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Introduction

We present here two problems related to numerical simulation of viscous incompressible fluids

that will be described and analyzed in the two main parts of this thesis:

– Part 1: Numerical simulation of the two-phase flow problem.

– Part 2: An example of shape optimization in fluid mechanics.

This general introduction is aim at enlightening the structure of this manuscript, it contains neither

technical details, nor references on the aforementioned topics (which are left for the detailed intro-

duction of each part). We sketch out here the main problems, hence leading to define the content

of each chapter.

The first concern of this thesis is the problem of two fluids flow or two-phase flow, i.e, we

are interested in the simulation of the evolution of an interface (or a free surface) between two

immiscible viscous fluids or two phases of a fluid. The main challenge in solving these problems

is to define and to handle an accurate representation of the interface that separates the different

fluids, even in the event of geometry or topology changes. In strongly deforming flows, this difficulty

is related to maintaining a high-quality interface while conserving the total mass and allowing

some extreme changes like folding, merging and breaking (see Figure 1). Another difficulty is the

accurate computation or estimation of some algebraic quantities like the normal vector and the local

curvature along the interface. Furthermore, a surface tension force must be considered in the model

and accurately evaluated.

It seems obvious that any proposed approach for solving this problem involves two major prob-

lems, related respectively to:

i. The resolution of the geometry and the evolution of the interface.

ii. The resolution of the equation governing the "movement" of the flows in a non-homogeneous

medium.
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Figure 1: Extreme changes of the interface: folding (top, left), breaking (bottom, left) and merging

(right).

Among the numerous methods that have been developed for the simulation of free surface flows,

the level set method has been extensively used in the past few years due to its simplicity and

efficiency. More specifically, we propose here a general scheme for solving two fluids flow or two-

phase flows which takes advantage of the flexibility of the level set method for capturing evolution of

the interfaces, including topological changes. Unlike similar approaches that solve the flow problem

and the transport equation related to the evolution of the interface on Cartesian grids, our approach

relies on an adaptive unstructured mesh to carry out these computations and enjoys an exact and

accurate description of the interface. The explicit representation of the manifold separating the

two fluids will be extracted to compute approximately the surface tension as well as some algebraic

quantities like the normal vector and the curvature at the interface.

Figure 2: Illustration of a computational domain Ω(t) composed of two phases Ω1(t) and Ω2(t) having

different material properties and separated by an interface Γ(t) which may evolve in time.
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More precise description, the moving interface Γ(t) between two immiscible fluids occupying two

sub-domain Ωi(t)(i = 1, 2) (see Figure 2) is represented as zero-level set of a level set function φ(x, t):

Γ(t) = {x ∈ Ω(t) : φ(x, t) = 0}. Hence, the evolution of the interface is governed by the advection

of the level set function φ:
∂φ

∂t
+ u.∇φ = 0

where the advection vector u is the velocity of the flows governed by the incompressible Navier-Stokes

equations solving:
ρi
(
∂ui

∂t
+ (ui · ∇)ui

)
− µi∆ui +∇pi = ρif i inΩi (i = 1, 2)

divui = 0 inΩi (i = 1, 2)

with the interfacial condition on Γ :

u1 − u2 = 0

(σ1 − σ2).n1 = −γκn1

The surface tension is taken into account as the term of a localized force −γκn1 at the interface.

In a nutshell, the resolution of a two-fluid problem is summarized by the steps involves the

following ingredients:

– a numerical method for solving incompressible Navier-Stokes equations (Chapter 1);

– a geometrical treatment to evaluate the surface tension (Chapter 2);

– a numerical method for solving the level set advection (Chapter 2);

– the techniques of mesh adaptation (Chapter 3).

Let us finish the introduction of our first part by specifying the role of mesh adaptation in this

scheme. It is obvious that no numerical method is completely exact in solving the PDE problem

at hand, hence, we need a discretized computational domain. However, the accuracy of numerical

solutions or the mass loss/gain can generally be improved with mesh refinement. The question that

arises is related to where and how to refine the mesh. At each time, our mesh adaptation produces

the adapted mesh based on the geometric properties of the interface and the physical properties of

the fluid, simply speaking, only one adapted mesh at each time step to assume both the resolution

of Navier-Stokes and the advection equations. It answers to the need for an accurate representation

of the interface and an accurate approximation of the velocity of fluids with a minimal number of

elements, then decreasing the amount of computational time.
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The second part of this thesis is related to shape optimization in fluid mechanics. Broadly

speaking, this problem can be formulated as the minimization of an objective function J(Ω) of the

domain variable Ω, via the solution uΩ of a mechanical problems (Stokes system in our context). By

the classical way, the study of the derivative of J with respect to the domain makes it possible to

compute a descent direction V for J from a given shape Ω, then Ω is updated to obtained the new

shape Ω(t). However, there are a lot of difficulties in implementing this idea:

– The practical computation of the descent direction V usually involves the resolution of one, or

several PDE systems posed on Ω (Stokes system and adjoint system). At this point, we need

to construct the adjoint system which is also solved on Ω and leads to the resolution of V .

– The evolution of the shape Ω along the velocity field V is fairly straightforward in the theo-

retical framework, but unfortunately much harder in the numerical practice. In particular, it

inherently depends on how Ω is parametrized. For instance, if Ω is described by a mesh, the

evolution of Ω is naturally translated to the moving of the associated vertices in the direction

of V . This sometimes produces an ill-shaped (or even invalid) mesh for the new shape (see

Figure 3). In general, mesh evolution is a difficult issue, especially in three space dimensions.

Figure 3: Ilustration for the cases of ill-shaped mesh (top) and invalid mesh (bottom): (left) A

velocity field V, defined at the vertices of a mesh; (right) deformed mesh.
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So, in order to satisfy all the requirements of the computation of a descent direction for J and of

the description of the domain evolution, several authors proposed to combine the aforementioned

techniques of shape sensitivity analysis with the level set method. In these approaches, the general

idea is enclosing all the possible shapes in a fixed, large computational domain D equipped with

a fixed mesh D and to describe any shape Ω from an implicit point of view, via a scalar level set

function φ : D → R which fulfills the following properties (see Figure 4):

 

  

  

   

   

Figure 4: (Left) A shape Ω ⊂ D, (Center) representation of shape Ω by associated level set function

and (Right) triangular mesh of D enclosing a mesh of Ω (yellow elements).

∀x ∈ D,


φ(x) < 0 ifx ∈ Ω

φ(x) = 0 ifx ∈ ∂Ω

φ(x) > 0 ifx ∈ D \ Ω

The evolution of Ω(t) along the velocity field V is reformulated in terms of an associated level set

function φ(., t) as the following level set advection equation:

∂φ

∂t
+ V.∇φ = 0

which can be solved on D, using its mesh D.

The computation of V is however not so easy in this context: we indeed evoked the fact that it

requires solving PDE systems posed on Ω - a mesh of which is not available. These systems must

then be approximated as PDE systems posed on the whole domain D (in the context of linearized

elasticity, this is generally achieved by using the Ersatz material approach), and solved on the fixed

mesh D. This operation may turn out to be difficult in the study of mechanical models which require

a high accuracy in the description of the boundaries of shapes.
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Our approach arises from the observation that a slight modification in this methodology allows us to

retain its great versatility when it comes to tracking the evolution of shapes, while benefiting from

an exact description of any considered shape Ω ⊂ D.

Indeed, since a mesh of a shape Ω is needed at each time, one could imagine to modify D in such a way

that an explicit discretization of Ω appears in it (see Figure 4). Hence, the computation of the descent

direction V from Ω would become straightforward, and would not involve any approximation of the

considered mechanical problem. Carrying out this idea inherently requires to be able to perform

local mesh operations on D, hence to work with fully unstructured meshes; in our case, we shall

use simplicial meshes (i.e triangulation in two dimensions, tetrahedralization in three dimensions).

Moreover, it implies the following ingredients:

– a numerical method for solving the mechanical problem (Stokes system and adjoint system).

This is the reduced system (not containing the advection operation) of the Navier-Stokes

equations that have been solved in Chapter 1.

– a numerical method for solving the level set advection equation on a simplicial computational

mesh of D. This is one of the purposes of the work in Chapter 2 (Section 2.3)

– a meshing technique for discretizing explicitly a shape known via an associated level set func-

tion, on a mesh of D. This is described in Chapter 3.

Let us now outline the description of the different chapters of this thesis.

The plan of the thesis

Chapter 1: Numerical resolution of Navier-Stokes equations

Chapter 1 focuses on the numerical solving of the incompressible Navier-Stokes equations for one

viscous fluid. We rely on the Lagrange-Galerkin formulation for treating the convection operator
∂
∂t + u.∇. By this way, at each time step the Navier-Stokes problem becomes an unsteady Stokes

problem that can be solved using the finite element method. The resolution of the linear system

from the finite element discretization is based on the Uzawa method or the Penalty method using

Conjugate Gradient algorithm and a preconditionned Conjugate Gradient algorithm. A classical

numerical test Lid-driven cavity is investigated in order to valid and assess our code with considered

options in two and three dimensions spaces.
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Chapter 2: The scheme for two-phase flow simulation

The second chapter begins with the introduction of the model of two-fluid flows with the interface.

Our model is based on the incompressible Navier-Stokes equation for the velocity field of the fluids,

and the level set advection equation for the evolution of the interface. At each time step, the level

function is transported by the velocity field of the fluid to define a new position of the interface. The

resolution of this equation is carried out using the method of characteristics. Here, the characteristics

are approximated by piecewise affine sequences using a Euler or 4th-order Runge-Kutta schemes. Due

to the explicit discretization of the interface in the computational mesh, the surface tension can be

estimated geometrically. As known, a drawback of the level set method is the difficulty in preserving

the regularity of the interface and the conservation of the mass. To overcome these problems, a

redistancing procedure and a technique of mass correction are supplemented to our scheme. A

numerical scheme based on mesh adaptation for two-phase flow simulation is proposed at the end

of this chapter.

Chapter 3: Mesh adaptation

In this chapter we recall the major concepts and aspects of two mesh adaptation processes that

have been used successfully in the general schemes of two-fluid flows as well as for shape optimization.

– Anisotropic mesh adaptation: the adapted mesh is generated based on the information stored

in a metric tensor. This metric tensor is constructed from the requirements of the accuracy

of geometrical approximation as well as from a numerical approximation of the concerned

problems.

– Discrete three dimensional domain remeshing : The adapted mesh is generated based on a local

size map. The local size map of the adapted mesh is computed to satisfy a given geometric

approximation as well as to comply with numerical approximation constraints.

In these mesh adaptation processes, the final adapted mesh should be "well-shaped" mesh with

respect to some quality criterions.

Chapter 4: Numerical examples

This chapter presents several examples of numerical resolutions of incompressible Navier-Stokes

equations as well as of two-fluid flows involving an interface. Each case test will be considered in two

and three dimensions. The first example is the Lid-driven cavity. This test has been presented in

Chapter 1 to valid all implements in our code. In this chapter, examples are exhaustively investigated
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and compared with the results gathered in the references. Not only taking care of the number of

the vortices, the streamlines, we compare also the position of the primary vortex and the velocity

profile as well as the pressure of the fluid.

The efficiency and reliability of our numerical scheme for two-fluid flows are examined throughout

several examples for which the surface tension is taken into account, namely, the rising bubble, the

Rayleigh-Taylor instability, the coalescence of two rising bubbles. The results obtained are consistent

with those found in the literature and show that the proposed scheme is able to manage complex

interfacial movements, include topology changes.

Chapter 5: Shape optimization in fluid mechanics

The chapter begins with the shape sensitivity analysis based on Hadamard’s boundary variation

method in which the computation of shape derivative as well as the adjoint system are considered

in the context of Stokes system. From the inferring of the descent direction, we play out a global

algorithm for shape optimization in fluid mechanics. This algorithm is set in the context of level set

method on unstructured meshes and mesh evolution to obtain a numerical scheme for shape opti-

mization in fluid mechanics. A numerical example with the objective function of energy dissipation

is presented to demonstrate the efficiency of the proposed scheme.



Part I

Numerical simulation of the problem

two-fluid flows
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Introduction

Over the last decades, tremendous progress has been achieved on the development and the analy-

sis of numerical methods for one-phase incompressible Stokes and Navier-Stokes flows, as emphasized

by the vast literature on this topic. Open source and commercial software packages are now readily

available and can be used as black-box solvers for a large class of industrial problems. However,

challenging topics still require further investigation to reach the same level of maturity. For instance,

the work that has been done on numerical methods for incompressible Navier-Stokes equations for

one fluid is already a good starting point for dealing with two fluids or two-phase flow problems.

Actually, research on this topic has started in the last few years. However, there are several specific

issues relevant to two-fluid problems that are not present in one-phase or one-fluid incompressible

flow problems. In this context, the numerical treatment of the interface between two immiscible

fluids is certainly a difficult challenge that raises many related and yet mostly unresolved problems:

the coupling between the fluid dynamics and the interface evolution, the conservation of mass, the

treatment of singularities (geometrical and topological) and the approximation of surface tension

forces. Not surprisingly given the level of difficulty of mathematical analysis, most research results

in this topic have been published in the engineering literature, at the noticeable exception of the

monograph [GR11]; see for instance [AMW98] or [TBE+01] for an overview of numerical methods

for the simulation of multiphase flows.

Well-posedness results for the general weak formulation of the Navier-Stokes problem for two-

phase flows including the interface condition VΓ = u · n (see Section 2.1) have been analyzed only

for special cases (e.g. unbounded domain Ω = R3 and lim|x|→∞ u(x, t) = 0) and when the initial

interface Γ(0) is a closed manifold [Den94]. The case of a bounded domain Ω for arbitrary time

intervals [0, T ], T > 0 is treated in [Tan93]; it provides a well-posedness result for the Navier-Stokes

problem in a weak formulation. Most analysis apply to cases with sufficiently smooth data and do

not apply when the regularity of the interface drops down, like when bubbles collide, for example. In

such cases, curvature is no longer well-defined and weak alternatives have to be considered. These

alternatives involve different representations of the interface which in turn induce relevant numerical

techniques for the simulation of two-fluid flows.

Let us briefly recall the two most important methods for interface representation. Broadly speak-

ing, these methods can be classified as Lagrangian ODE techniques and Eulerian PDE techniques.

Authors often introduce the terminology interface tracking versus interface capturing to characterize

the treatment of the interface.
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1. Interface tracking: When the interface regularity is sufficient, then normal, curvature and

immiscibility condition like VΓ are well-defined. Given a velocity field u ∈ V , where V a

suitable functional space, the trace u|Γ is well defined and the interface evolution can be

described in Lagrangian coordinates. Each and every infinitely small particle in the domain

Ω is transported (advected) by the flow field u(x, t) and we define the characteristic X(t) =

X(x0, t0; t) as the path of this particle with initial position x0. This trajectory is described

by the following set of ordinary differential equations:
dX(x0, t0; t)

dt
= u(X(x0, t0; t), t) t ≥ 0

X(x0, t0; t0) = x0 .

(1)

For u(x, t) Lipschitz-continuous (with respect to x), this system has a unique solution and the

regularity of X is related to the regularity of u. For T > 0 sufficiently small, there is a one to

one mapping between (x, t) ∈ Ω× [0, T ] and a unique x0 such that x = X(x0, t0; t). Following

the flow backwards in time starting from (x, t) yields the equation:

x = x0 +

∫ t

t0

u(X(x0, t0; t))dt , (2)

which represents a transformation from Eulerian to Lagrangian coordinates. The Navier-

Stokes problem can be transformed accordingly into a non stationary problem with a stationary

interface Γ(0) [Tan93]. Likewise, the evolution of the interface Γ(t) can be described by using

the Lagrangian coordinates and Γ(t) is simply characterized as the set of x ∈ Γ(t) satisfying

(2). This class of method is called interface tracking.

Practically, the Navier-Stokes problem is solved on a fixed grid or an unstructured mesh using

an Eulerian approach and a Lagrangian approach is used to solve the evolution of the interface.

Marker points are equidistributed along the interface Γ(t0) at time t0 and then advected by

the flow field u over a time period ∆t. Their final location mark the position of the interface

at time t + ∆t. After several time steps, the equidistribution property is usually lost and

marker points have to be redistributed along the new interface Γ(t+ ∆t). Markers are usually

connected to define a piecewise affine interpolation of the interface and can coincide with

the set of vertices of a triangulation of Γ(t0). In addition, this method requires to transfer

information between the interface and the fixed grid once the interface has moved. Obviously,

this approach is not very well-suited for dealing with topology changes or severe displacements

(distortion) of the interface between two time steps. More details about this method and its

implementation can be found in the references [UT92, ET98, ET99, HAC97].
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To partially overcome these problems, hybrid approaches like the arbitrary Lagrangian-Eulerian

(ALE) method have been proposed and revealed especially efficient for solving fluid-structure

interaction [Bae01, Beh01, GT09, GT94]. They consist in solving the interface using a grid or

a mesh and then the later is moved according to the flow velocity u. The mesh velocity in the

interior of the domain generally differs from the flow velocity field, in order to avoid strong

distortions.

In Volume of Fluid methods (VOF), the treatment of the interface is based on a weak formu-

lation of the advection equation
∂χ1

∂t
+ u · ∇χ1 = 0 (3)

where χ1(·, t) is the characteristic function for the subdomain Ω1(t), one of the two subdomains

delimited by the interface Γ(t) hereby defined as Γ(t) = ∂Ω1(t) = ∂supp(χ1(·, t)). The function

χ1 is discontinuous across the interface and the transport equation requires a specific treatment.

Given an arbitrary small elementary volume of fluid W and integrating leads to the following

equation:
∂χ1

∂t

∫
W
χ1 dx+

∫
∂W

χ1u · n ds = 0 , (4)

that can be interpreted as a weak formulation of (3) corresponding to volume conservation. The

method typically involves two steps: at first, the reconstruction of the interface (approximation

of the characteristic function) and then, the advection of the volume fraction function.

This VOF approach is widely used for the numerical simulation of two-fluid flows, mainly

because it enjoys good mass (volume) conservation property and can handle topology changes

without difficulty, [HN81, SZ99]. The main drawbacks are twofold: VOF methods are tedious

to implement on unstructured meshes and tend to lose accuracy, and a CFL condition must

be satisfied that leads to severe limitations on the time step. Furthermore, obtaining accurate

intrinsic geometric properties, such as normals, tangents, curvatures, and hence surface tension,

reveals difficult in pratice. Current works in progress focus on solving these problems and carry

a lot of promises [GTBD06, TCC+00, dSMN+04].

2. Interface capturing: As pointed out, in Volume Of Fluid methods, the discontinuous charac-

teristic function χ1 across the interface imposes specific numerical treatment of the transport

equation (3). An interesting alternative consists in introducing a continuous auxiliary func-

tion. The level set method, introduced by [DT80, OS88] suggest to use the signed distance

function to the initial interface as auxiliary function φ:

φ(x) < 0, x ∈ Ω1(0), φ(x) > 0, x ∈ Ω2(0), φ(x) = 0, x ∈ Γ(0) . (5)
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Assuming the velocity field u(x, t) is sufficiently smooth, then for t > 0 the level set values

φ(x, t) are defined by considering the values constant along characteristics, namely by writing:

φ(X(x0, t0; t)) = φ(x0) , x0 ∈ Ω, t ≥ 0 , (6)

and when differating this advection equation with respect to t it comes:

∂φ

∂t
+ u∇φ = 0 , for all

1

2
x ∈ Ω , t ≥ 0 . (7)

This equation (similar to (3)) is well-defined in its current fomulation given the velocity field

u is Lipschitz-continuous with respect to x. Furthermore, the interface Γ(t) can be defined by

the values of the auxiliary function φ at any time t:

Γ(t) = {x ∈ Ω ; φ(x) = 0} . (8)

There is no uniqueness of a solution for a general continuous velocity field u in this strong for-

mulation. However, the notion of viscosity solutions of transport equations with a continuous

velocity field eventually applies here, which yields to sub- or supersolutions [CIL92].

The level set (7) is not only used for the mathematical analysis of well-posedness of two-fluid

flows but has also very attractive numerical features for representing and handling the interface

Γ(t). We consider the initialization of φ with the signed distance function φ = d(x,Γ(0)) to the

interface (equation (8)) at t = 0. The velocity field is the result of Navier-Stokes equation and

the transport equation (7) is discretized using suitable numerical methods in space and time

(see Sections 2.1 and 2.3 for more details of our implementation). As the level set function

is continuous, its discretization is more accurate than that of the characteristic function con-

sidered in VOF methods. As the iterations in time increase, so does the discrepancy between

the numerical solution φh(x, t) and the signed distance function. A reinitialization of the level

set function is then carried out when for example ‖∇φh(x, t)‖2 exceeds some given tolerance

value.

Due to its simplicity and its ability to efficiently deal with topology changes, the level set

method has been extensively used in engineering applications. Additionally, the extension from

two to three dimensions can be achieved easily. Like the ALE method described above, variants

of the level set method can be considered, in which the interface is explicitely discretized (hence

the terminology interface capturing) by a mesh and this mesh is moved with the flow velocity.

As will be seen, intrinsic properties of the interface can be accurately computed using the

level set function [Set99]. In the remainder of this manuscript, we will restrict our numerical

investigation to only one of these, the level set representation.
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In this part, we will describe in details our work and propose a general strategy for solving

two-phase flows which takes advantage of the flexibility of the level set method for capturing and

tracking evolution of the interfaces, including topological changes, and enjoys an exact and accu-

rate description of the interface using a conforming unstructured mesh. The numerical resolution

of incompressible Navier-Stokes equations is presented in Chapter 1, our approach is based on

the Lagrange-Galerkin scheme was first introduced by [BIKL80] and studied in [Pir82]. Chapter

2 presents the combining an implicit method for dealing with the domain evolution and an ex-

plicit representation of the manifold separating the two fluids. This idea is obviously not new but

unlike similar approaches that solve the flow problem and the transport equation on Cartesian

grids [ALTP98, GTBD06, EFFM02, MG07, BCdV14], our approach relies on an adaptive unstruc-

tured mesh to carry out these computations. Chapter 3 is devoted to the techniques of mesh

adaptation as well as the construction of adapted mesh process. Many numerical tests are investi-

gated in Chapter 4 in two and three dimensions in order to assess the efficiency and reliability of

our proposed numerical schemes.
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The purpose of this chapter is to present the numerical methods we have designed to resolve

Navier-Stokes equations. Our approach is based on the combination of the method of characteris-

tics with a finite element formulation. This method was first introduced by Benqué [BIKL80] and

analyzed in [Pir82], and is also known as the Lagrange-Galerkin method. The main idea behind this

method is that the convection operator (the non linear term) of the Navier-Stokes equation can be
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turned into a total derivative (also called material derivative) by using a Lagrangian formulation.

The outline of this chapter is the following: After introducing the incompressible Navier-Stokes equa-

tions for a single viscous fluid in Section 1.1, we express the operator of velocity ∂
∂t +u.∇ by material

derivative d
dt which allows us to discretize in time this problem in Section 1.2. In this approach,

the non-linear part of Navier-Stokes equations is associated with a Cauchy problem, and this leads

us to solve an unsteady Stokes problem at each time step. The following sections are concerned

with the numerical resolution of a generalized Stokes problem by the finite element method: sec-

tion 1.3 presents the variational formulation for different boundary conditions. Section 1.4 presents

the discrete formulation corresponding to Lagrange-Galerkin finite elements of P1bubble/P1 and

P2/P1. Section 1.5 describes the matrix formulation and the resolution of the resulting linear sys-

tem discretized by finite elements spaces. In the last section 1.6 we detail a numerical test, the

Lid-driven cavity in order to validate and to compare the numerical resolution of the incompressible

Navier-Stokes equations in two and three dimensions with different parameters and settings related

to: finite elements, the order of the scheme for approximating of the characteristic lines and the

resolution of linear systems.

1.1 The Navier-Stokes equations for incompressible fluid

Let Ω be a bounded domain in Rd(d ∈ {2, 3}) and let denote Σ, its boundary. We consider the

Navier-Stokes equations governing unsteady incompressible flows in general:
ρ

(
∂u

∂t
+ (u · ∇)u

)
− µ∆u +∇p = ρf inΩ× [0, T ]

divu = 0 inΩ× [0, T ]

(1.1)

where:

– u = u(x, t) is velocity of a fluid particle occupying the position x at the time t and p = p(x, t)

is its pressure;

– ρ and µ are the constant density and dynamic viscosity, respectively;

– f = f(x, t) is an internal force exerted on the fluid per unit mass;

– and (u · ∇)u = Σd
i=1ui∂iu, ui is the ith-component of velocity field u, ∂iu is the partial

derivative according to the variable xi; divu = Σd
i=1∂iui.

The first equation of (1.1) expresses the conservation of motion of the fluid while the second one

expresses the conservation of mass for an incompressible fluid. By posing ν = µ
ρ ; p = p

ρ we obtain

the formula of the incompressible Navier-Stokes equations as follows:
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
(
∂u

∂t
+ (u · ∇)u

)
− ν∆u +∇p = f inΩ× [0, T ]

divu = 0 inΩ× [0, T ]

(1.2)

In these equations, ν represents the constant kinematic viscosity of the fluid. By giving L a charac-

teristic length of the fluid, we can define the Reynolds number Re as:

Re =
|u|.L
ν

(1.3)

This number represents the ratio between the inertial force and the viscous force. In case of large

value of ν, the viscous force dominates and the convection term in the Navier-Stokes equations can

be neglected. This leads to consider the unsteady Stokes equations:
∂u

∂t
− ν∆u +∇p = f inΩ× [0, T ]

divu = 0 inΩ× [0, T ]

(1.4)

In order to ensure the well-posedness of the problem, the equations (1.2) need to be supplemented

with a set of adequate boundary conditions (see Section 1.3). They are also endowed with an initial

condition: a divergence-free velocity field u0(x) is specified over the domain Ω at time t = 0, i.e.

u(x, 0) = u0(x), divu0 = 0.

1.2 The method of characteristics

In this section we focus on the time discretization of the Navier-Stokes equations by the method

of characteristics. This method, also known as the Lagrange-Galerkin method was introduced by

Benqué [BIKL80]. It provides a time discretization without the necessity of restrictive stability

conditions as in a classical discretization by an explicit scheme.

1.2.1 The Lagrange-Galerkin formulation

We are now introducing the Lagrange-Galerkin formulation to recast the convective operator of

the Navier-Stokes equations. Let X(x, s; t) be a characteristic curve associated with the velocity

field u, solution of the ordinary differential equations:
dX(x, s; t)

dt
= u(X(x, s; t), t)

X(x, s; s) = x

(1.5)
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where the point X(x, s; t) denotes the position at time t of a fluid particle located at position x at

the time s.

We write the derivative of the velocity field u along the characteristic lines as:

du(X(x, s; t), t)

dt
=
∂u

∂t
+∇ud(X(x, s; t), t)

dt

=
∂u

∂t
+∇u.u(X(x, s; t), t)

=
∂u

∂t
+ (u.∇)u (1.6)

Hence, the operator ∂
∂t + u.∇ of Navier-Stokes equations can be turned into a total derivative d

dt

(also called the Lagrange derivative). The first equation of (1.2) is recast into the following form:

du(X(x, s; t), t)

dt
− ν∆u +∇p = f (1.7)

It can be observed that the treatment of the nonlinear convection term is therefore reduced to a

problem of searching the characteristic foot X(x, s; t), i.e the position of the particle at the previous

time. This approach allows us to avoid theoretically the constraint of CFL (Courant-Friedrichs-Levy)

on the time step (for example in [PLT92] the good choice for time step is proposed as ∆t ≈ 1.5h/|u|).

Moreover, it has been shown in [Pir82] that if the characteristic trajectory is calculated exactly and

the second member is also integrated exactly, the resulting scheme is unconditionally stable.

1.2.2 The discretization in time

We assume that the interval [0, T ] is divided into a number of subintervals ∆t and we denote

tn = n∆t. For the numerical solution, we only compute u(x, tn) for all n, so from now on, we will

denote u(x, tn) by un(x).

Using the following approximation of the total derivative along the characteristic curves:

du(X(x, tn; t), t)

dt
' u(x, tn)− u(Xn−1(x), tn−1)

∆t

where x is the position of the particle at current time tn and Xn−1(x) is its foot at tn−1 on the

characteristic curve (i.e Xn−1(x) stands for X(x, tn; tn−1)), we find the discretization formulation of

the Navier-Stokes equations (1.2):
un(x)− un−1(Xn−1(x))

∆t
− ν∆un(x) +∇pn(x) = fn

divun(x) = 0
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which are equivalent to:
un(x)

∆t
− ν∆un(x) +∇pn(x) = fn +

un−1(Xn−1(x))

∆t

divun(x) = 0

(1.8)

where un−1(Xn−1(x)) represents the velocity at the point Xn−1(x) at the time tn−1.

Hence, at each time step, the Navier-Stokes problem reduces to an unsteady Stokes problem plus a

transport of the previous solution along the characteristic lines under a velocity field u.

At each time steps, the discretization in time of the Navier-Stokes equations is carried on in two

steps :

i. Resolution of the problem (1.5) in the sub-interval [tn−1, tn].

ii. Resolution of the generalized Stokes equations defined by:
ku− ν∆u +∇p = g

divu = 0

(1.9)

where k is denoting 1
∆t and g is denoting all terms in the right-hand side and is updated in

time according to formulation (1.8).

Remark 1.

1. The advantage of the discretization of Navier-Stokes equations using this scheme lies in the fact

that at each iteration, we only need to update the right-hand side, i.e the left-hand side remains

constant during the resolution.

2. Concerning the problem of the discretisation of the characteristic lines, or more precisely the ap-

proximation of Xn−1(x), we forecast some difficulties:

i. The first problem is how to approximate the velocity field u(t) in the sub-interval time [tn−1, tn].

In solving Navier-Stokes equations, un is unknown, and thus Xn−1(x) is associated with un−1.

ii. The second difficulty is that the characteristic line may cross some elements of the domain

or even go out of the computational domain, hence it is necessary to locate the element which

contains the last point of the advection or to find the cases in which the latter hits a boundary

edge. In numerical practice, the backward tracking the characteristic points are performed by

Euler’s scheme and Runge-Kutta 4. These scheme will be detailed in Section 2.3 where the

method of characteristics is again applied to resolve the advection equation of the interface. See

figure 1.1 for illustrations the travel of given point x in domain Ω with substep time δt� ∆t.



28 CHAPTER 1. NUMERICAL RESOLUTION OF NAVIER-STOKES EQUATIONS

Figure 1.1: (left) travel characteristic point with time δt and (right) characteristic point is go out to

domain.

We know that in practice the exact calculation of the characteristic curves or the second member

is impossible, it must be done using numerical integration formulas. Unfortunately, the numerical

approaches prevent the unconditional stability of the Lagrange-Galerkin scheme, either of order 1

or order 2. For more exhaustive studies about the stability of Lagrange-Galerkin method, we refer

to [MPS88] or [Fou02] and references therein. We turn to the numerical practice where the stopping

condition is performed when the residual of solution is small enough, one say that the solution reaches

a steady-state (of course if it exists). More precisely, given a computational mesh, we construct a

global scheme for solving Navier-Stokes equations:
Algorithm 1: Numerical scheme for solving Navier-Stokes equation over [0, T ]

n=0, initializations (u0, p0);

Given time step ∆t;

nmax = [T/∆t];

while ((n ≤ nmax) and (res > ε)) do
Integrate Xn−1(x) (equation (1.5)) for each node x of mesh;

Compute un−1(Xn−1(x)) at each node x of mesh;

Update the right hand side gn := fn + un−1(Xn−1(x));

Solve Stokes equations (1.9) to obtain (un, pn);

Compute residual at nth-step: res := ‖un − un−1‖0;

n:=n+1;

end

where ε is a given small value introduced to define the steady-state solution in each test case.
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1.3 The variational formulation

As we discussed in the previous section, at each time step, we have to solve an unsteady Stokes

problem (1.9). The numerical resolution of this problem by a finite element method evidently involves

a variational formulation.

Let us firstly introduce the following Sobolev spaces which will be used hereafter:

H1
0 (Ω)d = {v ∈ H1(Ω)d : v|Σ = 0}

H1
ΣD

(Ω)d = {v ∈ H1(Ω)d : v|ΣD = 0}

L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω
q = 0}

1.3.1 Homogeneous Dirichlet boundary conditions

Denoting V and M for the functional spaces of velocity and pressure, respectively. We consider

the variational formulation for the general Stokes problem in case of homogeneous Dirichlet boundary

condition, i.e u = 0 onΣ. In this case, V will be chosen to coincide with H1
0 (Ω)d and we take

M = L2
0(Ω) for the pressure.

Given v ∈ V and using Green’s formula we have:

−
∫

Ω
ν∆uvdx =

∫
Ω
ν∇u : ∇vdx−

∫
∂Ω
ν∇un.vds∫

Ω
∇p.vdx = −

∫
Ω
pdivvdx+

∫
∂Ω
pn.vds

Using these equalities and taking the inner product in L2(Ω)d of the first equation of systems (1.9),

we come to the following equation:

k

∫
Ω
u.vdx+

∫
Ω
ν∇u : ∇vdx−

∫
Ω
pdivvdx =

∫
Ω
g.vdx+

∫
∂Ω

(ν∇u− pId)n.vds (1.10)

Since v = 0 on ∂Ω, we have:

k

∫
Ω
u.vdx+

∫
Ω
ν∇u : ∇vdx−

∫
Ω
pdivvdx =

∫
Ω
g.vdx

Choose the test function q ∈M , taking the inner product in L2(Ω) of the second equation of system

(1.9), we obtain finally the variational formulation of the homogeneous problem: Given the function

g ∈ H−1(Ω)
d, constant k and viscosity ν; find u ∈ V and p ∈M solution of:

k

∫
Ω
u.vdx+

∫
Ω
ν∇u : ∇vdx−

∫
Ω
pdivvdx =

∫
Ω
g.vdx ∀v ∈ V∫

Ω
qdivudx = 0 ∀q ∈M
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This problem can be written in the equivalent weak formulation: Find (u, p) ∈ (V ×M) such that:
∀v ∈ V a(u,v) + b(v, p) = l(v)

∀q ∈M b(u, q) = 0

(1.11)

where l(·) is the continuous linear form defined on V:

l(v) =

∫
Ω
g.vdx

and a(u,v), b(v, p) are the continuous bilinear forms defined on V × V and V ×M respectively as:
a(u,v) = k

∫
Ω
u.vdx+

∫
Ω
ν∇u : ∇vdx

b(v, p) = −
∫

Ω
pdivvdx

(1.12)

The existence and the uniqueness of a solution for the weak formulation of the generalized Stokes

problem has been proven (see [GR86] or [EG04]). This proof involves: i. the ellipticity of the form

a(., .) results from the Poincare-Friedrichs inequality; ii. the compatibility of the spaces of velocity

and pressure results the satisfying Babuska-Brezzi condition, also called inf-sup condition on the

form b(., .), i.e. existing a positive constant C such that:

inf
q∈M

sup
v∈V

b(v, q)

‖v‖1‖q‖0
≥ C > 0 (1.13)

where ‖v‖1 =
(

Σd
i=1‖vi‖1

2
)1/2

and ‖.‖1, ‖.‖0 are standard notations of norms in the Sobolev spaces

H1(Ω), L2(Ω) respectively.

1.3.2 Case of general boundary conditions

Let us now consider the variational formulation in the case of more complicated boundary con-

ditions. We limit ourselves to consider somme classical boundary conditions (Dirichlet, Newmann

and Slip) which are used in most numerical tests. Suppose that the boundary Σ of Ω is parti-

tioned into a finite number of components corresponding to different types of boundary condition:

Σ = ΣD ∪ ΣN ∪ ΣS .

i. Dirichlet conditions: u = uD on ΣD.

ii. Newmann conditions: σn = ϕN on ΣN .

iii. Slip conditions: u.n = 0, αu.τ + τ.σn = 0 on ΣS .
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where σ is defined as: σ = ν∇u− pId; Id is the identity matrix and τ,n are the unit tangent vector

and unit outward normal vector to Σ, respectively; α ≥ 0 is a constant of friction coefficient. In

the case of Dirichlet boundary condition, V is usually chosen in such a way that the test function

vanishes on ΣD:

V = H1
ΣD

d
= {v ∈ H1(Ω)d : v|ΣD = 0}

Hence, ∫
ΣD

σn.vds = 0

It can be observed that the condition Dirichlet affects only on the selection of space functions for

the velocity, it doesn’t affect the variational formulation, so it is called essential boundary condition.

When the non-homogeneous Dirichlet is imposed, i.e uD 6= 0, uD is supposed to be a sufficiently

smooth on ΣD such that there exists a lifting function ūD with divergence-free property. Using the

expression: u = ūD + ū where ū ∈ V . The weak formulation becomes: Find (ū, p) ∈ (V ×M) such

that: 
∀v ∈ V a(ū,v) + b(v, p) = l(v)− a(ūD,v)

∀q ∈M b(ū, q) = 0

(1.14)

In practice the Dirichlet condition is simply imposed by multiplying a very large value on the right-

hand side and the diagonal matrix of matrix formulation (will be presented in the next section).

Notice that V will coincide with (H1
0 (Ω))d if ΣD ≡ Σ that means only boundary condition of

Dirichlet type is imposed. In this case, the pressure only appears through its gradient, so, if (u∗, p∗)

is a solution of Navier-Stokes equation then for any constant c, (u∗, p∗ + c) will be also a solution.

We chose

M = L2
0(Ω) = {p ∈ L2(Ω) :

∫
Ω
p = 0}

to avoid this indeterminacy.

The term corresponding to a Newmann condition can be written as:∫
ΣN

σn.vds =

∫
ΣN

ϕN .vds

So, Newmann condition needs only adding this boundary term in the right-hand side of the varia-

tional formulation. This is one kind of natural boundary condition. In the case ϕN = 0, the subset

ΣN is called a free-out flow part, this integral term disappears from variational formulation. Notice

that when ΣN is not empty, this means that we have condition for pressure on ΣN , the problem of

pressure indeterminacy previously in the case only Dirichlet condition, no longer exists, so we can

take M = L2(Ω).
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In the case of slip boundary condition, the test function v is chosen in V and satisfies v.n|ΣS = 0.

The term of this condition can be written as:∫
ΣS

σn.vds =

∫
ΣS

(n.σn).(v.n)ds+

∫
ΣS

(τ.σn).(v.τ)ds

=

∫
ΣS

−α(u.τ).(v.τ)ds

We impose the slip condition by adding the integral
∫

ΣS
α(u.τ).(v.τ)ds in the bilinear form a(u,v)

of the variational formulation and the condition u.n|ΣS = 0 can be implemented as a Dirichlet

condition on the components of u for the simply domain (the domain with horizontal or vertical

boundary in 2D and rectangular or square boundary in 3D). In case α = 0, this integral term

vanishes and we can implement the condition u.n|ΣS = 0 generally by adding
∫

ΣS
A ∗ (u.n).(v.n)ds

in the left-hand side and multiplying the components on ΣS of right-hand side with A where A is

very large number (about 106).

1.4 The spatial discretization

By using a Galerkin finite element approximation, the discrete problem corresponding to the

formulation (1.11) writes as follows: Find (uh, ph) ∈ Vh ×Mh s.t
∀vh ∈ Vh ah(uh,vh) + bh(vh, ph) = lh(vh)

∀qh ∈Mh b(uh, qh) = 0

(1.15)

with Vh ⊂ V and Mh ⊂ M represent two families of finite dimensional subspaces and ah(uh,vh),

bh(vh, ph), lh(vh) are defined on Vh × Vh, Vh ×Mh and Vh respectively as follows:

ah(uh,vh) =
∑
K∈Th

k

∫
K
uh.vhdx+

∑
K∈Th

∫
K
ν∇uh : ∇vhdx

bh(vh, ph) =
∑
K∈Th

∫
K
−phdivvh

lh(vh) =
∑
K∈Th

∫
K
gh.vhdx

(1.16)

It is well-known that the approximate problem also requires the discrete compatibility condition,

meaning that the discrete spaces of velocity needs to be "rich" enough comparing with the one of

pressure, i.e there exists a positive constant Ch s.t:

inf
qh∈Mh

sup
vh∈Vh

bh(vh, ph)

‖vh‖1‖qh‖0
≥ Ch > 0 (1.17)
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which is also known as the discrete inf-sup condition.

There are many possible choices for the discrete spaces which satisfy this condition. A description

of some compatible couple of spaces for finite element spaces can be found in [Pir89], [BBD+06] or

[Qua09]. We have decided to retain mini elements (P1bubble/P1) and Taylor-Hood elements (P2/P1)

have been implemented. We briefly recall here these elements.

The mini elements: All polynomial approximation of same order for both velocity and pressure

(a) (b)

Figure 1.2: Degree of freedom: (a) mini element (P1bubble/P1); (b)Taylor-Hood element (P2/P1)

are ill-posed. Suppose that Th is composed of elements K = (P1, ..., Pd+1), from the approximation

of piecewise linear P1/P1 finite elements, in order to satisfy the inf-sup condition (1.17), the spaces

of velocity can be enriched by adding one degree of freedom bK on each elements where bK is so-

called bubble function defined as: bK = (d + 1)d+1
∏d+1
i=1 ϕi with ϕi is P1 Lagrange basic function

corresponds to vertex Pi of elements K. We have following discretizations of the spaces of velocity

and pressure in this case (see figure 1.2 (a)):

Vh = {vh ∈ (C0(Ω̄))d : vh|K ∈ (P1(K)⊕ bK)d ∀K ∈ Th} ∩ V

Mh = {qh ∈ C0(Ω̄) : qh|K ∈ P1(K)∀K ∈ Th} ∩M

The Taylor-Hood elements: Generally, this choice is to use piecewise polynomials of degree k ≥ 2 for

the velocity space Vh and of k−1 for pressure spaceMh. In particular, we use piecewise quadratic P2

finite elements for each velocity component, and piecewise linear P1 finite elements for pressure. This

is the lowest degree representative of the family of so-called Taylor-Hood elements Pk/Pk−1, k ≥ 2

(continuous velocities and continuous pressure), that are inf-sup stable (see figure 1.2 (b)):

Vh = {vh ∈ (C0(Ω̄))d : vh|K ∈ (P2(K))d ∀K ∈ Th} ∩ V

Mh = {qh ∈ C0(Ω̄) : qh|K ∈ P1(K)∀K ∈ Th} ∩M

See figure 1.2 for ilustrations of these elements in two dimensions with the denoting of symbol • for

degrees of freedom of the velocity and symbol ◦ for ones of the pressure.
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1.5 The discrete linear systems

1.5.1 Construction of the matrix formulation

Let {ϕi}i=1,...,nv and {φj}j=1,...,np are basis functions of Vh andMh, respectively with nv = dimVh

and np = dimMh. Given uh ∈ Vh, ph ∈Mh, we have the following decompositions:

uh = Σnv
i=1uiϕi

ph = Σnp
j=1pjφj

(1.18)

We can introduce the following matrix coefficients:

Ai,j = ah(ϕi, ϕj)

Bi,j = bh(ϕi, φj)

Gi = lh(ϕi)

where the matrices A,B correspond to the bilinear forms ah, bh, respectively and the vector G cor-

responds to the linear form lh according to expression (1.16). Denoting the vectors U = (ui)i=1,...,nv

and P = (pj)j=1,...,np, the problem (1.15) is equivalent to solving the square linear system:

A Bt

B 0

U
P

 =

G
0

 (1.19)

The system (1.19) is sparse, symmetric but not definite and its size is dimVh + dimMh.

1.5.2 Matrix assembly

In practice, the assembling matrices A,B and G in section 1.5.1 are accomplished by following

the mesh, or in other words, from programming point of view, by using a loop on the indices of mesh

elements. All the contributions on each element K will be computed and stored in the local matrices

denoted by [Ae]K , [Be]K , [Ge]K . Matrices A,B,G are initialized by zero and add them up to the

appropriate entries by finding index global corresponding to index local of [Ae]K , [Be]K , [Ge]K . See

algorithm 2 for example of the assembly matrix A.

We present here the contributions of these local matrices in two dimensions. In three dimensions,

the procedure is almost identical.
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The local matrix of matrix A

Recall the bilinear form of a(uh,vh):

ah(uh,vh) =
∑
K∈Th

k

∫
K
uh.vhdx+

∑
K∈Th

∫
K
ν∇uh : ∇vhdx

We have the bilinear form ah(uh,vh) on each element K of mesh as follows:

ah(uh,vh)|K = k

∫
K
uh.vhdx+

∫
K
ν∇uh : ∇vhdx (1.20)

Using the matrical notations in the transformation of bilinear form ah(uh,vh):

k

∫
K
uh.vhdx = k

∫
K

v1

v2

tu1

u2

 dx

= k

∫
K

v1|K

v2|K

tϕ|K 0

0 ϕ|K

tϕ|K 0

0 ϕ|K

u1|K

u2|K

 dx (1.21)

∫
K
ν∇uh : ∇vhdx =

∫
K


∂1v1

∂2v1

∂1v2

∂2v2



t
ν 0 0 0

0 ν 0 0

0 0 ν 0

0 0 0 ν




∂1u1

∂2u1

∂1u2

∂2u2

 dx

=

∫
K

v1|K

v2|K

tDϕ|K 0

0 Dϕ|K

t


ν 0 0 0

0 ν 0 0

0 0 ν 0

0 0 0 ν


Dϕ|K 0

0 Dϕ|K

u1|K

u2|K

 dx

(1.22)

where: [ui|K ]t = (uϕ1
i , . . . , u

ϕnev
i )(i = 1, 2); [ϕ|K ] = (ϕ1, . . . , ϕnev); [Dϕ|K ] =

∂1ϕ1 . . . ∂1ϕnev

∂2ϕ1 . . . ∂2ϕnev


with ϕ1, . . . , ϕnev are Lagrange basis functions of Vh on element K, nev is the number of degree

of freedom of velocity on each element and uϕ1
i , . . . , u

ϕnev
i are nodal values of velocity components

correspond to ϕ1, . . . , ϕnev; respectively.

Hence, the contributions associated with element K of global matrix A will be stored in the local
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matrix [Ae]K defined by:

[Ae]K = k

∫
K

ϕ|K 0

0 ϕ|K

tϕ|K 0

0 ϕ|K

 dx

+

∫
K

Dϕ|K 0

0 Dϕ|K

t


ν 0 0 0

0 ν 0 0

0 0 ν 0

0 0 0 ν


Dϕ|K 0

0 Dϕ|K

 dx (1.23)

This integral is computed based on the quadrature formulation, we have:

[Ae]K = k

np∑
p=1

ϕ|K 0

0 ϕ|K

tϕ|K 0

0 ϕ|K

∣∣xp

+

np∑
p=1

Dϕ|K 0

0 Dϕ|K

t


ν 0 0 0

0 ν 0 0

0 0 ν 0

0 0 0 ν


Dϕ|K 0

0 Dϕ|K

∣∣xp (1.24)

where xp are Gaussian points and np is the number of Gaussian point in element K. It can be seen

that the size of local matrix [Ae]K is 2nev × 2nev. (nev = 4 in case of P1-bubble and nev = 6 in

case of P2)

The local matrix of matrix B

Similarly, recall the bilinear form of bh(vh, ph):

bh(vh, ph) =
∑
K∈Th

∫
K
−phdivvhdx (1.25)

and using the matrical notations we have:

bh(uh, qh)|K = −
∫
K
qhdivuhdx

=

∫
K

−q
−q

t∂1u1

∂2u2

 dx

=

∫
K

q|K
q|K

t−φ|K 0

0 −φ|K

t∂1ϕ|K 0

0 ∂2ϕ|K

u1|K

u2|K

 dx (1.26)

where: [q|K ]t = (qφ1 , . . . , qφnep), [φ|K ] = (φ1, . . . , φnep), [∂1ϕ|K ] = [∂1ϕ1, . . . , ∂1ϕnev], [∂2ϕ|K ] =

[∂2ϕ1, . . . , ∂2ϕnev] with φ1, . . . , φnep are Lagrange basis functions of Mh on element K, nep is the
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number of degree of freedom of pressure on each mesh element and qφ1 , . . . , qφnep are nodal values

of test function qh correspond to φ1, . . . , φnep, respectively.

The local matrix [Be]K is then determined as follows:

[Be]K =

∫
K

−φ|K 0

0 −φ|K

t∂1ϕ|K 0

0 ∂2ϕ|K

 dx (1.27)

We have [Be]K is size of 2nep× 2nev. This integral is also computed by a quadrature formulation

as in the computation of [Ae]K .

The local matrix of matrix G

The last term is linear form lh:

lh(vh) =
∑
K∈Th

∫
K
gh.vhdx

Hence,

lh(vh)|K =

∫
K
gh.vhdx

=

∫
K

v1

v2

tg1

g2

 dx

=

∫
K

v1|K

v2|K

tϕ|K 0

0 ϕ|K

tϕ|K 0

0 ϕ|K

g1|K

g2|K

 dx (1.28)

where: [qi|K ]t = (qϕ1
i , . . . , qϕnevi )(i = 1, 2); [ϕ|K ] = (ϕ1, . . . , ϕnev).

We have the local vector on the right-hand side:

[Ge]K =

∫
K

ϕ|K 0

0 ϕ|K

tϕ|K 0

0 ϕ|K

g1|K

g2|K

 dx (1.29)

is size of 2nev and computed by using a quadrature formulation.

The overall assembly algorithm of matrix A is given as following:
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Algorithm 2: Assembly of matrix A, case 2D
Initialization A = 0.

Loop on k = 1, 2, . . . , ne. Let K be the kth element.

Loop on local indices il = 1, 2, . . . , 2nev of [Ae]K

Find global index ig of matrix A corresponding to local index il of [Ae]K :

ig := 2 ∗ [pt→ v[il%nev]] + il/nev;

(where pt→ v[il%nev] is global index corresponding to (il%nev)th point of element K).

Loop on local indices jl = il, . . . , 2nev.

Find global index jg corresponding to local index jl of [Ae]K :

jg := 2 ∗ [pt→ v[jl%nev]] + jl/nev;

(where pt→ v[jl%nev] is global index corresponding to (jl%nev)th point of

element K).

If (jg <= ig) then Ajg,ig := +Aejl,il;

else Aig,jg := +Aeil,jl;

The assembly matrices B, G are implemented similarly.

1.5.3 Solving the linear systems

Numerous methods have been proposed to solve the linear system (1.19). A classical alternative

is Uzawa method [AHU58] which relies on coupling (1.19) in to two subsystems, one for the unknown

velocity U and other for pressure P , which leads to solving successively:

BA−1BtP = BA−1G, AU = G−BtP. (1.30)

Attentively, the so-called Penalty method can be used to solving U and P in an equivalent linear

system as follows: A Bt

B εId

U
P

 =

G
0

 (1.31)

where Id is identity matrix, its size is dimMh and ε values about 10−6 to 10−4.

So, at each time step a generalized Stokes problem leads to solve one or severals linear systems.

Our code based upon solving linear system by a Conjugate Gradient (CG) algorithm and a SSOR-

preconditionned CG algorithms. These techniques have been applied popularly in solving sparse

linear system, see [She94, Saa03, YJ07] for details.
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1.6 Numerical examples

We have developed one solver Navier-Stokes in two dimension (2D) and three dimensions (3D)

with the following options:

1. The discretisation in time is based on the method of characteristics where the characteristic

curves is approximated by Euler’s scheme or scheme Runge-Kutta 4.

2. The disretisation in space is programmed the by P1bubble/P1 or P2/P1.

3. The resolution of linear system is implemented by method of Uzawa or Penalty method.

In order to valid the solver with the previous options, we perform the numerical test of Lid-driven

cavity 2D with Re = 1000. The detailed results of this test will be investigated in Chapter 4

(Section 4.1) in comparison with the other well-known references. This section aims to compare the

convergence of all the scheme in our solver. The first one (the scheme of element P1bP1, Euler’s

scheme and Uzawa’s method) is chosen as the reference. In case of this Reynolds number, all the

experimental and numerical observations showed that the solution reach to a steady-state. With

the same stopping condition when the residual between the solutions reaches to 10−6, it has been

observed that the solutions are exactly the same for all schemes. The required CPU time of these

resolutions to obtain the steady solution are detailed on Table 1.1 in comparison with the reference

one.

From the details of the Table 1.1 we see that: the implement of scheme Euler or Runge-Kutta 4

Finite element Scheme of Method Number of CPU time

characteristic iterations

P1bP1 Euler Uzawa 70 1

P1bP1 Euler Penalty 76 1,2

P1bP1 Runge Kutta 4 Uzawa 70 1,79

P1bP1 Runge Kutta 4 Penalty 76 2,13

P2P1 Euler Uzawa 76 4,58

P2P1 Runge Kutta 4 Uzawa 76 7.97

Table 1.1: Cavity in 2D: Details on CPU time to reach the steady-state with Re = 1000, uniform

mesh of 676 vertices, 1250 elements.

(RK4) does not affect the number of iteration to reach the steady-state, on the contrary, the RK4

increases the CPU time in comparison with Euler’s scheme. This increasing is explained by the
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reason that in RK4, at each sub-step δt we have to pass 4 intermediate points to calculate one

characteristic point while it requires only one in Euler’s scheme (see section 2.3.2 for the details).

In the theorical analysis of method of characteristics for the Navier-Stokes equations, the error

estimation has been determined of the form O(hm + ∆tm + hm+1/∆t) in [Pir82] (a scheme of order

(h + ∆t + h2/∆t) for Crouzeix-Raviant element and a scheme of order (h2 + ∆t2 + h3/∆t) for

Taylor-Hood element). It has seen that the error estimate is controlled by either characteristic mesh

element h,∆t or the relation of h and ∆t. An optimal error estimates for the Lagrange-Galerkin

mixed finite element approximation of the Navier-Stokes equations was given by Suli [Sul98], see

also [Zhi12] and references therein. More exhaustive studies about the error estimations for each

finite elements lie far beyond the scope of this thesis. However, by numerical experience we propose

here the choice of time step to obtain the best solution with the present scheme. In fact, the choice

of time step is very important: with the different time steps we obtain the different behaviour of

the steady solutions. For this illustration, we perform the test on the mesh carre7 (see figure 1.4,

bottom, right) with different time steps and exhibit the profiles of velocity along horizontal and

vertical lines passing the geometric center of cavity in each case. The results are shown on figure

1.3 in comparison with the profiles in two references [UG82] and [ECG05]. It is observed that the

best resolution for this mesh is ∆t = 0.21s.

Furthermore, we consider the case test cavity 2D with 4 different meshes: a regular triangulation
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Figure 1.3: Cavity in 2D: velocity profile for ux and uy in case of Re = 1000 with the different time

steps.

(carre2) with 2461 nodes, 5000 elements; an uniform triangulation (carre3) with 2143 nodes and

4136 elements; other uniform triangulation (carre4) with 8421 nodes, 16544 elements; and the last
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one is a regular triangulation (carre7) with 10201 nodes, 20000 elements. It is observed that the

steady-state is obtained with the different time steps, see figure 1.4 for details. Hence, we propose

carre2,∆t = 0.32s, hmin = 0.02 carre3,∆t = 0.36s, hmin = 0, 023

carre4,∆t = 0.23s, hmin = 0.012 carre7,∆t = 0.21s, hmin = 0.01

Figure 1.4: Cavity in 2D: steady-state solution in case of Re = 1000 for different meshes with the

different time steps.

the good choice for time step is ∆t ≈
√

4.5hmin/|u| (where hmin = min
K∈Th

diam(K)) for given mesh

Th.)

Similarly, the implement in 3D is compared by the considering the test of Cavity 3D with Re = 400

and Re = 1000. The CPU time in 3D is detailed on the Table 1.2 for the test case Re = 400 and

the streamtraces are played out in figure 1.5 for the test case Re = 1000. The velocity of the flow

and the streamlines in the plane (z = 0.5) for Re = 1000 are shown in figure 1.6.
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Figure 1.5: Cavity in 3D: the streamtraces for the test case Re = 1000.

Figure 1.6: Cavity in 3D: (left) velocity of the flow and (right) streamlines in the plane (z = 0.5)

for Re = 1000.

Finite element Scheme of Method Number of CPU time

characteristic iterations

P1bP1 Euler Uzawa 41 1

P1bP1 Euler Penalty 44 0,72

P1bP1 Runge Kutta 4 Uzawa 45 1,16

P1bP1 Runge Kutta 4 Penalty 47 0.88

Table 1.2: Cavity in 3D: Details on CPU time to reach the steady-state with Re = 400, uniform

mesh of 4978 vertices, 23837 elements.
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The present solver can handle with the cases of high Reynold number. In fact, we have inves-

tigated the test of cavity with the number of Reynolds up to 10000 and the resultats are in good

agreement with other references, (see section 4.1).

1.7 Conclusion

We have presented in detail all the features in the resolution of viscous incompressible Navier-

Stokes equations in two and three dimensions. The Navier-Stokes solver is capable of dealing with

high Reynold number problems. Moreover, it will be still valuable for solving bifluid problems. In

fact, the resolution of Navier-Stokes equation for two fluids is one part in our simulation of bifluid

flows with interface will be detailed in the next chapter.

Regarding the perspectives for this chapter, we would like to:

– Improve the Lagrange-Galerkin scheme of second order to comparer with the one of first order.

– Consider the P1P1 elements in combination with a stable scheme that is hoped that dramat-

ically reduce the computational time of solving linear systems, either solving by Uzawa or

Penalty method.

– Develope the present solver with a technique of mesh adaptation to treat the more complex

test of Navier-Stokes problem.
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In the previous chapter, all the resolution of Navier-Stokes for a single fluid has been described.

This chapter continues with the numerical resolution of bifluid flow. In section 2.1 we introduce

the model of bifluid flow with the continuous condition on the interface between two fluids. This

condition induces effect of surface tension as a localized force added to the right-hand side of the

momentum equation. This model for a bifluid incompressible flow problem is often used in the

literature, see [GLM06, GRR06] and many references therein. Hence, the motion of two fluids

can be achieved by the solver presented in Chapter 1 to obtain the velocity field of the flows.
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The appearance of localized surface tension force and its geometrical approximation are described

in section 2.2. In our approach, the interface is implicitly captured as zero-level set of a level-

set function. The advection of level-set functions by the velocity of the flows (may be extended

and regularized) obeys a Hamilton-Jacobi equation will be handled numerically in section 2.3. As

known before, in the problem involving incompressible flows, the level-set function does not assure

the regularity during the time of evolution leading the diffusion on the interface and difficulties in

preserving the mass conservation. In order to overcome these problems, some numerical techniques

are proposed in section 2.4 to ameliorate the numerical resolution. A numerical scheme for two-phase

flow is proposed in the last section 2.5.

2.1 Introduction the model of two-phase flow

2.1.1 The equation of motion of bifluid flow

We consider the problem of two immiscible fluids illustrated by figure 2.1 (in 2D). At each time

Figure 2.1: Two examples of computational domains for bifluid flow simulations; left: disconnected

components, right: connected components.

t ∈ [0, T ], the domain Ω in Rd (d=2;3) is decomposed into two moving subdomain Ω1(t) and Ω2(t)

and the interface between the two fluids is Γ(t) = Ω1(t) ∩ Ω2(t), and we suppose that:

Ω1(t) ∪ Ω2(t) = Ω, Ω1(t) ∩ Ω2(t) = ∅

Supposing ρ(x, t) = ρ(x) and µ(x, t) = µ(x), meaning that the physical characteristics of each fluid

remain constant during each time step of the resolution. For the sake of simplicity, we omit the

dependence on t, write simply Ωi and Γ instead of Ωi(t) and Γ(t), at each time t ∈ [0, T ], the motion
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of bifluid flow governed by incompressible Navier-Stokes equations can be written as follows:
ρi
(
∂ui

∂t
+ (ui · ∇)ui

)
− µi∆ui +∇pi = ρif i inΩi (i = 1, 2)

divui = 0 inΩi (i = 1, 2)

(2.1)

We introduce the functions µ and ρ for the viscosity and the density of the fluid, respectively defined

on the whole domain Ω as follows:

µ = χ1µ1 + χ2µ2, ρ = χ1ρ1 + χ2ρ2

where χi is the characteristic function of the subdomain Ωi and µi,ρi are the constant dynamic

viscosities and densities of each fluid (i=1,2), respectively.

Using these notations and based on the definition ν of the constant kinematic viscocity of the fluid

for all subdomains, equations (2.1) are rewritten then in reduced form:
(
∂u

∂t
+ (u · ∇)u

)
− ν∆u +∇p = f in eachΩi (i = 1, 2)

divu = 0 inΩ

(2.2)

where u = ui, p = pi and f = f i in Ωi (i=1,2).

These equations need to be endowed by adequate boundary and initial conditions which have been

discussed in the previous chapter for single fluid. Besides, they are also endowed with interface

conditions imposing: the continuity of the velocity and the balance of the normal stress with the

surface tension across the interface Γ(t), namely:

[u]Γ = 0, [σ]Γ.n
1 = −γκn1 (2.3)

where σ here is the stress tensor defined as: σ = ν
(
∇u + t∇u

)
− pId, n1 is the unit normal vector

to Γ(t), exterior to Ω1(t); [.]Γ denotes the jump of quality across Γ in the normal direction of n1,

i.e. [.]Γ = .|Ω1 − .|Ω2 and γ > 0 is the constant surface tension coefficient along the interface; κ

is the algebraic mean curvature of the interface, being positive if the interface curve/surface bends

towards Ω1 and negative otherwise.

Remark 2. The effect of the surface tension here is expressed in term of a localized force −γκn1 at

the interface which is also mentioned as the continuum surface force (CSF) technique in references

[BKZ92, CHMO96]. We will show that this localized force of surface tension is added to the right-

hand side of the variational formulation in case of bifluid flow (in Section 2.2).
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2.1.2 The interface capturing by level set method

The level set method, introduced by Osher and Sethian in [OS88], has become very popular in

the past few years for describing boundaries of domains or evolution of free surfaces and interfaces.

This approach appeared in Computational Fluid Dynamics with the study of the motion of two

compressible gases, separated by a sharp interface in [MOS92] and was used in [SSO94] for describing

the interface between two immiscible incompressible fluids, driven by the Navier-Stokes equations.

Since these seminal works, level set method has been extensively used to treat problems involving

free surfaces or interfaces between the fluids and strongly promoted in two books by Sethian [Set96]

and [Set99].

Following [Set99], we introduce the signed distance function to the interface Γ(t) as follows:

φ(x, t) = ±d(x,Γ(t)), ∀x ∈ Ω(t) (2.4)

where d(x,Γ(t)) denotes the usual Euclidean distance function from x to Γ(t) and:
φ(x, t) > 0 ifx ∈ Ω1(t)

φ(x, t) < 0 ifx ∈ Ω2(t)

φ(x, t) = 0 ifx ∈ Γ(t).

(2.5)

See figures 2.2, 2.3 for illustrations of computational domain with the level-set function.

The function φ is initialized by the signed distance function to Γ0:

φ0(x) = ±d(x,Γ0), ∀x ∈ Ω(0)

where Γ0 is the initial position of the interface and indicates the initial shape of each subdomain

Ωi(0). We use here the approach suggested in [SSO94] for the incompressible two-phase flows. The

interface between two fluids at each time t is then captured as zero-level set of φ(x, t) which is

solution to advection equation:
∂φ

∂t
(x, t) + u(x, t)∇φ(x, t) = 0 ∀(x, t) ∈ Ω× R+

φ(x, 0) = φ0(x) ∀x ∈ Ω

(2.6)

where u is the solution of (2.2) and (2.3). Notice that in these equations, the density and the

viscosity are constant in each fluid and take different values depending on the characteristic function

χi of each subdomain Ωi (hence, depending on the sign of the level set function):

µ = χ1µ1 + χ2µ2, ρ = χ1ρ1 + χ2ρ2
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Figure 2.2: Examples of computational domains with level-set function in 2D.

Figure 2.3: (left) Cutting plane through a computational domains with level-set function and (right)

several iso-surfaces in 3D.
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Furthermore, in the level set framework, the unit normal vector n to the interface and the mean

curvature κ at the interface are classically computed via the function φ as:

n =
∇φ
|∇φ|

|φ=0; κ = divn = div
(
∇φ
|∇φ|

)
|φ=0

However, we will introduce below in section 2.2 another geometric technique to approximate n and

κ, that revealed less sensitive to numerical artifacts when the shape of Γ(t) becomes more complex.

2.1.3 The extension and regularity of flow fields

One should note that the evolution of the interface depends strongly only on the flow field in

its vicinity. Moreover, in case of complex deformation, the large velocity may cause uncontrolled

oscillation and jeopardize the numerical stability. This is the reasons we propose to extend and

regularize the velocity of flows u (defined only on the interface Γ) into vector field ũ (defined on

the whole Ω) for advection of the interface. There are many approachs for extension and regularity

velocity, for example from suggest in [Bur03] the vector ũ can be seached in a regular space V by

solving the following problem: 
−α∆ũ + ũ = 0 inΩ

ũ = 0 onΣ

ũ = u onΓ

(2.7)

where α > 0 can be interpreted as a regularization lengthscale. This leads us to the variational

problem: Find ũ ∈ V such that:

α

∫
Ω
∇ũ.∇v +

∫
Ω
ũv =

∫
Γ
uv ∀v ∈ V (2.8)

It can be seen that the left-hand side of (2.8) is a coercive bilinear form on V which is close to I (so

ũ is expected close to u). This equation can be solved easily by a finite element method.

2.1.4 Description of the numerical scheme

The bifluid model is represented by the equations (2.2)-(2.7). In summary, the general scheme

to solve this system is the following:

1. Initialization of the level set function φ0 and velocity u0.

2. At each time step:

- update the interface Γ, as well as the densities ρ and the viscosities µ of fluids;

- solve the Navier-Stokes equations to find u, p;
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- extend and regularize the velocity u to obtain a vector field for solving the advection equation;

- solve the advection equation to obtain φ in the next time.

3. Repeat step 2 until the final time.

The reduced scheme is hiding some complex and necessary numerical routines like: solution inter-

polation, error estimate and mesh adaptation. All these numerical techniques will be detailed in

chapter 3. However, let us say few words about mesh adaptation, an important routine. Mesh

adaptation aims at improving the accuracy of numerical solution and saving the memory resource.

In our approach, the adapted mesh will be generated in order to assure the minimal error estimation

of velocity and geometrical approximation of the interface, it plays the role of a computational mesh

for both the Navier-Stokes and advection equation in each time step. A more precise scheme of the

whole three parts (Navier-Stokes, advection, mesh adaptation) will be presented in section 2.5.

2.2 The surface tension

Surface tension is very important in the simulation of fluid flows with free surface or interface.

In the case of interfaces between two fluids, the surface tension contributes a surface pressure that is

a normal force per unit interfacial area. Actually, this surface tension balances the normal stress at

the interface (see equation (2.3)). Intuitively, the surface tension balances the interaction between

two fluids, if the interface is concave in one domain then the surface tension tends to reduce this

concavity.

For an illustration of the effect of the surface tension, we consider the evolution of a rising bubble

in a fluid. The bubble with lower density than surrounding fluid rises and final at the top of the

domain. It has been observed the difference behavior of shape bubble when the surface tension term

effects or not in figure 2.4. In the first case, without surface tension (γ = 0), the bubble rapidly

becomes deformed in time while in the second case, under the effect of surface tension, the bubble

is almost circular during the evolution.

As mentioned in the previous section, due to the condition on the interface (2.3) the surface tension

appears in the right-hand side of the momentum equation as a localized force concentrated at the

interface. This section will consider the effect of this term in the equation of bifluid flow (2.2).

After, we will treat the geometric approximation of this term using the explicit discretization of the

interface in the computational mesh.
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t = 0s t = 2.5s t = 5.0 t = 7.5s t = 10.0s

Figure 2.4: Rising bubble in 2D: evolution of the interface in time: (top) without surface tension;

(bottom) with surface tension.
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2.2.1 The surface tension term in the variational formulation

In solving Navier-Stokes equations for two fluids flow, the discretization in time the leads us

solve the following generalized Stokes equations in each time:
ku− ν∆u +∇p = g in eachΩi (i = 1, 2)

divu = 0 inΩ

(2.9)

where u = ui, p = pi and f = f i in Ωi (i=1,2) and k is denoting of 1/∆t.

By introducing D(u) =
∇u + t∇u

2
, the symmetric gradient of u, also called the rate of deformation

tensor, and thanks to the condition of incompressibility we have: div(2D(u)) = ∆u.

Using Green’s formula we have:

−
∫

Ωi
div(2µD(ui))vidx =

∫
Ωi

2µD(ui) : ∇vidx−
∫
∂Ωi

2µD(ui)ni.vids

=

∫
Ωi

2µD(ui) : D(vi)dx−
∫
∂Ωi

2µD(ui)ni.vids∫
Ωi
∇pi.vidx = −

∫
Ωi
pidivvidx+

∫
∂Ωi

pini.vids

Given a test function v, taking the inner product in L2(Ω)d of the first equation of system (2.9) and

summing on i, we have following equation:

k

∫
Ω
u.vdx+

∫
Ω

2µD(u) : D(v)dx−
∫

Ω
pdivvdx =

∫
Ω
g.vdx

+

2∑
i=1

∫
∂Ωi

2µD(ui)ni.vids−
2∑
i=1

∫
∂Ωi

pini.vids

(2.10)

Due to the interface condition (2.3) and the geometric condition n2 = −n1 on Γ and noticing also

that v = 0 on Σ we have:
2∑
i=1

∫
∂Ωi

2µD(ui)ni.vids−
2∑
i=1

∫
∂Ωi

pini.vids =
2∑
i=1

∫
Γ
(2µD(ui)− piI)nivids

=

∫
Γ
(σ1n1v1 − σ2n1v2)ds

=

∫
Γ
−γκn1.vds

This term corresponds to the effect of the surface tension on the interface in the variational formula-

tion. As can be seen that the surface tension is taken into account as a localized force −γκn1 added

to the right-hand side of the momentum equation and proportioned to the local mean curvature of

the interface.
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2.2.2 The discretisation of the surface tension term

In the context of level set method, the level-set function allows to calculate the unit normal

vector and the mean curvature at the interface by following formulas:

n =
∇φ
|∇φ|

|φ=0; and κ = divn = div
(
∇φ
|∇φ|

)
|φ=0 (2.11)

Introducing δΓ is a Dirac δ-function with support on Γ acting on a smooth test function ϕ as follows:∫
Ω
δΓϕdx =

∫
Γ
ϕds (2.12)

The surface tension force is then represented by, see also in [SSO94] :

lΓ(v) : = −
∫

Γ
γκn1.vds

= −
∫

Ω
γκδΓ(φ)∇φ.vdx

Hence, we have the expression of the surface tension in the discrete formulation:

lΓh(vh) =
∑
K∈Th

−
∫
K
γκδ(φ)∇φ.vhdx (2.13)

However, this approach requires an approximation of the gradient of φ which is known that error-

prone on unstructured triangulations. In addition, the main challenge is to compute the mean

curvature κ which is related to a second order derivative of the level-set function.

Another approach has been used to compute the effect of surface tension based on the so-called

Laplace-Beltrami operator. The Laplace-Beltrami operator ∆Γ is a function of the tangential gra-

dient ∇Γ and is defined for a given function f by:

∆Γf = ∇Γ.∇Γf (2.14)

with ∇Γ is the tangential derivative (along Γ):

∇Γf = ∇f − nΓnΓ
t∇f = (I − nΓnΓ

t)∇f (2.15)

then the second order derivatives of curvature can be eliminated by the following formulation (see

[GR11, GRR06, Hys06]):

−∆ΓidΓ(x) = κ(x)n(x),x ∈ Γ (2.16)

Using this result, we see that the surface tension term can be rewritten as follows:

lΓ(v) = −γ
∫

Γ
∇ΓidΓ.∇Γv (2.17)
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Given an approximation Γh of Γ, the localized force term lΓ(vh) can be approximated by:

lΓh(vh) = −γ
∫

Γh

∇ΓhidΓh .∇Γhvh (2.18)

The discretization of the surface tension by this approach has been detailed in [GR11], however the

computation is rather complex as requires also the approximation of the normal vector according to

the first formula of (2.11).

In our approach the interface is explicitly discretized in the triangulation Th, this representation

gives us an alternate technique to approximate the interface via a set of connected segments (faces

in three dimensions). Denoting (xi)1≤i≤ns the set of ordered vertices along the discrete curve Γh

such that xi−1,xi,xi+1 represent its three consecutive points and x0 ≡ xns,x1 ≡ xns+1 in case Γh

is closed curve, see figure 2.5. Using quadrature formula along each edge E of Γh, the surface tension

Figure 2.5: Ilustration of geometric discretization of interface in 2D.

term can be rewritten as follows, for all vh ∈ Vh:

lΓh(vh) : = −
∫

Γh

γκn1
h.vhds

=
∑
E⊂Γh

|E|
2

∑
xi∈E

γκ(xi)n
1
h(xi).vh(xi)

=
∑

xi∈Γh

γκ(xi)n
1
h(xi).vh(xi)

∑
E3xi

|E|
2

(2.19)

where the unit normal vector n1 is computed from the approximation of the unit tangent vector

τ = (τ1, τ2)t at each vertex xi ∈ Γh: τ(xi) = −−−−−−→xi+1xi−1/‖−−−−−−→xi+1xi−1‖, hence n(xi) = (τ2(xi),−τ1(xi))
t.

The mean curvature κ(xi) is obtained as the inverse of the radius r(xi) which can be computed via

the following approximation [FG08]:

r(xi) =
1

4

(
〈−−−−→xixi−1,

−−−−→xixi−1〉
〈−n1(xi),

−−−−→xixi−1〉
+
〈−−−−→xixi−1,

−−−−→xixi+1〉
〈−n1(xi),

−−−−→xixi+1〉

)
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This technique can be extended straightforwardly to three dimensions, where the unit normal is

then taken as the weighted average value of the unit normals of all triangles sharing vertex xi.

Other formula can be used to approximate r(x) or κ(x) due to explicit discretization of geometric

of interface, see for instances [TBE+01] or [GLM06].

2.3 Numerical resolution of the level set advection equation

We sketch out in this section numerical resolution of the evolution of the interface. We recall

that, at each time step, the moving of the interface between two fluids is represented by the zero

isocontour of the level set function φ that is convected by the velocity field to find the new position

of the interface. The advection of the level set function by the flow velocity u (may be extended

and regularized) obeys the so-called advection equation:

∂φ

∂t
(x, t) + u(x, t).∇φ(x, t) = 0∀ (x, t) ∈ Ω× [O, T ]. (2.20)

2.3.1 The discretisation in time by the method of characteristics

Consider the Cauchy problem for advection equation has been introduced in (2.20) : Given an

initial function φ0(x) : Ω → R and a velocity field u(x, t) : Ω → Rd defined on Ω, find φ(x, t) :

Ω× [O, T ]→ R such that:
∂φ

∂t
(x, t) + u(x, t)∇φ(x, t) = 0 ∀(x, t) ∈ Ω× (0, T )

φ(x, 0) = φ0(x) ∀x ∈ Ω

(2.21)

This problem is solved by following the characteristic curves of the fluid particules. Given a particule

x ∈ Ω at the time s, its curve is described by the following equations:
dX(x, s; t)

dt
= u(X(x, s; t), t) ∀t ∈ (0, T )

X(x, s; s) = x

(2.22)

where X(x, s; t) is the position of x at the time t.

The first equation of (2.21) implies that φ(x, t) is constant along the characteristic lines X(x, s; t).

Hence the solution of the Cauchy problem (2.21) can be expressed as:

φ(x, t) = φ0(X(x, t; 0), 0) ∀(x, t) ∈ Ω× [0, T ] (2.23)
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Assume that the interval [0, T ] is divided into a finite number intervals ∆t of the form (tn−1, tn)

with tn = n∆t, we have the discretization in time of the equations (2.22) for all n:
dX(x, tn; t)

dt
= u(X(x, tn; t), t) ∀t ∈ (tn−1, tn)

X(x, tn; tn) = x

(2.24)

We only compute φ(x, tn) for all n, so if denote φ(x, tn) by φn(x), by substituting the time interval

[tn−1, tn] into (2.23), we obtain the following result:

φn(x) = φn−1(X(x, tn; tn−1)) ∀x ∈ Ω (2.25)

where X(x, tn; tn−1) is the position at the time tn−1 of the characteristic emerging from x at the

time tn.

The expression (2.25) follows us to calculate φn from φn−1. In numerical solution, this problem

can be solved by a Galerkin numerical scheme which involves the resolution of a linear system with

using the quadrature formulas for approximating the integrals in the right-hand side (see [BNV06]

for example). Another alternative is simply combination with a Lagrange interpolation, i.e φn(x) is

computed by values of φn−1(x) at the degrees of freedom of element K which locates X(x, tn; tn−1).

In fact, the first approach is more expensive than the second one. Moreover, the second approach

brings an estimation to control the geometric error of the interface by the interpolation error (see

section 3.3) that is very efficient in generation of mesh adaptation, so, its computation is applied for

present work.

Algorithm 3: Numerical scheme for advection equation
n=0, start with the initializations (φ0,Γ0);

for n=1,...,N do
1. Solve the ODE (2.24) to search Xn−1(x) for each node x of mesh;

2. Compute φn−1(Xn−1(x)) for each node x of mesh;

3. Update the new level set values φn(x) according to (2.25).

end

2.3.2 Spatial approximation of the characteristic points

Let us now explain the approximation of the characteristic lines, or more precisely the approxi-

mation of X(x, tn; tn−1) in space. We notice that in numerical resolution only an approximation uh

of u is known at each degree of freedom of computational mesh Th of the domain, and we need to
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compute an approximation of Xh(x, tn; tn−1) where Xh(x, tn; tn−1) is solution at the time tn−1 of

the approximated characteristic curve:
dXh(x, tn; t)

dt
= uh(Xh(x, tn; t), t)

Xh(x, tn; tn) = x

(2.26)

that implies the "formal" expression:

Xh(x, tn; t) = x−
∫ tn

t
uh(Xh(x, tn; t), t)dt (2.27)

There are many approaches to approximate Xh(x, tn; tn−1). For example the simplest algorithm for

computing the characteristics is obtained directly from (2.27) as:

Xh(x, tn; tn−1) = x−∆tuh(x) (2.28)

In this way, the characteristic curve is considered to be a straight line from the starting point x to

its foot Xh(x, tn; tn−1). But in fact, this algorithm should be used only when the time step is small

enough, one should not travel too many elements mesh at once to ensure the numerical stability.

So, we prefer to use Runge Kutta 4 or Euler’s scheme, especially in case the time step is relatively

large. Given a substep δt of each interval [tn−1, tn] and suppose that existing an integer number M

such that: ∆t = Mδt, we have the backing forward schemes as follows:

1. Euler’s scheme:
Xh(x, tn; tn) = x

Xh(x, tn; tn −mδt) = Xh(x, tn; tn − (m− 1)δt)− δtuh(Xh(x, tn; tn −mδt));

(m = 1, ...,M)

(2.29)

2. Runge-Kutta 4 scheme:

Xh(x, tn; tn) = x

Xh(x, tn; tn −mδt) = Xh(x, tn; tn − (m− 1)δt)− δt

6
(v1 + 2v2 + 2v3 + v4),with :

v1 = uh(Xh(x, tn; tn −mδt))

v2 = uh(Xh(x, tn; tn −mδt)− δt

2
v1)

v3 = uh(Xh(x, tn; tn −mδt)− δt

2
v2)

v4 = uh(Xh(x, tn; tn −mδt)− δtv3); (m = 1, ...M)

(2.30)
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Figure 2.6: Ilustration of characteristic curve approximation.

See figure 2.6 for illustration of characteristic curve approximation.

Remark 3.

1. At now, two different time steps have been used. The first one, ∆t = tn − tn−1, is a "large"

time step on a generic period of time [0, T ], that is the period of time for which we assume the

velocity and physical properties of the fluids are unchanged. Time step ∆t is then used for both

resolution of Navier-Stokes and advection equation. The second one, δt < ∆t is a sub-time step

involved the integration of the characteristic curves. In fact, the approximation of characteristic

curves with the hold time step ∆t means that the curves (x,Xh(x, tn; tn−1)) is approximated

by straight line from the starting point x to its foot Xh(x, tn; tn−1) and directed only by u(x),

this may lead to inaccuracy dramatically. By using δt we achieve a polygonal approximation

with the velocity field is updated more frequently, so we can improve the approximation of the

characteristic curve.

2. The approximation by these schemes needs the information of the velocity at the immediate

points as uh(Xh(x, tn; tn −mδt)), ... that always requires the exact location of these points.

Normally, given a point x located at element K, the immediate points is somewhere in K or

adjacents of K. Therefore, the efficiency of the algorithm is related to the fast identification of

the triangle adjacent to a given triangle. To this end, we use a specific data structure in which

the three adjacent triangles are associated with the informations of each triangle (the so-called

adjacency matrix [FG08]).

3. Some time, the procedure of searching the characteristic point can not implemented for all the

interval (tn−1, tn), especially with the vertices next to the boundary of domain. This implies that

during the procedure, one of immediate points is go out to domain (see figure 2.7). Although,

in that case these vertices need to be traveled with the maximal time that possible, may be this

leads to the last point hit the boundary. In fact, this requires one algorithm of calculating the

time dt that is necessary for one point to hit an edge or go out the element contains it, see
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Figure 2.7: Ilustration of characteristic points is go out to domain.

figure 2.8. In case of dt < δt and we can’t find the next point, the last point of characteristic

Figure 2.8: Ilustrations of time dt to go out an element.

curve will be obtained by travel with the time dt.

Algorithm 4: Calculation time go out the containing element of a point
Input: starting point P in element K, the velocity u

Output: time dt such that P − dt ∗ u(P ) is on an edge of K

Initialisation: dt = 10e6

1. Calcul the barycentric λi(1≤i≤3) of point P .

2. Calcul the barycentric ηi(1≤i≤3) of point P − u(P ).

3. for i=1,...3 do
If (λi > ηi and dt > λi

λi−ηi ) then dt := λi
λi−ηi

end

2.4 Redistancing procedure and conversation the mass

It has been known that, in the context of level set method, the level set function must usually

satisfy:

|∇φ| = 1 (2.31)
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Unfortunately, when φ is transported by a physical velocity field, this property is not preserved as

the isolines do not travel at the same speed and the level set does not remain a distance function.

A natural choice to reinitialize the level set function is the signed distance function to the interface:

φ(x) =


d(x,Γ) if x ∈ Ω1

0 if x ∈ Γ

−d(x,Γ) if x ∈ Ω2

In our scheme, this signed distance function is computed approximatively by redistancing procedure

studied in [DF11], we only briefly recall here the implement of this procedure:

– Step 1: Initialization φ0 of φ: denoting TΓ the set of mesh elements intersected by the interface,

i.e. TΓ = {K ∈ Th : K ∩ Γ 6= ∅}, φ0(x) is defined as:

φ0(x) =


φ(x) if x ∈ TΓ

+∞ if x ∈ Ω1 \ TΓ

−∞ if x ∈ Ω2 \ TΓ

– Step 2: Calculation numerically φ as steady solution of so-called Eikonal equation:
∂φ

∂t
(x, t) + sgn(φ0)(|∇φ| − 1) = 0 ∀(x, t) ∈ Ω× (0, T )

φ(x, 0) = φ0(x) ∀x ∈ Ω

(2.32)

Its purposes are to remain the behaviour in "vicinity" of the zero isoline, i.e. the position of interface

Γ is not modified and to ensure the constraint (2.31).

As pointed out, other drawbacks of this method in case of free surface problems involving incom-

pressible flows is the lack of mass conservation. In this work no particular treatment for mass

conservation during the simulation, this problem is remedied by replacing zero-level set by ε-level

set with ε is appropriate negative constant and depends strongly on quality of computational mesh.

It has been observed that without this correction of level set function, the derivation of mass is

not notable when our mesh adaptation asks a lot of elements at each iteration, however, for the

efficiency of computational time especially intending to the problem in 3D, this cure is applied in

our approach.

2.5 The proposed scheme

In this section we will describe the general scheme for all the time [0, T ]. Suppose that [0, T ]

is divided by N subintervals [tn−1, tn]. At n-iteration, we have to solve the Navier-Stokes equation
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and the advection equation approximatively, emphasize that they are solved on the same mesh Tn

to obtain the approximative solution (un, pn) and φn.

Our scheme is an iterative procedure based on the mesh adaptation process. At each time tn, given

mesh Tn, initialization un0 for velocity and φn0 for level-set function. After solving Navier-Stokes

problem we have the new velocity field un, this velocity (may be extended and regularized) is used

for solving the advection equation to obtain a new level-set φn, the new interface Γn is captured as

the zero-level of φn. The mesh Tn is adapted with un, φn0 , φ
n in order to create a new mesh Tn+1.

The generation of adapted mesh at each time step will be detailed in chapter 3. The projection of

un and φn on Tn+1 are implemented to have initialisation un+1
0 and φn+1

0 for the (n+ 1)-iteration.

The overall algorithm is given as following:

Numerical scheme for bifluid flow over [0, T ]

1. Start with mesh T 1 and initialization u1
0, φ

1
0

2. For n = 1, ..., N do:

Problem Input Output

2.1 Solving Navier Stokes (Tn,un0 ) un

2.2 Solving Advection (Tn,un, φn0 ) φn

2.3 Extension and regularity (Tn,un|Γ) un

2.4 Adaptation (Tn, φn, φn0 ,un) Tn+1

2.5 Redistancing (Tn+1, φn) φn

2.6 Projection (un, φn, Tn+1) un+1
0 , φn+1

0

3. Return (uN , φN , TN )

In comparison with previous study in [BFM10] this scheme has been much reduced. In the before

approach mesh adaptation needed two mesh independent, one for the resolution of the fluid and

other for the advection of the interface, so, the interpolations is always necessary to correspond to

each solving of the problem. The simplicity of present scheme is due to the requirement only one

adapted mesh at each time of the simulation, yet all difficulties have been driven for mesh adapta-

tion. On the one hand, the adapted mesh has to respond the capturing of the interface with high

quality, especially in the vicinity of interface. On the other hand, the solving Navier-Stokes equation

requires the accuracy of numerical solution of velocity of fluids and the efficiency of the numerical

scheme depends strongly on the quality of the computational mesh. However, we are only interested

in the vicinity of the interface, so mesh adaptation is only much concerned in this "important"
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region of the computational mesh, resulting actually our mesh adaptation is implemented rapidly

and efficiently.

2.6 Conclusion

We have presented all the numerical scheme for bifluid flows simulation. Our scheme is based

on unstructured adapted mesh at each time step. This strategy has several assets; on the one hand,

no projection is needed between different meshes. In addition, the method does not present any

theoretical difficulty to the extension from the two-dimensional case to the three-dimensional case.

This is a tremendous feature insofar as mesh adaptation is concerned; in fact mesh generation is

known to be more difficult to deal with in three dimensions. Most of the difficulty related to meshing

is recast as a robust remeshing problem. We go to the next chapter to detail the mesh adaptation

process for the previous scheme.
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This chapter is devoted to mesh adaptation. It is known that in numerical simulation based

on finite element methods, the accuracy of the solution depends strongly on the quality of the

computational mesh. The purpose of mesh adaptation is to increase the efficiency of the numerical

schemes and improve the accuracy of numerical solutions. This process relies on:

65



66 CHAPTER 3. MESH ADAPTATION

– the control of a priori/ posteriori error approximations (interpolation error, geometry error,...)

of numerical solutions.

– the quality assessment of mesh elements respect to an appropriate quality function.

– the concentration of more degrees of freedom in important regions (such as boundary/interface

or regions of large solution variations) than in any other region of the computational domain.

Consequently, the adapted mesh enjoys a nice quality with fewer elements that ultimately results in

a diminution of the computational cost to achieve the desired accuracy.

We will introduce hereafter two mesh adaptation procedures which have been used in our numerical

experiment.

1. Anisotropic mesh adaptation. This is the inheritance of a mesh adaptation technique that has

been developed for many years, see [AF03, FA05, Fre08] and applied in many previous works

for the model of level set advection equations, see [CDF08, CDF12] and the model of Stokes

bifuid flow in 2D [BFM10]. In this thesis, this anisotropic mesh adaptation is ameliorated to

solve the model of Navier- Stokes bifuid flow in two dimensions.

2. Discrete three dimensional domain remeshing. This is a tremendous developing of mesh adap-

tation since mesh generation is known to be more difficult to deal with in three dimensions.

Most of the difficulty related to meshing is recast as a robust remeshing problem. Thanks to

the results of this mesh adaptation process (see [DDF14]) several test cases of bifluid flows in

three dimensions have been implemented efficiently, as will be seen later in chapter 4.

The outline of this chapter is the following: In section 3.1 we recall some basic notations and

definitions of mesh adaptation. Section 3.2 and section 3.3 describe the two previous mesh adaptation

procedures and at the end of each section we will explain how to construct the adapted mesh for

two fluids flow problem in chapter 2.

3.1 Basic notations and definitions

3.1.1 Isotropic and anisotropic mesh adaptation

Definition 1. Let Ω be a open, bounded, polygonal domain in Rd (d=2,3) and given its simplicial

mesh T (i.e triangulation in two dimensions, tetrahedralization in three dimensions). We assume

that each element K in T is a closed d-simplex (triangle in two dimensions, tetrahedra in three

dimensions) and Ω =
⋃
K∈T

K. T is called a conforming mesh if satisfies the so-called conformity

condition such that the intersection of any two different simplices, if not empty, is reduced to:
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– either a point, or a common edge in two dimensions,

– either a point, or a common edge or a common (triangular) face in three dimensions.

See figure 3.1 for examples of conforming and non conforming meshes.

Given T is a conforming mesh, then T is:

Figure 3.1: Examples of non conforming mesh (left) and conforming mesh (right).

– a uniform mesh, if all its simplices are equally sized and regular (equilateral),

– a quasi-uniformmesh, if the variation of its simplices size is bounded and there exists a constant

c such that hK
ρK
≤ c for all elements K in T with hK is diameter of longest edge of K and ρK

is radius of its inscribed circle or sphere.

Figure 3.2: Example of an element in isotropic (left) and anisotropic (right) mesh adaptation with

circumscribed circle and ellipse.

Definition 2. We introduce the following notations:

– Isotropic mesh adaptation generates the mesh where almost elements are regular (equilateral)

and only adjusted in size based on an error estimate.

– Anisotropic mesh adaptation based on a metric tensor consists in controlling the size, the

shape and the orientation of the elements altogether.
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See figure 3.2 and figure 3.3 for illustrations of isotropic and anisotropic mesh adaptation.

Figure 3.3: Example of mesh adaptation about 7000 vertices: isotropic mesh (top, left) and

anisotropic mesh (top, right); zoom in the vicinity of the interface triangulations (bottom).

Remark 4.

– Both anisotropic and isotropic mesh adaptation have been applied in practice. Traditionally,

isotropic mesh adaptation has received much attention, however, in regions of large solution

gradient, adaptive isotropic meshes usually contain too many elements. Moreover, in several

cases elements with high aspect ratio are needed for better represent of the solution variations

or boundary layers in fluid dynamics, thus it is desirable to adjust the element size as well as

the element shape, resulting in an anisotropic mesh.

– From the geometrical point of view, isotropic mesh adaptation can be considered as a special

case of anisotropic one with a special metric tensor (see below in section 3.2.1).

3.1.2 The quality of a mesh

In addition to the requirement of adapting mesh to approximate the continuous domain Ω, we

also need to define criteria to evaluate the quality of an element K of a simplicial mesh T .
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There are many definitions of the quality of a simplex K ∈ T . For instance one can rely on the ratio
ρK
hK

, see [Cia78]. This measure only depends on the shape of the considered simplex and not on its

size. From practical point of view, this implies that the accuracy of a finite element computation

performed on T is of course influenced by the size of its elements, but also by their "well-shapeness".

However, we will rather rely on the following quality function Q(K) of a d-simplex K:

Q(K) := α
V (K)

(Σna
i=1l(ei))

d/2
(3.1)

where V (K) is the area/volume of K, na = d(d + 1)/2 is the number of edges of K denoted by

e1, . . . , ena and l(ei) stands for the length of ei. The quality function in (3.1) retains the same

theoretical meaning as ρK
hK

, but shows a better numerical ability when it comes to discriminating

"good" from "average", or "bad" elements. One can show that, for any tetrahedron K, Q(K) ≤ 1,

and equality holds if and only if K is regular.

3.2 Anisotropic mesh adaptation

Research on anisotropic adaptation is based on the idea of metric-based mesh adaptation: the

local desired size, shape and orientation of the elements are prescribed using a metric tensor field.

Usually, an anisotropic tensor field can be defined from an error indicator or an error estimate that

relates the approximation error for a size, shape and orientation prescriptions, see [BA76, VHM91,

Ape99, FP01, DVB+02, Hua05] and the references therein for examples. Theoretical analysis of this

approach in our program of mesh adaptation have been detailed in [AF03, Fre08, FG08]. We only

recall here some basic notations related to adaptation process in this thesis.

3.2.1 Metric tensor fields

Definition 3. Let M be a metric tensor over Rd, i.e at each point x ∈ Rd,M(x) is a symmetric,

positive definite d× d matrix. The length of a curve γ : [0, 1]→ Rd, the volume VM (K) of a simplex

K, and the distance dM (x, y) between two points x, y ∈ Rd with respect to M an be defined as follows,

respectively:

lM (γ) =

∫ 1

0

√
< M(γ(t))γ′(t), γ′(t) > dt

VM (K) =

∫
K

√
det(M(x))dx

dM (x, y) = inf
γ∈C1([0,1],Rd)
γ(0)=x,γ(1)=y

lM (γ)
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From the geometrical viewpoint, the metric defining an element can be represented by an ellipsoid

whose volume, ratios between the lengths of semi-axes and the principal axis vectors are associated

respectively with notations of the size, the shape and the orientation of the element. Indeed, given

a metric tensor M , let T a unit mesh with respect to M . Given x0 is a vertex of T such that

M(x) = M is almost constant around x0, then every simplex K of T lying in the ball B(x0) (implies

that K sharing x0) is inscribed in the ellipsoid BM (x0)) defined as:

BM (x0) = {x ∈ Rd : dM (x, x0) = 1} = {x = Σd
i=1xiei ∈ Rd : λ1x1

2 + . . .+ λdxd
2 = 1} (3.2)

where e1, . . . , ed denote the normalized eigenvectors of M(x0) and λ1, . . . , λd are the associated

eigenvalues.

The set in (3.2) represents an ellipse (in 2D case) or an ellipsoid (in 3D) centered at x0, its axes are

the eigenvectors ei and the length of the semi-axes are 1/
√
λi (see figure 3.4). Notice that when all

Figure 3.4: Geometrical illustration of a unit ellipsoid BM (x0) with an inscribed element K associated

to a metric tensor in 3D.

the λi are equal, M(x0) = λId, where Id is the identity matrix, then the ellipsoid BM (x0) becomes a

sphere with radius 1/
√
λ, thus it accounts for isotropic mesh. On the contrary, in case of anisotropic

mesh, size, shape and orientation notions of an element are associated with the volume, the ratios

between the lengths of semi-axes and the principal axis vectors of ellipsoids, respectively. In cases of

very stretched elements may be desired which do not fulfill the standard quality requirements follow

definition 3.1, these quality functions must be traded for their anisotropic counterparts, obtained

by using the same expressions except that the distance and volume notions are those supplied by

metric tensor M , see quality function in expression (3.5).
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3.2.2 Metric definition based on interpolation error

We present in this section the determination of metric tensor such that the according anisotropic

mesh guarantees a given interpolation error. This determination will be used to construct a metric

tensor for adapted mesh in the scheme of two fluids flow (see section 3.2.6).

Classically, the approximation error is bounded from above by the interpolation error, thus it is

natural to get an upper bound of the interpolation error. Let us now recall the L∞ error estimate

for the Lagrange finite element P1-interpolation in [FA05]. For a function ϕ : Rd → R, its linear

interpolation is denoted by Πϕ, for all mesh element K we have following error estimate:

||ϕ−Πϕ||L∞(K) ≤ cdmax
x∈K

max−→v ⊂K
< −→v , |H(ϕ)(x)|−→v > (3.3)

≤ cdmax
x∈K

max−→e ⊂EK
< −→e , |H(ϕ)(x)|−→e >

where H(ϕ) is the Hessian matrix of function ϕ, EK is the set of edges of the element K and cd

is a constant depending on the dimension d. This estimate indicates that controlling the size of

element edges allows to control the interpolation error. Given ε > 0 is desired tolerance, we aim at

defining a metric tensor such that: ||ϕ− Πϕ||L∞(K) ≤ ε for every element K in the adapted mesh.

As suggested in [AF03], we define an anisotropic metric as follows:

Mϕ = P tΛ̃P ; Λ̃ =


λ̃1 · · · 0
...

. . .
...

0 · · · λ̃d

 (3.4)

with λ̃i = min
(
max

(
cd|λi|
ε

,
1

h2
max

)
,

1

h2
min

)
where P is the eigenvector matrix and the coefficients λi are the eigenvalues of the Hessian matrix

H(ϕ), hmin and hmax are the prescribed minimal and maximal edge size of the mesh. This metric

construction is related to the Hessian of the exact solution ϕ, that is however not known. Therefore,

a procedure for approximating the Hessian of the solution from the discrete solution is necessary,

see [AF03].

3.2.3 Metric intersection

In several applications, we need to adapt a mesh at the same time to several priori independent

informations, supplied by two (or more) metric tensor fields M1,M2 (for examples the mesh adapta-

tion for two fluids flow, see below in section 3.2.6). This is classically achieved by a so-called metric
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intersection procedure: operating on the simultaneous reductions of M1(x) and M2(x) at any point

x ∈ Rd. Suppose that

M1(x) =t P (x)


λ1(x) . . . 0

...
. . .

...

0 . . . λd(x)

P (x) andM2(x) =t P (x)


ν1(x) . . . 0

...
. . .

...

0 . . . νd(x)

P (x)

where P (x) is an invertible matrix; λi > 0, νi > 0(i = 1, . . . , d) then the intersected metric is

determinated by:

M1 ∩M2(x) :=t P (x)


max(λ1(x), ν1(x)) . . . 0

...
. . .

...

0 . . . max(λd(x), νd(x))

P (x)

Geometrically, this intersected metric implies that the ellipsoid BM1∩M2(x) is the largest one in-

Figure 3.5: Intersection of two metric tensors.

scribed in both the ellipsoids BM1(x) and BM2(x) (see figure 3.5). More details can be found in

[FG08].

3.2.4 The generation of anisotropic mesh

We assume that a metric tensor M is defined at the mesh vertices of a given simplicial T (note

that in practice, M(x) is defined only at the nodes of any background structure and interpolated

from these values, see [FG08]). Several techniques have been devised for generating anisotropic

meshes according to a metric tensor, such as Delaunay based triangulation methods (see [She12] for

instances) and advancing-front methods where the construction of mesh elements is from the surface

mesh of its boundary, see [FWE70, Geo71]. Another approach is the local mesh modification method

which starts from an existing non-adapted mesh and adapt it so that it fits at best conditions, see

[DF08] for a description of mesh procedure. In our strategy, the generation of an adapted mesh is
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obtained using a Delaunay-based local mesh modification procedure (described in [DF08]) include

following classical operations:

– splitting of mesh edges,

– collapsing of mesh edge endpoints,

– swapping of mesh edges or faces,

– vertex relocation.

Anisotropic mesh adaptation aims at modifying T iteratively by local operations in order to get a

uniform (or a quasi-uniform) mesh with respect to this metric: in the desired mesh, all its simplices

have edges lengths equal to 1 (respectively, lying in [lmin,lmax]) in the sense of Definition 3 and the

anisotropic quality measure:

QM (K) := α
VM (K)

(Σna
i=1lM (ei))d/2

(3.5)

of its simplices are as close to 1 as possible.

3.2.5 Explicit discretization of the interface

In the context of anisotropic level set adaptation, an interface Γ is approximated by a piecewise

affine interface ΓT such that d(Γ,ΓT ) < ε on the adapted mesh T . We recall that Γ is defined basing

on zero level set of function φ: Γφ = {x ∈ Ω : φ(x) = 0}. For practical reasons, we need to modify

T in order to obtain a new triangulation T̃ in which Γ
T̃
is explicitly discretized. This is achieved by

inserting the set of intersection points of Γφ with the mesh edges/surfaces of T into the set of mesh

vertices of T . The level set metric is updated on the resulting mesh and this mesh is then modified

as previously to obtain final mesh T̃ with respect to the updated metric.

3.2.6 Anisotropic mesh adaptation process for two-phase flow

We are now in position to construct an adapted mesh based on anisotropic mesh adaptation for

the problem two fluid in section 2.5. In each time step, the initial mesh T have to solve two following

problems:

1. Solving Navier-Stokes equation to have the vector field u. This resolution is based on method

of characteristic which is known that unconditional stable with the following error estimate,

see [Pir82]:

‖u− uh‖L2(Ω) ≤ c(hm + ∆tm + hm+1/∆t) (3.6)

2. Find the new position of the interface Γ as zero iso-contour of level set function, solution to
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advection equation: 
∂φ

∂t
(x, t) + u(x, t)∇φ(x, t) = 0 ∀(x, t) ∈ Ω× R+

φ(x, 0) = φ0(x) ∀x ∈ Ω

We aim to alter the initial mesh T to obtain a new mesh T̃ such that:

i. The interface Γ is explicitly discretized the mesh T̃ .

ii. The geometry error of the zero-level set and its approximation in the context of Hausdorff

distance is small enough, i.e dH(Γ,Γ
T̃

) < ε with ε is the desired error and:

dH(Γ,Γ
T̃

) := max

(
sup
x∈Γ

inf
y∈Γ

T̃

|x− y|, sup
y∈Γ

T̃

inf
x∈Γ
|x− y|

)

iii. The mesh T̃ is nice quality according to quality function defined in (3.5) and responds the

resolution of the Navier-Stokes equation at the next iteration with small error approximation.

It can be interpreted that:

i. The first requirement is assured following the lines in section 3.2.5.

ii. The second requirement is implemented by the construction a metric tensor as the following:

We have show in [CDF12] the following error estimates analysis for advection equation:

– The interpolation error of level set function and its numerical solution:

‖φ− φh‖L∞(Ω) ≤ ‖φ−Πhφ‖L∞(Ω) + ‖φ0 −Πhφ0‖L∞(Ω) + c1‖u−uh‖L∞(Ω) + c2e
δtδt. (3.7)

where c1, c2 are constants depending on initial datas φ0 and velocity u.

– The geometry error of zero-level set and its approximation in the context of Hausdorff

distance:

dH(Γ,Γh) ≤ sup

 sup
x∈Ω
‖∇φ(x)‖

inf
x∈Ω
‖∇φ(x)‖2

,

sup
K∈Th

‖∇φh(x)|K‖

inf
K∈Th

‖∇φh(x)|K‖2

 ‖φ− φh‖L∞(Ω) (3.8)

where: dH(Γ,Γh) := max

(
sup
x∈Γ

inf
y∈Γh
|x− y|, sup

y∈Γh

inf
x∈Γ
|x− y|

)
.

The estimations (3.7) and (3.8) permit us to control the Hausdoff distance dH(Γ,Γh) by the

interpolation errors ‖φ − Πhφ‖L∞(Ω), ‖φ0 − Πhφ0‖L∞(Ω) and the approximation error ‖u −

uh‖L∞(Ω). In other words, the initial mesh is adapted such that these errors are as small as

necessary. Otherwise, it is well-known that in case of approximation by Galerkin finite element,

thanks to Cea’s lemma the approximation error ‖u−uh‖L∞(Ω) is bounded by the interpolation

error ‖u − πu‖L∞(Ω). In summary, in order to perform a good discrete approximate Γh of Γ
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the desired mesh should be adapted to interpolation of functions: φ, φ0 and u.

The last term in the right-hand side of (3.7) is related to substep δt, this means that the

geometry error can be controlled by the adjusting of this substep.

In the section 3.2.3 we have detailed how to construct a metric tensor in such a way that the

generated mesh satisfies the given interpolation error. In our scheme, we intend to construct

only one mesh adapted to both Lagrange interpolation of function φ0, φ and u. Denoting

Mφ0 ,Mφ andMu are respectively the resulting metric tensor according to these interpolations.

By using intersection metric (see section 3.2.4) two times we obtain a tensor metric M =

(Mφ0 ∩Mφ) ∩Mu. The desired mesh is built according to metric tensor M .

iii. The third condition is responded rely on the estimation (3.6). It relates to characteristic

mesh elements size h and the time step ∆t. This implies that the approximation error of

Navier-Stokes problem can be decreased by diminution h as well as chosen the appropriate

time step ∆t.

Hence, the final adapted mesh is an anisotropic mesh generated according to metric tensor M

following the lines in section 3.2.4 with the appropriate characteristic element size h adjusted by

[lmin, lmax]. See figure 3.6 for the generation of adapted mesh at each time step. This illustration is

one step of the simulation of the rising bubble in 2D (section 4.2).

3.3 Discrete three dimensional domain remeshing

We now address the problem of isotropic three-dimensional domain remeshing which has been

used in mesh adaptation of some numerical tests in 3D. As in the previous section, we keep always

the notations Ω of continue domain and its three-dimensional simplicial mesh T associated with

"surface triangulation" ΓT which is an approximation of surface part Γ of Ω. The aim is to improve

mesh T to obtain a resulting mesh T̃ which is expected to be nice approximation of domain Ω follows

some criterions, for examples:

– The surface triangulation Γ
T̃
is the better approximation of Γ.

– T̃ is well-shaped according an evaluating of quality mesh, for instances in this strategy we use

the following nomalized quality mesh function element for any tetrahedron K ⊂ R3:

Q(K) := α
V (K)

(Σ6
i=1l(ei))

3/2
, withα = 144

√
3 (3.9)

where ei, i = 1, . . . , 6 are the edges of K and l(ei) stands for the length of ei.
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(a) (b)

(c) (d)

Figure 3.6: Illustration for mesh adaptation in nth iteration for two fluids flow. (a): Initial mesh

Tn (used to obtain un), (b): The new level set fuction φn with the red line is the zero-level set , (c):

Explicit discretization of zero-level set of φn, the obtained mesh is not well-shaped, (d): High-quality

adapted mesh in which the zero-level set of φn is explicitly discretized.

.
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3.3.1 The local size map

The remeshing process of T is based on the classical local remeshing operators (edge split, edge

collapse, edge swap, and node relocation) which enjoy two forms, depending on whether they are

applied to a surface configuration or to a purely internal one, see [FG08, DDF14]. Although, we

need a global vision to drive the remeshing strategy, that is to identify (or classify) those edges of

T that should be split, collapsed, or swapped. Since [VHM91, Fre00], a very convenient means to

encode such information has been rely on a size map h : Ω → R such that for any x ∈ Ω, h(x)

accounts for the local desired size for the edges of T surrounding x. The final aim of the process

is then to produce a new mesh T̃ of Ω, whose edges pq have (as far as possible) unit length lh(pq)

respect to h, where:

lh(pq) =

∫ 1

0

|pq|
h(p+ t(q − p))

dt (3.10)

In numerical practice, h is defined and stored at the vertices of T then interpolated from these data

whenever needed elsewhere.

3.3.2 Map size determination adapted to the geometric approximation

This section will present the definition of size map h such that the adapted mesh according to h

satisfies the desired geometry error of a given surface.

Consider T is a conforming tetrahedral mesh of a continue domain Ω with the interface surface Γ.

Let denote ΓT is approximation of Γ. Our attempt to modify T into a new mesh T̃ in which the

approximating interface surface Γ
T̃

of surface Γ is demanded should be close to Γ up to a given

tolerance ε, that is:

dH(Γ
T̃
,Γ) ≤ ε (3.11)

where dH(Γ
T̃
,Γ) is Hausdorff distance between Γ

T̃
and Γ.

In practice, T̃ will be generated rely on the information of the size map h which is defined as follows:

i. at a surface vertex x ∈ ΓT , the size prescription h(x) in a neighborhood of x based on the

following theorem (see [Dap13] for a proof, Theorem 8.2):

Theorem 1. Let Ω ∈ Rd a domain, and T a mesh, whose associated surface mesh ΓT is "close"

from Γ. Denote as dΓ the signed distance function to Γ, and H(dΓ) its Hessian matrix. Then

dH(Γ,ΓT ) ≤ 1

2

(
d− 1

d

)2

max
K∈ΓT

max
x∈K

max−→e ⊂EK
〈−→e , |H(dΓ)(x)|−→e 〉 (3.12)
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Hence, to satisfy (3.11) it is enough to ask that, for each triangle K ∈ ΓT , one has:

2

9
max
x∈K

max−→e ⊂EK
〈−→e , |H(dΓ)(x)|−→e 〉 (3.13)

Now, let K ∈ ΓT be a triangle which is "very close" to a point x ∈ Γ, so that we can assume

H(dΓ) is nearly constant around K. An approximation of the latter sufficient condition is

then:

∀−→e ⊂ EK ,
2

9
〈−→e , |H(dΓ)(x)|−→e 〉 ≤ ε

On the other hand, introducing κi(x), (i = 1, 2) the two principal curvatures of Γ at x and

ei(x) the two associated principal directions, the matrix H(dΓ)(x) writes in the orthonormal

basis (e1(x), e2(x), n(x)) of Rd:

H(dΓ)(x) =


κ1(x) 0 0

0 κ2(x) 0

0 0 0

 (3.14)

Then, we have the upper bound
√

9ε
2max(|κ1(x)|,|κ2(x)|) of any edges of K.

We are led to the definition of metric size map h on the surface as h : Γ→ R

∀x ∈ Γ, h(x) = min

(
hmax,max

(
hmin,

√
9ε

2max(|κ1(x)|, |κ2(x)|)

))
(3.15)

where hmin and hmax are respectively lower and upper bounds on the authorized lengths of

edges in T .

ii. at an internal point x, no constraint from the geometry, i.e we only need apply the maximal

authorized size h(x) = hmax for an edge of the resulting mesh T̃ .

Remark 5. The size map h defined above only accounts for the local size feature associated to the

geometric approximation of surface Γ. In many case, the local size feature need to adapted another

size map k : Ω → R arise from a posteriori error analysis associated to some numerical resolution

of a problem (see the requirement of mesh adaptation in chapter 2 of this thesis or the problem of

[AO97] for instances). In the problem of two fluids flows, the local size map need to adapted size map

k arise from the error analysis associated to numerical resolution of Navier-Stokes equation problem.

In such a case, this additional information is taken into account by trading h for a new size map h̃

defined as: ∀x ∈ Ω :h̃(x) = min(h(x), k(x)).
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3.3.3 Gradation of the size map

Unfortunately, conforming to the size prescription discussed above is not sufficient in itself to

guarantee the resulting mesh will enjoy a nice mesh quality. Indeed, the computed size map h may

vary very sharply from one point to one of its neighbors, because the computation of h suffered

from noise one the input data ΓT , or because the ideal surface Γ itself shows sharp variations of

curvatures. This shock of size prescriptions between close areas may urge the formation of undesired

ill-shaped elements during the remeshing process. For this reason, it may be desirable to drive

the remeshing operators in such a way that the resulting triangulation ΓT from the process shows

smooth variations in edge lengths. More accurately, we expect the resulting mesh to be such that

two edges ap and bp sharing a common vertex p have Euclidean lengths satisfying:

1

r
≤ |b− p|
|a− p|

≤ r (3.16)

where r is a user-defined bound (typically, we use r = 1.1, 1.2, 1.3, 1.4, 1.5).

To achieve this, the seminal work [BFH98] proposed to enforce a gradation on the size map h. More

precisely, once the size map h has been computed in such a way that:

∀ edge pq ∈ T, |h(p)− h(q)|
|p− q|

≤ hgrad (3.17)

This criterion is imposed on the values of h stored at the vertices of T by traveling repeatedly the

edges pq ∈ T and decreasing the largest of the two values h(p) and h(q) so that (3.17) holds.

3.3.4 Explicit discretization of the zero level set

As mentioned, in our approach we need an explicit discretization of the zero level set of function

φ: Γφ = {x ∈ Ω : φ(x) = 0} into mesh T . This is achieved through the following marching tetrahedra

procedure, which is a well-known variation of the marching cubes algorithm, see [LC87, DK91, FB96]:

i. Identify the set K of elements K ∈ T intersecting Γφ: a tetrahedron K = (P0P1P2P3) belongs

to K if and only if there exists i 6= j ∈ {0, 1, 2, 3} with φ(Pi) ≤ 0, and φ(Pj) ≥ 0.

ii. For an element K = (P0P1P2P3) ∈ K, the intersection of Γφ∩K is a plane portion of surface.

Identify the edges PiPj of K which intersect Γφ (i.e. such that φ(Pi) and φ(Pj) have different

signs), and compute the coordinates of the associated intersection points Mij .

iii. Travel all elements K ∈ K, and split them, introducing the pre-computed points Mij then

using splitting patterns. Up to permutations, there are four possible configurations, depending

on the relative signs of the φ(Pi)
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This procedure creates a new conforming mesh T̃ of T but it is likely very ill-shaped since the

intersections of the elements of T with Γφ are quite arbitrary.

3.3.5 The complete adapted mesh strategy for two-phase flows in 3D

Now, starting from an initial simplicial mesh T , with associated surface triangulation ΓT , and

given the four parameters hhausd, hmin, hmax and hgrad, with hmin, hmax, hgrad have the same meaning

as in previous subsections and hhausd is the desired geometry error between the interface and its

approximation in the context of Hausdoff distance. The proposed remeshing algorithm reads as

follows:

i. The explicit discretisation of the interface is completed following the lines in the section 3.3.4,

hence we obtain a new mesh T̃1 may be still of poor quality.

ii. Construction of the size map. Although it may still be of poor quality, the new mesh T̃1

accounts for a suitable discretisation of the geometry of Γ. A size map h : Ω → R dedicated

to the geometric approximation of within tolerance hhausd in terms of Hausdorff distance is

computed as the section 3.3.2 and stored on T̃1. This size map is then graded as detailed in

section 3.3.3.

iii. Mesh modifications with respect to the size map. In this step, mesh modifications aims at

producing another intermediate mesh T̃2 of Ω which is a nice geometric approximation, with

respect to the prescribed tolerance: dH(Γ
T̃2
,Γ) < hhausd. Furthermore, we rely now on lengths

measured with respect to map size h by formula (3.10). Aiming at getting a new mesh whose

edges have length 1, we impose that all the edges of the mesh should lie in [lmin, lmax] where

lmin, lmax are rough bounds around the target size 1.

iv. "Fine" mesh modifications with respect to the size map. Mesh T̃2 should now be good in

terms of geometric approximation of Γ and of better quality, and in this last stage, we perform

delicately driven operations so as to get the final mesh T̃ . Lengths of edges are still evaluated

with respect to h, except we now impose T̃ have no edge with length lying outside a sharper

interval as in step iii. We are also even stricter as far as the authorized degradation in mesh

quality entailed by our operators is concerned. We eventually use the vertex relocation operator

to help improving the quality of the mesh.

It is clear that the final resulting T̃ responds all the requirements of an adapted mesh in each time

step for resolution of two-phase flows in section 2.5:

– The explicit discretization of the interface in T̃ .
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– The nice geometrical approximation for the interface as well as the desired error approximation

of the velocity.

– The quality assessment of mesh elements.

For illustration, we show in the figure 3.7 the generation of adapted mesh in one iteration of the

simulation of Rayleigh Taylor instability in 3D (detailed in section 4.3)

(a) (b) (c) (d)

Figure 3.7: Illustration for mesh adaptation in 3D (hmin = 1.e−2, hmax = 0.2, hgrad = 1.3, hhausd =

5e − 3). (a): isosurfaces of level set function, (b) and (c): Final adapted mesh where zero-surfaces

is explicitly discretized , (d): a cut of final mesh.

.

3.4 Conclusion

We have presented in this chapter some basic features of mesh adaptation. Together with chapter

2 our approach for the bifluid flows simulation with interface is fully described.

This chapter completes the theoretical presentation of the first part which contains two main prob-

lems:
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1. Numerical resolution of the Navier-Stokes equation for single viscous fluid. (chapter 1)

2. Numerical simulation of two-phases flow. (chapter 2 and chapter 3).

The next chapter is devoted to the numerical application to emphasize the efficiency of the proposed

numerical schemes for both single fluid and two fluids flows.
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Numerical examples
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In this chapter, we present several numerical results obtained with our method. Firstly, the

Navier-Stokes solver for monofluid has been valided by the Lid-driven cavity test. Next, the test

of a rising bubble and an instability Rayleigh-Taylor are investigated to evaluate the ability of the

scheme of two fluids problem. The results in both two dimensions (2D) and three dimensions (3D)

of these simulations are given in comparison with some results in other references.

83
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4.1 The Lid-driven cavity problem

The Lid-driven cavity problem is known as standard benchmark for Navier-Stokes solver in nu-

merical methods and there is also a great deal of reference to compare with. The problem corresponds

to the flow confined in the unit domain Ω = [0, 1]d(d = 2; 3) (a domain in three dimension is given by

extending the two dimensional one in z-direction with a unit width) and the homogeneous Dirichlet

boundary conditions are imposed on all boundaries: zero-velocity everywhere except on the upper

one. The fluid motion is then generated by the upper lid that moves in the x − direction with a

constant velocity ux = 1m/s. The viscosity is adjusted to obtain the desired Reynolds number.

4.1.1 Two-dimensional lid-driven cavity

In two dimensions we investigated the simulations for Reynolds number from 100 up to 10000.

Four meshes have been used: a regular triangulation (carre2) with 2461 nodes, 5000 elements; an

uniform triangulation (carre3) with 2143 nodes and 4136 elements; other uniform triangulation

(carre4) with 8421 nodes,16544 elements; and the last one is a regular triangulation (carre7) with

10201 nodes, 20000 elements for the test of high Reynolds numbers (Re = 10000). This problem

involves a primary vortex at the cavity center and the vortices at the corners as Re increases. It is

known that in the increasing of Reynolds number the number of vortices increases and the position

of the center of primary vortex has the tendency to move from the bottom right corner towards the

center of cavity. In the table 4.1, we resume the positions of the center of primary vortices at the

steady-state (when the residual between the solutions reaches to 10−6) for Re = 100, 400, 1000. The

streamlines are presented in the figure 4.1 for different Reynolds numbers are in good accordance

with those in many references, for examples [UG82, GM99, ABPV12, APV14]. We also compute

the profiles of velocity along horizontal and vertical lines passing the geometric center of cavity, see

figure 4.2. Our numerical computations in these cases are compared to the results obtained in the

very well-known references [UG82], in [GM99], and the benchmark result for cavity flow in [ECG05]

obtained with a fine uniform grid mesh of 601× 601.

We have also obtained a good agreement of the pressure solution with the result showed in

[HRK+10], see figure 4.3.

4.1.2 Lid-driven cavity in 3D

Two mesh are employed to simulate 3D problem: the coarse one consists of 11037 vertices, 56244

tetrahedrals for the cases of Re = 100, Re = 400 and the other one consists of 35723 vertices, 193586
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Reynolds carre2 carre3 carre4 carre7 Ghia et al NSIKE

100 x = 0.595 x = 0.617 x = 0.610

y = 0.736 y = 0.734 y = 0.750

400 x = 0.544 x = 0.544 x = 0.552 x = 0.554 x = 0.580

y = 0.610 y = 0.615 y = 0.613 y = 0.606 y = 0.615

1000 x = 0.516 x = 0.515 x = 0.520 x = 0.521 x = 0.531 x = 0.545

y = 0.569 y = 0.564 y = 0.570 y = 0.570 y = 0.562 y = 0.560

Table 4.1: Cavity in 2D: comparison of the positions of the main vortex for different Reynolds.

Re = 400 Re = 1000

Re = 5000 Re = 10000

Figure 4.1: Cavity in 2D: Streamlines for different Reynolds number.
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Figure 4.2: Cavity in 2D: velocity profile for ux and uy in cases of Re=100 and Re =1000.

Figure 4.3: Cavity in 2D: Isolines of pressure with Re = 10000. Left: result in [VG04]. Center:

result in [HRK+10]. Right: present result.
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tetrahedrals for Re = 1000. In many references the results in 3D is examined by plane in 2D, so we

simulate 3D problem with the same number of Reynolds in 2D: Re = 100, Re = 400, Re = 1000.

As expected, we obtain the streamlines in the each plane z = const are correspondent to those in

2D, see the figure 4.4 for example.

We would like to compare our numerical solutions with the results in [KHT87] because the Reynolds

Figure 4.4: Cavity in 3D: from left to right, streamlines in 2D and in the plane (z = 0.5) of 3D for

Re = 400 (top), Re = 1000 (below).

numbers are exactly the same in our tests, but the data of velocity profiles has not been detailed

there, so the comparison is on the images, see figure 4.5 for a good agreements of our velocity profiles

in 2D, 3D and those obtained in given reference.
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Figure 4.5: Cavity in 3D: velocity profiles on vertical centerline. The first and third rows: present

results. The second and fourth rows: results obtained in [KHT87].
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4.2 Rising bubble

We consider the rising and the deformation of single bubble under gravity in fluid contained in

a vertical, rectangular domain. The bubble with lower density than the surrounding fluid rises and

final at the top of the domain.

4.2.1 Rising bubble in 2D

The initial configuration consists of a circular bubble of radius r = 0.5 centered at [2, 1.5] in a

[4, 10] domain of 2494 nodes. For the boundary condition, we impose no-slip condition (u=0) on

the horizontal walls and free-slip (τ.σn = 0 and u.n = 0) on the vertical walls. See Fig 4.6 for the

illustration of initialization and boundary conditions.

In many references, the different simulation is classified by Reynolds number and Bond number

Figure 4.6: Rising bubble in 2D: initialisation (left) and evolution in time: t = 5.0s (center), t =

10.0s (right).

(also known as Eotvos number) defined as follows:

Re =
ρ1
√
g(2r)3/2

µ1
, Bo =

4ρ1gr
2

γ
(4.1)

The problem has been set up with the constant densities and viscosities are: ρ1 = 100kg.m−3, µ1 =

0.1kg.m−1.s−1, ρ2 = 1.0kg.m−3, µ2 = 0.01kg.m−1.s−1. The gravity is: g = 9.81e− 3m.s−2. The evo-

lution of the bubble with the coefficient of surface tension γ = 6.e − 3N.m−1 and adaptive meshes
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with hmin = 0.02, hmax = 1.0 is showed in the figure 4.6. It can be seen that the bubble shape

deforms during rising and the terminal bubble shape is slightly dimpled at the bottom.

In order to impress the effect of surface tension, we investigate this simulation with different co-

efficients of surface tension. It can be seen in the figure 4.8 when surface tension is rather small

here (γ = 6e− 5), the bottom of the bubble becomes more dimpled while it is flat in cases of more

important coefficient (γ = 2.5e−2) and the bubble remains almost circular with the further increase

in this coefficient (γ = 9.e− 2). This result of bubble shapes is in good agreement with figure 6 of

[HSL07] in cases of low Reynolds number and Bond number is from 10 to 200 extracted in figure

4.8, corresponding with our differences of coefficient surface tension γ. (see figure (4.1))

We have known that during the long simulation, the mass of bubble can’t be guaranteed. The

Figure 4.7: Rising bubble in 2D: interaction of surface tension on the final bubble (at time t=10s)

with different tension coefficients, from left to right: γ = 6e−5; γ = 6e−3; γ = 2.5e−2; γ = 9e−2.

Figure 4.8: Rising bubble in 2D: interaction of surface tension in case of Re = 5 and from left to

right: Bo = 10; Bo = 20 ; Bo = 50; Bo = 100; Bo = 200 in [HSL07].

advection of bubble front and the interpolation in the each iteration may lead to the loss of mass.

We measure the variation of mass in each time step and show in the figure 4.9. The variation of

mass can be seen as about 2.E − 3(0, 1%) in each time step.

4.2.2 Rising bubble in 3D

Extending to simulate bubble rising under gravity in 3D. We consider the problem with the

same conditions in 2D: a bubble with diameter of 0.5m initialized at [0.75, 0.75, 1.0] in the domain
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Figure 4.9: Rising bubble in 2D: variation of mass correction with time evolution.

of [0, 1.5] × [0, 1.5] × [0, 4.5]. The aims of this simulation is validation our code of two-phase fluid

in 3D by examination the bubble shapes during the evolution and the correction of volume in each

iteration. As the simulation with low Reynolds number, we observe that the shape of bubble deforms

slowly from the beginning, it becomes dimpled ellipsoidal and more distorted in time. This result

is similar to those in many references with corresponding Reynolds and Bond number, see [LAB10],

[HSL08] for examples. In figure 4.10 we represent the evolution of bubble from t = 0 to t = 10. It

can be seen that when the bubble is very close to upper wall of the domain, its shape is rapidly

distorted.

4.3 Rayleigh-Taylor instability

In this section, we carry out the simulation of more interesting problem, named Rayleigh-Taylor

instability. This instability would occur along the interface of two layers where the heavy fluid is

superposed the light one (ρ2 > ρ1) in the gravity field g. Starting from the results concerning the

inviscid flow of [Try88], this problem has been considered by many references for viscous regime, see

[FGQ01] and[CCG08], for examples.

In our knowledge, the difficulty of the problem concerning viscous fluid depends on many criterions,

among those we impress two numbers:

- The density difference represented by the Atwood number defined as:

At =
ρ2 − ρ1

ρ2 + ρ1

- The Reynolds number is defined by:

Re =
ρ1d

3
2 g

1
2

µ
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t = 0s t = 2.0s t = 4.0s

t = 6.0s t = 8.0s t = 10.0s

Figure 4.10: Rising bubble in 3D: evolution of the interface in time.

Figure 4.11: Rising bubble in 3D: zoom of and adapted mesh at time t = 6.0s.
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where d is the width of the computational domain.

4.3.1 Rayleigh-Taylor instability in 2D

Firstly, we set up the problem in the rectangular domain with a width of d = 1 and a height of

4d. The no-slip conditions are imposed on the upper and lower boundaries while free-slip conditions

are enforced on the vertical sides. The initial interface is set as in by:

tanh
y − 2− 0.1cos2πx

0.01
√

2
= 0

We obtain the results is in good symmetry during the time evolution with the Atwood number

is 0.3. The results display in figure 4.12 can be compared with figure 8 of [LKK10], notice that

the mushroom shapes are not identical because the given comparison showed the simulation with

At = 0.5 and higher Reynolds number. We will investigate this case of the test in reduced domain

in which the computational time is much cheaper and we can also verify boundary conditions for

this type of domain as in [FGQ01].

Figure 4.13 shows the results according to different Atwood numbers at the same Reynolds number.

t = 0s t = 1.0s t = 2.0s t = 3.0s t = 4.0s

Figure 4.12: Rayleigh-Taylor instability in 2D: evolution of the interface in time with At = 0.3.

We can observe that the mushroom shape is more roll-up in the increasing of Atwood number. This

results suggest the effect of this number on the ratio of the width of bubble and spike fluid is in

good agreement with the measuring played in the figure 9 in [LKK10].
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At = 0.3 At = 0.35 At = 0.4 At = 0.45 At = 0.5

Figure 4.13: Rayleigh-Taylor instability in 2D: evolution of the interface with different Atwood num-

bers.

Secondly, assuming the symmetry of the initial condition is maintained during the time evolution,

we consider the problem with the reduced domain with a width of d/2 and a height of 2d. We see

again the same configurations with different Atwood numbers on the reduced domain in figure 4.14

As mentioned, we also validate our code by the same value of the test in [FGQ01]. The evolution

of the interface is plotted in figure 4.15 in time scale according to [Try88] which is related to ours

by tref = t
√
d.At.g. We can see that these results are qualitatively close to those of figure 1 in

[FGQ01], also in [CCG08], there are in good agreement of the global characteristic of the flow in the

early stage and some slight discrepancies at the large times of the evolution.

4.3.2 Rayleigh-Taylor instability in 3D

We consider the 3D computation of Rayleigh - Taylor instability problem. All the computational

conditions are exactly the same as the 2D case and 3D instability has been well captured by the

proposed scheme. The results performed in the figure 4.18 are very close to the results in figure 7

of [LJG96], or figure 18 of [LFX05]. The slight difference of geometric configurations is the reason

that our fluids are incompressible while the comparisons are compressible. On the other hand, the

density ratio is not identical, so more detailed comparison with these results may be not interesting.

In this simulation, we begin with the mesh of 9.901 vertices (50429 tetrahedras) and the final
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At = 0.3 At = 0.35 At = 0.4 At = 0.45 At = 0.5

Figure 4.14: Rayleigh-Taylor instability in 2D: evolution of the interface with different Atwood num-

bers and reduced domain.

t = 1.5s t = 1.75s t = 2.0s t = 2.25s t = 2.5s

Figure 4.15: Rayleigh-Taylor instability in 2D: evolution of the interface with At = 0.5, Re = 1000.
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Figure 4.16: Rayleigh-Taylor instability in 2D: extracted results of evolution of the interface with At

= 0.5, Re = 1000 in [FGQ01] (top) and [CCG08] (bottom).

Figure 4.17: Rayleigh-Taylor instability in 2D: zoom of adapted mesh in the vicinity of the interface,

left: anisotropic mesh, right: isotropic mesh.
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t = 0s t = 0.2s t = 0.4s t = 0.6s

t = 0.8s t = 1.0s t = 1.2s t = 1.4s

Figure 4.18: Rayleigh-Taylor instability in 3D, evolution of the interface in time with At = 0.5.
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Figure 4.19: Rayleigh-Taylor instability in 3D: results obtained in [LJG96] (left) and [LFX05] (right).

mesh consists of 103.687 vertices (566.753 tetrahedral) with hmin = 0.002, hmax = 0.1. Due to

mesh adaptation hmin is decreased at each time step in order to well capture the interface with the

minimal computational time.

4.4 The coalescence of two rising bubbles

Finally, we consider the rising of two bubbles in a fluid under the gravity and the coalescence

during the rising. The aim of this simulation is to show the capacity of managing topology changes

of the present scheme.

4.4.1 The coalescence of two rising bubbles in 2D

The computational domain is Ω = [0, 1] × [0, 4]. The under circular bubble is initially centered

at (0.5, 1), with a radius of 0.25 and the upper one is initially centered at (0.5, 1.75), with a radius

of 0.15. The density and the viscosity of the fluid and two bubbles are respectively:

ν1 = 10−1kg/(m.s), ρ1 = 100kg/m3

ν2 = 10−2kg/(m.s), ρ2 = 1kg/m3

The surface tension coefficient is set as γ = 6×10−3. The gravity is g = 9.81m/s2. In this simulation,

the problem is endowed with the following boundary conditions:

– homogeneous Dirichlet conditions, u = 0, on the horizontal walls;
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t = 0s t = 5.0s t = 10.0s t = 12.6s

t = 12.7s t = 13.5s t = 16.0s t = 20.0s

Figure 4.20: Coalescence of two bubbles: evolution of the interface in time. The coalescence occurs

at t = 12.7s.
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– free-slip condition on the vertical walls: τ.σn = 0 and u.n=0;

The time step has been set to ∆t = 0.1. It is observed that the rising and the coalescence process

can be divided into three consecutive stages:

– The rising of two separate bubbles.

– The coalescence of two bubbles to the one.

– The rising of aggregate bubble to the top boundary.

Initially, the shape of two bubbles are slightly distorted. We see that the shape of two bubbles

become rapidly distorted and the deformations become even more pronounced until the coalescence

occurs (see figure 4.20). This simulation is implemented with 200 iterations of the algorithm in

Figure 4.21: Zoom of mesh and velocity of 2 bubbles at t = 12.6s and t = 12.7s.

section 2.5. The adapted mesh is about 1100 vertices at each time with the parameters: hmin =

0.02, hmax = 1.0, hgrad = 1.5. See figure 4.21 for the zoom of adapted mesh on the interfaces. The

computational time takes about 6 minutes (on MacBook Air 2.13 GHz).

4.4.2 The coalescence of two rising bubbles in 3D

The computational domain is Ω = [0, 1] × [0, 4]. The under bubble is initially centered at

(0.5, 0.5, 1.0), with a radius of 0.25 and the upper one is initially centered at (0.5, 0.5, 1.6), with a

radius of 0.15. The physical parameters of the fluid (ν1, ρ1) and two bubbles (ν2, ρ2) are similar in

the 2D case:

ν1 = 10−1kg/(m.s), ρ1 = 100kg/m3

ν2 = 10−2kg/(m.s), ρ2 = 1kg/m3

We impose also the homogeneous Dirichlet conditions: u = 0 on the horizontal walls and the free-slip

condition on the vertical walls: τ.σn = 0 and u.n=0.

Figure 4.22 shows the evolution of the interfaces during the rising with the coalescence of two bubbles.



4.4. THE COALESCENCE OF TWO RISING BUBBLES 101

t = 0s t = 2.0s t = 4.0s t = 4.6s t = 5.3s

t = 6.2s t = 7.1s t = 10.0s t = 14.0s t = 20.0s

Figure 4.22: Coalescence of two bubbles in 3D: evolution of the interfaces in time. The coalescence

occurs at t = 4.6s.
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A comparison was performed between the present results and the experimental results obtained

by Narayanan et al. [NGK74], numerical results obtained by Chen and Li [CL98], also those in

[dSMN+04]. The similarity of the shape development of the two bubbles can be clearly seen from

figures 4.23, 4.24 and 4.25. Because of different parameters and time evolution, we are not interested

in more detail comparison in this experiment.

Figure 4.23: Coalescence of two bubbles in 3D: results obtained in [NGK74].

Figure 4.24: Coalescence of two bubbles in 3D: results obtained in [CL98].

To be more specific, the details of the coalescence of the two bubbles are shown in figure 4.26

for the velocity fields of the flows during the evolution. It can be seen that the liquid circulation

around each bubble produces a jet that pushes the lower surface of both upper and under bubbles,

and deformations of the bubbles occur (figure 4.26,(b)). Due to the effect of the velocity field

around the upper bubble, the under bubble is stretched and becomes a spherical-oval shape (figure
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Figure 4.25: Coalescence of two bubbles in 3D: results obtained in [dSMN+04]: (a) 0.0 s; (b) 0.03 s;

(c) 0.06 s; (d) 0.09 s; (e) 0.12 s; (f) 0.15 s.

4.26,(c)). After the coalescence occurs (figure 4.26,(d)), the lower surface of the aggregate bubble is

accelerated by the liquid jet and a spherical cap is obtained (figure 4.26, (e),(f),(g)). The aggregate

bubble becomes dimpled ellipsoidal shape and more dimpled in time process (figure 4.26,(h)) as the

deformation of single rising bubble in section 4.4.1. The contour velocity fields in figure 4.26 have

shown an accurate representation with those in figure 9 of [CL98].

This simulation is implemented with 200 iterations. The adapted mesh is about 30000 vertices

at each time with the parameters: hmin = 0.005, hmax = 0.2, hgrad = 1.1, hhausd = 0.005. See figure

4.27 for more detail images of initial mesh and adapted one at the coalescence. The computational

time takes about 2.5 minutes for each iteration.

4.5 Conclusion

The numerical results obtained in this chapter are in good accordance with those in many

references which have been cited in each test case. It can be seen that the proposed scheme for

bi-fluid flows, that is based on mesh adaptation, is capable of managing complex movements of the

interface include topology change. Furthermore, the computational adapted triangulations have a

modest number of nodes, while maintaining a relatively high accuracy near the interface, and the

computational time is acceptable.

This chapter finishes also the first part of this thesis. We go to the second part where the considered

problem is related to the optimization of computational domain, i.e the computational domain is

variable during the time evolution.
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(a) t = 0s (b) t = 2.0s (c) t = 4.5s (d) t = 4.6s

(e) t = 5.3s (f) t = 6.2s (g) t = 10.0s (h)t = 20.0s

Figure 4.26: Coalescence of two bubbles in 3D: Velocity fields, cutting in the plan y = 0.5.
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(a) (b) (c) (d)

Figure 4.27: Coalescence of two bubbles in 3D: Initial mesh with 11113 vertices (two first ones) and

adapted mesh with 30101 vertices at the coalescence (two last ones).
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Shape optimization in fluid mechanics
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In the first part of this thesis, we have mentioned the following problems:

– The numerical resolution of Navier-Stokes equations for two fluids flow with the interface.

– The numerical resolution of the evolution of the interface (free surface) by a formulation of

the level set method.

– Mesh adaptation techniques, especially for controlling the geometrical discrepancy between

the free surface and its approximation.

All these problems and their numerical counterparts allow us to resolve any stationary or non sta-

tionary problems for two phase flows in a fixed domain. However, in many aspects of the application

another challenge is related to the optimization of the geometry of the computational domain with

respect to a given functional. This part of computational mechanics has soared over the last decades

and is devoted to finding the optimal size, shape or topology of a mechanical part, with respect to a

given mechanical criterion - such as, for instance, the work of external loads, or the internal stress.

These problems strongly depend on the physics at play (elasticity, thermoelasticity, fluid mechanics

...), and on the constraints that should be fulfilled by the shapes.

In the context of structural optimization, size, shape and topology optimization problems address

Figure 4.28: Three categories of structural optimization. (a) Size optimization of a truss structure,

(b) shape optimization and (c) topology optimization. The initial problems are shown at the left hand

side and the optimal solutions are shown at the right. (from [BS03])

different aspects of the structural design problem. In a typical size problem the goal may be to find
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the optimal thickness distribution of a linearly elastic plate or the optimal member areas in a truss

structure. On the other hand, in a shape optimization problem the goal is to search the optimum

shape of this domain, that is, the shape is now the design variable. Unlike the case of classical

shape optimization where only the boundary of the domain is optimized, in topology optimization

the structure of the domain (the number of holes and the connectivity of the domain for instance)

may change during the optimization process. See figure 4.28 for the illustration of three categories

of structural optimization.

Altogether different problems coming from physics, mechanics, biology, etc... can be cast into

the different frameworks of structural optimization. To name a few:

– The broad approaches on the design optimization of heat conduction problems can be found

in [SK96, Mer98, YPG01, HMY03]. Shape optimization methods for thermal structure have

also been utilized for multiobjective function in [PCL03, NPR06], for practical uses. See also

in [LSQX99] an extended algorithm for evolutionary structural optimization (ESO) to shape

and topology design problems subjected to steady heat conduction.

– Many structure topology optimization approaches have been introduced to the field of elastic

structure design in recent years, see [SW00, WWG03] for examples. The requiring of structural

optimization for a model of linear or nonlinear elasticity with different objective functions have

been investigated in [AJT02, AJT04].

– Last but not least, shape optimization in fluid mechanics has received a large amount of

attention from both engineers and mathematicians since the pioneering works of Pironneau

[Pir73, Pir74]. Many applications of shape optimization concepts in this domain, to name a few:

the optimal shape design (OSD) of airplane wing which induces minimal drag, i.e. minimal

reaction from the surrounding fluid in aeronautic industry, see [MP04, POTTP06]; the optimal

control approaches to shape optimization of aorto-coronaric bypass anastomoses are applied

in [QR03, AQR06a, AQR06b]; the problem of optimal swimming of microorganisms at low

Reynolds number is considered in [ADH11], more specifically, the authors are in search for the

shape of such microorganism that allows to reach a prescribed displacement while undergoing

minimal stress from the surrounding fluid, the shape of the microorganisms is parametrized by

means of a few physical parameters, and the sensitivity of the stress exerted by the fluid on the

microorganisms with respect to perturbations on these parameters is computed; an interesting

application of the topology optimization method for fluid flow can be found in [BP03] for

minimum power dissipation Stokes flow problems in two dimensions. Since then, alternative
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parameterizations have been suggested for the Stokes flow problem [GP06] and the Navier

Stokes flow problem [Evg06]. Topology optimization for Stokes flow has been extended to

large-scale problems [APGHS08] and has been applied to fluid flows with regions of Darcy and

Stokes flow [WKB07] and with low-to-moderate Reynolds numbers [OOB06, DMZ08a, ZL08].

For more works and many other applications of shape or topology optimization concepts in

fluid mechanics, we refer to [BS03, Gun03, MP04, MP10] and references therein.

In this part our aim is to construct a numerical scheme for the problem of shape optimization in

fluid mechanics: Let Ω ∈ Rd(d = 2 or 3) be a bounded open set occupied by the fluid governed by

Stokes equations: 
−ν∆u+∇p = f inΩ

divu = 0 inΩ

(1)

with some adequate boundary conditions. The problem we consider is to minimize an objective

functional denoted by J(Ω) which depends on the domain Ω via the solution uΩ of (1) where the

variable shape Ω belongs to a set of admissible shapes Uad. Formally speaking, our model of shape

optimization is:

inf
Ω∈Uad

J(Ω)

This problem has also been considered in [BP03, DMZ08b, DMZ08a]. Before talking about our

approach, let us mention some techniques of shape optimization that have been introduced in com-

putational mechanics since the 1960s. Regarding numerous methods to handle the structural opti-

mization problems in the literatures, one can see that these methods are mainly distinguished by the

way they represent the shapes and the way they compute the sensitivity of the objective criterion

with respect to the design.

Describing shapes is a complicated problem since it needs to satisfy two requirements. Firstly,

shape optimization techniques must be able to perform mechanical computations on the considered

shapes, e.g. by means of finite differences, finite element or finite volume methods, and not all kind

of representations lend themselves to such computations. Secondly, the adopted representation must

be versatile enough to allow for a robust account of shapes’ deformations. Some typical approaches

for descriptions of shapes can be named as:

– explicit methods: in this case, shapes are explicitly accounted by a set of degrees of freedom, see

for instance [BF84] around these issues, or the review article [HG86], and monograph [Pir84].

– homogenization methods and their variants (power-law method or solid isotropic microstructure
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with penalization (SIMP) method), may be considered quite classical in view of the number of

publications see [BK88, Ben95, BS03, ABFJ97, All02] for examples. These methods belong to

the class of density methods. They have made a notable change in perspectives in structural

optimization by using a density function θ : D → [0, 1] defined over a computational domain

D, where θ is close to 0 if there is almost only void (or a very "soft" material, mimicking void),

and where θ is close to 1 if there is almost only the shape. The problem of finding the "best"

shape is transformed into that of the optimal distribution of a mixture of material and void

in a large computational domain. Therefore, the shape optimization problem ends rephrased

as a parametric optimization problem.

– implicit methods: have been used broadly for interface-tracking or interface-capturing in var-

ious fields and this method became very popular in shape-topology optimization, the most

famous of them being the level set method. For examples, Wang et al. developed a topol-

ogy optimization method for linearly elastic structures using an implicit moving boundary

[WWG03]. They represented the structural boundary using the level set model embedded

in a higher-dimensional scalar function. Allaire et al. proposed a structural optimization

method based on a combination of shape derivative and the level set method for front prop-

agation in [AJT04]. In their formulation, the compliance and target displacement objectives

are considered. Optimization problems for heat conduction have been solved by level set-

based optimization and extended to nonlinear problems by Ha and Cho [HC05, HC08]. Kim

et al. developed a level set-based topology optimization method for heat conduction prob-

lems utilizing topological derivatives as a nucleation criterion [KHC09]. Recently Duan et al.

have applied variational level set methods to shape and topology optimization of fluid flows in

[DMZ08b, DMZ08a]. They demonstrated their approach with two-dimensional examples and

proposed new evolution equations for the level set function in order to achieve a smooth evo-

lution without reinitialization. Zhou and Li [ZL08] have also used the level set method for the

topology optimization of steady-state Navier Stokes flows in both two and three dimensions.

They stated that the computational costs incurred by remeshing the fluid domain, extending

the velocity and reinitializing the level set function were limitations of their model.

It is obvious that the performing of perturbations of the considered shapes is closely related

to the problem of shape description. Our approach for shape description belongs to the last class:

we apply a conventional level set approach [WWG03, AJT04] where a precise description of the

boundary is kept under the form of an auxiliary function (level set function). In our approach the
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deformation of shape Ω is reformulated in terms of an associated level set function φ(., t) as the

following level set advection equation over a larger domain D :

∂φ

∂t
+ V.∇φ = 0

where the advection vector V is the steepest descent direction for optimization corresponding to the

shape derivative of the given objective function. We also compute a shape derivative by using an

adjoint problem, however unlike the approach in [AJT04] using the so-called "ersatz material" which

amounts to fill the holes by a weak phase, we only need impose the Stokes and adjoint problems

on a sub-mesh T of the shape domain. This can be achieved thanks to the explicit discretization of

generated shape during the optimization process.

It is worth noting that although this method is not specifically designed for topology optimization,

it can easily handle topology changes. For this reason, if the optimum design of the structure

includes information on the topology and shape of the structure, the level set models allow to deal

with these two problems simultaneously. We shall describe the details of our proposed approach and

its numerical implementation in the chapter 5 hereafter.



114



Chapter 5

Shape optimization in fluid mechanics
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As mentioned in the introduction, our numerical scheme is based on a combination of classical

shape derivative, level set method and mesh adaptation. The motivation of this approach related to

the following components:

– In the context of level set method, the variational shape Ω is classically represented as the

negative subdomain of a level set function φ of "larger" computational domain D. In the first

part of this thesis, this method has been approached for the evolution of the interface Γ where

115
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Γ is represented as the zero-level set of φ. Hence, if we consider the boundary ∂Ω of variable

shape Ω as the "interface" defined by the zero-level set: ∂Ω = {x ∈ D : φ(x) = 0}, then the

problem of shape deformation will be considered as the problem of domain evolution which

involves only to the advection of ∂Ω. In this way, we can apply the numerical resolution of

advection equation (is detailed in Chapter 2) for the evolution of boundary of Ω, and hence

for the deformation of Ω.

– Consequently, during the shape deformation the mesh adaptation process is constructed by

the same approach (Chapter 3) to guarantee the accuracy of geometrical approximation of the

continuous shape Ω as well as the quality of the adapted mesh for the resolution of mechanical

problems.

– Level set method has been used broadly in structural optimization. In [Dap13], the combi-

nation of level set methods on unstructured meshes and mesh evolution has led to successful

results in shape optimization of elastic structures.

The main difficulty is related to the problem of introducing perturbations of the considered shapes,

and thus on how to compute the sensitivity of the objective function J with respect to the shape. We

overcome this problem in section 5.1, and show that the computation of the sensitivity of objective

function is related to the Hadamard’s boundary variation method and the shape derivatives is

computed by Céa’s formal method. They are the key ingredients to construct a general scheme for

shape optimization in fluid mechanics (section 5.2). Section 5.3 will detail our numerical scheme

using level set method and mesh adaptation. Last, in section 5.4 a numerical example with the

objective function of energy dissipation is presented to assess the efficiency and the reliability of the

proposed scheme.

5.1 Shape sensitivity analysis using Hadamard’s boundary variation

method

In this section we focus on one particular method for describing variations of a shape, namely

Hadamard’s boundary variation method, as well as the notions of differentiation with respect to

the domain. At first, we introduce the basic ideas of Hadamard’s method and set some notations,

that we shall use in the rest of this part. Then, we present the derived notions of differentiation

with respect to a domain: the notion of shape derivative of a scalar function of the domain, or of

a function which is itself defined on the domain is introduced. Some classical results is recalled to
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prepare for the computation of shape derivative. Finally, we apply the stress on a specific context:

the optimization of mechanics fluid in context of Stokes system.

5.1.1 Hadamard’s boundary variation method

The central idea of Hadamard’s boundary variation is proposed in its seminal paper [Had07] (see

also [SZ92]). It was then exploited in depth in [MS76]. Let θ be a displacement field of "small"

amplitude, we consider variations of a given reference shape Ω of the form (I+θ)(Ω) (see figure 5.1).

Thus, all the considered transformations (I + θ)(Ω) are homeomorphisms "close" to the identity; in

particular, all the variations of Ω achieved in this way share the same topology.

Note that in the framework of Hadamard’s method, the variations Ωθ of Ω only depend on the

Figure 5.1: Variation I + θ of a reference shape Ω.

values taken by θ on ∂Ω, and we have following consequence of Picard’s fixed point theorem (see

lemma 6.13 in [All06] for a proof):

Lemma 1. For every deformation field θ ∈ W 1,∞(Rd,Rd) such that ‖θ‖W 1,∞(Rd,Rd) < 1, the appli-

cation (I + θ) : Rd → Rd is a Lipschitz homeomorphism with Lispchitz inverse.

To the end of this part Ω ⊂ Rd stands for a fixed domain, which enjoys at least Lispchitz

regularity. For any θ ∈ W 1,∞(Rd,Rd), ‖θ‖W 1,∞(Rd,Rd) < 1, we denote as Ωθ := (I + θ)(Ω) the

deformed shape with respect to θ. Note that W 1,∞(Rd,Rd) ⊂ L∞(Rd)d is the Banach space of

bounded functions θ : Rd → Rd, endowed with the natural norm:

∀θ ∈W 1,∞(Rd,Rd), ‖θ‖W 1,∞(Rd,Rd) := ‖θ‖L∞(Rd)d + ‖∇θ‖L∞(Rd)d×d

Hence, variations of a given shape Ω end up parametrized by means of an open subset of a Banach

space. As we shall see in the next section, this allows among other things to introduce a notion a
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differentiability with respect to the shape by rewriting any operation performed on shapes close to

Ω in terms of the underlying deformation field θ.

5.1.2 Shape differentiability

Following the approach of Murat and Simon [MS76, Sim80], starting from a smooth reference

open set Ω, we consider domains of the type Ωθ = (I + θ)(Ω) with θ ∈ W 1,∞(Rd,Rd) as been

defined in the previous subsection. Let us present some classical definition and results about the

differentiation with respect to the domain of functionals of type: Ω 7→ J(Ω) ∈ R.

Definition 4. Let J(Ω) a functional of the domain. J is shape differentiable at Ω if the underlying

application:

W 1,∞(Rd,Rd) −→ R

θ 7−→ J(Ωθ)

is Fréchet differentiable at θ = 0. The associated Fréchet differential; denoted as J ′(Ω) is called the

shape derivative of J at Ω. We have following expansion in the vicinity of 0 ∈W 1,∞(Rd,Rd):

J(Ωθ) = J(Ω) + J ′(Ω)(θ) + o(θ), with lim
θ→0

|o(θ)|
‖θ‖

= 0 (5.1)

Remark 6.

1. J ′(Ω) is a continuous linear form on W 1,∞(Rd,Rd).

2. In the case of a functional which also depends on other variables than Ω, the partial Fréchet

differential with respect to the domain is denoted as ∂
∂Ω .

We recall a classical result which states that the directional derivative J ′(Ω)(θ) depends only the

normal trace θ.n on the boundary ∂Ω, see [AJT04].

Lemma 2. Let Ω be a smooth bounded open set and J(Ω) a differentiable function at Ω, if θ1, θ2 ∈

W 1,∞(Rd,Rd) are such that: θ2 − θ1 ∈ C(Rd,Rd) and θ1.n = θ2.n, then we have:

J ′(Ω)(θ1) = J ′(Ω)(θ2)

We also recall here two results on shape derivative that will be useful in the computation of

shape derivatives in the section 5.1.3 (see [HP05] or [AJT04] for the proofs).



5.1. SHAPE SENSITIVITY ANALYSIS USING HADAMARD’S BOUNDARY VARIATION METHOD119

Lemma 3. Let Ω be a bounded Lispchitz domain and let f(x) ∈ W 1,1(Rd). Define: J(Ω) =∫
Ω f(x)dx then J(Ω) a differentiable function at Ω, and we have:

J ′(Ω)(θ) =

∫
Ω
div(θf)dx =

∫
∂Ω
fθ.nds

for any θ ∈W 1,∞(Rd,Rd)

Lemma 4. Let Ω be a bounded Lispchitz domain in class C2 and g(x) ∈W 2,1(Rd). Define: J(Ω) =∫
∂Ω g(x)ds then J(Ω) a differentiable function at Ω, and:

J ′(Ω)(θ) =

∫
∂Ω

(
∂g

∂n
+ κg)θ.nds

for any θ ∈W 1,∞(Rd,Rd), where κ is the mean curvature of ∂Ω defined by κ = divn. Furthermore,

this result still holds true if one replaces ∂Ω by Γ, a smooth open subset of ∂Ω, and assumes that

h = 0 on the surface boundary of Γ.

In particular, Lemma 3 is useful in order to compute the shape derivative of a volume constraint

V (Ω) = C. Indeed, we have:

V (Ω) =

∫
Ω
dx and V ′(Ω)(θ) =

∫
∂Ω
θ(x).n(x)ds. (5.2)

Similarly, Lemma 4 is useful in order to compute the shape derivative of a perimeter constraint

P (Ω) = C since we have:

P (Ω) =

∫
∂Ω

ds and P ′(Ω)(θ) =

∫
∂Ω
κθ(x).n(x)ds.

5.1.3 Lagrange’s approach for the computation of shape derivatives in the con-

text of Stokes system

In this section, we present the computation of the shape derivative for objective functionals J(Ω)

which depend on the domain Ω via the solutions uΩ to the Stokes system:
−∆u+∇p = f inΩ

divu = 0 inΩ

(5.3)

endowed with some adequate boundary conditions.

The rigorous presentation of this topic is not an easy task. In practice, we rely on a formal method to

obtain the expressions of these shape derivatives, namely Céa’s fast derivation method, introduced

in [Céa86]. It is formal in the sense that all the data at hand: objective functions, domains,

deformations are assumed smooth enough and the state solution uΩ, pΩ is differentiable with respect

to the shape. Consider the following cases of boundary conditions:
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1. Newmann boundary condition

We consider the objective function of type:

J(Ω) =

∫
Ω
j(uΩ)

and the state equations (5.3) are endowed by Newmann condition as follows:
−∆u+∇p = f inΩ

divu = 0 inΩ

σ(u, p)n = ϕN on ∂Ω

(5.4)

In this case, we introduce the Lagrange functional defined for (u, p, v, q) as follows:

L(Ω, u, p, v, q) =

∫
Ω
j(u)dx+

∫
Ω

(−∆u+∇p− f).vdx−
∫

Ω
qdivu

Taking v ∈ (H1(Rd)d) and q ∈ L2(Rd) and using Green formula:

L(Ω, u, p, v, q) =

∫
Ω
j(u)dx+

∫
Ω

(∇u.∇v − pdivv − f.v − qdivu)dx−
∫
∂Ω
ϕN .v

We have the partial differential of L with respect to the each variable as follows:

〈∂L
∂v

(Ω, u, p, v, q), ū〉 =

∫
Ω

(∇u.∇ū− pdivū− f.ū)dx−
∫
∂Ω
ϕN .ū (5.5)

〈∂L
∂q

(Ω, u, p, v, q), p̄〉 =

∫
Ω
−p̄divu (5.6)

〈∂L
∂u

(Ω, u, p, v, q), v̄〉 =

∫
Ω
j′(u).v̄dx+

∫
Ω

(∇v̄.∇v − qdivv̄)dx (5.7)

〈∂L
∂p

(Ω, u, p, v, q), q̄〉 =

∫
Ω
−q̄divv (5.8)

We can see that (5.5), (5.6) lead the variational formulation of the state system (5.4). It has

been known that in the weak form this problem has unique solution (uΩ, pΩ), and we can easily

verify that:

J(Ω) = L(Ω, uΩ, pΩ, v, q), ∀ (v, q) ∈ (H1(Rd)d, L2(Rd))

Taking the partial differential with respect to domain Ω we have:

J ′(Ω)(θ) =
∂L
∂Ω

(Ω, uΩ, pΩ, v, q)(θ)

+ 〈∂L
∂u

(Ω, uΩ, pΩ, v, q), u
′(Ω)(θ)〉+ 〈∂L

∂p
(Ω, uΩ, pΩ, v, q), p

′(Ω)(θ)〉 (5.9)

Hence, suppose that (vΩ, qΩ) is solution of the system:
∂L
∂u (Ω, uΩ, pΩ, v, q) = 0

∂L
∂p (Ω, uΩ, pΩ, v, q) = 0

(5.10)
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then J ′(Ω)(θ) can be written with the reduced formula:

J ′(Ω)(θ) =
∂L
∂Ω

(Ω, uΩ, pΩ, vΩ, qΩ)(θ) (5.11)

The transformations (5.7), (5.8) lead us to formulate the system (5.10), also called the adjoint

equations as:


−∆v +∇q = −j′(uΩ) inΩ

divv = 0 inΩ

σ(v, q)n = 0 on ∂Ω

(5.12)

Applying Lemma 3, Lemma 4 and taking into account the expression (5.11), the shape deriva-

tive of objective function can be computed as follows:

J ′(Ω)(θ) =

∫
∂Ω
θ.n

(
j(u) +∇u.∇v − pdivv − f.v − qdivu− ∂(ϕN .v)

∂n
− κϕN .v

)
ds (5.13)

2. Dirichlet boundary condition

Let us now consider the case of Dirichlet condition, i.e the state equations are:


−∆u+∇p = f inΩ

divu = 0 inΩ

u = uD on ∂Ω

(5.14)

We construct the Lagrange function as:

L(Ω, u, p, v, q, λ) =

∫
Ω
j(u)dx+

∫
Ω

(−∆u+∇p−f).vdx−
∫

Ω
qdivudx+

∫
∂Ω
λ.(u−uD)ds (5.15)
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The partial differential of L respect to the each variable:

〈∂L
∂v

(Ω, u, p, v, q, λ), ū〉 =

∫
Ω

(−∆u+∇p− f).ūdx (5.16)

〈∂L
∂q

(Ω, u, p, v, q, λ), p̄〉 =

∫
Ω
−p̄divu (5.17)

〈∂L
∂λ

(Ω, u, p, v, q, λ), λ̄〉 =

∫
∂Ω
λ̄.(u− uD) (5.18)

〈∂L
∂u

(Ω, u, p, v, q, λ), v̄〉 =

∫
Ω
j′(u).v̄dx+

∫
Ω
−∆v̄.vdx−

∫
Ω
qdivv̄dx+

∫
∂Ω
λ.v̄ds

=

∫
Ω
j′(u).v̄dx+

∫
Ω
−∆v.v̄dx+

∫
Ω
∇q.v̄dx

+

∫
∂Ω

(∂nv − qn+ λ).v̄ds−
∫
∂Ω
v.∂nv̄ds

=

∫
Ω

(j′(u)−∆v +∇q).v̄dx+

∫
∂Ω

(σ(v, q)n+ λ) .v̄ds−
∫
∂Ω
v.∂nv̄ds

(5.19)

〈∂L
∂p

(Ω, u, p, v, q, λ), q̄〉 =

∫
Ω
∇q̄.v = −

∫
Ω
q̄divv +

∫
∂Ω
q̄n.v (5.20)

Introducing the condition σ(v, q)n+ λ = 0 on ∂Ω, the transformation (5.19) and(5.20) lead us

to the adjoint system: 
−∆v +∇q = −j′(u) inΩ

divv = 0 inΩ

v = 0 on ∂Ω

(5.21)

Hence if we consider the Lagrange function at the equilibrium points of the state and the

adjoint problems with the condition σn+ λ = 0 on ∂Ω, we obtain the formula:

J ′(Ω)(θ) =
∂L
∂Ω

(Ω, uΩ, pΩ, vΩ, qΩ, λ)(θ) (5.22)

Applying Lemma 3 and Lemma 4 to this expression leads us to write the shape derivative of

the objective function as:

J ′(Ω)(θ) =

∫
∂Ω
θ.n

(
j(u) + (−∇u+ ∆p− f).v − qdivu+

∂λ(u− uD)

∂n
+ κλ(u− uD)

)
ds

(5.23)

3. Mixed boundary conditions

Let us come to the more general case in which the state system is imposed both Dirichlet and
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Newmann conditions (∂Ω = ΓD ∪ ΓN ). We consider here the state system:

−∆u+∇p = f inΩ

divu = 0 inΩ

σ(u, p)n = ϕN onΓN

u = 0 onΓD

(5.24)

and the objective function we consider is the following:

J(Ω) =

∫
Ω
j(uΩ(x))dx+

∫
ΓN

l(uΩ(x))ds

The Lagrange function can be constructed as:

L(Ω, u, p, v, q) =

∫
Ω
j(u)dx+

∫
ΓN

l(u)ds+

∫
Ω

(∇u.∇v − p.divv − q.divu− f.v)dx

−
∫

ΓD

(σ(v, q)n.u+ σ(u, p)n.v)−
∫

ΓN

ϕN .vds

The partial differential of L with respect to the each variable read:

〈∂L
∂v

(Ω, u, p, v, q), ū〉 =

∫
Ω

(∇u.∇ū− p.divū− f.ū)dx−
∫

ΓD

(∂nū.u+ σ(u, p)n.ū)−
∫

ΓN

ϕN .ūds

=

∫
Ω

(−∆u+∇p− f).ūdx+

∫
∂Ω
σ(u, p)n.ū

−
∫

ΓD

σ(u, p)n.ū−
∫

ΓN

ϕN .ūds−
∫

ΓD

∂nū.u

=

∫
Ω

(−∆u+∇p− f).ūdx+

∫
ΓN

(σ(u, p)n− ϕN ).ūds−
∫

ΓD

∂nū.u

(5.25)

〈∂L
∂q

(Ω, u, p, v, q), p̄〉 =

∫
Ω
−p̄divu+

∫
ΓD

p̄n.u (5.26)

〈∂L
∂u

(Ω, u, p, v, q), v̄〉 =

∫
Ω
j′(u)v̄dx+

∫
ΓN

l′(u).v̄ds+

∫
Ω

(∇v̄.∇v − qdivv̄)dx−
∫

ΓD

(σ(v, q)n.v̄ + ∂nv̄.v)

=

∫
Ω

(−∆v +∇q + j′(u)).v̄dx+

∫
ΓN

(σ(v, q)n+ l′(u)).v̄ds−
∫

ΓD

∂nv̄.v

(5.27)

〈∂L
∂p

(Ω, u, p, v, q), q̄〉 =

∫
Ω
−q̄divv +

∫
ΓD

q̄n.v (5.28)

It has been observed that the equilibrium of ∂L
∂v (Ω, u, p, v, q) and ∂L

∂q (Ω, u, p, v, q) yields the

variational formulation associated to the state system (5.24). There exists unique solution

(uΩ, pΩ) of the weak form of the state system and we can easily verify that:

J(Ω) = L(Ω, uΩ, pΩ, v, q) ∀ (v, q) ∈ (H1
ΓD

(Rd)d, L2(Rd))
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By taking the partial derivative of two parts with respect to domain Ω, we have:

J ′(Ω)(θ) =
∂L
∂Ω

(Ω, uΩ, pΩ, v, q)(θ) (5.29)

+
∂L
∂u

(Ω, uΩ, pΩ, v, q)u
′
Ω(θ) +

∂L
∂p

(Ω, uΩ, pΩ, v, q)p
′
Ω(θ) (5.30)

Hence, if (vΩ, qΩ) are solutions of the system of ∂L∂u (Ω, uΩ, pΩ, v, q) = 0 and ∂L
∂p (Ω, uΩ, pΩ, v, q)

which also called adjoint system written as follows:

−∆v +∇q = −j′(uΩ) inΩ

divv = 0 inΩ

σ(v, q)n = −l′(uΩ) onΓN

v = 0 onΓD

(5.31)

then the partial differential of objective function with respect to domain Ω can be formulated

in a rather simple way:

J ′(Ω)(θ) =
∂L
∂Ω

(Ω, uΩ, pΩ, vΩ, qΩ)(θ) (5.32)

Applying Lemma 3, Lemma 4 and noting that u = v = 0/ΓD, we have the shape derivative of

the objective function in this case:

J ′(Ω)(θ) =

∫
∂Ω
θ.n(j(u) +∇u.∇v − pdivu− qdivv − f.v)ds

+

∫
ΓN

θ.n

(
l(u)− ϕN .v + κ

∂(l(u)− ϕN .v)

∂n

)
ds

−
∫

ΓD

θ.n (σ(v, q)n.u+ σ(u, p)n.v) ds (5.33)

We have computed the shape derivative for objective functionals. Next, we turn to construct an

algorithm for shape optimization problem in the context of Stokes system.

5.2 The generic shape optimization algorithm

5.2.1 The gradient method

As suggested by the name, this method relies on the knowledge of the first-order shape derivative

J ′(Ω) to produce a descent direction θ for J . We have stated that only the normal component of the

deformations is considered and play a role in the shape derivative of objective functions. Actually,

the shape derivatives of all the functionals we shall get interested in enjoy a structure of the form:

J ′(Ω)(θ) =

∫
∂Ω
wΩθ.nds (5.34)
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where wΩ is a certain scalar defined over ∂Ω (depending on the Stokes and the adjoint systems),

which makes the computation of the possible deformation field for J(Ω):

θt = −twΩn (5.35)

Indeed, from the expansion (5.1), for t > 0 small enough, we have:

J(Ωtθ) = J(Ω)− t
∫
∂Ω
w2

Ωds+ o(t) < J(Ω),

hence, the new shape Ωtθ is obtained from initial form Ω as: Ωtθ = (I + θt)(Ω).

5.2.2 The global algorithm

We are now in position to introduce a shape gradient algorithm for the considered problem (5.3).
Algorithm 5: Shape gradient algorithm
n=0, start with an initial guess Ω0;

for n = 1, . . . , untill convergence do
1. Compute the solution (uΩn , pΩn) to the Stokes system on Ωn, and the solution (vΩn , qΩn) to

the adjoint system (section 5.1.3).

2. Infer a descent direction θn for the objective functional following the lines in section 5.2.1.

3. Choose a descent step τn > 0 small enough so that J(Ωn
τnθn) < J(Ωn).

4. The new shape is obtained as Ωn+1 = Ωn
τnθn

end

5.3 Shape optimization basing on level set method and mesh adap-

tation

5.3.1 Description of the level set method for shape optimization

The idea of this method is to combine an implicit domain evolution method with an explicit

type of shape representation which have been used in many references: for examples, in the two-

dimensional work [YNKN11], the evolution of shapes is tracked on a triangular mesh D of a working

domain D owing to the level set method, and at each iteration of the process, an exact mesh of the

current shape Ω is obtained by relocating vertices of D onto ∂Ω. In [XSLW12], a similar strategy is

applied for dealing with the motion of shapes; a computational mesh for any shape arising during the

process is moreover constructed by first identifying the intersection points of the implicitly-defined

boundary ∂Ω with the edges of the mesh D of D, then using them as an input for a Delaunay-based
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mesh generation algorithm. In our approach, a computational domain D is defined, and is equipped

with an unstructured mesh which is modified at each iteration of the algorithm, in such a way that

all the shapes Ω0, . . . ,Ωn produced during the shape optimization process are explicitly discretized

in this mesh, i.e all elements (vertices, edges, faces) of mesh of shape are also as elements of the

mesh of D (see figure 5.2, left). The direction of the deformation of each shape Ωn is inferred

from computing the shape gradient J ′(Ωn) (which depends on solutions of the state and the adjoint

systems on Ωn, see section 5.1.3). The determination and the deformation of the shape Ωn is related

to the level set function φn defined on D: at each step, φn is advected by descent direction of Ωn

to obtain the new level set function φn+1. This function leads to define the new shape Ωn+1 as the

negative subdomain of D (see figure 5.2, right). This strategy presents several advantages:

Figure 5.2: Left: explicit discretisation of shape Ω (yellow zone) in mesh of computational domain

D. Right: representation of shape Ω as negative subdomain of a level set function defined on D

– The explicit discretization of shape Ω in D allows us define and solve the concerned mechanical

problem only on a submesh (the negative part). hence the computational time can be reduced,

since we know that normally we need to resolve both state and adjoint problem which always

are challenges in numerical resolution.

– As a shape is known as a submesh of the computational mesh of D, no projection between dif-

ferent meshes is involved in the computation of a descent direction for the considered objective

function of the domain.

– The proposed method does not pose any theoretical difficulty to be extended to the three-

dimensional case.
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Let us now recast the algorithm 5 in the context of level set method:

Algorithm 6: Shape gradient algorithm (in combination with level set method)
n=0, start with an initial guess Ω0;

for n = 1, . . . , untill convergence do
1. Compute the solution (uΩn , pΩn) to the Stokes system on Ωn, and the solution (vΩn , qΩn) to

the adjoint state which is constructed in section (5.1.3)

2. Infer a descent direction θn for the objective functional following the lines of section (5.2.1)

3. Choose a descent step τn > 0,and solve the Hamilton-Jacobi equation:
φn+1
t (x, t) + θn.∇φn+1(x, t) = 0 onD × [0, τn]

φn+1(x, 0) = φn(x) onD
(5.36)

to obtain the new level set function φn.

4. The new shape is obtained as Ωn+1 := {x ∈ D,φn+1(x) < 0}.
end

5.3.2 Model of fluid mechanics in the context of Stokes system

Let us now come back to the problem (5.3). Suppose that the boundary of Ω is decomposed by

three disjoint parts:

∂Ω = Γ ∪ ΓN ∪ ΓD

where Γ 6= ∅ is the variable part during the optimization process, ΓD is a fixed part on where we

impose an inlet (a constant velocity or a profile) and ΓN is also a subset of fixed part where we apply

one condition for the outlet (one type of Newmann condition, see chapter 1). As consequence, the

velocity u of the fluid is the solution of the following systems:

−ν∆u+∇p = f inΩ

divu = 0 inΩ

σ(u, p)n = ϕN onΓN

u = uD onΓD

u = 0 onΓ

(5.37)

According to the previous requirements, the considered set Uad of admissible shapes is defined as:

Uad = {Ω bounded and Lipschitz, ΓD ∪ ΓN ⊂ ∂Ω}, (5.38)
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so that the set Θad of admissible variations is:

Θad = {θ ∈W 1,∞(Rd,Rd) : θ = 0 onΓD ∪ ΓN}.

Given a objective function J(Ω), in fact the minimization problem:

inf
Ω∈Uad

J(Ω) (5.39)

usually requires some smoothness or geometrical or topological constraints, for example, one could

require the volume V (Ω) :=
∫

Ω dx or the perimeter P (Ω) :=
∫
∂Ω ds of an admissible shape Ω, to

be equal (or lower or equal) to a prescribed upper bound. Here, we limit ourselves to consider

the problem with the constraint on the volume of shapes: a variant of (5.39) turns out to be a

minimization problem:

inf
Ω∈Uad

(J(Ω) + lV (Ω)) (5.40)

where Uad is defined by (5.38) and l > 0 is a positive Lagrange multiplier.

Other regularized variants of (5.39) have been proposed in [Che75, Cha03] for such existence theories

or more efficient algorithms for handling constraints such as the Method of Moving Asymptotes

described in [Sva87], or the Method of Feasible Directions in [VM73], but they are not dealt in the

scope of this thesis.

Note that: Result (5.2) of Lemma (3) and formulation (5.34) lead to write:(
J ′(Ω) + lV ′(Ω)

)
(θ) =

∫
∂Ω

(wΩ + l)θ.n

This implies that for the optimization problem under a volume constraint, the computation of the

scalar function wΩ in (5.35) requires adding the Lagrange multiplier l. In order to simplify the

notation, the notation J(Ω) of the objective function will hereafter have the meaning of (J(Ω) +

lV (Ω)) while wΩ stands for (wΩ + l).

5.3.3 Computation of a descent direction

From a given shape Ω ∈ Uad, a descent direction V ∈ Θad for the considered objective function

J(Ω) is computed on a whole mesh DΩ of D which encloses an explicit discretization of Ω.

The generic expression (5.35) for the shape derivative of J suggests the immediate choice:

∀x ∈ ∂Ω, V (x) = −wΩ(x)n(x). (5.41)

As we have seen, wΩ depends on the solution of Stokes and adjoint systems posed on Ω, which can

be accurately solved on the submesh TΩ of DΩ, using the finite element method. Unfortunately, the

choice (5.35) for a descent direction turns out to be hazardous for two independent reasons:
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– Formula (5.35) is only defined on ∂Ω, whereas we are in search for a velocity field V which is

defined at least in a vicinity of ∂Ω, as well to comply with the requirement V ∈ Θad as to use

V in the context of the level set method.

– The scalar field wΩ usually depends on the derivatives of the Stokes solution and the adjoint

solution, which may be quite irregular - in the theoretical framework as well as when it comes

to their numerical approximation. This may jeopardize the numerical stability of the process.

As advocated by [Bur03, dG06] (see also in chapter 2) an efficient way to address both problems at

the same time consists in using the gradient of J as a descent direction associated with a different

scalar product instead of canonical one of L2(Γ).

More accurately, α > 0 being a small "extension - regularization" parameter, let us consider the

functional space:

H1
ΓD∪ΓN

(D) = {w ∈ H1(D), w = 0 onΓD ∪ ΓN}

and let w̃ ∈ H1
ΓD∪ΓN

be the unique solution to the variational problem (see [Bur03] for alternative

choices):

∀w ∈ H1
ΓD∪ΓN (D),

∫
D

(w̃w + α∇w̃.∇wdx) =

∫
Γ
wΩwds = J ′(Ω)(wn) (5.42)

Consider now the choice:

∀x ∈ D, Ṽ (x) = w̃n(x)

where n is an extension to D of the normal vector field to ∂Ω. Using the asymptotic expansion

(5.1) we can show that Ṽ is still a descent direction for J (for t small enough: J(Ω
tṼ

) = J(Ω) −

t
∫

Γ w̃
2wΩnds+ o(t)). However, Ṽ intrinsically enjoys more regularity than V owing to the classical

regularity theory for elliptic equations, and is inherently defined on the whole domain D.

In the numerical setting, w̃ is easily computed by solving (5.42) with the classical finite element

method carried out on mesh DΩ, after computing wΩ (the discretization of the right-hand side being

straightforward since the computational mesh DΩ encloses an explicit discretization of ∂Ω).

5.3.4 The proposed algorithm

We are now in position to outline the proposed general strategy for handling mesh evolution in

the context of shape optimization.

Starting with an initial shape Ω0, and a simplicial mesh DΩ0 ofD in which Ω0 is explicitly discretized.

For n = 0, ... untill convergence, the current shape Ωn is known via a submesh TΩn of DΩn where

TΩn is a mesh of Ωn.
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1. Generate the level set function φn (as the signed distance function) to Ωn on the whole mesh

DΩn of D.

2. Compute the value of the scalar field wΩn appearing in the shape derivative of the considered

functional in (5.35). This may involve one, or several finite element analyses for solving the

Stokes and adjoint systems, to be held on the part TΩn of the mesh DΩn corresponding to Ωn.

The quantity wΩn is defined only on ∂Ωn, i.e. in the numerically setting, on the discretization

of ∂Ωn which explicitly appears in both TΩn and DΩn .

3. Extend wΩn to a vector field V n defined on the whole mesh DΩn of D, following the lines in

section 5.3.3

4. Choose a descent step τn > 0, and solve the following level set advection equation on DΩn :
∂tφ(x, t) + V n(x).∇φ(x, t) for (x, t) ∈ D × (0, τn)

φ(x, 0) = φn(x) forx ∈ D
(5.43)

This produces a new level set function φn+1 := φ(x, τn) associated to the new shape Ωn+1.

5. Generate the meshed representation of Ωn+1 from the set of data DΩn , φ
n+1. A new mesh

DΩn+1 of D is produced through an intermedia "ill-shaped" mesh D̃Ωn+1 in which Ωn+1 is

explicitly discretized. D̃Ωn+1 is remeshed by local modification operators to obtain the resulting

"well-shaped" mesh DΩn+1 for better quality and geometric approximation (see Chapter 3).

6. Evaluate J(Ωn+1). If J(Ωn+1) < J(Ωn), Ωn+1 is retained as the new shape; else Ωn+1 = Ωn.

Then, go back to step 4, decreasing the chosen value for the time step.

5.4 Numerical examples

We consider the situation depicted in figure 5.3: a flow with the constant viscosity ν travels

throughout a domain of elbow Ω with three parts of the boundary:

∂Ω = Γ ∪ ΓD ∪ ΓN

We endow a parabolic velocity profile uD on the inlet boundary ΓD and assume that the flow comes

out at the boundary ΓN with the free-out condition. This domain Ω is the optimization variable of

the problem where ΓD,ΓN are the subset of fixed part of the boundary and only the part Γ is variable

during the optimization process. We are interested in the minimization the energy dissipation in

fluid, then the object functional J(Ω) defined as:

J(Ω) =

∫
Ω
ν|∇u|2dx
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Figure 5.3: The model of problem in the elbow case test.

where u is the solution of the following the Stokes systems:

−ν∆u+∇p = f inΩ

divu = 0 inΩ

u = 0 onΓ

u = uD onΓD

σ(u, p)n = 0 onΓN

(5.44)

The domain Ω is enclosed in a fixed working domain D. Applying the results of shape derivative in

the section 5.1.3 for j(u) = ν∇u.∇u, f = 0 and note that only the part Γ of ∂Ω is variable during

the optimization process, we have the computation the shape derivative of J(Ω):

J ′(Ω) =

∫
Γ
(ν∇u.∇u+ν∇u.∇v−pdivv−qdivu)θ.nds−

∫
Γ
(σ(u, p)n.∂nv+σ(v, q)n.∂nu)θ.nds (5.45)

The second integral can be reduced as follows:∫
Γ
(σ(u, p)n.∂nv + σ(v, q)n.∂nu)θ.nds =

∫
Γ

((ν∇u− pId)n.∂nv + (ν∇v − qId)n.∂nu)

=

∫
Γ
(2ν∂nu.∂nv − pn.∂nv − qn.∂nu) (5.46)

Otherwise, ∂τu = ∂τv = 0 (as u = v = 0/Γ). Hence, we have:

∇u.∇v = ∂nu.∂nv + ∂τu.∂τv = ∂nu.∂nv,

divu = n.∂nu+ τ.∂τu = n.∂nu,

divv = n.∂nv + τ.∂τv = n.∂nv.
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Finally, we obtain the following result:

J ′(Ω) =

∫
Γ
(ν∇u.∇u− ν∇u.∇v)θ.nds (5.47)

So, the scalar function wΩ (on Γ) in step 1 is:

wΩ = ν(∇u.∇u−∇u.∇v)

where u is the solution of Stokes systems (5.37) and v is solution of adjoint systems constructed by

(5.31)

wΩ is extended to obtain the descent direction V defined on the whole mesh D. As explained in

the section 5.3.2, we will consider this minimization problem with a volume constraint incorporated

under the form of a penalization by a fixed Lagrange multiplier l. In this case test, we set l = 2.5

and 300 iterations of the algorithm of section 5.3.4 are performed. Each mesh DΩ of D arising in

the course of the process has approximately 1200 vertices, and the whole computation takes about

10 minutes. The detail implements in each iteration are displayed on figure 5.4 and the convergence

history for the aggregated objective functional (J(Ω) + lV (Ω)) is reported on figure 5.5.

We have reduced considerably the energy dissipation:∣∣∣∣J(Ωfinal)− J(Ω0)

J(Ω0)
× 100

∣∣∣∣ ' 40%

It can be observed that in this case test, the final shape is the domain connected by the "almost

straight" lines between input and output parts. This result is in good agreement with the one

obtained in [BP03, DMZ08b, Pri08, CG09].

5.5 Conclusion

This chapter has given a numerical scheme for shape-topology optimization in fluid mechanics.

One numerical example in 2D for Stokes problems with the minimizing energy dissipation has been

presented. Regarding the perspectives of this work, we would like to mention a few options:

– Investigate the different test cases with Stokes problem and dissipated object function in 2D

and 3D, for examples the test cases such as in [BP03, DMZ08b, CG09].

– Extend the proposed scheme in the context of Navier-Stokes problem like in [DMZ08a] and

may be combine with the different objective functions as the suggest of maximum permeability

in [ZL08].
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Implements in nth-iteration. (a): Explicit discretization of shape Ωn in mesh DΩn, (b):

Velocity field of Stokes problem on sub-mesh TΩn of shape Ωn, (c): Shape-domain Ωn in mesh DΩn

corresponding level set fuction φn, (d): Velocity field V n on DΩn for advection of φn, (e): Explicit

discretization of zero-level set of φn+1, the obtained mesh D̃Ωn+1 is very ill-shaped, (f): High-quality

mesh DΩn+1 in which the new shape Ωn+1 is explicitly discretized.

.
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Figure 5.5: Deformation process of domain in the case test of elbow. From top to bottom, left to

right: 1th, 50th, 70th, 85th, 100th and 150th iterations of the case test.

.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0  50  100  150  200  250  300  350

Objective function

Figure 5.6: Convergence history for the case test to 300th iteration.



– Our proposed scheme which is based on a combination of classical shape derivative, level set

method and mesh adaptation process has been utilized successfully in the elastic structure

[Dap13]. This study has demonstrated its efficiency and its reliability in fluid mechanics

problem. We could expect a promising application of the present scheme for shape-topology

optimization in other physical problems (thermal structure,... ).
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