N

N

An incremental approach for the extraction of firing
sequences in Timed Petri Nets: application to the
reconfiguration of flexible manufacturing systems

Yongliang Huang

» To cite this version:

Yongliang Huang. An incremental approach for the extraction of firing sequences in Timed Petri Nets :
application to the reconfiguration of flexible manufacturing systems. Signal and Image processing.
Ecole Centrale de Lille, 2013. English. NNT: 2013ECLIO018 . tel-01127517

HAL Id: tel-01127517
https://theses.hal.science/tel-01127517
Submitted on 7 Mar 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-01127517
https://hal.archives-ouvertes.fr

N d’ordre: | 2 12| 8

ECOLE CENTRALE DE LILLE

THESE

présentée en vue d’obtenir le grade de

DOCTEUR

en

Spécialité : Automatique Génie Informatique, Traitement du Signal et Images

par

Yongliang HUANG

DOCTORAT DELIVRE PAR I’ECOLE CENTRALE DE LILLE

Titre de la thése :

Une approche incrémentale pour ’extraction de séquences de
franchissement dans un Réseau de Petri Temporisé : application
a la reconfiguration des systémes de production flexibles

An incremental approach for the extraction of firing sequences in
Timed Petri Nets: application to the reconfiguration of flexible

manufacturing systems

Soutenue le 25 novembre 2013 devant le jury d’examen:

Président du Jury Pr. Pierre MARQUIS Université d’Artois
Rapporteur Pr. Pascal BERRUET Université de Bretagne Sud
Rapporteur DR. Jean-Jacques LOISEAU CNRS-IRCCyN

Directeur Pr. Armand TOGUYENI Ecole Centrale de Lille
Co-encadrant MCF Thomas BOURDEAUD’HUY Ecole Centrale de Lille
Co-directeur MCF Pierre-Alain YVARS Ecole Supméca, Saint Ouen

Theése préparée dans le Laboratoire d’Automatique, Génie Informatique et Signal
L.A.G.LS., CNRS UMR 8219 - Ecole Centrale de Lille
Ecole Doctorale Sciences pour l'ingénieur ED 072
PRES Université Lille Nord-de-France



A mes parents,
a toute ma famille,
a mes professeurs,

et a mes cher(e)s ami(e)s.



Acknowledgements

This thesis would not have been done by the help and supports of
so many people in so many ways. I would like to take the opportu-
nity to express my gratitude to thank all friends and colleagues that
have given me support and encouragement during my thesis work.
First of all, my sincere thanks go to all my supervisors, Prof. Armand
TOGUYENI, Dr. Thomas BOURDEAUD’HUY and Dr. Pierre-Alain
YVARS, for their valuable guidance, continuous patience and encour-

agement and the share of their research experiences.

I also would like to express my sincere gratitude to all the members in
teams of "Systémes Tolérants aux Fautes (STF)" and "Optimisation
des Systémes Logistiques (OSL)", it has been a privilege to work to-
gether with the intelligent and friendly colleagues. 1 would especially
like to mention colleagues and friends in my office, Baisi LIU, Zhi Li,
Rahma LAHYANI, Ramla SADDEM and Yue YU. Thanks to them,

I have passed three agreeable years.

I would like to thank all the support staff. Throughout years they
have been very helpful. I first thank of Prof. Philippe Vanheeghe,
chef of LAGIS. The secretary has been run with perfectionism, Vir-
ginie Leclercq, Vanessa Fleury, Christine Yvoz and Brigitte Foncez
have relieved me of the administrational work. My thanks also go to
Bernard, Hilaire, Gilles, Jacques, Patrick and Regine for their help,
humor and hospitality.

I wish to express my special appreciation to Prof. Héléne Catsiapis,
my French teacher. In her courses, I have learned not only the lan-

guage but also the culture and history.

I would like to thank all my friends in Lille for their friendship and

supports.

Finally, I want to thank all my family for always supporting and
encouraging me. Especially for my girl friend Jing HE, thanks for her

waiting and supporting.



i



Contents

1 Introduction

1.1

1.2

1.3

1.4

Contents iii
1

Motivation . . . . . . . .. Lo 1
1.1.1  Petri Net Formalism . . . .. ... ... ... .. ..... 4
1.1.2  Generating Firing Sequences for Timed Petri Nets . . . . . 5
The Problematic . . . . . .. ... .. oo 6
1.2.1 The Problem of Combinatorial Explosion . . . . . . . . .. 6
1.2.1.1 A Representative Problem: Reachability . . . . . 8

1.2.1.2 State Space Mangement . . . . . .. .. ... .. 9

1.2.1.3 State Space Reduction . . . . . . ... ... ... 11

1.2.2  Timed Petri Net Reachability problem . . . . . ... ... 16
1.2.2.1 Subclass of Time Petri Nets . . . . . . . . .. .. 16

1.2.2.2  Controlled Execution . . . . . . ... .. .. ... 17

1.2.2.3 Max-Plus Algebra . . . . . ... ... ... ... 17

1.2.3  Reconfiguration of Manufacturing Systems . . . . . . . .. 18
Main Methods in this Thesis . . . . . . . . ... ... ... ... 20
1.3.1 Incremental Approach . . . ... ... ... ... ..... 20
1.3.2 Logical Abstraction Techniques . . . . . ... .. ... .. 23
1.3.3  Incremental Approach for Solving TPN Reachability Problem 24
1.3.4 An Approach based on Constraint Programming . . . . . . 26
SUMMATY . . . . o v 26
1.4.1 Contribution . . . . . .. ... 26

1.4.2  Organization . . . . . .. ... ... ... ... ... 27

1l



CONTENTS

2 Incremental Approach for Timed Petri Nets

3

2.1

2.2

2.3

2.4

Timed Petri Nets Reachability Problem . . . . . . .. ... . ...
2.1.1 Informal Presentation. . . . . . .. ... ... .. .....
2.1.2  Timed Petri Nets Terminology . . . . . . . .. .. .. ...
2.1.3 Timed Petri Nets State Equation . . . . . ... ... ...
2.1.4 Timed Petri Nets Reachability Problem . . . . . . . . . ..
Incremental Approach . . . . . . . ... ...
2.2.1 Informal Presentation. . . . . . . . .. ... ... ... ..
2.2.2  Timed Steps Firings . . . . . . .. .. .. ... ..
2.2.3 Towards an Incremental Model . . . . . . ... ... ...
Incremental Search . . . . ... ... ... oL
2.3.1 Naive Algorithm . . . . . .. ... .. ... ... .....
2.3.2 Jump Search . . .. ...

Conclusion . . . . . . .

Analysis of Timed Petri Nets using Constraint Programming

3.1

3.2

3.3

Constraint Programming Tutorial . . . . . . . . .. .. ... ...
3.1.1 CP Terminology . . . . . . . .. . ... .. ... ...
3.1.1.1  Constraint Propagation . . . . .. ... ... ..
3.1.1.2 Search . . . . ... ...
3.1.1.3 The IBM ILOG Solver . . . . . .. .. ... ...
Modeling Incremental Model for Constraint Programming
3.2.1 Preliminary Modeling . . . . . ... ... .. ... .. ...
3.2.1.1 Variables Definition . . . . ... ... ... ...
3.2.1.2 Constraints Expression . . . . . .. ... ... ..
3.2.2 Modeling Improvements . . . . . . ... ... .. ...
3.2.3 Constraint Programming Model . . . . . . .. .. ... ..
3.2.4 Numerical Experiments . . . . . . . . ... ... ......
3.2.4.1 Influence of the Search Depth . . . . .. ... ..
3.2.4.2 Influence of Improvements . . . . . . .. ... ..
Search Strategies . . . . . . . . . . ...
3.3.1 Variables Ordering . . . . . . ... ... ... .......
3.3.1.1 Generic Labeling Strategies . . . . . ... .. ..

v

31
32
32
33
36
38
39
39
40
43
48

52
54



CONTENTS

3.3.1.2 Dedicated Labeling Strategies - Global Labeling . 82
3.3.1.3 Dedicated Labeling Strategies - Step by Step La-

beling . . . . ... .. 83

3.3.2 Values Ordering . . . . . . . . . ... ... ... 83
3.3.3 Backtracking . . .. .. ..o 84

3.4 Linearization of Firing Sets Expressions . . . . . . .. .. ... .. 86
3.4.1 Formulation of "+" and "s" Operators . . . . . . ... .. 88
3.4.2 Comparison between CP Model and IP Model . . . . . . . 89

3.5 Conclusion . . . . . . .. ... 92

Application of the Incremental Approach for the Reconfiguration

of Manufacturing Systems 95
4.1 Reconfiguration of Manufacturing Systems . . . . . . ... .. .. 97
4.1.1 Tllustrative Example . . . . . . ... ... ... ... ... 97
4.1.2 Reconfiguration Methodology based on Timed Petri Nets . 99
4.1.2.1 Transport System . . . . . . .. ... .. ... .. 99
4.1.2.2 Extended Operating Sequences . . . .. .. ... 100
4.1.2.3 Conveyor Switches . . . . . ... ... ... ... 101
4.1.2.4  Reconfiguration Actions . . . . .. .. ... ... 102
4.1.25 Full TPN Model . . . ... ... ... ... ... 103
4.1.3 Token Identification . . . . . . . . .. . ... ... 105
4.1.3.1 Token Confusion Issues . . .. ... ... .... 106
4.1.3.2 Token Identification for Ordinary Petri Nets . . . 106

4.2 Adaptation of Token Identification to Timed Petri Nets with Safe
Behavior . . . . . . ... 112
4.2.1 Informal Presentation. . . . . . .. ... ... ... .... 113
4.2.2  Ensuring Safe Behavior . . . . . . ... ... 113
4.2.3 Storing Identifiers for Firing Transitions . . . . . . . . .. 114
4.2.4  Constraint Programming Formulation . . . . . . . . .. .. 116
4.3 'Token identification for Bounded Timed Petri Nets . . . . . . .. 116
4.4 Numerical Experiments of Token Identifiers . . . . . .. ... .. 122
4.5  Avoiding Loops in Models for Reconfiguration Systems . . . . . . 125
4.5.1  Avoiding Loops of Robots in TPNs for CP . . . . . . . .. 126



CONTENTS

4.5.2 General Mechanism to Avoid Loops in TPNs for CP . . . . 128
4.6 Conclusion . . . . . . . . ... 129
5 Conclusions and Perspectives 131
List of Figures 137
List of Tables 139
Appendix A 141
Résumé étendu en Francais 149
1 Introduction . . . . . ... 150
.2 Approche incrémentale pour les réseaux de Petri temporisés . . . 152
2.1 Probléme d’accessibilité dans les réseaux de Petri temporisés152
2.1.1 Présentation informelle . . . . . . . . . .. .. .. 152
2.1.2 Réseaux de Petri temporisés . . . . . .. . . ... 154

2.1.3 Probléme d’accessibilité dans les réseaux de Petri
temporisés . . . . . . ... 157
2.2 Approche incrémentale . . . . .. ... 158
2.2.1 Présentation informelle . . . . . . . . . . ... .. 158
2.2.2 Steps temporisés . . . . .. ... 159
2.2.3 Vers un modéle incrémental . . . . . . . ... .. 161

.3 Analyse des réseaux de Petri temporisé en utilisant la programma-

tion par contraintes . . . . . . . . ... ... 163

3.1 Modéle mathématique pour la programmation par contraintes163

3.1.1 Mise a jour des marquages . . . . . . . . . .. .. 163
3.1.2 Mise a jour des vecteurs de durées résiduelles . . 164
3.1.3 Expression des conditions de franchissement . . . 165
3.2 Améliorations du modéle . . . . ... ..o 165
3.2.1 Conditions de franchissement . . . . ... .. .. 165
3.2.2 Propriétés structurelles . . . . . . .. ... .. .. 166
3.3 Stratégies de recherche . . . . . .. ..o 167
3.3.1 Variables . . . . . ... ... ... ... ... 167
3.3.2 Valeur . . . . . . . ... o 168

vi



CONTENTS

3.3.3 Backtrack . . . .. ... 168

4 Application . . ... 169
4.1 Reconfiguration . . . . .. .. ..o 169

4.2 Identification des jetons . . . . . ... ... L. 169

4.3  Eviterlesboucles . . . . . . ... 170

.5 Conclusion et perspectives . . . . . . . .. .. ... ... 171
Bibliography 173

Vil



CONTENTS

viil



Chapter 1

Introduction

This thesis is the fruit of a three years work (2010-2013) spent in teams "Systémes
Tolérants aux Fautes (STF)" and "Optimisation des Systémes Logistiques (OSL)"
of "Laboratoire d’Automatique, Génie Informatique et Signal" (LAGIS) in Ecole
Centrale de Lille. Under the supervision of Prof Armand TOGUYENI, Maitre de
conférences Thomas BOURDEAUD'HUY and Maitre de conférences Pierre-Alain
YVARS, I worked on extracting firing sequences in Timed Petri Nets (TPNs) with
an incremental approach. Our approach can be addressed to the reconfiguration
of flexible manufacturing systems

In this chapter, we introduce our motivation and the main problems in this

thesis and relevant state of art.

1.1 Motivation

In the industrialized world, automation is taking a more and more important
place. Machines, control systems and information technologies are used to opti-
mize productivity in the production of goods and delivery of services automat-
ically. A significant part of the "activity" in these systems is characterized by
asynchronous occurrences of discrete events (like turning a machine "on"). Espe-
cially with the computer-based techniques developed in the information age, the
"activity" lead systems to handle discrete states. These systems are thus called
"discrete-state event-driven systems" (DES) [CLO0S|.



1. INTRODUCTION

Modeling [&———— Verification
Formal
description

Figure 1.1: A Process of DES Modeling

In [Ver01], figure (1.1) is proposed to express the normal process of modeling
DES. Verification is the necessary process to correct the Modeling based on formal
descriptions and properties of DES. The most popular method of Verification is
Model Checking [CGP99).

In recent years, increasing demands on reliability and safety of DES have met
the need for extensive research for formal modeling and verification, which are
taken a more and more important place. As an example, finding all possible
faults and knowing when they happen are becoming very important tasks, which
can be used for diagnosis. In real world manufacturing systems, the start time
and duration of all faults (critical scenarios) will influence other events and the
security of the production system.

Such needs lead us to find a powerful formalism for modeling and verifying
time critical systems. However, model checking is not enough for giving details
about actions leading models to faults or operations and their executing times to
produce products in manufacturing systems.

In this thesis, we propose to generate firing sequences in TPNs, which can
firstly tell the existence about faults (or critical scenarios), then generate timed
firing sequences to give the information of timed actions or events leading to

them. Thus, the main work in this thesis can be divided into two steps:

e Solve the reachability problem of TPNs.

e Give timed firing sequences leading to a desired marking.

Since finding firing sequences can be also a verification process for the time-

critical model, we describe the main process of modeling time-critical DES by



—————

N ————

_————Y oo

1

I Timed firin
Modeling , Verification & ! Ifing 1
Correction H L_qu_uence

Formal
description

——— -

{’ Reliability

S Safety _ 7

~
\

Figure 1.2: Generating Firing Sequences for DES

figure (1.2). Note that Requirements represent needs for applying models to

accomplish their functions.

However, for generating firing sequences, since it will take much effort on
recording the information from initial state to the desired state, only a few effec-

tive methods have been proposed.

Especially, since generating all possible firing sequences is an important ver-
ification process, we propose to use an enumerative approach — Constraint Pro-
gramming (CP). Meanwhile, combining TPNs and CP technique leads us to model

systems and find solutions more efficiently.



1. INTRODUCTION

1.1.1 Petri Net Formalism

For modeling and analyzing DES, there are several formalisms, like probabilistic
modeling, exotic algebras, automata, grafcet, state charts, Petri Nets (PNs), etc.
All these techniques can be adapted to the characteristics of considered systems
and specific needs of users. The interested reader should consult with profit the
introductory part of the course of [HZ07| and [CLOS8| for a discussion on these
tools.

Among them, technical description and formal verification provide a mathe-
matical framework to rigorously validate all stages of design. [MV98| indicates
that the most common approach for the formal description technique validation
is to associate them a graph of reachable states. Nodes of the graph represent
states of the system, its evolution arcs or transitions. Modeling a state graph is
exhaustive: all states and all possible transitions of the system must be present
in the graph.

Automata and PNs have been studied as powerful approaches for model-
ing and controlling DES. They can both be associated with a state graph. In
automata, this is done by explicitly enumerating all possible states and then
"connecting" these states with possible transitions between them, resulting in
the transition function of the automaton. This is not particularly graceful, yet,
automata are easily combined by operations such as product and parallel com-
position and therefore a model of complex system can be built from models of
individual components in a systematic manner. PNs on the other hand have
more structure in their representation of the transition function. States are not
enumerated; rather, state information is "distributed" among a set of places that
capture key conditions that govern the operations of the system. In the general
case, an automaton can always be represented as a Petri Net (PN): on the other
hand, not all PNs can be represented as finite-state automata. Consequently, PNs
can represent a larger class of systems [CLO8|. In addition, PNs are applicable
to a wide variety of DES because of its excellence in analytical ability and the
operation ability [MKIOT7].

Therefore we choose PNs as the main formalism of this manuscript.



However, "untimed" PNs are not powerful enough to deal with performance
evaluation, safety determination, or analysis of behavioral properties in systems
where time appears as a quantifiable and continuous parameter. For instance,
when the assumption that all transitions can fire instantaneously is no longer a
good approximation.

Such consideration leads us to focus on generating firing sequences in TPNs.

1.1.2 Generating Firing Sequences for Timed Petri Nets

PNs were first introduced by Carl Adam Petri in [Pet62]. Since their creation,
PNs evolved from a sound representation of discrete dynamic systems into a
general schema, able to represent knowledge about processes and (discrete and
distributed) systems according to their internal relations [SF12].

There are many extensions of PN models [HZ07|. According to [DA94], they
can be classified as abbreviations or extensions. Abbreviations of the basic PN
model enable one to represent a DES in a simplified way, for example, colored
PNs [Jen92], etc. On the other hand, extensions are PN models with additional
functional rules to those defined for the basic model like deterministic, stochastic,
timed |Wan98|, etc.

Among several proposed extensions to deal with time, we introduce two basic
models: Ranchamdani’s Timed Petri nets [Ram73| and Merlin’s Time Petri nets
[MET76]. Since time inscriptions in these two temporal PN models are always
associated to transitions, they are so-called T-time PNs. Other time extensions
have been published including some approaches where time is associated to places
or arcs, which are called P-time or A-time PNs. (see [CMS99] for a survey).

Many control problems in DES can be modeled as reachability problems in
PNs, such as flexible manufacturing and communication systems [MKMHS6].
The reachability problem can be solved by searching for the existence of a non-
negative integer solution of the matrix equation of the net. Even if one exists,
however, there is still the problem of finding an appropriate firing sequence, which
also takes exponential time and spaces [XZ98|.

Reachability problem can be seen as a subproblem of generating firing se-

quences. Firing sequences [MKIO7| are quite fundamental in the sense that find-



1. INTRODUCTION

ing a firing sequence of transitions from an initial marking (initial state) to the
target marking (state of the target), is a sub-problem of various basic problems
of PN theory. Many manufacturing problems can be solved by searching for fir-
ing sequences, like classical scheduling problems, the minimum initial resource
allocation problem and the well-known marking reachability problem, asking for
a firing sequence whose firing leads from a given initial marking to a specified
target marking, see a reference in [YW94].

The problem to determine a firing sequence from initial marking to a reachable
target marking is known to be NP-hard. The exact algorithms to solve a firing
sequence problem have been studied in literature [YW94|. For example, the
heuristic search, hybrid heuristics with backtrack, and genetic algorithm have
been reported in past works for scheduling problem by using TPNs. Conventional
optimization models for PNs are concentrated on its search in the entire system.

However, these approaches cannot be applied for large scale systems due to

the well known problem of combinatorial explosion.

1.2 The Problematic

1.2.1 The Problem of Combinatorial Explosion

The reachability graph of PNs is very convenient for behavior analyzing and ver-
ification technique in concurrent systems [Val98|. However, it suffers from the
combinatorial state explosion problem. As known, PNs have a compact represen-
tation for concurrent systems, but when it comes to check properties (like critical
scenarios) in system, one has to search through the underlying reachability graph
which reduce all the benefits of the compact representation.

The example of figure (1.3), which is derived from (|[LNCT08]) describes a

family of manufacturing systems characterized by three parameters: n,m and k.
e 1 is the number of production lines.

e m is the number of units of the final product that can be simultaneously

produced. Each product is composed of n parts.

e [ is the number of operations that each part must undergo in each line.



Figure 1.3: An Example of Combinatorial Explosion

Using the PN tool TINA [BRV04], numbers of states in the reachability graph
of figure (1.3) are given in table (1.1). As been shown, the number of states in the

reachability graph will grow exponentially, especially when the number of tokens

m grows.
m|n|k IR
1121 15
11214 48
1141 495
3 |4 | 1] 484841

Table 1.1: Number of States in Reachability Graph of figure (1.3)

Therefore, many studies have focused on developing techniques for state space
reductions based on the PN graph or its formal representation to capture the
subset of states.

Before introducing methods for solving Time Petri Net (TPN) reachability
problem, we propose to establish state of art briefly concerning main approaches

to handle combinatorial explosion for the analysis of PNs. We are inspired



1. INTRODUCTION

strongly by presentations of [Ben00| [VerOl] as well as several book chapters
[Deal1, Dea03].

In this chapter, a simple example and its reachability graph are presented in
figure (1.4), which is taken from figure (1.3), to illustrate methods in this chapter.
Here we make m =1,n =2,k = 2.

Note that states 00200, 00002, 00101 are faults.

(pg Py, 1Pg, 1Py, 2Py, 2) 10600

01100

Figure 1.4: An Simple Example and Its Reachability Graph

1.2.1.1 A Representative Problem: Reachability

It is precisely in this context that the problem of combinatorial explosion arises,
since the size of the graph can evolve exponentially with the size of the system
studied.

For example, consider the reachability problem in PNs, which is to decide if
a given marking is reachable from the initial marking. This problem is known to
be representative of the limitations imposed by combinatorial explosion. Even if
we can show that it is decidable (see the proof of [Kos82|), it is EXP-TIME and
EXP-SPACE in the general case [Lip76].

Methods based on the construction of the underlying reachability graph be-
come impassable if the size increasing quickly. In fact, we can show that even in
the case of bounded PNs - a special class that the reachability graph is finite - the
problem of constructing a reachability graph is not primitive recursive, which is

to say that "any method based on the construction of the reachability graph has



a complexity that cannot be predicted" as Haddad said in chapter 4 of the book
[DeaO1].

However, most problems of PN analysis (including issues related to the liveness
and deadlock, which are taking great interest in the verification process) are
related to the problem of reachability, as indicated by [AK77], and are subject
to the same limitations. Many works are made to control this combinatorial
explosion.

[VerO1] proposes to classify these techniques to limit the combinatorial explo-
sion into two categories: state space management and state space reduction.

State space management uses sophisticated techniques to present state space
more efficiently. State space reduction techniques take advantage of disciplines,
redundancies or similarities in the comprehensive representation to reduce the
complexity of the system.

It should be noted that these approaches are complementary: they can be

applied together to win efficiency.

1.2.1.2 State Space Mangement

In this category, we classify methods as graph compression and verifying on the
fly.

Graph Compression

The goal of graph compression is to present the original graph with a more un-
derstandable way without losing its characteristics. The most famous form of
compression technique is Binary Decision Diagram (BDD), which is first intro-
duced by [Ake78] to encode concisely boolean functions of several variables.

A BDD is a directed acyclic graph. In popular meaning, the term BDD almost
refers to Reduced Ordered Binary Decision Diagram, which comprises a root and
two terminal nodes (0 and 1). Each intermediate node is labeled by a boolean
variable and has two outgoing edges labeled by 0 and 1.

The BDD represents a boolean function as follows: each assignment of all
variables corresponds to one path in the graph from the root node to one of the

two terminal nodes.



1. INTRODUCTION

Several extensions are developed based on BDD, for example Multi-Valued
Decision Diagram (MDD), Algebric Decision Diagram (ADD), etc. For MDD, it
just means that each node can have more outgoing edges based on the variables’
domain.

To illustrate the BDD or MDD, we consider the example in figure (1.4) and
give its MDD as shown in figure (1.5). Note that the two terminal nodes
0 are the same one, which are used to make this graph more clear.

Meanwhile, if there were no values 2, it will be a BDD.

Figure 1.5: The MDD for Figure (1.4)

Note that the complete search space is divided into reachable states and
impossible states, which are represented by paths leading to the terminal node
1 and O respectively. Therefore, BDD /MDD exactly encode the behavior graph
of PNs, it is theoretically possible to check all properties of a system based on
BDD/MDD representations.

However, since the BDD /MDD is not an abstraction graph, they will be infi-
nite if the initial graph is infinite. The biggest problem is to control the compres-
sion rate. In fact, it strongly depends on variables’ order. For that, [BCM™90|
propose to use sophisticated scheduling techniques variables.

In addition, transitions between reachable states are not presented as in the

reachability graph, which means they do not supply the firing sequences.

10



On The Fly Verification

Generally, system verification takes place in two stages. The reachability graph
is constructed in the first stage, then decision algorithms are executed on it at
the second stage.

The on the fly technique proposes to perform these two tasks in parallel.
Thus, satisfied properties are evaluated during enumeration of behavior of PNs.

We can still take figure (1.4) as an example. If faults are needed to be detected,
the on the fly technique can label variables like in figure (1.5).

If the most general depth-first algorithm is applied for exploring the search
tree, the fault state 00002 will be found after meeting two impossible ends 00000
and 00001, which are presented with the same red dotted line in figure (1.5).

The advantage of the on the fly technique is apparent. Since only states on
the path need to be stored, the memory required is lower than methods that
firstly build the whole reachability graph.

However, if the desired state is situated at the last part of the search tree,
most parts of the search tree are still explored. This means that the on the fly
technique does not make reduction of the reachability graph.

The interested reader can refer to the article [FJJM92| for more details on

these techniques.

1.2.1.3 State Space Reduction

The common point of approaches presented in this subsection is that they restrict
model by defining an incomplete behavioral model, which will be smaller or less
accurate than the original one. Then verification on this reduced model will be
more effective or at least feasible.

These proposed mechanisms are generally specific to the desired property.
They only allow to treat a subclass of properties that are known to be preserved
by the restriction mechanism. Thus, it may be necessary to repeat the reduction
process, which is also expensive, for checking each class of properties.

These restriction operations can be made based on properties that will be
verified and specifications that will be handled in the system. We distinguish these

techniques as: reductions behavior graph, transformations and decompositions of

11



1. INTRODUCTION

PNs and directly studying equations associated with PNs without changing its

structure.

Algebraic Methods

Algebraic methods [Lau87| use the state equation to analysis the behavior of PNs.
They often use linear algebraic methods to deduce the structural properties. We
can refer to examples in [LM89]| and [STCOIS].

The verification of certain properties can be reduced to a linear programming
problem using the duality theory [CPJ80|. Analysis techniques based on linear
algebra allow the verification of properties of a general net system. The key idea
is simple: Let S be a PN with the incidence matrix C. If m is reachable from my

by firing sequence o, then

m=mo+C-o (1.1)

Therefore, the set of natural solutions (m, o) of this state equation defines a
linearization of the reachability set. This set can be used to analyse properties
such as marking and submarking reachability and coverability, etc. To do so, the
properties are expressed as formulas of a first order logic having linear inequalities
as atoms, where the reachability or fireability conditions are represented by the
state equation. These formulas are verified by checking the existence of solutions
to systems of linear equations that are automatically obtained from the formulas.

Thus, the reachable markings are compressed as linear equations by the state
equation. The boundedness, liveness and safety properties of PNs can be analyzed
easily using linear algebraic methods.

However, linear algebraic methods just give an approximation reachable mark-
ing set . When the set F increases larger, it becomes more difficult to obtain.
This approximation is often insufficient. Indeed, methods based on state equation
are semi-decision algorithms, since the state equation is only the necessary con-
dition for a reachable marking. There may be false solutions (spurious solutions)

that do not have a valid firing sequences.

12



Transformations and decompositions of Petri nets

To reduce the size of reachable markings set F, [Ber86| has developed techniques
that can reduce the size of PN while preserving properties: liveness, blocking, etc
as appropriate.

These techniques involve applying transformation rules or decomposition. A
transformation is to change a PN. This change applies to places or to transitions
that are merged. Decomposition is to consider sub-nets separately and then to
deduce the behavior of the entire net.

The simplest transformation is to remove redundant places and arcs connected
to it. The presence or absence of these kind of places do not affect the possible
behaviors of the net. It is also possible to merge places under certain conditions.
Finally, transitions will be merged when all firing sequences can be rearranged so
that some transitions are always paired.

The principle of decompositions involve analyzing a set of smaller net to ex-
tract properties. Then to analyze the entire network by composing them. The
composition is done by identifying the places or transitions of sub-nets. The
problem is that some properties are not necessarily preserved in the composed

net.

Reduction of the Reachability Graph

Coverability graph. In the case of unbounded PN, the underlying behavior
graph has an infinite number of markings. The coverability graph is defined by
[KM69] as the first reduction technique associating to the infinite graph. Then, it
is formalized more precisely by [Fin93]. This graph gives a finite representation
of the partial set of reachable states.

When a system has an infinite set of states, some parts of markings are not
bounded. We therefore introduce the notion of pseudo-marking, which is a map-
ping from the set of places P to N Uw. Pseudo-markings are a generalization of
markings in the sense that a pseudo-marking is a marking that can contain an in-
finite number of tokens. In fact, a pseudo-marking represents a class of markings

which places are likely to contain an arbitrarily large number of tokens.

13



1. INTRODUCTION

The principle of the coverability graph is to represent the set of reachable
markings by a set of pseudo-markings. This set covers all reachable markings,
which is the coverability graph. In addition, any pseudo-marking graph is the
limit of a sequence of reachable markings: the coverability graph contains no
useless nodes.

The main results on the coverability graph are:

e The coverability graph is finite;

e Given a PN and a marking mg, we can decide whether the reachability

graph contains a marking m’ > my.

Since the coverability graph is finite, it is theoretically possible to build and
use it to deduce properties. However, analysis methods using this graph are
limited.

We now present techniques more "suitable" to reduce behavior graphs based
on properties or to check the original behavior features.

Behavior Abstraction. From the view of properties that will be checked,
some details of the studied system are unnecessary. Methods of behavior abstrac-
tion define a formal framework to consider simplified problems.

These techniques use the relationship between the initial graph and reduced
graph, called abstraction. These relations must hold relations between transitions
and places to a certain extent, so that properties of the reduced graph are con-
structed to be representative of properties of the initial graph. The interested
reader can refer to the thesis [Loi94| for a complete bibliography on this subject.

Abstraction is one of the few ways to reduce infinite behavior graphs by finite
graphs. In addition, results of conservation concern a broad class of properties
to be checked.

However, the construction of the abstraction system slows down a wider diffu-
sion of this method. Indeed, it is not automatic and necessary specific methods.
Therefore, the research focuses currently on identifying general patterns of ab-
straction in order to automatize this type of approach.

Partial order. Partial order techniques (see [God96] for a complete expla-
nation) have been developed to limit the combinatorial explosion by attacking

one of its causes: the representation of parallelism by interleaving actions.

14



When two independent actions lead to the same global state, we say that they
are interleaving in the reachability graph. These two actions are independent and
therefore lead to the same overall condition.

Formally, two actions are said to be independent iff:

. a b b a
VD, Pas Db i D = Do Ap = pp = Tp'sitpy = p' Apy = p' (1.2)

Two independent actions are said to be conflict. It is possible to use this
independence relationship to define an equivalence relation on the firing sequences
of the behavior graph: two firing sequences are equivalent iff they can be obtained
one from another by permuting adjacent independent actions.

The terminology partial order is that the equivalence class is a partial order
on the occurrences of actions. The idea is to reduce the behavior graph by
equivalence trace. There are basically two types of approaches to these methods

giving different reduction relations.

e Interlacing elimination: seek a subgraph of the behavior graph with the

least possible equivalent traces, for example stubborn sets |Val9l|.

e Covering step: gather sets of independent actions, introduced by [VAM96].

The partial order methods are very beneficial in two ways:
e the graphs obtained are often very small compared to the original graph

e The time required to calculate the relationship of independence is low com-

pared to the complexity of the system

As a result, these techniques allow to save both time and memory required to
generate the behavior graph. As for the BDD, the application to real protocols
demonstrated the effectiveness of these techniques.

Symmetry. The systems studied often have a symmetrical architecture. The
elimination of all symmetric and redundant situations in the behavior of the
system allow to simplify the study. |[HJJJ85| formalized the notion of symmetry
to reduce the size of reachability graph. They introduce an equivalence relation,

called symmetry between the nodes of the graph on the one hand, and the other

15



1. INTRODUCTION

arcs. This gives rise to the construction of a reduced graph where each node

represents an equivalence class of nodes of the reachability graph.

1.2.2 Timed Petri Net Reachability problem

Since time are needed to be handled between states, the problem of combinatorial
explosion will be enlarged with the TPN.

Several approaches have been proposed to solve the TPN reachability problem,
either by restricting their study to a subclass of Time PNs, like Timed Event
Graphs, either by using dedicated heuristics. A complete bibliography can be
found in [Ric00].

1.2.2.1 Subclass of Time Petri Nets

Since the fire of a timed transition can occur as soon as it is fireable and as late
as one wants, there may exist, from a given state, an infinite number of reachable
markings (depending on the time), and no reachability graph can be built. A
first approach needs to consider TPN as a subclass of Time PN, in order to use
the state enumeration methods (state class graphs) proposed by [BD91].

In [BDI1], the state classes of time PNs are defined as a pair S = (M, D):

e M is a marking, the marking of the class: all states in the class have the

same marking;

e D is the firing domain of the class; it is defined as the union of the firing

domains of all the states in the class.

All states with the same marking M are represented in the same state S.
Since firing times are real numbers, one state S can represent infinite states of
time PNs with the same marking M. Thus, the reachability graph of bounded
time PNs can be represented with a finite state classes.

In fact, this method mainly concerns the expression of states of time PN, but
not the verification of the reachability problem. It does not give much improve-

ment on resolving reachability problem.

16



In general sense, if firing time domains D are not considered, the state class
graph will be the reachability graph of corresponding PNs. Then one can con-
strain time to each state to find the feasible firing sequence.

More general solutions can be found in [DYKGO04|, where untimed firing se-
quences, which can directly leading to the desired marking, are generated first.
Then firing times are associated to firings by propagating time constraints. Un-
fortunately, such method requires to enumerate all firing sequences first, which
lead to combinatorial explosion, and it may exist an infinite number of associa-
tions of dates to firings (if a transition can be fired at date d, it is still fireable

any moment later).

1.2.2.2 Controlled Execution

In |CC88|, the Controlled Ezecution is proposed to represent the behavior of
TPNs, which will be detailed in chapter (2). The main idea is to associate tran-
sitions with a successive firing dates to represent the behavior of TPNs. In this
method, early semantics (a transition is fired as soon as it is fireable) is con-
sidered, which can be used to proceed to an enumerative and structural anal-
ysis [DA92|, and to build the earliest state graph [CCS88|. Note this method
cannot handle the general timed reachability problem since firing transitions as
soon as they are enabled may lead to miss some optimal firing sequences. For
instance, let us consider the TPN of figure (1.6). The earliest firing sequence
([t1t4, 0], [t5, 1], [tats, 11], [t3, 12]) needs 10 time units* to finish and takes 22 t.u. to-
gether. However, the optimal solution is given by the sequence ([t1t4, 0], [t2, 2], [tsts, 3], [te, 13])
which needs 1 t.u. to finish and 14 t.u. in total.

1.2.2.3 Max-Plus Algebra

Max-plus algebra is a dioid algebras. The term dioid refers to the fact that
this algebra is based on two operations. The operations are formally named
addition and multiplication and denoted by €@ and @) respectively. However,
their meaning is different. For any two real numbers A and B, functions are as

follow:

*we use t.u. for short in the following context

17



1. INTRODUCTION

O+HOFO+0

t () t, (1) t3(10)
ty(1) ts(10) te(1)

Figure 1.6: Earliest Firing Date Does not Mean Optimality.

Addition: A @ B = max{A, B}
Addition:ARQ)B= A+ B (1.4)

The time of transitions’ firing and finish in TPNs can be addressed by these
two algebras. The early semantics has been extensively studied for the special
class of Timed Event Graphs (where a place has exactly one input and one output
transition), using (maz, +) algebra [BCOQ92, ADL12|. Since their structure does
not handle conflicts, it is possible to obtain linear equations corresponding to the

complete behavior of the net.

1.2.3 Reconfiguration of Manufacturing Systems

In this thesis, we propose to generate firing sequences for TPN based on solving
TPN reachability problem. The problem of reconfiguration of manufacturing
system consists in searching for firing sequences in order to know the exact time
of reconfiguration actions. Thus, a reconfigurable transport system is applied to
valid our approaches in this thesis.

The concept of flexible manufacturing systems (FMS) was introduced in the
eighties to develop new manufacturing production systems able to produce small
and average series of products. But dependable requirements and especially the
necessity to continue to produce despite of the breakdown of a plant component

led to exploit the flexibility to reconfigure the plant.

18



Based on these consideration, the concept of reconfigurable manufacturing
systems (RMS) has been introduced in the last of nineties by [Ber98, KHJ*99,
ALO4]. A rRMS must be able to adapt its configuration in real-time depending on
production objectives and available resources.

The reconfiguration process |Ber98| is a control function that aims to reorga-
nize the structure and the software of an automated production system in order
to satisfy the user requirements with regards to production, and to minimize the
number of resources in production.

The reconfiguration process consists in two stages [TBC03, DTDCO00]: the
decision-making part and the operational process. The decision-making part con-
sists in determining for a plant, a new objective state to reach. The operational
process consists to determine the procedure to apply to reach this objective state
from the current faulty state. To deal with these two stages, several propositions
are currently being developed.

Concerning the decision-making part, many works have been done in France.
In the LAB-LAGIS, authors applied Artificial Intelligence techniques to decision-
making part [Tog04, BT09|. In the LAB-STICC, [DLBPO05]| has developed some
criteria, which allow off-line and on-line analyses of the flexibility and of the
reconfigurability of a plant.

Concerning the operational process, a lot of researches are on the way to apply
reconfiguration procedures in order to obtain a control that is coherent with the
real structure of the operative part. As an example, at the LAB-GIPSA (Greno-
ble, France), scheduling techniques are proposed for the on-line synthesis of a
controller that respects the constraints of the operative part even in response to a
failure [HDZJ04]. At the CRAN (Nancy, France), the proposed approach is based
on a holonic control of the plant [GPGO04]. This approach is characterized by a
coupling of product controllers and resource controllers. Product controllers man-
age the routing of parts in the plant according to their transformation sequences
(user specification) and depending on resource capabilities. Resource controllers
manage the execution of the operations requested by the product controllers.

In this thesis, we develop a TPN model for analyzing reconfiguration of man-
ufacturing systems. Using TPN models, firing sequences can express the recon-

figure actions and their occurrence date.

19



1. INTRODUCTION

1.3 Main Methods in this Thesis

As said in the motivation, the main work in this thesis can be divided into two

steps:

e Solve the reachability problem of TPNs. The main difficulty is to reduce

the influence of combinatorial explosion.

e Give timed firing sequences that leading to the desired marking. The main

difficulty is to record information about the firing sequence.

Since the reachability problem is the basis for generating firing sequences,
we have introduced many methods to solve the reachability problem in TPNs.
However, firing sequences or the reachability problem cannot be easily solved,
when large scale system or interleaving behavior are needed.

Therefore popular methods will search for the desired marking using on the
fly, reduction graph or behavior abstraction, etc. These methods have to resolve
under the whole search space of a TPN model, which contains reachable states
and impossible states like presented in the figure (1.5). Reachable states form
the underlying reachability graph of the TPN.

In general, a search tree should be explored to find the desired marking, as
shown in figure (1.7). Since the desired marking at the i depth of the search tree,
branches beyond the depth of i + 1 are not neccessary to be explored.

Thus, in this thesis, we firstly propose to follow the idea of bounded model
checking (BMC) [BCCZ99]| to explore the search tree incrementally, which can

lead the search into a finite graph, even if the original graph is infinite.

1.3.1 Incremental Approach

The reachability problem of PNs can be seen as a verification process. Tech-
niques for automatic formal verification of finite state transition systems have
been developed since many years. The most widely used method is called Model
Checking [Cla08|, in which BMC has give us the main idea of searching for solu-

tions incrementally.

20



Figure 1.7: A Search Tree with One Desired Node.

In model checking, the specification is formalized by writing temporal logic
properties. The system to be verified is modeled as state-transition system. Then,
temporal logic properties can be verified based on this state-transition model.
This state-transition model can be represented by a Kripke structure M, which
represents set of states and corresponding transition relation, etc. Propositional
Linear Temporal Logic (PLTL or LTL for short) is applied to express properties
as temporal logic formula f. Then model checking can be summarized as an
algorithmic technique for automatically checking temporal properties of finite
systems [BCC*03|.

The process of verifying properties is similar to search for reachable marking
in the reachability graph of PNs. They both have the problem of combinatorial
explosion. Therefore Symbolic Model Checking [BCM™92| was first introduced
to reduce the influence of combinatorial explosion, combined with the BDD. In
symbolic model checking, sets of states are represented implicitly using boolean
functions and represented by BDD. Then the procedure starts an iterative process
to verify the temporal logic properties until an error or a counterexample is found.

The bottleneck of symbolic model checking with BDD is the amount of mem-

21



1. INTRODUCTION

ory needed for storing and manipulating BDDs, since the BDD never reduce any
states in the underlying reachability graph, which will suffer from the problem of

combinatorial explosion.

BMC was first proposed by |[BCCZ99|. LTL formula is given in negation
normal form to represent properties that will be verified. This consideration will
lead solver to search for a counterexample instead of verifying some properties
to be true in the whole sets of states. Then the BMC will be reduced to a
propositional satisfiability problem (SAT problem) and solved by SAT methods.

A propositional formula [M, f]x is given based on the LTL formula f and the
Kripke structure M. As been said, this formula [M, f]; will be resolved using
SAT solver. Under a bound number k, SAT solver will search for all possible paths
to find the counterexample. If no such counterexample has been found, k will
be increased until reached the upper bound (this bound is called Completeness

Threshold, marked as Kpypc).

Take figure (1.7) as an example, since the depth of the desired marking (the
red node) is not known at the beginning, solver will have to search from the depth
k = 1. Then solver will search and record all reachable states at each search depth
in order to explore the search tree in the next search depth, until the red node

reached.

The BMC does not suffer from the space explosion problem as BDD-based
methods. However, it still has to search for all states of all paths if no counterex-
ample can be found under a bound k. Meanwhile, BMC just gives the answer
that if properties are satisfied or not. However, firing sequences leading to the
desired marking are needed to show the exact actions in the real-time systems.

Thus, in this thesis, we secondly propose to adapt the Logical Abstraction
Technique, introduced in [Ben00|, [Yim00| to solve the reachability problem in
TPNs. This technique is based on an implicit traversal the reachability graph of
PNs, without its whole construction. The key idea is to use a partial steps to

express the behavior of PNs, which can.

22



1.3.2 Logical Abstraction Techniques

The logical abstraction technique has been proposed in the thesis [Ben00] to solve
the reachability problem of PNs. It is used to search for firing sequences leading
to the final desired marking using a constraint solver.

The formalization described in this work is based on the concepts of steps
and sequences of steps that we also use later in this document (see in subsection
(2.2.2)). Informally, a step is simultaneous firing a set of transitions (concluding
the reentrance of the same transition), which has also been introduced in the
thesis [Bou04].

Benasser defines objects called "partial” markings and "partial” steps. Infor-
mally, it is to consider steps and intermediate markings as vectors of wvariables
which are associated with formulas. Formulas corresponded to constraints on
variables ensure that all possible instantiations of these formulas still represent
markings and concrete valid steps.

Benasser shows a sequence, called complete partial steps with sequences of
length £, captures exactly all stretchable sequences within this length of steps.

More specifically:

e Any sequence of k steps corresponds to a particular instantiation of a com-

plete sequence of a k partial steps;

e All possible instantiations of a complete sequence of partial steps corre-

spond to a sequence of concrete valid steps.

On the other hand, from the viewpoint of reachable markings, the partial
markings produced by the sequence of complete partial steps are all reachable
markings within k steps. Therefore, it is the same to build the reachability graph
after k£ steps and to build the complete sequence of partial steps of length k.

Take figure (1.7) as an example, each depth i of the search tree will be repre-
sented as a step 0;. Then all reachable states within the depth ¢ can be reached
by the sequence of o1, ..., 0;.

In this thesis, we propose to adapt the logical abstraction technique to TPNs,
so that the behavior of TPNs can be expressed by a sequence of timed step. Note

23



1. INTRODUCTION

that a timed step can fire a set of transitions, but cannot fire reentrance for one
transition. In other words, transitions in TPNs are mono server.

In a bounded TPNs, all reachable marking of the underlying reachability graph
can be expressed by the sequence of timed steps under a bounded integer number
k. However, the whole underlying reachability graph of TPN is not needed to be
explored for solving a specific reachability problem, which is situated in the front
part of the search tree.

Therefore, we propose to adapt advantages of Logical Abstraction of PNs and
BMC to solve TPN reachability problem.

1.3.3 Incremental Approach for Solving TPN Reachability
Problem

To illustrate our method, one example is given in figure (1.8). The motivation,
which is to find a firing sequence in TPNs, can be translated as finding a path
leading from the root node to the desired marking and giving all values of all
nodes belonging to the path.

The idea of BMC is used to search for solutions incrementally, avoiding to
explore the whole size of search tree. Since the desired marking is situated at the
1 + 2 depth of the search tree, BMC will search from depth 1 to ¢+ 2 to find this
solution.

Since BMC has to search for all states and all paths before i + 2 depth, which
will cost too much memory to record previous states, we propose to use the logical
abstraction technique to an implicit traversal the search tree.

In figure (1.8), each depth i of the search tree is represented by a timed step ;.
When the search depth is smaller than 7 + 2, the method of timed step still have
to search the whole search tree of length i 4 2 to verify that there is no solution.
However, the method of timed step will avoid to search for some branches that
cannot participate in a solution based on constraint relations. These kind of
branches are called deadends, which are with black color in figure (1.8).

Note that if the search depth i 4 2 is first given to search for solutions, many
branches are not needed to be explored. In figure (1.8), if depth-first algorithm

is applied, paths after the solution are not needed to be explored.

24



Figure 1.8: Incremental approach with One Desired Node.

Therefore, one promising problem in this thesis is to find the minimum depth

Kymin, Which will contain solutions in the search tree.

Since each step has to be instantiated to reach the desired marking, the timed
firing sequence will be given by this resolved path. Therefore timed firing se-
quences 1 TPNs and the reachability problem are solved together by our incre-

mental approach.

In fact, the sequence of timed steps 11, ..., ;.o will represent the whole be-
havior of the TPNs with 7 + 2 steps. Each step can be represented as variables

and relations between steps can be represented as constraints.

Then exploring the underlying reachability graph of TPNs is actually replaced
at resolving constraints. To solve constraints that represent relations between dif-
ferent timed steps, we propose to use constraint programming to be the constraint

solver.

25



1. INTRODUCTION

1.3.4 An Approach based on Constraint Programming

In this thesis, we propose to develop a CP model to analyze TPNs. In fact,
the problem of generating firing sequences in TPNs can be seen as a combina-
torial satisfactory problem (CSP). The CP can solve these CSPs with powerful
analyzing tools and is used to the context of verification techniques.

CP is a powerful paradigm for solving combinatorial search problems that
draws on a wide range of techniques from artificial intelligence, computer science,
and operations research. The user declaratively states the constraints on the
feasible solutions for a set of decision variables [RBWO06].

In CP, the incremental model can be easily translated into CP model, in which
conditional constraints are very powerful in modeling non-linear equations.

Take figure (1.8) as an example, all states are represented by the sequences
of timed steps v, ..., ;.o implicityly. In CP, these timed steps can be seen as
variables and relations between these steps are seen as constraints.

When searching for a solution, CP can control the search process based on
search strategies. Search strategies can lead solver to the desired marking more
quickly, which can also reduce the influence of combinatorial explosion.

In figure (1.8), in the best situation, if the k,,;, = i+2 is first given and a better
search strategy is applied, solver can find the solution without meeting deadends.
This means that only the path leading to the desired marking is explored, as
shown in figure (1.8).

In this thesis, many techniques are applied based on CP techniques to improve

the efficiency at searching for solutions of reachabillity problems.

1.4 Summary

1.4.1 Contribution

The main contribution in this thesis are as follows:

e An incremental model is developed based on the idea of BMC and logical
abstraction technique to represent the whole behavior of TPNs. It allows

to an implicit traversal the behavior of TPNs without building the whole

26



construction. The correctness and completeness of this model are proved
based on the model of [CCS8S].

e Based on this incremental model, the problem of generating firing sequences
in TPNs can be solved. Then several incremental search algorithms are

introduced to improve the search efficiency.

e The incremental model is successfully translated into CP model. During
modeling, non-linear equations are naturally represented by conditional con-
straint, and several improvements are developed as constraints. It means
that our model has more extendibility for expressing properties and specific

needs in real systems.

e With the help of CP, several effective search strategies are developed to
search for one solution or all solutions. Search strategies are developed
based on the structure information of TPNs, which can search for solutions

more efficiently.

e We apply our incremental model to the reconfiguration of manufacturing
systems. Especially, the token identification technique for bounded TPNs
is developed. This technique can help to distinguish tokens in TPNs more

generally, for example, without safe behavior limitation.

We can conclude that a formal method for generating firing sequences in
TPNs is developed, which involves the establishment of objectives, the modeling
of real-time complex systems, the solving of reachability problems in TPNs. Es-
pecially, many specific problems in practical systems (like token confusion issue
in manufacturing system) can be modeled and solved based on our incremental

model.

1.4.2 Organization

Chapter (1) is a literature survey, which provides an overview of problems
and challenges, methods for reducing combinatorial explosion, and respect re-
searches in the field of TPNs. More precisely, several methods are introduced to

reduce combinatorial explosion.

27



1. INTRODUCTION

Chapter (2) develops an incremental model for TPNs, which is the basic
model in this thesis. Firstly, the formal definition of TPNs and their terminol-
ogy are introduced based on |[CC88|. Controlled Ezecution introduced in |[CCS8S|
are defined for presenting the TPN instantaneous state and reachability prob-
lem. Secondly, to reduce the influence of combinatorial explosion in TPN, the
incremental approach is introduced based on an implicit traversal of reachability
graph of TPN, which does not need its construction. This is done by consider-
ing a unique sequence of timed steps growing incrementally to represent exactly
the total behavior of TPN. Finally, several incremental search algorithms are
introduced to improve the efficiency at the search process.

Chapter (3) translates the incremental model into a CP model, develops
several search strategies to solve reachability problems more efficiently and apply
the linearization technique for improving efficiency. The terminology of CP is
briefly introduced. For analyzing systems with CP, Modeling and Solving are two
main parts. In the modeling part, CP can develop constraints to express relations
and specific needs for systems, for example token confusion issues in chapter (4).
Especially, non-linear relations can be expressed by conditional constraints. In
the solving part, we develop several search strategies to improve the efficiency
for searching. Finally, a linearization technique is applied to linearize non-linear
equations at the solving part, since variables in conditional constraints must be
labeled at last.

Chapter (4) applies the incremental approach to a realistic issue concerning
manufacturing systems: the problem of reconfiguration of manufacturing systems.
Firstly, main issues of reconfigurable transport system are given based on decom-
posing it into different TPN model, such as operating sequence, transport system,
etc. Then token confusion issues are given, and token identification technique for
ordinary PN is introduced. Secondly, a token identification technique for TPNs
with safe behavior is developed. Thirdly, to remove the limitation of safe be-
havior, a token identification technique for bounded TPNs is developed. In fact,
each kind of tokens form a TPN layer. Different kinds of tokens are connected
through firing sequences. Fourthly, a firing priority vector is defined to avoid

loops. Finally, benchmarks are given for presenting efforts of our approaches.

28



Chapter (5) concludes the work of this thesis and gives perspectives. Main
approaches are concluded by expressing the main ideas of this thesis. The applica-
tion of reconfiguration transport system is addressed by our approaches. Several

perspectives are given to show possible work to improve our model.

29



1. INTRODUCTION

30



Chapter 2

Incremental Approach for Timed
Petri Nets

The objective of this chapter is to formulate an tncremental model of the
behavior of TPNs avoiding to build their whole reachability graph, which can
deal with the combinatorial explosion problem.

Our approach is based on an mplicit traversal of the underlying reachabil-
ity graph of TPNs instead of building the whole construction. This is done by
considering a unique sequence of timed steps growing incrementally to represent
exactly the behavior of the TPN.

This incremental model allow us developing efficient techniques for analyzing
TPN. For instance, an incremental search is developed to solve reachability
problems in TPNs.

In the first section, we study the behavior of TPNs in terms of reachability
relations between states. We formally define TPN and TPN states following the
work of [CCS88|, where the residual duration vector is introduced for express-
ing missing tokens during transition firing. Then the TPN state equation and
TPN reachability problem are given following the controlled executions defined
in [CC88|. As it is not possible to explore the reachability graph exhaustively due
to the well known problem of combinatorial explosion, we propose to develop an
incremental model to solve the reachability problem in TPNs.

The second section is dedicated to the formal definition of an incremental

model of the behavior of TPNs. The concepts of timed step and timed step firings

31



2. INCREMENTAL APPROACH FOR TIMED PETRI NETS

are defined to form the foundation ideas of the incremental model. Following these
concepts, the instantaneous state is given combined with fireable conditions and
firing sets definition. By proving the equivalence between timed step firings and
controlled executions, we show how this model incrementally capture the behavior
of the associated PN. Therefore we can conclude that every state that is reachable
from initial state can be reached by a sequence of timed step firings.

Finally, we introduce several incremental search algorithms to generate fir-
ing sequences for TPNs. The depth of the search will influence the efficiency of
solving problems. Therefore, two kind of sub-problems are defined: fized depth
reachability problem and shortest length reachability problem. Then naive algo-
rithms and jump search algorithms are introduced to present the mechanism of

incremental search and improve its efficiency.

2.1 Timed Petri Nets Reachability Problem

TPN has been first introduced in [Ram74]. It mainly adds a fixed length time
duration to each transition, which is more practical in time critical systems. The
following presentation is adapted from [Chr84]. We start by giving an informal

introduction on TPNs.

2.1.1 Informal Presentation

TPNs correspond to Places/Transitions PNs where a duration d(t) € NT is as-
sociated to each transition ¢t. A TPN has the same representation as a PN, to
which is added a labelling on transitions. An example of TPN is given in figure
(2.1). We have: d(t1) = 3, d(t2) =4, d(t3) =5, d(ts) = 2, d(t5) = 1, d(te) = 1.
The firing durations associated to transitions modify the marking validity con-
ditions. As soon as durations are associated to transitions, the PN acts as if tokens
"disappeared” at the time the transition is fired, and then "reappeared” after a
delay corresponding to the duration of the fired transition. Thus, the marking of
a TPN evolves with the occurrences of an external timer. For instance, let us con-
sider the firing sequence of TPNs showed in table. (2.1). At date 1, the transition
t1 (duration: 3 t.u.) is fired. Then the transition #, (duration: 2 t.u.) is fired at

32



1 T2

Y41 D2 D3

£1(3) y
I(ts (€))

Figure 2.1: A Timed Petri Net

date 5, etc. The firing sequence is given as: (t1, 1), (t4,5), (t2,6), (t5, 11), (¢1, 13).
The evolution of marking with time is also given in table (2.1). Note that one
could have fired transition ¢4 at date 4, since the resource r; had been released
at the end of the firing of transition ¢;. However, the same transition was not
fireable at date 3, since the firing of ¢; was not finished.

The firing and ending dates of transitions play a fundamental role in the
behavior of the TPN. It is thus necessary to adapt the firing equations according
to these firing dates. In order to respect the underlying semantics of PN, a firing
sequence is said to be feasible if and only if, at any time, the transient marking
reached is made of non negative components.

In [CC88|, authors propose Controlled Executions to govern the behavior of
TPNs. Firing one transition is first considered with an increasing sequence of
firing dates. Take table (2.1) as an example, the transition ¢; is fired at dates 1
and 13, [CC88| denote these firing dates as uf* = 1 and uy = 13. A family of

firing sequences of all transitions is called controlled executions (CE).

2.1.2 Timed Petri Nets Terminology

Definition 2.1 (TPN — Timed Petri Net). A Timed Petri Net [Ram7/] (R =
(P, T,C*,C~,myg),d), with its initial marking mo is a bipartite directed graph

33



2. INCREMENTAL APPROACH FOR TIMED PETRI NETS

Date Marking Controlled Execution
(P1,P2,---,D6:71,72)
Initial date 0 (1,0,0,0,1,0,1,1)
Firing of t; — | 1 (0,0,0,0,1,0,0,1) ull =1
2 (0,0,0,0,1,0,0,1)
3 (0,0,0,0,1,0,0,1)
End of ¢t; — 4 (0,1,0,0,1,0,1,1)
Firing of t4 — | 5 (0,1,0,0,0,0,0,1) ul* =5
Firing of to — | 6 (0,0,0,0,0,0,0,0) ul? =6
End of t; — 7 (0,0,0,0,0,1,1,0)
8 (0,0,0,0,0,1,1,0)
9 (0,0,0,0,0,1,1,0)
End of ty — 10 (0,0,1,0,0,1,1,1)
Firing of t5 — | 11 (0,0,0,0,0,1,1,1) ul? =11
End of t5 — 12 (1,0,0,0,0,1,1,1)
Firing of t; — | 13 (0,0,0,0,0,1,0,1) ubl =13

Table 2.1: Firing Semantics and Controlled Execution of figure (2.1)

where:

e P and T are two finite sets of nodes denoted respectively places and tran-
sitions with |P| = M and |T| = N. Places are represented as circles and
transitions as rectangles. Places generally represent conditions, and transi-

tions represent events, see [Mur89].

e Incidence matrices C~,C* and C € NN (yith C = C* — C~) define
the weighted flow function which associates to each arc (p;,t;) or (t;,p;) its
weight Cy; or C.

tj, then we have: C;; = C’;; = 0, The notations upstream and downstream

When there is no arc between place p; and transition

denote respectively the predecessors and successors of a node of the net

e mg : P — N associates to each place p € P an integer mo(p) called the
initial marking of the place p. Markings are represented as full dots called

tokens inside places;

e d: T — N* is a mapping associating a duration to each transition of the

net.

In the following, we use linear algebra formulations to make the presentation

34



more concise. For instance, e_t,: denotes the Parikh vector associated to the tran-
sition tj, the k' component of which takes the value 1 and others 0. 0_d> denotes
the empty vector of dimension d. T; denotes the unit vector of dimension d.

Note that we will use notations d(t;) or d; to represent the j* element in the
duration vector.

One could more generally consider rational valued durations. Nevertheless,
after having them reduced to the same denominator, and by reasoning over nu-
merators, it is the same as if durations were integer valued.

The transition firing semantics in TPN forbids reentrance. In other words,
it is not possible to fire again a transition that has not yet finished to be fired

(mono-server semantics).

Timed Petri Net State

In ordinary PN (PN without timing labels), a transition ¢; is said to be fireable
from a given marking m if and only if its upstream places have enough tokens:
m>C - e_t; . When the transition is fired, a new marking m’ is produced, such
that: 777 —m+C- e_t; . The state of this net is only represented by its marking.

As presented in section (2.1.1), the firing and ending dates of transitions play
a fundamental role in the behavior of the TPN. It is thus necessary to adapt the
firing equations according to these firing dates. One can associate a unique resid-
ual duration to each transition without any possible confusion between several
concurrent transition activations. The residual duration vector is associated to
the marking of a TPN to define its full state.

Definition 2.2 (TPN State). Let (R,d) be a TPN. Its state s = (s, 5,) is
given by:

e ils classical marking vector Sm € N™associating to each place its number
of tokens;

e ¢ residual durations vector S_T> € NY associating to each active transition

its remaining duration, and zero if the transition is not active.

The set of all states of a TPN is denoted by .¥'( R, d) and the residual duration
vector is defined at date i as 5, = (s, (t1), sp. (t2), . .., sy (tx))T € NV,

35



2. INCREMENTAL APPROACH FOR TIMED PETRI NETS

2.1.3 Timed Petri Nets State Equation

The fundamental concept that governs TPN behavior is the controlled execution,
introduced by [CC88|, which associates to each transition the sequence of its

successive firing dates.

Definition 2.3 (CE — Controlled Execution). Let (R,d) be a TPN and t €
T a transition. A firing sequence for the timed transition t: (up) = uf, ..., ul, € N

18 an increasing sequence of firing dates, such that:
Vk € [1,K — 1], up, + d(t) < ujy (2.1)

A controlled execution is a family (u},)etkep, ik of firing sequences for all
transitions in TPN.

Note that in the previous definition, equation (2.1) is used to forbid reentrance.
For any transition ¢, K; and uf(t may be very big, we denote vy, as the ending
date of the last firing in the CE: vyay = max (uf, +d(t)). After vmax, the state
of the TPN under the considered CE will never change.

The formal expression of a CE is used to define several characteristic vectors
allowing to verify the feasibility of a CE. We assume that no transition is active

at the initial state to simplify the formulation.

Definition 2.4 (Characteristic Vectors of Controlled Executions). Let (R,
-y = .,

d) be a TPN with its initial state sy = (smo ,ON) gwen at initial date 0 and

(uf )ter kep,x,] @ controlled execution. Let v € [0, Vmax]. Two characteristic vec-

tors are associated to (uk) in the following way:

IR
e N(v) € NY s the vector corresponding to the number of firings that started
within the interval [0,v], defined by N(v) ‘ = card ({ul, k € [1,K,] | ul < v});
t

-
e F(v) € NN is the vector corresponding to the number of firings that ended
within the interval [0,v], defined by F(v) ‘ = card ({ul, k € [1,K] | ul, + d(t) < v}).
t

To illustrate how CE works with these characteristic vectors. Table. (2.2) is

given corresponding to figure (2.1). N (U) represents all transitions that fired from

36



5 CE | NG F(o)

v
Initial date 0 |(1,0,0,0,1,0,1,1) ] 0
Firing of t; — | 1 | (0,0,0,0,1,0,0,1) | «!* =1 | (1,0,0,0,0,0) | (0,0,0,0,0,0)
2 |(0,0,0,0,1,0,0,1) (1,0,0,0,0,0) | (0,0,0,0,0,0)
3 1(0,0,0,0,1,0,0,1) (1,0,0,0,0,0) | (0,0,0,0,0,0)
End of t; — 4 1(0,1,0,0,1,0,1,1) (1,0,0,0,0,0) | (1,0,0,0,0,0)
Firing of t4 — | 5 | (0,1,0,0,0,0,0,1) | «}* =5 | (1,0,0,1,0,0) | (1,0,0,0,0,0)
Firing of t — | 6 | (0,0,0,0,0,0,0,0) | »! =6 | (1,1,0,1,0,0) | (1,0,0,0,0,0)
End of t4 — 7 1(0,0,0,0,0,1,1,0) (1,1,0,1,0,0) | (1,0,0,1,0,0)
8 1(0,0,0,0,0,1,1,0) (1,1,0,1,0,0) | (1,0,0,1,0,0)
9 |(0,0,0,0,0,1,1,0) (1,1,0,1,0,0) | (1,0,0,1,0,0)
End of t — | 10 | (0,0,1,0,0,1,1,1) (1,1,0,1,0,0) | (1,1,0,1,0,0)
Firing of ¢t5 — | 11 | (0,0,0,0,0,1,1,1) | w%* =11 | (1,1,0,1,1,0) | (1,1,0,1,0,0)
End of ts — | 12 | (1,0,0,0,0,1,1,1) (1,1,0,1,1,0) | (1,1,0,1,1,0)
Firing of ¢; — | 13 | (0,0,0,0,0,1,0,1) | w5 =13 | (2,1,0,1,1,0) | (1,1,0,1,1,0)

Table 2.2: Controlled execution and its characteristic vectors

date 0 until date v. F(v) represents all transitions that finished firing from date
0 to date v.
The state of a TPN is modified under a CE in the following way.

Definition 2.5 (Instantaneous State of a TPN under a Controlled Execution).
%

Let (R,d) be a TPN with its initial state sy = <3m0 ,0N> given at date 0 and

(uf )tet keq,x,] @ controlled execution. Let v € [0, vmax]. The instantaneous state

Sy = (Sm(v) , sr(v) ) at date v is given by:

5ml(v) = 5o’ + C* - F(v) —C™ - N(v) (22)

vt € T, sr(vf‘ _ ) wtdt)—v if3ke Hl,Kt]] s.t. v € Jub,ub +d(t)]
t 0 otherwise

(2.3)

Informally, in the previous definition, the quantity C* - FW corresponds to
the tokens produced by the firings of transitions that ended before the date v.
Those tokens can be used to fire transitions at date v. The quantity C'~ - W
corresponds to the tokens used by the firings of transitions that started until the
date v. Thus, the quantity s,,(v) corresponds exactly to the tokens remaining in
the TPN at date v.

37



2. INCREMENTAL APPROACH FOR TIMED PETRI NETS

Obviously, like for Place/Transitions PNs, even if each transition is indepen-
dently fireable at every date, the full CE is not necessarily valid as a whole since
a token may be used by several transitions at the same time. Thus, a condition

for a CE to be feasible is given below.

Definition 2.6 (Feasible Controlled Execution). Let (R,d) be a TPN with
its initial state s = (W, @) given at date 0 and (uf)ier kep,x,] @ controlled

execution. This controlled execution is said to be feasible iff:

—_—
Vo € [0, Vmax], Sm(v) = O_M> (2.4)

The above condition means that there must be enough tokens so that transi-

tions may fire simultaneously.

2.1.4 Timed Petri Nets Reachability Problem

Using the previous notations, the TPNs reachability problem consists in searching

for a feasible CE allowing to reach a given final state from the initial state.

Definition 2.7 (TPN Reachability Problem). Let (R, d) be a TPN with its
mitial state sg = (W,@) giwen at date 0. Let sy = (smf ,@) be a target

state. The reachability problem of TP\]VS consists in finding a CE (u},)ser kef1,k]

such that s, = <sm(vmax)  5r(Umax) ) =

Indeed, let us consider for instance the TPN of figure (2.1). One remarks obvi-
ously that solving a reachability problem between markings s_mz =4{1,0,0,1,0,0,1,1}
and 5,,, = {0,0,1,0,0,1,1,1} (where 5,0 = 5, = O_>) means exactly findin

my » My Sy My My Sy To Tf N ’y ga
firing sequence leading from the initial state to the final state

Several approaches have been proposed to solve the TPN reachability problem,
either by restricting their study to a subclass of TPN, like Timed Event Graphs,
either by using dedicated heuristics. A complete bibliography can be found in
[Ric00].

In this thesis, we propose to use an incremental approach to express the
behavior of TPNs, avoiding to build the whole reachability graph, which is more

suitable for dealing with combinatorial explosion.

38



2.2 Incremental Approach

2.2.1 Informal Presentation

In this section, we propose to build an incremental model corresponding to an
increasing number of firing dates. We introduce the way for updating states of
TPNs with incremental approach by introducing the logical relationship between
Marking vector W and Residual duration vector §>

Firstly, the residual duration vector is just defined for recording disappeared
tokens during transition firing, and the steady state is determined by the marking
vector. For marking vector, we do not need to update every time. Let us consider
table (2.1) as example, the marking is the same at dates 2 and 3 as the date 1,
and the residual duration of fired transition will reduce regularly. Based on the
analysis in this paragraph, the states can be updated when the marking
vector is changed, like dates 4 and 7 where tokens are added to places, and
date 1 and 5 where tokens are removed from places. So a new symbol A; is given
to represent the time elapsed between two firings.

Second, remowving tokens can be only done when transitions are fired by satis-
fying the firing policy which means all upstream places must have enough tokens
to be removed. But adding tokens to the downstream places do not have such
limit, thus intermediate markings remain positive between firing dates if they
were positive at each firing date. Based on the analysis above, the states will
be only updated at the moment of new firings (removing tokens from
places). A new symbol vy is introduced as the date of the ky, firing time. Then
the TPN state can be written as sy = (5,7, 5,7 )-

So, contrary to Controlled Executions, we do not need to consider interme-
diate states between two firings to verify the validity of a step sequence. Such
consideration allows to reduce the number of states to be considered, thus reduc-
ing the combinatorial explosion.

The key idea of incremental model is to consider the evolution of a TPN step
by step. The expression step is borrowed from [JK91].

A synoptic of notations is given in table (2.3). We express at any firing

date vg41 (denoted by the time A,, elapsed from the previous firing) the induced

39



2. INCREMENTAL APPROACH FOR TIMED PETRI NETS

modifications on the vectors Q(vkﬂ) and S—T~>(Uk+1) by the firing of a step o (vj41).

To be more concise, we denote intermediate expressions using the index of the

corresponding firing date : Q(vk) = 8—mk>7 o(v) = oy, ete.

Stmo — Smy - Smp| = |Smper - Smkeo — Smk_; — Smk = Smy
o1 Ok+1 OK-1 ok = 0n
vo =0 v = Vg1 = VK—1 = Umaz =
vo + Ay, v+ Ay, vk—2 + Ak—2 vk—1 + A1
Sro — |8 o Se | Sy - Srks — Sre_y —_— Sr = Sry

Table 2.3: Synoptic Table of Notations.

In table (2.3), processes of removing tokens from upstream places and adding
tokens to downstream places, which are done at the same time of transition firings
in PNs, are splitted into two different steps. For example, if one transition t is
fired at date vy, tokens in upstream places of ¢ will be removed at the same date
vy. Since tokens will be hold in the firing transition for a fixed length of time
and we only update states when new firings happen, tokens will be added to
downstream places at next firing step.

Note that we restrict ourselves to TPNs without immediate transitions (i.e.

Vt € T,d(t) > 0), which is not so restrictive in real world practice.

2.2.2 Timed Steps Firings

Definition 2.8 (Step). Let R be a PN. A step [JK91] is a multiset over the set
of transitions T. We denote by T* the set of steps built over T.

Informally, a step is a set that can contain several copies of the same element,
e.g. {t1,t1,t2}, which we would note hereafter simply 2 - t; + t5. We associate
a step 0 = 2?21 a; - t; and its Parikh vector o’ in the classical way, as a linear
combination with non negative integer coefficients «; of the Parikh vectors of
each transition, i.e. o = 2?21 a; - e_t;. A step is said empty, when 0 = @, i.e.
when Vj € [1,N],o; = 0.

Note that a PN step can contain the same transition more than once, corre-
sponding to transition reentrance. Thus, when working with TPNs, steps would
only mean that several different transitions are considered to be fired at the same

time.

40



Definition 2.9 (Timed Step). Let (R,d) be a TPN. A timed step is a pair
W = (7, v) such that:

e v s a date € N ;

e 0 € {0,1}" is a function denoting a set of concurrent transition firings at
date v, using the monoserver semantics. We denote by E;Z the Parikh vector

of new fired transitions at date vy.

To express the behavior of a TPN between two dates v, and vy, into a state

equation, we define sets of finishing and still firing transitions at date vy.

Definition 2.10 (FS — Firing Sets). Let (R,d) be a TPN with its initial state
—y = .

S0 = <3m0 ,ON> given at date vy. Let v; = (Ef,vi)ie[[LkH be a sequence of k timed

step firings, and vgy1 € N s.t. vy > v, Two firing sets Tif+1 and T}, | are

associated to the date viy1 in the following way:

e The set of finishing transitions T,f | € TN denotes transitions active at date
v that are no more firing at date vi1. Formally:

T,fﬂ—{ teT,Jiellk] st.oi(t) =1

A < Hﬁ?f]]{vz coi(t) =1} 4+ d(t) < ka} (2.5)
€| 1,

o The set of still firing transitions Ty, € TN denotes transitions active at

date vy that are still firing at date vgi1. Formally:

T,jﬂz{ teT,Jie[lk] st oit)=1

N Uk < Upyr < Hﬁfﬂ{% coi(t) =1} + d(t)} (2.6)
1|1,
In these equations, Hﬁfﬂ{vi : 0;(t) = 1} denotes the latest firing date of t.
iell,

Using such notations, we express the state equation for TPN using timed step
firings in the following way: for a step to be fireable, its preceding marking must
contain enough tokens so that each transition of the step may consume their own

tokens, as described in the following definition.

Definition 2.11 (Timed Step Firings). Let (R,d) be a TPN with its initial
_>
state sg = (smo ,ON> gien at date vy. Let ¢; = (E-),vi)ie[[l’kﬂ be a sequence of k

41



2. INCREMENTAL APPROACH FOR TIMED PETRI NETS

timed step firings leading to state s, = (S_W:,S_TZ) at date vy. Let v € N s.t.
Ay, = Vg1 — v > 0. The timed step 1 = (Tk11, Vkt1) 15 fireable from sy iff:

VieT st opa(t) =1, s,.,.(t) <A, (2.7)
C™ Tt < Sy +CT- Z cr, (2.8)
t;eT

k+1
If this condition is satisfied, the new state Spi1 = (SmyirsSrer;) reached at date

Vg1 from sy by the firing of Vg1 = (Oke1, Ukr1) 1S defined as:

Smpir = smk C~ 0k+1+ Z ct. et (2.9)
teT,f+1
S = > (st = Ay) &+ > () oty & (2.10)
eTkJrl t; €T

Sk[Vkt1)Ske1 denote that Yy, q is firable from sg, and leads to Sgi1.

The above definition follows the firing semantics of TPNs described above,
from the point of view of a punctual firing between two markings. Expression
Cc- OT_H> represents the number of tokens removed from places upstream to the
new fired transitions o1 at the date vgy 1. Expression Zt JeTi ct. e_t; repre-
sents tokens added to the places downstream transitions finished at date v 1.
Expression Zt]_ ety (sr (t;) — Ay,) - e_t]? represents the update of residual du-
rations for transitions that were active at date v, and are still active at date
Uk+1. The time elapsed corresponds to A,, = vk+1 — v units of time. Expression
> ter dlts) - onia(ty) - e_t; represents the new residual durations coming from the
execution of the new fired transitions in o, at the date vg,q. Finally, equa-
tion (2.7) means that a transition fired within a step must not be still firing, in
order to comply with the monoserver semantics.

At last, the update of the residual durations vector at equation (2.10) is made

as follows:

e [f the transition ¢ is fired in the step .1, its duration is used to initialize

the corresponding component of the residual vector;

42



e [f a transition that was active at date vy and is still firing at date vg4q, its
residual duration is updated by taking into account the time elapsed from

the previous date;

e Otherwise, if a transition was not active at date v or finished before date

Vg+1 and it is not fired in the step 1), its residual duration will be 0.

As above, we will use the notations s[v)), so[1)1)s1, So[t11s . . . k) and se[t11s . . . Yk ) Sk
to indicate that a timed step firing sequence is fireable, and the state obtained in

each case.

2.2.3 Towards an Incremental Model

We give below the main propositions concerning the use of timed steps in the
context of TPN.

Proposition 2.12 (Equivalence between CE and timed step firing sequences).
Let (R,d) be a TPN with its initial state sp = (smo ,ON) given at date vg = 0.
_>
Let s§ = (smf ,ON> € .Y(R,d) be a state.
There exists a feasible controlled execution allowing to reach sy at date Umax

from sy & there exists a sequence of timed step firings allowing to reach sy at

date Vpae from sq. i.e.

Jk e N,
E'Ul,UQ,...,’UK eN
Vk e |1,K|, sp_
351, 89, ..., 5« € (R, d). st { [1,%] Sk{;[wkis’“ (2.11)
Sk |[Wmax/S
le - (?1,”1)71/127 cee 7’¢K - (OTK>7’UK)7 /

—
Vmax = (0N7 Umax) € r]I‘*TPN

The full proof takes 8 pages. Thus we put it in appendix A. Main ideas in
the proof are as follow:

\
7

e (=): Weassume that (u},)ser kefi,x,] be @ CE such that s, = (sm(vmax) , S (Umax) ) =

s¢. Then we buid a step sequence from (u}) as follows. Let vy, vq, ..., 04 €

[0, Umax] be the list of the firing dates of the controlled execution, sorted in

43



2. INCREMENTAL APPROACH FOR TIMED PETRI NETS

a growing order. Formally we have: U,cp pepy i e = {v1, 02, oc} = V.
At each date v, € V, we build a step o, = Z]E[LN]] af - t; such that
o ={teT|3Ire|l,K], ul =uv}.

From equation (2.1), we have obviously Vj € [1,N],of € {0,1}, thus the
step (o) can be used to build timed steps 1y = (o, vy) satisfying the non-

reentrance condition of definition (2.9).

We will show that there exists K states sy, s, ..., S« € -7 (R, d) such that
Vk € [1,K], sk—1[t) sk, and that these states are precisely the instantaneous

states reached by the CE at the respective dates vy, va, ..., Uk.

Thus, a sequence of timed step firings can be got from a feasible controlled

execution.

b (<:> : Let W = (/(/}1 - (017U1)7 R wK - (UK7UK)7 wmax - (@7Umax)) be a

fireable timed step firing sequence leading from sg to s¢. Let (s = (Sm, W))ke[[l,x]]

be the states reached by the timed step firing sequence such that so[t)s; =

[- . ->SK71[¢K>SK[wmaX>Sf- Let V = {Ula Vg, ..., Uk, vmax}- Let (u};)tET,keﬂl,Ktﬂ
be a controlled execution defined by:

o Vt € T,K; = card({k € [1,K],t € o4 });

oVt e T, (u) = vi,vh,...,v;, € Vis the increasing sequence of the

firing dates of ¢ in the timed step firing sequence: Vr € [1,K,], 3k €

[1,K], vx = v! and t € 0.

We will show that (u},) is a feasible controlled execution leading to sy from

so at date vpax-

Thus, both controlled executions and timed step firing sequences are equivalent

with each other. Therefore a corollary is given as follow.

Corollary 2.13 (Capture the Behavior of TPN by timed step firing sequences).

Let (R,d) be a TPN with its initial state sy given at date vg = 0.
Every Controlled Execution can be represented as a sequence of timed steps.
Thus, every state sy reachable from so can be reached by a sequence of timed steps

firings. The length of such sequence depends on the final marking to reach sy.

44



These results are quite obvious since both formulations follow the underlying
semantics of ordinary PN, and firing sets T,f and T} used in definition (2.10) are

directly related to vectors N (v) and F'(v) used in definition (2.4).

Indeed, the relations between firing sets and characteristic vectors can be

expressed as follow equations:

AN

= N(U/CB

t

\

t—l A F(Uk+1j

\

= N(Ukj

TS, = {t eT: Flug)

t} (2.12)

t

N

= N(vp)

t

\

—1 A F(ups1)

t

e, = {t eT: Flu) — F(op)

t} (2.13)

t

The equations (2.12) and (2.13) can be derived from definition (2.10).

Let us recall firing sets of Finished transitions and Still firing in definition

(2.10).

Vt € T,fﬂ, Jui,i € [1,k] st v < v +d(t) < vgsa (2.14)

Vte T, , Ju,ie€[lk]st. v <uvppr <v+dt) (2.15)

Suppose that v; is the (n + 1) firing date in controlled executions, we can

get the situation as:

¢
F(v)| =n (2.16)
¢

sa(t) = d(t)

Let us consider the set of Finished transitions:

45



2. INCREMENTAL APPROACH FOR TIMED PETRI NETS

Vi < Uk
(n + 1)% firing is not finished at date vy

N\

vp < v +dt) Lvgr = o .
(n + 1)% firing is finished at date v 1
t is no reentrance

\ 7

=n+1

N

F(Uk+15’t = N(u) )
F(vkj)t = N(vkj)t -1

vk = NvlS

Uk:

=

F(Uk+1 L:n‘l‘l

Let us consider the set of Still firing transitions:

Vi S U
(n + 1)™ firing is not finished at date vy

Ve < Vpy1 < U; + d(t) =

(n + 1)™ firing is not finished at date vy,

t is no reentrance

N(ka = N(v)| =n+1 \ N
S ! F(ue)| = N(ve)
= F(u)| = Fw)| =n = t 4
: F(vps1)| = F(Ukj)
F(vgs1 = n t t

From the previous equations, one must note that the firings sets at date k+ 1
can be fully described using the situation given at date k. Therefore, we rewrite

the T}, | and T,fH using only 5,7 and A, as follow:

Tl ={teT,5.(t) >0 5.(t)— A, <0} (2.17)
Ty, ={t € T,5.(t) — A, > 0} (2.18)

46



For the set of Finished transitions:

UV S U
Sre(t) = d(t) = (vp — v7)

U < Vg1 < U; + d(t) =
S(t) — Ay = d(t) = (v — v) — (Vg1 — vg)

t 1S no reentrance
So(t) = v+ d(t) — v, >0
Sr(t) = Ap = v + d(t) = vp1 <0

For the set of Still Firing transitions:

v < Vg
Se(t) = d(t) — (v — vy)

Se(t) = A = d(t) = (v5 = ;) = (k1 — k)

k

v < v+ d(t) Lvgyr =
t 1s no reentrance
S—m:(t) :Uz‘l—d(t) —v >0 AL>0

= s = S—TZ(t)—Ak>O
Sra(t) — Ap = v; + d(t) — vgy1 >0

Since equations (2.17) and (2.18) are non-linear equations, both conditional
constraint and linearization will be applied for formulating them into mathemat-
ical model.

From the definition (2.11) and equations (2.7 - 2.10), we can conclude that the
state sgy1 = (:s_m,:l> , (ﬂ ) can be fully expressed by information from previous
step sk = (5mr. 57 ) and variables denoting next step: oxei and A, . By simpli-
fying expressions of the behavior of the TPN, and making it fully incremental,
one can progressively increase the number of timed steps used in the formulation
without redefining the whole set of constraints.

Following these propositions, it is sufficient to search for timed steps sequences

to solve the reachability problem in TPN.

Corollary 2.14 (TPN Reachability Problem using Timed Steps Firings).
Let (R,d) be a TPN with its initial state so = (W,@) given at date 0. Let

%
Sf = (Smf ,ON> be a target state. The reachability problem of TPNs consists

47



2. INCREMENTAL APPROACH FOR TIMED PETRI NETS

in finding a firable sequence of timed steps 1, = ((?k),vk),k € [1,x] such that
Sk—1[Uk) Sk, Sic[Vmax) S -

The advantage of using timed steps is that they allow to reduce the number of
firings in our model — and then the number of variables — while keeping an equiv-
alence with the initial properties. Thus it is not a modification of the semantics
of TPNs, but only a way to capture independent transitions. Of course, this re-
duction does not systematically holds, since it is easy to construct a TPNs where
only one transition can be fired at a time. Thus, in the worst case, timed step
firing sequences formulation may not bring any improvement as far as the number
of firings used are concerned. However, this is a quite uncommon situation since
this should mean that the PN does not show any parallelism.

The contribution of proving the equivalence between Controlled Executions

and Timed Step Firings and giving corollaries are published in our paper [HBYT13].

2.3 Incremental Search

In last sections, we have shown the interest of using timed steps to formulate the
reachability problem using incremental method. The problem is expressed as a
search for instanciations of integer variables constrained by the formulation of lin-
ear equations (2.7 - 2.10) and non-linear equations (2.17, 2.18). This formulation
allows us to use the paradigm of constraint programming to solve the reachability
problem.

However, the initial definition of the reachability problem is not well adapted
to the kind of formulation we propose to use, since definition (2.7) does not
make any assumption concerning the number of timed steps needed to solve the
reachability problem.

Therefore, we propose several incremental search algorithms to improve the
efficiency of the search process, as shown in figure (2.2). Before explaining this fig-
ure, we define two sub-problems associated with the original reachability problem
introduced before, which can be conveniently solved using the characterization of

corollary (2.14) in a constraint programming framework.

48



/

Figure 2.2: Incremental Search Algorithms

Definition 2.15 (Fixed Depth TPN Reachability Problem). Let (R, d) be

= —
a TPN with its initial state sg = (smo , O ) gwen at date 0. Let sy = (smf ,0N>
be a target state.

TP1(k) Find a timed step firing allowing to reach the state sy from the state
8o in at most k timed steps.

Definition 2.16 (Shortest Length Reachability Problem). Let (R,d) be a
TPN with its initial state sg = (W @) gien at date 0. Let sy = (sm )
be a target state.

TP,  Find the minimal length, denoted by Kmin, of a sequence of timed steps

allowing to reach the state sy from the state sy.

SRS

f

Of course, each of these sub-problems is directly linked to the initial one
defined before, and each allows to solve a different kind of TPN reachability
analysis. For instance, the first formulation TPy (k) is highly useful for model-
checking since it can serve to define the reachability graph under a bounded

depth k. On the other hand, the second formulation TP, is designed to deal with

49



2. INCREMENTAL APPROACH FOR TIMED PETRI NETS

performance analysis since it returns a timed firing sequence that maximizes the
parallelism of the system. It can also give an helpful bound for the definition of
additional heuristics. Finally, since it is clear that the complexity of the problem
grows (w.r.t. number of variables and constraints) as the length K of the sequence
of steps used increases, it seems also quite reasonable to search for the smallest

value of the parameter K from which a solution exists.

2.3.1 Naive Algorithm

In this thesis, we propose two kind of naive algorithms as figures (2.2b) and (2.2¢).
These algorithms are fed with a bound K,,., on what we call the Completeness
Threshold or Sequential Depth [BCCZ99]. Once chosen this value, the procedure
generates iteratively a sequence of mathematical models of increasing size, and
search for solutions in the corresponding search spaces. If there is no solution in

less than K., steps, the algorithm stops.

Naive Algorithm 1

Figure (2.2b) is described in figure (2.3).

k<0

DO
k—Fk+1
Generate CP(k), an incremental model for the problem TP;(k) (which
corresponds to characterization of corollary (2.14) with & timed steps).

5: Solve the model CP(k) (e.g. using Ilog solver). Let X;pi ) be a solution
of CP(k) if it exists.

6:  IF (CP(k) has a solution), RETURN Xi1q

WHILE (CP(k) is infeasible) AND (k < Kpaz)

=

Figure 2.3: Naive Search Algorithm 1

In figure (2.2b) and (2.3), the algorithm will start a new search CP(k),k =i
from the root node when there is no solution at the search CP(k),k = i — 1.

The advantage is that it does not need to record information from the search

50



CP(k),k = i — 1, since timed steps will represent the behavior of TPNs with
length of k. But the disadvantage is apparent. It should consider nodes belonging
to lower depth each time.

The promising aspect of the naive search algorithm 1 is that if the k,,;, is first
given, as shown in figure (2.2a), it can avoid to explore many branches at lower
depth of the search tree. Especially, in the best situation, the search strategies
can explore the search tree without meeting deadends.

However, the K,,;, is hardly to be obtained as the reachability problem.

Naive Algorithm 2

Figure (2.2¢) is described in figure (2.4).

k<0

DO
k«—k+1
Generate CP(k), an incremental model for the set of problems {TP;(1)},
in which each state in the set of reachable states {sy_1} is initialed as
S0-

5. Solve CP(k). Let X;p1u be a solution of CP(k) if it exists.

6:  IF (CP(k) has a solution), RETURN X141

7 ELSE RETURN the set of reachable states {s;}

8: WHILE (CP(k) is infeasible) AND (k < Kppaz)

Figure 2.4: Naive Search Algorithm 2

The advantage of the naive algorithm 2 is that it generates a new CP(k) based
on all reachable states at depth k — 1, which will not search for lower depth again
like the naive algorithm 1.

However, it will lose benefits of timed steps and has to record reachable states
at each depth. Meanwhile, search strategies are not needed, since all reachable
states are explored. These disadvantage will lead our approaches to face the same
problem as BDD, which will need too much memory when applying to large scale

Systems.

o1



2. INCREMENTAL APPROACH FOR TIMED PETRI NETS

2.3.2 Jump Search

During the formulation of an incremental model at step 4 in figures (2.3) and
(2.4), one should take care of the domain of variables representing timed steps.
Indeed: the definitions of timed step and timed step firings do not forbid empty
timed steps leaving the markings unchanged. By considering that empty timed

steps are valid in our formulations, we get the following result.

Proposition 2.17 (Satisfaction Monotony). Letk € N. If the problem TPy (k)
is feasible, then for any integer k' > k, the problem TP1(k') is also feasible.

Proof. Tt is easy to construct a feasible solution for TP;(K’) from a feasible solu-
tion of TP;(k) by adding empty steps.
O

Note the same result would be true when dealing with the family of incre-
mental models CP(k): if there exists £ € N s.t. CP(k) admits a solution, any
model CP(k’') with & > k would be feasible too. This property motivates the
jump search techniques proposed in the next paragraph.

From proposition (2.17) and the definition of parameter K;,, we get:

{ Vk < Kpm  TP1(k) is infeasible (219)

Vk > Kuwm  TPi(k) is feasible

This property can help us to define new iterative techniques, for example it
shows that it is not necessary to solve all the problems TPy (k) for k& < Ky, like
in the naive search described before.

Of course, as said before, we must keep using an incremental procedure in
order to avoid the use of large models if they are not needed. We propose finally
some techniques based on jumps over the values of the search depth. These
techniques allow to decrease the number of iterations needed, thus improving the
search efficiency. Several jump strategies are possible. We describe briefly some

elementary ones.

e Forward jump search. The first family continously increases the value
of the search depth. We can distinguish two main politics, depending on

how the amplitude of jumps are defined.

52



o Fixed amplitude. Its value kj,,, must be chosen in order to obtain a
high exploration speed while minimizing the possible redundant steps,

as presented in figure (2.2d).

In figure (2.2), algorithm d is similar to algorithm c. It does not search
for lower depth repeatedly and has to record reachable states at depth
n*kjump, Where n represents times of launching new incremental search.
In fact, algorithm c can be seen as kjymp = 1. Thus, the algorithm
d will use less memory than the algorithm c¢. Meanwhile, techniques
of timed steps and search strategies can help to enforce the process of

exploring the search tree.

o Dynamic amplitude. This second strategy uses variable amplitudes.
Increasing amplitudes should be used for small values of &k, and de-
creasing ones when the exploration becomes more difficult. This kind

of behavior is less easily quantifiable.

This politic can lead to overtake K,,;, when a solution is found. In this case,
it is not anymore possible to answer precisely the problem TP,, since we
do not get the exact value of K,;n. To compensate this lack of information,

one can use a dichotomic search.

e Dichotomic search. This kind of procedure needs to know a maximal
bound for K,,... Its value is given by a previous successful execution of the
forward jump search. For example, if K,,,, is known as in figure (2.2e),
the algorithm e will dichotomize K4, and solve the problem TP (K,,../2)
first. If there is no solution found, it will search between depths K4, /2
and 3 * Kq./4, ete.

The main interest of jump search is that it allows to reduce some branches
in the search tree. Since we do not know the number of steps needed to find a
solution if it exists, the use of such a technique allows us, when it is possible, not
to have to develop the entire set of formulations of length lower than Kj,.

Finally, it must be said that procedures described in figures (2.3) and (2.4) are
only semi-complete algorithms. Indeed, in the context of unbounded TPNs, the

value of K.y is set arbitrarily, as we do not know any information on the number

93



2. INCREMENTAL APPROACH FOR TIMED PETRI NETS

of steps needed to find a possible solution. Thus, if no solution is obtained before
the value of K. has been reached, one cannot conclude on the reachability
property.

To the contrary, when dealing with bounded TPNs, it is possible to set Kpax
to the value of the Completeness Threshold or Sequential Depth of the net, a
parameter that has been defined in [BHY04] and which guarantee the complete
exploration of the reachability graph. Using this parameter as search depth, it is
always possible to conclude when the algorithm stops.

In this thesis, we mainly use the algorithm like presented in figures (2.2b)
and (2.3). The integer number k is first given based on the TPN model. The
motivation to use this algorithm is to adapt advantages of timed steps and search
strategies, which will lead solver to the desired marking without exploring too

much in the search tree and without recording intermediate states.

2.4 Conclusion

In this chapter, we have introduced the fundamental model for analyzing TPNs
called incremental model for TPNs. All developed methods in the following chap-
ters will be derived from this incremental model.

First, the formal definition of TPNs and their terminology are introduced
based on |CC88|. In addition to ordinary PNs, the Residual Duration vector is
defined by expressing the missing tokens during a timed transition firing. Then
Controlled Ezecution introduced in [CC88| are defined for presenting the TPNs
instantaneous state and reachability problem.

Second, the incremental approach is introduced based on an implicit traversal
of underlying reachability graph of TPNs, which does not need its whole con-
struction. This is done by considering a unique sequence of timed steps growing
incrementally to represent exactly the total behavior of TPNs. The equivalence
between timed step firing and Controlled Executions is formally proved to express
the correctness of our formula. Then the reachability problem of TPN can be
expressed as finding a reachable incremental timed steps firings.

The advantage of incremental model is that it can express any states by timed

steps, instead of representing all states explicitly. Our model is built as general as

54



possible since we do not make assumptions about the firing policy, contrariwise
to other classical approaches dealing with the same issue.

These advantages can be efficient for search for solutions, since it allows to
reduce the number of firings in the system - and then the number of variables
- while keeping an equivalence with the initial properties. Meanwhile, search
strategies can be applied to search for solutions more quickly.

Finally, several incremental search algorithms are introduced to solve reach-
ability problems of TPNs. The most important factor is considered: the depth
of K, which lead to us define two sub-problem: fized depth reachability problem
and shortest length reachability problem. Then, naiwe algorithm and jump search
techniques are introduced to help us to develop more efficient search algorithm.

In this thesis, the incremental search algorithm presented in figures (2.2b) and
(2.3) is applied, since it can adapt advantages of timed steps and search strategies.

In next chapter, we propose to use CP to formulate the incremental approach
as mathematical formulations. In CP, several techniques can be used to continue
reducing the influence of combinatorial explosion, such as adding constraints,
reducing domains of variables and developing search strategies. Meanwhile con-
ditional constraint can be used to express the non-linear equations (2.17) and

(2.18) more naturally.

95



2. INCREMENTAL APPROACH FOR TIMED PETRI NETS

56



Chapter 3

Analysis of Timed Petri Nets using

Constraint Programming

The objective of this chapter is to formulate and implement our incremental
model with Constraint Programming (CP), then to find one or all solutions
using search strategies in CP. With several techniques of CP, such as adding
constraints, reducing domains of variables and developing search strategies, the
influence of combinatorial explosion can be reduced.

In fact, CP is mainly used to solve a constraint satisfaction problem (CSP),
which can be defined using wvariables and their domains, and constraints that
represent the relations between these variables. An incremental model can be
easily expressed as a CSP, especially the non-linear equations (2.17) and (2.18)
can be formulated as conditional constraints in a natural way. The CP mainly
uses two stages to solve a CSP: Modeling and Solving. In the Modeling phase,
CP can reduce the search space formed by variables through adding some im-
provements, for instance, reduce domains of variables domains and dynamically
add constraints. Such improvements will reduce the influence of combinatorial
explosion at the same time as reducing search space. In the Solving phase, some
developed search strategies can find a solution by traversing the search tree more
efficiently, since irrelevant nodes or elements can be eliminated during the search.
Such search process can reduce the influence of combinatorial explosion in a con-
trolled way. At the best case, CP can find one solution with no fail nodes which

means without expanding any other irrelevant states in the reachability graph.

o7



3. ANALYSIS OF TIMED PETRI NETS USING CONSTRAINT
PROGRAMMING

We will also highlight the flexibility of CP for expressing some specific issues in
TPN model. For example, the Token Identification that will be introduced in
chapter (4) can be easily expressed by adding some new variables and constraints
in the Model phase, and then will be solved combined with previous model in the
Model phase. Some new efficient search strategies can also be developed based
on the Token Identification.

In the first section, a tutorial introduction of CP is given to express the be-
havior. A CSP is a basic problem in the real world. Generally speaking, CP
solving contains two stages: Modeling and Solving. The Modeling stage describes
the system and relations in them using variables and constraints. When deal-
ing with manufacturing systems in chapter (4), many issues can be expressed by
adding variables and constraints, which will lead to more realistic benchmarks.
The Solving stage searches for solutions using different search strategies combined
with constraint propagation. The process of solving is very general in CP world.
The solver will first generate a search tree with only the root node. Then, it
will branch the search tree by selecting a variable with different variable order-
ing heuristics. After selecting a variable to be labeled, it will choose the value
ordering to select the leaves for constraint propagation. Finally, when it meets a
deadend, it will backtrack to an open node to continue the search until a solution
is found. The common algorithm in this process is using depth-first backtrack
and arc consistency as constraint propagation.

In the second section, we model the incremental model. The physical sense
elements in TPNs are defined as variables, like places, transitions, markings,
residual duration vectors, etc. And the structure and relations between these
elements are expressed as constraints, like incidence matrix, state equations, etc.
Especially, the non-linear equations are modeled by conditional constraints. Then
the incremental model is translated into constraint programming model, which
can be implemented to solve the reachability problem. To solve the reachability
problem more efficiently, modeling improvements are given to reduce the search
space.

In the third section, we introduce different search strategies with an example.
Generic strategies are given by CP techniques and dedicated strategies are devel-

oped based on the knowledge of the TPN behavior and the meaning of variables.

58



In addition, many techniques can be applied to improve the efficiency of search-
ing. Especially, an objective can be added to search for an optimal solution to
handle scheduling issues.

At the last section, a linearization technique is applied to improve the effi-
ciency of expressing non-linear part by conditional constraint. The linearization
constraints can also be seen as redundancy constraints working with conditional
constraints.

Finally, some benchmarks are given to explain all considerations above.

3.1 Constraint Programming Tutorial

Constraint Programming is the study of computational systems based on con-
straints. The main idea of constraint programming is to solve problems by com-
bining constraints (conditions, properties or requirements) about the problem
area and, subsequently finding a solution satisfying all of the constraints. The
earliest ideas leading to CP can be found in Artificial Intelligence (Al), dating
back to sixties and seventies. Logic Programming (LP) can also be noted to be
just a particular kind of CP. CP techniques are used to solve hard combinatorial
problems and are very competitive with techniques from Operations Research
(OR). CP is now a mature field and has been successfully used for tackling a

wide range of complex problems [MicO7].

3.1.1 CP Terminology

The term of Constraint Programming (CP) refers to the techniques that are used
to represent and solve Constraint Satisfaction Problems and Constraint Optimi-
sation Problems arising from Artificial Intelligence [Hel2|. This section gives a
brief introduction and basic notation of CP. A large part of this section is written
based on the books [Apt03] and [RBWO06].

Constraint satisfaction problems, like most fields of artificial intelligence, can
be separated into (overlapping) concerns of representation and reasoning. The

former can be divided into generic and application-specific concerns, the latter

99



3. ANALYSIS OF TIMED PETRI NETS USING CONSTRAINT
PROGRAMMING

into search and inference. Classic definition of a Constraint Satisfaction Problem

(CSP) can be expressed as follows:

Definition 3.1 (Constraint Satisfaction Problem). A CSP is a triple P =
(X, D,C), where X is an n-tuple of variables X = (v1,x9,...,2,), D is a cor-
responding n-tuple of domains D = (Dq, Ds, ..., D,), such that x; € D;, C is a
t-tuple of constraints C = (C1,Cs,...,Cy). A constraint C; is a pair (Rs,, Sj)
where Rg, is a relation on the variables in S; = scope(Cj). In other words, Rg,
1s defined as a subset of the Cartesian product of the domains of the variables in

S

j -

Definition 3.2 (Satisfaction). For a CSP P = (X, D,C), if a n-tuple A =
(ay,as,...,a,) where a; € D; s.t. each Cj (C = (C1,Cy, ..., Cy)) is satisfied in
that Rs, holds on the projection of A onto the scope S;, A is said to be a solution
of this CSP.

Briefly, when a CSP is given, CP searches values for all the variables satisfying
all constraints. In addition, CP is also used to search optimal solutions. Generally,
an optimal solution is given with respect to a certain criteria, and CP will traverse

the search tree to ensure its optimality.

Definition 3.3 (Constraint Optimisation Problem). A Constraint Optimi-
sation Problem (COP) is a CSP(X, D, C) together with an objective function
f Dy x Dyx...x D, — R to be optimised. An optimal solution to a con-
straint optimisation problem is a solution to P that is optimal with respect to
f. The objective function value is often represented by a variable z, together
with mazximizing z or minimizing z for maximization or a minimization problem,

respectively

In CP, the goal is to find a solution (or all solutions) to a given CSP, or an
optimal solution (or all optimal solutions) to a given COP. To mention COP here,
we want to give a brief introduction of CP techniques, in which COP is a very
important part, and to tell the reader that our model can be easily applied for
optimization problems in TPNs by adding objectives.

After representing a CSP, the domains D; will form a search space for puta-

tive solutions 2. Then two broad categeries of algorithms for solving CSPs will

60



be considered: inference and search. In inference techniques, Constraint Propa-
gation can eliminate large subspaces from €2 using Network Consistency. Search
systematically explores €2, often eliminating subspaces with a single failure. The
success of both strategies hinges on the simple fact that a CSP is conjunctive: to
solve it, all of the constraints must be satisfied so that a local failure on a subset
of variables rules out all putative solutions with the same projection onto those
variables. These two basic strategies are usually combined in most applications
[RBWO6].

In summary, we can list a basic structure of CP program describing a CSP as

the following;:
e definition of variables and domains
e equations of constraints among variables

e definition of search strategies (which are executed with the constraint prop-

agation)

3.1.1.1 Constraint Propagation

Constraint propagation removes (some) inconsistent values from their correspond-
ing domains, based on the considerations on the individual constraints. By doing
so, the search space can be significantly reduced. Hence, constraint propagation
is essential to make constraint programming solvers efficient.

Let C' be a constraint on the variables X = (x1, 29, ..., 2,) with respective
domains D = (Dy, Ds, ..., D,), such that z; € D;. A propagation algorithm for
C' removes the values from D = (Dy, Do, ..., D,) that do not participate in a
solution to C.

Let P = (X, D,C) be a CSP. We transform P into a smaller CSP P by repeat-
edly applying the propagation algorithms for all constraints in C' until there is no
more domain reduction. This process is called constraint propagation. When the
process terminates, we say that each constraint, and the CSP, is locally consistent
and that we have achieved a notion of local consistency on the constraints and
the CSP. The term local consistency reflects that we do not obtain a globally

consistent CSP, but a CSP in which each constraint is locally consistent.

61



3. ANALYSIS OF TIMED PETRI NETS USING CONSTRAINT
PROGRAMMING

Constraint propagation algorithms are the algorithms that achieve local con-
sistency. In the literature, it is also called filtering algorithm. For keeping local
consistency in the constraint propagation, there are many algorithms like node
consistency, arc consistency, k-consistency, etc. The differences between them
are combining different number of constraints for one variable. All kinds of con-
sistency and a thorough description of the process of constraint propagation are
given by [Apt03|

The most popular notion of local consistency is arc consistency that deals with
binary constraints. Arc consistency is the basic propagation mechanism that is

used in almost all solvers.

Definition 3.4 (Arc consistency). Consider a binary constraint C' on the vari-
ables x and y with a domain of D, and D, respectively, that is C C Dy x D,,.
We call C' arc consistent if

Va € D, 3b e Dy, (a,b) € C (3.1)

Vvbe Dy, Ja € Dy, (a,b) € C (3.2)

We say a CSP is arc consistent if all its binary constraints are arc consistent.

Constraint propagation is usually applied each time when a domain has been
changed. Consequently, the propagation algorithm that we apply to make a CSP
locally consistent should be as efficient as possible. However, a propagation algo-
rithm does not need to remove all such values, as this may lead to an exponential
running time due to the nature of some constraints (see the complexity analysis

of arc consistency in [RBWO06].

3.1.1.2 Search
After constraint propagation, we usually encounter three kinds of scenarios:
e the problem is inconsistent, which means no feasible solution exist;

e there is only one value in each domain of variable, which means we found

the solution;

62



e there is more than one value in each variable’s domain, which means we

have to continue the search for a solution.

The solution process of CP uses a search tree, which is a particular rooted
tree. The vertices of search trees are often referred to as nodes. The arcs of search
trees are often referred to as branches. Further, if (u, v) is an arc of a search tree,

we say that v is a direct descendant of v and wu is the parent of v.

Definition 3.5 (Search tree). Let P be a CSP. A search tree for P is a rooted

tree such that:
e its nodes are CSPs
e its root is Py

o if (P,..., Py) where m > 0 are all direct descendants of Py, then the union
of the solution sets of (Py, ..., Py) is equal to the solution set of P.

We say that a node P of a search tree is at depth d if the length of the path from
the root to P s d.

Root node

level )= = = = = = = = = o e (p = —— -

Splitting
level l= = = = = = = = = = = = = = = = == ———— — Constraint propagation
Splitting

Close node

level] 2 = — @Y= =--@=---@---@---0-=-=-=-- Constraint propagation

Deadend Backtracking

level] 3——@—---@---@0---0---0---0---0-—--

Open node

Figure 3.1: Expression of Search Tree
Definition (3.5) is a very general notion. In CP, a search tree is dynamically

built by splitting (also called branch in the search tree) a CSP into smaller CSPs,
until we reach a failed or a solved CSP. A CSP is split into smaller CSPs either

63



3. ANALYSIS OF TIMED PETRI NETS USING CONSTRAINT
PROGRAMMING

by splitting a constraint or by splitting the domain of a variable. For more
information about splitting we refer readers to [Apt03].

At each node in the search tree we apply constraint propagation to the corre-
sponding CSP. As a result, we may detect that the CSP is inconsistent, or we may
reduce some domains of the CSP. In both cases fewer nodes need to be generated
and traversed, so the propagation can speed up the solution process.

We say that a node P of a search tree is at level d if the length of the path
from the root to P is d. As shown in figure (3.1), the leaves are branched from
parent nodes. A close node means no more leaf can be expanded, and an open
node is the beginning to a branch. The deadend means there is no solution with
this leaf, so solver will backtrack to the parent node.

The constraint propagation and splitting are applied in an alternated fashion.
The most common form of domain splitting consists in enumerating the domain
of a variable. Informally, it consists of taking a variable, say x, and splitting its
domain into singleton sets. Each such singleton set, say a, corresponds to a CSP
in which the domain of the variable x is replaced by a. Another domain splitting

consists of binary choice points in the domain of a variable, known as binary tree.

Variable and Value Ordering Heuristics

To split the domain of a variable, we first select a variable and then decide
how to split its domain. This process is guided by variable and value ordering
heuristics. Heuristic is defined as a rule of thumb based on domain knowledge
from a particular application, which gives guidance in the solution of a problem.
Variable and value ordering heuristics impose an ordering on the variables and
values, respectively. The order in which variables and values are selected has a
great impact on the search process.

A wariable ordering heuristic imposes a partial order on the variables with
non-singleton domains. An example is the most constrained first variable ordering
heuristic. It orders the variables with respect to the number of their appearance
in the constraints. A variable that appears the most often is ordered first. It
is likely that changing the domains of such variables will cause more values to

be removed by constraint propagation. Another variable ordering heuristic is the

64



smallest domain first heuristic. This heuristic orders the variables with respect to
the size of their domains. A variable that has the smallest domain is ordered first.
The advantages of this heuristic are that less nodes are needed to be generated
in the search tree, and that inconsistent CSPs are detected earlier. In case two
or more variables are incomparable, we can for example apply the lexicographic
ordering to these variables and obtain a total order [GP10].

A wvalue ordering heuristic induces a partial order on the domain of a variable.
It orders the values in the domain according to a certain criterion. An example is
the lexicographic value ordering heuristic, which orders the values with respect to
the lexicographic ordering [GP10|. Another example is the random value ordering
heuristic, which orders the variables randomly. In case a value ordering heuristic
imposes a partial order on a domain, we can apply the lexicographic or random
value ordering heuristic to incomparable values to create a total order. A value
ordering heuristic is also referred to as a branching heuristic because it decides

the order of the branches in the search tree.

Backtracking

After choosing variables ordering and value ordering, CP solver goes down in the
search tree. When meeting a deadend, CP solver need to search in other branches.
There are several algorithms to traverse the search tree. Complete or systematic
algorithms come with a guarantee that a solution will be found if it exists, and can
be also used to show that a CSP does not have a solution and to find an optimal
solution. Backtracking search algorithms and dynamic programming algorithms
are, in general, examples of complete algorithms. Incomplete, or non-systematic
algorithms, cannot be used to show a CSP does not have a solution or to find
a provably optimal solution. However, such algorithms are often effective at
finding a solution if one exists and can be used to find an approximation to an
optimal solution. Local or stochastic search algorithms are examples of incomplete
algorithms [RBWO06].

Backtracking search algorithm is the most popular one, since it works on only
one solution at a time and thus needs only a polynomial amount of space. The

most common search strategies is Depth First Search, which explores the search

65



3. ANALYSIS OF TIMED PETRI NETS USING CONSTRAINT
PROGRAMMING

tree in a left-to-right fashion. It searches by selecting the left leaf at each open
node until the end of the search space is reached. If it does not find a solution,
it backtracks and tries again.

In CP, constraint modelling, variable/value order heuristics and backtracking
interact in the whole procedure of problem solving. None of these decisions can
be made independently from the others. We use the term search strategies to

express all the actions in the search process.

3.1.1.3 The IBM ILOG Solver

This thesis is the result of three years of research that was conducted and imple-
mented based on IBM ILOG solver [IBM10].
IBM ILOG Solver 6.8 is a C++ CP solver. It is a C++ library for CP. It

includes:
e predefined classes of variables;

e predefined classes of mathematic, symbolic, and global constraints, with
associated one (or more) propagation algorithm, together with a mechanism

to implement new constraints;

e predefined search algorithms, together with a mechanism to write user de-

fined tree search methods

In the following, we will use Solver to replace IBM ILOG Solver.

Search in Solver is typically a tree search. It provides a set of control methods
that allow users to implement their own search algorithms.

In this thesis, we mainly use the CP as a modeling tool, which can translate
equations into constraints. Meanwhile, conditional constraints are very powerful
for us to formulate non-linear equations. Then we solve the reachability problem
with pre-defined and our developed search strategies.

In summary, the process of solving a CSP can be separated into two parts:

Part 1 Modeling

e Definition of variables and their domains

e [xpressing constraints among variables

66



Part 2 Solving

e Definition of the objective function and its link with the problem decision

variables
e Definition of the search strategy : variables and values ordering
e Definition of the search strategy : backtracking algorithm

Generally, a popular method to generate a search tree is using Depth-First
backtracking search algorithm and keeping arc consistency during constraint

propagation.

3.2 Modeling Incremental Model for Constraint

Programming

In the previous chapter, we have first shown that timed step firings are sufficient
to solve the reachability problem of TPN. Then the incremental model is built for
searching for a timed step firing sequence step by step. In this section, we express
the incremental model with CP techniques and show how a timed step firing can
be expressed as a constraint programming problem.

In the following, the modeling improvements are given for reducing search
space, and different kind of strategies are shown for searching for solutions effi-
ciently. Under these considerations, we propose to follow an example-driven tour
for explaining these techniques and choose the way for more efficient solving.

Let us consider the example of figure (3.2), its corresponding incidence ma-
trices and time durations of transitions are given.

We start by expressing our incremental model in a suitable way to be solved

using CP.

3.2.1 Preliminary Modeling

As said in section (3.1), the Modeling process of CP for modeling a TPN is made

of definition of variables and definition of constraints.

67



3. ANALYSIS OF TIMED PETRI NETS USING CONSTRAINT

PROGRAMMING

lQ\L

S
S

3

Q

l

3

!

%

r

(=)

0707070707070,0,0,0
17070a07071;0,]—,0,1
07170a1707070,0,0,0

L 0707110717071,0,170
=1[2,3,4,3,2,3,3,2,4,2].

0,,(3)

]
P2
]

0,4(3)

05(2)

054(3) 0,4(3)

1,0
0,1,0,0,0,0,0,0,0,0
0,0,1,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0
0,0,0,1,0,0,0,0,0,0
0,0,0,0,1,0,0,0,0,0
0,0,0,0,0,1,0,0,0,0
0,0,0,0,0,0,1,0,0,0
0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,1,0,0
0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0,0, 1

Y ) Y Y ]

,0,0,0,0,0,0,0,0
0

=(2,0,0,0,2,0,0,0,0,2,0,0,0,

—0,0,0,2,0,0,0,0,2,0,0,0,2,

—

_9
Srp = On

1
1,

1,1
1,1

].
1.

0,0,0,

1.0.0.0.0.0.0.0.0,0
0,1,0,0,0,0,0,0,0,0
0,0,1,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0
0,0,0,1,0,0,0,0,0,0
0,0,0,0,1,0,0,0,0,0
0,0,0,0,0,1,0,0,0,0
0,0,0,0,0,0,1,0,0,0
0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,1,0,0
0,0,0,0,0,0,0,0,1,0

] Y

Figure 3.2: Modeling a Job Shop in TPNs

68




3.2.1.1 Variables Definition

In this section, we define variables used for TPNs and their domains. The main
idea of incremental model is to use a sequence of timed step firings, as shown
in table (2.3). So in each step, the following variables and their domains are

considered:

e Step number (k), k& € [0, K] indicates the number of steps;

e Step firing variables (a7), Vj € [1, N],74(j) € {0,1} denotes if each transi-

tion in one step is fired or not;

e Firing Dates Variables (A,,), A,, = Vgr1 — Vg, vo = 0,A,, € N means the
time elapse between two steps; Note that for A, , k € [0,k — 1].

e Intermediate Marking Variables (5,,’), Vi € [1, M], sy’ (i) € N means the

number of token in each place;

e Intermediate Residual Duration Variables (5,7), ¥j € [1,N],5.(j) € N

means the residual duration of each transition;

— —
e Intermediate Finished Transition Variables (T}), ¥j € [1, N], T/ (4) € {0,1}

means if one transition is finished or not during time inteval |vg_1, vg]

Note that steps £ = 0 and k£ = K are respectively used to be instantiated by
initial state and final state.
3.2.1.2 Constraints Expression
After defining variables, constraints should be expressed to describe the relations
among variables.
Expression Of Marking Updates

Marking update equations (2.17 and 2.18) are represented below:

k+1*{t € T Sm(t) >0A S_T}i(t) - Avk < O}
Tk+1_{t S T? Srk (t) - A'Uk > 0}

69



3. ANALYSIS OF TIMED PETRI NETS USING CONSTRAINT
PROGRAMMING

In this section, we propose to express the non-linear parts directly as con-
ditional constraints equations. For considering tokens produced at date k + 1,
we add intermediate variables T'F(;41) to denote finishing transitions, using the

following set of conditional constraints:

Vi € [1,N],Vk € [0,k — 1]

Spe; > 0 f

! =T =1 3.3

{ A Srkj o Avk < 0 (k+1)5 ( )
S, <0 f

! =T =0 3.4

{ vV Srkj o Ak > 0 (k+1)5 ( )

Equations (3.3) denote transitions j that were firing at date v, and have
finished at date vx,1. Conversely, equations (3.4) denote transitions that were
not firing at date vy or that are still firing at date vg,q.

The vector T .1 1s then used to express equation (2.9) in the following way:

—
Smyr1 = smk Cc~

Tp - OF T,{H (3.5)

Expression Of Residual Duration Vector Updates

To express equation (2.10), we do not explicitly make appear a vector character-
izing the set Tj; ;, but we use directly the values of T}] to check if previous firing
transitions are still firing.

Since reentrance is forbidden, a transition ¢; which was already firing at date
vp cannot start a new fire at step vy if it has not finished its previous firing
before. Thus, at date vi1, the corresponding component of the residual durations

vector, Sy, can have two values:

= s —A
N e (3.6)
Okt1); = 0
Sry; A, <0= Sresn); d(J) " O(k+1)j (3.7)

Equation (3.6) means that ¢; is still firing and cannot be fired anymore, so

S, 18 equal to the residual time to elapse. Following equation (3.7), if ¢; is

70



not firing (or has finished) at date vg, 1, is decided by the new step o (4+1);.

S’“(k+1)j

Equations (3.6) and (3.7) are used to express equation (2.10) in the final model.

Expression of Fireability Conditions

The monoserver semantics enforced by equation (2.7) is already guaranteed by
the second part of equation (3.6).
In the same way, the expression of fireability condition (2.8) is a consequence

of equation (3.5), since variables of vector s, are constrained to be positive.

3.2.2 Modeling Improvements

In order to reduce the search space and improve the efficiency of CP, we reduce
the domain of variables and add more constraints to the CP Model, according to

some observations made on the considered TPNs.

Firing Policy Since all transitions have a finite duration, it is not necessary to
wait after the firing of o}, at date v, more than the max residual duration 37,: ,
denoted as max(s,,k) to fire the next step Uk—+1> Indeed: we are sure that all
transitions previously active at date v, have finished, thus all tokens needed
to fire G411 are available at date vy + max(5,7). To define the domains of
A,, and s,, , they will be no more than the max duration Dy, = max(?)
of transitions, which is said as the longest duration. For each transition
J, its residual duration will be smaller than its own duration d;. Such

considerations lead to

Vk € [0,k], V5 € [1,N], sp,; €10, Dinaa } (3.8)
Vk € [0,K],Vj € [1,N], s, < d; (3.9)
Vk € [0,k — 1], Ay, €{0, Dinaz } (3.10)
Vk € [0,K — 1], Ay, < maz(5,]) (3.11)

Note that equations (3.8 and 3.10) are used to define variables 5., and A, .
Equations (3.9 and 3.11) are used to define constraints on s_r,z and A,,.

In order to reduce the search space, we forbid the firing of empty steps,
i.e. steps containing no transition firing. This avoid to find solution built

71



3. ANALYSIS OF TIMED PETRI NETS USING CONSTRAINT
PROGRAMMING

from another one by simply adding an empty step. Only the last steps
EK) is allowed to be empty, in order to be able to consider the date K for
which the final marking is reached but no transition is still active. Note this
implies to choose the total number of steps accurately since if one choose
more steps than the number needed to reach the final marking, no solution
can be found. To the contrary, empty steps allow to use dichotomic search

to find the minimal number of steps needed to reach the final marking.

In order to avoid solutions built one from another by splitting steps into
individual transition firings, we forbid the elapsed time A, between steps
O_']Z and Uk—ﬁ to be equal to 0, except the first time elapse Ag. Thus, if a
solution exists where two transitions ¢;,?; must be fired simultaneously at
date vy, they will be fired in an unique step ar = 6_,5 + e?j and not using

two steps (?;Z = e_tz and o1 = e_t; with A, = 0.

Such improvements reduce the search space by deleting solutions that would

be found anyway. The corresponding constraints are given in equations
(3.12) and (3.13).

N—1

Vk € [0,K —1],) ok #0 (3.12)
j=0

Vk e [l,k —1],A,,  #0 (3.13)

Structural Properties Since PNs express the behavior of physical systems,
they have generally an infinite behavior, made of cyclic executions, but
their number of states is bounded. Thus, it is possible to compute an up-
per bound of the marking of each place, allowing to reduce the domain of
variables 5.,/ in the considered model, as shown in equation (3.14). Such
bounds can be computed using P-flows of the net, see [KJ87|. For instance,
the number of tokens in each place of the TPNs of figure (2.1) is bounded

by 1, which is the max number in its initial marking.

Vk € [0,K],Vi € [1,M], $m,, €[0, Minaz] (3.14)

These improvements are used to reduce search space and can also be seen as
additional constraints to the CP model. Based on all these considerations above,

72



we will give the full constraint programming model.

3.2.3 Constraint Programming Model

Based on all expressions above, a full constraint programming model is given in
figure (3.3). Equations (3.15 - 3.21) are used to initialize the initial and final states
of TPNs. Meanwhile, equations (3.30 - 3.34) give the domains of all variables of
this model. Finally, equations (3.22 - 3.26) represents the updating of marking
vectors and residual duration vectors, which can be seen as constraints between
all variables in a constraint programming approach view. Equations (3.27 - 3.29)

represent improvements.

3.2.4 Numerical Experiments

To validate our approach and give a visible expression of following techniques,
benchmarks for our basic C'P(K) model are given. This basic CP model contains
all posted constraints and improvements of section (3.2). Then the effects of all
improvements will be given separately.

Experiments were carried out using a 2.93 Ghz Pentium with 4 Go of RAM,
using the constraint programming tool Ilog Solver. We have used the Timed PNs
presented in figure (3.2). The goal was to get the first feasible solution leading
from so to s¢. Note that there are 2 tokens in each beginning place of jobs.

In the following tables, we give the (time) to obtain the first solution, the num-
ber of inconsistent choices (fails), the (variables) (Abbreviation as Vars) and the
(constraints) (Abbreviated as Cons) that participate in searching for a solution,
the total time needed to reach the final marking (makespan) (Abbreviated as
Mksp) and the (first firing sequence found) (Abbreviated as FirstS) found. If the
same solution appears several times, we give it a name using prefix ¢ and make

references to it later to save space.

3.2.4.1 Influence of the Search Depth

First we assess the influence of the number of firing dates K used to build the incre-
mental model. The results are given in table (3.1). The order of labeling variables

are not given, and the Defaut manner is used. In fact, the default manner will be

73



3. ANALYSIS OF TIMED PETRI NETS USING CONSTRAINT

PROGRAMMING

Let (R, d) be a TPN with its initial state so given at date vg. Let sy be a target state.

The constraint programming model C'P(K) is defined by:

Vk € [0,K — 1], Vi € [1,M],Vj € [1,N]

Smoi =mo(7)
Smki =mf(7)

$roj =T0(J)

SrKj :Tf(j)
00j =0
OKj =0
Ty, =0

update residual duration vector

Srkj — Avk > 0:>3r(k+1)j = Srkj — Ayk A O(k+1)j = 0

Srkj — Doy < 028,541y = dj - O(ky1);
update marking

Sehj > 0N Sppj — Dy, < 0:>T(J;_H)j =1
Srkj SOV Sppj — Ay > 0:>T(J;+1)j =0
N—1 N—1
Sm(k+1)i — Smki :Z Cit - T(J;m)c - Z Cic " O(k+1)e
c=0 c=0
N—1
Vk € [0,K], ) 0s1); 70
=0
modeling improvements and initial domains
A, < ;
S i
Sr(k+1); <d(7)
O'(]]c€+1)j € {O, 1}
Ty €101}

Sr(k+1)j € [[07 Dmaz]]
Sm(k+1)i € [[07 Mmax]]
Avk € ]]07 Dmax]] U Avo € |I07 Dmax]]

Figure 3.3: Constraint Programming Model

the order they occur in the sequence 1A, Sm;Sr 020y, SmoSrs - - - Oy 1 S S

since equations are executed step by step recursively in the incremental approach.

Since each beginning place of jobs has two tokens, each transition must be

74



fired two times to lead from sg to s¢. Thus, any solution should contain no more
than 20 transition firings plus the final empty step (cf. notes for eq. (3.12)). This
consideration explains why no result is found if K > K,,,.. = 21. Note that even if
simple considerations lead to this result, the constraint programming resolution
does not finish after a long time, since the search tree must be traversed entirely

to decide there is no solution.

The first number of steps for which a sequence exists is K,,;, = 10. The time
given for K = 9 corresponds to the duration to traverse the whole search tree

without finding a solution.

Starting from K,,,;, = 10 until K,,,4., the first solution is found earlier when the
number of steps is greater. Obviously, changing the number of steps from K to
K+ 1 does not add nor change constraints over the variables belonging to the first
K steps, thus the solutions are tried out in the same order in the respective search
trees, since the labeling order follow the order of steps. Moreover, the branching
mechanism used to build the search tree starts by labeling one transition by step
(the minimum possible number of transitions firing, from equation (3.12). When
the maximal number of steps has been reached, since K < K4, the final marking
has not been reached yet, thus the constraint programming algorithm backtracks
and continues the search. When sequences containing one transition firing at a
time have all been considered, the search mechanism labels sequences containing
two transitions for the last step, and so forth. Finally, the less steps we have to
build a solution, the greater number of backtracks is needed to find a solution
where sufficient transition firings have been merged into steps, and the longer is

the search procedure.

In table (3.1), for a default labeling strategy is applied, variables that appeared
earlier will be closer to the root node. Meanwhile, all labeling strategies choose
values in the variable’s domain in ascending order. Therefore, Solver goes down
in the search tree and backtrack to variables that appeared late. That is the

reason why all firing sequences begin with transition os;.

The previous results were obtained using default labeling strategy, correspond-
ing to label variables in the order of they occur. In the next section, we assess

the efficiency of other generic labeling strategies.

75



3. ANALYSIS OF TIMED PETRI NETS USING CONSTRAINT
PROGRAMMING

K ‘ Time ‘ Fails ‘ Vars ‘ Cons ‘ Mksp ‘ FirstS
9 | 33.35s | 830245 | 477 no solution exists
10 | 10.51s | 273295 | 525 886 30 031, 031032, 021032, 011021022, 022023, 023024,

011012024, 012013033, 013033

].1 1.76 S 41936 573 971 32 031, 032, 031, 021032, 011021022, 022023, 023024,

011012024, 012013033, 013033

12 | 0.42s 9907 621 | 1058 34 ®1 = 031, 039, 033, 031, 021032, 011021022, 022023,

023024, 011012024, 012013, 013033

13| 0.14s 2829 669 | 1146 37 031, 032, 033, 031, 032, 021, 011021022, 02203,

023024, 011012024, 012013, 013033

].4 0.14 S 1640 7].7 1233 39 031, 032, 033, 031, 032, 033, 021, 011021022, 022023,

023024, 011012024, 012013, 013

15| 0.06s 115 765 | 1315 41 031, 032, 033, 031, 032, 033, 021, 022, 023, 011021024,

011012022, 013023, 012024, 013

16 001 S 30 813 1403 40 031, 032, 033, 031, 032, 033, 021, 022, 023, 024,
011021, 011012022, 013023, 012024, 013

17 004 S 23 861 1491 46 031, 032, 033, 031, 032, 033, 021, 022, 023, 024, 021,
011, 011012022, 013023, 012024, 013

18 002 S 0 909 1580 48 031, 032, 033, 031, 032, 033, 021, 022, 023, 024, 021,
022, 023, 011, 011012024, 012013, 013

].9 0.05 S O 957 1668 5]— 031, 032, 033, 031, 032, 033, 021, 022, 023, 024, 021,
022, 023, 024, 011, 011012, 012013, 013

20 0-03 S ]- 1005 1753 53 031, 032, 033, 031, 032, 033, 021, 022, 023, 024, 021,
022, 023, 024, 011, 012, 011, 012013, 013

21 003 S O 1053 1839 56 031, 032, 033, 031, 032, 033, 021, 022, 023, 024, 021,
022, 023, 024, 011, 012, 013, 011, 012, 013

22 | >6000 s no solution exists

Table 3.1: Changing the Number of Firing Dates

3.2.4.2 Influence of Improvements

In order to compare the effect of different situations, we have chosen to consider
executions of K = 12 firing dates containing the final empty timed steps to elapse
the time for finish the firing transitions. To show the effect of all the improve-
ments, the results are given in table (3.2). If all improvements are removed, the
solver will run out of memory. Therefore we reduce one improvement each time
from the basic CP model to show their contributions of reducing the search space.

In the table (3.2), the time consumed and the fails encountered will mainly
represent the efficiency. The first line presents the result with keeping all improve-
ments, and it finds the solution the fastest. It means that every improvement can
reduce the search space to enhance the efficiency.

Lines 2, 3, 4 represent the effect of making improvements on residual dura-
tion vector s_r,: . Equation (3.8) is used to define the domains of residual duration

vector, which must be smaller than the max duration. Equation (3.9) continue

76



Improvements Time Fails ‘ Vars ‘ Cons ‘ Mksp FirstS

1 | All 0.42 s 9907 621 | 1058 34 1
2 | All-equation (3.8) 0.55s | 10595 | 621 | 1057 34 1
3 | All-equation (3.9) 0.55s | 10817 | 621 | 1057 34 1
4 | All-equations (3.8, 3.9) 0.70 s | 15338 | 621 | 1057 34 #1
5 | All-equation (3.10) 0.53s | 10595 | 621 | 1058 34 1
6 | All-equation (3.11) 3.96s | 99896 | 621 | 1046 34 1
7 | All-equation (3.13) 0.86s | 15739 | 621 | 1058 34 1
8 | All-equations (3.10, 3.11, 3.13) not enough memory

9 | Equations (3.10, 3.11, 3.13) | 13.04 s | 276163 | 610 | 1053 30 .
10 | All-equation (3.12) 8.96 s | 200468 | 610 | 1054 34 .
11 | All-equation (3.14) 0.55s | 10595 | 621 | 1058 34 *1
12 | No improvements not enough memory

@2 = 031, & ,032, 031, 021032, 011021022, 022023, 023024, 011012024, 012013033, 013033

Table 3.2: Influence of Improvements

to precise the domain of each transition’s residual duration variable, which can
be seen as constraints. Since D, = ma:c(j), equation (3.9) contain the effect
of equation (3.8). Therefore line 3 meets more fails than line 2. But the residual
duration vector is not taking the most important role. Improvements of resid-
ual duration vector do not enhance too much efficiency, which means residual

duration vector does not influence the solution too much.

Lines 5, 6, 7, 8, 9 represent the effect of making improvements on time elapse
Equation (3.10) defines the domain of A,, | and
equation (3.11) restrict A,, , smaller than the longest residual duration at date

between two firing dates A,, .

vk_1. These two equations implies that all fired transitions will be finished at date
V1 + M ax(ﬁ ). Therefore all tokens needed to fire o, are available, so A, _,
do not need to make more time elapse. Line 6 meets more fails, for A,, |, can
lead solver go deep in the search tree with bigger domains. If solver cannot find
one solution at some open node of search tree, increasing A,, , cannot change
the situation, but just make solver meet more fails. Equation (3.13) represent a
timed firing step cannot be fired with no time elapse, in order to forbid two steps
to be merged into one step under this situation. So line 7 meets a little more fails
with line 1 for the continuous steps. Meanwhile Equation (3.13) just affect the
number of steps, so it does not bring too much efficiency. Line 8 presents that

solver will run out of memory with no A,, | improvement and line 9 presents

7



3. ANALYSIS OF TIMED PETRI NETS USING CONSTRAINT
PROGRAMMING

that only with improvements of A can lead solver from run out of memory

Vg—1

to one solution. These mean that the improvements for reducing the domains of
AUk71
bad strategy with labeling A

has taken the most important role for reducing search space. Meanwhile a
o, Will lead solver go deep in the search tree and
meet explosive fails.

Line 10 represents the effect of making improvements on the firing transitions
o) at each step. Equation (3.12) means forbid the empty steps. If empty step
allowed, solver can make empty steps at the top of search tree and will compress
transitions at the following steps. As shown in subsection (3.2.4.1), less steps will
lead solver to meet more fails. Meanwhile, empty steps at the top of search tree
will make solver go deeper and backtrack more nodes. So solver meets nearly 20

times fails than line 1.

At last, line 11 represents the effect of making improvements on marking. As
said about p-sem: flows, tokens in each place will be bounded with the number

of initial marking. So this improvement does not make much efficiency.

To conclude, all improvements have reduced search space, and implied that
A

to improve the efficiency of finding one feasible solution through making improve-

o, Will take important role in finding a solution. For now, we cannot continue
ments. Therefore we begin to introduce the search strategies, which will lead the

search in a controlled way and give more efficiency.

3.3 Search Strategies

After modeling the incremental model with CP, the reachability problem is needed
to be solved using the method defined in definition (2.15). If there exists a
solution, we can find one K to find it as described in chapter (2). But the
time needed to find it varies greatly with respect to search space and search
strategies. Here search strategies means all the methods that can improve the
search efficiency. In our paper [HBYT12¢|, we have shown many benchmarks

and discuss different search strategies as in this thesis.

To express all the search strategies and to show their efficiency, we follow the
figure (3.2) to illustrate.

78



3.3.1 Variables Ordering

The efficiency of a CP approach is mainly based on the labeling strategies used to
choose which variables are enumerated first. In Solver, there are several generic
strategies. Generic strategies are based on the size of the domain of variables.

One can cite:

FirstUnbound Label variables in the order they occur;

MinSize Label the variable with the smallest domain first;
MaxSize Label the variable with the largest domain first;
MinMax Label the variable with the least maximal bound first;
MinMin Label the variable with the least minimal bound first;
MaxMin Label the variable with the greatest minimal bound first;
MaxMax Label the variable with the greatest maximal bound first;

MinRegretMin Start by labeling the variable for which the difference between

the smallest possible value and the next smallest value is minimum, etc.

For full list, reader can follow [IBM10].

But generic strategies do not consider the structure information of TPNs.
This cannot give the best search strategies and let us to formulate several con-
trolled search strategies. So in this thesis, we propose also to develop dedicated
labeling strategies based on our knowledge of the TPN behavior and the meaning

of variables. In our model, decision variables belong mainly to 4 classes:

e Step firing variables (77)
e Firing Dates Variables (A,,)
e Intermediate Marking Variables (5,,")

e Intermediate Residual Duration Variables (5,)

79



3. ANALYSIS OF TIMED PETRI NETS USING CONSTRAINT
PROGRAMMING

One must note that there exist different kinds of dependency relations be-
tween these variables. Indeed, if one choose values for (oy), some variables (S, )
and (s, ) are affected to traduce the consumption of tokens, but the produc-
tion of tokens still depends on the firing dates, thus variables are simply more
constrained. Enumerating variables (A,, ) does not imply any subsequent instan-
tiation of other variables. On the contrary, enumerating marking have an effect
on all other variables since it implies dates for the production of tokens.

All labeling strategies choose values in the domain of variable by ascending

order. This strategy is default in Ilog Solver.

3.3.1.1 Generic Labeling Strategies

In order to compare the effect of different generic search strategies, we have chosen
to consider executions containing K = 12 firing dates. All variables of oy, Ap_1,
Smy» Sr, are added into one vector AllV instead of label each kind of vectors one
by one. Thus the generic labeling strategies can affect them with no tendency.

As the generic labeling strategies are mainly based on choosing different do-
mains, the domains of labeled variables are given in equations (3.30, 3.32, 3.33
and 3.34).

‘ Search Strategy ‘ Time ‘ Fails ‘ Vars ‘ Cons ‘ Mksp ‘ FirstS
1 FirstUnbound 0.51 s 10595 621 1058 34 o1
2 MinSize 0.49 s 10085 621 | 1058 34 1
3 MinMax 0.47 s 9356 621 | 1058 34 é1
4 MinMin 0.42 s 8800 621 | 1058 34 1
5 MaxSize 15586.7 s | 586386643 | 621 | 1061 35 3
6 MaxMin 6048.55 s | 218786627 | 621 | 1058 29 b4
7 MaxMax 1201.69 s | 62351483 | 621 | 1063 34 s
8 | MinRegretMin 0.53 s 10595 621 | 1058 34 1

3 = 031, 031, 021, 021022, 022093, 023024, 024, 011032, 011012032, 012013033, 013033
4 = 011021, 031, 022, 021, 023032, 022, 023024, 024031, 011012032, 012013033, 013033
¢5 = 011, 031, 021, 021022, 022093, 023024, 024, 031032, 011012032, 012013033, 013033

Table 3.3: Generic Labeling Strategies
The results given in table (3.3) can be mostly explained by the labeling order

between variables (A,, ) and (o), since (4A,, ,) and (oy) will give the most in-

fluence with these results as shown in table (3.2). Indeed: if the chosen labeling

80



strategy leads to enumerate values for variables (A,, ) first, since the enumer-
ation is made in ascending order, the exploration process will start by using

small values for variables (4A,, ,), searching for solutions with increasing values
K—1

of vy = Y A,, starting from value K (since equation (3.13) forbids A,, x>1 = 0).
k=0

Such exploration implies that the first solution found has the smallest makespan

Umin. However, finding this solution requires a long time since many situations
must be explored first with vy < U, Since choosing values for variables (A,, )
does not constrain much variables oy, large subtrees need to be explored before
the constraint programming solver can conclude choices for (A,, ;) were bad,

leading to many fails.

The situation described above occurs when using "MaxSize", "MaxMin" and
"MaxMaz" strategies. Indeed: domains of variables (oy) are restricted to {0, 1},
while domains for variables (A,, ,) belong generally to [1, Dpe.]. We have no-
ticed that after a few propagation of contraints, domains of variables (A,, ;)
keep being wider and with greater bounds than domains of variables (o), lead-
ing to explore the search tree by enumerating variables (4,, ,) firstly using the

considered labelling strategies.

On the contrary, other labelling strategies imply a better mix between vari-
ables (A,,_,) and (0y), leading to obtain the same solution with different explo-

rations. Times and number of fails obtained may vary by a factor of 10.

In order to get a better understanding of these explorations, we propose to
evaluate dedicated labeling strategies based on a fine ordering of decision variables
(O, A1+ Smys Sy, ). Some preliminary observations have already been made in
section (3.3.1) to point out the relations of these variables one with each other

and the effects an affectation of one variable can have on several others.

In the following sections, we verify experimentally these considerations using
several labeling orders, "globally” for the whole set of variables of one class, or
"one step at a time”. For example, labeling ¢ + A globally means considering
the labelling order: o109...0cAy Ay, ... Ay, _,. Labeling o + A "step-by-step”
means considering the order o1A, 094, ...0xA,, _,. To distinguish with them,
asterisk is added as (o + A)* to represent labeling o + A globally.

81



3. ANALYSIS OF TIMED PETRI NETS USING CONSTRAINT
PROGRAMMING

3.3.1.2 Dedicated Labeling Strategies - Global Labeling

A study of possible global dedicated strategies is given in table (3.4). Observations
given in previous sections are still valid: when variables (Ag_;) are enumerated
first, inconsistencies appear lately while traversing the search tree, since many
choices can be made before a constraint is broken.

Interesting facts appear when enumerating variables (s,,, ) or (s,, ) first. One
should note that both classes of variables share many constraints with variables
(o) and (A,, ,). However, the implications of affecting variables (s, ) or (sm,)
are not the same, as can be seen in equations (2.9) and (2.10).

First, variables (s,, ) have such strong links with other variables that labeling
two successive vectors (s, ) and (s,,,,) implies values for A, , o441 and therefore
(Smp.1)- Labeling first all (s,,) reduce quickly the domain of other variables
towards the value they should finally have, which make strategies starting by
labeling (s,,) the most effective ones within global labeling.

To the contrary, labelling variables (s,,, ) does not have a big impact on reduc-
ing the domain of other variables, since knowing intermediate markings does not
imply knowing the time when they are reached nor the exact firing sequence used.
Thus, after having labeled the set of intermediate markings (s, ), the constraint
solver must search for values of variables (A,, ), (o) to finally find no solution

exists, which implies a deeper tree traversal and prohibitive delays.

‘ Search Strategy ‘ Time ‘ Fails ‘ Vars ‘ Cons ‘ Mksp ‘ FirstS

1 (o0 + A)* 0.56 s 22805 621 | 1058 34 1
2 (0 + sm + A)* 0.99 s 21836 621 | 1058 34 o
3 (0 + s +A)* 0.67 s 21836 621 | 1058 34 1
4 (A+o)* 476.54 s | 14838186 | 621 | 1066 28 b6
5 (A + sm)* 488.81 s | 14838660 | 621 | 1066 28 6
6 | (sm+o+A)* no solution found after 6000s

7 (Sm + A)* no solution found after 6000s

8 (sp + A)* 0.42 s 9907 621 | 1508 34 b1
9 (s + o+ A)* 0.42 s 9907 621 | 1508 34 b1
10 | (sp 4+ sm +A)* 0.42s 9907 621 | 1508 34 ¢1

®6 = 031, 021, 032, 031, 022, 021023032, 011022, 023024, 011012024, 012013033, 013033

Table 3.4: Dedicated Global Labeling Strategies

82



3.3.1.3 Dedicated Labeling Strategies - Step by Step Labeling

Results corresponding to labeling strategies following the order of firing sequences
are given in table (3.5). They lead generally to the best results, since inconsis-
tencies are detected sooner and the considered TPN does not contain deadlocks.
Thus, any fireable step labeled allows the system to get closer to the final mark-
ing and can be used to produce the final solution without needs for backtracking.
This is particularly true when considering strategies starting by labeling (s, ),

which find a solution using very few backtracks.

‘ Search Strategy ‘ Time ‘ Fails ‘ Vars ‘ Cons ‘ Mksp ‘ FirstS
1 o+ A 0.51 s | 10595 | 621 | 1058 34 b1
2 0+ Sm+ A 0.53 s | 10572 | 621 | 1058 34 b1
3 o+ s +A 0.55 s | 11066 | 621 | 1058 34 b1
4 A+o 2.54 s | 67532 | 621 | 1067 30 b7
5 A+ s, 0.09s | 1762 | 621 | 1067 30 o8
6 Sm + A 0.03 s 6 621 | 1064 32 o
7 Sm + S 0.06 s 10 621 | 1064 30 o
8 s+ A 0.39s | 9758 | 621 | 1508 34 1
9 Sy +o+ A 0.39 s | 9820 | 621 | 1508 34 b1
10 Sr + 8m + A 0.42s | 9771 | 621 | 1508 34 b1

@7 = 031, 021, 032, 031, 032, 011021022, 022023, 023024, 011012024, 012013033, 013033
@8 = 011021, 011, 012022, 031 012013023, 013021031, 022, 023024, 032, 032033, 024033
9 = 011021, 011012022, 012013023, 013021031, 031, 022, 023024, 024, 032, 032033, 033

Table 3.5: Dedicated Step-by-Step Labeling Strategies

3.3.2 Values Ordering

After choosing a variable as a open node in the search tree, values of this variable
are enumerated one by one. In general, enumerating values will be executed from
low to high. But in our model, we would like to enumerate from high to low, since
this strategy will be more efficient and take more physical sense. For example,
ok; € 10,1], if o3; = 1, it means this transition ¢; will be fired at date vy, otherwise
or; = 0 will waste much time on useless empty firing. For example the solution
¢1, 031 18 first fired, and timed steps firings will be compressed at the last part of
steps.

83



3. ANALYSIS OF TIMED PETRI NETS USING CONSTRAINT
PROGRAMMING

In the physical sense, a firing sequence is the aim to be got. and we would
like to enumerate values of o, and s,,, from high to low. In fact, if a solution
is found at a lower A;_1, a new solution can be found by adding time elapse to
Ap_q.

To illustrate the efficiency of using the "high to low" value ordering, we
choose several representative benchmarks in the previous section as shown in
table (3.6). All variables are using "step-by-step" labeling strategies except the
labeling strategies with asterisk, which are using global labeling strategies. For
all experiments K = 12, except for several pointed out strategies.

In table (3.6), if o is labeled first, a solution can be found easily, since there is
no loops or deadlocks in the structure of TPN, Solver will find one solution with
no more than 1 fails. But if A is labeled first, finding one solution can also meet
many fails. Especially if label o from high to low, Solver will meet more fails,
since op; = 1 will lead Solver to the deep deadend, however o;; = 0 will meet
deadend earlier and backtrack to a solution.

To conclude, a good strategy will be dedicated step-by-step labeling strategy
with labeling o, from high to low, labeling s,,, from high to low and s,, from low
to high, and labeling A;_; from low to high to generate the firing dates of oy.
In fact, o + Ar_1 with dedicated step-by-step labeling strategies can generate
all information in firing sequences. Here labeling s,,, and s,, is to verify the
intermediate state in order to find fails earlier and backtrack.

Note that in [DYKGO04|, author also finds the first firing sequence by finding
all possible untime firing sequences, then restricting these untime firing sequences

with time propagation. This method is similar to results line 9 in table (3.6).

3.3.3 Backtracking

In practice, the main backtracking search algorithms are derived from [IBM10]

as follow.

e Depth-First Search (DFS) DFS is the standard search procedure. Depth-
First Search explores the search tree in a "left-to-right" fashion. It searches
by selecting the left leaf at each open node until the end of the search space
is reached. If it does not find a solution, it backtracks and tries again.

84



‘ Search Strategy ‘ Time Fails ‘ Vars ‘ Cons ‘ Mksp ‘ FirstS

1 |[c+AK=9 133.1 s 7505863 477 | no solution exists

2 lo+AK=10 0.06 s 0 516 875 30 b12

3 | 0+ A-(Impros A) 0.05 s 1 621 | 1042 34 b10

4 | $m + A-(Impros A) 5.23 s 146006 621 | 1046 34 b1

5 | 0 + A-(Impros o) 0.05 s 0 610 | 1061 | 1051 | ¢,

6 |o+A 0.05 s 1 621 | 1062 32 $10

7 | sm+A 0.45 s 10621 621 | 1058 34 o1

8 | A+o 0.09 s 1762 621 | 1067 30 b8

9 | o+ A* 0.02 s 1 621 | 1062 32 $10

10 | A+o* 1173.17 s | 42860426 | 621 | 1068 28 $13

@10 = 011021, 011012022, 012013023, 013021031, 022031, 023024, 024, 032, 032, 033, 033
@11 = 011021, 011012022, 012013023, 013021031, 022031, 023024, 024, 032, 032033, 033
@12 = 011021, 011012022, 012013023, 013021031, 022031, 023024, 032, 032033, 024033
¢13 = 031, 021, 032, 011, 021022031, 023032, 011012022, 023024, 012024033, 013033, 013

Table 3.6: Comparing Generic Labeling Strategies

e Best First Search (BFS) The Solver implementation uses a parameter &.

When selecting an open node, Solver determines the set of open nodes the
cost of which is at most (1 + ) worse than the best open node. If the child

of the current node is in the set, Solver goes to this child.

e Slice-Based Search (SBS) The discrepancy of a search node is defined as the

number of right moves in the search tree (as shown in figure (3.1). Given a
parameter step, slice-based search will first explore nodes with a discrepancy
less than step. After this exploration is complete, it will explore nodes with
a discrepancy between step and 2*step, and so on. This search strategy

cuts the search tree into slices.

e Depth-Bounded Discrepancy Search (DDS) DDS makes the assumption

that mistakes are made more likely near the top of the search tree than
further down. For this reason, this procedure does not count the number of
discrepancies but the depth of the last one. Given a parameter step, DDS
will first explore nodes with a depth less than step. After this exploration
is complete, it will explore nodes with a depth between step and 2*step,

and so on.

85



3. ANALYSIS OF TIMED PETRI NETS USING CONSTRAINT
PROGRAMMING

To show how these backtrack strategies work, results are given in table (3.7)
with K = 12. All variables are labeled with value ordering from low to high to
make more fails happen in order to see the effect of backtracking strategies.

In lines 1 and 2, the fails and choice points are nearly the same, because Solver
will always propagate all nodes that met with DFS, then backtrack. However
SBS and DDS will backtrack based on the depth of discrepancy or nodes depth.
These strategies will not branch all open nodes, which lead Solver meet more
choice points than fails. In lines 3 and 4, Solver will first branch open nodes with
lowest right move (one right move is seen as a discrepancy). This strategy will
be more proper for right values situated in the last part of one variable. In line 5
and 6, Solver will branch open nodes less than n*Step depth. This strategy can
avoid Solver going to deep deadends with no solution. But both SBS and DDS

are not too proper to cooperate with dedicate labeling strategies in our model.

‘ Search Strategy ‘ Time ‘ Fails ‘ Choice Points ‘ Vars ‘ Mksp ‘ FirstS
1] (oc+A)DFS 0.51s | 10595 10611 621 | 34 | o
2 | (o +A)* DFS 0.56 s | 22805 22821 621 34 b1
3| (0c+ A) SBS step = 4 7.92s | 62172 368699 621 34 b14
4| (c+A)" SBSstep — 4 | 6.38s | 65335 413006 621 34 b14
5| (c+A)DDSstep =4 | 0.89s | 4687 40329 621 32 b15
6| (c+A)* DDS step =4 | 0.87s | 6145 53860 621 36 b16

@14 = 011021, 021022031, 032 , 033, 031 , 032, 022023, 023024, 011012024, 012013, 013033
@15 = 011021, 011012022, 012013023, 031 , 032, 033, 024, 013021, 022031, 023032, 024033
@16 = 011031, 011012, 012013031, 032, 033, 013031, 032, 021022, 022023, 023024, 024033

Table 3.7: Backtracking Strategies

Finally, we have developed several search strategies in our model. The most
important one will be labeling variables using step-by-step manner, which is more
closer to the physical sense of TPNs. Meanwhile, labeling variables (o} and s,
with value ordering from high to low and A, and s,, with value ordering from

low to high) will improve much the efficiency.

3.4 Linearization of Firing Sets Expressions

Since variables in conditional constraints will be only labeled after other variables

are instantiated, we want to introduce a linearization technique to model the non-

86



linear equations (2.17 ,2.18). We follow the method of [BHO6] to use the following
conventions. If 7 is a vector from Z*, they denote by:

e 7't e NF the vector of its positive components, such that @+ (i) = @ (i) if
Z (i) > 0 and 0 otherwise;

e 7'* € B the vector representing its sign, such that: Ve € [1, k], 75(0) =0
if Z(c) <0 and Z*(c) = 1 otherwise.

With linearization, the firing sets can be expressed by positive and sign con-

ventions as follow:

Ty = NG eT (sn,) = (s, —2u) =1} (339

+
T, = {j € [1,N],t; € T, (srkj — Avk> > 0} (3.36)

Therefore, residual duration vector equation (2.10) and marking vector equa-
tion (2.9) are expressed as:

Sty = (srk A, - d) +) d(t) - op(t) - & (3.37)
teT

— _ _> s

Sy = S —C -ap +CT- <§,§S— (sk Ay, T )) (3.38)

Obviously, same equations remain valid if no transition is fired at the date
Vg1 (i-e. o1 = 0), and allow to evaluate the instantaneous state at this date.

The physical sense of the equations is explained below:

e The quantity S d(t) - ope1(t) - & represents the new residual durations
teT
coming from the execution of the step o;,1 at the date v + A, ;

—\ +
e The quantity (s—r,: AV Id> represents the update of the residual durations
vector at the date v, from its value s_r,: at the date vy. The "+ " operator

allows to take into account only positive values;

87



3. ANALYSIS OF TIMED PETRI NETS USING CONSTRAINT
PROGRAMMING

e The quantity C'~ -0x1 represents the number of tokens removed from places
upstream to the transitions of the step ox41, the execution of which starts

at the date vgy1 ;

e Finally, the quantity C'* - (s—,,k)s — (s_rk> - A, - T;)s represents the Parikh
vector of the transitions, the firing of which ends at the date vgq. This
expression is made from the comparison between the Parikh vector of the
transitions that were pending at the date vy (vector S_T,:S), and the Parikh

vector of the transitions that will be active at the date vgyq (vector <87k —

Ay T0)).

Now, the problem is to express these operators positive "+" and sign "s".

3.4.1 Formulation of "+"” and "s” Operators

The operators "+" and "s" introduced in the previous section acts on wvectors
objects. However, they acts uniformly on each component of the input vector,
and can be defined in a natural way using the corresponding scalar operators.
[BHOG6] propose to address the calculation of values X*® and X associated to an
integer X € Z, such that:

X>0=X°=1land XT =X (3.39)
X <0=X*=0and Xt =0 (3.40)

Proposition 3.6 (Linearization for operators "+" and "s"). Let X be one
variable. Let o be the sign expression X®. Let B be the positive exprssion XT.
Let X € Z and B € NT be "sufficiently large". Let o € {0,1} and g € N.

There exists 5 equations to compute o« and [3:

( Bra—-X < B-1 X>0 & =1
X—B-a < 0 “ =
AB =X
< X—-p <0 s.t.
X<0 & a = 0
b—B-a < 0 A= 0
| B+B-a—X < B a

88



Using additional variables and constraints, it is thus possible to propose a
general linear mathematical model to solve the Timed PNs reachability problem.

The full model denoted as IP(K) is given in figure (3.4). Equations (3.41)
to (3.44) correspond to conditions over initial and final states. Equations (3.45)
to (3.51) express the constraints over discrimination variables used to compute
the "+" and "s" operators. Variables (ax), (ax) and (Bx) denote respectively
the values of 5,/ °, (S—T;> - A, - ]_gi)s and (s_,nk> — A, - ]_gl)Jr from equations (3.37)
and (3.38). Equations (3.53) and (3.54) correspond to intermediate state com-
putation equations (3.37) and (3.38). Equation (3.52) is used to forbid reentrant
steps: if transition j is already active at date vy, (ie. ag—1); = 1), it cannot be fired
again at the same date (ie. oy; cannot be equal to 1). Finally, equations (3.55)

to (3.64) define improvements and the domain of variables.

3.4.2 Comparison between CP Model and IP Model

We have used two Timed PNs reachability problems to verify the efficiency and
the robustness of the CP model with comparison to the IP model, as our paper
[HBYT12b]. We choose to use the search strategy — labeling oy and s,,, with
value ordering from high to low and Ay and s,, with value ordering from low to
high using step-by-step strategy.

The first TPN corresponds to the scheduling problem given in Figure (3.2).
When searching for all solutions, s_mg =1[1,0,0,0,1,0,0,0,0,1,0,0,0,1,1, 1] is set
as initial marking and s_m? =1[0,0,0,1,0,0,0,0,1,0,0,0,1,1,1,1] is set as final
marking to simplify the segrch.

The second one is given in Figure (3.5). It represents philosophers around a
table, who spend time eating spaghetti and thinking. To eat, each one needs two
forks, but there is only one available for two people. Each philosopher is provided
with a control place, allowing us to quantify how many times it has been active.
The presence of this unbounded place makes the corresponding reachability graph
unbounded.

The corresponding reachability problem is to find firing sequences allowing
to make each philosopher eat a given number of times (2). Such problem is
characterized by the existence of deadlocks, i.e. states from where no transition
is fireable. Such situation can be obtained if each philosopher decide to take the

89



3. ANALYSIS OF TIMED PETRI NETS USING CONSTRAINT
PROGRAMMING

Let (R, d) be a TPN with its initial state so given at date vg. Let sy be a target state.
The constraint programming model I P(K) is defined by

Vk € [0,K — 1], Vi € [1,M],Vj € [1,N]

Sin:mo(i) (3.41)
smKi:mf(i) (3.42)
$r0j="0(J) (3.43)
Sk =71 (7) (3.44)

update residual duration vector

B -apj — s <B—1 ( )

Srkj — B - ag; <0 (3.46)

B -apj — spp; + Ap<B — 1 (3.47)

Srkj — Ak — B . Oékj<0 ( )

Spkj — Ak — Br; <O (3.49)

Brj — B - ;<0 (3.50)

Brj + B - oy — sppj + Ap<B (3.51)
O(k+1)j + <1 (3.52)

Sr(k+1)j — Brj=d; - ok; ( )

m(k+1)i — Smki— Z C akc - akc Z C k+1 (354)
N—1

> 0(er1);70 (3.55)
j=0

Ay, <jgﬁ>§ﬂ Srkj (3.56)

Sr(k+1)5<d(7) (3.57)

o €{0,1} (3.58)

ar;€{0,1} (3.59)

o €40,1} (3.60)

Bri €10, Dinaz] (3.61)

Srkj €10, Dinac] (3.62)

SmikE[[O, Mmax]] (363)

Ay, €]0, Dpaz] U Ayy € [0, Dinaz] (3.64)

Figure 3.4: Integer Programming Model

90



Figure 3.5: Dining Philosophers Problem

fork on his left, for example. The presence of deadlocks make the problem harder
to solve.

As can be seen in tables (3.8) and (3.9), our conditional model behaves better
than the IP one for the first example, particularly when the search space is larger.
CP model is more efficient than IP model although they are meeting the same
number of fails when searching with the same number of firing dates. Note that in
table (3.9), for comparing the efficiency of CP model and IP model, the strategy
is to label oy, Sy, Ak and s,, with value ordering from low to high using step-
by-step strategy.

In table (3.10), the philosophers problem shows that although it meets far
more fails during search CP model still search for solutions a little bit faster than
IP model.

The use of conditional constraints allows us to reduce the number of variables
and constraints of the model. One should note that the first solution given by
each model using the default labeling strategy is the same: linearization variables
were not chosen to be labeled in the search tree, they have been instantiated
thanks to the enumeration of other variables.

With linearization, Solver will meet more variables in the search tree, but
can control variables corresponding to (s,,) more conveniently. But as shown
in section (3.3), variables (s,,) do not make much efficiency in searching for a
solution. Therefore, CP model is more efficient than IP model in benchmarks of

91



3. ANALYSIS OF TIMED PETRI NETS USING CONSTRAINT
PROGRAMMING

CP model
K | Time Fails | Choice points | Vars | Nb of solutions
6 0s 36 68 333 33
7| 013s 567 2045 381 1479
8 | 1.01s 3884 27163 429 23280
9 | 6.61s | 17525 182612 477 165088
10 | 22.51 s | 72673 610960 525 538288
11 | 33.65 s | 238690 895213 573 656524
12 | 15.60 s | 447419 447418 621 0
IP model
6 0s 36 68 503 33
71 014s 567 2045 581 1479
8§ | 1.31s 3884 27163 659 23280
9 | 864s | 17525 182612 737 165088
10 | 29.44 s | 72673 610960 815 538288
11 | 44.15 s | 238690 895213 893 656524
12 | 21.25 s | 447419 447418 971 0

Table 3.8: Scheduling Problem - Finding All Solutions

this section.

3.5 Conclusion

In this chapter, we have successfully translated our incremental model of TPNs
into constraint programming model. In this process, the most important tech-
nique is to use conditional constraint to represent non-linear equations of firing
sets. To search for one solution or all solutions more efficiently, we introduce the
overall search strategies in CP under a example-driven tour. Then we point out
the most efficient search strategy — labeling o}, and s,,, from high to low, labeling
Ag_1 and s,,, from low to high using a dedicated step-by-step labeling strategy.

In the first section, we briefly introduce the terminology of CP. In conclusion,
there are two main parts for modeling a CP model: Modeling and Solving. In the
Modeling part, we describe a CSP and model it with variables and constraint to
express relations between variables. In the Solving part, a search tree is generated
at the same time of searching for solutions. Solver will branch the nodes of
search tree by selecting variables with variable ordering and generate the leaves

of search tree by choosing values of present variable (node) using value ordering.

92



CP model

K Time Fails | variables | constraints | makespan
9 | 27.160 s | 545210 477 no solution
10 | 8.486s | 171494 525 885 30
11 | 1.950 s 39341 973 974 30
12 | 0.577s | 10817 621 1057 34
13| 0.172 s 1944 669 1147 34
14 | 0.125s 1076 717 1235 38
15 | 0.047 s 77 765 1317 40
16 | 0.078 s 31 813 1408 41
17 | 0.031s 26 861 1500 41
IP model
9 | 33.821 s | 532375 737 no solution
10 | 10.483 s | 167508 815 1179 30
11 | 2.465s | 38646 893 1297 30
12 | 0.686 s 10650 971 1415 34
13| 0.156 s 1919 1049 1533 34
14 | 0.094 s 1062 1127 1651 38
15 | 0.109 s 78 1205 1769 40
16 | 0.031s 28 1283 1887 41
17 | 0.062 s 20 1361 2005 41
Table 3.9: Scheduling Problem - Finding First Feasible Solution
CP model
K Time Fails | variables | constraints | Nb of solutions
13 | 1.856s | 22084 907 0 0
14 | 6.224s | 76286 972 0 2880
15 | 19.797 s | 222456 1037 0 47328
16 | 55.458 s | 435438 1102 0 291552
IP model
13| 1.716 s | 17054 1477 0 0
14 | 6.006 s | 56522 1587 0 2880
15 | 20.374 s | 165514 1697 0 47328
16 | 61.808 s | 356742 1807 0 291552

Table 3.10: Dining Philosophers Problem - Finding All Solutions

Each time, one variable is instantiated, Solver propagates constraints to reduce

the search tree until a solution is found. If no solution (or a deadend) is found,

Solver will backtrack to other open node using backtrack search algorithm. The

most popular algorithms will be using Depth-First Search backtracking search

93



3. ANALYSIS OF TIMED PETRI NETS USING CONSTRAINT
PROGRAMMING

algorithm and keep arc consistency (constraint propagation) during search.

In the second section, the incremental model is translated into CP model fol-
lowing the process introduced in the first section. The conditional constraint is
used to express the non-linear equations of firing sets, which is very strong tech-
nique to model non-linear equations in a natural way using the lowest number of
variables. This advantage can reduce the search space and improve the efficiency.
Then we give the basic benchmarks of CP model using a scheduling problem
example to present the efficiency of our model.

In the third section, we give benchmarks on different search strategies. With
the structure information, labeling variables o} and s,,, using value ordering
from high to low, and labeling variables A;_; and s,, using a step-by-step search
strategy is developed to search for solution, which are proved to be the most
efficient. To use search strategies under a controlled way, DFS is chosen as the
backtrack search algorithm.

Finally, a linearization technique is applied to control variables corresponding
to s,, in CP model. After comparing the CP model and IP model, CP model
seems more efficiency than IP model. Although linearization technique brings up
more variables and controlled variables s,, in a search strategy, it cannot bring
much improvements as shown in section (3.3).

To conclude, we have developed an incremental model and efficient search
strategies in CP. In the next chapter, we will apply the incremental model and

CP techniques to manufacturing systems.

94



Chapter 4

Application of the Incremental
Approach for the Reconfiguration of

Manufacturing Systems

The objective of this chapter is to show how an incremental approach can be
applied to the reconfiguration of manufacturing systems and show its efficiency.
Many manufacturing systems are time critical systems in the real world. In this
thesis we are interested in finding reconfiguring actions, which can be expressed

as a timed firing sequence.

In the first section, the main issues of manufacturing systems are first in-
troduced using a reconfigurable transport system. The reconfiguration process
consists in two stages: decision-making and operational process. The decision-
making part consists in determining for a plant, a new objective state to reach.
The operational process consists to determine the procedure to apply to reach this
objective state from the current faulty state.

Then, the methodology for modeling systems is introduced based on TPNs.
The TPNs model is main constituted of Pregraph and Extended Operating Se-
quence. They describe respectively the routing alternatives and the whole com-
binations of machining operations to produce a finished part. In addition, addi-
tional models are introduced to perform the reconfiguration of the plant.

Tokens for producing different productions can be confused in the Pregraph.

Therefore in the subsection (4.1.3), token confusion issues are described using

95



4. APPLICATION OF THE INCREMENTAL APPROACH FOR
THE RECONFIGURATION OF MANUFACTURING SYSTEMS

a simple example. Then token identification techniques for ordinary PN are
introduced following [HBT07|. We define an extended new wector of identifiers,
where a non negative integer is associated to every place containing token, to
denote the identity of the token in the place. The non negative integer number
in one place is called token ID. This token identification technique can be well
used for safe PN.

In the second section, we adapt this token identification technique to TPNs
with safe behavior. Since tokens are missing during one transition firing, a new
vector 5py is defined to record the corresponding missing token identifiers. Trans-
porting token identifiers is more complex using TPNs than ordinary PN, since
token identifiers are moved from places to transitions at the beginning of one
transition firing and from transitions to places at the end of this firing. This
method is limited to TPNs with safe behavior, since two token identifiers may be
confused in the same place.

Thus, in the third section, we develop the token identification technique for
bounded TPNs. As explained previously, token identification technique is limited
to safe nets. Meanwhile the process of partitioning and updating token identifiers
in TPNs are complex. Thus, we propose to develop one token identifier vector for
cach kind of token (tokens with the same ID number), 574 and 5zg being the
corresponding vectors. This improvements help implement token identification
technique in bounded TPNs. Each token identifiers vector ﬁ can be seen as a
marking in the TPNs with D as the incidence matrix. Different token identifiers
vector only interact with each other based on transitions in the original TPNs
with traditional incidence matrix. This method can reduce the complexity with
partitioning and updating token identifiers between places and transitions, since
each token identifiers vector seems to be updated independently in its own net.
Thus, we define this partial independence nets as token identifier layer in TPNs.

Since each token identifier layer in TPNs seems to be independent in its own
net, Token identification technique for bounded TPNs can easily express the be-
havior of TPNs with different kinds of tokens. Although the search space seems
to be enlarged for the token identifier layer in TPNs, token identifiers must follow
the marking of original TPNs. Therefore the efficiency of searching for a solution

is nearly the same as the original TPNs.

Then, we compare those token identification techniques using the same exam-

96



ple to show the efficiency of our methods. But when studying the reconfigurable
transport system, we found out that solutions are hardly found due to loops in
Pregraph, since they lead the solver to go deeply in the search tree.

Therefore in the fourth section, we propose two kinds of methods to avoid
the influence of loops based on token identifier nets in TPNs. First, conditional
constraints based on the structure of Pregraph are introduced to avoid loops of
robots. Even if this method can well lead solver to get solutions, this method is
very specific to this model. Second, we develop one new vector — firing priority
ﬁ — for transitions in Pregraph. The element of ﬁ shows the priority (high
number with high priority) of one transition and will be set as 0 after firing.
Therefore tokens cannot fire the same transition again, which can help avoiding
loops. Since F‘P% is defined based on each token identifier, tokens with different
ID will not be forbidden for the same transition. If tokens need to go into some
loops, ﬁ can be reset according to these needs.

4.1 Reconfiguration of Manufacturing Systems

In this section, the practical manufacturing system — reconfigurable transport

system — is introduced to validate all our approaches in this thesis.

4.1.1 Illustrative Example

The concept of reconfiguration process has been introduced first in [Ber98| as a
solution to react to fault. We introduce a small plant instance that will be used
to illustrate our methodology.

The reconfiguration process is a control function that aims to reorganize the
structure (from the point of view of plant resources) in order to verify the user
requirements with regards to production, and to minimize the number of re-
sources in production. In this context, two reconfiguration situations can be
distinguished [PBTZ05].

o When starting a new production. In this situation some resources that
were used in the previous production horizon are no more required for the
new production. These resources must be stopped. On the contrary, other

resources must be started to enable the new production.

97



4. APPLICATION OF THE INCREMENTAL APPROACH FOR
THE RECONFIGURATION OF MANUFACTURING SYSTEMS

o When a resource breaks down. In this case one must react quickly to
continue the production without using the broken resource. The general
method consists in replacing the set of resources associated only to the bro-
ken resource. |[Ber98| proposes to distinguish three sub-cases starting from
a minor reconfiguration (use of previously activated resources) till a major

reconfiguration (use of resources that were previously inactive).

To illustrate our approach, we consider the example of figure (4.1). This
workshop is made of four machines-tools: two turning machines (T} and Tj)
and two machining machines (M and My). The machining operations of each
machine are given above its representation. Parts are loaded (or unloaded) on
these machines by four robots. The arrows in this figure represent the reachability

capacity of each robot.

Ti & Turning machine number i INPUT

Mi & Machining machine number i

Ri < Robot number i ouTPuT
Pi < Intermediary stocking area number i SCRAP
Fi & Waiting queue number i -HEAP

Ai < Conveyor switch number i

Figure 4.1: An Example of FMS with a Reconfigurable Transport System |Ber9§|

This workshop offers both structural redundancy with the two turning ma-
chines (T} and T3), and functional redundancies with operations (e.g. fa) that
can be executed by several machines. (e.g. My or My).

A belt conveyor enables a flexible routing of the parts between the machines.
The parts are transported on this conveyor on pallets. The conveyor is made of

loading /unloading areas denoted by P; that have each a capacity of one pallet.

98



Before or after these areas, FIFO waiting queues are available, denoted by Fj.
Each of them have a capacity of several pallets. They allow stocking temporary
pallets when a loading/unloading area is not free. Pallets are routed in different
directions by the use of conveyor switches denoted by A;. For this study and for
simplicity, we assume that the switches are the only components of the conveyor
that can be broke down. The other components that can fail are machines-tools

and robots.

4.1.2 Reconfiguration Methodology based on Timed Petri
Nets

The assigned objective is to reuse the models that have been developed for the
control, in order to determine the actions needed to perform the reconfiguration
of the plant:

e The Pregraph which is an aggregated model that describes the routing al-

ternatives;

e The Fxtended Operating Sequence which describes the whole combinations

of machining operations allowing to produce a finished part.

These two models are based on TPN formalism. To associate time durations
for transitions, machines take 25 time units to complete the operations, robots
take 9 time units, conveyor switches takes 5 time units and Fj, P; take 3 time
units. Others are taking 1 time unit. We explain the main elements of the

considered model below.

4.1.2.1 Transport System

The Pregraph (figure (4.2)) is a TPN model that represents the feasible transfers
between the different locations of the transport system. In figure (4.2), each grey
place represents a physical area such as a buffer or a machine. The transitions
between these places model the possibilities of transfer between physical areas in
direct reachability. Critical resources like robots are represented by one token in

the corresponding place marking.

99



4. APPLICATION OF THE INCREMENTAL APPROACH FOR
THE RECONFIGURATION OF MANUFACTURING SYSTEMS

O O Rs
RO R3
() ©
I P2 A3d I Preg:M4
Q@ ® A3b ?
Preg:M2 I P3 I
= A1b A2b A3d ] ®
O R3
A4b
R2
F2 Q) A
@ — 1
A2d
Preg:T1 I . F4
O @, I A1b
P1
| E3
R4
S— —
O ®) O R4
R1
R O O I O

PreGraph Preg:IN Preg:OUT

Figure 4.2: The Pregraph of figure (4.1)

4.1.2.2 Extended Operating Sequences

An Extended Operating Sequence (EOS) describes the different ways to obtain
a finished product from raw parts using the available machines of a plant. An
EOS is formally modeled as a TPN where places model the location of a part
with regards to characteristic areas™, and transitions model operations on this
part. Operations can be machining operations or transport operations between
two characteristic areas.

Two EOS OS) (t1, fo) and OSy (fs,t2) are presented in figure (4.3). For
example, producing products with O.S;. Since the plant works as a job shop and
ty can be held by 77 and T}, the corresponding two combinations are represented
by two branches in the TPNs model.

In an EOS, white color places are used to represent the status of a part in the

*A physical area is a characteristic area if it is a working area (machining or assembling
area) or if it is an area that enables the transfer of a part from the considered resource to
another one.

100



system. For example, the status t1— means that the operation 71 is planned,
but has not yet been done. The status t1+ means that this operation has been
performed. The status as T'1 — M4 means that the part is transported from
area T'1 to area M4.

Note that we have represented several times the same place to make the figure

more readable.

Preg:T1 OS1:out

Preg:IN

IN>T3
IN>T1

2- 2+ Preg:OUT
T3>0UT
t2-

2+ OS2:out :

Preg:T1

i i

) |

i : i
i O——O @ |
i 0S2:in I
i M"’m F T150UT i
i . M4>T3 O I O :
i - i
|

|

Extended Operating Sequence OS, : f; t,

Figure 4.3: Operating Sequences of figure (4.1)

4.1.2.3 Conveyor Switches

The representation of switches is presented in figure (4.4). Depending on its
position, a switch enables or not the firing of a transition of the model. The
switch model illustrates that two transfer transitions that use the same switch
in different positions cannot be fired at the same time. The model used for
conveyor switches allows also to model the failure of a switch. Indeed, one has
just to remove the resource token on the inner place, like for Ay, to model a

blocked switch in position Asggy.

101



4. APPLICATION OF THE INCREMENTAL APPROACH FOR
THE RECONFIGURATION OF MANUFACTURING SYSTEMS

d < direct |
b < bifurcated |

Figure 4.4: Conveyor Switches of figure (4.1)

4.1.2.4 Reconfiguration Actions

We propose to add for each resource R that must be handled by the reconfig-
uration process two places and two transitions as shown in figure (4.5). The
meaning of these elements is as follows. The left place R; ¢ means that resource
R; is stopped. The inner place is a resource that indicates whether the state
of R; can be changed or not. If the inner place is marked, the transitions "on”
and "off" can be used to switch the resource R; between working and suspending

mode.

Three situations can be modeled using such a technique, depending on the
marking of the inner place. On the given example, the robot R; is working, but
can be stopped if it is no more necessary. Then R; off. Finally, if there is no
token in the inner place of R;, it cannot be run anymore.

Since possible reconfiguration actions have been represented directly in the
reconfiguration model, a succesfull search for a firing sequence leading to a final
marking in which each operating sequence is finished will allow to deduce the
needed reconfiguration actions.

The model is finally refined in order to reduce the search space and allow
the identification of operating sequences that cannot be achieved considering the

remaining available resources.

102



1 M2_off R2_off

on on

| T3 off R3_off

© M4_off R4_off

Figure 4.5: Reconfiguration Actions of figure (4.1)

4.1.2.5 Full TPN Model

In figure (4.6), we give the full TPN model for representing the reconfiguration
example of figure (4.1).

One has to merge all places that have the same name to get the true TPNs
model. The same technique is used for all the remaining models below.

Together, Pregraph and Extended Operating Sequence models hold implicitly
the whole information regarding the reconfiguration process. These models are
refined to make explicitly appear the reconfiguration actions, in order to be able
to solve them using our CP approach. This refined model is called the "reconfig-
uration” model.

Therefore, two reconfiguration situations can be expressed as reachability

problem as bellow:

o When starting a new production. One token is added to each OS] :in as the
initial marking. For final marking, 2 tokens should be got in the Target place
and 1 token for each OS;:out place. In this case, this final marking is the
target marking state to be reached with regard to reachability problem. All

103



4. APPLICATION OF THE INCREMENTAL APPROACH FOR
THE RECONFIGURATION OF MANUFACTURING SYSTEMS

o

t

Preg:T1 —
@) O

i
—— I3
\\\\\\\\\\\\\\\\\\\\\\\ ! Preg:T3 - Preg:T3 Target
\\\\\\\\\\\\\\\\\\\\ I
! [’y 2+ Preg:0UT @)
Preg:IN
" [
t % trs
N tas

t.
PESAN | |

T3->0UT
t2- 2+
ﬁ\- tes F»O 0s2.ut
Preg:T1

T Preg:T1

@mxasnmn Operating Sequence OS, : f;t, |

Figure 4.6: PN Reconfiguration Model for the Example of figure (4.1)

solutions will present all the possibility of operating sequences to produce

products and corresponding reconfiguration actions.

e When a resource breaks down. The initial marking can be somewhere in

We assume that places OS;:in and

operating sequences in figure (4.6).

104



055:in are taking 1 token at the beginning. The final marking still has 2
tokens in the Target place and 1 token for each OS;:out place. All possible
firing sequences will be given regardless of whether one resource is active or

broken down.

Under these two situations, if all possible firing sequences are resolved with
our approaches, reconfiguration actions can be easily given. For example, if one
resource is broken down, the possible firing sequence will tell the corresponding

actions to finish the same product.

4.1.3 Token Identification

TPN is a good modeling framework to express the behavior of DES, such as trans-
port or manufacturing systems. They allow to represent easily the distribution
of tasks within a complex system, with the capacity to handle time constraints
on the duration of these tasks.

However, when dealing with real-world systems like manufacturing or trans-
port systems, where different parts can cross the system and reach the same
location, synchronization is needed between several layers of the system. Under
this situation, TPN models suffer from a lack of mechanisms to identify the com-
ponents that are handled. Thus, it is difficult to obtain firing sequences avoiding
confusion of tokens when activation or coordination patterns are used.

Such issues are well addressed with High Level PNs, like Colored PNs where
data structures are attached to tokens, allowing to represent a complex behavior
while keeping a compact PN model. However, such models introduce a modeling
material that makes it difficult to use direct incremental solving approaches like
mathematical or constraint programming, i.e. approaches that do not need to
unfold the net and build its whole reachability graph.

In this thesis, we propose to follow the methods proposed in [HBTO07| and
[BT09] to enhance the expressivity of our modeling methodology by associating
identifiers to tokens — expressed as positive integers — and defining new fireability
conditions allowing to synchronize tokens and identificators. Such approach can
avoid the confusion of parts in a plant, or trains in a railway network, and allow

to model much more possible coordination situations. A constraint programming

105



4. APPLICATION OF THE INCREMENTAL APPROACH FOR
THE RECONFIGURATION OF MANUFACTURING SYSTEMS

model is built to follow this new firing semantics, and benchmarks are given to

assess its efficiency.

4.1.3.1 Token Confusion Issues

The figure (4.6) is the considered TPN model of figure (4.1), two EOS can execute
their tasks at the same time, which may lead to load the Pregraph with two tokens
at the same moment, representing parts going through the transport system from
one machining location to another.

Since two tokens are transported in the same Pregraph, some spurious solu-
tions can be found if one cannot distinguish tokens coming from the Pregraph.
Indeed: since tokens in the grey places in figure (4.6) can go into both Operating
Sequences, this situation will mix up these two tokens and can lead the system
to get a false production.

For example, one token (for OSy) has finished the operation of M, and come
to p1. Another token (for OS) has just come to ps. The first token may go into
OS; and continue to produce its corresponding product. Then the second token
will continue to T, but it will produce the product O.S5. However the first token
will take operations of three machines and the second token will take only one
operation of 77. Such conditions will produce two defective products.

One way to fix this problem is to protect the use of Pregraph using semaphore
mechanisms, but this led to an increase of the number of steps needed to reach
the target marking, and thus the practical complexity of the resolution. Another
attempt was tried where each EOS was linked to its own Pregraph. Results show
that in the general case, the resolution takes more time with 2 Pregraphs than

with only one, since the PN is larger.

4.1.3.2 Token Identification for Ordinary Petri Nets

To enhance the expressivity of our modeling methodology and strengthen its abil-
ity to model real-world reconfiguration problems, we follow the methods proposed
in [HBTO07| to handle the confusion problem by associating identifiers to some

tokens in an PN model, and by modifying the token game accordingly.

Definition 4.1 (TPN State Extended with Token Identifiers). Let (R, d)
be a TPN. Its state can be extended as s, = ((S_WZ,Q,@), where k € [0, K,

106



z;d,i € NM s the vector of identifiers for distinguishing tokens. A non negative
integer is associated to some places of the PN, to denote the identity of the token

in this place after the k™ step firing.

This additional state vector is used to constrain the fireability conditions of
transitions, and extended reachability equations are defined to ensure that the

tokens and their identifiers move synchronically in the PN.

Note that we assume the considered PN is non weighted, ie. CT,C~ €
{0, 1}MxN,

In order to minimize the practical complexity of the global formulation, we
restrict the use of identifiers to the places of the net for which it brings effective
advantages. Thus, we define formally 2 sets of places (Py, IP;) — associated or not
with the vector of identifiers — and 3 sets of transitions (Ty, Ty, Ty) — according
to the structure of their relations with the surrounding places — and give the

corresponding behavioral equations. These sets define respectively a partition of
P and T.

A small example of such partitions is given in figure (4.7) and its corresponding
matrices are given in figure (4.8).

In [HBTO07], the token identification technique has the restriction of safe be-
havior, since if two tokens and theire corresponding token identifiers can be moved
to the same place, token identifiers will be mix up.

The reason for this restriction is that one element of token identifier vector
@ can just represent one token identifier. For example, if the firing sequence
to, 11, t3 is happened, token identifiers ID = 1 and ID = 2 will be moved to the
same place p;. Then Tdk(m) = 1+ 2 = 3. Then when t4 is fired, this token
identifier will be moved to place ps with one token. This situation will lead to

the confusion of token identifiers as presented in table (4.1).

Therefore, equation (4.1) is given to forbid this kind of firings in order to keep
PN safe. Therefore, we restrict the study to search for firing sequences of length
K that keep the PN in a safe state (at most one token in each place), i.e. that

respect the constraint:

Vk € [1,K],Yp € P, s, (p) < 1 (4.1)

107



4. APPLICATION OF THE INCREMENTAL APPROACH FOR
THE RECONFIGURATION OF MANUFACTURING SYSTEMS

counter \

pn
place

Figure 4.7: A PN with Token Identification.

Using such restriction, token identifiers can be handled by a structure as-
sociated to places. However, this limitation will reduce the expressivity of PN
and TPN model. Thus in section (4.3), we will propose a token identification
technique for bounded TPNs.

Py, Ty — Classical Places and Transitions

When dealing with resources places which denote only the binary availability of
a machine, robot, switch or section, we consider no identification extension and
continue to use classical PNs equations. The corresponding places and transitions
are colored in white in figure (4.7). This set of places is not constrained to contain
safe markings.

In the following, each set of transitions is suffixed by the number of upstream

places linked with this transitions for which it is necessary to handle a token

108



C t1, to ts ty ts te Tr  lg 1o
D1 1 -1 -1 - . . . . .
pe | —1 1 1

D3 A . . . . 1

D4 . 1 . . . . A
D5 . A . . . . 1
De . . 1 . . . . . |
D7 . 1 1 -1 - -1

Ds . . . 1 -1 -

Do . . . . . 1 =1 - .
Do | - . . . 1 . 1 =1 =1

Figure 4.8: Incidence Matrix for the PN of figure (4.7)

—
Firing Marking 514 % 11

initial | (1,0,1,0,1,0,0,0,0,0
t 1,0,1,1,0,1,0,0,0

(1 ) Onr
(0 )
t1 (1,0,0,1,1,0,1,0,0,0)
(0 )
(1 )

(0,0,1,0,2,0,0,0,0,0

(0,0,0,1,2,0,1,0,0,0) | (0,0,—1,1,0,0,1,0,0,0)
( — 7
(

)

)
0,0,0,1,2,0,1,0,0,0) | O

)

)

t 1,0.1,0,1,2,0,0,0
t4 707071707170a1a050

0,0,0,1,0,2,3,0,0,0
(0,0,0,1,0,2,0,3,0,0

(0,0,0,0,—2,2,2,0,0,0)
(0,0,0,0,0,0,-3,3,0,0)

Table 4.1: The Behavior of Firing Sequence ts, t1,t3 of figure (4.7)

identifier.

PP; — Extended Places

A place belongs to Py if it is associated to the vector of identifiers. The corre-
sponding places are colored in gray in figure (4.7).

The set P; is used to define a new data structure D € {—1,0,1}M*N corre-
sponding to the restriction of the incidence matrix to the extended places and the
transitions that do not belong to To. Formally, Vp; € P, Vt; € T, Dy = Cyj, Dy; =
Cijs D;; = C;;. if p, € Py and t; ¢ Ty, and 0 otherwise, as is shown in figure (4.9).

Therefore Vp; € P,Vt; € T, D;; = D Dy;.

Z]_

T, — Forwarding Transitions

A transition t; belong to this set if it is linked with exactly one Py upstream place,
ie. if {p; € Py sit. D;; = 1} = 1. In figure (4.7), we have colored in yellow the

109



4. APPLICATION OF THE INCREMENTAL APPROACH FOR
THE RECONFIGURATION OF MANUFACTURING SYSTEMS

D1 I -1 -1

D2 —1 1 1

D3 . —1 . . . . . 1

D4 . 1 . . . . . —1

D6 . . 1 . . . . . —1
D7 . 1 1 —1 . —1 . . .
s . . . 1 —1 .

Do . . . . . 1 -1 - .
Do . . . . 1 . 1 -1 -=1

P10 . . . . 1 . 1 =1 =1
utlj . 3 5 7 8 7 9 4 6
Ufj . . . . . . . 10 10

Figure 4.9: The Partition Data Structures for the PN of figure (4.7)

transitions ty4, ts, tg, t7 belonging to T; which correspond to operations of transfer
of identifiers from one place to another. Such transitions are associated with only
one downstream place belonging to Py: |{p; € Py s.t. D;; =1} =1

Transitions ¢y and t3 colored in green correspond to logical duplications of the
token identifier between two branches of the PN (e.g. firing to, identifier from pj3
goes to py and p7). Such transitions are associated with two downstream places
belonging to Py: [{p; € Py s.t. D = 1}| = 2.

The previous definition allows associating to each transition ¢ from T; the
unique index u; € [1,M] (also denoted by uj if t = t;) of the upstream place of ¢
belonging to P;. For example, u,}2 = 3 represents that ps3 is the only one upstream

place, which can contain token identifiers

110



This index is used to formulate the equations given below, that will be used
to express the update of s_>1d after the firing of step m :

Let t; € Ty. We define the vector (3{;1 € ZM such that:

O'(qul)‘:l = @T>:]d (ul)ﬁ
7 2 N (4.2)
Ok =0 = Oy =0

where 17] stands for the column vector of D corresponding to ¢;. Using the
definition of Ty and table (4.1), one can note that G—f:rl contains exactly one
negative value, and may contain several positive ones, all of them being equal
in absolute value — since the net is non weighted — to the identifier that was
associated to place Pu? before the step o1 was fired. For instance, firing t, at
step_k’> + 1 when p3 (since u,}Q = 3) contains a token carrying identifier <i> leads
to O}, = — <i> -yt <i> - (Ep, + Epr) -

Thus, if one sums O, 41 to the previous vector of identifiers ,;dz, the result
would correspond to the transfer of an identifier from the extended upstream
place of ¢; to its extended downstream places.

By iterating this operation to the whole set of transitions belonging to Ty,
one makes the vector of identifiers being updated in the desired way. The corre-
sponding equation can finally be expressed in the following way, after the firing

of step oj1: . . _
SIdyy, = SId), + Z S/ (4.3)

tjETl
Ty — Synchronization Transitions

A transition ¢; belongs to this set when it is linked to at last two extended upstream
places, i.e. when [{p; € P s.t. D;; = 1}| = 2. The transitions are colored in black
in figure (4.7). As above, we denote by u; and u; (or uj, u?) the indexes of the
extended upstream places of ¢;. For instance uj, = 6,u7, = 10. It means that pe
and pyp are extended upstream places of t9, which can take token identifiers.

This set Ty is used to synchronize tokens with same token identifiers, since
synchronize transitions, like ¢g may be fired by tokens in upstream places with
different token identifiers.

Take table (4.2) as an example, after ¢5 firing, both s and tg are enabled. If
to is fired in the ordinary PN, token identifiers are updated by equation (4.2).

111



4. APPLICATION OF THE INCREMENTAL APPROACH FOR
THE RECONFIGURATION OF MANUFACTURING SYSTEMS

Firing Marking 14 @—i—:_l
initial | (1,0,1,0,1,0,0,0,0,0) | (0,0,1,0,2,0,0,0,0,0) | 0p/
to (0,1,0,1,1,0,1,0,0,0) | (0,0,0,1,2,0,1,0,0,0) | (0,0,—1,1,0,0,1,0,0,0)
t (1,0,0,1,1,0,1,0,0,0) | (0,0,0,1,2,0,1,0,0,0) | Oa;
t (1,0,0,1,1,0,0,1,0,0) | (0,0,0,1,2,0,0,1,0,0) | (0,0,0,0,0,0,—1,1,0,0)
ts (0,1,0,1,0,1,1,1,0,0) | (0,0,0,1,0,2,2,1,0,0) | (0,0,0,0,—2,2,2,0,0,0)
ts (0,1,0,1,0,1,1,0,0,1) | (0,0,0,1,0,2,2,0,0,1) | (0,0,0,0,0,0,0,—1,0,1)
to (0,1,0,1,1,0,1,0,0,0) | (0,0,0,1,2,0,2,0,0,—1) | (0,0,0,0,2,—2,0,0,0, —2)
Table 4.2: Synchronization of Token Identifiers of figure (4.7)
Since uy, = 6, token identifers are removed as 1D = 2, which leave ID = —1 for

p1o. This situation will mix up tokens, and tg cannot be fired again.

For that, we define an additional fireability condition associated to each tran-
sition ¢; in Ty, in order to verify that the identifiers from p,1 and p,2 are equal
J J

when firing oj1:

-

Vt; € Ty, 00t (j) = 1 = 574, (u}) = 574, (u2) (4.4)

The update equation (4.2) used previously must also be used with the transi-
tions belonging to Ty, since the equality 57 (uj) = 514, (u?) holds: the identifiers
associated with places Pul and Pu2 will move to the extended downstream places.

Above equations led to an implementation in [HBT07], to address the problem
of reconfiguration of manufacturing systems, using ordinary PN. Some lineariza-
tion techniques were proposed to adapt their formulation to the context of a linear

integer programming.

4.2 Adaptation of Token Identification to Timed
Petri Nets with Safe Behavior

In this section, we propose to directly adapt the token identification technique
for ordinary PN for TPNs. However, this token identification for TPNs still has

the limitation of keeping safe behavior.

112



Firing Date Q s_f 5_121 é?;l
initial 0 (1,0,1,0,1,0,0,0,0,0) 6; (0,0,1,0,2,0,0,0,0,0) | Ops
to 0 (0,0,0,0,1,0,0,0,0,0) | s-(t2) =4 | (0,0,0,0,2,0,0,0,0,0) | (0,0,—1,1,0,0,1,0,0,0)
o~ (0,1,0,1,1,0,1,0,0,0) On (0,0,0,1,2,0,1,0,0,0) | Ops
t1 1) (0,0,0,1,1,0,1,0,0,0) | s7(t1) =9 | (0,0,0,1,2,0,1,0,0,0) | Ops
o+46 | (1,0,0,1,1,0,1,0,0,0) On (0,0,0,1,2,0,1,0,0,0) | Ops
t3 2.0 (0,0,0,1,0,0,1,0,0,0) | s-(¢t3) =4 | (0,0,0,1,0,0,1,0,0,0) | (0,0,0,0,-2,2,2,0,0,0)
3-0 (0,1,0,1,0,1,2,0,0,0) 0_1\' (0,0,0,1,0,2,3,0,0,0) | Ops
t4 3.64+1(0,1,0,1,0,1,1,0,0,0) | s.(ts) =6 | (0,0,0,1,0,2,0,0,0,0) | (0,0,0,0,0,0,—3,3,0,0)

Table 4.3: Token identifers without Safe Behavior Restriction for TPNs of figure
(4.7)

4.2.1 Informal Presentation

The main issue when adapting token identification structure to TPN is to main-
tain the association between tokens and identifiers, since TPN semantics make
some tokens "disappear" when transitions are fired. To illustrate this issue, we
consider the PN of figure (4.7), where all transitions are given an arbitrary dura-
tion 0. Let us consider the firing sequence (t3,0), ({1,0), (t3,2-0), (t4,3-0 + 1).
Two questions hold regarding place p7.

4.2.2 Ensuring Safe Behavior

As shown in table (4.3), what happens if transition ¢, is not fired before the end
of t3 firing 7 At date 3 -0, transition t3 finishes and p; contains 2 tokens, which is
forbidden by our safety hypothesis, since vector 575 can only store one identifier
by place.

When dealing with ordinary PN, the equation (4.1) set on each intermediate
marking ensures this situation cannot happen. Considering TPN, delays induced
in the marking vector updates after a firing make difficult to impose such con-
straint in a simple way. It is not sufficient to constrain only at each firing date,
that the marking must remains safe. Indeed: a transient marking not safe may
appear before two firing dates and be covered by the next firing, making the
reached marking being safe.

This is the case for instance if we consider the timed sequence (t3,0), (¢1,9),
(t3,2-9), (t4,3-04+1). When t3 is fired at date k = 2-0, the marking is still safe since
Smr = (0,0,0,1,0,0,1,0,0)T. When t3 ends at date &’ = 3 - 4, its downstream

113



4. APPLICATION OF THE INCREMENTAL APPROACH FOR
THE RECONFIGURATION OF MANUFACTURING SYSTEMS

places receive tokens and the marking becomes ﬁ = (0,1,0,1,0,1,2,0,0)7,
which is not safe.

However, since the methodology described in section (2.2) updates states vec-
tors only at firing dates (which is sufficient to ensure no place marking is negative
and guarantees steps are fireable), the next date of updating marking will be only
made when t4 is fired, at date 3-0+1. At this date, one token of p7 is consumed by
t4, so the marking remains safe at first sight. Such situation cannot be accepted
since there is an uncertainty about which identifier must be used to fire ;.

In order to fix this issue, without checking markings at any date which would
reveal inefficient, we propose to split equation (2.9), updating markings between
dates v and v, into two parts.

First, tokens resulting from finishing transitions are added to the previous
marking s_mlz , in order to verify the resulting marking is still safe by equation
(4.5):

S S cta<T (4.5)

tEeT!,

Since no tokens can be removed by this operation, this ensures all intermediate
marking between dates v and vg, 1 are safe. This equation replaces equation (4.1).
Then, tokens consumed by the firing of 0T+1> are removed to produce marking

Smys.+ a8 stated in equation (2.9).

4.2.3 Storing Identifiers for Firing Transitions

Let us now consider the firing sequence (ts,0), (t1,9), (t3,2-0), (t4,2-6+ 1) as
shown in table (4.4). Place p; is associated to identifier 1 between dates § (when
to finishes) and 2§+ 1 (when ¢4 is fired). Thus, when t4 finishes at date 3-0 + 1,
place pg should be associated with identifier 1. At date kK = 3 -9, the firing of
transition t3 ends. A token is created in place p7, and identifier 2 is moved to
s14, (p7). Since transition ¢4 is not finished at this date, where should be stored
the identifier 1 that must be moved in pg at date 3-6 + 1 ? In fact, the _@7;1 are
working in a wrong way to represent token identifiers.

Obviously, identifiers must not be stored in vector 510 during the time a tran-
sition is firing. Thus in our paper [HBYT12a|, we propose to add new additional
vector of identifiers, Spy € NTvT2l which collects identifiers used by currently

114



Firing | Date 5 4 510 Sha @iﬂ
imitial | 0 | (1,0,1,0,1,0,0,0,0,0) On (0,0,1,0,2,0,0,0,0,0) | Ox ¥
t 0 [(0,0,0,0.1,0,0,0,0,0) (t2) =6 | (0,0,0,0,2,0,0,0,0,0) | spa(ts) =1 | (0,0,—1,1,0,0,1,0,0,0)
5~ |(0,1,0,1,1,0,1,0,0,0) On (0,0,0,1,2,0,1,0,0,0) | On ¥
t1 5 [(0,0,0,1,1,0,1,0,0,0) (t) =6 | (0,0,0,1,2,0,1,0,0,0) | On ¥
5+6 | (1,0,0,1,1,0,1,0,0,0) iy (0,0,0,1,2,0,1,0,0,0) | On Onr
t3 2.6 | (0,0,0,1,0,0,1,0,0,0) | s (ts) =0 | (0,0,0,1,0,0,1,0,0,0) | sgalts) =2 | (0,0,0,0,—2,2,2,0,0,0)
t 2.6+1](0,0,0,1,0,0,0,0,0,0) | s(ta) =0 | (0,0,0,1,0,0,0,0,0,0) | sga(ts) — 1 | (0,0,0,0,0,0,—1,1,0,0)
Sp(tz) =0 —1
3.6 | (0,1,0,1,0,1,1,0,0,0) | s(ta) =1 | (0,0,0,1,0,2.2,0,0,0) | sga(ts) =1 | Opf
3.6+1](0,1,0,1,0,1,1,1,0,0) On (0,0,0,1,0,2,2,1,0,0) | Ox On

Table 4.4: Token identifers in TPNs of figure (4.7)

firing transitions. To use and update .@, we proceed in the same way as in the
above subsection.

First, identifiers resulting from finishing transitions are added to the previous
auxr

identifiers vector sy4; to build an intermediate vector s 1d,"

Let T denotes the set of transitions finishing between steps o and ogyq.
Equation ?4 ) is replaced by:

vt; € T}

—
+1’ %1 - S_ffdkj - D; (4.6)
Vt; € Ty UTy — Tk

o, =0 (4.7)

+1

N , —
Equation (4.3) is used as above to produce srq;*4" from s74, and (P, )¢,er,ur,-

This intermediate vector is used to check synchronlzatlon for Ty transitions in a
similar way as equation (4.4).

Then, when firing o1, 514,,, and sgq, ,, are produced in the following way:

Vt; € Ty U Ty,

1

SRd . = Sldauz -
O(k+1)j — 1 = (i+—1>)J ( ]) — (48)

Uiy = st (ug) - D
Rd =  SRd,,.
O(kt1);) =0 = w0 (4.9)
k+1 = 0

Again, equation (4.3) is used as above to produce de ., from W auz and

(Ui1)t,eriur,- Note identifiers stored in spg are never removed even When a

transition finishes: if the same transition is used again, the current identifier will

115



4. APPLICATION OF THE INCREMENTAL APPROACH FOR
THE RECONFIGURATION OF MANUFACTURING SYSTEMS

replace the previous one thanks to equation (4.8).

Working like that, identifiers produced by transitions finishing before step
m can be reused by transitions belonging to ak—ﬁ . Identifiers "disappear” from
514, are "stored" in Spg. when transitions are fired, then "move back” to ﬂc“

when transitions finish, just before o1 is fired.

4.2.4 Constraint Programming Formulation

A CP model without token identifiers has been given in figure (3.3) of chapter
(3). We just add new defined variables and constraints between them into the

CP model. The new defined variables are:

e Identifiers vector 575, € NP1/

e Residual identifiers vector sgzy € NIT1VUT2|

Since equations (4.2) to (4.9) are developed following the incremental ap-
proach, we can easily translate them into CP formulations with conditional con-
straints.

Since the full model is too big and has just been developed from the basic CP
model (figure 3.3) by adding token identifiers, only equations corresponding to
token identifiers are added in figure (4.10). Reader can merge these two figures to
see the full model. Equations (4.10) to (4.13) define the initial and target token
identifiers information. Equations (4.14) and (4.20) are used to update identifiers
vectors m and m . Equation (4.21) to (4.24) give the domain of variables
of token identifiers. ID,,,, denotes the maximum identifier number used in the

considered problem.

4.3 Token identification for Bounded Timed Petri
Nets

The token identifiers model can be well used in TPNs with safe behavior. How-
ever in the real world, it should be more general, for example each place can

contain several tokens with different token identifiers. One token identifier vector

116



Let R = (P,T,Ct,C™,d, {5mi, 50 }) be a TPN. Let Py, Py and To, Ty, Ty be the par-
titions of P and T defined above. For each transition ¢; in Tq or Ta, let u],u] be the
respective places indexes defined above. Let D € {—1,0, 1}MXN be the extended in-
cidence matrix defined above. Let {Idy, Rdp} be its initial vectors of identifiers. Let
{mg,rs, Ids, Rds} be a target state. Let K € N be the number of considered firing
dates. The constraint programming model CPID(K) is defined by CP(K) and token

identifiers equations below:

Vk € [0,K —1],Vi € [1,M], V5 € [1,N]

S1do; =1 doi (4.10)
Stdg; =1dfi (4.11)
SRdo] Rdoj (4.12)
SRdKJ :Rdfj (4.13)
update residual duration vector
update marking
update ID
t;eT{U TQ,T(k+1) 1:>q)(k+1)ji = SRdy; - D:; (4.14)
t; € T U TQ,T('];C+1)_ = 0:>q)(k+1)ji =0 (4.15)
Srdgur,), = SIdy, + Z P (jo11)ji (4.16)
tje’]l‘lu’]l‘g
t;eT{U TQvo-(k+l)j = 1:>3Rd(k+1)j d((l;il) : A \I}(k—s—l) = Sld{(l:il) : Di;(4.17)
t;eT1 U TQ,O'(]C+1)J. = O:>8Rd(k+1) = SRdy,; N \I/(k+1) =0 (4.18)
SId( 41y = SIdgue,) + Z (k+1)j (4.19)
t; €T1UTo
t; € Ty, O(k+1); = l?S]dt(wz 1l = S[dt(z:il)uz (4.20)
J
modehng improvements and initial domains
Sy, <1 — ZC+ Tho), (4.21)
SId(y1y: [[0 IDma:v]] (4.22)
SRd(kJrl)- [[OuIDma:E]] (423)
Srdoye [[0, IDmax]] (424)

(k+1)i

Figure 4.10: Constraint Programming Model with Token Identifiers

117



4. APPLICATION OF THE INCREMENTAL APPROACH FOR
THE RECONFIGURATION OF MANUFACTURING SYSTEMS

574 cannot contain several different token identifiers, since they will be summed

together in the same place. This situation will mix up token identifiers.

In this thesis, we propose to associate token identifier vectors EEZ and sgpyq. to
each kind of tokens in TPNs, where x € [1, X;4], Xiq being equal to the number
of token identifiers. The main idea is to load all tokens with the same token

identifier into one token identifier vector.

To illustrate our method, the figure (4.11) is given, which is derived from
figure (4.7). The key idea is that each kind of token identifier vectors s74 and
@ZZ can be seen as a new TPN with the extended incidence matrix D and the
same time duration 7 Indeed, @ corresponds to 5;7 @ corresponds to s_:
and D corresponds to C'. In this thesis, we call them token identifier layer in
TPNs and associate them to each kind of tokens. Each token identifier vectors

LTdZ and spy. can be computed as state of TPNs.

As been seen, there are three TPNs in this example, where one original TPN
and two token identifier layers. Therefore, each token identifier layer can be

updated as follow:

Vk € [0,K —1],Vi € [1,M],Vj € [1,N]

= - f
Sldw(kJrl)i_SIdzki - Z Dz] ’ O-I(k+1)j + Z D:; : T.Z’(k+1)] (425)
J=1 J=1
_ f
SRdy (o 41); — SRdar; T Oa(kt1)j — Tx(kJrl)j 4.26

(4.26)

xrTe HL Xid]] ( )
Sidyr; € HO> A”[mai]] ( )
SRdy;, €10, 1} (4.29)
ooy €40.1} (4.30)
Ta{kj E{Ov 1} ( )
The equation (4.25) is similar with updating marking vector in the equation
(2.9). The number of tokens with the same token identifier in one place must be
bounded with the M,,,, (the biggest number of tokens) in TPNs. In equation
(4.26), s Rdy (11, is used to represent if transition ¢; is fired or not, but not to

record the ID number of token identifier as sgq,,,, in figure (4.10).

In equations (4.25 and 4.26), TPNs are not partitioned as in subsection (4.1.3),

since the extended incidence matrix D will forbid token identifiers to go to Py

118



()
N\

6

o

Token Identifier Layer ID=2

Figure 4.11: Token Identifiers for Bounded TPNs

and Ty, as shown in section (4.2).

Then, the main problem is to accomplish that token identifiers must be syn-
chonized with their corresponding tokens of the original TPN.

The mechanism of our approach is that if one transition ¢; at date v is fired
(or finished) in the original TPN, if and only if one of transitions ¢; in different

119



4. APPLICATION OF THE INCREMENTAL APPROACH FOR
THE RECONFIGURATION OF MANUFACTURING SYSTEMS

Firing | Date S s_T> ﬁ m
initial 0 (1,0,1,0,1,0,0,0,0,0) 0N (0,0,1,0,0,0,0,0,0,0) | O
(0,0,0,0,1,0,0,0,0,0) | On
to 0 (0,0,0,0,1,0,0,0,0,0) | s,(t2) =6 | (0,0,0,0,0,0,0,0,0,0) | spa, (t2) = 1
(0,0,0,0,1,0,0,0,0,0) | Oy
5 (0,1,0,1,1,0,1,0,0,0) Oy (0,0,0,1,0,0,1,0,0,0) | O
(0,0,0,0,1,0,0,0,0,0) | Oy
t 5 (0,0,0,1,1,0,1,0,0,0) | s,.(¢t1) =6 | (0,0,0,1,0,0,1,0,0,0) | Oy
\ (0,0,0,0,1,0,0,0,0,0) | Oy
406~ |(1,0,0,1,1,0,1,0,0,0) Oy (0,0,0,1,0,0,1,0,0,0) | O
(0,0,0,0,1,0,0,0,0,0) | Oy
ts 2.6 |(0,0,0,1,0,0,1,0,0,0) | s,(t5) =4 | (0,0,0,1,0,0,1,0,0,0) | On
(0,0,0,0,0,0,0,0,0,0) | spa,(t2) =1
35 (0,1,0,1,0,1,2,0,0,0) 0N (0,0,0,1,0,0,1,0,0,0) | Oy
(0,0,0,0,0,1,1,0,0,0) | On
t 3.0+1](0,1,0,1,0,1,1,0,0,0) | $,(t4) =0 | (0,0,0,1,0,0,0,0,0,0) | Sga,(ts) = 1
(0,0,0,0,0,1,1,0,0,0) | On

Table 4.5: Token Identifiers for Bounded TPNs of figure (4.11)

token identifier layers will be fired (or finished) at the same date.

We take the table (4.5) as an example, which represents the behavior figure
(4.11) with firing sequence (t,0), (t1,0), (t3,2-0), (t4,3 -0+ 1).

When the transition t, in the original TPN is fired at date 0, if and only if
the transition ¢y in the token identifier layer ID = 1 is fired at date 0. Then
transitions t3 in the original TPN and the token identifier layer ID = 2 are fired
the same date 2 - 0. These situations present that if the enabled transition is
only related to one kind of token identifiers, this kind of token identifers will be
synchronized with their correspoding tokens.

When transition t4 will be fired at date 3-d + 1, there are two tokens and two
token identifiers in p7. In the table (4.3), the token identification for TPNs with
safe behavior will mistake these two token identifiers as one token identifier with
ID = 3, which will mix up token identifiers.

However, in the table (4.5), if ¢4 is fired, if and only if one transition ¢, in
different token identifier layers can be fired. Then solver will choose one of these
two t4 to be fired by default or developed search strategy, for example £, in the
token identifier layer 1D = 4 is fired. As shown in table (4.5), the safe behavior

120



restriction in table (4.3) is resolved.

As the definition (2.11), the equation (4.32) represents that if transitions in one
token identifier layer can be fired, it must have enough tokens of the same token
identifiers to satisfy the firable condition for transitions in this token identifier
layer. However, for the necessary condition, it depends on whether other token
identifier layers are satisfying firable condition for the same transition. Then,

solver will choose one active transition in one token identifier layer to be fired.

In fact, if actions of transitions 0,41} and T! are known, each of these

(k+1
token identifier layer in TPNs can be solved ind(e;e)ndently. Thus, equations
(4.33 and 4.34) are proposed to synchronize these vectors with original TPNs
vectors.

The equation (4.35) ensures that finished transitions must be active at last

step in the same token identifier layer.

Vk € [0,K —1],Vi € [1,Mm],Vj € [1,N]

D™ Oesty <51, + >, DU-e (4.32)
t]-eTgf(kH)
Xid
O (k41); = Z Ta(k+1)j (4.33)
Xu
Gy - Z; Ta{(kﬂ)j (4.34)
T iny; = 1=5Rd,, = 1 (4.35)

For one transition ¢;, its domains of ogx41); and T/ are restricted in

z(k+1)j
{0,1} by equations (4.30 and 4.31). Thus equation (4.33)( ::roiistrains that when
one transition is fired in original TPNs, if and only if one of the same transitions in
different token identifier layers can be fired. Afterwards, the problem of choosing
one token and its token identifier vector is achieved, when several different kinds
of tokens are active before the same transition. Equation (4.34) constrains that
only one finished transition in different token identifier layers can be synchronized
with finished transition in original TPNs. The equation (4.35) constrains that this
finished transition must be active at last firing date in the same token identifier
layer.

Note that equations (4.33, 4.34) have the reaction from transitions in token

121



4. APPLICATION OF THE INCREMENTAL APPROACH FOR
THE RECONFIGURATION OF MANUFACTURING SYSTEMS

identifier layer to the original TPN. For example, if all transitions ¢; in different
token identifier layers cannot be fired, the transition ¢; in the original TPN cannot
be fired, even if there are enough tokens in its upstream places. Such constraints
bypass the equation (4.4), which is used to insure that this transition will not be
fired by mixed token identifiers.

Since the full model is too big and has just been developed from the basic CP
model (figure 3.3) by adding token identifiers layers, only equations corresponding
to token identifiers are added in figure (4.12). Reader can merge these two figure
to see the full model. Equations (4.36) to (4.39) define the initial and target token
identifiers information. Equations (4.40) and (4.45) replaces equations (4.14) to
(4.20) to implement the function of token identifiers in bounded TPNs. Equations
(4.42) to (4.43) ensure the firable condition and finished transition active at last
step. Equations (4.46) to (4.49) give domains of variables of token identifiers.

4.4 Numerical Experiments of Token Identifiers

Experiments were carried out using a 2.93 GHz Pentium with 4 Gb of RAM,
using the constraint programming tool Ilog Solver. We used the TPN with token
identifiers presented in figure (4.7), with d(t) = (1,2, 1,3,5,2,6,2,3,4,4,1,3). To
make the model scalable, an additional loop was used, shown in dashed in the
figure. Each loop was completed by a "counter place” allowing to count the
number of times each cycle has been executed.

We assess in table (4.6) the influence of dealing with token identifiers in our
TPN model, compared with the model without identification. As it can be seen,
the number of variables and constraints brought by models with token identifiers
are much bigger than the previous one. However, computational times do not
seem to be too sensible to this increase of complexity. This could be explained
by the fact that token identification techniques do not generate new paths in the
underlying reachability graph of TPNs. Meanwhile, the increasing constraints
have reduced the influence of increasing variables.

In fact, all variables and constraints can be seen as supplementary constraints
for original TPNs, since many paths with mixing tokens will be forbidden. Al-
though the number of variables of token identifiers in bounded TPNs is much big-
ger than in TPNs with safe behavior for the same K, token identifiers in bounded

122



Let R = (P,T,Ct,C~,d, {5mi, 5 }) be a TPN. Let Py, P; and To, Ty, Ty be the par-
titions of P and T and D € {—1,0,1}M*N he the extended incidence matrix defined
above. Let {Id.0, Rdo} be the initial vectors of token identifier ID = . Let {mg,rs}
be a target state, associated with {Idx¢, Rd, ¢} with each kind of token identifiers. Let
K € N be the number of considered firing dates. The constraint programming model

CPIDX(K) is defined by CP(K) and token identifiers layers below:

Vk € [0,K —1],Vi € [1,M],Vj € [1,N],Vx € [1, X;4]

STdyo; =1 dz0i (

SId ks :Idxfi (4.37
SRd,o; = Rdz0; (
SRd,; = Rl fj (

update marking

update ID
vt; € Ty, O (k1) :Zaw(k+1)j (4.40)
Vt; € Ty, Tl ZT (E41)j (4.41)
vt; € Ty, Txf(k_H) 1:>3Rdxk] =1 (4.42)
D™ Gy 1) <51dyy + Z Dt & (4.43)
mf(k+1)
SIdy(ry1ye — STdyri — ZD+ Tfk_H ZDi O (k+1)j (4.44)
j=1
_ f
SRd,(j41); — SRdak; — Ox(k+1)j — Tz(k+1)j (4.45)
modeling improvements and initial domains
SIdy,(kt1yi € [[0, Mmam]] (446)
SRd,,(11), € {0, 1} (4.47)
Oz (k+1)j € {Oa 1} (448)
T! €{0,1} (4.49)

z(k+1)j

Figure 4.12: Token Identifiers for Bounded TPNs

TPNs need less time. This can be explained easily, since each kind of tokens have

123



4. APPLICATION OF THE INCREMENTAL APPROACH FOR
THE RECONFIGURATION OF MANUFACTURING SYSTEMS

K ‘ Time ‘ Fails ‘ variables ‘ constraints ‘ makespan

TPNs without token identifiers
22 | 17.88 s | 469872 1312 2691 56
23 424 s 112489 1369 2813 56
24 0.92 s 25798 1426 2933 60
25 0.33 s 10190 1483 3057 60
30 0.08 s 2 1768 3665 70
31 0.06 s 4 1825 3788 70
32 | > 6000 s time exceeded

Token identifiers in TPNs with safe behavior
22 | 30.00 s | 220608 5267 6695 56
23 8.47 s 66507 5502 6998 56
24 3.70 s 33764 5737 7301 60
25 9.17 s 69633 5972 7606 60
30 0.05 s 2 7147 9117 70
31 0.03 s 2 7382 9421 70
32 | > 6000 s time exceeded
Token identifiers in bounded TPNs

22 | 13.65s | 193137 7799 9496 57
23 3.28 s 46174 8142 9927 57
24 1.37 s 18701 8485 10358 61
30 0.08 s 2 10543 12943 70
31 0.05 s 2 10886 13375 70
32 | > 6000 s time exceeded

Table 4.6: Results of Token Identification Techniques

their own token identifiers vectors, they only influence each other when synchro-
nization happens. Therefore, token identifiers in bounded TPNs will meet less
fails.

Note that token identifers in bounded TPNs increase the opportunity of con-
currency, since token identifiers in TPNs with safe behavior will forbid two token
identifiers to be in the same places.

To conclude, token identification techniques can be well addressed for solving
token confusion issues. Above all, the token identification technique in bounded
TPNs gives the most efficiency in this example.

When we apply token identification technique in bounded TPNs to reconfig-
urable transport system in figure (4.6), Solver can hardly find one solution for
some reachability problems, since Solver is trapped in loops. Thus, we propose

two methods to avoid loops in a reconfigurable transport system.

124



4.5 Avoiding Loops in Models for Reconfiguration

Systems

In figure (4.6), it is easy to see that producing plants with two families of parts:
OS1(t1, f2) and OSy( f3,19) can be seen as a reachability problem. Thus, we want
to generate firing sequences for these two products. To simplify the explanation,
we use GOAL to represent the reachability problem, For GOAL, the initial mark-
ing is 1 token for each OS;:in. The final marking is 1 token for each OS;:out
place and 2 tokens for the Target place

In fact, the search space of the reconfigurable transport system presented
in figure (4.6) is much larger than all previous examples. Therefore, developed
search strategies must lead Solver not go too deep in the search tree. In the
Pregraph, there are many loops that can lead Solver go deep into the search tree.
These loops cannot be avoided, since tokens will need go through some loops.

Figure (4.13) is a screenshot from the figure (4.6) to present the problem of
loops in reconfigurable transport system. For example, places p;, Preg : T'1 and
transitions tog, t39 form a loop. In fact, this loop is the function of robot Ry,
which will take tokens from p; to Preg : T'1, then take them back to p; in order
to implement the function of machine T'1. Therefore, tokens must go through this
kind of loops to finish the product. After this operation, tokens need go forward
to other machines.

However, in Ilog Solver, transitions with lower index numbers will be first
chosen to to be fired by default. It means t99 will be fired instead of t33 and
tokens will be trapped in this loop.

Figure (4.14) presents the search tree with the loop of R; in figure (4.13).
For example, if the search depth is k, the token will go repeatly in the loop until
the upper bound k reached. Then it backtracks p; at lower depth and go to
F5. However, the rest of search steps are not enough to finish all operations.
Therefore, it backtracks to p; at lower depth again. This is the reason for hardly
finding a solution for GOAL.

In fact, the token just need to go through this loop once fo finish the operation
T'1. Therefore, some algorithms are needed to avoid loops under some require-
ments. The requirement in the reconfigurable transport system is to go through

loops once at a time. It means tokens can go back to the same loop after other

125



4. APPLICATION OF THE INCREMENTAL APPROACH FOR
THE RECONFIGURATION OF MANUFACTURING SYSTEMS

Preg:T1

Figure 4.13: Problem of Loops in Reconfigurable Transport System

operations.

In this thesis, we propose two methods to avoid loops in reconfigurable trans-
port system. The first method is developed based on the structure of TPN model.
For example, loops formed by robots in figure (4.6) have been a main reason for
leading Solver go deep in the search tree, we can avoid these loops directly. The
second method is developed as general as possible. It applies a counter function.
For example, if each transition can just be fired once, tokens cannot go to loops

repeatedly.

4.5.1 Avoiding Loops of Robots in TPNs for CP

As been known that loops of robots will reduce the efficiency of searching, we
propose to use some specific conditional constraints in the Pregraph to avoid loops
of robots. We take the loop formed by R; as an example in figure (4.13). Since

tokens are coming out of the loop, the start transition and the finish transition

126



Figure 4.14: Search Tree with Loops

of this loop are known as t99 and t3g. We define a vector with pair elements

e
Tloop = (tstart: tfinisn). Therefore, loops can be avoided as follow:
T;‘vf(k+1) (tfim'sh) =1 :>3Rdx(k+1)(tstart> 7é SRd,;, (tfinish) (450>

The equation (4.50) means that when ¢ ;s is finished, ¢4, cannot be fired

at next step with the same token identifier.

K ‘ Time ‘ Fails ‘ variables ‘ constraints ‘ makespan
Token identification technique in TPNs with safe behavior

22 1 1.92s| 2313 | 70633 75990 182
23 | 2.29 s | 2456 72846 79450 183

Token identification technique in bounded TPNs
22 | 0.06 s 6 2333 70633 182
23 | 0.06 s 6 2477 73824 183

Table 4.7: Reconfigurable Transport System Avoiding Loops of Robots

In table (4.7), results show that solutions can be found easily after avoiding
loops of robots. Meanwhile, token identification technique in bounded TPNs is

127



4. APPLICATION OF THE INCREMENTAL APPROACH FOR
THE RECONFIGURATION OF MANUFACTURING SYSTEMS

more efficient than token identification technique in TPNs with safe behavior.
However, this specific method has limits on developing new model and meth-

ods. Therefore we develop one general method for avoiding all loops.

4.5.2 General Mechanism to Avoid Loops in TPNs for CP

To avoid loops more generally, we propose to add one new vector — firing priority
vector F—ch> — to transitions that can contain token identifiers. In @, each tran-
sition is given a number to represent its priority, and high number will represent
high priority. If one transition is fired, the corresponding priority will be set as 0
(transitions with 0 in F—P; will not be fired), then loops can be forbidden. Take
figure (4.13) as an example, transitions tqg, t30 are set as 1 at beginning. When
token goes through these transitions at the first time, they will be set as 0, and
only t33 can be fired. Therefore this loop will be forbidden.

In this thesis, we propose to first set all elements as 1 in F_]S; of the reconfig-
urable transport system, since no priority transitions are needed. Since only loops
in the Pregraph are needed to be avoided, F—P; is only defined for transitions in
Pregraph. Such consideration can reduce the number of variables.

But in some cases, tokens need to go through loops a bounded number of
times. Thus, the F—P; must be reset to some priority based on requirements.
Considering the figure (4.6), if a product needs to be operated in f3,ts, it can go
to M, and T;. However, if Tj is broken down, product will be reconfigured to go to
Ti. This may lead tokens to go through some places several times in the Pregraph.
Therefore we propose to reset F'P, when tokens with the same token identifier
return into operating sequence, which can be seen as requirements. It means that
after the operation of one machine, token can be transported to anywhere in the
Pregraph again.

These considerations lead to equations below:

) Pregraph
t;eT

> Oater(te) = 0 A Gapgn); = 0=F Prgryry; = F Pk (4.51)
tc€To
D Tutier(te) = 0 A Oufryn); = 15 F Pogyryj = 0 (4.52)
tceTQ
Z 01}(k+1)(tc) = 1:>pr(k+1)j = Fpmgj (453)
te€To

128



In equations (4.51, 4.52 and 4.53), >, _p, Oz(kt1)(te) can decide if requirements
are satisfied or not. Then in equations (4.51 and 4.52), the firing priority vector
F—P; will be updated based on the new fired transition. If one transition is newly
fired, then the corresponding firing priority vector will be set as 0 to forbid it to
be fired again until equation (4.53) is satisfied. In equation (4.53) F—P; will be
reset to the original value if one transition in Ty is fired, since it means token has

gone back to the operating sequence model.

K ‘ Time ‘ Fails ‘ variables ‘ constraints ‘ makespan
Token identifiers in bounded TPNs

22 1 0.05s 1 26695 34896 182
231 0.14 s 1 27867 36480 183
24 1 0.11s 1 29039 38064 184

Table 4.8: General method of Avoiding Loops for figure (4.6)

The example in figure (4.6) is resolved and results are given in table (4.8).
Comparing with results in table (4.7), the general method for avoiding loops meets
less fails. The firing sequences of TPNs with K = 22 for the reconfigurable trans-
port system presented in figure (4.6) is (t1t1s,0), (t30, 1), (t36t39, 10), (¢35t46, 19),
(taotar,29), (tatse,38), (tatss,41), (tetio,64), (ta0ts0,65), (taitss, 94), (tzstss,97),
(t31ts0,106), (t1ota2, 115), (t1ates, 116), (t16tas, 143), (tsatss, 144), (t3stss, 153), (taota1, 158),
(tsotan, 163), (tastse, 172), (t17,181), (0, 182).

In conclusion, the reconfiguration of manufacturing system - reconfigurable

transport system - has been addressed with our approaches.

4.6 Conclusion

In this chapter, we have applied our incremental approach to a realistic issue con-
cerning manufacturing systems: the problem of reconfiguration of manufacturing
systems. To solve this problem, token confusion issues and loops are addressed
with token identification techniques and methods avoiding loops respectively.

In the first section, the main issues of reconfigurable transport system are
given based on decomposing it into different TPN models, such as operating
sequence, transport system, etc. Then the token confusion issues are given, and

token identification technique of ordinary PN is introduced.

129



4. APPLICATION OF THE INCREMENTAL APPROACH FOR
THE RECONFIGURATION OF MANUFACTURING SYSTEMS

In the second section, we adapt this token identification technique to TPNs.
A new vector m is defined to represent missing token identifiers. However, it
still restricts to TPNs with safe behavior.

In the third section, we propose to associate token identifier vectors ﬂ and
lm to each kind of tokens. These vectors can be seen as new TPNs associate
with the original TPN. Such consideration allow applying the token identification
technique to bounded TPNs. Even if more variables are needed to express these
vectors, it solves token confusion issues with nearly the same time as other token
identification techniques.

In the final section, we propose to avoid loops in TPNs by adding a firing
priority vector F—IS; This vector is associated with each kind of token identifier
and is combined with the token identification technique developed for bounded
TPNs. Thus, with regard to the token identification technique in TPNs with safe
behavior, the firing priority of each token can be well expressed independently.
When one transition has been fired, it will be set as 0 to show that this transition
cannot be fired again. However, in some cases, tokens need to follow some loops.
Therefore, we propose to reset the vector F—ng> based on special requirements in
model.

To conclude, our incremental approach in this thesis has been well applied
for a realistic system. It has shown the efficiency for resolving the reachability

problems and the ability of solving specific problems in systems.

130



Chapter 5

Conclusions and Perspectives

Conclusions

In this thesis, we are interested in generating firing sequences in TPNs with
Constraint Programming Approach. An incremental model has been successfully
developed for expressing the whole behavior of TPNs, which has reduced the
complexity of combinatorial explosion. Then a constraint programming model has
been developed for implementing the incremental model along with several mod-
eling improvements and search strategies. This process has presented modeling
and solving abilities of our CP model. Therefore the application of reconfigura-
tion of manufacturing system has been resolved following our approaches. Even
if our incremental model need to be verified with more practical systems (espe-
cially large scale systems), results presented in this thesis has brought several

useful improvements. The work has been presented as follows:

e The first chapter has introduced the motivation, problems and challenges,
several general methods for solving these problems, and the contributions

and organizations of this thesis.

Our motivation is to generate firing sequences in TPNs, which can be di-

vided into two steps:

o Solve the reachability problem of TPNs.

o Give timed firing sequences that leading to the desired marking.

131



5. CONCLUSIONS AND PERSPECTIVES

The main problem to generate firing sequences in TPNs is the combinatorial
explosion of states, for which many methods have been proposed. The figure

(5.1) is a search tree.

Figure 5.1: A Search Tree

Firstly, we propose to follow the idea of BMC to explore this search tree
incrementally, since the whole underlying reachability graph is not needed
to be explored. It means that solver will explore the search tree under a
search depth £ and continue to search deeply by increasing this depth k., if

there is no solution found or the upper bound is reached.

Secondly, we propose to use the logical abstraction technique, which uses
timed steps of length & to implicitly represent the behavior of TPNs within
k steps.

Finally, we propose to use several developed search strategies to lead solver
to explore the search tree more efficiently. In the best situation, if k,,;, is

first given, the solution can be found with meeting no deadends.

e The second chapter has developed the fundamental contribution of this the-
sis: incremental model for TPNs. The formal definition of TPNs and their
terminology have been introduced based on [CC88|, where Controlled Fu-

ecution are defined for presenting the instantaneous state and reachability

132



problem of TPNs.

The formal definition of timed step and timed step firings are defined to
express the incremental model. Then the equivalence between timed step
firing and controlled executions is proved to show the correctness and com-
pleteness of our incremental approach. Based on this proof, a collary is

given to express the reachability problem of TPNs by timed step firings.

At the end, several incremental search algorithms are introduced to improve
the process of searching. We have applied the incremental search that will
restart the search from the root node, since timed steps and search strategies

are more suitable to this method.

The third chapter has translated the incremental model for constraint pro-
gramming and developed several modeling improvements and search strate-
gies to enforce the efficiency. Then the problem of generating firing se-
quences of TPNs has been translated as searching for solutions in the search
space of a CP model. To find solutions more quickly, modeling improve-
ments (presented in subsection (3.2.2)) has reduced the search space and
search strategies (presented in (3.3)) has reduced the chance of meeting
fails in the search tree. The time needed for searching for solutions varies
dramatically among different search strategies. Labeling variables oy, Sk,
Ay_1 and s, with a step-by-step manner have been the most efficient search
strategies, since this developed search strategy is developed just as the in-
cremental approach to express the behavior of TPNs.

The fourth chapter has applied the method presented in chapters (2) and

(3) to the reconfiguration of manufacturing systems.

We express the reconfiguration process of an FMS between two configura-
tions as a reachability problems. Reconfiguration actions can be addressed
by firing sequences. Before generating firing sequences, token confusion is-
sues and loops have been addressed with token identification techniques and

methods avoiding loop respectively.

Token identification technique for bounded TPNs has been derived from
our original work [HBYT12a], and has been developed more general and

133



5. CONCLUSIONS AND PERSPECTIVES

extendable. We have proposed a token identifier layer in TPNs for express-
ing the behavior of each kind of tokens. Such consideration can resolve the

token confusion issues by structural modeling.

Then, a general method for avoiding loops has been proposed by adding a
firing priority vector. This vector records the firing priority of transitions

and forbids transitions to be fired under some requirement.

At last, benchmarks are given to present the efficiency of our approaches.

Perspectives

In the future, we propose to follow interesting directions raised by this thesis:

e In the section (2.3), we have mentioned several search algorithms for our
incremental model, as shown in the figure (5.2). However, we have mainly
used the fixed depth TPN reachability problem in the following chapters.
This algorithm will explore the search tree from the root node each time.
This algorithm is a semi-decision algorithm. Indeed, in the context of un-
bounded TPNs, the number of firing dates K is set arbitrarily, as we do not
know any information on the number of steps needed to find a possible solu-
tion. Thus, if no solution is obtained using this value K, one cannot conclude
on the reachability property. To the contrary, when dealing with bounded
TPNs, it is possible to set K to the value of the "sequential depth” of the
net, a parameter defined in [BHY04] and which guarantee the complete ex-
ploration of the reachability graph. Using this parameter as search depth,
it is always possible to conclude when the algorithm stops. A promising
research track could be to define efficient procedures to evaluate the value

of this parameter.

e Also in the section (2.3), we have used the incremental search algorithm b
in the figure (5.2). Since the sequential depth K is hardly to be solved as
the reachability problems, it is simply to see that algorithms ¢ and d are
more efficient, since they will use efforts at last search depth to improve
the search at next depth. They avoid to search for lower depth each time.
In fact, for algorithm d, the jump search can also use the benefits of timed
steps, timed step firings and search strategies.

134



/

Figure 5.2: Incremental Search Algorithms

e The CP model could be more completely studied. In the Modeling part,
more work should be studied to know the difference between CP model and
IP model. It means that the working mechanism of conditional constraints
and the linearization technique should be studied. Meanwhile, more con-
straints (for example equivalence class) could be applied for reducing search
space. In the Solving part, more generic search strategies could be devel-
oped based on the TPNs model. To better control the solving process, more
works could be done following [RBWO06|, for example filtering algorithms,

nogood recording, etc.

e The token identification technique for bounded TPNs could be extended to
a simple colored PNs. In fact, the ID can be seen as one kind of color in
colored PNs. More colors could be associated with each token identifier,

which could improve the expressivity of our model.

e The general method for avoiding loops can be extended for more realistic
—

systems. The firing priority vector F'P, can be initialized with different

numbers, which indicate different priority of different transitions. For ex-

135



5. CONCLUSIONS AND PERSPECTIVES

ample, specific tokens can be processed first than tokens with lower priority,
if they can both be used.

e The diagnostic / diagnosis problem could be applied with our approach,
since the fault behavior and unobservable states could be seen as reacha-
bility problem or some actions in the firing sequences. Meanwhile, the key
problem in this area is also the combinatorial explosion problem. There-
fore, our work can be the first step to combine these areas, which is the

motivation of our team.

136



List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6

A Process of DES Modeling . . . . ... ... ... ... ..., 2
Generating Firing Sequences for DES . . . . . .. ... ... ... 3
An Example of Combinatorial Explosion . . . . .. ... ... .. 7
An Simple Example and Its Reachability Graph . . . . . . .. .. 8
The MDD for Figure (1.4) . . . . ... ... ... ... ..... 10
Earliest Firing Date Does not Mean Optimality. . . . . . . . . .. 18
A Search Tree with One Desired Node. . . . . . . . .. .. .. .. 21
Incremental approach with One Desired Node. . . . . . . . . . .. 25
A Timed Petri Net . . . . . . . ... 33
Incremental Search Algorithms . . . . . . . .. .. .. ... ... 49
Naive Search Algorithm 1 . . . . . . ... ... ... ... ..., 50
Naive Search Algorithm 2 . . . . . ... ... .. ... .. .... 51
Expression of Search Tree . . . . . . . .. .. ... ... ..... 63
Modeling a Job Shopin TPNs . . . . . . . ... .. .. ... ... 68
Constraint Programming Model . . . . . . . . .. ... ... ... 74
Integer Programming Model . . . . . . . . .. ... ... ... .. 90
Dining Philosophers Problem . . . . .. . ... ... ... .... 91

An Example of FMS with a Reconfigurable Transport System |Ber08| 98

The Pregraph of figure (4.1) . . . . .. ... ... ... 100
Operating Sequences of figure (4.1) . . . . . ... ... ... ... 101
Conveyor Switches of figure (4.1) . . . . ... ... ... ... .. 102
Reconfiguration Actions of figure (4.1) . . . . . .. ... .. ... 103
PN Reconfiguration Model for the Example of figure (4.1) . . . . 104

137



LIST OF FIGURES

4.7 A PN with Token Identification. . . . . . . . ... ... ... ... 108
4.8 Incidence Matrix for the PN of figure (4.7) . . . . ... ... ... 109
4.9 The Partition Data Structures for the PN of figure (4.7) . . . .. 110
4.10 Constraint Programming Model with Token Identifiers . . . . . . 117
4.11 Token Identifiers for Bounded TPNs . . . . . .. .. ... .. .. 119
4.12 Token Identifiers for Bounded TPNs . . . . . .. .. .. ... .. 123
4.13 Problem of Loops in Reconfigurable Transport System . . . . . . 126
4.14 Search Tree with Loops . . . . . . . . . . .. ... .. ... .... 127
5.1 A Search Tree . . . . . . . . . . . ... 132
5.2 Incremental Search Algorithms . . . . . ... .. ... ... ... 135

Principales Méthodes . . . . . . . . ... ... ... .. ... ... 151

Un Réseau de Petri Temporisé . . . . . . . . ... ... ... ... 152

L’arbre de Recherche . . . . . . .. ... ... 167

138



List of Tables

1.1

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3

4.4
4.5
4.6
4.7
4.8

Number of States in Reachability Graph of figure (1.3) . . . . . . 7
Firing Semantics and Controlled Execution of figure (2.1) . . . . . 34
Controlled execution and its characteristic vectors . . . . . . . . . 37
Synoptic Table of Notations. . . . . . . . ... ... ... .. ... 40
Changing the Number of Firing Dates. . . . . . . .. .. ... .. 76
Influence of Improvements . . . . . . . . .. ... ... ... .. 7
Generic Labeling Strategies . . . . . . . . .. ... ... ... .. 80
Dedicated Global Labeling Strategies . . . . . . . .. .. .. ... 82
Dedicated Step-by-Step Labeling Strategies . . . . . . . . . . . .. 83
Comparing Generic Labeling Strategies . . . . . . .. .. ... .. 85
Backtracking Strategies . . . . . . . . ... 86
Scheduling Problem - Finding All Solutions . . . . . . .. ... .. 92
Scheduling Problem - Finding First Feasible Solution . . . . . . . 93
Dining Philosophers Problem - Finding All Solutions . . . . . . . 93
The Behavior of Firing Sequence to, t1, t3 of figure (4.7) . . . . . . 109
Synchronization of Token Identifiers of figure (4.7) . . . . . . . .. 112
Token identifers without Safe Behavior Restriction for TPNs of

figure (4.7) . . . . . . 113
Token identifers in TPNs of figure (4.7) . . . . . . ... ... ... 115
Token Identifiers for Bounded TPNs of figure (4.11) . . . . . . .. 120
Results of Token Identification Techniques . . . . . . . . . .. .. 124
Reconfigurable Transport System Avoiding Loops of Robots . . . 127
General method of Avoiding Loops for figure (4.6) . . . . . . . .. 129

139



LIST OF TABLES

1 Sémantiques de franchissement de la figure (2) . . . . . . ... ..

2 Tableau Synoptique des Notations.

140



Appendix A

Proposition .1 (Equivalence between CE and timed step firing sequences).
%

Let (R,d) be a TPN with its initial state sy = (W, ON) gien at date vy = 0.

%

ON> € .Y(R,d) be a state.

There exists a feasible controlled execution allowing to reach sy at date Umax

Let sy = (smf )

from so <
JK €N,
Jug, v, ..., €N
VEk € [1,K], sk
3817527-"751( Ey(R,d) s.t.: [[ ]] Sk 1[wk>5k (1>
Sk[wmax>5f

Elwl - (Ulavl)aw% . _;wK - (O-Ky’UK)a
wmax - (ON7 Umax) S rHUKTPN

N\

7

Proof. (=) Let (u},)ier kepi,ix, be the CE such that s, = (sm(vmax) , S (Vmax) > =
s¢. We buid a step sequence from (u}) as follows. Let vy, vg, ..., vx € [0, Umax] be
the list of the firing dates of the controlled execution, sorted in a growing order.
Formally we have: Ute’]l‘,ke[[l,Kt]] ul = {v1,v9,...,0¢} = V. At each date v, € V,
we build a step o, = 31 of-t; such that oy = {t € T | Ir € [1, K], ul. = vi}.

From equation (2.1), we have obviously Vj € [1,N], 04;? € {0, 1}, thus the step
(o) can be used to build timed steps ¢, = (o, vx) satisfying the non-reentrance
condition of definition (2.9).

We will show that there exists K states si,Sg,...,8x € (R, d) such that
Vk € [1,K], sk—1[tk) sk, and that these states are precisely the instantaneous states
reached by the CE at the respective dates v1,vs, ..., vx. For each k € [1, k], let

Sy, = (sm(vk) ,sr(vk)/> be the instantaneous state reached by the considered CE

at date vg. We use an induction on r to prove the following property:

141



. APPENDIX A

[ (I;) : For each k € [1,7], Su,_, [Vk)Su, }

The timed step 11 = (01, v1) is associated to the first firing date vy
of the controlled execution. Let A,, be the delay between vy = 0 and vy. Since
Sop = %0_),@ , we have obviously TV = {t € T,5,(t) = 0} = @, TF = {t €
T, 5 (t) — Ay, <0} = @. Then Vt € oy, 5,(t) = 0 < A, = vy, which satisfy the
equation (2.7).

Let us consider the instantaneous state reached by the CE at date v;. Since
the CE is feasible, we have from equation (2.4): s,,(v1) > (ﬁ Thus, equation
) R -

(2.2) gives us: Sy, + CT - F(v;) —C~ - N(vy) = 0. From the definition of
y N — .

F(vy) and N(vy), we get: F(v;) = 0y and N(v;) = o1. We obtain finally:

—

Sme —C~ . a7 > 0,;, which corresponds to equation (2.8). Since no transition

were active initially, the timed step ¢y = (01, v1) is fireable at date v;.
Then, we will show that both controlled executions and step sequences for-
mulations give the same reached state at date v.
= _ —
e Since F(v;) = O, we have obviously: s,,(v1) = 5mi — C™ - 01 = St
e Since vy is defined as the first firing date of the CE, all transitions that are
not fired exactly at that date (i.e. that do not belong to ;) start strictly
after v: Vt ¢ o1,Vk € [1,K,],ul > v1. At the contrary, Vt € oy, u} = v;.
Thus, equation (2.3) becomes:

—_— dt) —vy =d(t) ift
ViET, s(o) [ =4 () —m=dlf) ifico, (2)
t 0 otherwise

In the other hand, since ¥t € T,5,.(t) = 0 < A,, = vy, equation (2.10)

becomes:

d(t) ift € oy
0 otherwise

WGIQ@—{ (3)

Finally, equations (2) and (3) denote the same residual durations vector, which

concludes the first step of the induction.

142



Let us assume that [, is true for r = g < K. From the induction
hypothesis, we know that Yk € [1, 9], Su,_, [Vk)Sv,- We will show that ¢, is
a timed step fireable from Sy, and that the reached state s,, , 1s exactly the
instantaneous state reached by the CE at date vg41. Let A, be the delay between
Vg and Vg41.

We first show that any previous activation of a transition fired in g4 is
already finished at date vy4;. By reductio ad absurdum: let us assume that
It € o411 st s0(vy L > A,,. From equation (2.3), we get: 3k € [1,K/] s.t.

ub+d(t)—v, = Sr(v,
t € 0441, t is fired at date vy in the CE, thus 3k > k € [1,K,] s.t. vg41 = ul.

Then we get: Ik < k' € [1,K¢] s.t. ul + d(t) > ul,, which contradicts the
equation (2.1) given in the definition of a CE. Finally, equation (2.7) is satisfied

- Thus, uf+d(t)—vy > vg11—0g, i.e. ul+d(t) > vg41. Since

by ¥g41. To show that 1, is fireable, we must now consider equation (2.8).

Since the CE is feasible, we have: s,,(vg41) = 0y. Using the definition of

instantaneous firings (2.2) and characteristic vectors of CE (2.4), we get:

Sm(vg+1> - W + ct- F(Ug-f—l) -C- N<vg+1) = Oy

— —
& S$m(Vg1) = 5my +CT - (F(vg) + anrd ({ufm ke 1,k

teT

ub 4+ d(t) < vy ~
"€
A ul A+ d(t) > v,
Ui<vg+1 e—t> >O_>
A ul > v, -

uf + d(t) < v }) o

A up +d(t) > v,

t
Uj, S Vg1 Y
¢ '€t>OM
AN T

—C™ - (N(vg) + anrd <{u};,k‘ € [1, K]

teT

S 5 (Ug1) = Smlvg) +C7F - anrd <{u};, ke [1,K]

teT

—-C™ - anrd ({ui,k € [1, K]

teT

(4)

ub 4+ d(t) < vy .
uj, + d(t) > v,
L
uf S Ygt1 . e; used above. From
N U > Uy

teT

%
Let us consider the vectors f = Y card <{uf€, ke [1,K]

e and =S card ({ui,k € [1, K]

teT

143



. APPENDIX A

the deﬁnltlon of the ﬁrlng dates (Uk)[[l «]» We have obviously: n = Og+1- We will

show that f Z e
teT!,

uf + d(t) < vy
ub 4+ d(t) > v,
(otherwise, since there cannot be two firings of the same transition before date

For each t € T, there can be only one k € [1, K] such that {

vg, and d(t) > 0, there must be a firing strictly between v, and vy, which
contradicts the definition of (vy)p «)-

g, + d(t) < vgy1

Given .o =<t €T, 3k € [1, K],
Al +d(t) > v,

}, one can thus rewrite

—

f = Z e: . To conclude, it is now sufficient to verify that 77, ; = /. We proceed

9+1

by a mutual inclusion.

Let t € Tg+1. From equation (2.5), we get: 3i € [1,K] s.t. oy(t) = 1,u, <
vi +d(t) < Vg1 For Upeppeprg th = {v1,02,. 0} = Vo we can always
find only one controlled execution firing date ul, = v; s.t. k € [1,K¢] s.t. v, <
ub +d(t) vgpr:t € .

Let t € 7. since Jk € [1, K] s.t. vy < ul +d(t), ul, + d(t) < vy41. Similarly,
we can always find one firing date v; = ul, where i € [1,¢] s.t. o;(t) = 1,v, <

v; + d(t) < vgy1. And this firing date v; < v, must be the latest fired m[[?x]]{vp :
pell,g

o,(t) = 1}. For if there is another v; > v;,j € [1,g], for v, < v; + d(t) < vg41
and transition cannot reentrance leading to v; > v,. Sot € T; 41

%
We have shown that f = > e and 00 = 04+1. Finally equation (4)
teT’
becomes:
- — —
Sm(Vgr1) = Sm(vg) +C7 - Z e -C 0g+1 2 Oy (5)
ter! |

Since the equation above corresponds to equation (2.8) the timed step 1,41 is
fireable from s,.

. . . %
Moreover, equation (5) shows the marking reached by 1,1 is equal to s, (vy11) -
To conclude the induction, we will prove that the residual duration vector s, |

—
reached by 1,11 at date vy; is exactly s,(v,41) . For 5, = sr(vg; at date v, and

144



the definition (2.11), we have:

d(t) lft € O'g+1
; e
vt € Ta STg+1 (t) = ST(UQ) - A”g if ¢ € T;+1 (6)
t
0 otherwise

Let t € Ty, as shown in equation (2.6). So this fired transition ¢ before

date v,11, satisfy v, < Hﬁl}(]]{vl : 04(t) = 1} + d(t). Let us assume that 3k €
ic[l,g
[1,K,] st elul, ut + d(t)[, ut Th h U < Vg
: t.ow ub,u ,ut. = v;. Then we have:
! AR k Vgs1 < ub + d(t)

N uh < vy Avg < ul +d(t) ) ve [ug, uf, 4+ d(t)]
Vg1 — Uy < uf + d(t) — v, Ay, < uj+d(t) — v,

— —
ca (29 sr(vg) L =l +d(t) — v, sr(vy) ‘t — A, = uj +d(t) — vy

= -
Ay, < s(vg) ‘ Ay, < sr(vg) ‘
¢ ¢
Then:
d(t) if 3k € [1, K] s.t. uf = vy

(6) =Vt €T, s, 5 (t) = Qub +d(t) — vy if 3k € [1,K;] s.t. vy €]ul, ul + d(t)]

0 otherwise

e T, a1 — ub 4 d(t) — vy if 3k E'[[l, K¢ s.t. vgq1 € Jul, ul + d(t)]
0 otherwise

def 2.5 —

=" 57,01 = Sr(vg41) , which concludes the induction process.

We use the property I, with the whole set of timed steps to prove that ¥ =
(11,19, ..., 1) is a timed step sequence that leads from sq to the instantaneous
state sk reached at the last firing date of the CE. Since the final state is given at
date vmax, We must prove that there exists a timed step ¢,y allowing to reach sy
from s, at date vmax. Obviously, we set Y = (@, Umax ). Since it is empty, this
timed step complies with non-reentrance condition of definition (2.9) and with
fireability conditions (2.7) and (2.8). We could use the same argumentation as
before to show that the state reached at date vy, by the timed step sequence is

145



. APPENDIX A

identical to the instantaneous state reached by the CE at the same date.

(<) B

Let U = <w1 = (01,v1), -+, Yk = (O, Vx); Vmax = (ON,vmaX)) be a fireable
timed step sequence leading from sp to sy. Let (s = (W’g))keﬂl,xﬂ be the

states reached by the timed step sequence such that so[1)1)s1 = [. . .)Sk—1[¥k) Sk [Vmax) S /-
Let V = {v1,va, ..., Uk, Umax }. Let (u})ier rep1,x,] be a controlled execution defined
by:

o Vt € T,Ky = card({k € [1,K],t € o} });

o ¥Vt € T, (uj) = vi,vh,...,v,, € Vis the increasing sequence of the firing
dates of ¢ in the timed step sequence: Vr € [1,K.], 3k € [1,K], v = v} and
t e OL.

We will show that (u}) is a feasible controlled execution leading to s; from sg

at date vpax.

First, we show that (u}) is a well defined controlled execution that com-
plies with the non-reentrance condition (2.1). By reductio ad absurdum: sup-
pose there exists t € T,k € [1,K,] s.t. wuf +d(t) > ul,,. Let ¢;,¢; € ¥
be the timed steps associated with the firing dates uj, and uj,,. We have:
sic1[Vi)silticr)sinl- - )sjalvy)s; and v+ d(t) > vj.

Since ; is fired at date ul = v;, we have from (2.10): s.(v;)| = d(t). We
show by a simple induction on r < (7 — i) the property:
—
1)l = d) - (e -0
57 (vi)| =d(t) Vi1
st(v)l, = (Vi1 — v) L dit) —vier v > d(t) — v+

vi+d(t)>vj >
v; > 0. Thus, we get from (2.10): s,(vi1)

d(t) — (vi—f—l — U,’).

Let us assume that [, is true for r < j—i. We have: v;1,41 < vj41,

_
. — sr(vigr) | =d(t) = (vitr—vi)
i.e. Vitrp1 < vj. Then: s, (vig,) o (Vitra1 — Vigr = d(t) —

= (o) |, = (v = vi) =
t t

Vigr41<Y; vi+d(t)>v;
(Witr = 01) = (Vigrp1 = Vigr) = d(t) = (Viprp1—vi) = d{t)—vj+v; >

146



AN \
7

Thus, we get from (2.10): s,(Vi1r11) ‘ = 8 (Virr) | — (Wigra1 — Vi) = d(t) —
t

(Vitrs+1 — v;), which concludes the induction.
—
We use the property I, with r = (j—i—1). Then we have: s,(v;_1) ‘ =d(t)—
¢

(vj—1 — v;). since v; is fireable from s;_;, we must have from (2.7): s,(v;_y )L <
vj—vj_1 le. d(t) — (vjo1 —v;) < v;—vj_1 & d(t)+v; < v;, which contradicts the
initial hypothesis: the considered controlled execution respects the non-reentrance
condition (2.1).

For each v € [0, Upmax], we denote by s} = (s, (vk) , s.(vx) ) the instantaneous

) r

AN

marking reached by the considered CE at date v. Will we show that the controlled
execution is feasible, i.e. that the instantaneous marking reached at any date
compatible with the CE is made of positive components. Formally: Vv € [0, vyax],
TS0
si(v) = 0.

We use an induction on r to prove the following property:

[ (I,) : Yk € [1,r], the CE is feasible within [0, v;] and s; = s}, ]

Obviously, the marking under a CE does not change until this first

transition is fired, thus we have: Yv € [0,v(], s/,(v) = Sm, = Oy. The in-
stantaneous state reached at date vy is given by definition (2.5). We have as
shown above (step 1 of the first induction): s/ (vi) = Sp, — C~ - o7 and

vVt € T, sl.(vy) ‘ = d(t). The same state is reached after the timed step v at
t

date vy, which allows to verify that s,,(v1) > 0 since 1 is fireable. Thus, the
CE is fireable within [0, v].

Let us assume that I, is true for r = g < K: the CE is feasible
within [1,v,] and s, = 5. We will show that the CE is also feasible within
Jvg + 1,v441]. This is obviously true within Jv, + 1, vg41[. Indeed: Vv €]v, +
E_tig;rl[[, N(v) = N(vi)/ and F(v)_/—%> F(vg)/, thus Vo E]]ivg + 1,U(>]+1[[, lsjn(vz =
Smg +CT-F(v) —C~-N((v) =2 5pn, +CT-F(v,) —C~-N(vy) = s.(vg) -

Using the same reasoning as above to obtain equation (5), we have moreover:

Sa(Ug1) = smlvg) +C- S w05 (7)

!
teTs,

Since the step 044 is fireable, and the above equation corresponds to its fireability

147



. APPENDIX A

condition, we have: s;,(vg41) = Oy. Thus, the CE is fireable within Jvg +1, vg44].

To conclude, we need to show that S;(Ug+1)/ = 5;(vg41) . Here again, the previous

reasoning allows to obtain the desired result, and to conclude the induction.

We use the property I, with r = K—1 to show that the CE is feasible and allows
to reach sy at date vix. Now, let us consider the state s,_, reached by the CE at
date vpax. since there is not any firing after vy, we have: Vv €]vy, Umax] m >
Sm(vk) = O_M>, thus the CE is feasible until vy,.c. We can use the same reasoning
as before to show that the state reached at date vy,., by the CE is identical to
the one reached by the timed step sequence, i.e. ;... = (Sm(Vmax) ,@)

Then, equation (2.3) gives:

vt € T, Pk € [1,K¢] 5.t Vmax € [k, ul + d(t)]
=Vt € T,Vk € [1,K¢], Umax = ul + d(t)

_ t
= Umax = I?E@JTX(uKt +d(t))

which corresponds well to the definition of the date vy, above.

148



Résumé étendu en Francais

Les réseaux de Petri Temporisés (RAPT) sont utilisés pour modéliser une large
classe de systémes dynamiques discrets. La plupart des problémes considérés
peuvent étre modélisés comme des problémes d’accessibilité, et sont généralement
résolus a l'aide d’approches d’exploration du graphe de comportement du réseau
de Petri (RdP). Dans cette thése, nous présentons une modélisation incrémentale
du comportement des réseaux de Petri temporisés, permettant de rechercher des
séquences de franchissement solution du probléme d’accessibilité & 1'aide de la
programmation par contraintes. Notre approche ne nécessite pas la construction
a priosi du graphe d’accessibilité du réseau considéré. Elle permet une recherche
efficace de séquences de franchissement solutions des problémes modélisés. Notre
approche est aussi générale que possible puisqu’elle n'impose pas de structure
particuliére pour le Réseau de Petri, ni de sémantique de franchissment au plus
tot.
Dans cette theése, il y 5 chapitre.

e Chapitre 1, nous proposons les problémes et les contextes dans cette thése.

e Chapitre 2, nous donnons la définition des RAPT et du probléme d’accessibilité.
Ensuite, nous montrons l'exactitude et la faisabilité de nos méthodes —
Uapproache incrémentale— en prouvant 1’équivalence entre I'exécution con-

trole et la séquence de steps temporisés.

e Chapitre 3, nous construisons notre modeéle incrémental 'utilisant la pro-
grammation par contraintes. Le modéle est ensuite amélioré en ajoutant
des contraintes supplémentaires. Ensuite, les stratégies de recherche sont

appliquées pour améliorer I'efficacité de la recherche.

149



. RESUME ETENDU EN FRANCAIS

e Chapitre 4, nous appliquons notre approche incrémentale a la reconfigura-
tion des systémes de production manufacturiére et nous montrons son effi-
cacité. Dans ce chapitre, nous développons des techniques d’identification
du jeton permettant d’éviter la confusion de jetons faussant la résolution.
D’autre part, nous proposons des solutions a la gestion des boucles du mod-

éles pouvant conduire & des itérations infinis lors de la résolution.

Les techniques de jeton d’identification et en évitant les boucles sont développé

pour la résolution de 1’application.

e Chapitre 5, nous donnons la conclusion et les perspectives.

.1 Introduction

Les réseaux de Petri (RdP) ont été largement utilisés pour la modélisation, ’ana-
lyse, la synthése et I'implémentation de systémes de production manufacturiers
depuis plusieurs décennies [RSET04|, [ZV99]. Les systémes de production manu-
facturiers sont généralement caractérisés par des occurences d’événements discrets
concurrents. Les RAP sont bien adaptés a la modélisation de tels systémes car
ils capturent de maniére compacte les relations de précédence et les interactions
entre ces événements. Puisque les RAP sont fondés sur une base mathématique
solide, ils permettent a la fois des approches d’analyse qualitative et quantitative
des propriétés de tels systémes.

Lorsque I'on utilise les RAP, de nombreux problémes liés aux systémes de pro-
duction manufacturiers peuvent étre exprimés comme des problémes d’ accessibilité,
qui consistent a trouver une séquence de franchissements de transitions menant
d’un état initial & un état final. Lorsque les durées des opérations ou des événe-
ments doivent étre considérés, plusieurs classes de RAP peuvent étre utilisés,
comme les réseaux de Petri temporisés (RAPT), que nous considérons dans cette
thése. Nous considérons les problémes d’accessibilité dans les RAPT dans deux
contextes particuliers : I'ordonnancement de taches et la reconfiguration de sys-
témes. Un probléme d’ordonnancement peut se traduire par la recherche de la
séquence de franchissement optimale entre deux états. Ce probléme peut étre
résolu & 'aide de solveurs de programmation linéaire en nombres entiers. Dans

le cas de la reconfiguration, deux problématiques doivent étre considérées. La

150



Wlapproach Incrementale WTechnique d’Abstraction Logique

k: la profondeur du graphe Les Réseau des Petri
de comportement états accessibles my

Représenter implicitement
le comportement complet

Figure 1: Principales Méthodes

reconfiguration dynamique (en ligne) nécessite de trouver aussi rapidement que
possible une séquence d’opérations, pas forcément optimale. L’analyse hors-ligne
des possibilités de reconfiguration nécessite au contraire d’énumérer ’ensemble
des séquences possibles. Les solveurs de programmation linéaire étant mal adap-
tés a ces types de recherche, nous proposons d’évaluer la capacité des solveurs de

programmation par contraintes sur ces problémes.

L’approche proposée se fonde sur un parcours implicite du graphe d’accessibilité
du RdP, qui ne nécessite pas sa construction effective, comme présenté dans la
figure (1). Cela est réalisé par la construction d'une unique séquence de steps
temporisés de taille croissante pour représenter de facon incrémentale le com-
portement du RdAP considéré. Nous montrons dans cette thése comment notre
approche incrémentale peut étre utilisée pour résoudre divers problémes de pro-
duction manufacturiére modélisés comme des problémes d’accessibilité dans les
RdAPT. Le modéle mathématique construit est aussi général que possible puisqu’il
ne fait pas d’hypothéses au sujet de la sémantique de franchissement des transi-
tions, contrairement aux autres approches classiques dédiées a la méme problé-

matique.

151



. RESUME ETENDU EN FRANCAIS

Figure 2: Un Réseau de Petri Temporisé

.2 Approche incrémentale pour les réseaux de Petri

temporisés

.2.1 Probléme d’accessibilité dans les réseaux de Petri tem-
porisés

Les réseaux de Petri temporisés (RAPT) ont été introduits par [Ram74]. Nous
suggérons au lecteur 'article [Mur89] pour une présentation compléte des réseaux
de Petri. Dans cette thése, la présentation s’inspire des travaux de [Chr84|. Nous

commencons par donner une bréve présentation informelle des RAPT.

.2.1.1 Présentation informelle

Les réseaux de Petri temporisés sont des réseaux de Petri places/transitions
(RdP), dans lesquels une durée d(t) € N* est associée a chaque transition t.
Un RAPT a la méme représentation qu’'un Réseau de Petri, a laquelle est ajoutée
un étiquetage des transitions. Un exemple de RAPT est donné dans la figure (2).
On a: d(ty) = 3, d(ty) = 4, d(t3) =5, d(t4) = 2.

Les durées de franchissement associées aux transitions modifient les conditions

de validité des marquages. Lors du franchissement d’une transition, tout se passe



Date Marquage

(p1,p2,---,P6,71,72)

La date initiale 0 (1,0,0,0,1,0,1,1)
Tirs t; — 1 (0,0,0,0,1,0,0,1)
2 (0,0,0,0,1,0,0,1)

3 (0,0,0,0,1,0,0,1)

Finir t; — 4 (0,1,0,0,1,0,1,1)
Tirs ty — 5 (0,1,0,0,0,0,0,1)
Tirs to — 6 (0,0,0,0,0,0,0,0)
Finir t4 — 7 (0,0,0,0,0,1,1,0)
8 (00000,1,1,0)

9 (0,0,0,0,0,1,1,0)

Finir t5 — 10 (0,0,1,0,0,1,1,1)
Tirs t5 — 11 (0,0,0,0,0,1,1,1)
End of t5 — 12 (1,0,0,0,0,1,1,1)
Tirs t1 — 13 (0,0,0,0,0,1,0,1)

Table 1: Sémantiques de franchissement de la figure (2)

comme si les jetons « disparaissaient » au moment ol la transition est franchie,
puis « réapparaissaient » aprés un délai correspondant a la durée de la transition
en question. Ainsi, le marquage d’'un RAPT évolue suivant le rythme d’un horloge
externe. Par exemple, considérons la table (1) de la figure (2). A la date 1, la
transition t; (durée: 3 w.t.) est franchie. Puis la transition 4 (durée: 2 u.t.) est
franchie a la date 5. L’évolution du marquage en fonction du temps est donnée
dans la figure (2). Il faut noter que l'on aurait pu franchir la transition ¢4 a la date
4, puisque la ressource rq est rendue a la fin du franchissement de t;. Cependant,
la méme transition n’était pas franchissable a la date 3, puisque le franchissement

de t; n’était pas terminé.

Les dates de début et de fin de franchissement jouent un roéle fondamental
dans le comportement du RAPT. Il est donc nécessaire d’adapter les équations
de franchissement en fonction de ces dates particuliéres. De maniére a respecter
la sémantique de franchissement sous-jacente des RdAP, une séquence de fran-
chissement est dite franchissable si et seulement si, a tout instant, le marquage

intermédiaire atteint est constitué exclusivement de composantes non négatives.

153



. RESUME ETENDU EN FRANCAIS

.2.1.2 Reéseaux de Petri temporisés

Definition .2 (RAPT — Réseau de Petri Temporisé). Un réseau de Petri
temporisé [Ram7/] (R = (P, T,C*T,C7),d), accompagné de son marquage ini-

tial mo est un graphe orienté biparti ou:

o P et T sont deux ensembles finis de neeuds dénotés respectivement places et
transitions avec |P| = M et |T| = N. Les places sont représentées par des
cercles et les transitions par des rectangles. Les places représentent générale-

ment des conditions, et les transitions des événements, d’aprés [Mur89];

e Les matrices d’incidence C~,CT et C € NP*T (quec C = CT —C~) définis-
sent les relations d’incidence qui associent a chaque arc (p;,t;) ou (t;,p;)
son poids Cy; or C’Z‘; Lorsqu’il n’y a pas d’arc entre une place p; et une

. o A
transition t;, on a : Cij = C’ij =0,

e La fonction mgo : P — N associe a chaque place p € P un entier mo(p)
appelé marquage de p. Les marquages sont représentés par des disques pleins

appelés jetons a lintérieur des places;

e La fonction d : T — N* associe a chaque transition du réseau une durée

entiere strictement positive.

Dans la suite, nous utilisons des formulations fondées sur l'algebre linéaire
pour plus de concision. Par exemple, e_tz note le vecteur caractéristique associé a
une transition t;, dont la k'®™¢ composante prend la valeur 1 et les autres 0. 0_;
note un vecteur entiérement nul de dimension d.

Pour simplifier I’étude, nous nous limitons aux RAPT sans transitions immé-
diates (i.e. Vt € T,d(t) > 0), ce qui n’est pas trés restrictif dans les problémes
réels et correspond bien aux problématiques rencontrées dans les systémes de
production manufacturiéres.

La sémantique de franchissement des RAPT interdit la réentrance, ce qui sig-
nifie qu’il n’est pas possible de franchir une nouvelle fois une transition qui est
déja en cours de franchissement (on parle de politique mono-serveur). Cette re-
striction est bien adaptée aux problématiques des systémes manufacturiéres ot

les transitions sont associées a des opérations d’usinage sur des machines. Ainsi, il

154



est possible d’associer une unique durée résiduelle a chaque transition, sans confu-
sion possible entre des activations concurrentes. Le vecteur des durées résiduelles
est associé au marquage d'un RAPT pour définir son état complet.

Definition .3 (Etat d’un RAPT). Soit (R, d) un RAPT. Son état s = (5, 57)
est défini par :

e [e traditionnel vecteur de marquage <§n> € N™ qui associe a chaque place son

nombre de jetons ;

e un vecteur de durées résiduelles 8_,? € NV, associant a chaque transition

active sa durée résiduelle, ou 0 si la transition n’est pas active.

L’ensemble des états d'un RAPT est dénoté par . (R, d). Le concept fonda-
mental qui gouverne le comportement des RAPT est la notion d’ezécution con-
trolée, introduite par [Chr84| qui associe a chaque transition la suite de ses dates

de franchissement successives.

Definition .4 (EC — Exécution Controlée). Soit (R,d) un RIPT ett € T
une transition. Une séquence de franchissement pour la transition t : (ul) =

uf, ..., ug, € N est une suite croissante de dates de franchissement, telle que :
VEk € [1,K; — 1], up, + d(t) < ufyy (1)

Une exécution controlée est une famille (u},)er kep k) de séquences de fran-

chissement pour toutes les transitions du RdPT.

I faut noter que dans la définition précédente, 'équation (1) est utilisée
pour interdire la réentrance. Nous dénotons par vn., la date de fin du dernier
franchissement de 'EC : vy = max (uf(t + d(t)). Aprés vpmax, 'état du RAPT
soumis a l'exécution controlée considérée ne changera plus.

L’expression formelle d'une EC est utilisée pour définir plusieurs wvecteurs
caractéristiques permettant de vérifier sa validité. Nous faisons I’hypothése qu’aucune

transition n’est active a l'instant initial pour simplifier la formulation.

Definition .5 (Vecteur caractéristiques des exécutions controlées). Soit
(R,d) un RAPT avec son état initial sy = (W, @) donné a linstant 0 et
(uf)ter kep i, une EC. Soit v € [0, Umax]. Deux vecteurs caractéristiques sont
associés a (ul) de la maniére suivante :

155



. RESUME ETENDU EN FRANCAIS

—
e N(v) € NN est le vecteur correspondant au nombre de franchissements
ayant débuté dans lintervalle [0, v], défini par : N(v) ‘ = card ({ut,k € [1,K] |
t

uy, < v});

—
e F(v) € NN est le vecteur correspondant au nombre de franchissements qui
se sont terminés dans Uintervalle [0, v], défini par : F(v) ‘ = card ({ul, k € [1,K,] |
t
ub +d(t) < v}).

L’état d’'un RAPT est modifié sous 'action d’'une EC de la maniére suivante.

Definition .6 (Etats instantanés d’un RAPT sous I’action d’une EC). Soit
%

(R,d) un RAPT avec son état initial sp = <smo ,ON) donné a la date 0 et

(u )ter kep .k, une EC. Soit v € [0,vmax]. L’état instantané du réseau e, =

Sm(v) , 8p(v) ) a la date v est défini par :

e — —
$m(V) = 5o’ +CT - F(v) —C~ - N(v) (2)
— ub +d(t) —v si Ik €1,k st ve Jul,ul +dt)
HeT, 5o L‘{ b)) —v i3k Lkl st v € [k +OL

Informellement, dans la définition précédente, la quantité C'7 - FW corre-
spond aux jetons produits par les franchissements des transitions qui se sont ter-
minées jusqu’a la date v comprise. Ces jetons peuvent étre utilisées pour franchir
des transitions & la date v. La quantité C~ - N(v) correspond aux jetons utilisés
par les franchissements des transitions qui ont débuté jusqu’a la date v comprise.
Ainsi, s,(v) donne exactement le nombre de jetons restants dans le RAPT a la
date v.

De maniére évidente, comme pour les RAP, méme si chaque transition est
individuellement franchissable a la date prévue par 'EC, I'exécution controlée
compléte n’est pas nécessairement valide dans son ensemble puisqu’un jeton pour-
rait étre utilisé par plusieurs transitions au méme moment. Ainsi, une condition

pour qu'une EC soit valide est donnée ci-dessous.

Definition .7 (Exécution controélée valide). Soit (R,d) un RIPT avec son
%
état initial so = (smo ,ON> donné a la date Oh et (uf)ier kep,k,] une EC. Cette

156



EC est dite valide ssi :
% %
Vo € [0, Vmax], 5m(v) > O (4)
La condition précédente signifie qu’il doit y avoir suffisamment de jetons pour

que toutes les transitions puissent étre franchies simultanément.

.2.1.3 Probléme d’accessibilité dans les réseaux de Petri temporisés

En utilisant les notations précédentes, le probléme d’accessibilité dans les réseaux
de Petri temporisés consiste a rechercher une exécution controlée valide permet-

tant d’atteindre un état final donné & partir de I’état initial.

Definition .8 (Probléme d’accessibilité dans les RAPT). Soit (R,d) un RdPT
y — . =

avec son état initial so = (smo ,ON> donné a la date 0. Soit sy = (smf ,0¢ ) un

état cible. Le probléeme d’accessibilité dans les RAPT consiste a trouver une EC

(UZ)tET,kE[[l,Kt]] t€ll€ que S”Umax - (Sm(vmax) 787‘(Umax> ) - Sf.

Plusieurs approches ont été proposées pour résoudre le probléme d’accessibilité
dans les RAPT, soit en restreignant 1’étude a une sous-classe de RAPT, comme
les graphes d’événements temporisés, soit par 1'utilisation d’heuristiques dédiées.
Une bibliographie compléte est disponible dans [Ric00].

Puisque le franchissement d’une transition peut intervenir aussitot qu’elle est
sensibilisée mais peut également étre différée autant que souhaité, il peut exister,
a partir d'un état donné, un nombre infini d’états accessibles (différents du point
de vue des dates de franchissement), et aucun graphe d’accessibilité ne peut étre
construit. Une premiére approche peut étre de considérer les RAPT comme une
sous-classe des RdP temporels, de maniére a utiliser les méthodes énumératives
(graphes de classes d’état) proposées par [BDI1|.

Une autre possibilité est offerte lorsque ’on utilise la sémantique de franchisse-
ment au plus tot (pour laquelle une transition est franchie dés qu’elle devient
franchissable). Dans ce cas, il est possible de procéder a des analyses énuméra-
tives et structurelles [DA92], et de construire le graphe des marquages au plus tot
[CC88|. 1I faut noter que cette approche ne peut étre utilisée pour le probléme
d’accessibilité dans le cas général car franchir les transitions aussitot que possible

peut conduire a manquer des séquences de franchissement optimales.

157



. RESUME ETENDU EN FRANCAIS

La sémantique au plus tot a été largement étudiée pour la classe particuliére
des graphes d’événements temporisés (ol une place a exactement une transition
d’entrée et une transition de sortie), en utilisant I'algeébre (maz,+) [BCOQ92|.
Puisque leur structure ne contient pas de transitions en conflit, il est possible
d’obtenir des équations linéaires permettant de représenter le comportement com-
plet du réseau.

Une solution plus générale peut étre trouvée dans [DYKGO04[, ot des séquences
de franchissement non temporisées sont d’abord générées, puis associées a des
dates de tir en considérant alors uniquement les contraintes temporelles. Mal-
heureusement, une telle méthode nécessite d’énumeérer d’abord toutes les séquences,
ce qui méne & des problémes d’explosion combinatoire, et il peut ensuite exister
une infinité d’associations d’instants de tir aux transitions (si une transition peut
étre tirée a U'instant ¢, elle peut aussi I’étre & tout moment plus tard).

Dans la suite, nous montrons que notre approche incrémentale permet de
générer des modeéles de programmation par contraintes dans le cadre le plus

général.

.2.2 Approche incrémentale
.2.2.1 Présentation informelle

Dans cette section, nous proposons de batir un modéle mathématique de facon
wmcrémentale, fondé sur I'expression des contraintes correspondant & un nombre
croissant d’instants de tir.

Contrairement aux exécutions controlées, il n’est pas nécessaire de consid-
érer les marquages intermédiaires entre deux états pour vérifier la validité d'une
séquence de steps. En effet : méme si une transition qui a débuté a la date
v; a terminé son franchissement a une date strictement inférieure & la date de
franchissement suivante v;,1, ses jetons ont déja été consommés a la date v;iq,
de telle sorte qu’il suffit que les marquages soient positifs a chaque instant de tir
pour que les marquages intermédiaires entre deux instants de tir le soient aussi.
De telles considérations permettent de réduire le nombre d’états a considérer, et
permettent donc de réduire ’explosion combinatoire.

La principale idée dans notre formulation consiste a étudier 'évolution du

RAPT “step par step”. L’expression step est empruntée a [JK91].

158



Smo — |Smy - Smi| —  |Smpgr - Smk_s — Smk_1 —

o1 Ok+1 OK—1 ok = 0N
vo =0 vy = Vgy1 = VK1 = Umaz =
vo + Ay, Vg + Ay, k-2 + Ak_2 vk—1 + A1
Sro — |Sp o Se | Sy o Sres — Sre_y —_—

Table 2: Tableau Synoptique des Notations.

Un schéma synoptique des notations est donné dans la table (2). Nous ex-
primons & chaque instant de franchissement vgi; (défini par le délai A,, écoulé
depuis le franchissement précédent) les modifications induites sur les vecteurs
§n>(vk+1) et s_r>(vk+1) par le franchissement du step o(vgy1). De maniére & étre
plus concis, nous dénotons les expresions intermédiaires en utilisant 1'indice de la

date de franchissement correspondante : ﬁz(vk) = Sy, 0(v) = oy, ete.

.2.2.2 Steps temporisés

Definition .9 (ST — Step Temporisé). Soit (R,d) un RAPT. Un step tempo-

risé est la donnée d’une paire (o, vg) telle que :
e v, €N

o 0, € {0,1}1T est une fonction dénotant un ensemble de franchissements
concurrents a la date v, sous ’hypothése d’une politique mono-serveur. On
note o} le vecteur caractéristique des nouvelles transitions franchies a la

date vy,.

Pour exprimer le comportement d'un RAPT entre deux dates vy et vgpi1 sous
la forme d’une équation d’état, nous définissons deux ensembles de transitions

dont les franchissements se terminent ou se poursuivent & la date vy.

Definition .10 (Ensembles de franchissements). Soit (R, d) un RAPT avec
=

son état initial sg = <Sm0 ,0N> donné a la date vo. Soit (o;, vi)ie[[lﬂ une séquence

de k steps temporisés et v;v1 € N t.q. v;11 > v;. Les ensembles de franchissements

f s h . ‘ .
Ti et Ty, sont définis a la date vpyy de la manicre suivante .

e [’ensemble des transitions se terminant T,fﬂ € TN (« f» pour « finish-
ing ») note les transitions actives a la date vy qui ne sont plus en cours de

159

Srq = Sr;



. RESUME ETENDU EN FRANCAIS

franchissement a la date vgi1. Formellement :
T,fH_{ teT,Jiellk] st oit)=1

ie[1,k

Ao < max{vZ coy(t) =1} +d(t) < vk+1} (5)

o L'ensemble des transitions se poursuivant Tg., € TN (« s » pour « still

firing ») note les transitions actives a la date v qui sont toujours en cours
de franchissement a la date vgyq. Formellement :

T,fH—{ teT,Jie[lk] st oit)=1

AN v < gy < .n%[ax {vi 1 04(t) =1} + d(t)} (6)

i€[1,k
A Taide de ces notations, I’équation d’état des RAPT utilisant des steps tem-
porisés peut s’exprimer de la facon suivante : pour qu’un step temporisé soit
franchissable, son marquage de départ doit contenir assez de jetons pour que

chaque transition du step consomme ses propres jetons, comme 'indique la défi-

nition ci-dessous.

Definition .11 (Franchissement de steps temporisés). Soit (R, d) un RdPT
avec son état initial s = (W,@) donné a la date vy. Soit (0;,v;)icp i une
séquence de k steps temporisés menant a l'état s, = (s_m,i, STZ) a la date vg. Soit
Vpr1 € N g Ap = vpp1—vp > 0. Le step temporisé (a1, k1) est franchissable

depuis sy Ssi:

Vie T tq opa(t) =1, 5.(t) < Ay (7)
C_'Uk+1<8—mk>+c+' Z e_t; (8)
t;eT/

k+1

Si cette condition est satisfaite, le nouvel état sxy1 = (smkﬂ,srkﬂ) atteint a la

date vgy1 depuis sg par le franchissement de (0jy1,Vky1) est défini par :

Smpir T Smk C™ ok + cr Z 6—'5]> <9)
t;eT!, |
Srea = Z (Srk<t) Ak et + Z d(t;) - or1(J) - e_t; (10)
tE€TS, t;€T

160



La définition ci-dessus suit la sémantique de franchissement des RAPT décrite
plus tot, du point de vue d’un franchissement ponctuel entre deux états. L’expression
C™ - 0r+1 représente le nombre de jetons extraits des places en amont des transi-
tions nouvellement franchies oy, a la date v,,1. L’expression C' - thEka+1 e?j
représente les jetons ajoutés aux places en aval des transitions qui sont terminées
N ) : — . : N
a la date vg1. L’expression theTsz (sr,(t) — Ay) - & représente la mise &
jour des durées résiduelles des transitions qui étaient actives a la date v et sont
toujours actives a la date vgyq. La durée écoulée correspond a Ay = vpy1 — v

e, , . N — ,
unités de temps. L’expression th crd(t;) - oky1(J) - € représente les nouvelles
durées résiduelles résultant des nouveaux franchissements dans o, a la date
Ug+1- Finalement, I'équation (7) exprime qu’'une transition franchie dans un step
ne devait pas étre active au moment du franchissement considéré, de maniére a

respecter la politique mono-serveur.

.2.2.3 Vers un modéle incrémental

Nous donnons ci-dessous les principales propositions concernant 'utilisation des

steps temporisés dans le contexte des RAPT.

Proposition .12 (Equivalence entre ECs et séquences de steps temporisés).
Soit (R,d) un RAPT avec son état initial sy donné a la date vy et un état
sy € S (R,d). L’équivalence suivante est vérifiée :

Il existe une exécution controlée << 1l existe une séquence de steps

valide permettant d’atteindre sy a la temporisés franchissable permettant
date Vmax @ partir de sg. d’atteindre sy a la date Vmax G partir
de sg.

Corollaire .13 (Capture du comportement d’'un RAPT par une séquence

de steps temporisés)

Soit (R,d) un RAPT avec son état initial sy donné a la date vy = 0.

Toute exécution controlée peut étre représentée comme une séquence de steps
temporisés. Ainsi, tout état sy accessible depuis so peut étre atteint par une
séquence de steps temporisés. La longueur d’une telle séquence dépend de [’état

final & atteindre sy.

161



. RESUME ETENDU EN FRANCAIS

La preuve compléte de ces propositions est trop longue pour figurer dans
cette thése, et est donnée dans 'appendix A. Les résultats sont assez évidents
dans la mesure ou les deux formulations suivent la sémantique sous-jacente des
RdP ordinaires, et ol les ensembles T,f et T utilisés dans la définition (.10) sont
directement reliés aux vecteurs m et F'(v) utilisés dans la définition (.5). En

effet :
T, = {teT: F(vki‘t: (vki‘t—l A F(UHSt: (ukﬁ(t} ot T¢,, =
{tETZF(Ukjt:N(Ukjt—l/\ F(Uk+1jt:F(Uk+1§t

On peut remarquer dans les précédentes équations que les ensembles de fran-
chissement a la date k+ 1 peuvent étre complétement exprimés a partir de la sit-
uation donnée a la date k. Nous montrons ci-dessous comment exprimer T, ; et
T,jc 41 en utilisant uniquement 7;, 7, ,{ , A, et 0), de maniére & simplifier I’expression
du comportement du RAPT, et 4 la rendre complétement incrémentale : il devient
alors possible d’augmenter progressivement le nombre de steps temporisés utilisés
dans la formulation sans redéfinir ’ensemble complet des contraintes précédem-

ment exprimées.

D’apreés les précédentes propositions, il est suffisant de rechercher une séquence
de steps temporisés pour résoudre le probléme d’accessibilité dans les RAPT.
L’avantage d’'utiliser des steps temporisés est que cela permet de réduire le nombre
de franchissements dans le modéle — et donc le nombre de variables — tout en main-
tenant une équivalence avec le comportement initial. Ainsi, il ne s’agit pas d’une
modification de la sémantique des RAPT, mais seulement d’'une maniére de cap-
turer 'indépendance des transitions. Bien entendu, cette réduction n’intervient
pas systématiquement, car il est facile de construire un RAPT dans lequel une
seule transition pourrait étre franchie a la fois. Cela signifierait cependant que le

réseau de Petri ne montre aucun parallélisme, ce qui est assez inhabituel.

Dans notre travail, nous nous intéressons plus particuliérement aux problé-
matiques de stireté de fonctionnement. La vérification d'une exigence de sécurité
peut étre effectuée en procédant a la recherche d'une séquence de franchisse-
ments temporisés représentant un contre-exemple de la propriété a garantir, ou
a I’énumeération de ’ensemble des chemins entre deux états pour vérifier que la
propriété est toujours vraie. Nous proposons donc d’utiliser une approche fondée

sur la programmation par contraintes qui est bien adaptée a ce type de démarche.

162



.3 Analyse des réseaux de Petri temporisé en util-

isant la programmation par contraintes

Dans ce chapitre, nous avons traduit notre modeéle incrémental des RAPT en
utilisant la programmation par contraintes (PPC). Dans ce cour, la technique la
plus importante est d’utiliser les contraintes conditionnelles pour représenter les
équations non linéaires des Ensembles de franchissements. La PPC utilise princi-
palement deux étapes pour résoudre le probléme: Modélisation et Résolution.
Dans la phrase de Modélisation, la PPC peut réduire [’espace de recherche formé
par les variables en ajoutant quelques améliorations, par exemple, en réduisant les
domaines des variables et en ajoutant des nouvelles contraintes. Dans la phrase
de Résolution, certaines stratégies de recherche développés peuvent trouver une
solution en parcourant [’arbre de recherche plus efficace, car les nceuds ou des
éléments non relevent peuvent étre éliminés lors de la recherche. Ce processus
de recherche peut réduire I'influence de 1’explosion combinatoire d’'une maniére
controlée. Dans le meilleur des cas, la PPC peut trouver une solution sans nceuds
échouer ce qui signifie sans développer d’autres etats non relevent dans le graphe

d’accessibilité.

.3.1 Modéle mathématique pour la programmation par con-

traintes

Dans cette section, nous commencons par exprimer les franchissements de
séquences de steps sous forme d’équations linéaires et de contraintes condition-
nelles, classiquement utilisées dans le cadre des approches de type programmation

par contraintes.

.3.1.1 Mise a jour des marquages

Pour exprimer la quantité de jetons ajoutés a sp41) par les franchissements
de transitions qui se sont terminés entre les dates vy et vgi1, nous ajoutons les
variables intermédiaires T'F{;1); dénotant les transitions en question, contraintes

par les équations suivantes :

163



. RESUME ETENDU EN FRANCAIS

Vi € [1,N],Vk € [0,k — 1]

ST‘k- > 0 f

! =T =1 11

{ A Srkj o Avk < 0 (k+1 ( )
Srk. < 0 f

! =T =0 12

{ v Srkj . Ak > 0 (k+1 ( )

L’équation (11) permet d’identifier les transitions j qui étaient en cours de
franchissement & la date v, et dont les franchissements sont terminés & la date
Uky1- Inversement, 1'équation (12) identifie les transitions qui n’étaient pas en
cours de franchissement a la date v, ou qui sont déja terminées a la date vy ;.

—
Le vecteur T'Fj4 est alors utilisé pour exprimer 1'équation (9) comme suit :
Smpy1 = S—m;: C™ - opy1 + cr Tlg—f—l (13)

.3.1.2 Mise a jour des vecteurs de durées résiduelles

Pour exprimer ’équation (10), nous ne faisons pas apparaitre explicitement un
vecteur caractérisant I'ensemble T} |, mais nous utilisons directement les valeurs
de T} pour vérifier si des transitions précédemment actives sont toujours en cours.

Puisque la réentrance est interdite, une transition ¢; qui était déja active a la
date vg ne peut démarrer un nouveau franchissement au step vy, si le précédent
franchissement n’est pas terminé auparavant. Ainsi, & la date vy, la composante
du vecteur de durées résiduelles correspondant a la transition considérée, s,41);,

peut prendre deux valeurs :

r L= Tei A
Sy = D > 0= Ty T O T (14)
Okt1); = 0
Srg Ap<0= Srrry; d(]) “O(k+1)j (15>

L’équation (14) impose que si t; est toujours active, elle ne peut étre franchie
une nouvelle fois et que s,(;+1); doit étre mis & jour avec la durée de franchissement
restante, compte tenu du temps écoulé. D’aprés 'équation (15), si t; n’est pas en

cours de franchissement, ou est terminée, a la datevgyq, la valeur de s,(41); est

164



fonction du nouveau step o(1);. Les équations (14) et (15) sont utilisées pour

exprimer I'équation (10) dans le modele final.

.3.1.3 Expression des conditions de franchissement

La politique mono-serveur imposée par 'équation (7) est déja garantie par la
seconde partie de 'équation (14).

De la méme maniére, 1'expression de la condition de franchissement (8) est
une conséquence de l'équation (13), puisque les variables du vecteur m sont

contraintes a étre positives.

.3.2 Améliorations du modéle

De maniére a réduire I'espace de recherche et améliorer 'efficacité de notre mo-
dele de programmation par contraintes, nous réduisons le domaine des variables

et ajoutons des contraintes, en fonction des spécificités des RAPT considérés.

.3.2.1 Conditions de franchissement

Puisque toutes les transitions ont une durée de franchissement finie, il n’est pas
nécessaire d’attendre aprés le franchissement du step o, & la date v, plus du
temps nécessaire pour que toutes les transitions actives se terminent, c’est-a-dire
au plus la composante maximale du vecteur de durées résiduelles s,;, exprimée
par max (@ ). En effet, apres la date vy + max (5,7), tous les jetons nécessaires
JE[LN] JE[LN]
pour franchir les transitions actives a la date v sont de nouveau disponibles.
En utilisant le méme raisonnement, on remarque que les variables Ay et s,;
ne dépasseront jamais la plus grande durée de franchissement possible dénotée par

Doow = max d(t). Ces considérations ménent & 1'ajout des contraintes suivantes :
te

Vk € [0,x],Vj € [1,N], sy, €{0, Dinaa } (16)
Vk € [0,K],Vj € [LN], 8, < d (17)
Vk € [0,K — 1], Ay, €{0, Dypaz} (18)
Vk € [0,K — 1], A, < maw(s_r,:) (19)

De maniére a réduire ’espace de recherche, nous interdisons le franchissement

de steps vides, c¢’est-a-dire de steps ne contenant aucun franchissement de tran-

165



. RESUME ETENDU EN FRANCAIS

sition, qui étaient autorisés dans des travaux précédents. Cela permet d’éviter
de trouver des solutions baties a partir d'une autre par le simple ajout d’un step
vide. Seul le dernier step est autorisé & étre vide, de maniére a pouvoir atteindre
un état final pour lequel le marquage cible est atteint et plus aucune transition
n’est encore active.

Il faut noter que cela implique de choisir le nombre de steps de maniére précise
puisque si I'on choisit plus de steps que nécessaire, il se peut qu’aucune solution ne
soit trouvée. Au contraire, autoriser les steps vides permet d’utiliser une recherche
dichotomique pour trouver le nombre minimal de steps nécessaires pour atteindre
I’état final.

De maniére a éviter les solutions baties I'une depuis l'autre en découpant
un step en plusieurs franchissements individuels successifs a4 la méme date, nous
interdisons au délai Ay entre deux steps o et o,y d’étre nul, excepté pour
le premier franchissement Ag. Ainsi, si une solution existe pour laquelle deux
transitions ¢; et t; doivent étre franchies simultanément a la date vy, elles seront
franchies dans un unique step o7 = z + t_k> et pas en utilisant deux steps op = t_j
etOTH):t_]:a,VeCAk:O.

Les précédentes améliorations permettent de réduire ’espace de recherche en
éliminant des solutions qui seront trouvées de toute fagon sous une autre forme.

Les contraintes correspondantes sont données dans les équations (20) et (21).

vk € [0,k — 1]],Nz_: 470 (20)
j=0
Vke[l,k —1],A,, 0 (21)

.3.2.2 Propriétés structurelles

Puisque les RAP expriment le comportement de systémes physiques, ils présen-
tent généralement un comportement infini, fait d’exécutions cycliques, mais leur
nombre total d’états est borné. Ainsi, il est souvent possible de calculer une borne
maximale pour le marquage de chaque place, ce qui permet de réduire le domaine
des variables s,,; dans le modeéle considéré, comme indiqué dans 1'équation (22).
Ces bornes peuvent étre calculées par la génération des P-flots du réseau, comme
indiqué dans [KJ87].

166



Noeud racine

Niveau Q= = = = = = = = = = = = = = = = -

Scission

Niveau 1== == = = = = == = = = = (= === - La propagation de contraintes

Scission

Noeud ferme

Niveau2= =@ = = @@= = =@ = = === === == La propagation de contraintes

Deadend

Backtrack

Niveau3= =@ - — @=- - —-@——€@---@0—-— - —-—=—-0—- -

Figure 3: L’arbre de Recherche

Vk € [0,K], Vi € [1,M], 8, €[0, Mpaz] (22)

.3.3 Stratégies de recherche

S’il existe une solution, nous pouvons trouver un K pour la trouver. Mais le
temps nécessaire pour trouver une solution varie considérablement en fonction
des stratégies de recherche et de I'espace de recherche. En général, un arbre de
recherche est exploré pendant le processus de recherche, comme presenté par la
figure (3). Pour explorer efficacement I'arbre de recherche, plusieurs techniques
sont appliquées dans cette thése, comme 1'ordre de prise en compte des variables

et de leurs valeurs, et le backtracking.

.3.3.1 Variables

Pour énumérer les variables, les stratégies génériques sont donnés par des tech-
niques de PPC et des stratégies dédiées sont développés sur la connaissance du
comportement des RAPT et de la signification des variables. Dans Ilog Solver, Il
y a quelque des stratégies génériques, qui sont basées sur la taille du domaine des
variables. On peut citer dans le manuel [IBM10].

Mais les stratégies génériques ne considérent pas les informations de la struc-
ture des RAPT. Aussi, elles ne donnent pas forcément les meilleures stratégies de

recherche, elles ne nous permettent pas de controler I'exploration de 'espace de

167



. RESUME ETENDU EN FRANCAIS

recherche. Donc, dans cette thése, nous proposons également de développer des
stratégies dédiées basées sur notre connaissance du comportement des RAPT et
la signification des variables. Elles sont principalement basées sur

Les steps de franchissement (a7)

Les dates de franchissement (A,,)
e Les marquages (5, )

Les vecteurs de durée résiduelle (5,7)

.3.3.2 Valeur

Apres avoir choisi une variable & un niveau de I'arbre de recherche, les valeurs de
cette variable sont énumérées une par une.

En général, les valeurs d’un intervalle sont énumérées de la borne I'inferieure
a la borne superieure. Mais dans notre approche, nous les énumérons dans 1’ordre
inverse car cette stratégie sera plus efficace et prendre plus de sens physique. Par
exemple, oy; € [0, 1], si oy; = 1, cela signifie que la transition ¢; sera tirée a la date
U, autrement op; = 0. On va perdre beaucoup de temps sur le franchissement
d’un oy; vide. Par exemple, la solution ¢y, o031 est tiré premiere, et séquence de

steps temporisés sera comprimé dans la derniére step.

.3.3.3 Backtrack

En général, les principaux algorithmes de backtrack sont dérivés de [[BM10]. 1l
y a les algorithmes comme, Depth-First Search (DFS), Best First Search (BFS),
Slice-Based Search (SBS) etc.

Dans cette thése, nous avons testé beaucoup des benchmarks et essayé beau-
coup des stratégies de recherche. Basé sur les benchmarks, nous pouvons conclure
que la strategie la plus important est la step-by-step qui est la plus proche de sens
physique du RAPT. Pendant ce temps, énumeére variables relatives (oy et s, de

haut en bas, et A et s, de bas en haut) améliorera beaucoup 'efficaciteé.

168



.4 Application

Dans cet chapitre, nous appliquons notre approche incrémentale & la reconfigura-

tion des systémes de production manufacturiére et nous montrons son efficacité.

4.1 Reconfiguration

Dans cette section, les principaux problémes des systémes de fabrication sont
d’abord introduits en utilisant un systéme de transport reconfigurable. Le proces-
sus de reconfiguration consiste en deux étapes: la prise de décision et la mise en
cuvre opérationnelle des actions reconfiguration.

La prise de décision consiste a déterminer un nouvel état objectif a atteindre.
Le processus opérationnel consiste a déterminer la procédure a appliqguer pour
atteindre cet état objectif a partir de 1’état courant. Ensuite, la méthodologie
pour les systémes de production est basée sur les RAPT. Le modeéele RAPT est
principalement constitué du Pregraph et des Gammes Opératoires Etendues. Ils
décrivent respectivement les solutions de routage et ’ensemble des combinaisons
d’opérations d’usinage pour produire des piéces finies. En outre, des modéles
supplémentaires sont introduit pour effectuer la reconfiguration de systémes de

production.

4.2 Identification des jetons

Lorsque plusieurs produits sont simultanément transportés, il peut y avoir
une confusion de jetons dans le Pregraph. Par conséquent des techniques
d’identification du jeton pour RAP ordinaires sont présentées dans [HBT07]. A
chaque place, on associe un nombre entier non-négatif appelé ID du jeton. Cette
technique d’identification du jeton peut étre bien siir utilisée pour tout RdP sauf.

Comme les jetons sont absents pendant le franchissement de la transition,
un nouveau vecteur ;;;Z est défini pour enregistrer les identificateurs des jetons
manquants correspondants. Cette méthode est limitée aux RAPT saufs, puisque
deux identificateurs de jetons ne peuvent pas étre confondus dans le méme place.

Dans ce travail, nous avons également proposé une technique d’identification

du jeton pour les RAPT bornés. Pour cela, nous proposons d’associer un vecteur

169



. RESUME ETENDU EN FRANCAIS

d’identificateurs pour chaque type de jeton (jetons avec le méme ID) que nous
nommons respectivement ﬂ et m .

Cette méthode peut réduire la complexité de la séparation et de la mise a
jour des identificateurs de jetons entre les places et transitions, puisque chaque
vector d’identificateur de jeton semble étre mis a jour indépendamment dans son
réseau seul. Ainsi, nous définissons ce réseau partiel d’indépendant la couche
d’identification des jetons dans les RAPT. Et il peut facilement exprimer le com-
portement du RAPT avec plusieurs jetons d’identifiants différents.

Bien que l'espace de recherche semble étre élargi par la couche de jeton
d’identification, les identificateurs de jetons doivent suivre le marquage des RAPT
originaux. Par conséquent, l'efficacité de la recherche d’une solution est presque
la méme que celle du RAPT original. Ensuite, nous comparons ces techniques
d’identification du jeton en utilisant le méme exemple pour comparer l'efficacité
relative de nos méthodes.

Mais lorsque l'on étudie le systéme de transport reconfigurable, nous avons
découvert que les solutions restent difficiles & générer ne sont guére trouvé en rai-
son de boucles dans le Pregraph, car ils conduisent le Solver a aller profondément

dans ’arbre de recherche.

.4.3 Eviter les boucles

Nous proposons deux types de méthodes pour éviter 'influence de boucles basées
sur les réseaux d’identificateurs de jetons dans le RAPT. En premier lieu, les
contraintes conditionnelles sur la base de la structure du Pregraph sont introduites
pour éviter les boucles des robots. Méme si cette méthode peut effectivement
conduire le Solver & obtenir des solutions, cette méthode est trés spécifique a ce
modéle.

Deuxiémement, nous développons un nouveau vecteur — priorité de franchisse-
ment ﬁ — pour les transitions dans le Pregraph. L’élément de ﬁ montre la
priorité d’une transition et sera mis en 0 apreés le franchissement.

Par conséquent, les jetons ne peuvent pas tirer la méme transition a nouveau,
ce qui peut aider a éviter les boucles. Comme ﬁ est définie sur chaque identi-
ficateur de jeton, les jetons avec des ID différents ne seront pas interdits pour la

méme transition. Siles jetons ont besoin d’aller dans certaines boucles, ﬁ peut

170



étre remis & zéro en fonction de ces besoins.

Enfin, des benchmarks présentent l'efficacité de nos approches.

.5 Conclusion et perspectives

Dans notre thése, nous nous intéressons a la génération de séquences de fran-
chissement dans les RAPT. Notre objectif est de développer des méthodes effi-
caces permettant d’adresser les problématiques de stireté dans les systémes de
production et de transport, par ’énumération de séquence de franchissement
représentatives.

Nous proposons d’utiliser un modéle construit incrémentalement pour cap-
turer le comportement d'un RAPT sous la forme d'un systéme d’équations
linéaires et de contraintes conditionnelles. Un modéle de programmation par
contraintes est ainsi proposé, ainsi que des enrichissements visant a améliorer son
efficacité.

Ce modéle a été évalué sur des exemples académiques avec des résultas promet-
teurs dans [HBYTI12b|. Des techniques de linéarisation permettant d’éviter
d’utiliser des contraintes conditionnelles ont été développées dans [HBYT12¢],
avec une étude sur différentes stratégies d’énumération.

Plus récemment, nous avons proposé d’améliorer I'expressivité de notre mod-
¢le dans [HBYT12a], en ajoutant la prise en charge d’'une couche d’identification
des jetons au RAPT.

Bien entendu, nous ne prétendons pas que l'explosion combinatoire a été re-
poussée. Elle est seulement déplacée dans la phase de résolution des contraintes.
Cependant, notre formulation permet de bénéficier automatiquement des progrés
des meilleurs solveurs actuels. Un autre intérét de cette formulation est d’éviter
I’exploration des branches du graphe d’accessibilité qui ne conduisent pas au mar-
quage recherché. Ces deux derniers points nous font penser que notre méthode
peut apporter des améliorations au domaine de recherche considéré.

Dans le futur, nous proposons de poursuivre les intéressantes perspectives de

recherche soulevées par ce travail :

e compléter les expérimentations numériques en appliquant notre méthodolo-

gie a des applications de taille réelle ;

171



. RESUME ETENDU EN FRANCAIS

e améliorer le modéle obtenu en ajoutant d’autres bornes, inégalités valides,

contraintes globales traduisant des propriétés structurelles du RAPT ;

e adapter les techniques d’exploration de la programmation par contraintes
aux spécificités du probléme considéré, en définissant des techniques de

filtrage et en améliorant les techniques d’énumération.

Finalement, nous devons signaler que l'appproche incrémentale décrite ici
ne méne qu’a des algorithmes de semi-décision, dans la mesure ot le nombre
d’instants de tir K est défini de maniére arbitraire, puisque nous n’avons pas
d’information sur le nombre de steps nécessaires pour éventuellement trouver une
solution. Ainsi, si aucune solution n’est trouvée pour cette valeur de K, on ne
peut conclure sur la possibilité d’atteindre 1’état final ou non.

Pourtant, lorsque I'on étudie des RAPT bornés, il est possible d’affecter a
K la valeur de la profondeur séquentielle du réseau, un paramétre défini dans
[BHY 04| qui garantit I'exploration compléte du graphe d’accessibilité. En util-
isant ce paramétre comme profondeur de recherche, il est toujours possible de
conclure lorsque l'algorithme s’arréte. Une direction de recherche prometteuse
serait de définir des procédures de recherche efficaces pour calculer la valeur de

ce parameétre.

172



Bibliography

|ADL12]

IAKT7]

[AkeT8|

|ALO4]

[Apt03]

[BCC*03]

IBCCZ99)

S. Amari, I. Demongodin, and J. J. Loiseau. Max-plus control design

for temporal constraints meeting in timed event graphs. Automatic
Control, IEEE Transactions on, 57(2):267-272, 2012. 18

T. Araki and T. Kasami. Some decision problems related to the

reachability problem for petri nets. Theoretical Computer Science,
3:85-104, 1977. 9

S.B. Akers. Binary decision diagrams. IEEFE Transactions on Com-
puters, 27(6):509-516, juin 1978. 9

M.R. Abdi and A.W. Labib. Grouping and selecting products: the
design key of reconfigurable manufacturing systems. International
Journal of Production Resources, 42(32):521-546, 2004. 19

K. Apt. Principles of constraint programming. Cambridge University
Press, 2003. 59, 62, 64

A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, and Y. Zhu.
Bounded model checking. Advances in computers, 58(99):117-148,
2003. 21

Armin. Biere, Alessandro. Cimatti, E.M. Clarke, and Y. Zhu. Sym-
bolic model checking without bdds. In Proceedings of the 5th Inter-
national Conference on Tools and Algorithms for Construction and
Analysis of Systems, TACAS ’99, pages 193-207, London, UK, UK,
1999. Springer-Verlag. 20, 22, 50

173



BIBLIOGRAPHY

[BCM*90]

[BCM*92)

[BCOQ92]

IBDO1]

[Ben00]

|Ber86]

[Ber9g]

|BHO6|

[BHY04]

J.R. Burch, E.M. Clarke, K.L.. Mcmillan, D.L. Dill, and L.J. Hwang.
Symbolic model checking : 10%° states and beyond. In Proceedings
of 5th IEEE Symp. on logic and computer science, 1990. 10

J.R. Burch, E.M. Clarke, K.L.. McMillan, D.L. Dill, and L.J. Hwang.
Symbolic model checking: 1020 states and beyond. Information and
Computation, 98(2):142 — 170, 1992. 21

F. Baccelli, G. Cohen, GJ. Olsder, and JP. Quadrat. Synchronization
and Linearity: An algebra for discrete event systems. John Wiley &
Sons Inc., 1992. 18, 158

B. Berthomieu and M. Diaz. Modeling and verification of time de-
pendent systems using time petri nets. IEEE Transactions on Soft-
ware Engineering, 17:259-273, Mar 1991. 16, 157

A. Benasser. L’accessibilité dans les réseaux de Petri : une approche
basée sur la programmation par contraintes. PhD thesis, Université
des Sciences et Technologies de Lille, 2000. 8, 22, 23

G. Berthelot. Transformations and decompositions of nets. In
Brauer, W., Reisig, W., and Rozenberg, G., editors, Advances in
Petri Nets 1986 Part I, Proceedings of an Advanced Course, volume
254, pages 359-376. Springer-Verlag, 1986. NewsletterInfo: 27. 13

P. Berruet. Contribution au recouvrement des systemes flexible de
production manufacturiere: analyse de la tolerance et reconfigura-
tion. PhD thesis, Université des Sciences et Technologies de Lille,
1998. 19, 97, 98, 137

T. Bourdeaud’huy and S. Hanafi. Scheduling of flexible manufactur-
ing systems using timed petri nets and mathematical programming.
Proceedings of the 8th International Workshop on Discrete Event
Systems, 3:94-99, 2006. 87, 88

T. Bourdeaud’huy, S. Hanafi, and P. Yim. Efficient reachability

analysis of bounded Petri netts using constraint programming. In

174



BIBLIOGRAPHY

[Bou04|

[BRV04

[BTO09)]

[CCss)

[CGPYY

[Chr84]

|CLOS|

|Cla08|

[CMS99]

SMC"04, International Conference on Systems, Man and Cybernet-
1cs, La Hague, Hollande,, 2004. 54, 134, 172

T. Bourdeaud’Huy. Techniques d’abstraction pour ['analyse et la
synthése de réseaux de petri. PhD thesis, Ecole Centrale de Lille,
2004. 23

B. Berthomieu, P.O. Ribet, and F. Vernadat. The tool TINA aAS
Construction of abstract state spaces for petri nets and time petri
nets. International Journal of Production Research, 42(14):2741-
2756, July 2004. 7

T. Bourdeaud’huy and A. Toguyeni. Evaluation of mathematical
programming models for the reconfiguration of reconfigurable man-
ufacturing systems. In Problems in Manufacturing, pages 1941-1946,
2009. 19, 105

J. Carlier and P. Chretienne. Timed Petri net schedules. Advances
i Petri Nets 1988, 340:62-84, 1988. 17, 27, 28, 31, 33, 36, 54, 132,
157

E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT
Press, Cambridge, MA, 1999. 2

P. Chretienne. Exécutions controlées des réseaux de Petri temporisés.
TSI. Technique et science informatiques, 3(1):23-31, 1984. 32, 152,
155

C.G. Cassandras and S. Lafortune. Introduction to discrete event

systems, volume 11. Kluwer Academic Publishers, 2008. 1, 4

E. Clarke. The birth of model checking. In Orna Grumberg and
Helmut Veith, editors, 25 Years of Model Checking, volume 5000
of Lecture Notes in Computer Science, pages 1-26. Springer Berlin
Heidelberg, 2008. 20

A. Cerone and A. Maggiolo-Schettini. Time-based expressivity of
time Petri nets for system specification. Theoretical Computer Sci-
ence, 216(1-2):1-53, March 1999. 5

175



BIBLIOGRAPHY

[CPJ80)

IDA92]

IDAO4]

[Deal1|

[Deal3|

[DLBPO5]|

[DTDCO0)

[DYKG04]

[Fin93)|

[FJIM92]

P. Chrétienne, Y. Pesqueux, and Grandjean J.C. Algorithmes et

pratique de programmation linéaire. Technip, 1980. 12

R. David and H. Alla. Petri nets and grafcet: tools for Modelling
discrete event systems. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1992. 17, 157

R. David and H. Alla. Petri nets for modeling of dynamic systems:
a survey. Automatica, 30(2):175 — 202, 1994. 5

M. Diaz et al. Les réseaux de petri - Modeéles fondamentaux. Hermes
Science, Traité IC2 Information-Commande-Communication, 2001.
8,9

M. Diaz et al. Vérification et mise en cuvre des réseaux
de Petri. Hermes Science, Traité IC2 Information-Commande-

Communication, 2003. 8

F. De Lamotte, P. Berruet, and J.L. Philippe. Using model transfor-
mation for the analysis of the architecture of a reconfigurable system.
In IMACS’05 world congress, Paris (France), july 2005. 19

N. Dangoumau, A. Toguyeni, M. Dupas, and E. Craye. Reconfig-
uration process for automated production systems. In MCPL’00,
Grenoble (France), july 2000. 19

O.B. Driss, P. Yim, O. Korbaa, and K. Ghedira. Reachability search
in timed petri nets using constraint programming. In Systems, Man
and Cybernetics, 2004 IEEFE International Conference on, volume 5,
pages 4923-4928 vol.5, 2004. 17, 84, 158

A. Finkel. The minimal coverability graph for petri nets. Advances
in Petri Nets 1993, lecture notes in Computer Science, 674:210-243,
1993. 13

JC. Fernandez, C. Jard, T. Jéron, and L. Mounier. "on the fly"
verification of finite transition systems. Formal Methods in System
Design, 1992. 11

176



BIBLIOGRAPHY

|God96]

|GP10]

IGPGO4|

[HBTO7]

[HBYT12a]

[HBYT12b)

[HBYT12¢|

[HBYT13]

P. Godefroid. Partial-order methods for the verification of concurrent

systems: an approach to the state-explosion problem, volume 1032.
Springer-Verlag Inc., New York, NY, USA, 1996. 14

M. Gendreau and JY. Potvin. Handbook of meta-heuristics. Springer,
2010. 65

D. Gouyon, JF. Pétin, and Morel G. Control synthesis for product-
driven automation. In WODES’04, september 2004. 19

S. Hadhri, T. Bourdeaud’huy, and A. Toguyeni. A mathematical pro-
gramming approach for the reconfiguration of reconfigurable manu-
facturing systems with token identification. In 2007 IEEE Interna-
tional Conference on Systems, Man and Cybernetics, pages 1351—
1356. Ieee, October 2007. 96, 105, 106, 107, 112, 169

Y. Huang, T. Bourdeaud’huy, PA. Yvars, and A. Toguyeni. A con-
straint programming approach for generating firing sequences in
timed Petri nets with token identification. In 171th International
Workshop on Discrete Fvent Systems, pages 149-156, 2012. 114,
133, 171

Y. Huang, T. Bourdeaud’huy, PA. Yvars, and A. Toguyeni. A
constraint programming model for solving reachability problems in
timed Petri nets. In 9éme Conférence Internationale de Modélisa-
tion, Optimisation et SIMulation, pages 140-149, 2012. 89, 171

Y. Huang, T. Bourdeaud’huy, PA. Yvars, and A. Toguyeni. Us-
ing constraint programming for solving the reachability problem in
timed Petri nets: evaluation of basic labeling strategies. In 14th

IFAC Symposium on Information Control Problems in Manufactur-
1ng, volume 14, pages 260-266, 2012. 78, 171

Y. Huang, T. Bourdeaud’huy, P. Yvars, and Armand. Toguyeni. Ap-
proches incrémentales pour les réseaux de Petri temporisés fondées

sur la programmation par contraintes.pdf. Journal Européen des
Systemes Automatisés, 27:77-92, 2013. 48

177



BIBLIOGRAPHY

[HDZJ04]

[Hel2]

[HJJJ85)|

[HZ07]

[IBM10]

[Jen92]

[JKO1

[KHJ*+99]

KJ8T|

IKM69)

S. Henry, E. Deschamps, E. Zamai, and M. Jacomino. Control
law synthesis algorithm for discrete-event systems. In proceedings
of MCPL’0/4, Santiago (Chili), 2004. 19

F. He. Effective integrations of constraint programming, integer pro-
gramming and local search for two combinatorial optimisation prob-
lems. PhD thesis, University of Nottingham, 2012. 59

P. Huber, A.M. Jensen, L.O. Jepsen, and K. Jensen. Towards reach-
ability trees for high-level petri nets. Lecture Notes in Computer
Science: Advances in Petri Nets 198/, 188:215-233, 1985. Newslet-
terInfo: 27. 15

B. Hriz and M. Zhou. Modeling and control of discrete-event dy-
namic systems: With petri nets and other tools. Springer, 2007. 4,
5

IBM. Ibm ilog solver v6.8 user’s manual, 2010. 66, 79, 84, 167, 168

K. Jensen. Coloured petri nets - basic concepts, analysis methods
and practical use. In EATCS Monographs on Theoretical Computer
Science, volume 1, pages 1-234. Springer Verlag, 1992. 5

R. Janicky and M. Koutny. Optimal simulations, nets and reacha-
bility graphs. In Advances in Petri Nets, Lecture Notes In Computer
Science, volume 524, pages 205-226, 1991. 39, 40, 158

Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G. Pritschow, G. Ulsoy,
and H. Van Brussel. Reconfigurable manufacturing systems. Annals
of the CIRP, 48(32):527-540, 1999. 19

F. Krukeberg and M. Jaxy. Mathematical methods for calculating
invariants in petri nets. In Grzegorz Rozenberg, editor, Advances in
Petri Nets 1987, volume 266 of Lecture Notes in Computer Science,
pages 104-131. Springer Berlin / Heidelberg, 1987. 72, 166

R.M. Karp and R.E. Miller. Parallel program schemata. Journal of
Computer and Systems Sciences, 3(2):147-195, mai 1969. 13

178



BIBLIOGRAPHY

|Kos82]

[Lau87|

[Lip76]

[LMS89)

[LNC*08]

[Loio4]

IMF76)|

[Mic07]

[MKIO7]

S.R. Kosaraju. Decidability of reachability in vector addition sys-
tems. In Proc. of the 14th Annual ACM Symp. on Theory of Com-
puting, pages 267281, San Francisco, 1982. 8

K. Lautenbach. Linear algebraic techniques for place/transition nets.
In Brauer, W., Reisig, W., and Rozenberg, G., editors, Advances in
Petri Nets 1986, Part I, Proceedings of an Advanced Course, volume
254, pages 142-167. Springer-Verlag, 1987. NewsletterInfo: 27. 12

R. Lipton. The reachability problem requires exponential space.
Technical Report 62, New Haven, Connecticut: Yale University, De-
partment of Computer Science, Research, Computer Science Dept.,
Yale University, 1976. 8

J.B. Lassere and P. Mahey. Using linear programming in petri nets.
Operations Research, 23(1):43-50, 1989. 12

S. Lai, D. Nessi, M.P. Cabasino, A. Giua, and C. Seatzu. A compar-
ison between two diagnostic tools based on automata and petri nets.
In Discrete Event Systems, 2008. WODES 2008. 9th International
Workshop on, pages 144-149, 2008. 6

C. Loiseaux. Vérification symbolique de programmes réactifs a l’aide
d’abstractions. PhD thesis, Université Joseph Fourier, Grenoble,
1994. 14

P. Merlin and D. Farber. Recoverability of communication protocols
implications of a theoretical study. Communications, IEFE Trans-
actions on, 24(9):1036-1043, 1976. 5

A. Michalak. Constraint programming for stochastic problems. PhD
thesis, AGH University of Science and Technology, 2007. 59

R. Maeno, M. Konishi, and J. Imai. Decomposition of time petri nets
for solving optimal firing sequence problem. Mem Fac Eng Okayama
Univ (CD-ROM ..., 41:44-51, 2007. 4, 5

179



BIBLIOGRAPHY

IMKMHS6|

[Mur89|

IMVOS]

[PBTZ05]

[Pet62]

[Ram73|

|[Ram74|

[RBWO6|

[Ric00]

[RSET04]

T. Murata, N. Komoda, K. Matsumoto, and K. Haruna. Petri Net-
based controller for flexible and maintainable sequence control and

its applications. Industrial Electronics, IEEE Transactions on, 1E-
33(1):1-8, 1986. 5

T. Murata. Petri nets: properties, analysis and applications. Pro-
ceedings of the IEEE, 77(4):541-580, 1989. 34, 152, 154

F. Michel and F. Vernadat. Maitrise de I'explosion combinatoire.
réduction du graphe de comportement. RAIRO Technique et Science
Informatiques, 17:805-837, 1998. 4

J.F. Petin, P. Berruet, A. Toguyeni, and E. Zamai. Impact of in-
formation and communication emerging technologies in automation
engineering: outline of the INTICA project. In NeCST’05, Ajaccio
(France), october 2005. 97

C.A. Petri. Fundamentals of a theory of asynchronous information
flow. In IFIP Congress, pages 386—390. North-Holland, 1962. 5

C. Ramchandani. Analysis of asynchronous concurrent systems by
timed Petri nets. PhD thesis, Massachusetts Institute of Technology,
1973. 5

C. Ramchandani. Analysis of asynchronous concurrent systems by
timed Petri nets. PhD thesis, Massachusetts Institute of Technology,
1974. 32, 33, 152, 154

F. Rossi, P.V. Beek, and T. Walsh. Handbook of constraint program-
ming (Foundations of artificial intelligence). Elsevier Science Inc.,
New York, NY, USA, 2006. 26, 59, 61, 62, 65, 135

P. Richard. Modelling integer linear programs with petri nets.
RAIRO/Operations Research, 34:305-312, 2000. 16, 38, 157

L. Recalde, M. Silva, J. Ezpeleta, and E. Teruel. Petri nets and
manufacturing systems: an examples-driven tour. Lectures on Con-
currency and Petri Nets, pages 71-89, 2004. 150

180



BIBLIOGRAPHY

ISF12]

[STCO8]

[TBCO3]

[Tog04]

[Valol|

[Val9g]

[VAMO96]

[Ver01]

[Wan9g]

IXZ98]

[Yim00]

J. Silva and P. Foyo. Timed petri nets. In Petri Nets - Manufacturing
and Computer Science, pages 359-378. InTech, 2012. 5

M. Silva, E. Teruel, and J.M. Colom. Linear algebraic and linear
programming techniques for the analysis of place/transition net sys-
tems. In LNCS 1492, pages 309-37. Springer, 1998. 12

A. Toguyeni, P. Berruet, and E. Craye. Models and algorithms for
failure diagnosis and recovery in FMSs. International Journal of
Flexible Manufacturing Systems, 15:57-85, 2003. 19

A. Toguyeni. Reconfigurability analyser for automated production
systems. In INCOM’04, Salvador-Bahia (Brazil), april 2004. 19

A. Valmari. Stubborn sets for reduced state space generation. Lecture
Notes in Computer Science; Advances in Petri Nets 1990, 483:491—
515, 1991. NewsletterInfo: 33,39. 15

A. Valmari. The state explosion problem. Lectures on Petri Nets I:
Basic Models, 1491:429-528, 1998. 6

F. Vernadat, P. Azéma, and P. Michel. Covering steps graphs. In
Springer-Verlag, editor, 17 th Int. Conf on Application and Theory
of Petri Nets 96, volume LNCS 1091, Osaka - Japan, 1996. 15

F. Vernadat. Contribution a la modélisation et & la vérification

des systémes communicants. Habilitation a Diriger des Recherches.

LAAS/CNRS, mai 2001. 2, 8, 9

Jiacun Wang. Timed Petri Nets, Theory and Application. Kluwer
Academic Publishers, 1998. 5

H.H. Xiong and M. Zhou. Scheduling of semiconductor test facility
via petri nets and hybrid heuristic search. Semiconductor Manufac-
turing, IEEE Transactions on, 11(3):384-393, 1998. 5

P. Yim. Réseaux de petri, logique et théorie des ensembles : contri-
butions a I'étude des systémes dynamiques discrets. Habilitation a
diriger des recherches. Université de Lille 1, Decembre 2000. 22

181



BIBLIOGRAPHY

[YW94] M. Yamauchi and T. Watanabe. An approximation algorithm for the
legal firing sequence problem of Petri Nets. Proceedings of IEEE In-
ternational Symposium on Circuits and Systems - ISCAS "94, 6:181—
184, 1994. 6

[ZV99] M. Zhou and K. Venkatesh. Modeling, simulation, and control of
flexible manufacturing systems: a Petri net approach. World Scien-
tific, 1999. 150

182



Titre : Une approche incrémentale pour I’extraction de séquences de franchissement
dans un Réseau de Petri Temporisé : application a la reconfiguration des systémes de
production flexibles
Cette these a pour objectif la génération de séquences de franchissement dans les Réseaux
de Petri Temporisés (RAPT) en utilisant une approche incrémentale. Le verrou principal
auquel est confronté ce travail est I'explosion combinatoire qui résulte de la construction
classique du graphe d’accessibilité du RAPT. Nous proposons d’utiliser la notion de séquence
de steps temporisés, afin d’exprimer progressivement l’ensemble des séquences de fran-
chissements permettant de passer d’un état courant a un état cible. La notion de step
temporisé correspond & une abstraction logique du comportement du systéme considéré.
Le caractére incrémental de I'approche a pour objectif de gagner en efficacité. En effet, il
consiste a exprimer tout nouvel état de la résolution par rapport & une profondeur K+1, en
fonction d’un état atteint a la profondeur K. Ainsi, nous proposons plusieurs algorithmes
de recherche incrémentale permettant d’améliorer I'efficacité de la résolution des problémes
d’accessibilité. Nous utilisons ensuite la programmation par contraintes pour modéliser le
probléme de recherche d’accessibilité dans un RdAPT et mettre en ceuvre notre approche
incrémentale. Notre approche permet également d’ajouter des contraintes spécifiques & un
contexte de résolution. Nous avons notamment utilisé cette possibilité pour proposer des
techniques d’identification des jetons dans un RAPT borné, dans le cadre de la reconfiguration
des systémes manufacturiers. Nous concluons par I'évaluation de différentes applications

constituant des benchmarks permettant d’illustrer 'efficacité des approches proposées.

Mots clés : Réseau des Petri Temporisé, Optimisation Combinatoire, Approche Incrémentale,

Séquences des Franchissement, Problémes d’Accessibilité, Programmation par Contraintes.

Title: An incremental approach for the extraction of firing sequences in Timed Petri

Nets: application to the reconfiguration of flexible manufacturing systems

This PhD thesis is dedicated to the generation of firing sequences in Timed Petri Net (TPN)
using an incremental approach. To reduce the complexity of the well-known problem aAS
combinatorial explosion issue, a unique sequence of timed steps is introduced to incrementally
implicit traverse the underlying reachability graph of TPN, without needing its whole con-
struction. This sequence of timed steps is developed based on the logical abstraction technique.
The advantage of the incremental approach is that it can express any state just from the last
step information, instead of representing all states before. Several incremental search algo-
rithms are introduced to improve the efficiency of solving reachability problems. Constraint
programming (CP) techniques are used to model and solve our incremental model, in which
search strategies are developed to search for solutions more efficient. Our method can easily
add specific constraints in realistic systems. Token identification techniques are developed to
handle token confusion issues that appear when addressing the reconfiguration of manufac-
turing systems. Finally, experimental benchmarks are given to illustrate the effectiveness of
approaches proposed in this thesis.

Keywords: Timed Petri Nets, Combinatorial Optimization, Incremental Approach, Firing

sequences, Reachability Problem, Constraint Programming.



