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Introduction

With the emergence of cloud computing and mobile applications, it is

possible to find a web service for almost everything. A service is a com-

puter program that provides a set of operations accessible from a network

address. Client programs on the web interact with the service using HTTP

messages. Thanks to the variety of available web services, developers

can create complex applications by combining several independent ser-

vices, whose arrangement and execution can be automated with the aid

of orchestration languages.

Nevertheless, the diversity of technologies and the lack of standardiza-

tion can hinder the collaboration between services. Imagine for instance

that you are writing a mobile application that allows users to publish,

manage and share their photos. For storing and managing the photos

there are several online services, with Flickr being one of the most pop-

ular. By using the Flickr application programming interface, you im-

plement an application that communicates with this service. But once

the application gains in popularity, more and more users would like to be

able to use other alternative services like Picasa. However, Flickr and

Picasa differ not only in the way photos are organized, but also on the

protocols and technologies they use to provide their services. By protocols

we mean the way in which messages are organized to complete common

tasks, like searching and editing: while Flickr directly provides a variety

of more or less complex operations, Picasa relies on client libraries that

perform the same tasks by combining the basic HTTP methods GET, POST,

etc. From a technological point of view, although both services provide

REST programming interfaces, Flickr also allows clients to use SOAP and

XML-RPC.

Thus, we face interoperability problems due to the heterogeneity of

the different services. In this respect, we have identified three types of

problems, namely adaptation, integration and coordination, that can be

described using the photo management example.

Adaptation: the client application that orchestrates Flickr services

must be adapted to orchestrate the services supplied by Picasa
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or other providers.

Integration: the client application has to orchestrate both Picasa and

Flickr services by defining a common data model and interface.

Coordination: from the point of view of the languages used in the or-

chestration of web services, existing scripts written in different lan-

guages need to be coordinated for cooperating in the orchestration

of the services provided.

Middleware infrastructures are usually proposed for solving interop-

erability problems in the form of bus architectures with a central compo-

nent that translates messages. Nevertheless, a complete solution requires

a universal representation of resources. Our approach, analogous to these

works, consists of a pivot architecture that integrates different orches-

tration languages with heterogeneous service providers around a pivot

language, thus allowing the implementation of typical programming pat-

terns: the adapter pattern for solving adaptation problems, the facade

pattern for solving integration problems, and the mediator pattern for

solving coordination problems. The challenge remains to find the ade-

quate orchestration language that can be used as a pivot language.

The thesis of this dissertation is that the chemical programming paradigm,

which has already been studied as a solution for service oriented program-

ming [BP09], can provide the foundations for an orchestration language

in a pivot architecture. Concretely,

• we present a new orchestration language, called Criojo, which im-

plements and extends an original calculus1 based on a chemical

abstract machine (cham) dedicated to service-oriented computing,

• we show how the orchestration language can be used to define a

pivot architecture.

The consequence of adopting the approach we have developed would

be an improvement in the interoperability of services and orchestration

languages, thus easing the development of composite services. The high

level of abstraction of Criojo could allow developers to write very con-

cise programs since message exchanges are represented in a natural and

1The calculus, called Heta-calculus, has been designed by Thesis Adviser Hervé

Grall.
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intuitive way. These programs could be used not only as effective orches-

trations, replacing orchestrations written in traditional languages, but

also as prototypal orchestrations, giving a clear specification for concrete

orchestrations written in traditional languages. Moreover, the formal

foundations of Criojo provide a specification of the core of an orchestra-

tion language for a pivot architecture, which leads to many advantages,

not only during the development phase of the language but also during

the specification and the validation phases of orchestrations written in

the language.

• The formal specification being clear and concise eases the language

implementation, avoiding the pitfalls often encountered in stan-

dards, as in the orchestration language BPEL [HHH10];

• The formal specification provides the theoretical basis of useful tools

for specifying, testing and verifying orchestrations.

Organization of the dissertation. We have organized this disserta-

tion as follows.

• In Chapter 1, we give an overview and a state of the art of service-

oriented computing. We begin with the fundamental concepts of

distributed computing that lead later to service oriented comput-

ing, with the objective of finding the required characteristics that

a language for the orchestration of web services must have. We

finish the chapter with a specification, in the form of a list of re-

quirements for an orchestration language, integrating aspects for

service-oriented computing and data computing.

• In Chapter 2, we present the chemical calculus, called Heta-calculus.

After the specification given in th previous chapter, we describe the

development process, following a standard V-model. After a state

of the art presenting previous works that led to the Heta-calculus,

the chapter presents

– the design decisions that have been made,

– the calculus, with its syntax and its chemical semantics,

– the validation against the requirements.
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• In Chapter 3, we show how the theoretical concepts of the Heta-

calculus lead to practical applications in the form of a programming

language called Criojo, which we describe as a language for writing

chemical reaction rules. The practical aspects of Criojo are treated

from the point of view of the developer, in the form of a tutorial, and

from the point of view of the implementer with a set of guidelines

for possible implementations in different host languages.

• In Chapter 4, we continue with the practical aspects of the language,

by showing the real applicability of the prototype in the context of

web services. With the aid of Criojo as the language at the core of a

pivot architecture, we solve interoperability problems in the case of

photo management with web applications like Picasa and Flickr.

We present an example for each of the problems listed above, and

propose a solution based on a design pattern whose implementation

is eased by the pivot architecture.

• The last chapter concludes with a discussion of our results, what

we have learnt and the perspectives that arise from the results of

our work.

Contributions. Finally, this dissertation makes the following contri-

butions:

• a well-reasoned definition of a set of requirements for an orchestra-

tion language,

• the formulation of all the design decisions that have been made for

the design of the chemical calculus and its validation against re-

quirements, in addition to the presentation of the original calculus,

• a prototype implementation of an orchestration language called

Criojo, based on the theoretical foundation given by the chemi-

cal calculus, described from the points of view of a programmer

and an implementer respectively,

• especially, a set of helpful extensions that ease the programming of

real world applications, like the ability to interface with external

functions and resources,
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• a method for the development of different solutions to interoper-

ability problems, in the form of a pivot architecture using Criojo

as a pivot language.





Chapter 1

Towards an Orchestration

Language for Web Services

Orchestration is the automated arrangement and execution of different

autonomous processes. Accordingly, an orchestration language for web

services allows to program new web services by specifying the composition

and coordination of existing services. In this chapter we study the state

of the art on service-oriented computing with the objective of defining a

solution space from which the requirements for an orchestration language

can be drawn.

The first part of this chapter is dedicated to languages for service-

oriented programming. Actually, we start with the basis of distributed

computing, since distributed computing provides the foundations for service-

oriented computing. Indeed, service-oriented computing can be consid-

ered as a ”computing paradigm that utilizes services as fundamental ele-

ments to support rapid, low-cost development of distributed applications

in heterogeneous environments. The promise of Service-Oriented Com-

puting is a world of cooperating services that are being loosely coupled to

flexibly create dynamic business processes and agile applications that may

span organizations and computing platforms, and can adapt quickly and

autonomously to changing mission requirements” [GP09, chap. 1]. With

the advent of the Web, and the associated Web services, service-oriented

computing now represents a new generation platform for distributed com-

puting. It is the reason why we study some fundamental notions for dis-

tribution, like the different communication and synchronization models,

key elements in the definition of the language.

The second part covers another important aspect of any program-

ming language, which is the representation of data and the computation

over these representations. Concretely, we focus on the representation of

resources, which can be accessed and manipulated via services.

Finally, from the state of the art we draw a set of requirements for an

orchestration language, integrating aspects for service-oriented computing
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and data computing. These requirements form the specification for the

development of the Heta-calculus and of Criojo, presented in the next

chapters.

1.1 From Distributed Computing to Service-Oriented

Computing

Distributed computing deals with computations that involve multiple agents,

in other words, with distributed computations involving communication.

These agents are in fact autonomous computation units which collab-

orate with each other to form a distributed system. According to the

mechanism used to collaborate, there exist two models for distributed

computing: one is based on message-passing, the other is based on shared

memory. Distributed computing introduces new concerns that cannot be

tackled with traditional sequential programming. Therefore distributed

programming requires programming languages dedicated to distribution.

On the logical level, languages for distributed programming are based

on one of the two models of distributed computing, but distribution also

occurs at other levels: hardware, systems and middleware over which

programs will execute. Hence an important implementation issue is that

the distribution model of the concrete and logical level may differ, and

different combinations between models at the concrete and logical level

are possible, as shown in Figure 1.1: a language based on a message-

passing model can be implemented on a system with shared memory and

vice-versa.

Before coming into the core of the section, it is important to note

the difference between concurrency, parallelism, and distribution, three

concepts that somehow overlap. Parallelism is the property of multi-

ple activities executing simultaneously. Concurrency is a more general

concept than parallelism, where activities may not execute at the same

physical time, but execute at the same logical time: it is a form of virtual

parallelism. Clearly, distribution implies both parallelism and concur-

rency: activities are distributed over agents executing in parallel, and at

the same time each agent may execute in a concurrent way, when deal-

ing with communications and local computations. For instance, consider

an agent that sends a request to the Picasa server and continues to op-

erate while waiting for a response. When the answer finally arrives, it

has to deal with both the incoming message and current computations.
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Message-Passing Shared Memory

Message-Passing Shared Memory

Physical

Logical

Figure 1.1: Languages based on message-passing can be implemented on

a hardware system with shared memory, and vice-versa.

However, distributed programming is traditionally regarded as indepen-

dent from concurrent and parallel programming since each of these forms

addresses different kinds of problems. Distributed programming tackles

communication, synchrony and fault tolerance problems, while concur-

rent programming addresses problems related to resource sharing, and

parallel programming addresses problems related to performance. Never-

theless, in this thesis we adopt a different point of view since we consider

that distributed programming encompasses concurrent and parallel pro-

gramming.

Finally, distributed computing leads to service-oriented computing.

Contrary to a class of distributed systems, which are built from highly

coupled components to solve a specific computational problem, service-

oriented systems are more loosely coupled and more open: they allow

complex applications to be built by combining several independent com-

ponents called services. Thus, service-oriented computing is a specific

instance of distributed computing.

1.1.1 Fundamentals of Distributed Computing

A distributed system is a set of autonomous computational units, here

called agents, that collaborate to give the aspect of a single coherent

system [TS06, p.2]. To collaborate, it is necessary to establish a com-

munication mechanism between agents. To act as a coherent system,
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agents must be synchronized [LL90]. To be reliable, the system needs

to continue functioning in the presence of faults. Thus, the design of

distributed systems relies on three fundamental aspects: communication,

synchronization and fault tolerance.

1.1.1.1 Communication Models

In the mainstream models of distributed computing, a system is repre-

sented as a set of autonomous nodes or agents, which execute in paral-

lel and interact with each other by exchanging messages [LL90]. These

are called message-passing models. Other models of distributed comput-

ing represent communication between agents via a shared memory space.

These are called shared-memory models.

Shared-Memory Models. In the literature, shared-memory models

relate mostly to parallel or concurrent computing. Nevertheless, shared-

memory computing is sometimes treated as a particular case of highly

coupled distributed computing. In a shared-memory model agents com-

municate by writing and reading registers in a shared memory space,

which can be centralized or distributed. Access to the shared memory

can be uniform (UMA), with all the processors having the same oppor-

tunity and access time, or non-uniform (NUMA). An important issue in

shared-memory models is to ensure the mutual exclusion between critical

sections, namely to prevent two agents from accessing the same shared

register at the same time.

Message-Passing Models. In message-passing models, the system is

represented as a communication graph, where arcs between nodes cor-

respond to communication links between agents, called channels. Two

nodes connected by a link can send messages directly to one another.

Communication graphs can be directed or undirected, representing one-

way or two-way communications, respectively. A typical implementation

resorts to firewalls for controlling communication: a firewall may for-

bid communication over some channels. Moreover, some models assume

that the topology of the system changes dynamically as new links are

created between nodes thanks to discovery and redirection. We refer to

this as channel mobility, a notion introduced by the π-calculus [MPW92a,

MPW92c], a foundational process calculus described in the next chapters.
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One good example of channel mobility is a discovery scenario in a service-

oriented architecture, as presented in Figure 1.2. Whenever a client agent

needs a service, it sends a look-up request to the broker managing a ser-

vice registry and providing the run-time discovery of services. In this

way, the location of a service can change without affecting the clients.

However, channel mobility raises the problem of channel scopes with re-

Figure 1.2: Discovery (Credit: Oracle)

spect to firewalls: if a channel traverses as data a firewall that forbids any

communication over this channel, then either the firewall maintains the

prohibition, or it drops it, allowing scope extrusion [MPW92a, Ex. 3].

Message-passing models abstract away from the details of communi-

cation, which can be decomposed into five steps.

Production: A source agent produces a message.

Emission: The same agent sends the message.

Routing: The network routes the message to its destination.

Reception: The target agent receives the message.

Consumption: The same agent consumes the message.

A latency between production and emission, during routing and between

reception and consumption is possible and can be modeled as a relation
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between agents clocks and communication delays. If the total delay is

unbounded, communication is said asynchronous. If it is (logically) null,

communication is said synchronous. As a result of the distinction between

production and emission on the one hand, and reception and consumption

on the other hand, communication is often modeled with buffers to hold

input and output messages. Buffers can be finite or infinite, depending

on their capacity to hold messages. Infinite buffers is the most common

assumption given the great capabilities of real systems. Synchronization

is necessary in distributed systems, as in any concurrent system, as agents

need to be coordinated to achieve a specific goal. Assume for instance a

task A that must be executed only after a task B has executed (serial-

ization). In a centralized context, synchronization depends on schedulers

based on a centralized clock, which rule the execution of agents. How-

ever, in a distributed system this is impossible, since each process has its

own clock, which may drift from other agents’ clocks. Thus, distributed

systems are by definition asynchronous. Nevertheless, it is possible to

establish relations between the independent times of agents by means

of communication. The more restrictive form of synchronization is syn-

chronous communication, where sending and receiving events occur at

the same theoretical time. Since this simultaneity is impossible due to

physical conditions, synchronous communication is rather defined as a

communication where the sender remains blocked waiting for its request

to be accepted. It is therefore possible to simulate synchronous com-

munication with asynchronous communication. The problems related to

this translation and its inverse are discussed later in Section 1.1.2.4. The

more liberal form of synchronization is asynchronous communication: it

allows to assert that the emission event has happened before the reception

event, and nothing else. There are intermediate forms of synchronization,

allowing the preservation of the order between messages from production

to consumption. Thus, the causal order is preserved when the buffers im-

plement a first-in first-out (FIF0) discipline and the network implements

a synchronous communication [MF95].

As an example of a message passing system, think of a client agent

that communicates with a Flickr or Picasa server agent. To retrieve

a list of photos from the server, the client sends a message containing a

user identifier, some search criteria, and the location of the channel where

it would like to receive the answer. Thanks to the channel information,

the server knows where to send the response directly to the client. The
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communication is asynchronous, since the delay between the request and

the response is unbounded. Nevertheless, if the client agent has previously

sent a message to assign tags to some of the photos, producing an effect

over the search result, the preservation of the order between the two

messages is necessary to maintain consistency.

Finally, shared memory models can be implemented with message-

passing, by having one or more processes that control the access to shared

variables. Then, variables can be accessed with request and response

messages. Nevertheless, the fault tolerance of the system can be compro-

mised since the halting of any process managing shared variables implies

the halting of the complete system.

1.1.1.2 Fault Tolerance

Fault tolerance, or the capacity of functioning in the presence of faults, is

an important aspect of distributed systems, since they are inherently er-

ror prone: faults can have many origins, either agents or the network. In

a distributed system, the behavior of a process can be modeled as a tran-

sition system led by communication events. A fault is then represented

as a transition firing an error, which may lead to a deviation with respect

to the specification of the system [G9̈9], in other words, to a failure. Let

us illustrate these terms with an example. Consider the function

int f ( ){
x :=1;

y :=0;

return x + (x/y ) ;

}

There is a fault in the program since variable y is initialized with zero

while being a divisor. This fault produces an execution error if the func-

tion is called, leading eventually to a failure which is the interruption of

the program. According to Gärtner, a model for fault tolerance is based

on some class of faults and offers some level of tolerance with respect

to the faults in the class. Traditional classes consider Byzantine, omis-

sion and crash faults respectively [LL90]. Byzantine faults are arbitrary

faults: they can model any fault, which occurs due to the misbehavior of

a process or of the network. An omission fault occurs when a process fails

to communicate due to problems in the communication network. A crash

fault occurs when a process stops working, reaching an invalid state from

which it cannot recover. Mechanisms for fault tolerance aim at avoiding
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failures, in other words at satisfying all the properties required by the

specification of the system, despite faults. It is possible to classify these

mechanisms by resorting to a current decomposition of these specifica-

tion properties: indeed they can be subsumed under the conjunction of a

safety property and a liveness property [AS85], where the safety property

asserts that nothing bad ever happens and the liveness property asserts

that something good will eventually happen [Lam77]. For instance, a

safety property can be defined as a conjunction of local invariants, but

also as a global invariant. A typical example is consistency, a property as-

serting that for all the clients of a resource, their own view of the resource

and its original value are consistent: if a client modifies a resource, any

subsequent request sees the modification. A liveness property is often de-

fined as a termination property or an availability property. For example,

in a client-server interaction, it can assert that any request terminates

with a response, in other words, that the service is always available.

The decomposition into safety and liveness directly leads to four types

of fault tolerance, according to whether the safety and liveness properties

are preserved or not respectively. The resulting combinations are shown

in Table 1.1.

Property

Fault tolerance type Safety Liveness

Masking X X

Fail-safe X ×

Robust × X

None × ×

Table 1.1: Fault tolerance type according to whether safety and liveness

are preserved.

The strongest form of fault tolerance is masking fault tolerance, which

transparently preserves the safety and liveness of the system in the pres-

ence of a fault. On the other hand, the weakest form of fault tolerance is

to do nothing, which does not guarantee any property. The remaining two

intermediate forms guarantee either only safety or only liveness. These are

called fail-safe and robust fault tolerance, respectively. The preservation

of both safety and liveness may require a trade-off: thus, serializability
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(or linearizability), a strong notion of consistency, and availability are

incompatible for a service [GL12]. Either a weaker notion of consistency

must be adopted or availability must be sacrificed.

The protection mechanisms for fault tolerance are mainly based on

redundancy, used for detection and correction [G9̈9]. Redundancy essen-

tially avoids the loss of resources to be fatal: it corresponds not only

to replications [CBPS10] but also to superfluous additions, like logging

or different kinds of checks. Detection and correction allow errors to be

circumvented. Precisely, error detection enables an erroneous state to

be identified; error correction enables to recover from an error, either by

bringing the system to a correct state in a backward or forward way, or

by compensating the error. For example, in a transaction management

system, a protection mechanism is to keep a log of the modifications sus-

tained by the system during a transaction. When an error is detected

before the transaction is committed, the log is used to correct the error

by reverting the modifications. In this way the system returns to a correct

state.

1.1.2 Distributed Programming

Distributed programming differs in many aspects from sequential pro-

gramming. For this reason, specialized languages have been designed to

handle communication and synchronization between computation units

that execute in parallel, and to handle detection and recovery of errors,

which are more prone to happen in distributed applications. Thus, the

aspects of distributed computing that we discussed before translate into

essential requirements that languages for distributed programming must

satisfy:

• mechanisms for communication and synchronization,

• mechanisms for parallel execution, and

• a support for error detection and recovery [Bal90].

One additional question that is treated in the more general context of

concurrent programming is the sharing of resources when multiple clients

try to access and modify the same resource. This translates into an

additional requirement related to communication and synchronization: a

concurrency control mechanism.
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From the implementation point of view, programming languages must

deal with the configuration of the execution level, which not always

matches the choices made for communication, parallelism and fault toler-

ance at the language level. We begin by presenting the different alterna-

tives for fulfilling the different requirements and conclude by discussing

the issues related to the implementation at the execution level.

1.1.2.1 Communication and Synchronization

In the previous section we presented the two main communication models

for distributed systems: message-passing and shared-memory. There are

several variations of the two models implemented by existing languages

for distributed programming, as shown in Table 1.2.

Communication

Message Passing
Synchronous

Rendez-Vous

RPC

Asynchronous

Shared Memory

Variables

Tuples

Logical variables

Table 1.2: Variations of message passing and shared memory communi-

cation models.

Message-passing. Message passing can be synchronous or asynchronous.

In synchronous message-passing, the sender and the receiver synchronize

at some point during their execution, corresponding to a rendez-vous or

a Remote Procedure Call (RPC). In the rendez-vous model, first intro-

duced by the Ada programming language, the sender and the receiver

synchronize at specific interaction points, where they can exchange infor-

mation synchronously. Afterwards, both participants continue their ex-

ecution in parallel. RPC is a procedure call between distributed agents,

where the sender invokes a procedure and rests blocked during the exe-

cution of the procedure. Unlike rendez-vous, the receiver does wait for

the invocation to occur. An example of RPC is Java’s Remote Method

Invocation [WRW96].
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In asynchronous message passing, the sender does not wait for its

message to be accepted. The communication can be point-to-point or

broadcast. A point-to-point communication is a direct exchange between

sender and receiver. Hewitt’s actor model [HBS73] is an example of asyn-

chronous point-to-point communication: actors are logical entities that

execute in parallel and communicate by directly sending messages to one

another via mailboxes. Messages are stored in mailboxes in the same order

they arrive, waiting to be retrieved by the actor. The actors model is im-

plemented by languages like Erlang, and more recently Scala. Contrary

to point-to-point communication is broadcast communication, where a

sender publishes a message for several known (multicast) or unknown re-

cipients. The idea of broadcast programming was introduced by Gehani

in his Broadcasting Sequential Processes (BSP) [Geh84], where agents

communicate by broadcasting in order to implement a particular pro-

gram. Broadcasting is often used in algorithms for game programming

such as the alpha-beta algorithm, where a set of slave agents is in charge

of calculating all possible moves.

Shared memory. The alternative to message-passing is communica-

tion via variables in a shared memory space. The advantage of this type

of communication is that modifications have immediate effect, contrary

to message-passing, where there is a delay between sending and receiving

of a message. Moreover, messages can be broadcasted as multiple agents

can access the same variable. Nevertheless, languages based on shared

memory must provide mechanisms to avoid race conditions. Efficient for

avoiding race conditions, mutual exclusion is often implemented with the

help of locks. To enter into a critical section, the lock protecting a re-

source must be free: it then becomes acquired. At the end of the critical

section, the lock is released. Beyond critical sections, transactions allow

sequences of actions to become an atomic, indivisible, action. There are

two classical approaches for implementing transactions. The pessimistic

approach prevents conflicts from happening. There are two predominant

solutions, the first one based on locks and a two-phase protocol [BHG87,

chap. 3], the second one based on timestamps [BHG87, chap. 3]: in both

cases, at each access, a control is done, possibly resulting in blocking or

aborting. The optimistic approach [Her90] is more liberal. During the

execution, initial read accesses are effectively executed whereas write ac-

cesses are virtually executed over a copy. At the commit time, there is
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a validation phase, followed if it is successful by a write phase perform-

ing the real write accesses. These approaches are effectively applied in

software transactional memory [LR06], that is memory equipped with a

software transactional mechanism, as in database management systems.

Shared-memory architectures are typical of sequential programming

languages providing a notion of threads, like Java or Haskell: a program

decomposes into multiple threads that execute concurrently or even in

parallel on multicore machines, and share a memory space. We now

focus on shared memory in a distributed context.

One example is Linda’s tuple space (TS) [ACG86], where information

is stored in the form of tuples that can be added and retrieved by process

with the three following operations:

out ("foo", 42) Adds the tuple to TS. The tuple can then

be queried by any of its components.

in ("foo", int x) Removes the tuple from TS. In this case the

first parameter “foo” serves as key.

read("foo", int x) Consults the tuple without removing it.

Conflicts are avoided as tuples cannot be modified in situ: a tuple can be

read by multiple agents, but modified only by the process that removes

it from the TS. Thus, no blocking is needed.

Another example of shared variables are logical shared variables, which

are used in logic languages like Concurrent Prolog [Sha86]. In this model

agents communicate via logical variables, which are assigned a value by

unification during goal reduction. Binding is irreversible and once a value

is assigned to a variable, it cannot be changed. For example, the following

two agents communicate and synchronize with the variable X:

A (X ? ,Y ) , C (X ) .

Note that only process C is allowed to bind X, while A can only read

the variable. Thus a variable in a shared memory is transformed into a

communication channel.

1.1.2.2 Parallelism

The most common way to express parallelism is by representing each par-

allel task as a virtual process, executing on a sequential processor with

its own state. At the opposite side, sequential tasks can be composed

as a unique virtual process, sequentially executing. Generally speaking,
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the execution of tasks can be abstracted as a graph of task dependen-

cies: there is a link from task T1 to task T2 if the execution of T1 must

immediately precede the execution of T2. A task can be executed if all

preceding tasks have been executed.

Parallel tasks can be expressed in the form of statements, objects,

functions, logical clauses or processes.

• Statements can be grouped to execute in parallel. An example of

this approach is Occam [BEZ92], a language based on CSP. In an

Occam program each line or statement corresponds to a process.

The keywords SEQ and PAR allow the programmer to specify which

statements execute sequentially or in parallel:

SEQ PAR

x := x + 1 x := z + 1

y := x * x y := z * z

More recently, the languages Java and Scala provide a framework

for parallel collections, with the statement granularity1.

• Objects are analogous to processes in that they have an internal

state and data. Thus, objects can be allowed to execute in parallel,

and to send and receive messages. This representation is exemplified

by the actors model implemented in an object-oriented language like

Scala.

• Functions in pure functional languages can be executed in paral-

lel, provided they do not have data dependency, thanks to refer-

ential transparency. Nevertheless, this approach on its own may

be inefficient, since forking on small calculations produces an un-

necessary overhead. Thus, constructs for explicit parallelism and

explicit sequentiality may be necessary. This is the case of Parallel

Haskell [JS08]:

(1) par f g

(2) seq f g

1Cf. Java 7 and the Scala documentation for parallel collections.
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In the first expression f is sparked, i.e. queued to execute as a new

thread, while g is evaluated immediately. Alternatively, the second

expression forces f to be evaluated before g.

• Logical clauses allow the expression of parallelism due to their declar-

ative nature. Take for instance the following program in Concurrent

Prolog:

A :- B, C, D.

A :- E, F.

The procedural interpretation of this expression is: to prove goal A

it is necessary to prove subgoals B,C and D or subgoals E and F.

In Concurrent Prolog, these clauses are also interpreted in terms

of processes: each goal is a process, and each conjunction of goals

forms a network of processes that communicate via shared vari-

ables. Parallelism is achieved by reducing several processes in par-

allel (AND-parallelism), or by trying in parallel each clause, in order

to reduce a process (OR-parallelism).

• Processes are coarse-grained parallel tasks. They can be heavy, as

in operating systems, or light like threads in many programming

languages like Java or Haskell.

Note that it is possible for a programming language to combine different

methods for expressing parallelism. In the case of Parallel Haskell, in

addition to the par and seq functions, the language provides a threading

control function called forkIO that runs an expression as a new thread.

Another example is Smalltalk [GR83], an object oriented language based

on message-passing: in this language parallel tasks correspond to either

processes or objects.

Parallelism can be explicit or implicit. In a programming language,

parallelism is said explicit if there is a construct that is directly interpreted

as a parallelization in the graph of task dependencies; it is said semi-

explicit if it may be interpreted as a parallelization; it is said implicit

otherwise, which means that parallelism only appears at the execution

level. The languages cited above generally use a sequential model as the

default model. Then explicit or semi-explicit parallelism is added. For

instance, Ada, Scala or Concurrent Prolog explicitly declare parallelism.

For Parallel Haskell, parallelism can also be semi-explicit, as it is the
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runtime that actually handles parallelism: it decides, for instance, if the

expressions in a par function are actually worth being executed in parallel

or not. Thus, the common model for parallelism is an evolution of the

sequential model, which describes the default behaviors, while the parallel

behaviors result from extensions, with explicit parallelism expressed using

dedicated primitives.

Explicit parallelism often results in a state-space explosion, which

makes programs hard to understand and to debug. Indeed, the observed

behavior results from the interleaving of fine-grained atomic actions, in

a non-deterministic way. To get a correct behavior, programmers need

to restrict the state-space, by building critical sections from the atomic

actions, while avoiding deadlocks. Implicit parallelism then appears as

an alternative: compilers guess and translate implicit parallelism into

explicit one at the machine level, without the involvement of program-

mers. However, the degree of parallelism obtained is often too weak to

get significant improvements. Indeed, given a sequential algorithm, the

opportunities for parallelization may be limited. A better but challeng-

ing solution is to define an equivalent parallel algorithm, if possible, since

some problems do not have known efficient parallel algorithms.

Table 1.3 sums up the different forms for expressing parallelism, ex-

plicitly and implicitly. It shows the possibilities for parallelism at different

levels in a programing language.

Parallelism
Implicit

Explicit

Statements

Objects

Functions

Logical clauses

Processes

Table 1.3: Parallelism in Programming Languages.

1.1.2.3 Fault Tolerance

Languages for distributed programming provide fault tolerance following

two ways. They differ by the responsibility assigned to the developer.

Detection and Notification. The language run-time system detects

and notifies errors but it is the programmer who handles the er-
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rors with constructs provided by the language. Constructs include

atomic transactions and error handling routines that are executed

automatically in case of errors. Atomic transactions is the most

common construct for fault tolerance. Composed with multiple op-

erations, they have the all or nothing property: either all the oper-

ations of the transaction are executed or nothing is done. Atomic

transactions are supported by languages like Argus [Lis88], in the

form of actions and nested sub-actions. Sub-actions are commit-

ted, eventually performing updates, only when the parent action is

committed. An example of error handling routines is SR (Synchro-

nizing Resources) [AO93], which allows the programmer to define

exception handlers that manage errors detected by the run-time.

Transparent Fault Tolerance. It is the run-time system that handle

faults. To counter crash failures, some languages like Fault Tol-

erant Concurrent C [CGR88] allow programmers to decide which

processes are to be replicated. For instance, the following line indi-

cates that the process master is replicated twice:

create master(parameters) copies(3)

1.1.2.4 Implementation Pitfalls

The implementors of orchestration languages must deal with the restric-

tions imposed by the execution level, specially when the model for com-

munication, synchrony and topology does not match the choices made

for the language. A translation from one model to the other is possible

in most of the cases. However, it is important to consider the possible

effects that any translation may have on fault tolerance and performance.

Communication model. In the best scenario, the communication model

at the logical level coincides with the model at the execution level. How-

ever this is not always the case. As we saw in section 1.1.1.1, a shared

memory is implemented over message-passing with one of the agents tak-

ing care of the shared variables, with the drawback of compromising fault

tolerance. Another form of implementation is distributed shared-memory,

where the memory is distributed over the agents. Nevertheless, one of

the issues of a distributed shared-memory is keeping the consistency of



1.1. From Distributed Computing to Service-Oriented

Computing 17

the memory. Thus a consistency model is necessary to define how vari-

ables are updated and read. Implementing message-passing over shared-

memory is also possible. An example are Message Oriented Middlewares

(MOM). A MOM is a messaging infrastructure that handles the communica-

tion between different agents, guaranteeing the reliability of exchanges.

To ensure that messages are effectively transmitted, communication with

a MOM is made in two phases: send and forget, and store and forward. In

the first phase the sender transmits the message to the MOM and continues

with its operation without waiting for an answer. In the second phase

the MOM repeatedly tries to forward the message to the receiver until it

succeeds. The middleware is analogous to a shared memory space where

agents deposit and retrieve messages.

Synchronization. It is possible to implement asynchronous commu-

nication over a synchronous execution level and vice-versa by specifying

suitable communication protocols [CBMT96]. The flexibility of the asyn-

chronous model eases its implementation over a synchronous execution

level: buffers can be used to store messages and allow the sender to con-

tinue its execution, assuming that the buffers are big enough to avoid

overflowing. Synchronous communication over asynchronous systems can

be implemented by using acknowledgment messages which are sent back

to the sender, which rests blocked waiting for the notification. HTTP is

an interesting example to illustrate both translations. The HTTP protocol

is based on a request-respond client-server model, thus on a synchronous

communication. Nevertheless, Internet is built on top of an asynchronous

communication protocol, the Internet Protocol (IP), whose only task is

to deliver packets of data from one host to the another. Therefore HTTP

relies on a transport protocol as TCP, which ensures the synchronization

between the client and the server. TCP makes sure that every packet sent

will arrive and that their order is preserved by using acknowledgment mes-

sages between each packet, a counter to keep track of sent packets, and

timers to detect timeouts. At the same time it is possible to implement

asynchronous communication over HTTP, thanks to long live connections

and WebSockets, which provide a two-way communication between client

and server over a single TCP connection.

Topology. One final problem, which is not often treated in literature,

relates to the topology of the execution level. As we saw in section 1.1.1.1,



18 Chapter 1. Towards an Orchestration Language

the topology of the system can be described by a communication graph,

which can evolve as new channels between nodes are dynamically cre-

ated. Imagine for instance the topology of Figure 1.3, where there are

channels between A and B, and B and C; but not between A and C. The

topology evolves as A sends its location to B, which then forwards it to

C. Afterwards C can respond directly to A, creating a new channel be-

tween them. Nevertheless, in network configurations where some nodes

<
@
A>

<
@
A>

<resp>

Figure 1.3: Dynamic topology

stand behind firewalls or NATs (Network Address Translators), there is

no way of implementing a dynamic topology without some kind of NAT

traversal solution. Approaches include specialized protocols such as the

Simple Transversal of UDP Through NAT(STUN) [RWHM03], and more

recently the Interactive Connectivity Establishment (ICE) [Ros10].

To summarize, implementing one model over another is never straight-

forward. Fault tolerance can be compromised when a shared memory is

implemented over a message passing model, and vice-versa. The commu-

nication protocol becomes more complex when synchronous communica-

tion is implemented over an asynchronous execution level. The reverse

direction requires buffers which add an overhead for the agents. Finally,

implementing a dynamic topology in a configuration with a restricted

visibility for some nodes implies an overhead on the communication as

additional steps are needed in the routing of messages.

1.1.3 Service-Oriented Computing

Distributed computing takes another dimension with the emergence of

Internet. Therefore it is important to make the difference between tra-

ditional distributed systems and network-based systems. In a restricted

sense conforming to the tradition, distributed systems aim at emulating
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the behavior of a centralized system by hiding the fact that multiple col-

laborating computation units work in parallel from different locations.

Network-based systems, on the other hand, are implemented in a net-

work environment, and users may be aware of this [Fie00]. Network-

based systems lead to Service Oriented Computing, which we discuss in

this section.

1.1.3.1 Basic Concepts

With the introduction of service-oriented computing, distributed systems

evolved from monolithic structures to loose coupled organization of au-

tomated agents that communicate with each other by exchanging mes-

sages [HS05]. Each agent can assume the role of a server, providing some

service to other agents or of a client consuming services from other agents.

When it plays both roles, it becomes an orchestrator, consuming services

and providing a new (composed) service. The services provided by agents

are software components, available at some location in the network, that

manipulate information, represented by resources, in response to requests.

The underlying software components are considered as black boxes : their

implementation may evolve without any functional effect over the service.

To date, there are two popular – and often antagonistic – models for

service-oriented computing [PZL08]. One is based on the WS* standards,

the other based on the REST architectural style, already instantiated with

the HTTP protocol. We refer to the WS* model as the process-oriented

model and to the Restful model as the resource-oriented model, respec-

tively.

First, interoperability and integration issues have led to the develop-

ment of WS*-services technology, mainly based on XML technology. Mes-

sages are exchanged between service consumers and providers in the form

of XML documents. The operations offered by a service, along with the

expected structure of messages, are defined using the Web Service De-

scription Language (WSDL), which allows services to be independent of

the underlying communication protocol. Another optional but widely

used component is the Simple Object Access Protocol (SOAP), which is

used to encapsulate the XML message, in order to separate it from other

infrastructure information, like routing. However, services are not to

be confused with distributed objects since there is no notion of objects,

object references or factories in WS* [Vog03]. Upon services, orchestra-

tors are defined with orchestration languages, like the Business Process
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Execution Language for Web Services (BPEL), which is a standard. To

establish a relationship between messages that are shared between sep-

arate processes, the BPEL specification includes the notion of correlation

sets, which can be extended to reflect different collaboration scenarios.

As processes are central in this model (WS*), we say that this model is

process-oriented.

More recently, the REST paradigm has emerged as an alternative, of-

fering light and easy to implement web services. Restful web services

manipulate resources via four basic operations: create, read, update and

delete, known as CRUD operations. Although REST is independent from

the underlying protocol, it is usually associated with HTTP. Restful Web

services return to the original design principles of the World Wide Web,

and the REpresentational State Transfer (REST) architectural style for-

malized by Fielding [Fie00]. The REST architectural style lies on four

principles.

(i) Resources can be identified with logical names. Restful web ser-

vices represent these identifiers as URIs (Uniform Resource Identi-

fiers), defined in a standard dedicated to a language for universal

naming.

(ii) Resources are manipulated with a uniform interface composed of

actions or methods that have a universal semantic interpretation,

that is have the same meaning for all resources. In the case of

RestfulWeb services, these actions essentially correspond to HTTP’s

methods PUT, GET, POST and DELETE.

(iii) Messages are self-descriptive, containing information about the pur-

pose of the message and control data, like cachability2. Since re-

sources can be represented with multiple formats (Html, XML, pdf,

jpeg, etc.), messages can contain information about the expect-

ed/actual representation of the resource.

(iv) Interactions are stateless. Thus messages are self-containing: no

context information is stored in the server. Therefore each message

from the client contains the information required to understand the

request. It is thus the responsibility of the client to keep the rela-

tionship between messages.

2Since clients can cache responses, messages can explicitly indicate if they can be

cached or not.
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Since resources are central in this model (Restful), we say that the model

is resource-oriented.

It is possible to design a uniform model for both service models [All14,

ADG+12]: it is a message-passing model. Precisely, distributed agents

acting as orchestrators provide services while requiring other services that

are consumed. In accordance with the black-box principle, an agent is

an abstraction that hides all the implementation details: it is composed

with an interface and an abstract state that evolves during its execution.

The interface is composed of provided or required services. Each service

is a set of channels to receive incoming messages or to send messages

over the network. The execution is described by the parallel composi-

tion of agents: while updating their internal state, agents asynchronously

exchange messages, without sharing memory or without synchronizing

the sending and the receiving of messages in a rendez-vous. The differ-

ence between the process-oriented model (WS*) and the resource-oriented

model (Restful) essentially corresponds to different decompositions of

messages into a channel and a content (traditionally called a payload).

In the Restful model, the channel describes the resource and the in-

voked operation, which belongs to the uniform interface, while the con-

tent describes the arguments of the operation. In the WS* model, the

channel describes the whole service while the content describes not only

the invoked operation but also its arguments. Thus the payload with

WS* services is largely greater than with Restful services: it is one of

the main reason why WS* services are qualified as heavyweight or as big.

Another interesting point is that the two main requirements of the uni-

fied model, asynchronous communication and true concurrency, has led

its authors [All14, ADG+12] to resort to a chemical model: the thesis

directly extends the unified model as it can be considered as a concrete

realization of the unified model.

Due to the existence of a unified model, all the properties described

for distributed computing, and especially for message-passing models,

also apply to service-oriented computing. Likewise, all the requirements

for a language dedicated to distributed programming are still valid for

service-oriented programming. However, there is a new requirement that

we need to emphasize. Indeed, the loose-coupled nature of web services,

contrary to tightly bounded systems where persistent connections are

established between components, requires a mechanism for establishing

relationships between the different messages exchanged in a collaboration.
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Thus, correlation, defined as a common value shared by messages that

are related, is a fundamental requirement of service-oriented computing

regardless of the model.

Finally, despite of the possibility of a conceptual unified model, the

diversity of models for service-oriented computing leads to new questions

when it comes to the orchestration of services, questions about interop-

erability.

1.1.3.2 Interoperability in Service-Oriented Computing

Interoperability is the capacity of two or more systems to exchange in-

formation and to be able to use this information3. In service-oriented

computing, interoperability is an important concern since collaborations

between agents that differ in the service model they use, in their data

interface or in their communication protocol are not uncommon. For

instance, organizations like WS-I (Web Service Interoperability)4 search

to promote standards for the development of interoperable web services

through the publication of guidelines, or profiles. However, despite these

efforts, interoperability remains a challenge.

The challenge essentially consists in solving coordination problems

and adaptation problems. Following the classical definition of Malone

and Crowston [MC94], generally speaking, ”Coordination is managing

dependencies between activities”, which gives in the area of programming,

following Carriero and Gelernter[GC92]: ”Coordination is the process

of building programs by gluing together active pieces.” Following the

seminal paper of Yellin and Strom [YS97], adaptation aims at eliminating

mismatches between software components that do not fit together.

In the following, we review research work over adaptation, in the con-

text of service-oriented computing. The other question, coordination, is

dealt with in Chapter 2. Traditionally, in the service-oriented comput-

ing field, coordination is split into two related notions, orchestration and

choreography. An orchestration defines the behavior of an agent while a

choreography specifies or describes from a global point of view the exe-

cution of the orchestrations involved in the collaboration of agents. As

Chapter 2 presents the foundations of our orchestration language, this is

the natural place to deal with coordination.

3According to the IEEE Standard Computer Dictionary.
4Cf. organization’s web site.

http://www.ws-i.org/
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The mismatches that adaptation aims at eliminating happen when

the required and the provided services that have to be bound do not

fit together. These mismatches can be classified into five general cate-

gories [BBG+06].

• Technique: for instance because of different communication proto-

cols

• Signature: mismatch between the type of the channels

• Protocol: mismatch between the expected sequences of messages

• Concept: given ontologies describing concepts, mismatch between

the concepts associated as meta-information to the services

• Quality: mismatch between quality attributes (dealing with some

notion of quality of services) associated to services

Here, we focus on signature and protocol mismatches, following our pro-

gramming perspective.

A natural solution to eliminate mismatches is to promote types not

only for interfaces, as usual, but also for communication protocols. While

interface types avoid signature mismatches, they do not guarantee the

absence of protocol mismatches: components can interoperate incorrectly,

since undesired deadlocks may occur. Protocol types ensures not only

type safety but also deadlock freeness. Different formalisms have been

proposed for extending interface types with protocol information: see for

instance the review of Brogi et al. [BCP07] or more recently the state of

the art report of the project Betty [Pro14]. Typically, they are based on

finite automata or process calculi.

When a mismatch is detected, adaptation can be derived following two

main approaches [CMP06]: the restrictive approach aims at ruling out

the behaviors causing the mismatch, while the generative approach aims

at defining an intermediate adaptor used to compose the mismatching

behaviors.

Behavioral type systems, like session type systems [DCd10], use a

restrictive approach. Yellin and Strom [YS97] initially promote the gen-

erative approach, more liberal. For instance, a solution is given by model-

driven engineering techniques, as exemplified by the Starlink framework [BGR11,

BGRB11]. This work in particular focuses on the problem of interoper-

ability between protocols that have a similar functionality, for example
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between SLP (Service Location Protocol) and SSDP (Simple Service Dis-

covery Protocol). The objective is to allow the communication between

components using different protocols, e.g. between a SLP client and a SSDP

server. Interoperability is only possible if there exists a translation from

the messages of one protocol into the other. Nevertheless, the translation

in some cases is more complex than a one-to-one mapping. For example,

to accomplish task A, protocol P1 requires a single message, while protocol

P2 requires two messages. They are interoperable if a translation is possi-

ble. In order to ease the translation between two interoperable protocols,

their behavior is represented by two automata representing the sequence

of messages, where states are labeled according to different aspects of the

communication protocol, such as message sequence, ports used, and syn-

chrony. Then, the coordination of both automata is driven by a merge

automaton, finally implemented by a middleware layer.

The main drawback of generative adaptation comes from its possible

complexity: if n agents must fit with p agents, n.p adaptors are required.

The solution is to deploy an adaptive middleware, specially those based

on messaging, like Message Oriented Middleware (MOM). The complexity

can then reduce to n + p: it suffices to adapt each agent to the middle-

ware. Thus, the middleware layer acts as an integration layer. Indeed,

this kind of infrastructures offers several possibilities for solving interop-

erability problems in the form of integration patterns, where the Message

Bus [HW03, p.137] is one of the most used. Also known as Enterprise

Service Bus (ESB) [Erl09, p. 704], the message bus pattern relies on a

communication component (bus) that carries messages between the con-

nected agents, which can disconnect from the bus at any time without

disrupting the functioning of the system. See Figure 1.4 for a typical ar-

chitecture, where an enterprise service bus connects diverse applications

and technologies through service interfaces. An enterprise service bus also

requires an intermediary protocol comprising a common data model and

a common command structure. Thus, messages transmitted by agents

are translated into an intermediary protocol and then, translated back

into the protocol used by each consumer agent. The main difficulty lies

on finding the correct intermediary protocol.

Another middleware-oriented solution for interoperability problems

between web services is the architecture proposed byWang and Pazat [WP13],

based on a chemical model. In this architecture the orchestration and

choreography of web services is performed in an intermediate component
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Figure 1.4: Enterprise Service Bus (Credit: MIT Press [GP09])

called the chemical middleware. Services are abstracted as chemical so-

lutions, where floating molecules represent the meta-data of the service.

Orchestrations and choreographies are written in a chemical programming

language in the form of reaction rules that model the data flow between

services. This work, which is closely related to our own approach, shows

the interest raised by the chemical paradigm as a way of expressing or-

chestrations in service-oriented computing.

Finally, the preceding solutions can be considered as variations of a

pivot architecture, a possible solution for interoperability problems, as

we have shown [LGL10]. Concretely, we have proposed the implementa-

tion of some design patterns to solve interoperability problems, following

a well-known trend [BBG+06]. The pivot architecture allows the imple-

mentation of such patterns by combining different orchestration languages

with heterogeneous service providers around a pivot language5.

It remains that a complete solution to the interoperability issue re-

quires a universal representation of resources: this is the subject of the

next section.

5The implementation of the pivot architecture with Criojo is further developed in

Chapter 4.
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1.2 Working With Data: How to Represent Re-

sources

In the context of web services, data and operations over data can be

abstracted through resources and their interfaces. In the Restful model,

which is resource-oriented, this is clearly the case: data correspond to

representations of resources while operations correspond to a fixed set of

CRUD operations. In the WS* model, a service itself essentially corresponds

to a specific interface for a resource (or a set of resources).

Generally speaking, anything that can be identified can be consid-

ered as a resource, including concrete objects such as documents, files,

services, etc, as well as abstract concepts like the terms of an algebra6.

Note that a resource may correspond to a temporal relationship between

an identifier and a representation (value): the representation of the re-

source may change over time but not its semantic interpretation. Think

for instance about a document in a versioning system: the identifier ”lat-

est revision” maps to a different version of the document each time the

document is updated. Besides the binding between the identifier and the

representation, a resource also provides an interface to manipulate the

representation. As the types of the representations and the interfaces

are many and varied, working with data in the context of web services

requires a generic abstraction.

We now describe three prevailing forms for representing data, and the

languages used to manipulate the corresponding representations.

Algebraic Model: Typically used in functional programming, it induces

a recursive style for declaring types as inductive data types and for

defining computations as recursive functions.

Relational Model: Used by most database systems, the relational model

represents data types as relations and computations as relational

queries.

Other Models: Resources have representations that do not only belong

to the algebraic model nor to the relational model. There is no con-

sensual term for this class of models, which is not precisely defined.

In these models, data are often qualified as semistructured data.

6As defined by the URI specification.

http://tools.ietf.org/html/rfc3986
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For each selected form, after an introduction describing the way in which

data are represented, we mention the main properties of the languages

used to compute over these data and determine the impact of distribution

over computations.

Why Objects are Out of Scope. In the preceding list, we deliberately

omit objects as a possible form for representing data. At a first glance,

it may seem strange as object-orientation is the prominent paradigm for

programming. And indeed, in nowadays applications, a resource is gen-

erally implemented as an object (or a graph of objects). However, we are

interested in representing resources. A representation of an object essen-

tially corresponds to an observation: it is computed by calling a method,

a pure observer if no side effects are required, which returns either a

primitive data, directly observable, or an object, which is subsequently

observed, leading to a recursive process. In object-oriented frameworks

for web services, like CXF, this conversion between objects and represen-

tations is delegated to a specific component, called a data binding, like

JAXB [McL02]. Representations are expressed as documents, written in

XML or Json. From an abstract point of view, they can be considered as

terms of an inductive data type. As we can consider that services can be

used to make object-oriented applications interoperable, it is interesting

to compare the service-oriented approach with two other standards for

interoperability between distributed object-oriented applications: Com-

mon Object Request Broker Architecture (CORBA) [Vin97] and Remote

Method Invocation (RMI) [WRW96]. With RMI, the execution environ-

ments are homogeneous, at both ends: this is the main difference with

services. As a consequence, the representation is low level, since objects

are transmitted in a serialized form, which in Java is a binary form. With

services, the representation is required to be abstract, high-level. With

CORBA, the execution environments can be heterogeneous, as with ser-

vices. However, objects are passed as references, and not as values: in

other words, there is no representation, but an indirection through a stub

(a proxy). It means that CORBA implements channel mobility, where here

a channel is an object reference. To get value passing instead of reference

passing, it is needed to resort to a data binding to convert objects into

structures before their transmission through a CORBA interface. With this

usage, the CORBA technology becomes another alternative to the existing

technologies for web services, like Restful and WS*.
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1.2.1 Inductive Data Types

Inductive types are composite types used in functional languages like

Haskell [HHPJW07]. To explain, let us define the type Option, declared

as

data Option a = None | Some a

with two constructors None and Some, stating that an element of type

Option a can be either None or Some x, where x has type a. Thus, type

Option a is a sum type with two alternatives. Another classical example

of an inductive type is a list, whose declaration is

data List a = Nil | Cons a (List a)

This declaration states that an element of type List a is either an empty

list or the concatenation of a value with a list. Both alternatives are

product types: the first is an empty product with zero field, the second

has two fields, a value and a list. Thus, formally, an inductive data

type is a sum type with one or more alternatives, where each alternative

is a product type with zero or more fields. Inductive types not only

allow to represent a wide range of data types, including recursive types,

but also smoothly admit useful extensions, like parametric polymorphism

and dependent types. The preceding examples in Haskell turns out to

be parametrized with a type (denoted a). As for dependent types, which

are types depending on a value, like arrays with a fixed size, they can

be found for instance in the interactive theorem prover Coq7, based on

the calculus of inductive constructions, which actually includes inductive,

polymorphic and dependent types.

Recursive Computations. To operate on inductive types, pattern-

matching is applied to decompose a value into its alternative types and

subsequent components, allowing recursive functions to be easily defined.

Resuming our previous examples, we declare in the following example a

function that removes all the empty elements from a list of type Option.

1 cleanList Nil = Nil

2 cleanList ( Cons ( Some a ) tl ) = Cons a ( cleanList tl )

3 cleanList ( Cons None tl ) = cleanList tl

7Cf. Coq’s web site.

http://coq.inria.fr/
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As you can see, cleanList is a recursive function that uses pattern match-

ing for operating over either an empty list (line 1), or a concatenation

(lines 2 and 3). We apply again pattern matching for discriminating ac-

tual values (Some a) from empty ones (None), in order to eliminate the

empty values.

Distribution and Concurrency with Inductive Data Types. In

a distributed context, with a language based on inductive data types and

recursive functions, it is relatively straightforward to distribute computa-

tions as shown, for instance, by the project Cloud Haskell, a successful

extension of Haskell with a layer for message passing [EBJ11], imple-

menting the actor model [HBS73]. Indeed, a functional programming

language can be specialized to embed some native data binding, directly

inside its type system: see the language CDuce [BCF03] for instance. An

essential reason stands in the proximity of the data models: terms and

inductive types used for computations inside agents versus documents

and schemas used for communication through the network, both sides

being bound by the data binding. In contrast, the data bindings for

object-oriented programming languages suffer from an impedance mis-

match [LM07a]. An essential reason stands in the gap between data

models: observations and co-inductive types [Jac95] (instead of terms

and inductive types) versus documents and schemas. Besides its main

proximity, there is another one, between the functional model and the

Restful model. Inductive data types naturally produce immutable and

persistent data: immutable because their state does not change after cre-

ation, persistent because a new version of a data actually corresponds to

a new data so that both versions, the old one and the new one, are avail-

able. Assume we want to implement a counter with a pure functional

language (without side effects). The interface then contains a unique

operation that given a natural number returns its successor. The cor-

responding service corresponds to a stateless service, therefore adhering

to the Restful model. Of course, by no way, it does not mean that it

is impossible to implement a stateful service with a pure functional lan-

guage: for instance, with Haskell, it suffices to use a state monad, with

the extra advantage that the statefulness of the service becomes apparent

at the type level.

With a language based on inductive data types and recursive func-

tions, concurrency and parallelism are less easy than distribution, but
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are still simpler than with an imperative language using threads and

locks. For instance, parallelism is only limited by fundamental data de-

pendencies in local computations [JS08]. For instance, for local concur-

rent computations, the language Haskell uses a shared memory model.

Immutable data can be copied or shared in a totally transparent way. An

implicit parallelism is then induced by the data flow and the associated

data dependencies. Let us take for example the expression

f (g(a), h(b)).

Since functions g and h do not have data dependencies, i.e. they operate

over disjoint values, it is implied that they can be executed in parallel.

1.2.2 The Relational Model

Since its introduction by Codd in the seventies [Cod70], the relational

model has been the data model that is the most used in databases to

represent and manipulate information. The model is based on first-order

predicate logic. The definition of a relation is based on the logical notion

of a predicate: a relation is the interpretation of a predicate as a set of

tuples. Thus, each tuple t in a relation R corresponds to an assertion

R(t), an atomic fact. Concretely, in the database relational model, re-

lations are represented as tables with named columns where each row

corresponds to a tuple. Since two rows cannot contain the same informa-

tion (no duplicates), tables well correspond to the set-theoretical notion

of relations. An essential property of this model lies in the possibility

of normalizing any relation: the normalization process decomposes the

relation into a set of relations with dependencies, in order to minimize

redundancies. The main objective is ”to free the collection of relations

from undesirable insertion, update and deletion dependencies”, as Codd

said [Cod71]. Thus normalization eases data consistency to be checked

and preserved.

Relational Algebra. The relational model relies on an associated rela-

tional algebra to compute over relations. The relational algebra contains

a set of operators to retrieve and manage information. Retrieval opera-

tors derive from the logical and set-theoretical operations, including pro-

jection, Cartesian product, difference, union and intersection, and join.

Relations can be modified by operations like insertion, updating and dele-

tion. Based on this formal specification and possibly extending it, query
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languages have been designed: they provide a useful syntax for working

with databases. We present two paradigmatic languages, following two

perspectives, the logical one and the engineering one.

Datalog. We start with the logical perspective. Datalog is a database

query language based on logic programming [CGT89]. It is the most pop-

ular language used in deductive databases, which combine the relational

model with logic programming. Datalog programs consist of finite sets

of ground facts (facts without variables) and rules. Facts are assertions

about the information stored in the database. A typical example of a

fact is ”A is an ancestor of B”. Upon existing facts, rules express infer-

ences that allows new facts to be deduced. For example, here is a rule

using three variables (A,B,C): ”If A is an ancestor of B and B is an

ancestor of C, then A is an ancestor of C”. It illustrates the expressive

power of logical rules, which comes from recursion. More generally, rules

in Datalog have the form

L0 : −L1, ..., Ln

where for any i, Li is an atomic fact. The single fact L0 is called the

Head whereas the sequence L1, ..., Ln is called the Body of the rule. Its

meaning is: from facts L1, ..., Ln, deduce fact L0. To guarantee that the

set of ground facts derived from a Datalog program is finite, any pro-

gram must satisfy two safety rules: (i) all the facts in the program must

be ground, i.e. without variables, and (ii) for each rule, its head must

only contain variables already present in its body. Recently, renewed at-

tention has been brought to Datalog, beyond the database community.

New applications include data integration, networking and program anal-

ysis [HGL11]. The trend is to use Datalog’s core and extend it to meed

particular needs, like efficient query execution for graphs and relational

structures, or the incremental maintenance of views. However, one of

the major limitations of Datalog is its monotone semantics - the num-

ber of resources always increases during computations - which renders

impossible the elimination of resources. Among the disconnected lines of

research that try to solve this problem we find the works of Zaniolo et al.,

who extend Datalog with choice [GZ01] or with aggregates [WZ00], and

Ganzinger and McAllester [GM02], who have allowed facts to be deleted

and rules to be selected with priorities.
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SQL. We now come to the engineering perspective. The language SQL

is currently the query language that is the most used in databases. Its

theoretical foundations lies in the relational calculus, the query language

naturally associated to the relational algebra, provided that the calcu-

lus and algebra are extended with aggregate functions [Klu82]. However,

the translation is left implicit: the language SQL has no formal seman-

tics. There are some trials to remedy the situation. Negri et al. [NPS91]

proposed a formalization of the 1985 standardized ANSI SQL, as a set of

transformation rules from SQL into an extended three value predicate cal-

culus (E3VPC). Contrary to the traditional two-valued logic, the E3VPC

includes an unknown value for missing data. Thus, it is possible to safely

apply transformations for optimization purposes. Another formalization

is later proposed by Gogolla [Gog94], who translates a subset of the lan-

guage into a tuple calculus. Gogolla points out the problems of specifying

the semantics in plain english, like the ambiguity in some constructs like

ANY and ALL. The semantics proposed is stricter with respect to the re-

lational algebra, by forbidding duplicate rows in any query result. The

formal semantics allows to prove some properties of the language, includ-

ing query equivalence and the redundancy of some SQL operators.

To conclude, there is a kind of duality between Datalog and SQL, with

respect to recursion and aggregation, summed up in the following table.

Recursion Aggregation

Datalog X ×

SQL × X

The language Datalog makes recursion easy and aggregation difficult,

and inversely for the language SQL, which for instance allows recursion

either as non-standardized features or as a late extension.

Concurrency Control via Transactions. The relational data model

has proven a highly effective means to share data between applications, by

providing a powerful mechanism to control concurrency, based on transac-

tions. A transaction, defined as a state transition of a database, satisfies

four properties, called ACID [Gra81, HR83].

Atomicity: Either the transition is completely executed, or it is not: it

is an all or nothing behavior. This property is directly related to

concurrency control.
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Consistency: A transaction preserves at the end of the transaction the

invariant properties holding at the beginning.

Isolation: The execution of a transaction does not depend on the exe-

cution on any other concurrent transaction. This property is also

directly related to concurrency control.

Durability: Once committed, the transaction cannot be abrogated: its

effects are persistent.

Assume two transactions A and B. Atomicity and isolation induce that

their concurrent execution gives one of the the following results: (i) no

transition, (ii) transition defined by A, (iii) transition defined by B, (iv) tran-

sition defined by A followed by transition defined by B, (v) transition de-

fined by B followed by transition defined by A. Therefore they correspond

to a serializability condition. Consistency and durability deal with two

orthogonal concerns, the safety of the transition and the correspondence

between the logical and physical levels respectively.

1.2.3 Semistructured Data

With the advent of Internet, databases are now encapsulated in server

applications, as a persistence tier. Hence client applications, which ac-

cess data through the presentation tier, deal with data that may no more

adhere to the relational model. Likewise, the growth of the memory ca-

pacity allow data to be entirely stored in the main memory instead of the

file system, leading to an explosion of the possible data formats [FCP+12].

In these alternative data models, data are often qualified as semistruc-

tured. Initially, it meant that information about the type associated with

the data may be contained within the data itself [Bun97], which allows

the representation of irregular data; now, we can consider that it simply

means that the data model is not relational nor algebraic. This interpre-

tation conforms to the one of the term NoSQL, interpreted as Not Only

SQL8: it is used to describe technologies that rely on data models that go

beyond the relational model.

Models for semistructured data include key-value stores, document

store, graphs, and column-family stores [SF12]. Key-value stores are

hashtables where data are stored as key-value pairs, where the key identi-

fies the value. In document stores, data are stored in documents which can

8See the web site dedicated to NoSQL.

http://nosql-database.org/
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be encoded in XML, Json, YAML, among others formats. Graph databases

store data whose relations are represented by links between nodes. In

column-family stores, data are stored in column-families, which are sets

of rows associated to a primary key. Contrary to traditional relational

databases, rows in a column-family do not need to have the same columns.

This classification, however, is not strict since some models can fit into

more than one category.

Models for semistructured data often use no static type or a loose type

system, like Json or YAML. However, Benzaken et al. [BCNS13] show that

it is possible to define a rich type system to cover standard definitions for

semistructured data. The type system is based on standard structured

types and on set-theoretical operations, union, intersection and difference.

The idea is to be able to type a function processing a value v as follows:

if v has type V1, then return r1 else if v has type V2, then return r2.

Its return type is R1 ∪ R2, if r1 has type R1 under the assumption that v

has type V1, and r2 has type R2 under the assumption that v has type

(V2 − V1).

Languages for Semistructured Data. Several languages have been

developed to work with semistructured data. Some languages like XQuery

were created to work specifically with one format; other languages like

UnQL, Jaql and Linq aim at covering any possible format used in NoSQL

databases.

XQuery and XPath. XQuery is a functional language for querying

XML documents that uses XPath expressions to navigate through specific

parts of an XML document. As its name suggests, XPath expressions de-

fine a path to a node or a set of nodes in a document. XQuery and

XPath are W3C standard recommendations and have a formal seman-

tics9, which is based on a tree representation of XML documents. In the

data model used by XQuery and XPath, each element of the tree is a node

with a unique identifier10. There are seven kinds of nodes in the data

model: document, element, attribute, text, namespace, processing

instruction and comment. Upon nodes, the model specifies a set of

accessor functions. Accessors expose the properties of nodes and are de-

fined for every kind of node. Examples of properties are name, children,

9http://www.w3.org/TR/xquery-semantics/
10http://www.w3.org/TR/xpath-datamodel/
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parent, type and kind. However for some kinds of nodes, there exist

several accessors that will return an empty answer. For instance, for a

node of kind document, the accessor parent will return an empty se-

quence. An alternative representation, based on a relational model, is

proposed by Benedikt et al. [BK09] for theoretical purposes. An XML

tree is a relational structure, whose signature contains three relations:

one unary relation for the labels of nodes, a binary parent-child relation

between nodes, and an immediate right-sibling relation between nodes.

The rest of XPath accessors described in the formal data model can be

deduced from these relations. Thus, essentially, a XML document is a rela-

tional structure that combines the above signature with a set of attribute

functions that map nodes to values.

In addition to XPath expressions, XQuery provides a set of query ex-

pressions called FLWOR. The name is an acronym from the constructs for,

let, where, order by, and return. FLWOR expressions allow, respec-

tively, to iterate over sequences of nodes, to bind sequences to variables,

to filter results on Boolean conditions, to order the result and to yield a

result for each evaluated node.

One of XQuery’s limitations is the lack of support for document cre-

ation or modification. An alternative is XSLT (eXtensible Stylesheet Lan-

guage Transformation)11, another W3C standard that is being developed

in parallel to the XQuery-XPath suite. Like XQuery, XSLT relies on XPath

expressions to transform an XML document into a new XML document, or

into another format like Html. Nevertheless, the original document re-

mains unchanged. Hence, a proposal exists to add update functionalities

to XQuery called the XQuery Update Facility12 that extends XQuery to

support creation, deletion and modification of nodes in a document.

UnQL. The Unstructured Query Language (UnQL) [Bun97] is a query

language for semistructured data based on structural recursion and pat-

tern matching. Structural recursion is used to browse the data using

pattern matching to follow the structure of the data. In UnQL, data is

represented as trees, where a tree is an atomic value or a set of labeled

trees. Trees are built with four constructors that are used for pattern

11http://www.w3.org/TR/xslt20/
12http://www.w3.org/TR/xquery-update-10/
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matching in structural recursion:

Tree t ::= t∪ t Union

| {l:t} Subtree

| {} Empty Tree

| a Leaf

Functions are defined as in ML with pattern matching:

fun f(T1 U T2) = f(T1) U f(T2)

| f({L:T}) = ...

| f({}) = {}

| f(V) = ...

As indicated, the first and third line are always the same in every program,

paving the way towards a well-foundation of the recursion, so that they

can be omitted:

fun f({somelabel:T}) = ...

| f({L:T}) = ...

| f(V) = ...

The language also includes a query of the form

select...where...,

which can be joined and nested. Queries are combined with pattern

matching in the form of path patterns, which requires a certain knowledge

of the structure of data. Additionally, these queries can be translated into

structural recursive functions. The preceding syntax for trees is extended

to cover graphs, by adding markers for input and output nodes, an output

node pointing to the unique input node with the same marker. To guar-

antee the termination of queries over cyclic graphs, structural recursion

is given two equivalent semantics: a bulk semantics, in which recursive

functions are applied in parallel on all the edges of the graph; and re-

cursive semantics using memorization of recursive calls to avoid infinite

loops. Thus, UnQL can be used to query and transform XML documents as

well as graph databases.
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Linq. Initially conceived to solve the problem of impedance mis-

match between the relational model and the object model, Linq is a query

language based on the relational algebra, which according to its author,

can be used with semistructured data as well [Mei11] [MBB06]. Linq is

based on category theory, in particular monads, which leads to a gener-

alization of collections. Thus, data is represented by collection monads

and queries are expressed in terms of comprehensions, which transform

collections into other collections. See for instance, the following query

over Yahoo’s weather service:

from forecast in Yahoo.WeatherService

where forecast.City == city

select forecast;

The language can also be seen as a generalization of relational algebra: it

offers an interface for which the relational algebra is one possible imple-

mentation. Thus, multiple data sources, such as relational databases and

XML documents, can be mapped to Linq. On the side of programming

languages, Linq is integrated as an extension of the languages of the .NET

family, that include C# and VB.NET, among others. For each implemen-

tation, Linq adopts the syntax of the host language, which allows the

addition of operations specific to the domain targeted by the application.

In this way, programmers can define specialized projection or filtering op-

erations. Additionally, this integration allows queries to benefit from type

checking over the relational data. For instance, if the query operates over

a list of string, only string operations are allowed over the data processed

by the query. Although Linq was initially created for extending .NET

languages, other implementations have been made for Java, JavaScript

and Python, and others. Nevertheless, one of the pitfalls of the language

is the difficulty of implementing custom data providers due to the poor

documentation on the parsing of the query, which changes for each host

language [Ein11].

Jaql. The query language for Json (Jaql) [BGB+11] is a scripting

language to manage Json documents, but also other formats like XML or

relational databases. Its data model is based on the Json format, where

values can be primitive values, arrays or unordered collections of name-

value pairs:

value ::= primitive_value
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| value*

| (name,value)*

Programs in Jaql are expressed as functional compositions, inspired by

the Unix pipes, the output of a function being the input of the next

function:

f1(source)->f2()->f3()

representing in this way data flows. The language also includes a path

language: a path can be used as a function argument, allowing the navi-

gation into passed data. Jaql provides built-in aggregate functions, but

it is also possible to write user-defined aggregates.

Discussion. The diversity of the data models induces an analogous

diversity of the languages used to compute over these models. However,

among the languages described, three languages, namely UnQL, Linq and

Jaql, try to bridge the gap between different data models by adapting

themselves to different data sources and host languages. There is no

precise comparison between the expressive power of these languages that

ambition universality. In this direction, Benzaken et al. [BCNS13] have

proposed not only a rich type system to describe the NoSQL data model,

as said before, but also a language with filters that aims at encompassing

all the constructs provided by the language Jaql, considered as one of

the richest NoSQL language.

Evolution of the Concurrency Model. The NoSQL trend not only

brings new data models but also makes the concurrency model evolve.

Indeed, whereas databases were the pivotal component for integration,

they have been replaced with services. In this distributed context, it is

impossible to enforce for databases (or services) the following properties,

known as CAP properties [GL12].

Consistency: Transactions can be serialized (atomicity and isolation of

the ACID properties).

Availability : Every request receives a response.

Partition Tolerance: In presence of a partition of the network (with

no communication between the parts), consistency and availability

are preserved.
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Another trade-off between the safety property (consistency) and the live-

ness property (availability) is required [Bre12, GL12]. To ensure avail-

ability, the database (as a service) can be replicated, following the cache

pattern, which implies that consistency is provided as a best effort. To

ensure consistency, in case of a partition failure, availability must be

decreased. Another trend is to weaken the consistency property: as seri-

alizability is a strong property, it can be replaced with causal consistency,

which means that the interleaving of the transactions preserves the causal

ordering, or eventual consistency, which gives a convergence criterion for

the replicas.

In addition to the preceding trade-off, distributed query processing is a

difficult problem, much more difficult than in a centralized context [ÖV11,

chap. 6]. Assume that a database is split into multiple shards, corre-

sponding to fragments of relations. The question is to map a query over

the whole database to local queries over fragments. The constraint is to

optimize the usage of computing resources. Rather than dealing with a

whole language like SQL, the NoSQL trend has produced some efficient so-

lutions to distributed query processing, especially for high data volumes.

A typical example is the MapReduce framework [DG04]. The MapReduce

framework allows the parallelization of a job by decomposing it into a

map task, which applies a function to each member of a collection, and

a reduce task, which aggregates results. For instance, Jaql relies on the

Hadoop’s MapReduce framework.

1.3 Specification of an Orchestration Language

From the state of the art, we select the essential requirements for an

orchestration language, from the point of view of distributed and service-

oriented computing and from the point of view of data computing for re-

source manipulation. The requirements deal with the logical layer: they

define the logical model associated to the language. The objective is to

specify a powerful yet minimal language for the orchestration of web ser-

vices that can be use as the core of a pivot architecture. Although some

choices may be arbitrary, we provide a short rationale for each require-

ment. We use the standard terminology ”must/should/may” to express

obligations, recommendations and options, as defined in RFC 211913.

13Cf. IETF’s web site. ”Must”: mandatory – ”Should”: optional, absence needs to

be justified – ”May”: optional, presence needs to be justified.

http://tools.ietf.org/html/rfc2119
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As exemplified by mainstream technologies for Web services, service-

oriented computing is an efficient solution to organize the exchange of

messages in a network-based architecture around agents acting as servers,

clients or orchestrators. Thus the language allows network-based orches-

trations to be defined. Each orchestration is executed by an agent: it

provides and consumes services while maintaining a local state. A service

has an interface and is implemented as a set of resources. A resource has

an identifier and one or more representations. The following requirements

specify this overall picture with more accuracy.

1.3.1 Requirements for Service Orchestration

In the next list of requirements for the orchestration language we es-

sentially follow the classification given in Sections 1.1.2, 1.1.3 and 1.2,

however presented in a more compact form:

• communication, synchronization and parallelism,

• fault tolerance,

• services and resources.

A summary of these requirements is given in Table 1.4.

Communication, Synchronization and Parallelism. From the study

of these different aspects, we propose that the logical model must satisfy

the following requirements. There is a form of duality between network-

wide distribution at the Internet scale and agent-wide distribution at the

scale of agent’s cores.

Requirement 1 (Distributed Architecture – Message Passing). The lan-

guage must allow orchestrations distributed between agents to be defined.

It must use a message-passing model: agents exchange messages over

channels.

Indeed, in the context of service-oriented computing, where systems

are physically and logically scattered, there is no notion of shared mem-

ory: each agent is responsible of its own data, and data is communicated

explicitly in messages. Client programs use messages to make requests to

servers, which in turn response with messages.
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Requirement 2 (Distributed Architecture – Asynchronous Channels).

The language must use asynchronous channels.

This requirement is natural in a context of network-wide distribution

and allows any communication latency to be modeled. However, as this

is the less stringent form of agent synchronization, we add the next extra

requirement.

Requirement 3 (Distributed Architecture – Library of Channels). The

language should provide a library of channels satisfying the following

synchronization properties:

(i) synchrony,

(ii) preservation of the causal order,

(iii) broadcast

and possibly other properties.

These channels will be implemented either over asynchronous chan-

nels, or natively, by using the channels of the physical layer.

Requirement 4 (Message Passing – Channel Scope). The scope of a

channel must be controlled.

The requirement allows private channels to be defined. It entails a

form of location transparency. Assume for instance, that an agent exter-

nalizes an internal computation towards a slave agent providing a ded-

icated channel to launch the computation. The scope of the channel

must be restricted to the master agent in order to avoid misuses by other

agents.

Requirement 5 (Message Passing – Channel Mobility). An agent must

be able to transmit a channel to another agent.

Channel mobility is necessary for service discovery and dynamic rout-

ing. Indeed, during an execution, the network topology often needs to

evolve: an agent needs to discover another agent that it does not know

initially.

Requirement 6 (Message Passing – Scope Extrusion). The scope of

a channel transmitted to an agent should be extended to the receiving

agent.
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When a private channel is transmitted outside its scope, two behaviors

are possible: either the target agent becomes able to send a message over

this channel, thanks to a scope extrusion, or it does not. The first pos-

sibility, scope extrusion, should be the default behavior while the second

one seems like a fault.

Requirement 7 (Agent Architecture – Shared Memory). The language

must provide for each agent a shared memory for its concurrent activities.

Locally, this requirement is natural. This means that data within the

agent may be shared by its concurrent activities, for example in the case

of simultaneous requests.

Requirement 8 (Agent Architecture – Locks). The language must pro-

vide a primitive to lock resources.

Naturally, in an execution context where resources are shared among

concurrent activities, locks are necessary in order to avoid race conditions.

Requirement 9 (Agent Architecture – Transactions). The language

should allow a transactional mechanism to be programmed for each agent.

Transactions must satisfy:

(i) atomicity,

(ii) isolation.

By mechanism, we mean here and in the following a library, a frame-

work, a template, or any other technique. As seen in Section 1.1.2.1,

the properties to be satisfied correspond to serializability. We do not

impose a specific implementation for the mechanism: the approach can

be optimistic or pessimistic. Note that the requirement deals with local

transactions, but it could be extended to distributed transactions.

Requirement 10 (Parallelism – Globally Explicit, Locally Implicit).

The definition of distributed agents acting in parallel must be explicitly

stated. For each agent, the parallelism between local activities should be

implicit.

We choose to explicitly define the distribution of agents, in confor-

mance with the practice for web services: as deployment means uploading

services on servers, an explicit definition of the distributed services is first
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given. An alternative would be an automatic partition of a monolithic

program, generating code for each agent, as in Hop [SB12]. The second

part aims at easing the development of parallel local orchestrations: par-

allelization, which is difficult, should be automatically performed. Note

that an agent execute concurrent activities (reception and sending of mes-

sages, local computations) and that runtime environments now provide

multicores: parallelization improves performances.

Fault Tolerance We now come to fault tolerance. We limit the re-

quirements to omission and crash faults. Thus, it is the responsibility of

the programmer to ensure a correct behavior in the presence of byzan-

tine faults: this tolerance can be enforced by security means resorting to

cryptography.

Requirement 11 (Fault Tolerance – Fail-Safe). The language must en-

force a fail-safe fault tolerance preserving local invariants. It may enforce

a stronger fault tolerance.

A local invariant is a property satisfied by an agent and preserved

during the execution. The first part of the requirement states a minimal

fault tolerance: in case of a message loss or an agent crash, each active

agent still behaves safely. Beyond this minimal threshold, fault tolerance

becomes costly: any extension to global safety or liveness is therefore

optional.

Requirement 12 (Fault Tolerance – Detection and Notification). The

language should provide mechanisms for detecting and notifying omission

and crash failures.

The implementation of these mechanisms depends on the underly-

ing physical layer used to communicate. Thus the requirement may be

impossible to satisfy in some scenarios due to lacking functionalities.

Requirement 13 (Fault Tolerance – Logging). The language must pro-

vide mechanisms for logging events or actions.

Logging is clearly useful for recovering from errors. Keeping track of

the history may allow the agent to return to a previously stable state.

Services and Resources We now come to requirements specific to

services and resources.
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Requirement 14 (Services – Correlation). The language must provide

a primitive or a mechanism for correlating messages.

The distributed orchestrations make agents collaborate. As many

collaborations can happen simultaneously, collaborations are generally

organized around sessions in order to keep a relationship between the

messages exchanged in a given collaboration. A session is identified by a

token, with a particular scope and lifetime: the token is generated when

the session starts, and then shared between the agents participating to

the session. At the end of the session, the token is no more used. For

instance, many web servers provide a session token in the first interaction

with the client.

Requirement 15 (Resources – Interface). The language must provide a

mechanism for interfacing with any resource.

A resource can be internal. That is to say, an artifact of the language.

The requirement then corresponds to the possibility for a resource to be

named and represented in the language. A resource can also be external,

like a file. The requirement then aims at improving interoperability.

Requirement 16 (Resources – Representation). The language must pro-

vide a universal data model with the following properties:

(i) data are human readable,

(ii) data are efficiently parsable,

(iii) data are serializable.

A data model is universal if all data model can be represented in it,

particularly the algebraic model, the relational model and others used for

semistructured data. Data need to be human readable as the interfaces of

services are published, like an application programming interface (API).

Data need to be efficiently parsable as they are directly integrated to the

language and therefore involved in any computation. Data need to be

serializable as they are communicated through the network.

Requirement 17 (Resources – Representation Typing). If the language

is typed, its type system may provide the set-theoretical operations union,

intersection and difference, and interpret the subtyping relation as subset

inclusion.
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This optional requirement relies on the success reported by Benzaken

et al. [BCNS13] when formalizing a general data model for semistructured

data.

Requirement 18 (Resources – Computational completeness). The lan-

guage must be computationally complete with respect to the data model.

In other words, all function computable over the data model must

be expressible in the language: this is the Church Thesis applied to the

universal data model. Concretely, it means that any language defined

over the data model can be translated, which can be experienced with

functional, logic and imperative languages for instance. Moreover, we

could add an invariance property: the translation entails a polynomially

bounded overhead in time and a constant factor overhead in space.

Requirement 19 (Services – Map/Reduce). The language should pro-

vide a mechanism for implementing the Map/Reduce operations.

As seen in Section 1.2.3, the Map/Reduce operations are a de facto

standard for distributed computations.

1.3.2 Service Orchestration in Practice

Is there in practice an orchestration language, or equivalent, that fulfills

the above requirements? To answer this question, let us analyze the

requirements from the point of view of object-oriented frameworks for

web-services like CXF and orchestration languages like BPEL. Table 1.5

summarizes the result of our analysis.

Popular object-oriented frameworks for web-services like CXF 14 pro-

vide tools to implement both Restful and WS* applications: they consti-

tute the mainstream practice for service development. They have support

for synchronous and asynchronous communication and fail-safe fault tol-

erance, with some detection and notification mechanisms and logging fa-

cilities. Channel mobility is only partly supported in the case of Restful

applications, thanks to hyper-links. In the case of WS* services, channel

mobility is a feature that was added afterwards, in the form of address-

ing, which is rather limited compared to the definition that we provide.

Parallelism and concurrency are dealt with Java mechanisms, but are

often hidden from the developer since generally the application container

14Cf. CXF web site. We only use CXF for the comparison.

http://cxf.apache.org/
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Table 1.4: Requirements for Service Orchestration

must should may

Communication, Synchronization and Parallelism

Distributed Architecture

Message passing X

Asynchronous channels X

Library of channels X

Message Passing

Channel scope X

Channel mobility X

Scope extrusion X

Agent Architecture

Shared memory X

Locks X

Transactions X

Parallelism
Globally explicit X

Locally implicit X

Fault Tolerance

Fail-safe X

Detection and notification X

Services and Resources

Services
Correlation X

Map/Reduce X

Resources

Interface X

Representation X

Typing X

Computational completeness X
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and the database systems handle concurrent access to resources. There

are indirect and poor mechanisms for correlation, which is quite left to

the responsibility of the developer. There are efficient tools dedicated to

the interface with resources, wrapped in Java code. The data model is

object-oriented, being composed from specific objects. The framework

embeds a data binding, allowing the translation with other data mod-

els used for serialization, with known limitations [LM07a]. For instance,

type information can be lost during the translation process, as for lists,

whose elements’ type is erased during serialization. Lastly, the computa-

tional completeness comes from the underlying object-oriented language,

Java for CXF. Thus, for instance, Map/Reduce operations can be pro-

vided as a framework. Finally, to conclude, although it turns out that an

object-oriented framework for Web services like CXF satisfies a majority of

the requirements, this solution is not really satisfactory. Indeed, object-

oriented frameworks promote sequential programming, thus hiding the

distributed and concurrent aspect of service orientation, which are how-

ever fundamental. Indeed, the main problem comes from an impedance

mismatch between the communication model and the concurrency model.

It is made manifest when considering location transparency, an expected

and desirable requirement with the mobility constraints associated to

the modern Web. Assume that a local shared resource is outsourced

onto a remote server. The necessary concurrency control must be re-

implemented in the server, at the interface between the service layer and

the program layer. A standard solution is to insert a filter into a pipe of

shared filters intercepting the incoming and outgoing messages: the im-

plementation is not straightforward due to the gap between both models

with two distinct scales for critical sections, at the upper message level

and at the lower action level respectively. Concurrency control is also

more demanding in a distributed context, as it has been acknowledged

for two decades [WWWK96]: it must cover other specific aspects, like

fault tolerance and security. If location transparency is required to ease

programming, it must be provided with strong guarantees with respect

to these distribution requirements. From the impedance mismatch, we

conclude that the mainstream model for service-oriented computing is

not scalable with respect to concurrency control.

Pure orchestration languages, like BPEL, provide better scalability

properties. Based on an XML notation, the language BPEL provides a

grammar for describing business processes in terms of interactions with
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other processes, which translates into interactions between web services.

Like frameworks for web services, many of the requirements are satisfied

by this language. BPEL is based on a message-passing communication

model that uses both synchronous and asynchronous message exchanges.

Channel mobility is poorly supported, since BPEL is based on WS* stan-

dards. BPEL also supports explicit parallelism and concurrency as the

execution of activities is represented by a flow-graph and critical sections

provide concurrency control for variables. It is also possible to define

transactions. Therefore BPEL is more akin of a real orchestration lan-

guage. The language provides constructs to handle failure, allowing to

compensate the effects of any activity that could let the process in an

invalid state. It is fail-safe, since in case of failure, subsequent activities

are terminated to preserve correctness. Concerning data handling, BPEL

relies on the expressiveness of XPath, and XML as a data model. We can

presume that it defines a computationally complete language. Ultimately,

one of the biggest limitations of BPEL as an orchestration language is the

lack of clarity of its theory. Moreover, being an XML dialect it can hardly

be considered as a programming language meant to be used by humans.

Finally, we have not found a solution being used in practice that

would be based on a formalism. In fact, a formal foundation for an or-

chestration language is an important requirement related to both service

oriented computing and resource manipulation aspects. A formal founda-

tion eases the design, development and use of a programming language,

by providing precise and consistent specifications and tools for the correct

definition and verification of orchestrations. Hence comes the interest of a

language with a formal foundation shown by approaches based on declar-

ative languages. An example of this trend is the BOOM project [ACC+10],

which proposes a data-centric design style combined with a declarative

language. The idea is to allow systems to be easily distributed by focusing

on the state of the system and describing it in terms of collections. At the

same time, a declarative language, like Datalog, describes in a natural

way the behavior of the system. Other examples of this trend include

languages like the join-calculus and Orc, which we discuss further in the

following chapter. Our thesis is that the chemical programming fulfills

the requirements that we have exposed, while giving a formal foundation

to service orchestration, which we show in the next chapter.
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Frameworks BPEL

Restful / WS*

Asynchronous message-passing X X

Channel Library - -

Channel mobility X / - -

Shared memory with locks X X

Transactions - X

Explicit Parallelism (locally) - X

Implicit Parallelism (locally) × ×

Explicit Parallelism (globally) × ×

Fail-safe fault tolerance X X

Failure Detection/Notification - X

Logging - -

Correlation - / X X

Resource Interface X X

Universal data model × X

Completeness X X

Map/Reduce X ×

(Yes: X, No: ×, Partly: -)

Table 1.5: Satisfaction of the Requirements in Practice





Chapter 2

Starting point: The

Heta-calculus

In the previous chapter, we presented the basics of distributed computing

and service-oriented computing as an instance of it. We finished with a set

of requirements that serve as a specification for an orchestration language

for services. Now we focus on our approach which starts from a formal

model, namely the Heta-calculus, that underlies the implementation of a

language for the orchestration of services. The usefulness of this design

will be later demonstrated with a use case in a service-oriented scenario.

The Heta-calculus is a calculus based on the chemical paradigm. It is

an original work led within the Ascola team by Thesis Advisor Hervé

Grall. And although its design is not a contribution of this thesis, we

consider important to describe it in detail due to the strong synergy be-

tween the programming language Criojo and the Heta-calculus. First,

the Heta-calculus provides the formal semantics of Criojo. Second, the

presentation comes with original contributions, like the impure aspects

of the Heta-calculus, that were drawn from the development of the lan-

guage, the formalization of all the design decisions with respect to the

requirements, and the validation against requirements.

In the following, we first review the state of the art on formal models

for service-oriented computing and on the previous works that led to the

design decisions that were made. Then we present the chemical calculus

for service orchestration, namely the Heta-calculus. For the presentation,

we follow the standard V-model.

• Requirements: see Section 1.3 ”Specification of an Orchestration

Language” in the previous chapter.

• Design: see Section 2.2 ”Design Decisions” that recapitulates all

the design decisions with respect to the requirements.



52 Chapter 2. Starting point: The Heta-calculus

• Realization: see Section 2.3 ”A Chemical Calculus for Orchestra-

tion” that defines the syntax and the semantics of the calculus.

• Validation: see Section 2.4 ”Validation against Requirements”.

2.1 Background

Previously, we said following Carriero and Gelernter[GC92] that ”Coor-

dination is the process of building programs by gluing together active

pieces”, and that in the service-oriented computing field, coordination is

split into two related notions, orchestration and choreography. Actually,

we adhere to the following overall picture. Agents are programmed with

orchestration languages. Their communication (exchange of messages)

can be specified or described by another language: when it is a specifica-

tion and not a descriptive language for a semantic interpretation, we say

that it is a choreography language. Carbone et al. [CHY12] show that it

is possible to define an approach by synthesis: first, start from a global

description, a choreography, then project the choreography to each agent

involved, in order to generate the local code in the orchestration language.

The synthesis can be proved safe: the collaboration between agent is safe

by construction, in that it is free from deadlocks and race conditions. A

weak version of the synthesis process generates orchestration types in-

stead of orchestration programs: the safety property can be preserved if

the type system is proved to be sound, in that, adapting Milner’s slogan,

”well-typed orchestrations cannot go wrong”. In the following, we only

focus on orchestration, which is the necessary first step. The reader in-

terested in choreography can read a recent doctoral dissertation [Mon13]

for latest developments.

The Heta-calculus is part of a trend of works searching to give a formal

foundation to service-oriented computing. Below we first give an overview

of some approaches that relate to the Heta-calculus and belong to this

trend. Next, we present the works that directly influenced the design of

the Heta-calculus.

2.1.1 Formal Models for Service-Oriented Computing

Many formal models have been proposed for capturing aspects of service-

oriented computing with the objective of specifying, implementing or ver-

ifying properties of service collaborations. As a general rule, transition
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systems are used in these approaches, either as models or as semantic

domains for the languages. We present some examples of formalizations

based on three standard formalisms,

• finite state automata,

• Petri nets,

• process algebras, either original or built on top of classic algebras.

The 2007 survey performed by ter Beek et al. [tBBG07] may be consulted

for more references.

Finite State Automata. Finite state automata is a well-known for-

malism, based on transition systems, that allows to model different kind

of problems including system behaviors and communication protocols.

The use of automatic verification tools is rather straightforward with fi-

nite state automata, thanks to the relation with logic, which renders the

model an interesting solution for formalizing and verifying service-based

systems. For instance, Fu et al. propose the use of guarded deterministic

automata [FBS04] to model agent behavior in composite web services:

a BPEL process is translated into an automaton, with an input queue

for messages and local variables and where transitions are equipped with

guards expressed in XPath. Unlike other models, this approach takes

into account data semantics for the verification of processes. The con-

versation of the processes, modeled as the composition of the automata,

is then translated into Promela, a language to model asynchronous dis-

tributed process as deterministic automata, and then verified with the

model checker SPIN [Hol03]. However, it does not captures channel mo-

bility that has been included in the specification of BPEL as endpoint

references. Analogous to these approaches, is the more recent proposal

by Bentakouk et al. [BPZ11], using Symbolic Transition Systems (STS)

for modeling and validating orchestration specifications written in BPEL

or other languages like UML and BPMN. An orchestration specification is

translated into STS, from which an execution tree is generated, allowing

the extraction of some test cases. At the end, an implementation of the or-

chestration is validated by executing the test cases against a unit test API

specific for web services called SOAPUI. The advantage of this approach

over other transition systems is that complex data types used in BPEL

specifications can be easily mapped to STS, allowing to explore different
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levels of detail from the specification: from the signature, containing data

structures and operations; to the semantics of the communication, defined

by message exchanges.

Petri Nets. Introduced by C.A. Petri [Pet62], Petri nets are used to

model concurrent systems with synchronous or asynchronous communi-

cation. A Petri net is a form of transition system that is represented as a

directed graph with two types of nodes, one to represent places (states)

and other to represent transitions. The nodes of the graph are connected

by arcs that go from places to transitions or from transitions to places.

The execution of the Petri net is modeled with tokens that move around

the graph. For one token to move from a place to another, the transition

between them must be fired. A transition can be fired when all of its input

places hold tokens. A certain configuration of the net, where tokens are

distributed over the places, is called a marking. Markings are useful to

analyze properties of the Petri net, like whether certain configurations can

be reached from a given initial configuration [Pet77]. Due to its similarity

to flowcharts, Petri nets have been used in service-oriented computing to

give formal semantics of BPEL’s control flow constructs, in order to ana-

lyze the properties of processes. Basically, a BPEL process is translated

into a Petri net and then verified by a model checking tool. Open Work-

flow Nets, a subclass of the Petri nets model, are specially suitable for

modeling web services as they explicitly define communication between

nets: input and output places serve as channels that compose an interface

to communicate with other nets. The asynchrony of these channels cor-

responds to the message-passing nature of web-service communication.

One of the focuses on this respect is the controllability of web services, as

exemplified by the works of Wolf [Wol09] and Massuthe et al. [MSSW08].

A service is said to be controllable (or operable) if it is capable of inter-

acting with at least one partner for creating a composition that is correct,

according to variable criteria like liveness, and the absence of deadlocks

and livelocks. An example of a practical result of this approach is the

project Tools4BPEL [HSS05, LMSW06], which implements methods and

tools, like the model checker Fiona, for verifying controllability and for

producing operating guides or specifications. Another example of Petri

nets used to model web services is given by the research of Ouyang et

al. [OVvdA+07]. In this case, control-flow constructs are analyzed, pay-

ing special attention to join-conditions and transition-conditions, to de-
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tect activity unreachability and race conditions between activities that

compete for the same message.

Classic Process Calculi. Process calculi are used to formally spec-

ify and verify concurrent systems. A system is represented as a set of

independent agents or processes. The objective of a process calculus is

to describe the interactions and synchronizations between these agents

and, at the same time, to provide tools for analyzing those descriptions,

formally reasoning about behavioral equivalence between processes, and

proving their properties. Some examples of classic process calculi are Mil-

ner’s Calculus of Communication Systems (CCS) [BBC+06, WDG+07],

Hoare’s Communication Sequential Processes (CSP) [Hoa85], the Lan-

guage Of Temporal Ordering Specification (LOTOS) [ISO89], and the π-

calculus [MPW92a, MPW92c], which extends CCS with channel mobility.

Process calculi share three characteristics [Pie97]:

• Interactions between process are described as communications, rather

than shared variables;

• They all use a small set of primitive operations to describe processes

and systems. Usually, these operations include parallel, sequential

and alternative composition [Bae05];

• From these primitive operations they derive algebraic laws for ma-

nipulating process expressions.

Thus, process calculi allow the description of web services’ behavior

in terms of processes, eliminating the ambiguities found in notations like

BPEL. Moreover, bisimulation analysis can be used to identify a behavioral

equivalence between processes in order to replace one service with another

or to detect redundancy. Salaun et al. [SBS04] address the problems of

service composition, with possible message loss, deadlocks, and incompat-

ible behaviors, by specifying web services with CCS. This calculus allows

the verification of the equivalence between processes with bisimulations,

as well as safety and liveness properties: a CCS specification is analyzed

with the CWB-NC tool, a verification workbench based on deterministic

automata, and then translated into a BPEL specification. However, this

approach only deals with the behavior of processes, leaving aside other

aspects like data abstraction, temporal constraints, channel mobility, and

asynchronous communication. Ferrara et al. [Fer04] deal with temporal
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logic and data abstraction by mapping BPEL specifications to the LOTOS

algebraic language, which is an ISO standard for the specification of dis-

tributed systems based on Milner’s CCS and Hoare’s CSP. Nevertheless,

channel mobility is still not taken into account for the mapping.

Other Process Calculi. Other formalizations include original process

calculi like the orchestration language Orc [KCM06], a concurrent pro-

gramming language whose semantics is based on labeled transition sys-

tems. Orc provides constructs for sequential, parallel and asymmetric

parallel composition of expressions. The fundamental expression in Orc

is a site call, where a site can be an external process, like a web service

or a service for data manipulation (called a primitive site), or a definition

expression. In this model, communication between expressions occurs

only in asymmetric parallel composition, where expressions execute in

parallel but rest blocked in certain points when a communication needs

to be completed.

Besides original calculi, another possibility is the extension of classic

process calculi, as exemplified with the calculi produced by the project

SENSORIA [CDNP+11]. The extensions can be classified following the

main features added. As explained in the presentation of SENSORIA’s cal-

culi [CDNP+11], the prominent features deal with conversations between

service callers and service callees, built over basic client-service interac-

tions. Conversations are organized around either sessions or correlations,

which aims at maintaining the links between the agents involved in the

conversation.

• Session: when the conversation starts, a private channel is generated

and then used to communicate.

• Correlation: the links between the agents involved in the conversa-

tion are deduced from correlations between values exchanged.

Thus, first, the Service Centered Calculus (SCC) [BBC+06, WDG+07]

and its variants have been developed to represent session-based conversa-

tions. It was inspired by Orc for service composition and the π-calculus for

channel mobility. Second, the calculi COWS [LPT07] and SOCK [GLG+06]

have been developed to represent correlation-based conversations, follow-

ing two different techniques.

These original process calculi are not disconnected from the prac-

tice since in some cases there is some relationship with the orchestration



2.1. Background 57

language BPEL. For instance, the calculus proposed by Lucchi and Maz-

zara [LM07b] extends the π-calculus with transactions in order to provide

a formal foundation for BPEL, proposing a unique event notification con-

struct for error handling. Likewise, calculi like the PPE-calculus [KvB04],

BPEL0 [PZWQ06, PZQ+06], COWS [LPT07], and more recently, Blite [LPT12],

also search to simplify BPEL and to give an operational semantics to BPEL,

directly relying on its specification. For instance, Blite’s semantics is di-

rectly based on a subset of BPEL constructs. Thus, Blite’s programs

defining the behavior of service-oriented applications can be translated

into BPEL. In the case of COWS, the objective is to generalize BPEL’s con-

structs to provide a formalization that is independent from any web ser-

vice technology.

To conclude, we can identify two trends in the preceding works. One

is to start from an existing notation like BPEL and to give it a formal inter-

pretation in the form of a transition system like a finite state automata or

a Petri net. The other is to provide a formal notation, based on a process

calculus, in order to produce applications that can be later translated

into BPEL. Our approach directly relates to the second trend, in that we

propose an original process calculus to formalize service orchestration.

Nevertheless, the difference is that the Heta-calculus proposes a minimal-

ist semantic framework to account for service-oriented computing. The

approaches cited above either fall short of the expected requirements, as

with classic process calculi, or provide a plethoric syntax to express fea-

tures specific to services like correlations, sessions or compensations. We

now present the origins of the Heta-calculus, which is based on Berry and

Boudol’s chemical abstract machine, but which is also inspired by the

π-calculus and logic programming.

2.1.2 Foundations of the Heta-calculus

The Heta-calculus is partially inspired by Milner’s π-calculus [MPW92b],

a process calculus with a message-passing model and synchronous and

asynchronous communication. The π-calculus is a continuation of CCS

(Calculus of Communicating Systems), which follows the same line of

thinking as Hoare’s CSP: the system is represented as a set of processes

that communicate by sending messages through links, or channels. The

novelty introduced by the π-calculus is the notion of channel mobility1:

1Channel mobility in the π-calculus and hyperlinks in Html pages are contemporary

(1991–1992): they represent exactly the same concept.
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the topology of the system can change as messages carry channels, creat-

ing new links between processes. To reduce the complexity, there are only

two entities in the calculus: agents and names. Thus, communication is

organized around names, which identify both communication channels

and variables.

If the communication model of the Heta-calculus is inspired by the

π-calculus, since messages are exchanged via channels that are mobile,

there is another link, through semantics: Berry and Boudol’s chemical

abstract machine (abbreviated as cham) [BB90]. It will come as no sur-

prise since the semantics of the π-calculus can be formulated as a chemical

abstract machine. The chemical model describes the state of a system

in terms of a chemical solution, where floating molecules interact with

each other, producing new molecules, according to reaction rules. Other

rules, called structural rules, heat and cool the solution to decompose

molecules into smaller molecules, or to compose bigger molecules from

smaller ones. The effect of these rules, contrary to reaction rules, is re-

versible. Chemical solutions can be organized in a hierarchy as molecules

can contain subsolutions enclosed in membranes. Airlocks in membranes

allow communication between chemical solutions: before a reaction, a

molecule moves into the airlock, to migrate to the outer solution, or in

the reverse direction. Since multiple reactions can occur simultaneously,

as long as the molecules involved only participate in one reaction at a

time, the cham embeds a natural notion of parallelism, so that concur-

rent calculus like CSP and CCS can be implemented by chams. Thus,

the distribution into hierarchical solutions and the natural parallelism

of the chemical model offers an elegant way to formalize concurrent and

distributed systems based on message passing.

However, the cham is not an effective machine. First, some structural

rules may be not operationally effective, which may lead to an incorrect

implementation of the semantics. To be effective, a set of structural rules

should be confluent and coherent [GLP04]. Nevertheless, some of the

laws used in the implementation of CCS lead to non-confluent heating, as

proved by Garg et al. [GLP04]: this is the case for restriction and airlock

locks in CCS. Second, the set of reaction rules can be infinite, as shown for

instance with the encoding of the λ-calculus. Consider for instance the

substitution operation in the λ-calculus’s beta-reduction ((λx.M)N →

M [N/x]), which exhibits not only the usual pattern matching used in

chemical rules but also a computation, the substitution in M of x with
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N :

x−M,N+ →M [N/x]

The reduction implies that an external device produces an infinite number

of rules: one for each tuple M , N and x, which leads to an impure aspect

that is not described in the semantics.

The join-calculus [FG96] is an important step towards effectiveness.

Indeed, its reflexive chemical machine extends the standard cham with

the notion of locality and reflection. Thanks to locality, molecules travel

directly to the location where they will react, if they match a rule. Re-

flection allows reactions to extend the machine with new rules, which

increases the computational power of the language, whereas the domain

of the values is restricted to names, as in the π-calculus. At a glance

the join-calculus could be the core of physically distributed programming

languages. Nevertheless, it still lacks computational completeness as we

show in section 3.1.1.1, since it cannot compute all the transformations

of a chemical solution.

Another attempt towards effectiveness is the γ-calculus [BFR06], an

higher-order chemical calculus inspired by the λ-calculus, the calculus

used to model functional languages. Its higher-order nature brings a

form of reflection, rules being first-class citizens, while the presence of

guards and of an inertness test brings introspection: it becomes possible

to test whether a chemical solution is inert, and to make subsequent com-

putations depend on the result of the test. This feature is fundamental

for the Heta-calculus. However, the γ-calculus is more oriented towards

parallelism than towards distribution.

In addition to concurrent and distributed computing, chemical models

are related to logic programming. As a consequence, the Heta-calculus is

also inspired by logic languages like CHR and linear logic.

2.1.3 Logic Programming

CHR is a multiset rewriting language based on a chemical model. Origi-

nally designed for writing constraint solvers, it is now used as a general

purpose language [Frü08]. CHR is related to term rewriting systems, chem-

ical languages, like Gamma [BM93] (General Abstract Model for Multiset

Manipulation, the language from which the chemical model originates)

and production rule systems (OPS [FM77]). CHR does not define a data

type system, since it works as an embedded language that uses the data
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types defined by a host language. The host language must also provide

a minimum set of predefined constraints for Boolean values and equality.

Such constraints are called built-in constraints. Although the traditional

host language for CHR is Prolog, there also exist implementations for

Java, Haskell and C. A CHR program is a set of guarded rules, which

inspect and modify a constraint store. There are three kind of rules in

CHR: simplification, propagation and simpagation rules. Simplification

rules correspond to rewriting rules, producing new constraints from ex-

isting constraints that are removed; propagation rules produce new con-

straints in a monotonic way; and simpagation rules combine the behavior

of simplification and propagation rules. Multiple extensions have been

proposed to CHR, including sequencing with priorities for rules [DKSD07],

negation as absence [WSSD06], and aggregates [SVWSD07]. In the last

two extensions, introspection is used to query and accumulate informa-

tion of the constraint store. Lately, the close relation between CHR and

linear logic has inspired a new operational semantics based on the no-

tion of persistent constraints [BRF], which solves the problem of trivial

non-termination caused by propagation rules.

Linear logic [Gir87] is considered as a logic for resources because it

reasons in terms of causal implications, like in the real life. Causal im-

plications cannot be iterated since the conditions are modified after the

resources are used. Assume for instance these two implications: A ⊸ B

and A ⊸ C. In linear logic, the meaning is akin to the following inter-

pretation: replace A with B, and replace A with C, respectively. If A

is replaced by B then the action A ⊸ C cannot take place: thus, linear

implication is different from standard implication where premises are not

consumed in a logical inference. Precisely, linear logic extends the classi-

cal logic with updates, and linear resources offer a solution to the limita-

tions of the monotone semantics of logic languages like Datalog [SP08].

To conclude, the Heta-calculus is a language with channel mobility,

a semantics expressed with a chemical abstract machine and using rules

consuming and producing resources. All these features have a long history

in programming languages, sketched above.

2.2 Design Decisions

In the section, we recapitulate all the design decisions that have been

made for the Heta-calculus with respect to the requirements, following



2.2. Design Decisions 61

the same structure as in Section 1.3.1. We also briefly give a rationale

for the decisions. A requirement is a property that applies either to the

language itself or to the programs written in the language.

Language Property: the requirement describes a property that the

language must satisfy. It generally corresponds to a property that

characterizes the semantics of the language.

Program Property: the requirement describes a property that some

programs must be able to exhibit. It generally corresponds for the

language to a syntactic construct and its semantic interpretation.

The distance between the construct and the primitives of the lan-

guage varies from the simple coincidence to a true implementation.

Communication, Synchronization and Parallelism. The Heta-calculus

follows a message-passing model with asynchronous communication. Lo-

cally, the state of an agent is described as an abstract shared memory, in

the form of a chemical soup, akin to a tuple space.

Design Decision 1 (Distributed Architecture – Message Passing). Dis-

tributed agents exchange messages defined as atoms Msg(k, v), also de-

noted k(v), where k is a channel and v a value.

The Heta-calculus therefore follows mainstream process calculi, as

described in Section 2.1.

Design Decision 2 (Distributed Architecture – Asynchronous Chan-

nels). Communication is asynchronous and therefore can be decomposed

in five steps:

• message production,

• message emission,

• message routing,

• message reception,

• message consumption.

These steps will lead to semantic reduction rules.
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Design Decision 3 (Distributed Architecture – Library of Channels). A

synchronous channel is implemented by a request-response protocol with

sender blocking. A channel preserving the causal order is implemented

by using queues and synchronous channels, as described by Mattern and

Fünfrocken [MF95]. Broadcast is implemented by a specific agent, receiv-

ing messages to be broadcasted and sending to all the expected receivers.

The library design is totally standard, aiming at being lightweight. In

Criojo, the library can directly use the physical layer, when it provides

specialized channels, for instance synchronous channels.

Design Decision 4 (Message Passing – Channel Scope). Agents are

either orchestrators or firewalls. There is also a root agent, containing

all other agents; to allow composition, it is considered as a firewall. A

firewall may contain other agents contrary to orchestrators, and filters

communication. It maintains a set of provided channels, equal to the

union of the channels provided by all the orchestrators inside the firewall,

and a subset of private channels. Only messages over channels that are

provided but not private can come through a firewall. Only messages over

channels that are not provided can go out of a firewall.

The solution is very close to the current practice for services. More

fundamentally, it is a way to implement the hiding operator found in the

process calculus CCS for instance. Note also that the solution departs

from a common one used for components, where there are two sets, one

for publicly provided channels and the other one for required channels.

With this solution, only messages over channels that are required could go

out of a firewall, whereas only messages over publicly provided channels

can come through a firewall. But with one-way channels and channel

mobility, the set of required channels has to be updated in an inefficient

way: for example, all the return channels have to become required, in all

the firewall traversed.

Design Decision 5 (Message Passing – Channel Mobility). A channel

can be a value in a message: if Msg(k, v) is a message, then v can contain

channels.

This is the ability found in the π-calculus.

Design Decision 6 (Message Passing – Scope Extrusion). When a mes-

sage Msg(k, v) goes out of a firewall W , all private channel l provided by
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W and occurring in v should be removed from the set of private channels:

channel l then becomes public.

This is a specific and weak implementation of scope extrusion as found

in the π-calculus. It is required when the channel l is a return channel

that is private.

Design Decision 7 (Agent Architecture – Shared Memory). The state

of each agent is described as a multiset of atoms. An atom is either a

message Msg(k, v) or an atomic fact R(v), where R is a relation symbol

and v a value.

The state is therefore split into two parts: the communicational one

with messages, the local one with atomic facts. This is a chemical soup,

as in the Chemical Abstract Machine (cham).

Design Decision 8 (Agent Architecture – Locks). The state of an agent

evolves according to atomic transitions. A transition consumes and pro-

duces atoms.

With the atomicity of the transitions, there is the minimal mechanism

of locking found in a tuple space or in the chemical soup of a chemical

abstract machine. It is sufficient, since it can easily lead to a transactional

mechanism.

Design Decision 9 (Agent Architecture – Transactions). The developer

must implement the transactional mechanism as a specific agent wrapping

a resource manager, by using standard algorithms.

The implementation idea is that dedicated atoms are used for concur-

rency control. For instance, assume that we follow an optimistic approach.

The algorithm can be informally described as follows.

• A client asks for a commit the server managing resources (a database

for instance) by sending all the information required to decide com-

mitting (typically the last versions read on the server) and a return

channel.

• The server consumes the request and a specific atom meaning that

the server was waiting for a commit request, and produces a specific

atom (i) containing the information sent by the client and the

return channel and (ii) meaning that the server deals with a commit.
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• The server decides whether a commit is possible from the informa-

tion sent (typically, accepts the commit if the last versions read by

the client are the current versions), commits if necessary and finally

sends a reply by using the return channel.

• Once the commit performed, the server produces a new atom indi-

cating that it is again waiting for a new commit request.

Design Decision 10 (Parallelism – Globally Explicit, Locally Implicit).

The collaboration between distributed orchestrators is explicitly defined:

hierarchy of orchestrators with firewalls, initial state and behavior of each

orchestrator. The initial state of an orchestrator is defined as a multiset

of atoms. The behavior of an orchestrator is specified as a set of reduction

rules, each rule defining a pattern for an atomic state transition.

Globally, parallelism is explicit, thanks to the hierarchy of agents:

this is a form of true parallelism, each orchestrator having its own thread

of execution that can progress concurrently. Locally, the behavior cor-

responds to a chemical abstract machine. In particular, parallelism is

implicit. Indeed, the local implicit parallelism is an essential property

of the chemical abstract machines with the clear advantage of a paral-

lelization based on a condition simple to check: a commutation property

stating that two reduction rules can be executed in parallel, as long as

the atoms involved only participate in one rule at a time, as in chemistry.

Fault Tolerance. The Heta-calculus concretely ensures a limited form

of fault tolerance. However, the Heta-calculus allows faults to be rep-

resented in a faithful yet abstract way, as advocated by Gärtner [G9̈9].

Thus the Heta-calculus can model detective and corrective mechanisms,

as used for fault tolerance. This modelization is abstract and suppose an

impure concretization resorting to the physical layer. Recall that we limit

to omission and crash faults, leading to losses of messages and unexpected

terminations of agents respectively.

Design Decision 11 (Fault Tolerance – Fail-Safe). The semantics of the

Heta-calculus assumes that omission and crash faults can happen. Thus,

if an agent satisfies a local invariant, then the local invariant is preserved

even in presence of omission and crash faults.

Actually, an omission fault is represented as an unfair routing, where

a message never moves. Likewise, a crash fault is represented as an un-

fair execution, where some agent is never selected to be executed. This
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representation implies that the absence of omission and crash faults cor-

responds to fairness assumptions.

Design Decision 12 (Fault Tolerance – Detection and Notification).

The Heta-calculus can model detectors for omission and crash failures

by adding dedicated rules or instrumenting reduction rules. Upon this

model, the developer must implement the mechanisms for notification by

instrumenting or adding reduction rules.

More precisely, to model a crash fault, for instance, an agent can hav

two specific atoms, Active() and Inactive(), used to represent the ab-

sence or the presence of the crash fault. All the reduction rules of the

agent are instrumented in order to consume and produce atom Active().

An extra rule models a crash fault: it consumes atom Active() and pro-

duces atom Inactive(). Then the detection mechanism can be imple-

mented: a rule consuming atom Inactive() models the detection. Fi-

nally, it remains to implement rules for the notification. It remains that

this implementation of detection is abstract in that it is based on a model

that cannot directly be implemented in a concrete language like Criojo:

at the concrete level, the use of functionalities of the physical level is

required.

Design Decision 13 (Fault Tolerance – Logging). The developer must

implement the logging mechanism by instrumenting the reduction rules

to generate event logs and by providing the functionalities for dealing

with the events generated.

The logging mechanism can be implemented with a dedicated logging

agent. An event can be represented as the consumption of a molecule,

that is a join of atoms. When it happens, a message is sent to the logging

agent. Inside the logging agent, log events can be stocked as atoms in the

chemical soup or in dedicated data structures, which will be described in

the next paragraph.

Services and Resources.

Design Decision 14 (Services – Correlation). The Heta-calculus allows

the correlation between two messages Msg(k1, v1) and Msg(k2, v2) to be

represented as a common value v shared by v1 and v2.

The decision entails two consequences:
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• the values must be structured; moreover, a form of convention must

exist in order to identify a component of a value as the correlation

value;

• a transition must be triggerable when two correlated atoms are

present, which implies that variables are not linear (with a unique

occurrence) in patterns.

Design Decision 15 (Resources – Interface). The Heta-calculus repre-

sents a resource as an orchestrator with channels defining its interface

and with a multiset of atomic facts defining its state. Specifically, an

external resource can also contain in addition impure atoms R(v) and a

set (possibly infinite) of reduction rules transforming each impure atom

R(v) into pure atoms.

Recall that a resource can be internal, that is an artifact of the lan-

guage, or external, like a file. For an external resource, impure atoms

allows an agent to be defined as a wrapper of the resource. Note that

the wrapper then satisfies the black box principle: the implementation

of impure atoms can evolve without observable effect provided that the

same result is returned, in other words, provided that the (possibly in-

finite) set of reduction rules is still correctly implemented. This design

decision leads to two languages, the pure Heta-calculus where impure

atoms are banned, and the impure Heta-calculus, where impure atoms

are allowed. The interest of the impure Heta-calculus comes from its ca-

pacity to model in a more direct way effects in Criojo programs, like

Input-Output effects, but more generally to coordinate programs written

in other languages.

Design Decision 16 (Resources – Representation). The Heta-calculus

describes the state of each agent as a relational structure defined as a

multiset2 of atoms:

• messages Msg(k, v), where k is a channel and v a value,

• atomic facts R(v), where R is a relation symbol and v a value.

The set of values v is defined as a term algebra over a signature declared

in each program.

2This is a variant of the standard definition, which deals with sets.
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The data model encompasses both the algebraic and relational models.

It is very general, since relational structures are for instance the models

of logic.

Design Decision 17 (Resources – Representation Typing). The Heta-

calculus is not typed.

An extension with a type system enriched with set operators (union,

intersection, difference, as required) would be welcome but is not triv-

ial. Indeed, as developed by Benzaken et al. [BCNS13], this type system

requires the use of a semantic interpretation, as in Domain Theory.

Design Decision 18 (Resources – Computational Completeness). The

Heta-calculus uses introspection to ensure completeness. Introspection

allows queries over the chemical solution associated to each agent to be

defined. It essentially allows to check whether a reduction rule can be

triggered.

There is a balance for the language used to define guards to be found.

Too weak, the Heta-calculus is not computationally complete. Too strong,

the complexity for guard evaluation is too high. Actually, computational

completeness is still an open question for the Heta-calculus, which could

benefit from antecedents: see for instance the work of Ganzinger and

McAllester [GM02].

Design Decision 19 (Services – Map/Reduce). The developer must

implement the Map/Reduce operations by providing two agents, one for

the Map operation, another for the Reduce operation.

Here is a design pattern that gives a general solution. Assume a

function f that transforms messages. The function Map(f) is applied to

a multiset of messages m, producing another multiset of messages f(m).

The Reduce operator computes a result r from this latter multiset by

applying a binary operation, assumed associative. It suffices to assign an

agent (or several agents) to the Map operator and an agent to the Reduce

operator. When a Map agent receives a message, it computes the result of

the Map application and then sends the resulting message to the Reduce

agent. The Reduce agent progressively reduces the received messages to

produce the result.

To conclude, we have described a set of design decisions, which will be

directly applied in the design of the Heta-calculus presented in the next
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section. We come back to the requirements and the decisions made in

Section 2.4 that deals with the validation of the design against require-

ments.

2.3 A Chemical Calculus for Orchestration

We now present the Heta-calculus, the formal calculus for orchestration

that defines the foundations of the programming language Criojo. Its

syntax and its semantics are based on the general framework of chemi-

cal abstract machines. We first introduce the framework, and the main

innovation, introspection. We then instantiate the framework to get the

Heta-calculus, with its syntax and its semantics directly inherited from

the chemical framework. Finally, in the next section, we will validate

the calculus against the requirements, showing that the design decisions

indeed lead to their satisfaction.

Before the formalization, we start by a small example with a client and

a server deployed in the web and implementing a ping-pong interaction.

The server provides a channel ping while the client provides a channel

pong to get the response. The server also manages a local counter: when

it receives a request over channel ping, it sends the current value of the

counter to the client and increments the counter. The initial state of the

program can be described as follows.

Web[ Client[Begin()& Provided(pong)]

& Server[Counter(0)& Provided(ping)] ]

It describes the hierarchy of agents, the web containing the client and

the server, and their internal initial state. The initial state of the client

contains an atom, Begin(), and the declaration of the provided channel

pong whereas the initial state of the server contains an atom Counter(0),

giving the initial value 0 to the counter, and the declaration of the pro-

vided channel ping. The behavior of the client and the server is described
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by the following rules.

Client[Begin()&S]

→ Client[ping(pong)& Wait()&S]

Client[pong(N)& Wait()&S]

→ Client[Print(N)& End()&S]

Server[ping(K)& Counter(N)&S]

→ Server[K(N)& Counter(N + 1)&S]

The client first sends the request to the server, then waits for the response,

and finally prints the value received. The server indefinitely replies to

requests by sending the value of the counter and incrementing its value.

The communication rules can be defined as follows, in a generic way: they

are not user-defined, contrary to the preceding rules.

Web[K(V )&M [Provided(K)&S] &S′]

→ Web[M [K(V )& Provided(K)&S] &S′]

Web[M [K(V )&S] &S′]

→¬(Web[M [Provided(K)&S1] &S′

1]→⊤) ?

Web[K(V )&M [S] &S′]

The first rule is used for incoming messages: if K(V ) is a message in

the web, then it can be delivered to agent M if channel K is provided

by M . Symmetrically, the second rule is used for outgoing messages: if

K(V ) is a message in agent M , then it can be sent if channel K is not

provided by M . The non-provision is expressed thanks to a control guard,

an introspective mechanism.

The execution of the program produces a trace, defined as a sequence
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of states starting from the initial state.

Web[ Client[Begin()& Provided(pong)]

& Server[Counter(0)& Provided(ping)] ]

⇒ Web[ Client[ping(pong)& Wait()& Provided(pong)]

& Server[Counter(0)& Provided(ping)] ]

⇒ Web[ Client[Wait()& Provided(pong)] & ping(pong)

& Server[Counter(0)& Provided(ping)] ]

⇒ Web[ Client[Wait()& Provided(pong)]

& Server[ping(pong)& Counter(0)& Provided(ping)] ]

⇒ Web[ Client[Wait()& Provided(pong)]

& Server[pong(0)& Counter(1)& Provided(ping)] ]

⇒ Web[ Client[Wait()& Provided(pong)] & pong(0)

& Server[Counter(1)& Provided(ping)] ]

⇒ Web[ Client[pong(0)& Wait()& Provided(pong)]

& Server[Counter(1)& Provided(ping)] ]

⇒ Web[ Client[Print(0)& End()& Provided(pong)]

& Server[Counter(1)& Provided(ping)] ]

This simple example highlights some essential concepts:

• a program in the Heta-calculus describes a distributed orchestra-

tion, its initial state and the behavior of each agent;

• there are two kinds of atoms, atomic facts like Begin() and messages

like pong(0);

• channels are also values, like pong;

• control guards allow a rule to be triggered after the state has been

introspected.

2.3.1 Introspective Chemical Abstract Machine

The main innovation introduced by the Heta-calculus with respect to the

framework defined by Berry and Boudol [BB90] for chemical abstract ma-

chines is introspection. Here is a description of the introspective chemical



2.3. A Chemical Calculus for Orchestration 71

abstract machine. The Heta-calculus is a specific language interpreted

over this chemical machine.

The formal definition of the syntax is given in Table 2.1.

Value Pattern v ::= f v∗ (term)

| V (variable)

Atom Pattern a ::= R(v) (atomic fact)

| c (cell)

| A (variable)

Cell Pattern c ::= M [s] (membrane with solution)

Solution Pattern s ::= ∅ (empty solution)

| a& s (insertion)

| S (variable)

Program p ::= c {r∗} (initial cell { rules })

Rule r ::= c→ g ? c (head → guard? conclusion)

Guard g ::= ⊤ (true)

|
∧

g∗ (conjunction)

| ¬(c→ g) (control guard)

Table 2.1: Introspective Chemical Abstract Machine – Syntax

A program is defined as a set of reduction rules with an initial state.

An initial state defines a (closed3) cell, a membrane enclosing a chemi-

cal solution. A chemical solution is interpreted as a multiset4 of atoms,

possibly empty. It is described as a pattern, a sequence of atom patterns

terminated by the empty solution or by a solution variable, representing

the rest of the solution. An atom is either an atomic fact or another cell.

A rule (c1 → g ? c2) defines the possible transformation of a cell: if the

cell matches the cell pattern c1 and if the guard g is satisfied, then the

3In the following, we omit the qualifier ”closed”, which means that there are no

free variables. When we have an expression with free variables, we use the qualifier

pattern. Example: value pattern (open value) versus value (closed value).
4A multiset is a set where each element can have multiple occurrences.
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cell is transformed into the instantiation of the cell pattern c2. Precisely,

its head c1 (on the left hand side) is a pattern containing free variables:

a variable can have multiple occurrences, which allows correlation: this

is a difference with the join-calculus [FG96], which entails some imple-

mentation problems as we will see in Section 3.2.2.2. The free variables

in c1 become bound in the guard g and in the conclusion c2 on the right

hand side of the rule. The guard g is a conjunction of control guards. A

control guard ¬(c′ → g′) checks whether an hypothetic rule (c′→ g′ ? . . .)

can trigger in the chemical solution associated to the cell matching the

pattern c1 and returns true if the rule cannot trigger and false otherwise.

For instance, the guard

¬(Web[M [Provided(K)&S1] &S′

1]→⊤)

is satisfied if the agent M does not provide channel K.

The semantics is expressed through an inference system defining a

non-deterministic transition relation, denoted ⇒, and defined over cells.

The transition relation allows traces to be generated for each program,

starting from the initial cell declared in the program. In the semantics,

to each syntactic kind corresponds a semantic kind: we obtain values,

atoms, cells and chemical solutions (we use greek letters for these seman-

tic entities). The main point is that chemical solutions are interpreted

as multisets. As usual, given a pattern P and a valuation τ assigning

semantic expressions (values, atoms or solutions) to variables, we denote

by P [τ ] the result of the substitution in P of the variables X with τ(X).

A guard g is evaluated with respect to a cell γ containing atoms and a

valuation τ . The domain of the valuation is equal to the set of the vari-

ables bound by the head. The control guard ¬(c′ → g′) is interpreted as

the impossibility for a rule (c′→ g′ ? . . .) to be triggered. Formally, it is

interpreted as the non-existence of a valuation τ ′ extending τ , binding all

the free variables of cell pattern c′ that are not bound by τ and satisfying

the following properties:

(i) cell γ matches pattern c′ with valuation τ.τ ′ (τ extended with τ ′),

(ii) and guard g′ is satisfied with respect to cell γ and valuation τ.τ ′.

(γ = c′[τ.τ ′]) ∧ (γ |=τ.τ ′ g
′).

Finally, there are two generic inference rules for semantic transitions, the

rule [CHEMICAL REACTION] allowing the transformation of a cell after a
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matching and a satisfaction of the guard, and [MEMBRANE], allowing the

transformation inside an enclosing cell.

The semantics is detailed in Table 2.2. Given a program c{r0, . . . , rn},

where c is a (closed) cell and r0, . . . , rn are rules, it becomes possible to

generate a trace: it starts with cell c and continues with cells c′ result-

ing from transitions computed from axioms [CHEMICAL REACTION] using

rules ri and inference rules [MEMBRANE]. A program is not deterministic:

multiple traces can be generated. Moreover, confluence is not required.

Value ξ ::= f ξ∗ (term)

Atom α ::= R(ξ) (atomic fact)

| γ (cell)

Cell γ ::= M [σ] (membrane with solution)

Solution σ ::= ∅ (empty multiset)

| α&σ (multiset insertion)

γ |=τ ⊤
def
⇔ ⊤

γ |=τ

∧

i gi
def
⇔

∧

i(γ |=τ gi)

γ |=τ ¬(c→ g)
def
⇔ ¬(∃τ ′.(γ = c[τ.τ ′]) ∧ (γ |=τ.τ ′ g))

(c1 → g ? c2 ∈ p) (c1[τ ] |=τ g)
[CHEMICAL REACTION]

c1[τ ]⇒ c2[τ ]

γ1 ⇒ γ2
[MEMBRANE]

M [γ1&σ]⇒M [γ2&σ]

Table 2.2: Introspective Chemical Abstract Machine – Semantics

The main differences with the standard framework [BB90] are the

following.

• The chemical abstract machine is introspective, thanks to control

guards. This is the major point.

• The rules are more effective since there are no reversible rules.
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• The chemical solutions are described with patterns that can resort

to a solution variable, with a unique occurrence, leading to a more

general formulation while avoiding a complex matching.

2.3.2 Syntax and Semantics of the Heta-calculus

The syntax and the semantics of the Heta-calculus is defined via an in-

stantiation of the chemical framework. The instantiation determines

• the signature for values, atoms and cells,

• some generic reduction rules for communication,

• the form of the reduction rules specific to each program written in

the Heta-calculus.

The values are either channels, denoted k and K for channel variables, or

standard terms over an algebra. In the following, the algebraic signature

is left implicit. It is often tacitly assumed to contain tuple constructors,

which are often omitted. For instance, we write (v1, . . . , vn) instead of

cn(v1, . . . , vn), where cn is the constructor of n-tuple. The atomic facts

are split into messages Msg(k, v) (often simplified as k(v)), where k is a

channel belonging to some finite given set and v a value, and standard

atomic facts R(v), where R is a predicate belonging to some finite given

set (disjoint from the set of channels). Cells, called agents, are split into

firewalls W [s] and orchestrators O[s]. We assume that orchestrators are

also firewalls. The firewalls that are not orchestrators can contain other

agents while the orchestrators cannot contain other agents. There is also

a root agent, called Web. Table 2.3 sums up the instantiation for syntactic

elements.

The semantics of the Heta-calculus is given by the introspective chem-

ical abstract machine. A program of the Heta-calculus contains two kinds

of rules: generic rules that are common to all programs and define com-

munication, and specific rules that define the behavior of orchestrators.

First there are two generic rules5 for communication. These rules,

presented in Table 2.4, are generic: all programs of the Heta-calculus

implicitly inherit from them. Both rules express asynchronous commu-

nication. Rule [OUT] allows a message K(V ) to go out of an agent W2

5Actually, they correspond to rule schemas, parametrized by the membranes occur-

ring in them.
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Channel Pattern h ::= k (channel)

| K (variable)

Value Pattern v ::= f v∗ (term)

| h (channel)

| V (variable)

Atom Pattern a ::= Msg(h, v) (message)

| R(v) (atomic fact)

| c (agent)

| A (variable)

Agent Pattern c ::= W [s] (firewall)

| O[s] (orchestrator)

Solution Pattern s ::= ∅ (empty solution)

| a& s (insertion)

| S (variable)

Table 2.3: Heta-calculus – Syntax

[OUT] W1[W2[K(V )&S1] &S2]

→ ¬(W1[W2[Provided(K)&S′

1] &S′

2]→ ⊤) ?

W1[K(V )&W2[S1] &S2]

[IN] W1[K(V )&W2[Provided(K)&S1] &S2]

→ ¬(W1[W2[Private(K)&S′

1] &S′

2]→ ⊤) ?

W1[W2[K(V )& Provided(K)S1] &S2]

Table 2.4: Heta-calculus – Semantics – Generic Rules for Communication

if the agent W2 does not provide the channel K. Thus each agent main-

tains a set of atoms Provided(k) giving all the channels provided by the

orchestrators inside the firewall. Rule [IN] allows a message K(V ) to

come into an agent W2 if the agent W2 provides the channel K as a non
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private channel. Thus each agent maintains not only the set of provided

channels but also a set of atoms Private(k) giving the private channels.

The set of atoms Provided(k) and Private(k) is initially declared when

the root agent Web is defined: it is required that a channel that is private

is also provided. In a static scenario with no mobility, these sets are not

assumed to evolve. However, if the scope extrusion of channels induced by

channel mobility is required, then the set of private channels may evolve,

thanks to a revision of rule [OUT]. Assume that some channel k is able

to extrude channels K ′: to ease matching, we assume that the message

has then the form k(K ′, v). The rule for channel k is modified as follows.

[OUT’] W1[W2[k(K
′, V )& Private(K ′)&S1] &S2]

→ ¬(W1[W2[Provided(k)&S′

1] &S′

2]→ ⊤) ?

W1[k(K
′, V )&W2[S1] &S2]

The channel K ′ is no longer private. For instance, after extrusion, it can

be used as a response channel.

Second, each program defines a specific set of reduction rules for or-

chestrators. Table 2.5 gives the form of these rules, as well as the grammar

generating the guards g used, given an orchestrator O.

g ::= ⊤ |
∧

g∗ | ¬(O[s]→ g)

[LOCAL] O[s1]→ g ?O[s2]

Table 2.5: Heta-calculus – Semantics – Local Rules

The local rule O[s1]→ g?O[s2] describes a transformation of the chemical

solution enclosed in orchestrator O: if the enclosed chemical solution

matches pattern s1 producing valuation τ and if the guard is satisfied after

an instantiation with τ , then the solution is transformed into s2, again

after an instantiation with τ . Recall also that an orchestrator contains

no other agent. Therefore, in the head pattern s1 and the conclusion

pattern s2, and in the head patterns s of the control guards, we can

find patterns for messages or for atomic facts but not for agents. Note
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that if a message pattern k(v) occurs in head pattern s1, it is reasonable

to assume that k is a provided channel: otherwise, rule [OUT] and the

local rule [LOCAL] could both consume the same message, which is a bit

counter-intuitive. However, in the current version of the Heta-calculus, we

do not define syntactic constraints to ensure these reasonable properties:

the programmer needs to take care of them. Local rules can be classified

into three main categories, depending on the use of the unique possible

solution variable.

Cleaning rules: these rules are used to remove all the atoms except

some finite specific multiset. A typical use is to clean a chemical

solution, once the result has been computed.

Form:

O[a1& . . .& am&S]→ g ?O[b1& . . .& bn& ∅],

where a1, . . . , am and b1, . . . , bn are atom patterns, S the solution

variable and ∅ the empty multiset.

Conversion rules: these rules are used to convert a finite specific mul-

tiset into another one.

Form:

O[a1& . . .& am& ∅]→ g ?O[b1& . . .& bn& ∅],

where a1, . . . , am and b1, . . . , bn are atom patterns, and ∅ the empty

multiset.

Standard rules: these rules are used for standard computations where

some finite specific multiset is consumed and another finite specific

multiset is produced, the remaining atoms being preserved.

Form:

O[a1& . . .& am&S]→ g ?O[b1& . . .& bn&S],

where a1, . . . , am and b1, . . . , bn are atom patterns, and S the solu-

tion variable.

With these both sets of rules, for communication and for computa-

tion respectively, it is easier to evaluate the determinism of the language

than in the general framework of introspective chams. Thus, with simple

disciplines for the definition of provided and private channels, routing

can become deterministic. Inside an orchestrator, local rules are still non
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deterministic. However, critical pairs are necessarily pairs of chemical

solutions, so that there exists a particular simple criterion to ensure local

confluence. For instance, if a critical pair comes from two rules involving

disjoint sets of messages and atomic facts during their evaluation, then

it is joinable, by a simple commutation, which implies local confluence.

This criterion can also be used for parallelization, beyond confluence:

both rules can also be triggered in parallel. For instance, rules defined in

distinct orchestrators can be executed in parallel: this is a form of true

parallelism. The question is deepened later, in Section 2.4.2.

To terminate, we develop an instructive example showing that it is

possible to encode the inequality of variables occurring in the head. An

equality between variables is simply represented by using a unique vari-

able for all the equal variables. Consider the following rule using an

inequality between two variables occurring in the head.

O[s1(V,W )]→ g ∧ (V 6= W ) ?O[s2].

We seek to replace it by rules following the definition that we have given,

namely without inequalities in guards. The pair (V,W ) of variables in

pattern s1(V,W ) just means that the pattern uses variables V and W .

Let D be an unary relation symbol, used to denote the domains of V and

W . We can initialize D as follows.

O[s1(V,W )]→(g ∧ ¬(O[D(V )&S]→⊤)) ?O[D(V )& s1(V,W )]

O[s1(V,W )]→(g ∧ ¬(O[D(W )&S]→⊤)) ?O[D(W )& s1(V,W )]

These rules add D atoms in the solution, without duplicates and with no

other effect. Then it suffices to extend the head to enforce the inequality.

O[D(V )& D(W )& s1(V,W )]→ g ?O[s2]

Indeed, since for a given V , there is at most one atom D(V ), we can

deduce that if the solution matches the head pattern with valuation τ ,

then τ(V ) 6= τ(W ).

For instance, a binary relation A can be decomposed into a diagonal

relation R and an irreflexive relation I. The decomposition could be

simply defined as follows, with inequalities in guards.

O[A(X,Y )&S]→(X 6= Y ) ?O[I(X,Y )&S]

O[A(X,X)&S]→⊤ ?O[R(X,X)&S]
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The translation gives the following program.

O[A(X,Y )&S]→(¬(O[D(X)&S′]→⊤)) ?O[A(X,Y )& D(X)&S]

O[A(X,Y )&S]→(¬(O[D(Y )&S′]→⊤)) ?O[A(X,Y )& D(Y )&S]

O[A(X,Y )& D(X)& D(Y )&S]→⊤ ?O[I(X,Y )&S]

O[A(X,X)&S]→⊤ ?O[R(X,X)&S]

Assume that initially orchestrator O contains four atoms

A(0, 0), A(1, 1), A(0, 1), A(1, 0).

After two reductions with the last rule, we obtain the following solution.

R(0, 0), R(1, 1), A(0, 1), A(1, 0).

The last two rules cannot apply with the present solution, contrary to

the first two rules, which gives two atoms D.

R(0, 0), R(1, 1), A(0, 1), A(1, 0), D(0), D(1).

The third rule can now apply, which gives the following solution.

R(0, 0), R(1, 1), I(0, 1), A(1, 0).

After a new generation of both atoms D, the third rule can again apply,

which gives the final solution.

R(0, 0), R(1, 1), I(0, 1), I(1, 0).

2.4 Validation against Requirements

Let us now revisit the requirements of Section 1.3 by validating them

against the previous definition of the Heta-calculus.

2.4.1 Distribution and Concurrency

We review requirements dealing with distribution and concurrency: dis-

tributed architecture and its message passing model, agent architecture

with its shared memory model, and fault tolerance.
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2.4.1.1 Global Message Passing Architecture

By definition, communication in the Heta-calculus conforms to amessage-

passing model: agents communicate by exchanging atoms that represent

messages. Communication is asynchronous since messages go out and into

an agent in an independent way. The ping/pong example at the beginning

of the section, along with the definition of the rules [IN] and [OUT],

serve as illustration. Thus, by construction the Heta-calculus satisfies

the requirement of asynchronous message-passing. Nevertheless, a library

of channels needs yet to be completed in the resulting implementation.

Library of Channels. To illustrate how to construct channels with

different synchrony properties over existing asynchronous channels, let

us consider the simple example of a synchronous channel k. Assume an

orchestrator using channel k with rules

O[s1]→ g ?O[s2].

We describe a sequence of transformations allowing synchrony for k.

First, we assume two relation symbols Active and Wait used to describe

the state of the agent: when the agent is in state Wait, it is waiting for

an acknowledgement over channel ack related to a message sent over k,

otherwise, it is in state Active. The rules become

O[Active()& s1]→ g ?O[Active()& s2].

Second, the conclusions are modified: each occurrence of a message k(v)

in s2 is replaced with an atomic fact Send(k, v): we get s′2.

O[Active()& s1]→ g ?O[Active()& s′2].

Third, a rule is added to describe the transition from Active to Wait

when a message over k is sent.

O[Active()& Send(k, v)&S]→ O[Wait()& k(v, ack)&S].

Fourth, the reverse transition is added, when the acknowledgement mes-

sage is received.

O[Wait()& ack()&S]→ O[Active()&S].
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Fifth, the agent providing channel k transforms the rule for asynchronous

communication

O′[k(v)& s1]→ g ?O′[s2].

into a rule for synchronous communication, by adding an acknowledge-

ment:

O′[k(v,K)& s1]→ g ?O′[K()& s2].

Channel Mobility and Extrusion. By construction, the Heta-calculus

provides channel mobility, channel scope, and scope extrusion. First,

channels are also values and can be transmitted inside messages. Then,

as seen in the definition of rules [IN] and [OUT], agents have predicates

Private and Provided to control the scope of channels: messages can

only come into the agent throughout provided channels that are not pri-

vate. Nevertheless, channels may evolve from a private status (element of

Private) to a public status (no more element of Private) if we assume

the revised rule [OUT’] for scope extrusion. However, this form of scope

extrusion differs from the one in the π-calculus: it constitutes a weak,

but sufficient, form since name conflicts after extrusion are possible. To

avoid name conflicts, a naming discipline is required, for instance the one

associated to URIs.

Let us revisit and refine the initial example, the ping-pong interaction,

by adding scope extrusion. The initial state now declares the return

channel pong as private, whereas in the introductory example, all the

channels were assumed to be public.

Web[ Client[Begin()& Provided(pong)& Private(pong)]

& Server[Counter(0)& Provided(ping)] ]

The reduction rules are not modified.

Client[Begin()&S]

→ Client[ping(pong)& Wait()&S]

Client[pong(N)& Wait()&S]

→ Client[Print(N)& End()&S]

Server[ping(K)& Counter(N)&S]

→ Server[K(N)& Counter(N + 1)&S]

The communication rules are modified, precisely by adding scope extru-

sion to rule [OUT] for the outgoing message ping(pong) which gives the
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following rule.

Web[Client[ping(pong)& Private(pong)&S] &S′]

→¬(Web[Client[Provided(ping)&S1] &S′

1]→⊤) ?

Web[ping(pong)& Client[S] &S′]

Thus, the atomic fact Private(pong) is consumed, the channel pong be-

coming public. The rule [IN] for the response pong(N) is instantiated

as follows.

Web[pong(N)& Client[Provided(pong)&S] &S′]

→¬(Web[Client[Private(pong)&S1] &S′

1]→⊤) ?

Web[Client[pong(N)& Provided(pong)&S] &S′]

Initially, the control guard evaluates to false, because of the presence of

atom Private(pong), but after extrusion, it evaluates to true, enabling

the reduction rule.

2.4.1.2 Local Shared Memory Architecture

The Heta-calculus satisfies the requirements related to agent architecture:

shared memory and locks. The chemical solution enclosed in an agent

corresponds to a shared memory where resources are shared between the

rules. Since transitions are atomic, locking can be modeled with the

consumption of a specific resource. Concerning transactions, they can

be easily implemented in the Heta-calculus. In the following example,

instead of the optimistic approach sketched in Section 2.2, we give a

shorter solution with a simple server managing a resource represented

as an atom Val(V ). The aim is to define a transaction composed of a

read operation followed with a write operation. Initially, the state of

the server S is

S[Provided(read)& Provided(write)& Val(0)].

Its rules are defined as follows.

S[read(K)& Val(V )&X]→⊤ ? S[K(V )&X]

S[write(V )&X]→⊤ ? S[Val(V )&X]

Thanks to the consumption of atoms (here Val(V )), it is therefore easy

to implement a transaction with a lock.
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2.4.1.3 Fault Tolerance

The Heta-calculus enforces a fail-safe fault tolerance, since the loss of

messages or the crash of an agent can be directly modeled in an execution.

It is also possible to model detectors. For instance, by declaring two atoms

Active and Inactive to represent the state of the agent, we can detect

an agent failure through a transition from Active to Inactive when a

crash fault occurs. Every rule of the agent

O[s1]→⊤ ?O[s2]

becomes

O[Active()& s1]→⊤ ?O[Active()& s2].

An additional rule models a crash fault:

O[Active()&S]→⊤ ?O[Inactive()&S]

For message loss, a detector can be modeled in a firewall, for instance

with a rule like this.

W [K(V )&S]→ ⊤ ?W [Loss(K,V )&S].

Then some other rules can use atom Loss(K,V ) to notify agents, to log

the omission error, and so on, in a straightforward manner.

2.4.2 Parallelism

The semantics of the Heta-calculus is not parallel. However, as we have

already seen, there is a particularly simple criterion for parallelization:

two rules involving disjoint sets of atoms during their evaluation commute,

and can even be executed in parallel. As this is always the case for two

rules belonging to two distinct agents, especially orchestrators, we can

consider that parallelism is explicit at the global level with the hierarchy

of agents; on the contrary, it is implicit at the orchestrator level as some

analysis is required.

It remains that this important analysis for parallelization inside an

orchestrator presents some issues. First, is it easy to generalize to any

number of rules, beyond two? Second, what is the impact of introspec-

tion? Indeed, introspection requires to consider the whole process of

evaluation, and not only the consumption of head atoms.
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To answer these questions, we formalize the criterion: to the best of

our knowledge, it has never been formalized for chemical machines, but

belongs to folklore. We prove the generalization and use a more abstract

statement in order to easily deal with introspection.

A Labeled Transition System. Given a program written in the Heta-

calculus, we consider the transition system defined over cells with the

transition relation⇒. Actually, we limit ourselves to an orchestrator and

its enclosing firewall, which is the problematic case. We can label each

transition with a pair whose first component is the reduction rule applied

and second component is the valuation applied. Recall that the reduction

rule applied is

• either a rule instance of the generic rule schema [IN] for incoming

messages,

• a rule instance of the generic rule schema [OUT] for outgoing mes-

sages,

• or a specific rule [LOCAL] for a local reduction in an orchestrator.

For instance, if the semantic transition γ1 ⇒ γ2 is the axiom

(h→ g ? c ∈ p) (c1[τ ] |=τ g)
[CHEMICAL REACTION]

c1[τ ]⇒ c2[τ ]

then the transition is labeled with

(h→ g ? c, τ).

Consider a transition γ1
(r,τ)
⇒ γ2, where r is a local rule and τ a valuation.

We denote γ2 by γ1〈(r, τ)〉. Likewise, the composition of two transitions

(or more) is expressed with a semi-colon: γ1〈(r1, τ1); (r2, τ2)〉 represents

the cell obtained after two transitions, labeled with (r1, τ1) and (r2, τ2)

respectively. When the transitions commute, we write: γ1〈(r1, τ1)|(r2, τ2)〉

for the final cell. More generally, we write γ1〈(r1, τ1)| . . . |(rn, τn)〉 to mean

that there exists a cell γn+1 such that for all permutation ρ, we have:

γn+1 = γ1〈(rρ(1), τρ(1)); . . . ; (rρ(n), τρ(n))〉.

For the transition γ1
(r,τ)
⇒ γ2, there exists a solution σW and atom solutions

σ1 and σ2 such that γ1 = W [O[σ1] &σW ] and γ2 = W [O[σ2] &σW ], where
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O is the orchestrator considered and W its enclosing firewall. We can now

define the consumption Hr,τ and the production Cr,τ of atoms due to the

triggering of rule r by the following equation:

σ2 = σ1 −Hr,τ ⊎Cr,τ .

The operation A−B is equal to the multiset difference, where the multi-

plicity of each element is equal to the difference of its multiplicities from A

to B; we assume that B is included in A, which means that the multiplic-

ity of each element in B is less than its multiplicity in A. The operation

A⊎B is equal to the multiset union, where the multiplicity of each ele-

ment is equal to the sum of its multiplicities in A and B. Of course, the

above equation allows multiple solutions, and at least one, (σ1, σ2): we

need to define a way to select a pertinent solution. A standard reduction

rule has the form

O[a1& . . .& am&S]→ g ?O[b1& . . .& bn&S],

where a1, . . . , am and b1, . . . , bn are atom patterns, and S a solution vari-

able. The associated transition becomes

O[H ⊎ τ(S)]⇒ O[C ⊎ τ(S)],

where τ is the valuation involved, and H and C are multisets of atoms,

defined as follows:

H = (a1& . . .& am& ∅)[τ ],

C = (b1& . . .& bn& ∅)[τ ].

The pair (H,C) is a natural solution. But often, some atoms ai are

preserved, which means that we have some equalities ai[τ ] = bj [τ ]. The

associated transition becomes:

O[H ′ ⊎P ⊎ τ(S)]⇒ O[C ′ ⊎P ⊎ τ(S)],

where H ′, C ′ and P are multisets of atoms with H ′ ∩ C ′ = ∅. We now

get two natural solutions: (H ′, C ′) and (H ′ ⊎P,C ′ ⊎P ). As we will see

below, the best choice with respect to the criterion for parallelization is to

select the smallest multisets, that is (H ′, C ′): thus, the pair (Hr,τ , Cr,τ )

will always represent the smallest solution, with respect to inclusion. It

also satisfies Hr,τ ∩ Cr,τ = ∅.

In the following, we limit ourselves to standard reduction rules. We

do not consider the case of cleaning or conversion rules: indeed, they

are rarely parallelizable since they remove the remaining of the solution

(corresponding to τ(S)).
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Commutation and Parallelization. We can now define a binary rela-

tion between rules to express that these rules are parallelizable. Actually,

it is better to define the relation between rule instances, that is labels

(r, τ), where r is a rule and τ a partial valuation. The extended defini-

tion allows the same rule to be parallelizable: it is useful for a rule that

is parametrized with a session identifier. For instance, consider the rule

O[req(K,A, S)& State(V, S)&X]

→⊤ ?O[K(f(V,A), S)& State(g(V,A), S)&X].

Variable S represents the session identifier. Agent O maintains a state

State(V, S) for session S. The agent replies to the request by using

channel K, a value f(V,A) computed from state V and input A, and the

session identifier passed in the request, and updates the state associated

to the session with g(V,A). Clearly, several instances of the rule can

be executed in parallel, provided that the session identifiers are pairwise

distinct. In that case, the relation will be defined between rule instances

(r, (S 7→ s)), where r is the rule and (S 7→ s) the valuation assigning s to

S.

We say that rule instances (r1, τ1) and (r2, τ2) commute, or are com-

mutable, if for all cell γ and for all valuations τ ′1 and τ ′2, we have the

following property:

if there are two transitions from γ labeled with (r1, τ1.τ
′

1) and

(r2, τ2.τ
′

2) respectively,

γ ⇒ γ〈(r1, τ1.τ
′

1)〉

γ ⇒ γ〈(r2, τ2.τ
′

2)〉

then

Commutativity: the transitions compose and commute:

γ〈(r1, τ1.τ
′

1); (r2, τ2.τ
′

2)〉 = γ〈(r2, τ2.τ
′

2); (r1, τ1.τ
′

1)〉.

The relation expresses a commutativity property, which already implies

local confluence. But actually it also implies a disjointness property,

which paves the way towards parallelization. We say that rule instances

(r1, τ1) and (r2, τ2) are disjoint, if for all cell γ and for all valuations τ ′1
and τ ′2, we have the following property:
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if there are two transitions from γ labeled with (r1, τ1.τ
′

1) and

(r2, τ2.τ
′

2) respectively,

γ ⇒ γ〈(r1, τ1.τ
′

1)〉

γ ⇒ γ〈(r2, τ2.τ
′

2)〉

then

Disjointness: the associated consumptions are disjoint.

Hr1,τ1.τ
′

1
∩Hr2,τ2.τ

′

2
= ∅.

We have the following implication between both previous properties.

Proposition 2.4.1 (Commutativity implies Disjointness). Assume that

(r1, τ1) and (r2, τ2) commute. Then they are disjoint.

Proof. Consider a cell γ and valuations τ ′1 and τ ′2 such that there are two

transitions from γ labeled with (r1, τ1.τ
′

1) and (r2, τ2.τ
′

2) respectively. Let

H1 = Hr1,τ1.τ
′

1
, H2 = Hr2,τ2.τ

′

2
, C1 = Cr1,τ1.τ

′

1
and C2 = Cr2,τ2.τ

′

2
. Let

I = H1 ∩ H2. Let H ′

1 and H ′

2 be multisets satisfying H1 = H ′

1 ⊎ I and

H2 = H ′

2 ⊎ I. The transitions can be written for some R

H ′

1 ⊎ I ⊎H
′

2 ⊎R⇒ C1 ⊎H
′

2 ⊎R

and

H ′

1 ⊎ I ⊎H
′

2 ⊎R⇒ H ′

1 ⊎C2 ⊎R.

Assume that I is not empty. After the first transition, we have

C1 ⊎H
′

2 ⊎R = C1 ⊎H
′

2 ⊎ I ⊎R
′

for some sub-multiset R′ of R, since H1 ∩ C1 = ∅, hence I ∩ C1 = ∅ and

the second transition must be possible. Thus, the first rule must express

the presence of two I, and not only one I. Likewise for the second rule,

by symmetry. It means that R′ must contain I, and so on, which is a

contradiction. Finally, I is empty: the sets H1 and H2 are disjoint.

Without introspection, that is with rules without guards (precisely

with guards always true), the commutativity property is equivalent to

the disjointness property. With introspection, that is with rules with

control guards, the equivalence is no more valid. A typical example of non
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commutativity is the production of an inhibitor for the second transition,

as in chemistry. For instance, the rules

O[A()&S] → ⊤ ?O[B()&S]

and O[C()&S] → ¬(B()&X → ⊤) ?O[D()&S]

are disjoint but do not commute. Finally, the impact of introspection

is limited to this non-equivalence: disjointness needs to be replaced with

commutativity, as a criterion for parallelization, as shown by the following

proposition. In the following, we denote the solution associated to a cell

γ by γ.Σ:

O[σ].Σ = σ.

Proposition 2.4.2 (Elementary Parallelization). Assume that (r1, τ1)

and (r2, τ2) commute.

For all cell γ, for all valuations τ ′1 and τ ′2,

if there are two transitions from γ labeled with (r1, τ1.τ
′

1) and (r2, τ2.τ
′

2)

respectively,

γ ⇒ γ〈(r1, τ1.τ
′

1)〉

γ ⇒ γ〈(r2, τ2.τ
′

2)〉

then

Parallelization: the final solution can be computed from the initial tran-

sitions as follows:

γ〈(r1, τ1.τ
′

1)|(r2, τ2.τ
′

2)〉.Σ

= γ.Σ− (Hr1,τ1.τ
′

1
⊎Hr2,τ2τ

′

2
)⊎(Cr1,τ1.τ

′

1
⊎Cr2,τ2.τ

′

2
).

Proof. Due to commutativity, the final solution is equal to

(γ.Σ−Hr1,τ1.τ
′

1
⊎Cr1,τ1.τ

′

1
)−Hr2,τ2τ

′

2
⊎Cr2,τ2.τ

′

2
,

which gives the intended solution thanks to the disjointness property.

Generalization. Finally we show the generalization, that is paralleliza-

tion for n rule instances.

Theorem 2.4.3 (Parallelization). Consider a family of rule instances
(

(ri, τi)
)

i
. Assume that for all distinct i and j, we have that (ri, τi) and

(rj , τj) commute.
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For all cell γ, for all valuations (τ ′i)i,

if for all i, there is a transition from γ labeled with (ri, τi.τ
′

i),

γ ⇒ γ〈(ri, τi.τ
′

i)〉

then

Commutativity: all the transitions compose and commute,

γ ⇒n γ〈(r1, τ1.τ
′

1)| . . . |(rn, τn.τ
′

n)〉

Parallelization: the final solution can be computed from the initial tran-

sitions as follows:

γ〈(r1, τ1.τ
′

1)| . . . |(rn, τn.τ
′

n)〉.Σ

= γ.Σ− (Hr1,τ1.τ
′

1
⊎ . . .⊎Hrn,τn.τ ′n

)⊎(Cr1,τ1.τ
′

1
⊎ . . .⊎Crn,τn.τ ′n

).

Proof. Assume that for all distinct i and j, we have that (ri, τi) and (rj , τj)

commute. Hence, they are disjoint. Let γ be a cell, and (τ ′i)i a family of

valuations. Assume that for all i, γ ⇒ γ〈(ri, τi.τ
′

i)〉. By disjointness, we

have: for all distinct i and j, Hri,τi.τ
′

i
∩Hrj ,τj .τ

′

j
= ∅.

First, it is straightforward to prove by induction over n that

γ〈(r1, τ1.τ
′

1); . . . ; (rn, τn.τ
′

n)〉

is well-defined. Just use the assumption that any pair of rule instances

(ri, τi) commute, which entails well-definedness.

Second, to prove commutativity, we use the fact that any permutation

can be decomposed into a sequence of elementary transpositions (involv-

ing one and only one exchange of contiguous values). For an elementary

transposition, the result is trivial, since any pair of rule instances (ri, τi)

commute.

Third we show by induction over the cardinal n property Pn:

γ〈R1| . . . |Rn〉.Σ = γ.Σ− (H1 ⊎ . . .⊎Hn)⊎(C1 ⊎ . . .⊎Cn),

where Ri = (ri, τi.τ
′

i), Hi = HRi
(atoms consumed) and Ci = CRi

(atoms

produced).

P1 is trivial, P2 is true by assumption (commutativity) and by the pre-

ceding proposition (parallelization).

Assume n > 2. Assume the Inductive Hypothesis: for all m < n, Pm.
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Pn−2 gives:

γ〈R1| . . . |Rn−2〉.Σ = γ.Σ− (H1 ⊎ . . .⊎Hn−2)⊎(C1 ⊎ . . .⊎Cn−2).

Pn−1 gives:

γ〈R1| . . . |Rn−2|Rn−1〉.Σ = γ.Σ−(H1 ⊎ . . .⊎Hn−2 ⊎Hn−1)⊎(C1 ⊎ . . .⊎Cn−2 ⊎Cn−1)

and

γ〈R1| . . . |Rn−2|Rn〉.Σ = γ.Σ−(H1 ⊎ . . .⊎Hn−2 ⊎Hn)⊎(C1 ⊎ . . .⊎Cn−2 ⊎Cn).

We deduce:
(

γ − (H1 ⊎ . . .⊎Hn−2)⊎(C1 ⊎ . . .⊎Cn−2)
)

〈Rn−1〉.Σ

= γ.Σ− (H1 ⊎ . . .⊎Hn−2 ⊎Hn−1)⊎(C1 ⊎ . . .⊎Cn−2 ⊎Cn−1)

and
(

γ − (H1 ⊎ . . .⊎Hn−2)⊎(C1 ⊎ . . .⊎Cn−2)
)

〈Rn〉.Σ

= γ.Σ− (H1 ⊎ . . .⊎Hn−2 ⊎Hn)⊎(C1 ⊎ . . .⊎Cn−2 ⊎Cn),

which can be rewritten as follows:
(

γ − (H1 ⊎ . . .⊎Hn−2)⊎(C1 ⊎ . . .⊎Cn−2)
)

〈Rn−1〉.Σ

=
(

γ.Σ− (H1 ⊎ . . .⊎Hn−2)⊎(C1 ⊎ . . .⊎Cn−2)
)

−Hn−1 ⊎Cn−1

and
(

γ − (H1 ⊎ . . .⊎Hn−2)⊎(C1 ⊎ . . .⊎Cn−2)
)

〈Rn〉.Σ

=
(

γ.Σ− (H1 ⊎ . . .⊎Hn−2)⊎(C1 ⊎ . . .⊎Cn−2)
)

−Hn ⊎Cn,

thanks to assumptions Hi ∩ Hj = ∅ and Hi included in γ.Σ. Since

(rn−1, τn−1) and (rn, τn) commute, we deduce by the preceding propo-

sition
(

γ − (H1 ⊎ . . .⊎Hn−2)⊎(C1 ⊎ . . .⊎Cn−2)
)

〈Rn−1 | Rn〉.Σ

=
(

γ.Σ− (H1 ⊎ . . .⊎Hn−2)⊎(C1 ⊎ . . .⊎Cn−2)
)

− (Hn−1 ⊎Hn)⊎(Cn−1 ⊎Cn)

then, thanks to assumptions Hi ∩Hj = ∅ and Hi included in γ.Σ,

(

γ − (H1 ⊎ . . .⊎Hn−2)⊎(C1 ⊎ . . .⊎Cn−2)
)

〈Rn−1 | Rn〉.Σ

= γ.Σ− (H1 ⊎ . . .⊎Hn−2 ⊎Hn−1 ⊎Hn)⊎(C1 ⊎ . . .⊎Cn−2 ⊎Cn−1 ⊎Cn)

and finally by transitivity Pn.
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We will see later how to concretely apply the criterion for paralleliza-

tion inside orchestrators. Its interest comes from the reduction that it

performs: indeed it involves a sequence of verifications for pairs of rule

instances, instead of verifications for all their subsets. Thus the verifi-

cation entails a complexity in n2, instead of 2n, if there are n rule in-

stances. Note however that standard inference rules to optimize are not

valid. Thus the binary relation ”commutable”, which is symmetric and

(essentially) irreflexive6, is not transitive. For instance, the rules

O[A()&X]→⊤ ? O[B()&X] and O[C()&X]→⊤ ? O[D()&X]

commute, likewise the rules

O[C()&X]→⊤ ? O[D()&X] and O[A()&X]→⊤ ? O[B’()&X],

but the rules

O[A()&X]→⊤ ? O[B()&X] and O[A()&X]→⊤ ? O[B’()&X],

do not commute. In the same vein, the complement of the relation ”com-

mutable” is not transitive.

2.4.3 Services and Resources

Values in the Heta-calculus can be structured and hence can contain keys

to correlate messages. Then, correlation is supported, thanks to equalities

that can be expressed in heads. A good example is the case of a server

agent that serves multiple clients:

W [Server[Provided(op)& Session(0)]& ClientA[sa] & ClientB[sb]].

For each client the server keeps a Session variable that serves to correlate

the messages in a conversation with a particular client:

Server[op(K)& Session(V )& s1]

→⊤ ? Server[Corr(V,K)& Session(V + 1)& s2]

Server[Corr(V,K)& Result(V,X)&S]→ ? Server[K(X)&S]

In this example, the result, once computed, is correlated with the request,

in order to send the response. The Heta-calculus also provides a way to

6Actually, for special rule instances r, for instance the identity rule, we can have: r

and r commute.
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implement Map/Reduce operations. We propose an example showing how

to encode these operations. Consider we want to perform the following

computation: for any integer in a stream, multiply it by 2 and then sum

all the results. Here is the program, without representing the clients.

Web[Map[Provided(twice)] & Reduce[Provided(sum)& Result(0)]]{

Map[twice(V )&S]→⊤ ? Map[sum(2 ∗ V )&S]

Reduce[sum(V )& Result(V ′)&S]→⊤ ? Reduce[Result(V + V ′)&S]}

We alleviate the definition by omitting the arithmetic computations, di-

rectly given in the conclusions. A client then sends the integers in the

stream over channel twice.

The Heta-calculus provides a universal model for representing re-

sources since the chemical solution associated to an agent is akin to a

relational structure, as expected.

Additionally, the calculus allows to interface with any resource. For

an internal resource, the Heta-calculus exactly follows the design decision

given in Section 2.2: an interface of channels, a state as a relational

structure (a multiset of atoms precisely). For an external resource, the

interfacing principle is to use impure relations R producing impure atoms

R(v), whose reduction is defined by a possibly infinite set of reductions

of the following form.

O[R(v)&S]→⊤ ?O[s]

Thus, atom R(v) can be interpreted as a call to an external native func-

tion. All the useful information is passed through the argument v. Impure

atoms are useful not only to model impure effects (side effects) but also

to embed another language into the Heta-calculus. For further examples,

see Section 3.1.3.

The typing requirement is trivially satisfied since the Heta-calculus is

untyped. The extension with a type system using standard set operations

is foreseen.

Finally, for verifying computational completeness we show that intro-

spection increases the expressive power. To express the computability

limitation for standard chams, we need some terminology. By a standard

cham, we mean a cham without introspection, in other words a cham

where rules have only a guard that is true. Without loss of generality, we

only consider one agent (an orchestrator, with no communication). Rela-

tions are arbitrarily split into two classes, the class of observable relations
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and the class of unobservable ones. A transformation is a binary relation

over multisets of atoms built from symbols of observable relations. A

transformation T is computable by a standard cham if there are

(i) a finite set of local rules

O[s1]→⊤ ?O[s2]

and

(ii) a multiset σ−

1 of initial atoms built from symbols of unobservable

relations

such that for all multiset σ+
1 in the input domain of the transformation

T , we have:

(i) for all multiset σ+
2 associated to σ+

1 by T , there exists an execution

starting from the solution σ−

1 ⊎σ
+
1 and terminating with the solution

σ−

2 ⊎σ
+
2 , where σ

−

2 is some multiset of final atoms built from symbols

of unobservable relations, and

(ii) all execution starting from the solution σ−

1 ⊎σ
+
1 terminates, with

a final solution σ−

3 ⊎σ
+
3 , where σ−

3 is some multiset of final atoms

built from symbols of unobservable relations and where (σ+
1 , σ

+
3 )

belongs to T .

We can now formally specify the following limitation: a standard cham

cannot compute a cloning transformation. We denote 〈R()p 〉 the multiset

containing p occurrences of atom R().

Proposition 2.4.4 (Clone Problem). Given a symbol R of an observable

relation with arity zero, the transformation T equal to

(〈R()n 〉, 〈R()2n 〉)n∈N

cannot be computed by a standard cham.

Proof. Suppose for a contradiction that there exists a standard cham com-

puting transformation T . Let n be a natural number. There exists an

execution starting from σ−

1 ⊎ 〈R()n 〉 and terminating with σ−

2 ⊎ 〈R()2n 〉.

Then since the guards are always true, by applying the chemical reactions

and by maintaining apart an atom R(), we deduce an execution starting
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from σ−

1 ⊎ 〈R()n+1 〉 and reaching σ−

2 ⊎ 〈R()2n+1 〉. The last solution can-

not be final by assumption. Hence there exists a rule that can be trig-

gered. If the rule consumes less than 2n+1 atoms R(), then σ−

2 ⊎ 〈R()2n 〉

cannot be a final solution, contradiction. Therefore, for each n, there ex-

ists a rule that consumes 2n+1 atoms R(). This is a contradiction, since

the cham has a finite set of rules.

Introspection increases the expressive power since we can solve the

clone problem.

Proposition 2.4.5 (Clone Problem Revisited). Given a symbol R of an

observable relation with arity zero, the transformation T equal to

(〈R()n 〉, 〈R()2n 〉)n∈N

can be computed by an introspective cham.

Proof. Consider the following program in pure Heta-calculus.

O[One()&R()&S]→⊤ ?O[One()&C()&C()&S]

O[One()&S]→¬(O[R()&S′]→⊤) ?O[Two()&S]

O[Two()&C()&S]→⊤ ?O[Two()&R()&S]

O[Two()&S]→¬(O[C()&S′]→⊤) ?O[Three()&S]

Then its execution starting from the local solution 〈 One(), R()n 〉 always

terminates with the solution 〈 Three(), R()2n 〉, for any n.

To conclude, the Heta-calculus satisfies all the requirements in a sat-

isfactory way: Table 5.1, in Conclusion, provides an overview. We now

come to practice, by presenting an implementation of the Heta-calculus.



Chapter 3

Criojo: the Heta-calculus

made concrete

This chapter is dedicated to Criojo, the language that aims at concretiz-

ing the theory presented in Chapter 2. Criojo allows the definition of

agent behaviors via a set of rules, according to a general schema. From

this starting point, we open perspectives into two directions. From the

developer point of view, we present a tutorial explaining how to program

with Criojo: essential features, like program definitions, introspection,

interfacing with external resources, modularity and composition, distri-

bution, are explained by examples. The part culminates with the presen-

tation of examples that show that Criojo encompasses four paradigms for

programming: concurrent, functional, sequential and logical. From the

implementer point of view, we discuss the major challenges for the imple-

mentation and we explain our choices. We describe how to translate the

Heta-calculus into a concrete programming language. Then we describe

implementation details of our prototype. The overall picture is as follows.

From a given description, rules are generated. Then, the generated rules

are executed on a chemical machine. There are several possibilities for

the implementation of the language, as having a compiler or interpreting

on a virtual machine, or both, depending on the abstraction level of the

virtual machine. Our choice for the current implementation in Scala,

was to describe the rules directly in the host language in the form of an

internal domain-specific language (DSL), which was the best option for a

prototype, and to implement the chemical machine as an interpreter.

3.1 Programming with Criojo in Scala

In this section we present the basic functionalities of Criojo with some

examples. As we go through the examples, we informally revisit the

semantics of the Heta-calculus, which is the theory behind Criojo.
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Criojo is implemented as a Scala API with an internal Domain Spe-

cific Language (internal DSL), also called embedded language. An internal

DSL is a kind of mini-language created within an existing host language,

by using a subset of its grammar, and adding new features to the host

language without actually modifying it. The principal advantage of an

internal DSL is that it does not need a compiler, so the language imple-

mentor can focus on the implementation of the semantic features of the

embedded language without syntactic concerns. However, internal DSLs

are somehow limited by the programming model of the host language:

the type system, the syntactic constructs available.

In this section we begin by showing how to define the behavior of

agents with Criojo. Next, we show how distribution allows Criojo agents

to communicate and collaborate. We finish with a set of more complex

examples that show the completeness of Criojo.

3.1.1 Defining Agent Behavior

An agent is an independent computational unit, whose state is repre-

sented by a chemical solution and whose behavior is defined as a set of

reaction rules. Resources in the agent are represented in terms of a re-

lational structure: a predicate applied to terms expresses an atomic fact

and defines extensionnally a relation, considered as a multiset. Besides

standard atoms, there are other atoms, messages, built from specific rela-

tions (and corresponding to the relation Msg parametrized with a channel,

Msg(k,−), in the Heta-calculus). The multiset of atoms within the agent

constitute its state in the form of a chemical solution. The state of the

agent is modified by reaction rules that generate new atoms by consuming

existing atoms from the solution. Some of the new atoms stays in the local

solution, while others are exported, depending on the type of relation that

defines them. There are two types of relations in a Criojo agent: Local

Relations, which are used only internally within the agent; and Channels,

which allow the communication with other agents, by transporting mes-

sages from one agent to another. Details of agent communication through

channels are further explained in the next section.

The following is an example of a simple Criojo agent, call authAgent,

that validates, based on her registry status, wether an user has the right

to access a resource in a Web application. A user status can be Guest,

Registered or Admin. Resources can be of public access, restricted to

registered members, or restricted to administrators. The initial state of
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the program contains the user status and the resource access type. The

program produces a Ok atom, containing the id of the user and the id of

the resource if the user has the right to access the resource.

1 val authAgent = new Agent(){

2 val Guest, Admin, Registered = Rel[UUID]

3 val PublicAccess, MembersAccess, AdminAccess = Rel[UUID]

4 val PublicResource, MembersOnlyResource, AdminResource = Rel[UUID]

5 val Ok = Rel[UUID, UUID]

6 val uid, rid = Var[UUID]

7

8 rules(

9 Guest(uid) −−> PublicAccess(uid),

10 Registered(uid) −−> (PublicAccess(uid) & MembersAccess(uid)),

11 Admin(uid) −−>

12 (AdminAccess(uid) & PublicAccess(uid) & MemberAccess(uid)),

13

14 (PublicResource(rid) & PublicAccess(uid)) −−> Ok(rid, uid),

15 (MembersOnlyResource(rid) & MemberAccess(uid)) −−> Ok(rid, uid),

16 (AdminResource(rid) & AdminAccess(uid)) −−> Ok(rid, uid)

17 )

18 }

First, the snippet shows how agents are created by instantiating the class

Agent, from the Criojo API. In line(2), we declare three local relations

Guest, Registered and Admin of type UUID, a utility type used for unique

identifiers 1. Then, in line (4), we declare two UUID variables uid, and rid.

The rules in lines (7-14) consist of a pattern at the left side of the arrow

and a join of atoms on the right, forming the conclusion. For example, the

rule in line (8) can be read as follows: every time the solution contains an

atom Registered matching the left pattern, that atom will be consumed

in order to produce new atoms PublicAccess and MemberAccess, indi-

cating that a user of type Registered has access to public resources and

to resources reserved for members. The rest of the rules in lines (12-14)

compare the resource’s access restriction against the user access rights

generated in lines (7-9): a public resource can be accessed by any one

1http://en.wikipedia.org/wiki/Universally_unique_identifier

http://en.wikipedia.org/wiki/Universally_unique_identifier
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with public access, an so on. Note a difference with the Heta-calculus:

the solution variables are omitted in the rules. Note also that the program

produces no result in the case of a user with insufficient rights for access-

ing a resource, since none of the rule applies. In fact, in order to provide

a failure response it is necessary to create a rule that verifies the absence

of the corresponding access atom, hence the importance of introspection.

We now present three fundamental features of Criojo: introspection

for expressing all possible transformations of the solution, adaptability for

interacting with external components, and modularity for reusing rules.

3.1.1.1 Agent Introspection

Thanks to guards, Criojo offers introspection: an agent is capable of

introspecting its own state. Thus, the execution of a rule (where the

agent is left implicit)

s1→ g ? s2

depends on the satisfaction of its guard g. When the guard is True, it can

be omitted. The pattern s1 binds variables in g and s2. If the variables

in s2 are all bound by the binder pattern s1, it is not the case for guard

g. Variables in g can also be bound by the left pattern of a guard control

occurring in g. The syntax of guards in Criojo is based on that of the

Heta-calculus, with the addition of some syntactic sugar:

Guard g ::= True

| g && g (and)

| g ‖ g (or)

| Not(s→ g) (control)

| Abs(s) (absence)

Indeed, the or and absence guards are not present in the definition of the

Heta-calculus. The guard Abs(s) is a shortcut for Not(s→ True), which

verifies the existence of the molecule s in the solution. The or guard

simulates having two identical rules with disjoint guards. In other words,

a rule s1→ (g1‖g2) ? s2 could be translated into

s1→ g1 ? s2 and s1→ g2 ? s2.

In the following example, we produce the clone of a relation, using

the absence guard to test the absence of a molecule in the solution, guar-

anteeing in this way the termination of the program.
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1 (One() & R(x)) −−> (One() & S(x) & S(x)),

2 One() −−> Abs(R(x)) ?: Two(),

3 (Two() & S(x)) −−> (Two() & R(x))

In this program rules 1,2 and 3 are executed in sequence, without loops.

In the first phase, Rule 1 transforms each atom R into two atoms S. The

second phase occurs in Rule 3, where each atom S is transformed into

an atom R, obtaining two copies of each initial atom R. The transition

between the two phases is made by Rule 2, when all the initial R atoms

have been consumed.

Additionally, Criojo offers support for native guards, an extension

that can be encoded in the Heta-calculus by using two rules and impure

atoms.

Guard g ::= . . .

| x op y (boolean operation)

Native guards are treated as an extension based on native tests performed

in the host language. For example, in the following rule we use the ex-

pression x > y as a guard in order to compute the maximum value v for

atoms V(x):

1 ! V(x) −−> (Abs(Max(x)) && Not(V(y)−>{y>x})) ?: Max(x)

The rule produces an atom Max with the maximum value, while keeping

all the V atoms in the solution. The bang (!) symbol indicates that the

atom V(x) is persistent in the solution for this rule. Thus, writing ! L(x)

−−> R(x) is the same as writing L(x) −−> (R(x) & L(x)). It is important

to note that the expressions in the guard cannot contain free variables.

They must be bound either to the variables in the guard or to the variables

in an outer guard.

3.1.1.2 Criojo Adapters

An adapter allows the use of a component in a context different from

the one it was initially intended, in order to allow collaboration with

other components. In the case of Criojo, an adapter wraps an external

component, abstracting it in terms well suited to the chemical machine.

Concretely, it simulates a possible infinite set of rules that generate the
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atoms corresponding to the resources provided by the wrapped compo-

nent. Adapters in Criojo are defined as special types of relations called

Native Relations2 which are associated with native functions that trans-

form a collection of terms into a molecule, that is to say, a collection of

atoms. The result of applying a native relation to a set of terms is the

execution of its function, followed by the introduction into the solution

of the returned value, a molecule.

Let us now show with an example how to integrate the host language’s

functionalities into Criojo. In the following extract we use a native in-

vocation to populate the solution with a given number of atoms.

1 val Init = Rel[Int]

2 val L = Rel[Int,Int]

3 private val genList = NativeFun[Int]{

4 case WrappedValue(max:Int)::_ =>

5 (0 to max).map(i => L(i,max−i)).toList

6 case _ => List[Atom]()

7 }

8 rules(

9 Init (x) −−> genList(x)

10 )

The NativeFun constructor used in line (2) associates the native relation

genList to a function with type List[Term] => List[Atom]. The ar-

gument type is a list as the arity of the native relation can be any natural

number. The arity here is assumed to be equal to one: only the first term

of the list is pertinent. The type parameter, here equal to Int, deter-

mines the Scala type of the values wrapped in the list. We use Scala’s

pattern matching in line (4) for extracting the actual type and value of

the term, which in this case is an Int wrapped in a Criojo term. In line

(5) the list of atoms is produced by iterating max number of times. The

result is a list of atoms L(i,v), representing an indexed list where i is

the index, and v the corresponding value. Thus, each time the rule in line

(9) produces an atom genList(n), the associated function is executed,

returning n atoms L(i,n-i), which are introduced into the solution.

This simple example shows us how thanks to Criojo’s adaptability

2In the Heta-calculus, we said impure relations. In Criojo, they are called native

as they are implemented in the host language.
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some computations can be optimized by exploiting the host language’s

functionalities from within agents. Yet the real importance of this feature

resides on the possibility of interacting with external components such

as input/output devices, database systems or web services. In this way

Criojo’s adaptability adheres to the black box principle, which is a derived

requirement for the orchestration of web services we already mentioned

in Section 2.2.

3.1.1.3 Modularity and Composition

Modularity and separation of concerns can be achieved in Criojo via

agent collaboration. Another way of assuring the single responsibility

principle is by factorizing behavior in independent modules which can be

later combined within an agent. To illustrate modularity in Criojo we

define the following agent that computes a Sierpinski triangle and prints

the result in a SVG file by using the module called SVGPainter.

1 val sierpinskiAgent = new Agent with SVGPainter{

2 ...

3 rules(

4 Sierpinski(h,n) −−> srpsk(h,0,h,n),

5

6 srpk(x,y,h,n) −−> {n>0} ?: (srpsk(x, y, h/2, n−1) & srpsk(x−h/2,

y+h/2, h/2, n−1) & srpsk(x+h/2, y+h/2, h/2, n−1)),

7

8 srpsk(x,y,h,n) −−> {n===0} ?: (paintTriangle(x−>y, (x−h)−>(y+h),

(x+h)−>(y+h))),

9 )

10 }

The declaration in line (1) states that the agent sierpinskiAgent is

as usual an instance of class Agent, but combined this time with the

module SVGPainter, which is actually a Scala trait 3. The module

SVGPainter contains the rules for creating SVG images. It provides a

relation paintTriangle for painting a triangle with the given coordi-

nates. Line (4) of the program corresponds to the initialization phase:

upon receiving a message Sierpinski(h,n), the agent initiates the com-

3Traits in Scala differ from interfaces in that traits allow partial implementation.
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putation of an isosceles Sierpinski triangle of height h and of base 2.h,

and whose apex is located at x=h,y=0. The corresponding points of the

triangle are (0, h), (h, 0), (2h, h). The parameter n is the desired

number of iterations. The iterative rule in line (6) transforms a triangle

into three reduced copies, whose height is half of the height of the initial

triangle. Each copy is positioned in such a way that it touches the other

two at a corner. In line (8), the triangles are painted, when the desired

depth is obtained i.e., when n is equal to zero. The coordinates of the

corners of each triangle are send in the form of tuples, expressed with the

notation x -> y.

Figure 3.1: A Sierpinski triangle generated with sierpinskiAgent

The Criojo modules are an alternative to separate agents. Seman-

tically, the solutions are equivalent, if we neglect the possibility of name

conflicts and introspection: this is a form of location transparency. But

syntactically, the solution with modules is more concise. Thus, Criojo

offers re-usability thanks to modularity and agent composition. In this

way, we can factorize common behavior into Scala modules that can be

used in different contexts.

3.1.2 Distribution in Criojo

Besides being a language for writing rules, Criojo is above all a language

for distributed computing. Agents in Criojo can communicate with each

other by exchanging messages through channels. We make the distinction

between two types of channels: input channels are provided by the agent

we are defining, while output channels refer to the channels provided by
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another agent. The output channel of one agent corresponds to the input

channel of another agent.

To show how distribution works in Criojo, we revisit the authenti-

cation example from Section 3.1.1. In this version, the validation is dis-

tributed into two separate agents. The new authAgent deduces the user’s

access rights from her profile and compares them with the resource’s ac-

cess restrictions that it obtains from another agent called resAuth.

1 val authAgent = new Agent(”authAgent”, LocalGateway){

2 val getRes = OutputChannel(”getResourceAccess”, ”resAuth”)

3 val resAccess = InputChannel(”resAccess”)

4

5 val Guest, Admin, Registered, Resource, Done = Rel[UUID]

6 val User = Rel[UUID, String]

7 val Error = Rel[UUID, UUID]

8 val uid, rid = Var[UUID]

9 val access = Var[String]

10

11 rules(

12 Guest(uid) −−> (User(uid, ”Public”) & Done(uid)),

13 Registered(uid) −−>

14 (User(uid, ”Public”) & User(uid, ”Members”) & Done(uid)),

15 Admin(uid) −−>

16 (User(uid, ”Admin”) & User(uid, ”Public”) &

17 User(uid, ”Members”) & Done(uid)),

18

19 Resource(rid) −−> getRes(rid, resAccess),

20

21 (resAccess(rid, access) & User(uid, access) & Done(uid)) −−>

Ok(rid, uid),

22

23 (resAccess(rid, access) & Done(uid)) −−>

24 {Abs(User(uid, access))} ?: Error(rid, uid)

25 )

26 }
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The new agent defines two channels: getRes and resAccess. The output

channel getRes in line (2) makes reference to the channel located at the

agent resAuth. The input channel resAccess declared in line (3) is sent

as a parameter of the outgoing message in line (17). Upon receiving a re-

sponse through this channel, the rule in line (19) compares the resource’s

access restrictions with the user’s access rights. When a match is found,

the result is an atom Ok with the id of the user and the id of the resource.

If no matching User atom is found in the solution, the rule in line (21)

is executed, producing an error atom for that user with that resource.

The atom Done(uid) is used as a token for guaranteeing that the rule is

executed only after the three rules in (10, 11, 13) have been executed.

For this example we use a simple local bus called LocalGateway for

handling the communication, where the agents can be located by name

and the channels by their own name and the providing agent. The archi-

tecture is therefore flat, with a unique firewall containing orchestrators.

The details for the implementation of more complex architectures and

protocols is explained in Section 3.3.4.

3.1.3 More Examples

In order to show the expressivity of the language Criojo, we now present

examples using four idiomatic programming paradigms: concurrent, func-

tional, sequential and logic programming.

3.1.3.1 Concurrent programming: the π-calculus

As an example of concurrent programming, we implement the asyn-

chronous π-calculus [SW01, chap. 5], where a process p is defined as

follows.

p ::= 0 The empty process

| p ‖ p Parallel composition or concurrency

| x y Message emission

| x(y).p Message reception

| !x(y).p Replication

| νx.p Name creation

Names are central in the π-calculus, identifying both communication

channels and variables. In order to avoid confusion with Criojo channels,
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in the following a π-calculus channel will be called a name; while a channel

will always refer to a Criojo channel. Also, for simplicity we only consider

replication in the case of message reception. For the implementation of

the π-calculus cham we define two predicates: Pi for processes and New for

creating new names. Thus the state of an agent implementing a π-calculus

process is represented by the molecule Pi(p)& New(n), where p is a process

and n is a counter for generating new identifiers. A name is represented by

the pair (l, n), where l is a unique channel provided by the agent, and

n is an identifier generated by the agent. Additionally, we define Criojo

expressions (through Scala types) for representing π-calculus expressions,

which gives the following translations: snd(l,n,x) for (l, n)x (message

emission), rcv(l,n,x).dot(p) for (l, n)(x).p, nu(x,p) for νx.p, and so

on. The following rules provide the translation of the π-calculus into

Criojo.

1 (Pi(nu(x,p)) & New(n)) −−> (_doSub(p,(l,n),x,pi) & New(n+1)),

2 (Pi(snd(k,c,x)) & Pi(rcv(k,c,y).dot(p))) −−> _doSub(p, x, y, pi),

3 (Pi(snd(k,c,x)) & Pi(!rcv(k,c,y).dot(p))) −−> (_doSub(p,x,y,pi) &

Pi(!rcv(k,c,y).dot(p))),

4 Pi(p1 || p2) −−> (Pi(p1) & Pi(p2))

5 pi(p) −−> Pi(p)

It is also easy to provide a distributed version. The π-calculus particle

(k, n)x is represented in Criojo as the message k(n,x), when k is dif-

ferent from the local channel l used to represent names. Then we define

two additional rules that allow the π-calculus cham to receive messages

on its unique channel l, and to export messages to external channels.

Note that the rule in line (6) only executes when channel k is different

from the local channel l.

6 l(n,x) −−> Pi(snd(l,n,x)),

7 Pi(snd(k,n,x)) −−> {k =!= l} ?: k(n,x)

Note that a programming discipline is required to prevent a remote name

from being locally used as a receiving name. Thanks to Criojo’s capacity

to interface with native functions, we have defined the native function

doSub(p, y, x, pi) that performs a substitution [x:=y] in process p

and sends the result trough a local channel pi. With this implementation,

we can write the following π-calculus process composed of three parallel
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components.

p1 = ping pong

p2 = !ping(k).νx.k x

p3 = pong(x).resultx

p4 = (p1 ‖ p2 ‖ p3)

The π process expressed in Criojo syntax gives the following atom that

is introduced into the π-cham.

1 Pi(snd(l, ping, pong))

2 || ! rcv(l, ping, k).dot(nu(x, snd(l, k, x)))

3 || rcv(l, pong, x).dot(snd(l, result, x))

Initially, the cham has the state [New(0)]. Upon reception of the atom,

the rule in line (4) splits the atom into three atoms corresponding to the

three components of the process (p1, p2, p3):

Pi(snd(l, ping, pong)))

& Pi(!rcv(l, ping, k).dot(nu(x, snd(l, k, x))))

& Pi(rcv(l, pong, x).dot(snd(l, result, x)))

By executing the rule in line (3), followed by the rule in line (5), the two

first atoms are transformed into the molecule

Pi(nu(x,snd(l, pong, x)))& Pi(!rcv(l,ping,k).dot(nu(x,snd(l,k,x))))

After performing the substitution in line (1), the new atom at left becomes

Pi(snd(l, pong, (l,0)))

According to rule (2), the new atom reacts with the remaining initial

atom producing the final state

[Pi(snd(l,result,(l,0)))& New(1)

& Pi(!rcv(l,ping,k).dot(nu(x,snd(l,k,x))))]

3.1.3.2 Functional Programming

As an example of functional programming, we present inductive types

with recursive operations written in Criojo. For a concrete application
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in the case of natural numbers, let us implement a program that computes

the factorial of a number n. In this example, the natural numbers are

represented by the terms 0 and Succ(n). First, we implement a request-

response protocol with the following two rules.

1 fact(ret, s, n) −−> (Resp(ret, s, n) & Comp(s, n)),

2 (Resp(ret, s, n) & Res(s, n, r)) −−> ret(s, n, r)

The first rule handles the set-up. It initializes the computation by gener-

ating an atom Comp, that is in charge of keeping the ongoing computation.

It also produces a Resp atom that keeps the session identifier s, the return

channel ret and the argument n. Once we have the result in an atom

Res, the second rule sends the response through the return channel ret.

The recursive operation is executed by the following rules, following

a top-down approach.

3 Comp(s , 0) −−> Res(s, 0, 1),

4 Comp(s, Succ(n)) −−> (Mult(s, Succ(n)) & Comp(s, n)),

5 (Res(s, n, r) & Mult(s, Succ(n))) −−> _doMult(s, Succ(n), r, res),

6 res(s, n, r) −−> Res(s, n, r)

The rule in line (3), handles the base case, or the end of the recur-

sion, storing a partial result in Res. Line (4) shows the rule that re-

curses over Succ(n), producing the atoms Mult that keep the multi-

plications to perform later on line (5). Finally, in line (5) the result

is produced by performing the pending multiplications, in a bottom-up

movement. Since we cannot directly compute (n+1) * r, we use a na-

tive relation called doMult, equivalent to performing the multiplication

in a recursive way. The result of the multiplication is retrieved by the

rule in line (6). An example execution of the program with initial state

O[fact(ret, s, Succ(Succ(0)))], for computing 2! produces the fol-
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lowing trace:

O[fact(ret, s, Succ(Succ(0)))]

⇒ O[Resp(ret, s, Succ(Succ(0)))& Comp(s, Succ(Succ(0)))]

⇒ O[Resp(...)& Mult(s, Succ(Succ(0)))& Comp(s, Succ(0))]

⇒ O[Resp(...)& Mult(s, Succ(Succ(0)))& Mult(s, Succ(0))& Comp(s, 0)]

⇒ O[Resp(...)& Mult(s, Succ(Succ(0)))& Res(s, Succ(0), 1)]

⇒ O[Resp(ret, s, ...)& Res(s, Succ(Succ(0)), 2)]

⇒ O[ret(s, Succ(Succ(0)), 2)]

This example gives us the general form for recursive operations over

the natural numbers:

• an initialization rule, following the request,

• rules for handling the base case and the recursive cases, following a

top-down approach,

• a reduction phase, producing the result from the base case and the

pending computations, following a bottom-up approach,

• the sending of the response.

3.1.3.3 Sequential Programming: a Variant of Dijkstra’s Guarded

Commands Language

Recall the cloning example given in Section 3.1.1.1.

1 (One() & R(x)) −−> (One() & S(x) & S(x)),

2 One() −−> Abs(R(x)) ?: Two(),

3 (Two() & S(x)) −−> (Two() & R(x))

Thus, sequencing in Criojo can be managed with the aid of tokens. We

now show that this solution is general, by translating into Criojo a lan-

guage for sequential programming, namely a variant of Dijkstra’s Lan-

guage of Guarded Commands. In this language, the cloning example

would be expressed as follows.

1 do(R() −−> S(), S()) ; do(S() −−> R())
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The command do represents a loop that terminates when the rule inside

cannot longer be executed. In this way, commands can be sequenced. If

we add a blocking alternative, we get the following variant of Dijkstra’s

language of guarded commands.

Script p ::= skip | p ; p | if {c} | do {c}

Guarded Command Set c ::= r ⊲ p | c ‖ c

Guard Rule r ::= s⊸ g ? s

There are two differences with respect to Dijkstra’s language: first, the

only atomic action is the empty one skip, second, the guard of the com-

mand becomes a one-shot rule, with a side-effect, called a guard rule, thus

compensating the lack of actions. In the following, a guard rule with no

message (∅⊸ g ? ∅) is simply denoted by its guard (g). The empty action

is also omitted, r ⊲ skip becoming r.

Let us now translate this version of Dijkstra’s language into Criojo.

The translation of each command depends on two tokens, B for ”Begin”

and E for ”End”, which are used to manage the scheduling of commands.

D(skip)B,E = B→ True ?E

D(p1 ; p2)B,E = ν I.D(p1)B,I ,D(p2)I,E

D(if {c})B,E = D(c)B,E

D(do {c})B,E = D(c)B,B, (B→G(c) ?E)

The empty script converts the begin token into the end token. The

sequence p1 ; p2 requires an intermediate fresh token (cf. ν I.−), which

corresponds to the end of p1 and the beginning of p2. The translation

of the alternative and the loop depends on the translation of the associ-

ated set of guarded commands. Note the differences: for the loop, the

translation uses the same token, allowing a repetition, and adds a rule to

quit the loop, when its guard rules cannot be fired. A guarded command

is translated into a rule and the translation of the continuation script.

Their sequencing results from the use of an intermediate fresh token.

D((s⊸ g ? s′) ⊲ p)B,E = ν I.(s,B→ g ? s′, I),D(p)I,E

D(c1 ‖ c2)B,E = D(c1)B,E ,D(c2)B,E
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Finally, given a set c of guarded commands, the guard G(c) expresses that

the guard rules cannot be fired, by using control guards.

G((s⊸ g ? s′) ⊲ p) = ¬(s→ g)

G(c1 ‖ c2) = G(c1) ∧ G(c2)

Note that the premise s can only contain local messages. Allowing exter-

nal messages could lead to race conditions, since external messages can

arrive and leave at any time. Hence, the termination of a loop should

only depend on internal messages.

The previous cloning example is translated into the following Criojo

program, which resembles the solution we had initially.

1 (R() & B() −−> (S() & S() & I1()),

2 (S() & I()) −−> (R() & I2()),

3 B() −−> {Abs(R())} ?: I(),

4 I() −−> {Abs(S())} ?: E(),

5 I1() −−> B(),

6 I2() −−> I()

Here is the trace that reflects the states of the agent throughout the

execution of the program 4:

O[R()& B()] ⇒+ O[S()& S()& I]

⇒ O[S()& R()& I2()] ⇒ O[S()& R()& I()]

⇒+ O[R()& R()& I()] ⇒ O[R()& R()& E()]

To conclude, although it is possible to emulate sequential program-

ming in Criojo by using tokens, the ideal would be to have dedicated

constructs in Criojo, in other words to embed Dijkstra’s language of

guarded commands in Criojo. Nevertheless, it is not possible at the mo-

ment. We further discuss a possible extension to Criojo introducing ded-

icated constructs for sequential programming in Conclusion, Section 5.1.

3.1.3.4 Logic programming

Given that the Heta-calculus provides the theoretical foundations of Criojo

and was influenced by logic programming, Criojo shares many features

4For simplification we have omitted some intermediate steps.
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with logic languages like Datalog. A rule whose guard is true can be con-

sidered as an inference rule. However, contrary to Datalog, in Criojo the

premises are consumed, as in Linear Logic. Thus, in order to translate

Datalog rules into Criojo, we have to add the premises to the conclusion.

For instance, given a binary relation R, assume that we want to com-

pute its reflexive and transitive closure. Here is the corresponding pro-

gram in Datalog. Note that the predicate U defines the universe for

values x.
R∗(x, x) ← U(x)

R∗(x, z) ← R(x, y) ∧R∗(y, z)

Following the preservation principle, a first attempt to translate the sec-

ond inference rule would give the following rule, where U, R and Rt cor-

respond to U , R and R∗ respectively. Note that to abbreviate, we could

have used the bang operator in front of the left atom patterns.

1 U(x) −−> U(x) & Rt(x, x),

2 (R(x, y) & Rt(y, z)) −−> (R(x, y) & Rt(y, z) & Rt(x, z))

However, this results in a loop generating an infinite number of atoms

Rt(x, x) and Rt(x, z). To avoid this indefinite generation, we can

require that an atom is either absent in the solution, or present with a

unique occurrence. Thanks to introspection, we can force this condition

with a guard.

1 U(x) −−> Abs(Rt(x,x)) ?: U(x) & Rt(x, x),

2 (R(x,y) & Rt(y,z)) −−> Abs(Rt(x,z)) ?: (R(x,y) & Rt(y,z) & Rt(x,z))

But there is still a problem: assume we now want to compute the Carte-
sian product R2 of a unary relation R, which is performed as follows in
Datalog.

R2(x, y) ← R(x) ∧R(y)

A naive translation would give the following rule in Criojo.

1 (R(x) & R(y)) −−> Abs(R2(x,y)) ?: (R(x) & R(y) & R2(x,y))

Nevertheless, this rule cannot generate R2(x, x), which requires two atoms

R(x) in the solution. To solve the problem, we can either increase the

number of occurrences of each atom in the solution, or require a linearity

condition for Datalog rules. Both options are akin. We opt for the second

alternative: it forbids a rule where there are two atoms belonging to the
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same relation in the premises. The program needs to be rewritten as

follows.

1 R(x) −−> Abs(R1(x)) ?: (R1(x) & R(x)),

2 (R(x) & R1(y)) −−> Abs(R2(x,y)) ?: (R(x) & R1(y) & R2(x,y))

The result is a program that duplicates each atom R in the solution,

and that produces atoms R2(x,y) with all the possible combinations of

atoms R. For example, the trace of the program initiating with the state

O[R(1)& R(2)] is as follows

O[R(1)& R(2)]

⇒+ O[R(1)& R(2)& R1(1)& R1(2)]

⇒+ O[R(1)& R(2)& R1(1)& R1(2)&

R2(1,1)& R2(2,2)& R2(2,1)& R2(1,2)]

To conclude, we have shown that it is possible to translate into Criojo

programs written in a variety of languages:

• concurrent languages, like the π-calculus,

• functional languages,

• sequential languages, like Dijkstra’s guarded command language,

and

• logic languages, like Datalog.

In each case, the translation is quite straightforward.

3.2 Towards an Efficient Implementation

We now describe the path from theory to practice, in other words from

the Heta-calculus to Criojo. We start with the overall distributed archi-

tecture and terminate with the implementation of the chemical abstract

machine associated to orchestrators.
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3.2.1 Hierarchy of Communicating Agents

The whole architecture, illustrated in Figure A.1, is defined with the

following components.

Orchestrator: implementation of an orchestrator containing a chemical

solution and a set of reduction rules

Gateway: firewall part of an orchestrator used to send and receive mes-

sages

Firewall: implementation of a pure firewall used to transmit messages

Orchestrator

FirewallGateway

1

1

1

1

*

*

Figure 3.2: Class Diagram – Components of the Architecture.

A firewall has a parent firewall, except the topmost one, and child fire-

walls. A gateway has a parent firewall but no child: indeed, it is associated

to a unique orchestrator, and conversely. Clearly, it is directly derived

from the hierarchy of agents in the Heta-calculus, with the slight difference

induced by the separation of functionalities between the gateway and the

orchestrator. The different components can be distributed, for instance

as Web services or around a bus. Communication between components is

asynchronous, and essentially one-way. Responses are only required for

acknowledgment, which can be useful to detect message losses.

Here are the abstract attributes of each component. They are deduced

from the syntax and the operational semantics of the Heta-calculus.

• Orchestrator

– A set of rules

– A chemical solution defined as a multiset of atoms

– A multiset of incoming messages to be added to the chemical

solution before the next round
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– A multiset of outgoing messages to be sent to the gateway at

the end of the last round

• Gateway, Firewall

– A set of provided channels

– A subset of private channels

– The complement of public channels (computed attribute)

How to implement the sets of provided channels and of private channels?

For the set of private channels, it is simple to explicitly declare in a firewall

the channels that are private. For the set of provided channels, it is not

efficient as an explicit declaration entails a lot of redundancy: indeed, a

channel is provided by a firewall if it is provided by an orchestrator inside

the firewall. In other words, all the firewalls between the root firewall

and the orchestrator must declare the channel as provided. A simple

solution is to implicitly declare provided channels. The namespace of

channels is defined thanks to the tree structure of firewalls: the name

of a channel in an orchestrator is the concatenation of the names of the

enclosing firewalls, from the root firewall to the orchestrator (that is also

a firewall), followed with a local name. For instance, a channel called

k in orchestrator O enclosed in the root firewall Web is called Web.O.k.

Likewise, firewalls can be named following the same manner, which gives

its hierarchical name. The naming strategy is reminiscent of the one

for URI. However, ambiguities are possible: we can imagine in a firewall

two firewalls with the same name. Thus, two channels could have the

same name, which is useful for load balancing for example. With this

naming strategy, we can now define the implicit declaration: a firewall

implicitly declares as a provided channel any channel whose name extends

the hierarchical name of the firewall. Orchestrators explicitly declare the

channels that they provide: thus, messages over inexisting channels are

eventually filtered when they arrive at destination.

Following the reduction rules defined in the operational semantics, we

describe the activities of each component. Each orchestrator has three

concurrent activities.

Cham execution: activity possibly split into parallel activities. Paral-

lelization, corresponding to the parallel execution of rules, is briefly

studied further, at the end of Section 3.2.2.
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Control of the multiset of incoming messages: two atomic opera-

tions, the addition of messages coming from the gateway and the

transfer of the multiset into the chemical solution

Control of the multiset of outgoing messages: two atomic operations,

the addition of messages coming from the chemical solution and the

emission of the messages in the multiset towards the gateway

A gateway provides three atomic services.

Internal reception: reception of a message from the associated orches-

trator, which entails a further emission

External reception: reception of a message from the parent firewall,

which entails a further transmission to the orchestrator

Channel inspection: test to determine whether a channel is publicly

provided, that is declared as provided and non private. The set of

private channels can evolve, because of a scope extrusion during a

message emission.

A firewall also provides three atomic services.

Internal reception: reception of a message from a child firewall, which

entails a further emission

External reception: reception of a message from the parent firewall,

which entails a further emission

Channel inspection: test to determine whether a channel is publicly

provided, that is declared as provided and non private. The set of

private channels can evolve, because of a scope extrusion during a

message emission.

Here is the execution flow. The execution of an orchestrator is orga-

nized around rounds. An orchestrator produces and consumes atoms at

each round. At the start of a round, it updates its chemical solution with

the incoming messages, computes the multisets of the atoms consumed

and produced by triggering one or more reduction rules, finally updates

its chemical solution and the multiset of outgoing messages. At the end

of the round, the messages produced by an orchestrator are sent to its

gateway. When a gateway receives a message over some channel k from

its orchestrator,
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• if k is provided by the gateway, then the gateway sends the message

back to the orchestrator (self emission for the orchestrator),

• otherwise, it transmits the message to the parent firewall.

When a firewall receives a message over some channel k from a child

firewall (internal reception),

• if k is provided by the firewall, then the firewall transmits the mes-

sage to one of its child publicly providing the channel,

• otherwise, it transmits the message to the parent firewall.

When a firewall receives a message over some public channel k from its

parent firewall (external reception),

• it transmits the message to one of its child publicly providing the

channel.

When a gateway receives a message over some public channel k from its

parent firewall (external reception),

• it transmits the message to the associated orchestrator, by adding

it to the multiset of incoming messages.

Note that when a firewall or a gateway sends a message to its parent

firewall, it may update the set of private channels by removing extruded

channels. Note also that pending messages are possible in a firewall: mes-

sages over a channel that is provided but is not public. No specification

is given for these messages: they require specific actions.

We now describe the implementation of the consumption and produc-

tion of atoms inside an orchestrator.

3.2.2 Chemical Evaluation of Local Reduction Rules

We first formalize the evaluation algorithm for local rules from the op-

erational semantics, and its inference system. We then show how to

efficiently implement the algorithm by incrementalization.
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3.2.2.1 From the Operational Semantics to an Evaluation Al-

gorithm

We describe as an algorithm the inference system defining the execution

inside an orchestrator: see Table 2.2 for the inference system and Table 2.5

for the form of the rules. To simplify, we omit cleaning and conversion

rules and only consider standard rules. Recall that these rules preserve

the solution variable:

O[a1& . . .& am&S]→ g ?O[b1& . . .& bn&S],

where a1, . . . , am and b1, . . . , bn are atom patterns, and S the solution

variable.

First, we decompose a rule O[h] → g ? O[c] into a pre-rule, a rule

without a conclusion, defined as a tree containing head patterns corre-

sponding to the head h of the rule and the heads of the guard g, . Here is

the formal definition of pre-rules, where we deliberately omit orchestrator

O to simplify.

Rule r ::= h→ g ? c (head → guard ? conclusion)

Guard g ::=
∧

i(¬(hi → g′i)) (conjunction of control guards)

Pre-rule pr ::= h(pr∗) (head with sequence of pre-rules)

The decomposition of rules into pre-rules is defined with operator T (or

”Transformer”).

T (h→ g ? c) = T (h→ g)

T
(

h→
∧

i(¬(hi → g′i))
)

= h
(

T (hi → g′i)
)

i

We can now determine the candidate valuations. Semantically, given a

rule h→ g ? c and a chemical solution σ, we seek to determine the set of

candidate valuations defined as follows:

{τ | (h[τ ] = σ) ∧ (σ |=τ g)}.

This set is computed by the function C (or ”Candidates”): it takes as

arguments the pre-rule associated to the rule and the chemical solution

to recursively produce the set of candidate valuations, with the help of

two adjoint functions:

• function M (or ”Matching”) for pattern matching with respect to

chemical solutions,
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• function J (or ”Join”) for joining a valuation and a set of valuations.

C(h(pri)i, σ) = let (Vi = C(pri, σ))i

V = M(h, σ)

in {τ ∈ V |
∧

i(JBVi
(τ, Vi) = ∅)}

The join operator is defined as follows, given a set X of variables, a

valuation τ and a set V of valuations, all these valuations having a domain

containing X:

JX(τ, V ) = {τ ′ ∈ V | ∀x ∈ X.τ ′(x) = τ(x)},

The set BVi is the set of the variables bound by head h in the head hi of

pre-rule pri:

BVi = Var(h) ∩Var(hi).

The matching function is defined as follows:

M(h, σ) = {τ |h[τ ] = σ}.

To compute function C, we resort to an efficient strategy, incremen-

talization [Liu00]. Indeed, recall that the execution of the local rules

inside an orchestrator are organized with rounds. At each round, there

are a consumption and a production of atoms. Rather than computing

at each round from scratch the function C, we can compute its variation.

Precisely, we follow the general and systematic approach to incremen-

talization formalized by Liu [Liu00] that can be stated as follows. To

compute the result of a program f over some input x ⊕ δ, where x is

the initial data and δ the variation added with the binary operator ⊕

(assumed left associative), the approach aims at deriving a new program

computing an incremental version of f , precisely by using

• the return value of f(x),

• the intermediate values computed during the evaluation of f(x),

• or some auxiliary values that can computed during the evaluation

of f(x) but that are not required.

It is a form of memoization. Here is description of the intended benefits.

First, assume we need to compute the following sequence.

f(x)→ f(x⊕ δ1)→ f(x⊕ δ1 ⊕ δ2)→ . . .→ f(x⊕ δ1 ⊕ . . .⊕ δn).
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Then an incremantalization transforms the computation sequence into

the following sequence.

(f(x), C0)→ (f(x⊕ δ1), C1)→ (f(x⊕ δ1 ⊕ δ2), C2)

→ . . .→ (f(x⊕ δ1 ⊕ . . .⊕ δn), Cn),

where each context Ci represents intermediate or auxiliary values com-

puted at each step. The incremental function, denoted by ϕ, computes

the transition at each step:

ϕ(f(x⊕ δ1 ⊕ . . .⊕ δn−1), Cn−1) = (f(x⊕ δ1 ⊕ . . .⊕ δn), Cn).

Incrementalization is efficient in time and space complexity when the

following conditions are met.

• The initial state (f(x), C0) can be computed with the same com-

plexity as f(x) (ideally, a linear complexity).

• Each transition can be computed with a complexity linear with

respect to the variation δi.

If the variations δi are small with respect to the initial value x, then the

sequence can be computed with a better complexity: n + p versus n.p,

where n is the complexity for the initial computation f(x) and p is the

number of steps in the sequence.

In the next section, we present an incremental version for the evalua-

tion of rules.

3.2.2.2 Rule Evaluation with Automata

We restrict ourselves to the matching function: in other words, we deal

with (standard) rules without guards (precisely with guard ⊤, always

true). To compute the set of candidate valuations during a round, we

need to find a match between a sequence of atoms in the solution and

the head pattern. For incrementalization, we simply memoize partial

matches during a round. The adequate structure is a state machine (an

automaton).

Thus, the state of the matching for the rule is represented with a

state machine, a common technique for pattern matching. At the be-

ginning, when the solution is empty, all the machines are at their initial

state. Upon arrival of atoms, rules are triggered and their state machines
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advance towards their final state. When a state machine arrives at its

final state, the corresponding rule becomes ready to be triggered. A sim-

ilar solution has already been explored in the jocaml [FM98] system,

one of the implementations of the join-calculus, where join-patterns are

compiled into finite state machines. The difference with respect to our ap-

proach is that the jocaml implementation only considers linear patterns,

and hence does not take into account correlated variables: the extension

requires some extra care as we will see.

States in the state machine are represented by matching vectors. A

matching vector is a sequence of 0 and 1 that respectively reflects the

absence or presence of atoms matching a pattern. Transitions are labeled

after the atom patterns in the rule head. For example, the rule

A(x)&B(x, y)→C(x, y)

is represented by the state machine M = (Σ, S, S0, SF, δ), where the al-

phabet Σ, the set of states S with initial state S0 and final state SF are

defined as follows

Σ = {A,B} S = {(00), (01), (10), (11)}

S0 = {(00)} SF = {(11)}

and the transition function δ is defined by

δ((00), A) = (10), δ((00), B) = (01),

δ((10), B) = (11), δ((01), A) = (11).

During the execution, complementary information is added to each

state: partial valuations, computed from the matching between patterns

and atoms, and partial sequences of the identifiers associated to the

matching atoms. Therefore, the addition or removal of an atom leads,

respectively, to the addition or removal of its corresponding valuations.

Shown below is the addition algorithm, explained with an example, fol-

lowed by the removal algorithm. Notice that atom identifiers are indis-

pensable for removing atoms, and thus valuations, from the state machine.

The algorithm executed when adding an atom Xid(v), where id is the

identifier of the atom, is as follows.

1. Update: For each rule (R1(p1)& . . .&Rn(pn)→ . . .), for each tran-

sition M1
Ri(pi)
−−−−→ M2 (M1(i) = 0 and M2(i) = 1) in the correspond-

ing state machine, if atom Xid(v) matches pattern Ri(pi):
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(a) Calculate the valuation θ : {x1 = v1, ..., xm = vm} from the

matching between Xid(v) and Ri(pi).

(b) If M1 is the initial state (0n), add the tuple (i 7→ id, θ) to M2,

where i 7→ id is the map that associates i with the atom’s id.

(c) Otherwise, for each tuple (I1, θ1) in M1, where I1 is a map

of atom ids: if Ri(pi)[θ1] matches Xid(v), add (I1 + (i 7→

id), θ1 + θ) to M2. Because of the matching condition (re-

quiring a match with the partial valuation already computed),

conflicts between θ1 and θ are avoided.

2. Firing: For each valuation in the final state (1n), evaluate its guard.

If the guard is satisfied, then the valuation becomes a candidate

valuation for firing.

Note: to ensure fairness, rules and valuations are chosen in a FIFO

order.

Consider for instance the rule:

A(x)&B(x, y)→C(x, y)

To this rule corresponds the state machine of Fig. A.2, after receiving

the atoms B1(a, b), A2(c) and A3(a). Initially, the solution and the state

machine are empty. First, the atom B1(a, b) arrives and the valuation

{x = a, y = b} is added to the state (01). Then, the atom A2(c) arrives

and the valuation {x = c} is added to the state (10); but, since there is no

match between A(x)[x = a; y = b], that is A(a) and A2(c), no valuation is

added to the state (11). Finally, the atom A3(a) arrives and the valuation

{x = a} is added to the state (10). Because this time there is a match,

the valuation {x = a, y = b} is added to the state (11). Furthermore,

each valuation is coupled with a sequence of the ids of the atoms that

produce them.

When a rule is triggered, all the atoms consumed in the reaction

are removed from the solution, along with their respective valuations.

Thanks to atom identifiers, the algorithm for removing an atom Xid(v) is

as simple as removing from the state machine all the tuples (M, θ), such

that id ∈M .

It is possible to parallelize the computations performed by several

rules, as explained in Section 2.4.2. First, we define the relation ”paral-

lelizable with” over the set of pertinent rule instances: see its definition
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00

10

01

(A2,{x=c})

(A3,{x=a})

(B1,{x =a; y =b})

11

(B1A3,{x=a; y=b})

A(x)

B(x,y)

B(x,y)

A(x)

Figure 3.3: The state machine corresponding to the rule

A(x)&B(x, y)→C(x, y) after receiving the atoms B1(a, b), A2(c),

and A3(a).

in Section 2.4.2. Recall that a rule instance is a rule partially instantiated

with a valuation. For instance, if a rule uses a session variable for each

atom, the instantiation will assign a real session identifier to the session

variable. For each rule instance, maintain a state machine to incremen-

tally compute at each round the set of candidate valuations. Then pick up

a valuation in some non-empty sets of candidate valuations, while satis-

fying the following safety property: the valuations selected belong to rule

instances that are pairwise parallelizable. Finally apply to the chemical

solution the updates induced by the valuations selected. Note that the

current implementation does not resort to parallelization for local rules.

Finally, one question remains open: how to deal with guards? If in-

crementalization is a success for the matching function, it remains that

the evaluation of rules also involves the evaluation of guards: its incre-

mentalization is still an open question. Indeed, consider a pre-rule: for

each head in the pre-rule, a state machine is defined, and the correspond-

ing matching function M can be computed incrementally. When a set of

the candidate valuations associated to a state machine evolves, passing

from an empty set to a non empty set, or conversely, the evaluation of

the guards using this head needs to be updated. The efficient incremen-

talization of this evaluation is difficult because of the binding of variables

between different levels in the rule, since any head can bind variables in

its guards. The current implementation does not resort to incremental-

ization for the evaluation of guards. The impact is not so severe because

the structure of pre-rules is rather flat, with usually zero or one levels of
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guards.

3.3 Implementation Details

We now come to the concrete implementation. Criojo is essentially a

language for writing reduction rules whose semantics is based on the

Heta-calculus. In the general schema, rules are generated from a set of

definitions and then executed. Rules can be generated from the compila-

tion of scripts written with a concrete syntax, or reified from a definition

using the syntax of a host language. The generated rules can be then

executed either by compiling them into concrete objects that can be ex-

ecuted on a concrete machine, or by interpreting them, in which case

they are executed over an abstract machine. Thus, several combinations

are possible between the approaches chosen for generating and executing

rules, as shown by Figure 3.4.

script

{

    r1 = xxxxxxx

    r2 = xxxxxxx

}

Rules

Execution on a

Concrete Machine

Execution on an

Abstract Machine

Compilation

Reification

Com
pilation

interpretation

Rule Description Rule Execution

Rules

Rules

Figure 3.4: General schema for rule definition and execution.

In the current implementation in Scala we have opted for defining the

rules by extending the host language’s syntax with an internal DSL, and

then to interpret them and execute them over the Java Virtual Machine.

The choice of Scala as a host language was made mainly based on the

facility that Scala offers for building internal DSLs, which facilitates the

production of a prototype. Indeed Scala allows to extend its syntax by

overloading operators and thanks to type classes and implicit conversions,

it is possible to lift Criojo expressions to support native operations. For

example, if a Criojo variable is declared as val x = Var[Int], we can

use the expression x + 1 in a rule even if the + method is not defined for
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the type Var. Thus, defining Criojo rules using Scala’s syntax allows a

Criojo cham to be seamlessly integrated within a Scala program, at the

same time that Scala functionalities can be called from within the cham.

The concrete architecture is a simplification, faithful, of the general

model described in Sections 3.2.1 and 3.2.2. Each activity corresponds

to a Scala actor [HO06]. An actor is a concurrent computational unit

which communicate through asynchronous message passing. This sepa-

ration of functionalities allows optimizations to be added later. Note also

that currently, there is no parallelism allowed by Criojo inside an or-

chestrator for rule evaluation. The hierarchy of agents is flat: there is no

intermediate firewalls, between orchestators and the root firewall. This is

the main simplification.

The remaining of the section details important aspects of the imple-

mentation, namely rule reification, Criojo’s adaptors, the type system

and the communication layer.

3.3.1 Rule Reification

As already said, Criojo is a language for writing rules. For the prototype

implementation we have opted for reifying the rules from a definition

written in an internal DSL, thus allowing the integration of a cham within

a Scala program. In the examples of Section 3.1, rules are defined by

expressions like the following one:

1 rules(

2 (A(x1, x2) & B(y1, y2) ) −−> C(x1, y2)

3 )

The expression inside rules() is syntactic sugar for calling the con-

structor of the RuleDefintion class which is the Scala representation of

a rule. The --> operator combines the two molecules on the left and right

hand, plus an eventual guard, to produce an instance of RuleDefinition.

Thus the expression above corresponds to the following:

1 new RuleDefinition(head = List(A(x1,x2),B(y1,y2)),

2 body = List(C(x1,x2)),

3 guard = EmptyGuard)

Then, the rules() method takes a sequence of rule definitions and

reifies them as instances of the type Rule belonging to the API. The
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implementation of the Rule type is the choice of the implementor: it

computes the evaluation of rules, as specified in Section 3.2.2, by using a

state machine.

3.3.2 Implementing Criojo’s Adapters

The implementation of adapters in Criojo corresponds to the impure

form of the Heta-calculus: it is based on devices that finitely simulate

a possible infinite number of reduction rules. To understand how this

kind of device is implemented in Criojo, let us quickly revisit the exe-

cution of a rule. The state of the rule is a finite state machine, where

each state represents a partial match of the pattern in the head of the

rule. For example, the rule A()&B()→ C() is represented by the states

(00), (01), (10), (11). Associated to each state, there is a set of valuations.

A valuation is a mapping that gives a value to each variable in the head

of the rule. When the final state (11) is reached and the guard of the

rule is satisfied, the rule is ready to be executed: one of the valuations

associated to the final state is passed to the atoms in the conclusion of the

rule to produce new atoms. In fact, an atom expression in the conclusion

is implemented as a partial function with type:

(List[Term]) => Valuation => Atom.

This function produces a new atom by applying the valuation selected to

the list of (open) terms that form the arguments of the relation associated

to the atom.

In order to allow the implementation of adapters, we compose this

function with a native function, with type

Atom => List[Atom]

In the case of regular atoms, the function could be considered as the

natural embedding. In the case of a native atom, a native function is

called: it allows to replace the native atom in the solution by the atoms

produced by the native function. Figure 3.5 illustrates how native atoms

operate, compared to regular atoms.

3.3.3 Type System

The Heta-calculus has no type system. Nevertheless, types in a language

like Criojo are necessary to guarantee the safety of programs by pre-

venting run-time errors due to illegal operations. For this reason the
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Figure 3.5: Regular Atoms and Native Atoms.

implementation extends the Heta-calculus by defining a type system that

can be adapted to the type system of the host language.

Starting from the definition of relations, every term in Criojo’s is

typed. Since a relation is a function that applied to a set of terms pro-

duces an atom, atoms too are typed and every variable that appears in

a rule must be typed accordingly. Figure 3.6 shows the class hierarchy

representing Criojo’s grammar for terms.

Figure 3.6: Criojo’s Term Grammar

In this model patterns and expressions are independent types, thereby

guaranteeing the well-formed definition of rules: the terms in the head of

the rule can only be patterns, while the terms in the conclusion can only

be expressions. A pattern is a sequence of terms that provides a template

for testing the presence of values matching the pattern in the solution. An

expression, as in the mathematical sense, is a well-formed combination of

symbols that can be evaluated and reduced. Nevertheless, the separation

between patterns and expressions is not always clear: variables and con-

stant values can be both patterns and expressions. For instance, consider
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the list case: x :: list is an expression representing the concatenation of

an element x to a list, while the pattern x :: is a template that matches

with any expression of type list having x at the head. But not every

expression can be used as a pattern. Such is the case of expressions like

x+ y, which would be problematic to have as a pattern: matching would

be ambiguous, due to the presence of an operation. Thus, we can think

of patterns as a subset of expressions, those based on constructors.

From the programmer point of view, the distinction between patterns

and expressions is transparent, because we provide a mechanism to obtain

patterns from expressions whenever it is possible. The same mechanism

must be provided for new types added to the type system. In order to

illustrate let us examine the implementation of lists, which is based on

Scala’s List type. To begin, we present the following Criojo program

that searches an element in a list:

1 val x,y = Var[Int]

2 val rest = Var[List[Int]]

3 val Search = Rel[Int, List[Int]]

4 val Result = Rel[Boolean]

5 rules(

6 Search(x, y::rest) −−> {x === y} ?: Result(True)

7 Search(x, y::rest) −−> {x =!= y} ?: Search(x, rest)

8 )

It is possible to declare a variable Var[List[T]] at any time. Nev-

ertheless in order to use the :: constructor as a pattern or expression

we have to lift a list expression Expression[List[T]] so that it sup-

ports the :: operator. In Scala this means creating a type that pro-

vides the :: method, and then telling the compiler how to convert an

Expression[T] into this type. The following listing shows how to declare

a type CanConcat that implements the concatenation operator, which re-

turns an expression of List[Int]:

1 class CanConcat[+T](l:Expression[List[T]]){

2 def ::[ U>: T](x:Expression[U]):Expression[List[U]]=

3 new Expression[List[U]]{

4 ...

5 }

6 }
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Since expressions are transformed into patterns when needed, a sim-

ilar class has to be declared for transforming a list pattern into a type

implementing a :: method:

1 class ConcatPattern[+T](l:Pattern[List[T]]){

2 def ::[ U>: T](Pattern[U]):Pattern[List[U]]=

3 new Pattern[List[U]]{

4 ...

5 }

6 }

Finally, for guaranteing that the program is well-typed and com-

piles, an implicit method is required to transform a list expression into

CanConcat 5. Such a method takes as argument an expression of type

List[T] and returns an object of type CanConcat[T], by calling the con-

structor new CanConcat().

3.3.4 Communication Layer

Criojo’s communication model is based on asynchronous message ex-

change between agents. The flexibility of this model allows the language

to adapt to different communication strategies.

As already said, in Criojo, the hierarchy of agents is flat: this is a sim-

plification with respect to the model presented in Section 3.2.1: there are

orchestrators enclosed in a root firewall. Each orchestrator, simply called

agent in the following, is associated to an Atom Gateway, an interface for

handling incoming and outgoing messages. The function of the gateway

is to transform atoms into the format used by the implemented protocol,

and to translate incoming messages into Criojo messages. Its implemen-

tation depends on the communication protocol used by the agent. For

instance, if we implement an for working with HTTP, the atom gateway

will transform an HTTP GET into a Criojo message including a channel

for receiving the answer. The response of the agent, which is a Criojo

message, is then translated into a XML or Json document and included

into the HTTP response. The whole process is summarized in Fig 3.7.

5 Implicit methods are executed by the compiler whenever a type T1 is required

instead of a type T2.
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Figure 3.7: Communication Model – Example with HTTP

Now, in order to explain the implementation of concrete atom gate-

ways, we use as example the implementation of the communication layer

in our prototype. The communication layer is based on a Message Ori-

ented Middleware (MOM) on which we implement a point to point message

model. Besides an implementation based on a MOM, we find alternatives

like an implementation with web services. The MOM infrastructure handles

the exchange of messages between agents in an asynchronous and reliable

way [Cur04]: messages are sent via the MOM, which handles the deliv-

ery of the messages with a store and forward mechanism. As messages

are persisted, we can guarantee their eventual delivery if their receivers

are not available, just like the postal service. Messages on the MOM are

stored in queues, the way in which messages are retrieved form the queue

depends on one of two message models: publish/subscribe or point-to-

point. A publish/subscribe model is similar to a news channel, where

clients subscribe to a topic in order to receive messages from a specific

subject. In the point to point message model, on the contrary, a provider

sends a message intended for a single consumer, and once the message has

been delivered, it is removed from the queue. One more advantage of a

MOM system is that senders and receivers are decoupled, thus allowing the

communication between agents using disparate technologies, for instance

a Criojo agent implemented in Scala and another one implemented in

JavaScript.

On top of the MOM infrastructure we build the architecture depicted in

Figure 3.8, consisting of a message bus composed of several nodes. Agents

are connected to the nodes via bus connectors that handle the sending

and reception of messages. Bus connectors are MOM clients capable of

creating message queues as well as new nodes, allowing in this way the

dynamic evolution of the network.

In order to connect the Criojo agents to the bus, we create a special

kind of atom gateway called BusAtomGateway that has to be combined
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Figure 3.8: Implementation of communication layer.

with a bus connector. The bus connector relies on a MessageHandler for

handling incoming messages. For this reason, BusAtomGateway is also of

type MessageHandler. When the bus connector consumes a message, the

message is transformed into an atom by the BusAtomGateway, which then

immerses the atom into the solution. When an atom is exported from

the cham, the BusAtomGateway makes the corresponding transformation

and sends it to the bus via the bus connector.

In practice, a major challenge in the implementation of the communi-

cation layer is the problem of the agent’s visibility when it stands behind a

NAT (Network Address Translation) or firewall, since its addresses cannot

be exposed to the Internet. One possible solution is the implementation

of a STUN (Simple Traversal of UDP through NATs) service, in the same

way services like Skype and others P2P do to allow communication be-

tween clients whose IP address cannot be directly accessed. The STUN

protocol allows an agent to determine the public IP and port it has allo-

cated in the NAT, corresponding to its private IP address and port. With

the STUN server standing on the other side of the NAT, agents can send

binding requests to it for obtaining their IP and port as seen from the

STUN server perspective, which are in fact the address and port attributed

by the NAT. Nevertheless, this solution does not work in every context due

to the heterogeneity of NAT schemes and the lack of standardization. In

this case, another solution may involve the use of relays to get around

the NAT.

Location transparency can be limited by the choice of the transport

layer, for example in the case of the HTTP example, where the communi-

cation is not symmetric. Indeed, a client knows the server but the server

cannot delegate the response to other server in a simple way.
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To conclude the chapter, the language Criojo is still a prototype.

See Table 5.2 in Conclusion for the detail of the functionalities imple-

mented. However, features like control guards and the integration capa-

bilities of Criojo are already an asset for the orchestration of services.

First, control guards bring the possibility of introspecting the solution,

for instance with absence guards Abs, which give the language more ex-

pressive power. Then, the capacity of interfacing with external resources,

thanks to adapters, not only eases the implementation of the language by

taking advantage of the existing features in the host language, but also

provides an advancement towards interoperability. In conclusion, Criojo

turns out to be already useful, as we show now with an application to

interoperability problems in the context of service-oriented computing.





Chapter 4

A Pivot Solution to

Interoperability Problems

Interoperability, in the context of service oriented computing, is not al-

ways straightforward. Assume, for instance, that you want to automatize

the organization of your photos, which are managed by two different

photo management systems, like Picasa and Flickr. You may quickly

face interoperability problems, namely adaptation, integration and coor-

dination problems. Indeed Picasa and Flickr interfaces differ not only

from a functional point of view, as both interfaces use distinct resource

models for organizing photos; but also from a communicational one, since

Flickr provides both Restful and WS* services, while Picasa only pro-

vides Restful services. Therefore, an adaptation is needed when a client

application that orchestrates Picasa services must evolve to orchestrate

services from other providers such as Flickr, or conversely; or even when

it must evolve from a Restful interface to a WS* interface, in the case

of Flickr. An integration is needed when the client application must

orchestrate both Picasa and Flickr services. A coordination is needed

when two scripts, possibly written in distinct languages, must cooperate

to orchestrate services provided by one system.

Typically, developers solve interoperability problems by implementing

design patterns, or one of their variations. The adaptation problem can

be solved with the Adapter pattern: an adapter built between the client

and the new service provider allows to switch from one service provider

to another without modifying the client. The integration problem can be

solved with the Facade pattern: an intermediate component built between

the client and the two service providers offers a common representation for

the two resource models. Finally, the coordination problem can be solved

with the Mediator pattern: a mediator component allows the coordination

of two or more scripts by combining their results.

However, the three solutions rely on an architecture with a common

framework between orchestration languages and interfaces. Our proposal
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is a pivot architecture where scripts written in different languages are

translated into a pivot language and then executed over different inter-

faces and data models. Since Criojo is a (presumably) universal language

for interfacing resources and for orchestrating services, we use it as the

language at the center of the pivot architecture.

In this chapter we first explain the pivot architecture, and state the

features required in a pivot language. Then we further describe each one

of the three interoperability problems and the proposed solution based on

the pivot architecture with Criojo as the pivot language. The chapter is

an extended version of our paper [LGL10].

4.1 The Pivot Architecture

The pivot architecture we propose is a middleware built around a uni-

versal orchestration language, called a pivot language. In this architec-

ture, scripts written in existing orchestration languages, like SQL or Java

frameworks, are compiled into the pivot language and then executed over

different interfaces, like Picasa’s or Flickr’s.

To be effective, the pivot architecture relies on three assumptions for

the pivot language: (i) that any orchestration language can be compiled

into such language, (ii) that the pivot language can interact with differ-

ent resource interfaces, and (iii) that the design patterns used to solve

interoperability issues can be encoded in this language. We turn these

assumptions into three requirements for the pivot language.

Universality for Compiling. In order to compile scripts written

in different orchestration languages into the pivot language, we need a

multi-paradigm language. Concretely, the pivot language must support

compilation from imperative languages like Java, functional languages

like XQuery, concurrent languages like BPEL, and logic languages like YQL

or SQL. Note however that this is an approximate classification since each

language also presents features from other paradigms.

Universality for Interfacing. Service interfaces differ not only from

a functional point of view, but also from a communicational one, as il-

lustrated by the case of Flickr and Picasa. A universal language for

representing resources is therefore required, as well as a middleware layer

capable of interfacing with different sources.

Expressivity. The pivot language must be expressive enough to al-

low the different software design patterns to be encoded. We consider
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that this last requirement derives from the first one because a certain

level of expressivity is required for allowing compilation from the differ-

ent programming paradigms.

A possible choice for a pivot orchestration language is to use an ex-

isting one like Scala which clearly provides enough expressive power for

interfacing with different resources and for coding the design patterns.

Moreover, its asynchronous communication model based on actors re-

flects the message passing model that makes part of the requirements

for an orchestration language. Nevertheless, we consider that this ap-

proach would have two drawbacks. First, proving the practicability of

the solution in concrete cases would probably require an excessive imple-

mentation effort: on the contrary, chemical rules are very abstract and

concise. Second, the experimentation would not emphasize the concepts

that are essential for designing a pivot language. Actually with standard

languages, there is a gap between the communication model, based on

the exchange of messages, and the local computational model, generally

concurrent, as described in Section 1.3.2. With a chemical programming

model, as defined here, the gap disappears. Thus, we propose to use

Criojo as a pivot orchestration language. Being an implementation of

the Heta-calculus, Criojo follows a minimalist and more foundational ap-

proach, and concretely realizes the specification presented in Section 1.3.

4.2 Implementing the Pivot Architecture with

Criojo

This section shows how Criojo is used as a pivot language in the pivot

architecture, and how it can be used for solving interoperability problems.

We present three different scenarios exposing the adaptation, integration

and coordination problems, respectively, and propose a solution based on

the pivot architecture, with Criojo as the pivot language. Our proposal

is based on the implementation of design patterns [GHJV94]. Concretely,

we implement the Adapter pattern to solve the adaptation problem, the

Facade pattern to solve the integration problem, and the Mediator pattern

to solve the coordination problem.
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4.2.1 Adaptation: the Adapter Pattern

It is possible for a client application to change the provider of a service,

because either the user likes novelty, or the current service is no longer

available, etc. In any case, an adaptation is required and preferably in a

way not requiring the complete refactoring of the client. One solution to

this problem is the implementation of the adapter pattern, transforming

the interface of a service into another interface, the one expected by the

client.

To show how the adapter pattern can be implemented with Criojo

and the pivot architecture, we take the case of a client application that is

connected to Flickr and that uses Yahoo’s YQL query language to query

the number of photos taken in a given range of time, and we are going to

adapt the client to work with Picasa.

First, let us briefly describe YQL, which is a SQL-like language proposed

by Yahoo, allowing applications to query Restful services as if they were

tables in a relational database. Services in YQL are invoked via queries

written in a sub-set of SQL, where the queried table is a representation

of the service. The table in question is called an Open Data Table, an

XML document that maps the service’s input and output parameters to

columns. Client applications send their queries to the YQL service, which

translates the query into an HTTP request and forwards it to the target

service. The response is formated as a set of rows, as an XML or Json

document and sent back to the client. The whole process is summarized

in Figure 4.1:

1. The client application sends a query to Yahoo’s YQL service.

2. The YQL service translates the YQL query into a HTTP GET request

and forwards it to the target service.

3. The YQL service treats the response and forwards it back to the

client.

In our example, we have mapped the Flickrmethod called flickr.photo.getCounts

to an open data table with the same name. The Flickr method takes as

parameter a list of date pairs, representing ranges, and returns the num-

ber of photos taken in each range. The open data table represents the

method as a database table with three columns: {count, from date,

to date}. Thus it can be called with the following query.
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Figure 4.1: YQL Query Execution

SELECT count FROM photos.getCounts

WHERE from_date="1262307600"

AND to_date="1342132817"

Now, in order to adapt the client application so that it can switch from

Flickr to Picasa without too many modifications, we propose to replace

the YQL server with a Criojo component that implements the adapter

pattern. Figure 4.2 shows the configuration of the new architecture in-

cluding the Criojo component and the Picasa service: the YQL service is

replaced by a Criojo component that can communicate with both Flickr

or Picasa. The Criojo component is detailed in Figure 4.3. The Criojo

Figure 4.2: Adaptation: Criojo Component Replacing YQL Service

component is composed of a Criojo agent, a wrapper for the Flickr

service and a Picasa adapter, and an atom gateway that transforms the

YQL request into Criojo format and produces a Json response from the

agent response.

The Criojo agent is derived from the XML definition of the open data

table. It provides a channel, photos getCounts, and uses the channel

getCount provided by a service wrapping the Flickr service. The result-

ing program consists of the following rules.

1 photos_getCounts(ret, s, from, to) −−>

2 (getCount(s, counts, from, to)
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Figure 4.3: Detail of the Criojo Component

3 & Session(ret, s)),

4 counts(s, n, from, to) & Session(ret, s) −−>

5 ret(s, n, from, to)

In this program, at reception of a request specified with a return chan-

nel (ret), a session identifier (s) and a range (from and to), the Flickr

service getCount is called. The response over channel counts is finally

forwarded over the return channel ret. By replacing the Flickr wrap-

per with an adapter, we can change the implementation of the service

associated to the channel getCount, thus changing the provider.

The atom gateway located in the membrane surrounding the agent,

corresponding to the implementation of the communication layer, is in

charge of translating from a HTTP request into an incoming Criojo mes-

sage, and from an outgoing Criojo message into a Json response. Thus,

the previous YQL query is transformed into a native atom of the form

yql(ret, query), where ret simulates a remote return channel and

query is a representation of the query. When the agent tries to transmit

a message over channel ret, the gateway transforms the message into a

Json format and responds with it to the client.

The native relation yql is associated to a function that treats the

YQL query and produces the necessary atoms for calling the service. In

our case it produces the atom photos getCounts(k, "1262307600",

"1342132817"), which triggers the execution of the Criojo program.

Communication with services like Flickr and Picasa is possible thanks

to specialized API libraries, implemented using Criojo adapters 1 that

wrap the services. Thanks to location transparency, we can use the li-

1For more on Criojo adapters, refer to Section 3.1.1.2.
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braries as Criojo modules or as separate agents.

Finally, the Picasa adapter that simulates the service provided by

Flickr is implemented as a set of rules that transform a call to a Flickr

service into a call to a Picasa service. These rules can have different levels

of granularity depending on whether they are expressed with pure Criojo

or with impure Criojo by using native relations for the transformation.

In any case the meaning of the resulting module is expressed by the

following rules in pure Criojo.

1 getCount(s, ret, from, to) −−> (photoCloning(photo, end, s) &

2 Resp(s, ret, from, to, 0)),

3 (photo(s, id, date) & Resp(s, ret, from, to, n)) −−>

4 {date >= from & date < to} ?:

5 (Resp(s, ret, from, to, n+1) & Done(s, id)),

6 (photo(s, id, date) & Resp(s, ret, from, to, n)) −−>

7 {date < from || date >= to} ?:

8 (Resp(s, ret, from, to, n) & Done(s, id)),

9 end(s, id) −−> Todo(s, id),

10 (Todo(s, Succ(id)) & Done(s, Succ(id)) −−> Todo(s, id),

11 (Todo(s, 0) & Done(s, 0) & Resp(s, ret, from, to, n)) −−>

12 ret(s, n, from, to)

In this program we use the channel photoCloning provided by the Picasa

API. As its name suggests it, the channel locally clones the information of

each photo, taking as parameters a session identifier s and two response

channels, one for coping the photo information photo and another one

end to indicate the end of the cloning process. First, in line (1), when a

getCount message is received, the photoCloning service is called and the

vital information for the request is saved in relation Resp. Each response

received from the photoCloning service through channel photo contains

a photo identifier and the date in which the photo was taken, among other

attributes that we ignore here due to the limited space. The rule in line

(3) filters the photos in the date range and increases the count; the rule

in line (6) for the photos not taken within the desired range let the count

invariant. Each time a photo is processed, an atom Done is produced,

registering the photo identifier. When the message end is received, the

identifier of the last photo sent is received. It is then possible to check

that all photos have effectively been processed (lines (9) and (10)). If it
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is the case, the response is sent via the return channel stored in relation

Resp: see line (11). It is interesting to remark that the algorithm should

be simpler if the channels preserve the emission order.

4.2.2 Integration: the Facade Pattern

Whereas in the previous section we used the adapter pattern to convert

the Picasa interface to match the requirements of the client, previously

working with the Flickr service, we now want to work with both Flickr

and Picasa, integrating them into a common service. However, despite

the fact that both Picasa and Flickr services work with photos as re-

sources, each application uses its own data model, whose differences may

hinder their integration. To start, Picasa is album-centered: photos are

accessed via the album they belong to and the same photo cannot be

in more than one album at a time, while Flickr is photo-centered, al-

lowing for one photo to belong into zero or more sets. Regarding their

interfaces, the Flickr service provides several methods for obtaining in-

formation from photos. Picasa, on the other hand limits the methods

it provides to a Restful style, more oriented towards a use via client

libraries. We could use again the adapter pattern to adapt one model to

the other; however since their interfaces are so different we decide to de-

fine a common model and interface. The resulting service implements the

facade pattern, providing a simplified interface for Picasa and Flickr.

Nevertheless, the new service also implements the adapter pattern, by

adapting both services to the common model and interface. The com-

munication with the client occurs as in the previous example: HTTP GET

requests are translated into Criojo messages by the atom gateway, which

also translates the response into a HTTP response, as you can see in Fig-

ure 4.4. Note how the architecture of the service resembles that of the

adaptation use case.

Let us now show integration in action with the implementation of a

service called myPhotos that returns a copy of the meta-data of every

photo owned by a user. We want the service to build for each photo

identified by an URI id the following attributes

(id, title, description, published date)

and then to send their aggregation back. Here we have to deal with

the differences in the information and the way it is obtained from both
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services. The Picasa search service returns the following attributes:

(id, published date,

title, summary, author, gid, albumid )

while the Flickr search service only returns the id, owner and title of

the photo. If we want to obtain more information, we have to call an-

other service called photoInfo for each photo, which returns the following

attributes:

(id, owner, title, description,

posted date, taken date, url, ... ).

In order to provide the required information we implement the following

program that queries both services and formats the response according to

the common data model. Both services return the search results as a list

of photos, whose elements have to be transformed into the data model we

have defined. First, the initial request is expanded into two requests to

Picasa and Flickr respectively (line (1)) and the vital information for

the request (return channel ret, session identifier s, user identifier uid

common to two services) is saved in relation Resp.

1 myPhotos(ret, s, uid) −−> (Resp(ret, s, uid) &

2 pSearch(pResult, s, uid) & fSearch(fResult, s, uid)),

In the case of Picasa, the transformation is straightforward: in line (3)

each element of the result from Picasa is transformed into a Photo atom

with the desired format.

3 pResult(s, uid, (id, date, title, sum, _):: rest) −−>

4 (Photo(s, id, title, sum, date) & pResult(s, uid, rest)),

The Flickr result, on the other hand, requires a more elaborated pro-

cessing, in two steps.

5 fResult(s, uid, (id, ow, title)::rest) −−>

6 (fPhotoInfo(s, id, fPhoto, uid) & fResult(s, uid, rest)

7 & Wait(s, id)),

8 (fPhoto(s, uid, id, ow, title, desc, pdate, tdate, url, _)

9 & Wait(s, id)) −−> Photo(s, url, title, sum, date),
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In line (5) we first send a request for each element of the initial result,

asking for more information. Then, in line (8) we transform each fPhoto

message into a Photo atom. Relation Wait is used to ensure that all the

individual responses have been received. Thus, it is possible to express

the transition to the final step as follows.

10 pResult(s, uid, Nil) −−> PDone(s),

11 fResult(s, uid, Nil) −−> Abs(Wait(s, _)) ?: FDone(s),

12 (PDone(s) & FDone(s)) −−> Res(s, Nil),

The relation Res is used to store the result as a list, progressively updated

by aggregating the individual photos, and finally sent through the return

channel stored in relation Resp when there is no photo left.

13 (Res(s, plist) & Photo(s, id, title, sum, date)) −−>

14 Res(s, (id, title, sum, date)::plist),

15 (Resp(ret, s, uid) & Res(s, plist)) −−> Abs(Photo(s, _)) ?:

16 ret(s, uid, plist)

4.2.3 Coordination: the Mediator Pattern

In the last scenario about coordination, we show how by implementing

the mediator pattern with Criojo we can combine two scripts written in

different languages: one in YQL and the other one in a functional language

like Haskell. Indeed, using Criojo as a pivot language allow us to com-

pile the scripts into Criojo or integrate them via adapters. Then, with

the aid of a mediator component, we can coordinate the resulting pro-

grams, thus taking advantage of the features provided by each language.

Concretely, in our example, we have a YQL query that returns the

user-names of people appearing in the photos that meet a certain search

criteria. The query is a join of two open data tables, photos.search and

photos.people, resulting from the call of two services: one for search-

ing the photos by some criteria, and the another one that returns the

user-name of people appearing in a given photo. Here is the YQL query

parametrized with some selection criteria.

1 select username, photo_id from photos.people

2 where photo_id in (

3 select photo_id from photos.search
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4 where <some_criteria>) | sort (field=”username”)

The query returns a set of pairs (username, photo id), sorted by username,

as indicated by the sort function in line (4).

Now, we would like to obtain a result grouped by username, in order

to generate a Json response with the following structure:

{

"Bob" : ["photo_1", "photo_2"]

"Carl" : ["photo_3", "photo_2", "photo_4"]

"Edd" : ["photo_1", "photo_3"]

...

}

Since this is not possible in YQL, we could let the client application manip-

ulate the data; but depending on the language used on the client side this

could be more or less tedious. A better alternative is to implement a me-

diator that coordinates the existing query with another script written in a

language where operations such as mapping and grouping are more natu-

ral, like a functional language. We can either compile the two scripts into

Criojo or wrap the programs with Criojo adapters in order to use them

within the agent. In this example we explore the second option, using a

REST adapter for communicating with the YQL server and another adapter

for communicating with the Haskell execution environment. Figure 4.5

shows the schema of the mediator pattern in the example.

The mediator takes the YQL selection criteria and once embedded in

the complete query, forwards it to the YQL server via the REST adapter,

which transforms the message into a HTTP GET request and then trans-

forms the resulting Json document into an atom. The mediator consumes

the result, containing a list of pairs (username, photoid) and passes it

to the Haskell function groupByKey that we have created for group-

ing a set of key-value pairs by key. We can call Haskell function from

the Criojo agent thanks to an adapter that integrates with the Haskell

platform, by transforming Criojo atoms into function calls, and by trans-

forming the values returned by the function into Criojo atoms, which the

adapter then introduces in the solution. Upon receiving the result of the

execution of the Haskell function, the mediator exports the answer back

to the client via the atom gateway. As usual, the atom gateway acts as

a proxy: it receives a Criojo message, formats it into a Json document



144 Chapter 4. Pivot for Interoperability

and sends it back to the client. The rules of the mediator component are

contained in the following listing.

1 yql(ret, s, criteria) −−>

2 (_yql_query(people_photo, s, criteria) & Resp(ret, s)),

3 people_photo(s, list) −−>

4 _hs_fun(result, s, ”groupByKey”, list),

5 (result(s, list) & Resp(ret, s)) −−> ret(s, list)

The rule in line (1) corresponds to the reception of the criteria and its

embedding into a YQL query sent to the YQL service. As usual, the vital

information of the request (return channel ret and session identifier s)

is stored in relation Resp. The result in the form of a people photo

message, containing a list of pairs (username, photo id), triggers the

rule in line (2) that passes the list to the Haskell function groupByKey.

On line (3) the last rule takes the result of the function and sends it back

to the client through the return channel.

Note that the use of Haskell for the implementation of the groupByKey

function is only for illustrative reasons, in order to show how it is possi-

ble to combine different languages with Criojo. In fact, operations such

as mapping and grouping are also natural in Criojo, given its roots in

term rewriting. The following snippet is the Criojo equivalent of the

groupByKey function.

1 groupByKey(ret, s, list) −−> (Resp(ret, s) & ByKey(s, list)),

2 (ByKey(s, (key, value)::rest) & Pair(s, key, vlist)) −−>

3 ((Pair(s, key, value::vlist) & ByKey(s, rest)),

4 ByKey(s, (key, value)::rest) −−> {Abs(Pair(s, key, _)} ?:

5 ((Pair(s, key, value::Nil) & ByKey(s, rest)),

6 ByKey(s, Nil) −−> Res(s, Nil),

7 (Pair(s, key, vlist) & Res(s, list)) −−>

8 Res(s, (key, vlist)::list),

9 (Resp(ret, s) & Res(s, list)) −−> {Abs(Pair(s, _, _)} ?:

10 ret(s, list)

In line (1), the request is received, which produces an atom Resp for

the future response, and an atom ByKey storing the list of pairs (key,

value). The list is recursively processed, populating relation Pair, which
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assigns to each key a list of values: see lines (2) and (4). From the relation

Pair, the result is computed (line (7)) and finally sent (line (9)).

To conclude, we have shown how to implement with Criojo three

design patterns useful for interoperability: Adapter, Facade and Media-

tor. We were able to make interoperable not only data models but also

protocols. Finally, the last example also shows another approach to ser-

vice oriented computing, by using computations as resources. In fact,

in this example the YQL script and the Haskell program become both

resources that are manipulated by the mediator component. Related to

this approach is the proposal of Erenkrantz, et al. [EGST07] who come up

with an extension of the REST style called CREST (Computational REST),

including the notion of mobile code. Thus, resources are not limited to

content, but also include computations.
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Figure 4.5: Coordinating a YQL script and a Haskell program with

Criojo.



Chapter 5

Conclusion

The objective of this thesis has been

• to prove that the chemical programming paradigm is a good solution

for the orchestration of services in network-based architectures;

• to propose a practical tool, in the form of a programming language,

whose theoretical foundations rests on the Heta-calculus, a chemical

abstract machine dedicated to service orchestration;

• to use this language as a pivot language in order to solve interop-

erability issues.

In order to determine what is needed in a language for orchestrating

services, we studied the state of the art in Chapter 1, where we began

by providing the basic concepts to understand distributed computing and

service oriented computing. This chapter provides an analysis of the var-

ious approaches towards distributed programming, dealing with concerns

such as (i) distribution models, with the opposition message-passing ver-

sus shared memory, (ii) communication, from synchrony to asynchrony,

(iii) parallelism and concurrency and (iv) fault tolerance. The modern

form of distributed computing turns out to be service-oriented comput-

ing, which derives from a trend towards an Internet-wide decentralization.

For web services, we find two popular and often antagonistic models: one

centered on processes, and another one centered on resources. As a conse-

quence of the absence of a unified model for service-oriented computing,

new interoperability problems appear in the orchestration of heteroge-

neous agents. Approaches to tackle these issues include solutions based on

message oriented middlewares and model driven engineering techniques,

which in general propose an intermediary protocol for the interoperability

of agents. Since the solution always relies on the existence of a common

resource model, we also study different approaches towards a universal

model for representing and manipulating resources.
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At this point, the chapter leads to the first contribution of the thesis:

a set of requirements for an orchestration language, drawn from the state

of the art. Here is a summary.

• Message-passing model with asynchronous communication

• Channel mobility

• Shared memory with locks and transactions for each agent

• Parallelism explicit globally, implicit locally

• Fail-safe fault tolerance

• Correlation between services

• Resource representation with a universal data model

• Computational completeness with respect to representations

With these requirements in mind, we presented in Chapter 2 the Heta-

calculus, a calculus for service orchestration developed in the Ascola team.

The syntax and the semantics of the Heta-calculus is defined via a dis-

tributed chemical machine: it describes collaborations between agents as

well as the behavior of the agents themselves. The state of the agent is de-

scribed in terms of a chemical solution that changes according to reaction

rules, and agents communicate with each other by exchanging messages

in the form of atoms. Contrary to the classical cham, the Heta-calculus

has introspection, which extends its expressive power.

The second contribution of this thesis is the retrospective formulation

of all the design decisions that have been made for the design of the

Heta-calculus and its validation against requirements. See Table 5.1 for

a complete check-list.

Nevertheless, the Heta-calculus is only a minimal formalism for de-

scribing service orchestrations. The third contribution of this thesis, pre-

sented in Chapter 3, is a programming language, Criojo, based on the

Heta-calculus, for its syntax and its semantics. Criojo also concretizes

some abstract features of the Heta-calculus, only useful for modeling.

Thus, Criojo concretely implements the capacities for interfacing with

external components, only defined as an abstract promise in the Heta-

calculus, which greatly improves interoperability, particularly by satis-

fying the black-box principle. The first part of the chapter presents a
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Heta-calculus

Distributed Architecture

Asynchronous message-passing X

Channel Library -

Message Passing

Channel Scope X

Channel mobility X

Scope Extrusion X

Agent Architecture

Shared memory with locks X

Transactions -

Parallelism

Implicit Parallelism (locally) X

Explicit Parallelism (globally) X

Fault Tolerance

Fail-safe fault tolerance X

Failure Detection/Notification -

Logging -

Services and Resources

Correlation X

Interface X

Representation X

Typing -

Completeness -

Map/Reduce X

(Satisfied: X, Not Satisfied: ×, To be Completed: -)

Table 5.1: Heta-calculus – Validation against Requirements
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tutorial explaining how to program with Criojo: the aim was to show

that Criojo programs are concise, quite declarative, expressed at a high

level of abstraction. The second part of the chapter details the implemen-

tation of Criojo, providing a set of guidelines for future implementations

and extensions. Table 5.2 describes the state of the Criojo implemen-

tation. Although a lot of work must still be done, the language Criojo

already turns out to be useful.

Indeed, Chapter 4 shows Criojo features applied in a real-world sce-

nario: this is the fourth contribution of the thesis. We were able to

specify a solution for the interoperability problems between Flickr and

Picasa, two providers for photo services, thanks to a pivot architecture

with Criojo as pivot language. The pivot architecture provides a frame-

work for the solution of the adaptation, integration and coordination

problems by implementing three well known design patterns: the adapter,

facade and mediator patterns.

Finally, if the current implementation of Criojo proved to be a use-

ful tool for service orchestration by extending the Heta-calculus without

modifying its semantics, it remains a prototype and a lot of work still

needs to be done. We now present the perspectives of this work.

5.1 Future work

We present some possible extensions that we consider as priorities. If

most of them come from the requirements (see Table 5.2), we have also

identified one of them for the development process of the language.

Causality and Synchronous communication. Certain algorithms

require to preserve the order of events from emission to reception. This

is called a causally ordered computation [CBMT96], which can be seen

as a generalization of synchronous communication. Let us illustrate this

by revisiting the SVGPainter example in Section 3.1.1.3. Assume in this

case that we use an implementation of the SVGPainter as an independent

agent to which our Sierpinski agent sends messages and that we add two

operations, for opening and closing a file respectively. The algorithm can

now be summarized as:

1. Send a message to open the file

2. Generate the Sierpinski triangles
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Criojo

Distributed Architecture

Asynchronous message-passing X

Channel Library ×

Message Passing

Channel Scope -

Channel mobility -

Scope Extrusion ×

Agent Architecture

Shared memory with locks X

Transactions -

Parallelism

Implicit Parallelism (locally) ×

Explicit Parallelism (globally) X

Fault Tolerance

Fail-safe fault tolerance X

Failure Detection/Notification ×

Logging ×

Services and Resources

Correlation X

Interface X

Representation X

Typing -

Completeness -

Map/Reduce -

(Implemented: X, Not Implemented: ×, Partially implemented: -)

Table 5.2: Criojo – Validation against Requirements
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3. Send a paintTriangle message for each triangle

4. Close the file

Notice that if we proceed as indicated by the algorithm, there is no

way of guaranteeing that the SVGPainter agent has received all the

paintTriangle messages before closing the file due to the asynchronous

nature of the communication and the latencies of the network. Of course

it is possible to implement control mechanism for preserving causality in

Criojo, in the form of acknowledgment messages; however, this can be-

come cumbersome and result in boilerplate code. Thus a desirable exten-

sion of the language would be the introduction of richer channels, capable

of supporting causally ordered messages above asynchronous communi-

cation or by directly using synchronous protocols in a native way.

Parallelization. With the emergence of multicore processors, distributed

computing takes another dimension: computations needing multiple inde-

pendent computers can be done within a single processor. An example of

this trend is Intel’s experimental single-ship cloud processor that aims

at simulating a scalable cluster of up to one hundred computers that

communicate with each other via hardware supported message passing1.

Traditional sequential programming is less adapted to this technology

than parallel computing oriented languages like Criojo. However, cur-

rently, the implementation of Criojo does not resort to parallelism. One

possible solution towards parallelization would be to add the capacity of

deploying independent chams in the same computer, each within a ded-

icated core. Another solution would be to allow the parallel execution

of rules inside a group. The problem can then be stated as a scheduling

problem with conflicts [EHKR09]. If the problem has not been studied

in the chemical model at the processor scale, it has been studied at the

network scale, where algorithms have been proposed for the discovery and

capture of atoms [BOT13].

Optimal Rule Execution. The current implementation of the reac-

tion rules closely reflects the semantics expressed in the theory of the

Heta-calculus, and guarantees the correct evaluation of rules. Neverthe-

less, automata are not the most effective implementation. Consider for

instance the following program that eliminates duplicated atoms.

1See the web site

http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-computer.html
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1 R(x) & R(x) −−> R(x)

The problem with implementing this rule as a state machine is that it

leads to a Cartesian product on the total of atoms, resulting in a complex-

ity of order O(n2), when it could be linear. The problem is even harder

when we also consider the evaluation of guards. As said before, there is

a balance to be found between the expressive power of guards, required

for computational completeness, and the complexity of their evaluation,

which should be not only reasonable but also predictable in an intuitive

way.

Language Integration. Depending on what we want to do, there are

two ways for the integration of Criojo with other languages, and ex-

tensions are required for each of these methods. First, adapters allow

to reuse existing components written in different languages and to take

advantage of the features of a given language. This is illustrated by our

coordination example in Section 4.2.3, where Criojo is used for coordi-

nating a SQL script with a functional language script. The next step is to

define adapters for several different languages. The second way in which

Criojo is integrated with other language, is through embedding: Criojo

is implemented in a host language and can be used within that language,

as exemplified by the current prototype. The difficulty lies in finding an

effective way of using the native data types. Our current approach is

based on a boxing/unboxing technique, where native types are wrapped

inside Criojo terms. Implicit conversions allow to box/unbox values,

thus enabling the use of native operations within expressions. However,

this implies that wrappers and conversions have to be implemented for

each native type we want to use within the rules. Moreover, boxing and

unboxing is already done by languages like Scala and C#, which means

that a double boxing and unboxing is performed each time. In conse-

quence, we need a more practical and efficient way of integrating native

types into the language.

To conclude, the language Criojo provides a basis for many future

extensions, either in the current prototype, or in new prototypes using

new host languages.
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Résumé Étendu

A.1 Introduction

Avec l’émergence du ”Cloud-computing” et des applications mobiles, il

est possible de trouver un service web répondant à presque tout be-

soin. Un service est un programme informatique qui fournit un ensemble

d’opérations accessibles à partir d’une adresse de réseau. Les programmes

clients sur le web interagissent avec le service en utilisant des messages

HTTP. Grace à la variété de services Web disponibles, les développeurs

peuvent créer des applications complexes en combinant plusieurs services

indépendants, dont la disposition et l’exécution peut être automatisé à

l’aide de langages d’orchestration.

Cependant, la diversité des technologies et le manque de standard-

isation peuvent entraver la collaboration entre services. Imaginez par

exemple que vous écrivez une application mobile de gestion et de partage

de photos. Il existe différents services qui permettent de gérer des photos

en ligne, dont Flickr est un des plus populaires. En utilisant l’interface

de programmation (API) de Flickr vous implémentez une application qui

communique avec ce service. Mais une fois que l’application gagne en pop-

ularité, de plus en plus d’utilisateurs demandent à pouvoir utiliser des ser-

vices alternatifs comme Picasa. Néanmoins, Flickr et Picasa diffèrent

non seulement dans la façon dont ils organisent les photos, mais aussi

dans les services qu’ils fournissent par leurs interfaces. Par protocoles

on entend la manière dont les messages sont organisés pour compléter

des tâches communes, comme la recherche et l’édition : alors que Flickr

fournit directement une variété des opérations plus ou moins complexes,

Picasa s’appuie sur les bibliothèques clientes qui effectuent les mêmes

tâches en combinant des méthodes HTTP de base GET, POST, etc. D’un

point de vue technologique, bien que les deux services fournissent des in-

terfaces REST, Flickr permet également aux clients d’utiliser du SOAP et

du XML-RPC.

On se trouve donc face à des problèmes d’interoperabilité dus à l’hétéro-
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généité des différents services. A cet égard, nous avons identifié trois

types de problèmes, adaptation, intégration et coordination, qui peuvent

être décrits comme suit dans les termes de notre exemple :

Adaptation : l’application cliente qui orchestre les services de Flickr

doit être adaptée pour orchestrer les services fournis par Picasa.

Intégration : l’application cliente doit orchestrer en même temps les

services de Picasa et de Flickr en définissant un modèle de données

commun et une interface commune aux deux services.

Coordination : du point de vue des langages d’orchestration de web

services, les scripts existants écrits dans différents langages doivent

être coordonnés pour coopérer dans l’orchestration des services utilisés.

Les infrastructures de type middleware sont généralement proposées

pour résoudre les problèmes d’interopérabilité sous la forme d’architectures

de bus avec un élément central qui traduit des messages. Néanmoins, une

solution complète nécessite une représentation universelle des ressources.

Notre approche, analogue à ces travaux consiste en une architecture pivot

qui intègre différents langages d’orchestration avec des fournisseurs de

services hétérogènes autour d’un langage pivot, permettant ainsi la mise

en oeuvre de patrons de programmation courants : le patron adaptateur

pour résoudre des problèmes d’adaptation, le patron façade pour résoudre

des problèmes d’intégration, et le patron médiateur pour résoudre des

problèmes de coordination. Le défi reste de trouver le langage d’orchestration

adéquat qui puisse servir de langage pivot.

La thèse de cette dissertation est que le paradigme de programmation

chimique peut fournir les fondations pour un langage d’orchestration.

Concrètement,

• nous présentons un nouveau langage d’orchestration, appelé Criojo,

qui met en oeuvre et étend un calcul original basé sur une machine

chimique abstraite (cham) dédiée à la programmation orientée aux

services,

• nous montrons comment le langage d’orchestration peut être utilisé

pour définir une architecture pivot.

La conséquence à adopter cette approche serait une amélioration de

l’interoperabilité des services et des langages d’orchestration, facilitant
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ainsi le développement de services composés. Le haut niveau d’abstraction

de Criojo pourrait permettre aux développeurs d’écrire des programmes

très concis puisque les échanges de messages sont représentés de manière

naturelle et intuitive. Ces programmes pourraient être utilisés non seule-

ment comme orchestrations efficaces, remplaçant les orchestrations écrites

dans des langues traditionnelles, mais aussi comme prototypes d’orchestrations,

donnant une spécification claire pour les orchestrations concretes écrites

dans des langues traditionnelles. En outre, le fondations formelles de

Criojo fournissent une spécification du noyau d’un langage d’orchestration

pour une architecture pivot, ce qui conduit à de nombreux avantages, non

seulement pendant la phase de développement du langage, mais aussi pen-

dant la description et les phases de validation des orchestrations écrites

dans ce langage.

• La spécification formelle étant claire et concise facilite la mise en

oeuvre du langage, tout en évitant les pièges souvent rencontrés

dans les normes, comme est le cas du langage BPEL.

• La spécification formelle fournit les bases théoriques des outils utiles

pour spécifier, tester et vérifier des orchestrations.

A.1.1 Contributions

Cette dissertation fait les contributions suivantes :

• une définition bien motivée d’un ensemble de conditions requises

pour un langue d’orchestration,

• la formulation de toutes les décisions de conception qui ont été prises

pour la conception du calcul chimique et de sa validation par rap-

port aux besoins, en plus de la présentation du calcul initial,

• la mise en oeuvre du prototype d’un langage d’orchestration appelé

Criojo, basée sur les fondements théoriques données par le cal-

cul chimique, décrit du point de vue d’un programmateur et d’un

exécutant, respectivement,

• en particulier, un ensemble d’extensions utiles qui facilitent la pro-

grammation des vrai applications, comme la possibilité de s’interfacer

avec des fonctions et des ressources externes,
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• une méthode pour le développement de solutions différentes pour

des problèmes d’interopérabilité, sous la forme d’une architecture

de pivot utilisant Criojo en tant que langue de pivotement.
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A.2 Vers un Langage pour l’Orchestration de

Web Services

En vue de déterminer ce qui est nécessaire dans un langage pour orchestrer

des services web, nous avons étudié l’état de l’art dans ce chapitre, où nous

avons commencé par exposer les concepts de base permettant de compren-

dre la programmation distribuée et la programmation orientée service.

Ce chapitre fournit une analyse des différentes approches dirigées vers

la programmation distribuée, traitant de sujets comme (i) les modèles

de distribution, avec l’opposition entre le modèle basé sur l’échange de

messages et le modèle de memoire partagée, (ii) communication, en par-

tant de la communication asynchrone vers la communication synchrone,

(iii) parallélisme et concurrence et (iv) tolérance aux fautes. La forme

moderne de la programmation distribuée s’avère être la programmation

orientée service, qui découle d’une tendance vers une décentralisation à

l’échelle d’Internet. Dans les services web nous trouvons deux modèles

populaires et souvent antagonistes : l’un centré sur les processus et

l’autre sur les ressources. Comme conséquence de l’absence d’un modèle

unifié pour la programmation orientée service, de nouveaux problèmes

d’interoperabilité apparaissent dans l’orchestration d’agents hétérogènes.

Les approches pour adresser ces questions incluent des solutions basées

sur des middle-wares et des techniques d’ingénierie dirigée par les modèles,

qui proposent généralement un protocole intermédiaire pour l’interoperabilité

des agents. Comme les solutions se reposent encore sur l’existence d’un

modèle de ressources commun, nous étudions aussi différentes approches

vers un modèle universel pour la représentation et la manipulation des

ressources. A la fin du chapitre, nous listons un ensemble de besoins ex-

traits de l’état de l’art, du point de vue de la programmation orientée

service et du point de vue de la manipulation de ressources. Ces besoins

fournissent la spécification suivante pour un langage pour l’orchestration

de services web.

A.2.1 Exigences pour Orchestration de Service

Communication, Synchronisation et Parallélisme

Condition 1 (Architecture Distribuée - Echange des Messages). Le lan-

gage doit permettre la définition des orchestrations réparties entre des

agents. Il doit utiliser un modèle de passage de messages : les agents
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échangent des messages sur des canaux.

Condition 2 (Architecture Distribuée - Canaux Asynchrones). Le lan-

gage doit utiliser des canaux asynchrones, ce qui est naturel dans un

contexte distribué.

Condition 3 (Architecture Distribuée - Bibliothèque de Canaux). Le

langage doit fournir une bibliothèque des canaux avec les conditions suiv-

antes de synchronisation :

(i) synchronie,

(ii) préservation de l’ordre causal,

(iii) diffusion

et probablement d’autres.

Condition 4 (Passage des Messages - Portée de Canaux). La portée d’un

canal doit être contrôlée.

Condition 5 (Passage des Messages - Extrusion de la Portée). La portée

d’un canal transmis à un agent devrait être étendue à la réception l’agent.

Condition 6 (Architecture de l’Agent - Verrous). Le langage doit fournir

une primitive pour verrouiller les ressources.

Condition 7 (Architecture de l’Agent - Transactions). La langage de-

vrait permettre un mécanisme transactionnel à programmer pour chaque

agent. Les transactions doivent satisfaire les conditions suivantes :

(i) atomicité,

(ii) isolation

Condition 8 (Parallélisme - Explicite Globalement, Implicite Locale-

ment). La définition des agents distribués agissant en parallèle doit être

explicitement indiqué. Pour chaque agent, le parallélisme entre les ac-

tivités locales devrait être implicite.
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Tolérance Aux Fautes Maintenant nous définissons les conditions

requises pour la tolérance aux fautes. Nous nous limitons aux omissions

et erreurs accidentelles. Ainsi, il est de la responsabilité du programmeur

d’assurer un comportement correct en présence de fautes byzantines :

cette tolérance peut être assurée par la sécurité de recourir à la cryp-

tographie.

Condition 9 (Tolérance Aux Fautes - Fail-safe). La langue doit appliquer

une tolérance aux fautes dite fail-safe préservant les invariantes locales.

Cela peut imposer une tolérance aux fautes plus forte.

Une invariante locale est une propriété satisfaite par un agent et con-

servée au cours de l’exécution. La première partie de l’exigence énonce

une tolérance aux fautes minimale : en cas de perte d’un message ou

d’un accident dans l’agent, chaque agent actif se comporte toujours cor-

rectement. Au-delà de ce seuil minimal, la tolérance aux fautes devient

coûteuse : toute extension de la sécurité globale ou de la vivacité est donc

facultative.

Condition 10 (Tolérance Aux Fautes - Détection et Notification). Le

langage doit fournir des mécanismes de détection et de notification des

fautes d’omission et de crash.

La mise en œuvre de ces mécanismes dépend de la couche physique

sous-jacente utilisée pour communiquer. Ainsi, l’exigence pourrait être

impossible à satisfaire en raison du manque de fonctionnalités.

Condition 11 (Tolérance Aux Fautes - Enregistrement). Le langage doit

fournir des mécanismes pour enregistrer les événement ou actions.

Services et Ressources Dans cette partie, nous décrivons les condi-

tions requises spécifiques pour les services et les ressources.

Condition 12 (Services - Corrélation). Le langage doit fournir une prim-

itive ou un mécanisme de corrélation des messages.

Condition 13 (Ressources - Interface). Le langage doit fournir un mécanisme

pour s’interfacer avec n’importe quelle ressource.

Pour les ressources internes, l’exigence correspond à la possibilité de

nommer et représenter une ressource dans le language. Pour les ressources

externes, l’exigence vise à améliorer l’interopérabilité.
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Condition 14 (Ressources - Représentation). Le langage doit fournir un

modèle de données universel avec les propriétés suivantes:

(i) les données sont lisibles par l’homme

(ii) les données peuvent avoir un analysées syntaxique effectif

(iii) les données sont sérlialisables

Un modèle de données est universel s’il permet de représenter tout

modèle de données, en particulier le modèle algébrique, le modèle rela-

tionnel et d’autres utilisés pour les données semi-structurées.

Condition 15 (Ressources - Types). Si le langage est typé, son système

de types peut fournir les opérations ensemblistes : l’union, l’intersection et

la différence, et interpréter la relation de sous-typage comme une relation

d’inclusion de sous-ensembles.

Cette exigence optionnelle s’appuie sur le succès rapporté par Benza-

ken et al. [BCNS13] lors de la formalisation d’un modèle de données

pour données semi-structurées.

Condition 16 (Ressources - Exhaustivité Computationalle). Le langage

doit être complet par rapport au modèle de données.

En d’autres termes, toutes les fonctions calculables sur le modèle de

données doit être exprimée dans le langage : c’est la thèse de Church

appliquée au modèle de données universel. Concrètement, cela signifie que

n’importe quel langage défini sur le modèle de données peut être traduit,

ce qui peut être expérimenté avec des langages fonctionnels, logiques, et

impératifs, par exemple.

Condition 17 (Services - Map/Reduce). Le langage doit fournir un

mécanisme pour l’implémentation des operations Map/Reduce.

A.2.1.1 Orchestration des services dans la pratique

Nous analysons les conditions requises par rapport aux deux solutions ex-

istantes possibles : des frameworks orientés aux objets pour l’implémentation

de services Restful et WS*, comme CXF ; et des langages d’orchestration

comme BPEL, qui est le standard de facto. Le résultat est résumé dans le

Tableau A.1.
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Frameworks BPEL

Restful / WS*

Passage de messages asynchrone X X

Librairie de canneaux - -

Mobilité de canneaux X / - -

Mémoire partagée avec verrous X X

Transactions - X

Parallélisme Explicite (local) - X

Parallélisme Implicite (local) × ×

Parallélisme Explicite (global) × ×

Tolérance aux fautes fail-safe X X

Détection et Notification de Fautes - X

Enregistrement - -

Corrélation - / X X

Réssource Interface X X

Modèle des Données Universel × X

Complétude X X

Map/Reduce X ×

(Yes: X, No: ×, Partly: -)

Table A.1: Satisfaction des Exigences en Pratique
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A.3 Le Heta-calcul

Dans ce chapitre nous présentons l’Heta-calculus, en prenant en compte

les besoins du chapitre precedent. L’Heta-calculus est un calcul pour la

formalisation de la collaboration entre agents qui a été développé au sein

de l’équipe Ascola. La syntaxe et la sémantique du Heta-calculus est celle

d’une machine chimique distribuée, elle décrit aussi bien les collaborations

entre agents que le comportement des agents eux mêmes. La définition

formelle de la syntaxe du Heta-calculus est montrée dans le Tableau A.2.

Value Pattern v ::= f v∗ (term)

| V (variable)

Atom Pattern a ::= R(v) (atomic fact)

| c (cell)

| A (variable)

Cell Pattern c ::= M [s] (membrane with solution)

Solution Pattern s ::= ∅ (empty solution)

| a& s (insertion)

| S (variable)

Program p ::= c {r∗} (initial cell { rules })

Rule r ::= c→ g ? c (head → guard? conclusion)

Guard g ::= ⊤ (true)

|
∧

g∗ (conjunction)

| ¬(c→ g) (control guard)

Table A.2: Machine Chimique Abstraite Introspective – Syntaxe

L’état de l’agent est décrit en termes d’une solution chimique qui

change suivant des règles de réaction, et les agents communiquent entre

eux en échangeant des messages sous forme d’atomes. Les principales

différences avec la machine classique sont

• La machine abstraite chimique est introspective, grâce aux gardes

de contrôle. C’est le point majeur.
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• Les règles sont plus effectives car il n’y a pas des règles réversibles

• Les solutions chimiques sont décrites par des patrons qui peuvent

recourir à une solution variable, avec une occurrence unique, ce qui

mène à une formulation plus générale tout en évitant un couplage

complexe.

La sémantique du calcul est détaillé dans le Tableau A.3.

Value ξ ::= f ξ∗ (term)

Atom α ::= R(ξ) (atomic fact)

| γ (cell)

Cell γ ::= M [σ] (membrane with solution)

Solution σ ::= ∅ (empty multiset)

| α&σ (multiset insertion)

γ |=τ ⊤
def
⇔ ⊤

γ |=τ

∧

i gi
def
⇔

∧

i(γ |=τ gi)

γ |=τ ¬(c→ g)
def
⇔ ¬(∃τ ′.(γ = c[τ.τ ′]) ∧ (γ |=τ.τ ′ g))

(c1 → g ? c2 ∈ p) (c1[τ ] |=τ g)
[REACTION CHIMIQUE]

c1[τ ]⇒ c2[τ ]

γ1 ⇒ γ2
[MEMBRANE]

M [γ1&σ]⇒M [γ2&σ]

Table A.3: Machine Chimique Abstraite Introspective – Sémantique

Le chapitre conclut avec la deuxième contribution de cette thèse qu’est

la formulation rétrospective de toutes les décisions de conception qui ont

été faites pour la conception du ’Heta-calculus et sa validation par rapport

aux besoins. Le Tableau A.4 donne un résumé de cette validation.
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Heta-calculus

Architecture Distribuée

Passage de Messages Asynchrone X

Bibliothèque de canaux -

Passage de Messages

Portée de Canaux X

Mobilité de Canaux X

Extrusion de la Portée X

Architecture des Agents

Mémoire partagée avec verrous X

Transactions -

Parallélisme

Parallélisme Implicite (local) X

Parallélisme Explicite (global) X

Tolérance aux Fautes

Tolérance aux fautes Fail-safe X

Détection de failles / Notification -

Logging -

Services et Ressources

Corrélation X

Interface X

Représentation X

Typage -

Completude -

Map/Reduce X

(Satisfait: X, Non Satisfait: ×, A être complété: -)

Table A.4: Heta-calculus – Validation contre les Besoins
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A.4 Criojo Pratique

Criojo permet la définition des agents par un ensemble de règles, en suiv-

ant un schema général. Dans ce schema, nous partons d’une description

donnée pour générer les règles. Ensuite, les règles générées sont exécutées

sur une machine chimique. Il existe plusieurs possibilités pour la mise en

oeuvre du langage : soit via un compilateur ou une interprétation sur

une machine virtuelle, ou les deux, en fonction du niveau d’abstraction

de la machine virtuelle. Notre choix qui repose sur Scala, a été de décrire

les règles directement dans le langage hôte sous la forme d’un langage

interne dédié (DSL), ce qui était la meilleure option pour un prototype,

et ensuite d’implémenter la machine chimique comme un interprèteur de

règles. Dans cette section nous présentons le langage du point de vue du

dévelopeur et du réalisateur.

A.4.1 Programmation avec Criojo en Scala

Criojo est implémenté comme une API Scala avec un langage interne

dédié (DSL interne) imbriqué dans un langage hôte (Scala). Criojo

utilise un sous-ensemble de la grammaire de Scala, et ajoute de nou-

velles fonctionnalités sans réellement modifier le langage hôte. Le princi-

pal avantage d’un DSL interne est qu’il n’a pas besoin d’un compilateur,

donc l’implémenteur peut se concentrer sur la mise en œuvre des fonction-

nalités sémantiques du langage intégré sans se préoccuper de la syntaxe.

Cependant, les DSL internes sont en quelque sorte limités par le modèle

du langage hôte : le système de types et les constructions syntaxiques

disponibles.

A.4.1.1 Définition des Agents

Un agent est une unité de calcul indépendant, dont l’état est représenté

par une solution chimique et dont le comportement est défini comme un

ensemble de règles de réaction. Les ressources de l’agent sont représentées

en termes de structures relationnelles : un prédicat appliqué à des termes

exprime un fait atomique et définit une relation, considéré comme un

multi-ensemble. Le multi-ensemble d’atomes dans l’agent constitue son

état sous la forme d’une solution chimique. L’état de l’agent est modifié

par des règles de réaction qui génèrent de nouveaux atomes en consom-

mant des atomes existants de la solution. Certains des nouveaux atomes
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restent dans la solution locale, tandis que d’autres sont exportées, selon le

type de relation qui les définit. Il existe deux types de relations dans un

agent : relations locales, qui sont utilisées seulement en interne au sein

de l’agent ; et canaux, qui permettent la communication avec d’autres

agents, en transportant des messages (atomes) d’un agent à l’autre. Une

explication plus détaillé de la syntaxe et des examples se trouvent dans

la version longue en anglais de cette thèse.

Criojo comporte trois caractéristiques fondamentales : l’introspection,

l’adaptation et la modularité.

Introspection Grace aux gardes, les agents sont capables d’introspecter

sur leur propre état. Donc, une règle ne peux s’executer que si sa garde

est satisfaite. La syntaxe de gardes en Criojo est la suivante:

Guard g ::= True

| g && g (et)

| g ‖ g (ou)

| Not(s→ g) (control)

| Abs(s) (absence) | x op y (garde native)

Criojo étend l’Heta-calculus avec des gardes natives qui sont basées

sur des tests natIfs réalisés dans le langage hôte.

Adaptation Les adaptateurs en Criojo permettent la collaboration

entre les agents et des composants externes. Un adaptateur encapsule

un composant externe, en fournissant une abstraction en termes bien

adaptés à la machine chimique. Concrètement, un adaptateur simule un

ensemble de règles qui génèrent les atomes correspondant aux ressources

fournies par le composant enveloppé, et cet ensemble peut être infini.

Les adaptateurs en Criojo sont définis comme des types spéciaux des

relations appelées Relations Natives Une relation native est associée à une

fonction native qui transforme un ensemble de termes en une molecule,

c’est à dire, un ensemble d’atomes.

Modularité La modularité et la séparation des préoccupations peuvent

être atteints dans Criojo grâce à la collaboration entre agents. Une

autre façon de garantir le principe de la responsabilité unique est en
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factorisant le comportement dans des modules indépendants qui peuvent

être combinés plus tard dans un seul agent.

A.4.2 Vers une implementation efficace

La hiérarchie des agents communicants (Fig. A.1) est définie par les com-

posants ci-dessous:

Orchestrateur : implementation d’un orchestrateur qui contient une so-

lution chimique et un ensemble de règles de réduction.

Gateway : un firewall qui fait part d’un orchestrateur. Sert à envoyer

et recevoir des messages.

Firewall : l’implementation d’un firewall pure utilisé dans la transmis-

sion de messages.

Orchestrator

FirewallGateway

1

1

1

1

*

*

Figure A.1: Diagramme de Classes – Composants de l’Architecture.

L’execution des orchestrateurs sont organisés par rounds. Un orches-

trator produit et consomme des atom à chaque round. Au début d’un

round, il met à jour sa solution chimique avec les messages entrants,

calcule les multi-ensembles des atomes consommées et produites par le

déclenchement d’une ou plusieurs règles de réduction, met à jour enfin

sa solution chimique et le multi-ensemble de messages sortants. À la fin

du round, les messages produits par un orchestrateur sont envoyés à son

gateway. Les messages sortants sont transmis par le gateway à son firewall

parent, les messages internes sont re-envoyés à l’orchestrateur. Au lieu

de calculer toute la solution chimique à chaque tour, nous avons recours

à une stratégie efficace : l’incrementalisation [Liu00]. Ainsi, à chaque

exécution nous calculons la difference entre l’état precedent et le nouvel

état.

Pour calculer l’ensemble des évaluations de molecules candidates lors

d’un round, nous avons besoin de trouver une correspondence entre une
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séquence d’atomes dans la solution et le patron de la tête de la règle. Pour

l’incrémentalisation, nous memöısons des solutions partielles au cours

d’un round. Ainsi, l’état de correspondences pour une règle est représenté

par une machine à état. Une solution similaire a déjà été étudiée dans le

système jocaml [FM98], l’une des implémentations du join-calculus, où

des patrons de jointure sont compilés dans des machines à états finis.

A fin d’expliquer l’execution d’une règle avec une machine à état,

prenons comme example la règle:

A(x)&B(x, y)→C(x, y)

Cette règle est représentée par la machine d’état de la Fig. A.2. Au départ,

la solution et la machine d’état sont vides. Tout d’abord, l’atome B1(a, b)

arrive et la valuation {x = a, y = b} est ajoutée à l’état (01). Ensuite,

l’atome A2(c) arrive et la valuation {x = c} est ajoutée à l’état (10); mais,

puisqu’il n’y a pas de correspondance avec A(x)[x = a; y = b], aucune val-

uation est ajoutée à l’état (11). Enfin, l’atome A3(a) arrive et la valuation

{x = a} est ajoutée à l’état (10). Parce que cette fois il y a une correspon-

dance, la valuation {x = a, y = b} est ajoutée à l’état (11). Par ailleurs,

chaque valuation est couplée avec une séquence des identificateurs des

atomes qui les produisent. L’évaluation de gardes s’avère moins triviale.

L’incrementalisation efficace de cette évaluation est difficile en raison de la

liaison de variables entre les différents niveaux dans la règle, puisque toute

les têtes ont des variables liées dans ces gardes. L’implémentation actuelle

ne recourt pas à l’incrementalisation pour l’évaluation des gardes. Cepen-

dant, l’impact n’est pas trop fort parce que la structure de pré-règles est

plutôt plate, avec généralement zéro ou un niveau de gardes.

—————–
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00

10

01

(A2,{x=c})

(A3,{x=a})

(B1,{x =a; y =b})

11

(B1A3,{x=a; y=b})

A(x)

B(x,y)

B(x,y)

A(x)

Figure A.2: La machine d’états correspondant à la règle

A(x)&B(x, y)→C(x, y) après avoir reçu les atomes B1(a, b), A2(c), et

A3(a).
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A.5 Une Solution Pivot pour les Problèmes d’Interopérabilité

L’interopérabilité, dans le contexte de la programmation orientée services

n’est pas toujours simple. Supposons, par exemple, que vous souhaitez au-

tomatiser l’organisation de vos photos, qui sont gérées par deux systèmes

de gestion de photos différentes, comme Picasa et Flickr. Vous pou-

vez rapidement faire face à des problèmes d’interopérabilité, à savoir

l’adaptation, l’intégration et les problèmes de coordination. En effet in-

terfaces Picasa et Flickr diffèrent du point de vue fonctionnel : les deux

interfaces utilisent des modèles de ressources distinctes pour organiser les

photos; et communicationnelle : Flickr fournit à la fois des services REST

et WS*, tandis que Picasa ne fournit des services REST. Par conséquent,

une adaptation est nécessaire quand une application client qui orchestre

les services Picasa doit évoluer pour orchestrer des services fournis par

Flickr, ou inversement; ou même quand elle doit évoluer d’une interface

Restful à une interface WS*, dans le cas de Flickr. Une intégration est

nécessaire lorsque l’application cliente doit orchestrer la fois des services

Picasa et Flickr. Une coordination est nécessaire lorsque deux scripts,

éventuellement écrits dans des langages distincts, doivent coopérer pour

orchestrer des services fournis par un seul système.

Typiquement, pour résoudre les problèmes d’interopérabilité, les déve-

loppeurs mettent en œuvre des patrons de conception, ou une de leurs

variations. Le problème de l’adaptation peut être résolu avec le patron

d’adaptateur. Le problème de l’intégration peut être résolu avec le patron

Façade. Enfin, le problème de coordination peut être résolu par le patron

Médiateur. Cependant, les trois solutions s’appuient sur une architecture

avec un cadre commun entre les langues et les interfaces d’orchestration.

Notre proposition est une architecture pivot où les scripts écrits dans

différentes langues sont traduits dans une langue pivot puis exécutés sur

différentes interfaces et modèles de données. Comme Criojo est un langue

(probablement) universelle pour interfacer des ressources et orchestrer des

services, nous l’utilisons comme la langue au centre de l’architecture de

pivot. Dans cette partie nous expliquons l’architecture pivot et nous

indiquons les caractéristiques requises dans une langue pivot. Ensuite,

nous décrivons les trois problèmes d’interopérabilité et la solution pro-

posée basée sur l’architecture de pivot avec Criojo comme langue pivot.
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A.5.1 L’architecture Pivot

Pour être efficace, l’architecture pivot repose sur trois hypothèses pour la

langue de pivot: (i) que n’importe quel langage d’orchestration peut être

compilé dans cette langue, (ii) que le langage pivot peut interagir avec

des interfaces différentes, et (iii) que les patrons de conception utilisés

pour résoudre les problèmes d’interopérabilité peuvent être encodés dans

cette langue. Nous tournons ces hypothèses en trois exigences relatives à

la langue pivot.

Universalité pour la compilation Pour compiler des scripts écrits dans

différentes langues d’orchestration dans la langue de pivot, nous

avons besoin d’une langue multi-paradigme, qui supporte la com-

pilation des langages impératifs comme Java, langages fonctionnels

comme XQuery, des langues concurrents comme BPEL et des langues

logiques comme SQL ou YQL.

Universalité pour interfacer Les interfaces de services diffèrent non

seulement du point de vue fonctionnel, mais aussi communication-

nel, comme l’illustre le cas de Flickr et Picasa. Un langage de

représentation de ressources universel est donc nécessaire, ainsi que

une couche logicielle intermédiaire capable de s’interfacer avec différentes

sources.

Expressivité Le langage pivot doit être suffisamment expressif pour per-

mettre l’encodage des différents patrons de conception. Nous con-

sidérons que cette dernière exigence découle de la première, car un

certain niveau d’expressivité est nécessaire pour permettre la com-

pilation des paradigmes de programmation.

A.5.2 Implémentation avec Criojo

Cette section montre comment Criojo est utilisé comme langage pivot

dans l’architecture pivot, et comment il peut être utilisé pour résoudre

les problèmes d’interopérabilité. Nous présentons trois scénarios différents

exposant l’adaptation, l’intégration et les problèmes de coordination, re-

spectivement, et proposons une solution basée sur l’architecture pivot.

Notre proposition est basée sur des patrons de conception. Concrètement,

nous mettons en oeuvre le patron Adaptateur pour résoudre le problème

d’adaptation, le patron Façade pour résoudre le problème d’intégration

et le patron Médiateur pour résoudre le problème de coordination.
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La mise en oeuvre du patron Façade étant similaire à celui du patron

Adaptateur nous présentons dans ce resume seulement celui de l’adaptation.

Les examples complets se trouvent en la version complete en anglais.

A.5.2.1 Adaptation : le Patron Adaptateur

Il est possible qu’une application client modifie le fournisseur d’un service,

soit parce que l’utilisateur aime la nouveauté ou le service actuel n’est

plus disponibles, etc. Dans tous les cas, une adaptation est requise. Une

solution pour ce problème est l’implémentation du patron adaptateur,

en transformant l’interface d’un service dans une autre interface, celle

attendue par le client. Les Figures A.3, A.4 et A.5 montrent l’example

d’une application client connectée à Flickr qui doit être adaptée pour se

connecter à Picasa.

Initialement le client utilise le langage de requête YQL pour requêter

sur les photos.

Figure A.3: YQL Execution de la Requête

Nous proposons de remplacer le serveur YQL avec un composant Criojo.

Figure A.4: Adaptation: Le Composant Criojo Remplace le Service YQL

Le composant Criojo implemente le patron adaptateur, ce qui lui

permet de communiquer avec Flickr ou Picasa.
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Flickr
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Flickr

API

Adapter

Agent

Figure A.5: Détail du Composant Criojo

A.5.2.2 Coordination : le Patron Mediateur

Dans ce dernier scenario nous montrons comment le patron mediateur

permet de combiner deux scripts écrits dans des langages différents : l’un

écrit en YQL et l’autre écrit en un langage fonctionnel comme Haskell.

En effet, en utilisant Criojo comme langue pivot nous pouvons com-

piler les scripts dans Criojo ou les intégrer via des adaptateurs. Puis,

avec l’aide d’un composant médiateur, nous pouvons coordonner les pro-

grammes qui en résultent, profitant ainsi des fonctionnalités offertes par

chaque langage. Dans cette exemple nous avons une requête YQL que

retourne les noms d’utilisateurs apparaissant dans certaines photos. La

requête renvoie un ensemble de paires (usename, photo id), triées par

nom d’utilisateur. Pour obtenir un résultat groupé par username nous

avons recours à un médiateur qui coordonne la requête existante avec

un autre script écrit dans un langage où ce genre d’operations sont ex-

primées de façon plus naturelle. La Figure A.6 montre le schema du

patron mediateur, où nous utilisons un adaptateur REST pour communi-

quer avec le serveur YQL et un autre adaptateur pour communiquer avec

l’environnement d’execution Haskell.

Le médiateur prend les critères de sélection YQL et une fois intégré

dans la requête complète, les transmet au serveur YQL via l’adaptateur

REST qui transforme le message en une requête HTTP GET, puis transforme

le document Json résultant en un atome.
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YQL
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Atom Gateway
YQL

REST
Adapter

Agent

MediatorHaskell

Adapter

Figure A.6: Detail of the Criojo Component
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A.6 Les Travaux à Venir

Si la mise en oeuvre actuelle de Criojo est avérée être un outil utile pour

l’orchestration de services en étendant la Heta-calculus sans modifier sa

sémantique, il reste un prototype et beaucoup de travail doit encore être

fait. Nous présentons dans cette section les perspectives de ce travail :

A.6.1 La causalité et la communication synchrone

Certains algorithmes nécessitent de préserver l’ordre des événements de

l’émission à la réception. Cela s’appelle un calcul causalement ordonné [CBMT96].

Donc, une extension souhaitable du langage serait l’introduction de canaux

plus riches, capables de supporter des messages ordonnés par causalité,

soit en étendant la communication asynchrone ou en utilisant directement

les protocoles synchrones de manière native.

A.6.2 Parallélisation

Avec l’émergence des processeurs multicœurs, la programmation distribuée

prend une autre dimension : les calculs nécessitant plusieurs ordinateurs

indépendants peuvent se faire dans un seul processeur. La programmation

séquentielle traditionnelle est moins adaptée à cette technologie contraire-

ment aux langages orientés au parallélisme comme Criojo. Cependant,

l’implémentation actuelle de Criojo ne recourt pas au parallélisme. Une

solution possible vers la parallélisation serait d’ajouter la capacité de

déployer les différentes chams dans le même ordinateur, chacun dans un

noyau dédié. Une autre solution serait de permettre l’exécution parallèle

de règles à l’intérieur d’un groupe. Le problème peut alors être déclaré

comme un problème d’ordonnancement avec conflits [EHKR09].

A.6.3 Exécution de règles optimales

L’implémentation actuelle des règles de réaction reflète étroitement la

sémantique exprimée dans la théorie de l’Heta-calculus, et garantit l’évaluation

correcte des règles. Néanmoins, les automates ne sont pas la solution la

plus efficace. Dans certain cas, cela peut conduire à un produit cartésien

sur le total d’atomes. Il y a un équilibre à trouver entre la puissance

expressive de gardes, requis pour l’exhaustivité du calcul ; et la com-

plexité de leur évaluation, qui doit être non seulement raisonnable, mais

également prévisible de façon intuitive.
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A.6.4 Intégration

Selon ce que nous voulons faire, il y a deux façons pour l’intégration

de Criojo avec d’autres langues, et des extensions sont nécessaires pour

chacune de ces méthodes. Tout d’abord, les adaptateurs permettent de

réutiliser des composants existants écrits dans différents langages et de

tirer parti des caractéristiques d’une langue donnée. La deuxième façon

est d’embarquer Criojo, comme le montre le prototype actuel.
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Réveillère. Starlink: Runtime interoperability between het-

erogeneous middleware protocols. In Proceedings of the

2011 31st International Conference on Distributed Comput-

ing Systems, ICDCS ’11, pages 446–455, Washington, DC,

USA, 2011. IEEE Computer Society. (Cited on page 23.)

[BGRB11] Yérom-David Bromberg, Paul Grace, Laurent Réveillère,
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berg, Magnús Halldórsson, Anna Ingólfsdóttir, and Igor
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Thèse de Doctorat

Mayleen LACOUTURE

Un langage de Programmation Chimique pour l’Orchestration des Services
Application aux problèmes d’interopérabilité

A Chemical Programming Language for Orchestrating Services
Application to Interoperability Problems

Résumé
Avec l’émergence du "Cloud-computing" et des
applications mobiles, il est possible de trouver un
service web répondant à presque tout besoin. De
plus, les développeurs peuvent créer des applications
complexes en combinant différents services
indépendants, dont l’agencement et l’exécution
peuvent être automatisés avec l’aide de langages
d’orchestration. Cependant, la diversité des
technologies et le manque de standardisation peuvent
entraver la collaboration entre services. Un exemple
de cette limitation est le cas de la gestion des photos
avec des services tels que Flickr et Picasa, qui
diffèrent non seulement sur la façon dont les photos
sont organisées mais aussi sur les services qu’ils
fournissent. L’hétérogénéité des ces deux services
conduit à des problèmes d’interopérabilité, à savoir
dans l’adaptation, l’intégration et la coordination. Nous
proposons un framework pour aider à la résolution de
ces problèmes, sous la forme d’une architecture qui
intègre différents langages d’orchestration avec des
fournisseurs de services hétérogènes autour d’un
langage pivot. Comme langage pivot, nous proposons
le langage d’orchestration Criojo qui implémente et
étend le Heta-calcul, un calcul original associé à une
machine chimique abstraite dédié à l’orchestration de
services. En adoptant cette approche l’interopérabilité
entre les services et les langages d’orchestration sera
améliorée, facilitant ainsi le développement des
services composites. Le haut niveau d’abstraction de
Criojo pourrait permettre aux développeurs d’écrire
des orchestrations très concises puisque les
échanges de messages sont représentés d’une
manière naturelle et intuitive.

Abstract
With the emergence of cloud computing and mobile
applications, it is possible to find a web service for
almost everything. Moreover, developers can create
complex applications by combining several
independent services, whose arrangement and
execution can be automated with the aid of
orchestration languages. Nevertheless, the diversity of
technologies and the lack of standardization can
hinder the collaboration between services. An
example of this limitation is the case of photo
management with services such as Flickr and Picasa,
which not only differ on the way photos are organized,
but also in the services they provide. The
heterogeneity of the two services leads to
interoperability problems, namely adaptation,
integration and coordination problems. We propose a
framework for helping at the resolution of these
issues, in the form of an architecture that integrates
different orchestration languages with heterogeneous
service providers around a pivot language. As a pivot
language we propose an orchestration language
based on the chemical programming paradigm.
Concretely, this dissertation presents the language
Criojo that implements and extends the Heta-calculus,
an original calculus associated to a chemical abstract
machine dedicated to service-oriented computing.
The consequence of adopting this approach would be
an improvement in the interoperability of services and
orchestration languages, thus easing the development
of composite services. The high level of abstraction of
Criojo could allow developers to write very concise
orchestrations since message exchanges are
represented in a natural and intuitive way.

Mots clés
Interopérabilité, Services, Programmation Chimique.

Key Words
Interoperability, SOC, Chemical Programming.
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