 1 , 16% 1σ 2 1π 3 2σ 2 (2) 2 Φ 47% 1σ 2 1π 3 2σ 1 3σ 1 , 45% 1σ 2 1π 3 2σ 1 1 δ 1 (4) 2 ∏ 41% 1σ 2 1π 3 2σ 1 3σ 1 , 44% 1σ 2 1π 3 2σ 1 1 δ 1 (1) 4 ∆ 90% 1σ 2 1π 2 2σ 1 3σ 2 (1) 4 ∑ + 84% 1σ 2 1π 3 2σ 1 2 π 1 , 5% 1σ 2 1π 3 3σ 1 2 π 1 , 5% 1σ 2 1π 3 2 π 1 1δ 1 (2) 4 ∆ 70% 1σ 2 1π 3 2σ 1 2 π 1 , 25% 1σ 2 1π 3 3σ 1 2 π 1 (3) 4 ∆ 50% 1σ 2 1π 3 3σ 1 2 π 1 , 22%1σ 2 1π 3 2σ 1 2 π 1 , 20% 1σ 2 1π 3 2 π 1 1δ 1 (1) 4 ∏ 98% 1σ 2 1π 3 2σ 1 3σ 1 (1) 4 Φ 99% 1σ 2 1π 3 2σ 1 3σ 1 (2) 4 ∏ 88% 1σ 1 1π 4 2σ 1 2 π 1, 9% 1σ 1 1π 4 3σ 1 2 π 1 (3) 4 ∏ 48% 1σ 1 1π 4 3σ 1 2 π 1 , 48% 1σ 1 1π 4 2 π 1 1δ 1 (2) 4 Φ 43% 1σ 1 1π 4 3σ 1 2 π 1 , 43% 1σ 1 1π 4 2 π 1 1δ 1 , 10% 1σ 1 1π
arises from the promotion of two 1π electrons in the ground state into a 3σ 2 orbital with an energy change of 16477.72cm -1 .

In computational quantum chemistry ab initio calculations can be used to analyze the bonding in simple metal systems. The expansion of molecular orbital wave functions in terms of atomic orbital basis sets is very useful in understanding the bonding order in the ground state of small molecules. In the present work, the bonding order in the ground state of the ZrN molecule is analyzed in terms of the molecular orbital occupation numbers available from the CASSCF calculations and in the active space of molecular orbitals (4σ3π1δ). The effective bond order EBO is a quantity that gives the formation of a chemical bond, and was given in equation ( 1) of this chapter. In our CASSCF calculations the ground state wave function in ZrN is obtained by distributing seven valence electrons over the active space of molecular orbitals 4σ3π1δ. In this treatment we obtained the occupation numbers of the bonding and anti-bonding orbitals in the following way: η b (1σ) = 1.61887, η b (2σ) = 0.69819, η ab (3σ) = 0.37438, η ab (4σ) = 0.11726, η ab (1δ) = 0.38276, , η b (1π) = 3.33124, η ab (2π) = 0.39012, η ab (3π) = 0.0872. Now by applying equation ( 1) for the effective bond order we obtain an EBO = 2.148 ≈ 2, thus indicating that we have a fully developed double bond in ZrN.

III. B. 4. The Vibrational Structure of ZrN

In the past few years, the realization of elementary quantum logic gates on molecular systems have witnessed remarkable experimental achievements [80 -84]. Due to their rich inner energy structures, that can be used to encode information, molecules offer a promising prospect for scalable quantum information processing and have attracted lots of attention.

After the work of Vivie-Riedle and coworkers [85,86], several groups have explored the possibility of encoding qubits in rovibrational states of a single diatomic molecule [87 -97] or polyatomic molecule [98 -108] or in two interacting diatomic molecules [109,110]. In these works, logic gate operations were driven by femtolaser pulses designed by optimal control theory or genetic algorithms or by using stimulated Raman Adiabatic passage techniques [111]. In conclusion investigating the vibrational-rotational energy structures of diatomic molecules is gaining significant importance in diverse research fields as molecular quantum computing.

In the present work we investigate the vibrational energy levels of the ZrN molecule. First we solve the time independent radial Schrödinger equation for the vibrational and rotational motions of the ZrN molecule in the vicinity of the potential energy curves obtained by MRSDCI+Q calculations, in order to obtain the eigenvalues of energy E v , and the rotational constants B v and the distortion constant D v for every vibrational level. This is mainly done by separating the vibrational and rotational motions in the radial Schrödinger equation and then following an iterative cycle, called the canonical functions approach [34,35]. The results of our vibrational-rotational calculations are shown in Tables XX andXXI, in which we report the vibrational energy levels E v , the constants B v , D v , and the turning points of each vibrational level R min and R max for the parent states X 2 ∑ + , (3) 2 ∑ + , (1) 2 Φ, (1) 2 Δ, and their spin

orbit component states (1)1/2 [X 2 ∑ + ], (7)1/2 [(2) 2 ∏], (5)3/2 [(2) 2 ∏].

Table XX :

Values of the eigen-values E v , the abscissas of the turning point R min , R max , the constants B v , D v for the different vibrational levels of the states X 2 ∑ + , (1) 2 Φ, (3) 2 Σ + , (1) 2 Δ of the ZrN molecule. Ref:(a). First entry is for the results of the present work. (b). Ref [67], (c). Ref [63], (d). Ref [64], (e). Ref [65], (f). Ref [69]. Note: Exp, corresponds to experimental results whie Theo, corresponds to theoretical results.

X 2 ∑ + (1) 2 Φ v E v cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) δB v /B v D v ×10 7 (cm -1 ) δD v /D v E v cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 7 (cm -
(3) 2 Σ + (1) 2 Δ v E v (cm -1 ) δE v /E v R min (Å) R max (Å) B v ×10 1 (cm -1 ) δB v /B v D v ×10 7 (cm -1 ) E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 7 (cm -

III. B. 5. The Permanent Dipole Moment of ZrN

In an approach to create a quantum computer Demille [113] suggested the use of heteronuclear diatomic molecules trapped in a 1-dimensional trap array, and controlled by an electric field gradient that allows the spectroscopic control of molecules. In this system the qubits are considered to be the electric dipole moments of diatomic molecules, which are in ( The interaction of a molecule with a laser field in resonant spectroscopy largely depends on the variation of the permanent electric dipole moment with the change in molecular geometry [38]. In Figure 21 we draw the variation of the permanent dipole moment with the internuclear distance for the electronic states in ZrN. In this figure we notice that the (1) 2 Δ state attains the largest dipole moment of 7.385D at R = 1.82Å. These results for the permanent electric dipole moment in ZrN are reported here for the first time in literature. distance of the ground state R = 1.72Å. These results are reported in units of GV/cm in Table XXIII.

1)1/2 [X 2 ∑ + ] v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) δB v /B v D v ×10
(5)3/2 [(2) 2 ∏] v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 7 (cm -1 ) E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -

III. B. 6. The Internal Molecular Electric Fields in

The current result of the internal molecular electric field in the ground state of ZrN (X 2 ∑ + ) is almost 3 times larger than that previously obtained in the present work for the ground state - 

X 2 Σ + (1) 2 Δ (1) 2 Π (2) 2 Δ (1) 2 Φ (2) 2 Π (1) 2 Φ μ (Debye) R (Å)
Fig. 21: Variation of the permanent dipole moment in (Debye) as a function of the internuclear distance R (Å) for the states (X) 2 Σ + , (1) 2 Π, (2) 1 Π, (1) 2 Δ, (2) 2 Δ, (1) 2 Φ, and (2) 2 Φ.

(X 1 ∑ + ) of YN. The results obtained here for the internal molecular electric field in ZrN are reported here for the first time in literature. XXIV. for the decrease of the electronegativity difference between the metal and nitrogen atoms, and hence a decrease of ionic character across the series of 4d transition metal nitrides.

III. C. Comparison between 4d

III. D. The Structure of Zirconium Sulfide ZrS

III. D. 1. Preliminary Works on ZrS

The electronic structure and the nature of the transition metal-sulfur bond is of importance in of the 1 ∑ + -3 ∆ system via density functional theory, but their results contrasts with the experimental and theoretical results available, as they predict the 3 ∆ to be the ground state of ZrS and the relative energy separation of the 1 ∑ + -3 ∆ system ranged in their calculations between 2937cm -1 (B3LYP-calculations) and 8394cm -1 (MP2-calculations). Recently, X. Sun

et. al.

[154] reinvestigated the ground state of neutral ZrS by the MP2 method in DFT calculations, their most extensive results placed the X 1 ∑ + state lower than the (1) 3 ∆ state by 338.75cm -1 . Then by repeating the calculations with a larger basis set the (1) 3 ∆ state was predicted to be 556cm -1 above the ground X 1 ∑ + state. In general, transition metal monosulfides have been less well characterized than the analogous monoxides. The majority of the work to date on these species has been electronic spectroscopy. However, these molecules often have complicated electronic spectra and thus provide a challenge to ab initio calculations. In this paper, we try to fully explore the electronic structure of the ZrS molecule, at the complete active space (CASSCF) method followed by Multi-reference Single and Double Configuration Interactions (MRSDCI) for the lowest lying 22 singlet-triplet states and their spin orbit component states.

III. D. 2. Results on ZrS

In this work, the potential energy curves of 22 low-lying electronic states in the representation 2s+1 Λ ± (neglecting spin orbit effects) have been drawn versus the internuclear distance range of 1.6 to 3.0 Å (Figures 25262728). Further sophisticated approaches including spin orbit (SO) effects were then invoked to draw the SO potential energy curves of 44 spin orbit electronic states Ω ± within the internuclear distance range of 1. 

(X) 1 Σ + (1) 1 Δ (2) 1 Σ + (1) 1 Γ (2) 1 Δ (3) 1 Σ + (3) 1 Δ (4) 1 Δ E (cm -1 )

R (Å)

Fig. 25: Potential energy curves for the 1 Σ ± and 1 Δ states of the molecule ZrS.

Fig. 26: Potential energy curves for the 3 Σ ± and 3 Δ states of the molecule ZrS. 

E (cm -1 ) R (Å) (1) 1 Π (1) 1 Φ (2) 1 Π (2) 1 Φ (3) 1 Π
Fig. 28: Potential energy curves for the 1 ∏ and 1 Φ states of the molecule ZrS. (2) 1 Σ + , (3) 1 Σ + , (1) 1 Π, (2) 3 Δ, (1) 3 Π, (1) 3 Φ, and (2) 3 Π. The comparison between our theoretical results at the MRSDCI+Q level of calculations to the results obtained by Langhoff et. al.

[148] at the MRCI level of calculations for the states (X) 1 ∑ + , (1) 1 Δ, (1) 3 Δ, (1) 1 Π, (1) 3 Π, (1) 3 Φ shows a very good agreement, with percentage relative differences of 7.3% ≤ δT e /T e ≤ 12%, 3.4% ≤ δω e /ω e ≤ 4.9%, and 0.5% ≤ δR e /R e ≤ 0.9%. Our ab initio results place the first excited (1) 3 Δ state at a transition energy of T e = 302 cm -1 , which is only 100 cm -1 from the theoretical values reported in Ref [148,154]. In spite of that the percentage relative difference calculated for the T e value in the (1) 3 Δ state is large and ranges between 10.6% (Ref [154]) ≤ δT e /T e ≤ 56% (Ref [154]), still our ability in the present calculations to reproduce the T e value in the (1) 3 Δ state within a 100cm -1 is considered accurate, especially if we know that the energy value reported by Langhoff et. al [148] for the (1) 3 Δ state ranged between 200 cm -1 and 200+500 cm -1 , with a large uncertainty. In particular, electronic states lying within the vibrational continuum of the ground state are hard to represent experimentally and theoretically since the eigenfunctions of both states might overlap in regions near to the equilibrium internuclear distance. Further enhancements for the energy positions of the (1) 3 Δ state are left for our more extensive relativistic ab initio calculations with the inclusion of spin orbit effects. The DFT theoretical calculations performed by employing B3LYP, MP2, and BPW91 methods in Ref [153] agree with our calculated values of ω e and R e for the states X 1 ∑ + and (1) 3 ∆ with percentage relative differences of 2.9% ≤ δω e /ω e ≤8.1% and 0.7% ≤ δR e /R e ≤ 1.6%. However, a less agreement exists for the T e values of the X 1 ∑ + and (1) 3 ∆ states [153]. This is mainly due to an inaccuracy in Liang et. al. [153] representation of the ground electronic state in ZrS which has been predicted to be a 3 ∆ state and at thousands of cm -1 below the 1 ∑ + state. This contrasts all of the experimental and theoretical results available on ZrS in literature [146-148, 150, 154, 156, 158].

With the inclusion of relativistic spin orbit effects, great enhancements might be obtained for the potential energy curves and the spectroscopic constants. In the present work the electronic structures of the ZrS molecule have been reinvestigated with the inclusion of relativistic spin orbit effects. The spin orbit effects were then introduced for Zirconium and neglected for Sulfur via a semi-empirical spin orbit pseudopotential PS SO W that was designed from Effective Core Potentials (ECP) for spin orbit calculations [18]. Energy MRSDCI+Q calculations were performed piecewise at equal steps of 0.03Å as a function of the internuclear distance range 1.6Å→2.9Å. This allows for the construction of potential energy curves for the spin orbit electronic states Ω = 0 + , 0 -, 1, 2, 3, 4 in Figures 2930313233. Then by fitting the obtained potential energy curves around the equilibrium internuclear distance into a polynomial in R several spectroscopic constants were calculated such as the electronic transition energies at equilibrium T e , the harmonic vibrational frequencies ω e , the rotational constants B e , the centrifugal distortion constants D e , and the equilibrium internuclear distances R e . These results for the spectroscopic constants of the spin orbit states Ω are reported in Table XXVI together with the experimental and theoretical results available in literature. A close look at molecular electronic spectra reveals that electronic spin multiplet states are not properly degenerate. Actually, the sublevels are separated energetically by what is called the fine structure splitting. It is often useful to draw an energy diagram representing the splitting between the parent electronic states along with their spin orbit daughter states. In Table III of Appendix I we draw the energy order of the spin orbit electronic states and their parent states. These diagrams show that splittings as small as 78.6cm -1 occur between the spin orbit component states of the (2) 3 Σ + state in ZrS, and as large as 933cm -1 occur between the spin orbit components of the state (1) 3 Φ. In Table XXVII the composition in percentage of the Ω state-wave functions in terms of the Λ states, calculated at R = 2.23 Å, are presented.

For each state Ω there is a predominant component Λ with a contribution larger than 80% so that a main parent SΛ may be identified. Nevertheless, there are states for which a small but significant contribution of other Λ states is obtained. Table XXVII: Composition of Ω-state wave functions of the molecule ZrS, in terms of Λ-states (in percentage) at R = 2.23Å.

Ω % (Λ-parent) Ω % (Λ-parent) (1) 0 + 100% X 1 ∑ + (11) 1 100%(3) 3 ∆ (2) 0 + 99.68% (1) 3 ∏, 0.32% (X) 1 ∑ + (12) 1 100%(4) 3 ∏ (3) 0 + 80%(2) 1 ∑ + , 20%(2) 3 ∏ (1) 2 100% (1) 3 ∆ (4) 0 + 80.6% (2) 3 ∏, 19.4% (2) 1 ∑ + (2) 2 100% (1) 1 ∆ (5) 0 + 100%(3) 1 ∑ + (3) 2 100%(1) 3 ∏ (6) 0 + 100%(3) 3 ∏ (4) 2 100%(1) 3 Φ (1) 0 - 99.12%(1) 3 ∏, 0.88% (1) 3 ∑ + (5) 2 88.6% (2) 3 ∏,11.4%(2) 3 ∆ (2) 0 - 100%(1) 3 ∑ - (6) 2 88%(2) 3 ∆, 12%(2) 3 ∏ (3) 0 - 100%(1) 3 ∑ + (7) 2 100%(2) 1 ∆ (4) 0 - 100% (2) 3 ∏ (8) 2 100%(3) 3 ∏ (5) 0 - 100%(3) 3 ∏ (9) 2 100%(2) 3 Φ (1) 1 99.8% (1) 3 ∆, 0.02% (1) 3 ∑ - (10) 2 100%(4) 3 ∏ (2) 1 100%(1) 3 ∏ (1) 3 100% (1) 3 ∆ (3) 1 100%(1) 3 ∑ - (2) 3 100%(1) 3 Φ (4) 1 100%(1) 1 ∏ (3) 3 100%(2) 3 ∆ (5) 1 100% (1) 3 ∑ + (4) 3 100%(1) 1 Φ (6) 1 78%(2) 3 ∏, 22%(2) 3 ∆ (5) 3 52%(2) 3 Φ, 48%(2) 1 Φ (7) 1 82% (2) 3 ∆, 18%(2) 3 ∏ (6) 3 52%(2) 1 Φ, 48%(2) 3 Φ (8) 1 100%(2) 1 ∏ (1) 4 100%(1) 3 Φ (9) 1 96%(3) 3 ∏, 4%(3) 1 ∏ (2) 4 100% (1) 1 Γ (10) 1 100%(3) 1 ∏ (3) 4 100%(2) 3 Φ

III. D. 3. The Nature of Bonding in ZrS

In the present section we discuss the bonding in neutral ZrS molecule. The percentage composition of molecular electronic states in terms of molecular orbital configurations obtained from our multiconfigurational treatment of the wavefunctions in ZrS, are shown in Table XXX. The percentage weights of each molecular orbital configuration are calculated as the squares of the corresponding CI coefficients. Configuration weights lower than 2% percent have been omitted from the results of Table XXX. It is often useful to discuss the properties of molecular electronic states in terms of their molecular orbital configurations. In the sections below we discuss the properties and differences which exist between the ground state X 1 ∑ + , and the low lying electronic states 1, 3 ∏, 1, 3 Φ, 1, 3 ∆ of ZrS. 

(1) 1 Δ 77% 1σ 2 1π 4 2σ 1 1δ 1 , 13% 1σ 2 1π 4 3σ 1 1δ 1 (2) 1 Σ + 22% 1σ 2 1π 4 2σ 1 3σ 1 , 27% 1σ 2 1π 4 3π 2 , 28% 1σ 2 1π 4 1δ 2 , 12% 1σ 2 1π 4 2π 2 (1) 1 Г 100% 1σ 2 1π 4 1δ 2 (2) 1 Δ 76% 1σ 2 1π 4 3σ 1 1δ 1 , 13% 1σ 2 1π 4 2σ 1 1δ 1 (3) 1 Σ + 60% 1σ 2 1π 4 2σ 1 3σ 1 , 25% 1σ 2 1π 4 1δ 2 , 5% 1σ 2 1π 4 3σ 2 (3) 1 Δ 56% 1σ 2 1π 3 2σ 2 2π 1 , 27% 1σ 2 1π 3 2σ 1 1δ 1 2π 1 (4) 1 Δ 86% 1σ 2 1π 4 2π 2 (1) 1 Π 56% 1σ 2 1π 4 2σ 1 2π 1 , 40% 1σ 2 1π 4 2π 1 1δ 1 (1) 1 Φ 82% 1σ 2 1π 4 2 π 1 1δ 1 (2) 1 Π 64% 1σ 2 1π 4 2 π 1 1δ 1 ,22% 1σ 2 1π 4 2σ 1 2π 1 (2) 1 Φ 85% 1σ 2 1π 3 2σ 2 1δ 1 (3) 1 Π 84% 1σ 2 1π 3 2σ 2 1δ 1 (1) 3 ∆ 94% 1σ 2 1π 4 2σ 1 1δ 1 (2) 3 Σ + 98% 1σ 2 1π 4 2σ 1 3σ 1 (2) 3 Δ 94% 1σ 2 1π 4 3σ 1 1δ 1 (1) 3 Π 92% 1σ 2 1π 4 2σ 1 2π 1 (1) 3 Φ 99% 1σ 2 1π 4 2 π 1 1δ 1 (2) 3 Π 93% 1σ 2 1π 4 2 π 1 1δ 1 (3) 3 Π 94% 1σ 2 1π 3 2σ 2 1δ 1 (2) 3 Φ 89% 1σ 2 1π 3 2σ 2 1δ 1
Weights (in percent) are obtained from the square of the corresponding a configuration interaction coefficients weights lower than 2% are not reported.

D. 3. 1. The X 1 ∑ + and (1) 3 ∆ states

The difference between the electronegativities of the atoms Zr and S indicates that the ZrS molecule is likely to be appreciable polar with charge transfer from the Zr to the S atom. As part of the ZrS molecule the resulting configuration of the Zr atom is presumably somewhere in between the (4d 2 5s 2 ) of the neutral Zr atom and (5s 2 ) of the Zr 2+ ion. Also, the configuration of the S atom as part of the ZrS is expected to be somewhere between 3p 4 and 3p 6 . In consequence, it appears likely that the electronic ground state of ZrS should arise from the valence shell configuration: 1σ 2 1π 4 2σ 2 (Table XXXIII). This electronic configuration (1σ 2 1π 4 2σ 2 ) gives rise to the singlet electronic ground state X 1 ∑ + , with orbital angular momentum Λ = ∑λ i = 0. Other configurations arising from the single and double excitation of electrons from the ground state configuration in to virtual molecular orbitals, forming the active space of ZrS, may lead to other electronic states 1,3 ∑, 1,3 ∏, 1,3 ∆, 1,3 Φ, and 1,3 Γ. In ZrS the electronic energy of the (1) 3 ∆ state is within the vibrational interval of the ground state.

Actually, the potential energy curves of the two states (1) 3 ∆ and X 1 ∑ + state cross at R = 2.15Å. The main difference between the molecular orbital configurations of the two states

(1) 3 ∆ and X 1 ∑ + arises from the promotion of a 2σ 1 electron in the ground state in to a 1δ 1 orbital, thus giving the (1) 3 ∆ state the following molecular orbital configuration 

1σ 2 1π 4 2σ 1 1δ 1 .

D. 3. 2. The Low-Lying

III. D. 4. The Vibrational Structure of ZrS

We suspect in the present section that several vibrational energy levels belonging to the vibrational spectrum of the ground (1)0 + [X 1 ∑ + ] and first excited states (1)1[(1 In ZrS, we detected a (1) 3 Δ state that is only 302cm -1 above the ground state. We further suspect that near degeneracies of order < 20cm -1 might exist between the vibrational energy levels of the spin orbit component states ( yielded rotational and vibrational energy spectrums in the singlet electronic states of ZrS

) 3 ∆], (1)2[ 
(1) 3 ∆], (1)3[ 
1)0 + [(X) 1 ∑ + ], (1)1[ 
(1) 3 Δ], (1)2[ 
{X 1 ∑ + , (2) 1 ∑ + , (3) 1 ∑ + , (1) 1 Π} 
. Selected vibrational energy transitions were then observed in laboratory spectra for the transition (1) 3 Δ -(1) 3 Π in Ref [156] and for the transitions (4) 3 Δ -

(1) 3 Δ, (2) 3 Φ -(1) 3 Δ, (2) 1 Π -X 1 ∑ + , (3) 1 ∑ + -X 1 ∑ + in Ref [151].
The results of our previous ab initio calculations on ZrS place the first (1) 3 Δ state at a transition energy of T e = 302cm -1 above the ground state, which is in excellent agreement with the theoretical values reported in Ref [139,154]. The ground and first excited states in ZrS are similar to those in HfF + , which have been suggested as a model system to study the variations in the fundamental constants α and μ [18]. In this respect, the ZrS molecule is better than the HfF + molecule since the [X 1 ∑ + ]→[(1) 3 ∆] transition occurs at ≈302cm -1 in ZrS, and at 1633cm -1 in HfF + . Which means, that close degeneracies between vibrational energy levels of the order < 20cm -1 are more likely to occur in ZrS.

In Tables XXXI, XXXII and XXXIII we report our results for the vibrational energy values of the states (1)0

+ [X 1 ∑ + ], (1)1[(1) 3 ∆], (1)2[ 
(1) 3 ∆], (1)3[ 
(1) 3 ∆], (4)1[(1) 1 ∏ 
] obtained by solving the vibrational Schrödinger equation within the canonical functions approach.

Table XXXI:

Values of the eigen-values E v , the abscissas of the turning point R min , R max , and the constants B v , D v for the different vibrational levels of the states (1) 0 Theo, corresponds to theoretical results.

+ [X 1 ∑ + ], (4) 1[(1) 1 ∏]. (1) 0 + [X 1 ∑ + ] v E v (cm -1 ) δE v /E v R min (Å) δR min /R min R max (Å) δR max /R max B v ×10 1 (cm -1 ) D v ×10
(4) 1[(1) 1 ∏] v E v (cm -1 ) δE v / E v R min (Å) δR min / R min R max (Å) δR max / R max B v ×10 1 (cm -1 ) δB v / B v D v ×10

Table XXXII:

Values of the eigen-values E v , the abscissas of the turning point R min , R max , and the constants B v , D v for the different vibrational levels of the states (1) 2 [(1 ( 

) 3 ∆], (1) 3 [(1) 3 ∆] in ZrS. (1) 2 [(1) 3 ∆] (1) 3 [(1) 3 ∆] v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 8 (cm -1 ) E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 8 (cm -
1) 1 [(1) 3 ∆] v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 8 (cm -
+ [X 1 ∑ + ], (1)1[(1) 3 ∆], (1)2[ 
(1) 3 ∆], (1)3[ 
(1) 3 ∆] states we find several degeneracies of order ≤ 16cm -1 occuring between the vibrational intervals. These are reported in Table XXXIV together with the energy separation ΔEv = Ev -Ev ' .

Table XXXIV:

Recorded degeneracies between the vibrational energy levels of the (1)0

+ [X 1 ∑ + ], (1)1[(1) 3 ∆], (1)2[ 
(1) 3 ∆], (1)3[(1) 3 ∆ 
] states in ZrS.

( Upon close investigation of the vibrational energy levels, we can find near degeneracies of the order of ≤ 16cm -1 occurring between the vibrational intervals of the (

) 0 + [X 1 ∑ + ] (1) 1 [(1) 3 ∆] (1) 2 [(1) 3 ∆] (1) 3 [(1) 3 ∆] v E v (cm -1 ) v E v (cm -1 ) v E v (cm -1 ) v E v (cm -1 ) ΔE v = |E v -E v' | (cm - 1 
] state and that of the (1)1[(1) 3 ∆] state, particularly, between the v = 0, 10,

] and the v' = 1, 12, 28, 29, 30, 34 levels of the state (

]. The smallest energy separation of 1.39cm -1 recorded between the v = 33 of the state (1)1[(1) 3 ∆]and the v = 34 of the state (1)3[(1) 3 ∆] exceeds that detected between the vibrational energy levels of the two 2 ∏ 1/2 and 2 ∏ 3/2 states in SiBr [30] and that detected between the v = 3 level of the 1 Σ + state and the v = 1 level of the 3 Δ 1 state in HfF + [170]. Other degeneracies have also been reported in the present work on ZrS to occur between the v = 18, 24, 34 levels of the (1)2[(1) 3 ∆] state and the v' = 18, 26, 36 levels of the (1)3[(1) 3 ∆] states.

To this end, it is useful to study theoretically the effects for the variation of the fundamental constants (α, μ) and the degeneracies reported between vibrational intervals in diatomic molecules. The fine structure interval ω f depends on the nuclear charge Z and is sensitive to variations in the fine structure constant, scaling as

α 2 2 2 , ( 2 
) f H Z E
where H E is the atomic energy unit Hartree. On the other hand, the harmonic vibrational energy quantum ω v depends on the reduced mass and is sensitive to variations in μ, scaling as μ -1/2 1/ 2 (3) vib 126 Therefore, we obtain an equation for the lines where we can expect approximate cancellation between the fine structure and vibrational intervals:

1/ 2 0 , 0,1, 2, ( 4 
) v v f v i b
Using equations (2 -4) we could find the relation between the variation of the transition frequency ω and the variation in the fundamental constants α and μ

1/ 2 . 1 1 2 2 (5) 2 2 v K f v i b
The enhancement factor K = ω f / ω determines the relative frequency shift for a given change in the fundamental constants. Large values of factor K ≈ 10 3 -10 5 hint at potentially favorable cases for making experiments, because it is usually preferable to have larger relative shifts [30]. Because the number of molecules is finite we cannot have ω = 0 exactly. However The near degeneracies detected in Table XXXIV between the vibrational intervals of the With ω v = 523.54cm -1 being the vibrational harmonic frequency of the higher (1)1[(1) 3 ∆] state, we get 979.12 , =

(1)0 + [X 1 ∑ + ], (1)1[(1) 3 ∆], (1)2[ 
then by assuming that 15 10 / , which is equivalent to the experimental variation of α from atomic spectra [165, 166], we obtain 12 1 2 10 2.935 10 cm Hz . The estimated line widths are on the order of 10 -2 Hz. This is comparable to the accuracy, which is necessary to reach sensitivity δα/α ≈10 -15 of the best modern laboratory tests [167,171]. Of course other vibrational energy level degeneracies listed in Table XXXIV can also be used to measure any variations in α, their line widths should be comparable to the line width calculated above. The natural line widths on the order of 10 -2 Hz obtained in the present work are identical to the natural line widths calculated in Ref [171] for the molecules Cs 2 and SiBr which were suggested to be suitable for measuring α variations.

It is natural to search for any changes in α using measurements of the spin orbit splitting within a specific fine structure multiplet of atoms, and indeed this method has been applied to quasar atomic spectra by several groups [168,[173][174][175]. However, while this method is appealing through its simplicity, it is possible to improve on its efficiency [168]. An order of magnitude sensitivity gain can be achieved by comparing transition frequencies of heavy atoms, ions or molecules [173,176]. Other possibilities for measuring changes in α involve studying transitions between accidentally degenerate levels in the same atom or molecule Our vibrational energy calculations were also performed for the lowest lying spin orbit electronic states in ZrS. A part of these calculations are shown in this chapter while the rest are left for Appendix III. In Table XXXV we report our results for the vibrational energy structures of the (3)0 + [(2) 1 ∑ + ] state together with the values available on this state in Ref [146]. Our calculations for the values of E v and B v are in excellent agreement with the values in literature [146] with a percentage relative difference of 6.2% ≤ δE v /E v ≤ 6.8% and 5.1% ≤ δB v /B v ≤ 5.6%. However, a less agreement exists for our values of D v with a relative difference of 15.8% ≤ δD v /D v ≤ 37.4%.

Table XXXV:

Values of the Eigen-values E v , the abscissas of the turning point R min , R max , and the constants B v , D v for the different vibrational levels of the state (3)0 + [(2 

) 1 ∑ + ]. v E v (cm -1 ) δE v / E v R min (Å) R max (Å) B v ×10 1 (cm -1 ) δB v / B v D v ×10 8 (cm -1 ) δD v / D v 0

III. D. 5. The Permanent Dipole Moment of ZrS

The permanent electric dipole moment is one of the most important physical properties of a molecule. Establishing ligand-induced trends in the permanent electric dipole moments (μ) is particularly beneficial because dipole moments are the most effective measures for the ionic nature of the bond [177]. Furthermore, the dependence of μ on the displacement of the nuclei, governs the primary interaction between a molecule and light [177]. In the present work we have computed the permanent electric dipole moment in the ground and excited electronic states of the ZrS molecule at the highest level of theory MRSDCI with the inclusion of spin orbit effects. These results for the spin orbit electronic states in ZrS are shown in Tables XXXVI and XXXVII together with the results available in literature. The comparison between the present results of the dipole moment to the results available in literature [177] for the states (X) 1 ∑ + and (3) 1 Σ + shows a very good agreement with a percentage relative difference of 0.9% ≤ δμ/μ≤ 1.3% The other results of the permanent electric dipole moment for the spin orbit electronic states of the ZrS molecule are reported here for the first time in literature.

Table XXXVI:

Permanent dipole moments for the spin orbit electronic states Ω of the molecule ZrS at R= 2.24Å.

State Ω μ(Debye) State Ω μ(Debye) (1) 0 + [X 1 ∑ + ] 4.759 a (3) 2[(2) 3 ∏] 6.204 (1) 2 [(1) 3 ∆] 4.753 (4) 0 + [(2) 3 ∏] 6.250 (1) 3 [(1) 3 ∆] 4.759 (7) 1 [(2) 3 ∆] 4.701 (1) 1 [(1) 3 ∆] 3.679 (2) 4 [(1) 1 Γ] 8.297 (2) 2 [(1) 1 ∆] 2.520 (6) 2[(2) 3 ∆] 4.583 (1) 0 -[(1) 3 ∏] 3.677 (3) 3 [(2) 3 ∆] 4.335 (2) 0 + [(1) 3 ∏ 3.707 (7) 2 [(2) 1 ∆] 6.682 (2) 1[(1) 3 ∏] 3.689 (8) 1 [(2) 1 ∏] 5.358 (3) 2 [(1) 3 ∏] 3.685 (4) 3 [(1) 1 Φ] 5.940 (2) 0 -[(1) 3 ∑ -] 8.046 (5) 0 + [(3) 1 ∑ + ] 5.811 (3) 1 [(1) 3 ∑ -] 8.088 (8) 2 [(3) 3 ∏ 
] 0.374 (4) 1[(1) 1 ∏] 5.628 (5) 3 [(2) 3 Φ] 0.574 (4) 2 [(1) 3 Φ] 6.543 (9) 1 [(3) 3 ∏] 0.447 (2) 3[(1) 3 Φ] 6.539 (4) 2 [(1) 3 Φ] 0.262 (1) 4 [(1) 3 Φ] 6.575 (6) 0 + [(3) 3 ∏] 0.417 (5) 1 [(1) 3 ∑ + ] 1.047 (5) 0 -[(3) 3 ∏] 0.417 (3) 0 -[(1) 3 ∑ + ] 0.930 (3) 4 [(2) 3 Φ] 0.261 (3) 0 + [(2) 1 ∑ + ] 5.508 (6) 3 [(2) 1 Φ] 0.507 (6) 1 [(2) 3 ∏] 5.934 (10) 1 [(3) 1 ∏] 1.421 (4) 0 -[(2) 3 ∏] 6.435 (10) 2 [(3) 3 ∆ 
] 0.908 a. First entry is for the values of the present work. The variation of the electric dipole moment with nuclear geometry is important in resonant spectroscopy [38]. In Figure 34 we draw the variation of the permanent dipole moment with the internuclear distance for several low lying electronic states in ZrS. In this figure we notice that the molecule ZrS is mostly polar in the (1) 3 Φ state with a permanent dipole moment value of -8.77D at R = 2.87Å. These results on the permanent electric dipole moment of ZrS are reported here for the first time in literature.

III. D. 6. The Internal Molecular Electric Field in ZrS

Internal molecular electric fields are important in the search for the electric dipole moment of the electron eEDM (d e ). The longest running molecular search for d e uses the ground X 2 ∑ + 

(X) 1 ∑ (1) 3 ∆ (1) 1 Δ (1) 3 Φ (2) 3 Π (3) 3 Π (2) 3 Σ + (2) 1 Σ + R (Å) μ (Debye)
Fig. 34. Variation of the permanent dipole moment in (Debye) as a function of the internuclear distance R (Å) for the states (X) 1 Σ + , (2) 3 Π, (3) 3 Π, (1) 1 Δ, (1) 3 Δ, (2) 1 Σ + , (2) 3 Σ + , (1) 3 Φ.

the internal molecular electric field in various electronic states of the ZrS molecule at the highest level of theory MRSDCI. These results are reported here for the first time in literature in Table XXXVIII.

The largest value of the molecular electric field in ZrS is attained in its ground electronic state with a value of 0.239 GV/cm. This electric field is smaller than that attained in the ground state of ZrN and larger than that in the ground state of YN. The present values of the molecular electric field could be compared, for example, to the value of 1.43 GV/cm in HI +

[184] and to the value of 26 GV/cm in YbF [43] which have been already suggested as suitable candidates for an eEDM experiment. A possible use of ZrS in an eEDM experiment cannot be guaranteed unless provided that the experimental scheme is improved to reach much better accuracies. The spectra and structure of Yttrium mono-sulfide YS has been the subject of a limited number of theoretical and experimental studies. The Experimental observations of the spectra of this molecule revealed the existence of strong perturbations leading to unobvious assignment of the perturbing states [191,192]. In literature 5 states have been studied

III. E. The

experimentally and theoretically without spin orbit effect [148,[193][194][195][196][197][198]. Kowalczyk et al.

[199] performed a high resolution excitation spectrum of gaseous YS and reported the (0, 0) band of the (1) 2 ∏ 1/2 ←Χ 2 ∑ + transition, which was rotationally analyzed, and a set of spectroscopic constants were then given. More recently, Steimle and Virgo [192] studied the optical Stark effect in the (0, 0) vibrational band in the (1) 2 ∏ 1/2 ←Χ 2 ∑ + transition of YS molecule, and calculated the magnitude of the permanent dipole moment for the (1) 2 ∏ 1/2 and

(1) 2 ∏ 3/2 states. The electronic structure of the YS molecule is thus far from complete. The present investigation is devoted to the prediction of the electronic structure of the YS molecule at the highest level of theory including the spin orbit effects.

III. E. 2. Results on YS

The calculations have been performed in the range 2.1Å ≤ R ≤ 2.90Å for 54 electronic states in the representation ) ( (including spin orbit effects). The PECs for the symmetries Ω = 1/2, 3/2, 5/2, 7/2, 9/2 are drawn respectively in figures (35)(36)(37)(38). Within the considered internuclear distance range several crossings and avoided crossings have been recorded between the potential energy curves of different electronic states. Their positions R AC , their corresponding parent states and the energy difference E AC between the states (n+1)Ω/(n)Ω at the crossing/avoided-crossing points are displayed in Table XXXIX. The composition in percentage of the Ω state-wave functions in terms of the Λ states, calculated at the equilibrium internuclear distance of the ground electronic state R = 2.32Å, is presented in Table XXXX. For each state Ω there is a predominant component Λ with a contribution larger than 80% so that a main parent SΛ may be identified. Nevertheless, there are states for which a small but significant contribution of other Λ, than the dominant one is obtained.

By fitting the calculated energy values of the different investigated electronic states into a polynomial in R around the minimum, the harmonic frequencies ω e , the equilibrium internuclear distances R e , the rotational constants B e , and the transition energies with respect to the minimum energy of the ground states T e have been calculated. These values for the states Ω (+/-) are displayed in (2) 2 and(3) 2

(2) 2 /(1) 4

(2) 2 + /(1) 4 

Table XXXXII:

Leading configurations of the 2s+1 Λ ± states of YS at R = 2.32Å. 4 Π 96% 1σ 2 2σ 1 3σ 1 1π 3 (1) 4 ∑ - 98% 1σ 2 2σ 1 1π 3 2π 1 Weights (in percent) are obtained from the square of the corresponding a configuration interaction coefficients (CMRCI) weights lower than 2% are not reported.

Electronic State Weight X 2 ∑ + 85% 1σ 2 1π 4 2σ 1 , 5% 1σ 2 2σ 1 1π 3 3π 1 (1) 2 Δ 90% 1σ 2 1δ 1 1π 4 (2) 2 ∑ + 85% 1σ 2 3σ 1 1π 4 , 5.5% 1σ 2 3σ 1 1π 3 2π 1 (2) 2 Δ 97% 1σ 2 2σ 1 1π 3 2π 1 (3) 2 ∑ + 92% 1σ 2 2σ 1 1π 3 2π 1 (3) 2 Δ 68% 1σ 2 2σ 1 1π 3 2π 1 , 21% 1σ 2 1δ 1 1π 3 2π 1 (4) 2 ∑ + 66% 1σ 2 2σ 1 1π 3 2π 1 , 7% 1σ 2 1π 3 2π 1 1δ 1 , 11% 1σ 2 2σ 1 1π 3 3π 1 (1) 2 97% 1σ 2 1δ 1 1π 3 2π 1 (1) 2 Π 88% 1σ 2 2σ 2 1π 3 (2) 2 Π 85% 1σ 2 1π 4 2π 1 , 5% 1σ 2 1π 3 2π 1 3π 1 (1) 2 φ 99% 1σ 2 2σ 1 1δ 1 1π 3 (3) 2 Π 96% 1σ 2 2σ 1 1δ 1 1π 3 (2) 2 φ 72% 1σ 2 2σ 1 1δ 1 1π 3 , 5% 1σ 2 1δ 1 3σ 1 1π 3 (4) 2 Π 81% 1σ 2 2σ 1 1δ 1 1π 3 ,4% 1σ 2 2σ 1 3σ 1 1π 3 , 6% 1σ 2 3σ 1 1δ 1 1π 3 , 4% 1σ 2 3σ 2 1π 3 (5) 2 Π 93% 1σ 2 2σ 1 3σ 1 1π 3 (6) 2 Π 66% 1σ 2 2σ 1 3σ 1 1π 3 , 11% 1σ 2 3σ 2 1π 3 , 11% 1σ 2 1π 3 1δ 2 , 7% 1σ 2 1π 3 2π 2 (3) 2 φ 87% 1σ 2 1δ 1 3σ 1 1π 3 , 10% 1σ 2 1π 3 3π 1 (1) 4 ∑ + 98% 1σ 2 2σ 1 1π 3 2π 1 (1) 4 Δ 98% 1σ 2 2σ 1 1π 3 2π 1 (2) 4 Δ 98% 1σ 2 1δ 1 1π 3 2π 1 (1) 4 100% 1σ 2 1δ 1 1π 3 2π 1 (1) 4 Π 97% 1σ 2 2σ 1 1δ 1 1π 3 ,2.5% 1σ 2 2σ 1 3σ 1 1π 3 (1) 4 φ 99% 1σ 2 2σ 1 1δ 1 1π 3 (2)
In our CASSCF calculations we obtained the ground state of YS by distributing the 7 valence electrons over the active space of molecular orbitals. The occupation numbers of bonding molecular orbitals are given by the number η b and those in the antibonding molecular orbitals are given by η ab . In this treatment we obtained the occupation numbers of the bonding and anti-bonding orbitals in the following way: η b (1σ)= 2.0 , η b (2σ)= 0.69155, η ab (3σ)= 0.21479, η ab (1δ)= 0.50744, η ab (4σ)= 0.00289, η b (1π)= 3.08152, η ab (2π)= 0.4582, η ab (3π)= 0.0436. This gives an effective bond order EBO of 2.27 ≈ 2, thus indicating that the bonding in YS is a double bond.

III. E. 4. The Vibrational Structure of YS

The time independent vibrational-rotational Schrödinger equation have been solved by using the canonical functions approach [34,35] in the vicinity of the potential energy curves obtained by MRSDCI+Q calculations for the molecule YS. A part of these results are shown in Table XXXXIII, while the rest are left for Appendix II. To the best of our knowledge there are no results available in literature on the vibrational structure of the spin orbit electronic states in the YS molecule.

Table XXXXIII:

Values of the eigenvalues E v , the abscissas of the turning point R min , R max , the rotational constants B v and the centrifugal distortion constants D v for the different vibrational levels of the states (1) 1/2 [X 2 Σ + ], (3) 3/2 [(2) 2 Π] and ( 4 are found in the reaction centers of many enzymes, and metal sulfides have been postulated to be essential for the evolution of life [201,202]. In industry, transition metal oxides are used as versatile catalysts in many applications, however for some processes their reactivity is too high and non-specific product formation occur [200]. In contrast, transition metal sulfides are less reactive and sulfur is often added as a catalyst moderator in order to improve selectivity [201]. Despite their successful application in industry and their relevance in biology, the electronic structures of transition metal sulfide molecules is far from complete. In order to gain better understanding of the similarities and differences observed for the various transition metal chalcogenides, the neutral transition metal sulfides appear to be suitable model systems. The comparison of properties such as electronic ground states, bond lengths, and bond polarity may help to elucidate the nature of the metal-sulfur interaction. This knowledge could in turn be used for the development of better catalysis [200]. In the present work we compare the values of the spectroscopic constants R e , ω e , μ e in the ground state of To the best of our knowledge in literature the electronic ground state in NbS has been determined to be of X XXXXVI.

) 1/2 [(2) 2 Π]. (1) 1/2 [X 2 Σ + ] v E v (cm -1 ) R min (Å) R max (Å) B v ×10
(3) 3/2 [(2) 2 Π] v E v (cm -1 ) R min (Å) R max (Å) B v ×10
The comparisons between the our values for the spectroscopic constants R e , ω e , and μ e of YS and ZrS to the other series of 4d transition metal sulfides are shown in Figures 404142. ( ( (3) 1 [(1) 1 ∏] v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 7 (cm -1 ) v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 

)1/2[(1) 4 ∆] (3)3/2[(1) 4 ∆] v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 7 (cm -1 ) v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 3 
∆] (4)1/2[(2) 2 ∑ + ] v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 7 (cm -1 ) v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10
(7)1/2[(2) 2 ∏] (5)3/2[(2) 2 ∏] v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 7 (cm -1 ) v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10
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∆] v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 7 (cm -1 ) (1 
[(X) 1 ∑ + ], (1) 0 -[(1) 3 ∑ + ], (2) 0 -[(2) 3 ∏], (8) 0 -[(1) 5 Φ] of the molecule YN. (1) 0 + [(X) 1 ∑ + ] (1) 0 -[(1) 3 ∑ + ] v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 7 (cm -1 ) v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10
6) 0 -[(3) 3 ∏] (3) 3 [(1) 5 Φ] v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 7 (cm -1 ) v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 ( 
∑ + ], (2) 0 + [(2) 1 ∑ + ], (2) 0 -[(2) 3 ∏], (5) 1 [(2) 3 ∏] in YN. (1) 1 [(1) 3 ∑ + ] (2) 0 + [(2) 1 ∑ + ] v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 7 (cm -1 ) v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10
(2) 0 -[(2) 3 ∏] (5) 1 [(2) 3 ∏] v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 7 (cm -1 ) v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10
) 0 + [(1) 3 ∏] (2) 1[(1) 3 ∏] v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 7 (cm -1 ) v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 3 
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Table XI:

Values of the Eigen-values E v , the abscissas of the turning point R min , R max , and the rotational constants B v , D v for the Vibrational levels of the state (3) 2[(2) 3 ∏], (7) 1 [(2) 3 ∆], (2) 2 [(1) 1 ∆], (6) 2[(2) 3 ∆], (2) 4 [(1) 1 Γ], (7) 2 [(2) 1 ∆], (3)3 [(2) 3 ∆] in ZrS.

(3) 2[(2) 3 ∏] (7) 1 [(2) 3 ∆] v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 7 (cm -1 ) v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 

Table XII:

Values of the Eigen-values E v , the abscissas of the turning point R min , R max , and the rotational constants B v , D v for the Vibrational levels of the state (4) 3/2 [(1) 4 Π], (2) 5/2 [(1) 4 Π], (5) 1/2 [(1) 4 Π], (6) 1/2 [(3) 2 Π], (7) 3/2 [(1) 4 Σ + ], (7) 1/2 [(1) 4 v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 8 (cm -1 ) v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 8 (cm -1 ) v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 8 (cm -1 ) v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 8 (cm -1 ) v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 8 (cm -1 ) v E v (cm -1 ), R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 8 (cm -1 ) v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 8 (cm -1 ) v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 8 (cm -1 ) v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 theoretical results available in literature. Several molecular properties were also computed such as the permanent electric dipole moments, internal molecular electric fields, and diamagnetic shielding tensors. We further used a Fortran 95 code, developed by our research group, that solves the time independent Schrödinger equation within the canonical functions approach for the vibrational and rotational motions of each molecule. The implemented program yielded accurate vibrational energy levels and rotational constants that are only within 10% of experimental accuracy. I further expect to develop the code into solving the time dependent vibrational-rotational Schrödinger equation under the effect of an oscillating laser field perturbation for a selected two vibrational level transition. This should have applications in quantum computing as selected transition between vibrational levels may be followed by designing an optimal laser pulse that is sufficient to cause transition between the quantum states (qubits) of a polar diatomic molecule. The results of our relativistic ab inito calculations are the first of their kind on these molecules reported in literature. Finally, I searched for applications of the molecules of interest in three domains; in quantum computing on heteronuclear diatomic molecules, in the search for variations in the fundamental constants in nature such as the fine structure constant and the electron to proton mass ratio, and in the search for the electric dipole moment of the electron. I found in the ZrS molecule several degenerate vibrational energy levels of order < 10cm -1 which can enhance the experimental sensitivity measurement to orders of 10 
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 4 dipole moments to the remaining series of 4d transition metal mono-nitrides (ZrN, NbN, …, CdN) and mono-sulfides (ZrS, NbS, …, CdS). The comparison between the different species of transition metal mono-nitrides (MN) and mono-sulfides (MS) should give an idea on the variation of molecular properties across the series of 4d transition metals in the periodic table.Throughout this thesis, we try to validate our theoretical results by comparing the calculated values of the present work to the experimental and theoretical values in literature. The comparison between the values of the present work to the experimental and theoretical results shows a very good agreement. The small percentage relative error, of less than 10% reported in our calculations for all of the molecular constants, reflects the nearly exact representation of the true physical system by the wave functions used in our calculations. The extensive results in the present work on the electronic structures with relativistic spin orbit effects of the molecules YN, ZrN, YS, and ZrS are presented here for the first time in literature. A preprint for the results of the present work has been requested by an experimental research group working at Yale under the supervision of Prof. David Demille.
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  Chapter One. Many Body Problems in Atoms and Molecules 10 In this section only let us scale the variables so that m = 1, K = 1, and also = in the Schrödinger's equation H E , with the given eigenstates n and eigenvalues n , we get . can be solved with all the techniques of partial differential equations in order to find its eigenvalues 1 2 n n

  runs over the set of all possible permutations P. The weight factor is +1 for bosons and -1 for an odd permutation of fermions. The inner product of two N-particle states is , 1 ,

iA

  from a given set occur in the Slater determinant and which do not. This may be expressed by an occupation state vector k

  presented in such wave functions can be expressed either in terms of a sign change arising upon permuting columns of the determinant, or in terms of the fundamental anticommutation relations among the creation operators , 0.

,

  

  operator, and S and M s represent the total and projected spins of the wave function, respectively. For example the following CSF 1,1

  runs over all N electrons of the system. The superscript c indicates that we are working in the coordinate representation of first quantization. The second quantization analogue of (59) is , p Q a a shift a single electron from the orbital Φ Q in to orbital Φ P . Eventually, the summation in(60) runs over all pairs of occupied spin orbitals. The term PQ f in second quantization could be linked to the first quantization c f operator by the relation recipe for constructing a second quantization representation of one electron operators is to use equations (60) with(61). That is by adding to the first quantization kinetic and electron-nuclear interaction operators the term P Q a a .On the other hand, two electron operators such as the electron-electron repulsion and the electron-electron spin orbit operators have a different representation in second quantization.

4 .

 4 ON vectors differing in more than two pairs of occupation numbers Our aim in this section is to construct a representation of two electron operators in second quantization, and this is only possible when g PQRS becomes identical to the corresponding first quantization two electron operator g c Chapter One. Many Body Problems in Atoms and

) 2 V

 2 x d ya x a y a y a x V x yTransforming the above expression into momentum space gives

Fig 2 .

 2 Fig 2. The two body interaction

,

  v is the velocity of the electron, E is the electric field that it experiences and c is the speed of light in vacuum. But E is radial so we can rewrite E E r r r and the momentum of the electron p is written as e p m . Substitute this into (104) to get . express the electric field as the gradient of the electric potential V E r (assuming spherical symmetry), and by noting that the angular momentum of a particle from classical mechanics is L p r . Putting it all together in (105and S represent the angular momentum and spin operators in the first quantization formalism of quantum mechanics.

  a fixed set of N real and orthonormal basis functions, and the coefficients (c i ) represent the contribution of the corresponding basis function in . The expectation value of the Hamiltonian can now be written as a function of the expansion coefficients . (

1 .

 1 coefficients (N-parameters) are not independent, and are related by the normalization condition The process of minimizing a set of parameters subject to a constraint could be solved by the Lagrange method of undetermined multipliers. First, let us construct

  molecular geometries. The problem that Hartree addressed arises from the fact that an exact solution to the Schrödinger equation for molecules with more than one electron is not possible, basically because of the electron-electron interaction terms. The expectation value of the energy operator H is the energy of the molecule (or atom). Of course this energy will be the exact true energy only if the wave function and the Hamiltonian are an exact representation of the true

Fig 2 .

 2 Fig 2. Energy as a function of internuclear distance for a typical bound diatomic molecule.

  optimization of the Hartree Fock wave function must be done to arrive at the optimal determinant that may be found by solving a set of effective one electron Schrödinger equations called the Hartree Fock equations and their associated Hamiltonian operator is called the Fock operator

  Scwhere c is an m×m matrix (m basis functions) and ε is an m×m diagonal matrix of the orbital energies.

  state, singly excited, doubly excited, and triply excited state determinants. The weighting factors c in the above expansion determine to what extent each determinant contribute to the wave function , and the summing terms (

  Then the magnitude of the spin orbit coupling operator can be calculated in terms of molecular parameters which is a dimensionless constant (α = 1/ 137.037) that characterizes the strength of the electromagnetic interaction or the amplitude for an electron to emit or absorb a real photon. Z is the atomic number, representing the number of protons inside the nucleus.

.

  

Fig 3 .

 3 Fig 3. (a) Vector diagram and (b) Energy level diagram for the multiplet states of the 3 Δ state (Λ=2, S=1)

  The vibrational-rotational wave function of a diatomic molecule is a solution of the radial Schrödinger equation[27] 

  (r e being the equilibrium distance), and 2 .(

  ε 0 represents the energy factor which corresponds to pure vibration. It is obtained by setting λ = 0 in equation(4). Equation (25) can be written in the integral form[30] 

  In conclusion the calculations for the proper value of pure vibrational energy ε 0 and for the pure vibrational wave function φ 0 by using equation 24-a. Then by using the calculated values of ε 0 and φ 0 in equation 24-b, one can obtain the values of the rotational constant ε 1 = B v and the rotational harmonic wavefunction φ 1 . Then by using the values of ε 0 , ε 1 , φ 0 , and φ 1 in equation 24-c one can obtain the values of the centrifugal distortion constants ε 2 = D v , with the values of the 2 nd order rotational harmonic φ 2 . The iterative cycle can be repeated by using equation 24-n in order to obtain rotational constants as L v , H v , …

  The rotation harmonics must vanish at the boundaries[27], i.e.

  the limiting conditions(40) Chapter Two. Canonical Function's Approach for Molecular Vibrations and Rotations

II. 5 . 1 .

 51 and the constants γ n are the coefficients determined for the specified numerical potential energy function. Calculations of the Canonical Functions α 0 (r) and β 0 (r)The pure vibrational equation, given by equation (24-a) can be written as x . The solution of this equation is written in the form [

  These ratios are calculated to the right and then to the left of the equilibrium internuclear distance of the potential energy curve r > r 0 and r < r 0

  metals has been investigated by the desire to understand the role played by d orbitals in bonding. The diatomic molecules composed of the transition metals of groups III and IV are the simplest of the d-block open shell molecules with the valence electronic configuration [(n-1)d 1,2 ns 2 ]. In this chapter we list the results of our calculations for the electronic structures, spectroscopic constants, and vibrational structures of the heavy polar diatomic molecules YN, ZrN, ZrS and YS. A comparison is made, where available, between the results

  2p z ), 3π(Zr: 4d ±2 , 5p x,y , N: 2p x,y ), and 1δ(Y: 4d ±1 ) molecular orbitals. This corresponds to five a1, three b2, three b1, and one a2 orbital denoted as[5,3,3,1]. The CASSCF active space of Yttrium mononitride YN is obtained by distributing 6 valence electrons in all possible ways over the orbitals 3σ (Y: 5s, 4d 0 , N: 2p z ), 2π(Y: 4d ±2 , N: 2p x,y ), and 1δ(Y: 4d ±1 ). This corresponds to four a1, two b2, two b1, and one a2 orbital, denoted as [4,2,2,1]. Of the 55 electrons explicitly considered for Yttrium monosulfide YS, 39 electrons for Y and 16 for S, 48 inner electrons were frozen in subsequent calculations so that 7 valence electrons were explicitly treated. The active space contains 4σ(Y: 5s, 5p z ,4d 0 , S: 3p z ), 3π(Y: 5p x,y , 4d ±2 , S: 3p x,y ), and 1δ(Y: 4d ±2 ) orbitals in the C 2v symmetry, this corresponds to 8 active molecular orbitals distributed into irreducible representations a 1 , b 1 , b 2 and a 2 in the following way: 5a 1 , 3b 1 , 3b 2 , 1a 2 , noted [4,2,2,1], while the doubly occupied orbital 1σ(Y:4s) of Yttrium has been considered as inactive in CASSCF calculations. In the four molecules of interest the CASSCF/MRSDCI+Q calculations were performed piecewise as a function of the internuclear distance R, at equal steps of 0.03Å. This allows for the construction of Born-Oppenheimer potential energy curves (PEC) for the ground and low lying excited electronic states. The fitting of the drawn PECs into a polynomial in R allows for the determination of the equilibrium internuclear distance R e and for the calculation of several spectroscopic constants as the; transition energies T e , harmonic vibrational frequencies ω e , and rotational constants B e , D e , and α e .

Fig. 2 :

 2 Fig. 2: Potential energy curves for the 1 Π and 1 Φ states of the molecule YN.

Fig. 3 :

 3 Fig. 3: Potential energy curves for the 3 Σ + and 3 Δ states of the molecule YN.

Fig. 4 :

 4 Fig. 4: Potential energy curves for the 3 Π and 3 Φ states of the molecule YN.

Fig. 5 :

 5 Fig. 5: Potential energy curves for the 5 ∑ , 5 Δ , 5 ∏ and 5 Φ states of the molecule YN.

Fig. 6 :

 6 Fig. 6: Potential Energy curves of Ω = 0 + states (full and dotted lines) of the molecule YN.

Fig. 10 :

 10 Fig. 10: Potential Energy curves of Ω = 3 (full and dotted lines), Ω = 4 ( ) and Ω = 5 ( ) states of the molecule YN.

Fig. 11 :

 11 Fig. 11: Potential Energy curves of the Ω = 1(dotted lines) and Ω = 2 (full lines) states of the molecule YN originating from quintet parent states ( 5 ∑ + , 5 Δ, 5 Π, 5 Φ).

  Thus the vibrational energy structures of heteronuclear diatomic molecules are important in several areas of research and for that we have decided in the present work to investigate the vibration-rotation energy structures of YN. These calculations are performed by solving the vibrational-rotational Schrödinger equation for nuclear motions on the previously calculated potential energy surfaces for the ground and excited electronic states. The solutions for the vibrational-rotational Schrödinger equation are obtained iteratively by following the canonical functions approach[34, 35], which allows for the determination of the vibrational energy levels E v , the rotational constants B v and D v , and the coordinates of the turning points R min and R max . In this iterative procedure, a large number of vibrational levels could be determined up to vibrational levels near dissociation. However, their number is largely determined by the amount of points to the left and to the right of the equilibrium internuclear distance of the potential energy curve. In the present work, we calculated the vibrational constants for the 25 low-lying electronic states 2s+1 Λ and their spin orbit component states. A part of these calculations is shown in the context of this chapter while the rest are shown in Appendix II.

  the present work we try to fully explore the electronic structure of the molecule ZrN with the inclusion of relativistic spin orbit effects. The results of the present calculations yielded potential energy curves, spectroscopic constant and vibro-rotational energy levels. The comparison between the values of the present work to the experimental and theoretical results available in literature shows a very good agreement. This reflects the high accuracy by which our theoretical calculations are able to represent the bonding in ZrN. Until the work described here, no extensive theoretical study was available on ZrN.

Fig. 14 :

 14 Fig.14: Potential energy curves for the 2 Π and 2 Φ states of the molecule ZrN.

Fig. 13 :

 13 Fig.13: Potential energy curves for the 2 Σ + and 2 Δ states of the molecule ZrN.

3 ) 4 ΠFig. 16 :

 3416 Fig.16: Potential energy curves for the 4 Π and 4 Φ states of the molecule ZrN.

  ZrN. Theoretical results obtained in the present work are in excellent agreement with the experimental and theoretical results available in literature. In this research, several low lying doublet and quartet states have been studied for the first time. In Figures17 -20we draw the potential energy curves of 49 low-lying spin orbit electronic states (Ω = 1/2, 3/2, 5/2, 7/2, and 9/2) as a function of the internuclear distance R. Then by fitting the calculated energy curves for the different investigated electronic states in to a polynomial in R, several spectroscopic constants were calculated such as, the harmonic vibrational frequencies ω e , the equilibrium internuclear distances R e , the rotational constants B e , the centrifugal distortion constants D e and the transition energies with respect to the minimum energy of the ground states T e . These are reported in Table XV together with the experimental and theoretical results available in literature for the spin orbit states in ZrN.The new results calculated in the present work for the excited electronic states of ZrN are of particular interest since they are viable candidates for experimental observations by optical spectroscopy techniques. The excited electronic states (1) 2 Π, (2) 2 Π, (3) 2 Π, (4) 2 Π, (2) 2 Σ + , (3) 2 Σ + are accessible through dipole allowed electronic transitions from the ground state, obeying the selection rules ΔΛ = 0, ±1, ΔS = 0, and ΔΩ = 0. Other excited electronic states with Δ and Φ symmetries might be accessible through transitions from excited electronic states with Π and Δ symmetries.

Fig. 17 :Fig. 18 :

 1718 Fig. 17: Potential energy curves for 14 (Ω = 1/2) states of the molecule ZrN (Full and dotted lines).

Fig. 20 :

 20 Fig. 20: Potential energy curves for 7 (Ω = 7/2) (dotted lines) and 2 (Ω = 9/2) (Full lines) states of the molecule ZrN.

  Chapter Three: Results and Discussion 94 the possibility of crossing from one state to another. Within the considered internuclear distance range several crossings and avoided crossings are recorded between the potential energy curves of the interacting states, these are displayed in Tables XVI and XVII along with the internuclear position R, and the energy gap separating the avoided crossing states E AC .
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 1 principle oriented along or against the external electric field. Molecules such as KCs with a permanent electric dipole moment of μ = 1.92D[114] were proposed in Ref[113] to be suitable for control in such traps. The permanent electric dipole moments available for polar molecules provide a ready means to address and manipulate qubits encoded in rotational states through the interaction with external electric fields as well as photons [115]. Typically, the permanent dipole moments in diatomic molecules might vary between 0 D and 11 D [116]. At one extreme, a symmetrical molecule such as chlorine Cl 2 has zero dipole moment, while near the other extreme gas phase potassium bromide KBr, which is highly ionic, has a dipole moment of 10.5 D [116]. Thus the permanent electric dipole moment of a diatomic molecule is an important physical property with significant importance in several areas of research. Due to the limited theoretical and experimental studies on the permanent electric dipole moment of the ZrN molecule, we calculate in the present work the permanent electric dipole moments of the molecule ZrN in the ground and excited electronic states at the MRSDCI level of theory. To the best of our knowledge, this is the first study in literature that investigates the permanent dipole moment of ZrN. Thus a comparison between the values in the present work to other values in literature is not possible. But, the permanent electric dipole moment is a one electron operator, whose accuracy depends on the wavefunctions used, and since our results for the spectroscopic constants and vibrational-rotational energy levels of ZrN match with the theoretical and experimental values in literature, then we can claim that our results for the permanent dipole moment of the ZrN molecule are accurate enough to represent the true physical system. In Table XXII, the results for the values of the permanent electric dipole moment of the ZrN molecule are shown at the equilibrium internuclear distance of the ground state R = 1.72Å.

ZrN

  Polar molecules offer a new ideal laboratory for an eEDM search, mainly due to their large effective electric fields which might reach the orders of a few tens of GV/cm [117]. The electric fields of ground and excited electronic states in diatomic molecules are very useful in a possible observation of the electric dipole moment of the electron [117]. Mostly appealing molecular candidates are those with large values of internal electric fields. In the present work we calculate the expectation value of the internal molecular electric field in the different electric states of ZrN at the MRSDCI level of theory and at the equilibrium internuclear

  Transition Metal Nitrides MN (M = Y, Zr, Nb, …, Cd) Transition Metal Nitrides (TMN) are known to have extreme physical properties. They are chemically very stable with high corrosion resistance, high melting temperature and are extremely hard [118]. These TMN are widely used in the industry of information storage technology, cutting tools, high power energy industry, and optoelectronics [118, 119]. The origins of their unusual physical properties are mainly due to their bonding characteristics. In order to understand the difference in bonding between the 4d transition metals and nitrogen, we compare in the present work the spectroscopic constants R e , ω e , μ e in the ground state of the transition metal nitrides of YN and ZrN to the other series of diatomic 4d transition metal nitrides MN in the periodic table, where M stands for Nb, Mo, Tc, Ru, Rh, Pd, Ag, and Cd. In literature the molecule NbN has been the subject of several experimental and theoretical investigations [120-126]. Its ground state was predicted to be a 3 Δ state arising from the molecular orbital configuration 4δ 1 5σ 1 [125]. The experimental spectroscopic constants R e , ω e , and μ e previously determined in the ground state of NbN are R e = 1.663Å [123], ω e = 1003cm -1 [123], and μ e = 4.49 Debye [127]. The MoN molecule has been studied experimentally by two groups Andrews et. al. [128] and Fletcher et. al. [129, 130] using a high resolution optical spectroscopic study. The ground state in neutral MoN is of 4 ∑ - symmetry, with an experimental bond length of R e = 1.648Å [129], and harmonic vibrational frequency of ω e = 1075cm -1 [129], and permanent dipole moment of μ e = 3.38 Debye [129].The analysis for the electronic structure of the TcN molecule is limited to a theoretical study

  symmetry[132], while it has been predicted to be of3 ∑ -symmetry in AgN [132]. In these calculations The equilibrium internuclear distances, harmonic vibrational frequencies, and permanent electric dipole moments have been predicted in the ground states of PdN [132] to be R e = 1.86Å, ω e = 607cm -1 , μ e = 3.10 Debye, and in AgN [132] to be R e = 2.08Å, ω e = 425cm -1 , μ e = 3.14 Debye, and in CdN [132] to be R e = 2.51Å, ω e = 161cm -1 , μ e = 0.908 Debye. The reported results in literature of the values of R e , ω e , μ e for the molecules NbN, MoN, TcN, RuN, RhN, PdN, AgN, and CdN are shown in Table

  such diverse fields as industrial catalysis and biological process [139 -141]. In Astrophysics the transition metal monosulphides, including ZrS, may be more abundant than their corresponding metal monoxides [142] {TiO [143], LaO [144]} and hydrides FeH [145]. In fact, the ZrS molecule has been reported in cool S-type stars as the carrier of the so-called Keenan bands [146]. The identification of ZrS bands in the spectra of S stars provides an opportunity to determine the abundance of sulfur in late-type stars and may give additional clues to the nuclear processes responsible for their abnormal compositions [147]. Until the work described here, no extensive theoretical study was available on ZrS, except that performed by Langhoff et. al. [148] on 6 low-lying excited electronic states, and that of Reddy et. al. [149] on the vibrational band structure of the ground electronic state X 1 ∑ + . Experimentally, the first published spectroscopic study of ZrS was done by Simard et. al [150] on the (5) 1 ∑ + ←X 1 ∑ + transition. Jonson and coworkers first studied the (2) 3 ∏←(1) 3 ∆ transition [151] via microwave-induced emission spectroscopy, and then the (2) 1 ∏-X 1 ∑ + , (3) 1 ∑ + -X 1 ∑ + , (5) 1 ∑ + -X 1 ∑ + transitions [146] via high resolution emission spectroscopy. In astrophysics, the first identification of ZrS bands in stars was done by K. Hinkle [147], who analyzed the spectra obtained between 7400 and 9700 cm -1 of three Mira variable type stars M and S. The detected bands provide a rare opportunity to measure the sulfur abundance in the photospheres of late-type stars [147]. Recently, the electronic structures of the states X 1 ∑ + and (1) 3 ∆ in ZrS have received a great attention particularly due to their small energy separation. Experimentally, S. Beaton and M. Gerry [152] performed a cavity Fourier transform microwave spectroscopy on the X 1 ∑ + and (1) 3 ∆ bands for five isotopomers of Zr 32 S. Theoretically, B. Laing and L. Andrews [153] computed the relative energy separation

  Finally, and in order to understand the interaction of the ZrS molecule with light, R. Bousquet et. al. [155] studied the dipole moment of the ZrS molecule in the ground X 1 ∑ + and excited (3) 1 ∑ + states. Their experimentally measured values of the dipole moments are not in good agreement with the theoretical results, and thus a more elaborate theoretical ab initio study is required. The apparent disagreement in literature on the nature of the ground state in the ZrS molecule, surely warrants a more elaborate theoretical study for the ground and excited electronic states of this molecule at a high level of theory and with the inclusion of relativistic spin orbit effects.

Fig. 27 :

 27 Fig. 27: Potential energy curves for the 3 ∏ and 3 Φ states of the molecule ZrS.

Fig. 29 .

 29 Fig. 29. Potential energy curves for 12 (Ω = 1) states of the molecule ZrS [Full and dotted lines].

  c *: The values of B v and D v are reported in Ref[146] for the v = 0 vibrational level of the (2) 1 Σ + state. i*: The value of T e reported in Ref[150] is that of the v = 0 vibrational level of the state (3) 1 Σ + .Our spin orbit results for the spectroscopic constants of the ZrS molecule further confirm the accuracy of our nonrelativistic spin orbit calculations. Indeed the comparison between the values of the spectroscopic constants T e , ω e , R e , B e , and D e of the present work for the states(1) 0 + [X 1 ∑ + ], (2) 2 [(1) 1 ∆], (4) 1[(1) 1 ∏], (3) 0 + [(2) 1 ∑ + ], (5) 0 + [(3) 1 ∑ + ] tothe experimental and theoretical results available in literature shows a very good agreement with a percentage relative difference of 3.2% (Ref[147]) ≤ δT e /T e ≤ 6.7% (Ref[146, 150]), 0.7% (Ref[154]) ≤ δω e /ω e ≤ 10.5% (Ref[154]), 0.7% (Ref[148]) ≤ δR e /R e ≤10% (Ref[146]), 4.8% (Ref[146]) ≤ δB e /B e ≤ 7.4% (Ref[146]), and 0.7% (Ref[146]) ≤ δD e /D e ≤ 9% (Ref[146]), except for the values of ω e for the states (3) 0 + [(2) 1 ∑ + ], (5) 0 + [(3) 1 ∑ + ] in which a relative difference of 21.3% (Ref [146]) ≤ δω e /ω e ≤ 25% (Ref[146]), was obtained. The other D e value for the ground state (1) 0 + [X 1 ∑ + ] obtained in our MRSDCI calculations doesn't agree with the theoretical value reported in Ref [154] and obtained by MP2 and B3LYP methods in DFT calculations with a percentage relative difference of 14.4%≤ δD e /D e ≤14.8%, but it agrees with the experimental result reported in Ref [146]. The agreement is also very good by comparing our results for the spin orbit components Ω = 1, 2, 3, 4 of the states (1) 3 ∆, (2) 3 ∆, and (1) 3 Φ to the experimental results reported in Ref [158] with percentage relative differences of 2.1% ≤ δT e /T e ≤ 9.8%, 0.0% ≤ δω e /ω e ≤ 13%, 3.1% ≤ δB e /B e ≤ 5%, and 3.1% ≤ δD e /D e ≤ 16.5%. However, a less agreement exists between our values of D e to those reported in Ref [158] for the state (3)3[(2) 3 ∆] with a relative error of δD e /D e = 30%.

  The points of intersection/crossings and avoided crossings occurring between the potential energy curves of a diatomic molecule are important in photochemistry [159]. The avoided crossing regions are likely to be a leakage channel along which the molecules flow from the higher down to the lower potential energy surface [159]. From the potential energy curves of the present work in Figures 25 -33 several crossings and avoided crossings have been detected between the electronic states of the molecule ZrS. These are reported in Tables
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 2 without a dominant molecular orbital configuration.In order to completely describe the bonding in the ground electronic state of the neutral ZrS molecule, we calculate in the following section the effective bond order EBO, which was defined earlier in equation (1) of this chapter. A better definition of the effective bond order can be obtained by considering the occupation numbers of bonding and antibonding natural orbitals derived from multiconfigurational wave functions. In our CASSCF calculations we obtained the ground state of ZrS by distributing the 8 valence electrons over the active space of molecular orbitals. The occupation numbers of bonding molecular orbitals are given by the number η b and those in the antibonding molecular orbitals are given by η ab . In our CASSCF treatment of the wavefunctions in ZrS we obtained the occupation numbers of the bonding and anti-bonding orbitals in the following way: η b (1σ)= 1.95456, η b (2σ)= 0.7686, η ab (3σ)= 0.43403, η ab (4σ)= 0.23715, η ab (1δ)= 0.4516, η b (1π)= 3.54098, η ab (2π)= 0.54062, η ab (3π)= 0.07246. Then by using equation (1), we obtain an effective bond order EBO of 2.26 ≈ 2, which indicates that the bonding in neutral ZrS is a double bond.
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 12 (1)3 ∆] are degenerate. For this we investigate the vibrational energy structures of ZrS by solving the vibrational-rotational Schrödinger equation within the canonical functions approach[34, 35].The vibrational energy structures of diatomic molecules are important in the search for possible variations in the fundamental constants of the standard model, the fine structure constant α and the electron to proton mass ratios μ. In fundamental concepts the fine structure constant namely called the coupling constant characterizes the strength of the electromagnetic interaction, or the probability of an electron to capture a photon. Physicists have pondered for many years whether the fine structure constant is in fact constant and whether or not its value differs by location and time. The current value of the fine structure constant 2 / e c c is 1 / 137.035999074 [163, 164] and the current limit on variations in α obtained from atomic spectra measurements is 15 7 2.6 10 years [165, 166]. Variations in α can be detected by relativistic energy level shifts in atoms and molecules [167]. If we choose close energy levels which move differently as α varies, variations in the transitions frequency would correspond to variations in α. An extreme example of this is in dysprosium. In dysprosium, there are two almost degenerate states with an energy of 19797.97cm -1 . In [168] it was demonstrated that the relative change of the transition frequency between these two levels in dysprosium is orders of magnitude larger than the relative change in α [167]. An experiment is currently in progress utilizing this transition [169]. These measurements can be greatly enhanced by several orders of magnitude, in transitions occurring between the nearly degenerate fine structure vibrational energy levels in diatomic molecules. These transitions exist in the microwave frequency range, on the order of < 20cm -1 , and the level widths are generally very small, typically of the order of ≈ 10 -2 Hz [170]. Accurate measurements for variations in α can be done by observing transitions between nearly degenerate fine structure vibrational energy levels in diatomic molecules. In these regards, searching for the nearly degenerate vibrational levels in diatomic molecules is important, as it might shed the light on new limits in the search for laboratory variations of α in certain diatomic molecules. Particularly interesting molecules are those identified in the spectra of stars, as laboratory tests on these molecules might be extended to search for variations of α in stars. The molecule of interest in the present work ZrS is important in this domain since it has been identified as the carrier of the Keenan bands in the spectra of cool S-type stars [147].

  (1)3 Δ], and (1)3[(1)3 Δ]. In search for possible degeneracies between the vibrational intervals of the ground and low lying electronic states of ZrS, we have decided in the present work to investigate the vibrational structures of the spin orbit electronic states in ZrS.In literature the first identification of the ZrS molecule in the spectra of three Mira variable stars of type S was done by K. Hinkle et. al.[147] and was based on the identification of the Δv = -1, 0, 1, and 2 vibrational transitions in the 3 Π -3 Δ band system of ZrS. Laboratory observations for the rotational structure of the ZrS molecule were done by rotational microwave spectroscopy in Ref[152] for the rotational energy transitions in the vibrational v = 0, 1, 2 levels of the X 1 ∑ + and (1) 3 Δ states. Further spectral analysis in Ref[146, 150] 

  , a large number of molecules have ω / ω f <<1 and |K| >> 1 [170]. Moreover, an additional fine tuning may be achieved by including Ω doublet and hyperfine components. Note that ω is sensitive to the variation of two most important dimensionless parameters of the Standard Model. The first parameter α, determines the strength of the electroweak interactions [171]. The second parameter, μ = m p /m e , is related to the weak mass scale and strong interaction scale. The electron mass is proportional to the vacuum expectation value of the Higgs field which also determines the masses of all fundamental particles [171]. The proton mass is proportional to another fundamental parameter, the quantum chromodynamics scale Λ QCD [171]. Therefore, we are speaking about the relative variation of a very important dimensionless fundamental parameters of the Standard Model.

  (1)3 ∆], and (1)3[(1)3 ∆] states can all be used to search for any variations in the fundamental constants of the Standard Model α and μ, especially those which can be observed spectroscopically. As an example we shall apply equation (4) on the v = 0 vibrational level of the (1)1[(1) 3 ∆] state and the v' = 1 level of the (1)2[(1) 3 ∆] Ω=2 and T e Ω=1 represent the transition energies at equilibrium of the (1)2[(1) 3 ∆] and (1)1[(1) 3 ∆] states relative to the zero transition energy of the ground state. The other constants ω v Ω=1 and ω v' Ω=2 represent the vibrational harmonic frequencies of the two states (1)1[(1) 3 ∆] and (1)2[(1) 3 ∆], respectively. Then by using equation (5), and by considering that the fine structure interval ω f = T e Ω=2 -T e Ω=1 = 489.56cm -1 is the energy splitting occurring between the v = 1 level in the (1)2[(1) 3 ∆] state and the v = 0 level in the (1)1[(1) 3 ∆] state.

[

  168]. Of course, there are many more possibilities in molecules where there are vibrational and rotational structures. The relativistic corrections to the different energy levels are different and can exceed the very small frequency corresponding to the transition between degenerate states by many orders of magnitude, i.e., a tiny variation of α can change the transition frequency significantly [168]. Since α variations have been measured from spectral analysis of atoms and ions previously identified in quasar spectra, we suggest the inspection for the spectra of the ZrS molecule in laboratory experiments and in cool S-type stars as a mean to measure any possible variations of the fine structure constant. The detection of the ZrS molecule in the spectra of three Mira variable stars, named RAnd, χCyg, and RCas [147], further enhances this possibility. In fact, the vibrational band systems suggested to be suitable for measuring α variations in the present work have been previously analyzed in the Kennan bands of the three Mira variable stars [147]. We suggest the re-inspection of the Kennan bands in the spectra of the stars RAnd, χCyg, and RCas as a mean to measure possible variations in the fine structure constant. Recently, a copy of our conclusions on ZrS has been requested by an experimental research group working at the University of Yale in the group of Prof. David Demille.
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 12 v = 0, N = 0) state of 174 YbF at Imperial College in the group of E. Hinds [178]. At Yale Demille's group [179-181] used PbO, with an electric field value of ε eff ~ 29 GV/cm [44, 178, 182]. Molecules suitable for an eEDM experiment are preferred to have a large rotational constant, small or vanishing nuclear spin, with deeply bound molecular electronic states [183]. A possible use for the ZrS molecule in an eEDM experiment largely relies on its internal molecular electric field. Therefore, we have decided in the present work to compute

  Structure of Yttrium Sulfide YS III. E. 1. Preliminary Works on YS It has been long established that transition metals play an important role in many fields, including catalysis, organic synthesis, stellar atmospheres, and cosmochemistry [185]. Of particular interest are the 4d-row of transition metals, which have relatively large natural abundance because of their production in non-explosive nucleosynthesis [186]. Also, the 3dorbitals of these metals have energies comparable to the 2p orbitals of oxygen, nitrogen and carbon [186]. Therefore quite interesting simple compounds of these elements possess a mixture of ionic and covalent bondings [187, 188]. In astrophysics, the presence of Yttrium mono-sulfide in stellar atmospheres is possible as a similar diatomic, Zirconium sulfide has been identified as the carrier of the Keenan bands in the spectrum of cool S-type stars [170]. These molecules are useful for examining bonding schemes in simple metal systems which

Fig. 36 :

 36 Fig. 36: Potential energy curves for 9 states Ω = 1/2 of the molecule YS.

Fig. 35 :

 35 Fig. 35: Potential energy curves for 10 states Ω = 1/2 of the molecule YS.

Fig. 37 :Fig. 38 :

 3738 Fig. 37: Potential energy curves for 15 states Ω = 3/2 of the molecule YS

  (b) Ref [191] (c)Ref [148] (d) Ref [195] (e) Ref [199] Note: DF(b); Density Functional calculations in Ref( b) Exp(b); Experimental results in Ref( b) Note: (v =0) (b) results are for the zero vibrational level in Ref b.
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 4 -symmetry [148, 203, 204], with a bond length of R e = 2.164Å [203], harmonic vibrational frequency ω e = 540cm -1 [203], and permanent electric dipole moment of μ = 4.007 Debye [203]. The electronic structure of the MoS molecule has been studied by three groups in literature [205 -207]. The ground state has been determined to be an X 5 Π state with bond lengths R e = 2.165Å [232], harmonic vibrational frequency ω e = 521cm -1 [205], and permanent electric dipole moment of μ = 3.474 Debye [205]. The structure of a neutral TcS molecule is limited to the results reported in [200, 205]. In these studies the electronic ground state has been predicted to be of X 6 ∑ + symmetry with R e = 2.168Å [205], ω e = 492cm -1 [205], and μ = 4.045 Debye [205]. The electronic structure in the ground electronic state of the molecules RuS, RhS, PdS, AgS, and CdS have been investigated by Knudsen-effusion mass spectrometry in Ref [200]. The spectroscopic constants in the ground state of each molecule have been determined in Ref [200] to be; R e = 2.176Å and ω e = 480cm -1 in RuS, R e = 2.159Å and ω e = 470cm -1 in RhS, R e = 2.259Å and ω e = 360cm -1 in PdS, R e = 2.432Å and ω e = 270cm -1 in AgS, and R e = 2.356Å and ω e = 331cm -1 in CdS. To the best of our knowledge, the other values for the dipole moment in the ground states of RuS, RhS, PdS, AgS and CdS aren't available. The reported results in literature for the values of the spectroscopic constants R e , ω e , and μ e in the ground state of 4d transition metal sulfide molecules NbS, MoS, TcS, RuS, RhS, PdS, AgS, and CdS are shown in Table

Fig. 40 .Fig. 41 :Fig. 42 :

 404142 Fig. 40. Variation of the equilibrium internuclear distance in the ground state of 4d transition metal sulfides.

  (4) 1 [(3) 1 ∏], (1) 5 [(1) 5 Φ], (3) 0 -[(2) 3 ∑ + ], (5) 2 [(3) 3 ∏], (6) 2 [(1) 3 ∆], (11) 1 [(2) 3 ∆] in YN.
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 42 (1) 3 Φ], (2) 3[(1) 3 Φ], (1) 4 [(1) 3 Φ], (5) 1 [(1) 3 ∑ + ], (6) 1 [(2) 3 ∏], (5) 0 -[(2) 3 ∏], (4) 0 + [(2) 3 ∏], (7) 1 [(2) 3 ∆] in ZrS. (4) 2 [(1) 3 Φ](2) 3[(1) 3 Φ]
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	or as a product of these operators								
	x x	N	P	2 d p d d d d p d 1 M p	. i p x i p x . p x , p p pe p e a a	.	(43) (53)
	which would simply count the number of particles.			
			N	P	a a p p			
	P N k a a k p p	=	kp	k	=k	p	k	,	(52)

  In the Fock operator the one-electron part of the true Hamiltonian An electron in Φ p thus experiences a classical electrostatic Coulomb potential (the 2 nd term in the above equation), generated by the nuclear framework and by the charge distribution of the remaining electrons, as well as a nonclassical exchange potential (the 3 rd term in the above

	with eigen values															
	P	p	1 r	1 2	2		1 Z K K r K	p	1 1 r dr	2		i	* p	1 r	p	1 1 2 r r	* i	2 r	i	2 r	12 dr dr
	i		* p	1 r	i	1 r	12 r	* i	2 r	p	2 r	1 2 dr dr	.	(130)
												core			n		
										F H									J	j	K	j
																j			
	with																		
									H	core		1 2	2	i	all			Z r	l
							J	i		1			* p	1 r		p	1 r	12 r	* i	2 r	* i	2 r	1 2 d r d r
							K	i	1		* p	1 r		i		1 r	12 r	* i	2 r	* p	2 r	1 dr dr	(128)
																				core H is retained. The two
	electron part i J is the regular Coulomb repulsion term while the 3 rd part i K is called the
	exchange term which is a correction to the two Coulomb interaction that arises from the
	antisymmetry of the wave function. The Hartree Fock eigenvalue equation is then written as
													f		HF				p	HF	,	(129)

equation), which corrects the classical repulsion energy for Fermi correlation. The exchange integral arises from Slater determinant expansion terms that differ only in the exchange of electrons. It is said to have no simple physical meaning

[7] 

, but we can regard the exchange term as a kind of correction to the Coulomb integral, reducing its effect. This reduction arises because particles with opposite spins cannot occupy the same spatial orbital. In other words two electrons of the same spin avoid each other more than expected in the columbic repulsion.

two spin orbitals is zero. The coefficients in the CI expansion (139) are determined by a variational optimization of the expectation value of the electronic energy

  

	Hermitian eigenvalue problem that is solved by either diagonalizing the Hamiltonian matrix or
	by other iterative techniques to extract the eigenvalues and eigenvectors.
	i i	H H	j j	0 if , 0 if ,	i i i	and and	j j	have different spins.
	2. There is no coupling between the HF ground state and single, triple and quadruple excitations
	(i.e. 0 0	H H	r a r a	0 0			
								E CI	min	C H C C C	.	(140)
	These conditions are equivalent to an eigenvalue problem, similar to equation (124), for the
	eigen values and energies		
									HC EC	,	(141)
	where H is the Hamiltonian matrix with elements
									H	ij	i H j	,	(142)
	and C is a vector containing the expansion coefficients C i . Equation (141) is a standard

). As well, singles do not mix with quadruples. This is a consequence of the fact that the Hamiltonian between Slater determinants which differ by more than

  )

	Chapter Two. Canonical Function's Approach for Molecular Vibrations and Rotations
	and		1	r		n K r						(35-a)
					n	0					
					r						
			0 K r		r t	1	t	0	t dt	(35-b)
					0						
					r		t				
			1 K r		x t		1 1 t t	t	0	1 t dt dt	(35-c)
					0		0 r				
					r						
			n K r		r t	1	1 t K t dt n	,	(35-d)
					0 r						
	with the properties below [32]:								
				r							r
	r	r	r r		r t	t		t dt		r t	t	t dt
				r							r
	The solution of the above equation can be greatly simplified by following a procedure similar to
	that adopted in section III and by using the canonical functions α and β together with equations
	(8) and (9), we get										
		1	r	1 0 r	0	r	' 1 0 r	0	r		1	r	(34)
												51

Table I :

 I Spectroscopic constants for the lowest lying 25 singlet, triplet and quintet electronic states of the molecule YN.

	State	T e (cm -1 )	δT e /T e	ω e (cm -1 )	δω e /ω e	B e ×10 1 (cm -1 )	δB e /B e	α e (cm -1 )	δα e /α e	R e (Ǻ)	δR e /R e
	X 1 Σ +	0 a		656.51 a		4.1173 a		0.00304 a		1.839 a	
		0 b		650.6 Exp b	0.9%	4.2815 Exp c 3.8%	0.00333 Exp c	8.5%		
		0 c		661.0 Exp c	0.6%					1.80405 Exp c	1.9%
		0 Theo d		807.0 Theo d	18.6%					1.78862 Theo d	2.8%
		0 Theo e		658 Theo e	0.2%					1.809 Theo e	1.7%
		0 Exp f		633.2 Exp f	3.7%						
	(2) 1 Σ + 3850.76		970.4		4.0377		0.00173		1.857	
		3612.0 Exp c	6.6%	1200.0 Exp c	19.1%	4.2311 c	4.6%	0.00188 Exp c	8.3%	1.81477 Exp c	2.3%
		3670 Theo e	4.9%	979 Theo e	0.9%					1.803 Theo e	3.0%
		3700 Exp f	4.1%	1007.4 Exp f	3.6%						
	(1) 1 Δ 18776.85		775.14		2.6938		-0.00526		2.272	
		17305 Theo e	8.5%	715 Theo e	8.4%					1.876 Theo e	21%
		30780 Theo d	39%								
	(2) 1 Δ 20764.10		186.08		3.1718		-0.22287		2.131	
	(1) 1 Π 5802.90		720.53		3.6078		0.00812		1.968	
		9915 Theo d	41%	706.0 Theo d	2.05%					1.97383 Theo d	0.5%
		6482 Theo e	10.4%	755 Theo e	4.5%					1.916 Theo e	2.7%
	(1) 1 Φ 17788.92		376.56		3.2096		0.00975		2.075	
	(2) 1 Π 19232.61		380.05		3.2191		0.01516		2.08646	
		19832.98 v=1 Exp b	3.0%			3.255 Exp b	1.1%				
		19232 Theo e	0.00%	562 Theo e	32%					2.057 Theo e	1.4%
	(2) 1 Φ 22192.52		737.37		3.1428		-0.00634		2.102	
	(1) 1 ∑ -20652.51		849.91		3.4703		-0.00264		2.002	
	(1) 3 Σ + 2781.84		763.82		3.8773		0.00358		1.896	
		5177 Theo d	46%	771.0 Theo d	0.9%					2.09025 Theo d	9.2%
		2360 Theo e	17.8%	831 Theo e	8.1%					1.833 Theo e	3.4%
		2413 Exp f	15.3%	805.12 Exp f	5.1%					1.866 Exp f	1.6%
	(2) 3 Σ + 19096.71		749.17		3.7495		0.00196		1.928	
		18661.5 Exp b	2.3%	723.5 b	3.5%	3.90173 Exp b 3.9%			1.919 Exp b	0.4%
	(1) 3 Δ 18821.32		707.49		3.6319		0.00019		1.958	
		16967 Theo e	19%	777 Theo e	8.9%					1.861 Theo e	5.2%
	(2) 3 Δ 19269.14		427.36		2.7091		0.01872		2.279	
	(1) 3 Π 5485.09		685.65		3.5675		-0.0000036		1.975	
		9290 Theo d	41%	711.0 Theo d	3.5%					1.96853 Theo d	0.3%
		5962 Theo e	7.9%	758 Theo e	9.5%					1.922 Theo e	2.7%
	(1) 3 Φ 17503.14		801.52		3.5069		-0.00352		1.989	
	(2) 3 Π 14201.42		403.62		3.1156		0.01550		2.118	
		15380 Theo e	7.7%	692 Theo e	41%					2.034 Theo e	4.1%
	(2) 3 Φ 18602.08		880.03		3.5676		-0.0034		1.975	
	(3) 3 Φ 21700.96		1033.76		3.1612		-0.00421		2.099	
	(3) 3 Π 24536.04		605.09		3.0916		0.02057		2.116	
	(1) 5 ∑ + 21994.68		213.97		3.0284		0.15761		2.176	
	(1) 5 Φ 20186.18		526.56		3.0460		-0.0019		2.184	
	(1) 5 ∆ 18559.14		476.94		2.7229		0.00610		2.266	
		20538 Theo e	9.6%	462 Theo e	3.2%					2.219 Theo e	2.1%
	(1) 5 ∏ 21200.05		842.05		2.7497		-0.0006		2.250	
		21746 Theo e	2.5%	572 Theo e	44%					2.096 Theo e	7.3%
	(2) 5 ∆ 23321.93		458.14		3.1565		0.21811		2.167	
	(2) 5 ∏ 24780.30		493.99		2.8045		0.01875		2.229	
				390 Theo d	26.6%					2.35 Theo d	5.1%

Ref: a. First entry is for the values of the present work b. Ref

[20] 

c. Ref

[19] 

d. Ref

[21] 

e. Ref

[23] 

f. Ref

[22] 

Note: 19832.98 v=1 b , corresponds to the first vibrational energy level in the (2) 1 Π state.

  Π, (1) 3 Π, and (2) 1 Σ + states by using different basis sets with different active spaces.

	N-basis	State	Active space	Method	T e (cm -1 )	R e (Å)
		(1) 1 Π	(Y: 5s, 4d), (N: 2p, 3s)	MRCI / CASSCF	4917 / 4799	1.98
	Ryd3 a	(1) 3 Π	(Y: 5s, 4d), (N: 2p, 3s)	MRCI / CASSCF	5200 / 4900	1.96
		(2) 1 Σ +	(Y: 5s, 4d, 5p), (N: 2p)	MRCI / CASSCF	4660 / 4400	1.85
		(1) 1 Π	(Y: 5s, 4d, 5p), (N: 2p)	MRCI / CASSCF	5056 / 4620	1.98
			(Y: 5s, 4d), (N: 2p)	MRCI / CASSCF	5803 / 4910	1.97
	Ryd2 a	(1) 3 Π	(Y: 5s, 4d), (N: 2p)	MRCI / CASSCF	5485 /5200	1.98
		(2) 1 Σ +	(Y: 5s, 4d), (N: 2p)	MRCI / CASSCF	3923 / 4536	1.85
			(Y: 5s, 4d, 5p), (N: 2p)	MRCI / CASSCF	3300 / 4567	1.86
		(1) 1 Π	(Y: 5s, 4d), (N: 2p, 3s)	MRCI / CASSCF	4041 / 3653	2.02
	Hazinaga a	(1) 3 Π	(Y: 5s, 4d), (N: 2p, 3s)	MRCI / CASSCF	3900 / 3137	2.03
		(2) 1 Σ +	(Y: 5s, 4d), (N: 2p, 3s)	MRCI / CASSCF	1556 / 1962	1.86
		(1) 1 Π	(Y: 5s, 4d), (N: 2p, 3s)	MRCI / CASSCF	3800 / 3600	2.10
	Roos a	(1) 3 Π	(Y: 5s, 4d), (N: 2p, 3s)	MRCI / CASSCF	3403 / 3300	2.10
		(2) 1 Σ				

+ (Y: 5s, 4d), (N: 2p, 3s) MRCI / CASSCF 4686 / 4329 1.92 a. Basis sets obtained from literature Ref

Table III :

 III Positions of the crossings and avoided crossings recorded between the different electronic states of the molecule YN.

	Crossing Avoided crossing	Crossing	Avoided crossing
	State1		

Table IV :

 IV Spectroscopic constants for the 60 low lying spin orbit electronic states of the molecule YN.

	State	T e (cm -1 )	δT e / T e	ω e (cm -1 )	δω e /ω e	D e ×10 7 (cm -1 )	B e ×10 1 (cm -1 )	δB e /B e	R e (Ǻ)	δR e /R e
	(1) 0 + [(X) 1 ∑ + ]	0.0		650.6 Exp b 638.99 a	1.8%	-6.4581	4.0625		1.853	
				661.0 Exp c	3.3%		4.2815 Exp c 5.1%	1.80405 Exp c	2.7%
				807.0 Theo d	21%				1.78862 Theo d	3.4%
				633.2 Exp e	0.9%					
				658 Theo f	2.8%				1.809 Theo f	2.4%
	(2) 0 + [(2) 1 ∑ + ]	3813.62		1080.56		-2.4046	4.0843		1.846	
		3612.0 Exp c	5.5%	1200.0 Exp c	9.9%		4.2311 Exp c 3.5%	1.81477 Exp c	1.7%
		3700 Exp e	3.0%	1007.4 Exp e	7.2%					
		3670 Theo f	3.9%	979 Theo f	10.3%				1.803 Theo f	2.3%
	(3) 0 + [(1) 3 ∏]	5026.52		686.75		-3.8233	3.5545		1.979	
	(4) 0 + [(3) 1 ∑ + ]	20491.97		647.17		-4.4896	3.6035		1.966	
	(5) 0 + [(1) 1 ∑ -]	20778.05		767.43		-3.4329	3.6735		1.947	
	(6) 0 + [(4) 3 ∏]	21997.95		763.52		-2.1650	3.1463		2.104	
	(7) 0 + [(4) 1 ∑ + ]	22019.43		919.58		-1.5731	3.1940		2.088	
	(8) 0 + [(1) 5 ∆]	21666.22		755.29		-1.6347	2.8348		2.217	
	(9) 0 + [(2) 5 ∏]	23732.20		742.50		-1.8579	2.9417		2.176	
	(10) 0 + [(1) 5 ∏]	24646.88		664.23		-2.1224	2.8585		2.208	
	(1) 0 -[(1) 3 ∑ + ]	2762.26		814.36		-3.5256	3.8807		1.895	
	(2) 0 -[(2) 3 ∏]	14116.63		704.17		-2.4718	3.1383		2.107	
	(3) 0 -[(2) 3 ∑ + ]	18467.12		886.03		-2.3389	3.5760		1.974	
	(4) 0 -[(3) 3 ∏]	18933.11		980.87		-1.9022	3.5708		1.975	
	(5) 0 -[(3) 3 ∑ + ]	19310.95		864.94		-2.3998	3.5498		1.981	
	(6) 0 -[(1) 3 ∑ -]	20868.93		698.28		-4.1031	3.6669		1.949	
	(7) 0-[(4) 3 ∏]	22080.55		748.61		-2.2578	3.1469		2.103	
	(8) 0 -[(1) 5 Φ]	20116.15		508.02		-4.0265	2.9584		2.169	
	(9) 0 -[(1) 5 ∑ + ]	21510.96		615.53		-2.2683	2.7408		2.255	
	(10) 0 -[(1) 5 ∆]	21802.65		477.81		-3.6458	2.8293		2.216	
	(11) 0 -[(2) 5 ∏] 23711.36		754.06		-1.8019	2.9413		2.176	
	(12) 0 -[(1) 5 ∏] 24703.19		517.88		-3.6405	2.8980		2.195	
	(1) 1 [(1) 3 ∑ + ]	2763.17		812.77		-3.5376	3.8799		1.895	
	(2) 1[(1) 3 ∏]	4906.21		737.55		-3.3983	3.5893		1.970	
	(3) 1 [(1) 1 ∏]	5028.25		693.07		-3.7766	3.5581		1.978	
		9915 Theo d	49%	706.0 Theo d	1.8%				1.97383 Theo d	0.2%
		6482 Theo f	22.4%	755 Theo f	8.2%				1.916 Theo f	3.2%
	(4) 1 [(3) 1 ∏]	11839.69		915.12		-1.1183	2.8212		2.222	
	(5) 1 [(2) 3 ∏]	14142.49		702.51		-2.4421	3.1157		2.115	
	(6) 1[(2) 1 ∏] B1 17391.12		542.88		-6.8009	3.6492		1.953	
		19188.02 Exp b	9.3%				3.255 Exp b	12%		
		19232 Theo f	9.5%	562 Theo f	3.4%				2.057 Theo f	5.0%
	(7) 1 [(2) 3 ∑ + ]C1 18076.00		645.27		-4.0848	3.4649		2.004	
		18615.51 Exp b 2.8%	718.3 Exp b 10%		3.873464 Exp b 10%	1.939 Exp b	3.3%
	(8) 1 [(3) 3 ∏]	18614.13		827.15		-2.6573	3.5623		1.977	
	(9) 1 [(3) 3 ∑ + ]D1 19921.51		706.09		-3.7525	3.6084		1.965	
		18661.53 Exp b 6.7%	723.5 Exp b 2.4%		3.90074 Exp b 7.5%	1.9194 Exp b	2.4%
	(10) 1 [(1) 3 ∆]	20408.20		688.58		-4.1086	3.6414		1.956	
	(11) 1 [(2) 3 ∆]	20634.19		556.64		-5.9734	3.5811		1.972	

The spin orbit ab initio results of Table IV further confirm the accuracy of our nonrelativistic findings. Truly, the comparison between the values of the present work to the experimental values available in literature shows a very good agreement for the states (1)0 +

  1 ∆], reporting a relative difference of 43 % ≤ δT e /T e ≤ 49% and δω e /ω e = 14% for the state (1)0 + [(X) 1 ∑ + ]. The other values of R e reported by Shim et. al.[21] agree with our calculated values with a percentage relative difference of 0.2% ≤ δR e /R e ≤ 3.4%. Finally, the comparison for the other results shown in TableIVis not possible since they are given here for the first time.

Table V :

 V Composition of Ω spin orbit state wave functions of the molecule YN, in terms of 2s+1 Λ-states (in percentage

  All vibrational Energy values are measured relative to the zeroth vibrational level whose E v = 303.56 cm -1 relative to the transition energy at the equilibrium internuclear distance T e for the ground state X 1 ∑ + .

							7
							(cm -1 )
	0	5369.55 a 1.91 a 2.03 a 3.571	3.461	5261.68 1.91	2.03	3.581	3.551
	1	6094.86 1.87 2.08 3.572	3.112	5978.32 1.87	2.08	3.572	3.481
	2	6837.86 1.84 2.12 3.574	2.884	6694.14 1.84	2.12	3.541	3.781
	3	7596.47 1.82 2.14 3.575	2.776	7394.70 1.82	2.16	3.523	3.932
	4	8366.24 1.80 2.17 3.566	3.237	8080.03 1.80	2.18	3.494	3.833
	5	9129.04 1.78 2.19 3.551	3.228	8756.30 1.79	2.21	3.470	3.804
	6	9885.60 1.77 2.21 3.536	3.172	9425.06 1.77	2.24	3.445	4.047
	7	10637.42 1.76 2.23 3.522	3.816	10082.35 1.76	2.27	3.416	4.260
	8	11371.95 1.75 2.25 3.488	5.164	10727.66 1.75	2.29	3.392	3.921
	9	12064.28 1.74 2.28 3.392	1.125	11365.55 1.74	2.32	3.361	4.121
	10 12636.82 1.73 2.36 3.187	1.391	11994.53 1.73	2.34	3.342	3.902
	11 13124.36 1.72 2.38 3.203	-5.944	12617.49 1.72	2.36	3.323	4.663
	12 13693.04 1.72 2.39 3.256	3.941	13226.58 1.72	2.39	3.284	5.194
	13 14268.03 1.71 2.42 3.231	2.396	13818.15 1.71	2.41	3.245	4.765
	14 14851.77 1.70 2.44 3.230	3.188	14398.37 1.70	2.43	3.226	3.496
	15 15437.13 1.69 2.46 3.201	5.483	14977.18 1.70	2.45	3.202	3.941
	16 16007.54 1.69 2.48 3.173	2.685	15550.98 1.69	2.48	3.174	5.243

a. First entry is for the values of the present work b.Ref [20] c. Ref [22] d. Ref [19] Note:

Exp, correspond to experimental results in literature.

  All vibrational Energy values are measured relative to the zeroth vibrational level v = 0whose energy value is E v = 303.56 cm -1 relative to the transition energy at the equilibrium internuclear distance T e of the ground state X 1 ∑ + . Exp, corresponds to experimental results in literature.

									(cm -1 )	1	δB v /B v
	2864.03 a	1.84 a	1.96 a	3.871 a 4015.62 a			1.82 a		1.91 a	4.031 a
	2469 Exp c 16%	1.71 Exp b 7.6%	1.92 Exp b 2.1%	3879 Exp c		3.5%	1.65 Exp b 10%	1.87 Exp b 2.1%	4.2193 Exp d 4.5%
				3882.8 Exp d	3.4%		
	3639.22	1.80	2.01	3.852 4967.42			1.78		1.94	4.001
	3297 Exp c 10%	1.73 Exp b 4.0%	1.97 Exp b 2.0%	4879 Exp c		1.8%	1.67 Exp b 6.6%	1.91 Exp b 1.6%	4.2047 Exp d 4.9%
				4879.6 Exp d	1.8%		
	4411.44	1.78	2.04	3.832 5900.79			1.75		1.99	3.982
	4102 Exp c 7.5%	1.75 Exp b 1.7%	2.01 Exp b 1.5%	5850 Exp c		0.8%	1.68 Exp b 4.2%	1.94 Exp b 2.6%	4.1804 Exp d 4.8%
				5848 Exp d		0.9%		
	5180.04	1.75	2.09	3.811 6816.97			1.73		2.02	3.971
	4921 Exp c 5.2%	1.77 Exp b 1.1%	2.04 Exp b 2.4%	6813 Exp c		0.05%	1.70 Exp b 1.7%	1.97 Exp b 2.5%	4.1626 Exp d 4.6%
				6797 Exp d		0.03%		
	5944.15	1.73	2.10	3.802 7724.69			1.71		2.05	3.952
	5762 Exp c 3.1%	1.81 Exp b 4.4%	2.06 Exp b	7737 Exp d 0.02%	1.72 Exp b 0.5%	1.99 Exp b 3.0%	4.1598 Exp d 5.0%
	6702.47	1.72	2.12	3.771 8624.22			1.70		2.07	3.942
				8668 Exp d 0.03%	1.76 Exp b 3.4%	2.01 Exp b 3.0%	4.1427 Exp d 4.9%
	7447.68	1.71	2.15	3.752 9512.83			1.70		2.10	3.923
				9565 Exp d 0.05%		
	8185.84	1.69	2.17	3.731 10390.94			1.67		2.11	3.901
	9644.52	1.68	2.22	3.693 11251.16			1.66		2.13	3.883
	10365.99	1.66	2.23	3.673 12101.16			1.65		2.15	3.862
	11077.28	1.65	2.27	3.654 12940.94			1.64		2.17	3.841
	11783.41	1.64	2.28	3.635 13772.18			1.64		2.18	3.824
	12483.01	1.64	2.29	3.601 14593.19			1.63		2.21	3.806
	13169.09	1.63	2.31	3.581 15402.67			1.62		2.22	3.781
	13849.32	1.62	2.33	3.562 16203.44			1.61		2.24	3.760
	14521	1.62	2.35	3.533 16995.1			1.59		2.26	3.742
	15184.41	1.61	2.37	3.514 17776.04			1.59		2.27	3.721
	15839.45	1.60	2.38	3.481 18546.93			1.58		2.29	3.691
	16485.25	1.60	2.40	3.460 19307.85			1.58		2.31	3.672
	17123.64	1.59	2.41	3.431 20057.98			1.57		2.33	3.653
	17751.4	1.59	2.45	3.412 20799.64			1.57		2.34	3.632
	18372.51	1.58	2.46	3.383 21532.02			1.56		2.36	3.601
	18983.33	1.58	2.48	3.351 22253.11			1.56		2.37	3.572
	19587.26	1.57	2.51	3.332 22965.86			1.55		2.39	3.552
	20181.14	1.56	2.52	3.301 23668.34			1.55		2.41	3.521
	20767.12	1.56	2.54	3.272 24360.45			1.54		2.42	3.503
	21343.9	1.55	2.57	3.241 25043.18			1.54		2.44	3.471
	21912.2	1.55	2.58	3.212 25714.23			1.54		2.47	3.442
	22471.58	1.54	2.61	3.191 26374.83			1.53		2.48	3.413
	23022	1.54	2.62	3.163 27024.37			1.53		2.51	3.381
	23563.7	1.53	2.69	3.133 27662.70			1.52		2.53	3.353
	a. First entry is for the values of the present work	b.Ref [20]	c. Ref [22]	d. Ref [19]
	Note:							

  in YN. 0 -0 Band 1 -1 Band 2 -2 Band 3 -3 Band 4 -4 Band 5 -

							5 Band
	E v-v'	4015.62 a	4335.37 a	4614.35 a	4868.06 a	5103.75 a	5329.73 a
		3882.76 b	4229.04 b	4528.65 b	4798.51 b	5049.44 b	5281.21 b
	δ E v-v' / E v-v' 3.4%	2.5%	1.9%	1.4%	1.1%	0.9%
	a. Values of the present work	b. Ref [19]			

  First entry if for the values of the present work b. Second entry is for the values in Ref[19] 

	4022.95	4009.24	4342.64	4329.04
	3890.01	3875.67	4236.41	4222.12
	4023.77	4008.46	4343.46	4328.26
	3890.77		4237.19	4221.22
	4024.60	4007.67	4344.28	4327.48
			4237.98	4220.33
	4025.42	4006.89	4345.10	4326.70
	3892.27	3872.86	4238.76	4219.42
	4026.25	4006.10	4345.93	4325.93
	3892.99	3871.91	4239.53	4218.51
	4027.09	4005.32	4346.75	4325.15
	3893.72	3870.95	4240.30	
	4027.92	4004.55	4347.58	4324.38
	3894.44		4241.06	
	4028.76	4003.77	4348.41	4323.61
	3895.14			4215.76
	4029.60	4003.00	4349.24	4322.84
	3895.84	3868.00		4214.84
	4030.44	4002.23	4350.08	4322.08
	3896.53	3867.01	4243.32	4213.90
	4031.28	4001.46	4350.91	4321.31
	3897.21	3866.00	4244.06	4212.97
	4032.12	4000.69	4351.75	4320.55
	3897.88		4244.80	4212.02
	4032.97	3999.92	4352.59	4319.79
	3898.55	3863.97	4245.53	4211.08
	4033.82	3999.16	4353.43	4319.03
		3862.95	4246.26	4210.13
	4034.67	3998.40	4354.28	4318.28
	3899.86		4246.98	4209.17
	4035.52	3997.64	4355.12	4317.53
	3900.50	3860.87	4247.70	4208.22
	4036.37	3996.88	4355.97	4316.77
	3901.14	3859.83	4248.41	4207.25
	4037.23	3996.13	4356.82	4316.02
		3858.77	4249.13	4206.29
	4038.09	3995.37	4357.68	4315.28
	3902.39	3857.77	4249.83	4205.31
	4038.95	3994.62	4358.53	4314.53
	3903.01	3856.65	4250.53	4204.34
	4039.81	3993.87	4359.39	4313.79
	3903.62	3855.58	4251.23	4203.36
	4040.68	3993.13	4360.25	4313.05
			4251.93	4202.39
	4041.55	3992.38	4361.11	4312.31
	3904.82		4252.62	4201.40
	4042.41	3991.64	4361.97	4311.57
	3905.42		4253.30	4200.42
	4043.29	3990.90	4362.83	4310.84
	4044.16 3906.59 4045.03 4 4019.67 a 3 3886.88 b 3907.17 4045.91 5 4020.49 3887.68 3907.75 4046.79 6 4021.30 3888.46 3908.31 4047.67 7 4022.12 3889.25 3908.89 a.	3851.24 3990.16 3850.14 3989.42 4012.42 a 3879.29 b 3849.04 3988.69 4011.62 3878.39 3847.94 3987.95 4010.83 3877.49 3846.84 3987.22 4010.03 3876.59 3845.73	4253.99 4337.78 a 4363.70 4231.55 b 4254.67 4338.58 4364.57 4232.27 4339.39 4233.19 4255.35 4365.44 4340.20 4234.01 4256.03 4366.31 4341.01 4234.81 4256.70 4367.19 4341.83 4235.61 4257.37	4199.43 4310.10 4197.44 4309.37 4196.45 4332.19 a 4308.64 4225.63 b 4195.45 4331.40 4307.91 4224.76 4194.45 4330.61 4307.19 4223.88 4193.45 4329.83 4223.00

Table XII :

 XII Permanent dipole moments for the singlet, triplet, and quintet states of the molecule YN at R = 1.84Å.

	State 2s+1 Λ	|μ|(Debye)	/	State 2s+1 Λ	|μ|(Debye)	/
	X 1 ∑ +	5.186 a 8.19 theo b	36.7%	(1) 3 Π	3.840 5.52 theo b	30.4%
	(1) 1 ∑ +	6.552		(2) 3 Π	3.793	
		10.64 theo b	38.4%			
	(1) 1 Δ	4.113		(3) 3 Π	0.812	
	(2) 1 Δ	3.466		(1) 3 Φ	5.835	
	(1) 1 Π	3.352		(2) 3 Φ	1.249	
		5.33 theo b	37.1%			
	(1) 1 Φ	3.825		(3) 3 Φ	0.059	
	(2) 1 Π	7.159		(1) 5 Δ	3.866	
	(1) 1 ∑ -	3.722		(2) 5 Δ	0.986	
	(1) 3 Σ +	3.356		(1) 5 Π	1.884	
	(2) 3 Σ +	3.213		(2) 5 ∏	0.451	
	(1) 3 Δ	4.014		(1) 5 Φ	4.103	
	(2) 3 Δ	4.014				
	a. Values of the present work	b. Ref [21]		
	Note: (theo) corresponds to theoretical results.		

  Fig.15: Potential energy curves for the 4 Σ ± and 4 Δ states of the molecule ZrN.
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Table XIV :

 XIV Spectroscopic constants for the lowest lying 21 doublet and quartet states of the molecule ZrN. Theo and Exp represents theoretical and experimental results in references.

	State	T e (cm -1 )	δT e /T e	ω e (cm -1 )	δω e /ω e	B e ×10 -1 (cm -1 )	δB e /B e	D e × 10 7 (cm -1 )	δD e /D e R e (Å)	δR e /R e
	X 2 Σ +	0 a		982.79 a		4.626			4.094		1.731 a
		0 b,c,d,e,f ,g,h,i, j, k		1015 Theo b	3.1%	4.7816 Exp e	3.2%	4.55 Exp e	10%	1.7023 Exp b	1.7%
				1002.6 Exp c	1.9%	4.8052 Exp f	3.7%	4.54 Exp f	9.8%	1.6943 Exp e	2.1%
				1002.2 Exp d	1.9%	4.7981 Exp g	3.5%	4.515 Exp g	9.3%	1.6954 Exp h	2.1%
				1030 Exp d	4.5%	4.8406 Exp h	4.4%	4.53 Exp h	9.6%	1.7 Exp i	1.8%
				991 Exp j	0.8%	4.83 Exp i		2.1%		
	(1) 2 Δ	7580.02		920.97		4.509			4.322		1.754
		8531 Theo b	11%	944 Theo b	2.4%						1.7228 Theo b 1.8%
	(2) 2 Δ	17494.25		727.12		4.108			5.329		1.838
	(2) 2 Σ +	17595.15		959.83		4.133			3.060		1.833
		16228 Theo b	8.4%	935 Theo b	2.6%	4.587 Exp i	9.8%			1.7789 Theo b 3.0%
	(3) 2 Δ	20905.95		867.13		4.156			3.798		1.828
	(3) 2 Σ +	23604.08		783.84		4.461			5.781		1.767
		25844 Theo b	8.6%	830 Theo b	5.5%	4.587 Exp b	2.7%			1.7247 Theo b 2.4%
		24670.06 Exp b	4.3%							
		24670 Exp k	4.3%							
	(1) 2 Π	16317.00		929.20		4.621			4.579		1.732
		16747 Theo b	2.5%	1004 Theo b	7.4%	4.5870 Exp b	3.4%	5.61 Exp e	18.3%	1.7000 Theo b	1.9%
		17401 Exp k	6.2%	973 Exp d	4.5%	4.7508 Exp e	2.7%	5.54 Exp f	17%	1.7062 Exp d	1.5%
		17318.76 Exp e	5.7%			4.7601 Exp f	2.9%		
		16905.1 Exp f	3.4%							
	(2) 2 Π	17904.42		1415.93		4.184			1.468		1.822
	(1) 2 Φ	16879.49		746.89		3.778			3.869		1.916
	(3) 2 Π	19155.01		1408.58		4.009			1.313		1.861
	(2) 2 Φ	20924.10		778.16		3.857			3.793		1.897
	(4) 2 Π	21992.86		948.11		3.907			2.645		1.885
	(1) 4 Δ	16477.72		844.59		4.145			3.989		1.830
		17026 Theo b	3.2%	828 Theo b	2.0%						1.8033 Theo b 1.4%
	(1) 4 Σ +	23730.45		723.81		3.697			3.732		1.939
	(2) 4 Δ	26833.38		764.83		3.786			3.689		1.915
	(3) 4 Δ	29763.96		802.67		3.712			4.126		1.931
	(1) 4 Π	16621.60		763.27		3.851			3.929		1.899
	(1) 4 Φ	16708.48		768.29		3.833			3.820		1.903
	(2) 4 Π	26841.14		787.26		4.056			4.406		1.849
	(3) 4 Π	27476.45		974.42		3.818			2.347		1.907
	(2) 4 Φ	30054.29		780.77		4.034			4.289		1.856
	Ref: a. First entry is for the values of the present work		b. Ref [69]	c. Ref [70]	d. Ref [66]
	e. Ref [65]	f. Ref [64] g. Ref [68]	h. Ref [67]	i. Ref [72]	j. Ref [71]	k. Ref [63]
	Note:									

TABLE XV :

 XV Equilibrium internuclear distances R e , transition energies T e , rotational constants B e , centrifugal distortion constants D e and harmonic frequencies ω e , for Ω states of the molecule ZrN.(n)Ω[(k) 2S+1 Λ]T e (cm -1 ) δT e /T e ω e (cm -1 ) δω e /ω e R e (Å) δR e /R e B e ×10 1 (cm -1 ) δB e / B e D e ×10 7 (cm -1 ) δD e /D e

	(10)5/2[(2) 4 Φ] 27555.51		926.39		1.904		3.828	-2.618
	(11)5/2[((3) 4 ∆] 32258.52		792.59		1.863		4.000	-4.079
	(1)7/2[(1) 4 ∆]	16734.96		494.84		1.879		3.929	-1.027
	(2) 7/2 [(1) 2 Г] 16717.43		704.92		1.895		3.864	-4.651
	(3)7/2 [(1) 4 Φ] 17472.76		952.63		1.863		4.001	-2.826
	(1)1/2 [X 2 ∑ + ] (4)7/2[(1) 2 Φ] (5)7/2 [(2) 2 Φ] 21935.57 0.0 18283.97 (6)7/2 [(2) 4 ∆] 27200.27 (7)7/2 [(3) 4 ∆] 32312.65 (1)9/2[(1) 4 Φ] 17726.03 (2)9/2[(2) 4 Φ] 29650.74 Ref: a. First entry is for the values of the present work 972.12 1015 Theo b 1002.6 Exp c 995 Exp d 1030 Exp d 991 Exp j 4.2% 3.0% 2.3% 5.6% 1.9% 1069.80 904.86 796.33 722.69 1027.23 593.91 16140.43 968.82 (2)1/2[(1) 2 ∏] e. Ref	1.728 a 1.7023 Theo b 1.6943 Exp e 1.6954 Exp h 1.7 Exp i 1.849 1.882 1.882 1.862 1.850 1.903 b. Refs [69] 1.732	1.5% 1.9% 1.9% 1.6%	4.647 4.7816 Theo b 4.7816 Exp e 4.8052 Exp f 4.7981 Exp g 4.8406 Exp h 4.83 Exp i 4.059 3.920 3.915 4.019 4.054 3.836 c. Ref [70] 4.649	2.8% 2.8% 3.3% 3.1% 4.0% 3.7%	-2.362 -4.227 -4.55 Exp e -4.54 Exp f -4.515 Exp g -2.947 -4.061 -4.756 -2.543 -4.53 Exp h -6.399 d. Ref [66] -5.282	7.1% 6.8% 6.3% 6.7%
		17040.05 Exp e 5.2%	958 Exp d	1.1%			4.751 Exp e 2.1%	5.61 Exp e	5.8%
	(3)1/2[(1) 4 ∆]	16154.76		667.04		1.845		4.079	-6.091
	(4)1/2[(2) 2 ∑ + ] 16798.78		853.89		1.902		4.194	-3.947
		16228 Theo b 3.5%	935 Theo b	8.6%	1.7789 Theo b 6.1%	4.587 Exp i	8.4%
	(5)1/2[(2) 2 ∆]	16848.38		716.79		1.891		3.883	-4.560
	(6)1/2[(1) 4 ∏]	16894.09		689.82		1.889		3.891	-4.952
	(7)1/2[(2) 2 ∏]	16994.25		935.16		1.877		3.939	-2.798
	(8)1/2[(3) 2 ∏]	17454.86		976.13		1.861		4.006	-2.704
	(9)1/2[(3) 2 ∑ + ] 20921.51		763.76		1.859		4.225	-5.674
		25844 Theo b	19.0%	830 Theo b	7.9%	1.7247 Theo b 7.7%	4.587 Exp b	7.8%
		24670.06 Exp b	15.2%				
		24670 Exp k	15.2%				
	(10)1/2[(4) 2 ∏] 22120.44		943.80		1.875		3.948	-2.768
	(11)1/2[(2) 4 ∏] 26551.16		607.14		1.843		4.102	-6.540
	(12)1/2[(1) 4 ∑ + ] 26945.11		660.97		1.869		4.142	-7.146
	(13)1/2[(2) 4 ∆] 27146.18		685.01		1.894		4.027	-5.340
	(14)1/2[(3) 4 ∏] 29495.28		547.10		1.888		3.902	-7.684
	(1)3/2[(1) 2 ∆]	7334.31		912.30		1.755		4.508	-4.405
	(2)3/2[(1) 2 ∏]	16582.20		972.64		1.783		4.369	-5.589
		17597.52 Exp e 5.7%	943 Exp d	3.1%		
	(3)3/2[(1) 4 ∆]	16605.82		245.25		1.865		4.199	-6.392
	(4)3/2[(1) 4 Φ]	16973.93		803.36		1.883		3.914	-4.780
	(5)3/2[(2) 2 ∏]	17050.04		956.78		1.874		3.953	-2.702
	(6)3/2[(1) 4 ∏]	17637.56		1002.63		1.855		4.034	-2.628
	(7)3/2[(3) 2 ∆]	19416.51		1177.46		1.859		4.016	-1.882
	(8)3/2[(3) 2 ∏]	21195.56		1034.32		1.865		3.989	-2.383
	(9)3/2[(4) 2 ∏]	23823.43		916.41		1.815		4.198	-4.217
	(10)3/2[(2) 4 ∏] 24869.72		1222.37		1.858		4.019	-1.749
	(11)3/2[(1) 4 ∑ + ] 26803.27		579.65		1.878		3.941	-7.234
	(12)3/2[(2) 4 ∆] 27045.98		703.52		1.897		3.855	-4.636
	(13)3/2[(2) 4 Φ] 27446.06		832.92		1.897		3.857	-3.308
	(14)3/2[(3) 4 ∏] 29320.72		660.25		1.861		4.007	-6.015
	(15)3/2[(3) 4 ∆] 32294.98		816.35		1.863		4.001	-3.856
	(1)5/2[(1) 2 ∆]	7767.43		845.68		1.745		4.559	-5.302
	(2)5/2[(1) 4 ∆]	16631.23		486.85		1.861		4.026	-10.735
	(3)5/2[(1) 4 ∏]	16929.17		709.39		1.890		3.886	-4.662
	(4)5/2[(1) 4 Φ]	17099.05		986.99		1.871		3.967	-2.567
	(5)5/2[(1) 2 Φ]	18094.71		975.88		1.846		4.073	-2.862
	(6)5/2[(3) 2 ∆]	19267.32		1163.36		1.864		3.997	-1.897
	(7)5/2[(2) 2 Φ]	21306.29		1040.98		1.864		3.996	-2.361
	(8)5/2[(2) 4 ∏]	23605.51		1056.1		1.925		3.746	-1.892
	(9)5/2[(2) 4 ∆]	27269.01		720.44		1.898		3.851	-4.429

Table XVI :

 XVI Positions of the crossing and avoided crossings between the different electronic states of the

	molecule ZrN.								
					Crossing Avoided crossing					Crossing Avoided crossing
	State 1	State2 (n 1 )State1 /(n 2 )State2	R c (Å)	R av (Å)	∆E av (cm -1 )	State1 State2 (n 1 )State1 /(n 2 )State	R c (Å)	R av (Å)	∆E av (cm -1 )
	2 Σ + 2 Φ 2 Δ 2 Φ 4 Π 4 Φ 2 Σ +	1/1 1/1 1/1 1/1 2/2	2.43 2.24 2.30 2.28 2.37			2 Σ +	2 Π 2 Φ 2 Π 2 Φ 2 Π	3/2 3/1 3/3 3/2 3/4	1.66 1.67 1.72 1.76 1.77
	2 Δ 2 Σ +	2 2 4 4 4 4 2 2 2 4	Φ Π Δ Π Φ Π Φ Π Φ Σ +	2/1 2/2 2/1 2/1 2/1 2/2 2/1 2/2 2/2 2/1	1.83 1.97 1.51 1.80 1.81 2.49 1.83 1.93 2.09 2.16			2 Φ 2 Π	4 Σ + 4 Δ 4 Π 4 Φ 4 Σ + 2 Φ 4 Δ 4 Π 4 Φ	3/1 3/2 3/1 3/1 2/1 1/1 1/1 1/1 1/1	1.84 1.94 1.67 1.68 2.21 1.86 1.79 1.82 1.82
	2 Δ	4 4 2 Σ + Φ Π 2 Σ + 2 Σ + 2 Π 2 Φ 2 Π 2 Φ 2 Π 4 Σ + 4 Δ	2/1 2/1 2/3 3/4 3/3 3/2 3/1 3/3 3/2 3/4 3/1 3/2	1.81 1.81 1.67/2.15 1.65 1.68 2.76 1.87 2.25 2.01 2.19	1.6 1.96	383	2 Π 2 Φ 2 Π 4 Δ	2 Π 2 Π 2 Φ 4 Δ 4 Π 4 Δ 4 Π 4 Φ 2 Φ 4 + Σ 4 Π 4 Π	1/2 2/3 2/1 2/1 2/1 1/1 1/1 1/1 3/2 3/1 3/2 1/1	1.83 2.03 1.77 1.90 1.96 1.96 1.94 2.12 1.56 1.86	1.82 1.88
		4	Δ	3/3	2.29					4 Φ	1/1	1.87
		4	Φ	3/1	1.64			4	Π	4 Σ +	2/1	1.73
		4	Π	3/1	1.64					4 Δ	2/2	1.89
	2 Π	4 4	Π Π 4 Σ + 4 Δ 4 Δ	3/2 3/3 4/1 4/2 4/3	2.28 2.42 1.99 2.10 2.33			4 Φ 4 Π	4 Π 4 + Σ 4 Δ 4 Δ 4 Δ	2/3 2/1 2/2 2/3 3/2	1.61 1.69 1.88 1.54	1.94

Table XVII :

 XVII Positions of the avoided crossings R AC and the energy difference ΔE AC at these points with the corresponding crossings of Λ states for Ω states of ZrN.

		Ω	(n+1)Ω	R AC (Å)	ΔE AC (cm -1 ) Crossings of Λ states
			/nΩ		
		1/2	2 / 3	1.76	369	(1) 2 Π / (1) 4 ∆
			4/5	1.84	52	(2) 2 ∑ + / (2) 2 ∆
			10 / 11	1.81	52	(3) 2 ∑ + / (4) 2 Π
			10/ 12	2.28	152	(3) 2 ∑ + / (2) 4 ∏
			11 / 12	2.28	347	(4) 2 ∏ / (2) 4 ∏
		3/2	2 / 3	1.76	369	(1) 2 ∏ / (1) 4 ∆
			4 / 5	1.86	52	(2) 2 Σ + / (1) 4 Π
			6/ 7	2.36	96	(1) 4 ∏ / (1) 4 Φ
		5/2	4 / 5	1.82	246	(1) 4 Φ / (1) 2 Φ
			5 / 6	1.88	56	(1) 2 Φ / (1) 2 ∆
	8/ 9 (2) 4 ∏ / (2) Ω 2.24 183 % (Λ-parent) Ω	% (Λ-parent)
	(1)1/2	100% X 2 ∑ +				(12)3/2	100%(2) 4 ∆
	(2)1/2	100% (1) 2 ∏				(13)3/2	88% (2) 4 Φ, 12% (1) 4 ∑ -
	(3)1/2	100% (1) 4 ∆				(14)3/2	99.85%(3) 4 ∏, 0.15% (2) 4 ∆
	(4)1/2	100% (2) 2 ∑ +				(15)3/2	100% (3) 4 ∆
	(5)1/2	52% (2) 2 ∆, 48% (2) 2 ∑ +			(1)5/2	100% (1) 2 ∆
	(6)1/2	100% (1) 4 ∏, 8%(1) 2 Φ			(2) 5/2	100% (1) 4 ∆
	(7)1/2	53% (2) 2 ∏, 39% (1) 4 ∏, 8% (1) 4 Φ		(3)5/2	92% (1) 4 ∏
	(8)1/2	100%(3) 2 ∏				(4)5/2	74% (1) 4 Φ, 24% (1) 4 ∏
	(9)1/2	100%(3) 2 ∑ +				(5)5/2	100% (1) 2 Φ
	(10)1/2	100%(4) 2 ∏				(6)5/2	100%(3) 2 ∆
	(11)1/2	100%(2) 4 ∏				(7)5/2	100% (2) 2 Φ
	(12)1/2	95% (1) 4 ∑ + , 5%(1) 4 Φ			(8)5/2	100%(2) 4 ∏
	(13)1/2	100%(2) 4 ∆				(9)5/2	53% (2) 4 ∆, 10%(2) 4 Φ, 37% (1) 4 ∑ -
	(14)1/2	100%(3) 4 ∏				(10)5/2	100%(2) 4 Φ
	(15)1/2	100% (3) 4 ∆				(11)5/2	100%(3) 4 ∏
	(1)3/2	100% (1) 2 ∆				(12)5/2	100% (3) 4 ∆
	(2)3/2	100% (1) 2 ∏				(1)7/2	100% (1) 4 ∆
	(3)3/2	100% (1) 4 ∆				(2)7/2	96% (1) 4 Φ, 4% (2) 2 ∏
	(4)3/2	100% (1) 4 Φ				(3)7/2	100% (1) 2 Φ
	(5)3/2	87% (2) 2 ∏, 9%(1) 4 ∏, 3.5% (1) 4 Φ, 0.5% (2) 2 ∆	(4)7/2	100% (2) 2 Φ
	(6)3/2	85% (1) 4 ∏, 15% (1) 4 Φ			(5)7/2	53% (2) 4 ∆, 47% (1) 4 ∑ -
	(7)3/2	100% (1) 4 ∏				(6)7/2	100%(2) 4 Φ
	(8)3/2	100%(3) 2 ∆				(7)7/2	100% (3) 4 ∆
	(9)3/2	100%(3) 2 ∏				(1)9/2	100% (1) 4 Φ
	(10)3/2	100%(4) 2 ∏				(1)9/2	100% (1) 4 Φ
	(11)3/2	95% (1)			

4 

∆

The composition in percentage of the Ω state-wave functions in terms of the 2s+1 Λ states calculated at R = 1.72 Å are presented in Table

XVIII

. For each state Ω there is a predominant component Λ with a contribution larger than 80% so that a main parent 2s+1 Λ may be identified. Nevertheless, there are states for which a small but significant contribution of other Λ states is obtained.

Table XVIII:

Composition of Ω-state wave functions of the molecule ZrN, in terms of Λ-states (in percentage) at R = 1.72Å.

4 

∑ + , 5%(1) 4 Φ

Table XXI :

 XXI Values of the eigen-values E v , the abscissas of the turning point R min , R max , and the constants B v , D v for the different vibrational levels of the states (1)1/2 [X 2 ∑ + ], (7)1/2 [(2) 2 ∏], (5)3/2 [(2) 2 ∏] of the ZrN molecule.

Table XXII :

 XXII Permanent dipole moments for the electronic states of the molecule ZrN at R= 1.72Å.

	State 2s+1 Λ |μ|(Debye)	State 2s+1 Λ |μ|(Debye)
	X 2 Σ +	3.190	(4) 2 Π	0.983
	(1) 2 Δ	6.489	(1) 4 Δ	1.954
	(2) 2 Δ	2.063	(1) 4 Σ +	0.730
	(2) 2 Σ +	0.603	(2) 4 Δ	1.270
	(3) 2 Σ +	0.827	(3) 4 Δ	2.977
	(3) 2 Δ	4.399	(1) 4 Π	2.246
	(1) 2 Π	4.712	(1) 4 Φ	2.222
	(2) 2 Π	1.324	(2) 4 Π	0.778
	(1) 2 Φ	1.805	(3) 4 Π	3.255
	(3) 2 Π	1.499	(2) 4 Φ	4.029
	(2) 2 Φ	0.765		

Table XXIII :

 XXIII Internal Molecular Electric Field for the electronic states of ZrN at R = 1.72Å. Borin et. al. [131]. Experimental investigations for this molecule are not available, possibly due to the radioactivity character of Tc [132]. The ground state of neutral TcN has been predicted at the CASPT2 level [131] to be of 3 Δ state with the following spectroscopic constants R e = 1.605Å [131], ω e = 1085cm -1 [131], and μ e = 2.38 Debye [131].

	done by A. C. The electronic structure of the RuN molecule has been well characterized experimentally State 2s+1 Λ ± |E molecular | (GV/cm) State 2s+1 Λ ± |E molecular | (GV/cm) X 2 Σ + 0.310 (1) 4 Δ 0.304 [133-135], and theoretically [136, 137]. The ground state in RuN arises from the full filling of
	(1) 2 Δ (2) 2 Δ δ orbitals in the molecular electronic configuration 5σ 2 2π 4 1δ 4 6σ 1 to give rise to a 2 ∑ + ground 0.119 (1) 4 Σ + 0.214 0.296 (2) 4 Δ 0.201 (2) 2 Σ + 0.376 (3) 4 Δ 0.128 state [133]. The experimental spectroscopic constants determined in the ground state of RuN
	(3) 2 Δ (3) 2 Σ + are respectively; R e = 1.574Å [133], ω e = 1108.32 cm -1 [134]. The ground state in the RhN 0.324 (1) 4 Π 0.284 0.065 (1) 4 Φ 0.288 (1) 2 Π 0.128 (2) 4 Π 0.231 (2) 2 Π 0.345 molecule is of 1 ∑ + symmetry with an experimental bond distance of R e = 1.642Å [138], and a (2) 4 Φ 0.103 (1) 2 Φ 0.299 (3) 4 Π 0.130 calculated harmonic vibrational frequency of 942 cm
	(3) 2 Π	0.318
	(2) 2 Φ	0.321
	(4) 2 Π	0.320

-1 [132]. The permanent electric dipole moment in the ground states of RuN and RhN has been theoretically predicted to be 2.54 Debye and 2.98 Debye from B3BLYP in density functional (DFT) calculations [132]. To the best of our knowledge, for the rest of the transition metal nitrides PdN, AgN, and CdN the experimental and theoretical analysis are limited in literature. Hong et. al. [132] used the method of B3LYP in DFT calculations to investigate the ground states of the molecules PdN, AgN, and CdN. Their results [132] predict the ground state in PdN and CdN to be of 4 ∑ -

Table XXIV :

 XXIV Variation of the values of the equilibrium internuclear distance R e , harmonic vibrational frequency ω e, and permanent electric dipole moment μ e in the ground state of the series of 4d transition metal nitride molecules in the periodic table.The comparisons between the values of the spectroscopic constants R e , ω e , and μ e across the series of 4d transition metal nitrides are shown in Figures22 -24.Across the series of 4d transition metal nitrides from YN to CdN the equilibrium internuclear distance in the ground state (Fig.22) decreases from 1.84Å in YN to reach a minimum at 1.574Å in RuN and then increases again to reach a value of 2.51Å in CdN. The shortest bond length attained in RuN suggests that the bonding in RuN is the strongest among the other 4d transition metal nitrides. For the harmonic vibrational frequency ω e in the ground state of each molecule (Fig.23) it is seen that the value of ω e increases from 656.5cm -1 in YN to 1108.32cm -1 in RuN, and then decreases to reach 161cm -1 in CdN. The polarity in each of the transition metal nitrides is largely determined by the value of the permanent electric dipole moment in the ground state of each molecule. The permanent electric dipole moment in Fig 24 is highest in YN, with a value of 5.186 Debye. Its variation across the series of 4d
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	Fig. 22. Variation of the equilibrium internuclear distance in the ground state of 4d transition metal
		nitrides.	
	1150 ω e (cm -1 )		
	1050			
	950			
	850			
	750			
	650			
	550			
	450			
	350			
	250			
	150			
		YN	ZrN NbN MoN TcN RuN RhN PdN AgN CdN
	5.3 μ (Debye)		
	4.8			
	4.3			
	3.8			
	Metal Nitrides YN 3.3		R e (Å) 1.839 a	μ e (Debye) 5.186 a	ω e (cm -1 ) 656.51 a
	ZrN NbN MoN 2.3 2.8			1.731 a 1.663 b 1.648 d	3.190 a 4.49 c 3.38 d	982.79 a 1075 d 1003 b
	TcN RuN RhN 1.3 1.8			1.605 e 1.574 f 1.642 i	2.38 e 2.54 g 2.98 g	1085 e 942 g 1108.32 h
	PdN AgN 0.8 CdN	YN	1.86 g 2.08 g 2.51 g ZrN NbN MoN TcN RuN RhN PdN AgN CdN 3.10 g 3.14 g 0.908 g	607 g 425 g 161 g
	a. values obtained from the results of the present work, b. Ref [123], c. Ref [127], d. Ref [129], e. Ref [131],
	f. Ref [133], g. Ref [132], h. Ref [134], i. Ref [138].
					104

Fig. 23. Variation of the harmonic vibrational frequency ω e in the ground state of 4d transition metal nitrides. Fig.

24. Variation of the permanent dipole moment μ e in the ground state of 4d transition metal nitrides. transition metals is not continuous. Rather, its value decreases from 5.186 Debye in YN to 3.19 Debye in ZrN and then it abruptly increases to reach a value of 4.49 Debye in NbN, to decrease gradually to a value of 2.38 Debye in TcN. A gradual increase in the dipole moment value is then observed between TcN and AgN. Across the series of 4d transition metals CdN has the lowest dipole moment in its ground electronic state, while the mostly polar bond is that attained in the ground state of YN. The decrease of the dipole moment is an indication

Table XXV :

 XXV Equilibrium internuclear distances R e , transition energies T e , rotational constants B e , centrifugal distortion constant D e , and harmonic frequencies ω e for the 2s+1 Λ ± states of the molecule ZrS. The values of B v and D v are reported in Ref [146] for the v = 0 vibrational level of the (2) 1 Σ + state. i*: The value of T e reported in Ref [150] is that of the v = 0 vibrational level of the state (3) 1 Σ + . The comparison between our values for the spectroscopic constants in neutral ZrS to the experimental values available in literature [146, 147, 150, 156, 158] shows a very good agreement with percentage relative differences of 3.5% (Ref[146]) ≤ δT e /T e ≤ 11.2% (Ref[158]), 1.9% (Ref[158]) ≤ δω e /ω e ≤ 9.4% (Ref[147]), 1.7% (Ref[155, 158]) ≤ δR e /R e ≤ 2.2% (Ref[146]), and 0.1% (Ref[158]) ≤ δD e /D e ≤ 9.2% (Ref[146]) for the states (X) 1 ∑ + ,

	(2) 3 Φ 18688.74		363.36		1.205		5.039		2.429
	(3) 3 Δ	20196.34		733.27		1.095		4.639		2.548
	a. Results of the present work	b. Ref [148]	c. Ref [146]	d. Ref [154]	e. Ref [147]
	f. Ref [156]		g. Ref [152]	h. Ref [153]	i. Ref [150]	j. Ref [155]
	k. Ref [157]		L. Ref [158]						
	Note:										
	Exp corresponds to experimental results, while theoretical results are represented by the methods used (MRCI, MP2, B3LYP, and
	State BPW91). c *:	T e (cm -1 )	δT e /T e	ω e (cm -1 )	δω e /ω e	B e ×10 -1 (cm -1 )	δB e /B e	D e × 10 8 (cm -1 )	δD e /D e	R e (Å)	δR e /R e
	(X) 1 ∑ + 0.0 a		532.44 a		1.464 a		4.429 a		2.203 a
					560 MRCI b	4.9%					2.182 MRCI b	0.9%
					548.34 Exp c	2.8%	1.537 Exp c	4.7%	4.880 Exp c	9.2%	2.1566 Exp c	2.1%
					530 B3LYP d	0.4%			5.19 B3LYP d	14.6%	2.208 B3LYP d	0.2%
					597 MP2 d	10.8%			5.33 MP2 d	16.9%	2.147 MP2 d	2.6%
					548.4 Exp i	2.9%					2.156 Exp g	2.1%
					565.7 B3LYP h	5.8%					2.173 B3LYP h	1.4%
					558.3 BPW91 h	4.6%					2.175 BPW91 h	1.3%
					548.5 MP2 h	2.9%					2.167 MP2 h	1.6%
	(1) 1 Δ	4861.87		496.78		1.421		4.661		2.236
		5520 MRCI b	12%	516 MRCI b	3.7%					2.22 MRCI b	0.7%
	(2) 1 Σ + 12312.78		462.02		1.389		5.041		2.261
		13664.49 Exp c	9.8%	554.73 Exp c	16.7%	1.4482 Exp c* 4.1%	4.9526 Exp c* 1.8%	2.222 Exp j	1.7%
	(1) 1 Г	13236.19		444.30		1.391		5.501		2.259
	(2) 1 Δ	16502.96		453.87		1.373		5.036		2.275
	(3) 1 Σ + 19526.77		456.08		1.390		5.175		2.261
		20242.90 Exp c	3.5%	488.61 Exp c	6.6%	1.4625 Exp c 4.9%	5.106 Exp c	1.3%	2.211 Exp c	2.2%
		20218.90 Exp i*	3.6%	491.8 Exp i	7.3%					
	(3) 1 Δ	24490.67		408.86		1.334		5.696		2.308
	(4) 1 Δ	22328.25		454.69		1.091		2.671		2.552
	(1) 1 Π 10091.62		472.92		1.388		4.786		2.263
		11076 MRCI b	8.8%	491 MRCI b	3.6%					2.25 MRCI b	0.5%
		10836.21 Exp c	6.8%	495.9 Exp c	4.6%	1.4509 Exp c 4.3%	5.0163 Exp c	4.5%	2.219 Exp c	1.9%
		10866 Exp e	6.8%	489 Exp e	3.4%					
		10836.7 Exp e	6.8%							
	(1) 1 Φ 18154.98		464.17		1.382		4.902		2.268
	(2) 1 Π 17917.22		471.35		1.367		4.609		2.279
	(2) 1 Φ 18461.39		351.70		1.195		4.963		2.441
	(3) 1 Π 19061.41		424.07		1.175		3.623		2.458
	(1) 3 ∆	302.65		504.23		1.428		4.587		2.231
		209 MRCI b	45%	522 MRCI b	3.4%					2.216 MRCI b	0.7%
		193.57 MP2 d	56%	557 Exp e	9.4%			4.7821 Exp f		
		338.75 MP2 d	10.6%	527.24 Exp f	4.4%	1.49328 Exp f 4.4%		4.0%	2.1878 Exp f	1.9%
		556.52 MP2 d	45.6%							
		2937.94 B3LYP h	89.7%	529.4 B3LYP h	4.7%					2.214 B3LYP h	0.7%
		4336.96 BPW91 h	93%	523.2 BPW91 h	3.6%					2.212 BPW91 h	0.8%
		8394.12 MP2 h	96.4%	548.5 MP2 h	8.1%					2.209 MP2 h	1.0%
	(1) 3 Σ + 12464.55		470.49		1.389		4.846		2.262
	(2) 3 Δ	13345.50		439.39		1.351		5.102		2.293
		15034.85 Exp L	11.2%	471.05 Exp L	6.7%	1.41326 Exp L 4.4%	5.09585 Exp L 0.1%	2.2489 Exp L	1.9%
	(1) 3 Π 8469.94		484.05		1.405		4.733		2.249
		7890 MRCI b	7.3%	517 MRCI b	6.3%					2.23 MRCI b	0.8%
		8008 Exp e	5.7%	506 Exp e	4.3%					
		8024.2726 Exp f	5.5%	502.6466 Exp f	3.7%	1.46851 Exp f 4.3%	5.0125 Exp f	5.6%	2.20619 Exp f	1.9%
	(1) 3 Φ 10787.88		455.13		1.365		4.909		2.282
		11710 MRCI b	7.8%	436 MRCI b	4.3%					2.27 MRCI b	0.5%
		11730 Exp e	8.0%							
		11608 Exp f	7.0%			1.42067 Exp L				
		11601.79 Exp L	7.0%	472.95 Exp L	3.7%		3.9%	5.1166 Exp L 4.1%	2.243 Exp L	1.7%
	(2) 3 Π 12589.70		464.04		1.364		4.695		2.283
		13324.38 Exp L	5.5%	473.245 Exp L 1.9%	1.4217 Exp L 4.0%	5.1490 Exp L 8.8%	
	(3) 3 Π 18511.91		369.31		1.185		4.862		2.448

TABLE XXVI :

 XXVI Equilibrium internuclear distances R e , transition energies T e , rotational constants B e , centrifugal distortion constants D e , and harmonic frequencies ω e , for Ω states of the molecule ZrS. Exp corresponds to experimental results, while theoretical results are represented by the methods used (MRCI, MP2, B3LYP, and BPW91).

	(7) 2 [(2) 1 ∆] 17286.69		507.35		2.263		1.387		4.165
	(8) 2 [(3) 3 ∏] 18916.91		359.07		2.425		1.209		5.366
	(9) 2 [(2) 3 Φ] 19309.98		356.18		2.417		1.216		5.615
	(n)Ω[(k) 2S+1 Λ] (10) 2 [(3) 3 ∆] 20742.65 T e (cm -1 ) (1) 3 [(1) 3 ∆] 569.48 (1) 0 + [X 1 ∑ + ] 0.0 a (2) 3[(1) 3 Φ] 11100.28 11634.9365 Exp L 4.5% δT e / T e (3) 3 [(2) 3 ∆] 14048.14 15012.1296 Exp L 6.4% (4) 3 [(1) 1 Φ] 18882.96 (5) 3 [(2) 3 Φ] 19054.61 (6) 3 [(2) 1 Φ] 20002.13 (1) 4 [(1) 3 Φ] 11568.46 11812.3539 Exp L 2.1% (2) 0 + [(1) 3 ∏ 8628.96 (2) 4 [(1) 1 Γ] 13747.29 (3) 0 + [(2) 1 ∑ + ] 12889.82 13664.49 Exp c 5.6% (3) 4 [(2) 3 Φ] 19588.40 (4) 0 + [(2) 3 ∏] 13078.69 a. Results of the present work b. Ref [148] ω e (cm -1 ) 363.03 498.32 534.01 a 560 MRCI b 548.34 Exp c 530 B3LYP d 597 MP2 d 548.4 Exp i 565.7 B3LYP h 558.3 BPW91 h 548.5 MP2 h 527.3170 Exp L 5.5% δω e /ω e 4.6% 2.6% 0.7% 10.5% 2.6% 5.6% 4.3% 2.6% 457.36 473.8174 Exp L 3.5% 532.84 471.1004 Exp L 13.1% 257.74 376.39 471.95 473.04 471.3077 Exp L 0.4% 484.16 472.17 415.29 554.73 Exp c 25% 432.30 491.45 c. Ref [146] R e (Å) 2.503 2.231 2.234 a 2.288 2.182 MRCI b 2.1566 Exp c 2.208 B3LYP d 2.147 MP2 d 2.278 2.436 2.156 Exp g 2.415 2.173 B3LYP h 2.372 2.175 BPW91 h 2.290 2.167 MP2 h 2.247 2.294 2.275 2.416 2.276 (5) 0 + [(3) 1 ∑ + ] 18890.20 20242.90 Exp c 20256.22 Exp i* 6.7% 6.7% 384.45 488.61 Exp c 491.8 Exp i 21.3% 21.8% 2.434 2.211 Exp c f. Ref [156] g. Ref [152] h. Ref [153] k. Ref [157] L. Ref [158] Note:	δR e / R e 2.4% 3.6% 1.2% 4.0% 3.6% 2.8% 2.7% 3.1% d. Ref [154] B e ×10 1 (cm -1 ) 1.133 1.428 1.423 a 1.49512 Exp L 4.5% δB e / B e 1.357 1.5368 Exp c 7.4% 1.42001 Exp L 4.4% 1.368 1.41521 Exp L 3.3% 1.203 1.218 1.262 1.354 1.42259 Exp L 4.8% 1.407 1.349 1.373 1.4451 Exp c* 5.0% 1.216 1.371 e. Ref [147] D e ×10 7 (cm -1 ) 4.224 4.696 4.845 Exp L 3.1% δD e / D e 4.442 a 4.779 5.087 Exp L 6.0% 4.880 Exp c 9.0% 3.610 5.19 B3LYP d 14.4% 5.154 Exp L 30.0% 5.33 MP2 d 14.8% 1.472 5.079 3.645 4.439 5.184 L 14.4% 4.748 4.408 5.199 3.857 4.9766 Exp c* 4.5% 4.284 10% 1.199 1.4625 Exp c 18% i. Ref [150] j. Ref [155] 4.644 5.106 Exp c 9%
	(6) 0 + [(3) 3 ∏] 19374.87		424.23		2.412		1.222		4.074
	(1) 0 -[(1) 3 ∏] 8608.96		478.15		2.249		1.404		4.851
	(2) 0 -[(1) 3 ∑ -] 9314.32		488.89		2.269		1.379		4.393
	(3) 0 -[(1) 3 ∑ + ] 12831.67		425.07		2.269		1.380		5.808
	(4) 0 -[(2) 3 ∏] 12969.35		499.20		2.275		1.373		4.152
	(5) 0 -[(3) 3 ∏] 19578.32		463.82		2.401		1.232		3.500
	(1) 1 [(1) 3 ∆] 772.77		523.54		2.215		1.445		4.515
			527.0854 Exp L 0.6%			1.49151 Exp L 3.1%	4.767 Exp L 5.3%
	(2) 1[(1) 3 ∏] 8817.85		666.34		2.249		1.404		4.956
	(3) 1 [(1) 3 ∑ -] 9403.49		459.60		2.269		1.381		4.981
	(4) 1[(1) 1 ∏] 10493.76		456.65		2.268		1.381		5.051
	11076 MRCI b	5.2%	491 MRCI b	7.0%	2.25 MRCI b	0.8%			
	10836.21 Exp c	3.2%	495.9 Exp c	8.0%	2.219 Exp c	2.2%	1.4509 Exp c	4.8%	5.0163 Exp c 0.7%
	10866 Exp e	3.4%	489 Exp e	6.6%					
	10836.7 Exp e	3.2%							
	(5) 1 [(1) 3 ∑ + ] 12811.18		425.79		2.270		1.379		5.776
	(6) 1 [(2) 3 ∏] 12922.49		461.77		2.286		1.359		4.716
	(7) 1 [(2) 3 ∆] 13562.56		467.64		2.302		1.340		4.395
	15043.232 Exp L 9.8%	470.9596 Exp L 0.7%			1.41111 Exp L 5.0%	5.078 Exp L 13.4%
	(8) 1 [(2) 1 ∏] 18843.55		176.47		2.415		1.203		1.061
	(9) 1 [(3) 3 ∏] 19222.71		341.49		2.419		1.214		6.052
	(10) 1 [(3) 1 ∏] 20338.98		462.72		2.385		1.248		3.775
	(11) 1 [(3) 3 ∆] 20759.05		515.63		2.489		1.147		2.329
	(12) 1 [(4) 3 ∏] 20951.89		495.97		2.442		1.191		2.752
	(1) 2 [(1) 3 ∆] 283.21		502.96		2.229		1.429		4.607
			527.222 L	4.6%			1.49329 Exp L 4.3%	4.775 Exp L 3.5%
	(2) 2 [(1) 1 ∆] 5218.67		510.55		2.236		1.421		4.404
	5520 MRCI b	5.4%	516 MRCI b	3.7%	2.22 MRCI b	0.7%			
	(3) 2 [(1) 3 ∏] 9060.69		469.09		2.248		1.405		5.044
	(4) 2 [(1) 3 Φ] 10635.01		492.99		2.276		1.371		4.248
	11357.061 Exp L 6.3%	474.1487 Exp L 4.0%			1.41948 Exp L 3.4%	5.088 Exp L 16.5%
	(3) 2[(2) 3 ∏] 12989.29		491.70		2.276		1.371		4.265
	(6) 2[(2) 3 ∆] 13896.30		471.12		2.291		1.354		4.470
	15049.4155 Exp L 7.6%	471.0809 Exp L 0.0%			1.41352 Exp L 4.2%	5.089 Exp L 12.1%

Table XXX .

 XXX Leading configurations of the 2s+1 Λ ± states of ZrS at R = 2.23Å. 78% 1σ 2 1π 4 2σ 2 , 5% 1σ 2 1π 4 3π 2 , 5% 1σ 2 1π 4 3σ 2 , 5% 1σ 2 1π 3 2σ 2 2π 1

	Electronic State	Weight
	X 1 ∑ +	

  + state located in our calculations at 12312.78cm -1 arises from a combination of several orbital configurations 22% 1σ 2 1π 4 2σ 1 3σ 1 , 27% 1σ 2 1π 4 3π 2 , 28% 1σ 2 1π 4 1δ 2 , 12% 1σ 2 1π4 

1, 3 ∏ and 1, 3 ∆ states:

The first (1)

3 

∏ and (1) 1 ∏ states, located at 8469.94cm -1 and 10091.62cm -1 above the ground electronic state are in excellent agreement with the experimental results available in Ref

[160, 161, 162]

. The electronic configurations of the lowest lying (1)

1 

∏ and (1) 3 ∏ states arise from the promotion of a 2σ electron on to the virtual molecular orbital 2π 1 . Thus giving the two electronic states (1)

1 

∏ and (1)

3 

∏ the leading molecular orbital configurations 56% 1σ 2 1π 4 2σ 1 2π 1 , 92% 1σ 2 1π 4 2σ 1 2π 1 , respectively. The lowest lying (1) 1 Δ state 1σ 2 1π 4 2σ 1 1δ 1 arises from the promotion of a metal centered (5s) 2σ 1 electron in to the vacant metal (4d ±1 ) 1δ orbital. This places the (1) 1 Δ state at a transition energy of T e = 4861.87cm -1 relative to the ground state, in excellent agreement with previous ab initio calculations

[139]

. The second (2) 3 ∆ state has a configuration that differs from that of the (1) 3 ∆ state by the promotion of an electron from the metal (5s) 2σ 1 orbital into a vacant (4d 0 ) 3σ 1 orbital. This raises the (2) 3 ∆ state in to a higher energy region of 13345 cm -1 above the ground state. Additionally, the (2) 1 ∑

Table XXXIII :

 XXXIII Values of the eigen-values E v , the abscissas of the turning point R min , R max , and the constants B v , D v for the different vibrational levels of the state (1) 1 [(1) 3 ∆].

						1 )
	526.24	2.179 2.288 1.365	3.775	789.26	2.181 2.287 1.424	4.484
	1042.33 2.145 2.332 1.355	4.719	1295.35 2.146 2.329 1.418	4.393
	1524.76 2.123 2.361 1.349	2.919	1801.45 2.123 2.360 1.413	4.541
	2033.76 2.104 2.387 1.349	4.629	2303.08 2.105 2.387 1.408	4.426
	2526.49 2.089 2.410 1.339	3.345	2802.63 2.089 2.409 1.402	4.427
	3024.69 2.077 2.432 1.338	3.970	3299.59 2.078 2.431 1.396	4.193
	3519.01 2.067 2.452 1.328	3.501	3795.77 2.067 2.451 1.389	4.179
	4013.55 2.056 2.471 1.325	3.961	4290.62 2.056 2.471 1.383	4.399
	4504.64 2.046 2.489 1.319	4.172	4782.60 2.046 2.489 1.378	4.692
	4991.07 2.037 2.507 1.315	4.112	5270.39 2.037 2.507 1.374	4.891
	5474.09 2.028 2.524 1.310	4.468	5753.23 2.028 2.524 1.369	4.658
	5951.88 2.020 2.540 1.307	3.534	6231.98 2.020 2.540 1.365	3.844
	6429.69 2.013 2.556 1.302	3.636	6707.89 2.013 2.556 1.363	2.238
	6907.29 2.005 2.572 1.302	2.331	7181.07 2.006 2.572 1.354	4.589
	7391.33 1.998 2.588 1.302	8.730	7651.29 1.999 2.588 1.348	4.616
	7888.95 1.991 2.605 1.312	2.771	8118.57 1.992 2.603 1.343	4.660
	8402.79 1.985 2.622 1.320	-1.301	8582.92 1.986 2.617 1.338	4.704
	8939.67 1.978 2.639 1.333	-2.785	9044.24 1.980 2.629 1.332	4.721
	9493.51 1.971 2.654 1.343	-1.376	9502.50 1.974 2.641 1.327	4.719
	10069.16 1.964 2.671 1.354	-1.954	9957.73 1.969 2.654 1.322	4.719
	10657.93 1.958 2.691 1.364	-7.547	10409.89 1.964 2.677 1.316	4.738
	11262.59 1.952 2.710 1.375	4.989	10858.94 1.959 2.696 1.310	4.758
	11872.65 1.945 2.730 1.362	3.031	11304.81 1.953 2.707 1.304	4.773
	12481.75 1.939 2.749 1.359	8.526	11747.46 1.949 2.718 1.298	4.788
	13058.92 1.934 2.768 1.328	2.353	12186.85 1.945 2.730 1.292	4.776
	13543.15 1.929 2.784 1.261	1.972	12623.08 1.940 2.745 1.286	4.725
	13981.68 1.925 2.798 1.297	-1.800	13056.33 1.936 2.759 1.281	4.649
	14502.69 1.920 2.815 1.337	3.943	13486.88 1.932 2.773 1.275	4.633
	15017.22 1.916 2.831 1.290	2.581	13914.83 1.928 2.786 1.270	4.771
	15459.43 1.912 2.846 1.252	-1.216	14339.94 1.924 2.799 1.264	5.013
	15920.87 1.908 2.861 1.210	1.461	14761.67 1.921 2.814 1.258	5.251
	16113.76 1.906 2.867 1.017	-1.488	15179.65 1.917 2.827 1.252	5.325
	16539.65 1.903 2.883 1.266	1.221	15593.94 1.913 2.841 1.246	5.241
	16979.96 1.899 2.898 1.126	1.068	16004.71 1.909 2.855 1.240	5.310
	17206.10 1.898 2.905 1.013	-8.721	16411.97 1.906 2.868 1.235	5.043
	17576.91 1.895 2.918 1.230	-2.289	16815.74 1.903 2.882 1.229	4.139
	18018.93 1.891 2.933 1.064	1.145	17216.18 1.899 2.896 1.224	5.369
	18288.93 1.889 2.942 1.154	-1.091	17613.49 1.896 2.909 1.219	2.260
	18748.38 1.886 2.959 1.162	7.009	18007.77 1.893 2.923 1.213	-1.947
	19072.04 1.883 2.971 1.052	-8.546	18399.09 1.890 2.936 1.209	0.132
	19412.15 1.881 2.984 1.155	-3.756	18787.34 1.887 2.950 1.201	5.458

  First entry is for the values of the present work, b. Ref [146]. Note: Exp, corresponds to experimental results.

	13072.75 a	2.221 a	2.341 a	1.366 a	5.737 a
	13937.793 Exp b 6.2%		1.44821 Exp b 5.6%	4.9526 Exp b 15.8%
	1 13492.88	2.181	2.382	1.359	4.897
	14460.0 Exp b	6.7%		1.43264 Exp b 5.1%	4.21 Exp b	16.3%
	2 13926.43	2.162	2.423	1.353	5.323
	14949.679 Exp b 6.8%		1.43118 Exp b 5.4%	3.875 Exp b	37.4%
	3 14357.03	2.143	2.443	1.346	4.738
	4 14791.07	2.132	2.475	1.341	5.164
	5 15222.73	2.111	2.497	1.335	4.789
	6 15654.21	2.104	2.521	1.329	5.033
	7 16082.30	2.095	2.543	1.324	3.958
	8 16509.88	2.081	2.560	1.322	1.926
	9 16937.67	2.070	2.581	1.310	4.722
	10 17363.32	2.061	2.592	1.303	4.375
	11 17788.66	2.062	2.611	1.299	4.200
	12 18214.70	2.053	2.623	1.294	4.963
	13 18638.35	2.044	2.645	1.290	5.349
	14 19058.32	2.035	2.662	1.285	5.434
	a.				

Table XXXVII :

 XXXVII Permanent dipole moments for the parent electronic states Λ of the molecule ZrS at R= 2.24Å.

	State 2s+1 Λ	|μ|(Debye)	δμ/μ	State 2s+1 Λ	|μ|(Debye)
	(X) 1 ∑ +	3.811 a		(2) 1 Φ	0.909
		3.86 b	1.3%		
	(1) 1 Δ	3.011		(3) 1 Π	1.216
	(2) 1 Σ +	4.811		(1) 3 ∆	5.100
	(1) 1 Г	7.794		(1) 3 Σ +	0.793
	(2) 1 Δ	5.104		(2) 3 Δ	3.131
	(3) 1 Σ +	4.664		(3) 3 Δ	1.738
		4.71 b	0.9%		
	(3) 1 Δ	1.351		(1) 3 Π	3.943
	(4) 1 Δ	4.397		(1) 3 Φ	6.177
	(1) 1 Π	5.247		(2) 3 Π	6.035
	(1) 1 Φ	5.559		(3) 3 Π	0.910
	(2) 1 Π	5.680		(2) 3 Φ	0.819

a. First entry is for the values of the present work, b. Ref [177]

Table XXXVIII :

 XXXVIII Internal Molecular Electric Field for the electronic states of ZrS at R = 2.23Å.

	then can be generalized to bulk properties [189, 190]. Transition metal sulfides are another
	class of interesting 4d molecules. Unlike the oxides, these species are not well studied
	experimentally or theoretically.		
	State 2s+1 Λ ± |E molecular | (GV/cm) State 2s+1 Λ ±	|E molecular | (GV/cm)
	(X) 1 ∑ +	0.239	(2) 1 Π	0.023
	(1) 1 Δ	0.253	(1) 3 ∆	0.189
	(2) 1 Σ +	0.068	(2) 3 Σ +	0.104
	(1) 1 Г	0.036	(2) 3 Δ	0.038
	(2) 1 Δ	0.081	(1) 3 Г	0.113
	(3) 1 Σ +	0.044	(1) 3 Π	0.124
	(3) 1 Δ	0.066	(1) 3 Φ	0.021
	(4) 1 Δ	0.081	(2) 3 Π	0.023
	(1) 1 Π	0.048	(3) 3 Π	0.194
	(1) 1 Φ	0.006	(2) 3 Φ	0.198

  Table XXXXI along with the available experimental values in literature.

	E (cm-1)							
	35000							
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	2500							
								r (Å)
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								r (Å)
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Table XXXIX :

 XXXIX Positions of the avoided crossings R AC and the energy difference ΔE AC at these points with the corresponding avoided crossings and crossings of Λ states for Ω states of the YS molecule.

	Ω	(n+1)Ω/nΩ	R AC (Å)	ΔE AC	Avoided crossing of	Crossings of
				(cm -1 )	states	states
	3/2	2 / 3	2.42	506.9	(1) 2 and (2) 2	
		2 / 5	2.86	132.6		(2) 2 /(1) 4
		3 / 5	2.71	132.8	(2) 2 and (4) 2	
		1 / 2	2.56	415.4		(1) 2 / (1) 2
	1/2	2 / 4	2.43	334.7	(1) 2 and (2) 2	
		2 / 5	2.86	672.2		
		4 / 6	2.71	527.2		
		3 / 5	2.67	548.5		

Table XXXX :

 XXXX Composition of Ω-state wave functions of the molecule YS, in terms of Λ-states (in percentage) at R = 2.32Å

	Ω	% (Λ-parent)	Ω	% (Λ-parent)
	(1)1/2	99.9 % X 2 Σ +	(11)3/2 62.29% (4) 2 Π; 31.34%(2) 4 Π;6%(1) 4 Σ
	(2)1/2	96.64% (1) 2 Π; 3.36 % (2) 2 Σ +	(12) 3/2 72.3%(2) 4 Π; 22.25%(1) 4 Σ -; 3.2%(4) 2 Π
	(3)1/2	96.69% (2) 2 Σ + ; 3.31% (1) 2 Π	(13)3/2 99%(5) 2 Π; 0.61%(2) 2 Δ; 0.39%(3) 2 Δ
	(4)1/2	100% (2) 2 Π	(14)3/2 99.84%(6) 2 Π; 0.16%(1) 4 Σ +
	(5)1/2	100% (1) 4 Π	(15)3/2 100%(2) 4 Δ
	(6)1/2	99.08% (3) 2 Π; 0.56%(1) 4 Σ + ; 0.12(3) 2 Σ +	(1)5/2	99.99% (1) 2 Δ
	(7)1/2	98.87% (1) 4 Σ + ; 0.38% (1) 4 Π; 0.75%(3) 2 Π	(2)5/2	99.48% (1) 4 Π; 0.16% (1) 4 Δ
	(8)1/2	91.91%(1) 4 Δ; 6.3%(1) 4 Δ; 1.75%(2) 4 Π	(3)5/2	100% (1) 4 Φ
	(9)1/2	96.42%(3) 2 Σ + ; 1.1% (4) 2 Π; 0.53%(5) 2 Π	(4)5/2	98.57%(1) 2 Φ; 1.43(2) 2 Δ
	(10) 1/2 75.21%(1) 4 Σ -; 23.24%(2) 4 Π; 1.54%(1) 4 Δ	(5)5/2	97.56%(1) 4 Δ; 0.6%(2) 2 Π; 0.06%(1) 4 Φ
	(11)1/2 18% (3) 2 Σ + ; 41.16% (4) 2 Π; 9.95%(2) 4 Π;30%(1) 4 Σ -	(6)5/2	97.7%(2) 2 Δ; 2%(2) 2 Φ; 0.3%(1) 4 Δ
	(12) 1/2 86%(2) 4 Π; 12%(1) 4 Σ -; 2%(1) 2 Σ -	(7)5/2	96.33%(2) 2 Φ; 0.92%(4) 2 Π; 1.74%(2) 2 Δ
	(13) 1/2 97.69% (1) 2 Σ -; 1.59%(3) 2 Σ + ; 0.72% (5) 2 Π	(8) 5/2	100%(2) 4 Π
	(14)1/2 98.68%(5) 2 Π; 0.92%(1) 4 Σ -; 0.4%(3) 2 Σ +	(9)5/2	99.97%(3) 2 Δ; 0.03%(3) 2 Φ
	(15)1/2 98.81%(2) 2 Σ -; 0.26%(5) 2 Π; 0.93%(4) 2 Σ +	(10)5/2 97.93%(2) 4 Δ; 1.69%(1) 4 Γ; 0.38%(3) 2 Φ
	(16)1/2 98.3%(4) 2 Σ + ; 1.7%(2) 2 Σ -	(11)5/2 97.74%(1) 4 Γ, 0.4%(3) 2 Φ, 1.86%(2) 2 Δ
	(17)1/2 98%(2) 2 Σ -; 1.78%(4) 2 Σ + ; 0.22%(5) 2 Π	(1)7/2	98.19% (1) 4 Φ; 1.81%(1) 2 Φ
	(18)1/2 99.81%(6) 2 Π; 0.19(3) 2 Σ +	(2)7/2	99.29% (1) 2 Φ; 0.01% (1) 4 Φ
	(19)1/2 100%(2) 4 Δ	(3)7/2	99.45%(1) 4 Δ; 0.55%(2) 4 Π
	(2)3/2	99.71% (1) 2 Π; 0.29% (2) 2 Δ	(4) 7/2	99.22%(2) 2 Φ; 0.38%(1) 2 Φ; 0.4%(1) 4 Σ -
	(3)3/2	99.99% (2) 2 Π	(5)7/2	99.62%(2) 4 Δ; 0.38%(3) 2 Φ
	(4)3/2	99.27% (1) 4 Π; 0.58% (1) 4 Σ + ; 0.15% (3) 2 Π	(6)7/2	96.03%(3) 2 Φ; 3.63%(1) 4 Γ
	(5)3/2	99.92% (1) 4 Φ; 0.08%(1) 4 Δ	(7)7/2	96.03%(3) 2 Φ; 3.63%(1) 4 Γ
	(6)3/2	99.71% (3) 2 Π; 0.09%(1) 4 Σ + ; 0.2%(4) 2 Π	(8) 7/2	100% (3) 2 Φ
	(7)3/2	97.93% (1) 4 Σ + ; 0.47%(3) 2 Π; 0.94%(1) 4 Σ -	(1)9/2	97.88%(1) 4 Γ, 2.08%(3) 2 Φ
	(8)3/2	96.92%(1) 4 Δ; 0.15%(1) 4 Σ -; 2.1%(2) 4 Π		
	(9)3/2	98.56%(2) 2 Δ; 0.99%(4) 2 Π; 0.45%(5) 2 Π;		
	(10)3/2 91.4%(1) 4 Σ -; 7.04%(2) 4 Π; 0.79%(1) 4 Σ +		

Table XXXXI :

 XXXXI Equilibrium internuclear distances R e , transition energies T e , rotational constants B e and harmonic frequencies, ω e , for Ω states of the molecule YS.To the best of our knowledge, there are experimental values for the spin orbit calculations of the YS molecule for only the two states (1) 2 Π 1/2 and the (1) 4 Π 1/2[151, 194]. The comparison between these values and those of the present work shows an excellent agreement. The transition energy T e and the rotational constant B e of the (1) 2 Π 1/2[151] are very close to our calculated values with relative differences of δT e /T e =3.04% and δB e /B e =3.85% respectively.The comparison of our calculated value of R e for the (5)Ω=1/2 [(1)4 Π] state with that ofMcIntyre et al. [192] shows an excellent agreement with a relative difference δR e /R e =4.71%.

	(n)Ω[(k) 2S+1 Λ]	T e (cm -1 )	δT e /T e	R e (Å)	δR e /R e	B e (cm -1 )	δB e /B e	ω e (cm -1 )	δω e /ω e
	(1) 1/2 [X 2 Σ + ]	0.00 a		2.311 a		0.134 a		500.64 a	
				2.2802 (DF) b	1.3%			461 (DF) b	8.5%
				2.2717 (Exp) b	1.4%			492.7 d	1.6%
				2.3003 c	0.5%			508 c	1.4%
	(2) 1/2 [(1) 2 Π] 1 st Min	12907.69		2.356		0.129		505.55	
		13312.744 (v =0) e	3.04%			0.1340093 b	3.85%		
	2 nd Min	12798.84		2.523		0.112		604.12	
	(3) 1/2 [(2) 2 Σ + ]	14104.72		2.371		0.126		440.67	
								449.7 d	2.0%
	(4) 1/2 [(2) 2 Π]	14332.98		2.409		0.123		656.78	
	(5) 1/2 [(1) 4 Π]	18289.45		2.613		0.104		347.72	
				2.49510 b	4.71%			365.3 cb	4.8%
	(6) 1/2 [(3) 2 Π]	18899.59		2.662		0.101		475.75	
	(7) 1/2 [(1) 4 Σ + ]	20065.50		2.609		0.105		304.50	
	(8) 1/2 [(1) 4 Δ]	20787.11		2.619		0.104		417.08	
	(9) 1/2 [(3) 2 Σ + ]	21316.85		2.634		0.103		252.26	
	(10) 1/2 [(1) 4 Σ -]	21418.52		2.619		0.104		367.26	
	(11) 1/2 [(2) 4 Π]	21754.82		2.646		0.102		385.60	
	(12) 1/2 [(2) 4 Π]	22240.70		2.627		0.104		305.83	
	(13) 1/2 [(1) 2 Σ -]	22369.98		2.642		0.102		408.56	
	(14) 1/2 [(5) 2 Π]	22905.37		2.616		0.104		473.20	
	(15) 1/2 [(2) 2 Σ -]	24389.25		2.651		0.102		329.48	
	(16) 1/2 [(4) 2 Σ + ] (17) 1/2 [(2) 2 Σ -] III. E. 3.	24729.93 25679.54		2.754 2.558		0.094 0.109		877.48 661.27	
	(18) 1/2 [(6) 2 Π]	26844.20		2.553		0.109		843.83	
	(19) 1/2 [(2) 4 Δ]	30688.87		2.649		0.102		361.35	
	(1) 3/2 [(1) 2 Δ]	11287.94		2.361		0.128		461.66	
	(2) 3/2 [(1) 2 Π] 1 st Min	13388.89		2.344		0.130		523.28	
	2 nd Min	12885.64		2.501		0.114		591.64	
	(3) 3/2 [(2) 2 Π]	14332.98		2.409		0.123		656.78	
	(4) 3/2 [(1) 4 Π]	18269.57		2.612		0.105		343.17	
	(5) 3/2 [(1) 4 Φ]	18373.58		2.614		0.105		429.76	
	(6) 3/2 [(3) 2 Π]	20088.66		2.636		0.145		285.47	
	(7) 3/2 [(1) 4 Σ + ]	19167.98		2.645		0.102		400.45	
	(8) 3/2 [(1) 4 Δ]	21046.75		2.636		0.103		168.26	
	(9) 3/2 [(2) 2 Δ]	21240.50		2.615		0.104		514.01	
	(10) 3/2 [(1) 4 Σ -]	21665.12		2.552		0.109		409.34	
	(11) 3/2 [(4) 2 Π]	22220.06		2.619		0.104		305.97	
	(12) 3/2 [(2) 4 Π]	22253.21		2.599		0.106		510.38	
	(13) 3/2 [(5) 2 Π]	23072.91		2.726		0.987		76.635	
	(14) 3/2 [(6) 2 Π]	26701.88		2.588		0.107		575.88	
	(15) 3/2 [(2) 4 Δ]	30535.53		2.652		0.120		642.55	
	(1) 5/2 [(1) 2 Δ]	12972.40		2.506		0.114		526.98	
	(2) 5/2 [(1) 4 Π]	18275.41		2.613		0.105		364.31	
	(3) 5/2 [(1) 4 Φ]	18418.89		2.628		0.103		336.18	
	(4) 5/2 [(1) 2 Φ]	18411.94		2.621		0.104		417.90	
	(5) 5/2 [(1) 4 Δ]	20857.19		2.617		0.104		492.60	
	(6) 5/2 [(2) 2 Δ]	21375.56		2.616		0.104		384.13	
	(7) 5/2 [(2) 2 Φ]	21501.41		2.612		0.105		731.26	

The Nature of Bonding in YS In

  the present section we discuss the bonding in the neutral YS molecule. The percentage composition of molecular electronic states in terms of molecular orbital configurations are shown in TableXXXXII. The percentage weights of each molecular orbital configuration are calculated as the squares of the corresponding CI coefficients. Configuration weights lower than 2% percent have been omitted from the results of TableXXXXII. The ground electronic state arises from the distribution of seven valence electrons over the molecular orbital configurations 1σ 2 1π 4 2σ 1 and 1σ 2 2σ 1 1π 3 3π 1 with percentages of 85% and 5%, respectively.

	(8) 5/2 [(2) 4 Π]	21865.52	2.661	0.101	309.40
	(9) 5/2 [(3) 2 Δ]	24464.19	2.649	0.102	602.96
	(10) 5/2 [(2) 4 Δ]	30180.29	2.646	0.102	329.48
	(11) 5/2 [(1) 4 Γ]	30305.22	2.627	0.103	324.53
	(1) 7/2 [(1) 4 Φ]	18353.11	2.614	0.105	424.57
	(2) 7/2 [(1) 2 Φ]	18701.22	2.624	0.104	320.35
	(3) 7/2 [(1) 4 Δ]	21125.70	2.626	0.104	337.05
	(4) 7/2 [(2) 2 Φ]	21682.70	2.626	0.104	355.96
	(5) 7/2 [(2) 4 Δ]	30088.53	2.595	0.106	366.91
	(6) 7/2 [(1) 4 Γ]	30388.10	2.642	0.102	332.72
	(8) 7/2 [(3) 2 Φ]	31501.81	2.595	0.106	615.47
	(1) 9/2 [(1) 4 Γ]	30859.21	2.621	0.103	297.13
	Ref: (a), first entry is for the values of the present work		
	Excited molecular states arise from the promotion of electrons into the active molecular
	orbital space by single and double excitations. In order to completely describe the bonding in
	the ground electronic state of the neutral YS molecule, we calculate in the following section
	the effective bond order EBO, which was given earlier in equation (1) of this chapter. A
	better definition of the effective bond order can be obtained by considering the occupation
	numbers of bonding and antibonding natural orbitals derived from multiconfigurational wave
	functions.				

. The Permanent Dipole Moment of YS The

  expectation values for the permanent electric dipole moments were calculated at the highest level of MRSDCI calculations with the inclusion of spin orbit effects. The results for these calculations at the equilibrium internuclear distance of the ground electronic state are reported in Table XXXXIV. To the best of our knowledge there are no results available in literature on the permanent electric dipole moment in the spin orbit component states of the molecule YS.

					1 (cm -1 )	D v ×10 (cm -1 )
	0	14409.47 a	2.38 a	2.46 a	1.207 a	1.827 a
	1	15020.55	2.35	2.52	1.191	2.475
	2	15578.72	2.33	2.57	1.189	3.028
	3	16100.22	2.31	2.58	1.181	2.979
	4	16603.55	2.30	2.61	1.175	2.993
	5	17097.77	2.28	2.63	1.175	3.083
	6	17584.29	2.27	2.65	1.169	3.010
	7	18064.27	2.26	2.67	1.164	5.491
				(4) 1/2 [(2) 2 Π]	
	v	E v (cm -1 )	R min (Å) R max (Å)	B v ×10 1 (cm -1 )	D v ×10 (cm -1 )
	0	14615.05 a	2.37 a	2.45 a	1.218 a	1.657 a
	1	15260.79	2.34	2.51	1.198	2.594
	2	15825.43	2.32	2.54	1.197	3.057
	3	16351.53	2.30	2.58	1.187	3.023
	4	16856.67	2.29	2.60	1.179	3.295
	5	17346.22	2.28	2.62	1.177	3.071
	6	17828.43	2.26	2.65	1.170	3.276
		a. First entry is for the values of the present work	
	III. E. 5					

Table XXXXIV :

 XXXXIV Permanent electric dipole moments for the electronic states of the molecule YS at R= 2.32Å.

	III. E. 6.									
				State Ω	|μ|(Debye) State Ω		|μ|(Debye)	
			(1) 1/2 [X 2 Σ + ]	6.781	(7) 3/2 [(1) 4 Σ + ]	3.082		
			(1) 3/2 [(1) 2 Δ]	11.822	(7) 1/2 [(1) 4 Σ + ]	0.773		
			(1) 5/2 [(1) 2 Δ]	11.835	(6) 3/2 [(3) 2 Π]	0.775		
			(2) 1/2 [(1) 2 Π]	8.197	(8) 1/2 [(1) 4 Δ]	0.871		
			(2) 3/2 [(1) 2 Π]	8.054	(5) 5/2 [(1) 4 Δ]	0.902		
			(3) 1/2 [(2) 2 Σ + ]	8.012	(8) 3/2 [(1) 4 Δ]	0.884		
			(3) 3/2 [(2) 2 Π]	2.264	(3) 7/2 [(1) 4 Δ]	0.938		
			(4) 1/2 [(2) 2 Π]	2.185	(9) 1/2 [(3) 2 Σ + ]	0.780		
			(4) 3/2 [(1) 4 Π]	5.916	(9) 3/2 [(2) 2 Δ]	0.375		
			(2) 5/2 [(1) 4 Π]	5.977	(6) 5/2 [(2) 2 Δ]	0.463		
			(1) 7/2 [(1) 4 Φ]	6.263	(12) 1/2 [(2) 4 Π]	0.922		
			(5) 3/2 [(1) 4 Φ]	6.415	(12) 3/2 [(2) 4 Π]	0.717		
			(4) 5/2 [(1) 2 Φ]	3.169	(4) 7/2 [(2) 2 Φ]	0.462		
			(2) 7/2 [(1) 2 Φ]	3.078	(7) 5/2 [(2) 2 Φ]	0.857		
			(6) 1/2 [(3) 2 Π]	3.042	(12) 3/2 [(2) 4 Π]	0.726		
	The largest permanent electric dipole moments are those attained in the states (1) 3/2 [(1) 2 Δ],
	and (1) 5/2 [(1) 2 Δ]. In Figure 39 we draw the variation of the permanent electric dipole
	moment in some low lying electronic states of YS as a function of the internuclear distance
	separating Yttrium from Sulfur.						
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		Fig. 39. Variation of the permanent dipole moment in (a.u.) as a function of the internuclear distance
		R (Å) for several low lying states in YS.					

The Internal Molecular Electric Field in YS The

  expectation values of the internal molecular electric fields in units of GV/cm have been calculated at the MRSDCI level calculations for the lowest lying molecular states of YS. These results are shown in Table XXXXV and reported for YS here for the first time in literature.Materials formed from the combination of transition metals with the chemical elements of group 16 in the periodic table, such as oxygen, sulfur, selenium, tellurium and polonium are

	III. F. Comparison between 4d Transition Metal Sulfides MS (M = Y, Zr, Nb, …, Cd)
	called chalcogens. The interest in transition-metal chalcogenicdes evolves primarily from the
	numerous applications of transition metal oxides and sulfides in catalysis, lubricants, support
	materials, superconductors, gas sensors for pollution monitoring and control as well as
	electrode materials in photoelectrolysis [200]. Moreover, transition metal oxides and sulfides

Table XXXXV :

 XXXXV Internal Molecular Electric Field for the electronic states of YS at R = 2.32Å. sulfides of YS and ZrS to the other series of diatomic 4d transition metal sulfides MS, where M stands for Nb, Mo, Tc, Ru, Rh, Pd, Ag, and Cd.

	the transition metal			
	State 2s+1 Λ ± |E molecular |(GV/cm) State 2s+1 Λ ±	|E molecular |(GV/cm)
	X 2 ∑ +	0.126	(3) 2 Π	0.136
	(1) 2 Δ	0.056	(2) 2 Φ	0.132
	(2) 2 ∑ +	0.125	(4) 2 Π	0.049
	(3) 2 ∑ +	0.077	(5) 2 Π	0.027
	(3) 2 Δ	0.076	(1) 4 ∑ +	0.067
	(4) 2 ∑ +	0.021	(1) 4 Δ	0.069
	(1) 2	0.030	(1) 4 Π	0.557
	(1) 2 Π	0.075	(1) 4 Φ	0.562
	(2) 2 Π	0.194	(2) 4 Π	0.236
	(1) 2 Φ	0.121		

Table XXXXVI :

 XXXXVI Variation of the values of the equilibrium internuclear distance R e , harmonic vibrational frequency ω e, and permanent electric dipole moment μ e in the ground state of the series of 4d transition metal sulfide molecules in the periodic table. Note: The sign (-) indicates that to the best of our knowledge there are no results available in literature for the specific values of the permanent dipole moment in RuS, RhS, PdS, AgS, and CdS.

	Metal Nitrides	R e (Å)	μ e (Debye)	ω e (cm -1 )
	YS	2.312 a	6.781 a	500.64 a
	ZrS	2.203 a	3.811 a	532.40 a
	NbS	2.164 b	4.007 b	540 b
	MoS	2.165 c	3.474 d	521 c
	TcS	2.168 d	4.045 d	492 d
	RuS	2.176 e	-	480 e
	RhS	2.159 e	-	470 e
	PdS	2.259 e	-	360 e
	AgS	2.432 e	-	270 e
	CdS	2.356 e	-	331 e
	a. values obtained from the results of the present work, b. Ref [203], c. Ref [232], d. Ref [205],
	e. Ref [200].			

  Across the series of 4d transition metal sulfides from YS to CdS the equilibrium internuclear distance in the ground state (Fig.40) decreases from 2.3116Å in YS to reach a minimum at 2.165Å in MoS and then increases again to reach a value of 2.432Å in AgS. The shortest bond length attained in MoS suggests that the bonding in MoS is the strongest among the other 4d transition metal sulfides. For the harmonic vibrational frequency ω e in the ground state of each molecule (Fig.41) it is seen that the value of ω e is largest in NbS and MoS with a value of 540cm -1 , respectively. The polarity in each of the transition metal nitrides is largely determined by the value of the permanent electric dipole moment in the ground state of each molecule. In Fig 42 we compare the permanent electric dipole moment results for the molecules YS, ZrS, NbS, MoS, and TcS. These results indicate that the least polar bond is that in MoS with a permanent dipole moment of 3.474 Debye. The values of 6.78 Debye reported in YS is the largest among the other values of the permanent dipole moment across the series of transition metal sulfides ZrS, NbS, MoS, and TcS. The increase of the dipole moment is an indication for the increase in the electronegativity difference between the metal and sulfur atoms, and hence a decrease of ionic character across the series of 4d transition metal sulfides. experimental sensitivity for measurements of small variations in the fine structure constant α in laboratory experiments and in S-type stars. A preprint for the results of this work has been requested by an experimental research group working at Yale in the group of Prof. David Demille. In chapter 1, we present a brief overview for the theoretical backgrounds of the computational methods used in the present work. The theoretical backgrounds for the electronic structure calculations in the Hartree-Fock method, followed by Complete Active Space Calculations and Multireference Configuration Interaction methods are written within the formalism of second quantization. A brief discussion for the theoretical background of spin orbit relativistic interactions in diatomic molecules have been also incorporated within the context of the first chapter. With the inclusion of spin orbit effects in the electronic structure calculations further enhancements in the accuracy of nonrelativistic ab initio results could be obtained. In the present work a large number of spin orbit electronic states have been studied for the first time in literature up to 60 states in YN, 49 states in ZrN, 44 states in ZrS, and 54 states in YS. From these results several other properties and spectroscopic constants were also studied here for the first time in literature. The accuracy of the calculated constants in the present work was measured by reporting a percentage relative difference between the present results and the experimental results, whenever available in literature. For the other values reported here for the first time in literature no comparison is made. The calculated values of the internal molecular Chapter Four. Summary and Outlook 156 electric fields in these molecules are reported here for the first time in literature and might help in clarifying the structures of these molecules in a search for a possible electric dipole moment of the electron. We detected several degenerate vibrational energy levels in the ground (1)0 + [X 1 ∑ + ] ∆] states, can be used to enhance the experimental accuracy in measurements for variations in the fine structure constant α. Finally, in an attempt to observe the variation of molecular properties across the series of 4d transition metal nitrides and sulfides, we compare the values in the present work for the equilibrium internuclear distance, permanent electric dipole moment, and harmonic vibrational frequency for the molecules YN and ZrN to the other spectroscopic values across series of 4d transition metal nitrides and sulfides: MN and MS, where M stands for Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd. Dans ce travail, les structures électroniques des molécules lourdes diatomiques polaires du type YN, YS, ZrN et ZrS ont été étudiées à la configuration de l'interaction multireference méthode simple et double suivies par des calculs spin-orbite mis en oeuvre par la méthode des potentiels de coeurs effectifs. Ces calculs ont permis d'obtenir des constantes spectroscopiques précises ainsi que plusieurs propriétés physico-chimiques à quelques pourcent de leur valeur expérimentale. De nombreuses autres propriétés qui n'étaient pas L disponibles dans la littérature ont également été calculées sur la structure électronique de ces molécules. Nous nous attendons à ce que les résultats présentés dans cette thèse inspirent de future études expérimentales pour cette classe de molécules. A titre d'exemple, nous avons trouvé dans la molécule ZrS plusieurs niveaux d'énergie vibratoire dégénérés, ces niveaux pourraient augmenter la sensibilité expérimentale pour les mesures de faibles variations dans la constant de structure fine α et dans les étoiles du type S. De plus, un preprint concernant les résultats de ce travail a été demandé par le groupe de recherche expérimentale dirigé par le professeur David Demille de l'Université de Yale. Dans le chapitre 1 nous présentons un bref aperçu du cadre théorique des méthodes de calcul utilisées dans le travail actuel. Le cadre théorique pour le calcul de la structure électronique avec la méthode d'Hartree-Fock, suivi par les méthodes de calcul de l'espace actif et de l'interaction en configuration multiréférence est celui du formalisme de la seconde quantification. Une brève et les caractéristiques de liaison. Les calculs d'énergie rovibrationnelle ont été effectués en résolvant l'équation de Schrödinger de rotation et de vibration pour l'état fondamental et les états excités de chaque molécule. Avec la prise en compte des effets spin-orbite dans les calculs de structure électronique, on a pu obtenir de nouvelles améliorations sur l'exactitude des résultats non relativistes et ab initio. De nombreux états électroniques de spin-orbite ont été étudiés pour la première fois dans la littérature lors du travail actuel jusqu'à 60 états pour YN, 49 états pour ZrN, 44 états pour ZrS et 54 états pour YS. A partir de ces résultats plusieurs autres propriétés et constantes spectroscopiques ont été étudiées pour la première fois dans la littérature. La précision des constantes calculées dans le travail actuel a été calculé à partir de la différence relative entre les résultats et ceux des expériences, à chaque fois qu'ils s'étatisent disponibles dans la littérature. Il n'y a pas eu de comparaison faite pour les autres valeurs rapportées pour la première fois dans la littérature. Les valeurs calculées du champ électrique moléculaire interne de ces molécules sont rapportées pour la première fois
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In chapter 2, we present the canonical function's approach for solving the vibrational and rotational Schrödinger equation in a diatomic molecule. This has allowed us to compute the vibrational energy structures and rotational constants for the ground and excited electronic states of each molecule.

In chapter 3, we list the results of our calculations for the electronic structures, with and without spin orbit effects, of the four diatomic molecules YN, YS, ZrN, and ZrS. Potential energy curves were constructed and spectroscopic constants were computed. Various other physical properties were also computed such as the permanent electric dipole moment, internal molecular electric fields, and bonding characteristics. Ro-vibrational energy calculations were performed by solving the vibrational-rotational Schrödinger equation in the ground and excited electronic states of each molecule. es calculs ab initio fournissent un outil pour décrire les structures électroniques et les propriétés chimiques des molécules. Les études théoriques peuvent, en général, constituer un point de départ pour des expériences de laboratoire, ou encore aider à comprendre certaines données expérimentales. Ainsi, les études numériques représentent un moyen d'explorer de nouvelles propriétés et ainsi guider de nouvelles expériences.

Les molécules diatomiques polaires sont des candidats appropriés pour des études numériques en raison de la richesse de leur structure électronique et de leur importance dans de nombreux domaines: chimie, astrophysique, interaction à très basses températures ou encore le calcul quantique moléculaire. Les structures électroniques des petites molécules diatomiques sont à présent bien connues, cependant les structures électroniques des molécules diatomiques polaires lourdes contenant un atome de métal de transition des groupes III et IV ne sont "pas complètement comprises". L'objectif principal de cette thèse est de combler cet écart "en étudiant" les structures électroniques des nitrures de métaux de transition ainsi que les sulfures d'yttrium et le zirconium. discussion sur la théorie de l'interaction spin-orbite pour les molécules diatomiques relativistes a également été intégrée dans le premier chapitre. Dans le chapitre 2, nous présentons l'utilisation de la fonction canonique pour la résolution de l'équation de Schrödinger pour les modes de vibration et de rotation d'une molécule diatomique. Cela nous a permis de calculer les énergies vibrationnelles des structures et les constantes de rotation pour l'état fondamental et les états électroniques excités de chaque molécule. Dans le chapitre 3, nous présentons les résultats de nos calculs pour les structures électroniques, avec et sans effet spin-orbite, de quatre molécules diatomiques YN, YS, ZrN et ZrS. Les courbes d'énergie potentielle ont été tracées et les constantes spectroscopiques calculées. D'autres propriétés physiques ont été calculées comme le moment dipolaire permanent, le champ électrique moléculaire interne 3 Δ] et (1)2[(1) 3 Δ] peuvent être utilisées pour améliorer la précision expérimentale des mesures de variation de la constante de structure fine alpha. Finalement, en tentant d'observer les variations des propriétés moléculaires pour les séries des nitrures et sulfures de métaux de transition 4d on compare les valeurs de la distance internucléaire d'équilibre, du moment dipolaire électrique permanent et de la fréquence de vibration harmonique pour les molécules YN et ZrN calculées dans ce travail aux valeurs spectroscopique pour le nitreuse et sulfures de métaux de transition 4d MN (M = Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd).

Table I :

 I Values of the Eigen-values E v , the abscissas of the turning point R min , R max , and the rotational constants B v , D v for the

	different Vibrational levels of the states (3)1/2[(1) 4 ∆], (3)3/2[(1) 4 ∆], (2)5/2[(1) 4 ∆], (4)1/2[(2) 2 ∑ + ], (7)1/2[(2) 2 ∏] ,
	(5)3/2[(2) 2 ∏], (5)1/2[(2) 2 ∆], (3)5/2[(1) 4 ∏] in ZrN.

Table II :

 II Values of the Eigen-values E v , the abscissas of the turning point R min , R max , and the rotational constants B v , D v for the

	different Vibrational levels of the states (1)7/2[(1) 4 ∆], (2) 7/2 [(1) 2 Г], (4)5/2[(1) 4 Φ], (5)3/2[(2) 2 ∏], (6)3/2[(1) 4 ∏],
	(1)9/2[(1) 4 Φ], (5)5/2[(1) 2 Φ], (7)3/2[(3) 2 ∆] in ZrN.						
	(1)7/2[(1) 4 ∆]				(2) 7/2 [(1) 2			
										7 (cm -1 )
	0	17194.99 1.83	1.95	3.877	4.564	0	17275.99 1.83	1.96	3.870	4.311
	1	17906.51 1.78	2.00	3.849	4.581	1	18004.58 1.79	2.00	3.834	4.068
	2	18614.64 1.76	2.04	3.858	4.786	2	18738.79 1.76	2.04	3.833	3.658
	3	19313.32 1.74	2.06	3.816	3.678	3	19482.87 1.74	2.07	3.788	3.403
	4	20024.83 1.72	2.10	3.805	6.127	4	20232.12 1.74	2.10	3.764	4.089

Table III :

 III Values of the Eigen-values E v , the abscissas of the turning point R min , R max , and the rotational constants B v , D v for the

	different Vibrational levels of the states (8)1/2[(3) 2 ∏], (8)3/2[(3) 2 ∏], (6)1/2[(1) 4 ∏], (10)1/2[(4) 2 ∏], (8)5/2[(2) 4 ∏],
										7 (cm -1 )
	0 18511.16	1.79	1.87	4.105	2.731	0	20108.85 1.80	1.91	4.029	2.578
	1 19388.84	1.77	1.97	3.841	3.764	1	21116.33 1.76	1.94	4.038	3.843
	2 20204.64	1.75	2.01	3.957	3.885	2	21997.58 1.74	2.00	3.921	6.440
	3 21031.03	1.74	2.04	3.874	1.941	3	22738.23 1.72	2.03	3.897	4.150
	4 21897.04	1.72	2.06	3.858	5.335	4	23485.05 1.70	2.07	3.899	5.092
	5 22702.37	1.71	2.09	3.850	2.359	5	24213.59 1.69	2.09	3.861	3.055
	6 23524.51	1.70	2.12	3.801	4.070	6	24957.80 1.68	2.12	3.864	2.790
	7 24327.81	1.68	2.14	3.808	4.509	7	25717.19 1.67	2.13	3.835	2.484
	8 25113.88	1.67	2.16	3.782	3.276	8	26487.78 1.66	2.15	3.806	5.638
	9 25899.26	1.66	2.18	3.772	4.954	9	27220.79 1.65	2.19	3.717	7.125
	10 26666.02	1.65	2.19	3.759	4.453	10 27898.77 1.64	2.22	3.627	5.499

Table IV :

 IV Values of the Eigen-values E v , the abscissas of the turning point R min , R max , and the rotational constants B v , D v for the different Vibrational levels of the states (1) 0 +

		)5/2[(1) 2 ∆]					0 7776.58	1.70	1.81	4.497	4.462
	v	E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 7 (cm -1 ) 1 8676.86	1.66	1.86	4.474	4.617
	0	8275.66	1.71	1.81	4.499	4.447	2 9563.35	1.64	1.89	4.452	4.741
	1	9178.12	1.66	1.85	4.477	4.611	3 10436.19 1.62	1.92	4.421	4.871
	2 10066.45									

Table V :

 V Values of the Eigen-values E v , the abscissas of the turning point R min , R max , and the rotational constants B v , D v for the different Vibrational levels of the states (1) 1 [(1)3 

									7
									(cm -1 )
	0	19011.34 1.92	2.01	3.592	2.165	0 20071.52 2.10	2.24	2.954	4.029
	1	19921.05 1.88	2.08	3.526	4.158	1 20572.87 2.05	2.29	2.916	4.979
	2	20643.26 1.85	2.14	3.435	6.918	2 21032.82 2.02	2.38	2.847	5.703
	3	21227.56 1.84	2.19	3.363	3.664	3 21459.75 2.00	2.44	2.800	5.477
	4	21813.59 1.83	2.24	3.299	1.456	4 21871.53 1.98	2.48	2.759	5.158
	5	22254.60 1.82	2.32	3.150	-2.676	5 22273.81 1.97	2.52	2.718	5.075
	6	22753.79 1.81	2.34	3.127	1.648	6 22669.06 1.96	2.56	2.691	3.596
	7	23163.30 1.80	2.40	3.034	-1.087	7 23071.39 1.94	2.58	2.695	1.329
	8	23604.88 1.79	2.44	3.017	9.625	8 23496.38 1.93	2.60	2.707	2.426
	9	24027.01 1.78	2.46	3.006	4.971	9 23932.98 1.92	2.63	2.697	4.298
	10	24451.08 1.77	2.50	2.958	1.016	10 24365.66 1.91	2.65	2.676	3.874
	11	24857.22 1.76	2.52	2.958	5.764	11 24796.60 1.90	2.68	2.665	3.375
	12	25265.17 1.75	2.55	2.941	2.976	12 25228.56 1.89	2.71	2.652	3.908
	13	25676.82 1.74	2.58	2.900	5.244	13 25657.73 1.88	2.73	2.633	3.610

Table VI :

 VI Values of the Eigen-values E v , the abscissas of the turning point R min , R max , and the rotational constants B v , D v for the different Vibrational levels of the states (3) 0 + [(1) 3 ∏], (2) 1[(1) 3 ∏], (10) 2 [(1) 5 Φ], (3) 1 [(1) 1 ∏] in YN.

										7
										(cm -1 )
	0	14433.52 2.04	2.20	3.102	2.994	0	14477.89 2.05	2.18	3.189	3.248
	1	15062.26 2.01	2.22	3.081	3.035	1	15106.92 2.01	2.24	3.166	3.252
	2	15685.73 1.97	2.28	3.080	3.542	2	15732.56 1.98	2.27	3.166	4.032
	3	16290.93 1.95	2.31	3.075	3.751	3	16334.29 1.95	2.31	3.165	4.120
	4	16883.50 1.93	2.33	3.090	6.481	4	16923.94 1.94	2.33	3.179	7.102
	5	17430.00 1.85	2.36	3.177	1.687	5	17468.02 1.86	2.36	3.272	1.834
	6	17874.01 1.82	2.38	3.352	1.356	6	17911.69 1.83	2.38	3.447	1.360
	7	18293.70 1.81	2.40	3.282	-4.977	7	18335.38 1.81	2.40	3.363	-6.382
	8	18772.67 1.79	2.41	3.222	7.401	8	18822.36 1.80	2.41	3.293	6.685
	9	19244.97 1.78	2.44	3.248	7.945	9	19305.60 1.78	2.44	3.307	7.972
	10	19708.95 1.76	2.46	3.205	4.487	10 19780.46 1.76	2.46	3.274	6.682
	11	20172.57 1.74	2.49	3.145	9.132	11 20247.78 1.76	2.49	3.215	1.000
	12	20618.06 1.73	2.52	3.105	7.862	12 20695.75 1.75	2.51	3.174	1.017
	13	21054.41 1.73	2.54	3.095	2.589	13 21130.53 1.74	2.54	3.174	-2.435
	14	21507.51 1.72	2.56	3.108	6.575	14 21584.75 1.73	2.56	3.193	-2.628
	15	21976.84 1.71	2.58	3.117	3.870	15 22058.71 1.72	2.57	3.206	4.298
	16	22450.50 1.70	2.59	3.109	4.146	16 22536.57 1.71	2.59	3.193	6.590

Table VII :

 VII Values of the Eigen-values E v , the abscissas of the turning point R min , R max , and the rotational constants B v , D v for the different Vibrational levels of the states(8) 1 [(3) 3 ∏], (6) 1[(2) 1 ∏], (4) 2 [(1) 3 Φ], (4) 1 [(3) 1 ∏], (12) 1 [(4) 3 ∏], (6) 2 [(1) 3 ∆] in YN. (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 7 (cm -1 ) v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 7 (cm -1 )

	(8) 1 [(3) 3 ∏]				(6) 1[(2) 1 ∏]			
	v E 0 19011.34 1.92	2.02	3.592	2.165	0	17602.30 1.91	2.01	3.596	6.841
	1	19921.05 1.88	2.08	3.526	4.158	1	18068.22 1.85	2.15	3.335	1.132
	2	20643.26 1.85	2.14	3.435	6.918	2	18468.71 1.83	2.21	3.438	1.634
	3	21227.56 1.84	2.18	3.363	3.664	3	18829.25 1.81	2.25	3.280	1.470
	4	21813.59 1.82	2.25	3.299	1.456	4	19131.49 1.81	2.37	2.997	1.152
	5	22254.60 1.82	2.29	3.150	-2.676	5	19420.56 1.79	2.41	3.066	-5.965
	6	22753.79 1.80	2.36	3.127	1.648	6	19769.78 1.79	2.45	3.026	1.037
	7	23163.30 1.80	2.40	3.034	-1.087	7	20111.98 1.78	2.48	3.038	-2.688
	8	23604.88 1.79	2.42	3.017	9.625	8	20494.07 1.77	2.49	3.063	8.821
	9	24027.01 1.78	2.46	3.006	4.971	9	20876.85 1.77	2.51	3.091	-6.425
	10	24451.08 1.76	2.50	2.958	10.165	10 21286.64 1.76	2.52	3.097	2.324
	11	24857.22 1.76	2.53	2.958	5.764	11 21708.10 1.74	2.54	3.070	6.186
	12	25265.17 1.75	2.55	2.941	2.976	12 22130.67 1.72	2.57	3.091	8.378
	13	25676.81 1.75	2.59	2.900	5.244	13 22548.99 1.72	2.58	3.066	6.230
	14	26081.04 1.74	2.62	2.857	3.180	14 22967.48 1.71	2.60	3.075	4.525
						15 23388.71 1.71	2.62	3.044	3.012
						16 23812.26 1.70	2.64	3.019	1.826
						17 24238.28 1.70	2.66	2.976	-5.465
										7 (cm -1 )
	0	20088.35 2.11	2.23	2.954	3.962	0	5369.55 1.91	2.03	3.575	3.464
	1	20595.18 2.05	2.31	2.925	4.173	1	6094.86 1.87	2.08	3.566	3.114
	2	21088.82 2.02	2.35	2.902	2.718	2	6837.86 1.84	2.12	3.566	2.887
	3	21611.78 2.00	2.37	2.924	2.049	3	7596.47 1.82	2.14	3.567	2.771
	4	22167.95 1.98	2.40	2.918	4.357	4	8366.24 1.80	2.17	3.560	3.232
	5	22697.10 1.96	2.44	2.852	6.840	5	9129.04 1.78	2.19	3.546	3.217
	6	23168.80 1.95	2.48	2.774	1.082	6	9885.60 1.77	2.21	3.531	3.167
	7	23537.39 1.94	2.50	2.535	8.877	7	10637.42 1.76	2.23	3.518	3.806
	8	23883.84 1.92	2.52	2.760	-15.26	8	11371.95 1.75	2.25	3.479	5.157
	9	24409.83 1.91	2.58	2.876	1.040	9	12064.28 1.74	2.28	3.391	1.123
	10	24964.56 1.90	2.60	2.848	9.351	10 12636.82 1.73	2.36	3.179	1.395
	11	25440.13 1.89	2.64	2.592	3.241	11 13124.36 1.72	2.38	3.201	-5.943
	12	25762.01 1.88	2.68	2.531	-1.804	12 13693.04 1.72	2.39	3.250	3.940
	13	26174.51 1.88	2.73	2.620	1.303	13 14268.03 1.71	2.42	3.231	2.388
	14	26545.47 1.87	2.76	2.456	8.315	14 14851.77 1.70	2.44	3.234	3.178
	15	26892.93 1.86	2.80	2.491	-7.995	15 15437.13 1.69	2.46	3.201	5.483
	16	27252.97 1.86	2.84	2.416	1.530	16 16007.54 1.69	2.48	3.175	2.682
	17	27574.32 1.85	2.87	2.381	-3.169	17 16581.78 1.68	2.49	3.176	3.065
	18	27909.09 1.84	2.93	2.337	1.868	18 17157.32 1.68	2.52	3.152	4.161
	19	28205.69 1.84	2.96	2.285	2.571	19 17727.14 1.67	2.53	3.139	2.741
	20	28500.63 1.83	3.02	2.211	1.167	20 18299.02 1.67	2.55	3.127	3.881

v (4) 2 [(1) 3 Φ]

Table VIII :

 VIII cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 7 (cm -1 ) v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 7 (cm -1 )Values of the Eigen-values E v , the abscissas of the turning point R min , R max , and the rotational constants B v , D v for the different Vibrational levels of the states

										7 (cm -1 )
	0	18723.77 1.93	2.02	3.574	2.053	0	12252.63 2.15	2.27	2.859	1.723
	1	19659.63 1.89	2.07	3.538	3.450	1	12987.16 2.09	2.30	2.920	1.405
	2	20437.53 1.86	2.15	3.434	7.270	2	13773.10 2.05	2.32	2.955	1.638
	3	21029.03 1.84	2.19	3.344	8.890	3	14565.42 2.03	2.34	2.964	2.601
	4	21482.59 1.83	2.36	2.981	4.476	4	15308.45 1.99	2.36	2.981	3.655
	5	21714.39 1.82	2.40	2.990	-2.144	5	15992.91 1.97	2.38	3.027	4.904
	6	22064.02 1.81	2.46	2.886	1.468	6	16622.80 1.93	2.40	3.074	6.262
	7	22383.93 1.81	2.50	2.931	-1.655	7	17204.17 1.89	2.42	3.158	1.340
	8	22740.79 1.80	2.51	2.917	-1.669	8	17697.64 1.83	2.44	3.303	1.461
	9	23132.57 1.79	2.53	2.963	1.479	9	18148.76 1.81	2.45	3.305	4.426
	10	23545.29 1.78	2.55	2.939	4.972	10 18635.38 1.80	2.46	3.249	7.108
	11	23958.05 1.77	2.57	2.915	6.160	11 19147.53 1.78	2.48	3.210	4.663
	12	24366.94 1.76	2.60	2.898	2.581	12 19661.65 1.76	2.49	3.211	9.103
						13 20159.73 1.75	2.51	3.209	8.894
						14 20641.77 1.74	2.54	3.145	1.041
						15 21095.61 1.73	2.58	3.026	1.308
	(12) 1 [(4) 3 ∏]				(6) 2 [(1) 3 ∆]			
	v E v (0 22211.61 2.04	2.15	3.153	2.270	0	20416.61 1.91	2.04	3.546	4.336
	1	22929.29 2.00	2.27	3.050	9.507	1	21051.25 1.87	2.11	3.496	4.884
	2	23334.18 1.98	2.32	2.927	1.512	2	21642.22 1.86	2.16	3.389	6.355
	3	23810.70 1.96	2.37	2.987	7.141	3	22164.82 1.84	2.24	3.264	1.085
						4	22598.72 1.83	2.29	3.176	3.228
						5	23051.79 1.82	2.34	3.143	7.477
						6	23487.27 1.81	2.38	3.091	3.841

Table IX :

 IX (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 7 (cm -1 ) v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 7 (cm -1 )Values of the Eigen-values E v , the abscissas of the turning point R min , R max , and the rotational constants B v , D v for the different Vibrational levels of the state (2) 0 -[(1) 3 ∏], (2) 0 + [(1) 3 ∏], (2) 1[(1) 3 ∏], (3) 2 [(1) 3 ∏], (3) 0 - [(1) 3 ∑ -], and (3) 1 [(1) 3 ∑ -] in ZrS.

		(2) 0 -[(1) 3 ∏]					(2) 0 + [(1) 3 ∏]			
		v	E v (cm -1 )	R min (Å)	R max (Å)	B v ×10 1 (cm -1 )	D v ×10 7 (cm -1 )	v	E v (cm -1 )	R min (Å)	R max (Å)	B v ×10 1 (cm -1 )	D v ×10 7 (cm -1 )
		0	8653.82	2.19	2.31	2.734	1.803	0	8677.46 2.19	2.30	2.809	1.956
		1	9325.04	2.15	2.37	2.720	1.794	1	9348.53 2.15	2.37	2.794	1.943
		2	9991.77	2.12	2.41	2.703	1.856	2	10015.35 2.12	2.40	2.776	2.011
		3	10649.01 2.10	2.44	2.686	1.771	3	10672.64 2.10	2.44	2.759	1.922
		4	11302.71 2.08	2.47	2.670	1.813	4	11326.23 2.08	2.47	2.742	1.967
		5	11950.12 2.07	2.50	2.652	1.797	5	11973.4 2.06	2.49	2.723	1.950
		6	12590.12 2.06	2.52	2.633	1.710	6	12613.03 2.05	2.53	2.703	1.856
		7	13227.09 2.04	2.55	2.618	1.952	7	13249.58 2.04	2.55	2.688	2.105
		8	13855.89 2.03	2.58	2.604	1.963	8	13878.23 2.03	2.58	2.674	2.122
		9	14477.08 2.02	2.60	2.588	1.999	9	14499.33 2.02	2.60	2.658	2.176
		10	15090.48 2.01	2.62	2.574	2.068	10 15112.37 2.01	2.62	2.642	2.237
		11	15695.16 2.00	2.64	2.556	1.964	11 15716.7 2.00	2.64	2.624	2.117
		(2) 1[(1) 3 ∏]					(3) 2 [(1) 3 ∏]			
		v	E v (cm -1 )	R min (Å)	R max (Å)	B v ×10 1 (cm -1 )	D v ×10 7 (cm -1 )	v	E v (cm -1 )	R min (Å)	R max (Å)	B v ×10 1 (cm -1 )	D v ×10 7 (cm -1 )
		0	8857.47	1.92 2.18	2.03 2.31	3.563 2.733	2.222 1.810	0 0	19072.05 1.92 9092.71 2.19	2.02 2.32	3.594 2.732	1.838	2.060
	1	1	19728.46 1.88 9527.1 2.14	2.07 2.37	3.532 2.719	3.721 1.797	1 1	20008.48 1.88 9756.13 2.15	2.07 2.38	3.537 2.715	1.917	4.313
	2	2	20471.91 1.86 10192.54 2.12	2.15 2.40	3.422 2.702	6.914 1.866	2 2	20721.46 1.86 10405.09 2.12	2.14 2.41	3.413 2.690	2.053	6.092
	3	3	21066.11 1.84 10848.15 2.10	2.19 2.44	3.372 2.684	5.207 1.784	3 3	21312.83 1.85 11036.65 2.10	2.20 2.44	3.335 2.671	1.735	5.438
	4	4	21636.44 1.82 11499.86 2.08	2.24 2.47	3.315 2.668	8.146 1.834	4 4	21860.57 1.83 11671.54 2.08	2.26 2.48	3.235 2.658	1.835	7.327
	5	5	22143.21 1.81 12144.62 2.07	2.29 2.50	3.213 2.650	6.647 1.819	5 5	22355.51 1.82 12302.57 2.07	2.30 2.51	3.170 2.640	1.717	6.418
	6	6	22615.01 1.81 12781.19 2.06	2.34 2.52	3.125 2.630	7.972 1.735	6 6	22827.94 1.81 12930.29 2.06	2.36 2.53	3.102 2.624	1.698	9.714
	7	7	23054.41 1.80 13414.08 2.04	2.39 2.55	3.059 2.614	6.877 1.988	7 7	23262.55 1.80 13556.43 2.05	2.39 2.56	3.057 2.606	1.893	5.984
	8	8	23477.29 1.79 14038.06 2.03	2.44 2.58	3.003 2.599	5.729 2.026	8 8	23698.24 1.79 14176.92 2.04	2.43 2.58	3.061 2.596	1.898	6.648
	9	9	23893.66 1.78 14653.35 2.02	2.47 2.60	2.965 2.582	6.391 2.000	9 9	24128.89 1.78 14792.42 2.02	2.47 2.60	3.009 2.581	1.984	7.912
	10 11 10 12 (3) 0 -[(1) 3 ∑ -] 24305.54 1.77 24715.34 1.77 15261.44 2.01 25125.13 1.76 13 25533.08 1.75 v E v (cm -1 ) R min (Å) (6) 2 [(1) 3 ∆] 0 9372.52 2.21 v 1 10035.45 2.17 E 0 20416.61 1.76 2 10699.62 2.14 1 21051.25 1.74 3 11349.95 2.12 2 21642.22 1.73 4 11991.6 2.10 3 22164.82 1.72 5 12633.27 2.08 4 22598.72 1.71 6 13266.01 2.07 5 23051.79 1.70 7 13896.51 2.06 6 23487.27 1.70 8 14521.5 2.05	2.51 2.54 2.62 2.57 2.59 R max (Å) 2.32 2.39 2.49 2.42 2.52 2.46 2.54 2.49 2.57 2.52 2.59 2.54 2.61 2.57 2.63 2.59	2.948 2.934 2.569 2.910 2.885 B v ×10 1 (cm -1 ) 2.685 2.675 3.546 2.660 3.496 2.641 3.389 2.629 3.264 2.614 3.176 2.595 3.143 2.580 3.091 2.562	6.450 5.325 1.992 5.160 5.167 D v ×10 7 (cm -1 ) 1.755 1.697 4.336 1.851 4.884 1.838 6.355 1.642 1.085 1.865 3.228 1.641 7.477 1.744 3.841 1.850	10 24546.20 1.77 11 24962.86 1.76 10 15401.29 2.01 12 25375.73 1.75 (3) 1 [(1) 3 ∑ -] 13 25790.53 1.75 14 26197.27 1.74 v E v (cm -1 ) R min (Å) 0 9431.55 2.21 (11) 1 [(2) 3 ∆] 1 10090.19 2.17 0 20896.09 1.90 2 10751.24 2.14 1 21413.61 1.87 3 11413.74 2.12 2 21909.67 1.85 4 12070 2.10 3 22433.60 1.84 5 12714.45 2.08 4 23271.92 1.82 6 13354.08 2.07 5 23706.16 1.81 7 13988.48 2.06 6 24166.29 1.80 8 14617.21 2.05	2.50 2.53 2.63 2.56 2.59 2.62 R max (Å) 2.33 2.39 2.05 2.42 2.13 2.46 2.17 2.48 2.24 2.51 2.34 2.54 2.38 2.56 2.42 2.59	2.991 2.959 2.569 2.938 2.905 2.869 B v ×10 1 (cm -1 ) 2.684 2.673 3.553 2.661 3.463 2.650 3.377 2.634 3.269 2.617 3.127 2.601 3.135 2.583 3.051 2.565	5.316 5.713 3.729 6.217 D v ×10 7 1.927 (cm -1 ) 5.053 1.774 1.707 1.660 6.395 1.743 6.322 1.863 3.034 1.726 1.444 1.720 6.420 1.724 6.698 6.159 1.905
		9	15138.87 2.04	2.62	2.546	1.949	7 9 15236.61 2.04 24612.16 1.79	2.44 2.61	3.045 2.547	2.067	2.130
		10	15748.56 2.02	2.64	2.534	1.971	8 10 15845.07 2.02 25072.31 1.79	2.47 2.64	3.013 2.532	2.126	2.712
								9	25536.89 1.78	2.50	2.980	3.090
								10 26001.93 1.78	2.52	2.941	4.525

v

Table X :

 X Values of the Eigen-values E v , the abscissas of the turning point R min , R max , and the rotational constants B v , D v for the Vibrational levels of the state (

  E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 7 (cm -1 ) v E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 (cm -1 ) (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 7 (cm -1 ) 3

										7 (cm -1 )
	0 13024.18 2.22	2.34	2.732	1.642	0 13614.29 2.23	2.36	2.699	2.022
	1 13728.3	2.18	2.40	2.728	1.938	1 14236.79 2.18	2.41	2.691	2.256
	2 14398.79 2.15	2.44	2.708	1.848	2 14840.29 2.15	2.46	2.687	2.212
	3 15060.38 2.12	2.47	2.696	2.017	3 15438.68 2.13	2.49	2.679	1.981
	4 15706.11 2.11	2.49	2.671	2.148	4 16039.14 2.11	2.51	2.663	1.861
	5 16335.24 2.09	2.53	2.655	2.015	5 16643.05 2.09	2.54	2.651	2.083
	6 16956.53 2.08	2.56	2.639	1.939	6 17242.14 2.08	2.56	2.634	2.191
	7 17570.66 2.07	2.59	2.613	2.336	7 17832.43 2.09	2.60	2.612	1.851
	8 18168.93 2.06	2.61	2.592	1.829	8 18421.24 2.06	2.62	2.597	1.913
	9 18762.95 2.05	2.64	2.570	2.403					
	(2) 2 [(1) 1 ∆]					(6) 2[(2) 3 ∆]			
	0 5289.18	2.17	2.30	2.767	1.710	0	13963.06 2.22	2.36	2.644	2.014
	1 5991.08	2.24	2.35	2.754	1.699	1	14564.92 2.18	2.41	2.621	1.608
	2 6689.07	2.10	2.39	2.739	1.706	2	15192.55 2.16	2.45	2.601	1.897
	3 7381.76	2.09	2.42	2.724	1.714	3	15809.95 2.14	2.49	2.590	1.942
	4 8068.69	2.07	2.45	2.709	1.645	4	16415.82 2.12	2.52	2.565	1.660
	5 8752.6	2.06	2.48	2.693	1.674	5	17022.86 2.10	2.54	2.553	1.873
	6 9431.66	2.04	2.50	2.679	1.684	6	17624.19 2.09	2.58	2.537	2.095
	7 10104.96 2.03	2.52	2.664	1.838	7	18213.34 2.08	2.60	2.517	1.451
	8 10770.16 2.02	2.54	2.652	1.859	8	18806.23 2.07	2.62	2.507	1.558
	9 11427.68 2.01	2.57	2.638	1.784	(7) 2 [(2) 1 ∆]			
	10 12079.14 2.00	2.59	2.622	1.794	v	E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 (cm -1 )
	11 12724.16 1.99	2.62	2.606	1.776	0	17336.94 2.21	2.33	2.680	1.826
	12 13363.33 1.98	2.64	2.591	1.797	1	17983.15 2.17	2.39	2.660	2.413
	(2) 4 [(1) 1 Γ]					2	18553.41 2.14	2.49	2.549	7.959
	v E 18916.09 2.13	2.55	2.435	-4.456
	0 13828.05 2.22	2.36	2.708	2.252	4	19352.97 2.12	2.59	2.470	4.233
	1 14421.62 2.18	2.41	2.704	2.050	(3) 3 [(2) 3 ∆]			
	2 15024.11 2.16	2.45	2.678	1.611	v	E v (cm -1 ) R min (Å) R max (Å) B v ×10 1 (cm -1 ) D v ×10 (cm -1 )
	3 15645.76 2.14	2.49	2.656	2.065	0	14125.69 2.22	2.34	2.666	1.383
	4 16257.17 2.12	2.52	2.639	2.108	1	14863.83 2.18	2.39	2.653	1.733
	5 16860.36 2.10	2.55	2.625	1.926	2	15554.75 2.15	2.43	2.641	1.641
	6 17459.9 2.09	2.58	2.602	2.353	3	16234.53 2.13	2.46	2.625	1.592
	7 18043.05 2.08	2.61	2.573	2.314	4	16908.47 2.11	2.49	2.611	1.722
						5	17571.13 2.09	2.52	2.599	1.735
						6	18224.06 2.08	2.54	2.579	1.758
						7	18865.78 2.07	2.57	2.555	2.269

v v

Table XIII :

 XIII Values of the Eigen-values E v , the abscissas of the turning point R min , R max , and the rotational constants B v , D v for the Vibrational levels of the state (9) 1/2 [(3) 2 Σ + ], (10) 1/2 [(1) 4 Σ -], (1) 7/2 [(1) 4 Φ], (5) 3/2 [(1) 4 Φ], (3) 5/2 [(1) 4 Φ], (4) 5/2 [(1) 2 Φ], (2) 7/2 [(1) 2 Φ], (7) 3/2 [(1) 4 Σ + ] in YS. (9) 1/2 [(3) 2 Σ + ] (10) 1/2 [(1) 4 Σ -]

									8 (cm -1 )
	0 20965.66 2.56	2.70	1.024	4.720	0	21071.47 2.56	2.70	1.023	4.769
	1 21266.82 2.52	2.76	1.020	4.688	1	21370.73 2.52	2.76	1.019	4.684
	2 21567.23 2.49	2.80	1.018	3.919	2	21670.13 2.49	2.80	1.018	3.942
	3 21876.22 2.46	2.82	1.019	3.571	3	21977.99 2.46	2.82	1.019	3.613
	4 22193.15 2.44	2.86	1.019	4.734	4	22293.49 2.44	2.86	1.018	4.780
	5 22504.05 2.43	2.88	1.008	7.487	5	22603.10 2.43	2.88	1.008	6.459
	6 22792.87 2.41	2.91	0.997	3.609	6	22897.91 2.41	2.90	1.003	2.125

  -15 year -1 for slight variations of the fine structure constant in laboratory experiments and in S type stars. As a member of the theoretical and computational spectroscopy group of Prof. Miguel Marques I developed an excellent research experience in applying DFT calculations within the abinit code to search for different stable metallic Silicon structures which might have superconducting characteristics. This research work was performed in the past 5 months at the Theoretical and Computational Spectroscopy group of Prof. Miguel Marques at the University of Lyon 1. Please check the following website http://www.tddft.org/bmg/index.php for an overview of our research activities. September 2007 → June 2009 I gained a great research experience during my M.S. studies with my supervisor Prof. Mahmoud Korek in which I applied non-relativistic quantum mechanical calculations for the electronic structure of the diatomic gaseous molecule Yttrium monosulfides YS. October 2003 → June 2006 During my undergraduate studies I participated in building the Murex submarine at the Lebanese International University (LIU), weighing 5 tons the Murex submarine could submerge into a depth of 125 meters with two persons inside, it has been successfully tested several times in the Mediterranean Sea. Summer 2008 I won the first prize at the American University of Beirut (AUB) science fair contest for the project "Energy saving in architectural design of Buildings and concert halls", and I had a
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XXVIII and XXIX together with the internuclear distance R and the energy gap separation ΔE. Chapter 4

Summary and Outlook

b initio calculations provide us with a tool to describe the electronic structures and chemical properties of molecules. Computational studies can in general be carried out in order to find a starting point for laboratory experiments, or to assist in understanding experimental data. Thus computational studies can explore new properties and guide new experimental works. Heavy polar diatomic molecules form suitable candidates for computational investigations, particularly due to their rich inner electronic structures and due to their importance in several areas of science, as chemistry, astrophysics, ultracold interactions, and molecular quantum computing. Although, the electronic structures of small diatomic molecules have been well characterized, still the electronic structures of heavy polar diatomic molecules containing a transition metal atom of group III and IV is far from complete. The main objective of this thesis was to fill the gap and study the electronic structures of the transition metal nitrides and sulfides of Yttrium and Zirconium. In the present work the electronic structures of the molecules YN, YS, ZrN, and ZrS have been investigated at the multireference single and double configuration interaction method followed by spin orbit calculations implemented by the method of effective core potentials. These calculations yielded accurate spectroscopic constants along with several physical and chemical properties that are within a few percent of the experimental values. Many other properties have been also computed that weren't available in literature on the electronic structures of these molecules. We expect that the results in the present work should invoke further experimental investigations for this class of molecules. Note: all numbers below are in cm -1 units of energy.

(1) 3 Σ + 2781.84

(1) 1 [(1) 3 ∑ + ] 2763.17 Table II: Spin Orbit splitting occurring in the electronic states of the ZrN molecule. Note: all numbers below are in cm -1 units of energy.

(1) 2 ∆ 7580

(1) 5/2 (1) 2 ∆ 7767

(1) 3/ 2(1) 2 ∆ 7334

(1) 4 ∆ 16477 ( 
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