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Theoretical Calculations with Spin Orbit Effects of the Diatomic Molecules

YS, YN, ZrS, ZrN

Abstract

This dissertation is dedicated to the ab initio study of the electronic structures of the polar
diatomic molecules YN, YS, ZrN, and ZrS. The identification of these molecules in the spectra
of stars as well as the lack in literature on the electronic structures of these molecules motivated
the present study. Theoretical calculations are useful in this respect since they can provide
important data for the properties of the ground and excited electronic states that are not available
from experimental means. In the present work the ab initio calculations were performed at the
complete active space self-consistent field method (CASSCF) followed by multireference single
and double configuration interaction method (MRSDCI). The Davidson correction noted as
(MRSDCI+Q) was then invoked in order to account for unlinked quadruple clusters. The
calculations were performed on two stages in the first spin orbit effects were neglected while in
the second type of calculations spin orbit effects were included by the method of effective core
potentials. All of the calculations were done by using the computational physical chemistry
program MOLPRO and by taking advantage of the graphical user interface Gabedit. In the
present work potential energy curves were constructed and spectroscopic constants computed,
along with permanent electric dipole moments, internal molecular electric fields, and vibrational-
rotational energy structures. We detected in the ZrS molecule several degenerate vibrational
energy levels which can be used to search for possible variations of the fine structure constant o
and the electron to proton mass ratio p in three S-type stars, named Rand, RCas, and yCyg. A
comparison with experimental and theoretical data for most of the calculated constants
demonstrated a good accuracy for our predictions giving a percentage relative difference that
ranged between 0.1% and 10%. Finally, we expect that the results of the present work should

invoke further experimental investigations for these molecules.
Key Words

Ab initio Calculations, multireference configuration interaction, diatomic molecules, spin orbit
effects, spectroscopic constants, fine structure constant, electric dipole moment of the electron.
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Calculs théoriques avec le couplage spin orbitales pour les molécules diatomiques YS,
YN, ZrS, et ZrN

Abstrait

Cette theése est consacrée a 1'é¢tude ab  initio des structures électroniques des  molécules
diatomiques polaires YN, YS, ZrN, et ZrS. Cette étude est motivé par le manque d’informations
dans la littérature sur la structure €lectronique de ces molécules, alors qu’elles ont clairement été
identifiées dans le spectre de certaines €toiles. Des calculs théoriques sont ainsi nécessaire puis
qu’ils peuvent fournir d'importantes informations quant aux propriétés des états électroniques
fondamentaux et excités qui ne sont pasaccessibles expérimentalement. Dans ce
travail les calculs ab initio ont été effectués par la méthode du champ auto-cohérent de 1'espace
actif complet (CASSCF), suivie par ['interaction de configuration multiréférence (MRSDCI).
La correction de Davidson, notée (MRSDCI+ Q), a ensuite été appliquée pour rendre compte
de clusters ou agrégats quadruples non liés. Les calculs ont été effectués selon deux schémas.
Dans le premier les effets spin-orbite ont été¢ négligés alors que dans le second les effets spin-
orbite ont ét¢ inclus par la méthode des potentiels de noyau efficaces. Tous les calculs ont été
effectués en utilisant le programme de calcul de chimie physique MOLPRO et en tirant parti de
I’interface graphique Gabedit. Les courbes d'énergie potentielle ont été construites et des
constantes spectroscopiques calculées, ainsi que les moments dipolaires électriques permanent,
les champs électriques moléculaire intenses et les structures énergétiques de vibration-rotation.
Nous avons détecté dans la molécule ZrS plusieurs niveaux vibrationnels dégénérés ceux-ci
peuvent étre utilisés pour rechercher les variantes possibles de la constante de structure fine o et
du rapport de masse p de I’electron par rapport au proton dans trois étoiles de type S, du nom
de Rand, les RCas, et yCyg. La comparaison des données expérimentales et théoriques pour la
plupart des constantes calculées a montré une bonne précision pour nos prédictions avec une
différence relative (en pourcentage) qui varie entre 0,1% et 10%. Ces résultats devraient ainsi
mener a des études expérimentales plus poussées pour ces molécules.
Mots-Cles
Ab initio Calculassions, Multireference configuration interaction, Diatomique molécules, Spin
orbite effets, Spectroscopique constants, Fine structure constant, Electric diple moment of the

electron.
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Introduction

Introduction

n recent years, there has been a growing interest in the electronic structure of polar
Idiatomic molecules, particularly due to their importance in astrophysics [1], ultra cold
interactions [2], chemistry [3], quantum computing [4-6], precision measurements [7] and
metallurgy [3]. The recent advancements in computational sciences, have lead to the surge of
interest in using molecules for experimental precision measurements, especially where they offer
new properties that are not available from atoms and atomic ions. Indeed, several diatomic
molecules have been suggested as model systems to test one of the fundamental physical
concepts of the standard model (SM), the constancy of physical laws and the structure of
fundamental interactions. Diatomic molecules such as Cs; [8], CaH, MgH, CaH" [9, 10],Cl,",
IrC, HfF", SiBr, LaS, and LuO [11], that have a near cancellation between the hyperfine structure
and rotational intervals or between the fine structure and vibrational intervals have been
proposed as model systems to test any spatial and temporal variations in two fundamental
constants of the standard model, the fine structure constant o and the electron to proton mass
ratio p. Other polar diatomic molecules such as HfF" [12], HI'[13], YbF [14], PbO [15], ThO
[16], ThF [16], and BaF [17] have been also suggested as laboratory candidates to search for the
electric dipole moment of the electron (éEDM). A fundamental property, whose existence, shall
provide an evidence of CP-violation (charge conjugation and parity) in lepton particles, with
deep implications for our understanding of particle physics and cosmology [18, 20]. In this
regard, diatomic molecules are very promising, particularly due to their large internal electric
field Emer~ 10° V/cm, which is 4 to 5 orders of magnitude larger than any typical laboratory field
in an EDM experiment [19]. In quantum computing, the use of polar arrays of trapped diatomic

molecules as qubits looks very promising, particularly due to the feasibility by which such

1



Introduction

simple systems may be scaled up to form large networks of coupled qubits [20-33]. Many linear

molecules that have a variety of long lived internal electronic states have been proposed as a

mean to address and manipulate qubit states |O>, 1> [34]. Another promising new approach for

realizing a quantum computer is based on using the vibrational states of molecules to represent
qubits [35]. In this approach, quantum logic operations are performed to induce the desired

vibrational transitions [36], where by using more vibrational states it may be possible to
1),[2),]3)...)

[36]. In spectroscopic studies, the electronic structure of transition metal diatomic molecules

represent quantum information units having more than two qubit states (i.e. |0>,

should form a viable tool to test for the abundance of transition metal diatomics in the spectra of
stars [37, 42]. Many transition metal diatomic oxides, sulfides and nitrides have been detected in
the spectra of S and M type stars [43, 44]. Precise spectroscopic data are necessary for a
meaningful search for these molecules in complex stellar spectra. In industrial processes such as
catalysis and organometallic chemistry, Transition metal nitrides are important in the fixation of
nitrogen in industrial, inorganic and biological systems [45, 46]. In high temperature material
applications, within the group of refractory metal nitrides (Ti, Zr, Hf, Nb) titanium and
zirconium nitrides are the most promising hardening additives, which are used for raising the
high-temperature strength of sintered molybdenum and provide high enough ductility parameters
at a temperature up to 2000°C [47]. In ultra-cold interactions the recent experimental
achievements in producing an ultra-cold sample of the heternonuclear diatomic molecule SrF by
researchers at Yale [48] offers a new possibility for producing ultra-cold samples of several
heteronuclear diatomics as the transition metal diatomics of interest in the present work. Such
achievements in ultracold techniques on new molecules are hindered by the lack in the
spectroscopic studies of their electronic structures. In these respects, theoretical investigations
for the spectroscopic properties of heteronuclear diatomic molecules are extremely useful in any
future production of ultracold samples of heteronuclear diatomic molecules. Transition metal
diatomics represent simple metal systems where d electrons participate in the bonding [49].
These molecules provide models for understanding the bonding and reactivity in transition metal
systems [50]. The spectroscopic study of transition metal diatomics is difficult particularly due to
the high density of low-lying electronic states associated with partially occupied d orbitals [51,
52].
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Having seen that the electronic structure of heavy transition metal polar diatomic molecules is an
active area of research with many applications in several areas of science, we decided in the
present work to investigate the electronic structure of the mono-nitrides and mono-sulfides of the
transition metals of group III and IV, Yttrium and Zirconium. Owing to their unfilled 4d shells
the transition metals of group III and IV have a complex electronic structure. Their spectra is less
daunting than other transition metals towards the middle of the periodic table. The metal atom
often has many unpaired electrons that can produce a large number of low-lying electronic states
with high values of spin multiplicity and orbital angular momentum, as well as large spin orbit
interactions. These electronic states may perturb one other, thereby complicating their spectra
and making the experimental analysis very difficult. Theoretical calculations are plagued with
similar problems as it is hard to predict the energy order and properties of the low-lying
electronic states. Electronic correlation effects become important when there are many unpaired
electrons and so these molecules provide a challenge for ab initio calculations. Despite these
difficulties, most of the 4d transition metal monoxides and monocarbides have been well studied
partly due to their importance in astrophysics and as models in understanding the chemical
bonding in simple metal systems. In contrast, little data are available for the corresponding

transition metal nitrides and sulfides (MN, MS).

In this work, we perform ab initio calculations for the electronic structure of the mono-nitrides
and mono-sulfides of Yttrium and Zirconium (YS, YN, ZrN, and ZrS). Relativistic spin orbit
effects were included by the method of effective core potentials (ECP). The potential energy
curves (PEC) for the ground and excited electronic states were constructed as a function of the
internuclear distance R. Then by fitting the calculated potential energy curves in to a polynomial
in R several spectroscopic constants were calculated, such as the transition energy T, relative to
the ground state, the harmonic vibrational frequencies ., the equilibrium internuclear distances
R., and the rotational constants B, and D.. Then based on the calculated PECs vibro-rotational
calculations were performed for the vibrational and rotational energy levels of each molecule.
Various physical properties were also computed, such as the permanent electric dipole moment,
and the internal molecular electric field. The bonding nature in each of the investigated
molecules was also analyzed in terms of molecular orbital configurations. A comparison is made
between the calculated values of the present work for the bond distances, vibrational frequencies

3
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and dipole moments to the remaining series of 4d transition metal mono-nitrides (ZrN, NbN, ...,
CdN) and mono-sulfides (ZrS, NbS, ..., CdS). The comparison between the different species of
transition metal mono-nitrides (MN) and mono-sulfides (MS) should give an idea on the

variation of molecular properties across the series of 4d transition metals in the periodic table.

Throughout this thesis, we try to validate our theoretical results by comparing the calculated
values of the present work to the experimental and theoretical values in literature. The
comparison between the values of the present work to the experimental and theoretical results
shows a very good agreement. The small percentage relative error, of less than 10% reported in
our calculations for all of the molecular constants, reflects the nearly exact representation of the
true physical system by the wave functions used in our calculations. The extensive results in the
present work on the electronic structures with relativistic spin orbit effects of the molecules YN,
ZrN, YS, and ZrS are presented here for the first time in literature. A preprint for the results of
the present work has been requested by an experimental research group working at Yale under

the supervision of Prof. David Demille.
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Chapter One. Many Body Problems in Atoms and Molecules

Chapter One

Many Body Problems in Atoms and Molecules

Computational physical chemistry is primarily concerned with the properties of single
molecules and with their arrangement in periodic trends, homologous series, functional
groups, and crystals. Theoretical calculations have emerged as an important tool for investigating
a wide range of problems in Molecular Physics, Material Science and Chemistry. Within the
recent development of computational methods and more powerful computers, it has become
possible to solve physical and chemical problems that only a few years ago seemed far beyond

the reach of a rigorous quantum-mechanical treatment.

In this section, we turn our attention to the development of approximations which are more
accurate than the independent particle model and can take account of electron correlation effects.
The Hartree-Fock theory followed by the methods of Complete Active Space Self Consistent
Field (CASSCF) and Multi-reference Configuration Interaction (MRCI) play a pivotal role in the
development of approximate treatments of correlation effects. A key feature of these calculations
is the use of the method of second quantization. We therefore start by introducing the second

quantization formalism in quantum mechanics.

I. Second Quantization and Many Body Problems

Second quantization forms the basis of a very powerful technique for developing a theoretical
description of many-body systems. Many-particle physics is formulated in the second
quantization representation, which is also known by the occupation number representation. In the

second quantization formalism theoretical expressions are written in terms of matrix elements of
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operators in a given basis and are manipulated using the algebra of creation and annihilation

operators.

In this section, we briefly describe the second quantization formalism giving sufficient details for
the application which we describe. First, let us observe that the Schrodinger equation can be
easily written down for an atom or, more particularly, a molecule of arbitrary complexity. The
difficulty is usually said to lie not in writing down the appropriate eigenvalue problem but in the
development of accurate approximations to the solutions of this molecular Schrodinger equation.
However, the Schrodinger equation for a system of arbitrary complexity has another problem
associated with it, namely, it applies to a fixed number of particles. In other words the
Schrodinger equation applies to systems in which the number of particles is conserved. However,
in many physical processes the number of particles is not conserved and particles can be created
or destroyed. Then there arises the need for a new approach in quantum mechanics, namely the

second quantization approach, which allows for the creation and destruction of particles.

Let us digress and turn our attention to the equations of motion in relativistic quantum
mechanics. In particular, if following Dirac we write down the eigen-problem for the hydrogen
atom, we find a very different set of solutions to those found in the non-relativistic (Schrodinger)
case. Solutions of the Dirac equation for the hydrogen atom lead to a spectrum which is divided
into two branches a positive energy branch and a negative energy branch. The Dirac spectrum for

the hydrogen atom is shown schematically in Figure 1.

Dirac spectrum

Fig.1. The Dirac spectrum for the ground state of the hydrogen atom consists of a positive energy
branch P and a negative energy branch N. A single electron occupies the lowest energy level in
the positive energy branch. The negative energy branch N is assumed to be full of positrons in the
ground state.
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In the non-relativistic formalism, the ground state of the hydrogen atom consists of a single
electron occupying the lowest energy level in the spectrum. In the relativistic formalism, the
ground state of the hydrogen atom consists of a single electron occupying the lowest energy level
in the positive energy branch of the Dirac spectrum. Dirac famously conjectured that this
electron is prevented from decaying into one of the negative energy states because these states
are themselves filled with electrons. A consequence of this conjecture is that even the simple
hydrogenic atom is an infinity many bodied problem. The electrons filling the negative branch of
the Dirac spectrum are not directly observable. They are positrons. A direct consequence of the
Dirac picture is that the number of electrons in a relativistic system is not conserved. A single
excitation can lead to the formation of an electron-positron pair. In the Dirac picture, it is the
total charge of the system which is conserved. Therefore the use of second quantization is

mandatory in the description of many body problems.

The development of quantum electrodynamics saw the introduction of diagrammatic techniques.
In particular, Feynman [1] in a paper entitled “Space Time approach to Quantum
Electrodynamics”, introduced diagrams which provide not only a pictorial representation of the
microscopic processes but also a precise graphical algebra which is entirely equivalent to other
formulations. It is thus not surprising that second quantization and diagrammatic formulations
emerged as a powerful approach to the quantum many-body problem in non-relativistic quantum
mechanics. Having seen that the second quantization approach to quantum mechanics is
extremely useful in many body problems, we now turn our attention to the mathematical

formalism of second quantization.
I1. Ladder Operators in the Simple Harmonic Oscillator

The basic idea behind the second quantization formalism is to rewrite quantum mechanics in
terms of the creation and annihilation operators, which allow for particle creation and

destruction.

It is therefore useful to first review the use of ladder operators in the simple harmonic oscillator.

First we consider the Hamiltonian for the simple harmonic oscillator

1 I
H=—p* + K. (1)

2m 2
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In this section only let us scale the variables so that m = 1, K = 1, and also h =1, to save

writing, so the Hamiltonian is

1 1
H=—p2+—x2, (2)

2 2

and using p = —i0/0x in the Schrodinger’s equation H'¥ = EY | with the given eigenstates

¥,, and eigenvalues &, , we get

W

I 2
———2‘Pn(x)+—x ¥, (x)=8n‘P(x). 3)
2 dx 2
This differential equation can be solved with all the techniques of partial differential equations in

L 1 .
order to find its eigenvalues ¢, =n + —. Instead, we can also solve the eigenvalue problem
2

algebraically by introducing the creation and annihilation operators a” and a, as

1

a:\E(p—ix), 4)

L1

a :\/5(p+ix), (5)
where the + superscript denotes that a” is the Hermitian conjugate of a. We also know the

commutator
[x.p]=xp — px =i, (6)
which follows from the Heisenberg uncertainty principle, and so it is natural to look at the

. . —+
commutation properties of a and a

1

+ . . .

[a,a :|=2[p—lx,p+lx]=—l[x,p]=1. 7
Then the Hamiltonian for the simple harmonic oscillator can be written in terms of the creation

and annihilation operators

1
H=a+a+5, (8)

where also the following commutation relations apply

|:a, a+a:| —aa a—a aa= [a,a+:|a =a, )

and

10
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[a+, a+a:| —atata—atadt =-a* [a+,a] = —a+, (10)
collecting the results, we get
|:a,a+]=l ,|:a,a+a:|=a ,[a+,a+a:|=—a+. (11

Then the Hamiltonian H has the lowest eigenvalue &, with the corresponding normalized

. Now let us consider the state oW, and ask how the Hamiltonian acts on this

eigenfunction ¥ 0 0

state by using the commutation rules to transfer the action of H onto ¥,

H(a¥,)= (a+a + ;ja‘PO - |:a(a+a + ;j - a:|‘I’O =(2 —1)(a%,). (12)

This suggest that oW, is an eigenfunction with energy g9 — 1> but since &,was defined as the

0

lowest energy, then this is not possible, and the only way out is to set a¥,=0. Thus the ground

state eigenfunction is defined by the action of the down ladder operator a, giving a zero

eigenvalue. Similarly
- B +
H(a ‘PO)_(gO +1)(a ‘PO), (13)
so that (a+‘PO)is an eigen function with energy gy +1- Continuing in this way we find a
ladder of eigenstates

+\7 ) ) 1
¥, = (a ) ‘PO with energies ¢, =n +5. (14)

Having seen the importance of the creation and annihilation operators in the simplest case of the

harmonic oscillator, we now focus on the use of the creation and annihition operators in N-body

problems of quantum mechanics.
I11. The Fock Space in Quantum Theory

Consider the N-particle Hamiltonian operator of particles

H= szr(xk)ﬂ y V(xk,xl), (15)
k=1 2 k#l,1=1

with T being the one electron operator term, and V is the two electron contribution to the total
energy. This Hamiltonian operator generates the dynamics of the system through the Schrodinger

equation

11
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v
ih—— = HYV. (16)
ot

For systems with a variable number of particles the explicit dependence on the particle number is
inconvenient. Evolution of the quantum system may be represented in a form independent of the
particle number in a Fock space with the operators written in their second quantized forms.

It is usually convenient to express wave functions of many particle systems as linear

combinations of one particle wave function products of the form
W (x5 0x ) = ZC (L., N)O (31) D2 (12 ).y (7). (17)
n
Thus, if ¥ is symmetric under an arbitrary exchange x;<>x;, the coefficients C(ny,...,ny) must be

symmetric under the exchange nj«<»>ny. A set of N particle basis states with well defined

permutation symmetry is the properly symmetrized tensor product

1
“Pl,...‘I’N>:|\P1>><|‘P2>x...x|‘PN>:W%§p \I’P(1)>><...>< ‘Pp(N)>, (18)

where the sum runs over the set of all possible permutations P. The weight factor & is +1 for

bosons and -1 for an odd permutation of fermions. The inner product of two N-particle states is

(@)@ |y ) =%PZQ§P+Q <<DQ(1)"I’P(l)>.‘.<CDQ(N)“PP(1)>

) AT Y A

where P’=P+Q denotes the permutation resulting from the composition of the permutations P and

Q. Since P and Q are arbitrary permutations, P’ spans the space of all possible permutations as

well. It is easy to see that Eq (19) is nothing but the familiar inner product or Slater determinant
(@) (@] wy)
1,...,‘PN>: : : . (20)

(@y]#)) = (oy]¥y)
Note that the interchange of the coordinates of two electrons corresponds to interchanging two

<®1,...,®N“P

rows in the Slater determinant which changes the sign of the determinant, thus satisfying the
antisymmetry condition. In addition, having two electrons occupying the same spin orbital

corresponds to having two identical columns in the determinant, which makes it zero, as required

by the Pauli principal. Let us denote by |a>a complete set of orthonormal one particle states,

which satisfy

12
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a|f)=0 a){a|=1. 21
(]8)=5,p S|a)el D
N-particle states can then be constructed|a],...aN>. The N-particle states for a system of

fermions are complete and orthonormal

1 N

— Ay,...,Q Oy, Orr|=1, 22
"N

where the sum runs over all the a’s and the operator I is the identity operator in the space of N-

particle states.

We will now consider the more general problem in which the number of particles N is not fixed.
Rather, we will consider an enlarged space of states in which the number of particles is allowed
to fluctuate. Thus let us denote by Hy the Hilbert space with no particles, H, the Hilbert space
with only one particle, and in general Hy the Hilbert space for N-particles. The direct sum of

these spaces H, gives

H=Hy®H ®..®H,,. (23)

which is usually called the Fock space.
An arbitrary state |‘P> in Fock space is the sum over the subspaces Hx.

The subspace with no particles is a one dimensional space spanned by the Vect0r|vac> which is

the vacuum state. The subspaces with well-defined number of particles are defined to be
orthogonal to each other in the sense that the inner product in Fock space
© . .
(o]¥)= ¥ <®<J )“P(J )>, (24)
J=0
vanishes if |CI)> and |‘P> belong to different subspaces.

IV. N-particle wave functions

Let us consider now the problem of a system of N non-relativistic particles. The wave function
for this system is W(xi, Xa,..., Xn). If the particles are identical then the probability density

2 . . .
“I’(xl,xz,...,x N )‘ must be invariant under arbitrary exchanges of the labels that we use to

identify the particles. In quantum mechanics, however, the particles do not have well defined
trajectories. Only the states of a physical system are well defined. Thus even though at some
initial time t( the N particles may be found around a set of positions xy, ..., Xy, they will become

delocalized as the system evolves. Furthermore the Hamiltonian itself is invariant under

13
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permutation of the particles and the probability density of any eigenstate must remain invariant
under any exchange of particle pairs. If we denote by P;; the operator that exchanges the labels of
particles 1 and j, then the wave function must change under the action of Pj;, at most by a phase

factor ¢'’. Hence we must require that

}}-‘P(xl,...xN)=ei6‘I’(xl,...xN), (25)

under a further exchange operation, the particles return to their initial labels and we recover the
original state. This sample argument requires that 8 = 0, or 7. We then conclude that there are
two possibilities, either ¥ is even under particle-permutations, or odd. Systems of identical
particles which have even (symmetric) wave functions relative to a pair wise permutations of the
particles are called bosons. On the other hand systems of identical particles with odd
(antisymmetric) wave functions with respect to pair permutations of particles are called
Fermions. The Hamiltonian operator H for an N-electron system is invariant relative to the
exchange of any two electrons (fermions). So, if Pjj is an operator which permutes the electron

indices i and j, then

1.8 |0, (26)
so that the exact wave function, P, is a solution of the Schrédinger equation

HY =EY, 27)
and P;;'¥ is also a solution since

From the indistinguishability of particles follows that if two coordinates in an N-particle state are
interchanged. The same physical state results and the corresponding state function can at most
differ from the original one by a simple factor A

f;j‘I’ =Y. (29)
If the same two coordinates are interchanged a second time we end with the exact same state

function. Applying P;; to this equation from the left we get

(Pl-- )2 -2 2w -y, (30)

so that A= 1 or A = +1, and we conclude that only two species of particles are thus possible in
quantum mechanics, the so called bosons (A=1) symmetric under particle exchange and fermions

(A=-1) antisymmetric under particle exchange

14
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f;j‘P =+, (1)

For fermions, the antisymmetry requirement of the N particle wavefunction immediately leads to
the Pauli Exclusion Principle stating that two fermions cannot occupy the same state. It thus
explains the periodic table of elements.

In the first quantization approach to quantum mechanics, N-particle wave functions are written
as a single Slater determinant or as a linear combination of Slater determinants which are
convenient for constructing many-electron wave functions that are antisymmetric with respect to

the exchange of any two electrons. These N-electron wave functions |CI)> are written as

Py (xAl ) Py, (XA1 ) Py, (XA1 )
@)= (V12| () 2alr) = on (x| (32)
P4 (‘xAN ) P4, (‘xAN ) @y, (xAN )
or more compactly as
|q>)=(ml)l/2%(—1)ppi]r:v[l% (xAi ) (33)

where @, (X 4 ) represents spin-orbitals and x represents the electronic space and spin

coordinates.

In second quantization, however, N-particle wave functions are written in the occupation number
representation, which is a definition entirely equivalent to Slater determinants. We can

completely specify a Slater determinant by recording which of the spin-orbitals ¢, from a given

set occur in the Slater determinant and which do not. This may be expressed by an occupation

state vector |k>
|k>:‘nl’n2’ ...... ,nm>’ (34)

where the indices n; can have the value 0 or 1 depending on whether the spin-orbital ¢, is

occupied or unoccupied, that is whether it occurs in the Slater determinant or not. Eventually,
each spin orbital could only hold one electron. This is mainly due to restrictions imposed by the

Pauli Exclusion Principle, that no two electrons could have the same four quantum numbers.

15
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The numbers n; are called occupation numbers and their representation of Slater determinants is

accordingly called the occupation number representation.

Number of
Slater Determinant On-Vectors

electrons
@, (1) 0,0,1,0) 1
1@ (1) @.(1) LL0,0) 2
21®,(2) @,(2)
(@) @) @)
3—!ch(2) ®,(2) @,(2) [LoL1) 3
®,(3) @,(3) @,(3)

Fig.2 A comparison between the conventional notation used in first
quantization (Slater Determinants) and its Second Quantization

analogue (On-Vectors).

The Slater determinant wave functions represented above can be written in the occupation
number representation as a product of creation operators acting on the vacuum state |vac>
+ + o+ -1/2
!
apagy ..ay [vac) <> (N1) 7 det|d D | (35)
The Fermi statistics presented in such wave functions can be expressed either in terms of a sign
change arising upon permuting columns of the determinant, or in terms of the fundamental

anticommutation relations among the creation operators

+ o+ ]+ o+
[ai ,ajlr—al- a; +ajal- =0. (36)

It is evident that since an unoccupied state cannot contain the same spin orbital twice (Pauli

Exclusion Principle), then we must demand that ;" | S PO > =0.

The Fermion annihilation operator a,, which is the adjoint of the creation operator a, can be
thought of as annihilating an electron in @, and is defined to yield zero when operating on the

vacuum state.

N-particle states can be written by the action of a product of creation operators on the vacuum

state

16
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_l_
v ()
‘nl,...,l’lN> = ];[1—'
J= én '

Othonormality restrictions must also apply on the ON vectors, in other words, the ON vectors

0,...0). (37)

must also satisfy the following relations

with the Kronecker delta 5,7 defined by
51“ _ 1 wheni=j . (39)
Y 0 wheni # j

V. The Creation and Annihilation Operators in Second Quantization

In second quantization, all operators and states can be constructed from a set of elementary
creation and annihilation operators. In this section we introduce these operators and explore their

basic algebraic properties. In general, the effect of the creation and annihilation operators
(al.+ , ai) on each spin-orbital, can be summarized by

aﬂnl,...,Oi,...,nm> :F(”)i|”l""’li""’”M>

+
a; ‘”1’-'-’11’»-"»’7m> =0

r(n);=(-1) (40)

and

a|...0;...)=0, (41)
where the phase-factor I'(n) depends on the number of electrons found before the created or the
annihilated electron: I'(n) = 1 for an even number of electrons and I'(n) = -1 for an odd number
of electrons.

Sometimes in quantum mechanics, the need of transformations between position space (X, y, z)
and momentum space (py, Py, P»), arises. Then the Fourier transform that changes position space

into momentum space can be written as
[p)=[axf)e P, “2)

17
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and conversely

)= ap p)e P 43)
(27)
Then the creation and annihilation operators themselves obey
O P R e R
(27)
a ; = ddxa ; e_iﬁj, a ; = ddp a ;) eiﬁx. (45)
(p)=Jda(x) (¥)=] " Gral)

(2)

V. 1. Products of Creation and Annihilation Operators

The creation and annihilation operators introduced earlier change the number of particles in a

state and therefore couple ON vectors belonging to different subspaces. We now turn to focus on

the products of creation and annihilation operators a;"and a; which are usually written as

i=j af af |...0;..) =T () a |15, =0 (46)
i< aja} ...,ol.,...oj,...>=r(n)l.r(n)j|...,1l.,...,1j,...>=o, @7)
with the anticommutator relations given by
[a;,a;l_ =a;ra}-L + a;a;r =0 (48)
|:ai+,aj:|+=ai+aj +ajai+=5ij' (49)

Then by conjugating the last expression, we get the anticommutation relations

ES

o | =qa;+aje =0, (50)

These anticommutation rules (48)-(50) are very important in second quantization, particularly
since all other operators in quantum mechanics can be constructed from a simple product of
these operators. For example, the number operator (N), which counts the number of electrons,

can be written as a simple product of a creation and an annihilation operator

Np=dya, (51)
N k) = apap k)=, [k)=kp ). (52)

18
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or as a product of these operators

M +
NP =pZ:1apap, (53)

which would simply count the number of particles.
VI. Configuration State Functions

In the first quantization formalism of quantum mechanics, N-particle fermion wave functions
were expressed by using the conventional notation of Slater determinants. Slater determinants
however are eigen functions of the projected spin operator S,, only. The exact nonrelativistic
wave function of the Schrédinger equation is an eigen function of the total and projected spins
(S, S?). Such spin adapted functions are called configuration state functions (CSF), which can be
constructed from a linear combination of Slater determinants as
|CSF) = ¢ i), (54)

where the |i>s represent Slater determinants, with coefficients C; fixed by the spin symmetry of

the wave function. In order to distinguish between orbitals of different occupancies, we use the
following conventions: orbitals that are doubly occupied in all determinants are called inactive
and are labeled by i, j, k. Partially occupied orbitals are known as active and are distinguished by
the labels v, w, x, y, z. For the virtual orbitals, which are unoccupied in all determinants, we use

the indices a, b, ¢, d. Within the occupation number representation, each determinant |z' > in (54)

is written as a product of creation operators working on the vacuum state, and (54) reads
+ + *
|CSF> = ];[al-aal. |vac> =Ac |vac>, (55)
where we used the core creation operator
+
+ +

Other CSFs of different multiplicities and occupancies can be constructed

)S,MS +

|CSF>S’MS _ Q;MX A: |vac>=(a.Jr a; Ac vac> 57

1o 1T
S.M,
where va represents the excitation operator, and S and M; represent the total and projected
spins of the wave function, respectively. For example the following CSF

11 LI + At At At At
|CSF> T =0y Ac |vac>:avaawa (];[ajaaiﬁ)lvac> (58)
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represents a triplet state with two alpha unpaired electrons, giving a total spin of S = 1, a

projected spin of M = 1 and a multiplicity of 2S+1=3.
VII. The Representation of One and Two Electron Operators

Expectation values correspond to observables and should therefore be independent of the
representation given to the operators and states. Then we require that the second quantization
representation of one and two electron operators must be equivalent to its counterpart in first
quantization. An operator in the Fock space can be thus constructed in second quantization by
requiring its matrix elements between ON vectors to be equal to the corresponding matrix

elements between Slater determinants of the first quantization operator.
In first quantization one electron operators (kinetic energy) are written as
N
c c
fo=xf (x;). (59)
1=
where the summation runs over all N electrons of the system. The superscript ¢ indicates that we
are working in the coordinate representation of first quantization. The second quantization
analogue of (59) is
/=% Ipoipag: (60)
#o’Po?P0
where the operators a;aQ shift a single electron from the orbital @ in to orbital ®p. Eventually,

the summation in (60) runs over all pairs of occupied spin orbitals. The term Jro in second

quantization could be linked to the first quantization f operator by the relation

* c
Ipo =1®p (x)/* (x) @ (x)dx. (61)
Therefore, the recipe for constructing a second quantization representation of one electron

operators is to use equations (60) with (61). That is by adding to the first quantization kinetic and
electron-nuclear interaction operators the term a, ag, -
On the other hand, two electron operators such as the electron-electron repulsion and the

electron-electron spin orbit operators have a different representation in second quantization. In

first quantization these operators were written as

1

where the 2 term avoids counting the electron-electron interactions twice. In a manner similar to
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the arguments above, the second quantization representation of a two electron operator can then

be written as

1 + +
=— > a,apdedA. 63
=) pORs SPORS ‘PRS0 (63)

The annihilation operators in the above expression must appear to the right of the creation
operators in order to ensure a zero eigen value, especially when g acts on an ON vector with less

than two electrons.

The expectation values of the parameters g Ppors MY be determined by evaluating the matrix

element of g between two ON vectors and setting the result equal to the matrix elements

corresponding to Slater determinants in first quantization. Then the two electron operator & may

act between two:

1. Identical ON vectors

1 + + 1
k‘ k>= 2 <ka apaca k>=2k k - (64
< g‘ 2PQRSgPQRS P”R"S Q‘ Y PR P R(gppRR ngRp) (64)

2. ON vectors differing in one pair of occupation numbers
‘k1>:‘kl,...ol,...lJ,...,kM>, ‘k2>:‘k],...l[,...OJ’...,kA{> (65)
bk
<k2 ‘g‘k1> =TTy 2 kg (emr ~2mrs)- (66)
3. ON vectors differing in two pairs of occupation numbers
) =070 ATy ), Ky ) (67)

ky b ki k
<k2 ‘g ‘k1> =L/ T Tl (gIKJL 811 JK ) (68)

where I <J, and K < L.

k

D=k 100

L,..

4. ON vectors differing in more than two pairs of occupation numbers
<k2 ‘g‘kl> ~0. (69)

Our aim in this section is to construct a representation of two electron operators in second
quantization, and this is only possible when gpors becomes identical to the corresponding first

quantization two electron operator g°
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* % c
gpors =112 (3 )0 ()€ (.33 )@ (3 )0 g (v, )y (70)
Then the recipe for constructing a two electron second quantization operator is therefore given

by expressions (63) and (70). This construction renders g° (xl,xz) symmetric with respect to the

exchange of any two electrons. It should be noted that the order of the creation and annihilation
operators appearing in Eq (63) must be presented in order to guarantee that the proper sign will
result when expectation values of such operators are evaluated. These spin orbitals ®@g, appearing
in Eq (70), are in most practical applications obtained as linear combinations of atomic orbital

basis functions

of
Vg =3 Croa a

where the summation runs over all spins a and . The y, are usually taken to be Slater type
orbitals or contracted Gaussian atomic orbitals, and the Cgr, are the linear orbital expansion

coefficients.
VIII. The Molecular Electronic Hamiltonian

Combining the previous results of section VII we may now construct the full second quantization
representation of the electronic Hamiltonian operator in the Born-Oppenheimer approximation.
In the absence of external fields the second quantization nonrelativistic and spin free molecular

Hamiltonian is given by

+ 1 + +
H = h - h 72
50"PO PO " pirg S PORS“PURASQ " et (72)
o 1 2 o4
hPQ—‘([CDP(x) -V _%FZ g (x)dx, (73)
where in atomic units
% *
i CDP(xl)CDR(xz)q)Q(xl)CDS(xZ)dxldxz
8PORS -] " (74)
1 YAYA
> # (75)

hnucl -
21#J R I
Here the Z;s represent the nuclear charges, 11, 12, and Ry represent the electron-nuclear, the

electron-electron, and the internuclear separations. The scalar term in (72) represents the nuclear
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repulsion energy and it is simply added to the Hamiltonian and gives the same contribution to the
Hamiltonian as in first quantization.

Acting on the vacuum state the second quantization Hamiltonian (72) produces a linear

combination of the original state with states generated by single (a;aQ) and double electron

excitations (a;a;aSaQ ). With each of these excitations there is an associated amplitude hpq or

gpors, Which represents the probability for one and two electron interactions. These probabilities
are best calculated from the spin-orbitals and the one and two electron operators, according to

equations (73) and (74).

VIILI. 1. The Hamiltonian of a Two Body Interaction

As an example of the electronic Hamiltonian discussed in the previous section we shall consider
the example of a two body interaction whose Hamiltonian operator can be written as a
summation of one and two electron operators

2
}hi%§m+VG—;> (76)

where the two electron interaction operator V' is written as

y = (@xfasa (3)a(v)a” (Va3 (- 5) (")

Transforming the above expression into momentum space gives

V="> a'(k)a(k,)a" (k)a(k )jd3xja’3yeig'ye_ig';e*ila';ei/q';V(;c — ;)

ks,

V=> a'(k)a(k))a" (k)a(k )J’aﬂxj.d3yei(g_g)yei(g_me(;c - ;) (78)

Fakoksky

Change the variables r=x-— ; , so that x= ; +r
V= 2 at (k4 )a (k2 )a+ (k3 )a (kl )Id3yei(k2_k3+k1_k4)y Id3rei(k1_k4)rV (;) (79)
hkoksky

The first integral to the right gives

jd3}e{k£_kg+h}k1)y::Jd3}e%0b;:1. (80)
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This is due to the law of momentum conservation which according to Fig 2 gives
This means that if two particles interact the total momentum in the system cannot change.

[ —

Finally, we change the variables again to Z] =k, — k, which with (81) leads to the final form of

the two term interaction
V:k% at (E—Z])a(kz)V(g)a+ (lg+;)a(lq) (82)
with
v(q)=1 d3rV(;)eiq"7, (83)

being the Fourier transform of the interaction potential V(r). One can think of this as one particle

— —

with initial momentum K, interacting with another particle with initial momentum k, by

exchanging a virtual particle with momentum ¢ , finally giving two particles with momentums

E —gand kj +¢ . Actually, this is the Coulomb interaction occurring between two electrons with

V(k) representing the Coulomb two electron operator. The whole process could be visualized

with the aid of the Feynman diagram shown in Figure 2.

s

E \

— k
/ & Fig 2. The two body interaction \

IX. Spin in Second Quantization

In quantum mechanics and particle physics, spin is a fundamental characteristic property of
elementary particles. All elementary particles of a given kind, Fermions let us say, have a spin
quantum number which forms an important part of a particle’s quantum state. When combined
with the antisymmetry requirement of the fermionic wave functions the spin of electrons result in

the Pauli Exclusion Principle which in turn underlies the periodic table of chemical elements.
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Thus the spin of a particle is an important intrinsic degree of freedom. In the formalism of
second quantization presented so far there were no reference to electron spin. In the present
section we develop the theory of second quantization so as to allow for an explicit description of

electron spin.
IX. 1. Spin Functions

The spin coordinate of an electron can take only two values mg = 1/2 and mg = -1/2, representing
the two allowed values of the projected spin angular momentum S, of the electron. The spin
space is accordingly spanned by two functions, which are taken to be the eigen functions a(ms)

and B(ms) of the projected spin angular momentum operator S,

1 1
Sga(ms)zga(ms), Sgﬂ(ms)z—gﬂ(ms). (84)
These spin functions, which we will denote by o, 1, |, and v, are usually eigen functions of the

total spin angular momentum operator S

(Sc)zo'(ms)=s(s+1)0'(ms):ia(ms). (85)

In addition, these spin eigen functions form an orthonormal set, which is in accordance with the

general theory of angular momentum in quantum mechanics. In general, the functional form of
the spin functions is given by the following equations

I ) L VI )
al — |=1 o — =0 Bl = 1=0 Bl —— =1, (86)
2 2 2 2

where the completeness of the spin functions leads to the following identity

%_‘,G* (ms Yo (ms) = Smm - (87)

s
In describing N-electron systems, it is more convenient to write the electronic wave function as a

product of an orbital part and a spin part. Such spin orbitals are written as
© o (rmg) =@ (r)o(my). (88)

so that a given spin orbital consists of an orbital function multiplied by a spin function. This
simple product is acceptable since the nonrelativistic Hamiltonian operator does not involve spin

and thus cannot couple the spatial and spin parts of the spin orbitals. With this notation, the
creation and annihilation operators a;G and a,, are defined to act on an electron with orbital

functions @,, ®4 and spin eigenfunctions ¢ and 1.
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IX. 2. Spin Operators

Our previous definition of one and two electron operators neglected the effect of electronic spin.
However, spin is an important physical property that must be included in the definition of one

and two electron operators. First let us consider one electron operators of the form

N
=27 0n): (89)
=
which may be written in the spin orbital basis as
= z Cl+ a . 90
S poar Ipo.qripoiqr (°0)

The integrals entering the second quantization operator f vanish for opposite spins. First due to
that the spin eigenfunctions are orthogonal and second due to that the first quantization operator

/€ 1is spin free

Fpoge =10p (1) (mg) £ () g (1) (mg ) drdmg

* c
S O ()€ (1) g (r)dr = frpg i o1
with the notation
* c
Spg =10, (r)f < (r)@q(r)dr. (92)
The second quantization representation for the spin free one electron operator now becomes
S =2 FpgE pqg- 93)
pg P4 Pe
with the singlet excitation operator
- +
qu =dpolge +aprdgr- (94)

Similarly two electron operators can be written as

1 + o+
g=— X & po,qrru,svéporudsvlqr- (95)
2 pgrs
oL

Most of the terms in the two electron operator vanish because of the orthogonality of the spin

functions

2y = | [ O, ()0 ()@, (1) 1" () g (r.7,) @, (1) 7 (m, )@, (1, )0 (m, ) drdm, i,
= & ,0s05:0, (96)

or T uv?

with gpqrs given by
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Spqrs =110, ()01 (7)€ (., )@ (1) @ (1 ) iy ©7

Inserting the integrals in (96) into (97), the second quantization representation of a two electron

operator with the inclusion of spin gives

ngZ L ———ngqu 1,50, =

P‘I’S quS
+ + + +
- __Zg pqrs (Zapa ( aqaarz' + 5qr50'r )as j __Zg pqrs ( apaaqaarz'asr - §qr5arapaasrj
pqrs pqrs or
s Z Epars ( rq E, 5qr Eps )’ )

pqrs

where for convenience we have introduced the two electron excitation operator

+ +
epgrs = quE é‘q,,Eps:GZTapo.arTaSTaqo.. (99)
Finally, the second quantization representation of the nonrelativistic molecular electronic

Hamiltonian in the spin-orbital basis takes the form

H= Z > e +h , 100
patpa T o Eparserars T el (100)
where the one and two electron 1ntegrals are given by
Zl
ho=[@ (r) —fv > 2L o, (r)dr (101)
o
s = IIQD r1 ) (r2)® (rl)CDs (rz)drldrz. (102)

The expression of the molecular Hamiltonian given in Eq (100) is different from the spin free

Hamiltonian operator given in equation (72) by its dependence on the single and double

excitation operators (Epq, €yqrs), Which in turn depend on the spin through the operators a;;o.aqa
a;T agr appearing in expression (94) and (99).
IX. 3. Spin Orbit Fine Structure Operator

The phenomenon of spin orbit coupling (SOC) arises from the interaction of the intrinsic
magnetic moment of an electron with its orbital angular momentum. The best known example of
this is that spin orbit interactions cause energy shifts in electronic states interacting with

magnetic fields which is mainly detectable by a splitting of spectral lines.
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Using some semiclassical electrodynamics and non relativistic quantum mechanics, we derive a
relatively simple and quantitative description of the spin orbit operator for an electron bound to a
nucleus. In general, the energy of a magnetic moment in a magnetic field is given by

Veo = —1.B, (103)
where 1 is the magnetic moment of the particle and B is the magnetic field it experiences. Even
if there is no magnetic field in the rest frame of the nucleus, there is a magnetic field in the rest

frame of the electron

vx FE
B=- 7 (104)
c

where v is the velocity of the electron, E is the electric field that it experiences and c is the speed

v

of light in vacuum. But E is radial so we can rewrite £ = 7 and the momentum of the

electron p is written as p = m L . Substitute this into (104) to get

E|. rxpl|E
B=— P |7 =22 (105)
2 2
MyC r myc |7
Next, we express the electric field as the gradient of the electric potential £ = ——— (assuming
s

spherical symmetry), and by noting that the angular momentum of a particle from classical

mechanics is L = p X . Putting it all together in (105) we get

L) (106)
mecz r or ’

but the magnetic moment of the electron is given by p=—g p,S/h=-24,5/h. Therefore

the spin orbit interaction Hamiltonian given in (103) reads

2up 10V
B "% s

5 (107)

Vso = Py
hmyc™ 1 Or
However, ug the Bohr magnetron, which is a physical constant used to express the electron

e
magnetic dipole moment is given by £/, = ——and the electric potential V is related to the
e

electric potential energy U by V' =U / e. Inserting these last expressions of pgand V in to (107)
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we get
¢ 1 10U
Vey = ﬂfa—L.S =&(r) LS, (108)
mgc— I or
. 1 oU . .
with ¢ (r) =— 5_ ,and L and S represent the angular momentum and spin operators in
m,cr Or

the first quantization formalism of quantum mechanics.

Finally, the effective spin orbit interaction operator derived in Eq (108) can be written in its
second quantization analogue as
* * c +
Vso=2 ICDp (r)o (ms )VSOCDq (r)z'(ms )drdmsapgaqr , (109)

Pq
or

This term added to the electronic Hamiltonian allows for the inclusion of spin orbit effects in the

electronic structure calculations.

X. The Variation Principle

Having established the general form of the wave function, still we need to test its quality. In this
section we will discuss an important theorem, called the variation principle, which is a simple
iterative procedure used to test the validity of the given wave function.

First, let us choose a normalized function @ that satisfies the appropriate boundary conditions
(®[@)=1. (110)

The variation principle states that the expectation value of the Hamiltonian is an upper bound to
the exact ground state energy
<<1>\H|q>> > 20> (111)

where g is the exact ground state energy. The above equality holds (left side = right side) only
when the wave function @ is identical to the true exact wave function of the system. The
variation principle for the ground state informs us that the energy of the approximate wave
function is always high. Thus one can measure the quality of a wave function, by referring to its
energy. The lower the energy the better is the wave function. This is the main idea behind the
variation theorem in which we take a normalized trial wave function that depends on certain
coefficients that can be varied until the energy expectation value reaches a minimum.

The process of energy minimization can be greatly simplified if we write the wave function as a

linear combination of trial basis functions [2]
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N
|) 2% \\yl> (112)
where |\I/,.>is a fixed set of N real and orthonormal basis functions, and the coefficients (c;)
represent the contribution of the corresponding basis function in |<I>> The expectation value of

the Hamiltonian can now be written as a function of the expansion coefficients

(|H|®)= izjcicj <\I/l. H‘ > ijcchHlj (113)

Then the problem of energy minimization, reduces to finding the optimum set of coefficients (c;)
for which Eq(113) is a minimum i.e.

i<<1>\H\<1>>:0 k=12,....,N. (114)
8ck

But, the coefficients (N-parameters) are not independent, and are related by the normalization

condition Zciz =1. The process of minimizing a set of parameters subject to a constraint could

be solved by the Lagrange method of undetermined multipliers. First, let us construct the

function

L(cisCprney, E) = (@, | H|® )~ E((@,]| @) 1)

—ch H, E(ZSUCI —1) (115)

Since the trial function is normalized we have merely added zero to Eq(113), and so the

N>

minimum of L and H occurs at the same values of the coefficients. To proceed further, we need

to minimize the Lagrange function with respect to the ¢, coefficients i.e.

OL 0
80
but(9i Zc +ZcH —2ES..c, =0 (116)
o, FIHM ik ko
and since H;;=H;;, then we have
2§J;Hijcj _2Ecisij =0= %-:Hijcj _ESijci =0, (117)
and finally, we can write the secular equation in matrix notation, as
Hc = ESc, (118)

where S is an identity matrix that represents the overlap integral <<I>l. ‘¢j> .
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XI. The Underlying Theoretical Basis — The Born Oppenheimer Approximation

The task of solving the electronic Schrodinger equation for a N particle system is very
complicated, so that the task of finding a solution for larger molecules becomes impossible. To
overcome this difficulty we must adopt the Born-Oppenheimer approximation [3], which

separates the electronic from nuclear motions in the Schrédinger equation.

In view of the fact that, the nuclei are much heavier than the electrons and their speeds are
slower, Born and Oppenheimer showed in 1927 [3] that molecular problems could be much
simplified by treating the electrons as moving in the field of fixed nuclei. Within this
approximation the kinetic energy of the nuclei can be neglected while the nuclear repulsion terms
appearing in the Schrodinger equation can be considered constant. Any constant added to an
operator only adds to the operator's eigenvalues and has no effect on the operator's
eigenfunctions. Thus the electronic Hamiltonian describing the motion of N electrons in the field

of M fixed nuclei can be written as

N1 MZ,
elec = 2= ,—,Z > +Z Z— (119)
i=12 =lA= Ty i=l iy

By the virtue of this approximation, it is possible to decouple electronic from nuclear motion in

the Schrodinger equation [4,5]. This indicates that the molecular Hamiltonian can be written as

H,=H,, (120)

where Hgjec and Hy,g are the electronic and nuclear Hamiltonians respectively. It is because of

+H,

el

the validity of this approximation that we may concentrate on solving the electronic Schrodinger
equation

H,®, 6 =c, & (121)

elec ™~ elec elec ~ elec

where the electronic wave function

D, =D, (1.[R,]). (122)

depends parametrically on the nuclear coordinates (R,) and explicitly on the electronic
coordinates (r;). By a parametric dependence we mean that, for different nuclear arrangements,
e 18 a different function.

After calculating the electronic energy eigen values (&), we should include the constant

nuclear repulsion term in the expression of the total molecular energy &y,
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tat elec +ZZ (123)

A=1 B~A

In fact, the total molecular energy & (R) calculated above provides a potential energy curve

(PEC) for molecular vibrations and rotations Fig. 2.

Energy
a
1
i

G T T T
i 1 2 3 4

Internuclear distance

Fig 2. Energy as a function of internuclear distance for a typical bound diatomic molecule.

Where in order to describe nuclear vibrations and rotations, we should solve the nuclear

Schrodinger equation

Hnucch)mlcl = 5¢mlcl > (124)
whose Hamiltonian is given by
Hnud Z + gelet + Z z
A=1 2M A=l B~A AB
__Z—v + Epe- (125)

The solutions of the above nuclear equation give the eigen functions and eigen values of the

vibrational and rotational energy levels of a molecule.
XII. The Hartree Fock Approximation

The simplest kind of ab-initio calculations is a Hartree-Fock (HF) calculation. It was first
proposed by Hartree in 1928 [6] to solve atomic problems, then it was latter generalized to tackle
molecular geometries. The problem that Hartree addressed arises from the fact that an exact
solution to the Schrodinger equation for molecules with more than one electron is not possible,
basically because of the electron-electron interaction terms. The expectation value of the energy
operator H is the energy of the molecule (or atom). Of course this energy will be the exact true

energy only if the wave function ¥ and the Hamiltonian are an exact representation of the true
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physical system. The variational theorem discussed in the previous section states that the energy
calculated from the equation £ = <‘P|H |‘P> must be greater or equal to the true ground-state

energy of the molecule Eq(111). In practice, any molecular wave function we use is always only
an approximation to the true wave function of the system, therefore the variationally calculated
molecular energy will always be greater than the true energy. In general the Hartree Fock (HF)
method is variational, so the correct energy always lies below any calculated energy by HF

method, then the better the wave function is the lower is the energy.

In the Hartree Fock approximation the electronic wave function is approximated by a single
configuration of spin orbitals (i.e. by a single Slater determinant) and the energy is optimized
with respect to variations of these spin orbitals. In this method the ground state wave function

can then be written as

¥ g )=y [0) or ¥ )= 147 o) (126)

The optimization of the Hartree Fock wave function must be done to arrive at the optimal

determinant that may be found by solving a set of effective one electron Schrodinger equations

called the Hartree Fock equations and their associated Hamiltonian operator is called the Fock

operator
F=i" () 327, (0K, () (127)
=
with
core 1 Z
H =--V’-)_-%
2 ! % Vo
@ (r)D O ()P
Ji (I)ZJ‘ p (rl) P(’/i’/)' i (”'2) i (I/Z)drld]’é
12

®, (1) P, (1) P; ()P, (1)

K (1)=j

In the Fock operator the one-electron part of the true Hamiltonian H “"is retained. The two

dr,dr (128)

electron part J;is the regular Coulomb repulsion term while the 3™ part K, is called the
exchange term which is a correction to the two Coulomb interaction that arises from the

antisymmetry of the wave function. The Hartree Fock eigenvalue equation is then written as

¥ )= ep|¥ e )- (129)
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with eigen values

* *
ep =10, (1) _;VZ _KfK o, (1) +2§”‘Dp (1)@, (ﬁr)q’i (rz)q)i(rz)drldrz
iK i2
_§”q’p ()@ (7)o ()@, (rz)drldrz. (130
2

An electron in @, thus experiences a classical electrostatic Coulomb potential (the 2" term in the
above equation), generated by the nuclear framework and by the charge distribution of the
remaining electrons, as well as a nonclassical exchange potential (the 3™ term in the above
equation), which corrects the classical repulsion energy for Fermi correlation. The exchange
integral arises from Slater determinant expansion terms that differ only in the exchange of
electrons. It is said to have no simple physical meaning [7] , but we can regard the exchange term
as a kind of correction to the Coulomb integral, reducing its effect. This reduction arises because
particles with opposite spins cannot occupy the same spatial orbital. In other words two electrons

of the same spin avoid each other more than expected in the columbic repulsion.
XIII. The Roothaan-Hall Self Consistent Field Equation

In this section we present the Roothaan-Hall formulation of the Hartree Fock theory, in which
the molecular orbitals (MOs) are expanded in a set of atomic orbitals (AOs) whose expansion

coefficients are used as the variational parameters [7, 8].

In most applications of Hartree Fock theory to molecular systems, the MOs @, are expanded in a

set of Gaussian type AOs (), with coefficients Cy,

ch:%Cﬂp;(ﬂ. (131)
In this case, we are expanding the molecular orbital (MO) ® in terms of a set of basis functions.
Usually, these basis functions are located on atoms, and thus could be regarded as atomic

orbitals. Therefore, one could write the MOs as a linear combination of atomic orbitals (LCAO),

and the set of basis functions is called a basis set.

Conventionally, there is no upper limit to the size of a basis set and the number of basis functions
m in the expansion can be much bigger than the number n of electron pairs in the molecule [10].
However, only the n occupied orbitals are used to construct the Slater determinant, which

represents the HF wave functions.
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Now, if we substitute the expansion (131) in to the HF Equation (129) we get
HY, (=¥, (1)> D c D, =6, c,P, (132)
s=1 s=1
where, f; is the Fock operator for the 1% electron in W,

%
Then multiply equation (132) by the basis function ® j (1) from the left and integrate,

Zcmjcp ) 4@, (107, =&, chjcp @, (197, (133)

where by identifying the following terms:

I CD 611
fjs =jc1>j £, (1)8r1, (134)
we could rewrite equation (133), as
m m
sZ::1 fjscsa =4 sg:jl Sjscsa, (135)
or in matrix notation, as
Fc = Sce, (136)

where ¢ is an mxm matrix (m basis functions) and € is an mxm diagonal matrix of the orbital

energies.

XIV. Post Hartree Fock Calculations

The Hartree Fock method relies on averages [11], it does not consider the instantaneous
electrostatic interaction between the electrons nor does it take into account the quantum
mechanical effects on electron distributions. This is because the effect of the n-1 electrons on an
electron of interest is treated in an average way. In fact, the HF method overestimates the
electron-electron repulsion and so gives higher electronic energies than the correct ones, even
with the largest basis sets. In brief, we summarize these deficiencies by saying that the HF

method ignores electron correlation [10].

Actually, the HF method allows for some electron correlation, two electrons of the same spin
cannot be in the same place because their spatial and spin coordinates would then be the same
and the Slater determinant (32) representing the molecular wave function would vanish, since a
determinant with two identical rows or columns is zero. This is a consequence of the Pauli

exclusion principal, where in the neighborhood of each electron there would still be a region
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unfriendly to other electrons of the same spin. This region is called a Fermi hole and the HF

method overestimates the size of a Fermi hole [12].
XIV. 1. Multi Configuration Self Consistent Field Theory MCSCF

The first step in post Hartree Fock quantum mechanical calculations is the Multi Configuration
Self Consistent Field (MCSCF) method, which involves a generalization of the Hartree Fock
wave function to systems dominated by more than one electronic configuration. This model is
useful in describing the electronic structure of bonded molecular systems, and in particular

excited states [13].

In MCSCF theory, the wave function is written as a linear combination of determinants or
configuration state functions CSFs, whose expansion coefficients are optimized simultaneously
with the MOs according to the variational principle. Thus the MCSCF wave functions may be
written as

“P>=§Cl-‘i>, (137)
where the C;s are the configuration expansion coefficients (normalized to unity). Then the
problem of finding the ground state MCSCF optimum wave function can be obtained by

minimizing the energy with respect to the variational parameters

<‘P ‘H|‘P>
E =min ———
e (¥|¥)
This method allows for a highly flexible description of the electronic system, where both the one

(138)

and N-electron functions, MOs and CSFs, may adapt to the physical situation. Usually, the
greatest difficulty faced in setting up an MCSCF calculation is the selection of configuration
space which contributes appreciable to the wave function. Indeed, even for small systems, it is
often impossible to generate an MCSCF configuration space sufficiently flexible to describe the

physical process and yet sufficiently small to be computationally tractable.

The selection of MCSCF configurations is usually not carried out by inspection of the individual
configurations. Instead, whole classes of configurations are simultaneously selected and

classified into three sets:

1. A set of inactive orbitals composed of the lowest energy spin orbitals which are doubly

occupied in all determinants.
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2. A set of virtual orbitals composed of very high energy spin orbitals which are unoccupied in
all determinants.
3. A set of active orbitals which are energetically intermediate between the inactive and virtual

orbitals.

The active electrons are those that are not in the doubly occupied inactive orbitals, but rather to
which excitations are allowed. The single, double, and triple, etc., excited determinants are those
that arise from all possible ways of distributing the active electrons over all the active orbitals.

This method is known as the complete active space self consistent method CASSCF [13,14].
XIV.2. Configuration Interaction

The configuration interaction (CI) wave function consists of a linear combination of Slater
determinants, the expansion coefficients of which are variationally determined. Owing to the
simple structure of the wave function, the CI method has been extensively and successfully
applied in quantum mechanical calculations [15]. The method is flexible and can give highly
accurate wave functions for small closed and open shell molecular systems with electron
correlation and it may be used to describe complex electronic structure problems such as bond
breakings and excited states. The principle shortcomings of the CI method is that it is difficult to
implement for large molecules because of the rapid growth in the number of configurations

needed to recover a substantial part of the correlation energy for larger systems.

In the treatment of electron correlations it is important to distinguish between static and
dynamical correlations. Static correlation effects are best treated in the complete active space
self-consistent field method CASSCF, by retaining in the CAS reference space the
configurations arising from the distribution of valence electrons in all possible ways among the
active orbitals, while keeping the core orbitals doubly occupied in all configurations. Dynamic
correlations, on the other hand, are subsequently treated by including in the wave function
expansion all configurations generated from the reference space by carrying out excitations up to

a given excitation level.

In the CI method, the wave function is constructed as a linear combination of determinants or

configuration state functions CSFs
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o r|agr rs rs rst rst
|<1>>_]\1:0>+rzaca\\1/a>+ ORI cabc‘\llabc>+..., (139)
a<b a—<b=<
r<s r<s<t
where | ), \I/;>, \I’;;,), \I’;;fc>...represent the ground state, singly excited, doubly excited, and

triply excited state determinants. The weighting factors ¢ in the above expansion determine to

what extent each determinant contribute to the wave functi0n|<I>> , and the summing terms (

a < b,r <s) avoid counting similar determinants twice in the summation. If every possible

determinant was included in the expansion, then the wave function ® would be the full CI FCI
wave functions. Full CI calculations are possible only for very small molecules because the
promotion of electrons into virtual orbitals can generate a large number of states unless we have
only a few electrons and orbitals [17, 18]. Even when CI calculations are prerformed for
relatively moderate sized molecules, a large number of these determinants still exist. However, a

significant number of them can be eliminated by exploiting the following facts:
1. There i1s no mixing of wave functions with different spins (i.e.

<\If,. |H ‘\1/,> =0, if | ¥, )and| ¥, ) have different spins.

2. There 1s no coupling between the HF ground state and single, triple and quadruple excitations

(ic. <\110

H |\If;> =0). As well, singles do not mix with quadruples. This is a consequence of the

fact that the Hamiltonian between Slater determinants which differ by more than two spin

orbitals is zero.

The coefficients in the CI expansion (139) are determined by a variational optimization of the

expectation value of the electronic energy

(cllc)
(clc)

These conditions are equivalent to an eigenvalue problem, similar to equation (124), for the

ECI = min (140)

eigen values and energies

HC=EC, (141)
where H is the Hamiltonian matrix with elements

1y =ilH] ). (142)

and C is a vector containing the expansion coefficients C;. Equation (141) is a standard
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Hermitian eigenvalue problem that is solved by either diagonalizing the Hamiltonian matrix or

by other iterative techniques to extract the eigenvalues and eigenvectors.

Owing to its formal and conceptual simplicity, the CI method has been extensively and
successfully applied in quantum chemistry. However, for even the simplest systems, it is not
possible to carry out full configuration interaction FCI, particularly due to the large number of
determinants included in the expansion. It then becomes necessary to truncate the CI expansion
so that only a small set of the determinants is included. The truncated CI expansion should
preferably recover a large part of the correlation energy and provide a uniform description of the

electronic structure over the whole potential energy surface.
XIV. 3. Multireference CI Wave Function MRSDCI

The Multireference CI (MRCI) wave function is generated by including in the wave function all
configurations arising from the single and double excitations from the reference space, thus
resulting in the multireference singles and doubles configuration interaction (MRSDCI) wave

function

Wamsper)=| 1+ X+ = x2B |w), (143)
Al A>B,I1>J

where, the single and double excitation operators are given in second quantization by

Xf|\{'0>:cfa;al|\{'0>, Xf]B|‘PO>=C;}Ba;a;a1aJ|‘PO>.

(144)
The construction of a multireference CI wave function begins with the generation of a set of

orbitals and a reference space of configurations |‘I’0 > , which are best generated by the CASSCF

method. The CASSCF method writes the wave function as a linear combination of determinants
or CSFs, whose expansion coefficients are optimized simultaneously with the MOs according to
the variation principle. The fully optimized wave functions in the CASSCF method are then used
as a reference state in the MRSDCI technique, in which single and double excitations are

included.
XIV. 4. Davidson's Correction

Configuration interaction calculations that include single, double, triple, and quadruple
excitations are designated SDTQCI. However, large basis sets involve too many determinants to

be computationally practicable. As the quadruply excited determinants can be important in
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computing the correlation energy, a simple formula known as the Davidson correction has been
proposed for estimating the contribution of quadruply excited determinants to the correlation
energy [10, 19, 20], this is given by the following relation

AEvDaviafson = (1 - C(? )(EDCI - ESCF) (145)

where E ), is the correlation energy computed in CI calculation using the ground state wave

function @, and all its double excitations; ¢, is the coefficient of @ for the normalized wave

function. Egcp is the ground state energy obtained in HF-SCF calculations. The Davidson
correction can be computed without additional labor since the ¢y is already computed in DCI
calculations. However, in spite of its usefulness for small molecules, the Davidson correction

fails for relatively large molecules [17].
XV. Spin Orbit Effects

The nonrelativistic Schrodinger picture discussed in the previous sections is not complete and
additional terms are needed to account for the intrinsic magnetic moment of the electron (spin).
In atomic and molecular systems, the exact solution of the non-relativistic Schrédinger equation
doesn’t reproduce the real experimental energies. The difference arises from relativistic effects,
which increase with the 4™ power of the nuclear charge (Z*) [21]. Relativistic effects can be
neglected in most cases for lighter atoms, but have to be included when dealing with heavy
elements. In non-relativistic quantum mechanics, the velocity of light can be assumed to be
infinite, so that any finite velocity of particles is very small and the mass of the particle can be
approximated by its rest mass. For most measurements on the lighter elements in the periodic
table, non-relativistic quantum mechanics is sufficient, since the velocity of an electron is small
compared to the speed of light. For the heavier elements in the periodic table the picture is
entirely different. As a result for the heavy atoms, the inner electrons attain such high velocities,
comparable to that of light, and non-relativistic quantum mechanics is far from adequate. We can
divide relativistic effects in to several categories such as the mass-velocity correction, Darwin

correction, spin-orbit correction, spin-spin interaction, and Breit interaction [21, 22].

Of all the different kinds of relativistic effects the spin-orbit interaction represented by the Briet-
Pauli Hamiltonian is the most important part [21], which mainly arises from the interaction of the
intrinsic magnetic moment of the electron with the magnetic moment arising from orbital
motions. These effects alter the spectroscopic properties of molecules containing heavy elements

to a considerable extent. Even if a molecule has a closed shell ground state the excited states may
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stem from open shell electronic configurations, in which case the spin-orbit interaction not only
splits the excited states, but mixes different excited states which would not mix in the absence of
spin-orbit interaction. Indeed, the yellow color of gold is due to orbital mixing occurring between
the 5d'and 6s' orbitals [23]. This relativistic effect allows gold to absorb light in the violet and
blue regions of the spectrum while it allows for the reflection to occur in the yellow and red
regions [23].

Spectroscopically, the magnitude of the spin orbit coupling Hamiltonian Hgp in atoms is

measured as a splitting in the spectral lines of the multiplet components

1 (.
Hg,, ZEhCA(](] +1)=1(1+1) = s(s +1)) (146)
where / is the orbital angular momentum quantum number and s is the spin quantum number and
j is the total angular moment j = / + s, and A is the magnitude of the spin-orbit coupling

constant. Expanding (146), we get

Hg, :;hcA((l +5)(I+s+1)=1(1+1) - s(s +1))

I
=2hcA(12 w52 bls+sl+l4s—1%—1—5° —s)=hcAl.s. (149)

Then the magnitude of the spin orbit coupling operator can be calculated in terms of molecular

parameters by the substitution

Za2 1
hcAl.s =—— 3 l.s, (150)
2 \r

where o is the fine structure constant ¢ = ¢/ hc4re, which is a dimensionless constant (a = 1/
137.037) that characterizes the strength of the electromagnetic interaction or the amplitude for an
electron to emit or absorb a real photon. Z is the atomic number, representing the number of
protons inside the nucleus.
In heteronuclear diatomic molecules the orbital angular momentum along the internuclear axis A
couples to the electronic spin (S) through its projection along the internuclear axis ) = S, S-1,
..., -S+1, -S. Then the total electronic angular momentum about the internuclear axis, denoted
by Q, is obtained by adding the values of A and }_ to give the electronic states resulting from the
interaction of spin and orbital angular momentums

Q=[A+3]. (151)

As an example, consider in Fig.3 the relative orientations of the vectors A and Y for a *A state
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Fig 3. (a) Vector diagram and (b) Energy level diagram for the multiplet states of the *A state (A=2, S=1)
The spin-orbit splitting between the Q and Q-1 levels arising from the same term A is calculated

by using the formula

1
Eyo = 5ps Fol Hso [ ¥o), (152)
where the spin-orbit coupling operator Hgp is derived from the Breit-Pauli Hamiltonian [24]
defined by
2 2

l
2m c I’i] lf hij

The above spin-orbit coupling operator is composed of a one and two-electron parts. The ?and

N

s operators are the orbital and spin angular momentum operators, respectively, and the
summation over the index (i) refers to electrons and that over (I) refers to nuclei. Finally, the
entire Breit-Pauli operator may be approximated by pseudo-effective core potential operators
that are extracted from relativistic wavefunctions for atoms. The pseudopotential approximation
accounts for the most important relativistic effects and decreases the computational costs of
calculations involving heavy elements [25]. The pseudopotential approximation relies on the
separation between core and valence electrons in the electronic Hamiltonian. In this case, the
valence electrons can be treated as if they were moving in an effective potential, generated by the
core electrons and the nuclei. This procedure utilizes the fact that only valence electrons take part
in chemical bond formation. With this assumption, calculations can be done using the valence
basis set only. The cores (inner-shell electrons and the atomic nucleus) of the individual atoms
are approximated through a non-local effective potential.

Separating core and valence electrons leads to an electronic Hamiltonian which describes only

the valence electrons. In contrast to all-electron calculations, within the pseudopotential
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procedure only the valence electrons or the electrons (n-1)" shell, are explicitly considered. In
this case the electronic Hamiltonian can be reduced to an atomic valence operator, H*! given by,

1 N, N, N, 1
H*™ :—EZV,.2+ZV(1;)+Z—, (154)
i=1 i=1 i=1 1y
where the indices i and j denote only valence electrons, and the V(r;) operator represents a one-

component, (spin-orbit-averaged) relativistic pseudopotential [26]

N

Z
V(’?):_ZI+Z/:Z/€:A11{ exp(_alk’/;'z)l)f > (155)

where P is the projection operator onto the subspace with angular symmetry /

P = Z!Y W |

In Eq (155) the pseudopotential parameters, the coefficients, Ay and the exponential parameters,

(156)

ay. are adjusted to total-valence energies derived from numerical all-electron calculations. The
pseudopotentials for atoms can be used for molecules containing heavy atoms. These potentials
can easily be implemented in quantum mechanical programs. The pseudopotential approximation
is not exact. However, its main advantage is the ease with which relativistic effects can be
included in the calculations. Indeed, a significant reduction of the computational effort can be
achieved by a restriction of the actual spin orbit calculations to the valence electron system and
the implicit inclusion of the influence of the chemically inert atomic cores by means of suitable

parameterized effective core potentials [27].

43



Chapter One. Many Body Problems in Atoms and Molecules

XVI. References:

1. R.P. Feynman., Phys. Rev., 76, 769 (1949).

2. E. Lewars., Computational Chemistry. Introduction to the Theory and Applications of
Molecular and Quantum Mechanics., Springer Publications (2003).

3. M. Born and J. R. Oppenheimer., Ann. Physik., 84, 457 (1927).

4. W. Kolos and L. Wolniewicz., J. Chem. Phys., 41, 3663 (1964).

5. B. T. Sutcliffe., Adv. Quantum. Chem., 28, 65 (1997).

6. D. R. Hartree., Proc. Camb. Phill. Soc., 24, 328 (1928).

7. C. C. J. Roothan., Rev. Mod. Phys., 23, 69 (1951).

8. G. G. Hall, Proc. R. Soc. (London)., A205, 541 (1951).

9. A. Szabo and N. S. Ostlund, Modern Quantum Chemistry Introduction to Advanced Electronic
Structure Theory., Dover Publications (1989).

10. P. W. Atkins and R. S. Friedman., Molecular Quantum Mechanics: 31 Ed, Vol 2., Oxford
University Press (1996).

11. V. A. Fock., Z. Phys., 15, 126 (1930).

12. C.J. Cramer., Essentials of Computational Chemistry Theories and Models., John Wiley and
Sons LTD (2002).

13. P. E. M. Siegbahn., Chem. Phys. Lett., 55, 386 (1978).

14. B. O. Roos., Int. J. Quantum Chem., 14, 175 (1980).

15. T. Helgaker, P. Jorgensen, J. Olsen., Molecular Electronic-Structure Theory., John Wiley and
Sons LTD (2000).

16. P. E. M. Siegbahn., in G. H. F. Diercksen and S. Wilson (eds), Methods in Computational
Molecular Physics, Reidel., 189 (1983).

17. C. J. Cramer., Essentials of Computational Chemistry Theories and Models., John Wiley and
Sons LTD (2002).

18. P.O. Lowdin., Adv. Chem. Phys., 2, 2207 (1959).

19. S. R. Langhoff and E. R. Davidson., Int. J. Quantum Chem., 8, 61 (1974).

20. E. R. Davidson and D. W. Silver., Chem. Phys. Lett., 52, 403 (1977).

21. D. B. Boyd and K. B. Lipkowitz., in Reviews in Computational Chemistry, K. B. Lipkowitz
and D. B. Boyd, Eds., Wiley-VCH, New York, Vol. 15 (2000).

22. Bunker, P.R. and Jensen., P. Molecular Symmetry and Spectroscopy, 2nd edition, NRC
Research Press Ottawa (1998).

23. Schmidbaur, Hubert, Cronje, Stephanie, Djordjevic, Bratislav, Schuster, Oliver
"Understanding gold chemistry through relativity"., Chem. Phys., 311, 151 (2005).

24. D. G. Fedorov, S. Koseki, M.W. Schmidt, M. S. Gordon., Int. Reviews in Physical
Chemistry., Vol. 22, No. 3, 551 (2003).

25. R. Boca, P. Pelikan, Coord., Chem. Rev., 229 (1992).

26. D. Andrae, U. HauBBermann, M. Dolg, H. Stoll, H. PreuB3., Theor. Chim. Acta.,77, 123

(1990).

27. Modern Methods and Algorithms of Quantum Chemistry, Proceedings, Second Edition, J.
Grotendorst (Ed.), John von Neumann Institute for Computing, Julich, "NIC Series, Vol. 3, 507
(2000).

44



Chapter Two. Canonical Function’s Approach for Molecular Vibrations and Rotations

Chapter Two

Canonical Function’s Approach for Molecular Vibrations

and Rotations

uch attention has recently been focused on the optimal control of quantum systems,

Mand extensive theoretical works have been performed [1 — 10]. The research on
realizing quantum computers using the molecular internal degrees of freedom (electronic,
vibrational, and rotational) has only begun since the beginning of the century and the proposed
chemical system has been the molecular rovibrational modes of diatomic molecules [11,12-22,
23, 24, 25]. In the present work we explore the vibrational energy structures of the diatomic
molecules YN, YS, ZrN, and ZrS, by solving the vibrational Schrodinger equation within the
canonical functions approach. The theoretical backgrounds of our rovibrational calculations are
listed in this chapter, while the results of these calculations are shown in chapter three of this

thesis.
I. Canonical Function’s Approach

In view of the fact that in a molecule, the nuclei are much heavier than the electrons and their
speeds are slower, Born and Oppenheimer showed in 1927 [26] that molecular problems could
be much simplified by treating the electrons as moving in the field of fixed nuclei. In section XI
of chapter one of this thesis we discussed the theoretical basis of the Born-Oppenheimer
approximation. Within this approximation the kinetic energy of the nuclei is neglected and the
nuclear repulsion energy is considered constant. This allows for decoupling the electronic and

nuclear wavefunctions in the Schrodinger equation.
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b4 b4

Total = electronic X nuclear* (1)
The vibrational-rotational wave function of a diatomic molecule is a solution of the radial

Schrodinger equation [27]

oY, (r J(J+1
?()4_ k(EvJ _V(r))_¥ \IIVJ (V) =0
k =2h—él and A=J(J+1), ()

where v and J represent respectively the vibrational and rotational quantum numbers. p and 7
represent the reduced mass and planks constant.
The above equation could be simply written, as [27]

¥, ()= 1, () ¥, (x). ®)

where A =J (J + 1) ,x =r—r,(r. being the equilibrium distance), and

A
f/l(X):—k[Ei—U(X):I-F > “
(x+r,)
However, equation (2) is equivalent to the Volterra integral equation [28]
W, (x) =W, (0)+x¥, (0)+ [(x—=)f, (6)¥, (¢)dt , (5)
0

in the sense that any solution of equation (5) is a solution to equation (2).
Within the formulation of the canonical function’s approach [29, 30], one considers the

canonical functions a(r) and B(r) defined by

¥, (x)="Y,(0)a, (x)+¥,(0)8 (x), (6)
with
a(0)= a (0)=0
p(0)=0 B(0)=1, (7)
and

a(x)=3 4 (x) where 4 =I(x—t)fﬂ (1) 4., (¢)de

. with 4, (x)=1 , (8)
B(x)= ZBI, (x) where B, (x)=|(x—¢)f,(¢)B., (¢)dt

i=0
with B, (x)=r—-r =x. )
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Then the initial values of ‘¥, (O) and ¥, (O) can be deduced from « (x) and S (x) by using Eq(6)

and by using the following boundary condition [31]

0 ¥(x) >0, (10)

X—>0

one can find

¥, (0) = B(x) ~ ¥,(0) == B(x) (11)

I1. The Rotational Schrodinger Equation

The vibration-rotation energies of a diatomic molecule are usually written as

E,=E, +AB, ~A’D, + ’H,, +---, (12)
where, By, Dy, Hy, ..., represent the rotational constants. One can write [27]
E, = Zen/%" ,
n=0
with e,=E,,e, =B,,e,=—D,,---and A =J(J +1). (13)

Then the energy factor f (x) given earlier in equations (3) and (4) could be expanded as [27]

£i(3)=2e ()2 (14)
where &, = —k(e0 —U(x)) (15-a)
& = —ke + 1 . (15-b)
Ty +X)
ke for(i22). (150

Now by replacing f, (x) by its value in the function A,(r) in equation (8), one finds [32]
4(r)=

r

4(r)=[(r=0)3 e, (1) :gan (1) 2"

Az(r)=j(r—t)iogn (r)ﬂ"ian (1) A"dr =2a3 (A", (16)

and finally
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=iGn (r)A". (17)
n=0
With the same manner, one obtains
Bi(r)=2 H,(r)A" (18)
n=0

The functions Gy(r) and Hy(r) play the role of the function f; (x) and the canonical functions of
pure vibration [27]
a,(r)=G,(r) and B, (r) = H, (r). (19)
Then by taking advantage of the limits in equation (11), and by replacing a(r) and B(r) by their
expressions in equation (17) and (18), we get [27]
¥ (0)/¥(0) Zl A", (20)
where the coefficients I, are deduced from the values of the coefficients G, and H, at the

boundaries —r and co. The vibrational-rotational wavefunctions defined in equation (6) can be

written as
¥, iGﬂ 2"+¥, ( 21 Z”ZG
n=0 n=0
— ¥, (0)G,A" + ¥, (0)1,2°G, (x) A° +'¥, (0){2(7" (x)4"+Y 1,236, (xw} e
n=1 n=1 n=l

where from Eq(13), if n=0 then ey = Ey, which indicates that the term with n=0 is a purely
vibrational term. In addition, the first two terms of expression (21) are not related to the
rotational quantum number J, since A° =1, and with n =0 these two terms could be assigned to a

purely vibrational wavefunction ¢, (x) Accordingly, the vibro-rotational wave function ¥, (x)

given in equation (21) could be refined as

¥, (x) =g (x)+ o, (x) 2", (22)

n=1

The second term of the above equation is a purely rotational function ¢, (x) , since it depends
directly onA. Thus the rotational effect in the vibration-rotation wavefunction ¥, (x) is
separated from the pure vibration wavefunction ¢, (x)[27]. The terms ¢, (x) in the above

equation are called the rotational harmonics that depend on C,(x), G,(x), and I,(x).
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Finally, by replacing the wave function’s expression of equation (22) in equation (3), we find

o (1) +Y g, (1) 2 =(80 +i€nﬂ")(% +i¢nmJ, 23)

n=1 n=1 n=1

which gives [27]

@ (x)—&, (x) @, (x)=0 (24-a)

o (x)—¢& (x)o (x) =& (x) g, (x) (24-b)

0, (x)—&, (%)@, (x) =& (x) g, (x)+ &, (x)p, (x) (24-c)
o, (x)-&,(x)p, (x Ze (x)p,, (%) - (24-n)

m=1

The first of these equations is called the radial Schrédinger equation of pure vibration for J = 0.
All of the other equations are called the rotational Schrodinger equations for J>0 nuclear

rotations. The rotational Schrodinger equations allow us to successively determine the rotational
harmonics @,,9,,..., and @, .
I11. Finding the Pure Vibrational Wavefunction

The pure vibrational Schrodinger equation was given by
@, (x)—&, (%)@, (x)=0, (25)

where gy represents the energy factor which corresponds to pure vibration. It is obtained by

setting A = 0 in equation (4). Equation (25) can be written in the integral form [30]
o (x) =, (1) +(r=1,) 9 (1) I(r—t)so @, (1)dt (26)

where the function @o(r) can be written in the form
2 (r) =, (1) e, (r)+ 0, (1) B (1)- 27)

The two canonical functions o(r) and B(r), associated with gy(r), are given by [29]

7 with 4, (r)=1, (28)
B(r) =3 8,(r) where B, ()= [ (71} (1)B., (1)
with B, (r)=r—r,. (29)
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If we take A = 0 in equation (21), one can write @o(r9) = 1 for the wave function. Then by using
the conditions applicable on ¢ at the limits (10), with the relations between ¢y, o, and By and by

considering the initial condition of ¢’¢(1¢) given by [27]

a(r)

¢ ()= h:m— D (30)
with I, =@, (1), we get
» (r)=a, (r)+loﬁ0 (r). (€2))

In conclusion the calculations for the proper value of pure vibrational energy €y and for the pure
vibrational wave function @y by using equation 24-a. Then by using the calculated values of &
and @ in equation 24-b, one can obtain the values of the rotational constant €, = B, and the
rotational harmonic wavefunction @;. Then by using the values of &, €;, @9, and ¢, in equation
24-c one can obtain the values of the centrifugal distortion constants &, = D,, with the values of
the 2" order rotational harmonic ¢,. The iterative cycle can be repeated by using equation 24-n

in order to obtain rotational constants as L, H,, ...

The remaining part of this chapter is devoted for calculating the rotational harmonics ¢, @2, ...,

¢, described in Ref [27] and whose corresponding eigenvalues are €, €, ..., €.
IV. Canonical Formulation for the First Rotational Harmonic

Formerly, we found a solution to the vibrational Schrédinger equation (24-a). Now, in this

section we will concentrate on finding a solution to the rotational Schrédinger equation (24-b)

o (x)—& (x)g (x) =& ()@, (x). (32)
The solution of the above equation is equivalent to the solution of the Voltera integral equation
[27, 33]
0.(r)=0.(1)+ 0 (0)(r =1, )+ [ (r=1) &, (), (¢)de + [ (r=1) &, (t)p, (£) . (33)
The solution of the above equation can be greatly simplified by following a procedure similar to

that adopted in section III and by using the canonical functions a and P together with equations

(8) and (9), we get
gol(r)zgol(ro)ao (r)+(o{(r0),6’0 (r)+01(r) (34)
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and o, (r) =YK, () (35-a)
n=0
Ky (r)=[(r=1)& (t)p, (¢)dt (35-b)
0
r t
K (r)=[(x=0)[(t=1)e, (t) g, () dtdt (35-¢)
0 Ty
K, (r)=[(r=t)& (K, (¢)dt, (35-d)
with the properties below [32]:
(1) forr=ry
K, (7/0)=Kl (ro) =..= K”(ro) =...=0
giving o, (1, ) = 0. (36)
The derivation of the 6,(r)
ol =D K, (r). (37)
n=0
with K, (r)= Igl (t)Kn_] (t)dt and
Ky (1) = K, (1) == K, (1) = .. =0
giving o, (r) =0. (38)
For the other higher order derivatives of (r), we find
o (nN=2K,(r) (39)
n=0
with K (r) =& (r) K., (),
and K, (0)#K (0)=-#K, (0)#---#0
(i1) The rotation harmonics must vanish at the boundaries [27], i.e.
lim ¢, (x)=0,n>0. (40)

X—>+0
X7,

Then the first rotational harmonic ¢;(r) written in equation (34), gives

o (r)=e. (1) B (r)+0o,(r), (41)

with the limiting conditions (40)
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o, (r
—l—l(LJ 42
(1) e (42)
to give the rotational wave funciton

¢1(r):llﬁ0 (r)+0'1 (r) (43)

V. Numerical Methods

For a potential function given by U(r), and a vibrational energy value E, the function ¢ is given
by [27]
®?, (r) =qa, (r) +1,, (r) , (44)

where the functions ay(r) and Bo(r) are given by the expression (28) and (29), in terms of the
functions U(r) and E = g. The study of these expressions is available independent on the form of
the potential considered. For a numerical potential of type RKR [34, 35] defined by the turning
points and by the polynomial interpolation of the calculated potential energy curves. Once the
formulation of the potential is specified, the calculations can be carried out for the canonical

functions ay(r), Po(r), and the parameters /y and .

Within a specified interval [rj, 1j41] delimited by the abscissa of two successive points P;, Pj;.

The potential function U(r) is written as

N
=Znﬂ

with x=r—-r,0<x<r,, -r

i+l i

(45)
and the constants v, are the coefficients determined for the specified numerical potential energy

function.
I1.5.1. Calculations of the Canonical Functions ay(r) and Bo(r)
The pure vibrational equation, given by equation (24-a) can be written as
y" (x) =g, (x)y(x) s (46)

with &, (x) =—k(e, —=U(x)). The solution of this equation is written in the form [2]

Zc (r - r. . 47

n=0

The functions ay(r) and Bo(r) are given by the same function y(r). Then by substituting equation
(47) in to equation (46), we get [27]
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(n+2)(n+1)c,., (1) = —keye, (i) + k>, (i) 70 (48)
with the initial values
(@) =), @) =y'(), (49)
and
V)= (-0 -r) s Y () =Tne, (-1 -r)" o0
n=0 n=1

The equations (47 - 50) are sufficient for calculating oo(r) and Bo(r) at each point r of the
potential energy curve. The values of y and y’ at an origin r( are passed in between successive
intervals (r; — 1i.1), in order to calculate the values of 0(r) and Bo(r) at each point. From these we

calculate the ratios
a,(r)/ B, (r), and o, (r)/ S, (r)
These ratios are calculated to the right and then to the left of the equilibrium internuclear

distance of the potential energy curve r > rp and r <ry, as

im_%("):%(”ﬂ e . im_ao(r):%(r)| .
lim A0 00, l; (E), and lim A0 "ol I (E)  (51)

At the points r; > 1, and 1; < ry were /; (E ) =1, (E ) the vibrational energy E, for a v vibrational

level is found and its value is then determined at the points r; and r; of the potential energy
surface.
The numerical values of the pure vibrational wave function @, are then determined by using in

equation (44) the values of ay, Bo and /.
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Chapter Three

Results and Discussions

etal-ligand bonding underlies the vast physical and chemical properties that a
Mmaterial has. The spectroscopic study of heavy polar diatomic molecules is
important in such diverse fields as astrophysics [1], ultracold interactions [2], organometallic
chemistry [3], quantum computing [4-6], precision measurements [7], and metallurgy [3].
The present investigation is devoted to the prediction for the electronic structures of the
transition metal nitrides and sulfides of Yttrium and Zirconium. Our interest in transition
metals has been investigated by the desire to understand the role played by d orbitals in
bonding. The diatomic molecules composed of the transition metals of groups III and IV are
the simplest of the d- block open shell molecules with the valence electronic configuration
[(n-1)d'?ns?]. In this chapter we list the results of our calculations for the electronic
structures, spectroscopic constants, and vibrational structures of the heavy polar diatomic
molecules YN, ZrN, ZrS and YS. A comparison is made, where available, between the results
of the present work to the experimental and theoretical results in literature. The small relative
difference of less than 10% obtained in the present calculations reflects the accuracy of our

computational approach in representing the true physical systems.

I. The Computational Approach

In the present work ab initio investigations for the lowest lying molecular states of the
molecules YN, ZrN, YS, and ZrS have been performed at the Complete Active Space Self
Consistent Field (CASSCF) method followed by the Multi Reference Single and Double
Excitation Configuration Interaction (MRSDCI) method. The Davidson correction, noted as
MRSDCI+Q was then invoked in order to account for unlinked quadruple clusters. The ab
initio MRSDCI+Q calculations were performed on two stages. In the first, electronic

structure calculations were carried out ignoring the effect of relativistic spin orbit coupling.
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While in the second type of calculations spin orbit relativistic effects were added through the
inclusion of effective core potentials (ECP) in the expression of the molecular Hamiltonian.
Both types of calculations were performed in the C,, point group. The molecular electronic
states, represented by the projection component of the orbital angular momentum (A =0, 1,
2, 3, 4) on the internuclear axis, are classified into four symmetric representations of the point
group C,, according to 3, IT, A, @, and I electronic states denoted as al, a2, bl, and b2
symmetries, respectively. Further inclusion of spin orbit interactions couples the orbital
angular momentum A with the spin angular momentum S through its projection ) on the
internuclear axis. This produces a total angular momentum along the internuclear axis Q =
|A+) |, that characterizes the spin orbit electronic states. In this approach, spin orbit states
with a well-defined quantum number Q = 0, 1/2, 1, 3/2,... may arise from the spin orbit

splitting in the parent Y, IT, A, @, and T electronic states.

First we start with the CASSCF method to generate the molecular orbitals which were then
used in higher level MRSDCI calculations. In all of the subsequent calculations, the CASSCF
configuration space was divided into a set of inactive, active, and virtual molecular orbitals.
The set of inactive molecular orbitals is composed of the lowest spin molecular orbitals
which are doubly occupied in all determinants. While, the active molecular orbitals are in the
energetically intermediate region, between the inactive doubly occupied orbitals and the
virtual unoccupied orbitals. Then the single, and double excited determinants in MRSDCI
calculations are generated from the reference CASSCF configuration by distributing the
active electrons in all possible ways over all of the active molecular space. All of the
calculations were done via the computational chemistry program MOLPRO [8] and by taking
advantage of the graphical user interface GABEDIT [9].

The Yttrium and Zirconium species are treated in all electron schemes. The 39 electrons of
the yttrium atom are considered using a contracted Gaussian basis set from literature [10, 11]
for s, p, d functions and to which we have added one f function (27s 20p 17d 1f/ 12s 7p 7d
1f). The exponent of this f-function was taken to be 0.26. The 40 electrons of the Zirconium
atom were considered, using a contracted Gaussian basis set from literature [12, 13] for s, p, d
functions (27s 20p 17d / 18s 16p 11d 1f) and to which we have added one f function with
exponent 0.08, in order to facilitate the representation of the valence orbitals on Zirconium.
On the other hand, the Nitrogen atom is treated, in all electron scheme, as a system of seven
electrons by using the Rydberg2 (Dunning-Hay DZP + Rydberg) [14] basis set from literature
(9s, 5p, 1d). The Sulfur atom is treated as a system of 16 electrons by using the Rydberg4
(Dunning-Hay DZP + Rydberg) [15-16] contracted basis set (11s,7p / 6s,4p).
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Among the 56 electrons considered for Zirconium monosulfide ZrS, 48 electrons were frozen
in subsequent calculations so that 8 valence electrons were distributed over all the active
molecular orbitals. The CASSCF active configuration space contains 4c(Zr: 5s, 4dy, 5p,, S:
3p,), 3n(Zr: 4d.o, Spxy, S: 3pxy), and 18(Zr: 4d.;) molecular orbitals. This corresponds to five
al, three b2, three b1, and one a2 orbital denoted as [5,3,3,1]. In Zirconium mononitride ZrN,
the CASSCF active space included a CI space of configurations obtained by freezing 40
electrons and by distributing seven valence electrons among the active orbitals (Zr: 4d, 5Ss,
5p, N: 2s, 2p) in all possible ways. The CASSCF active space contains 46(Zr: Ss, 4do, 5p,, N:
2p,), 3n(Zr: 4d.s, Spxy, N: 2pyy), and 18(Y: 4d.1) molecular orbitals. This corresponds to five
al, three b2, three b1, and one a2 orbital denoted as [5,3,3,1]. The CASSCF active space of
Yttrium mononitride YN is obtained by distributing 6 valence electrons in all possible ways
over the orbitals 3o (Y: 5s, 4do, N: 2p,), 2n(Y: 4d.o, N: 2pyy), and 18(Y: 4dsi). This
corresponds to four al, two b2, two b1, and one a2 orbital, denoted as [4,2,2,1]. Of the 55
electrons explicitly considered for Yttrium monosulfide YS, 39 electrons for Y and 16 for S,
48 inner electrons were frozen in subsequent calculations so that 7 valence electrons were
explicitly treated. The active space contains 4c(Y: 5s, 5p, ,4do, S: 3p,), 3n(Y: Spxy, 4dsa, S:
3pxy), and 18(Y: 4d.o) orbitals in the C,, symmetry, this corresponds to 8 active molecular
orbitals distributed into irreducible representations a;, by, b, and a; in the following way: 5a;,
3by, 3by, lay, noted [4,2,2,1], while the doubly occupied orbital 15(Y:4s) of Yttrium has been
considered as inactive in CASSCF calculations. In the four molecules of interest the
CASSCF/MRSDCI+Q calculations were performed piecewise as a function of the
internuclear distance R, at equal steps of 0.03A. This allows for the construction of Born-
Oppenheimer potential energy curves (PEC) for the ground and low lying excited electronic
states. The fitting of the drawn PECs into a polynomial in R allows for the determination of
the equilibrium internuclear distance R. and for the calculation of several spectroscopic
constants as the; transition energies T., harmonic vibrational frequencies ®., and rotational

constants B, D, and a..

For the most part spin orbit coupling (SO) is simply ignored for light elements. However, for
intermediate weight main group elements SO interactions become significant and can
actually grow to the order of a few hundreds to a few thousand of cm™ [17]. Transition metal
compounds have a rich set of electronic states owing to unfilled d shells, and therefore SO
effects are commonplace. In this work, the energies for the SO molecular states  are
obtained from the treatment of the total Hamiltonian H; = H. + Wgo, where H. is the

Hamiltonian in the Born-Oppenheimer approximation for calculating the energies of the
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molecular states labeled *"'A*, and where Wgo is the spin orbit pseudopotential used to
represent SO coupling. The semi-empirical spin orbit pseudopotential (WSPOS) used in our

calculations was designed from Effective Core Potentials ECP to represent the spin orbit
effects in Yttrium and Zirconium [18]. The impact of the SO relativistic effect on molecular
properties increases with nuclear charge Z to an extent that molecules containing heavy
elements cannot be described correctly even in a qualitative manner without SO effects.
Owing to the relatively small charge and size of Nitrogen and Sulfur with respect to the
heavy metals Yttrium and Zirconium, spin orbit effects have been neglected in sulfur and
nitrogen. The energies for the molecular states Q including the spin orbit effects have been
obtained by diagonalizing the total Hamiltonian H; in the basis of A states yielding the spin
orbit electronic states Q = |[A£)| = 0,0,1/2,1,3/2,2, ...

II. Electronic Structure Calculations

Studies of small units containing a non-metal atom and a transition-metal atom are of
immense scientific and technological interests. With the present investigation, we begin a
systematic study of the transition metal nitrides and sulfides of Yttrium and Zirconium (YN,
ZrN, ZrS, YS) in order to elucidate their electronic structures and explore their bonding

characteristics.

II1. A. The Structure of Yttrium Nitride YN

I1I. A. 1. Preliminary Works on YN

Of all the transition metal nitrides, the YN molecule is the least one characterized. To the best
of our knowledge only five papers have been published on the electronic structure of Yttrium
mononitride. To our knowledge, experimental investigations of the Yttrium mononitride were
done by three groups: First, Ram and Bernath [19] studied the vibrational structure of the
electronic transition (1)'Z"«X'Z", reporting several vibrational levels and spectroscopic
constants. Further, rotational analysis resulted in accurate rotational constants of the six
lowest vibrational levels of the A'S" and X'E" states. Then, Jakubek ez. al [20] studied the
electronic structure of the YN molecule by laser excitation spectroscopy, reporting several
spectroscopic constants for the ground and 3 newly observed excited states (B1, C1, D1).
The assignment of these states could not be done based on the preexisting ab initio
calculations of Shim et. al [21]. Jakubek et. al. [22] then reinvestigated the YN molecule by a
Laser induced fluorescence spectroscopy, for the ground X'Y'" and the two excited states

(1)'Y" and (1)’Y"; RKR potential energy curves were constructed based on calculated
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vibrational constants. To the best of our knowledge only two theoretical papers have been
published, so far, on the electronic structure of YN. First Shim et. al [21] performed an all-
electron CASSCF ab initio calculations for nine electronic states (singlet, triplet, and quintet)
of the YN molecule. Shim et. al [21] results are questionable as they fail to reproduce the
experimental results available in Ref [19, 20, 22]. Recently, Duo et. al [23] performed
CASSCF/CASPT?2 calculations for the low lying 14 (singlet, triplet, quintet) electronic states
of the YN molecule. The calculated spectroscopic constants are in good agreement with
experimental results, however, many experimentally available excited electronic states B,

C1, and D1 [20] could not be assigned clearly.
III. A. 2. Results on YN

For the first part of our calculations without spin orbit effects we draw in Figures 1 — 5 the
potential energy curves for the 25 low-lying singlet, triplet, and quintet electronic states
SMA® of the YN molecule as a function of the internuclear distance range 1.3A <R <3A.In
Table I we list our results for the spectroscopic constants in the ground and excited electronic
states of YN, together with the theoretical and experimental results available in literature. A

percentage relative difference that reflects the accuracy of our calculations with respect to

other experimental and theoretical results was also evaluated in Table 1.
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Fig. 1: Potential energy curves for the 'S* and 'A states of the molecule YN.
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Fig. 2: Potential energy curves for the 'TT and '® states of the molecule YN.
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Fig. 3: Potential energy curves for the >~ and A states of the molecule YN.
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Fig. 4: Potential energy curves for the *IT and *® states of the molecule YN.
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Fig. 5: Potential energy curves for the °Y , °A , °[] and *® states of the molecule YN.
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Table I:
Spectroscopic constants for the lowest lying 25 singlet, triplet and quintet electronic states of the molecule YN.
1 3
Swe  Toem) ST (U4 Sede, 1?;;1_10) 3BJB. afem’) dofa,  R(A) SRR,
X'zT 0° 656.51° 4.1173° 0.00304% 1.839°
0° 650.6 "P°0.9% 4.28155P°  3.8% 0.00333 *P°  8.5%
0° 661.0 P 0.6% 1.80405 BP¢ 1.9%
( Theod 807.0 ™4 18.6% 1.78862 ™0 d 2 8oy
( Theoe 658 ™0 0.29% 1.809 Teoe 1.7%
0 Bt 633.2 Bt 379
)'=" 3850.76 970.4 4.0377 0.00173 1.857
3612.0 Bxpe 6.6%  1200.0 "¢ 19.1% 4.2311° 4.6% 0.00188 B*P¢  8.3% 1.81477 "¢  2.3%
3670 Theoe 4.9% 979 Theee .99, 1.803 Theoe 3.0%
3700 Bxpf 41%  1007.4 BT 3.6%
()'A  18776.85 775.14 2.6938 -0.00526 2272
17305 Theoe 8.5% 715 Thce 849 1.876 ™°¢ 219
30780 Theod 39%
(2)'A  20764.10 186.08 3.1718 -0.22287 2.131
(' 5802.90 720.53 3.6078 0.00812 1.968
9915 Theod 41%  706.0 ™4 2.05% 1.97383 Theed () 504
6482 Theoe 10.4% 755 ™°¢  4.59% 1.916 Teoe 2.7%
()'d  17788.92 376.56 3.2096 0.00975 2.075
Q)' 19232.61 380.05 3.2191 0.01516 2.08646
19832.98""" Expb 3 oy 3.255 B0 19
19232 Theoe 0.00% 562 ™ 320 2.057 Theoe 1.4%
Q)'d  22192.52 737.37 3.1428 -0.00634 2.102
('Y 20652.51 849.91 3.4703 -0.00264 2.002
1’s" 2781.84 763.82 3.8773 0.00358 1.896
W 5177 Theed 46%  771.0 ™4 .99 2.09025 ™4 9204
2360 ™o 17.8% 831 ™°°¢  8.1% 1.833 ¢ 3.49%
2413 Bxef 153% 805.12 B*f 519 1.866 Bpf 1.6%
(2)°T" 19096.71 749.17 3.7495 0.00196 1.928
18661.5 Bxp 23%  723.5° 3.5%  3.90173 BP® 399 1.919 Exe® 0.4%
(1°A  18821.32 707.49 3.6319 0.00019 1.958
16967 Teoe 19% 777 ™ 8.9% 1.861 Theoe 5.2%
(2)P°A  19269.14 427.36 2.7091 0.01872 2.279
(1’1 5485.09 685.65 3.5675 -0.0000036 1.975
929() Theod 41%  711.0 Theed 350, 1.96853 Theed (9 304
5962 Theoe 7.9% 758 ™ 950 1,922 Theoe 2.7%
(1’®  17503.14 801.52 3.5069 -0.00352 1.989
(21 14201.42 403.62 3.1156 0.01550 2.118
15380 Theoe 7.7% 692 ™ 419 2.034 Theoe 4.1%
(2)d  18602.08 880.03 3.5676 -0.0034 1.975
(3)’d  21700.96 1033.76 3.1612 -0.00421 2.099
(3)’I1  24536.04 605.09 3.0916 0.02057 2.116
(1)°Y 21994.68 213.97 3.0284 0.15761 2.176
(1’0 20186.18 526.56 3.0460 -0.0019 2.184
(1)°A  18559.14 476.94 2.7229 0.00610 2.266
20538 Theoe 9.6% 462 ™M 320 2.219 Theoe 2.1%
(’TT  21200.05 842.05 2.7497 -0.0006 2.250
21746 ™eoe 2.5% 572 440, 2.096 Theoe 7.3%
(2)°A  23321.93 458.14 3.1565 0.21811 2.167
)] 24780.30 493.99 2.8045 0.01875 2.229
390 Theed 06.6% 2.35 Theod 5.1%
Ref: a. First entry is for the values of the present work b. Ref [20] c. Ref[19] d. Ref [21] e. Ref [23]

f. Ref[22]
Note: 19832.98""®, corresponds to the first vibrational energy level in the (2)'I1 state.
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The comparison between our calculated values of T, with those obtained experimentally [19,
20, 22] shows a very good agreement with a percentage relative difference of 2.3% (Ref.[20])
< 8T/T. < 15.3% (Ref.[22]) for the states (2)'E", (2)'I1, (1)°L", and (2)’X". This agreement
deteriorates by comparing our values to those calculated by Shim and Gingerich [21] with
relative difference of 39%< 8T./T. < 46% for the states (1)'A, (1)'TT, (1)°Z", (1)’IT and (2)’I1.
The comparison between the experimental energy levels obtained for YN [19, 20, 22] to
those of ScN [24] shows that the electronic states "' A® in YN are much lower than their
counterparts in ScN. This suggests that the lowest (1)'IT and (1)°II states of ScN must lie in a
higher energy region than the (1)'II and (1)°II states in YN. But since the energies of the
(1)'IT and (1)’ states in ScN are 7443 cm' and 7331 cm' respectively [24], then it is unlikely
to have the energies of these states in YN at a higher energy region of 9915 ¢cm™ and 9290
cm™, as it has been calculated by Shim and Gingerich [21]. Unfortunately, the positions of
the low-lying excited states calculated by Shim and Gingerich [21] are approximately twice
the corresponding values obtained for ScN [24]. These discrepancies in the calculated energy
position are presumably due to a problem in presenting the ground state wavefunctions by
Shim and Gingerich [21]. In order to confirm the accuracy of our predictions for the states
(2)'=", (1)'II and (1)’ we repeated the calculation of the transition energy T. and the
equilibrium internuclear distance R, (Table II) by using different basis sets and with different
active spaces. The investigated energy values confirm that the (1)'II and (1)°IT states lie at a
lower energy value of ~ 5000 cm™, than that originally predicted by Shim and Gingerich
[21].

Table II:
Comparison between theoretical results obtained for the (1)'TI, (1)’I1, and (2)'X" states by using

different basis sets with different active spaces.

N- basis State Active space Method T.(cm™) R. (A)
(H'I (Y: 5s, 4d), (N: 2p, 3s) MRCI / CASSCF 4917 /4799 1.98
Ryd3* (1’11 (Y: 5s,4d), (N: 2p, 3s) MRCI / CASSCF 5200 /4900 1.96
2)'z" (Y: 5s, 4d, 5p), (N: 2p) MRCI / CASSCF 4660 / 4400 1.85
(H'm (Y: 5s, 4d, 5p), (N: 2p) MRCI/ CASSCF 5056 /4620 1.98
(Y: 5s,4d), (N: 2p) MRCI/ CASSCF 5803 /4910 1.97
Ryd2* (1’11 (Y: 5s, 4d), (N: 2p) MRCI/ CASSCF 5485 /5200 1.98
2)'z" (Y: 5s,4d), (N: 2p) MRCI/ CASSCF 3923 /4536 1.85
(Y: 5s, 4d, 5p), (N: 2p) MRCI / CASSCF 3300/ 4567 1.86
(H'T (Y: 5s, 4d), (N: 2p, 3s) MRCI/ CASSCF 4041/3653 2.02
Hazinaga® (1)’ (Y: 5s, 4d), (N: 2p, 3s) MRCI/ CASSCF 3900 /3137 2.03
2)'z" (Y: 5s,4d), (N: 2p, 3s) MRCI / CASSCF 1556/ 1962 1.86
(H)'TI (Y: 5s,4d), (N: 2p, 3s) MRCI/ CASSCF 3800 /3600 2.10
Roos" (1’11 (Y: 5s,4d), (N: 2p, 3s) MRCI/ CASSCF 3403 /3300 2.10
2)'s" (Y: 5s, 4d), (N: 2p, 3s) MRCI/ CASSCF 4686 /4329 1.92

a. Basis sets obtained from literature Ref [8].

63



Chapter Three: Results and Discussion

The comparison between our calculated values of T. by using the methods of
CASSCF/MRDSCI+Q to those calculated by Dou et al. [23] by using the methods of
CASSCF/CASPT2, shows a very good agreement with a percentage relative difference of
0.0% < 8T./T. < 10.4%, except for the values of the two states (1)°L" and (1)°A where the
relative differences are respectively, 17.8% and 19.0%. The comparison between the
calculated values of the vibrational harmonic frequency o, in the present work with those
obtained experimentally in literature shows a very good agreement with a relative difference
of 0.6% < dw./m. < 5.1% for the states X'E",(2)'E", (1)°Z", and (2)*X", except for the value of
e in Ref [19]for the state (2)'S" where a relative difference of dw./0~19.1% was obtained.
The agreement is also very good by comparing our values with those calculated by Shim and
Gingerich [21] and Dou et al. [23] with relative differences of 0.2% < dw./®. < 9.5% except
for the values given by Shim and Gingerich [21] for the states X'Sand (2)’IT where the
relative differences are respectively dw./®. = 18.6% and dw./®. = 26.6% and those given by
Dou et al. [23] for the states (2)'II, (2)’IL, (1)’l where the relative differences are
respectively, dw./0. = 32%, dw./0, = 41% and dw./w. = 44%. A very good agreement is
obtained by comparing the experimental values in literature for the rotational constant B,
with our calculated values with relative differences of 1.1% < 06B./B.< 4.6%. The

experimental and theoretical values in literature for the internuclear distance at equilibrium R,

are in good agreement with our calculated values with relative differences of 0.3% < 0R./R.<

9.2%.

Upon close examination of the drawn potential energy curves in Figures (1 — 5) one observes
certain regions of crossings and avoided crossings among the potential energy curves of the
investigated electronic states. These are regions at which the electronic states perturb one
another and are important in deciding the channel of molecular dissociation in photo
dissociation dynamics [25]. In Table III we report the positions of these crossings R, and
avoided crossings R,, together with the energy gap separations AE,,, recorded between the

different potential energy curves of the investigated electronic state in the YN molecule.

Within the investigated electronic states of YN three avoided crossings have been detected to
occur between the potential energy curves of the states (1)'A - (2)'A, (1)°A - (2)*A, and (2)°[]
- (3)’[]. The magnitude of the energy gap between the interacting states at these regions
ranged between 550cm™ and 611 cm™. There are two other avoided crossings noticeably
appearing in Figures 2 and 3 and occurring between the (2)'[] and the (3)'[] state at R = 2.18
A, and between the (2)’A state and the (3)°A state at R = 2.16 A but unfortunately the potential
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energy curve of the two excited states (3)'T, (3)’A weren’t very clear at these regions, mainly

because they were mixed with higher excited electronic states.

Table III:
Positions of the crossings and avoided crossings recorded between the different electronic states of the
molecule YN.

Crossing  Avoided crossing Crossing Avoided crossing
Statel  State2  R(A) Ru(A) AE,(cm') | Statel  State2 R(A)  Ru(A) AE,(cm™)
(H'A 2.72 (H'TT 2.14/2.28
1 2.50 (2)°A 2.20
X'y* @1 2.42 m'y @Y 2.32
(1)°A 2.71 3)yn 2.25
(1’°A 2.65 (’o 2.20
(D’® 2.80 (1YY" 2.19/2.40
'y 2.40 ’y” 2.10
2)'A 2.40 D'TI (1)°A 2.80
'A 2.29 ()’ 2.0/230
1 1.94 (1)°A 2.70
H'e 2.30 Q2rXY"  1.80/2.30
O'TI 2.40 | (1@ 1.84/1.94
3 (Ho 3
@' 1.94 3’ 2.04
)R 2.20 (1)°A 222
Q'Y (1’o 2.30 (1)°® 2.55
4’1 2.42 )y 2.04/2.30
(1)°A 2.30 (1)°A 2.11
(2)°A 2.36 (2)°A 2.18
Q)’y" 2.42 @' 1.90
(1)°A 2.26 (1’o 2.10
(’o 2.36 (1’°A 2.08
ay’y” 2.40 1Y’y 2.16/2.33
)’A 2.49 (1) °® 2.15
(D)TI 2.51 QT @7T1 1.93 552.8
(2)A 2.14 550 (2YA  2.08/2.12
Q)7°Y" 1.9/2.12 @’ 1.80
G)Il 1.86/2.25 M'e )Yy 211
(D'A (1’d  1.89/2.04 2)°A 221
()1 2.47 (OT1 2.30
@' 2.09 (1)°A 2)°A 2.08 611.1
(H'®  1.90/2.29
@' 2.10/2.34
(1A 2.05/2.12
2)'A (A 204
(1Yo 2.22
3)’n 1.82
(1)’® 2.10

The inclusion of relativistic spin orbit effects in molecular electronic structure calculations
greatly enhances the accuracy of nonrelativistic ab initio results. In heavy elements spin orbit
effects may induce splittings that can reach the order of 1000 cm™. These splittings may

change the shape of the potential energy curves, and could thus modify the values of the
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spectroscopic constants appreciably. In Figures 6 — 13 we draw the potential energy curves
for the spin orbit electronic states Q=0",0, 1, 2, 3, 4, resulting from the interaction of the
orbital angular momentum A with the spin angular momentum S projected along the

internuclear distance ).
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Fig. 6: Potential Energy curves of Q = 0" states (full and dotted lines) of the molecule YN.
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Fig. 7: Potential Energy curves of Q = 0" states (full and dotted lines) of the molecule YN.
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Fig. 8: Potential Energy curves of the Q = 1 states (full and dotted lines) of the molecule
YN originating from singlet and triplet parent states (°Y.", *A, *I1, 'II) .
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Fig. 9: Potential Energy curves of the Q2 = 2 states (full and dotted lines) of the molecule
YN originating from singlet and triplet parent states ('IL'A, °’I1, °A, *®) .
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Fig. 10: Potential Energy curves of Q = 3 (full and dotted lines), Q =4 (*+—*)and Q=5
( —®—*—) states of the molecule YN.
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Fig. 11: Potential Energy curves of the Q = I(dotted lines) and Q = 2 (full lines) states of the
molecule YN originating from quintet parent states (°Y.", °A, °II, *®).
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Then by fitting the calculated potential energy curves around their equilibrium into a

polynomial in R several spectroscopic constants Te, Re, ®e, D¢, and B, were calculated. These

results for the spin orbit electronic states O of YN are shown in Table IV.

Table IV:
Spectroscopic constants for the 60 low lying spin orbit electronic states of the molecule YN.
7 1
State T.(cm')  STJT, (c‘r‘;;;l) S0, 135;1_10) ?Cefnl_?) 5B/B, R(A) SRR,
+ Iv+ a
M 0[X)'YT 00 ggg.zz o s -6.4581  4.0625 1.853
. . 0
661.0 "P¢  3.3% 428155P¢  51%  1.80405°°¢  2.7%
807.0 ™eed 2194 1.78862™ ¢ 3 494
633.%15"';e 0.9% -
658 Thee 2.8% 1.809 Thee 2.4%
)07 [2)'S]  3813.62 1080.56 24046  4.0843 1.846
3612.0 B¢ 5.5%  1200.0 ®*°¢ 9.9% 42311 BP¢ 359  1.814775F¢ 1.7%
3700 Fxpe 3.0%  1007.4 BP¢ 7.2%
3670 et 3.9% 979 ™ot 10.3% 1.803 Tt 2 304
B30Tl 5026.52 686.75 -3.8233  3.5545 1.979
A0 (3T 20491.97 647.17 -4.4896  3.6035 1.966
(3)0" [(1)'S]  20778.05 767.43 34329 3.6735 1.947
6) 0" [(4)T]]  21997.95 763.52 2.1650  3.1463 2.104
(N0 [T 22019.43 919.58 -1.5731  3.1940 2.088
(8) 0°[(1)°A] 21666.22 755.29 -1.6347  2.8348 2217
90 [2)°T]] 2373220 742.50 -1.8579  2.9417 2.176
(10) O'[(1)’TT]  24646.88 664.23 21224 2.8585 2.208
(O[T 276226 814.36 3.5256  3.8807 1.895
Q)0 [Q7[]]  14116.63 704.17 24718  3.1383 2.107
(3) 0 [(2°Y]  18467.12 886.03 23389  3.5760 1.974
@O0 [BYI]] 18933.11 980.87 -1.9022  3.5708 1.975
(5)0 [(3°Y]  19310.95 864.94 23998  3.5498 1.981
6)0 [(1)’Y]  20868.93 698.28 41031  3.6669 1.949
(7 0-[(4°T]]  22080.55 748.61 22578 3.1469 2.103
()0 [(1)’®]  20116.15 508.02 -4.0265  2.9584 2.169
90 [(1)’Y]  21510.96 615.53 22683  2.7408 2.255
(10) 07 [(1)°A]  21802.65 477.81 3.6458  2.8293 2216
(A1) 0 [(2°[]] 23711.36 754.06 -1.8019  2.9413 2.176
(12) 0 [(1)’]]  24703.19 517.88 3.6405  2.8980 2.195
(I 2763.17 812.77 3.5376  3.8799 1.895
@) 1] 4906.21 737.55 -3.3983  3.5893 1.970
3) 1 [T 5028.25 693.07 3.7766  3.5581 1.978
9915 Theod 49%  706.0 ¢ 1.8% 1.97383 T™ecd (294
6482 Theof 22.4% 755t 820 1.916 ™t 329%
@ 13N 11839.69 915.12 -1.1183 2.8212 2.222
(5) 1 [T 14142.49 702.51 24421  3.1157 2.115
(6) 1[(2)'T[1B1  17391.12 542.88 -6.8009  3.6492 1.953
19188.02 B*P° 9394 3.255 Bxeb 12%
19232 Theof 9.5%  562™ T 349 2.057 ™t 5.0%
(1) 1[(2)°TI1C1 18076.00 645.27 -4.0848  3.4649 2.004
18615.51 PP 2805 718.35%°  10% 3.873464%P° 10%  1.939 B*® 339
®) 1 [3)IT] 18614.13 827.15 2.6573  3.5623 1.977
(9) 1[(3)°Y7ID1 19921.51 706.09 3.7525  3.6084 1.965
18661.53 ™*°  6.7%  723.5"P°  2.4% 3.90074 ™** 7.5%  1.9194 PP 2.4%
(10) 1 [(1)°A]  20408.20 688.58 -4.1086  3.6414 1.956
(D 1[(2°A]  20634.19 556.64 -5.9734  3.5811 1.972
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(12) 1 [T 21936.26 758.78 -2.1765 3.1384 2.106
(13) 1 [(1)’Y1 21474.26 525.14 -3.4952 2.8474 2.109
(14) 1 [(1)°A] 21849.29 565.73 -2.9558 2.8772 2.199
(15) 1 [2)°TT] 23430.28 648.63 -2.3320 2.9057 2.189
(16) 1 [(1)TT] 24775.33 543.67 -3.7712 2.9923 2.156
(D) 2[(D)T] 4867.26 729.82 -3.4255 3.5728 1.974
2) 217N 17610.43 380.38 -15.945 3.6589 1.949
(3)2[(1)'A] 17434.63 817.39 -2.8423 3.5468 1.980
17305 ™0 7.4% 715 ™0 14% 1.876 ™" 5.5%
30780 ™ 43%
4) 2 [(1)’®] 18311.24 965.54 -1.9487 3.5635 1.977
5)2 [(3)31]] 18563.61 1062.34 -1.6667 3.5954 1.968
(6) 2 [(1)°A] 20058.95 731.88 -3.5027 3.6030 1.966
(7) 2 [(2)°A] 20548.03 613.71 -4.9508 3.6213 1.962
19610.18 B*P* 4.7%
(8)2[(2)'A] 20821.64 691.12 -4.4393 3.6823 1.944
9) 2 [(2)’D] 23386.80 804.63 -1.7938 2.9487 2.175
(10) 2 [(1)’®] 20142.59 524.32 -3.8096 2.9798 2.163
(D)2 [(1)’YT 21368.02 586.19 -4.2232 3.1326 2.105
(12) 2 [(1)°A] 22090.18 575.98 -2.8241 2.8606 2.067
(13) 2 [(2)TT] 23843.34 734.12 -1.9038 2.9459 2.175
(14) 2 [(DTT] 24703.35 500.68 -3.9560 2.9206 2.184
(1) 3 [(1)’®] 17682.26 961.44 -2.0107 3.5845 1.971
(2) 3 [(2)°A] 20668.34 692.38 -4.3783 3.6551 1.951
(3) 3 [(1)°D] 20122.13 522.87 -3.5636 2.9831 2.187
(4) 3 [(1)°A] 22140.24 579.29 -2.8252 2.8722 2.202
3) 31N 24517.17 542.49 -3.2049 2.8705 2.202
©) 3 [(D)’IN 24615.90 560.96 -2.7916 2.8110 2.225
(1) 4 [(2)’D] 22077.79 838.12 -1.7747 3.1492 2.103
(1) 5 [(1)°D] 20538.24 586.18 -3.4610 3.0876 2.124
Ref: a. First entry is for the values of the present work b. Ref[20] c. Ref[19] d. Ref[51]

e. Ref[22]

f. Ref[23]

The spin orbit ab initio results of Table IV further confirm the accuracy of our nonrelativistic
findings. Truly, the comparison between the values of the present work to the experimental
values available in literature shows a very good agreement for the states (1)07[(X)'Y"],
@0 T@'TT, OU@'TH (DUR’TT, OUEB)’L], and (7)2[(2)°A]  with a percentage
relative error of 2.8% (Ref [20]) < 6T./T. < 9.3% (Ref [20]), and 0.9% (Ref [22]) < dwe/me <
10% (Ref [20]), and 3.5% (Ref [19]) < 0B¢/Be < 12% (Ref [20]), and 1.7% (Ref [19]) <
OR /R < 3.3% (Ref [20]). The agreement is also very good by comparing the values of the
present work to the recent theoretical results of Duo et. al. [23] in literature for the singlet
states (D0'[(X)'Y ], 072X, AWML (©1[)'TT], and (3)2[(1)'A], reporting the
relative differences of 3.9 % < 6T/T. < 9.5%, and 2.8% < dw./m. < 10.3%, and 2.3% <
OR/R. < 5.5%, except for the transition energy T. of the state (3)1[(1)1]_[] and the harmonic

vibrational frequency . of the state (3)2[(1)'A]. A less agreement exists when we compare

our results for T, and o, to the ab initio results of Shim er. al. [21] for the states (3)1[(1)'T]],
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and (3)2[(1)'A], reporting a relative difference of 43 % < 8To/T. < 49% and dw./®. = 14% for
the state (1)O+[(X)IZ+]. The other values of R, reported by Shim et. al. [21] agree with our
calculated values with a percentage relative difference of 0.2% < dR¢/R. < 3.4%. Finally, the
comparison for the other results shown in Table IV is not possible since they are given here

for the first time.

A recent spectroscopic investigation of the YN molecule [20] detected three new Q =1 (BI,
C1, D1) electronic states within the energy region of 18000 cm™—19000cm™, but the exact
identities of these states could not be determined based on earlier ab initio results. A more
recent sophisticated ab initio investigation of the electronic structure of YN was done by Duo
et. al [23], in which they assign the Bl state to be the D'[] state. However, further
assignments of the unknown states C1 and D1 could not be determined. In this work we
assign the newly observed B1, C1, and D1 (Q = 1) states to be the (6)1[(2)'T]], (D1[(2)’Y ],
and the (9)1[(3)3Z+] states, respectively, since their spectroscopic constants (Te, ®. 1) agree
with our calculated values for each of the assigned states. The (9)1[(3)’Y."] state is the closest
state in energy to the D1 state with a percentage relative difference of 6T¢/T. = 6.7%, dwc/®
= 2.4%, 0B./B. = 7.5%, and 0R¢/R. = 2.4%. The other spectroscopic constants for the states
(6)1[(2)'T] and (7)1[(2)*Y"] are in excellent agreement with those for the Bl and C1 states,
with percentage relative differences of 2.8% <0T¢/Te< 9.3%, dwc/me = 10%, dB/B< 12%,
8R./Re = 3.3%. The new assignment of the states {(6) 1[(2)'TT], (7) 1 [(2)3Z+], 91 [(3)3Z+]}
is logical, particularly since these states have 2 = 1 in agreement with the experimental

predictions provided in Ref [20].

The composition in percentage of the spin orbit Q state-wave functions in terms of the A
parent states, calculated at the equilibrium internuclear distance of the ground state R = 1.85
A, are presented in Table V. For each state Q there is a predominant component A with a
contribution larger than 80% so that a main parent “"'A state may be identified.
Nevertheless, there are states for which a small but significant contribution of other *"'A

states is obtained.

Transition metal compounds have a rich set of electronic states owing to unfilled d shells,
and therefore spin orbit effects are commonplace. In Appendix I we draw the parent
electronic A states together with their respective daughter states  and their energy
separation. This representation allows for a clear estimation of the spin orbit splitting in the

electronic states of YN.
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Table V:

Composition of Q spin orbit state wave functions of the molecule YN, in terms of ***' A-states (in
percentage) at R = 1.85A.

Q % (A-parent) Q % (A-parent)
(1) 0+ 100% (X)'y" 9) 1 100%(3)°Y"
(2) 0+ 99.97% (2)'Y", 0.03% (1)°'T] (10) 1 84% (1)°A, 16% (2)°A
(3) 0+ 99.9% (1)1, 0.1% (X)'>" (111 84%(2)°A, 16% (1)°A
(4) 0+ 93%(3)'Y", 6%(1)*Y" (12) 1 100% (4)°T]
(5) 0+ 100% (1)'Y (13) 1 100% (1)°Y"
(6) O+ 99%(4)°’[T, 1% (4)'Y" (14) 1 99.8% (1)°A
(7) 0+ 100%(4)'y" (15) 1 100% (2)°T]
(8) 0+ 100% (1)°A (16) 1 100%(1)°’[]
9) 0+ 100%(2)°’T] (12 100% (1)°T]
(10) 0+ 100%(1)°[] ()2 84% (2)’[T, 16% (1)'A
(1) 0- 99.98% (1)°Y", 0.02% (1)°'T] (3)2 100% (1)'A
(2) 0- 99.6% (2)’T], 0.4% (2)’Y" 4)2 100% (1)°®
(3) 0- 89% (2)°Y", 11% (1)°® (5)2 100% (3)°[]
(4) 0- 99.7% (3)°[1, 0.3% (1)°Y (6)2 76% (1)°A, 22%(2)'A
(5) 0- 100%(3)*Y" (72 97% (2)°A
(6) 0- 94% (1°’Y, 6% (3)'Y" (8)2 77% (2)'A, 23% (1)°A
(7) 0- 99.84%(4)°[T, 0.16% (2)’Y" 9)2 100%(2)*®
(8) 0- 99.88% (1)°® (10) 2 100% (1)°®
9) 0- 100% (1)°Y" (11)2 100% (1)°Y"
(10) 0- 100% (1)°A (12)2 100% (1)°A
(11) 0- 99.88%(2)°T] (13)2 99.9%(2)°’[]
(12) 0- 99.7%(1)’[] (14) 2 99.87%(1)°]
(H1 99.98%(1)°Y.", 0.02% (1)’T] K 82% (1)°®
@)1 76% (1)1, 24% (D)'T] )3 84%(2)°A, 16% (1)°A
31 75.6% (1)'T], 24.4% (1)°'T] 3)3 100% (1)°®
41 100% (3)'T] 4)3 100% (1)°A
(5)1 100 (2)'T] (5)3 100%(2)°[]
6) 1 100% (2)'T] 6)3 100%(1)°T]
N1 85% (2)°Y" (1) 4 100%(2)*®
®)1 83% (3)’[T, 8% (2)°Y" (15 100% (1)°®

I1I1. A. 3. The Nature of Bonding in Yttrium Nitride

Molecular electronic states of A symmetries arising from ¢ and & molecular orbitals have

been proposed to be important in the search for the electric dipole moment of the electron

(¢eEDM). A property, whose existence along the spin axis of the electron should provide

evidence of parity and time reversal invariance [27]. In this regards, molecular orbitals of ¢

symmetry are important since they allow for electrons to penetrate closer to the heavy atomic

nucleus, a place at which relativistic effects become significant [27]. Other electronic states,

such as the A state, arising from the occupation of both 6 and & molecular orbitals were also

suggested to create larger electric fields sufficient to produce a measureable eEDM signal

[27]. Then understanding the composition of molecular electronic states in terms of

molecular orbital configurations is of significant importance.
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In the present calculations, the choice of the active space allows for the determination of the
bonding molecular orbitals (o, m, o) participating in the formation of molecular states,
denoted by >, II, A, @, ... In multiconfigurational quantum chemistry, a single chemical
bond is described by a pair of orbitals, a bonding and an antibonding one. Usually, their
occupation numbers add up to 2.0 [28]. Thus, two electrons reside in two orbitals. If the
occupation number of the bonding orbital, 1y, is close to two and the corresponding
antibonding orbital has a small occupation number, 1., then there is a fully developed
chemical bond with a bond order equal to one. This is the situation for the chemical bonds in
most normal molecules at their equilibrium geometry. However, in transition metal
compounds with multiple metal-ligand bonds, one often sees occupation numbers 1, which
are smaller than two. If the two occupation numbers (1, and n,,) are both close to one, then
we have no chemical bond [28]. We can therefore define a quantity called the effective bond
order EBO which quantifies the formation of a chemical bond [29]. The EBO for a single
bond is defined by

EBO = (1 - Nap) / 2 ()

For a fully developed single bond the EBO will be close to one, while for a dissociated bond
the EBO will be close to zero. In multiply bonded systems, one has to add up the individual
values for each pair of bonding and antibonding orbitals to obtain the total EBO. Thus the
EBO gives us a mean to quantify the bond order concept from optimized wave functions.
In our multi-configurational treatment of the wave function in the ground state X'Y" we
obtained the occupation numbers of the 6 valence electrons distributed over the chosen active
space as M, = 1.39576 (10c6), My = 0.53874 (110), Nap = 0.16036 (120), Nap = 0.02265 (130),
Nab = 0.26255 (33), Mp = 3.14946 (5m), Nap = 0.37884 (61), Nap = 0.09164 (7). Then by
applying equation (1) we obtain an effective bond order (EBO) of = 2. Thus, indicating that
the bond in the ground state of YN is a double bond.

The Y-N bond is formed from 3 valence electrons on nitrogen 2p° and 3 valence electrons on
Yttrium 5s® and 4d' orbitals. Thus it is not surprising that such a bond is difficult to quantify
theoretically because of the strong correlation effects that occur due to the crowdedness of the
electrons in the bonding region. However, our MRSDCI+Q calculations yielded accurate
spectroscopic constants with experimental results. We can thus conclude that the electronic
structure of YN is well described at this level of theory. In particular we can gain significant
insight into the nature of the Y-N bond by analyzing the orbital compositions of electronic

states **"'A in terms of their molecular orbital configurations. Table VI shows the leading
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configurations of the electronic states of YN. The ground state of YN has the leading
configuration of 1 lo*57* (56%), where the 11c orbital is formed from the combination of 2p,
on Nitrogen and the 3d, orbital on Yttrium, and the 5x orbital is formed from the combination
of 3d:; on Yttrium and 2py, on Nitrogen. Other combinations of molecular orbitals such as
116'126'5n* (15%), 116'136'5n* (13%), and 116'57°6n' (7%) participate in forming the

ground state, but with smaller contributions.

Table VI:
Leading Configurations with percentage composition of the parent states *"'A* of the
molecule YN.

Label Leading Configurations with percentage composition
X'y 116" 57" (56%), 116'126" 51* (15%), 116'136' 57" (13%), 116’ 57 671" (7%)
Q)Y 116'126" 51* (75%), 11657* (13%)

(H)'A 116% 57° 67 (93%)

3)'s" 116° 57° 6" (84%), 116'136" 5n* (9%)

@'y 116'136' 51* (62%), 116°51* (4%), 116° 51° 61" (5%)
2)'A 116'126' 57° 61" (70%), 116'126' 57° 67! (22%)

5" 116'126' 57° 61" (87%)

'TI 116%126" 57° (91%)

O'TI 116’ 5n*6n’ (91%)

()'o 116'57°61'28'(91%)

A1 116'136" 57° (84%), 116'146'57° (3%), 116'57° 28" (6%)
2)'o 116'126'57°28'(90%)

@1 116'126%57%(85%)

()Y 116'126'57%(90%), 116'136'57* (2%)

)1y’ 116°5m°6m' (47%), 11675m°6m' (40%)

3" 116%5m°61' (43%), 116°5m°67'(50%)

(1)°A 11675161 (95%)

Q2)°A 116'126'5°61' (95%)

(D1 116%126'57°(92%)

Q)1 116'5n%6n' (91%)

311 116'126%57°(72%), 11675172 ' (13%), 116'57°61* (2%)
(1)3@ 1 10257921 613(76%), 116%136'57° (2%), 116'126%57° (11%)
A1 116°136'57° (87%)

)0 116'126'57°2 3'(91%)

(3)’® 116'126'57°2 8'(81%), 116'5n°6n” (4%), 116'136'57°18" (2%)

Leading configuration with weights less than 2% have been omitted.

These results agree very well with the recent CASPT2 calculations of Duo et. al [23] on the
ground state of YN suggesting that the ground state is formed mainly from the mixing
between the two configurations 116257 (77%) and 116'126'57* (10%). Other results in Ref.
[20, 22] suggest that the leading configurations of the Xlz+ and (1)12+ states in YN are
strongly mixed between the molecular orbital configurations 116*5n" and 116'126'57" on

Yttrium and Nitrogen in agreement with our conclusions.

The (2)'Y" and (1)’ states can be interpreted by analyzing their leading orbital
configurations. The (2)'Y." is formed from a combination between the 116'126" 5 (75%)
and the 116°51* (13%) configurations, which mainly arise from the promotion of an electron
from the 11c orbital in the ground state configuration into the 12 bonding orbital in the

(2)12+ state. The leading configuration 116'126'57* (90%) of the (1)32+ state of YN is

74



Chapter Three: Results and Discussion

similar to that of the (2)'Y" state, but with a slight difference: The 11c' and 126" electron-
spins pair in the same or in the opposite directions to produce a total spin of S='.2 +/2=1 and
S =14 - % =0, giving a triplet and a singlet multiplicity states, the (1)°Y" and the (2)'Y"
states, respectively. These predictions for the leading configurations of the (1)°Y" state are in

agreement with both Jakubek et. al/ [22] and Duo et. al [23] results.

III. A. 4. The Vibrational Structure of Yttrium Nitride

Exploring the vibrational structures of diatomic molecules has received great attention in
recent years [30]. In fundamental concepts, the search for spatial and temporal variations of
the fine structure constant a and the proton to electron mass ratio p = my/m. has been
proposed in transitions between nearly degenerate vibrational energy levels of diatomic
molecules. Degeneracies of the order <10cm™ between vibrational energy levels have been
proposed to enhance the measurement sensitivity of o and p by several orders of magnitude
[30]. In fact, the search for transitions between the almost degenerate vibrational energy
levels in ultra-cold CaH' has been applied to measure variations in p [31]. In Quantum
Computing femtosecond laser induced transitions between vibrational-vibrational and

vibrational-rotational energy levels in several heteronuclear diatomic molecules have been

proposed to produce the quantum bits |0> and |1> [32, 33].

Thus the vibrational energy structures of heteronuclear diatomic molecules are important in
several areas of research and for that we have decided in the present work to investigate the
vibration-rotation energy structures of YN. These calculations are performed by solving the
vibrational-rotational Schrédinger equation for nuclear motions on the previously calculated
potential energy surfaces for the ground and excited electronic states. The solutions for the
vibrational-rotational Schrdodinger equation are obtained iteratively by following the
canonical functions approach [34, 35], which allows for the determination of the vibrational
energy levels E,, the rotational constants B, and Dy , and the coordinates of the turning points
Rumin and Ry In this iterative procedure, a large number of vibrational levels could be
determined up to vibrational levels near dissociation. However, their number is largely
determined by the amount of points to the left and to the right of the equilibrium internuclear
distance of the potential energy curve. In the present work, we calculated the vibrational
constants for the 25 low-lying electronic states **"' A and their spin orbit component states. A
part of these calculations is shown in the context of this chapter while the rest are shown in

Appendix II.

In Tables VII and VIII, the vibrational calculations are performed for several low lying

electronic states X'>", (D'TL, (D[, (1)’Y", and (2)'>" and are shown together with the
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available experimental and theoretical values in literature. All of the vibrational energy levels
E, were calculated with respect to the zero vibrational energy level of the ground state. The
zero point energy or the difference in energy between the v = 0 vibrational level and the
transition energy at the equilibrium internuclear distance for the ground state is calculated to

be 303.56 cm™', considered zero in this work.

Table VII:
Values of the Eigen-values E,, the abscissas of the turning point R, Riax, and the rotational
constants B, for the different vibrational levels of the X', (1)'T], and (1)’[] states in YN.

X'y

v Efcm’) OE/E, Ruin(A) ORui/Rmin Rp(A)  SRpu/RuayByx10'(cm™)  3B./B,
0 0 1.78° 1.94° 4.021°

0° 1.63° 9.2% 1.87 Fxpb 3.7%  4.2666 5P 579
1 632.05° 1.75 1.97 3.991

650.64 BP° 280, 164 BP0 679 1.93 Expb 2.1%  4.23328B¢0 570
2 1286.44 1.73 2.01 3.981

1319 Bre 24%  1.655°° 489 1.96 Bxp® 2.5%  4.207395%9 549,
3 194891 1.71 2.04 3.962

1998 Fxpe 24% 1.67 5 230 1.99 Expb 2.5%  4.18365%P¢ 539
4 2620.94 1.69 2.07 3.941

2688 Fxpe 2.5%  1.69 5 0.0% 2.02 Bxeb 24% 41603659 52%
5 3294.49 1.68 2.10 3.921

3387 Bxwe 2.7%  1.74 5% 349 2.05 FxeP 24% 413793504 530,
6 3966.69 1.66 2.12 3.891

4090 B¢ 3.0%
7 4638.30 1.65 2.15 3.872
8 5307.24 1.64 2.17 3.852
9  5975.13 1.63 2.19 3.830

()'T1 : i (D11 : i

v E, Ruin  Ruax  Byx10'  Dyx10 r B,x10 D,x10

(cm-l) (A) (&) (Cm-l) (Cm-l) E,(cm™)  Ruin(A) Ruan(A) (Cm-l) (Cm-l)

5369.55° 1.91° 2.03* 3.571 3.461 |5261.68 191 2.03  3.581 3.551

609486 1.87 2.08 3.572  3.112 |597832 187 208 3.572 3.481

6837.86 1.84 212 3574 2884 |6694.14 1.84 212 3.541 3.781

7596.47 1.82 2.14 3.575 2776 | 739470 1.82 216  3.523 3.932

8366.24 1.80 2.17 3.566 3237 | 8080.03 1.80 218  3.494 3.833

9129.04 1.78 2.19 3.551 3.228 875630 1.79 221 3470 3.804
9885.60 1.77 221 3.536 3.172 | 9425.06 1.77 224 3445 4.047
1063742 1.76 223 3.522 3.816 10082.35 1.76 227 3416 4.260
1137195 1.75 225 3.488 5.164 10727.66 1.75 229 3392 3.921
12064.28 1.74 228 3.392 1.125 11365.55 1.74 232 3361 4.121
10 12636.82 1.73 236 3.187 1.391 11994.53 1.73 234 3342 3.902
11 1312436 1.72 238 3.203 -5944 | 1261749 1.72 236 3.323 4.663
12 13693.04 1.72 239 3.256 3.941 13226.58 1.72 239 3284 5.194
13 14268.03 1.71 2.42 3.231 2.396 13818.15 1.71 241 3.245 4.765
14 14851.77 1.770 2.44 3.230 3.188 14398.37 1.70 243 3.226 3.496
15 1543713 1.69 246 3.201 5.483 14977.18 1.70 245  3.202 3.941
16 16007.54 1.69 248 3.173 2.685 1555098 1.69 248  3.174 5.243

O 001N Wbk W —O

a. First entry is for the values of the present work b.Ref [20] c. Ref [22] d. Ref [19]

Note: All vibrational Energy values are measured relative to the zeroth vibrational level whose E, = 303.56
cm’ relative to the transition energy at the equilibrium internuclear distance T for the ground state X'Y™".
Exp, correspond to experimental results in literature.
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Table VIII:

Values of the Eigen-values E,, the abscissas of the turning point R i, Ry, and the rotational constants B, for the
different vibrational levels of the (1)’Y"", and (2) 'Y" states in YN.

'y @'y
Ev 8Ev Rmin 8l{min Rmax 8llmax Bv>< 1 01 Ev 6EV Rmin 8l{min Rmax 6limax BV>< 1 01 6]3v
(Cm—l) /Ev (A) /Rmin (A) /Rmax (Cm_l) (Cm_l) /Ev (A) /Rmin (A) /Rmax (Cm-l) /Bv
0 2864.03° 1.84°% 1.96° 3.871° 14015.62° 1.82° 1.91° 4.031°
2469 B¢ 16% 1.71 B**° 7.6% 1.925%° 2.19% 3879 BxPc 3504 16580 10% 1.87%P2.19% 4.21938¢ 450
3882.8 Bxpd 3 494
1 3639.22 1.80 2.01 3.852 14967.42 1.78 1.94 4.001
3297 B 10% 1.73 B*° 4.0% 1.97%*° 2.0% U879 BPc 18% 1.675P° 6.6% 1.91%°1.6% 4.204759 4.9%
4879.6 B0 1.8%
2 4411.44 1.78 2.04 3.832 5900.79 1.75 1.99 3.982
4102 B¢ 7.5041.75 B®° 179 2.015%° 1.5% 5850 BXP¢ 0.8% 1.68E° 429% 1.9450%2 605 4.1804E%¢ 4.8%
5848 Bxpd .99,
3 5180.04 1.75 2.09 3.811 6816.97 1.73 2.02 3.971
4921 Bxc 5204177 BP0 1195 2.045P° 249 6813 BXP¢ 0.05% 1.70%*° 1.7% 1.97%2.50, 4.1626%"¢ 4.6%
6797 P4 0.03%
4 5944.15 1.73 2.10 3.802 [7724.69 1.71 2.05 3.952
5762 B¢ 3 1941.81 BXP® 4,49, 206500 7737 BP9 0.02% 1.725P 0.5% 1.995°°3.0% 4.1598 P4 5.0%
5 6702.47 1.72 2.12 3.771 862422 1.70 2.07 3.942
8668 P4 0.03% 1.76%P° 3.4% 2.01%P°3.0% 4.14275P¢ 499
6 7447.68 1.71 2.15 3.752 9512.83 1.70 2.10 3.923
9565 P4 0.05%
7 8185.84 1.69 2.17 3.731 [10390.94 1.67 2.11 3.901
8 9644.52 1.68 222 3.693 [11251.16 1.66 2.13 3.883
9 10365.99 1.66 2.23 3.673 [12101.16 1.65 2.15 3.862
10 11077.28 1.65 2.27 3.654 [12940.94 1.64 2.17 3.841
11 11783.41 1.64 2.28 3.635 [13772.18 1.64 2.18 3.824
12 12483.01 1.64 2.29 3.601 [14593.19 1.63 2.21 3.806
13 13169.09 1.63 2.31 3.581 [15402.67 1.62 2.22 3.781
14 13849.32 1.62 233 3.562 [16203.44 1.61 2.24 3.760
15 14521 1.62 2.35 3.533 [16995.1 1.59 2.26 3.742
16 15184.41 1.61 2.37 3.514 [17776.04 1.59 2.27 3.721
17 15839.45 1.60 238 3.481 [18546.93 1.58 2.29 3.691
18 16485.25 1.60 2.40 3.460 [19307.85 1.58 231 3.672
19 17123.64 1.59 2.41 3.431 P0057.98 1.57 233 3.653
20 17751.4 1.59 2.45 3.412 20799.64 1.57 234 3.632
21 18372.51 1.58 2.46 3.383 P21532.02 1.56 2.36 3.601
22 18983.33 1.58 2.48 3.351 P2253.11 1.56 2.37 3.572
23 19587.26 1.57 2.51 3.332 22965.86 1.55 2.39 3.552
24 20181.14 1.56 2.52 3.301 P23668.34 1.55 2.41 3.521
25 20767.12 1.56 2.54 3.272 24360.45 1.54 242 3.503
26 21343.9 1.55 2.57 3.241 P5043.18 1.54 2.44 3.471
27 21912.2 1.55 2.58 3.212 P5714.23 1.54 2.47 3.442
28 22471.58 1.54 2.61 3.191 P26374.83 1.53 2.48 3.413
29 23022 1.54 2.62 3.163 7024.37 1.53 251 3.381
30 23563.7 1.53 2.69 3.133 27662.70 1.52 2.53 3.353
a. First entry is for the values of the present work b.Ref [20] c. Ref[22] d. Ref[19]

Note: All vibrational Energy values are measured relative to the zeroth vibrational level v = Owhose energy value is E, = 303.56 cm™

relative to the transition energy at the equilibrium internuclear distance T, of the ground state X'Y"".
Exp, corresponds to experimental results in literature.

The comparison between the values of E,, and B, in the present work with the experimental
values available in Ref [20, 22] for the states X'Y", (1)’Y", and (1) 'Y shows a very good
agreement, with a relative difference of 0.05% <0E,< 16%, and 06B,= 5.7%. The values of the

turning points Ry, and Ry, evaluated for the corresponding vibrational levels are also in
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good agreement with the experimental values calculated in Ref [22], with a percentage
relative difference of 0.0% <ORnin< 10% and 1.5% <6Rpnax= 3.7%.
In Tables IX the vibrational energy levels are shown for the spin orbit states (6)1[(2)'T]] . (7)

1 [(2)32+], and (9) 1 [(3)3Z+], which have been respectively assigned in the present work to
be the B1, C1, and D1 states experimentally reported in Ref [20].

Table IX:

Values of the Eigen-values E,, the abscissas of the turning point R, Rua.x, and the rotational
constants B, for the different vibrational levels of the (6)1[(2)'T]] , (7)1 [(2)’Y7], and (9)1[(3)’Y]
states in YN.

(6)1[(2)'T1]1 B1
v E,(cm™) SE/E, Rouin(A) Rpa(A)  Byx10'(cm™) 3B,/B,
0 17602.30° 1.92° 2.01° 3.591°
18974.66 B 7.2% 3.8833 Bxpt 7.4%
1 18068.22 1.85 2.15 3.331
19692.979 Exp® 8.2% 3.5209 Bxeb 5.2%
2 18468.71 1.82 2.20 3.432
3 18829.25 1.81 224 3.281
4 19131.49 1.80 235 2.993
5 19420.56 1.79 241 3.061
6 19769.78 1.78 245 3.024
7 20111.98 1.77 2.48 3.041
8 20494.07 1.77 2.49 3.063
9 20876.85 1.76 2.51 3.092
10 21286.64 1.75 2.52 3.094
11 21708.11 1.74 2.54 3.071
12 22130.67 1.73 2.56 3.092
13 22548.99 1.72 2.59 3.063
14 22967.48 1.71 2.60 3.071
15 23388.71 1.70 2.62 3.044
16 23812.26 1.69 2.64 3.026
17 24238.28 1.69 2.66 2.971
(9) 1[3)°’Y'1D1 (M 1[@2)°Y1Cl
v E(m’) OB Rmn Rux BxXIO 3B.[ o OB, Run  Ru BxI0' 3B,
v E, A @A) (mh) /B, | B, A A (em") /B,
0 20203.09% 1.91* 2.02° 3.591° 18365.24° 1.94* 2.04* 3.481°
19823.99 BxP® 1 994 3.8465P°  6.6%| 19023.28° 3.4% 3.9017 %** 10.7%
1 20867.74 1.87 2.09 3.519 18997.40 1.91 220 3.232
19746.82° 3.6516%P° 11.3%
2 21489.60 1.85 2.14 3.431 19315.36 1.90 2.28 3.063
3 22011.09 1.84 221 3272 19701.95 1.89 232 3.121
4 22464.59 1.82 228 3213 20144.99 1.87 235 3.112
5 23354.82 1.80 2.36 3.092 20591.03 1.85 2.38 3.090
6 23790.50 1.79 240 3.081 21032.80 1.84 241 3.071
7 2424133 1.78 243 3.074 21482.41 1.83 2.44 3.065
8 24680.68 1.775 2.48 2.985 21933.78 1.81 2.46 3.032
9 25075.99 1.765 2.51 2.921 22384.78 1.80 2.49 3.013
10 25483.13 1.76 2.54 2.940 22838.59 1.79 2.51 2.994
11 25899.63 1.756 2.59 2.931 23291.69 1.785 2.54 2.961
12 26318.61 1.75 2.61 2.902 23744.18 1.78 2.56 2.940
13 26722.45 1.74 2.65 2.843 24193.21 1.77 259 2.921
14 24640.13 1.76 2.61 2.909
a. First entry is for the values of the present work b.Ref [20]

Exp, corresponds to experimental results in literature.
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The comparison between the present values for the vibrational structure in YN (Table 1X) to
the experimental values reported in Ref [20] for the B1, C1, and D1 states shows a very good
agreement, with a percentage relative difference of 1.9% < 8E,< 8.2%, and 5.2% < 8B,<

11.3%. These results further confirm our previous assignments of the B1, C1, and D1 states.

The experimentally available {(0-0), (1-1), (2-2), (3-3), (4-4), and (5-5)} vibrational energy
band transitions [19] for the (2)'Y'— X'Y" system are reproduced in our calculations with a
very high accuracy. These results are shown in Table X, where a percentage relative

difference of 0.9% < dE,.,- < 3.4% was obtained.

Table X:
Comparison between our results of the vibrational energy bands for the (2)'Y"— X'S™*
transition and experimental results in Ref [49] in YN.

0—-0Band 1-1Band 2-2Band 3-3Band 4-4Band 5-5Band

E,. 4015.62° 433537  4614.35°  4868.06°  5103.75°  5329.73"
3882.76" 4229.04°  4528.65°  4798.51°  5049.44°  5281.21°
SEy/Evy  3.4% 2.5% 1.9% 1.4% 1.1% 0.9%
a. Values of the present work b. Ref [19]

Vibrational energy level calculations were then followed by rotational energy level
calculations by using the formula: E; = E,+BJ(J+1)-D,J*(J+1)%, and the results of E,, By, and
D, for the corresponding vibrational levels are obtained from the results of the present work.
The rotational energy calculations have been performed for the rotational energy levels in the
v =0 and v = 1 vibrational levels of the (2)'Y" and X'Y" states. Rotational spectroscopic
lines denoted by P(J) and R(J) branches, corresponding to the transitions AJ = -1 and AJ = +1,
respectively, have been calculated by using the relations Ej;-E; in the R(J) branch and Ej ;-
Ejin the P(J) branch. These results are shown in Table XI together with the experimental
spectroscopic P(J) and R(J) branches available in Ref [19].

Table XI:

Rotational energy band transitions between the sub-rotational
energy levels of the vibrational energy bands (0 — 0) and (1 — 1)
of the (2)'Y" — X'Y" system for the YN molecule.

0 — 0 Band 1 -1 Band
I R(J) branch  P(J) branch | R (J) branch P(J) branch
Eyi-Ey Eyi-E; Eji-E; Eyi-Ey
2 4337.78*
4231.55"
3 4338.58
4232.27

4 4019.67°  4012.42° 4339.39 4332.19°
3886.88" 3879.29° 4233.19 4225.63°

5 402049 4011.62 4340.20 4331.40
3887.68 3878.39 4234.01 4224.76
6 4021.30 4010.83 4341.01 4330.61
3888.46 3877.49 423481 4223.88
7 4022.12 4010.03 4341.83 4329.83
3889.25 3876.59 4235.61 4223.00
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10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

4022.95
3890.01
4023.77
3890.77
4024.60

4025.42
3892.27
4026.25
3892.99
4027.09
3893.72
4027.92
3894.44
4028.76
3895.14
4029.60
3895.84
4030.44
3896.53
4031.28
3897.21
4032.12
3897.88
4032.97
3898.55
4033.82

4034.67
3899.86
4035.52
3900.50
4036.37
3901.14
4037.23

4038.09
3902.39
4038.95
3903.01
4039.81
3903.62
4040.68

4041.55
3904.82
4042.41
3905.42
4043.29

4044.16
3906.59
4045.03
3907.17
4045.91
3907.75
4046.79
3908.31
4047.67
3908.89

4009.24
3875.67
4008.46

4007.67

4006.89
3872.86
4006.10
3871.91
4005.32
3870.95
4004.55

4003.77

4003.00
3868.00
4002.23
3867.01
4001.46
3866.00
4000.69

3999.92
3863.97
3999.16
3862.95
3998.40

3997.64
3860.87
3996.88
3859.83
3996.13
3858.77
3995.37
3857.77
3994.62
3856.65
3993.87
3855.58
3993.13

3992.38

3991.64

3990.90
3851.24
3990.16
3850.14
3989.42
3849.04
3988.69
3847.94
3987.95
3846.84
3987.22
3845.73

4342.64
4236.41
4343.46
4237.19
4344.28
4237.98
4345.10
4238.76
4345.93
4239.53
4346.75
4240.30
4347.58
4241.06
4348.41

4349.24

4350.08
4243.32
4350.91
4244.06
4351.75
4244.80
4352.59
4245.53
4353.43
4246.26
4354.28
4246.98
4355.12
4247.70
4355.97
4248.41
4356.82
4249.13
4357.68
4249.83
4358.53
4250.53
4359.39
4251.23
4360.25
4251.93
4361.11
4252.62
4361.97
4253.30
4362.83
4253.99
4363.70
4254.67
4364.57
4255.35
4365.44
4256.03
4366.31
4256.70
4367.19
4257.37

4329.04
4222.12
4328.26
4221.22
4327.48
4220.33
4326.70
4219.42
432593
4218.51
4325.15

4324.38

4323.61
4215.76
4322.84
4214.84
4322.08
4213.90
4321.31
4212.97
4320.55
4212.02
4319.79
4211.08
4319.03
4210.13
4318.28
4209.17
4317.53
4208.22
4316.77
4207.25
4316.02
4206.29
4315.28
4205.31
4314.53
4204.34
4313.79
4203.36
4313.05
4202.39
4312.31
4201.40
4311.57
4200.42
4310.84
4199.43
4310.10
4197.44
4309.37
4196.45
4308.64
419545
430791
4194.45
4307.19
4193.45

a. First entry if for the values of the present work
b. Second entry is for the values in Ref [19]
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I1I. A. S. The Permanent Dipole Moment of YN

The electric dipole moment p is the most fundamental electrostatic property of a neutral
molecule. It is of great utility in the construction of the molecular orbital based models of
bonding. Fermi and Teller established long ago [36] that a neutral closed shell molecule with
values of p greater than 1.625 Debye can capture an electron in its electrostatic dipole field
resulting in bound electronic states for the anion. Accordingly, the description of the mobility
of electrons through a polar gas relies upon knowledge of p [37]. It has been realized for
decades that the multipole moments of which p is the leading term for electrically neutral
systems, have proved useful in accounting for intermolecular forces and therefore have
helped in the search for an understanding of the macroscopic properties of imperfect gases
liquids and solids [38]. Recently, the availability of experimentally well determined values
for p has become increasingly more important in the assessment of ab initi electronic
structure calculations for molecules. The dipole moment operator is among the most reliably
predicted physical properties because the quantum mechanical operator is a simple sum of
one-electron operators. The expectation value of this operator is sensitive to the nature of the
most chemically relevant valence electrons [38]. Accordingly, a comparison of the
experimental and theoretical values of 1 is a sensitive test to the general predictive quality of
the computational methodology. In Table XII we report the values of p calculated at the

equilibrium internuclear distance of the ground state R =1.84A of YN.

Table XII:

Permanent dipole moments for the singlet, triplet, and quintet states of the
molecule YN at R = 1.84A.

State *"'A  |u|(Debye) oul 1 State *"'A  |u|(Debye)  Su/ u
X'y* 5.186" (1’1 3.840
8.19the® 36.7% 5.5heo 30.4%
'y 6.552 )11 3.793
10.64h<® 38.4%
(H'A 4.113 3)y’n 0.812
(2);A 3.466 (1)2<D 5.835
H'm 3.352 2)’® 1.249
W 5.33theod 37.1% @
H'e 3.825 3)'® 0.059
@'n 7.159 (1°A 3.866
'y 3.722 2)°A 0.986
(1y’z’ 3.356 ()’ 1.884
@z 3213 2Tl 0.451
(l)zA 4.014 ()’ 4.103
(2)°A 4.014

a. Values of the present work b. Ref[21]
Note: (theo) corresponds to theoretical results.

The results of the permanent electric dipole moment reported in the present work do not

agree with the theoretical results of Shim ez. al. [21], with a relative difference of 30.4% <
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op < 38.4%. This is not surprising, as Shim et. al [21] results fail to reproduce the
experimental results in literature [19, 20, 22]. Indeed, we can assert that our results for the
permanent dipole moments are much better than those reported by Shim et al [21],
particularly due to that our results succeed in reproducing the experimental results for the

spectroscopic constants of YN [19, 20, 22] (Tables I and IV).

The variation of the permanent electric dipole moment with molecular geometry enters into
the description of light-matter interaction in resonant spectroscopy [38]. Figure 12 shows the
variation of the permanent dipole moment as a function of the internuclear distance for

several low lying experimentally detected electronic states in YN.

R (A)

3.3

-12

Fig. 12. Variation of the permanent dipole moment in (Debye) as a function of the internuclear
distance R (A) for the states (X)'Z", (1)'Z", (1)°Z", (1) 1, and (2)'I1.

III. A. 6. The Internal Molecular Electric Fields in YN

It has been proposed in recent years that heavy polar diatomic molecules have large internal
molecular electric fields in GV/cm that are 4 to 5 times larger than any laboratory electric
field [39]. These large internal electric fields are very useful in the search for the electric
dipole moment of the electron eEDM. A fundamental physical property, whose measurement
shall dramatically influence all the popular extensions of the standard model [27]. The
measurement of an electric dipole moment of the electron d. requires extremely large electric
fields to observe the energy shift due to different alignments of d.. The current upper limit on

the electron eEDM 1.6x107 e.cm, comes from measurements in thallium atoms [40]. In this
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experiment, an effective electric field is generated inside the atom. The magnitude of this
electric field(on the order of 70 MV/cm) is far larger than the field that could be applied
directly in the laboratory [27]. The new generation of electron eEDM experiments,
employing polar diatomic molecules, is expected to reach sensitivity of 107" — 10> e.cm
[41]. In this respect, many diatomic molecules, with *A and **Y molecular symmetries, have
been proposed as model candidates to measure the electron’s eEDM. Molecules such as, BaF
[42], YDF [43, 44], HgF [45], PbF [45], PbO [46], HBr' [47], HI' [47], PtH" [27], HfH  [27]
have been already proposed as a mean to measure the electron’s eEDM. In these systems
molecular electric fields as large as 99 GV/cm were detected in HgF [45] and as small as 0.02
GV/cm in HBr' [47]. Ab initio calculations are very useful in this respect, particularly due to
the relative ease by which internal molecular electric fields can be computed. The quality of
the electric field results largely depends on the methods and the basis sets used. In the present
work we have computed the internal molecular electric fields Eyoecu.r for the various
electronic states of the molecule YN at the highest level of theory MRSDCI. The computed
values for the internal molecular electric field along the internuclear axis are reported in
Table XIII at the equilibrium internuclear distance of the ground state and in units of GV/cm.

The values of Enolecular for the various states of YN are reported here for the first time in

literature.
Table XIII:
Internal Molecular Electric Field for the electronic states of YN at R =
1.84A.
State *"'A*  [Emoiecutar(GV/cm) ~ State *"'A* |E motccutar] (GV/cm)
X'z* 0.124 (1)’ 0.237
2)'z" 0.017 (1)Y’o 0.011
(D'A 0.069 (2’1o 0.054
2)'A 0.049 2)® 0.002
(O 0.065 (3o 0.270
(H'TI 0.237 (3)’10 0.339
(1)'o 0.011 (1°A 0.187
)' 0.054 (DD 0.179
)'®o 0.002 (s 0.184
(1’z* 0.124 (2)’°A 0.242
2)yz" 0.017 (D] 0.204
(1)°A 0.069 Q)11 0.017
2)’A 0.049

The values of the internal molecular fields are largely dependent on the charge distribution in
each of the molecular orbital configurations of each state. This gives a molecular electric
field in YN that varies between 0.002 GV/cm for the (2)'® state and 0.339 GV/cm for the
(3)°11 state.
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II1. B. The Structure of Zirconium Nitride ZrN

I1I. B. 1. Preliminary Works on ZrN

Zirconium nitride is an interesting and versatile material owing to its low electrical resistivity,
good corrosion resistance, low formation energy, and high mechanical properties [48 - 50].
Typically, ZrN and TiN possessing the best mechanical properties are deposited by physical
vapor deposition to coat medical devices, industrial parts, automotive, aerospace components
and other parts subject to high wear and corrosive environments [51 — 54]. In high
temperature material applications, within the group of refractory metal nitrides Ti, Zr, Hf, and
Nb titanium and zirconium nitrides are the most promising hardening additives, which are
used for raising the high-temperature strength of sintered molybdenum and provide high
enough ductility parameters at a temperature up to 2000°C [55]. Understanding the formation
and nature of the Zirconium-nitrogen bond is thus an active area of research with many
applications in several areas of science. In astrophysics, transition metal atoms are relatively
abundant in cool M- and S-type stars [56]. In fact, diatomic transition metal hydrides and
oxides have been detected in the spectra of stellar atmospheres [57 - 61] and since the nitrides
and oxides often have similar bond energies [62], the nitrides are also of potential

astrophysical importance.

To the best of our knowledge the electronic structures and vibrational spectra of the ZrN
molecule have been topics of research for a considerable period of time [63 — 71]. Bates and
Dunn [63] performed a spectroscopic study for the (0,0) band in the (1)°]] - X*>." and (2)*Y."
- Xzz+ transitions. Recently, Cheung and coworkers [64 — 68] studied the (0,0), (1,1), and
(2,2) vibrational bands of the (1)°[] - X°Y." transition for various isotopomers of ZrN *°ZrN,
Y17iN, 27N, **ZiN, *°ZrN. More recently, Chen et. al. [69] performed a laser spectroscopic
study for the (0,0) vibrational band in the (2)22+ - XZZ+ system. These spectroscopic studies
[69] were then followed by ab initio MRCI calculations on the low-lying 5 doublet states and
2 low-lying quartet states. Haiyang et. al. [70] studied the magnetic hyperfine structure of the
X?Y" state for the isotopomer °'ZrN, recording the laser induced fluorescence spectrum of the
(1)’I1 = X*" vibrational transition (0 — 0). Gary et. al. [71] performed an infrared
spectroscopic and density functional investigation for the reaction between transition metals,
Ti, Zr, and Hf with nitrogen atoms. They reported the value of the harmonicity constant w. =
991cm™ in the ground state of ZrN. Devore et. al. [72] performed an infrared vibrational
spectroscopy of the group IV transition metal gaseous nitrides TiN, ZrN, and HfN. The

ground state in each of the three molecules was detected to be of °Y symmetry. Infrared
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spectroscopic analysis yielded vibrational frequencies and rotational P and R branches in the
ground state of ZrN. A common feature exists between the different experimental studies on
the ZrN molecule. It is the existence of strong severe perturbations in the experimental
spectra. These perturbations could not be resolved easily and resulted in a limited partial
analysis of the obtained spectrum. This is not surprising, as several perturbations have been
also detected in the spectrum of the isoelectronic molecules TiN [73, 74] and ScO [75, 76],
which are similar to ZrN. As the identity of the perturbing states in ZrN could not be
identified, there arises the need for a high quality ab initio investigation for the electronic
structure of the neutral ZrN molecule. Although the atomic structure of Nitrogen is relatively
simple with *S as its ground electronic state. The electronic structure of Zirconium is more
complicated with °F as the ground state. These combinations of atomic orbitals on Zr and N
will result in a plenty of molecular states, which could also split due to spin orbit coupling. In
the present work we try to fully explore the electronic structure of the molecule ZrN with the
inclusion of relativistic spin orbit effects. The results of the present calculations yielded
potential energy curves, spectroscopic constant and vibro-rotational energy levels. The
comparison between the values of the present work to the experimental and theoretical results
available in literature shows a very good agreement. This reflects the high accuracy by which
our theoretical calculations are able to represent the bonding in ZrN. Until the work described

here, no extensive theoretical study was available on ZrN.

III. B. 2. Results on ZrN

The potential energy curves for 21 low-lying electronic states *"'A® of the molecule ZrN
have been obtained from MRSDCI +Q calculations performed at 40 internuclear distances
equally distributed between 1.3 A and 2.5 A. Figures 13-16 show the potential energy curves
of 12 low-lying doublet and 9 low-lying quartet states. The energy scale of all figures is
relative to the minimum energy of the ground electronic state predicted here to be a X°Y "
state. The spectroscopic constants obtained from all of these curves are given in Table XIV
where R. is the equilibrium internuclear distance, ®. is the harmonic frequencies around the
equilibrium, T, is the transition energy relative to the ground state, B, is the rotational
constant, and D, is the centrifugal distortion constant. The ground state of ZrN is a XY " state
resulting from the distribution of 7 valence electrons over the active space of molecular
orbitals 16°17*26' leading in to an orbital angular momentum A = ZA; = 0, with one unpaired

electron (S = %), giving a doublet multiplicity (2s+1) ground state X°Y .
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Fig.13: Potential energy curves for the °X" and A states of the molecule ZrN.
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Fig.15: Potential energy curves for the ** and *A states of the molecule ZrN.
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Fig.16: Potential energy curves for the *IT and *® states of the molecule ZrN.
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Table XIV:
Spectroscopic constants for the lowest lying 21 doublet and quartet states of the molecule ZrN.

State Te(cm™) 3T. w.(cm’) doJw. Bex10" 8BJ/B. D, x 107 3DJ/D. R.(A) 3R, /R,
/T, (cm™) (cm™)
xX*z" 0? 982.79° 4.626 4.094 1.731°
obedel.ehiik 1015™°%  3.1% 478165 ¢ 329% 4555P°  10%  1.70235*°  1.7%
1002.65P° 1.9% 4.8052%° " 3.7% 45457 989  1.6943%%° 2.1%
1002259 1.9% 4.79815P¢ 350 45155P8 939  1.69545P" 2.19%
1030%°¢  4.5% 4.8406"°" 4.4% 453700 96% 1.7%%! 1.8%
991 Exp J 0.8% 4.835v! 2.1%
(1)°A 7580.02 920.97 4.509 4322 1.754
8531 Theo® 11% 944™® 2 49, 1.7228™® 1 8%
(2)°A 17494.25 727.12 4.108 5.329 1.838
Q)yz" 1759515 959.83 4.133 3.060 1.833
16228 8.4% 935™°P  26% 45871 9.8% 1.7789™" 3 0%
(3)’A 20905.95 867.13 4.156 3.798 1.828
(3)Y’="  23604.08 783.84 4.461 5.781 1.767
25844“‘“’; i 8.6% 830™°P 550, 45870 279 1.7247™® 2 49,
24670.065P°  4.39%
24670 Bk 4.3%
(111 16317.00 929.20 4.621 4.579 1.732
16747 2.5% 1004™°°  7.4% 458705F° 34% 5.61%F°  183% 1.7000™°° 1.9%
174015k 6.2% 973504 45% 47508 2.7% 5541 17%  1.7062F° ¢ 1.5%
17318.7?31”:"": 5.7% 47601 5°1 2,99
16905.1 B¢ 3.4%
()11 17904.42 1415.93 4.184 1.468 1.822
(1)’® 16879.49 746.89 3.778 3.869 1.916
(3)11 19155.01 1408.58 4.009 1.313 1.861
(2)’® 20924.10 778.16 3.857 3.793 1.897
(4)11 21992.86 948.11 3.907 2.645 1.885
(1)*A 16477.72 844.59 4.145 3.989 1.830
17026 ™e® 3.2% 828™® 209 1.8033™0® 1 49
()= 23730.45 723.81 3.697 3.732 1.939
2)*A 26833.38 764.83 3.786 3.689 1.915
(3)*A 29763.96 802.67 3.712 4.126 1.931
(1)1 16621.60 763.27 3.851 3.929 1.899
(1)'® 16708.48 768.29 3.833 3.820 1.903
()1 26841.14 787.26 4.056 4.406 1.849
(3):1'[ 27476.45 974.42 3.818 2.347 1.907
2)'® 30054.29 780.77 4.034 4289 1.856
Ref: a. First entry is for the values of the present work b. Ref [69] c. Ref [70] d. Ref [66]
e. Ref [65] f. Ref[64] g. Ref[68] h.Ref[67] i Ref[72] j. Ref[71] k. Ref [63]

Note: Theo and Exp represents theoretical and experimental results in references.

The comparison between the values of the present work to the theoretical results available in
Ref [69] shows a very good agreement with a percentage relative difference of 2.5% < 6T./T.
< 11%, 2.0% < dwc/ow. < 7.4%, and 1.4% < SR/R. < 3% for the states X", (1)’A, (2)°2",
(3)°", (1)1, (1)*A. The experimental results available on ZrN for the states XL, (3)’", and
(1)’IT are reproduced in our calculations with percentage relative differences of 3.4% (Ref
[64]) < 0T/T. < 6.2% (Ref [63]), 0.8% (Ref [71]) < dwc/w. < 4.5% (Ref [66]), 2.1% (Ref
[72]) < OB/Be < 9.8% (Ref [72]), and 1.5% (Ref[66]) < 0R/Re < 2.1% (Ref [67]). The
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experimental values of the centrifugal distortion constant D. are reproduced in our
calculations for the ground X" state with a relative difference of 9.3% (Ref [68])< 8De/D.
< 10% (Ref [65]), except for the (1)’II state where a relative difference of 17% (Ref[64]) <
dD/D.< 18.3% (Ref[65]) has been obtained.

In the results of Table XIV the transition energy T. = 16905.1cm™ of the experimentally
detected (1)°[] state in Ref [64] has been estimated by using the following relation T, = T, -
. (v+1/2), where T, is the experimentally determined vibrational energy level in Ref [64],
and o, 1s the experimentally available harmonic vibrational frequency in Ref [66]. The other
transition energy value (17318.76 cm™) of the (1)’]] state listed in table XIV has been
averaged over the two spin component states [ [, and []s, listed in Ref [65] by using the

following relation (T, +T3)/2.

A good theoretical determination of spectroscopic constants for a molecule containing heavy
elements requires the inclusion of spin orbit coupling and other scalar relativistic effects in
the electronic structure calculations. In this study we try to fully explore the electronic
structure of the molecule ZrN with spin orbit effects, at the complete active space (CASSCF)
method and Multi-reference single and double configuration interaction (MRSDCI) method,
for the lowest lying 49 spin orbit states Q*. We also compute the entire potential energy
curves of these states and perform numerical fitting to obtain the spectroscopic constants of
ZrN. Theoretical results obtained in the present work are in excellent agreement with the
experimental and theoretical results available in literature. In this research, several low lying
doublet and quartet states have been studied for the first time. In Figures 17 — 20 we draw the
potential energy curves of 49 low-lying spin orbit electronic states (Q = 1/2, 3/2, 5/2, 7/2, and
9/2) as a function of the internuclear distance R. Then by fitting the calculated energy curves
for the different investigated electronic states in to a polynomial in R, several spectroscopic
constants were calculated such as, the harmonic vibrational frequencies ®., the equilibrium
internuclear distances R, the rotational constants B., the centrifugal distortion constants D,
and the transition energies with respect to the minimum energy of the ground states T.. These
are reported in Table XV together with the experimental and theoretical results available in

literature for the spin orbit states in ZrN.

The new results calculated in the present work for the excited electronic states of ZrN are of
particular interest since they are viable candidates for experimental observations by optical
spectroscopy techniques. The excited electronic states (1)°II, (2)I1, (3)I1, (4)IL, (2)’%",
(3)’%" are accessible through dipole allowed electronic transitions from the ground state,

obeying the selection rules AA = 0, £1, AS = 0, and AQ = 0. Other excited electronic states
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with A and ® symmetries might be accessible through transitions from excited electronic

states with IT and A symmetries.

-1
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Fig. 17: Potential energy curves for 14 (Q = 1/2) states of the molecule ZrN (Full and
dotted lines).
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Fig. 18: Potential energy curves for 15 (Q = 3/2) states of the molecule ZrN (Full and
dotted lines).
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Fig. 19: Potential energy curves for 11 (Q = 5/2) states of the molecule ZrN (Full and dotted
lines).
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Fig. 20: Potential energy curves for 7 (2 = 7/2) (dotted lines) and 2 (2 = 9/2) (Full lines)

states of the molecule ZrN.
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TABLE XV:

Equilibrium internuclear distances R., transition energies T, rotational constants B, , centrifugal distortion constants D,
and harmonic frequencies ®. , for  states of the molecule ZrN.

MQ[K)>'A]  Te(em’) STS/T. w.(cm”) doc/0. R(A) SR/ReBex10'(cm™)8B,/ B, D.x10"(cm™) 8D./D,
(D12 XY 0.0 972.12 1.728° 4.647 4227
1015™°% 4204 1.7023™°> 1.5% 4.7816™°° 2.8% 4555  71%
1002.65°° 3.0% 1.69435¢ 1.9% 4.7816"°¢ 2.8% _4.54%*f  6.8%
995‘3’;”d 2.3% 1.6%54_5"’1’ 1.9% 4.80525"‘” 33% 451580 63%
1030504 560, 1750 1.6% 4.79815%¢ 319 Exph 0
991 Fxpi 1.9% 4.8406 ™2t 4.0% 4.3 6.7%
4.83Expi 3.7%
120 16140.43 968.82 1.732 4.649 -5.282
17040.05%%° 52% 958 Fvd 1.1% 475150 21% 5.61°%¢ 5.8%
() 12[()*A]  16154.76 667.04 1.845 4.079 -6.091
H12[)]  16798.78 853.89 1.902 4.194 -3.947
16228™b 3 50, g35Theed g gos 1.7789™0 6 10, 4.587F°1 849,
(5)1/2[(2)°A]  16848.38 716.79 1.891 3.883 -4.560
6)12[(D)'T]]  16894.09 689.82 1.889 3.891 -4.952
(DI2[Q)TI 16994.25 935.16 1.877 3.939 -2.798
®)12[B)[I1  17454.86 976.13 1.861 4.006 -2.704
(9)12[(3)°Y]  20921.51 763.76 1.859 4.225 -5.674
25844“’“’; i 19.0% 830™°°  7.9% 1.7247™°° 77% 4.587%F°  7.8%
24670.065° 15.2%
i 246705k 15.2%
(10)12[(4)[]] 22120.44 943.80 1.875 3.948 2.768
(ADI12[QR)'TI] 26551.16 607.14 1.843 4.102 -6.540
A)12[(H*Y] 2694511 660.97 1.869 4.142 -7.146
(13)1/2[(2)'A]  27146.18 685.01 1.894 4.027 -5.340
(14)1/2[(32)411] 29495.28 547.10 1.888 3.902 -7.684
(1)3/2[(1)°A]  7334.31 912.30 1.755 4.508 -4.405
(2)32[(1)T]]  16582.20 972.64 1.783 4.369 -5.589
17597.525%¢ 57%  9435¢d 3 o4
(3)32[(1)*'A]  16605.82 245.25 1.865 4.199 -6.392
(#)32[(1)'®]  16973.93 803.36 1.883 3.914 -4.780
(5)32[2T1  17050.04 956.78 1.874 3.953 2.702
(6)32[(DTN1  17637.56 1002.63 1.855 4.034 2.628
(7)32[(3)°A]  19416.51 1177.46 1.859 4.016 -1.882
(8)32[(3)]]1  21195.56 1034.32 1.865 3.989 -2.383
(9)32[(4)°T]  23823.43 916.41 1.815 4.198 4217
(10)3/2[2)'T]]  24869.72 1222.37 1.858 4.019 -1.749
(11)3/2[(1)*Y] 26803.27 579.65 1.878 3.941 -7.234
(12)3/2[(2)'A]  27045.98 703.52 1.897 3.855 -4.636
(13)3/2[(2)*®] 27446.06 832.92 1.897 3.857 -3.308
(14)32[(3)T]]  29320.72 660.25 1.861 4.007 -6.015
(15)3/2[(3)'A]  32294.98 816.35 1.863 4.001 -3.856
(D)52[(1)°A]  7767.43 845.68 1.745 4.559 -5.302
(2)52[(1)*'A]  16631.23 486.85 1.861 4.026 -10.735
3)52[(T 16929.17 709.39 1.890 3.886 -4.662
(4)52[(1)*®]  17099.05 986.99 1.871 3.967 2.567
(5)5/2[(1)’®]  18094.71 975.88 1.846 4.073 -2.862
(6)5/2[(3)°A]  19267.32 1163.36 1.864 3.997 -1.897
(7)52[(2)°®]  21306.29 1040.98 1.864 3.996 2.361
(®)52[(2)'TI1  23605.51 1056.1 1.925 3.746 -1.892
(9)5/2[(2)*'A]  27269.01 720.44 1.898 3.851 -4.429
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(10)5/2[(2)'®] 27555.51 926.39 1.904 3.828 -2.618
(11)5/2[((3)'A] 32258.52 792.59 1.863 4.000 -4.079
(D7/2[(1)*A] 16734.96 494 .84 1.879 3.929 -1.027
(2) 72 [(1)’T]  16717.43 704.92 1.895 3.864 -4.651
G372 [(D)*'®]  17472.76 952.63 1.863 4.001 -2.826
(4)7/2[(1)*®] 18283.97 1069.80 1.849 4.059 -2.362
(5)72[(2*®] 21935.57 904.86 1.882 3.920 -2.947
(6)7/2[(2)'A]  27200.27 796.33 1.882 3.915 -4.061
(D72[(3)*'A]  32312.65 722.69 1.862 4.019 -4.756
(D92[(1)'®] 17726.03 1027.23 1.850 4.054 -2.543
(2)92[(2)'®]  29650.74 593.91 1.903 3.836 -6.399
Ref: a. First entry is for the values of the present work b. Refs [69] c. Ref [70] d. Ref [66]
e. Ref [65] f. Ref [64] g. Ref [68] h. Ref [67] i. Ref[71] k. Ref [63]

Note: Theo and Exp represent theoretical and experimental results, respectively.

The comparison between the values of the present work and the results available in literature
shows a very good agreement. The ground state has been predicted in ZrN to be a Q = 1/2
(XY state with ©. = 972 cm™ in agreement with previous experimental and theoretical
observations [63 — 71]. Our results for the (1)1/2 [X*Y "], (4)1/2[(2)*X7], and (9)1/2[(3)*>"]
states are in excellent agreement with the theoretical calculations without spin orbit effects of
the parent states X°Y', (2)*>", and (3)*Y." respectively, with relative differences of 8To/T, =
3.5% (Ref [69], 4.2%(Ref [69]) < dw/m< 8.6%(Ref [69]), and 1.5%(Ref [69]) < dR/R<
7.7%(Ref [69]). However, a less agreement exists between our T, value in the (9)1/2[(3)*Y']
state and the T, value of the parent state (3)°Y", reported in literature [63, 69], with a
percentage relative difference of 15.2% (Ref[63, 69]) < 8T./T.< 19%(Ref[69]). Actually, our
result for the T, value in the parent (3)22+ state, initially located in our calculations at
23604.08cm™, is in very good agreement with the experimental results available for this state
[63, 69] (Table XIV). However, when spin orbit interactions are taken into account the
(9)1/2[(3)2Z+] state is shifted by -2682.6cm™ into a lower energy region. This places the
(9)1/2[(3)22+] state at Te=20921.51cm™ which creates the large difference between our T.
value for the spin orbit state (9)1/2[(3)*Y. ] and its parent state (3)*Y" reported in Table XIV.
The experimental results available on the spin orbit component Q states of ZrN are
reproduced in our calculations to a very high accuracy, with a percentage relative difference
of 5.2% (Ref [65]) < 0T/Te< 5.7% (Ref [65]), 1.1% (Ref [66]) < dw/w.< 5.6% (Ref [66]),
1.6% (Ref [71]) < 0R/Re< 1.9% (Ref [65]), 2.1% (Ref [65]) < 0B/Be< 8.4% (Ref [71]), and
5.8% (Ref [65]) < 0D/D< 7.1% (Ref [65]).

One of the important applications of molecular quantum chemistry is to study non-adiabatic
transitions. It is quite common for ground and especially excited state potential energy curves
of molecules to make a crossing or an avoided crossing. Such crossings or avoided crossings,

known as conical intersections [77] can dramatically alter the stability of molecules owing to
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the possibility of crossing from one state to another. Within the considered internuclear
distance range several crossings and avoided crossings are recorded between the potential
energy curves of the interacting states, these are displayed in Tables XVI and XVII along
with the internuclear position R, and the energy gap separating the avoided crossing states

AExc.

Table XVI: Positions of the crossing and avoided crossings between the different electronic states of the

molecule ZrN.

Crossing Avoided crossing Crossing Avoided crossing
State  State2 (n)Statel R (A)  Ray AE., |State]l State2 (m)Statel R (A) Ra  AEy
1 /(n,)State2 A (em™) /(n,)State A)  (ecm™)
) 1/1 2.43 B 3/2 1.66
2 2
O /1 2.24 o 3/1 1.67
n /1 2.30 n 3/3 1.72
‘o /1 2.28 . ‘D 312 1.76
7 2/2 2.37 oo 3/4 1.77
‘o 2/1 1.83 =t 3/1 1.84
.o 2/2 1.97 ‘A 3/2 1.94
A 4 4
A 2/1 1.51 I 3/1 1.67
‘n 2/1 1.80 ‘D 3/1 1.68
‘o 2/1 1.81 ‘o % 2/1 2.21
‘I 22 2.49 ‘D 1/1 1.86
2 4
o 2/1 1.83 A /1 1.79
Bs 212 1.93
2 21‘[ 4
o 212 2.09 n /1 1.82
e st 2/1 2.16 ‘o 1/1 1.82
‘o 2/1 1.81 gt 12 1.82 285
‘I 2/1 1.81 gt 2/3 1.88 186
x 2/3 1.6 383 , ‘o 2/1 1.83
25 3/4 1.96 N 21 2.03
2 4
s 3/3 1.67/2.15 n 2/1 1.77
n 32 1.65 A 1/1 1.90
2 ‘D 4
D 3/1 1.68 n 1/1 1.96
n 33 2.76 ‘ 1/1 1.96
‘0 32 1.87 - ‘0 3/2 1.94
n 3/4 225 s 3/1 2.12
20 zz* 3/1 2.01 4 iH 32 1.56
A 3/2 2.19 A 1 1.86
‘A 3/3 2.29 ‘o U187
4
® 31 1.64 oY 2/1 1.73
' 31 1.64 ‘A 22 189
n 3/2 2.28 o 2/3 1.94 101
‘n 3/3 2.42 ‘0 S 2/1 1.61
I I ‘A 2/2 1.69
4 4
A 4/2 2.10 A 2/3 1.88
‘A 4/3 2.33 A 3/2 1.54
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Table XVII:
Positions of the avoided crossings Rc and the energy difference AE ¢
at these points with the corresponding crossings of A states for Q

states of ZrN.

Q (n+1)Q Rac(A)  AExc (cm™) Crossings of A states
/nQ

12 2/3 1.76 369 (1)°TI/ (1)*A
4/5 1.84 52 Q)>7/(2°A
10/11 1.81 52 Gy /(411
10/ 12 2.28 152 AT
11/12 2.28 347 @T1/ )1

32 2/3 1.76 369 ()TI/ (D)*A
4/5 1.86 52 Q)= /()M
6/7 2.36 96 (O)'TT/ (1)'®

52 4/5 1.82 246 (H)'®/ (1) ’®
5/6 1.88 56 (1)*® / (1)°A
8/9 2.24 183 Q)'T1/ (2)*A

The composition in percentage of the Q state-wave functions in terms of the **"'A states
calculated at R = 1.72 A are presented in Table XVIII. For each state Q there is a
predominant component A with a contribution larger than 80% so that a main parent ="'A
may be identified. Nevertheless, there are states for which a small but significant contribution

of other A states is obtained.

Table XVIII:
Composition of Q-state wave functions of the molecule ZrN, in terms of A-states (in percentage) at R =
1.72A.

Q % (A-parent) Q % (A-parent)
(12 100% X237 (12)32  100%(2)*A
)12 100% (1)°’[] (13)32  88% (2)*®, 12% (1)*y"
(3)1/2 100% (1)*A (14372 99.85%(3)[1, 0.15% (2)*A
(4)1/2 100% (2)°Y" (15)32  100% (3)*A
(5)1/2 52% (2)°A, 48% (2)°Y" (1572 100% (1)°A
(6)1/2 100% (1)'TT, 8%(1)*® (2)52  100% (1)*A
(NH1/2 53% (2)7T1, 39% (1)'TT, 8% (1)*® (3)52  92% ()]
(8)1/2 100%(3)[] H52  74% (1)'D, 24% (1)']
(9)1/2 100%(3)*Y" (5)5/2  100% (1)’®
(10)1/2 100%(4)T] (6)5/2  100%(3)*A
(112 100%(2)[1 (M52 100% (2)°®
(12)1/2 95% (1)*Y", 5%(1)*® (8)5/2  100%(2)'TI
(13)1/2 100%(2)*A (9)572  53% (2)*A, 10%(2)*®, 37% (1)*Y
(14)1/2 100%(3)T] (10)52  100%(2)*®
(15)1/2 100% (3)*A (1152 100%(3)'T]
(1)3/2 100% (1)’A (12)52  100% (3)*A
(2)3/2 100% (1)T] ()72 100% (1)*A
(3)3/2 100% (1)*A )72 96% (1)*D, 4% )]
(4)3/2 100% (1)*® (3)7/2 100% (1)*®
(5)3/2 87% (2)’TT, 9%(1)'TT, 3.5% (1)*®, 0.5% (2)*A 4)7/2 100% (2)°®
(6)3/2 85% (1)'TT, 15% (1)*® (5)72  53% (2)*A, 47% ()Y
(7)3/2 100% ()] (6)7/2 100%(2)*®
(8)3/2 100%(3)°A (N72 100% (3)*A
(9)3/2 100%(3)T1 (192 100% (1)'®
(10)3/2 100%(4)T] (192 100% (1)*®
(11)3/2 95% (1)*Y", 5%(1)*® 95
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III. B. 3. The Bonding Nature in ZrN

The complexity of transition metal-containing molecules makes the study of diatomics like
ZrN ideal prototype for the better understanding of the bonding in larger molecular systems.
Ab initio multi configuration calculations are very useful in this respect since their basic
principle involves the mixing of s, p, and d atomic orbitals to form molecular o, , and o
orbitals. In Table XIX, we report the percentage composition of each molecular electronic
state in terms of molecular orbital configurations. The percentage weights of each molecular
orbital configuration are calculated as the squares of the corresponding CI coefficients.
Configuration weights lower than 2% percent have been omitted from the results of Table

XIX.

Table XIX:

Leading Configurations with percentage composition of the parent electronic states *"'A* in
the molecule ZrN.

Electronic State Weight

Xy 89% lo” In' 26"

Q" 88% 1o” In* 36"

B 95% lo' 11" 26'30"

(1°A 86% 1o” 17’ 36'3 «'

(2)°A 2% 16”17’ 26'2 7', 12% 16° 17’ 36'2 '

(D)1 85% 1o’ 1n*2n', 3% lo® 1n* 3 !

Q)TI 66% 1o° 1’ 26°, 13% lo” 17 26'40"

(1)’ o 50% lo” 17’ 26'4c",49% 16° 11’ 26'1 8

BTl 41% lo° 1n° 26'36", 40%16” 17° 26'1 8, 16% 16 17’ 26°
)\’ 47% 1o° 1n° 26'36", 45% 16”17 26'1 &'

W1 41% 1o° 17° 26'36", 44% 16° 17 26'1 &'

(D*A 90% lo” 17* 26'36°

(" 84% 1o In' 262 7', 5% 1o® 1o’ 36'2 7', 5% 1o” In* 2 ' 15!
)'A 70% lo” 1m0’ 26'2 7', 25% 16° 17’ 36'2 7'

(3)'A 50% lo” 17’ 36'2 ', 22%16” 17’ 26'2 ', 20% 16”17 2 7' 15
(OHTI 98% lo” I’ 26'36"

e 99% lo* 17’ 26'30"

OTI 88% 1o’ 1n* 26271, 9% lo' 1z 362 n'

G)TI 48% 1c' 1n* 36'2 1", 48% 16" 17" 2 '18'

@)'o 43% lo' 1n*36'2 1!, 43% 16" 1n* 2 218", 10% 16" 1n* 2 7'18'

Weights (in percent) are obtained from the square of the corresponding configuration interaction
coefficients (CMRCI); weights lower than 2% are not reported.

The (1)’[] state arises from the promotion of the 26" electron in the ground electronic state
into a 2n' orbital with an increase in energy of about 16317.00 cm™. The (2)22r state (1o” 17"
3¢') arises from the promotion of a 26" electron in the ground state into a 3¢’ orbital with a
corresponding energy increase of 17595.15 cm™. The (3)*Y" state (lo'ln* 26'36') arises
from the promotion of the 1" electron in the ground state into the 36" molecular orbital with

an energy increase of 23604.08 cm™. The lowest quartet state (1)*A state (16°17° 26'36%)
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arises from the promotion of two 17 electrons in the ground state into a 3c> orbital with an

energy change of 16477.72cm’.

In computational quantum chemistry ab initio calculations can be used to analyze the
bonding in simple metal systems. The expansion of molecular orbital wave functions in terms
of atomic orbital basis sets is very useful in understanding the bonding order in the ground
state of small molecules. In the present work, the bonding order in the ground state of the
ZrN molecule is analyzed in terms of the molecular orbital occupation numbers available
from the CASSCF calculations and in the active space of molecular orbitals (4637w13). The
effective bond order EBO is a quantity that gives the formation of a chemical bond, and was
given in equation (1) of this chapter. In our CASSCF calculations the ground state wave
function in ZrN is obtained by distributing seven valence electrons over the active space of
molecular orbitals 403m106. In this treatment we obtained the occupation numbers of the
bonding and anti-bonding orbitals in the following way: n, (16) = 1.61887, np (20) =
0.69819, Nab (30) = 0.37438, Nab (40) = 0.11726, Nap (18) = 0.38276, , np (17) = 3.33124, N
(2m) = 0.39012, nap (31) = 0.0872. Now by applying equation (1) for the effective bond order
we obtain an EBO = 2.148 = 2, thus indicating that we have a fully developed double bond in
ZrN.

III. B. 4. The Vibrational Structure of ZrN

In the past few years, the realization of elementary quantum logic gates on molecular systems
have witnessed remarkable experimental achievements [80 — 84]. Due to their rich inner
energy structures, that can be used to encode information, molecules offer a promising
prospect for scalable quantum information processing and have attracted lots of attention.
After the work of Vivie-Riedle and coworkers [85, 86], several groups have explored the
possibility of encoding qubits in rovibrational states of a single diatomic molecule [87 — 97]
or polyatomic molecule [98 — 108] or in two interacting diatomic molecules [109,110]. In
these works, logic gate operations were driven by femtolaser pulses designed by optimal
control theory or genetic algorithms or by using stimulated Raman Adiabatic passage
techniques [111]. In conclusion investigating the vibrational-rotational energy structures of
diatomic molecules is gaining significant importance in diverse research fields as molecular

quantum computing.

In the present work we investigate the vibrational energy levels of the ZrN molecule. First we
solve the time independent radial Schrédinger equation for the vibrational and rotational

motions of the ZrN molecule in the vicinity of the potential energy curves obtained by
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MRSDCI+Q calculations, in order to obtain the eigenvalues of energy E,, and the rotational
constants B, and the distortion constant D, for every vibrational level. This is mainly done by
separating the vibrational and rotational motions in the radial Schrédinger equation and then
following an iterative cycle, called the canonical functions approach [34, 35]. The results of
our vibrational-rotational calculations are shown in Tables XX and XXI, in which we report
the vibrational energy levels E, , the constants By, Dy, and the turning points of each
vibrational level Rpyin and Ryay for the parent states X2, (3)*>7, (1)* @, (1)*A, and their spin
orbit component states (1)1/2 [X*Y 1, (1)1/2 [2)TT1, (5)3/2 [2)T]].

Table XX :
Values of the eigen-values E,, the abscissas of the turning point R,;;, Ry, the constants B,, D, for the
different vibrational levels of the states X*Y", (1) @, (3)’Z", (1)’A of the ZrN molecule.

X22+ (1)2(1)
-1 Rmin Rmax Bv>< 101 ])v>< 107 -1 1{min Rmax BVX 101 DV>< 107
VEM A A em) BB ey DB K &) o) (e
0 47497° 1.68° 1.78" 4.634° 4.249° 17236.71 187  1.97 3777 3912
482885 4.0%  4.535PP 629,
4.8305° 4.0%  6.00%° 29.2%
1 1439.64 1.64 1.83 4.609 4.242 18707.04 1.79  2.06 3727 4.033
4.80535%441% 454504 6.6%
2 239794 1.62 1.86 4.586 4.284 19427.67 177  2.10 3700  4.123
4.78165P° 4.1%  4.555P° 58%
3 334826 1.60 1.89 4.563 4.193 20137.51 176 2.13 3.674  4.049
4 429388 1.59 191 4.539 4.362 20839.71 1.74  2.16 3.649  4.109
5 523042 158 1.94 4517 4.383 21533.87 1.73  2.18 3.624  4.187
6 6158.12 156 1.96 4.492 4.290 22219.06 1.72 220 3.596  4.256
7 707923 155 1.98 4471 4327 2289497 171 223 3.569  4.293
8 7993.51 1.54 2.00 4.447 4271 2356197 170  2.25 3.543 4271
9 8900.97 1.53 2.01 4.420 4411 2422044 1.68  2.28 3515 4.412
10 9800.17 1.52 2.03 4.397 4.421
11 10691.52 1.51 2.05 4372 4.261
12 11576.61 1.51 2.06 4.349 4382
13 12454.65 1.50 2.08 4.325 4.630
14 13323.15 149 2.10 4.297 4.464
15 14183.49 1.48 2.12 4271 4.629
16 15035.19 1.48 2.13 4.247 4.489
€} (1’A
4 Ruin  Ruax  Byx10 D,x10’ 4y Ruin Ruw Bx10' Dyx10’
voobem) BB W) et PP emh [P @) A em) e
0 23996.42° 1.72*  1.83*  4.408" 4585* 801798 1.70 1.81 4499  4.424
24670.55° 9 2.7%
24670.06 ™ 12.7% 4.587 ™13 904
1 24857.97 1.68 1.88  4.384 4576  8923.06 1.67 1.86 4478 4731
2 25712.94 1.66 191 4356 4833  P807.00 1.64 1.89 4456  5.155
3 26550.11 1.64 194 4309 6.486  [10667.87 1.62 192 4441  5.885
4 27322.56 162 198  4.178 1.444  |11503.90 1.61 1.94 4455  7.137
5 27915.90 1.61 206 3.918 1258 1231025 1.59 196 4474  7.159
6 28447.72 1.60  2.09  3.953 1.077  [13097.54 1.58 199 4466  4.038
7 29029.99 159 212  3.882 9.574  [13899.58 1.57 2.01 4446  1.642
8  29585.39 159 2.16  3.839 5.006  [14735.93 1.56 2.03 4431  2.626
9 30141.29 158 219  3.767 7.626  [15592.02 1.55 2.05 4417  4.506
10 30683.78 1.58 222 3.739 3.051 16443.88 1.54 207 4377  5.887
11 31237.18 1.57 225  3.05 4225 (1727169 153 2.10 4298  7.406
12 31793.43 157 227  3.679 2747  |18066.54 1.53 2.11 4262  4.956
Ref:(a). First entry is for the results of the present work. (b). Ref [67], (c). Ref [63], (d). Ref [64], (e). Ref [65],
(f). Ref [69]. Note: Exp, corresponds to experimental results whie Theo, corresponds to theoretical results. 98
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Table XXI: Values of the eigen-values E,, the abscissas of the turning point R, Riax, and the
constants B,, D, for the different vibrational levels of the states (1)1/2 [X*Y '], (7)1/2 [(2)’T]],
(5)3/2 [(2)’[1] of the ZrN molecule.

(H1/2 X%
v E, (cm™) Ruin () Rpya (A)  Byx10' (ecm™) 8By/B, D,x10" (ecm™) &D,/D,
0 475.09° 1.68° 1.78° 4.634° 4.244°
4.82882 5" 4.0% 453800 6.3%
4.8305¢ 4.1% 6.005 ¢ 29.3%
1 1440.37 1.64 1.83 4.609 4.236
4.80529 5 4 4.1% 45454 6.7%
2 2399.37 1.62 1.86 4.586 4306
47816450 ¢ 4.1% 4558w 5.3%
3 3349.19 1.60 1.89 4.562 4.202
4 4294.14 1.58 1.91 4.539 4328
5 5230.98 1.57 1.93 4.517 4.405
6 6158.37 1.56 1.95 4.491 4.269
7 7079.49 1.55 1.97 4.470 4.277
8 7994.44 1.54 1.99 4.446 4.327
9 8901.75 1.53 2.01 4.419 4.386
10 9801.39 1.52 2.03 4.398 4.444
11 10693.29 1.52 2.04 4374 4214
12 11579.68 1.51 2.06 4.352 4.270
13 12460.07 1.50 2.08 4.328 4.658
14 13330.08 1.50 2.10 4.296 4.798
15 14188.29 1.49 2.12 4.266 4.811
16 15036.37 1.48 2.13 4.243 4.125
17 15880.28 1.48 2.15 4.223 4.429
18 16716.83 1.47 2.17 4.191 5313
19 17539.69 1.47 2.18 4.159 4.699
20 18353.78 1.46 2.20 4.135 4.324
21 19161.67 1.46 221 4.107 5.157
22 19958.23 1.45 2.23 4.074 5.173
23 20743.58 1.45 2.25 4.045 4.780
24 21520.19 1.44 2.26 4.016 4.983
D12 [T (5)3/2 [(2)[T]
v E,(cm’)  Ruyn Rpa Byx10 D,x107 [ E,(cm™)  Rpm Rumx Byx100  Dyx107
A A (em)) (cm™) A A (emh)  (em)
0 1744250 1.83* 1.94° 3.918° 2.874* [17512.35% 1.82° 1.93° 3.936° 2.783°
1 1835922 1.78 1.98 3.941 3.155 | 18449.61 1.78 197 3.948 3.285
2 19254.73  1.76  2.01  3.909 3332 (1934499 1.76  2.00 3.915 3.230
32012529  1.74 2.04 3.872 3.879  [20218.79 1.74  2.04 3.869 4.213
4 20959.56 172 2.07 3.839 5062 |21041.82 1.72  2.07 3.829 4.931
5 2174006 1.71 2.10 3.793 3.435 |21817.58 1.71  2.10 3.794 3.197
6 2251573 1.70 2.12 3.774 3.948 |22596.01 1.70 2.12 3.778 4.169
7 2327934  1.69 2.15 3.739 5203 [23357.56 1.69  2.15 3.735 5.308
8 2400928 1.68 2.18 3.681 4.661 | 2408498 1.68  2.18 3.687 4375
9 24721.10 1.67 220 3.668 4284 | 24797.69 1.67 220 3.663 4.283
10 25423.66 1.66 222  3.629 4.634 |25500.13 1.66 222 3.631 4.569

Ref:(a)First entry is for the results of the present work. (b). Ref [67], (c). Ref [63], (d). Ref [64], (¢). Ref [65]
Exp, corresponds to experimental results in literture.

III. B.S. The Permanent Dipole Moment of ZrN

In an approach to create a quantum computer Demille [113] suggested the use of
heteronuclear diatomic molecules trapped in a 1-dimensional trap array, and controlled by an
electric field gradient that allows the spectroscopic control of molecules. In this system the

qubits are considered to be the electric dipole moments of diatomic molecules, which are in
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principle oriented along or against the external electric field. Molecules such as KCs with a
permanent electric dipole moment of p = 1.92D [114] were proposed in Ref [113] to be
suitable for control in such traps. The permanent electric dipole moments available for polar
molecules provide a ready means to address and manipulate qubits encoded in rotational
states through the interaction with external electric fields as well as photons [115]. Typically,
the permanent dipole moments in diatomic molecules might vary between 0 D and 11 D
[116]. At one extreme, a symmetrical molecule such as chlorine Cl, has zero dipole moment,
while near the other extreme gas phase potassium bromide KBr, which is highly ionic, has a
dipole moment of 10.5 D [116]. Thus the permanent electric dipole moment of a diatomic
molecule is an important physical property with significant importance in several areas of
research. Due to the limited theoretical and experimental studies on the permanent electric
dipole moment of the ZrN molecule, we calculate in the present work the permanent electric
dipole moments of the molecule ZrN in the ground and excited electronic states at the
MRSDCI level of theory. To the best of our knowledge, this is the first study in literature that
investigates the permanent dipole moment of ZrN. Thus a comparison between the values in
the present work to other values in literature is not possible. But, the permanent electric
dipole moment is a one electron operator, whose accuracy depends on the wavefunctions
used, and since our results for the spectroscopic constants and vibrational-rotational energy
levels of ZrN match with the theoretical and experimental values in literature, then we can
claim that our results for the permanent dipole moment of the ZrN molecule are accurate
enough to represent the true physical system. In Table XXII, the results for the values of the
permanent electric dipole moment of the ZrN molecule are shown at the equilibrium

internuclear distance of the ground state R = 1.72A.

Table XXII:
Permanent dipole moments for the electronic states
of the molecule ZrN at R=1.72A.

State *"'A  |u|(Debye) | State *"'A |u/(Debye)
Xz" 3.190 (4)11 0.983
(1)°A 6.489 (1)*A 1.954
(2)°A 2.063 (1)'=* 0.730
)z" 0.603 (2)'A 1.270
3)yz" 0.827 (3)'A 2.977
(3)’A 4.399 ()'m 2.246
()11 4.712 ()'o 2.222
()11 1.324 ()" 0.778
(1@ 1.805 (3)'I 3.255
(3)°11 1.499 Q2)'o 4.029
(2)’® 0.765
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The interaction of a molecule with a laser field in resonant spectroscopy largely depends on
the variation of the permanent electric dipole moment with the change in molecular geometry
[38]. In Figure 21 we draw the variation of the permanent dipole moment with the
internuclear distance for the electronic states in ZrN. In this figure we notice that the (1)*A
state attains the largest dipole moment of 7.385D at R = 1.82A. These results for the

permanent electric dipole moment in ZrN are reported here for the first time in literature.

R (A)

Fig. 21: Variation of the permanent dipole moment in (Debye) as a function of the internuclear
distance R (A) for the states (X)*Z", (1)°IL, (2)'TL (1)*A, (2)*A, (1)°®, and (2)*®.

II1. B. 6. The Internal Molecular Electric Fields in ZrN

Polar molecules offer a new ideal laboratory for an eEDM search, mainly due to their large
effective electric fields which might reach the orders of a few tens of GV/cm [117]. The
electric fields of ground and excited electronic states in diatomic molecules are very useful in
a possible observation of the electric dipole moment of the electron [117]. Mostly appealing
molecular candidates are those with large values of internal electric fields. In the present
work we calculate the expectation value of the internal molecular electric field in the different
electric states of ZrN at the MRSDCI level of theory and at the equilibrium internuclear
distance of the ground state R = 1.72A. These results are reported in units of GV/cm in Table
XXIII.

The current result of the internal molecular electric field in the ground state of ZrN (X*Y.") is

almost 3 times larger than that previously obtained in the present work for the ground state
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(X'Y") of YN. The results obtained here for the internal molecular electric field in ZrN are

reported here for the first time in literature.

Table XXIII:

Internal Molecular Electric Field for the electronic states of ZrN at R =
1.72A.

State *"'A*  |Emotecutar] (GV/cm)  State "' A* |E motecutar] (GV/cm)
Xz 0.310 (DA 0.304

(1)°A 0.119 (D'z* 0.214

(2)’A 0.296 2)*A 0.201

)z 0.376 (3)'A 0.128

(3)°A 0.324 (O 0.284

(3)’z" 0.065 X 0.288

()11 0.128 Q' 0.231

(2)’1I 0.345 2)'® 0.103

(1)°® 0.299 3)' 0.130

(3)11 0.318

(2)’® 0.321

(4)°11 0.320

III. C. Comparison between 4d Transition Metal Nitrides MN (M =Y, Zr, Nb, ..., Cd)

Transition Metal Nitrides (TMN) are known to have extreme physical properties. They are
chemically very stable with high corrosion resistance, high melting temperature and are
extremely hard [118]. These TMN are widely used in the industry of information storage
technology, cutting tools, high power energy industry, and optoelectronics [118, 119]. The
origins of their unusual physical properties are mainly due to their bonding characteristics. In
order to understand the difference in bonding between the 4d transition metals and nitrogen,
we compare in the present work the spectroscopic constants Re, ®e, L. in the ground state of
the transition metal nitrides of YN and ZrN to the other series of diatomic 4d transition metal

nitrides MN in the periodic table, where M stands for Nb, Mo, Tc, Ru, Rh, Pd, Ag, and Cd.

In literature the molecule NbN has been the subject of several experimental and theoretical
investigations [120-126]. Its ground state was predicted to be a A state arising from the
molecular orbital configuration 48'56' [125]. The experimental spectroscopic constants Re,
®., and . previously determined in the ground state of NbN are R, = 1.663A [123], o, =
1003cm™ [123], and p. = 4.49 Debye [127]. The MoN molecule has been studied
experimentally by two groups Andrews et. al. [128] and Fletcher et. al. [129, 130] using a
high resolution optical spectroscopic study. The ground state in neutral MoN is of ‘Y
symmetry, with an experimental bond length of R, = 1.648A [129], and harmonic vibrational
frequency of . = 1075cm™ [129], and permanent dipole moment of p. = 3.38 Debye [129].

The analysis for the electronic structure of the TcN molecule is limited to a theoretical study
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done by A. C. Borin et. al. [131]. Experimental investigations for this molecule are not
available, possibly due to the radioactivity character of Tc [132]. The ground state of neutral
TcN has been predicted at the CASPT2 level [131] to be of A state with the following
spectroscopic constants R, = 1.605A [131], o, = 1085cm™ [131], and pe = 2.38 Debye [131].
The electronic structure of the RuN molecule has been well characterized experimentally
[133-135], and theoretically [136, 137]. The ground state in RuN arises from the full filling of
§ orbitals in the molecular electronic configuration 56°2n*18%c' to give rise to a > ground
state [133]. The experimental spectroscopic constants determined in the ground state of RuN
are respectively; R, = 1.574A [133], w. = 1108.32 cm™ [134]. The ground state in the RhN
molecule is of 'Y" symmetry with an experimental bond distance of R, = 1.642A [138], and a
calculated harmonic vibrational frequency of 942 cm™ [132]. The permanent electric dipole
moment in the ground states of RuN and RhN has been theoretically predicted to be 2.54
Debye and 2.98 Debye from B3BLYP in density functional (DFT) calculations [132]. To the
best of our knowledge, for the rest of the transition metal nitrides PAN, AgN, and CdN the
experimental and theoretical analysis are limited in literature. Hong et. al. [132] used the
method of B3LYP in DFT calculations to investigate the ground states of the molecules PdN,
AgN, and CdN. Their results [132] predict the ground state in PN and CdN to be of *3
symmetry [132], while it has been predicted to be of °Y" symmetry in AgN [132]. In these
calculations The equilibrium internuclear distances, harmonic vibrational frequencies, and
permanent electric dipole moments have been predicted in the ground states of PAN [132] to
be R. = 1.86A, @, = 607cm™’, pe = 3.10 Debye, and in AgN [132] to be R, = 2.08A, o =
425cm'1, ne = 3.14 Debye, and in CdN [132] to be R, = 2.51A, o = 16lcm'], te = 0.908
Debye. The reported results in literature of the values of Re, ®., [e for the molecules NbN,
MoN, TcN, RuN, RhN, PdN, AgN, and CdN are shown in Table XXIV.

Table XXIV:

Variation of the values of the equilibrium internuclear distance R., harmonic vibrational frequency . and
permanent electric dipole moment 1. in the ground state of the series of 4d transition metal nitride molecules in
the periodic table.

Metal Nitrides R.(A) L. (Debye) o, (cm™)
YN 1.839° 5.186° 656.51°
ZIN 1.731° 3.190° 982.79*
NbN 1.663° 4.49¢ 1003°
MoN 1.648¢ 3.38¢ 1075¢
TeN 1.605° 2.38° 1085¢
RuN 1.574' 2.548 1108.32"
RhN 1.642' 2.988 9428
PdN 1.868 3.10¢ 607¢
AgN 2.08¢ 3.14¢ 425¢
CdN 2.51¢ 0.908¢ 161¢

a. values obtained from the results of the present work, b. Ref [123], c. Ref [127], d. Ref [129], e. Ref [131],
f. Ref[133], g. Ref [132], h. Ref [134], i. Ref [138].
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The comparisons between the values of the spectroscopic constants R, ®., and p. across the

series of 4d transition metal nitrides are shown in Figures 22 - 24.
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Fig. 22. Variation of the equilibrium internuclear distance in the ground state of 4d transition metal
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. 23. Variation of the harmonic vibrational frequency w. in the ground state of 4d transition metal
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Fig. 24. Variation of the permanent dipole moment 1. in the ground state of 4d transition metal

nitrides.
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Across the series of 4d transition metal nitrides from YN to CdN the equilibrium internuclear

distance in the ground state (Fig. 22) decreases from 1.84A in YN to reach a minimum at
1.574A in RuN and then increases again to reach a value of 2.51A in CdN. The shortest bond
length attained in RuN suggests that the bonding in RuN is the strongest among the other 4d
transition metal nitrides. For the harmonic vibrational frequency ®. in the ground state of
each molecule (Fig. 23) it is seen that the value of ®. increases from 656.5cm™ in YN to
1108.32cm™ in RuN, and then decreases to reach 161cm™ in CdN. The polarity in each of the
transition metal nitrides is largely determined by the value of the permanent electric dipole
moment in the ground state of each molecule. The permanent electric dipole moment in Fig
24 is highest in YN, with a value of 5.186 Debye. Its variation across the series of 4d
transition metals is not continuous. Rather, its value decreases from 5.186 Debye in YN to
3.19 Debye in ZrN and then it abruptly increases to reach a value of 4.49 Debye in NbN, to
decrease gradually to a value of 2.38 Debye in TcN. A gradual increase in the dipole moment
value is then observed between TcN and AgN. Across the series of 4d transition metals CdN
has the lowest dipole moment in its ground electronic state, while the mostly polar bond is
that attained in the ground state of YN. The decrease of the dipole moment is an indication
for the decrease of the electronegativity difference between the metal and nitrogen atoms, and

hence a decrease of ionic character across the series of 4d transition metal nitrides.

III. D. The Structure of Zirconium Sulfide ZrS

I1I. D. 1. Preliminary Works on ZrS

The electronic structure and the nature of the transition metal-sulfur bond is of importance in
such diverse fields as industrial catalysis and biological process [139 - 141]. In Astrophysics
the transition metal monosulphides, including ZrS, may be more abundant than their
corresponding metal monoxides [142] {TiO [143], LaO [144]} and hydrides FeH [145]. In
fact, the ZrS molecule has been reported in cool S-type stars as the carrier of the so-called
Keenan bands [146]. The identification of ZrS bands in the spectra of S stars provides an
opportunity to determine the abundance of sulfur in late-type stars and may give additional
clues to the nuclear processes responsible for their abnormal compositions [147].

Until the work described here, no extensive theoretical study was available on ZrS, except
that performed by Langhoff ez. al. [148] on 6 low-lying excited electronic states, and that of
Reddy et. al. [149] on the vibrational band structure of the ground electronic state X'>"
Experimentally, the first published spectroscopic study of ZrS was done by Simard et. al
[150] on the (5)lz+<—XIZ+ transition. Jonson and coworkers first studied the (2)3H<—(1)3A
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transition [151] via microwave-induced emission spectroscopy, and then the (2)'T[-X'Y",
BT XY, (5)'Y- X'Y" transitions [146] via high resolution emission spectroscopy. In
astrophysics, the first identification of ZrS bands in stars was done by K. Hinkle [147], who
analyzed the spectra obtained between 7400 and 9700 cm™ of three Mira variable type stars
M and S. The detected bands provide a rare opportunity to measure the sulfur abundance in
the photospheres of late-type stars [147]. Recently, the electronic structures of the states X'y
and (1)’°A in ZrS have received a great attention particularly due to their small energy
separation. Experimentally, S. Beaton and M. Gerry [152] performed a cavity Fourier
transform microwave spectroscopy on the X'Y'" and (1)°A bands for five isotopomers of
Zr’S. Theoretically, B. Laing and L. Andrews [153] computed the relative energy separation
of the 'Y= *A system via density functional theory, but their results contrasts with the
experimental and theoretical results available, as they predict the *A to be the ground state of
ZrS and the relative energy separation of the 'Y~ *A system ranged in their calculations
between 2937cm™ (B3LYP-calculations) and 8394cm™ (MP2-calculations). Recently, X. Sun
et. al. [154] reinvestigated the ground state of neutral ZrS by the MP2 method in DFT
calculations, their most extensive results placed the X'Y"" state lower than the (1)’A state by
338.75cm™. Then by repeating the calculations with a larger basis set the (1)°A state was
predicted to be 556cm™ above the ground X'y state. Finally, and in order to understand the
interaction of the ZrS molecule with light, R. Bousquet et. al. [155] studied the dipole
moment of the ZrS molecule in the ground XIZ+ and excited (3)12r states. Their
experimentally measured values of the dipole moments are not in good agreement with the
theoretical results, and thus a more elaborate theoretical ab initio study is required. The
apparent disagreement in literature on the nature of the ground state in the ZrS molecule,
surely warrants a more elaborate theoretical study for the ground and excited electronic states
of this molecule at a high level of theory and with the inclusion of relativistic spin orbit

effects.

In general, transition metal monosulfides have been less well characterized than the
analogous monoxides. The majority of the work to date on these species has been electronic
spectroscopy. However, these molecules often have complicated electronic spectra and thus
provide a challenge to ab initio calculations. In this paper, we try to fully explore the
electronic structure of the ZrS molecule, at the complete active space (CASSCF) method
followed by Multi-reference Single and Double Configuration Interactions (MRSDCI) for the

lowest lying 22 singlet-triplet states and their spin orbit component states.
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JIIR D. 2. Results on ZrS

In this work, the potential energy curves of 22 low-lying electronic states in the
representation ZS+1Ai(neglecting spin orbit effects) have been drawn versus the internuclear
distance range of 1.6 to 3.0 A (Figures 25-28). Further sophisticated approaches including
spin orbit (SO) effects were then invoked to draw the SO potential energy curves of 44 spin
orbit electronic states Q° within the internuclear distance range of 1.6 A <R <29 A in

Figures 29-33.
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Fig. 25: Potential energy curves for the '=* and 'A states of the molecule ZrS.
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Fig. 26: Potential energy curves for the *X* and A states of the molecule ZrS.
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Fig. 27: Potential energy curves for the *[] and *® states of the molecule ZrS.
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Fig. 28: Potential energy curves for the '[] and '® states of the molecule ZrS.
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The spectroscopic constants T, ®., Re, Be, and D, were then calculated for the lowest lying

singlet and triplet electronic states of ZrS. These values are shown in Table XXV along with

the theoretical and experimental values available in literature.

Table XXV: Equilibrium internuclear distances R, transition energies T, rotational constants B,, centrifugal distortion
constant D, and harmonic frequencies o, for the 2 A* gtates of the molecule ZrS.

B.x10"

D, x 10°

State Te(cm™) 8T./T. o.(cm™)  dw/o. (em™) 5B./B. (em™) 8D./D, R. (A) 3R, /R,
X)'T" 0.0 532.44° 1.464° 4.429° 2.203"
560MRCI® 4.9% 2.182MRCID 0.9%
54834 Bpc  2Qoy  1.5375WC  479%  4.880 B¢ 9.2%  2.1566 F®° 2.1%
53(B3LYPd 0.4% 519804 1469%  2.208%YPd 029
597MP2d 10.8% 5.33MP2d 16.9%  2.147MP24 2.6%
548.4 Bl 2.9% 2.156 Ex»e 2.1%
565.783LYPh 5 804 2.173B3YPh 1 404
558.3BPWILh 4 604 2.1758PWoIh 1 304
548.5MP2h 2.9% 2.167MP2h 1.6%
(1)'A 4861&30b 496JR8crb 1.421 4.661 2'233Rc1b
5520 12% 516 3.7% 222 0.7%
(2)'s" 12312.78 462.02 1.389 5.041 2.261
1 13664.49 BP¢ 980y 554 73Ex¢ 16.7% 1.4482 < 41% 49526 <" 18%  2.222 B 1.7%
(H'T  13236.19 44430 1.391 5.501 2.259
2)'A  16502.96 453.87 1.373 5.036 2.275
(3)'T" 19526.77 456.08 1.390 5.175 2.261
20242.90 B¢ 3500 488.615P¢ 6.6% 1.46255°°¢  499% 51065 13% 22118 2.2%
1 20218.90 P 3,69 4918 Bl 7.3%
(3)'A  24490.67 408.86 1.334 5.696 2.308
(4)1A 22328.25 454.69 1.091 2.671 2.552
(D' 10091.62 472.92 1.388 4.786 2.263
11076MRC® 8.8%  491MRCIP 3.6% 2.25MRCIb 0.5%
10836%1 Expe 6.8% 495.3 Expe 4.6% 14509 FP¢  43% 50163 5P°  45%  2219Frc 1.9%
10866 Expe 6.8% 489 Bxpe 3.4%
10836.7 Fxpe 6.8%
(1)'®  18154.98 464.17 1.382 4.902 2.268
(2):11 17917.22 47135 1.367 4.609 2.279
2)'d 1846139 351.70 1.195 4.963 2.441
()T 19061.41 424.07 1.175 3.623 2.458
(1°A  302.65 504.23 1.428 4.587 2.231
209MRCIb 459,  5pMRCIb 3.4% 2.216MRCIP 0.7%
193.57MP24d 56% 557 Bwe 9.4% 47821 Bt
338.75Mp2d 10.6% 527.24 50 4.49%  1.49328 B¥*T 449, 40%  2.1878 Bt 1.9%
556.52MP2d 45.6%
2037.9483LYPh g 704 529 4B3LYPR 4 704 2.21483YPh - 704
4336.965°W1h 9304 523 2BPWIIR 3 goy 2.212BPWIh - 8o
. 8394.12MP2h 96.4% 548.5MP2h 8.1% 2.209MP2h 1.0%
(1)’ 12464.55 470.49 1.389 4.846 2.262
(2°A  13345.50 439.39 1.351 5.102 2.293
15034.85 PL  11.2% 471.05%*%  6.7% 1.41326 ®PL 4.4% 5.09585 5L 0.19%  2.2489 Bt 1.9%
(1’1 8469.94 484.05 1.405 4733 2.249
7890“2““’ 7.3% 517“::RCIb 6.3% 2.23MRCIb 0.8%
8008 Fxpe 5.7% 506 B 4.3%
. 8024.2726 BT 5500 502.6466 PPT 3.7%  1.46851 BT 439  5.01255PT  56% 220619 BT 1.9%
(1)’®  10787.88 455.13 1.365 4.909 2.282
1 1710“]45“0‘ b 7.8%  436MRCIP 4.3% 2.2 7MREID 0.5%
11730 B¢ 8.0%
11608 B¢ f 7.0% 1.42067 5@t
11601.79 B*L 7,00 472,95 5L 379% 3.9% 5.1166 %PL  4.1% 2243 Bt 1.7%
(2T 12589.70 464.04 1.364 4.695 2.283
1332438 B*L 5500 473245 5L 19% 14217 %L 4.0% 5.1490 PP 8.8%
()’ 18511.91 369.31 1.185 4.862 2.448
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(2D  18688.74 363.36 1.205 5.039 2.429
(3)°A  20196.34 733.27 1.095 4.639 2.548
a. Results of the present work b. Ref [148] c. Ref [146] d. Ref[154] e. Ref [147]
f. Ref[156] g. Ref[152] h. Ref [153] i. Ref[150] j- Ref[155]
k. Ref[157] L. Ref[158]

Note:

Exp corresponds to experimental results, while theoretical results are represented by the methods used (MRCI, MP2, B3LYP, and
BPWOI1).

¢ *: The values of B, and D, are reported in Ref [146] for the v = 0 vibrational level of the (2)'Z" state.

i*: The value of T, reported in Ref [150] is that of the v = 0 vibrational level of the state (3)'X".

The comparison between our values for the spectroscopic constants in neutral ZrS to the
experimental values available in literature [146, 147, 150, 156, 158] shows a very good
agreement with percentage relative differences of 3.5% (Ref[146]) < 6T /T. < 11.2%
(Ref[158]), 1.9% (Ref[158]) < dwe/me < 9.4% (Ref[147]), 1.7% (Ref[155, 158]) < dR/R, <
2.2% (Ref[146]), and 0.1% (Ref[158]) < 8D/D. < 9.2% (Ref[146]) for the states (X)'Y",
2)'=", 3)'T", (D' (2)°A, (1)1, (1)’®, and (2)’T1. The comparison between our theoretical
results at the MRSDCI+Q level of calculations to the results obtained by Langhoff et. al.
[148] at the MRCI level of calculations for the states (X)lz+, (D'A, (1A, (D', (1’11, (1)@
shows a very good agreement, with percentage relative differences of 7.3% < 8T./T. < 12%,
3.4% < 0w/ < 4.9%, and 0.5% < dR/R. < 0.9%. Our ab initio results place the first excited
(1)’A state at a transition energy of T. = 302 cm™, which is only 100 cm™ from the theoretical
values reported in Ref [148, 154]. In spite of that the percentage relative difference calculated
for the T. value in the (1)°A state is large and ranges between 10.6% (Ref[154]) < 8T/T.<
56% (Ref[154]), still our ability in the present calculations to reproduce the T, value in the

(1)’A state within a 100cm™

is considered accurate, especially if we know that the energy
value reported by Langhoff er. al [148] for the (1)’A state ranged between 200 cm™ and
200+500 cm™, with a large uncertainty. In particular, electronic states lying within the
vibrational continuum of the ground state are hard to represent experimentally and
theoretically since the eigenfunctions of both states might overlap in regions near to the
equilibrium internuclear distance. Further enhancements for the energy positions of the (1)°A
state are left for our more extensive relativistic ab initio calculations with the inclusion of
spin orbit effects. The DFT theoretical calculations performed by employing B3LYP, MP2,
and BPWO91 methods in Ref [153] agree with our calculated values of ®. and R for the states
X'S" and (1)’A with percentage relative differences of 2.9% < dw./m. <8.1% and 0.7% <
8Re/R. < 1.6%. However, a less agreement exists for the T, values of the X'Y" and (1)°A

states [153]. This is mainly due to an inaccuracy in Liang et. al. [153] representation of the

ground electronic state in ZrS which has been predicted to be a A state and at thousands of
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cm™ below the 'Y state. This contrasts all of the experimental and theoretical results
available on ZrS in literature [146-148, 150, 154, 156, 158].

With the inclusion of relativistic spin orbit effects, great enhancements might be obtained for
the potential energy curves and the spectroscopic constants. In the present work the electronic
structures of the ZrS molecule have been reinvestigated with the inclusion of relativistic spin
orbit effects. The spin orbit effects were then introduced for Zirconium and neglected for
Sulfur via a semi-empirical spin orbit pseudopotential WSPOS that was designed from Effective
Core Potentials (ECP) for spin orbit calculations [18]. Energy MRSDCI+Q calculations were
performed piecewise at equal steps of 0.03A as a function of the internuclear distance range
1.6A—2.9A. This allows for the construction of potential energy curves for the spin orbit
electronic states Q =0, 0", 1, 2, 3, 4 in Figures 29 — 33. Then by fitting the obtained potential
energy curves around the equilibrium internuclear distance into a polynomial in R several
spectroscopic constants were calculated such as the electronic transition energies at
equilibrium T,, the harmonic vibrational frequencies w., the rotational constants B., the
centrifugal distortion constants D., and the equilibrium internuclear distances R.. These
results for the spectroscopic constants of the spin orbit states Q are reported in Table XX VI

together with the experimental and theoretical results available in literature.
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Fig. 29. Potential energy curves for 12 (Q = 1) states of the molecule ZrS [Full and dotted lines].
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Fig. 30. Potential energy curves for 10 (Q = 2) states of the molecule ZrS [Full and dotted lines].
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Fig. 31. Potential energy curves for 6 (Q = 3) [Full and dotted lines] and 3 (Q2 = 4) [++] states of
the molecule ZrS.
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Fig. 32. Potential energy curves for 6 (Q = 0") [Full and dotted lines] states of the molecule ZrS.
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Fig. 33. Potential energy curves for 5 (2 =0") [Full and dotted lines] states of the molecule ZrS.
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TABLE XXVI:
Equilibrium internuclear distances R., transition energies T., rotational constants B, , centrifugal distortion constants D., and
harmonic frequencies ®. , for Q states of the molecule ZrS.

ST, ! D.x10’
@OO="A] Telem) pl e % RGP el SR SO O
(H o' [X'YT 0.0° 534.01° 2.234° 1.423° 4.442°
56QMRCTP 4.6% 2.182MRCIE 9 404
548.345P¢  2.6% 2.1566"P°  3.6% 1.5368 *P¢ 7.4% 4.880F° 9.0%
530B3LYPd 0.7% 2.208%YPd 1 704 5.19%LYPd 14 49,
597MP2d 10.5% 2.147MP2¢  4.0% 5.33MP2d 14 80
548.45w1 2.6% 2.1565P¢ 3.6%
565.7%YPh 560, 2.173BLYPR 9 oy
558.3BPWOIh g 304 2 175BPWOLh 9 704
548.5MP2h 2.6% 2.167M720  3.19%
)0 [(1)T] 8628.96 484.16 2.247 1.407 4,748
(3)07[(2)'T1] 12889.82 415.29 2.275 1.373 5.199
13664.495%¢  56% 554735%¢ 250, 1.44515%"  5.0% 4.97665< 4.5%
4) 0" [(2)°T] 13078.69 491.45 2.276 1.371 4.284
(5)07[(3)'Y7] 18890.20 384.45 2.434 1.199 4.644
20242.90 ©°° 6.7% 488.617°°  21.3% 2.2117°°  10% 1.4625"%¢  18% 5.106"° 9%
20256.22 B 6.7% 491 gEwi 21.8%
(6) 0" [3)’TT] 19374.87 42423 2.412 1.222 4.074
(D)0 [(DT]] 8608.96 478.15 2.249 1.404 4.851
(2) 0" [(D’Y] 9314.32 488.89 2.269 1.379 4393
(3) 0 [(1)°Y1] 12831.67 425.07 2.269 1.380 5.808
) 0 [2T]] 12969.35 499.20 2.275 1.373 4.152
(5)0 [3)T]] 19578.32 463.82 2.401 1.232 3.500
() 1[(1)’A]  772.77 523.54 2215 1.445 4515
527.08545PL 0.6% 1.49151%°%  3.19% 47675 539
Q) 1[(D)'TT]  8817.85 666.34 2.249 1.404 4.956
B)1[(1)’Y] 9403.49 459.60 2.269 1.381 4981
@ 1[(D'TI] 10493.76 456.65 2.268 1.381 5.051
11076MRCI® 5.2% 491MRCIP 7.0% 2.25MRCE g0y
10836.215%¢ 329 495.95r¢ 8.0% 2.2195Pc 2204 14509%F¢  4.8% 5.01635°° 0.7%
10866"*¢ 3.4% 489F¢ 6.6%
10836.75%¢ 3.2%
(3)1[(1)°Y] 12811.18 425.79 2.270 1.379 5.776
6) 11211 12922.49 461.77 2.286 1.359 4716
(7 1[(2°A] 13562.56 467.64 2.302 1.340 4.395
15043.2325°L 9 .89  470.9596*% 0.7% 1.41111%°% 50% 5.078%*Y 13.4%
®) 1[(2)'TI] 18843.55 176.47 2.415 1.203 1.061
9) 1[B)]] 19222.71 341.49 2.419 1.214 6.052
(10) 1 [(3)'TT] 20338.98 462.72 2.385 1.248 3.775
(11) 1 [(3)’°A] 20759.05 515.63 2.489 1.147 2.329
(12) 1 [(4)’TT] 20951.89 495.97 2.442 1.191 2.752
()2 [(1)°A] 283.21 502.96 2.229 1.429 4.607
527.220" 4.6% 1.49329 5L 4 304 47755%L 3 50
()2 [(D'A]  5218.67 510.55 2.236 1.421 4.404
55pQMRCTP 5.4% 516MRCTP 3.7% 2.22MRCIe 704
B3)2[(DT]] 9060.69 469.09 2.248 1.405 5.044
4) 2 [(D*®] 10635.01 492.99 2.276 1.371 4248
11357.061°%  6.3% 474.1487°"% 4.0% 1.41948%*L 3 49, 50885 16.5%
(3)2[2)°T]1  12989.29 491.70 2.276 1.371 4.265
(6) 2[(2)°A]  13896.30 471.12 2.291 1.354 4.470
15049.41555*% 7.6% 471.0809"*" 0.0% 1.4135258%L  429% 50895t 12.1%

114



Chapter Three: Results and Discussion

(7 2[(2)'A] 17286.69 507.35 2.263 1.387 4.165
®)2[3)]] 18916.91 359.07 2.425 1.209 5.366
(9)2[(2)’®] 19309.98 356.18 2.417 1.216 5.615
(10) 2 [(3)°A] 20742.65 363.03 2.503 1.133 4224
(1) 3 [(1)°A] 569.48 498.32 2.231 1.428 4.696
527.3170 %% 5,59 1.495125°L 459 4.845%°% 3.19%
(2) 3[(1)’®] 11100.28 457.36 2.288 1.357 4.779
11634.93655°" 4.5% 473.8174"P% 3.59% 1.42001%°%  4.4% 5.087%*% 6.0%
(3)3[(2)°A] 14048.14 532.84 2.278 1.368 3.610
15012.12965*" 6.4% 471.1004%*% 13.1% 1.415215%%  3.3% 5.1545°% 30.0%
4 3[(1)'d] 18882.96 257.74 2.436 1.203 1.472
(5)3[(2°®] 19054.61 376.39 2415 1.218 5.079
(6)3[(2)'®] 20002.13 471.95 2.372 1.262 3.645
(D4[(1)Y’D] 11568.46 473.04 2.290 1.354 4.439
11812.35395F 2.1% 471.30775°" 0.4% 1.42259"%%  48% 5.184" 14.4%
()4 [(D'T] 13747.29 472.17 2.294 1.349 4.408
(3)4[(2)°®] 19588.40 432.30 2416 1.216 3.857
a. Results of the present work  b. Ref [148] c. Ref [146] d. Ref [154] e. Ref [147]
f. Ref[156] g Ref[152] h. Ref [153] i. Ref[150] j. Ref[155]
k. Ref[157] L. Ref[158]

Note: Exp corresponds to experimental results, while theoretical results are represented by the methods used (MRCI, MP2,
B3LYP, and BPW91).

¢ *: The values of B, and D, are reported in Ref [146] for the v = 0 vibrational level of the (2)'X" state.

i*: The value of T, reported in Ref [150] is that of the v = 0 vibrational level of the state (3)'Z".

Our spin orbit results for the spectroscopic constants of the ZrS molecule further confirm the
accuracy of our nonrelativistic spin orbit calculations. Indeed the comparison between the
values of the spectroscopic constants Te, ®e, Re, Be, and D, of the present work for the states
(1) 0" [X'YT, () 2 (DAL (#) 1)L (3) 07 [(2)'X7, (5) 07 [(3)'Y] to the experimental
and theoretical results available in literature shows a very good agreement with a percentage
relative difference of 3.2% (Ref[147]) < 8T¢/Te < 6.7% (Ref[146, 150]), 0.7% (Ref[154]) <
dw/me < 10.5% (Ref[154]), 0.7% (Ref[148]) < 0R/Re <10% (Ref[146]), 4.8% (Ref[146]) <
OB/B. < 7.4% (Ref[146]), and 0.7% (Ref[146]) < dD/D. < 9% (Ref[146]), except for the
values of w, for the states (3) 0 [(2)IZ+], (5) 0" [(3)lz+] in which a relative difference of
21.3% (Ref [146]) < dw/w. < 25% (Ref[146]), was obtained. The other D. value for the
ground state (1) 07 [X'Y."] obtained in our MRSDCI calculations doesn’t agree with the
theoretical value reported in Ref [154] and obtained by MP2 and B3LYP methods in DFT
calculations with a percentage relative difference of 14.4%< dD./D.<14.8%, but it agrees
with the experimental result reported in Ref [146]. The agreement is also very good by
comparing our results for the spin orbit components Q = 1, 2, 3, 4 of the states (1)°A, (2)’A,
and (1)°® to the experimental results reported in Ref [158] with percentage relative
differences 0of 2.1% < 8T/Te < 9.8%, 0.0% < dwe/me < 13%, 3.1% < 0B/B: < 5%, and 3.1% <
oD/D. < 16.5%. However, a less agreement exists between our values of D, to those reported

in Ref [158] for the state (3)3[(2)’A] with a relative error of $D¢/D. = 30%.
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A close look at molecular electronic spectra reveals that electronic spin multiplet states are
not properly degenerate. Actually, the sublevels are separated energetically by what is called
the fine structure splitting. It is often useful to draw an energy diagram representing the
splitting between the parent electronic states along with their spin orbit daughter states. In
Table III of Appendix I we draw the energy order of the spin orbit electronic states and their
parent states. These diagrams show that splittings as small as 78.6cm™ occur between the spin
orbit component states of the (2)°X" state in ZrS, and as large as 933cm™ occur between the
spin orbit components of the state (1)°®. In Table XXVII the composition in percentage of
the Q state-wave functions in terms of the A states, calculated at R = 2.23 A, are presented.
For each state Q there is a predominant component A with a contribution larger than 80% so
that a main parent SA may be identified. Nevertheless, there are states for which a small but

significant contribution of other A states is obtained.

Table XXVII:
Composition of Q-state wave functions of the molecule ZrS, in terms of A-states (in percentage) at R =2.23A.
Q % (A-parent) Q % (A-parent)
(1Ho 100% X'Y* (1)1 100%(3)°A
()0 99.68% (1)°’[T, 0.32% (X)'Y." (12) 1 100%(4)°’[]
(3)0" 80%(2)'Y", 20%(2)T] (12 100% (1)°A
40" 80.6% (2)’[T, 19.4% (2)'>" ()2 100% (1)'A
(5)0° 100%(3)'Y" (3)2 100%(1)°T]
(6)0" 100%(3)°] 4)2 100%(1)*®
(10 99.12%(1)°[T, 0.88% (1)°Y." (5)2 88.6% (2)’T[,11.4%(2)°A
()0 100%(1)°Y (6)2 88%(2)°A, 12%(2) ]
(3)0 100%(1)*Y" (7)2 100%(2)'A
40 100% (2)°'T1 (8)2 100%(3)’[]
(5)0 100%(3)’[] 9)2 100%(2)’®
(1 99.8% (1)°A, 0.02% (1)°Y (10)2 100%(4)’[]
@1 100%(1)°T] (13 100% (1)°A
31 100%(1)*Y )3 100%(1)*®
41 100%(1)'T] (3)3 100%(2)°A
(5)1 100% (1)°Y" 43 100%(1)'®
6)1 78%(2)’TT, 22%(2)°A (5)3 52%(2)°®, 48%(2)'®
) 82% (2)°A, 18%(2)’T] 6)3 52%(2)' @, 48%(2)’®
81 100%(2)'T] (1) 4 100%(1)*®
91 96%(3)°[T, 4%(3)'T] ()4 100% (1)'T
(10) 1 100%(3)'T1 (3)4 100%(2)*®

The points of intersection/crossings and avoided crossings occurring between the potential
energy curves of a diatomic molecule are important in photochemistry [159]. The avoided
crossing regions are likely to be a leakage channel along which the molecules flow from the
higher down to the lower potential energy surface [159]. From the potential energy curves of
the present work in Figures 25 - 33 several crossings and avoided crossings have been

detected between the electronic states of the molecule ZrS. These are reported in Tables
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XXVII and XXIX together with the internuclear distance R and the energy gap separation

AE.

Table XXVIII: Positions of the avoided crossings Rac and the energy differences AExc
at Rac with the corresponding crossings of parent A states for Q states in ZrS.

Q (n+1)Q /nQ Rac(A) AExc (cm™) Crossings of A states
1 8/9 2.36 317.0 AT/ O'TI
10/11 2.15 86.0 BYA/ 3]
3 4/5 2.42 172.6 (H)'o/Q2)yo
2.54 162.2
0" 5/6 2.36 348.0 3)'=" /(3’1
3 5/6 2.33 414.5 QYo /()@

Table XXIX: Positions of the crossings and avoided crossings occuring between the parent A
electronic states of the molecule ZrS.

Crossing Avoided crossing Crossing Avoided crossing

Statel ~ State2  Ry(A) Ru(A)  AE.(cm™) [Statel  State2 R (A) Ro(A)  AE,(cm™)
X't A 218 @'A 231 83.2

Q'A 278 2.85 424.5

Q2rA 230 3yXA 219

BGYA 264 A (4yA 226
O @A 27 G) M'd 256

@'® 260 @M 260

3 263 @'®  2.09

@'m 213 3 212

(3)§H 2.61 (2)zc1> 2.06

Q2P0 2.62 1 @A 211
OO e 27

GYA 270 M 197

@A 277 \ (1" 254

@)'® 963 @A @ya 2.76 60.6
@'zt M 272 (H'T 284

@M 236 4)’A 2.85 155.8

Gyn 271 M'® 246

@' 270 n Q' 249

T 250 G2 2o

@7°A 247 @3 2.02.67

B)'A 249276 GV 268

GYA 240 QP®  1.96/2.69

@’A 244 @A (e 251
3zt D'® 269 QT 254

@'e 231 m'm (T 281

@' 235 om 3 2.42 302

3y 230 Gy 239

@ 231 (1’z" 288
M'A (1T 299 . @A 2.9

3)A 2.64 676  |®  3YA 208

GBYA 254 (' 2.5
- @°A 259 @' 2389
@ @' 245 (1)°s" 2.31/2.80

3T 250 on @A 279

GBIl 246 ' 280

2P0 247 3y’ 2.90 26.8
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II1. D. 3. The Nature of Bonding in ZrS

In the present section we discuss the bonding in neutral ZrS molecule. The percentage
composition of molecular electronic states in terms of molecular orbital configurations
obtained from our multiconfigurational treatment of the wavefunctions in ZrS, are shown in
Table XXX. The percentage weights of each molecular orbital configuration are calculated as
the squares of the corresponding CI coefficients. Configuration weights lower than 2%
percent have been omitted from the results of Table XXX. It is often useful to discuss the
properties of molecular electronic states in terms of their molecular orbital configurations. In
the sections below we discuss the properties and differences which exist between the ground

state X'y, and the low lying electronic states ' °[], -*®, "*A of ZrS.

Table XXX. Leading configurations of the **'A* states of ZrS at R = 2.23A.
Electronic State Weight

X'y* 78% lo’ln'26%, 5% lo’ln'3n’, 5% lo’1n*36%, 5% lo’1n*26™2n'
(H'A 77% 16°17*26'18', 13% 16” 11" 36'18"

2)'z" 22% 1o’1n*26'36', 27% 10? 1n* 31%, 28% 1o” 1n* 187, 12% 16° 1n* 2n°
(H)'T 100% 16°1718”

2)'A 76% 16°17*36'18", 13% 16°1n*26'15'

3)'z" 60% 16°1n*26'36", 25% 16°17*18%, 5% 1o’ 1n*367
3)'A 56% lo’1n"26°27', 27% lo°1n'26'18'27'

4)'A 86% lo”1n*2n*

'm 56% 16°1n*26'27', 40% 16°1n*27' 15"

'e 82% lo’1n*2 ©'18"

@)'m 64% 16°1n*2 7'18' 22% 16°1n*26' 27"

2)'o 85% lo’1n°26°18"

3)'MI 84% 16°11°26°13"

(1)°A 94% 16°1n*26'13'

)z 98% 1o°1n*26'36"

(2)°A 94% 16°1n*36'13'

(1)’ 92% 1o°1n*26' 27"

(1)’® 99% 1o*1n*2 7' 18"

Q)°n 93% lo’1n*2 7' 18

(3)'1 94% 16°11°26°18'

Q) o 89% 1o’ 1126713

Weights (in percent) are obtained from the square of the corresponding
* configuration interaction coefficients weights lower than 2% are not reported.

D. 3. 1. The Xlz+ and (1)3A states

The difference between the electronegativities of the atoms Zr and S indicates that the ZrS
molecule is likely to be appreciable polar with charge transfer from the Zr to the S atom. As
part of the ZrS molecule the resulting configuration of the Zr atom is presumably somewhere
in between the (4d°5s”) of the neutral Zr atom and (5s) of the Zr*" ion. Also, the
configuration of the S atom as part of the ZrS is expected to be somewhere between 3p* and

3p°. In consequence, it appears likely that the electronic ground state of ZrS should arise from
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the valence shell configuration: 1o°17*26” (Table XXXIII). This electronic configuration
(16%1n*26%) gives rise to the singlet electronic ground state X'Y'", with orbital angular
momentum A = }'A; = 0. Other configurations arising from the single and double excitation of
electrons from the ground state configuration in to virtual molecular orbitals, forming the
active space of ZrS, may lead to other electronic states 1’32, 1,3 I L3A, 3@, and T, In ZrS
the electronic energy of the (1)°A state is within the vibrational interval of the ground state.
Actually, the potential energy curves of the two states (1)°A and X'Y" state cross at R =
2.15A. The main difference between the molecular orbital configurations of the two states
(1)°A and Xlz+ arises from the promotion of a 26" electron in the ground state in to a 18"
orbital, thus giving the (1)’A state the following molecular orbital configuration
16°1n%26' 15"

D. 3. 2. The Low-Lying "*[] and "*A states:

The first (1)°’]] and (1)']] states, located at 8469.94cm™ and 10091.62cm™ above the ground
electronic state are in excellent agreement with the experimental results available in Ref [160,
161, 162]. The electronic configurations of the lowest lying (1)'T] and (1)°[] states arise from
the promotion of a 26 electron on to the virtual molecular orbital 2x'. Thus giving the two
electronic states (1)'[] and (1)°[] the leading molecular orbital configurations 56%
16’ 1n*26'27!, 92% 16°1n*26" 27, respectively. The lowest lying (1)'A state 16* 1z 26'18"
arises from the promotion of a metal centered (5s) 26" electron in to the vacant metal (4d.;)
18 orbital. This places the (1)'A state at a transition energy of T, = 4861.87cm" relative to the
ground state, in excellent agreement with previous ab initio calculations [139]. The second
(2)*A state has a configuration that differs from that of the (1)°A state by the promotion of an
electron from the metal (5s) 2¢' orbital into a vacant (4dg) 3¢ orbital. This raises the (2)°A
state in to a higher energy region of 13345 cm™ above the ground state. Additionally, the
(2)'>" state located in our calculations at 12312.78cm™ arises from a combination of several
orbital configurations 22% 1021n4201301, 27% 16° 1x* 3n2, 28% 16° 1x* 182, 12% 16° 1z’

21 without a dominant molecular orbital configuration.

In order to completely describe the bonding in the ground electronic state of the neutral ZrS
molecule, we calculate in the following section the effective bond order EBO, which was
defined earlier in equation (1) of this chapter. A better definition of the effective bond order
can be obtained by considering the occupation numbers of bonding and antibonding natural
orbitals derived from multiconfigurational wave functions. In our CASSCF calculations we
obtained the ground state of ZrS by distributing the 8 valence electrons over the active space

of molecular orbitals. The occupation numbers of bonding molecular orbitals are given by the
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number 1, and those in the antibonding molecular orbitals are given by 1,p. In our CASSCF
treatment of the wavefunctions in ZrS we obtained the occupation numbers of the bonding
and anti-bonding orbitals in the following way: ny(10)= 1.95456, ny(26)= 0.7686, Nap(30)=
0.43403, nap(4o)= 0.23715, Ma(18)= 0.4516, np(1m)= 3.54098, Map(2m)= 0.54062, Man(37)=
0.07246. Then by using equation (1), we obtain an effective bond order EBO of 2.26 = 2,

which indicates that the bonding in neutral ZrS is a double bond.

III. D. 4. The Vibrational Structure of ZrS

We suspect in the present section that several vibrational energy levels belonging to the
vibrational spectrum of the ground (1)0°[X'Y"] and first excited states (1)I[(1)’A],
(1)2[(1)’A], (1)3[(1)°A] are degenerate. For this we investigate the vibrational energy
structures of ZrS by solving the vibrational-rotational Schrédinger equation within the

canonical functions approach [34, 35].

The vibrational energy structures of diatomic molecules are important in the search for
possible variations in the fundamental constants of the standard model, the fine structure
constant o and the electron to proton mass ratios p. In fundamental concepts the fine
structure constant namely called the coupling constant characterizes the strength of the
electromagnetic interaction, or the probability of an electron to capture a photon. Physicists
have pondered for many years whether the fine structure constant is in fact constant and

whether or not its value differs by location and time. The current value of the fine structure
constant o =€’ /hcis 1/ 137.035999074 [163, 164] and the current limit on variations in o

obtained from atomic spectra measurements is Aa/a=(-2.7+£2.6)x107" years™ [165,

166]. Variations in o can be detected by relativistic energy level shifts in atoms and
molecules [167]. If we choose close energy levels which move differently as o varies,
variations in the transitions frequency would correspond to variations in o. An extreme
example of this is in dysprosium. In dysprosium, there are two almost degenerate states with
an energy of 19797.97cm™. In [168] it was demonstrated that the relative change of the
transition frequency between these two levels in dysprosium is orders of magnitude larger
than the relative change in o [167]. An experiment is currently in progress utilizing this
transition [169]. These measurements can be greatly enhanced by several orders of
magnitude, in transitions occurring between the nearly degenerate fine structure vibrational
energy levels in diatomic molecules. These transitions exist in the microwave frequency
range, on the order of < 20cm™, and the level widths are generally very small, typically of the
order of ~ 102 Hz [170]. Accurate measurements for variations in a can be done by observing

transitions between nearly degenerate fine structure vibrational energy levels in diatomic
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molecules. In these regards, searching for the nearly degenerate vibrational levels in diatomic
molecules is important, as it might shed the light on new limits in the search for laboratory
variations of a in certain diatomic molecules. Particularly interesting molecules are those
identified in the spectra of stars, as laboratory tests on these molecules might be extended to
search for variations of o in stars. The molecule of interest in the present work ZrS is
important in this domain since it has been identified as the carrier of the Keenan bands in the
spectra of cool S-type stars [147]. In ZrS, we detected a (1)*A state that is only 302cm™ above
the ground state. We further suspect that near degeneracies of order < 20cm™ might exist
between the vibrational energy levels of the spin orbit component states (1)0+[(X)1Z+],
(DHI[(1) *A], (1D2[(1) *A], and (1)3[(1) *A]. In search for possible degeneracies between the
vibrational intervals of the ground and low lying electronic states of ZrS, we have decided in
the present work to investigate the vibrational structures of the spin orbit electronic states in

7rS.

In literature the first identification of the ZrS molecule in the spectra of three Mira variable
stars of type S was done by K. Hinkle et. al. [147] and was based on the identification of the
Av = -1, 0, 1, and 2 vibrational transitions in the °II - *A band system of ZrS. Laboratory
observations for the rotational structure of the ZrS molecule were done by rotational
microwave spectroscopy in Ref [152] for the rotational energy transitions in the vibrational v
=0, 1, 2 levels of the X'Y" and (1)’A states. Further spectral analysis in Ref [146, 150]
yielded rotational and vibrational energy spectrums in the singlet electronic states of ZrS
(X'Y, @)Y, 3)'Y7, (1)'TI}. Selected vibrational energy transitions were then observed in
laboratory spectra for the transition (1)°A - (1)’IT in Ref [156] and for the transitions (4)°A —
(1)°A, Y0 - (1)°A, (Q'TT-X'Y", 3)'Y" - X'S" in Ref [151].

The results of our previous ab initio calculations on ZrS place the first (1)°A state at a
transition energy of T, = 302cm™ above the ground state, which is in excellent agreement
with the theoretical values reported in Ref [139, 154]. The ground and first excited states in
ZrS are similar to those in HfF', which have been suggested as a model system to study the
variations in the fundamental constants o and p [18]. In this respect, the ZrS molecule is
better than the HfF " molecule since the [X12+]—>[(1)3A] transition occurs at ~302cm’ in ZrS,
and at 1633cm™ in HfF". Which means, that close degeneracies between vibrational energy

levels of the order < 20cm™ are more likely to occur in ZrS.

In Tables XXXI, XXXII and XXXIII we report our results for the vibrational energy values
of the states (1)0[X'Y'], (DI[(1)’A], (D2[(1)’Al, (D3[(1)’A], (HI[(1)'T]] obtained by

solving the vibrational Schrodinger equation within the canonical functions approach.
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Table XXXI:

Values of the eigen-values E,, the abscissas of the turning point R i, Rimax, and the constants B,, Dy, for the different
vibrational levels of the states (1) 0" [X'Y"], (4) 1[(1)'T]I.

(DO XY
v Ev (Cm-l) 6Ev /Ev Rmin (A) SRmin /Rmin Rmax (A) 8Rmax /Rmax BVX 101(cm']) DVX 108(Cm—1)
0 248.80° 2.181° 2.287° 1.423° 4473°
273.8 thee® 9.1% 2.107 e ® 3.5% 2.209 " 359
1 755.34 2.146 2.330 1.418 4.446
819.2 ot 7.8% 2.073 thee® 3.5% 2.250 " 359
2 1259.96 2.123 2.361 1.412 4.499
1361.6 b 7.5% 2.050 e ® 3.6% 2.280 " 359,
3 1761.36 2.106 2.387 1.408 4.599
1901.1 theo® 7.3% 2.033 thee® 3.6% 2.305 "% 3.6%
4 2258.57 2.090 2.410 1.402 4.600
2437,7 theot 7.3% 2.018 thee® 3.6% 2.3271% 369
5 2752.56 2.076 2432 1.399 5.049
2971.4 theot 7.4% 2.005 e ® 3.5% 2.348 " 3.69%
6 3240.08 2.063 2.452 1.395 4.946
3502.0 eo® 7.5% 1.993 thee® 3.5% 2.367"°°  3.6%
7 3723.40 2.051 2.470 1.392 5.241
8 4201.29 2.041 2.488 1.388 4917
9 4676.13 2.031 2.505 1.383 4.939
10 5147.76 2.022 2.522 1.379 4.692
11 5616.83 2.013 2.538 1.374 4.068
12 6083.83 2.005 2.553 1.372 2.722
13 6548.53 1.998 2.569 1.374 -3.982
14 7011.22 1.991 2.584 1.359 4811
15 7471.46 1.983 2.599 1.354 4.820
16 7929.19 1.977 2.613 1.349 4.794
17 8384.44 1.971 2.628 1.343 4.861
18 8836.96 1.965 2.642 1.338 4.805
19 9286.83 1.960 2.656 1.332 4.861
20 9733.86 1.954 2.671 1.327 4.937
21 10177.84 1.949 1 2.685 1.321 4.947
@ 1M
v E,(cm') 8E,/E, Run(A) 8Ru/Ruin RuaA)  8Rum/ Ry Box10' (cm™) 8B, /B, D,x10°(cm’) 3D, /D,
0 10712.84° 2214° 2326 1.378° 5.353°
11083.8™°° 33%  2.167"™°° 2.0% 2.275 "0t 2 0o
11083.716%°3.3% 1.44835¢ 4.8% 5.02725%°  6.5%
1 11152.21 2.178 2.377 1.366 5.408
11577.1 0% 3.79%  2.132™°b 2204 2.318 "% 2 79
2 11586.46 2.156 2411 1.361 4.771
12067.8 ™°° 4.0%  2.108 ™°° 2.5% 2.350 "*°® 259
3 1202648 2.138 2.439 1.354 4.987
12556.00 "°° 4.29%  2.090 ™°° 2.49% 2.376 " 2.7%
4 12465.75 2.123 2.464 1.348 4.770
13041.50 "™°° 4.5%  2.074 ™°° 2.29% 2.399 e 5 504
5 12905.64 2.109 2.487 1.343 5.066
13524.4 ™% 4.6%  2.061 ™°° 2.4% 2.421 " 249
6 13342.94 2.097 2.509 1.338 4.846
14004.70 "°° 4.7%  2.048 ™°° 2.5% 2.441 " 2 49
7 1377838 2.087 2.528 1.331 4.173
8  14213.55 2.078 2.548 1.328 2.924
9 14648.55 2.069 2.567 1.318 4.589
10 15081.54 2.061 2.585 1.311 5.042
11 15510.58 2.053 2.603 1.305 4.899
12 15937.24 2.045 2.621 1.299 5.088
13 16361.26 2.038 2.637 1.295 5.416
14 16781.77 2.031 2.654 1.291 5.123
15 17199.88 2.024 2.669 1.286 4.903
16 17616.13 2.018 2.685 1.282 4.788
a.  First entry is for the values of the present work, b. Ref [149], c. Ref[146]

Note: Exp, corresponds to experimental results.
Theo, corresponds to theoretical results.
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Table XXXII:

Values of the eigen-values E,, the abscissas of the turning point R, Rimax, and the constants B,, D, for the
different vibrational levels of the states (1) 2 [(1)°’A], (1) 3 [(1)’A] in ZrS.

(2 [(17A] | 8 DEON. 8
Rem R B0 DxI0 T Rew R BI0' D0

v B ay @) @) @) RO Ry em!) o)
0 526.24 2.179 2.288 1.365 3.775 789.26 2.181 2.287 1.424 4.484
1 1042.33 2.145 2.332 1.355 4.719 1295.35 2.146 2.329 1.418 4.393
2 152476 2.123 2.361 1.349 2.919 1801.45 2.123 2.360 1.413 4.541
3 2033.76 2.104 2.387 1.349 4.629 2303.08 2.105 2.387 1.408 4.426
4 252649 2.089 2410 1.339 3.345 2802.63 2.089 2.409 1.402 4.427
5 3024.69 2.077 2.432 1.338 3.970 3299.59 2.078 2.431 1.396 4.193
6 3519.01 2.067 2.452 1.328 3.501 3795.77 2.067 2.451 1.389 4.179
7 4013.55 2.056 2471 1.325 3.961 4290.62 2.056 2.471 1.383 4.399
8 4504.64 2.046 2.489 1.319 4.172 4782.60 2.046 2.489 1.378 4.692
9 4991.07 2.037 2.507 1.315 4.112 5270.39 2.037 2.507 1.374 4.891
10 5474.09 2.028 2.524 1.310 4.468 5753.23 2.028 2.524 1.369 4.658
11 5951.88 2.020 2.540 1.307 3.534 6231.98 2.020 2.540 1.365 3.844
12 6429.69 2.013 2.556 1.302 3.636 6707.89 2.013 2.556 1.363 2.238
13 6907.29 2.005 2.572 1.302 2.331 7181.07 2.006 2.572 1.354 4.589
14 7391.33 1998 2.588 1.302 8.730 7651.29 1.999 2.588 1.348 4.616
15 7888.95 1991 2.605 1.312 2.771 8118.57 1.992 2.603 1.343 4.660
16 8402.79 1.985 2.622 1.320 -1.301 8582.92 1.986 2.617 1.338 4.704
17 8939.67 1.978 2.639 1.333 -2.785 9044.24 1.980 2.629 1.332 4721
18 9493.51 1.971 2.654 1.343 -1.376 9502.50 1.974 2.641 1.327 4.719
19 10069.16 1.964 2.671 1.354 -1.954 9957.73 1.969 2.654 1.322 4.719
20 1065793 1.958 2.691 1.364 -7.547 10409.89 1.964 2.677 1.316 4.738
21 11262.59 1.952 2.710 1.375 4.989 10858.94 1.959 2.696 1.310 4.758
22 11872.65 1.945 2.730 1.362 3.031 11304.81 1.953 2.707 1.304 4.773
23 12481.75 1.939 2.749 1.359 8.526 11747.46 1.949 2.718 1.298 4.788
24 13058.92 1.934 2.768 1.328 2.353 12186.85 1.945 2.730 1.292 4.776
25 13543.15 1.929 2.784 1.261 1.972 12623.08 1.940 2.745 1.286 4.725
26 13981.68 1.925 2.798 1.297 -1.800 13056.33 1.936 2.759 1.281 4.649
27 14502.69 1.920 2.815 1.337 3.943 13486.88 1.932 2.773 1.275 4.633
28 15017.22 1916 2.831 1.290 2.581 13914.83 1.928 2.786 1.270 4.771
29 15459.43 1912 2.846 1.252 -1.216 14339.94 1.924 2.799 1.264 5.013
30 15920.87 1.908 2.861 1.210 1.461 14761.67 1.921 2.814 1.258 5.251
31 16113.76 1.906 2.867 1.017 -1.488 15179.65 1917 2.827 1.252 5.325
32 16539.65 1903 2.883 1.266 1.221 15593.94 1913 2.841 1.246 5.241
33 1697996 1.899 2.898 1.126 1.068 16004.71 1.909 2.855 1.240 5.310
34 17206.10 1.898 2.905 1.013 -8.721 16411.97 1.906 2.868 1.235 5.043
35 1757691 1.895 2918 1.230 -2.289 16815.74 1.903 2.882 1.229 4.139
36 18018.93 1.891 2.933 1.064 1.145 17216.18 1.899 2.896 1.224 5.369
37 18288.93 1.8890 2942 1.154 -1.091 17613.49 1.896 2909 1.219 2.260
38 18748.38 1.886 2.959 1.162 7.009 18007.77 1.893 2.923 1.213 -1.947
39 19072.04 1.883 2971 1.052 -8.546 18399.09 1.890 2.936 1.209 0.132
40 19412.15 1.881 2984 1.155 -3.756 18787.34 1.887 2.950 1.201 5.458
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Table XXXIII:
Values of the eigen-values E,, the abscissas of the turning
point R, Ry, and the constants B,, D, for the different
vibrational levels of the state (1) 1 [(1)°A].

(D) 1[(1)°A]

v E (cm-l) 1{min Rmax Bv>< 101 DV>< 108
’ (A) A) (em™) (cm™)
0 1051.98 2.160 2.259 1.454 3.696
1 1625.22 2.131 2.303 1.442 3.822
2 2188.64 2.109 2.334 1.436 4.199
3 273849 2.091 2.361 1.431 4.220
4 3279.69 2.078 2.384 1.424 3.729
5 382047 2.066 2.405 1.417 4.302
6  4353.52 2.055 2.426 1.411 4.060
7 4882.99 2.044 2.445 1.405 4.599
8 5405.15 2.035 2.463 1.401 4.712
9 5920.73 2.026 2.480 1.396 4.389
10 6432.44 2.017 2.497 1.391 4.488
11 6939.72 2.009 2.513 1.386 4.278
12 7443.45 2.002 2.529 1.380 4.197
13 7943.11 1.995 2.545 1.376 3.558
14 8438.55 1.988 2.559 1.375 1.610
15 8930.38 1.982 2.575 1.364 4.631
16 9418.24 1.975 2.589 1.358 4.634
17 9902.16 1.969 2.605 1.353 4.608
18 10382.27 1.964 2.619 1.347 4.653
19 10858.61 1.959 2.634 1.341 4.526
20 11331.68 1.954 2.648 1.335 4.492
21 11801.62 1.949 2.661 1.330 4.516
22 12268.49 1.944 2.675 1.325 4.388
23 12732.66 1.939 2.689 1.319 4.361
24 13194.27 1.935 2.702 1.314 4.401
25 13653.31 1.931 2.715 1.309 4.352
26 14109.93 1.926 2.728 1.304 4.446
27 14563.94 1.923 2.741 1.299 4.689
28 15014.81 1.918 2.754 1.293 4.930
29  15461.92 1.915 2.768 1.287 5.272
30 15904.54 1.911 2.781 1.281 5.557
31 16342.25 1.907 2.795 1.274 5.566
32 16775.41 1.903 2.809 1.268 5.277
33 17204.71 1.899 2.822 1.263 5.098
34 17630.51 1.896 2.835 1.257 5.130
35 18053.01 1.893 2.849 1.251 5.390
36 18472.56 1.889 2.862 1.246 4.491
37 18889.34 1.886 2.875 1.240 6.556
38  19303.12 1.883 2.888 1.236 1.141

The comparison between the present values of Ey, Rpin, Rimax, By, and Dy to the values found
in literature shows a very good agreement with percentage relative differences of 3.3% (Ref
[146,149]< 0E/E\< 9.1% (Ref [149]), 2% (Ref[149]) < SRmin/Rmin< 3.6% (Ref[149]), 2%
(Ref[149])< ORmin/Rmin< 3.6% (Ref[149]), 6B,/B, = 4.8%, and 6D./D, = 6.5%. All of the
calculated vibrational energy values are measured relative to the zeroth transition energy of
the ground electronic state. Upon close examination of the investigated vibrational energy

levels of the (DOX'Y™], (D1[(1)’A]l, (D2[(1)’°A], (D3[(1)’°A] states we find several
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degeneracies of order < 16cm ™ occuring between the vibrational intervals. These are reported
in Table XXXIV together with the energy separation AEv = Ev — Ev .

Table XXXIV:
Recorded degeneracies between the vibrational energy levels of the (1)0" [X'Y.], (1)1[(1)’A],

(1)2[(1)°A], (1)3[(1)’A] states in ZrS.
(0" [X'Y] (1) 1[(1)°A] (1) 2[(1)'A] (1) 3[(1)°A]
v Efcm™) | v Ey(cm™) v Ey(cm™) v E, (cm™) (Ac]fl‘l’; [Ev—Ev
5 2752.56 |3 2738.49 14.07
0 |1051.98 1 1042.33 9.65
10 | 6432.44 12 | 6429.69 2.75
28 | 15014.81 28 | 150172 2.41
29 | 15461.92 29 15459.4 2.49
30 | 15904.54 |30 | 15920.9 16.33
33 17204.71 34 17206.1 1.39
18 | 949351 18 | 9502.5 8.99
24 13058.9 26 13056.3 2.59
34 17206.1 36 17216.2 10.08

Upon close investigation of the vibrational energy levels, we can find near degeneracies of
the order of < 16cm™ occurring between the vibrational intervals of the (1)2[(1)’A] state and
that of the (1)1[(1)’A] state, particularly, between the v = 0, 10, 28, 29, 30, 33 levels in the
state (1)1[(1)’A] and the v’ = 1, 12, 28, 29, 30, 34 levels of the state (1)2[(1)’A]. The smallest
energy separation of 1.39cm™ recorded between the v = 33 of the state (1)1[(1)’AJand the v =
34 of the state (1)3[(1)’A] exceeds that detected between the vibrational energy levels of the
two 2]_[1/2 and 2]_[3/2 states in SiBr [30] and that detected between the v = 3 level of the Iyt
state and the v = 1 level of the *A, state in HfF" [170]. Other degeneracies have also been
reported in the present work on ZrS to occur between the v = 18, 24, 34 levels of the

(1)2[(1)’A] state and the v’ = 18, 26, 36 levels of the (1)3[(1)’A] states.

To this end, it is useful to study theoretically the effects for the variation of the fundamental
constants (o, p) and the degeneracies reported between vibrational intervals in diatomic
molecules. The fine structure interval ¢ depends on the nuclear charge Z and is sensitive to

.. . . 2
variations in the fine structure constant, scaling as o

2 2
w0, ~7°’E,,. 2)
where FE, is the atomic energy unit Hartree. On the other hand, the harmonic vibrational

energy quantum ®, depends on the reduced mass and is sensitive to variations in i, scaling as
12

W

-1/2
Dyip = H )
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Therefore, we obtain an equation for the lines where we can expect approximate cancellation

between the fine structure and vibrational intervals:
a)=a)f—(v+1/2)a)vib ~ 0, v=0,1,2,... 4)

Using equations (2 — 4) we could find the relation between the variation of the transition

frequency ® and the variation in the fundamental constants o and p

oo 1 oa  (v+1/2) ou oa 1d6u
X 2w, o |~k 22 S 5)
0 © / a 2 VIO, a 2 u

The enhancement factor K = o¢/ @ determines the relative frequency shift for a given change
in the fundamental constants. Large values of factor K ~ 10° - 10° hint at potentially favorable
cases for making experiments, because it is usually preferable to have larger relative shifts
[30]. Because the number of molecules is finite we cannot have ® = 0 exactly. However, a
large number of molecules have ® / wf <<I and [K| >> 1 [170]. Moreover, an additional fine
tuning may be achieved by including Q doublet and hyperfine components. Note that o is
sensitive to the variation of two most important dimensionless parameters of the Standard
Model. The first parameter o, determines the strength of the electroweak interactions [171].
The second parameter, p = my/m,, is related to the weak mass scale and strong interaction
scale. The electron mass is proportional to the vacuum expectation value of the Higgs field
which also determines the masses of all fundamental particles [171]. The proton mass is
proportional to another fundamental parameter, the quantum chromodynamics scale Aqcp
[171]. Therefore, we are speaking about the relative variation of a very important

dimensionless fundamental parameters of the Standard Model.

The near degeneracies detected in Table XXXIV between the vibrational intervals of the
(DO X', (DI[(1)’A], (1)2[(1)’A], and (1)3[(1)’A] states can all be used to search for any
variations in the fundamental constants of the Standard Model a and p, especially those
which can be observed spectroscopically. As an example we shall apply equation (4) on the v
= 0 vibrational level of the (1)1[(1)*A] state and the v’ = 1 level of the (1)2[(1)3A] state

o= Tegzz N %w‘?ﬁ B T;Q:I —%a)‘?:l ~0 (6)
where T2 and T represent the transition energies at equilibrium of the (1)2[(1)’A] and
(1)1[(1)’A] states relative to the zero transition energy of the ground state. The other

1 and o, represent the vibrational harmonic frequencies of the two states

constants @,
(D1[(1)’A] and (1)2[(1)*A], respectively. Then by using equation (5), and by considering that
the fine structure interval o, = T 2T = 489.56cm™ is the energy splitting occurring

between the v = 1 level in the (1)2[(1)’A] state and the v = 0 level in the (1)1[(1)’A] state.
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With ©, = 523.54cm™ being the vibrational harmonic frequency of the higher (1)1[(1)°A]

oo
;. dw= (979.12 j (7)
a

then by assuming that da/a = 10_15 , which is equivalent to the experimental variation of o

from atomic spectra [165, 166], we obtain dw ~ 1072 em ™1 = 2.935x 1072 Hz . The estimated

state, we get

line widths are on the order of 10 Hz. This is comparable to the accuracy, which is necessary
to reach sensitivity do/a =107 of the best modern laboratory tests [167, 171]. Of course other
vibrational energy level degeneracies listed in Table XXXIV can also be used to measure any
variations in o, their line widths should be comparable to the line width calculated above. The
natural line widths on the order of 10 Hz obtained in the present work are identical to the
natural line widths calculated in Ref [171] for the molecules Cs, and SiBr which were

suggested to be suitable for measuring o variations.

It is natural to search for any changes in o using measurements of the spin orbit splitting
within a specific fine structure multiplet of atoms, and indeed this method has been applied to
quasar atomic spectra by several groups [168, 173-175]. However, while this method is
appealing through its simplicity, it is possible to improve on its efficiency [168]. An order of
magnitude sensitivity gain can be achieved by comparing transition frequencies of heavy
atoms, ions or molecules [173, 176]. Other possibilities for measuring changes in a involve
studying transitions between accidentally degenerate levels in the same atom or molecule
[168]. Of course, there are many more possibilities in molecules where there are vibrational
and rotational structures. The relativistic corrections to the different energy levels are
different and can exceed the very small frequency corresponding to the transition between
degenerate states by many orders of magnitude, i.e., a tiny variation of o can change the
transition frequency significantly [168]. Since o variations have been measured from spectral
analysis of atoms and ions previously identified in quasar spectra, we suggest the inspection
for the spectra of the ZrS molecule in laboratory experiments and in cool S-type stars as a
mean to measure any possible variations of the fine structure constant. The detection of the
ZrS molecule in the spectra of three Mira variable stars, named RAnd, yCyg, and RCas [147],
further enhances this possibility. In fact, the vibrational band systems suggested to be suitable
for measuring o variations in the present work have been previously analyzed in the Kennan
bands of the three Mira variable stars [147]. We suggest the re-inspection of the Kennan

bands in the spectra of the stars RAnd, ¥Cyg, and RCas as a mean to measure possible
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variations in the fine structure constant. Recently, a copy of our conclusions on ZrS has been
requested by an experimental research group working at the University of Yale in the group

of Prof. David Demille.

Our vibrational energy calculations were also performed for the lowest lying spin orbit
electronic states in ZrS. A part of these calculations are shown in this chapter while the rest
are left for Appendix III. In Table XXXV we report our results for the vibrational energy
structures of the (3)0°[(2)'Y."] state together with the values available on this state in Ref
[146]. Our calculations for the values of E, and B, are in excellent agreement with the values
in literature [146] with a percentage relative difference of 6.2% < SE,/E\< 6.8% and 5.1% <
OB,/By< 5.6%. However, a less agreement exists for our values of D, with a relative

difference of 15.8% < 8Dy, /D\< 37.4%.

Table XXXV:
Values of the Eigen-values E,, the abscissas of the turning point R.;,, Riax, and the constants B,, D, for the
different vibrational levels of the state (3)0'(2)'Y].

v E,(cm)) 8E,/E, Ry (A) Ruw (A) Bx10'(cm’) 8B,/B, D,x10°(cm™) 8D, /D,

0 13072.75° 2.221° 2.341° 1.366° 5.737°
13937.793 B .29 1.44821 B°® 5 69 4.9526 BP0 15.8%

1 13492.88 2.181 2.382 1.359 4.897
14460.0 °°  6.7% 1.43264 B0 519 421 Bt 16.3%

2 13926.43 2.162 2.423 1.353 5.323
14949.679 BP*  6.8% 1.43118 B> 549 3.875 B0 3749

3 14357.03 2.143 2.443 1.346 4.738

4 14791.07 2.132 2.475 1.341 5.164

5 15222.73 2.111 2.497 1.335 4.789

6 1565421 2.104 2.521 1.329 5.033

7 16082.30 2.095 2.543 1.324 3.958

8  16509.88 2.081 2.560 1.322 1.926

9 16937.67 2.070 2.581 1.310 4.722

10 17363.32 2.061 2.592 1.303 4375

11 17788.66 2.062 2.611 1.299 4.200

12 18214.70 2.053 2.623 1.294 4.963

13 18638.35 2.044 2.645 1.290 5.349

14 19058.32 2.035 2.662 1.285 5.434

a. First entry is for the values of the present work, b. Ref [146]. Note: Exp, corresponds to experimental results.

ITII. D.S. The Permanent Dipole Moment of ZrS

The permanent electric dipole moment is one of the most important physical properties of a
molecule. Establishing ligand-induced trends in the permanent electric dipole moments () is
particularly beneficial because dipole moments are the most effective measures for the ionic
nature of the bond [177]. Furthermore, the dependence of p on the displacement of the nuclei,
governs the primary interaction between a molecule and light [177]. In the present work we
have computed the permanent electric dipole moment in the ground and excited electronic

states of the ZrS molecule at the highest level of theory MRSDCI with the inclusion of spin
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orbit effects. These results for the spin orbit electronic states in ZrS are shown in Tables
XXXVI and XXXVII together with the results available in literature. The comparison
between the present results of the dipole moment to the results available in literature [177] for
the states (X)'Y" and (3)'T" shows a very good agreement with a percentage relative
difference of 0.9% < dp/pu< 1.3% The other results of the permanent electric dipole moment

for the spin orbit electronic states of the ZrS molecule are reported here for the first time in

literature.
Table XXXVI:
Permanent dipole moments for the spin orbit electronic states Q of the
molecule ZrS at R=2.24A.
State Q w(Debye) State Q w(Debye)

(D)0 XY 4.759* (3) 2[2)TT] 6.204
(1) 2 [(1)°A] 4.753 4) 0" [(2)T1] 6.250
(1) 3 [(1)°A] 4.759 (7) 1 [(2)’A] 4.701
(1) 1[(1)’A] 3.679 (2)4[(1)'T] 8.297
(2) 2 [(1)'A] 2.520 (6) 2[(2)°A] 4.583
(D)0 [(D)IT] 3.677 (3) 3[(2)°A] 4.335
) 0" [()T] 3.707 (7)2[(2)'A] 6.682
Q) 1IN 3.689 ®) 1[I 5.358
321N 3.685 4)3[(1)'D] 5.940
)0 [(1)’Y] 8.046 (5)07°[(3)'T1 5.811
B3)1[(1)*Y] 8.088 )2 [3)TI] 0.374
@) 1IN 5.628 (5) 3 [(2)°D] 0.574
4) 2 [(1)’D] 6.543 9 113 0.447
(2) 3[(1)’®] 6.539 4) 2 [(1)’D] 0.262
(1) 4[(1) D] 6.575 6) 0" [3)TT] 0.417
3) 111’7 1.047 (3) 0 [3)T1 0.417
(3) 0 [(1)’>1] 0.930 (3)4[(2) D] 0.261
(3)0" [(2)'Y1 5.508 (6)3[(2)' D] 0.507
6) 12T 5.934 (10) 1 [3)'TT] 1.421
4) 0 [(2)T1] 6.435 (10) 2 [(3)°A] 0.908
a. First entry is for the values of the present work.

Table XXXVII:

Permanent dipole moments for the parent electronic states A of the molecule ZrS at

R=2.24A.

State *"'A  |u|(Debye) du/p State ="' A |u/(Debye)
X'y 3.811° 2)'® 0.909
3.86 1.3%

(D'A 3.011 (3)'1I 1.216

)'z" 4.811 (1)°A 5.100

(H'T 7.794 1)’z 0.793

2)'A 5.104 Q2)’A 3.131

3)'z" 4.664 3)’A 1.738

4.71° 0.9%

3)'A 1.351 (1’11 3.943

4)'A 4.397 (1)’o 6.177

(H)'I 5.247 )’ 6.035

(1)'o 5.559 (3)’1 0.910

)'1 5.680 2)® 0.819

a. First entry is for the values of the present work, b. Ref [177]
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The variation of the electric dipole moment with nuclear geometry is important in resonant
spectroscopy [38]. In Figure 34 we draw the variation of the permanent dipole moment with
the internuclear distance for several low lying electronic states in ZrS. In this figure we notice
that the molecule ZrS is mostly polar in the (1)°® state with a permanent dipole moment
value of -8.77D at R = 2.87A. These results on the permanent electric dipole moment of ZrS

are reported here for the first time in literature.

(o)}

u (Debye)

Fig. 34. Variation of the permanent dipole moment in (Debye) as a function of the internuclear
distance R (A) for the states (X)'Z", (2)°I1, (3)’IL, (1)'A, (1)°’A, (2)'T", (2)’Z, (1)*®.

III. D. 6. The Internal Molecular Electric Field in ZrS

Internal molecular electric fields are important in the search for the electric dipole moment of
the electron eEDM (d.). The longest running molecular search for d. uses the ground X22+1/2
(v =0, N = 0) state of '"YbF at Imperial College in the group of E. Hinds [178]. At Yale
Demille's group [179-181] used PbO, with an electric field value of . ~ 29 GV/cm [44, 178,
182]. Molecules suitable for an eEDM experiment are preferred to have a large rotational
constant, small or vanishing nuclear spin, with deeply bound molecular electronic states
[183]. A possible use for the ZrS molecule in an eEDM experiment largely relies on its

internal molecular electric field. Therefore, we have decided in the present work to compute
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the internal molecular electric field in various electronic states of the ZrS molecule at the
highest level of theory MRSDCI. These results are reported here for the first time in literature
in Table XXXVIIL.

Table XXXVIII:

Internal Molecular Electric Field for the electronic states of ZrS at R =
2.23A.

State *"'A*  |Emotecutar] (GV/cm)  State *"'A* |E motecutar] (GV/cm)
X)'Y" 0.239 ()11 0.023

(1)'A 0.253 (1°A 0.189

2)'z" 0.068 2)yz” 0.104

()'T 0.036 (2)°A 0.038

2)'A 0.081 (1)’T 0.113

(3)'z" 0.044 (1’11 0.124

(3)'A 0.066 (1)’o 0.021

@)'A 0.081 @)’n 0.023

(H'TI 0.048 (3’1 0.194

()'® 0.006 2)y® 0.198

The largest value of the molecular electric field in ZrS is attained in its ground electronic
state with a value of 0.239 GV/cm. This electric field is smaller than that attained in the
ground state of ZrN and larger than that in the ground state of YN. The present values of the
molecular electric field could be compared, for example, to the value of 1.43 GV/cm in HI'
[184] and to the value of 26 GV/cm in YbF [43] which have been already suggested as
suitable candidates for an eEDM experiment. A possible use of ZrS in an eEDM experiment
cannot be guaranteed unless provided that the experimental scheme is improved to reach
much better accuracies.

II1. E. The Structure of Yttrium Sulfide YS

I1I. E. 1. Preliminary Works on YS

It has been long established that transition metals play an important role in many fields,
including catalysis, organic synthesis, stellar atmospheres, and cosmochemistry [185]. Of
particular interest are the 4d-row of transition metals, which have relatively large natural
abundance because of their production in non-explosive nucleosynthesis [186]. Also, the 3d-
orbitals of these metals have energies comparable to the 2p orbitals of oxygen, nitrogen and
carbon [186]. Therefore quite interesting simple compounds of these elements possess a
mixture of ionic and covalent bondings [187, 188]. In astrophysics, the presence of Yttrium
mono-sulfide in stellar atmospheres is possible as a similar diatomic, Zirconium sulfide has
been identified as the carrier of the Keenan bands in the spectrum of cool S-type stars [170].

These molecules are useful for examining bonding schemes in simple metal systems which

131



Chapter Three: Results and Discussion

then can be generalized to bulk properties [189, 190]. Transition metal sulfides are another
class of interesting 4d molecules. Unlike the oxides, these species are not well studied
experimentally or theoretically.

The spectra and structure of Yttrium mono-sulfide YS has been the subject of a limited
number of theoretical and experimental studies. The Experimental observations of the spectra
of this molecule revealed the existence of strong perturbations leading to unobvious
assignment of the perturbing states [191, 192]. In literature 5 states have been studied
experimentally and theoretically without spin orbit effect [148, 193-198]. Kowalczyk et al.
[199] performed a high resolution excitation spectrum of gaseous YS and reported the (0, 0)
band of the (1)2H1/2<—X22+ transition, which was rotationally analyzed, and a set of
spectroscopic constants were then given. More recently, Steimle and Virgo [192] studied the
optical Stark effect in the (0, 0) vibrational band in the (1)’[[1,<X>Y" transition of YS
molecule, and calculated the magnitude of the permanent dipole moment for the (1)*[]» and
(1)2]_[3/2 states. The electronic structure of the YS molecule is thus far from complete. The
present investigation is devoted to the prediction of the electronic structure of the YS

molecule at the highest level of theory including the spin orbit effects.

I1I. E. 2. Results on YS

The calculations have been performed in the range 2.1A <R < 2.90A for 54 electronic states
in the representation Q" (including spin orbit effects). The PECs for the symmetries Q =
1/2, 3/2, 5/2, 7/2, 9/2 are drawn respectively in figures (35-38). Within the considered
internuclear distance range several crossings and avoided crossings have been recorded
between the potential energy curves of different electronic states. Their positions Ruc, their
corresponding parent states and the energy difference AE5c between the states (n+1)<Q/(n)Q2
at the crossing/avoided-crossing points are displayed in Table XXXIX. The composition in
percentage of the Q state-wave functions in terms of the A states, calculated at the
equilibrium internuclear distance of the ground electronic state R = 2.32A, is presented in
Table XXXX. For each state Q there is a predominant component A with a contribution
larger than 80% so that a main parent SA may be identified. Nevertheless, there are states for
which a small but significant contribution of other A, than the dominant one is obtained.

By fitting the calculated energy values of the different investigated electronic states into a
polynomial in R around the minimum, the harmonic frequencies ®., the equilibrium
internuclear distances R, the rotational constants B, and the transition energies with respect

to the minimum energy of the ground states T. have been calculated. These values for the
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states Q" are displayed in Table XXXXI along with the available experimental values in

literature.
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Fig. 35: Potential energy curves for 10 states Q = 1/2 of the molecule YS.
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Fig. 36: Potential energy curves for 9 states Q = 1/2 of the molecule YS. 33
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Fig. 37: Potential energy curves for 15 states Q = 3/2 of the molecule YS
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Fig. 38: Potential energy curves for the states Q = 5/2 (11-full lines), Q = 7/2 (8-dotted
lines), 2 =9/2 (1 - —»—) of the molecule YS.
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Table XXXIX: Positions of the avoided crossings Rac and the energy difference
AE ¢ at these points with the corresponding avoided crossings and crossings of A

states for Q states of the YS molecule.

0 (n+1)Q/nQ Rac(A) AE,c  Avoided crossing of Crossings of A
(cm™) A states states
32 2/3 2.42 506.9 (1)IT and (2)I1
2/5 2.86 132.6 Q)T1/(1) D
3/5 2.71 132.8 (2)’I1 and (4)I1
1/2 2.56 415.4 (1)2A/(1)2H
1/2 2/4 243 3347 (1)’IT and (2)’I1
2/5 2.86 672.2 Q)T1I/(1)* @
4/6 2.71 527.2 (2)°IT and(3)’I1
3/5 2.67 548.5 )=H/(D'T1

Table XXXX:
Composition of Q-state wave functions of the molecule YS, in terms of A-states (in percentage) at R = 2.32A

Q % (A-parent) Q % (A-parent)
(D12 99.9%X°%" (11)3/2  62.29% (4)°IT; 31.34%(2)'T1;6%(1) =
Q)12 96.64% (1)°I1; 3.36 % (2)°%" (12)3/2  72.3%(2)"I1; 22.25%(1) =7 3.2%(4)°T1
32 96.69% (2)°%"; 3.31% (1)11 (13)3/2 99%(5)’IT; 0.61%(2)*A; 0.39%(3)°A
12 100% (2)11 (14)3/2  99.84%(6)°I1; 0.16%(1)*z"
(5)12  100% (1) I1 (15)3/2  100%(2)*A
6)172  99.08% (3)°IT; 0.56%(1)*'="; 0.12(3)°%" ()52 99.99% (1)°A
(D12 98.87% (1)*="; 0.38% (1)*I1; 0.75%(3)°T1 (2)52  99.48% (1)*II; 0.16% (1)* A
(8)172  91.91%(1)*A; 6.3%(1)*A; 1.75%(2)'TI (3)52  100% (1)'®
912 96.42%(3)°%"; 1.1% (4)°I1; 0.53%(5)°T1 (4)52  98.57%(1)°®; 1.43(2)*A
(10) 172 75.21%(1)*E; 23.24%(2)*I1; 1.54%(1) A (5)52  97.56%(1)*A; 0.6%(2)IL; 0.06%(1)*®
(1112 18% (3)’Z"; 41.16% (4)’TT; 9.95%(2) T1;30%(1)*%" (6)5/2  97.7%(2)°A; 2%(2)’®; 0.3%(1)*A
(12) 172 86%(2)'T1; 12%(1) *L7; 2%(1)°% (1572 96.33%(2)*®; 0.92%(4)°IT; 1.74%(2)°A
(13) 172 97.69% (1)°%7; 1.59%(3)*Z"; 0.72% (5)°T1 (8)5/2  100%(2)'11
(14)1/2  98.68%(5)°IT; 0.92%(1)*X"; 0.4%(3)°L" (9)572  99.97%(3)°A; 0.03%(3)*®
(15)1/2  98.81%(2)’%"; 0.26%(5)°IT; 0.93%(4)°L" (10)5/2  97.93%(2)*A; 1.69%(1)'T; 0.38%(3) *®
(16)1/2  98.3%(4)°Z"; 1.7%(2) °% (11)5/2  97.74%(1)'T, 0.4%(3)°®, 1.86%(2)°A
(17)1/2  98%(2)°%"; 1.78%(4)°T"; 0.22%(5)TI ()72 98.19% (1)'®; 1.81%(1)” ®
(18)1/2  99.81%(6)’I1; 0.19(3)° =* ()72 99.29% (1)°®; 0.01% (1)* @
(19)12  100%(2)*A (3)7/2  99.45%(1)*A; 0.55%(2)'T1
(2)3/2  99.71% (1)’IT; 0.29% (2)°A 472 99.22%(2)*®; 0.38%(1)°D; 0.4%(1)*T"
(3)3/2  99.99% (2)I1 (5)72  99.62%(2)*A; 0.38%(3)*®
(4)3/2 99.27% (1)*I1; 0.58% (1)*="; 0.15% (3)°11 6)72  96.03%(3)°®; 3.63%(1)'T
(5)3/2  99.92% (1)*®; 0.08%(1)*A (N72 96.03%(3)°®; 3.63%(1)'T
(6)3/2  99.71% (3)°TT; 0.09%(1)*Z"; 0.2%(4)°TI (8)7/2  100% (3)°®
(132 97.93% (1)*Z"; 0.47%(3)°T1; 0.94%(1)*T" ()92 97.88%(1)'T, 2.08%(3)°®
(8)3/2  96.92%(1)*A; 0.15%(1)*L7; 2.1%(2)*11
(9)3/2  98.56%(2)°A; 0.99%(4)°TT; 0.45%(5)°1T;
(10)3/2  91.4%(1)*Y; 7.04%(2)"T; 0.79%(1)*'E"
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Table XXXXI:

Equilibrium internuclear distances R, transition energies Tk, rotational constants B, and harmonic

frequencies, ., for Q states of the molecule YS.

2S+1 -1 0T, OR. -1 OB, -1 dme

(mQ[(k)™A] T (cm™) IT. R.(A) R, Be(cm™) B, © (cm™) /o,
(1) 172 [X’Z7] 0.00° 2.311° 0.134° 500.64%

2.2802PH% 1 304 461PD° g 50,

227170 1 49, 492.7¢ 1.6%

2.3003¢ 0.5% 508° 1.4%
() 12 [(DXMI] 1"Min  12907.69 2.356 0.129 505.55

13312.744%79¢ 3 04% 0.1340093° 3.85%

2" Min  12798.84 2.523 0.112 604.12
(3) 12 [(2)*2'] 14104.72 2.371 0.126 440.6Z

449.7 2.0%
(4) 12 [(2)11] 14332.98 2.409 0.123 656.78
(5) 1/2 [(1)*11] 18289.45 2.613 0.104 347.72

2.49510° 4.71% 365.3% 4.8%
(6) 1/2 [(3)1] 18899.59 2.662 0.101 475.75
(7) 12 [(D)*E"] 20065.50 2.609 0.105 304.50
(8) 1/2 [(1)*A] 20787.11 2.619 0.104 417.08
9) 12 [(3)°L"] 21316.85 2.634 0.103 252.26
(10) 1/2 [(1)*2] 21418.52 2.619 0.104 367.26
(11) 1/2 [(2)*T1] 21754.82 2.646 0.102 385.60
(12) 172 [(2)*1] 22240.70 2.627 0.104 305.83
(13) 12 [(D*2] 22369.98 2.642 0.102 408.56
(14) 1/2 [(5)*1] 22905.37 2.616 0.104 473.20
(15) 12 [(2)°’%] 24389.25 2.651 0.102 329.48
(16) 1/2 [(4)°2] 24729.93 2.754 0.094 877.48
(17) 12 [(2) 2] 25679.54 2.558 0.109 661.27
(18) 1/2 [(6)11] 26844.20 2.553 0.109 843.83
(19) 12 [(2)*A] 30688.87 2.649 0.102 361.35
(1) 3/2 [(1)*A] 11287.94 2.361 0.128 461.66
(2)3/2[(1)I1] 1"Min  13388.89 2.344 0.130 523.28
2" Min  12885.64 2.501 0.114 591.64
(3) 3/2 [(2)*1] 14332.98 2.409 0.123 656.78
(4) 3/2 [(1)*11] 18269.57 2.612 0.105 343.17
(5) 3/2 [(1)*®] 18373.58 2.614 0.105 429.76
(6) 3/2 [(3)*] 20088.66 2.636 0.145 285.47
(7) 3/2 [(1)*E"] 19167.98 2.645 0.102 400.45
(8) 3/2 [(1)*A] 21046.75 2.636 0.103 168.26
(9) 3/2 [(2)*A] 21240.50 2.615 0.104 514.01
(10) 3/2 [(1)*2] 21665.12 2.552 0.109 409.34
(11) 3/2 [(4)’1] 22220.06 2.619 0.104 305.97
(12) 3/2 [(2)*] 2225321 2.599 0.106 510.38
(13) 3/2 [(5)*1] 23072.91 2.726 0.987 76.635
(14) 3/2 [(6)*11] 26701.88 2.588 0.107 575.88
(15) 3/2 [(2)*A] 30535.53 2.652 0.120 642.55
(1) 5/2 [(1)*A] 12972.40 2.506 0.114 526.98
(2) 5/2 [(1)*11] 18275.41 2.613 0.105 364.31
(3) 5/2 [(1)*®] 18418.89 2.628 0.103 336.18
(4) 5/2 [(1)*®] 18411.94 2.621 0.104 417.90
(5) 5/2 [(1)*A] 20857.19 2.617 0.104 492.60
(6) 5/2 [(2)*A] 21375.56 2.616 0.104 384.13
(7) 5/2 [(2)*®] 21501.41 2.612 0.105 731.26
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(8) 52 [(2)'] 21865.52 2.661 0.101 309.40
(9) 5/2 [(3)*A] 24464.19 2.649 0.102 602.96
(10) 5/2 [(2)*A] 30180.29 2.646 0.102 329.48
(11) 5/2 [(1)'T] 30305.22 2.627 0.103 324.53
(1) 72 [(1)'®] 18353.11 2.614 0.105 42457
(2) 72 [(1)*®] 18701.22 2.624 0.104 320.35
(3) 72 [(1)*A] 21125.70 2.626 0.104 337.05
(4) 7/2 [(2)°®] 21682.70 2.626 0.104 355.96
(5) 72 [(2)*A] 30088.53 2.595 0.106 366.91
(6) 7/2 [(1)'T] 30388.10 2.642 0.102 332.72
(8) 7/2 [(3)’®] 31501.81 2.595 0.106 615.47
(1) 92 [()T] 30859.21 2.621 0.103 297.13

Ref: (a), first entry is for the values of the present work ~ (b) Ref[191] (c)Ref [148] (d) Ref[195]

(e) Ref [199] Note: DF(b); Density Functional calculations in Ref( b)
Exp(b); Experimental results in Ref( b)

Note: (v =0) (b) results are for the zero vibrational level in Ref b.

To the best of our knowledge, there are experimental values for the spin orbit calculations of
the YS molecule for only the two states (1)*I1;,, and the (1)*IT;, [151, 194]. The comparison
between these values and those of the present work shows an excellent agreement. The
transition energy T. and the rotational constant B, of the (1)°IL,5 [151] are very close to our
calculated values with relative differences of 6T./T.=3.04% and dB./B.=3.85% respectively.
The comparison of our calculated value of R, for the (5)Q=1/2 [(1)*II] state with that of

Mclntyre ef al. [192] shows an excellent agreement with a relative difference 0R./R.=4.71%.

III. E. 3. The Nature of Bonding in YS

In the present section we discuss the bonding in the neutral YS molecule. The percentage
composition of molecular electronic states in terms of molecular orbital configurations are
shown in Table XXXXII. The percentage weights of each molecular orbital configuration are
calculated as the squares of the corresponding CI coefficients. Configuration weights lower
than 2% percent have been omitted from the results of Table XXXXII. The ground electronic
state arises from the distribution of seven valence electrons over the molecular orbital

configurations 16°1n*26" and 16°2¢' In*3xn' with percentages of 85% and 5%, respectively.

Excited molecular states arise from the promotion of electrons into the active molecular
orbital space by single and double excitations. In order to completely describe the bonding in
the ground electronic state of the neutral YS molecule, we calculate in the following section
the effective bond order EBO, which was given earlier in equation (1) of this chapter. A
better definition of the effective bond order can be obtained by considering the occupation
numbers of bonding and antibonding natural orbitals derived from multiconfigurational wave

functions.
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Table XXXXII:
Leading configurations of the **"' A* states of YS at R = 2.32A.
Electronic State ~ Weight

Xy 85% lo°1n"26', 5% lo"26' 137"

(1)°A 90% 16°18'17c*

Q" 85% lo°3¢' 17", 5.5% 16°3c' 1’27

(2)'°A 97% lo°26' 17’21

B3> 92% 1672¢' 172!

(3)°A 68% lo°26' 121", 21% 16°18'12°2n’

@y 66% lo°26' 121", 7% 16°1n°27'18', 11% 16°26' 17°37'
()T 97% 16°18' 1n2n’

(111 88% lo*20° I’

(2)zn 85% 10211:127:1, 5% 16’17’ 2n' 37"

(e 99% 162616 1=

(3)°1 96% 16°26'158' 17

) o 72% 16%26'18' 17, 5% 16°18'36'17°

4) jn 81% 102201151117:1 A% 16%26'36' 17, 6% 16736'18'17°, 4% 16%36° 17
411 93% 1626 35 Int

(6)*11 66% 16°26'36'17°, 11% 1636°17°, 11% 16°17°18%, 7% 1”17’20
(3)%p 87% 16°18'36' 17, 10% 16°17°3x"

Yy 98% lo™2¢' 121’

(1)*A 98% lo°26' 1’27’

2)*A 98% 16°18'17°2n!

()T 100% 16°18' 1727’

(O 97% 16°26'18'17° ,2.5% 16°26'36' 17

()% 99% 16°26'18' 17’

()11 96% 16°26'3¢' 11’

()Y 98% lo°26' 127"

Weights (in percent) are obtained from the square of the corresponding
* configuration interaction coefficients (CMRCI) weights lower than 2% are not reported.

In our CASSCEF calculations we obtained the ground state of YS by distributing the 7 valence
electrons over the active space of molecular orbitals. The occupation numbers of bonding
molecular orbitals are given by the number 1, and those in the antibonding molecular orbitals
are given by Mab. In this treatment we obtained the occupation numbers of the bonding and
anti-bonding orbitals in the following way: ny(16)= 2.0 , ny(26)= 0.69155, nap(36)= 0.21479,
Nab(18)= 0.50744, nap(40)= 0.00289, np(1m)= 3.08152, Nap(27)= 0.4582, Nan(31)= 0.0436. This
gives an effective bond order EBO of 2.27 = 2, thus indicating that the bonding in YS is a
double bond.

III. E. 4. The Vibrational Structure of YS

The time independent vibrational-rotational Schrédinger equation have been solved by using
the canonical functions approach [34, 35] in the vicinity of the potential energy curves
obtained by MRSDCI+Q calculations for the molecule YS. A part of these results are shown
in Table XXXXIII, while the rest are left for Appendix II. To the best of our knowledge there
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are no results available in literature on the vibrational structure of the spin orbit electronic

states in the YS molecule.

Table XXXXIII:

Values of the eigenvalues E,, the abscissas of the turning point R, Riax, the
rotational constants B, and the centrifugal distortion constants D, for the
different vibrational levels of the states (1) 1/2 [X*Z], (3) 3/2 [(2)I1] and (4) 1/2

[(2)’T1].

(1) 1/2 [X°Z"]

v Efem’)  Ruin(A) Ruw(d)  Bx10'(em™)  Dyx10%(cm™)
0 237.07% 2.26" 2.37% 1.323% 4.071°

1 713.24 2.22 2.42 1.319 4.081

2 1186.97 2.20 2.45 1.314 4.088

3 1658.31 2.18 2.47 1.310 4.102

4 2127.17 2.17 2.50 1.305 4.085

5 2593.86 2.16 2.52 1.301 4.145

6 3057.83 2.14 2.54 1.296 4.079

7 3519.75 2.13 2.56 1.292 4.179

8 3978.96 2.12 2.58 1.288 4.126

(3) 32 [(211]

v Efem')  Run(A) Ru(d)  BxI10'(em™)  Dyx10%(cm™)
0 14409.47° 2.38° 2.46% 1.207* 1.827*%

1 15020.55 2.35 2.52 1.191 2.475

2 15578.72 2.33 2.57 1.189 3.028

3 16100.22 2.31 2.58 1.181 2.979

4 16603.55 2.30 2.61 1.175 2.993

5 17097.77 2.28 2.63 1.175 3.083

6 17584.29 2.27 2.65 1.169 3.010

7 18064.27 2.26 2.67 1.164 5.491

(4) 12 ()]

v Eycm™) Ruin(A)  Ruax(A) B,x10'(cm™)  Dyx10%cm™)

0 14615.05° 2.37¢ 2.45° 1.218* 1.657°
1 15260.79 2.34 2.51 1.198 2.594
2 1582543 232 2.54 1.197 3.057
3 16351.53 2.30 2.58 1.187 3.023
4 16856.67 2.29 2.60 1.179 3.295
5 17346.22 2.28 2.62 1.177 3.071
6  17828.43 2.26 2.65 1.170 3.276

a. First entry is for the values of the present work

III. E.S. The Permanent Dipole Moment of YS

The expectation values for the permanent electric dipole moments were calculated at the
highest level of MRSDCI calculations with the inclusion of spin orbit effects. The results for

these calculations at the equilibrium internuclear distance of the ground electronic state are
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reported in Table XXXXIV. To the best of our knowledge there are no results available in

literature on the permanent electric dipole moment in the spin orbit component states of the

molecule YS.

Table XXXXIV:
Permanent electric dipole moments for the electronic states of
the molecule YS at R=2.32A.

State Q |u/(Debye)  State Q |n/(Debye)
(1) 1/2 [XZ7] 6.781 (7) 32 [(1)'21] 3.082
(1) 3/2 [(1)’A] 11.822 (7) 172 [(1)*=] 0.773
(1) 5/2 [(1)°A] 11.835 (6) 3/2 [(3)°I] 0.775

() 12[(1)’'T1]  8.197 (8) 172 [(1)*A] 0.871
(2)32[(1)]  8.054 (5) 5/2 [(1)*A] 0.902
(3)12[(2=]  8.012 (8) 3/2 [(1)*A] 0.884
(3)32[(2°T1]  2.264 (3) 72 [(1)*A] 0.938
4) 12[(2)°11]  2.185 (9)12[(3)Z]  0.780
@32 [N 5916 (9) 312 [(2)°A] 0.375
Q)52 [(HT] 5977 (6) 5/2 [(2)°A] 0.463
(D) 72[(1)'®]  6.263 (12) 12 [(2'T1]  0.922
(5)32[(1)'®]  6.415 (12)32[()*T1]  0.717
(4) 52 [(1)*®]  3.169 (4) 72 [(2)*®] 0.462
(2) 72 [(1)*®]  3.078 (7) 5/2 [(2)*®] 0.857
(6) 1/2[(3)°1]  3.042 (12)32[()'T]  0.726

The largest permanent electric dipole moments are those attained in the states (1) 3/2 [(1)°A],
and (1) 5/2 [(1)’A]. In Figure 39 we draw the variation of the permanent electric dipole
moment in some low lying electronic states of YS as a function of the internuclear distance

separating Yttrium from Sulfur.
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Fig. 39. Variation of the permanent dipole moment in (a.u.) as a function of the internuclear distance
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III. E. 6. The Internal Molecular Electric Field in YS

The expectation values of the internal molecular electric fields in units of GV/cm have been
calculated at the MRSDCI level calculations for the lowest lying molecular states of YS. These results
are shown in Table XXXXV and reported for YS here for the first time in literature.

Table XXXXV:
Internal Molecular Electric Field for the electronic states of YS at R =
2.32A.

State *"'A*  |[Emotecutar (GV/cm)  State *"'A* |E motecutar [(GV/cm)
Xy 0.126 (3)’I 0.136

(1)°A 0.056 (2)\’® 0.132

Q)Y 0.125 (4)11 0.049

3 0.077 (5)°11 0.027

(3)’A 0.076 (Y 0.067

@y 0.021 (1)*A 0.069

(1)’T 0.030 )s! 0.557

(1’11 0.075 (1)'® 0.562

(2)°11 0.194 ()" 0.236

(1)°® 0.121

III. F. Comparison between 4d Transition Metal Sulfides MS M =Y, Zr, Nb, ..., Cd)

Materials formed from the combination of transition metals with the chemical elements of
group 16 in the periodic table, such as oxygen, sulfur, selenium, tellurium and polonium are
called chalcogens. The interest in transition-metal chalcogenicdes evolves primarily from the
numerous applications of transition metal oxides and sulfides in catalysis, lubricants, support
materials, superconductors, gas sensors for pollution monitoring and control as well as
electrode materials in photoelectrolysis [200]. Moreover, transition metal oxides and sulfides
are found in the reaction centers of many enzymes, and metal sulfides have been postulated to
be essential for the evolution of life [201, 202]. In industry, transition metal oxides are used
as versatile catalysts in many applications, however for some processes their reactivity is too
high and non-specific product formation occur [200]. In contrast, transition metal sulfides are
less reactive and sulfur is often added as a catalyst moderator in order to improve selectivity
[201]. Despite their successful application in industry and their relevance in biology, the
electronic structures of transition metal sulfide molecules is far from complete. In order to
gain better understanding of the similarities and differences observed for the various
transition metal chalcogenides, the neutral transition metal sulfides appear to be suitable
model systems. The comparison of properties such as electronic ground states, bond lengths,
and bond polarity may help to elucidate the nature of the metal-sulfur interaction. This
knowledge could in turn be used for the development of better catalysis [200]. In the present

work we compare the values of the spectroscopic constants R, o, e in the ground state of
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the transition metal sulfides of YS and ZrS to the other series of diatomic 4d transition metal

sulfides MS, where M stands for Nb, Mo, Tc, Ru, Rh, Pd, Ag, and Cd.

To the best of our knowledge in literature the electronic ground state in NbS has been
determined to be of X*Y~symmetry [148, 203, 204], with a bond length of R, = 2.164A [203],
harmonic vibrational frequency . = 540cm™ [203], and permanent electric dipole moment of
u = 4.007 Debye [203]. The electronic structure of the MoS molecule has been studied by
three groups in literature [205 — 207]. The ground state has been determined to be an X°II
state with bond lengths R, = 2.165A [232], harmonic vibrational frequency @, = 521cm™
[205], and permanent electric dipole moment of p = 3.474 Debye [205]. The structure of a
neutral TcS molecule is limited to the results reported in [200, 205]. In these studies the
electronic ground state has been predicted to be of X°Y" symmetry with R = 2.168A [205],
®e = 492cm™ [205], and n = 4.045 Debye [205]. The electronic structure in the ground
electronic state of the molecules RuS, RhS, PdS, AgS, and CdS have been investigated by
Knudsen-effusion mass spectrometry in Ref [200]. The spectroscopic constants in the ground
state of each molecule have been determined in Ref [200] to be; R. = 2.176A and o, =
480cm™ in RuS, R. = 2.159A and o, = 470cm™ in RhS, R = 2.259A and . = 360cm™ in
PdS, R.=2.432A and ®, =270cm™ in AgS, and R=2.356A and ©=331cm™ in CdS. To
the best of our knowledge, the other values for the dipole moment in the ground states of
RuS, RhS, PdS, AgS and CdS aren’t available. The reported results in literature for the values
of the spectroscopic constants Re, ®., and .. in the ground state of 4d transition metal sulfide

molecules NbS, MoS, TcS, RuS, RhS, PdS, AgS, and CdS are shown in Table XXXXVI.

The comparisons between the our values for the spectroscopic constants R., w., and p. of YS

and ZrS to the other series of 4d transition metal sulfides are shown in Figures 40 - 42.

Table XXXXVI:

Variation of the values of the equilibrium internuclear distance R, harmonic vibrational frequency ®. and
permanent electric dipole moment pi. in the ground state of the series of 4d transition metal sulfide molecules in
the periodic table.

Metal Nitrides R.(A) 11, (Debye) o, (cm™)
YS 2.312° 6.781° 500.64"
7S 2.203° 3.811° 532.40°
NbS 2.164° 4.007° 540"
MoS 2.165° 3.474¢ 521°
TcS 2.168° 4.045¢ 4924
RuS 2.176° - 480°
RhS 2.159° - 470°
PdS 2.259° - 360°
AgS 2.432° - 270°
Cds 2.356° — 331°

a. values obtained from the results of the present work, b. Ref [203], c. Ref [232], d. Ref [205],
e. Ref [200].

Note: The sign (—) indicates that to the best of our knowledge there are no results available in literature for the
specific values of the permanent dipole moment in RuS, RhS, PdS, AgS, and CdS.
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Across the series of 4d transition metal sulfides from YS to CdS the equilibrium internuclear
distance in the ground state (Fig. 40) decreases from 2.3116A in YS to reach a minimum at
2.165A in MoS and then increases again to reach a value of 2.432A in AgS. The shortest
bond length attained in MoS suggests that the bonding in MoS is the strongest among the
other 4d transition metal sulfides. For the harmonic vibrational frequency ®. in the ground
state of each molecule (Fig. 41) it is seen that the value of o, is largest in NbS and MoS with
a value of 540cm™’, respectively. The polarity in each of the transition metal nitrides is largely
determined by the value of the permanent electric dipole moment in the ground state of each
molecule. In Fig 42 we compare the permanent electric dipole moment results for the
molecules YS, ZrS, NbS, MoS, and TcS. These results indicate that the least polar bond is
that in MoS with a permanent dipole moment of 3.474 Debye. The values of 6.78 Debye
reported in YS is the largest among the other values of the permanent dipole moment across
the series of transition metal sulfides ZrS, NbS, MoS, and TcS. The increase of the dipole
moment is an indication for the increase in the electronegativity difference between the metal
and sulfur atoms, and hence a decrease of ionic character across the series of 4d transition

metal sulfides.
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Chapter 4

Summary and Outlook

b initio calculations provide us with a tool to describe the electronic structures and
Achemical properties of molecules. Computational studies can in general be carried

out in order to find a starting point for laboratory experiments, or to assist in understanding
experimental data. Thus computational studies can explore new properties and guide new
experimental works. Heavy polar diatomic molecules form suitable candidates for computational
investigations, particularly due to their rich inner electronic structures and due to their
importance in several areas of science, as chemistry, astrophysics, ultracold interactions, and
molecular quantum computing. Although, the electronic structures of small diatomic molecules
have been well characterized, still the electronic structures of heavy polar diatomic molecules
containing a transition metal atom of group III and IV is far from complete. The main objective
of this thesis was to fill the gap and study the electronic structures of the transition metal nitrides
and sulfides of Yttrium and Zirconium. In the present work the electronic structures of the
molecules YN, YS, ZrN, and ZrS have been investigated at the multireference single and double
configuration interaction method followed by spin orbit calculations implemented by the method
of effective core potentials. These calculations yielded accurate spectroscopic constants along
with several physical and chemical properties that are within a few percent of the experimental
values. Many other properties have been also computed that weren’t available in literature on the
electronic structures of these molecules. We expect that the results in the present work should
invoke further experimental investigations for this class of molecules. As an example, we found

in the ZrS molecule several degenerate vibrational energy levels which might increase the
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experimental sensitivity for measurements of small variations in the fine structure constant o in
laboratory experiments and in S-type stars. A preprint for the results of this work has been
requested by an experimental research group working at Yale in the group of Prof. David

Demille.

In chapter 1, we present a brief overview for the theoretical backgrounds of the computational
methods used in the present work. The theoretical backgrounds for the electronic structure
calculations in the Hartree-Fock method, followed by Complete Active Space Calculations and
Multireference Configuration Interaction methods are written within the formalism of second
quantization. A brief discussion for the theoretical background of spin orbit relativistic
interactions in diatomic molecules have been also incorporated within the context of the first

chapter.

In chapter 2, we present the canonical function’s approach for solving the vibrational and
rotational Schrodinger equation in a diatomic molecule. This has allowed us to compute the
vibrational energy structures and rotational constants for the ground and excited electronic states

of each molecule.

In chapter 3, we list the results of our calculations for the electronic structures, with and without
spin orbit effects, of the four diatomic molecules YN, YS, ZrN, and ZrS. Potential energy curves
were constructed and spectroscopic constants were computed. Various other physical properties
were also computed such as the permanent electric dipole moment, internal molecular electric
fields, and bonding characteristics. Ro-vibrational energy calculations were performed by
solving the vibrational-rotational Schrodinger equation in the ground and excited electronic
states of each molecule. With the inclusion of spin orbit effects in the electronic structure
calculations further enhancements in the accuracy of nonrelativistic ab initio results could be
obtained. In the present work a large number of spin orbit electronic states have been studied for
the first time in literature up to 60 states in YN, 49 states in ZrN, 44 states in ZrS, and 54 states
in YS. From these results several other properties and spectroscopic constants were also studied
here for the first time in literature. The accuracy of the calculated constants in the present work
was measured by reporting a percentage relative difference between the present results and the
experimental results, whenever available in literature. For the other values reported here for the

first time in literature no comparison is made. The calculated values of the internal molecular
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electric fields in these molecules are reported here for the first time in literature and might help
in clarifying the structures of these molecules in a search for a possible electric dipole moment of
the electron. We detected several degenerate vibrational energy levels in the ground (1)0[X'Y "]
and first excited electronic states (1)1[(1)’A], (1)2[(1)’A], (1)3[(1)’A] of the ZrS molecule. We
suggest that the reported degeneracies in ZrS, specifically between the vibrational energy levels
of the (1)1[(1)’A] and (1)2[(1)’A] states, can be used to enhance the experimental accuracy in
measurements for variations in the fine structure constant a. Finally, in an attempt to observe the
variation of molecular properties across the series of 4d transition metal nitrides and sulfides, we
compare the values in the present work for the equilibrium internuclear distance, permanent
electric dipole moment, and harmonic vibrational frequency for the molecules YN and ZrN to
the other spectroscopic values across series of 4d transition metal nitrides and sulfides: MN and

MS, where M stands for Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd.
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Résumé et Perspectives (French)

Les calculs ab initio fournissent un outil pour décrire les structures €lectroniques et les
propriétés chimiques des molécules. Les études théoriques peuvent, en général,
constituer un point de départ pour des expériences de laboratoire, ou encore aider & comprendre
certaines données expérimentales. Ainsi, les études numériques représentent un moyen

d'explorer de nouvelles propriétés et ainsi guider de nouvelles expériences.

Les molécules diatomiques polaires sont des candidats appropriés pour des études numériques en
raison de la richesse de leur structure électronique et de leur importance dans de nombreux
domaines: chimie, astrophysique, interaction a trés basses températures ou encore le calcul
quantique moléculaire. Les structures ¢€lectroniques des petites molécules diatomiques sont a
présent bien connues, cependant les structures électroniques des molécules diatomiques polaires
lourdes contenant un atome de métal de transition des groupes III et IV ne sont "pas
compleétement comprises". L'objectif principal de cette thése est de combler cet écart "en
¢tudiant" les structures électroniques des nitrures de métaux de transition ainsi que les sulfures
d'yttrium et le zirconium. Dans ce travail, les structures ¢€lectroniques des molécules lourdes
diatomiques polaires du type YN, YS, ZrN et ZrS ont été étudiées a la configuration
de l'interaction multireference méthode simple et double suivies par des calculs spin-orbite mis
en ceuvre par la méthode des potentiels de ceeurs effectifs. Ces calculs ont permis d'obtenir des
constantes spectroscopiques précises ainsi que plusieurs propriétés physico-chimiques a quelques

pourcent de leur valeur expérimentale. De nombreuses autres propriétés qui n'étaient pas
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disponibles dans la littérature ont également ¢été calculées sur la structure électronique de ces
molécules. Nous nous attendons a ce que les résultats présentés dans cette thése inspirent de
future études expérimentales pour cette classe de molécules. A titre d'exemple, nous avons
trouvé dans la molécule ZrS plusieurs niveaux d'énergie vibratoire dégénérés, ces niveaux
pourraient augmenter la sensibilité expérimentale pour les mesures de faibles variations dans la
constant de structure fine o et dans les étoiles du type S. De plus, un preprint concernant les
résultats de ce travail a ét¢ demandé par le groupe de recherche expérimentale dirigé par le

professeur David Demille de 1'Université de Yale.

Dans le chapitre 1 nous présentons un bref apercu du cadre théorique des méthodes de calcul
utilisées dans le travail actuel. Le cadre théorique pour le calcul de la structure électronique avec
la méthode d'Hartree-Fock, suivi par les méthodes de calcul de I'espace actif et de I'interaction en
configuration multiréférence est celui du formalisme de la seconde quantification. Une bréve
discussion sur la théorie de l'interaction spin-orbite pour les molécules diatomiques relativistes a

¢galement été intégrée dans le premier chapitre.

Dans le chapitre 2, nous présentons l'utilisation de la fonction canonique pour la résolution de
I'équation de Schrodinger pour les modes de vibration et de rotation d'une molécule diatomique.
Cela nous a permis de calculer les énergies vibrationnelles des structures et les constantes de

rotation pour 1'état fondamental et les états électroniques excités de chaque molécule.
p q q

Dans le chapitre 3, nous présentons les résultats de nos calculs pour les structures électroniques,
avec et sans effet spin-orbite, de quatre molécules diatomiques YN, YS, ZrN et ZrS. Les courbes
d'énergic potentielle ont été tracées et les constantes spectroscopiques calculées. D'autres
propriétés physiques ont été calculées comme le moment dipolaire permanent, le champ
¢lectrique moléculaire interne et les caractéristiques de liaison. Les calculs d'énergie ro-
vibrationnelle ont été effectués en résolvant I'équation de Schrodinger de rotation et de vibration
pour I'é¢tat fondamental et les états excités de chaque molécule. Avec la prise en compte des
effets spin-orbite dans les calculs de structure électronique, on a pu obtenir de nouvelles
améliorations sur l'exactitude des résultats non relativistes et ab initio. De nombreux états
¢lectroniques de spin-orbite ont été étudiés pour la premicre fois dans la littérature lors du travail
actuel jusqu'a 60 états pour YN, 49 états pour ZrN, 44 états pour ZrS et 54 états pour YS. A

partir de ces résultats plusieurs autres propriétés et constantes spectroscopiques ont été étudiées
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pour la premiere fois dans la littérature. La précision des constantes calculées dans le travail
actuel a été calculé a partir de la différence relative entre les résultats et ceux des expériences, a
chaque fois qu'ils s’étatisent disponibles dans la littérature. Il n'y a pas eu de comparaison faite
pour les autres valeurs rapportées pour la premicre fois dans la littérature. Les valeurs calculées
du champ ¢lectrique moléculaire interne de ces molécules sont rapportées pour la premiere fois
dans la littérature et pourraient aider a clarifier la structure de ces molécules dans la recherche
d'un éventuel moment dipolaire de I'électron. Nous avons détecté plusieurs niveaux d'énergie
vibrationnelle dégénérées dans le fondamental (1)O+[X12+] et les premiers états excités
(DI[(1’A] (D2[(1)°A], (1) 3 [(1)’A]de la molécule ZrS. Nous supposons que les
dégénérescences du ZrS, en particulier entre les niveaux d'énergie vibrationnelle des états
(DI[(1)’A] et (1)2[(1)’A] peuvent étre utilisées pour améliorer la précision expérimentale des
mesures de variation de la constante de structure fine alpha. Finalement, en tentant d'observer les
variations des propriétés moléculaires pour les séries des nitrures et sulfures de métaux de
transition 4d on compare les valeurs de la distance internucléaire d’équilibre, du moment
dipolaire électrique permanent et de la fréquence de vibration harmonique pour les molécules
YN et ZrN calculées dans ce travail aux valeurs spectroscopique pour le nitreuse et sulfures de

métaux de transition 4d MN (M =Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd).
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Splitting Figures between Spin orbit electronic states
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Table I: Spin Orbit splitting occurring in the electronic states of the YN molecule.
Note: all numbers below are in cm™ units of energy.

(2)’Z" 19096.71

(1)33+ 2781.84

(3) 07 [(2)33*] 18467.12

AE =400
(1) 1 [(1)35*] 2763.17
e == - — Pne-117
(1) 0- [(1)33*] 2762.0 (7)1 [(2)°5"] 18076.00
(10) 1 [(1)°] 2040820 (2) 3 [(2)°A] 20668.34
/' (6) 2 [(1)%] 20058.95|, AE =149 (11) 1 [(2)3A] 20634.19 H------@ AE =120

" (7) 2 [(2)3A] 20548.3

(1)3A 18821.32

(2)3°A 19269.14

(2) 2[(2)31T]1 17610

(3) 0*[(1)3TT] 5026

(2) 1[(1)°TT1 4906.2 €<j® = = = = = @ AE =159
Y (21002 4867

AE =3493.4

(1)°’I1 14201 (5) 1[(2)3TT] 14142.49 (1)°T1 5485

(2) 0°[(2)TT] 141116.6
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(3)°I1 24536

(4) 0" [(3)TT] 18933

(1)50 20186

(10) 2 [(1)5®] 20142

(5) 2 [(3)3TT] 18563

(8) 1 [(3)°TT) 18614

(1) 5 [(1)5®] 20538

/
/

/. AE =584

(3) 3 [(1)°®] 20122

(1)55* 21994

\ (9) 0 [(1)53*] 21510.9

......................

(11) 2 [(1)55*] 21368

(5) 3 [(2)°TT] 24517

(11) 0" [(2)°17] 23711

(13) 2 [(2)°T]
23843

AE =1087

(2)5T] 24780
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Table II: Spin Orbit splitting occurring in the electronic states of the ZrN molecule.
Note: all numbers below are in cm™ units of energy.

(1) 5/2 (1)2A 7767 27 20906

AE =433
\(1) 3/2(1)°A 7334

(2)3/2 (1)2TT 16528

(1)2TT 16317 / AE =388

(2) 1/ 2(1)2T] 16140

(1)2A 7580

(8)3/2(3)2A 19416
AE =149
(6)5/2 (3)2A 19267

(2)2T] 17904

(5) 3/2 (2)2T] 17050
AE=56
(7) 1/ 2(2)2TT 16994

(3)7/2(1)2® 18283
AE =189
(5) 5/2(1)>® 18094

(9) 3/2 (3)2T] 21195

2
(3)°T7 19155 AE = 3741

(9)1/2(3)4T 17454 (1)20 16879
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(4)7/2(2)>® 21935

AE =629

(7)5/2(2)>0 21306

(220 20924
(1)7/ 2 (1)°A 16734
(2)5/2 (1)*A16631
(3) 3/ 2 (1)*A 16601
(1)*A 16477 AF = 580

(3) 1/ 2 (1)%A 16154

(9)5/2 (2)*A 27269

AE =
224

(14) 1/2 (2)*A 2714

(13) 3/2 (2)*A 27045

(2)A 26833

(10) 3/ 2 (4)°1723823

AE|=1703

(4)2TT 21992

1) 1/ 2 (4)2T]22120

(13) 1/ 2 (1)*3+26945
AE =142
(12) 3/ 2 (1)*s* 26803

(1)43+ 23730

(6)7/ 2 (3)*A 32312

AE
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(1) 9/2 (1)*® 17726
(6) 3/2 (1)*TT 17637 \

(8) 7/2 (1)*® 17472

AE =
753

AE =743
4)5/2 (1)*® 17099

(3)5/2 (1)*1T 16929 , (4) 3/2 (1)*® 16973

(6) 1/2 (1)*TT 16894 (1)*® 16708

(1)*TT 16621

(2)*TT 26841 (15)1/2 (3)*TT 29495

12) 1/2 (2)TT 26551 AE = 175
(15)3/2 (3)*TT 29320
AE
(11) 3/2 (2)°T7 24864 = 2940
(3)*T]_27476

(8) 5/2 (2)*TT 23605

(2)*® 30054

(1) 9/2 (2)*® 29650

AE =2204

10) 5/2 (2)*® 27555
(14) 3/2 (2)*® 27446
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Table I11:
Spin Orbit splitting occurring in the Triplet electronic states of the ZrS molecule.
Note: all numbers below are in cm™ units of energy.

(3)07[(2)'3*] 12889.82
4)07[(1)35+] 12831.6] AE=
(5)1[(1)33*] 12811.18

(1) 3 [(1)3A] 956.4

(1) 2 [(1)3A] 569.5 |AE =
673.2

(1)3A 302.65

(1) 1[(1)3A] 283.2 \ (2)33* 12464.55

(3) 3[(2)3A] 14048.14 (3) 2 [(1)3TT] 9060.69
\
(6) 2[(2)%A] 13896.3 | Af = (2) 1[(1)3TT18817.85 .
4856 451.7
(2) 0* [(1)*TT] 8628.96
(7) 1[(2)3A] 13562.56 2) 0" [(1)3T]] 8608.96

(2)°A 13345.50 (1)°18469.94

(1) 4 [(1)3®] 11568.46
(4) 0* [(2)3TT] 13078.69

(3) 2[(2)3T7] 12989.29 IAE _

(2) 3[(1)3®] 11100.28 (5) 0 [(2)T7] 12969.3§/156.2

AE = 3
933.5 (6) 1 [(2)3TT] 12922.49

(120 10787.88

N4 2[(1)°0] 10635.0%

~

(2)*T1 12589.70
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(6) 0" [(3)3TT] 19578.3

(6) 0* [(3)3TT] 19374.8

(9) 1 [(3)3T]] 19222.7

(8) 2 [(3)*TT] 18916.9

(3)’T1 118511.91

AE =
661.4

(2)’D 18688.74

(3) 4 [(2)3®] 19588.4

(9) 2 [(2)3®] 19309.9

(5) 3 [(2)3d] 19054.8

AE =
533.8
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Table IV:

Spin Orbit splitting occurring in the Triplet electronic states of the YS molecule.

Note: all numbers below are in cm™ units of energy.

2A, 12972

AE = 1685

(1A 11330 cnr’!

2A,, 11287

A, 21125

Ay, 21046

AE =338

(1)*A 20876 cm’! 4A,, 20857

A, 20787

‘A 30688

AE =600

(2)*A 30245 ¢!
‘A, 30180

4A.,,30088

20, 18701

2 -1
(1)@ 18525cm AE =290

20,, 18411

14, 13389

(1] 13231 em!

AE =482

1,5 12907

22253

(2)4]] 22185 cm™!
AE = 499
T, 21865
M5 21754
2 13999
(2)[] 13966.2 cm’! [15 X
AE =389
M1, 13610
L, 20088
AE =1189
(3)[T 19051 cm’!
1., 18899
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Table I:

Values of the Eigen-values E,, the abscissas of the turning point R, Ry, and the rotational constants B,, D, for the
different Vibrational levels of the states (3)1/2[(1)*A], (3)3/2[(1)*Al, (2)5/2[(1)*A], (H)1/2[(2)*X"1, (D12[Q2)TT]
(59)3/2[2Y[11. ($)1/2[(2)°Al, (3)5/2[(1)*[]] in ZrN.

(3)12[(1)*A] (3)3/2[(1)*A]

v Ej(em) Ruin(A) Ruu(A) Byx10' (em’)Dyx10(em™) | v E,(em”) Ruyin(A) Rp(A) Byx10' (em™) D,x107(cm™)
0 16703.84 1.78 1.94 3.979 9.510 0 16812.62 1.78 1.95 3.951 9.527
1 1721848 1.75 1.99 3.995 4.039 1 1732235 1.75 1.99 4.003 3.758
2 17825.58 1.72 2.02 3.949 3.736 2 17933.71 1.73 2.02 3.944 3.104
3 1847424 1.71 2.06 3.906 3.606 3 18600.00 1.71 2.05 3.911 5.085
4 19148.22 1.69 2.08 3.882 5.652 4 19265.74 1.69 2.08 3.888 4.848
5 19811.92 1.68 2.11 3.865 4.726 5 19930.78 1.68 2.11 3.845 5.414
6 20477.04 1.67 2.14 3.837 4.890 6 20587.51 1.67 2.14 3.830 4.568
7 2113794 1.66 2.16 3.806 3.895 7 21246.89 1.66 2.16 3.812 2.953
8 21802.02 1.64 2.18 3.774 5.302 8 21920.68 1.64 2.18 3.792 5211
9 2245836 1.64 2.20 3.761 4.856 9 22585.75 1.64 2.20 3.761 5.174
10 23111.37 1.62 2.22 3.736 3.936 10 23242.82 1.63 2.22 3.738 4.603
11 23764.08 1.62 2.25 3.702 4.930 11 2389643 1.62 2.25 3.713 4.486
(2)5/2[(1)*A] #H12[2)°Y ]

v By(em') Run(A) RpalA) Byx10' (em™)Dyx107(ecm™) | v E, (em™) Ruin(A) Ruw(A) Byx10' (ecm™) Dyx107(cm™)
0 16886.99 1.79 1.95 3.962 8.832 0 17119.44 1.83 1.94 3.883 4.597
1 17417.64 1.75 1.99 3.975 4.267 1 17832.19 1.78 2.00 3.873 5.728
2 18031.77 1.73 2.02 3.938 3.570 2 18502.34 1.76 2.04 3.862 4.726
3 18690.86 1.71 2.06 3.900 4.881 3 19179.25 1.74 2.06 3.848 3.847
4 1935343 1.70 2.08 3.880 4.551 4 19872.73 1.72 2.10 3.826 4.581
5 2002142 1.68 2.11 3.853 5.302 5 20563.19 1.70 2.12 3.806 4.473
6 20682.40 1.67 2.14 3.828 4315 6 21250.53 1.69 2.14 3.778 4.064
7 2134637 1.66 2.16 3.805 4.326 7 21938.71 1.68 2.17 3.759 5.235
8 22011.04 1.65 2.18 3.779 4.991 8 22615.08 1.67 2.19 3.734 4.501
9 22669.61 1.64 2.20 3.754 4.548 9 2328491 1.66 2.21 3.696 4.336
10 2332582 1.63 2.22 3.734 4.298 10 2395036 1.64 2.24 3.679 5.608
(D121 (5)3/2[2)[1]

v E,(cm") Rpin(A) Rpx(A) Bx10" (em™)Dyx107(em™) | v E,(em”) Ruin(A) Rua(A) Bx10' (cm™) D,x107(cm™)
0 1744250 1.82 1.94 3917 2.873 0 17512.35 1.82 1.93 3.935 2.782
1 18359.22 1.78 1.97 3.940 3.155 1 18449.61 1.78 1.97 3.948 3.285
2 1925473 1.76 2.01 3.909 3.332 2 1934499 1.76 2.00 3.915 3.230
3 2012529 1.74 2.03 3.872 3.878 3 20218.79 1.74 2.04 3.869 4.213
4 20959.56 1.72 2.07 3.839 5.061 4 21041.82 1.72 2.07 3.829 4931
5 21740.06 1.71 2.10 3.792 3.434 5 21817.58 1.71 2.10 3.794 3.197
6 2251573 1.70 2.12 3.774 3.948 6 22596.01 1.70 2.12 3.778 4.168
7 2327934 1.69 2.15 3.739 5.203 7 23357.56 1.69 2.15 3.734 5.308
8 24009.28 1.68 2.18 3.680 4.661 8 24084.98 1.68 2.18 3.687 4.375
9 24721.10 1.67 2.20 3.667 4.284 9 24797.69 1.67 2.20 3.663 4.283
(5)12[(2)°A] (3)5/2[(1)'1]

v Ey(em") Rpin(A) Run(d) Bx10' (cm)Dx10'em™) | v E,(em) Rpin(A) Rpax(A) Bx10' (cm™) Dyx10"(em™)
0 1719499 1.83 1.95 3.877 4.564 0 1727599 1.83 1.96 3.870 4.311
1 17906.51 1.78 2.00 3.849 4.581 1 18004.58 1.79 2.00 3.834 4.068
2 18614.64 1.76 2.04 3.858 4.786 2 18738.79 1.76 2.04 3.833 3.658
3 1931332 1.74 2.06 3.816 3.678 3 19482.87 1.74 2.07 3.788 3.403
4 20024.83 1.72 2.10 3.805 6.127 4 20232.12 1.74 2.10 3.764 4.089

170



Appendix II. Results of Vibrational Calculations

Table II:

Values of the Eigen-values E,, the abscissas of the turning point R, Ry, and the rotational constants B,, D, for the
different Vibrational levels of the states (1)7/2[(1)'Al, (2) 7/2 [(1)’T'], (4)5/2[(1)*®], (5)3/2[(2)*[T1, (6)3/2[(1)'TT],
(1)92[(1)*®], (5)5/2[(1)*®], (7)3/2[(3)°A] in ZtN.

(D)7/2[(1)*A] (2) 712 [(1)’T]

v BEy(em") Rpyin(A) Rp(A) Bx10' (em™) Dx10(em™) [ v Ey(em’) Rpin(A) Rpw(A) Byx10' (em™) D,x10"(cm™)
0 1697831 1.83 195 3.909 6.731 0 1705284 1.83 195  3.872 4.889
1 1757573 175 199  3.986 8.794 1 1774279 179 2.01 3.880 5.508
2 1813851 1.73  2.03  3.958 1.143 2 1841429 174 204  3.901 6.252
(4)5/2[(1)'0] (5)3/2[2)°1]

v E,(em")  Run(A) Rpu(A) Bx10' (cm™) Dx10°(em™) | v E,(em™) Ruin(A) Rpa(A) Byx10' (em™) Dyx107(cm™)
0 1757027 1.82 192  3.950 2.626 0 17723.61 1.8l 192 3.963 2.760
1 1853981 178 197  3.958 3.385 1 18672.84 1.78 197  3.959 3.170
2 1944123 176 2.00 3915 3.369 2 19580.53 1.75 200  3.913 3.939
32031248 1.74  2.04 3.878 4.245 32042729 1.74  2.04  3.868 4.165
4 2113431 172 206 3.836 3.896 4 2123516 172 207  3.836 3.273
5 2193630 1.71  2.10  3.820 3.371 5 2204636 1.71 209  3.844 3.270
6 2273696 1.70 2.12  3.803 3.363 6 2285827 1.70  2.11 3.810 3.774
7 2353441 168 2.14 3782 3.812 7 2365479 1.68 214  3.780 3.884
8 24319.86 1.68 2.16  3.754 3.872 8 2443913 1.67 216  3.765 3.644
9 2509359  1.66 2.18 3.731 4.139 9 2521600 1.66  2.18  3.736 4.157
10 2585479  1.65 220 3.710 4375 10 2597822 1.65 221 3.710 4.140
11 2660133 164 223  3.680 3.652 11 2672799 165 222  3.684 3.946
6)32[()'TT] (1)9/2[(1)"®]

v E,(em")  Run(A) Rpu(A) Bx10' (cm™) Dx10°(em™) | v E,(em™) Ruin(A) Rpa(A) Byx10' (em™) Dyx107(cm™)
0 18119.19 1.80 191 4.021 3.098 0 18200.05 1.80 189  4.046 2.730
1 19020.47 1.77 196  3.949 3.359 1 19159.05 1.77 197  3.943 4.697
2 1987739 1.75 2.01 3.878 4.181 2 1995199 1.75  2.01 3.882 2.485
3 2068698 1.74 2.04 3.884 2.687 3 2079516 1.74  2.04  3.902 3.485
4 2152637 172 2.06 3.875 3.581 4 2163317 172 206  3.866 3.713
5 2235040 1.70 2.09 3.826 3.785 5 2245216 1.70  2.09  3.835 3.304
6 2315812 1.69 2.12 3818 3.812 6 2326684 1.69 212  3.817 4.504
7 2395516 1.68 2.14  3.790 3.921 7 2405726 1.68 214  3.796 2.926
8  24739.10 1.67 2.16 3.769 3.519 8 2485117 1.67 216  3.774 3.599
9  25517.13 1.66 2.18 3.743 4.789 9 2563949 1.66  2.18  3.766 4.278
10 2627579 165 220 3.727 4.225 10 2641433 165 220  3.741 3.788
11 2702226 164 222  3.692 3.769 11 2718036 1.64 222 3717 4.195
(5)5/2[(1Y°®] (1)3/2[(3)°A]

v E,(em")  Run(A) Rp(A) Bx10' (cm™) Dx107(em™) | v E,(em™) Ruin(A) Rpa(A) Byx10' (em™) Dyx107(cm™)
0 18511.16 1.79 1.87 4.105 2.731 0 20108.85 1.80 1.91 4.029 2.578
1 1938884 1.77 197 3.841 3.764 1 2111633 1.76 194  4.038 3.843
2 20204.64 175 2.01  3.957 3.885 2 2199758 1.74 200  3.921 6.440
3 21031.03 1.74 2.04 3874 1.941 32273823 1.72 203  3.897 4.150
4 21897.04 172 206 3.858 5.335 4 2348505 1.70  2.07  3.899 5.092
5 2270237 171 209  3.850 2.359 5 2421359 1.69  2.09  3.861 3.055
6 2352451 170 212 3.801 4.070 6 2495780 1.68 212  3.864 2.790
7 2432781  1.68 2.14  3.808 4.509 7 25717.19 167  2.13  3.835 2.484
8 25113.88 1.67 216 3.782 3.276 8 2648778 1.66  2.15  3.806 5.638
9 2589926 1.66 2.18 3.772 4.954 9 2722079 1.65 219  3.717 7.125
10 26666.02 165 2.19  3.759 4.453 10 2789877 1.64 222  3.627 5.499

171



Appendix II. Results of Vibrational Calculations

Table III:

Values of the Eigen-values E,, the abscissas of the turning point R, Ry, and the rotational constants B,, D, for the
different Vibrational levels of the states (8)1/2[(3)[T], (8)3/2[(3)[1], (6)1/2[(1)*TT1, (10)1/2[(4)’[T], (8)5/2[(2)'T1,
(1)3/2[(1)*A], (1)5/2[(1)*A] in ZeN.

(8)1/2[(3)1] (8)3/2[(3)°11
V. Ei(em)  Ruin(A) Run(A) Bx10' em™) Dx10"(em™) | v Ey(em”) Rpin(A) Ruu(A) Byx10' (cm™) Dyx10"(em™)
0 2114038 1.79 194 3.741 5.430 0 2168144 1381 1.91 3.990 2.398
1 2175852 176 197  3.745 9.735 1 2270596 1.78 1.96 3.967 3.369
2 2255869 1.74 2.00 3.693 4.116 2 2363125 1.75 1.99 3.935 4.255
32329984  1.73  2.03  3.605 4.149 3 2447733 1.73 2.04 3.885 6.431
4 2401324 172 206 3.615 1.002 4 2521565 1.72  2.08 3.795 6.544
5 24800.84 1.68 2.09  3.686 4.984 5 2589740 1.70  2.12 3.768 5.038
6 2556286  1.67 211  3.696 5.625 6 2657046 1.69  2.14 3.744 3.987
7 2628428  1.66 2.14 3.613 4.793 7 2724641 1.68 2.17 3.723 2.796
8 2696451 1.65 218  3.491 4.270 8 2793695 1.67  2.19 3.711 4.342
6)12[(D1] 9 2862381 1.66 221 3.692 3.063
v E,(cm") Run(A) Rpal(A) Byx10' (em™) Dyx107(ecm™) | 10 2931472  1.65 2.23 3.658 4.359
0  17231.07 3.8713 4.4225
1 17952.62 3.8475 4.0748 (10)1/2[(4)[T]
2 18684.91 3.8417 3.9949 v E,(em") Ryin(A) Rpu(A) Byx10' (cm™) Dx107(cm™)
3 19418.64 3.8031 3.3418 0 22561.90 1.82 1.93 3.931 2.899
4 20160.44 3.7631 3.8471 1 2347591 1.79 1.98 3.919 3.447
(8)52[)1] 2 2434326 176 2.02  3.890 3.852
v E,(em?)  Run(A) Ruw(A) Bx10' (cm™) Dx10"(em™) | 3 2517349  1.74 2.04 3.869 3.065
0 2414933 187 199 3.733 2.483 4 2601028 1.73 2.07 3.861 3.223
1 2506463 1.83 201 3.801 1.983 5 26845.14 1.71 2.09 3.838 3.562
2 2604638 1.79 2.03  3.835 2.753 6 2766829 1.70  2.68 3.820 3.369
32700294 1.77 2.06 3.836 3.793 7 2848641 169  2.67 3.806 3.752
4 27900.74 174 2.08 3.825 4.134 8 2929099 1.68 2.16 3.769 4.573
5 28757.07 1.2 2.10  3.833 5772 9 3007027 1.67  2.18 3.739 3.745
6 2955452 171 2.12 3.818 6.475 10 3083839 1.66  2.20 3.706 5.061
7 3030051 1.69 2.16 3.775 7.717 (1)3/2[(1)°A]

v E,(em’) Run(A) Rpx(A) Byx10' (em™) Dyx107(cm™)
(1)5/2[(1)*A] 0 777658  1.70 1.81 4.497 4.462
v E,(em?)  Run(A) Ru(A) Bx10' (cm™) Dx10"(em™) | 1 8676.86  1.66 1.86  4.474 4.617
0  8275.66 171  1.81  4.499 4.447 2 956335  1.64 1.89 4.452 4.741
1 9178.12 1.66 1.85  4.477 4611 3 10436.19  1.62 1.92 4.421 4.871
2 1006645  1.64 1.89 4455 4.737 4 1129620 1.61 1.95 4.403 4.537
3 10940.89  1.62  1.92  4.424 4.899 5 1215327 1.59 1.97 4.379 4.984
4 11801.61 1.60 1.94  4.406 4515 6 1299671 1.58 1.99 4.341 4.478
5 1265995 159 197 4382 4.989 7 1383491 157  2.01 4317 4.540
6 1350434 158 199 4342 4.502 8 14667.02 156  2.04 4283 5.066
7 1434300 157 2.01 4320 4.496 9 15487.60 1.55 2.05 4.263 4.343
8 15176.12 156  2.03 4285 5.135 10 16306.65 1.54  2.07 4.245 5.303
9 1599690  1.55 2.05 4.264 4.347 11 17113.64 1.53 2.09 4211 5.299
10 16816.19 154 2.07  4.247 5.334 12 1790591  1.53 2.11 4.165 5.691
11 17623.17 154 2.09 4212 5312 13 1868120 1.52  2.13 4.130 3.908
12 1841509 153 212  4.165 5.815 14 19456.62 151 2.15 4.120 3.796
13 19188.83 1.52 213  4.128 3.982 15 2023291 1.51 2.17 4.090 6.096
14 1996202 151 215 4118 3.888 16 20993.01 150  2.19 4.054 5.720
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Appendix II. Results of Vibrational Calculations

Table IV:

Values of the Eigen-values E,, the abscissas of the turning point R, Ry, and the rotational constants B,, D, for the

different Vibrational levels of the states (1) 0'[(X)'Y"], (1) 0 [(1)*Y'], (2) 0" [(2)’TT], (8) 0" [(1)’®] of the molecule YN.

(H 01X (D0 [(1)'Y]
v E, (cm™) Run ~ Ruax  Byx10 D,x10 v E,(ecm")  Rum Ruwe  Byx10 D,x10
A) A  (em™) (cm™) A) A (em) (cm™)
0 303.49 1.79 193 4.024 6.470 0 316581 1.84 1.96 3.871 3.848
1 935.46 175 198  3.997 5.424 1 394025 1.80 2.00 3.853 3.818
2 159028  1.72 2.02  3.984 5.376 2 471054  1.78 2.04 3.830 3.905
3 225214  1.70  2.05  3.964 4.761 3 547229  1.76 2.07 3.808 4.402
4 292414  1.69 2.08  3.942 5.020 4 621167 1.74 2.10 3.763 5.682
5 3597.61 1.68 2.10 3.925 5.041 5 690458 1.72 2.14 3.692 6.296
6 4269.74  1.66 2.12  3.897 4.778 6 755797 1.71 2.17 3.659 3.644
7 494136  1.65 2.14 3.875 4.952 7 821741  1.69 2.19 3.642 4.877
8 5610.65 1.64 2.17 3.856 4.665 8 8866.99  1.68 2.22 3.606 4.714
9 6279.01 1.63  2.19 3.833 4.752 9 950833  1.68 2.25 3.584 4.580
10 694456 1.62 221 3810 5.127 10 10143.13  1.67 2.27 3.551 4.841
11 760447 1.61 223 3.786 4.778 11 10769.41 1.66 2.30 3.529 4753
12 826043  1.60 225 3.760 4.532 12 11387.79  1.66 2.32 3.492 5.557
13 891335 1.59 227 3.737 4.445 13 11992.60 1.65 2.34 3.460 5.296
14 9563.01 1.58 229  3.710 4286 14 1258538 1.64 2.36 3.416 7.333
15  10209.01 1.58 231 3.680 4.234 15 13152.82 1.64 2.40 3.345 1.031
16 1085123 1.57 232  3.654 4.440 16 1367827 1.63 2.43 3.241 1.145
17 1148898 1.56 234 3.628 4.895 17 14165.02 1.62 2.47 3.187 4317
18  12120.19 1.56 236  3.599 5.873 18 1464927 1.62 2.50 3.166 7.335
19 1274036 1.56 238  3.562 8.075 19 15120.69 1.61 2.53 3.108 6.906
20 13338.63 1.55 242  3.496 1.330 20 15581.28 1.60 2.56 3.090 4305
21 13890.78 1.55 245  3.369 1.870 21 16040.39 1.60 2.59 3.052 7.555
22 14384.68 154 249 3272 7.164 22 16488.18 1.59 2.62 3.022 4.527
23 1486839 1.53 252 3.275 5.873 23 16933.14 1.59 2.64 2.994 6.625
24 1534847 1.53 255 3.213 1.196
25 1580748 1.52 257  3.179 2.639
26 16268.80 1.52 2.60  3.155 9.607
27  16716.02 151 263  3.101 4235
(6) 0 [3)’[T] (3)3[(1)’D]
v E, (cm™) Rmin ~ Rmaex  Byx10 D,x107 v E,(cm’) Ry Ruax  Byx10' D,x107
A A (emh) (cm™) A) A)  (emh (em™)
0 19011.34  1.92 2.01  3.592 2.165 0 20071.52 2.10 2.24 2.954 4.029
1 19921.05 1.88 2.08  3.526 4.158 1 20572.87 2.05 2.29 2.916 4.979
2 2064326 1.85 2.14  3.435 6.918 2 2103282 2.02 2.38 2.847 5.703
3 2122756  1.84 219  3.363 3.664 3 21459.75  2.00 2.44 2.800 5.477
4 21813.59 1.83 224  3.299 1.456 4 2187153 1.98 2.48 2.759 5.158
5 2225460 1.82 232 3.150 2.676 5 2227381 197 2.52 2.718 5.075
6 22753.79 1.81 234  3.127 1.648 6 22669.06 1.96 2.56 2.691 3.596
7 23163.30 1.80 240 3.034 -1.087 7 2307139 1.94 2.58 2.695 1.329
8 23604.88 1.79 244  3.017 9.625 8 2349638 1.93 2.60 2.707 2.426
9 24027.01 1.78  2.46  3.006 4971 9 2393298 1.92 2.63 2.697 4.298
10 24451.08 1.77 250 2958 1.016 10 24365.66 1.91 2.65 2.676 3.874
11 2485722 1.76 252 2958 5.764 11 24796.60 1.90 2.68 2.665 3.375
12 2526517 175 255 2941 2.976 12 2522856 1.89 2.71 2.652 3.908
13 25676.82 1.74 258  2.900 5.244 13 25657.73  1.88 2.73 2.633 3.610
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Appendix II. Results of Vibrational Calculations

Table V:
Values of the Eigen-values E,, the abscissas of the turning point R, Ry, and the rotational constants B,, D, for the
different Vibrational levels of the states (1) 1 [(1)’Y'], 2) 0" [(2)'Y 71, (2) 0" [(2)’[T], (5) 1 [(2)’[]] in YN.

() 1[(1°Y] 20 [2)'Y]
v E, (cm™) Run ~ Ruax  Byx10 D,x10 v E,(ecm")  Rum Ruwe  Byx10 D,x10
A) A  (em™) (cm™) A) A (em) (cm™)
0 3165.87 1.84 197 3.871 3.848 0 4311.84 1.81 1.91 3.890 3.366
1 3940.31 1.79 2.00 3.853 3.818 1 5095.03 1.77 2.04 3.692 1.113
2 4710.60  1.77 2.03  3.830 3.905 2 558931 1.76 2.07 3.627 -1.116
3 547236  1.75 2.07 3.808 4.402 3 6236.68 1.74 2.10 3.617 5.773
4 6211.73 1.74  2.10 3.763 5.682 4  6859.68 1.73 2.12 3.605 2.592
5 6904.63 .72 2.13  3.692 6.296 5 751064 1.72 2.16 3.562 5.006
6 7558.02  1.71  2.16  3.659 3.644 6 8141.56 1.71 2.19 3.515 5.296
7 821746 170 2.19  3.642 4.877 7 8753.53  1.70 2.21 3.479 3.619
8 8867.05  1.69 221  3.606 4713 8  9370.68 1.69 2.23 3.482 2.248
9 9508.38  1.68 225 3.584 4.580 9  10002.99 1.68 2.26 3.445 6.376
10 10143.18 1.67 227 3.551 4.840 10 10607.89 1.68 2.28 3.400 3.386
11 1076947 1.66 230 3.529 4.753 11 1121479 1.67 2.31 3.399 4.041
12 11387.86 1.66 231 3.492 5.556 12 11816.84 1.66 2.33 3.346 5.348
13 11992.69 1.65 234  3.460 5.298 13 1240545 1.65 2.35 3.341 2.320
14 1258546 1.64 236 3.415 7.336 14 13000.89 1.64 2.38 3.307 6.026
15 13152.89 1.63 239 3.345 1.030 15 1358143 1.63 2.40 3.297 1.481
16 1367832 1.63 241 3.241 1.145 16 1417134 1.62 2.42 3.267 7.102
17 1416507 1.62 247 3.187 4319 17 1473842 1.62 2.45 3.218 5.897
18 1464932 1.61 251  3.166 7.335 18 15286.22 1.61 2.47 3.157 6.655
19 15120.74 1.61 252  3.108 6.905 19 15819.57 1.61 2.49 3.167 -1.061
20  15581.33 1.60 254  3.090 4.306 20 16373.39 1.60 2.51 3.156 6.346
21 1604044 1.60 259  3.052 7.554 21 16911.49 1.60 2.53 3.098 8.045
22 1648823 1.59 261  3.022 4.528 22 1742729 1.59 2.55 3.069 2.774
23 16933.18 1.58 2.63  2.99% 6.624 23 17955.23 1.59 2.58 3.072 7.273
24 18465.71 1.58 2.60 2.999 4422
25 18967.54 1.58 2.63 2.999 2.159

(2 0 [(21] () 1]
v E, (cm™) Ruin  Rpax  Byx10 D,x107 v E,(cm’) Ry Ruax  Byx10' D,x107
A A)  (em™) (em™) A) (A  (emh (em™)
0 1443352 2.04 220 3.102 2.994 0 14477.89 2.05 2.18 3.189 3.248
1 15062.26 2.01 222  3.081 3.035 1 15106.92 2.01 2.24 3.166 3.252
2 15685.73 197 228  3.080 3.542 2 15732.56 1.98 2.27 3.166 4.032
3 1629093 195 231  3.075 3.751 3 1633429 1.95 2.31 3.165 4.120
4 16883.50 1.93 233 3.090 6.481 4 16923.94 1.94 2.33 3.179 7.102
5 17430.00 1.85 236 3.177 1.687 5 17468.02 1.86 2.36 3.272 1.834
6 1787401 1.82 238 3352 1.356 6 17911.69 1.83 2.38 3.447 1.360
7 18293.70 1.81 240 3.282 -4.977 7  18335.38 1.81 2.40 3.363 -6.382
8 18772.67 1.79 241 3222 7.401 8 1882236 1.80 2.41 3.293 6.685
9 1924497 1.78 244  3.248 7.945 9 19305.60 1.78 2.44 3.307 7.972
10 1970895 1.76 246  3.205 4.487 10 19780.46 1.76 2.46 3.274 6.682
11 2017257 174 249 3.145 9.132 11 20247.78 1.76 2.49 3.215 1.000
12 20618.06 1.73 252  3.105 7.862 12 20695.75 1.75 2.51 3.174 1.017
13 2105441 1.73 2.54  3.095 2.589 13 21130.53 1.74 2.54 3.174 -2.435
14 2150751 1.72 256  3.108 6.575 14 21584.75 1.73 2.56 3.193 -2.628
15 21976.84 171 258  3.117 3.870 15 22058.71 1.72 2.57 3.206 4.298
16 22450.50 1.70 2.59  3.109 4.146 16 22536.57 1.71 2.59 3.193 6.590
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Appendix II. Results of Vibrational Calculations

Table VI:
Values of the Eigen-values E,, the abscissas of the turning point R, Ry, and the rotational constants B,, D, for the
different Vibrational levels of the states (3) 0°[(1)°[T], (2) 1[(1)’TT], (10) 2 [(1)’®], (3) 1 [(1)'T]] in YN.

(3) 0'[(1)°TT] 2 1L’

v E,(cm") Ruin(A) Rpu(A) Byx10'(em™) Dyx10(em™) | v Ey(em') Rpn(A) Rua(A) Byx10'(em™) Dyx107(cm™)
0 536451 192 224 3575 3.519 0 5261.68 191 2.03 3.577 3.549
1 6084.46  1.87 2.09  3.568 3.170 1 597832 187  2.08 3.563 3.481
2 682208 1.84 211 3.571 2.894 2 669414 1.84 212 3.545 3.787
3 757749 182 214 3.574 2.780 3 739470 182 2116  3.518 3.929
4 834486 1.80 2.16 3.564 3.325 4 8080.03 1.80  2.18  3.490 3.834
5 910371 178 2.19  3.551 3.199 5 875630 1.79 221 3.471 3.800
6  9857.86 1.77 221 3.537 3.204 6 9425.06 1.77 224  3.443 4.042
7 10607.33  1.76 223  3.523 3.795 7 10082.35 1.76 227  3.415 4.260
8 1134049 1.75 224  3.486 5.088 8  10727.66 1.75 229  3.393 3.917
9 12033.85 1.74 229  3.402 1.087 9 1136555 1.74 232  3.364 4.119
10 12612.15 1.72 234  3.191 1.494 10 1199453 1.73 234 3342 3.900
11 13097.10 1.72 239  3.199 -6.110 11 1261749 172 236 3317 4.656
12 1366236 1.71 240  3.256 3.737 12 1322658 1.72 239 3277 5.190
13 14236.61 1.70 241  3.235 2.544 13 13818.15 1.71 2.41 3.242 4.761
14 1481847 170 243  3.238 3.031 14 1439837 1.70  2.43 3.219 3.486
15 1540322 1.69 246 3.207 5.579 15 14977.18 1.70 245  3.203 3.938
16 1597254 1.68 248 3.178 3.076 16 1555098 1.69 248  3.173 5.237
17  16543.01 1.68 249 3.174 3.390 17 1611137 1.68 250  3.139 4.638
18 1711229 1.67 251  3.143 5.032 18 16662.66 1.68  2.53 3.116 4.015
19  17670.67 1.67 253  3.121 3.421 19 1720845 1.67 255  3.088 5.102
20 18226.89 1.66 2.56  3.103 4.409 20 1774352 1.67 257  3.057 4.640
21 18776.04 1.66 258  3.075 4.328 21 1827041 1.66  2.59  3.032 4.599
22 19318.02 1.65 2.60  3.052 4310 22 18789.36 1.66  2.61 3.000 5.105
(10) 2 [(1)°D] (3 1[(D'T]

v E(em")  Ryn(A) Run(A) Bx10'(em”) Dx10(em™) | v E, (em') Ryn(A) Rym(A) Byx10'(cm™) Dyx107(cm™)
0 2008835 2.11 223 2954 3.962 0 536955 191 2.03 3.575 3.464
1 20595.18 2.05 231 2925 4.173 1 609486 187  2.08  3.566 3.114
2 21088.82 2.02 235 2902 2.718 2 683786 184 212  3.566 2.887
3 2161178 2.00 237 2924 2.049 3759647 182 214  3.567 2.771
4 2216795 198 240 2918 4357 4 836624 180 217  3.560 3.232
5 22697.10 196 244 2852 6.840 5 9129.04 178  2.19  3.546 3.217
6 2316880 1.95 248 2774 1.082 6 988560 1.77 221 3.531 3.167
7 2353739 194 250  2.535 8.877 7 1063742 176  2.23 3.518 3.806
8  23883.84 192 252 2760 -15.26 8 1137195 1.75 2.25 3.479 5.157
9 2440983 191 258 2.876 1.040 9 1206428 1.74 228  3.391 1.123
10 2496456 190 2.60 2.848 9.351 10 12636.82 1.73 236 3.179 1.395
11 25440.13 1.89 2.64 2.592 3.241 11 1312436 1.72 238  3.201 -5.943
12 2576201 188 2.68 2.531 -1.804 12 13693.04 1.72 239  3.250 3.940
13 2617451 188 273  2.620 1.303 13 14268.03 1.71 242 3231 2.388
14 2654547 187 276 2456 8.315 14 1485177 170 244  3.234 3.178
15 2689293 186 2.80 2.491 -7.995 15 15437.13 1.69 246  3.201 5.483
16 2725297 186 2.84 2416 1.530 16 16007.54 1.69 248  3.175 2.682
17 2757432 185 287 2381 -3.169 17 1658178 1.68 249  3.176 3.065
18  27909.09 1.84 293 2337 1.868 18 1715732 1.68 252  3.152 4.161
19 2820569 1.84 296 2.285 2.571 19 17727.14 1.67  2.53 3.139 2.741
20 28500.63 1.83 3.02 2211 1.167 20 18299.02 1.67 255  3.127 3.881
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Appendix II. Results of Vibrational Calculations

Table VII:

Values of the Eigen-values E,, the abscissas of the turning point R, Ry, and the rotational constants B,, D, for the
different Vibrational levels of the states (8) 1 [(3)’TT], (6) 1[(2)'TT], (4) 2 [(1)*®], (4) 1 [(3)'TT], (12) 1 [(4)’TT], (6) 2 [(1)’A] in
YN

(®) 1[3)’[1] () 1[I
v E,(em")  Rpn(A) Rpax(A) Byx10'(em™) Dyx107(em™) | v E,(em™) Ryin(A) Ru(A) Byx10'(em™) Dyx107(ecm™)
0 1901134 192 2.02 3.592 2.165 0 1760230 1.91 2.01 3.596 6.841
1 19921.05 1.88 2.08 3.526 4.158 1 18068.22 1.85 2.15 3.335 1.132
2 2064326 1.85 2.14  3.435 6.918 2 18468.71 1.83 221 3.438 1.634
3 2122756  1.84 2.18  3.363 3.664 3 1882925 1.81 2.25 3.280 1.470
4 2181359 1.82 225 3.299 1.456 4 1913149 1.81 2.37 2.997 1.152
5 2225460 1.82 229  3.150 2.676 5 19420.56 1.79 2.41 3.066 -5.965
6 2275379 180 236  3.127 1.648 6 19769.78 1.79 2.45 3.026 1.037
7 2316330 1.80 240  3.034 -1.087 7 2011198 1.78 2.48 3.038 -2.688
8 23604.88 1.79 242  3.017 9.625 8 20494.07 1.77 2.49 3.063 8.821
9 24027.01 1.78 246  3.006 4971 9  20876.85 1.77 2.51 3.091 -6.425
10 24451.08 1.76 250 2.958 10.165 10 21286.64 1.76 2.52 3.097 2.324
11 2485722 1.76 253 2958 5.764 11 21708.10 1.74 2.54 3.070 6.186
12 2526517 1.75 255 2941 2.976 12 22130.67 1.72 2.57 3.091 8.378
13 2567681 1.75 259  2.900 5.244 13 2254899 1.72 2.58 3.066 6.230
14 26081.04 1.74 262 2857 3.180 14 2296748 1.71 2.60 3.075 4.525
15 23388.71 1.71 2.62 3.044 3.012
16 2381226 1.70 2.64 3.019 1.826
17 2423828 1.70 2.66 2.976 -5.465
(4) 2 [(1)’®] 4 131
v E,(cm")  Rpn(A) Rpax(A) Byx10'(em™) Dyx107(em™) | v E,(cm™) Ruyin(A) Ru(A) Byx10'(ecm™) Dyx107(ecm™)
0 1872377 193 2.02 3.574 2.053 0 12252.63 2.15 2.27 2.859 1.723
1 19659.63 1.89  2.07  3.538 3.450 1 12987.16 2.09 2.30 2.920 1.405
2 20437.53 186 2.15 3.434 7.270 2 13773.10 2.05 2.32 2.955 1.638
3 21029.03 1.84 2.19 3.344 8.890 3 1456542 2.03 2.34 2.964 2.601
4 2148259 1.83 236 2981 4.476 4 1530845 1.99 2.36 2.981 3.655
5 2171439 1.82 240  2.990 2.144 5 1599291 1.97 2.38 3.027 4.904
6 22064.02 1.81 246  2.886 1.468 6 16622.80 1.93 2.40 3.074 6.262
7 2238393 1.81 2.50  2.931 -1.655 7 17204.17 1.89 242 3.158 1.340
8 2274079 180 251 2917 -1.669 8 17697.64 1.83 2.44 3.303 1.461
9 2313257  1.79 253 2.963 1.479 9 18148.76 1.81 2.45 3.305 4.426
10 2354529 178 2.55 2939 4972 10 18635.38 1.80 2.46 3.249 7.108
11 23958.05 1.77 257 2915 6.160 11 19147.53 1.78 2.48 3.210 4.663
12 2436694 1.76 2.60 2.898 2.581 12 19661.65 1.76 2.49 3.211 9.103
13 20159.73 1.75 2.51 3.209 8.894
14 20641.77 1.74 2.54 3.145 1.041
15 21095.61 1.73 2.58 3.026 1.308
(12) 1 [(®°T]] (6) 2 [(1)°A]
v E,(cm")  Rpn(A) Rpax(A) Byx10'(em™) Dyx107(em™) | v E,(cm™) Ruin(A) Ru(A) Byx10'(ecm™) Dyx107(ecm™)
0 2221161 2.04 215 3.153 2.270 0 20416.61 1.91 2.04 3.546 4336
1 2292929 2.00 227  3.050 9.507 1 2105125 1.87 2.11 3.496 4.884
2 23334.18 198 232 2927 1.512 2 2164222 1.86 2.16 3.389 6.355
3 23810.70 196 237  2.987 7.141 3 2216482 1.84 2.24 3.264 1.085
4 2259872 1.83 2.29 3.176 3.228
5 23051.79 1.82 2.34 3.143 7.477
6 2348727 1.81 2.38 3.091 3.841

176



Appendix II. Results of Vibrational Calculations

Table VIII:

Values of the Eigen-values E,, the abscissas of the turning point R, Ry, and the rotational constants B,, D, for the
different Vibrational levels of the states (4) 1 [(3)'T]1, (1) 5 [(1)°®], (3) 0" [(2)’X71, (5) 2 [(3)TT], (6) 2 [(1)’A], (11) 1 [(2)*A] in
YN

) 113" ()5 [(1)°D]
v E,(cm")  Rpn(A) Rpax(A) Byx10'(em™) Dyx107(em™) | v E,(em™) Ryin(A) Run(A) Byx10'(em™) Dyx107(ecm™)
0 12252.63 2.14 227  2.859 1.723 0 20416.61 191 2.04 3.546 4336
1 12987.16 2.09 229  2.920 1.405 1 2105125 1.88 2.10 3.496 4.884
2 13773.10 2.05 232 2955 1.638 2 2164222 1.86 2.16 3.389 6.355
3 1456542 2.02 234 2964 2.601 3 22164.82 1.85 2.22 3.264 1.085
4 1530845 199 236 2.981 3.655 4 2259872 1.83 2.28 3.176 3.228
5 1599291 196 238  3.027 4.904 5 23051.79 1.82 2.32 3.143 7.477
6 16622.80 193 240 3.074 6.262 6 2348727 1.81 2.37 3.091 3.841
7 17204.17 190 242  3.158 1.340 7 2393046 1.80 2.40 3.071 3.300
8 17697.63 1.83 244  3.303 1.461 8 2438429 1.79 2.44 3.043 8.600
9 18148.76 1.81 245  3.305 4.426 9  24813.67 1.78 2.49 2.973 7.746
10 1863538 1.80 246 3.249 7.108 10 2522442 1.78 2.51 2.934 1.578
11 1914753 1.78 248  3.210 4.663 11 25650.54 1.77 2.54 2.947 6.403
12 19661.65 1.76 249 3211 9.103 12 2607434 1.76 2.56 2.931 2.884
13 2015973 1.75 251  3.209 8.894 13 26503.37 1.76 2.59 2.900 7.124
14 2064177 1.74 254  3.145 1.041
(30 [2%] (52311
v E,(cm")  Rpn(A) Rpax(A) Byx10'(em™) Dyx107(em™) | v E,(cm™) Ruyin(A) Ru(A) B,x10'(em™) Dyx107(ecm™)
0 18831.95 192 2.03 3.563 2222 0 19072.05 1.92 2.02 3.594 2.060
1 1972846 1.88  2.07  3.532 3.721 1 2000848 1.88 2.07 3.537 4313
2 2047191 186 2.15 3.422 6.914 2 2072146 1.86 2.14 3.413 6.092
3 21066.11 1.84 2.19 3372 5.207 3 21312.83 1.85 2.20 3.335 5.438
4 2163644 182 224 3315 8.146 4 21860.57 1.83 2.26 3.235 7.327
5 2214321 181 229 3213 6.647 5 2235551 1.82 2.30 3.170 6.418
6 2261501 1.81 234  3.125 7.972 6 2282794 1.81 2.36 3.102 9.714
7 2305441 1.80 239  3.059 6.877 7 2326255 1.80 2.39 3.057 5.984
8 2347729 1.79 244  3.003 5.729 8 2369824 1.79 243 3.061 6.648
9 23893.66 1.78 247  2.965 6.391 9 2412889 1.78 247 3.009 7.912
10 2430554 1.77 251 2948 6.450 10 2454620 1.77 2.50 2.991 5.316
11 2471534 177 254 2934 5.325 11 24962.86 1.76 2.53 2.959 5.713
12 2512513 1.76 257 2910 5.160 12 2537573 1.75 2.56 2.938 3.729
13 25533.08 1.75 259  2.885 5.167 13 25790.53 1.75 2.59 2.905 6.217
14 2619727 1.74 2.62 2.869 5.053
(6) 2 [(1)°A] (1) 1[(2)°A]
v E,(cm")  Rpn(A) Rpax(A) Byx10'(em™) Dyx107(em™) | v E,(cm™) Ruyin(A) Ru(A) B,x10'(ecm™) Dyx107(ecm™)
0 2041661 1.76 249 3.546 4336 0 20896.09 1.90 2.05 3.553 6.395
1 2105125 1.74 252 3.496 4.884 1 21413.61 1.87 2.13 3.463 6.322
2 2164222 1.73 254 3.389 6.355 2 21909.67 1.85 2.17 3.377 3.034
3 2216482 1.72 257  3.264 1.085 3 22433.60 1.84 2.24 3.269 1.444
4 2259872 171 259  3.176 3.228 4 2327192 1.82 2.34 3.127 6.420
5 23051.79 1.70  2.61  3.143 7.477 5 23706.16 1.81 2.38 3.135 6.698
6 2348727 170 2.63  3.091 3.841 6 2416629 1.80 2.42 3.051 6.159
7 24612.16 1.79 2.44 3.045 2.130
8 2507231 1.79 2.47 3.013 2.712
9  25536.89 1.78 2.50 2.980 3.090
10 26001.93 1.78 2.52 2.941 4.525
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Appendix II. Results of Vibrational Calculations

Table IX:

Values of the Eigen-values E,, the abscissas of the turning point R, Ry, and the rotational constants By, D,
for the different Vibrational levels of the state (2) 0" [(1)’[T], (2) 0" [(1)’TT1, 2) 1[(1)’TT1, 3) 2 [(1)’[T], (3) O
[(1)’Y . and 3) 1 [(1)’Y] in ZrS.

2) 0 [(D’T] (2) 0" [()TT]
v E/m")  Run Rpw Bx100 D100 |v  E.(cm') Rpn  Rum Byx10' D107
A A (emh  (emh) A A (em?)  (emD)
0 8653.82 2.19 2.31 2.734 1.803 0 8677.46 2.19 2.30 2.809 1.956
1 9325.04 2.15 2.37 2.720 1.794 1 9348.53 2.15 2.37 2.794 1.943
2 9991.77 2.12 2.41 2.703 1.856 2 10015.35 2.12 2.40 2.776 2.011
3 10649.01 2.10 2.44 2.686 1.771 3 10672.64 2.10 2.44 2.759 1.922
4 11302.71 2.08 2.47 2.670 1.813 4 11326.23 2.08 2.47 2.742 1.967
5 11950.12 2.07 2.50 2.652 1.797 5 11973.4 2.06 2.49 2.723 1.950
6 12590.12 2.06 2.52 2.633 1.710 6 12613.03 2.05 2.53 2.703 1.856
7 13227.09 2.04 2.55 2.618 1.952 7 13249.58 2.04 2.55 2.688 2.105
8 13855.89 2.03 2.58 2.604 1.963 8 13878.23 2.03 2.58 2.674 2.122
9 14477.08 2.02 2.60 2.588 1.999 9 14499.33 2.02 2.60 2.658 2.176
10 15090.48 2.01 2.62 2.574 2.068 10 15112.372.01 2.62 2.642 2.237
11 15695.16 2.00 2.64 2.556 1.964 11 15716.7 2.00 2.64 2.624 2117
) 1)’ (3) 2 [()[1]
v Em)  Rpyn Rum Byx100  Dyx10 v E,(cm') Rpn  Rpmx Bx10' D10
A) A (em!)  (em? A A (m) (em)
0 8857.47 2.18 2.31 2.733 1.810 0 9092.71 2.19 2.32 2.732 1.838
1 9527.1 2.14 2.37 2.719 1.797 1 9756.13 2.15 2.38 2.715 1.917
2 10192.54 2.12 2.40 2.702 1.866 2 10405.09 2.12 2.41 2.690 2.053
3 10848.15 2.10 2.44 2.684 1.784 3 11036.65 2.10 2.44 2.671 1.735
4 11499.86 2.08 2.47 2.668 1.834 4 11671.54 2.08 2.48 2.658 1.835
5 12144.62 2.07 2.50 2.650 1.819 5 12302.57 2.07 2.51 2.640 1.717
6 12781.19 2.06 2.52 2.630 1.735 6 12930.29 2.06 2.53 2.624 1.698
7 13414.08 2.04 2.55 2.614 1.988 7 13556.43 2.05 2.56 2.606 1.893
8 14038.06 2.03 2.58 2.599 2.026 8 14176.92 2.04 2.58 2.596 1.898
9 14653.35 2.02 2.60 2.582 2.000 9 14792.42 2.02 2.60 2.581 1.984
10 15261.44 2.01 2.62 2.569 1.992 10 15401.29 2.01 2.63 2.569 1.927
(3) 0 [(D)’Y] 3)1I(1’Y]
v E/m")  Rpn Ru Byx100  Dyx10’ v Ey(em') Run  Rpx  Byx10'  Dyx10
A A (em)  (emh A A (em!)  (em))
0 9372.52 2.21 2.32 2.685 1.755 0 9431.55 2.21 2.33 2.684 1.774
1 10035.45 2.17 2.39 2.675 1.697 1 10090.19 2.17 2.39 2.673 1.707
2 10699.62 2.14 2.42 2.660 1.851 2 10751.24 2.14 2.42 2.661 1.660
3 11349.95 2.12 2.46 2.641 1.838 3 11413.74 2.12 2.46 2.650 1.743
4 11991.6 2.10 2.49 2.629 1.642 4 12070 2.10 2.48 2.634 1.863
5 12633.27 2.08 2.52 2.614 1.865 5 1271445 2.08 2.51 2.617 1.726
6 13266.01 2.07 2.54 2.595 1.641 6 13354.08 2.07 2.54 2.601 1.720
7 13896.51 2.06 2.57 2.580 1.744 7 13988.48 2.06 2.56 2.583 1.724
8 14521.5 2.05 2.59 2.562 1.850 8 14617.21 2.05 2.59 2.565 1.905
9 15138.87 2.04 2.62 2.546 1.949 9 15236.61 2.04 2.61 2.547 2.067
10 15748.56 2.02 2.64 2.534 1.971 10 15845.07 2.02 2.64 2.532 2.126
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Appendix II. Results of Vibrational Calculations

Table X:

Values of the Eigen-values E,, the abscissas of the turning point R, Ry, and the rotational constants B,, D, for the
Vibrational levels of the state (4) 2 [(1)'®], (2) 3[(1)®], (1) 4 [(1)*®], (5) 1 [(1I'L'L, (6) 1 [()TTL (5) 0 [2)'[TI, (4) 0"
[()'[1]. () 1 [(2)°A] in ZsS.

@) 2 [(1)’0] (2) 3[(1)’®]

v Ey(em")  Rpuin(A) Rpax(A) Byx10' (em™) Dyx10’(cm™) | v E, (cm™") Ruin(A) Rpax(A) Byx10'(ecm™) Dyx107(cm™)
0 10681.85 2.22 2.34 2.665 1.581 0 11139.83 2.22 2.34 2.721 1.993
1 11373.66 2.17 2.39 2.663 1.712 1 11773.86 2.18 2.40 2.708 2.008
2 12048.39 2.15 2.43 2.645 1.776 2 12402.05 2.15 2.44 2.692 1.895
3 12709.19 2.12 2.46 2.633 1.783 3 13031.79 2.13 2.48 2.683 1.768
4 13359.11 2.10 2.49 2.610 2.035 4 13666.27 2.11 2.50 2.673 1.751
5 13988.36 2.09 2.52 2.592 1.917 5 14303.42 2.09 2.53 2.664 1.959
6 14607.64 2.08 2.56 2.574 1.689 6 14934.38 2.08 2.55 2.648 1.816
7 15224.17 2.07 2.58 2.557 1.935 7 15562.07 2.07 2.58 2.632 1.941
8 15831.03 2.06 2.60 2.536 1.779 8 16182.72 2.06 2.60 2.613 1.904
9 1643231 2.04 2.62 2.521 1.829 9 16796.96 2.05 2.62 2.595 2.016
(1) 4 [(1)’®] (5) L[(1)’Y]

v E,(em")  Rpm(A) Rpa(A) Byx10' (em™) Dyx107(cm™) | v E, (cm™") Ryin(A) Rya(A) Byx10' (cm™) Dyx107(cm™)
0 1162636 2.22 2.34 2.649 1.848 0 12826.42 2.21 2.34 2.678 2217
1 12259.04 2.18 2.41 2.637 1.875 1 13411.12 2.17 2.40 2.653 1.859
2 12884.47 2.15 2.44 2.620 1.817 2 14014.92 2.14 2.43 2.639 1.996
3 1350747 2.12 2.48 2.607 1.820 3 14615.89 2.12 2.48 2.623 1.853
4  14126.79 2.11 2.51 2.591 1.842 4 15217.64 2.10 2.50 2.606 1.983
5 14741.18 2.09 2.54 2.577 1.926 5 15813.51 2.09 2.53 2.587 1.807
6 15348.56 2.08 2.56 2.563 1.616 6 16407.99 2.08 2.56 2.570 1.873
7 15957.11 2.07 2.59 2.549 1.726 7 16997.8 2.06 2.58 2.548 1.935
8 16562.81 2.06 2.61 2.534 1.648 8 17580.22 2.05 2.61 2.525 1.971
(6) 1[(2)[T] (5) 0" [(2°T]

vV E,(ecm")  Ryin(A) Rpu(A) Byx10' (em™) Dyx10"(em™) | v E, (cm™") Ryin(A) Ruu(A) Byx10' (em™) Dyx107(ecm™)
0 1295935 2.22 2.34 2.647 1.845 0 13011.79 2.21 2.34 2.662 1.524
1 13590.26 2.18 2.41 2.627 1.845 1 13714.57 2.17 2.40 2.657 1.795
2 14215.62 2.16 2.44 2.613 1.872 2 14383.93 2.14 2.43 2.638 1.727
3 14834.59 2.13 2.48 2.599 1.764 3 15043.12 2.13 2.46 2.624 1.925
4 15451.06 2.11 2.51 2.580 1.908 4 15682.89 2.11 2.50 2.596 2.176
5 16060.11 2.09 2.54 2.568 1.914 5 16299.15 2.09 2.53 2.578 1.924
6 16662.78 2.08 2.57 2.552 1.782 6 16907.29 2.08 2.56 2.562 1.746
7 17261.54 2.07 2.60 2.533 1.852 7 17511.57 2.08 2.58 2.540 2.038
8 17854.69 2.06 2.62 2.519 1.618 8 18105.27 2.06 2.61 2.526 1.360
@) 0" [’ (1) 1[(2)°A]

v E.(em) Ry (A) Ryu(A) Bx10' (em™) Dx107 (em™) | v E, (em”) Ryin (A) Ryw(A) Byx10' (em™) Dyx107 (em™)
0 1312823 2.21 2.33 2.675 1.544 0 13614.29 2.23 2.36 2.699 2.022
1 1383049 2.17 2.39 2.662 1.799 1 14236.79 2.18 2.41 2.691 2.256
2 14498.45 2.14 2.43 2.638 2.029 2 14840.29 2.15 2.46 2.687 2212
3 1513431 2.12 2.47 2.613 1.796 3 15438.68 2.13 2.49 2.679 1.982
4 15760.89 2.11 2.50 2.598 1.800 4 16039.14 2.11 2.51 2.663 1.861
5 16383.74 2.09 2.53 2.587 1.780 5 16643.05 2.09 2.54 2.651 2.083
6 17002.56 2.08 2.56 2.569 1.865 6 17242.14 2.08 2.56 2.634 2.191
7 17613.18 2.07 2.59 2.548 1.786 7 17832.43 2.09 2.60 2.612 1.852
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Appendix II. Results of Vibrational Calculations

Table XI:

Values of the Eigen-values E,, the abscissas of the turning point R, Ry, and the rotational constants B,, D, for the
Vibrational levels of the state (3) 2[(2)°[T], (7) 1 [(2)’A], (2) 2 [(1)'A], (6) 2[(2)°A], 2) 4 [()'T], (7) 2 [(2)'Al, (3)3 [(2)’A] in
71S.

(3)2[@)’]] (7) 1[(2)°A]
v E,(em?)  Rpn(A) Ruax (A)Byx10' (cm™) Dyx10" (em™) | v E,(em™) Ruyin(A) Rupax (A)Byx10' (cm™) Dyx107 (cm™)
0 13024.18 222 234 2732 1.642 0 1361429 223 236 2.699 2.022
1 137283 218 240 2.728 1.938 1 14236.79 2.18 241 2.691 2.256
2 14398.79 2.15 244  2.708 1.848 2 14840.29 2.15 246 2.687 2212
3 1506038 2.12 247  2.696 2.017 3 15438.68 2.13 249 2.679 1.981
4 15706.11 211 249 2671 2.148 4 16039.14 2.11 251 2.663 1.861
5 1633524 209 253 2655 2.015 5 16643.05 2.09 2.54 2.651 2.083
6 16956.53 2.08 256 2.639 1.939 6 17242.14 2.08 2.56 2.634 2.191
7 17570.66 2.07 259 2613 2.336 7 17832.43 2.09  2.60 2.612 1.851
8 18168.93 2.06 261 2592 1.829 8 18421.24 2.06 2.62 2.597 1.913
9 1876295 205 264 2570 2.403
(2) 2 [(1)'A] (6) 2[(2)°A]
v E,(em’) Ry (A) Rya(A) Byx10' (cm™) Dyx107 (em™) | v E, (cm™) Rupin(A) Ruax (A) Byx10' (cm™) Dyx107 (cm™)
0 5289.18 217 230 2.767 1.710 0 13963.062.22 236 2.644 2.014
1 5991.08 224 235 2754 1.699 1 14564.922.18  2.41 2.621 1.608
2 6689.07 2.10 239 2739 1.706 2 15192.552.16  2.45 2.601 1.897
3 738176 209 242 2724 1.714 3 15809.952.14  2.49 2.590 1.942
4 8068.69 207 245 2.709 1.645 4 16415.822.12 252 2.565 1.660
5 8752.6 206 248  2.693 1.674 5 17022.862.10  2.54 2.553 1.873
6 9431.66 2.04 250 2.679 1.684 6 17624.192.09  2.58 2.537 2.095
7 1010496 2.03 252  2.664 1.838 7 18213.342.08  2.60 2.517 1.451
8 10770.16 2.02 254  2.652 1.859 8 18806.232.07  2.62 2.507 1.558
9 11427.68 201 257 2638 1.784 (1) 2[(2)'A]
10 12079.14 2.00 259  2.622 1.794 v E,(em") Ry (A) Ry (A)Bx10" (em™) Dyx107 (em™)
11 12724.16 199 262 2.606 1.776 0 17336.942.21 2.33 2.680 1.826
12 13363.33 198 264 2591 1.797 1 17983.152.17 239 2.660 2.413
(2)4[()'T] 2 18553.412.14  2.49 2.549 7.959
v E,(em") Run(A) Rux(A) Byx10' (em™) Dyx107 (ecm™)| 3 18916.092.13  2.55 2.435 -4.456
0 13828.05 222 236 2.708 2.252 4 19352.972.12  2.59 2.470 4233
1 14421.62 2.18 2.41 2.704 2.050 3)3 [(2)3A]
2 15024.11 2.16 245 2.678 1.611 v E, (cm™") Ruyin (A) Ryax (A)B,x10" (em™) D,x107 (em™)
3 15645.76 2.14  2.49 2.656 2.065 0 14125.692.22 234 2.666 1.383
4 16257.17 212 252 2.639 2.108 1 14863.832.18 239 2.653 1.733
5 16860.36 2.10 2.5 2.625 1.926 2 15554.752.15 243 2.641 1.641
6 174599 2.09 2.8 2.602 2.353 3 16234.532.13 246 2.625 1.592
7 18043.05 2.08 2.61 2.573 2.314 4 16908.472.11  2.49 2.611 1.722
5 17571.132.09  2.52 2.599 1.735
6 18224.062.08  2.54 2.579 1.758
7 18865.78 2.07  2.57 2.555 2.269
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Appendix II. Results of Vibrational Calculations

Table XII:

Values of the Eigen-values E,, the abscissas of the turning point R, Ry, and the rotational constants B,, D, for the
Vibrational levels of the state (4) 3/2 [(1)'T1], (2) 5/2 [(1)™T1], (5) 1/2 [(1)*T1], (6) 1/2 [(3)M1], (7) 3/2 [(1)*E™], (7) 1/2 [(1)*=1],
(8) 12 [(1)*A], (5) 5/2 [(1)*A] in Y.

() 32 [(1)'TT] (2) 5/2 [(1)'11]
v E.(em")  Rupin(A) Rua (A) Byx10' (em™) Dyx10° (em™) | v Ey(em”')  Rupin(A) Ruae (A)Byx10" (cm™) Dyx10% (cm™)
0 1842482 2.55 2.68 1.038 4.550 0 18441.76 2.55 2.68 1.038 4.439
1 18738.06 2.50 2.74 1.035 4.697 1 18759.44 2.50 2.73 1.038 4.177
2 19046.82 2.47 2.78 1.029 4.746 2 19080.79 2.47 2.77 1.033 5.317
3 1935221 245 2.81 1.025 4.474 3 19387.26 2.45 2.81 1.024 4.810
4 1965751 2.43 2.84 1.021 4.613 4 19690.18 2.43 2.84 1.022 4.135
5 19961.35 242 2.87 1.018 4.118 5 1999532 2.41 2.87 1.016 5.289
6 20266.64 2.40 2.89 1.014 4.738 6 20294.45 2.40 2.89 1.012 3.943
7  20569.07 2.39 2.92 1.009 5.103 7 20595.39 2.39 2.92 1.007 5.650
(5) 12 [(1)'T] (6) 1/2[(3)°1]
v E,(cm")  Run(A) Rpax (A) Byx10' (cm™) Dyx10%(ecm™) | v E,(em™) Ruyin(A) Rupax (A)Byx10' (cm™) Dyx10° (cm™)
0 18448.64 2.55 2.68 1.040 4.249 0 19070.85 2.56 2.70 1.032 3.480
1 18774.07 2.50 2.73 1.040 4.240 1 19426.62 2.51 2.72 1.042 2.381
2 19098.12 2.47 2.77 1.032 5.842 2 19817.75 2.48 2.75 1.051 2.414
3 19400.05 245 2.81 1.024 4.022 3 2022430 2.45 2.76 1.052 3.414
4 1970640 2.43 2.84 1.023 5.107 4 20620.85 2.43 2.79 1.050 4.230
5 20007.36 2.41 2.87 1.014 4.549 5 20999.75 2.41 2.82 1.044 6.367
6 20307.07 240 2.89 1.012 4.846 6 21342.34 2.39 2.86 1.018 8.085
7  20604.08 2.38 2.92 1.005 4.670 7 21651.92 2.38 2.88 1.015 1.361
8 21975.12 2.37 291 1.008 8.648
9 2227629 2.36 2.94 1.005 5.241
(7)32[(1)'z"] (M) 12 [(1)*E"]
v E.(em’)  Rpin(A) Rpa (A) Byx10' (em™) Dyx10° (em™) | v E,(em”) Rupin(A) Rupae (A)Byx10" (cm™) Dyx10% (cm™)
0 19344.19 2.56 2.70 1.029 3.584 0 2017296 2.56 2.70 1.027 4.685
1 19693.25 2.51 2.73 1.039 2.266 1 20476.99 2.51 2.75 1.026 4.022
2 20082.57 2.48 2.74 1.051 2.368 2 20792.38 2.48 2.79 1.028 2.996
3 20488.81 245 2.76 1.058 3.256 3 21126.69 2.46 2.80 1.036 2.129
4 20888.92 2.43 2.80 1.052 4.566 4 21483.79 2.44 2.81 1.043 2.397
5 2126647 241 2.81 1.042 3.109 5 2185439 2.42 2.83 1.046 3.880
6 2164498 2.39 2.82 1.052 1.436 6 22218.72 2.40 2.86 1.034 9.262
7 2204122 238 2.86 1.052 7.133 7 22535.06 2.38 2.90 1.002 9.360
& 2239420 2.36 2.89 1.007 1.540
(8) 172 [(1)*A] (5) 5/2 [(1)*A]
v Ej(em’)  Rpn(A) Ruw (A) Bx10' (em™) Dx10°(em™) | v Ei(em’) Rpin(A) Rpw (A) Byx10' (ecm™) D x10° (em™)
0 20965.66 2.56 2.70 1.024 4.720 0 21071.47 2.56 2.70 1.023 4.769
1 21266.82 2.52 2.76 1.020 4.688 1 21370.73 2.52 2.76 1.019 4.684
2 2156723 2.49 2.80 1.018 3.919 2 21670.13 2.49 2.80 1.018 3.942
3 2187622 246 2.82 1.019 3.571 3 2197799 2.46 2.82 1.019 3.613
4 22193.15 2.44 2.86 1.019 4.734 4 2229349 2.44 2.86 1.018 4.780
5 22504.05 243 2.88 1.008 7.487 5 22603.10 2.43 2.88 1.008 6.459
6 2279287 241 2.91 0.997 3.609 6 2289791 2.41 2.90 1.003 2.125
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Appendix II. Results of Vibrational Calculations

Table XIII:

Values of the Eigen-values E,, the abscissas of the turning point R, Ry, and the rotational constants B,, D, for the
Vibrational levels of the state (9) 1/2 [(3)°Z"], (10) 1/2 [(1)*E], (1) 7/2 [(1)*®], (5) 3/2 [(1)*®], (3) 5/2 [(1)*®], (4) 5/2 [(1)*D],
(2) 7/2 [(1)*®], (7) 3/2 [(1)*="] in YS.

9) 12 [(3)*=1] (10) 172 [(1D)*T]
v E,(cm’)  Run(A) Rpax (A) Byx10' (cm™) Dyx10%(ecm™) | v E,(ecm™), Ruyin(A) Ruax (A)Byx10' (cm™) Dyx10° (cm™)
0 2144653 256 2.67 1.024 4.436 0 2157646 2.56  2.69 1.027 4.138
1 21756.65 252 276 1.018 4.622 1 21898.00 2.52  2.75 1.018 4211
2 2206149 249  2.80 1.014 3.824 2 2221626 249  2.80 1.018 4.028
3 22373.63 247 2.82 1.013 4.548 3 2253590 247 281 1.015 4.231
4 22682.17 245 2.86 1.008 5.855 4 22853.02 245 286 1.011 5.758
5 2297653 243  2.89 9.954 6.112 5 2315334 243 289 9.938 6.870
6 2326033 242 292 9.939 2.456
(1) 7/2 [(1)*®] (5)3/2 [(1)'D]
v E,(cm’)  Run(A) Ruax (A) Byx10' (ecm™) Dyx10%(ecm™) | v E,(em™) Ruin(A) Rpax (A) Byx10' (em™) Dyx10° (cm™)
0 18544.63 255 2.69 1.035 4.495 0 18567.18 2.55  2.69 1.034 4.664
1 18858.57 251 274 1.033 4.590 1 18874.83 2.51 274 1.031 4.568
2 1916898 248 2.78 1.026 4.985 2 1918235 248  2.78 1.026 4752
3 1947224 245 281 1.022 4.263 3 19486.56 2.45  2.82 1.022 4278
4 1977738 244 2385 1.018 4.819 4 19792.69 2.44  2.85 1.020 3.914
5 20079.45 242 287 1.015 3.497 5 20102.85 242  2.87 1.020 2.933
6 2042257 240  2.88 1.022 3.168
7 20748.09 239 2091 1.021 4.494
(3) 52 [(1)'D] @) 52 [(1)’®]
v E.(em?’)  Rpin(A) Rpya (A) Byx10' (em™) Dyx10%(em™) | v E,(em™) Ryin(A) Rpax (A) Byx10' (em™) Dyx10° (em™)
0 18574.05 255 2.69 1.036 4.234 0 18603.94 2.55 2.68 1.040 3.326
1 18898.73 250 2.73 1.039 3.206 1 18972.08 250  2.70 1.051 2.579
2 1924639 247 275 1.043 3.895 2 19366.52 247 274 1.054 4.130
31959039 245 2.80 1.033 7.072 3 19736.67 244 277 1.042 5.652
4 1989631 243 2.83 1.017 4.161 4 2007472 242 281 1.035 4775
5 2020350 241 2.86 1.024 3.304 5 20399.13 241 2385 1.017 7.841
6 20517.55 240 2.89 1.013 6.045 6 2069724 239  2.87 1.018 3.006
7 20821.06 238 2091 1.016 7.726 7 2102058 238  2.90 1.015 7.776
8 2114287 237 292 1.016 5.890 8  21325.16 237 292 1.014 -2.052
9  21661.02 236 2.93 1.024 4.767
(2) 7/2 [(1)*®] (7) 32 [(1)*=1
v Ej(em")  Rpin(A) Ruw (A) Byx10' (em™) Dx10%(em™) | v E,(em™) Ryin(A) Rpey (A) Byx10' (em™) Dyx10% (cm™)
0 18862.11 2.55 2.68 1.037 3.655 0 21162.80 2.57  2.70 1.022 4.788
1 1921233 250 2.72 1.045 2.792 1 2146122 252 276 1.019 4.555
2 19587.92 247 275 1.050 3.093 2 2176248 249  2.80 1.019 3.604
3 19968.09 245 277 1.052 2.939 3 2207624 247 281 1.022 3.220
4 2035334 242 278 1.056 2.692 4 2240093 244 286 1.021 5.395
5 2074515 240 2.80 1.056 4.013 5 22711.14 243  2.88 1.002 10.15
6 2112558 239 2.83 1.046 6.617 6  22984.67 241 290 9.932 -0.755
7 2147180 237 287 1.022 9.840
8 21777.60 236 2.90 1.013 1.116
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Appendix II. Results of Vibrational Calculations

Table XIV:
Values of the Eigen-values E,, the abscissas of the turning point R, Ry, and the rotational constants B,, D, for the
Vibrational levels of the state (3) 7/2 [(1)*A], (9) 3/2 [(2)°Al, (6) 5/2 [(2)’A], (12) 1/2 [(2)'T1] in YS.

(3) 72 [(1)*A] (9) 32 [(2)°A]
v E,(cm")  Run(A) Rpax (A) Byx10' (em™) Dyx10%(em™) | v E,(em™) Ruin(A) Rpax (A) Byx10" (em™) Dyx10° (cm™)
0 2126851 2.57 2.71 1.021 4.776 0 21466.41 2.56 2.70 1.024 4.452
1 21566.82 2.52 2.76 1.018 4.558 1 21776.22 2.52 2.76 1.019 4.488
2 21867.79 2.49 2.80 1.017 3.685 2 2208392 2.49 2.80 1.017 3.718
3 22180.13 247 2.81 1.020 3.204 3 22400.27 2.47 2.81 1.017 3.725
4 22503.84 2.44 2.85 1.021 4.674 4 22720.57 2.45 2.86 1.013 5.934
5 22820.54 243 2.88 1.009 8.331 5 23021.84 2.43 2.89 9.941 8.477
6 23108.09 241 2.91 9.948 3.790
(6) 5/2 [(2)*A] (12) 1/2 [(2)'1]
v Eg(em’)  Rpin(A) Rpw (A) Byx10' (em™) Dx10° (em™) | v E,(em”) Rpin(A) Rpw (A) B,x10' (cm™) D,x10° (cm™)
0 2154039 2.55 2.70 1.027 4.869 0 21576.46 2.60 2.68 1.027 4.138
1 2183761 2.52 2.75 1.021 3.763 1 21898.00 2.53 2.75 1.018 4211
2 22151.06 2.49 2.80 1.017 4.101 2 22216.26 2.50 2.80 1.018 4.028
3 2277484 244 2.86 1.015 5.143 3 2253590 2.47 2.81 1.015 4.231
4 22853.01 2.45 2.86 1.011 5.758
5 2315334 2.43 2.88 9.938 6.870
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Appendix ITI

Dipole Moment Results
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Appendix III. Dipole Moment Results

Table I:
Permanent dipole moments for the electronic states of the molecule YN at
R=1.84A.

State Q u(Debye) State ) p(Debye)
(D)0 [(1)’Y] -3.045 () 2[(D)TT] -3.426
)0 [ T 4313 (3) 2 [(1)'A] -4.018
(3) 0 [(2)°Y] -3.962 4) 2 [(1) D] -5.688
) 0 [3)TT 1.070 (6) 2 [(1)°A] -3.922
(5) 07 [(3)°Y] -3.479 (7) 2 [(2)°A] 1.741
(6) 0" [(1)’Y] -3.975 (8) 2 [(2)'A] -4.153
(7) 0- [(4)’TT] -2.585 9) 2 [(2)’®] -0.707
(8) 0" [(1)°D] -0.666 (10) 2 [(1)’®] -0.668
9) 0 [(1)°X'] 1.276 A1) 2[(1)°Y1] -1.093
(10) 07 [(1)°A] 1.276 (12) 2 [(1)°A] 1.164
(D) O X)'YH -2.503 (14) 2 [(DTT] 1.568
)07 [(2)'Y1] -9.180 (1) 3 [(1)’D] -5.713
3) 0" (TT] -3.429 (2) 3 [(2)°A] -4.011
@0 [(3)'Y1 -3.942 (3)3 [(1)YD] -0.666
6) 0" [(4)[T] -2.559 (4) 3 [(1)°A] 1.156
(70" [(4)'>] -1.535 (3) 3 [T 1.350
(8) 07[(1)°A] -0.668 6) 3 [(DTT] 3.294
9) 0" (211 1.276 (1) 4 [(2)’®] -0.707
(10) 0°[(1)°TT] 3.424
(1) 111> -3.045
) 11T -3.291
3) 1T -2.999
@113 -2.496
3) 1) T -4.369
6) 112)'TT1 -4.445
(N 1[2)YY1 -4.100
Q) 1[3)TT] -6.128
9)1[3)Y1] -3.479
(10) 1 [(1)°A] -7.462
(12) 1 [(4)T]] -2.590
(13) 1 [(1)°Y1] -2.524
(14) 1 [(1)°A] -0.668
(15) 1 [(2)T]] 1.162
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Appendix III. Dipole Moment Results

Table I1:

Permanent dipole moments for the electronic states of the molecule ZrN at

R=1.73A.

State Q p(Debye) State ) p(Debye)
(D12 XY -3.189 (1D)32[(HY7] -0.954
) 12[(DTT] -4.718 (1)5/2[(1)*A] -6.489
(3)1/2[(1)*A] -2.637 (2)5/2[(1)*A] -1.955
H12[2)°TH -2.903 (3)52[(H'TT] -2.171
(5)1/2[(2)°A] -2.018 (4)5/2[(1)'®] 2211
(6)12[(1)]] -2.283 (5)5/2[(1)*®] -1.801
(D12[2)YT]] -2.643 (6)5/2[(3)*A] -0.863
(8)1/2[(3)T]] -1.450 (71)5/2[(2)*®] -0.753
91/2[(3)°Y1] -4.393 (8)5/2[(2)'TT1 -0.769
(1)3/2[(1)*A] -6.490 (1)7/2[(1)*A] -1.955
(2)3/2[(1)T]] -4.705 (2)7/2 [(1)°T] -0.608
(3)3/2[(1)*A] -1.955 (3)7/2 [(1)*®] -1.824
(4)3/2[(1) D] 2216 (4)7/2[(1)*®] -0.369
(5)3/2[(2)TT] -1.447 (6)7/2 [(2)*A] 2182
(6)3/2[(H)'TT] -1.828 (1)9/2[(1)*®] 2222
(7)3/2[(3)§A] 2242

(8)3/2[3)IT1 2222

(9)3/2[(4)T] -0.804

(10)3/2[(2)'TT] -1.030
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