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PREFACE

This thesis represents a culmination of work and learning that has taken place over
a period of three years (2010 - 2013). It started as a small group of people(leaded
by Assoc. Prof. Jiří Petržela) with backgrounds primarily in electronics, physics
and maths, with idea that an explanation and analysis of nonlinear systems, mainly
focused on the deterministic chaotic theory, can be done using electronic circuit
theories.

In 2011 I joined a research group at ESIEE Paris led by Prof. Geneviève Bau-
doin where I started my work at project AMBRUN (with participants from: ESIEE
Paris, SUPELEC, TeamCast and Thales Communications & security). The project
is mainly focused at linearization of high power amplifiers and description of non-
linear devices. With background in electronics and non-linear devices I have joined
the laboratory ESYCOM. We have decided to do a Ph.D. under double supervision
(cotutelle) by Université Paris Est and Brno University of Technology.

Therefore the thesis is divided in two parts that are practically connected only by
the non-linear phenomenas. The first part deals with linearization of power ampli-
fiers. The second part describes phenomena and analyzing techniques related with
chaotic systems.

I have also been involved in other collaborative work; in particular with Univ.Prof.
Christoph Mecklenbräuker (TU Wien) and Prof. Aleš Prokeš (BUT) trying to as-
sembly test-bench for UWB measurements in the optical domain (1550nm) for in-car
communication. The obtained measurements will be used for modeling the channel
in cars.

I have been a member of Wireless communication teams (WICOMT) since 2011
focused on the investigation of microwave components of communication systems
and on research of wireless communication systems. The WICOMT project was
followed by the regional research centre of Sensor, Information and Communication
Systems (SIX) where I have been a member since 2012.



Original contributions of the thesis

This thesis is primarily focused on the modeling and analyzing of non-linear dynam-
ical systems.

The main contributions can be summarized to several categories:

PART I:
• First the generalities on radio frequency power amplifiers have been intro-

duced.
• Several known techniques for linearizing and modeling the non-linear systems

(especially PA) have been presented (RF models, baseband modes - static and
quasi-static, multistage, dynamical and neural network models).

• Identification of models (and DPDs) have been presented. Brief complexity
have been discussed.

• Test signals for measuring PAs have been created.
• Modeling and linearization of five measured amplifiers from several manufac-

turers (TeamCast, Thales) has been presented. Subsequently the comparison
is presented.

• The fractional least mean square algorithm for modeling and linearizing is
presented.

• The optimal order estimation of DPDs and models using integer genetic algo-
rithm is presented.

• Influence of time delay mismatch (integer and fractional time) on the DPD
performance is presented. Consequently in order to compensate an integer
advance time mismatch, the PMM model is introduced.

• Modeling and linearization of PA with spectral artifacts (an asymmetrical
spectrum and spikes in adjacent channels) are discussed. Consequently the
filtered LS solution is presented.

• Multiple solutions in adaptive indirect learning architectures for predistortion
have been shown with proposed solution.

• A testbench has been assembled in order to measure and validate wideband
RF power amplifiers.
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PART II:
• Methods for analyzing the mathematical models and time series (with recon-

struction) have been introduced.
• Fractional order series is briefly discussed and it is shown, that there can exists

autonomous chaotic dynamical system with order lower than 3. Research of
fractional behavior is leading to interesting properties, such as memory effects,
that natural description can not provide.

• New dynamical system with chaotic solution having periodical discrete jumps
is presented. Consequently new method for analysis called spherical quantifi-
cation have to be used.

• Generalization of piecewise-linear approximation of vector field is used for sev-
eral examples. As the result of the linearization, possible analytical solutions
of chaotic systems arises.

• In the next section as a consequence of discretization of vector fields system
with so-called sampled dynamics is presented and verified by practical circuit.

• New quantifier for systems with large state attractor dynamics is generalized
into the n-spherical quantifier.

• The area of generating dynamical chaotic jerk-functions is investigated from
the sampled dynamic point of view. Therefore synthesis of circuit having
discrete vector field step function is presented.

• Parallelization of calculation of Lyapunov exponents is presented.
• Parallel particle swarm optimization is presented and is used in order to find

chaotic solutions of generic set of differential equations with piecewise-linear
vector fields.
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Part I

Modeling and linearization of
non-linear systems





1 MOTIVATION

It is common situation that nonlinear devices are simulated using computers. There
can be complex models modeling physical phenomenas of each electronic part. Mod-
els on physical level are usually very complex and difficult to handle even with mod-
ern computers. Another approach can be modeling systems in fact as a black-box
device.

Another aspect of non-linear systems is the reduction and modeling of inconve-
nient effects connected with a real characteristic of many real-world parts [3, 123,
140], especially the modeling aspects connected with non-linear power amplifiers
(PA) used in wireless communications and broadcasting.

Power amplifiers are critical elements of mobile communication and broadcasting
systems because their efficiency conditions the autonomy and the weight of mobile
handset batteries and their linearity influences on performance of the communica-
tion. In practice, PAs are not perfectly linear and present memory effects, i.e. the
output signal is a function of the current and of previous input signal values. And
a compromise must be achieved between the efficiency and the linearity of the PA [4].

The aim of this work is to bring new innovative solutions to improve the perfor-
mance of RF power transmitters.

The work conducted in this thesis is a part of work for the project AMBRUN
(FUI project with partners: Thales, TeamCast, Supélec and ESIEE Paris). The
project aims to improve the radio performance of the amplification of multiplexed
signals using adaptive algorithms for dual applications: tactical communication and
broadcasting VHF band. The originality and ambition of the project lie in the band-
widths of processed signals (above 40 MHz) the involved powers (up to 100W) and
the non-stationarity of tactical multiplex signals.

In Fig.1.1 one can see increasing demands on communications system with every
generation of devices. One may observe, that in 1985 for AMPS systems the re-
quired bandwidth of signal was 30kHz. Comparing for example with the latest LTE
Advanced, that can require 100MHz of bandwidth. The LTE Advanced requires
approximatively 3400 times larger bandwidth than AMPS systems. That is also
challenging in terms of signal processing.
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Fig. 1.1: Time schedule for the complexity and signal bandwidth.
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2 GENERALITIES ON RADIO FREQUENCY
POWER AMPLIFIERS

In this chapter we would like to introduce some generalities related with power
amplifiers. This first, general chapter consists of three sections. The first section is
dedicated to description of ideal power amplifier. The second section brings overview
of performance evaluation methods. Finally the last section introduces generalities
on linearization of power amplifiers.

2.1 Ideal and Real Power Amplifier

The main task of power amplifier is to increase strength of signal. The ideal power
amplifier doesn’t introduce any distortion. Therefore the output 𝑉𝑜𝑢𝑡 of ideal power
amplifier is directly proportional to its input signal 𝑉𝑖𝑛 with gain 𝐺:

𝑉𝑜𝑢𝑡 = 𝐺 𝑉𝑖𝑛. (2.1)

The layout is presented in Fig.2.1. For small input signal powers, this is often

Vin Vout 
G 

PA 

Fig. 2.1: Schematic representation of power amplifier.

a sufficient description of the functionality. The ideal characteristic is not limited
by any value so called saturation effects and does not produce any memory effects.
However, if the input signal power is increased, at some point the PA begins to
saturate. The ideal saturation could be modeled by a limiter. As a consequence of
saturation, the gain decreases with increased input power. Gain compression occurs
because eventually the output signal (voltage, current, power) saturates, due to the
supply voltage or bias current limitation.

2.1.1 1dB Compression Point

A real power amplifier typically maintains a constant gain for low-level input signals.
However, at higher input levels, the amplifier usually goes into saturation and its
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2.1. Ideal and Real Power Amplifier

gain naturally decreases. The 1 dB compression point (P1dB) is a typical value used
for characterization and indicates the power level that causes the gain to drop by
1 dB from its small signal value. The 1 dB compression point is derived from the
gain relationship between output power and input power. It is measured by slowly
increasing source amplitude while monitoring the output power drop.

2.1.2 AM/AM and AM/PM Conversion

Using the AM/AM and AM/PM conversion characteristics is based on the idea of
separable effects of the non-linearities. AM-to-AM conversion characteristics de-
scribe output power depending on the input power.

Similarly an AM-to-PM conversion measures the amount of undesired phase de-
viation (PM) that is caused by input power variations (AM) of the system. Usually
the conversion characteristics are measured with one tone signals.

The example of such conversion characteristics can be seen in the Fig.2.2.
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Fig. 2.2: AM/AM conversion characteristics (top) and AM/PM conversion charac-
teristics (bottom).
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2.1. Ideal and Real Power Amplifier

2.1.3 Two Tone Test and Intermodulation Distortions

A widely used method for evaluating an amplifier’s linearity is the two-tone test.
The two tone test signal is constructed by summing two closely-spaced unmodulated
RF carriers with amplitude 𝐴, and frequencies 𝑓1,2. Modulating the signal with ideal
RF modulator we get:

𝑉𝑖𝑛𝑅𝐹 (𝑡) = 𝐴 𝑐𝑜𝑠(2𝜋𝑓1𝑡) + 𝐴 𝑐𝑜𝑠(2𝜋𝑓2𝑡) = 2 𝐴 𝑐𝑜𝑠(2𝜋𝑓𝑚𝑡) 𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡), (2.2)

where 𝑓𝑚 = 𝑓2−𝑓1
2 and 𝑓𝑐 = 𝑓1+𝑓2

2 .

Now applying the signal to an amplifier considering only amplitude distortions
of the signal we may describe the amplifier characteristics by general polynomial
series as:

𝑉𝑜𝑢𝑡(𝑡) = 𝑎1𝑉𝑖𝑛(𝑡) + 𝑎2𝑉𝑖𝑛(𝑡)2 + ... + 𝑎𝑘𝑉𝑖𝑛(𝑡)𝑘 + ... + 𝑘𝑁𝑉𝑖𝑛(𝑡)𝑁 . (2.3)

When the two-tone signal is applied to input of this amplifier, each order of nonlin-
earity will generate additional frequency components or intermodulation products:

𝑓𝐼𝑀 = 𝑚𝑓1 + 𝑛𝑓2, (2.4)
where 𝑚 and 𝑛 are positive or negative integers and |𝑚| + |𝑛| = 𝑘 where 𝑘 is the
order of intermodulation. The even order terms generate intermodulation (IMD)
products that are located away from the input frequencies.Therefore they can be
easily filtered. Unfortunately, the odd-order IMD products are close to the useful
band (Fig.2.3).
Over the decades, the two-tone test has proven to be a powerful PA linearity test

f1 f2 f1 f2 

3rd 3rd 

5th 5th 

Two tone signal Output of 5th order polynomial series 
close to fundamental frequencies 

Fig. 2.3: In-band IMD products for an amplifier with up to fifth orders of nonlin-
earity.

procedure that can be performed with a relatively simple experimental setup. How-
ever, nowadays modulated signals are far more complex and the simple two-tone
test may be insufficient.
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2.1. Ideal and Real Power Amplifier

2.1.4 Nth Order Intercept Point

The interception point is defined at the extrapolated intersection of two lines in
AM/AM plot - extrapolated fundamental component line and the line that gives
power of the Nth order intermodulation product as a function of the input power.
For example the third-order intercept point (IP3) relates nonlinear products caused
by the third-order nonlinear term to the linearly amplified signal. The intercept
point is a purely mathematical concept, and does not usually correspond to physi-
cal power level. In many cases, it lies far beyond the damage threshold of the device.

The typical approach measuring an Nth-order intercept point uses two-tone sig-
nals. It begins by applying two sinusoids to the circuit input at frequencies 𝑓1 and
𝑓2. We increase their power while plotting the power at the output in a fundamen-
tal and in an Nth-order intermodulation product (for example for the IP3 we chose
either 2𝑓1 − 𝑓2 or 2𝑓2 − 𝑓1).
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Fig. 2.4: Graphical representation of Saturation point, IP3 and 1dB Compression
point.

The graphical representation of each definition is visualized in Fig.2.4.

Parameters like 1dB compression point and IP3 are parameters usually given
by PA manufactures (Fig.2.4). However such points are not sufficient, because the
measurements are performed only for tone signals. Thus PA characterization is not
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2.1. Ideal and Real Power Amplifier

sufficient for wideband signals.

2.1.5 Efficiency of Power Amplifier

A very important figure of merit for a power amplifier is its efficiency which denotes
how much of the supplied power is transfered to the output and how much of the
power is transformed to other forms of energy(usually heat). The efficiency is related
with power consumption. The worst the efficiency, the worst the battery life is.
Different definitions of efficiency can be given, one of the most useful is the Power
Added Efficiency (PAE). PAE is calculated as follows:

𝑃𝐴𝐸 = 𝑃𝑜𝑢𝑡 − 𝑃𝑖𝑛

𝑃𝐷𝐶

100%, (2.5)

where 𝑃𝐷𝐶 is the power consumption.

2.1.6 Signal Crest Factor - PAPR

The crest factor of a signal is defined as the ratio between peak amplitude input
and its root mean square (RMS) value:

𝐶 =
|𝑥|𝑝𝑒𝑎𝑘

𝑥𝑟𝑚𝑠

. (2.6)

A derived measure from Crest factor is the peak-to-average power ratio (PAPR).
The PAPR is usually used in signal processing applications. It is defined as power
ratio:

𝑃𝐴𝑃𝑅 =
|𝑥|2𝑝𝑒𝑎𝑘

𝑥2
𝑟𝑚𝑠

= 𝐶2. (2.7)

Usually the PAPR is expressed in decibels (dB). The knowledge of PAPR is im-
portant, because it is a measure of the envelope dynamics.

The PAPR can be measured on radio-frequency (RF) or baseband complex en-
velope signals. There is a 3dB difference between the two definitions.

Widely used Orthogonal Frequency-Division Multiplexing (OFDM) signals have
quite high PAPR (approx. 12dB in RF) unlike sine wave which has 3.01𝑑𝐵. The
PAPR is an important signal parameter for a PA, because it leads to using large
back-off to preserve linearity whilst the efficiency is degraded.
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Fig. 2.5: Graphical representation of PAPR, AM/AM characteristics of PA with
average power 𝑃𝐴𝑉 𝐺 and saturation power 𝑃1𝑑𝐵.

In order to have good efficiency, the operating point of PA needs to be set close to
saturation area, but the higher the operating point is, the worst the linearity. Usu-
ally we need to set a certain compromise between linearity and efficiency. Therefore
a back-off is used. The value of the back-off is of the same order as the PAPR
(𝐵𝑎𝑐𝑘 − 𝑜𝑓𝑓 ≈ 𝑃𝐴𝑃𝑅).

2.1.7 Memory Effects

Memory effects (MEs) have been receiving a great deal of attention as they are
known to impair most common (memoryless) PA linearization schemes. When us-
ing narrowband signals, memory effects does not play an important role, however in
wideband and high-power systems, the memory should be taken into account.

In fact, since traditional PA linearizers are designed as memoryless devices, they
simply breakdown in presence of some sort of dynamic IMD behavior. This is so
important that microwave PA industry has been asking for some form of MEs met-
ric [5], capable of evaluating the PA linearizability. The memory effects could be
expressed basically as frequency-domain fluctuations in the transfer function or in
time domain.
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2.2. System performance evaluation: ACPR, EVM, NMSE

MEs can be subdivided into two different groups of phenomena basically accord-
ing to the time constants involved.

Short-term MEs are characterized by time constants comparable with the carrier
period. They are usually caused by the reactive components of the active device
and matching networks at the RF band. Such PAs are usually modeled with small
memory order.

On the contrary, long-term MEs are low-frequency phenomena involving time
constants that are comparable to period of useful signal envelope. They can be
caused by thermal effects, active device charge carrier traps, or by biasing networks.

In general these memory effects results in AM/AM and AM/PM characteristic
depending on the input signal.

2.2 System performance evaluation: ACPR, EVM,
NMSE

There are several parameters used to evaluate the influence of PA non-linearity on
system performance in the case of modulated signals, in particular ACPR and EVM.

2.2.1 Adjacent Channel Power Ration - ACPR

The imperfections and non-linearities usually results in some adjacent channel spec-
tral regrowth. This phenomenon can be quantified with the parameter ACPR that
is defined as a bandwidth limited ratio between the power in the main channel and
the power in one adjacent channel (Fig.2.6). Therefore we can define this property
for left and right adjacent channel. The right and left channel ACPRs are defined
by:

𝐴𝐶𝑃𝑅𝑅[𝑑𝐵] = 10log
⎛⎝∫︀ 𝐵/2

−𝐵/2 𝑃𝑦(𝑓)𝑑𝑓∫︀ 3𝐵/2
𝐵/2 𝑃𝑦(𝑓)𝑑𝑓

⎞⎠ (2.8)

𝐴𝐶𝑃𝑅𝐿[𝑑𝐵] = 10log
⎛⎝ ∫︀ 𝐵/2

−𝐵/2 𝑃𝑦(𝑓)𝑑𝑓∫︀−𝐵/2
−3𝐵/2 𝑃𝑦(𝑓)𝑑𝑓

⎞⎠ ,

where 𝐵 represents the bandwidth of the signal and 𝑃𝑦(𝑓) is power spectral density.
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Fig. 2.6: Graphical representation of ACPR for left and right sides.

2.2.2 Normalized Mean Square Error - NMSE

For the quantification of performance we can also use Normalized Mean Square
Error (NMSE)[6]. It is an estimator of the overall deviations between predicted
and measured values. For two complex vectors x and y of N samples the NMSE is
defined as:

𝑁𝑀𝑆𝐸(x, y)[𝑑𝐵] = 10 log
(︃

(x − y)𝐻(x − y)
x𝐻x

)︃
. (2.9)

Where (.)𝐻 stands for transposed complex conjugation of vector also so-called Her-
mitian transpose.

The NMSE is a global measure of quality. But it does not distinguish between
linear and non-linear distortion.

For example bad NMSE could be due to time shift between signals and/or bad
gain alignment.

2.2.3 Error Vector Magnitude - EVM

Error vector magnitude (EVM) is a measurement of performance in the presence
of impairments. The measured symbol location obtained after decimating the re-
covered waveform at the demodulator output are compared with the ideal symbol
locations of constellation points. EVM is defined as normalized average value of the
vector error. It is usually estimated on a window of 𝑁 samples. As shown in Fig.2.7,
the measured symbol location is given by 𝑤. However, the ideal symbol location
(using the symbol map) is given by 𝑣. Therefore, the resulting error vector is the
difference between the actual measured and ideal symbol vectors defined as 𝑒 = 𝑤−𝑣.
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Fig. 2.7: Graphical representation of error vector magnitude (EVM).

The EVM is calculated after compensation of simple constellation determination:
offset and complex gain. Analytically, RMS EVM is defined as:

𝐸𝑉 𝑀 = 𝐸(|𝑣 − 𝑐1𝑤 − 𝑐0|2)
𝐸(|𝑣|2)

, (2.10)

where E(.) represents the average value, 𝑐0 and 𝑐1 are the optimal values of gain
and offset. Using ergodic properties, it is estimated on 𝑁 symbols by (in the case
where 𝑐0 = 0 and 𝑐1 = 1):

𝐸𝑉 𝑀 =
∑︀𝑁

𝑗=1

[︁
(𝐼𝑗 − 𝐼𝑚𝑒𝑎𝑠

𝑗 )2 + (𝑄𝑗 − 𝑄𝑚𝑒𝑎𝑠
𝑗 )2

]︁
∑︀𝑁

𝑗=1 |𝐼2
𝑗 + 𝑄2

𝑗 |
100%. (2.11)

2.3 Linearization of Power amplifier

In order to use very efficient power amplifiers, usage of signal processing methods
to compensate or reduce the distortion caused by the PA would be beneficial. Un-
fortunately, PAs are most efficient when operated near saturation.

The PA linearization techniques are well known approaches widely used for sev-
eral decades in analogue techniques. Due to rise of computational power, bandwidth
and advanced modulation techniques, the interest in digital predistortion techniques
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2.3. Linearization of Power amplifier

increased. The digital predistortion overcomes the analogue solution in its simplicity,
stability and adaptivity.

2.3.1 RF Feedforward Linearization

The principle itself is old and was invented in Bell Laboratories [7]. The principle is
to calculate the distortion signal at the output of PA and then subtract it from the
output signal. Therefore an input signal splits into two paths as we can see in the
Fig.2.8. The first path consists of the main PA and time delay with some coupling
elements. The second one amplifies the difference between output of the first PA
and time delayed input. At the output we subtract by a coupler the amplified error
signal from the time delayed distorted output of the PA. Thus we reduce distortions
at PA output.

Such principle is simple but with some disadvantages. One of the greatest is
the high number of components and therefore also high sensitivity to perfect circuit
matching. The main advantage is the unconditioned stability and wide bandwidth
of such systems.

τ - 

τ 

error amplifier 

Main PA 

error signal 

Fig. 2.8: Fundamental layout of RF feedforward linearization.

Note that distortion from memory effects can also be compensated using the
feedforward technique, since these effects are included in the error signal. Such
scheme can be modified to be adaptive by adding feedback control loop.

2.3.2 RF Feedback Linearization

The use of feedback is well known across all the fields of electronics (oscillators,
amplifiers, optical systems, etc).
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2.3. Linearization of Power amplifier

In principle the output from feed-backed amplifier is subtracted from the input
signal with a certain attenuation. Therefore the PA is driven by the error signal.
The advantage is the relative simplicity of additional circuitry needed to provide
feedback. On the contrary, the main disadvantage of feedback is caused by prob-
lems of stability. We may classified feed-back linearization in two main groups: RF
feed-back and cartesian feed-back (or more generally transmitter feedback).

The fundamental layout of RF feed-back linearization can be seen in the Fig.2.9.
Only nonlinear components are fed-back. The performance depends on the quality
of the cancellation process linked to the gain loop. The method can improve only
modestly the linearity in the case of wideband signal due to the limitation of the
loop-bandwidth product for static systems.

- PA 

Phase  
controller 

φ 
Gain  
controller 

Substracter 

RF  
output 

RF  
input 

Fig. 2.9: Fundamental layout of RF feedback linearization.

Another possible solution of feedback linearization is the utilization of Cartesian
feedback transmitter presented in the Fig.2.10. It is based on negative feedback
applied to the Cartesian coordinates of the baseband signals, I(t) and Q(t). The
error signal is created by subtraction of the down-converted output of PA from the
generated baseband I and Q signals. This approach is interesting since it can lin-
earize transmitters but it is limited to narrow-band signals because of long delays
in the loop that increases stability constraints.

There exists other methods like Envelope feed-back, Polar-Loop Transmitter and
others. All of the other mentioned methods are derived from feedback theory.
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Fig. 2.10: Fundamental layout of Cartesian-loop feedback transmitter linearization.

2.3.3 Analog and Digital Predistortion

First let us begin with a brief description of the principle of predistortion before
presenting the main structures or behavioral models usable for predistortion.

The principle of predistortion is to transform the signal before entering the am-
plifier to compensate for the distortions which are introduced by the amplifier. The
predistortion system should ideally have the inverse characteristics of the distortion
generated by the amplifier as shown in Fig.2.11.
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Fig. 2.11: Principle of linearization of filtered baseband complex signals using digital
predistortion.
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The predistortion circuit may be inserted at different levels of the amplification
system: baseband, intermediate frequency (IF) or radio frequency (RF). Example
of analog predistortion can be found in [8].

There are two main issues for a system of predistortion. The first question is
how to implement such systems, or more precisely what structure use for the predis-
tortion. The second question is how to calculate the parameters of the predistorter.

In this thesis we limit ourselves to the digital baseband predistortion, because it
has the best performance and can be adaptive. As the amplification function, the
predistortion can be implemented with or without memory function.

The predistortion can be made adaptive to avoid the need to characterize the
amplifiers before implementation, or in order to compensate the variations of the
amplifier according to the temperature, aging, etc.

Basically the first digital predistortion systems were proposed by Nagata [9] in
1989, Cavers [10, 11] in 1990.

DPD 
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fcarrier 

Fig. 2.12: Fundamental layout of real DPD system.

Fig.2.12 shows the basic layout of baseband digital predistortion where an adap-
tive control could be implemented (return path is realized by taking a part of the
output signal by a coupler). For the adaptive case, the predistortion function is
continually adjusted according to a certain criterion. In this figure the frequency
conversion is performed by an analog IQ modulator, which has the drawback of
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potential imbalances between the I and Q channels. Of course we can imagine dif-
ferent variants of this scheme involving an intermediate frequency, or do fully digital
frequency up-conversion (and/or down-conversion).

The return signal is used to control the predistortion. It is important to provide
very good quality of feedback circuitry, because it serves as a reference signal for
the correction. The usage of converters DAC and ADC is not negligible (especially
for broadband signals). The resolution, and dynamic range, of converters are im-
portant factors. Wrong setup could degrade the performance of predistortion. Also
important is the choice of sampling frequency. It should be chosen high enough to
take into account spectral regrowth.

As we can see in the Fig.2.13 using digital predistortion can increase the effi-
ciency of the power amplifier by operating the PA closes to the saturation point
(noted as 𝑃𝑠𝑎𝑡). The average output power without predistortion in order to have
good linearity is denoted as 𝑃𝑜𝑢𝑡. We may see that the linearity is increased when
using predistortion, therefore the average output power 𝑃𝑝𝑑 can be slightly increased
too. Also the power efficiency is better for output power of PA close to saturation.
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Fig. 2.13: Power amplifier operating regions with and without digital predistortion.
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In predistortion we can distinguish between direct and indirect learning approach
denoted in Fig.2.14 and Fig.2.15.
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Fig. 2.14: Direct approach to predistortion of PA.

In the direct learnind approach, the operator of predistortion 𝐹𝑝𝑟𝑒 is determined
in order to minimize a criterion 𝐽 between the attenuated output of the amplifier and
the original input signal. In the case of memoryless relations, the ideal predistortion
operator can be defined by:

𝐴[𝐹𝑝𝑟𝑒(𝑥)] = 𝐺0𝑥 𝑜𝑟 𝐹𝑝𝑟𝑒(𝑥) = 𝐴−1(𝐺0𝑥), (2.12)

where 𝐺0 is the chosen reference gain.

Since 𝐴 is a non-linear function, the identification of function 𝐹𝑝𝑟𝑒 is a non-linear
problem.

The instantaneous error is:

𝑒(𝑡) = 𝑦(𝑡)
𝐺0

− 𝑥(𝑡) = 𝐴 {𝐹𝑝𝑟𝑒 [𝑥(𝑡)]}
𝐺0

− 𝑥(𝑡) (2.13)

and the operator 𝐹𝑝𝑟𝑒 is "hidden" by the nonlinear operator 𝐴.

In the indirect learning approach, which uses a fictional postdistortion 𝐹𝑝𝑜𝑠𝑡, the
operator is determined to minimize a criterion between the output of the postdis-
torted system (attenuated output of the amplifier) and the signal at the input of the
amplifier. In the case of memoryless relation, the ideal operator for postdistortion
can be defined by:

𝑥(𝑡) = 𝐹𝑝𝑜𝑠𝑡

(︃
𝑦(𝑡)
𝐺0

)︃
. (2.14)

The instantaneous error 𝑒(𝑡) is:

𝑒(𝑡) = 𝑥(𝑡) − 𝐹𝑝𝑜𝑠𝑡

(︃
𝐴(𝑥(𝑡))

𝐺0

)︃
(2.15)
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Fig. 2.15: Indirect learning approach to predistortion of PA.

and the operator is "hidden" by 𝐴.

Setting:

𝑦(𝑡) = 𝐴 (𝑥(𝑡))
𝐺0

, (2.16)

we obtain:

𝐹𝑝𝑜𝑠𝑡(𝑦) = 𝐴−1 (𝐺0𝑦) . (2.17)

We note that the optimal expressions for 𝐹𝑝𝑜𝑠𝑡 and 𝐹𝑝𝑟𝑒 are identical but this
time 𝐹𝑝𝑜𝑠𝑡 can be explicitly written from the available signals and 𝑥 and 𝑦, where
function 𝐴−1 is the inverse function of the power amplifier. The postdistortion func-
tion is then used as predistortion function.

The hypothesis of memoryless relations in not necessary. It can be shown that
more generally, the post-inverse of order 𝑘 is also a post-inverse of order 𝑘 for Volterra
series.
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Fig. 2.16: Direct adaptive predistortion approach of PA.

Furthermore, the identification of predistortion coefficients can be estimated
adaptively either sample by sample or by blocks. Fig.2.16 and Fig.2.17 illustrate
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the approach in which the adaptive predistortion coefficients are calculated at time
𝑛 and are then applied as predistortion coefficients to time 𝑛 + 1.
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Fig. 2.17: Indirect adaptive predistortion approach of PA.

2.3.4 Digital Postdistortion

Digital postdistortion is a technique equivalent directly to digital predistortion. The
main difference is in the position of the nonlinear correcting block as we may see in
Fig.2.18. The postdistorter is placed after the PA, therefore it has to disadvanta-
geously work with high output powers. The postdistorter can be used on the other
hand in receivers. There, it do not have to deal necessarily with high powers and can
correct channel distortions. The digital postdistorters can be also used in baseband.

x 
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Fpost 

𝑧 = 𝐴 𝑥  𝑦 = 𝐹𝑝𝑜𝑠𝑡 𝐴 𝑧 ≈ 𝐺0𝑧 

Power amplifier 

Fig. 2.18: Principle of linearization of PA with baseband digital postdistortion.
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2.4 Conclusion

The second chapter has introduced the concept of ideal power amplifiers. The pa-
rameters for the evaluation the communication systems performance have been pre-
sented in the second subsection. It also gave a basic survey through the general
linearization techniques.

More detailed overview of the algorithms for modeling the power amplifiers and
digital predistorters will be given in the third chapter.
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3 TECHNIQUES FOR ANALYZING AND MOD-
ELING NON-LINEAR SYSTEMS

3.1 Introduction

This chapter presents the principals models that can be used for modeling PA or
for digital predistortion (DPD). It is composed of two main parts: first the descrip-
tion of the models, then the methods for identification of the models. It focuses on
models that can be used in the case of PA linearization.

There are several models used in modeling the PA (or used for DPD) from the
simplest models modeling just the amplitude distortions to the most general form
known as Volterra series and its derivatives.

We may distinguish the models to three basic categories: memoryless or static,
quasi-static and dynamic (or memory) models. For memoryless models, the output
at time 𝑡 only depends on input at time 𝑡 and it can be shown that the system
introduces only amplitude distortions. These amplitude distortions only depends
on the magnitude of the input signal. Quasi-static models can also model phase
distortions depending on the signal magnitude.

The third category is called dynamic, because these models are able to model
memory effects.

3.2 RF Models and Baseband Models of PA

In this section we would like to briefly describe the relationships between RF models
and filtered baseband equivalent models. The notation of signals and corresponding
spectrum can be seen in Fig.3.1.

We note 𝑥𝑅𝐹 (𝑡) and 𝑦𝑅𝐹 (𝑡) the input and output signals of the RF model, 𝑥(𝑡)
and 𝑦(𝑡) are the input and output signals of baseband filtered model: 𝑥(𝑡) is the com-
plex envelope of 𝑥𝑅𝐹 (𝑡) and 𝑦(𝑡) is the complex envelope of 𝑦𝑅𝐹 1(𝑡), where 𝑦𝑅𝐹 1(𝑡)
is obtained by filtering 𝑦𝑅𝐹 (𝑡) by a passband filter centered on the fundamental RF
frequency.
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Fig. 3.1: Relationships and notations for RF an Baseband filtered models of PA.

The baseband equivalent signals of RF signals can be expressed using Hilbert
transform as:

𝑥(𝑡) =
{︂

𝑥𝑅𝐹 (𝑡) + 𝑗
[︂
𝑥𝑅𝐹 (𝑡) * 1

𝜋𝑡

]︂}︂
𝑒−𝑗𝜔0𝑡 (3.1)

𝑦(𝑡) =
{︂

𝑦𝑅𝐹 1(𝑡) + 𝑗
[︂
𝑦𝑅𝐹 1(𝑡) * 1

𝜋𝑡

]︂}︂
𝑒−𝑗𝜔0𝑡.

Similarly the RF signals can be expressed by baseband equivalent signals as:

𝑥𝑅𝐹 (𝑡) = 𝑅𝑒
(︁
𝑥(𝑡)𝑒𝑗𝜔0𝑡

)︁
= 1

2
(︁
𝑥(𝑡)𝑒𝑗𝜔0𝑡 + 𝑥*(𝑡)𝑒−𝑗𝜔0𝑡

)︁
(3.2)

𝑦𝑅𝐹 1(𝑡) = 𝑅𝑒
(︁
𝑦(𝑡)𝑒𝑗𝜔0𝑡

)︁
= 1

2
(︁
𝑦(𝑡)𝑒𝑗𝜔0𝑡 + 𝑦*(𝑡)𝑒−𝑗𝜔0𝑡

)︁
.

3.3 Static and Quasi-static models

3.3.1 Memoryless RF Polynomial Series

One of the most straightforward models are the polynomial series. We can define
the RF model for power amplifier as:

𝑦𝑅𝐹 (𝑡) =
𝑁∑︁

𝑛=1
𝑎𝑛𝑥𝑛

𝑅𝐹 (𝑡). (3.3)
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3.3. Static and Quasi-static models

The coefficients of models can be obtained from simple measurements such as
𝑃𝐿1𝑑𝐵, IP3; etc. Let us establish the baseband equivalent model of the RF polyno-
mial series.

Let us investigate the behavior in the presence of 𝑛-th order nonlinearity [12]:

𝑥𝑛
𝑅𝐹 (𝑡) = 1

2𝑛

[︁
𝑥(𝑡)𝑒𝑗𝜔0𝑡 + 𝑥*(𝑡)𝑒−𝑗𝜔0𝑡

]︁𝑛
(3.4)

= 1
2𝑛

𝑛∑︁
𝑘=0

(︃
𝑛

𝑘

)︃
𝑥(𝑡)𝑘𝑥*(𝑡)(𝑛−𝑘)𝑒𝑗𝜔0(2𝑘−𝑛)𝑡.

We are interested by 𝑦𝑅𝐹 1(𝑡) that is the component at frequency ±𝑓0. So we
look for component for which:

(2𝑘 − 𝑛) = ±1. (3.5)

For 𝑛 even, (2𝑘 − 𝑛) never equals 1, therefore 𝜔0(2𝑘 − 𝑛) is always out of band.
For 𝑛 odd the frequencies can be in-band. Hence (for −𝜔0) we may write:

𝑘 = 𝑛 − 1
2 , (3.6)

(𝑛 − 𝑘) = 𝑛 − 1
2 + 1.

Then using (3.7) we may define:

𝑥(𝑡)𝑘𝑥*(𝑡)𝑛−𝑘 = 𝑥(𝑡)𝑛−1
2 𝑥*(𝑡)𝑛−1

2 +1 (3.7)
= |𝑥(𝑡)|𝑛−1𝑥(𝑡)*.

Similarly for frequency +𝑓0 for (2𝑘 − 𝑛) = 1 we obtain:

𝑥(𝑡)𝑘𝑥*(𝑡)𝑛−𝑘 = |𝑥(𝑡)|𝑛−1𝑥(𝑡). (3.8)

Using these results the baseband output is defined as:

𝑦(𝑡) =
𝑁∑︁

𝑛=1
𝑛 𝑜𝑑𝑑

𝑎𝑛

2𝑛−1

(︃
𝑛

(𝑛 − 1)/2

)︃
|𝑥(𝑡)|𝑛−1𝑥(𝑡), (3.9)

setting

𝑏𝑛 = 𝑎𝑛

2𝑛−1

(︃
𝑛

(𝑛 − 1)/2

)︃
. (3.10)
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3.3. Static and Quasi-static models

This explains why the baseband models are often defined with odd coefficients
only. They can be defined as:

𝑦(𝑡) =
𝑁∑︁

𝑛=1
𝑛 𝑜𝑑𝑑

𝑏𝑛𝑥(𝑡) |𝑥(𝑡)|𝑛−1 =
𝑁−1

2∑︁
𝑘=0

𝑏2𝑘+1𝑥(𝑡) |𝑥(𝑡)|2𝑘 , (3.11)

where 𝑥 is the input baseband signal of the power amplifier, 𝑦 is the output
baseband signal of PA and 𝑏𝑛 are the polynomial coefficients.

Another explanation why equivalent baseband models contain only odd terms
can be done using Shimbo formula [13, 14]. For the rest of the thesis we will refer
only to baseband models of PA (the PA is followed by bandpass filter).

In practice including even order terms in baseband models can improve perfor-
mance.

Several models corresponding to modeling the AM/AM and AM/PM character-
istic have been given, for example: Saleh, Rapp, quasi-static models. Their general
expression is given by:

𝑦(𝑡) = 𝐴(|𝑥(𝑡)|)𝑒𝑗𝜑(|𝑥(𝑡)|)𝑥(𝑡). (3.12)

We precise some of them in the following sections.

3.3.2 Saleh model

Saleh model [15, 14, 16] is commonly used amplifier model, which was designed
primarily for traveling wave tube (TWT) amplifiers. This model is defined by gain
distortion 𝐺 and phase distortion 𝜑 as:

𝐺(|𝑥|) = 𝑎𝐴|𝑥|
1 + 𝑏𝐴|𝑥|2

, 𝜑(|𝑥|) = 𝑎𝜑|𝑥|2

1 + 𝑏𝜑|𝑥|2
, (3.13)

where 𝑎𝐴, 𝑏𝐴, 𝑎𝜑 and 𝑏𝜑 are coefficients of the PA which are calculated by fitting
to measured data.

Often-used values for the coefficients are 𝑎𝐴 = 2.1587, 𝑏𝐴 = 1.1517, 𝑎𝜑 = 4.033
and 𝑏𝜑 = 9.104 presented in [14]. The AM/AM characteristics for different values
are presented in Fig.3.2 and the AM/PM characteristics in Fig.3.3.
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Fig. 3.2: Saleh amplitude distortion. When plotting 𝑎𝐴 the 𝑏𝐴 is set to 1 and vice
versa.
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Fig. 3.3: Phase shifts for Saleh model. When plotting 𝑎𝜑 the 𝑏𝜑 is set to 1 and vice
versa.
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3.3. Static and Quasi-static models

As it was mentioned before, such models were designed for TWT amplifiers,
therefore they do not describe well solid state amplifiers.

Saleh model can be enhanced to a dynamical model by adding dependency of
the coefficients on the frequency.

3.3.3 Rapp model

Rapp model was developed for solid-state power amplifiers. It is a baseband memo-
ryless model. It produces a smooth transition for the envelope characteristic as the
input amplitude approaches saturation.

𝑦(𝑡) = 𝑥(𝑡)[︂
1 +

(︁
|𝑥(𝑡)|
𝑉𝑠𝑎𝑡

)︁2𝑃
]︂ 1

2𝑃

, (3.14)

where 𝑉𝑠𝑎𝑡 is the saturation voltage of the power amplifier and 𝑃 is the smoothness
factor.
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Fig. 3.4: Rapp models for different 𝑃 and 𝑉𝑠𝑎𝑡. When plotting 𝑃 the 𝑉𝑠𝑎𝑡 is set to
1 and vice versa.

The AM/AM characteristics for different values of 𝑃 and 𝑉𝑠𝑎𝑡 can be seen in
the Fig.3.4. As we see the equation(3.4) describes only amplitude distortions. The
Rapp model does not provide any phase modeling.
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3.3. Static and Quasi-static models

3.3.4 Modified Rapp model

Honkanen and Haggman [17] altered the low-level portion of the AM/AM charac-
teristic in order to better mirror the exponential relationships of bipolar junction
devices. Their model also represents AM/PM distortions. It matches better actual
class AB mobile phone amplifiers.

𝐴(|𝑥(𝑡)|) = 𝐾1|𝑥(𝑡)|[︂
1 +

(︁
𝐾1|𝑥(𝑡)|

𝑉𝑠𝑎𝑡

)︁2𝑃
]︂ 1

2𝑃

, (3.15)

where 𝑉𝑠𝑎𝑡 is the saturating amplitude, 𝐾1 is the small signal gain, |𝑥(𝑡)| is the com-
plex envelope of the input signal and 𝑃 is a parameter which controls the smoothness
of the transition from the linear region to the saturation region. In [18] they propose
values: 𝐾1 = 17 and 𝐴0 = 160.5 and 𝑃 = 3.8.

For the phase-shift distortion 𝜑(|𝑥(𝑡)|), the behavior is quite closely modeled
with the mathematical expression:

𝜑(|𝑥(𝑡)|) = 𝜖 |𝑥(𝑡)|𝑞1

1 +
(︁

|𝑥(𝑡)|
𝛾

)︁𝑞2 , (3.16)

where as defined in [18] can be 𝜖 = 0.0747, 𝛾 = 0.1281, 𝑞1 = −0.03462 and
𝑞2 = −1.758.

3.3.5 Ghorbani-model

The Ghorbani model [19] is a baseband PA model designed for solid-state PAs. The
gain and phase functions for this model are:

𝐺𝑃 𝐴(|𝑥|) = 𝑎𝐴|𝑥|𝑐𝐴

1 + 𝑏𝐴|𝑥|𝑐𝐴
+ 𝑑𝐴|𝑥|, 𝜑𝑃 𝐴(|𝑥|) = 𝑎𝜑|𝑥|𝑐𝜑

1 + 𝑏𝜑|𝑥|𝑐𝜑
+ 𝑑𝜑|𝑥|, (3.17)

𝑎𝐴, 𝑏𝐴, 𝑐𝐴, 𝑑𝐴, 𝑎𝜑, 𝑏𝜑, 𝑐𝜑 and 𝑑𝜑 are the nonlinearity parameters. The Ghorbani
model is simple and suitable for modeling FET amplifiers.

3.3.6 White model

The White model was presented in [20]. This baseband model was proposed for
modeling the Ka-band (26-40 GHz) solid-state PAs (SSPAs). It uses 4 parameters
for amplitude 𝑎 saturation level, 𝑏 linear region gain and 𝑐, 𝑑 a nonlinear region
matching and uses 3 parameters for phase 𝑓 magnification 𝑔 steepness of the curve
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and ℎ shift along x-axis. The model is defined:

𝐺𝑃 𝐴(|𝑥|) = 𝑎(1 − 𝑒−𝑏 |𝑥|) + 𝑐 |𝑥| 𝑒−𝑑 |𝑥|2 ,

𝜑𝑃 𝐴(|𝑥|) =
⎧⎨⎩ 𝑓(1 − 𝑒−𝑔(|𝑥|−ℎ)) if |𝑥| ≥ h

0 if |𝑥| < h
(3.18)

3.4 Two-Stage and Multi-Stage Models

Two stage and more generally multi-stage models decompose the input-output rela-
tionship into two or more interconnected elements.

3.4.1 Wiener, Hammerstein Models

Wiener, Hammerstein structures are employed as simplifying approximations to re-
duce the complexity of memory models. All of this models are based on separation
of static and dynamic non-linearity from the model and dividing the system into
several stages made by linear filters and static nonlinearity models. For the static
non-linearity the polynomial series can be used. The representation of Wiener and
Hammerstein layout can be seen in Fig.3.5.
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Fig. 3.5: Wiener(Top) and Hammerstein (Bottom) models.

Using memoryless polynomial series for the non-linearity model, the Hammer-
stein model can be defined as:

𝑦(𝑛) =
𝑀∑︁

𝑚=0
ℎ(𝑚)

𝐾∑︁
𝑘=1

𝑏𝑘𝑥(𝑛 − 𝑚) |𝑥(𝑛 − 𝑚)|𝑘−1 . (3.19)

Analogue of Hammerstein model, we can define the Wiener model as:

𝑥2(𝑛) =
𝑀∑︁

𝑚=0
ℎ(𝑚) 𝑥(𝑛 − 𝑚), (3.20)
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𝑦(𝑛) =
𝐾∑︁

𝑘=1
𝑏𝑘𝑥2(𝑛) |𝑥2(𝑛)|𝑘−1 . (3.21)

Improvement of such systems can be obtained by connection of both struc-
tures into Wiener-Hammerstein or Hammerstein-Wiener models drawn in Fig.3.6.
Hammerstein-Wiener model applications span several areas. These models are pop-
ular because they have a convenient block representation, transparent relationship
to linear systems, and are easier to implement than complex nonlinear models (such
as neural networks and Volterra models).
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Fig. 3.6: Wiener-Hammerstein(Top) and Hammerstein-Wiener (Bottom) models.

The presented models have good performance in terms of error, but the identifi-
cation of coefficients is difficult. Basically the estimation of the system parameters
is an iterative process. For example for the Wiener model, the estimation of the lin-
ear system uses the estimation of the static nonlinearities of the previous iteration,
while the estimation of the parameters of the static nonlinearities depends on the
parameters of the linear system identified in the same iteration.

3.4.2 Multi-stage Models

One possible solution in order to increase capabilities of nonlinear models is to use
multi-stage models. The idea is very simple. One can use for each stage different
elementary models with different properties. These models can be connected in par-
allel [21, 22], shown in Fig.3.7 for parallel Hammerstein structure and Fig.3.8 for
parallel Wiener structure, or in cascade.

One possible cascaded solution for PA modeling is presented in Fig.3.9.
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Power 

Amplifier 

0

1

G

)(ty)(tx

A 

PA Model 1 PA Model 2 PA Model N 

- 
)(te
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This idea was presented for example in [23, 24, 25]. Despite the simplicity of
idea, one will have issues related with parameters identification of solution.

3.5 Dynamical Models Derived From Volterra Se-
ries

3.5.1 Volterra Series

The Volterra series is a model for non-linear behavior similar to the Taylor series. It
differs from the Taylor series in its ability to capture memory effects. The Volterra
series can be used to approximate the response of a non-linear system to a given
input. The RF model can be defined as:

𝑦𝑅𝐹 (𝑡) = 𝑘0 +
∞∑︁

𝑛=1

∫︁ ∞

−∞
· · ·

∫︁ ∞

−∞
ℎ𝑛(𝑡1, 𝑡2,

. . . , 𝑡𝑛)𝑥𝑅𝐹 (𝑡 − 𝑡2) · · · 𝑥𝑅𝐹 (𝑡 − 𝑡𝑛)𝑑𝑡1𝑑𝑡2 · · · 𝑑𝑡𝑛

=
∑︁

𝑘

∫︁
· · ·

∫︁
ℎ𝑘(Ψ𝑘)

𝑘∏︁
𝑖=1

𝑥𝑅𝐹 (𝑡 − 𝜏𝑖)𝑑Ψ𝑘, (3.22)

where ℎ𝑛 is called the Volterra series kernel and can be regarded as a higher-order
impulse response of the system, 𝑥𝑅𝐹 (𝑡) is a real passband input and 𝑦𝑅𝐹 (𝑡) is a real
passband output respectively, Ψ𝑘 = [𝜏1, ..., 𝜏𝑘]𝑇 .

Transiting to baseband signal [26], let us denote by 𝑥(𝑡) the complex input of
a nonlinear system and by 𝑦(𝑡) the corresponding filtered complex output. The
definition can be found in [12]:

𝑦(𝑡) =
∑︁

𝑘

∫︁
· · ·

∫︁
ℎ2𝑘+1(Ψ2𝑘+1)

×
𝑘+1∏︁
𝑖=1

𝑥(𝑡 − 𝜏𝑖)
2𝑘+1∏︁

𝑖=𝑘+2
𝑥*(𝑡 − 𝜏𝑖)𝑑Ψ2𝑘+1, (3.23)

where the baseband Volterra kernel can be expressed as:

ℎ2𝑘+1(Ψ2𝑘+1) = 1
22𝑘

(︃
2𝑘 + 1

𝑘

)︃
× ℎ̃2𝑘+1(Ψ2𝑘+1)

×𝑒
−𝑗2𝜋𝑓0

(︁∑︀𝑘+1
𝑖=1 𝜏𝑖−

∑︀2𝑘+1
𝑖=𝑘+2 𝜏𝑖

)︁
, (3.24)

where ℎ̃ is a passband Volterra kernel.
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These models are not directly suitable to be used in practical modeling and pre-
distortion because of their complexity (very large number of kernels) and difficulties
related with identifying the kernels.

The most general form of nonlinearity is described by the Volterra series [27],
which consists of a sum of multidimensional convolutions. Therefore simplified forms
have been presented and usually were derived by simplifying (pruning) the Volterra
series. The simplest model with memory derived from Volterra series is obtained by
keeping only the diagonal terms of the series and is called polynomial series with
memory. In the following we will present only baseband versions of the models.

3.5.2 Polynomial series with memory

Polynomial memory series (PMS) were first presented in [28] and are widely used for
modeling the non-linearities [29, 12, 30]. They can be interpreted as a special case
of a generalized Hammerstein model. The presented series can model the memory
effects. In this model, all off-diagonal terms of the Volterra series are set to zero.
The series is defined as:

𝑦(𝑡) =
𝐾∑︁

𝑘=1

𝑄∑︁
𝑞=0

𝑏𝑘𝑞 𝑥(𝑡 − 𝑞)|𝑥(𝑡 − 𝑞)|𝑘−1

=
𝐾∑︁

𝑘=1

𝑄∑︁
𝑞=0

𝑏𝑘,𝑞Φ𝑘,𝑞(𝑥(𝑡)) = Φ(𝑡)b, (3.25)

where

Φ𝑘,𝑞(𝑥(𝑡)) = |𝑥(𝑡 − 𝑞)|𝑘−1𝑥(𝑡 − 𝑞), (3.26)
b = [𝑏1,0, 𝑏2,0, ..., 𝑏1,1, ..., 𝑏1,𝑄, ..., 𝑏𝐾,𝑄]𝑇 (3.27)

Φ(𝑡) = [Φ1,0(𝑥(𝑡)), ..., Φ𝐾,𝑄(𝑥(𝑡))]. (3.28)

Their structure is determined by 2 parameters: 𝐾 the non-linearity order and 𝑄

the memory length. The number of coefficients is 𝐾(𝑄 + 1).

These models have good performance for applications with narrow or medium
bandwidths. But they are often insufficient when large bandwidth applications are
needed because of their limitation in modeling memory effects. For large bandwidth
applications more complicated models are necessary.
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3.5.3 Selective Polynomial series with memory

In order to include long-term memory effects, long memory depth has to be used.
That can lead to numerical problems for the identification of model coefficients and
to real time implementation problems. The main question is if it is really necessary
to use all memory terms. Omitting the redundant terms we may define the series as:

𝑦(𝑡) =
𝐾∑︁

𝑘=1

sup{𝑅}∑︁
𝑞=𝑅(1)

𝑏𝑘𝑞 𝑥(𝑡 − 𝑞)|𝑥(𝑡 − 𝑞)|𝑘−1, (3.29)

where sup{.} is supremum (called Least Upper Bound) that is the smallest in-
teger number that is equal to largest number in set 𝑅 and 𝑅 is set of integers for
example 𝑅 = {0, 5, 50, ...}. Equivalently the same approach can be used with order
of nonlinearity 𝐾. One of the questions to be solved is the determination of the sets
𝑅.

3.5.4 Orthogonal polynomial series with memory

When dealing with identification of the coefficients of the polynomials, one can en-
counter several problems related with matrix inversion (see section on model iden-
tification). In fact the matrix can be almost singular, and the computation of its
inverse is prone to large numerical errors. For the matrix inversion, the numerical
condition of is of special interest. In order to improve numerical conditions, orthog-
onal polynomials can be used.

Each of the well-known polynomials, such as Hermite, Chebyshev, Laguerre, and
Legendre, are orthogonal with respect to a certain probability density function [31].
These classical polynomials are not easy to apply to the baseband model for two
reasons. First, their orthogonality is usually defined with respect to a real-valued
variable. And secondly, the probability density function which they are based on,
does not necessarily comply with probability density function of communication sig-
nals.

Raich et al. [32] proposed families of orthogonal memory polynomial models
suited to different probability distributions of signal suitable, in particular for uni-
form or Gaussian cases.
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If |𝑥(𝑡)| is uniformly distributed in the range from 0 to 1 then the memoryless
model, called orthogonal polynomial series (OPS), can be for example expressed as:

𝑧(𝑡) =
𝐾∑︁

𝑘=1
𝑏𝑘

𝑘∑︁
𝑙=1

(−1)𝑙+𝑘 ·

· (𝑘 + 𝑙)!
(𝑙 − 1)!(𝑙 + 1)!(𝑘 − 𝑙)! |𝑥(𝑡)|𝑘−𝑙𝑥(𝑡),

= Φ(𝑡)b
(3.30)

where 𝐾 is polynomial order and where:

Φ𝑘,𝑞(𝑥(𝑡)) = (𝑘 + 𝑙)!
(𝑙 − 1)!(𝑙 + 1)!(𝑘 − 𝑙)! |𝑥(𝑡)|𝑘−1𝑥(𝑡), (3.31)

Φ(𝑡) = [Φ1,0(𝑥(𝑡)), ..., Φ𝐾,𝑄(𝑥(𝑡))]. (3.32)

The precision of the identification of model coefficients will depend on the condition
number of the matrix U:

U =

⎛⎜⎜⎜⎜⎜⎜⎝
Φ(0)
Φ(𝑡)

...
Φ(𝑁 − 1)

⎞⎟⎟⎟⎟⎟⎟⎠ . (3.33)

Then the condition number of rectangular matrix is defined as:

𝑐𝑜𝑛𝑑(U) = ‖U‖2 ‖U−1‖2, (3.34)

where ||.||2 represents spectral norm (2-norm), which is the square root of the max-
imum eigenvalue of UU𝐻 , defined as:

‖U‖2 =
√︁

maximum eigenvalue of UU𝐻 . (3.35)

Condition number tells how accurate we can expect the vector b when solving a
linear system.

Investigation of the condition number depending on the nonlinear order 𝐾 for
OFDM signal with 64-QAM modulated symbols (Gaussian probability distribution)
can be seen in the Fig.3.10. Extending the OPS to memory problem we can get the
orthogonal memory polynomials (OMPS) defined as:

𝑧(𝑡) =
𝐾∑︁

𝑘=1

𝑄∑︁
𝑞=0

𝑏𝑘,𝑞

𝑘∑︁
𝑙=1

(−1)𝑙+𝑘 ·

· (𝑘 + 𝑙)!
(𝑙 − 1)!(𝑙 + 1)!(𝑘 − 𝑙)! |𝑥(𝑡 − 𝑞)|𝑘−𝑙𝑥(𝑡 − 𝑞)

(3.36)
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Fig. 3.10: Dependency of the condition number on the nonlinear order K for Q=0.
The input signal is made of 15000 samples.

where 𝑄 is the depth of memory. The number of coefficients is 𝐾(𝑄 + 1).The ex-
tension is not anymore perfectly orthogonal, because the matrix is made by linearly
dependent lines, but as we can see in Fig.3.11, the matrix seems to be still well
conditioned.

The PMS and OPMS are not sufficient for modeling the long term memory
effects, that is why some more complex models like dynamic deviation reduction
series or generalized memory polynomial series were proposed.

3.5.5 Dynamic Deviation Reduction Models

To overcome the complexity of the general Volterra series, an effective model prun-
ing method, called dynamic deviation reduction (DDR) [33, 34, 35] was proposed.
It is based on the fact that the effects of dynamics tend to fade with increasing non-
linearity order in many real PAs, so that the high-order dynamics can be removed
in the model, leading to a significant simplification in model complexity.

Note that this dynamic-order truncation does not affect the nonlinearity or mem-
ory truncation in the same way as in the classical series. In other words, it only
removes higher order dynamics, preserving the static nonlinearities and low-order
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Fig. 3.11: Dependency of the condition number on the memory depth Q for K=7.
The input signal is made of 15000 samples.

dynamics[33].

The 1st-order dynamic truncation of the DDR-based baseband Volterra model
in the discrete time can be written as:

𝑦(𝑡) =
𝐾−1

2∑︁
𝑘=0

𝑄∑︁
𝑖=1

𝑔2𝑘+1,1(𝑖) |𝑥(𝑡)|2𝑘𝑥(𝑡 − 𝑖)

+
𝐾−1

2∑︁
𝑘=1

𝑄∑︁
𝑖=1

𝑔2𝑘+1,2(𝑖) |𝑥(𝑡)|2(𝑘−1)𝑥2(𝑡)𝑥*(𝑡 − 𝑖). (3.37)

where 𝑥(𝑛) and 𝑦(𝑛) are the complex envelopes of the input and output of the PA,
respectively, and 𝑔2𝑘+1,𝑗 is the complex Volterra kernel of the system.
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The 2nd-order DDR model can be written as:

𝑦(𝑡) =
𝐾−1

2∑︁
𝑘=0

𝑄∑︁
𝑖=1

𝑔2𝑘+1,1(𝑖) |𝑥(𝑡)|2𝑘𝑥(𝑡 − 𝑖)

+
𝐾−1

2∑︁
𝑘=1

𝑄∑︁
𝑖=1

𝑔2𝑘+1,2(𝑖) |𝑥(𝑡)|2(𝑘−1)𝑥2(𝑡)𝑥*(𝑡 − 𝑖)

+
𝐾−1

2∑︁
𝑘=1

𝑄∑︁
𝑖1=1

𝑄∑︁
𝑖2=1

𝑔2𝑘+1,3(𝑖1, 𝑖2)|𝑥(𝑡)|2(𝑘−1) 𝑥*(𝑡)𝑥(𝑡 − 𝑖1)𝑥(𝑡 − 𝑖2)

+
𝐾−1

2∑︁
𝑘=1

𝑄∑︁
𝑖1=1

𝑄∑︁
𝑖2=1

𝑔2𝑘+1,4(𝑖1, 𝑖2)|𝑥(𝑡)|2(𝑘−1) 𝑥(𝑡)𝑥*(𝑡 − 𝑖1)𝑥(𝑡 − 𝑖2)

+
𝐾−1

2∑︁
𝑘=1

𝑄∑︁
𝑖1=1

𝑄∑︁
𝑖2=1

𝑔2𝑘+1,5(𝑖1, 𝑖2)|𝑥(𝑡)|2(𝑘−2) 𝑥3(𝑡)𝑥*(𝑡 − 𝑖1)𝑥*(𝑡 − 𝑖2).(3.38)

A simplified version of the model is defined by:

𝑦(𝑡) =
𝐾−1

2∑︁
𝑘=0

𝑄∑︁
𝑖=0

𝑔2𝑘+1,1(𝑖) |𝑥(𝑡)|2𝑘𝑥(𝑡 − 𝑖)

+
𝐾−1

2∑︁
𝑘=1

𝑄∑︁
𝑖=1

𝑔2𝑘+1,2(𝑖) |𝑥(𝑡)|2(𝑘−1)𝑥2(𝑡)𝑥*(𝑡 − 𝑖)

+
𝐾−1

2∑︁
𝑘=1

𝑄∑︁
𝑖=1

𝑔2𝑘+1,3(𝑖)|𝑥(𝑡)|2(𝑘−1) 𝑥(𝑡)|𝑥(𝑡 − 𝑖)|2

+
𝐾−1

2∑︁
𝑘=1

𝑄∑︁
𝑖=1

𝑔2𝑘+1,4(𝑖)|𝑥(𝑡)|2(𝑘−1) 𝑥*(𝑡)𝑥2(𝑡 − 𝑖). (3.39)

3.5.6 Generalized Memory Polynomials

Another model including cross terms is the generalized memory polynomials (GMP)[36].
Inserting a delay of samples between the signal and its exponentiated envelope using
positive and negative cross-term time shifts we get:

𝑦(𝑛) =
𝐾𝑎−1∑︁
𝑘=0

𝐿𝑎−1∑︁
𝑙=0

𝑎𝑘,𝑙𝑥(𝑛 − 𝑙)|𝑥(𝑛 − 𝑙)|𝑘

+
𝐾𝑏∑︁

𝑘=1

𝐿𝑏−1∑︁
𝑙=0

𝑀𝑏∑︁
𝑚=1

𝑏𝑘,𝑙,𝑚𝑥(𝑛 − 𝑙)|𝑥(𝑛 − 𝑙 − 𝑚)|𝑘

+
𝐾𝑐∑︁
𝑘=1

𝐿𝑐−1∑︁
𝑙=0

𝑀𝑐∑︁
𝑚=1

𝑐𝑘,𝑙,𝑚𝑥(𝑛 − 𝑙)|𝑥(𝑛 − 𝑙 + 𝑚)|𝑘, (3.40)

where the structure of GMP models is determined by 8 parameters: 𝐾𝑎, 𝐾𝑏 ,
𝐾𝑐 non-linearity orders, 𝐿𝑎, 𝐿𝑏, 𝐿𝑐 memory lengths and 𝑀𝑏, 𝑀𝑐 distances from the
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diagonal of Volterra series, and 𝑎𝑘,𝑙, 𝑏𝑘,𝑙,𝑚 and 𝑐𝑘,𝑙,𝑚 are the linear coefficients of the
equation.

In order to reduce the complexity, it is not necessary in many cases to use all
of the coefficients. For example, odd-order nonlinearities usually dominate so that
we may only want to consider odd-order terms. Also additionally, depending on
the signal bandwidth and sampling rate, it may not be necessary to implement all
cross-term time shifts.

3.5.7 Remark On Models With A Linear Dependency With
Respect To The Coefficients

For all these models (PMS, OMPS, DDR and GMP) can be noticed that they have
a linear dependency with respect to their coefficients, hence the optimal solution of
LS (Least Square) criterion is obtained by solving set of linear equations (as will be
discussed in Section 3.6). It is possible to write these models as:

𝑦(𝑡) = Φ(𝑡)b, (3.41)

where b is the coefficient vector of size 𝑁𝑐 × 1 (𝑁𝑐 represents the number of
coefficients) and Φ(𝑛) is a line vector 1 × 𝑁𝑐 build from samples of 𝑥(𝑡). The
content of Φ(𝑛) also depends on the model. For example for the case of PMS:

Φ(𝑡) = [Φ1,0(𝑥(𝑡)), ..., Φ𝐾,𝑄(𝑥(𝑡))] (3.42)

with:

Φ𝑘,𝑞(𝑥(𝑡)) = |𝑥(𝑡 − 𝑞)|𝑘−1𝑥(𝑡 − 𝑞) (3.43)
(3.44)

and in general Φ𝑘,𝑞(𝑥(𝑡)) is a line vector of dimension 1 × 𝑁𝑐 depending on x. If
we consider a set of 𝑁 samples , we can define vectors:

y = [𝑦(0), . . . , 𝑦(𝑁 − 1)]𝑇 (3.45)
x = [𝑥(0), . . . , 𝑥(𝑁 − 1)]𝑇

(3.46)

and

y = Ub, (3.47)
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with:

U =

⎛⎜⎜⎜⎜⎜⎜⎝
Φ(0)
Φ(𝑡)
...
Φ(𝑁 − 1)

⎞⎟⎟⎟⎟⎟⎟⎠ . (3.48)

3.5.8 Neural Network models

Artificial Neural Networks (ANN) represents imitation of biological central nervous
systems. The idea is to connect nodes (neurons) between each other with weighted
connections. Neural networks are also similar to biological neural networks in per-
forming functions collectively and in parallel by the units.

There exists several types of Artificial Neural Networks. ANN may differ in the
topology of the network connections between neurons, in the nonlinear activation
functions of neurons (input-output relation between each neuron: sigmoid function,
etc.) and in learning techniques used for the network estimation (back-propagation
gradient technique, simulated annealing optimization, etc.).

The idea of using neural networks for power amplifier modelization or lineariza-
tion was presented for example in [37, 38, 39, 40, 41].

With a single layer network we can solve a problem as long as it is linearly
separable. Therefore for predistortion multilayer neural networks has to be used.
Multi-layer perceptrons are basically more attractive for their generality. In the
mathematical theory of neural networks, George Cybenko [42] proposed the uni-
versal approximation theorem. It states that a feed-forward network with a single
hidden layer, the simplest form of multilayer perceptron, containing a finite num-
ber of hidden neurons, is a universal approximator among continuous functions (he
proved the theorem with sigmoid activation functions). Another benefit is the exis-
tence of effective learning algorithms.

In order to demonstrate the idea of neural network , the simplest networks with
a single layer (left) and hidden layers (right) can be seen in Fig.3.12.

The output 𝑦𝑘 can be expressed as:

𝑦𝑘(x) =
𝑑∑︁

𝑖=0
𝑤𝑘𝑖𝑥𝑖 + 𝑏𝑘𝑖, (3.49)
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Fig. 3.12: Description of neural networks. Left is single layer ANN and right is
double layer ANN (ANN with hidden layer).

where 𝑤 represents the weight.

Similar to biological neurons which are activated when a certain threshold is
reached, we use a sigmoid transfer function to provide a nonlinear activation of
neural network:

𝑓𝑠(𝑥) = 1
1 + 𝑒−𝜅(𝑥−Θ) , (3.50)

where 𝜅 represents slope and Θ is the threshold of sigmoid. Then the single layer
ANN can be written as:

𝑦𝑘(x) = 𝑓𝑠

(︃
𝑑∑︁

𝑖=0
𝑤𝑘𝑖𝑥𝑖 + 𝑏𝑘𝑖

)︃
. (3.51)

Despite their simplicity, neural network are not implicitly designed to work with
complex signals, so for the baseband modeling of PA different approaches have been
proposed to deal with complex signals [43]. For example the real and imaginary
parts can be separated.

The usage of real signals simplifies the calculation. Among the networks with
real values, it was proposed to use two independent networks to model the AM-AM
and AM-PM curves [43]. But the results are not sufficient. More effective is to use
a single network with inputs (and outputs) I and Q.

To improve the consideration of memory effects and extend the models to a class
of dynamic models [44], dynamic neural networks have been proposed [45]: real-
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valued time-delay neural network (RVTDNN).

There exists several neural networks suitable for modeling the PAs [46]. But
all af the networks require estimation algorithm. Such algorithm is quite hard to
implement adaptively.

3.5.9 Limitation of Peaks in The Models (Clipping)

One of the most important property of power amplifier models is capability to limit
unwanted peaks that can be generated by the PA models and DPD. It is a very im-
portant property, because it generally imitates the physical behavior of saturation.
Typically clipping is added to an output af PA model (or DPD).

Basically when using the simplest clipping, the signal is limited to a certain
amplitude and is distorted in keeping under that level. It is also called hard clipping.
One have to know that clipping creates extra harmonics that are not present in the
original signal. Also the clipping reduces signal power. Therefore it is considered as
a nonlinear operation. The clipping can be defined as:

𝑦𝑐𝑙𝑖𝑝𝑝𝑒𝑑(𝑡) =
⎧⎨⎩ 𝐴(𝑡) 𝑐𝑜𝑠 [𝜔 𝑡 + Φ(𝑡)] if |𝑥(𝑡)| < 𝑉𝑠𝑎𝑡

𝑉𝑠𝑎𝑡 if |𝑥(𝑡)| ≥ 𝑉𝑠𝑎𝑡,
(3.52)

where 𝐴(𝑡) represents input amplitude of clipper and 𝑉𝑠𝑎𝑡 represents saturation
voltage of an amplifier.

In the Fig.3.13 we can see real signal clipped in time to value 𝑉𝑆𝑎𝑡 = 0.6 with
signal without applied clipping. In the Fig.3.14 we can see the AM/AM character-
istics difference between clipped output signal and signal without clipping. Also in
the Fig.3.14 we can see the spectral regrowth in adjacent channels for clipped signal.

3.6 Identification of Models

In this section we will focus on models with linear dependency with respect to their
coefficients. The interest of these models is that we will obtain a convex minimiza-
tion problem for the least-squares (LS) criteria for PA modeling and DPD with
indirect learning architecture.
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Fig. 3.13: Power amplifier AMAM characteristics measured and clipped to value
𝑉𝑠𝑎𝑡 = 0.6.
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Fig. 3.14: Left: Power amplifier AMAM characteristics measured and clipped to
value 𝑉𝑠𝑎𝑡 = 0.6. Right: Power amplifier power spectrum density measured and
clipped to value 𝑉𝑠𝑎𝑡 = 0.6.

In order to identify the coefficients of PA model or DPD coefficients, we use LS
optimization criterion:

e = min
𝑏

||y − z||2 . (3.53)

We apply notations defined in Fig.3.15, where for PA modeling 𝑦(𝑡) is measured
signal (for DPD 𝑥(𝑡) is measured signal) and 𝑧(𝑡) is the output of the model. We
consider here only indirect learning approach for the DPD.
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Fig. 3.15: Schematic of minimizing problem between measured and modeled sig-
nals. The left schematic represents calculation of PA model. The right schematic
represents calculation of PA inverse model (note that the input 𝑥(𝑡) and output 𝑦(𝑡)
notation is swapped in order to meet error defined in (3.53).

The ||.||2 represent the quadratic norm of vector and z is expressed as:

z = Ub, (3.54)

and where a z is a in vector with dimensions 𝑁 × 1:

z = [𝑧(0), ..., 𝑧(𝑁 − 1)]𝑇 . (3.55)

y = [𝑦(0), ..., 𝑦(𝑁 − 1)]𝑇 . (3.56)

e = [𝑒(0), ..., 𝑒(𝑁 − 1)]𝑇 . (3.57)

As seen in equation (3.48) U is a matrix of size 𝑁 × 𝑁𝑐 (where 𝑁𝑐 represents
number of coefficients and for example for PMS 𝑁𝑐 = 𝐾(𝑄 + 1)):

U =

⎛⎜⎜⎜⎜⎜⎜⎝
Φ(0)
Φ(𝑡)

...
Φ(𝑁 − 1)

⎞⎟⎟⎟⎟⎟⎟⎠ . (3.58)

b a vector of size 𝑁𝑐 × 1
b = [𝑏0, ..., 𝑏𝑁𝑐−1]𝑇 . (3.59)

The optimization problem can be written:

minb(e𝐻e). (3.60)
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3.6. Identification of Models

3.6.1 Least Squares one-shot solution

The LS solution minimizing distance between each data point and the space of best
fit passing through the data points for (3.54). The criteria J can be expressed as:

J(b) = ||z − y| |2 = e𝐻e = (y − Ub)𝐻(y − Ub) (3.61)

= b𝐻U𝐻Ub − y𝐻Ub − b𝐻U𝐻y + y𝐻y

The solution of (3.62) can be obtained by calculating the gradient and setting it to
0. The gradient is equal to:

𝜕J((b))
𝜕b

= 2 U𝐻Ub − 2 U𝐻y, (3.62)

The least square solution yields to:

U𝐻Ub − U𝐻y = 0. (3.63)

b = (U𝐻U)−1U𝐻y = U+y, (3.64)

where U+ denotes Moore - Penrose pseudo-inverse. The LS algorithm is in fact
one-shot solution for block of data.

LS one-shot solution is quite good in terms of performance. Nevertheless an in-
terest in adaptive algorithms grows (adaptive filtering, adaptive equalization, etc.).
The problem with LS one-shot solution is, that it is not able to track PA variations.
Therefore adaptive algorithms have been proposed for the case of DPD identification
either.

3.6.2 Damped Newton Algorithm

In many applications, adaptive estimation is performed on a block by block basis.
There exists method called Damped Newton Algorithm (DNA) that upgrades the
LS solution by adding possibility to control the speed of convergence depending on
the preceding error. The DNA works block by block and it adapts preceding vector
of coefficients to take into account the new block of data with a damping factor. In
this section we will describe DNA used for predistortion of PA. The approach for
predistortion using DNA was defined in [36].
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Fig. 3.16: Schematic of DNA system.

The initialization vector b0 is usually chosen to use predistorter as a transparent
block as:

b0 = [1, 0, · · · , 0]𝑇 . (3.65)

According to notation in Fig.3.16 we can describe the algorithm for 𝑛 ∈ 1, 2, 3, ...,
where 𝑛 represents the block number, with the following equation for block 𝑛 (each
block has 𝑁 samples):

z = U b𝑛−1. (3.66)

Equivalently as in (3.55-3.58) we define the output matrix Y from the signal 𝑦
𝐺0

as:
ẑ = Y b𝑛−1. (3.67)

Then we define the error vector e

e = z − ẑ. (3.68)

The coefficients b can be updated as:

b𝑛 = b𝑛−1 + 𝜇
(︁
Y𝐻Y

)︁−1
Y𝐻 e, (3.69)

where 𝜇 is a relaxation variable. When setting the relaxation variable 𝜇 = 1 the
damping is removed and the solution becomes the standard LS solution.

3.6.3 LMS algorithm

The Least Mean Square (LMS) algorithm is often used in adaptive systems due its
simplicity and relative precision. The algorithm works sample by sample. The algo-
rithm computes instantaneous error and then corrects the actual value of coefficients.
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3.6. Identification of Models

Using any of models defined before with linear relation with respect to their
coefficients (for example PMS, OMPS, DDR) we note:

Φ(𝑛) = 𝑛𝑡ℎ 𝑟𝑜𝑤 𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑥 U. (3.70)

Then the criterion function can be defined as:

min 𝐽(𝑛) = 𝑚𝑖𝑛 |𝑒(𝑛)|2 (3.71)
= 𝑚𝑖𝑛 |𝑦(𝑛) − Φ(𝑛)b(𝑛)|2 .

The estimated gradient vector becomes:

∇𝐽(𝑛) = 𝜕|𝑒(𝑛)|2
𝜕b(𝑛) (3.72)

Because

𝑒(𝑛) = 𝑧(𝑛) − Φ(𝑛)b(𝑛), (3.73)

applying equation (3.73) to equation (3.72) we get:

∇𝐽(𝑛) = −𝑒(𝑛)Φ𝐻(𝑛). (3.74)

Then using the steepest descent weight update equation we obtain iterative solution:

b(𝑛 + 1) = b(𝑛) + 𝜇𝑒(𝑛)Φ𝐻 , (3.75)

where parameter 𝜇 adjusts the compromise between convergence speed and the error
value after convergence.

Due to sensitivity to value 𝜇 that can lead to instability, the algorithm was
modified by using a normalization that improves stability of the algorithm. This
algorithm is so-called Normalized Least Mean Square (NLMS) defined as:

b(𝑛 + 1) = b(𝑛) + 𝜇 𝑒(𝑛) Φ𝐻

Φ Φ𝐻
(3.76)

Both LMS and NLMS suffers from low convergence speed and limited precision.

3.6.4 RLS algorithm

For solving the LS criterion optimization problem recursive least squares (RLS)
algorithm can also be used. In its adaptive form it converges faster than LMS. The-
oretically where the forgetting factor is equal to 1, it achieves the optimal solution
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(Wiener solution) but it is more complex than LMS. Now defining the input of the
system:

x(𝑛) = [𝑥(𝑛), 𝑥(𝑛 − 1), . . . , 𝑥(0)]𝑇 , (3.77)

and vector of desired output:

y(𝑛) = [𝑦(𝑛), 𝑦(𝑛 − 1), . . . , 𝑦(0)]𝑇 . (3.78)

Then we define line vector Φ(𝑛) as before of size 1 × 𝑁𝑐 and matrix Θ of size
(𝑛 + 1) × 𝑁𝑐 as:

Θ(𝑛) =

⎛⎜⎜⎜⎝
Φ(0)

...
Φ(𝑛)

⎞⎟⎟⎟⎠ . (3.79)

Then the output of the system will be:

z(𝑛) = Θ(𝑛)b(𝑛). (3.80)

The instantaneous error at time 𝑛 is:

𝑒(𝑛) = 𝑦(𝑛) − Φ(𝑛)b(𝑛). (3.81)

Now defining the criterion function with a forgetting factor denoted as 𝜆:

minb 𝐽(𝑛) =
𝑛∑︁

𝑘=0
𝜆𝑛−𝑘 |𝑒(𝑘)|2

=
𝑛∑︁

𝑘=0
𝜆𝑛−𝑘 |𝑦(𝑘) − Φ(𝑘)b(𝑛)|2

= e𝐻Λe(𝑛) (3.82)

where:

Λ = diag
[︁
1, 𝜆, 𝜆2, . . . , 𝜆𝑛

]︁
(3.83)

To use recursive implementation we need to define the correlation matrix R(𝑛) by
a recurrence equation:

R(𝑛) = Θ𝐻(𝑛)ΛΘ(𝑛) (3.84)

=
𝑛∑︁

𝑘=0
𝜆𝑛−𝑘Φ𝐻(𝑘)Φ(𝑘)

=
𝑛−1∑︁
𝑘=0

𝜆𝑛−𝑘Φ𝐻(𝑘)Φ(𝑘) + Φ𝐻(𝑛)Φ(𝑛)

= 𝜆R(𝑛 − 1) + Φ𝐻(𝑛)Φ(𝑛).
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We define the cross-correlation vector of size 𝑁𝑐 × 1:

p(𝑛) = Θ𝐻(𝑛)Λy(𝑛) (3.85)

=
𝑛∑︁

𝑘=0
𝜆𝑛−𝑘Φ𝐻(𝑘)𝑦(𝑘)

=
𝑛−1∑︁
𝑘=0

𝜆𝑛−𝑘Φ𝐻(𝑘)𝑦(𝑘) + Φ𝐻(𝑛)𝑦(𝑛)

= 𝜆p(𝑛 − 1) + Φ𝐻(𝑛)𝑦(𝑛).

Defining the recursive solution:

b(𝑛 + 1) = R−1(𝑛)p(𝑛) = P(𝑛)p(𝑛), (3.86)

where defining P(𝑛) = R−1(𝑛) and applying the inversion lemma to calculate
R−1(𝑛) yields to:

P(𝑛) = 𝜆−1P(𝑛 − 1) − 𝜆−2P(𝑛 − 1)Φ𝐻(𝑛)Φ(𝑛)P(𝑛 − 1)
1 + 𝜆−1Φ(𝑛)P(𝑛 − 1)Φ𝐻(𝑛) . (3.87)

Now defining the gain g(𝑛):

g(𝑛) = 𝜆−1P(𝑛 − 1)Φ𝐻(𝑛)
1 + 𝜆−1Φ(𝑛)P(𝑛 − 1)Φ𝐻(𝑛) (3.88)

Then applying (3.88) to P(𝑛) defined in (3.87) we get:

P(𝑛) = 𝜆−1P(𝑛 − 1) − 𝜆−1g(𝑛)Φ(𝑛)P(𝑛 − 1). (3.89)

To rewrite the recursive weight update algorithm:

g(𝑛) = 𝜆−1P(𝑛 − 1)Φ𝐻(𝑛)
1 + 𝜆−1Φ(𝑛)P(𝑛 − 1)Φ𝐻(𝑛)

P(𝑛) = 𝜆−1P(𝑛 − 1) − 𝜆−1g(𝑛)Φ(𝑛)P(𝑛 − 1)
𝑒(𝑛) = 𝑦(𝑛) − Φ𝑇 (𝑛)b(𝑛)

b(𝑛 + 1) = b(𝑛) + g(𝑛)𝑒(𝑛). (3.90)

We define initial conditions as p(0) = 0, R(0) = 𝛿I, where I is identity matrix. The
typical value of 𝛿 is usually set as a small positive value equal to 𝛿 = 10−3. Then
we can define:

P(0) = R−1(0) = 𝛿−1I. (3.91)

To show the relationship between LS solution and RLS algorithm lets set 𝜆 = 1, we
get:

R(𝑛) = Θ𝐻(𝑛)IΘ(𝑛). (3.92)
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p(𝑛) = Θ𝐻(𝑛)Iz(𝑛). (3.93)

and using:

R(𝑛)b(𝑛) = p(𝑛)
Θ𝐻(𝑛)IΘ(𝑛)b(𝑛) = Θ𝐻(𝑛)Iz(𝑛). (3.94)

we get:

b(𝑛) =
(︁
Θ(𝑛)Θ𝐻(𝑛)

)︁−1
Θ(𝑛)z(𝑛). (3.95)

We recognize (3.95) for 𝑛 = 𝑁 the LS solution for the block of 𝑁 samples.

Introducing a forgetting factor 𝜆 leads to an adaptive algorithm. RLS converges
faster and is more precise than LMS. The RLS algorithm is more complex than LMS.

3.6.5 Comparison of RLS and LMS Complexity

Lets assume that the evaluation of the inner product Φ𝑇 (𝑛)b(𝑛) requires 𝑁 complex
multiplications and (𝑁 −1) complex addition for each iteration. The multiplying the
scalar by the vector requires 𝑁 complex multiplications. Using this procedure, we
can compute the complexity of both LMS and RLS algorithms [2]. The comparison
can be found in Table 3.1.

Tab. 3.1: Comparison of complexity for each iteration step 𝑛 [2] for LMS and RLS.

Algorithm Multiplications Additions Divisions
LMS 2𝑁 + 1 2𝑁 -
RLS 𝑁2 + 5𝑁 + 1 𝑁2 + 3𝑁 1

From the Table 3.1 it is observed that the RLS algorithm has higher complexity
than LMS algorithm. We need to point out, that RLS has better performance than
LMS.

RLS updates the inverse covariance matrix with each new sample and forms a
Kalman-like coefficient update. Modified fast versions are available (Fast-RLS), but
these, like LMS, suffer from poorly conditioned covariance matrices and tend to in-
stability and divergence.
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3.6.6 Identification of Parameters For Multi-stage Models

There exists variety of different approaches (presented in section 3.4.2) involving
multistage modeling or DPD.

Unfortunately all parameters cannot be estimated simultaneously, because then
it is a nonlinear process. Several non-linear optimization techniques can be used.
One possible solution is to divide the tasks to several steps. The solution of identi-
fication of multi-stage model of PA in several steps can be seen in Fig.3.17.

Power 

Amplifier 

)(ty)(tx

A 

PA Model 1 

- 
)(1 te

Power 

Amplifier 

)(ty)(tx

A 

PA Model 1 PA Model 2 

- 
)(2 te

Identification Identification 
Power 

Amplifier 

)(ty)(tx

A 

PA Model 1 PA Model 2 PA Model N 

- 
)(teN

Identification 

Step 1: Step 2: 

Step N: 

Fig. 3.17: Principle of steps for PA identification using 𝑁 multi-stage models.

First we identify the model of PA. The next step is to add another block with
PA model (denoted in Fig.3.17 as PA Model 2). As the input of this block we use
output signal from previously estimated model (denoted as PA Model 1). We can
repeat this steps until 𝑁th model is estimated.

In the Fig.3.18 we would like to present multistage DPD indirect learning archi-
tecture. As mentioned before, we cannot identify all the coefficients simultaneously
for the case of Fig.3.18, therefore all the blocks have to be identified in several stages.

In order to use indirect learning approach, first we estimate the coefficients of
DPD1 (denoted in Fig.3.18). The next step is to consider DPD1 and PA as one
block. Then we estimate the new DPD2 again using indirect learning approach

82



3.6. Identification of Models

)(ty)(tx

A 

DPD 1 

- 
)(1 te

DPD 1 
)(1 tz

)(1̂ tz

Step 1: Step 2: 
)(ty)(tx

A 

DPD 2 

- 
)(2 te

DPD 2 DPD 1 
)(1 tz)(2 tz

)(ˆ
2 tz

Step N: 

)(ty)(tx

A 

DPD N 

- 
)(teN

DPD N DPD 1 
)(1 tz)(tzN

)(ˆ tzN

DPD N-1 
)(1 tzN

Fig. 3.18: Principle of adaptive indirect algorithm for DPD using 𝑁 multi-stage
models.

(where DPD1 has set coefficients that have been already estimated in step 1). We
can repeat this procedure until the required number of blocks 𝑁 is archived.

Using multistage models bring interesting properties, because we can combine
several series in order to improve the performance.
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3.6.7 Kalman Filtering

In order to estimate adaptively coefficients of DPDs and PA models, there have been
proposed approaches based on Kalman filtering [47]. For example such propositions
can be found in [48, 49].

Kalman filter is recursive adaptive filtering technique developed for real-time
filtering of time series. The technique was originally developed for linear system,
however there also exists Extended Kalman Filter (EKF) [50] designed for nonlin-
ear systems. The drawback of EKF is the calculation of analytical derivations of
nonlinear system, which can be complex [50]. Unscented Kalman filter (UKF) has
also been proposed for DPD [51].

The Kalman filter uses a state model which describes the future evolution of
system for a given input. In identification, the coefficients are updated recursively
at each iteration. The coefficients are updated by the Kalman gain which is multi-
plying the estimation error between the actual output and the model output.

There exist several publications trying to reduce the complexity of Kalman fil-
tering. For example in order to reduce the computational complexity of classical
Kalman Filtering, a sliding time window Kalman filtering has been proposed in [52].

One of the disadvantages could be based on necessity to know the statistical
properties of the signal in order to estimate covariance matrices.

For the rest of the thesis the Kalman filtering based algorithms are not used.

3.7 Conclusion

In this chapter several models suitable for DPD and for PA modeling have been pre-
sented. First the transition from RF models to filtered baseband equivalent models
have been presented and explained. Further only baseband equivalent models have
been discussed due to their suitability for DPD. We have divided baseband models
to several groups according to their capabilities: Static and quasi-static models, dy-
namical models. We have also briefly discussed special group of models that allows
to separate the model (or DPD) into several stages: two-stage and multi-stage mod-
els (can be Static, quasi-static and dynamical). In practice they can be realized by
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parallel or cascade structures.

As for model-based approaches (models with linear dependency with respect to
their coefficients), orthogonal polynomial models, dynamic distortion reduction and
generalized memory polynomials based on simplified Volterra series are a common
choice due to their simple complexity, stability of solution and ease of implementa-
tion [32]. In terms of performance it is not simple to distinguish between models.
In general we may say, that every model outperforms others in different applications.

Next section has presented several methods suitable for identification of the mod-
els. There have been presented one one-shot solution and adaptive methods. One
may choose method according to needs of Pa modeling or DPD systems. For exam-
ple in case of high requirements for adaptivity but low complexity, LMS or RLS can
be good compromise.

One of the problems is determination of structure of the models. For example
for GMP there are eight parameters to be estimated. We would like to point out
that using multi-stage models, the estimation of structure is a very important issue.
For example using three-stage GMP models (or DPD), 24 parameters defining the
structure need to be estimated.

For the case of using neural networks we believe that estimation of such models
may bring difficulties. One of the main difficulties could be related with adaptive-
ness.

In the following chapters we would like to present personal contributions on DPD
and PA modeling.
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4 IMPROVEMENTS AND PERSONAL CON-
TRIBUTIONS ON THE PA AND DPD MOD-
ELS AND IDENTIFICATION

This chapter presents several personal improvements and contributions to the field
of PA modeling and DPD. First sections gives an overview of test signals and PAs
that are used for measurements and simulations. Then next section is dedicated to
the modeling of the measured PAs with Volterra based series. Next we bring results
on linearization of measured PAs also with Volterra based series [126, 127].

We then focus on adaptive algorithms. We will compare adaptive algorithms for
several test signals. We propose a new adaptive algorithm called Fractional Least
Square algorithm.

The next section is dedicated to the determination of optimal order of structures
of series. We propose to use integer genetic algorithm to solve this determination
question.

Finally the last section compares modeling several amplifiers using neural net-
works.

4.1 Test Signals Used For Measuring PAs

In order to test power amplifiers we have generated several test signals. These test
signals corresponds to the two applications of the AMBRUN project: tactical com-
munication and broadcast.

For the smart PA from Thales we have used Multiplexed signals composed of
several elementary signals described later.

For the PA from TeamCast we have used OFDM (DVB or DAB) signals signals.

We present these signals in the following paragraphs. First let us define the
elementary signals used in multiplexes:
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4.1.1 Test Signal Type 64 QAM

• Carrier Frequency = fixed at 200 MHz
• Shaping filter = Root Raised Cosine
• Roll off factor = 0.6
• Bit rate = 150 kbps, 3 Mbps

4.1.2 Test Signal Type GMSK

• Type = GMSK modulation
• Shaping filter = Gaussian
• BT = 0.3
• Data rate = 24 kpbs
• Frequency deviation = 6 kHz

This GMSK signal used in multiplexes is characterized by frequency hopping:
• Frequency hopping = 300 hops/s
• Channel spacing = 25 kHz
• No spectrum overlapping

4.1.3 Test Signal Type OFDM

• 1536 sub-carriers
• Total bandwidth of 1536 kHz
• The guard interval is 246 ms long
• Inner modulation is 64-QAM
The transmitted signal is similar to digital audio broadcast (DAB) standard.

All the signals for multiplexes are placed in bursts that last 3.3 ms. The burst is
composed from zeros (1.1 ms) and from useful signal (2.2 ms). For each burst, the
frequencies of hopping signals changes.

4.1.4 Definition of Multiplex 1 (MUX1)

According to signal definition by Thales in the MUX1 we can use up to three GMSK
signals. These three GMSK signal are frequency hopping without overlapping of
spectrum. The channel distance between carriers is 25 kHz minimum. The band-
width of overall signal is limited to 20 MHz. These three carriers have all of the
same power.
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Fig. 4.1: Spectrum of Multiplex 1 measured at the output of PA with inserted 40dB
attenuator.

Figure 4.1 shows the spectrum of a MUX 1 signal measured with real-time spec-
trum at the output of PA on several bursts.

4.1.5 Definition of Multiplex 2 (MUX2)

The Multiplex 2 is composed of one GMSK signal with frequency hopping and a
64 QAM signal (with fixed position centered at carrier frequency). GMSK signals
jump in a band of 10 MHz while the minimum frequency distance between the two
signals corresponds to the spectral bandwidth of a QAM channel (depending on the
bit rate). GMSK signal power is close to the compression point of PA. The average
power of the 64QAM is below the GMSK signal.

Figure 4.2 shows the spectrum of a MUX 2 signal measured with real-time spec-
trum at the output of PA on several bursts.

4.1.6 Definition of Multiplex 3 (MUX3)

The Multiplex 3 is composed of a GMSK signal with frequency hopping and an
OFDM signal DAB type simultaneously. GMSK signals jump in a bandwidth of 15
MHz. The minimum frequency distance between the two signals corresponds to the
spectral spacing of a DAB channel depending on bit rate that is used. GMSK signal
power is close to the compression point of the PA.
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Fig. 4.2: Spectrum of Multiplex 2 measured at the input and output of PA with
inserted 40dB attenuator.

Fig. 4.3: Spectrum of Multiplex 3 measured at the input and output of PA with
inserted 40dB attenuator.

Figure 4.3 shows the spectrum of a MUX 1 signal measured with real-time spec-
trum at the output of PA on several bursts.
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4.1.7 Wideband OFDM Signals

We have also tested the PA from Thales with an OFDM signal with 1536 carriers
of 40 MHz bandwidth.

Fig. 4.4: Spectrum of OFDM Wideband signal measured at the output of PA with
inserted 40dB attenuator. The bandwidth of signal is 40 MHz.

Figure 4.4 shows the spectrum of OFDM wideband signal at the output of the
amplifier. One can observe that the gain of the amplifier is not constant over the
entire band of the signal.

4.2 Devices under tests

Several power amplifiers with different input signals have been measured. The list
of devices:

Amplifier A1 from TeamCast:
• The PA is Doherty
• RF Transistors are LDMOS NXP BLF888A
• Frequency range: 460 - 860 MHz
• Output power option: 75 𝑊𝑟𝑚𝑠, 100 𝑊𝑟𝑚𝑠 for DVB-T (approximatively can

deliver 500 𝑊𝑃 𝑒𝑎𝑘)
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• OFDM signal with bandwidth 8 MHz was used and with oversampling rate 8

Amplifier A2 from TeamCast:
• The PA is Doherty
• RF Transistors are LDMOS NXP BLF888B
• Frequency range: 460 - 860 MHz
• Output power option: 120 𝑊𝑟𝑚𝑠 for DVB-T
• OFDM signal with bandwidth 8 MHz was used and with oversampling rate 8

Amplifier B from TeamCast:
• The PA is Doherty
• RF Transistors are LDMOS
• Frequency range: 620 - 700 MHz
• Output power: 200 𝑊𝑟𝑚𝑠 for DVB-T (approximatively 2000 𝑊𝑃 𝑒𝑎𝑘)
• OFDM signal with bandwidth 8 MHz was used and with oversampling rate 8

Smart amplifier from THALES:
• The class can be changed from class A to deep class AB
• We have chosen to work on three different operating points
• Transistors are LDMOS (2 x PD55008 and 2 x PD55035)
• Frequency range: 30 - 512 MHz
• Output power: 20 𝑊𝑟𝑚𝑠 for continuous wave
• The amplifier is driven by FPGA that is controlled by remote PC.
• Controllable input attenuator (made from PIN Diodes)
• As an input signals, several multiplexes were used with different bandwidths

(several hopping GMSK, 64 QAM + several hopping GMSK, OFDM + several
hopping GMSK, or only OFDM). These signals are described in the previous
section 4.1.

The Smart amplifier from Teamcast was measured on our testbenches located at
ESIEE Paris. Other amplifiers were measured by TeamCast and Thales Colombes
and they data have been supplied to us.
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4.3. Modeling the PAs using Volterra Series derived models

4.3 Modeling the PAs using Volterra Series de-
rived models

In this section we would like to present results for modeling the power amplifiers
using Volterra derived series. In order to test the models, we use real measured
data obtained by testbench assembled at ESIEE and also data given by Thales
and TeamCast. Several test and measurements have been conducted, but only the
main ones are presented. A closer description of used amplifiers is given in previous
Section 4.2. An orders used for PA modeling and DPD are not chosen randomly.
They are based on optimal orders selection. Closer explanation will be given is
Section 4.8.

4.3.1 Modeling The Amplifier A1 - 75W

This amplifier was measured by TeamCast company that provided us input and
output baseband signals. The average output of this amplifier was 75W. For the
modeling, 32768 samples were used. The estimation of model structure for OMPS,
DDR and DDR2 can be deduced directly from Fig.4.5 that give the obtained results
for 𝑀 smaller than 4 and 𝐾 smaller than 10.

First we modeled the PA with OMPS where an order of nonlinearity K=5 and
a memory depth M=2 were set. For this test we used 15 coefficients with an overall
NMSE=-28.47dB. The results can be seen in Fig.4.6.

The PA was then tested with DDR of first order. The order of nonlinearity was
se to K=7 and memory depth M=2. We need to estimate 18 coefficients. The error
was: NMSE=-28.51dB. The results can be seen in Fig.4.7.

The DDR of second order (DDR2) was used in order to model the power am-
plifier A1. The order of nonlinearity K=7 and a memory depth M=2 were set. We
have used 30 coefficients with NMSE= -28.55dB. The model of PA can be seen in
Fig.4.8.

The order for GMP were set as follows: 𝐾𝑎 = 5, 𝐿𝑎 = 3, 𝐾𝑏 = 2, 𝐿𝑏 = 2, 𝑀𝑏 =
2, 𝐾𝑐 = 3, 𝐿𝑐 = 2, 𝑀𝑐 = 2. For this configuration we have to estimate 35 coeffi-
cients. The calculated error was NMSE=-28.55dB. The GMP model of PA can be
seen in Fig.4.9.
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Fig. 4.5: Exhaustive search of optimal model parameters (OMPS, DDR and DDR2)
of the amplifier A1 (75W).
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Fig. 4.6: Modeling the amplifier A1 (75W) with OMPS with order of nonlinearity
K=5 and memory depth M=2. The calculated error is: NMSE=-28.47dB.

4.3.2 Modeling The Amplifier A1 - 100W

The average output of this amplifier is 100W. The data set was given by TeamCast.
For modeling the PA 32768 samples were used. The estimation of model structure
for OMPS, DDR and DDR2 can be deduced directly from Fig.4.10. We choose fol-
lowing orders for OMPS: 𝐾 = 5 and 𝑀 = 2, and for DDR and DDR2: 𝐾 = 7 and
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Fig. 4.7: Modeling the amplifier A1 (75W) with DDR1 with order of nonlinearity
K=7 and memory depth M=2. The calculated error is: NMSE=-28.51dB.
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Fig. 4.8: Modeling the amplifier A1 (75W) with DDR2 with order of nonlinearity
K=7 and memory depth M=2. The calculated error is: NMSE=-28.55dB.

𝑀 = 2.)

First we modeled the PA with OPMS where the order of nonlinearity K=5 and
memory depth M=2 was set. For this test we used 15 coefficients with an overall
NMSE=-28.21dB. The results can be seen in Fig.4.11.

The PA was then tested with DDR of first order (DDR1). The order of nonlin-
earity was se to K=7 and memory depth M=2. We need to estimate 18 coefficients.
The error was: NMSE=-28.23dB. The results can be seen in Fig.4.12.

94



4.3. Modeling the PAs using Volterra Series derived models

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Normalized input magnitude

|O
ut

pu
t|

 

 

Measured PA
Model of PA

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

Normalized input magnitude

P
ha

se
 d

is
t. 

[D
eg

]

 

 

Measured PA
Model of PA

−0.5 0 0.5
−60

−50

−40

−30

−20

−10

0

10

Frequency [−]

P
S

D
 [d

B
]

 

 
Input of PA
Output of PA
Model of PA

Fig. 4.9: Modeling the amplifier A1 (75W) with GMP with orders: 𝐾𝑎 = 5, 𝐿𝑎 =
3, 𝐾𝑏 = 2, 𝐿𝑏 = 2, 𝑀𝑏 = 2, 𝐾𝑐 = 3, 𝐿𝑐 = 2, 𝑀𝑐 = 2. The calculated error is:
NMSE=-28.55dB.

1 2 3 4 5 6 7 8 9 10
−29

−28

−27

−26

−25

−24

−23

−22

Nonlinear order K

N
M

S
E

 [d
B

]

 

 
OMPS: M=0
OMPS: M=1
OMPS: M=2
OMPS: M=3
OMPS: M=4
DDR: M=0
DDR: M=1
DDR: M=2
DDR: M=3
DDR: M=4
DDR2: M=0
DDR2: M=1
DDR2: M=2
DDR2: M=3
DDR2: M=4

Fig. 4.10: Exhaustive search of optimal model parameters (OMPS, DDR and DDR2)
of the amplifier A1 (100W).

The DDR of second order (DDR2) was used in order to model the power ampli-
fier A1. The order of nonlinearity K=7 and memory depth M=2 were set. We have
used 30 coefficients with NMSE= -28.29dB. The model of PA can be seen in Fig.4.13.
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Fig. 4.11: Modeling the amplifier A1 (100W) with OMPS with order of nonlinearity
K=5 and memory depth M=2. The calculated error is: NMSE=-28.21dB.
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Fig. 4.12: Modeling the amplifier A1 (100W) with DDR1 with order of nonlinearity
K=7 and memory depth M=2. The calculated error is: NMSE=-28.23dB.

The order for GMP were set as follows: 𝐾𝑎 = 5, 𝐿𝑎 = 3, 𝐾𝑏 = 2, 𝐿𝑏 = 2, 𝑀𝑏 =
2, 𝐾𝑐 = 3, 𝐿𝑐 = 2, 𝑀𝑐 = 2. For this configuration we have to estimate 21 coeffi-
cients. The calculated error was NMSE=-28.31dB. The GMP model of PA can be
seen in Fig.4.14.

4.3.3 Modeling The Amplifier A2 - 120W

The average output of this amplifier is 120W. The data set was given by Team-
Cast. For modeling the PA 32768 samples were used. The estimation of orders for
OMPS, DDR and DDR2 can be deduced directly from Fig.4.15. We choose following

96



4.3. Modeling the PAs using Volterra Series derived models

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Normalized input magnitude

|O
ut

pu
t|

 

 

Measured PA
Model of PA

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

Normalized input magnitude

P
ha

se
 d

is
t. 

[D
eg

]

 

 

Measured PA
Model of PA

−0.5 0 0.5
−60

−50

−40

−30

−20

−10

0

10

Frequency [−]

P
S

D
 [d

B
]

 

 
Input of PA
Output of PA
Model of PA

Fig. 4.13: Modeling the amplifier A1 (100W) with DDR2 with order of nonlinearity
K=7 and memory depth M=2. The calculated error is: NMSE=-28.29dB.
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Fig. 4.14: Modeling the amplifier A1 (100W) with GMP with orders: 𝐾𝑎 = 5, 𝐿𝑎 =
3, 𝐾𝑏 = 2, 𝐿𝑏 = 2, 𝑀𝑏 = 2, 𝐾𝑐 = 3, 𝐿𝑐 = 2, 𝑀𝑐 = 2. The calculated error is:
NMSE=-28.24dB.

orders for OMPS: 𝐾 = 6 and 𝑀 = 3, and for DDR and DDR2: 𝐾 = 11 and 𝑀 = 3.)

First we modeled the PA with OMPS where an order of nonlinearity K=6 and
a memory depth M=3 was set. For this test we used 24 coefficients with an overall
NMSE=-39.17dB. The results can be seen in Fig.4.16.

The PA was then tested with DDR of first order. The order of nonlinearity was
se to 𝐾 = 11 and memory depth 𝑀 = 3. We need to estimate 39 coefficients. The
error was: NMSE=-39.76dB.
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Fig. 4.15: Exhaustive search of optimal model parameters (OMPS, DDR and DDR2)
of the amplifier A2 (120W).
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Fig. 4.16: Modeling the amplifier A2 (120W) with OMPS with order of nonlinearity
K=6 and memory depth M=3. The calculated error is: NMSE=-39.17dB.

The DDR of second order (DDR2) was used in order to model the power amplifier
A2. The order of nonlinearity 𝐾 = 11 and memory depth 𝑀 = 3 were set. We have
used 69 coefficients with NMSE= -39.94dB. The model of PA can be seen in Fig.4.17.

The order for GMP were set as follows: 𝐾𝑎 = 7, 𝐿𝑎 = 3, 𝐾𝑏 = 3, 𝐿𝑏 = 3, 𝑀𝑏 =
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Fig. 4.17: Modeling the amplifier A2 (120W) with DDR2 with order of nonlinearity
𝐾 = 11 and memory depth 𝑀 = 3. The calculated error is: NMSE=-39.94dB.

2, 𝐾𝑐 = 3, 𝐿𝑐 = 5, 𝑀𝑐 = 4. For this configuration we have to estimate 99 coeffi-
cients. The calculated error was NMSE=-39.99dB. The GMP model of PA can be
seen in Fig.4.18.
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Fig. 4.18: Modeling the amplifier A2 (120W) with GMP with orders: 𝐾𝑎 = 7, 𝐿𝑎 =
3, 𝐾𝑏 = 3, 𝐿𝑏 = 3, 𝑀𝑏 = 2, 𝐾𝑐 = 3, 𝐿𝑐 = 5, 𝑀𝑐 = 4. The calculated error is:
NMSE=-39.99dB.
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4.3.4 Modeling The Amplifier B

This amplifier was measured by TeamCast. It is designed for DVB-T applications.
The carrier frequency was set to 666MHz. For the modeling we used 196 608 sam-
ples. The optimal orders for OMPS, DDR and DDR2 have been directly deduced
from exhaustive search plotted in Fig.4.19. For the OMPS we set orders: 𝐾 = 8
and 𝑀 = 2. For the DDR and DDR2 we set: 𝐾 = 13 and 𝑀 = 4.
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Fig. 4.19: Exhaustive search of optimal model parameters (OMPS, DDR and DDR2)
of the amplifier B.

First let us model this PA with PMS or OMPS (because we use low order of
structure, we will obtain similar results). Setting order of nonlinearity 𝐾 = 8 and
memory depth 𝑀 = 2 (24 coefficients). The error between modeled output of PA
and measured output is NMSE=-35.64dB. The results are plotted in Fig.4.20.

The amplifier B was then tested with DDR of first order. The order of non-
linearity was se to 𝐾 = 13 and memory depth 𝑀 = 4. We need to estimate 59
coefficients. The error was: NMSE= -40.83dB.

We have tested the DDR2 model with 𝐾 = 13 and 𝑀 = 4. This model has
107 coefficients. The error between modeled and measured output was NMSE=
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Fig. 4.20: Modeling the amplifier B with PMS/OMPS with order of nonlinearity
𝐾 = 8 and memory depth 𝑀 = 2. The calculated error is: NMSE= -35.64dB.

-41.58dB.

The order for GMP were set as follows: 𝐾𝑎 = 10, 𝐿𝑎 = 3, 𝐾𝑏 = 1, 𝐿𝑏 = 3, 𝑀𝑏 =
1, 𝐾𝑐 = 5, 𝐿𝑐 = 5, 𝑀𝑐 = 3. For this configuration we have to estimate 108 coeffi-
cients. The calculated error was NMSE=-41.75dB.

We may see that for modeling the amplifier A1 (75W and 100W) all proposed
models give similar NMSE. Therefore the OMPS (or GMP) are good choice due to
low complexity. In the case of modeling power amplifier A2 and more obviously
power amplifier B, the OMPS can not achieve the same results as other proposed
models. For this case GMP is a good compromise between complexity and perfor-
mance. In contradistinction to DDR models the GMP can be better adjusted, but
finding proper order is more complicated.

4.3.5 Modeling The Smart Amplifier - MUX1

This amplifier was measured in the laboratory located at ESIEE. The PA was pro-
duced by Thales. As input signal was used MUX1 described earlier. The polarization
of PA was set to high (see Section 4.2). This configuration was measured at double
channel testbench. Therefore we have measured the input signal of PA and the
output signal of PA. As described in chapter 7, preprocessing has been done. The
comparison of modeling results can be seen in Table 4.1. The optimal estimation of
orders for models (OMPS, DDR and DDR2) can be found in Fig.4.21.
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Fig. 4.21: Exhaustive search of optimal model parameters (OMPS, DDR and DDR2)
of the Smart Amplifier.

Tab. 4.1: Modeling the Smart PA with high polarization and with MUX1 as input
signal. Comparison table of NMSEs and number of coefficients for different models.

Model Orders 𝑁𝑀𝑆𝐸 [dB] No. of coef.
OMPS K=3, M=3 -23.17 12
DDR1 K=3, M=3 -23.25 11
DDR2 K=3, M=3 -23.31 17
GMP Ka=3, La=3, Kb=1, Lb=1, Mb=1, Kc=1, Lc=6, Mc=8 -23.02 58

The graphical results of AM/AM, AM/PM and PSD for GMP are in Fig.4.22.

4.3.6 Modeling The Smart Amplifier - MUX2

As a input signal was used MUX2 described in previous section. The polarization of
PA was set to low. This configuration was measured at double channel testbench.
The comparison of modeling result can be seen in Table 4.2 and the optimal orders
estimation of models (OMPS, DDR and DDR2) can be found in Fig.4.23.

The graphical results fo GMP are in Fig.4.24.
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Fig. 4.22: Modeling the Smart amplifier with GMP with structure as follows: 𝐾𝑎 =
3, 𝐿𝑎 = 3, 𝐾𝑏 = 1, 𝐿𝑏 = 1, 𝑀𝑏 = 1, 𝐾𝑐 = 1, 𝐿𝑐 = 6, 𝑀𝑐 = 8. The calculated error
is: NMSE= -23.02dB.
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Fig. 4.23: Exhaustive search of optimal model parameters (OMPS, DDR and DDR2)
of the Smart Amplifier.

4.3.7 Modeling The Smart Amplifier - MUX3

For this configuration a MUX3 signal is used in order to model the PA. The polar-
ization of PA was set to low. The comparison of modeling results can be seen in
Table 4.3 and the optimal orders estimation of models (OMPS, DDR and DDR2)
can be found in Fig.4.25
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Tab. 4.2: Modeling the Smart PA with low polarization and with MUX2 as input
signal. Comparison table of NMSEs and number of coefficients for different series.

Series Orders 𝑁𝑀𝑆𝐸 [dB] No. of coef.
OPMS K=2, M=3 -23.87 8
DDR1 K=4, M=5 -25.17 17
DDR2 K=4, M=5 -25.59 27
GMP Ka=3, La=13, Kb=1, Lb=1, Mb=1, Kc=2, Lc=5, Mc=3 -25.68 70
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Fig. 4.24: Modeling the Smart amplifier with GMP with structure as follows: 𝐾𝑎 =
3, 𝐿𝑎 = 13, 𝐾𝑏 = 1, 𝐿𝑏 = 1, 𝑀𝑏 = 1, 𝐾𝑐 = 2, 𝐿𝑐 = 5, 𝑀𝑐 = 3. The calculated error
is: NMSE=-25.68dB.

Tab. 4.3: Modeling the Smart PA with low polarization and with MUX2 as input
signal. Comparison table of NMSEs and number of coefficients for different series.

Series Orders 𝑁𝑀𝑆𝐸 [dB] No. of coef.
OPMS K=2, M=3 -23.51 8
DDR1 K=3, M=4 -23.65 14
DDR2 K=7, M=2 -23.67 22
GMP Ka=3, La=3, Kb=3, Lb=1, Mb=1, Kc=1, Lc=6, Mc=8 -23.71 60

The graphical results fo GMP are in Fig.4.26.
We can see, that modeling the Smart amplifier for MUX1 signal can be done

using all of the proposed models. This amplifier is quite linear with small memory
effects. For modeling this PA, DDR1 has best the results with respect to complexity
and performance. For the MUX 2 we can see, that the amplifier is linear, but with
higher memory effect. Therefore one have to use higher memory orders. We can
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Fig. 4.25: Exhaustive search of optimal model parameters (OMPS, DDR and DDR2)
of the Smart Amplifier.
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Fig. 4.26: Modeling the Smart amplifier with GMP with structure as follows: 𝐾𝑎 =
3, 𝐿𝑎 = 3, 𝐾𝑏 = 3, 𝐿𝑏 = 1, 𝑀𝑏 = 1, 𝐾𝑐 = 1, 𝐿𝑐 = 6, 𝑀𝑐 = 8. The calculated error
is: NMSE= -23.71dB.

also observe that OMPS has worse results of NMSE. For the MUX3 GMP have best
NMSE, but with higher complexity. For this PA the OMPS is best compromise
between complexity and performance.
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4.4 Linearizing the PAs using Volterra Series de-
rived models

In this section we present results for linearization of power amplifiers using indirect
learning approach. The configuration of PAs is similar to that of the previous section.

4.4.1 Linearization of Amplifier A1 (75W)

The results of linearization of the Amplifier A1 (75W) can be seen in Table 4.4. The
orders of linearization series have been estimated as a compromise between com-
plexity and performance. The exhaustive search can be found in the Fig.4.27
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Fig. 4.27: Exhaustive search of optimal linearization parameters (OMPS, DDR and
DDR2) of the amplifier A1 (75W).

Tab. 4.4: Linearization of amplifier A1 (75W).

Series Orders 𝑁𝑀𝑆𝐸 [dB] No. of coef.
OPMS K=4, M=5 -31.83 24
DDR1 K=5, M=6 -32.93 33
DDR2 K=5, M=6 -33.98 57
GMP Ka=4, La=3, Kb=2, Lb=3, Mb=3, Kc=3, Lc=4, Mc=4 -34.15 78
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In the Fig.4.28 we may observe the linearization of amplifier A1 (75W) linearized
by GMP with orders: 𝐾𝑎 = 4, 𝐿𝑎 = 3, 𝐾𝑏 = 2, 𝐿𝑏 = 3, 𝑀𝑏 = 3, 𝐾𝑐 = 3, 𝐿𝑐 =
4, 𝑀𝑐 = 4. One can see, that the GMP (but also OMPS, DDR and DDR2) does
not achieve to fully linearize the right asymmetrical side lobe of the spectrum.
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Fig. 4.28: Linearization the amplifier A1 (75W) with GMP with orders: 𝐾𝑎 =
4, 𝐿𝑎 = 3, 𝐾𝑏 = 2, 𝐿𝑏 = 3, 𝑀𝑏 = 3, 𝐾𝑐 = 3, 𝐿𝑐 = 4, 𝑀𝑐 = 4. The calculated error
is: NMSE= -34.15dB.

4.4.2 Linearization of Amplifier A1 (100W)

The results of linearization the amplifier A1 (100W) are presented in Table 4.5. The
corresponding AM/AM, AM/PM and PSD results for GMP (with orders: Ka=5,
La=3, Kb=2, Lb=2, Mb=2, Kc=1, Lc=2, Mc=2) are presented in Fig.4.30.

Tab. 4.5: Linearization of amplifier A1 (100W).

Series Orders 𝑁𝑀𝑆𝐸 [dB] No. of coef.
OPMS K=4, M=6 -31.32 28
DDR1 K=7, M=7 -32.43 53
DDR2 K=7, M=7 -33.90 95
GMP Ka=5, La=3, Kb=2, Lb=10, Mb=3, Kc=3, Lc=2, Mc=7 -34.44 117
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Fig. 4.29: Exhaustive search of optimal linearization parameters (OMPS and DDR2
(similar orders as DDR)) of the amplifier A1 (100W).
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Fig. 4.30: Linearization the amplifier A1 (100W) with GMP with orders 𝐾𝑎 =
5, 𝐿𝑎 = 3, 𝐾𝑏 = 2, 𝐿𝑏 = 10, 𝑀𝑏 = 3, 𝐾𝑐 = 3, 𝐿𝑐 = 2, 𝑀𝑐 = 7. The calculated error
is: NMSE= -34.44dB.

4.4.3 Linearization of Amplifier A2 (120W)

In this subsection we would like to present results of linearizing the power amplifier
A2. The summary can be found in Table 4.6. The exhaustive order estimation can
be seen in Fig.4.31.
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Fig. 4.31: Exhaustive search of optimal linearization parameters (OMPS and DDR2
(similar orders as DDR)) of the amplifier A2 (120W).

Tab. 4.6: Linearization of amplifier A2 (120W).

Series Orders 𝑁𝑀𝑆𝐸 [dB] No. of coef.
OPMS K=4, M=4 -39.73 20
DDR1 K=9, M=5 -40.68 50
DDR2 K=9, M=5 -40.94 90
GMP Ka=5, La=3, Kb=2, Lb=10, Mb=3, Kc=2, Lc=2, Mc=5 -41.27 95

4.4.4 Linearization of Amplifier B

The results can be found in Table4.7. Linearized amplifier using GMP with orders:
𝐾𝑎 = 9, 𝐿𝑎 = 2, 𝐾𝑏 = 3, 𝐿𝑏 = 3, 𝑀𝑏 = 3, 𝐾𝑐 = 3, 𝐿𝑐 = 4, 𝑀𝑐 = 3, can be found in
Fig.4.33. The order selection is closer described in Fig.4.32.

Tab. 4.7: Linearization of amplifier B.

Series Orders 𝑁𝑀𝑆𝐸 [dB] No. of coef.
OPMS K=5, M=2 -33.30 15
DDR1 K=13, M=3 -40.43 46
DDR2 K=7, M=2 -40.88 82
GMP Ka=9, La=2, Kb=3, Lb=3, Mb=3, Kc=3, Lc=4, Mc=3 -41.03 81
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Fig. 4.32: Exhaustive search of optimal linearization parameters (OMPS and DDR2
(similar orders as DDR)) of the amplifier B.
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Fig. 4.33: Linearization the amplifier B with GMP with orders 𝐾𝑎 = 9, 𝐿𝑎 =
2, 𝐾𝑏 = 3, 𝐿𝑏 = 3, 𝑀𝑏 = 3, 𝐾𝑐 = 3, 𝐿𝑐 = 4, 𝑀𝑐 = 3. The calculated error is:
NMSE= -41.03dB.

We may see, that for linearization of amplifiers A1 (75 and 100W), A2 and B
the OMPS have limitations. One can see that we are not successful in linearizing
the asymmetrical spectrum of amplifier A1. The order of nonlinearities is higher
and the memory depth is also high. For linearization usually GMP and DDR2 are
the best compromise between performance and complexity.
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4.4.5 Linearization of Smart amplifier - MUX1

In this section we would like to present the linearization of the Smart power ampli-
fier with Multiplex 1 as an input signal. This signal is specific, because it consists
of several bursts with frequency hopping. The results can be found in Table.4.8.
The order selection of linearization is described in Fig.4.34. The linearization is
performed on block made of 960 · 103 samples.
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Fig. 4.34: Exhaustive search of optimal linearization parameters (OMPS and DDR2
(similar orders as DDR)) of the Smart amplifier with MUX1.

Tab. 4.8: Linearization of Smart amplifier for MUX1.

Series Orders 𝑁𝑀𝑆𝐸 [dB] No. of coef.
OPMS K=4, M=3 -22.35 16
DDR1 K=5, M=3 -22.31 18
DDR2 K=5, M=3 -22.69 30
GMP Ka=4, La=3, Kb=2, Lb=3, Mb=2, Kc=3, Lc=4, Mc=2 -23.37 48
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4.4.6 Linearization of Smart amplifier - MUX2

In this subsection we present results for postdistortion of Smart amplifier with Mul-
tiplex 2 as an input signal of PA. The corresponding result can be found in Table
4.9. The order selection can be deduced from Fig.4.35. For the calculation the block
of 320 · 103 samples have been used.
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Fig. 4.35: Exhaustive search of optimal linearization parameters (OMPS and DDR2
(similar orders as DDR)) of the Smart amplifier with MUX2.

Tab. 4.9: Linearization of Smart amplifier for MUX2.

Series Orders 𝑁𝑀𝑆𝐸 [dB] No. of coef.
OPMS K=3, M=8 -24.01 27
DDR1 K=3, M=8 -24.90 26
DDR2 K=3, M=8 -25.40 42
GMP Ka=3, La=5, Kb=1, Lb=1, Mb=2, Kc=2, Lc=4, Mc=5 -25.54 57
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4.4.7 Linearization of Smart amplifier - MUX3

In the Table 4.10 one can observe results for linearization the Smart PA with MUX3
as an input signal of PA. The optimal order estimation can be obtain from Fig.4.36.
Buffer of size 350 · 103 is used for the calculation.
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Fig. 4.36: Exhaustive search of optimal linearization parameters (OMPS and DDR2
(similar orders as DDR)) of the Smart amplifier with MUX3.

Tab. 4.10: Linearization of Smart amplifier for MUX3.

Series Orders 𝑁𝑀𝑆𝐸 [dB] No. of coef.
OPMS K=2, M=3 -22.83 8
DDR1 K=3, M=3 -22.89 11
DDR2 K=3, M=3 -23.00 17
GMP Ka=5, La=7, Kb=1, Lb=2, Mb=2, Kc=2, Lc=2, Mc=2 -22.83 47

Linearization of Smart amplifier with MUX1 and MUX2 signals can be done us-
ing OMPS, DDR, DDR2 and GMP. We can see, that the performance of evaluated
models is similar. Linearization of Smart amplifier with signal called MUX3 perform
better for high memory order with relatively low order of nonlinearity. Linearization
of the Smart amplifier with signal MUX3 using DDR2 models has the best perfor-
mance whilst preserving a low complexity.
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4.5 Number Of Coefficients For Volterra Derived
Series

In this subsection we would like to present analytical formulas necessary in order to
obtain number of coefficients 𝑁𝑐. We have expressed this formulas for PMS, OMPS,
DDR1, DDR2 and GMP. The results can be found in Table 4.11.

Tab. 4.11: Analytical estimation of coefficients for presented series

Series Used Constants Number of Coefficients
PMS K,M 𝐾(𝑀 + 1)

OPMS K,M 𝐾(𝑀 + 1)
DDR1 K,M 𝐾𝑀

DDR2 (Simplified) K,M 2𝑀𝐾 +
(︁

𝐾+1
2

)︁
− 𝑀

GMP 𝐾𝑎, 𝐿𝑎, 𝐾𝑏, 𝐿𝑏, 𝑀𝑏, 𝐾𝑐, 𝐿𝑐, 𝑀𝑐 𝐾𝑎𝐿𝑎 + 𝐾𝑏𝐿𝑏𝑀𝑏 + 𝐾𝑐𝐿𝑐𝑀𝑐
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4.6 Results Using Adaptive Algorithms

In order to evaluate the performance of adaptive algorithms we calculate the NMSE
between the model output and real measured data. For the DNA the NMSE is eval-
uated on each block of data. But for the RLS and LMS, averaging over 20 previous
NMSEs is applied.

For the simulation we have used TeamCast PA described in Section 4.2 operat-
ing on carrier frequency 800MHz. The input signal of the PA is a broadcast OFDM
signal. The model of predistorter was OMPS with orders 𝐾 = 7, 𝑄 = 2.

For the simulations we have used 98304 captured baseband samples. The whole
vector of samples was created by concatenating six blocks of 16384 samples. It is
the reason of the discontinuity occurrence. We take advantage of this discontinuity
in order to demonstrate the adaptiveness of algorithms. In Fig.4.37 we may observe
discontinuity of signal.
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Fig. 4.37: Discontinuity of measured input signal of PA.

The dependency of NMSE on the buffer size for DNA can be seen in the Fig.4.38.
The constant 𝜇 was set to 0.2 to have an important damping. We may see "spikes"
caused by discontinuities of measured samples.

In the Fig. 4.39 we can observe the same NMSE dependency on the buffer size
in the case where 𝜇 = 1 (no averaging between successive blocks).
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Fig. 4.38: NMSE dependency for the DNA algorithm on the buffer size with 𝜇 = 0.2.
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Fig. 4.39: NMSE dependency for the DNA algorithm on the buffer size with 𝜇 = 1.
For 𝜇 = 1, there is no damping (no averaging between successive blocks).

We present in Fig.4.40 the results to RLS algorithm for 𝜆 = 1, 𝜆 = 0.9 and
𝛿 = 10−3. One may observe that for 𝜆 = 1 the algorithm is not adaptive.

In Fig.4.41 we can see the results using LMS. For the 𝜇 = 0.5 the adaptivity is
limited. We can see slow rate of convergence. For the 𝜇 = 0.1 the LMS is adaptive
but performance is lower than RLS.
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Fig. 4.40: The NMSE for the RLS algorithm with different 𝜆.
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Fig. 4.41: The NMSE for the LMS algorithm with different 𝜇.
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Then we have taken under inspection the multiplexed signal denoted as MUX3
(presented in Section 4.1), which has changing power levels due to GMSK bursts
combined with OFDM signal.

The whole test signal corresponds to real measurements. For the simulations, we
have taken 450000 test samples. The varying real and imaginary parts of the input
complex baseband filtered signal of power amplifier can be seen in Fig.4.42.
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Fig. 4.42: Real and imaginary part of the complex baseband filtered signal denoted
as MUX3.

For this real measurements based test we have used OMPS as the DPD with the
nonlinear order K=7 and memory depth M=2.

In Fig.4.43 we can observe evolution of error for LMS algorithm with different
values of 𝜇. One may observe a short divergence for the 𝜇 = 0.5 at the end of
sequence. It is due to wrong setup of 𝜇.

In the Fig.4.44 we can see similar situation as in Fig.4.43 but for the RLS al-
gorithm. We can see, that RLS is able to track the variations of the signal with
𝜆 = 0.9 and has better performance than LMS algorithm.
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Fig. 4.43: NMSE for the LMS algorithm with different 𝜇 calculated on signal denoted
as MUX3. The value 𝜇 = 0.5 is chosen intentionally for demonstrating the temporal
divergence of the solution due to variation in the signal.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

−60

−50

−40

−30

−20

−10

0

10

20

30

40

Samples

N
M

S
E

 [d
B

]

 

 

RLS λ=0.9

RLS λ=1

Fig. 4.44: NMSE for the RLS algorithm with different 𝜆 calculated on signal denoted
as MUX3.

4.7 Fractional Least Mean Square Algorithm

In this section we would like to propose an adaptive method suitable for solving
the convex linear problems. The most popular and simplest adaptive algorithm is
the LMS, however the LMS shows some serious problems such as slow convergence
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rate and delay in identification of unknown systems. The Fractional Least Mean
Square algorithm (FLMS) algorithm has capability to outperform the LMS. The
FLMS was already proposed for solving convex linear problems, but was not used
for calculating DPDs or PA models. The FLMS is an algorithm, which is based
on the concept of fractional order calculus. Usage of Riemann-Liouville differential
operator is closely described in Part II.

Let us define a line vector Φ(𝑡) as:

Φ(𝑛) = [Φ1,0(𝑥(𝑛)), ..., Φ𝐾,𝑄(𝑥(𝑛))], (4.1)

with (for example using PMS):

Φ𝑘,𝑞(𝑥(𝑛)) = |𝑥(𝑛 − 𝑞)|𝑘−1𝑥(𝑛 − 𝑞). (4.2)

The cost function J for the error 𝑒 is given by:

𝐽(𝑛) = 𝐸[𝑒(𝑛)𝑒*(𝑛)] =
𝑁∑︁

𝑛=0
|𝑒(𝑛)|2. (4.3)

Where the calculation of vector b for FLMS is defined as

b(𝑛 + 1) = b(𝑛) − 𝜇1
𝜕𝐽(𝑛)
𝜕b(𝑛) − 𝜇2

𝜕𝑣𝐽(𝑛)
𝜕𝑣b(𝑛) . (4.4)

By taking the fractional derivative using Riemann-Liouville differential operator
of order 𝑣 we get:

𝜕𝑣𝐽(𝑛)
𝜕𝑣b(𝑛) = 𝜇2𝑒Φ𝐻(𝑛)b(1−𝑣)(𝑛)

Γ(2 − 𝑣) . (4.5)

Therefore the iterative FLMS solution of row vector b can be expressed as:

b(𝑛 + 1) = b(𝑛) + 𝜇1𝑒 Φ𝐻(𝑛) + 𝜇2𝑒 Φ𝐻(𝑛) b(1−𝑣)

Γ(2 − 𝑣) , (4.6)

where Γ is a Gamma function, 𝑣 represents fractional order of the system and 𝜇1

and 𝜇2 are the convergence constants.

In the Fig.4.45 we may see the comparison in convergence speed for LMS, FLMS
and RLS. The RLS does have fastest convergence speed, but also high computa-
tional complexity. The FLMS converges faster than LMS, but still has bigger error
than RLS.

For the presented experimental results we have used Smart PA described in Sec-
tion 4.2 with wideband OFDM signal. In order to use indirect adaptive approach,
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Fig. 4.45: Comparison of convergence speed for LMS, FLMS and RLS.

first we have modeled the memoryless PA with OMPS with order of nonlinearity
K=5 and memory level M=0. For the presented results in Fig.4.45 we have used
odd terms with maximal order of nonlinearity K=3 and memory depth M=0. As a
DPD function we have used OMPS. The whole estimation was done on 5000 samples.
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Fig. 4.46: The influence of parameter 𝑣 on the error where constants are fixed as
follows: 𝜇1 = 0 and 𝜇2 = 1.

The influence of constant 𝑣 can be seen in the figure 4.46. In this figure, weight
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parameter 𝜇1 (equivalent to LMS 𝜇) is set to 0 and weight parameter for fractional
part is: 𝜇2 = 1.

For the FLMS the setup was: 𝜇2 = 0.5, 𝜇2 = 0.5 and 𝑣 = 0.8. LMS parameters
were: 𝜇2 = 0.5 and RLS initial parameters: 𝛿 = 1𝑒 − 3 and 𝜆 = 1.00.
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Fig. 4.47: Comparison of convergence of |𝑏1| for LMS, FLMS and RLS.

The convergence of magnitude of first coefficient 𝑏1 can be seen in the Fig.4.47.
We may observe the fastest converge of the RLS algorithm. The second fastest algo-
rithm is FLMS. Therefore we may say that FLMS is a certain compromise between
complexity and speed of convergence.

The FLMS can converge faster than LMS, but the complexity is higher. We
may see, that fractional part of the equation contributes to the calculation with
depending on the fractional parameter 𝑣 and on weight 𝜇2.
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4.8 Optimal Order Estimation for Modeling and
Predistortion of Power Amplifiers

We have shown in the previous sections, that modeling or linearizing the PA can be
successfully done by using any of the proposed models. The coefficient estimation
has been also shown. In this section we would like to focus on the determination of
optimal orders of the proposed models.

In general the criteria for optimal order is performance with respect to complex-
ity.

In the following section we will focus on OMPS and GMP models. In the case of
OMPS there are two orders to estimate: order of nonlinearity and memory depth.
Likewise for the GMP there are eight parameters describing the structure of mod-
els. These models can be applied for PA modeling or calculation of a predistorter
as shown in Fig.4.48 with: on the left the principle of PA modeling and on the right
the approach used for predistortion called indirect learning approach.

In the case of DPD, we consider a normalization gain 𝐺 [53]. Let us denote by
𝑢(𝑡) the complex input of a nonlinear system and by 𝑧(𝑡) the corresponding complex
output visualized in Fig.4.48.
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Fig. 4.48: Schematic of minimizing problem between measured and modeled signals.
Left denoted as a) is PA modeling and right b) is postdistortion.

4.8.1 Determination of model structure

The determination of model structure consists in finding the right orders of the
model such as non-linearity orders and memory orders. The model structure can
be determined by an exhaustive search consisting in testing all the possible order
values up to a fixed maximum and selecting the structure that leads to a good model
accuracy (small value of criterion 𝐽) while keeping a reasonable complexity. Simply
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setting the orders of the structure high enough to guarantee good performance is
not sufficient, because in addition to high complexity it can also be connected with
numerical instability.

This exhaustive search may be acceptable for models with a small number of
orders, e.g. PMS model that has only 2 parameters 𝐾 and 𝑀 , but it becomes very
fastidious for models with a greater number of orders.

In the case of PMS, setting 𝐾 from 1 to 17 and 𝑀 from 1 to 5, the exhaustive
search represents only 85 tests (each one requiring to solve of a system of linear
equations (6)). But in the case of GMP model, there are 8 orders to determine.
Setting all orders for GMP from 1 to 10 it would represent 108 search operations.
Therefore we propose to apply stochastic integer genetic algorithm in order to de-
termine model structures.

4.8.2 Integer Genetic Algorithm

Genetic algorithm (GA) is a heuristic search often used in artificial intelligence, that
copy the process of natural evolution. It is based on the idea of evolution theory
that individuals having a high value of quality will survive to the next generation
with greater probability [54].

To perform the integer optimization we have used standard GA with functions
for generating integer population and integer mutations. Basically we are trying
to obtain a vector of integer numbers representing the structure of model based on
fitness function defined later.

The algorithm selects a group of individuals, called parents, in the current pop-
ulation that is at the beginning generated as random vectors of integer numbers.

The fundamental approach of operations made during basic operations can be
seen in Fig.4.49. We may describe each operation as follows:

Selection: identifies statistically the best individuals (based on fitness function
described later) of a population and eliminate the unsatisfactory [54] (for example
in the Fig.4.49 is Individual 3 unsatisfactory). It generates parents for further pro-
cessing. The next step is to create two types of children for the next generation,
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The applied GA algorithm is described by:
generation=1;
Generate initial random integer population P made of individuals I;
while generation ≤ max generations do

Evaluate the fitness function for all individuals;
for i=1 with step 2 to population size (Create new population) do

Selection (Find the best individuals);
Crossover;
Integer Mutation;

end
generation=generation+1;
if One of the stopping criterie == TRUE then

Stop optimization;
end

end
Algorithm 1: Overview of simplified genetic algorithm
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Fig. 4.49: The basic GA operations: One generation (current population) recalcu-
lated using a selection, crossover and mutation to new set of individuals.

where mutation is done after crossover just with certain probability.

Crossover: is a process of taking two parent solutions and producing offspring.
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Basically we can represent parents by binary numbers, subdividing them into the
groups and combine them with each other. Note that it is necessary to obtain as a
result integer set. Because we use integer set we have two options. We may use the
binary approach, or we may use round function after crossover.

Mutation: is analogous to biological mutation. Mutation alters one or more
gene values in a chromosome (binary representation). We have to ensure the muta-
tion will be integer.

The algorithm uses a several stopping criteria (maximal number of generations
achieved, fitness function is met, etc.). Among them we have also added stall cri-
teria: when the fitness function varies less than tolerance for certain number of
generations, the criteria is used.

Where P is a matrix of individuals representing the structure of DPD. The initial
population is usually generated by random estimate or can be set from previous fast
estimation.

4.8.3 Fitness functions

We have defined a fitness function with the aim to achieve a compromize between
accuracy and complexity of the model.

To evaluate the accuracy of the model, we use normalized mean square error
(NMSE) in decibels. For two signals x and z, the NMSE is defined as:

𝑁𝑀𝑆𝐸(x, z)[𝑑𝐵] = 10 log
(︃

(x − z)𝐻(x − z)
x𝐻x

)︃
. (4.7)

Instead of NMSE, we can employ adjacent channel power ratio (ACPRs) to im-
prove performance in out-band spectral area or EVM to improve modulation prop-
erties, or combination of both.

To evaluate the complexity of the model, we simply used the total number of
coefficients 𝐿. We are aware that it is not a perfect measure of the complexity, but
the higher the number of coefficients is, the more complex the model is. We defined
the fitness function as a weighted combination of these two criteria as follows:

𝑓(I, 𝐿) = 𝑁𝑀𝑆𝐸 + 𝛼 𝐿, (4.8)
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where I is an integer vector of parameters determining the structure of model.
Parameter 𝐿 is number of coefficients used in structure. A 𝛼 is a balance of the
solution by complexity.

We are aware of existence of the Akaike information criterion [55], but we believe
that we will obtain similar results.

4.8.4 Results

In order to evaluate the proposed method for predistortion we used data from am-
plifier A2 operating from 460 MHz to 860 MHz described in the Section 4.2. First
we do the exhaustive search for PMS model structure (𝐾 and 𝑀). From Fig.4.50,
we see that a good compromise between performance and complexity is obtained
with 𝐾 = 8 and 𝑀 = 2. this result will be used as a reference to evaluate the
genetic algorithm.
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Fig. 4.50: Exhaustive search of the parameter space for K and M for PMS.

We have executed the GA algorithm with different values of the ponderation
coefficient 𝛼. In Fig.4.51 we show the influence of 𝛼 on the obtained NMSEs (left
axis) and number of coefficients (right axis) after convergence of the GA algorithm.
We can observe that value of 𝛼 is not highly sensitive. For our algorithm we set
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𝛼 = 0.2 according to Fig.4.51, where the number of coefficients for PMS start to rise.
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Fig. 4.51: NMSE dependency of GMP and PMS and corresponding number of co-
efficients for different values of 𝛼.

For the genetic algorithm the parameters were: number of generations 100,
and population size of 20 individuals, stall condition : 40 generations. The up-
per boundary condition was set to 𝐾 = 13 and 𝑀 = 8 for PMS model and to
𝐾𝑎 = 7, 𝐿𝑎 = 3, 𝐾𝑏 = 3, 𝐿𝑏 = 3, 𝑀𝑏 = 5, 𝐾𝑐 = 3, 𝐿𝑐 = 3, 𝑀𝑐 = 5 for GMP model.
For PMS model, the genetic optimization results are 𝐾 = 8 and 𝑀 = 2 that rep-
resents 24 coefficients and 𝑁𝑀𝑆𝐸 = −37.25𝑑𝐵. These results correspond to the
reference derived from Fig.4.50.

For the same setup of genetic algorithm for GMP we found 𝐾𝑎 = 7, 𝐿𝑎 = 2, 𝐾𝑏 =
2, 𝐿𝑏 = 0, 𝑀𝑏 = 2, 𝐾𝑐 = 2, 𝐿𝑐 = 0, 𝑀𝑐 = 0 with 𝑁𝑀𝑆𝐸 = −37.56𝑑𝐵. That repre-
sents overall 14 coefficients. From Fig.4.51 we can see, that GMP is a very interesting
model maintaining low complexity with good performance. Its drawback is deter-
mining the model structure, but it can be solved thanks to proposed GA algorithm.

Fig.4.52 shows the different power spectral densities of the PA output without
predistortion and with PMS and GMP model predistortion.
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Fig. 4.52: Overall power spectrum density where for PMS 𝐾 = 8 and 𝑀 = 2 and
for GMP 𝐾𝑎 = 7, 𝐿𝑎 = 2, 𝐾𝑏 = 2, 𝐿𝑏 = 0, 𝑀𝑏 = 2, 𝐾𝑐 = 2, 𝐿𝑐 = 0, 𝑀𝑐 = 0 and for
𝛼 = 0.2.

4.8.5 Conclusion on Optimal Order Estimation

In this section we have proposed an integer genetic algorithm and a fitness function
for automatic estimation of model structure for different modeling and predistortion
series.

The fitness function achieves a compromise between complexity and performance.
It is known, that genetic algorithms can be easily implemented to several systems
such as FPGAs [56]. The results were compared with exhaustive search. In the case
of GMP with presented configuration exhaustive search represents 42525 evaluations
of fitness function, the GA only 2000 respectively.

The method has proved to find close to optimal solutions in reasonable amount
of time both for memory polynomial models and generalized memory polynomial
models.
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4.9 Neural Network DPD and PA modeling

In this section we would like to briefly present results obtained by different ap-
proaches. In the first section we present baseband DPD that uses two separated
networks.

In the next subsection we present possible realization of predistortion with im-
plemented memory compensation.

4.9.1 Two Networks Baseband Approach

There exists a possible memoryless models of neural network baseband predistor-
tion. The input is divided into real and imaginary parts. Therefore we use two
separated neural networks. Thus the correction is made for each branch separately.

The complex baseband signal at the output 𝑦(𝑡) of PA is divided to real and
imaginary parts. Then it is compared with real and imaginary part of complex
baseband PA input signal. The instantaneous errors of each branch control the cal-
culation of weights separately.

A possible improvement is presented in the Fig.4.53. The model has a memory
effect compensation.

The neural networks are popular because of their simplicity. Nevertheless as
we can see in the Fig.4.54 the performance in the terms of angle predistortion is
not perfect. More often, the AM/AM and AM/PM correction functions affect each
other, and thus an iterative approach for the calculation gives more better. Better
results would be achieved using complex numbers neural networks. A feedforward
neural networks with two layers was used with 8 inputs and with 20 neurons in the
hidden layer.

4.9.2 Neural Network Baseband Approach With Memory

Due to separation of real and imaginary parts for the separated neural networks
presented in previous section, the DPDs or PA models are not able to track mutual
dependencies. Therefore we would like to present a NN (neural network) approach
compensating or modeling memory effects. Let us introduce notations for DPD and
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Fig. 4.53: Simulation model of memory neural network used as predistortion.
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Fig. 4.54: Evaluation of predistortion with feedforward networks, 7 inputs and mem-
ory order of 3.
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PA modeling as in Fig.4.55 using NN.
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Fig. 4.55: The notations for DPD and PA modeling using neural networks (NN).

In order to introduce memory of order 𝑀 to neural networks let us arrange
input row vector x𝑖𝑛(𝑡) of size 4(𝑀 + 1) using complex baseband input signal 𝑥(𝑡)
as follows:

x𝑖𝑛(𝑡) = [𝑥(𝑡), 𝑥(𝑡 ± 1), . . . , 𝑥(𝑡 ± 𝑀)] . (4.9)

Because the NNs are not primarily designed to operate with complex numbers,
let us arrange input column vector of neural network of size 2(𝑀 + 1) as:

x(𝑡) = [Re(x𝑖𝑛(𝑡)), Im(x𝑖𝑛(𝑡))]𝑇 . (4.10)

Similarly we arrange vector y(𝑡) of size 2 × 1 as follows:

y(𝑡) = [Re(𝑦(𝑡)), Im(𝑦(𝑡))]𝑇 . (4.11)

Denoting the complex output of neural network 𝑧(𝑡) we minimize error:

𝑒(𝑡) = 𝑧(𝑡) − 𝑦(𝑡), (4.12)

where assuming the NN has two outputs 𝑧1(𝑡) and 𝑧2(𝑡):

𝑧(𝑡) = 𝑧1(𝑡) + 𝑗 𝑧2(𝑡) (4.13)

and 𝑦(𝑡) is a complex baseband signal.

The principle schematic of the proposed neural network (feedforward network)
is given in the Fig.4.56. For designing the feedforward neural network we have used
build-in MATLAB toolbox. For training the network Levenberg-Marquardt algo-
rithm was used.
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Fig. 4.56: Principle of memory feedforward neural network with: 2(𝑀1+1)+2(𝑀2+
1) inputs, 14 neurons in hidden layer and two output neurons.

In order to test the proposed solution we have used TeamCast power amplifier
data with average output power 75W and with OFDM input signal of PA.

The comparison of performances for modeling of the PA with different network
configurations are presented in Table4.12 and in Table4.13.

Tab. 4.12: Table of results modeling the PA a using single neural network with 10
neurons in hidden layer.

Memory order Number of hidden layers NMSE [dB]
1 1 -28.11
2 1 -28.45
3 1 -28.42
5 1 -28.33
10 1 -28.15

2,-2 1 -28.41
10,-10 1 -28.00

The results using neural network as predistortion can be seen in Fig.4.57.

In order to test the DPD, the network was modified according to Fig.4.55. Re-
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Tab. 4.13: Table of results for PA modeling using a single neural network with
memory order 2 and with two hidden layers.

Neurons in hidden layer 1 Neurons in hidden layer 2 NMSE [dB]
1 0 -3.11
2 0 -24.58
5 0 -26.99
10 0 -28.33
50 0 -28.52
5 2 -27.45
5 5 -28.34
10 2 -28.44
10 10 -28.50
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Fig. 4.57: Model of amplifier A1 (75W) using single neural network with one hidden
layer with 10 neurons, memory order 10 and the NMSE=-28.34 dB.

sults estimated with this DPD can be found in Table.4.14. For the DPD a single
network with one hidden layer with 10 neurons was used.

The linearization of amplifier A (75W) by single neural network with 10 hidden
neurons and with memory depth 10 can be seen in the Fig.4.58. The error between
the input and the linearized output is NMSE=-33.08 dB.
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4.9. Neural Network DPD and PA modeling
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Fig. 4.58: Linearization of amplifier A1 (75W) using single neural network with one
hidden layer with 10 neurons, memory order 10, -10 and the NMSE=-37.61 dB.

Tab. 4.14: Table of results for DPD using a single neural network with 10 neurons
in hidden layer.

Memory order Number of hidden layers NMSE [dB]
1 1 -27.29
2 1 -29.00
3 1 -31.09
5 1 -31.71
10 1 -32.20

10,-10 1 -37.61
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4.10. Conclusion

4.10 Conclusion

First we have introduced several signals used for measuring and simulating the PAs.
Then we discuss the modeling and linearization techniques in terms of performance
and number of coefficients.

Then have compared capabilities of adaptive algorithms. In terms of adaptive-
ness the RLS has the best performance (that can be compared with DNA). In terms
of complexity, LS and DNA are good choices.

We have proposed and analysed a new adaptive algorithm called fractional LMS
that take advantage of fractional order derivatives. The performance is better than
LMS (speed of convergence) and complexity is lower than RLS.

The next section present optimal estimation of model structure. In the case of
GMP, eight parameters needs to be estimated. Therefore we propose an integer
genetic algorithm, that is able to find good structure compromising between com-
plexity and performance.

In the last section we present results using neural networks for predistortion and
modeling. In terms of performance, the NNs are good. In some situation are even
better than Volterra derived models, but their adaptiveness is limited.

136



5 INFLUENCE OF DELAY MISMATCH ON DIG-
ITAL PREDISTORTION FOR POWER AM-
PLIFIERS

In this chapter we would like to evaluate influence of delay, inserted in the return
path, on the precision of estimation of coefficients. Hence, evaluate the performance
od DPD when delay is inserted in the feedback path [128].

Fig. 5.1 shows an adaptive baseband digital predistorter. In order to follow the
time evolution of the PA as a function of temperature, for example, the DPD may be
updated periodically. To do this, a return channel is introduced which takes a part
of the PA output signal thanks to a coupler. Signal is frequency down-converted
and digitized. This result in a baseband signal that is an image of the PA output,
that can be used to update the DPD. But first it has to be synchronized with 𝑥(𝑡)
or 𝑧(𝑡) since the delay introduced by the components in the direct and return path
is unknown.

DPD 

D/A 
Up  

Converter 

PA 

dB 

A/D 

DPD 

DPD 

Estim. 
)(nz

)(ˆ nz

)(nx )(ny

Down  

Converter 


Delay of the system 

Fig. 5.1: Digital predistortion principal layout with inserted delay.

The estimation of the time offset between two signals is usually done by correla-
tion, the precision obtained is on the order of a sample. The question is whether to
refine the precision for a fraction of samples or to use different techniques to com-
pensate for this delay by fractional resampling or interpolation by methods such as
Farrow filters described for example in [57], [58] and [59].
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5.1. Upper Limit of Power Error Due to a Time Shift

5.1 Upper Limit of Power Error Due to a Time
Shift

The error 𝑒(𝑡) due to a time lag 𝜏 of a signal 𝑧(𝑡) can be written as:

𝑒(𝑡) = 𝑧(𝑡) − 𝑧(𝑡 − 𝜏). (5.1)

Assuming the lag 𝜏 small and using limited development of order of 1, we can write:

𝑒(𝑡) = 𝑧(𝑡) − 𝑧(𝑡 − 𝜏) ≈ 𝑧(𝑡) − 𝑧(𝑡) + 𝜏𝑧′(𝑡) = 𝜏𝑧′(𝑡). (5.2)

With this approximation, we can calculate an upper bound of the average power of
the error:

𝐸
(︁⃒⃒⃒

𝑒2(𝑡)
⃒⃒⃒)︁

≈ 𝐸
(︁
𝜏 2 |𝑧′(𝑡)|2

)︁
= 𝜏 2𝐸

(︁
|𝑧′(𝑡)|2

)︁
, (5.3)

𝐸
(︁⃒⃒⃒

𝑒2(𝑡)
⃒⃒⃒)︁

≈ 𝜏 2
∫︁ +∞

−∞
𝑆𝑧′(𝑓)𝑑𝑓 = 4𝜋2𝜏 2

∫︁ +∞

−∞
𝑓 2𝑆𝑧(𝑓)𝑑𝑓, (5.4)

𝐸
(︁⃒⃒⃒

𝑒2(𝑡)
⃒⃒⃒)︁

≤ 4𝜋2𝜏 2𝑚𝑎𝑥 (𝑆𝑧(𝑓)) 2𝐵3

3 . (5.5)

Where B is the bandwidth of the baseband signal 𝑧(𝑡), 𝑆𝑧(𝑓),𝑆𝑧′(𝑓) respectively are
the power spectral densities of the signal and of its derivative. Similarly, we can
write:

𝐸
(︁⃒⃒⃒

𝑧2(𝑡)
⃒⃒⃒)︁

=
∫︁ +𝐵

−𝐵
𝑆𝑧(𝑓)𝑑𝑓 = 2𝐵𝑚𝑒𝑎𝑛 (𝑆𝑧(𝑓)) . (5.6)

Where 𝑚𝑒𝑎𝑛 (𝑆𝑧(𝑓)) represents the mean value of the power spectral density of 𝑧(𝑡).
Therefore we can deduce the boundary for normalized mean square error between
the signal and the same signal delayed by 𝜏 :

𝑁𝑀𝑆𝐸 =
𝐸
(︁
|𝑧(𝑡) − 𝑧(𝑡 − 𝜏)|2

)︁
|𝑧(𝑡)|2

≤ 4𝜋2

3
𝑚𝑎𝑥 (𝑆𝑧(𝑓))
𝑚𝑒𝑎𝑛 (𝑆𝑧(𝑓))𝐵2𝜏 2. (5.7)

And when the power spectral density is nearly a constant over the entire band of
the signal (for an OFDM signal for example) we obtain:

𝑁𝑀𝑆𝐸 ≤ 4𝜋2

3 𝐵2𝜏 2. (5.8)

For a given time lag, the NMSE deteriorates especially as the bandwidth is large.
So for a DVB-T signal with B = 4MHz, an oversampling factor equal to 8 and a
delay equal to 𝑇𝑠/2 the NMSE is not better than only -18dB.

138



5.2. Used Methodology

5.2 Used Methodology

To evaluate the influence of a time lag on the performance of the predistorter, we
introduced misalignments 𝜏 at the output of PA. Then we used signals with mis-
alignment 𝑦(𝑡 ± 𝜏) for the calculation of the DPD coefficints.

For the DPD, we have used OMPS models defined in equation (3.36) and GMP
models presented in equation (3.40).

For the performance evaluation we used normalized mean square error (NMSE)
between the output of the cascade: misalignment 𝜏 + DPD + PA and the original
signal. The principle of estimation can be seen in Fig.5.2 - on the right.

+ 

- 

PA DPD 

DPD  



)(ty)(tz

)(ˆ tz

)(te

)(tx

)( ty

PA DPD 

NMSE 

)(tx



Fig. 5.2: Left: introducing the time misalignment 𝜏 at the output of PA and calcu-
lation of DPD. Right: Calculation of NMSE, where DPD has coefficients estimated
on the left schematics.

Note that in order to obtain fair error, we need to introduce misalignment before
the DPD, because the DPD is trained on misaligned sequence and compensate the
misalignment. As presented in the Fig.5.3 the NMSE performance calculated on the
same signal with its delay copy (𝑁𝑀𝑆𝐸[𝑥(𝑡), 𝑥(𝑡 ± 𝜏)]) degrades, therefore we have
calculated the NMSE as on Fig.5.2.
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5.3. Experimental Results
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Fig. 5.3: NMSE of input signal and its integer time shifted copy.

5.3 Experimental Results

We present results measured on Doherty amplifier UHF NXP LDMOS using BLF888A
transistor (75W) The more detailed description is in the Section 4.2. The amplifier
has been modeled with orthogonal polynomials with nonlinearity order K = 7 and
a memory depth M = 2 (the choice of structure corresponds to optimal values).

We present here the results for a DPD with the order of non-linearity 𝐾 = 7 and
a memory depth of 𝑀 in the range: 0 ≤ 𝑀 ≤ 10.

5.3.1 Influence of Integer Misalignment

we have tested the influence of temporal integer misalignment evaluated in terms of
NMSE for the signals 𝑧(𝑡) and 𝑧(𝑡 ± 𝜏).

We see Fig.5.4 the influence of a time offset in the range [−10𝑇𝑠, 10𝑇𝑠] where
𝑇𝑠 is a sampling period and positive values are corresponding to a time advance.
The model used for DPD is a polynomial memory orthogonal model. We set K = 7
and varies the memory M between 0 and 10. In the example discussed here, for the
absence of time shift a memory of order M=2 is sufficient enough to linearize the PA.

140



5.3. Experimental Results
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Fig. 5.4: Effect of integer delay for different memory length of the DPD with OMPS.

We can observe that DPD with polynomial memory is able to compensate for
both non-linearities and delay of an integer number of samples or if that delay is
smaler than its memory depth. For example, for 𝑀 = 5 and |𝜏 | ≤ 5𝑇𝑠, the NMSE is
degraded less than 4dB. DPD compensates at least partially. But for the |𝜏 | ≥ 5𝑇𝑠

DPD can no longer compensate for the delay and NMSE degrades very rapidly over
20dB (for 7𝑇𝑠 ). We can observe in Fig.5.4 that DPD can not compensate for ad-
vances.

Fig.5.5 shows the same analysis in the case of a DPD using the GMP model.
We have denoted the memory depth 𝑀 (where the parameters are: 𝐿𝑎 = 𝐿𝑏 =
𝐿𝑐 = 𝑀𝑏 = 𝑀𝑐 = 𝑀). It is observed that the GMP model behaves as polynomials
memory: it tends to compensate for non-linearities and delays that have a shorter
length than its memory depth but also it can not compensate for advances.

5.3.2 Influence of Fractional Misalignment

We then tested the influence of a fractional time shift 𝜏 with a normalized value 𝜏
𝑇 𝑒

included between -0.5 and 0.5.

Figs. 5.6 and 5.7 show the effect of the fractional shift on the NMSE. Respec-
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Fig. 5.5: Effect of integer delay for different memory length of the DPD with GMP,
where 𝑀 = 𝐿𝑎 = 𝐿𝑏 = 𝐿𝑐 = 𝑀𝑏 = 𝑀𝑐.

tively for the two models of DPD for different values of the memory depth.

We observe that the DPD for the two presented models is able to properly com-
pensate for the fractional time shifts: delay as well as advance, as soon as the
memory depth is ≥ 3. The NMSE degradation is less than 3 dB for M=3 and
|𝜏 |/𝑇𝑠 ≥ 0.3. But when 𝑀 = 1 (or 𝑀 = 𝐿𝑎 = 𝐿𝑏 = 𝐿𝑐 = 𝑀𝑏 = 𝑀𝑐), the memory
depth of DPD is too low and NMSE degrades rapidly with the fractional difference,
typically more than 10 dB for |𝜏 |/𝑇𝑠 ≥ 0.3. Also note that, without time lag, the
GMP DPD gives better results than the DPD with polynomial memory but in the
presence of a fractional time shift the two types of DPD lead to very similar results
for 𝑀 ≥ 3.

5.3.3 Influence of Misalignment using PMM

After analyzing the results of the effect of a time shift on the NMSE in the presence
of a correction DPD, we found that the results are asymmetrical for the polynomials
memory models and GMP.

It has been shown the that DPD is able to compensate the delay of an integer
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5.3. Experimental Results
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Fig. 5.6: Effect of fractional delay for different memory length of the DPD with
OMPS.
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Fig. 5.7: Effect of fractional delay for different memory lengths of the DPD with
GMP, where 𝑀 = 𝐿𝑎 = 𝐿𝑏 = 𝐿𝑐 = 𝑀𝑏 = 𝑀𝑐.

number of samples but not an advance.
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5.3. Experimental Results

We propose a new model for the predistortion function model that we called
polynomial memory modified (PMM).

We propose a new model able to compensate for delay and advance. It can be
written as:

𝑦(𝑡) =
𝐾𝑎−1∑︁
𝑘=0

𝐿𝑎−1∑︁
𝑙=0

𝑎𝑘,𝑙𝑥(𝑡 − 𝑙)|𝑥(𝑡 − 𝑙)|𝑘

+
𝐾𝑏−1∑︁
𝑘=0

𝐿𝑏−1∑︁
𝑙=0

𝑏𝑘,𝑙𝑥(𝑡 + 𝑙)|𝑥(𝑡 + 𝑙)|𝑘, (5.9)

where 𝐾𝑎, 𝐾𝑏 is the order of non-linearity and 𝐿𝑎, 𝐿𝑏 are the memory depths
representing the delay and advance direction respectively.
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Fig. 5.8: Effect of fractional delay for different memory length of the DPD with
PMM.

Fig. 5.8 shows the results obtained with the new PMM model and illustrates the
effect on the NMSE of a shift equal to an integer number of samples for different
values of memory. We note 𝐿𝑎 = 𝐿𝑏 = 𝑀 .

Fig. 5.9 shows the results for fractional shift. It is observed that the new model
is able to compensate for the delays as well as for advances when the depth of DPD
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Fig. 5.9: Effect of fractional delay for different memory length of the DPD with
PMM.

memory is sufficient to correct both the memory effect of the amplifier and the
misalignment. This model still requires some improvements in terms of numerical
robustness.

5.4 Conclusion

In this chapter we present overview of influence of misalignment in the DPD sys-
tems. The misalignment is inserted in the return path. We have evaluated the
influence on the precision of estimation of coefficients. The evaluation have been
done using integer and fractional misalignments. The DPDs with memory are able
to compensate the misalignment well. In the case of fractional delay with memory
order ≥ 3 the predistortion is able to compensate the misalignment.

In the case of integer delay the OMPS and GMP are able to compensate the
same delay as is the memory order. Unfortunately they are not able to compensate
the advance. Then we present new series called PMM that is able to compensate
the delay and the advance.
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6 ON MULTIPLE SOLUTIONS IN ADAPTIVE
INDIRECT DIGITAL PREDISTORTION

Several models usually derived from Volterra series have been proposed. The most
commonly used of these models have a linear dependency in respect to their coef-
ficients. Therefore the estimation of the coefficients, in the case of a least square
criterion (for the indirect learning approach), can be achieved by solving a linear
system of equations. To obtain solution by least-squares criterion, usually pseudo-
inversions of matrices are needed. In this section we would like to focus especially
on the case of online adaptive solution (sample by sample) used in the adaptive indi-
rect learning architectures. We would like to demonstrate the existence of multiple
solutions for coefficient estimation using the simplest adaptive system and propose
a criterion based on gain error instead of signal error [128].
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Power

Amplifier
Predistorter

Copy of A

Predistorter

Estimation (A) 

0

1
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)(ty)(tz
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)(tx

Fig. 6.1: Principal layout of the indirect learning architecture for the digital base-
band predistorter.

6.1 Multiple solutions

In this section we would like to demonstrate on a simple example the existence of
multiple solutions, for coefficient estimation in the adaptive systems (outlined in
Fig.6.1), even for the simplest linear case of PA represented only by gain 𝑎. We use
a DPD with a polynomial model defined as:
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6.1. Multiple solutions

𝑧(𝑡) =
𝐾∑︁

𝑘=1
𝑏𝑘|𝑥(𝑡)|𝑘−1𝑥(𝑡). (6.1)

In this example we set order of nonlinearity to 𝐾 = 1, which yields to:

𝑧(𝑡) = 𝑏 𝑥(𝑡), (6.2)

and as mentioned before the simple linear power amplifier is defined only by gain 𝑎

as:

𝑦(𝑡) = 𝑎 𝑧(𝑡), (6.3)

where 𝑧(𝑡) is defined in discrete time 𝑡 and is the complex output of the predis-
torter and 𝑥(𝑡) is a complex input. Constant 𝐾 is the non-linear order of polynomial
series and b is the complex coefficient vector (for this particular example is it one
dimensional vector, hence it is a scalar).

Using adaptive predistortion as presented in indirect learning architecture in
a loop with DPD estimation in Fig.6.1 and employing (6.2) with 𝐾 = 1, after
convergence we can directly write error criteria for least squares solution as:

𝑒 = 𝑧 − 𝑧 = 𝑏𝑥

(︃
1 − 𝑎𝑏

𝐺0

)︃
, (6.4)

where 𝐺0 stands for gain normalization. The quadratic error criteria function is
defined as:

𝐽 =
𝑁∑︁

𝑡=1
|𝑒(𝑡)|2 =

∑︁
|𝑥(𝑡)|2|𝑏|2

⃒⃒⃒⃒
⃒1 − 𝑎𝑏

𝐺0

⃒⃒⃒⃒
⃒
2

= |𝑏|2
⃒⃒⃒⃒
⃒1 − 𝑎𝑏

𝐺0

⃒⃒⃒⃒
⃒
2∑︁

|𝑥(𝑡)|2. (6.5)

Setting the first derivative of criteria function 𝐽 equal to zero, we get local extrema.

𝛿𝐽

𝛿𝑏
= 𝑏

(︃
1 − 𝑎𝑏

𝐺0

)︃(︃
1 − 𝑎*𝑏*

𝐺0
− 𝑎*𝑏*

𝐺*
0

)︃∑︁
|𝑥(𝑡)|2 = 0 (6.6)

Solving system (6.6) we get three complex extrema located in:{︂
𝑏1 = 0, 𝑏2 = 𝐺0

𝑎
, 𝑏3 = 𝐺*

0
2𝑎

}︂
. (6.7)

Where for the predistortion we cannot use solution denoted as 𝑏1 which leads
to 𝑦(𝑡) = 0, even if the criteria is equal to 0. Solution denoted as 𝑏2 is then global
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6.2. Gain based solution

minim of (6.6), that is only suitable for predistorter.

We believe that for standard solving approaches (such as adaptive algorithms
for example as LMS or recursive least square approach so-called RLS) solutions ob-
tained in (6.7) can occur, because they depend directly on criteria derivatives. The
consideration above hold generally for indirect learning adaptive systems architec-
tures and not only for polynomial series.

There also exists result 𝑏3 that is obviously global maximum where the derivative
for equation (6.6) is equal to 𝛿𝐽

𝛿𝑏
= 0.

6.2 Gain based solution

In this section we propose a modified error criteria resulting in solution that avoids
unwanted solutions. Out error criteria is based on gain as:

𝑒 = 1 − 𝑧

𝑧
, (6.8)

where division by zero is undefined 𝑧 ̸= 0. After convergence (𝑏(𝑛 + 1) ≈ 𝑏(𝑛)) and
some arrangements we get

𝑒 = 1 − 𝑧

𝑧
= 1 − 𝑎𝑏

𝐺0
. (6.9)

Thus the quadratic error criteria function for 𝑁 samples is defined as

𝐽 =
𝑁∑︁

𝑡=1
|𝑒(𝑡)|2 = 𝑁

⃒⃒⃒⃒
⃒1 − 𝑎𝑏

𝐺0

⃒⃒⃒⃒
⃒
2

. (6.10)

Derivative of the quadratic error criteria function and setting to zero we get

𝛿𝐽

𝛿𝑏
= 𝑁

(︃
1 − 𝑎𝑏

𝐺0

)︃
= 0. (6.11)

Solving (6.11) we get one unique solution{︂
𝑏 = 𝐺0

𝑎

}︂
. (6.12)

In (6.9) we have presented simple example of modified criterion that proved to avoid
the zero solution in the loop of adaptive indirect learning architecture.
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6.2. Gain based solution

6.2.1 Matrix notation

Achieving more general definition let us define polynomial series:

𝑧(𝑡) =
𝐾∑︁

𝑘=1
𝑏𝑘|𝑥(𝑡)|𝑘−1𝑥(𝑡)

=
𝐾∑︁

𝑘=1
𝑏𝑘𝜙𝑘𝑥(𝑡) = Φb, (6.13)

Defined for 𝑁 samples by:

𝜙𝑘(𝑥(𝑡)) = |𝑥(𝑡)|𝑘−1𝑥(𝑡),
b = [𝑏1,0, 𝑏2,0, ..., 𝑏1, ..., 𝑏𝐾 ]𝑇 ,

Φ(𝑡) = [𝜙1(𝑥(𝑡)), ..., 𝜙𝐾(𝑥(𝑡))],
z = [𝑧(1), 𝑧(2), ..., 𝑧(𝑁)]𝑇 ,

U = [Φ(1), Φ(2), ..., Φ(𝐾)] (6.14)

We consider the input signal 𝑥(𝑡) and output signal 𝑦(𝑡) as sequence of finite 𝑁

samples, where 𝑡 is a integer number and can be expressed as 𝑡 = 1, 2, ..., 𝑁 .

Then definition of the modified error criteria is:

𝑒 = 1 − 𝑧

𝑧
, (6.15)

where 𝑧 and 𝑧 are postdistorted and predistorted signals.

Defining the desired gain matrix G𝐷 (when everything is normalized, the desired
gain is unitary) is a vector defined as:

G𝐷 =

⎛⎜⎜⎜⎝
1
...
1

⎞⎟⎟⎟⎠ (6.16)

Defining the diagonal matrix D:

D =

⎛⎜⎜⎜⎝
1

𝑧(1) 0 0

0 . . . 0
0 0 1

𝑧(𝑁)

⎞⎟⎟⎟⎠ , (6.17)

and using expression:
z = U b, (6.18)

we get error criteria matrix defined as:

E = G𝐷 − DUb. (6.19)
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6.3. Numerical Simulations

Now we define LS quadratic error criteria function:

J = E𝐻E = (G𝐻
𝐷 − b𝐻U𝐻D𝐻)(G𝐷 − DUb), (6.20)

Derivation of the quadratic criteria function J and setting to zero we get:

𝛿J
𝛿b

= U𝐻D𝐻DUb − U𝐻D𝐻G𝐷 = 0. (6.21)

Then we can express matrix solution for adaptive indirect gain based system as:

b =
[︁
U𝐻D𝐻DU

]︁−1
U𝐻D𝐻G𝐷 (6.22)

To bring complete summary of our new matrix method, one can control the adap-
tivity by introduction of a damping. One of the well known methods is the damped
Newton algorithm (DNA) which is usually compared with adaptive approach. For
this purpose, the solution can be rearranged as

b𝑘+1 = b𝑘 + 𝜇
[︁
U𝐻D𝐻DU

]︁−1
U𝐻D𝐻E. (6.23)

6.3 Numerical Simulations

The complexity of higher orders of predistortion architectures is too high. To obtain
analytic solutions for the problem of multiple solutions (stability points) is nearly
impossible. Therefore we demonstrate such assumptions numerically. For the sim-
ulations, third order polynomial model with omitted even term of PA was used for
PA modeling:

𝑦(𝑛) = 𝑎1𝑧(𝑛) + 𝑎2𝑧(𝑛) |𝑧(𝑛)|2 , (6.24)

where 𝑎1 = 2 and 𝑎2 = −0.88 are the real valued coefficients of PA and 𝑧(𝑛) is
the predistorted signal as defined in Fig.6.1.

A third order model of predistorter and postdistorter with omitted even terms
was used.

In adaptive systems we consider recursive least squares (RLS) adaptive algo-
rithm. Embedding criteria (6.4) of (6.15) we define

g(𝑛) = P(𝑛) U(𝑛)*
[︁
𝜆 + U(𝑛)𝐻P(𝑛) (U(𝑛)*)−1

]︁
(6.25)

where
P(𝑛 + 1) = P(𝑛)

𝜆
− 1

𝜆
g(𝑛) U(𝑛)𝐻(𝑛) P(𝑛), (6.26)

then we express
b(𝑛 + 1) = b(𝑛) + g(𝑛) e(𝑛), (6.27)
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6.3. Numerical Simulations

where forgetting factor is set to 𝜆 = 0.9 and the initial value for P = 𝛿−1I. The
value of 𝛿 = 10−3 and I is square identity matrix of size 𝐾. For more informations
regarding RLS algorihm refer to chapter 3.6.4.
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Fig. 6.2: The simulation of criteria function with standard solution (marked as
circle) and zero solution (marked as triangle).

Two criteria functions J with PA model defined in (6.24) are evaluated by ex-
haustive search. Using the exhaustive search: with step of ℎ = 0.01 in the range
−2 ≤ 𝑏1 ≤ 2 and −2 ≤ 𝑏2 ≤ 2, we need to evaluate all possible solutions of criteria
function. Such setup yields approximatively to 160800 evaluations.

In Fig.6.2 we use a normalized criteria function defined in (6.4). We can see,
that there already exists two minim and one maximum. Unfortunately we can see
in the Fig.6.2 that there exists global minim in the origin on the criteria function
(denoted as zero solution).

To remove global minimum from the origin we have modified the criteria as in
(6.4). Therefore by exhaustive search we can see the shape of normalized quadratic
criteria function J in the Fig.6.3. In the figures there are two solutions also marked.
One in the origin and the second one estimated on the block of data by damped
Newton method. In the Fig.6.3 we can see, that there is undefined region of function
J for the zero solution. It is the region, where the criteria function (6.15) can’t be

151



6.3. Numerical Simulations

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 −0.2

0

0.2

0

0.2

0.4

0.6

0.8

1

b
2

b
1

N
o

rm
al

iz
ed

 |J
|

J(b
1
,b

2
)

Zero solution
Solution by dNA

Fig. 6.3: The simulation of criterium function with gain based error with eliminated
solution (marked as triangle) and standard solution (marked as circle).

evaluated (for real and complex numbers) because division by 0 is performed.
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Fig. 6.4: The simulation using RLS, with traces of solutions (on the criteria func-
tions) for the initial solution 𝑏1 = 0.1 and 𝑏2 = 0.
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Now we present results obtained by adaptive RLS algorithm. First as showed in
the Fig.6.4 we set the initial solution estimation to point 𝑏1 = 0.1. We can see there
shapes of criteria functions with traces (evolution of solutions) of solutions. In the
case of both criteria functions the final result are nearly the same.

Next we set the initial guess to 𝑏1 = −0.1 and 𝑏2 = 0 expecting the classical
solution to fail. As we can see the traces in the Fig.6.5 our expectations have been
confirmed with both criteria functions |𝐽 | → 0.
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Fig. 6.5: Convergence to zero solution of typical approach compared with gain ap-
proach. The simulation using RLS, with traces of solutions (on the criteria functions)
for the negative initial solution 𝑏1 = −0.1 and 𝑏2 = 0.

To prove the concept, we are comparing evolution of magnitude of first coefficient
𝑏1. As standard value, we plot solution obtained by damped Newton block solution
performed on matrices.

In the plot there are two different initial conditions 𝑏1 = −0.1 and 𝑏2 = 0 versus
𝑏1 = 0.1 and 𝑏2 = 0. In the case of negative value of initial value, the standard
solution reaches the zero solution. It is obvious that gain based criterium reach all
time the value of damped Newton block solution (Fig.6.6).
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Fig. 6.6: The convergence of first coefficient |𝑏1| for different initial values.

We have to be aware, that the initial value of 𝑏1 = 0 and 𝑏2 = 0 is undefined
for the proposed gain based criterium. In the case of standard criterium the final
solution after convergence will be 𝑏1 = 0 qnd 𝑏2 = 0.

6.4 Experimental Results

Because presented idea uses just simple polynomial model of PA, we have decided
to prove the concept on real system. Therefore we considered a Doherty UHF power
amplifier using NXP BLF888A UHF RF power LDMOS transistor for DVB-T appli-
cations (470 MHz to 860 MHz) with output power P1dB 100W. For the experiments
OFDM-like signal was used with oversampling rate 8. For modeling the PA, we have
employed a memory polynomial model with nonlinearity order 𝐾 = 17 and the mem-
ory depth of 𝑀 = 2. The modeled PA AMAM and AMPM characteristics can be
seen in Fig.6.7.

The power spectral density of input signal and PA model output signal can be
seen in Fig.6.8.

To evaluate our ideas we used this model of PA and memoryless DPD with non-
linear order 𝐾 = 5. We used adaptive RLS algorithm, where the initial guess was set
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Fig. 6.7: The AM-AM plot(Top) and Phase shift (Bottom) for model of PA using
orthogonal polynomials with polynomial order of 𝐾 = 17 and memory depth of
𝑀 = 2.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Normalized frequency

P
ow

er
 [d

B
]

 

 

Input signal
Output signal

Fig. 6.8: Power spectral density of input and output signal for model of PA using
orthogonal polynomials with polynomial order of 17 and memory depth of 2.
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6.5. Conclusion

as b𝑖𝑛𝑖𝑡 = [−0.001, 0, 0, 0, 0]. First standard criteria was used. In the Fig.6.9 we can
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Fig. 6.9: The AM-AM plot for different approaches and PA without any predistor-
tion. As initial value for b𝑖𝑛𝑖𝑡 = [−0.001, 0, 0, 0, 0] was used. The RLS algorithm
was utilized with 2700 iterations.

see that predistortion fails. The result is a set of dark gray points. The estimated
coefficients were close to zero solution. Then we have employed gain based criteria
to RLS. The results are marked as light gray points in the Fig.6.9.

6.5 Conclusion

For the design of real DPD we believe, that using standard indirect approach for cal-
culation of coefficients for DPD could lead to multiple solutions that meets the error
criteria. In this chapter we have demonstrated the possible existence of multiple
solutions for predistorters using indirect approach. First we took simple mathemat-
ical models of DPD and PA and we have proved the concept. Then we have derived
matrix notation of indirect approach.

In order to overcome problems with convergence we have proposed new criteria
based on gain. We have evaluated and compared both criteria. The gain based
criteria tends to avoid wrong solutions. We would like to point out, that for more
complex systems with higher orders in standard criteria definition, there exist more
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6.5. Conclusion

possible solutions, where the first derivation is equal to zero. Some of them could
be maxima.

A practical way to overcome such multiple solutions is to compare histograms of
input power and in the case of change update the coefficients. Such solution can be
found for example in some current commercial FPGA implementations.
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7 TESTBED MEASUREMENTS

In this chapter the measurement testbed is presented. The testbed was assembled at
ESIEE in order to perform measurements. Measuring the physical layer of a wireless
radio transmission can be done in the following way: Firstly, a transmitter gener-
ates the signal-samples to be transmitted. Secondly, these samples are transmitted
in real-time and captured by the receiver. Thirdly, the received signal is aligned,
post-processed and evaluated on the PC.

First we have assembled a testbench using real-time spectrum analyzer and gen-
erator. Such setup had problems with down-conversion and with bandwidths.

Therefore we have assembled another test-bench using a high speed digital os-
cilloscope in order to be able to analyze fundamental and harmonic signals of RF
signal. As a last upgrade of testbench, we have added measurements of generated
signals (input of PA).

7.1 Setup with Real-Time Spectrum Analyzer

The measurement setup consisted of a N5182A MXG RF Vector Signal Genera-
tor (VSG) and a RSA3408A 8GHz Real-Time Spectrum Analyzer(RTSA) (Fig.7.2).
The VSG contains a build-in analog mixer and is practically capable to generate
any signal within its frequency and bandwidth limitations. Also the RTSA has a
mixer and is capable to down-convert the RF signal practically to baseband. Both
devices were connected over LAN using VISA communication protocol. The output
of PA was attenuated with 40 dB attenuator.

The experimental setup can be seen in Fig.7.1.

The final data were processed using MATLAB. The output power of the Device
Under Test (DUT) in our case PA, was attenuated with 40 dB attenuator.

Fig.7.3 presents the spectrum of a wideband OFDM signal with strong nonlinear
distortion in adjacent channels.

In order to test the test bench, a 64 QAM signal was generated with a data
rate of 3Mbps, an output power 5dBm for the generator (input of PA), a sampling
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7.1. Setup with Real-Time Spectrum Analyzer

Fig. 7.1: Setup of experimental test bench. There is a N5182A MXG RF Vector
Signal Generator, RSA3408A 8GHz Real-Time Spectrum Analyzer and computer
driven PA.
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PC with MATLAB 

I, Q 

I, Q 

Fig. 7.2: Layout of measurement testbed using RSA3408A Real-Time Spectrum
Analyzer.

frequency 24 MHz and a center carrier frequency 200 MHz.

The DUT was the Smart PA from Thales driven by PC as described previously.
The quite nonlinear AM/AM characteristics with memory effect can be seen in the
Fig.7.4. Also after demodulation (before quantization) we can see the deformation
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7.1. Setup with Real-Time Spectrum Analyzer

Fig. 7.3: Example of the output screen of PA with wideband OFDM input signal
and distortion in adjacent channels.
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Fig. 7.4: The AM/AM characteristics for 64QAM.

of constellation points in constellation diagram in Fig.7.5. The PSD of input and
output baseband signals are in the Fig.7.6.

The overall EVM was calculated as 6.4%. In the Fig.7.6 we can see the different
noise floor for the input (Matlab signal) and for the output signal (Measured). The
Matlab input has nearly 20dB better dynamical range. Such difference influence the
performance of modeling and linearization of PA.
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Fig. 7.5: The constellation diagram for 64QAM with EVM=6.4%.
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Fig. 7.6: The PSD characteristics for 64QAM.

The RSA3408A has a limitation for real-time measurements of span 20MHz
which is not enough for modern wideband signals. Due to transmitted signal im-
perfection of analog down-conversion certain errors are added.

This setup of testbench is sufficient within 20MHz of bandwidths. But for larger
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7.2. Wideband platform - Setup with Digital Storage Oscilloscope

bandwidths it cannot be used. Therefore we have assembled a new setup with a
digital oscilloscope.

7.2 Wideband platform - Setup with Digital Stor-
age Oscilloscope

Due to previously described limitation of bandwidth and imperfections, the digital
oscilloscope Agilent DSO81204B capable of capturing a bandwidth of 12GHz with
sampling frequency 40GSa/s was used (Fig.7.7).
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Fig. 7.7: Experimental test-bench using digital oscilloscope DSO81204B.

Characteristics of the DSO 81004B: 12GHz bandwidth, sample rate up to 40GSps,
noise floor: 342 𝜇V @ 5 mV/div.

We performed measurements directly from the output of the amplifier without
analog frequency conversion. An advantage of this approach is to allow us to analyze
not only the signal around the carrier frequency but also the higher order harmonics
if the sampling frequency is chosen high enough. The sampling frequency is more
than twice the center frequency. The center frequency was set to 200 MHz. The
layout of testbench can be seen in Fig.7.8.

The development of the new testbench needed writing the command interface
of the oscilloscope Matlab, to read 16-bit words and convert them to float data
format, to setup sampling frequency to 500MHz or 1GHz, filtering and frequency
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7.2. Wideband platform - Setup with Digital Storage Oscilloscope

Fig. 7.8: Experimental test-bench using digital oscilloscope DSO81204B and
N5182A MXG RF Vector Signal Generator.

down-conversion in Matlab, to recover the signal around the fundamental or har-
monic frequencies.

In order to simplify the synchronization of two signals (output of PA recorded
by the oscilloscope and input signal generated by Matlab), we have introduced a
sequence of zeros between the repetition periods of the MXG signal generator as
can be seen in Fig.7.9.

In order to validate this second bench, we first made measurements without PA.
Fig.7.11 shows the power spectral density of the digitized signal with sampling fre-
quency 500 MHz. We also plot a window of recorded signal by the oscilloscope.

Figure 7.10 shows the power spectral density and AM/AM characteristics of
baseband signals after frequency down-conversion and filtration in Matlab (left)
and power spectral density of RF signal before down-conversion.

We would like to point out that we may observe in the Fig.7.11 the difference of
noise floor for measured and generated signal. Such difference could lead to deteri-
oration of modeling performance.
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7.2. Wideband platform - Setup with Digital Storage Oscilloscope

Fig. 7.9: Screen from oscilloscope displaying RF signal with zero gaps.
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Fig. 7.10: AM/AM characteristics of testbench (without PA) in baseband (left).
The green points are fractionally synchronized (𝜏 = −0.19𝐹𝑠). On the right is
power spectral density of RF signal with sampling frequency 500 MHz.

7.2.1 Imperfections in The Measurement System

Carrier Frequency offset

We observed and estimated a frequency shift of the carrier frequency generated by
the arbitrary generator MXG. The value of the carrier was not exactly equal to the
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Fig. 7.11: Power spectral density of baseband signals without PA.

theoretical value of 200 MHz. The difference was typically just a few Hz (we have
estimated the shift up to 44 Hz for some measurements). Figure 7.12 gives example
of difference between the theoretical phase baseband signal and the measured sig-
nal. The slope of the line corresponds to the carrier offset. In this specific case we
have estimated the shift to be 40Hz. After estimating this shift we have corrected it.

Influence of Automatic Gain Correction ALC (Automatic Level Control)

The arbitrary waveform generator has an automatic gain correction ALC (automatic
leveling circuitry). ALC may distort the signals that are made of burst of signals.
Figure ref.7.13 illustrates the effect of ALC on the multiplexed signals.

Basically the incorrect ALC setup can create a sudden unleveled condition that
may create a spike in the RF output, potentially damaging a DUT or connected
instrument. Such spikes can be seen in the Fig.7.13. Properly setup ALC of the
MXG generator can be seen in the Fig.7.14.

Without Filter at Output of Power Amplifier

In the experimental testbench there is not any filter at the output of PA. Thus for a
200 MHz carrier frequency and sampling frequency 500MHz, we may expect aliasing
of higher harmonics (the second harmonics 400MHz will fold at 100MHz). In fact
it is not a problem since there is no spectrum overlap and we can recover the useful
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7.2. Wideband platform - Setup with Digital Storage Oscilloscope

Fig. 7.12: Wrong carrier frequency of a down-converter (green) and corrected (blue).
Slope due to a shift in the value of the carrier (40Hz shift).

Fig. 7.13: Influence of wrong ALC setup on the output signal of MXG.

signal by filtering (in Matlab).

We may observe in Fig.7.15, the RF spectrum, sampled with sampling frequency
1 GHz, the main carrier around 200 MHz, additional harmonics around 400 MHz
and harmonics close to DC components.
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7.2. Wideband platform - Setup with Digital Storage Oscilloscope

Fig. 7.14: Properly setup ALC and its influence on the output signal of MXG.
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Fig. 7.15: RF spectrum of output of smart PA with distortions.

7.2.2 Two Channel Measurement Modification of Testbench

Due to previously mentioned problems such as with different dynamical range, or
artifacts generated due to imperfections of input signals and output signals, the
testbench was modified in order to allow the capture of two channels. First channel
is used to capture the generated signal by MXG and second channel captures the
output of PA. The fundamental layout can be seen in the Fig.7.16.
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Fig. 7.16: Modified configuration of testbench to capture input of the PA.

As we may see, the input signal is divided by power divider (Mini-Circuits 15542)
to provide signal to PA and to oscilloscope. Of course the input power of generator
has to be modified.
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Fig. 7.17: Power spectral density of input and output signals of multiplex composed
by frequency spaced GMSK signals. The setup is without PA.

Figure 7.17 presents power spectral density of input and output signal of the
multiplex composed by frequency spaced GMSK signals. The presented measure-
ments are without PA. We may observe quite strong local oscilator (LO) leakage
that is generated by MXG. Usually if any of the LO leaks into the RF path, then
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7.3. Conclusion

it will self-mix and produce a DC offset. The DC offset can rail the PA stages.
Fortunately the LO leakage was observed only when the center frequency of a signal
was not corresponding to the carrier frequency. The dynamical range is nearly 60dB.

7.3 Conclusion

In this chapter we have presented power amplifiers that have been measured and
used for simulations. In order to measure the devices, the testbench was assembled.
The first testbech used realtime spectrum analyzer with build-in down-converter.
The bandwidth of this analyzer was not sufficient enough in order to measure wide-
band signals.

The next testbench, for wideband, we have assembled was with oscilloscope with
high sampling rate. The whole RF signal was retrieved. The down-conversion was
done in MATLAB.

Because the dynamical range of generated signal (and distortions) play impor-
tant role, the testbench was modified in order to also capture the input signal of PA.
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8 CONCLUSIONS AND PERSPECTIVES OF
PART I

The purpose of this chapter is to summarize the work on power amplifiers. The
work focuses on PA modeling and PA predistortion.

The second chapter has introduced the concept of ideal power amplifiers. The
parameters for the evaluation of communication systems performance have been
presented too. It also gave a basic survey of general linearization techniques.

In the third chapter several models suitable for DPD and for PA modeling have
been presented. First the transition from RF models to filtered baseband equiva-
lent models have been presented and explained. Further only baseband equivalent
models have been discussed due to their suitability for DPD. We have divided base-
band models to several groups according to their capabilities: static and quasi-static
models, dynamical models. We have also briefly discussed the special group of mod-
els that allows to separate the model (or DPD) into several stages: two-stage and
multi-stage models (can be static, quasi-static and dynamical). In practice they can
be realized by parallel or cascade structures.

As for model-based approaches (models with linear dependency with respect to
their coefficients), orthogonal polynomial models, dynamic distortion reduction and
generalized memory polynomials based on simplified Volterra series are a common
choice due to their low complexity, stability of solution and ease of implementation.

Next section have presented several methods for identification of the models:
one-shot solution and adaptive methods. One may choose methods according to
needs of PA modeling or DPD systems. For example in case of high requirements
for adaptivity but low complexity, LMS is a good compromise. In the case of good
performance and adaptiveness, RLS outperforms presented approaches.

In the fourth chapter first we have introduced power amplifiers and several sig-
nals used for measuring and simulating the PAs. In the next section we do an
exhaustive evaluation of Volterra based models for modeling PAs.

The next section bring an exhaustive evaluation of linearization of the same PAs
as was used for modeling. We also discuss modeling and linearization techniques in
terms of performance and number of coefficients.

170



In terms of performance it is not simple to distinguish between models. In
general we may say, that every model outperforms others in different applications.
GMP and DDR allow better NMSE performance than OMPS, but they are more
complex to identify. DDR and GMP are very close but often GMP achieves a better
compromise between number of coefficients and NMSE.

The capabilities of adaptive algorithms are then discussed. In terms of adap-
tiveness the RLS has the best performance (that can be compared with DNA). In
terms of complexity, LS is a good choice.

The fractional LMS that takes advantage of fractional order derivatives is intro-
duced. The performance is better than LMS (speed of convergence) and complexity
is lower than RLS.

The next section focuses on optimal estimation of model structure. In the case
of GMP, eight integer parameters needs to be determined. Therefore we propose
an integer genetic algorithm, that is able to find good structure with respect to
complexity.

One of the problems is determination of structure of the models. For example
for GMP there are eight parameters to determine. We would like to point out that
using multi-stage models, the estimation of structure is a very important issue. For
example using three-stage GMP models (or DPD), 24 parameters defining the struc-
ture needs to be estimated, which represents if we consider only integers between 0
and 10 1024 possibilities.

Then we show results using neural networks for predistortion and modeling. In
terms of performance, the NNs are very good. Due to training difficulties, their
adaptiveness is limited.

In the fifth chapter we bring overview of influence of misalignment in the DPD
systems. We have evaluated the influence on the precision of estimation of coeffi-
cients. The evaluation have been done using integer and fractional misalignments.
The DPDs with memory are able to compensate fractional misalignment partially.
In the case of fractional delay with memory order ≥ 3 the predistortion is able to
compensate the misalignment.
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In the case of integer delay the OMPS and GMP are able to compensate a de-
lay of the same order as the memory length. Unfortunately they are not able to
compensate an advance. Then we present a new model called polynomial memory
modified series (PMM) that is able to compensate the delay and the advance.

In the sixth chapter we have demonstrated the existence of multiple solutions for
predistorters using indirect approach. First we took simple mathematical models of
DPD and PA and we have proven the concept.

In order to overcome problems with convergence we have proposed a new cri-
terion based on an error of gain instead of the common error of signal. We have
evaluated and compared both criteria. The gain based criterion tends to avoid wrong
solutions. We would like to point out, that for more complex systems with higher
orders in standard criteria definition, there exist more possible solutions, where the
first derivation of the criterion is equal to zero. Some of them could be maxima.

In the seventh chapter we describe the testbench that was designed to measure
real PAs. The first testbench used real-time spectrum analyzer with build-in down-
converter. The bandwidth of this analyzer was not sufficient to measure wideband
signals.

We have realized another testbench, for wideband signals with high sampling
rate oscilloscope. The whole RF signal was retrieved. The down-conversion was
done in MATLAB.

Because the dynamical range of generated signal (and distortions) play impor-
tant role, the testbench was modified in order to capture even the input signal of PA.

Perspectives:

One of the perspectives that points out this thesis is the automatic determination of
structures of multistage DPDs. And with the determination of multistage structures
(also single stage structures) are closely related with their hardware implementa-
tions. Implementation of GA is well known, thus modification to integer GA is also
possible. The whole concept of an automatic order determination of structure of
DPD and calculation of coefficients adaptively can be challenging.
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Another challenging area is adaptive hardware implementation of DPD to DSP,
FPGA or ASIC for wideband non-stationary signals. The requirements for process-
ing unit and for the ADCs/DACs can be high. For example in the 802.11ac standard
the bandwidth of signal can be up to 160 MHz. Oversampling increases this band-
width additionally three to five times. From there we may realize requirements for
adaptive DPD systems.

In the thesis we have proposed a new model: polynomial memory modified series
(PMM). As mentioned in the thesis there are stability issues. Its stability can be
for example improved by applying an orthogonalization.

Another potentially interesting area are power amplifiers with asymmetrical spec-
tral properties. Such power amplifiers are not well modeled or linearized with current
low order Volterra derived series.
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Part II

Advanced methods for non-linear
systems





9 INTRODUCTION

The idea of deterministic non-linear series has influenced thinking in many research
fields of science. Especially the paradigm of chaotic behavior. It is well known,
that complex dynamical mathematical objects show rich and surprising structures
[60, 61, 62]. Most catching for researchers over forty years in applied sciences is the
fact that deterministic systems provide striking explanation for irregular behavior
and anomalies in many systems which does not seem to be implicitly stochastic[63].

With a recent massive progress in the overall personal computer performance it
turns out that even very complicated multi-level dynamical systems can be mod-
eled and analyzed, in a reasonable amount of computational time. Many of these
discovered events have been recently observed and proved by means of the artificial
experiments. The excitement about chaos theory rises from the perception that it
captures the complex disorganized order of the real world [64]. Meaning that chaotic
signal from the macroscopic point of view represents total disorder [65].

Looking closely certain deterministic properties can be revealed. The absence
of long-term predictability [66, 67] and the presence of infinitely many unstable
periodical orbits makes almost any chaotic subsystem an ideal candidate for the
ultra-fast encrypted communication channels. The basic obstacle to be removed in
this area lies in the lack of sophisticated algorithms for the higher-order dynamical
motion quantification. Due to the absence of closed-form analytical solution of the
non-linear dynamical systems the existing routines are based on the numerical anal-
ysis and linearizion of continuous vector field near equilibrium points. On the other
hand, great efforts are being made to exploit ideas from chaos theory in cases where
the system is not necessarily deterministic but the data display more structure than
can be captured by traditional methods.
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10 MATHEMATICAL MODELS AND TIME SE-
RIES ANALYSIS

In this chapter several methods for analyzing the non-linear dynamical systems have
been presented. Fist section deals with mathematical model analysis. Such methods
are usually useful in the case of known mathematical models.

Otherwise in the case of having only measurements, different methods have to
be applied. Such method have been presented in second part of this chapter.

10.1 Mathematical Model Analysis

The dynamics of linear systems is governed by the paradigm that small causes lead
to small changes of a solution. Linear equations can lead to exponentially decaying
(growing) or damped periodically oscillating solutions, where all irregular behavior
has to be introduced by some random external conditions.

Chaos theory has simply demonstrated that there is no need of being one of the
parameters random or stochastic [68], to produce irregular and complicated behav-
ior.

Usually the model of autonomous system is given by the set of ordinary differen-
tial equations. The closed-form solution for such set of the equations is impossible
to obtain analytically. Actually for modern computer technology it is impossible to
find a analytical solution, but even if the solution is be obtained, it probably won’t
be intelligible.

10.1.1 Poincare Sections

The purpose of a Poincare section is to detect some sort of structure in the attractor.
It can be defined as an intersection of a state space orbit of a continuous dynamical
system with a certain lower dimensional subspace, transversal to the flow of the
system.

A Poincare sections can be interpreted as a discrete dynamical system with a
state space that is one dimension smaller than the original continuous dynamical
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10.1. Mathematical Model Analysis

system.

𝑃 : 𝑈 → 𝑆, (10.1)

where 𝑃 is Poincare map for certain orbit on the Poincare section 𝑆 and 𝑈 is an
open and connected neighborhood of point on the orbit.

10.1.2 Bifurcation Analysis

Bifurcation analysis is used to find certain points, where the system exhibits periodic,
aperiodic and chaotic behavior (be aware that there exist also different bifurcation
analysis.).

One of the most used methods is made of marginal sight (set) of Poincare sec-
tions, by perturbing chosen parameter of the mathematical model. Such typical plot
can be seen in the Fig.10.1.
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Fig. 10.1: Bifurcation analysis of single Hindamarsch-Rose neural model [135, 131].

10.1.3 Lyapunov Exponents

Detecting and quantifying chaotic behavior has become very important task for the
non-linear dynamical systems. Almost every article dealing with non-linear systems
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10.1. Mathematical Model Analysis

is using Lyapunov exponents for its analysis [69, 70, 71].

These exponents are used to describe the average exponential rate of divergence
or convergence of near arbitrary trajectories in the phase state space. They are also
called characteristic exponents. Exponents can be regarded as a measure of sensi-
tivity to initial conditions.

Lyapunov exponents are real numbers that can be advantageously used to clas-
sify non-chaotic and chaotic systems. If the system is in an unstable state, one can
see that two nearby trajectories of each are moving away faster than a polynomial
rate. Any system containing at least one positive Lyapunov exponent is defined to
be chaotic. The LE can be defined as:

𝐿𝐸[x0, y0 ∈ 𝑇𝑥(𝑡)ℜ3] = lim
𝑡→∞

1
𝑡

‖𝐷𝑥𝜑(𝑡, x0)y0||
‖y0‖

, (10.2)

where 𝑇𝑥(𝑡) is a tangent space in the point on the fiducial trajectory and
𝐷𝑥𝜑(𝑡, x0)y0 is solution of the linearized system.

In order to preserve the orthogonal base of vectors in each iteration step, a
Gram-Smith orthogonalization procedure is added to the standard routine for LE
calculation.

By sorting and indexing LEs in descending order the mentioned metric dimension
called Kaplan-Yorke dimension can be calculated as:

𝐷𝐾𝑌 = 𝑘 +
∑︀𝑘

𝑖=1 𝐿𝐸𝑖

‖𝐿𝐸𝑘+1‖
, (10.3)

where 𝑘 is the largest integer representing the 𝑘 +1 state variables. This formula
is in accordance with two fundamental mechanisms of chaos generation, i.e. folding
and stretching of the state space trajectories.

From definition of the dissipative systems the sum of all LEs has to be negative.
It is obvious from that the most common approach for LE evaluation for three di-
mensional dynamical systems described by ordinary differential equations is based
on the numerical integration of the twelve differential equations. The linearization
matrix is calculated in each point on the trajectory [72], thus it necessary to have
the knowledge about Jacobi matrix (JM) in the symbolic form.
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10.1. Mathematical Model Analysis

The approach is based on the divergence of neighboring trajectories compared
with the fiducial trajectory. The solution was first presented in [73]. It is a method
for identifying just the largest Lyapunov exponent, since the quantifying property
is sufficient enough. Over time interval 𝑡2 − 𝑡1, the rate of divergence of two points
that evolve from a spacing 𝐷1 to a spacing 𝐷2, may be characterized by a quantity:

𝑄 =
𝑙𝑛
(︁

𝐷2
𝐷1

)︁
𝑡2 − 𝑡1

. (10.4)

Because the separation must be kept small comparing with the size of the at-
tractor, a new neighbor has to be set periodically for subsequent estimates of the
divergence rate. After n repetitions of stretching and re-normalizing the spacing the
rates are weighted by fraction of time between each re-normalization. Then they
are added to yield an experimental value for the largest Lyapunov exponent as:

𝜆1 =
𝑛−1∑︁
𝑖=1

⎧⎨⎩
[︃

(𝑡𝑖+1 − 𝑡𝑖)∑︀𝑛−1
𝑖=1 (𝑡𝑖+1 − 𝑡𝑖)

]︃ ⎡⎣ 𝑙𝑛
(︁

𝐷𝑖+1
𝐷𝑖

)︁
(𝑡𝑖+1 − 𝑡𝑖)

⎤⎦⎫⎬⎭ . (10.5)

Since
𝑛−1∑︁
𝑖=1

(𝑡𝑖+1 − 𝑡𝑖) = 𝑡𝑛 − 𝑡1, (10.6)

we have

𝜆1 =
∑︀𝑛−1

𝑖=1

(︁
𝐷𝑖+1

𝐷𝑖

)︁
𝑡𝑛 − 𝑡1

. (10.7)
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Fig. 10.2: The spectrum of Lyapunov exponents for the system (17.1).
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10.2. Time Series Approach

The estimated spectrum of Lyapunov exponents for the Lorenz system 17.1 of
ordinary differential equations of third order is in the Fig.10.2.

This method cannot be used if the vector field is discontinuous, especially if the
repeated jump functions are involved in the mathematical model [74], since JM con-
tains extreme values [75, 76, 69]. Such system was presented in [142]. In the article,
there are values in the matrix, both infinity (positive as well as negative) and zero
[69, 63].

If the transition between two states of the sign function is omitted the standard
procedure returns the incorrect results. It is because the linearized flow is uniquely
determined by three real negative eigenvalues and form stable node local geometry
near the fiducial point. Having this configuration each edge of the volume cube
shrinks suggesting that the system possess three negative LEs.

In practice the transition event is not neglected and the corresponding derivative
depends on the numerical integration step size. If the extreme values substituted
into the Jacobi matrix the entire procedure tends to diverge and fails.

10.2 Time Series Approach

One rarely has complete information about all of the degrees of freedom in a com-
plex dynamical system. There are quite few conventional approaches for analyzing
time series.

For example for quantifying the behavior, calculation of a correlation dimension
can be used. The correlation dimension gives us an estimate of the system complex-
ity [77]. But the methods for dynamical analysis of experimental data have been
still developing.

In order to estimate all variables, first the reconstruction of dynamics has to be
done. The standard method of reconstruction consists of estimating the degree of
freedom, called embedding dimension 𝑚, reconstruction of dynamics and of deter-
mination of certain invariant quantities.
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10.2. Time Series Approach

10.2.1 Reconstruction Of Dynamics

The reconstruction of a vector state space which is equivalent to the generating
state space of the system from a scalar time series is the basis of almost all of the
methods. The simplest method to embed scalar data is usage of method of delays.

This can be done by reconstructing the pseudo phase-space from a scalar time
series, by using delayed copies of the original time series as components of the
reconstruction matrix. It involves sliding a window of length 𝑚 through the data
to form a series of vectors, stacked row-wise in the matrix. Each row of this matrix
is a point in the reconstructed phase-space. Setting {𝑋1 · · · 𝑋𝑛} represent the time
series, the reconstruction matrix is then represented as:

X =

⎛⎜⎜⎜⎝
𝑋0 · · · 𝑋(𝑚−1)𝜏
... . . . ...

𝑋𝑛 · · · 𝑋𝑛+(𝑚−1)𝜏

⎞⎟⎟⎟⎠ , (10.8)

where 𝑚 is the embedding dimension and 𝜏 is the embedding delay (in samples).
Fixing an optimal value of 𝑚 and 𝜏 requires domain specific knowledge about the
time series being analyzed.

10.2.2 Embedded Dimension

In fact there exists several methods for estimating the embedded dimensions. If
the attractor is embedded in spaces of increasingly higher dimension it exhibits an
increasingly complex structure as it unfolds. This process continues, until the struc-
ture’s correlation dimension saturates. At this point the fully attractor is revealed.

Another possibility is take advantage of symplectic geometry process, performing
symplectic transforms [78].

10.2.3 Time Delay 𝜏

For choosing the time delay 𝜏 the geometrical argument has to be applied and the
attractor should be unfolded. It means that the extension of the attractor in all
space dimensions should be roughly the same. Statistics such as fill factor or dis-
placement from diagonal are employed to evaluate this argument quantitatively.
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10.2. Time Series Approach

Despite this definition the most natural approach is utilizing the autocorrelation
function to the time series. It is intimately related to the shape of the state space
attractor. Investigating the ellipsoid set containing normally distributed points in
the state space.

The lengths of semi-axes of the optimal approximation have been given by the
square root eigenvalues of the auto-covariance matrix. In the two dimensional space
the two eigenvalues are equal if the autocorrelation function vanishes at the time
lag used for the construction of the matrix.

Because there is no simple rule for choosing 𝜏 in all cases, investigators has to
adjust 𝜏 until the results seems satisfactory. Autocorrelation based methods have
the advantage of short calculation time using the fast Fourier transform (FFT) al-
gorithm.

𝑅𝑓𝑓 (𝜏) = (𝑓(𝑡) * 𝑓(−𝑡))(𝜏) =
∫︁ ∞

−∞
𝑓(𝑡)𝑓(𝑡 − 𝜏)𝑑𝑡 ≈ 0. (10.9)

10.2.4 Demonstration of Time Series Analysis

For analyzing the time series the equations (17.1) have been chosen as the generat-
ing system. This system has bee chosen, because it is well known and it has been
precisely studied by many researchers [79].

Particularly the first variable was stored and the others were discarded. In the
real valued measurements, the system under study gives usually one observable,
thus the only information about the system, is noisy one-dimensional signal sam-
pled with a finite precision [67]. According to Taken’s embedding theorem [80], we
can use time series 𝑥1, 𝑥2, ..., 𝑥𝑛 to construct a trajectory matrix 𝑋𝑚×𝑑 by time delay
coordinates method described by (10.8).

The different attractors can be seen in Fig.10.3 for different embedded lag 𝜏 .
The most appropriate estimation to preserve the dynamics seems to be 𝜏 = 8.

To estimate the embedded dimension 𝑚 a symplectic geometry method is used to
determine the appropriate number of variables from a scalar time series. Symplectic
geometry has a certain measure and can keep the essential character of the primary
time series unchanged when performing symplectic similar transforms. More about
this theory can be found in [78]. When using the symplectic geometry approach,
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10.2. Time Series Approach

Fig. 10.3: Different lag 𝜏 𝑎) 𝜏 = 0, 𝑏) 𝜏 = 2, 𝑐) 𝜏 = 4, 𝑑) 𝜏 = 6, 𝑒) 𝜏 = 8, 𝑓) 𝜏 = 10,
𝑔) 𝜏12, ℎ) 𝜏 = 14, 𝑖) 𝜏 = 98.

the embedded dimension of system (17.1) was estimated to be 𝑚 = 4. In fact that
is not exactly correct result, but using higher order of system can also lead to same
behavior.

Using method described in [73] for estimation of the largest Lyapunov exponent
for the time series, the exponent was estimated as 𝜆1 = 0.663. For comparison esti-
mated largest Lyapunov exponent from the ODEs is equal to 𝜆1 = 0.703. Different
method for quantification chaotic attractors were presented in [129].
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10.3. Conclusion

10.3 Conclusion

In this chapter the concept of mathematical model analysis was briefly discussed.
First one of the oldest method called Poincare sections for quantification of the mo-
tion is presented. This method is not very accurate, but can be used also for time
series approach. One of the main issues is the setup of intersection planes.

The next section presents bifurcation analysis. The method is often used in order
to investigate the stability of the systems.

The last section presents quantifier so-called Lyapunov exponents. The LE are
one of the most widely used for investigation of the mathematical systems. As will
be presented later, there exist cases, where the quantifier is limited.

In the next section reconstruction of attractor dynamics is introduced. It is very
useful tool, because in real-valued measurements the availability of state variables
is highly limited. One of the main issues that hast to be overcome is the estimation
of parameters for reconstruction.

In the next section the estimation of embedded dimension is presented.

The next section presents one of the methods for estimation of 𝜏 that is used for
reconstruction of dynamics of attractor.

The last section presents example of time series analysis, on the well known
Lorenz attractor, applying the previously presented tools.
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11 FRACTIONAL ORDER SERIES

A classical description of dynamical processes and models in the real physical sys-
tems is usually based on the description by the differential equations. But there
exists phenomenons that can not be described by the classical integer derivatives
therefore it is necessary to apply the non-integer fractional calculus [81, 82, 83, 84,
85, 125].

𝐷𝑛 𝑓(𝑥)
𝐷𝑥𝑛

, (11.1)

where 𝑛 can be a real number. Such calculus is an extension of derivatives and
integrals to non-integer orders. In fact there exist several definitions of derivatives
and integrals. The well known is Riemann-Liouville definition, Caputo’s definition,
Oldman and Spanier and many others.

One of the mainly used definition is the fractional Grunwald Letnikov (GL)
differ-integral defined as:

𝑎𝐷𝛼
𝑡 𝑓(𝑡) = lim

ℎ→0

1
ℎ𝛼

[ 𝑡−𝑎
ℎ ]∑︁

𝑗=0
(−1)𝑗

(︃
𝛼

𝑗

)︃
𝑓(𝑡 − 𝑗 ℎ), (11.2)

where:
[︂
𝑡 − 𝑎

ℎ

]︂
→ Z. (11.3)

Such definition is elegant general operator since assuming for positive index, one
get differentiation:

𝑓 1(𝑥) = lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ

, (11.4)

𝑓 2(𝑥) = lim
ℎ→0

𝑓 1(𝑥 + ℎ) − 𝑓 1(𝑥)
ℎ

= lim
ℎ→0

limℎ2→0
𝑓(𝑥+ℎ1+ℎ2)−𝑓(𝑥+ℎ1)

ℎ2
− limℎ2→0

𝑓(𝑥+ℎ2)−𝑓(𝑥)
ℎ2

ℎ1
, (11.5)

ℎ1 = ℎ2 = ℎ, (11.6)

𝑓 2(𝑥) = lim
ℎ→0

𝑓(𝑥 + 2ℎ) − 2𝑓(𝑥 + ℎ) + 𝑓(𝑥)
ℎ2 . (11.7)
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Continuing for 𝑛 time we have:

𝑓𝑛(𝑥) = 𝐷𝑛 𝑓(𝑥) = lim
ℎ→0

1
ℎ𝑛

𝑛∑︁
𝑗=0

(−1)𝑗

(︃
𝑛

𝑗

)︃
𝑓(𝑥 − 𝑗 ℎ), (11.8)

(︃
𝑛

𝑗

)︃
= 𝑛!

𝑗!(𝑛 − 𝑗)! = Γ(𝑛 + 1)
𝑗! Γ(𝑛 − 𝑚 + 1) . (11.9)

Therefore differentiation in fractional order is:

𝑎𝐷𝑛 𝑓(𝑡) = lim
ℎ→0

1
ℎ𝑛

[ 𝑡−𝑎
ℎ ]∑︁

𝑗=0
(−1)𝑗 Γ(𝑛 + 1)

𝑗! Γ(𝑛 − 𝑚 + 1)𝑓(𝑡 − 𝑗 ℎ). (11.10)

For negative 𝑛 the process will be integration:

(︃
−𝑛

𝑗

)︃
= −𝑛(−𝑛 − 1)(−𝑛 − 2) . . . (−𝑛 − 𝑗 + 1)

𝑗!

= (−1)𝑗 𝑛(𝑛 + 1)(𝑛 + 2) . . . (𝑛 + 𝑗 − 1)
𝑗!

= (−1)𝑗 (𝑛 + 𝑗 − 1)!
𝑗! (𝑛 − 1)! → (−1)𝑗 Γ(𝑛 + 𝑗)

𝑗! Γ(𝑛) . (11.11)

Therefore for the integration we write:

𝑎𝐷−𝑛 𝑓(𝑥) = lim
ℎ→0

ℎ𝑛

[ 𝑥−𝑎
ℎ ]∑︁

𝑗=0

Γ(𝑛 + 𝑗)
𝑗! Γ(𝑛) 𝑓(𝑥 − 𝑗 ℎ). (11.12)

The part
[︁

𝑥−𝑎
ℎ

]︁
is the integer part of the fraction (floor function). Definitions

(RL, GL, Caputo) are equivalent. Fractional calculus allows more compact repre-
sentation and problem solution for some spatially distributed systems.

Unfortunately many of the results in the fractional calculus are given in the lan-
guage of advanced analysis and are not easily readable for general engineering and
science community.

Probably the first physical system to be recognized as demonstrating the frac-
tional properties is the semi infinite lossy (RC) transmission line.

In fractal order series the fractional real numbers as the differential operators are
used. Usually the simplest circuit synthesis of ODEs involves integrator synthesis.
Creating integrator with fractional capacitor leads to solution of fractional order
systems.
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The relation for the explicit numerical approximation of the 𝑞𝑡ℎ derivative at
the points 𝑘ℎ(𝑘 = 1, 2, ...) has the following form:

(𝑘−𝐿𝑚/ℎ)𝐷𝛼
𝑡𝑘

𝑓(𝑡) ≈ ℎ−𝛼
𝑘∑︁

𝑖=0
𝑐

(𝛼)
𝑖 𝑓(𝑡𝑘−𝑖), (11.13)

where Lm is the memory length, 𝑡𝑘 = 𝑘ℎ, ℎ is the time step of calculation, and
𝑐

(𝛼)
𝑖 (𝑖 = 0, 1, ...) are binomial coefficients [83]. They can be obtained as follows:

𝑐
(𝛼)
0 = 1,

𝑐
(𝛼)
𝑖 = (1 + 1 + 𝛼

𝑖
)𝑐(𝛼)

𝑖−1. (11.14)

Then the solution of fractional differential equation can be obtained as:

(𝛼)𝐷𝛼
𝑡 𝑦(𝑡) = 𝑓(𝑦(𝑡), 𝑡), (11.15)

then without using short therm memory principle:

𝑦(𝑡𝑘) = 𝑓(𝑦(𝑡𝑘), 𝑡𝑘)ℎ𝛼 −
𝑘∑︁

𝑖=1
𝑐𝛼

𝑖 𝑦(𝑡𝑘−𝑖). (11.16)

There are several mathematical definitions that solve these problems. Fortu-
nately, the Laplace transform is still applicable and works as one would expect.
Upon considering all the initial conditions to be zero, the Laplace transform of the
Riemann - Liouville fractional derivative satisfies:

𝐿

{︃
𝑑𝛼𝑓(𝑡)

𝑑𝑡𝛼

}︃
= 𝑠𝛼𝐿 {𝑓(𝑡)} . (11.17)

Then, the fractional integral operator of order 𝛼 can be represented by the trans-
fer function:

𝐹 (𝑠) = 1
𝑠𝛼

. (11.18)

In the Fig.11.1 there is solution for the system of equations (17.1) with different
fractional integrators.

In the Fig.11.2 we can see the dependency of the system on the order of integra-
tion. Obvious and revolutionary is, that autonomous system of order approx. 2.73
can exhibit chaotic behavior even for the Lorenz system (17.1).
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Fig. 11.1: Different fractal integrators 𝑎)𝛼 = 1, 𝑏)𝛼 = 0.99, 𝑐)𝛼 = 0.98, 𝑑)𝛼 = 1.1,
𝑒)𝛼 = 0.993, 𝑓)𝛼 = 0.6.
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Fig. 11.2: Bifurcation diagram for the perturbed fractional order 𝑛.
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11.1. On Fractional Autonomous Algebraically Simple Low Order Chaotic Flow

11.1 On Fractional Autonomous Algebraically Sim-
ple Low Order Chaotic Flow

A classical description of dynamical processes and models in the real physical sys-
tems is usually based on the description by the differential equations. But there ex-
ists phenomenons that can not be described by the classical integer derivatives there-
fore it is necessary to apply the non-integer fractional calculus [81, 82, 83, 84, 85].
In fractal order series the fractional real number as the differential operators are used.

Usually the simplest circuit synthesis of ODEs involves the integrator synthesis.
Creating integrator with fractional capacitor [143] leads to solution of fractional or-
der systems.

The fractional calculus is more than 300 years old, but still yield many unan-
swered problems.

The algebraically simple mathematical model presented in [70] has been chosen:

�̇� = −𝑦

�̇� = 𝑥 + 𝑧

�̇� = 𝑥𝑧 + 3𝑦2. (11.19)

The system (11.19) has an unstable point located in the origin. The careful
analysis has shown, that the system is extremely sensitive to the initial condition.
For the simulations we have set the I𝑐 = [0.1, 0, 0]𝑇 .

In the Fig.11.3-11.6 there are different values of the integrator constants 𝛼. We
can see the dependency of the system on the order of integration. Obvious and
revolutionary is, that autonomous system of order less than 3 can exhibit chaotic
behavior. We can see, that lowering the order od integrators, the behavior is af-
fected. Mathematically it means, that the order of autonomous chaotic oscillator is
lower than 3.

The bifurcation diagram where the perturbed parameter is the real integration
constant is presented in the Fig.(11.7).
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11.1. On Fractional Autonomous Algebraically Simple Low Order Chaotic Flow

Fig. 11.3: Numerically simulated system with 𝛼1 = 1, 𝛼2 = 1, 𝛼3 = 1.

Fig. 11.4: Numerically simulated system with 𝛼1 = 1, 𝛼2 = 1, 𝛼3 = 0.9.
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11.1. On Fractional Autonomous Algebraically Simple Low Order Chaotic Flow

Fig. 11.5: Numerically simulated system with 𝛼1 = 1, 𝛼2 = 1, 𝛼3 = 0.8.

Fig. 11.6: Numerically simulated system with 𝛼1 = 1, 𝛼2 = 1, 𝛼3 = 0.7.

11.1.1 Lowest Possible Differential Order

In this subsection we would like to present the lowest possible mathematical order
of system (11.19). In the Fig. (11.8) there is presented autonomous chaotic flow

193



11.1. On Fractional Autonomous Algebraically Simple Low Order Chaotic Flow

Fig. 11.7: Bifurcation diagram where 𝛼1 = 1, 𝛼2 = 1 and 𝛼3 is perturbed.

with order 2.46.

Fig. 11.8: Bifurcation diagram where 𝛼1 = 0.86, 𝛼2 = 1 and 𝛼3 = 0.6.

We believe that it is the lowest possible order for the system (11.19).
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11.2. Conclusion

11.2 Conclusion

It is known that avoiding fractional integrators the third order of autonomous dy-
namical systems is the minimum order to produce chaos. Generating chaotic behav-
ior in less than third order autonomous systems is quite delicate process. The whole
system is extremely sensitive as for the initial conditions as for the realization. To
obtain chaotic behavior, the whole system has to be perfectly balanced. With the
growing order of the system, the presence of chaotic behavior is more probable [141].

Probably the first physical system to be recognized as demonstrating the frac-
tional properties is the semi infinite lossy (RC) transmission lines [85]. Another
example of using fractional order circuits can be found in [86, 87], where the author
utilize the fractional-order two-port circuit element in different filtering applications.
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12 ANALYSIS AND IMPLEMENTATION OF DY-
NAMICAL SYSTEM WITH PERIODICAL
DISCRETE JUMPS

Recently, the discovery of a new interesting dynamical system has been reported
by the authors and its practical implementation as an electronic circuit has been
already verified [142]. This system so-called GP[142, 119] can be expressed by the
following set of the dimensionless differential equations:

�̇� = −𝑎𝑥 𝑥 ± sign[sin(𝑏𝑦𝑦)]
�̇� = −𝑎𝑦 𝑦 ± sign[sin(𝑏𝑧𝑧)]
�̇� = −𝑎𝑧 𝑧 ± sign[sin(𝑏𝑥𝑥)], (12.1)

where dots denote the derivatives with respect to time and the dissipative con-
stants −𝑎𝑥 ≤ 0, −𝑎𝑦 ≤ 0, −𝑎𝑧 ≤ 0. The constants 𝑏𝑥 > 0, 𝑏𝑦 > 0, 𝑏𝑧 > 0 are called
complexity parameters. Note that it is a modified mathematical model known as
a generator of the so-called labyrinth chaos [68], that has a cyclically symmetrical
vector field and that is invariant under the trivial changes of the state variables.

It turned out that sine function can be directly replaced by cosine function with-
out the essential changes of the global dynamics.

The main difference between (12.1) and original dynamical system describing
auto-catalytic processes in chemistry is the discontinuity of the vector field.

Since there is no closed-form analytic solution of the equations (12.1) the anal-
ysis is restricted to the numerical integration process and the associated routines.
The most widely used and general quantifier of the dynamical motion is a calcula-
tion of some metric dimension of the state space attractor. Such method is known
as Kaplan-Yorke dimension and is based on the knowledge of a spectrum of the
Lyapunov exponents (10.1.3). The definition formula can be also written as [71]:

𝐿𝐸[x0, y0 ∈ 𝑇𝑥(𝑡)R3] = lim
𝑡→∞

1
𝑡

‖𝐷𝑥𝜑(𝑡, x0)y0|
‖y0‖|

, (12.2)

where 𝑇𝑥(𝑡) represents a tangent space in the fiducial point and 𝐷𝑥𝜑(𝑡, x0)y0 is a
solution of the linearized system. By sorting and indexing LEs in descending order
the mentioned metric dimension can be calculated as:

𝐷𝐾𝑌 = 𝑘 +
∑︀𝑘

𝑖=1 𝐿𝐸𝑖

‖𝐿𝐸𝑘+1‖
, (12.3)
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where 𝑘 is the largest integer for which the numerator in (12.3) is still a positive
number.

It is obvious from (12.2) that the most common approach for LE evaluation for
three dimensional original systems is based on the numerical integration of the twelve
differential equations [69]. The linearization matrix is calculated in each point on
the trajectory, thus it necessary to have the knowledge about Jacobi matrix (JM)
in the symbolic form.

Using the concept of the box-counting method the capacity dimension can be
established using the formula:

𝐷𝐶 = lim
𝜀→∞

𝑁(𝜀)
ln(1

𝜀
) . (12.4)

This method can not be considered as accurate and precise since these features
strongly depend on the chosen size of the volume cubes, which is necessary to be
as small as possible. Decreasing edges lead to the necessity of using a huge number
of the cubes and subsequently to the large demands on the personal computer per-
formance, especially accessible memory. It is worth nothing that this is very time
consuming approach.

Moreover there is a probability that several points on the state space orbit fall
into one volume cube and some information about attractor geometry is lost. This
drawback is partially solved by other calculation techniques involving probabilities
like dimension spectrum and its derivatives, information [63] and correlation dimen-
sions [77]. Thus this method can not be effectively used for the dynamical systems
with the large state space attractors.

To end the discussion about suitable method for our purpose there are still some
possibilities to quantify dynamical motion using the knowledge of some state vari-
ables as time-domain waveforms [64]. The utilization of some method for deriving
largest LE from the time series is extremely sensitive to the routine parameters and
does not provide precise results.

The above mentioned problems are the main reasons for the discovery of the
novel method for metric dimension calculation. Two principles for evaluation of JM
in the symbolical form will be addressed in the next section. Then we brings some
information about the concept of new rough quantifier of the dynamical motion
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12.1. Numerical Analysis

different from the conventional metric dimensions together with some practical ex-
amples. Then we will discuss the possibilities to model GP system by using lumped
analog and mixed electronic circuits. The experimental verification via the oscillo-
scope screen-shots has been also presented.

The last section covers some perspectives for future work and opens the virtual
space for solving the residual problems.

12.1 Numerical Analysis

To obtain a brief insight into the global dynamics of equations (12.1) the numerical
integration has been performed. To do this program Mathcad and build-in fourth-
order Runge-Kutta method has been used with final time 𝑡𝑚 = 1000 and time step
𝑡Δ = 0.1.

The initial conditions were chosen to be x0 = (0.1, 0, 0)𝑇 and the results are
given in Fig. 12.1, Fig. 12.2, Fig. 12.3, Fig. 12.4, Fig. 12.5 and Fig. 12.6 as the
three-dimensional perspective views.

Rough approximation of sign functions means that only two harmonics are used
in Fourier series. On the contrary, five harmonics are taken into account for soft
approximation of sign functions.

Obviously there have been no significant changes in the global dynamics or at-
tractor shape. Note that for small values of 𝑎𝑥, 𝑎𝑦 and 𝑎𝑧 the corresponding state
attractors are bounded in very large state space volume.

The major property of chaotic solution is its extreme sensitivity to the changes
of the initial conditions. This is demonstrated by a time dependence of the absolute
error of the selected state variable. The initial conditions for reference system have
been slightly different x1 = (0.101, 0, 0)𝑇 .

The exponential divergence of both state trajectories is visible in Fig. 12.7 and
Fig. 12.8. A very useful tool for brief dynamical system analysis is the so-called
Poincare sections. These state space subsets allow reducing the order of studied
system by one. In the case of three state variables the flow is reduced to the map
on the plane, see Fig. 12.9, Fig. 12.10 and Fig. 12.11. For each simulation in this
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12.1. Numerical Analysis

chapter the complexity parameters were 𝑏𝑥 = 𝑏𝑦 = 𝑏𝑧 = 10.

Fig. 12.1: Typical attractors of GP system with uniform parameters 𝑎𝑥 = 𝑎𝑦 = 𝑎𝑧 =
0.

Fig. 12.2: Typical attractors of GP system with uniform parameters 𝑎𝑥 = 𝑎𝑦 = 𝑎𝑧 =
0.3.
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12.2. Calculation Methods

Fig. 12.3: Typical attractors of GP system with rough approximation of the sign
function (see text) and uniform parameters 𝑎𝑥 = 𝑎𝑦 = 𝑎𝑧 = 0.

Fig. 12.4: Typical attractors of GP system with rough approximation of the sign
function (see text) and uniform parameters 𝑎𝑥 = 𝑎𝑦 = 𝑎𝑧 = 0.3.

12.2 Calculation Methods

As mentioned in the first section of this chapter the key problem of system (12.1)
quantification is in the symbolical form of the JM. The sign function can be split into
segments with zero partial derivative 𝐴0 and regions with positive infinity +𝐴∞ and
negative infinity partial derivative −𝐴∞. The associated characteristic polynomial
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12.2. Calculation Methods

Fig. 12.5: Typical attractors of GP system with soft approximation of the sign
function (see text) and uniform parameters 𝑎𝑥 = 𝑎𝑦 = 𝑎𝑧 = 0.

Fig. 12.6: Typical attractors of GP system with soft approximation of the sign
function (see text) and uniform parameters 𝑎𝑥 = 𝑎𝑦 = 𝑎𝑧 = 0.3.

becomes:
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12.2. Calculation Methods

Fig. 12.7: Sensitivity to the changes of the initial conditions for original Thomas
system (red curve) and GP system (black flow) and uniform parameters 𝑎𝑥 = 𝑎𝑦 =
𝑎𝑧 = 0.

Fig. 12.8: Sensitivity to the changes of the initial conditions for original Thomas
system (red curve) and GP system (black flow) and uniform parameters 𝑎𝑥 = 𝑎𝑦 =
𝑎𝑧 = 0.3.

det(𝜆 · E − J) =

⎛⎜⎜⎝
𝜆 − 𝑎𝑥 −𝜙𝑥 0

0 𝜆 − 𝑎𝑦 −𝜙𝑧

−𝜙𝑥 0 𝜆 − 𝑎𝑧

⎞⎟⎟⎠
= (𝜆 − 𝑎𝑥)(𝜆 − 𝑎𝑦)(𝜆 − 𝑎𝑧) − 𝜙𝑥𝜙𝑦𝜙𝑧 = 0, (12.5)

where 𝜙 = 0 inside each segment of the vector field and 𝜙 = ±∞ on the bound-
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12.2. Calculation Methods

Fig. 12.9: Attractor visualization using different Poincare sections corresponding to
the planes 𝑥 = 0,𝑦 = 0 and 𝑧 = 0 for original Thomas system (red dots) and GP
system (black dots) and uniform parameters 𝑎𝑥 = 𝑎𝑦 = 𝑎𝑧 = 0.3.

Fig. 12.10: Attractor visualization using different Poincare sections corresponding
to the planes 𝑥 = 0,𝑦 = 0 and 𝑧 = 0 for original Thomas system (red dots) and GP
system (black dots) and uniform parameters 𝑎𝑥 = 𝑎𝑦 = 𝑎𝑧 = 0.3.

aries. The idea about the individual state variables time dependence is provided in
Fig. 12.12 and Fig. 12.13 for 𝑧(𝑡).
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12.2. Calculation Methods

Fig. 12.11: Attractor visualization using different Poincare sections corresponding
to the planes 𝑥 = 0,𝑦 = 0 and 𝑧 = 0 for original Thomas system (red dots) and GP
system (black dots) and uniform parameters 𝑎𝑥 = 𝑎𝑦 = 𝑎𝑧 = 0.3.

The dynamics of GP system is compared with the smooth Thomas system [68]
in the sense of third differential equation (12.1) which evolves accordingly to the
following analytic formula (using separation of the variables):

𝑑𝑧

𝑑𝑡
= 𝑎𝑧𝑧 + 𝑓(𝑥) ⇒ 𝑧(𝑡) = 1

𝑎𝑧

[𝑒𝑎𝑧𝑡 − 𝑓(𝑥)], (12.6)

where 𝑓(𝑥) = sign[𝑠𝑖𝑛(𝑏𝑥)] and 𝑔(𝑥) = 𝑠𝑖𝑛(𝑏𝑥). This solution can be interpreted
as increasing if 𝑓(𝑥) = 1 and decreasing if 𝑓(𝑥) = −1 with uniform ratio propor-
tionally to parameter 𝑎𝑧. A more comprehensible image about dynamical motion
governed by the last equation (12.1) is shown in Fig.12.14 and Fig.12.15. The raising
and falling segments with size 𝑘𝜋/𝑏𝑥 and 𝑘𝜋/𝑏𝑥 where 𝑘 ∈ (−∞, +∞) is a natural
number are also clarified in these Monge projections.

The most straightforward approach to avoid problems with infinity is to expand
the periodical sign function into the Fourier series. It is well known that the square
wave, if generated by sine function, can be expressed as:
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12.2. Calculation Methods

Fig. 12.12: The state variable z(t) waveform of GP system with uniform parameters
𝑎𝑥 = 𝑎𝑦 = 𝑎𝑧 = 0.3.

Fig. 12.13: The state variable z(t) waveform of Thomas system with uniform pa-
rameters 𝑎𝑥 = 𝑎𝑦 = 𝑎𝑧 = 0.3.

𝑓(𝑏𝑥) = 4
𝜋

𝑘∑︁
𝑛=1

1
2𝑛 − 1 sin[𝑏(2𝑛 − 1)𝑥], (12.7)

where 𝑘 is order of the approximation. Its derivation in the symbolical form:

𝑔(𝑏𝑥) = 4
𝜋

𝑘∑︁
𝑛=1

𝑏 sin[𝑏(2𝑛 − 1)𝑥], (12.8)

is adopted inside JM. This approach bears a significant numerical error due to
the so-called Gibbs effect [74]. Intuitively speaking, the magnitude of such error
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12.2. Calculation Methods

Fig. 12.14: The dynamical motion clarification for the last differential equation using
xz plane projection, uniform parameters 𝑎𝑥 = 𝑎𝑦 = 𝑎𝑧 = 0.1.

Fig. 12.15: The dynamical motion clarification for the last differential equation using
xz plane projection, uniform parameters 𝑎𝑥 = 𝑎𝑦 = 𝑎𝑧 = 0.3.

depends on the integration step size. Gibbs effect introduces the fiction of the
short-time decreasing volume element expansion and contraction under the dynam-
ical flow. There are some other smooth functions with continuous derivatives that
can be utilized like exponential or sigmoid functions.

It turns out that calculating the spectrum of LEs by the usage of the immediate
numerical value of the derivative by storing previous values of the corresponding
state variable, can not be used.
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12.3. Spherical Quantification

Extreme values of derivatives causes divergences in computation. Changing the
step of numerical integration can avoid the extreme values of derivatives, but causes
deviance in the final attractor itself. The topographically scaled contour-surface
plots of the largest LE as a function of 𝑎 = 𝑎𝑥 = 𝑎𝑦 = 𝑎𝑧 and 𝑏 = 𝑏𝑥 = 𝑏𝑦 = 𝑏𝑧 are
provided in Fig.12.16, Fig.12.17, Fig.12.18 and Fig.12.19.

Fig. 12.16: Plot of the largest LE of GP system with uniform parameters 𝑎𝑥 =
𝑎𝑦 = 𝑎𝑧 ∈< 0, 0.1 >, rough approximation of the sign(.) function. In both plots
𝑏 ∈< 0, 2 >.

12.3 Spherical Quantification

There is a lack of suitable methods for quantifying behavior of almost conservative
systems with large strange attractors. Therefore we present spherical quantification
in order to classify behavior of the attractor.

The proposed approach is based on the fundamental nature of the strange at-
tractors, namely its ergodicity and mixing property. To greatly shorten the com-
putational time the three-body problem should be exchanged by the mathematical
operations on the plane, in detail on the surface of the sphere.
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Fig. 12.17: Plot of the largest LE of GP system with uniform parameters 𝑎𝑥 = 𝑎𝑦 =
𝑎𝑧 ∈< 0.25, 0.35 >, rough approximation of the sign(.) function. In both plots
𝑏 ∈< 0, 2 >.

Fig. 12.18: Plot of the largest LE of GP system with uniform parameters 𝑎𝑥 = 𝑎𝑦 =
𝑎𝑧 ∈< 0, 0.1 > (left), smooth approximation of the sign(.) function. In both plots
𝑏 ∈< 0, 2 >.

The principle of calculation lies in the transformation of the analyzed attractor
from the Cartesian coordinates into the sphere. First the surface of R3 sphere is
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Fig. 12.19: Plot of the largest LE of GP system with uniform parameters 𝑎𝑥 = 𝑎𝑦 =
𝑎𝑧 ∈< 0.25, 0.35 >, smooth approximation of the sign(.) function. In both plots
𝑏 ∈< 0, 2 >.

normalized to have general quantifier. Using the spherical coordinates, the unit
sphere can be parameterized by:

�⃗�(𝜃, 𝜙) = (cos 𝜙 sin 𝜙, sin 𝜃 sin 𝜙, cos 𝜙),
∧ 0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝜙 ≤ 𝜋. (12.9)

Than the area 𝐴 of sphere 𝑆 is set to be equal to 1 (normalization) can be
expressed as:

𝐴(𝑆) =
∫︁

𝑆
|�⃗�𝑢 × �⃗�𝑣|𝑑𝑢𝑑𝑣 = 1. (12.10)

Thus for the square radius 𝑟2 of R3 sphere stands:

𝑟2 = 1
4𝜋

. (12.11)

Radius of this sphere is chosen 𝑟 = (4𝜋)−1/2 such that the sum of all SP is unity.
This globe splits into elemental surface pieces (SP) depending on the Δ𝜙, Δ𝜃 angle
steps:

𝜃 = arctan
(︂

𝑦

𝑥

)︂
, (12.12)
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12.3. Spherical Quantification

𝜙 = arccos
(︂

𝑧

𝑟

)︂
. (12.13)

Assuming attractor will fill the entire space of R3 where integral step limit ap-
proaches zero, meaning the likelihood has a continuous uniform distribution 𝑃 (𝑥) is
described:

𝑃 (𝑥) =
⎧⎨⎩

1
𝑏−𝑎

for 𝑎 ≤ 𝑥 ≤ 𝑏

0 for 𝑥 < 𝑎 or 𝑥 > 𝑏
(12.14)

Than the surface of whole sphere can be expressed as:

𝑆𝑆𝑝ℎ𝑒𝑟𝑒 =
∫︁ 𝜋

0

∫︁ 2𝜋

0

1
4𝜋

sin 𝜃𝑑𝜙𝑑𝜃 = 1. (12.15)

Considering the discrete time series, the step Δ𝜃 and Δ𝜙 needs to be set, other-
wise certain SP needs to be deleted to have particular list of SP the complexity of
the analyzed attractor.

Following the flow Φ(𝑥, 𝑦, 𝑧) of attractor in R3 of 𝑁 elements, each SP is indexed
by the natural numbers 𝑖 and 𝑗. In the main calculation routine the individual SP
occupied by a state trajectory are summarized.

The surface of occupied area on the R3 sphere can be calculated using the fol-
lowing discrete formula:

𝑆Φ =
𝑁∑︁

𝑖=1

𝑁∑︁
𝑗=1

1
4𝜋

sin(𝑖 𝜋

𝑁
)2𝑖𝑗

𝜋2

𝑁2 . (12.16)

The graphical interpretation of this novel motion quantifier is demonstrated in
Fig.12.20, Fig.12.21, Fig.12.22, Fig.12.23, Fig.12.24 and Fig.12.25 for some interest-
ing situations.

There is one serious drawback of this procedure leading to the indispensable nu-
merical errors. The shape and orientation of the state attractor can be right-lined
as it is visible in the first two examples. If so, a huge amount of the information
about attractor geometric structure is lost. To improve this disadvantage the linear
change of the coordinates in order to spread the studied attractor should be per-
formed before transformation on the sphere.
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Fig. 12.20: The dynamical motion quantification, analyzed attractor (red) and its
projection on sphere (black), GP system with uniform parameters 𝑎𝑥 = 0.1 and
𝑎𝑦 = 𝑎𝑧 = 0.

Fig. 12.21: Another view on the dynamical motion quantification, analyzed attractor
(red) and its projection on sphere (black), GP system with uniform parameters
𝑎𝑥 = 0.1 and 𝑎𝑦 = 𝑎𝑧 = 0.
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Fig. 12.22: The dynamical motion quantification, analyzed attractor (red) and its
projection on sphere (black), GP system with uniform parameters 𝑎𝑥 = 𝑎𝑦 = 0.1
and 𝑎𝑧 = 0.

Fig. 12.23: Another different view on the dynamical motion quantification, ana-
lyzed attractor (red) and its projection on sphere (black), GP system with uniform
parameters 𝑎𝑥 = 𝑎𝑦 = 0.1 and 𝑎𝑧 = 0.
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Fig. 12.24: The dynamical motion quantification, analyzed attractor (red) and its
projection on sphere (black), GP system with uniform parameters 𝑎𝑥 = 𝑎𝑦 = 𝑎𝑧 =
0.1.

Fig. 12.25: Another different view on the dynamical motion quantification, ana-
lyzed attractor (red) and its projection on sphere (black), GP system with uniform
parameters 𝑎𝑥 = 𝑎𝑦 = 𝑎𝑧 = 0.1.
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12.4 Circuitry Implementation

It is well known that synthesis of the electronic circuits is the easiest way how to ac-
curately model the nonlinear dynamical systems. There are three major and widely
used systematic approaches: classical circuit synthesis [88, 89], direct implementa-
tion of the differential equation [68, 90, 91, 131, 132, 134] and design procedure based
on the integrator block schematic [71, 138, 136]. Each mentioned design approach
has some advantages and drawbacks.

The circuitry implementation of the continuous time dynamical systems with
accessible chaotic behavior is called chaotic oscillator. Due to the stretching mech-
anism usually caused by single or multiple unstable equilibrium the corresponding
circuit must contain one or more active elements [69] supplying energy to the passive
parts.

The most straightforward way for practical realization of Thomas dynamical sys-
tem as well as GP oscillator starts with block schematic with inverting integrators,
differential amplifiers (with summation block as a special case) and two-port with
desired nonlinear transfer characteristics.

One possible network suitable to model GP system is given in Fig.12.1 and
Fig.12.2. The disadvantage of such configuration is clear: a large amount of the
active building blocks. The linear part of the vector field is composed of the lin-
ear lossy integrators realized by the second generation positive current conveyor
(CCII+) with current summation at the input port. CCII+, in particular the inte-
grated circuit AD844, is described by the set of following hybrid equations:

𝑖𝑦 = 0 𝑢𝑥 = 𝑢𝑦 𝑖𝑧 = 𝑖𝑥 𝑢0 = 𝑢𝑧. (12.17)

The purpose of CCII+ is also for easy measurement of the nonlinear function,
which is represented by voltage at the output 𝑢0. The principle of the piecewise-
constant function is fundamental. The operational amplifiers act as comparators
(CMP) without hysteresis effect. The transfer function and integration can be ex-
pressed by single equation in Laplace transform:

𝑢0 = − 1
𝑠𝐶 + 𝐺

𝑖∑︁
𝑘=1

𝑢𝑘

𝑅𝑥𝑘

, (12.18)
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where 𝐺 = 1/𝑅, uk are voltages at the output of CMP and i is the number of
necessary CMP which is closely related to the dissipation factors 𝑎𝑥, 𝑎𝑦, 𝑎𝑧 adjustable
by the variable resistors 𝑅.

The size of accessible state attractor is upper limited by the dynamical ranges
of the OPA, i.e. by supply voltages 𝑉𝑐𝑐 = +15𝑉 and 𝑉𝑒𝑒 = −15𝑉 . The breakpoints
of the transfer curve are adjusted either by external dc sources or voltage divider
made by the resistors 𝑅𝑑𝑖.

The time-domain simulation of the fully analog GP system is shown in Fig. 12.3
and Fig. 12.4 as the plane projections of the strange state space attractors.

The main drawback of the fully analog oscillator conception is obvious, a huge
number of the active elements. The idea behind digital approach is uncovered in
Fig.12.26.

The linear part of the vector field remains the same as for previous oscillator.
The input signal enters analog-to-digital converter (ADC), goes through processor
programmed in C/C++ using KEIL uVision V3.90 and resulting waveform is finally
transformed back into the analog form by digital-to-analog converter (DAC).

The slowest operation is computing trigonometric function. The maximum work-
ing frequency is about 230 kHz and this boundary has been verified either by nu-
merical study in Mathcad (sampling and quantization mechanism) as well as by
experimental measurement.

The selected digital oscilloscope screen-shots are provided in Fig.12.27, Fig.12.28
and Fig.12.29 proving almost one-to-one correspondence between the theoretical ex-
pectations and the practical results.

STM32
y=f(x)

ADC
TLC2574

DAC
DAC8734

SPI SPI

Input Output

3CH 3CH

Fig. 12.26: Experimental setup for implementation of GP system by means of six-
port with digital signal processing.
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Fig. 12.27: Experimental verification of mixed circuit design of GP system measured
by Agilent Infiniium.

Fig. 12.28: Experimental verification of mixed circuit design of GP system measured
by Agilent Infiniium.

Fig. 12.29: Experimental verification of mixed circuit design of GP system measured
by Agilent Infiniium.

After thinking about how to reduce the complexity of the nonlinear network a
very simple circuitry has been revealed. The stair-type function can be realized by
single ADC, namely by considering its least significant bit. Of course the input
voltage range should be adjusted accordingly to the parameter 𝑏𝑥, 𝑏𝑦 and 𝑏𝑧. The
output voltage level should be also carefully monitored and shifted by negative offset
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voltage if necessary. The realization itself can be seen in Fig.12.31 and in Fig.12.32
and its circuit simulations using Orcad Pspice 15 environment in Fig.12.30 and in
Fig.12.33

Fig. 12.30: The plane projections of the state space trajectories simulated in Orcad
Pspice 15 environment, 𝑏𝑥 = 𝑏𝑦 = 𝑏𝑧 = 10 together uniform dissipation parameters
𝑎𝑥 = 𝑎𝑦 = 𝑎𝑧 = 0.5 (left) and 𝑎𝑥 = 𝑎𝑦 = 𝑎𝑧 = 0.2 (right).

Fig. 12.31: Fully analog implementation of GP system using AD844 (CCII+) and
TL084 (OPA).
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In this particular case, two ADC blocks have been used. One for positive volt-
age with positive voltage reference VREF1 and other for negative VREF2. Voltage
offset is added by voltage sources VOFF.

In fact, only one ADC can be used with positive and negative voltage dynamical
range. Resistors 𝑅𝑑 ∼ 1𝑘Ω. The parameter 𝑏 is set directly by the sampling fre-
quency of the converter itself. Values of parameter 𝑎𝑥, 𝑎𝑦 and 𝑎𝑧 are set by resistors
𝑅𝑥, 𝑅𝑦 and 𝑅𝑧.

Fig. 12.32: GP system realization by using ADC as core engine for the nonlinear
building block.

Fig. 12.33: The plane projections of the state space trajectories of ADC realization
simulated in Orcad Pspice 15 environment, 𝑏𝑥 = 𝑏𝑦 = 𝑏𝑧 = 10 together uniform
dissipation parameters 𝑅𝑥 = 𝑅𝑦 = 𝑅𝑧 = 10𝑘Ω (left) and 𝑅𝑥 = 𝑅𝑦 = 𝑅𝑧 = 70𝑘Ω
(right).
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12.5 Conclusion

Several ideas from the area of numerical analysis of the dynamical systems with low
dissipation have been suggested and verified. These procedures allow solving the
serious problems where standard existing procedures can not be used.

Moreover, the authors believe that GP oscillator models the three-dimensional
Brownian-like motion [92] of the single microscopic particle without interactions.

The vector field discontinuity and flow jumping resembles the particle-like be-
havior known from the quantum theory [93]. There is no doubt that there are a lot
of real physical systems with the similar mathematical description.
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13 GENERALIZATION OF PIECEWISE-LINEAR
APPROXIMATION OF THE CHAOTIC DY-
NAMICS

Autonomous nonlinear dynamical systems attract increasing interest of mathemati-
cians, physicists as well as design engineers. Several features leads to the necessity
of studying and understanding dynamical motion associated with arbitrary-order
nonlinear systems.

Firstly the real nature entities are generally nonlinear, however approximately,
they can be described by a set of the ordinary differential equations.

Secondly, a dimensionless form of the state description makes any kind of analy-
sis interdisciplinary since one mathematical model can be associated with multiple
phenomenon rendering the concrete interpretation of state variables.

Last but not least, nonlinear dynamical systems having at least three degrees of
freedom can exhibit unpredictable noise-like behavior called chaos. For better clari-
fication, the so-called chaotic motion is solution extremely sensitive to tiny changes
of the initial conditions while forming bounded and dense state space attractors with
fractal metric dimension.

The most catching in electrical engineering is the fact that circuitry implementa-
tion of the deterministic system can provide striking explanation for irregular behav-
ior and anomalies in many systems which does not seem to be implicitly stochastic.
The basic obstacle to be removed in this area lies in the lack of closed form an-
alytical solutions for most of the higher-order nonlinear dynamical systems. This
can be overcome by using numerical methods for the analysis and by linearizing the
continuous vector field by suitable piecewise-linear (PWL) function.

A lot of simple PWL mathematical functions were already developed. For ex-
ample let recall same fundamental types as explicit ones presented in [94, 95] or
implicitly given published in[96]. The linearization of vector field is not a new idea,
but finding the singular solution in order to preserve chaotic or hyper-chaotic mo-
tion by optimization algorithms was not proposed. In the case of vector fields with
stretching and folding property this task is a little bit tricky.

The least mean square method (or derived procedures) cannot provide satisfac-
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tory results, i.e. desired chaotic attractor can be deformed or completely degraded
into complex limit cycles. The main difficulty is that the numerical values of PWL
function coefficients does not have direct relation to chaotic nature of given dynam-
ical system with smooth polynomial vector field.

Next section will be focused on the individual aspects of behavior quantification
and its utilization as a core engine for vector field approximation. Then we brings
mathematical models as examples suitable for algorithm verification. Fourth sec-
tion is aimed to the numerical results proving structural stability of the discovered
chaotic attractors. All will conclude by short discussion of next modifications and
research challenges in this area.

13.1 Problem Formulation

Following the rules of linear algebra, it is much easier to get insight into global mo-
tion and attracting sets of the dynamical system by using PWL approximation of
the continuous vector field.

Vector field with several affine segments also represents much simpler model for
circuitry realization in which PWL transfer function is composed of diodes, external
and controlled voltage or current sources.

It is evident that chaotic oscillator designed in such a way is more accurate (if
comparing numerical integrations and the laboratory measurements), has wider dy-
namical ranges (larger state space volume can be modeled) and operates with higher
harmonic frequency components [122]. All these features predetermine chaotic PWL
dynamical systems for future practical applications.

As mentioned before minimization of error between the original vector field and
its linearized equivalent cannot be done by utilization of some existing method.
Some preliminary ideas toward answer to this problem have been demonstrated
in [97] where only algebraically simple third-order dynamical systems with single
quadratic nonlinearity have been considered. To improve procedure developed by
first author and make the final algorithm as universal as possible the dynamical
systems with multi-dimensional polynomial functions will be addressed.
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Lets suppose there are the significant polynomial nonlinearities in the mathemat-
ical model of the dynamical system with immediate impact on equilibria, eigenvalues,
eigenvectors or, generally speaking, entire vector field geometry. After successful run
of optimization routine these functions will be replaced by PWL counterparts. To
ensure the chaotic attractor generated by the PWL system is topologically the same
as reference attractor produced by original system precise dynamical behavior quan-
tifier must be defined. One of the most widely used is spectrum of the Lyapunov
exponents (LE) defined in section (10.1.3).

In the case of exponential divergence of two neighborhood trajectories (chaos)
estimation of LEs is mandatory. Looking at definition of LE it is obvious that LEs
are uniquely coupled by the given differential equations, more precisely by Jacobian
matrix. The presence or absence of strange attractor is indicated by the largest LE,
namely its positive or negative value respectively.

After a number of tests it seems that (13.1) is a fragile routine and many serious
problems can be experienced while using it carelessly [144].

If summarizing the biggest issues the first place takes the attribute that the
regions of chaos in hyperspace of the system parameters are very small and often
surrounded by an unbounded solution. This corresponds to the fact that chaotic or
hyper-chaotic waveform is produced by perfectly balanced system.

Routine for calculation LEs is also a subject to numerical errors providing in-
correct results for discontinuous [142] or slowly divergent flows. For accurate values
of LEs the length of transient motion should be guessed and this kind of behavior
omitted. Having LEs numerically calculated we can use Kaplan-Yorke dimension
(defined in section 10.1.3)of state space attractor defined as:

𝐷𝐾𝑌 = 𝐷𝑇 + |𝐿𝐸𝐷𝑇 +1|−1
𝐷𝑇∑︁
𝑖=1

𝐷𝑖, (13.1)

where 𝐷𝑖 are individual LEs sorted in descending order and 𝐷𝑇 is a topological
dimension.

For studied class of the third-order dynamical systems 𝐷𝑇 = 2. The fitness
function in the main optimization loop is a comparison (absolute difference) be-
tween 𝐷𝐾𝑌 of polynomial and PWL system.
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We believe that if the initial guess is close enough to the correct solution and the
optimization work properly the zero difference means that both state space attrac-
tors are very similar. Since there is no analytic representation of objective function
the gradient methods cannot be used and the only remaining option is stochastic
approach, for example genetic algorithm, particle swarm method or some deliber-
ated modifications.

Complicated dynamical motion can be quantified differently than using metric
dimension. The straightforward method is to implement objective function acting
with absolute difference between numerical integration of the original and PWL
dynamical system. Positive differences in each integration step are summed and
consequent result has to be minimized. This approach is less time-consuming than
comparison of 𝐷𝐾𝑌 but often give confusing outputs.

Another promising method is the calculation of normalized frequency spectrum
of the chaotic waveform of original system. In each step of optimization frequency
spectrum of PWL system is find out and compared to the reference. The main
drawback of such method is evident from the definition term of discrete Fourier
transform (DFT):

𝑋(𝑘) =
𝑁∑︁

𝑗=1
𝑥(𝑗)

(︁
𝑒

−2𝜋𝑖
𝑁

)︁(𝑗−1)(𝑘−1)
(13.2)

where analyzed state orbit is represented by vector 𝑥(𝑗) and 𝑘 are a natural
numbers up to value 𝑁 (length of numerical integration).

The disadvantage of this optimization comes directly from the essence of DFT.
The resolution of among individual frequency components has lower margin given
by length of integration and upper boundary corresponding to sampling frequency,
i.e. integration step.

For common values of these integration constants resulting frequency resolution
is bad and the similarity between attractors of original and approximated system
cannot be recognized. Thus re-sampling is recommended for a given length of the
numerical integration. Moreover DFT belongs to the fast algorithms build-in almost
any mathematical software or environment dedicated to signal processing.

No matter which one is finally employed the fitness function has to take into
account the number and positions of the fixed points and associated eigenvalues of
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original system. Discovered PWL system must preserve all these aspects otherwise
new attractor can not be geometrically conjugated to the original.

In order to satisfy such requirements and criteria objective function has to be
properly extended. If something changes (which should remain unchanged) the
penalization of fitness function should be considered; in the case of genetics by ex-
cluding particular member from population or using the concept of dead bee in the
case of swarm.

Of course length of numerical integration of reference polynomial and novel PWL
dynamical system has to be exactly the same for 𝐷𝐾𝑌 and time-domain quantifica-
tion.

Before start of searching procedure the ranges of the nonlinear functions input
variables must be determined accordingly to the smallest state space volume needed
to fully cover desired state space attractor.

It should be noted that the ability to recognize specific limit cycles or, some-
times, quasiperiodic trajectories is limited because each such orbit is characterized
by one or two zero LE. This disadvantage is not removed in the case of behavior
analysis in time or frequency domain.

All the results mentioned below have been achieved using powerful simulated
annealing method [98] implemented in Matlab. For visualization of the numerical
verification Mathcad and fourth-order Runge-Kutta method has been utilized with
step size 0.01 and number of points 105. As a core process of optimization engine
the total number of points was lowered to 104 and time step was set to 0.1.

Nowadays new aspect begins to play an important role in the choice of proper
optimization method. It is a possibility to effectively use multi-core computers and
take advantage of parallel processing. As shown in [130] the necessary calculation
time can be reduced significantly.

13.2 Dynamical Systems Under Inspection

For experimental validation of proposed algorithm it will be tested by using few
dynamical systems of some importance. First one is given by a famous Chua’s equa-
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tions [99] as follows:

�̇� = 10 (𝑦 + 0.143 𝑥 − 𝑥3)
�̇� = 𝑥 − 𝑦 + 𝑧

�̇� = −16 𝑦 (13.3)

where dots denote time derivatives and 𝑥3 is a cubic polynomial to be replaced by
n-th segment scalar PWL function. Note that nonlinear function is odd-symmetrical
leading to the analogical simplification of searched PWL function.

Note that linear part of the vector field is defined numerically and these values
are excluded from the hyperspace dedicated for optimization.

The main goal is to use as simple approximation as possible. If searching for the
parameters of PWL function fails this function will be modified into more compli-
cated form by adding more breakpoints and linear segments defined by its slopes.

One dimensional PWL function can be expressed in following compact form:

𝑓(𝑥) = 𝛽0 + 𝛼0 𝑥 +
𝑁∑︁

𝑖=1
𝛼𝑖|𝑥 − 𝛽𝑖|, (13.4)

where 𝑓(𝑥) is a scalar function of the input state variable 𝑥, 𝛼𝑖 and 𝛽𝑖 are the
kernels of approximation, and N is total number of breakpoints.

In the case of (13.3) PWL function is expected into odd-symmetrical form:

𝑓(𝑥) = 𝛼0 𝑥 + 0.5(𝛼1 − 𝛼0)(|𝑥 + 𝛽| − |𝑥 − 𝛽|). (13.5)

Using proposed optimization method unknown parameters of function (13.5)
have been found as 𝛼0 = 0.4, 𝛼1 = −0.5, 𝛽 = 0.4.

The comparison between old and new chaotic attractor known as double-scroll
produced by dynamical system (13.3) is illustrated in Fig. 13.1.

Routine linear analysis of PWL dynamical system yields that total number of
the fixed points, its stability indexes and rough position one-per-segment remains
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unchanged.

Second example suitable for substituted PWL vector field is Rossler dynamical
system [100]. It is described by three first-order differential equation:

�̇� = −𝑦 − 𝑧

�̇� = 𝑥 + 0.1 𝑦

�̇� = 0.1 + 𝑥 𝑧 − 14 𝑧. (13.6)

Rossler system produce the so-called funnel attractor; its shape should be kept
even after PWL approximation. Since polynomial nonlinearity is no longer one-
dimensional the PWL function should be redefined as:

𝑓(𝑥) = 𝛼0 + 𝛽0 𝑥 + 𝛾0 𝑦 +
𝑁∑︁

𝑖=1
𝛿𝑖|𝛽𝑖 𝑥 + 𝛾𝑖 𝑦 + 𝛼𝑖|, (13.7)

where 𝛼𝑖, 𝛼𝑖, 𝛾𝑖 and 𝛿𝑖 are parameters to be found during optimization. The
suggested search procedure celebrates success with the set 𝑁 = 2, 𝛼0 = 0, 𝛽0 = −1,
𝛾0 = −3, 𝛼1 = −9, 𝛽1 = 18, 𝛾1 = 3, 𝛿1 = 3, 𝛼2 = −0.8, 𝛽2 = 6, 𝛾2 = −1 and
𝛿2 = −8.

Note that it is not necessary to calculate individual values to more than one
decimal degree. Such knowledge can speed-up optimization especially in the cases
where unknowns are coded as genes and sorted as chromosomes. The numerical
validation of these coefficients is provided by means of Fig.13.2.

Obviously this PWL approximation is less accurate than it can be by using least
means squares or some other method. Nevertheless the main goal is to preserve the
chaotic structure of the state space attractor.

Lower picture in the Fig.13.2. represents topographically-scaled surface-contour
plot of the largest LE as a function of dissipation constants which appear in the
second and third equation of system (13.6).

For clarification, white and yellow color marks the regions of the chaotic solution,
green is for trivial and complex limit cycles and dark blue for fixed point solution.
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This pattern can differ if it is calculated for the original and the approximated
dynamical system. For practical applications final attractor should be situated in
the center of the chaotic region in hyperspace of the system parameters.

Fig. 13.1: Monge projections of original (left) and novel (right) Chua system in the
same scale, polynomial and PWL function.
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Fig. 13.2: Typical chaotic attractor for Rossler dynamical system and comparison
of polynomial and discovered PWL function.

Ultimately, third dynamical system is one of the oldest member of family with
possible chaotic solution called butterfly attractor. This set of the differential equa-
tions has been named after its inventor Lorenz system [79]:

�̇� = 10(𝑦 − 𝑥)
�̇� = 28 𝑥 − 𝑥 𝑧 − 𝑦

�̇� = 𝑥 𝑦 − 2.667 𝑧. (13.8)

Now the situation is quite complicated since there are two plane nonlinearities
in these equations. It turns out that PWL function term (13.7) with N=2 can be
used for both.
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Optimization routine converges to following list of values for product of the vari-
ables 𝑥 and 𝑦 𝛼0 = −50, 𝛽0 = 0, 𝛾0 = 0, 𝛼1 = −2.5, 𝛽1 = −4, 𝛾1 = 4, 𝛿1 = −2.5,
𝛼2 = 0, 𝛽2 = 4, 𝛾2 = 4 and 𝛿2 = 2.5.

Similarly for product of the state variables 𝑥 and 𝑧 holds 𝛼0 = 0, 𝛽0 = 2, 𝛾0 = 1,
𝛼1 = −10, 𝛽1 = 8, 𝛾1 = 3, 𝛿1 = 2.5, 𝛼2 = 0, 𝛽2 = 4, 𝛾2 = −1.5 and 𝛿2 = −5.

Fig. 13.3: The results for Lorenz dynamical system, comparison of chaotic attractors
and nonlinear functions.

Having these PWL approximations the numerical verification can be done prov-
ing the correct function of optimization routine, see Fig. 13.3. Here, upper left graph
is a time-domain demonstration of the sensitivity to changes of the initial conditions
which differs on third decimal place, namely x0 = (0.1, 0, 0)𝑇 vs x0 = (0.101, 0, 0)𝑇 .

Note that new chaotic attractor is much bigger than the original one. Such
difference cannot be recognized or eliminated by search routine itself because both
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state attractor has the same 𝐷𝐾𝑌 and, as a consequence, the same metric dimension.

The last tested dynamical system is Hindmarch-Rose model of singular neuron
[132]:

�̇� = 𝑦 + 2.96 𝑥2 − 𝑥3 − 𝑧 + 2.99
�̇� = 1 − 5 𝑥2 − 𝑦

�̇� = 0.01 [4 (𝑥 + 1.6) − 𝑧] . (13.9)

In this case the vector field is strongly nonlinear and up to three scalar polyno-
mial functions have to be replaced by PWL characteristics.

This mathematical model has been picked due to its special property; a very
long transient spiral motion can be improperly interpreted as limit cycle. Fig.13.4
shows both chaotic attractors and each approximated polynomial function.

Note that there is significant attractor movement without the change of geomet-
rical structure.

First quadratic polynomial can be replaced by PWL function (13.5) with 𝑁 = 2,
𝛼0 = 0, 𝛽0 = −8.3, 𝛼1 = 1.5, 𝛽1 = 0, 𝛼2 = 2, 𝛽2 = 1.8, 𝛼3 = 2, 𝛽3 = −1.8.

Second PWL approximation has formally the same description but with values
𝑁 = 2, 𝛼0 = 0, 𝛽0 = −8, 𝛼1 = 1.12, 𝛽1 = 0, 𝛼2 = 2, 𝛽2 = 1.8, 𝛼3 = 2, 𝛽3 = −1.8.

Cubic polynomial can be interchanged with odd-symmetrical PWL function
(13.5) with values 𝛼0 = 10, 𝛼1 = 0.9, 𝛽 = 1.2.

13.3 Conclusion

The main purpose of this chapter is to extend current state-of-the-art in the field
of complicated vector field approximations. Discovered method can be marked as
general and applicable to dynamical systems with almost any type and number of
the nonlinear functions.

This can be handy especially in the case theoretical study of the underlying dy-
namics. It is well known that dynamical motion in each region of the vector field
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Fig. 13.4: Approximation of mathematical model of neuron, chaotic attractors and
nonlinear functions.

can be described analytically.

Proposed algorithm for approximation can be extended for higher-order mathe-
matical models as well as for higher-dimensional nonlinear functions.

There have been also other definitions of the metric dimensions that can be used
for motion quantification. For example the capacity (box-counting) dimension has
enormous computational time demands which increases drastically for large state
space attractors. For example it proves to be worthless if labyrinth chaos [118] is a
reference behavior.
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14 CHAOTIC OSCILLATORS WITH SINGLE
POLYNOMIAL NONLINEARITY AND DIG-
ITAL SAMPLED DYNAMICS

Plenty of the methods for synthesis of the linear, piece-wise linear and nonlinear
(polynomial type) analog circuits have been already published. The corresponding
results are summarized in the well written paper [89], [101].

The main drawback of such approaches is in that it is quite difficult to imple-
ment strongly nonlinear vector fields. This is a problem associated especially with
the dynamical systems having cyclically symmetrical vector fields [64], [68].

Another example of problems with the nonlinear transfer function synthesis is
the approximation [102] of some trigonometrical functions. To avoid creating the
complex analog networks susceptible on the noise presence the better way is to use
n-port with internal digital signal processing.

It eventually turns out that the well-known Nyquist sampling theorem is gener-
ally not strict enough in the case of the chaotic dynamics.

The sampling frequency should be much higher than the largest distinguishable
frequency component associated to the desired state space attractor.

The existence of the chaotic attractor should be proved by the numerical integra-
tion process as well as by the precise calculation of the largest Lyapunov exponent
[103].

14.1 Overall Numerical Analysis

Assume the third-order differential equation known from the Newtonian dynamics:

...
𝑥 + 𝑎�̈� + 𝑏�̇� = 𝑓(𝑥) (14.1)

where state variable 𝑥 can be interpreted as position, its first derivative as ve-
locity and second derivative as acceleration. As mentioned above the numerical
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integration is a first step to quantify dynamical behavior of any system.

There have been many programs capable to do this. In our case Mathcad and
build-in fourth-order Runge-Kutta method has been utilized with final time 600,
10000 integration steps and the initial conditions equal x𝑖 = (0.1, 0, 0)𝑇 . The
corresponding results are demonstrated in Fig.14.1-14.2 and Fig.14.3-14.4 for the
quadratic and cubic nonlinearity respectively.

System with quadratic nonlinearity generates the so-called single-scroll attractor
for the set of parameters 𝑎 = 0.8, 𝑏 = 1.1 and 𝑓(𝑥) = ±0.8(𝑥2 − 1).

Fig. 14.1: Integration of the typical quadratic chaotic attractors.

Note that there are two mirrored attractors for the different sign in the poly-
nomial function. Similarly system with cubic polynomial is capable to produce
double-scroll attractor if 𝑎 = 0.7, 𝑏 = 0.9 and 𝑓(𝑥) = −0.8𝑥(𝑥2 − 1) or dual double-
scroll attractor for the set 𝑎 = 0.3, 𝑏 = 0.8 and 𝑓(𝑥) = 0.8𝑥(𝑥2 − 1). It has been
verified that at least 7 bits are necessary for vertical sampling to preserve a global
behavior.

For horizontal sampling it turns out that each chaotic state space attractor is
bounded in the volume 𝑥 ∈ (−3, 3) and 7 bits are again sufficient. The sampled
chaotic dynamics is visible in Fig.14.5-14.6 and Fig.14.7-14.8.
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14.1. Overall Numerical Analysis

Fig. 14.2: Integration of the typical quadratic chaotic attractors (rotated).

Fig. 14.3: Integration of the typical cubic chaotic attractors.

From the viewpoint of practical implementation the parameters of the nonlinear
function will be fixed. To observe some routing to chaos scenario the bifurcation
parameter is 𝑎 and 𝑏, represented by variable resistors in the real circuit.

To specify the regions of the system solution sensitive to the small changes of the
initial conditions the surface-contour plot of the largest Lyapunov exponent (LE)
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14.1. Overall Numerical Analysis

Fig. 14.4: Integration of the typical cubic chaotic attractors (rotated).

Fig. 14.5: Integration of the sampled quadratic chaotic attractors.

has been created, see Fig.14.9 and Fig.14.10. The individual routine parameters are
exactly the same as for the numerical integration discussed above.
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Fig. 14.6: Integration of the sampled quadratic chaotic attractors (rotated).

Fig. 14.7: Integration of the sampled cubic chaotic attractors.

14.2 Mixed-mode Circuitry Realization

To simplify the final circuitry implementation and verify the conception of the sam-
pled dynamics the digital two-port network has been designed. The core engine is
processor STM32F107 with 516kB memory.
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Fig. 14.8: Integration of the sampled cubic chaotic attractors (rotated).

Fig. 14.9: The largest LE for system with quadratic nonlinearity.

This device cooperates with input analog to digital converter TLC2574 and out-
put DAC8734 using SPI bus. KEIL uVision V3.90 has been used as C/C++ software
environment. The concrete configuration is provided in Fig.14.11.

The linear part of the vector field is implemented as a cascade connection of the
non-inverting integrators with input current summation process.
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14.2. Mixed-mode Circuitry Realization

Fig. 14.10: The largest LE for system with cubic nonlinearity.

The individual mathematical operations are realized by means of the positive
second generation current conveyors available under notion AD844. This analog
building block is described by the following set of the equations:

𝑉𝑋 = 𝑉𝑌

𝐼𝑌 = 0
𝐼𝑋 = 𝐼𝑍

𝑉𝑂 = 𝑉𝑍 (14.2)

The corresponding circuit is given in the Fig.14.12. It is evident that the nat-
ural frequency component is given by the time constant 𝜏 = 𝑅𝐶 = 10310−7. The
experimental study of chaos evolution can be done through the change of resistors
𝑅𝑎 and 𝑅𝑏.

ADC (12b)

TLC2574

+/-10V input

200KSPS

CH1

STM 32F107 ARM  Cortex M 3

72M Hz

90 M IPS

Im plem entation of Function

y=f(x) in  Realtim e

SPI 1

CLK  25M Hz
DAC (16b)

DAC8734

+/- 16V output

CH1SPI 1

CLK  25M Hz

Fig. 14.11: Principal configuration of polynomial digital two-port.
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Fig. 14.12: Detailed implementation of the analog part using AD844.

14.3 Experimental Results

The typical state trajectories measured by means of the digital oscilloscope Agilent
Infiniium are shown in Fig.14.13 and Fig.14.14 for the quadratic and cubic nonlin-
earity respectively. These measured results are in good accordance with theoretical
expectations, i.e. numerical integration of the given mathematical model. It has
been verified that the time constant can not be much lower than 𝜏 = 10𝜇𝑠.

  

  

Fig. 14.13: Chaotic attractors for the quadratic polynomial.
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Fig. 14.14: Chaotic attractors for the cubic polynomial.

14.4 Conclusion

It is demonstrated by means of the several examples that it is effective to use mixed
analog-digital synthesis even in the case of the chaotic dynamics.

There exist some dynamical systems (for example with cyclically symmetrical
vector field) with multiple complex nonlinear functions making its truly analog cir-
cuitry implementation almost impossible. The presented approach can be utilized
to solve such problem.
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15 QUANTIFICATION OF CHAOTIC DYNAM-
ICAL SYSTEMS WITH LARGE STATE AT-
TRACTORS

The recent discovery of cyclically symmetrical system composed of the differential
equations containing signum functions [68], [71] and [69] defined by:

�̇� = −𝑎𝑥𝑥 ± sign[sin(𝑏𝑦𝑦)]
�̇� = −𝑎𝑦𝑦 ± sign[sin(𝑏𝑧𝑧)]
�̇� = −𝑎𝑧𝑧 ± sign[sin(𝑏𝑥𝑥)], (15.1)

where 𝑎𝑥,𝑦,𝑧 and 𝑏𝑥,𝑦,𝑧 are constants and dots denote the first derivatives of the
state variables. The system is so-called GP oscillator. It turns out that there are
serious problems during its analysis and using well known mathematical tools. The
difficulties are obvious especially in the case of Lyapunov exponents (LE) estimation
[63], [77] and [64]. This is caused by extreme numerical values of the derivatives
substituted into Jacobi matrix in the main loop of the calculation routine. More-
over there are associated troubles with precision while analytical formulas can not
be utilized otherwise the procedure indicates completely incorrect results.

Fig. 15.1: Solution of dynamical system obtained by integration of ODE with
Monge’s projections, GP system with uniform parameters 𝑎𝑥 = 𝑎𝑦 = 0.1 and 𝑎𝑧 = 0.
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15.1 2-Spherical Quantification

The lack of the suitable methods for quantifying the behavior familiar to the conser-
vative systems with large strange attractors leads the authors to develop different
ones. The proposed approach is based on the fundamental nature of the strange
attractors, namely ergodicity and mixing property. To reduce the computation time
in 𝑅3 demanded by standard box-counting method it should be replaced by the
mathematical operations on the plane in 𝑅2, in detail on the surface of a sphere.
The principle of calculation is analyzed in the transformation from Cartesian coor-
dinates of the attractor into the spherical coordinates, respectively on the surface of
2-sphere. The surface of 2-sphere has to be normalized to obtain a general quanti-
fier. Using spherical coordinates, the unit sphere can be parameterized by:

�⃗�(𝜃, 𝜙) = (cos 𝜙 sin 𝜙, sin 𝜃 sin 𝜙, cos 𝜙), (15.2)
0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝜙 ≤ 𝜋. (15.3)

Than the surface 𝑆 of sphere 𝑆𝑝ℎ𝑒𝑟𝑒 is set to be equal to 1 (normalization) can
be expressed as:

𝑆(𝑆𝑝ℎ𝑒𝑟𝑒) =
∫︁

𝑆𝑝ℎ𝑒𝑟𝑒
|�⃗�𝑢 × �⃗�𝑣|dudv = 1. (15.4)

Thus for the square radius 𝑟2 of R3 sphere stands:

𝑟2 = 1
4𝜋

. (15.5)

Radius of this sphere is chosen 𝑟 =
√

𝜋
2𝜋

such that the sum of all surface pieces
(SP) is unity. This globe splits into elemental SP depending on the Δ𝜙, Δ𝜃 angle
steps:

𝜃 = arctan
(︂

𝑦

𝑥

)︂
, (15.6)

𝜙 = arccos
(︂

𝑧

𝑟

)︂
. (15.7)

Assuming that attractor will fill the entire space of R3 where integral step limit
approaches zero, meaning the like-hood has a continuous uniform distribution 𝑓(𝑥)
is described as:

𝑓(𝑥) =
⎧⎨⎩

1
𝑏−𝑎

for 𝑎 ≤ 𝑥 ≤ 𝑏

0 for 𝑥 < 𝑎 𝑜𝑟 𝑥 > 𝑏
(15.8)
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15.1. 2-Spherical Quantification

Than the surface of whole sphere can be described as:

𝑆𝑆𝑝ℎ𝑒𝑟𝑒 =
∫︁ 𝜋

0

∫︁ 2𝜋

0

1
4𝜋

sin 𝜃𝑑𝜙𝑑𝜃 = 1. (15.9)

Considering the discrete time series, the step Δ𝜃 and Δ𝜙 needs to be set, oth-
erwise certain SP needs to be deleted to have particular list of SP for measuring
the complexity of the analyzed attractor. Following the flow Φ(𝑥, 𝑦, 𝑧) of attractor
in R3 having 𝑁 elements, each SP is indexed by the natural numbers 𝑖 and 𝑗. In
the main calculation routine the individual SP occupied by a state trajectory are
summarized. The surface of occupied area on the R3 sphere can be calculated using
the following discrete formula:

𝑆Φ =
𝑁∑︁

𝑖=1

𝑁∑︁
𝑗=1

| 1
4𝜋

sin(𝑖 𝜋

𝑁
)2𝑖𝑗

𝜋2

𝑁2 |. (15.10)

The graphical interpretation of this novel motion quantifier is demonstrated in
Fig.15.1-Fig.15.8 for some interesting situations. There is one serious drawback of
this procedure leading to the indispensable numerical errors. The shape and orienta-
tion of the state attractor can be right-lined as it is visible in the first two examples.
If so, a huge amount of the information about attractor geometric structure is lost.
To improve this disadvantage the linear change of the coordinates in order to spread
the studied attractor should be performed before transformation on the sphere.

Fig. 15.2: The dynamical motion quantification, analyzed attractor (red) and its
projection on sphere (black), GP system with uniform parameters 𝑎𝑥 = 0, 𝑎𝑦 =
0.1, 𝑎𝑧 = 0.1 and 𝑏𝑥 = 𝑏𝑦 = 𝑏𝑧 = 10.

It is known, that the chaotic systems exhibit special sort of trajectories in state
space. Thus the proposed method can be used as quantifier but should not be
misinterpreted as metric dimension. There are also certain disadvantages, some of
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Fig. 15.3: The rotated view on the dynamical motion quantification, analyzed at-
tractor (red) and its projection on sphere (black), GP system with uniform param-
eters 𝑎𝑥 = 0, 𝑎𝑦 = 0.1, 𝑎𝑧 = 0.1 and 𝑏𝑥 = 𝑏𝑦 = 𝑏𝑧 = 10.

Fig. 15.4: The dynamical motion quantification, analyzed attractor (red) and its
projection on sphere (black), GP system with uniform parameters 𝑎𝑥 = 0, 𝑎𝑦 =
0.1, 𝑎𝑧 = 0 and 𝑏𝑥 = 𝑏𝑦 = 𝑏𝑧 = 10.

them revealed by the authors. Consider the rotation of attractor in Cartesian space.
Certain rotation of attractor (very rare cases) can cause problems with transforma-
tion. This can be removed using linear coordinate transformation before applying
the algorithm.

15.2 General n-spherical Quantification

N-sphere quantification can be considered as a generalization of the surface of an
ordinary sphere quantification to an arbitrary dimension. For any natural number
𝑛, an n-sphere of radius 𝑟 is defined as the set of points in 𝐷 = (𝑛 + 1) dimensional
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Fig. 15.5: The rotated view on the dynamical motion quantification, analyzed at-
tractor (red) and its projection on sphere (black), GP system with uniform param-
eters 𝑎𝑥 = 0, 𝑎𝑦 = 0.1, 𝑎𝑧 = 0 and 𝑏𝑥 = 𝑏𝑦 = 𝑏𝑧 = 10.

Fig. 15.6: The dynamical motion quantification, analyzed attractor (red) and its
projection on sphere (black), GP system with uniform parameters 𝑎𝑥 =𝑎𝑦= 𝑎𝑧 = 0.1
and 𝑏𝑥 = 𝑏𝑦 = 𝑏𝑧 = 10.

Cartesian space. The visualization of multidimensional objects is very difficult and
provides only a fragment of entire picture. Thus it is left to the readers imagination
and skipped in this thesis. The distance 𝑟 (radius) from a central point is any
positive real number. The n-sphere is defined by following term:

𝑆𝑛 =
{︁
𝑥 ∈ 𝑅𝑛+1 : ||𝑥|| = 𝑟

}︁
. (15.11)

It is an n-dimensional manifold in Cartesian space. In particular, a 2-sphere is an
ordinary sphere in three-dimensional Cartesian space. Spheres of dimension 𝑛 > 2
are called hyper-spheres.

The surface area of the n-sphere of radius 𝑟 in 𝑛 + 1 Cartesian space is defined
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Fig. 15.7: The dynamical motion quantification of periodical solution, analyzed at-
tractor (green and in the extra plot) and its projection on sphere (black and red),
GP system with uniform parameters 𝑎𝑥 = 10 𝑎𝑦 = 𝑎𝑧 = 0.1 and 𝑏𝑥 = 𝑏𝑦 = 𝑏𝑧 = 10.

Fig. 15.8: The dynamical motion quantification of periodical solution, analyzed at-
tractor (green and in the extra plot) and its projection on sphere (black and red),
The Halvorsen system with parameters 𝑎 = 1.3 and 𝑏 = 4.

as:

𝑆𝑛(𝑟) = 2𝜋
𝑛+1

2

Γ(𝑛+1
2 )𝑟𝑛 = 1, (15.12)
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where ∀𝑛 ∈ 𝑍 ∧ 𝑛 ≥ 0, Gamma function Γ(𝑙)is an extension of the factorial
function.

Considering 𝑛
2 + 1) ≥ 0 is positive real number, the Gamma function reduces to:

Γ(𝑙) = (𝑙 − 1)!. (15.13)
By defining a coordinate system in an D-dimensional spherical coordinate sys-

tem from D-dimensional Cartesian space, in which the coordinates consist of a radial
coordinate 𝑟, 𝑛 − 2 angular coordinates Θ1 . . . Θ𝑛−2 with angle ranges < 0, 𝜋 > and
another angular coordinate 𝜑 with range < 0, 2𝜋 >.

The radius of unity surface of n-sphere is defined as:

𝑟 = 𝑛

⎯⎸⎸⎷(︃𝑆𝑛Γ(𝑛+1
2 )

2𝜋
𝑛+1

2

)︃
. (15.14)

The other angular values can be calculated from Cartesian space consist of
𝑥1 . . . 𝑥𝐷:

Θ1 = arccotg 𝑥1√︁
𝑥2

𝐷 + 𝑥2
𝐷−1 + ...𝑥2

2

Θ2 = arccotg 𝑥2√︁
𝑥2

𝐷 + 𝑥2
𝐷−1 + ...𝑥3

2

...
Θ𝐷−2 = arccotg 𝑥𝐷−2√︁

𝑥2
𝐷 + 𝑥2

𝐷−1

𝜙 = 2 · arccotg

√︁
𝑥2

𝐷 + 𝑥2
𝐷−1 + 𝑥𝐷−1

𝑥𝐷

. (15.15)

The single surface area of n-sphere can be calculated by:

𝑆𝑛
𝑆𝑖𝑛𝑔𝑙𝑒 = 𝑟𝑛𝑑𝜑

𝐷−2∏︁
𝑚=1

(sin Θ𝑚)𝑚𝑑Θ𝑚, (15.16)

where 𝐷 = (𝑛+1). Then the whole filled surface, following the flow Ω of attractor
consist of 𝑁 discrete points is:

𝑆Ω =
𝑁∑︁
𝑖1

· · ·
𝑁∑︁

𝑖𝐷−2

|𝑟𝑛𝑖𝐷−2
2𝜋

𝑁

𝐷−2∏︁
𝑚=1

(sin Θ𝑚)𝑚
𝐷−2∏︁
𝑘=1

𝑖𝑘
𝜋

𝑁
|. (15.17)

The absolute value is used in equation (15.17). to meet the conditions of sum
by changing the sign of negative angles.
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15.3 Experimental Results

The proposed new algorithm is designed to recognize chaotic and non-chaotic solu-
tion. Hyper-chaotic behavior can be also indicated since the volume element defined
by neighborhood trajectories in the state space expands in two or more directions.
To be more specific this quantifier responds to the orbit density in state space, higher
value results into number closer to unity.

Roughly speaking the state space attractor fills the Cartesian space and is ex-
tracted by the algorithm on the surface of sphere. If the solutions tend to be
periodical, diverging or is represented by point, etc... , the result (or covered surface
on the sphere) tends to be minimal, sometimes it can be considered as almost zero.

To identify the solution certain threshold can be set. The transient needs to
be considered when analyzing the time series. Long transient can cause significant
errors in setting the scale for the spherical transformations.

Tab. 15.1: Table of parameters and results for under test taken systems.

Eq. Equation parameters 𝑆Ω Lyapunov exp. 𝜆𝑖

A

𝑎𝑥 = 10, 𝑎𝑦 = 0, 𝑎𝑧 = 0, 𝑏𝑥,𝑦,𝑧 = 10 0.022 0.0238, -0.428, -9.595
𝑎𝑥 = 0.1, 𝑎𝑦 = 0.1, 𝑎𝑧 = 0.1, 𝑏𝑥,𝑦,𝑧 = 10 0.959 3.572, 0.005, -3.870
𝑎𝑥 = 2, 𝑎𝑦 = 1, 𝑎𝑧 = 1, 𝑏𝑥,𝑦,𝑧 = 10 0.225 1.186, -0.009, -5.177
𝑎𝑥 = 2, 𝑎𝑦 = 2, 𝑎𝑧 = 1, 𝑏𝑥,𝑦,𝑧 = 10 0.123 0.479, -0.005, -5.474
𝑎𝑥 = 2, 𝑎𝑦 = 2, 𝑎𝑧 = 1, 𝑏𝑥,𝑦,𝑧 = 1 0.003 -1.247, -1.256, -2.497

B
𝑎 = 2, 𝑏 = 2 0.138 0.086, 0.007, -2.096
𝑎 = 3, 𝑏 = 2 0.061 0.005, -0.061, -1.944

C
𝑎 = 1.1, 𝑏 = 0.2 0.135 0.101, 0.023, -1.113
𝑎 = 1.1, 𝑏 = 0 0 -0.004, -0.007, -0.992
𝑎 = 3.2, 𝑏 = 0.1 0.297 0.020, 0.015, -1.034

D
𝑝 = 16, 𝑟 = 45.92, 𝑏 = 4 0.143 1.444, -0.017, -22.335
𝑝 = 2, 𝑟 = 45.92, 𝑏 = 1 0.103 0.534, -0.007, -4.526
𝑝 = 2, 𝑟 = 80, 𝑏 = 1 0.056 0.048, -0.6730, -3.372

E
𝑎 = 1.3, 𝑏 = 4 0.276 0.553, 0.052, -4.507
𝑎 = 1.3, 𝑏 = 2 0.054 0.016, -0.049, -3.866

Systems, more in [61] and [66], were taken under test. The systems are denoted
by letters. System proposed in equation (15.1) is denoted in Table15.1. as A. In
this system the method of Fourier transform was used to obtain LE.

The next tested system B is defined by:
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�̇� = 𝑎𝑧

�̇� = −𝑏𝑦 + 𝑧

�̇� = −𝑥 + 𝑦 + 𝑦2. (15.18)

The next system denoted as C is defined as:

�̇� = 𝑦 + 𝑎𝑧

�̇� = 𝑏𝑥2 − 𝑦

�̇� = 1 − 𝑥. (15.19)

More informations about systems (15.18) and (15.19) can the reader find in [65].

The next tested dynamical system D is the Lorenz’s [104] famous system defined
by:

�̇� = 𝑝(𝑦 − 𝑥)
�̇� = −𝑥𝑧 + 𝑟𝑥 − 𝑦

�̇� = 𝑥𝑦 − 𝑏𝑧. (15.20)

And the last Halvorsen’s system denoted as E, 3-D system of chaotic flows that
are symmetric with respect to cyclic interchanges of 𝑥, 𝑦, and 𝑧:

�̇� = −𝑎𝑥 − 𝑏𝑦 − 𝑏𝑧 − 𝑦2

�̇� = −𝑎𝑦 − 𝑏𝑧 − 𝑏𝑥 − 𝑧2

�̇� = −𝑎𝑧 − 𝑏𝑥 − 𝑏𝑦 − 𝑥2. (15.21)

15.4 Conclusion

Results explained in this chapter show that the proposed quantifier is suitable for
dynamical systems with large state space attractors. The principle itself is very
simple and can be easily implemented.

The significant speed-up of the computation is obvious because of reduction of
one degree of freedom. The advantage of this method is also, that it can be used
for a time-series recognition. Some well known systems of dynamical equations were
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tested. The result were compared with the LE.

The preliminary results showed, that the method can be used for chaotic motion
recognition.

250



16 MULTI GRID CHAOTIC ATTRACTORS WITH
DISCRETE JUMPS

In this chapter the discrete step functions are used in order to generate 𝑚 × 𝑛 scroll
chaotic hypercube attractors. The design and realization of multi-scroll attractors
depends on synthesizing the nonlinearity with an electrical circuit.

The essence of the novel approach is in designing the transfer function with
analog to digital converters connected directly without any microcomputer, instead
of using standard comparator or hysteresis methods. Therefore there is no special
need for synthesizing the nonlinearity towards 𝑚 × 𝑛 scroll chaotic attractors. The
approach is verified with PSpice 16.0 circuit simulator and experimentally measured.

16.1 Definition of the Problem

Over past three decades, generating multi-scroll chaotic attractors became an aim
of many researchers [69, 122, 70, 120, 105]. Many techniques involving different ap-
proaches (usually using comparators or hysteresis) have been published [106, 107].
Chaos control and generation has a dramatic increase of interest since many real
world applications and observations in engineering or other fields have been pre-
sented.

For example in fields such as biomedical engineering, digital data encryption,
power systems protection, re-configurable hardware, and so on. But yet there is no
simple rule for quantifying chaos origin. Generating chaotic attractors may help to
understand better dynamics of real world systems.

In the chapter we would like to study third order nonlinear system, where such
behavior is very rare [60]. We are presenting a generalized method for generating
2D 𝑚×𝑛 grid scroll, where a special case of solution is set of 1D grid scrolls [108, 72].

The chosen 2D 𝑚 × 𝑛 scroll attractor can be in fact considered as particular
case of Chua’s attractor [61]. Of course similar approach can be utilized for 3D grid
scrolls by adding another nonlinear functional block. Our solution involves only
analog to digital converters (AD) and digital to analog converters (DA) for imple-
mentation of the non-linear function. It comes to this, that there is no need for any
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micro-controller.

The model describing chaotic 2D 𝑚 × 𝑛 scroll generation is described by three
first-order differential equations:

�̇� = A𝑥 + B𝜙(𝐶 𝑥) (16.1)

Matrices A, B, C and function 𝜙(.) are defined as:

A =

⎛⎜⎜⎝
0 1 0
0 0 1

−𝑎 −𝑏 −𝑐

⎞⎟⎟⎠ , B =

⎛⎜⎜⎝
0 −1 0
0 0 −1
𝑎 𝑏 𝑐

⎞⎟⎟⎠

C =

⎛⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎠ , 𝜙 =

⎛⎜⎜⎝
𝑓(𝑥)
𝑓(𝑦)

0

⎞⎟⎟⎠ (16.2)

For numerical integration the fourth-order numerical Runge-Kutta method with
variable step is used. Where �̇� represents first order derivative. Function 𝑓(.) de-
notes a nonlinear step function. Parameters 𝑎, 𝑏 and 𝑐 are constants.

For synthesis of the nonlinear step function, connecting the ADC directly with
the DAC generate step transfer function. The step can be defined as:

Δ = Dynamical range (V)
Number of bits . (16.3)

Then output value with steps is:

𝑜𝑢𝑡(𝑥) =

⎧⎪⎨⎪⎩𝑙 Δ + Δ
2 , if 𝑥 > 0

𝑙 Δ − Δ
2 , if 𝑥 < 0

(16.4)

𝑙 = 𝑥

Δ ∧ 𝑙 ∈ N (16.5)

and N stands for set of natural numbers. Then model representing ADC con-
nected directly to DAC, the step function with saturation can be written as:

𝑓(𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑜𝑢𝑡(𝑥), if |𝑥| < Ψ
−Ψ + Δ

2 , if 𝑥 ≤ −Ψ
Ψ − Δ

2 , if 𝑥 ̸= Ψ,

(16.6)
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where function Ψ is defined as:

Ψ = Dynamical range (V)
2 . (16.7)
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Fig. 16.1: The model of step function 𝑓(𝑥) for 2bit (black) and for 5bit(gray)

Fig. 16.2: The numerically integrated system (16.1), the Monge’s projections V(x)
𝑣𝑠 V(y).

A system (16.1) with function (16.6 - visualized in Fig.16.1) and with constants
set to 𝑎 = 𝑏 = 𝑐 = 0.8 can bee seen in Fig.16.2 and Fig.16.3. Where the both
functions (16.6) consists of 4 levels, ie is equal to utilizing 2 bit AD/DA converters.
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16.2. Circuit Implementation

Fig. 16.3: The numerically integrated system (16.1), the Monge’s projections V(y)
𝑣𝑠 V(z).

16.2 Circuit Implementation

Synthesis of the electronic circuits is the easiest way how to accurately model the
nonlinear dynamical systems. There exist several ways how to practically realize
chaotic oscillators. To synthesize circuit from differential equations system (16.1),
integrator synthesis has been chosen. After thinking about how to reduce the com-
plexity of the nonlinear network a very simple circuitry has been revealed. Only few
basic building blocks are necessary: inverting integrators, summing amplifier, AD
and DA converters and voltage sources. Electronic circuit system consists of three
integrator circuits (using operational amplifier AD713), which integrate (16.1). Val-
ues of passive parts are estimated directly from the equations.
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5 CONCLUSION

Generating chaotic behavior in third-order autonomous
systems is quite delicate process. The whole system is ex-
tremely sensitive as for the initial conditions as for the
realization. It is known that avoiding fractional integra-

tors the third order of autonomous dynamical systems is
the minimum order to produce chaos. To obtain chaotic
behavior, the whole system has to be perfectly balanced.
With the growing order of the system, the presence of
chaotic behavior is more probable. In this paper the well
known 2-D m n scroll system was chosen and was re-

Fig. 16.4: The block schematics of realization of (16.1).

The synthesized schematics is in Fig.16.4. In order to ensure Nyquist-Shannon
sampling criterion for the converters, frequency re-normalization is an easy and
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straightforward process covering identical change of all integration constants simul-
taneously.
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5 CONCLUSION

Generating chaotic behavior in third-order autonomous
systems is quite delicate process. The whole system is ex-
tremely sensitive as for the initial conditions as for the
realization. It is known that avoiding fractional integra-

tors the third order of autonomous dynamical systems is
the minimum order to produce chaos. To obtain chaotic
behavior, the whole system has to be perfectly balanced.
With the growing order of the system, the presence of
chaotic behavior is more probable. In this paper the well
known 2-D m n scroll system was chosen and was re-

Fig. 16.5: The block schematics of realization of function 𝑓(𝑥) using data converters.

To create step transfer functions 𝑓(𝑥) and 𝑓(𝑦), the data converters are used.
The schematics in Fig.16.5 shows the data converters connected directly to produce
step transfer function.

In order to process positive and negative voltages, the circuit is divided in the
two branches. Voltage sources are used as references for the converters. The cir-
cuitry realization was evaluated using OrCAD PSpice. The overall simulation time
is set to 100𝑚𝑠.

The simulated output of Monge’s projections is in the in Figs.16.6- 16.8. The
values of passive resistors are 𝑅1 = 𝑅6 = 𝑅7 = 125𝑘Ω, 𝑅5 = 𝑅8 = 𝑅9 = 𝑅13 =
𝑅14 = 100𝑘Ω, 𝑅2 = 𝑅3 = 𝑅4 = 1𝑘Ω, 𝑅10 = 𝑅11 = 118𝑘Ω, 𝑅12 = 1𝑘Ω, 𝑅𝑂𝑢𝑡 = 1Ω
and values of the capacitors are 𝐶1 = 𝐶2 = 𝐶3 = 100𝑛𝐹 .

Towards to produce various number (less) of levels for the step function, one pos-
sibility is to use only certain number of bits between converters. Another possibility
is to invoke Boolean logical functions between converters (can be implemented eg in
FPGA).
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Fig. 16.6: The simulations from PSpice program, V(x) 𝑣𝑠 V(y) projections.
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Fig. 16.7: The simulations from PSpice program, V(x) 𝑣𝑠 V(y) projections.

16.3 Experimental Results

It should be pointed out that hardware implementation of 2-D 𝑚 × 𝑛 scroll chaotic
attractors is technically very difficult [106, 109], despite there is no theoretical lim-
itation in the mathematical model for generating the large numbers of the multidi-
mensional scrolls. The above circuit design method provides a theoretical principle
for hardware implementation of such chaotic attractors with multi-directional ori-
entations and a satisfactory number of scrolls. The measurements presented in Figs
16.9- 16.14 have been done using HP 54645D oscilloscope.
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alized utilizing novel approach using the data converters
as non-linear functions. First the models were derived to
simulate the data converters connected directly (ADC-
DAC). Than the connection was reduced to produce less
scrolls. To verify the chaotic behavior of proposed con-
ception, the circuit simulator PSpice was used. Then the
circuit was build and measured. The measured results are
rather matching the theoretical expectations.
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Fig. 16.9: Special setup where step function 𝑓(𝑦) vanishes: projections V(x) vs V(-y)
(left), V(-y) vs V(z) (right).

16.4 3D Grid Chaotic Scrolls

By simple modification of the matrix B and the matrix function 𝜙(.) as follows:

B =

⎛⎜⎜⎝
0 −1 0
0 0 −1
𝑑 𝑏 𝑐

⎞⎟⎟⎠ , 𝜙 =

⎛⎜⎜⎝
𝑓(𝑥)
𝑓(𝑦)
𝑓(𝑧),

⎞⎟⎟⎠ (16.8)

one can obtain 3D (𝑘, 𝑙, 𝑚) grid scrolls by setting 𝑎 = 𝑏 = 𝑐 = 0.8 and 𝑑 = 0.77.
The constants 𝑘, 𝑙, 𝑚 stand for the number of levels of the nonlinearity (16.6). The
simulated 3D scrolls can be found in the Fig.16.15.
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Fig. 16.11: Measured system, 2 × 2 scroll: projections V(x) vs V(-y) (left), V(-y) vs
V(z) (right).

16.5 Conclusion

Generating chaotic behavior in third-order autonomous systems is quite delicate
process. The whole system is extremely sensitive as for the initial conditions as for
the realization. It is known that avoiding fractional integrators the third order of
autonomous dynamical systems is the minimum order to produce chaos. To obtain
chaotic behavior, the whole system has to be perfectly balanced.

With the growing order of the system, the presence of chaotic behavior is more
probable. In this chapter the well known 2-D 𝑚×𝑛 scroll system was chosen and was
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Fig. 16.12: Measured system, 4 × 4 scroll: projections V(x) vs V(-y) (left), V(-y) vs
V(z) (right).
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Fig. 16.13: Measured system, 6 × 6 scroll: projections V(x) vs V(-y) (left), 8 × 8
scroll, projections V(x) vs V(-y) (right).

realized utilizing novel approach using the data converters as non-linear functions.
First the models were derived to simulate the data converters connected directly
(ADC-DAC).

Then the connection was reduced to produce less scrolls. To verify the chaotic
behavior of proposed conception, the circuit simulator PSpice was used. Then the
circuit was build and measured. The measured results are rather matching the the-
oretical expectations.
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Fig. 16.14: Measured system - perturbation of parameters, 6 × 4 scroll (left) and
4 × 2 scroll (right): projections V(x) vs V(-y).

Fig. 16.15: Numerically simulated 3D (10,10,10) grid scrolls.
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17 ON THE PARALLEL APPROACHES

In this chapter we would like to present several methods optimized for parallel com-
putations. Basically the needs for parallel computing are increasing with multi-core
processor architectures.

First we present section where a parallel calculation of Lyapunov exponents have
been reviled. Then we present parallelization of a stochastic optimization method
known as particle swarm optimization which is been used for finding the chaotic
solutions of a generic set of ODEs.

17.1 Advanced Parallel Processing of Lyapunov
Exponents

This section presents parametric non-linear system analysis, especially quantifying
and detecting chaotic behavior. Almost every article dealing with chaotic non-linear
behavior is using Lyapunov exponents for system analysis. Calculating exponents is
well known process [73]. It is very important when analyzing stability of dynamical
systems.

17.1.1 Parallel Lyapunov Exponents

It is well known fact due aging system (harmonic oscillator) can became erratic. In
order to evaluate selected parameters and system stability, it is good to examine all
permutations of parameters on a bounded set.

Special classical chaotic system so-called Lorenz system [104] was chosen for il-
lustrating and verification the algorithms. It is notable that such system behave
chaotically for certain parameter values and initial conditions.

In particular, the Lorenz attractor is a set of chaotic solutions of the Lorenz
system:

ẋ = 𝜎(𝑦 − 𝑥)
ẏ = 𝑥(𝜌 − 𝑧) − 𝑦

ż = 𝑥𝑦 − 𝛽𝑧. (17.1)
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17.1. Advanced Parallel Processing of Lyapunov Exponents

Where 𝜎, 𝜌 and 𝛽 are real numbers. The usual parameters, for which the system
is chaotic are 𝜎 = 10, 𝜌 = 8

3 , 𝛽 = 28. The Lyapunov exponents Fig.10.2 for such
configuration are 𝜆1 = 0.703, 𝜆2 = 0 and 𝜆3 = −13.120.

When resolving systems of ODEs, especially when calculating it’s Lyapunov ex-
ponents, one algorithm with multiple data approach was used. A parallel algorithm
using decomposition and distribution of constants and parallel toolbox from Matlab
can be used. Proposed algorithm has been tested on a chaotic circuit and has also
been computed with different numbers of CPU cores compared with standard non
distributed method. This technique has proved to be very effective on new multi-
core central processing units.

It is been calculated for which real numbers (meaning 𝜎 and 𝜌) the system be-
have chaotically. Setting 𝜎, 𝜌 > 0, initial conditions are located at Ic0(1, 0, 0)𝑇 .

The results of the largest Lyapunov exponent are presented in Fig. 17.1. The
matrix of evaluated parameters (𝜎, 𝜌) consists of 10000 elements.

Fig. 17.1: The largest Lyapunov exponent for data set, where 𝑎 = 𝜎 and 𝑏 = 𝜌.

The parallel method is a good improvement to contemporary approach. In Table
17.1. we can see the demonstrable speed up of the process. Utilizing the parallel
computing one can use the full potential af computing units. Comparing the speed,
it was used data set of size 10 by 10 matrix.
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17.2. Parallel Particle Swarm Optimization on The Chaotic Solution of Dynamical Systems

No. of CPUs 1 CPU 2 CPUs 4 CPUs 8 CPUs
Elapsed time[𝑠] 353.6 180.3 116.2 88.4

Tab. 17.1: Comparing consumed time of computing for set of size 10 by 10

The proposed method is suitable for Beowulf clusters. As we have demonstrated
in the Fig. 17.1 and the Table 17.1, the time consumption is great. One can also
use stochastic optimization methods presented in [110, 111] for finding the chaotic
solutions.

17.2 Parallel Particle Swarm Optimization on The
Chaotic Solution of Dynamical Systems

A parallel approach for finding chaotic solutions of general third-order autonomous
dynamical systems with piecewise-linear vector field utilizing particle swarm opti-
mization (PPSO) was proposed. PPSO is a metaheuristic method that can search
very large spaces of candidate solutions using modern multi-core processors perfor-
mance.

To discover such sensitive systems in respect to chaotic behavior, special at-
tention was devoted to the fitness function. Some of found systems are presented
and analyzed in the section. A significant speedup using multi-core operations was
proved.

17.2.1 Introduction

In recent years the research in optimization field was focused on description of be-
havior of several animals such as bees, birds, ants, etc. It is well known that swarm
of bees is able to locate the best most fertile source of flowers on certain field.
To achieve and design algorithm describing bees finding such collective behavior
organized in almost orchestral manner that is known as swarm intelligence, first
mathematical models need to be set. Gerardo Beni and Jing Wang introduced the
term swarm intelligence in a 1989 article [112].

Swarm intelligence techniques are population based stochastic methods used in
combinatorial optimization problems in which the collective behavior of relatively
simple individuals arises from their local interactions with their environment to
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produce functional global patterns. Swarm intelligence represents a meta-heuristic
approach to solve a variety of problems.

Numerical optimization has been widely used in engineering to solve a variety
of NP-complete problems in areas such as structural optimization, training neural
networks or simple finding kernels coefficient for nonlinear equations. Typical NP-
complete tasks include for example well known traveling salesman problem (finding
the Hamiltonian circle). Optimization of such problems often imposes large compu-
tational demands, resulting in long solution times even on modern high-end proces-
sors.

17.2.2 Serial Particle Swarm Algorithm

In 1995, Dr. Kennedy and Dr. Eberhart developed method known as Particle
swarm Optimization (PSO) [1], a population based stochastic optimization strat-
egy, inspired by the social behavior of swarms. The method can also represent even
social behavior of humans. Although PSO method is similar to the genetic algorithm
(GA) in terms of initializing the population with random solutions and in terms of
searching for the global optimum in successive generations.

The key difference is that PSO does not undergo crossover and mutation, while
the particles move through the state space following the current optimum particles.
Consider the swarm of 𝑝 particles. Each particle representing the solution point by
its position in the 𝐷 dimensional state space.

The underlying concept is that for every instant moment, the velocity of each
particle also known as the potential solution, changes between potential solution
known as 𝑓 𝑖

𝑏𝑒𝑠𝑡. The particle associated with the best solution, the best value of fit-
ness function, seems to be the leader and each particle keeps track of its coordinates
in the problem state space.

The fitness value is stored and is referred as 𝑓 𝑖
𝑏𝑒𝑠𝑡. When a particle takes all the

population as its topological neighbors, the best value is a global best and is called
𝑓 𝑔

𝑏𝑒𝑠𝑡. The whole algorithm is described by Fig. 17.2.
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Fig. 1. The flowchart of asynchronous (serial) particle swarm
algorithm [2].

version described in previous section. Fitness functions are
evaluated for different particles in parallel. Because of dif-
ferent complexity of each solution, the results need to be
synchronized. The whole algorithm is described by Fig. 2

4. Speedup and Efficiency
In parallel computing, speedup refers to how much a

parallel algorithm is faster than a corresponding sequential
algorithm defined as

Sp =
T1

Tp
(1)

where p is the number of processors, T1 is the execution
time of serial algorithm, Tp is the execution time of par-
allel algorithm. It is obvious, that ideal speedup is (linear
speedup) when it is equal to number of processors. Some-
times a speedup of more than p when using p processors is
observed in parallel computing, which is called super linear
speedup. One possible reason for a super linear speedup is
the cache effect resulting from the different memory hierar-
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Fig. 2. The flowchart of parallel particle swarm algorithm.

Considering serial algorithm, its efficiency is equal to 1, but
the value usually lies in the set Ep ∈< 0, 1 >. Some tasks
are difficult to parallelize, or even not possible. Theoretical
value for the efficiency can be defined as

Ep =
1

ln p
. (3)

5. Numerical Simulations
For evaluating the algorithm general system of differ-

ential equations of third order and absolute nonlinear func-
tion was chosen [3], [4] and [5]. The system can be ex-
pressed by the following set of the dimensionless differential
equations

ẋ = a1x+ a2y + a3z + |a4x|+ a5

ẏ = a6x+ a7y + a8z + |a9y|+ a10

ż = a11x+ a12y + a13z + |a14z|+ a15

(4)

where a1 . . . a15 are constants to be found by algorithm. The
x, y, z are state variables. The dots over state variables de-

Fig. 17.2: The flowchart of asynchronous (serial) particle swarm algorithm [1].

17.2.3 Parallel Particle Swarm Algorithm

The approach itself is almost the same, but few features were changed. Parallel pro-
cessing allows to evaluate more fitness functions or to solve more complex tasks (or
with higher accuracy) in the same time span as the asynchronous version described
in previous section. Fitness functions are evaluated for different particles in parallel.
Because of different complexity of each solution, the results need to be synchronized.
The whole algorithm is described by Fig. 17.3.

17.2.4 Speedup and Efficiency

In parallel computing, speedup refers to how much a parallel algorithm is faster than
a corresponding sequential algorithm defined as:

𝑆𝑝 = 𝑇1

𝑇𝑝

, (17.2)
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Considering serial algorithm, its efficiency is equal to 1, but
the value usually lies in the set Ep ∈< 0, 1 >. Some tasks
are difficult to parallelize, or even not possible. Theoretical
value for the efficiency can be defined as

Ep =
1

ln p
. (3)

5. Numerical Simulations
For evaluating the algorithm general system of differ-

ential equations of third order and absolute nonlinear func-
tion was chosen [3], [4] and [5]. The system can be ex-
pressed by the following set of the dimensionless differential
equations

ẋ = a1x+ a2y + a3z + |a4x|+ a5

ẏ = a6x+ a7y + a8z + |a9y|+ a10

ż = a11x+ a12y + a13z + |a14z|+ a15

(4)

where a1 . . . a15 are constants to be found by algorithm. The
x, y, z are state variables. The dots over state variables de-

Fig. 17.3: The flowchart of parallel particle swarm algorithm.

where 𝑝 is the number of processors, 𝑇1 is the execution time of serial algorithm,
𝑇𝑝 is the execution time of parallel algorithm.

It is obvious, that ideal speedup is (linear speedup) when it is equal to number of
processors. Sometimes a speedup of more than 𝑝 when using 𝑝 processors is observed
in parallel computing, which is called super linear speedup. One possible reason for
a super linear speedup is the cache effect resulting from the different memory hier-
archies of modern computers.

Efficiency performance scale defined as:
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𝐸𝑝 = 𝑆𝑝

𝑝
= 𝑇1

𝑝 · 𝑇𝑝

. (17.3)

Considering serial algorithm, its efficiency is equal to 1, but the value usually
lies in the set 𝐸𝑝 ∈< 0; 1 >.

Some tasks are difficult to parallelize, or even not possible. Theoretical value for
the efficiency can be defined as:

𝐸𝑝 = 1
ln 𝑝

. (17.4)

17.2.5 Numerical Simulations

For evaluating the algorithm general system of differential equations of third order
and absolute nonlinear function was chosen [69, 122, 70]. The system can be ex-
pressed by the following set of the dimensionless differential equations as:

�̇� = 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧 + |𝑎4𝑥| + 𝑎5

�̇� = 𝑎6𝑥 + 𝑎7𝑦 + 𝑎8𝑧 + |𝑎9𝑦| + 𝑎10

�̇� = 𝑎11𝑥 + 𝑎12𝑦 + 𝑎13𝑧 + |𝑎14𝑧| + 𝑎15, (17.5)

where 𝑎1, · · · , 𝑎15 are constants to be found by algorithm. The 𝑥, 𝑦, 𝑧 are the state
variables.

We can observe, that the non-linear function is made of absolute values over
state variables.

The vector field is divided by non-linear function into the several planes. To find
chaotic solution effectively, Lyapunov exponents (LE) [61] can be used as quantifier.

They are calculated from general differential equations using the JM. To get
derivatives the absolute value was substituted supposing (𝑥 ∧ 𝑦 ∧ 𝑧) ∈ R3 we can
write:

𝑑

𝑑𝑥
|𝑥| = lim

ℎ−→0

|𝑥 + ℎ| − |𝑥|
ℎ

≈ lim
ℎ−→0

√︁
(𝑥 + ℎ)2 −

√︁
(𝑥)2

ℎ

= 𝑥√︁
(𝑥)2

≈ 𝑥

|𝑥|
(17.6)
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Then the JM for dynamical system (17.5) is defined as:

J =

⎛⎜⎜⎜⎜⎝
𝑎1 +

√
(𝑎4·𝑥)2

𝑥
𝑎2 𝑎3

𝑎6 𝑎7 +
√

(𝑎9·𝑦)2

𝑦
𝑎8

𝑎11 𝑎12 𝑎13 +
√

(𝑎14·𝑧)2

𝑧

⎞⎟⎟⎟⎟⎠ , (17.7)

and satisfying constrain conditions:

(𝑥, 𝑦, 𝑧) ∈ R3 ̸= 0. (17.8)

Several problems can appear in the process of calculation [120, 113, 114]. First
of all, the regions of chaos are very small and often surrounded by an unbounded
solution[141, 115]. It is because chaotic systems are perfectly balanced systems.
While using the concept of exponential divergence the routine for the calculation
of LE spectrum can fail providing two positive numbers [122, 121]. To improve
the general convergence, first step is to check if integrated system meets the chosen
boundary conditions. It allows us to reduce computation time and also omits di-
verge results.

Another problem can arise from JM itself. The matrix J is undefined for (𝑥 ∨
𝑦 ∨ 𝑧) = 0 (the system is defined there). Thus we have to be careful of choosing the
initial conditions. They were chosen to be I𝑐 = (0.1, 0.1, 0.1)𝑇 . Setting the integra-
tion time long enough avoids analysis of transient. Fortunately such setup would
lead to correct result (avoiding equilibrium points and meeting previous conditions).
It is because of folding and stretching the state space on to the state space attractor.

Due to using such powerful optimizing method it is no longer matter of finding
only chaotic solutions. Measure called Kaplan-Yorke dimension can be utilized to
obtain the "most" chaotic solution. Such dimension for chaotic solution of equations
(17.5) is real number 𝐷𝐾𝑌 ∈< 2, 3 >. The calculation of Kaplan-Yorke dimension
is defined by using Lyapunov exponents in section (10.1.3):

17.2.6 Results

Simulations were done on personal computer with parameters: CPU Intel Core i5
(4 × 2.5𝐺𝐻𝑧), 4GB RAM, Matlab R2010b. The algorithm is also designed to be
used on Beowulf clusters. The algorithm was able to find 15 constants that exhibit
chaotic solution.
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The integrated system using Runge-Kutta method with variable step size. Two
different possible solutions are in the Fig. 17.4. and in the Fig. 17.5. First one is
denoted as 𝑃1, equations (17.9):

�̇� = 0.7𝑥 − 1.7𝑦 + 0.8𝑧 + | ± 1.4𝑥| + 0.5
�̇� = 2.42𝑥 + 0.571𝑦 + 0.8𝑧 + | ± 1.2208𝑦| + 0.3583
�̇� = 1.6322𝑥 + 0.595𝑦 − 0.641𝑧 + | ± 0.67𝑧| + 1.2375, (17.9)

the second is denoted as 𝑃2, equations (17.10):

�̇� = 0.7482𝑥 − 1.6934𝑦 + 0.81𝑧 + | ± 1.242𝑥| + 0.7927
�̇� = 2.3854𝑥 + 0.5713𝑦 + 0.7908𝑧 + | ± 1.2208𝑦| + 0.3583
�̇� = 1.6322𝑥 + 0.595𝑦 − 0.641𝑧 + | ± 0.6702𝑧| + 1.2375, (17.10)

The solutions presented in equations (17.9) and (17.10) seems to be very complex.
Thus several conditions restricting the set (precision in fact) of parameters were
applied to satisfy produce solutions. Such solution is presented in equations (17.11),
the state attractor is in Fig. 17.6. The final equations can be expressed as:

�̇� = 𝑥 − 2𝑦 + 0.5𝑧 + | ± 0.5𝑥| + 1
�̇� = 3𝑥 + 𝑦 − 0.5𝑧 + | ± 0.2𝑦| + 1
�̇� = 2𝑥 + 𝑦 − 0.5𝑧 + | ± 0.5𝑧| + 1. (17.11)

Fig. 17.4: Possible chaotic solution, equations (17.9), attractor for parameters of 𝑃1.
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Fig. 17.5: Possible chaotic solution, equations (17.10), attractor for parameters of
𝑃2.

Fig. 17.6: Possible chaotic solution, equations (17.11), attractor for parameters of
𝑃3.

17.3 Conclusion

In the first section of this chapter, the novel method for parallel computing of Lya-
punov exponents for large data sets has been presented. The method was tested on
various systems and proved to be efficient in terms of speeding up the computations.
In the [130] the calculations have been verified by practical implementation into the
circuit.
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Tab. 17.2: Table of parameters and results for under test taken systems (for 10
particles and 10 iterations).

No. of CPUs Elap. time [s] (Matlab) Speedup 𝑆𝑃 Efficiency 𝐸𝑃

1 626.7448 1.00 1.00
2 374.5314 1.67 0.83
3 291.8926 2.15 0.72
4 229.6355 2.72 0.68

The optimization method using parallel particle swarms for finding the chaotic
solutions is proposed. The algorithm itself showed significant speedup (Tab. 17.2)
of this particular problem. Despite better throughput (efficiency) of the algorithm,
there are still several problems to overcome. Finding better quantification for iden-
tification of chaos would be topic for further research.

Although nonlinear dynamics especially the chaos theory is the research interest
for many decades there are still some unanswered questions. Few of them are listed
in the papers [70, 141, 136]. The whole algorithm is dealing with the unanswered
question how natural chaotic behavior is for complex systems and for simple systems.
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18 CONCLUSIONS AND PERSPECTIVES OF
PART II

The purpose of this chapter is to summarize the work dedicated to methods for
analyzing the nonlinear dynamical systems.

In this chapter the concept of mathematical model analysis was briefly discussed.
First one of the oldest method called Poincare sections for quantification of the mo-
tion is presented. This method is not very accurate, but can be used also for time
series approach. One of the main issues is the setup of intersection planes.

The next section presents bifurcation analysis. The method is often used in order
to investigate the stability of the systems.

The last section presents quantifier so-called Lyapunov exponents. The LE are
one of the most widely used for investigation of the mathematical systems. As will
be presented later, there exist cases, where the quantifier is limited.
In the first section reconstruction of attractor dynamics is introduced. It is very
useful tool, because in real-valued measurements the availability of state variables
is highly limited. One of the main issues that hast to be overcome is the estimation
of parameters for reconstruction.

In the next section the estimation of embedded dimension is presented.

The next section presents one of the methods for estimation of 𝜏 that is used for
reconstruction of dynamics of attractor.

The last section presents example of time series analysis, on the well known
Lorenz attractor, applying the previously presented tools.

It is known that avoiding fractional integrators the third order of autonomous
dynamical systems is the minimum order to produce chaos. Generating chaotic be-
havior in less than third order autonomous systems is quite delicate process. The
whole system is extremely sensitive as for the initial conditions as for the realization.
To obtain chaotic behavior, the whole system has to be perfectly balanced. With
the growing order of the system, the presence of chaotic behavior is more probable.

Probably the first physical system to be recognized as demonstrating the frac-
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tional properties is the semi infinite lossy (RC) transmission lines [85]. Another
example of using fractional order circuits can be found in [86, 87], where the author
utilize the fractional-order two-port circuit element in different filtering applications.

Several ideas from the area of numerical analysis of the dynamical systems with
low dissipation have been suggested and verified. These procedures allow solving
the serious problems where standard existing procedures can not be used.

Moreover, the authors believe that GP oscillator models the three-dimensional
Brownian-like motion [92] of the single microscopic particle without interactions.

The vector field discontinuity and flow jumping resembles the particle-like be-
havior known from the quantum theory [93]. There is no doubt that there are a lot
of real physical systems with the similar mathematical description.
The main purpose of this chapter is to extend current state-of-the-art in the field
of complicated vector field approximations. Discovered method can be marked as
general and applicable to dynamical systems with almost any type and number of
the nonlinear functions.

This can be handy especially in the case theoretical study of the underlying dy-
namics. It is well known that dynamical motion in each region of the vector field
can be described analytically.

Proposed algorithm for approximation can be extended for higher-order mathe-
matical models as well as for higher-dimensional nonlinear functions.

There have been also other definitions of the metric dimensions that can be used
for motion quantification. For example the capacity (box-counting) dimension has
enormous computational time demands which increases drastically for large state
space attractors. For example it proves to be worthless if labyrinth chaos [118] is a
reference behavior.
It is demonstrated by means of the several examples that it is effective to use mixed
analog-digital synthesis even in the case of the chaotic dynamics. There exist some
dynamical systems (for example with cyclically symmetrical vector field) with mul-
tiple complex nonlinear functions making its truly analog circuitry implementation
almost impossible. The presented approach can be utilized to solve such problem.
In fact, the whole circuitry can be fully implemented in the language of a digital
signal processing.
The results, explained in this chapter, show that the proposed quantifier is suitable
for dynamical systems with large attractors. The principle itself is very simple and
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can be easily implemented.

The significant speed-up of the computation is obvious because of reduction of
one degree of freedom. The advantage of this method is also, it can be used for
a time-series recognition. Some well known systems of dynamical equations were
tested. The result were compared with the LE.

The preliminary results showed, that the method can be used for chaotic motion
recognition.
. Generating chaotic behavior in third-order autonomous systems is quite delicate
process. The whole system is extremely sensitive as for the initial conditions as for
the realization. It is known that avoiding fractional integrators the third order of
autonomous dynamical systems is the minimum order to produce chaos. To obtain
chaotic behavior, the whole system has to be perfectly balanced.

With the growing order of the system, the presence of chaotic behavior is more
probable. In this chapter the well known 2-D 𝑚×𝑛 scroll system was chosen and was
realized utilizing novel approach using the data converters as non-linear functions.
First the models were derived to simulate the data converters connected directly
(ADC-DAC).

Then the connection was reduced to produce less scrolls. To verify the chaotic
behavior of proposed conception, the circuit simulator PSpice was used. Then the
circuit was build and measured. The measured results are rather matching the the-
oretical expectations.

In the first section of this chapter, the novel method for parallel computing of
Lyapunov exponents for large data sets has been presented. The method was tested
on various systems and proved to be efficient in terms of speeding up the computa-
tions. In the [130] the calculations have been verified by practical implementation
into the circuit.

The optimization method using parallel particle swarms for finding the chaotic
solutions is proposed. The algorithm itself showed significant speedup (Tab. 17.2)
of this particular problem. Despite better throughput (efficiency) of the algorithm,
there are still several problems to overcome. Finding better quantification for iden-
tification of chaos would be topic for further research.

Although nonlinear dynamics especially the chaos theory is the research interest
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for many decades there are still some unanswered questions. Few of them are listed
in the papers [70, 141, 136]. The whole algorithm is dealing with the unanswered
question how natural chaotic behavior is for complex systems and for simple systems.
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Resumé en français
Méthodes avancées pour l'analyse des systèmes

dynamiques non-linéaires

Introduction

L'augmentation des performances des futurs systèmes dynamiques nécessite la prise en
compte des phénomènes physiques non linéaires. Cette thèse apporte un éclairage et des contri-
butions sur deux sujets complémentaires liés aux phénomènes dynamiques non linéaires. Le
mémoire de thèse est divisé en deux parties.

La première partie porte sur les non-linéarités des ampli�cateurs de puissance dans le cadre
d'applications destinées aux télécommunications ou à la di�usion audio-visuelle. Plusieurs mé-
thodes de modélisation et de linéarisation des ampli�cateurs de puissance ont été conçues et
discutées. Un banc de test a été développé a�n d'évaluer les méthodes sur des ampli�cateurs
réels. La robustesse de ces techniques à un mauvais alignement temporel des signaux a été éva-
luée. Par ailleurs, nous avons e�ectué une étude théorique sur l'existence et la prise en compte
de solutions multiples dans l'approche adaptative par apprentissage indirect.

La deuxième partie traite des systèmes dynamiques non linéaires qui présentent des solu-
tions chaotiques. Ces systèmes sont bien connus, mais les techniques d'identi�cation de ces
solutions manquent de �abilité ou nécessitent une puissance de calcul importante. Dans cette
thèse, plusieurs méthodes utilisant également le calcul parallèle sont présentées. Les systèmes à
commande di�érentielle fractionnaire sont briévement discutés. Il est aussi montré, qu'il existe
des systèmes liés à des fonctions de transfert non linéaires avec quanti�cation pour lesquels les
méthodes d'analyse classiques échouent.

Le travail de thèse s'est e�ectué dans le cadre du projet AMBRUN (projet FUI, partena-
riat : Thalès, TeamCast, Supélec et ESIEE Paris). Le projet AMBRUN vise à améliorer les
performances des émetteurs de puissance pour l'ampli�cation de signaux multiplexés via des
corrections adaptatives pour des applications duales de communications tactiques et de ra-
diodi�usion numérique en bande VHF. Une des originalités du projets réside dans la grande
largeur de bande des signaux à transmettre (plus de 40 MHz), les fortes puissances émises (de
l'ordre de la centaine de Watts) et la non-stationnarité des signaux multiplexés dans le cas des
communications tactiques.



Chapitre 1

Modélisation et linéarisation des systèmes

non-linéaires

1.1 Généralités sur les ampli�cateurs de puissance

Un ampli�cateur de puissance idéal ne devrait pas déformer le signal à transmettre. Le
signal de sortie Vout devrait être proportionnel au signal d'entrée Vin avec un gain G :

Vout = G Vin. (1.1)

Vin Vout 
G 

PA 

Figure 1.1 � Représentation shématique d'un ampli�cateur de puissance.

Le schéma d'ampli�cation idéale est présenté Fig.1.1.
Pour les ampli�cateurs réels, la puissance d'alimentation est limitée et la puissance du signal

de sortie ne pourra pas dépasser cette valeur. Pour de petits niveaux de puissance d'entrée, on
peut souvent considérer l'ampli�cateur comme quasi-idéal. Mais, lorsque le niveau de puissance
augmente, l'ampli�cateur commence à saturer. En conséquence de la saturation, le gain de
l'ampli�cateur n'est pas constant. Il a généralement tendance à diminuer avec l'augmentation
de la puissance d'entrée. Ce phénomène de compression de gain est dû au fait que le signal de
sortie (tension, courant, puissance) sature en raison de la limitation de la tension ou du courant
d'alimentation.

Les ampli�cateurs réels (non-idéaux) présentent des e�ets non désirés principalement des
phénomènes non-linéaires et des e�ets mémoire (à long terme ou à court terme).
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Figure 1.2 � Exemple de caractéristique AM/AM d'ampli�cateur de puissance.
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Figure 1.3 � Conséquences des non-linéarités et e�ets mémoire. À gauche : remontées spec-
trales. À droite : déformation de la constellation d'une modulation QAM.

1.2 Linéarisation et modélisation des ampli�cateurs de puis-

sance

De nombreuses méthodes ont été proposées pour la linéarisation des ampli�cateurs de puis-
sance. La prédistorsion numérique adaptative en bande de base est une des plus performantes.
Elle consiste à faire précéder l'ampli�cateur d'un bloc de traitement non-linéaire (on dira pré-
distorteur par la suite) qui cherche à pré-corriger les distorsions de l'ampli�cateur. Dans cette
thèse nous nous sommes focalisés sur cette approche.

L'opérateur de prédistorsion de même que le modèle de l'ampli�cateur s'appuie souvent sur
des modèles dérivés des séries de Volterra.

Le calcul du prédistorteur peut appliquer soit une approche d'apprentissage direct qui mi-
nimise l'erreur quadratique moyenne entre la sortie de l'amplicateur divisée par le gain de
référence et l'entrée du prédistorteur soit une approche d'apprentissage indirect qui consiste
à calculer un postdistorteur. Dans cette approche indirecte, on minimise l'erreur quadratique
moyenne entre l'entrée de l'ampli�cateur et le signal obtenu en appliquant un postdistorteur à
la sortie de l'amplicateur divisée par le gain de référence.

Il existe de nombreux modèles pour la modélisation des ampli�cateurs de puissance (ou pour
les prédistorteurs) allant des plus simples qui modélisent seulement les distorsions d'amplitude
en négligeant les e�ets mémoires aux plus généraux comme les séries de Volterra et les modèles
dérivés des séries de Volterra.



On peut distinguer trois catégories de modèles : les modèles statiques (sans e�ets mémoire),
les modèles semi-statiques (où les e�ets mémoire se limitent à des distorsions de phase dépen-
dant seulement de l'amplitude des signaux) et les modèles dynamiques (avec prise en compte
des e�ets mémoire).

Dans cette thèse, nous nous sommes centrés sur les modèles dynamiques dérivés des séries de
Volterra et s'exprimant linéairement en fonction de leurs coe�cients. L'intérêt de ces modèles
est leur généralité et la dépendance linéaire par rapport à leurs coe�cients ce qui conduit à des
problèmes d'optimisation convexe pour un critère d'optimisation quadratique dans le cas de la
modélisation d'un apmli�cateur de puissance ou de l'identi�cation d'un prédistorteur avec une
approche d'apprentissage indirect. Le problème se ramène alors à la résolution d'un système
d'équations linéaires. Nous nous sommes plus particulièrement intéressés aux modèles de types
polynômes à mémoire (PMS), polynômes à memoire généralisés (GMP) et DDR (dynamic de-
viation reduction).

Pour identi�er les coe�cients des modèles on peut utiliser des techniques d'identi�cation
par blocs ou des méthodes adaptatives travaillant échantillon par échantillon telles que les ap-
proches RLS ou LMS. Une des contributions de cette thèse est d'avoir proposé une technique
intermédiaire entre RLS et LMS appelée moindres carrés franctionnaires ou FLMS ( Fractional
Least Mean Square).

1.3 Algorithme FLMS Fractional Least Mean Square Al-

gorithm

Pour résoudre le système d'équations linéaires correspondant à l'optimisation du critère des
moindres carrés pour la modélisation des ampli�cateurs ou le calcul des prédistorteurs, nous
proposons une technique de moindres carrés franctionnaires appelée FMLS réalisant un compro-
mis entre RLS et LMS en termes de complexité et de performance. Les méthodes fractionnaires
comme leur nom l'indique, utilisent des dérivées non-entières qui généralisent la notion de dé-
rivation à des nombres non-entiers qui peuvent être réels ou complexes.

La fonction de coût J construite sur l'erreur e est donnée par :

J(n) = E[e(n)e∗(n)] (1.2)

Et le calcul du vecteur b pour le FLMS est dé�ni comme :

b(n+ 1) = b(n)− µ1
∂J(n)

∂b(n)
− µ2

∂vJ(n)

∂vb(n)
. (1.3)

En utilisant l'opérateur di�érentiel de Riemann-Liouville d'ordre v nous obtenons :

∂vJ(n)

∂vb(n)
= µ2eΦ

H(n)
b(1−v)(n)

Γ(2− v)
. (1.4)

On en déduit que la solution itérative pour le vecteur b s'écrit :

b(n+ 1) = b(n) + µ1e Φ
H(n) + µ2e Φ

H(n)
b(1−v)

Γ(2− v)
, (1.5)

où Γ est la fonction Gamma, v représente l'ordre fractionnaire du système et µ1 et µ2 sont
les constantes d'adaptation.
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Figure 1.4 � Comparaison de la convergence du coe�cient |b1| pour les algorithmes LMS, FLMS
et RLS. Ampli�cateur Smart PA de Thalès avec des signaux d'entrée OFDM large bande.

1.4 Ampli�cateurs et signaux utilisés pour les tests, com-

paraison des modèles

Pour le test et la comparaison des di�érents modèles et approches, plusieurs ampli�cateurs
de puissance ont été utilisés :

� Ampli�cateurs de di�usion radio-vidéo (données fournies par Teamcast) :
� Amplifcateur A1 (75 Wrms, 100 Wrms, 460 - 860 MHz)
� Ampli�cateur A2 (120 Wrms, 460 - 860 MHz)
� Ampli�cateur B (200 Wrms, 620 - 700 MHz)

� Ampli�cateur (appelé SmartPA) pour les communications tactiques, fourni
par thalès et mesuré à l'ESIEE :
� ampli�cateur SmartPa de Thalès (10 Wrms, 30 - 512 MHz, recon�gurable en polarisa-
tion)

Les signaux de test suivants ont été utilisés :
� Avec les ampli�cateus de di�usion audio-vidéo de TeamCast :
� signal de type OFDM (DVB or DAB)

� Avec le Smart PA de Thales :
� 64 QAM
� GMSK
� OFDM
� Multiplex 1 (Burst : somme de 3 signaux GMSKs avec évasion de fréquence)
� Multiplex 2 (Burst : somme de signaux GMSKs avec évasion de fréquence et d'un signal
64QAM)

� Multiplex 3 (Burst : somme de signaux GMSKs avec évasion de fréquence et d'un signal
OFDM)

Plusieurs tests ont été réalisés pour estimer les ordres des di�érents modèles pour la modéli-
sation des ampli�cateurs et la prédistorsion de façon à obtenir un compromis entre la complexité
et les performances. La Fig.1.5 illustre cette étude en présentant les résultats de la recherche
exhaustive pour les ordres des modèles dans le cas des modèles OPMS (orthogonal memory
polynomial et DDR dynamic deviation reduction d'ordre 1 et 2 : DDR1 et DDR2).
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Figure 1.5 � À gauche : recherche exhaustive des ordres des modèles optimaux pour la mo-
délisation de l'ampli�cateur B. À droite recherche exhaustive des ordres des modèles optimaux
pour la prédistorsion de l'ampli�cateur B. (Modèles OMPS et DDR2).

1.5 Détermination des ordres optimaux des modèles pour

la modélisation et la prédistorsion des ampli�cateurs

de puissance - Détermination de la structuures des mo-

dèles

La détermination des di�érents ordres des modèles qui déterminent la structure de séries
(ordres de non-linéarité, profondeur mémoire etc) est une tâche di�cile quand le modèle com-
porte de nombreux ordres à déterminer. Par exemple, les modèles polynomiaux à mémoire ne
comportent que 2 paramètres pour �xer leur structure : l'ordre de non-linéarité K et la pro-
fondeur mémoire M . Si on �xe 1 ≤ K ≤ 17 et 1 ≤ M ≤ 5, le test exhaustif de toutes les
con�gurations possibles représente 85 évaluations (soit 85 résolutions de systèmes d'équations
linéaires). Mais pour le modèle GMP (polynômes à mémoire généralisés) il faut déterminer 8
paramètres pour �xer la structure du modèle et si on impose que ces paramètres soient compris
entre 1 et 10, la détermination de la structure optimale demande 108 évaluations. La détermi-
nation de la structure optimale des modèles GMP est donc très coûteuse en calculs.

Aussi avons-nous proposé un algorithme d'optimisation génétique en nombres entiers pour
la détermination de la structure optimale des modèles. La fonction de coût (�tness) est un
compromis entre la performance (NMSE erreur quadratique normalisée) et la complexité du
modèle (nombre de coe�cients).

Pour évaluer l'algorithme proposé, nous avons utilisé la con�guration de test suivante :
ampli�cateur de Broadcast 120Wrms, signal OFDM, nombre de générations : 100, taille de
la population : 20 individus, condition d'arrêt : 40 générations, modèle polynôme à mémoire
(PMS) avec les conditions limites suivantes : K = 13 et M = 8, modèle GMP avec les condi-
tions limites : Ka = 7, Kb = 3, Kc = 3, La = 3, Lb = 3, Lc = 3, Mb = 5, Mc = 5.

Nous avons obtenu les structures suivantes. Pour le modèle PMS : K = 8 et M = 2,
NMSE = −37.25dB, 24 coe�cients. Pour le modèle GMP : Ka = 7, La = 2, Kb = 2, Lb =
0,Mb = 2, Kc = 2, Lc = 0,Mc = 0 et NMSE = −37.56dB, 14 coe�cients.

L'algorithme proposé est capable de réduire le temps de calcul nécessaire à la détermination



de la structure par un facteur au moins égal à 20.

1.6 Proposition d'une approche par réseau de neurones à

mémoire

Nous avons proposé un nouveau modèle s'appuyant sur un réseau de neurones à mémoire
pour la prédistorsion. Les réseaux de neurones classiques ne sont pas conçus pour des signaux
complexes comme ceux utilisés dans les modèles en bande de base, aussi des solutions ont-
elles été proposées dans lesquelles on sépare les signaux complexes en partie réelle et partie
imaginaire qui sont traitées par des réseaux séparés.

Nous avons proposé une approche originale qui s'appuie sur une structure de perceptron
multicouches dans laquelle le signal à l'entrée du réseau est retardé mais aussi avancé de façon
à mieux modéliser les e�ets mémoire.La Fig.1.6 illustre cette approche.
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Figure 1.6 � Principe du réseau de neurones à mémoire proposé avec : 2(M1 + 1) + 2(M2 + 1)
entrées. Avec (M1 = M2 = 6), 14 neurones dans la couche cachée et 2 neurones en sortie.

Les résultats obtenus avec ce réseau de neurones pour la linéarisation de l'ampli�cateur A1
(75W) sont donnés Table 1.1.

Table 1.1 � Table de résultats pour la prédistorsion de l'ampli�cateur A1 (75W) avec le réseau
de neurones à mémoire.

Ordre mémoire Nombre de couches cachées NMSE [dB]
1 1 -27.29
2 1 -29.00
3 1 -31.09
5 1 -31.71
10 1 -32.20

10,-10 1 -37.61



1.7 In�uence d'un décalage temporel ente la voie directe

et la voie de retour sur les performances de la prédis-

torsion

Nous avons évalué la sensibilité de la prédistorsion à un décalage temporel entre la voie di-
recte (celle comprenant le prédistorteur et l'ampli�cateur) et la voie de retour (celle permettant
de mesurer la sortie de l'ampli�cateur et d'adapter ensuite le prédistorteur). La con�guration
du système linéarisé par prédistorsion avec un décalage temporel entre les 2 voies est présenté
Fig.1.7.
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Figure 1.7 � Predistortion numérique avec un décalage teporel entre les 2 voies.

On a observé que pour un décalage temporel égal à un nombre entier d'échantillons, les
modèles PMS et GMP sont capables de compenser assez bien ce décalage tant que celui-ci est
de durée inférieure à la profondeur mémore du modèle et qu'il s'agit d'un retard. Ces modèles
ne sont pas capables de corriger une avance. La Fig.1.8 représente les résultats obtenus pour
des décalages entiers.
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Figure 1.8 � À gauche : in�uence d'un décalage temporel égal à un nombre entier d'échan-
tillons, cas du modèle PMS. À droite : mêmes résultats pour le modèle GMP.

Nous avons aussi testé la sensibilité du système de prédistorsion à un décalage temporel
égal à une fraction d'intervalle d'échantillonnage (décaage fractionnaire). Comme précédem-
ment, ces décalages sont compensés si la profondeur mémoire du prédistorteur est su�sante.



De façon à pouvoir compenser les avances, nous avons proposé une modi�cation du modèle
polynôme à mémoire et nous avons appelé le nouveau modèle PMM (modi�ed polynomial
model). Il est dé�ni par :

y(t) =
Ka−1∑

k=0

La−1∑

l=0

ak,lx(t− l)|x(t− l)|k

+

Kb−1∑

k=0

Lb−1∑

l=0

bk,lx(t+ l)|x(t+ l)|k, (1.6)
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Figure 1.9 � À gauche : e�et d'un décalage entier cas du modèle PMM. À droite : e�et d'un
décalage temporel fractionnaire, cas du modèle PMM.

On peut observer sur la Fig.1.9 que le modèle proposé est capable de compenser les avances
comme les retards entiers ou fractionnaires quand l'ordre mémoire du prédistorteur est su�sant.

1.8 Contribution à l'étude des solutions multiples dans les

systèmes de prédistorion avec apprentissage indirect

Nous avons mis en évidence l'existence de solutions multiples pour le prédistorteur dans
l'architecture avec apprentissage indirect. Comme on peut voir Fig.1.10, �xer les coe�cients du
prédistorteur à 0 conduit à une ereur minimale sur les signaux mais correspond à un résultat
sans intérêt pratique.
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Figure 1.10 � Architecture de prédistorsion adaptative avec apprentissage indirect.

Aussi avons-nous proposé un nouveau critère construit sur la minimisation d'une erreur de
gain plutôt qu'une erreur de signal. Ce critère permet naturellement d'éliminer la solution nulle



et régularise le comportement de la convergence.

1.9 Conclusion sur la 1ère partie

Nous avons présenté et comparé plusieurs méthodes pour la modélisation et la linéarisation
des ampli�cateurs de puissance. Nous avons conçu et mis en place un banc de mesure large
bande pour le test des ampli�cateurs et e�ectué plusieurs campagne de mesure.

Plusieurs ampli�cateurs ont été mesurés, modélisés et linéarisés avec les di�érentes ap-
proches. Les modèles ont été comparéses en termes de complexité et de performance.

Une architecture originale de réseau de neurones capable de traiter des signaux complexes
a été proposée.

Un des chapitre est consacré à l'étude de la sensibilité de la prédistorsion à un décalage
temporel entre les signaux de la voie directe et ceux de la voie de retour.

Un autre chapitre décrit l'existence de solutions multiples pour la prédistorsion dans le cas
de l'approche adaptative à apprentissage indirect.

Nous avons aussi travaillé sur la détermination de la structure des modèles et proposé un
algoruthme d'optimisation génétique en nombres entiers.



Chapitre 2

Méthodes avancées pour les systèmes

non-linéaires

La deuxième partie de cette thèse est centrée sur l'analyse des systèmes dynamiques non-
linéaires dans lesquels un comportement chaotique peut apparaître. Le but est d'essayer de
répondre à la question suivante : à quel point le comportement chaotique est-il naturel dans la
nature ?

2.1 Analyse des modèles mathématiques

Un des chapitres présente une synthèse des méthodes qui sont utilisées pour l'analyse des
systèmes dynamiques non-linéaires. Généralement, ces systèmes sont décrits par des équations
di�érentielles non-linéaires.

Un exemple de telles équations est donné par le système de Lorenz :

ẋ = 10(y − x)

ẏ = 28 x− x z − y
ż = x y − 8

3
z. (2.1)

qui est décrit par 3 équations di�érentielles d'ordre 1.
La connaissance du système permet d'utiliser des outils comme :
� les sections de Poincare.
� L'analyse des bifurcations (Fig. 2.1).
� Les exposants de Lyapunov.
� La dimension de Kaplan-Yorke.

2.2 Analyse des séries temporelles

Malheureusement, pour des mesures réelles, nous ne disposons pas toujours de toutes les
variables. Mais il existe des techniques comme la reconstruction d'espaces d'états (state space
dynamic reconstruction) dé�nie par :

X =




X0 · · · X(m−1)τ
...

. . .
...

Xn · · · Xn+(m−1)τ


 , (2.2)
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Figure 2.1 � Analyse des bifurcations de système dynamique

où nous avons besoin d'estimer la dimension m (nombre de variables) et le décalage τ
(Fig.2.2). Nous pouvons ensuite utiliser des technique telles que celle des exposnats de Lyapunov
ou la technique "box-counting".

Figure 2.2 � Di�érents décalages τ a) τ = 0, b) τ = 2, c) τ = 4, d) τ = 6, e) τ = 8, f) τ = 10,
g) τ12, h) τ = 14, i) τ = 98.

2.3 Sur les �ux chaotiques fractionnaires autonomes d'ordre

peu élevé et algébriquement simples

La calcul fractionnaire est décrit succinctement dans la thèse. Il s'agit du calcul dans lequel
les ordres de dérivations et d'intégration peuvent être des nombres réels non entiers ou des
complexes. De façon à montrer les propriétés du calcul fractionnaire, nous avons choisi un �ux
chaotique dé�ni par 3 équations d'ordre 1 :

ẋ = −y
ẏ = x+ z



ż = xz + 3y2. (2.3)

Figure 2.3 � À gauche : système simulé numériquement avec α1 = 1, α2 = 1, α3 = 1. À droite :
Système avec intégrateurs α1 = 0.86, α2 = 1 and α3 = 0.6.

On peut observer Fig.2.3 que le comportement chaotique peut apparaitre même dans des
systèmes dynamiques autonomes d'ordre inférieur à 3. Les intégrateurs sont �xés à : α1 =
0.86, α2 = 1 et α3 = 0.6. Dans ce cas particulier, l'ordre est de 2.43. Dans la �gure, on peut voir
la modi�cation du comportement dynamique du système, avec préservation du comportement
chaotique.

2.4 Généralisation de l'approximation linéaire par mor-

ceau des dynamiques chaotiques

Dans cette section nous présentons une conception automatisée de l'approximation linéaire
par morceau de champs de vecteurs non-linéaires. L'approximation linéaire par morceau est
importante, car elle permet de resoudre les systèmes à l'aide d'outils linéaires.

Pour l'estimation des coe�cients nous utilisons une technique d'optimisation par essaim de
particules avec comme fonction d'objectif une combinaison des exposants de Lyapunov, de la
densité spectrale de puisance et du nombre de points �xes.

Dans la Fig.2.4 on peut observer les approximations obtenues pour les fonctions cubiques
et quadratiques pour le modèle mathématiqu de neurone.

Plusieurs exemples de fonctions non-linéaires complexes et de leur approximation linéaire
par morceaux sont présentées dans la thèse.

2.5 Systèmes dynamiques avec sauts discrets périodiques

Nous présentons les systèmes dynamiques avec sauts discrets périodiques, appelés aussi
systèmes de Gotthans-Petrzela (modèles GP), présentant des solutions chaotiques.



Figure 2.4 � Approximation du modèle mathématique d'un neurone , attracteurs et fonctions
non-linéaires.

ẋ = −ax x± sign[sin(byy)]

ẏ = −ay y ± sign[sin(bzz)]

ż = −az z ± sign[sin(bxx)]. (2.4)

On montre que le calcul des exposants de Lyapunov n'est pas possible à cause des valeurs
extrêmes présentes dans la matrice de Jacobi. On présente une approximation de ces systèmes,
obtenue par série de Fourier permettant d'éviter les gradients extrêmes des trajectoires proches.

À cause de la grande densité d'attracteurs, on ne peut pas appliquer la méthode de dimen-
sion box-counting. Aussi avons-nous présenté un quanti�cateur sphérique qui permet de réduire
la complexité.

2.6 Attracteurs multi-grille avec sauts discrets

De façon à prouver l'existence de systèmes dynamiques chaotiques avec des champs de vec-
teurs discrets, nous avons choisi l'attracteur multi grille et nous l'avons réalisé par un circuit
électronique. La fonction non-linéaire, pour garder la quanti�cation, est réalisée par une cascade
de 2 convertisseurs analogique-numérique et numérique-analogique.

La Fig.2.6 présente les projections de Monge observées à l'oscilloscope.



Figure 2.5 � Quanti�cation du mouvement dynamique, attracteur analysé (rouge) et sa pro-
jection sur la sphère (noir), système GP avec des paramètres uniformes ax =ay= az = 0.1 and
bx = by = bz = 10.
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alized utilizing novel approach using the data converters
as non-linear functions. First the models were derived to
simulate the data converters connected directly (ADC-
DAC). Than the connection was reduced to produce less
scrolls. To verify the chaotic behavior of proposed con-
ception, the circuit simulator PSpice was used. Then the
circuit was build and measured. The measured results are
rather matching the theoretical expectations.
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Figure 2.6 � Système measuré, scroll 4 × 4 : projections V(x) vs V(-y)(left), V(-y) vs V(z)
(right).

2.7 Approches parallèles

Les ordinateus récents sont réalisés avec des processuers multi-coeurs. Il est donc utile
d'adapter les algorithmes pour tirer partie du parallélisme de ces architectures.

Dans cette thèse, nous avons présenté des méthodes pour paralléliser le calcul des exposants
de Lyapunov. Nous avons démontré l'e�cacité de ces méthodes sur un vrai système dynamique.
Le calcul implémenté sur 8 processeurs en parallèle est 4 fois plus rapide que le calcul sur un
seul processeur.

La partie suivante présente un algorithme parallèle d'optimisation par essaim de particules
et démontre son e�cacité pour un système dynamique non-linéaire général avec 15 paramètres



inconnus :

ẋ = a1x+ a2y + a3z + |a4x|+ a5

ẏ = a6x+ a7y + a8z + |a9y|+ a10

ż = a11x+ a12y + a13z + |a14z|+ a15, (2.5)

On montre que l'algorihme implémenté sur 4 processeurs en parallèle est capable de trouver
les solutions chaotiques deux fois et demi plus rapidement que l'algorithme stanard.

Une solution possible est :

ẋ = 0.7482x− 1.6934y + 0.81z + | ± 1.242x|+ 0.7927

ẏ = 2.3854x+ 0.5713y + 0.7908z + | ± 1.2208y|+ 0.3583

ż = 1.6322x+ 0.595y − 0.641z + | ± 0.6702z|+ 1.2375, (2.6)

correspondant à la Fig.2.7.

Figure 2.7 � Solution chaotique possible.

2.8 Conclusion sur la deuxième partie

Dans la deuxième partie, nous avons d'abord présenté plusieurs méthodes d'analyse des
systèmes dynamiques non-linéaires.

Puis nous avons présenté les séries d'ordre fractionnaires et nous avons apporté la preuve
de l'existence de comportements chaotiques pour des systèmes dynamiques autonomes non-
linéaires d'ordre inférieur à 2.5.

Nous avons proposé une méthode automatique d'approximation de champs de vecteurs non-
linéaires. La méthode utilise un algorithme d'optimisation par essaim de particules. Plusieurs
exemples d'approximations ainsi obtenues sont présentés.



Nous avons ensuite présenté un type de système avec des champs de vecteurs discrets pé-
riodiques et nous avons montré qu'on ne peut pas utiliser dans ce cas les méthodes d'analyse
standard. Aussi avons-nous proposé une approche de quanti�cation sphérique de manière à
réduire la complexité de calcul.

Le théorème sur les champs de vecteurs discrétisésa été validé par la réalisation d'un circuit
électronique.

Le dernier chapitre expose la parallélisation du calul des exposants de Lyapunov et la pa-
rallélisation de l'algorithme d'optimisation par essaim de particules. L'e�cacité des ces paral-
lélisations est illustrée sur des systèmes particuliers.







Resumé

Méthodes avancées pour l'analyse des systèmes dynamiques non-
linéaires

L'augmentation des performances des futurs systèmes dynamiques nécessite la prise en compte des phénomènes

physiques non linéaires. Cette thèse apporte un éclairage et des contributions sur deux sujets complémentaires

liés aux phénomènes dynamiques non linéaires. Le mémoire de thèse est divisé en deux parties.

La première partie porte sur les non-linéarités des ampli�cateurs de puissance dans le cadre d'applications

destinées aux télécommunications ou à la di�usion audio-visuelle. Plusieurs méthodes de modélisation et de

linéarisation des ampli�cateurs de puissance ont été conçues et discutées. Un banc de test a été développé

a�n d'évaluer les méthodes sur des ampli�cateurs réels. La robustesse de ces techniques à un mauvais aligne-

ment temporel des signaux ainsi que leur capacité à faire face à des artefacts spectraux ont été évaluées. Par

ailleurs, nous avons e�ectué une étude théorique sur l'existence et la prise en compte de solutions multiples dans

l'approche adaptative par apprentissage indirect.

La deuxième partie traite des systèmes dynamiques non linéaires qui présentent des solutions chaotiques.

Ces systèmes sont bien connus, mais les techniques d'identi�cation de ces solutions manquent de �abilité ou

nécessitent une puissance de calcul importante. Dans cette thèse, plusieurs méthodes utilisant également le

calcul parallèle sont présentées. Les systèmes à commande di�érentielle fractionnaire sont brièvement discutés.

Il est aussi montré, qu'il existe des systèmes liés à des fonctions de transfert non linéaires avec quanti�cation

pour lesquels les méthodes d'analyse classiques échouent.

Mots-clés: Systèmes non-linéaires, pré-distorsion, ampli�cateur de puissance, chaos, exposant de Lya-

punov, Systèmes dynamiques.

Abstract

Advanced methods for analyzing nonlinear dynamical systems

In order to achieve better performance of modern communication devices, that have to be operated on its

physical limits, the nonlinear phenomena need to be taken into the account. This thesis brings insight into two

di�erent subjects related with nonlinear dynamical phenomena. The thesis itself is divided into two parts.

The �rst part is focused on the domain of nonlinear power ampli�ers from the system point of view. Several

methods for modelization and linearization of power ampli�ers have been designed and discussed. A test-bench

has been assembled in order to evaluate the proposed methods on real power ampli�ers. Then the robustness

to time misalignment in the system and the ability to deal with spectral artifacts in the system of presented

methods have been evaluated. Also a theoretical study has been conducted on the existence and management

of multiple solutions in the frame of adaptive indirect learning approach.

The second part deals with nonlinear dynamical systems that are exhibiting chaotic solutions. Such systems

are well known, but techniques for identifying reliable such solutions are either missing or are computational

intense. In this thesis several methods using also parallel computing are presented. Systems with fractional

di�erential order are brie�y discussed. It is as well shown, that there exists systems related with quanti�ed

nonlinear transfer functions for which the standard analyzing methods fails.

Keywords: Non-linear systems, pre-distortion, power ampli�er, chaos, Lyapunov exponents, dynamical

systems.
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