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“Would you tell me, please, which way I ought to go from here ?”

“That depends a good deal on where you want to get to,” said the Cat.

“I don’t much care where—" said Alice.

“Then it doesn’t matter which way you go,” said the Cat.

“—s0 long as I get somewhere,” Alice added as an explanation.

“Oh, you’re sure to do that," said the Cat, “if you only walk long enough.”

— Lewis Carroll, Alice in Wonderland, Chapter VI.
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Résumé

Dans cette these, on étudie un systeme de particules en interaction qui généralise un
processus de contact, évoluant en environnement aléatoire. Le processus de contact peut
étre interprété comme un modele de propagation d’une population ou d’une infection.
La motivation de ce modele provient de la biologie évolutive et de I'écologie comporte-
mentale via la technique du male stérile, il s’agit de controler une population d’insectes
en y introduisant des individus stérilisés de la méme espéece : la progéniture d’une fe-
melle et d'un individu stérile n’atteignant pas de maturité sexuelle, la population se voit
réduite jusqu’a potentiellement s’éteindre.

Pour comprendre ce phénomene, on construit un modele stochastique spatial sur
un réseau dans lequel la population suit un processus de contact dont le taux de crois-
sance est ralenti en présence d’individus stériles, qui forment un environnement aléatoire
dynamique.

Une premiere partie de ce document explore la construction et les propriétés du
processus sur le réseau Z?. On obtient des conditions de monotonie afin d’étudier la
survie ou la mort du processus. On exhibe 'existence et 'unicité d’une transition de
phase en fonction du taux d’introduction des individus stériles. D’autre part, lorsque
d = 1 et cette fois en fixant I’environnement aléatoire initialement, on exhibe de nouvelles
conditions de survie et de mort du processus qui permettent d’expliciter des bornes
numériques pour la transition de phase.

Une seconde partie concerne le comportement macroscopique du processus en étu-
diant sa limite hydrodynamique lorsque l'évolution microscopique est plus complexe.
On ajoute aux naissances et aux morts des déplacements de particules. Dans un pre-
mier temps sur le tore de dimension d, on obtient a la limite un systéme d’équations
de réaction-diffusion. Dans un second temps, on étudie le systeme en volume infini sur
Z%, et en volume fini, dans un cylindre dont le bord est en contact avec des réservoirs
stochastiques de densités différentes. Ceci modélise des phénomenes migratoires avec
extérieur du domaine que 1'on superpose a I’évolution. A la limite on obtient un sys-
teme d’équations de réaction-diffusion, auquel s’ajoutent des conditions de Dirichlet aux
bords en présence de réservoirs.

Mots-clefs. systeme de particules en interaction, modele stochastique spatial, pro-
cessus de contact, milieu aléatoire, attractivité, percolation, transition de phase, limite
hydrodynamique, réservoirs.







Abstract

In this thesis, we study an interacting particle system that generalizes a contact
process, evolving in a random environment. The contact process can be interpreted
as a spread of a population or an infection. The motivation of this model arises from
behavioural ecology and evolutionary biology via the sterile insect technique ; its aim is
to control a population by releasing sterile individuals of the same species : the progeny
of a female and a sterile male does not reach sexual maturity, so that the population is
reduced or potentially dies out.

To understand this phenomenon, we construct a stochastic spatial model on a lat-
tice in which the evolution of the population is governed by a contact process whose
growth rate is slowed down in presence of sterile individuals, shaping a dynamic random
environment.

A first part of this document investigates the construction and the properties of the
process on the lattice Z¢. One obtains monotonicity conditions in order to study the
survival or the extinction of the process. We exhibit the existence and uniqueness of
a phase transition with respect to the release rate. On the other hand, when d = 1
and now fixing initially the random environment, we get further survival and extinction
conditions which yield explicit numerical bounds on the phase transition.

A second part concerns the macroscopic behaviour of the process by studying its hy-
drodynamic limit when the microscopic evolution is more intricate. We add movements
of particles to births and deaths. First on the d-dimensional torus, we derive a system
of reaction-diffusion equations as a limit. Then, we study the system in infinite volume
in Z¢, and in a bounded cylinder whose boundaries are in contact with stochastic reser-
voirs at different densities. As a limit, we obtain a non-linear system, with additionally
Dirichlet boundary conditions in bounded domain.

Keywords. interacting particle system, spatial stochastic model, contact process, ran-
dom environment, attractiveness, percolation, phase transition, hydrodynamic limit, re-
Servoirs.
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This thesis examines two different aspects of a generalized contact process. In a
microscopic scale, we study survival or extinction of the process with respect to varying
parameters. Then, we go to a macroscopic scale and establish hydrodynamic limits,
where in the dynamics of the underlying process we add displacements of particles and
further on migratory phenomena.

In this chapter, we introduce some general settings we shall make use of, first on
interacting particle systems in Section [I.I] and then on the contact process in Section
After what, in Section [1.4] we develop shortly the big picture of the sterile insect
technique. In Section (1.5, we describe a generalized contact process and our results that
lead to an understanding of this competition model.




Chapter 1. Introduction

1.1 Interacting Particle Systems

Interacting particle systems are a class of Markov processes that arose in the early
seventies due to pioneering works by F. Spitzer [70] [71] and R.L. Dobrushin [I6]. They
have provided a framework that describes the space-time evolution of an infinity of
indistinguishable particles governed by a strong random and local interaction.

This particular class of stochastic processes comes up in various areas of applications :
physics, biology, computer science, economics and sociology,... that dictate the nature
of the randomness of the processes.

1.1.1 The setup

As a preparation, one first reviews some necessary background theory about inter-
acting particle systems. For further contents on the topic, one refers the reader to T.M.
Liggett’s books [58 [57].

State spaces are of the form Q = F®, where F is discrete and finite, S is a countable
set of sites. Note that €2 is compact in the product topology. A configuration { € §2 is
described by the state of each site = of the graph S, given at time ¢ by (;(x) € F. For
each ( € Q and T < S, the local dynamics of the system is depicted by a collection
of transition measures cp(¢,da), assumed to be finite and positive on F7. Assume
further that the mapping ( — c7((,da) is continuous from Q to the space of finite
measures on F7 with the topology of weak convergence. If  is the current configuration,
a transition of state or flip involving the coordinates in T occurs at rate c7(¢, FT) and
cr(¢,da)/cr(¢, FT) is the distribution of the resulted configuration restricted to T

We will use the notation P¢ for the distribution of the process ((;)i=o starting from
the initial configuration ¢, and E¢ will denote the corresponding expectation. The infi-
nitesimal description of a process ( € €} is given by its generator L, a linear unboun-
ded operator defined on an appropriate dense domain Z(£2) of the space of functions
f Q2 — R. For any cylinder function f, i.e. that depends only on finitely many coordi-
nates, L is defined by

/@)=Y f er (¢, da) (F(¢2) — £(0), (1.11)

where (® is obtained from ¢ only by flipping the coordinates in 7, that is, for a € F7,

o_ ) Cx)ifweT,
¢ = alz)ifxeT.

The series converges provided that cr(.,.) satisfies natural summability conditions.

Let C(2) be the space of continuous real-valued functions on € equipped with the
uniform norm. All the processes we consider here have the Feller property (i.e. strong
Markov processes whose transition measures are weakly continuous in the initial state)
so that the semigroup S; of the process on C(€) is well defined :

2



1.1. Interacting Particle Systems

Theorem 1.1.1. Suppose {S;,t > 0} is a Markov semigroup on C(S2). Then there exists
a unique Markov process {P°,( € Q} such that

Sif(Q) =EC£(Q)
forall feC(), CeQandt = 0.

The link binding the infinitesimal description of the process (generator) to the time-
evolution of the process (semigroup) is given by the Hille-Yosida theory set in the Banach
space C(Q2).

Theorem 1.1.2 (Hille-Yosida). There is a one-to-one correspondence between Markov
generators on C(2) and Markov semigroups on C(Q). This correspondence is given by

1. 2(Q) = {f eC(Q): lim S’*ft_ /

em’sts} , and

£f:11mstft_f

t10

T 9(9),
2. fort =0,
Sif = m (f = SLf) e C(9).

Relying on the Hille-Yosida theory, the following result states sufficient conditions
for the existence of an infinite particle system.

Theorem 1.1.3 (T.M. Liggett (1972)). Assume that
supz sup (cT(C,FT) (e Q) < w

zeS o,
and
sup 37 35 sup (ler(Gr.da) = er(Gorda)|r < u(u) = Galy) for ally #u) < o0
TES Top stz
where | - | stands for the total variation norm of a measure on FT. Then the closure

L of L defined in (1.1.1)) is the generator of a Feller Markov process ((;)i=o on Q. In

particular, if f is a cylinder function then,

Ef:%i—{%Stft_f’
ZStf = S Lf
and u(t) = S f is the unique solution to the evolution equation
owu(t) = Lu(t), u(0) = f. (1.1.2)

Let B be the set of probability measures on €2 equipped with the topology of weak
convergence, i.e.

fn — o in P if and only if J fdu, — J fdu
Q Q

for all f e C(Q2). Note that the compactness of (2 implies the compactness of B in this
induced topology.




Chapter 1. Introduction

1.1.2 Invariant measures

Study of interacting particle systems involves use of their invariant measures and
ideally, convergence to them. If i is a probability measure on 2, the distribution of (;
with initial distribution p is denoted by w.S; and is defined by

| fitwsy = | sipau gec.

By the Riesz Representation theorem, this relation defines uniquely w©.S;. The measure
w is invariant with respect to the process if ©S; = p for all £ > 0. Denote by J the set
of all invariant measures. Furthermore,

Theorem 1.1.4 (Proposition 1.8 [58]). i. we T if and only if
J Lfdp =0, for all cylinder functions f.
Q

1. J is compact, convexr and non-empty.
1. J is the closed convex hull of its extreme points.
w. Let peB. If i := tlim WSy exists, then e J.
—00
Remark that a process always has at least one invariant measure. This measure

might satisfy a symmetry property called reversibility that allows simpler computations
or even, further results. A probability measure p on 2 is reversible for the process if

| £5i9du = | g5.pau. tora .9 < ci@)
Q Q

or equivalently,

f fLgdu = J gL fdu, for all cylinder functions f, g.
Q Q

1.1.3 Coupling and stochastic order

A coupling is a construction of two (or even more) stochastic processes on a common
probability space. To make use of this powerful tool, we will deal with several topics that
are closely connected with coupling such as stochastic order relations between proba-
bility measures, monotone processes and correlation inequalities. These useful relations
allow us to compare processes, so that one can deduce properties from one to another
by domino effect.

Assuming that F' is totally ordered, the state space € is a partially ordered set, with
partial order given by

(< (if forallze S, ((z) < {(2), (1.1.3)




1.1. Interacting Particle Systems

where this last inequality refers to the order on F. A function f € C() is increasing if

(<= f(Q) < f({)

This leads naturally to define the stochastic order between two probability measures 1y
and po on €2, that is, us is stochastically larger than py, written p; < o if :

J fdpy < J fduso for any increasing function f on §2.
Q Q

A necessary and sufficient condition for a semigroup, acting on measures, to preserve
the ordering on {2 is given by

Theorem 1.1.5 (Theorem 2.2 [57]). For a Feller process on ) with semigroup Sy, the
following two statements are equivalent :

a. If f is an increasing function on ) then Sy f is an increasing function of Q for all
t=0.

b. If py < po then pySy < oSy for allt = 0.

Stochastic order between two particle systems ((;)i=0 and ((;);=0 is given by the
existence of a coupled process ((, (;)i=0 on the probability space € x € that preserves
the order between their initial configurations, that is, if (o < ¢} then ; < (] a.s. for all
t > 0. Such a coupling is said to be increasing and (; is said to be stochastically larger
than ;. When ((;)i=0 and ((;):=0 are two copies of the same process, we say the process
is attractive.

The following result gives the connection between coupling and stochastic order.

Theorem 1.1.6 (Theorem 2.4 [58]). Let py and ps be probability measures on §2. Then
e s stochastically larger than uy if and only if there exists a coupling (¢, (") such that ¢
has distribution uy, ¢' has distribution ps and ¢ < (' almost surely, that is, there exists
a measure v on §2 such that

v{(¢,¢) 1 Ce A} = pu(A)
v{(¢,¢) 1 ¢ e A} = pa(A)
(¢ ¢) =<} =1

Furthermore, we will consider different types of stochastic processes :

(&)i=0 (basic) contact process
(&, wt)i=0 contact process in dynamic random environment
(77,:)t>0 multitype contact process




Chapter 1. Introduction

1.2 A short story of the contact process

Introduced by T.E. Harris in 1974 [39], the contact process on the graph S with
growth rate \; is an interacting particle system (&;);=o on {0,1}*, whose dynamics is
given by the following transition measure : the involved sets T are singletons T' = {x}
and,

Mz, §)0py i §(z) =0,
cr(é,da) = ) 1.2.1
(6, da) = { MO0 el 0 (121)
where n;(z,§) = > 1{&(y) = 1} stands for the number of neighbours of site x
yeS:|ly—zx|=1
that are in state i. Here | - | refers to the maximum norm : |z| = max |z;|, for z € R%

1<j<d

Denote by P, the law of the contact process with growth rate A;.

It is usually interpreted as the spread of a population, an infection or a rumour.
Regarded as an infection, infected sites (in state 1) become healthy spontaneously after
a unit exponential time while healthy sites (state 0) become infected at some rate, pro-
portional to the number of their infected neighbours.

General theory about the contact process is finely exposed by T.M Liggett [58] for
results from 1974 to 1985, [57] for results after 1985 and by R. Durrett [I8] as well.

1.2.1 Construction of the process

Let A be a subset of S. Define £ as the process starting from the initial configuration
& = 1. Configurations ¢ € {0,1}* are commonly identified with subsets of S via

= = freS:gia) = 1),

regarded as the set of occupied sites at time ¢. When A = {0}, we will omit the exponent.
As a consequence of Theorem , the transition measure cr(&, da) uniquely defines a
Markov process, so that the infinitesimal generator of the contact process is defined for
any cylinder function f on {0,1}° by

N GEDY L er(€, da)[f(€%) — £(6)] (12.2)

zeS

Graphical representation The graphical construction of the contact process is due
to T.E. Harris [40]. The idea is to construct a percolation structure on which to define
the process, lending itself to the use of the theory of percolation (see G. Grimmett [33]).
To carry out this representation, for each pair (x,y) € S? that are joined by an edge in
S, let {T2Y,n = 1} be the arrival times of independent rate \; Poisson processes and for
each x € S, let {Df,n > 1} be the arrival times of independent rate 1 Poisson processes.
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1.2. A short story of the contact process

Both families of Poisson processes are mutually independent. Now, think of the space-
time diagram S x [0, 00). At time ¢ = D, put a death symbol “x” at (z,t) € S x [0, o0).
At time t = T2V, draw an arrow from (z,t) to (y, ).

By way of illustration, see Figure [L.1]

time

FIGURE 1.1: The graphical representation for the contact process on Z' x R,

For s < t, there exists an active path in the space-time picture S x [0, 0) from (z, )
to (y,t), written (x,s) — (y,t), if there exists a sequence of times s = 59 < $1 < ... <
Sn_1 < S, =t and spatial locations x = x¢, x1, ..., z, = y such that

i. for i = 1,...,n, there is an arrow from x;_; to x; at time s;.

ii. for i =0,...,n — 1, the vertical segments {x;} x (s;, s;+1) contain no death symbol.
In words, an active path is a connected oriented path that moves forward in time wi-
thout crossing a death symbol and along the directions of the arrows. For instance, in

Figure [1.1] there is an active path from (0,0) to (1,¢). The contact process with initial
configuration A c S is obtained by setting

A .= {ye S:3x e Asuch that (z,0) — (y,t)}

Therefore, in our previous example, Aio} = {1}.

The graphical construction provides a joint coupling of contact models with different
transition rates : let )\gl) < /\52), if we constructed the process with rate )\52) and we keep
(2)
1

each arrow with probability /\gl) /A7, by the thinning property of the Poisson processes,

we end up with the graphical representation of a contact process with growth rate )\gl).

7



Chapter 1. Introduction

Thus, one has a non-decreasing growth with respect to A;. On the other hand, it also
provides a monotone coupling :

Ac B= A c AP,

Therefore, the contact process is attractive and it also follows from the graphical construc-
tion that the contact process is additive (see D. Griffeath [32]) :

AMVB = AR U AP,

1.2.2 Upper invariant measure and duality

Since the partial order on €2 defined in induces one on the set of probability
measures on (), there will be a lowest and largest element on J with respect to this
partial order.

If 0 denotes the configuration identically equal to 0, since 0 is an absorbing state
then oy is called the lower invariant measure for the contact process. The upper invariant
measure can be constructed using attractiveness : choose the initial configuration as the
biggest possible one, i.e. starting from Zy = S, and let p; be the distribution of &, so
that po = 0. Then p; < po. By attractiveness and applying the Markov property, we
have p;, s < pq for all s > 0. Therefore, t — p, is decreasing and in particular, for every
increasing function f on 2, the map ¢t — SQ fduy is decreasing as well. Since PB(Q) is
compact for the weak topology, the limiting distribution

= lim

exists and is the upper invariant measure of the process. It is invariant as a limiting
measure for the Markov process by Theorem [I.1.4] In particular, the measure 7 has
positive correlations.

Correlation inequalities will be crucial property in Section where we will work in
arbitrary large but finite spaces. A probability measure p on €2 has positive correlations

if
J fgdu >f fduf gdy,
Q Q Q

for all increasing functions f, g on €. A sufficient condition for a measure to have positive
correlations is given by the following result.

Theorem 1.2.1 (C. Fortuin, P. Kasteleyn and J. Ginibre [29]). Suppose S is finite. Let
i be a probability measure on Q such that for all {,{' € X

pa (max (¢, ¢)) pa(min(¢, ¢)) = p(Q)pa(¢’)

Then 1 has positive correlations.
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1.2. A short story of the contact process

One essential property satisfied by the contact process is that it is self-dual [34]
Proposition 6.5], that is, the dual process is again a contact process. For A, B < S,

PyErnB#@) =P, (EPnA%D) (1.2.3)

This property allows us to link an equality relation between survival probability and
density of 1’s under the upper invariant measure. Indeed, since {Eii}l NS # g} c

{Eio} NS #g}forallt=>0,t— {Eio} N S # J} is non-increasing,
lim Py, (2 0 S # @) = By, (¥ > 0, 5 # &)
By self-duality, applying with A = {0} and B = S, one obtains
Py (B NS # @) = Py (EF n {0} # ).
The right-hand side is Py, (27 (0) = 1), and by weak convergence of 1 to fi, one has
Jim B, (55(0) = 1) = ple - €0) = 1)

where 7z stands for the upper invariant measure of (& );>o. By translation invariance of
1
lim Py, (5% 1 S # @) = lim By, (65(0) = 1) = ¢ : &(a) = 1} (1:2.4)

1.2.3 Survival and extinction

A key feature of the contact process lies in the fact its growth does not evolve spon-
taneously but depends on some neighbourhood. In words, the configuration 0 is a trap
and a natural question is whether the individuals survive, that is, if there is infinitely
often a site in state 1. The main feature of the contact process is that it exhibits a phase
transition in the following way.

Define the survival event of the process by {Vt > 0, Z; # ¢} with the initial
configuration §, = 1yp;. The contact process is said to die out if

P\ (Vt=>0, Z, # ) =0

and to survive strongly if o
PAl(tli_)rgloft(O) =1)>0.

The process is said to survive weakly if it survives but not strongly, that is,
Py, (Vt =0, Z, # &) > 0.

Using these definitions and monotonicity, we are now ready to define the two following
critical values :

9



Chapter 1. Introduction

and
A = inf{As : Py, (Tim &(0) = 1) > 0}. (1.2.6)

for which, the process

dies out if A\ < A,
survives weakly if A, < Ay < Aq
survives strongly if Ay > A

Since -

if the process survives weakly then it survives strongly thus A, < A,.
On the d—dimensional integer lattice Z¢, one of the most important results about
the contact process is the existence and uniqueness of a critical value \. = ;.

Theorem 1.2.2 (T.E. Harris [39]). There exists a critical value \. € (0,00) such that
the contact process survives if Ay > X\, and dies out if A\ < \., i.e.

Py, (V

t>0, S £ ) =0if A\ < Ao,
Py, (Vt

>
>0, 2y # ) >0if M > A

After having been an open question during about fifteen years, the critical behaviour
has been given by

Theorem 1.2.3 (C. Bezuidenhout and G.R. Grimmett [5]). The critical contact process
dies out, that is,
Py (¥t >0, 5, £ &) = 0.

R. Holley and T.M. Liggett [41] proved A. < 2 in the one-dimensional case. An
improved upper bound 1.942 was given by T.M. Liggett [54]. More generally, one has
for the general case d > 1,

(2d—1)""< A <247,

see N. Konno [47] for further information on bounds of the contact process.

1.3 Hydrodynamic limits

Hydrodynamic limits are a device that arose in statistical physics to derive deter-
ministic macroscopic evolution laws assuming the underlying microscopic dynamics are
stochastic.

By way of illustration, consider the evolution of a system constituted of a large
number of components (such as a fluid), one can examine and characterize the equi-
librium states of the system through macroscopic quantities (such as temperature or
pressure). Now, investigating the fluid in a volume which is small macroscopically but
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1.3. Hydrodynamic limits

large microscopically, the system is close to an equilibrium state and characterized by
some spatial parameter. As the local equilibrium picture should evolve in a smooth way,
at some time ¢ the system is close to a new equilibrium state now characterized by a
parameter depending on space and time. This space-time parameter evolves smoothly
in time according to a partial differential equation, the hydrodynamic equation.

To take the limit from the microscopic to the macroscopic system, we need to in-
troduce a suitable space-time scaling. Consider a microscopic space Sy embedded in
a corresponding macroscopic space S (e.g. Sy = (Z/NZ)? and S = (R/Z)?) so each
microscopic vertex x € Sy is associated to a macroscopic vertex x/N € S. Therefore,
distance between particles converges to zero. Besides, we renormalize the time by linking
a microscopic time ¢ to a macroscopic time t0(N) (e.g. O(N) = N?), since more time is
needed in the macroscopic scale to observe movements of particles.

To investigate the hydrodynamic behaviour of interacting particle systems we shall
prove that starting from a sequence of measures associated to some initial density profile
po, in the following sense

. 1
]\lfl_rgo LN (’Ndmélv G(z/N)n(x) — L G(u)po(u)du’ > 5) =0 (1.3.1)
for any 6 > 0 and continuous function G : S — R, then at some renormalized time
td(IN), we obtain a state Sy associated to a new density profile p(-) that is a
weak solution of a partial differential equation. That is,

i M( ;m S Gla/Nymo () — L G(u)pt(u)du‘ > 5) —0. (1.3.2)

In other words, the sequence of measures py integrates the density p; at the macroscopic
point u € S in the same way than an equilibrium measure of density ~y(u) does.

Since we shall work in a fixed space as NN increases, we will examine the time-
evolution of the empirical measures associated to the interacting particle system : for a
configuration 7 € €, define the empirical measure 7V (1) on S associated to 7 by

() = N™ Y n(@)dan, (1.3.3)

xESN

where 9, represents the Dirac measure concentrated on z. This way, we can express
in terms of the empirical density, by integrating G' with respect to 7. Since
there is a one-to-one correspondence between a configuration 7 and empirical measure
7V (n), the measure ¥ inherits the Markov property.

The goal to derive the hydrodynamic limits is to prove the empirical measure 7¥
converges in probability to an absolutely continuous measure p(t,u)du where p,(u) is
the solution of a partial differential equation with initial condition py.

Monographs dealing with hydrodynamic limits include A. De Masi and E. Presutti
[15], H. Spohn [72] C. Kipnis and C. Landim [42].
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Chapter 1. Introduction

1.4 From life and nature

During the last decades, a better understanding of biological phenomena has arisen
the need to study stochastic spatial processes. Authors such as R. Durrett, R. Schinazi,
or J. Schweinsberg have deemed the relation of interacting particle systems to biological,
ecological and medical frameworks. A quick interesting overview may be found in joint
papers of R. Durrett with the biologist S. Levin [21], 22], and [20].

In this document, the biological phenomenon we are concerned is the so-called Sterile
insect technique (SIT). Due to entomologists R.C. Bushland and E.F. Knipling’s works
[46] in the fifties, it is a pest control method whereby sterile individuals of the popula-
tion to either regulate or eradicate are released. While sterile males compete with wild
males, they eventually mate with (wild) females preventing the apparition of progenies.
By repeated releases, we should be able to cause a variety of outcomes ranging from
reduction to extinction.

1.4.1 The sterile insect technique

In the thirties and forties, the idea of designing a gene that actively spreads through
a pest population without conveying some fitness advantage had arisen independently
by A. S. Serebrovskii (Moscow State University), F. L. Vanderplank (Bristol Zoo and
Tanzania Research Department) and E. F. Knipling (United States Department of Agri-
culture). Serebrovskii and Vanderplank both sought to achieve pest control through par-
tial sterility that occurs when different species or genetic strains were hybridized (using
chromosomal translocations or crossing) : competition between two interbreeding strains
doesn’t favour the fitter group, involving the genetic property called under-dominance
which can actually cause the strain with greater fitness to die out.

Discovery and first success story. Discovery of induced mutagenesis by 1946 No-
bel Prize H.J. Muller conducted Bushland and Knipling to use ionizing radiation in the
sterilization process to get rid of the new world screw-worm fly (Cochliomyia hominivo-
rax).

After successful eradication programs carried out in Curagao and Florida in the late
fifties, the technique was applied during the next decades to eradicate the screw-worm
from the USA, Mexico, and Central America to Panama, until it has been declared a
fly-free area.

The big picture. Food safety, quality and biodiversity have required demands at
national and international levels for the development and introduction of area-wide
(and biological approaches) for integrated management of pest control.

Fruit flies are a major interference in the marketing of fruit and vegetable commo-
dities, preventing therefore important economic developments. The Mediterranean fruit
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1.4. From life and nature

fly (medfly) is a notorious insect pest threatening multi-million commodities export
trade throughout the world.

In the seventies, a first large-scale program stopped the invasion of the medfly from
Central America. Eradication from Mexico and maintaining the country free of this pest
at an annual cost of US$ 8 million, has protected fruit and vegetable export markets of
close to US$ 1 billion a year.

In Japan, the SIT was employed in the eighties and nineties to eradicate the melon
fly in Okinawa and south-western islands, permitting access for fruits and vegetables
produced in these islands to the main markets in the mainland. A program with Peru
operates in Argentina, northern Chile and southern Peru. Chilean fruits have entered
the US market for exports estimated to up to US$ 500 million per year.

More recently, the SIT is increasingly applied with eradication programs of fruit
flies ongoing in Middle-East (Israel, Jordan, Palestine), South Africa, and Thailand ; in
preparation in Brazil, Portugal, Spain, and Tunisia.

Economic benefits have been confirmed so that for medflies and other fruit flies, the
current worldwide production capacity of sterile individuals has reached several billion
a week.

Future trends. Lauded for its attributes in terms of economics, environment and
safety, the technique has successfully been able to get rid of populations threatening
livestocks, fruits, vegetables, and crops. But besides economic reasons to involve SIT,
public health issues have induced governments to request supports from International
Atomic Energy Agency (IAEA) and Food and Agriculture Organization of the United
Nations (FAO) for SIT initiatives to stem vector-borne diseases.

1.4.2 Time to unleash the mozzies ?

Thinking about the deadliest animal in the world, mosquitoes would not hit our
minds. But one estimates about 1 million people per year die from mosquito-borne
diseases, such as malaria, dengue fever, etc ... [Source : World health organization].

Urbanisation, globalisation and climate change have accelerated the spread and in-
creased the number of outbreaks of new mosquito-borne diseases, such as the dengue.

Considered as the fastest growing disease, dengue fever is currently not cured by
any vaccine or effective antiviral drug, meaning that mosquito control is the only viable
option to control the disease at short notice. The SIT has the potential to reduce the
targeted mosquitoes population to a level below which the disease is not transmitted.
A first trial using sterile mosquitoes was conducted in El Salvador in the seventies,
where 4.4 million sterile individuals were released in a 15 square km area over 22 weeks,
eradicating successfully the targeted population. Going on a much larger area, total
suppress of the population failed due to an immigration of local mosquitoes into the
trial area.
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Brazil I AA7 AL

Indonesia NG 129,435
Vigtnam I 01,321
Mexico NG 75,3563
Venezuala NG 61,612
Thailand NG &0,205
Fhilippines INGNGI_ 54,439
Colombia NG 53,303
Malaysia NN 42 548
Honduras (I 25972
Costa Rica 1 18,967
Sri Lanka N 16,632
Bclivia 1l 16,207
Cambodia 15,412
fyanmar [l 15,225

Source: World Health Organization

FIGURE 1.2: Average number of dengue cases in most highly endemic countries as re-
ported to WHO 2004-2010.

Being the highest endemic country of dengue, the brazilian government is highly
concerned by the expansion of the dengue fever. According to pilot-scale releases in the
state of Bahia started in june 2013, releases of genetically modified mosquitoes resulted
in a 96% reduction of the wild population in the target area after 6 months- level
maintained for a further 7 months using continued releases, at reduced rates, to avoid
re-infestation.

The National Technical Commission for Biosecurity (CTNBio) in Brazil recently
approved (april 2014) the commercial release of genetically modified mosquitoes in a
bid to curb outbreaks of dengue fever. As of july 2014, the research program in the state
of Bahia is waiting for an approval granted by the Brazilian Health Surveillance Agency
(ANVISA) to ensue a scaling-up of the program. [Source : Comissao Técnica Nacional
de Biosseguranca (CTNBio), Agéncia Nacional de Vigilancia Sanitaria (ANVISA).]

1.4.3 Past mathematical models

Even if models of population dynamics are typically posed as difference or differential
equations, such as predator-prey systems (whose Nicholson-Bailey and Lotka-Volterra
models are the work horses), stochastic models give additional information on the expec-
ted variability of the resulting control. Some of them were developed by Kojima (1971),
Bogyo (1975), Costello and Taylor (1975), Taylor (1976) and Kimanani and Odhiambo
(1993), and they confirmed the former results of Knipling (1955) [46] and others that
used deterministic models.

As a former model, Knipling (1955, 1959) derived a simple numerical model foresha-
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dowing most future modelling developments. The key feature of Knipling’s models, and
found in most of all subsequent models, is the ratio of fertile males to all males in the
population. Simply modifying a geometric growth model,

Fipr = AW /(S + Wy)) Fy

where F; and W; is the population size of females and wild males at time ¢, A is the
growth rate per generation, R is the release rate of sterile individuals each generation.
This yields an unstable positive equilibrium for F' when R = R+, where R+ = F(A — 1)
denotes the critical release rate, so that if R > R+ then the population collapses while
if R < R= then the population will increase indefinitely.

The question of the competitive ability of males was modelled amongst others by
Berryman (1967), Bogyo et al. (1971), Berryman et al. (1973), Ito (1977), and Barclay
(1982) all showing that the critical release rate increases as the competitive ability of
sterilized individuals decreases.

For a general overview of the technique, we refer the reader to [27].

1.5 The generalized contact process

In the further chapters, one constructs a contact process in random environment to
lead a better understanding of this ecological phenomenon. Fix growth parameters Ay,
A9 and release rate r.

One introduces the contact process in dynamic random environment (CP-DRE) on
the graph S with parameters set (A1, Ao, r) as an interacting particle system (&, w)i=0 €
({0,1} x {0,1})° that evolves through the following dynamics. The environment part
(wi)i=0 evolves independently according to

0 — 1atrater, 1 — 0 at rate 1, (1.5.1)

while the contact process part evolves at x € S according to

0— 1atrate )] (Mf(y)(l —w(y)) + Azf(y)W(y))a

yily—z|=1
1 — 0 at rate 1.

(1.5.2)

As we shall see, the most interesting case corresponds to Ay < A, < Ay, where \. denotes
the critical value of the (basic) contact process. In words, the CP-DRE depicts a basic
contact process whose growth rate is either subcritical or supercritical according to a
time-evolving random environment which is parametrized by a rate r.

In our framework, one understands the environment as the space-time evolution of
the sterile population released at rate r while the contact process stands for the wild
population. When mixed up on a site, a competition between the two species occurs,
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slowing down the growth of the wild individuals to a subcritical rate \o, if not, the wild
individuals perform a supercritical contact process. Each individual dies spontaneously
at rate 1.

In a traditional overview, the contact process part describes the spread of an infec-
tion, so that the environment is thought of as being an immune response, attempting
to slow down the expansion of the infection.

We also make use of a different but equivalent outlook of this process, that is, one
constructs a (single) multitype contact process (1;)i=0 on {0, 1,2, 3}, where each of these
values corresponds to a possible combination of values taken by the process (&, w;)i=o-
This way, a site x of S is empty if in state 0, occupied by type-1 individuals if in state
1, by type-2 individuals if in state 2 and occupied by both types simultaneously if in
state 3.

It is important to underline that a site is occupied by a type of individuals and not
as usual, by the number of individuals present standing on. We shall therefore rather
think of a multicolour system.

Biologically speaking, one interprets the type-1 individuals as being the wild in-
dividuals and the type-2 as being the sterile individuals. Sites in state 3 containing
both types represent sites where competition occurs. We say that sites in state 1 or 3
constitute the wild population.

Furthermore, in the multitype outlook we consider two kinds of action for the type-2
individuals that are reducing the growth rate in sites in state 3. In a so-called asymmetric
case, type-2 individuals prevent births from occurring in sites they are standing on. Call
it symmetric otherwise. Common transition rates for both cases at site x are given by

0 — 1 at rate \yni(z,n) + Aans(z,n) 1 —>0 atratel
123 at rter ol atnaer (99
3 — 2 atratel
in which one adds the following transition in the symmetric case
2 — 3 at rate \yni(x,n) + Aans(z,n). (1.5.4)

As competition occurs in sites in state 3, growth rate Ay has to be lower than growth rate
A1 of sites in state 1 where only type-1 individuals live. One thus makes the hypothesis :

)\2 < /\1. (155)

Here, since the presence of type-2 individuals dictate the growth rate of type-1 indi-
viduals, to even inhibit births in the asymmetric case, the type-2 individuals shape a
dynamic random environment for the type-1 individuals.
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Both outlooks of the process are linked by the following relations :

n(x) = 0 < (1-¢@)(1 -wx) =1
n(r) =1 < &)1 -w) =1

n(r) =2 < (1-¢§))w(z) =1

n(x) =3 o {(r)w(r) =1

In a microscopic scale, we examine survival and extinction conditions for the popula-
tion, after what, taking the hydrodynamic limit, we study the behaviour of the densities
of each type of population at a macroscopic scale.

1.5.1 Phase transition in dynamic random environment

Set S as the d-dimensional integer lattice Z¢, d > 1. In Chapter , one investigates
how the release rate affects the behaviour of the process.

First, we point out general properties of the system, such as necessary and sufficient
conditions for the process to be monotone, then, only sufficient conditions to be in line
with the construction of the process. The tricky part to prove these conditions lies in
the definition of an order on the state space {0, 1,2, B}Zd, since a value on a given site
does not correspond to the number of particles but a type. This is the interest of the
next result.

Proposition. The symmetric multitype process is monotone, in the sense that, one can
construct on a same probability space two symmetric multitype processes (Ut(l))tzo and

@) _ o with respective parameters (A, AP rM) and AP, AP+, such that
(77t > /4 p 1 572, 1 572, )

7;(()1) < 77(()2) = nt(l) < 77t(2) a.s. for allt =0 (1.5.6)

if and only if both parameters sets satisfy

1. A < AW, 3. A(

1

2. MY < AP, 4. A 1.

Essentials of SIT concern the control of the population by releasing sterile indivi-

duals, the question we address now is for which values of r does the wild population

survive or die out ? For this, we prove the existence and uniqueness of a phase transition

with respect to the release rate r for fixed growth rates A\; and A\y. The most interesting
cases are discussed in the following results :

Theorem. Suppose Ny < A. < A fized. Consider the symmetric multitype process.
There exists a unique critical value r. € (0,00) such that the wild population survives if
r <r. and dies out if r = r

Theorem. Suppose \. < A1 fixed. Consider the asymmetric multitype process. There
exists a unique critical value s. € (0,00) such that the wild population survives if r < s,
and dies out if r = s
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This actually confirms the former conclusions done by Knipling (1955) in a determi-
nistic model mentioned in Section [L.4l

Proofs strongly rely on the use of graphical representations and comparison with
percolation processes that introduced M. Bramson and R. Durrett [I1]. Using dynamic
renormalization techniques from G. Grimmett et al. [2, 35], we are in particular able to
describe the behaviour of the critical process. As a consequence, this allows us to discuss
the competitive ability of the sterile individuals which was biologically exhibited (as
mentioned in Section : one shows the critical value increases as the competitiveness
of the sterilized population decreases or as the fitness of the wild population increases.

We end up this chapter by considering the associated mean-field equations. This
shows us a dynamical system featuring the densities of each type of individuals. There,
we can explicit equilibria and mainly explicit numerical bounds on the transitional phase.
We shall derive a rigorous proof of the convergence of the empirical densities to these
macroscopic equations in Chapters [4] and [5]

1.5.2 Survival and extinction in quenched environment

In the previous chapter, we were unable to get a hand on bounds for the critical rate.
Most of the arguments made use of theory of percolation, misfit to explicit criteria for
the survival and extinction events. A way to come to this end is to consider the process
(&, w)i=0 by restricting the random environment to be initially fixed and setting S = Z.

Using former results obtained by T.M. Liggett [52) 53], one obtains in Chapter
several survival and extinction conditions for the process. In that way, we consider two
kinds of growth rates in Z : one where the rates depend on the edges and one where the
rates depend on the vertices. This yields numerical bounds on the transitional phase for
the process to survive or die out.

After having investigated the behaviour of each type of individuals in a microscopic
scale, we now turn into the study of the system in a macroscopic scale. When the
microscopic evolution is more intricate, by a suitable scaling in time and space, we
investigate the convergence of the empirical densities of each type of population.

1.5.3 Hydrodynamic limit in a bounded domain

In Chapter , set S = T? the d-dimensional torus, and assume the microscopic dy-
namics is driven by the asymmetric multitype process (1;)i=0 along with a diffusion
process, modelling the migrations of the individuals. The diffusion process we consider
here is a stirring process that exchanges two neighbouring occupation variables. Resul-
ting with a reaction-diffusion process, we prove the convergence of the time-evolution
of the empirical densities to the weak solution of a reaction-diffusion system.
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1.5.4 Hydrodynamic limits with stochastic reservoirs or in in-
finite volume

One of the recurring reasons why the SIT fails, comes from an unexpected immi-
gration in the system that prevents to maintain the pest population at a low level after
regular releases. Such migrations with the external of the targeted area suggests the
microscopic system is likely to be in non-equilibrium states.

In Chapter [3], one considers the microscopic time-evolution to be driven by the CP-
DRE along with a rapid-stirring process. We consider a bounded cylinder connected to
stochastic reservoirs at its boundaries with different densities in a stationary regime,
creating and annihilating individuals. Such reservoirs create a flow through the system
that put it in a nonequilibrium state, as dynamics within the bulk is no more reversible.
Jointly with M. Mourragui and E. Saada, we establish the limiting equations given by
a non-linear reaction-diffusion system with Dirichlet boundary conditions and a law of
large numbers for the empirical currents. In a second step, we derive the hydrodynamic
limit of the CP-DRE with rapid-stirring in infinite volume Z¢.
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2.1 Introduction

The Sterile insect technique concerns the control of a population by releasing sterile
individuals of the same species, leading to a competition with the wild individuals to
the reproduction. When a match with sterile individuals occurs, offsprings reach neither
the adult phase nor sexual maturity, reducing the next generation.

This chapter is an attempt to understand the behaviour of the wild population with
respect to the release of the competitive sterile individuals in this model. Following issues
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Chapter 2. Phase transition on Z<

corresponding to biology and ecology, a wide class of multi-type contact processes has
emerged. Relevant questions are to identify the mechanisms involving survival, existence
or coexistence of species; such questions have been topics of works such as the grass-
bushes-tree model by R. Durrett and G. Swindle [26], a 2-type contact process by C.
Neuhauser [65], a 3-type model by R. Durrett and C. Neuhauser [23] for the spread of
a plant disease.

The populations we consider are composed of wild males whereby sterile males are
released at rate r to curb their development. We investigate the survival of the wild
ones whose growth rate is time-evolving and randomly determined depending on the
dynamics of the sterile individuals.

In Section [2.2] we describe the model and introduce some preliminary results about
stochastic order and percolation. Then, we build graphically the particle system through
Harris’ graphical representation in Section [2.3] After exhibiting necessary and sufficient
conditions for monotonicity properties in Section [2.4] we prove the existence and uni-
queness of a phase transition with respect to the release rate in Sections and [2.6]

2.2 Settings and results

2.2.1 The model

On the state space Q = F¥, where F' = {0,1,2,3} and S = Z¢, the multitype contact
process is an interacting particle system (7;)¢~0 whose configuration at time ¢ is 7, € 2,
that is, for all z € Z%, n,(x) € F represents the state of site z at time ¢. Two sites z and
y are nearest neighbours on Z¢ if |z — y| = 1, also written = ~ y, and n;(x,n;) stands
for the number of nearest neighbours of x in state 7, i = 1, 3.

One understands the model as follows : at time ¢, a site x in Z¢ is empty if in state
0, occupied by type-1 individuals if in state 1, by type-2 individuals if in state 2 and by
both type-1 and type-2 individuals if in state 3.

Note that we only consider the type of individuals standing on each site and not
their number. Moreover, we assume no limit on the number of female individuals, which
is biologically a reasonable assumption (see Chapter 1).

Type-2 individuals act in two possible ways, they will reduce the growth rate of
the type-1 individuals within sites in state 3. There, a competition occurs, so that the
growth rate A\g shall be lower than the regular growth rate A; in type-1 population where
stand only wild individuals. Our basic assumption is thus,

Xy < A1 (2.2.1)

Furthermore, in a so-called asymmetric case, type-2 individuals will stem births on sites
they occupy.

Since we deal with the evolution of a population modelled by a particle system, we
will often mingle the terms “individuals” and “particles”.
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2.2. Settings and results

The multitype contact process. Common transitions to both cases are the follo-
wing : individuals on a site in state 1 (resp. 3) gives birth to type-1 individuals at rate
A1 (resp. A2) on one of its 2d nearest neighbour sites, if empty. A type-2 individual is
dropped independently and spontaneously at rate » on any site in Z¢. Each type dies at
rate 1, deaths are mutually independent. In the so-called symmetric case, births occurs
on sites in state 2 as well.

Transition rates in x for a current configuration n that are common to both cases
are :

0 — 1 at rate A\yni(x,n) + Aans(x,n) 1 —0 atratel
123 ot rter ol aten (222
3— 2 atratel
to which one adds the following transition in the symmetric case
2 — 3 at rate \yny(z,n) + Aang(z,n). (2.2.3)

Therefore, the evolution of type-2 individuals occurs whatever the evolution of type-
1 individuals is. Since type-2 individuals dictate the growth rate and even inhibit births
in the asymmetric case, the type-2 individuals shape a dynamic random environment
for the type-1 individuals.

In both cases, if n € Q and x € Z%, denote by ¢ € Q, i€ {0,1,2,3}, the configuration
obtained from 7 after a flip of x to state 7 :

n(u) ifu#z

i ifu=ux (224)

n —> 0’ at rate c(z,n,1), where Yu € Z%, n’(u) = {

Let £ be the infinitesimal generator of (1;):=0, then for any cylinder function f on Q :

Lfm) = > > cla,n.i)(f(L) — () (2.2.5)

xeZ® i=0

with infinitesimal transition rates, common to both cases,

c(x,n,0) = 1if n(z) € {1, 2}

Mg (z,m) + Aang(z,n) if n(x) =0
cam,1) = { 1 if n(x)nz 3 v ( |
2.2.6

0
3

r if n(z)
lz,m2) = { Lit o)

c(z,n,3) = rifn(z) =1
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Chapter 2. Phase transition on Z<

and add the following rate in the symmetric case :
c(x,n,3) = Mini(z,n) + Aang(z,n) if n(x) = 2.
Notice that all rates satisfy for all i € F,
c(x,n,i) =0, S;l%o c(x,m, i) < oo, (2.2.7)

sup >, sup |c(xz, ny, i) — c(x,n,4)| < . (2.2.8)

z€Zd yezd M

Under these mild conditions, by Theorem there exists a unique Markov process
associated to the generator . Denote by (n{!);>0 the process starting from A, i.e.
such that g = 14, in other words 79 corresponds to the configuration containing sites in
state 1 in A and empty otherwise. We care about the evolution of the wild population,
i.e. individuals contained in sites in state 1 and 3. Define

HA = {xeZ%: ni(x) e {1,3}}, (2.2.9)

as the set of sites containing the wild population at time ¢ > 0. Note that since 79 = {0},
0 0
qi® = {erd:né }(x) =1}

Denote by Py, », ., the distribution of (nt{o})t;() with parameters (A1, Ag, ). For fixed
A1 and Ao, simplify by P,.

Definition 2.2.1. The process (7)o with initial configuration 7y = 1o}, survives if

Py (V> 0, H # &) >0 (2.2.10)

and dies out if
]P))\17>\2,7‘(E|t = O, Ht{o} = @) = 1. (2211)

Define the critical value according to the parameter r by
re = 1e(A1, Ag) == inf{r > 0: P,(3t > 0, H” = &) = 1} (2.2.12)

Indeed, the class {0,2} is a trap : as soon as H; = ¢, the wild population is extinct
while sterile individuals are constantly dropped along the time.

Recall A\, stands for the critical value of the basic contact process. The purpose of
this chapter is to settle the following results.

We begin by a first set of conditions for the process to survive or die out, when
Ay < A; are both smaller or larger than . :

Proposition 2.2.1. Suppose Ao < \; < A.. For all r = 0, both symmetric and asym-
metric multitype processes with parameters (Ay, Ao, 1) die out.
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2.2. Settings and results

Proposition 2.2.2. Suppose A\, < Ao < A\;. For all r = 0, the symmetric multitype
process with parameters (A1, Ay, T) survives.

The most interesting cases are given by

Theorem 2.2.1. Suppose Ay < A, < A;. Consider the symmetric multitype process.
There exists a unique critical value r. € (0,00) such that if r < r., then the process
survives and if v > r., then the process dies out.

Theorem 2.2.2. Suppose A\ < A1 and Ay < Ai. Consider the asymmetric multitype
process. There exists a unique critical value s. € (0,00) such that if r < s., then the
process survives and if v > s., then the process dies out.

In both cases, one has
Theorem 2.2.3. The critical multitype process dies out.

The next two subsections are setting preliminaries to prove these results.

2.2.2 Necessary and sufficient conditions for attractiveness

We saw in Chapter [1] the stochastic order between two processes is related to the
total order defined on the set of values taken by both processes, here on F' = {0, 1, 2, 3}.
In a biological context, setting an order between types of individuals does not make any
sense, but mathematically it allows us to construct a monotone model and to compare
different dynamics as well. This is the purpose of Section [2.4] using Theorem
below. Elements of F' can be understood as species of respective types A, B, C' and D.
A process can be made attractive by reordering its space of values. Subsequently, denote
by A the state 2, by B the state 0, by C' the state 3 and by D the state 1, ordered by

A<B=A+1<C=B+1<D=C+1. (2.2.13)

Extending conditions obtained by T. Gobron and E. Saada [31] for conservative particle
systems, D. Borrello [10] has settled necessary and sufficient conditions to non conser-
vative dynamics to determine stochastic order between two processes. Particularly, [10,
section 2.2.2] deals with multitype contact processes corresponding to our framework.
We will see that this order is actually the only possible one that preserves the stochastic
order.

Let z,y € Z% be two neighbouring sites and o, 5 € F, rewrite the transition rates of
(m¢)¢=0 with notations of [10], for k € {1, 2}, as

o ng’g the growth rate of a type-1 individual in y such that n(y) = [, depending
only on the value of n(x) = . The state in y flips from g to 3 + k.

) Pg the jump rate of a site from state n(y) = (3 to state § + k, depending only on
the value of 7(y).
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Chapter 2. Phase transition on Z<

e P.* the jump rate of a site from state n(x) = «a to state a—k for k < o, depending
only on the value of n(z).

Next, define
Hg’% = Rg’z + Pg and H;Z’O =Pk (2.2.14)

Theorem 2.2.4. [1(}, Theorem 2.4] For all (o, 3) € F?%, (v,8) € F? such that (o, 3) <

(,0) (coordinate-wise, in the sense that aw <y and f < §), hy = 0, j; = 0, an interacting

particle systems (Ai)i=o with transition rates (Rg’f;,PJrk,Pa_k) is stochastically larger

than an interacting particle system (By)i=o with transition rates (E";’g, Pk P7%) if and
only if
i)Y IR <Y IS and i) Y ILE = Y Y (2.2.15)

k>0—B+j1 I>71 k>hq I>vy—a+h1

One has for the asymmetric multitype process (1;);>0, with the order (2.2.13)), the
following rates.
Rps =M. Rép =,

Pi=P,=1,
ng} _ P%1 0 (2.2.16)
P2 =P, =1,

to which, one adds the following rates if we consider the symmetric multitype process.
REL =M\, RE = (2.2.17)

Similarly, for a basic contact process with growth rate A; on {0, 1}Zd, one has
RYp =\, Pp?=1. (2.2.18)

It will be also useful to consider a basic contact process with growth rate Ay, defined on
{2,3}%", with rates
REZ =X, Po7=1. (2.2.19)

2.2.3 Oriented percolation

In the following, we give a brief description presented by R. Durrett [19] about orien-
ted percolation and the comparison theorem, and their correspondence with interacting
particle systems. The first application of this technique was done by M. Bramson and
R. Durrett [11] for spin systems.

Construction. Here is a description of an oriented (site) percolation process with
parameter p. Consider the bi-dimensional even lattice

L=1{(x,n)eZ®:x+niseven,n >0}
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2.2. Settings and results

From L, construct an oriented graph by drawing successively an oriented bond from
(x,n) to (r+ 1,n+ 1) and one from (x,n) to (z — 1,n+ 1). Let {w(z,n),(x,n) € L} be
random variables taking their values in {0, 1} that indicate whether a site of £ is open
(1) or closed (0). We define their distribution in what follows.

There is an (oriented) open path from (x,n) to (y, m), denoted by (x,m) — (y,n), if
there exists a sequence of points x = z,, ..., ,, = y such that (zy, k) € L, |xp — 1| = 1
forn <k <m—1and w(xg, k) = 1 for n < k < m. Since in our further setup, our
constructions will set dependencies between the w(x,n)’s, we say that the w(xz,n)’s are
M -dependent with density at least 1 —-y, for positive M and -, if whenever (xy, ng)1<k<r
is a finite sequence such that |(x;, n;) — (2, n;)|ls > M for ¢ # j then

P(w(ziyn;) =0for 1 <i<|I]) < A

Oriented percolation is understood as a mimic of the crossing of fluids through some
porous materials along a given direction, as a flow of water in a porous rock. Therefore,
open sites are understood as air spaces the fluid can reach and turning them into wet
sites if reached. Varying the microscopic porosity of the spaces (given by the distribution
of w), percolation processes exhibit a macroscopic phase transition from a permeable
percolating regime to an impermeable non-percolating regime.

Given an initial condition Wy < 2Z = {x € Z : (z,0) € L}, we introduce the process
of wet sites at time n > 0 by

W, :={y: (2,0) - (y,n) for some x € Wy}
Let W2 be the process starting from W9 = {0} and define

Co == {(y,n) : (0,0) = (y,n)}

as the set of points reached by the origin (0,0) through an oriented open path. It is
also called the connected open component or cluster from the origin. When the latter is
infinite, that is, {|Cy| = o0}, we say that percolation occurs.

A natural question is whether percolation occurs or not. The following result shows
that if the density of open sites is high enough then percolation occurs with positive
probability :

Theorem 2.2.5 (R. Durrett [I8]). If v < 674CM+1° then
P(|Co| < ) < 1/20

Percolation processes that will arise are M-dependent but since most of the literature
concerns percolation with independent random variables, next theorem tells us how a M-
dependent process stochastically dominates the measure of a 0-dependent percolation.
Let m, be the product measure of an independent percolation process with density p,
i.e. with cylinder probabilities

Tp(w : w(z,n) = 1Y(z,n) e G; w(x,n)=0VY(x,n)eH) =p°1-pl

where GG, H are finite subsets of £. We have in our setup,
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Chapter 2. Phase transition on Z<

Theorem 2.2.6 (Liggett, Schonmann and Stacey [59]). Let p be a I-dependent Ber-
noulli distribution. If

pw(e,n) =1)=1-(1—/p)? as.
for all (z,n) € L with p > 1/4, then p > 7.

So far, the link between an interacting particle system and a percolation process is
still missing, this is the point of what follows.

Comparison theorem. The next result gives general conditions guaranteeing a pro-
cess to dominate an oriented percolation.

(H) Comparison Assumptions. Let be (&);>¢ a translation invariant finite
range process such that & € F Zd, constructed from a graphical representation. Given
positive integers L, T, ko and jo, define for (m,n) € L, space-time regions

Ronn = (2mLey,nT) + ([—kOL,kOL]d x [0, joT1) (2.2.20)

where (ey, ..., ¢4) stands for the canonical basis in R Let M := max(ky, jo), the regions
Rumn and Ry, are disjoint if |(m,n) — (m/,n’)|, > M.

Let H be collection of configurations determined by the values of ¢ in [—L, L]¢. We
declare (m,n) € L to be wet if &1 € Topmre, H, where 77, stands for the translation by
L in the direction e;.

Suppose, for all (m,n) € L, there exists a good event Gy, ,, depending only on the
graphical representation of the particle system in R,,, such that P(G,,,) = 1—60
(0 > 0) and so that if (m,n) is wet, then on G,,,,, (m+1,n+1) and (m—1,n+1) do
as well, that is,

En+1)T € T2(m—1)Les H and 1)1 € To(mr1)Ley H-

Let X,, = {m: (m,n) € L, & € Tomre, H} be the set of wet sites at time ¢. Then,

Theorem 2.2.7. [19, Theorem 4.3] If the comparison assumptions (H) hold, then one
can define random variables w(x,n) so that for alln = 0, X,, dominates an M -dependent
oriented percolation with initial configuration Wy = Xy and density at least 1 — vy, that
18,

W, < X,, for all n.

2.3 Graphical construction

In parallel to the analytical construction provided by the Hille-Yosida theorem [I.1.2]
the multitype contact process can be constructed from a collection of independent Pois-
son processes [38]. Think of the diagram Z¢ x R,. For each z € Z%, consider the arrival
times of mutually independent families of Poisson processes : {A¥ : n > 1} with rate
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2.3. Graphical construction

r, {D5* : n > 1} and {D>* : n > 1} with rate 1 and for any y such that y ~ =,
{T*Y :n > 1} with rate \;. Let {UZ : n = 1} be independent uniform random variables
on (0, 1), independent of the Poisson processes.

w_n

At space-time point (z, A*), put a “e" to indicate, if = is occupied by type-1 indi-
viduals (resp. empty), that it turns into state 3 (resp. state 2) which corresponds to
transitions 0 — 2 and 1 — 3. At (x, D*) (resp. at (z, D>7)), put an “X" (resp.o")
to indicate at x, that a death of type-1 occurs corresponding to transitions 3 — 2 and
1 — 0 (resp. of type-2, corresponding to transitions 3 — 1 and 2 — 0). At times T"Y,
draw an arrow from x to y and two kinds of actions occur following the occupation at
x @ if x is occupied by type-1 individuals, the arrow indicates a birth in y of a type-1
individual if y is empty or in state 2, corresponding to transitions 0 — 1, and 2 — 3 for
the symmetric case; if x is occupied by type-3 individuals giving birth at rate Ay < Ay,
check at (z, T7Y) if UY < \y/A1 to indicate, if success, that the arrow is effective so that
a birth in y of a type-1 individual occurs if y is empty, or in state 2 for the symmetric
case. In the asymmetric case, births occur only if y is not in state 2.

See Figure for an example of the time-evolution of both processes starting from
an identical initial configuration.

For s < t, there exists an active path from (z,s) to (y,t) in Z¢ x R, is there exists
a sequence of times s = 59 < §1 < ... < 8,1 < S, =t and a sequence of corresponding
spatial locations x = xg, x1, ..., x,, = y such that :

i. fori=1,...,n — 1, vertical segments {z;} x (s;, $;+1) do not contain any X’s.

ii. for ¢ = 1,...,n, there is an arrow from z;_; to x; at times s; and if x;_1 x s; is
lastly preceded by a “ o' this arrow exists only if U=t < Ay/A;.

and in the asymmetric case, substitute ii. by

i’ for ¢ = 1,...,n, there is an arrow from z;_; to x; at times s; while {z;} x s; is not
w._” w._”

lastly preceded by a “e”, while if z; | x s; is lastly preceded by a “e” this arrow is
effective if U7=1 < Ay/A;.

Consider the process (A#);=0, the set of sites at time t reached by active paths
starting from an initial configuration Ay = A, containing sites in state 1 in A and 0
otherwise :

AY = {y € Z : 3z € A such that (z,0) — (y,1)}

Then A} = HA, with H* defined in so that A#' represents the wild population
at time ¢ starting from an initial configuration A of type-1 individuals.

From the graphical representation, the particle system (A#),q is additive [32, Chap-
ter II] : for any initial configuration B such that A ¢ B, then

Al c AP

On Figure , Aio} = {—1,0,1} for the asymmetric case. This graphical represen-
tation allows us to couple multitype contact processes starting from different initial
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time

FIGURE 2.1: Graphical representation in the space-time picture Z x R, . Starting from
no = 1o}, following the arrows, if U} < i—f and UY < i—f, the wild population occupies

at time ¢ the set H; = {—1,0, 1} in the asymmetric case and the set H; = {—2,—1,0, 1}
in the symmetric case.
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2.4. Attractiveness and stochastic order

configurations by imposing the evolution to obey to the same Poisson processes. Other
kinds of couplings would be possible through the analytical construction of the process
as we will see later. By way of illustration, Ail} = ¢ and Aio’l} = {—1,0,1} in the
asymmetric case, Ail} = {2} and Aio’l} = {—2,—1,0,1,2} in the symmetric case. More
generally, graphical representations allow to couple processes with different dynamics as
well, we investigate this question furthermore thereafter.

2.4 Attractiveness and stochastic order

Recall (n:):=0 denotes the multitype contact process with parameters (A1, A2, 7) and
(&)i=0 denotes the basic contact process with growth rate A\;. Most of the proofs below
rely on the construction of a markovian coupled process.

We defined a partial order on FZ° between two configurations ) and n® by
and . Here we shall settle necessary and sufficient conditions, then only sufficient,
to obtain several properties of stochastic order with which we will work. We begin
with the symmetric multitype contact process since it contains the transitions of the
asymmetric one and of the basic contact process.

Proposition 2.4.1. The symmetric multitype process is monotone, in the sense that,
one can construct on a same probability space two symmetric multitype pmcesses (nt(l))tzo
and (77152)),520 with respective parameters ()\51), AL, rM) and ()\ )P r (2)), such that

77(()1) < 77(()2) - 77,5(1) < §2) a.s. forallt =0 (24.1)

if and only if all parameters satisfy

Remark conditions 1. and 2. are the assumptions made from the construction of the

process, see (12.2.1]).

Proof of Proposition “ Let (ngl )i=0 and (77152))7&20 be two symmetric processes with
parameters ()\1 ),)\(1) D) and ()\(2) /\g ,7?) respectively. Apply Theorem with
J1, h1 € {0, 1} (one can check they are the only non trivial possible values). Necessary and
sufficient conditions on the rates for (77152))90 to be stochastically larger than (n§1))t20

are given by relations (2.2.15) with (a, 8) < (v, 9), that is,

Z Ok 1) < Z Ho,z, 2 and 2 H;Z’O’(l) > Z H;go,@)

k>6—pB+j1 I>j1 k>hy I>v—a+hi
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with the rates previously defined by (2.2.16)-(2.2.17). One then has
1{j, = 0}1{k = 2}1{6 — B = 1}(1{5 = C,8 = BY(Ry$V1{a = D} + RE%V1{a = C})

+1{6 = B, 8 = A}(R%*"1{a = D} + RS%V1{a = C}))
141 = 0}1{k = 2}1{5 — 8 = 0}(1{5 — 5= BBV 140 = D + RS2 M1{a = 0))
+1{6 = 8 = A} (Ry*V1{a = D} + RV 1{a = )
+1{j1 = 0}1{k = 1}1{6 - B = 0}(1{5 —p=cPtV 115 =p = A}Pj"(l))
141 = Lk = 2}1{ - 8 = 0}
(116 = 8 = BY(RY 1 = D} + REH V1o = C))
+1{0 = 8 = AHREAV1{a = D} + R V1{a = €})
< 141 = 0}1{t = 2}(145 = BH(RYV 14y = D} + RGP 1y = )
+146 = A (RSP 14y = D}+R02(2)1{7=C}))
+1{j1 = 0}1{l = 1}(1{6 = C}PE® 1 145 = AP (2.4.2)
+1{j, = 1)1{l = 2}(1{5 BY(RBAP1{y = D} + RSP 1{y = O})
+146 = A} (RSP 14y = D} + REEP1{y = C}))
and
1{m = 041k = 1}(1{a = D}P, MY + 1{a = BYP, )
+1{h1 = 0}1{k = 2}(1{a = D}PR>Y + 1{a = C}pg )
b = 1k = 2} (1{a = D}P,> M + 1{a = C}pg ™)
> 1{h = 0}1{l = 2}1{y —a = 1}(1{7 D,a=CIPy*? 4 1{y = C,a = B}P;*?)
+1{h = 0411 = 2}1{y — a = 0}(1{y = a = D}P* P 4 1{y —a - c}p—2»<2>)
L = 0L = D1y~ a = 0} (1(y = a = D}P;* 4 1(y = a = €}P?) (243)
Hhy = B1{l =2}1{y —a = 0}(1{7 —a=D}Py"? 4+ 1{a =y = C}P; 42))
These inequalities can also be explicitly rewritten as
11 = 0}1{k = 2}(1{8 = A,6 = B} + 1{B = B,6 = C}) A\ 1{a = D} + A\}1{a = C})
+ 101 =0} 1{k =2} (1{B =0 = B} + 1{8 = 6 = A}) (A\{"1{a = D} + A\{V1{a = C})
+1{j, = 0)1{k = 1}(1{5 A +1{f =5 0})
+1{j = Yk =2} (1p =0 = B} + 1{5 = = A}) (\1{a = D} + X,V1{a = C})
< 1{j1 = 0}(1{1 = 2}(140 = B} + 1{6 = A}) (\1{y = D} + A 1{y = }) )
+ 141 = 031{l = 1}(1{6 = A} + 1{6 = C})) (2.4.4)
+1{j; = 1J1{0 = 2} (1{6 = B} + 1{6 = A)) AP 1{y = D} + \P1{y = C})
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and

1{h1 = 0}(1{k = 1}y (1{a = B} + 1{a = D})
+ 1{hy = 0}1{k = 2} (1{ew = C} + 1{ax = D})
+1{hy = 1}1{k = 2}(1{a = C} + 1{a = D})
>1{h = 0}1{l = 2})1{y =1+ a}(l{v — O} +1{y = D})
+ 1{hy = 0}1{l = 2}1{y = a}(1{y = C} + 1{y = D}) (2.4.5)

+1{h1 = 0}1{l = }1{y = a}r®(1{y = B} + 1{y = D})
+ 1{h = H1{y = o}1{l = 2}(1{y = C} + 1{y = D}).

All different possible scenarios provide the following necessary conditions :

(D J1€ {071}7 5:66{147‘8} in give

(i) a=C,y=D: )\él) < )\52). This is a consequence of conditions 1. and 3. or
2. and 4.

(ii) a=v=0C: A < AP
(iii) a=y=D: )\gl) < )\12) stated by condition 3.
(II) j1=0,8=B,0=1+3=C in (2.4.4) give
(i) a=D: A < 1 stated by condition 6.

§2 stated by condition 4.
(

(i) a=C: A < 1 stated by condition 7.
(IIT) hy =0,v=ae{B,D} in give 1M > (@ stated by condition 5.
(IV) hy =0,a=B,y=1+a=Cin give 1) > 1 stated by condition 8.
while in other scenarios, one retrieves redundantly the above conditions or tautological
inequalities such as “1 > 0". Finally, one obtained the necessary conditions stated from
1. to 8.

Now, we construct a coupled process (nfl),n§2))t>0 on §2 x §2 such that 7][()1) < 7]82).

According to the given order (2.2.13)) on F', as 77(()1) < 7](()2) :

1 1 2 2
(2, 50) + na(, m8Y) < na(e, 8 + ng(a,n8?).

We saw that it is possible to construct the coupled process either through generators
or through a graphical representation, via a collection of independent Poisson processes
whose rates are given by the parameters of the processes. The coupling of two processes
on a graphical construction is provided by coupling the Poisson processes related to
births and releases.

In what follows, we construct the coupling through generators. The three following
tables depict the infinitesimal transitions of the coupled process.
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Chapter 2. Phase transition on Z<

transition rate

) )\gi)nl(x,n(l)) + )\%)ng(x,n(l)) )
AP (2, 1@ = A0y (2,7D) + AP na (2, n®) = A ng(a, n )

(1,1)
] o
(070) (272) T(Q)
(2,0) EHIN))
(0,0) 1
(17 1) - (373) T(2)
(3,1) ) — ()
(3,3) 2 A&?m(oc, nW) + Aéjm(o:, M)
(272) - Eg’g; Ag )n1(15a77(2)) - Ag )nl('r7n(1)) + )‘g )77‘3(3:777(2)) - )\51)713(37777(1))
, 1
1,1) 1
(3,3) — { (1
(2,2) 1
(3,1) A (2, D)+ A ng (a2, 7))
o0 —1 & A (™) = N (.0 D) + X s (2, 1)) = 35 na (2.0 ™)
) 1
(2,2) +(2)
(3,3) A (2, D)+ A ng (a,n )
(2,3) — { (0,1) 1
(2,2) 1
g (1)3 A (2, D)+ A ng (a2, n W)
1
(27 1) - ’
(0,1) 1
(2,3) r2
(2,0) 1
(3,1) —»{ Em; (12)
3,3 r
(2,3) r®
0.1 -] @D A a0+ 08 (1)
’ (2,1) PRCHRNE)
(0,0) 1
TABLE 2.1
transition rate
(1,1) )\gl)nl(aﬁ, 77(1)) + )\él)ng(a:,n(l))
09 =1 () | 17 M), n®) + (1= 25 ) (2, 0)
s 1
(2,3) P 1

TABLE 2.2
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transition rate
EL 1; AP (2,7@) (+ AP g (2, n®)
3,2 r2
(LO)—1 (5.0) r(D) _ 2
(0,0) 1
((1,3) AV (2, nD) + A5 ng (2, 7D)
(0,2) — (0,3) )\gz)nl(x,n@)) - )\gl)nl(x, nM) + )\52)1%3($777(2)) - )\él)ng(x,n(l))
’ (0,0) 1
(2,2) (1)
%’33 AP (2,7 ®) (+)A( ns(z,n?)
(1,2) — < 0 "
1,0) 1
(0,2) 1
(0,2) 1
(173) - (373) r)
(1,1) 1
(1,0) 1
(2,0) 1
3,0) —
(3,0) (3,1) )\( )nl(sc n®) + )\é )ng(m,n@))
(3,2) r?)
(3,3) AP (2,7®) + AP ng (2, 7@)
(3,2) — 4 (1,0) 1
(2,2) 1

TABLE 2.3

To verify all the rates above are well defined, one decomposes ny (x, 7)) and ns(x, n¥),
(1 =1,2), as follows

n(2,n?) = {y ~ 2 : P (y) = W (y) = 1}]
+!{y~x:n”(y)—1n(”(y) 3+ {y ~ 2 :n®(y) = 1,nW(y) € {0,2}}],

na(z,n®) = {y ~ 2 : 0@ (y) = nW(y) = 3}
+{y ~ 2 : 0 (y) = 3,7V (y) € {0,2}}],

ni(z,n™) = [{y ~ 2 :n®@(y) = W (y) = 1}]

na(z,n™) = [{y ~ x : n®@(y) = M (y) = 3}

+ 1y ~z:0®(y) = 1,0 (y) = 3},
in which case, we decompose the rate

AP (2,0) = A na (2, n) + AP g (e, n®) = A (2, n™M)
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Chapter 2. Phase transition on Z<

+ (A =My ~ 2P (y) = nWV(y) = 3} (2.4.6)

which is non-negative under conditions 1. to 4. coming from (I) and (III) in inequalities

EL1)- 1)

Rates of Table are non-negative thanks to conditions 6. to 8., given by inequa-
lities (II)-(i)(ii) with 8 = B,0 = C. Condition 5. is used by Tables and that
correspond to a basic coupling while Table 2.2 uses a different coupling. Table [2.3]is lis-
ting transitions of the coupled process starting from configurations that do not preserve
the defined partial order, nevertheless, starting from an initial configuration where it
does, dynamics of the coupling given by Tables and do not reach states of Table
2.0l

For a coupled process (ngl), n,§2))t>0 starting from an initial configuration such that

77(()1) < ?7(()2), since transitions of the two first Tables preserve the order on F', the marko-
vian coupling we just constructed is increasing :

B ) (D < ) =1 for all £ > 0 (2.4.7)

where P67 stands for the distribution of (ngl),ngm)t;o starting from the initial
configuration (17(()1), 77(()2)). O

We can wonder if there exists an other order than for which this statement
(and the following ones as well) holds. By trying out other orders in inequalities
of Theorem , we deduce that the one defined by is the only order possible
here to preserve the stochastic order.

After having obtained necessary and sufficient conditions, we investigate sufficient
conditions only, with which we shall work subsequently.

Proposition 2.4.2. The symmetric process (n;)i=0 is monotone, in the sense that, one

can construct on a same probability space two symmetric processes (nt(l))tzo and (nt@))tzo
with respective parameters (A", A rMY and( AP, AP r@) satisfying niV, nl? € {0,1}%,
such that

T)(()l) < 77(()2) - T]t(l) < 77§2) forallt =0 a.s. (2.4.8)

if all parameters satisfy
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2.4. Attractiveness and stochastic order

1A <A, 3. AV < A®, 5 r® > r@
2. AP < A®, 4.2 < A\P?,

Proof. Given our initial conditions, possible states for the coupled process keep laying
in Table [2.1] of Proposition [2.4.1] and the coupled process does not reach any state of
Tables[2.2]and [2.3] One can therefore omit conditions 4. to 6. of the previous Proposition
2.4.1] and transition rates from the couple (0, 3) can be defined through a basic coupling
even if it does not preserve the order :

transition rate
(1,3) | APy (e, n®) + A gz, n)
_ (07 1) 1
(0,3) (0.2) 1
(2,3) r(1)
TABLE 2.4
in which case, Table [2.4] substitutes Table O

Remark 2.4.1. In view of the proof of Proposition one can actually relax the
admissible initial conditions : it is enough to assume 1y’ and 77(()2) satisfying nél) < 1762)

and for all x € 72, (7701)(1;), s )( )) # (0,3). In particular one could start from D
(2)

Mo -

Since Tables [2.1] and [2.3] correspond to a basic coupling, to construct such pro-
cesses on a same probability space via the graphical representation, one define from
Section 1.2 mutually independent Poisson processes : {T?¥ n > 1} with rate )\52),
{D}* n > 1} with rate 1, {D?>* n > 1} with rate 1 and independent uniform ran-
dom variables {U*Y,n > 1} on (0,1), independent of the Poisson processes. Indeed,
after conditions 1 to 5 of Proposition , the growth rate )\§2) is the largest one. At
each time ¢ = T7¥ a birth might occur and the uniform random variables determine
if it occurs or not. For instance, if nt(l)(x) is in state 3 and n,f(l)(y) is in state 0, then a
birth in y for ngl) occurs if UMY < )xgl)//\§2) ; if 77152) (x) is in state 3 and 7715(2) (y) is in state
0, then a birth in y for the process 77152) occurs if UMY < /\§2)//\§2). Since )\g) < A§2>, as

soon as UMY € (AS)//\§2), )\52)/)\52)] an arrow used by the process > is not used by the

(1)
process 1; .

If (nt(l))tzo and (77152))@0 differ by at most one parameter, one deduces from Proposi-
tion several monotonicity properties :

Corollary 2.4.1. Suppose 77(() ),770 € {0 1}%". Then for the processes (77151))90 and
7 )i=0 with parameters , T an respectively, one has
0’ h A A d (AP AP, r@ vel h

(i) Attractiveness : zf( 1 ,)\(1) D) = ()\ )\(2) 2)) | then 77(1) 77( ) :>77(1) 7}15)
a.s., for all t = 0.
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(ii) Increase w.r.t. Ay : if (yﬁ”)m and (n§2))t>0 have respective parameters ()\gl), Ao, T)
and ()\§2), Ao, 1) such that Ay < AY < A® then 77(()1) < 77(()2) — M <@ as., for
allt = 0.

(1ii) Increase w.r.t. Ay : if (nf )t>0 and (77152 )i=0 have respectwe parameters (A, )\21), T)
and (A, )\§2),r) such that )\2 < )\ ) < \p, then 770 ) < 77(() ) — nt( ) < ?7t( ) a.s., for
all t = 0.

(iv) Decrease w.r.t. r : if (nt )t>0 and (77152)),520 have respective parameters (A1, Ay, (M)
and (A1, Ao, @) such that v = r® with \y < Ay, then 77(()1) < 77(()2) = nt(l) < m@)

a.s., for all t = 0.

A consequence related to Corollary ([2.4.1)-(iv) is the non-increase of the survival
probability with respect to the release rate r for fixed Ay, As :

Corollary 2.4.2. Suppose Ay and Ay fived. If (n:)i=0 has initial configuration ny = 1,
the mapping
r— PT(Vt = O, Ht #* @)

s a non-increasing function.

Proof. Indeed if (77,5(1))190 and (n§2))t>o are two processes such that 7]81),7](()2 e {0,1}*

and with respective parameters (A, o, 7™) and (A, Ay, 7)) such that 7 < 73 then
according to Corollary

H((]Q) c H((]l) — Ht(Q) c Ht(l),
for all t > 0. O

One defined the asymmetric process as a particular case of the symmetric process
where the transition from state 2 to state 3 does not occur. One can thus, in a similar
way to Propositions [2.4.1] and [2.4.2] obtain necessary and sufficient conditions, then,
only sufficient conditions, for the monotonicity of the asymmetric process.

Proposition 2.4.3. The asymmetric process (n;)i=0 is monotone in the sense that,
conditions

1A <A, 3. A < A\P, 5 1@ > @
2.2 <)@ £ A0 <A@

are sufficient to construct on a same probability space two asymmetric process (n§1))t>0
and (n,gQ))t;O with respective parameters (Aﬁ”, AL, r) and ()\52), AP r®) and with ini-

tial condition 77(() ), 77(()2) e {0,1}2", such that

7]81) < 77(()2) — 77,5” < 77252) a.s., for allt = 0. (2.4.9)
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2.4. Attractiveness and stochastic order

Proof. As in the proof of Proposition [2.4.2] one applies Theorem [2.2.4] with ji,hy €
{0,1} to two asymmetric processes (n,gl )e=0 and (77,52) )i=0 With respective parameters

()\gl), AL 0 ) and ()\ AP (2)). Using relations (2 1-} (2.4.3)) with the corresponding
rates of both processes glven by 1} with (a, 5) < (v,0), one has
1{j1 = 0} (m = 2}(148 = 6 = BY(\V1{a = D} + AV 1{a = C}))

+1{l<:—1}(1{ﬁ—6—A}+1{ﬁ—6—0}>>

+ 10 = 041k = 2}(148 = B, = C}(\{"1{a = D} + 2\ 1{a = C}))
+ 10 = 1k = 24(148 = 0 = BY(\1{a = D} + A" 1{a = C}) )
<1 = 0}(1{ = 215 = BYA1{y = D} + 215 = O})

+1{l=1}(1{6 = A} +1{6 = C})) (2.4.10)

#1451 = (1 = 21140 = BY AP 1{y = D} + AP 14y = ©))

while the second relation leaves b)) unchanged. One deduces the following necessary
conditions :

(1) j1€{0,1},6 =38=Bin give
(i) a=y=C,=B,6=C": )\g) < )\(2) stated by condition 4.
(i) a=C,y=D: )\él) < A?) stated by conditions 1. and 3.
(iii) a =y=D: A < AP stated by condition 3.
(II) j1=0,8=B,06=1+ = C in (2.4.10) give
(i) a=D: AP <1,
(i) a = C : A <1
The relation ([2.4.5) staying unchanged one has
(III) hy =0,y =a € {B,D} in glve r(M) > () stated by condition 5.
(IV) hy =0, = B,y = 1+a=01n 5) give rM) > 1.

The obtained necessary conditions are

Ag>

1. AW, 3. AW
2. AP

<A?, 5. 7 > r@ 7.2 <1
A2 4. A <A@, 6. AV <1, 8. r) > 1.

//\ N

As for Proposition [2.4.1] these conditions allow us to construct an increasing marko-
vian coupling. As in Proposition m, given our initial configurations, state (0, 3) is not
possible for the coupled process. One can thus dispense conditions 6 to 8. and sufficient
conditions to settle an increasing markovian coupling as in Proposition [2.4.2] are given

by
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N <
A <,

following tables.

Details of the dynamics of the coupled process (n;

2) 5. r®

1
O

=

l

2)

)i=0 are summarized in the

transition rate
(1,1) Ay (@, nW) + A ng(a, n)
2 1 2 1
(0,0) —> Egvg APy (2,72) = AP na (2, nD) (;Aé Ing(,n®) = A g (D)
) T
(2,0) 1) _ (2
(0,0) 1
(1,1) — { (3,3) r?
(37 1) r) — p(2)
(272) - (07 ) 1
. (1,1) 1
(2,1) AP 1 (2,7@) + A g (2,9@)
(2,0) — ¢ (0,0) 1
(2,2) r)
o 1
(2,0) 1
(2,3) r
(2,0) 1
(3,1) — (1,1) 1
(3,3) r®
(2,3) r®
0.1 —{ &1 A (2, D) 4 A g (M)
) (2,1) P (2
(0,0) 1
TABLE 2.5
transition rate
E(l) zg Ay (2,90 + A ng (2, M)
1
0,3) — ( ’
0,2) 1
(2,3) @
TABLE 2.6
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transition rate
El, 1; )\§2)n1(9c, n?) —(;)\52)113(1'7 n?)
3,2 r
(170) - (3,0) r @
(0,0) 1
0 E(l)g; Mm@, n®) + A ng (2, nD)
9 - ) 1
(2,2) r@
(3,2) r(t)
(1,2) — (1,0) 1
(0,2) 1
(0,2) 1
(1,3) — <{ (3,3) r
(1,1) 1
(1,0) 1
(2,0) 1
3,0) —
(3,0) E3,1§ )\( )nl(:c n) —(&-))\é )ng(a?,n(2))
3,2 r(2
(1,0) 1
(372) - { (272) 1

TABLE 2.7

Remark now that Tables 2.5 and 2.7 differ from Tables 211 and 2.3 but Table
stays identical to Table @ As for Proposmon w, under condltlons 1. to 5., if the
initial conditions given by 770 ) and 770 satlsfy Ny < n(()Q) and 77((]1),770 € {0, 1}Z this

markovian coupling is increasing since the transitions of the coupled process belong to

Table 2.5 and o

IP)(”O »7](2))

Y <pP)=1forallt >0 (2.4.11)

where P05 7”) denotes the distribution of (my 2 nt( ))t>0 starting from the initial confi-
(1)

guration (7 ,77(() )). O
One can compare the symmetric with the asymmetric process as well.

Proposition 2.4.4. Let (1n;);=0 be an asymmetric process and (xi)i=0 be a symmetric
process, both with parameters (A1, Ao, ) and 1o, xo € {0, 1}Zd such that Ay < A1, then for
allt =0,

No < Xo=1 < Xt @.s. forallt>=0

Proof. Apply Theorem with an asymmetric process (1;);=0 and a symmetric process
(Xt)t=0 with parameters (A1, Ao, 1) Necessar and sufficient conditions on the parameters
to obtain a stochastic order are given by (2.4.2) - ) that become

1{j1 = 0}1{k = 2}1{B8 = § = B}(M1{a = D} + Ao 1{a = C})
+1{j; = 0}1{k = 2}1{B = B,§ = C}(M1{a = D} + \21{a = C})
+1{ = 0)1{k = 1}(1{5 —6=A+1{B=0= 0})

+1{j1 = B1{k = 2}1{B = 6 = B} (M 1{a = D} + Ao1{a = C})
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< 1{j1 = 0}(1{ = 2}(1{5 = B} + 1{6 = A}) (\1{y = D} + hal{y = C})

=00 430 0) pasm
+1{j1 = J1{l = 2}(1{0 = B} + 1{6 = A}) (M 1{y = D} + Xo1{y = C})

and

1{h; = 0}(1{k — 1}r(1{a = B} + 1{a = D}) + 1{k = 2}(1{a = C}
+1{a = D})) +1{hy = 1}(1{k —2}(1{a = O} + 1{a = D}))
> 1{hy = 0}1{y = o} (1{ = 1}r(1{y = B} + 1{y = D})
+1{l = 2(1{y = C} + 1{y = D}))
+1{hy = 0}1{y =1 + a}(l{l = 2}(1{y = C} + 1{y = D})

+1{h = 111y = a}(11 = 2}(1{y = C} + 1{y = D})

(2.4.13)

These equations exhibit the following necessary conditions :

(I) j1€{0,1},0 =5 = B,a=C,v =D in (2.4.12) give : \y < \;

(I) hy =0, a =B,y =1+a=Cin (2.4.13) give r > 1

As previously, condition r > 1 is necessary to construct an increasing markovian coupled
process in a general framework, but if one restricts the initial conditions to satisfy
Mo < Xo and 7o, Xo € {0, l}Zd, condition Ay < ) is sufficient and the coupled process can
be constructed through the following transitions :
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2.4. Attractiveness and stochastic order

transition rate
(1,1) Ang(z,m) + Aeng(z,n)
(0,0) — 1 (0,1) | Mz, x) —ni(z,n)) + Aena(z, x) — na(z,n))
(2,2) r
(0,0) 1
(1,1) — { (3,3) r
(0,0) 1
(2,2) — { (2,3) Aing(z, x) + Aang(z, X)
(1,1) 1
(3,3) — { (2,2) 1
{ (2,1) Aing(z, x) + Aang(z, x)
(2,0) — < (0,0) 1
(2,2) r
(0,1) 1
(2,3) — { (2,2) 1
(2,0) 1
(2,1) — < (0,1) 1
(2,3) r
(2,0) 1
(3, 1) — E;, ;; 1
(2.3) r
0,1) — < (1,1) Aing(z,m) + Aeng(z,n)
(0,0) 1
TABLE 2.8
transition rate
(2,3) r
(07 3) _ E(l): i’; )\1711 (:Ca 77) "{ )\2n3(x7 77)
0,2) 1

TABLE 2.9
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transition

rate

—_

(1,0) —

\)

Alnl(xv X) + )\2713(13, X)

r
1

>\1n1 (IL', 77) + )\2713 (l’, 77)
Ang(z, x) + Aang(x, x)
1
r

,
1

Ani(x, x) + Aans(x, x)
1
,
1
1

Ang(x, x) + Aans(x, x)
r

0,2) —

N O W Ww O

w
O = OO W w o

S~ o wnvoo R owr

TN TN o~~~

[\
R N N e N N N e N N N e

w oo~

TABLE 2.10

As in (2.4.6)), the second rate in Table [2.8is positive. Starting from an initial confi-
guration such that 7y < xo and 79, xo € {0, 1}2", the coupled process does not reach any
configuration of Tables and [2.10} Condition Ay < A; is sufficient to obtain

M < x¢ a.s., for all ¢t = 0.
O

Finally, one settles two comparisons between a basic contact process and a multitype
process.

Proposition 2.4.5. Let (&)= be a basic contact process on {0,1Y2" with growth rate
A1 and let (x¢)i=0 be a symmetric multitype process with parameters (A, Ao, r) such that

)\2 < )\1. Then,
Xo <& = x: <& a.s. forallt =0

Proof. Consider the basic contact process (&)¢=o viewed as a symmetric multitype pro-

cess with parameters (A, A, r@) with AP = A, AP = 0, r@ = 0. Values A and
C do not exist for the process &, retrieving the proof of Proposition [2.4.1] relations

([2.4.2)-(2.4.3) become
11 = 0)1{k = 2)1{8 = = B} (M 1{a = D} + Aol{a = C}))
+ 1441 = 01 {k = 2(1{8 = 4,6 = B}(\1{a = D} + Mol{a = C})
+1{1 = U1{k = 2}1{8 = 6 = B} (\1{a = D} + halfa = C})

< (141 = 0} + 1{j1 = 1})1{l = 2}1{6 = B} 1{y = D} (2.4.14)
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and
1{h = O}(l{k — r(1{a = B} + 1{a = D}) + 1{k = 2}(1{a = C}
+1{a = D})) +1{h; = D1{k = 2}(1{a = C} + 1{a = D})

= {1 = 0}1{y = a}1{l = 2}1{y = D}
+1{hy = 0}1{y = 1 + a}1{l = 2}1{y = D} (2.4.15)
+ 1{hy = 1}1{y = }1{l = 2}1{y = D}

that exhibit the following necessary condition : j; € {0,1}, =0 = B,a=C,~y = D in
(2.4.14)) give Ay < A;. While relation (2.4.15)) does not give further condition. Condition

Ay < \q is sufficient and allows us to construct the following coupling.

transition rate
(2,0) r
(0,0) — { (1,1) Ang(z, x) + Aans(x, x)
((8:3)) A(na(z, §) — nl(ﬂi7 X)) — Aans(z, X)
(LY — { (3.1) r
(3,1) Mg (z, x) + Aang(z, x)
(2,0) — { (2,1) | Mz, &) —ni(z, x)) — Aems(z, )
(0,0) 1
(2,0) 1
(2, 1) —> { (0,1) 1
(Své) )\lnl(x7X) 1’ )\2n3(x7X)
(3.1) — { it 1
{ (1,1) Aina(z, x) + Aang(z, X)
0,1) — < (2,1) r
(0,0) 1
{ (1,1) Aini(x, x) + Aens(x, x)
(1,0) — < (3,0) r
(0,0) 1
(2,0) 1
(3,0) — { (1,0) 1
(3,1) Aina(z, §)
TABLE 2.11
For all z € Z¢, one has if y < &
ni(z,x) = {y ~ 2 x(y) = &(y) = 1} (2.4.16)
n3(z,x) = {y ~ 2 : x(y) = 3,&(y) = 1} (2.4.17)
ni(@, ) ={y ~z: x(y) =&y) =1+ [{y ~ 2 : x(y) =3,&(y) = 1}
+ {y ~ 2 x(y) € {0,2},£(y) = 1} (2.4.18)
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Therefore, under condition condition Ay < A\;

Ar(na(z,§) —ni(w, x)) — Aans(z, x)
= (M1 = Ag)ng(w, x) + M{y ~ 22 x(y) € {0,2},&(y) = 1}

is non-negative, and

Xo <& = Xt <& a.s.,

forallt > 0. ]

For next proposition, (Et)t>0 is a basic contact process on {2, S}Zd whose dynamics
is given by the following transitions in x € Z¢

~

2 — 3 at rate \gng(z,&), 3 — 2 at rate 1 (2.4.19)

Proposition 2.4.6. Let (n;)=0 be a symmetric multitype process with parameters (A1, Ay, T)
such that Ao < 1. Then

~

&o <770=>§t < a.s., for allt = 0.

Proof. Use once again Theorem to obtain necessary and sufficient conditions for
a stochastic order. For the process (&);0, values B and D are not reached and rates

are given by (2.2.19). Necessary and sufficient conditions on the parameters are given
by relations (2.4.2])-(2.4.3]) applied to rates (2.4.19) i.e. (2.2.19), (2.2.16) and (2.2.17)),
({1 =0} + {51 = 1})1{k = 2}1{B = 0 = A}\s1{a = C}
+1{j; = 0}1{k = 2}1{6 = B, 3 = A}\o1{a = C}
< 1{j1 = 0} (10 = 2}(1{6 = B} +1{6 = 4}) (\1{y = D} + ha1{y = C})
+1{1 = 1)1{5 = 4}) (2.4.20)
+1{j1 = 1}1{l = 2}(1{0 = B} + 1{6 = A}) (M 1{y = D} + \o1{y = C})

and

1{hy = 0}1{k = 2}1{a = C} + 1{hy = 1}1{k = 2}1{a = C}

> 1{h; = 0}1{y = a}1{l = 2}1{y = C}

+1{h = 0}1{y = 1 + }1{l = 2)1{~ = D} (2.4.21)
+ 1{hy = 1}1{y = a}1{l = 2}1{y = C}

exhibiting the following conditions : j; € {0,1}, =6 = A, a = C, v = D in (2.4.20)
give Ay < Ay. Inequality ([2.4.21)) gives no condition on the rates and condition Ay < Ay
is sufficient to construct the coupled process (&, n:)i=0 via the following dynamics :
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transition rate
2.0 1
(8:1) — { 23,33 r
(2,2) r
(2,0) — { (3, 1) )\2713( ) N
(2,1) Aing(x,m) + Aa(ns(z 77) n3(x,§))
(3,3) Xong(z, )
(2,2) — { (2,3) Aing (2, m) + Xa(ns(z,n) — ns(z, f))
(2, 0) 1
2,9 1
(3,3) — { 53,13 1
(2,2) 1
(2>3)—>{ (2,1) 1
(3,3) Aans(z, §)
{ (3,1) Aanz(z, )
(2,1) — < (2,3) r
(2,0) 1
(2,0) 1
(37 2) - { (3, 3) )\1711( 77) + )\2713(1', 77)
{ (3,1) Aina(x,m) + Aeng(@,n)
(3,0) — < (3,2) r
(2, 0) 1

whose rate Ayny(z, 1) + Aa(ns(z, n) — ns(x, €)) is well defined : since

na(x,€) = {y ~ 2 : E(y) = 3,m(y) = 1} + {y ~ 2 : £(y) = 3,m(y) = 3}
ni(z,n) = [{y ~ 2 €(y) = 3,n(y) = 1| + [{y ~ 2 : E(y) = 2.n(y) = 1}]
na(z,n) = {y ~ 2 : E(y) = 3,n(y) = 3} + [{y ~ = : £(y) = 2,n(y) = 3}|

along with Ao < Ay, gives

~

Aina(2,m) + Aa(na(z,m) — ns(@,€)) = (A — M){y ~ 2 : €(y) = 3,n(y) = 1}
+ Xal{y ~ 2 €(y) = 2,m(y) = 3} + Ml{y ~ 2 : E(y) = 2.n(y) = 1})

]

2.5 Phase transition

In this section, we take advantage of all the stochastic order relations between pro-
cesses established in Section to derive results for a phase transition of the multi-
type process (1;)¢>0, in both symmetric and asymmetric cases. According to Definition
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2.1, we assume the multitype process to have initial configuration ny = 1y and note
Yy g n {0}

0
77t=77t{ }-

As announced in Section 2.2 we first deal with the cases where Ay < A; are both
smaller or larger than ..

Proof of Proposition[2.2.1. Let (&)i=0 be a basic contact process with growth rate A
and let (1;);>0 be a symmetric multitype process with parameters (A;, A2, r) such that

no < &. By Proposition (&)i=0 is stochastically larger than (1;);s0. Since A; < A,
(&)=0 is subcritical, thus, the symmetric multitype process dies out.

The extinction of the asymmetric multitype process is a consequence of the extinction
of the symmetric process and Proposition [2.4.4] ]

Proof of Proposition[2.2.2, Let (5)t>0 be a basic contact process with growth rate Ay on
{2, B}Zd and let (7;)¢=0 be a symmetric multitype process with parameters (Ay, Ay, 7). By
Proposition , (&)i=0 is stochastically lower than (7). Since Ay > A., the process
(5)t>0 is supercritical and therefore, the symmetric multitype process survives. ]

We now turn to Theorems [2.2.1| and [2.2.2] for which we shall prove :

Theorem 2.5.1. Assume Ay < A\, < Ay fized. Let (n;)=0 be the symmetric multitype
process. Then,

(i) there exists ro € (0,00) such that if r < rq then the process (n;)i=o Survives.

(ii) there exists 1 € (0,00) such that if r > ry then the process (1n;)i=0 dies out.

Theorem 2.5.2. Assume A\. < A\ and Ay < A fized. Let (n;)i=0 be the asymmetric
multitype process. Then,

(i) there exists sg € (0,00) such that if r < sq then the process (1;)i=o survives.

(ii) there exists s € (0,0) such that if r > sy then the process (n;)i=o dies out.

These results imply Theorems [2.2.1] and 2.2.2] that is, the existence of a unique
phase transition with a critical value r. (resp. s.) defined in . Indeed, relying
on Theorems [2.5.1] and 2.5.2] by monotonicity given by Corollary one has ry =,
(resp. so = s1).

We shall prove both theorems in Subsections [2.5.2] and [2.5.3] One concludes for the
critical case by proving Theorem in Subsection [2.6]

Before that, subsection deals with consequences of Theorems and
along with monotonicity results of Section [2.4]

2.5.1 Behaviour of the critical value with varying growth rates

Suppose the existence of the critical value r. guaranteed in virtue of Theorems
and [2.5.2] one investigates the behaviour of r. when growth rates \; and Ay are moving.
One manages to prove monotonicity between growth rates and the release rate, in the
sense that, the more competitive the species is (i.e. the higher the parameter \, is) or
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the fittest the species is (i.e. the higher the parameter )\ is), the higher the release rate
is (i.e. the higher the critical value r. is) :

Proposition 2.5.1. For j = 1,2, the function \; — r.();) is non-increasing.

Proof. We consider j = 2 as the case j = 1 is similar. Let (7;);=0 and (7))o be two
multitype processes with respective parameters (A1, A2, ) and (A1, A, 7). By Theorems
2.5.1) and [2.5.2] existence and uniqueness of the critical values 7. and r’, associated to
those processes are guaranteed. We now show that if Ay < X}, then r. < rL.

By contradiction, suppose 7. > r.. Let r be fixed be such that r. > r > 7.. Since
A2 < Ay, by Corollary R.4.1}(iii), if 5o = 7)) then 7, < 7; a.s. By Theorem and
Corollary

P.(Vt >0, H; # &) <Py (Vt =0, H # &) =0

But since r < r,, the process (1;)>o survives : P.(Vt = 0, H; # &) > 0. This contradicts
ne < 1, a.s., hence r. < rl. O

2.5.2 Subcritical case

The following proof relies on a comparison of the multitype process with an oriented
percolation process on the even grid £. Then we show that for the associated open sites,
percolation occurs thanks to results we presented in Section [2.2.3]

We follow arguments used by N. Konno, R. Schinazi and H. Tanemura [48] in the
case of a spatial epidemic model.

Proof of Theorem (i). To simplify notations, choose d = 1 but the proof remains
the same for any d > 2. Introduce the following space-time regions,

B = (=4L,4L) x [0,T], Bumn = (2mLey,nT) + B
[ =[-L,L], L,=2mLe +1

for positive integers L, T to be chosen later, where (ey, ..., e4) denotes the canonical basis
of R?. Notice they correspond to the boxes introduced in (2.2.20) with jo = 1, ko = 4.

Consider the process (1,"");>o restricted to the region B,, ,,, that is, constructed from
the graphical representation where only arrival times of the Poisson processes occurring
within B,, ,, are taken into account. Therefore, a birth on a site x € B,, ,, from some site

y only occurs if y € B,, ,. By Proposition and Remark [2.4.1] one has

< g, (2.5.1)

for allt>01fn6”’"=7]0’6 .

Let k = |v/L| and define C = [k, k]. One declares (m,n) € £ to be wet if for any
configuration at time n7T" such that there is a translate of C full with 1’s in I,,, with I,,
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containing only 0’s and 1’s, the process restricted to B, , is such that at time (n + 1)7'
there are a translate of C in [,,_; and a translate of C in I,,,1, both full of 1’s, with
1,1 and [, containing only 0’s and 1’s.

Let us show that the probability of a site (m,n) € L to be wet can be made arbitrarily
close to 1 for L and T chosen sufficiently large. By translation invariance, it is enough
to deal with the case (m,n) = (0,0).

Suppose I contains only 0’s and 1’s as well as the translate of C full of 1’s and set
r = 0 in B, that is, no more type-2 individuals arrive in the box B after time 0.

If type-2 individuals are present on the base (—4L, —L)u(L,4L)x {0}, the probability
of the event E they all die by time 7'/2 is at least

(1- eXp(—T/Q))6L

which is larger than 1 —¢€ for 7" and L chosen large enough. On E, the process restricted
to the box B is now from time 7/2 a supercritical contact process (§"");>r/2 with

distribution P(&™" € -). But we have to make sure that at time T/2, there are still
enough 1’s for &y, for this we use the following result. Define 7(¢) = inf{t > 0 :
=[~.4]

=i Ced = J}, the hitting time of the trap state 0 of the contact process starting
—00

from [—¢, /] and restricted to [—¢, ¢] x [0,T/2]. T. Mountford [62] proved that
P(r(¢) < exp(l)) < exp(—F) for ¢ large enough (2.5.2)

Partition C into M = |v/k| boxes, each of them being a translate of [0, M]. From each
of these M boxes, say box j < M run a supercritical contact process denoted by (CZ )t=0
which coincides with the restriction of &™" to this box. Therefore for each x in this box
J, as in [2.5.1} Cr}/?(x) < &7y (x) for all @ € By, ,. Then for the union of these j boxes
(j < M), the probability there is at least M 1’s within C by time T'/2 is after (2.5.2),
with 7" such that exp(M) < T'/2, at least

P(r(M) = T/2)™ = B(r(M) = exp(M))™ = (1 — exp(—M))M (2.5.3)
which can be made larger than 1 — ¢, for M, i.e. L, large enough.

A result of R. Durrett and R. Schinazi [25] shows that for a contact process (&)¢=o,
for any A < Z, except for a set with exponentially small probability, either 2 = ¢, or
&2 = €2 on a linearly time growing set [—at, at] : there exists a > 0 such that for all
A < Z, there exist positive constants C,~ such that

P(E! # &, @) # &(x)) < Cexp(—t) (2.5.4)

where x € A + at.
We applied this result with A < C which correspond to the numbers of 1’s in the
box. We just proved that |A| > |M]. Moreover according to Proposition [2.6.1] one can
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choose k, and so L, large enough so that this supercritical contact process £/ starting
from at least M 1’s survives at time 7/2 with probability close to 1, hence ¢ # F
and is valid. In this situation, taking 7'/2 = 9L/(2«) with L large enough, the
process (§"");=0 starting from at least M 1’s in [—L, L] at time T'/2 will be coupled
with a process £ on [—3L,3L] with probability at least 1 — € at time T. Hence, since
3L > oT/2 > 2L, by time T the contact process ¢! started inside [—L, L] has not
reached the boundary of [—4L,4L] with probability close to 1. Then, the process &™"
and the contact process & are the same with probability 1 — € in [—4L,4L]; this way,
the coupling of (£")i=¢ with (£Z);50 works so far with probability 1 — € if L is large
enough.

Since the distribution of (£Z);s¢ is stochastically larger than the upper invariant
measure 7 (see Chapter 1 Section of the contact process, on the survival event, 7
loads a positive density p of 1’s. Since 7 is ergodic (see Chapter 1 Section ,

—L

1
ngrolome:?)Ll{n(x) =1} =p v-ae.

In other words, as soon as L is large enough, under 7 there are at least k 1’s in any
interval of length 2L+ 1 with Z-probability at least 1—e. Since we obtained that (§"" )0
is coupled to (£Z);50 by time T with probability at least 1 —2¢, for L large enough, there
are at least k 1’s in [—3L, —L] at time T" with probability at least 1 — 2¢ and similarly,
at least k 1’s at time ¢ in [L, 3L] with probability at least 1 — 2¢ as well for (&§™");=o.
Consequently,

P((0,0) wet) > 1 —4e, if r = 0. (2.5.5)

Since B is a finite space-time region, for fixed L,T’, one can pick rq > 0 small enough

so that the arrival times of a rate r Poisson process, such that r < rg, in B occurs with

probability at most €. Let Ay r(r) be the first arrival time of a rate r Poisson process
in [—2L,2L] x [0,T1].

P,((0,0) wet) > P.((0,0) wet, A r(r) > T)P,(Apr(r) > T)
(1 . 46)677"(4L+1)T
1

=
=
= — 6e

as soon as the exponent of the exponential is close to 0, i.e. by choosing r small enough.

See Figure [2.2] for an illustration.

Now construct a percolation process by defining the good event Gy, ,, = {(m, n) wet}.
Notice that G,,, depends only on the process constructed in B, ,, and for (a,b) €
L, events G,,, and G, are independent if (m,n) and (a,b) are not neighbours. The
events {Gpn, (m,n) € L} are thus 1-dependent. By the comparison theorem [2.2.7, the
process (1;"")i=o restricted to regions B, , is stochastically larger than a 1-dependent
percolation process with probability 1 — e.

By Lemma [2.2.5] one can choose € small enough so that percolation occurs in the
1-dependent percolation process with density 1 — e. O
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time 4
I_ I
T+14 : 2
B_1.1 Bia
T -4 [71 ]1
oL L B A N ;
—6L —4L —L L 4L 6L

FIGURE 2.2: There exist L, T such that (0,0) is wet with P,-probability close to 1.

2.5.3 Supercritical case

In the following, one compares our particle system with a percolation process on
Z? x 7, and uses arguments from Van Den Berg et al. [T5].

Proof of Theorem (7i). Assume d = 2, the proof can similarly be extended to
higher dimensions. For all (k, m,n) € Z*xZ, . Introduce the following space-time regions,
for positive L and T to be chosen later.

A= [-2L,2L)* x [0,27T] Apmn = A+ (KL,mL,nT)
B=[-L,L] x [T, 2T] Bimn = B+ (kL,mL,nT)
C= Cbottom U Csz'de Ck,m,n =C + (k'L, TTLL, nT)

where Cporrom = {(m,n,t) e A:t =0}
Cside = {(m,n,t) € A:|m| =2L or |n| = 2L}

Consider a restriction of the process (7;)i=0 t0 Ak m.n, that is, the process (nf i H
constructed from its graphical representation within Ay, ,,.

One declares a site (k,m,n) € Z* x Z, to be wet if the process (7f"™" ), contains
no wild individual in By, , starting from any configuration in Cy, ,. Therefore it will
be the same for nt‘ A Sites that are not wet are called dry.

For any € > 0, we show that for some chosen L and T any site (k,m,n) is wet with
probability close to 1 when r is large enough. By translation invariance, it is enough
to consider (k,m,n) = (0,0,0). Set r = o0 in A. Then, the process (n;"™");=¢ contains
only sites in state 2 or 3 : sites in state 0 or 1 flip instantaneously into state 2 and 3
respectively. That is, (n)"™"),s is in fact a contact process (5}7’”7”)90 on {2,3}[725:2L]

~

The contact process (& )i=0 on {2, 3}22 with growth rate A\ < A is subcritical.

If there is some wild individual in B, it should have come from a succession of births
started somewhere in C. Starting from a site in Cgqe, a path to B should last at least L
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sites ; according to C. Bezuidenhout and G. Grimmett [6] there exists such a path with
probability at most Cexp(—~L), for some positive constants C,~. Hence,

P(3(x,t) € Cyige x [0,277] : (x,t) - B) < 4(2T x (4L + 1))C exp(—7L)

Similarly, starting from the base Cporrom, there exists a path lasting at least T sites with
probability
P(3(z,t) € Chortom : (x,t) — B) < (4L + 1)*C exp(—~T)

Consequently if r = oo,
P((0,0,0) wet ) =1 —4(2L x (4L +1))Ce ™ — (AL + 1)*Ce™ " = 1 — ¢/2,

for L and T large enough.

Since A is a finite space-time region, one can pick r large enough so that with
probability at least 1 — €/2, an exponential clock with parameters r rings before any
other so that there are no type-1 individuals in A with probability close to 1 :

P.(k,m,n) wet) = 1—¢
for r large enough.

To construct a percolation process on Z? x Z., one puts an oriented arrow from
(k,m,n)to (z,y, 2) ifn < zand if Ay nnAsy.. # &. The event G n = {(k, m,n) wet}
depends only on the graphical construction of the process within Ay, ,, furthermore,
for all (k,m,n) € Z* x Z,, there is a finite number of sites (z,y,2) € Z* x Z, such
that A mn N Agy. # . The percolation process is dependent but of finite range. The
existence of a path of wild individuals for the particle system corresponds to a path of
dry sites for the percolation and we proved that dry paths are unlikely.

Let us show that for all sites, there exists a finite random time after which there is
no more wild individuals remaining. Follow the construction given by van den Berg et
al. [75].

Since the percolation is of finite range, there exists some positive constant C(d)
such that if the distance between two sites is at least C'(d) then they are mutually in-
dependent. For any z € Z?, define T, = sup{t : n;(x) € {1,3}} the last time where x
is occupied by a wild individual. By translation invariance, deal with the case z = (0, 0).

Let K > 0, suppose Ty > TK, there exists some m € Z, such that (0,0,m) is the
end of a dry path starting from (z,y,0) with (z,y) € Z?. The number of paths of length
¢ is at most §°. Moreover, a self-avoiding path of length ¢ contains at most ¢ mutually
independent sites (i.e. whose in-between distance is at least C'(d)), v > 0. Hence,

P(Ty>TK)< Y, > 8 (1—P((k,m,n) wet))” (2.5.6)

m=K—14=m
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For r large enough,the right-hand side tends to 0 when K goes to infinity. That is,
Ty is almost surely finite and the region A x [T, 00) is wild individuals-free. For the
percolation process, this means there is an infinite path of wet sites, hence the process
(m¢)¢=0 dies out. O]

To sum up, we just showed there exist ry and ry such that rqo < r. < rq, for r < rg
the process survives and for r > r; the process dies out.

This proves the existence of a phase transition for the symmetric multitype process.
The proof of Theorem (i) only uses that contact process with growth rate A; is
supercritical, this is also true to show the existence of sy in Theorem [2.5.2}(i). By Pro-
position [2.4.4] the asymmetric multitype process dies out as soon as the symmetric one
does, existence of s; in Theorem m-(u) is then immediately guaranteed by Theorem
2.5.1}(ii). Though, one can remark that conditions of Theorem are milder : one
can actually show the existence of s; in a neater way. Indeed, retrieving briefly the proof
of the supercritical case : assume Ay > A, : with the lack of the transition "2 — 3" in
the asymmetric case and choosing first » = o0, one notices for the subcritical contact
process on {2, 3}22, there are no possible paths of wild individuals created by the 3’s
from the boundary Cy.,,, up to extinction, but this occurs exponentially fast (see C.
Bezuidenhout and G. Grimmett [6]).

2.6 The critical process dies out

In this section, we prove Theorem : the critical multi-type contact process dies
out. ie. P, (H; # & ¥Vt = 0) = 0. Recall (1;);=0 stands for the multitype process,
starting from the initial configuration 7y = 1.

One follows closely the arguments used by C. Bezuidenhout and G. Grimmett [5],
well-exposed by T.M. Liggett [57, Chapter 1.2]. We shall use both presentations.

The dynamic renormalization construction sees the time-evolution of the process in
a suitable chosen scaling : space-time is divided into finite space-time regions. So far,
this looks heavily like the comparison with oriented percolation we defined in Section
2.2l But here, instead of fixing every region initially, the idea is rather to determine
their positions according to the past random position in the construction, along with
the evolution of the process.

Let us sketch the contents of the proof.

Outline. The first step consists to observe that if the process survives in an arbitrary
large box, then it reaches its boundaries densely. We shall estimate these densities at
each side of a space-time region.

This way, one can repeat this step by running the process in an other adjacent box
starting from the boundary of the previous one and so on, conditionally on the fact
that the starting configuration is dense enough. This is the second step. In connection
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with the proofs of Theorems [2.5.2] and 2.5.1] where we looked after having translations
of occupied finite intervals at a given fixed time, here we look after having translations
of the densities in some space-time slab.

Now, knowing that at each stage, one can construct overall a path of adjacent boxes
wherein the process survives and reaches the boundaries densely, it remains to compare
the process with an oriented percolation process to extend the arguments to infinite
space and time. As before, compare a space-time box to a vertex in the even lattice
of an oriented percolation so that one declare a vertex to be wet if some good event
associated to the box is a success. Conclude thanks to results about percolation theory,
recalled in Section 2.2

2.6.1 Local characterization of the survival event

We saw under specific hypothesis on r, the multi-type contact process survives with
positive probability. Supposing it survives, one exhibits here several properties of growth
satisfied by the process restricted to an arbitrary large box. Such results have been
proved for the basic contact process by C. Bezuidenhout and G. Grimmett [5], thanks
to techniques of dynamic renormalization introduced by G. Grimmett et al. [35] 2.

First note the arguments developed by [5] rely on elementary properties of the contact
process making them robust. They are also valid for the multitype process because the
latter satisfies the following properties we have exhibited in previous sections :

(A) contact process-like dynamics : one retrieves the growth rate A; or Ay of a basic
contact process, even if it is determined randomly. We will make use of the more
suitable one depending on the situation.

(B) attractiveness, by Section
(C) correlation inequalities : using correlation inequalities such as FKG inequality

211
Note that the use of is possible because we shall work in finite space-time regions
in the following. Such techniques have been several times exploited to study critical
processes, including works by O. Garet and R. Marchand [30] for a branching random
walk, J. Steif and M. Warfheimer [74] for a randomly evolving contact process.

Covering of an arbitrary large box

Proposition 2.6.1. Suppose (1;)=0 survives, then

lim P, (H™"" % &5 vt) = 1. (2.6.1)

n—o0

Proof. By attractiveness of the process (7)o (see Corollary 2.4.1), if A, B < Z¢ are
such that A ¢ B then

P.(HP # @ ¥t = 0) = P.(H* # & ¥t = 0) > 0.

Since we assumed (7;)¢=0 survives, jlimd P.(HA # @& Vt) = 1. O
1Z
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Consider, for L > 1 and A < Z¢, the truncated process (;n)i=o defined as the
process (1;);=0 starting from the initial configuration 79 = 14 constructed from the gra-
phical representation in (—L, L)? x [0,]. Denote by (1 H{!)i=o the associated set of sites
occupied by wild individuals at time t.

The next two results show that sites occupied by wild individuals are dense in some
orthant of the top of a box of size (—L, L)¢ x [0, T]. Following estimates are analogous
to the ones we did previously in the proof of Theorem [2.5.1] Subsection [2.5.2] one proves

by and of (n;)i=0 that

Proposition 2.6.2. Letn > 1 and N > 1, then

lim lim P, (|, H " = N) = B.(H ™ % @5 vt > 0) (2.6.2)

t—00 L—00

Proof. Since H,t[_n’n]cz = U LHt[_”’”]d, for any fixed t, by monotonicity (see Corollary

L>=0
2.4.1),
lim P, (| " = N) = (| = ). (2.6.3)
—00

It is thus enough to show
lim P, (| = N) = (H 2 g vt > 0).

On the other hand, for an initial configuration constituted of (2n + 1)? wild indivi-
duals, the probability that these (2n + 1)¢ wild individuals die before any birth is at
least the probability the maximum of (2n + 1) independent exponential clocks with
parameter 1 is smaller than the minimum of 2d(2n + 1)? independent exponential clocks
with parameter Ao, since Ay < Ay. That is,

[-nn]e 1 e
P.(H; ™™ = & for some t|F,) = [ ] ]
1+ 2dX\o|Hs ™™

where F, = o(nl=" s < t) is the sigma-algebra generated by the graphical represen-

S 7
d
tation of the process (n}™™"),=o until time ¢.

Define F, = () o(Fs), since {Ht[_"’"]d = ¢ for some t} is a tail-event with respect

520

_ d
to Fu, and 1{Ht[ ] & for some t} is P,-integrable, by the martingale convergence
theorem, Lévy’s zero—one law gives

lim E[1{H] mel® o for some t}HFs] = l{Ht[_"’”]d = (¢ for some t} a.s.

S§—00

Therefore,
d
lim [H™) = o0 as. onf HIM' £ g5 ¥s > 0}, (2.6.4)
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2.6. The critical process dies out

and by ([2.6.3]) and ((2.6.4),
. [—n,n]? [—n,n]4 _ [—n,n]?
tllHO}}]]EDTﬂHt | > N, H! # Vs> 0) =P.(H; # @Vt =0)
[

Using FKG inequality |(C), one shows that the truncated process contains a large
number of occupied sites in some orthant of R?. For this, define the 2¢ orthants of R? :
for u = (uy, ..., uq) € {—, +}%,

O = {x = (21,...,7q) € RY: sgn(z;) = u;, 1 <i<d}.

By symmetry and reflexion with respect to the time axis, without loss of generality one
can only consider the positive orthant i.e. when sgn(z;) = + for any 1 < i < d that we
denote by

O i={x = (11,..,29) eR*: sgn(x;) =+, 1 <i<d}.

Proposition 2.6.3. Fizn>1, N >1 and L > n,

d

P HT A 0% < N < P B2 < 208) (2.6.5)
Proof. Along this proof, make us of since we retrieve a basic contact process, so
that one use the suitable growth rate depending on the ongoing estimate. First, remark
that ) )

L = Y T h 0,

ue{—,+}4

_ d
AN{| HE"™ A 0¥, u e {—, +}%} are independent, identically distributed and positively
correlated by monotonicity : increasing with respect to growth rate Poisson process

and decreasing with respect to death and release rates Poisson processes, using by
Corollary So that by FKG inequality, for all u e {—, +}% :

2d
(Pr <|LHt[—n,n]d N O+| < N)) = H ]P)r <|LHt[—n7n]d A Ou| < N)

ue{—,+}¢
< Pr( ﬂ <|LHt[—7Z,n]d A Ou| < N))
ue{—,+}9
< HDT( Z |LHt[*n,n]d A Ou| < QdN)
ue{—,+}4
< IP’T(|LH,5[‘”’”]d| < 2dN).
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Chapter 2. Phase transition on Z<

By Propositions [2.6.2] and [2.6.3] for any € > 0, there exist L and t sufficiently large
such that

P, (| H ™ A 0¥ = N)>1—

Before going on space-time conditions, consider the lateral parts of the box (—L, L)¢ x
[0, T]. For this, define

S(L,T) :={(z,t) € Z* x [0,T] : |z|s = L},

the boundary of the box (—L,L)* x [0,T] and define . H := (J,o, LH; x {t}. For any
Ac 74 let N&(L,T) be the cardinal of the set

{(z,t) € S(L,T) n LH : (x1,51), (22, 52) € S(L, T) n L H? such that |s; — sy > 1}.

Proposition 2.6.4. Let (L;);j>1 and (T})j>1 be two increasing sequences of integers.
For any integers M, N, n,

lim P, (NT0 (L, T3) < M)P(|p, HE ™™ < N)

j— 7

< IP’T(Ht[fn’n]d = (J for some t) (2.6.6)

Proof. Let Fr be the sigma-algebra generated by the Poisson processes of the graphical

representation of the process (1;)i=0 in (—L, L)? x [0, T']. For each site of LH:[F"’n]d, there
is a probability at least
(14 2dX\)7!

that a site does not give birth (exponential clock with parameter 1 associated to a
death ringing before an exponential clock associated to a birth). By independance of

[_nvn]d

the Poisson processes, the probability that none of x € [ Hr contributes to the

survival of the process is at least

-1 |LH[T_n’n]d|
«1+mmg ) .

For the lateral parts of (—L, L)% x [0, T], consider now a segment {x} x [0, 7], where
|| = L, and define (z,t1), ..., (z,t;) a maximal set of 1-sparse time-wise points of the
segment in S(L,T) n [—n,n]? i.e. such that for any points (z,¢;) and (x,¢;) in this set,
then |t; —t;] > 1. Fix j > 1, the segment

J
I={J{a} < (b= 1,05+ 1).

k=1

is of Lebesgue-measure at least 2j. There is no arrow in the graphical representation
starting from a site of I with probability at least

. 2d
()
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2.6. The critical process dies out

For each interval of length y in {z} x [0,7)\I, the event no arrow occurs or an arrow
occuring is preceded by a death or a slowdown symbol, occurs with probability at least

1
14 2d)\°

Consequently, no points of {x} x [0,T] contributes to the survival of the process with
probability at least 4
6—4de1< 1 )J.
2d\

Counting the contribution of all such z,

1 k
P, (H = o £ > —4d“1(i> s. 2.6.7
(H; & for some t|Fpr) = e T 2dn a.s ( )

on the event {Ng_"’"]d(L,T) + |LH£,_"’n]d| < k}.
Then, consider two increasing sequences (7});>0, (L;)j=0 and integers M, N, define
H, = (NE™(L;, 7)) + LB < M+ N}
J - S YRR L T X .

If G = {Ht[_n’n]d = ¢ for some t}, by the martingale convergence theorem,

hm ]PT(G|]:L]-,T]-) = 1G a.s.
J—©

From (2.6.7)), for all j > 0, on Hj, P,.(G|FL, r,) is bounded below by some positive form
and thus, lim H; < G. That is,

J—©

lim P,(H,) < P,(Iim H,) < P,(G).

J—0 J—®0

Furthermore, by FKG inequality ,

P, (NI (L, T) + [ 1y ") < M+ N)
[7n’n]d [7n’n]d
>P7‘<NS (L7T)<M7|LHT ‘ gN)

d

—n,n d —n,n
> PNy " (L, T) < M)P,(|LHy ™| < )
this concludes the proof. ]

As for the top of the box (Proposition [2.6.3)), one can control the number of occupied
sites on the lateral parts of the box (—L, L)¢ x [0, T']. For this, introduce for i = 1, ..., d24
and u € {—, +}%, the 2¢ sides of the box by

SUL,T) :={(x,t) € Z x [0, T], z; = u; L, sgn(x;) = uj (j #14)}
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Chapter 2. Phase transition on Z<

and NAA(L,T) the cardinal of the set
{(z,t) € SYL,T) n L H : (x1,51), (22, 52) € S(L, T) n L H? such that |s; — sy = 1}.

By symmetry and reflexion with respect to the time axis, it is enough to look only at
the positive coordinates :

S (L,T) := S NL Ty = {(x,t) € Z% x [0,T], 3, = L,z; > 0 (j # i)}
Proposition 2.6.5. For any integers M, L,T andn < L,
[7n7n]d d2d [7n7n]d d

P, (NI (L, T) < M)* <P.(Ng (L, T) < Md2?%)
Proof. Remark that {Ni[fn’"]d(L, T),1 < i < d2¢} are identically distributed and positi-
vely correlated. Moreover,

d d2d d
Ng—n,n] (L, T) < Z Ni[—n,n] (L, T)
i=1

So, as for Proposition [2.6.4] one has by FKG inequality,

d2d

B (VYL T) < ) = [TR(NTLLT) < M)
i=1

< P((\NTUL,T) < M)
=1
< P, (NE(L,T) < Ma2?).

Space-time conditions

Proposition 2.6.6. Suppose (n)i=0 survives. For any e > 0, there exist integers
n, L, T > 0 such that

P, <L+2nH[T_f1’"]d > + [—n,n]? for some x € [0, L)d) >1—¢q (2.6.8)
and
P, (L+2nH£:f’n]d >z + [-n,n]? for some

(z,t) € {L +n} x [0,L)"" x [0,T)> >1—-¢ (2.6.9)
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2.6. The critical process dies out

Proof. Fix 6 > 0. By Proposition [2.6.1] choose n such that
P (H ™ o> 0) > 1 - 62
Let N be sufficiently large so that N points in Z? contain at least N’ points which are
(2n + 1)-sparse in Ly-distance. Choose now N’ sufficiently large so that
N/

[1 — P, (1 H” 5 [—n, n]d)] <.

Likewise, choose M sufficiently large so that M points in Z¢ contain at least M’
points which are (2n + 1)-sparse. Choose now M’ sufficiently large so that

[1 - P, (n+1H§O} - [07 2”] X [_n’ n]d_l)]M <9

Fixn, L, N, the map t — P,(|,H}""| > 27N} is continuous and lim P, (| H ) >

2?N) = 0, by Proposition [2.6.2} there exist two increasing sequences L; 1 o0 and T} 1 0
such that for all j > 1,

—n,n d
P, (|, HE, " > 2/N) =14,
Using Proposition [2.6.4] there exists some jy for which,

P (NS (L, Th) > Md2%) > 1 - 6.

Jo>

Considering L = L;, and T' = Tj,, applying Propositions [2.6.3| and [2.6.5 one has

P (| HY " A [0, D)%) > 20N) > 1 6V

and
]d

P, (NS (L, T) > Md2%) > 1 — §V/%",

In other words, because the Poisson processes used in the graphical representation are
independent in different space-time regions,

P, (L+2nH[T_f1’"]d >+ [—n,n]? for some z € [0, L)d) > (1—0Y%") (1 - 6)
and
P, (L+2nH[T_f1’"]d > x + [—n,n]? for some
(z,t) e {L +n} x [0,L)"" x [O,T)) > (1— 621 - 6).

onclude by choosing ¢ such that (1— 1-9) > 1—eand (1— 1-0) = 1—e.
Conclude by ch d such th §1/20)(1-6 d (1-6Y2%)(1-6 O
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Chapter 2. Phase transition on Z<

Proposition 2.6.7. Suppose (2.6.8)-(2.6.9) are satisfied. Then, for any e; = €7(eg) > 0,
there exist n, L, T such that

_ d
gt S gy [—n,n]? for some

(z,t) € [L+n,2L +n] x [0,20)"" x [T,2T]) > 1 —€7. (2.6.10)
Proof. For any e; > 0, choose n, L and T as in ([2.6.8))-(2.6.9)), by Proposition (2.6.6).
With (2.6.9)), with P,—probability at least 1 —eg, there exists (z,t) € {L+n} x[0, L)4! x
d
[0,7) such that L+2nHt[HL’"] >z + [—n,n]d

]P)T (2L+3n

By the Markov property and (2.6.8)), starting from 7'+ 1, with P, —probability at least

1 —¢g, there exists some y such that y—z € [0, L)¢ satisfying L+2nH7[;n1’"]d > y+[—n,n]

Consequently,
_ d
P, (2L+3nHt[ s [-n,n]? for some

(z,t) € [L+n,2L +n] x [0,20)" " x [T+ 1,2(T + 1)]) = (1 — e5)“.

The next result links the previous estimates with a percolation process.

Block constructions The following two constructions rely on the geometry of the
boxes only, proofs are similar to the ones of [5, Lemma 18] and [5, Lemma 19] respecti-
vely. They allow us to position the successive boxes adjacently and well centred.

Proposition 2.6.8. Suppose (n:)i=0 survives. For any es = es(e7) > 0 and fir k € N,

there exist integers n, a,b such that n < a for which : for all (z, s) € [—a, a]? x [0, b], with

P, —probability at least 1 — eg, there exists a translate (y,t) + [—n,n]? x {0} satisfying :
i. (y,t) € [a,3a] x [—a,a]®! x [5b, 6b].

ii. From (z,8) +[—n,n]¢ x {0}, there exist active paths reaching any points of (y,t) +
[—n,n]? x {0} lying within the region

[—5a,5a]? x [0,6b].

The idea is to repeat sufficiently enough the Proposition [2.6.7] in order to translate
the center (x,s) of a box to the center (y,t) of another box, so that if the first box is
occupied, then the second one is as well and so on [see Figure .

Proof. Choose n, L, T as in Proposition [2.6.7] . Define a = 2L + n and b = 2T. One
can thus construct boxes as following : noting one needs to recentre within the box
(y,t) € [a,3a] x [—a,a]® x [5b,60] :
(1) for 2 < i < d, for some current centre (z,7) such that z; > 0 or z; < 0, it suffices
to move it in the opposite direction. Since a > 2L, the ith coordinate does not
leave out of [—a, a].
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2.6. The critical process dies out

(2) Move the spatial coordinate to reach [a,3a]. Since it always moves by at least
2L +n and 2L 4+ n > 2a, it reaches [a, 3a] in at most four steps.

(3) Move the time coordinate to reach 5b. As it moves between T" and 2T, it reaches
5b after four to ten steps. As b = 27", it does not overcross 6b by 10 steps.

As each step depend only of Poisson processes within the region [—5a, 5a]¢ by disjoint
time intervals, by Proposition [2.6.7], this construction succeeds with probability at least
(1—e)0=1—es. ]

Iterating &k times the previous result, one obtains (see Figure :

Proposition 2.6.9. Suppose (1;)i=0 survives. For any €9 = €9(es) > 0 and k € N fized,
there exist § > 0, and integers n, a, b such thatn < a for which : For all (z,s) € [—a, a]?x
[0, 0], with P,—probability at least (1—e9)*, there exists a translated (y,t)+[—n,n]? x {0}
such that :

i. (y,t) € (2ka + [—a,al]) x [—a,a]®t x (5kb + [0,b]).

ii. From (z,8) + [—n,n]¢ x {0}, there exist active paths reaching any point of (y,t) +

[—n,n]? x {0} lying within the region
k-1
R = | J(2ja + [~5a,5a]) x [~5a,5a]*"" x (5jb + [0, 6b]).

J=0

Comparison with oriented percolation For p,q € Z such that ¢ > 0 and p + ¢ is
even, define
Upq = [—a,a]® x [0,b] + (p2kaeq x q5kb)

and
S — U <7' + (p2kaeq x q5/€b)>,

q=0 p+q even
where T = [—a,a]™! x {(xd,t) €eZ xRy :0<t< (bk+1)b, —ba+at/b < xy <

ba + at/b}. Here, S is a cross shaped nesting of successive boxes (as in Figure [2.3|) using

reflections and symmetries. Similarly to [5, Lemma 21|, one has

Theorem 2.6.1. If (1;)i=0 survives, there exist integers n,a such that
Pr(nt[*"’n]d survives in Z x [—5a, 5a]*"* x [0,00)) > 0

Proof. Adapting the proof of [5, Lemma 21], fix § > 0 and ¢ > 0 such that 1 — ¢ >
1 — 0. Choose n,a,b as in Proposition Construct random variables {Z, (i) =
(I.(i), Py(3)) : n = 0,i > 0}, where I,(i) € {0,1} and P,(i) € Z¢ x [0,0) such that
P, (i) is undefined if I, (i) = 0. Fix Zy(0) = (1,0).

For defined random variables {Z,,(i) : n < N, > 0}, construct recursively Zy1(i) =
(In+1(7), Pyy1(7)) as follows.
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Chapter 2. Phase transition on Z<

time &
(bk +1)b
b I
0 : -
—5a 0 5a

FIGURE 2.3: Set d = 1. The targeted region goes upward-rightward (reflections are
not drawn, but a symmetric draw going upward-leftward does exist as the dashed line
suggests it). Occupied translated sets [—n,n]? stand in the gray regions and are reached
by paths lying in the area delimited by the stair shaped plain lines.

1. the random variable Iy, (i) is 1if : for j € {i,i — 1}, Iny(j) = 1, Pn(j) + [-n,n]?
is joined to every point of some translate of [—n, n|? centred in ve;_x_1 y41 Within

S.

2. if In,1(i) = 1 then Py, (i) is defined as the centre of some translate of [—n, n]?.

[~nn]

With this construction, if for any n, {i = 0 : I,,(i) = 1} # ¢ then the process (n; " )i=0
survives in Z x [—5a, 5a]?t x [0, o0). It remains then to show

P.({i=0:1,(i) =1} #J ¥n>=0)>0.
Define F,, = 0(Zy(i),i = 0,0 < k < n) and by Proposition :
P (Ip11(i) = 1|F,) >1—=don {l,(i—1)=1or X,(i) =1}

But conditionally to F,, variables {,,(i),7 = 0} are 1-dependent. By Theorem [2.2.6] one
can construct Bernoulli random variables whose product measure of density p is lower
than the distribution of the 1-dependent variables. By taking 1 —p close to 1, by Lemma
[2.2.], one has (i) = 1 for an infinity of pairs (n,4) with positive probability. O

2.6.2 Extinction of the critical case

Using the foregoing dynamic block construction, one concludes to the Theorem [2.2.3|:
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2.7. The mean-field model

Proof of Theorem[2.2.5. Let r > 0 be such that the process (7:):>o survives. In the block
constructions established in Propositions [2.6.8] and [2.6.9, each event depends only on
the graphical representation of the process in each box (2ja+[—5a, 5a]) x [~5a, 5a]?~! x
(55b + [0,60]), for j = 0. Then, Propositions [2.6.8 and [2.6.9] are preserved with P, s-
probability for some § > 0. From Theorem , the process (1);=0 survives in r + .
But since r +9 < r., then r < r.. That is, whenever the process survives, r stands below
r. : the critical process dies out. O

2.7 The mean-field model

Consider in this section the mean-field model associated to the multitype process,
both symmetric and asymmetric. This is a deterministic and non-spatial process where
all individuals are mixed up, leading to study the densities of each type of particles
overall.

Mean-field models give rise to differential systems and are interesting to compare sto-
chastic behaviours, as previously studied, with corresponding deterministic behaviours.
We investigate here the equilibria of these differential systems, first in the asymme-
tric model, and in the symmetric model then. Since existence of such equilibria yields
the existence of a critical value, we survey the mean-field equations in order to exhibit
conditions on the parameter r to deduce bounds on the critical value r..

Subsequently, let u; be the density of type-¢ individuals for ¢ = 1,2, 3. Overall, one
has 1 +us+us = 1—ug. Furthermore, in connection with the definition of wild and sterile
individuals, we consider as well vy, resp. vy, the density of the wild individuals (type-1
and type-3 individuals), resp. the sterile individuals (type-2 and type-3 individuals), and
the density of empty sites vy = ug. Relations between the u-system and the v-system
are described by

up =1—1vy — ve
ug =1—1v9—n : (2.7.1)
Uz =vy+ v +v9— 1

Since we consider densities, both systems satisfy

u; €[0,1] fori =0,1,2,3, wv;€[0,1] fori=0,1,2. (2.7.2)

2.7.1 Asymmetric multitype process

Assuming total mixing, the mean-field model associated to the asymmetric multitype
process is given by :

uwy = 2d(Mug + Agug)ug + ug — (r + 1wy
uh = TUy + Uz — Uz . (2.7.3)
uy = ruy; — 2ug

65



Chapter 2. Phase transition on Z<

This system admits two equilibria :

(u17u27u3) = <O i 0)7

( 1 r+2 r _f( I r+2 > ro r(r +2) >
r+ 1 4dh\ 4+ 2ddor’r+ 1 2\r+ 1 4d\ 4+ 2dX\or/  2(r + 1) 2(4dNy + 2dNor) /)

g
density on the sterile individuals and none on the others, which corresponds to the
extinction of the process.

Note that the first equilibrium gives (uq,ug, uz) = (O, L O> which puts a positive

U(/) = —2d<()\2 — /\1)120 + )\2111 + (/\2 — /\1)’01 + )\1 — /\2>U0 — (7“ + 2)1)0 — U1 — V2 + 2
Ui = 2d<()\2 — )\1)’00 + )\21)1 + ()\2 — )\1)1}2 + )\1 — /\2)1)0 — U1
>

= 7‘(1 — Ug) — V2
(2.7.4)

This system gives rise to an equilibrium :

2+ r+2 (r+2)? r
(U07U1,U2) = < ) - ) )
dd\ir + 2dXhor’ 2(r + 1) 2(4dAy + 2dXor) 7+ 1

In particular, by checking conditions (2.7.2)), one highlights a condition : the density v;
is non-negative as soon as

4d>\1 + 2d/\27” > (7” + 1>(T + 2)

which gives the following condition

L2 -3+ A/ (2dAy — 3)2 —8(1 — 2d)\y)

; (2.7.5)

This indicates a lower bound for the phase transition.

2.7.2 Symmetric multitype process

The mean-field equations associated to the symmetric multitype process are :

uwy = 2d(Mug + Agug)ug + ug — (r + 1wy
uh = rug + uz — Uz — 2d(Ajuy + Agusz)ug (2.7.6)
uh = ruy + 2d(Aug + Aoug)us — 2ug

As previously, this system admits one trivial equilibrium :

r
) U2, = 0777())
o= (05
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2.7. The mean-field model

retrieving once again a situation related to the extinction of the process, by a posi-
tive density of sterile individuals and none of the wild ones. We derive the non-trivial
equilibrium thanks to the corresponding v-system :

v = —2d<()\2 — Ao+ Aevr + (Mo — Aoy + A — )\g)vo — (1 + 2)v0 — v1vs + 2

Ui = 2d<()\2 — /\1)?}0 + )\21)1 + (/\2 — )\1)’02 + )\1 — /\2))(1 — ’Ul) — U1
vh =1r(1 —vy) — vy
(2.7.7)

Let us determine the non-trivial equilibrium. Last line of (2.7.7)) gives already vy =
:_ T Using relations of (2.7.1)) in (2.7.7]), according to v; = 0, an equilibrium (vg, vy, v2)
"
satisfies in particular

V1 = 2d()\1u1 + )\2U3)(1 — Ul) (278)
checking v; cannot be equal to 1, one then has

U1

= Qd()\lul + )\2’&3) (279)
1-— U1

and
v # 1. (2.7.10)

On the other hand, from the u-system ([2.7.6)) with relations (2.7.1)) and using condition

[@2.7.10),

V1V r+2
1=0< +(2+ + v — =0
“ [, TG F v =

r+2 Vo1
uy =0< (r+2)vy + v, —
2 ( Juo + v r+1 1—1v

1
ug:O(:>(1—1)1)2—1-(1—v1)(m—(7’+1)vo)—v020

By solving the last line with respect to (1 — v;), one has

1
l—v=(r+1 l—vy =
vy = (r+ 1)y or U1 1
To deduce the value of vy, we investigate both possibilities. Using (12.7.9))
1
1. if 1 — vy = ———, But since this value is negative, necessarily 1 — v; # — :
r+1 r+1

2. if 1 — vy = (r + 1)wp, using (2.7.9) vy solves
2d(A1 + A7) (r + 1)vf — (2dA; + 2ddor + 7+ 1)vg + 1 = 0.
This implies

1
0 T T o 2o
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(a) if vg = —7, then by relations (2.7.1)),
U1:07 U3:1, ’U2:1+U2,

which is a contradiction.

1
b) ifog= —— th
(b) if v 2N + 2dxgr T H

r+1 T
=——"——, Ug = .
2d(M + Nor) 0 T+ 1

U1

Verifying this v-system to be a set of densities by condition [2.7.2] one case highlights
a condition on 7 : v; < 1 if and only if 7(1 — 2dX2) < 2dA\; — 1. In the case where
A2 < 1/(2d), then one has the condition

2d\ — 1

< —. 2.7.11
ST 2dN, (2.7.11)
Consequently, a non-trivial equilibrium of is given by
1 r+1 r
= 2.7.12
(v0, 01, v2) <2d>\1 + 2dAor’ 2Ny + 2dAgr T+ 1> (27.12)

To put in a nutshell, this survey of equilibria associated to both mean-field models, in
symmetric and asymmetric case, gave us the bounds and for the phase
transition.

We will turn into a rigorous proof of the convergence of the empirical densities to
these reaction-diffusion systems. This is dealt with the hydrodynamic limits in Chapters

4] and (Bl
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3.1 Introduction

One considers here the unidimensional contact process on 7Z, either in an inhomo-
geneous (deterministic) environment, or in a quenched random environment where the
growth parameter takes two possible values depending on the environment. Previously
in Chapter [2| we investigated the contact process in a dynamic random environment,
for which we exhibited a phase transition. Nevertheless, through the use of percolation
theory, we were not able to explicit rigorous numerical bounds on the phase transition,
but we are now.

Here, we are concerned by two kinds of quenched random environment on Z : in the
first case, growth rates are randomly chosen according to each vertex; in the second
case, growth rates are chosen randomly on each oriented edges.
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Chapter 3. In quenched environment

The contact process in random environment has already been studied in many ways
to understand how a random rate affects the behaviour of the process. In an unidimen-
sional case, M. Bramson, R. Durrett and R. Schonmann [I2] exhibited an intermediary
phase where the process survives without growing linearly. In higher dimensions, N.
Madras, R. Schinazi and R. Schonmann [60] showed there exist choices of a random
death rate for which the critical contact process survives. Several survival and extinc-
tion conditions have been given successively by T.M. Liggett [52, 53], C. Newman and
S. Volchan [66] in dimension 1 and E. Andjel [I], A. Klein [45] in higher dimensions.

We will rely on [52] 53] whose model and results are described in Section before
taking advantage of them by illustrating them in our framework. We expose our results
when growth rates are depending on vertices in Section and depending on edges in
Section To conclude the chapter, we obtain by the two previous sections a list of
numerical bounds in Section 3.5

3.2 Settings and results

3.2.1 Preliminaries

The contact process in random environment introduced by T.M. Liggett [52] 53] is
a Markov process (x:)i=0 on {0, 1}Z whose transitions at each site x € Z are given by

0 — 1 at rate p(x)x(x + 1) + AM(z)x(x — 1)

1 — 0 at rate §(x) (3:2.1)

where the family {((z), p(z), A(z)),z € Z} stands for the random environment which
is an ergodic stationary process. See Figure . If {(6(x), p(z),\(x)),z € Z} is chosen
deterministic, hence inhomogeneous, we will refer to it as the inhomogeneous contact
process.

Ak +2)

plk+1)

FIGURE 3.1: Quenched random environment

Definition 3.2.1. Let w be the random environment. For almost-every realization of
w, the process (x¢)i=o survives if

PVt =0, Xy # ) >0
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and dies out if
P“(Yt =0, X, # &) = 0.

T.M. Liggett [52, 53] settled survival and extinction conditions for such a process,
among which :

Theorem 3.2.1 (T.M. Liggett [52]). 1. The inhomogeneous contact process dies out
if for allm =0,

SIIs

k<n j=
2. The contact process in random environment dies out if
Elog p(0) < Elogd(0) and Elog A(0) < Elogd(0).

3. Suppose the random vector {(6(k), p(k), \(k)),k € Z} i.i.d. The contact process in
random environment dies out if

E<p(k)5(k)*1> <1

and

Ed(k)~! (1 - E((S(k)A(k)*l)) < EA(k)! (1 - E(p(k;)é(k)*l)).

Theorem 3.2.2 (T.M. Liggett [53]). The contact process in random environment sur-
vives if the two following series converge,

Furthermore, if {(0(k), p(k), A\(k)),k € Z} is i.i.d., then the contact process in random
environment survives if
A+ p+90)

E
Ap

< 1.

Adaptating the results above of T.M. Liggett [52, 53], one is able to exhibit extinction
and survival conditions leading us to explicit numerical bounds on the phase transition
of the contact process in quenched random environment.
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Chapter 3. In quenched environment

3.2.2 The model

Our framework is the following. One describes the environment as a configuration
over the sites of Z. Let p € (0, 1), define a random environment w € {0, 1}? where each
site x € Z is free (0) with probability 1 — p or slowed-down (1) with probability p,
independently of any other site.

The contact process in random environment we consider here is a contact process
(x¢)i=0 With state space {0,1}% and quenched environment w. Let A\; and Ay be growth
parameters such that

Ay < A < Aq, (3.2.2)

where ). stands for the critical growth rate of the basic contact process on {0,1}%.
Recall from previous chapter that some release rate r was curbing the expansion of a
supercritical contact process with A\; > A, to a subcritical rate Ay < A.. Subsequently,
for r € (0, 00),

p=r/(r+1) (3.2.3)

stands for (in connection with the previous chapter) the probability a site is slowed
down (corresponding to the minimum of two exponential clocks with parameters r and
1). Deaths occur at rate 1.

The process (xt)i=o is still monotone according to Chapter [2 Section [2.4]

Denote by P¥ ,,, the distribution of (x;);>0 with parameters (A;, A2,7) and envi-
ronment w. For fixed parameters A\; and Ay satisfying Ao < A\. < Ay, simplify by P*. For
any A < Z, define X! := {z € Z : x/(x) = 1}, where x! denotes the process at time ¢
started from the initial configuration yo = 14. If A = {0}, simplify by X; = t{()}‘

Consider subsequently two kinds of random environment : one depending of the
vertices and one depending on the edges of the graph.

3.3 Random growth on vertices

Consider the dynamics where growth rates are affected to vertices. If \,(k) is the
growth rate from site k € Z : a birth at site k occurs at rate A\, (k —1) if £k —1 is occupied
plus at rate \,(k + 1) if k£ + 1 is occupied, where

Mo(k) = M (1 — w(k)) + Aaw(k) (3.3.1)

See Figure [3.2]
Based on the notations of Section [3.2] one has

Ak +1) = p(k — 1) = A, (k)

and A\, (k) = p,(k) for all k € Z.
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3.3. Random growth on vertices

J(k+1)
o(k+1) k;+2

FIGURE 3.2: Random environment on vertices

3.3.1 Extinction conditions
Theorem (1) can be rewritten as follows.

Theorem 3.3.1. Assume that w is a fixed environment. The inhomogeneous contact
process (X¢)i=o dies out if for alln € Z,

ZHA (j+1) <ooand21_[)\ (j—1) < 0. (3.3.2)

k=nj=n k<n j=

where for j € Z, \,(j) is defined by (3.3.1)).

Proof. Introduce a modified version (oy);=o of the process (x¢)i=0 where a death at site
x € Z occurs uniquely if a(z — 1) = 0 or a(x + 1) = 0, while births occur at the same
rate than (x;)i>o :

0 — 1 at rate Z ()\1(1 —w(y)) + )\gw(y)>0z(y) (3.3.3)
yily—z=1
1 — 0 at rate 1{ng(z, o) > 0} (3.3.4)
where ng(z,a) = >, 1{a(y) = 0} stands for the number of neighbours of site «
yily—z|=1

that are in state 0. This way, if initially the set {z € Z : op(z) = 0} is a non-empty
interval then for all ¢ > 0, {z € Z : ay(x) = 0} is still an interval of Z until it potentially
disappears in case oy is identically equal to 1 on Z. In the non-empty case, considering
times at which a flip occurs, each end of this interval moves respectively as a birth and
death chain : the rightmost zero evolves according to

k—k+1atratel and k— k—1 at rate A\,(k + 1)
and the leftmost zero evolves according to
k — k+ 1 at rate \,(k —1) and k — k — 1 at rate 1
For m, ¢ € 7Z such that m < 0 < ¢, consider the initial condition

Oifm<ax<ld,
1 otherwise.

ao(z) = {
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Chapter 3. In quenched environment

Since both rightmost and leftmost zeros move as birth-death chains Z, it remains to
study their hitting time of 0. Define (R,),>0 and (L,),>0 two corresponding Markov
chains, whose respective transition matrices Q% and Q" are defined by

B 1 o Ao(k+1)
QR(kj’kJrl)_1+/\1,(/lc+1)’QRUMC 1)_1+/\U(/I<:+1)’
B Aok —1) o 1
Q (kb +1) = 1+ A(k—1) Q" (kk—1) = L+ A\(E—1)

For a € Z, note PR and PL their respective probability measures conditionally in Ry = a
and Ly = a. Denote by (S,),>1 the flipping times and consider (a;,),>1, the skeleton-
Markov chain corresponding to (o4);=0, such that a,, = ag, for all n > 1. Then,

P4 (an(x) = 0) = PRI = o) PL(TE = o),

where T = inf(n > 0: R, = 0) and TY = inf(n > 0: L,, = 0) are the hitting times of
zero for both blrth and death chains. By a known result on birth-death processes (see
§1.4 [69] for instance), and has for any site x € Z,

Ziﬁ%(ﬁl) S TG - 1)

lim P¥(a,(z) = 0) = b= b= mﬂj i

o zn G+ 1) znw—n

k=035=0 k<0 j=

By (B.3.2)), this limit tends to 1 when m goes to —c0 and ¢ goes to 0. With a death rate
equal to 1, for all m < 0 < ¢, there exists almost surely some time ¢ where az(x) = 0,
for all = € Z. Coupling the processes (y)i=o and (x;)¢=o starting from such times £, if
Xo < g then the dynamics of the coupled process (i, @;)i>o is given by the following
transitions :

(3.3.5)

transition rate

> Aw)x(y)
0.0)—{

( y:ly—z|=1
( 2 M(y)(aly) — x(v)
]
_
0.1) { ( 1{no(z,a) > 0}
> Aaly)

y:ly—=z|=1
(1.0) — { Ly iyt

O =

1)

1)

) 1{ng(z,a) > 0}
) 1 — 1{no(z,a) > 0}
) > Mm)x(®)
)

yily—z|=1

1

whose dynamics does not reach the second part of the table if xo < ag. In other words,
the natural order on {0, 1} is preserved and by [10, Proposition 2.7], (a)t=0o is stochas-
tically larger than (x¢)¢>o. Finally one gets,

Jim P2 (i (a) = 0) =
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3.3. Random growth on vertices

for all z € Z. O]

If the family {w(k), k € Z} is random and i.i.d. then the family {\,(k), k € Z} is i.i.d.
as well, one deduces the following criterion from Theorem [3.2.1}(2).

Corollary 3.3.1. The process in random environment (xi)i=o dies out if
E¥ log A,(0) < 0.
that is, if Ao <1 and r > —log \y/log A;.

Proof. By the ergodic theorem,

1 -
lim kjgolog Mo(j) = E¥ log A\, (0).

k—o0

k
Denote by ap = [ A\y(j) the general term of series (3.3.2)). Since E¥ log A, (0) < 0,

7=0
li ! 1 b
k141;1010 E ogap < —0,
for some positive b. That is, klim log a;, < klim (—bk), written log ax ~k,o —bk, and
—00 —00

2 ar = Z exp(log ag) ~ko Z exp(—bk).

k=0 k=0 k=0
Therefore, assumptions are satisfied as soon as E¢ log A, (0) < 0. ]
Applying this result to our dynamics given by ,
E¥log A, (0) = plogAs + (1 —p)logA; <O (3.3.6)

i.e. p>logA1/(log Ay —log Ag). Since p < 1, this implies

By (3.2.3)) and (3.3.1)),

w rlog Ag + log A
E* (log A, (0)) = ng EEaY

one has under (3.3.7) the following extinction criterion from ((3.3.6))
log A\

— : 3.3.8
log Ao ( )

Since we assumed A; > A., the right-hand side is positive and (3.3.8]) is an upper bound
on the transitional phase with respect to A; and Ay for the extinction of the process.
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Chapter 3. In quenched environment

3.3.2 Survival conditions

Applying Theorem one gets

Theorem 3.3.2. Assume

1 AR+ A k—1) +1
ZE’”(AU@H AR (k1) )“O

§=0 k=1 v

Then the process (X¢)i=0 in random environment survives.

The lack of independence in the product of the terms of this series disables us
to obtain explicit conditions for survival of the process. Nevertheless, by defining the
randomness on the edges rather than on the vertices, meaning that the growth rates
emanating from a site k respectively to £+ 1 and to k — 1 are randomly chosen for each
k € 7, we are able to explicit bounds on r with respect to A; and Xs.

3.4 Random growth on oriented edges

Let {(pe(k),Ae(k)),k € Z} be an ergodic, stationary and i.i.d. sequence. For the
random growth on oriented edges, given a site k € Z, a birth from k to k + 1 occurs at
rate A\.(k + 1) and independently of a birth from k to k — 1 occuring at rate p.(k — 1).

See Figure

FI1GURE 3.3: Random environment on oriented edges

Suppose both rates are two independent random variables following the same distri-
bution, defined by

Al + 1) DA (1 = w(k)) + daw(k),

=

pell — 1) LA (1 = wk)) + Aowl(k).

Based on the notations provided in Section one has

A(k) = Ae(k) and p(k) = pe(k).
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3.4.1 Extinction conditions

Theorem permits to obtain the following criteria.

Theorem 3.4.1. The process in random environment dies out if the two following
assertions are satisfied.
0.
E2A(K) < 1,

1 1
1—-E¥ EY 1—E?A(k) ).
i < o (B
thatis,z’f)\2<1cmd7">)\1_1.
1— A

Proof. Computing the expectation of the growth rates, conditions on r for the process
to die out are given by :

(i) can be rewritten using (i3.2.3)
)\1(1—p)+)\2p< 1<:>7"(1—>\2) > )\1—1,

therefore, as A\ — 1 > 0 since \; > \. > 1, one has again

A < 1 (3.4.1)
and the condition \ )
L —
3.4.2
r> T ( )

On the other hand, (i) is
1—X 2—X 2—)
+ 7’( +
A2 A1 A2
The roots of the polynomial are real since its corresponding discriminant A is non-
negative,

11—\

A(r) = 2r? > 0.

—2)+2
1

1

Y

Roots are therefore given by

(M + A2 = 2) (A1 + Ag) & (A1 — A2)/ (A1 + Ae — 2)2 + 4M )\
AM(1—N)

Consequently, the process in random environment survives as soon as r satisfies

(r—04)(r—o0-)>0

A (A — )\2)2<()\1 + =22+ 4)\1)\2>

5y =

1=
Since Ay < 1 and A\; > 1, one has §,0_ = W < 0. Both roots d_ and §, are of
— A2)A1
opposite sign and A(r) > 0 if
r > 54,_, (343)
(because 0_ < 0). Notice condition implies that r > 0. O
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Chapter 3. In quenched environment

3.4.2 Survival conditions

Applying Theorem to our case where the sequence {p(k), \(k), k € Z} is i.i.d.,
we get

Theorem 3.4.2. The process in random environment survives if for all j = 0,

E;J()\e(ler 1)) (Ejﬁ Ae(/;)ez;g)Ppee(fk—_ll))Jr 1>j .

Ay ()\1 V2 1)
Al ()\2 V2 1) '
Proof. The (geometric) series converges as soon as

Ae(0) + pe(0) +1

that is, if)\2<1+\@<)\1 and r <

EY =< <1,
Ae(0)pe(0)
that is, if
2EY + EY !
NE® T AW — 1)
_2/\1+1 A+ A+ 1

Ny + 1
—T(l—p)2+2TP( —p)+ 3 P’

2
smaller than 1 i.e. using if,
Ar) =12 X323 + 1) = X243
+ A [2()\1 A1) - 2)\1)\2] + [)\3(2)\1 1) - A%Ag] <0. (3.4.4)
The associated discriminant is A = 8\2A2(\; — Ay)?. And the roots of A(r) are
(M +v2-1)

"= /\1(/\2+\/§—1> =Y

and
(M- v2-1)
0y = :
(%= v2-1)
which is positive if
A > 1+4/2, (3.4.5)

and Ay < 1+ 4/2, this last condition is cleared by the assumption (3.2.2), as Ay < A. <
1 + +/2. In this case, the process survives if 7 is such that

r< &4 (3.4.6)
O

78



3.5. Numerical bounds on the transitional phase

3.5 Numerical bounds on the transitional phase

3.5.1 Back to the basic contact process

Assume r = 0, then for all z € Z, w(z) = 0 a.s. and A\.(z) = pe(xz) = A\;. We thus
recover the one-dimensional basic contact process with growth rate A;. In this case, our
estimates lead to the following bound for ..

Corollary 3.5.1. For the one-dimensional basic contact process,

A < 1+42.

Proof. According to (3.4.4)) in the proof of Theorem [3.4.2] the process survives if \3 —
2A1 — 1 > 0, that is, if

)\1>1+\/§.

]

Recall on Z, A. € [1.539,1.942]. This bound is quite rough but its advantage is that
we derived it simply. Consequently, one first deduces a bound on the critical value \. of
the one-dimensional basic contact process : Ao < 1 + /2 ~ 2.41.

3.5.2 The phase transition

From results obtained in the previous section, one gets the following numerical
bounds for a phase transition. By choosing parameters A\; and A, satisfying (3.4.1)),
condition (3.4.2]) from Theorem gives us lower bounds on the phase transition.

Moreover, by choosing parameters Ay and \; satisfying (3.4.5)), condition ([3.4.6) from
Theorem gives us upper bounds.

A1 Ao | transitional phase M A9 | transitional phase
1000 | 0.2 [0.07,1249] 1000 | 0.8 [0.49,4995)
100 | 0.2 [0.07,124] 100 | 0.8 [0.48, 495)
10 | 0.2 [0.044,11.25] 10 0.8 [0.36,45]
2 102 [0,1.25] 2 108 (0,5]

A A9 | transitional phase

1000 | 1.4 [1.37,0)

100 | 1.4 [1.34, 00)

10 |14 [1.04, 0)

2 14 Ry

Remark that the necessary condition A\, < 1 disables us to conclude to an upper
bound for values of Ay. In a similar way, condition ({3.4.5)) of Theorem imposes \;
to be larger than 1+ /2, disabling us to find an explicit lower bound on the transitional

phase in such cases.

79



Chapter 3. In quenched environment

80



Hydrodynamic limit on the
d-dimensional torus

Contents
41 Tntroductionl. . . . . . . . . . . o oo 82
4.2 Notations and Results] . . . . .. ... .. ... 000, 82
421 Themodell .. ... ... ... ... . 82
[4.2.2  Hydrodynamics for the reaction-diffusion process| . . . . . . . 85
[4.3 The hydrodynamic limit| . . . . . ... ... ... ..... 86
[4.3.1 Tightness| . . . . . . .. . ... . . 87
[4.3.2  Replacement lemmal . . . . ... ... ... 89
[4.3.3 Identification of limit points|. . . . . . . . ... ... ... .. 93
[4.3.4  Uniqueness of weak solutions| . . . . .. ... ... ...... 95
[4.4  Proof of the replacement lemmal . .. .. ... ... ... 96
4.4.1  One block estimatel . . . . . ... ... ... ... ....... 97
[4.4.2  Equivalence of ensembles] . . . . . ... ..o 99
443 Two blocks estimatel . . . . .. ... ..o 100
[4.A  Construction of an auxiliary process| . . . . . . . . .. .. 102
[4.B  Properties of measures| . . . . . . . ... ... 0000 107
[4.C Quadratic variations computations| . . . . . . . ... ... 110
[4.D Topology of the Skorohod space]. . . . . . . .. ... ... 113

4.1 Introduction

In this chapter, one derives the hydrodynamic limit on the d-dimensional torus of
the asymmetric multitype contact process defined in Chapter [I}

The work here is is based on the entropy method due to M. Z. Guo, G. C. Papani-
colaou and S. R. S. Varadhan [37] to prove the hydrodynamic behaviour of a large class
of interacting particle systems through the investigation of the time-evolution of the en-
tropy and arguments by C. Kipnis, S. Olla and S.R.S Varadhan [43], using martingales

techniques.
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Chapter 4. Hydrodynamic limit on the torus

This chapter is a preliminary to the next one, it introduces many involved quantities
and we detail here classical computations that appear in both chapters. It is organized
as follows. We begin by describing the model and the main result in Section [4.2] which is
subsequently proved in Section [4.3], while classical proofs concerning the block estimates
are proved in Section

In the Appendix [4.A] we deal with a construction of an auxiliary process, a trick in-
troduced by M. Mourragui [63], in case of unbounded rates. Whereafter, we expose some
lengthy computations surrounding the reference measure (Appendix and reminders
on the Skorohod topology (Appendix [4.D)).

4.2 Notations and Results

Let T4 = (Z/NZ)% be the d—dimensional discrete microscopic torus {0, ..., N — 1}4
and T¢ = (R/Z)? be the corresponding macroscopic torus [0, 1)<.

4.2.1 The model
Define Ey = {0,1,2, 3}T3iv, The model we investigate is a reaction-diffusion process
(m¢)¢=0 given by the generator
Sy = Snp = NLR + L5, @)

where N2LE stands for the generator of a rapid-stirring process, defined for any function
f on Ey by

N?LRf(n) = N> ) (f(n*”y)—f(n)>, (4.2.2)
m,ye’]l“]i\,
|z—y[=1
here, ||z| = max |z;| denotes the max norm for z € Z% and n € Ey, n%Y is the
1<j<d 7

configuration obtained from 7 by exchanging the occupation variables n(z) and n(y) of
two neighbouring sites z,y € T4, that is,

n(x) if z =y,
n"(z) = § n(y) if z =z,
n(z) if z # x,y,

and L is the generator of the asymmetric CP-DRE defined in Chapter 2, which is given
for any cylinder function f on En by

3

LEFO) = 3 elwm i) (F0n) — () (4.2.3)

i=0
with € E, 1 is the configuration obtained from 7 by flipping the state of site = into
the state ¢ € {0, 1,2, 3}, that is,

i(2) 1 if 2 = x,
12\%) = n(z) if z # .
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4.2. Notations and Results

while the rate function c is defined by
c(x,n,0) = Lif n(x) € {1,2},

Blen) =M 2 m)+r X ny)ifn(z) =0,

. yeT4 yeTS
C(l‘7 7, 1) - . Hy—xHN=1 Hy—OC”N=1
1if n(z) =3, (4.2.4)
[ rifn(z) =0,
olz,m,2) = { 1if n(z) = 3,

c(x,n,3)= rifn(z) =1

Since the conserved quantities for the generator £X concern the total number of particles
of each type i € {1,2,3}, one defines the product measure Pg on Ey by

7 = [ 5o (Z [t () =z’}]> (42.5)

zeTd, ~¥ i=0

3 ~
where Z; = > exp(1);) is the normalization constant, for ¢ = (¢, ¥1, 19, 1) such that
i=0
Yo, Y1, 19,13 € R are parameters. Because of a high use of indicator functions, we shall

simplify the notation by
ni(x) = Un(x) = i},

for v € T4 and i = 1,2, 3.

As usual, we parametrize the measure by the conserved quantities (see for instance R.
Marra and M. Mourragui [61]). By a change of variables (see Appendix [4.B]for details),
given parameters pi, p2, p3 such that p; = 0 and p; + pa + p3 < 1, one defines the product

measure for p = (p1, p2, p3) by

yév(-) = yg(pl’p%m)(-) and pg=1—p; — p2 — p3. (4.2.6)
where W is a bijection from R? to (0,1)? given by (4.B.3). The measures {v', 5 € [0, 1]*}
are invariant [see Lemma [4.B.1] with respect to the rapid-stirring process with generator
N2LB and they are parametrized by the densities :

{ [m;(fr) =
(n ) = 0)

I 1‘»)

(() )—Pk7 1<k<3,
1-— — — pP3.

For any function ¢ on Ey, denote by 5(;7) the expectation of ¢ with respect to I/l];\] :

(p) = E) [6(n)]. (4.2.7)
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Chapter 4. Hydrodynamic limit on the torus

To do changes of variables, it will be more convenient to write the measures as follows :

vy () = eXp{Zg] > @jm(fﬂ)} (4.2.8)

1= d
J Ome'ﬂ‘N

with 0oj = logp, (4.2.9)

Since conserved quantities are densities of three types of particles, we need to work
with three dimensional vectors whose ¢-th component is associated to the type i. These
vectors will be distinguished with a hat. For any configuration 7, define the empirical
measure of type ¢ on Fy by

() = i > milx)ds, (4.2.10)

d
€Ty

where 5%(dy) stands for the Dirac measure at #/N. And note for (1s)seo,77;
A (n) == (" w2 m ) (), (4.2.11)

where 7" (n) = 7V(n,). Let C™™([0,T] x T R) be the set of functions n times conti-
nuously differentiable in time and m times continuously differentiable in space. For any
function G; € C2([0,T] x T4 R), denote the integral of G;, with respect to m, " by

NG = ;d S G/ Nymi(a). (4.2.12)

d
zeT§,

For any function G, = (G1y, Gay, Gs,) € CV2([0,T] x T% R3), define the integral of G,
with respect to 7V by

3
(7, Gy) = Z<7TiN’Za Git)-
i=1

4.2.2 Hydrodynamics for the reaction-diffusion process

Let M! be the subset of M of all positive measures absolutely continuous with
respect to the Lebesgue measure with positive density bounded by 1 :

ML ={reM:n(du) = plu)du and 0<p(u)<1 ae}.

Fix T > 0. Let D([0,T], (ML)?) be the set of right-continuous with left limits
trajectories with values in (M%)3, endowed with the Skorohod topology and equipped
with its Borel o— algebra.

For any probability measure pu on Fy, denote by IP’}JYN the probability measure on
D([0,T], Ex) of the process (1;)se[o,r] With generator £y and by Eﬁ[N the corresponding

expectation. Consider Q) = ]P’LVN o (7N)~! the law of the process (7" (n:)) efo.1]
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4.2. Notations and Results

Fix T" > 0. A sequence of probability measures is associated to a density profile
3 = (71,7,73) : T — [0, 1]3 if for any § > 0 and any function G € C*(T¢,R?),

Jim @ {[Gam), G = GC),E(D| > a} =0, (4:2.13)

Denote by p = (p1,pa2, p3) : [0,T] x T — [0,1]* a typical macroscopic trajectory.
We shall show that the macroscopic time-evolution of empirical density 7V is given by
a reaction-diffusion system

poo= AD+ R T¢ x (0,T
- &G m o TxO) o
po(-) = () in T,
where R = (R, Mo, M3) : [0, 1] — R3 is defined by
Ri(p1, p2,p3) = 2d(Mip1 + Aap3)po + p3 — pr(r + 1),
Ro(p1, p2,p3) = Tpo+p3—pa, (4.2.15)

%3(p1>p27/03> = rp1—2p3,

with pg = 1 — py — p2 — ps. A weak solution p(-,-) : [0, 7] x T? — R? of (4.2.14)) satisfies

the following assertions :
(S1) For any i€ {1,2,3}, p; € L* ([0, T] x T?).

(S2) For any function G(t,u) = Gy(u) = (Gy4(u), Gas(u), Gss(u)) in CH2([0,T] x
T4, R?), one has

<:/0\T7 @T> - <f/)\07 éo>

- [(asuie e 8 + [ asG.00. G210

0 0

here for G, H € CY2([0, T] x T%: R3), (G(-), H(-)) stands for the usual inner product
~ o~ 3
of L*(T%) : (G, H) = Y, J Gi(u)H;(u)du.
i=1 Jpa

The rest of this chapter is devoted to prove the following result.

Theorem 4.2.1. Let 7 : T¢ — [0,1]2 be an initial continuous profile and (™ )n=1 be a
sequence of probability measures with p~ a probability measure on Ey for each N asso-
ciated to 4. The sequence of random measures (T )ns1 converges weakly in probability
as N goes to infinity to the absolutely continuous measure 7,(du) = p(t,u)du whose
density p(t,u) = (p1, p2, p2)(t,u) is the unique weak solution of the reaction-diffusion
system . That is, for any t € [0,T], any § > 0 and any function Ge C(T4, R?)

tim B {[ G (). GO)) = i), G| > 8} = 0.

Noow *
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Chapter 4. Hydrodynamic limit on the torus

4.3 The hydrodynamic limit

For any function G = (G, Ga, G3) € C¥2([0, T] x T4 R?), by Dynkin’s formula
; ¢
MtN’i = <7T£N7i, Gi,t> - <7T[]]V’i, Gi,0> - J£N<7T£V’i, Gi75>d8 - J <7Tév’i, 85Gi75>ds (431)
0
0

is a QQZN —martingale with respect to the o—algebra F; = o(ns, s <1t).

To derive the hydrodynamic behaviour of the reaction-diffusion process, one needs
to prove that the above martingale vanishes as N goes to infinity. To this purpose, apply
the generator £y to the function n — n;(z) so that the integral part of MtN " is depicted
as follows.

; N ¥
N2LR(, Gioy = 55 2 D) Guala/N) (mialw + €5) + 1l = e5) = 2mia ()

= {m" ANGig()),
d
where AyG;(z/N) = N? Z (Git((x +€j)/N) + Git((x — €j)/N) — 2G;4(z/N)) is the

discrete laplacian in dimension d and (ey, ..., eq) is the canonical basis of R?. And com-
puting £&n;(x) for each i gives

Lim(z) = Z <)\1 2 m(y) + Az 2 ?73(9)> no(@) + n3(x) = (r + m(),

zeTy, yilly—z|=1 yilly—z|=1
(4.3.2)
LEna(x) = rmp(x) + n3(x) — n2(), (4.3.3)
L¥ns(x) = rmu(x) — 2n3(x), (4.3.4)

so that we deduce

ﬁﬁ@i\[’laGlﬁ = ]\1” Z Gii(z/N) <>\1 Z M,e(y) + Ao Z 7737t(y)> No,t()

zeT%, y:ly—z|=1 yily—z|=1
+ <7T7fV737 Gl,t> - (T + 1)<7TI£V717 G17t>7
£ﬁ<ﬂ-iN725 GQ,t> = T<7T£V’07 GQ,t> + <7T1£V737 GQ,t> - <7T1£V727 GQ,t>

LRGN Gy = r(mt Gay) — 2P Gs ). (4.3.5)

Thus, to close the equations we need to replace the local function of 1 which is
the term in L&n(z) by a functional of the empirical densities given by 7 defined
in (4.2.11f). This is the purpose of the replacement lemma and the blocks estimates,

exposed in Sections and [4.4]
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4.3. The hydrodynamic limit

Next, we need to characterize all the limit points of the sequence (nyj\,) N>1 : their
existence comes from by the tightness of the sequence of measures, it is proved in Section
[4.3.1] then, the identification and uniqueness of the limit points as weak solutions of
(4.2.14)) conclude the proof in Sections and [1.3.4]

4.3.1 Tightness

Existence of limit points is guaranteed by the following lemma.

Lemma 4.3.1 (Tightness). The sequence (Q)))n=1 s tight and all its limit points Q%
satisfy

Q: (7? L0 < Fy(u) < 1, 7(u) = F(u)du, te [o,T]) ~1. (4.3.6)

(R, G, t € [0,T]} for all functions G € C%(T?; R3). By Prohorov’s theorem to
get the tightness of {(7;, G),t € [0,T]} in D([0,T],R?) with the uniform topology, one
needs to check the two following assertions :

Proof. By Proposition [£.D.4] it is enough to show tightness for the real-valued process
i

(i) boundedness :

lim lim QM < sup |7y, GY| = m) =0. (4.3.7)
te[0,T7]

m—0 N—o0
(ii) equicontinuity :

N
i T Q3

sup [, G — (Foy G| > e> —0, forany e > 0. (4.3.8)

[t—s|<

The hmlt is immediate since for each t € [0,T] and 1 < 7 < 3, the total mass
of 7V is bounded by 1. To prove (| , it is enough to show for the martingale M,

defined in ) that

lim lim QM < sup |M"" — MM > e) =0, foranye>0 (4.3.9)
6—0 N—w [t—s|<6
and
t .
lim lim QN ( sup £N<W7{V’Z,Gi>dr‘ > e) =0, for any € > 0. (4.3.10)
6—0 N—>oo 0<t—s<4 s

To prove ([£.3.9), one shows the quadratic variation (MN*), of the martingale M,
converges to zero as N goes to c0. Note that since GG is not time-dependent, the time
derivative of G is null in the expression . By the Doob-Meyer decomposition,

t
<Mwhszm@wﬂ&—%ﬁ%@wmﬂ%@ﬁw (43.11)
0
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Chapter 4. Hydrodynamic limit on the torus

We postpone the detailed computations to Appendix [4.C] By Lemma [£.C.I} one has

N? f t{cﬁ@yvi,cy 2N GOLD N, G>}ds C(G)EN

0

t
f (LRGN, G2 = 2 GOLEGRY, Gy hds < COu, Do, |G BN

0
where C(\1, g, 1) stands for the supremum of the bounded rates since all involved rates
in factor in (4.C.6) are positive. Therefore, combining both estimates,

(C(\1, Ao, )| Gill3 + C(G))¢t
Nd ’

which converges to zero as N — o0, one deduces (4.3.9) by using Doob’s martingale
inequality.
To prove (4.3.10)), on one hand,

[NZLR(, Gl = [ AnGy| < [AG]L,

(MY, < (4.3.12)

where AG stands for the Laplace operator AG = Z 82 G when 0, is the first derivative
7j=1

in the j-th direction. On the other hand, since all rates are bounded, by -,
‘L G>‘ /\1,/\2,7“)HGZ‘H1.

To show that 7; is absolutely continuous, remark that for any function GecC (T4, R3),

sup [, G| < [Gor.
te[0,T]

Hence, since 7. — sup (7, @>] is continuous with respect to the Skorohod topology,
te[0,T7]
any limit point satisfies by Portmanteau theorem,

sup (7, G)l < |G
te[0,T7]

that is, any limit point is supported on trajectories such that 7; is absolutely continuous
with respect to the Lebesgue measure for all ¢ € [0, T]. O

4.3.2 Replacement lemma

For any positive integer k and z € T4, denote by n¥(¢,z) the empirical density of
type—t particles given by

nf(t,w)=(1 > 1), (4.3.13)

d
2k + 1) e

ly—=[<k
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4.3. The hydrodynamic limit

and define the vector (7F)(z) = (nf,n5,n5)(t,z). We now deal with replacing local
functions of 1 by functions of the empirical density within a macroscopic box, in other
words, for any cylinder function ¢ and the function ¢(-) defined by , one shows
for any continuous function G and € > 0 the following replacement lemma,

Proposition 4.3.1. For all a > 0,

N _
Ty T los P 7 | 3 vt = a | =

:EETd

LS el - 3@H0)|.

where Vi (n) == |———+
2k + )¢ =

Proof. For any v > 0, by Markov’s inequality,

T
PN f Z 7.Ven(n)dt = a | < exp(—yN%a)-EN | exp VJ Z TaVen () dt

xer 0 xe’ﬂ'jl\,
Introduce in L?(v}’) the operator

AN, (SN-F SN +’7 Z ToVen (4314)

xe']l‘d

where (£y)* is the adjoint of £y in L*(v)).
Fix T' > 0, by Feynman-Kac formula (see [42, Appendix 1.7]), for all ¢ € [0,T1], the
unique solution of the differential equation

oru(t,n) = ;(’QN + (&) )ult,n) + 7 qud T Vevult,n) (4.3.15)
U(O,U) =1 N

T
is given by u(t,n) = E]VVN u(0,n) exp Jy Z T Ven (ns)ds

0 (EET‘}V
By the spectral decomposition of the auto-adjoint operator Ay,

Aen (7) = sup (Anu, uy (4.3.16)

Jull=1

is the largest eigenvalue of the operator Ay ., so that

EV J Z T:v eN 775 < eXp(T/\eN</y))

0 IE']Td
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Chapter 4. Hydrodynamic limit on the torus

1
hence N lOg]PN Nd J g}d Ta: eN ns)d Z 0| x WT)\EN(’Y) —a
It thus remains to show for all v > 0,
— =— Av(7)
11_{% ]\lrlgéo NI = 0, (4.3.17)
in which case one would have for all v > 0
lim lim ilogIP’N Z T, a| < —vya
e—0 N—oo N4 V5 oVen 775 = s Y

and conclusion will follow by letting v go to infinity. By Rayleigh-Ritz variational for-
mula,

d() = s J S Ve ) (Y2 () + (S FY, )

fNE]L2

a:e?l‘d
HfNHL2 1
= sup (f ZTJ; n(n ()dVA()+N2<£f Y LR fN>)
fNer2@lhy zeT?,
1FN 2 =1

Estimate the reaction part as follows.

L= 3T j el ) P ) (£ 002) — £ () ) v ()

rer 1=0
f el ) £ ) () () j cla,n, i) (n) v ()
xETd 1=0 me']l‘d =0
2 1
xg;i ;}f x,m,1) N (n) +ZfN( )dw x; ;)J x,m,1) d (17)

1
where we used the inequality AB < 2—142 + gBQ for A,B,a > 0 with a = 2. Use

a

formulas of changes of variables given by Lemma to bound the first sum by the
L*-norm of fV and the fact that f" is a density with respect to v3 to bound the second
integral :

eh g gy < SO her) ZZZJme s () (n)

xeTq, i=0j#1
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4.3. The hydrodynamic limit

COtr) 52 35 [P

xeTq, i=0j#1
C()‘la)\27 )
4

< C(p) N

Hence,

1 )2( 2—d N ¢N
m&N(V) = fNESgP (Ndf w; ToVen ( )d > () + N*ULR Y, f >> + Co
1Nl 2= -

for some positive constant Cy = C'(p)C(A1, Ag, ) /4. By reversibility of the measure with
respect to the generator £§, DY(|fV|) < DR(fY) and one can take the supremum
over functions f in L?(v}') such that || f| L2y = 1 to the supremum over non-negative

functions f in L*(v2') such that [v/f]|12(, N = 1. Recall v} is reversible with respect to
the generator L% but not L¥. Going back to the upper bound of Ay (7),

v s ([0 s o)« VRV

NZO N L2
f Je xe']l‘d

H\/fNHLz—l

< sup (J 77 Z . Ven N (n )dz/A( ) — NQdDJIV)(fN)> + Cy,

N>o,fNer2wN
f ,fVe (Vp ) ZGTd

IWiN|a=1

where

= Y [ (VP - V) o)

xyETd
lz—yl=1

is the Dirichlet form associated to the generator of stirring. Since ¢ is bounded, there
exists some positive constant C' such that

D7 Vin(n) < CN,

;Be’]I‘ﬁl\,
one can thus restrict the supremum over functions f% satisfying
Dy (fY) < CN?

To get (4.3.17)), it remains to show for all positive C,

lim lim sup f > V()N (m)dv) (n) = 0, (4.3.18)

e—>0 N—w fNeAy e’]I‘d
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Chapter 4. Hydrodynamic limit on the torus

where
Ay = { ¥ e L)) s Y20, VIV = 1,DR(FY) < ONT2 ]

This limit will follow from the blocks estimates. On one hand, the one block estimate
ensures the average of local functions in some large microscopic boxes can be replaced by
their mean with respect to the grand-canonical measure parametrized by the particles
density in these boxes. While the two blocks estimate ensures the particles density over
large microscopic boxes and over small macroscopic boxes is very close. Let us first state
the block estimates, we postpone their proofs to the next section.

Lemma 4.3.2 (One block estimate).

lim lim sup
k=0 N=0 (N D (V) <O N2
1 1 ok N N
¥ ) 5 e 2 (0 = S| 7 v ) = 0. (4:3.19)
zeT§, lyll<k

Lemma 4.3.3 (Two blocks estimate). Forie {0,1,2,3},

lim lim lim sup sup
k—00 e—>0 N—oo |h|<eN fN:Dg(fN)SCNd’2

j\lfdf D0k + h) = N (@) N (m)dv) (n) = 0. (4.3.20)

d
xeTN

Let us prove that the limit (4.3.18]) is a consequence of these two previous lemmas.

i | X s ma o)
1 1 T ~eN N N
-] 2 ey 0, e~ S e
1 1 1 N N
S N L;N 2N+ 1)d ygﬁN (Tmn) T2kt 1) Z%gf“")) | = v (n)
(4.3.21)
b | 2l 2 o 2 o - 8@ ) || man o)
NEJ o QN+ 17 \ @R+ 17 0, ’
(4.3.22)
) X e, B, 00 -0 . ss)
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4.3. The hydrodynamic limit

The first expression (4.3.21)) of the right-hand side can be decomposed into boxes of
size (2k + 1) so that,

J

(2€N1+1)d Z (Tygb(”)_(%il)d Z Tz¢(77)>‘fN(77)dVév(77)

lyll<eN lz—yl<k

_ f Myév (qub(n) 1) +1)d Z<k Tyt20(n )‘fN(n)dyg(n)
:J (2/<;+ d|2<k( N1 1) yéNTyczﬁ(n)
T b, e >> P vy )
< B Dol

which tends to zero when N goes to infinity. The second and third expressions (4.3.22))

and (4.3.23]) tend to zero as well as a consequence of the blocks estimates by translation
invariance of v}, O

4.3.3 Identification of limit points

Now we show that any limit point of the sequence (ij )ns1 is concentrated on
trajectories that are weak solutions of the reaction-diffusion system m For this,
we come back to the martingale M, defined in ([{:3.1)), which satisfies (£.3.9).

We focus on the case i = 1 since it is the only one for which we need to use the
replacement lemma. Define

t t
BYEN) = (G — (rd L, Gy — f (TN, 0,Gyds — f (TN ANGh s
0 0

t

t
— J<W§’3, G1’3>d8 + J(T + 1)<7Tév’1, G175>d8
0

0
t

J Z G1.o(x/N)2dM (N 1o (- = 2/ N)YaN0 1 (- — z/N))ds

— f D Gra(w/N)2dXo(m? (- — 2/ N0, 1e(- — 2/ N) yds.

0 CEETd
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Chapter 4. Hydrodynamic limit on the torus

For any a > 0, by Doob’s inequality,

0<t<T

iy Tim P2 ( sup (1] > @) ~ 0

To close the equation, replace the local function L&, (r) appearing in J\LN’1 by a function

of the empirical density thanks to the Replacement lemma [4.3.1} Here ¢ is a local
function given by

y:lly—zl|=1 y:lly—zl|=1

Tx¢(n)=<A1 Y my) Fre ) nz(y)>no(x)- (4.3.24)

The occupation variables n;(z) are of mean 7Y under the measure U%YN. Let . =
1

207 1{[—¢, €]?} be the approximation of the identity and remark that

eN (QGN)d N,
ni(z) = m@r ste(- —x/N)).

(4.3.25)
So that, one has by Proposition and expression (4.3.25) :

lim lim QNN< sup
e—>0 N—oo K o<t<T

Bg(ﬁgv)‘ >a> ~0.

If QF is a limit point of the sequence (QQIN)N%’ the mapping © — Bl(7r) is
continuous in Skorohod topology, taking the limit as N goes to infinity,

7

T

T T
(b G — (b, Gu) — f@;, 0.Gh ds — f@;, AGL)ds
0 0

T

T
- f (73, Gy ) + J (r+1) <7l Gyo)ds — f f { Gra(2dn, (o) (70 1) s du
'H‘d
0 0 0

>a>=0.

In virtue of Lemma {4.3.1} all limit points are absolutely continuous with respect to the

Lebesgue measure on T?, that is, if T, = p(s, u)du, then for all i € {0,1,2,3}, (7} *¢c)(u)
converges in L?(T%) to p;(t,u) as € goes to 0. Hence,

_ JTL{ G ()20 (7 1) (72 1) Y

@i

T T
(b G — (b Gu) — J@;, 0.Gh ds — f@;, AGLds
0 0
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4.3. The hydrodynamic limit

J dsﬁrdducﬁl ), Gry(u >‘>a>—0

For ¢« = 2,3, the martingales MtN’i do not provide local functions of n so that one
has immediately the following limits.

@i

<waemw»—«%xzﬂ»—be@x%Aaws—f@@AGm«»@

_ LT ds qud du <%i(%§),givs(u)>‘ - a> _0

Finally, any limit point is concentrated on trajectories 7y(du) = p(t, u)du which are

weak solutions of (4.2.14)).

4.3.4 Uniqueness of weak solutions

Following the uniqueness of weak solutions of non-linear parabolic equations done in
[42, Appendix 2.4], one has

Proposition 4.3.2. There exists a unique weak solution to the reaction-diffusion system

(4.2.14) satisfying (S1) and (S2).
Proof. For each z € Z%, introduce 1, : T* — C defined by

W, (u) = exp ((27TZ)(ZU)) (4.3.26)

where (z.u) denotes the usual inner product in R%. The set {1, : z € Z} forms an
orthonormal basis of L?(T%) so that any function f € L*(T%) can be rewritten as : f =
Z (., fb., with (., .) standing for the inner product of L?(T¢). For any f, g € L*(T%),

zeZ4
one has

L@ g(u)du = Y (e, £, 9).

zeZd

Consider now two such solutions of (#.2.14) p™" and p® starting from an initial
profile 3. Note 7 the difference p(V) — 52 and introduce Ry, : [0,T] — R the function

Riyt) = Y M oy malt, VY e, ).

2 (v al ) (M + a2
Since pV), j = 1,2, satisfies (S1), R}, () converges as M — oo and as a — 0 to

= S it ) miE ).

2€Z4
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Chapter 4. Hydrodynamic limit on the torus

which is equal to |m;(t,-)|3.0a by (4.3:26). By an integration by parts, note that
(s, 0, ) = —2miz;(1ps, [), for any function f e C'(T?). Now, differentiate R}, (1),

AR =2 3 (g el DX )
=85 3 (e e DX e )
) (HG‘Z,Q)]YMMM St ) )~ R
<=8 X s ae e D)

M m —_ R (5P
s A eI T ey P milt D () = R(5))

where we used that |[z|*> = 1 for all z # 0. Then, integrating along the time and taking
the limit as M — o0 and a — 0,

t t
Ri(t) < R(0) — 87?2J Ri(s)ds +J K (s, ), Ra(6D) — R (7)) ds.
0 0
Then, notice that R is Lipschitz,

3
9:(p1) = Ri(P?)] < C(Ar, Aay1) Y |mal, for all i = 1,2,3.

i=1

Therefore,

3
3t My < 210+ 3( =55+ COv ) 3 [ ) s
i=1 i=1

and one concludes the proof by Gronwall’s inequality. ]

4.4 Proof of the replacement lemma

One follows the well-reviewed proofs provided by C. Kipnis and C. Landim [42, Chap.
5], originally introduced by [37].
4.4.1 One block estimate

Proof of Lemma[4.5.9. Note that Vi(n) depends only on configurations n through the
occupation variables {n(z),|z| < k}. Therefore, one can project any probability density
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4.4. Proof of the replacement lemma

1

Nd :EE’]I“]i\,

N on a space of configurations independent of N. Let fN(n)
translation invariance of the measure l/év ,

]éd f 2 Vi) f(m)dvy (n) = f Vi(n) N (m)dv) ()

d
€Ty,

For Ay, := {z € T%, |z| < k}, define E, := F*. Now, denote by v4 the product
measure I/év restricted to Ej and for any probability density fV, denote by fi the
conditional expectation of f with respect to the o—algebra o(n(x),z € Ay), i.e. for all
ne€ By

fuln) = tn) f Lo (@) = ) @ € A £ (Yo (o)

it is thus enough to show :

i Tim - j Vi) Fa(m)dv(n) = 0

k—00 N—0 fN:ngDﬁ(fN)gcjvd,g

By convexity of the Dirichlet forms, if DY denotes the Dirichlet form, associated to
the stirring process, defined over the set of densities f; : Ay — R, then

DP(f,) < CR)N~'DR(F™) < C(k)N=*DR(fV), (4.4.1)

so that DP(fi.) < C'(k)N 2. Therefore, it remains to show

lim lim sup JVk(n)fk(n)dVS () =0

k=00 N2 . pD(f,)<C" (k) N2

By compactness of the level set of DY and lower semi-continuity of Dirichlet forms,

s Rk < s [Vl flndr.

N=% 5.DD(f,)<C" (k)N -2 DP(f;)=0

Now, it is about to show

T s [V - o.

k=0 fr:DP (fr)=0

A probability density fi, whose associated Dirichlet form is null, is constant over each
hyperplane with a fixed number of type-i particles for all i. The set of measures { fkul’)f :
DP(f;) = 0} is convex, we can restrict ourselves to its extremal elements which are
uniform over the configurations with a fixed number of particles of each type i (i =

1,2,3). For any vector { = (1,05, 05) € ([0,(2k + 1)4] A N%)® such that ¢; + £y +
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03 = (2k + 1) — £y, denote by mi% the measure yfg conditioned on the hyperplane
{n: (2 + 1)17"(0) = 1},

mE() = VA (- 12k + 1)%94(0) = D) (142)

Note this measure does not depend on p. It remains to show

A~

o [ [y 3w -3l =0 @4y
lyl<k

Now fix a positive integer p increasing to infinity after k£ and decompose the set Ay

in cubes of length (2p + 1). Consider the set A = {(2p + 1)z,z € Z*} () Ay_, and list
its elements by A = {z1,...,x,} such that |z,| < ||x]H for ¢ < j. Let By = x4 + A if

1 < ¢ < q. Note that B,(\B; = & if £ # j and UBg c Ay. Define By = Ak\UBg

so that |By| < Cpk?~! by construction, for some p081t1ve constant C. This Way, the
integral (4.4.3)) is bounded by
i [l ()
— ol ——— dm
\Ak| \Be *l) = ¢ (2k +1

yeBy

But |By| < Cpk?! and occupation variables n;(x) have mean /;/(2k + 1)¢ under mz,

;//:k|!ﬂ|/\| 5, o) - 5((2]~c+1 )‘dm )+ Op/k)

Moreover, the distribution of the occupation variables {(£,w)(y),y € By} do not depend
on /¢, this sum is hence equal to

/\

J‘ (2p+ 1 Ty®(n) — 5(W)ldm + O(p/k)

|| H<

By the equivalence of ensembles (see next Lemma [4.4.1]), letting k£ go to infinity and
0/(2k 4+ 1)? tend to p, this integral converges to

f PRy zp Ty 2 o) - 3(7) |dvs(n) (4.4.4)
IIyH<

As p goes to infinity, since v; is product, by the law of large numbers this integral
converges uniformly to 0 on every compact subset of R, . ]
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4.4. Proof of the replacement lemma

4.4.2 Equivalence of ensembles

To prove the closeness between the grand-canonical and the canonical measures, we
derive the so-called equivalence of ensembles.

!

Lemma 4.4.1 (Equivalence of ensembles). For every bounded function f : {0, 1,2, 3}Td
R,

. k k —
éfgisg})hnf(f>"lﬁvwk+nd<f)‘"O

Proof of the equivalence of ensembles. For any m € N, let (xy,...,2,,) € (Ax)™ and let
m; = Y, ni(x;). Denote by I; the set of sites that are in state ¢ € {1,2,3}, ie. [; =
j=1

{z;,7=1,....,m:n;(z;) =1}, so that |I;| = m,.
Consider £y = (2k + 1)? — £, — €y — £3 and mg = m — m; — my — mg. First, compute

1/%c (nl(a:j) =lz;ely; n(z;) =Llaz;ely; n3(x;) =1,x5€ I3 ;

Z m(x) =Ll —my ; Z n2(x) = Ly —my ; Z ns(if):fg—mg)
WU

3 3

I; AN U L AN U L

i=1 i=1 i=1
((2k + 1)? —m)!

= o= (s — ) — )il — gy (20)(01)" (0 (20

by the expression of the measure v} given in (.2.8) and

(2k + 1)¢

= m(@o)go(m)él(92)&(@3)&”

Consequently, the canonical measure is given by
m%(m(%) = ]_,[Ej € ]1 ; 7]2([L‘j) = 1,1']‘ € _[2 ; 773<.l’j) = 1,ZL'j € ]3)

(2k+ 1)1 =m)! 4 0! 0, A
(2]{3 + ].)d' (60 — mo)' (61 — ml)' (fg — mg)' (Eg — mg)'

while the grand-canonical measure is defined by

Vianenye (M(@5) = 1wy € Iy ma(y) = Loaj € I 5 () = 1,25 € 1)

- ((%ﬁ 1>d)m0 <<2;fi 1)d)ml (miny ((%in)m

99



Chapter 4. Hydrodynamic limit on the torus

E _ |,k k
Recall that Tz = ’mg = Y 2k41)d

)

Tf\(’fh(l']) = ].,.l’j € Il ; 772($j) = 1,1']‘ S .[2 ; 7]3(.73]') = ].,]Ij € Ig)

3 3
— _=v = -1
d\m (2k+1)4 (2k+1)4—1  (2k+1)%—m+1
((2k+ 1) ) (2k+1)4  (2k+1)d " (2k+1)d

O ﬁ (1= 1) (1 =)
((2k + 1)) (1 1 d)(l . (mi—l)

2k+1)d

Taking now the maximum over £ e 0, .., (2k + 1)%)3,
mgx'f%(m(xj) =lzjely; m(zr;) =1lz;ely; n3(xj) = 1,25 € 13)

1
< —1

1 m—1
(1 - (2k+1)d>"‘(1 B (2k+1)d)

which tends to zero as k — o0. O]

4.4.3 Two blocks estimate

Proof of Lemma[{.3.3 Begin by replacing the average over a small macroscopic box of
size (2N + 1)? by the average over large microscopic boxes of size (2k + 1)¢, that is, for
N large enough, one has

1 (h) = ™ (0)

1 | 1
< ‘(2/{ +1)d 2, mly) - (2eN + 1) )3 (2k + 1) 2 ”"(z)‘

ly=hl<k lyll<eN lz—vl<k

+)(26N1+ 1)d 2 (Zkil)d 2 m(Z)_(QENl-I- 1yd 2 "i(y)‘

ly|<eN lz—yll<k ly[<eN
(2k +1)?
< oot + Y
2k<HhH226N i () =15 (0) 2¢eN +1

It is thus enough to show :

lim lim lim sup sup
k—00 e>0 N—o0 fN:Dﬁ(fN)<CND72 2k+1<||h|<2eN

il 2

d
€Ty

0t (0) =15 (R)| f¥ (m)dv () = 0 (4.4.5)
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4.4. Proof of the replacement lemma

By translation invariance of the measure, one can rewrite the integral as

J

where nf(0) and 7n¥(h) depend only on configurations (n) over the set of occupation
variables {n(x),r € Ay}, with Ay g = {—k, ...k} U (h+ {—k, ..., k}9).

0 (0) — n; (R)| f~ (m)duy ()

Denote by yAk the product measure VA restricted to Ej x Ej and for any density
N, denote by fh,k the conditional expectatlon of £V with respect to the sigma-algebra
0(77(1’), x € Apy). Let ¢ and x be two copies of n defined on Ej, it is enough to prove

lim lim lim sup sup
k—00 e>0 N—ow0 fN. DD(fN)<CND 2 2k+1<|h|<2eN

f 1C50) = XEO)| For (G A2 (Cx) = 0 (4.4.6)

Let g be a function on Ej x Fj, define the following Dirichlet forms corresponding
to exchanges within two separate boxes and to exchanges between those two boxes, for
two neighbouring sites x,y € Ay

r

Do) = | (Vol@r ) — VoG v
D2%(g) = P(\/g(C,x”’y)—\/g(Qx)) vzt
Ailg) = P(\/g’“(( — /g5 (¢ ) dvZ* (¢, x)

where (¢, x)° is obtained from (¢, x) by switching the values of ¢(0) and x(0). Define
Di(g) = Dy (9) + Dyh(9) + Axlg) (4.4.7)

As for the one block estimate, one has the following upper bounds. For all x,y € Ay
such that |z —y|| = 1,

Dy (fri) <Dy (FY), and DI(far) < Dyppyy (fY)

As in , summing over each pair z,y € Ay such that |z —y| =1:

Z DY (frp) + Z D, (frr) < 2C(R)NIDR(fY) < C(k)N 2,

z,yelg:|z—y[=1 z,yelg:|z—y|=1

for any probability density whose Dirichlet form is bounded by C'N¢~2. For the last one,

Ar(Fos) < f(\/f 0.h) \/f )duA) (4.4.8)
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To switch the occupations variables of ((0) and x(0), define a path from the origin to h by
a sequence of sites o, ..., x|, such that o = 0, x|, = h and for each 0 < k < |[h[; -1,
|Tk+1 — x|1 = 1, so that we have a telescopic summation

Ih]:—1
VI T =Y (VI ) -7 ).

k=0

By Cauchy-Schwarz inequality, from (4.4.8))
[R]1—1

ST <t Y [ (VForne) =P ) a )

Ih—1

L —N —N - —N
which is equal to |[h; Zo Dgﬁxkﬂ(f ). From (4.4.1)), Dgﬁxkﬂ(f ) < N7IDR(f).

k=
Moreover, |h|; < 2eN, hence

Ai(frp) < [PIINTDR(Y) < Ci(2€).

To conclude the proof, it is thus enough to show that

i fm sup f 1C*(0) — x*(0)] £ (G )2 (¢, x) = 0 (4.4.9)
(f)<C(k)e?

k—00 e—0 @k

We conclude as for the 1-block estimate : we first let € go to zero, then if f satisfies
D.(f) = 0, it is constant on hyperplanes having a fixed total number of particles of each
type i on Ay U (h + Ak). The result is a consequence of the equivalence of ensembles. []

4.A Construction of an auxiliary process

The reference measure Vév defined in is only reversible with respect to the
generator of stirring £X. Assuming the occupation variables are unbounded, we would
not be able to use the bound of the proof of the replacement lemma [4.3.1] a way to
avoid this issue is to build an auxiliary reaction process whose generator is invariant (or
reversible if the dynamics makes it possible, but this is not our case) with respect to
the reference measure. We follow arguments presented by M. Mourragui [63], for births,
deaths and jump processes.

Construction of the generator. It is about to construct a convenient transition

function ¢ for which the measure Vév is invariant with respect to an auxiliary Markov

process with generator Eﬁ, that is for any function f on Ey

| 28 sy ~o. (A1)
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4.A. Construction of an auxiliary process

Let 7(z,n) = rol{n(x) = 0} + m1{n(z) = 1}, d1, 02 and a be parameters associated to
the generator LE to determine. By a change of variables [see Lemma |4.B.2],

| 28 sy )

= J ZT]d (alf(ng) = F)] + 7, f(n2) = F)DL{n(x) = 0}dv (n)
+wp;yﬁﬁmb—fMH+ﬂ%®U@$—f@ﬂﬂMuﬁ=HWQM)
+f§;@Umb—ﬂmhm@y=%m%m>
+1”%J@U@b—fmn+&umb—fmﬂnmuﬁ=am€m>
L;d f(n [1{77 =0} (51 + 5% — —r0>
F1n) = 1) (a2 402 =)+ 10(e) = 2) (2402 5, )

Hmw=a(g%ﬂxagh%w.

A sufficient condition for this integral to be null is that each term between brackets

vanishes. Therefore, posing d; = d, = 1, the measure v}’ is invariant with respect to LR

as Soo1n as

ﬂam=”;“um>—m+% 1{n(z) = 1} (4.A.2)

and

_ pl;p3. (4.A.3)

If po > p3, the rate 7(z, 7]) is well defined. Subsequently, fix such a profile p to define
the reference measure I/ﬁ Fix the dynamics with parameters 7(x,n) and « satisfying

[.A2)-([1.A3), ie.

0 — 1 at rate « 1 — 0 atrate 1
0 — 2 at rate rg 2 — 0 at rate 1
1 — 3 at rate r; 3 — 1 at rate 1 (4.4.4)

3 — 2 at rate 1
One can thus construct uniquely a Markov process with generator

EN = N%Cﬁ + Eﬁ,
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Chapter 4. Hydrodynamic limit on the torus

that admits v} defined in ([£.2.6) as unique invariant measure, this is the so-called
auxiliary process.
Denote by IPZJI\QV the probability measure of the auxiliary process starting from the
o
initial measure uév and by Eﬁv the corresponding expectation. In view of the dynamics

o
of the reaction part, there is no way to build a generator that is reversible with respect
to the reference measure, this would though be possible for the symmetric CP-DRE, as
we will discuss in the next chapter.

Entropy of ]PLVN with respect to IF’f/VN Start by defining H(]IDI]YNUINDJVVN) the entropy
p p

of P with respect to ]ﬁ’fypﬁv as the positive convex function given by

~ PY,
H(PgN‘Pi\ZJAV) = Jlog @LNNCZPLVN<T]>. (4.A.5)
N

P

Controlling the relative entropy of IP’ﬁ]N with respect to IF’I]/VN allows us to deduce

p
properties of the reaction-diffusion process from results settled for the auxiliary process
via the entropy inequality. This inequality is given for any bounded continuous function

U by
fU(-)dejN(.) < log f exp(U(~))dIF’]V\gv(-) + H(PW%) (4.A.6)

Since the occupation variables are bounded, by convexity of the entropy (see [42,
Appendix 1.8]),

H(V ) < ) uVmHG|pY) = D) pN(n)log (vivl(n)) (4.A.7)

'I]EEN 7’]6EN

Nd
1
< N 1 _ Nd
> 1" (n)log <i1,1fpi> CoN?,

neEN

for some positive constant Cj.

To study the entropy of P2y with respect to I?PJ’]VVN, begin by computing the associated

P
Radon-Nikodym density. For this, introduce the following jump processes corresponding
to each transition of the reaction part :

e D¥": number of deaths of type-i particles on site  up to time ¢, for i = 1, 2.
e B} : number of births of type-1 particles on site x up to time ¢.

e I”7 . number of arrivals of type-2 particles on site z in state j up to time ¢, for
j=0,1
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4.A. Construction of an auxiliary process

t

Then, Dj* = DP' — § 1{ny(x) = i}ds, ;7 = I}V — J?s(x)ds and B = BY —
0

o Sé 1{n,(x) = 0}ds are PY-martingales.

t

¢
Furthermore, D& [*9 = [#9 — rf 1{ns(x) = j}ds and Ef = Bf — f <)\1n1(x,775) +
0
0

)\Qn3(x,n5)>1{ns(m) = 0}ds are PY-martingales. Remark that, since n;(x,n) < 2d and

A2 < A1, one has \yny(z,n) + Aang(x,n) < 2d\y, for all z € T4. Rates 7(z) and a were

defined in (LA2)-[EA3).

Starting from a common initial measure, one obtains the density via the Girsanov
formula for jump processes [42, Proposition A1.2.6]. Since Dy * have same jump rate,
both are PV- and PV- martingales, so that they vanish in the computation of the density
while on the other hand,

APV, t . t
e (n.) = exp { Z (Jlog T—Odlf’o - f (r —ro)1{ns(z) = 0}ds+

N
d]P)VN xET?V 0 0

t t

flog :ldlj’l - f (r — ) 1{n.(z) = 1}ds

0 0

t
n Jlog <>\1n1($7775) + >\2n3($,7ls))dB§
0

«

_ f (Alm(m‘, ns) + Aanz(z,ns) — a) 1{n,(z) = 1}d5> }, (4.A8)

0

where the stochastic integral of a bounded continuous function f with respect to a jump
process (I;)¢>o is defined by

[ st =3 rny - 1.

s<t

Proposition 4.A.1. There exists a positive constant C' such that
H(PY [P2y) < CN“
P

Proof. By definition of the entropy
B,
— P
i,
P

N [N N
HENEY) = [log | s m)
p
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o

= HE W)+ [log | ) | ()
Al
p

Using (4.A.7)), the result comes from (4.A.8]) since the involved rates are bounded :

B\
P
Jlog Y, (n.) | dP,~ (n.)

< COw, Aoy rro 1 0) Y (E;VN (B;”) +EN (I;ﬂo) +EN (Ifq))

d
€T,

< C'N?
O

First, prove this limit for the auxiliary process with infinitesimal generator [y ~N- Next,

one concludes for the reaction-diffusion process using the entropy inequality given by
(4.A.6). It is now about to prove the following.

Replacement lemma In a more suitable way, one can now prove the replacement
lemma for the process of generator £y. After what we deduce the result for the
reaction-diffusion process of generator £y by inequality entropy using [4.A.7]and 4.A.1]

Proposition 4.A.2. For all a > 0,
1 ~ 1 (*

e—0 N—ow

D mVn()dt = a | = —o (4.A.9)

d
xe']l‘N

Proof. The proof is very similar to the proof of Proposition with the exception of
estimating the term (LEA/fN,+/fN). This is done as following.

BN = 3 3 [ i/ 75 (V) ~ V) o)

2€T, i=0

- ifg(w,n,i)<\/fN(n)«/fN(n§;) = 1Y) v (n)

S zllm; gfg(%’lvi)f]v(n)dvg(n) + erTd ;JE(:C,W) (Y0 = ¥ ) )y (),

1
using inequality AB < Q—A2 + ng for A, B,a > 0 for the last bound. We deduce an
a

estimate by Cauchy-Schwarz inequality to bound the first integral by the L2-norm of

S while the second integral is null since v is invariant with respect to the auxiliary

generator L. [
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4.B. Properties of measures

4.B Properties of measures

Recall the measure we defined on T4, by ﬁg (4.2.6) for any vector 0 = (o, 11,19, 13) €

R* :
1 3
Pfgv(n) = H 7 €Xp (2 Vil{n(z) = 2}) (4.B.1)
zeTY, () i=0
3
where Z> = > exp(¢;) is the normalization constant. Using that 1{n(x) = 0} = 1 —

1=0

3 —
> {n(x) =i}, fix ¢y, = ¢y, — 1P for 1 < k < 3 so that
iz

o (£ dittato) - 1))

3 _
weTf L+ > exp(¢);)
i=1

—N o
V(El »E27E3) (7]) o

To parametrize the invariant measure by the density of each type of particles, first deal

with a change of variables as follows. Denote by R(-) the expectation of each occupation

variable of a site x by type i under 7%,

wl 1 eXp(@l)
Rl | o | o)
s v\ exp(vs)

v (n(z) = i) = ——exp(vs) = pi. (4.B.2)
Proposition 4.B.1. The vector p such that 1—py = p1+ p2 + ps is uniquely determined
by the vector 1.

Proof. Since we parametrize the measures by p, for all  :

1
3 _
I+ Z exp(1;)

=1

exp(%) = pi-

And (1,14, 13) solves the following system of equations

eXP(@l) = pi(1+ eXP(@l) + eXP(@z) + eXP(@E}))
exp(vy) = pa(l +exp(yy) + exp(v,) + exp(y3))
exp(¢3) = p3(1+exp(¢y) +exp(ty) + exp(vy))
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which can be rewritten as

@1 = log( &)
- 0

Py = 10{-’;(%)
% = 10{-’;(@)

Po
One gets a triplet (p1, p2, p3) such that 1 = pg + p1 + p2 + p3, by the transformation ¥ :

P1
log
L—p1—p2—ps
P1 o
v p2 | — | log (4.B.3)
L —p1—p2—p3
P3 3
log
L—p1—p2—ps
where U is the inverse function of R. O

One can hence define uniquely a new product measure parametrize by the triplet
p = (p1,p2,p3) by :
VY () 5= D411 popn) () (4.B.4)
One gets a family of measures whose marginal is given by I/év (n(z) = k) = pg. In
particular,
vy (n(x) =0) =1—p1—ps—p3

Lemma 4.B.1. The measure vY is reversible with respect to the generator of rapid-

P
stirring process.

Proof. Let ((;);=0 be a stirring process with generator £ on {0, 1,2,3}T7V. For any
cylinder function f, by posing & = (%Y :

|erromyo = [ 5 (fen - 1)

xyer
lz—yl=1

- [ 3 seman )—ff(@dug(o

xye?l‘d
lz—yl=1

=JZf ffdw

:ryer
lz—yl=1

()
/(@)

A useful formula of change of variables :

and since (4.2.6) is product, =1. O
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Lemma 4.B.2. Let i,j € {0,1,2,3} such that i # j. For any cylinder functions f,g
and o > 0,

faf(ni)g(n)l{n(x) = j}dvy (n) = fozijf(n)g(ni)l{n(fﬂ) =i}dvY(n)  (4B.5)
Proof. Pose & = 1.,

f o f (1) g(m) 1 {n(x) = jhdv (n)

- [as@nenice - 15 ED =0
- [ar©aleicw - i e = O
- [at©atedic - z}ﬁjduﬁ (©
O
Define a generator Ly by
Ly = Y elw.n.i)(F0) = ) (4.B.6)
where for positive «, 3,7, k, aq, as, b1, Pa :
ap if n(z) =1 aif n(x) =0
c@,m,0) = { ay if Z(:c) =2 c@n,1) = { Qs ifnn(:c) =3
(4.B.7)
rif p(x) =0 rifn(x) =1
cw,m,2) = { o i?n(z) =3 e(@,m,3) = { vy if?y(x) =2

Lemma 4.B.3. Let (Ly)* be the adjoint of Ly in LQ(I/éV), then (Lx)* is given for any
cylinder function g on En by :

(Lx)g(n) = > {(alzog(nx) —ag(n) + azzog(nx) = 19(1)Lin()-0}

d
a:e’]I‘N

Po P3
+ (aag(nﬁ) —aig(n) + Oézp*g(m) = 79(1) Lne)=1)

Po P3

+ (r=g(n) — asg(n) + ar = g(n2) — v9(0) L ywy=2)
P2 P2
P1 1 P2 2

+ (ng(nm) — aag(n) + 7gg(m) — a19(n)Ly@)=3

= > > e (@, Dg(n') — g(n)]

T, i=0
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Proof.

J (L f()dvy (n) = f{ = Fm) +r(f05) = F0) ) Lpr=o)

xer

(e (£ = ) + 7 (fm) — f(n))) L= + (a2 (F02) = £n) + (£ r2)
- f(n))) Lin(a)=2} + (az(f(ni) = f(m) +aa (F(n7) - f(n))) 1{n<x>—3}} -g(n)dvy' (n)

- > f { al—g(nx) —ag(n) + azzg(nx) - 7“9(77)) Lin)=0) + (ozz g(11) — arg(n)

xer

+ az;g(ni) — 7“9(?7)) ()=t} + (7“229(772) — ang(n) + algg(nm) 79(77)) Lin)=2)
+ (12 gm) — asgln) + 9 g0) ~ ngln)) 1{n<z>=3}} Fmdv (n)

= [ ey gy )

4.C Quadratic variations computations

We prove in this section computations of the quadratic variation (4.3.11)) of the
martingale M}"" defined in , fori=1,2,3.

Lemma 4.C.1.

W= (88 (G - Glam) (el ) s

z€Td, 2#2,|z—z|=1

TN J 2, Gilz/N) ( 2ﬁiys(w))£ﬁni,s(a:)ds (4.C.1)

xer

Proof. The quadratic variation of MY is given, for any function GecC (T4; R?), by

t
(MM, = J {£N<w§“i, Gi)? = 2w, Gyl Gi>}d8
0

We shall prove the two following equalities :

t
N2f {Lﬁ@“, G — 2wt GHLR( N, Gi>}ds

0
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4.C. Quadratic variations computations

- 2]]\\[;(1 Lt Z Z (GZ(Z/N) — Gi(fE/N)>2<77i7S(Z) — ni7s(:p)>2ds (4.C.2)

:ce']l‘?v 2#x,||z—z|=1

t
| e = 2 Golicn o s

0

- N12d ft 2 G?(a:/N)(l - 27],-,S(x)>£ﬁmﬁs(x)ds (4.C.3)

d
€T,

Let us prove first (4.C.2).

, 1
Ly(m Gi)? = N Z G} (x/N)Lymis(v)

d
€Ty,

b X G NIGH/N) (1) R ) + () ER 0))

x,yeT‘}V

+ ngd Z Gi(m/N)Gz‘(y/N){ Z (ni,s(z)m,s(y) - m,s(fv)m,s(y))

x,yeT‘}V zeT?V
x#?ﬁ”x_yH:l z;éy,\z—x\zl
+ Z <ni,s (u)ni,s ({L‘) — Ni,s (x)ni,s (y)> }
ue'ﬂ"f\,

u?éyy”u_xH =1

and
-2 GOER G = Ty Y G /N me) )
zeT%,
s % Gile/N)Gily/N) - { D (meedmialy) = ms@ms(v)
o L 1
+ 15,5 (y) = Mi,s ()i ()
+ Z (m,s(U)m,s(I) - Ui,s(x)m,s(y)> + Mis(2) — Ui,s(y)m,s(x)}
u;éyﬁ%uﬂ
“w X GaMGN) (o) 1))
£y, |lz—y|>1
so that,

t
N2J {Eﬁ@rﬁ”, G — 2wt GHLR( N, Gi>}ds

0
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= ]]\\[722(1 Lt xezT:d z:z—Zx|—l G} (x/N) (ms(Z) - m,s(x))ds
_ ]JVv; Lt ZT z:gjzl G2/ N) (20102 (2) — 10(2) ) ds
- ]]\j; f IEZW #w,;x”_l Gi(z/N)Gi(z/N) (m,s(Z) — 20;,5(2)7i,5 () + m,s(:v)>ds

v [ DN (G = Gl (o) o) s

veTY, z#a,|z—af =1

On the other hand,

t
| {ecate, 602 — 2w Gochicnt' 6oy s
0

- [ X G es (1.C.4)
1 t . R n
| 33 G/ NIG /) (1) ) + ) )
- | X @)L )ds
1 ¢ R "
-5 L ; G/ NG/ N) (15 () £ () + 1 () Lo () ) s
- ledfo > GHa/N) (1= 2mi0(2) ) Lo (2)ds (4.C.5)

Using [4.3.2], we have for each i = 1,2,3 :

(1= 2m () £hm ()

= LEn(2) + 2{(7“ + m(z) + ()\1 Z m(y) + Az Z 773(3/)>771(5U)}

y:y—z||=1 y:y—z||=1

(v Y m@x Y mW) 1+ me) - me) - m@) +w)

y:ly—z|=1 y:ly—z|=1
+ (r+ )m(z)

(1 - 20(2) ) £Rma(2) = L8o(2) + 20a(2) = r0(a) + 13 (2) + ()

(1 — 27]3(:r)>£ﬁ773(x) = LEns(z) + 4ns(z) = roy(x) + 2n3(2).
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Gathering all these estimates, one has

t
| et = 2 Golicn 6o s

= (M m(y) + A2 n3(y) | (no(z) + 2m(z))
( y:y;;—l y:y§|—1 ) (4.C.6)
+ rno(z) + (2r + D)ny(x) + na(x) + 4nsz(z)

4.D Topology of the Skorohod space

We summarize here some useful tips concerning the Skorohod space, see [7, Chapter
3] for further details.

Fix T > 0. Recall D([0,T7], (M})?) stands for the set of right-continuous with left
limits trajectories with values in (M2)? endowed with the Skorohod topology and
equipped with its Borel o— algebra.

Define a metric on M by introducing for every dense sequence of continuous func-
tions {fx, k = 1} on T? the distance 6(-,-) by

CE [t f)
S0 ¥) = T G 9 = (o i) (4.D.1)

The space M™ is complete with respect to the endowed weak topology, and any set
A c M is relatively compact in M if and only if

sup{p, 1) < o0
neEA

Let £ be a polish space equipped with the metric J(-,-) and consider a sequence of
probability measures (PY)y in D([0,T],€). Let A be the set of increasing continuous
functions on [0, T]. Define,

Alt) = Als)

for all A\e A, |A\| = sup
s#t

and
() i~ inf {IA v sup 5<ut,mt>>}

o<t<T

Proposition 4.D.1. The space D([0,T],E) equipped with the metric 6(-,-) is polish.

To extend Ascoli’s theorem to the space D([0,T1], ), one introduces the modulus of
continuity :
wu(’Y) = sup O(ps, fie) (4.D.2)

[t—s|<vy
A continuous function on [0, 7] is uniformly continuous. To get something similar
for functions in the Skorohod space, introduce
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Lemma 4.D.1. For all p € D([0,T],E) and € > 0, there exists a sequence of times
{t:}o<i<r such that

O=to<t1i <..<t,= T and (.L)M(ti _ti—l) > €, 1= 1,...,7".
For such a sequence {t;}o<i<:, one can define the modified modulus of continuity by

w,(y) = inf max sup  O(us, ). (4.D.3)

{ti }O<i<r O<i<r 1, <s<t<t;q1

One can characterize the compact sets of D([0,7],&) thanks the modified modulus of
continuity :
Proposition 4.D.2. A set A in D([0,T],E) is relatively compact if and only if

(1) {p : e At e |0,T]} is relativement compact on E.

(2) lim supw, (v) = 0.
70 peA
One can now state Prohorov’s theorem,

Theorem 4.D.1. Let {PY, N > 1} be a sequence of probability measures in D([0,T],&).
Then {PN N > 1} is relatively compact if and only if

(1) For all t € [0,T] and € > 0, there exists a compact set K(t,e) < £ such that

sup PN (u; € K(t,€)°) < e.
N>1

(2) For any € >0, lim lim PY(u:w/, () > €) = 0.

1
¥—0 N—>ow

On the other hand, condition can by substituted by the following sufficient condi-
tion :

Proposition 4.D.3 (D. Aldous (1978)). A sequence of probability measure {P", N > 1}
in D([0,T1,&) satisfied(2) of Theorem if
lim lim sup P (6(pr, firy0) > €) =0 (4.D.4)

Y20 N—0 rexy
<~y

where T stands for the set of stopping times bounded from above by T
For the space M’ endowed with the weak topology, to prove the relative compactness
for a sequence of measures ( LVN, N = 1) defined in D([0, 7], ML), it is enough to check

Prohorov’s theorem for real-valued processes by projecting the empirical measures
with functions of a dense countable set of C(T%R) :

Proposition 4.D.4. Let {gi,k > 1} be a dense countable set in C(T9) with g; = 1. A
sequence of probability measures (Qﬁ[N)Nzl is relatively compact in D([0,T], ML) if for
any positive integer k, the sequence ( LVNg,;l)Nzl in D([0,T],R) defined by

v (A) = Qv (7 (™ gi) € A)

is relatively compact.
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Chapter 5. With stochastic reservoirs or in infinite volume

We consider a generalized contact process represented by a two species process evol-
ving either in a bounded domain in contact with particles reservoirs at different densities,
or in Z%. In both cases we study the law of large numbers for current and densities.

5.1 Introduction

In this chapter, we consider a generalized contact process describing the evolution
on a lattice of three types of populations labeled respectively by 1, 2 and 3. This process
was introduced in [49] (in preparation), see Chapters[2|and [3| to model the sterile insect
technique, developed by E. Knipling and R. Bushland (see for instance [46], 27]) in the
fifties to control the New World screw worm, a serious threat to warm-blooded animals.
This pest has been eradicated from the USA and Mexico only in recent decades. The
technique works as follows : Screw worms are reared in captivity and exposed to Gamma
rays. The male screw worms become sterile. If a sufficient number of sterile males are
released in the wild then enough female screw worms are mated by sterile males so that
the number of offspring will decrease generation after generation. This technique is well
suited for screw worms, because female apparently mate only once in their lifetime, but
is also being tried for a large variety of pests, including a current project to fight dengue
in Brazil.

The particle system (1;);>0 we look at has state space {0,1,2,3}%, where S < Z9,
typically d = 2. Each site of S is either empty (we say it is in state 0), occupied by wild
screw worms only (state 1), by sterile screw worms only (state 2), or by wild and sterile
screw worms together (state 3). We keep track only of the presence or not of the type
of the male screw worms (and not of their number), and we assume that enough female
are around as not to limit mating. A site gets sterile males at rate r independently
of everything else (this corresponds to the artificial introduction of sterile males). The
birth rate is 0 at sites in state 2, A; at sites in state 1, and A\, at sites in state 3. We
assume that Ay < A\; to reflect the fact that at sites in state 3 the fertility is decreased.
Deaths for each population occur at all sites at rate 1, being mutually independent.

If  denotes a current configuration, the transitional mechanism for the generalized
contact dynamics at a site x can be summarized as follows :

0 — 1 atrate \yni(z,n) + Aans(z,n) 1 —-0 atratel

0— 2 atrater 2—0 atratel (5.1.1)
1—3 atrater 3 — 1 atratel o
2 — 3 at rate \ini(x,n) + Aans(x,n) 3 — 2 atratel

where n;(z,n) is the number of nearest neighbors of x in state i for ¢ = 1,3. This

dynamics has been studied in S = Z% in [49], see Chapter [2, where a phase transition

This chapter is a joint work with M. Mourragui and E. Saada [50].
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5.1. Introduction

in r was exhibited : Assuming that Ay < A, < A;, where A\. denotes the critical value
of the d-dimensional basic contact process, there exists a critical value r. such that the
populations in states 1 and 3 survive for r < r., and die out for r > r..

Our goal in the present chapter is to add to the previous contact dynamics displa-
cements of populations within S infinite volume case, as well, in the finite volume case,
as departures from S and immigrations to S. We are interested in the evolution of the
empirical densities of the 3 types of populations, for which we establish hydrodynamic
limits. The limiting equations are given by a system of non-linear reaction-diffusion
equations, with additionally Dirichlet boundary conditions.

More precisely, denote by T4 ! the (d—1)-dimensional microscopic torus of length N,
where N is a scaling parameter. The non-conservative system that we consider evolves
either in a bounded cylinder Ay = {=N,--- , N} x T4 or in Z?. The cylinder Ay has
length 2N + 1 along the axis of direction e;, where (e, ..., e,) denotes the canonical
basis of R%.

In the bulk of Ay, resp. in Z¢, particles evolve according to the superposition of
an exchange dynamics representing the displacements of the populations in different
states, and the above generalized contact process. In Ay, the movements of populations
at the boundary I'y of the domain Ay are modelled thanks to reservoirs from which
populations in different states are created or annihilated.

The exchange of the occupation variable n(x) in any site  with the one of a nearest
neighbour site is performed with rate 1. This exchange dynamics satisfies a detailed
balance condition with respect to a family of Gibbs measures, parametrized by the
so-called chemical potential p = (p1, p2, p3) € R3.

In the finite volume case, the reservoirs are modelled by a reversible generalized
contact process with fixed density. More precisely, for a fixed smooth vector valued
function b(-) = (b1(-),b2(-), b3(-)) defined on the boundary of the domain, the rates of
this contact process are chosen so that a Gibbs measure of varying chemical potential
b(-) is reversible for it.

To deal with infinite volume, we establish bounds on the entropy production and
on the Dirichlet forms valid for a boundary driven version of our process on A} =
{=N, ..., N} x Z%1 hence on Z%. We also establish uniqueness of the weak solution to
the system of equations corresponding to the boundary driven case in infinite volume.
The same method gives uniqueness on Z¢.

In Section [5.2] we detail our model, and state our results, namely on the specific

entropy (Theorem [5.2.1)), the hydrodynamic limit of the boundary driven generalized
process (Theorem [5.2.2)), the hydrodynamic limit of the generalized process in Z? (Theo-

rem , a law of large numbers for currents (Proposition , uniqueness results
for the equations in Subsection [5.2.6]

In Section [5.3], we prove Theorem , in Section we prove Theorem in
Section [5.5] we prove Proposition [5.2.1} in Section [5.6| we prove Theorem [5.2.3] results
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Chapter 5. With stochastic reservoirs or in infinite volume

on uniqueness of solutions are proved in Section [5.7] and finally Appendices 5.8
contain useful computations.

5.2 Notation and Results

5.2.1 The model

Instead of studying the three different values n(x) = 1,2,3 considered above we
introduce another interpretation for the model The conﬁguratlon space is now 5 N =
({0,1} x {0, 1}) or & = ({0,1} x {0, 1})%"; elements of Sy (resp. %) are denoted by
(&, w). The correspondence with (7;)¢>¢ is glven by the following relations :

772117; = (1) — él( —)(ﬁ(m))((l —)w(ai)) =1,

me) = A r)(1—-w(x)) =1,

nz) =2 < (1—&(x))w(x) =1, (5.2.1)
nr)=3 < E(z)w(z) = 1.

In other words, &-particles represent the wild screw worms, while w-particles represent
the sterile ones. On a site x, {(x) = 1 if wild screw worms are present on z, and w(z) = 1
if sterile screw worms are present on x. Both can be present, giving the state 3 for n(z)
or only one of them, giving the states 1 or 2 for n(x).

The boundary driven generalized contact process with exchange of particles is the
Markov process on X whose generator £y := £, | 3 can be decomposed as

Ly = N2y + 1Ly + N L, (5.2.2)

where Ly is the generator of exchanges of particles, Ly the generator of the generalized
contact process, and Lj , the generator of the boundary dynamics. We now detail both
dynamics and their properties.

For the exchange dynamics, the action of £y on cylinder functions f : 5 N — Ris

Lyf&w)= Y, [fEY,w™) = f(&w)], (5.2.3)

z,yeA N
lz—yl=1

where for any & € Xy := {0, 1}AV, €2 is the configuration obtained from & € Sy, by
exchanging the occupation variables £(x) and £(y), i.e

fly) if z=ux,
(€)(2) = &(x) if 2=y,
E(z) if z#ux,y.
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5.2. Notation and Results

Note that, since ({,w) € 5 ~, these exchanges can be interpreted as jumps between sites
x to y for &-particles and w-particles, which do not influence each other.
To exhibit invariant measures for Ly, for any x € Ay, according to ([5.2.1)), we define

m(x) = &(2)(1 - w(r)) = Ly@=13,
ma(z) = (1 = &(x))w(r) = Lya)=2y (5.2.4)
n3(z) = §(z)w(x) = Ly)=3) -

By a misuse of language, when n;(z) = 1 for i = 1,2, 3, we say that there is a particle
of type i at x.
The invariant measures will be product measures parametrized by three chemical
potentlals since the exchange dynamics conserves the three quantities >} ., 7:(7), 1 <
< 3. It is convenient to complete - 5.2.4)) by defining, for x € Ay,

mo(x) = (1= £@)(1 ~w(x)) = Lyw-oy = 1 - m(@) —male) —m(x).  (5.25)

We denote by A the macroscopic open bounded cylinder (—1,1) x T¢"! where T* is the
k-dimensional torus [0, 1)*. For a vector-valued function m = (my,mo,ms) : A — R?,

we define 1?7];\{(,) as the product measure on Ay with varying chemical potential 77,

duA H(&w) p{z Z m;(z/N)n;(z )} (5.2.6)

i=1xeAN

where Zz, is the normalization constant :

Ze, = n { i exp(m;(z/N) )} (5.2.7)

.TEAN i=1

Notice that the family of measures {D,%] , ME R3} with constant parameters is reversible
with respect to the generator L. For m € R3 and 1 < 7 < 3, let ¢;(m) be the expectation

of 1;(0) under 7% :

i) = B [m(0)]
Observe that the function ¢ defined on (0, +0)3 by 12(771) = (1(m), Ye(m), 3(m)) is

a bijection from (0, +o0)3 to (0,1)%. We will therefore do a change of parameter : For
every p = (p1, p2, p3) € (0,1)%, we denote by v}’ the product measure such that

- E% [200)], i=1,2,3. (5.2.8)
From now on, we work with the representation I/ﬁ( of the measure 7Y ()
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Chapter 5. With stochastic reservoirs or in infinite volume

According to (5.1.1)), the generator Ly := Ly, of the generalized contact pro-
cess is given by

Laf(&w) = Y, (r(l—w(@) +w(@)) [ £(&07w) - f(€w)]

redw (5.2.9)
+ Z (61\7(1’,5,&))(1 - 5(1’)) + 5(‘7")> [f(o-zng) - f(ng):l )
with
Bu(w &w) =M Y, EW—w®)+X Y, {uwy) (5.2.10)
i oLy

where | - | denotes the norm in R?, |u| = /3% |us2, and for € € Sy, %€ is the

configuration obtained from & by flipping the configuration at z, i.e.

1—¢(z) if z==x,
&(2) if z#ua,

(0%E)(2) := {

The representation sheds light on the fact that corresponds to a contact
process (the {-particles) in a dynamic random environment, namely the w-particles. In-
deed, the w-particles move by their own and are not influenced by &-particles, while
&-particles have birth rates whose value depends on the presence or not of w-particles.
Note that in [49] (see Chapter [3) a variant of the generalized contact dynamics in a
quenched random environment was also considered, with the (£, w)-formalism. On the
other hand, we noticed previously that w-particles can also be considered as an environ-
ment for the exchange dynamics.

We now turn to the dynamics at the boundaries of the domain. We denote by A =
[—1,1] x T4 the closure of A, and by I' = 0A the boundary of A : T' = {(uy,...,uq) €
A :u; = £1}. For a metric space E, an any integer 1 < m < +00 denote by C™(A; E)
(resp. C™(A; E)) the space of m-continuously differentiable functions on A with values

in F (resp. with compact support in A) .

Fix a positive function b:T — R? . Assume that there exists a neighbourhood V' of
A and a smooth function 6 = (0y,6,,05) : V — (0,1)® in C?(V;R?) such that

0<c< min |6 <max |6, < C <1 (5.2.11)
1<i<3 1<i<3

for two positive constants ¢, ', and such that the restriction of fto T is equal to b.
The boundary dynamics acts as a birth and death process on the boundary I'y of
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Ay described by the generator Ly . defined by

Linf (&) = Y e(bla/N),€ 0%w) | f(€.0°w) = f(&.w)]

ZL‘EFN

+ D7 o (b(a/N), 0%, w) [f(0°€,w) — f(£w)] (5.2.12)

:EEFN

+ Z Cx@(x/N),axﬁ,axw) [f(0%¢, 0"w) — f(&w)],

xEFN

where the rates ¢, (g(:c/N),E,w) are given for x € I'y and (§,w) € Sy by
3
e (b(x/N),&,w) = > bi(w/N)n(x), (5.2.13)
i=0

where bo(z/N) = 137 bi(x/N) and n;(x), i = 0,1,2,3 are defined in (5.2.4)-(5.2.5).
Using Lemma , note that the measure I/év is reversible with respect to the generator

Ly .
bN
As we deal with the process in infinite volume, define the generator in Z¢ by omitting
the subscript N in £y and Ly to denote the sums are carried over Z¢. In infinite volume,
the process has generator : :

£=NL+L (5.2.14)

Notice that in view of the diffusive scaling limit, the generator £y (resp L) has been
speeded up by N2, We denote by (&, w;);=0 the Markov process on 5 ~ with generator
£y (resp. on 3 with generator £) and by P2 b (resp. PYY) its distribution if the initial
configuration is distributed accordlng to p. Note that ]P’N b (resp. IP’N ) is a probability
measure on the path space D(R,, 5 ~) (resp. D(Ry, E)), which we consider endowed
with the Skorohod topology and the corresponding Borel o-algebra. Expectation with
respect to IP’N b is denoted by IEN b (resp. ]EN ). We denote by M the space of finite
signed measures either on A or Rd endowed Wlth the weak topology. For a finite signed
measure m and a continuous function F on A or R? we let {(m, F') be the integral
of F with respect to m. For each configuration (£,w), denote by 7% = 7N (&,w) =
(N1 N2 eN3) e M3, where for i = 1,2,3, the positive measure 7V is obtained by
assigning mass N ¢ to each particle of type n; :

NZ = dZT/z x/Nv

where 4, is the Dirac measure concentrated on u, and the sum is carried either on Ay
or Z¢. For any continuous function G = (G, Gy, G3), the integral of G with respect to
7V, also denoted by (7, G), is given by

3
AN.G) = YN Gy
=1
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Chapter 5. With stochastic reservoirs or in infinite volume

Denote respectively by Ay and A the discrete Laplacian and the Laplacian defined
for any functions G € C?(A;R) (resp. G € C*(R%R)), if z,2 + e € Ay (resp. Z¢) for
1 <j<dandue A\l (resp. Z%). by

AnG(z/N) = Z [ v+ e;)/N)+ G((z — e;)/N) — 2G(x/N)]

J
d
2
= Z 0, G(u
j=1
We have now all the material to state our results.

5.2.2 Specific entropy and Dirichlet form

Denote by AL = {—N,---, N} x Z%1 the macroscopic space is A® = (—1,1) x R?"!
and its boundary is I'” := {(x1,...,x4) € A* : 1 = £1}. In this subsection we consider
the sub-lattice Ay, = {=N,...,N} x {-n,..,n}?¥! of A%, for fixed n > 1. Define
EA]N,n = ({0,1} x {0,1})A~n. We start by defining the two main ingredients needed in
the proof of hydrodynamic limit in infinite box : the specific entropy and the specific

Dirichlet form of a measure on ¥ with respect to some reference product measure v

0()
For each positive integer n and a measure y on 5 ~, we denote by pu,, the marginal of
on ZNJL For each («, () € ZNn,

= /L{(f,w) : (€(2),w(x)) = (a(x),((x)) for xz e AN,n}. (5.2.15)
We fix as reference measure a product measure Vév = 1/5( ) where 0 = (01,02,05) : A* —

(0,1)? is a smooth function with the only requirement that 9 ‘FOC = 8()
In other words (recall (5.2.6), (5.2.8))), introducing the function y(.) = 1 — 6;(.) —
O5(.) — O5(.), we have

dug)’n(f,w) = Zaiexp{z 2 <10gM>m(m)} (5.2.16)

i=12eAN,,

with 2,1 = [T fo(z/N).

CCEANJL

To do changes of variables (detailed in Appendix [5.Al), it is convenient to write (5.2.16)
as follows :

dyé\([)vn(f,w) = exp{Z Z ﬁj(as/N)nj(x)} (5.2.17)

j:0 IEAN,n

log 0;(z/N). (5.2.18)

with  0;(z/N)
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For a positive integer n, we denote by sn(,un|yévn) the relative entropy of u, with respect

to l/é\[n defined by

sn(ttnlVy),) = sup {JU(E,w)dun(é,w)—logJeU“’“)dVé,Vn(n,f)}- (5.2.19)

UeCy(Enn)

In this formula C’b(fl ~Nn) stands for the space of all bounded continuous functions on
YN Since the measure I/évn gives a positive probability to each configuration, all the

measures on > N, are absolutely continuous with respect to uévn and we have an explicit
formula for the entropy :
sulinl) = [ 108 (£u(6,0)) da(€.0), (5.2.20)

where f,, is the probability density of u, with respect to Vévn.

Define the Dirichlet form D,,(y,|v;, ) of the measure y, with respect to v, in the
box ANn

Dallalti) = = | V/Iu&) (S Fo) €. )i, 6.

where Dy, (un|v;,,) is the restriction of the process to the box Ay,
Let £x,, denote the restriction of the generator £y to the box Ay, :

LCnm = N’ Ly + Lnn + N2Lg o0 (5.2.21)
with
L= D LW, Lyu= Y L., Liy.= 2. L%. (5222
z,yEAN n :EEAN’,L .’EEAN77LF\FN

[z—yl=1

Here for a bond (z,y) € A?V’n, LY stands for the piece of generator associated to the
exchange of particles between the two sites z and y, L%, corresponds to the flips at site
x € Ay, for the generalized contact process restricted to Ay,, and for z € I'y, L%,
stands for the flips at site z due to the boundary dynamics. We have for x € Ay,

Ly f6w) = (r—w(@)+w@) | £ o) - (6w
+(Brn(@,&0) (1 = €@)) + €@) )| £0°6,w) = F(&,w)] (5.2.28)

where
Bum(@,&w) =M D) Wl —w®)+X ), EWwly). (5.2.24)
HJ;—A zj\"] Y \i,e,A IIT‘/’:nl
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Chapter 5. With stochastic reservoirs or in infinite volume

Similarly, we define the corresponding Dirichlet forms,

Dn(ﬂn’”@,n) = Dg(p’n‘y@n) + Dz(’u"h/évn)’

with
DS (unlvg,) = > (D)™ (1alvs,,)
I’yEAN,n
Je—yl=1
Di(pnlvs,) = >, (D5 (inlvg,)
-'L'EAN,nﬁFN
where

O ki) = [ (VEE0) = VEE)) o (6,
(D (palvg,) = [ x(blo/N),.0°0) (VEE 07w) = VE(E:0)) o (€.0)
| e/, 07, 0) (VElo€w) - VI(Ew)) d (€)

+ | e ba/N). 076 070) (Vo€ o) — V6w di (€.).

We will also need
Do (pnlvg,) = D Dn)*(tnlvg,,) (5.2.25)

xEAN,n

where
D) lts,) = | (11 = wta)) + () (VIE 070) ~ VA& ) i (6,00)
[ Brnle,6.0)(1 - €@) + 6@) (VAEED) = VAED) oy, 6.,

Define the specific entropy S(u!uév) and the Dirichlet form @(u!uév) of a measure p on

5 ~ with respect to I/éV as

S(uvy) = N7 sulpnlva Je ™™, (5.2.26)
n=1

D(plvy) = N71 Y Dalpalv)’ e ™. (5.2.27)
n=1

Notice that by the entropy convexity and since sup ., {£(z) + w(z)} is finite, for any
positive measure p on Xy and any integer n, we have

sn(n|vy,) < CoNn™, (5.2.28)
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5.2. Notation and Results

for some constant Cj that depends on 57 A1, Ao, 7 (see Chapter 4| Appendix . Moreo-
ver, by ((5.2.26]) and (5.2.28)), there exists a positive constant C}, = C(6, A1, A2, ) such

that for any positive measure p on >y,

S(ulvy,) < CyN®. (5.2.29)

We need more notation. We denote by (Sjgv(t))go the semigroup associated to the ge-
nerator £y. For a measure p on ¥y we shall denote by pu(t) the time evolution of the
measure g under the semigroup S% : p(t) = uS%(¢).

We first prove uniform upper bounds on the entropy production and the Dirichlet form.

Theorem 5.2.1. Let 6 : A® — (0,1)® be a smooth function such that 5()‘FOO = g()
For any time t = 0, there exists a positive finite constant Cy = C(t, 5, A1, A2, 1), so that

¢
J @(u(s)h/év)ds < O N2,
0

To get this result, one needs to consider our system in large finite volume and bound
the entropy production in terms of the Dirichlet form. This is given by the following
lemma.

Lemma 5.2.1.
0:S(u(t)|v)) < —AgN*D(u(t)|v)) + A N* (5.2.30)

5.2.3 Hydrodynamics in a bounded domain.

Suppose in this subsection that Ay = {—N,--- | N} x T‘fv_l, the macroscopic space
is A = (—1,1) x T, Fix T" > 0. We shall prove in Theorem below that the
macroscopic evolution of the local particles density 7V is described by the following
system of non-linear reaction-diffusion equations

ap = Ap+ F(p) in A x (0,7),
po(-) = () im A (5.2.31)
plr = b(:) for 0<t<T,
where F = (Fy, Fy, F3) : [0,1] — R3 is given by
Ei(p1,p2.p3) = 2d(Mp1 + Aaps)po + ps — pa(r + 1),
Fy(p1, p2, p3) = 1po+ p3—2d(Aip1 + Aaps)p2 — p2, (5.2.32)

Fs(p1,p2,p3) = 2d(Mipr + Aaps)p2 +1p1 — 2ps.

where py = 1 — p; — p2 — p3. By weak solution of (5.2.31)) we mean a function p(-, ) :
[0,T] x A — R3 satisfying
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Chapter 5. With stochastic reservoirs or in infinite volume

(B1) For any i € {1,2,3}, p; € L>((0,T); H*(A)) :

gJ;T ds(L | Vpi(s,u) H2du> <o

A~

(B2) For every function @(t,u) = Gi(u) = (G14(u), Gar(u),Gs(u)) in Cé’Q([O,T] X
A;R?), we have

Br(),Cr()) — Po(-), Gol)) — j ds (u(), .G
=f ds (), AGL()) +f ds (B(p) (), Bl (5.2.33)
- EJ dsf n(r) bi(r)(1Gis)(r)dS(r),

where CS’Q([O, T] x A;R?) is the space of functions from [0,T] x A to R? twice
continuously differentiable in A with continuous time derivative and vanishing at
the boundary I' of A. Here n=(ny,...,ny) stands for the outward unit normal

vector to the boundary surface I' and dS for an element of surface on I'. For
G,H e L*(A), (G(-), H(-)) is the usual scalar product of L*(A) :

(G(),H()) = ZLG w)H;(u)du

Let M! be the subset of M of all positive measures absolutely continuous with respect
to the Lebesgue measure with positive density bounded by 1 :

(B3) p(0,u) =~(u) a.e.

ML ={reM:n(du) = plu)du and 0<p(u)<1 ae}.

Let D([0,T7],(M2L)?) be the set of right continuous with left limits trajectories with
values in (M2)3, endowed with the Skorohod topology and equipped with its Borel o—

algebra. For a probability measure p on 5 ~ denote by (&, wy)seo,r) the Markov process
with generator £y with initial distribution p. Denote by IP’N b the probability measure on
the path space D([0,T7], 5 N) Correspondmg to the Markov process (&, wy)wefo,r] and by
IEN b the expectation with respect to IP’N b We denote by 7% the map from D([O T, 5 N)
to D([0, 7], (M%)?) defined by ﬁN(f.,w.)t = 7V (&,w;) and by QNb IEDNb o (7#NV)~! the

law of the process (%N(&, wt))te[ﬂ L

We shall prove :
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5.2. Notation and Results

Theorem 5.2.2. Let (un)n=1 be a sequence of initial probability measures such that
N 1S a probability measure on iN for each N. The sequence of probability measures
( Nb)N>1 is weakly relatively compact and all its converging subsequences converge to
some limit Qb* that is concentrated on absolutely continuous paths whose densities p €
C([0,T], (ML)3) satisfy (B1) and (B2). ~

Moreover, if for any § > 0 and for any function G € C°(A;R3)

Jm e |G(E.). G0 = GO.E)] 2 6} =0, (5234)

for an initial continuous profile y : A — [0, 1], then the sequence of probability measures

( Nb)N>1 converges to the Dirac measure concentrated on the unique weak solution p(-,-)
of the boundary value problem (5.2.31). Accordingly, for any t € [0,T], any 6 > 0 and

any function G e Ch2([0,T] x A; R3)

Jim PP\ (6w, GO = i), G| = 6] =0,

We will prove Theorem in Section [5.4]

5.2.4 Currents.

In this subsection, we will study the evolution of the empirical currents, namely the
conservative current (cf 13)) and the non-conservative current one (cf. [9]).

Fort > 0,1 <i<3,1<j<dsuchthat z,z + ¢; € Ay, denote by J"" 7 (n;)
the total number of partlcles of type i that jumped from z to x + e; before time ¢
and by W, (n;) = J2"T () — J7 T () the conservative current of particles of
type ¢ across the bond {z,z + e;} before time ¢. The corresponding conservative em-
pirical measure WY is the product finite signed measure on Ay defined as WY (n;) =
(W (i), - -, Wh(m:) € Ma = {M(A)}?, where for 1 < j <d, 1<i<3,

Whn) = N7 N W () gy

r,x+e;EAN

For a continuous vector field G = (Gy,...,Gq) € Co(A;RY) the integral of G with
respect to W (n;), also denoted by (WY (n;), G), is given by

(WY (), Z< (5.2.35)

Finally, we introduce the signed measure W{\V(ﬁ) = (WN(m), WN(n9), WN(n3)) € (My)3
and for G = (G1, Go, G3) € (C.(A;RY))? the notation

WY, G) = (W (). G
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Chapter 5. With stochastic reservoirs or in infinite volume

For x € Ay, we denote by Q¥(n;) the total number of particles of type i created
minus the total number of particles of type ¢ annihilated at site x before time ¢. The
corresponding non-conservative empirical measure is

in(nz) = Z Qt 7]1 x/N

JJGAN

We introduce the signed measure QY = (QN (m1), Q¥ (n2), QN (n3)) € M3 and for H =
(Hy, Hy, H3) € (C.(A;R))? the notation

QY 1) =3 Q). Hy).

We can now state the law of large numbers for the current :

Proposition 5.2.1. Fiz a smooth initial profile 7 : A — R3. Let (uy) be a sequence
of probability measures satisfying (5.2.34) and p be the weak solution of the system of
equations (5.2.31)). Then, for eachT > 0,5 >0, G € (CCI(A;IRCI))3 and H € (CCI(A;R))s,

—_— ~ T ~ ~
Jim B (WY, G - L at({ Vo). @) >4] = 0, (5.2.36)
T
1%@;[@%@ - fo dt(F(p,) H>‘ >5] ~ 0. (5.2.37)

We shall prove Proposition in Section [5.5]

5.2.5 Hydrodynamics in infinite volume.

In this subsection we derive the hydrodynamic limit to the generalized contact pro-
cess in Z¢ with generator £ defined in ((5.2.14)). For a fixed density profile 6, denote by

v; the product measure on S such that 0; =E,, [m(O)]

Theorem 5.2.3. Consider a sequence of probability measures (uyn)y=1 on S asso-
ciated to a continuous profile ¥ : RY — [0,1]3, that is, for all continuous function

G e C.(R%:R3),

lim uN(\ 3N Gla/Nymiz) - (3,G)| > 5) _
(YA
for all 9 > 0. Then for allt =0,
Jm P (|2 20 X Gule/Nae) = i), G| = 6) =0

i geZd
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5.2. Notation and Results

for any function G € C.(R%R3) and 6 > 0, where p(t,u) is the unique weak solution of
the system

{ 0p=Ap+F(p) in 24 % (0,T), (5.2.38)

po() =A() in 2,
A weak solution p(-, ) of (5.2.38)) satisfies the following assertions :
(IV1) For any i € {1,2,3}, p; € L*([0,T]) x R?).

(IV2) For every function G(t,u) = Gy(u) = (G14(w), Gog(u), Gse(u)) in CH2([0,T7] x
R% R?), we have

@ﬂ»&@»&%oﬁw»—ﬁdx@ma@w>

. (5.2.39)

T
- | BGOAG) + [ asPe)0.6)
(IV3) p(0,u) =~(u) a.e.

We shall prove Theorem in Section [5.6]

Remark 5.2.1. As a consequence of Theorem the law of large numbers for the
currents stated in Proposition still holds in infinite volume, since the corresponding
proof given in Section only relies on the hydrodynamic limit.

5.2.6 Uniqueness of weak solutions

In this subsection, we state the results concerning the uniqueness of the weak solution
to the equations of the boundary driven case in finite volume case and in infinite volume.
Begin with the finite volume case :

Lemma 5.2.2 (Uniqueness in finite volume). For any T > 0, the system ((5.2.31]) has
a unique weak solution in the class (L*([0, T'; HI(A))S.

Fix T > 0. Let ¥ = (71,72,73) : A® — [0,1]> be a smooth initial profile, and
denote by p = (p1, p2, p3) : [0,T] x A* — [0,1]® a typical macroscopic trajectory. The
macroscopic evolution of the local particles density ¥ over A% is described by the
system of the following non-linear reaction-diffusion equations with Dirichlet boundary
conditions :

op = Ap+ F(p)  in A®x(0,7),
po(-) = A3() in A%, (5.2.40)
plr = b(-) for 0<t<T,

where F' = (Fy, Fy, F3) : [0,1] — R? was given in (5.2.32). By weak solution of (5.2.40)

we mean a function p(-,-) : [0, 7] x A — R3 satisfying
(IB1) For any i € {1,2,3}, p; € L* ((0,T) x A®).
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Chapter 5. With stochastic reservoirs or in infinite volume

A~

(IB2) i(if; IE\;e)infeuEZ\cfi;)n Gt,u) = Gy(u) = (Gry(w), Gay(u), Gs(w)) in Cy?([0,T] x
PrBr) = Gol, Gl — [ ds 0,060

- [ #0080 + des<F<ps><->,és<->> (5.2.41)
i J ds Lw 0y (1) bi(r) (01Gi) () dS(r)

(IB3) p(0,u) = ~(u). a.e.

We now state the following proposition :

Proposition 5.2.2 (Uniqueness in infinite volume with stochastic reservoirs). For
any T > 0, the system of equations (5.2.40) has a unique weak solution in the class

(L= ([0, T] x A*)®.

We prove these results in Section [5.7]

5.3 Proof of the specific entropy (Theorem [5.2.1))

In this section we prove Theorem and Lemma [5.2.1]

Proof of Theorem[5.2.1]. Integrate the expression ([5.2.30)) from 0 to ¢ and use|5.2.29]

Proof of Lemma 5 2.1. For a measure u, on f)Nn, denote by f! the density of s, (t)
with respect to VA . For any subset A — A and any function f € Ll(z/A ), denote by {f)4

the function on ({O 1} x {0,1})*\4 obtained by integrating f with respect to V§ over
the coordinates {({(z),w(z)),z € A}. In the case where A = Ay 41\Ann, we simplify
the expectation by {(f),1. Following the Kolmogorov forward equation, one has

Oufn = (€5 n+1f7tz+1>n+17 (5.3.1)

where £ stands for the adjoint operator of £y, in LQ(uéVn). From the convexity of

the entropy ([5.2.28)) and by (5.3.1)),
Ousalinly) = 00| Fiog piavg,, = [0 Fihu i,
- N? Jlog fflﬁ}"v’nﬂf,';ﬂdl/é’vnﬂ + flog ffLL;‘v,anZHdVgnH

+N2J10g f:zL}kV,anéHdVgnH - (5.3.2)
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5.3. Proof of the specific entropy (Theorem [5.2.1))

Denote the last three integrals by Qq, Qs and {23 respectively. Recall that yévn stands

for the measure associated to a smooth profile 6 : A% — (0,1)3 such that 5‘;0 = 3()
We now derive bounds on €2y, {25 and (3.

Bound on ;. We shall decompose the generator Ly 41 into a part associated to ex-
changes within Ay, and a part associated to exchanges at the boundaries, that is,
denoting A, = AN\An n,

Ql = an+1£Nn+1(10g ft) +1

= N Z f”“ﬁxy(logft) Yo+t

(x:y)EAN,n XAN,n
[z—yl=1

Y f Fi 15 0g 1)y
:cheANnxA
[z—yll=1

= N? > QW (2, y) (5.3.3)

(mzy)EAN,n ><A]V,n
[z—yl=1

+N? D 0P (z,9) . (5.3.4)
(z,y)eAN,n ¥ A?\/,n
[z—yll=1

Successively, for the term (5.3.3)),

W) = | Fralew)(lo e ™) ~log (), (6:0)
- [artateapnton 2E LI .
2
< - [ (Ve - ViiEw) a6 )
[ (e wmn = fiew))ang € ),

= Dl + | RS ) (6 0) (5.35)

where we used the fact that for any a,b > 0,

a(logh —loga) < —(\/5 - \/5)2 + (b — a). (5.3.6)
Now, by a change of variables («, 5) = (£*¥,w™V), using Lemma we have

f LY (& w)dvg, (G w) = ) fm(y)m(x)Rff(é)ﬁ(a,w)dvéYn(g,w) (5.3.7)

0<i+j<3
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Chapter 5. With stochastic reservoirs or in infinite volume

where
R0 = exp ((9,0/N) = 0,(@/N)) = (0uly/N) = i/ M) 1. (538)
By a Taylor expansion, is of order O(N~1).

For the part (5.3.4)) associated to the boundaries, we shall write for each pair (z,y) €
A % A, with o —y| = 1,

Ly = >, L (5.3.9)

0<i%j<3

where £2Y. stands for the exchange of values i and j at the boundaries.

Z<—>j

L& w) = ml@)n () (FE,0) = £(&,w))

(5.3.10)
() (FE,0m) = [(Ew)).
So that,
W) = ¥ [ fnlilos i), ,(6w)
0<i+5<3
J— f?i (é-x,y? wx7y)
- O<;<3Jm( 2)0i(Y) fria (6,0 )longVgnH(&w)
ft éfa:,y7 x,y
+ 0<;<Jm (9 F1(€,) log degm(é, w).
(5.3.11)

Let us detail the computation for ¢ = 1 and j = 3, the other values would be deduced in
a similar way. In this case, by a change of variables (¢/,w’) = (£, w™Y) in the integral
corresponding to 7 = 1,5 = 3 in the second term of the r.h.s. using Lemma
[5.AT] and noticing for the integral corresponding to ¢ = 1,7 = 3 in the first term of the
r.h.s. that £€%Y = £ since 1 = 1,7 = 3, we have

| iz e o, e

= x w)lo [nl&, W) v w
—jm () (€0 o PR
| @ty exp (@a(u/N) = 9a(o/N)) = (Da(u/N) = 02(w/N))
w ft Y ,5Y) 1o M I w
fn+1<§ ) )1 gf(§$1y7wz7y)d 6,n+1<€’ )
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[ @ s (€ Partog ET Dy 6,

+ [ RO @) € tog AE i 6.0

+ [ € Dntos 1 6.0,

where Rj Jy(é\) was defined in (5.3.8). By a Taylor expansion of Rfy(g) the second line

on the last r.h.s. is of order O(N~!). We deduce that

| rtrzgios it o), e

1 2 fal§,otw) -1
— | @) (F D = € ) log R ) + OV

(5.3.12)
where
FO€w) =) fEw), FD(Ew) = n(y)fha (€Y, w™). (5.3.13)
If we now define
Ei(i,5) = {(Ew): FE W) nm = EE W)t
(g, 0%w) = fi (€ w)) (5.3.14)
By(i,5) = {(Ew): FE W) nmt < FE W)t
fi(g,0%w) < L&, w)} (5.3.15)

the integral in the r.h.s. of (5.3.12)) is non-negative on E)(1,3) u Ey(1,3). Then, thanks
to the inequalities (we shall make a high use of them)

loga < 2(va-—1) (5.3.16)
N A
2ab < —a®+ —b? 3.1
ab iR (5.3.17)

for any positive a, b, A, the integral in the r.h.s. of ([5.3.12)) is bounded by
ft (é-’o.xw) N
F et — (FOE 0D >log TnlS: 070 N (e,
JE1(1,3)UE2(1,3) ( ><< 13( )> o < 13( >> ! fﬁ(&w) 9’”( )
<2 @) (CPL(E. s — (FE(E 0D
E1(1,3)UE2(1,3)

y ( fal§o%w) 1)

VN
fiEw) W&
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N
gi
A

2
JEm,g)uEza,g) (@) (Y FBE s — A FEE @ar) i (€,0)
A (1) (2) 2
" N JEl(1,3)u}5’2(1,3) <\/<F173 <£’ w>>n+1 T \/<F1,3( 7w>>n+1)

fa(§0"w) 2
X < W) 1) dl/gn(ﬁ,w).

(5.3.18)

To bound the first integral of the last r.h.s. in (5.3.18)) by a piece of Dirichlet form, apply
Cauchy-Schwarz inequality so that

a (@) (VERE @) — A FRE @) D ()

A E1(1,3)UE2(1,3)

T AN x) (\/ M3(Y) L, (E7Y, ™) A x i\ A

—t JE1(1,3)UE2(1,3)
2
) Fl€ Dhwn ) A (€ )
1 n+N J
< 1s() (v (€5,
2 E(13UE213 <3 < )

T A
&) ), ()

m=n+1

1 n+N : : , N
A 4 JEI Csoms) m(x)n3(y) (V Fo (€59, wv) —+/ fm(éw)) dvg,, (& w)
(5.3.19)
<1 niv f <\/ft (€0, wmw) — \/fL (€ w)>2dyi\f (€,w) (5.3.20)
Am:n+1 Ei1(1,3)UE2(1,3) " ’ mas? 0,m\>?

which is of order O(N). Now, to bound the second integral of the last r.h.s. in ([5.3.18)),
we separate the integrations on Fi(1,3) and on Ey(1,3). We first look at the integral

on Fi(1,3), to get

NJ 03 \/<F13§W>n+1+\/< (2)£w>n+1>

X < ful&so'w) 1>2d1/£7n(§,w)

fL(€ w)
1A (FE W)ni o t
< W El(l,g)m(x) ft(f, ) (\/f 570' W \/fn(f,w> dyA (é" w)
A
S Z%]V nl(m) <f£(§7 O-mw) - 2\/f72(§7 O-xw)\/fri(éuw) + f£(§7w>>dygn(§uw)
Eq(1,3)
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4A

N B (1,3)

4A o
<V 771($)f£(§,0xw>d’/gn(f,w) = fﬁz,(x)ewl(x/m 9a /N”fé(&w)dvgn(&w)

AC,
<

N

m(w) (F1(& 0°w) = fL(E ) ) v (,w)

(5.3.21)

for some positive constant C;. We have used the definition (5.3.14) of Ey(1,3) for
the first and third inequalities, the definition (5.3.13) of Fi3(£,w) with the bound

<F1(13) (& w)n1 < {fE (& w1 = fL(€, w) for the second inequality, Lemma [5.A.2((447)
for the equality, (5.2.18)), (5.2.11)) and that f! is a probability density to conclude.

We now look at the integral on Fs(1,3), to get

Nf 13) \/<F1 §w>n+1+\/<F13§w>n+1>

y < Jul&o"w) 1>2dugn(§,w)

fr (&, w)
R e N o BN o) PEA Y
< i? J;2(1,3> ) <F17;§£7,‘*2)>”+1 6 ()
< i\f; fng(x)nl(y)ew3<y/zv>—ﬂ3<z/1v>)—wl(y/N)—m(x/N)) Fral€ @l (6 w)
< Ajgi (5.3.22)

for some positive constant C]. We have used the definition (5.3.15)) of Fs(1,3) for the

first and second inequalities, the definition (5.3.13)) of Fl(? (¢,w) with Lemma |5.A.1| for
the third inequality, and (5.2.18)), (5.2.11]) and finally that f! is a probability density.

To conclude to an upper bound of €, combining ((5.3.5) with ([5.3.20)), (5.3.21),
5.3.22)

O < —N°D) (pn(t)|v) ) + CYANR! (5.3.23)

Bound on €)3. We decompose the generator of the reaction part into a part involving
only sites within Ay, and a part involving sites in Ay,4+1\An,. Recalling ((5.2.21)),
(5.2.22)), we have

Q, = f f;HLN,nHlogf;dugm=ff,sﬂm,nlogf;dugm+Qé”
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Proceeding as in (5.3.5)), we get

| olatog i, < Dulm(®lrg,) + [ Laasidnd, (G320

The second term on the r.h.s. is of order O(Nn?~1) since the rates By, (.,.) are bounded.
And, denoting 0Ay,, = {z € An, 1 Jy € A, ly — | = 1},

off = ¥ [faa(n Y wi-ww)

x€0AN yeAan
ly—z|=1
o 2 E())) (1 - €(x)) log 72,7 Jéé’ )> L (Ew)
ly— ZH 1

which is of order O(Nn?~1) in an analogous way to the computation done for Ql , using
inequalities (5.3.16)—(5.3.17)). Combined with ([5.3.24)(5.3.24), one has

Qo < =Dy (pn(t)|v) ) + Ko Nn®™! (5.3.25)
Bound on §23. Since Ly = . >, ) L%, using inequality (5.3.6) we have Since Vé\fn
X NnOL N
is reversible with respect to the generator L , ., using inequality (5.3.6)),
QO = N > f nea L log frdvy
:L'EAN nﬁFN
= N? Z f<ffl+1 &, wW) ni1 Ly logftdy
J:EANanN
< —NDE@WE) + N Y | mn sy,
7 :BEAN’,LFWFN 7
— —N2DE () (5.3.26)

It is for the last equality that we needed uévn to be reversible with respect to the generator
L b

bN,n*

The estimate m ), together with m and m gives us
s (D) < ~N*DY (DI, ) + (Ko + CLA)ND — N2DE ()|

Therefore, multiplying by exp(—n/N) and summing over n € N, one gets ((5.2.30) with
AO =1 and Al = (KQ + AC{l) U]
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5.4. Hydrodynamics in a bounded domain

5.4 Hydrodynamics in a bounded domain

We now turn into the proof of the hydrodynamics in bounded domain. Denote by

Vs ( ) the reference measure restricted to Ay. Let us consider, for any function G e

(C3([0,T] x A;R)),

t t
MY(E) = (2 Gy ) — (G — J (N 0,Ga s — J Sn(rMi Gryds (5.41)
0 0

which is a martingale for all : = 1, 2, 3. Our goal will be to make this martingale converge,
and for this, first we compute :

N2Lp (Nt Gy = (alt ANG,) — Nd - Z ONGi((x —e1)/N)n(x)

+ Ni_l Zﬁ ONGi(x/N)mi(z) (5.4.2)
where I'y, = {(u1,...,uq) € Ay : uy = £N} amd 02 stands for the discrete gradient :
ONG(z/N) = N(G((x +e)/N) — G(x/N)), with z,2 + 1 € Ay, as well as

Lym(0) = Bn(0, & w)no(0) +13(0) = (r + 1)n:(0), (5.4.3)
Ln12(0) = 710(0) + 13(0) — B (0, &, w)n2(0) — 12(0), (5.4.4)
Lanz(0) = Bn (0,8, w)n2(0) + rni(0) — 2n3(0), (5.4.5)

Note that since G vanishes at the boundaries on A, L; N Gy = 0. To get to the
system of equations ([5.2.31]), we shall need to replace the local functions appearing in
(5.4.3)—(5.4.5) by functions of the empirical measures, thanks to the replacement lemma.

5.4.1 Replacement lemma.

One main step in proving the hydrodynamic limit of a system lies in being able to
replace local functions by functions of the density fields to close the equations. For any
¢ € N, define the empirical mean densities in a box of size (2¢ + 1) centred at x by

(z) = (mi(x), ny(x), m5(2)) -

1
. (y). foralli=1.2.3.
i (x) = T y;”dnz(y), oralli=1,2,3

For any cylinder function ¢, 5() stands for the expectation of ¢(&, w) with respect to
v}, so that we can define for any ¢ > 0,
1 ~
Vv (e, =‘7 Lw) — (AN (0], 5.4.6
&) = | parra 2 o) = o™ (0) (5.4.6)

lyll<eN

where 7¥(z) = (nf,n5, %) ().
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Chapter 5. With stochastic reservoirs or in infinite volume

Lemma 5.4.1 (replacement lemma). For any G € C*([0,T] x A,R) and any H €
C*([0,T] x A;R?),

e—0 N—>w /J'N

lim lim IPNb Z J |Gs(z/N)| 1 Ven (€5, ws)ds = )z(), (5.4.7)

:EEAN

for any 6 > 0, and

Tim E ’ f T O O Hil/N (/) (7]1;715(:1:) - bi(:c/N)>ds)> — 0. (5.4.8)

(EEFN
foralli=1,2,3.

Before proving the replacement lemma, let us state the so-called one and two blocks
estimates. The one block estimate ensures the average of local functions in some large
microscopic boxes can be replaced by their mean with respect to the grand-canonical
measure parametrized by the particles density in these boxes. While the two blocks
estimate ensures the particles density over large microscopic boxes are close to the one
over small macroscopic boxes :

Lemma 5.4.2 (One block estimate). Fiz a constant profile p = (p1, p2, p3) € (0,1)3,

lim lim sup JNd m/k (& w) f(& w)dvy(€,w) =0 (5.4.9)

k=00 N2 f.p0 (f)<CNa-2 Ry

where for k € N, Vi(§,w) was defined in (5.4.6)).

Lemma 5.4.3 (Two blocks estimate). Given a constant profile p = (py, p2, p3) € (0,1)3,
foralli=1,2,3,

fim fim m sup
k—00 €0 N—oo f:'DON(f)SCNd_Q
~ub J D k(e + ) =™ (@) £(€, w)dv) (€, w) = 0. (5.4.10)
hj<en IV

:EEAN

Here, DY denotes the Dirichlet form associated to the generator of exchanges of
particles in Ay.

Proof of Proposition[5.4.1. First deal with the proof of (5.4.7)). By Markov’s inequality,
)

1 Nb
< SHG”OO]E Nd Z f Tac eN gsaws dS)

$€AN

\\/

]P;Nb Nd Z J x/N |Tz EN(&,ws)

zeEAN
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5.4. Hydrodynamics in a bounded domain

Let a > 0 be decreasing to zero after ¢, and a smooth function 5(1 = (041,042,043) :
A — (0,1)% equal in Aq_gyn = [-1+a,1 —a] x T% ! to some constant, say @, and to

b at the boundaries. As sup 7, Vi(§,w) < o0, we have
k,(&w),x

T

1
W Z Tx‘/eN(fs, WS)dS < CLTCO,
TEAN\A(1—a)N 0

for some positive constant Cjy. Therefore,

1 T
Efyb Z J ToVen gsaws)d8> aTOO+]ENb<Nd 2 J Tm‘éN(is,ws)CLS).

mGAN 9661\(1_a)zv 0

T
Denote by fI' = T-1 f frds, where f} stands for the density of puy(t) with respect to
0

uév . Since A(;_q)y is finite, proceeding as in the proof of Theorem|5.2.1|for €2, there exists

some positive constant Ci(a) such that the remaining expectation above is bounded by

JH 21 TVen(&w)fT(§ W) (6w) = TN DY (f7) +7C1(a),

zEA(1_a)N

for all positive v. Recall éa is equal to some constant & within A;_g)n. To prove ,
it thus remains to show that for every positive 7, a,

lim lim sup (Ndf Z T Ven (€, )f(f,w)dug(ﬁ,w) - ’YNZdD?V(f)> = 0,

e—>0 N—>oo
f xGA(l a)N

where the supremum is carried over all densities f with respect to 2 such that DO ( f) <
C'N9=2. This result is a consequence of the one and two blocks estimates ,
for which we refer to Chapter [4] since we reduced ourselves to the interior of the domam
Conclude by letting v — 0, then, a — 0.

Now, let us prove the limit ([5.4.8)). Define

W (&, 0) () = 0N Hy(w/N) (mial) = bila/ ) (5.4.11)

Decomposing the outward unit normal vector into both directions,

B ( U s Z 00 Hi /N 2/ N) (0(2) — i/ ) ) s ).

oif([] b 5 o)
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Chapter 5. With stochastic reservoirs or in infinite volume

([ e B o),

zely

where T'% = {(uy,...,ug) € +N x T%'}. From now, consider the sum over I'}; as the
proof will be similar for the negative part. By the entropy inequality, for any positive =,

£y (| L = Z O Hi/N) (ms(x) — (/) ) ).

L EN? Nd W H d sx(plg’)
< yalor Bl | e (V] Amlxi@wmwﬂy%,wm

N

where sN(uN|1/éAV) was defined in (5.2.20). By (5.2.28]), there exists some constant K|
such that sy (un|v)) < KoN? Using that el < e + e and

@N log (aN+bN) max(th dlogaN,th bN>

one can pull off the absolute value even if it means replacing H by —H. By Feynman-Kac
formula,

AM%E(MPWﬂ W S N Hoo/N) () = i/ ) ) s )

x€F+

<[Cen [ T o) ey )

$€F+

(5.4.12)
where the supremum is carried over all densities f with respect to VA By Lemmam

(ENFAT) < —N2DU(f) + AgN“. (5.4.13)

for some positive constant Ay. We now consider the expression W} (&, w,)(z) between
brackets in ([5.4.12)) and thanks to changes of variables given in Lemma m,

[ Hiate /) () = /) 16, 10 6.0
= [ @ Huato/ ) (o) 050/ N) = o/ N) Y/ ) € e (€,0)

j#i j#i
(5.4.14)

We detail for instance the case i = 1, others follow the same way, this is equal to

Jag Hy,(2/N) (m () (bo(a:/N) + bo(z/N) + bg,(x/N)>
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5.4. Hydrodynamics in a bounded domain

= bi(/N) (m0(2) + (@) + ma(x)) ) F(€, ) (€, w)
< [ Hue/) <(m (£)bo(x/N) = bim(e) ) £(,)

+ (m(@)bale/N) = bims(@)) £(6,) + ba(a/N) (€, w)) vy (6,)
- [ e e/ <bl?70(95) (Flo"gw) - f(&w)
+ b (@) (£(6, 0")0f(€,0)) + bz(:v/N)f(ﬁ,w)>dVéV (&w)

< [PmER (Vg - ViEw)
+ WAV (/e om) ~ V&) o (E) +
where C is some constant, we used to get
(flogw) = (&)
- (VFoo&w) ~VTEw)) (\/f(al’é @) +VI(Ew)
A (VioEw) ~VIED) + gar (VI ED) +VTEw)

and that f is a density while expanding the last term. Overall, dealing with the sum
over i, since parts of the Dirichlet form (DY) appear, (5.4.14)) is bounded by

AN c’

Lo H o/ V)P

ot Db T N 2
Now summing over {x € 'y} and multiplying by N*~¢, (5.4.12) is bounded by
AN2id NZid > AO
(55— = ) DA + gl e/ N P + 2
Choose A = 2/~ and conclude by letting tend v — o0, N — 0. O

5.4.2 Energy estimate.

We now deal with an energy estimate that allows us to exclude paths with infinite
energy. For G € C*([0,T] x A,R), define

Q)= sup  sup  Qqa(r) (5.4.15)
1=1,2,3 GeC¥([0,T]xA,R)
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Chapter 5. With stochastic reservoirs or in infinite volume

where Qg (m Zf J 7wt (u)0, ,Gi(u dtdu—J J Gi(u)? dt du.

Lemma 5.4.4. Fiz a dense sequence (Gy)e=1 in CX([0,T] x A,R). For alli =1,2,3,
there ezists a constant Cy such that for any sequence {uy : N = 1} of probability
measures on Xy, every k =1,

T
T b G s
gy%%@%(ﬂ<2@w@ MdZGmWM%ﬁ)\%-<“m>

TEA

d
where Af“i(gt, wy) 1= N174 Z Z (Nig(x +e5) = mie(2))Gey(z/N).

j=lz,x+ejeAn

Proof. By the entropy inequality, for all v > 0,

Eﬁ;( max JT AT (g, ws)ds>

1<l<k 0

N,b d Ges 1 N
< ’YN s logE (exp <1II<1?<X’€ (vN L (§S,w5)ds)>> + 7NdsN(uN]Vg ),

where sy (uy|v)) stands for the relative entropy of py with respect to v} defined in
(5.2.20). By (5.2.28)), SN(/LN‘I/éV) < CyN¢, for some constant Cy. Using that

exp ( max a,) < Z exp(ay)

1<l<k
1<t<k

and

lim N~%lo Z a;) < max lim N"%log a
N g(1<£<k e) T l<t<k N & e,

lim ]ENb( max JT A-GZ’S(g w )ds)

Now H 1<<k

T

< - d
g%HMWmE<W@NL

A (¢, wy)ds) | + 0.
<£,w>s)) .

By Feynman-Kac formula,

1 N dJT A%
log BN, (N 55,5d>
SNd 08 EN (eXp W (&, ws)ds

T G 1
< J sup { fAz o <£S7w8)f(§vw)dyév(§vw) + W<2Nfa f>}d8 (5417)

o f
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5.4. Hydrodynamics in a bounded domain

where the supremum is carried over all densities f with respect to VA Writing the
supremum over positive densities, it is bounded by

Jo sup{JA oo (&5, ws) f(£ w)dl/ (&, w) —|— <£N\f \/>>} (5.4.18)

£20
By Lemma there exist positive constants Ky and K such that

NY2LNA AV + v FoA ) < —KoN?*DY(f) + K N

Therefore,

1 N a " ACes
TN logE exp (N (&, ws)ds>

< JTsup {J AT (€5 ws) (€, w)dvy (€, w) —

o f

1

K
e DA s+ =+

v

Now use the change of variables (¢/,w’) = (£€%Y,w™Y) so that

fA?f(g,mf(aw)dugV (6.)

- [ 3 Grmnte + ) - miense )i

j=laeAn
~ Ni- 1JZ >, Gelw/N)mi(x +¢)) (Z??u ) w)dvy (€ w)
j=1lzeAn uFL
Nd IJZ Z G( ZL’/N’I]Z (ZUUZL‘-FGJ) g,w)dyév(g,w)
Jj=lzeAn uFi

- o [0 3 St s e m e i € )

j=lzeAn u#i

JZ X Gelw/Nymu(ax + e)m(e) (€%, w) = f(&w) ) v} (€,w)

j=lzeAn u#i

The first term of the right-hand side is of order O(N~!) by expanding R}’
inequality (5.3.17)), the second term is bounded by

while by

7,U )

N24DR ()

JZ ZGe (x/N)nu(z + ej)ni(z <\/f EBY, W) +\/f£w> dvg(f,w)

j=1zeA N u#i

(5.4.19)
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Chapter 5. With stochastic reservoirs or in infinite volume

To get rid of the second term, note that

| (Vi@ wm + ViEw) dy€0)
- [ e ama o) + | 1w €.w) + [ VEED WV FE@wY € w)

After a change of variable by Lemma the first and second integrals are equal to
a constant times the L'-norm of f. Use inequality ((5.3.17)) to divide the third integral
into two similar terms. Then, since f is a density with respect to Vév , for all positive A,

(5.4.19)) is bounded by

N2DO(f) + Z G} ,(z/N)

Z‘EAN

The expression between brackets in 1) is then bounded by

.CE/N
IEAN
Choose 2C" = A to conclude. O
Lemma 5.4.5 (Energy estimate). Let Qg’* be a limit point of the sequence ( ﬁ[]f)N%.
Then,
Qb <L2([O,T],H1(A)) ~1 (5.4.20)

Proof. Fix 1 < j < d. Remark that

T d T
lim AG (&, wy)dt = Z f J Oc, Got(w)my(w)dt du.
0 Zido Ja

N—o0

(@fbe) ~N>1 converges weakly to Qb *. by Lemma |5

b (1@% f fa G lu duds—f JGZS duds))\C.

Since (Gy)gs1 is dense in CP([0, T] x A; R), taking the limit as k goes to infinity, one has
by monotone convergence theorem,

Eg’*< sup J f [ EN( w)du ds — f f )2du ds)) < ().
GeCL([0,T]xA;R) Td

Therefore, for all 7, there exists some positive constant C' so that for any smooth function
G e C*([0,T] x A,R), under Q>*,

ZJ dsfdupzsué’e]G J dsfduG

hence, p e L*([0,T], H'(A))3. O
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5.4. Hydrodynamics in a bounded domain

5.4.3 The hydrodynamic limit.

To derive the hydrodynamic behaviour of our system, we divide the proof into several
steps : A

(1) tightness of the measures (Q7°")n>1;

(2) uniqueness of a weak solution to the hydrodynamic equation ([5.2.31));

(3) identification of the limit points of (Q}") y>1 as unique weak solutions of ([5.2.31).
The identification of the limit points is provided by the following Proposition and Lem-
mata.

N

v JN=1 8 tight and all its limit points Qg’*

Lemma 5.4.6 (Tightness). The sequence (
are concentrated on

Q’A”*(% 10 < Fy(u) < 1, Fy(du) = Fe(u)du, te [o,T]) =1L (5.4.21)

Proof. For this proof, we refer to Chapter 4| indeed to estimate (M™-*), for the mar-

tingale ((5.4.1]), note that G vanishes at the boundaries on A. Therefore, see ((5.4.2)), the
involved generator to derive (MN:%), is in fact N2Ly + Ly. It yields

(C(A1, A2, 7)||Gilloo + Ot

<MN,i>t < Nd

which converges to zero as N — o0. And on the other hand, recall we have (5.4.2)) so
that |[N2Ly(m™, Gi)l < [AGi | + 2| VGils. -

Denote by ¢, the approximation of the identity
te = (26)1{[~e. €]}
To show Qg’* is supported on densities p that are weak solutions of (5.2.31).

Lemma 5.4.7 (Identification of limit points). All limit points ng* of the sequence
(QN) =1 are concentrated on trajectories that are weak solutions of system (5.2.31]).

N
For further details on the proof, we refer to Chapter @] The difference here is we need

to highlight the replacement of local functions at boundaries. Define the functional B,

for any function G € Cy*([0,T] x A; R?) whose first component is given by

Bl#N) = {mp Giay = (" Gho)

€

T T
— J<7T£V’1, 0sG1 s)ds — f<7rév’1, ANGy g)ds
0 0

+ J Z é’elGLs(x/N)bl(x/N)ds—f Z Oe,G1.5(x/N)by(z/N)ds

0 IEF; zel'y
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Chapter 5. With stochastic reservoirs or in infinite volume

[\

ISH

>~
flert

Grs(z/N) (TN w1 ) (70 % 1 )ds

A

Z

[\

U

>
]

Gl’s(flf/N)(ﬂ'éV’g * LE)(TFiV’O w1c)ds

Oy O—

=
2

T T

- r J<7rév’3, G syds + J(r + D)t Gy s

0 0

while other component are defined the same way. It is enough to treat the case i = 1.

By Proposition [5.4.1} we may replace local functions of (£, w) in the martingale (5.4.1)).

Since occupations variables 7;(x) are of mean nf, resp. b;(z/N), under the measure
N

Vpln, Tesp. Y, one has

lim lim Qb;< sup ‘B ‘ > a> = 0.

e—0N—w M 0<t<T

Notice 7. — B!(7r) is continuous with respect to the Skorohod topology and let N go
to infinity. We conclude using Lemma |5.4.6| and letting € go to zero.

5.5 Empirical currents

In this section we derive the law of large numbers for the empirical currents stated
in Proposition 1| Recall that for z € Ay and j = 1,...,d, W,;"""%(n;) stands for the
conservative Current of particles of type i across the edge {z,z + e;}, and QF(n;) the
total number of particles of type ¢ created minus the total number of particles of type ¢
annihilated at site  before time t. We have the following families of jump martingales
(see Lemma for details) : for all 1 < j < d, z € Ay,

t

Wemom) = Wi ) = 8 | (@)l = male +)

~(1 = mie@)misla + ;) ) ds (5.5.1)
with quadratic variation (because .J,"* " (;) and J; " “**(1;) have no common jump)

(W () = (T ()Y + (TP (1)), (5.5.2)
= N? f (m,s(x)(l = Mis(@ 4 €5)) + (1= ns(2)) s (2 + 6j>)d5

0

and

QF(n:) = QF(mi) — L T fi(Es, we)ds (5.5.3)
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5.5. Empirical currents

where f = (fi, fo, f3) : Sy — R3 is defined by

f1(€7w) = BN(Oa 5700)770(0) + 773(0) - (T’ + 1)771(0) )
fa(§w) ro(0) +13(0) — B (0, &, w)n2(0) — n2(0) (5.5.4)
fS(f?w) ﬁN(Oa fa w)772(0) + 7"771(0) - 2773<0) :

with quadratic variations

@ = 507 (B(0,€0,w.)m0,5(0) + 15,0 (0) + (7 + 1)y 5(0) ) ds
@ (m)ye =5, 7 (110,5(0) +773,s(0)+5N(0,£s,ws)n2,s(0)+772,s(0)>ds (5.5.5)
@) = 5072 (80,60, 0,)m2,0(0) + 71,5(0) + 205,4(0) ) ds

Proof of Proposition[5.2.1] Given a smooth continuous vector field G = (Gy,...,Gy) €
CX(A,R?), after definition ([5.2.35)), sum the martingale (5.5.1) over {z,x + ¢; € Ay}

to get the martingale M¢, given by

M () = ) <<W;§<m>,Gj>

_N]Zjl Z Lt Gj(z/N) <77i,s($) —Mis(x + ej)>ds>

x,x+e;€EAN

- G =55 X Y | 4 Gila/Nm(a)ds + O

j=1 IEAN

= (W), Gy = Ym0, Gi) + O(N )

where we did a Taylor expansion. Relying on ([5.5.2)), the expectation of <MG>t vanishes
when N — o0, so that by Doob’s martingale inequality,

_ " ~a
lim IP’LV]’VI’[ sup ‘ Mt| >5] =0,
N— 0<t<T

for any & > 0. Using that the empirical density 7 converges towards the solution of
(5.2.31)), this concludes the law of large numbers ([5.2.36]) for the current WX

Fix a smooth vector field H = (Hy, Hy, Hy) € C*(A,R?). Sum (5.5.3) over z € Ay
to get the martingale

NE () = QY ) =53 2 | e/ Ny fl6ewn)ds

l‘EAN
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Chapter 5. With stochastic reservoirs or in infinite volume

Relying on (5.5.5), the expectation of its quadratic variation vanishes as N — oo as

well. Use the Replacement lemma to express N{{ (n;) with functionals of the density
fields and conclude to (5.2.37)) by Doob’s martingale inequality having for any ¢ > 0,

/-\

lim ]P’Nb[ sup ‘ Nt‘ >5] = 0.

N—w HN|gqor

5.6 Hydrodynamics in infinite volume

In this section, we derive the hydrodynamic limit in infinite volume of Theorem [5.2.2]

5.6.1 Replacement lemma

To close the equations in the expression of martingales, we state here the replace-
ment lemma for the infinite volume. It relies on uniform upper bounds on the entropy
production and the Dirichlet form given by Theorem and proved in Section 5.3

We shall make use of Theorem with a slight difference : we consider here
for any n > 1, a large finite box B, = {-n,...,n}? (instead of Ay, = {—N,..., N} x
{-n,...,n}?1), since we do not require boundary conditions. Indeed, to reach Z?, in

the proof of Lemma we need to expand the box B, over B,;; in each direction

(€1,...,eq) so that in our estimates : n?~! is replaced by n¢. Therefore, the result of

Theorem [5.2.1] still holds.

Lemma 5.6.1 (replacement lemma). For any G € C°([0,T] x A,R),

lim lim Eﬁ[N Nd Z f s(x/N)|7 e]\;(fs,ws)ds) =0, (5.6.1)

e—0 N>
xeZd

where Vo (&, w) was defined in ((5.4.6))

Proof. Let M > 0 so that G has compact support contained in [—M, M]¢. Therefore,

Nd Z J s(z/N)|7s eN(fs,ws)ds>

xeZd
g |GOOE;]YN< Z J T$ eN 557(4‘)5 S) . (5.6.2)
r€BMN
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5.7. Uniqueness of weak solutions

Now, Ven (€, w) depends on configurations only through occupations variables { (£, w)(z) :
x € By}, by Fubini’s theorem and Theorem [5.2.1] there exists some positive constant
C such that the expectation in (5.6.2)) is bounded by

J Tx eN g) )fT(g,W)dVéZ(f, ) P)/TNQ dD(M+2) (fT) +P)/Cla

CEEB}WN

T
for all positive v, where f7 = T~ f fiv+2)nds, with f(tM+2)N standing for the density

of un(t) with respect to V(M+2)

to show that

, the restriction of v; to the box By . It thus remains

lim lim sup {f Z T Ven (&, w (f W)dV (M+2) N(&,w)

e—>0 N—>w f xEBMN

—T
— YN*"'Dy  oyn (f )} = 0.

This limit is a consequence of the one and two blocks estimates (5.4.2)—(5.4.3]), for which
we refer to Chapter 4] since we reduced ourselves to a finite volume and conclude by
letting v go to 0. [

5.6.2 The hydrodynamic limit

To conclude to the hydrodynamic behaviour of our system, we still need to prove :
tightness of the measures (Qf)’ b) ~N>1; identification of the limit points of ( b) N>1;
uniqueness of weak solutions of the hydrodynamic equation.

The two first steps are analogous to the proofs done in finite volume, we refer the
reader to Chapter [4] for details. Though, we prove the uniqueness of weak solutions for
the generalized contact process in infinite volume with stochastic reservoirs in Section

, the method yields to prove the uniqueness of weak solutions of the system ([5.2.38)),
this is given by Proposition whose proof is postponed to Section [5.7]

5.7 Uniqueness of weak solutions

To conclude, we derive in this section the uniqueness of the weak solutions of Section
0.2l

5.7.1 Uniqueness in finite volume

Proof of Lemma[5.2.3 Let pV) and p® be two weak solutions of |5.2.31| satisfying (B1)
and (B2), starting from the initial profile 4. For a given § > 0, denote by As the
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regularized absolute value function

2

As(u) == %1{|u| <o)+ <|u| - 2)1{|u| > 5}

Since C°(A;R) is dense in H'(A), by approximating A; by smooth functions and using
(B2), we get (cf. [28])

e [ s (o) = o2 t.0) )
. | A5 ) = 2 )2 (617 1) = f0,0) )
- —ZZ [ {75 (o) = 20 (V0 0,10) = 9l 0,0)
+ Z ng (ot w) = p2(tw) ) (RGOt ) = Fi(p® (¢, w) ) du
- —(;; | 9 (0t = o2 t.0)-9 (4000~ 2 1.0 s

N ZJ (E(ﬁ(l)(t,u)) B Fl-(p@)(t,u))> (Pgl)(t,u) ; p (t,u) 1y, + ]-V5C>du

1
<-52 J [V (o () = o1t w)) [ 1y du

(Ot w) = F(p™ (¢ )| du

where V; = {(t,z) € [0,T] x A : |p® — 5| < §}. Remark now that F' is Lipschitz,

IE(pD) = F(pP)] < C(A, Aa,r) Y 0 = pi?|, for all i = 1,2,3.

Therefore,
> j As(p(tu) = pP (8 0) Jdu < CO,Aa,) Y f pi () = pi? (¢, w) | du
One concludes by letting 0 | 0 and using Gronwall’s inequality. ]

5.7.2 Uniqueness in infinite volume with boundaries

Proof of Proposition[5.2.4. The proof follows the arguments in [61] adapted to the our
case. For u = (u1, - ,uq) € A®, denote by % = (ug, - ,ug) € R so that u = (uy, ).
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5.7. Uniqueness of weak solutions

Denote by L?*((—1, 1)) the Hilbert space on the one-dimentional bounded interval (—1,1)
equipped with the inner product,

<90,1/1>2 = f—1 90<U1) ¢(u1) duy

where, for z € C, Z is the complex conjugate of z and |z|> = zz. The norm of L*((—1,1))
is denoted by | - ||2.

Let H'((—1,1)) be the Sobolev space of functions ¢ with generalized derivatives
Ou,p in L2((—1,1)). H'((—1,1)) endowed with the scalar product ¢, -); 2, defined by

<()07 ¢>1,2 = <907 1/}>2 + <au1§07 5u1¢>2 )

is a Hilbert space. The corresponding norm is denoted by || - |1 2.
Consider the following classical boundary-eigenvalue problem for the Laplacian :

—Ap = ap,
{ pe Hi((—1,1)). (5.7.1)

From the Sturm-Liouville theorem (cf. [77]), one can construct for the problem (|5.7.1])
a countable system {p,,, o, : n = 1} of eigensolutions which contains all possible eigen-
values. The set {p, : n = 1} of eigenfunctions forms a complete orthonormal system
in the Hilbert space L*((—1,1)). Moreover each ¢, belong to H}((—1,1)) and the set
{¢n/al/? i n = 1} is a complete orthonormal system in the Hilbert space H}((—1,1)).
Hence, a function ¢ belongs to L*((—1,1)) if and only if

n—o0

¢ o= lm Y (), o) o
=1

in L?((—1,1)). In this case, for each 1,1y € L*((—1,1))

<¢1,¢2>2 = Z<¢1790k>2 <¢2,90k:>2-
k=1

Furthermore, a function ¢ belongs to H}((—1,1)) if and only if

n—ao0

¢ o= lim Y (W, o0 on
k=1

in Hy((—1,1)), and
W1, )12 = Z (W1, P2 (Y2, Pk )2 (5.7.2)
k=1

2

for all 41,19 in H}((—1,1)). One can easily check that in our case, a,, = n*m? and

¢n(uy) = sin(nruy), n € N.
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Chapter 5. With stochastic reservoirs or in infinite volume

Fix T > 0, define the heat Kernel on the the time interval (0,7"] defined by the
following expression

pi(t,ur,vp) = Z e o (uy)en(vi), te[0,T], uy,vy € [—1,1].

n=1

Let g € C2((—1,1); R) and denote by 4. the Dirac function. The heat Kernel p; is such
that p1 (0, u1,v1) = dyy—v,, p € C((0,T] x (—1,1) x (—1,1); R) and the function defined
via the convolution operator :

1
prltsw) i= (pu s g)(tew) = [ it en)go)doy
-1
solves the following boundary value problem

Orp = 0u, 0,
©(0,-) = g(-), (5.7.3)
o(t,")e Hi((—-1,1)) for 0 <t < T .

Let p be the heat kernel for (¢,1,9) € (0,T) x R4~ x RI~!

- 1<
plt,a,0) = (4mt) 2 { ZZuk—vk }

For each function f e C.(R4';R)

It is known that hi solves the equation 0,p = Ap, o = f, on (0,¢] x RE1. Moreover
heC?((0,T] x R R).

For a positive time t € (0,T], f = (f1, f2, f3) € Cc(A®;R3) and € > 0 small enough,
let #{, : [0,#] x A® — R be defined by

3 3
w) :=ZH{7"€( = Z (p= f;)(t+e—s,u),
i=1 =1

where p is the heat kernel on (0,7] x A® x A given by

p(ta u, U) =P (ta Uy, Ul)ﬁ(ta 727 {})

It is easy to check that ;. solves the equation d;p = Ap on (0,t] x R po = f.
Consider pM) = (pgl),pé ) o) and p® = (0P, P, pP) two weak solutions of

(5.2.31]) associated to an initial profile 7y = (’)/1,")/2,’)/3) : A — [0,1]3. Set m; = pz(-l)—pz(?),
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5.7. Uniqueness of weak solutions

1 < ¢ < 3. We shall prove below that for any function m(-,-) € L*([0,T] x A®) and
each i < i <d,
t
J ds
0

for some positive constant C}, where for a trajectory m : [0,t] x A® — R, ||ml, =
|m| Lo ([o,qx A=) stands for the infinite norm in L*([0,¢] x A®).

On the other hand, from the fact that pgl),p(z), 1 <i<3arein L¥([0,T] x A®),

i
it follows that there exists a positive constant Cy such that, for almost every (s,u) €
[0,7] x A%, for every 1 < i < 3,

f m(s, u)H{L(s,v)dv|ds < Cit|m|e]|fil1, (5.7.4)
A®©

3
Fi(pf” (s,u) — Fi(p (s,0)] < C2 D ) = o7 oo -

=1

Since p() and p® are two weak solutions of (5.2.31]), we obtain by (5.7.4) that for all
0<rt<t 1<ik<3

)<mi(7', ), 1w (T, )>‘ a Zil ‘ LT <Fi(ﬁ(1)) — F(p®), Hix (7, )>‘

3
1 2
<Ot (D02 = o) Uil
=1

for C{ = Cng.
By observing that p(e,-,-) is an approximation of the identity in &, we obtain by
letting € | 0,

3
(mitr, ), fi)| < Cie (D10 = o o) Ul (5.7.5)
i=1

We claim that m; € L*([0,t] x A*) and
> 1) (2
mile < it (D10 = oo ) (5.7.6)
=1

Indeed (cf. [67], [61]), denote by R(t) = 32, [0 — o[, by (B.7.5)), for any open set
U of A* with finite Lebesgue measure A\(U), we have for all 0 < 7 < ¢,

f m3(r, w)du < Ol t RIAU). (5.7.7)

Fix 0 < é < 1. For any open set U of A® with finite Lebesgue measure and for 0 < 7 <t
let
B, = {u eU : my(r,u) > CitR(t)(1+ 5)}
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Chapter 5. With stochastic reservoirs or in infinite volume

Suppose that )\(BgT) > 0, there exists an open set V, such that, BgT c V and
A(VABY,) < A(V)3 and we have

AV)(CLER() < MV)(CLtR(1)) (1 +0)(1 - 6/2)
= (CLER()) (1 + ) (MV) = A(V)d/2)
< (C1tR(1)) (1 4 0)(MV) = A(V\BJ.))
= (CIVER(®) (1 + 9)A(BF,)

< J m;(7,x)dx .
By,

Thus, from (5.7.7) and since Bf, < V, we get

MV)(CLER() JmZTx
(CLER)ANV),

which leads to a contradiction.

By the arbitrariness of 0 < 0 < 1 we obtain that if U is any open set of A® with
AU) < o,

A({u eU : my(r,u) > c;tR(t)}) ~0.
This implies
mi(T,x) < Ct R(t) a.e. in A®

and concludes the proof of (5.7.6) by the arbitrariness of 7 € [0, ¢].
We now turn to the proof of the uniqueness, from (5.7.6)),

3
e < it (Y Il )
j=1

and then
R(t) < 3CitR(1).
Choosing t = to such that 3C" ¢, < 1, this gives uniqueness in [0, to] x A*. To conclude

the proof we have just to repeat the same arguments in [t, 2to], and in each interval

[k’to, (k’ + 1)t0], ke N, k> 1.
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5.A. Changes of variables formulas

it remains to prove inequality (5.7.4). From Fubini’s Theorem, we have

[

ds

f m(s, u)H (s, u)du

J dsf dvf du
Rd 1 Rd 1

X J dul{ sin(nruy)p(t + & — s, 4, 0)m(s, uy, ﬁ)}‘
-1

<Jtdsf dﬁf du p(t +¢ — s,4,0)
0 Rd—1 Rd-1
3 (nmls, () x (ion, i)

n=1 |

t

<j dsf duf do{m(s,0)| | F(@)] 5L+ < 5,5.5)
0 A®© A®

< 4t [mlol il

2(t4e—s) Jl dyl{ SiH(ﬂ?TUl)fi(vlab)}
-1

n>1

X

where we used the fact that (s, -, -) is a probability kernel in R¢~! for all s > 0. ]

5.A Changes of variables formulas

In the following, one states useful formula concerning change of variables with respect
to a varying smooth profile. It is convenient to use the form ([5.2.17) of the reference
measure.

Lemma 5.A.1. For (i,7) € {0,1,2,3}%,1 & j,

| m@mw e wr iy €o)
_ f 1y @)y PO 05N NN F (e oy (€, )

Proof. Let us detail the change of variable when (i, ) = (1, 2), the other ones are similar.
Posing (¢/,w') = (£€*Y,w™Y) one has,

| e v €.
j E()(1 = w(@))(1 — E))wly) FE, w™)dvY (€, w)

- [ e - HaE L)

dyév(f”,w’)
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dug(§™Y, w'™Y)

- f () () (€ ) v (€ )

dl/@(f@w’)
but N .
% = exp { Z <194($/N) - ﬁz(y/N)) <77€(y) — 77&(@) }
o > (=0
so that

f () 1) F (€7, ™) d (€, )

= fn2($)771 (y)6(192(y/N)—192(Z/N))—(var91(y/N)—ﬁl(w/N))f(é“’ w)duév(f, w)

Lemma 5.A.2. (i) for each (i,5) € {(1,2), (2, 1), (3,0), (0,3)},
[ @) o6 o) (€)= [my@)e® e fe )i (6w
(ii) for cach (i, ) € {(1,0), (0,1), (3,2), (2,3)},
| @) o i €)= [ m@)e® e pe )i €, w)
(7ii) for each (i,7) € {(1,3),(3,1),(2,0),(0,2)},

f (@) (€, 0" w)dw (€, ) = f () EN0 e )i (€, w)

Proof. Let us show the lemma for (i) when (i,7) = (1,2). By the change of variables
(€ w') = (0%, 0%w) we have

:Jg(x)(l—w(:c))f( °¢, 0" w)dvl (€,w)

— — & (2)) (z /w/dyé( wg/’gw)
_f(l §'(z))w'(z) f (€, 0) dv; (€, w')

dyév (&, W
but

y@( m£70 W)

NEw) = exp { (191(90/]\7) — 192(m/N)> <772(x) — 771(115))
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5.B. Quadratic variations computations

+ (Vs(a/N) = dol/N) ) (o) = m(a)) }
so that
| m@ro7. gl 0) = [ mala)el® e g w6, )

Deduce (i) and (7i) similarly by computing respectively

W ~ exp { (9162/3) = (/) (m(2) = m ()
e
+ (Da(a/N) = D/ N)) (ms(2) = mo(a)) }
and
S oo 0000 ) 00
e

5.B Quadratic variations computations

We compute here the quadratic variations of the two jump martingales appearing in
Section [5.5] Using computations as in C. Cocozza and C. Kipnis [14],

Lemma 5.B.1. Fort>0,1<i<3,1<j<dsuch that z,z +e; € Ay, J7""( Z):
T () = N2 i () (1 R fomis(x
e;)(1 = mis(x))ds are two P} -martingales whose quadratic variations are given by

(Fo ()5 = N? f Bon(@)(1 = 7o + )))ds (5.B.1)

(T ()5 = N? f Boa(z + €)(1 = () ds (5.8.2)

Proof. Consider jumps over the bond (x,z + e;), by writing the generator of diffusion
as in (5.3.9), we shall decompose the jumps associated to the exchanges of particles
between each type ¢ and j, 4,7 € {0,1,2,3}. That is,

+ +
J:E,m+el Zjlr_:fj 61 § w and Jx,:z:+31 ijm el

Ji
J#i J#i
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Chapter 5. With stochastic reservoirs or in infinite volume

where for fixed i, Jf_’ffel correspond to the exchanges of particles over the bond (z, z+e;)
when z is in state ¢ and x + e; is in state j.

For z,z + e; € Ay, consider the function 777 (&,w) = n3(2)m1 (2 + ex). Then,

Luflm) = 3, ("G +e) = (e + )
it
= (”f (wni(z + ex) = ni(2)miz + ek))

uEAN
|u—z||=1,u#z+ey

+ (milz+ (=) = m(2)niCz + )
Y (W) - neme+ )

UGAN
[v—(z+er)|=1v#z

The martingale problem states that

¢
;;iel (ftawt) = ;Ziel (ftth) —f ACNf;,—z)-{-el (fs>ws>d3
0
is a P -martingale. Consider the predictable process 9o (Eyws) = Mo (2)0je (2 +
e1)). Since the set {s: 17 —(2)n;s— (2 + ex # Mis(2)n;s(z + €x)} is ds-negligible,

t
[[ottatentdizlie w
0

t t
— [ el o) — | gl (£ G)ds

0 0
= 205 (o) (mis (@i (z + €)= M- (2 (= + 1)

s<t

- f > (nj,s(u)ms(z +er) — s (2)mis (2 + 6k)>77i75(2’)77j75(z +er))

0 UEAN
Ju—zl=1,ust e

- (77]',3(2 + €r))Mi,s(2) — 055 (2)ni,s (2 + ek))m,s(Z)??j,s(Z +ex))

- > (nj,s(z)m,s(v) — N, (2)1is (2 + ek)>m,s(2)m,s(2 + ex) }ds

UEAN
lv=(z+ex)|=10#2
t

= J,i,?iej (& wi) — J m,s(Z)nj,s(Z + ey)ds.

0

Let Vile, (€,w) = §y L fi21 e, (€6 ws)ds. By 166’ lemma,
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5.B. Quadratic variations computations

Ziek (fta Wt)fz,?iek (&, Wt)

t
- [ (e Ttte) + [ Fota(eow ity (6 uds.

0

Therefore, f1 1., (&, w)Vio e, (&, w0) =S (fz_;iek (&, ws) V2 1o, (&6, ws)ds is a martingale

and
~ 2 ~ ~ L
(Fzten@nwn) = Tzl (€)= 2( oo, (6 wi)VEzte, (6 )

t t o
- | (FtalGwaViaenw)) + | (= Fu(w)dVi, €ow)ds
0 0

By Doob’s decomposition, { J27, (€,w) ) = §y (1= 272280, (€, ws) ) AVEZTe, (€, wa)ds.
t
Hence? Slnce Sé <g;jj+€k (§S7 ws)dfz:)iek (§S7 ws)ds = J;,Ziek (é-t? wt)?

(Talew)) - f o isle + ) (1= FE (6000 ) AV (0 ds
~ [ meemale + )Vt ()

t
- f Mea(2)a( + er)ds
0

By inverting the direction of the jumps, we compute similarly that

(e, = [ e s )i
O

Lemma 5.B.2. Fort>0,1<¢<3 and x € Ay, @f(m) Q7 () So To fi(&syws)ds is
a IP’fYN -martingale whose quadratic variations is given by

Proof. As in previous lemma, one shall decompose the non-conservative dynamics ac-
cording to interaction between each type of particles 7, j € {0,1,2,3}. That i,s

Q7 (ni) = ), Q77 (& w) — QI (6 w)

J#i

where for fixed i, Q77 (£, w) corresponds to state j when z is in state i and Q%7 (£, w)
corresponds to flips to state ¢ when z is in state j. It suffices to consider the case
1 = 0,7 =1 as others follow a similar way.

As in the proof of Lemma for z € Ay consider f10(&,w;) = ms(2z) and
92 79(&, wi) = mos—(2). Identical computations give

<(Qiﬁ°<&w>)>t - fo tﬁ(z,s,wm,o(z)ds.
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To conclude the case Q7 (1), compute as well

t

(Q:°(&w))e = Jot n3.5(2)ds, (QI70(&,w)) = L Ms,1(2)ds,
<Qi_’3(§,W)>>t = Jt rns1(2)ds.

0

5.C Estimates in bounded domain

Lemma 5.C.1. For a smooth profile f: AN - (0,1)® such that G‘F = B, there exist

positive constants Ao, Ay and Ay depending only on 0 such that for any ¢ > 0, for any
fe L)),

Ly n fo ) = =Dy (), (5.C.1)
Lk, f) = —ADR(F) + AN fa(, ) (5.C.2)
Lk, £ = AN oy (5.C.3)

Proof. Since v} is reversible with respect to the generator Lj y, (5.C.1) is immediate.

To prove (5.C.2)), remark that for all A, B,¢ > 0, A(B— A) = —(B— A)?+ B(B — A)
and use ((5.3.17))

LRy j fle.w)( fy,wx’%—f(s,w))dumw)
:_;DO f FOPF ) = F ) v (€,)
j £ f<n>)du£<s,w>
— DR 2 ;(f 07°) SR ) (€, )
<-d- ic)D?\,( P+ SN2, + Ol

where we did a Taylor expansion of R; j’(é) which was defined in m

ALnff)=hL+1I
= 3 [ (vt gt~ g + @) fle. ) (Flo"6w) = 1)) ()

.Z’EAN
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5.C. Estimates in bounded domain

b Y| (r0 - @) + @) 160 (716 070) - 1)) (€.

mGAN

Let us deal with the first integral, the second will follow the same way. Since all the
rates are bounded, we have

h<ctnn Y | (f(f,w)f(axé“,w) ~ (& w)?) g (6 )

zEAN

Cuder) 3 [ (55602 + 506w = 1)) (6.0)

$€AN

for an arbitrary ¢ > 0 with use ((5.3.17)) for the last inequality. Choosing ¢ = 2,

C<)\1))\27 CC 2
11<4xEAfo & )P (6w
< C()‘la)\Qa Z ff 5 W dVA f w)
IEAN

for some positive constant B (5) depending on 0 through a change of variables related

to Lemma [5.A.2(ii). Similarly, one gets

O(Ah A27 )
4

I, < ffﬁw dw(ﬁw)

:EEAN

for some positive constant B’ (@) from a change of variables corresponding to Lemma
5.A.2((iii). Since f € L*(v;), we have

Wi, < AN g,

C(A1, Ao, 7)B(6)  C(M, Ao, r)B'(0)
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Perspectives

So far, we have been concerned with a competition model for a population dynamics
with random environment. Our results proved the existence of a unique phase transition
on Z% within a dynamic random environment on one hand, and survival and extinction
conditions on Z within a quenched random environment on the other hand. Assuming
these stochastic dynamics are underlying a microscopic scale, the hydrodynamic equa-
tion of the system with stirring is given by a non-linear reaction-diffusion system, with
additionally Dirichlet boundary conditions when in presence of stochastic reservoirs.

The following is an overview of possible guidelines.

Weak survival. Let 7; be the homogeneous tree whereby each vertex has d + 1
neighbours. A particular property that belongs to the basic contact process is that it
exhibits two phase transitions on 7y, meaning that according to Definitions of
Chapter [I} A. and A, are distinct. Following works on percolation by G. Grimmett and
C. Newman [36], R. Pemantle [68] proved that in dimension 3, weak survival occurs and

Ae < Agy Ae < ——

Extensions to dimension 2 and inhomogeneous trees were done by T.M. Liggett [56], 55]
and A. Stacey [73]. Still close to percolation behaviours [36], R. Durrett and R. Schinazi
[24] proved the existence of infinitely many invariant measure in the intermediate phase.

See R. Schinazi [69, Chapter VII|, T.M. Liggett [57, Part 1.4] for further details on
the contact process on the tree.

The existence of a weak survival arose interests in investigating the behaviour of the
process within the intermediate phase. Biologically, a weak survival phase is thought of
as being the tipping phase where the SIT program would fail or success.

Some observations lead to think the behaviour of our symmetric multitype process
is similar to the basic contact process. Though, D. Griffeath showed that weak survival
can occur for totally asymmetric contact processes on Z.

Random environment. We studied the contact process in a particular quenched
random environment. Improved results would rely on finding conditions on the distri-
bution of the environment for the survival or extinction of the process such as in C.
Newman and S. Volchan [66] did in a 1-dimension case. Primarily based on percola-
tion techniques, they proved the survival of the process with conditions on the tail of
distribution of the environment, when the growth rate is small enough.

Studying the hydrodynamics of our system, it is foreseeable to investigate the process
in the presence of a macroscopic random environment or disorder.

Stirring limits and Predator-prey systems. By scaling and stirring the particle
system in Chapters 4] and [5, we proved it converges to the solution of a reaction-diffusion
system. As stated by R. Durrett [I9, Chapter 9], it seems if one gets enough information
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Chapter 5. With stochastic reservoirs or in infinite volume

on the limiting differential system, one would be able to derive the existence of stationary
distributions for the system with stirring.

Here, we studied a system evolving in a bulk in contact with stochastic reservoirs,
creating a flow of particles through the volume. The macroscopic system has been in-
vestigated in a more intricate way than the microscopic one used to be. Going back to
a microscopic scale, thus to the dynamics of population, it is relevant to ask ourselves
how it alters the survival and extinction phases of the process.

Hydrostatics. In finite volume, e.g. when Ay = {—N, -+ N} x T‘]iv_l, the Markov

process (&, w;)i=0 on Ay is irreducible : for each NV > 1, there exists a unique invariant

measure 5%, In this case, we may derive the hydrostatic limit of the system.
25\ s y y y
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