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Around eighty years ago, MacDonald Critchley was the first to recognize that muscle 

mass decreases with aging and noted that it is most noticeable in intrinsic hand and foot 

muscles (Critchley 1931). Almost sixty years later, in 1988, during a meeting convened in 

Albuquerque (USA) which provided information and updated the assessment of health and 

nutrition in older populations, Rosenberg, noted that ‘no decline with age is more dramatic or 

potentially more functionally significant than the decline in muscle mass’. He highlighted the 

interest that to provide recognition by the scientific community, this phenomenon needed a 

name and proposed the term ‘sarcopenia’ (Greek ‘sarx’ or flesh + ‘penia’ or loss). Thereafter, 

sarcopenia was defined as the progressive general decline in muscle mass that occurs with 

aging (Roubenoff & Hughes 2000). However, this definition was not accepted by all the 

clinicians and investigators and has been evolved a lot until few years. Finally, the actual 

consensus defines sarcopenia as ‘a geriatric syndrome initially characterized by a decrease in 

muscle mass that will get worse causing a deterioration in strength and physical performance’ 

(Muscaritoli et al. 2010; Cruz-Jentoft et al. 2010; Fielding et al. 2011; Morley et al. 2011).

 Due to social, technological and medical progress, the life expectancy has been 

increasing since the 19th century in our modern Western societies, leading to the aging of the 

general population. Currently, it is projected that the number of elderly will double worldwide 

from 11% of the population to 22% by 2050 (UN 2007). Inevitably, due to this aging 

population, prevalence of sarcopenia is growing, and currently it is estimated that one-quarter 

to one-half of men and women aged 65 and older are likely sarcopenic (Janssen 2004). The 

consequences of the increasing prevalence of sarcopenia are generally considered as 

catastrophic on the public health costs. Thus, the total cost of sarcopenia to the American 

Health System has been reported to be approximately $18.4 billion (Janssen et al. 2004). This 

cost would worse in the future since individuals over the age of 69 years are the largest 

growing segment of the American population (Manton and Vaupel 1995). These healthcare 

costs are linked to a general deterioration of the physical condition resulting in an increased 

risk of falls, a progressive inability to perform basic activities of the daily life and loss of 

independence of the elderly (Goodpaster et al 2006, Delmonico et al 2007).   

 However, several strategies are acknowledged as effective to prevent, delay, or treat 

age-related sarcopenia. Thus, developing therapies will not only help to enhance the quality of 

life for individual sarcopenic patients but also reduce the economic and productivity burdens 

associated with sarcopenia, and would be beneficial to society as a whole. Exercise training is 

surely the most effective in counteracting sarcopenia since it can lead to increase muscle 

mass, strength and physical performance (Pillard et al. 2011; Di Luigi et al. 2012; Wang & 
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Bai 2012; Montero & Serra 2013). However, the large scale implementation of such 

intervention is hampered by the lack of motivation of most persons. In addition, many 

elderlies are non-ambulatory or have co-morbidities such as moderate to severe osteoarthritis 

(Bennell & Hinman 2011) or certain forms of unstable cardiovascular disease that would 

preclude participation in resistance training exercises (Williams et al. 2007). To overcome 

such barriers, developing alternative therapies such as antioxidant strategies and hormone 

replacement therapies (testosterone and GH) appear to be necessary.  

 Skeletal muscle is an organ which has specific properties that give it a central role in 

locomotion, performing activities of the daily life and the maintenance of posture and 

balance. In order to ensure these essential functions, it must have a sufficient mass and seek to 

preserve it. As previously described, some of the most serious consequences of ageing are its 

effects on skeletal muscle particularly the progressive loss of mass and function which 

impacts on quality of life, and ultimately on survival (Cruz-Jentoft 2012). The underlying 

mechanisms of sarcopenia are still under investigation. However, a negative protein turnover 

(Combaret et al. 2009), impaired mitochondrial dynamics (Calvani et al. 2013), a decreased 

muscle regeneration capacity (Snijders et al. 2009; Hikida 2011), as well as an exacerbation 

of apoptosis (Marzetti et al. 2012) are usually considered to be cellular mechanisms involved 

in muscle atrophy leading to sarcopenia.       

 These mechanisms are themselves dependent on a multitude of systemic and cellular 

factors such as decreased production of anabolic hormones (GH, IGF-1, testosterone, insulin). 

Links and interactions between these depleted hormones and the cellular dysfunctions 

previously cited remain partly unknown. A potential candidate could be the age-related 

chronic oxidative stress, whose recent studies emphasized its involvement in sarcopenia 

(Semba et al. 2007; Safdar et al. 2010). Thus, sarcopenic muscle exhibits increased free 

radicals derived from oxygen and nitrogen (RONS) production (Capel et al. 2004; Capel, 

Rimbert, et al. 2005; Capel, Demaison, et al. 2005; Chabi et al. 2008; Jackson et al. 2011; 

Andersson et al. 2011; Miller et al. 2012). This overproduction of RONS is mainly due to 

mitochondrial dysfunctions (Capel, Rimbert, et al. 2005; Chabi et al. 2008) and increased 

xanthine oxidase activity (Lambertucci et al. 2007; Ryan et al. 2011), and leads to an increase 

in oxidative damage to skeletal muscle cellular components. These oxidative damage reflect 

the inability of antioxidant systems to contain this RONS overproduction and attests an 

imbalance of the "oxidants-antioxidants" balance leading to an impaired redox homeostasis. It 

seems that the restoration of redox homeostasis by the different preventive strategies 

previously exposed involves an up-regulation of the glucose-6-phosphate dehydrogenase 
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(G6PDH) enzyme muscle protein content and/or activity (Kovacheva et al. 2010; Sinha-

Hikim et al. 2013). G6PDH is the first and rate-limiting enzyme of the pentose phosphate 

pathway which would supply NADPH to several antioxidant systems (M. D. Scott et al. 

1993). Moreover, few data in vitro or in vivo have suggested that G6PDH would play an 

important role in muscle mass regulation. However, these data need to be confirmed. 

In this context, this thesis will attempt to answer three general objectives. The first 

objective is to determine in vivo to what extent a pro-oxidant redox status within the aged 

muscle tissue may modulate signaling pathways involved in cellular mechanisms underlying 

sarcopenia. The second objective is to show that return to normal functioning of these 

signaling pathways requires a restoration the redox homeostasis. Finally, the third objective of 

this thesis is to identify actors and their possible cellular mechanisms in the maintenance 

and/or the restoration of the redox status.   
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Chapter 1: What is Sarcopenia? 
 

1. Definitions of sarcopenia        

1.1. The origins of the word “Sarcopenia” 

 A reduction in lean body mass and an increase in fat mass is one of the most striking 

and consistent changes associated with advancing age. Skeletal muscle and bone mass are the 

principal components of lean body mass to decline with age (Tzankoff & Norris 1978). These 

changes in body composition appear to occur throughout life and have important functional 

and metabolic consequences. In 1931, MacDonald Critchley was the first to recognize that 

muscle mass decreases with aging and noted that it is most noticeable in intrinsic hand and 

foot muscles (Critchley 1931). At the beginning of the 1970’s, Forbes was the first researcher 

to report prospective data on the age-related decrease in muscle mass in a small group of 

adults using potassium40 counting data (Forbes & Reina 1970). The reported decline was -

0.41% per year as obtained in 13 men and women aged between 22 and 48 years old. 

Evidence suggests that up to 40% of muscle mass may be lost between the ages of 20 and 70 

years (Rogers & Evans 1993) and can exceed over 50% among those aged 80 years and older 

(Baumgartner et al. 1998). The decline of skeletal muscle mass may accelerate along with 

aging, which is 6% per decade between 30 and 70 years of age (Fleg & Lakatta 1988), 1.4% 

to 2.5% per year after age 60, and could start as early at 35 years of age (Frontera & Hughes 

2000).             

 In 1988, Irwin Rosenberg noted that ‘no decline with age is more dramatic or 

potentially more functionally significant than the decline in muscle mass’ and proposed for 

the first time, the term ‘sarcopenia’ (Greek ‘sarx’ or flesh + ‘penia’ or loss) to describe this 

age-related decrease of muscle mass (Rosenberg 1989). 

1.2. First definitions based only on muscle mass 

 So, sarcopenia was first defined as the progressive general decline in muscle mass that 

occurs with aging (Roubenoff & Hughes 2000).      

 The first epidemiological studies fixed to a strict definition of sarcopenia as loss of 

muscle mass. In this context, some studies have suggested criteria based on the use of dual-

energy x-ray absorptiometry (DXA) to quantify muscle mass. For instance, Baumgartner et al. 

(1998) summed the muscle mass of the four limbs as appendicular skeletal muscle mass 
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(ASM), and expressed muscle mass as ASM/height² (as kg/m²). Individuals with a 

ASM/height² two standard deviations (SD) below the mean of a middle-age reference male 

and female population (aged 18-40 years) from the Rosetta study (Gallagher et al. 1997) were 

defined as gender-specific cutpoints for sarcopenia. Later, others proposed the use of a 

skeletal muscle mass index (SMI) based on the total skeletal muscle mass divided by the body 

weight and multiplied by 100 (Janssen et al. 2002). With this definition, two stages of 

sarcopenia are considered: a stage 1 when the index is between 1 and 2 standard deviations 

compared to a younger population of reference, a stage 2 when the index is less than 2 

standard deviations (Janssen et al. 2002). Another method based on appendicular skeletal 

muscle mass adjusted for height and body fat mass (also called residuals) was proposed by 

Newman et al. in 2003 and showed that fat mass should be considered in estimating 

prevalence of sarcopenia in women and in overweight or obese individuals (Newman et al. 

2003). This method began to show some limits of a definition based only on muscle mass. 

1.3. Limits of only using muscle mass to define sarcopenia 

 There are many crucial aspects of sarcopenia that are missed by the unique use of 

muscle mass. Relevant patient outcomes of sarcopenia include mortality and physical 

disability (i.e. the inability to walk or perform activities of daily living). Some studies have 

shown that reduced skeletal muscle mass is predictive of disability and mortality but 

numerous studies have shown that muscle mass by itself is a weak predictor of outcomes 

(Visser et al. 2000; Visser et al. 2005; Newman et al. 2006; Gale et al. 2007; Hairi et al. 2010; 

Goodpaster et al. 2006). It has also been shown that the relation between muscle mass, muscle 

function (strength and power) is not linear (Goodpaster et al. 2006; Janssen 2004). Indeed, 

although loss of strength tends to track with loss of muscle mass with aging without any 

pathologies, the decline in muscle strength is steeper than the decline in muscle mass 

(Frontera & Hughes 2000; Doherty 2003). Moreover, interventions that increase muscle mass 

do not necessarily increase muscle strength (Wittert et al. 2003). Furthermore, changes in 

muscle strength that occur with resistance training precede measurable changes in muscle 

mass temporally and exceed them in size (Sillanpää et al. 2009). On the other hand, loss in 

strength is not necessarily present with voluntary weight loss despite the associated loss of 

skeletal muscle (Wang et al. 2007). Finally, correlations between change in muscle mass and 

change in strength in older adults are inconsistent and not very robust (Goodpaster et al. 

2006).   
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 Some reasons can explain this dichotomy between muscle mass and strength such as 

age-related infiltration into skeletal muscle by fat, which is a powerful predictor of future 

disability and mortality (Visser et al. 2005).       

 Finally, the limit of only using skeletal muscle mass to define sarcopenia is the variety 

of measures available to evaluate this compartment. Each of these leads to slightly different 

cutoffs for muscle mass and are indirect measures. As such, they can be influenced by 

adiposity and total body water (Dumler n.d.; Heyward 1996; Omran & Morley 2000). These 

different methods (DXA, Computed Tomography, Magnetic Resonance Imagery, and 

Bioelectrical Impedance) will be presented in another chapter.     

 Given the inconsistency of the sarcopenia definition based only on muscle mass, and 

the evidence that this latest has practical limitations, since 2005 several groups from the 

United States and Europe have redefined sarcopenia. 

1.4. Consensus definitions of sarcopenia 

 Four working groups (the European Society of Clinical Nutrition and Metabolism: 

ESPEN; the European Working Group on Sarcopenia in Older People: EWGSOP; the 

International Working Group on Sarcopenia: IWGS;  the Society of Sarcopenia, Cachexia and 

Wasting Disorders: SSCWD) published recently international consensus definitions 

(Muscaritoli et al. 2010; Cruz-Jentoft et al. 2010; Fielding et al. 2011; Morley et al. 2011) that 

will be presented in chronological order of publication. Other study groups, such as the 

Biomarkers Consortium, have convened for the same purpose of developing a consensus 

statement but have not yet published their findings.      

 The ESPEN defined sarcopenia as “a condition characterized by loss of muscle mass 

and muscle strength” (Muscaritoli et al. 2010). They introduce sarcopenia as a disease of the 

elderly but stipulate that its development may be associated with other conditions that are not 

exclusively seen in older persons like disuse (due to immobility, physical inactivity, bed 

rest…), malnutrition, neurodegenerative diseases and cachexia. Consequently, younger people 

can be sarcopenic especially those with inflammatory diseases.    

 The EWGSOP defined sarcopenia as “a syndrome characterized by progressive and 

generalized loss of skeletal muscle mass and strength with a risk of adverse outcomes such as 

physical disability, poor quality of life and death” (Cruz-Jentoft et al. 2010). To assess the 

severity of sarcopenia, muscle strength and physical performance are added to the muscle 

mass evaluation. These authors suggested a conceptual staging as ‘presarcopenia’, 

‘sarcopenia’ and ‘severe sarcopenia’ (see table 1). The ‘presarcopenia’ stage is characterized 
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by low muscle mass without impact on muscle strength or physical performance. The 

‘sarcopenia’ stage is characterized by low muscle mass, plus low muscle strength or low 

physical performance. ‘Severe sarcopenia’ is the stage identified when all three criteria of the 

definition are met (low muscle mass, low muscle strength and low physical performance).  

 

Table 1. EWGSOP conceptual stages of sarcopenia (Cruz-Jentoft et al. 2010). 

Stage Muscle Mass  Muscle Strength  Physical Performance 

Presarcopenia -     

Sarcopenia -  - Or - 

Severe Sarcopenia - And - And - 
  

 

 EWGSOP recognizes sarcopenia as a condition with many causes and varying 

outcomes and although sarcopenia is mainly observed in older people, it can also develop in 

younger adults. Moreover, this group suggests recognizing sarcopenia as a geriatric 

syndrome. Based on the identification of the cause of sarcopenia, two categories are proposed. 

Sarcopenia can be considered ‘primary’ (or age-related) when no other cause is evident but 

aging itself, while sarcopenia can be considered ‘secondary’ when one or more other causes 

are evident (see table 2). In many older people, the etiology of sarcopenia is multi-factorial so 

that it may not be possible to characterize each individual as having a primary or secondary 

condition.  

 

Table 2. Suggested categorization of sarcopenia by EWGSOP (Cruz-Jentoft et al. 2010). 

Primary Sarcopenia                                  
Age-related sarcopenia  No other cause evident except aging 

Secondary Sarcopenia   
Inactivity-related 
sarcopenia  Can result from bed rest, sedentary lifestyle, 

deconditioning or zero gravity conditions 

Disease-related 
sarcopenia  

Associated with advanced organ failure (heart, lung, 
liver, kidney, brain), inflammatory disease, 
malignancy or endocrine disease 

Nutrition-related 
sarcopenia  

Results from inadequate dietary intake of energy 
and/or protein, as with malabsorption, 
gastrointestinal disorders or use of medications that 
cause anorexia 

  



Review – Chapter 1                                                                                      What is Sarcopenia?                                        
 

22 
 

Sarcopenia: Mechanisms and Prevention - Role of Exercise and Growth Hormone - Involvement of Oxidative Stress and Glucose-6-phosphate Dehydrogenase -
2014 

 

IWGS defines sarcopenia as “the age-associated loss of skeletal muscle mass and 

function” (Fielding et al. 2011). Sarcopenia is presented by these authors as a multifactorial 

syndrome that can include disuse, altered endocrine function, chronic disease, inflammation, 

insulin resistance, and nutritional deficiencies.       

 SSCWD provides a definition more directly applicable in the clinical world. Indeed, 

these authors decided that “sarcopenia with limited mobility” would be an acceptable term to 

define persons with a need for therapeutic intervention and presented it as a syndrome not a 

disease (Morley et al. 2011). Finally, sarcopenia with limited mobility was defined as “a 

person with muscle loss whose walking speed is equal to or less than 1 m/s or who walk less 

than 400 m during a 6 minutes walk test”. The limitation in mobility should not be clearly 

attributable to the direct effect of specific disease (e.g. peripheral vascular disease, dementia 

or cachexia).  

1.5. Convergences and differences of the various definitions 

 Although all these definitions are different, they present a high level of agreement in 

some aspects of sarcopenia. 

1.5.1. Sarcopenia as a syndrome not a disease 

 In the literature, sarcopenia can be presented as an age-related process of normative 

aging, a disease or a syndrome.         

 Among these four groups, only the ESPEN considers the sarcopenia as a disease of the 

elderly whereas the other three groups present it as a syndrome. It is thus clear that sarcopenia 

(or “sarcopenia with limited mobility”) is a syndrome but there is still a debate around the fact 

of considering it as only a geriatric syndrome.      

 Indeed, although the four groups agree that sarcopenia is strongly related to age, they 

also agree on the fact that other factors not related to age (e.g. malnutrition, bed rest, cachexia, 

and endocrine disease) could be the cause of sarcopenia in subjects not considered old. 

EWGSOP would speak about a secondary sarcopenia as described previously. On the other 

hand, a minority of SSCWD would support the use of the term ‘‘myopenia’’ to indicate the 

presence of clinically relevant muscle wasting owing to any illness at any age (Morley 2007; 

Fearon et al. 2011) and would reserve the use of ‘‘sarcopenia’’ for older persons. Some have 

argued that the term dynapenia is better suited to describe age-associated loss of muscle 

strength and function. Finally, sarcopenia is already a widely recognized term, so replacing it 

might lead to further confusion (Cruz-Jentoft et al. 2010).     
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 The term of geriatric syndrome refers to a frequent, complex and expensive condition 

at the origin of the deterioration of the health during aging. The consideration of several 

criteria is generally used to consider a set of clinical signs characterizing a geriatric syndrome. 

These criteria include prevalence of these signs at the elderly, multifactorial causes as well as 

the negative consequences which these clinical signs have on the physical independence of 

the individual. Sarcopenia represents an impaired state of health with a high personal toll-

mobility disorders, increased risk of falls and fractures, impaired ability to perform activities 

of daily living, disabilities, loss of independence and increased risk of death (Cawthon et al. 

2007; Lauretani et al. 2003; Rolland et al. 2008; Topinková 2008; Hartman et al. 2007). 

 With regard to these various criteria, it thus seems obvious that sarcopenia must be 

considered as a real geriatric syndrome as supported by EWGSOP but some particularly 

situations may raise doubts this.   

1.5.2. Not only muscle mass 

 The clinical relevance of sarcopenia depends on its being a marker of impaired 

outcomes, mortality being the most striking, but perhaps not the most relevant. Physical 

disability is a major concern in old people (Cruz-Jentoft 2012), and from a practical point of 

view, appears as a more relevant outcome. Furthermore, as presented previously, numerous 

studies showed that the muscular mass is a weak predictor of outcome (Visser et al. 2000; 

Visser et al. 2005; Newman et al. 2006; Gale et al. 2007; Hairi et al. 2010; Goodpaster et al. 

2006) and that the relation between muscle mass and muscle function (strength and power) is 

not linear (Goodpaster et al. 2006; Janssen 2004). Thus, measurement of muscle strength 

and/or physical performance appears essential parameters in the diagnosis of sarcopenia 

because they reflect the actual physical capacity of the individual to deal with demands of 

everyday life. This is why, the four groups all added besides the muscular mass at least a 

criterion of physical performance and/or muscular function. All groups suggest a criterion 

based on walking speed and only EWGSOP recommends also assess muscle strength but does 

not specify a method to use. Muscle fatigue could be another parameter in the diagnosis of 

sarcopenia but there is no standardized tool to evaluate it.   
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1.5.3. Diagnosis and strategy of case finding  

 Identifying subjects with sarcopenia, both for clinical practice and for selection of 

individuals for clinical trials, seems to be an important task.    

 ESPEN suggests diagnosing sarcopenia when two criteria are fulfilled: a low muscle 

mass and a low gait speed. For their part, normal muscle mass is defined using data derived 

from young subjects aged 18–39 years from the Third NHANES population (Janssen et al. 

2002), and the requirement for a diagnosis of sarcopenia is the presence of a muscle mass ≥2 

standard deviations below the mean of this reference population. This value can normally be 

calculated automatically by equipment such as DXA. A low gait speed is defined as a walking 

speed below 0.8 m/s in the 4-m walking test (Guralnik et al. 2000). However, this working 

group provides no guidance on the population that would need to be evaluated. As mentioned 

earlier, EWGSOP suggested diagnosing sarcopenia when at least two of three criteria apply: 

low muscle mass, low muscle strength, and/or low physical performance. To diagnose 

sarcopenia, these authors have developed a gradual approach based on gait speed 

measurement as the easiest and most reliable way to begin sarcopenia case finding or 

screening in practice (Figure 1) and chose a cut-off point of >0,8 m/s (identified as a 

predictive risk factor for adverse outcomes, Abellan van Kan et al. 2009). Here, all people 

aged over 65 should be evaluated starting with the measure of gait speed. If it is strictly lower 

than 0,8m/s, grip strength will be performed. In the case of a normal value, people are 

considered as non sarcopenic. On the other hand, muscle mass will be evaluated. If it reaches 

a low value, people are considered as sarcopenic. Otherwise, people are considered as non 

sarcopenic. Cut-off point for grip strength and muscle mass depend on the measurement 

technique chosen and this is probably why EWGSOP just provides a table with some of them 

extracted from articles.               
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Figure 1. EWGSOP-suggested algorithm for sarcopenia case finding in older individuals 

(Cruz-Jentoft et al. 2010). 

 

 

 

 For IWGS, diagnosis of sarcopenia should be based on having a low whole body or 

appendicular fat free mass in combination with poor physical functioning. Current methods 

index appendicular fat free mass to height squared or whole body fat free mass to height 

squared. In patients with poor functional capacity, most easily identified using gait speed of 

than 1 m/s, sarcopenia can be diagnosed when the lean mass is less than 20% tile of values for 

healthy young adults. Currently objective cut points can be made for sarcopenia in men at an 

appendicular fat free mass/ ht2 of ≤ 7.23 kg/m2 and in women at ≤ 5.67 kg/m2 (Newman et al. 

2003). For these authors, presence of sarcopenia should be evaluated in older patients (no age 

specified) who have clinically observed declines in physical functioning, strength, or health 

status. Sarcopenia should also be considered in patients who present difficulties in performing 

activities of daily living, have a history of recurrent falls, have documented recent weight 

loss, have recently been hospitalized, or have chronic conditions associated with muscle loss 

(e.g. Type II diabetes, chronic heart failure, chronic obstructive pulmonary disease, chronic 

kidney disease, rheumatoid arthritis, and malignancies). Sarcopenia should be considered in 

patients who are bedridden, non-ambulatory, or who cannot rise from a chair unassisted. In 

addition, for patients who are ambulatory and can arise from a chair, gait speed should be 

assessed across a 4 meter course. Patients with a measured gait speed less than 1.0 m/s should 

be referred for body composition assessment using whole body DXA.   
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 SSCWD use the term “sarcopenia with limited mobility” and diagnose it when “a 

person with muscle loss whose walking speed is equal to or less than 1 m/s or who walk less 

than 400 m during a 6 minutes walk test”. The person should also have a lean appendicular 

mass corrected for height squared of more than two standard deviation below that of persons 

between  20 to 30 years of age of the same ethnic group (Morley et al. 2011). This working 

group recommends that all patients older than 60 years who are falling, who feel that their 

walking speed has decreased, who were recently hospitalized, who have been on prolonged 

bed rest, who have problems arising from a chair, or who need to use an assistive device for 

walking should be screened for sarcopenia with mobility impairment.    

 Again, there is no real consensus because diagnosis and strategy of case finding are 

directly linked with the definition used but two different approaches appear. One is based on 

screening the general population (EWGSOP) whereas the others look for identifying some 

risk groups (SSCWD and IWGS). The age to investigate the presence of sarcopenia is still in 

debate (EWGSOP: ≥65years; IWGS: ≥60years) but would be around the sixties. For any 

given parameter included in a definition, there is a need to identify cutoff points that separate 

normal from abnormal values. The choice of cutoff values is arbitrary by nature, as it depends 

upon the measurement technique and the reference population chosen. There is not yet well-

defined reference population but the trend would be to use a normative (healthy young adult) 

rather than other predictive reference population, with cutoff points at two standard deviations 

below the mean of healthy persons between 20 to 30 years of age of the same ethnic group. 

For the parameters directly related to the diagnosis of sarcopenia, all authors agree on 

assessing muscle mass and employing gait speed to assess physical performance. EWGSOP 

recommends completing physical performance assessment by measuring muscle strength.  

1.6. Prevalence of Sarcopenia 

 Currently, the prevalence of sarcopenia varies extensively when different definitions, 

instruments of measurements, reference population (when one is used), skeletal muscle mass 

expression, methods of determining cutoff values are considered. This fact supports the need 

for a universal consensus of sarcopenia with full considerations of the aforementioned factors.

 First, the prevalence of sarcopenia will depend on the used definition. Recently, 

Abellan van Kan et al. (2013) applied to the EPIDOS French cohort (3,025 women aged 75 

years and older) six different definitions commonly used in literature (Baumgartner et al. 

1998; Newman et al. 2003; Delmonico et al. 2007; Cruz-Jentoft et al. 2010; Fielding et al. 

2011; Morley et al. 2011). Definitions based only on muscle mass (Baumgartner et al. 1998; 
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Newman et al. 2003; Delmonico et al. 2007) showed  a higher prevalence than definition 

taking into account muscle mass, strength and physical performance (Cruz-Jentoft et al. 2010; 

Fielding et al. 2011; Morley et al. 2011). In the first case, values range from 9,4% to 18,8% 

whereas in the second case they are ranged between 3,3% and 14,2%. Very recently, authors 

have shown that the values obtained with the EWGSOP definition are higher than those 

obtained by the definition of IWGS. This result persisted whatever the index of muscle mass 

used (Lee et al. 2013).          

 The technique used to measure muscle mass also influence the prevalence of 

sarcopenia. In the New Mexico Elder Health Survey, sarcopenia defined as ASM/height² and 

measured by bioelectrical impedance affected 20% of men between 70 and 75 years, 50% of 

those over 80 years and between 25 and 40% in women in the same age groups (Baumgartner 

et al. 1998). Using DXA, the same authors published data from the same population of 8.8% 

in women and 13.5% in men aged 60-69 years and 16% in women and 29% in men over 80 

years (Baumgartner 2000).         

 Using the same definition but with two different reference populations (National 

Health and Nutrition Examination Survey III and Cardiovascular Health Study), Janssen et al. 

showed different results. In the first case, the prevalence of sarcopenia was lower in men than 

women (7% vs 10%) while the opposite occurred in the second case (17% vs 11%). 

 The prevalence values will vary depending on the used method to express muscle 

mass: ASM divided by height² or by size and fat (residual method) (Baumgartner et al. 1998; 

Newman et al. 2003; Coin et al. 2013; Figueiredo et al. 2013; Dufour et al. 2013; Lee et al. 

2013); total muscle mass divided weight and multiplied by 100 (Janssen et al. 2002; Janssen 

2004; Janssen 2006). Thus, in men over 70 years, prevalence data reached 13.5% using 

ASM/height² and 19.8% with the residuals method (Figueiredo et al. 2013). In the same way, 

Dufour et al. (2013) reported prevalence values of 19% among men and 13% among women 

with ASM/height² and a value of 25% for men and women with residuals. From these studies, 

it appears that ASM/height² would be better to use with underweight people while residuals 

method would be more appropriate with normal and overweight people.    

 On the other hand, the used methods to determine cutoff values can influence the 

prevalence of sarcopenia. For example, one Italian group applied to the same population (men 

and women aged between 20 and 80 years) three different cutoff values for ASM/height² 

(Coin et al. 2013). The first cutoff points were obtained by subtracting 2 SDs from the mean 

ASM/height² value for their 20-39 years old healthy subjects. With these cutoff points (6.54 

kg/m² in men and 4.82 kg/m² in women), prevalence of sarcopenia was 0% in men and 0,3% 
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in women. In the second case, the 15th percentile of the distribution of the ASM/height² for 

their young population (corresponding to about 1 SD below the mean) was used. Then, the 

cutoff points for sarcopenia were 7,59 kg/m² in men and 5.47 kg/m² in women, giving rise to 

a prevalence of 19.2% and 12.6%, respectively. In the third case, the cutoffs were obtained 

instead for an elderly population (older than 65 years) using the 20th percentile of the 

distribution of the ASM/height² (Health ABC Study: white and black American men and 

women aged 70 to 79 years, Delmonico et al. 2007).  A cutoff of 7.64 kg/m² in men and 5.78 

kg/m² in women was obtained. Then, prevalence of sarcopenia was 20% for both genders. 

 Finally, compared with the classical definition of sarcopenia, modern diagnostic 

criteria added considerations of muscle strength and physical performance to the muscle 

mass, which lowered the prevalence of sarcopenia (Abellan van Kan et al. 2013; Lee et al. 

2013). 

 

2. Making a Diagnosis of sarcopenia 
 To diagnose sarcopenia and the degree of it, it should be based on specific indicators 

of muscle mass and strength as well as physical performance. One of the current problems is 

to determine these parameters as precisely as possible. This part is devoted to outline the 

different measurement techniques in humans and rodents that can be implemented to diagnose 

sarcopenia. Table 4 resumes all these techniques.  

2.1. Muscle mass assessment  

 Table 3 resumes the most used methods to assess muscle mass which are well 

reviewed in the following papers: Woodrow 2009; Lustgarten & Fielding 2011; Cooper et al. 

2013.            

 Three imaging techniques can be used to estimate muscle mass or lean body mass of a 

person: computed tomography (CT) scan, magnetic resonance imaging (MRI) and DXA. CT 

and MRI are the most precise imaging systems and the only able to measure fat infiltration 

and non-contractile components into skeletal muscle and therefore determine muscle quality 

(Simoneau et al. 1995; Kent-Braun et al. 2000). Despite their cost, these methods are the 

actual gold standards for estimating muscle mass in research.     

 Then, DXA constitutes an attractive alternative method both for research and for 

clinical use to distinguish fat, bone mineral and lean tissues (Cruz-Jentoft et al. 2011) because 

it is cheaper, faster and expose to a lesser levels of radiation than MRI and CT with a good 

precision. Unfortunately, the equipment is not portable which may preclude its use in large 
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scale epidemiological studies (Chien et al. 2008).       

 Thanks to validated prediction equations for multiethnic and baseline populations, 

men and women, including the elderly (Roubenoff et al 1997. Janssen et al 2000) make 

bioelectric impedance (BIA) a good tool for epidemiological studies and clinical practice. The 

test is perfectly appropriate for both ambulatory and bedridden patients as many of the elderly 

are.           

 Anthropometric measures (e.g. skinfold thickness, calf circumference) can be possibly 

used to evaluate body composition but related-age changes of fatty deposits and loss of skin 

elasticity contribute to generate errors in older populations. Finally, anthropometric measures 

are considered as not relevant in the elderly because of the risk of confusion in the analysis of 

these parameters (Rolland et al. 2008).        

 In the context of research carried out in rodents, the mass of one or several muscles 

(soleus, gastrocnemius) or cross sectional areas (CSA) are conventionally measured post-

mortem. Generally, these estimations are considered as reference methods for sarcopenia 

studies but imaging techniques or BIA usually used in humans are more and more used in 

rodents. 

Table 3. Muscle mass assessment technics (adapted from Cruz-Jentoft et al. 2011). 

Methods Advantages Drawbacks Principal Field of 
application 

TC and MRI Gold Standard 
Muscle quality assessment 

 

Very Expensive 
Qualified personal requirement 
High radiation exposure (CT) 

Few equiments 
No immediate results 

Investigation 

DXA Moderate cost 
Moderate radiation exposure 

Very good precision 
No experimented personal 

Not portable 
No information about muscle quality 

Influenced by hydration status 
No immediate results 

Clinical practice 
Investigation 

BIA Inexpensive 
Good precision 

Portable (bedridden patients) 
No radiation exposure 

No experimented personal 
Immediate results 

No information about muscle quality 
Less sensitive than earlier techniques 

Influenced by hydration status 

Clinical practice 
Epidemiological 

studies 

Anthropometry Inexpensive 
Easy to realize 

Portable (bedridden patients) 

Low precision and sensibility 
Difficulty in interpreting the results 

Neither 

CT: computed tomography; MRI: magnetic resonance imaging; BIA: bioelectric impedance 
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2.2. Strength assessment 

 The assessment of muscle strength (the maximum capacity of a muscle to generate 

force in a very short time) is now a parameter in its own right of diagnosis of sarcopenia. 

There are fewer well-validated techniques to measure muscle strength. On the other hand, the 

muscle fatigue (defined as ‘‘the inability of the muscle to generate or maintain the levels of 

strength required for a given work rate’’ by Vøllestad 1997) is also a parameter which should 

be taken into account in the diagnosis of this syndrome (Theou et al. 2008). Indeed, the 

activities of daily life ensuring independence of elderly or inactive person require maintaining 

or repeating submaximal muscular effort and rarely produce maximum muscle effort (Petrella 

et al. 2005). Again, cost, availability and ease of use can determine whether the techniques are 

better suited to clinical practice or are useful for research. It must be remembered that factors 

unrelated to muscle (e.g. motivation or cognition) may hamper the correct assessment of 

muscle strength.          

 In humans, lower limbs strength can be measured under isometric or isokinetic 

conditions. The assessment of maximal isometric strength is usually measured as the 

maximum force applied to the ankle (Edwards et al. 1977). Assessment of muscle fatigue can 

be performed by determining the force-holding time curve during isometric contraction for a 

given percentage of the maximum force (e.g. 40%). Nevertheless, choice of isokinetic 

conditions appears more relevant but did not appear functional because they required the 

subject to consistently achieve maximum effort until fatigue, which is not really a task 

performed by elderly people in their daily life (Lindström et al. 1997). This is why more 

recent studies assess muscle fatigue under isotonic conditions by measuring for example the 

ability to maintain or repeat an exercise as quickly as possible for a given sub maximal 

strength (McNeil & Rice 2007). Nowadays, isokinetic dynamometers (e.g. Cybex) permit to 

assess isometric, isotonic and isokinetic strength, as the couple concentric strength developed 

at different angulations (Hartmann et al. 2009). Some data are now available in older 

populations for maximum strength and muscle fatigue in isotonic or isokinetic condition 

(Neder et al. 1999; Goodpaster et al. 2001). If isokinetic appears appropriate for research, its 

use in clinical practice is limited due to a specific and expensive equipment requirement. 

 Although lower limbs are more relevant than upper limbs for gait and physical 

function, handgrip strength has been widely used and is well correlated with most relevant 

outcomes. Isometric hand grip strength is strongly related with lower extremity muscle power, 

knee extension torque and calf CSA (Lauretani et al. 2003). Thus, low handgrip strength is a 
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clinical marker of poor mobility and a better predictor of clinical outcomes than low muscle 

mass (Lauretani et al. 2003). In practice, there is also a linear relationship between baseline 

handgrip strength and incident disability for activities of daily living (Al Snih et al. 2004). 

Finally, low cost, availability and ease of use make this method is widely used in both clinical 

practice and research.          

 In rodents, grip strength tests are a widely-used non-invasive method designed to 

evaluate mouse limb strength. It is based on the natural tendency of the mouse to grasp a bar 

or grid when it is suspended by the tail. During these tests the mouse grips with both 

forelimbs and/or hind-limbs a single bar or a mesh. Three different tests are commonly used. 

The Mesh Grip Test measures the ability of the mouse to remain clinging to an inverted or 

tilted surface such as a wire grid or a cage lid for a period of time. This test shows that the 

muscle endurance is altered at 24 months in rats (Joseph et al. 1983; Spangler et al. 1994). 

The Wire Grip Test (or Rod suspension test) measures the ability of the mouse to hang on a 

wire with its forepaws for a preset length of time or until grip fails. This test appears to be a 

useful indicator for the diagnosis of sarcopenia since the time of suspension in rats from 22-

24 months decreases (Spangler et al. 1994; Goettl et al. 2001). Finally, with the Automatic 

Grip Strength (AGS) the mouse grasps a horizontal metal bar or grid while is pulled by the 

tail. The bar or grid is attached to a force transducer that peak pull-force achieved on its 

digital display. The AGS is the unique noninvasive test giving a numeric value. In the three 

tests, the value obtained has to be relativized by the animal weight.   

 However, the strength and muscle fatigue are generally assessed invasively. More 

specifically, the muscle is removed and the tendon ends are connected to a dynamometer and 

two electrodes. A suitable electric current is sent in order to generate a maximum tetanic 

stimulation considered developable maximum force by the muscle. Muscle fatigue is itself 

estimated by the difference in maximum force developed by the muscle between the 

beginning and 4-5 minutes from electrical stimulation (Ryall et al. 2007; Ljubicic & Hood 

2009). These approaches in animals have the advantage of assessing the intrinsic muscle 

strength, regardless of neural factors. 
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2.3. Physical performance assessment 

 The gait speed is now the recommended parameter to assess physical performance to 

diagnose sarcopenia (Cruz-Jentoft et al. 2010; Fielding et al. 2011; Morley et al. 2011) but 

others test provided specifically for elderly people are also accepted. The most commonly 

used are the Short Physical Performance Battery (SPPB) (standardized battery of short 

physical tests), the timed Get-up-and-go (TUG) or the Stair climb power test (SCPT). 

 Gait speed is usually evaluated by the six meters test recommended by IWGS and 

SSCWD (Fielding et al. 2011; Morley et al. 2011) or the four meters test recommended by 

EWGSOP (Cruz-Jentoft et al. 2010). Cutoff points for sarcopenia are defined as a speed lesser 

than 1m/s in first case and lesser than 0,8m/s in the second case (Cesari et al. 2009). Gait 

speed can be used in clinical practice and research. The SPPB evaluates balance, gait speed, 

strength and endurance by examining an individual’s ability to stand with the feet together in 

side-by-side, semi-tandem and tandem positions, time to walk 8 feet and time to rise from a 

chair and return to the seated position five times (Guralnik et al. 1994). Each event allows get 

a performance score and the sum of the scores of all tests provides an overall performance. A 

score below 8 is in favor of sarcopenia (Guralnik et al. 2000). SPPB is a standard measure for 

research and clinical practice. The TUG is a test to measure the time required to perform a 

series of basic motor tasks. The subject must stand up from a chair, walk a short distance, turn 

around and come back to sit. It allows the estimation of the dynamic balance that is assessed 

on a scale of 1 to 5 (Mathias et al. 1986). A score below 3 would be in favor of sarcopenia 

(Mathias et al. 1986). Finally, the SCPT used clinically estimates the power of the lower 

limbs (Bean et al. 2007). The subject must perform the rise of 10 markets as soon as possible. 

The power of the lower limbs is then calculated in relation to the height of the market, the rate 

of rise and standardized with the weight of the subject (Bean et al. 2007). It may be useful in 

some research settings but cutoff point in sarcopenia context needs to be not defined. 

 In rodents, a number of tests are also available to assess the physical performance in 

old animals (Table 4). One of them consists in measuring the time that the rodent can stay in 

balance on a narrow beam (Beam Balance Test) or a tightrope (tightrope test). A significant 

reduction in maintenance time is observed in rats from 23-24 months testifying alterations in 

the balance and coordination of the animal (Altun et al. 2007; Emerich et al. 2008). As 

previously described, Mesh Grip, Wire Grip and Auto Grip strength tests can be used to 

evaluate muscle function.  Endurance capacity can be assessed by maximal aerobic speed 

tests (Derbré et al. 2012) or maximal oxygen consumption tests (Høydal et al. 2007). 
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Table 4. Summary of methodologies used to assess muscle mass, muscle strength and 

physical performance in humans and rodents. 

Measured 
parameter 

Humans Rodents 

Muscle Mass 

- Computed Tomography (CT) 
- Magnetic resonance imaging (MRI) 
- Dual energy X-ray absorptiometry 

(DXA) 
- Bioelectrical impedance (BIA) 

- Weighing muscle after sacrifice 
- Cross sectional area post mortem 
- Technics used in humans 

Muscle Strength 
- Handgrip strength 
- Knee flexion/extension (e.g. Cybex) 

- Auto Grip Strength Meter 
(noninvasive) 

- Electrostimulation (very invasive) 

Physical 
Performance 

- Short Physical Performance Battery 
(SPPB) 

- Gait Speed 
- “Timed get-up-and-go” test (TUG) 
- Stair climb power test (SCPT) 

- Wire Grip test and Mesh Grip tests 
- Beam balance test, tightrope test 

and rotarod test 
- Maximal aerobic speed test 
- Maximal oxygen consumption 

 

3. Muscle characteristic changes during aging leading to sarcopenia  

3.1. Loss of muscle mass 

 It is considered that a reduction of about 40% of the CSA of  occurs between 20 and 

80 years in humans (Doherty et al. 1993; Vandervoort 2002). Works on the topic are mainly 

based on data obtained from the lower limbs using various techniques mentioned above (see 

table 3). Via ultrasound imaging, Young et al. (1985) reported such reductions of 25 to 35% 

beyond the quadriceps CSA in elderly men by an average of 30-70 years. Similar results were 

observed by CT in the quadriceps (Klitgaard et al. 1990) and in the biceps and triceps (Rice et 

al. 1989; Klitgaard et al. 1990). These results are also confirmed by measurements made 

directly on the CSA post-mortem muscle with a decrease of approximately 40% in elderly 

subjects on average 20 to 80 years (Lexell et al. 1988).     

 Rodents, especially rats, are experimental animal models particularly useful for the 

study of sarcopenia. Depending on the species, rats are considered as aged between 18 and 30 

months (Hopp 1993). Fischer 344 Brown Norway F1 hybrid rats with a higher life expectancy 

than other species of rats (40 months) are one of the most used specie to study sarcopenia. In 

this strain, a decrease from 30 to 50% by weight of the gastrocnemius was observed between 

6 and 30 months (Haddad et al. 2006; Hofer et al. 2008; Marzetti, Wohlgemuth, et al. 2008; 

Siu et al. 2008). The Wistar strain has also been very well used. A significant reduction in 

muscle mass is observed after 24 months in mixed fiber type muscles such as gastrocnemius 

(Capel et al. 2004; Mosoni et al. 2004). Significant decreases were also reported in this 

species in the soleus muscle from 28 months old animals (Mosoni et al. 2004; Degens et al. 
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2008). Usually, nevertheless the strain, around 18 months (middle age for rats), the weight of 

the soleus, extensor digitorum longus (EDL), gastrocnemius but also quadriceps, tibialis 

anterior and plantaris is reduced compared to animals aged 6 or 12 months  (Kimball et al. 

2004; Paturi et al. 2010; Ibebunjo et al. 2013). This decrease is relatively slow and low at 18 

months (about 10%) but accelerates thereafter to reach -30 to -40% at 24 months (old age) 

(Kimball et al. 2004; Paturi et al. 2010; Ibebunjo et al. 2013). In very old animals, this 

decrease can reach up to 60% in some muscles notably the gastrocnemius (Kimball et al. 

2004; Ibebunjo et al. 2013).         

 Skeletal muscles are heterogeneous at the level constituent muscle fibers. 

Physiological properties, such as contractile speed, resistance to fatigue, metabolism, 

mitochondria myoglobin content and ATPase activity and various enzyme content vary 

among types of muscle fibers (see table 6). In skeletal muscle, it is possible to distinguish four 

major fiber types, called type I, IIa, IIx and IIb, based on the presence of specific myosin 

heavy chain (MyHC) isoforms: MyHC-I, MyHC-IIa, MyHC-IIx and MyHC-IIb (Schiaffino & 

Reggiani 2011). These fibers also differ in oxidative/glycolytic metabolism. These four fiber 

populations are present in mice, rats and many other mammalian species, however only type 

I, IIa and IIx fibers are present in human muscles (Smerdu et al. 1994). In addition, 

intermediate hybrid fibers, containing type I and IIa, or IIa and IIx, or IIx and IIb MyHCs, are 

frequent in normal muscles (DeNardi et al. 1993) and become more numerous whenever fiber 

type shifts take place (Klitgaard et al. 1990; Maier et al. 1988; Patterson et al. 2006). 

 The age-related decrease in muscle mass is mainly due to a loss of muscle fibers 

affecting both fiber types I and II (Young et al. 1985; Aniansson et al. 1986; Lexell et al. 

1988). While a decrease of only 5% of the number of fibers occurs between 24 and 50 years, a 

reduction of 30 to 40% is reported between 50 and 80 years (Aniansson 1992). These results 

in reduction of about 1% per year of the total CSA beyond 50 years (Kent-Braun 1999; 

Frontera et al. 2000b). However, atrophy of the muscle fiber (reduction of its diameter) is also 

implicated in the decrease of muscle mass associated with age (Aniansson et al. 1986; Lexell 

et al. 1988; Lexell and Downham 1992). Atrophy does not affect similarly all types of muscle 

fibers. Indeed, it is the fast type II fibers that appear to be most affected by aging, with a 

decline from 20 to 60% of their size (Larsson et al. 1978; Essen-Gustavsson and Borges 1986; 

Lexell et al. 1988; Singh et al. 1999; Hikida et al. 2000). This phenomenon seems 

differentiated itself in different type II fibers with larger reductions in fiber IIb and IIx type 

compared to type IIa fibers (Aniansson et al. 1986; Coggan et al. 1992).    
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 The possible mechanisms underlying the atrophy of muscle fibers of older people will 

be developed later. 

Table 5. Muscle fibers specificity and impact of aging on their atrophy. 

Muscle fibers specificity  
Type I 

Type II 
Type IIa 

 
Type IIx 

 
Type IIb 

Color Red Red White White 
MHC isoform MyHC-I MyHC-IIa MyHC-IIx MyHC-IIb 
Contractile speed Slow Fast Fast Fast 
Fatigue resistant High High Low  Low 
Dominant Metabolism Oxidative Oxidative Glycolitic Glycolitic 
Mitochondria and myoglobin content High High Low Low 
ATPase Activity Low Low High High 
Age-related atrophy + ++ +++ +++ 

 

3.2. Loss of muscle strength 

 The decrease in muscle strength is a key criterion to identify sarcopenia (Cruz-Jentoft 

et al. 2010). Muscle strength of the knee extensors is important to consider due to its 

functional importance (Doherty 2003). On average, the peak strength is reduced by 20 and 

40% between 20 and 70-80 years (Larsson 1979; Murray et al. 1985; Young et al. 1985). 

Similar results are observed for other muscle groups such as shoulder and wrist flexors 

(McDonagh et al. 1984; Bassey and  Harries 1993). Larger reductions (50%) are still reported 

in subjects aged over 90 years (Murray et al. 1980; Murray et al. 1985). Decreased muscle 

strength seems to be accelerated especially between 60-70 years. Indeed, longitudinal studies 

observed a reduction of 30 to 40% of the peak strength of the knee and shoulder extensors 

between 60 and 70 years (Aniansson et al. 1986; Frontera et al. 2000a; Hughes et al. 2001). 

 Although muscle fatigue is not part of the parameters used in the diagnosis of 

sarcopenia, it is important to focus on its evolution during aging because the more a person 

will be easily tired the least it will be independent in carrying out daily activities. Aging also 

can affect muscular fatigue. However data from different muscle groups from young and 

elderly people do not permit to pronounce a real consensus. Indeed, some studies have found 

that older people exhibited less fatigue than their younger counterparts during isometric or 

isokinetic contractions (Hakkinen 1995; Hunter et al. 2005; Yassierli and Nussbaum 2007) 

while others observed no difference (McNeil and Rice 2001; Lanza et al. 2004; Theou et al. 

2008a). These results could be explained by the fact that the absolute maximum forces 

developed by the elderly in this type of exercise are lower than those developed by young 

people (Yassierli and Nussbaum 2007), and also by the selective fiber type II atrophy 
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observed during the aging (as described above). Studies in isotonic conditions are fewer but 

report an increase around 10% of the muscle fatigue during aging (Hunter et al. 2005; McNeil 

and Rice 2007). The differences between all these works can be explained both by the 

exercise protocols used (type and duration of contraction, muscle groups) and populations 

evaluated (age, sex, level of physical activity). Further work appears necessary to clarify the 

effects of age on muscle fatigue.        

 In rodents, muscle strength is commonly assessed by invasive technics (as previously 

described). With aging, there is a decrease in the maximal force but the onset of this 

phenomenon seems to be different following the strain and the age of the rodent. Thus, in 

Fisher 344 Brown Norway F1 hybrid, a decrease in maximal force is generally observed 

between 32 and 36 months in soleus, gastrocnemius and extensor digitorum longus (EDL) 

(Brooks 1988; Ryall et al. 2007; Thomas et al. 2010). In Wistar rats, no difference appears in 

the EDL but maximal force decreased after 24 months in the soleus. Just like humans, studies 

focusing on the effects of aging on muscle fatigue reported conflicting results. Thus, Ljubicic 

& Hood (2009) observed a higher decrease of the maximal force of the tibialis anterior during 

aging after a fatigue protocol whereas others do not find any difference with aging (Ryall et 

al. 2007). 
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4. Chapter 1 abstract 
 In 1931, MacDonald Critchley was the first to recognize that muscle mass decreases 

with aging (Critchley 1931) and fifty-seven years later, Irwin Rosenberg called this 

phenomenon sarcopenia (Rosenberg 1989). The components of its definition have been in 

debate in the medical and scientific world. However, the different working groups agree on 

some points which can constitute the current consensus as follow. Sarcopenia is a geriatric 

syndrome initially characterized by a decrease in muscle mass that will get worse causing a 

deterioration in strength and physical performance (Muscaritoli et al. 2010; Cruz-Jentoft et al. 

2010; Fielding et al. 2011; Morley et al. 2011). Some important questions are still under 

debate. What people should be primarily target for a diagnosis? What would the standardized 

diagnostic?            

 Thus, in humans as in rodents, aging is accompanied by a decrease in muscle mass  

around 40% from the adulthood to the death (Lexell et al. 1988; Kimball et al. 2004; Ibebunjo 

et al. 2013). The age-related decrease in muscle mass is mainly due to a loss of muscle fibers 

affecting both fiber types I and II (Young et al. 1985; Aniansson et al. 1986; Lexell et al. 

1988) and an atrophy which affects particularly fast type II fibers (Larsson et al. 1978; Essen-

Gustavsson and Borges 1986; Lexell et al. 1988; Singh et al. 1999; Hikida et al. 2000). In 

humans and rodents, parallel to the muscle mass decrease, it is noted a decrease in muscle 

strength during aging (Murray et al. 1985; Frontera et al. 2000; Brooks 1988; Ryall et al. 

2007) which can reach more than 50%. Although still under debate, it seems that aging is also 

accompanied by an increase in muscle fatigue (Hunter et al. 2005; McNeil and Rice 2007). 

 As it will exposed in the next part, maintaining muscle mass and strength is under 

control  numerous mechanisms that will be altered with aging leading to sarcopenia.  
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Chapter 2: Sarcopenia-related cellular and molecular skeletal 

muscle alterations 
 

 The development of effective treatments or strategies to prevent and/or fight against 

sarcopenia requires understanding the cellular and systemic mechanisms, and the underlying 

pathways involved in its onset and development. Maintaining muscle mass is first a balance 

between protein synthesis and protein degradation systems. Equilibrium between apoptosis 

and regeneration processes is also involved in maintaining muscle mass. The vital functions 

carried out by mitochondria in the context of energy provision, redox homeostasis, and 

regulation of several catabolic pathways confer these organelles a central role in the 

maintenance of myocyte viability.        

 In the following chapter, we will first describe the different pathways involved in 

protein turnover and some aspects of mitochondrial function and homeostasis when muscle 

mass is at equilibrium (no gain and no loss). In a second time, we will describe the alterations 

of these functions involved in the onset and development of sarcopenia.  

 

1. Cellular and molecular mechanisms controlling proteins synthesis 

and degradation 
 

 An equilibrated balance between protein synthesis and protein degradation systems is 

necessary to maintain muscle mass. Protein synthesis and degradation are regulated by 

different pathways presenting some cross-talks. 

1.1. Protein synthesis 

 Protein synthesis is the result of the transfer of biological information between the 

three biological polymers: DNA (deoxyribonucleic acid), RNA (ribonucleic acid) and 

proteins (Crik 1970; Crikc 1958). The three transfers common to all cells are replication 

(DNA synthesizes DNA), transcription (DNA synthesizes RNA) and translation (RNA 

synthesizes protein). Thus, protein synthesis will depend on the transcriptional and 

translational activity. 
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1.1.1. Transcriptional activity of muscle fiber 

 Transcriptional activity of muscle cell depends on the transcriptional capacity 

determined by the amount of DNA available and on the efficiency of transcription of target 

genes in each myonucleus.         

 From a theoretical point of view, DNA amount necessary to sustain gene transcription 

depends on the number of myonuclei which constitutes the major determinant of 

transcriptional capacity, and therefore a key issue to the success of protein synthesis. 

Myonuclei of mature myofibers are considered to be post-mitotic. In this context, 

supplemental DNA can be only brought by satellite cells. These cells located between the 

basal lamina and the sarcolemmal membrane are normally in a quiescent state (Mauro 1961), 

and can be activated to proliferate and then fuse with a pre-existing fiber or possibly 

reconstruct a new fiber (Hawke and Garry 2001; Charge and Rudnicki 2004). Having a high 

DNA content confers a high gene transcription capacity, but the activation of genes encoding 

muscle specific proteins and their transcription into mRNA (messenger RNA) are dependent 

on numerous transcription factors.        

 Among these latter, myogenic regulatory factors (MRFs), including MyoD, myogenin, 

Myf5, and MRF4, have been originally described to play major role in myogenesis (Olson et 

al. 1991) but seem to be also involved in the activation of genes encoding muscle proteins. 

Indeed, in vitro these transcription factors are able to transform fibroblasts into myoblasts 

(Rhodes and Konieczny 1989). In vivo, these MRFs promote muscle mass, and therefore the 

construction of contractile material (Bamman et al. 2007; Hyatt et al. 2008). The 

calcineurin/NFAT (Nuclear Factor of Activated T cells) signaling pathway also regulates the 

transcriptional activity by promoting a slow genetic program and consequently would 

promote the transcription of genes encoding certain muscle proteins such as myosin heavy 

chain type 1 (Delling et al. 2000).   

1.1.2. Translational activity of muscle fiber 

 The translation of mRNA leading to protein synthesis is determined by two factors, 

translational efficiency and capacity. The translational efficiency could be defined as the 

protein synthesis per unit of total RNA, whereas the translational capacity is mainly 

determined by the ribosome content per unit of tissue (Millward et al. 1973). The 

PI3K/Akt/mTOR signaling pathway (see figure 2) is the main pathway regulating protein 

synthesis in skeletal muscle and is involved in the regulation of both sides of the translation of 

mRNA into protein (Nader et al. 2005). 



Review – Chapter 2: Sarcopenia-related Cellular and Molecular Skeletal Muscle Alterations         

40 
 

Sarcopenia: Mechanisms and Prevention - Role of Exercise and Growth Hormone - Involvement of Oxidative Stress and Glucose-6-phosphate Dehydrogenase -
2014 

 

1.1.2.1. An overview of  the PI3K/Akt/mTOR signaling pathway  

 IGF-1 (Insulin-like Growth Factor I) is a secreted growth factor similar to insulin and 

may induce muscle hypertrophy through its anabolic effects. The IGF-1 induces an increase in 

protein synthesis by binding to its receptor IGF1R. This connection allows the 

phosphorylation of the receptor, which is necessary for the recruitment of its substrate IRS1 

(insulin receptor substrate 1) (sun et al 1991). Its leads to stimulate PI3K protein 

(phosphatidylinositol-3-kinase) which catalyzes the transfer of a phosphate group on PIP2 

(phosphoinositide-(4,5)-biphosphate) for generating PIP3 (phosphoinositide-(3,4,5)-

triphosphate) (Schiaffino and Mammucari 2011) which in turn activate PDK-1 

(phosphoinositide-dependent kinase-1), which finally will activate Akt (protein kinase B) 

(Schiaffino and Mammucari 2011; Andjelković et al. 1997; Vivanco and Sawyers 2002). 

 Then, Akt inactivates the TSC1 (Tuberous Sceloris protein 1)/TSC2 (Tuberous 

Sceloris protein 2) complex (Inoki et al 2003) allowing the Rheb GTPase (Ras homolog 

enriched in brain) to stimulate the mTOR protein (Huang and Manning 2009) which regulates 

protein synthesis (Schiaffino and Mammucari 2011). Finally, insulin and IGF-1 can also 

stimulate mTOR by the MAP kinase ERK1/2 (Extracellular signal Regulated Kinase 1/2) 

(Miyazaki et al. 2011) and Focal Adhesion Kinase (Durieux et al. 2007).    

 Once activated, mTOR will stimulate ribosome biogenesis, initiation and elongation of 

translation by activating the 70-kDa ribosomal protein S6 kinase (p70S6K) and by inhibiting 

4E-BP1 (eukaryotic initiation factor 4E binding protein 1) (for a complete review see Shah et 

al. 2000; Wullschleger et al. 2006; Yang et al. 2008). mTOR controls the translation initiation 

by regulating the level of phosphorylation of 4E-BP1 protein (eIF-4E binding protein 1), a 

repressor of eIF4E and by phosphorylating p70S6K which in turn leads to activation of 

eIF4B. Moreover, once activated, p70S6K also inhibits the eEF2K factor which in turn cancel 

the repressive effect of this latter on eEF2 resulting in the elongation of translation. On the 

other hand, p70S6K is involved in the ribosome biogenesis through the activation of the 

ribosomal protein rpS6 (ribosomal protein S6) which stimulates ribosome protein synthesis. 

Ribosome biogenesis is also directly controlled by mTOR which promotes transcription of 

ribosomal genes (for review see Martin & Hall 2005; Wullschleger et al. 2006). All these 

steps will lead to protein synthesis.       

 Protein synthesis can also be directly promoted by Akt through the GSK-3 factor 

(Glycogen Synthase Kinase 3) inhibition by phosphorylation, which promotes through 

activation of eIF2B (eukaryotic Initiation Factor 2B) factor (Welsh et al. 1998). 
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Figure 2. Overview of the PI3K/Akt/mTOR (inspired by Favier et al. 2008).  
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1.1.2.2. PI3K/Akt/mTOR pathway regulation 

 As previously described, PI3/Akt/mTOR pathway is regulated by growth factors such 

as IGF-1 and insulin and naturally by their up-streams such as testosteron and growth 

hormone leading to protein synthesis (Hayashi & Proud 2007; Kovacheva et al. 2010). 

However, other signals are also able to control this pathway by targeting in particular mTOR 

(see figure 2).          

 mTOR is a conserved serine threonine kinase that nucleates 2 distinct complexes 

mTORC1 and mTORC2 as shown in figure 3 (Laplante and Sabatini 2009). While mTORC1 

is sensitive to the immunosuppressant drug rapamycin and is involved in protein synthesis, 

mTORC2 in general is not (Dowling et al. 2010; Oh et al. 2010; Tato et al. 2011). For this 

reason, we will focus only on mTORC1 which we call by default mTOR.   

  

Figure 3. mTORC1 and mTORC2 complexes representation (modified from Adegoke 2012). 

 

 

Aerobic exercise or chemical exercise mimetic such as AICAR (5-aminoimidazole-4-

carboxamide-1-β-D-ribonucleoside) are able to decrease mTOR activation through the 

cellular energetic sensor AMPK (AMP-activated protein Kinase) (Hardie 2003; Thomson et 

al. 2008; Leick et al. 2008; Leick, Lyngby, et al. 2010; Leick, Fentz, et al. 2010). A decrease 

in the AMP/ATP ratio like occurring during aerobic exercise leads to AMPK phosphorylation 

and restores energy homeostasis by activating catabolic processes and repressing anabolic 

processes such as protein synthesis by mTOR inhibition (Hardie 2008; Shaw 2009). AMPK 

acts through TSC2 (Inoki et al. 2003), or directly on mTOR (Cheng et al. 2004; Gwinn et al. 

2008)leading to p70S6K and 4EBP1 phosphorylation inhibition (Bolster et al. 2002; 

Williamson et al. 2006; Thomson et al. 2008).  
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 On the other hand, conversely to aerobic exercise, resistance (strength) exercise 

activates the PI3K/Akt/mTOR pathway (Tannerstedt et al. 2009; Witard et al. 2009; Camera 

et al. 2010; Adegoke 2012). Resistance exercise increases muscle protein synthesis in parallel 

with elevated AKT phosphorylation (Dreyer et al. 2008). Functional overload-induced 

hypertrophy in rodent muscles occurs in parallel with increased phosphorylation of mTOR 

(Reynolds et al. 2002) and of AKT (Spangenburg et al. 2008). Moreover electrical stimulation 

induces phosphorylation of the mTOR substrate p70S6K1 (O’Neil et al. 2009). Nevertheless, 

the involvement of AMPK in exercise-induced muscle anabolism, and that such an effect is at 

least in part related to mTOR, can be inferred from recent studies that show that myotubes 

deficient in AMPK (Lantier et al. 2010) or muscle from mice lacking AMPK (Mounier et al. 

2009) are bigger in size.         

 Few data also suggest that reactive oxygene species (ROS) such as H2O2 appear to 

impair mTOR assembly and therefore preventing mTOR-mediated phosphorylation of 4E-

BP1 (Zhang et al. 2009). Moreover, oxidative DNA damage are known to activate p53 which 

is able to inhibit mTOR via AMPK and TSC2 (Feng et al. 2005). These effects could be 

triggered by the stress-responsive molecules REDD1 (Regulated in Development and DNA 

damage responses 1) and REDD2 (RTP801/DDIT4 and RTP801L/DDIT4L, respectively) 

which decrease the activity of mTOR by activating TSC2 (Brugarolas et al. 2004; Corradetti 

et al. 2005; Favier et al. 2010; Murakami et al. 2011).    

 mTOR activation is also controlled by the availability of amino acids (AAS) (Kimball 

& Jefferson 2010). Indeed, amino acid starvation, in particular leucine leads to a decrease of 

p70S6K and 4EBP1 (Hay and Sonenberg 2004). Moreover, administration of branched chain 

amino acids such as leucine (Hara et al. 1998) is sufficient to activate the mTOR pathway and 

enhance protein synthesis. Amino acids would activate mTOR through TCS1/TCS2 inhibition 

or by stimulating Rheb protein (Gao et al. 2002; Smith et al. 2005; Long et al 2005). 

 A new form of PGC-1α (PGC-1α4), which results from alternative promoter usage and 

splicing of the primary transcript, has been recently identified as involved in muscle growth, 

as shown by the finding that mice with skeletal muscle specific transgenic expression of PGC-

1α4 show increased muscle mass and strength (Ruas et al. 2012). In cultured muscle cells, 

PGC-1α4 was found to induce IGF-1 and repress myostatin, thus promoting myotube 

hypertrophy, which was blocked by an IGF1 receptor inhibitor (Ruas et al. 2012). Thus, it 

would not be surprising if PGC-1α4 activates Akt/mTOR pathway but it remains to be 

demonstrated.   
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1.2. Proteolysis systems 

 Various systems autophagy are involved in protein degradation such as autophagy, 

Ca2+-dependent pathways (i.e. calpains and caspase) and the ubiquitin-proteasome system 

(UPS). Activation of the cell’s proteolytic systems is transcriptionally regulated, and a subset 

of genes that are commonly up- or down-regulated have been identified in atrophying skeletal 

muscle. These common genes are thought to regulate the loss of muscle components, and 

were thus designated atrophy-related genes or ‘atrogenes’ (Sacheck et al., 2007). Among the 

up-regulated atrophy-related genes are transcripts belonging to the Ca2+-dependent pathways, 

UPS and autophagy systems that are currently accepted as the two systems most involved in 

skeletal muscle proteolysis (Sandri 2010; Powers et al. 2012; Bonaldo and Sandri 2013; 

Schiaffino et al. 2013; Sandri 2013).  

1.2.1. Ca2+-dependent pathway: calpains and caspases 

 The calpain system is a protein-degradation pathway of eukarotic cells composed of 

two enzymes: calpains and their endogenous inhibitor calpastatin which regulates their 

activity (Dargelos et al. 2008). Such proteases are calcium-dependent and non-lysosomal 

cysteine proteases (Dargelos et al. 2008). Originally, calpains were first presented as cleaving 

only the proteins that anchor the actin-myosin complex (e.g. titin, nebulin...) (Koh & Tidball 

2000; Purintrapiban et al. 2003). However, it has been demonstrated that calpains specifically 

cleave the MHC-IIb isoform (Samengo et al. 2012). In the same way, Smuder et al. (2010) 

showed that exposure of myofibrils to hydrogen peroxide increases susceptibility of MHC and 

actin to be cleaved by calpains. Consequently, the susceptibility of myofibrillar proteins to 

calpain-mediated cleavage appears to be influenced by their prior oxidative modification. 

Calpains activity is regulated by several factors, including cytosolic calcium levels and the 

concentration of their inhibitor calpastatin (Goll et al. 2003).     

 Caspases are cytoplasmic cysteine-proteases that can cleave other proteins. Caspase-3 

seems to be able to degrade the actin-myosin complex. Indeed, Du et al. (2004) have shown 

that purified and activated caspase-3 can cleave actin, breaking the muscle actin-myosin 

complex.            

 Calpains and caspases cannot degrade proteins into amino acids or smaller peptides 

but cleaved-protein by these latter will be degraded by UPS and autophagy. 
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1.2.2. Overview of the ubiquitine-proteasome-dependent system 

 In skeletal muscle, the UPS is required to remove sarcomeric proteins upon changes in 

muscle activity. This system is an organized process parted in two successive stages (see 

figure 4). Proteins must be fixed to a polyubiquitin chain (polyubiquitination stage) before 

being recognized and degraded by the 26S proteasome.      

 Polyubiquitination involves three enzymes (see figure 4): (1) E1 enzymes (activating 

enzyme) activate ubiquitin (Ub) proteins after the cleavage of ATP. (2) The ubiquitin is then 

moved from E1 to members of the E2 enzyme class (conjugating enzyme). (3) The ubiquitin 

is finally fixed to the target protein (e.g. myosin) by an E3 enzyme (ubiquitin ligase, e.g. 

MuRF1 and MAFbx) leading to the formation of a polyubiquitinated chain. This is the rate-

limiting step of polyubiquitination, which affects the subsequent proteasome-dependent 

degradation. (4) Once the protein is ubiquitinated, it is docked to the 26S proteasome for 

degradation.                               

Figure 4. Ubiquitin-proteasome system. 
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 Among the known E3s, only a few of them are muscles specific and up-regulated 

during muscle loss (Sacheck et al. 2007). Two E3s specifically expressed in striated and 

smooth muscles are MAFbx (also known as atrogin-1) and MuRF1 (muscle-specific RING-

finger protein 1) (Bdolah et al. 2007; Bodine et al. 2001; Gomes et al. 2001). MuRF1 

ubiquitinates several muscle structural proteins, including troponin I (Kedar et al. 2004), 

myosin heavy chains (Clarke et al. 2007; Fielitz et al. 2007), actin (Polge et al. 2011), myosin 

binding protein C and myosin light chains 1 and 2 (Cohen et al. 2009). MAFbx promotes 

degradation of MyoD, a key muscle transcription factor, and of eIF3-f, an important activator 

of protein synthesis (Csibi et al. 2010; Tintignac et al. 2005). Moreover, MAFbx would be 

involved in sarcomeric proteins degradation, including myosins, desmin, and vimentin 

(Lokireddy et al. 2012).        

 Ultimately, MAFbx would be a proteolytic actor capable of suppressing the process of 

protein synthesis, while MuRF1 would lead to proteolysis of myofibrillar proteins (Attaix & 

Baracos 2010). Presumably, several other E3s are activated during amyotrophy that promote 

the clearance of soluble cell proteins and limit anabolic processes and are presented in the 

following table (for a complete review see Schiaffino et al. 2013). 

 

Table 6. Ubiquitin ligases and their role in skeletal muscle and muscle cell other than MuRF1 

and MAFbx. 

Ubiquitin ligase Role in muscle and muscle cell 

Trim 32 Thin filament degradation (actin, tropomyosin and troponins), α-actinin and desmin 
(Cohen et al. 2012) 

CHIP Filamin C  (A Z-line protein) degradation (Arndt et al. 2010) 

TRAF6 Involved in the optimal activation of various molecules such as AMPK (ref 97) 

MUL1 Mitochondrial network remolding (ref 101 102) 

FBxo40 Involved in IRS-1 degration (Shi et al. 2011) 

Nedd4 Involved in unloading and denervation hypertrophy-induced (Koncarevic et al. 2007) 

Trim 32: tripartite motif-containing protein 32; CHIP: Carboxy terminus of Hsc70 interacting protein; TRAF6: 
Tumor necrosis receptor-associated factor; MUL1: mitochondrial E3 ubiquitin protein ligase 1; FBx40: F-box 
only protein; Nedd4: Neural precursor cell expressed developmentally down-regulated protein 4. 
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1.2.3. Overview of Autophagy 

 Autophagy is primarily a mechanism for cell survival. There are three types of 

autophagy: macro-autophagy, chaperone-mediated autophagy and micro-autophagy. It is still 

unknown whether micro-autophagy occurs in skeletal muscle. Most data on the role of the 

autophagic process in muscle are related to macro-autophagy. Macro-autophagy (hereafter 

referred to as autophagy) is a highly regulated lysosomal pathway for the degradation of non-

myofibril cytosolic proteins, macromolecules and organelles (Zhao et al. 2007, Mizushima 

2007; Sandri 2010).Autophagy whose mechanisms are resumed in the figure 5 (for review see 

Levine & Klionsky 2004; Rautou et al. 2010) is highly regulated by the autophagic gene (Atg) 

protein family (see table 7; for review see Mizushima 2007). Autophagy can be activated by 

numerous signals such as starvation, caloric restriction, hypoxia, oxidative stress, exercise, 

DNA and mitochondria damage (Liu et al. 2008; Kroemer et al. 2010; Mazure & Pouysségur 

2010; Wohlgemuth et al. 2010; Kim et al. 2013).   

       
 

Table 7. Equivalent Atg proteins between yeast and mammals and their functions (extracted 

from Mizushima 2007). 

Name in Yeast Name in Mammal Function 

Atg 1 ULK1, 2 Atg1/Atg13/Atg 17/Atg 29 complex : Autophagy initiation 
Atg 2 Atg 2 Atg 2/Atg18/Atg9 complex : Autophagosome Formation 
Atg 3 Atg 3 E2-like enzyme specific for Atg 8: Autophagy induction 

Atg 4 Atg 4, 4B,         
Autophagin 3,4 Cystein protease: Cleave the C-terminal part of Atg 8 

Atg 5 Agt 5 Atg 12/Atg 5/Atg 16 complex: Autophagosome formation 

Atg 6 Beclin-1 Sub-unit of the complex Vsp34 PI3K: Autophagosome 
formation 

Atg 7 Atg 7 E1-like Enzyme specific for Atg 8 and Atg 12 

Atg 8 LC3, GABARAP, 
GATE-16 Autophagosome Formation 

Atg 9 Atg 9L1,L2 Atg 2/Atg 19/Atg 9: autophagosome formation 
Atg 10 Atg 10 E2-like enzyme specific for Atg 12: Autophagy induction 
Atg 11  Only in yeast 
Atg 12 Atg 12 Atg 12/Atg 5/Atg 16 complex 
Atg 13 Atg 13 Autophagy induction 
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 Autophagic signals lead to AMPK-induced mTOR inhibition leading to Ulk1 (Unc-51-

like kinase 1) complex activation (Eskelinen & Saftig 2009) allowing the Beclin-1/Class III 

PI3K complex activation (Cao & Klionsky 2007; Sandri 2013). These phenomena stimulate 

Atg protein such as LC3-1 and LC3-2 leading to autophagic vesicles formation called 

autophagosomes. Then, fusion of autophagosomes and lysosomes leads to the formation of 

autolysosomes. This steps seems to control by a lysosomal membrane protein Lamp-2 (Huynh 

et al. 2007). This fusion leads to the exposure of autophagosome contents (i.e., cytosolic 

proteins) to lysosomal proteases (e.g. cathepsins) resulting in proteolytic degradation (Bechet 

et al. 2005). 
 

Figure 5. Autophagy proteins degradation mechanisms (inspired by Rautou et al. 2010). 
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 A specific mitochondria autophagy (called mitophagy) occurs to degrade these latters 

when they are damaged. In mammals, parkin, PINK1, Bnip3 and Bnip3L have been shown to 

regulate mitophagy. Inactivation of their genes leads to abnormal mitochondria (Bothe et al. 

2000; Hara et al. 2006). PINK1 recruits parkin to mitochondria, where parkin promotes 

mitophagy through ubiquitination of outer mitochondrial membrane proteins that are 

recognized by p62, which brings autophagic vesicles to ubiquitinated mitochondrial proteins 

(Youle & Narendra 2011; Narendra & Youle 2011). Bnip3 and Bnip3L reportedly bind 

directly to LC3, and can therefore recruit the growing autophagosome to mitochondria 

(Hanna et al. 2012; Novak et al. 2010). 

 Emerging evidence suggests that a baseline level of autophagy is required for 

maintenance of normal muscle function and mass. Indeed, studies reveal that increases in 

autophagy above baseline contribute to skeletal muscle atrophy due to fasting, denervation or 

in the model of mechanical ventilation-induced diaphragmatic proteolysis (Mammucari et al. 

2007; O’Leary & Hood 2009; Hussain et al. 2010). Mice with muscle specific inactivation of 

Atg clearly demonstrate the essential role of autophagy in muscle homeostasis. For example, 

muscle-specific knockout of Atg7 mice presents a dramatic skeletal muscle atrophy and 

weakness due to a decreased autophagosome formation (Masiero et al. 2009). Moreover, 

oxidative stress (OS) induced by the muscle-specific expression of a mutant superoxide 

dismutase protein (SOD1G93A) in mice causes muscle atrophy mainly by activating 

autophagy (Dobrowolny et al. 2008). Attenuation of autophagy by inhibition of LC3 

preserves muscle mass in these transgenic mice (Dobrowolny et al. 2008). Furthermore, in 

atrophying muscle, the mitochondrial network is dramatically remodeled following fasting or 

denervation, and mitophagy via Bnip3 (Romanello et al. 2010; Romanello & Sandri 2013). 

1.2.4. UPS and autophagy regulation   

 Forkhead box O (FoxO) transcription factors family members are known to up-

regulate UPS and autophagy. Their activity is modulated (positively or negatively) by direct 

or indirect actions of co-factors and by interaction with other transcription factors. Several 

others pathways can up-regulate UPS and autophagy independently of FOXO.  

1.2.4.1. Proteolysis systems FoxO dependent-regulation 

 The FoxO family members include three isoforms: FoxO1, FoxO3 and FoxO4. FoxOs 

activity is regulated by several post-translational modifications, including phosphorylation, 

acetylation and mono- and polyubiquitination (Huang & Tindall 2007). For example, when 



Review – Chapter 2: Sarcopenia-related Cellular and Molecular Skeletal Muscle Alterations         

50 
 

Sarcopenia: Mechanisms and Prevention - Role of Exercise and Growth Hormone - Involvement of Oxidative Stress and Glucose-6-phosphate Dehydrogenase -
2014 

 

FoxOs are phosphorylated, these transcription factors migrate from the nucleus to the cytosol 

where they lose their biological action. Conversely, when they are hypophosphorylated, 

FoxOs migrate from the cytosol to the nucleus where they are active (Calnan & Brunet 2008).  

In rodent and human muscle, it has been shown that FoxO3 is responsible of the up-

regulation of several Atg in skeletal muscle such as Bnip3, LC3 and PI3KIII (Zhao et al. 

2007; Piétri-Rouxel et al. 2010; Hussain et al. 2010). On the other hand, FoxO members are 

able to up-regulate MAFbx and MuRF1 leading to  muscle atrophy (Sandri et al. 2004).  

Activation or repression of FoxOs are controlled by numerous factors. Here, we will 

only describe the action of Akt, PGC-1α, AMPK and nNOS which have a known role in 

sarcopenia. Positive and Negative known FoxOs family regulators are resumed in the table 8. 

 Akt, a very potent autophagy inhibitor in skeletal muscles, can phosphorylate all 

FoxOs promoting their export from the nucleus to the cytoplasm (Calnan & Brunet 2008). 

Acute activation of Akt in mice or in muscle cell cultures completely inhibits FoxO3 leading 

to autophagy inhibition during fasting (Mammucari et al. 2007; Mammucari et al. 2008; Zhao 

et al. 2007; Zhao et al. 2008). Moreover, Akt can block the up-regulation of MAFbx and 

MuRF1 in atrophying muscles (Stitt et al. 2004; Lee 2004; Sandri et al. 2004). 

 It has been shown in muscle cell and mice skeletal muscle that activation of AMPK 

induced by exhaustive exercise or AICAR treatment can stimulate FoxO3 which in turn will 

increases MAFbx and/or MuRF1 expression, and autophagy-related proteins such as LC3B-II 

and Beclin1 (Nakashima & Yakabe 2007; Romanello et. 2010; Sanchez et al. 2012; Pagano et 

al. 2014) leading to protein breakdown (Nakashima & Yakabe 2007). 

PGC1-α and its homolog PGC1-β are able to inhibit the transcriptional activity of 

FoxO3 which leads to decrease protein breakdown and limits muscle atrophy during 

denervation, fasting, heart failure, aging by inhibiting autophagy and UPS degradation (Geng 

et al. 2011; Sandri et al. 2006; Wenz et al. 2009; Brault et al. 2010). For instance, Sandri et al. 

(2006) and Brault et al. (2010) showed that following denervation, transgenic mice 

overexpressing PGC-1α or PGC-1β specifically in muscle showed lower muscle atrophy due 

to a smaller increase in the expression of MAFbx and MuRF1 and a diminished autophagy. 

On the other hand, Wenz et al. (2009) showed that these same mice also presented a lesser 

active autophagy compared to wild type (WT) mice.     

 It has been shown that nNOS through NO production is able to enhance FoxO3-

mediated transcription of atrogin- 1 and MuRF1 (Suzuki et al. 2007), and LC3 and Bnip3 

(autophagy regulators) (Piétri-Rouxel et al. 2010). nNOS inhibition by two different inhibitors 
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(7-nitroindazol and N-nitro-l-arginine methylester) limited muscle loss during hindlimb and 

denervation (Suzuki et al. 2007). 
 

Table 8. Positive and Negative known FoxOs family regulators. 

 
Positive regulators of FoxOs family Negative regulators of FoxOs family 

AMPK (Greer et al. 2009) Akt  (Calnan & Brunet 2008) 
REDD1 (Shimizu et al. 2011) PGC-1α  (Sandri et al. 2006) 
nNOS (Piétri-Rouxel et al. 2010) SGK1 (Andres-Mateos et al. 2013) 
 JunB (Raffaello et al. 2010) 
 Runx1  (Wildey & Howe 2009) 
 

 

1.2.4.2. Proteolysis systems FOXO independent-regulation  

 Although FoxOs play a major role in the regulation of proteolytic systems, there are 

also independent FoxOs signaling pathways regulating proteolysis system through in 

particular the  Tumor Necrosis Factor α (TNF-α).      

 The TNFα is known to activate the Nuclear Factor Kappa B (NFκB) pathways 

(Peterson et al. 2011). The activation of this transcription factor is sufficient to induce muscle 

atrophy, a phenomenon that could be explained in part by the specific overexpression 

MuRF1, but not MAFbx (Cai et al. 2004). Furthermore, TNF-like weak inducer of apoptosis 

(TWEAK), a member of the TNF superfamily, has been recently identified as involved in 

muscle atrophy through an activation of NFkB leading to increase MuRF1 expression (Dogra 

et al. 2007; Mittal et al. 2010). The lack of disruption of the expression of MAFbx by NFkB 

suggests that another signaling pathway may be involved in its regulation.   

 Indeed, in cultured myoblast and in vivo, Li et al. (2005) revealed that TNFα induces 

reactive oxygen species (ROS) production (in particular hydrogen peroxide; H2O2) which 

leads to mitogen-activated protein kinases (MAPK) p38 activation (phosphorylation). 

Activation of MAPK p38 then leads to increase MAFbx mRNA independently of NFkB. 

MAFbx up-regulation by p38 MAPK independently of Akt/FoxO and NFkB signaling 

pathways has been confirmed (Yamamoto et al. 2008). More recently, Mclung et al (2010) 

demonstrated that cachectic stimuli result in increased phosphorylation of p38 MAPK in 

cultured myotubes and in mice leading to activate UPS and autophagy-mediated muscle 

proteolysis and atrophy. Inhibition of p38 MAPK activity attenuates myotube atrophy in vitro 

with attenuated ubiquitin ligase and Atg expression (McClung et al. 2010).   
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 Others molecules such as the PIP3 Jumpy (Romero-Suarez et al. 2010; Hnia et al. 

2012), the pro-inflammatory Interleukine-6 (Llovera et al. 1997) and STAT3 (Signal 

Transducer and Activator of Transcription 3) (Bonetto et al. 2012) are also described to be 

involved in the  proteolysis systems FoxO independent-regulation.  

1.3. Myostatin: master regulator of  muscle mass 

 Myostatin (Mstn) or GDF-8 (Growth Differentiation Factor-8), a member of the TGF-

β superfamily (Transforming Growth Factor beta) is a major negative regulator of muscle 

growth that is expressed predominantly in skeletal muscle (Lee 2004).   

 Mutations of the Mstn gene results in a hypertrophic phenotype as observed in cattle 

(Belgian Blue and Piedmontese breeds; McPherron & Lee 1997), in mice (compact 

hypermuscular mice breed, Szabó et al. 1998) and in human (a boy who presented a loss of 

function mutation in the human myostatin gene; Schuelke et al. 2004). This phenotype is due 

to both an increase in muscle fiber number (hyperplasia) and size (hypertrophy) at least in KO 

Mstn−/− mice (Amthor et al. 2009; Girgenrath et al. 2005; McPherron et al. 1997; Mendias et 

al. 2006; McPherron et al. 2009) and appears to be dose dependent: Heterozygous mutant 

mice have a milder increase in muscle mass than homozygous mutant mice. In addition to 

increased muscle mass, Mstn−/− mice have increased insulin sensitivity (Guo et al. 2009; 

Wilkes et al. 2009), reduced adipose tissue mass (Lin et al. 2002), and resistance to weight 

gain when fed a high-fat diet (McPherron & Lee 2002; Hamrick et al. 2006). On the other 

hand, Mstn−/− mice present altered contractile properties compared to Mstn+/+ or Mstn+/- as 

shown by a decreased specific force and power production of muscle fibers (Mendias et al. 

2011), a greater force deficit following two lengthening contractions (Mendias et al. 2006) 

and a higher muscle fatigue (Ploquin et al. 2012; Giannesini et al. 2013). Moreover, Mstn−/− 

mice tendons’s appear to be smaller, more brittle, and more hypocellular than those of WT 

mice (Mendias et al. 2008). Mstn−/− mice also present lower maximal exercise capacity 

(Savage & McPherron 2010).       

 Myostatin is held in an inactive form in the muscle extracellular matrix, and when 

activated, it binds to its receptor (Kollias & McDermott 2008). It has been shown both in vitro 

and in vivo that Smad 2 and Smad 3 are the transcription factors mediating Msnt effects on 

muscle mass (Lokireddy et al. 2012; Sartori et al. 2009; Trendelenburg et al. 2009). Their 

downstream still remain to discover and also the Smad-dependent atrophy mechanisms. Until 

now, it has been demonstrated that Smads can regulate specific target genes but only in 

association with other DNA-binding cofactors (Massagué et al 2005) as the FoxOs family 
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(Gomis et al 2006). In addition, myostatin-Smad2/3 signaling can inhibit the IGF-

1/PI3K/Akt/mTOR axis and reduce p70S6K activation (Amirouche et al. 2009; Sartori et al. 

2009; Trendelenburg et al. 2009).On the other hand, the overexpression of myostatin may also 

decrease the expression of PGC-1α in skeletal muscle (Durieux et al. 2007). Myostatin have 

shown to be inhibited by Junb, PGC-1α4, IGF-1 and follistatin (Raffaello et al. 2010; Ruas et 

al. 2012; Gumucio & Mendias 2013). These different pathways are resumed in figure 6. 

 As described above, it is clearly demonstrated that myostatin inhibition leads to 

muscle hypertrophy however, the mechanism of myostatin activation and its role and capacity 

to trigger muscle atrophy remain unclear in vivo. However, intra-muscular Mstn local 

administration leads to marked muscle atrophy and a decreased force production in mice 

(Mendias et al. 2012). In the same way, Mstn treatment in vivo and in vitro induces cachexia 

(McFarlane et al. 2006). Transgenic mice overexpressing Mstn selectively in skeletal muscle 

have lower muscle mass (Reisz-Porszasz et al. 2003). Moreover, purified myostatin inhibits 

protein synthesis and reduces myotube size when added to differentiated myotubes in culture 

(Taylor et al. 2001). 
 

Figure 6. Myostatin mechanism leading to muscle atrophy (inspired by Gumucio & Mendias 

2013). 

 



Review – Chapter 2: Sarcopenia-related Cellular and Molecular Skeletal Muscle Alterations         

54 
 

Sarcopenia: Mechanisms and Prevention - Role of Exercise and Growth Hormone - Involvement of Oxidative Stress and Glucose-6-phosphate Dehydrogenase -
2014 

 

2. Role of Mitochondria in Cellular Homeostasis   
 

 The mitochondrion is an organelle lying in any eukaryotic cell, particularly in the 

muscle fiber. Its physiological role is crucial as it contributes to both regulation of calcium 

homeostasis,   and cell cycle, force production, but primarily represents the main source of 

ATP in the cell (Calvani et al. 2013).        

2.1. Mitochondrial biogenesis 

 The mitochondria consist of proteins encoded from both mitochondrial (mtDNA) and 

nuclear DNA (nDNA). Although mtDNA contains just 37 genes that encode 13 proteins (all 

within the electron transport chain; ETC), 2 ribosomal and 22 translational RNA, proper 

organelle biogenesis and function require input from both genomes. Several transcription 

factors and molecular regulators have been highlighted in orchestrating mitochondrial 

biogenesis (making of new mitochondrial proteins, Johnson et al. 2013) and substrate 

metabolism. 

2.1.1. Mitochondrial biogenesis pathway 

 PGC-1α is considered as the master regulator of mitochondrial biogenesis from the set 

of transcription factors involved in this process (Puigserver et al. 2003; Viña et al. 2009). 

Works on knockout mouse models of PGC-1α (PGC-1α KO) or transgenic overexpressing 

PGC-1α specifically in muscle (MCK PGC-1α) have established the key role of this co-

activator in mitochondrial biogenesis. Indeed, deletion of PGC-1α in muscle is clearly 

associated with a reduction in mitochondrial content and activity of key enzymes in 

mitochondrial function as citrate synthase (CS), succinate dehydrogenase (SDH) or 

cytochrome c oxidase I (COX I) (Adhihetty et al. 2009; Leick, Lyngby, et al. 2010; Leick, 

Fentz, et al. 2010). In contrast, chronic overexpression of PGC-1α in muscle leads to an 

increase of the same mitochondrial markers (Wenz et al. 2009; Brault et al. 2010). 

 PGC-1α does not directly regulate the expression of nuclear genes encoding 

mitochondrial proteins, but acts on others transcription factors (see figure 7) which serve as 

intermediaries in this regulation (Puigserver et al. 1999).      

 In the muscle cell, different molecules, stimulated mainly during muscle contraction, 

will activate the process of mitochondrial biogenesis (for review see Viña et al. 2009). These 

molecules will increase the activity of transcriptional factor PGC-1α leading to stimulate its 

own expression and the expression of the Nuclear respiratory factor 1 and 2 (NRF-1 and 2)  

genes (Hood et al. 2006). The latter will then stimulate the expression of nuclear genes 
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encoding mitochondrial protein. NRF-1 and NRF-2 increases the expression of TFAM 

(mitochondrial transcription factor A), which through various complexes of the mitochondrial 

protein import system (HSPs, TOMs, TIMs), will be carried into the mitochondrial matrix and 

stimulate the expression of 13 genes encoded by the mitochondrial DNA (Virbasius & 

Scarpulla 1994). The proteins encoded by the nuclear and mitochondrial genomes will then be 

assembled via specific proteins to form the various complexes of the electron transport chain 

necessary for the synthesis of ATP.        

Figure 7. Schematic representation of the regulation of mitochondriogenesis (extracted from 

Viña et al. 2009). 

 

 Surprisingly, PGC-1α appears to not be mandatory for mitochondrial biogenesis in 

particular in response to aerobic training, known to induce mitochondrial biogenesis in rodent 

and human (Gomez-Cabrera, Domenech, Romagnoli, et al. 2008; Viña et al. 2009; Derbré et 

al. 2012). In fact, muscle-specific PGC1α knockout animals showed increased mitochondrial 

protein content following aerobic training in young mice (Leick et al. 2008). However, PGC-

1α is required for training-induced prevention of age-associated decline in mitochondrial 

enzymes as citrate synthase in mouse skeletal muscle (Leick, Lyngby, et al. 2010).  
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2.1.2. Mitochondrial biogenesis pathway up-streams  

 Exercise, but also cold exposure (Derbré et al. 2012), chemical treatment such as 

AICAR (Winder et al. 2000), some natural compounds such as caffeine (Ojuka et al. 2003) 

and resveratrol (Lagouge et al. 2006), some pharmacological agents such as clenbuterol 

(Miura et al. 2007) or certain hormones such as thyroid hormone (Koulmann et al. 2008) are 

recognized as modulators of the mitochondrial biogenesis. As a result of this diversity, it was 

highlighted various regulatory molecules of PGC-1α and the most relevant are described 

below.           

 AMPK is involved in regulating the expression of PGC-1α. Indeed, injection of 

AICAR activate AMPK leading to an increase in mRNA of PGC-1 α in rodents (Jørgensen et 

al. 2005; Narkar et al. 2008; Leick, Lyngby, et al. 2010). AMPK also phosphorylates PGC-1α 

also which contributes to increase its activity (Jäger et al. 2007). Using KO of isoforms α1 

and α2 AMPK mice, Jorgensen et al. (2005) have specifically shown that after exercise 

AMPK α1 is required to increase PGC-1α expression. These data are very surprising because 

protein synthesis requires ATP and is decreased with AMPK activation. Thus, AMPK may 

inhibit global protein synthesis while simultaneously increasing mitochondrial protein 

synthesis (Johnson et al. 2013).       

 Muscle contraction results in the activation of the family of mitogen-activated protein 

kinases (MAPK) (Aronson et al. 1997; Widegren et al. 1998). p38 MAPK appears involved in 

the regulation of PGC-1α since activation of p38 MAPK led to the phosphorylation and 

increased expression of PGC-1 α in various body tissues including skeletal muscle (Zhao et 

al. 1999; Puigserver et al. 2001; Cao et al. 2004). Moreover, Akimoto et al. (2005) 

demonstrated that the transcriptional control of PGC-1α by p38 MAPK required the 

phosphorylation of ATF2 (Activating transcription factor 2).    

 It was also observed in rodents that thyroid hormone treatment increased the 

expression of PGC-1α in skeletal muscle (Irrcher et al. 2003; Bahi et al. 2005; Koulmann et 

al. 2008; Derbré et al. 2012) via the activation of AMPK and p38 MAPK (Irrcher et al. 2003; 

Bahi et al. 2005; Kukuljan et al. 2009; Miklosz et al. 2012). On the other hand, Vescovo et al. 

(2005) reported in rats with right heart failure-related muscle atrophy that treatment with GH 

restores protein content of PGC-1α and cytochrome c involving IGF-1 and calcineurin 

(Vescovo et al. 2005). Similar data have been reported in the liver of aged rats treated with 

GH (Kireev et al. 2007). Later, Short et al. (2008) reported in human muscle that an infusion 

of GH for 14 h leads to an increase in the mRNA levels of TFAM and cytochome c and the 

activity of citrate synthase without increase in PGC-1α. In contrast, other authors reported no 
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improvement in mitochondrial respiration in young rats treated with GH (Peyreigne et al. 

2002). In addition, growth hormone (GH) receptor knockout (GHRKO) (mice known to be 

remarkably long-lived) mice report an increase in numerous markers involved in 

mitochondrial biogenesis in the kidney but not in skeletal muscle (Gesing et al. 2011). In view 

of all these data, it appears that further studies are needed to confirm or not the involvement 

of growth hormone in the regulation of muscle PGC-1α and mitochondrial biogenesis. 

 The Sirtuin family (SIRT 1 to 7) is an NAD-dependent histone/protein deacetylase that 

interacts with transcription factors and cofactors influencing many metabolic pathways (for 

review see White & Schenk 2012). SIRT1 deacetylases PGC-1α and thus maintains in its 

active form capable of binding to chromatin (Gerhart-Hines et al. 2007). Recent studies in cell 

culture have shown that AMPK allowed to activate SIRT1 and thus deacetylate PGC-1α , by 

increasing the cellular content of NAD + (Cantó et al. 2009).    

 Furthermore, it is important to note that the expression of PGC-1α may be regulated 

by PGC-1α itself via its interaction with MEF2 (myocyte enhancer factor-2) and its own 

promoter region in a loop of autoregulation (Handschin et al. 2003). Such mechanism could 

contribute to amplify the increase in the expression of PGC-1α when it occurs. 

Figure 8. PGC-1α and biogenesis mitochondrial up-streams in skeletal muscle.  
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2.2. Mitochondria as a source of reactive oxygen species 

 Originally, it was described that 95-98% of the oxygen is reduced to water at the 

complex IV of the ETC. However, the transfer of electrons in the ETC is imperfect. In fact, an 

electron leakage at complex I and III results in 2-5% of cases in the formation of superoxide 

anion (O2
•-) from O2 which triggers a cascade of ROS production (Chance et al. 1979). 

However, these values have been recalculated. Brand and colleagues have reassessed the rate 

of production of ROS by mitochondria and indicated that the upper estimate of the proportion 

of the electron flow giving rise to ROS was ~0.15%, or ≤10% of the original minimum 

estimate (St-Pierre et al. 2002). Due to this mechanism, mitochondria are a major cellular 

source of reactive oxygen species (others sources of ROS will be detailed in a next chapter). 

To cope with this physiological ROS production, mitochondria have evolved a multileveled 

defense network comprising detoxifying enzymes and non-enzymatic antioxidants (more 

detail in Chapter 3).         

 Under physiological conditions, mitochondrial antioxidant defenses are fully 

functioning and electron leakage occurs within the physiological range. Thus, oxidative 

damage is almost completely prevented. In such circumstances, the small amounts generated 

ROS can act as second messenger molecules that modulate the expression of several genes 

involved in metabolic regulation and stress resistance (mitochondrial hormesis or 

mitohormesis; Handy & Loscalzo 2012). Moreover, the small quantities of H2O2 and O2
•- 

generated by the ETC (and by other cellular sources) are essential for force production (Reid 

et al. 1993).  In contrast, excessive ROS generation and/or defective oxidant scavenging can 

lead to oxidative irreversible damage or essential pathway deregulation which have been 

implicated in the aging process (Harman 1972; Miquel et al. 1980; Viña et al. 2013) and in 

the pathogenesis of several conditions, including acute muscle atrophy and sarcopenia as it 

will be exposed in a next section (Kondo et al. 1994; Reid & Durham 2002; Powers et al. 

2011; Handy & Loscalzo 2012). 

2.3. The mitochondrial apoptotic machinery 

 Mitochondria are considered the primary regulator of apoptotic signals and can induce 

apoptosis through different signaling pathways (Wenz et al. 2009; Marzetti et al. 2013). 

Apoptosis is a process of programmed cell death which proceeds through a highly 

coordinated set of morphological and biochemical events, resulting in cellular self-destruction 

without inflammation or damage to the surrounding tissue (Kerr et al. 1972). 
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 Apoptosis leads progressively to DNA fragmentation, nuclear condensation, 

proteolysis, membrane deformation and finally to cell fragmentation. This results in apoptotic 

bodies, which are then supported by macrophages and neighboring cells. As shown in figure 

9, apoptosis can be triggered by extrinsic pathway involving the death receptor TNF-α or an 

intrinsic pathway involving mitochondria. The extrinsic pathway of apoptosis stimulates 

TNF-α receptor induces the activation of caspase-3 by caspase-8. Mitochondria-induce 

apoptosis is triggered by two intracellular signaling pathways independent or dependent of 

caspases (cysteine-dependent aspartate-cleaving proteases) (Danial & Korsmeyer 2004). 

Caspases exist in the cytoplasm as inactive precursors (procaspases) that can be activated by 

dimerization or partial degradation. The induction of apoptosis is based on a proteolytic 

cascade leading to the activation of initiator caspases (i.e. caspase-8, caspase-9, caspase-12) 

which will itself induce effector caspases (ie caspase-3, caspase-6, caspase-7). The latter then 

induces DNA fragmentation (via caspase-activated DNAase) that leads to cell death. 

Independent apoptotic caspases pathway operates via the mitochondrial release of mediators 

(e.g. AIF: Apoptosis-Inducing Factor or EndoG: Endonuclease G) capable of inducing DNA 

fragmentation directly to large scale (see figure 9). In addition, opening of the mitochondrial 

permeability transition pore (mPTP: protein complex comprising the voltage-dependent anion 

channel (VDAC) in the outer membrane, the adenine nucleotide translocator (ANT) in the 

inner membrane (IM), and cyclophilin D (CyPD) in the matrix) can induce a sudden increase 

in membrane permeability, collapse of membrane potential, mitochondrial swelling and 

rupture of the outer membrane, with subsequent release of death effectors. For instance, 

following outer membrane permeabilisation, cytochrome c binds Apoptosis Protease-

activating factor 1 (Apaf-1) forming an apoptosome leading to caspase-9 activation. Then, 

this latter activates caspase-3 that finalizes the apoptotic process. Otherwise, it is important to 

underline the role of Bcl-2 protein family that regulates mitochondrial release of apoptotic 

mediators mentioned above. Among these proteins, Bcl-2 and Bcl-XL are recognized as anti-

apoptotic while Bax, Bak and Bik promote apoptosis. The Bax/Bcl-2 ratio is considered as an 

index apoptotic status (Marzetti et al. 2010).      

 Recent studies have shown that PGC-1α could participate in the regulation of 

apoptotic processes in skeletal muscle. Indeed, isolated mitochondria from muscle of PGC-1α 

KO mice, exposed to ROS, liberated a greater amount of cytochrome c (indicating increased 

apoptosis) (Adhihetty et al. 2009). Moreover, chronic overexpression of PGC-1α in muscle 

tissue (mouse MCK PGC-1α) can effectively prevent the DNA fragmentation associated with 
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age (Wenz et al. 2009). This anti-apoptotic effect could be explained in part by maintaining 

the ratio between Bcl-2 and Bax during the aging process (Wenz et al. 2009).   

Figure 9. Simplified apoptosis pathway in skeletal muscle (inspired by Marzetti et al. 2012). 

      

 

 

 

 

2.4. The dynamic nature of mitochondria 

 When mitochondria are viewed in living cells, it becomes immediately apparent that 

their morphologies are far from static. Their shapes change continually through the combined 

actions of fission, fusion and also motility. Fusion and fission events are also crucial for 

transmitting redox-sensitive signals, maintaining mtDNA integrity, and regulating cell death 

pathways (for review see Schäfer & Reichert 2009; Youle & van der Bliek 2012).  

 The balance between fusion and fission is dependent upon a complex mitochondrial 

dynamics machinery. Mitochondrial fission and fusion processes are both mediated by 

guanosine triphosphatases (GTPases) in the dynamin family that are well conserved between 

yeast, flies, and mammals (Hoppins et al. 2007).      

 Mitochondrial dynamics are centrally involved in the maintenance of cell homeostasis. 

Indeed investigations utilizing animal knockout models of mitofusion proteins have 

demonstrated diminished mitochondrial function and biogenesis as well as muscle atrophy 

(Chen et al. 2010). Conversely, when fusion is no longer possible due to the loss of 

mitochondrial membrane integrity, fission is responsible for the fragmentation and excision of 

any altered or damaged mitochondrial components that are subsequently degraded by 

mitochondrial specific autophagy (i.e. mitophagy as previously described) (Seo et al. 2010).  
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A functional link therefore appears between mitochondrial dynamics and autophagy, which is 

essential for mitochondrial homeostasis (Twig et al. 2008). In fact, Parkin and PINK1 (both 

involved in the regulation of mitochondrial autophagy as previously described) promote 

mitochondrial fission and inhibit fusion (Deng et al. 2008). The segregation of damaged 

mitochondria by fission and subsequent inhibition of their fusion machinery are hence 

prerequisites for their autophagic degradation (Twig et al. 2008). 

3. Sarcopenia-related skeletal muscle alterations  
 As previously described in the first chapter suggested categorization of sarcopenia by 

EWGSOP, Cruz-Jentoft et al. 2010), sarcopenia can be only age-related (primary sarcopenia) 

or be the result of others factors such as inactivity, but in both cases, it leads to atrophy at 

whole muscle level due to changes in both systemic and cellular properties that contribute to 

loss of organelles, cytoplasmic contents, and proteins from skeletal muscle. The loss of these 

critical myocyte components results in either fiber atrophy (decrease of the cross sectional 

area of each fiber) or complete fiber loss (leading to a decrease of the number of muscular 

fibers), both leading to a decrease in muscle mass. The mechanisms leading to these two 

phenomena are the same independently the origin of sarcopenia. An imbalance in the protein 

turnover (Combaret et al. 2009) and an exacerbation of myonuclear apoptosis (Marzetti et al. 

2012) are commonly considered as the final cellular mechanisms leading to muscle atrophy in 

sarcopenia. These latter are themselves dependent on a multitude of systemic and cellular 

factors (for review see Marzetti et al. 2009; Buford et al. 2010) such as neuromuscular 

dysfunction (Edström et al. 2007), elevation of oxidative stress (Ji 2001), an increased 

production of pro-inflammatory cytokines (Lee et al. 2007), insulin resistance (Walrand et al. 

2011), a decrease in the production of anabolic hormones (GH, IGF-1, testosterone) (Morley 

and Malmstrom 2013) and mitochondrial dysfunctions (Calvani et al. 2013). The decrease in 

capacity of muscle regeneration through satellite cells could be also involved in sarcopenia 

(Snijders et al. 2009; Hikida 2011).       

 Muscle atrophy plays a major role in the decrease in muscle strength associated with 

sarcopenia. However, data from animals showed that the specific strength of isolated muscle 

fibers (i.e. force normalized to cross sectional area of the fiber) also decreased with age 

(Renganathan et al. 1998; Thompson & Brown 1999; González et al. 2000; Thompson 2009) 

but contradictory results have been found in Human (Claflin et al. 2011). Several mechanisms 

are proposed to explain these results as posttranslational modifications of contractile proteins 

(Lowe et al. 2001) and/or decoupling of the complex excitation-contraction (Wang et al. 
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2000). Studies focused on permeabilized muscle fibers have shown that the decrease in the 

specific strength is also explained by a reduction of the fraction of myosin heads to bind to the 

actin filaments (Lowe et al. 2001; Lowe et al. 2004). By studying isolated intact muscle 

fibers, it has been revealed the involvement of excitation-contraction coupling in the changes 

with age of muscle contractile properties. Thus, the maximum release of calcium from the 

sarcoplasmic reticulum is reduced in aged rodent muscle tissue (Jiménez-Moreno et al. 2008). 

This subject being beyond the scope of this work will not be more described. 

3.1. Protein turnover alterations 

 As we discussed in the first chapter, muscle mass decreases with age in human and 

rodents. Because, the major components of muscle are proteins (after water), and muscle mass 

is determined by the net relationship between protein synthesis and breakdown, sarcopenia 

must be due to a relative decrease in protein synthesis, a relative increase in protein 

degradation, or a combination of both.  

3.1.1. Sarcopenia-associated protein synthesis impairment 

3.1.1.1. Evidence of a deacreased muscle proteins synthesis during 
sarcopenia 

 Data on the effect of aging on whole body protein synthesis are conflicting surely due 

to different measurement protocols, control of physical activity and diet, correction or not for 

free fat mass (for review see Nair 1995; Karakelides & Nair 2005; Short et al. 2004). In 

human, whole body protein synthesis slightly decreases with aging (Balagopal & Rooyackers 

1997; Rooyackers et al. 1997; Short et al. 2003; Short et al. 2004) or remains unchanged 

(Welle et al. 1995; Volpi et al. 2001). It could be explained because the contribution of 

skeletal muscle to whole body protein synthesis is small (<30%) and consequently slight 

change in whole body protein does not reflect what is occurring in skeletal muscle.  

 Thus, it appears more pertinent to study specifically skeletal muscle protein synthesis. 

The global pool of skeletal muscle protein can be separated into sarcoplasmic, myofibrillar 

and mitochondrial proteins (these latter decrease with aging and will be specifically studied in 

a next point). As for whole body protein synthesis, data on muscle protein synthesis in 

humans are inconsistent with studies reporting a decrease (Balagopal & Rooyackers 1997; 

Rooyackers et al. 1997; Short et al. 2003) and others no change (Volpi et al. 2001; Hasten et 

al. 2000; Haddad & Adams 2006). On the other hand, data obtained in rats showed that the 

protein content of the gastrocnemius decreases during aging (Kimball et al. 2004; Haddad & 
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Adams 2006). Myofibrillar proteins appear more relevant than the total muscle proteins 

because of their role in muscle contraction. Data in human agreed on a reduction of their 

synthesis during aging (Balagopal & Rooyackers 1997; Cuthbertson et al. 2005; Haddad & 

Adams 2006).          

 Finally, the study of the synthesis of specific myofibrillar proteins seems the most 

appropriate approach to linking protein synthesis and sarcopenia and especially myosin heavy 

chains (total: MHC, or by isoform isoform). Indeed, Balagopal et al (1997) reported that in 

humans the synthesis of MHC decreases during aging and it is inversely proportional to the 

concentrations of IGF-1 plasma, strength and muscle mass. These data were subsequently 

confirmed by Hasten et al (2000). This decrease in the synthesis of MHC is at least due to a 

decrease in its transcription since the amounts of RNA of different isoforms decrease during 

aging in particular MHC IIa and MHC IIx isoforms (Balagopal & Schimke 2001; Short et al. 

2005). This may explain in part why MHC protein content in muscle of old animals is 

reduced compared to young animals (Haddad & Adams 2006; Thompson et al. 2006) and 

why MHC IIa and IIx protein decline by 3 and 1% per decade in humans (Short et al. 2005). 

This decrease in myofibrillar proteins synthesis appears specific since actin synthesis is not 

affected by aging in human (Hasten et al. 2000) and its muscle protein content is the same in 

aged animals (Haddad & Adams 2006; Thompson et al. 2006).     

 As we discussed in the first part of this chapter, protein synthesis depends on the 

capacity and efficiency of transcription and translation (RNA synthetizes proteins).  

3.1.1.2. Sarcopenia-related molecular alterations leading to muscle 
protein synthesis decrease 

 In the muscle cell, the transcriptional ability is reflected by the amount of nuclear 

DNA which depends on the number of nuclei. Although the amount of DNA (Haddad & 

Adams 2006; Roberts et al. 2010) and myonuclei number per fiber (Wada et al. 2003; 

Leeuwenburgh et al. 2005) appear to be stable in aged muscle of rats and humans, the 

transcriptional efficiency decreases with age as evidenced by the decrease in RNA/DNA ratio 

(Cuthbertson et al. 2005; Roberts et al. 2010). These results could be explained by a decreased 

activity of the damaged myonuclei. Indeed, in the soleus muscle of old rats, high levels of 

apoptosis is observed without elimination of their myonuclei while this elimination happened 

in the young rats (Leeuwenburgh et al. 2005). The apoptosis process by fragmenting DNA 

would decrease transcription. On the other hand, as to counteract these phenomena, there is an 

increase of MRF RNAs such as MyoD, and Myf-5 (Musarò et al. 1995; Alway et al. 2002) 

but their amount of protein remains unchanged (Kosek et al. 2006).   
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 In resting states, nevertheless muscle type, translational capacity assessed by RNA 

content in skeletal muscle seems to be the same between adult and old rats (Prod’homme et 

al. 2005; Haddad & Adams 2006). Similar data in human were recently reported by Roberts et 

al. (2010). Hence, the 3 aforementioned studies suggest that global translational capacity (i.e. 

the number of ribosomes) remains intact with mammalian aging in disease-free conditions. 

However as previously exposed, MHC RNAs decrease in old rats suggesting a specific age-

related translational capacity targeting RNAs coding for myofibrillar proteins). On the other 

hand, it is fairly well established that translational efficiency is decreased with aging in 

resting in human and rodent. Indeed, RNA/Protein ratio is lower in gastrocnemius of old rats 

compared to young rats (Haddad & Adams 2006; Prod’homme et al. 2005) and similar data 

are reported in human muscle biopsies (Cuthbertson et al. 2005; Roberts et al. 2010). These 

results suggest that younger are seemingly able to translate more muscle protein per unit RNA 

than older.            

 The mRNA translation largely controlled by the PI3K/Akt/mTOR pathways is then 

modulated with aging. This regulation appears to be muscle type- and sexe-dependent 

(Kimball et al. 2004; Paturi et al. 2010). Here we will focus only on male studies.   

 Akt, mTOR, p70S6K and their downstreams (rpS6 and eEF2) activation decreased 

between 6 and 36 months in soleus of male rats which is associated with a weight reduction of 

the soleus around 40% (Paturi et al. 2010). Activation of Akt and mTOR in EDL continually 

increased between 6 and 30 months but their downstream rpS6 and eEF2 phosphorylation and 

the inhibition of 4EBP1 decreased (Paturi et al. 2010) and was associated with a weight 

reduction of EDL around 30%,  suggesting a decreased protein synthesis. Similar results have 

been reported in various studies in rodents (Parkington et al. 2004; Kimball et al. 2004; Paturi 

et al. 2010; Rahnert et al. 2011) and in old people  (Cuthbertson et al. 2005; Léger et al. 2008) 

which  suggests that an impairment of the PI3K/Akt/mTOR pathways is involved in 

sarcopenia.           

 This apparent decrease in the activation of PI3K/Akt/mTOR axis and their 

downstream could be partially explained by hormonal changes in humans and animals. 

Indeed, there is decline of GH during aging that is likely secondary to a decrease in pituitary 

response to hypothalamic growth hormone-releasing hormone (GHRH) and an increase in the 

inhibitory effect of somatostatin (Kelijman 1991). Moreover, Veldhuis et al. (1995) found a 

decrease in GH secretory burst amplitude mass with age (maximal rate of GH secretion 

attained within a release episode). In muscle of elderly subjects, it was reported a decrease in 

the number of receptors for growth hormone associated with decreased amounts of IGF-1 
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RNA and decreased IRS-1 and Akt phosphorylation (Léger et al. 2008). Balagopal et al. 

(1997) showed that lower concentration of plasma IGF-1 is correlated with a decrease in the 

synthesis of MHC which is itself correlated with a decrease in muscle strength. On the other 

hand, during aging, there is a decrease in serum and plasma concentrations of testosterone in 

humans (Balagopal & Rooyackers 1997; Cuthbertson et al. 2005; Léger et al. 2008), which is 

positively correlated with a decrease in plasma IGF-1 (Balagopal & Rooyackers 1997). 

Kovacheva et al. (2010) showed that sarcopenic mice have lower testosterone plasma levels 

compared to young rat associated with a 25-30% decrease of gastrocnemius weight and fast 

and slow fiber CSA and a lower activation of Akt. Taken together, all these data support the 

notion that an aging-related decline in IGF-1/Akt/mTOR signaling and net decreases in 

protein synthesis contribute to sarcopenia.      

 Moreover, aging is associated with an impaired anabolic response of muscle protein 

synthesis (for review see Walrand et al. and Rassmussen and Volpi in Cruz-Jentoft 2012). 

First, postprandial protein synthesis seems particularly decreased in the elderly (Guillet et al. 

2004; Cuthbertson et al. 2005) and is one of the mechanisms responsible for the reduction in 

muscle protein content. Several studies have shown that alterations in postprandial protein 

synthesis could be explained by the progressive insulin resistance occurring during aging 

specifically in aged muscle (Guillet et al. 2004; Drummond et al. 2008; Walrand et al. 2008) 

and also by a lower response to anabolic stimulation by amino acid. These facts are associated 

with an impaired response of the IGF-1/Akt/mTor pathways. Indeed, following a bolus of 

essential amino acids, mTOR and p70S6K phosphorylation increased significantly in both 

young and old people however this phosphorylation increase is lesser in the elderly 

(Cuthbertson et al. 2005). In response to an infusion of insulin and amino acids, both young 

and elderly subjects displayed activation of Akt, mTOR, and 4EBP1, but p70S6K activation 

was not observed in old subjects (Guillet et al. 2004). In addition, moderate chronic 

inflammatory condition observed in the elderly may also indirectly affect protein synthesis 

(Balage et al. 2010). This hypothesis is supported by the fact that a clear increase in 

postprandial protein synthesis is observed in older rodents treated with  antioxidants or 

pharmalogical anti-inflammatory agents (Marzani et al. 2008; Rieu et al. 2009). As it will be 

exposed in a next chapter, resistance training is one of the best protections against sarcopenia. 

However, resistance exercise studies typically show an attenuated muscle protein anabolic 

response in older compared to younger adults (Sheffield-Moore et al. 2005; Kumar et al. 

2009; Fry et al. 2011)  that are associated with an impaired response of mTOR signaling. 

Indeed, recently, Fry et al. (2011)  and Kumar et al. (2009) showed that after a single bout of 
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exercise, myofibrillar protein synthesis only increased significantly in young to reach values 

greater than older people. This was associated with an increased phosphorylation only in the 

younger group for mTOR, p770S6K and 4E-BP1.  

3.1.2. Sarcopenia-associated protein degradation impairment 

 Studies who had measured protein degradation during aging are still few and the 

results are contradictory. Nevertheless, several studies in humans and animals have reported a 

trend to increase (Gaugler et al. 2011; Fry et al. 2013) or an increase (Hasten et al. 2000; 

Yarasheski 2003) in 3-methylhistidine reflecting increased degradation of myofibrillar 

proteins. More data are needed to provide a consensus but existing data on the UPS, 

autophagy and the calcium-activated proteases (i.e. calpain enzymes family and caspase 3) in 

aged muscle suggest clearly their involvement in sarcopenia. 

 

3.1.2.1. Changes in the calcium-activated proteases 

 Calpains activity is regulated by several factors, including cytosolic calcium levels and 

the concentration of the endogenous calpain inhibitor calpastatin (Goll et al. 2003). 

 In this regard, it is known that aging in skeletal muscle is associated with calcium 

overload (Fraysse et al. 2006) and calpain activation (Dargelos et al. 2007; Samengo et al. 

2012). Indeed, Dargelos et al. (2007) reported a global increase in calcium-dependent 

proteolytic activity in muscles of aged rats. In such case, protein and RNA levels indicated an 

up-regulation of calpain 1 expression in muscles of aged rats whereas calpain 2 expression 

remained unchanged. On the other hand, both calpain 1 and calpain 2 activities increased with 

aging in skeletal muscle (Dargelos et al. 2007; Samengo et al. 2012). The increased calpain 1 

activity is in accordance with its up-regulated expression (Dargelos et al. 2007) whereas 

calpain 2 activity appear to be up-regulated by another mechanism. In fact, it has been shown 

in vitro that calpain 2 is also modulated by nitric oxide (NO) binding to cysteine in the 

catalytic domain of the protease, through a process called S-nitrosylation (Koh & Tidball 

2000). Recently, Samengo et al. (2012) confirmed this result in mice. Indeed, they showed 

that during aging there is a decrease in S-nitrosylated calpain associated with a concomitant 

decrease in neuronal nitric oxide synthase (nNOS) expression (RNA and protein content) 

leading to an increase in calpain activity associated with a muscle loss in soleus and 

quadriceps around 20% (Samengo et al. 2012). Contrary to WT mice, mice overexpressing 

nNOS have both higher calpain S-nitrosylation and nNOS expression, and were totally 

protected against muscle loss (Samengo et al. 2012).      
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 In accordance with the aged-related increased calpain activity, the activity and/or 

protein content of calpastatin (endogenous inhibitor of calpains) appear to be decreased in 

aged muscle rodents (Dargelos et al. 2007; Samengo et al. 2012). On the other hand, 

calpastatin overexpression in mice inhibits calpain activity in aging skeletal muscle and slows 

sarcopenia (Samengo et al. 2012).         

 Several works showed that caspase 3 can promote calpain activation in muscle 

(Nelson et al. 2012; Samengo et al. 2012) and is involved in diaphragm atrophy during 

mechanical ventilation (Nelson et al. 2012). Samengo et al. (2012) showed that during aging 

in parallel to calpain activation there is an increased in caspase 3 activation. Moreover, 

caspase 3 appears to cleave MHC-IIb. Thus, increase in cleaved MHC-IIb would result of the 

concomitant action of calpains and caspase 3 and would contribute to explain the lower level 

of MHC reported in aged skeletal muscle (Haddad & Adams 2006; Thompson et al. 2006; 

Short et al. 2005). Du et al. (2004) have shown that purified and activated caspase-3 can also 

cleave actin but the involvement of this mechanism in sarcopenia does not seem to have been 

studied. On the other hand, Brulé et al. (2010) using a proteomic approach suggested a 

possible implication of calpains in age-related mitochondria impairment. 

3.1.2.2. Changes in the ubiquitin-proteasome system 

 It has been shown that ubiquitination capacities and ubiquitinated protein content were 

increased in aged muscle in animals (Altun et al. 2010). As previously stated, proteins 

ubiquitination is achieved by a complex enzyme system in which the E3-ubiquitin ligases 

MAFbx and MuRF1 plays an essential role. Interestingly, several studies have observed that 

MAFbx and MuRF1 RNA levels and protein content increased in muscle of old animals 

(Clavel et al. 2006; Hepple et al. 2008; Altun et al. 2010). In addition, recent studies have 

shown that the content of the 26S proteasome was increased in muscle with age in rats (Altun 

et al. 2010). In humans, the ubiquitin proteasome system appears to function as efficiently in 

old muscle as it does in adult muscle (Bossola et al. 2008), and aging-related increases in total 

intramuscular ubiquitin content have been reported (Cai et al. 2004). MAFbx expression 

seems to be not different between adult and old subjects (Léger et al. 2008; Raue et al. 2007; 

Whitman et al. 2005), and MuRF1 levels have been reported to either not change (Léger et al. 

2008; Whitman et al. 2005) or increase with aging (Raue et al. 2007).    

 When it is present, the up-regulation of the UPS could be explained by the increase of 

several of its up-streams. It has been shown in old mice that there was an increase in serum 

(Carlson, Conboy, et al. 2009) and local intramuscular (Carlson et al. 2008) levels of TGF-β 
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but no differences in intramuscular myostatin levels were observed (Carlson et al. 2008). 

Moreover, old mice also display elevated activation of Smad3 (Carlson et al. 2008) and p38 

MAPK (Rahnert et al. 2011) (two main pathways downstream of the TGF-β/myostatin 

receptors). In old people, one study reported an increase in serum levels of TGF-β (Carlson, 

Conboy, et al. 2009), whereas another showed any difference in circulating levels of 

myostatin between young and older subjects (Ratkevicius et al. 2011). Moreover, local 

intramuscular levels of myostatin appear to be elevated with aging in humans (Léger et al. 

2008). In addition, the pro-inflammatory cytokines (especially TNF-α and IL-6) recognized to 

stimulate muscle proteolysis via the UPS (Llovera et al. 1997) increased concentration in 

muscle during aging (Schaap et al. 2009).       

 As well as protein synthesis, UPS responses to catabolic or anabolic stimuli seem to be 

impaired during aging. Combaret et al. (2005) reported in aged rat skeletal muscle a lack of 

postprandial inhibition of proteasome-dependent proteolysis that can be restored by leucine-

supplemented diet. Following a single bout of resistance exercise, for both adult and old 

subjects there was an increase in MuRF1, but only the old subjects had an increase in MAFbx 

(Raue et al. 2007). Others studies reported contrary data (Haddad & Adams 2006; Léger et al. 

2008; Fry et al. 2013).          

3.1.2.3. Impaired autophagy  

 Although surprising, almost all studies seem to agree on a reduction in protein 

degradation via autophagy in muscle aging and sarcopenia in humans and animals (McMullen 

et al. 2009; Wohlgemuth et al. 2010; O’Leary et al. 2013; Fry et al. 2013; Kim et al. 2013). 

 Despite these findings, the different steps of the latter would not be affected in the 

same way. Indeed, the increased Beclin 1 protein content observed in aged muscle in elderly 

humans (Fry et al. 2013) or in very old animals (Wohlgemuth et al. 2010; O’Leary et al. 

2013) suggests an increase in the induction of autophagy. However, autophagosome 

formation appears impaired in skeletal muscle during aging as almost all the studies showed a 

down-regulation of LC3-1 and 2 or a decrease of LC3-2/LC3-1 ratio in skeletal muscle 

(McMullen et al. 2009; Wohlgemuth et al. 2010; Fry et al. 2013; Kim et al. 2013). In the same 

way, decreased RNA level (Wohlgemuth et al. 2010) and protein content (Kim et al. 2013) of 

Lamp-2 in aged muscle suggest a delayed fusion of autophagic vacuoles with lysosomes. 

Ultimately, lysosomes exhibit accumulation of lipofuscin deposits during aging, increasing 

the size of these organelles but decreasing their functionality (Cuervo & Dice 2000; O’Leary 
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et al. 2013). Thus, the last step of autophagy is impaired during aging leading to an 

accumulation of protein aggregates and damaged mitochondria (Terman & Brunk 2006). 

3.2. Mitochondria dysfunctions and sarcopenia 

 Given the vital functions carried out by mitochondria in the context of energy 

provision, redox homeostasis, and regulation of several catabolic and cell death pathways it is 

not surprising that age-related alterations of mitochondrial functions are placed at the center 

of sarcopenia by numerous authors (for review see Marzetti et al. 2013; Konopka & 

Sreekumaran Nair 2013; Calvani et al. 2013). One major consequence of the age-associated 

mitochondrial dysfunction is a decline in bioenergetics that is witnessed by a decrease in both 

resting and maximal oxygen consumption ( max) with advancing age in humans (Short et 

al. 2004) and mice (Lee et al. 2010) and by a decreased endurance capacity in old rats 

compared to young rats (Derbré et al. 2012). Moreover, perturbations in skeletal muscle 

mitochondrial energetics have been correlated with reduced max (Short et al. 2005), 

walking capacity (Coen et al. 2013) and maximal isometric strength (Safdar, Hamadeh, et al. 

2010) in older adults and are associated with an increase in muscle fatigability in old rats 

(Chabi et al. 2008). The bioenergetic failure of the aged muscle is associated with a reduction 

in mitochondrial abundance and function.  

3.2.1. Reduced mitochondrial content and function with age 

 Numerous studies in human and rodent have revealed age-related declines in 

mitochondrial mass.           

 Studies revealed lower mitochondrial volume density in older adults (Conley et al., 

2000) and in senescent rodent (Lee et al. 2010; O’Leary et al. 2013). A decline in 

mitochondrial content, as represented by mitochondrial DNA (mtDNA) copy number, has 

also been demonstrated in rodents (Ibebunjo et al. 2013) and humans (Welle et al. 2003; Short 

et al. 2005). Muscle mtDNA age-related decrease is associated with a concomitant decrease in 

muscle concentrations of mRNAs encoded by the latter (Welle et al. 2003; Short et al. 2005) 

and reduced levels of mitochondrial protein synthesis (Rooyackers et al., 1996). Finally, 

expression and/or maximal activities of proteins involved in Krebs cycle (i.e. citrate synthase; 

CS) and/or proteins involved in the ETC (cytochrome c oxidase; COX) are decreased with 

advancing age and numerous studies used these markers to assess a decreased mitochondrial 

content in older humans (Rooyackers et al. 1996; Safdar, Hamadeh, et al. 2010), monkeys 

(Lee et al. 1998; Pugh et al. 2013) and rodents (Chabi et al. 2008; Ibebunjo et al. 2013; 
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O’Leary et al. 2013). These findings are expected to alter mitochondrial function. Indeed, 

studies revealed a decline in maximal mitochondrial ATP synthesis (Short et al. 2005; Lee et 

al. 2010), O2 consumption (Lee et al. 2010; Joseph et al. 2013; Coen et al. 2013), oxidative 

phosphorylation (OXPHOS) activity (Conley et al. 2000). Collectively, reductions in 

mitochondrial proteins and volume may limit ATP production for energy demanding 

processes such as myocellular remodeling to maintain protein quality which is reflected by 

the concomitant decrease in whole-body bioenergetics and muscle protein anabolism over the 

course of aging (Balagopal & Rooyackers 1997; Short et al. 2004).    

 The reduction in mitochondrial abundance and function with advancing age is likely 

the result of a vicious cycle involving oxidant production and damage/depletion of 

mitochondrial DNA (mtDNA), and defective mitochondria quality control (Marzetti et al. 

2013).  

3.2.2. The vicious cycle between oxidative stress and mitochondrial     

dysfunction in the aged muscle   

 As well reviewed by Gomez-Cabrera et al. (2012)  mitochondria are sources and 

targets of damage during aging in several tissues including skeletal muscle. The mtDNA is 

intrinsically vulnerable to oxidative damage due to its proximity to the source of oxidants, the 

absence of histones and introns, and a less robust repair system compared with nuclear DNA 

(Yakes & Van Houten 1997; Wei & Lee 2002). Mitochondrial dysfunction arising from 

oxidative damage to mtDNA would trigger a vicious cycle in which the synthesis of defective 

ETC subunits, results in mitochondrial OXPHOS impairment, decreased ATP production and 

further ROS generation (Harman 1972; Miquel et al. 1980). During aging there is a 

concomitant increased ROS production (Chabi et al. 2008) and decreased antioxidant 

defenses in skeletal muscle mitochondria (Safdar, Hamadeh, et al. 2010).  These results could 

explain the increased oxidative damage to mitochondrial lipids (Braga et al. 2008; 

Wohlgemuth et al. 2010), proteins (Figueiredo et al. 2009; Lee et al. 2010)  and overall to 

mtDNA (Short et al. 2005; Lee et al. 2010) observed in muscles from aged rodents and 

humans. Moreover, numerous studies observed an age-related accumulation of mtDNA 

mutations in skeletal muscle in various species due to oxidative stress (Lee et al. 1998; Bua et 

al. 2006; Figueiredo et al. 2009; Lee et al. 2010). These mtDNA mutations lead to ETC 

abnormalities associated with morphological aberrations of muscle fibers (Bua et al. 

2006).Conversely, mtDNA mutations and ETC abnormalities were absent in phenotypically 

normal regions within individual fibers. Finally, concomitant oxidative mtDNA damage, 
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mtDNA mutations and mitochondrial dysfunctions (e.g. decreased ATP production and O2 

consumption) have been detected in muscles from aged rodent, primates and human (Lee et 

al. 1998; Bua et al. 2006; Figueiredo et al. 2009; Lee et al. 2010). These studies support the 

hypothesis that oxidative damage and mtDNA mutations contribute to muscle aging and the 

diseases associated with advancing age.        

 However, the degree of involvement of mtDNA mutations in mitochondrial 

dysfunction in the elderly muscle remains controversial. Indeed, it has been shown that these 

dysfunctions appear with age before mtDNA is necessarily affected (Conley et al. 2007). This 

would imply other factors responsible for mitochondrial dysfunction such as dysregulation of 

mitochondrial biogenesis and quality control of mitochondrial proteins. 

3.2.3. Possible involvement of mitochondria dynamics in sarcopenia 

 The morphology and mitochondrial function depend directly on the balance between 

the synthesis and assembly of mitochondrial proteins, and removal of those damaged or 

improperly assembled. 

 Mitochondrial renewal is performed by the degradation of dysfunctional or 

unnecessary mitochondria through mitophagy and the synthesis of new organelles via 

biogenesis. Accumulating evidence indicates that mitochondrial turnover is altered during 

muscle aging, potentially affecting mitochondrial function and myocyte homeostasis (for 

review see Viña et al. 2009; Calvani et al. 2013). Indeed, as previously presented, there is a 

decrease in the synthesis of mitochondrial proteins (Rooyackers et al. 1996). Numerous 

studies have detected a decrease of compounds (i.e. PGC-1α, NRF-1) of the 

mitochondriogenesis cascade in skeletal muscle during aging in old rodents and monkeys 

(Chabi et al. 2008; Derbré et al. 2012; Koltai et al. 2012; Ibebunjo et al. 2013; Pugh et al. 

2013) and elderly people (Safdar, Hamadeh, et al. 2010). In most studies, the decreased 

expression of PGC is associated with decreased expression and/or activity of some of its 

activators as AMPK (Lee et al. 2010; Koltai et al. 2012; Pugh et al. 2013), NAMPT (Pugh et 

al. 2013) and Sirt 1 (Joseph et al. 2013). Moreover, these data are supported by an overall 

reduction in genes encoding proteins of the ETC in muscle tissue (Ibebunjo et al. 2013).   

 On the other hand, a reduced ability of degradation pathways to remove whole or 

damaged compartments of mitochondria could lead to impaired organelle bioenergetics 

(Huang & Hood 2009). The major pathways that contribute to mitochondrial protein quality 

control include intra-mitochondrial proteases and autophagy. Studies have illustrated that with 

increasing age, the activity and expression of the intra-mitochondrial Lon protease is reduced, 
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reflected by an accumulation of dysfunctional aconitase (Bota et al. 2002; Bota & Davies 

2002; Koltai et al. 2012). Otherwise, dysfunctional mitochondria are normally eliminated by 

mitophagy (autophagy of mitochondria). As previously described, autophagy seems to be less 

effective with advancing age, especially in muscle tissue mainly because of alterations in 

autolysosome formation and the function of lysosomes. However, O’Leary et al. (2013) 

observed an increase of the localization of p62 and Parkin (two specific markers of 

mitophagy) with mitochondria during aging suggesting a more active mitophagy during its 

first steps. It could be an attempt to remove giant, dysfunctional mitochondria, characterized 

by highly interconnected networks and ultrastructural abnormalities which are frequently 

encountered in aging muscles (Beregi & Regius 1987).  

 These giant mitochondria could be due to altered mitochondrial degradation associated 

with an imbalance in mitochondrial fusion-fission events (Calvani et al. 2013). The data 

concerning the involvement of fusion-fission cycle in sarcopenia are still few and 

contradictory. Indeed, some studies have reported a decrease in gene expression and amounts 

of RNA encoding markers of both fusion (i.e. Mfn 1, Mfn 2 and Opa 1) and fission (i.e. Fis 1 

and Drp 1) in elderly muscle (Crane et al. 2010; Ibebunjo et al. 2013). In contrast recently, 

Iqbal et al (2013) reported an increase in protein content of Fis 1 and Drp 1 with a parallel 

decreased in protein expression of Mfn 2. Finally, two studies (O’Leary et al. 2013; Koltai et 

al. 2012) reported a concomitant increase in the protein content of markers of fusion (Mfn 1, 

Mfn 2 and Opa1) and fission (Fis 1). These data suggest that the cycle of fission and fusion 

may be elevated with age which could lead to the formation of giant dysfunctional 

mitochondria as previously exposed. The phenomenon is proposed to be an attempt to fight 

against mtDNA mutation and oxidative damage (Calvani et al. 2013). 

 More studies are needed to bring a conclusion on the role of mitophagy and 

mitochondria fusion-fission cycle in muscle aging. 

3.2.4. Mitochondria-mediated apoptosis in sarcopenia 

 A relevant consequence of mitochondrial dysfunction is the activation of apoptosis, a 

mechanism believed to represent a final pathway through which sarcopenia ensues (for review 

see Marzetti et al. 2010; Marzetti et al. 2013; Calvani et al. 2013). This idea is supported by 

the observation that mitochondrial apoptotic signaling correlates with slow walking speed and 

reduced muscle volume in older persons (Marzetti, Lees, et al. 2012). Moreover numerous 

studies showed that extent of apoptotic DNA fragmentation increases in skeletal muscle over 

the course of aging paralleling the development of sarcopenia (Siu et al. 2006; Braga et al. 
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2008; Marzetti, Wohlgemuth, et al. 2008; Wohlgemuth et al. 2010; Kovacheva et al. 2010). 

As previously exposed, mitochondria-driven apoptosis can proceed with or without the 

participation of caspases. Studies indicate that both pathways are involved in aging muscle 

(for review see Marzetti et al. 2013; Calvani et al. 2013). 

 Numerous studies have shown in aged rodent muscle an imbalance between pro- and 

anti-apoptotic members of the Bcl-2 family proteins that favor outer mitochondrial membrane 

(OMM) permeabilization. Indeed, increased expression of Bax and reduce levels of Bcl-2 

have been detected in skeletal muscle of old rodents with a dramatic decrease of the Bax/Bcl-

2 ratio, usually used of an apoptotic index (W. Song et al. 2005). However several studies 

reported a concomitant up-regulation of both Bax and Bcl-2 (Pistilli et al. 2006; Marzetti, 

Wohlgemuth, et al. 2008) with no change in their ratio (Marzetti, Wohlgemuth, et al. 2008). 

However, the lack of change in the Bax/Bcl-2 ratio should not be interpreted as a lack of 

change in apoptosis. In fact, Braga et al. (2008) demonstrated in gastrocnemius of old mice an 

increased expression of Bcl-2 with a parallel increase in its phosphorylated form that is 

associated with its inactivation and consequently inhibition of its anti-apoptotic action. An 

enhanced susceptibility towards opening of the mitochondrial permeability transition pore 

(mPTP) has also been observed in skeletal muscle of old rats (Chabi et al. 2008). Opening 

mPTP would be associated with release of apoptotic factor as shown by the reported cytosolic 

cytochrome c (Siu et al. 2005), APAF-1 (Dirks & Leeuwenburgh 2004; Siu et al. 2005) and 

the active form of caspase-9 (Tamilselvan et al. 2007; Braga et al. 2008) protein content 

increase in aged muscle tissue. Moreover, Wohlgemuth et al. (2010) found increased caspase-

3 and caspase-9 activities in skeletal muscle of old rat. These data support an activation of 

caspase-dependent pathway in aged muscle tissue. Although, other studies observed no 

change in cytosolic cytochrome c content in these tissue (Dirks & Leeuwenburgh 2004; Siu et 

al. 2006; Marzetti, Wohlgemuth, et al. 2008). These controversial results regarding the 

dependent caspase pathway suggest that the signaling pathway independent of caspases also 

contributes to the exacerbation of apoptosis in sarcopenic muscle. Indeed, it has been shown 

that advancing age was associated with increased protein content of nuclear factor EndoG and 

AIF within muscle tissue (Dirks & Leeuwenburgh 2004; Marzetti, Wohlgemuth, et al. 2008). 

Furthermore, Chabi et al. (2008) showed an increase in the release of EndoG factor in 

mitochondria extracted from older muscle tissue compared with mitochondria from young 

muscles. In addition, the negative correlation reported by Marzetti et al. (2008) between 

nuclear expression of these two factors and muscle mass suggests the involvement of caspase-

independent pathway in sarcopenia. 
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 Finally, apoptosis leads to DNA fragmentation which could explain the age-related 

decrease in transcriptional efficiency as previously exposed. As muscle fibers are post-mitotic 

cells, raising DNA content can only come from the incorporation of new nuclei of external 

origin, most often from satellite cells (SC) (Adams 2006). Therefore, a sufficient pool of 

functional satellite cells would be essential to continuously maintain the functional DNA 

amount in muscle fibers but during aging their number and capacity to proliferate appear to be 

decreased. 

3.3. Satellite cells impairment 

 Studies in rodents have shown that aging is associated with a reduction in the number 

of quiescent and activated SC within muscle tissue (Dedkov et al. 2003; Brack et al. 2005). 

In humans, it appears that the SC pool is maintained until around 70 years (Roth et al. 

2000; Dreyer et al. 2006; Petrella et al. 2008) and then declines (Renault et al. 2002; Kadi et 

al. 2004; Sajko et al. 2004; Verdijk et al. 2007). This reduction also seems to occur 

preferentially in type II muscle fibers (Verdijk et al. (2007) which coincides exactly with the 

preferential development of sarcopenia in the fast muscle type.    

 It is also important to note that advancing age is associated with an impaired SC 

proliferation capacity (Conboy et al. 2003; Matsuba et al. 2009). Replicative senescence is a 

mechanism often invoked to explain this phenomenon (Jejurikar & Kuzon 2003). However, 

this mechanism does not seem relevant to sarcopenia since the in vitro proliferation potential 

of SC remains broadly unchanged with age (Renault et al. 2000). However, the SC isolated 

from muscle men or older rodents  present alterations in their differentiation capacity leading 

to the formation of less structured and more fragile myotubes (Renault et al. 2000; Lees et al. 

2006). 

 SC extrinsic factors such cellular or systemic environment are certainly partly 

responsible for the deterioration of the regenerative capacity of aged muscle. Indeed, it has 

been shown that older SC are able to produce an effective regenerative response when 

exposed to a young systemic environment or cell (Carlson & Faulkner 1989; Conboy et al. 

2005; Carlson & Conboy 2007). Recognized as activating the SC, the Notch signaling 

pathway may play a key role in this phenomenon (Carlson & Conboy 2007). A down 

regulation of this pathway has been reported by Kovacheva et al. (2010) in gastrocnemius of 

sarcopenic rat. In the same study, a treatment with testosterone (known to decrease during 

aging) up-regulated this pathway. Moreover, using heterochronic parabiosis (two animals of 

different ages are joined to test for systemic regulators of aspects of aging), it has been 
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demonstrated that Notch  (known to regulate satellite cells activation) is impaired in aged 

muscle tissue but restored in a young systemic environment (Conboy et al. 2003; Carlson, 

Suetta, et al. 2009).          

 Oxidative stress may be also responsible for reducing the activity of SC in aged 

muscle tissue (see next chapter about oxidative stress and sarcopenia). Moreover, myostatin is 

recognized as an inhibitor of muscle regeneration. Some studies showed that myostatin 

decreases myoblast differentiation but also inhibits their proliferation through modulation of 

specific inhibitors of cyclin-dependent kinases activity (CKI, i.e. p21 and p27) (Thomas et al. 

2000; Langley et al. 2002). Increased intramuscular levels of myostatin reported in elderly 

people (Léger et al. 2008) and old rats (Kovacheva et al. 2010) could participate to the 

decrease activity    of SC. 
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4. Chapter 2 abstract 
 

 The loss of muscle strength in sarcopenia observed is primarily due to muscle atrophy, 

while a decrease in the specific strength is also involved. 

 Muscle atrophy is explained by the reduction of myofibrillar and mitochondrial 

proteins synthesis, and their increased proteolysis via the ubiquitin-proteasome system and the 

calcium-dependent activation of proteases (i.e. calpains and caspases). The decrease in 

mitochondrial dynamics (biogenesis vs degradation via autophagy, fusion and fission) leads to 

the accumulation of defective mitochondria, which then fall into a vicious circle, in which 

RONS production increases. This RONS overproduction entails mtDNA mutations, which in 

turn lead to defective ETC protein synthesis and ultimately result a decreased ATP 

production. Furthermore, exacerbation of apoptosis results in an increase of the DNA 

fragmentation which could decrease transcriptional efficiency. This phenomenon is probably 

worsened by alterations in muscle regeneration capacity limiting the incorporation of new 

nuclei in aging muscle fibers. Reducing the pool of satellite cells and their capacity for 

proliferation and differentiation (in particular due to a less functional cellular and systemic 

environment) appear to be responsible for muscle regeneration alterations. 

 All these mechanisms contribute to the onset of sarcopenia and are controlled by 

numerous signals as decreased production of anabolic hormones (GH, IGF-1, testosterone, 

insulin). Links and interactions between these multiple factors remain partly unknown. A 

potential candidate could be chronic oxidative stress, whose recent studies emphasize its 

involvement in sarcopenia.  
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Chapter 3: The contribution of oxidative stress to sarcopenia 
 

1. Generalities on oxidative stress 

1.1. Definitions  

 Within the organism, predominately oxygen or nitrogen molecules, electronically 

unstable, are rapidly converted into reactive species derived from of oxygen (ROS) or 

nitrogen (RNS). ROS and RNS (RONS) may be free radical (e.g. superoxide radical O2
-•, 

nitric oxide NO•) or non-radical species (e.g. hydrogen peroxide H2O2). In this work when it 

is not specified free radicals are assimilated to all reactive species (free radical and non-

radical reactive species derived from O2 and N).Free radical species are molecules or 

molecule fragments, containing one or more unpaired electrons in their outer orbital. Due to 

their high reactivity, RONS often have an average lifespan very short from a billionth of a 

second (e.g. 10-9s for the hydroxyl radical OH•) to few seconds (e.g. 3-5s for the nitric oxide 

NO•)  

 Under physiological conditions, RONS are continuously produced in small quantities 

in the body. Nevertheless, this basal production is effectively controlled by the antioxidant 

defenses (defined as any substance that, when presents at low concentrations compared to 

oxidizable substrate, significantly reduces or inhibits oxidation of the substrate, Halliwell & 

Gutteridge 1995) which can prevent the formation of new RONS (primary antioxidant or 

enzymatic antioxidants), direct scavenge RONS when primary systems are overwhelmed 

(secondary antioxidants or non-enzymatic antioxidants) or repair damaged biomolecules 

(tertiary antioxidant), thus limiting oxidative damage. In this case, there is equilibrium in the 

"oxidants-antioxidants" balance. However, if antioxidant defenses are no longer able to 

support the production of RONS, an overproduction of reactive species in the cell occurs 

causing irreversible damage and disrupting intracellular signaling pathways. Then, there is an 

imbalance of the "oxidants-antioxidants" balance leading to an impaired redox homeostasis. 

This phenomenon is commonly called oxidative stress (OS) (Sies 1985; Jones 2006). 

 RONS are toxic and are considered responsible for the oxidative damage of biological 

macromolecules such as nucleic acids (e.g. nuclear and mitochondrial DNA and RNA), lipids 

(e.g. lipid membranes and circulatory lipids), proteins (e.g. structural and regulatory) and 

carbohydrates. These oxidative damage may be the source of cellular dysfunctions. 
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1.2. Theories of aging  related to oxidative stress 

 More than three hundred theories of aging have been postulated (for review see 

Medvedev 1990). One of the most prominent theories to explain aging is the free radical 

theory of aging which was initially proposed by Harman during the 1950s (HARMAN 1956). 

It proposes that free radicals derived from oxygen are responsible for damage associated with 

aging. The antioxidant systems are unable to counterbalance all the free radicals continuously 

generated during the life of the cell. This results in oxidative damage in the cell and thus in 

tissues. Throughout the discoveries of the past 60 years, the free radical theory of aging has 

evolved until its last versions (for review see Viña et al. 2007; Viña et al. 2013).  

 As previously described, the transfer of electrons in the ETC is imperfect and an 

electron leakage at complex I and III results in the formation of superoxide anion (O2
•-) from 

O2 which triggers a cascade of RONS production (Chance et al. 1979; St-Pierre et al. 2002). 

Due to this mechanism, mitochondria are a major cellular source of reactive oxygen species. 

Harman first suggested that mitochondria are key organelles involved in aging (Harman 

1972). However, Miquel and co-workers proposed in 1980 the mitochondrial theory of free 

radicals in aging (MFRTA) (Miquel et al. 1980). The theory suggests that senescence is the 

result of damage caused by ROS to the mitochondrial genome in post mitotic cells (Miquel et 

al. 1980). Mitochondria from post mitotic cells use oxygen at high speeds, thus producing 

RONS which cause OS as they overwhelm the antioxidant cellular defenses (Miquel & 

Fleming 1986).         

 Throughout the discoveries of the past 30 years, the free radical of aging (assimilated 

to the MFRTA) has suffered a lot due to studies in favor or against it (for review see Viña et 

al. 2013) and recently two new versions have been stated : the redox stress theory of aging  

(Sohal & Orr 2012) and the cell signaling disruption theory of aging (Viña et al. 2013). The 

redox stress theory of aging proposes that aging-associated functional losses are primarily 

caused by a progressive pro-oxidizing shift in the redox state of the cells, which leads to the 

overoxidation of redox-sensitive thiols proteins and the consequent disruption of the redox-

regulated signaling mechanisms. The cell signaling disruption theory of aging (see figure 10) 

is based on the double edge sword of free radicals and their hormetic effects. In fact when the 

aggression by free radicals is mild, a stress is caused leading to reversible oxidative damage 

and this may have signaling effects leading to an up-regulation of antioxidant defenses and 

metabolic plasticity that would promote longevity and health. However, when radicals cause 

severe damage on biomolecules it causes irreversible alterations leading to disruption 

signaling and telomeres shortening that would promote disease and death (Viña et al. 2013).  
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Figure 10. The cell signaling disruption theory of aging (extracted from Viña et al. 2013). 

 

 
 

2. Oxidative stress in sarcopenic skeletal muscle  
 

2.1. Increased RONS production in skeletal muscle is associated with sarcopenia 
 

 Both in humans and animals,  numerous studies showed that sarcopenic muscle 

exhibits an increased RONS production (e.g. O2
•-  et H2O2)  (Capel et al. 2004; Capel, 

Rimbert, et al. 2005; Capel, Demaison, et al. 2005; Chabi et al. 2008; Jackson et al. 2011; 

Andersson et al. 2011; Miller et al. 2012) and content (Andersson et al. 2011; Janna R. 

Jackson et al. 2010; Jackson et al. 2011; Ryan et al. 2011; Sullivan-Gunn & Lewandowski 

2013) (see table 9). There are numerous RONS generation sources in skeletal muscle that are 

resumed in the figure 11. As it will be exposed in this section, studies have shown the 

involvement of some sources in the increased production of RONS during sarcopenia (e.g. 

mitochondria, xanthine oxidase...). 
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2.1.1. Mitochondria as sources of RONS  

 Superoxide anion generation by adding an electron in the last electronic layer of 

oxygen, may result from a number of intracellular sources (see figure 11). In basal state, 

mitochondria are usually considered as the main O2
•- source of production in muscle tissue. 

Indeed, 2-5% of the total oxygen consumed by mitochondria is subjected to a mono-electronic 

reduction leading to O2
•-   production (Boveris & Chance 1973). Then, O2

•- may leads to the 

formation of many RONS within the mitochondrial matrix (see figure 11) including especially 

in this case H2O2 under the action of manganese-dependent superoxide dismutase (MnSOD) 

which is mainly present in mitochondria (Boveris & Chance 1973).Then, H2O2 is detoxified 

into O2 and H2O by glutathione peroxidase 1 (Gpx-1) and peroxiredoxine III. Alternatively, 

O2
•- can be released in the intermembrane space (IMS) where it is converted to H2O2 by 

copper-zinc-dependent SOD (ZnSOD). In addition, O2
•- leaked into the IMS can be scavenged 

by cytochrome c (Pasdois et al. 2011).  Numerous studies in human and animals have shown 

an increased production of ROS (i.e. O2
•- and H2O2) and RNS by mitochondria during aging 

associated with a decreased in muscle mass, muscle function and physical capacity (Capel et 

al. 2004; Capel, Rimbert, et al. 2005; Chabi et al. 2008; Ryan et al. 2011; Andersson et al. 

2011; Miller et al. 2012) (see table 9). Mitochondrial overproduction of O2
•- observed with 

advancing age can be explained mainly by dysfunction of the ETC (Ji 2001). The complex I 

(NADH-ubiquinone reductase) and III (ubiquinone-cytochrome c reductase) might be the 

cause of the mitochondrial overproduction ROS with advancing age  (Capel et al. 2004; 

Capel, Rimbert, et al. 2005; Chabi et al. 2008) (see figure 11). Parallel to this mitochondrial 

overproduction of O2
•- studies observed an increase in the Mn-SOD activity (Ji et al. 1990; 

Jackson et al. 2011; Ryan et al. 2011) which would explain the observed concomitant H2O2 

mitochondrial overproduction  (Capel et al. 2004; Capel, Rimbert, et al. 2005; Miller et al. 

2012) According to the MRFRA, RONS production during the life would lead to an 

accumulation of oxidative damage to the mitochondrial compounds especially to mtDNA 

leading to mtDNA mutations. These mutations would lead to the synthesis of defective ETC 

subunits which would result in an increase of RONS leakage leading to further oxidative 

damage.            

 In humans and rodents muscles, numerous studies have shown that these increased 

oxidative damage impair mitochondrial lipids (Braga et al. 2008; Wohlgemuth et al. 2010), 

proteins (Figueiredo et al. 2009; Lee et al. 2010)  and overall mtDNA (Short et al. 2005; Lee 

et al. 2010). Moreover, increase in mitochondrial Ca2+ concentration observed during aging 

would result in disruption of mitochondrial membrane potential, which could be involved in 
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the increased production of RONS by mitochondria. The increase in mitochondrial ROS 

production with aging occurs mainly in the type I muscles as the soleus of older rats (Capel et 

al. 2004). However, it appears that the basal mitochondrial ROS production is markedly 

higher in predominantly glycolytic muscles, regardless of age (Capel et al. 2004; Anderson & 

Neufer 2006).     

 Table 9. Sarcopenia-associated mitochondria RONS production.  

 

Study Specy Age 
Mitochondria 

RONS 
production 

Skeletal 
muscle 
RONS 
content 

Muscle mass and/or 
function impairment 

Physical 
capacity 

impairment 

Capel et al. 2004 Rats 4 m vs 24 
m ROS (H2O2)   Muscle weight decrease 

(Tibialis anterior)   

Capel, 
Demaison, et al. 

2005 
Rats Adult vs 

21 m ROS (H2O2)  
Muscle weight decrease 

(gastrocnemius)  

Capel, Rimbert, 
et al. 2005 Human 23 y vs 67 

y ROS (H2O2)     VO2max 
decrease 

Chabi et al. 
2008 Rats 6 m vs 36 

m ROS  

Muscle weight and 
strength decrease 

(soleus,tibialis anterior, 
plantaris), fatigability 

increase 

 

Jackson et al. 
2010 Rats 6 m vs 34 

m  
ROS 

(H2O2) 
Muscle weight decrease 

(gastrocnemius)   

Ryan et al. 2011 Mice 3-5 m vs 
26-28 m 

ROS (O2
•-, 

OH•) 
ROS 

(H2O2) 
Strenght decrease  

Jackson et al. 
2011 Mice 6 m vs 18 

m  
ROS 

(H2O2) 

Muscle weight decrease 
(gastrocnemius, 

plantaris) 
  

Andersson et al. 
2011 Rats 3-6 m vs 

24 m ROS and RNS ROS Muscle weight and 
strength decrease (EDL)  

Miller et al. 
2012 Mice 

2 m vs > 

24 m 
ROS (O2

•-

,H2O2) 
  Muscle atrophy   

Sullivan-Gunn 
& Lewandowski 

2013 
Mice 

6 m vs 18 
m and 24 

m 
  

ROS                  
(O2

•-

,H2O2) 
Muscle atrophy   
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Figure 11. Potential free radicals productions sites in skeletal muscle during sarcopenia. 
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2.1.2. Free iron accumulation is associated with sarcopenia 
 

 Fenton and Haber-Weiss reactions consist of reduction of H2O2 by transition metal 

ions, especially ferrous ion (Fe2+) and to a lesser extent, copper (Cu2+) and other ions. Fe+2 is 

oxidized to Fe+3 (ferric ion) very easily, and this one is very insoluble. Therefore, free iron 

that may exist in biological systems will be in very small concentrations and under its ferric 

form (Halliwell and Gutteridge, 1986). Fenton (Fenton, 1894) has discovered that it is 

possible to oxidize organic molecules from mixtures of hydrogen peroxide and Fe2+ (Fenton's 

reagent). Thereafter, Haber and Weiss gave an initial explanation of the reaction mechanism: 

the Fe2+ reduces H2O2, which in turn decomposes itself to hydroxyl radical and hydroxyl ion 

(Haber and Weiss, 1932).  In another reaction, Fe3+ reacts with O2
•- to produce Fe2+ and O2. 

This can be represented as the following cycle leading to a continuous HO• production. 

 

Figure 12. Fenton-Haber-Weiss HO• cycle production. 

 

 

 
  

 

 

 

 

 Various studies observed an increased intramuscular free iron concentration associated 

with an impaired function of enzymes involved in iron metabolism (e.g. heme-oxygenase) in 

aged skeletal muscle from rodents and humans (Altun et al. 2007; Jung et al. 2008; Xu et al. 

2008; Hofer et al. 2008; Safdar, deBeer, et al. 2010). This phenomenon would lead to increase 

HO• production which would explain in part the increase in muscle oxidative damage to 

DNA, RNA, lipids and proteins observed in these studies (Jung et al. 2008; Xu et al. 2008; 

Hofer et al. 2008; Safdar, deBeer, et al. 2010). Finally, Xu et al. (2008) and Hofer et al. 

(2008) showed in rats that increased intramuscular free iron and increased oxidative damage 

were associated with decreased gastrocnemius weight and decreased grip strength.   
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2.1.3. Increased Xanthine oxidase activity as source of RONS 

 Xanthine oxidase (XO) and xanthine dehydrogenase (XDH) are two isoenzymes of 

xanthine oxidoreductase (XOR) involved in the catabolism of purines. Indeed, they catalyze 

the oxidation of hypoxanthine and xanthine to uric acid (a powerful antioxidant). The XOR 

can generate RONS through different reactions. While during the oxidation process XDH 

preferentially transfers electrons to NAD+, XO uses oxygen for this process thus producing 

O2
•- (Hellsten et al 1988). XO can produce two molecules of O2

•- and one of H2O2 for each 

molecule of NADH oxidized. By the same reaction, the XO can also catalyze the formation of 

NO•  from nitrite. Naturally, XOR is synthesized as XDH and remains mostly as such in the 

cell, but can quickly become XO by oxidation of sulfhydryl residues and mainly through the 

activation of calcium-dependent protease (Della Corte and Stirpe, 1968). In healthy tissue, 

between 10 and 30% of the total activity of the enzyme proceeds as XO (Chambers et al., 

1985), but under certain conditions such as aging, it may occurring a conversion of XDH to 

XO which would lead to increased production RONS. Indeed, regardless muscle type 

(oxidative or glycolytic), several studies have observed an increase in XO activity in 

sarcopenic muscle (Lambertucci et al. 2007; Hofer et al. 2008; Ryan et al. 2011). This latter 

was associated with an increase in muscle content RONS (Ryan et al. 2011) and increased 

oxidative damage of lipids, proteins and RNA (Lambertucci et al. 2007; Hofer et al. 2008; 

Ryan et al. 2011). Ultimately these studies have shown an association between increased XO 

activity, increased oxidative damage and decreased muscle weight (Hofer et al. 2008), 

maximum aerobic speed (Lambertucci et al. 2007) and also muscle strength (Ryan et al. 

2011). This increased XO activity in sarcopenic muscle could be explained by an increase in 

the activity of calcium-dependent protease responsible for the conversion of XDH to XO. 

Although to our knowledge no study has measured their activity, some studies have shown an 

increase in intramuscular concentrations of Ca2+ during aging (Fraysse et al. 2006; Andersson 

et al. 2011) that could increase the activity of these proteases and therefore the conversion of 

XDH to XO. Andersson et al. (2011) showed in animal sarcopenic muscle an increased RyR1 

receptor (Ryanodine receptor 1) oxidation and nitrosilation. These alterations were associated 

with an increase in cytosol Ca2+ release, oxidative damage and a decrease in strength and 

running capacity (Andersson et al. 2011).   
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2.1.4. NADPH Oxidase and Nitric oxide Synthase as sources of RONS ? 
 

 The NADPH oxidase (NOX) located within the sarcoplasmic reticulum, transverse 

tubules and sarcolemma is an important source of biological production of free radicals (see 

figure 11). It is also strongly present in polymorphonuclear neutrophils and macrophages (see 

figure 11). These latter consummate a lot of oxygen and therefore their activation during an 

inflammatory condition is causing a production of free radicals. While useful in the 

inflammatory reaction, they can cause oxidative damage to the surrounding cells. Marzani et 

al. (2008) showed in old rats a decrease in the weight of hind limbs muscles associated with a 

chronic systemic inflammatory state. In addition, a recent study has shown in sarcopenic mice 

(as evidenced by a decreased gastrocnemius weight) an increase of the NOX gastrocnemius 

protein content associated with an increased O2
•- and H2O2 gastrocnemius content (Sullivan-

Gunn & Lewandowski 2013). Although having no published data to identify their older rats 

as sarcopenic, Bejma and Ji (1999) showed in these latter a doubling ROS production via 

NOX.            

 Nitric Oxide synthase (NOS) present in cytosol also appears as a possible source of 

RONS during sarcopenia. Indeed, it has been reported an increase of the NOS protein content 

in the atrophied gastrocnemius of sarcopenic mice (Braga et al. 2008). In addition, many 

studies reported an increase in oxidative damage caused by RNS (i.e. 3-nitrotyrosine) in the 

muscle of sarcopenic rodents (Jung et al. 2007; Marzetti, Wohlgemuth, et al. 2008; Murakami 

et al. 2012; Andersson et al. 2011). Finally, the negative correlation between the amount of 3-

nitrotyrosine and the quadriceps weight in the sarcopenic animals reported by Murakami et al. 

(2012) supports the idea that the production of RNS by NOS is involved in sarcopenia. 

 

2.2. Increased oxidative damage in skeletal muscle is associated with sarcopenia 
 

 RONS overproduction in sarcopenic muscle leads to an increase in oxidative damage 

to cellular components. In Human and animals, increased oxidative damage is negatively 

correlated with sarcopenia parameters such as muscle mass (Murakami et al. 2012), strength 

(Howard et al. 2007) and walking speed (Semba et al. 2007).  
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2.2.1. Protein oxidative damage: Protein carbonylation and nitrosylation 

 The RONS can attack proteins by damaging their tertiary structure, by fragmenting, by 

oxidizing the thiol residues (-SH) and altering different amino acids (Davies & Delsignore 

1987). Among the various forms of oxidation, carbonylation (adding a carbonyl group, C=O) 

is one of the most studied and reflects the irreversible oxidation that affects mainly arginine, 

threonine, proline and lysine. Undergoing significant changes in their conformation, the 

oxidized proteins generally become more sensitive to the action of proteases and therefore are 

gradually eliminated (Yu 1994). Several techniques are used to assess the protein 

carbonylation. Results and information obtained differ depending on the technique used. 

Results obtained with spectrophotometric techniques (global measure) are contradictory. 

Indeed, studies in rodents did not highlight differences in the total content or mitochondrial 

carbonylated protein during sarcopenia (Capel et al. 2004; Mosoni et al. 2004) whereas others 

showed an increase in protein carbonylation in sarcopenic elderly (Safdar et al. 2010) and 

mice (Jackson et al. 2011). The Western blotting technique led to improve the analysis by 

differentiating proteins according to their molecular weights and numerous studies showed an 

increase in protein carbonylation in sarcopenic elderly (Barreiro et al. 2006) and rodents 

(Clavel et al. 2006; Muller et al. 2006; Hepple et al. 2008). More recently, development of 2D 

electrophoresis techniques coupled to mass spectrometry techniques and immune-

precipitation have identified specific carbonylated protein during sarcopenia. Indeed, it has 

been found that mitochondrial proteins are a privileged target of carbonylation (Feng et al. 

2008) as well as the ryanodine receptor (RYR1) (Anderssen 2012). It was also observed that a 

greater number of carbonylated proteins appeared with age in type II fibers because they 

present lower antioxidant defenses (Feng et al. 2008). Since these proteins are involved 

during muscle contration, it is not surprising that carbonylated proteins are negatively 

correlated with strength (Howard et al. 2007) and walking speed (Semba et al. 2007) in 

sarcopenic elderly.          

 The 3-nytrotyrosine (3-NT) is another marker of protein damage, which is increasingly 

used. It reflects protein nitrosilation which is a marker of oxidative damage caused by the 

RNS. It is formed when the tyrosine is nitrated by peroxynitrite (ONOO•). Several studies 

have shown that during sarcopenia or aging there is an increase in protein nitration in human 

muscle (Barreiro et al. 2006) and rodent muscles (Jung et al. 2007; Marzetti, Wohlgemuth, et 

al. 2008; Andersson et al. 2011; Murakami et al. 2012). Some studies have identified some of 

these molecules: creatine kinase (Nuss et al. 2009; no data of sarcopenia parameter), SERCA2 

(Fugere et al. 2006; no data of sarcopenia parameter) and RYR1 (Andersson et al. 2011). In 
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addition, Murakami et al. (2012) showed a negative correlation between 3-NT and muscle 

mass in sarcopenic rats. 

2.2.2. Lipid oxidative damage: Lipid peroxidation 

 Lipid peroxidation refers to reactions between free radicals and polyunsaturated fatty 

acids (PUFA) particularly those of the plasmatic membrane, leading to their oxidation. It 

involves three processes: the initiation phase, propagation and termination. The initiation 

phase is the creation of a fatty acid radical from a fatty acid, this by the abstraction of a 

hydrogen atom. Then, the fatty acid radical undergoes molecular rearrangement to give a 

conjugated diene structure which is more stable. During the propagation phase, the fatty acid 

radical becomes peroxyl radical (ROO•) by addition of oxygen molecule at its centered 

carbon. This peroxyl radical is sufficiently reactive to remove hydrogen again to a second 

PUFA which results in the formation of a lipid hydroperoxide (ROOH). The ROOH formed 

can be rapidly oxidized in the presence of iron or copper, which results to the formation of 

aldehydes and alkanes. The termination phase stops this chain reaction by the combination of 

two free radicals which form a more stable compound, or most commonly by reacting with an 

antioxidant molecule. Its extent can be assessed through the measurement of various markers 

including thiobarbituric acid reactive substances (TBARS), malondialdehyde (MDA), 4-

hydroxynonenal (4-HNE) and its by-products (e.g. 4-hydroxy-2-nonenoic acid, HNA) and 

isoprostanes (the gold standard). MDA and 4-HHNE protein adducts are also used. 

Sarcopenia is associated with an increased concentration of lipid peroxidation markers in 

skeletal muscle in humans (Barreiro et al. 2006; Safdar, deBeer, et al. 2010) and rodents  

(Muller et al. 2006; Kim et al. 2008; Kovacheva et al. 2010; Ryan et al. 2011). To our 

knowledge, there is no study which has shown a correlation between lipid peroxidation and 

sarcopenia.  

2.2.3. Nucleic acids oxidative damage 

 Nuclear and mitochondrial DNA and RNAs are also targets of OS. Among the 

components of  DNA and RNAs, thymine and cytosine are more susceptible to oxidative 

damage, followed by adenine, guanine and the molecules of deoxyribose (DNA) and ribose 

(RNA) (Yu 1994). Oxidative damage to nucleic acids may result in cellular dysfunction as 

well as transcriptional and translational anomalies multiplication. The main technique used to 

measure the oxidation of nucleic is based on the determination of the compounds formed by 

the hydroxylation of bases: 8-oxo-deoxyguanosine (8-OHdG) for DNA and 8-oxo-
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oxyguanosine (8 -OHG) for RNA. Aging and sarcopenia are associated with increased level 

of oxidative damage to DNA in skeletal rodents and human muscle. This damage appears to 

particularly affect mtDNA, probably because of the large RONS mitochondrial 

overproduction in aged muscle tissue (as previously described). Indeed, it has been reported 

that level of oxidized bases was 2-3 times higher at the mtDNA than nuclear DNA, despite a 

higher repair capacity of DNA in mitochondria  (Stevnsner et al. 2002). This is one of the 

major factors involved in mitochondrial dysfunction developing with age. Many studies 

reported an increase in muscle 8-OHdG content in rodents during sarcopenia (Mansouri et al. 

2006; Muller et al. 2006; Ryan et al. 2008; Xu et al. 2008). In addition, it has also been 

reported in rodents an increased 8-OHG muscle content (Xu et al. 2008). In humans, there is 

an increased 8-OHdG content in aged muscle (Mecocci et al 1999 Fano et al 2001) but to our 

knowledge no study has measured this parameter and indicators of sarcopenia (e.g. muscle 

mass, strength) in the same work.  
 

Figure 13. Schematic representation of RONS source, antioxidant systems and oxidative 

damage. 
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2.3. Antioxidant defenses, aging and sarcopenia 

 The organism has several antioxidant defenses systems designed to protect against 

RONS’ action. Antioxidants can be classified in several ways. From a cell physiology point of 

view, they can be divided into primary, secondary and tertiary antioxidants. The first prevent 

the formation of new free radicals by converting existing free radicals into less harmful 

molecules or preventing its formation through others molecules. Among them (figure 13 and 

14), there are  at least SODs, glutathione peroxidase (Gpx), glutathione reductase (GR), γ-

glutamate-cysteine ligase (γ-GCLC), glucose-6-phosphate dehydrogenase (G6PDH), catalase 

(Cat) and metal binding proteins such as heme oxygenase. The second ones are non-

enzymatic protector or free radical scavengers which act when there is an overproduction of 

free radicals and when the enzymatic systems are overwhelmed, preventing chain reactions. 

They include at least glutathione, vitamin E (i.e. alpha-tocopherol), vitamin C, carotenes 

(vitamin A), uric acid, bilirubin, and albumin. Finally, the last ones repair biomolecules 

damaged by free radicals. They include intracellular proteolytic systems which act to degrade 

oxidatively damaged proteins thereby preventing their accumulation (Davies, 1987; Pacifi and 

Davies, 1991), DNA-repair enzymes (e.g. oxoguanine DNA glycosylase), protein-repair 

enzymes (e.g. thioredoxin) and lipid-repair enzymes (e.g. phospholipase A2). From a 

biochemical point of view, antioxidant systems are classified as enzymatic antioxidants, non-

enzymatic antioxidants and repair systems. 

Figure 14. Reactions of the main antioxidant enzymes. 
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2.3.1. Enzymatic antioxidant systems are impaired during aging and 

sarcopenia 

 According to studies cited in table 10, it appears that during aging and sarcopenia, 

regulation of antioxidant enzymes would not happen to transcriptional level. Indeed, studies 

generally show no change in RNA coding for antioxidant enzymes (Ryan et al. 2008; Ryan et 

al. 2011). Data on protein content of antioxidant enzymes are disparate. In general, whatever 

the concerned specie (e.g. humans or rodents, protein content of enzymes which directly 

convert free radicals in less reactive molecules (e.g. CuZn-Sod, Mn-Sod and Cat) does not 

vary (Ryan et al. 2008; Kim et al. 2008; Jackson et al. 2010; Ryan et al. 2011; Jackson et al. 

2011) while protein content of enzymes involved more indirectly in RONS elimination as 

G6PDH or γ-GCLC decreases (Kumaran et al. 2004; Braga et al. 2008; Kumaran et al. 2008; 

Kovacheva et al. 2010; Safdar et al. 2010). At the mitochondrial level, the activity of Mn-

SOD and GPx is increased during aging and sarcopenia (Ji et al. 1990 ; Marzani et al. 2005; 

Ryan et al. 2011). Acting in synergy, these adaptations could be a defense mechanism to 

support mitochondrial overproduction of O2
-• and H2O2 described previously. Concerning the 

cytosolic activities of CuZn-SOD, Cat and Gpx, the results seem depend on the species 

studied. Indeed, studies mostly report a higher activity of CuZn-SOD, Cat and Gpx in muscles 

of aged rodents (Ji et al. 1990; Ryan et al. 2008; Jackson et al. 2010; Ryan et al. 2011), 

whereas studies in humans generally observed no change (Pansarasa et al. 1999; Gianni et al. 

2004; Marzani et al. 2005). Longitudinal studies examining the activity of antioxidant 

enzymes in the muscle are few but can distinguish several phases in life. Generally in rats it 

appears that the activity of antioxidant enzymes decreases from 3-6 months (reaching 

adulthood) to 18-21 months (onset of sarcopenia), increases after 22-24 months  until very 

advanced ages (Ji et al. 1990; Lawler & Demaree 2001; Mosoni et al. 2004; Sullivan-Gunn & 

Lewandowski 2013).                           
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Table 10. Sarcopenia-associated enzymatic antioxidant defenses impairment in skeletal 

muscle. 

Reference Specy Age Compartment Enzyme 

Barakat et al. 1989 Rats 3 m vs 18 m Cytosolic fraction G6PDH activity 

Ji et al. 1990 Rats 4 m vs 31 m Cytosolic Fraction 

Mitochondrial fraction 

G6PDH, GR, Gpx, CuZn-SOD, Cat activity 

Gpx and Mn-SOD activity 

Pansarasa et al. 1999 Human 17-25 y vs 66-75 y 17-

25 y vs > 76 y 

Whole muscle homogenate 

Mitochondrial fraction 

Cytosolic fraction 

Total SOD activity 

Mn-SOD activity 

Gpx and Cat activity no change 

Gianni et al. 2004 Human 22 y vs 72 y Whole muscle homogenate Mn-SOD activity 

Cat and CuZn-SOD  activity no change 

Marzani et al. 2005 Human 18-48 y vs 66-90 y Mitochondria fraction 

Cytosolic fraction 

Mn-SOD activity 

CuZn-SOD, Gpx and Cat activity no change 

Kumaran et al. 2004 Rats 3-4 m vs 24 m Whole muscle homogenate Gpx, GR and G6PDH activity 

Barreiro et al. 2006 Human 25 y vs 68 y Total muscle homogenate Mn-SOD and Cat content 

Ryan et al. 2008 Rats 3 m vs 30 m Cytosolic fraction 

 

Whole muscle homogenate 

 

 

Mn-SOD, CuZn-SOD, Cat and Gpx content no 

change 

Mn-SOD, CuZn-SOD, Cat and Gpx RNA no change 

Mn-SOD, CuZn-SOD and Gpx activity no change 

Cat activity 

 Kumaran et al. 2008 Rats 3-4 m vs 24 m Whole muscle homogenate Total SOD, Cat, Gpx, GR and G6PDH activity 

Kim et al. 2008 Rats 6 m vs 24 m Whole muscle homogenate Mn-SOD content no change 

CuZn-SOD content 

Braga et al. 2008 Mice 5 m vs 25 m Whole muscle homogenate G6PDH content 

Kovacheva et al. 2010 Rats 2 m vs 22 m Whole muscel homogenate G6PDH content 

Safdar et al. 2010 Human 22 y vs > 63 y Whole muscle homogenate Heme oxygenase and γ-GCLC content 

Jackson et al. 2010 Rats 6 m vs 34 m Whole muscle homogenate Mn-SOD, CuZn-SOD and Cat content no change 

Mn-SOD, CuZn-SOD and Cat activity 

Ryan et al. 2011 Mice 3-5 m vs 26-28 m Mitochondrial fraction 

 

Whole muscle homogenate 

 

 

Free mitochondrial fraction 

Mn-SOD activity 

Mn-SOD content no change 

Gpx, Mn-SOD and CuZn-SOD RNA no change 

Cat RNA 

Gpx activity no change 

Cat activity 

CuZn-SOD content no change 

Cat content 

Jackson et al. 2011 Mice 3 m vs 28 m Mitochondrial fraction 

Cytosolic fraction 

Whole muscle homogenate 

Mn-SOD activity no change 

CuZn-SOD activity 

CuZn-SOD content 

G6PDH: Glucose-6-Phosphate Dehydrogenase; GR: Glutathione Reductase; Gpx: Glutathione Peroxidase; 
CuZn-SOD: Copper-Zinc Super oxide dismutase (mostly present in cytosol); Cat: Catalase; Mn-SOD: 
Manganese Super oxide dismutase (mostly present in mitochondria); γ-GCLC: γ-Glutamyl cysteine synthase. 

 Finally, sarcopenia seems to appear during a life period when antioxidant defenses are 

weakened and RONS production increased which would lead to oxidative damage as 

previously described. Thereafter, these defenses increase but the persistence of oxidative 

damage shows that this increase is not enough to counteract the overproduction of RONS.  
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2.3.2. Non enzymatic antioxidant systems are impaired during aging and 

sarcopenia 

 Glutathione is the most abundant non-protein thiol in muscle cells. Its active group is 

the sulfhydryl of the cysteine residue by which glutathione may exert a protective role when 

present in its reduced form (GSH). It contributes to the reduction of H2O2 in water via a 

system involving GPx, GR and G6PDH, but can also scavenge spontaneously some radical 

species (see figure 13 and 15). Two molecules of GSH can be oxidized giving an electron 

each other. Then they fuse between them to form a disulfide form (GSSG). Thereby, a 

characteristic indicator of oxidative stress is the increased concentration of oxidized 

glutathione, with the consequent alteration of the redox state of glutathione, increasing the 

GSSG/GSH (Sies 1986). Data on total glutathione, GSH and GSSG muscle content are 

contradictory (Pansarasa et al. 1999; Mosoni et al. 2004; Marzani et al. 2005). In contrast, 

studies agree on an increase in GSSG/GSH (Kumaran et al. 2004; Marzani et al. 2005; 

Kumaran et al. 2008; Ryan et al. 2008; Ryan et al. 2011). Moreover, studies have reported a 

decrease in the activity and/or protein content of some molecule involved in the synthesis 

and/or regeneration system of GSH during sarcopenia as G6PDH, GR (Kumaran et al. 2004; 

Mosoni et al. 2004; Braga et al. 2008; Kumaran et al. 2008; Kovacheva et al. 2010; Safdar et 

al. 2010). Taken together, these data suggest that sarcopenia is associated with an impaired 

glutathione system.           

 Some vitamins are part of the non-enzymatic antioxidant systems but there is lack of 

data concerning their involvement in sarcopenia. Nevertheless, it seems that a deficient status 

in vitamins E (i.e. alpha-tocopherol ) and carotenes would be a factor favoring the onset of 

sarcopenia (Semba et al. 2003). 

Figure 15. Gluthatione system representation. 
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2.3.3. Repair systems seem to be impaired during aging  

 Some oxidative damage are sometimes reversible and can be supported by repair 

systems. For example, enzyme such as thioredoxin (Trx) is able to repair oxidative damage in 

some protein level as the oxidation of cysteine (Ugarte et al. 2010). However, aging  is 

associated with reduced muscle expression of this enzyme thus suggesting that the operation 

of this repair system is altered (Rohrbach et al. 2006). Oxidative damage to DNA can also be 

supported by some enzymes as oxoguanine DNA glycosylase (OGG1) (Bohr et al. 2002). 

Although few data on the subject are available, it appears that aging is also responsible for a 

reduction in the activity of OGG1 in skeletal muscle (Koltai et al. 2010). Those results would 

be extrapolated to sarcopenia because they were obtained with senescent animal in which 

sarcopenia is usually described. In other cases, oxidative damage is irreversible and damaged 

cell components must be removed to avoid further cell damage. In the case of proteins, 

proteolytic and autophagic systems (as previously described) will ensure this degradation. 

These systems are optimized with the heat shock proteins (HSPs). These stress protein 

expressed in all cellular compartments work as chaperone molecules. They facilitate protein 

folding avoiding protein aggregation. Data on the effect of aging on their muscle protein 

content are controversial. Indeed, studies observed an increase (Siu et al. 2006; Thalacker-

Mercer et al. 2010) while other showed any modification (Vasilaki et al. 2006; Gupte et al. 

2008). More data are needed to make a conclusion on this subject. 

 

2.4. Mechanistic links between oxidative stress and sarcopenia 

 OS may contribute to activating or inhibiting molecular signaling pathways involved 

in sarcopenia supporting the cell signaling disruption theory of aging exposed by (Viña et al. 

2013). Moreover, OS might alter the contractile qualities of muscle, regardless of muscle 

atrophy (Reid 2008).  

2.4.1. Link between oxidative stress and impaired satellite cells activity 

 Impaired satellite cells activity would contribute to sarcopenia by limiting the 

incorporation of new nuclei in muscle fiber to replace the damaged nuclei.  

 Numerous studies consider that the cellular environment of the old muscle is 

responsible for alterations in the activity of SC more than the intrinsic myogenic potential of 

these  latter (Carlson & Faulkner 1989; Carlson, Suetta, et al. 2009). Thereby, recent studies 

demonstrated in C2C12 cells that reducing the redox environment promotes both proliferation 
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(Renault et al. 2002) and myoblast differentiation (Ardite et al. 2004; Hansen et al. 2007) 

underlying the importance of RONS in these processes.      

 On the other hand, studies have also suggested that the decreased activity of SC in 

aged muscle may be related to increased oxidative stress within SC (Fulle et al. 2005; 

Beccafico et al. 2007). Indeed, Fulle et al. (2005) showed that antioxidant enzymes activity is 

decreased in satellite cells extracted from old men (more than 70 years old) compared to 

young men (30-40 years old). The lipids peroxidation higher in old myotubes obtained from 

old SC was associated with a decreased myoblast fusion capacity to generate myotubes 

(Beccafico et al. 2007). 

2.4.2. Oxidative stress could disturb protein turn-over 

 Theoretically, oxidative stress can contribute to disuse muscle atrophy by depressing 

protein synthesis and/or increasing proteolysis.       

 In regard to RONS and decreased protein synthesis, some studies have shown 

impairment of the PI3K/Akt/mTOR pathway associated with an increase of OS. For instance, 

Clavel et al. (2006) and Kovacheva et al. (2010) have shown in old rat that decreased IGF-1 

RNA and Akt activation were associated with increased lipids peroxidation and proteins 

carbonylation in skeletal muscle. Similar data were published in humans by Safdar et al. 

(2010). On the other hand, decreased oxidative damage were associated with increased Akt 

activation (Kovacheva et al. 2010). In the same way,  a clear increase in postprandial protein 

synthesis is observed in older rodents treated with  antioxidants (Marzani et al. 2008). 

Emerging evidence suggests that ROS can depress protein synthesis by obstructing mRNA 

translation at the level of initiation (Shenton et al. 2006; O’Loghlen et al. 2006; Zhang et al. 

2009). For instance, RONS such as H2O2 (known to increase during sarcopenia) appears to 

impair mTOR assembly and therefore preventing mTOR-mediated phosphorylation of 4E-

BP1 and p70S6K in muscle cultured cells (Zhang et al. 2009). Moreover, oxidative DNA 

damage are known to activate p53 which is able to inhibit mTOR via AMPK and TSC2 (Feng 

et al. 2005).            

 In regard to RONS and increased proteolysis, growing evidence indicates that 

oxidative stress can promote muscle protein breakdown by different ways. 

 First, altered redox status was associated with an increased gene expression of UPS 

up-stream such as TNF-α (Clavel et al. 2006), UPS effectors such as MuRF1 and Atrogin-1, 

and proteasome activity (Clavel et al. 2006; Hepple et al. 2008) which was negatively 

correlated with muscle mass (Hepple et al. 2008). Reports indicate that OS promotes 
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increased gene expression of key proteins involved in the proteasome system of proteolysis. 

For example, in vitro experiments have demonstrated that exposure of C2C12 myotubes to 

H2O2 (known to increase during sarcopenia) up-regulated the expression of MuRF1 and 

Atrogin-1(Y.-P. Li et al. 2003). Similarly, TNF-α induced-increase ROS production within 

myotubes is also associated with increased expression of Atrogin1 and MuRF1 through a p38 

MAPK signaling pathway (Li et al. 2005).        

 Secondly, aging is associated with increased calpains activity in skeletal muscle 

(Dargelos et al. 2007; Samengo et al. 2012) which could be explained by the sarcopenia-

associated increase H2O2 production. Indeed, recent studies revealed that oxidative stress 

through H2O2 can increase the expression and activity of calpains 1 and 2 in both C2C12 

myotubes and human myoblasts (McClung et al. 2009; Dargelos et al. 2010). On the other 

hand, aging is associated with a skeletal muscle cytosolic calcium overload (Fraysse et al. 

2006) known to increase calpains activity (Goll et al. 2003). ROS production could play an 

important role in disturbances in calcium homeostasis (Kandarian & Stevenson 2002). A 

potential mechanism to link oxidative stress with calcium overload is that ROS-mediated 

formation of reactive aldehydes (i.e. 4-hydroxy-2,3-trans-nonenal) can inhibit plasma 

membrane Ca+2 ATPase activity which would lead to intracellular Ca+2 accumulation (Siems 

et al. 2003). In another way, increased lipids peroxidation in old rodents skeletal muscle is 

associated with an increased caspase-3 and muscle atrophy (Wohlgemuth et al. 2010). Recent 

reports indicate that oxidative stress can activate caspase 3 in muscle fibers in vitro and in 

vivo. For example, exposing C2C12 myotubes to H2O2 (known to increase durin aging) has 

been shown to activate caspase 3 (Siu et al. 2009). Notably, new evidence reveals that 

antioxidant-mediated protection against inactivity-induced oxidative stress prevents caspase-3 

activation in diaphragm muscle in vivo (Whidden et al. 2010). 

 Concerning OS and autophagy data are contradictory. Evidence suggests that 

increased cellular ROS production and over increased SOD activity in skeletal muscle of 

transgenic mice promotes the expression of autophagy-related genes (e.g. Beclin-1 and ca- 

thepsin L) (Thorpe et al. 2004; Dobrowolny et al. 2008). However, in atrophied muscle of old 

rat with high level of lipid peroxidation, while several autophagy related proteins were up-

regulated (Beclin-1), others were down-regulated (LC3) (Wohlgemuth et al. 2010). Moreover, 

as exposed in the chapter 2, almost all studies seem to agree on a reduction in protein 

degradation via autophagy in muscle aging and sarcopenia in humans and animals (McMullen 

et al. 2009; Wohlgemuth et al. 2010; O’Leary et al. 2013; Fry et al. 2013; Kim et al. 2013). 

More data appear necessary to establish the relation between OS and autophagy.   
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 Finally, ROS can also accelerate proteolysis in muscle fibers by oxidizing muscle 

proteins, which enhances their susceptibility to proteolytic processing. Indeed, using several 

purified proteases, Davies (1987) first demonstrated that ROS accelerate the protease-

mediated breakdown of proteins. This observation has been expanded by others, and it is now 

established that oxidized proteins are readily degraded by many proteases, including the 20S 

proteasome, calpains, and caspase 3 (Grune et al. 2003; Smuder et al. 2010).  In particular, 

oxidation increases myofibrillar protein breakdown in a dose-dependent manner and 

following oxidative modification, MHC, α-actinin, actin, and troponin I are all rapidly 

degraded by calpains (I and II) and caspase-3 (Smuder et al. 2010). 

2.4.3. Oxidative stress and muscle contractile qualities  

 The decrease of strength in the aged-muscle is not only explained by muscle atrophy 

but also by alterations in contractile properties.      

 RONS are recognized as involved in the regulation of muscle strength (Reid 2008). 

Low basal RONS concentrations are necessary for muscle contraction and an optimum RONS 

concentration is necessary to reach the maximum of muscle force (Reid 2001). However, 

muscle contraction is altered when RONS concentrations are too high (Reid 2001).  

 With regards to these results, it is not surprising that different studies observed a 

decreased maximal isometric strength and an increased fatigability in skeletal muscle of old 

rats associated with a concomitant increased RONS production (Chabi et al. 2008; Jang et al. 

2010; Andersson et al. 2011). The cellular and molecular target leading to the muscle strength 

deterioration in case of RONS overproduction are still poorly known. However, several 

proteins involved in the excitation contraction coupling have been shown to be more 

carbonylated and/or nitrozylated such as SERCA 2 (Fugere et al. 2006) and RyR1(Andersson 

et al. 2011).            

 It has been suggested that high RONS concentrations could affect the release of 

intracellular calcium or calcium sensitivity of contractile myofilaments (Smith and Reid 2006; 

Zima and Blatter 2006). Indeed, in old rats, Andersson et al. (2011) showed that EDL specific 

strength was associated with a RyR1 increased carbonylation and nitrozylation, surely due to 

the concomitant increased RONS content. Then, RyR1 oxidative modifications were 

associated with an increased intra-cellular Ca2+. 

 More studies are needed to highlight the mechanisms by which RONS production 

altered muscle contractile quality during sarcopenia.   
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3. Chapter 3 abstract 
 

 Both in humans and animals, it has been showed that sarcopenic muscle exhibits 

increased RONS production (e.g. O2
•-  et H2O2)  (Capel et al. 2004; Capel, Rimbert, et al. 

2005; Capel, Demaison, et al. 2005; Chabi et al. 2008; Jackson et al. 2011; Andersson et al. 

2011; Miller et al. 2012) and content (Andersson et al. 2011; Janna R. Jackson et al. 2010; 

Jackson et al. 2011; Ryan et al. 2011; Sullivan-Gunn & Lewandowski 2013). This 

overproduction of RONS is mainly due to mitochondrial dysfunctions (Capel, Rimbert, et al. 

2005; Chabi et al. 2008) and increased xanthine oxidase activity (Lambertucci et al. 2007; 

Ryan et al. 2011). Although NADPH oxidase and nitric oxide synthase muscle protein content 

is increased in sarcopenic muscle, increased RONS production by these latter have to be 

confirmed (Sullivan-Gunn & Lewandowski 2013; Braga et al. 2008). RONS overproduction 

in sarcopenic muscle leads to an increase in oxidative damage to cellular components (lipid 

plasma membranes, proteins and nucleic acids). In both humans and animals, increased 

oxidative damage is negatively correlated with sarcopenia parameters such as muscle mass 

(Murakami et al. 2012), strength (Howard et al. 2007), walking speed (Semba et al. 2007). 

 Increased oxidative damage reflect the inability of antioxidant systems to contain 

overproduction of RONS and attest an imbalance of the "oxidants-antioxidants" balance 

leading to an impaired redox homeostasis, known as oxidative stress (Sies 1985; Jones 

2006).This impaired redox status may be the cause of the disturbance of a number of 

intracellular signaling pathways involved in sarcopenia. In vitro studies showed that the 

oxidative stress would disturb protein synthesis and stimulates several cellular mechanisms 

involved in muscle atrophy as proteolysis or alteration of muscle regeneration. Chronic 

oxidative stress observed in aged muscle could promote these mechanisms and lead to 

sarcopenia. Nevertheless, the link between these cellular mechanisms involved in sarcopenia 

and oxidative stress needs to be clearly demonstrated in vivo in the old muscle tissue. 

 As it will presented in the following chapter, effective strategies to fight against 

sarcopenia such as exercise would restore a “young” redox status. 
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Chapter 4: Strategies against sarcopenia 
 

 Developing strategies for the prevention and treatment of sarcopenia will not only help 

to enhance the quality of life for individual patients who suffer from this syndrome but also 

for reduction in economic and productivity burdens would be beneficial to society as a whole. 

As exposed in the three first chapters, sarcopenia is characterized by a decreased muscle 

mass, strength and physical performance. Impaired protein turnover, mitochondrial 

dysfunctions, exacerbation of apoptosis and impaired satellite cells functions are mechanisms 

which can explain in part the onset and development of this syndrome. Neuromuscular 

dysfunctions are also involved (Edström et al. 2007) but are beyond the scope of this work. 

Oxidative stress appears to be involved in these mechanisms as well as a decrease in the 

production of anabolic hormones (GH, IGF-1, and testosterone).  

 The identification of cost-effectiveness interventions to maintain muscle mass and 

physical functions in the elderly is one of the most important public health challenges. In this 

chapter, we will present the available evidence regarding the impact of physical exercise and 

alternative strategies such as antioxidant and hormone replacement strategies on the 

components of sarcopenia. For each strategy, we will present data about the mechanisms by 

which it act on sarcopenia. 

 

1. Exercise as the perfect strategy against sarcopenia    
 

 Exercise appears to be the perfect strategy against sarcopenia because it can lead to an 

in increase muscle mass, strength and physical performance (Pillard et al. 2011; Di Luigi et al. 

2012; Wang & Bai 2012; Montero & Serra 2013). In this work, when not specified exercise 

will refer to a repetition of different exercise sessions (i.e. training). Exercise have also 

positive effects on the metabolic, cardiovascular and reproductive systems (Pillard et al. 2011; 

Di Luigi et al. 2012; Wang & Bai 2012; Montero & Serra 2013). In addition, exercise is 

known to improve quality of life, psychological health and is associated with better mental 

health and social integration, improves anxiety, depression and self-efficacy in older adults 

(Mather et al. 2002). Usually, four type of exercise are recommended for older adults to 

prevent sarcopenia: aerobic (endurance), resistance (strength), flexibility (stretching) and 

balance (proprioception) training. Recommendations about the prescription of exercise to the 

elderly is not the objective of this part, however, we recommend the following papers for 
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review: Pillard et al. 2011; Di Luigi et al. 2012; Wang & Bai 2012; Montero & Serra 2013. 

Here, we will focus on the mechanisms by which exercise (essentially resistance and 

endurance exercise) lead to combat against sarcopenia.  
 

1.1. Exercise during aging improves protein turnover  
 

 Although whole body protein synthesis appeared to be unchanged by resistance 

exercise in older people (Yarasheski et al. 1993; Welle et al. 1995; Hasten et al. 2000), 

numerous studies found that this exercise can increase specifically mixed muscle protein 

synthesis (Welle et al. 1995; Balagopal & Schimke 2001; Yarasheski et al. 1993; Yarasheski 

et al. 1999; Hasten et al. 2000; Short et al. 2004) in particular myofibrillar proteins (Welle et 

al. 1999) such as MHC (Welle et al. 1995; Hasten et al. 2000; Balagopal & Schimke 2001). In 

response to resistance exercise, these increases are always associated with improvement of 

muscle mass and strength increase (Welle et al. 1995; Welle et al. 1999; Balagopal & 

Schimke 2001; Yarasheski et al. 1993; Yarasheski et al. 1999; Hasten et al. 2000). Typically, 

resistance training programs used in the cited studies lasted 3-4 months, with 3 sessions per 

week (separated by a rest day) with 2-3 sets of multiple exercises alternating between high 

and low body, at gradually increasing intensities from 50-60% to 75-80% of 1RM. However, 

one week of resistance exercise is sufficient to obtain these results and with only two weeks, 

the beneficial effect will persist even for 3 months (Hasten et al. 2000). Interestingly, 

although resistance training is typically associated with the most profound gains in strength, 

elderly subjects who completed a 3 months moderate intensity aerobic program (3-5 days per 

week, with sessions of 20-45 minutes at 60-80% of the heart rate reserve) also demonstrated 

marked increases in whole muscle size and strength associated with increased mixed muscle 

protein and MHC synthesis (Short et al. 2004; Konopka et al. 2011). Although there are many 

studies that have shown an increase in muscle protein synthesis after resistance and aerobic 

training in the elderly, few studies have investigated the signaling pathways involved in this 

phenomenon. It seems nevertheless that an activation of the PI3K/Akt/mTOR pathway is 

involved. Indeed, Mayhew et al. (2009) and Williamson et al. (2010) showed in elderly 

people that resistance exercise (12-16 weeks, 3 days per week, 80% of 1RM) lead to  muscle 

hypertrophy (CSA increase), increase muscle strength  and a substantial muscle protein 

accretion associated with an increased Akt, p70S6K and rpS6 phosphorylation. Data obtained 

in hypertrophied skeletal muscle of old rats indicated similar mechanisms. Indeed, chronic 

muscle overload induced by bilateral ablation of the gastrocnemius for 28 days increased 

plantaris weight in aged animals associated with an increase in mTOR and rpS6 
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phosphorylation (Chalé-Rush et al. 2009). On the other hand, it has been shown that aerobic 

exercise (lifelong running wheel exercise or treadmill training) in old rats increased IGF-1 

and IRS-1 protein content in skeletal muscle, and Akt and mTOR activation associated with 

hypertrophied muscles (Kim et al. 2008; Pasini et al. 2012). Finally, there are very few studies 

in older people and old animals that have explored the protein synthesis signaling pathways in 

response to training. More studies are needed to test various types and combinations of 

training, explore the responses in functions of muscle type (slow or fast) and these evolutions 

of these responses over the decades. 

 Until now, various studies have shown that exercise (resistance and aerobic) in elderly 

subjects has no effect on proteolysis (Yarasheski et al. 1993; Welle et al. 1995; Hasten et al. 

2000). This could be explained by different reasons:  lack of sensitivity of the used techniques 

to measure proteolysis; amino acid from proteolysis would be recycled during protein 

synthesis; exercise increases the activity of several proteolysis systems while other will be 

decreased at the same time.  

 To our knowledge, no study has investigated the impact of exercise on calpain system 

in the elderly or older animals. However, aerobic exercise (life-long voluntary exercise with 

running wheel) and resistance exercise in old rats (9 weeks, 3 days per week, climbing of a 

one meter ladder inclined at 85° with weight attached to the tail) lead to decrease caspase 3 

activity (Wohlgemuth et al. 2010; Luo et al. 2013). Unfortunately, usual cleaved proteins by 

caspases such as actin were not measured in these studies.     

 Data concerning the effect of exercise on the UPS systems are very few but would be 

consistent with a decrease in the activity of the latter. Indeed, Williamson et al. (2010) 

showed that resistance training (12 weeks, 3 days per week, 70-75% 1RM) in older people 

was associated with the nuclear accumulation of FoxO3, but no differences in MuRF1 or 

MAFbx expression were observed. In the same way, elderly subjects who completed a 12-

weeks moderate intensity aerobic program (3-5 days per week, 20-45min per session, 60-80% 

heart rate reserve) also demonstrated marked increases in whole muscle size and strength 

associated with a reduction in myostatin and FoxO3 expression, however MAFbx and MuRF1 

expression were not different (Konopka et al. 2010). In another study, it has been shown that 

4 weeks of supervised endurance training in chronic heart failure patient (mean age 72 years 

olds) with muscle atrophy, is associated with a decreased of ubiquitinated protein muscle 

content surely due to the marked decreased in MuRF1 RNA and protein muscle content. As 

the previous mentioned studies, MAFbx was not affected by exercise. In the same way, 

LeBrasseur et al. (2009) showed in old mice subjected to a short and low intense treadmill 
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training (4 weeks, 5 days per week, 20 min per session at 10m/min) a marked decreased in 

MuRF1 muscle protein content. Finally, all these studies highlighted that exercise in 

particular aerobic exercise is able to decrease UPS systems compounds associated with a 

hypertrophic response. However, proteasome activity was never measured in these studies 

and it can just be hypothesized that exercise would decrease its activity. 

 The most marked effect on proteolysis of exercise in the elderly and older animals 

concerns the autophagy regulation. As previously described, sarcopenia is associated with an 

impaired autophagy, however exercise (endurance as well as resistance training) should 

reverse this impairment associated with muscle hypertrophy (independently of muscle type) 

and decreased muscle fatigue (Wohlgemuth et al. 2010; Luo et al. 2013; Kim et al. 2013). 

Indeed, in response to 8 weeks of treadmill training (5 days per week, 40 min per session at 

16,4 m/min), it has been shown an increase of Beclin-1, LC3 and Lamp-2 muscle protein 

content in old mice associated with an increase in EDL and gastrocnemius weight (Kim et al. 

2013). Previously, Wohlgemuth et al. (2010) showed that long life exercised rats presented an 

up-regulation of Lamp-2 RNA, Atg7 and Atg9 protein associated with an increased plantaris 

weight. On the other hand, similar result were obtained in response to a resistance training 

protocol (climbing of a one meter ladder inclined at 85° with weight attached to the tail) in 

old rats (Luo et al. 2013). Moreover, these autors showed an increased in lysosome protease 

protein content (i.e. Cathepsin L). Finally, the increase of these different markers suggested 

that aerobic exercise as well as resitance exercise during aging should stimulate autophagy 

induction, autophagosome formation and fusion with lysosomes. Indeed, as no studies have 

directly measured the number of autophagy vesicles, the increase of the different molecules 

regulating autophagy only suggest an increase of the latter. As autophagy is associated with 

accumulation of dysfunctional mitochondria and unfolded proteins (previously exposed in the 

chapter 2), Kim et al. (2013) speculated that exercise training-induced autophagic response 

might be considered as one of the mechanisms of cellular “clearance” that may be related to 

protecting against the accumulation of dysfunctional mitochondria and unfolded proteins. 
 

1.2. Exercise during aging decreases apoptosis 
 

 Several studies showed that aerobic exercise and resistance training during aging 

decreased apoptosis associated with muscle mass and strength improvement in old animals 

(W. Song et al. 2005; Marzetti, Groban, et al. 2008; Wohlgemuth et al. 2010; Luo et al. 2013). 

However, it seems that no data are available in older humans.    
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 With regard to the effects of exercise training on myonuclear apoptotic signaling, 

Song et al. (2005) showed that 12-week treadmill exercise (5 days per week, 60 min per 

session) reduced the expression of Bax in the gastrocnemius muscle of old rats. Conversely, 

levels of Bcl-2 were increased in exercised rodents, resulting in a dramatic decrease in the 

Bax-to-Bcl-2 ratio reaching young values. In addition, cleavage of caspase-3 was lowered by 

95% in old exercised rats. As a consequence, the extent of gastrocnemius apoptotic DNA 

fragmentation was significantly attenuated by the exercise intervention, such that old trained 

rats displayed levels of apoptosis similar to those observed in young control animals. It is 

noteworthy that the reduced severity of apoptosis was accompanied by an increased fiber 

CSA associated with an increased muscle weight (soleus and gastrocnemius). Similarly, 

Marzetti et al. (2008) found that 4-week treadmill exercise training down-regulated the death 

receptor pathway of apoptosis in the EDL of old rats. Indeed, exercise reversed the age-

related increase of TNF-R1, activated caspase-8 and cleaved caspase-3, resulting in reduced 

levels of apoptotic DNA fragmentation. These adaptations were accompanied by 

improvements in exercise tolerance and forelimb grip strength. Furthermore, similar data 

were published by the same group in long life exercised rats with free access to a running 

wheel (Wohlgemuth et al. 2010). In addition, they showed that exercise reverses the age-

related increase of caspase-9 activity. Recently, Luo et al. (2013) found that 9 weeks of 

resistance training prevented the loss of muscle mass and improved muscle strength, 

accompanied by reduced cytosolic cytochrome c concentration and inhibited cleaved caspase 

3 production resulting in reduced levels of apoptotic index.   

 Decreased apoptotic myonuclei or DNA fragmentation could be explained by renewal 

of these latter thanks satellite cells activation. 
 

1.3. Exercise during aging stimulates satellite cells 
 

 This topic has been well reviewed by Snijders et al. (2009). Although some studies 

failed to demonstrate any effect of exercise in older people on satellite cells (Petrella et al. 

2006; Leiter et al. 2011) most of them showed an exercise-related activation of these latter in 

elderly people and older rodents associated with muscle mass and strength improvement 

(Mackey et al. 2007; Verney et al. 2008; Verdijk et al. 2009; Shefer et al. 2010; Leenders et 

al. 2013). For instance, Verdijk et al. (2009) found that 3 months of resistance training (3 days 

per week, 80% 1RM) augmented muscle mass, reduced fat mass, and increases muscle 

strength in healthy, elderly men. The observed skeletal muscle hypertrophy was specific for 

the type II muscle fibers and accompanied by a specific increase in Type II muscle fiber 
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satellite cells content. These data were recently confirmed by Leenders et al. (2013) who 

showed that 6 months resistance-type exercise training (3 days per week, 80% 1RM) lead to 

leg lean mass and quadriceps CSA increased resulting in an increased one-repetition 

maximum leg extension strength and a decreased sit-to-stand time. These results were 

concomitant to a type II muscle fiber specific increase in myonuclear and satellite cells. On 

the other hand, Verney et al. (2008) and recently Shefer et al. (2010) found similar results in 

response to endurance training in elderly (13 weeks of combined lower body endurance and 

upper body resistance training) and old rats (14 weeks of treadmill training, 6 days per week, 

20 min per session) with an increased type II muscle fiber size accompanied by an increase in 

type II muscle fiber SC content. There is still a debate to know if exercise can directly active 

satellite cells or if these latter are activated in response to the muscle damage induced by 

exercise. Studies are needed to bring a conclusion to this debate. 
 

1.4. Exercise during aging improves mitochondrial functions and dynamics 
 

 Aerobic exercise of sufficient intensity (at least 60%  max ) and duration (at least 

3 weeks with 3 sessions of one hour per week) can significantly increase  max  and 

endurance capacity in older adults and rodents (Hammeren et al. 1992; Radák et al. 2002; 

Malbut et al. 2002; Short et al. 2004; Huang et al. 2005; Lambertucci et al. 2007; Lanza et al. 

2008; Safdar, Hamadeh, et al. 2010; Koltai et al. 2012). Increases in mitochondrial functions 

and number, in the expression of mitochondrial proteins and/or in the expression of 

transcription factors involved in mitochondrial biogenesis are mechanisms whose explain 

these improvements. Short et al. (2003) were among the first to show in humans that 

endurance exercise (16 weeks, four sessions per week at 80% of maximal heart rate for 40 

min)  increased  max associated with muscle increased mitochondrial enzymes activities 

(citrate synthase and cytochrome c oxidase), mRNA levels of mitochondrial genes (e.g. 

COX4) and genes involved in mitochondrial biogenesis (PGC-1α,NRF-1,TFAM) in skeletal 

muscle. These results suggested that aerobic exercise could induce de novo mitochondrial 

biogenesis and improve mitochondrial functions during aging. Indeed, Lanza et al. (2008) 

demonstrated in older trained people (performing at least one hour of cycling or running 6 

days per week over the past 4 years) increases in mitochondrial ATP production rate, citrate 

synthase activity, PGC1-α, NrF-1 and Tfam muscle protein content, and mtDNA abundance. 

Moreover, an increased Sirt 3 protein content (known to stimulate PGC-1α) was also found. 

Recently, Safdar et al. (2010) confirmed such results and showed that they are associated with 

functional improvements (increase in maximal isometric strength, decrease in time to perform 
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the 30-feet walk test and stair climb test). Moreover, they also found that physical activity in 

older people increased complex IV activity and COX subunits-I and II protein content in 

skeletal muscle. More recently, Koltai et al. (2012) showed in old trained rats (6 weeks of 

treadmill training at 60%  max, one hour per day) that increased mitochondriobiogenesis 

(attested by increased PGC-1α, SDH and COX 4 muscle protein content and increased 

mtDNA abundance) is driven by an increase in Sirt 1 activity and AMPK phosphorylation. 

Moreover, these authors found that aerobic exercise is able to restore mitochondrial dynamics 

(fusion and fission) to similar levels of those observed in young rats (as attested by 

measurement of Mitofusin 1, fission protein-1 and Lon protease protein content) which would 

reflect a reduction of impaired mitochondria. Konopka et al. (2013) confirmed these results in 

older people after an aerobic training (4 sessions of 45 min per week at 80% heart rate 

reserve). Indeed, trained elderly presented increased Mitofusin 1 and 2, fission protein-1 as 

well as PGC-1α and citrate synthase muscle protein content associated with an increase in 

 max and CSA.          

 Because resistance training is usually not associated with mitochondrial functions 

improvements, very few studies are available on this topic. However, Parise et al. (2005) 

found in older people after twelve weeks of whole body resistance training (3 sessions per 

week, 80% of 1RM) an increase in complex IV activity, reflecting ETC improvements. 

Moreover, Luo et al. (2013) found in older rats an increased AMPK phosphorylation 

associated with an increased cytochrome C mitochondrial protein content in skeletal muscle 

after a nine weeks resistance training. However, in both studies physical parameter were not 

measured.      

1.5. Exercise during aging would restore a young redox status 
 

 As well reviewed by Ji (2001), although aged muscles demonstrated higher levels of 

ROS generation when they are subjected to an acute bout of exercise at a given workload, 

aerobic or resistance training can decrease oxidative damage (Radák et al. 2002; Lambertucci 

et al. 2007). This beneficial effect is not specific to skeletal muscle since it can be found in 

others tissue such as heart (Fiebig et al. 1996) and liver (Nakamoto et al. 2007).   

 Numerous studies examined the effect of aerobic exercise on OS in skeletal muscle in 

humans and rats. However, here we will focus only on those in which trained elderly or old 

animals were compared to old and young sedentary or trained subjects and animals. Thanks to 

this approach, we will show that aerobic exercise is able to restore a “young redox status”. All 

the parameters which will be presented were observed measured skeletal muscle and were 
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always enhanced compared to older sedentary.       

 Moderate intensive endurance training (at least 5 one-hour treadmill sessions per week 

at 55-65% of  max or VMA at least during 6 weeks, or life-long voluntary exercise with 

running wheel in animals or modest recreational activities such as golfing, tennis and/or 

cycling at least 3 times per week in humans) in elderly people or old rats was associated with 

a restoration of oxidative damage (lipid peroxidation, carbonylated and nitrozilated  proteins, 

DNA oxidation) to similar levels than those observed in young people (Safdar, Hamadeh, et 

al. 2010) or rats (Radák et al. 2002; Rosa & Silva 2005; Lambertucci et al. 2007; Kim et al. 

2008; Koltai et al. 2010; Wohlgemuth et al. 2010). This fact can be explained by several 

mechanisms. An increase in repair systems as found by Radak et al. (2002) which showed 

decreased 8-OHdG nuclear content (similar to young rats) associated with an increase in 8-

OHdG repair system enzyme activity in response to aerobic training. Moreover, decrease 

muscle protein content and/or activity of free radicals sources (e.g. XO, NOS) has been 

shown to be involved in restoring young oxidative damage levels after endurance training. 

Thus, Lambertucci et al. (2007) found that endurance training in old rats reduced xanthine 

oxidase activity to similar levels than those observed in young rats, associated with 

comparable levels of lipid peroxidation. In the same way, endurance training in older people 

was able to maintain comparable nNOS muscle protein content to young sedentary people 

associated with similar muscle content of nitrozilated proteins. Increase antioxidant enzymes 

activities to rise activities observed in young people is also involved in restoring a young 

redox status in response to aerobic training during aging. Indeed, older people engaged in 

aerobic exercise presented similar Mn-SOD and total SOD activities compared to young 

people associated with comparable nitrozilated proteins levels. Regardless of whether the 

activity of antioxidant enzymes is increased or decreased during aging, endurance training 

restore similar levels to those observed in younger. Indeed, in the study of Lambertucci et al 

(2007) aging was associated with increased antioxidant enzymes activities and endurance 

training reduced these latter to similar levels than younger, whereas it happened the contrary 

in the study of Safdar et al. (2010). In all the studies presented, when measured,  max or 

VMA were improved by the proposed training protocol. 

 In regards to resistance training, it is not possible to conclude to the same phenomenon 

because to our knowledge, no studies compared old trained people to sedentary old and young 

people. However, resistance training in older humans (2-3 sessions per week during at least 

twelve weeks with exercises at 80% of 1RM) reduced 8-OHdG/creatinine ratio in urine 

(reflect of muscle oxidative DNA damage) surely due to an increase in CuZnSOD and 
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catalase activity in skeletal muscle (Parise, Phillips, et al. 2005; Parise, Brose, et al. 2005; 

Tarnopolsky et al. 2007). In those studies, resistance training was able to increase the 1RM.

 Finally, exercise appears to be the best countermeasure against sarcopenia because it 

can act on all the deleterious effect induced by aging and improve at the same time muscle 

mass, strength and physical performance. Neuromuscular adaptations were beyond the scope 

of this part, however, they have been well reviewed by (Aagaard et al. 2010). As presented, 

resistance training leads to the most profound gains in strength and muscle mass while aerobic 

training leads to enhance  max and endurance capacity. Perform resistance training cycles 

and endurance training separately appears to be the best solution to combat sarcopenia.  
 

2. Alternative strategies to exercise for fighting sarcopenia 
 

 Although exercise training is highly effective in counteracting age-related muscle loss, 

the large scale implementation of such intervention is hampered by the lack of motivation of 

most persons. In addition, many elderlies are non-ambulatory or have co-morbidities such as 

moderate to severe osteoarthritis (Bennell & Hinman 2011) or certain forms of unstable 

cardiovascular disease that would preclude participation in resistance training exercises 

(Williams et al. 2007). To overcome such barriers, developing alternative therapies for the 

prevention and treatment of sarcopenia such as antioxidant strategies (e.g. antioxidants 

supplementation, pharmacological inhibitors of pro-oxidant enzymes), hormones 

replacement-therapies (e.g. growth hormone, testosterone) or pharmacological treatment 

(angiotensin-converting-enzyme inhibitor, statins, myostatin inhibitors are important. Here, 

we will focus only on antioxidant strategies and hormones replacement-therapies (others 

strategies have been well reviewed by Sanchis-Gomar et al. 2011; Maggio et al. 2013; Morley 

& Malmstrom 2013).  
 

2.1. Possible antioxidant strategies to attenuate sarcopenia 
 

 In the literature, different kinds of antioxidant strategies are presented. The first will 

aim to directly scavenge the RONS presented in the organisms by supplementation with one 

antioxidant or a cocktail of various antioxidants such as vitamin C, vitamin E and carotenoids, 

or supplementation with natural compounds (which can be modified to increase their 

bioavailability) such as resveratrol. The second will directly target RONS sources with 

pharmaceutical products such as allopurinol which is an inhibitor of xanthine oxidase. The 

last strategy will consist in making a supplementation with precursors of the synthesis of 

antioxidant molecules such as precursors of GSH synthesis.  
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 Usually, studies showed that these strategies are able to decrease age-related oxidative 

damage due to an increase in antioxidant defenses in skeletal muscle. Indeed, Kumaran et al. 

(2004) found in old rats that  orally supplementation with a mix of L-carnitine (300 mg/kg 

body weight per day) and DL-α lipoic acid (100 mg/kg body weight in alkaline saline per day) 

during 30 days, was able to reverse the muscle age-related decline of GHS/GSSG ratio. The 

beneficial effect was explained by the increase of Gpx, GR and G6PDH activities to similar 

levels than observed in young rats (old control rats presented decreased activities of theses 

antioxidant enzymes). Similar results were found in heart. Analogous results were shown by 

this group in response to epigallocatechin-3-gallate supplementation (EGCG) a key 

component of green tea catechins (100 mg/kg of body weight per day by oral gavage for 30 

days). They also found that EGCG was able to reverse the age-related decrease in GSH/GSSG 

ratio, and Gpx, GR and G6PDH activities. Moreover, these authors showed that EGCG leads 

to reverse the age-related decrease in total SOD and Cat activities in skeletal muscle. These 

different effects were associated with decreased lipid peroxidation and protein carbonylation. 

Recently, Laurent et al. (2012) explored the effect of 30-day oral supplementation with a 

moderate dose of a red grape polyphenol extract (RGPE) on major systems of RONS 

production (i.e. NOX) and their consequences on OS, mitochondriogenesis and muscle 

metabolism in aged rats. They found that this strategy reversed the age-related decline of total 

SOD and Cat activities but failed to showed beneficial effects on lipid peroxidation and 

protein oxidation. Note that RONS production by NOX activity was similar between young 

and old, control and treated animals. Moreover, an increase in PGC-1α muscle protein content 

was observed but was not associated with mitochondrial biogenesis as shown by the absence 

of increase in citrate synthase activity. Unfortunately, in these three aforementioned studies 

no data such muscle mass was measured to prove that such changes in oxidative parameters 

had reversed or limited sarcopenia. It appears very important to do it because as it will be 

presented, reduce OS with these strategies is not always associated with sarcopenia 

attenuation. Indeed, old mice receiving a diet supplemented with resveratrol (0,05 % of the 

total diet) during 10 months presented decreased H2O2 muscle content and reduced lipid 

peroxidation levels associated with an increase in Mn-SOD activities. These parameters were 

comparable to those observed in younger mice. However, muscle weight (gastrocnemius and 

plantaris) and functions were not improved (Jackson et al. 2011). Finally, although improving 

oxidative damage strategies based on natural compounds appears to not attenuate sarcopenia. 
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 Although they have not made a direct antioxidant supplementation, Semba et al (2003) 

showed in almost 700 non-disabled to severely disabled community-dwelling women aged 70 

to 79 years old that higher carotenoid and alpha-tocopherol plasma concentrations were 

independently associated with higher strength measures. Recently, Saito et al (2012) 

published a similar positive relation in an analogous population between plasma vitamin C 

levels and walking speed and hand grip strength. These results suggest that antioxidant 

supplementation would be efficient in combating sarcopenia. However until known studies 

realizing such treatment in humans and animals failed to improve muscle mass, strength or 

physical performance or did not measure these latter. Indeed, although an antioxidant 

supplementation in old rats with an antioxidant cocktail during 7 weeks (vitamin E, vitamin 

A, zinc, and selenium) was able to improve the ability of leucine to stimulate protein 

synthesis in muscles of old rats, no clear effect on muscle mass was observed (Marzani et al. 

2008). Antioxidant supplementation was probably not long enough. This study highlighted 

that an optimal redox status would be an important in protein synthesis. Recently, Nalbant et 

al. (2009) and Bobeuf et al. (2011)  in older people receiving respectively only vitamin E or 

an antioxidant cocktail (vitamin C and vitamin E) during 6 months failed to show 

improvement in physical performance and muscle strength. Finally, antioxidant 

supplementation alone appears to not be efficient in fighting sarcopenia.  

 Evidence that antioxidant strategies can be a good option to fight sarcopenia was 

recently brought by  Sinha-Hikim et al. (2013). In this study, they supplemented old mice 

from 18 months old to 23 months old with a GSH precursor cocktail containing L-cystine, 

selenomethionine and L-glutamine. Old control animals presented gastrocnemius atrophy 

(attested by weight and CSA) associated with increased OS and decreased antioxidant 

enzymes activities, exacerbated apoptosis, reduced  regenerative potential of skeletal muscle 

and maybe impaired protein turnover (supposed by a decreased phosphorylation of Akt). On 

the other hand, old rats treated with this GSH precursor cocktail presented an increased 

GSH/GSSG ratio associated with an increase in G6PDH muscle protein content. Moreover, 

the age-related decline in SOD activity was totally reversed as well as lipid peroxidation. 

These beneficial effects on OS were concomitant to an improved regenerative potential of 

skeletal muscle (attested by an up-regulation of the principal compounds of the Notch 

signaling), a decreased apoptosis index and an increased Akt phosphorylation. Finally, old 

treated mice presented a higher muscle mass measured through a higher muscle weight and 

CSA. Recently, although they did not directly treat older people with allopurinol 

(pharmaceutical inhibitor of xanthine oxidase), Beveridge et al. (2013) showed in a 
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retrospective observational study that allopurinol use is associated with greater functional 

gains in older rehabilitation patients. Moreover, Derbre et al. (2012) showed in young animal 

that allopurinol protected against muscle atrophy induced by hind limbs suspension. These 

data suggested that allopurinol could be a good intervention to prevent sarcopenia. However it 

seems that it has been never studied. 
 

2.2. Exercise and antioxidant supplementation at old age  

This part was extracted and modified from the review “Exercise and antioxidant 

supplements in the elderly” written by Gomez-Cabrera, Ferrando, Brioche, Sanchis-

Gomar, Viña and published in Journal of Sport and Health Science in 2013. A full 

version is available in the annex part of this manuscript. 
 

 The beneficial effect of physical activity for the promotion of health and curing of 

diseases among individuals of all ages is beyond all doubt. Strong scientific evidences link 

physical activity to several benefits, including the promotion of health span and not only of 

lifespan. Although physical activity has many well-established health benefits (Vina et al. 

2012), aging and strenuous exercise are associated with increased free radical generation in 

the skeletal muscle (Ji 2001). Thus, whether exercise would worsen the skeletal muscle OS in 

aged population has been an object of debate. Research evidence indicates that senescent 

organisms are more susceptible to OS during exercise because of the age-related 

ultrastructural and biochemical changes that facilitate ROS generation (Ji 2001). Aging also 

increases the incidence of muscle injury, and the inflammatory response can subject senescent 

muscle to further OS. Furthermore, muscle repair and regeneration capacity is reduced at old 

age that could potentially enhance the cellular oxidative damage (Ji 2001). Thus, several 

researchers consider that dietary antioxidant supplementation should be beneficial in the old 

physically active population (Bobeuf et al. 2011). Recent studies suggested a beneficial 

relationship between antioxidant vitamin (e.g., vitamin C) intake and physical performance in 

elderly people (Saito et al. 2012). It has been shown that intake of resveratrol, together with 

habitual exercise, is beneficial for suppressing the aging-related decline in physical 

performance (Ryan et al. 2010). Moreover, it has been shown that antioxidant 

supplementation improves indices of OS associated with repetitive loading exercise and aging 

and improves the positive work output of muscles in aged rodents (Ryan et al. 2010). Bobeuf 

et al. (2010) found that six months of resistance training (3 days per week, 80% 1RM) 

combined with antioxidant supplementation significantly increased fat-free mass in older 

adults. However, these results have not been confirmed by other studies. Nalbant et al. (2009) 
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found that six months of vitamin E supplementation had no additive effect beyond that of 

aerobic training (3 days per week, 70% heart rate reserve) on indices of physical performance 

and body composition in older sedentary adults. Regarding bone density it has been shown 

that combination of resistance training with antioxidant vitamins supplementation does not 

seem to produce synergistic effects on the prevention of osteoporosis (Christen 1994). The 

convenience of supplementing with antioxidant vitamins in the old sport population is 

nowadays, as in the young population, an object of debate. In fact training studies conducted 

in young people to determine whether antioxidant vitamins improve exercise performance 

have generally shown that supplementation is useless (Gey et al. 1970; Yfanti et al. 2010; 

Maughan 1999; Keren & Epstein 1980; Theodorou et al. 2011) or even negative (Gomez-

Cabrera, Ristow, et al. 2012). Several studies suggest that antioxidants may have detrimental 

effects on performance (Sharman et al. 1971; Malm et al. 1997; Malm et al. 1996; Marshall et 

al. 2002). Our group has found that vitamin C supplementation decreases training efficiency 

because it prevents exercise-induced mitochondrial biogenesis (Gomez-Cabrera, Domenech, 

Romagnoli, et al. 2008). These results have been confirmed by other research groups (Kang et 

al. 2009; Ristow et al. 2009). A large proportion of athletes, including elite athletes, take 

vitamin supplements, often large doses, seeking their beneficial effects on performance (Sobal 

& Marquart 1994). The complete lack of any positive effect of antioxidant supplementation 

on physiologic and biochemical outcomes consistently found in human and animal studies 

raises questions about the validity of using oral antioxidant supplementation in the sport 

population (Gomez-Cabrera, Ristow, et al. 2012). On the other hand, Richardson's research 

group identified a clinically significant paradoxical cardiovascular response to exercise 

training and antioxidant supplementation in the elderly (Wray et al. 2009). Antioxidant 

administration, after exercise training, blunted training-induced reduction in blood pressure as 

well as the exercise-induced improvements in flow-mediated vasodilation. The paradoxical 

effects of these interventions suggest a need for caution when exercise and acute antioxidant 

supplementation are combined in elderly mildly hypertensive individuals. Moreover, previous 

reports showed that long-term vitamin E supplementation may increase the risk for heart 

failure in patients with vascular disease or diabetes mellitus (Lonn et al. 2005). In another 

report, Bjelakovic et al. (2007) looked at data from sixty-seven studies on antioxidant 

supplements and they concluded that high beta carotene, vitamin A, and vitamin E 

supplementation seemed to increase the risk of death. These data show that we must be 

cautious about the use of antioxidants and they underscore the need for more studies on doses 
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to administrate, the perfect time course for the administration and the choice of the 

antioxidant strategy to adopt in each situation.   

 Finally, the paradoxical effects of antioxidant supplementation, when combined with 

exercise training, reveal an intriguing, but complex, relationship between aging, exercise, and 

OS. More research for a better clarification of the field is required. As very few studies have 

shown beneficial effects of antioxidant strategies on sarcopenia, it seems imperative to 

consider other strategies such as hormones replacement-therapies for fighting sarcopenia. 

2.3. Hormones replacement-therapies as a possible strategy  

 There is evidence that hormones in particular testosterone, dehydroepiandrosterone 

Sulphate (DHEA which after extraglandular metabolism lead to physiologically active 

testosterone) and growth hormone (GH) whose levels decrease with age, exert an important 

role in the age-related onset of sarcopenia (Sakuma & Yamaguchi 2012; Giannoulis et al. 

2012; Maggio et al. 2013). Consequently, numerous studies try to reverse sarcopenia with 

these latter. A particular attention will be brought to GH because it was used in a study of this 

work.            

 After reviewing more than 150 studies, Baker et al. (2011) conclude that DHEA 

replacement therapy alone failed to increase muscle mass or strength in older persons. For 

instance, Percheron et al. (2003) tested on 280 healthy ambulatory and independent men and 

women (aged 60 to 80 years), if 1-year administration of a replacement dose of DHEA (50 

mg per day, orally administered) could have a beneficial influence on several determinants of 

the muscle strength and body composition. Although this treatment restores DHEA serum 

concentrations to the normal range for young adults (aged 20-50 years), no positive effect was 

observed either on muscle strength or in muscle and fat cross-sectional areas. However, 

beneficial effects of DHEA treatment have been found when it is combined with others 

strategies (Baker et al. 2011; Maggio et al. 2013). Indeed, in a recent study, where elderly 

people were receiving DHEA and vitamin D for 6 months (50mg per day), Kenny et al. 

(2010) observed a slightly improvement in the short physical performance battery (SPPB). On 

the other hand, Villareal & Holloszy (2006) provided evidence that DHEA replacement has 

the beneficial effect of enhancing the increases in muscle mass and strength induced by heavy 

resistance exercise in elderly individuals. However, more studies are needed to confirm these 

results.  
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 In 2006, the findings from 11 randomized controlled trial were examined using the 

methods of meta-analysis to determine whether androgen treatment (testosterone or its more 

potent sub-product 5 α-dihydrotestosterone) increased strength in men aged 65 years old and 

older (Ottenbacher et al. 2006). This meta-analysis was recently completed by Maggio et al. 

(2013) which reviewed the most recent randomized controlled trial done. These authors 

concluded that testosterone or 5 α-dihydrotestosterone treatment is useful to increase muscle 

mass, strength and physical performance (Ottenbacher et al. 2006; Maggio et al. 2013). The 

most convincing and complete data come from the Testosterone in Older Men with Mobility 

Limitations (TOM) Trial realized by Travison et al. (2011). The aim of this placebo-

controlled randomized trial was to determine whether testosterone therapy (10 g testosterone 

gel daily for 6 months) in community-dwelling men (age of 74 years) affected by severe 

limitation in mobility improves muscle strength and physical function. Muscle strength was 

assessed by leg-press and chest-press strength. Physical function was evaluated using a 12-

step stair-climb and 40 meters walk tests. Muscle fatigue was also assessed by trials of lifting 

and lowering a basket holding a weight equivalent to 15% body weight. Finally, lean body 

mass was determined by DXA. All these parameters were enhanced by this treatment and 

were associated with increases in serum total and free testosterone. However, adverse 

cardiovascular events occurred in more men receiving testosterone compared to men 

receiving placebo leading to stop the study. This study highlighted that despite numerous 

significant beneficial effects induced by testosterone treatment among elderly men, more 

studies are needed to find the perfect treatment. Currently, intermittent treatments and/or 

treatments associated with 5 α-reductase inhibitors (to avoid prostate risk) are new approaches 

tested to decrease adverse effects of testosterone.       

 Different mechanisms can explain the beneficial effects of testosterone. Testosterone 

is known to stimulate muscle protein synthesis, improve recycling of intracellular amino 

acids, decrease protein breakdown rate, and enhanced neuromuscular function (increase 

motoneurons activity) (Dubois et al. 2012). Testosterone also promotes satellite cells 

activation and inhibits their differentiation into adipocytes via an androgen receptor-mediated 

pathway (Grossmann 2011). Testosterone treatment is also associated with elevation in 

hemoglobin which can be considered an additional mechanism by which this hormone 

ameliorates muscle oxygenation and function (Fernández-Balsells et al. 2010). Moreover, 

testosterone seems to have anti-inflammatory effects since it can reduce the plasma 

concentration of TNF-α and several interleukins (Malkin et al. 2004). Recently it has been 

shown that testosterone is effective to reverse sarcopenia in rodents (Kovacheva et al. 2010). 
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These authors showed that testosterone decreased lipid peroxidation and apoptosis and 

explain this fact by the concomitant increase in G6PDH muscle protein content. Moreover, 

testosterone treatment led to satellite cells activation though the Notch signaling pathway due 

to myostatin inhibition and Akt activation.       

 Growth hormone is a single-chain peptide of 191 amino acids produced and secreted 

mainly by the somatotrope cells of the anterior pituitary gland. GH coordinates the postnatal 

growth of multiple target tissues, including skeletal muscle (Florini et al. 1996). GH secretion 

occurs in a pulsatile manner with a major surge at the onset of slow-wave sleep and less 

conspicuous secretory episodes a few hours after meals (Ho et al. 1988) and is controlled by 

the actions of two hypothalamic factors, GH-releasing hormone (GHRH), which stimulates 

GH secretion, and somatostatin, which inhibits GH secretion (Giannoulis et al. 2012). The 

secretion of GH is maximal at puberty accompanied by very high circulating IGF-I levels 

(Moran et al. 2002), with a gradual decline during adulthood. Indeed, circulating GH levels 

decline progressively after 30 years of age at a rate of ~1% per year. In aged men, daily GH 

secretion is 5- to 20-fold lower than that in young adults (Ryall et al. 2008). Moreover, 

Veldhuis et al. (1995) found a decrease in GH secretory burst amplitude mass with age 

(maximal rate of GH secretion attained within a release episode). The age-dependent decline 

in GH secretion is secondary to a decrease in GHRH and to an increase in somatostatin 

secretion (Kelijman 1991).         

 The effects of GH administration in elderly people on muscle mass, strength and 

physical performance are still under debate (Giannoulis et al. 2012). Some groups 

demonstrated an improvement in strength after short and long-term administration (3–11 

months) of GH (Welle et al. 1996; Brill 2002; Blackman et al. 2002). For instance, Welle et 

al. (1996) found in healthy subjects over 60 years old that GH treatment for 3 months (0.03 

mg per kg of body weight subcutaneously, 3 times per week) increased lean body mass, 

muscle mass, and thigh strength. Data in the same way were published by Blackman et al. 

(2002) in 26-week randomized, double-blind, placebo-controlled parallel-group trial in 

healthy, ambulatory, community-dwelling US and men aged 65 to 88 years old receiving 20 

µg/kg of body weight subcutaneously 3 times per week. Treated men presented a fat mass 

decrease associated with a lean mass increase (which was higher to another group receiving 

testosterone). Furthermore, men's  max increased with GH and was directly related to 

changes in lean body mass. Unfortunately, some adverse effects such as arthralgia were more 

common in men taking GH. Interestingly, it has been shown in older men that GH therapy led 

to a substantial increase in MHC 2X isoform (Lange et al. 2002). In contrast, others groups 
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have found that muscle strength or muscle mass did not improve on therapy with GH in the 

elderly (Giannoulis et al. 2012). Several reasons may underlie the lack of effectiveness of GH 

treatment in particular failure of exogenous GH treatment to mimic the pulsatile pattern of 

natural GH secretion (Sakuma & Yamaguchi 2012). In addition, reduced mRNA levels of the 

GH receptor in skeletal muscle have been observed in older versus younger healthy men 

(Léger et al. 2008). In animal models, beneficial effects were also found in particular when 

using recombinant human GH. Indeed, Andersen et al. (2000) observed in old rat treated with 

GH (2,7 mg per kg per day during 12 weeks) an increase in calf musculature maximal tetanic 

tension (soleus, plantaris, gastrocnemius, tibialis anterior, EDL) associated with muscle 

hypertrophy (assessed by muscle weight and volume) surely due to the concomitant increased 

protein synthesis. In the same way, Castillo et al. (2005) showed that GH treatment during 4 

weeks (2 mg/kg per day diluted in saline solution, divided into two subcutaneous injections, at 

10:00 and 17:00 h) increased lean mass and decreased fat mass. However, others did not find 

such beneficial effects may be due to a shorter treatment duration, different dose or the source 

of GH (e.g. recombinant porcine GH) (Marzetti, Groban, et al. 2008).   

 Surprisingly, molecular mechanisms by which GH would increase muscle mass, 

strength and maximal oxygen consumption in the elderly and older animals have been poorly 

studied in skeletal muscle. However, data have been provided in other aged tissues, contexts 

or in young people and animals. Thus, chronic GH administration has been shown to reduce 

OS by increasing the concentration of glutathione in central nervous system and liver in  long-

living dwarf mice (Brown-Borg & Rakoczy 2003). This effect could be driven by an up-

regulation of G6PDH (activity and or expression) since it has been shown that GH is able to 

up-regulated G6PDH in vitro (Gevers et al. 1996) and in rat liver (Gumaa et al. 1969) but to 

our knowledge this effect has never been shown in skeletal muscle. Furthermore, an anti-

apoptotic effect in the heart of senescence-accelerated mice have been supposed since RNA 

level of TNF-α and several pro-apoptotic effector such as BAX and Bad were decreased in 

response to GH treatment (30 days, 2mg/kg per day) (Forman et al. 2009). This effect was 

confirmed in atrophied rat with heart failure treated with GH (1mg/kg per day) where 

apoptosis index was decreased in soleus muscle (Vescovo et al. 2005). In the same study, they 

found that GH treatment was able to enhance markers of mitochondriogenensis (PGC-1α and 

cytochrome c) in soleus muscle. On the other hand, it has been shown in hepatoma cells 

culture that activation of protein synthesis by GH requires signaling through mTOR (Hayashi 

& Proud 2007). Also, effects of GH are known to be driven by IGF-1 which can be produced 

in either the liver or in muscle. Different isoforms of IGF-1 have diverse effects. Liver-
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derived IGF-1 appears to predominantly increase muscle mass by improving protein 

synthesis, whereas muscle-derived IGF-1 has effects on the development of satellite cells and 

on maintenance of neuromuscular function (Perrini et al. 2010). On the other hand, it has been 

shown that IGF-1 is able to slow protein breakdown (Dubois et al. 2012) and decrease 

apoptosis and OS in vitro (Yang et al. 2010). All these mechanisms need to be confirmed in a 

sarcopenic context.           

 Nowadays, it appears that although hormone replacement therapies notably 

testosterone and GH are useful in improving muscle mass in the elderly with limited mobility, 

more studies are needed to continue to explore others parameters of the different treatments 

such as doses, duration and periodicity (intermittent versus continuous) to avoid adverse 

effects. In GH treatment, try treatments mimicking its pulsatile secretion. Moreover, by 

understanding by which mechanisms hormones act in older animals, it could be possible to 

find new molecules to target in a sarcopenia context and more generally to fight muscle 

disuse in various situation (cachexia, immobilization), or to improve muscle hypertrophy in 

an exercise context.  

 As previously exposed, effective strategies to attenuate sarcopenia are able to improve 

redox status, mitochondrial functions and protein synthesis. They can also decrease apoptosis 

or activate cell proliferation (notably satellite cells). All these strategies are known to up-

regulate the glucose-6-phosphate dehydrogenase (G6PDH) which is known to be involved in 

these different mechanisms (as it will be presented). Consequently, G6PDH would be a 

potential target in strategies against sarcopenia. Moreover, DHEA known to inhibit G6PDH in 

vitro (Tian et al. 1998), failed to attenuate sarcopenia when supplemented alone. On the 

contrary, beneficial effects were obtained with DHEA in combination with others strategies 

(i.e. exercise and vitamin D) which are recognized to increase G6PDH activity (i.e. exercise 

and vitamin D; Barakat et al. 1989; Stanton 2012) . Thus, in the following section, it will be 

presented with more details the reasons why G6PDH could be a new potential target to fight 

sarcopenia. 
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3. The Glucose-6-Phosphate Dehydrogenase as potential target to fight 

sarcopenia 
 

 The glucose-6-phosphate dehydrogenase (G6PDH) was first described in 1931 

(Kornberg et al. 1955), and the classic technique for measuring its activity is basically the 

same as used today (measure the rate of increase of absorbance at 340 nm from the 

conversion of NADP to NADPH by G6PDH). Most studies have since focused on G6PDH 

deficiency (which is associated with hemolysis after eating certain foods or taking certain 

medications), and lipid metabolism. G6PDH deficiency is the most common gene mutation in 

the world, and the numerous mutations have been classified by the World Health 

Organization (Nkhoma et al. 2009) according to the activity as follows: class I is < 1% of 

wild-type activity; class II is <10%; class III is 10–60%; class IV is 60–90% (considered 

normal activity); and class V is > 110%. It is estimated that at least 400 million people 

worldwide are G6PDH deficient and most are class III. During the last decade, studies have 

started to explore its role in  diabetes (Park et al. 2005a), heart failure (Assad et al. 2011) and 

cancer (Kuo et al. 2000). However, it is now clear that G6PDH is a critical metabolic enzyme 

under complex control that resides at the center of an essential metabolic nexus that affects 

many physiological processes. Surprisingly, its role in skeletal muscle have been poorly 

studied whereas several clinical cases of rhabdomyolysis due to G6PDH deficiency have been 

reported more than fifteen years ago (Kimmick & Owen 1996). Moreover, numerous studies 

have shown since the eighties that dysregulation of its activity is associated with myopathies 

(Elias & Meijer 1983; Meijer & Elias 1984). Thus, it appears important to study its 

implication in skeletal muscle physiology and physio-pathology. Here, we will present data 

showing that down-regulation of G6PDH would be involved in sarcopenia through several 

mechanism such as decreased antioxidant capacity. On the other hand, we will provide data 

suggesting that the up-regulation of G6PDH would be a good strategy to combat sarcopenia. 

However, we will first remember it functioning. 

3.1. G6PDH biochemistry and regulation in skeletal muscle 
  

 G6PDH controls the entry of glucose-6-phosphate (G6P) into the pentose phosphate 

pathway (PPP) also known as hexose monophosphate shunt. Figure 16 shows an initial 

irreversible oxidative stage of which G6PDH is the first and rate-limiting enzyme and a 

reversible nonoxidative stage in which transketolase and transaldolase are the key enzymes. 

The major products of the PPP are ribose-5-phosphate (R5P) and nicotinamide adenine 
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dinucleotide phosphate (NADPH) generated from NADP by G6PDH and the next enzyme in 

the pathway 6-phosphogluconate dehydrogenase (PGD). In the following paragraphs it will be 

exposed why through NADPH and R5P, G6PDH may be involved in sarcopenia and why 

enhancing their production by G6PDH would help to combat sarcopenia. Not long ago, 

G6PDH was only described as the principal source of NADPH in the cytosol. However, it has 

been recently shown that G6PDH is present in the mitochondria of skeletal muscle cells and 

provides NADPH like isocitrate dehydrogenase (ICDH), malic enzyme (ME) and glutamate 

dehydrogenase (GDH) which were originally described as the principal sources of NADPH in 

mitochondria. Thus, NADPH is mainly produced by five enzymes in mammalian cells, 

G6PDH, 6-PGD, ICDH, ME and GDH. All have been studied extensively and play critical 

cellular roles. However, G6PDH appears to be of unique importance to many cellular 

processes that use NADPH, since its inhibition lowers NADPH levels which are not 

maintained at normal levels by the other enzymes providing NADPH (Stanton 2012; Hecker 

& Leopold 2013).  
 

Figure 16. The penthose phosphate pathway (extracted from Hecker & Leopold 2013). 

 
 

 It has been traditionally taught that G6PDH is regulated by the NADPH/NADP ratio 

so that as the ratio decreases, activity increases to provide more NADPH. Indeed, G6PDH is 

activated following exposure of cells to various extracellular oxidants (Kletzien et al. 1994) 

that lead to decrease in the level of NADPH. Regulation by the NADPH/NADP ratio has been 

clearly demonstrated in vitro (Holten et al. 1976), but not in vivo. G6PDH is highly regulated 
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at the transcriptional, translational, and post-translational level, and intracellular location. 

G6PDH is the downstream target of many molecules (see table 11) in particular growth 

factors and their downstream. In in skeletal muscle of mice, it has been found that 

testosterone treatments known to activate the PI3K/Akt/mTOR pathway is able to increase 

G6PDH activity and protein content associated with muscle hypertrophy (Max 1984; 

Kovacheva et al. 2010). Aerobic training has been also found to increase G6PDH activity in 

rat skeletal muscle (Barakat et al. 1989). However, other factors also regulate G6PDH are 

resumed in the table 11. Interestingly, as shown in the table 11, G6PDH is mainly activated 

by growth factors suggesting a role in cell growing as it will be presented. 
 

Table 11. Positive and Negative regulators of G6PDH (modified from Stanton 2012). 

Positive regulators Negative regulators 
PDGF, EGF, VEGF, HGF TNFα 

Insulin P38 MAPK 
Benfotiamine (vitamin B1 analog) P53 

Vitamin D AMPK 
Testosterone ,Estrogens Aldosterone 

Growth Hormone Angiotensine 
Exercise Arachidonic acid 

PI3K, Akt, mTOR, p70S6K cAMP 
Nrf2 cAMP-dependent PKA 
Src 

 
 

TIGAR 
 

 
Hsp27 

 
 

SREBP 

 

 
ATM 

 
 

Phospholipase C  
cGMP-dependent PKG  

Ras-GTPase  
Abbreviations: PDGF, platelet-derived growth factor; EGF, epidermal growth factor; VEGF, vascular 
endothelial cell growth factor; HGF, hepatocyte growth factor; PI-3K, phosphatidylinositol-3-kinase; PKG, 
protein kinase G; mTOR, mammalian target of rapamycin; TIGAR, TP53-induced glycolysis and apoptosis 
regulator; Hsp27, heat-shock protein 27; ATM, ataxia telangiectasia mutated; SREBP, sterol-responsive element 
binding protein; PKA, protein kinase A; CREM, cyclic AMP response element modulator; Nrf2, nuclear-factor-
E2-related factor; TNFa, tumor necrosis factor alpha; AMPK, 50 adenosine monophosphate-activated protein 
kinase 

 

3.2. G6PDH, NADPH, antioxidant defenses and sarcopenia 
 

 Several antioxidant systems depend on the production of NADPH for proper function. 

The first is the glutathione system (see chapter 3) dependent on the production of reduced 

glutathione by glutathione reductase that depends on NADPH (M. D. Scott et al. 1993). 

Catalase does not need NADPH to convert hydrogen peroxide to water but has an allosteric 

binding site for NADPH that maintains catalase in its active conformation (M. D. Scott et al. 

1993). Note that OS in erythrocyte from G6DP deficient people is generally attributed to a 
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decrease NADPH content leading to impaired glutathione recycling but the real mechanism is 

a dramatic decrease in catalase activity (M. D. Scott et al. 1993). There is a very strong 

positive correlation between G6PDH activity and catalase activity that is more elevated than 

the correlation between G6PDH activity and GSH content (M. D. Scott et al. 1993). 

Superoxide dismutase does not use NADPH to convert superoxide to hydrogen peroxide; 

however, if this is not adequately reduced chemically by catalase or glutathione, the increased 

hydrogen peroxide levels will quantitatively increase and inhibit the SOD activity (Stanton 

2012).  It has been shown in various studies that during sarcopenia and aging, decreased 

G6PDH activity and/or muscle protein content are associated with a depletion of GSH, an 

increase in the GSSG/GSH ratio associated with GR, Gpx, Catalase and SOD decreased 

activity (Kumaran et al. 2004; Kumaran et al. 2008; Kovacheva et al. 2010; Sinha-Hikim et 

al. 2013). These would explain the concomitant observed increase in lipid peroxidation and 

protein oxidation (Kumaran et al. 2004; Kumaran et al. 2008; Kovacheva et al. 2010; Sinha-

Hikim et al. 2013). On the other hand, in response to different antioxidant strategies or 

testosterone treatment in rats, G6PDH protein content or activity was increased in skeletal 

muscle and a concomitant increase in GSH, GR, Gpx, Cat and SOD activities was observed 

leading to a reduce oxidative damage (Kumaran et al. 2004; Kumaran et al. 2008; Kovacheva 

et al. 2010; Sinha-Hikim et al. 2013). These results provided evidences that targeting G6PDH 

would be a good strategy to combat sarcopenia by restoring a young redox-status which is 

very important to reestablish protein synthesis and muscle regenerative potential (through 

satellite cells activation). As previously exposed, Kovacheva et al. (2010) published data in 

this way. Indeed, testosterone treatment in old mice was able to increase G6PDH muscle 

content associated with decreased lipid peroxidation and increased Akt phosphorylation and 

satellite cells activation. Finally, these mice presented muscle hypertrophy. Similar results 

have been published by Sinha-Hikim et al. (2013) in old mice in response to a treatment with 

a GSH precursor. In young animals, it has been shown that aerobic exercise can increase 

G6PDH activity in skeletal muscle and liver  (Askeq et al. 1975). However, there is no data 

about exercise, sarcopenia and G6PDH. Although G6PDH supplies the antioxidant 

glutathione system with NADPH and appears to maintain Cat and SOD activity, the NADPH  

produced by G6PDH could be also used by several pro-oxidant systems such as NADPH 

oxidase (Nox), nitric oxide synthase (NOS), and xanthine oxidase which have been shown to 

dependent directly or not from NADPH (Porras et al. 1981; Xia et al. 1996; Babior 1999; 

Tsutsui et al. 2011). Although observed in specific condition such as heart failure (Hecker & 

Leopold 2013), this relation does not seem to occur in sarcopenia since this latter is associated 
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with a decreased G6PDH activity in skeletal muscle whereas RONS production increased 

through XO, NOS and NOX. Their NADPH source would be others enzymes or they would 

need a very small NADPH amount to work at their optimal level. Moreover, Braga et al. 

(2008) found a dramatic G6PDH protein content decrease in sarcopenic mice associated with 

an increased NOS protein content. In the same way, G6PDH overexpression in endothelial 

cell known to normally have a high XO activity, presented decreased RONS production by 

XO (Leopold et al. 2003). 

 

3.3. G6PDH, apoptosis and sarcopenia 
 

 Various studies in cell culture have shown a direct negative relation between G6PDH 

activity and/or protein content and apoptosis (Salvemini et al. 1999; Tian & Braunstein 1999; 

Nutt et al. 2005; Fico et al. 2004). For instance, G6PDH-deleted embryonic stem cells a more 

sensitive to H2O2-induced apoptosis associated with GSH depletion and increased caspase 3 

and 9 protein content as well as  (Fico et al. 2004). On the other hand, Nutt et al. (2005) have 

shown that inhibition G6PDH by DHEA activated caspase 2 and promote oocyte apoptosis. In 

old rodents, in numerous studies, G6PDH decreased activity and/or protein content in skeletal 

muscle is associated with increased apoptosis and atrophy (Braga et al. 2008; Kovacheva et 

al. 2010; Sinha-Hikim et al. 2013). Moreover, Braga et al. (2008) confirmed in old mice that 

depletion in G6PDH protein content is associated with enhancement of caspase 2 and caspase 

9 protein content in skeletal muscle. On the other hand, in response to different strategies to 

fight against sarcopenia, increased G6PDH activity is associated with decreased apoptosis and 

muscle hypertrophy (Kovacheva et al. 2010; Sinha-Hikim et al. 2013). This beneficial effect 

would pass through a link between Akt and G6PDH. Indeed, Akt is also known to have anti-

apoptotic effects (Robey & Hay 2006). Moreover, in the aforementioned studies, in old 

muscle Akt and G6PDH protein were both decreased and associated with muscle atrophy 

(Kovacheva et al. 2010; Sinha-Hikim et al. 2013). Finally, decreased G6PDH muscle activity 

and/or protein content appeared to be involved in sarcopenia by promoting apoptosis through 

caspases activiation whereas up-regulation of these latter was associated with decreased 

apoptosis and muscle hypertrophy. 
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3.4. G6PDH, NADPH, ribose-5-phosphate and sarcopenia 
 

 G6PDH activity would have an important role in muscle hypertrophy and regeneration 

by acting on the potential proliferation of satellite cells, RNA and protein synthesis. Indeed, in 

various old works studying the muscle degeneration-regeneration cycle it, has been shown 

that during regeneration (known to involved satellite cells) G6PDH activity is dramatically 

increased (Wagner et al. 1977; Wagner et al. 1978) while protein synthesis and RNA 

synthesis were increased (Wagner et al. 1978). Moreover, inhibition of RNA and protein 

synthesis was associated with G6PDH inhibition (Wagner et al. 1978). Note that part of the 

G6PDH activity increase is due to the concomitant macrophage infiltration because they have 

a high G6PDH activity to provide NADPH to NOX to degrade necrotic tissue (Wagner et al. 

1978). Increased quantities of RNA have been noted in a number of studies on muscle 

regeneration in response to pharmacological degeneration in rats (Susheela et al. 1966; 

Neerunjun & Dubowitz 1974). Thus, it was argued that G6PDH would play an important role 

in RNA and DNA synthesis since it is the rate limiting enzyme of the PPP which is the main 

pathway synthetizing R5P, an essential compound of nucleic acid. Through this role G6PDH 

would indirectly impact protein synthesis. These various hypotheses were confirmed by 

studies in vitro that have shown that overexpression of G6PDH accelerates proliferation of 

numerous cell lines associated with increased DNA and protein synthesis (Tian et al. 1998; 

Kuo et al. 2000). On the other hand, G6PDH deficient cells presented lower growth rate (Ho 

et al. 2000). An increased RONS production was observed in these cells suggesting an 

impaired redox status which would play an important role in the slower growth. Furthermore, 

inhibition of G6PDH caused cells to be more susceptible to the growth inhibitory effects of 

H2O2 due to NADPH decrease leading to reduce GSH content (Tian et al. 1998). Since, 

inhibition of G6PDH in cultured cells lead to decrease their proliferation due to a decreased 

protein and DNA synthesis associated with an impaired redox status, it could be hypothesized 

that G6PDH decrease (activity and protein content) observed in skeletal muscle during aging, 

would participate to reduce the regenerative capacity of skeletal muscle. On the other hand, 

increased G6PDH activity would improve this mechanism. Data in this way have been 

published by Kovacheva et al. (2010) which found old sarcopenic mice showed impaired 

satellite cells proliferation associated with decreased skeletal muscle G6PDH protein content 

and increased oxidative damage. Conversely treated mice with testosterone presented an 

increased G6PDH muscle protein content associated with satellite cells proliferation and 

decreased oxidative damage (Kovacheva et al. 2010). Furthermore, a hypothetical decreased 
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G6PDH activity into satellite cells during aging would participate in their lower capacity to 

proliferate and would make them more sensitive to oxidative stress. Moreover, based on the 

aforementioned studies, G6PDH decreased during aging would participate to decrease protein 

synthesis. Until now, only a decrease in Akt phosphorylation associated with decreased 

G6PDH activity and atrophy would support this hypothesis in skeletal muscle (Kovacheva et 

al. 2010; Sinha-Hikim et al. 2013).  

 Finally, decreased G6PDH activity and/or protein content in skeletal muscle observed 

during aging, would participate in sarcopenia by decreasing the antioxidant capacity attested 

by a decreased GSH content, catalase and SOD activities which are intimately linked. In 

consequence, the concomitant increased RONS production observed would damage cellular 

compounds in particular proteins which would impair the PI3K/Akt/mTOR pathway leading 

to decrease protein synthesis. There is no exiting data about G6PDH and proteolysis, 

however, by decreasing antioxidant defense, RONS would accumulate their self and promote 

the activation of several proteolysis pathway as exposed at the end of the chapter 3. On the 

other hand, the parallel decrease in Akt phosphorylation and G6PDH activity lead to activate 

apoptosis through caspases activation. Decrease in G6PDH activity would reduce the 

regenerative potential of skeletal muscle by limiting satellite proliferation. Activate G6PDH 

would restore an optimal redox status and reverse these adverse effects. All these mechanisms 

are resumed in the following figure (figure 17). 
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Figure 17. G6PDH-linked mechanisms possibly involved in sarcopenia. 
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4. Chapter 4 abstract 
  

 Exercise (aerobic and resistance) appears to be the perfect strategy against sarcopenia 

because it can lead to increase muscle mass, strength and physical performance (Pillard et al. 

2011; Di Luigi et al. 2012; Wang & Bai 2012; Montero & Serra 2013). However, many 

elderlies are non-ambulatory or have co-morbidities that would preclude participation in 

training programs (Williams et al. 2007).        

 To overcome such barriers, alternatives strategies such as antioxidant strategies, in 

particular a GSH precursor cocktail (Sinha-Hikim et al. 2013), and hormone replacement 

therapies, in particular testosterone (Kovacheva et al. 2010; Travison et al. 2011) and growth 

hormone (Blackman et al. 2002; Andersen et al. 2000) have been tested in both humans and 

rodents. Like exercise, they presented beneficial effect on muscle mass, strength and physical 

performance.  

 These effective strategies against sarcopenia (including exercise), can improve protein 

turnover, reduce apoptosis, decrease mitochondrial dysfunction, activate mitochondriogenesis 

and muscle regeneration through satellite cells. Improvement of these mechanisms would be 

made possible thanks to a restoration of the redox homeostasis which appears as the common 

mechanism to all these different strategies. 

 The glucose-6-phosphate dehydrogenase (G6PDH) which is the rate limiting enzyme 

of the pentose phosphate pathways, is the main cellular source of NADPH which is necessary 

for an optimal functioning of antioxidants systems (glutathione system, catalase and indirectly 

superoxide dismutase). It seems that the restoration of redox homeostasis by the different 

effective strategies against sarcopenia involves an up-regulation of G6PDH muscle protein 

content and/or activity. 

 Moreover, data in vitro or in vivo, have suggested that G6PDH up-regulation would be 

involved in decreasing apoptosis, improving DNA, RNA and in fine protein synthesis and 

also muscle regeneration supposing that G6PDH would have a central role in the development 

of sarcopenia. However, these data need to be confirmed. 
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 The components of the sarcopenia definition are still in debate in the medical and 

scientific world. However, the different working groups agree on some points which can 

constitute the current consensus as follow. Sarcopenia is a geriatric syndrome initially 

characterized by a decrease in muscle mass that will get worse causing a deterioration in 

strength and physical performance (Muscaritoli et al. 2010; Cruz-Jentoft et al. 2010; Fielding 

et al. 2011; Morley et al. 2011). What people should be primarily target for a diagnosis? What 

would the standardized diagnostic? are questions still under debate.  

 The observed loss of muscle strength in sarcopenia is primarily due to muscle atrophy, 

while a decrease in the specific strength (i.e. the force generated relative to the surface of the 

fiber) is also involved. Muscle atrophy can be explained in part by the reduction in muscle 

protein synthesis and increased protein degradation via the ubiquitin-proteasome system and 

the calcium-dependent activation of proteases (i.e. calpains and caspases). Furthermore, 

exacerbation of myonuclei apoptosis results would decrease transcriptional efficiency and 

thus limit protein synthesis. This is probably worsened by alterations in aging muscle 

regeneration capacity with reduction of the incorporation of new nuclei and decrease in the 

pool of satellite cells and their capacity for proliferation and differentiation (in particular due 

to a less functional cellular and systemic environment). Moreover, the decrease in 

mitochondrial dynamics (biogenesis vs degradation via autophagy, fusion and fission) leads to 

the accumulation of defective mitochondria which then fall into a vicious circle, in which 

RONS production increases. All these mechanisms contribute to the onset of sarcopenia and 

are controlled by numerous signals such as decreased production of anabolic hormones (GH, 

IGF-1, testosterone, insulin). Links and interactions between these depleted hormones and the 

cellular dysfunctions cited earlier remain partly unknown. A potential candidate could be 

chronic oxidative stress, whose recent studies emphasize its involvement in sarcopenia. 

 Both in humans and animals, it has been showed that sarcopenic muscle exhibits 

increased RONS production (e.g. O2
•-  et H2O2)  (Capel et al. 2004; Capel, Rimbert, et al. 

2005; Capel, Demaison, et al. 2005; Chabi et al. 2008; Jackson et al. 2011; Andersson et al. 

2011; Miller et al. 2012). This overproduction of RONS is mainly due to mitochondrial 

dysfunctions (Capel, Rimbert, et al. 2005; Chabi et al. 2008) and increased xanthine oxidase 

activity (Lambertucci et al. 2007; Ryan et al. 2011). RONS overproduction in sarcopenic 

muscle leads to an increase in oxidative damage to cellular components which reflect the 

inability of antioxidant systems to contain this overproduction and attest an imbalance of the 

"oxidants-antioxidants" balance leading to an impaired redox homeostasis, known as 

oxidative stress (Sies 1985; Jones 2006). In vitro studies showed that the oxidative stress in 
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muscle cells would reduce protein synthesis, cell regeneration capacity and stimulates 

proteolysis. Chronic oxidative stress observed in aged muscle could promote these 

mechanisms and lead to sarcopenia. Nevertheless, its implication on these cellular 

dysfunctions needs to be clearly demonstrated in vivo.    

 Exercise appears to be the perfect strategy against sarcopenia because it can lead to 

increase muscle mass, strength and physical performance (Pillard et al. 2011; Di Luigi et al. 

2012; Wang & Bai 2012; Montero & Serra 2013). However, many elderlies are non-

ambulatory or have co-morbidities that would preclude participation in training programs 

(Williams et al. 2007). To overcome such barriers, alternatives strategies such as antioxidant 

strategies, and hormone replacement therapies (testosterone and GH) have been tested in both 

old humans and rodents and showed an increase in muscle mass, strength and physical 

performance (Sinha-Hikim et al. 2013; Kovacheva et al. 2010; Travison et al. 2011; 

Blackman et al. 2002; Andersen et al. 2000). The effective strategies against sarcopenia can 

improve protein turnover, reduce apoptosis, improved mitochondrial functions and dynamics, 

and muscle regeneration. These improvements would be made possible thanks to a restoration 

of the redox homeostasis which appears as the common mechanism to all these different 

strategies. 

 It seems that the restoration of redox homeostasis by the different strategies against 

sarcopenia involves an up-regulation of G6PDH muscle protein content and/or activity which 

would supply NADPH to several antioxidant systems. Moreover, few data in vitro or in vivo, 

have suggested that G6PDH would play a central role in muscle mass regulation by increasing 

protein synthesis and/or decreasing proteolysis, decreasing apoptosis, improving cell 

proliferation and growth. Futhermore, Max (1984) and Kovacheva et al. (2010) have shown 

that in hypertrophic conditions there was an up-regulation of G6PDH. However, these data 

need to be confirmed. 

 In this context, this thesis will attempt to answer three general objectives. The first 

objective is to determine in vivo to what extent a pro-oxidant redox status due to aging within 

the muscle tissue may modulate signaling pathways involved in cellular mechanisms 

underlying sarcopenia. The second objective is to show that return to normal functioning of 

these signaling pathways requires a restoration the redox homeostasis. Finally, the third 

objective of this thesis is to identify actors and their possible mechanisms by which the redox 

homeostasis could be maintained.  
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The specific objectives of this thesis are: 

 

- Determine whether the pro-oxidant redox status in skeletal muscle of aged rodents 

can modulate signaling pathways involved in protein synthesis and proteolysis but 

also in muscle regeneration and mitochondriogenesis leading to sarcopenia. We 

hypothesized in particular that oxidative stress would lead to a down-regulation of 

the PI3K/Akt/mTOR and PGC-1α/Tfam/Nrf-1 signaling pathways, and to an up-

regulation of the ubiquitin proteasome system markers dependent as well as 

inhibitors of muscle regeneration (Study 1). 

 

- Determine in which measures and by which mechanisms a treatment with growth 

hormone allows to prevent sarcopenia in older rodents. We make in particular two 

hypotheses.          

 1) The GH via an increase in the IGF-1 circulating concentrations will allow 

restoring a normal functioning of the PI3K/Akt/mTOR signaling pathway while 

decreasing the expression several compounds of the ubiquitin proteasome 

dependent system and inhibitors of the muscle regeneration. A possible effect on 

the mitochondriogenesis is also envisaged (Study 1).     

 2) These beneficial effects are made possible by an improved redox status in 

particular through overexpression of certain antioxidant enzymes (Study 1). 

 

- Determine in vivo using a transgenic mouse model overexpressing Glucose-6-

phosphate dehydrogenase (G6PDH), the roles of this enzyme in regulating body 

composition (muscle mass and fat mass) and its impacts on physical performances 

(muscle strength, maximal oxygen uptake and endurance capacity) (Study 2).  

 

- Determine in vivo if the overexpression of G6PDH allows improved redox status 

in resting condition and protection against pro-oxidizing situations (exhaustive 

exercise and hyperoxia) (Study 3). 
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ABSTRACT  

 The aim of our study was to elucidate the role of GH replacement therapy in three of 

the main mechanism involved in sarcopenia: alterations in mitochondrial biogenesis, increase 

in oxidative stress, and alterations in protein balance. 

We used young and old Wistar rats that received either placebo or low doses of GH to reach 

normal IGF-1 values observed in the young group.  

We found an increase in lean body mass and plasma and hepatic IGF-I levels in the old 

animals treated with GH. We also found a lowering of age-associated oxidative damage and 

an induction of antioxidant enzymes in the skeletal muscle of the treated animals. GH 

replacement therapy resulted in an increase in the skeletal muscle protein synthesis and 

mitochondrial biogenesis pathways. This was paralleled by a lowering of inhibitory factors in 

skeletal muscle regeneration and in protein degradation. 

 GH replacement therapy prevents sarcopenia by acting as a double-edged sword, 

antioxidant and hypertrophic. 
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INTRODUCTION 

 Sarcopenia is a syndrome characterised by progressive and generalised loss of skeletal 

muscle mass and strength with a risk of adverse outcomes such as physical disability, poor 

quality of life and death (Evans 1995).This loss of muscle occurs at a rate of 3-8% per decade 

after the age of thirty with a higher rate of muscle loss at advanced age (Holloszy 2000). 

Recent estimates show that one-quarter to one-half of men and women aged 65 and older are 

likely sarcopenic (Janssen 2004). Progressive sarcopenia is ultimately central to the 

development of frailty, an increased likelihood of falls, and impairment of the ability to 

perform activities of daily living(Evans 1995). The logical endpoint of severe sarcopenia is 

loss of quality of life and ultimately institutionalization (Wolfe 2006).  

 The importance of maintaining muscle mass and physical and metabolic functions in 

the elderly is well-recognized. Less appreciated are the diverse roles of muscle throughout life 

and the importance of muscle in preventing some of the most common and increasingly 

prevalent clinical conditions, such as obesity and diabetes (Wolfe 2006). Skeletal muscle 

atrophy is a common feature in several chronic diseases and conditions. It reduces treatment 

options and positive clinical outcomes as well as compromising quality of life and increasing 

morbidity and mortality (Wolfe 2006). Individuals with limited reserves of muscle mass 

respond poorly to stress (Wolfe 2006).  In support of the importance of maintaining skeletal 

muscle mass, strength and function, a recent study has demonstrated that all-cause, as well as 

cancer based, mortality, is lowest in men in the highest tertile of strength, an indicator of high 

muscle mass (Ruiz et al. 2008).  

 If there is a pre-existing deficiency of muscle mass before trauma, the acute loss of 

muscle mass and function may push an individual over a threshold that makes recovery of 

normal function unlikely to ever occur. For this reason, >50% of women older than 65 years 

who break a hip in a fall never walk again (Cooper 1997).  

 Several hormones have been suggested to have an impact on muscle mass, strength 

and function (Cruz-Jentoft 2012). Among them, growth hormone (GH) has been one of the 

most studied (Cruz-Jentoft 2012). Levels of GH are usually lower in the elderly subjects and 

the amplitude and frequency of pulsatile GH release are significantly reduced (Cruz-Jentoft 

2012). Thus it has been hypothesized that GH would be useful in preventing the age-related 

loss of muscle mass (Giannoulis et al. 2012).   
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 In our study we aimed to elucidate the role of GH replacement therapy in four of the 

main mechanisms involved in the onset and progression of sarcopenia: alteration in 

mitochondrial biogenesis, increase in oxidative stress, increase in protein degradation, and 

lowering in the rate of protein synthesis (Doherty 2003; Derbré et al. 2012). 

 In this study, we present the existing evidence behind the argument that restoration of 

GH profile is a good intervention to improve or preserve skeletal muscle mass in old animals.  
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MATERIAL AND METHODS 

Animals and treatment 

 Ten young (aged 1 month) and twenty old (aged 22 months) male Wistar rats, 

maintained under controlled light and temperature conditions, were used in the study. We 

chose 22 month-old rats because previous studies have reported that sarcopenia is evident at 

this age in this species (Hopp 1993). The animals were fed a normal rat chow (A.04; Panlab, 

Barcelona, Spain) and had free access to tap water. Half of the old animals (n=10) were 

treated daily with two subcutaneous doses of GH (2mg/kg/d from Omnitrope, Sandoz, Spain, 

diluted in saline) one at 10.00 and another at 17.00 h for 8 weeks. Control animals were 

injected with the same amount of vehicle (saline solution) as GH-treated rats. After eight 

weeks of treatment, rats were sacrificed by cervical dislocation followed by decapitation and 

troncular blood was collected and processed to measure plasma IGF-I. Gastrocnemius muscle, 

liver, and heart were collected and immediately frozen in liquid nitrogen. The study was 

conducted following recommendations from the institutional animal care and use committee, 

according to the Guidelines for Ethical Care of Experimental Animals of the European Union. 

The Committee of ethics in research from the University Complutense of Madrid granted 

ethical approval.  

 We have previously shown that young animals do not show any effect when submitted 

to our GH treatment  because they have high endogenous GH levels and also do not show 

alterations that could get ameliorated  (Castillo et al. 2004; Carmen Castillo et al. 2005; C 

Castillo et al. 2005). This is why this experimental group has not been included in the study. 

 

Body composition study 

 All rats were weighted weekly to determine changes in body weight during the study. 

After the rats were sacrificed total body fat was determined by the Specific Gravity Index 

(SGI), which shows the proportion between lean mass and body fat (López-Luna et al. 1986). 

This can be calculated comparing the animal’s carcass weight (animal without head, hair and 

viscera) in the air (Wa) and in the water (Ww), using the following formula: SGI = Wa/[(Wa–

Ww)] (assuming the specific gravity of water at 21°C to be one) (López-Luna et al. 1986). 
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IGF-I levels 

 Plasma and hepatic IGF-I levels were measured as previously described (Rol De Lama 

2000) by an specific radioimmunoassay, using reagents kindly provided by the National 

Hormone and Pituitary Program from the National Institute of Diabetes and Digestive and 

Kidney Diseases and a secondary antibody obtained in our laboratory. 

Determination of oxidative damage in gastrocnemius muscle 

 Oxidative modification of total proteins in gastrocnemius muscles was assessed by 

immunoblot detection of protein carbonyl groups using the “OxyBlot” protein oxidation kit 

(Millipore, Massachusetts) as previously described (Romagnoli et al. 2010). 

Oxidative DNA damage was measured by 8-hydroxy-2′-deoxyguanosine (8-OHdG). A 

commercially available enzyme linked immunoassay (Highly Sensitive 8-OHdG Check, 

Japan Institute for the Control of Aging, Japan) was used to measure oxidized DNA in 

isolated muscle DNA samples. DNA was extracted from the muscle via the High Pure PCR 

Template Preparation Kit (Roche, GmbH, Germany) according to the manufacturer’s 

protocol. DNA was used if it had a minimum 260:280 ratio of 1.8. The assay was performed 

following the manufacturer's directions. Briefly, 50 μl of DNA were incubated with the 

primary antibody, washed, and then incubated in secondary antibody. The chromogen 

(3,3′,5,5′-tetramethylbenzidine) was added to each well, and incubated at room temperature in 

the dark for 15 min. The reaction was terminated and the samples were read at an absorbance 

of 450 nm. Samples were normalized to the DNA concentration measured via a plate 

spectrophotometer for nucleic acids (ND-2000, NanoDrop, Wilmington, DE). All analyses 

were done in triplicate. 

 

Determination of citrate synthase and glucose-6-phosphate dehydrogenase (G6PDH) 

activities in gastrocnemius muscle 

 Citrate synthase assay was performed in the gastrocnemius muscle following the 

method of Srere (Srere 1969).  Results were obtained in nmol x mg of protein-1 x min-1. 

Values were normalized to those observed in the samples obtained from the young group, 

which were assigned a value of 100%. 

Glucose-6-phosphate dehydrogenase activity was determined following the method of Waller 

and co-workers(WALLER et al. 1957). Results have been expressed in nmol x mg of protein-1 

x min-1. 
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 Protein concentrations were determined by Bradford’s method (Bradford 1976) by 

using bovine serum albumin as standard. 

 

Immunoblot analysis 

 Aliquots of muscle lysate (50-120 µg of proteins) were separated by sodium dodecyl 

sulfate–polyacrylamide gel electrophoresis. The whole gastrocnemius was used to ensure 

homogeneity. Proteins were then transferred to nitrocellulose membranes, which were 

incubated overnight at 4 °C with appropriate primary antibodies: anti-myf5 (1:200, Santa 

Cruz Biotechnology Inc, Santa Cruz, CA), anti-p70S6K (1:1000, Cell Signaling); anti-

phosphorylated p70S6K (1:1000, Cell Signaling); anti-myostatin (1:1000, Abcam, UK); anti-

catalase (1:5000, Sigma Aldrich, Missouri); anti-G6PDH (1:1000, Abcam, UK);  anti-Gpx 

(1:2000, Abcam, UK); anti-cytochrome C (1:1,000, Santa Cruz Biotechnology, CA), anti-

PGC-1α (1:1000, Cayman); anti-AKT (1:1000, Cell Signaling); anti-phosphorylated AKT 

(1:1000, Cell Signaling); anti-p38 (1:1000, Cell Signaling); anti-phosphorylated p38 (1:1000, 

Cell Signaling); anti-MuRF1 (1:200, Santa Cruz Biotechnology Inc, Santa Cruz, CA); anti-

MAFbx (1:500, Abcam, UK); anti-Nrf1 (1:200, Santa Cruz Biotechnology Inc, Santa Cruz, 

CA); and anti-p21 (1:200, Santa Cruz Biotechnology Inc, Santa Cruz, CA). Thereafter, 

membranes were incubated with a secondary antibody for 1 h at room temperature. Specific 

proteins were visualized by using the enhanced chemiluminescence procedure as specified by 

the manufacturer (Amersham Biosciences, Piscataway, NJ). Autoradiographic signals were 

assessed by using a scanning densitometer (BioRad, Hercules, CA). Data were represented as 

arbitrary units of immunostaining. To check for differences in loading and transfer efficiency 

across membranes, an antibody directed against α-actin (1:1000, Sigma Aldrich Missouri) 

was used to hybridize with all the membranes previously incubated with the respective 

antibodies. For the Western Blotting quantifications we first normalized all the proteins 

measured to α-actin. Samples from each group were run on the same gel.   
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Statistical Analysis 

 Statistical analyses were performed using the SigmaStat 3.1 Program (Jandel Corp., 

San Rafael, CA). Results are expressed as mean ± SD. Normality of distribution was checked 

with the Kolmogorov test and homogeneity of variance was tested by Levene’s statistics. We 

used one-way ANOVA to compare group differences. If overall ANOVA revealed significant 

differences, post hoc (pairwise) comparisons were performed using Tukey’s test. Differences 

were considered significant if p<0.05. 

 

 



Personal contribution                                                                                                        Study 1                                                                                                                     

138 
 

Sarcopenia: Mechanisms and Prevention - Role of Exercise and Growth Hormone - Involvement of Oxidative Stress and Glucose-6-phosphate Dehydrogenase -
2014 

 

RESULTS  

Effect of ageing and GH replacement therapy on body composition of rats 

 

 Table 1 shows the effect of ageing on body composition of rats.  In the two months 

study period young animals increased their weight by 20 g (6.9 % of their initial weight) 

whereas old animals lost weight by approximately 60 g  (-9.8% of their initial weight).  

However, when old animals were treated with GH they showed an increase in weight of 

approximately 9 g (1.5% of their initial weight), i.e., very significantly different from the loss 

of weight that occurred in old untreated rats.  This loss in weight was mainly due to changes 

in lean mass because the SGI fell from 5 in young animals to 3 in old ones, which mean that 

adiposity is augmented and lean body mass reduced. Old treated animals had an intermediate 

SGI, i.e., 4. We measured the gastrocnemius atrophy by weighting the muscle and we found a 

significant (30%) decrease in the relative muscle weight in the old animals, that was 

significantly prevented in the old treated ones. It is well-known that GH increases the weight 

of the heart. We show that the relative weight of the heart of old animals fell in the study 

period and that treatment with GH resulted in a significant increase in the relative heart 

weight (see Table 1). 

 IGF-1 levels are known to fall with age and this is what we report in Table 1.  Young 

animals had plasma IGF-1 levels of approximately 1100 ng/mL and this fell to 600 ng/mL in 

old animals.  Old animals treated with GH showed a very significant increase in IGF-1 that 

went from approximately 600 (in old untreated) to approximately 1200 ng/mL in old animals 

treated with GH, i.e., an increase of 100%.  We also determined the hepatic IGF-1 levels and 

similar results were found, old animals showed a decrease in their liver IGF-1 levels that was 

prevented by treatment with GH.  

GH replacement therapy prevents age-associated oxidative damage to skeletal muscle 

 

 Figure 1 reports the effect of ageing on protein and DNA oxidation and its prevention 

by GH replacement therapy. Panel A shows results of the effect of ageing on skeletal muscle 

protein oxidation. Ageing resulted in an increase in protein oxidation that was relatively small 

(approximately 10%) but statistically significant.  This was prevented by treatment with GH, 

thus old animals treated with GH had values of protein oxidation that were not distinguishable 

from those of young animals.  In Panel B we report results on DNA oxidation. Old animals 
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had a significantly increased DNA oxidation (as determined by the levels of 8-OHdG) when 

compared with young controls.  Treatment with GH completely prevented this increase.   

Thus, protein as well as DNA oxidation are elevated in muscles of old animals but this is 

prevented by treatment of old animals with GH.   

 

Effect of ageing and GH replacement therapy on antioxidant enzyme levels in skeletal 

muscle of rats  

 

 To seek an explanation for the effect of GH replacement therapy in protecting against 

oxidative damage,  we measured the levels of three important antioxidant enzymes, catalase, 

glutathione peroxidase, and G6PDH, the latter being an antioxidant because it generates 

NADPH required for normal functioning of the glutathione redox cycle, and because it 

activates catalase (M. D. Scott et al. 1993). Treatment with GH increased the levels of 

antioxidant enzymes (see Figure 2). The effect of ageing itself on the levels of these enzymes 

was marked and significant from the statistical viewpoint in the case of G6PDH. We also 

determined the G6PDH enzymatic activity and we confirmed our Western Blotting's results. 

Young animals had a skeletal muscle G6PDH activity of 0.49 ± 0.09 nmol x mg of protein-1 x 

min-1. We found a significant (p<0.01) decrease in its activity in the old animals (0.28 ± 0.04 

nmol x mg of protein-1 x min-1) that was recovered in the old group treated with GH (0.44 ± 

0.08 nmol x mg of protein-1 x min-1) (p<0.01). However, we did not find a significant effect of 

ageing on catalase and glutathione peroxidase protein levels.  In any case, there was a clear 

up-regulation of these enzymes when we treated old animals with GH.  These effects explain 

the prevention of age-associated damage to muscle proteins and DNA by GH and indeed 

suggest a so-far unknown antioxidant effect of GH.   

 

Effect of ageing and GH replacement therapy on mitochondriogenesis in rat muscle 

 

 We have previously observed that mitochondriogenesis (which is heavily dependent 

on the activity of  PGC-1α) is seriously affected by oxidative stress (Derbré et al. 2012).  The 

observation that GH prevents age-associated oxidative stress in muscle, prompted us to test 

whether PGC-1α was affected in old animals and whether treatment with GH could reverse 

this effect.  Figure 3 shows that PGC-1α levels were significantly lower in old animals than in 

young ones.  This decrement (see Panel A) was completely prevented by replacement therapy 

with GH.  Similar results were found with the protein levels of NRF-1. PGC-1α co-activates 
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NRF-1 and as expected we found a significant decrease in the NRF-1 levels in the old animals 

that was prevented by treatment with GH (see Figure 3 Panel B). Since PGC-1α is the master 

regulator of mitochondriogenesis, we tested whether GH replacement therapy in old animals 

resulted in changes in mitochondrial mass and for this we used two markers, cytochrome C 

protein levels and citrate synthase activity.  Figure 3 (Panels C and D) shows that levels of 

either cytochrome C or citrate synthase activity were significantly lower in old animals than 

in young ones and that this decrease was fully prevented when old animals were treated with 

GH.  So we can conclude that mitochondriogenesis in old animals, which depends on PGC-

1α, is seriously depressed in old animals (as already well established) but that this is 

prevented by treatment with replacing doses of GH.   

 

Effect of ageing and GH replacement therapy on skeletal muscle protein synthesis  

 

 It is well established that skeletal muscle mass is lower in old animals than in young 

ones and that GH may have an effect in preventing this (C Castillo et al. 2005; Carmen 

Castillo et al. 2005; Castillo et al. 2004).  However, so far it is not clear whether the effect of 

GH on muscle mass is due to suppression in protein degradation, increase in amino acid 

uptake and/or stimulation of protein synthesis. The insulin family ligands can bind to the IGF-

I receptor which then phosphorylates IRS-1(Clemmons 2009). This  protein acts as a docking 

protein for activation of PI-3 Kinase(Clemmons 2009). PI-3K activation leads to phospholipid 

generation in the plasma membrane, which recruit and activate AKT Kinase. We found a 

significant decrease in the phosphorylation of AKT in the old muscles that was completely 

recovered when the old animals were treated with GH (See Figure 4 Panel A). AKT Kinase 

activation leads to activation of mTOR and of the mitogen-activated serine/threonine kinase 

p70 ribosomal protein S6 kinase (p70S6K). Recent work in humans has identified the 

mammalian target of rapamycin complex I (mTORC1) as being required to stimulate muscle 

protein synthesis in humans(Dickinson et al. 2011). p70S6K, a downstream target of 

mTORC1, plays a critical role in cell growth and survival (Baar & Esser 1999; Bodine et al. 

2001; Dorn & Force 2005; Wu et al. 2009).  We have found that the phosphorylation of 

p70S6K decreases with ageing and is restored to young values with GH replacement therapy 

(see Figure 4 Panel B).  

 Myf-5 is a primary myogenic regulatory factor. It facilitates repair or regeneration and 

growth of mature myofibers.  Figure 4 (Panel C) reports results on myf-5 protein levels in 

young and old animals and the effect of GH replacement therapy. Although ageing did not 
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affect the basal muscle levels of myf-5, we found a significant increase in this myogenic 

factor in the GH treated group.   

 

Effect of ageing and GH replacement therapy on the expression of inhibitory growth 

factors in skeletal muscle  

 Myostatin is one of the major inhibitory factors in skeletal muscle regeneration. It 

down-regulates myf-5 and myoD. We found a significant increase in myostatin in the old 

skeletal muscle that was prevented with GH replacement therapy (Figure 5 Panel A). 

Myostatin maintains satellite cell quiescence and repress cell-renewal through the induction 

of p21 (McCroskery et al. 2003), which is a cell cycle inhibitor (Jaumot et al. 1997). p21 

expression is significantly (40%) increased in old animals when compared to young ones, this 

is prevented by treatment with GH (see Figure 5 Panel B). Recently we have shown that p38 

signaling promotes skeletal muscle atrophy through the expression of  E3 ubiquitin 

ligases(Derbre et al. 2012). Figure 5 (Panel C) shows an increase in the phosporylation of p38 

MAPKinase in the muscle of old animals. GH treatment significantly prevented the p38 

phosphorylation.   To finally identify the mechanism by which GH prevents the loss of 

muscle mass during ageing we determined the expression, in gastrocnemius muscle, of the 

Muscle atrophy F-Box (MAFbx) and Muscle RING Finger-1 (MuRF1). MAFbx and MuRF1 

are two well known muscle specific E3 ubiquitin ligases involved in proteolysis. We did not 

find a significant effect of ageing on MAFbx protein levels (see Figure 5 Panel E). However, 

aging was associated with a significant increase in MuRF1 that was prevented by treatment 

with GH.  

 Collectively the data reported in figures 4 and 5 show that the combined effect of the 

up regulation of myostatin, p21, p38 and MuRF1, and the down regulation of AKT-p70S6K 

and myf-5 may be involved in the lowering in protein levels in the skeletal muscle of old rats. 

GH replacement therapy seems to be a good strategy to restore skeletal muscle regeneration 

and to combat the process leading to sarcopenia.    
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DISCUSSION 

Effect of ageing and GH replacement therapy on body composition of rats 

 There are three general approaches to hormone therapy. Hormones can be given to 

replace a deficiency, to raise their concentration above the normal value, and finally agents 

can be given to block hormone action by either reducing the rate of secretion or by blocking 

their action (Wolfe 2006). Despite the large number of studies aiming at assessing the effects 

of GH supplementation on muscle mass, the controversial findings reported in the literature, 

maintain the debate as to whether or not to use GH to treat sarcopenia (von Haehling et al. 

2012). The contrasting findings reported may be explained by methodological differences 

such as dosing.  High doses of GH cause high incidence of adverse effects (Papadakis et al. 

1996; Holloway et al. 1994). Thus, we have used relatively low doses of GH in our study. We 

need to take into consideration that the GH used was of human origin, so that the response 

was not the same as for rat GH. On the other hand, small animals need a much higher dosage 

than humans, as was demonstrated by Mordenti and co-workers (Mordenti et al. 1991).  

Plasma IGF-1 values were lower in old than in young animals but IGF-1 levels in old animals 

treated with GH were not statistically different from young controls. We also determined the 

hepatic IGF-1 levels and found similar results, an age-associated decrease in the liver IGF-1 

levels that was prevented by the treatment with GH (See Table 1).   

 In our hands, GH replacement therapy is useful in preventing the age-related muscle 

mass loss. In the two month study period we found that young animals increased their weight 

whereas old animals lost weight (see Table 1).  However, when old animals were treated with 

GH they showed an increase in weight of approximately 9 g, i.e., significantly different from 

the loss of weight that occurred in old untreated rats.  This loss was mainly due to changes in 

lean mass because the SGI fell from 5 in young animals to 3 in old ones.  SGI is an index that 

relates lean body mass and fat mass; the higher it is, the less fat the animal has. Our data also 

show that GH administration significantly increases SGI in old male rats, which means that 

GH, through its anabolic, antilipogenic and lipolytic properties, is able to increase muscle 

mass and reduce body fat (Castillo et al. 2004; Carmen Castillo et al. 2005). We also 

determined the gastrocnemius muscle atrophy by weighting the muscles, and we found a 30% 

decrease in the relative muscle weight in the old animals, that was significantly prevented in 

the old treated ones.  Finally, we also found that the relative weight of the heart of old animals 

fell along the study period and that treatment with GH resulted in an increase in heart weight 

(see Table 1). 
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The antioxidant effect of GH replacement therapy 

 The free radical theory of ageing has provided a theoretical background to devise 

experiments to understand ageing (Gomez-Cabrera, Sanchis-Gomar, et al. 2012). It is now 

well established that up-regulating the endogenous antioxidant defenses is a useful 

mechanism for cells to prevent damage associated with excessive free radical production 

(Gomez-Cabrera, Domenech & Viña 2008; Gomez-Cabrera, Domenech, Romagnoli, et al. 

2008).  The effects of GH on sarcopenia have been studied extensively (Brill 2002; Papadakis 

et al. 1996), but so far they have been completely dissociated with prevention of free radical 

damage. A major finding reported in this paper is that GH supplementation can act as an 

antioxidant because it up-regulates the expression of important intracellular antioxidant 

enzymes, such as catalase, glutathione peroxidase, and glucose-6-phosphate dehydrogenase 

(see Figure 2). The result of this up-regulation is that, as reported in Figure 1, old animals 

treated with relatively small doses of GH suffer less oxidative stress than untreated old 

animals, both in terms of protein oxidation (measured as carbonylation) and DNA oxidation 

(measured by the levels of 8-OHdG).  Our results show that supplementation with GH 

activates endogenous antioxidant enzymes, prevents oxidative damage to critical cellular 

structures, and thus behaves as an antioxidant. This may contribute to explain the protection 

against sarcopenia conferred by supplementation with GH as discussed in the following 

paragraphs. The mechanism by which GH activated the expression of antioxidant enzymes is 

beyond the scope of this paper and is being studied in this laboratory.  

Protein synthesis, mitochondriogenesis, and the prevention of sarcopenia by GH  

 The maintenance of skeletal muscle mass is regulated by a balance between protein 

synthesis and protein degradation (Powers et al. 2011). Muscle protein synthesis decreases 

with age (Jones et al. 2009). The involvement of p70S6K in skeletal muscle hypertrophy has 

been documented in various animal models (Y. Song et al. 2005) . When activated via AKT 

Kinase,  mTOR influences translation initiation by involving phosphorylation of p70S6K, 

which, in turn, phosphorylates the S6 ribosomal protein and allows the up-regulation of a 

subclass of mRNAs encoding the translational apparatus (Kimball et al. 2002). As shown in 

Figure 4, we found a significant decrease in the phosphorylation of AKT in the skeletal 

muscle of the old animals that was completely recovered when they were treated with GH.  

Similarly, phosphorylation of p70S6K was lower in old skeletal muscles than in young ones 

and this was not caused by changes in total p70S6K protein levels. Old animals treated with 

GH showed similar phospho-p70S6K values than young animals (See Figure 4). Our results 
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contradict previous studies showing that an intraperitoneal injection of IGF-I increases 

phosphorylation of p70S6K in the young but not in the old skeletal muscle (M. Li et al. 2003).   

 The attenuation in the capacity for muscle hypertrophy in old individuals has also been 

related to an age-related impairment  in myogenic potential (Marsh & Criswell 1997; Hansen 

et al. 2007). Thus, we aimed to compare the myogenic response of gastrocnemius muscle in 

young and old rats treated with GH. Myf-5 is a well-known marker of myoblast/satellite cell 

differentiation and  facilitates repair or regeneration and growth of mature myofibers (Kim et 

al. 2005). It has been shown that GH treatment up-regulates, not only liver IGF-I, but also 

skeletal muscle IGF-I gene expression (Hameed et al. 2003) that is involved in the activation 

of satellite cells (Goldspink & Harridge 2004). Figure 4 shows that although ageing did not 

cause a decrease in the myf-5 skeletal muscle protein levels, GH replacement therapy 

significantly increased the levels of this myogenic factor.  

 We then focused our interest in myostatin, a negative muscle regulatory factor 

(Goldspink & Harridge 2004). This belongs to the TGFβ family, but its expression is 

restricted to muscle tissue (McPherron & Lee 1997). Absence or blockade of myostatin 

induces massive skeletal muscle hypertrophy that was initially attributed to the proliferation 

of the population of muscle fiber-associated satellite cells (Ten Broek et al. 2010). However, 

it has been recently shown that myostatin regulates protein balance within the muscle fibers 

themselves. Several research groups have shown that hypertrophy, in the absence of 

myostatin, involves little or no input from satellite cells (Amthor et al. 2009; Welle et al. 

2006). Hypertrophic fibers contain no more myonuclei or satellite cells and myostatin has no 

significant effect on satellite cell proliferation in vitro (Amthor et al. 2009). As previously 

reported, we found an increase in myostatin and p21 in old muscles (McKay et al. 2012). GH 

replacement therapy significantly reduced them (see Figure 5). Thus, the effect of GH on 

these two factors may contribute to the prevention of muscle wasting. Phosphorylation of 

p38-MAPK has been reported after addition of myostatin in skeletal muscle fibroblasts (Li et 

al. 2008). p38 is a stress-activated protein kinase that responds to a variety of stimuli, 

including oxidative stress and TNF-α (Derbre et al. 2012), and has been identified as a likely 

mediator of catabolic signaling in skeletal muscle (Powers et al. 2007; Li et al. 2005). Thus, 

we determined the phosphorylation of p38 MAPK in the gastrocnemius muscle samples. As 

previously reported  (Williamson et al. 2003)we found a significant increase in p-p38 in the 

old animals that was prevented by hormone replacement therapy with low doses of GH.  

  



Personal contribution                                                                                                        Study 1                                                                                                                     

145 
 

Sarcopenia: Mechanisms and Prevention - Role of Exercise and Growth Hormone - Involvement of Oxidative Stress and Glucose-6-phosphate Dehydrogenase -
2014 

 

 To identify the final mechanism by which GH prevents the loss of muscle mass during 

aging we determined the expression of two well known muscle specific E3 ubiquitin ligases 

involved in several in vivo models of skeletal muscle atrophy, MAFbx and MuRF1(Foletta et 

al. 2011). Although controversial (Edström et al. 2006), the levels of both MuRF1 and 

MAFbx mRNA are markedly up-regulated in aged muscles (Clavel et al. 2006). We found a 

significant increase in muscle MuRF1 protein levels in the old animals that was prevented by 

GH treatment.  However, we did not find any change on muscle MAFbx protein levels. Thus, 

MuRF1 seems to be involved in the age-associated sarcopenia.  

 Ageing causes a decrease in mitochondrial content and activity (Miquel et al. 1980; 

Sastre et al. 1996). PGC-1α is a master regulator of mitochondrial biogenesis (Puigserver et 

al. 1998; Viña et al. 2009) and itself is a molecule that responds swiftly to the changes in 

oxidative stress(St-Pierre et al. 2006; Viña et al. 2009; Gomez-Cabrera, Domenech & Viña 

2008).  Since, as described in the previous paragraph, we have seen that ageing in muscle 

results in an increase in oxidative stress markers and that this is prevented by relatively low 

doses of GH, we tested whether ageing resulted in a decrease in PGC-1α expression in muscle 

and this was indeed the case, as shown in Figure 3. Treatment with GH completely prevents 

the decrease in PGC-1α associated with ageing. PGC-1α co-activates NRF-1 and we found 

that the levels of NRF-1 were significantly lower in the skeletal muscle. This was completely 

prevented when animals were treated with GH. We previously reported that PGC-1α does not 

respond to the normal activation by exercise when animals are old (Derbré et al. 2012).  This 

lack of responsiveness may be due to a blocking of the activating mechanisms by GH because 

when it is administered to animals, PGC-1α is activated and mitochondriogenesis resumes, as 

shown in Figure 3. Probably GH activates PGC-1α, acting in three ways. Stimulating the 

IGFAKT mTOR p70S6K pathway, inhibiting the Myostatinp38 MuRF1, and 

acting as an antioxidant (as described above). Recently Vescovo et al., working in cardiac 

muscle, reported that GH activates PGC-1α via IGF-1 and calcineurin (Vescovo et al. 2005). 

Our previous work showing that PGC-1α could also be activated by MAP kinases together 

with the antioxidant effects discussed in the previous paragraph, may explain the unique 

capability of GH supplementation to maintain normal muscle levels in the old animal.  Our 

previous work (Derbré et al. 2012) showed that neither exercise, cold exposure, or even 

thyroid hormone treatment could activate PGC-1α in the old animal. A marker of 

mitochondrial mass, cytochrome C protein levels, were also lower in the muscle from old 

animals. We also found that the citrate synthase activity was 50% lower in the muscles of our 

old animals than in the young ones. It has been reported that mitochondrial isolation 
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procedures induce preferential losses of matrix soluble enzymes, such as citrate synthase, in 

aged muscle mitochondria(Johnson et al. 2013). In a recent study, Picard and co-workers 

examined the differences in mitochondrial function between permeabilized muscle fibers and 

isolated mitochondria from the same sample (Picard et al. 2010).  The authors found that 

mitochondrial function was decreased in both isolated mitochondria and permeabilized fibers, 

with an exaggerated age-effect in isolated mitochondria (Picard et al. 2010). We cannot rule 

out the idea that the dramatic decrement found in the citrate synthase activity in our study 

migh have been due to sample preparation. However, we consider that collectively the results 

reported in Figure 3 supports the idea that GH replacement therapy prevents the age 

associated decline in mitochondrial content in the old skeletal muscle.  

 In this respect, the activation by GH that we report here seems to be unique in 

maintaining normal muscle mass in the old animal and thus preventing sarcopenia.  

 In this study, we report results supporting the argument that restoration of GH profile 

is a good intervention to preserve skeletal muscle mass in the elderly. A schematic 

interpretation of our results is in Figure 6. We would like to reiterate that the supplementation 

of GH that we have performed in the animals is a rather low one in that the aim is to return 

the levels to the normal physiological ones.  We do not claim here that supplementation with 

high doses of GH should be recommended. However, small doses of GH supplementation 

may be a very useful way to prevent age-associated sarcopenia. If these results could be 

extrapolated to humans, one could suggest that the loosing of muscle mass observed in 

persons, even if they have performed exercise in their youth, could be prevented by hormone 

replacement therapy with low doses of GH.  This interesting possibility remains to be studied 

in the clinical setting. 
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TABLE  

Table 1. Effect of ageing and GH replacement therapy on body composition and IGF-1 

plasma and hepatic levels in rats.   

The values are shown as mean ± SD.  Differences were checked for statistical significance by 

a one-way ANOVA. ap<0.05, aap<0.01 young vs old; bp<0.05, bbp<0.01 old vs old treated with 

GH; ccp<0.01  young vs old treated with GH.  

SGI stands for Specific Gravity Index. 

  Young (n=10) Old (n=10) Old + GH (n=10) 

Total Final body weight (g) 311.2±14.1 569.5±75.0aa 616.7±26.6cc 

Weight change during the two months study 

period (g) 
+19.9±4.4 -61.9±36.2

aa,bb
 +9.3±5.1 

Weight change during the two months study 

period (% of initial weight) 
+6.9±4.8 -9.8±5.7

aa,bb
 +1.5±0.01 

Relative gastrocnemius muscle weight 

(g/100g body weight) 
0.52±0.03  0.36±0.02

 aa
  0.41±0.01

b,cc
 

SGI 5.0±0.1 3.0±0.6
aa 

 4.0±0.3
bb

 

Relative cardiac weight (g/100g of body 

weight) 
0.26±0.02 0.21±0.00

a
 0.25±0.01b 

Plasma IGF-1 levels (ng/mL) 1103±61 590±70
a
 1180±90

bb
 

Hepatic IGF-1 levels (ng/mL) 237±8 192±19 324±51b 
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FIGURES  
 
Figure 1. GH replacement therapy prevents age-associated oxidative damage in skeletal 

muscle of rats.   

Thirty animals were divided into three experimental groups: Young (Y) (n=10), Old (O) 

(n=10), and Old treated with GH (OGH) (n=10).  Panel A shows a Western blotting analysis 

to detect protein carbonylation in gastrocnemius muscle. A representative blot is shown. For 

the densitometric analysis of the results, values are shown as mean (±SD). Panel B shows 8-

OHdG from DNA extracted from gastrocnemius muscle of rats (Panel B). Values were 

normalized to those observed in the samples obtained from the young group, which was 

assigned a value of 100%.  *p<0.05, NS: Not significantly different. 
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Figure 2. GH replacement therapy restores the age-associated decrease in the protein 

levels of antioxidant enzymes in rat skeletal muscle.  

Thirty animals were divided into three experimental groups: Young (Y) (n=10), Old (O) 

(n=10), and Old treated with GH (OGH) (n=10). Western blotting analysis to detect catalase 

(Panel A), glutathione peroxidase (Panel B), and Glucose-6-phosphate dehydrogenase (Panel 

C)  in rat gastrocnemius muscle were performed.  Representative blots are shown. The content 

of α-actin, a housekeeping protein marker in skeletal muscle, was determined in all the 

experimental groups. For the densitometric analysis of the results, values are shown as mean 

(±SD). Values were normalized to those observed in the samples obtained from the young 

group, which was assigned a value of 100%. ** p<0.01, NS: Not significantly different. 
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Figure 3. GH replacement therapy prevents the age-associated impairments in the 

skeletal muscle mitochondrial content.  

Thirty animals were divided into three experimental groups: Young (Y) (n=10), Old (O) 

(n=10), and Old treated with GH (OGH) (n=10). Western blotting analysis to detect PGC-1α 

(Panel A), Nrf-1 (Panel B), and Cytochrome C (Panel C) in rat gastrocnemius muscle were 

performed. Representative blots are shown. The content of α-actin, a housekeeping protein 

marker in skeletal muscle, was determined in all the experimental groups. For the 

densitometric analysis of the results, values are shown as mean (±SD). Values were 

normalized to those observed in the samples obtained from the young group, which was 

assigned a value of 100%. Panel D shows citrate synthase enzymatic activity. Values were 

normalized to those found in the samples from the young group which was assigned a value 

of 100%.  *p<0.05, **p<0.01, NS: Not significantly different.  
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Figure 4. GH replacement therapy activates protein synthesis in the old skeletal muscle. 

Thirty animals were divided into three experimental groups: Young (Y) (n=10), Old (O) 

(n=10), and Old treated with GH (OGH) (n=10). Western blotting analysis to detect AKT 

activation (Panel A), p70S6K activation (Panel B), and Myf-5 (Panel C) in rat gastrocnemius 

muscle were performed. Representative blots are shown. The content of α-actin, a 

housekeeping protein marker in skeletal muscle, was determined in all the experimental 

groups. For the densitometric analysis of the results, values are shown as mean (±SD). Values 

were normalized to those observed in the samples obtained from the young group, which was 

assigned a value of 100%.  In panels A and B the data are represented as a percentage of 

immunostaining values obtained for the phosphorylated form of the Kinase relative to the 

total form. * p<0.05, ** p<0.01, NS: Not significantly different. 
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Figure 5. GH replacement therapy attenuates the age-associated increase in protein 

degradation in skeletal muscle.  

Thirty animals were divided into three experimental groups: Young (Y) (n=10), Old (O) 

(n=10), and Old treated with GH (OGH) (n=10).Western blotting analysis to detect myostatin 

(Panel A), p21 (Panel B), P38 (Panel C), MuRF1 (Panel D), and MAFbx (Panel E) in rat 

gastrocnemius muscle were performed. Representative blots are shown. The content of α-

actin, a housekeeping protein marker in skeletal muscle, was determined in all the 

experimental groups. For the densitometric analysis of the results, values are shown as mean 

(±SD). Values were normalized to those observed in the samples obtained from the young 

group, which was assigned a value of 100%. %.  In panel C the data are represented as a 

percentage of immunostaining values obtained for the phosphorylated form of the kinase 

relative to the total form. *p<0.05, ** p<0.01,  NS: Not significantly different.  
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Figure 6. GH replacement therapy and its effects in sarcopenia. 
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Study 2: Glucose-6-phosphate dehydrogenase overexpression 

improves body composition and physical performance in mice 
 

MATERIAL AND METHODS 

Animals  

 Generation of a human G6PDH-transgenic (G6PDHtg) mouse model 

 

 In order to determine if a higher expression of G6PDH is effective in improving 

muscle mass, strength, physical performance and therefore improving healthspan in a 

vertebrate model, we decided to generate transgenic mice with a moderate overexpression of 

G6PDH under the control of its natural promoter (Figure 1). 1) For the generation of the 

G6PDH transgenic mice, a plasmid containing the human G6PDH (hG6PDH) entire genomic 

sequence (20,105 kilobases), including the entire upstream and downstream regulatory 

sequences, was used (Corcoran et al. 1996). 2) For transgenesis, the hG6PDH sequence was 

isolated from the pBluescript vector by NotI digestion and a 0,5 to 1 ng/ul DNA solution was 

injected into the pronuclei of F1 hybrids (C57BL/6J x CBA) fertilized oocytes. 3) The 

resulting offspring was analysed for the presence of the transgene by Polymerase Chain 

Reaction using primers specific for the hG6PDH gene and that do not hybridize to the 

homologous mouse G6PDH gene. Three founders capable of transmitting the transgene to the 

progeny were identified and subsequentially three congenic lines were established (hG6PDH-

tg line 1, 2 and 3) by backcrossing the corresponding founders with inbread C57BL/6J mice 

in order to obtain almost pure (>99%) C57BL/6J hG6PDH-tg mice. Mice were generated at 

the Spanish National Cancer Research Center (CNIO, Madrid, Spain) at the Transgenic Mice 

core facility. After analysing the G6PDH overexpression level achieved in the three G6PDHtg 

lines established (hG6PDH-tg lines 1, 2 and 3) at the mRNA and protein level, we observed 

that G6PDH is moderately overexpressed (2-5 fold) in all tissues tested (including liver, lung, 

heart, muscle, white adipose tissue, kidney, spleen, brain and red blood cells) in the G6PDHtg 

line 1 and 2 only, whereas no G6PDH overexpression was observed in the G6PDHtg line 3. In 

this work, G6PDH-tg line 1 has been used. Some mice were sent at the medicine university of 

Valencia (Spain) to extend the colony and realize experiments while others were sent in 

Rennes only for experiments. 
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Figure 1. Generation of a human G6PDH-transgenic (hG6PDH-tg) mouse model 

 

 Animal care 

 This study was carried in three different research centers: Spanish National Cancer 

Research Center (CNIO, Madrid, Spain); Physiology department of the Medicine University 

of Valencia (Valencia, Spain) and the Movement, Sport and Health laboratory (Rennes, 

France). To avoid variation due to animal care, housing conditions were normalized in the 

same way in the three research centers.        

 The animals were always fed a normal rat chow (A.04; Panlab, Barcelona, Spain) and 

had free access to tap water. Mice were housed in a temperature-controlled room (24±2°C) 

with a light-dark cycle (12:12 h) until reach 12-14 months that was matched for the different 

experiments of the study. Only mal mice were used.      

 The study was conducted following recommendations from the institutional animal 

care and use committee, according to the Guidelines for Ethical Care of Experimental 

Animals of the European Union. Experiments were always approved by the local committee 

of ethics where was carried the experiment: the CNIO-ISCIII Ethics Committe for Research 

and Animal Welfare (CEIyBA), the Committee on Ethics in Research of the Medicine 

University of Valencia and the Committee on Ethics in Research of the University Rennes 1. 

Body composition and muscle weights 

 

 At the aged of 12-14 months, lean mass (LM) and fat mass (FM) of individual mice (n 

= 10 per group) were quantified using dual energy X-ray absorptiometry (DXA) at the CNIO 

and normalized relative to body weight measured just before. LM and FM of individual mice 

(n = 10 per group) were also evaluated by bio-impedancemetry in Rennes to validate this 

technic in mice but data are still under analysis. The weights of individual muscles were 

measured after each done sacrifice in the different research centers following a meticulous 
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dissection (trimming away the excess connective and adipose tissue) done by the same 

examiner in the same conditions. Muscles were always directly frozen in liquid nitrogen, and 

stored at -80°C until analysis. Data presented are these about one representative sacrifice 

carried with 10 animals of each group (G6PDHtg and WT). However, nevertheless the place 

where was done the sacrifice, statistical analyses gave always the same result in each muscle 

weighted (see figure 4). 

 

Spontaneous activity 

 Spontaneous activity was approached by measuring activity of mice on running 

wheels. Mice were housed in individual cage within a running wheel during a 4 weeks period 

(n=8 per group). Activity was monitored by a magnetic switch affixed to each wheel, which 

recorded the number of completed revolutions. Physical activity was recorded continuously 

and summed by days for analysis. The ten first days were considered as an acclimation period 

and data started to be included in the analysis only since the 11th day. 

Dietary study 

 In the way to study food consumption, diuresis and feces, mice (n=5) were placed in 

special cage (as on the following photo) allowing measuring each of the aforementioned 

parameters, during a 4 weeks period. The ten first days were considered as an acclimation 

period and data started to be included in the analysis only since the 11th day. Data were daily 

recorded.                           
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Aerobic qualities assessments 

 

 The exercise testing protocol was performed on a single-lane motorized treadmill 

(Panlab, Spain) with an adjustable belt speed (0–99.9 m.min-1). The rear of the treadmill was 

equipped with a low-voltage, electric stimulating bar, to encourage each mouse to run. The 

bar was set to deliver 0.2 mA at a frequency of 0.25 Hz, which caused an uncomfortable 

shock but did not injure the animal. 

 

 Measurements and data recording 

 

 Oxygen consumption (VO2) was measured by means of a rapid-flow, open-circuit, 

indirect calorimeter. The single-lane test treadmill was placed in a metabolic chamber. 

Ambient air was fed through the chamber at a rate of 0.66 l.min-1; the flow was chosen such 

that the O2 difference across the chamber was within the sensor’s range (-0.5 to -0.8% O2). A 

fan mixed the incoming air with the air around the treadmill and blew it towards the animal 

(LE 4002FL, Panlab, Spain). The air flowed from the front of the treadmill to the rear and 

then returned under the belt towards the front. This created a rapid, circular "loop" of mixed 

gases (incoming "fresh" air and accumulated exhaled gases) from which a sample was drawn 

for analysis (LE 405 O2/CO2 Analyzer, Panlab, Spain). Gas samples were taken every 5s and 

dried prior to measurement of the oxygen and carbon dioxide fractions. 

 The gas analyzers were calibrated with standardized gas mixtures (Linde AG, Paris, 

France) before every test session, as recommended by the manufacturer. The treadmill test 

provided an estimate of VO2max, defined as the highest oxygen consumption attained over a 

15-second period during the testing protocol. To allow rapid comparison over a wide range of 

body weights (and especially with human data), dimensional analysis and empirical studies 

show that VO2 should be expressed in relation to body mass raised to the power of 0,75 

(Taylor et al. 1981; Mille-Hamard et al. 2012). 

  

 Familiarization 

 

 As previously described (Mille-Hamard et al. 2012), the mice were familiarized with 

the treadmill over a one week period via the completion of four 10min running sessions from 

0 to 9 m.min-1 (0, 3, 6 and 9 m.min-1). All mice succeeded in running for the required time at 
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an intensity of 9m.min-1. The velocity was not increased above this value, in order to avoid a 

training effect. The mice subsequently performed an incremental exercise test. 

 

 Incremental test load: VO2max determination 

 

 Starting from a speed of 10 m.min-1, the exercise intensity was increased by 3m.min-1 

every 2 min, with an incline of 15%. This protocol was used because it has been described as 

the test providing the higher VO2max in mice (Høydal et al. 2007). Exercise continued until 

exhaustion, which was defined as an inability to maintain the running speed despite contact 

with the electric grid for more than 5 sec (Mille-Hamard et al. 2012). Exhaustion was then 

confirmed during the data analyses by the VO2max stagnation while speed was still increased. 

All measurements were made by the same investigator. The last stage completed by the 

mouse was defined as the peak velocity (vPeak). 

 

 Endurance capacity determination 

 

 Endurance capacity was assessed using a modified protocol from Brooks & White 

(1978), at least 48 hours after maximal oxygen uptake determination to avoid interferences 

between the two tests (Mille-Hamard et al. 2012). Starting from a speed corresponding to 

50% of vPeak, the exercise intensity was increased by 5% of vPeak every 2 min until reach 

75% of vPeak, with an incline of 15%. At this moment, mice ran at this speed until exhaustion 

which was defined as an inability to maintain the running speed despite contact with the 

electric grid for more than 5 sec (Mille-Hamard et al. 2012). During this test, gas exchanges 

were not measured. 

 

Muscle performance assessment 

 

 On the one hand, grip strength test was assessed as previously described to determine 

the maximum grip strength of the front legs (Pareja-Galeano et al. 2012). Briefly, for 

acclimating (3 preceding days, no more to avoid learning) and testing, mice (n = 10 per 

group) grasped a bar linked to an electronic dynamometer (GS3®, Bioseb) with their front 

limbs and were then drawn away from the bar by the same examiner. Five trials were 

performed with 8 minutes of rest between trials to allow a complete recovery. The average 

peak force of the five trials was normalized to body weight and used for subsequent analyses. 
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On the other hand, mesh grip suspension test was used to determine muscle fatigue as 

described previously (Dunn & Pinkert 2012). Briefly, for acclimating (3 preceding days, no 

more to avoid learning) and testing, mice (n = 10 per group) are placed on a grid, located 

about 50 cm above a foam padded cage to prevent injury. Then, when mice were well 

gripped, the metal grid was gently returned by the same examiner. From this point, the 

stopwatch is started until the animal fall. The test is repeated three times at 20 minute 

intervals to allow a complete recovery. The average time of the three trials was normalized to 

body weight and used for subsequent analyses. This test has been done in two different 

research centers (Valencia and Rennes) with the same examiner with different animals of the 

same age and statistical analysis gave always the same results. 

 

Determination of glucose-6-phosphate dehydrogenase (G6PDH) activities in 

gastrocnemius muscle, liver and erythrocytes 

 Glucose-6-phosphate activity was determined using the techniques of Waller and co-

workers (1986). Briefly, 1000 µl of glucose-6-phosphate (final []=10 mM) in potassium 

phosphate buffer was added to a cuvette. Then 400 µl of muscle or liver homogenate or 

erythrocyte lysate were introduced. The reaction was initiated by 400 µl of NADP (final 

[]=0.90 mM) in buffer. The mixture was inverted and the absorbance read over 3 min at 340 

nm using a spectrophotometer. Results were obtained in nmol x mg of protein-1 x min-1. 

Values were then normalized to those observed in the samples obtained from the WT group, 

which were assigned a value of 100%. Protein concentrations were determined by Bradford’s 

method (Bradford 1976) by using bovine serum albumin as standard. 

 

Gastrocnemius and Liver DNA content 

 

 DNA was extracted from an entire gastrocnemius muscle and a piece of liver via the 

High Pure PCR Template Preparation Kit (Roche, GmbH, Germany) according to the 

manufacturer’s protocol. DNA concentrations were measured via a plate spectrophotometer 

for nucleic acids (ND-2000, NanoDrop, Wilmington, DE). All analyses were done in 

triplicate. Total gastrocnemius or liver DNA was calculated from DNA concentration 

normalized to whole muscle wet weight or liver piece wet weight.  
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Plasmatic uric acid level 

 

 During sacrifice, blood was collected by venous puncture (inferior cava venous and 

processed to measure plasma uric acid. Uric acid concentration assessment was carried into a 

Randox Daytona automate using a commercial kit (URIC ACID Liquid Mono Reagent, 

COLORIMETRIC RX DaytonaTM, Randox, France) according to the manufacturer’s protocol. 

 

Immunoblot analysis 

 Aliquots of muscle lysate (50-120 µg of proteins) were separated by sodium dodecyl 

sulfate–polyacrylamide gel electrophoresis. The whole gastrocnemius was used to ensure 

homogeneity. Proteins were then transferred to nitrocellulose membranes, which were 

incubated overnight at 4 °C with appropriate primary antibodies: anti-phosphorylated p70S6K 

(1:1000, Cell Signaling); anti-G6PDH (1:1000, Abcam, UK); anti-AKT (1:1000, Cell 

Signaling); anti-phosphorylated AKT (1:1000, Cell Signaling); anti-PPARα (1:200, Santa 

cruz Biotechnology, CA), anti-CPT I (1:200, Santa cruz Biotechnology, CA), anti-

Cytochrome C (1:200, Santa cruz Biotechnology, CA); anti PGC-1α (1:1000, Cell Signaling) 

and anti-MHC (1/1000, Santa Cruz Biotechnology, CA). Thereafter, membranes were 

incubated with a secondary antibody for 1 h at room temperature. Specific proteins were 

visualized by using the enhanced chemiluminescence procedure as specified by the 

manufacturer (Amersham Biosciences, Piscataway, NJ). Autoradiographic signals were 

assessed by using a scanning densitometer (BioRad, Hercules, CA). Data were represented as 

arbitrary units of immunostaining. To check for differences in loading and transfer efficiency 

across membranes, an antibody directed against α-actin (1:1000, Sigma Aldrich Missouri) 

was used to hybridize with all the membranes previously incubated with the respective 

antibodies. For the Western Blotting quantifications we first normalized all the proteins 

measured to α-actin. Samples from each group were run on the same gel.   

 

Statistical Analysis 

 Statistical analyses were performed using the SigmaStat 3.1 Program (Jandel Corp., 

San Rafael, CA). Results are expressed as mean ± SD. Normality of distribution was checked 

with the Kolmogorov test and homogeneity of variance was tested by Levene’s statistics. We 

used a student-test to compare group differences. Differences were considered significant if 

p<0.05. 
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RESULTS  

 

G6PDH overexpression increases G6PDH activity and protein content 

 

 To confirm that G6PDH overexpression was effective, we measured G6PDH activity 

in various tissues and protein content especially in skeletal muscle because it was the tissue of 

interest in this work. Results are shown in Figure 2. G6PDH overexpression multiplied 

G6PDH activity by 1,5 in erythrocytes (see panel A, p<0,01),  by 2 in gastrocnemius muscle 

(see panel B, p<0,01) and by 4,5 in liver (see panel C, p<0,01)  in G6PDHtg mice compared 

to WT mice. G6PDH gastrocnemius protein content was twofold higher in G6PDHtg mice 

compared to WT mice (see panel D, p<0,01). 
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Figure 2. G6PDH overexpression increases G6PDH activity and protein content. 

Animals were divided into two experimental groups: Wild type (WT) (n=10) and G6PDH 

transgenic mice (G6PDHtg) (n=10). Panels A, B and C show G6PDH enzymatic activity 

respectively in erythrocytes, gastrocnemius muscle and liver. Western blotting analysis to 

detect G6PDH (Panel D) in mice gastrocnemius muscle was performed. Representative blots 

are shown. The content of α-actin, a housekeeping protein marker in skeletal muscle, was 

determined in all the experimental groups. Values were normalized to those observed in the 

samples obtained from the WT group, which was assigned a value of 100%. Values are 

shown as mean (±SD). *p<0,05. 
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G6PDH overexpression leads to a slightly muscle mass increase 

 

 To confirm data suggesting that G6PDH would be implicated in muscle mass 

development (Max 1984; Kovacheva et al. 2010), we achieved a body composition study. 

First, animals were weighted and we observed that G6PDHtg mice were thinner than WT 

mice (see figure 3, panel A, p<0,01). Lean mass (LM) and fat mass (FM) were measured by 

DXA and corrected by the animal body weight. Bone mineral density (BMD) was also 

assessed by DXA. Our results showed that G6PDH overexpression led to an increased LM 

(G6PDHtg + 13,8% vs WT, p<0,01.) and a decreased FM (G6PDHtg - 13,8% vs WT, p<0,01) 

as shown respectively on the figure 3, panels B and C. Increased lean mass was attributed due 

to an increased muscle mass since the BMD was similar in the two groups (data not shown). 
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Figure 3. G6PDH overexpression improves body composition. 

Animals were divided into two experimental groups: Wild type (WT) (n=5) and G6PDH 

transgenic mice (G6PDHtg) (n=5). Panel A shows animals body weight. Lean mass (Panel B) 

and fat mass (Panel C) of individual mice were quantified DXA and normalized relative to 

body weight. Values were normalized to those observed in the samples obtained from the WT 

group, which was assigned a value of 100% and are shown as mean (±SD). **p<0,01. 

 

 To complete and confirm these results, several skeletal muscles were weighted post 

mortem and corrected by the animal body weight. Figure 4, showed that tibialis (panel A), 

soleus (panel B) and gastrocnemius (panel C) muscle weight to body weight ratios were 13%, 

12% and 14% greater (p<0,05 in all cases) in G6PDHtg mice compared with WT mice 

respectively. Others organs such as liver, kidney and heart were also weighted and the lack of 

difference between WT and G6PDHtg confirmed that only skeletal muscle were 

hypertrophied. In order to confirm muscle hypertrophy and assess muscle quality, 

gastrocnemius total MHC was measured by western blotting (see panel D). G6PDHtg mice 

presented higher MHC protein content in gastrocnemius muscle than WT mice (+12%, 

p<0,01).  
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Figure 4. G6PDH overexpression leads to a slightly hypertrophic phenotype. 

Animals were divided into two experimental groups: Wild type (WT) (n=10) and G6PDH 

transgenic mice (G6PDHtg) (n=10). Panel A, B and C show respectively tibialis, soleus and 

gastrocnemius muscle weight to body weight ratios. Western blotting analysis to detect total 

MHC (Panel D) in mice gastrocnemius muscle was performed. Representative blots are 

shown. The content of α-actin, a housekeeping protein marker in skeletal muscle, was 

determined in all the experimental groups. Values were normalized to those observed in the 

samples obtained from the WT group, which was assigned a value of 100%. Values are 

shown as mean (±SD). *p<0,05 ; **p<0,01 

 

 Although muscle mass and strength are linked, several studies have shown that the 

relation is not linear (Goodpaster et al. 2006; Janssen 2004) and consequently a higher muscle 

mass does not guarantee greater strength. Thus, muscle strength was evaluated in two ways 

(figure 5). G6PDH overexpression was associated with a significantly 10 percent higher 

voluntary grip force (see panel A, p<0,05) and significantly 88 percent higher time latency 

before falling in the mesh grip strength test (see panel B, p<0,05).  

 
 

 

Figure 5. G6PDH overexpression improves muscle performance. 

Animals were divided into two experimental groups: Wild type (WT) (n=10) and G6PDH 

transgenic mice (G6PDHtg) (n=10). Panel A shows results of the grip strength test. Panel B 

presents latency to fall during the mesh grip strength test. In both tests, values were 

normalized to body weight. Values were normalized to those observed in the samples 

obtained from the WT group, which was assigned a value of 100%. Values are shown as 

mean (±SD). *p<0,05.  
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Muscle hypertrophic profile associated with the overexpression of G6PDH is not due to 

an alteration of dietary behavior or spontaneous activity. 

 To ensure that changes in body composition were due to biomolecular changes and not 

to behavioral alterations, the spontaneous activity of mice as well as feeding behavior were 

studied during two weeks. Whatever the parameter studied, overexpression of G6PDH did not 

induce changes. Thus, daily food and water intake, daily urine and feces were similar between 

G6PDHtg and WT mice (see respectively panels A, B, C and D).  

 

 
 

Figure 6. G6PDH overexpression does not alter dietary behavior, daily urine and feces. 

Animals were divided into two experimental groups: Wild type (WT) (n=5) and G6PDH 

transgenic mice (G6PDHtg) (n=5). All the values were normalized to body weight. Values 

were normalized to those observed in the samples obtained from the WT group, which was 

assigned a value of 100%. Values are shown as mean (±SD). 
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 Moreover, daily running distance and time were comparable into the two groups (see 

respectively panel A and B of figure 7). 

 

Figure 7. G6PDH overexpression does not alter spontaneous activity. 

Animals were divided into two experimental groups: Wild type (WT) (n=8) and G6PDH 

transgenic mice (G6PDHtg) (n=8). Panel A represents values of running distance per day. 

Panel B show the daily running time. Values were normalized to those observed in the 

samples obtained from the WT group, which was assigned a value of 100%. Values are 

shown as mean (±SD). 

 

Overexpression of G6PDH appears to increase nucleic acids metabolism without change 

in protein synthesis signaling pathway 

 In numerous cell lines (but not in muscle cells), overexpression of G6PDH accelerates 

proliferation due to an increased DNA, RNA and protein synthesis (Tian et al. 1998; Kuo et 

al. 2000). By measuring in gastrocnemius DNA content and protein expression of several 

markers of protein synthesis and uric acid plasma several, we tried to confirm this data in our 

mice overexpressing G6PDH (see figure 8). Here, G6PDHtg mice showed a significantly 

higher DNA gastrocnemius DNA content compared to WT mice (Panel A ; p<0,01). Similar 

results were obtained in liver (p<0,01 ; data not shown). Uric acid (UA) is the terminal 

product of purine metabolism and could be measured as an indirect marker of cell turnover 

and consequently of DNA turnover (Banfi & Colombini 2012). We found that G6PDHtg mice 

have a two folds higher plasmatic UA concentration than WT mice (Panel B ; p<0,01). From 

a theoretical point of view, the amount of DNA is a critical determinant of protein synthesis 

capacity by providing necessary to sustain gene transcription. To have an idea of a possible 

improvement in protein translation, two essential components of the PI3K/Akt/mTOR 
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pathways controlling protein translation were measured by western blotting. However, our 

result failed to show any change between the two groups (Panels C and D). 

 
 

 

 

 

 
Figure 8. G6PDH overexpression increases gastrocnemius DNA content, uric acid 

plasma without any change in main components if the PI3K/Akt/mTOR pathway. 

Animals were divided into two experimental groups: Wild type (WT) (n=8) and G6PDH 

transgenic mice (G6PDHtg) (n=8). Panel A represents values of gastrocnemius DNA. Panel B 

shows plasma uric acid concentration. Western blotting analysis to detect Akt and its 

phosphorylated form (Panel C), p70S6K and its phosphorylated form (Panel D) in mice 

gastrocnemius muscle was performed. Representative blots are shown. The content of α-actin, 

a housekeeping protein marker in skeletal muscle, was determined in all the experimental 

groups. Values were normalized to those observed in the samples obtained from the WT 

group, which was assigned a value of 100%. Values are shown as mean (±SD). **p<0,01. 
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G6PDH overexpression is associated with an increased maximal oxygen uptake 

 

 In order to complete the characterization of our model, aerobic qualities were 

evaluated. Results are presented in the figure 9. We found that VO2max of G6PDHtg mice 

was significantly higher compared to WT mice (+12% ; p<0,05). However, absolute VO2max 

values (ml/min) were not different (data not shown). On the other hand, endurance capacity 

measured as the exhaustion time during running at 75% of vPeak was unchanged between the 

two groups. 

 
 

Figure 9. G6PDH overexpression improves aerobic qualities. 

Animals were divided into two experimental groups: Wild type (WT) (n=10) and G6PDH 

transgenic mice (G6PDHtg) (n=10). Panel A shows maximal oxygen uptake. Data were first 

expressed in relation to body mass raised to the power of 0,75 and then were normalized to 

those observed in the samples obtained from the WT group, which was assigned a value of 

100%. Panel B reports exhaustion time during a test at 75% of the vPeak. Values are shown 

as mean (±SD). *p<0,05. 

 

Improved maximal oxygen uptake with the overexpression of G6PDH would not be due 

to an increased lipids catabolism 

 

 To determine whether differences in VO2max could be explained by others reasons 

than weight differences, we decided to explore important markers involved in lipids 

catabolism and miochonriogenesis. Peroxisome proliferator-activated receptors α (PPARα; 

which regulates the expression of proteins involved in fatty acid oxidation, Panel A), carnitine 

palmitoyltransferase I (CPT I ; catalyzes the first reaction in the transport of longchain fatty 
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acids from the cytoplasm to the mitochondrion, a rate-limiting step in β-oxidation, Panel B), 

peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 α; master 

regulator of mitochondriogenesis, Panel C) and cytochrome C (used as a marker for 

mitochondrial density, Panel D) were measured by western blotting in gastrocnemius. The 

results are presented in the figure 10. PPARα and CPT I, as well as, PGC-1 α and cytochrome 

C gastrocnemius protein content were similar between G6PDHtg and WT mice. 

 

 

Figure 10. G6PDH overexpression, lipids catabolism and mitochondriogenesis markers. 

Animals were divided into two experimental groups: Wild type (WT) (n=8) and G6PDH 

transgenic mice (G6PDHtg) (n=8). Western blotting analysis to detect peroxisome 

proliferator-activated receptor α (PPARα ; Panel A), carnitine palmitoyltransferase I  (CPT ; 

Panel B), Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α ; 

Panel C) and cytochrome C (Cyt c; Panel D) in mice gastrocnemius muscle was performed. 

Representative blots are shown. The content of α-actin, a housekeeping protein marker in 

skeletal muscle, was determined in all the experimental groups. Values were normalized to 

those observed in the samples obtained from the WT group, which was assigned a value of 

100%. Values are shown as mean (±SD). 
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DISCUSSION 

 

 Our study is the first one which found in mice that G6PDH overexpression improved 

body composition by decreasing fat mass and increasing muscle mass surely due to an 

increase in the protein synthesis capacity through an increase in muscle DNA content. 

Improvement in body composition was associated with better muscle strength and aerobic 

qualities.  

 First, we confirmed that G6PDH overexpression was effective in the G6PDHtg mice 

by measuring its activity and protein expression in several tissues and notably in skeletal 

muscle where the activity and the protein content were two fold higher compared to WT mice. 

These data are in accordance by the previous data published by Corcoran et al. (1996) which 

were the only group working on these transgenic mice before us. As they published, we found 

that overexpression lead to an increased G6PDH activity which varies from one tissue to 

another. Indeed, while G6PDH activity was 2 fold higher in skeletal muscle, we found that it 

was multiplied by 1,5 in erythrocytes and by 4,5 in liver. 

 Improvement of body composition and notably increased muscle mass would be very 

important in sarcopenia which is characterized by a decreased muscle mass and strength 

(Cruz-Jentoft et al. 2010). Moreover, decreased fat mass would have also beneficial effect on 

muscle function. Indeed, during sarcopenia there is an age-related infiltration into skeletal 

muscle by fat associated with an increased adipogenesis, which is a powerful predictor of 

future disability and mortality (Visser et al. 2005). We reported that overexpression of 

G6PDH lead to a lower body weight associated with an increased lean mass percentage and a 

decreased fat mass percentage (see figure 2). This higher lean mass was due to an increased 

muscle mass for the following reasons. Lean body mass is composed of muscles, bones, and 

internal organs. In our case, since the bone mineral density (which can be used as an indirect 

reflect of the bone mass) was similar between the G6PDHtg and WT mice, increased bone 

mass to explain the increase in lean mass was excluded. In the same way, since internal 

organs, such as heart, liver and kidney weight normalized to body weight were not different in 

the two groups (data not shown), increased lean mass due to an increase in internal organs 

weight was also excluded. Finally, the unique difference in the compounds of lean mass was 

found for muscle weight normalized to body weight. Indeed, for the three muscle weighted 

(soleus, gastrocnemius and tibialis anterior), we found that the muscle weight/body weight 

ratios were higher in the G6PDHtg mice compared to the WT mice. For these different 

reasons, we concluded that increased lean mass was due to an increased muscle mass. 
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Increased MHC protein in skeletal muscle of the G6PDHtg mice compared to the WT mice 

confirmed the increase in muscle mass in these latter.  

 These results proved that G6PDH plays a central role in muscle mass regulation as it 

was supposed by several studies. Indeed, Max (1984) and Kovacheva et al. (2010) showed 

that muscle atrophy was associated with decreased G6PDH activity and protein content while 

muscle hypertrophy was associated with increased G6PDH activity and protein content. 

Muscle regeneration was also associated with increased G6PDH activity (Wagner et al. 1977; 

Wagner et al. 1978). It was proposed that an increased G6PDH activity would lead to 

augment ribose-5-phosphate (R5P) synthesis leading to an increase in DNA and RNA and 

protein. This hypothesis has been confirmed in vitro, where G6PDH overexpression led to an 

improved cell growth due to a higher DNA synthesis leading to an amplified protein synthesis 

(Tian et al. 1998; Kuo et al. 2000). However, it has been never confirmed in vivo. In our 

animal model, we found an increased gastrocnemius DNA content which confirmed the 

aforementioned studies. Otherwise, the higher uric acid plasma levels observed in G6PDHtg 

mice attested that G6PDH overexpression increased nucleic acid turnover. A higher DNA 

content would confer to the G6PDGtg mice a higher transcription capacity which would 

increase protein synthesis and lead to a higher muscle mass. However, we would directly 

measure protein synthesis to confirm this hypothesis. Protein synthesis is also controlled by 

translation which principally regulated by the PI3K/Akt/mTOR pathway. As increased 

G6PDH activity is associated with activation of the PI3K/Akt/mTOR pathways in vitro 

(Stanton 2012), we explored if the relation is present in vivo. In this way, we measured Akt 

and p70S6K which have been found to increase protein synthesis when activated in skeletal 

muscle (Kimball et al. 2002). Unfortunately, we did not shown any difference between 

G6PDHtg and WT mice. Finally, in regards to our actual results, the higher lean mass 

observed in response to G6PDH overexpression would be due to an increase protein synthesis 

thanks to a higher transcriptional capacity. 

 As previously described, our results showed that G6PDH overexpression led to an 

increase in lean mass. The later was associated with a decrease in fat mass. This decrease in 

fat mass was very surprising since an increase in G6PDH activity have been usually 

associated with a lipogenesis due to increased G6PDH activity in adipose tissue (Park et al. 

2005b; Bonnet et al. 2007; Zomeño et al. 2010). G6PDH deficient mice have also been found 

to be protected against increased adiposity induced by high-fat/high-sugar diet (Hecker et al. 

2012). However, the relation between increase in G6PDH activity and increase in lipogenesis 

is not always found (Bonnet et al. 2007). Indeed, these authors found in two different strains 
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of cattle that the lower rib fat thickness was observed in the strain with the higher mRNA 

levels and activities of G6PDH. Thus, the decreased fat mass observed in our study could be 

explained by a decreased lipogenesis and/or a higher lipids utilization. Indeed, Park et al. 

(2005) observed that G6PD-overexpressed adipocytes (3T3-L1 cells) significantly increased 

hormone-sensitive lipase expression elevating the levels of cellular free fatty acids, 

triglyceride, and free fatty acids release. We can therefore suppose that these free fatty acids 

will be uptaked by peripheric tissues such as skeletal muscle (Osterlund 2001; Lafontan & 

Langin 2009). In our case, we explored skeletal muscle markers involved in lipids catabolism 

(PPAR α and CPT I) without unfortunately found any change. These measures could be 

completed by measuring other markers such as the fatty acid transporter FAT/CD36 which is 

a key protein involved in regulating the uptake of free fatty acids across the plasma membrane 

in heart and skeletal muscle (Bonen et al. 2004). A decreased lipogenesis could be also 

envisaged in our model. Indeed, it has been shown that G6PDH is the main NADPH-

producing enzyme but others have been identified such as malic enzyme (ME), and isocitrate 

dehydrogenase (ICDH). Merritt et al. (2009) have recently shown in flies that variations in 

one NADPH-producing enzyme can be met by reciprocal variations in the other enzymes. 

Indeed, when G6PDH was increased, it was associated with a lower activity ME and ICDH. 

This relation has also been shown in rats in liver, adipose tissue and skeletal muscle (Barakat 

et al. 1989; Lawler & Demaree 2001). Since ME plays an important role in lipogenesis, the 

lower ME activity by G6PDH decreased lipogenesis in adipocyte and liver. This relation will 

be explored in a next study. 

 Body composition can be influenced by physical activity and/or nutrition. The 

observed lack of difference between G6PDHtg and WT mice in nutritional behavior and 

spontaneous activity showed that neither could explain the improvement of body composition 

associated to G6PDH overexpression. Increased energy expenditure could not be also 

excluded to explain the improvement of body composition and notably the decreased in 

adiposity. Indeed, it has been shown a similar adiposity profile in another transgenic model 

presenting an increased basal energy expenditure (Ortega-Molina et al. 2012). However, these 

mice were more active compared to their WT counterpart. Moreover, it has been described a 

G6PDH activity in the small intestine (Hecker & Leopold 2013), a modification of nutrient 

absorption in response to G6PDH overexpression could not be excluded. However, no data 

have been published about G6PDH activity and nutrient absorption.  
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 The improved body composition observed in the G6PDHtg mice was associated with 

better physical performances than those observed in WT mice. Indeed, we found higher 

muscle strength and higher maximal oxygen consumption. Body weight difference would 

principally explain these differences. Indeed, G6PDHtg mice were lower than the WT mice 

and only values normalized by the weight were higher in the G6PDHtg mice. It would be 

interesting to normalized strength and VO2max to lean mass values. In our case, it was not 

possible because mice using for the DXA analysis were not the same that those for  strength 

tests. However, mice who performed physical tests were tested by BIA to assess their body 

composition but the values are still under validation.  

  

 In summary, we found in mice that G6PDH overexpression improved body 

composition by decreasing fat mass and increasing muscle mass surely due to an increase in 

the protein synthesis capacity through an increase in muscle DNA content. These data 

confirmed for the first time the suggested role of G6PDH in muscle mass regulation. These 

beneficial effects on body composition were associated with better muscle strength and 

aerobic qualities. Based on the results of this study, improving G6PDH activity would 

represent a good strategy to improve body composition and physical performance.  

 In a sarcopenic context, it would act as a double-edge sword, hypertrophic and lipolytic. In a 

more large vision, the beneficial effects observed in response to G6PDH overexpression, 

would lead to increase the health span of these mice and finally increase longevity as it has 

been shown in flies overexpressing G6PDH. These hypotheses are currently studied in the 

different teams who participated in this work. 
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Study 3: Redox status in resting conditions and in response to pro-

oxidizing stimuli: impact of glucose-6-phospahe dehydrogenase 

overexpression 
 

 MATERIAL AND METHODS 

Animals 

 Generation of a human G6PDH-transgenic (G6PDHtg) mouse model 

 

 In order to determine if a higher expression of G6PDH is effective in improving 

muscle mass, strength, physical performance and therefore improving health span in a 

vertebrate model, we decided to generate transgenic mice with a moderate overexpression of 

G6PDH under the control of its natural promoter (Figure 1). 1) For the generation of the 

G6PDH transgenic mice, a plasmid containing the human G6PDH (hG6PDH) entire genomic 

sequence (20,105 kilobases), including the entire upstream and downstream regulatory 

sequences, was used (Corcoran et al. 1996). 2) For transgenesis, the hG6PDH sequence was 

isolated from the pBluescript vector by NotI digestion and a 0,5 to 1 ng/ul DNA solution was 

injected into the pronuclei of F1 hybrids (C57BL/6J x CBA) fertilized oocytes. 3) The 

resulting offspring was analysed for the presence of the transgene by Polymerase Chain 

Reaction using primers specific for the hG6PDH gene and that do not hybridize to the 

homologous mouse G6PDH gene. Three founders capable of transmitting the transgene to the 

progeny were identified and subsequentially three congenic lines were established (hG6PDH-

tg line 1, 2 and 3) by backcrossing the corresponding founders with inbread C57BL/6J mice 

in order to obtain almost pure (>99%) C57BL/6J hG6PDH-tg mice. Mice were generated at 

the Spanish National Cancer Research Center (CNIO, Madrid, Spain) at the Transgenic Mice 

core facility. After analysing the G6PDH overexpression level achieved in the three G6PDHtg 

lines established (hG6PDH-tg lines 1, 2 and 3) at the mRNA and protein level, we observed 

that G6PDH is moderately overexpressed (2-5 fold) in all tissues tested (including liver, lung, 

heart, muscle, white adipose tissue, kidney, spleen, brain and red blood cells) in the G6PDHtg 

line 1 and 2 only, whereas no G6PDH overexpression was observed in the G6PDHtg line 3. In 

this work, G6PDH-tg line 1 has been used. Some mice were sent at the medicine university of 

Valencia (Spain) to extend the colony and realize experiments while others were sent in 

Rennes only for experiments. 
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Figure 1. Generation of a human G6PDH-transgenic (hG6PDH-tg) mouse model 

 

Animal care 

 The animals were fed a normal rat chow (A.04; Panlab, Barcelona, Spain) and had free 

access to tap water. Mice were housed in a temperature-controlled room (24±2°C) with a 

light-dark cycle (12:12 h) until reach 12-14 months that was matched for the different 

experiments of the study. Only male mice were used. The study was conducted following 

recommendations from the institutional animal care and use committee, according to the 

Guidelines for Ethical Care of Experimental Animals of the European Union. Experiments 

were always approved the Committee on Ethics in Research of the Medicine University of 

Valencia and the Committee on Ethics in Research of the University Rennes 1. 

Exercise protocols 

 

 The exercise testing protocol was performed on a single-lane motorized treadmill 

(Panlab, Spain) with an adjustable belt speed (0–99.9 m.min-1). The rear of the treadmill was 

equipped with a low-voltage, electric stimulating bar, to encourage each mouse to run. The 

bar was set to deliver 0.2 mA at a frequency of 0.25 Hz, which caused an uncomfortable 

shock but did not injure the animal. 

 

 Measurements and data recording 

 

 Oxygen consumption (VO2) was measured by means of a rapid-flow, open-circuit, 

indirect calorimeter. The single-lane test treadmill was placed in a metabolic chamber. 

Ambient air was fed through the chamber at a rate of 0.66 l.min-1; the flow was chosen such 

that the O2 difference across the chamber was within the sensor’s range (-0.5 to -0.8% O2). A 

fan mixed the incoming air with the air around the treadmill and blew it towards the animal 
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(LE 4002FL, Panlab, Spain). The air flowed from the front of the treadmill to the rear and 

then returned under the belt towards the front. This created a rapid, circular "loop" of mixed 

gases (incoming "fresh" air and accumulated exhaled gases) from which a sample was drawn 

for analysis (LE 405 O2/CO2 Analyzer, Panlab, Spain). Gas samples were taken every 5s and 

dried prior to measurement of the oxygen and carbon dioxide fractions. 

 The gas analyzers were calibrated with standardized gas mixtures (Linde AG, Paris, 

France) before every test session, as recommended by the manufacturer. The treadmill test 

provided an estimate of VO2max, defined as the highest oxygen consumption attained over a 

15-second period during the testing protocol. To allow rapid comparison over a wide range of 

body weights (and especially with human data), dimensional analysis and empirical studies 

show that VO2 should be expressed in relation to body mass raised to the power of 0,75 

(Taylor et al. 1981; Mille-Hamard et al. 2012). 

 

 Familiarization 

 

 As previously described (Mille-Hamard et al. 2012), the mice were familiarized with 

the treadmill over a one week period via the completion of four 10min running sessions from 

0 to 9 m.min-1 (0, 3, 6 and 9 m.min-1). All mice succeeded in running for the required time at 

an intensity of 9m.min-1. The velocity was not increased above this value, in order to avoid a 

training effect. The mice subsequently performed an incremental exercise test. 

 

 Incremental test load: VO2max determination 

 

 Starting from a speed of 10 m.min-1, the exercise intensity was increased by 3m.min-1 

every 2 min, with an incline of 15%. This protocol was used because it has been described as 

the test providing the higher VO2max in mice (Høydal et al. 2007). Exercise continued until 

exhaustion, which was defined as an inability to maintain the running speed despite contact 

with the electric grid for more than 5 sec (Mille-Hamard et al. 2012). Exhaustion was then 

confirmed during the data analyses by the VO2max stagnation while speed was still increased. 

All measurements were made by the same investigator. The last stage completed by the 

mouse was defined as the peak velocity (vPeak). 
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 Exhaustive exercise 

 

 Exhaustive exercise was assessed using a modified protocol from Brooks & White 

(1978), at least 48 hours after maximal oxygen uptake determination to avoid interferences 

between the two tests (Mille-Hamard et al. 2012). Starting from a speed corresponding to 

50% of vPeak, the exercise intensity was increased by 5% of vPeak every 2 min until reach 

75% of vPeak, with an incline of 15%. At this moment, mice ran at this speed until exhaustion 

which was defined as an inability to maintain the running speed despite contact with the 

electric grid for more than 5 sec (Mille-Hamard et al. 2012). During this test, gas exchanges 

were not measured.  

 Animal were sacrificed directly at the end of exercise.  

 

Hyperoxia exposure 

 

 Mice were housed in plexiglas chambers flushed continuously with oxygen from a 

liquid source (10 liter/min) and maintained at sea level atmospheric pressure by regulation of 

chamber outflow with a water manometer. This provided sufficient flow to maintain 

measured oxygen concentration consistently > 95% and CO2 concentration < 0.5%. Relative 

humidity was 50-70°. Lighting was on a 12-h on/off cycle. Food and water were provided ad 

libitum. Mice were observed every 6h for evidence of respiratory distress and survival. 

Survival time was recorded. 

 

Blood and muscle sampling 

 Blood collection was done by a puncture to the abdominal aorta artery. Part of this 

blood was placed into a heparinized tube and was centrifuged at 1500g during 15 min at room 

temperature. Plasma was collected and stored at -20°C for later analysis. Other part of this 

blood was placed in a tube containing EDTA and then centrifuged at 1500g during 15 min at 

room temperature. It was then stored at -20 C for later determination of MDA.  

 Gastrocnemius muscle was collected and immediately frozen in liquid nitrogen. 
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Determination of glucose-6-phosphate dehydrogenase (G6PDH) activities in 

gastrocnemius muscle, liver and erythrocytes 

 Glucose-6-phosphate activity was determined using the techniques of Waller and co-

workers (1986). Briefly, 1000 µl of glucose-6-phosphate (final []=10 mM) in potassium 

phosphate buffer was added to a cuvette. Then 400 µl of muscle or liver homogenate or 

erythrocyte lysate were introduced. The reaction was initiated by 400 µl of NADP (final 

[]=0.90 mM) in buffer. The mixture was inverted and the absorbance read over 3 min at 340 

nm using a spectrophotometer. Results were obtained in nmol x mg of protein-1 x min-1. 

Values were then normalized to those observed in the samples obtained from the WT group, 

which were assigned a value of 100%. Protein concentrations were determined by Bradford’s 

method (Bradford 1976) by using bovine serum albumin as standard. 

Damage determination 

 All the following measures were done in resting conditions and in response to 

exhaustive exercise kwon to induce oxidative stress (Ji 2001). 

 Determination of muscle damage  

Muscle damage were evaluated by measuring lactate dehydrogenase (LDH) and 

creatine kinase (CK) plasmatic concentration. LDH and CK concentration assessment were 

carried into a Randox Daytona automate using commercial kits (Creatine Kinase RX series 

and lactate dehydrogenase RX series, RX DaytonaTM, Randox, France) according to the 

manufacturer’s protocol. 

  

 Determination of systemic oxidative damage  

Oxidative modification of total proteins in plasma were assessed by immunoblot 

detection of protein carbonyl groups using the ‘OxyBlot’ protein oxidation kit (Intergen) as 

previously described (Romagnoli et al. 2010). Approximately 20 mg of total protein was 

loaded onto gels and electrophoretically separated. Antibody anti-dinitrophenylhydrazone was 

purchased from Intergen Company (Purchase, NY). The procedure to quantify total protein 

carbonyls with the OxyBlot kit was densitometry of the blotting and of the Ponceau red 

staining (data not shown), followed by finding the ratio between the total density in the 

oxyblot and the total density in the Ponceau red staining. Specific proteins were visualised by 

using the enhanced chemiluminescence procedure as specified by the manufacturer 
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(Amersham). Autoradiographic signals were assessed using a BioRad scanning densitometer.

 Lipids peroxidation determination as malondialdehyde (MDA) in plasma was 

performed by the method described by Wong et al. (1987). This method is based on the 

hydrolysis of lipid peroxides and subsequent formation of the adduct thiobarbituric acid 

(TBA) and MDA (TBA-MDA2). This adduct is detected by reverse phase HPLC and 

quantified at 532 nm (Ultimate 3000 Dionek). The chromatographic technique was performed 

in isocratic mobile phase being a mixture of 50 mM KH2PO4 (pH 6.8) and acetonitrile 

(70:30) 

 Determination of oxidative damage in gastrocnemius muscle 

 Oxidative modification of total proteins in gastrocnemius muscles was assessed by 

immunoblot detection of protein carbonyl groups using the “OxyBlot” protein oxidation kit 

(Millipore, Massachusetts) as previously described (Romagnoli et al. 2010). Approximately 

20 mg of total protein was loaded onto gels and electrophoretically separated. Antibody anti-

dinitrophenylhydrazone was purchased from Intergen Company (Purchase, NY). The 

procedure to quantify total protein carbonyls with the OxyBlot kit was densitometry of the 

blotting and of the Ponceau red staining (data not shown), followed by finding the ratio 

between the total density in the oxyblot and the total density in the Ponceau red staining. 

Specific proteins were visualised by using the enhanced chemiluminescence procedure as 

specified by the manufacturer (Amersham). Autoradiographic signals were assessed using a 

BioRad scanning densitometer.       

 Oxidative DNA damage was measured by 8-hydroxy-2′-deoxyguanosine (8-OHdG). A 

commercially available enzyme linked immunoassay (Highly Sensitive 8-OHdG Check, 

Japan Institute for the Control of Aging, Japan) was used to measure oxidized DNA in 

isolated muscle DNA samples. Gastrocnemius DNA was extracted via the High Pure PCR 

Template Preparation Kit (Roche, GmbH, Germany) according to the manufacturer’s 

protocol. DNA was used if it had a minimum 260:280 ratio of 1.8. The assay was performed 

following the manufacturer's directions. Briefly, 50 μl of DNA were incubated with the 

primary antibody, washed, and then incubated in secondary antibody. The chromogen 

(3,3′,5,5′-tetramethylbenzidine) was added to each well, and incubated at room temperature in 

the dark for 15 min. The reaction was terminated and the samples were read at an absorbance 

of 450 nm. Samples were normalized to the DNA concentration measured via a plate 

spectrophotometer for nucleic acids (ND-2000, NanoDrop, Wilmington, DE). All analyses 

were done in triplicate. 
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 Lipid peroxidation was evaluated by measuring 4 hydroxynonenal (4 HNE) modified 

protein using western blotting as described follow and specific anti-body (anti-4 

hydroxynonenal abcam). It recognizes the specific group in the proteins that had been 

modified with HNE. 

 Antioxidant enzymes protein content was measured by western blotting as described 

follow. 

 

Immunoblot analysis 

Aliquots of gastrocnemius lysate (50-120 µg of proteins) were separated by sodium 

dodecyl sulfate–polyacrylamide gel electrophoresis. The whole gastrocnemius was used to 

ensure homogeneity. Proteins were then transferred to nitrocellulose membranes, which were 

incubated overnight at 4 °C with appropriate primary antibodies: anti-catalase (1:5000, Sigma 

Aldrich, Missouri); anti-G6PDH (1:1000, Abcam, UK);  anti-Gpx (1:2000, Abcam, UK); anti-

p38 (1:1000, Cell Signaling); anti-phosphorylated p38 (1:1000, Cell Signaling); anti-MuRF1 

(1:200, Santa Cruz Biotechnology Inc, Santa Cruz, CA); anti-4 hydroxynonenal (1/500, 

Abcam, UK) and CuZnSOD (1:5000, NovusBio). Thereafter, membranes were incubated with 

a secondary antibody for 1 h at room temperature. Specific proteins were visualized by using 

the enhanced chemiluminescence procedure as specified by the manufacturer (Amersham 

Biosciences, Piscataway, NJ). Autoradiographic signals were assessed by using a scanning 

densitometer (BioRad, Hercules, CA). Data were represented as arbitrary units of 

immunostaining. To check for differences in loading and transfer efficiency across 

membranes, an antibody directed against α-actin (1:1000, Sigma Aldrich Missouri) was used 

to hybridize with all the membranes previously incubated with the respective antibodies. For 

the Western Blotting quantifications we first normalized all the proteins measured to α-actin. 

Samples from each group were run on the same gel.   
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Statistical Analysis 

 Statistical analyses were performed using the SigmaStat 3.1 Program (Jandel Corp., 

San Rafael, CA). Results are expressed as mean ± SD. Normality of distribution was checked 

with the Kolmogorov test and homogeneity of variance was tested by Levene’s statistics. We 

used a student-test to compare group differences in resting conditions. Differences were 

considered significant if p<0.05. To test for statistically significant differences between the 

groups in the pro-oxidizing situations a two-way ANOVA was used. When significant F-

ratios were observed, a Bonferroni multiple comparison’s test was applied to test individual 

means. Statistical significance was assumed at p<0,05. 
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RESULTS  

G6PDH overexpression increases G6PDH activity and protein content 

 

 To confirm that G6PDH overexpression was effective, we measured G6PDH activity 

in various tissues and protein content especially in skeletal muscle because it was the tissue of 

interest in this work. Results are shown in Figure 2. G6PDH overexpression multiplied 

G6PDH activity by 1,5 in erythrocytes (see panel A, p<0,01), by 2 in gastrocnemius muscle 

(see panel B, p<0,01) and by 4,5 in liver (see panel C, p<0,01) in G6PDHtg mice compared to 

WT mice. G6PDH muscle protein content was twofold higher in G6PDHtg mice compared to 

WT mice (see panel D, p<0,01). 

 

 
Figure 2. G6PDH overexpression increases G6PDH activity and protein content. 

Animals were divided into two experimental groups: Wild type (WT) (n=8) and G6PDH 

transgenic mice (G6PDHtg) (n=8). Panels A, B and C show G6PDH enzymatic activity 

respectively in erythrocytes, gastrocnemius muscle and liver. Western blotting analysis to 

detect G6PDH (Panel D) in mice gastrocnemius muscle was performed. Representative blots 
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are shown. The content of α-actin, a housekeeping protein marker in skeletal muscle, was 

determined in all the experimental groups. Values were normalized to those observed in the 

samples obtained from the WT group, which was assigned a value of 100%. Values are 

shown as mean (±SD). **p<0,01.  

 

Oxidative stress in resting conditions 

 

G6PDH overexpression does not modify systemic oxidative damage but decreases 

gastrocnemius oxidative damage 

 

 Numerous studies in rodents have shown that decreased G6PDH activity and protein 

content is associated with increased oxidative damage (Kumaran et al. 2004; Senthil Kumaran 

et al. 2008; Braga et al. 2008; Kovacheva et al. 2010). In order to assess if G6PDH 

overexpression could protect against oxidative stress (OS), we measured in resting conditions 

oxidative damage in plasma (which are used to assess systemic OS) and gastrocnemius 

muscle. Our results showed that neither carbonylated protein and malondialdehyde level were 

altered by G6PDH overexpression (see figure 3, Panels A and B).  

 
Figure 3. G6PDH overexpression does not improve systemic oxidative damage in resting 

conditions.  

Animals were divided into two experimental groups: Wild type (WT) (n=8) and G6PDH 

transgenic mice (G6PDHtg) (n=8). Panel A shows a Western blotting analysis to detect 

protein carbonylation in plasma. A representative blot is shown. For the densitometric 
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analysis of the results, values are shown as mean (±SD). Panel B presents plasmatic 

malondialdehyde level. Values were normalized to those observed in the samples obtained 

from the WT group, which was assigned a value of 100%. Values are shown as mean (±SD). 

 

In gastrocnemius, carbonilated proteins and 4 hydroxynonenal modified proteins were 

similar between G6PDHtg and WT mice (see figure 4, panels A and B). Panel C represents 8-

hydroxy-2′-deoxyguanosine (8-OHdG) gastrocnemius content. Here, we observed a 

significantly 23% lower levels of 8-OHdG gastrocnemius content in G6PDHtg compared to 

WT mice (**p<0,01). 

 
 

Figure 4. G6PDH overexpression improves gastrocnemius oxidative damage in resting 

conditions. 

Animals were divided into two experimental groups: Wild type (WT) (n=8) and G6PDH 

transgenic mice (G6PDHtg) (n=8). Panel A and Panel B show respectively a Western blotting 

analysis to detect protein carbonylation and lipids peroxidation in gastrocnemius. A 

representative blot is shown. For the densitometric analysis of the results, values are shown as 

mean (±SD). Panel C shows 8-OHdG from DNA extracted from gastrocnemius muscle of 
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mice. Values were normalized to those observed in the samples obtained from the WT group, 

which was assigned a value of 100%. Values are shown as mean (±SD) **p<0,01.  

 

Overexpression of G6PDH is not associated with increased antioxidant enzymes in 

gastrocnemius 

 

 Several antioxidant systems depend on the production of NADPH by G6PDH for 

proper function such as the glutathione system (M. D. Scott et al. 1993), catalase (M. D. Scott 

et al. 1993) and indirectly the superoxide dismutase (SOD) (Stanton 2012). In order to assess 

if G6PDH overexpression led to improve antioxidant system, we analyzed by western blotting 

the protein expression of the aforementioned systems. Figure 5 resumes our results. We did 

not found any difference between G6PDHtg and WT mice in the protein content of 

glutathione peroxidase-1 (Gpx-1), CuZn superoxide dismutase (CuZnSOD) and catalase in 

gastrocnemius. 

 

 
Figure 5. G6PDH overexpression does not improve gastrocnemius antioxidant enzymes 

in resting conditions. 

Animals were divided into two experimental groups: Wild type (WT) (n=8) and G6PDH 

transgenic mice (G6PDHtg) (n=8). Panel A, B and C show respectively a Western blotting 
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analysis to detect glutathione peroxidase-1 (Gpx-1), CuZn superoxide dismutase (CuZnSOD) 

and catalase in gastrocnemius. A representative blot is shown. For the densitometric analysis 

of the results, values are shown as mean (±SD). Values were normalized to those observed in 

the samples obtained from the WT group, which was assigned a value of 100%. Values are 

shown as mean (±SD).  

 

Survival assay in hyperoxia 

 

 Based on the study of Legan et al. (2008) in which flyies overexpressing G6PDH were 

protected against death induced by hyperoxia (situation known to produce a very intensive 

oxidative stress), we decided to repeat the experiment in our model. In order to determine the 

effects of G6PD overexpression on resistance to oxidative stress, mice were exposed 

continuously to hyperoxia ([O2] > 95%, [CO2] < 0.5%). The maximal and survival time 

between G6PDHtg and WT mice was similar (around 90 hours; data not shown). Note that 

this experience was a pre-experiment carried on only 4 animals per group for ethical reasons. 

Based on the lack of difference between G6PDHtg and WT mice and for ethical reasons, the 

experiment was not repeated with more animals. 

 

Oxidative stress in response to exhaustive exercise 

 

As mentioned in study 2, G6PDH overexpression is associated with an increased 

maximal oxygen uptake (data not shown).  

 The diagnosis of muscular lesions in response to exercise is usually made by blood 

tests to detect the presence of specific muscle markers (Guerrero et al. 2008). Creatine kinase 

(CK) and lactate dehydrogenase (LDH) are among the most widely used plasma markers of 

muscle damage. To assess if G6PDH overexpression was able to protect against muscle 

damage in response to exercise, plasmatic CK and LDH were measured. Results are presented 

in figure 6 (respectively panel A and B). For both CK and LDH, there were no differences in 

the control (= non exercise) groups (WTC: WT control and TGC: G6PDH control). 

Independently of the genotype, we observed a significantly increase in CK and LDH after 

exercise in the WTE and TGE groups which has the same amplitude (CK: WTE vs WTC = 

+70%, TGE vs TGC = +75%; LDH: WTE vs WTC = + 116%, TGE vs TGC = + 129% ; 

p<0,05 in all cases). It has been previously found that free radicals are, at least in part, 

responsible of the muscle damage in response to exercise (Gómez-Cabrera et al. 2003). As 
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previously described, G6PDH plays an important role in the antioxidant systems. Thus, to 

assess if G6PDH overexpression protects against muscle oxidative damage induced by 

exercise, carbonilated proteins and 4 hydroxynonenal modified proteins (4-HNE) were 

measured. Results are shown figure 6 (respectively panel C and D). For both carbonilated 

proteins and 4 HNE, there were no differences in the control groups (WTC and TGC). 

Independently of the genotype, we observed a significantly increase in carbonilated proteins 

and 4-HNE in the WTE and TGE groups which has the same amplitude (carbonilated 

proteins: WTE vs WTC = +22%, TGE vs TGC = +29% ; 4-HNE:  WTE vs WTC = + 35%, 

TGE vs TGC = + 33%; p<0,05 in all cases). 

 

 

 

 
Figure 6. G6PDH overexpression does not protect against exercise-induced muscle 

damage 

Animals were divided into four experimental groups: Wild type control (WTC) (n=5), 

G6PDHtg control (TGC) (n=5), WT exercise (WTE) (n=5) and G6PDHtg exercise (TGE). 

 



 Personnal Contribution                                                                                                    Study 3 

190 
 

Sarcopenia: Mechanisms and Prevention - Role of Exercise and Growth Hormone - Involvement of Oxidative Stress and Glucose-6-phosphate Dehydrogenase -
2014 

 

Panel C and D show respectively a western blotting analysis to detect protein carbonylation 

and lipids peroxidation in gastrocnemius. A representative blot is shown. For the 

densitometric analysis of the results, values are shown as mean (±SD). Values were 

normalized to those observed in the samples obtained from the WT group, which was 

assigned a value of 100%. Values are shown as mean (±SD). *p<0,05. 
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Discussion 

 

 The present study was conducted to verify whether overexpression of G6PDH have a 

beneficial impact on oxidative stress in resting conditions and in response to pro-oxidizing 

stimuli. Our data clearly showed only a decrease in DNA oxidative damage in G6PDHtg mice 

skeletal muscle in resting conditions. Based on the markers studied, we did not find a 

protective effect of G6PDH overexpression in response to oxidative stress induced by pro-

oxidizing stimuli.  

 As in our previous study, we confirmed that G6PDH overexpression was effective in 

the G6PDHtg mice by measuring its activity and protein expression in several tissues and 

notably in skeletal muscle where the activity and the protein content were two fold higher 

compared to WT mice. 

 Concerning the resting conditions, our results revealed that protein oxidation 

(evaluated through carbonilated proteins) and lipid peroxidation (evaluated via 

malondialdehyde) were not reduced by G6PDH overexpression. This lack of difference 

between G6PDHtg and WT mice reinforces indirectly data concerning these same markers in 

G6PDH human deficient patients. Indeed, with the exception of Nikolaidis et al. (2006), 

Jamurtas et al. (2006) and Theodorou et al. (2010) who reported that lipid peroxidation 

(assessed by lipid hydroperoxydes and Thiobarbituric acid reactive substances) and protein 

oxidation (evaluated by carbonilated proteins) were similar in G6PDH deficient humans 

compared to their healthy counterpart, no study has yet investigated these effects. Indeed, 

unfortunately, in our knowledge no data on the animal systemic oxidant stress exist either in 

response to a G6PD deficiency or overexpression. Moreover, the only team (Corcoran et al. 

1996) that has been working in our model did not explored these systemic parameters. Our 

study is the first that has focused on the role of G6PDH on systemic oxidative stress in 

animals.  

 Protein oxidation (evaluated through carbonilated proteins) and lipid peroxidation 

(evaluated via 4-HNE) were similar in G6PDHtg mice compared to WT mice supposing that 

muscle oxidative damage appear to be independent of G6PDH status. However, controversial 

findings as an increased oxidative damage in specific tissues associated to a decreased 

G6PDH activity and or protein content have been observed. Thus, Kumaran et al. (2004, 

2008) and Kovacheva et al. (2010) showed in aged rodents that a decrease in G6PDH activity 

or protein content was associated with an increase in lipid peroxidation (measured as 4-HNE 

and lipid hydroperoydes) and a decrease in GGSH/GSSG ratio. These divergences could be 
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explained by the age of our animals. Compared to the studies of Kumaran et al. (2004, 2008) 

and Kovacheva et al. (2010, our mice were young and at this age, basal oxidative stress is 

well controlled by the antioxidant systems, at least in skeletal muscle. Indeed, the 

aformenionned studies were carried in senescent animals aged between 18 and 22 months old 

while we were working in adult animals aged between 12 and 14 months old.  

For the first time, our study also revealed that G6PDH overexpression led to a 

decrease in total DNA oxidative damage in gastrocnemius. Indeed, 8-OHdG values were 

significanlty lower in the G6PDHtg mice compared to the WT mice. Although this relation 

has never been stutied in skeletal muscle, others found concordant results in brain. Thus, Felix 

et al. (2002) and Jeng et al. (2013) found higher 8-OHdG values and others DNA damage 

markers in the brain of G6PDH deficient mice compared to their WT conterpart. In both case, 

total DNA damage were associated with increased DNA mutations. The mechanism by which 

G6PDH would act on DNA is not clear and need to be studied. As previously exposed, brain 

DNA damage led to brain DNA mutations (Felix et al. 2002; Jeng et al. 2013). Although this 

relation was not researched in our study, we can suppose that our mice with lower muscle 

DNA damage would have also lower muscle DNA mutations. This data is very essential since 

numerous studies observed in various species an age-related accumulation of mitochondrial 

DNA mutations in skeletal muscle induced by the oxidative stress (Lee et al. 1998; Bua et al. 

2006; Figueiredo et al. 2009; Lee et al. 2010). These mitochondrial DNA mutations led to 

electron transport chain abnormalities associated with morphological aberrations of muscle 

fibers (Bua et al. 2006). Thus, since it has been shown that G6PDH is present in mitochondria 

(Mailloux & Harper 2010), we would suppose that our G6PDHtg mice with potential lower 

mitochondrial DNA mutation would be protected during aging. 

Our G6PDHtg mice were not protected against hyperoxia. Indeed, the survival time 

during hyperoxia exposure was the same between the G6PDHtg mice and their WT 

counterpart. In the same way, we did not find any protective effect of G6PDH overexpression 

against muscle damage and muscle oxidative damage induced by exhaustive exercise. Indeed, 

we found similar increases of plasmatic CK and LDH concentrations as well as similar 

increases in carbonilated protein and 4-HNE modified protein in G6PDHtg and WT mice. The 

absence of a protective effect against induced oxidative stress could be explained by the fact 

that G6PDH does not supply NADPH only to antioxidant systems. Indeed, if G6PDH is 

known to supply NADPH to the glutathione system and catalase (M. Scott et al. 1993), it has 

been reviewed that G6PDH supplies NADPH to xanthine oxidase, nitric oxide synthase and 

NADPH oxidase (Hecker & Leopold 2013). All these enzymes have been shown or are 
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supposed to be involved in free radical production during exercise and notably exhaustive 

exercise (Gomez-Cabrera et al. 2005; Gomez-Cabrera et al. 2010; Gomez-Cabrera et al. 

2013). Consequently, the increased antioxidant capacity that G6PDH would bring by 

supplying NADPH to antioxidant systems would counterbalanced by the NADPH supply to 

pro-oxidant systems. However, we did not measure the activity of these pro-oxidant enzymes. 

The same reasons would explain the lack of difference observed during hyperoxia.  

 

In summary, we found that G6PDH overexpression in mice clearly decreased DNA 

oxidative damage in skeletal. This result reinforces the role played by the G6PDH in the DNA 

protection since deficient G6PDH mice presented higher DNA oxidative damage. However, 

the mechanisms by which this protection is effective involved the glutathione but the exact 

mechanism have to be studied. Surprisingly, the expected protective effect of G6PDH 

overexpression against oxidative stress induced by pro-oxidizing stimuli was not present 

surely due to compensatory mechanisms between the antioxidant systems and pro-oxidant 

systems depending of G6PDH for the NADPH supply. 
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DISCUSSION 

Age-induced chronic oxidative stress in skeletal muscle is associated with altered cell 

signaling pathways leading to sarcopenia. 

 Our study provided new evidences in vivo, that impairment of muscle cell signaling 

pathways involved in sarcopenia are induced by a chronic oxidative stress. Indeed, we clearly 

showed that aging was associated with a chronic oxidative stress in skeletal muscle since 

oxidative damage (proteins and DNA oxidation) in our old rats were higher compared to our 

young animals. Our study confirmed previous results published by Radák et al. (2002) and 

Jackson et al. (2011) which have also shown an increase in DNA oxidation and lipids 

peroxidation in older rodents. Our evaluation of oxidative damage could have been completed 

by markers of lipid peroxidation such as malondialdehyde or isoprostanes, also described to 

increase during aging in skeletal muscle (Kovacheva et al. 2010). However, proteins and 

DNA oxidation, evaluated in our study, appear to be more relevant than lipids peroxidation 

due to their implications in regulating muscle mass. The increase of oxidative damage is 

attributed to the decrease of antioxidant systems efficiency since we showed a lower protein 

expression of catalase, glutathione peroxidase and G6PDH which are major antioxidant 

enzymes (M. D. Scott et al. 1993). Our data were in accordance with previous authors who 

reported, in aged rodent a decrease in antioxidant enzymes protein content in skeletal muscle 

(Senthil Kumaran et al. 2008; Braga et al. 2008; Kovacheva et al. 2010). However, such 

results have not been always found. Indeed, Ryan et al. (2008) did not find any change in 

antioxidant enzyme such as Gpx and catalase. Otherwise, several studies reported an increase 

in antioxydant enzymes activity in skeletal muscle during aging in rodent (Ji et al. 1990; Ryan 

et al. 2008). In our study, activity of antioxidant enzyme activity was not performed. 

However, if like in the aforementioned studies, the activity of the antioxidant enzyme was 

increased, the higher oxidative damage observed in our old rats compared to the young would 

witness their inability to counteract the age-induced oxidative stress.    

 Thereafter, we have shown that this oxidative stress was associated with an 

impairment of the PI3K/Akt/mTOR pathways since we observed a decreased Akt and 

p70S6K activation. Our results suggest that aging was associated with an impaired protein 

synthesis as found in others studies in older rodents (Haddad et al. 2006; Thompson et al. 

2006). The relation between oxidative stress and impairment of the PI3K/Akt/mTOR have 

been already shown in vitro (Shenton et al. 2006; O’Loghlen et al. 2006; Zhang et al. 2009), 

and our study brings a prove that it could really occur in vivo. This potential decreased protein 
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synthesis is important since it would participate in the muscle atrophy associated to 

sarcopenia which could lead to impaired muscle strength as found in others studies (Chabi et 

al. 2008; Andersson et al. 2011). As muscle mass is controlled by a balance between protein 

synthesis and proteolysis (Powers et al. 2012), we evaluated several markers of the 

ubiquitine-proteasome system (UPS) in regard to the increased oxidative damage that we 

found. Our results showed an increase in the muscle protein content of MuRF1 and MaFbx, 

the most two important ubiquitin ligases involved in muscle proteolysis (Foletta et al. 2011). 

Our results are concordant with the results of others studies that have already found such 

results (Hepple et al. 2008; Altun et al. 2010). Moreover, they showed that increased MuRF1 

protein content was associated with an increased proteasome activity. However, these studies 

did not focus on the relation between oxidative stress and UPS. Based on our results and these 

published by Altun et al. (2010), we suggested that our old rats were presenting a higher 

proteolysis compared to their young counterpart. However, such results have not been always 

found. Indeed, studies found that MAFbx and MuRF1 expression can be unchanged during 

aging in skeletal muscle (Léger et al. 2008; Whitman et al. 2005). To confirm, an increased 

proteolysis through the UPS, it would be interested to directly measure the proteasome-

dependent proteolysis. On the other hand, our results would confirm data obtained in vitro 

showing that exposure of C2C12 myotubes to H2O2 (known to increase during sarcopenia) up-

regulated the expression of MuRF1 and Atrogin-1 (Li et al. 2003).The impairment of the 

PI3K/Akt/mTOR pathway as well as the up-regulation of UPS compounds, were reinforced 

by the increased myostatin protein expression observed in our aged rats. Noted that myostatin 

is known to up-regulate the UPS and inhibit the PI3K/Akt/mTOR pathway (Amirouche et al. 

2009; Sartori et al. 2009; Trendelenburg et al. 2009). Our data supposed a link between 

oxidative stress and myostatin that would be interested to study. Our results are also in 

accordance with Ploquin et al. (2012) who indicated that absence of myostatin in mice is 

associated with lower oxidative damage and increased antioxidant enzyme.   

 Associated with the oxidative damage, our older rats are characterized by a decrease in 

mitochondrial content and activity. These data which confirm those of Lee et al. (2010) and 

O’Leary et al. (2013) could be explained by the age-increased ROS production by the 

mitochondria which leads to an accumulation of oxidative damage to the mitochondrial 

compounds especially to mtDNA leading to mtDNA mutations. These mutations induce the 

synthesis of defective ETC subunits leading to an impaired mitochondrial function (Harman 

1972; Miquel et al. 1980). Moreover, we also found a decreased activation of the 

mitochondriogenesis pathway (i.e. PGC-1α, NRF-1) as previously reported by numerous 
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studies (Chabi et al. 2008; Derbré et al. 2012; Koltai et al. 2012; Ibebunjo et al. 2013; Pugh et 

al. 2013). Mitochondria content and activity are a key component in the maximal oxygen 

consumption. Consequently, a decrease in their content and activity would lead to decrease 

the aerobic qualities of elderly people as it has been reported by Capel et al. (2005) 

 An impaired muscle regeneration capacity is often supposed to occurring during aging 

due to an pro-oxidizing cellular environment (Carlson & Faulkner 1989; Carlson, Suetta, et al. 

2009). In our study, we observed a down-regulation of Myf-5 which is a well-known marker 

of myoblast/satellite cell differentiation (Kim et al. 2005) and an up-regulation of p21 which 

is a cell cycle inhibitor (Jaumot et al. 1997). These results in addition the concomitant 

myostatin increase that we observed suggested a possible impairment of muscle regeneration 

in our older rats. Indeed, myostatin is known to maintain satellite cell quiescence status and 

repress cell-renewal through the induction of p21 (McCroskery et al. 2003), suggested a 

possible impairment of muscle regeneration in aged muscle. However, additional measures 

would be needed to confirm this hypothesis.       

 After having confirmed, that age-related oxidative stress was associated with 

impairment of several pathways involved in sarcopenia, we showed that oxidative stress was 

associated with muscle atrophy. Indeed, the higher specific gravity index (showing a 

decreased lean mass and an increased adiposity) and the lower muscle weight/body weight 

ratio (attesting the muscle atrophy) observed in our old rats allowed us to qualify them as 

sarcopenic. Our results agreed with other studies showing that at the same age (22-24months) 

rats presented muscle atrophy  associated with a chronic oxidative stress (Capel et al. 2004; 

Mosoni et al. 2004).  

 

Growth hormone replacement therapy is effective to combat sarcopenia by improving 

protein synthesis and mitochondriogensis associated with restoring a young redox 

profile  

 Growth hormone can be used in two ways in hormone therapies during aging. GH can 

be given to raise its concentration above the normal values found in younger people or to raise 

similar values. Since high doses of GH cause high incidence of adverse effects (Papadakis et 

al. 1996; Holloway et al. 1994), we decided to use a dose allowing to reach similar plasmatic  

IGF-1 levels than those found in younger rats. The dose and duration were chosen based on 

previous studies published by the team of Professor Tresguerres which has a long experience 

in GH replacement therapy in older rodents (Castillo et al. 2004; C Castillo et al. 2005; 
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Carmen Castillo et al. 2005; Kireev et al. 2007). In order to simulate a pulsatile secretion 

which is a main drawback reported in the human trials (Giannoulis et al. 2012), GH was given 

in two daily doses at 10h and 17h.  

 A main finding of our study is that GH replacement therapy was useful in preventing 

the age-related muscle mass loss. Indeed, our data showed that GH administration 

significantly increased specific gravity index in old male rats, which means that GH, through 

its anabolic, antilipogenic and lipolytic properties, is able to increase muscle mass and reduce 

body fat (Castillo et al. 2004; Carmen Castillo et al. 2005). Moreover, we found that the 

gastrocnemius muscle atrophy observed in old non-treated rats was significantly prevented in 

the old treated ones. These beneficial effects were surely driven by an increased protein 

synthesis as supposed by the increased activation of Akt and p70S6K and a decreased 

proteolysis as supposed by the decreased MuRF1 expression. The down-regulation of 

myostatin observed in our old treated rats could explain these results. Indeed, in the absence 

of myostatin, mice showed an increased protein synthesis due to an increased activation of the 

PI3K/AkT/mTOR pathway (Guo et al. 2009). Moreover, inhibition of myostatin with specific 

inhibitor has been shown to decrease MuRF1 expression in the skeletal muscle of mice 

(LeBrasseur et al. 2009). We were the first to report that GH hormone treatment is able to 

down-regulate myostatin. Data has been previously found in transgenic salmon 

overexpressing growth hormone exhibiting decreased myostatin transcript and protein 

expression (Roberts et al. 2004). This interesting result need to be confirmed in further 

investigations.  

 Interestingly, the GH treatment used in our study led to improve mitochondriogenesis 

in the treated rats. Recently, Vescovo et al. (2005) working in cardiac muscle in rats, reported 

that GH activates PGC-1α via IGF-1 and calcineurin. It would be interested to explore this 

pathway in our study. In the same way, Short et al. (2008) demonstrated in healthy young 

humans that acute GH action promotes an increase in mitochondrial oxidative capacity and 

abundance of several mitochondrial genes (e.g. COX3, TFAM). However, mitochondrial 

protein synthesis was not increased surely due to the unique dose of GH. An increase in 

mitochondriogenesis is usually associated with an increased maximal oxygen consumption 

(Short et al. 2003; Koltai et al. 2012) and/or an increased endurance capacity (Derbré et al. 

2012). Such effect in sarcopenic elderly would improve their health span. 

 Interestingly, the restoration of a normal activation of the PI3K/AkT/mTOR pathway 

and mitochondriogenesis, as the decreased expression of MURF1 were concomitant to an 

improvement of the redox status. Indeed, GH treatment decreased protein and DNA oxidation 
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in our old treated rats to values similar to those observed in the young rats. The observed up-

regulation of the expression of important intracellular antioxidant enzymes, such as catalase, 

glutathione peroxidase, and glucose-6-phosphate dehydrogenase in the old treated rats would 

explain this result. However, the exactly mechanism and the actor by which GH activated the 

expression of antioxidant enzymes is still unknown. A decrease in the age-related oxidative 

damage has been also reported in response to another hormone replacement therapy by 

Kovacheva et al. (2010). Indeed, in response to testosterone treatment in old mice, they 

showed a decrease in lipid peroxidation associated with an increased Akt activation. 

According to these authors, these modifications will be associated with an increased G6PDH 

protein content. These similar results suggested that growth factors in general are able to 

improve oxidative stress. Since our study demonstrated also an increase in the G6PDH protein 

content, we can suppose that the beneficial of our GH treatment would involve the supply of 

NADPH to the glutathione system and catalase (M. D. Scott et al. 1993). Consequently the 

capacity to scavenge free radical would be increased and would explain the decrease in 

oxidative damage. However, these hypotheses have to be confirmed. 

 

Glucose-6-phosphate dehydrogenase overexpression, body composition, physical 

performance and oxidative stress: discussion around developing strategies in order to 

combat sarcopenia.  

 The aim of our second study, was to study the roles of the G6PDH enzyme in 

regulating body composition (muscle mass and fat mass) and its impacts on physical 

performances (muscle strength, maximal oxygen uptake and endurance capacity). The main 

finding of the study was that overexpression of G6PDH in mice improved body composition 

by decreasing fat mass and increasing muscle mass surely due to an increase in the protein 

synthesis capacity through an increase in muscle DNA content. Improvement in body 

composition was associated with better muscle strength and aerobic qualities.  

The aim of the third study was to study if the overexpression of G6PDH has a 

beneficial impact on oxidative stress in resting conditions and in response to pro-oxidizing 

stimuli. Our data clearly showed a decrease in DNA oxidative damage in G6PDHtg mice 

skeletal muscle in resting conditions and surprisingly we did not find a protective effect in 

response to pro-oxidizing stimuli. However, we also did not find adverse effect in response of 

this overexpression.  
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 Since sarcopenia is characterized by a loss of muscle mass, strength, physical 

performance (Cruz-Jentoft et al. 2010) and also increased fat mass (Visser et al. 2005), our 

aforementioned results provide evidence that developing strategies which would lead to up-

regulate G6PDH would potentially effective to combat sarcopenia.  

  The fact that G6PDH overexpression leads to increase muscle mass brings for the first 

time the proof that this enzyme is effectively involved in the regulation of muscle mass as it 

suggested by several studies (Wagner et al. 1978; Max 1984; Kovacheva et al. 2010). 

However, our results do not allow to determine the exactly role of the G6PDH in regulating 

muscle mass. Based on our results showing an increased muscle DNA content, we suppose 

that this latter enhances the protein synthesis of the G6PDHtg mice, since from a theoretical 

point of view DNA content is the limiting factor of transcription capacity. Increase in protein 

synthesis would lead to a higher muscle mass. In vitro data support this idea. Indeed, Tian et 

al. (1998) showed that cells overexpressing G6PDH were growing faster than WT cells due to 

an increase DNA synthesis. Moreover, this increased DNA synthesis was associated with an 

increased protein synthesis (Tian et al. 1998). In our study, we measured the activation of Akt 

and P70SK6 which have been found to increase protein synthesis when activated in skeletal 

muscle (Kimball et al. 2002). However, we did not find any change when compared to the 

WT type mice. However, based only on these two markers, it is not possible to conclude if the 

protein synthesis was really unchanged. Measuring others markers such as 4EBP1 and rpS6 or 

measuring directly protein would complete this analysis. Although, the mechanisms by which 

G6PDH overexpression increases muscle mass are still under investigation in our laboratories, 

our results provide new insight to develop strategies to fight against sarcopenia or in more 

large field to gain muscle mass. Moreover, thanks to the results found in our third study, we 

demonstrated that having more G6PDH is not deleterious in pro-oxidizing condition such as 

exercise. Indeed, based on our results, in response to a pro-oxidizing stimulus, the lack of 

difference between G6PDHtg and WT mice suggest that the antioxidant and the pro-oxidant 

systems which depend of G6PDH through the NADPH supply reached an equilibrium. 

Consequently, use strategies which would up-regulate G6PDH would not have deleterious 

effect on oxidative stress. However, we need before studying the repetition of the exposition 

to pro-oxidizing stimuli.  

 Associated to this increased muscle mass, the G6PDHtg mice showed a decrease in fat 

mass which was very surprising since an increase in G6PDH activity have been usually 

associated with a adipose tissue lipogenesis due to higher G6PDH activity in this organ (Park 

et al. 2005b; Bonnet et al. 2007; Zomeño et al. 2010). Indeed, it has been shown that G6PDH 
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deficient mice are protected against weight gain in response to obesogenic food (Hecker et al. 

2012). Based on this study, our G6PDHtg mice would be more exposed to weight gain in 

response to the same protocol. However,  Bonnet et al. (2007) indicated in cattle that the 

lower rib fat thickness was observed in strain with higher mRNA levels and activities of 

G6PDH. All these contradictory effects underline the need to understand the exact role played 

by G6PDH in the lipid metabolism. 

 The higher maximal oxygen consumption and better results in the different strength 

tests found in the G6PDHtg mice compared to the WT mice supply a news arguments to 

develop strategies targeting G6PDH. However, the better results obtained may be principally 

due to the lower weight observed in the G6PDHtg since all the values of the different tests 

were normalized to the body weight as preconized. Normalized, these values by the lean mass 

would allow differentiating the biological effect from the weight effect. Mice who realized the 

originally DXA could not be used in this way, since they did not realize the different tests to 

explore physical performance. However, the mice whose has performed these tests have been 

evaluated with bio-impedancemetry, and the data are still under-validation. 

 Although, we present arguments in favor to develop strategies targeting G6PDH to 

gain muscle mass, lose fat mass or improve physical performance, some populations in 

particular those presenting a high risk of cancer or those with cachexia would be excluded. 

Indeed, it has been underlined a possible oncogenic role of G6PDH which would worse the 

risk of cancer (Kuo et al. 2000; Zhang et al. 2013).  In part for this reason, GH is not currently 

used in elderly people. 

  Due to the fact that G6PDH only protects the DNA from oxidative damage, we could 

ask if this protection is really due to an antioxidant mechanism. Indeed, in regards to our 

results, a different mechanism could be hypothesized. Thus, the higher DNA content and the 

higher plasma uric acid levels revealed a more activated nucleotides turnover. We cannot 

exclude that it will lead to a more frequent renewal of the nucleotides composing the DNA. 

The latter would then be less exposed to free radicals and consequently the DNA would 

present less oxidative damage. 

 Finally, based on our contradictory effects, we can ask if use this model is the best 

approach to study the role of G6PDH in skeletal muscle as we did.   

  In order to confirm the highlighted role of G6PDH in regulating muscle mass, doing a 

transgenic which would overexpress G6PDH only in skeletal muscle could be a better 

approach. On the other hand, an in vitro approach, using satellites cells extracted from these 

mice could be envisaged.  
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 The life expectancy has never been so long in the history of humankind. However, it 

leads to the aging of the general population and inevitably to an increase in the prevalence of 

sarcopenia, which in turn increase dramatically the healthcare costs of our societies. In order 

to limit this phenomenon, to develop effective strategies to prevent or treat sarcopenia is a 

major challenge that requires understanding the cellular and molecular involved in its onset 

and those leading to its prevention. 

This thesis attempted to answer three general objectives. The first objective was to 

determine in vivo to what extent a pro-oxidant redox status within the aged muscle tissue may 

modulate signaling pathways involved in cellular mechanisms underlying sarcopenia. The 

second objective was to show that return to normal functioning of these signaling pathways 

requires a restoration of the redox homeostasis. Finally, the third objective of this thesis was 

to identify actors and their possible cellular mechanisms in the maintenance and/or the 

restoration of the redox status.   

 In a first study realized in old rats, we found that age-related oxidative stress leads to 

an impairment of the PI3K/AkT/mTOR pathway suggesting a decrease in protein synthesis 

while in the same time an increase in the expression of MuRF1 and Mafbx suggested an 

increase in proteolysis through the ubiquitine-proteasome system. Moreover, a decreased 

mitochondrial function and genesis was found.       

 In a second time, we found that growth hormone replacement therapy in olds rats 

prevents sarcopenia by acting as a double-edged sword, antioxidant as well as myogenic. Our 

results highlighted that restoring a young redox status allowed to return to a normal 

functioning of the impaired pathways involved in sarcopenia. G6PDH appeared as a possible 

candidate by which growth hormone will restore the redox homeostasis.    

 It is important to note that the supplementation of GH that we have performed is a 

rather low one in that the aim is to return the levels to the normal physiological ones. If these 

results could be extrapolated to humans, one could suggest that the loosing of muscle mass 

observed in persons, even if they have performed exercise in their youth, could be prevented 

by hormone replacement therapy with low doses of GH. This interesting possibility remains 

to be studied in the clinical setting.         

 On the other hand, GH can have deleterious effects that should be studied. Although, 

we found positive effects on muscle, it would be interested to repeat a similar study and 

explore muscle function. In regards to the beneficial effect on mitochondriogenesis, it appears 

necessary to explore aerobic qualities.       
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             In the second and third studies, we found that transgenic mice overexpressing G6PDH 

showed improved body composition that was characterized by a lower body weight, a 

decrease fat mass and an increase muscle mass. Moreover, we found better aerobic qualities 

and higher muscle strength in the G6PDHtg compared to the WT mice. In addition, we found 

a decreased DNA oxidative damage in the G6PDHtg compared to the WT mice. Although, 

surprisingly we did not find the expected protective effect against oxidative stress induced by 

exhaustive exercise and hyperoxia, an adverse effect was also not found.    

 Although the understanding mechanisms involved in these beneficial effects are still to 

be clarified, our results will provide new insight to develop strategies to fight against 

sarcopenia or in more large field to gain muscle mass, decrease fat mass and improved 

physical performance. However, before developing such strategies, more studies are needed 

to ensure the safety of an up-regulation of G6PDH. In this way, we are actually realizing a 

longevity curve. Since the G6PDH would support at the same time pro and antioxidant 

systems, we would explore if in response to repetitive exposure to pro-oxidizing conditions, 

the G6PDH overexpression does not lead to increase oxidative damage. In order to confirm 

the highlighted role of G6PDH in regulating muscle mass, doing a transgenic which would 

overexpress G6PDH only in skeletal muscle could be a better approach.    

 Finally, strategies targeting an up-regulation of G6PDH would not be undertaken in all 

populations particularly in those presenting a cancer risk since a possible oncogenic role of 

G6PDH has been highlighted. 
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Abstract  

 
Both exercise and aging increase Reactive Oxygen Species (ROS), which can result in 

damage to cells. Aging is the result of damage caused by ROS to the mitochondrial genome in 

post mitotic cells and numerous studies which have demonstrated an increase in ROS or their 

byproducts with exercise. ROS can cause oxidative stress as they overwhelm the antioxidant 

cellular defenses. Therefore interventions aimed at limiting or inhibiting ROS production, 

such as supplementation with antioxidant vitamins, should be able to reduce fatigue during 

muscle contraction and the rate of formation of aging changes with a consequent reduction of 

the aging rate and disease pathogenesis. However, it has been shown that ROS are essential 

signaling molecules which are required to promote the health benefits of exercise and 

longevity. In young individuals, ROS are required for normal force production in skeletal 

muscle, for the development of training-induced adaptations in endurance performance, as 

well as for the induction of the endogenous defense systems. Thus, taking antioxidants during 

training, in young athletes, seems to be detrimental. However, antioxidant supplementation 

may be expected to be beneficial and is receiving growing attention in the active old 

population. In this manuscript we review the literature associated with the main areas of 

interest in this topic.  

  

Keywords: Oxidative stress, adaptations, aging, antioxidant enzymes, skeletal muscle, 

NF-B, PGC-1α 
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1. Free radicals and exercise  

 
Skeletal muscle generates Reactive Oxygen Species (ROS) during contractile activity. 

Research in this area started in 1954 when the emerging technology of electron spin 

resonance (ESR) spectroscopy was used to generate the first data showing that free radicals 

are present in muscle.1 However, first suggestion that exercise was associated with an increase 

in lipid peroxidation by-products did not appear until the late 1970s.2 The biological 

importance of this finding was unclear at the time. It was not until the early 1980s that 

researchers identified the first link between muscle function and free radical biology. ESR 

was again used to show that free radical content is elevated in isolated frog limb muscles 

stimulated to contract repetitively.3 Shortly afterward, a ground-breaking report was published 

showing a 2- to 3-fold increase in free radical content of skeletal muscle from rats run to 

exhaustion4. These findings were associated with three aspects of damages that are now well-

recognized: increased lipid peroxidation, decreased control of mitochondrial respiration, and 

decreased integrity of the sarcoplasmic reticulum. The same study showed that vitamin E 

deficiency inflated these three changes, indicating exercise-induced changes were sensitive to 

both free radical production and antioxidant buffering.4 Since then, research in the area has 

grown rapidly. It is now clear that intense muscular contractile activity can result in oxidative 

stress not only in animals but also in humans.  For instance, during the Tour de France, 

cyclists shown significant increases in plasma malondialdehyde (MDA) levels,5 whereas 

similar results have been found in athletes after a marathon running.6  

There are several potential tissue sources from which ROS may be produced during exercise: heart, 

lungs, white blood cells and skeletal muscle have been most studied.7, 8   At the subcellular level, 

several sources of free radicals have been studied in skeletal muscle during exercise.9 It has generally 

been assumed that an increase in oxygen consumption by mitochondria would lead to an increase in 

O2
•- formation from complexe I and III. However, recent research suggests that mitochondria may not 

be the dominant source of ROS during exercise.9,10 Rigorous exercise, especially eccentric 

contractions, may generate ROS via Nicotinamide Adenine Dinucleotide Phosphate, (NAD(P)H) 

oxidase from neutrophils and sarcolemma and secondarily, via myeloperoxidase. Interestingly, 

superoxide anions generated by these enzymes have been shown to regulate contractile function via 

calcium release in the cardiac muscle.11 Phospholipase A2, an important enzyme involved in the 

metabolism of membrane polyunsaturated fatty acid during inflammation, has been identified as a 

modulator of cytosolic oxidant production in skeletal muscle.12  Nethery and colleagues13 showed that 

phospholipase A2 function is essential for the rise in intracellular ROS that occurs during repetitive, 

fatiguing contractions. Cyclooxygenase and lipoxygenase are involved in ROS production with 
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phospholipase A2. The role of xanthine oxidase (XO) in oxidant generation during high-intensity 

intermittent exercise has long been recognized.6,14,15 Depletion of ATP during demanding muscle 

contraction results in an accumulation of hypoxanthine and xanthine and conversion of xanthine 

dehydrogenase to XO. These conditions set the stage for generating O2
•- when oxygen is replenished to 

relatively hypoxic muscle.16 Administration of allopurinol or oxypurinol, a drug widely used in the 

clinical practice to treat gout due to its inhibitory effect on XO, has been shown to decrease muscle 

oxidative stress after exhaustive exercise both in humans and in rats.5,17,18 Finally, nitric oxide (NO) is 

generated continuously within skeletal muscle by NO synthase (NOS) with an important function to 

regulate vascular smooth muscle tone.19 Heavy muscle contraction can increase NO production via 

activation of eNOS or iNOS which may have some detrimental effect due to the danger of forming 

highly reactive peroxynitrite.20  A schematic diagram of the sources of free radicals in skeletal muscle 

is in Fig. 1.  

 

2. The role of antioxidants in the modulation of skeletal muscle adaptations to exercise 

 

As mentioned in the previous section free radical production during muscle contraction has 

been related to several aspects of damage. Thus, the idea of the deleterious effects of free 

radicals has been firmly entrenched in the minds of scientists during the last 30 years10. It has 

been generally accepted that increasing the intracellular levels of antioxidants within a muscle 

cell should provide protection against these oxidizing agents and reduce fatigue.21-23 During 

the early 1980s, several research groups investigated the role of antioxidant nutrients in the 

protection of cells and organelles from radical-mediated oxidative damage.24 In 1983 Jackson 

and colleagues25 examined the role of ROS as damaging agents to muscle and the possible 

beneficial effects of vitamin E in reducing exercise-induced damage. These studies stimulated 

the interest of many laboratories to investigate whether antioxidant nutrients could retard both 

tissue damage and muscle contractile dysfunction that occurred during some forms of 

muscular exercise. There is no doubt that antioxidant supplementation decreases the markers 

of oxidation in tissues.26-28 Based on these data many athletes consume quantities of vitamins 

E and C well above the recommended dietary allowances.29 Vitamin C is one of the biggest-

selling nutrients in the U.S. vitamin and mineral market, with predominantly healthy people 

(including athletes) topping the buyers’ list.30  However, the positive effects of dietary 

antioxidants against contraction-induced muscle damage and muscular fatigue are not 

commonly observed.7 Although the generation of ROS is an inevitable event associated with 

muscle contraction during physical exercise, we now know that its production is determined 
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by the intensity, frequency, and duration of the exercise protocols.  It has been shown that 

exercise training reduces the oxidative stress of exercise, trained athletes show less evidence 

of lipid peroxidation for a given bout of exercise and an enhanced defense system in relation 

to untrained subjects.10  Thus exercise training can be considered as an antioxidant.10 The 

dramatic ability of the body to increase antioxidant capacity with acute and chronic exercise 

has been described in several tissues.31-33 There is now an appreciation that the ROS generated 

during muscle contraction have a physiological role in the adaptations to exercise. In response 

to the free radical assault, the cell has developed a number of antioxidant defense systems. 

There is growing evidence that the continued presence of a small stimulus such as low 

concentrations of ROS is in fact able to induce the expression of antioxidant enzymes and 

other defense mechanisms.  The basis for this phenomenon may be encompassed by the 

concept of hormesis,34 which can be characterized as a particular dose-response relationship 

in which a low dose of a substance is stimulatory and a high dose is inhibitory. In this context 

radicals may be seen as beneficial as they act as signals to enhance defenses rather than 

deleterious as they are when cells are exposed to high levels of these radicals. Recently the 

hormesis theory has been extended to the ROS generating effects of exercise.35,36  In skeletal 

muscle hydrogen peroxide at a low concentration increases calcium release from the 

sarcoplasmic reticulum and force production, whereas a massive increase in hydrogen 

peroxide concentration results in a sharp decrease in force output.37 Animals frequently 

exposed to exercise (chronic training) have shown less oxidative damage after exhaustive 

exercise than untrained ones. This is largely due to the up-regulation of endogenous 

antioxidant enzymes such as mitochondrial superoxide dismutase, glutathione peroxidase, and 

γ-glutamylcysteine synthetase.38 We have shown that this up-regulation is mediated by redox 

sensitive transcription factors such as Nuclear Factor B (NF-B).6,17,39 Thus, the 

convenience of supplementing antioxidant vitamins in the sport population is nowadays an 

object of debate.   In fact training studies conducted to determine whether antioxidant 

vitamins improve exercise performance have generally shown that supplementation is 

useless40-44 or even negative.45 Several studies suggest that antioxidants may have detrimental 

effects on performance.46-49 We have found that vitamin C supplementation decreases training 

efficiency because it prevents exercise-induced mitochondrial biogenesis.50 These results have 

been confirmed by other research groups.51, 52 A  large proportion of athletes, including elite 

athletes, take vitamin supplements, often large doses, seeking their beneficial effects on 

performance.53 The complete lack of any positive effect of antioxidant supplementation on 
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physiologic and biochemical outcomes consistently found in human and animal studies raises 

questions about the validity of using oral antioxidant supplementation in the sport 

population.45 

 

3. Free radicals and exercise at old age  

 

There are many theories of ageing.54 One of the most prominent theories to explain ageing is 

the free radical theory of ageing which was initially proposed by Harman55 in the 1950s. It 

proposes that free radicals derived from oxygen are responsible for damage associated with 

ageing. The antioxidant systems are unable to counterbalance all the free radicals 

continuously generated during the life of the cell. This results in oxidative damage in the cell 

and thus in tissues. There is a great deal of experimental proof in support of this theory. The 

findings in the laboratory of Britton Chance that ~2% of oxygen consumed by mitochondria 

in state 4 is converted to hydrogen peroxide underlined the role of mitochondria in ROS 

production.56 These experiments led to Jaime Miquel to refine the free radical theory of aging 

and in the 1970s he formulated the mitochondrial free radical theory of aging.  The main 

contributions of Miquel were: emphasized the importance of mitochondrial DNA as a target 

of oxidants produced during aging, and pointing out that mitochondrial biogenesis might be 

impaired in aging.57   

The mitochondrial theory of aging, although recently questioned,58 has been tested in various 

laboratories and there are many published papers in support of this theory.59,60 The continuous 

free radical generation by mitochondria during the whole life span, causes a chronic oxidative 

stress that plays a critical role in aging. Thus, aging is associated with free radical generation 

in several tissues including skeletal muscle.55,61 Senile sarcopenia is defined as the loss of 

muscle mass and force associated to aging.62   It has been estimated that muscle fibre loss 

occurs as early as at age 25 and that at age 80 total muscle fibre number shows a decrease of 

almost 40%.63 ROS have been proposed to be involved in the underlying mechanism of age-

induced sarcopenia.  As a response to this oxidative stress skeletal muscle antioxidant enzyme 

activities are increased with old age.64 However, protein and mRNA levels of  these enzymes 

are found to be either decreased or unaltered in the aged muscle.65 Alterations in the NF-B 

cell signaling pathway seem to be responsible for this impairment. NF-B is believed to be 

constitutively activated in skeletal muscle at old age. This increased transcription seems to be 

part of a general cellular adaptive response aimed at providing protection against subsequent, 
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damaging insults.66 However, chronic activation of NF-B leads to the higher basal 

expression of pro-inflammatory cytokines, chemokines, and adhesion molecules.  In fact, it 

has been identified as a main etiological reason for aged-related muscle wasting and 

sarcopenia.67 However, there is a failure to fully activate NF-B in the skeletal muscle of old 

animals following contractile activity66 (Fig. 2).  The mechanisms responsible for this fall are 

unclear. Thus, during aging  there is an impairment in the signal transduction of antioxidant 

gene expression in response to oxidative stress.68  

Other relevant co-activator affected by aging is peroxisome proliferator-activated receptor-γ 

coactivator-1α (PGC-1α). It acts as a master regulator of energy metabolism and 

mitochondrial biogenesis by coordinating the activity of multiple transcription factors.69 

Aging has been associated, in skeletal muscle, with reductions in mitochondrial oxidative 

phosphorylation activity, mitochondrial DNA mutations, reductions in mitochondrial DNA 

content, decreased activities of the mitochondrial electron transport chain, and altered 

apoptotic signalling.70 Thus, the promotion of mitochondriogenesis is critical to prevent aging 

in skeletal muscle.  We have recently shown that muscle from old rats present a marked loss 

in mitochondriogenesis and that this may be due to a lack of induction of  PGC-1α.71 We 

found a striking similarity between the response to exercise training in PGC-1α knock-out 

(KO)mice and in old rats. In young rats, PGC-1α was activated in skeletal muscle not only by 

training but also by cold exposure or triiodothyronine. However, in the old animals we found 

an age-associated lack of expression of PGC-1α in response to exercise training or to any of 

the other stimuli tested in rat skeletal muscle. Our study highlighted the importance of 

maintaining a normal PGC-1α responsiveness to maintain normal muscle function (Fig. 2).  

 

4. The role of antioxidants in the modulation of the ageing process 
 

An important characteristic of the free radical theory of aging is that, it opens up room for 

intervention, because if radicals are causing oxidative damage to cells and this is associated 

with age-associated damage, then administration of antioxidants could delay ageing and 

perhaps even prevent age-associated diseases. Cutler72 observed that several antioxidants such 

as vitamin E, uric acid, cellular plasmin, or superoxide dismutase in several organisms show 

an inverse relationship with the basal metabolic rate and with the maximal longevity of the 

species. Thus, he proposed that the maximal life span should be correlated with the 

antioxidant capacity of cells. In keeping with this line of thought Orr and Sohal73 observed 

that double transgenic Drosophila over-expressing Cu/Zn-superoxide dismutase and catalase 
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show less oxidative stress and longer life span, both mean and maximal. Moreover, they 

found that the process of ageing was slowed. Indeed, the transgenic Drosophila showed a 

lower loss in physical activity and less markers of damage in proteins. However, the 

assumption that antioxidant supplements are in general good for one´s health has been proof 

to be wrong. A critically important point is the relationship between the various antioxidants 

in cells. Persons with defects in absorption of vitamin E or with low glutathione levels show 

different conditions but not an accelerated ageing. In fact, using high doses of vitamin E in 

age-related diseases such as Alzheimer’s, has been questioned after the publication of some 

studies which show that its administration is detrimental for the patients.74 The evidence on 

the detrimental effects of antioxidant supplementation when given to patients and healthy 

people is robust. In 2007, Bjelakovic et al.75 looked at data from sixty-seven studies on 

antioxidant supplements and they concluded that beta carotene, vitamin A, and vitamin E 

supplementation seemed to increase the risk of death. This data confirmed previous reports 

showing that long-term vitamin E supplementation may increase the risk for heart failure in 

patients with vascular disease or diabetes mellitus.76 
 

5. Exercise and antioxidant supplementation at old age  

 

The beneficial effect of physical activity for the promotion of health and curing of diseases 

among individuals of all ages is beyond all doubt.  Strong scientific evidences link physical 

activity to several benefits, including the promotion of health span and not only of lifespan. 

Although physical activity has many well-established health benefits,77 aging and strenuous 

exercise are associated with increased free radical generation in the skeletal muscle.78 Thus, 

whether exercise would worsen the skeletal muscle oxidative stress in aged population has 

been an object of debate. Research evidence indicates that senescent organisms are more 

susceptible to oxidative stress during exercise because of the age-related ultrastructural and 

biochemical changes that facilitate ROS generation.78 Aging also increases the incidence of 

muscle injury, and the inflammatory response can subject senescent muscle to further 

oxidative stress. Furthermore, muscle repair and regeneration capacity is reduced at old age 

that could potentially enhance the cellular oxidative damage.78 Thus, several researchers 

consider that dietary antioxidant supplementation should be beneficial in the old physically 

active population.79 Recent studies suggested a beneficial relationship between antioxidant 

vitamin (e.g., vitamin C) intake and physical performance in elderly people.80 It has been 

shown that intake of resveratrol, together with habitual exercise, is beneficial for suppressing 
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the aging-related decline in physical performance.81 Moreover it has been shown that 

antioxidant supplementation improves indices of oxidative stress associated with repetitive 

loading exercise and aging and improves the positive work output of muscles in aged 

rodents.82 Bobeuf and co-workers83 found that 6 months of resistance training combined with 

antioxidant supplementation significantly increased fat-free mass in older adults. However, 

these results have not been confirmed by other studies. Nalbant and collaborators84 found that 

6 months of vitamin E supplementation had no additive effect beyond that of aerobic training 

on indices of physical performance and body composition in older sedentary adults. 

Regarding bone density it has been shown that combination of resistance training with 

antioxidant vitamins supplementation does not seem to produce synergistic effects on the 

prevention of osteoporosis.85 The convenience of supplementing with antioxidant vitamins in 

the old sport population is nowadays, as in the young population, an object of debate.  

Richardson's research group  identified a clinically significant paradoxical cardiovascular 

response to exercise training and antioxidant supplementation in the elderly.86 Antioxidant 

administration, after exercise training, blunted training-induced reduction in blood pressure as 

well as the exercise-induced improvements in flow-mediated vasodilation. The paradoxical 

effects of these interventions suggest a need for caution when exercise and acute antioxidant 

supplementation are combined in elderly mildly hypertensive individuals. Thus, the 

paradoxical effects of antioxidant supplementation, when combined with exercise training, 

reveal an intriguing, but complex, relationship between aging, exercise, and oxidative stress. 

More research for a better clarification of the field is required. 
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Fig. 1. Potential sites for the production of free radicals in skeletal muscle. There are 
several sources of free radicals in skeletal muscle. They are located in mitochondria, cytosol, 
sarcolemma, and endothelial cells. ROS = Reactive Oxygen Species                                NOS 
= Nitric Oxide Synthase 
 
 

 

 

 

 

 

 

 

 

 

 
 
 
 

Fig. 2. Redox sensitive cell signaling pathways altered in skeletal muscle at old age.  
Nuclear Factor B (NF-B) is constitutively activated in skeletal muscle at old age which 
leads to an impairment in the oxidative stress response. However, there is a failure to fully 
activate NF-B in the skeletal muscle of old animals following contractile activity. The 
attenuated mitochondrial biogenesis reported in both the quiescent and stimulated skeletal 
muscles at old age compared to young is at least partially due to an attenuation of Peroxisome 
Proliferator-Activated Receptor-γ Coactivator 1α (PGC-1α) signaling ability. 
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Abstract Résumé 

Aging is characterized by a decrease in muscle mass and 
strength causing a deterioration of physical performance, 
called sarcopenia. Muscle atrophy can be explained by a 
negative protein turnover, impaired mitochondrial 
dynamics, a decreased muscle regeneration capacity and 
myonuclei apoptosis. A decreased production of anabolic 
hormones and a chronic oxidative stress (OS) which leads 
to excessive oxidative damage, would be involved in these 
alterations. Physical exercise and hormone replacement 
therapies are effective to combat sarcopenia. The 
restoration of a redox homeostasis may play a central role 
in their beneficial effects and would involve an up-
regulation of the glucose-6-phosphate dehydrogenase 
enzyme.  

The main objectives of this thesis were to determine in 
vivo to what extent a pro-oxidant redox status in aged 
muscle may modulate signaling pathways involved in 
sarcopenia, and to investigate whether return to their 
normal functioning requires a restoration of the redox 
homeostasis. The third objective was to identify actors and 
their possible cellular mechanisms in the maintenance 
and/or the restoration of the redox status. 

In a first study in old rats, we first confirmed that 
sarcopenia is associated with OS. In a second time, we 
found that a growth hormone replacement therapy in old 
rats prevents sarcopenia by acting as a double-edged 
sword, antioxidant as well as myogenic, associated with an 
up-regulation of G6DPH. 

In a second study, we found that transgenic mice 
overexpressing G6PDH showed improved body 
composition and physical performances.  

In a third study, we found that overexpression of G6DPH 
improves DNA oxidative damage in resting conditions. 
However, the expected protective effect of G6PDH 
overexpression against oxidative stress induced by pro-
oxidizing stimuli was not present. 

Le vieillissement est caractérisé par une diminution de la 
masse et la force musculaire entraînant une détérioration 
des performances physiques, appelée sarcopénie. 
L'atrophie musculaire peut être expliquée par un turnover 
protéique négatif, une détérioration des dynamiques 
mitochondriales, une diminution de la capacité de 
régénération du muscle ainsi que par l'apoptose des noyaux 
musculaires. La diminution de la sécrétion d'hormones 
anabolisantes et un stress oxydant (OS) chronique 
conduisant à des dommages oxydatifs excessifs, seraient 
impliqués dans ces modifications. L’exercice physique et 
les thérapies de remplacement hormonales sont efficaces 
pour lutter contre la sarcopénie. Une restauration de 
l’homéostasie redox pourrait avoir un rôle central dans  la 
lutte contre la sarcopénie et impliquerait une activation de 
la glucose-6-phosphate déshydrogénase. 

Les principaux objectifs de cette thèse étaient de 
déterminer in vivo, si un SO chronique dans le muscle âgé 
altère les voies de signalisation impliquées dans la 
sarcopénie, et de chercher si le retour à un fonctionnement 
normal de ces voies nécessite une restauration de 
l'homéostasie redox. Certains paramètres et leurs 
mécanismes pouvant intervenir sur le maintien ou la 
restauration du SO ont été recherchés. 

Dans une première, nous avons confirmé que la sarcopénie 
est associée au OS chez le rat. Puis nous avons constaté 
qu’un traitement à l'hormone de croissance chez le rat  
peut prévenir la sarcopénie via un effet antioxydant et 
myogénique, associé à une activation de la G6DPH. 

Une seconde étude a monté que des souris transgéniques 
surexprimant la G6PDH présentaient une amélioration de 
la composition corporelle et des performances physiques.                               

Une dernière étude a montré que la surexpression de 
G6DPH diminuait les dommages oxydatifs de l'ADN au 
repos. De façon surprenante, la surexpression de la 
G6PDH n’a pas d’effet protecteur vis à vis du SO induit 
par les divers stimuli pro-oxydants. 

Keywords: sarcopenia, oxidative stress, exercise, growth 
hormone, skeletal muscle, G6DPH  

Mots-clés: sarcopénie, stress oxydant, exercice, hormone 
de croissance, muscle, G6DPH 
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I) Introducción 
 

 Hay aproximadamente 80 años, MacDonald Critchley fue el primero en reconocer que 

la masa muscular disminuye durante el envejecimiento y se dio cuenta de que esta pérdida era 

aún más importante en los músculos de las extremidades superiores y inferiores (Critchley 

1931). Casi sesenta años después, en 1988, durante una conferencia en Albuquerque (Estados 

Unidos)  centrado en la evaluación del estado de salud de los ancianos, Rosenberg señaló que 

"ninguna disminución con la edad es más dramática o potencialmente más funcionalmente 

importante que la disminución de la masa muscular”. Hizo hincapié en que para reconocer 

este fenómeno por la comunidad científica, se necesitaba un nombre y propuso el término 

"sarcopenia" (del griego "sarx": carne + “penia”: perdida). A partir de entonces, la sarcopenia 

se definió como la pérdida general y progresiva de la masa muscular que se produce con la 

edad (Roubenoff & Hughes 2000). Sin embargo, esta definición no fue aceptada por todos los 

clínicos y los investigadores y ha evolucionado hasta hace unos años. Por último, el consenso 

actual define la sarcopenia como un "síndrome geriátrico caracterizado principalmente por 

una disminución de la masa muscular associada a una disminución de la fuerza muscular y del 

rendimiento físico" (Muscaritoli et al. 2010, Cruz-Jentoft et al. 2010 Fielding et al., 2011; 

Morley et al. 2011).          

 Gracias a los progresos sociales, tecnológicos y médicos, la esperanza de vida no dejó 

de aumentar desde el siglo 19 en nuestras sociedades occidentales modernas, conduciendo a 

un envejecimiento general de la población. Actualmente, mundialmente, está previsto que el 

número de personas mayores habrá doblado en 2050, pasando del 11 % de la población al 22 

% (la ONU 2007). Inevitablemente, debido a este envejecimiento de la población, la 

prevalencia de la sarcopénie está creciendo, y actualmente consideramos que entre un cuarto y 

la mitad de los hombres y las mujeres de 65 años y más son susceptibles de ser sarcopenicos 

(Janssen 2004). Las consecuencias del crecimiento de la prevalencia de la sarcopenia están 

generalmente consideradas como catastróficas sobre los costes de Sanidad Pública. 

 Así, el coste total de la sarcopenia al sistema americano de salud ha sido estimado a 

cerca de 18,4 mil millones de dólares (Janssen y al. 2004). De ahora en adelante, por el hecho 

de que las personas de edad de más de 69 años representan la rebanada de la población 

americana que crece más rápidamente, parecería que de ahora en adelante este coste sólo 

aumente (Manton y Vaupel, 1995). Estos gastos de salud son asociados  a un deterioro 

general del estado físico que conduce a un riesgo aumentado de caídas, una incapacidad 
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progresiva en cumplir actividades elementales de la vida cotidiana y la pérdida de autonomía 

de los ancianos (Goodpaster y al. 2006; Delmonico y al. 2007).     

 Sin embargo, varias estrategias son reconocidas como eficacias para prevenir, retrasar 

o tratar la sarcopenia. Así, desarrollar terapias ayudaría no solo a mejorar la calidad de vida de 

las personas sarcopenicas, sino que también reduciría los costes económicos asociados con la 

sarcopenia, lo que sería benéfico a la sociedad entera. Actualmente, el ejercicio físico es 

innegablemente la estrategia más eficaz en la lucha contra la sarcopenia, porque puede 

conducir a aumentar la masa muscular, la fuerza y el rendimiento físico (Pillard et al. 2011; 

Di Luigi et al. 2012; Wang & Bai 2012; Montero & Serra 2013). Sin embargo, la puesta en 

ejecución de escala grande de tal intervención es trabada por la falta de motivación de la 

inmensa mayoría de las personas. Además, muchas personas mayores no pueden caminar o 

tienen comorbilidades como la osteoartritis moderada a grave (Bennell y Hinman 2011) o 

ciertas formas de enfermedad cardiovascular inestable que les exclue de la participación en 

protocolos de ejercicio (Williams et al. 2007). Para superar estos obstáculos, el desarrollo de 

terapias alternativas como las estrategias antioxidantes y las terapias de reemplazo 

hormonales (testosterona y hormona del crecimiento) parece necesario.   

 El músculo esquelético es un órgano que tiene propiedades específicas que le dan un 

papel central en la locomoción, la realización de actividades de la vida diaria, el 

mantenimiento de la postura y el equilibrio. Para garantizar estas funciones esenciales, el 

músculo debe tener una masa suficiente que todo el mundo debe tratar de conservar. Como se 

ha descrito anteriormente, algunas de las más graves consecuencias del envejecimiento son 

sus efectos en el músculo esquelético, en particular, la pérdida progresiva de la masa y la 

función que tienen un impacto en la calidad de vida y, en última instancia, en la esperanza 

vida (Cruz-Jentoft 2012).         

 Actualmente los mecanismos subyacentes a la sarcopenia no están aún bien definidos, 

y por lo tanto, siguen siendo objeto de muchas investigaciónes. Sin embargo, un turnover 

proteico negativo (Combaret et al. 2009), una alteracion de las dinámicas mitocondriales 

(Calvani et al. 2013), una disminución de la capacidad de regeneración muscular (Snijders et 

al. 2009; Hikida 2011), así como la exacerbación de la apoptosis de los núcleos musculares 

(Marzetti et al. 2012) se consideran generalmente como los mecanismos celulares implicados 

en la atrofia muscular que conduce a la sarcopenia. 

 Estos mecanismos son ellos mismos dependientes de una multitud de factores 

celulares y sistémicos, tales como la disminución de la producción de hormonas anabolisantes 

(GH, IGF-1, la testosterona, la insulina). Los vínculos y las interacciones entre estas 
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secreciones hormonales disminuidas y  las disfoncciones celulares mencionadas prevviamente 

siguen siendo en gran parte desconocidos. Un posible candidato podría ser el estrés oxidativo 

crónico relacionado con la edad (Semba et al. 2007; Safdar et al. 2010).   

 Por lo tanto, el músculo sarcopenico presenta una sobreproducción de especies no 

radicales o radicales derivadas del oxígeno y del nitrógeno (RONS) (Capel et al. 2004; Capel, 

Rimbert, et al. 2005; Capel, Demaison, et al. 2005; Chabi et al. 2008; Jackson et al. 2011; 

Andersson et al. 2011; Miller et al. 2012). Esta sobreproducción de RONS es principalmente 

debida a disfunciones mitocondriales (Capel, Rimbert, et al. 2005; Chabi et al. 2008), y un 

aumento de la actividad de la xantina oxidasa (Lambertucci et al. 2007; Ryan et al. 2011), y 

conduce a un aumento de los daños oxidativos a los diversos componentes celulares y 

moleculares de la del músculo esquelético. Estos daño oxidativos reflejan la incapacidad de 

los sistemas antioxidantes a soportar la sobreproducción de RONS y atestiguan del 

desequilibrios de la balanza "pro-oxidante/antioxidante" conduciendo a una alteracion de la  

homeostasis redox (Jones 2006). Pareceria que la restauración de la homeostasis redox por 

algunas de las estrategias contra la sarcopenia implica un aumento del contenido proteico y/o 

de la actividad de la glucosa-6-fosfato deshidrogenasa (G6PDH) en el músculo (Kovacheva et 

al. 2010; Sinha-Hikim et al. 2013). La G6PDH es la enzima limitante de la vía del los 

pentosas fosfatos conocida para ser la fuente de NADPH de ciertos sistemas antioxidantes 

(Scott y al. 1993). Además, algunos datos in vitro y in vivo sugieren que la G6DPH jugaría un 

papel importante dentro de la regulación de la masa muscular. Sin embargo, estos datos 

necesitan  confirmarcion. 
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Objetivos: 

 

 En este contexto, la presente tesis intentará responder a tres objetivos generales. El 

primer objetivo es determinar in vivo cómo un estado redox pro-oxidante debido al 

envejecimiento en el tejido muscular puede modular las vías de señalización implicadas en los 

mecanismos moleculares que subyacen a la sarcopenia. El segundo objetivo es mostrar que 

un retorno al funcionamiento normal de estas vías de señalización se asocia con una 

restauración de la homeostasis redox. Por último, el tercer objetivo de esta tesis es identificar 

actores y posibles mecanismos por los cuales se podría mantener la homeostasis redox. 

Los objetivos especificos son los sigientes: 

 

- Determinar si el estado prooxidante crónico en el músculo esquelético de ratas 

envejecidas puede modular las vías de señalización conduciendo a la sarcopenia, 

implicadas en la síntesis de proteínas y la proteolisis, sino también en la 

regeneración muscular y la mitochondriogenesis. Nuestra hipótesis es que el estrés 

oxidativo conduciría a una down-regulación de las vías de señalización de 

PI3K/Akt/mTOR y PGC-1α/Tfam/Nrf-1, y una up-regulación de los marcadores 

del sistema ubiquitina-proteasoma, así como de los inhibidores de la regeneración 

muscular (Estudio 1). 

 

- Determinar si y por cuales mecanismos un tratamiento substitutivo a la hormona 

de crecimiento permite prevenir la sarcopénia en ratas envejecidas. Hacemos dos 

hipótesis. 

 

1) La GH a través de un aumento de las concentraciones de IGF-1 circulante 

permitiría la restauración de un funcionamiento normal de la vía de 

señalización PI3K/Akt/ mTOR mientras disminuiría la expresión de varios 

actores del sistema ubiquitine-proteasome dependiente y de inhibidores de 

la regeneración muscular. Un efecto posible sobre el mitochondriogenèse 

es también esperado (estudio 1). 

 

2) Estos efectos benéficos serían asociados con un mejoramiento del estado 

redox en particular gracias a la up-regulación de ciertas enzimas 

antioxidantes (estudio 1). 



Resumen en Castellano 

7 
 

  

- Determinar in vivo en un modelo de ratón sobreexpresando la glucosa-6-fosfato 

deshidrogenasa, el papel de esta enzima en la regulación de la composición 

corporal (masa muscular y masa grasa) y su impacto en el rendimiento físico 

(fuerza, consumo máximo de oxígeno y resistencia) (Estudio 2). 

 

- Determinar si la sobreexpresión in vivo de G6PDH mejora el estado redox en 

reposo y protege en situaciones pro-oxidantes (ejercicio exhaustiva y hiperoxia) 

(Estudio 3). 
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II) Contribución Personal  

Estudio 1: La terapia de reemplazo con hormona de crecimiento previene a la 

sarcopenia mediante un doble mecanismo: mejora el recambio de proteínas y las 

defensas antioxidantes.  
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INTRODUCCIÓN 

 El consenso actual define la sarcopenia como un síndrome geriátrico primero 

caracterizado por una disminución de la masa muscular, que agravándose participará en una 

disminución de la fuerza muscular y el deterioro  del rendimiento físicofísico"  (Muscaritoli et 

al. 2010; Cruz-Jentoft et al. 2010; Fielding et. al 2011; Morley et al. 2011) dando lugar a la 

aparición de numerosas comorbilidades tales como una discapacidad física, un deterioro de la 

calidad de vida y la reducción de la esperanza de vida (Evans 1995). Esta pérdida de masa 

muscular se produce a un ritmo de 3 a 8% por década después de la edad de treinta años, y 

este porcentaje aumenta después de sesenta años (Holloszy 2000). Estimaciones recientes 

indican que entre un cuarto y la mitad de los hombres y mujeres mayores de sesenta y cinco 

años están considerados sarcopénico (Janssen 2004). La sarcopenia juega un papel importante 

en el desarrollo de la fragilidad, y aumenta gradualmente el riesgo de caídas y reduce la 

capacidad de las personas para llevar a cabo actividades de la vida diaria (Evans 1995). Por 

último, los sujetos con sarcopenia en los estados más avanzados pierden su independencia y 

terminan siendo institucionalizado (Wolfe 2006) 

 Ciertas hormonas son conocidas para tener un efecto sobre la masa, la fuerza y la 

función muscular (Cruz-Jentoft 2012). Entre ellas, la hormona de crecimiento (GH) es una de 

las más estudiadas (Cruz-Jentoft 2012). Los niveles de GH son habitualmente reducidos en 

los sujetos de edad así como la amplitud y la frecuencia de su secreción pulsatile (Cruz-

Jentoft 2012). Así, ha sido emitida la hipótesis que la GH sería eficaz en la prevención de la 

pérdida de la masa muscular durante el envejecimiento (Giannoulis y al. 2012). 

 En nuestro estudio, procuramos elucidar el papel de una terapia de sustitución con GH 

en ratas viejas comparando animales viejos (24 meses) con animales jóvenes (3 meses) y con 

animales viejos tratados con GH (8 semanas, 2 mg/kg repartidos en 2 inyecciones subcutáneas 

diarias). Nos centramos sobre cuatro de los principales mecanismos implicados en la 

aparición y la progresión de la sarcopenia: la alteración de la biogénesis mitocondrial, el 

aumento del estrés oxidativo, el aumento de la degradación de las proteínas y la disminución 

de su síntesis (Doherty 2003; Derbré y al. 2012). 

 En este estudio, presentamos pruebas de que la restauración del perfil de GH es una 

buena intervención para mejorar o mantener la masa muscular esquelética en los animales 

más viejos. 
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RESULTADOS/DISCUSIÓN 

Efecto del envejecimiento y de la terapia de sustitución de GH sobre la composición 

corporal en ratas  

 A pesar del gran número de estudios para evaluar los efectos de la suplementación con 

GH sobre la masa muscular, resultados controvertidos en la literatura mantienen el debate 

sobre si la GH puede o no puede ser utilizada para luchar contra la sarcopenia (von Haehling 

et al. 2012).  Los resultados controvertidos  pueden ser explicados por las diferencias 

metodológicas tales como las dosis utilizadas. Dosis elevadas de GH son frecuentemente la 

causa de efectos adversos (Papadakis y al. 1996; Holloway y al. 1994). Es por eso que en 

nuestro estudio, utilizamos dosis relativamente débiles. Nuestros resultados mostraron que las 

concentraciones plasmáticas de IGF-1 eran más débiles en los animales viejos que en los 

animales jóvenes pero el tratamiento con GH permitió restablecer valores comparables a los 

animales jóvenes. Sin embargo, los animales mayores tratados con GH mostraron un aumento 

de peso, significativamente diferente de la pérdida de peso que occurio en ratas mayores no 

tratadas. Esta pérdida se debe principalmente a los cambios en la masa corporal magra porque 

el índice de gravedad específica (SGI: índice calculado a partir de una técnica de pesaje 

hidrostática) paso de 5 en los animales jóvenes a 3 en los animales mayores. El SGI es un 

indicie que evalua la masa magra y la masa adiposa; cuanto más es elevado, más la masa 

magra del animal es elevada. Nuestros datos también muestran que la administración de GH 

aumenta considerablemente el SGI en las ratas viejas, lo que significa que la GH, a través de 

sus propiedades anabolizantes, anti-adipogenicas y lipoliticas, es capaz de aumentar la masa 

muscular y reducir la masa adiposa (Castillo y al. 2004; Castillo y al. 2005). 

 También se evaluó la atrofia de los músculos gastrocnemius pesandolos, y se encontró 

una reducción del 30% del peso de los músculos de los animales viejos en comparación con 

los animales jóvenes. Esta atrofia fue completamente prevenida en las ratas viejas tratadas con 

GH. 

 

El efecto antioxidante de la terapia de sustitución de GH  

 

 La teoría del envejecimiento de los radicales libres proporcionó una base teórica para 

el diseño de experimentos para entender el envejecimiento. (Gomez-Cabrera et al. 2012). Está 

bien establecido que la up-regulacion de las defensas antioxidantes endógenas es un 

mecanismo eficaz para prevenir el daño oxidativo asociado con la producción excesiva de 
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radicales libres (Gomez-Cabrera, Domenech & Viña 2008; Gomez-Cabrera, Domenech, 

Romagnoli, et al. 2008). Los efectos de la GH sobre la sarcopenia se han estudiado 

ampliamente (Brill et al. 2002; Papadakis et al. 1996), pero hasta ahora, jamás han sido 

centrados sobre la prevención de los daños de los radicales libres. Una de las principales 

conclusiones en este estudio es que la suplementación en GH puede actuar como un 

antioxidante porque nuestros resultados muestran en las ratas viejas que la GH activo enzimas 

endógenas antioxidantes (catalasa, glutation peroxidasa y glucosa-6-fosfato dehydrogenasa), 

disminuyen los daños oxidativos de los componentes celulares (proteína y ADN), y entonces 

se comporta como un antioxidante. Esto puede ayudar a explicar la protección contra la 

sarcopenia conferida por la suplementación con GH. 

 

La síntesis de proteínas, mitochondriogenesis y prevención de la sarcopenia con GH  

 El mantenimiento de la masa muscular está regulada por el equilibrio entre la síntesis 

de proteínas y la proteólisis (Powers et al. 2011). La síntesis proteica muscular disminuye con 

la edad (Jones et al. 2009). El papel de p70S6K en la hipertrofia ha sido descrito previamente 

en varios modelos animales (Song et al. 2005). Una vez activada por la quinasa AKT, mTOR 

activa la iniciación de la traducción a través de la fosforilación de p70S6K que a su vez 

fosforila la proteína ribosómica S6 y permite la regulación de los ARNm que codifican el 

aparato de la traducción (Kimball et al. 2002). Se encontro una disminución significativa de la 

fosforilacion de Akt en el músculo esquelético de los animales viejos no tratados que ha sido 

completamente prevenida en las ratas tratadas con  GH. Del mismo modo, la fosforilación de 

la p70S6K fue menor en los músculos de las ratas viejas que en las ratas jóvenes. Los 

animales viejos tratados con GH mostraron valores similares de fosfo-p70S6K  a las de los 

animales jóvenes. Nuestros resultados están en contradicción con unos estudios previos que 

muestran que las inyecciones intraperitoneales de IGF-I aumentaron la fosforilación de 

p70S6K en animales jóvenes, pero no en los animales viejos (Li et al. 2003).   

 El debilitamiento de la capacidad hipertrófica muscular en los ancianos es debido en 

parte a potencial miogénico deterioro asociado con el envejecimiento (Marsh & Criswell 

1997; Hansen et al. 2007). Por lo tanto, hemos tratado de comparar la respuesta miogénica del 

músculo de animales jóvenes a la de los animales tratados con GH. Myf-5 es un marcador 

bien conocido de la diferenciación de mioblastos y células satélite y facilita la reparación o la 

regeneración y el crecimiento de las fibras maduras (Kim et al. 2005). Se ha demostrado que 

el tratamiento con GH en el músculo aumenta la expresión del gen del IGF-I (Hameed et al. 
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2003) que está implicado en la activación de las células satélite (Goldspink & Harridge 2004). 
Nuestros resultados mostraron que, aunque el envejecimiento no ha dado lugar a una 

disminución del contenido proteico de Myf-5 en el músculo esquelético, la terapia de 

reemplazo de GH ha incrementado de manera significativa la cantidad de este factor 

miogénico.    

 Luego nos centramos en la miostatina un factor negativo de la regulación de la masa 

muscular (Goldspink & Harridge 2004). Pertenece a la familia de los TGF-ß, pero su 

expresión está restringida al tejido muscular (McPherron & Lee 1997). La ausencia o el 

bloqueo de la miostatina induce hipertrofia muscular masiva que se asignó inicialmente a la 

proliferación de las células satélites (Ten Broek et al. 2010). Sin embargo, se ha demostrado 

recientemente que la miostatina regula el equilibrio entre sintesis y degradacion proteica en 

las fibras musculares. Varios grupos de investigación han demostrado que la hipertrofia, en la 

ausencia de miostatina, implica poco o no las células satélites (Amthor et al. 2009; Welle et 

al. 2006). Las fibras hipertróficas no contienen más núcleos musculares o  células satélites, y 

la miostatina no tiene ningún efecto significativo sobre la proliferación de células satélite 

(Amthor et al. 2009).           

 También encontramos un aumento de la expresión de p21 en el músculo de las ratas 

viejas (McKay y al. 2012), lo cual esta significativamente reducido por la terapia de 

sustitución de GH. Así, el efecto de la GH sobre estos dos factores puede contribuir a la 

prevención de la atrofia muscular. Datos muestran que el añadido de miostatina en medio de 

cultura de fibroblastos musculares induce un phosphorylation de la p38-MAPK (Li y al. 

2008). p38 es una proteína quinasa que responde a una variedad de estímulos, incluyendo el 

estrés oxidativo y TNF-α (Derbré et al. 2012). Fue identificado como un probable mediador 

en la señalización catabólica dentro del músculo esquelético (Powers et al. 2007. Li et al. 

2005). Por lo tanto, se midió la fosforilación de p38 en el músculo de nuestros animales. 

Como en el estudio de Williamson et al. (2003), encontramos un aumento significativo de la 

fosforilación de p38 en animales viejos, lo cual fue totalmente prevenido por la terapia de 

sustitución de GH.          

 Para identificar el mecanismo por lo cual la GH reduce la pérdida de la masa muscular 

durante el envejecimiento, medimos la expresión de dos ubiquitinas ligasas E3 específicas del 

músculo, MAFbx y MuRF1, bien conocidas para ser implicadas en la atrofia del músculo 

esquelético en varios modelos in vivo (Foletta et al. 2011). Aunque controvertidos (Edström 

et al. 2006), los niveles de ARNm de MuRF1 y de MAFbx incrementan significativamente en 

los músculos envejecidos (Clavel et al. 2006). En nuestro estudio, encontramos un aumento 
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significativo de contenido proteico de MuRF1 en el músculo de los animales viejos, lo cual 

fue prevenido por el tratamiento con GH. Sin embargo, no se encontraron cambios con 

MAFbx. Por lo tanto MuRF1 parece estar implicado en la sarcopenia relacionada con la edad. 

 El envejecimiento está al principio de una disminución del contenido y de la actividad 

mitocondrial (Miquel et al. 1980; Sastre et al. 1996). PGC-1α es un regulador mayor de la 

biogénesis mitocondrial (Puigserver et al. 1998; Viña et al. 2009) y responde muy 

rápidamente a los cambios de la homeostasis redox (St-Pierre et al. 2006; Viña et al. 2009; 

Gomez-Cabrera, Domenech & Viña 2008). Así como, lo vimos anteriormente, el 

envejecimiento aumenta los marcadores de estrés oxidativo en el músculo, y esto es prevenido 

por dosis relativamente bajas de GH. Por lo tanto, probamos si el envejecimiento provocaba 

una disminución de la expresión de PGC-1α en el músculo, y efectivamente fue el caso. El 

tratamiento con GH previno totalmente la disminución de PGC-1α y de su diana NRF-1 

asociado con el envejecimiento. En la literatura, es descrito que PGC-1 α no se activa más de 

modo normal en respuesta al ejercicio en los animales viejos (Derbré et al. 2012). Esta falta 

de reactividad podría ser debida a una falta de GH porque la administración de esta última 

activo PGC-1α que tiene su vuelta acelera el mitochondriogénèse como lo demuestra el 

aumento del contenido proteico muscular de cytochrome C así como el aumento de la 

actividad de la citrato sintasa en los animales viejos tratados con GH. La GH podría activar 

PGC-1α vía el IGF-1 y la calcineurina como esto ha sido mostrado en el músculo cardíaco de 

ratas (Vescovo et al. 2005). 

 Por último, este estudio ofrece ciertas evidencias respecto a la efectividad de la 

restauración del perfil de de GH a preservar la masa muscular en los ancianos.  
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Estudio 2: La sobreexpresión de la glucosa-6-fosfato deshidrogenasa mejora 

la composición corporal y el rendimiento físico en ratones. 

Estudio 3: Estado redox en condiciones de reposo y en respuesta a estímulos 

pro-oxidantes: impacto de la sobreexpresión de la glucosa-6-fosfato 

deshidrogenasa. 
 

INTRODUCCIÓN  

 El mecanismo por lo cual la GH disminuye el estrés oxidativo es desconocido. Sin 

embargo la activación de la G6PDH por la GH que mostramos en el estudio precedente 

constituye una pista potencial. Por lo tanto, esto nos condujo a explorar la G6PDH, ya que 

ciertos trabajos mostraron que su surexpression en drosophila aumentaba la longevidad y 

protegía contra agresiones pro-oxidantes (Legan and al. 2008). Emitimos la hipótesis que la 

G6PDH podría entonces constituir una diana terapéutica alternativa a la GH de la cual 

conocemos los efectos deletéreos pocibles.       

 La G6PDH es la enzima limitante de la vía de los pentosas. Conduce particularmente a 

la síntesis de ribosa-5-fosfato, lo cual interviene en la síntesis de los ácidos nucleicos. La 

G6PDH utiliza como cofactor el NADP que se transforma en NADPH. El principal  efecto 

antioxidante de la G6PDH pasa por este NADPH que contribuye a reducir la quantidad de 

glutation oxidado y activa la catalasa (Stanton 2012; Hecker & Leopold 2013).   

 El efecto antioxidante de la G6PDH ha sido bien demostrado. Así estudios in vitro 

mostraron que su inhibición devuelve las células más vulnerables al estrés  oxidativo  

meintras su surexpression proteja contra el estrés oxidativo (Tian et al. 1998). Estos datos 

condujeron a investigar un papel eventual de la G6PDH sobre la longevidad, particularmente 

en  drosophila. En esta especie, cuando la G6PDH se sobreexpressa, la longevidad espontánea 

es alargada muy significativamente así como la supervivencia cuando las drosophilas son 

expuestos a un riesgo prooxidante como la hiperoxia o el paracuat (Legan y al. 2008).  

 Por otra parte, trabajos sugieren que la G6PDH sería implicada en la regulación de la 

masa muscular. De hecho, varios casos clínicos de rabdomiolisis debidos a una deficiencia en 

G6PDH han sido observados, en los años 90 (Kimmick & Owen 1996). Por otro lado, 

numerosos estudios mostraron durante los años ochenta que la desregulación de su actividad 

era asociada con ciertas miopatías (Elias & Meijer 1983; Meijer & Elias 1984). También, ha 

sido mostrado que durante la regeneración muscular (conocida para implicar las células 
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satélites) la actividad de la G6PDH es considerablemente aumentada (Wagner et al. 1977; 

Wagner et al. 1978) mientras  la síntesis de las proteínas y la síntesis de los ARN son 

aumentadas (Wagner et al. 1978). En el mismo sentido, dos estudios mostraron que la 

hipertrofia inducida por inyecciones de testosterona en ratas castradas o ratones sarcopenicos 

era asociada con un aumento de la expresión y\o de la actividad de la G6PDH en el músculo 

esquelético (Max 1984; Kovacheva et al. 2010).      

 Por lo tanto, todos estos datos  nos condujeron a explorar sucesivamente el efecto de la 

sobreexpresión de la G6DPH en ratónes  sobre la regulación del estatuto redox al reposo 

(medida de los daños oxidativos  y de la expresión de enzimas antioxidantes al nivel sistémico 

y muscular), sobre la tolerancia al estrés oxidativo (en respuesta a un ejercicio exhaustivo y a 

la hiperoxia), sobre las capacidades físicas (consumo máximo de oxígeno, el tiempo de 

resistencia, fuerza de aggaramiento contra un dinamómetro y el tiempo de suspensión por las 

cuatro patas) y la composición corporal, particularmente la masa muscular (DEXA, peso de 

los músculos). 

 

RESULTADOS/DISCUSIÓN 

El estrés oxidativo en condiciones de reposo 

 La sobreexpresión de la G6PDH no altera el daño oxidativo sistémico, pero 

disminuye el daño oxidativo muscular 

 

 Numerosos estudios en roedores han demostrado que la reducción de la actividad y del 

contenido proteico de la G6PDH están asociados con un aumento del los daños oxidativos 

(Kumaran et al. 2004; Senthil Kumaran et al. 2008; Braga et al. 2008; Kovacheva et al. 2010). 

Para evaluar si la sobreexpresión  de la G6PDH puede proteger contra el estrés oxidativo, se 

midió en condiciones de reposo, los daños oxidativos en el plasma (utilizado para evaluar el 

estrés oxidativo sistémico) y el músculo gastrocnemio. 

 Nuestros resultados mostraron que al nivel sistemico la oxidación de las proteínas y 

los niveles de peroxidación de lípidos no se redujeron por la sobreexpresión de la G6PDH. 

Esta falta de diferencia entre ratones WT y G6PDHtg confirman los datos de estos mismos 

marcadores en pacientes deficientes en G6PDH (Jamurtas et al. 2006; Theodorou et al. 2010). 
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 En el músculo, la oxidación de las proteínas y la peroxidación lípidica fueron similares 

en ratones G6PDHtg en comparación con los ratones WT, lo que implica en nuestro modelo 

que el daño oxidativo muscular sería independiente de la G6PDH de estado. Sin embargo, 

estos resultados están contrarios a ciertos estudios que mostraron que en roedores 

envejecidos, una disminución de la actividad o del contenido proteico del G6PDH era 

asociada con un aumento del peroxydation de los lípidos y una disminución del cociente 

GSH/GSSG (Kumaran et al. 2004, 2008 ; Kovacheva et al. 2010). Estas divergencias podrían 

explicarse por la edad de nuestros animales. En efecto, estos estudios trabajaron con animales 

de edad entre 18 y 22 meses mientras que trabajamos entre animales de edad de 12-14 meses. 

 Sin embargo, por primera vez, este estudio también mostró que la sobreexpresión de 

G6PDH resultó en una disminución en el daño oxidativo del ADN total en el músculo 

gastrocnemio. De hecho, los valores de 8-hidroxi-2'-desoxiguanosina (8-OHdG) fue menor en 

los ratones G6PDHtg respecto a los ratones WT. Aunque esta relación nunca ha sido 

estudiada en el músculo esquelético, algunos autores han encontrado resultados similares en 

el cerebro. Así, Felix et al. (2002) y Jeng et al. (2013) encontraron valores más elevados de 8-

OHdG y un aumento en el número de mutaciones del ADN en el cerebro de ratones 

deficientes de G6PDH en comparación con sus homólogos WT. El mecanismo por lo cual la 

G6PDH actuaría sobre el ADN no es conocido y deberia ser estudiado. Aunque esta relación 

no haya sido estudiada en nuestro estudio, nuestros ratones podrían presentar una disminución 

de las mutaciones del ADN en el músculo. Estos datos son completamente esencial porque 

numerosos estudios observaron en diferentes especies una acumulación de mutaciones del 

ADN mitocondrial en el músculo esquelético durante en el envejecimiento debido al aumento 

del estrés oxidativo (Lee et al. 1998; Bua et al. 2006; Figueiredo et al. 2009; Lee et al. 2010).  

Estas mutaciones del ADN mitocondrial son la causa de defectos de la cadena de transporte 

de electrones y conducen a aberraciones morfológicas de las fibras musculares (Bua et al. 

2006). Desde que se demostro que la G6PDH está presente en la mitocondria (Mailloux y 

Harper 2010), suponemos que los ratones que sobreexpresan la G6PDH están protegidos 

contra las mutaciones del ADN durante el envejecimiento.  

 

El estrés oxidativo en respuesta a situaciones pro-oxidantes  

 Nuestros resultados muestran que los ratones G6PDHtg no estaban protegidos contra 

la hiperoxia. De hecho, el tiempo de supervivencia tras la exposición a hiperoxia era el mismo 

entre los ratónes G6PDHtg y sus homólogos WT. Del mismo modo, no se encontró ningún 
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efecto protector de la sobreexpresión de la G6PDH contra el daño muscular y el daño 

oxidativo inducido por el ejercicio exhaustivo. De hecho, encontramos aumentos similares en 

las concentraciones plasmáticas de creatina quinasa y lactato deshidrogenasa, así como 

proteínas oxidadas y 4-hidroxinonenal en los ratones WT y G6PDHtg en respuesta a un 

ejercicio exhaustivo. La falta de efecto protector contra el estrés oxidativo se podria explicar 

por el hecho de que la G6PDH proporciona tanto NADPH en sistemas antioxidantes y 

sistemas pro-oxidantes tales como la xantina oxidasa, la óxido nítrico sintasa y la NADPH 

oxidasa (Hecker & Leopold 2013) que están involucrados en la producción de radicales libres 

durante el ejercicio exhaustivo (Gomez-Cabrera et al. 2005; Gomez-Cabrera et al. 2010; 

Gomez-Cabrera et al. 2013). Esto también podría explicar la falta de diferencia en la 

exposición a hiperoxia. 

 

La sobreexpresión de G6PDH mejora la composición corporal y el rendimiento físico 

  

 Con el fin de confirmar los datos que sugieren que G6PDH está implicado en la 

regulación de la masa muscular (Max 1984; Kovacheva et al. 2010), se realizó un estudio de 

la composición corporal. Se encontró que la sobreexpresión de G6PDH conduce a una 

disminución del peso corporal asociado con un incremento de la masa magra y una 

disminución de la masa adiposa. El aumento de la masa magra es debido a una mayor masa 

muscular porque la densidad mineral ósea, el peso de los órganos internos (corazón, hígado, 

riñones...) normalizados por el peso corporal fueron similares entre los ratones WT y 

G6PDHtg mientras que el peso de los músculos (gastrocnemio, tibial anterior, sóleo) 

normalizado por el peso corporal fueron mayores en los ratones G6PDHtg en comparación 

con los ratones WT. Además, el aumento del conteido proteíco de la cadena pesada miosina 

total del músculo en ratones G6PDHtg confirmó el aumento de masa muscula. La mejora de 

la composición corporal observada en ratones G6PDHtg se asoció con un mejor rendimiento 

físico que las observadas en los ratones WT. De hecho, encontramos que la fuerza muscular y 

el consumo máximo de oxígeno fueron más altos en los ratónes G6PDHtg. La mejora en la 

composición corporal, en particular el aumento de la masa muscular y el aumento de la fuerza 

muscular y el consumo máximo de oxígeno son de una importancia capital en la sarcopenia, 

que se caracteriza por una disminución en el peso y la fuerza muscular (Cruz-Jentoft et al. 

2010). Además, una disminución de la masa grasa también tendría un efecto beneficioso 

sobre la función muscular. De hecho, durante la sarcopenia hay infiltraciones de grasa en el 

músculo que son predictivas de la discapacidad y la mortalidad (Visser et al. 2005). 
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 La composición corporal puede ser influenciada por la actividad espontánea de los 

animales y/o el comportamiento de alimentación. Ambos parámetros fueron evaluados en 

ratones WT y G6PDHtg, y no mostraron ninguna diferencia entre los dos grupos de ratones, 

lo que nos permition descartar los dos fenómenos para explicar las diferencias en la 

composición corporal. 

 Para explicar este aumento de masa muscular en ratones G6PDHtg en comparación 

con WT, hemos investigado varias vías de señalización. 

 Nuestros resultados proporcionan pruebas de que la G6PDH juega un papel central en 

la regulación de la masa muscular, ya que esto se había sugerido previamente en varios 

estudios. De hecho, Max (1984) y Kovacheva et al. (2010) demostraron en varios modelos 

que la atrofia muscular es asociada con una disminución en la actividad y el contenido 

muscular de la G6PDH, mientras que la hipertrofia muscular se asocia con un aumento de 

ambos parámetros.          

 La regeneración muscular también es asociada con una actividad aumentada del 

G6PDH (Wagner y al. 1977; Wagner y al. 1978). Para explicar esto, fue propuesto que un 

aumento de la actividad de G6PDH conduciría a aumentar la síntesis ribose-5-fosfato (R5P) 

que conduciría a un aumento de la síntesis de ADN y de ARN, y en definitivo de proteínas. 

Esta hipótesis fue confirmada in vitro, donde la sobreexpresión de G6PDH resultó en un 

aumento en la velocidad de crecimiento de las células debido a una mayor síntesis de ADN 

que conduce a un aumento de la síntesis de proteínas (Tian et al. 1998, Kuo et al. 2000). Sin 

embargo, esto nunca ha sido confirmado in vivo. Pero en nuestro modelo animal, nuestros 

resultados mostraron un contenido en ADN total en el músculo gastrocnemio más alto en los 

ratones G6PDHtg en comparación con los ratones WT, que confirmó los estudios 

mencionados anteriormente. Además, las concentraciones de ácido úrico plasmáticos 

observados en ratones G6PDHtg son una prueba que la sobreexpresión de G6PDH aumenta el 

turnover de los ácidos nucleicos. Esto daria a los ratones G6PDGtg un capacidad mayor de 

síntesis de proteínas que podría aumentar su síntesis de proteínas, lo que explicaria el 

aumento de la masa muscular. Sin embargo, esto debe ser confirmado por medición directa 

del flujo de la síntesis de proteínas.        

 Por otra parte, estudiamos la vía de señalización de PI3K / Akt / mTOR con el fin de 

estudiar el impacto del surexpression de G6PDH sobre la traducción de las proteínas. 

Nuestros resultados (activación de Akt y P70S6K) no mostraron ninguna diferencia entre el 

ratón G6PDHtg y el WT. 
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 En resumen, nuestro trabajo ha demostrado que la sobreexpresión de G6PDH en 

ratones disminuye significativamente el daño oxidativo del ADN en el músculo esquelético. 

Sin embargo, los mecanismos al principio de esta protección tienen que ser estudiados. 

Sorprendentemente, nuestros resultados mostraron una falta de protección de la 

sobreexpresión de la G6PDH contra el estrés oxidativo inducido por estímulos pro-oxidantes, 

debido probablemente al hecho que el NADPH sintetizado por la G6DPH esta involucrado en 

ambos sistemas pro y antioxidantes. Además, este trabajo es el primero en mostrar que los 

ratones que sobreexpresan la G6PDH mejora la composición corporal mediante la reducción 

de la masa grasa y el aumento de la masa muscular debido probablemente a un aumento en la 

capacidad de la síntesis de proteínas a través de una mayor contenido de ADN en el músculo. 

La mejora de la composición corporal se asocia con una mejora en la fuerza muscular y 

cualidades aeróbicas. 

 Finalmente, este trabajo muestra que la mejora de la actividad de G6PDH sería una 

buena estrategia para mejorar la composición corporal y el rendimiento físico. En un contexto 

más amplio, los efectos beneficiosos observados en respuesta a la sobreexpresión de G6PDH, 

conducirían a mejorar la salud de estos ratones y en última instancia aumentar la longevidad 

como se ha demostrado en un modelo de Drosophila que sobreexpresa G6PDH. 
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III) Conclusion 

 

 La esperanza de vida nunca ha sido tan larga en la historia de la humanidad. Sin 

embargo, esto conduce a un envejecimiento general de la población y, inevitablemente, a un 

aumento en la prevalencia de la sarcopenia, que a su vez contribuye al considerable aumento 

en el coste de la salud publica en nuestras sociedades. Para limitar este fenómeno, desarrollar 

estrategias eficaces para prevenir o tratar la sarcopenia es un gran desafío que requiere la 

comprensión de los mecanismos celulares y moleculares implicados en la aparición de la 

sarcopenia asi como los implicados en su prevención.  

 En esta tesis se ha tratado de responder a tres objetivos generales. El primer objetivo 

fue determinar in vivo cómo un estado redox pro-oxidante dentro del tejido muscular 

envejecido podría modular las vías de señalización implicadas en los mecanismos 

moleculares de la sarcopenia. El segundo objetivo era mostrar que el retorno al 

funcionamiento normal de estas vías de señalización requiere una restauración de la 

homeostasis redox. Por último, el tercer objetivo de esta tesis fue identificar los posibles 

mecanismos moleculares implicados en el mantenimiento y/o restauración de la homeostasis 

redox. 

 En un primer estudio realizado en ratas viejas, comprobamos que el estrés oxidativo 

debido al envejecimiento conducía a una alteración de la vía PI3K/Akt/mTOR que sugería 

una disminución de la síntesis de las proteínas mientras que al mismo tiempo un aumento de 

la expresión de MuRF1 y MAFbx sugería un aumento del proteolisis por el sistema 

ubiquitina-proteasoma. Además, una disminución de la función mitocondrial y de la 

mitocondriogénesis ha sido encontrada.  

 En un segundo paso, hemos demostrado que la terapia de reemplazo con hormona de 

crecimiento en ratas vieja prevenia la sarcopenia a través de efectos antioxidantes, anabólicos 

y anti catabólicos. En este primer estudio, se encontró que la G6PDH podría ser un posible 

candidato para explicar el efecto antioxidante de la hormona del crecimiento. 

 En los estudios 2 y 3, se encontró que los ratones transgénicos que sobreexpresan la 

G6PDH han mejorado su composición corporal que se caracteriza por un menor peso 

corporal,  una reducción de grasa corporal y un aumento de la masa muscular. Además, se 

observó que los ratones G6PDHtg presentan mejores cualidades aeróbica y  fuerza muscular. 

Además, observamos una disminución en el daño oxidativo del ADN en los ratónes  
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G6PDHtg. Aunque, sorprendentemente, no hemos encontrado ningún efecto protector de la 

sobreexpresión contra el estrés oxidativo inducido por el ejercicio exhaustivo, un efecto 

perjudicial también estuvo ausente.  

 Aunque los mecanismos que podrían explicar los efectos beneficiosos de la 

sobreexpresión de la G6DPH estén todavía a descubrir, nuestros resultados abren una puerta 

al desarrollo de estrategias de lucha contra la sarcopenia, pero más en general para mejorar la 

composición corporal y el rendimiento físico basada sobre la activación de la G6PDH. Sin 

embargo, antes de desarrollar este tipo de estrategias, son necesarios más estudios para 

asegurarse de que no hay peligro de activar la G6DPH. 
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I) Introducción 
 

Il y a environ 80 ans, MacDonald Critchley fut le premier à reconnaitre que la masse 

musculaire diminue au cours du vieillissement et remarqua que cette perte était d’autant plus 

importante dans les muscles des membres inférieurs et supérieurs (Critchley 1931). Près de 

soixante ans plus tard, en 1988, au cours d'un congrès à Albuquerque (Etats-Unis) portant sur 

l’évaluation de l’état de santé des personnes âgées, Rosenberg fit remarqué que «aucune 

baisse avec l'âge n’est plus dramatique ou potentiellement plus importante fonctionnellement 

que la diminution de la masse musculaire ». Il souligna que pour faire reconnaitre ce 

phénomène par la communauté scientifique, celui-ci nécessitait un nom et proposa le terme 

«sarcopénie» (du grec «sarx» : chair + « penia » : perte). Par la suite, la sarcopénie fut définie 

comme la diminution générale et progressive de la masse musculaire qui survient avec l'âge 

(Roubenoff & Hughes 2000). Cependant, cette définition ne fut pas été acceptée par 

l’ensemble des cliniciens et des chercheurs et a beaucoup évolué. Finalement, le consensus 

actuel définit la sarcopénie comme «un syndrome gériatrique d'abord caractérisé par une 

diminution de la masse musculaire qui en s'aggravant participera à une diminution de la force 

musculaire et à une détérioration des performances physique» (Muscaritoli et al. 2010; Cruz-

Jentoft et al. 2010; Fielding et al. 2011; Morley et al. 2011).    

 Grâce aux progrès sociaux, technologiques et médicaux, l’espérance de vie n’a cessé 

d’augmenter depuis le 19ème siècle dans nos sociétés occidentales modernes, conduisant à un 

vieillissement général de la population. Actuellement, mondialement, il est prévu que le 

nombre de personnes âgées  double d’ici 2050, passant de 11% de la population à 22% (ONU 

2007). Inévitablement, en raison de ce vieillissement de la population, la prévalence de la 

sarcopénie est en croissance, et actuellement on estime que entre un quart et la moitié des 

hommes et des femmes âgés de 65 ans et plus, sont susceptibles d’être sarcopéniques (Janssen 

2004). Les conséquences de la prévalence croissante de la sarcopénie sont généralement 

considérés comme catastrophiques sur les coûts de santé publique. Ainsi, le coût total de la 

sarcopénie au système de santé américain a été estimé à environ 18,4 milliards de dollars 

(Janssen et al. 2004). A l’avenir, du fait que les personnes âgées de plus de 69 ans 

représentent la tranche de la population américaine qui croît le plus rapidement, il semblerait 

qu’à l’avenir ce coût ne fasse qu’augmenter (Manton et Vaupel, 1995). Ces dépenses de santé 

sont liés à une détérioration générale de l'état physique conduisant à un risque accru de chutes, 

une incapacité progressive à accomplir des activités élémentaires de la vie quotidienne et la 

perte d'autonomie des personnes âgées (Goodpaster et al. 2006; Delmonico et al. 2007). 
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 Cependant, plusieurs stratégies sont reconnues comme efficaces pour prévenir, 

retarder ou traiter la sarcopénie. Ainsi, développer des thérapies n’aiderait pas seulement à 

améliorer la qualité de vie des personnes sarcopéniques, mais aussi réduirait les coûts 

économiques associés à la sarcopénie, ce qui serait bénéfique à la société dans son ensemble. 
Actuellement, l'exercice physique est indéniablement la stratégie plus efficace dans la lutte 

contre la sarcopénie, car il peut conduire à augmenter la masse musculaire, la force et les 

performances physiques (Pillard et al. 2011; Di Luigi et al. 2012; Wang & Bai 2012; Montero 

& Serra 2013). Cependant, la mise en œuvre à grande échelle d'une telle intervention est 

entravée par le manque de motivation de la plupart des personnes. En outre, de nombreuses 

personnes âgées sont non ambulatoires ou ont des comorbidités telles que de l'arthrose 

modérée à sévère (Bennell & Hinman 2011) ou certaines formes de maladies 

cardiovasculaires instables ne permettant pas leur participation à des protocoles d’exercices 

physiques (Williams et al. 2007). Pour surmonter ces obstacles, le développement de 

thérapies alternatives telles que les stratégies antioxydantes et des thérapies de remplacement 

hormonales (testostérone et hormone de croissance) semblent nécessaires.  

 Le muscle squelettique est un organe qui a des propriétés spécifiques lui conférant un 

rôle central dans la locomotion, l'exécution des activités de la vie quotidienne, le maintien de 

la posture et de l'équilibre. Afin d'assurer ces fonctions essentielles, le muscle doit avoir une 

masse suffisante que chacun doit chercher à préserver. Comme décrit précédemment, 

certaines des conséquences les plus graves du vieillissement sont ses effets sur les muscles 

squelettiques en particulier la perte progressive de la masse et de la fonction qui ont une 

incidence sur la qualité de la vie, et, finalement, sur l’espérance de vie (Cruz-Jentoft 2012).

 A l’heure actuelle, les mécanismes à l’origine de la sarcopénie ne sont pas encore bien 

définis, et par conséquent, ils font encore le sujet de nombreux travaux de recherche. 

Toutefois, un turnover protéique négatif (Combaret et al. 2009), une altération des 

dynamiques mitochondriales (Calvani et al. 2013), une diminution des capacités de 

régénération musculaires (Snijders et al. 2009; Hikida 2011), ainsi que l'exacerbation de 

l'apoptose des noyaux musculaires (Marzetti et al. 2012) sont généralement considérés comme 

des mécanismes cellulaires impliqués dans l'atrophie musculaire conduisant à la sarcopénie. 

Ces mécanismes sont eux-mêmes dépendant d'une multitude de facteurs systémiques et 

cellulaires tels que la diminution de la production d'hormones anabolisantes (GH, l'IGF-1, la 

testostérone, l'insuline). Les liens et les interactions entre ces sécrétions d’hormones 

diminuées et les dysfonctionnements cellulaires cités précédemment restent en partie 

inconnus. Un candidat potentiel pourrait être le stress oxydant chronique liée à l'âge, dont des 
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études récentes ont souligné son implication dans la sarcopénie (Semba et al. 2007; Safdar et 

al. 2010).          

 Ainsi, le muscle sarcopénique présente une surproduction d’espèces radicalaires ou 

non radicalaires dérivées de l’oxygène et de l’azote (RONS) (Capel et al. 2004; Capel, 

Rimbert, et al. 2005; Capel, Demaison, et al. 2005; Chabi et al. 2008; Jackson et al. 2011; 

Andersson et al. 2011; Miller et al. 2012). Cette surproduction de RONS est principalement 

due à des dysfonctions mitochondriales (Capel, Rimbert, et al. 2005; Chabi et al. 2008) et une 

augmentation de l’activité de la xanthine oxydase (Lambertucci et al. 2007; Ryan et al. 2011), 

et conduit à une augmentation des dommages oxydatifs des différents composant cellulaires et 

moléculaires du muscle squelettique. Ces dommages oxydatifs reflètent l’incapacité des 

systèmes antioxydants à prendre en charge la surproduction de RONS et attestent du 

déséquilibre de la balance « oxydants-pro oxydants » conduisant à une altération de 

l’homéostasie redox  (Jones 2006). Il semblerait que la restauration de l’homéostasie redox 

par certaines des stratégies de lutte contre la sarcopénie implique une augmentation du 

contenu protéique et/ou de l’activité de l’enzyme glucose-6-phosphate déshydrogénase 

(G6PDH) au sein du muscle (Kovacheva et al. 2010; Sinha-Hikim et al. 2013). La G6PDH est 

l’enzyme limitante de la voie des pentoses phosphates connue pour être la source de NADPH 

de certains systèmes antioxydants (Scott et al. 1993). De plus, quelques données in vitro et in 

vivo suggèrent que la G6DPH jouerait un rôle important dans la régulation de la masse 

musculaire. Cependant, ces données restent à confirmer.  
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Objectifs: 

 

 Dans ce contexte, cette thèse va tenter de répondre à trois objectifs généraux. Le 

premier objectif est de déterminer in vivo dans quelles mesures un état redox pro-oxydant dû 

au vieillissement dans le tissu musculaire peut moduler les voies de signalisation impliquées 

dans les mécanismes moléculaires à l’origine de la sarcopénie. Le deuxième objectif est de 

montrer que le retour à un fonctionnement normal de ces voies de signalisation est associé à 

une restauration de l’homéostasie redox. Finalement, le troisième objectif de cette thèse est 

d'identifier des acteurs et les possibles mécanismes par lesquels l'homéostasie redox pourrait 

être maintenue. 

 

 

Les objectifs spécifiques sont les suivants: 

 

- Déterminer si le statut pro-oxydant chronique dans le muscle squelettique de rats 

âgés peut moduler les voies de signalisations conduisant à la sarcopénie 

impliquées dans la synthèse des protéines et la protéolyse, mais aussi dans la 

régénération musculaire et la mitochondriogenèse. Nous émettons l'hypothèse que 

le stress oxydatif conduirait à une down-régulation des voies de signalisation et 

PI3K/Akt/mTOR PGC-1α/Tfam/Nrf-1, et à une up-régulation des marqueurs du 

système ubiquitine protéasome ainsi que des inhibiteurs de la régénération 

musculaire (étude 1). 

 

- Déterminer dans quelles mesures et par quels mécanismes un traitement substitutif 

à l'hormone de croissance permet de prévenir la sarcopénie chez des rats âgés. 

Nous faisons deux hypothèses. 

 

3) La GH par l'intermédiaire d'une augmentation des concentrations d'IGF-1 

circulant permettrait la restauration d'un fonctionnement normal de la voie 

de signalisation PI3K/Akt/mTOR tout en diminuant l'expression de 

plusieurs acteurs du système ubiquitine-protéasome dépendant et 

d’inhibiteurs de la régénération musculaire. Un possible effet sur la 

mitochondriogenèse est également envisagé (étude 1). 
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4) Ces effets bénéfiques seraient associés à une amélioration de l'état redox en 

particulier grâce à la up-régulation de certaines enzymes antioxydants 

(étude 1). 

 

- Déterminer in vivo chez un modèle de souris surexprimant la glucose-6-phosphate 

déshydrogénase, les rôles de cette enzyme dans la régulation de la de la 

composition corporelle (masse musculaire et masse adipeuse) et ses impacts sur 

les performances physiques (force musculaire, consommation maximale 

d’oxygène et endurance) (étude 2). 

 

- Déterminer in vivo si la surexpression de la G6PDH permet d’améliorer au repos 

le statut redox et de protéger dans des situations pro-oxydantes (exercice exhaustif 

et hyperoxie) (étude 3). 
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II) Contribution personnelle  

Etude 1: La thérapie de remplacement à l’hormone de croissance prévient la sarcopénie 

par un double mécanisme: l'amélioration du turnover  protéique et des défenses 

antioxydantes. 
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INTRODUCTION 

 Le consensus actuel définit la sarcopénie comme un syndrome gériatrique d'abord 

caractérisée par une diminution de la masse musculaire qui en s'aggravant participera à une 

diminution de la force musculaire et une détérioration des performances physiques» 

(Muscaritoli et al. 2010; Cruz-Jentoft et al. 2010; Fielding et. al 2011; Morley et al. 2011) 

aboutissant à l’apparition de nombreuses comorbidités tels que un handicap physique, une 

altération de la qualité de vie et une réduction de l’espérance de vie (Evans 1995). Cette perte 

de masse musculaire  se produit à un taux de 3 à 8% par décennie après l'âge de trente ans et 

ce taux augmente après soixante ans (Holloszy 2000). De récentes estimations montrent que 

entre un quart et la moitié des hommes et des femmes âgés de plus de soixante-cinq ans sont 

considérés comme sarcopéniques (Janssen 2004). La sarcopénie joue un rôle majeur dans le 

développement du syndrome de fragilité, et progressivement augmente le risque de chutes et 

diminue les capacités des personnes à réaliser les activités de la vie quotidienne (Evans 1995). 

Finalement, les sujets atteints de sarcopénie dans les stades les plus avancés perdent leur 

indépendance et finissent par être institutionnalisés (Wolfe 2006).  

 Certaines hormones sont connues pour avoir un effet sur la masse, la force et la 

fonction musculaire (Cruz-Jentoft 2012). Parmi celles-ci, l’hormone de croissance (GH) est 

une des plus étudiées (Cruz-Jentoft 2012). Les niveaux de GH sont habituellement réduits 

chez les sujets âgés ainsi que l’amplitude et la fréquence de sa sécrétion pulsatile (Cruz-

Jentoft 2012). Ainsi, il a été émis l'hypothèse que la GH serait efficace dans la prévention de 

la perte de la masse musculaire au cours du vieillissement (Giannoulis et al. 2012).  

 Dans notre étude, nous avons cherché à élucider le rôle d’une thérapie de 

remplacement  à la GH chez des rats âgés en comparant des animaux âgés (24 mois) à des 

animaux jeunes (3 mois) et à des animaux âgés traités avec de la GH (8 semaines, 2 mg/kg 

répartis en 2 injections sous-cutanées quotidiennes). Nous nous sommes centrés sur  quatre 

des principaux mécanismes impliqués dans l'apparition et la progression de la sarcopénie: 

l’altération de la biogenèse mitochondriale, l’augmentation du stress oxydatif, l’augmentation 

de la dégradation des protéines et la dimiution de leur synthèse (Doherty 2003; Derbré et al. 

2012). 

 Dans cette étude, nous présentons des éléments montrant que la restauration du profil 

de la GH est une bonne intervention pour améliorer ou préserver la masse musculaire 

squelettique chez des animaux âgés. 
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RESULTATS/DISCUSSION 

Effet du vieillissement et de la thérapie de substitution de GH sur la composition 

corporelle des rats  

 Malgré le grand nombre d'études visant à évaluer les effets de la supplémentation en 

GH sur la masse musculaire, les résultats controversés rapportés dans la littérature 

maintiennent le débat quant à savoir si  la GH peut ou ne peut être utilisée pour lutter contre la 

sarcopénie (von Haehling et al. 2012). Les résultats contrastés rapportés peuvent s’expliquer 

par les différences méthodologiques telles que les doses utilisées. Des doses élevées de GH 

sont fréquemment la cause d'effets indésirables (Papadakis et al. 1996; Holloway et al. 1994). 

C’est pourquoi dans notre étude, nous avons utilisé des doses relativement faibles. Nos 

résultats ont montré que les concentrations plasmatiques d'IGF-1 étaient plus faibles chez les 

animaux âgés que chez les jeunes animaux mais le traitement à la GH a permis de rétablir des 

valeurs comparables à celles des animaux jeunes.  

 Dans notre cas, la thérapie de substitution de GH est efficace pour prévenir la perte de 

masse musculaire liée à l'âge. Au cours de l’étude, nous avons constaté que les rats jeunes ont 

augmenté leur poids alors que les rats âgés en ont perdu. Cependant, les animaux âgés traités 

avec la GH ont montré une augmentation du poids, sensiblement différente de la perte de 

poids survenue chez les rats âgés non traités. Cette perte est principalement due à l'évolution 

de la masse maigre parce que l’index spécifique de gravité (SGI : index calculé à partir d’une 

technique de pesée hydrostatique) est passée de 5 chez les animaux jeunes à 3  chez les 

animaux âgés. Le SGI est un indice qui évalue la masse maigre et la masse adipeuse; plus il 

est élevé, plus la masse maigre de l’animal est élevée. Nos données montrent également que 

l'administration de GH augmente considérablement le SGI des rats âgés, ce qui signifie que la 

GH, par ses propriétés anabolisantes, anti-adipogènes et lipolytiques, est capable d'augmenter 

la masse musculaire et de réduire la masse adipeuse (Castillo et al. 2004; Castillo et al. 2005).  

 Nous avons également évalué l'atrophie du muscle gastrocnémien en pesant les 

muscles, et nous avons constaté une diminution de 30% du poids des muscles chez les 

animaux âgés comparés aux animaux jeunes. Cette atrophie a été complètement prévenue 

chez les animaux âgés traités à la GH. 
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L’effet antioxydant de la thérapie de substitution de GH 

 

 La théorie du vieillissement des radicaux libres a fourni une base théorique pour 

concevoir des expériences pour comprendre le vieillissement (Gomez-Cabrera et al. 2012). Il 

est maintenant bien établi que la up-régulation des défenses antioxydantes endogènes est un 

mécanisme efficace pour prévenir les dommages oxydatifs  associés à une production 

excessive de radicaux libres (Gomez-Cabrera, Domenech & Viña 2008; Gomez-Cabrera, 

Domenech, Romagnoli, et al. 2008). Les effets de la GH sur la sarcopénie ont été largement 

étudiés (Brill et al. 2002; Papadakis et al. 1996), mais jusqu'à présent, ils n’ont jamais été 

centré sur la prévention des dommages des radicaux libres. Une des principales conclusions 

rapportées dans cette étude est que la supplémentation en GH peut agir comme un antioxydant 

parce que nos résultats montrent chez les rats âgés que la GH active des enzymes endogènes 

antioxydantes (catalase, glutathion peroxydase et glucose-6-phosphate déshydrogénase), 

diminuent les dommages oxydatifs des composants cellulaires (protéine et ADN), et donc se 

comporte comme un antioxydant. Ceci peut contribuer à expliquer la protection contre la 

sarcopénie conféré par la supplémentation en GH.  

Synthèse protéique, mitochondriogénèse et prévention de la sarcopénie par la GH  

 Le maintien de la masse musculaire est régulé par la balance entre la synthèse 

protéique et la protéolyse (Powers et al. 2011). La synthèse protéique musculaire diminue 

avec l’âge (Jones et al. 2009). L’implication de p70S6K dans l’hypertrophie a été rapportée 

chez divers modèles animaux (Song et al. 2005). Une fois activé par la kinase AKT, mTOR 

active l’initiation de la traduction via la phosphorylation de p70S6K qui à son tour 

phosphoryle la protéine ribosomale S6 et permet la up-régulation d’ARNm encodant 

l’appareil traductionnel (Kimball et al. 2002). Nous avons constaté une diminution 

significative de la phosphorylation de Akt dans le muscle squelettique des animaux âgés non 

traités qui a été complètement prévenue chez ceux traités à la GH. De même, la 

phosphorylation de p70S6K était plus faible dans les muscles des rats âgés que dans ceux des 

rats jeunes. Les animaux âgés traités avec la GH ont montré des valeurs phospho-p70S6K 

similaires à celle des animaux jeunes. Nos résultats sont en contradiction avec de précédentes  

études montrant que des injections intra-péritonéales d’IGF-I augmentent  la phosphorylation 

de p70S6K chez des animaux jeunes mais pas chez des animaux âgés (Li et al. 2003).  

 L'affaiblissement de la capacité hypertrophique musculaire chez les sujets âgés est due 

en partie à une altération du potentiel myogénique lié au vieillissement (Marsh & Criswell 
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1997; Hansen et al. 2007). Ainsi, nous avons cherché à comparer la réponse myogénique du 

muscle d’animaux jeunes  à celui d’animaux âgés traités à la GH. Myf-5 est un marqueur bien 

connu de la différenciation des myoblastes  et des cellules satellite et facilite la réparation ou 

la régénération et la croissance des myofibres matures (Kim et al. 2005). Il a été montré que le 

traitement GH dans le muscle augmente l'expression du gène de l'IGF-I (Hameed et al. 2003) 

qui est impliqué dans l'activation des cellules satellites (Goldspink & Harridge 2004). Nos 

résultats ont montré que, bien que le vieillissement n’ait pas entrainé une diminution du 

contenu protéique de myf-5 dans le muscle squelettique, la thérapie de substitution de GH a 

augmenté de manière significative les quantités de ce facteur myogénique.  

 Nous nous sommes ensuite centré sur la myostatine, un facteur négatif  de la 

régulation de la masse musculaire (Goldspink & Harridge 2004). Celui-ci appartient à la 

famille  des TGF-ß, mais son expression est restreinte au tissu musculaire (McPherron & Lee 

1997). L'absence ou le blocage de la myostatine induit une  hypertrophie musculaire massive 

qui initialement fut attribué à la prolifération des cellules satellites (Ten Broek et al. 2010). 

Cependant, il a été récemment montré que la myostatine régule la balance protéique dans les 

fibres musculaires. Plusieurs groupes de recherche ont montré que l'hypertrophie, en l'absence 

de la myostatine, implique peu ou pas les cellules satellites (Amthor et al. 2009; Welle et al. 

2006). Les fibres hypertrophiques ne contiennent pas plus de noyaux musculaires ou de 

cellules satellites et la myostatine n'a pas d'effet significatif sur la prolifération des cellules 

satellites (Amthor et al. 2009). Nous avons aussi constaté une augmentation  de l’expression 

de p21 dans le muscle des rats âgés (McKay et al. 2012) qui est significativement réduite par 

la thérapie de substitution de GH. Ainsi, l'effet de la GH sur ces deux facteurs peut contribuer 

à la prévention de l'atrophie musculaire. Des données montrent que l’ajout de myostatine au 

milieu de culture de fibroblastes musculaires induit une phosphorylation de la p38-MAPK (Li 

et al. 2008). p38 est une protéine kinase qui répond à une variété de stimuli, y compris le 

stress oxydatif et du TNF-α (Derbre et al. 2012), et a été identifiée comme un médiateur 

probable dans la signalisation catabolique au sein du muscle squelettique (Powers et al. 2007; 

Li et al. 2005). Ainsi, nous avons mesuré la phosphorylation de p38 dans le muscle de nos 

animaux. Comme dans l’étude de Williamson et al. (2003), nous avons trouvé une 

augmentation significative de la phosphorylation de p38 chez les animaux âgés qui a été 

prévenue par la thérapie de remplacement de GH.      

 Pour identifier le mécanisme par lequel GH réduit la perte de la masse musculaire au 

cours du vieillissement, nous avons mesuré l'expression des deux ubiquitines ligases E3 

spécifiques du muscle MAFbx et MuRF1, bien connues pour être impliquées dans l’atrophie 
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du muscle squelettique dans plusieurs modèles in vivo (Foletta et al. 2011). Bien que 

controversés (Edström et al. 2006), les niveaux d’ ARNm de MuRF1 et MAFbx sont 

nettement augmenté dans les muscles âgés (Clavel et al. 2006). Nous avons constaté une 

augmentation significative du contenue musculaires de  MuRF1 chez les animaux âgés qui a 

été prévenu par le traitement à la GH. Cependant, nous n'avons pas trouvé de changement 

concernant MAFbx. Ainsi, MuRF1 semble être impliquée dans la sarcopénie liée à l'âge. 

 Le vieillissement est à l’origine d’une diminution du contenu et de l’activité 

mitochondrial (Miquel et al. 1980; Sastre et al. 1996). PGC-1α est un régulateur majeur de la 

biogénèse mitochondriale (Puigserver et al. 1998; Viña et al. 2009) et répond très rapidement 

aux changements de l’homéostasie rédox (St-Pierre et al. 2006; Viña et al. 2009; Gomez-

Cabrera, Domenech & Viña 2008). Comme, nous l’avons vu précédemment, le vieillissement 

augmente les marqueurs de stress oxydatif dans le muscle, et ceci est prévenu par des doses 

relativement faibles de GH. Nous avons donc testé si le vieillissement entrainait une 

diminution de l'expression de PGC-1α dans muscle et ce fut effectivement le cas. Le 

traitement à GH prévient totalement la diminution de PGC-1α et de sa cible NRF-1 associée 

au vieillissement. Dans la littérature, il est décrit que PGC-1α  ne s’active plus de façon 

normale en réponse à l'exercice chez des animaux âgés (Derbré et al. 2012). Ce manque de 

réactivité pourrait être dû à un manque GH car l’administration de cette dernière active PGC-

1α qui a son tour active la mitochondriogénèse comme en témoigne l’augmentation du 

contenu protéique musculaire du cytochrome C ainsi que l’augmentation de l’activité de la 

citrate synthase chez les animaux âgés traités à la GH. La GH pourrait activer PGC-1α via 

l’IGF-1 et la calcineurine comme ceci a été rapporté dans le muscle cardiaque chez le rat 

(Vescovo et al. 2005).  

 Finalement, cette étude apporte un certain nombre de preuves concernant l’efficacité 

de la restauration de profil de la GH pour préserver la masse musculaire chez les personnes 

âgées.  
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Etude 2: La surexpression de glucose-6-phosphate déshydrogénase améliore 

la composition corporelle et les performances physiques chez la souris. 

Etude 3: Statut redox dans des conditions de repos et en réponse à des 

stimuli pro-oxydants: impact de la surexpression de la glucose-6-phosphate 

déshydrogénase. 
 

INTRODUCTION 

 Le mécanisme par lequel la GH diminue le stress oxydant est inconnu. Cependant 

l’activation de la G6PDH par la GH que nous avons montré dans l’étude précédente constitue 

une piste potentielle. Ceci nous a donc conduit à explorer la G6PDH, d’autant plus que 

certains travaux ont montré que sa surexpression chez la drosophile augmente la longévité et 

protège contre des agressions pro-oxidantes (Legan et al. 2008). Nous avons émis l’hypothèse 

que la G6DPH pourrait alors constituer une cible thérapeutique en alternative à la GH dont on 

connait les effets délétères.          

 La G6PD est l’enzyme limitante de la voie des pentoses. Elle conduit notamment à la 

synthèse d’un C5 le ribose 5P qui intervient dans la synthèse des acides nucléiques. Elle 

utilise comme  cofacteur le NADP qu’elle transforme en NADPH. L’effet antioxydant majeur 

de la G6PDH passe par ce NADPH qui contribue à réduire le taux de glutathion oxydé et 

active la catalase (Stanton 2012; Hecker & Leopold 2013).     

 L’effet antioxydant de la G6PDH  a bien été démontré. Ainsi des études in vitro ont 

montré que son inhibition rends les cellules plus vulnérables au stress oxydant alors que sa 

surexpression protège contre le stress oxydant (Tian et al. 1998). Ces données ont conduit à 

rechercher un éventuel effet de la G6PDH sur la longévité, notamment chez la drosophile. 

Dans cette espèce, lorsque la G6PDH est surexprimée, la longévité spontanée est allongée très 

significativement ainsi que la survie lorsque les drosophiles sont exposées à un risque pro-

oxydant majeur comme l’hyperoxie ou le paracuat (Legan et al. 2008).  

 D’autre part, des travaux suggèrent que la G6PDH serait impliqué dans la régulation 

de la masse musculaire. En effet, plusieurs cas cliniques de rhabdomyolyse due à une 

déficience en G6PDH ont été rapportés, dans les années 90 (Kimmick & Owen 1996). Par 

ailleurs, de nombreuses études ont montré depuis les années quatre-vingt que la dérégulation 

de son activité est associée à certaines myopathies (Elias & Meijer 1983; Meijer & Elias 
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1984). Aussi, il a été montré que lors de la régénération musculaire (connue pour impliquer 

les cellules satellites) l'activité de la G6PDH est considérablement augmentée (Wagner et al. 

1977; Wagner et al. 1978) tandis que la synthèse des protéines et la synthèse d’ARN sont 

augmentées (Wagner et al. 1978). Dans le même sens, deux études ont montré que 

l’hypertrophie induite par des injections de testostérone chez des rats castrés ou des souris 

sarcopénique est associée à une augmentation de l’expression et/ou de l’activité de la G6PDH 

dans le muscle squelettique (Max 1984; Kovacheva et al. 2010).   

 Toutes ces données, nous ont donc conduit à explorer successivement  l’effet de la 

surexpression de la G6PDH chez la souris sur la régulation du statut redox au repos (mesure 

des dommages oxydatifs et de l’expression d’enzymes antioxydantes au niveau systémique et 

musculaire), sur la tolérance au stress oxydant (en réponse à un exercice exhaustif et à 

l’hyperoxie), sur les capacités physiques (consommation maximale d’oxygène, temps 

d’endurance, force d’agrippement contre dynamomètre et temps de suspension par les quatres 

pattes) et la composition corporelle) et notamment la masse musculaire (DEXA, pesée des 

muscles). 

 

RESULTATS/DISCUSSION 

Le stress oxydatif dans des conditions de repos 

 La surexpression de G6PDH  ne modifie pas les dommages oxydatifs systémiques 

mais diminue les dommages oxydatifs musculaires 

  

 De nombreuses études chez les rongeurs ont montré que la diminution de l'activité et 

du contenue protéique de la G6PDH sont associés à une augmentation des dommages 

oxydatifs (Kumaran et al. 2004; Senthil Kumaran et al. 2008; Braga et al. 2008; Kovacheva et 

al. 2010). Afin d'évaluer si la surexpression G6PDH pourrait protéger contre le stress 

oxydatif, nous avons mesuré dans des conditions de repos dommages oxydatifs dans le 

plasma (utilisés pour évaluer le stress oxydant systémique) et dans le muscle gastrocnémien.  

 Nos résultats ont montré au niveau systémique que l'oxydation des protéines  et la 

peroxydation lipidique n'ont pas été réduits par la surexpression de la G6PDH. Cette absence 

de différence entre les souris WT et G6PDHtg renforce indirectement les données concernant 

ces mêmes marqueurs chez des patients déficients en G6PDH (Jamurtas et al. 2006; 

Theodorou et al. 2010). 



Résumé en Français 

 

36 
 

 Dans le muscle, l'oxydation des protéines et de la peroxydation lipidique était similaire 

chez les souris G6PDHtg par rapport aux souris WT, ce qui suppose dans notre modèle que 

les dommages oxydatifs musculaires seraient indépendants du statut en G6PDH. Cependant, 

ces résultats sont en contradiction avec certaines études qui ont montré que chez des rongeurs 

âgés, une diminution de l'activité ou du contenu protéique de la G6PDH est associée à une 

augmentation de la peroxydation des lipides et une diminution du rapport GSH/GSSG 

(Kumaran et al. 2004, 2008 ; Kovacheva et al. 2010). Ces divergences pourraient s'expliquer 

par l'âge de nos animaux. En effet, ces études ont travaillé avec des animaux âgés entre 18 et 

22 mois alors que nous avons travaillé chez des animaux âgés de 12-14 mois. 

 Cependant, pour la première fois, cette étude a également montré que la surexpression 

de la G6PDH a conduit à une diminution des dommages oxydatifs de l'ADN total dans le 

muscle gastrocnémien. En effet, les valeurs de 8-hydroxy-2'-deoxyguanosine (8-OHdG) 

étaient inférieure chez les souris G6PDHtg par rapport aux souris WT. Bien que cette relation 

n’ait jamais été étudiée dans le muscle squelettique, certains auteurs ont trouvé des résultats 

concordants dans le cerveau. Ainsi, Felix et al. (2002) et Jeng et al. (2013) ont trouvé des 

valeurs plus élevées de 8-OHdG et une augmentation du nombre de mutation de l’ADN dans 

le cerveau de souris déficientes en G6PDH par rapport à leurs congénères WT. Le mécanisme 

par lequel la G6PDH agirait sur l'ADN n'est pas connu et doit être étudiée. Bien que cette 

relation n'a pas été étudié dans notre étude, nos souris pourraient présenter une diminution des 

auraient mutations de l'ADN dans le muscle. Ces données sont tout à fait essentiel car de 

nombreuses études ont observés dans différentes espèces une  accumulation de mutations de 

l'ADN mitochondrial dans le muscle squelettique liée à l'âge en raison du stress oxydant (Lee 

et al. 1998; Bua et al. 2006; Figueiredo et al. 2009; Lee et al. 2010). Ces mutations de l'ADN 

mitochondrial sont à l’origine d’anomalies de la chaine de transport des électrons et 

conduisent à des aberrations morphologiques des fibres musculaires (Bua et al. 2006). Depuis, 

qu’il a été montré que la G6PDH est présente dans les mitochondries (Mailloux & Harper 

2010), nous supposons que les souris surexprimant la G6PDH seraient protégées contre les 

mutations de l’ADN au cours du vieillissement. 

 

Stress oxydant en réponse à des situations pro-oxydantes 

 Nos résultats montrent que les souris G6PDHtg n'étaient pas protégées contre 

l'hyperoxie. En effet, le temps de survie lors de l'exposition à l'hyperoxie était le même entre 
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les souris G6PDHtg et leurs homologues de WT. De la même manière, nous n'avons pas 

trouvé d'effet protecteur de la surexpression de la G6PDH contre les dommages musculaires 

et les dommages oxydatifs dans le muscle induits par un exercice exhaustif. En effet, nous 

avons constaté des augmentations similaires des concentrations plasmatiques de créatine 

kinase et de lactate déshydrogénase ainsi que de protéines oxydées et de 4-hydroxynonénal 

chez la souris G6PDHtg et WT en réponse à un exercice exhaustif. L'absence d’effet 

protecteur contre le stress oxydant  pourrait s’expliquer par le fait que la G6PDH fournit à la 

fois du NADPH à des systèmes antioxydants et des systèmes pro-oxydants tels que la 

xanthine oxydase, l'oxyde nitrique synthase et la NADPH oxydase (Hecker & Leopold 2013) 

qui sont impliqués dans la production de radicaux libres lors d’exercices exhaustifs (Gomez-

Cabrera et al. 2005; Gomez-Cabrera et al. 2010; Gomez-Cabrera et al. 2013). Ceci pourrait 

aussi expliquer l'absence de différence lors de l’exposition à l’hyperoxie. 

 

La surexpression de G6PDH améliore la composition corporelle et les performances 

physiques 

  

 Dans le but de confirmer les données suggérant que la G6PDH serait impliquée dans la 

régulation de la masse musculaire (Max 1984; Kovacheva et al. 2010), nous avons réalisé une 

étude de la composition corporelle. Nous avons constaté que la surexpression de G6PDH 

conduit à une diminution du poids corporel associée à une augmentation de la masse maigre a 

augmenté et une réduction de  de la  masse grasse. L’augmentation de masse maigre est dû à 

une masse musculaire plus importante car la densité minérale osseuse, le poids des organes 

internes (cœur, foie, reins…) normalisé par le poids corporel étaient similaires entre les souris 

G6PDHtg et WT alors que le poids des muscles (gastrocnémien, tibialis antérieure, soléaire) 

normalisés par le poids corporel étaient plus élevés chez les souris G6PDHtg comparés aux 

souris WT. De plus, l’augmentation du contenue protéique musculaire total en chaine lourde 

de  myosine chez les souris G6PDHtg a confirmé l'augmentation de la masse musculaire chez 

ces dernières. L’amélioration de la composition corporelle observée chez les souris G6PDHtg 

était associée à de meilleures performances physiques que celles observées chez les souris 

WT. En effet, nous avons trouvé que la force musculaire et la consommation maximale 

d’oxygène étaient plus élevées chez les souris G6PDHtg. L'amélioration de la composition 

corporelle et notamment l'augmentation de la masse musculaire ainsi que l’augmentation de la 

force musculaire et de la consommation maximale d’oxygène sont capital  dans la sarcopénie, 
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qui est caractérisé par une diminution de la masse et de la force musculaire (Cruz-Jentoft et al. 

2010). En outre, une diminution de la masse grasse aurait également un effet bénéfique sur la 

fonction musculaire. En effet, au cours de la sarcopénie il y a des infiltrations graisseuses 

dans le muscle qui sont un facteur prédictif d’invalidité et de mortalité (Visser et al. 2005). 

 La composition corporelle peut être influencée par l'activité spontanée des animaux 

et/ou leur comportement alimentaire. Ces deux paramètre ont été évalués chez les souris 

G6PDHtg et WT et non montré aucune différence entre les deux groupes de souris, ce qui a 

permis d’écarter ces deux phénomènes pour expliquer les différences de composition 

corporelle.            

 Afin d’expliquer, cette masse musculaire plus importante chez les souris G6PDHtg 

comparées aux WT, nous avons étudié des voies de signalisation 

 Nos résultats constituent une preuve que la G6PDH joue un rôle central dans la 

régulation de la masse musculaire comme ceci avait  été suggéré par plusieurs études 

auparavant. En effet, Max (1984) et Kovacheva et al. (2010) ont montré dans plusieurs 

modèles que l'atrophie musculaire est associée à  une diminution de l'activité  et du contenu 

protéique musculaire de la G6PDH diminué et la teneur en protéines tandis que l'hypertrophie 

musculaire est associée à une augmentation de ces deux paramètres. La régénération 

musculaire est aussi associée à une activité accrue de la G6PDH (Wagner et al. 1977; Wagner 

et al. 1978). Pour expliquer cela, il était proposé qu'une augmentation de l'activité de G6PDH 

conduire à augmenter la synthèse ribose-5-phosphate (R5P) conduisant à une augmentation de 

la synthèse d’ADN et d'ARN et in fine  de protéines. Cette hypothèse a été confirmée in vitro, 

où la surexpression de G6PDH a conduit à une augmentation de la vitesse de croissance des 

cellules en raison d'une synthèse d'ADN plus élevée conduisant à une synthèse de la protéine 

accrue (Tian et al. 1998; Kuo et al. 2000). Cependant, ceci n’avait jamais été confirmé in vivo. 

Mais, dans notre modèle animal. Nos résultats ont montré un contenue en ADN total dans le 

muscle gastrocnémien supérieur chez les souris G6PDHtg comparées aux WT, ce qui a 

confirmé les études mentionnées ci-dessus. De plus, les concentrations plasmatiques en acide 

urique observées chez les souris G6PDHtg ont attesté que la surexpression  de G6PDH 

augmente le turnover des acides nucléiques. Ceci conférait aux souris G6PDGtg une capacité 

de synthèse protéique plus importante aux souris G6PDGtg ce qui pourrait augmenter leur 

synthèse protéique expliquant ainsi l’augmentation de leur masse musculaire. Cependant, ceci 

est à confirmer par la mesure directe des flux de synthèse protéique. D’autre part, nous avons 

étudié la voie de signalisation de PI3K/Akt/mTOR afin d’étudier l’impact de la surexpression 
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de G6PDH sur la traduction des protéines. Nos résultats (activation de Akt et P70S6K) n’ont 

montré aucune différence entre les souris G6PDHtg et WT. 

 En résumé, nos travaux ont montré que la surexpression de la G6PDH  chez la souris  

diminue nettement les dommages oxydatifs de l'ADN dans le muscle squelettique. Cependant, 

les mécanismes à l’origine de cette protection sont étudiés. Étonnamment, nos résultats ont 

montré une absence de protection de la surexpression G6PDH surexpression contre le stress 

oxydant induit par des stimuli pro-oxydants surement en raison du fait que le NADPH 

synthétisé par la G6DPH intervient à la fois dans des systèmes pro et antioxydants. D’autre 

part, ces travaux sont les premiers à montrer chez la souris que la surexpression de G6PDH 

améliore la composition corporelle en diminuant la masse adipeuse et en augmentant la masse 

musculaire surement grâce à une augmentation de la capacité de synthèse protéique via une 

augmentation de la teneur en ADN au niveau musculaire. L'amélioration de la composition 

corporelle est associée à une amélioration de la force musculaire et des qualités aérobies. 

 Finalement, ces travaux montrent que l'amélioration de l'activité de la G6PDH 

représenterait une bonne stratégie pour améliorer la composition corporelle et la performance 

physique. Dans un contexte plus large, les effets bénéfiques observés en réponse à la 

surexpression de G6PDH, conduirait à améliorer la santé de ces souris et finalement 

augmenterait la longévité comme ceci a été montré chez un modèle de drosophiles 

surexprimant la G6PDH.  
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III) Conclusion 

 

 L'espérance de vie n'a jamais été aussi longue dans l'histoire de l'humanité. Cependant, 

ceci conduit à un vieillissement général de la population en général et inévitablement à une 

augmentation de la prévalence de la sarcopénie, qui à son tour participe à l’augmentation 

considérable des coûts de soins de santé de nos sociétés. Afin de limiter ce phénomène, 

élaborer des stratégies efficaces pour prévenir ou traiter la sarcopénie est un défi majeur qui 

nécessite la compréhension des mécanismes cellulaires et moléculaires impliqués dans son 

apparition et ceux permettant sa prévention.       

 Cette thèse a tenté de répondre à trois objectifs généraux. Le premier objectif était de 

déterminer in vivo dans quelle mesure un état redox pro-oxydant dans le tissu musculaire âgé 

pouvait moduler les voies de signalisation impliquées dans les mécanismes moléculaires de la 

sarcopénie. Le deuxième objectif était de montrer que le retour à un fonctionnement normal 

de ces voies de signalisation nécessite une restauration de l'homéostasie redox. Enfin, le 

troisième objectif de cette thèse était d'identifier de possibles acteurs et mécanismes 

moléculaires permettant le maintien et/ou la restauration de l’homéostasie rédox.  

 Dans une première étude réalisée chez les rats âgés, nous avons constaté que le stress 

oxydant lié à l'âge conduit à une altération de la voie PI3K/Akt/mTOR suggérant une 

diminution de la synthèse des protéines alors que dans le même temps une augmentation de 

l'expression de MuRF1 et MAFbx suggérait une augmentation de la protéolyse par le système 

ubiquitine-protéasome. En outre, une diminution de la fonction mitochondriale et la genèse a 

été trouvé. Dans un second temps, nous avons montré qu’une thérapie de remplacement à  

l'hormone de croissance chez des rats âgés permet de prévenir la sarcopénie grâce à des effets 

antioxydants, anaboliques et anti cataboliques. Dans cette première étude, il est apparu que la 

G6PDH pouvait être un possible candidat expliquant l’effet antioxydant de l'hormone de 

croissance.           

 Dans les études 2 et 3, nous avons constaté que des souris transgéniques surexprimant 

la G6PDH ont une amélioration de la composition corporelle qui se caractérise par un poids 

corporel plus faible, une diminution de la masse grasse et une augmentation de la masse 

musculaire. En outre, nous avons observé que les souris G6PDHtg présentent une 

amélioration des qualités aérobies et de la force musculaire. De plus, nous avons montré une 

diminution des dommages oxydatifs de l'ADN chez les souris G6PDHtg. Bien que, de façon 

surprenante, nous n'avons pas trouvé d’effet protecteur de la surexpression contre le stress 
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oxydant induit par l'exercice exhaustif, un effet délétère était tout aussi absent.  

 Bien que les mécanismes permettant d’expliquer les effets bénéfiques de la 

surexpression de G6DPH soient encore à préciser, nos résultats ouvrent une porte vers le 

développement de stratégies pour lutter contre la sarcopénie mais de façon plus générale pour 

améliorer la composition corporelle et la performance physique axées sur une activation de la 

G6PDH. Toutefois, avant de développer de telles stratégies, d'autres études sont nécessaires 

afin de s’assurer de l’absence de danger de l’activation de la G6DPH.  
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Abstract Résumé 

Aging is characterized by a decrease in muscle mass and 
strength causing a deterioration of physical performance, 
called sarcopenia. Muscle atrophy can be explained by a 
negative protein turnover, impaired mitochondrial 
dynamics, a decreased muscle regeneration capacity and 
myonuclei apoptosis. A decreased production of anabolic 
hormones and a chronic oxidative stress (OS) which leads 
to excessive oxidative damage would be involved in these 
alterations. Physical exercise and hormone replacement 
therapies are effective to combat sarcopenia. The 
restoration of a redox homeostasis may play a central role 
in their beneficial effects and would involve an up-
regulation of the glucose-6-phosphate dehydrogenase 
enzyme.  

The main objectives of this thesis were to determine in 
vivo to what extent a pro-oxidant redox status in aged 
muscle may modulate signaling pathways involved in 
sarcopenia, and to investigate whether return to their 
normal functioning requires a restoration of the redox 
homeostasis. The third objective was to identify actors and 
their possible cellular mechanisms in the maintenance 
and/or the restoration of the redox status. 

In a first study in old rats, we first confirmed that 
sarcopenia is associated with OS. In a second time, we 
found that a growth hormone replacement therapy in olds 
rats prevents sarcopenia by acting as a double-edged 
sword, antioxidant as well as myogenic, associated with an 
up-regulation of G6DPH. 

                                                                                                               
In a second study, we found that transgenic mice 
overexpressing G6PDH showed improved body 
composition and physical performances associated.  

In a third study, we found that overexpression of G6DPH 
improves DNA oxidative damage in resting condition. 
However, the expected protective effect of G6PDH 
overexpression against oxidative stress induced by pro-
oxidizing stimuli was not present. 

Le vieillissement est caractérisé par une diminution de la 
masse et la force musculaire entraînant une détérioration 
des performances physiques, appelée sarcopénie. 
L'atrophie musculaire peut être expliquée par un turnover 
protéique négatif, une détérioration des dynamiques 
mitochondriales, une diminution de la capacité de 
régénération du muscle ainsi que par l'apoptose des noyaux 
musculaires. La diminution de la sécrétion d'hormones 
anabolisantes et un stress oxydant (OS) chronique 
conduisant à des dommages oxydatifs excessifs, seraient 
impliqués dans ces modifications. L’Exercice physique et 
les thérapies de remplacement hormonales sont efficaces 
pour lutter contre la sarcopénie. Une restauration de 
l’homéostasie redox pourrait avoir un rôle central dans  la 
lutte contre la sarcopénie et impliquerait une activation de 
la glucose-6-phosphate déshydrogénase. 

Les principaux objectifs de cette thèse étaient de 
déterminer in vivo, si un SO chronique dans le muscle âgé 
altère les voies de signalisation impliquées dans la 
sarcopénie, et de chercher si le retour à un fonctionnement 
normal de ces voies nécessite une restauration de 
l'homéostasie redox. Certains paramètres et leurs 
mécanismes pouvant intervenir sur le maintien ou la 
restauration du SO ont été recherchés. 

Dans une première, nous avons confirmé que la sarcopénie 
est associée au OS chez le rat. Puis nous avons constaté 
qu’un traitement à l'hormone de croissance chez le rat  
peut prévenir la sarcopénie via un effet antioxydant et 
myogénique, associé à une activation de la G6DPH. 

Une seconde étude a monté des souris transgéniques 
surexprimant G6PDH présentaient une amélioration de la 
composition corporelle et des performances physiques.                               

Une dernière étude a montré que la surexpression de 
G6DPH diminuait les dommages oxydatifs de l'ADN au 
repos. De façon surprenante, la surexpression de la 
G6PDH n’a pas d’effet protecteur vis à vis du SO induit 
par les divers stimuli pro-oxydants. 

Keywords: sarcopenia, oxidative stress, exercise, growth 
hormone, skeletal muscle, G6DPH  

Mots-clés: sarcopénie, stress oxydant, exercice, hormone 
de croissance, muscle, G6DPH 
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