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“Would you tell me, please, which way I ought to go from here ?”

“That depends a good deal on where you want to get to,” said the Cat.

“I don’t much care where—” said Alice.

“Then it doesn’t matter which way you go,” said the Cat.

“—so long as I get somewhere,” Alice added as an explanation.

“Oh, you’re sure to do that," said the Cat, “if you only walk long enough.”

– Lewis Carroll, Alice in Wonderland, Chapter VI.
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Résumé
Dans cette thèse, on étudie un système de particules en interaction qui généralise un

processus de contact, évoluant en environnement aléatoire. Le processus de contact peut
être interprété comme un modèle de propagation d’une population ou d’une infection.
La motivation de ce modèle provient de la biologie évolutive et de l’écologie comporte-
mentale via la technique du mâle stérile, il s’agit de contrôler une population d’insectes
en y introduisant des individus stérilisés de la même espèce : la progéniture d’une fe-
melle et d’un individu stérile n’atteignant pas de maturité sexuelle, la population se voit
réduite jusqu’à potentiellement s’éteindre.

Pour comprendre ce phénomène, on construit un modèle stochastique spatial sur
un réseau dans lequel la population suit un processus de contact dont le taux de crois-
sance est ralenti en présence d’individus stériles, qui forment un environnement aléatoire
dynamique.

Une première partie de ce document explore la construction et les propriétés du
processus sur le réseau Zd. On obtient des conditions de monotonie afin d’étudier la
survie ou la mort du processus. On exhibe l’existence et l’unicité d’une transition de
phase en fonction du taux d’introduction des individus stériles. D’autre part, lorsque
d “ 1 et cette fois en fixant l’environnement aléatoire initialement, on exhibe de nouvelles
conditions de survie et de mort du processus qui permettent d’expliciter des bornes
numériques pour la transition de phase.

Une seconde partie concerne le comportement macroscopique du processus en étu-
diant sa limite hydrodynamique lorsque l’évolution microscopique est plus complexe.
On ajoute aux naissances et aux morts des déplacements de particules. Dans un pre-
mier temps sur le tore de dimension d, on obtient à la limite un système d’équations
de réaction-diffusion. Dans un second temps, on étudie le système en volume infini sur
Zd, et en volume fini, dans un cylindre dont le bord est en contact avec des réservoirs
stochastiques de densités différentes. Ceci modélise des phénomènes migratoires avec
l’extérieur du domaine que l’on superpose à l’évolution. À la limite on obtient un sys-
tème d’équations de réaction-diffusion, auquel s’ajoutent des conditions de Dirichlet aux
bords en présence de réservoirs.

Mots-clefs. système de particules en interaction, modèle stochastique spatial, pro-
cessus de contact, milieu aléatoire, attractivité, percolation, transition de phase, limite
hydrodynamique, réservoirs.
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Abstract
In this thesis, we study an interacting particle system that generalizes a contact

process, evolving in a random environment. The contact process can be interpreted
as a spread of a population or an infection. The motivation of this model arises from
behavioural ecology and evolutionary biology via the sterile insect technique ; its aim is
to control a population by releasing sterile individuals of the same species : the progeny
of a female and a sterile male does not reach sexual maturity, so that the population is
reduced or potentially dies out.

To understand this phenomenon, we construct a stochastic spatial model on a lat-
tice in which the evolution of the population is governed by a contact process whose
growth rate is slowed down in presence of sterile individuals, shaping a dynamic random
environment.

A first part of this document investigates the construction and the properties of the
process on the lattice Zd. One obtains monotonicity conditions in order to study the
survival or the extinction of the process. We exhibit the existence and uniqueness of
a phase transition with respect to the release rate. On the other hand, when d “ 1
and now fixing initially the random environment, we get further survival and extinction
conditions which yield explicit numerical bounds on the phase transition.

A second part concerns the macroscopic behaviour of the process by studying its hy-
drodynamic limit when the microscopic evolution is more intricate. We add movements
of particles to births and deaths. First on the d-dimensional torus, we derive a system
of reaction-diffusion equations as a limit. Then, we study the system in infinite volume
in Zd, and in a bounded cylinder whose boundaries are in contact with stochastic reser-
voirs at different densities. As a limit, we obtain a non-linear system, with additionally
Dirichlet boundary conditions in bounded domain.

Keywords. interacting particle system, spatial stochastic model, contact process, ran-
dom environment, attractiveness, percolation, phase transition, hydrodynamic limit, re-
servoirs.
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1.1.1 The setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Invariant measures . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Coupling and stochastic order . . . . . . . . . . . . . . . . . . 5

1.2 A short story of the contact process . . . . . . . . . . . . 6

1.2.1 Construction of the process . . . . . . . . . . . . . . . . . . . 6
1.2.2 Upper invariant measure and duality . . . . . . . . . . . . . . 8
1.2.3 Survival and extinction . . . . . . . . . . . . . . . . . . . . . 9

1.3 Hydrodynamic limits . . . . . . . . . . . . . . . . . . . . . 11

1.4 From life and nature . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 The sterile insect technique . . . . . . . . . . . . . . . . . . . 12
1.4.2 Time to unleash the mozzies ? . . . . . . . . . . . . . . . . . . 13
1.4.3 Past mathematical models . . . . . . . . . . . . . . . . . . . . 14

1.5 The generalized contact process . . . . . . . . . . . . . . . 15

1.5.1 Phase transition in dynamic random environment . . . . . . . 17
1.5.2 Survival and extinction in quenched environment . . . . . . . 18
1.5.3 Hydrodynamic limit in a bounded domain . . . . . . . . . . . 18
1.5.4 Hydrodynamic limits with stochastic reservoirs or in infinite

volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

This thesis examines two different aspects of a generalized contact process. In a
microscopic scale, we study survival or extinction of the process with respect to varying
parameters. Then, we go to a macroscopic scale and establish hydrodynamic limits,
where in the dynamics of the underlying process we add displacements of particles and
further on migratory phenomena.

In this chapter, we introduce some general settings we shall make use of, first on
interacting particle systems in Section 1.1 and then on the contact process in Section
1.2. After what, in Section 1.4, we develop shortly the big picture of the sterile insect
technique. In Section 1.5, we describe a generalized contact process and our results that
lead to an understanding of this competition model.
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Chapter 1. Introduction

1.1 Interacting Particle Systems

Interacting particle systems are a class of Markov processes that arose in the early
seventies due to pioneering works by F. Spitzer [70, 71] and R.L. Dobrushin [16]. They
have provided a framework that describes the space-time evolution of an infinity of
indistinguishable particles governed by a strong random and local interaction.

This particular class of stochastic processes comes up in various areas of applications :
physics, biology, computer science, economics and sociology,... that dictate the nature
of the randomness of the processes.

1.1.1 The setup

As a preparation, one first reviews some necessary background theory about inter-
acting particle systems. For further contents on the topic, one refers the reader to T.M.
Liggett’s books [58, 57].

State spaces are of the form Ω “ F S, where F is discrete and finite, S is a countable
set of sites. Note that Ω is compact in the product topology. A configuration ζ P Ω is
described by the state of each site x of the graph S, given at time t by ζtpxq P F . For
each ζ P Ω and T Ă S, the local dynamics of the system is depicted by a collection
of transition measures cT pζ, dαq, assumed to be finite and positive on F T . Assume
further that the mapping ζ ÞÑ cT pζ, dαq is continuous from Ω to the space of finite
measures on F T with the topology of weak convergence. If ζ is the current configuration,
a transition of state or flip involving the coordinates in T occurs at rate cT pζ, F T q and
cT pζ, dαq{cT pζ, F T q is the distribution of the resulted configuration restricted to T .

We will use the notation Pζ for the distribution of the process pζtqtě0 starting from
the initial configuration ζ, and Eζ will denote the corresponding expectation. The infi-
nitesimal description of a process ζ P Ω is given by its generator L, a linear unboun-
ded operator defined on an appropriate dense domain DpΩq of the space of functions
f : Ω Ñ R. For any cylinder function f , i.e. that depends only on finitely many coordi-
nates, L is defined by

Lfpζq “
ÿ

T

ż

Ω

cT pζ, dαq
`
fpζαq ´ fpζq

˘
, (1.1.1)

where ζα is obtained from ζ only by flipping the coordinates in T , that is, for α P F T ,

ζα “
"
ζpxq if x R T,
αpxq if x P T.

The series converges provided that cT p., .q satisfies natural summability conditions.
Let CpΩq be the space of continuous real-valued functions on Ω equipped with the

uniform norm. All the processes we consider here have the Feller property (i.e. strong
Markov processes whose transition measures are weakly continuous in the initial state)
so that the semigroup St of the process on CpΩq is well defined :

2



1.1. Interacting Particle Systems

Theorem 1.1.1. Suppose tSt, t ą 0u is a Markov semigroup on CpΩq. Then there exists
a unique Markov process tP ζ , ζ P Ωu such that

Stfpζq “ Eζfpζtq
for all f P CpΩq, ζ P Ω and t ě 0.

The link binding the infinitesimal description of the process (generator) to the time-
evolution of the process (semigroup) is given by the Hille-Yosida theory set in the Banach
space CpΩq.
Theorem 1.1.2 (Hille-Yosida). There is a one-to-one correspondence between Markov
generators on CpΩq and Markov semigroups on CpΩq. This correspondence is given by

1. DpΩq “
"
f P CpΩq : lim

tÓ0

Stf ´ f

t
exists

*
, and

Lf “ lim
tÓ0

Stf ´ f

t
, f P DpΩq.

2. for t ě 0,

Stf “ lim
nÑ8pf ´ t

n
Lfq´n, f P CpΩq.

Relying on the Hille-Yosida theory, the following result states sufficient conditions
for the existence of an infinite particle system.

Theorem 1.1.3 (T.M. Liggett (1972)). Assume that

sup
xPS

ÿ

TQx
sup

´
cT pζ, F T q : ζ P Ω

¯
ă 8

and

sup
xPS

ÿ

TQx

ÿ

u‰x
sup

´
}cT pζ1, dαq ´ cT pζ2, dαq}T : ζ1pyq “ ζ2pyq for all y ‰ u

¯
ă 8

where } ¨ }T stands for the total variation norm of a measure on F T . Then the closure
L of L defined in (1.1.1) is the generator of a Feller Markov process pζtqtě0 on Ω. In
particular, if f is a cylinder function then,

Lf “ lim
tÑ0

Stf ´ f

t
,

LStf “ StLf

and uptq “ Stf is the unique solution to the evolution equation

Btuptq “ Luptq, up0q “ f. (1.1.2)

Let P be the set of probability measures on Ω equipped with the topology of weak
convergence, i.e.

µn Ñ µ in P if and only if
ż

Ω

fdµn Ñ
ż

Ω

fdµ

for all f P CpΩq. Note that the compactness of Ω implies the compactness of P in this
induced topology.

3



Chapter 1. Introduction

1.1.2 Invariant measures

Study of interacting particle systems involves use of their invariant measures and
ideally, convergence to them. If µ is a probability measure on Ω, the distribution of ζt
with initial distribution µ is denoted by µSt and is defined by

ż

Ω

fdpµStq “
ż

Ω

Stfdµ, f P CpΩq.

By the Riesz Representation theorem, this relation defines uniquely µSt. The measure
µ is invariant with respect to the process if µSt “ µ for all t ą 0. Denote by I the set
of all invariant measures. Furthermore,

Theorem 1.1.4 (Proposition 1.8 [58]). i. µ P I if and only if
ż

Ω

Lfdµ “ 0, for all cylinder functions f.

ii. I is compact, convex and non-empty.

iii. I is the closed convex hull of its extreme points.

iv. Let µ P P. If µ :“ lim
tÑ8

µSt exists, then µ P I.

Remark that a process always has at least one invariant measure. This measure
might satisfy a symmetry property called reversibility that allows simpler computations
or even, further results. A probability measure µ on Ω is reversible for the process if

ż

Ω

fStgdµ “
ż

Ω

gStfdµ, for all f, g P CpΩq

or equivalently,
ż

Ω

fLgdµ “
ż

Ω

gLfdµ, for all cylinder functions f, g.

1.1.3 Coupling and stochastic order

A coupling is a construction of two (or even more) stochastic processes on a common
probability space. To make use of this powerful tool, we will deal with several topics that
are closely connected with coupling such as stochastic order relations between proba-
bility measures, monotone processes and correlation inequalities. These useful relations
allow us to compare processes, so that one can deduce properties from one to another
by domino effect.

Assuming that F is totally ordered, the state space Ω is a partially ordered set, with
partial order given by

ζ ď ζ 1 if for all x P S, ζpxq ď ζ 1pxq, (1.1.3)

4



1.1. Interacting Particle Systems

where this last inequality refers to the order on F . A function f P CpΩq is increasing if

ζ ď ζ 1 ñ fpζq ď fpζ 1q.

This leads naturally to define the stochastic order between two probability measures µ1

and µ2 on Ω, that is, µ2 is stochastically larger than µ1, written µ1 ď µ2 if :

ż

Ω

fdµ1 ď
ż

Ω

fdµ2 for any increasing function f on Ω.

A necessary and sufficient condition for a semigroup, acting on measures, to preserve
the ordering on Ω is given by

Theorem 1.1.5 (Theorem 2.2 [57]). For a Feller process on Ω with semigroup St, the
following two statements are equivalent :

a. If f is an increasing function on Ω then Stf is an increasing function of Ω for all
t ě 0.

b. If µ1 ď µ2 then µ1St ď µ2St for all t ě 0.

Stochastic order between two particle systems pζtqtě0 and pζ 1
tqtě0 is given by the

existence of a coupled process pζt, ζ 1
tqtě0 on the probability space Ω ˆ Ω that preserves

the order between their initial configurations, that is, if ζ0 ď ζ 1
0 then ζt ď ζ 1

t a.s. for all
t ą 0. Such a coupling is said to be increasing and ζ 1

t is said to be stochastically larger
than ζt. When pζtqtě0 and pζ 1

tqtě0 are two copies of the same process, we say the process
is attractive.

The following result gives the connection between coupling and stochastic order.

Theorem 1.1.6 (Theorem 2.4 [58]). Let µ1 and µ2 be probability measures on Ω. Then
µ2 is stochastically larger than µ1 if and only if there exists a coupling pζ, ζ 1q such that ζ
has distribution µ1, ζ 1 has distribution µ2 and ζ ď ζ 1 almost surely, that is, there exists
a measure ν on Ω such that

νtpζ, ζ 1q : ζ P Au “ µ1pAq
νtpζ, ζ 1q : ζ 1 P Au “ µ2pAq
νtpζ, ζ 1q : ζ ď ζ 1u “ 1

Furthermore, we will consider different types of stochastic processes :

pξtqtě0 (basic) contact process
pξt, ωtqtě0 contact process in dynamic random environment

pηtqtě0 multitype contact process

5



Chapter 1. Introduction

1.2 A short story of the contact process

Introduced by T.E. Harris in 1974 [39], the contact process on the graph S with
growth rate λ1 is an interacting particle system pξtqtě0 on t0, 1uS, whose dynamics is
given by the following transition measure : the involved sets T are singletons T “ txu
and,

cT pξ, dαq “
"
λ1n1px, ξqδt1u if ξpxq “ 0,

δt0u if ξpxq “ 1,
(1.2.1)

where nipx, ξq “ ř
yPS:|y´x|“1

1tξpyq “ 1u stands for the number of neighbours of site x

that are in state i. Here | ¨ | refers to the maximum norm : |x| “ max
1ďjďd

|xj|, for x P Rd.

Denote by Pλ1
the law of the contact process with growth rate λ1.

It is usually interpreted as the spread of a population, an infection or a rumour.
Regarded as an infection, infected sites (in state 1) become healthy spontaneously after
a unit exponential time while healthy sites (state 0) become infected at some rate, pro-
portional to the number of their infected neighbours.

General theory about the contact process is finely exposed by T.M Liggett [58] for
results from 1974 to 1985, [57] for results after 1985 and by R. Durrett [18] as well.

1.2.1 Construction of the process

Let A be a subset of S. Define ξAt as the process starting from the initial configuration
ξ0 “ 1A. Configurations ξ P t0, 1uS are commonly identified with subsets of S via

ΞA
t “ tx P S : ξAt pxq “ 1u,

regarded as the set of occupied sites at time t. When A “ t0u, we will omit the exponent.
As a consequence of Theorem 1.1.3, the transition measure cT pξ, dαq uniquely defines a
Markov process, so that the infinitesimal generator of the contact process is defined for
any cylinder function f on t0, 1uS by

L1fpξq “
ÿ

xPS

ż

Ω

cT pξ, dαqrfpξαq ´ fpξqs (1.2.2)

Graphical representation The graphical construction of the contact process is due
to T.E. Harris [40]. The idea is to construct a percolation structure on which to define
the process, lending itself to the use of the theory of percolation (see G. Grimmett [33]).
To carry out this representation, for each pair px, yq P S2 that are joined by an edge in
S, let tT x,yn , n ě 1u be the arrival times of independent rate λ1 Poisson processes and for
each x P S, let tDx

n, n ě 1u be the arrival times of independent rate 1 Poisson processes.
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1.2. A short story of the contact process

Both families of Poisson processes are mutually independent. Now, think of the space-
time diagram S ˆ r0,8q. At time t “ Dx

n, put a death symbol “x” at px, tq P S ˆ r0,8q.
At time t “ T x,yn , draw an arrow from px, tq to py, tq.

By way of illustration, see Figure 1.1.

-2 -1 0 1 2

time

0

t

Figure 1.1: The graphical representation for the contact process on Z1 ˆ R`

For s ď t, there exists an active path in the space-time picture Sˆ r0,8q from px, sq
to py, tq, written px, sq Ñ py, tq, if there exists a sequence of times s “ s0 ă s1 ă ... ă
sn´1 ă sn “ t and spatial locations x “ x0, x1, ..., xn “ y such that

i. for i “ 1, ..., n, there is an arrow from xi´1 to xi at time si.

ii. for i “ 0, ..., n´ 1, the vertical segments txiu ˆ psi, si`1q contain no death symbol.

In words, an active path is a connected oriented path that moves forward in time wi-
thout crossing a death symbol and along the directions of the arrows. For instance, in
Figure 1.1, there is an active path from p0, 0q to p1, tq. The contact process with initial
configuration A Ă S is obtained by setting

AAt :“ ty P S : Dx P A such that px, 0q Ñ py, tqu

Therefore, in our previous example, At0u
t “ t1u.

The graphical construction provides a joint coupling of contact models with different
transition rates : let λp1q

1 ď λ
p2q
1 , if we constructed the process with rate λp2q

1 and we keep
each arrow with probability λp1q

1 {λp2q
1 , by the thinning property of the Poisson processes,

we end up with the graphical representation of a contact process with growth rate λp1q
1 .

7



Chapter 1. Introduction

Thus, one has a non-decreasing growth with respect to λ1. On the other hand, it also
provides a monotone coupling :

A Ă B ñ AAt Ă ABt ,

Therefore, the contact process is attractive and it also follows from the graphical construc-
tion that the contact process is additive (see D. Griffeath [32]) :

AAYB
t “ AAt Y ABt .

1.2.2 Upper invariant measure and duality

Since the partial order on Ω defined in (1.1.3) induces one on the set of probability
measures on Ω, there will be a lowest and largest element on I with respect to this
partial order.

If 0 denotes the configuration identically equal to 0, since 0 is an absorbing state
then δ0 is called the lower invariant measure for the contact process. The upper invariant
measure can be constructed using attractiveness : choose the initial configuration as the
biggest possible one, i.e. starting from Ξ0 “ S, and let µt be the distribution of ξt, so
that µ0 “ δ1. Then µt ď µ0. By attractiveness and applying the Markov property, we
have µt`s ď µt for all s ą 0. Therefore, t ÞÑ µt is decreasing and in particular, for every
increasing function f on Ω, the map t ÞÑ

ş
Ω
fdµt is decreasing as well. Since PpΩq is

compact for the weak topology, the limiting distribution

µ :“ lim
tÑ8

µt

exists and is the upper invariant measure of the process. It is invariant as a limiting
measure for the Markov process by Theorem 1.1.4. In particular, the measure µ has
positive correlations.

Correlation inequalities will be crucial property in Section 2.6 where we will work in
arbitrary large but finite spaces. A probability measure µ on Ω has positive correlations
if ż

Ω

fgdµ ě
ż

Ω

fdµ

ż

Ω

gdµ,

for all increasing functions f, g on Ω. A sufficient condition for a measure to have positive
correlations is given by the following result.

Theorem 1.2.1 (C. Fortuin, P. Kasteleyn and J. Ginibre [29]). Suppose S is finite. Let
µ be a probability measure on Ω such that for all ζ, ζ 1 P X

µ1pmaxpζ, ζ 1qqµ2pminpζ, ζ 1qq ě µ1pζqµ2pζ 1q

Then µ has positive correlations.
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1.2. A short story of the contact process

One essential property satisfied by the contact process is that it is self-dual [34,
Proposition 6.5], that is, the dual process is again a contact process. For A,B Ă S,

Pλ1
pΞA

t X B ‰ Hq “ Pλ1
pΞB

t X A ‰ Hq (1.2.3)

This property allows us to link an equality relation between survival probability and
density of 1’s under the upper invariant measure. Indeed, since tΞt0u

t`1 X S ‰ Hu Ă
tΞt0u

t X S ‰ Hu for all t ě 0, t ÞÑ tΞt0u
t X S ‰ Hu is non-increasing,

lim
tÑ8

Pλ1
pΞt0u

t X S ‰ Hq “ Pλ1
p@t ě 0, Ξt0u

t ‰ Hq

By self-duality, applying (1.2.3) with A “ t0u and B “ S, one obtains

Pλ1
pΞt0u

t X S ‰ Hq “ Pλ1
pΞS

t X t0u ‰ Hq.

The right-hand side is Pλ1
pΞS

t p0q “ 1q, and by weak convergence of µ0 to µ, one has

lim
tÑ8

Pλ1
pΞS

t p0q “ 1q “ µ̄tξ : ξp0q “ 1u

where µ stands for the upper invariant measure of pξtqtě0. By translation invariance of
µ,

lim
tÑ8

Pλ1
pΞt0u

t X S ‰ Hq “ lim
tÑ8

Pλ1
pξSt p0q “ 1q “ µ̄tξ : ξpxq “ 1u (1.2.4)

1.2.3 Survival and extinction

A key feature of the contact process lies in the fact its growth does not evolve spon-
taneously but depends on some neighbourhood. In words, the configuration 0 is a trap
and a natural question is whether the individuals survive, that is, if there is infinitely
often a site in state 1. The main feature of the contact process is that it exhibits a phase
transition in the following way.

Define the survival event of the process by t@t ě 0, Ξt ‰ Hu with the initial
configuration ξ0 “ 1t0u. The contact process is said to die out if

Pλ1
p@t ě 0, Ξt ‰ Hq “ 0

and to survive strongly if
Pλ1

p lim
tÑ8

ξtp0q “ 1q ą 0.

The process is said to survive weakly if it survives but not strongly, that is,

Pλ1
p@t ě 0, Ξt ‰ Hq ą 0.

Using these definitions and monotonicity, we are now ready to define the two following
critical values :

λc “ inftλ1 : Pλ1
p@t ě 0 Ξt ‰ Hq ą 0u (1.2.5)

9



Chapter 1. Introduction

and
λs “ inftλ1 : Pλ1

p lim
tÑ8

ξtp0q “ 1q ą 0u. (1.2.6)

for which, the process

dies out if λ1 ă λc
survives weakly if λc ă λ1 ă λs

survives strongly if λ1 ą λs

Since
t lim
tÑ8

ξtp0q “ 1u Ă t@t ě 0 Ξt ‰ Hu,

if the process survives weakly then it survives strongly thus λc ď λs.
On the d´dimensional integer lattice Zd, one of the most important results about

the contact process is the existence and uniqueness of a critical value λc “ λs.

Theorem 1.2.2 (T.E. Harris [39]). There exists a critical value λc P p0,8q such that
the contact process survives if λ1 ą λc and dies out if λ1 ă λc, i.e.

Pλ1
p@t ě 0, Ξt ‰ Hq “ 0 if λ1 ă λc,

Pλ1
p@t ě 0, Ξt ‰ Hq ą 0 if λ1 ą λc.

After having been an open question during about fifteen years, the critical behaviour
has been given by

Theorem 1.2.3 (C. Bezuidenhout and G.R. Grimmett [5]). The critical contact process
dies out, that is,

Pλc
p@t ě 0, Ξt ‰ Hq “ 0.

R. Holley and T.M. Liggett [41] proved λc ď 2 in the one-dimensional case. An
improved upper bound 1.942 was given by T.M. Liggett [54]. More generally, one has
for the general case d ě 1,

p2d ´ 1q´1 ď λc ď 2d´1,

see N. Konno [47] for further information on bounds of the contact process.

1.3 Hydrodynamic limits

Hydrodynamic limits are a device that arose in statistical physics to derive deter-
ministic macroscopic evolution laws assuming the underlying microscopic dynamics are
stochastic.

By way of illustration, consider the evolution of a system constituted of a large
number of components (such as a fluid), one can examine and characterize the equi-
librium states of the system through macroscopic quantities (such as temperature or
pressure). Now, investigating the fluid in a volume which is small macroscopically but
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large microscopically, the system is close to an equilibrium state and characterized by
some spatial parameter. As the local equilibrium picture should evolve in a smooth way,
at some time t the system is close to a new equilibrium state now characterized by a
parameter depending on space and time. This space-time parameter evolves smoothly
in time according to a partial differential equation, the hydrodynamic equation.

To take the limit from the microscopic to the macroscopic system, we need to in-
troduce a suitable space-time scaling. Consider a microscopic space SN embedded in
a corresponding macroscopic space S (e.g. SN “ pZ{NZqd and S “ pR{Zqd) so each
microscopic vertex x P SN is associated to a macroscopic vertex x{N P S. Therefore,
distance between particles converges to zero. Besides, we renormalize the time by linking
a microscopic time t to a macroscopic time tθpNq (e.g. θpNq “ N2), since more time is
needed in the macroscopic scale to observe movements of particles.

To investigate the hydrodynamic behaviour of interacting particle systems we shall
prove that starting from a sequence of measures associated to some initial density profile
ρ0, in the following sense

lim
NÑ8

µN

˜ˇ̌
ˇ 1
Nd

ÿ

xPSN

Gpx{Nqηpxq ´
ż

S

Gpuqρ0puqdu
ˇ̌
ˇ ą δ

¸
“ 0 (1.3.1)

for any δ ą 0 and continuous function G : S Ñ R, then at some renormalized time
tθpNq, we obtain a state StθpNqµN associated to a new density profile ρtp¨q that is a
weak solution of a partial differential equation. That is,

lim
NÑ8

µN

˜ˇ̌
ˇ 1
Nd

ÿ

xPSN

Gpx{NqηtθpNqpxq ´
ż

S

Gpuqρtpuqdu
ˇ̌
ˇ ą δ

¸
“ 0. (1.3.2)

In other words, the sequence of measures µN integrates the density ρt at the macroscopic
point u P S in the same way than an equilibrium measure of density γpuq does.

Since we shall work in a fixed space as N increases, we will examine the time-
evolution of the empirical measures associated to the interacting particle system : for a
configuration η P Ω, define the empirical measure πNpηq on S associated to η by

πNpηq “ N´d
ÿ

xPSN

ηpxqδx{N , (1.3.3)

where δx represents the Dirac measure concentrated on x. This way, we can express
(1.3.2) in terms of the empirical density, by integrating G with respect to πN . Since
there is a one-to-one correspondence between a configuration η and empirical measure
πNpηq, the measure πNt inherits the Markov property.

The goal to derive the hydrodynamic limits is to prove the empirical measure πNt
converges in probability to an absolutely continuous measure ρpt, uqdu where ρtpuq is
the solution of a partial differential equation with initial condition ρ0.

Monographs dealing with hydrodynamic limits include A. De Masi and E. Presutti
[15], H. Spohn [72] C. Kipnis and C. Landim [42].
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1.4 From life and nature

During the last decades, a better understanding of biological phenomena has arisen
the need to study stochastic spatial processes. Authors such as R. Durrett, R. Schinazi,
or J. Schweinsberg have deemed the relation of interacting particle systems to biological,
ecological and medical frameworks. A quick interesting overview may be found in joint
papers of R. Durrett with the biologist S. Levin [21, 22], and [20].

In this document, the biological phenomenon we are concerned is the so-called Sterile
insect technique (SIT). Due to entomologists R.C. Bushland and E.F. Knipling’s works
[46] in the fifties, it is a pest control method whereby sterile individuals of the popula-
tion to either regulate or eradicate are released. While sterile males compete with wild
males, they eventually mate with (wild) females preventing the apparition of progenies.
By repeated releases, we should be able to cause a variety of outcomes ranging from
reduction to extinction.

1.4.1 The sterile insect technique

In the thirties and forties, the idea of designing a gene that actively spreads through
a pest population without conveying some fitness advantage had arisen independently
by A. S. Serebrovskii (Moscow State University), F. L. Vanderplank (Bristol Zoo and
Tanzania Research Department) and E. F. Knipling (United States Department of Agri-
culture). Serebrovskii and Vanderplank both sought to achieve pest control through par-
tial sterility that occurs when different species or genetic strains were hybridized (using
chromosomal translocations or crossing) : competition between two interbreeding strains
doesn’t favour the fitter group, involving the genetic property called under-dominance
which can actually cause the strain with greater fitness to die out.

Discovery and first success story. Discovery of induced mutagenesis by 1946 No-
bel Prize H.J. Muller conducted Bushland and Knipling to use ionizing radiation in the
sterilization process to get rid of the new world screw-worm fly (Cochliomyia hominivo-
rax).

After successful eradication programs carried out in Curaçao and Florida in the late
fifties, the technique was applied during the next decades to eradicate the screw-worm
from the USA, Mexico, and Central America to Panama, until it has been declared a
fly-free area.

The big picture. Food safety, quality and biodiversity have required demands at
national and international levels for the development and introduction of area-wide
(and biological approaches) for integrated management of pest control.

Fruit flies are a major interference in the marketing of fruit and vegetable commo-
dities, preventing therefore important economic developments. The Mediterranean fruit
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fly (medfly) is a notorious insect pest threatening multi-million commodities export
trade throughout the world.

In the seventies, a first large-scale program stopped the invasion of the medfly from
Central America. Eradication from Mexico and maintaining the country free of this pest
at an annual cost of US$ 8 million, has protected fruit and vegetable export markets of
close to US$ 1 billion a year.

In Japan, the SIT was employed in the eighties and nineties to eradicate the melon
fly in Okinawa and south-western islands, permitting access for fruits and vegetables
produced in these islands to the main markets in the mainland. A program with Peru
operates in Argentina, northern Chile and southern Peru. Chilean fruits have entered
the US market for exports estimated to up to US$ 500 million per year.

More recently, the SIT is increasingly applied with eradication programs of fruit
flies ongoing in Middle-East (Israel, Jordan, Palestine), South Africa, and Thailand ; in
preparation in Brazil, Portugal, Spain, and Tunisia.

Economic benefits have been confirmed so that for medflies and other fruit flies, the
current worldwide production capacity of sterile individuals has reached several billion
a week.

Future trends. Lauded for its attributes in terms of economics, environment and
safety, the technique has successfully been able to get rid of populations threatening
livestocks, fruits, vegetables, and crops. But besides economic reasons to involve SIT,
public health issues have induced governments to request supports from International
Atomic Energy Agency (IAEA) and Food and Agriculture Organization of the United
Nations (FAO) for SIT initiatives to stem vector-borne diseases.

1.4.2 Time to unleash the mozzies ?

Thinking about the deadliest animal in the world, mosquitoes would not hit our
minds. But one estimates about 1 million people per year die from mosquito-borne
diseases, such as malaria, dengue fever, etc ... [Source : World health organization].

Urbanisation, globalisation and climate change have accelerated the spread and in-
creased the number of outbreaks of new mosquito-borne diseases, such as the dengue.

Considered as the fastest growing disease, dengue fever is currently not cured by
any vaccine or effective antiviral drug, meaning that mosquito control is the only viable
option to control the disease at short notice. The SIT has the potential to reduce the
targeted mosquitoes population to a level below which the disease is not transmitted.
A first trial using sterile mosquitoes was conducted in El Salvador in the seventies,
where 4.4 million sterile individuals were released in a 15 square km area over 22 weeks,
eradicating successfully the targeted population. Going on a much larger area, total
suppress of the population failed due to an immigration of local mosquitoes into the
trial area.
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Figure 1.2: Average number of dengue cases in most highly endemic countries as re-
ported to WHO 2004-2010.

Being the highest endemic country of dengue, the brazilian government is highly
concerned by the expansion of the dengue fever. According to pilot-scale releases in the
state of Bahia started in june 2013, releases of genetically modified mosquitoes resulted
in a 96% reduction of the wild population in the target area after 6 months- level
maintained for a further 7 months using continued releases, at reduced rates, to avoid
re-infestation.

The National Technical Commission for Biosecurity (CTNBio) in Brazil recently
approved (april 2014) the commercial release of genetically modified mosquitoes in a
bid to curb outbreaks of dengue fever. As of july 2014, the research program in the state
of Bahia is waiting for an approval granted by the Brazilian Health Surveillance Agency
(ANVISA) to ensue a scaling-up of the program. [Source : Comissão Técnica Nacional
de Biossegurança (CTNBio), Agência Nacional de Vigilância Sanitária (ANVISA).]

1.4.3 Past mathematical models

Even if models of population dynamics are typically posed as difference or differential
equations, such as predator-prey systems (whose Nicholson-Bailey and Lotka-Volterra
models are the work horses), stochastic models give additional information on the expec-
ted variability of the resulting control. Some of them were developed by Kojima (1971),
Bogyo (1975), Costello and Taylor (1975), Taylor (1976) and Kimanani and Odhiambo
(1993), and they confirmed the former results of Knipling (1955) [46] and others that
used deterministic models.

As a former model, Knipling (1955, 1959) derived a simple numerical model foresha-
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dowing most future modelling developments. The key feature of Knipling’s models, and
found in most of all subsequent models, is the ratio of fertile males to all males in the
population. Simply modifying a geometric growth model,

Ft`1 “ λpWt{pS ` WtqqFt

where Ft and Wt is the population size of females and wild males at time t, λ is the
growth rate per generation, R is the release rate of sterile individuals each generation.
This yields an unstable positive equilibrium for F when R “ R˚, where R˚ “ F pλ´ 1q
denotes the critical release rate, so that if R ą R˚ then the population collapses while
if R ă R˚ then the population will increase indefinitely.

The question of the competitive ability of males was modelled amongst others by
Berryman (1967), Bogyo et al. (1971), Berryman et al. (1973), Ito (1977), and Barclay
(1982) all showing that the critical release rate increases as the competitive ability of
sterilized individuals decreases.

For a general overview of the technique, we refer the reader to [27].

1.5 The generalized contact process

In the further chapters, one constructs a contact process in random environment to
lead a better understanding of this ecological phenomenon. Fix growth parameters λ1,
λ2 and release rate r.

One introduces the contact process in dynamic random environment (CP-DRE) on
the graph S with parameters set pλ1, λ2, rq as an interacting particle system pξt, ωtqtě0 P
pt0, 1u ˆ t0, 1uqS that evolves through the following dynamics. The environment part
pωtqtě0 evolves independently according to

0 Ñ 1 at rate r, 1 Ñ 0 at rate 1, (1.5.1)

while the contact process part evolves at x P S according to

0 Ñ 1 at rate
ř

y:}y´x}“1

´
λ1ξpyqp1 ´ ωpyqq ` λ2ξpyqωpyq

¯
,

1 Ñ 0 at rate 1.
(1.5.2)

As we shall see, the most interesting case corresponds to λ2 ď λc ă λ1, where λc denotes
the critical value of the (basic) contact process. In words, the CP-DRE depicts a basic
contact process whose growth rate is either subcritical or supercritical according to a
time-evolving random environment which is parametrized by a rate r.

In our framework, one understands the environment as the space-time evolution of
the sterile population released at rate r while the contact process stands for the wild
population. When mixed up on a site, a competition between the two species occurs,
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slowing down the growth of the wild individuals to a subcritical rate λ2, if not, the wild
individuals perform a supercritical contact process. Each individual dies spontaneously
at rate 1.

In a traditional overview, the contact process part describes the spread of an infec-
tion, so that the environment is thought of as being an immune response, attempting
to slow down the expansion of the infection.

We also make use of a different but equivalent outlook of this process, that is, one
constructs a (single) multitype contact process pηtqtě0 on t0, 1, 2, 3uS, where each of these
values corresponds to a possible combination of values taken by the process pξt, ωtqtě0.
This way, a site x of S is empty if in state 0, occupied by type-1 individuals if in state
1, by type-2 individuals if in state 2 and occupied by both types simultaneously if in
state 3.

It is important to underline that a site is occupied by a type of individuals and not
as usual, by the number of individuals present standing on. We shall therefore rather
think of a multicolour system.

Biologically speaking, one interprets the type-1 individuals as being the wild in-
dividuals and the type-2 as being the sterile individuals. Sites in state 3 containing
both types represent sites where competition occurs. We say that sites in state 1 or 3
constitute the wild population.

Furthermore, in the multitype outlook we consider two kinds of action for the type-2
individuals that are reducing the growth rate in sites in state 3. In a so-called asymmetric
case, type-2 individuals prevent births from occurring in sites they are standing on. Call
it symmetric otherwise. Common transition rates for both cases at site x are given by

0 Ñ 1 at rate λ1n1px, ηq ` λ2n3px, ηq 1 Ñ 0 at rate 1
0 Ñ 2 at rate r 2 Ñ 0 at rate 1
1 Ñ 3 at rate r 3 Ñ 1 at rate 1

3 Ñ 2 at rate 1

(1.5.3)

in which one adds the following transition in the symmetric case

2 Ñ 3 at rate λ1n1px, ηq ` λ2n3px, ηq. (1.5.4)

As competition occurs in sites in state 3, growth rate λ2 has to be lower than growth rate
λ1 of sites in state 1 where only type-1 individuals live. One thus makes the hypothesis :

λ2 ă λ1. (1.5.5)

Here, since the presence of type-2 individuals dictate the growth rate of type-1 indi-
viduals, to even inhibit births in the asymmetric case, the type-2 individuals shape a
dynamic random environment for the type-1 individuals.

16



1.5. The generalized contact process

Both outlooks of the process are linked by the following relations :

ηpxq “ 0 Ø p1 ´ ξpxqqp1 ´ ωpxqq “ 1
ηpxq “ 1 Ø ξpxqp1 ´ ωpxqq “ 1
ηpxq “ 2 Ø p1 ´ ξpxqqωpxq “ 1
ηpxq “ 3 Ø ξpxqωpxq “ 1

In a microscopic scale, we examine survival and extinction conditions for the popula-
tion, after what, taking the hydrodynamic limit, we study the behaviour of the densities
of each type of population at a macroscopic scale.

1.5.1 Phase transition in dynamic random environment

Set S as the d-dimensional integer lattice Zd, d ě 1. In Chapter 2, one investigates
how the release rate affects the behaviour of the process.

First, we point out general properties of the system, such as necessary and sufficient
conditions for the process to be monotone, then, only sufficient conditions to be in line
with the construction of the process. The tricky part to prove these conditions lies in
the definition of an order on the state space t0, 1, 2, 3uZd

, since a value on a given site
does not correspond to the number of particles but a type. This is the interest of the
next result.

Proposition. The symmetric multitype process is monotone, in the sense that, one can
construct on a same probability space two symmetric multitype processes pηp1q

t qtě0 and
pηp2q
t qtě0 with respective parameters pλp1q

1 , λ
p1q
2 , rp1qq and pλp2q

1 , λ
p2q
2 , rp2qq, such that

η
p1q
0 ď η

p2q
0 ùñ η

p1q
t ď η

p2q
t a.s. for all t ě 0 (1.5.6)

if and only if both parameters sets satisfy

1. λp1q
2 ď λ

p1q
1 ,

2. λp2q
2 ď λ

p2q
1 ,

3. λp1q
1 ď λ

p2q
1 ,

4. λp1q
2 ď λ

p2q
2 ,

5. rp1q ě rp2q

6. λp1q
1 ď 1,

7. λp1q
2 ď 1,

8. rp1q ě 1.

Essentials of SIT concern the control of the population by releasing sterile indivi-
duals, the question we address now is for which values of r does the wild population
survive or die out ? For this, we prove the existence and uniqueness of a phase transition
with respect to the release rate r for fixed growth rates λ1 and λ2. The most interesting
cases are discussed in the following results :

Theorem. Suppose λ2 ď λc ă λ1 fixed. Consider the symmetric multitype process.
There exists a unique critical value rc P p0,8q such that the wild population survives if
r ă rc and dies out if r ě rc.

Theorem. Suppose λc ă λ1 fixed. Consider the asymmetric multitype process. There
exists a unique critical value sc P p0,8q such that the wild population survives if r ă sc
and dies out if r ě sc.
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This actually confirms the former conclusions done by Knipling (1955) in a determi-
nistic model mentioned in Section 1.4.

Proofs strongly rely on the use of graphical representations and comparison with
percolation processes that introduced M. Bramson and R. Durrett [11]. Using dynamic
renormalization techniques from G. Grimmett et al. [2, 35], we are in particular able to
describe the behaviour of the critical process. As a consequence, this allows us to discuss
the competitive ability of the sterile individuals which was biologically exhibited (as
mentioned in Section 1.4) : one shows the critical value increases as the competitiveness
of the sterilized population decreases or as the fitness of the wild population increases.

We end up this chapter by considering the associated mean-field equations. This
shows us a dynamical system featuring the densities of each type of individuals. There,
we can explicit equilibria and mainly explicit numerical bounds on the transitional phase.
We shall derive a rigorous proof of the convergence of the empirical densities to these
macroscopic equations in Chapters 4 and 5.

1.5.2 Survival and extinction in quenched environment

In the previous chapter, we were unable to get a hand on bounds for the critical rate.
Most of the arguments made use of theory of percolation, misfit to explicit criteria for
the survival and extinction events. A way to come to this end is to consider the process
pξt, ωqtě0 by restricting the random environment to be initially fixed and setting S “ Z.

Using former results obtained by T.M. Liggett [52, 53], one obtains in Chapter 3
several survival and extinction conditions for the process. In that way, we consider two
kinds of growth rates in Z : one where the rates depend on the edges and one where the
rates depend on the vertices. This yields numerical bounds on the transitional phase for
the process to survive or die out.

After having investigated the behaviour of each type of individuals in a microscopic
scale, we now turn into the study of the system in a macroscopic scale. When the
microscopic evolution is more intricate, by a suitable scaling in time and space, we
investigate the convergence of the empirical densities of each type of population.

1.5.3 Hydrodynamic limit in a bounded domain

In Chapter 4, set S “ Td the d-dimensional torus, and assume the microscopic dy-
namics is driven by the asymmetric multitype process pηtqtě0 along with a diffusion
process, modelling the migrations of the individuals. The diffusion process we consider
here is a stirring process that exchanges two neighbouring occupation variables. Resul-
ting with a reaction-diffusion process, we prove the convergence of the time-evolution
of the empirical densities to the weak solution of a reaction-diffusion system.
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1.5.4 Hydrodynamic limits with stochastic reservoirs or in in-
finite volume

One of the recurring reasons why the SIT fails, comes from an unexpected immi-
gration in the system that prevents to maintain the pest population at a low level after
regular releases. Such migrations with the external of the targeted area suggests the
microscopic system is likely to be in non-equilibrium states.

In Chapter 5, one considers the microscopic time-evolution to be driven by the CP-
DRE along with a rapid-stirring process. We consider a bounded cylinder connected to
stochastic reservoirs at its boundaries with different densities in a stationary regime,
creating and annihilating individuals. Such reservoirs create a flow through the system
that put it in a nonequilibrium state, as dynamics within the bulk is no more reversible.
Jointly with M. Mourragui and E. Saada, we establish the limiting equations given by
a non-linear reaction-diffusion system with Dirichlet boundary conditions and a law of
large numbers for the empirical currents. In a second step, we derive the hydrodynamic
limit of the CP-DRE with rapid-stirring in infinite volume Zd.
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2.1 Introduction

The Sterile insect technique concerns the control of a population by releasing sterile
individuals of the same species, leading to a competition with the wild individuals to
the reproduction. When a match with sterile individuals occurs, offsprings reach neither
the adult phase nor sexual maturity, reducing the next generation.

This chapter is an attempt to understand the behaviour of the wild population with
respect to the release of the competitive sterile individuals in this model. Following issues
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Chapter 2. Phase transition on Zd

corresponding to biology and ecology, a wide class of multi-type contact processes has
emerged. Relevant questions are to identify the mechanisms involving survival, existence
or coexistence of species ; such questions have been topics of works such as the grass-
bushes-tree model by R. Durrett and G. Swindle [26], a 2-type contact process by C.
Neuhauser [65], a 3-type model by R. Durrett and C. Neuhauser [23] for the spread of
a plant disease.

The populations we consider are composed of wild males whereby sterile males are
released at rate r to curb their development. We investigate the survival of the wild
ones whose growth rate is time-evolving and randomly determined depending on the
dynamics of the sterile individuals.

In Section 2.2, we describe the model and introduce some preliminary results about
stochastic order and percolation. Then, we build graphically the particle system through
Harris’ graphical representation in Section 2.3. After exhibiting necessary and sufficient
conditions for monotonicity properties in Section 2.4, we prove the existence and uni-
queness of a phase transition with respect to the release rate in Sections 2.5 and 2.6.

2.2 Settings and results

2.2.1 The model

On the state space Ω “ F S, where F “ t0, 1, 2, 3u and S “ Zd, the multitype contact
process is an interacting particle system pηtqtě0 whose configuration at time t is ηt P Ω,
that is, for all x P Zd, ηtpxq P F represents the state of site x at time t. Two sites x and
y are nearest neighbours on Zd if }x ´ y} “ 1, also written x „ y, and nipx, ηtq stands
for the number of nearest neighbours of x in state i, i “ 1, 3.

One understands the model as follows : at time t, a site x in Zd is empty if in state
0, occupied by type-1 individuals if in state 1, by type-2 individuals if in state 2 and by
both type-1 and type-2 individuals if in state 3.

Note that we only consider the type of individuals standing on each site and not
their number. Moreover, we assume no limit on the number of female individuals, which
is biologically a reasonable assumption (see Chapter 1).

Type-2 individuals act in two possible ways, they will reduce the growth rate of
the type-1 individuals within sites in state 3. There, a competition occurs, so that the
growth rate λ2 shall be lower than the regular growth rate λ1 in type-1 population where
stand only wild individuals. Our basic assumption is thus,

λ2 ă λ1. (2.2.1)

Furthermore, in a so-called asymmetric case, type-2 individuals will stem births on sites
they occupy.

Since we deal with the evolution of a population modelled by a particle system, we
will often mingle the terms “individuals” and “particles”.
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The multitype contact process. Common transitions to both cases are the follo-
wing : individuals on a site in state 1 (resp. 3) gives birth to type-1 individuals at rate
λ1 (resp. λ2) on one of its 2d nearest neighbour sites, if empty. A type-2 individual is
dropped independently and spontaneously at rate r on any site in Zd. Each type dies at
rate 1, deaths are mutually independent. In the so-called symmetric case, births occurs
on sites in state 2 as well.

Transition rates in x for a current configuration η that are common to both cases
are :

0 Ñ 1 at rate λ1n1px, ηq ` λ2n3px, ηq 1 Ñ 0 at rate 1
0 Ñ 2 at rate r 2 Ñ 0 at rate 1
1 Ñ 3 at rate r 3 Ñ 1 at rate 1

3 Ñ 2 at rate 1

(2.2.2)

to which one adds the following transition in the symmetric case

2 Ñ 3 at rate λ1n1px, ηq ` λ2n3px, ηq. (2.2.3)

Therefore, the evolution of type-2 individuals occurs whatever the evolution of type-
1 individuals is. Since type-2 individuals dictate the growth rate and even inhibit births
in the asymmetric case, the type-2 individuals shape a dynamic random environment
for the type-1 individuals.

In both cases, if η P Ω and x P Zd, denote by ηix P Ω, i P t0, 1, 2, 3u, the configuration
obtained from η after a flip of x to state i :

η ÝÑ ηix at rate cpx, η, iq, where @u P Zd, ηixpuq “
"
ηpuq if u ‰ x

i if u “ x
(2.2.4)

Let L be the infinitesimal generator of pηtqtě0, then for any cylinder function f on Ω :

Lfpηq “
ÿ

xPZd

3ÿ

i“0

cpx, η, iq
`
fpηixq ´ fpηq

˘
(2.2.5)

with infinitesimal transition rates, common to both cases,

cpx, η, 0q “ 1 if ηpxq P t1, 2u

cpx, η, 1q “
"
λ1n1px, ηq ` λ2n3px, ηq if ηpxq “ 0
1 if ηpxq “ 3

cpx, η, 2q “
"
r if ηpxq “ 0
1 if ηpxq “ 3

cpx, η, 3q “ r if ηpxq “ 1

(2.2.6)
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Chapter 2. Phase transition on Zd

and add the following rate in the symmetric case :

cpx, η, 3q “ λ1n1px, ηq ` λ2n3px, ηq if ηpxq “ 2.

Notice that all rates satisfy for all i P F ,

cpx, η, iq ě 0, sup
x,η

cpx, η, iq ă 8, (2.2.7)

sup
xPZd

ř
uPZd

sup
η

|cpx, ηu, iq ´ cpx, η, iq| ă 8. (2.2.8)

Under these mild conditions, by Theorem 1.1.3 there exists a unique Markov process
associated to the generator (2.2.5). Denote by pηAt qtě0 the process starting from A, i.e.
such that η0 “ 1A, in other words η0 corresponds to the configuration containing sites in
state 1 in A and empty otherwise. We care about the evolution of the wild population,
i.e. individuals contained in sites in state 1 and 3. Define

HA
t “ tx P Zd : ηAt pxq P t1, 3uu, (2.2.9)

as the set of sites containing the wild population at time t ě 0. Note that since η0 “ t0u,
H

t0u
0 “ tx P Zd : ηt0u

0 pxq “ 1u.

Denote by Pλ1,λ2,r the distribution of pηt0u
t qtě0 with parameters pλ1, λ2, rq. For fixed

λ1 and λ2, simplify by Pr.

Definition 2.2.1. The process pηtqtě0 with initial configuration η0 “ 1t0u, survives if

Pλ1,λ2,rp@t ě 0, Ht0u
t ‰ Hq ą 0 (2.2.10)

and dies out if
Pλ1,λ2,rpDt ě 0, Ht0u

t “ Hq “ 1. (2.2.11)

Define the critical value according to the parameter r by

rc “ rcpλ1, λ2q :“ inftr ą 0 : PrpDt ě 0, Ht0u
t “ Hq “ 1u (2.2.12)

Indeed, the class t0, 2u is a trap : as soon as Ht “ H, the wild population is extinct
while sterile individuals are constantly dropped along the time.

Recall λc stands for the critical value of the basic contact process. The purpose of
this chapter is to settle the following results.

We begin by a first set of conditions for the process to survive or die out, when
λ2 ă λ1 are both smaller or larger than λc :

Proposition 2.2.1. Suppose λ2 ă λ1 ď λc. For all r ě 0, both symmetric and asym-
metric multitype processes with parameters pλ1, λ2, rq die out.
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Proposition 2.2.2. Suppose λc ă λ2 ă λ1. For all r ě 0, the symmetric multitype
process with parameters pλ1, λ2, rq survives.

The most interesting cases are given by

Theorem 2.2.1. Suppose λ2 ă λc ă λ1. Consider the symmetric multitype process.
There exists a unique critical value rc P p0,8q such that if r ă rc, then the process
survives and if r ą rc, then the process dies out.

Theorem 2.2.2. Suppose λc ă λ1 and λ2 ă λ1. Consider the asymmetric multitype
process. There exists a unique critical value sc P p0,8q such that if r ă sc, then the
process survives and if r ą sc, then the process dies out.

In both cases, one has

Theorem 2.2.3. The critical multitype process dies out.

The next two subsections are setting preliminaries to prove these results.

2.2.2 Necessary and sufficient conditions for attractiveness

We saw in Chapter 1 the stochastic order between two processes is related to the
total order defined on the set of values taken by both processes, here on F “ t0, 1, 2, 3u.
In a biological context, setting an order between types of individuals does not make any
sense, but mathematically it allows us to construct a monotone model and to compare
different dynamics as well. This is the purpose of Section 2.4, using Theorem 2.2.4
below. Elements of F can be understood as species of respective types A, B, C and D.
A process can be made attractive by reordering its space of values. Subsequently, denote
by A the state 2, by B the state 0, by C the state 3 and by D the state 1, ordered by

A ă B “ A ` 1 ă C “ B ` 1 ă D “ C ` 1. (2.2.13)

Extending conditions obtained by T. Gobron and E. Saada [31] for conservative particle
systems, D. Borrello [10] has settled necessary and sufficient conditions to non conser-
vative dynamics to determine stochastic order between two processes. Particularly, [10,
section 2.2.2] deals with multitype contact processes corresponding to our framework.
We will see that this order is actually the only possible one that preserves the stochastic
order.

Let x, y P Zd be two neighbouring sites and α, β P F , rewrite the transition rates of
pηtqtě0 with notations of [10], for k P t1, 2u, as

‚ R
0,k
α,β the growth rate of a type-1 individual in y such that ηpyq “ β, depending

only on the value of ηpxq “ α. The state in y flips from β to β ` k.

‚ P k
β the jump rate of a site from state ηpyq “ β to state β ` k, depending only on

the value of ηpyq.
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‚ P´k
α the jump rate of a site from state ηpxq “ α to state α´k for k ď α, depending

only on the value of ηpxq.
Next, define

Π0,k
α,β :“ R

0,k
α,β ` P k

β and Π´k,0
α,β :“ P´k

α . (2.2.14)

Theorem 2.2.4. [10, Theorem 2.4] For all pα, βq P F 2, pγ, δq P F 2 such that pα, βq ď
pγ, δq (coordinate-wise, in the sense that α ď γ and β ď δ), h1 ě 0, j1 ě 0, an interacting
particle systems pAtqtě0 with transition rates pR0,k

α,β, P
`k
β , P´k

α q is stochastically larger
than an interacting particle system pBtqtě0 with transition rates p rR0,k

α,β,
rP`k
β , rP´k

α q if and
only if

iq
ÿ

kąδ´β`j1

rΠ0,k
α,β ď

ÿ

ląj1
Π0,l
γ,δ and iiq

ÿ

kąh1

rΠ´k,0
α,β ě

ÿ

ląγ´α`h1

Π´l,0
γ,δ (2.2.15)

One has for the asymmetric multitype process pηtqtě0, with the order (2.2.13), the
following rates.

R
0,2
D,B “ λ1, R

0,2
C,B “ λ2,

P 1
A “ P 1

C “ 1,
P´1
B “ P´1

D “ r,

P´2
C “ P´2

D “ 1,

(2.2.16)

to which, one adds the following rates if we consider the symmetric multitype process.

R
0,2
D,A “ λ1, R

0,2
C,A “ λ2. (2.2.17)

Similarly, for a basic contact process with growth rate λ1 on t0, 1uZd

, one has

rR0,2
D,B “ λ1, rP´2

D “ 1. (2.2.18)

It will be also useful to consider a basic contact process with growth rate λ2, defined on
t2, 3uZd

, with rates
rR0,2
C,A “ λ2, rP´2

C “ 1. (2.2.19)

2.2.3 Oriented percolation

In the following, we give a brief description presented by R. Durrett [19] about orien-
ted percolation and the comparison theorem, and their correspondence with interacting
particle systems. The first application of this technique was done by M. Bramson and
R. Durrett [11] for spin systems.

Construction. Here is a description of an oriented (site) percolation process with
parameter p. Consider the bi-dimensional even lattice

L “ tpx, nq P Z2 : x ` n is even, n ě 0u.
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From L, construct an oriented graph by drawing successively an oriented bond from
px, nq to px` 1, n` 1q and one from px, nq to px´ 1, n` 1q. Let tωpx, nq, px, nq P Lu be
random variables taking their values in t0, 1u that indicate whether a site of L is open
(1) or closed (0). We define their distribution in what follows.

There is an (oriented) open path from px, nq to py,mq, denoted by px,mq Ñ py, nq, if
there exists a sequence of points x “ xn, ..., xm “ y such that pxk, kq P L, |xk´xk`1| “ 1
for n ď k ď m ´ 1 and ωpxk, kq “ 1 for n ď k ď m. Since in our further setup, our
constructions will set dependencies between the ωpx, nq’s, we say that the ωpx, nq’s are
M -dependent with density at least 1´γ, for positive M and γ, if whenever pxk, nkq1ďkďI
is a finite sequence such that }pxi, niq ´ pxj, njq}8 ą M for i ‰ j then

P pωpxi, niq “ 0 for 1 ď i ď |I|q ď γI .

Oriented percolation is understood as a mimic of the crossing of fluids through some
porous materials along a given direction, as a flow of water in a porous rock. Therefore,
open sites are understood as air spaces the fluid can reach and turning them into wet
sites if reached. Varying the microscopic porosity of the spaces (given by the distribution
of ω), percolation processes exhibit a macroscopic phase transition from a permeable
percolating regime to an impermeable non-percolating regime.

Given an initial condition W0 Ă 2Z “ tx P Z : px, 0q P Lu, we introduce the process
of wet sites at time n ě 0 by

Wn :“ ty : px, 0q Ñ py, nq for some x P W0u
Let W 0

n be the process starting from W 0
0 “ t0u and define

C0 :“ tpy, nq : p0, 0q Ñ py, nqu
as the set of points reached by the origin p0, 0q through an oriented open path. It is
also called the connected open component or cluster from the origin. When the latter is
infinite, that is, t|C0| “ 8u, we say that percolation occurs.

A natural question is whether percolation occurs or not. The following result shows
that if the density of open sites is high enough then percolation occurs with positive
probability :

Theorem 2.2.5 (R. Durrett [18]). If γ ď 6´4p2M`1q2

, then

P p|C0| ă 8q ď 1{20

Percolation processes that will arise are M -dependent but since most of the literature
concerns percolation with independent random variables, next theorem tells us how aM -
dependent process stochastically dominates the measure of a 0-dependent percolation.
Let πp be the product measure of an independent percolation process with density p,
i.e. with cylinder probabilities

πppω : ωpx, nq “ 1 @px, nq P G; ωpx, nq “ 0 @px, nq P Hq “ p|G|p1 ´ pq|H|.

where G,H are finite subsets of L. We have in our setup,
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Theorem 2.2.6 (Liggett, Schonmann and Stacey [59]). Let µ be a 1-dependent Ber-
noulli distribution. If

µpωpx, nq “ 1q ě 1 ´ p1 ´ ?
pq2 a.s.

for all px, nq P L with p ě 1{4, then µ ě πp.

So far, the link between an interacting particle system and a percolation process is
still missing, this is the point of what follows.

Comparison theorem. The next result gives general conditions guaranteeing a pro-
cess to dominate an oriented percolation.

(H) Comparison Assumptions. Let be pξtqtě0 a translation invariant finite
range process such that ξt P F Zd

, constructed from a graphical representation. Given
positive integers L, T , k0 and j0, define for pm,nq P L, space-time regions

Rm,n “ p2mLe1, nT q `
`
r´k0L, k0Lsd ˆ r0, j0T s

˘
(2.2.20)

where pe1, ..., edq stands for the canonical basis in Rd. Let M :“ maxpk0, j0q, the regions
Rm,n and Rm1,n1 are disjoint if }pm,nq ´ pm1, n1q}8 ą M .

Let H be collection of configurations determined by the values of ξ in r´L,Lsd. We
declare pm,nq P L to be wet if ξnT P τ2mLe1

H, where τLe1
stands for the translation by

L in the direction e1.
Suppose, for all pm,nq P L, there exists a good event Gm,n depending only on the

graphical representation of the particle system in Rm,n such that P pGm,nq ě 1 ´ θ

(θ ą 0) and so that if pm,nq is wet, then on Gm,n, pm` 1, n` 1q and pm´ 1, n` 1q do
as well, that is,

ξpn`1qT P τ2pm´1qLe1
H and ξpn`1qT P τ2pm`1qLe1

H.

Let Xn “ tm : pm,nq P L, ξnT P τ2mLe1
Hu be the set of wet sites at time t. Then,

Theorem 2.2.7. [19, Theorem 4.3] If the comparison assumptions (H) hold, then one
can define random variables ωpx, nq so that for all n ě 0, Xn dominates an M-dependent
oriented percolation with initial configuration W0 “ X0 and density at least 1 ´ γ, that
is,

Wn Ă Xn for all n.

2.3 Graphical construction

In parallel to the analytical construction provided by the Hille-Yosida theorem 1.1.2,
the multitype contact process can be constructed from a collection of independent Pois-
son processes [38]. Think of the diagram Zd ˆ R`. For each x P Zd, consider the arrival
times of mutually independent families of Poisson processes : tAxn : n ě 1u with rate
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r, tD1,x
n : n ě 1u and tD2,x

n : n ě 1u with rate 1 and for any y such that y „ x,
tT x,yn : n ě 1u with rate λ1. Let tUx

n : n ě 1u be independent uniform random variables
on p0, 1q, independent of the Poisson processes.

At space-time point px,Axnq, put a “ " to indicate, if x is occupied by type-1 indi-
viduals (resp. empty), that it turns into state 3 (resp. state 2) which corresponds to
transitions 0 Ñ 2 and 1 Ñ 3. At px,D1,x

n q (resp. at px,D2,x
n q), put an “X" (resp.“ ")

to indicate at x, that a death of type-1 occurs corresponding to transitions 3 Ñ 2 and
1 Ñ 0 (resp. of type-2, corresponding to transitions 3 Ñ 1 and 2 Ñ 0). At times T x,yn ,
draw an arrow from x to y and two kinds of actions occur following the occupation at
x : if x is occupied by type-1 individuals, the arrow indicates a birth in y of a type-1
individual if y is empty or in state 2, corresponding to transitions 0 Ñ 1, and 2 Ñ 3 for
the symmetric case ; if x is occupied by type-3 individuals giving birth at rate λ2 ă λ1,
check at px, T x,yn q if Ux

n ă λ2{λ1 to indicate, if success, that the arrow is effective so that
a birth in y of a type-1 individual occurs if y is empty, or in state 2 for the symmetric
case. In the asymmetric case, births occur only if y is not in state 2.

See Figure 2.1 for an example of the time-evolution of both processes starting from
an identical initial configuration.

For s ď t, there exists an active path from px, sq to py, tq in Zd ˆ R` is there exists
a sequence of times s “ s0 ă s1 ă ... ă sn´1 ă sn “ t and a sequence of corresponding
spatial locations x “ x0, x1, ..., xn “ y such that :

i. for i “ 1, ..., n ´ 1, vertical segments txiu ˆ psi, si`1q do not contain any X’s.

ii. for i “ 1, ..., n, there is an arrow from xi´1 to xi at times si and if xi´1 ˆ si is
lastly preceded by a “ " this arrow exists only if Uxi´1

si
ă λ2{λ1.

and in the asymmetric case, substitute ii. by

ii’. for i “ 1, ..., n, there is an arrow from xi´1 to xi at times si while txiu ˆ si is not
lastly preceded by a “ ”, while if xi´1 ˆ si is lastly preceded by a “ ” this arrow is
effective if Uxi´1

si
ă λ2{λ1.

Consider the process pAAt qtě0, the set of sites at time t reached by active paths
starting from an initial configuration A0 “ A, containing sites in state 1 in A and 0
otherwise :

AAt “ ty P Z : Dx P A such that px, 0q Ñ py, tqu
Then AAt “ HA

t , with HA
t defined in (2.2.9) so that AAt represents the wild population

at time t starting from an initial configuration A of type-1 individuals.
From the graphical representation, the particle system pAAt qtě0 is additive [32, Chap-

ter II] : for any initial configuration B such that A Ă B, then

AAt Ă ABt .

On Figure 2.1, At0u
t “ t´1, 0, 1u for the asymmetric case. This graphical represen-

tation allows us to couple multitype contact processes starting from different initial
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-2 -1 0 1 2

time

t

Figure 2.1: Graphical representation in the space-time picture Z ˆ R`. Starting from
η0 “ 1t0u, following the arrows, if U0

1 ă λ2

λ1
and U0

2 ă λ2

λ1
, the wild population occupies

at time t the set Ht “ t´1, 0, 1u in the asymmetric case and the set Ht “ t´2,´1, 0, 1u
in the symmetric case.
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2.4. Attractiveness and stochastic order

configurations by imposing the evolution to obey to the same Poisson processes. Other
kinds of couplings would be possible through the analytical construction of the process
as we will see later. By way of illustration, At1u

t “ H and A
t0,1u
t “ t´1, 0, 1u in the

asymmetric case, At1u
t “ t2u and A

t0,1u
t “ t´2,´1, 0, 1, 2u in the symmetric case. More

generally, graphical representations allow to couple processes with different dynamics as
well, we investigate this question furthermore thereafter.

2.4 Attractiveness and stochastic order

Recall pηtqtě0 denotes the multitype contact process with parameters (λ1, λ2, r) and
pξtqtě0 denotes the basic contact process with growth rate λ1. Most of the proofs below
rely on the construction of a markovian coupled process.

We defined a partial order on F Zd

between two configurations ηp1q and ηp2q by (1.1.3)
and (2.2.13). Here we shall settle necessary and sufficient conditions, then only sufficient,
to obtain several properties of stochastic order with which we will work. We begin
with the symmetric multitype contact process since it contains the transitions of the
asymmetric one and of the basic contact process.

Proposition 2.4.1. The symmetric multitype process is monotone, in the sense that,
one can construct on a same probability space two symmetric multitype processes pηp1q

t qtě0

and pηp2q
t qtě0 with respective parameters pλp1q

1 , λ
p1q
2 , rp1qq and pλp2q

1 , λ
p2q
2 , rp2qq, such that

η
p1q
0 ď η

p2q
0 ùñ η

p1q
t ď η

p2q
t a.s. for all t ě 0 (2.4.1)

if and only if all parameters satisfy

1. λp1q
2 ď λ

p1q
1 ,

2. λp2q
2 ď λ

p2q
1 ,

3. λp1q
1 ď λ

p2q
1 ,

4. λp1q
2 ď λ

p2q
2 ,

5. rp1q ě rp2q

6. λp1q
1 ď 1,

7. λp1q
2 ď 1,

8. rp1q ě 1.

Remark conditions 1. and 2. are the assumptions made from the construction of the
process, see (2.2.1).

Proof of Proposition 2.4.1. Let pηp1q
t qtě0 and pηp2q

t qtě0 be two symmetric processes with
parameters pλp1q

1 , λ
p1q
2 , rp1qq and pλp2q

1 , λ
p2q
2 , rp2qq respectively. Apply Theorem 2.2.4 with

j1, h1 P t0, 1u (one can check they are the only non trivial possible values). Necessary and
sufficient conditions on the rates for pηp2q

t qtě0 to be stochastically larger than pηp1q
t qtě0

are given by relations (2.2.15) with pα, βq ď pγ, δq, that is,

ÿ

kąδ´β`j1
Π0,k,p1q
α,β,p1q ď

ÿ

ląj1
Π0,l,p2q
γ,δ and

ÿ

kąh1

Π´k,0,p1q
α,β ě

ÿ

ląγ´α`h1

Π´l,0,p2q
γ,δ
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with the rates previously defined by (2.2.16)-(2.2.17). One then has

1tj1 “ 0u1tk “ 2u1tδ ´ β “ 1u
´

1tδ “ C, β “ Bu
`
R

0,2,p1q
D,B 1tα “ Du ` R

0,2,p1q
C,B 1tα “ Cu

˘

` 1tδ “ B, β “ Au
`
R

0,2,p1q
D,A 1tα “ Du ` R

0,2,p1q
C,A 1tα “ Cu

˘¯

` 1tj1 “ 0u1tk “ 2u1tδ ´ β “ 0u
´

1tδ “ β “ Bu
`
R

0,2,p1q
D,B 1tα “ Du ` R

0,2,p1q
C,B 1tα “ Cu

˘

` 1tδ “ β “ Au
`
R

0,2,p1q
D,A 1tα “ Du ` R

0,2,p1q
C,A 1tα “ Cu

˘¯

` 1tj1 “ 0u1tk “ 1u1tδ ´ β “ 0u
´

1tδ “ β “ CuP
1,p1q
C ` 1tδ “ β “ AuP

1,p1q
A

¯

` 1tj1 “ 1u1tk “ 2u1tδ ´ β “ 0u
´

1tδ “ β “ Bu
`
R

0,2,p1q
D,B 1tα “ Du ` R

0,2,p1q
C,B 1tα “ Cu

˘

` 1tδ “ β “ Au
`
R

0,2,p1q
D,A 1tα “ Du ` R

0,2,p1q
C,A 1tα “ Cu

˘¯

ď 1tj1 “ 0u1tl “ 2u
´

1tδ “ Bu
`
R

0,2,p2q
D,B 1tγ “ Du ` R

0,2,p2q
C,B 1tγ “ Cu

˘

` 1tδ “ Au
`
R

0,2,p2q
D,A 1tγ “ Du ` R

0,2,p2q
C,A 1tγ “ Cu

˘¯

` 1tj1 “ 0u1tl “ 1u
´

1tδ “ CuP
1,p2q
C ` 1tδ “ AuP

1,p2q
A

¯

` 1tj1 “ 1u1tl “ 2u
´

1tδ “ Bu
`
R

0,2,p2q
D,B 1tγ “ Du ` R

0,2,p2q
C,B 1tγ “ Cu

˘

` 1tδ “ Au
`
R

0,2,p2q
D,A 1tγ “ Du ` R

0,2,p2q
C,A 1tγ “ Cu

˘¯

(2.4.2)

and

1th1 “ 0u1tk “ 1u
´

1tα “ DuP
´1,p1q
D ` 1tα “ BuP

´1,p1q
B

¯

` 1th1 “ 0u1tk “ 2u
´

1tα “ DuP
´2,p1q
D ` 1tα “ CuP

´2,p1q
C

¯

` 1th1 “ 1u1tk “ 2u
´

1tα “ DuP
´2,p1q
D ` 1tα “ CuP

´2,p1q
C

¯

ě 1th1 “ 0u1tl “ 2u1tγ ´ α “ 1u
´

1tγ “ D, α “ CuP
´2,p2q
D ` 1tγ “ C, α “ BuP

´2,p2q
C

˘

` 1th1 “ 0u1tl “ 2u1tγ ´ α “ 0u
´

1tγ “ α “ DuP
´2,p2q
D ` 1tγ “ α “ CuP

´2,p2q
C

¯

` 1th1 “ 0u1tl “ 1u1tγ ´ α “ 0u
´

1tγ “ α “ DuP
´1,p2q
D ` 1tγ “ α “ CuP

´1,p2q
C

¯

1th1 “ 1u1tl “ 2u1tγ ´ α “ 0u
´

1tγ “ α “ DuP
´2,p2q
D ` 1tα “ γ “ CuP

´2,p2q
C

¯

. (2.4.3)

These inequalities can also be explicitly rewritten as

1tj1 “ 0u1tk “ 2u
`
1tβ “ A, δ “ Bu ` 1tβ “ B, δ “ Cu

˘`
λ

p1q
1

1tα “ Du ` λ
p1q
2

1tα “ Cu
˘

` 1tj1 “ 0u1tk “ 2u
`
1tβ “ δ “ Bu ` 1tβ “ δ “ Au

˘`
λ

p1q
1

1tα “ Du ` λ
p1q
2

1tα “ Cu
˘

` 1tj1 “ 0u1tk “ 1u
´

1tβ “ δ “ Au ` 1tβ “ δ “ Cu
¯

` 1tj1 “ 1u1tk “ 2u
`
1tβ “ δ “ Bu ` 1tβ “ δ “ Au

˘`
λ

p1q
1

1tα “ Du ` λ
p1q
2

1tα “ Cu
˘

ď 1tj1 “ 0u
´

1tl “ 2u
`
1tδ “ Bu ` 1tδ “ Au

˘`
λ

p2q
1

1tγ “ Du ` λ
p2q
2

1tγ “ Cu
˘¯

` 1tj1 “ 0u1tl “ 1u
`
1tδ “ Au ` 1tδ “ Cu

˘¯

` 1tj1 “ 1u1tl “ 2u
`
1tδ “ Bu ` 1tδ “ Au

˘`
λ

p2q
1

1tγ “ Du ` λ
p2q
2

1tγ “ Cu
˘

(2.4.4)
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and

1th1 “ 0u
`
1tk “ 1urp1qp1tα “ Bu ` 1tα “ Du

˘

` 1th1 “ 0u1tk “ 2u
`
1tα “ Cu ` 1tα “ Du

˘

` 1th1 “ 1u1tk “ 2up1tα “ Cu ` 1tα “ Duq

ě 1th1 “ 0u1tl “ 2u1tγ “ 1 ` αu
´

1tγ “ Cu ` 1tγ “ Du
¯

` 1th1 “ 0u1tl “ 2u1tγ “ αu
`
1tγ “ Cu ` 1tγ “ Du

˘

` 1th1 “ 0u1tl “ 1u1tγ “ αurp2qp1tγ “ Bu ` 1tγ “ Duq

` 1th1 “ 1u1tγ “ αu1tl “ 2up1tγ “ Cu ` 1tγ “ Duq.

(2.4.5)

All different possible scenarios provide the following necessary conditions :

(I) j1 P t0, 1u, δ “ β P tA,Bu in (2.4.4) give

(i) α “ C, γ “ D : λp1q
2 ď λ

p2q
1 . This is a consequence of conditions 1. and 3. or

2. and 4.

(ii) α “ γ “ C : λp1q
2 ď λ

p2q
2 stated by condition 4.

(iii) α “ γ “ D : λp1q
1 ď λ

p2q
1 stated by condition 3.

(II) j1 “ 0, β “ B, δ “ 1 ` β “ C in (2.4.4) give

(i) α “ D : λp1q
1 ď 1 stated by condition 6.

(ii) α “ C : λp1q
2 ď 1 stated by condition 7.

(III) h1 “ 0, γ “ α P tB,Du in (2.4.5) give rp1q ě rp2q stated by condition 5.

(IV) h1 “ 0,α “ B, γ “ 1 ` α “ C in (2.4.5) give rp1q ě 1 stated by condition 8.

while in other scenarios, one retrieves redundantly the above conditions or tautological
inequalities such as “1 ě 0". Finally, one obtained the necessary conditions stated from
1. to 8.

Now, we construct a coupled process pηp1q
t , η

p2q
t qtě0 on Ω ˆ Ω such that ηp1q

0 ď η
p2q
0 .

According to the given order (2.2.13) on F , as ηp1q
0 ď η

p2q
0 :

n1px, ηp1q
0 q ` n3px, ηp1q

0 q ď n1px, ηp2q
0 q ` n3px, ηp2q

0 q.

We saw that it is possible to construct the coupled process either through generators
or through a graphical representation, via a collection of independent Poisson processes
whose rates are given by the parameters of the processes. The coupling of two processes
on a graphical construction is provided by coupling the Poisson processes related to
births and releases.

In what follows, we construct the coupling through generators. The three following
tables depict the infinitesimal transitions of the coupled process.
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transition rate

p0, 0q ÝÑ

$
’’&
’’%

p1, 1q
p0, 1q
p2, 2q
p2, 0q

λ
p1q
1

n1px, ηp1qq ` λ
p1q
2

n3px, ηp1qq

λ
p2q
1

n1px, ηp2qq ´ λ
p1q
1

n1px, ηp1qq ` λ
p2q
2

n3px, ηp2qq ´ λ
p1q
2

n3px, ηp1qq
rp2q

rp1q ´ rp2q

p1, 1q ÝÑ

$
&
%

p0, 0q
p3, 3q
p3, 1q

1
rp2q

rp1q ´ rp2q

p2, 2q ÝÑ

$
&
%

p3, 3q
p2, 3q
p0, 0q

λ
p1q
1

n1px, ηp1qq ` λ
p1q
2

n3px, ηp1qq

λ
p2q
1

n1px, ηp2qq ´ λ
p1q
1

n1px, ηp1qq ` λ
p2q
2

n3px, ηp2qq ´ λ
p1q
2

n3px, ηp1qq
1

p3, 3q ÝÑ

"
p1, 1q
p2, 2q

1
1

p2, 0q ÝÑ

$
’’&
’’%

p3, 1q
p2, 1q
p0, 0q
p2, 2q

λ
p1q
1

n1px, ηp1qq ` λ
p1q
2

n3px, ηp1qq

λ
p2q
1

n1px, ηp2qq ´ λ
p1q
1

n1px, ηp1qq ` λ
p2q
2

n3px, ηp2qq ´ λ
p1q
2

n3px, ηp1qq
1

rp2q

p2, 3q ÝÑ

$
&
%

p3, 3q
p0, 1q
p2, 2q

λ
p1q
1

n1px, ηp1qq ` λ
p1q
2

n3px, ηp1qq
1
1

p2, 1q ÝÑ

$
’’&
’’%

p3, 1q
p2, 0q
p0, 1q
p2, 3q

λ
p1q
1

n1px, ηp1qq ` λ
p1q
2

n3px, ηp1qq
1
1

rp2q

p3, 1q ÝÑ

$
&
%

p2, 0q
p1, 1q
p3, 3q

1
1

rp2q

p0, 1q ÝÑ

$
’’&
’’%

p2, 3q
p1, 1q
p2, 1q
p0, 0q

rp2q

λ
p1q
1

n1px, ηp1qq ` λ
p1q
2

n3px, ηp1qq
rp1q ´ rp2q

1

Table 2.1

transition rate

p0, 3q ÝÑ

$
’’&
’’%

p1, 1q
p0, 1q
p2, 2q
p2, 3q

λ
p1q
1

n1px, ηp1qq ` λ
p1q
2

n3px, ηp1qq

p1 ´ λ
p1q
1

qn1px, ηp1qq ` p1 ´ λ
p1q
2

qn3px, ηp1qq
1

rp1q ´ 1

Table 2.2
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transition rate

p1, 0q ÝÑ

$
’’&
’’%

p1, 1q
p3, 2q
p3, 0q
p0, 0q

λ
p2q
1

n1px, ηp2qq ` λ
p2q
2

n3px, ηp2qq
rp2q

rp1q ´ rp2q

1

p0, 2q ÝÑ

$
’’&
’’%

p1, 3q
p0, 3q
p0, 0q
p2, 2q

λ
p1q
1

n1px, ηp1qq ` λ
p1q
2

n3px, ηp1qq

λ
p2q
1

n1px, ηp2qq ´ λ
p1q
1

n1px, ηp1qq ` λ
p2q
2

n3px, ηp2qq ´ λ
p1q
2

n3px, ηp1qq
1

rp1q

p1, 2q ÝÑ

$
’’&
’’%

p1, 3q
p3, 2q
p1, 0q
p0, 2q

λ
p2q
1

n1px, ηp2qq ` λ
p2q
2

n3px, ηp2qq
rp1q

1
1

p1, 3q ÝÑ

$
&
%

p0, 2q
p3, 3q
p1, 1q

1
rp1q

1

p3, 0q ÝÑ

$
’’&
’’%

p1, 0q
p2, 0q
p3, 1q
p3, 2q

1
1

λ
p2q
1

n1px, ηp2qq ` λ
p2q
2

n3px, ηp2qq
rp2q

p3, 2q ÝÑ

$
&
%

p3, 3q
p1, 0q
p2, 2q

λ
p2q
1

n1px, ηp2qq ` λ
p2q
2

n3px, ηp2qq
1
1

Table 2.3

To verify all the rates above are well defined, one decomposes n1px, ηpiqq and n3px, ηpiqq,
pi “ 1, 2q, as follows

n1px, ηp2qq “ |ty „ x : ηp2qpyq “ ηp1qpyq “ 1u|
` |ty „ x : ηp2qpyq “ 1, ηp1qpyq “ 3u| ` |ty „ x : ηp2qpyq “ 1, ηp1qpyq P t0, 2uu|,

n3px, ηp2qq “ |ty „ x : ηp2qpyq “ ηp1qpyq “ 3u|
` |ty „ x : ηp2qpyq “ 3, ηp1qpyq P t0, 2uu|,

n1px, ηp1qq “ |ty „ x : ηp2qpyq “ ηp1qpyq “ 1u|

n3px, ηp1qq “ |ty „ x : ηp2qpyq “ ηp1qpyq “ 3u|
` |ty „ x : ηp2qpyq “ 1, ηp1qpyq “ 3u|,

in which case, we decompose the rate

λ
p2q
1 n1px, ηp2qq ´ λ

p1q
1 n1px, ηp1qq ` λ

p2q
2 n3px, ηp2qq ´ λ

p1q
2 n3px, ηp1qq
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“ pλp2q
1 ´ λ

p1q
1 q|ty „ x : ηp2qpyq “ ηp1qpyq “ 1u|

` pλp2q
1 ´ λ

p1q
2 q|ty „ x : ηp2qpyq “ 1, ηp1qpyq “ 3u|

` pλp2q
2 ´ λ

p1q
2 q|ty „ x : ηp2qpyq “ ηp1qpyq “ 3u|

` λ
p2q
1 |ty „ x : ηp2qpyq “ 1, ηp1qpyq P t0, 2uu|

` λ
p2q
2 |ty „ x : ηp2qpyq “ 3, ηp1qpyq P t0, 2uu|

(2.4.6)

which is non-negative under conditions 1. to 4. coming from (I) and (III) in inequalities
(2.4.4)-(2.4.5).

Rates of Table 2.2 are non-negative thanks to conditions 6. to 8., given by inequa-
lities (II)-(i)(ii) with β “ B, δ “ C. Condition 5. is used by Tables 2.1 and 2.3 that
correspond to a basic coupling while Table 2.2 uses a different coupling. Table 2.3 is lis-
ting transitions of the coupled process starting from configurations that do not preserve
the defined partial order, nevertheless, starting from an initial configuration where it
does, dynamics of the coupling given by Tables 2.1 and 2.2 do not reach states of Table
2.3.

For a coupled process pηp1q
t , η

p2q
t qtě0 starting from an initial configuration such that

η
p1q
0 ď η

p2q
0 , since transitions of the two first Tables preserve the order on F , the marko-

vian coupling we just constructed is increasing :

rPpηp1q
0
,η

p2q
0

qpηp1q
t ď η

p2q
t q “ 1 for all t ą 0 (2.4.7)

where rPpηp1q
0
,η

p2q
0

q stands for the distribution of pηp1q
t , η

p2q
t qtě0 starting from the initial

configuration pηp1q
0 , η

p2q
0 q.

We can wonder if there exists an other order than (2.2.13) for which this statement
(and the following ones as well) holds. By trying out other orders in inequalities (2.2.15)
of Theorem 2.2.4 , we deduce that the one defined by (2.2.13) is the only order possible
here to preserve the stochastic order.

After having obtained necessary and sufficient conditions, we investigate sufficient
conditions only, with which we shall work subsequently.

Proposition 2.4.2. The symmetric process pηtqtě0 is monotone, in the sense that, one
can construct on a same probability space two symmetric processes pηp1q

t qtě0 and pηp2q
t qtě0

with respective parameters pλp1q
1 , λ

p1q
2 , rp1qq andpλp2q

1 , λ
p2q
2 , rp2qq satisfying ηp1q

0 , η
p2q
0 P t0, 1uZd

,
such that

η
p1q
0 ď η

p2q
0 ùñ η

p1q
t ď η

p2q
t for all t ě 0 a.s. (2.4.8)

if all parameters satisfy
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1. λp1q
2 ď λ

p1q
1 ,

2. λp2q
2 ď λ

p2q
1 ,

3. λp1q
1 ď λ

p2q
1 ,

4. λp1q
2 ď λ

p2q
2 ,

5. rp1q ě rp2q

Proof. Given our initial conditions, possible states for the coupled process keep laying
in Table 2.1 of Proposition 2.4.1 and the coupled process does not reach any state of
Tables 2.2 and 2.3. One can therefore omit conditions 4. to 6. of the previous Proposition
2.4.1 and transition rates from the couple p0, 3q can be defined through a basic coupling
even if it does not preserve the order :

transition rate

p0, 3q ÝÑ

$
’’&
’’%

p1, 3q
p0, 1q
p0, 2q
p2, 3q

λ
p1q
1

n1px, ηp1qq ` λ
p1q
2

n3px, ηp1qq
1
1

rp1q

Table 2.4

in which case, Table 2.4 substitutes Table 2.2.

Remark 2.4.1. In view of the proof of Proposition 2.4.2, one can actually relax the
admissible initial conditions : it is enough to assume ηp1q

0 and ηp2q
0 satisfying ηp1q

0 ď η
p2q
0

and for all x P Zd, pηp1q
0 pxq, ηp2q

0 pxqq ‰ p0, 3q. In particular one could start from η
p1q
0 “

η
p2q
0 .

Since Tables 2.1, 2.4 and 2.3 correspond to a basic coupling, to construct such pro-
cesses on a same probability space via the graphical representation, one define from
Section 1.2 mutually independent Poisson processes : tT x,yn , n ě 1u with rate λ

p2q
1 ,

tD1,x
n , n ě 1u with rate 1, tD2,x

n , n ě 1u with rate 1 and independent uniform ran-
dom variables tUx,y

n , n ě 1u on p0, 1q, independent of the Poisson processes. Indeed,
after conditions 1 to 5 of Proposition 2.4.2, the growth rate λp2q

1 is the largest one. At
each time t “ T x,yn a birth might occur and the uniform random variables determine
if it occurs or not. For instance, if ηp1q

t pxq is in state 3 and η
p1q
t pyq is in state 0, then a

birth in y for ηp1q
t occurs if Ux,y

n ă λ
p1q
2 {λp2q

1 ; if ηp2q
t pxq is in state 3 and ηp2q

t pyq is in state
0, then a birth in y for the process ηp2q

t occurs if Ux,y
n ă λ

p2q
2 {λp2q

1 . Since λp1q
2 ď λ

p2q
2 , as

soon as Ux,y
n P pλp1q

2 {λp2q
1 , λ

p2q
2 {λp2q

1 s an arrow used by the process ηp2q
t is not used by the

process ηp1q
t .

If pηp1q
t qtě0 and pηp2q

t qtě0 differ by at most one parameter, one deduces from Proposi-
tion 2.4.2 several monotonicity properties :

Corollary 2.4.1. Suppose η
p1q
0 , η

p2q
0 P t0, 1uZd

. Then for the processes pηp1q
t qtě0 and

pηp2q
t qtě0 with parameters pλp1q

1 , λ
p1q
2 , rp1qq and pλp2q

1 , λ
p2q
2 , rp2qq respectively, one has

(i) Attractiveness : if pλp1q
1 , λ

p1q
2 , rp1qq “ pλp2q

1 , λ
p2q
2 , rp2qq , then ηp1q

0 ď η
p2q
0 ùñ η

p1q
t ď η

p2q
t

a.s., for all t ě 0.
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(ii) Increase w.r.t. λ1 : if pηp1q
t qtě0 and pηp2q

t qtě0 have respective parameters pλp1q
1 , λ2, rq

and pλp2q
1 , λ2, rq such that λ2 ď λ

p1q
1 ď λ

p2q
1 , then η

p1q
0 ď η

p2q
0 ùñ η

p1q
t ď η

p2q
t a.s., for

all t ě 0.

(iii) Increase w.r.t. λ2 : if pηp1q
t qtě0 and pηp2q

t qtě0 have respective parameters pλ1, λ
p1q
2 , rq

and pλ1, λ
p2q
2 , rq such that λp1q

2 ď λ
p2q
2 ď λ1, then η

p1q
0 ď η

p2q
0 ùñ η

p1q
t ď η

p2q
t a.s., for

all t ě 0.

(iv) Decrease w.r.t. r : if pηp1q
t qtě0 and pηp2q

t qtě0 have respective parameters pλ1, λ2, r
p1qq

and pλ1, λ2, r
p2qq such that rp1q ě rp2q with λ2 ă λ1, then η

p1q
0 ď η

p2q
0 ùñ η

p1q
t ď η

p2q
t

a.s., for all t ě 0.

A consequence related to Corollary (2.4.1)-(iv) is the non-increase of the survival
probability with respect to the release rate r for fixed λ1, λ2 :

Corollary 2.4.2. Suppose λ2 and λ1 fixed. If pηtqtě0 has initial configuration η0 “ 1t0u,
the mapping

r ÞÝÑ Prp@t ě 0, Ht ‰ Hq
is a non-increasing function.

Proof. Indeed if pηp1q
t qtě0 and pηp2q

t qtě0 are two processes such that ηp1q
0 , η

p2q
0 P t0, 1uZd

and with respective parameters pλ1, λ2, r
p1qq and pλ1, λ2, r

p2qq such that rp1q ď rp2q, then
according to Corollary 2.4.1,

H
p2q
0 Ă H

p1q
0 ùñ H

p2q
t Ă H

p1q
t ,

for all t ě 0.

One defined the asymmetric process as a particular case of the symmetric process
where the transition from state 2 to state 3 does not occur. One can thus, in a similar
way to Propositions 2.4.1 and 2.4.2, obtain necessary and sufficient conditions, then,
only sufficient conditions, for the monotonicity of the asymmetric process.

Proposition 2.4.3. The asymmetric process pηtqtě0 is monotone in the sense that,
conditions

1. λp1q
2 ď λ

p1q
1 ,

2. λp2q
2 ď λ

p2q
1 ,

3. λp1q
1 ď λ

p2q
1 ,

4. λp1q
2 ď λ

p2q
2 ,

5. rp1q ě rp2q,

are sufficient to construct on a same probability space two asymmetric process pηp1q
t qtě0

and pηp2q
t qtě0 with respective parameters pλp1q

1 , λ
p1q
2 , rp1qq and pλp2q

1 , λ
p2q
2 , rp2qq and with ini-

tial condition η
p1q
0 , η

p2q
0 P t0, 1uZd

, such that

η
p1q
0 ď η

p2q
0 ùñ η

p1q
t ď η

p2q
t a.s., for all t ě 0. (2.4.9)
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Proof. As in the proof of Proposition 2.4.2, one applies Theorem 2.2.4 with j1, h1 P
t0, 1u to two asymmetric processes pηp1q

t qtě0 and pηp2q
t qtě0 with respective parameters

pλp1q
1 , λ

p1q
2 , rp1qq and pλp2q

1 , λ
p2q
2 , rp2qq. Using relations (2.4.2)-(2.4.3) with the corresponding

rates of both processes given by (2.2.16), with pα, βq ď pγ, δq, one has

1tj1 “ 0u

˜
1tk “ 2u

´
1tβ “ δ “ Bu

`
λ

p1q
1

1tα “ Du ` λ
p1q
2

1tα “ Cu
˘¯

` 1tk “ 1u
´

1tβ “ δ “ Au ` 1tβ “ δ “ Cu
¯¸

` 1tj1 “ 0u1tk “ 2u
´

1tβ “ B, δ “ Cu
`
λ

p1q
1

1tα “ Du ` λ
p1q
2

1tα “ Cu
˘¯

` 1tj1 “ 1u1tk “ 2u
´

1tβ “ δ “ Bu
`
λ

p1q
1

1tα “ Du ` λ
p1q
2

1tα “ Cu
˘¯

ď 1tj1 “ 0u
´

1tl “ 2u1tδ “ Bu
`
λ

p2q
1

1tγ “ Du ` λ
p2q
2

1tγ “ Cu
˘

` 1tl “ 1u
`
1tδ “ Au ` 1tδ “ Cu

˘¯

` 1tj1 “ 1u
´

1tl “ 2u1tδ “ Bu
`
λ

p2q
1

1tγ “ Du ` λ
p2q
2

1tγ “ Cu
˘ (2.4.10)

while the second relation leaves (2.4.5) unchanged. One deduces the following necessary
conditions :

(I) j1 P t0, 1u, δ “ β “ B in (2.4.10) give

(i) α “ γ “ C, β “ B, δ “ C : λp1q
2 ď λ

p2q
2 stated by condition 4.

(ii) α “ C, γ “ D : λp1q
2 ď λ

p2q
1 stated by conditions 1. and 3.

(iii) α “ γ “ D : λp1q
1 ď λ

p2q
1 stated by condition 3.

(II) j1 “ 0, β “ B, δ “ 1 ` β “ C in (2.4.10) give

(i) α “ D : λp1q
1 ď 1.

(ii) α “ C : λp1q
2 ď 1.

The relation (2.4.5) staying unchanged, one has

(III) h1 “ 0, γ “ α P tB,Du in (2.4.5) give rp1q ě rp2q stated by condition 5.

(IV) h1 “ 0,α “ B, γ “ 1 ` α “ C in (2.4.5) give rp1q ě 1.

The obtained necessary conditions are

1. λp1q
2 ď λ

p1q
1 ,

2. λp2q
2 ď λ

p2q
1 ,

3. λp1q
1 ď λ

p2q
1 ,

4. λp1q
2 ď λ

p2q
2 ,

5. rp1q ě rp2q

6. λp1q
1 ď 1,

7. λp1q
2 ď 1,

8. rp1q ě 1.

As for Proposition 2.4.1, these conditions allow us to construct an increasing marko-
vian coupling. As in Proposition 2.4.2, given our initial configurations, state p0, 3q is not
possible for the coupled process. One can thus dispense conditions 6 to 8. and sufficient
conditions to settle an increasing markovian coupling as in Proposition 2.4.2 are given
by

39



Chapter 2. Phase transition on Zd

1. λp1q
2 ď λ

p1q
1 ,

2. λp2q
2 ď λ

p2q
1 ,

3. λp1q
1 ď λ

p2q
1 ,

4. λp1q
2 ď λ

p2q
2 ,

5. rp1q ě rp2q

Details of the dynamics of the coupled process pηp1q
t , η

p2q
t qtě0 are summarized in the

following tables.

transition rate

p0, 0q ÝÑ

$
’’&
’’%

p1, 1q
p0, 1q
p2, 2q
p2, 0q

λ
p1q
1

n1px, ηp1qq ` λ
p1q
2

n3px, ηp1qq

λ
p2q
1

n1px, ηp2qq ´ λ
p1q
1

n1px, ηp1qq ` λ
p2q
2

n3px, ηp2qq ´ λ
p1q
2

n3px, ηp1qq
rp2q

rp1q ´ rp2q

p1, 1q ÝÑ

$
&
%

p0, 0q
p3, 3q
p3, 1q

1
rp2q

rp1q ´ rp2q

p2, 2q ÝÑ p0, 0q 1

p3, 3q ÝÑ

"
p1, 1q
p2, 2q

1
1

p2, 0q ÝÑ

$
&
%

p2, 1q
p0, 0q
p2, 2q

λ
p2q
1

n1px, ηp2qq ` λ
p2q
2

n3px, ηp2qq
1

rp2q

p2, 3q ÝÑ

"
p0, 1q
p2, 2q

1
1

p2, 1q ÝÑ

$
&
%

p2, 0q
p0, 1q
p2, 3q

1
1

rp2q

p3, 1q ÝÑ

$
&
%

p2, 0q
p1, 1q
p3, 3q

1
1

rp2q

p0, 1q ÝÑ

$
’’&
’’%

p2, 3q
p1, 1q
p2, 1q
p0, 0q

rp2q

λ
p1q
1

n1px, ηp1qq ` λ
p1q
2

n3px, ηp1qq
rp1q ´ rp2q

1

Table 2.5

transition rate

p0, 3q ÝÑ

$
’’&
’’%

p1, 3q
p0, 1q
p0, 2q
p2, 3q

λ
p1q
1

n1px, ηp1qq ` λ
p1q
2

n3px, ηp1qq
1
1

rp1q

Table 2.6
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2.4. Attractiveness and stochastic order

transition rate

p1, 0q ÝÑ

$
’’&
’’%

p1, 1q
p3, 2q
p3, 0q
p0, 0q

λ
p2q
1

n1px, ηp2qq ` λ
p2q
2

n3px, ηp2qq
rp2q

rp1q ´ rp2q

1

p0, 2q ÝÑ

$
&
%

p1, 2q
p0, 0q
p2, 2q

λ
p1q
1

n1px, ηp1qq ` λ
p1q
2

n3px, ηp1qq
1

rp1q

p1, 2q ÝÑ

$
&
%

p3, 2q
p1, 0q
p0, 2q

rp1q

1
1

p1, 3q ÝÑ

$
&
%

p0, 2q
p3, 3q
p1, 1q

1
rp1q

1

p3, 0q ÝÑ

$
’’&
’’%

p1, 0q
p2, 0q
p3, 1q
p3, 2q

1
1

λ
p2q
1

n1px, ηp2qq ` λ
p2q
2

n3px, ηp2qq
rp2q

p3, 2q ÝÑ

"
p1, 0q
p2, 2q

1
1

Table 2.7

Remark now that Tables 2.5 and 2.7 differ from Tables 2.1 and 2.3 but Table 2.6
stays identical to Table 2.4. As for Proposition 2.4.2, under conditions 1. to 5., if the
initial conditions given by η

p1q
0 and η

p2q
0 satisfy η

p1q
0 ď η

p2q
0 and η

p1q
0 , η

p2q
0 P t0, 1uZd

, this
markovian coupling is increasing since the transitions of the coupled process belong to
Table 2.5 and

rPpηp1q
0
,η

p2q
0

qpηp1q
t ď η

p2q
t q “ 1 for all t ą 0 (2.4.11)

where rPpηp1q
0
,η

p2q
0

q denotes the distribution of pηp1q
t , η

p2q
t qtě0 starting from the initial confi-

guration pηp1q
0 , η

p2q
0 q.

One can compare the symmetric with the asymmetric process as well.

Proposition 2.4.4. Let pηtqtě0 be an asymmetric process and pχtqtě0 be a symmetric
process, both with parameters pλ1, λ2, rq and η0, χ0 P t0, 1uZd

such that λ2 ă λ1, then for
all t ě 0,

η0 ď χ0 ñ ηt ď χt a.s. for all t ě 0

Proof. Apply Theorem 2.2.4 with an asymmetric process pηtqtě0 and a symmetric process
pχtqtě0 with parameters pλ1, λ2, rq. Necessary and sufficient conditions on the parameters
to obtain a stochastic order are given by (2.4.2)-(2.4.3) that become

1tj1 “ 0u1tk “ 2u1tβ “ δ “ Bu
`
λ11tα “ Du ` λ21tα “ Cu

˘

` 1tj1 “ 0u1tk “ 2u1tβ “ B, δ “ Cu
`
λ11tα “ Du ` λ21tα “ Cu

˘

` 1tj1 “ 0u1tk “ 1u
´

1tβ “ δ “ Au ` 1tβ “ δ “ Cu
¯

` 1tj1 “ 1u1tk “ 2u1tβ “ δ “ Bu
`
λ11tα “ Du ` λ21tα “ Cu

˘
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ď 1tj1 “ 0u
´

1tl “ 2u
`
1tδ “ Bu ` 1tδ “ Au

˘`
λ11tγ “ Du ` λ21tγ “ Cu

˘

` 1tl “ 1u
`
1tδ “ Au ` 1tδ “ Cu

˘¯

` 1tj1 “ 1u1tl “ 2u
`
1tδ “ Bu ` 1tδ “ Au

˘`
λ11tγ “ Du ` λ21tγ “ Cu

˘ (2.4.12)

and

1th1 “ 0u
´

1tk “ 1urp1tα “ Bu ` 1tα “ Duq ` 1tk “ 2up1tα “ Cu

` 1tα “ Duq
¯

` 1th1 “ 1u
´

1tk “ 2up1tα “ Cu ` 1tα “ Duq
¯

ě 1th1 “ 0u1tγ “ αu
´

1tl “ 1urp1tγ “ Bu ` 1tγ “ Duq

` 1tl “ 2up1tγ “ Cu ` 1tγ “ Duq
¯

` 1th1 “ 0u1tγ “ 1 ` αu
´

1tl “ 2up1tγ “ Cu ` 1tγ “ Duq
¯

` 1th1 “ 1u1tγ “ αu
´

1tl “ 2up1tγ “ Cu ` 1tγ “ Duq
¯

(2.4.13)

These equations exhibit the following necessary conditions :

(I) j1 P t0, 1u, δ “ β “ B,α “ C, γ “ D in (2.4.12) give : λ2 ď λ1

(II) h1 “ 0, α “ B, γ “ 1 ` α “ C in (2.4.13) give r ě 1

As previously, condition r ě 1 is necessary to construct an increasing markovian coupled
process in a general framework, but if one restricts the initial conditions to satisfy
η0 ď χ0 and η0, χ0 P t0, 1uZd

, condition λ2 ď λ1 is sufficient and the coupled process can
be constructed through the following transitions :
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2.4. Attractiveness and stochastic order

transition rate

p0, 0q ÝÑ

$
&
%

p1, 1q
p0, 1q
p2, 2q

λ1n1px, ηq ` λ2n3px, ηq
λ1pn1px, χq ´ n1px, ηqq ` λ2n3px, χq ´ n3px, ηqq

r

p1, 1q ÝÑ
"

p0, 0q
p3, 3q

1
r

p2, 2q ÝÑ
"

p0, 0q
p2, 3q

1
λ1n1px, χq ` λ2n3px, χq

p3, 3q ÝÑ
"

p1, 1q
p2, 2q

1
1

p2, 0q ÝÑ

$
&
%

p2, 1q
p0, 0q
p2, 2q

λ1n1px, χq ` λ2n3px, χq
1
r

p2, 3q ÝÑ
"

p0, 1q
p2, 2q

1
1

p2, 1q ÝÑ

$
&
%

p2, 0q
p0, 1q
p2, 3q

1
1
r

p3, 1q ÝÑ

$
&
%

p2, 0q
p1, 1q
p3, 3q

1
1
r

p0, 1q ÝÑ

$
&
%

p2, 3q
p1, 1q
p0, 0q

r

λ1n1px, ηq ` λ2n3px, ηq
1

Table 2.8

transition rate

p0, 3q ÝÑ

$
’’&
’’%

p2, 3q
p1, 3q
p0, 1q
p0, 2q

r

λ1n1px, ηq ` λ2n3px, ηq
1
1

Table 2.9
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transition rate

p1, 0q ÝÑ

$
&
%

p1, 1q
p3, 2q
p0, 0q

λ1n1px, χq ` λ2n3px, χq
r

1

p0, 2q ÝÑ

$
’’&
’’%

p1, 3q
p0, 3q
p0, 0q
p2, 2q

λ1n1px, ηq ` λ2n3px, ηq
λ1n1px, χq ` λ2n3px, χq

1
r

p1, 2q ÝÑ

$
&
%

p3, 2q
p0, 0q
p1, 3q

r

1
λ1n1px, χq ` λ2n3px, χq

p1, 3q ÝÑ
"

p0, 2q
p3, 3q

1
r

p3, 0q ÝÑ

$
’’&
’’%

p1, 0q
p2, 0q
p3, 1q
p3, 2q

1
1

λ1n1px, χq ` λ2n3px, χq
r

Table 2.10

As in (2.4.6), the second rate in Table 2.8 is positive. Starting from an initial confi-
guration such that η0 ď χ0 and η0, χ0 P t0, 1uZd

, the coupled process does not reach any
configuration of Tables 2.9 and 2.10. Condition λ2 ď λ1 is sufficient to obtain

ηt ď χt a.s., for all t ě 0.

Finally, one settles two comparisons between a basic contact process and a multitype
process.

Proposition 2.4.5. Let pξtqtě0 be a basic contact process on t0, 1uZd

with growth rate
λ1 and let pχtqtě0 be a symmetric multitype process with parameters pλ1, λ2, rq such that
λ2 ă λ1. Then,

χ0 ď ξ0 ñ χt ď ξt a.s. for all t ě 0

Proof. Consider the basic contact process pξtqtě0 viewed as a symmetric multitype pro-
cess with parameters pλp2q

1 , λ
p2q
2 , rp2qq with λ

p2q
1 “ λ1, λ

p2q
2 “ 0, rp2q “ 0. Values A and

C do not exist for the process ξt, retrieving the proof of Proposition 2.4.1, relations
(2.4.2)-(2.4.3) become

1tj1 “ 0u1tk “ 2u1tβ “ δ “ Bu
`
λ11tα “ Du ` λ21tα “ Cu

˘¯

` 1tj1 “ 0u1tk “ 2u
´

1tβ “ A, δ “ Bu
`
λ11tα “ Du ` λ21tα “ Cu

˘

` 1tj1 “ 1u1tk “ 2u1tβ “ δ “ Bu
`
λ11tα “ Du ` λ21tα “ Cu

˘

ď
`
1tj1 “ 0u ` 1tj1 “ 1u

˘
1tl “ 2u1tδ “ Buλ11tγ “ Du

(2.4.14)
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and

1th1 “ 0u
´

1tk “ 1urp1tα “ Bu ` 1tα “ Duq ` 1tk “ 2up1tα “ Cu

` 1tα “ Duq
¯

` 1th1 “ 1u1tk “ 2up1tα “ Cu ` 1tα “ Duq

ě 1th1 “ 0u1tγ “ αu1tl “ 2u1tγ “ Du

` 1th1 “ 0u1tγ “ 1 ` αu1tl “ 2u1tγ “ Du

` 1th1 “ 1u1tγ “ αu1tl “ 2u1tγ “ Du

(2.4.15)

that exhibit the following necessary condition : j1 P t0, 1u, β “ δ “ B, α “ C, γ “ D in
(2.4.14) give λ2 ď λ1. While relation (2.4.15) does not give further condition. Condition
λ2 ď λ1 is sufficient and allows us to construct the following coupling.

transition rate

p0, 0q ÝÑ

$
&
%

p2, 0q
p1, 1q
p0, 1q

r

λ1n1px, χq ` λ2n3px, χq
λ1pn1px, ξq ´ n1px, χqq ´ λ2n3px, χq

p1, 1q ÝÑ
"

p0, 0q
p3, 1q

1
r

p2, 0q ÝÑ

$
&
%

p3, 1q
p2, 1q
p0, 0q

λ1n1px, χq ` λ2n3px, χq
λ1pn1px, ξq ´ n1px, χqq ´ λ2n3px, χq

1

p2, 1q ÝÑ

$
&
%

p2, 0q
p0, 1q
p3, 1q

1
1

λ1n1px, χq ` λ2n3px, χq
p3, 1q ÝÑ

"
p2, 0q
p1, 1q

1
1

p0, 1q ÝÑ

$
&
%

p1, 1q
p2, 1q
p0, 0q

λ1n1px, χq ` λ2n3px, χq
r

1

p1, 0q ÝÑ

$
&
%

p1, 1q
p3, 0q
p0, 0q

λ1n1px, χq ` λ2n3px, χq
r

1

p3, 0q ÝÑ

$
&
%

p2, 0q
p1, 0q
p3, 1q

1
1

λ1n1px, ξq

Table 2.11

For all x P Zd, one has if χ ď ξ

n1px, χq “ |ty „ x : χpyq “ ξpyq “ 1u| (2.4.16)

n3px, χq “ |ty „ x : χpyq “ 3, ξpyq “ 1u| (2.4.17)
n1px, ξq “ |ty „ x : χpyq “ ξpyq “ 1u| ` |ty „ x : χpyq “ 3, ξpyq “ 1u|

` |ty „ x : χpyq P t0, 2u, ξpyq “ 1u| (2.4.18)
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Therefore, under condition condition λ2 ď λ1

λ1pn1px, ξq ´ n1px, χqq ´ λ2n3px, χq
“ pλ1 ´ λ2qn3px, χq ` λ1|ty „ x : χpyq P t0, 2u, ξpyq “ 1u|

is non-negative, and

χ0 ď ξ0 ñ χt ď ξt a.s.,

for all t ě 0.

For next proposition, prξtqtě0 is a basic contact process on t2, 3uZd

whose dynamics
is given by the following transitions in x P Zd

2 Ñ 3 at rate λ2n3px, rξq, 3 Ñ 2 at rate 1 (2.4.19)

Proposition 2.4.6. Let pηtqtě0 be a symmetric multitype process with parameters pλ1, λ2, rq
such that λ2 ď λ1. Then

rξ0 ď η0 ñ rξt ď ηt a.s., for all t ě 0.

Proof. Use once again Theorem 2.2.4 to obtain necessary and sufficient conditions for
a stochastic order. For the process prξtqtě0, values B and D are not reached and rates
are given by (2.2.19). Necessary and sufficient conditions on the parameters are given
by relations (2.4.2)-(2.4.3) applied to rates (2.4.19) i.e. (2.2.19), (2.2.16) and (2.2.17),

`
1tj1 “ 0u ` 1tj1 “ 1u

˘
1tk “ 2u1tβ “ δ “ Auλ21tα “ Cu

` 1tj1 “ 0u1tk “ 2u1tδ “ B, β “ Auλ21tα “ Cu

ď 1tj1 “ 0u
´

1tl “ 2u
`
1tδ “ Bu ` 1tδ “ Au

˘`
λ11tγ “ Du ` λ21tγ “ Cu

˘

` 1tl “ 1u1tδ “ Au
¯

` 1tj1 “ 1u1tl “ 2u
`
1tδ “ Bu ` 1tδ “ Au

˘`
λ11tγ “ Du ` λ21tγ “ Cu

˘
(2.4.20)

and

1th1 “ 0u1tk “ 2u1tα “ Cu ` 1th1 “ 1u1tk “ 2u1tα “ Cu

ě 1th1 “ 0u1tγ “ αu1tl “ 2u1tγ “ Cu

` 1th1 “ 0u1tγ “ 1 ` αu1tl “ 2u1tγ “ Du

` 1th1 “ 1u1tγ “ αu1tl “ 2u1tγ “ Cu

(2.4.21)

exhibiting the following conditions : j1 P t0, 1u, β “ δ “ A, α “ C, γ “ D in (2.4.20)
give λ2 ď λ1. Inequality (2.4.21) gives no condition on the rates and condition λ2 ď λ1

is sufficient to construct the coupled process prξt, ηtqtě0 via the following dynamics :
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transition rate

p3, 1q ÝÑ
"

p2, 0q
p3, 3q

1
r

p2, 0q ÝÑ

$
&
%

p2, 2q
p3, 1q
p2, 1q

r

λ2n3px, rξq
λ1n1px, ηq ` λ2pn3px, ηq ´ n3px, rξqq

p2, 2q ÝÑ

$
&
%

p3, 3q
p2, 3q
p2, 0q

λ2n3px, rξq
λ1n1px, ηq ` λ2pn3px, ηq ´ n3px, rξqq

1

p3, 3q ÝÑ
"

p2, 2q
p3, 1q

1
1

p2, 3q ÝÑ

$
&
%

p2, 2q
p2, 1q
p3, 3q

1
1

λ2n3px, rξq

p2, 1q ÝÑ

$
&
%

p3, 1q
p2, 3q
p2, 0q

λ2n3px, rξq
r

1

p3, 2q ÝÑ
"

p2, 0q
p3, 3q

1
λ1n1px, ηq ` λ2n3px, ηq

p3, 0q ÝÑ

$
&
%

p3, 1q
p3, 2q
p2, 0q

λ1n1px, ηq ` λ2n3px, ηq
r

1

whose rate λ1n1px, ηq ` λ2pn3px, ηq ´ n3px, rξqq is well defined : since

n3px, rξq “ |ty „ x : rξpyq “ 3, ηpyq “ 1u| ` |ty „ x : rξpyq “ 3, ηpyq “ 3u|

n1px, ηq “ |ty „ x : rξpyq “ 3, ηpyq “ 1u| ` |ty „ x : rξpyq “ 2, ηpyq “ 1u|
n3px, ηq “ |ty „ x : rξpyq “ 3, ηpyq “ 3u| ` |ty „ x : rξpyq “ 2, ηpyq “ 3u|

along with λ2 ď λ1, gives

λ1n1px, ηq ` λ2pn3px, ηq ´ n3px, rξqq “ pλ1 ´ λ2q|ty „ x : rξpyq “ 3, ηpyq “ 1u|
` λ2p|ty „ x : rξpyq “ 2, ηpyq “ 3u| ` λ1|ty „ x : rξpyq “ 2, ηpyq “ 1u|q

2.5 Phase transition

In this section, we take advantage of all the stochastic order relations between pro-
cesses established in Section 2.4 to derive results for a phase transition of the multi-
type process pηtqtě0, in both symmetric and asymmetric cases. According to Definition
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2.2.1, we assume the multitype process to have initial configuration η0 “ 1t0u and note
ηt “ η

t0u
t .

As announced in Section 2.2, we first deal with the cases where λ2 ă λ1 are both
smaller or larger than λc.

Proof of Proposition 2.2.1. Let pξtqtě0 be a basic contact process with growth rate λ1

and let pηtqtě0 be a symmetric multitype process with parameters pλ1, λ2, rq such that
η0 ď ξ0. By Proposition 2.4.5, pξtqtě0 is stochastically larger than pηtqtě0. Since λ1 ď λc,
pξtqtě0 is subcritical, thus, the symmetric multitype process dies out.

The extinction of the asymmetric multitype process is a consequence of the extinction
of the symmetric process and Proposition 2.4.4.

Proof of Proposition 2.2.2. Let prξtqtě0 be a basic contact process with growth rate λ2 on
t2, 3uZd

and let pηtqtě0 be a symmetric multitype process with parameters pλ1, λ2, rq. By
Proposition 2.4.6, pξtqtě0 is stochastically lower than pηtqtě0. Since λ2 ą λc, the process
prξtqtě0 is supercritical and therefore, the symmetric multitype process survives.

We now turn to Theorems 2.2.1 and 2.2.2, for which we shall prove :

Theorem 2.5.1. Assume λ2 ă λc ă λ1 fixed. Let pηtqtě0 be the symmetric multitype
process. Then,

(i) there exists r0 P p0,8q such that if r ă r0 then the process pηtqtě0 survives.

(ii) there exists r1 P p0,8q such that if r ą r1 then the process pηtqtě0 dies out.

Theorem 2.5.2. Assume λc ă λ1 and λ2 ă λ1 fixed. Let pηtqtě0 be the asymmetric
multitype process. Then,

(i) there exists s0 P p0,8q such that if r ă s0 then the process pηtqtě0 survives.

(ii) there exists s1 P p0,8q such that if r ą s1 then the process pηtqtě0 dies out.

These results imply Theorems 2.2.1 and 2.2.2, that is, the existence of a unique
phase transition with a critical value rc (resp. sc) defined in (2.2.12). Indeed, relying
on Theorems 2.5.1 and 2.5.2, by monotonicity given by Corollary 2.4.2 one has r0 “ r1

(resp. s0 “ s1).
We shall prove both theorems in Subsections 2.5.2 and 2.5.3. One concludes for the

critical case by proving Theorem 2.2.3 in Subsection 2.6.
Before that, subsection 2.5.1 deals with consequences of Theorems 2.5.1 and 2.5.2

along with monotonicity results of Section 2.4.

2.5.1 Behaviour of the critical value with varying growth rates

Suppose the existence of the critical value rc guaranteed in virtue of Theorems 2.5.1
and 2.5.2, one investigates the behaviour of rc when growth rates λ1 and λ2 are moving.
One manages to prove monotonicity between growth rates and the release rate, in the
sense that, the more competitive the species is (i.e. the higher the parameter λ2 is) or
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2.5. Phase transition

the fittest the species is (i.e. the higher the parameter λ1 is), the higher the release rate
is (i.e. the higher the critical value rc is) :

Proposition 2.5.1. For j “ 1, 2, the function λj ÞÝÑ rcpλjq is non-increasing.

Proof. We consider j “ 2 as the case j “ 1 is similar. Let pηtqtě0 and pη1
tqtě0 be two

multitype processes with respective parameters pλ1, λ2, rq and pλ1, λ
1
2, rq. By Theorems

2.5.1 and 2.5.2, existence and uniqueness of the critical values rc and r1
c associated to

those processes are guaranteed. We now show that if λ2 ă λ1
2, then rc ď r1

c.
By contradiction, suppose rc ą r1

c. Let r be fixed be such that rc ą r ą r1
c. Since

λ2 ă λ1
2, by Corollary 2.4.1-(iii), if η0 “ η1

0 then ηt ď η1
t a.s. By Theorem 2.2.3 and

Corollary 2.4.1,

Prp@t ě 0, H 1
t ‰ Hq ď Pr1

c
p@t ě 0, H 1

t ‰ Hq “ 0

But since r ă rc, the process pηtqtě0 survives : Prp@t ě 0, Ht ‰ Hq ą 0. This contradicts
ηt ď η1

t a.s., hence rc ď r1
c.

2.5.2 Subcritical case

The following proof relies on a comparison of the multitype process with an oriented
percolation process on the even grid L. Then we show that for the associated open sites,
percolation occurs thanks to results we presented in Section 2.2.3.

We follow arguments used by N. Konno, R. Schinazi and H. Tanemura [48] in the
case of a spatial epidemic model.

Proof of Theorem 2.5.1 (i). To simplify notations, choose d “ 1 but the proof remains
the same for any d ě 2. Introduce the following space-time regions,

B “ p´4L, 4Lq ˆ r0, T s, Bm,n “ p2mLe1, nT q ` B

I “ r´L,Ls, Im “ 2mLe1 ` I

for positive integers L, T to be chosen later, where pe1, ..., edq denotes the canonical basis
of Rd. Notice they correspond to the boxes introduced in (2.2.20) with j0 “ 1, k0 “ 4.

Consider the process pηm,nt qtě0 restricted to the region Bm,n, that is, constructed from
the graphical representation where only arrival times of the Poisson processes occurring
within Bm,n are taken into account. Therefore, a birth on a site x P Bm,n from some site
y only occurs if y P Bm,n. By Proposition 2.4.2 and Remark 2.4.1, one has

η
m,n
t ď ηt

ˇ̌
Bm,n

, (2.5.1)

for all t ą 0 if ηm,n0 “ η0

ˇ̌
Bm,n

.

Let k “ t
?
Lu and define C “ r´k, ks. One declares pm,nq P L to be wet if for any

configuration at time nT such that there is a translate of C full with 1’s in Im with Im
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Chapter 2. Phase transition on Zd

containing only 0’s and 1’s, the process restricted to Bm,n is such that at time pn` 1qT
there are a translate of C in Im´1 and a translate of C in Im`1, both full of 1’s, with
Im´1 and Im`1 containing only 0’s and 1’s.

Let us show that the probability of a site pm,nq P L to be wet can be made arbitrarily
close to 1 for L and T chosen sufficiently large. By translation invariance, it is enough
to deal with the case pm,nq “ p0, 0q.

Suppose I contains only 0’s and 1’s as well as the translate of C full of 1’s and set
r “ 0 in B, that is, no more type-2 individuals arrive in the box B after time 0.

If type-2 individuals are present on the base p´4L,´LqYpL, 4Lqˆt0u, the probability
of the event E they all die by time T {2 is at least

´
1 ´ expp´T {2q

¯6L

which is larger than 1 ´ ǫ for T and L chosen large enough. On E, the process restricted
to the box B is now from time T {2 a supercritical contact process pξm,nt qtěT {2 with
distribution rPpξm,nt P ¨q. But we have to make sure that at time T {2, there are still
enough 1’s for ξm,nT {2 , for this we use the following result. Define τpℓq “ inftt ą 0 :

Ξr´ℓ,ℓs
t

ˇ̌
ˇ
r´ℓ,ℓs

“ Hu, the hitting time of the trap state 0 of the contact process starting

from r´ℓ, ℓs and restricted to r´ℓ, ℓs ˆ r0, T {2s. T. Mountford [62] proved that

rPpτpℓq ď exppℓqq ď expp´ℓq for ℓ large enough (2.5.2)

Partition C into M “ t
?
ku boxes, each of them being a translate of r0,M s. From each

of these M boxes, say box j ď M run a supercritical contact process denoted by pζjt qtě0

which coincides with the restriction of ξm,nt to this box. Therefore for each x in this box
J , as in 2.5.1, ζjT {2pxq ď ξ

m,n
T {2 pxq for all x P Bm,n. Then for the union of these j boxes

(j ď M), the probability there is at least M 1’s within C by time T {2 is after (2.5.2),
with T such that exppMq ď T {2, at least

rPpτpMq ě T {2qM ě rPpτpMq ě exppMqqM ě p1 ´ expp´MqqM (2.5.3)

which can be made larger than 1 ´ ǫ, for M , i.e. L, large enough.

A result of R. Durrett and R. Schinazi [25] shows that for a contact process pξtqtě0,
for any A Ă Z, except for a set with exponentially small probability, either ΞA

t “ H, or
ξAt “ ξZt on a linearly time growing set r´αt, αts : there exists α ą 0 such that for all
A Ă Z, there exist positive constants C, γ such that

rPpΞA
t ‰ H, ξAt pxq ‰ ξZt pxqq ď C expp´γtq (2.5.4)

where x P A ` αt.
We applied this result with A Ă C which correspond to the numbers of 1’s in the

box. We just proved that |A| ą |M |. Moreover according to Proposition 2.6.1, one can
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2.5. Phase transition

choose k, and so L, large enough so that this supercritical contact process ξAt starting
from at least M 1’s survives at time T {2 with probability close to 1, hence ξAt ‰ H
and (2.5.4) is valid. In this situation, taking T {2 “ 9L{p2αq with L large enough, the
process pξm,nt qtě0 starting from at least M 1’s in r´L,Ls at time T {2 will be coupled
with a process ξZt on r´3L, 3Ls with probability at least 1 ´ ǫ at time T . Hence, since
3L ą αT {2 ą 2L, by time T the contact process ξAt started inside r´L,Ls has not
reached the boundary of r´4L, 4Ls with probability close to 1. Then, the process ξm,nt

and the contact process ξAt are the same with probability 1 ´ ǫ in r´4L, 4Ls ; this way,
the coupling of pξm,nt qtě0 with pξZt qtě0 works so far with probability 1 ´ ǫ if L is large
enough.

Since the distribution of pξZt qtě0 is stochastically larger than the upper invariant
measure ν (see Chapter 1 Section 1.1.2) of the contact process, on the survival event, ν
loads a positive density ρ of 1’s. Since ν is ergodic (see Chapter 1 Section 1.1.2),

lim
LÑ8

1
2L ` 1

´Lÿ

x“´3L

1tηpxq “ 1u “ ρ ν -a.e.

In other words, as soon as L is large enough, under ν there are at least k 1’s in any
interval of length 2L`1 with ν-probability at least 1´ǫ. Since we obtained that pξm,nt qtě0

is coupled to pξZt qtě0 by time T with probability at least 1´2ǫ, for L large enough, there
are at least k 1’s in r´3L,´Ls at time T with probability at least 1 ´ 2ǫ and similarly,
at least k 1’s at time t in rL, 3Ls with probability at least 1 ´ 2ǫ as well for pξm,nt qtě0.
Consequently,

rPpp0, 0q wetq ą 1 ´ 4ǫ, if r “ 0. (2.5.5)

Since B is a finite space-time region, for fixed L, T , one can pick r0 ą 0 small enough
so that the arrival times of a rate r Poisson process, such that r ă r0, in B occurs with
probability at most ǫ. Let AL,T prq be the first arrival time of a rate r Poisson process
in r´2L, 2Ls ˆ r0, T s.

Prpp0, 0q wetq ě Prpp0, 0q wet, AL,T prq ą T qPrpAL,T prq ą T q
ě p1 ´ 4ǫqe´rp4L`1qT

ě 1 ´ 6ǫ

as soon as the exponent of the exponential is close to 0, i.e. by choosing r small enough.
See Figure 2.2 for an illustration.
Now construct a percolation process by defining the good event Gm,n “ tpm,nq wetu.

Notice that Gm,n depends only on the process constructed in Bm,n, and for pa, bq P
L, events Gm,n and Ga,b are independent if pm,nq and pa, bq are not neighbours. The
events tGm,n, pm,nq P Lu are thus 1-dependent. By the comparison theorem 2.2.7, the
process pηm,nt qtě0 restricted to regions Bm,n is stochastically larger than a 1-dependent
percolation process with probability 1 ´ ǫ.

By Lemma 2.2.5, one can choose ǫ small enough so that percolation occurs in the
1-dependent percolation process with density 1 ´ ǫ.
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time

0

T

T ` 1

I

I1I´1

I2I´2

L´L 4L´4L´6L 6L

B

B´1,1 B1,1

Figure 2.2: There exist L, T such that p0, 0q is wet with Pr-probability close to 1.

2.5.3 Supercritical case

In the following, one compares our particle system with a percolation process on
Z2 ˆ Z` and uses arguments from Van Den Berg et al. [75].

Proof of Theorem 2.2.1 (ii). Assume d “ 2, the proof can similarly be extended to
higher dimensions. For all pk,m, nq P Z2ˆZ`. Introduce the following space-time regions,
for positive L and T to be chosen later.

A “ r´2L, 2Ls2 ˆ r0, 2T s Ak,m,n “ A ` pkL,mL, nT q
B “ r´L,Ls2 ˆ rT, 2T s Bk,m,n “ B ` pkL,mL, nT q
C “ Cbottom

Ť
Cside Ck,m,n “ C ` pkL,mL, nT q

where Cbottom “ tpm,n, tq P A : t “ 0u
Cside “ tpm,n, tq P A : |m| “ 2L or |n| “ 2Lu

Consider a restriction of the process pηtqtě0 to Ak,m,n, that is, the process pηk,m,nt qtě0

constructed from its graphical representation within Ak,m,n.
One declares a site pk,m, nq P Z2 ˆ Z` to be wet if the process pηk,m,nt qtě0 contains

no wild individual in Bk,m,n starting from any configuration in Ck,m,n. Therefore it will
be the same for ηt

ˇ̌
Ak,m,n

. Sites that are not wet are called dry.

For any ǫ ą 0, we show that for some chosen L and T any site pk,m, nq is wet with
probability close to 1 when r is large enough. By translation invariance, it is enough
to consider pk,m, nq “ p0, 0, 0q. Set r “ 8 in A. Then, the process pηk,m,nt qtě0 contains
only sites in state 2 or 3 : sites in state 0 or 1 flip instantaneously into state 2 and 3
respectively. That is, pηk,m,nt qtě0 is in fact a contact process prξk,m,nt qtě0 on t2, 3ur´2L,2Ls

The contact process prξtqtě0 on t2, 3uZ2

with growth rate λ2 ă λc is subcritical.

If there is some wild individual in B, it should have come from a succession of births
started somewhere in C. Starting from a site in Cside, a path to B should last at least L
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sites ; according to C. Bezuidenhout and G. Grimmett [6] there exists such a path with
probability at most C expp´γLq, for some positive constants C, γ. Hence,

PpDpx, tq P Cside ˆ r0, 2T s : px, tq Ñ Bq ď 4
`
2T ˆ p4L ` 1q

˘
C expp´γLq

Similarly, starting from the base Cbottom, there exists a path lasting at least T sites with
probability

PpDpx, tq P Cbottom : px, tq Ñ Bq ď p4L ` 1q2C expp´γT q
Consequently if r “ 8,

Ppp0, 0, 0q wet q ě 1 ´ 4
`
2L ˆ p4L ` 1q

˘
Ce´γL ´ p4L ` 1q2Ce´γT ě 1 ´ ǫ{2,

for L and T large enough.
Since A is a finite space-time region, one can pick r large enough so that with

probability at least 1 ´ ǫ{2, an exponential clock with parameters r rings before any
other so that there are no type-1 individuals in A with probability close to 1 :

Prpk,m, nq wetq ě 1 ´ ǫ

for r large enough.

To construct a percolation process on Z2 ˆ Z`, one puts an oriented arrow from
pk,m, nq to px, y, zq if n ď z and if Ak,m,nXAx,y,z ‰ H. The eventGk,m,n “ tpk,m, nq wetu
depends only on the graphical construction of the process within Ak,m,n, furthermore,
for all pk,m, nq P Z2 ˆ Z`, there is a finite number of sites px, y, zq P Z2 ˆ Z` such
that Ak,m,n X Ax,y,z ‰ H. The percolation process is dependent but of finite range. The
existence of a path of wild individuals for the particle system corresponds to a path of
dry sites for the percolation and we proved that dry paths are unlikely.

Let us show that for all sites, there exists a finite random time after which there is
no more wild individuals remaining. Follow the construction given by van den Berg et
al. [75].

Since the percolation is of finite range, there exists some positive constant Cpdq
such that if the distance between two sites is at least Cpdq then they are mutually in-
dependent. For any x P Z2, define Tx “ suptt : ηtpxq P t1, 3uu the last time where x
is occupied by a wild individual. By translation invariance, deal with the case x “ p0, 0q.

Let K ą 0, suppose T0 ą TK, there exists some m P Z` such that p0, 0,mq is the
end of a dry path starting from px, y, 0q with px, yq P Z2. The number of paths of length
ℓ is at most δℓ. Moreover, a self-avoiding path of length ℓ contains at most νℓ mutually
independent sites (i.e. whose in-between distance is at least Cpdq), ν ą 0. Hence,

PpT0 ą TKq ď
ÿ

měK´1

ÿ

ℓěm
δℓ
`
1 ´ Pppk,m, nq wet q

˘νℓ
(2.5.6)
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For r large enough,the right-hand side tends to 0 when K goes to infinity. That is,
T0 is almost surely finite and the region A ˆ rTx,8q is wild individuals-free. For the
percolation process, this means there is an infinite path of wet sites, hence the process
pηtqtě0 dies out.

To sum up, we just showed there exist r0 and r1 such that r0 ď rc ď r1, for r ď r0

the process survives and for r ě r1 the process dies out.

This proves the existence of a phase transition for the symmetric multitype process.
The proof of Theorem 2.5.1-(i) only uses that contact process with growth rate λ1 is
supercritical, this is also true to show the existence of s0 in Theorem 2.5.2-(i). By Pro-
position 2.4.4, the asymmetric multitype process dies out as soon as the symmetric one
does, existence of s1 in Theorem 2.5.2-(ii) is then immediately guaranteed by Theorem
2.5.1-(ii). Though, one can remark that conditions of Theorem 2.5.2 are milder : one
can actually show the existence of s1 in a neater way. Indeed, retrieving briefly the proof
of the supercritical case : assume λ2 ą λc : with the lack of the transition "2 Ñ 3" in
the asymmetric case and choosing first r “ 8, one notices for the subcritical contact
process on t2, 3uZ2

, there are no possible paths of wild individuals created by the 3’s
from the boundary Ck,m,n up to extinction, but this occurs exponentially fast (see C.
Bezuidenhout and G. Grimmett [6]).

2.6 The critical process dies out

In this section, we prove Theorem 2.2.3 : the critical multi-type contact process dies
out. i.e. Prc

pHt ‰ H @t ě 0q “ 0. Recall pηtqtě0 stands for the multitype process,
starting from the initial configuration η0 “ 1t0u.

One follows closely the arguments used by C. Bezuidenhout and G. Grimmett [5],
well-exposed by T.M. Liggett [57, Chapter I.2]. We shall use both presentations.

The dynamic renormalization construction sees the time-evolution of the process in
a suitable chosen scaling : space-time is divided into finite space-time regions. So far,
this looks heavily like the comparison with oriented percolation we defined in Section
2.2. But here, instead of fixing every region initially, the idea is rather to determine
their positions according to the past random position in the construction, along with
the evolution of the process.

Let us sketch the contents of the proof.

Outline. The first step consists to observe that if the process survives in an arbitrary
large box, then it reaches its boundaries densely. We shall estimate these densities at
each side of a space-time region.

This way, one can repeat this step by running the process in an other adjacent box
starting from the boundary of the previous one and so on, conditionally on the fact
that the starting configuration is dense enough. This is the second step. In connection
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with the proofs of Theorems 2.5.2 and 2.5.1 where we looked after having translations
of occupied finite intervals at a given fixed time, here we look after having translations
of the densities in some space-time slab.

Now, knowing that at each stage, one can construct overall a path of adjacent boxes
wherein the process survives and reaches the boundaries densely, it remains to compare
the process with an oriented percolation process to extend the arguments to infinite
space and time. As before, compare a space-time box to a vertex in the even lattice
of an oriented percolation so that one declare a vertex to be wet if some good event
associated to the box is a success. Conclude thanks to results about percolation theory,
recalled in Section 2.2.

2.6.1 Local characterization of the survival event

We saw under specific hypothesis on r, the multi-type contact process survives with
positive probability. Supposing it survives, one exhibits here several properties of growth
satisfied by the process restricted to an arbitrary large box. Such results have been
proved for the basic contact process by C. Bezuidenhout and G. Grimmett [5], thanks
to techniques of dynamic renormalization introduced by G. Grimmett et al. [35, 2].

First note the arguments developed by [5] rely on elementary properties of the contact
process making them robust. They are also valid for the multitype process because the
latter satisfies the following properties we have exhibited in previous sections :
(A) contact process-like dynamics : one retrieves the growth rate λ1 or λ2 of a basic

contact process, even if it is determined randomly. We will make use of the more
suitable one depending on the situation.

(B) attractiveness, by Section 2.4.
(C) correlation inequalities : using correlation inequalities such as FKG inequality

1.2.1.
Note that the use of (C) is possible because we shall work in finite space-time regions
in the following. Such techniques have been several times exploited to study critical
processes, including works by O. Garet and R. Marchand [30] for a branching random
walk, J. Steif and M. Warfheimer [74] for a randomly evolving contact process.

Covering of an arbitrary large box

Proposition 2.6.1. Suppose pηtqtě0 survives, then

lim
nÑ8 PrpH r´n,nsd

t ‰ H @tq “ 1. (2.6.1)

Proof. By attractiveness of the process pηtqtě0 (see Corollary 2.4.1), if A,B Ă Zd are
such that A Ă B then

PrpHB
t ‰ H @t ě 0q ě PrpHA

t ‰ H @t ě 0q ą 0.

Since we assumed pηtqtě0 survives, lim
AÒZd

PrpHA
t ‰ H @tq “ 1.
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Consider, for L ě 1 and A Ă Zd, the truncated process pLηAt qtě0 defined as the
process pηtqtě0 starting from the initial configuration η0 “ 1A constructed from the gra-
phical representation in p´L,Lqd ˆ r0, ts. Denote by pLHA

t qtě0 the associated set of sites
occupied by wild individuals at time t.

The next two results show that sites occupied by wild individuals are dense in some
orthant of the top of a box of size p´L,Lqd ˆ r0, T s. Following estimates are analogous
to the ones we did previously in the proof of Theorem 2.5.1, Subsection 2.5.2, one proves
by (A) and (B) of pηtqtě0 that

Proposition 2.6.2. Let n ě 1 and N ě 1, then

lim
tÑ8

lim
LÑ8

Prp|LH r´n,nsd

t | ě Nq “ PrpH r´n,nsd

t ‰ H @t ą 0q (2.6.2)

Proof. Since H r´n,nsd

t “ Ť
Lě0

LHt
r´n,nsd

, for any fixed t, by monotonicity (see Corollary

2.4.1),
lim
LÑ8

Prp|LH r´n,nsd

t | ě Nq “ Prp|H r´n,nsd

t | ě Nq. (2.6.3)

It is thus enough to show

lim
tÑ8

Prp|H r´n,nsd

t | ě Nq “ PrpH r´n,nsd

t ‰ H @t ą 0q.

On the other hand, for an initial configuration constituted of p2n ` 1qd wild indivi-
duals, the probability that these p2n ` 1qd wild individuals die before any birth is at
least the probability the maximum of p2n ` 1qd independent exponential clocks with
parameter 1 is smaller than the minimum of 2dp2n`1qd independent exponential clocks
with parameter λ2, since λ2 ă λ1. That is,

PrpH r´n,nsd

t “ H for some t|Fsq ě
” 1

1 ` 2dλ2|H r´n,nsd

s |

ı|Hr´n,nsd

s |

where Ft “ σpηr´n,nsd

s , s ď tq is the sigma-algebra generated by the graphical represen-
tation of the process pηr´n,nsd

t qtě0 until time t.

Define F8 “ Ş
sě0

σpFsq, since tH r´n,nsd

t “ H for some tu is a tail-event with respect

to F8, and 1tH r´n,nsd

t “ H for some tu is Pr-integrable, by the martingale convergence
theorem, Lévy’s zero–one law gives

lim
sÑ8 Er1tH r´n,nsd

t “ H for some tu|Fss “ 1tH r´n,nsd

t “ H for some tu a.s.

Therefore,
lim
tÑ8

|H r´n,nsd

t | “ 8 a.s. ontH r´n,nsd

s ‰ H @s ě 0u, (2.6.4)
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2.6. The critical process dies out

and by (2.6.3) and (2.6.4),

lim
tÑ8

Prp|H r´n,nsd

t | ě N,H r´n,nsd

s ‰ H @s ą 0q “ PrpH r´n,nsd

t ‰ H @t ě 0q

Using FKG inequality (C), one shows that the truncated process contains a large
number of occupied sites in some orthant of Rd. For this, define the 2d orthants of Rd :
for u “ pu1, ..., udq P t´,`ud,

Ou :“ tx “ px1, ..., xdq P Rd : sgnpxiq “ ui, 1 ď i ď du.

By symmetry and reflexion with respect to the time axis, without loss of generality one
can only consider the positive orthant i.e. when sgnpxiq “ ` for any 1 ď i ď d that we
denote by

O` :“ tx “ px1, ..., xdq P Rd : sgnpxiq “ `, 1 ď i ď du.

Proposition 2.6.3. Fix n ě 1, N ě 1 and L ě n,

Prp|LH r´n,nsd

t X O`| ď Nq2d ď Prp|LH r´n,nsd

t | ď 2dNq (2.6.5)

Proof. Along this proof, make us of (A) since we retrieve a basic contact process, so
that one use the suitable growth rate depending on the ongoing estimate. First, remark
that

|LH r´n,nsd

t | “
ÿ

uPt´,`ud

|LH r´n,nsd

t X Ou|.

All t|LH r´n,nsd

t XOu|, u P t´,`udu are independent, identically distributed and positively
correlated by monotonicity : increasing with respect to growth rate Poisson process
and decreasing with respect to death and release rates Poisson processes, using (B) by
Corollary 2.4.1. So that by FKG inequality, for all u P t´,`ud :

˜
Pr

ˆ
|LH r´n,nsd

t X O`| ď N

˙¸2d

“
ź

uPt´,`ud

Pr

ˆ
|LH r´n,nsd

t X Ou| ď N

˙

ď Pr

ˆ č

uPt´,`ud

´
|LH r´n,nsd

t X Ou| ď N
¯˙

ď Pr

ˆ ÿ

uPt´,`ud

|LHt
r´n,nsd X Ou| ď 2dN

˙

ď Pr

ˆ
|LH r´n,nsd

t | ď 2dN
˙
.
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Chapter 2. Phase transition on Zd

By Propositions 2.6.2 and 2.6.3, for any ǫ ą 0, there exist L and t sufficiently large
such that

Prp|LH r´n,nsd

t X Ou
d | ě Nq ą 1 ´ ǫ2d

.

Before going on space-time conditions, consider the lateral parts of the box p´L,Lqd ˆ
r0, T s. For this, define

SpL, T q :“ tpx, tq P Zd ˆ r0, T s : |x|8 “ Lu,

the boundary of the box p´L,Lqd ˆ r0, T s and define LH :“ Ť
tě0 LHt ˆ ttu. For any

A Ă Zd, let NA
S pL, T q be the cardinal of the set

tpx, tq P SpL, T q X LH
A : px1, s1q, px2, s2q P SpL, T q X LH

A such that |s1 ´ s2| ě 1u.

Proposition 2.6.4. Let pLjqjě1 and pTjqjě1 be two increasing sequences of integers.
For any integers M,N, n,

lim
jÑ8

PrpN r´n,nsdpLj, Tjq ď MqPrp|Lj
H

r´n,nsd

Tj
ď Nq

ď PrpH r´n,nsd

t “ H for some tq (2.6.6)

Proof. Let FL,T be the sigma-algebra generated by the Poisson processes of the graphical

representation of the process pηtqtě0 in p´L,Lqdˆr0, T s. For each site of LH
r´n,nsd

T , there
is a probability at least

p1 ` 2dλ1q´1

that a site does not give birth (exponential clock with parameter 1 associated to a
death ringing before an exponential clock associated to a birth). By independance of
the Poisson processes, the probability that none of x P LHT

r´n,nsd

contributes to the
survival of the process is at least

´
p1 ` 2dλ1q´1

¯|LHr´n,nsd

T
|
.

For the lateral parts of p´L,Lqd ˆ r0, T s, consider now a segment txu ˆ r0, T s, where
|x|8 “ L, and define px, t1q, ..., px, tjq a maximal set of 1-sparse time-wise points of the
segment in SpL, T q X r´n, nsd i.e. such that for any points px, tiq and px, tjq in this set,
then |ti ´ tj| ě 1. Fix j ě 1, the segment

I “
jď

k“1

txu ˆ ptk ´ 1, tk ` 1q.

is of Lebesgue-measure at least 2j. There is no arrow in the graphical representation
starting from a site of I with probability at least

´
e´2jλ1

¯2d

.
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2.6. The critical process dies out

For each interval of length y in txu ˆ r0, T qzI, the event no arrow occurs or an arrow
occuring is preceded by a death or a slowdown symbol, occurs with probability at least

1
1 ` 2dλ1

.

Consequently, no points of txu ˆ r0, T s contributes to the survival of the process with
probability at least

e´4djλ1

´ 1
2dλ1

¯j
.

Counting the contribution of all such x,

PrpH r´n,nsd

t “ H for some t|FL,T q ě e´4dkλ1

´ 1
1 ` 2dλ1

¯k
a.s. (2.6.7)

on the event tN r´n,nsd

S pL, T q ` |LH r´n,nsd

T | ď ku.

Then, consider two increasing sequences pTjqjě0, pLjqjě0 and integers M,N , define

Hj :“ tN r´n,nsd

S pLj, Tjq ` |LH r´n,nsd

Tj
| ď M ` Nu.

If G “ tH r´n,nsd

t “ H for some tu, by the martingale convergence theorem,

lim
jÑ8

PrpG|FLj ,Tj
q “ 1G a.s.

From (2.6.7), for all j ě 0, on Hj, PrpG|FLj ,Tj
q is bounded below by some positive form

and thus, lim
jÑ8

Hj Ă G. That is,

lim
jÑ8

PrpHjq ď Prp lim
jÑ8

Hjq ď PrpGq.

Furthermore, by FKG inequality (C),

PrpN r´n,nsdpL, T q ` |LH r´n,nsd

T | ď M ` Nq
ě PrpN r´n,nsd

S pL, T q ď M, |LH r´n,nsd

T | ď Nq
ě PrpN r´n,nsd

S pL, T q ď MqPrp|LH r´n,nsd

T | ď Nq

this concludes the proof.

As for the top of the box (Proposition 2.6.3), one can control the number of occupied
sites on the lateral parts of the box p´L,Lqdˆr0, T s. For this, introduce for i “ 1, ..., d2d

and u P t´,`ud, the 2d sides of the box by

Sui pL, T q :“ tpx, tq P Zd ˆ r0, T s, xi “ uiL, sgnpxjq “ uj pj ‰ iqu
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Chapter 2. Phase transition on Zd

and NA
i pL, T q the cardinal of the set

tpx, tq P Sui pL, T q X LH
A : px1, s1q, px2, s2q P SpL, T q X LH

A such that |s1 ´ s2| ě 1u.

By symmetry and reflexion with respect to the time axis, it is enough to look only at
the positive coordinates :

S`pL, T q :“ S
p`,...,`q
1 pL, T q “ tpx, tq P Zd ˆ r0, T s, x1 “ L, xj ě 0 pj ‰ iqu.

Proposition 2.6.5. For any integers M,L, T and n ă L,

PrpN r´n,nsd

` pL, T q ď Mqd2d ď PrpN r´n,nsd

S pL, T q ď Md2dq

Proof. Remark that tN r´n,nsd

i pL, T q, 1 ď i ď d2du are identically distributed and positi-
vely correlated. Moreover,

N
r´n,nsd

S pL, T q ď
d2dÿ

i“1

N
r´n,nsd

i pL, T q.

So, as for Proposition 2.6.4, one has by FKG inequality,

PrpN r´n,nsd

` pL, T q ď Mqd2d “
d2dź

i“1

PrpN r´n,nsd

i pL, T q ď Mq

ď Prp
d2dč

i“1

N
r´n,nsd

i pL, T q ď Mq

ď PrpN r´n,nsd

S pL, T q ď Md2dq.

Space-time conditions

Proposition 2.6.6. Suppose pηtqtě0 survives. For any ǫ6 ą 0, there exist integers
n, L, T ą 0 such that

Pr

ˆ
L`2nH

r´n,nsd

T`1 Ą x ` r´n, nsd for some x P r0, Lqd
˙

ą 1 ´ ǫ6 (2.6.8)

and

Pr

ˆ
L`2nH

r´n,nsd

t`1 Ą x ` r´n, nsd for some

px, tq P tL ` nu ˆ r0, Lqd´1 ˆ r0, T q
˙

ą 1 ´ ǫ6 (2.6.9)
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2.6. The critical process dies out

Proof. Fix δ ą 0. By Proposition 2.6.1, choose n such that

PrpH r´n,nsd

t ‰ H @t ě 0q ą 1 ´ δ2

Let N be sufficiently large so that N points in Zd contain at least N 1 points which are
p2n ` 1q-sparse in L8-distance. Choose now N 1 sufficiently large so that

”
1 ´ Prpn`1H

t0u
t Ą r´n, nsdq

ıN 1

ď δ.

Likewise, choose M sufficiently large so that M points in Zd contain at least M 1

points which are p2n ` 1q-sparse. Choose now M 1 sufficiently large so that

”
1 ´ Pr

`
n`1H

t0u
1 Ą r0, 2ns ˆ r´n, nsd´1

˘ıM 1

ď δ.

Fix n, L,N , the map t ÞÑ Prp|LH r´n,nsd

t | ě 2dNq is continuous and lim
nÑ8 Prp|LH r´n,nsd

t | ą
2dNq “ 0, by Proposition 2.6.2, there exist two increasing sequences Lj Ò 8 and Tj Ò 8
such that for all j ě 1,

Prp|Lj
H

r´n,nsd

Tj
| ą 2dNq “ 1 ´ δ.

Using Proposition 2.6.4, there exists some j0 for which,

PrpN r´n,nsd

S pLj0 , Tj0q ą Md2dq ą 1 ´ δ.

Considering L “ Lj0 and T “ Tj0 , applying Propositions 2.6.3 and 2.6.5, one has

Prp|LH r´n,nsd

T X r0, Lqd| ą 2dNq ě 1 ´ δ1{2d

and
PrpN r´n,nsd

S pL, T q ą Md2dq ą 1 ´ δ1{d2d

.

In other words, because the Poisson processes used in the graphical representation are
independent in different space-time regions,

Pr

ˆ
L`2nH

r´n,nsd

T`1 Ą x ` r´n, nsd for some x P r0, Lqd
˙

ě p1 ´ δ1{d2dqp1 ´ δq

and

Pr

ˆ
L`2nH

r´n,nsd

T`1 Ą x ` r´n, nsd for some

px, tq P tL ` nu ˆ r0, Lqd´1 ˆ r0, T q
˙

ě p1 ´ δ1{2dqp1 ´ δq.

Conclude by choosing δ such that p1´δ1{2dqp1´δq ě 1´ǫ and p1´δ1{d2dqp1´δq ě 1´ǫ.
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Chapter 2. Phase transition on Zd

Proposition 2.6.7. Suppose (2.6.8)-(2.6.9) are satisfied. Then, for any ǫ7 “ ǫ7pǫ6q ą 0,
there exist n, L, T such that

Pr
`

2L`3n
H

r´n,nsd

t Ą x ` r´n, nsd for some

px, tq P rL ` n, 2L ` ns ˆ r0, 2Lqd´1 ˆ rT, 2T s
˘

ą 1 ´ ǫ7. (2.6.10)

Proof. For any ǫ7 ą 0, choose n, L and T as in (2.6.8)-(2.6.9), by Proposition (2.6.6).
With (2.6.9), with Pr´probability at least 1´ǫ6, there exists px, tq P tL`nuˆr0, Lqd´1ˆ
r0, T q such that L`2nH

r´n,nsd

t`1 Ą x ` r´n, nsd.

By the Markov property and (2.6.8), starting from T`1, with Pr´probability at least
1´ǫ6, there exists some y such that y´x P r0, Lqd satisfying L`2nH

r´n,nsd

T`1 Ą y`r´n, nsd.
Consequently,

Pr
`

2L`3n
H

r´n,nsd

t Ą x ` r´n, nsd for some

px, tq P rL ` n, 2L ` ns ˆ r0, 2Lqd´1 ˆ rT ` 1, 2pT ` 1qs
˘

ě p1 ´ ǫ6qd.

The next result links the previous estimates with a percolation process.

Block constructions The following two constructions rely on the geometry of the
boxes only, proofs are similar to the ones of [5, Lemma 18] and [5, Lemma 19] respecti-
vely. They allow us to position the successive boxes adjacently and well centred.

Proposition 2.6.8. Suppose pηtqtě0 survives. For any ǫ8 “ ǫ8pǫ7q ą 0 and fix k P N,
there exist integers n, a, b such that n ă a for which : for all px, sq P r´a, asdˆr0, bs, with
Pr´probability at least 1 ´ ǫ8, there exists a translate py, tq ` r´n, nsd ˆ t0u satisfying :

i. py, tq P ra, 3as ˆ r´a, asd´1 ˆ r5b, 6bs.
ii. From px, sq ` r´n, nsd ˆ t0u, there exist active paths reaching any points of py, tq `

r´n, nsd ˆ t0u lying within the region

r´5a, 5asd ˆ r0, 6bs.

The idea is to repeat sufficiently enough the Proposition 2.6.7 in order to translate
the center px, sq of a box to the center py, tq of another box, so that if the first box is
occupied, then the second one is as well and so on [see Figure 2.3].

Proof. Choose n, L, T as in Proposition 2.6.7 . Define a “ 2L ` n and b “ 2T . One
can thus construct boxes as following : noting one needs to recentre within the box
py, tq P ra, 3as ˆ r´a, asd´1 ˆ r5b, 6bs :

(1) for 2 ď i ď d, for some current centre pz, rq such that zi ě 0 or zi ă 0, it suffices
to move it in the opposite direction. Since a ě 2L, the ith coordinate does not
leave out of r´a, as.
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2.6. The critical process dies out

(2) Move the spatial coordinate to reach ra, 3as. Since it always moves by at least
2L ` n and 2L ` n ě 2a, it reaches ra, 3as in at most four steps.

(3) Move the time coordinate to reach 5b. As it moves between T and 2T , it reaches
5b after four to ten steps. As b “ 2T , it does not overcross 6b by 10 steps.

As each step depend only of Poisson processes within the region r´5a, 5asd by disjoint
time intervals, by Proposition 2.6.7, this construction succeeds with probability at least
p1 ´ ǫ7q10 “: 1 ´ ǫ8.

Iterating k times the previous result, one obtains (see Figure 2.3) :

Proposition 2.6.9. Suppose pηtqtě0 survives. For any ǫ9 “ ǫ9pǫ8q ą 0 and k P N fixed,
there exist δ ą 0, and integers n, a, b such that n ă a for which : For all px, sq P r´a, asdˆ
r0, bs, with Pr´probability at least p1´ǫ9qk, there exists a translated py, tq`r´n, nsdˆt0u
such that :

i. py, tq P p2ka ` r´a, asq ˆ r´a, asd´1 ˆ p5kb ` r0, bsq.
ii. From px, sq ` r´n, nsd ˆ t0u, there exist active paths reaching any point of py, tq `

r´n, nsd ˆ t0u lying within the region

R “
k´1ď

j“0

p2ja ` r´5a, 5asq ˆ r´5a, 5asd´1 ˆ p5jb ` r0, 6bsq.

Comparison with oriented percolation For p, q P Z such that q ě 0 and p ` q is
even, define

vp,q :“ r´a, asd ˆ r0, bs ` pp2kaed ˆ q5kbq
and

S “
ď

qě0 p`q even

´
T ` pp2kaed ˆ q5kbq

¯
,

where T “ r´a, asd´1 ˆ
!

pxd, tq P Z ˆ R` : 0 ď t ď p5k ` 1qb, ´5a ˘ at{b ď xd ď
5a˘at{b

)
. Here, S is a cross shaped nesting of successive boxes (as in Figure 2.3) using

reflections and symmetries. Similarly to [5, Lemma 21], one has

Theorem 2.6.1. If pηtqtě0 survives, there exist integers n, a such that

Prpηr´n,nsd

t survives in Z ˆ r´5a, 5asd´1 ˆ r0,8qq ą 0

Proof. Adapting the proof of [5, Lemma 21], fix δ ą 0 and ǫ ą 0 such that 1 ´ ǫ ą
1 ´ δ. Choose n, a, b as in Proposition 2.6.9. Construct random variables tZnpiq “
pInpiq, Pnpiqq : n ě 0, i ě 0u, where Inpiq P t0, 1u and Pnpiq P Zd ˆ r0,8q such that
Pnpiq is undefined if Inpiq “ 0. Fix Z0p0q “ p1, 0q.

For defined random variables tZnpiq : n ď N, i ě 0u, construct recursively ZN`1piq “
pIN`1piq, PN`1piqq as follows.
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0

b

p5k ` 1qb
time

0´5a 5a

Figure 2.3: Set d “ 1. The targeted region goes upward-rightward (reflections are
not drawn, but a symmetric draw going upward-leftward does exist as the dashed line
suggests it). Occupied translated sets r´n, nsd stand in the gray regions and are reached
by paths lying in the area delimited by the stair shaped plain lines.

1. the random variable IN`1piq is 1 if : for j P ti, i´ 1u, INpjq “ 1, PNpjq ` r´n, nsd
is joined to every point of some translate of r´n, nsd centred in v2i´N´1,N`1 within
S.

2. if IN`1piq “ 1 then PN`1piq is defined as the centre of some translate of r´n, nsd.
With this construction, if for any n, ti ě 0 : Inpiq “ 1u ‰ H then the process pηr´n,nsd

t qtě0

survives in Z ˆ r´5a, 5asd´1 ˆ r0,8q. It remains then to show

Prpti ě 0 : Inpiq “ 1u ‰ H @n ě 0q ą 0.

Define Fn “ σpZkpiq, i ě 0, 0 ď k ď nq and by Proposition 2.6.9 :

PrpIn`1piq “ 1|Fnq ą 1 ´ δ on tInpi ´ 1q “ 1 or Xnpiq “ 1u

But conditionally to Fn, variables tInpiq, i ě 0u are 1-dependent. By Theorem 2.2.6, one
can construct Bernoulli random variables whose product measure of density p is lower
than the distribution of the 1-dependent variables. By taking 1´p close to 1, by Lemma
2.2.5, one has Inpiq “ 1 for an infinity of pairs pn, iq with positive probability.

2.6.2 Extinction of the critical case

Using the foregoing dynamic block construction, one concludes to the Theorem 2.2.3 :
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Proof of Theorem 2.2.3. Let r ą 0 be such that the process pηtqtě0 survives. In the block
constructions established in Propositions 2.6.8 and 2.6.9, each event depends only on
the graphical representation of the process in each box p2ja`r´5a, 5asqˆr´5a, 5asd´1 ˆ
p5jb ` r0, 6bsq, for j ě 0. Then, Propositions 2.6.8 and 2.6.9 are preserved with Pr`δ-
probability for some δ ą 0. From Theorem 2.6.1, the process pηqtě0 survives in r ` δ.
But since r`δ ď rc, then r ă rc. That is, whenever the process survives, r stands below
rc : the critical process dies out.

2.7 The mean-field model

Consider in this section the mean-field model associated to the multitype process,
both symmetric and asymmetric. This is a deterministic and non-spatial process where
all individuals are mixed up, leading to study the densities of each type of particles
overall.

Mean-field models give rise to differential systems and are interesting to compare sto-
chastic behaviours, as previously studied, with corresponding deterministic behaviours.
We investigate here the equilibria of these differential systems, first in the asymme-
tric model, and in the symmetric model then. Since existence of such equilibria yields
the existence of a critical value, we survey the mean-field equations in order to exhibit
conditions on the parameter r to deduce bounds on the critical value rc.

Subsequently, let ui be the density of type-i individuals for i “ 1, 2, 3. Overall, one
has u1`u2`u3 “ 1´u0. Furthermore, in connection with the definition of wild and sterile
individuals, we consider as well v1, resp. v2, the density of the wild individuals (type-1
and type-3 individuals), resp. the sterile individuals (type-2 and type-3 individuals), and
the density of empty sites v0 “ u0. Relations between the u-system and the v-system
are described by $

&
%

u1 “ 1 ´ v0 ´ v2

u2 “ 1 ´ v0 ´ v1

u3 “ v0 ` v1 ` v2 ´ 1
. (2.7.1)

Since we consider densities, both systems satisfy

ui P r0, 1s for i “ 0, 1, 2, 3, vi P r0, 1s for i “ 0, 1, 2. (2.7.2)

2.7.1 Asymmetric multitype process

Assuming total mixing, the mean-field model associated to the asymmetric multitype
process is given by :

$
&
%

u1
1 “ 2dpλ1u1 ` λ2u3qu0 ` u3 ´ pr ` 1qu1

u1
2 “ ru0 ` u3 ´ u2

u1
3 “ ru1 ´ 2u3

. (2.7.3)
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This system admits two equilibria :

pu1, u2, u3q “
´

0,
r

r ` 1
, 0
¯
,

´ 1
r ` 1

´ r ` 2
4dλ1 ` 2dλ2r

,
r

r ` 1
´ r

2

´ 1
r ` 1

´ r ` 2
4dλ1 ` 2dλ2r

¯
,

r

2pr ` 1q ´ rpr ` 2q
2p4dλ1 ` 2dλ2rq

¯
.

Note that the first equilibrium gives pu1, u2, u3q “
´

0, r
r`1

, 0
¯

which puts a positive
density on the sterile individuals and none on the others, which corresponds to the
extinction of the process.

$
’’&
’’%

v1
0 “ ´2d

´
pλ2 ´ λ1qv0 ` λ2v1 ` pλ2 ´ λ1qv1 ` λ1 ´ λ2

¯
v0 ´ pr ` 2qv0 ´ v1 ´ v2 ` 2

v1
1 “ 2d

´
pλ2 ´ λ1qv0 ` λ2v1 ` pλ2 ´ λ1qv2 ` λ1 ´ λ2

¯
v0 ´ v1

v1
2 “ rp1 ´ v2q ´ v2

(2.7.4)
This system gives rise to an equilibrium :

pv0, v1, v2q “
´ 2 ` r

4dλ1r ` 2dλ2r
,
r ` 2

2pr ` 1q ´ pr ` 2q2

2p4dλ1 ` 2dλ2rq
,

r

r ` 1

¯
.

In particular, by checking conditions (2.7.2), one highlights a condition : the density v1

is non-negative as soon as

4dλ1 ` 2dλ2r ą pr ` 1qpr ` 2q.

which gives the following condition

r ă 2dλ2 ´ 3 `
a

p2dλ2 ´ 3q2 ´ 8p1 ´ 2dλ1q
2

(2.7.5)

This indicates a lower bound for the phase transition.

2.7.2 Symmetric multitype process

The mean-field equations associated to the symmetric multitype process are :
$
&
%

u1
1 “ 2dpλ1u1 ` λ2u3qu0 ` u3 ´ pr ` 1qu1

u1
2 “ ru0 ` u3 ´ u2 ´ 2dpλ1u1 ` λ2u3qu2

u1
3 “ ru1 ` 2dpλ1u1 ` λ2u3qu2 ´ 2u3

(2.7.6)

As previously, this system admits one trivial equilibrium :

pu1, u2, u3q “
´

0,
r

r ` 1
, 0
¯
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retrieving once again a situation related to the extinction of the process, by a posi-
tive density of sterile individuals and none of the wild ones. We derive the non-trivial
equilibrium thanks to the corresponding v-system :
$
’’&
’’%

v1
0 “ ´2d

´
pλ2 ´ λ1qv0 ` λ2v1 ` pλ2 ´ λ1qv1 ` λ1 ´ λ2

¯
v0 ´ pr ` 2qv0 ´ v1v2 ` 2

v1
1 “ 2d

´
pλ2 ´ λ1qv0 ` λ2v1 ` pλ2 ´ λ1qv2 ` λ1 ´ λ2

¯
qp1 ´ v1q ´ v1

v1
2 “ rp1 ´ v2q ´ v2

(2.7.7)
Let us determine the non-trivial equilibrium. Last line of (2.7.7) gives already v2 “
r

r ` 1
. Using relations of (2.7.1) in (2.7.7), according to v1

1 “ 0, an equilibrium pv0, v1, v2q
satisfies in particular

v1 “ 2dpλ1u1 ` λ2u3qp1 ´ v1q (2.7.8)

checking v1 cannot be equal to 1, one then has

v1

1 ´ v1

“ 2dpλ1u1 ` λ2u3q (2.7.9)

and
v1 ‰ 1. (2.7.10)

On the other hand, from the u-system (2.7.6) with relations (2.7.1) and using condition
(2.7.10),

u1
1 “ 0 ô v1v0

1 ´ v1

` p2 ` rqv0 ` v1 ´ r ` 2
r ` 1

“ 0

u1
2 “ 0 ô pr ` 2qv0 ` v1 ´ r ` 2

r ` 1
` v0v1

1 ´ v1

u1
3 “ 0 ô p1 ´ v1q2 ` p1 ´ v1qp 1

r ` 1
´ pr ` 1qv0q ´ v0 “ 0

By solving the last line with respect to p1 ´ v1q, one has

1 ´ v1 “ pr ` 1qv0 or 1 ´ v1 “ ´ 1
r ` 1

.

To deduce the value of v1, we investigate both possibilities. Using (2.7.9)

1. if 1 ´ v1 “ ´ 1
r ` 1

, But since this value is negative, necessarily 1 ´ v1 ‰ ´ 1
r ` 1

.

2. if 1 ´ v1 “ pr ` 1qv0, using (2.7.9) v0 solves

2dpλ1 ` λ2rqpr ` 1qv2
0 ´ p2dλ1 ` 2dλ2r ` r ` 1qv0 ` 1 “ 0.

This implies

v0 “ 1
r ` 1

or v0 “ 1
2dλ1 ` 2dλ2r

.
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Chapter 2. Phase transition on Zd

(a) if v0 “ 1
r`1

, then by relations (2.7.1),

u1 “ 0, u3 “ 1, v2 “ 1 ` u2,

which is a contradiction.

(b) if v0 “ 1
2dλ1 ` 2dλ2r

, then

v1 “ r ` 1
2dpλ1 ` λ2rq

, v2 “ r

r ` 1
.

Verifying this v-system to be a set of densities by condition 2.7.2, one case highlights
a condition on r : v1 ď 1 if and only if rp1 ´ 2dλ2q ď 2dλ1 ´ 1. In the case where
λ2 ď 1{p2dq, then one has the condition

r ď 2dλ1 ´ 1
1 ´ 2dλ2

. (2.7.11)

Consequently, a non-trivial equilibrium of 2.7.7 is given by

pv0, v1, v2q “
´ 1

2dλ1 ` 2dλ2r
,

r ` 1
2dλ1 ` 2dλ2r

,
r

r ` 1

¯
(2.7.12)

To put in a nutshell, this survey of equilibria associated to both mean-field models, in
symmetric and asymmetric case, gave us the bounds (2.7.5) and (2.7.11) for the phase
transition.

We will turn into a rigorous proof of the convergence of the empirical densities to
these reaction-diffusion systems. This is dealt with the hydrodynamic limits in Chapters
4 and 5.
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Survival and extinction conditions

in quenched environment
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3.1 Introduction

One considers here the unidimensional contact process on Z, either in an inhomo-
geneous (deterministic) environment, or in a quenched random environment where the
growth parameter takes two possible values depending on the environment. Previously
in Chapter 2, we investigated the contact process in a dynamic random environment,
for which we exhibited a phase transition. Nevertheless, through the use of percolation
theory, we were not able to explicit rigorous numerical bounds on the phase transition,
but we are now.

Here, we are concerned by two kinds of quenched random environment on Z : in the
first case, growth rates are randomly chosen according to each vertex ; in the second
case, growth rates are chosen randomly on each oriented edges.
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Chapter 3. In quenched environment

The contact process in random environment has already been studied in many ways
to understand how a random rate affects the behaviour of the process. In an unidimen-
sional case, M. Bramson, R. Durrett and R. Schonmann [12] exhibited an intermediary
phase where the process survives without growing linearly. In higher dimensions, N.
Madras, R. Schinazi and R. Schonmann [60] showed there exist choices of a random
death rate for which the critical contact process survives. Several survival and extinc-
tion conditions have been given successively by T.M. Liggett [52, 53], C. Newman and
S. Volchan [66] in dimension 1 and E. Andjel [1], A. Klein [45] in higher dimensions.

We will rely on [52, 53] whose model and results are described in Section 3.2 before
taking advantage of them by illustrating them in our framework. We expose our results
when growth rates are depending on vertices in Section 3.3 and depending on edges in
Section 3.4. To conclude the chapter, we obtain by the two previous sections a list of
numerical bounds in Section 3.5

3.2 Settings and results

3.2.1 Preliminaries

The contact process in random environment introduced by T.M. Liggett [52, 53] is
a Markov process pχtqtě0 on t0, 1uZ whose transitions at each site x P Z are given by

0 Ñ 1 at rate ρpxqχpx ` 1q ` λpxqχpx ´ 1q
1 Ñ 0 at rate δpxq (3.2.1)

where the family t
`
δpxq, ρpxq, λpxq

˘
, x P Zu stands for the random environment which

is an ergodic stationary process. See Figure 3.1. If t
`
δpxq, ρpxq, λpxq

˘
, x P Zu is chosen

deterministic, hence inhomogeneous, we will refer to it as the inhomogeneous contact
process.

k ´ 2 k ´ 1 k k ` 1 k ` 2

λpk ` 2q

ρpk ` 1q

λpk ` 1q

ρpkq

λpkq

ρpk ´ 1q

λpk ´ 1q

ρpk ´ 2q

Figure 3.1: Quenched random environment

Definition 3.2.1. Let ω be the random environment. For almost-every realization of
ω, the process pχtqtě0 survives if

Pωp@t ě 0, Xt ‰ Hq ą 0
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3.2. Settings and results

and dies out if
Pωp@t ě 0, Xt ‰ Hq “ 0.

T.M. Liggett [52, 53] settled survival and extinction conditions for such a process,
among which :

Theorem 3.2.1 (T.M. Liggett [52]). 1. The inhomogeneous contact process dies out
if for all n ě 0,

ÿ

kěn

kź

j“n

ρpjq
δpj ` 1q ă 8 and

ÿ

kďn

nź

j“k

λpjq
δpj ´ 1q ă 8.

2. The contact process in random environment dies out if

E log ρp0q ă E log δp0q and E log λp0q ă E log δp0q.

3. Suppose the random vector tpδpkq, ρpkq, λpkqq, k P Zu i.i.d. The contact process in
random environment dies out if

E

´
ρpkqδpkq´1

¯
ă 1

and
Eδpkq´1

´
1 ´ E

´
δpkqλpkq´1

¯¯
ă Eλpkq´1

´
1 ´ E

´
ρpkqδpkq´1

¯¯
.

Theorem 3.2.2 (T.M. Liggett [53]). The contact process in random environment sur-
vives if the two following series converge,

ÿ

jě0

E

˜
1

λpj ` 1q

jź

k“1

δpkq
´
λpkq ` ρpk ´ 1q ` δpkq

¯

λpkqρpk ´ 1q

¸
,

ÿ

jě0

E

˜
1

ρpj ´ 1q

jź

k“1

δpk ´ 1q
´
λpkq ` ρpk ´ 1q ` δpk ´ 1q

¯

λpkqρpk ´ 1q

¸
.

Furthermore, if tpδpkq, ρpkq, λpkqq, k P Zu is i.i.d., then the contact process in random
environment survives if

E
δpλ ` ρ ` δq

λρ
ă 1.

Adaptating the results above of T.M. Liggett [52, 53], one is able to exhibit extinction
and survival conditions leading us to explicit numerical bounds on the phase transition
of the contact process in quenched random environment.
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Chapter 3. In quenched environment

3.2.2 The model

Our framework is the following. One describes the environment as a configuration
over the sites of Z. Let p P p0, 1q, define a random environment ω P t0, 1uZ where each
site x P Z is free (0) with probability 1 ´ p or slowed-down (1) with probability p,
independently of any other site.

The contact process in random environment we consider here is a contact process
pχtqtě0 with state space t0, 1uZ and quenched environment ω. Let λ1 and λ2 be growth
parameters such that

λ2 ď λc ă λ1, (3.2.2)

where λc stands for the critical growth rate of the basic contact process on t0, 1uZ.
Recall from previous chapter that some release rate r was curbing the expansion of a
supercritical contact process with λ1 ą λc to a subcritical rate λ2 ď λc. Subsequently,
for r P p0,8q,

p “ r{pr ` 1q (3.2.3)

stands for (in connection with the previous chapter) the probability a site is slowed
down (corresponding to the minimum of two exponential clocks with parameters r and
1). Deaths occur at rate 1.

The process pχtqtě0 is still monotone according to Chapter 2 Section 2.4.

Denote by Pωλ1,λ2,r
the distribution of pχtqtě0 with parameters pλ1, λ2, rq and envi-

ronment ω. For fixed parameters λ1 and λ2 satisfying λ2 ď λc ă λ1, simplify by Pωr . For
any A Ă Z, define XA

t :“ tx P Z : χAt pxq “ 1u, where χAt denotes the process at time t
started from the initial configuration χ0 “ 1A. If A “ t0u, simplify by Xt ” X

t0u
t .

Consider subsequently two kinds of random environment : one depending of the
vertices and one depending on the edges of the graph.

3.3 Random growth on vertices

Consider the dynamics where growth rates are affected to vertices. If λvpkq is the
growth rate from site k P Z : a birth at site k occurs at rate λvpk´1q if k´1 is occupied
plus at rate λvpk ` 1q if k ` 1 is occupied, where

λvpkq “ λ1p1 ´ ωpkqq ` λ2ωpkq (3.3.1)

See Figure 3.2.
Based on the notations of Section 3.2, one has

λpk ` 1q “ ρpk ´ 1q “ λvpkq

and λvpkq “ ρvpkq for all k P Z.
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3.3. Random growth on vertices

k ´ 2 k ´ 1 k k ` 1 k ` 2

λvpk ` 1q

λvpk ` 2q

λvpkq

λvpk ` 1q

λvpk ´ 1q

λvpkq

λvpk ´ 2q

λvpk ´ 1q

Figure 3.2: Random environment on vertices

3.3.1 Extinction conditions

Theorem 3.2.1-(1) can be rewritten as follows.

Theorem 3.3.1. Assume that ω is a fixed environment. The inhomogeneous contact
process pχtqtě0 dies out if for all n P Z,

ÿ

kěn

kź

j“n
λvpj ` 1q ă 8 and

ÿ

kďn

nź

j“k
λvpj ´ 1q ă 8. (3.3.2)

where for j P Z, λvpjq is defined by (3.3.1).

Proof. Introduce a modified version pαtqtě0 of the process pχtqtě0 where a death at site
x P Z occurs uniquely if αpx ´ 1q “ 0 or αpx ` 1q “ 0, while births occur at the same
rate than pχtqtě0 :

0 Ñ 1 at rate
ÿ

y:|y´x|“1

´
λ1p1 ´ ωpyqq ` λ2ωpyq

¯
αpyq (3.3.3)

1 Ñ 0 at rate 1tn0px, αq ą 0u (3.3.4)

where n0px, αq “ ř
y:|y´x|“1

1tαpyq “ 0u stands for the number of neighbours of site x

that are in state 0. This way, if initially the set tx P Z : α0pxq “ 0u is a non-empty
interval then for all t ą 0, tx P Z : αtpxq “ 0u is still an interval of Z until it potentially
disappears in case αt is identically equal to 1 on Z. In the non-empty case, considering
times at which a flip occurs, each end of this interval moves respectively as a birth and
death chain : the rightmost zero evolves according to

k Ñ k ` 1 at rate 1 and k Ñ k ´ 1 at rate λvpk ` 1q

and the leftmost zero evolves according to

k Ñ k ` 1 at rate λvpk ´ 1q and k Ñ k ´ 1 at rate 1

For m, ℓ P Z such that m ă 0 ă ℓ, consider the initial condition

α0pxq “
"

0 if m ď x ď ℓ,

1 otherwise.
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Chapter 3. In quenched environment

Since both rightmost and leftmost zeros move as birth-death chains Z, it remains to
study their hitting time of 0. Define pRnqně0 and pLnqně0 two corresponding Markov
chains, whose respective transition matrices QR and QL are defined by

QRpk, k ` 1q “ 1
1 ` λvpk ` 1q , Q

Rpk, k ´ 1q “ λvpk ` 1q
1 ` λvpk ` 1q ,

QLpk, k ` 1q “ λvpk ´ 1q
1 ` λvpk ´ 1q , Q

Lpk, k ´ 1q “ 1
1 ` λvpk ´ 1q .

For a P Z, note PR
a and PL

a their respective probability measures conditionally in R0 “ a

and L0 “ a. Denote by pSnqně1 the flipping times and consider pαnqně1, the skeleton-
Markov chain corresponding to pαtqtě0, such that αn “ αSn

for all n ě 1. Then,

Pωr pαnpxq “ 0q “ PR
ℓ pTR0 “ 8qPL

mpTL0 “ 8q,
where TR0 “ infpn ě 0 : Rn “ 0q and TL0 “ infpn ě 0 : Ln “ 0q are the hitting times of
zero for both birth and death chains. By a known result on birth-death processes (see
§I.4 [69] for instance), and has for any site x P Z,

lim
nÑ8 Pωr pαnpxq “ 0q ě

ℓ´1ř
k“0

kś
j“0

λvpj ` 1q

ř
kě0

kś
j“0

λvpj ` 1q

0ř
k“m`1

0ś
j“k

λvpj ´ 1q

ř
kď0

0ś
j“k

λvpj ´ 1q
(3.3.5)

By (3.3.2), this limit tends to 1 when m goes to ´8 and ℓ goes to 8. With a death rate
equal to 1, for all m ă 0 ă ℓ, there exists almost surely some time t where αtpxq “ 0,
for all x P Z. Coupling the processes pαtqtě0 and pχtqtě0 starting from such times t, if
χ0 ď α0 then the dynamics of the coupled process pχt, αtqtě0 is given by the following
transitions :

transition rate

p0, 0q ÝÑ
"

p1, 1q
p0, 1q

ř
y:|y´x|“1

λvpyqχpyq
ř

y:|y´x|“1

λvpyqpαpyq ´ χpyqq

p1, 1q ÝÑ
"

p0, 0q
p0, 1q

1tn0px, αq ą 0u
1 ´ 1tn0px, αq ą 0u

p0, 1q ÝÑ
"

p1, 1q
p0, 0q

ř
y:|y´x|“1

λvpyqχpyq

1tn0px, αq ą 0u

p1, 0q ÝÑ
"

p1, 1q
p0, 0q

ř
y:|y´x|“1

λvpyqαpyq

1

whose dynamics does not reach the second part of the table if χ0 ď α0. In other words,
the natural order on t0, 1u is preserved and by [10, Proposition 2.7], pαtqtě0 is stochas-
tically larger than pχtqtě0. Finally one gets,

lim
tÑ8

Pωr pχtpxq “ 0q “ 1

74



3.3. Random growth on vertices

for all x P Z.

If the family tωpkq, k P Zu is random and i.i.d. then the family tλvpkq, k P Zu is i.i.d.
as well, one deduces the following criterion from Theorem 3.2.1-(2).

Corollary 3.3.1. The process in random environment pχtqtě0 dies out if

Eωr log λvp0q ă 0.

that is, if λ2 ă 1 and r ą ´ log λ2{ log λ1.

Proof. By the ergodic theorem,

lim
kÑ8

1
k

kÿ

j“0

log λvpjq “ Eωr log λvp0q.

Denote by ak “
kś
j“0

λvpjq the general term of series (3.3.2). Since Eωr log λvp0q ă 0,

lim
kÑ8

1
k

log ak ă ´b,

for some positive b. That is, lim
kÑ8

log ak ă lim
kÑ8

p´bkq, written log ak „k8 ´bk, and

ÿ

kě0

ak “
ÿ

kě0

expplog akq „k8
ÿ

kě0

expp´bkq.

Therefore, assumptions (3.3.2) are satisfied as soon as Eωr log λvp0q ă 0.

Applying this result to our dynamics given by (3.3.1),

Eωr log λvp0q “ p log λ2 ` p1 ´ pq log λ1 ă 0 (3.3.6)

i.e. p ą log λ1{plog λ1 ´ log λ2q. Since p ă 1, this implies

λ2 ă 1. (3.3.7)

By (3.2.3) and (3.3.1),

Eωr
`

log λvp0q
˘

“ r log λ2 ` log λ1

r ` 1
,

one has under (3.3.7) the following extinction criterion from (3.3.6)

r ą ´ log λ1

log λ2

. (3.3.8)

Since we assumed λ1 ą λc, the right-hand side is positive and (3.3.8) is an upper bound
on the transitional phase with respect to λ1 and λ2 for the extinction of the process.
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Chapter 3. In quenched environment

3.3.2 Survival conditions

Applying Theorem 3.2.2, one gets

Theorem 3.3.2. Assume

ÿ

jě0

Eωr

˜
1

λvpjq

jź

k“1

λvpkq ` λvpk ´ 1q ` 1
λvpkqλvpk ´ 1q

¸
ă 8.

Then the process pχtqtě0 in random environment survives.

The lack of independence in the product of the terms of this series disables us
to obtain explicit conditions for survival of the process. Nevertheless, by defining the
randomness on the edges rather than on the vertices, meaning that the growth rates
emanating from a site k respectively to k` 1 and to k´ 1 are randomly chosen for each
k P Z, we are able to explicit bounds on r with respect to λ1 and λ2.

3.4 Random growth on oriented edges

Let tpρepkq, λepkqq, k P Zu be an ergodic, stationary and i.i.d. sequence. For the
random growth on oriented edges, given a site k P Z, a birth from k to k ` 1 occurs at
rate λepk ` 1q and independently of a birth from k to k ´ 1 occuring at rate ρepk ´ 1q.
See Figure 3.3

k ´ 2 k ´ 1 k k ` 1 k ` 2

λepk ` 2q

ρepk ` 1q

λepk ` 1q

ρepkq

λepkq

ρepk ´ 1q

λepk ´ 1q

ρepk ´ 2q

Figure 3.3: Random environment on oriented edges

Suppose both rates are two independent random variables following the same distri-
bution, defined by

λepk ` 1q pdq“ λ1p1 ´ ωpkqq ` λ2ωpkq,

ρepk ´ 1q pdq“ λ1p1 ´ ωpkqq ` λ2ωpkq.

Based on the notations provided in Section 3.2, one has

λpkq “ λepkq and ρpkq “ ρepkq.
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3.4.1 Extinction conditions

Theorem 3.2.1 permits to obtain the following criteria.

Theorem 3.4.1. The process in random environment dies out if the two following
assertions are satisfied.

i.
Eωr λepkq ă 1,

ii.
1 ´ Eωr

1
λepkq ă Eωr

1
λepkq

´
1 ´ Eωr λepkq

¯
.

that is, if λ2 ă 1 and r ą λ1 ´ 1
1 ´ λ2

.

Proof. Computing the expectation of the growth rates, conditions on r for the process
to die out are given by :

(i) can be rewritten using (3.2.3)

λ1p1 ´ pq ` λ2p ă 1 ô rp1 ´ λ2q ą λ1 ´ 1,

therefore, as λ1 ´ 1 ą 0 since λ1 ą λc ą 1, one has again

λ2 ă 1 (3.4.1)

and the condition

r ą λ1 ´ 1
1 ´ λ2

(3.4.2)

On the other hand, piiq is

Aprq “ 2r2 1 ´ λ2

λ2

` r
´2 ´ λ2

λ1

` 2 ´ λ1

λ2

´ 2
¯

` 2
1 ´ λ1

λ1

ą 0.

The roots of the polynomial are real since its corresponding discriminant ∆ is non-
negative,

∆ “ 1
λ2

1λ
2
2

pλ1 ´ λ2q2
´

pλ1 ` λ2 ´ 2q2 ` 4λ1λ2

¯

Roots are therefore given by

δ˘ “ pλ1 ` λ2 ´ 2qpλ1 ` λ2q ˘ pλ1 ´ λ2q
a

pλ1 ` λ2 ´ 2q2 ` 4λ1λ2

4λ1p1 ´ λ2q
Consequently, the process in random environment survives as soon as r satisfies

pr ´ δ`qpr ´ δ´q ą 0

Since λ2 ă 1 and λ1 ą 1, one has δ`δ´ “ p1 ´ λ1qλ2

p1 ´ λ2qλ1

ă 0. Both roots δ´ and δ` are of

opposite sign and Aprq ą 0 if
r ą δ`, (3.4.3)

(because δ´ ă 0). Notice condition 3.4.2 implies that r ą δ`.
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3.4.2 Survival conditions

Applying Theorem 3.2.2 to our case where the sequence tρpkq, λpkq, k P Zu is i.i.d.,
we get

Theorem 3.4.2. The process in random environment survives if for all j ě 0,

Eωr

´ 1
λepj ` 1q

¯´
Eωr

λepkq ` ρepk ´ 1q ` 1
λepkqρepk ´ 1q

¯j
ă 1

that is, if λ2 ă 1 `
?

2 ă λ1 and r ă
λ2

´
λ1 ´

?
2 ´ 1

¯

λ1

´
λ2 ´

?
2 ´ 1

¯ .

Proof. The (geometric) series converges as soon as

Eωr
λep0q ` ρep0q ` 1

λep0qρep0q ă 1,

that is, if

2Eωr
1

λepkq ` Eωr
1

λepkqρepk ´ 1q

“ 2λ1 ` 1
λ2

1

p1 ´ pq2 ` 2
λ1 ` λ2 ` 1

λ1λ2

pp1 ´ pq ` 2λ2 ` 1
λ2

2

p2

smaller than 1 i.e. using (3.2.3) if,

Aprq :“ r2
”
λ2

1p2λ2 ` 1q ´ λ2
1λ

2
2

ı

` rλ1λ2

”
2pλ1 ` λ2 ` 1q ´ 2λ1λ2

ı
`
”
λ2

2p2λ1 ` 1q ´ λ2
1λ

2
2

ı
ă 0. (3.4.4)

The associated discriminant is ∆ “ 8λ2
1λ

2
2pλ1 ´ λ2q2. And the roots of Aprq are

δA´ “
´λ2

´
λ1 `

?
2 ´ 1

¯

λ1

´
λ2 `

?
2 ´ 1

¯ ă 0

and

δA` “
´λ2

´
λ1 ´

?
2 ´ 1

¯

λ1

´
λ2 ´

?
2 ´ 1

¯ ,

which is positive if
λ1 ą 1 `

?
2, (3.4.5)

and λ2 ă 1 `
?

2, this last condition is cleared by the assumption (3.2.2), as λ2 ă λc ď
1 `

?
2. In this case, the process survives if r is such that

r ă δA`. (3.4.6)
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3.5 Numerical bounds on the transitional phase

3.5.1 Back to the basic contact process

Assume r “ 0, then for all x P Z, ωpxq “ 0 a.s. and λepxq “ ρepxq “ λ1. We thus
recover the one-dimensional basic contact process with growth rate λ1. In this case, our
estimates lead to the following bound for λc.

Corollary 3.5.1. For the one-dimensional basic contact process,

λc ď 1 `
?

2.

Proof. According to (3.4.4) in the proof of Theorem 3.4.2, the process survives if λ2
1 ´

2λ1 ´ 1 ą 0, that is, if
λ1 ą 1 `

?
2.

Recall on Z, λc P r1.539, 1.942s. This bound is quite rough but its advantage is that
we derived it simply. Consequently, one first deduces a bound on the critical value λc of
the one-dimensional basic contact process : λc ď 1 `

?
2 » 2.41.

3.5.2 The phase transition

From results obtained in the previous section, one gets the following numerical
bounds for a phase transition. By choosing parameters λ1 and λ2 satisfying (3.4.1),
condition (3.4.2) from Theorem 3.4.1 gives us lower bounds on the phase transition.
Moreover, by choosing parameters λ2 and λ1 satisfying (3.4.5), condition (3.4.6) from
Theorem 3.4.2 gives us upper bounds.

λ1 λ2 transitional phase
1000 0.2 r0.07, 1249s
100 0.2 r0.07, 124s
10 0.2 r0.044, 11.25s
2 0.2 r0, 1.25s

λ1 λ2 transitional phase
1000 0.8 r0.49, 4995q
100 0.8 r0.48, 495q
10 0.8 r0.36, 45s
2 0.8 p0, 5s

λ1 λ2 transitional phase
1000 1.4 r1.37, 8q
100 1.4 r1.34, 8q
10 1.4 r1.04, 8q
2 1.4 R`

Remark that the necessary condition λ2 ă 1 disables us to conclude to an upper
bound for values of λ2. In a similar way, condition (3.4.5) of Theorem 3.4.2 imposes λ1

to be larger than 1`
?

2, disabling us to find an explicit lower bound on the transitional
phase in such cases.
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4.1 Introduction

In this chapter, one derives the hydrodynamic limit on the d-dimensional torus of
the asymmetric multitype contact process defined in Chapter 1.

The work here is is based on the entropy method due to M. Z. Guo, G. C. Papani-
colaou and S. R. S. Varadhan [37] to prove the hydrodynamic behaviour of a large class
of interacting particle systems through the investigation of the time-evolution of the en-
tropy and arguments by C. Kipnis, S. Olla and S.R.S Varadhan [43], using martingales
techniques.
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This chapter is a preliminary to the next one, it introduces many involved quantities
and we detail here classical computations that appear in both chapters. It is organized
as follows. We begin by describing the model and the main result in Section 4.2, which is
subsequently proved in Section 4.3, while classical proofs concerning the block estimates
are proved in Section 4.4.

In the Appendix 4.A, we deal with a construction of an auxiliary process, a trick in-
troduced by M. Mourragui [63], in case of unbounded rates. Whereafter, we expose some
lengthy computations surrounding the reference measure (Appendix 4.B) and reminders
on the Skorohod topology (Appendix 4.D).

4.2 Notations and Results

Let TdN “ pZ{NZqd be the d´dimensional discrete microscopic torus t0, ..., N ´ 1ud
and Td “ pR{Zqd be the corresponding macroscopic torus r0, 1qd.

4.2.1 The model

Define EN “ t0, 1, 2, 3uTd
N . The model we investigate is a reaction-diffusion process

pηtqtě0 given by the generator

LN :“ LN,R,D “ N2LD
N ` LR

N , (4.2.1)

where N2LD
N stands for the generator of a rapid-stirring process, defined for any function

f on EN by
N2LD

Nfpηq “ N2
ÿ

x,yPTd
N

}x´y}“1

´
fpηx,yq ´ fpηq

¯
, (4.2.2)

here, }x} “ max
1ďjďd

|xj| denotes the max norm for x P Zd, and η P EN , ηx,y is the

configuration obtained from η by exchanging the occupation variables ηpxq and ηpyq of
two neighbouring sites x, y P TdN , that is,

ηx,ypzq “

$
&
%

ηpxq if z “ y,

ηpyq if z “ x,

ηpzq if z ‰ x, y,

and LR
N is the generator of the asymmetric CP-DRE defined in Chapter 2, which is given

for any cylinder function f on EN by

LR
Nfpηq “

3ÿ

i“0

cpx, η, iq
´
fpηixq ´ fpηq

¯
(4.2.3)

with η P EN , ηix is the configuration obtained from η by flipping the state of site x into
the state i P t0, 1, 2, 3u, that is,

ηixpzq “
"
i if z “ x,

ηpzq if z ‰ x.
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while the rate function c is defined by

cpx, η, 0q “ 1 if ηpxq P t1, 2u,

cpx, η, 1q “

$
’&
’%

βpx, ηq :“ λ1

ř
yPTd

N

}y´x}“1

η1pyq ` λ2

ř
yPTd

N

}y´x}“1

η3pyq if ηpxq “ 0,

1 if ηpxq “ 3,

cpx, η, 2q “
"
r if ηpxq “ 0,
1 if ηpxq “ 3,

cpx, η, 3q “ r if ηpxq “ 1.

(4.2.4)

Since the conserved quantities for the generator LD
N concern the total number of particles

of each type i P t1, 2, 3u, one defines the product measure νNpψ on EN by

νNpψ pηq :“
ź

xPTd
N

1
Z pψ

exp

˜
3ÿ

i“0

rψi1tηpxq “ ius
¸

(4.2.5)

where Z pψ “
3ř
i“0

exppψiq is the normalization constant, for pψ “ pψ0, ψ1, ψ2, ψ3q such that

ψ0, ψ1, ψ2, ψ3 P R are parameters. Because of a high use of indicator functions, we shall
simplify the notation by

ηipxq “ 1tηpxq “ iu,
for x P TdN and i “ 1, 2, 3.

As usual, we parametrize the measure by the conserved quantities (see for instance R.
Marra and M. Mourragui [61]). By a change of variables (see Appendix 4.B for details),
given parameters ρ1, ρ2, ρ3 such that ρi ě 0 and ρ1 `ρ2 `ρ3 ď 1, one defines the product
measure for pρ “ pρ1, ρ2, ρ3q by

νNpρ p¨q “ νNΨpρ1,ρ2,ρ3qp¨q and ρ0 “ 1 ´ ρ1 ´ ρ2 ´ ρ3. (4.2.6)

where Ψ is a bijection from R3
` to p0, 1q3 given by (4.B.3). The measures tνNpρ , pρ P r0, 1s3u

are invariant [see Lemma 4.B.1] with respect to the rapid-stirring process with generator
N2LD

N , and they are parametrized by the densities :
"

ENνpρrηkpxqs “ νNpρ pηpxq “ kq “ ρk, 1 ď k ď 3,
νNpρ pηpxq “ 0q “ 1 ´ ρ1 ´ ρ2 ´ ρ3.

For any function φ on EN , denote by rφppρq the expectation of φ with respect to νNpρ :

rφppρq “ ENνpρrφpηqs. (4.2.7)
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To do changes of variables, it will be more convenient to write the measures as follows :

νNpρ pηq “ exp
! 3ÿ

j“0

ÿ

xPTd
N

̺jηjpxq
)

(4.2.8)

with ̺j “ log ρj (4.2.9)

Since conserved quantities are densities of three types of particles, we need to work
with three dimensional vectors whose i-th component is associated to the type i. These
vectors will be distinguished with a hat. For any configuration η, define the empirical
measure of type i on EN by

πN,ipηq “ 1
Nd

ÿ

xPTd
N

ηipxqδ x
N
, (4.2.10)

where δ x
N

pdyq stands for the Dirac measure at x{N . And note for pηsqsPr0,T s,

pπNt pηq :“ pπN,1t , π
N,2
t , π

N,3
t qpηq, (4.2.11)

where πN,it pηq “ πN,ipηtq. Let Cn,mpr0, T s ˆ Td;Rq be the set of functions n times conti-
nuously differentiable in time and m times continuously differentiable in space. For any
function Gi P C1,2pr0, T s ˆ Td;Rq, denote the integral of Gi,t with respect to πN,it by

xπN,it , Gi,ty “ 1
Nd

ÿ

xPTd
N

Gi,tpx{Nqηipxq. (4.2.12)

For any function pGt “ pG1,t, G2,t, G3,tq P C1,2pr0, T s ˆ Td;R3q, define the integral of pGt

with respect to pπNt by

xpπt, pGty “
3ÿ

i“1

xπN,it , Gi,ty.

4.2.2 Hydrodynamics for the reaction-diffusion process

Let M1
` be the subset of M of all positive measures absolutely continuous with

respect to the Lebesgue measure with positive density bounded by 1 :

M1
` “

 
π P M : πpduq “ ρpuqdu and 0 ď ρpuq ď 1 a.e.

(
.

Fix T ą 0. Let Dpr0, T s, pM1
`q3q be the set of right-continuous with left limits

trajectories with values in pM1
`q3, endowed with the Skorohod topology and equipped

with its Borel σ´ algebra.
For any probability measure µ on EN , denote by PNµN the probability measure on

Dpr0, T s, ENq of the process pηtqtPr0,T s with generator LN and by ENµN the corresponding
expectation. Consider QN

µ “ PNµN ˝ ppπNq´1 the law of the process
`
pπNt pηtq

˘
tPr0,T s.
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Fix T ą 0. A sequence of probability measures is associated to a density profile
pγ “ pγ1, γ2, γ3q : Td Ñ r0, 1s3 if for any δ ą 0 and any function pG P C1pTd,R3q,

lim
NÑ8

µN
!ˇ̌
ˇxpπNpηq, pGp¨qy ´ xpγp¨q, pGp¨qy

ˇ̌
ˇ ą δ

)
“ 0 , (4.2.13)

Denote by pρ “ pρ1, ρ2, ρ3q : r0, T s ˆ Td Ñ r0, 1s3 a typical macroscopic trajectory.
We shall show that the macroscopic time-evolution of empirical density pπN is given by
a reaction-diffusion system

#
Btpρ “ ∆pρ ` pRppρq in Td ˆ p0, T q,
pρ0p¨q “ pγp¨q in Td,

(4.2.14)

where pR “ pR1,R2,R3q : r0, 1s3 Ñ R3 is defined by
$
’&
’%

R1pρ1, ρ2, ρ3q “ 2dpλ1ρ1 ` λ2ρ3qρ0 ` ρ3 ´ ρ1pr ` 1q ,
R2pρ1, ρ2, ρ3q “ rρ0 ` ρ3 ´ ρ2 ,

R3pρ1, ρ2, ρ3q “ rρ1 ´ 2ρ3 ,

(4.2.15)

with ρ0 “ 1 ´ ρ1 ´ ρ2 ´ ρ3. A weak solution pρp¨, ¨q : r0, T s ˆTd Ñ R3 of (4.2.14) satisfies
the following assertions :

(S1) For any i P t1, 2, 3u, ρi P L2
`
r0, T s ˆ Td

˘
.

(S2) For any function pGpt, uq “ pGtpuq “ pG1,tpuq, G2,tpuq, G3,tpuqq in C1,2
`
r0, T s ˆ

Td;R3
˘
, one has

xpρT , pGT y ´ xpρ0, pG0y

“
ż T

0

ds xpρs, pBs ` ∆q pGsy `
ż T

0

ds xpRppρsq, pGsy, (4.2.16)

here for pG, pH P C1,2pr0, T sˆTd;R3q, x pGp¨q, pHp¨qy stands for the usual inner product

of L2pTdq : x pG, pHy “
3ř
i“1

ż

Td

GipuqHipuqdu.

The rest of this chapter is devoted to prove the following result.

Theorem 4.2.1. Let pγ : Td Ñ r0, 1s3 be an initial continuous profile and pµNqNě1 be a
sequence of probability measures with µN a probability measure on EN for each N asso-
ciated to pγ. The sequence of random measures ppπNt qNě1 converges weakly in probability
as N goes to infinity to the absolutely continuous measure pπtpduq “ pρpt, uqdu whose
density pρpt, uq “ pρ1, ρ2, ρ2qpt, uq is the unique weak solution of the reaction-diffusion
system (4.2.14). That is, for any t P r0, T s, any δ ą 0 and any function pG P CpTd,R3q

lim
NÑ8

PNµN

!ˇ̌
ˇxpπNpηtq, pGp¨qy ´ xpρtp¨q, pGp¨qy

ˇ̌
ˇ ą δ

)
“ 0 .
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4.3 The hydrodynamic limit

For any function pG “ pG1, G2, G3q P C1,2pr0, T s ˆ Td;R3q, by Dynkin’s formula

M
N,i
t “ xπN,it , Gi,ty ´ xπN,i0 , Gi,0y ´

tż

0

LNxπN,is , Gi,syds ´
ż t

0

xπN,is , BsGi,syds (4.3.1)

is a QN
µN ´martingale with respect to the σ´algebra Ft “ σpηs, s ď tq.

To derive the hydrodynamic behaviour of the reaction-diffusion process, one needs
to prove that the above martingale vanishes as N goes to infinity. To this purpose, apply
the generator LN to the function η Ñ ηipxq so that the integral part of MN,i

t is depicted
as follows.

N2LD
NxπN,it , Gi,ty “ N2

Nd

ÿ

xPTd
N

dÿ

j“1

Gi,tpx{Nq
´
ηi,tpx ` ejq ` ηi,tpx ´ ejq ´ 2ηi,tpxq

¯

“ xπN,it ,∆NGi,tp¨qy,

where ∆NGi,tpx{Nq “ N2

dÿ

j“1

pGi,tppx ` ejq{Nq ` Gi,tppx ´ ejq{Nq ´ 2Gi,tpx{Nqq is the

discrete laplacian in dimension d and pe1, ..., edq is the canonical basis of Rd. And com-
puting LR

Nηipxq for each i gives

LR
Nη1pxq “

ÿ

xPTd
N

˜
λ1

ÿ

y:}y´x}“1

η1pyq ` λ2

ÿ

y:}y´x}“1

η3pyq
¸
η0pxq ` η3pxq ´ pr ` 1qη1pxq,

(4.3.2)

LR
Nη2pxq “ rη2pxq ` η3pxq ´ η2pxq, (4.3.3)

LR
Nη3pxq “ rη1pxq ´ 2η3pxq, (4.3.4)

so that we deduce

LR
NxπN,1t , G1,ty “ 1

Nd

ÿ

xPTd
N

G1,tpx{Nq
˜
λ1

ÿ

y:}y´x}“1

η1,tpyq ` λ2

ÿ

y:}y´x}“1

η3,tpyq
¸
η0,tpxq

` xπN,3t , G1,ty ´ pr ` 1qxπN,1t , G1,ty,
LR
NxπN,2t , G2,ty “ rxπN,0t , G2,ty ` xπN,3t , G2,ty ´ xπN,2t , G2,ty

,LR
NxπN,3t , G3,ty “ rxπN,1t , G3,ty ´ 2xπN,3t , G3,ty. (4.3.5)

Thus, to close the equations we need to replace the local function of η which is
the term in LR

Nη1pxq by a functional of the empirical densities given by pπNt defined
in (4.2.11). This is the purpose of the replacement lemma and the blocks estimates,
exposed in Sections 4.3.2 and 4.4.
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Next, we need to characterize all the limit points of the sequence pQN
µN qNě1 : their

existence comes from by the tightness of the sequence of measures, it is proved in Section
4.3.1, then, the identification and uniqueness of the limit points as weak solutions of
(4.2.14) conclude the proof in Sections 4.3.3 and 4.3.4.

4.3.1 Tightness

Existence of limit points is guaranteed by the following lemma.

Lemma 4.3.1 (Tightness). The sequence pQN
µ qNě1 is tight and all its limit points Q˚

µ

satisfy

Q˚
µ

´
pπ : 0 ď pπtpuq ď 1, pπtpuq “ pπtpuqdu, t P r0, T s

¯
“ 1. (4.3.6)

Proof. By Proposition 4.D.4, it is enough to show tightness for the real-valued process
txpπt, pGy, t P r0, T su for all functions pG P C2pTd;R3q. By Prohorov’s theorem 4.D.1, to
get the tightness of txpπt, pGy, t P r0, T su in Dpr0, T s,R3q with the uniform topology, one
needs to check the two following assertions :

(i) boundedness :

lim
mÑ8 lim

NÑ8
QN
µN

´
sup
tPr0,T s

|xpπt, pGy| ě m
¯

“ 0. (4.3.7)

(ii) equicontinuity :

lim
δÑ0

lim
NÑ8

QN
µN

´
sup

|t´s|ďδ
|xpπt, pGy ´ xpπs, pGy| ą ǫ

¯
“ 0, for any ǫ ą 0. (4.3.8)

The limit (4.3.7) is immediate since for each t P r0, T s and 1 ď i ď 3, the total mass
of πN,it is bounded by 1. To prove (4.3.8), it is enough to show for the martingale MN,i

t

defined in (4.3.1) that

lim
δÑ0

lim
NÑ8

QN
µN

´
sup

|t´s|ďδ
|MN,i

t ´ MN,i
s | ą ǫ

¯
“ 0, for any ǫ ą 0 (4.3.9)

and

lim
δÑ0

lim
NÑ8

QN
µN

´
sup

0ďt´sďδ

ˇ̌
ˇ
ż t

s

LNxπN,ir , Giydr
ˇ̌
ˇ ą ǫ

¯
“ 0, for any ǫ ą 0. (4.3.10)

To prove (4.3.9), one shows the quadratic variation xMN,iyt of the martingale M
N,i
t

converges to zero as N goes to 8. Note that since pG is not time-dependent, the time
derivative of pG is null in the expression (4.3.1). By the Doob-Meyer decomposition,

xMN,iyt “
ż t

0

!
LNxπN,is , Giy2 ´ 2xπN,is , GiyLNxπN,is , Giy

)
ds. (4.3.11)
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We postpone the detailed computations to Appendix 4.C. By Lemma 4.C.1, one has

N2

ż t

0

#
LD
NxπN,is , Giy2 ´ 2xπN,is , GiyLD

NxπN,is , Giy
+
ds ď CpGqtN´d

ż t

0

!
LR
NxπN,is , Giy2 ´ 2xπN,is , GiyLR

NxπN,is , Giy
)
ds ď Cpλ1, λ2, rqt}Gi}2

2N
´d

where Cpλ1, λ2, rq stands for the supremum of the bounded rates since all involved rates
in factor in (4.C.6) are positive. Therefore, combining both estimates,

xMN,iyt ď
`
Cpλ1, λ2, rq}Gi}2

2 ` CpGq
˘
t

Nd
, (4.3.12)

which converges to zero as N Ñ 8, one deduces (4.3.9) by using Doob’s martingale
inequality.

To prove (4.3.10), on one hand,
ˇ̌
N2LD

NxπN,it , Giy
ˇ̌

“
ˇ̌
xπN,it ,∆NGiy

ˇ̌
ď }∆Gi}1,

where ∆G stands for the Laplace operator ∆G “
dř
j“1

B2
ej
G when Bej

is the first derivative

in the j-th direction. On the other hand, since all rates (4.2.4) are bounded, by (4.3.5),
ˇ̌
LR
NxπN,it , Giy

ˇ̌
ď Cpλ1, λ2, rq}Gi}1.

To show that pπt is absolutely continuous, remark that for any function pG P CpTd,R3q,

sup
tPr0,T s

|xpπNt , pGy| ď } pG}8.

Hence, since pπ¨ ÞÑ sup
tPr0,T s

|xpπt, pGy| is continuous with respect to the Skorohod topology,

any limit point satisfies by Portmanteau theorem,

sup
tPr0,T s

|xpπt, pGy| ď } pG}1

that is, any limit point is supported on trajectories such that pπt is absolutely continuous
with respect to the Lebesgue measure for all t P r0, T s.

4.3.2 Replacement lemma

For any positive integer k and x P TdN , denote by ηki pt, xq the empirical density of
type´i particles given by

ηki pt, xq “ 1
p2k ` 1qd

ÿ

yPTd
N

}y´x}ďk

ηi,tpyq, (4.3.13)
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and define the vector ppηkt qpxq “ pηk1 , ηk2 , ηk3 qpt, xq. We now deal with replacing local
functions of η by functions of the empirical density within a macroscopic box, in other
words, for any cylinder function φ and the function rφp¨q defined by (4.2.7), one shows
for any continuous function G and ǫ ą 0 the following replacement lemma,

Proposition 4.3.1. For all a ą 0,

lim
ǫÑ0

lim
NÑ8

1
Nd

logPNµN

¨
˝ 1
Nd

ż ÿ

xPT d
N

τxVǫNpηtqdt ě a

˛
‚“ ´8,

where Vkpηq :“
ˇ̌
ˇ̌
ˇ

1
p2k ` 1qd

ř
}y}ďk

τyφpηq ´ rφppηkp0qq
ˇ̌
ˇ̌
ˇ .

Proof. For any γ ą 0, by Markov’s inequality,

PNνN
pρ

¨
˝ 1
Nd

ż ÿ

xPTd
N

τxVǫNpηtqdt ě a

˛
‚ď expp´γNdaq ¨ENνN

pρ

»
–exp

¨
˝γ

Tż

0

ÿ

xPTd
N

τxVǫNpηtqdt

˛
‚
fi
fl .

Introduce in L2pνNpρ q the operator

AN,γ :“ 1
2

pLN ` pLNq‹q ` γ
ÿ

xPTd
N

τxVǫN (4.3.14)

where pLNq‹ is the adjoint of LN in L2pνNpρ q.
Fix T ą 0, by Feynman-Kac formula (see [42, Appendix 1.7]), for all t P r0, T s, the

unique solution of the differential equation
$
&
%

Btupt, ηq “ 1
2

pLN ` pLNq˚qupt, ηq ` γ
ř
xPTd

N

τxVǫNupt, ηq

up0, ηq “ 1
(4.3.15)

is given by upt, ηq “ EN
νN
pρ

»
–up0, ηq exp

¨
˝

Tż

0

γ
ÿ

xPTd
N

τxVǫNpηsqds

˛
‚
fi
fl.

By the spectral decomposition of the auto-adjoint operator AN,γ,

λǫNpγq “ sup
}u}“1

xAN,γu, uy (4.3.16)

is the largest eigenvalue of the operator AN,γ, so that

ENνN
pρ

»
–exp

¨
˝

Tż

0

γ
ÿ

xPTd
N

τxVǫNpηsqds

˛
‚
fi
fl ď exppTλǫNpγqq
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hence,
1
Nd

logPN
νN
pρ

¨
˝ 1
Nd

ż T

0

ÿ

xPTd
N

τxVǫNpηsqds ě a

˛
‚ď 1

2Nd
TλǫNpγq ´ γa.

It thus remains to show for all γ ą 0,

lim
ǫÑ0

lim
NÑ8

λǫNpγq
Nd

“ 0, (4.3.17)

in which case one would have for all γ ą 0,

lim
ǫÑ0

lim
NÑ8

1
Nd

logPNνN
pρ

¨
˝ 1
Nd

ż T

0

ÿ

xPTd
N

τxVǫNpηsqds ě a

˛
‚ď ´γa

and conclusion will follow by letting γ go to infinity. By Rayleigh-Ritz variational for-
mula,

λǫNpγq “ sup
fN PL2pνN

pρ q
}fN }

L2 “1

¨
˝
ż
γ

ÿ

xPTd
N

τxVǫNpηqpfNq2pηqdνNpρ pηq ` xLNfN , fNy

˛
‚

“ sup
fN PL2pνN

pρ q

}fN }
L2 “1

˜ż
γ

ÿ

xPTd
N

τxVǫNpηqpfNq2pηqdνNpρ pηq ` N2xLD
Nf

N , fNy ` xLR
Nf

N , fNy
¸

Estimate the reaction part as follows.

xLR
Nf

N , fNy “
ÿ

xPTd
N

3ÿ

i“0

ż
cpx, η, iqfNpηq

´
fNpηixq ´ fNpηq

¯
dνNpρ pηq

“
ÿ

xPTd
N

3ÿ

i“0

ż
cpx, η, iqfNpηqfNpηixqdνNpρ pηq ´

ÿ

xPTd
N

3ÿ

i“0

ż
cpx, η, iqfNpηq2

dνNpρ pηq

ď
ÿ

xPTd
N

3ÿ

i“0

ż
cpx, η, iq

´
fNpηq2 ` 1

4
fNpηixq2

¯
dνNpρ pηq ´

ÿ

xPTd
N

3ÿ

i“0

ż
cpx, η, iqfNpηq2

dνNpρ pηq

where we used the inequality AB ď 1
2a
A2 ` a

2
B2 for A,B, a ą 0 with a “ 2. Use

formulas of changes of variables given by Lemma 4.B.2 to bound the first sum by the
L2-norm of fN and the fact that fN is a density with respect to νNpρ to bound the second
integral :

xLR
Nf

N , fNy ď Cpλ1, λ2, rq
4

ÿ

xPTd
N

3ÿ

i“0

ÿ

j‰i

ż
fNpηixq2

ηjpxqdνNpρ pηq
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4.3. The hydrodynamic limit

“ Cpλ1, λ2, rq
4

ÿ

xPTd
N

3ÿ

i“0

ÿ

j‰i

ż
ρj

ρi
fNpηq2

ηipxqdνNpρ pηq

ď CppρqCpλ1, λ2, rq
4

Nd

Hence,

1
Nd

λǫNpγq “ sup
fN PL2pνN

pρ q

}fN }
L2 “1

˜
1
Nd

ż
γ

ÿ

xPTd
N

τxVǫNpfNq2pηqdνNpρ pηq ` N2´dxLD
Nf

N , fNy
¸

` C0

for some positive constant C0 “ CppρqCpλ1, λ2, rq{4. By reversibility of the measure with
respect to the generator LD

N , DD
Np|fN |q ď DD

NpfNq and one can take the supremum
over functions f in L2pνNpρ q such that }f}L2pνN

pρ
“ 1 to the supremum over non-negative

functions f in L2pνNpρ q such that }
?
f}L2pνN

pρ
“ 1. Recall νNpρ is reversible with respect to

the generator LD
N but not LR

N . Going back to the upper bound of λǫNpγq,

1
Nd

λǫNpγq ď sup
fN ě0,fN PL2pνN

pρ q

}
?

fN }
L2 “1

˜
1
Nd

ż
γ

ÿ

xPTd
N

τxVǫNf
NpηqdνNpρ pηq ` N2´dxLD

N

a
fN ,

a
fNy

¸
` C0

ď sup
fN ě0,fN PL2pνN

pρ q

}
?

fN }
L2 “1

˜ż
1
Nd

γ
ÿ

xPTd
N

τxVǫNf
NpηqdνNpρ pηq ´ N2´dDD

NpfNq
¸

` C0,

where

DD
NpfNq “

ÿ

x,yPTd
N

}x´y}“1

ż ´a
fNpηx,yq ´

a
fNpηq

¯2

dνNpρ pηq

is the Dirichlet form associated to the generator of stirring. Since φ is bounded, there
exists some positive constant C such that

ÿ

xPTd
N

VǫNpηq ď CNd,

one can thus restrict the supremum over functions fN satisfying

DD
NpfNq ď CNd´2

To get (4.3.17), it remains to show for all positive C,

lim
ǫÑ0

lim
NÑ8

sup
fN PAN

1
Nd

ż ÿ

xPTd
N

τxVǫNpηqfNpηqdνNpρ pηq “ 0, (4.3.18)
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where

AN :“
!
fN P L2pνNpρ q : fN ě 0, }

a
fN}L2 “ 1,DD

NpfNq ď CNd´2
)

This limit will follow from the blocks estimates. On one hand, the one block estimate
ensures the average of local functions in some large microscopic boxes can be replaced by
their mean with respect to the grand-canonical measure parametrized by the particles
density in these boxes. While the two blocks estimate ensures the particles density over
large microscopic boxes and over small macroscopic boxes is very close. Let us first state
the block estimates, we postpone their proofs to the next section.

Lemma 4.3.2 (One block estimate).

lim
kÑ8

lim
NÑ8

sup
fN :DD

N
pfN qďCNd´2

1
Nd

ż ÿ

xPTd
N

τx

ˇ̌
ˇ̌
ˇ

1
p2k ` 1qd

ÿ

}y}ďk

´
τyφpηq ´ rφppηkp0qq

¯ˇ̌ˇ̌
ˇ f

NpηqdνNpρ pηq “ 0. (4.3.19)

Lemma 4.3.3 (Two blocks estimate). For i P t0, 1, 2, 3u,

lim
kÑ8

lim
ǫÑ0

lim
NÑ8

sup
}h}ďǫN

sup
fN :DD

N
pfN qďCNd´2

1
Nd

ż ÿ

xPT d
N

ˇ̌
ηki px ` hq ´ ηǫNi pxq

ˇ̌
fNpηqdνNpρ pηq “ 0. (4.3.20)

Let us prove that the limit (4.3.18) is a consequence of these two previous lemmas.

1
Nd

ż ÿ

xPTd
N

τxVǫNpηqfNpηqdνNpρ pηq

“ 1
Nd

ż ÿ

xPTd
N

τx

ˇ̌
ˇ̌
ˇ

1
p2ǫN ` 1qd

ÿ

}y}ďǫN
τyφpηq ´ rφppηǫNp0qq

ˇ̌
ˇ̌
ˇ f

NpηqdνNpρ pηq

ď 1
Nd

ż ÿ

xPTd
N

τx

ˇ̌
ˇ̌
ˇ

1
p2ǫN ` 1qd

ÿ

}y}ďǫN

˜
τyφpηq ´ 1

p2k ` 1qd
ÿ

}z´y}ďk
τzφpηq

¸ˇ̌
ˇ̌
ˇ f

NpηqdνNpρ pηq

(4.3.21)

` 1
Nd

ż ÿ

xPTd
N

τx

ˇ̌
ˇ̌
ˇ

1
p2ǫN ` 1qd

ÿ

}y}ďǫN

˜
1

p2k ` 1qd
ÿ

}z´y}ďk
τzφpηq ´ rφppηkpyqq

¸ˇ̌
ˇ̌
ˇ f

NpηqdνNpρ pηq

(4.3.22)

` 1
Nd

ż ÿ

xPTd
N

τx

ˇ̌
ˇ̌
ˇ

1
p2ǫN ` 1qd

ÿ

}y}ďǫN

rφppηkpyqq ´ rφppηǫNp0qq
ˇ̌
ˇ̌
ˇ f

NpηqdνNpρ pηq. (4.3.23)
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The first expression (4.3.21) of the right-hand side can be decomposed into boxes of
size p2k ` 1qd so that,

ż ˇ̌
ˇ̌
ˇ

1
p2ǫN ` 1qd

ÿ

}y}ďǫN

˜
τyφpηq ´ 1

p2k ` 1qd
ÿ

}z´y}ďk
τzφpηq

¸ˇ̌
ˇ̌
ˇ f

NpηqdνNpρ pηq

“
ż ˇ̌
ˇ̌
ˇ

1
p2ǫN ` 1qd

ÿ

}y}ďǫN

˜
τyφpηq ´ 1

p2k ` 1qd
ÿ

}z}ďk
τy`zφpηq

¸ˇ̌
ˇ̌
ˇ f

NpηqdνNpρ pηq

“
ż ˇ̌
ˇ̌
ˇ

1
p2k ` 1qd

ÿ

}z}ďk

˜
1

p2ǫN ` 1qd
ÿ

}y}ďǫN
τyφpηq

´ 1
p2ǫN ` 1qd

ÿ

}y}ďǫN
τy`zφpηq

¸ˇ̌
ˇ̌
ˇf
NpηqdνNpρ pηq

ď p2k ` 1qd
p2ǫN ` 1q}φ}8,

which tends to zero when N goes to infinity. The second and third expressions (4.3.22)
and (4.3.23) tend to zero as well as a consequence of the blocks estimates by translation
invariance of νNpρ .

4.3.3 Identification of limit points

Now we show that any limit point of the sequence pQN
µN qNě1 is concentrated on

trajectories that are weak solutions of the reaction-diffusion system (4.2.14). For this,
we come back to the martingale MN,i

t defined in (4.3.1), which satisfies (4.3.9).
We focus on the case i “ 1 since it is the only one for which we need to use the

replacement lemma. Define

B1
ǫ ppπNt q “ xπN,1t , G1,ty ´ xπN,10 , G1,0y ´

tż

0

xπN,1s , BsG1,syds ´
tż

0

xπN,1s ,∆NG1,syds

´
tż

0

xπN,3s , G1,syds `
tż

0

pr ` 1qxπN,1s , G1,syds

´
tż

0

1
Nd

ÿ

xPTd
N

G1,spx{Nq2dλ1xπN,1s , ιǫp¨ ´ x{NqyxπN,0s , ιǫp¨ ´ x{Nqyds

´ 1
Nd

tż

0

ÿ

xPTd
N

G1,spx{Nq2dλ2xπN,3s , ιǫp¨ ´ x{NqyxπN,0s , ιǫp¨ ´ x{Nqyds.
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Chapter 4. Hydrodynamic limit on the torus

For any a ą 0, by Doob’s inequality,

lim
ǫÑ0

lim
NÑ8

PNµN

ˆ
sup

0ďtďT

ˇ̌
ˇMN,1

t

ˇ̌
ˇ ą a

˙
“ 0

To close the equation, replace the local function LR
Nη1pxq appearing inMN,1

t by a function
of the empirical density thanks to the Replacement lemma 4.3.1. Here φ is a local
function given by

τxφpηq “
˜
λ1

ÿ

y:}y´x}“1

η1pyq ` λ2

ÿ

y:}y´x}“1

η3pyq
¸
η0pxq. (4.3.24)

The occupation variables ηipxq are of mean ηǫNi under the measure νNpηǫN . Let ιǫ “
1

p2ǫqd1tr´ǫ, ǫsdu be the approximation of the identity and remark that

ηǫNi pxq “ p2ǫNqd
p2ǫN ` 1qd xπN,i, ιǫp¨ ´ x{Nqy. (4.3.25)

So that, one has by Proposition 4.3.1 and expression (4.3.25) :

lim
ǫÑ0

lim
NÑ8

QN
µN

´
sup

0ďtďT

ˇ̌
ˇB1

ǫ ppπNt q
ˇ̌
ˇ ą a

¯
“ 0.

If Q˚
µ is a limit point of the sequence pQN

µN qNě1, the mapping pπ ÞÝÑ B1
ǫ ppπT q is

continuous in Skorohod topology, taking the limit as N goes to infinity,

lim
ǫÑ0

Q˚
µ

˜ˇ̌
ˇ̌
ˇxπ

1
T , G1,T y ´ xπ1

0, G1,0y ´
Tż

0

xπ1
s , BsG1,syds ´

Tż

0

xπ1
s ,∆G1,syds

´
Tż

0

xπ3
s , G1,syds `

Tż

0

pr ` 1q ă π1
s , G1,syds ´

Tż

0

ż

Td

!
G1,spuq2dλ1

`
π1
s ˚ ιǫ

˘`
π0
s ˚ ιǫ

˘)
ds du

´
Tż

0

ż

Td

!
G1,spuq2dλ2

`
π3
s ˚ ιǫ

˘`
π0
s ˚ ιǫ

˘)
ds du

ˇ̌
ˇ̌
ˇ ą a

¸
“ 0.

In virtue of Lemma 4.3.1, all limit points are absolutely continuous with respect to the
Lebesgue measure on Td, that is, if pπs “ pρps, uqdu, then for all i P t0, 1, 2, 3u, pπit ˚ ιǫqpuq
converges in L2pTdq to ρipt, uq as ǫ goes to 0. Hence,

Q˚
µ

´ˇ̌
ˇxπ1

T , G1,T y ´ xπ1
0, G1,0y ´

Tż

0

xπ1
s , BsG1,syds ´

Tż

0

xπ1
s ,∆G1,syds
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´
ż T

0

ds

ż

Td

du xR1ppπ1
sq, G1,spuqy

ˇ̌
ˇ ą a

¯
“ 0

For i “ 2, 3, the martingales MN,i
t do not provide local functions of η so that one

has immediately the following limits.

Q˚
µ

´ˇ̌
ˇxπiT , Gi,T p¨qy ´ xπi0, Gi,0¨qy ´

Tż

0

Bsxπis, Gi,sp¨qyds ´
Tż

0

xπis,∆Gi,sp¨qyds

´
ż T

0

ds

ż

Td

du xRippπisq, Gi,spuqy
ˇ̌
ˇ ą a

¯
“ 0

Finally, any limit point is concentrated on trajectories pπtpduq “ pρpt, uqdu which are
weak solutions of (4.2.14).

4.3.4 Uniqueness of weak solutions

Following the uniqueness of weak solutions of non-linear parabolic equations done in
[42, Appendix 2.4], one has

Proposition 4.3.2. There exists a unique weak solution to the reaction-diffusion system
(4.2.14) satisfying (S1) and (S2).

Proof. For each z P Zd, introduce ψz : Td Ñ C defined by

ψzpuq “ exp
´

p2πiqpz.uq
¯

(4.3.26)

where pz.uq denotes the usual inner product in Rd. The set tψz : z P Zdu forms an
orthonormal basis of L2pTdq so that any function f P L2pTdq can be rewritten as : f “ÿ

zPZd

xψz, fyψz, with x., .y standing for the inner product of L2pTdq. For any f, g P L2pTdq,

one has ż

Td

fpuqgpuqdu “
ÿ

zPZd

xψz, fyxψz, gy.

Consider now two such solutions of (4.2.14) pρp1q and pρp2q starting from an initial
profile pγ. Note pm the difference pρp1q ´ pρp2q and introduce Ri

M : r0, T s Ñ R the function

Ri
Mptq “

ÿ

zPZd

M

p1 ` a|z|2qpM ` a|z|αqxψz,mipt, ¨qyxψz,mipt, ¨qy..

Since pρpjq, j “ 1, 2, satisfies (S1), Ri
Mptq converges as M Ñ 8 and as a Ñ 0 to

Riptq :“
ÿ

zPZd

xψz,mipt, ¨qyxψz,mipt, ¨qy.
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which is equal to }mipt, ¨q}2
L2Td by (4.3.26). By an integration by parts, note that

xψz, Bej
fy “ ´2πizjxψz, fy, for any function f P C1pTdq. Now, differentiate Ri

Mptq,

BtRi
Mptq “ 2

ÿ

zPZd

M

p1 ` a|z|2qpM ` a|z|αqxψz,mipt, ¨qyxψz, Btmipt, ¨qy

“ ´8π2
ÿ

zPZd

M |z|2
p1 ` a|z|2qpM ` a|z|αqxψz,mipt, ¨qyxψz,mipt, ¨qy

`
ÿ

zPZd

M

p1 ` a|z|2qpM ` a|z|αqxψz,mipt, ¨qyxψz,Rippρp1qq ´ Rippρp2qqy

ď ´8π2
ÿ

zPZd

M

p1 ` a|z|2qpM ` a|z|αqxψz,mipt, ¨qyxψz,mipt, ¨qy

`
ÿ

zPZd

M

p1 ` a|z|2qpM ` a|z|αqxψz,mipt, ¨qyxψz,Rippρp1qq ´ Rippρp2qqy

where we used that |z|2 ě 1 for all z ‰ 0. Then, integrating along the time and taking
the limit as M Ñ 8 and a Ñ 0,

Riptq ď Rip0q ´ 8π2

ż t

0

Ripsqds `
ż t

0

ˇ̌
xmips, ¨q,Rippρp1qq ´ Rippρp2qqy

ˇ̌
ds.

Then, notice that pR is Lipschitz,

|Rippρp1qq ´ Rippρp2qq| ď Cpλ1, λ2, rq
3ÿ

i“1

|mi|, for all i “ 1, 2, 3.

Therefore,

3ÿ

i“1

}mipt, ¨q}2
L2pTdq ď

3ÿ

i“1

}mip0, ¨q}2
L2pTdq ` 3

`
´ 8π2 ` Cpλ1, λ2, rq

˘ 3ÿ

i“1

ż t

0

}mips, ¨q}2
L2pTdqds

and one concludes the proof by Gronwall’s inequality.

4.4 Proof of the replacement lemma

One follows the well-reviewed proofs provided by C. Kipnis and C. Landim [42, Chap.
5], originally introduced by [37].

4.4.1 One block estimate

Proof of Lemma 4.3.2. Note that Vkpηq depends only on configurations η through the
occupation variables tηpxq, |x| ď ku. Therefore, one can project any probability density
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fN on a space of configurations independent of N . Let f
Npηq “ 1

Nd

ř
xPTd

N

τxf
Npηq. By

translation invariance of the measure νNpρ ,

1
Nd

ż ÿ

xPTd
N

τxVkpηqfNpηqdνNpρ pηq “
ż
VkpηqfNpηqdνNpρ pηq

For Λk :“ tx P TdN , |x| ď ku, define Ek :“ FΛk . Now, denote by νkpρ the product
measure νNpρ restricted to Ek and for any probability density fN , denote by fk the
conditional expectation of fN with respect to the σ´algebra σpηpxq, x P Λkq, i.e. for all
η P Ek

fkpηq “ 1
νkpρ pηq

ż
1tη1, η1pxq “ ηpxq x P ΛkufNpη1qdνNpρ pη1q

it is thus enough to show :

lim
kÑ8

lim
NÑ8

sup
fN :fN ďDD

N
pfN qďCNd´2

ż
Vkpηqfkpηqdνkpρ pηq “ 0

By convexity of the Dirichlet forms, if DD
k denotes the Dirichlet form, associated to

the stirring process, defined over the set of densities fk : Λk Ñ R`, then

DD
k pfkq ď CpkqN´dDD

NpfNq ď CpkqN´dDD
NpfNq, (4.4.1)

so that DD
k pfkq ď C 1pkqN´2. Therefore, it remains to show

lim
kÑ8

lim
NÑ8

sup
fk:DD

k
pfkqďC1pkqN´2

ż
Vkpηqfkpηqdνkpρ pηq “ 0

By compactness of the level set of DD
k and lower semi-continuity of Dirichlet forms,

lim
NÑ8

sup
fk:DD

k
pfkqďC1pkqN´2

ż
Vkpηqfkpηqdνkpρ pηq ď sup

DD
k

pfkq“0

ż
Vkpηqfkpηqdνkpρ pηq.

Now, it is about to show

lim
kÑ8

sup
fk:DD

k
pfkq“0

ż
Vkpηqfkpηqdνkpρ pηq “ 0.

A probability density fk, whose associated Dirichlet form is null, is constant over each
hyperplane with a fixed number of type-i particles for all i. The set of measures tfkνkpρ :
DD
k pfkq “ 0u is convex, we can restrict ourselves to its extremal elements which are

uniform over the configurations with a fixed number of particles of each type i pi “
1, 2, 3q. For any vector pℓ “ pℓ1, ℓ2, ℓ3q P pr0, p2k ` 1qds X Ndq3 such that ℓ1 ` ℓ2 `
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ℓ3 “ p2k ` 1qd ´ ℓ0, denote by mk
pℓ the measure νkpρ conditioned on the hyperplane

tη : p2k ` 1qdpηkp0q “ pℓu,

mk
pℓ p¨q “ νkpρ

`
¨ |p2k ` 1qdpηkp0q “ pℓ

˘
(4.4.2)

Note this measure does not depend on pρ. It remains to show

lim
kÑ8

sup
pℓ

ż ˇ̌
ˇ 1
p2k ` 1qd

ÿ

}y}ďk
τyφpηq ´ rφ

´ pℓ
p2k ` 1qd

¯ˇ̌
ˇdmk

pℓ pηq “ 0. (4.4.3)

Now fix a positive integer p increasing to infinity after k and decompose the set Λk

in cubes of length p2p ` 1q. Consider the set A “ tp2p ` 1qx, x P ZduŞΛk´p and list
its elements by A “ tx1, ..., xqu such that }xℓ} ď }xj} for ℓ ď j. Let Bℓ “ xℓ ` Λp if

1 ď ℓ ď q. Note that Bℓ

Ş
Bj “ H if ℓ ‰ j and

qŤ
ℓ“1

Bℓ Ă Λk. Define B0 “ Λkz
qŤ
ℓ“1

Bℓ

so that |B0| ď Cpkd´1 by construction, for some positive constant C. This way, the
integral (4.4.3) is bounded by

qÿ

i“1

|Bℓ|
|Λk|

ż ˇ̌
ˇ 1
|Bℓ|

ÿ

yPBℓ

τyφpηq ´ rφ
´ pℓ

p2k ` 1qd
¯ˇ̌
ˇdmk

pℓ pηq

But |B0| ď Cpkd´1 and occupation variables ηipxq have mean ℓi{p2k ` 1qd under mk
pℓ ,

qÿ

ℓ“1

|Λp|
|Λk|

ż ˇ̌
ˇ 1
|Λp|

ÿ

yPBℓ

τyφpηq ´ rφ
´ pℓ

p2k ` 1qd
¯ˇ̌
ˇdmk

pℓ pηq ` Opp{kq

Moreover, the distribution of the occupation variables tpξ, ωqpyq, y P Bℓu do not depend
on ℓ, this sum is hence equal to

ż ˇ̌
ˇ 1
p2p ` 1qd

ÿ

}y}ďp
τyφpηq ´ rφ

´ pℓ
p2k ` 1qd

¯ˇ̌
ˇdmk

pℓ pηq ` Opp{kq

By the equivalence of ensembles (see next Lemma 4.4.1), letting k go to infinity and
pℓ{p2k ` 1qd tend to pρ, this integral converges to

ż ˇ̌
ˇ 1
p2p ` 1qd

ÿ

}y}ďp
τyφpηq ´ rφ

`
pρ
˘ˇ̌
ˇdνpρpηq (4.4.4)

As p goes to infinity, since νpρ is product, by the law of large numbers this integral
converges uniformly to 0 on every compact subset of R`.
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4.4.2 Equivalence of ensembles

To prove the closeness between the grand-canonical and the canonical measures, we
derive the so-called equivalence of ensembles.

Lemma 4.4.1 (Equivalence of ensembles). For every bounded function f : t0, 1, 2, 3uTd Ñ
R,

lim
kÑ8

sup
pℓ

ˇ̌
mk

pℓ pfq ´ νkpℓ{p2k`1qdpfq
ˇ̌

“ 0

Proof of the equivalence of ensembles. For any m P N, let px1, ..., xmq P pΛkqm and let

mi “
mř
j“1

ηipxjq. Denote by Ii the set of sites that are in state i P t1, 2, 3u, i.e. Ii “
txj, j “ 1, ...,m : ηipxjq “ 1u, so that |Ii| “ mi.

Consider ℓ0 “ p2k ` 1qd ´ ℓ1 ´ ℓ2 ´ ℓ3 and m0 “ m´m1 ´m2 ´m3. First, compute

νkpρ

˜
η1pxjq “ 1, xj P I1 ; η2pxjq “ 1, xj P I2 ; η3pxjq “ 1, xj P I3 ;

ÿ

Λkz
3Ť

i“1

Ii

η1pxq “ ℓ1 ´ m1 ;
ÿ

Λkz
3Ť

i“1

Ii

η2pxq “ ℓ2 ´ m2 ;
ÿ

Λkz
3Ť

i“1

Ii

η3pxq “ ℓ3 ´ m3

¸

“
`
p2k ` 1qd ´ m

˘
!

pℓ0 ´ m0q!pℓ1 ´ m1q!pℓ2 ´ m2q!pℓ3 ´ m3q!p̺0qℓ0p̺1qℓ1p̺2qℓ2p̺3qℓ3

by the expression of the measure νNpρ given in (4.2.8) and

νkpρ

˜ ÿ

xPΛk

η1pxq “ ℓ1 ;
ÿ

xPΛk

η2pxq “ ℓ2 ;
ÿ

xPΛk

η3pxq “ ℓ3

¸

“ p2k ` 1qd
ℓ0!ℓ1!ℓ2!ℓ3!

p̺0qℓ0p̺1qℓ1p̺2qℓ2p̺3qℓ3

Consequently, the canonical measure is given by

mk
pℓ

´
η1pxjq “ 1, xj P I1 ; η2pxjq “ 1, xj P I2 ; η3pxjq “ 1, xj P I3

¯

“
`
p2k ` 1qd ´ m

˘
!

p2k ` 1qd!
ℓ0!

pℓ0 ´ m0q!
ℓ1!

pℓ1 ´ m1q!
ℓ2!

pℓ2 ´ m2q!
ℓ3!

pℓ3 ´ m3q!

while the grand-canonical measure is defined by

νkpℓ{p2k`1qd pη1pxjq “ 1, xj P I1 ; η2pxjq “ 1, xj P I2 ; η3pxjq “ 1, xj P I3q

“
ˆ

ℓ0

p2k ` 1qd
˙m0

ˆ
ℓ1

p2k ` 1qd
˙m1

ˆ
ℓ2

p2k ` 1qd
˙m2

ˆ
ℓ3

p2k ` 1qd
˙m3
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Recall that Υk
pℓ “

ˇ̌
mk

pℓ ´ νkpℓ{p2k`1qd

ˇ̌
,

Υk
pℓ

´
η1pxjq “ 1, xj P I1 ; η2pxjq “ 1, xj P I2 ; η3pxjq “ 1, xj P I3

¯

“

¨
˚̊
˝

3ś
i“0

pℓiqmi

pp2k ` 1qdqm

˛
‹‹‚

¨
˚̊
˝

¨
˚̊
˝

3ś
i“0

ℓi
ℓi

ℓi´1
ℓi
... ℓi´mi`1

ℓi

p2k`1qd

p2k`1qd

p2k`1qd´1

p2k`1qd ...
p2k`1qd´m`1

p2k`1qd

˛
‹‹‚´ 1

˛
‹‹‚

“

¨
˚̊
˝

3ś
i“0

pℓiqmi

pp2k ` 1qdqm

˛
‹‹‚

¨
˚̊
˝

¨
˚̊
˝

3ś
i“0

´
1 ´ 1

ℓi

¯
...
´

1 ´ mi´1
ℓi

¯

´
1 ´ 1

p2k`1qd

¯
...
´

1 ´ m´1
p2k`1qd

¯

˛
‹‹‚´ 1

˛
‹‹‚

Taking now the maximum over pℓ P p0, .., p2k ` 1qdq3,

max
pℓ

Υk
pℓ

´
η1pxjq “ 1, xj P I1 ; η2pxjq “ 1, xj P I2 ; η3pxjq “ 1, xj P I3

¯

ď

¨
˝ 1´

1 ´ 1
p2k`1qd

¯
...
´

1 ´ m´1
p2k`1qd

¯
˛
‚´ 1

which tends to zero as k Ñ 8.

4.4.3 Two blocks estimate

Proof of Lemma 4.3.3. Begin by replacing the average over a small macroscopic box of
size p2ǫN ` 1qd by the average over large microscopic boxes of size p2k` 1qd, that is, for
N large enough, one has

ˇ̌
ˇηki phq ´ ηǫNi p0q

ˇ̌
ˇ

ď
ˇ̌
ˇ 1
p2k ` 1qd

ÿ

}y´h}ďk
ηipyq ´ 1

p2ǫN ` 1qd
ÿ

}y}ďǫN

1
p2k ` 1qd

ÿ

}z´y}ďk
ηipzq

ˇ̌
ˇ

`
ˇ̌
ˇ 1
p2ǫN ` 1qd

ÿ

}y}ďǫN

1
p2k ` 1qd

ÿ

}z´y}ďk
ηipzq ´ 1

p2ǫN ` 1qd
ÿ

}y}ďǫN
ηipyq

ˇ̌
ˇ

ď sup
2kă}h}ď2ǫN

ˇ̌
ˇηki phq ´ ηki p0q

ˇ̌
ˇ ` p2k ` 1qd

2ǫN ` 1

It is thus enough to show :

lim
kÑ8

lim
ǫÑ0

lim
NÑ8

sup
fN :DD

N
pfN qďCND´2

sup
2k`1ď}h}ď2ǫN

1
Nd

ż ÿ

xPTd
N

τx

ˇ̌
ˇηki p0q ´ ηki phq

ˇ̌
ˇfNpηqdνNpρ pηq “ 0 (4.4.5)
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4.4. Proof of the replacement lemma

By translation invariance of the measure, one can rewrite the integral as
ż ˇ̌
ˇηki p0q ´ ηki phq

ˇ̌
ˇf̄NpηqdνNpρ pηq

where ηki p0q and ηki phq depend only on configurations pηq over the set of occupation
variables tηpxq, x P Λh,ku, with Λh,k :“ t´k, ..., kud Y ph ` t´k, ..., kudq.

Denote by ν2k
pρ the product measure νNpρ restricted to Ek ˆ Ek and for any density

fN , denote by fh,k the conditional expectation of fN with respect to the sigma-algebra
σpηpxq, x P Λh,kq. Let ζ and χ be two copies of η defined on Ek, it is enough to prove

lim
kÑ8

lim
ǫÑ0

lim
NÑ8

sup
fN :DD

N
pfN qďCND´2

sup
2k`1ď}h}ď2ǫNż ˇ̌

ζki p0q ´ χki p0q
ˇ̌
fh,kpζ, χqdν2k

pρ pζ, χq “ 0 (4.4.6)

Let g be a function on Ek ˆ Ek, define the following Dirichlet forms corresponding
to exchanges within two separate boxes and to exchanges between those two boxes, for
two neighbouring sites x, y P Λk

D1,k
x,ypgq “

ż ´a
gpζx,y, χq ´

a
gpζ, χq

¯2

dν2k
pρ pζ, χq

D2,k
x,ypgq “

ż ´a
gpζ, χx,yq ´

a
gpζ, χq

¯2

dν2k
pρ pζ, χq

∆kpgq “
ż ´a

gkppζ, χq0q ´
a
gkpζ, χq

¯2

dν2k
pρ pζ, χq

where pζ, χq0 is obtained from pζ, χq by switching the values of ζp0q and χp0q. Define

Dkpgq “ D1,k
x,ypgq ` D1,k

x,ypgq ` ∆kpgq (4.4.7)

As for the one block estimate, one has the following upper bounds. For all x, y P Λk

such that }x ´ y} “ 1,

D1,k
x,ypfh,kq ď DD

x,ypfNq, and D2,k
x,ypfh,kq ď DD

h`x,h`ypfNq

As in (4.4.1), summing over each pair x, y P Λk such that }x ´ y} “ 1 :
ÿ

x,yPΛk:}x´y}“1

D1,k
x,ypfh,kq `

ÿ

x,yPΛk:}x´y}“1

D1,k
x,ypfh,kq ď 2CpkqN´dDD

NpfNq ď CpkqN´2,

for any probability density whose Dirichlet form is bounded by CNd´2. For the last one,

∆kpfh,kq ď
ż ˆb

f
Npη0,hq ´

b
f
Npηq

˙2

dνNpρ pηq. (4.4.8)
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Chapter 4. Hydrodynamic limit on the torus

To switch the occupations variables of ζp0q and χp0q, define a path from the origin to h by
a sequence of sites x0, ..., x}h}1

such that x0 “ 0, x}h}1
“ h and for each 0 ď k ď }h}1 ´1,

}xk`1 ´ xk}1 “ 1, so that we have a telescopic summation

b
f
Npη0,hq ´

b
f
Npηq “

}h}1´1ÿ

k“0

´b
f
Npηxk,xk`1q ´

b
f
Npηq

¯
.

By Cauchy-Schwarz inequality, from (4.4.8)

∆kpfh,kq ď }h}1

}h}1´1ÿ

k“0

ż ´b
f
Npηxk,xk`1q ´

b
f
Npηq

¯2

dνNpρ pηq

which is equal to }h}1

}h}1´1ř
k“0

DD
xk,xk`1

pfNq. From (4.4.1), DD
xk,xk`1

pfNq ď N´dDD
NpfNq.

Moreover, }h}1 ď 2ǫN , hence

∆kpfh,kq ď }h}2
1N

´dDD
NpfNq ď C1p2ǫq2.

To conclude the proof, it is thus enough to show that

lim
kÑ8

lim
ǫÑ0

sup
DkpfqďCpkqǫ2

ż ˇ̌
ζkp0q ´ χkp0q

ˇ̌
fpζ, χqdν2k

pρ pζ, χq “ 0 (4.4.9)

We conclude as for the 1-block estimate : we first let ǫ go to zero, then if f satisfies
Dkpfq “ 0, it is constant on hyperplanes having a fixed total number of particles of each
type i on ΛkY

`
h`Λk

˘
. The result is a consequence of the equivalence of ensembles.

4.A Construction of an auxiliary process

The reference measure νNpρ defined in (4.2.6) is only reversible with respect to the
generator of stirring LD

N . Assuming the occupation variables are unbounded, we would
not be able to use the bound of the proof of the replacement lemma 4.3.1, a way to
avoid this issue is to build an auxiliary reaction process whose generator is invariant (or
reversible if the dynamics makes it possible, but this is not our case) with respect to
the reference measure. We follow arguments presented by M. Mourragui [63], for births,
deaths and jump processes.

Construction of the generator. It is about to construct a convenient transition
function rc for which the measure νNpρ is invariant with respect to an auxiliary Markov
process with generator rLR

N , that is for any function f on EN

ż
rLR
NfpηqdνNpρ pηq “ 0. (4.A.1)
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4.A. Construction of an auxiliary process

Let rrpx, ηq “ r01tηpxq “ 0u ` r11tηpxq “ 1u, δ1, δ2 and α be parameters associated to
the generator rLR

N to determine. By a change of variables [see Lemma 4.B.2],
ż

rLR
NfpηqdνNpρ pηq

“
ż ÿ

xPT d
N

pαrfpη1
xq ´ fpηqs ` rrpx, ηqrfpη2

xq ´ fpηqsq1tηpxq “ 0udνNpρ pηq

`
ż ÿ

xPT d
N

pδ1rfpη0
xq ´ fpηqs ` rrpx, ηqrfpη3

xq ´ fpηqsq1tηpxq “ 1udνNpρ pηq

`
ż ÿ

xPT d
N

δ2rfpη0
xq ´ fpηqs1tηpxq “ 2udνNpρ pηq

`
ż ÿ

xPT d
N

pδ2rfpη1
xq ´ fpηqs ` δ1rfpη2

xq ´ fpηqsq1tηpxq “ 3udνNpρ pηq

“
ż ÿ

xPT d
N

fpηq
„
1tηpxq “ 0u

ˆ
δ1

ρ1

ρ0

` δ2

ρ2

ρ0

´ α ´ r0

˙

` 1tηpxq “ 1u
ˆ
α
ρ0

ρ1

` δ2

ρ3

ρ1

´ δ1 ´ r1

˙
` 1tηpxq “ 2u

ˆ
r0

ρ0

ρ2

` δ1

ρ3

ρ2

´ δ2

˙

`1tηpxq “ 3u
ˆ
r1

ρ1

ρ3

´ δ2 ´ δ1

˙
dνpρpηq.

A sufficient condition for this integral to be null is that each term between brackets
vanishes. Therefore, posing δ1 “ δ2 “ 1, the measure νNpρ is invariant with respect to rLR

N

as soon as
rrpx, ηq “ ρ2 ´ ρ3

ρ0

1tηpxq “ 0u ` 2
ρ3

ρ1

1tηpxq “ 1u (4.A.2)

and
α “ ρ1 ` ρ3

ρ0

. (4.A.3)

If ρ2 ą ρ3, the rate rrpx, ηq is well defined. Subsequently, fix such a profile pρ to define
the reference measure νNpρ . Fix the dynamics with parameters rrpx, ηq and α satisfying
(4.A.2)-(4.A.3), i.e.

0 Ñ 1 at rate α 1 Ñ 0 at rate 1
0 Ñ 2 at rate r0 2 Ñ 0 at rate 1
1 Ñ 3 at rate r1 3 Ñ 1 at rate 1

3 Ñ 2 at rate 1

(4.A.4)

One can thus construct uniquely a Markov process with generator

rLN “ N2LD
N ` rLR

N ,
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Chapter 4. Hydrodynamic limit on the torus

that admits νNpρ defined in (4.2.6) as unique invariant measure, this is the so-called
auxiliary process.

Denote by rPN
νN
pρ

the probability measure of the auxiliary process starting from the

initial measure νNpρ and by rEN
νN
pρ

the corresponding expectation. In view of the dynamics

of the reaction part, there is no way to build a generator that is reversible with respect
to the reference measure, this would though be possible for the symmetric CP-DRE, as
we will discuss in the next chapter.

Entropy of PN
µN with respect to rPN

νN
pρ

. Start by defining HpPNµN |rPN
νN
pρ

q the entropy

of PNµ with respect to rPN
νN
pρ

as the positive convex function given by

HpPNµN |rPNνN
pρ

q “
ż

log
PNµN

rPN
νN
pρ

dPNµN pηq. (4.A.5)

Controlling the relative entropy of PNµN with respect to rPN
νN
pρ

allows us to deduce

properties of the reaction-diffusion process from results settled for the auxiliary process
via the entropy inequality. This inequality is given for any bounded continuous function
U by ż

Up¨qdPNµN p¨q ď log
ż

exppUp¨qqdrPNνN
pρ

p¨q ` HpPNµN |rPNνN
pρ

q (4.A.6)

Since the occupation variables are bounded, by convexity of the entropy (see [42,
Appendix I.8]),

HpµN |νNpρ q ď
ÿ

ηPEN

µNpηqHpδη|νNpρ q “
ÿ

ηPEN

µNpηq log

˜
1

νNpρ pηq

¸
(4.A.7)

ď
ÿ

ηPEN

µNpηq log

˜
1

inf
i
ρi

¸Nd

“ C0N
d,

for some positive constant C0.

To study the entropy of PNµN with respect to rPN
νN
pρ

, begin by computing the associated

Radon-Nikodym density. For this, introduce the following jump processes corresponding
to each transition of the reaction part :

‚ D
x,i
t : number of deaths of type-i particles on site x up to time t, for i “ 1, 2.

‚ Bx
t : number of births of type-1 particles on site x up to time t.

‚ I
x,j
t : number of arrivals of type-2 particles on site x in state j up to time t, for
j “ 0, 1.
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4.A. Construction of an auxiliary process

Then, rDx,i
t “ D

x,i
t ´

şt
0

1tηspxq “ iuds, rIx,jt “ I
x,j
t ´

tż

0

rrspxqds and rBx
t “ Bx

t ´

α
şt

0
1tηspxq “ 0uds are rPN -martingales.

Furthermore, rDx,i
t , Îx,jt “ I

x,j
t ´ r

ż t

0

1tηspxq “ juds and pBx
t “ Bx

t ´
tż

0

´
λ1n1px, ηsq `

λ2n3px, ηsq
¯

1tηspxq “ 0uds are PN -martingales. Remark that, since nipx, ηq ď 2d and

λ2 ă λ1, one has λ1n1px, ηq ` λ2n3px, ηq ď 2dλ1, for all x P TdN . Rates rrpxq and α were
defined in (4.A.2)-(4.A.3).

Starting from a common initial measure, one obtains the density via the Girsanov
formula for jump processes [42, Proposition A1.2.6]. Since Dx,i

t have same jump rate,
both are PN - and rPN - martingales, so that they vanish in the computation of the density
while on the other hand,

dPN
νN
pρ

drPN
νN
pρ

pη¨q “ exp

# ÿ

xPTd
N

˜ tż

0

log
r

r0

dIx,0s ´
tż

0

`
r ´ r0

˘
1tηspxq “ 0uds`

tż

0

log
r

r1

dIx,1s ´
tż

0

`
r ´ r1

˘
1tηspxq “ 1uds

`
tż

0

log
ˆ
λ1n1px, ηsq ` λ2n3px, ηsq

α

˙
dBx

s

´
ż t

0

ˆ
λ1n1px, ηsq ` λ2n3px, ηsq ´ α

˙
1tηspxq “ 1uds

¸+
, (4.A.8)

where the stochastic integral of a bounded continuous function f with respect to a jump
process pItqtě0 is defined by

ż t

0

fpηsqdIs “
ÿ

sďt
fpηs´qpIs ´ Is´q

Proposition 4.A.1. There exists a positive constant C such that

HpPNµN |rPNνN
pρ

q ď CNd.

Proof. By definition of the entropy

HpPNµN |rPNνN
pρ

q “
ż

log

¨
˝dµN

dνNpρ
pη0q

dPN
νN
pρ

drPN
νN
pρ

pη¨q

˛
‚dPNµN pη¨q
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“ HpµN |νNpρ q `
ż

log

¨
˝
dPN

νN
pρ

drPN
νN
pρ

pη¨q

˛
‚dPNµN pη¨q

Using (4.A.7), the result comes from (4.A.8) since the involved rates are bounded :

ż
log

¨
˝
dPN

νN
pρ

drPN
νN
pρ

pη¨q

˛
‚dPNµN pη¨q

ď Cpλ1, λ2, r, r0, r1, αq
ÿ

xPTd
N

´
ENµN

´
Bx
t

¯
` ENµN

´
I
x,0
t

¯
` ENµN

´
I
x,1
t

¯¯

ď C 1Nd

First, prove this limit for the auxiliary process with infinitesimal generator rLN . Next,
one concludes for the reaction-diffusion process using the entropy inequality given by
(4.A.6). It is now about to prove the following.

Replacement lemma In a more suitable way, one can now prove the replacement
lemma 4.3.1 for the process of generator ĂLN . After what we deduce the result for the
reaction-diffusion process of generator LN by inequality entropy using 4.A.7 and 4.A.1.

Proposition 4.A.2. For all a ą 0,

lim
ǫÑ0

lim
NÑ8

1
Nd

log rPNνN
pρ

¨
˝ 1
Nd

ż T

0

ÿ

xPTd
N

τxVǫNpηtqdt ě a

˛
‚“ ´8 (4.A.9)

Proof. The proof is very similar to the proof of Proposition 4.3.1 with the exception of
estimating the term x rLR

N

a
fN ,

a
fNy. This is done as following.

x rLR
N

a
fN ,

a
fNy “

ÿ

xPTd
N

3ÿ

i“0

ż
rcpx, η, iq

a
fNpηq

´a
fNpηixq ´

a
fNpηq

¯
dνNpρ pηq

“
ÿ

xPTd
N

3ÿ

i“0

ż
rcpx, η, iq

´a
fNpηq

a
fNpηixq ´ fNpηq

¯
dνNpρ pηq

ď 1
4

ÿ

xPTd
N

3ÿ

i“0

ż
rcpx, η, iqfNpηqdνNpρ pηq `

ÿ

xPTd
N

ÿ

i

ż
rcpx, η, iq

´
fNpηixq ´ fNpηq

¯
dνNpρ pηq,

using inequality AB ď 1
2a
A2 ` a

2
B2 for A,B, a ą 0 for the last bound. We deduce an

estimate by Cauchy-Schwarz inequality to bound the first integral by the L2-norm of
fN while the second integral is null since νNpρ is invariant with respect to the auxiliary
generator LR

N .
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4.B Properties of measures

Recall the measure we defined on TdN by νNpψ (4.2.6) for any vector pψ “ pψ0, ψ1, ψ2, ψ3q P
R4 :

νNpψ pηq :“
ź

xPTd
N

1
Z pψ

exp

˜
3ÿ

i“0

ψi1tηpxq “ iu
¸

(4.B.1)

where Z pψ “
3ř
i“0

exppψiq is the normalization constant. Using that 1tηpxq “ 0u “ 1 ´
3ř
i“1

1tηpxq “ iu, fix ψ̄k “ ψk ´ ψ0 for 1 ď k ď 3 so that

νNpψ1,ψ2,ψ3qpηq “
ź

xPTd
N

exp
ˆ

3ř
i“1

ψ̄i1tηpxq “ iu
˙

1 `
3ř
i“1

exppψiq
.

To parametrize the invariant measure by the density of each type of particles, first deal
with a change of variables as follows. Denote by Rp¨q the expectation of each occupation
variable of a site x by type i under νNpψ ,

R :

¨
˝

ψ1

ψ2

ψ3

˛
‚ ÞÝÑ 1

Z pψ

¨
˝

exppψ1q
exppψ2q
exppψ3q

˛
‚.

Let the vector of densities pρ “ pρ1, ρ2, ρ3q such that ρi P r0, 1s and ρ1 ` ρ2 ` ρ3 “ 1 ´ ρ0.
Then for all i “ 0, 1, 2, 3, ρi satisfies

νNpψ pηpxq “ iq “ 1
Z pψ

exppψiq “ ρi. (4.B.2)

Proposition 4.B.1. The vector pρ such that 1´ρ0 “ ρ1 `ρ2 `ρ3 is uniquely determined
by the vector pψ.

Proof. Since we parametrize the measures by pρ, for all i :

1

1 `
3ř
i“1

exppψiq
exppψiq “ ρi.

And pψ1, ψ2, ψ3q solves the following system of equations
$
&
%

exppψ1q “ ρ1p1 ` exppψ1q ` exppψ2q ` exppψ3qq
exppψ2q “ ρ2p1 ` exppψ1q ` exppψ2q ` exppψ3qq
exppψ3q “ ρ3p1 ` exppψ1q ` exppψ2q ` exppψ3qq
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which can be rewritten as $
’’’’&
’’’’%

ψ1 “ logpρ1

ρ0

q

ψ2 “ logpρ2

ρ0

q

ψ3 “ logpρ3

ρ0

q

One gets a triplet pρ1, ρ2, ρ3q such that 1 “ ρ0 ` ρ1 ` ρ2 ` ρ3, by the transformation Ψ :

Ψ :

¨
˝

ρ1

ρ2

ρ3

˛
‚ ÞÝÑ

¨
˚̊
˚̊
˚̊
˝

log
ˆ

ρ1

1 ´ ρ1 ´ ρ2 ´ ρ3

˙

log
ˆ

ρ2

1 ´ ρ1 ´ ρ2 ´ ρ3

˙

log
ˆ

ρ3

1 ´ ρ1 ´ ρ2 ´ ρ3

˙

˛
‹‹‹‹‹‹‚
. (4.B.3)

where Ψ is the inverse function of R.

One can hence define uniquely a new product measure parametrize by the triplet
pρ “ pρ1, ρ2, ρ3q by :

νNpρ p.q :“ ν̄NΨpρ1,ρ2,ρ3qp.q (4.B.4)

One gets a family of measures whose marginal is given by νNpρ pηpxq “ kq “ ρk. In
particular,

νNpρ pηpxq “ 0q “ 1 ´ ρ1 ´ ρ2 ´ ρ3

Lemma 4.B.1. The measure νNpρ is reversible with respect to the generator of rapid-
stirring process.

Proof. Let pζtqtě0 be a stirring process with generator LD
N on t0, 1, 2, 3uTd

N . For any
cylinder function f , by posing ξ “ ζx,y :

ż
LDfpζqdνNpρ pζq “

ż ÿ

x,yPTd
N

}x´y}“1

´
fpζx,yq ´ fpζq

¯
dνNpρ pζq

“
ż ÿ

x,yPTd
N

}x´y}“1

fpζx,yqdνNpρ pζq ´
ż
fpζqdνNpρ pζq

“
ż ÿ

x,yPTd
N

}x´y}“1

fpξqν
N
pρ pξy,xq
νNpρ pξq dνNpρ pξq ´

ż
fpζqdνNpρ pζq,

and since (4.2.6) is product,
νNpρ pζx,yq
νNpρ pξy,xq “ 1.

A useful formula of change of variables :
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Lemma 4.B.2. Let i, j P t0, 1, 2, 3u such that i ‰ j. For any cylinder functions f, g
and α ą 0,

ż
αfpηixqgpηq1tηpxq “ judνNpρ pηq “

ż
α
ρj

ρi
fpηqgpηjxq1tηpxq “ iudνNpρ pηq (4.B.5)

Proof. Pose ξ “ ηix,
ż
αfpηixqgpηq1tηpxq “ judνNpρ pηq

“
ż
αfpξqgpξjxq1tξpxq “ iuν

N
pρ pξjxpxq “ jq
νNpρ pξpxq “ iq dν

N
pρ pξq

“
ż
αfpξqgpξjxq1tξpxq “ iuρj

ρi
dνNpρ pξq

Define a generator LN by

LN “
3ÿ

i“0

cpx, η, iq
´
fpηixq ´ fpηq

¯
(4.B.6)

where for positive α, β, γ, κ, α1, α2, β1, β2 :

cpx, η, 0q “
"
α1 if ηpxq “ 1
α2 if ηpxq “ 2

cpx, η, 1q “
"
α if ηpxq “ 0
α2 if ηpxq “ 3

cpx, η, 2q “
"
r if ηpxq “ 0
α1 if ηpxq “ 3

cpx, η, 3q “
"
r if ηpxq “ 1
γ if ηpxq “ 2

(4.B.7)

Lemma 4.B.3. Let pLNq‹ be the adjoint of LN in L2pνNpρ q, then pLNq‹ is given for any
cylinder function g on EN by :

pLNq‹gpηq “
ÿ

xPTd
N

#
pα1

ρ1

ρ0

gpη1
xq ´ αgpηq ` α2

ρ2

ρ0

gpη2
xq ´ rgpηqq1tηpxq“0u

` pαρ0

ρ1

gpη0
xq ´ α1gpηq ` α2

ρ3

ρ1

gpη3
xq ´ rgpηqq1tηpxq“1u

` prρ0

ρ2

gpη0
xq ´ α2gpηq ` α1

ρ3

ρ2

gpη3
xq ´ γgpηqq1tηpxq“2u

` prρ1

ρ3

gpη1
xq ´ α2gpηq ` γ

ρ2

ρ3

gpη2
xq ´ α1gpηqq1tηpxq“3u

+

“:
ÿ

xPTd
N

3ÿ

i“0

c‹px, η, iqrgpηiq ´ gpηqs
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Proof.

ż
gpηqLNfpηqdνNpρ pηq “

ÿ

xPTd
N

ż #´
α
`
fpη1

xq ´ fpηq
˘

` r
`
fpη2

xq ´ fpηq
˘¯

1tηpxq“0u

`
´
α1

`
fpη0

xq ´ fpηq
˘

` r
`
fpη3

xq ´ fpηq
˘¯

1tηpxq“1u `
´
α2

`
fpη0

xq ´ fpηq
˘

` γ
`
fpη3

xq

´ fpηq
˘¯

1tηpxq“2u `
´
α2

`
fpη1

xq ´ fpηq
˘

` α1

`
fpη2

xq ´ fpηq
˘¯

1tηpxq“3u

+
¨ gpηqdνNpρ pηq

“
ÿ

xPTd
N

ż #´
α1

ρ1

ρ0

gpη1
xq ´ αgpηq ` α2

ρ2

ρ0

gpη2
xq ´ rgpηq

¯
1tηpxq“0u `

´
α
ρ0

ρ1

gpη0
xq ´ α1gpηq

` α2

ρ3

ρ1

gpη3
xq ´ rgpηq

¯
1tηpxq“1u `

´
r
ρ0

ρ2

gpη0
xq ´ α2gpηq ` α1

ρ3

ρ2

gpη3
xq ´ γgpηq

¯
1tηpxq“2u

`
´
r
ρ1

ρ3

gpη1
xq ´ α2gpηq ` γ

ρ2

ρ3

gpη2
xq ´ α1gpηq

¯
1tηpxq“3u

+
¨ fpηqdνNpρ pηq

“
ż
fpηqpLNq‹gpηqdνNpρ pηq

4.C Quadratic variations computations

We prove in this section computations of the quadratic variation (4.3.11) of the
martingale MN,i

t defined in 4.3.1, for i “ 1, 2, 3.

Lemma 4.C.1.

xMN,iyt “ N2

2N2d

ż t

0

ÿ

xPTd
N

ÿ

z‰x,}z´x}“1

´
Gipz{Nq ´ Gipx{Nq

¯2´
ηi,spzq ´ ηi,spxq

¯2

ds

` 1
N2d

ż t

0

ÿ

xPTd
N

G2
i px{Nq

´
1 ´ 2ηi,spxq

¯
LR
Nηi,spxqds (4.C.1)

Proof. The quadratic variation of MN,i
t is given, for any function pG P CpTd;R3q, by

xMN,iyt “
ż t

0

#
LNxπN,is , Giy2 ´ 2xπN,is , GiyLNxπN,is , Giy

+
ds

We shall prove the two following equalities :

N2

ż t

0

#
LD
NxπN,is , Giy2 ´ 2xπN,is , GiyLD

NxπN,is , Giy
+
ds
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“ N2

2N2d

ż t

0

ÿ

xPTd
N

ÿ

z‰x,}z´x}“1

´
Gipz{Nq ´ Gipx{Nq

¯2´
ηi,spzq ´ ηi,spxq

¯2

ds (4.C.2)

ż t

0

!
LR
NxπN,is , Giy2 ´ 2xπN,is , GiyLR

NxπN,is , Giy
)
ds

“ 1
N2d

ż t

0

ÿ

xPTd
N

G2
i px{Nq

´
1 ´ 2ηi,spxq

¯
LR
Nηi,spxqds (4.C.3)

Let us prove first (4.C.2).

LD
NxπN,is , Giy2 “ 1

N2d

ÿ

xPTd
N

G2
i px{NqLNηi,spxq

` 1
N2d

ÿ

x,yPTd
N

x‰y,}x´y}ą1

Gipx{NqGipy{Nq
´
ηi,spxqLD

Nηi,spyq ` ηi,spyqLD
Nηi,spxq

¯

` 1
N2d

ÿ

x,yPTd
N

x‰y,}x´y}“1

Gipx{NqGipy{Nq
# ÿ

zPTd
N

z‰y,|z´x|“1

´
ηi,spzqηi,spyq ´ ηi,spxqηi,spyq

¯

`
ÿ

uPTd
N

u‰y,}u´x}“1

´
ηi,spuqηi,spxq ´ ηi,spxqηi,spyq

¯+

and

´ 2xπN,is , GiyLD
NxπN,is , Giy “ ´2

N2d

ÿ

xPTd
N

G2
i px{Nqηi,spxqLD

Nηi,spxq

´ 1
N2d

ÿ

x,yPTd
N

x‰y

Gipx{NqGipy{Nq ¨
# ÿ

zPTd
N

z‰y,}z´x}“1

´
ηi,spzqηi,spyq ´ ηi,spxqηi,spyq

¯

` ηi,spyq ´ ηi,spyqηi,spxq

`
ÿ

uPTd
N

u‰y,}u´x}“1

´
ηi,spuqηi,spxq ´ ηi,spxqηi,spyq

¯
` ηi,spxq ´ ηi,spyqηi,spxq

+

´ 1
N2d

ÿ

x,yPTd
N

x‰y,}x´y}ą1

Gipx{NqGipy{Nq
´
ηi,spxqLD

Nηi,spyq ` ηi,spyqLD
Nηi,spxq

¯

so that,

N2

ż t

0

#
LD
NxπN,is , Giy2 ´ 2xπN,is , GiyLD

NxπN,is , Giy
+
ds
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“ N2

N2d

ż t

0

ÿ

xPTd
N

ÿ

z:}z´x}“1

G2
i px{Nq

´
ηi,spzq ´ ηi,spxq

¯
ds

´ N2

N2d

ż t

0

ÿ

xPTd
N

ÿ

z:}z´x}“1

G2
i px{Nq

´
2ηi,spzqηi,spxq ´ ηi,spxq

¯
ds

´ N2

N2d

ż t

0

ÿ

xPTd
N

ÿ

z‰x,}z´x}“1

Gipx{NqGipz{Nq
´
ηi,spzq ´ 2ηi,spzqηi,spxq ` ηi,spxq

¯
ds

“ N2

2N2d

ż t

0

ÿ

xPTd
N

ÿ

z‰x,}z´x}“1

´
Gipz{Nq ´ Gipx{Nq

¯2´
ηi,spzq ´ ηi,spxq

¯2

ds

On the other hand,

ż t

0

!
LR
NxπN,is , Giy2 ´ 2xπN,is , GiyLR

NxπN,is , Giy
)
ds

“ 1
N2d

ż t

0

ÿ

xPTd
N

G2
i px{NqLR

Nηi,spxqds (4.C.4)

` 1
N2d

ż t

0

ÿ

y‰x
Gipx{NqGipy{Nq

´
ηi,spxqLR

Nηi,spyq ` ηi,spyqLR
Nηi,spxq

¯
ds

´ 2
N2d

ż t

0

ÿ

xPTd
N

G2
i px{Nqηi,spxqLR

Nηi,spxqds

´ 1
N2d

ż t

0

ÿ

y‰x
Gipx{NqGipy{Nq

´
ηi,spxqLR

Nηi,spyq ` ηi,spyqLR
Nηi,spxq

¯
ds

“ 1
N2d

ż t

0

ÿ

xPTd
N

G2
i px{Nq

´
1 ´ 2ηi,spxq

¯
LR
Nηi,spxqds (4.C.5)

Using 4.3.2, we have for each i “ 1, 2, 3 :

´
1 ´ 2η1pxq

¯
LR
Nη1pxq

“ LR
Nη1pxq ` 2

!
pr ` 1qη1pxq `

´
λ1

ÿ

y:}y´x}“1

η1pyq ` λ2

ÿ

y:}y´x}“1

η3pyq
¯
η1pxq

)

“
´
λ1

ÿ

y:}y´x}“1

η1pyq ` λ2

ÿ

y:}y´x}“1

η3pyq
¯

p1 ` η1pxq ´ η2pxq ´ η3pxqq ` η3pxq

` pr ` 1qη1pxq´
1 ´ 2η2pxq

¯
LR
Nη2pxq “ LR

Nη2,spxq ` 2η2pxq “ rη0pxq ` η3pxq ` η2pxq
´

1 ´ 2η3pxq
¯

LR
Nη3pxq “ LR

Nη3pxq ` 4η3pxq “ rη1pxq ` 2η3pxq.
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Gathering all these estimates, one has
ż t

0

!
LR
NxπN,is , Giy2 ´ 2xπN,is , GiyLR

NxπN,is , Giy
)
ds

“
´
λ1

ÿ

y:}y´x}“1

η1pyq ` λ2

ÿ

y:}y´x}“1

η3pyq
¯

pη0pxq ` 2η1pxqq

` rη0pxq ` p2r ` 1qη1pxq ` η2pxq ` 4η3pxq
(4.C.6)

4.D Topology of the Skorohod space

We summarize here some useful tips concerning the Skorohod space, see [7, Chapter
3] for further details.

Fix T ą 0. Recall Dpr0, T s, pM1
`q3q stands for the set of right-continuous with left

limits trajectories with values in pM1
`q3, endowed with the Skorohod topology and

equipped with its Borel σ´ algebra.
Define a metric on M1

` by introducing for every dense sequence of continuous func-
tions tfk, k ě 1u on Td the distance δp¨, ¨q by

δpµ, νq “
8ÿ

k“1

1
2k

|xµ, fky ´ xν, fky|
1 ` |xµ, fky ´ xν, fky| (4.D.1)

The space M` is complete with respect to the endowed weak topology, and any set
A Ă M1

` is relatively compact in M1
` if and only if

sup
µPA

xµ, 1y ă 8

Let E be a polish space equipped with the metric δp¨, ¨q and consider a sequence of
probability measures pPNqN in Dpr0, T s, Eq. Let Λ be the set of increasing continuous
functions on r0, T s. Define,

for all λ P Λ, }λ} “ sup
s‰t

ˇ̌
ˇ̌λptq ´ λpsq

t ´ s

ˇ̌
ˇ̌

and

dpµ, νq :“ inf
λPΛ

"
}λ} _ sup

0ďtďT
δpµt, νλptqq

*

Proposition 4.D.1. The space Dpr0, T s, Eq equipped with the metric δp¨, ¨q is polish.

To extend Ascoli’s theorem to the space Dpr0, T s, Eq, one introduces the modulus of
continuity :

ωµpγq “ sup
|t´s|ďγ

δpµs, µtq (4.D.2)

A continuous function on r0, T s is uniformly continuous. To get something similar
for functions in the Skorohod space, introduce
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Lemma 4.D.1. For all µ P Dpr0, T s, Eq and ǫ ą 0, there exists a sequence of times
ttiu0ďiďr such that

0 “ t0 ă t1 ă ... ă tr “ T and ωµpti ´ ti´1q ą ǫ, i “ 1, ..., r.

For such a sequence ttiu0ďiďr, one can define the modified modulus of continuity by

ω1
µpγq “ inf

ttiu0ďiďr

max
0ďiďr

sup
tiďsătăti`1

δpµs, µtq. (4.D.3)

One can characterize the compact sets of Dpr0, T s, Eq thanks the modified modulus of
continuity :

Proposition 4.D.2. A set A in Dpr0, T s, Eq is relatively compact if and only if

(1) tµt : µ P A, t P r0, T su is relativement compact on E.

(2) lim
γÑ0

sup
µPA

ω1
µpγq “ 0.

One can now state Prohorov’s theorem,

Theorem 4.D.1. Let tPN , N ě 1u be a sequence of probability measures in Dpr0, T s, Eq.
Then tPN , N ě 1u is relatively compact if and only if

(1) For all t P r0, T s and ǫ ą 0, there exists a compact set Kpt, ǫq Ă E such that
sup
Ně1

PNpµt P Kpt, ǫqcq ď ǫ.

(2) For any ǫ ą 0, lim
γÑ0

lim
NÑ8

PNpµ : ω1
µpγq ą ǫq “ 0.

On the other hand, condition (2) can by substituted by the following sufficient condi-
tion :

Proposition 4.D.3 (D. Aldous (1978)). A sequence of probability measure tPN , N ě 1u
in Dpr0, T s, Eq satisfies(2) of Theorem 4.D.1 if

lim
γÑ0

lim
NÑ8

sup
τPTT
θďγ

PNpδpµτ , µτ`θq ą ǫq “ 0 (4.D.4)

where TT stands for the set of stopping times bounded from above by T .

For the space M1
` endowed with the weak topology, to prove the relative compactness

for a sequence of measures pQN
µN , N ě 1q defined in Dpr0, T s,M1

`q, it is enough to check
Prohorov’s theorem 4.D.1 for real-valued processes by projecting the empirical measures
with functions of a dense countable set of CpTd;Rq :

Proposition 4.D.4. Let tgk, k ě 1u be a dense countable set in CpTdq with g1 “ 1. A
sequence of probability measures pQN

µN qNě1 is relatively compact in Dpr0, T s,M1
`q if for

any positive integer k, the sequence pQN
µNg

´1
k qNě1 in Dpr0, T s,Rq defined by

QN
µNg

´1
k pAq “ QN

µN pπN,i : xπN,i, gky P Aq

is relatively compact.
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Chapter 5. With stochastic reservoirs or in infinite volume

We consider a generalized contact process represented by a two species process evol-
ving either in a bounded domain in contact with particles reservoirs at different densities,
or in Zd. In both cases we study the law of large numbers for current and densities.

5.1 Introduction

In this chapter, we consider a generalized contact process describing the evolution
on a lattice of three types of populations labeled respectively by 1, 2 and 3. This process
was introduced in [49] (in preparation), see Chapters 2 and 3, to model the sterile insect
technique, developed by E. Knipling and R. Bushland (see for instance [46, 27]) in the
fifties to control the New World screw worm, a serious threat to warm-blooded animals.
This pest has been eradicated from the USA and Mexico only in recent decades. The
technique works as follows : Screw worms are reared in captivity and exposed to Gamma
rays. The male screw worms become sterile. If a sufficient number of sterile males are
released in the wild then enough female screw worms are mated by sterile males so that
the number of offspring will decrease generation after generation. This technique is well
suited for screw worms, because female apparently mate only once in their lifetime, but
is also being tried for a large variety of pests, including a current project to fight dengue
in Brazil.

The particle system pηtqtě0 we look at has state space t0, 1, 2, 3uS, where S Ă Zd,
typically d “ 2. Each site of S is either empty (we say it is in state 0), occupied by wild
screw worms only (state 1), by sterile screw worms only (state 2), or by wild and sterile
screw worms together (state 3). We keep track only of the presence or not of the type
of the male screw worms (and not of their number), and we assume that enough female
are around as not to limit mating. A site gets sterile males at rate r independently
of everything else (this corresponds to the artificial introduction of sterile males). The
birth rate is 0 at sites in state 2, λ1 at sites in state 1, and λ2 at sites in state 3. We
assume that λ2 ă λ1 to reflect the fact that at sites in state 3 the fertility is decreased.
Deaths for each population occur at all sites at rate 1, being mutually independent.

If η denotes a current configuration, the transitional mechanism for the generalized
contact dynamics at a site x can be summarized as follows :

0 Ñ 1 at rate λ1n1px, ηq ` λ2n3px, ηq 1 Ñ 0 at rate 1
0 Ñ 2 at rate r 2 Ñ 0 at rate 1
1 Ñ 3 at rate r 3 Ñ 1 at rate 1
2 Ñ 3 at rate λ1n1px, ηq ` λ2n3px, ηq 3 Ñ 2 at rate 1

(5.1.1)

where nipx, ηq is the number of nearest neighbors of x in state i for i “ 1, 3. This

dynamics has been studied in S “ Zd in [49], see Chapter 2, where a phase transition

This chapter is a joint work with M. Mourragui and E. Saada [50].
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in r was exhibited : Assuming that λ2 ď λc ă λ1, where λc denotes the critical value
of the d-dimensional basic contact process, there exists a critical value rc such that the
populations in states 1 and 3 survive for r ă rc, and die out for r ě rc.

Our goal in the present chapter is to add to the previous contact dynamics displa-
cements of populations within S infinite volume case, as well, in the finite volume case,
as departures from S and immigrations to S. We are interested in the evolution of the
empirical densities of the 3 types of populations, for which we establish hydrodynamic
limits. The limiting equations are given by a system of non-linear reaction-diffusion
equations, with additionally Dirichlet boundary conditions.

More precisely, denote by Td´1
N the pd´1q-dimensional microscopic torus of length N ,

where N is a scaling parameter. The non-conservative system that we consider evolves
either in a bounded cylinder ΛN “ t´N, ¨ ¨ ¨ , Nu ˆ Td´1

N or in Zd. The cylinder ΛN has
length 2N ` 1 along the axis of direction e1, where pe1, . . . , edq denotes the canonical
basis of Rd.

In the bulk of ΛN , resp. in Zd, particles evolve according to the superposition of
an exchange dynamics representing the displacements of the populations in different
states, and the above generalized contact process. In ΛN , the movements of populations
at the boundary ΓN of the domain ΛN are modelled thanks to reservoirs from which
populations in different states are created or annihilated.

The exchange of the occupation variable ηpxq in any site x with the one of a nearest
neighbour site is performed with rate 1. This exchange dynamics satisfies a detailed
balance condition with respect to a family of Gibbs measures, parametrized by the
so-called chemical potential pρ “ pρ1, ρ2, ρ3q P R3.

In the finite volume case, the reservoirs are modelled by a reversible generalized
contact process with fixed density. More precisely, for a fixed smooth vector valued
function pbp¨q “ pb1p¨q, b2p¨q, b3p¨qq defined on the boundary of the domain, the rates of
this contact process are chosen so that a Gibbs measure of varying chemical potential
pbp¨q is reversible for it.

To deal with infinite volume, we establish bounds on the entropy production and
on the Dirichlet forms valid for a boundary driven version of our process on Λ8

N “
t´N, ..., Nu ˆ Zd´1, hence on Zd. We also establish uniqueness of the weak solution to
the system of equations corresponding to the boundary driven case in infinite volume.
The same method gives uniqueness on Zd.

In Section 5.2, we detail our model, and state our results, namely on the specific
entropy (Theorem 5.2.1), the hydrodynamic limit of the boundary driven generalized
process (Theorem 5.2.2), the hydrodynamic limit of the generalized process in Zd (Theo-
rem 5.2.3), a law of large numbers for currents (Proposition 5.2.1), uniqueness results
for the equations in Subsection 5.2.6.

In Section 5.3, we prove Theorem 5.2.1 , in Section 5.4 we prove Theorem 5.2.2, in
Section 5.5 we prove Proposition 5.2.1, in Section 5.6 we prove Theorem 5.2.3, results
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on uniqueness of solutions are proved in Section 5.7 and finally Appendices 5.A-5.B-5.C
contain useful computations.

5.2 Notation and Results

5.2.1 The model

Instead of studying the three different values ηpxq “ 1, 2, 3 considered above, we
introduce another interpretation for the model. The configuration space is now pΣN :“`
t0, 1u ˆ t0, 1u

˘ΛN or pΣ :“ pt0, 1u ˆ t0, 1uqZd

; elements of pΣN (resp. pΣ) are denoted by
pξ, ωq. The correspondence with pηtqtě0 is given by the following relations :

ηpxq “ 0 ðñ p1 ´ ξpxqqp1 ´ ωpxqq “ 1 ,
ηpxq “ 1 ðñ ξpxqp1 ´ ωpxqq “ 1 ,
ηpxq “ 2 ðñ p1 ´ ξpxqqωpxq “ 1 ,
ηpxq “ 3 ðñ ξpxqωpxq “ 1 .

(5.2.1)

In other words, ξ-particles represent the wild screw worms, while ω-particles represent
the sterile ones. On a site x, ξpxq “ 1 if wild screw worms are present on x, and ωpxq “ 1
if sterile screw worms are present on x. Both can be present, giving the state 3 for ηpxq
or only one of them, giving the states 1 or 2 for ηpxq.

The boundary driven generalized contact process with exchange of particles is the
Markov process on pΣN whose generator LN :“ L

λ1,λ2,r,pb,N can be decomposed as

LN :“ N2LN ` LN ` N2 Lpb,N , (5.2.2)

where LN is the generator of exchanges of particles, LN the generator of the generalized
contact process, and Lpb,N the generator of the boundary dynamics. We now detail both
dynamics and their properties.

For the exchange dynamics, the action of LN on cylinder functions f : pΣN Ñ R is

LNfpξ, ωq “
ÿ

x,yPΛN
}x´y}“1

rfpξx,y, ωx,yq ´ fpξ, ωqs , (5.2.3)

where for any ξ P ΣN :“ t0, 1uΛN , ξx,y is the configuration obtained from ξ P ΣN , by
exchanging the occupation variables ξpxq and ξpyq, i.e.

pξx,yqpzq :“

$
’&
’%

ξpyq if z “ x ,

ξpxq if z “ y ,

ξpzq if z ‰ x, y .
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Note that, since pξ, ωq P pΣN , these exchanges can be interpreted as jumps between sites
x to y for ξ-particles and ω-particles, which do not influence each other.

To exhibit invariant measures for LN , for any x P ΛN , according to (5.2.1), we define

$
’&
’%

η1pxq “ ξpxqp1 ´ ωpxqq “ 1tηpxq“1u ,

η2pxq “ p1 ´ ξpxqqωpxq “ 1tηpxq“2u ,

η3pxq “ ξpxqωpxq “ 1tηpxq“3u .

(5.2.4)

By a misuse of language, when ηipxq “ 1 for i “ 1, 2, 3, we say that there is a particle
of type i at x.

The invariant measures will be product measures parametrized by three chemical
potentials, since the exchange dynamics conserves the three quantities

ř
xPΛN

ηipxq, 1 ď
i ď 3. It is convenient to complete (5.2.4) by defining, for x P ΛN ,

η0pxq “ p1 ´ ξpxqqp1 ´ ωpxqq “ 1tηpxq“0u “ 1 ´ η1pxq ´ η2pxq ´ η3pxq . (5.2.5)

We denote by Λ the macroscopic open bounded cylinder p´1, 1q ˆTd´1 where Tk is the
k-dimensional torus r0, 1qk. For a vector-valued function pm “ pm1,m2,m3q : Λ Ñ R3,
we define ν̄Npmp¨q as the product measure on ΛN with varying chemical potential pm,

dν̄Npmp¨qpξ, ωq “ pZ´1
pm exp

! 3ÿ

i“1

ÿ

xPΛN

mipx{Nqηipxq
)
, (5.2.6)

where pZ pm is the normalization constant :

pZ pm “
ź

xPΛN

!
1 `

3ÿ

i“1

exppmipx{Nqq
)
. (5.2.7)

Notice that the family of measures
 
ν̄Npm , pm P R3

(
with constant parameters is reversible

with respect to the generator LN . For pm P R3 and 1 ď i ď 3, let ψippmq be the expectation
of ηip0q under ν̄Npm :

ψippmq “ Eν̄N
xm
“
ηip0q

‰
.

Observe that the function pψ defined on p0,`8q3 by pψppmq “ pψ1ppmq, ψ2ppmq, ψ3ppmqq is
a bijection from p0,`8q3 to p0, 1q3. We will therefore do a change of parameter : For
every pρ “ pρ1, ρ2, ρ3q P p0, 1q3, we denote by νNpρ the product measure such that

ρi “ EνN
pρ
“
ηip0q

‰
, i “ 1, 2, 3 . (5.2.8)

From now on, we work with the representation νNpρp¨q of the measure ν̄Npmp¨q.
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Chapter 5. With stochastic reservoirs or in infinite volume

According to (5.1.1), the generator LN :“ LN,λ1,λ2,r of the generalized contact pro-
cess is given by

LNfpξ, ωq “
ÿ

xPΛN

´
rp1 ´ ωpxqq ` ωpxq

¯”
fpξ, σxωq ´ fpξ, ωq

ı

`
ÿ

xPΛN

´
βNpx, ξ, ωq

`
1 ´ ξpxq

˘
` ξpxq

¯”
fpσxξ, ωq ´ fpξ, ωq

ı
,

(5.2.9)

with

βNpx, ξ, ωq “ λ1

ÿ

yPΛN
}y´x}“1

ξpyqp1 ´ ωpyqq ` λ2

ÿ

yPΛN
}y´x}“1

ξpyqωpyq (5.2.10)

where } ¨ } denotes the norm in Rd, }u} “
břd

i“1 |ui|2, and for ξ P ΣN , σxξ is the
configuration obtained from ξ by flipping the configuration at x, i.e.

pσxξqpzq :“
#

1 ´ ξpxq if z “ x ,

ξpzq if z ‰ x ,

The representation (5.2.1) sheds light on the fact that (5.2.9) corresponds to a contact
process (the ξ-particles) in a dynamic random environment, namely the ω-particles. In-
deed, the ω-particles move by their own and are not influenced by ξ-particles, while
ξ-particles have birth rates whose value depends on the presence or not of ω-particles.
Note that in [49] (see Chapter 3) a variant of the generalized contact dynamics in a
quenched random environment was also considered, with the pξ, ωq-formalism. On the
other hand, we noticed previously that ω-particles can also be considered as an environ-
ment for the exchange dynamics.

We now turn to the dynamics at the boundaries of the domain. We denote by Λ “
r´1, 1s ˆ Td´1 the closure of Λ, and by Γ “ BΛ the boundary of Λ : Γ “ tpu1, . . . , udq P
Λ : u1 “ ˘1u. For a metric space E, an any integer 1 ď m ď `8 denote by CmpΛ;Eq
(resp. Cmc pΛ;Eq) the space of m-continuously differentiable functions on Λ with values
in E (resp. with compact support in Λ) .

Fix a positive function pb : Γ Ñ R3
`. Assume that there exists a neighbourhood V of

Λ and a smooth function pθ “ pθ1, θ2, θ3q : V Ñ p0, 1q3 in C2pV ;R3q such that

0 ă c ď min
1ďiď3

|θi| ď max
1ďiď3

|θi| ď C ď 1 (5.2.11)

for two positive constants c, C, and such that the restriction of pθ to Γ is equal to pb.
The boundary dynamics acts as a birth and death process on the boundary ΓN of
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ΛN described by the generator Lpb,N defined by

Lpb,Nfpξ, ωq “
ÿ

xPΓN

cx
`pbpx{Nq, ξ, σxω

˘”
fpξ, σxωq ´ fpξ, ωq

ı

`
ÿ

xPΓN

cx
`pbpx{Nq, σxξ, ω

˘“
fpσxξ, ωq ´ fpξ, ωq

‰

`
ÿ

xPΓN

cx
`pbpx{Nq, σxξ, σxω

˘“
fpσxξ, σxωq ´ fpξ, ωq

‰
,

(5.2.12)

where the rates cx
`pbpx{Nq, ξ, ω

˘
are given for x P ΓN and pξ, ωq P pΣN by

cx
`pbpx{Nq, ξ, ω

˘
“

3ÿ

i“0

bipx{Nqηipxq , (5.2.13)

where b0px{Nq “ 1 ´ ř3

i“1 bipx{Nq and ηipxq, i “ 0, 1, 2, 3 are defined in (5.2.4)-(5.2.5).
Using Lemma 5.A.2, note that the measure νNpθ is reversible with respect to the generator
Lpb,N .

As we deal with the process in infinite volume, define the generator in Zd by omitting
the subscript N in LN and LN to denote the sums are carried over Zd. In infinite volume,
the process has generator : :

L “ N2L ` L (5.2.14)

Notice that in view of the diffusive scaling limit, the generator LN (resp. L) has been
speeded up by N2. We denote by pξt, ωtqtě0 the Markov process on pΣN with generator
LN (resp. on pΣ with generator L) and by PN,

pb
µ (resp. PNµ q its distribution if the initial

configuration is distributed according to µ. Note that PN,
pb

µ (resp. PNµ ) is a probability

measure on the path space DpR`, pΣNq (resp. DpR`, pΣq), which we consider endowed
with the Skorohod topology and the corresponding Borel σ-algebra. Expectation with
respect to PN,

pb
µ is denoted by EN,

pb
µ (resp. ENµ ). We denote by M the space of finite

signed measures either on Λ or Rd, endowed with the weak topology. For a finite signed
measure m and a continuous function F on Λ or Rd, we let xm,F y be the integral
of F with respect to m. For each configuration pξ, ωq, denote by pπN “ pπNpξ, ωq “
pπN,1, πN,2, πN,3q P M3, where for i “ 1, 2, 3, the positive measure πN,i is obtained by
assigning mass N´d to each particle of type ηi :

πN,i “ N´d
ÿ

x

ηipxq δx{N ,

where δu is the Dirac measure concentrated on u, and the sum is carried either on ΛN

or Zd. For any continuous function pG “ pG1, G2, G3q, the integral of pG with respect to
pπN , also denoted by xpπN , pGy, is given by

xpπN , pGy “
3ÿ

i“1

xπN,i , Giy .
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Denote respectively by ∆N and ∆ the discrete Laplacian and the Laplacian defined
for any functions G P C2pΛ;Rq (resp. G P C2pRd;Rq), if x, x ˘ ej P ΛN (resp. Zd) for
1 ď j ď d and u P ΛzΓ (resp. Zd). by

∆NGpx{Nq “ N2
dÿ

j“1

”
Gppx ` ejq{Nq ` Gppx ´ ejq{Nq ´ 2Gpx{Nq

ı
,

∆Gpuq “
dÿ

j“1

B2
ej
Gpuq.

We have now all the material to state our results.

5.2.2 Specific entropy and Dirichlet form

Denote by Λ8
N “ t´N, ¨ ¨ ¨ , NuˆZd´1, the macroscopic space is Λ8 “ p´1, 1qˆRd´1

and its boundary is Γ8 :“ tpx1, ..., xdq P Λ8 : x1 “ ˘1u. In this subsection we consider
the sub-lattice ΛN,n “ t´N, ..., Nu ˆ t´n, ..., nud´1 of Λ8

N , for fixed n ě 1. Define
pΣN,n “ pt0, 1u ˆ t0, 1uqΛN,n . We start by defining the two main ingredients needed in
the proof of hydrodynamic limit in infinite box : the specific entropy and the specific
Dirichlet form of a measure on pΣN with respect to some reference product measure νNpθp¨q.

For each positive integer n and a measure µ on pΣN , we denote by µn the marginal of µ
on pΣN,n : For each pα, ζq P pΣN,n,

µnpα, ζq “ µ
 

pξ, ωq : pξpxq, ωpxqq “ pαpxq, ζpxqq for x P ΛN,n

(
. (5.2.15)

We fix as reference measure a product measure νNpθ :“ νNpθp¨q, where pθ “ pθ1, θ2, θ3q : Λ8 Ñ
p0, 1q3 is a smooth function with the only requirement that pθp¨q

ˇ̌
Γ8 “ pbp¨q.

In other words (recall (5.2.6), (5.2.8)), introducing the function θ0p.q “ 1 ´ θ1p.q ´
θ2p.q ´ θ3p.q, we have

dνNpθp¨q,npξ, ωq “ pZ´1
pθ,n exp

#
3ÿ

i“1

ÿ

xPΛN,n

˜
log

θipx{Nq
θ0px{Nq

¸
ηipxq

+
(5.2.16)

with pZ´1
pθ,n “

ź

xPΛN,n

θ0px{Nq.

To do changes of variables (detailed in Appendix 5.A), it is convenient to write (5.2.16)
as follows :

dνNpθp¨q,npξ, ωq “ exp
! 3ÿ

j“0

ÿ

xPΛN,n

ϑjpx{Nqηjpxq
)

(5.2.17)

with ϑjpx{Nq “ log θjpx{Nq. (5.2.18)
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For a positive integer n, we denote by snpµn|νNpθ,nq the relative entropy of µn with respect

to νNpθ,n defined by

snpµn|νNpθ,nq “ sup
UPCbppΣN,nq

!ż
Upξ, ωqdµnpξ, ωq ´ log

ż
eUpξ,ωqdνNpθ,npη, ξq

)
. (5.2.19)

In this formula CbppΣN,nq stands for the space of all bounded continuous functions on
pΣN,n. Since the measure νNpθ,n gives a positive probability to each configuration, all the

measures on pΣN,n are absolutely continuous with respect to νNpθ,n and we have an explicit
formula for the entropy :

snpµn|νNpθ,nq “
ż

log pfnpξ, ωqq dµnpξ, ωq, (5.2.20)

where fn is the probability density of µn with respect to νNpθ,n.
Define the Dirichlet form Dnpµn|νpθ,nq of the measure µn with respect to νpθ,n in the

box ΛN,n

Dnpµn|νpθ,nq “ ´
ż a

fnpξ, ωq
`
LN,n

a
fn
˘
pξ, ωqdνpθ,npξ, ωq ,

where Dnpµn|νpθ,nq is the restriction of the process to the box ΛN,n

Let LN,n denote the restriction of the generator LN to the box ΛN,n :

LN,n “ N2LN,n ` LN,n ` N2Lpb,N,n , (5.2.21)

with

LN,n “
ÿ

x,yPΛN,n
}x´y}“1

Lx,y
N , LN,n “

ÿ

xPΛN,n

LxN,n , Lpb,N,n “
ÿ

xPΛN,nXΓN

LxN . (5.2.22)

Here for a bond px, yq P Λ2
N,n, Lx,y

N stands for the piece of generator associated to the
exchange of particles between the two sites x and y, LxN,n corresponds to the flips at site
x P ΛN,n for the generalized contact process restricted to ΛN,n, and for x P ΓN , LxN
stands for the flips at site x due to the boundary dynamics. We have for x P ΛN,n,

LxN,nfpξ, ωq “
´
rp1 ´ ωpxqq ` ωpxq

¯”
fpξ, σxωq ´ fpξ, ωq

ı

`
´
βN,npx, ξ, ωq

`
1 ´ ξpxq

˘
` ξpxq

¯”
fpσxξ, ωq ´ fpξ, ωq

ı
,(5.2.23)

where

βN,npx, ξ, ωq “ λ1

ÿ

yPΛN,n
}y´x}“1

ξpyqp1 ´ ωpyqq ` λ2

ÿ

yPΛN,n
}y´x}“1

ξpyqωpyq . (5.2.24)

123



Chapter 5. With stochastic reservoirs or in infinite volume

Similarly, we define the corresponding Dirichlet forms,

Dnpµn|νpθ,nq “ D0
npµn|νpθ,nq ` D

pb
npµn|νpθ,nq ,

with

D0
npµn|νpθ,nq “

ÿ

x,yPΛN,n
}x´y}“1

pD0
nqx,ypµn|νpθ,nq

D
pb
npµn|νpθ,nq “

ÿ

xPΛN,nXΓN

pDpb
nqxpµn|νpθ,nq ,

where

pD0
nqx,ypµn|νpθ,nq “

ż ´a
fnpξx,y, ωx,yq ´

a
fnpξ, ωq

¯2

dνpθ,npξ, ωq,

pDpb
nqxpµn|νpθ,nq “

ż
cx
`pbpx{Nq, ξ, σxω

˘´a
fnpξ, σxωq ´

a
fnpξ, ωq

¯2

dνpθ,npξ, ωq

`
ż
cx
`pbpx{Nq, σxξ, ω

˘´a
fnpσxξ, ωq ´

a
fnpξ, ωq

¯2

dνpθ,npξ, ωq

`
ż
cx
`pbpx{Nq, σxξ, σxω

˘´a
fnpσxξ, σxωq ´

a
fnpξ, ωq

¯2

dνpθ,npξ, ωq .

We will also need
Dnpµn|νpθ,nq “

ÿ

xPΛN,n

pDnqxpµn|νpθ,nq (5.2.25)

where

pDnqxpµn|νpθ,nq “
ż ´

rp1 ´ ωpxqq ` ωpxq
¯´a

fnpξ, σxωq ´
a
fnpξ, ωq

¯2

dνpθ,npξ, ωq

`
ż
βN,npx, ξ, ωqp1 ´ ξpxqq ` ξpxq

¯´a
fnpσxξ, ωq ´

a
fnpξ, ωq

¯2

dνpθ,npξ, ωq,

Define the specific entropy Spµ|νNpθ q and the Dirichlet form Dpµ|νNpθ q of a measure µ on
pΣN with respect to νNpθ as

Spµ|νNpθ q “ N´1
ÿ

ně1

snpµn|νNpθ,nqe´n{N , (5.2.26)

Dpµ|νNpθ q “ N´1
ÿ

ně1

Dnpµn|νNpθ,nqe´n{N . (5.2.27)

Notice that by the entropy convexity and since supxPΛN
tξpxq ` ωpxqu is finite, for any

positive measure µ on pΣN and any integer n, we have

snpµn|νNpθ,nq ď C0Nn
d´1 , (5.2.28)
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for some constant C0 that depends on pθ, λ1, λ2, r (see Chapter 4 Appendix 4.A). Moreo-
ver, by (5.2.26) and (5.2.28), there exists a positive constant C 1

0 ” Cppθ, λ1, λ2, rq such
that for any positive measure µ on pΣN ,

Spµ|νNpθ,nq ď C 1
0N

d . (5.2.29)

We need more notation. We denote by pSpb
Nptqqtě0 the semigroup associated to the ge-

nerator LN . For a measure µ on pΣN we shall denote by µptq the time evolution of the
measure µ under the semigroup S

pb
N : µptq “ µS

pb
Nptq.

We first prove uniform upper bounds on the entropy production and the Dirichlet form.

Theorem 5.2.1. Let pθ : Λ8 Ñ p0, 1q3 be a smooth function such that pθp¨q
ˇ̌
Γ8 “ pbp¨q.

For any time t ě 0, there exists a positive finite constant C1 ” Cpt, pθ, λ1, λ2, rq, so that
ż t

0

Dpµpsq|νNpθ q ds ď C1N
d´2 .

To get this result, one needs to consider our system in large finite volume and bound
the entropy production in terms of the Dirichlet form. This is given by the following
lemma.

Lemma 5.2.1.
BtSpµptq|νNpθ q ď ´A0N

2Dpµptq|νNpθ q ` A1N
d (5.2.30)

5.2.3 Hydrodynamics in a bounded domain.

Suppose in this subsection that ΛN “ t´N, ¨ ¨ ¨ , Nu ˆ Td´1
N , the macroscopic space

is Λ “ p´1, 1q ˆ Td´1. Fix T ą 0. We shall prove in Theorem 5.2.2 below that the
macroscopic evolution of the local particles density pπN is described by the following
system of non-linear reaction-diffusion equations

$
’&
’%

Btpρ “ ∆pρ ` pF ppρq in Λ ˆ p0, T q,
pρ0p¨q “ pγp¨q in Λ,

pρt|Γ “ pbp¨q for 0 ď t ď T ,

(5.2.31)

where pF “ pF1, F2, F3q : r0, 1s Ñ R3 is given by
$
’&
’%

F1pρ1, ρ2, ρ3q “ 2dpλ1ρ1 ` λ2ρ3qρ0 ` ρ3 ´ ρ1pr ` 1q ,
F2pρ1, ρ2, ρ3q “ rρ0 ` ρ3 ´ 2dpλ1ρ1 ` λ2ρ3qρ2 ´ ρ2 ,

F3pρ1, ρ2, ρ3q “ 2dpλ1ρ1 ` λ2ρ3qρ2 ` rρ1 ´ 2ρ3 .

(5.2.32)

where ρ0 “ 1 ´ ρ1 ´ ρ2 ´ ρ3. By weak solution of (5.2.31) we mean a function pρp¨, ¨q :
r0, T s ˆ Λ Ñ R3 satisfying
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Chapter 5. With stochastic reservoirs or in infinite volume

(B1) For any i P t1, 2, 3u, ρi P L2 pp0, T q;H1pΛqq :

3ÿ

i“1

ż T

0

ds
´ ż

Λ

‖ ∇ρips, uq ‖2
du

¯
ă 8 .

(B2) For every function pGpt, uq “ pGtpuq “ pG1,tpuq, G2,tpuq, G3,tpuqq in C1,2
0

`
r0, T s ˆ

Λ;R3
˘
, we have

xpρT p¨q, pGT p¨qy ´ xpρ0p¨q, pG0p¨qy ´
ż T

0

ds xpρsp¨q, Bs pGsp¨qy

“
ż T

0

ds xpρsp¨q,∆ pGsp¨qy `
ż T

0

ds x pF pρsqp¨q, pGsp¨qy

´
3ÿ

i“1

ż T

0

ds

ż

Γ

n1prq biprqpB1Gi,sqprq dSprq ,

(5.2.33)

where C1,2
0

`
r0, T s ˆ Λ;R3

˘
is the space of functions from r0, T s ˆ Λ to R3 twice

continuously differentiable in Λ with continuous time derivative and vanishing at
the boundary Γ of Λ. Here n=pn1, . . . ,ndq stands for the outward unit normal
vector to the boundary surface Γ and dS for an element of surface on Γ. For
G,H P L2pΛq, xGp¨q, Hp¨qy is the usual scalar product of L2pΛq :

xGp¨q, Hp¨qy “
3ÿ

i“1

ż

Λ

GipuqHipuqdu

(B3) pρp0, uq “ pγpuq a.e.

Let M1
` be the subset of M of all positive measures absolutely continuous with respect

to the Lebesgue measure with positive density bounded by 1 :

M1
` “

 
π P M : πpduq “ ρpuqdu and 0 ď ρpuq ď 1 a.e.

(
.

Let Dpr0, T s, pM1
`q3q be the set of right continuous with left limits trajectories with

values in pM1
`q3, endowed with the Skorohod topology and equipped with its Borel σ´

algebra. For a probability measure µ on pΣN denote by pξt, ωtqtPr0,T s the Markov process
with generator LN with initial distribution µ. Denote by PN,

pb
µ the probability measure on

the path space Dpr0, T s, pΣNq corresponding to the Markov process pξt, ωtqtPr0,T s and by
EN,

pb
µ the expectation with respect to PN,

pb
µ . We denote by pπN the map from Dpr0, T s, pΣNq

to Dpr0, T s, pM1
`q3q defined by pπNpξ¨, ω¨qt “ pπNpξt, ωtq and by QN,pb

µ “ PN,
pb

µ ˝ ppπNq´1 the
law of the process

`
pπNpξt, ωtq

˘
tPr0,T s.

We shall prove :
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Theorem 5.2.2. Let pµNqNě1 be a sequence of initial probability measures such that
µN is a probability measure on pΣN for each N . The sequence of probability measures
pQN,pb

µN
qNě1 is weakly relatively compact and all its converging subsequences converge to

some limit Qpb,˚ that is concentrated on absolutely continuous paths whose densities pρ P
Cpr0, T s, pM1

`q3q satisfy (B1) and (B2).
Moreover, if for any δ ą 0 and for any function pG P C0pΛ;R3q

lim
NÑ8

µN

!ˇ̌
ˇxpπNpξ, ωq, pGp¨qy ´ xpγp¨q, pGp¨qy

ˇ̌
ˇ ě δ

)
“ 0 , (5.2.34)

for an initial continuous profile pγ : Λ Ñ r0, 1s3, then the sequence of probability measures
pQN,pb

µN
qNě1 converges to the Dirac measure concentrated on the unique weak solution pρp¨, ¨q

of the boundary value problem (5.2.31). Accordingly, for any t P r0, T s, any δ ą 0 and
any function pG P C1,2

`
r0, T s ˆ Λ;R3

˘

lim
NÑ8

PN,
pb

µN

!ˇ̌
ˇxpπNpξt, ωtq, pGp¨qy ´ xpρtp¨q, pGp¨qy

ˇ̌
ˇ ě δ

)
“ 0 .

We will prove Theorem 5.2.2 in Section 5.4.

5.2.4 Currents.

In this subsection, we will study the evolution of the empirical currents, namely the
conservative current (cf. [3]) and the non-conservative current one (cf. [9]).

For t ě 0, 1 ď i ď 3, 1 ď j ď d such that x, x ` ej P ΛN , denote by J
x,x`ej

t pηiq
the total number of particles of type i that jumped from x to x ` ej before time t

and by W
x,x`ej

t pηiq “ J
x,x`ej

t pηiq ´ J
x`ej ,x
t pηiq the conservative current of particles of

type i across the bond tx, x ` eju before time t. The corresponding conservative em-
pirical measure WN

t is the product finite signed measure on ΛN defined as WN
t pηiq “

pWN
1,tpηiq, . . . ,WN

d,tpηiqq P Md “ tMpΛqud, where for 1 ď j ď d, 1 ď i ď 3,

WN
j,tpηiq “ N´pd`1q

ÿ

x,x`ejPΛN

W
x,x`ej

t pηiqδx{N .

For a continuous vector field G “ pG1, . . . , Gdq P CcpΛ;Rdq the integral of G with
respect to WN

t pηiq, also denoted by xWN
t pηiq,Gy, is given by

xWN
t pηiq,Gy “

dÿ

j“1

xWN
j,tpηiq, Gjy . (5.2.35)

Finally, we introduce the signed measure yWN
t ppηq “ pWN

t pη1q,WN
t pη2q,WN

t pη3qq P pMdq3

and for pG “ pG1,G2,G3q P pCcpΛ;Rdqq3 the notation

xyWN
t , pGy “

3ÿ

i“1

xWN
t pηiq,Giy .

127



Chapter 5. With stochastic reservoirs or in infinite volume

For x P ΛN , we denote by Qx
t pηiq the total number of particles of type i created

minus the total number of particles of type i annihilated at site x before time t. The
corresponding non-conservative empirical measure is

QN
t pηiq “ 1

Nd

ÿ

xPΛN

Qx
t pηiqδx{N .

We introduce the signed measure pQN
t “ pQN

t pη1q, QN
t pη2q, QN

t pη3qq P M3 and for pH “
pH1, H2, H3q P pCcpΛ;Rqq3 the notation

x pQN
t ,

pHy “
3ÿ

i“1

xQN
t pηiq, Hiy .

We can now state the law of large numbers for the current :

Proposition 5.2.1. Fix a smooth initial profile pγ : Λ Ñ R3. Let pµNq be a sequence
of probability measures satisfying (5.2.34) and pρ be the weak solution of the system of
equations (5.2.31). Then, for each T ą 0, δ ą 0, pG P

`
C1
c pΛ;Rdq

˘3
and pH P

`
C1
c pΛ;Rq

˘3
,

lim
NÑ8

PN,
pb

µN

” @yWN
T ,

pG
D

´
ż T

0

dt
@ 

´ ∇pρt
(
, pG

Dˇ̌
ˇ ą δ

ı
“ 0 , (5.2.36)

lim
NÑ8

PN,
pb

µN

” @ pQN
T ,

pH
D

´
ż T

0

dt
@ pF ppρtq , pH

Dˇ̌
ˇ ą δ

ı
“ 0 . (5.2.37)

We shall prove Proposition 5.2.1 in Section 5.5.

5.2.5 Hydrodynamics in infinite volume.

In this subsection we derive the hydrodynamic limit to the generalized contact pro-
cess in Zd with generator L defined in (5.2.14). For a fixed density profile pθ, denote by
νpθ the product measure on pΣ such that θi “ Eνpθ

“
ηip0q

‰
.

Theorem 5.2.3. Consider a sequence of probability measures pµNqNě1 on pΣ asso-
ciated to a continuous profile pγ : Rd Ñ r0, 1s3, that is, for all continuous function
pG P CcpRd;R3q,

lim
NÑ8

µN

´ˇ̌ 1
Nd

ÿ

i

ÿ

xPZd

Gpx{Nqηipxq ´ xpγ, pGy
ˇ̌

ą δ
¯

“ 0

for all δ ą 0. Then for all t ě 0,

lim
NÑ8

PN
µN

´ˇ̌
ˇ 1
Nd

ÿ

i

ÿ

xPZd

Gtpx{Nqηi,tpxq ´ xpρtp¨q, pGp¨qy
ˇ̌
ˇ ě δ

¯
“ 0
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for any function pG P CcpRd;R3q and δ ą 0, where pρpt, uq is the unique weak solution of
the system "

Btpρ “ ∆pρ ` pF ppρq in Zd ˆ p0, T q,
pρ0p¨q “ pγp¨q in Zd,

(5.2.38)

A weak solution pρp¨, ¨q of (5.2.38) satisfies the following assertions :

(IV1) For any i P t1, 2, 3u, ρi P L8`r0, T s
˘

ˆ Rd
˘
.

(IV2) For every function pGpt, uq “ pGtpuq “ pG1,tpuq, G2,tpuq, G3,tpuqq in C1,2
c

`
r0, T s ˆ

Rd;R3
˘
, we have

xpρT p¨q, pGT p¨qy ´ xpρ0p¨q, pG0p¨qy ´
ż T

0

ds xpρsp¨q, Bs pGsp¨qy

“
ż T

0

ds xpρsp¨q,∆ pGsp¨qy `
ż T

0

ds x pF pρsqp¨q, pGsp¨qy
(5.2.39)

(IV3) pρp0, uq “ pγpuq a.e.

We shall prove Theorem 5.2.3 in Section 5.6.

Remark 5.2.1. As a consequence of Theorem 5.2.3, the law of large numbers for the
currents stated in Proposition 5.2.1 still holds in infinite volume, since the corresponding
proof given in Section 5.5 only relies on the hydrodynamic limit.

5.2.6 Uniqueness of weak solutions

In this subsection, we state the results concerning the uniqueness of the weak solution
to the equations of the boundary driven case in finite volume case and in infinite volume.
Begin with the finite volume case :

Lemma 5.2.2 (Uniqueness in finite volume). For any T ą 0, the system (5.2.31) has
a unique weak solution in the class

`
L2

`
r0, T s;H1pΛq

˘3
.

Fix T ą 0. Let pγ “ pγ1, γ2, γ3q : Λ8 Ñ r0, 1s3 be a smooth initial profile, and
denote by pρ “ pρ1, ρ2, ρ3q : r0, T s ˆ Λ8 Ñ r0, 1s3 a typical macroscopic trajectory. The
macroscopic evolution of the local particles density pπN over Λ8

N is described by the
system of the following non-linear reaction-diffusion equations with Dirichlet boundary
conditions : $

’&
’%

Btpρ “ ∆pρ ` pF ppρq in Λ8 ˆ p0, T q,
pρ0p¨q “ pγp¨q in Λ8,

pρt|Γ “ pbp¨q for 0 ď t ď T ,

(5.2.40)

where pF “ pF1, F2, F3q : r0, 1s Ñ R3 was given in (5.2.32). By weak solution of (5.2.40)
we mean a function pρp¨, ¨q : r0, T s ˆ Λ8 Ñ R3 satisfying

(IB1) For any i P t1, 2, 3u, ρi P L8 pp0, T q ˆ Λ8q.
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(IB2) For every function pGpt, uq “ pGtpuq “ pG1,tpuq, G2,tpuq, G3,tpuqq in C1,2
0

`
r0, T s ˆ

Λ8;R3
˘
, we have

xpρT p¨q, pGT p¨qy ´ xpρ0p¨q, pG0p¨qy ´
ż T

0

ds xpρsp¨q, Bs pGsp¨qy

“
ż T

0

ds xpρsp¨q,∆ pGsp¨qy `
ż T

0

ds x pF pρsqp¨q, pGsp¨qy

´
3ÿ

i“1

ż T

0

ds

ż

Γ8

n1prq biprqpB1Gi,sqprq dSprq ,

(5.2.41)

(IB3) pρp0, uq “ pγpuq. a.e.

We now state the following proposition :

Proposition 5.2.2 (Uniqueness in infinite volume with stochastic reservoirs). For
any T ą 0, the system of equations (5.2.40) has a unique weak solution in the class`
L8`r0, T s ˆ Λ8˘3

.

We prove these results in Section 5.7.

5.3 Proof of the specific entropy (Theorem 5.2.1)

In this section we prove Theorem 5.2.1 and Lemma 5.2.1.

Proof of Theorem 5.2.1. Integrate the expression (5.2.30) from 0 to t and use 5.2.29.

Proof of Lemma 5.2.1. For a measure µn on pΣN,n, denote by f tn the density of µnptq
with respect to νNpθ,n. For any subset A Ă Λ and any function f P L1pνNpθ q, denote by xfyA
the function on pt0, 1u ˆ t0, 1uqΛzA obtained by integrating f with respect to νNpθ over
the coordinates tpξpxq, ωpxqq, x P Au. In the case where A “ ΛN,n`1zΛN,n, we simplify
the expectation by xfyn`1. Following the Kolmogorov forward equation, one has

Btf tn “ xL˚
N,n`1f

t
n`1yn`1, (5.3.1)

where L˚
N,n stands for the adjoint operator of LN,n in L2pνNpθ,nq. From the convexity of

the entropy (5.2.28) and by (5.3.1),

Btsnpµn|νNpθ,nq “ Bt
ż
f tn log f tndν

N
pθp¨q,n “

ż
log f tnL

˚
N,n`1f

t
n`1dν

N
pθ,n`1

“ N2

ż
log f tnL˚

N,n`1f
t
n`1dν

N
pθ,n`1

`
ż

log f tnL
˚
N,n`1f

t
n`1dν

N
pθ,n`1

`N2

ż
log f tnL

˚
N,n`1f

t
n`1dν

N
pθ,n`1

. (5.3.2)
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Denote the last three integrals by Ω1, Ω2 and Ω3 respectively. Recall that νNpθ,n stands

for the measure associated to a smooth profile pθ : Λ8 Ñ p0, 1q3 such that pθ
ˇ̌8
Γ

“ pbp¨q.
We now derive bounds on Ω1, Ω2 and Ω3.

Bound on Ω1. We shall decompose the generator LN,n`1 into a part associated to ex-
changes within ΛN,n and a part associated to exchanges at the boundaries, that is,
denoting Λc

N,n “ ΛNzΛN,n,

Ω1 “ N2

ż
f tn`1LN,n`1plog f tnqdνNpθ,n`1

“ N2
ÿ

px,yqPΛN,nˆΛN,n

}x´y}“1

ż
f tn`1L

x,y
N plog f tnqdνNpθ,n`1

`N2
ÿ

px,yqPΛN,nˆΛc
N,n

}x´y}“1

ż
f tn`1L

x,y
N plog f tnqdνNpθ,n`1

“ N2
ÿ

px,yqPΛN,nˆΛN,n

}x´y}“1

Ωp1q
1 px, yq (5.3.3)

`N2
ÿ

px,yqPΛN,nˆΛc
N,n

}x´y}“1

Ωp2q
1 px, yq . (5.3.4)

Successively, for the term (5.3.3),

Ωp1q
1 px, yq “

ż
f tn`1pξ, ωq

´
log f tnpξx,y, ωx,yq ´ log f tnpξ, ωq

¯
dνNpθ,n`1

pξ, ωq

“
ż

xf tn`1pξ, ωqyn`1 log
f tnpξx,y, ωx,yq
f tnpξ, ωq dνNpθ,npξ, ωq

ď ´
ż ´a

f tnpξx,y, ωx,yq ´
a
f tnpξ, ωq

¯2

dνNpθ,npξ, ωq

`
ż ´

f tnpξx,y, ωx,yq ´ f tnpξ, ωq
¯
dνNpθ,npξ, ωq,

“ ´pD0
nqx,ypµn|νpθ,nq `

ż
Lx,y
N f tnpξ, ωqdνNpθ,npξ, ωq (5.3.5)

where we used the fact that for any a, b ą 0,

aplog b ´ log aq ď ´
`?

b ´
?
a
˘2 ` pb ´ aq. (5.3.6)

Now, by a change of variables pα, βq “ pξx,y, ωx,yq, using Lemma 5.A.1 we have
ż

Lx,y
N f tnpξ, ωqdνNpθ,npξ, ωq “

ÿ

0ďi“jď3

ż
ηjpyqηipxqRx,y

i,j ppθqf tnpξ, ωqdνNpθ,npξ, ωq (5.3.7)
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where

R
x,y
i,j ppθq “ exp

´
pϑjpy{Nq ´ ϑjpx{Nqq ´ pϑipy{Nq ´ ϑipx{Nqq

¯
´ 1 . (5.3.8)

By a Taylor expansion, (5.3.7) is of order OpN´1q.

For the part (5.3.4) associated to the boundaries, we shall write for each pair px, yq P
ΛN,n ˆ Λc

N,n with }x ´ y} “ 1,

Lx,y
N “

ÿ

0ďi“jď3

Lx,y
iØj (5.3.9)

where Lx,y
iØj stands for the exchange of values i and j at the boundaries.

Lx,y
iØjfpξ, ωq “ ηipxqηjpyq

´
fpξx,y, ωx,yq ´ fpξ, ωq

¯

` ηjpxqηipyq
´
fpξx,y, ωx,yq ´ fpξ, ωq

¯
.

(5.3.10)

So that,

Ωp2q
1 px, yq “

ÿ

0ďi“jď3

ż
f tn`1L

x,y
iØj log f tnpξ, ωqdνNpθ,n`1

pξ, ωq

“
ÿ

0ďi“jď3

ż
ηipxqηjpyqf tn`1pξ, ωq log

f tnpξx,y, ωx,yq
f tnpξ, ωq dνNpθ,n`1

pξ, ωq

`
ÿ

0ďi“jď3

ż
ηjpxqηipyqf tn`1pξ, ωq log

f tnpξx,y, ωx,yq
f tnpξ, ωq dνNpθ,n`1

pξ, ωq .

(5.3.11)

Let us detail the computation for i “ 1 and j “ 3, the other values would be deduced in
a similar way. In this case, by a change of variables pξ1, ω1q “ pξx,y, ωx,yq in the integral
corresponding to i “ 1, j “ 3 in the second term of the r.h.s. (5.3.11) using Lemma
5.A.1, and noticing for the integral corresponding to i “ 1, j “ 3 in the first term of the
r.h.s. (5.3.11) that ξx,y “ ξ since i “ 1, j “ 3, we have

ż
f tn`1L

x,y
1Ø3 log f tnpξ, ωqdνNpθ,n`1

pξ, ωq

“
ż
η1pxqη3pyqf tn`1pξ, ωq log

f tnpξ, ωx,yq
f tnpξ, ωq dνNpθ,n`1

pξ, ωq

`
ż
η1pxqη3pyq exp

´
pϑ3py{Nq ´ ϑ3px{Nqq ´ pϑ1py{Nq ´ ϑ1px{Nqq

¯

ˆ f tn`1pξx,y, ωx,yq log
fpξ, ωq

fpξx,y, ωx,yqdν
N
pθ,n`1

pξ, ωq
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“
ż
η1pxqxη3pyqf tn`1pξ, ωqyn`1 log

f tnpξ, σxωq
f tnpξ, ωq dνNpθ,npξ, ωq

`
ż
R
x,y
1,3 ppθqη1pxqxη3pyqf tn`1pξ, ωx,yqyn`1 log

fpξ, ωq
fpξ, σxωqdν

N
pθ,npξ, ωq

`
ż
η1pxqxη3pyqf tn`1pξ, ωx,yqyn`1 log

fpξ, ωq
fpξ, σxωqdν

N
pθ,npξ, ωq ,

where Rx,y
i,j ppθq was defined in (5.3.8). By a Taylor expansion of Rx,y

i,j ppθq, the second line
on the last r.h.s. is of order OpN´1q. We deduce that

ż
f tn`1L

x,y
1Ø3 log f tnpξ, ωqdνNpθ,n`1

pξ, ωq

“
ż
η1pxq

´
xF p1q

1,3 pξ, ωqyn`1 ´ xF p2q
1,3 pξ, ωqyn`1

¯
log

f tnpξ, σxωq
f tnpξ, ωq dνNpθ,npξ, ωq ` OpN´1q

(5.3.12)

where

F
p1q
i,j pξ, ωq “ ηjpyqf tn`1pξ, ωq , F

p2q
i,j pξ, ωq “ ηjpyqf tn`1pξx,y, ωx,yq . (5.3.13)

If we now define

E1pi, jq “ tpξ, ωq : xF p1q
i,j pξ, ωqyn`1 ě xF p2q

i,j pξ, ωqyn`1,

f tnpξ, σxωq ě f tnpξ, ωqu (5.3.14)

E2pi, jq “ tpξ, ωq : xF p1q
i,j pξ, ωqyn`1 ď xF p2q

i,j pξ, ωqyn`1,

f tnpξ, σxωq ď f tnpξ, ωqu (5.3.15)

the integral in the r.h.s. of (5.3.12) is non-negative on E1p1, 3q YE2p1, 3q. Then, thanks
to the inequalities (we shall make a high use of them)

log a ď 2p
?
a ´ 1q (5.3.16)

2ab ď N

A
a2 ` A

N
b2 (5.3.17)

for any positive a, b, A, the integral in the r.h.s. of (5.3.12) is bounded by

ż

E1p1,3qYE2p1,3q
η1pxq

´
xF p1q

1,3 pξ, ωqyn`1 ´ xF p2q
1,3 pξ, ωqyn`1

¯
log

f tnpξ, σxωq
f tnpξ, ωq dνNpθ,npξ, ωq

ď 2
ż

E1p1,3qYE2p1,3q
η1pxq

´
xF p1q

1,3 pξ, ωqyn`1 ´ xF p2q
1,3 pξ, ωqyn`1

¯

ˆ
´df tnpξ, σxωq

f tnpξ, ωq ´ 1
¯
dνNpθ,npξ, ωq
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ď N

A

ż

E1p1,3qYE2p1,3q
η1pxq

´b
xF p1q

1,3 pξ, ωqyn`1 ´
b

xF p2q
1,3 pξ, ωqyn`1

¯2

dνNpθ,npξ, ωq

` A

N

ż

E1p1,3qYE2p1,3q

´b
xF p1q

1,3 pξ, ωqyn`1 `
b

xF p2q
1,3 pξ, ωqyn`1

¯2

ˆ
´df tnpξ, σxωq

f tnpξ, ωq ´ 1
¯2

dνNpθ,npξ, ωq .

(5.3.18)

To bound the first integral of the last r.h.s. in (5.3.18) by a piece of Dirichlet form, apply
Cauchy-Schwarz inequality so that

N

A

ż

E1p1,3qYE2p1,3q
η1pxq

´b
xF p1q

1,3 pξ, ωqyn`1 ´
b

xF p2q
1,3 pξ, ωqyn`1

¯2

dνNpθ,npξ, ωq

“ N

A

1
N

n`Nÿ

m“n`1

ż

E1p1,3qYE2p1,3q
η1pxq

´b
xη3pyqf tmpξx,y, ωx,yqyΛN,mzΛN,n

´
b

xη3pyqf tmpξ, ωqyΛN,mzΛN,n

¯2

dνNpθ,mpξ, ωq

ď 1
A

n`Nÿ

m“n`1

ż

E1p1,3qYE2p1,3q
η1pxq

A
η3pyq

´a
f tmpξx,y, ωx,yq

´
a
f tmpξ, ωq

¯2E
ΛN,mzΛN,n

dνNpθ,mpξ, ωq

“ 1
A

n`Nÿ

m“n`1

ż

E1p1,3qYE2p1,3q
η1pxqη3pyq

´a
f tmpξx,y, ωx,yq ´

a
f tmpξ, ωq

¯2

dνNpθ,mpξ, ωq

(5.3.19)

ď 1
A

n`Nÿ

m“n`1

ż

E1p1,3qYE2p1,3q

´a
f tmpξx,y, ωx,yq ´

a
f tmpξ, ωq

¯2

dνNpθ,mpξ, ωq (5.3.20)

which is of order OpNq. Now, to bound the second integral of the last r.h.s. in (5.3.18),
we separate the integrations on E1p1, 3q and on E2p1, 3q. We first look at the integral
on E1p1, 3q, to get

A

N

ż

E1p1,3q
η1pxq

´b
xF p1q

1,3 pξ, ωqyn`1 `
b

xF p2q
1,3 pξ, ωqyn`1

¯2

ˆ
´df tnpξ, σxωq

f tnpξ, ωq ´ 1
¯2

dνNpθ,npξ, ωq

ď 4A
N

ż

E1p1,3q
η1pxqxF p1q

1,3 pξ, ωqyn`1

f tnpξ, ωq
´a

f tnpξ, σxωq ´
a
f tnpξ, ωq

¯2

dνNpθ,npξ, ωq

ď 4A
N

ż

E1p1,3q
η1pxq

´
f tnpξ, σxωq ´ 2

a
f tnpξ, σxωq

a
f tnpξ, ωq ` f tnpξ, ωq

¯
dνNpθ,npξ, ωq
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ď 4A
N

ż

E1p1,3q
η1pxq

´
f tnpξ, σxωq ´ f tnpξ, ωq

¯
dνNpθ,npξ, ωq

ď 4A
N

ż
η1pxqf tnpξ, σxωqdνNpθ,npξ, ωq “

ż
η3pxqepϑ1px{Nq´ϑ3px{Nqqf tnpξ, ωqdνNpθ,npξ, ωq

ď AC1

N
(5.3.21)

for some positive constant C1. We have used the definition (5.3.14) of E1p1, 3q for
the first and third inequalities, the definition (5.3.13) of F p1q

1,3 pξ, ωq with the bound
xF p1q

1,3 pξ, ωqyn`1 ď xf tn`1pξ, ωqyn`1 “ f tnpξ, ωq for the second inequality, Lemma 5.A.2(iii)
for the equality, (5.2.18), (5.2.11) and that f tn is a probability density to conclude.

We now look at the integral on E2p1, 3q, to get

A

N

ż

E2p1,3q
η1pxq

´b
xF p1q

1,3 pξ, ωqyn`1 `
b

xF p2q
1,3 pξ, ωqyn`1

¯2

ˆ
´df tnpξ, σxωq

f tnpξ, ωq ´ 1
¯2

dνNpθ,npξ, ωq

ď 4A
N

ż

E2p1,3q
η1pxqxF p2q

1,3 pξ, ωqyn`1

f tnpξ, ωq
´a

f tnpξ, σxωq ´
a
f tnpξ, ωq

¯2

dνNpθ,npξ, ωq

ď 8A
N

ż

E2p1,3q
η1pxqxF p2q

1,3 pξ, ωqyn`1

f tnpξ, ωq f tnpξ, ωqdνNpθ,npξ, ωq

ď 8A
N

ż
η3pxqη1pyqepϑ3py{Nq´ϑ3px{Nqq´pϑ1py{Nq´ϑ1px{Nqqf tn`1pξ, ωqdνNpθ,n`1

pξ, ωq

ď AC 1
1

N
(5.3.22)

for some positive constant C 1
1. We have used the definition (5.3.15) of E2p1, 3q for the

first and second inequalities, the definition (5.3.13) of F p2q
1,3 pξ, ωq with Lemma 5.A.1 for

the third inequality, and (5.2.18), (5.2.11) and finally that f tn is a probability density.

To conclude to an upper bound of Ω1, combining (5.3.5) with (5.3.20), (5.3.21),
(5.3.22)

Ω1 ď ´N2D0
npµnptq|νNpθ,nq ` C2

1ANn
d´1 (5.3.23)

Bound on Ω2. We decompose the generator of the reaction part into a part involving
only sites within ΛN,n and a part involving sites in ΛN,n`1zΛN,n. Recalling (5.2.21),
(5.2.22), we have

Ω2 “
ż
f tn`1LN,n`1 log f tndν

N
pθ,n`1

“
ż
f tn`1LN,n log f tndν

N
pθ,n`1

` Ωp1q
2
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Proceeding as in (5.3.5), we get

ż
f tn`1LN,n log f tndν

N
pθ,n`1

ď ´Dnpµnptq|νpθ,nq `
ż
LN,nf

t
ndν

N
pθ,n (5.3.24)

The second term on the r.h.s. is of order OpNnd´1q since the rates βN,np., .q are bounded.
And, denoting BΛN,n “ tx P ΛN,n : Dy P Λc

N,n, }y ´ x} “ 1u,

Ωp1q
2 “

ÿ

xPBΛN,n

ż
f tn`1pξ, ωq

´
λ1

ÿ

yPΛc
N,n

}y´x}“1

ξpyqp1 ´ ωpyqq

`λ2

ÿ

yPΛc
N,n

}y´x}“1

ξpyqωpyq
¯

p1 ´ ξpxqq log
f tnpσxξ, ωq
f tnpξ, ωq dνNpθ,n`1

pξ, ωq

which is of order OpNnd´1q in an analogous way to the computation done for Ωp2q
1 , using

inequalities (5.3.16)–(5.3.17). Combined with (5.3.24)–(5.3.24), one has

Ω2 ď ´Dnpµnptq|νNpθ,nq ` K2Nn
d´1 (5.3.25)

Bound on Ω3. Since Lpb,N,n “ ř
xPΛN,nXΓN

LxN , using inequality (5.3.6) we have Since νNpθ,n

is reversible with respect to the generator Lpb,N,n, using inequality (5.3.6),

Ω3 “ N2
ÿ

xPΛN,nXΓN

ż
f tn`1L

x
N log f tndν

N
pθ,n`1

“ N2
ÿ

xPΛN,nXΓN

ż
xf tn`1pξ, ωqyn`1L

x
N log f tndν

N
pθ,n

ď ´N2D
pb
npµnptq|νNpθ,nq ` N2

ÿ

xPΛN,nXΓN

ż
LxNf

t
ndν

N
pθ,n

“ ´N2D
pb
npµnptq|νNpθ,nq (5.3.26)

It is for the last equality that we needed νNpθ,n to be reversible with respect to the generator
Lpb,N,n.

The estimate (5.3.26), together with (5.3.23) and (5.3.25), gives us

Btsnpµnptq|νNpθ,nq ď ´N2D0
npµnptq|νNpθp¨q,nq ` pK2 ` C2

1AqNnd´1 ´ N2D
pb
npµnptq|νNpθ,nq

Therefore, multiplying by expp´n{Nq and summing over n P N, one gets (5.2.30) with
A0 “ 1 and A1 “ pK2 ` AC2

1 q.

136
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5.4 Hydrodynamics in a bounded domain

We now turn into the proof of the hydrodynamics in bounded domain. Denote by
νNpθp¨q, the reference measure restricted to ΛN . Let us consider, for any function pG P
pC2

0 pr0, T s ˆ Λ;Rqq3,

M
N,i
t p pGq “ xπN,it , Gi,ty ´ xπN0 , Gi,0y ´

ż t

0

xπN,is , BsGi,syds ´
ż t

0

LNxπN,is , Gi,syds (5.4.1)

which is a martingale for all i “ 1, 2, 3. Our goal will be to make this martingale converge,
and for this, first we compute :

N2LNxπN,it , Giy “ xπN,it ,∆NGiy ´ 1
Nd´1

ÿ

xPΓ`
N

BNe1
Gippx ´ e1q{Nqηipxq

` 1
Nd´1

ÿ

xPΓ´
N

BNe1
Gipx{Nqηipxq (5.4.2)

where Γ˘
N “ tpu1, . . . , udq P ΛN : u1 “ ˘Nu amd BNe1

stands for the discrete gradient :

BNe1
Gpx{Nq “ N

´
Gppx ` e1q{Nq ´ Gpx{Nq

¯
, with x, x ` e1 P ΛN , as well as

LNη1p0q “ βNp0, ξ, ωqη0p0q ` η3p0q ´ pr ` 1qη1p0q, (5.4.3)

LNη2p0q “ rη0p0q ` η3p0q ´ βNp0, ξ, ωqη2p0q ´ η2p0q, (5.4.4)

LNη3p0q “ βNp0, ξ, ωqη2p0q ` rη1p0q ´ 2η3p0q, (5.4.5)

Note that since pG vanishes at the boundaries on Λ, Lpb,NxπN,it , Giy “ 0. To get to the
system of equations (5.2.31), we shall need to replace the local functions appearing in
(5.4.3)–(5.4.5) by functions of the empirical measures, thanks to the replacement lemma.

5.4.1 Replacement lemma.

One main step in proving the hydrodynamic limit of a system lies in being able to
replace local functions by functions of the density fields to close the equations. For any
ℓ P N, define the empirical mean densities in a box of size p2ℓ ` 1qd centred at x by
pηℓpxq “ pηℓ1pxq, ηℓ2pxq, ηℓ3pxqq :

ηℓi pxq “ 1
p2ℓ ` 1qd

ÿ

}y´x}ďℓ
ηipyq, for all i “ 1, 2, 3.

For any cylinder function φ, rφppθq stands for the expectation of φpξ, ωq with respect to
νNpθ , so that we can define for any ǫ ą 0,

VǫNpξ, ωq “
ˇ̌
ˇ 1
p2ǫN ` 1qd

ÿ

}y}ďǫN
τyφpξ, ωq ´ rφppηǫNp0qq

ˇ̌
ˇ, (5.4.6)

where pηkpxq “ pηk1 , ηk2 , ηk3 qpxq.
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Lemma 5.4.1 (replacement lemma). For any G P C8pr0, T s ˆ Λ,Rq and any pH P
C8pr0, T s ˆ Λ;R3q,

lim
ǫÑ0

lim
NÑ8

PN,
pb

µN

´ 1
Nd

ÿ

xPΛN

ż T

0

|Gspx{Nq|τxVǫNpξs, ωsqds ě δ
¯

“ 0, (5.4.7)

for any δ ą 0, and

lim
NÑ8

EN,
pb

µN

´ˇ̌
ˇ
ż T

0

1
Nd´1

ÿ

xPΓN

BNe1
Htpx{Nqn1px{Nq

´
ηi,tpxq ´ bipx{Nq

¯
ds
ˇ̌
ˇ
¯

“ 0. (5.4.8)

for all i “ 1, 2, 3.

Before proving the replacement lemma, let us state the so-called one and two blocks
estimates. The one block estimate ensures the average of local functions in some large
microscopic boxes can be replaced by their mean with respect to the grand-canonical
measure parametrized by the particles density in these boxes. While the two blocks
estimate ensures the particles density over large microscopic boxes are close to the one
over small macroscopic boxes :

Lemma 5.4.2 (One block estimate). Fix a constant profile pρ “ pρ1, ρ2, ρ3q P p0, 1q3,

lim
kÑ8

lim
NÑ8

sup
f :D0

N
pfqďCNd´2

ż
1
Nd

ÿ

xPΛN

τxVkpξ, ωqfpξ, ωqdνNpρ,Npξ, ωq “ 0 (5.4.9)

where for k P N, Vkpξ, ωq was defined in (5.4.6).

Lemma 5.4.3 (Two blocks estimate). Given a constant profile pρ “ pρ1, ρ2, ρ3q P p0, 1q3,
for all i “ 1, 2, 3,

lim
kÑ8

lim
ǫÑ0

lim
NÑ8

sup
f :D0

N
pfqďCNd´2

sup
|h|ďǫN

1
Nd

ż ÿ

xPΛN

ˇ̌
ηki px ` hq ´ ηǫNi pxq

ˇ̌
fpξ, ωqdνNpρ pξ, ωq “ 0. (5.4.10)

Here, DN
0 denotes the Dirichlet form associated to the generator of exchanges of

particles in ΛN .

Proof of Proposition 5.4.1. First deal with the proof of (5.4.7). By Markov’s inequality,

PN,
pb

µN

´ 1
Nd

ÿ

xPΛN

ż T

0

|Gspx{Nq|τxVǫNpξs, ωsqds ě δ
¯

ď 1
δ

}G}8E
N,pb
µN

´ 1
Nd

ÿ

xPΛN

ż T

0

τxVǫNpξs, ωsqds
¯

138



5.4. Hydrodynamics in a bounded domain

Let a ą 0 be decreasing to zero after ǫ, and a smooth function pθa “ pθa,1, θa,2, θa,3q :
Λ Ñ p0, 1q3, equal in Λp1´aqN “ r´1 ` a, 1 ´ as ˆ Td´1

N to some constant, say pα, and to
pb at the boundaries. As sup

k,pξ,ωq,x
τxVkpξ, ωq ă 8, we have

1
Nd

ÿ

xPΛN zΛp1´aqN

ż T

0

τxVǫNpξs, ωsqds ď aTC0,

for some positive constant C0. Therefore,

EN,
pb

µN

´ 1
Nd

ÿ

xPΛN

ż T

0

τxVǫNpξs, ωsqds
¯

ď aTC0`EN,
pb

µN

˜
1
Nd

ÿ

xPΛp1´aqN

ż T

0

τxVǫNpξs, ωsqds
¸
.

Denote by f̄T “ T´1

ż T

0

f sNds, where f tN stands for the density of µNptq with respect to

νNpθa
. Since Λp1´aqN is finite, proceeding as in the proof of Theorem 5.2.1 for Ω1, there exists

some positive constant C1paq such that the remaining expectation above is bounded by

T

Nd

ż ÿ

xPΛp1´aqN

τxVǫNpξ, ωqf̄T pξ, ωqdνNpθa
pξ, ωq ´ γTN2´dD0

Npf̄T q ` γC1paq,

for all positive γ. Recall pθa is equal to some constant pα within Λp1´aqN . To prove (5.4.7),
it thus remains to show that for every positive γ, a,

lim
ǫÑ0

lim
NÑ8

sup
f

˜
1
Nd

ż ÿ

xPΛp1´aqN

τxVǫNpξ, ωqfpξ, ωqdνNpα pξ, ωq ´ γN2´dD0
Npfq

¸
“ 0,

where the supremum is carried over all densities f with respect to νNpα such that D0
Npfq ď

CNd´2. This result is a consequence of the one and two blocks estimates (5.4.2)–(5.4.3),
for which we refer to Chapter 4 since we reduced ourselves to the interior of the domain.
Conclude by letting γ Ñ 0, then, a Ñ 0.

Now, let us prove the limit (5.4.8). Define

WHt
i pξt, ωtqpxq “ BNe1

Htpx{Nq
´
ηi,tpxq ´ bipx{Nq

¯
(5.4.11)

Decomposing the outward unit normal vector into both directions,

EN,
pb

µN

´ˇ̌
ˇ
ż T

0

1
Nd´1

ÿ

xPΓN

BNe1
Hi,spx{Nqn1px{Nq

´
ηi,spxq ´ bipx{Nq

¯
ds
ˇ̌
ˇ
¯
.

ď EN,
pb

µN

´ˇ̌
ˇ
ż T

0

1
Nd´1

ÿ

xPΓ`
N

WHs
i pξs, ωsqpxqds

ˇ̌
ˇ
¯
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` EN,
pb

µN

´ˇ̌
ˇ
ż T

0

1
Nd´1

ÿ

xPΓ´
N

WHs
i pξs, ωsqpxqds

ˇ̌
ˇ
¯
,

where Γ˘
N “ tpu1, . . . , udq P ˘N ˆ Td´1

N u. From now, consider the sum over Γ`
N as the

proof will be similar for the negative part. By the entropy inequality, for any positive γ,

EN,
pb

µN

´ˇ̌
ˇ
ż T

0

1
Nd

ÿ

xPΓ`
N

BNe1
Hi,spx{Nq

´
ηi,spxq ´ bipx{Nq

¯
ds
ˇ̌
ˇ
¯
.

ď 1
γNd

logEN,
pb

νN
pθ

˜
exp

´
γNd

ˇ̌
ˇ
ż T

0

1
Nd´1

ÿ

xPΓ`
N

WHs
i pξs, ωsqpxqds

ˇ̌
ˇ
¯

`
sNpµN |νNpθ q

γNd

where sNpµN |νNpθ q was defined in (5.2.20). By (5.2.28), there exists some constant K0

such that sNpµN |νNpθ q ď K0N
d. Using that e|a| ď ea ` e´a and

lim
N
N´d log

`
aN ` bN

˘
ď max

´
lim
N
N´d log aN , lim

N
N´dbN

¯
,

one can pull off the absolute value even if it means replacing H by ´H. By Feynman-Kac
formula,

1
γNd

logEN,
pb

νN
pθ

˜
exp

´
γNd

ż T

0

1
Nd´1

ÿ

xPΓ`
N

BNe1
Hi,spx{Nq

´
ηi,spxq ´ bipx{Nq

¯
ds
¯

ď
ż T

0

sup
f

#ż
1

Nd´1

ÿ

xPΓ`
N

WHs
i pξs, ωsqpxqfpξ, ωqdνNpθ pξ, ωq ` 1

γNd
xLN

a
f,
a
fy
+
ds

¸

(5.4.12)

where the supremum is carried over all densities f with respect to νNpρ . By Lemma 5.C.1,

xLN
a
f,
a
fy ď ´N2D

pb
Npfq ` A0N

d. (5.4.13)

for some positive constant A0. We now consider the expression WHt
i pξs, ωsqpxq between

brackets in (5.4.12) and thanks to changes of variables given in Lemma 5.A.2,
ż

BNe1
Hi,tpx{Nq

´
ηipxq ´ bipx{Nq

¯
fpξ, ωqdνNpθ pξ, ωq

“
ż

BNe1
Hi,tpx{Nq

´
ηipxq

ÿ

j‰i
bjpx{Nq ´ bipx{Nq

ÿ

j‰i
ηjpx{Nq

¯
fpξ, ωqdνNpθ pξ, ωq

(5.4.14)

We detail for instance the case i “ 1, others follow the same way, this is equal to
ż

BNe1
H1,tpx{Nq

´
η1pxq

´
b0px{Nq ` b2px{Nq ` b3px{Nq

¯

140



5.4. Hydrodynamics in a bounded domain

´ b1px{Nq
´
η0pxq ` η2pxq ` η3pxq

¯¯
fpξ, ωqdνNpθ pξ, ωq

ď
ż

BNe1
H1,tpx{Nq

˜´
η1pxqb0px{Nq ´ b1η0pxq

¯
fpξ, ωq

`
´
η1pxqb3px{Nq ´ b1η3pxq

¯
fpξ, ωq ` b2px{Nqfpξ, ωq

¸
dνNpθ pξ, ωq

“
ż

BNe1
H1,tpx{Nq

˜
b1η0pxq

´
fpσxξ, ωq ´ fpξ, ωq

¯

` b1η3pxq
´
fpξ, σxωq0fpξ, ωq

¯
` b2px{Nqfpξ, ωq

¸
dνNpθ pξ, ωq

ď
ż
b1η0pxqAN

2

´a
fpσxξ, ωq ´

a
fpξ, ωq

¯2

` b1η3pxqAN
2

´a
fpξ, σxωq ´

a
fpξ, ωq

¯2

dνNpθ pξ, ωq ` C 1
1

2AN
}BNe1

H1,tpx{Nq2}8

where C 1
1 is some constant, we used (5.3.17) to get

´
fpσxξ, ωq ´ fpξ, ωq

¯

“
´a

fpσxξ, ωq ´
a
fpξ, ωq

¯´a
fpσxξ, ωq `

a
fpξ, ωq

¯

ď AN

2

´a
fpσxξ, ωq ´

a
fpξ, ωq

¯2

` 1
2AN

´a
fpσxξ, ωq `

a
fpξ, ωq

¯2

,

and that f is a density while expanding the last term. Overall, dealing with the sum
over i, since parts of the Dirichlet form pDpb

Nqx appear, (5.4.14) is bounded by

AN

2
pDpb

Nqxpfq ` C 1

2AN
}BNe1

H1,tpx{Nq2}8

Now summing over tx P ΓNu and multiplying by N1´d, (5.4.12) is bounded by

´AN2´d

2
´ N2´d

γ

¯
D

pb
Npfq ` C

2AN
}BNei

H1,tpx{Nq2}8 ` A0

γ

Choose A “ 2{γ and conclude by letting tend γ Ñ 8, N Ñ 8.

5.4.2 Energy estimate.

We now deal with an energy estimate that allows us to exclude paths with infinite
energy. For G P C8

c pr0, T s ˆ Λ,Rq, define

pQppπq “ sup
i“1,2,3

sup
GPC8

c pr0,T sˆΛ,Rq
QGpπiq (5.4.15)
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where QGpπiq “
dř
j“1

ż T

0

ż

Λ

πitpuqBej
Gtpuq dt du ´ 1

2

ż T

0

ż

Λ

Gtpuq2 dt du.

Lemma 5.4.4. Fix a dense sequence pGℓqℓě1 in C8
c pr0, T s ˆ Λ,Rq. For all i “ 1, 2, 3,

there exists a constant C0 such that for any sequence tµN : N ě 1u of probability
measures on pΣN , every k ě 1,

lim
NÑ8

EN,
pb

µN

˜
max
1ďℓďk

´ ż T

0

`
A
Gℓ,s

i pξs, ωsq ´ 1
2Nd

ÿ

xPΛN

Gℓ,spx{Nq2
¯
ds
¯¸

ď C0. (5.4.16)

where AGℓ,t

i pξt, ωtq :“ N1´d
dÿ

j“1

ÿ

x,x`ejPΛN

pηi,tpx ` ejq ´ ηi,tpxqqGℓ,tpx{Nq.

Proof. By the entropy inequality, for all γ ą 0,

EN,
pb

µN

´
max
1ďℓďk

ż T

0

A
Gℓ,s

i pξs, ωsqds
¯

ď 1
γNd

logEN,
pb

νN
pθ

˜
exp

´
max
1ďℓďk

´
γNd

ż T

0

A
Gℓ,s

i pξs, ωsqds
¯¯¸

` 1
γNd

sNpµN |νNpθ q,

where sNpµN |νNpθ q stands for the relative entropy of µN with respect to νNpθ defined in
(5.2.20). By (5.2.28), sNpµN |νNpθ q ď C0N

d, for some constant C0. Using that

exp
`

max
1ďℓďk

aℓ
˘

ď
ÿ

1ďℓďk
exppaℓq

and
lim
N
N´d log

` ÿ

1ďℓďk
aℓ
˘

ď max
1ďℓďk

lim
N
N´d log aℓ,

lim
NÑ8

EN,
pb

µN

´
max
1ďℓďk

ż T

0

A
Gℓ,s

i pξs, ωsqds
¯

ď max
1ďℓďk

lim
NÑ8

1
γNd

logEN,
pb

νN
pθ

˜
exp

´
γNd

ż T

0

A
Gℓ,s

i pξs, ωsqds
¯¸

` C0

γ
.

By Feynman-Kac formula,

1
γNd

logEN,
pb

νN
pθ

˜
exp

´
γNd

ż T

0

A
Gℓ,s

i pξs, ωsqds
¯¸

ď
ż T

0

sup
f

#ż
A
Gℓ,s

i pξs, ωsqfpξ, ωqdνNpθ pξ, ωq ` 1
γNd

xLNf, fy
+
ds (5.4.17)
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where the supremum is carried over all densities f with respect to νNpθ . Writing the
supremum over positive densities, it is bounded by

ż T

0

sup
fě0

#ż
A
Gℓ,s

i pξs, ωsq
a
fpξ, ωqdνNpθ pξ, ωq ` 1

γNd
xLN

a
f,
a
fy
+
ds (5.4.18)

By Lemma 5.C.1, there exist positive constants K0 and K1 such that

N2xLN

a
f,
a
fy ` xLN

a
f,
a
fy ď ´K0N

2D0
Npfq ` K1N

d.

Therefore,

1
γNd

logEN,
pb

νN
pθ

˜
exp

´
Nd

ż T

0

γA
Gℓ,s

i pξs, ωsqds
¯¸

ď
ż T

0

sup
f

#ż
A
Gℓ,s

i pξs, ωsqfpξ, ωqdνNpθ pξ, ωq ´ 1
γNd´2

D0
Npfq

)
ds ` K1

γ

Now use the change of variables pξ1, ω1q “ pξx,y, ωx,yq so that
ż
AGℓ
i pξ, ωqfpξ, ωqdνNpθ pξ, ωq

“ 1
Nd´1

ż dÿ

j“1

ÿ

xPΛN

Gℓpx{Nqpηipx ` ejq ´ ηipxqqfpξ, ωqdνNpθ pξ, ωq

“ 1
Nd´1

ż dÿ

j“1

ÿ

xPΛN

Gℓpx{Nqηipx ` ejq
˜ÿ

u‰i
ηupxq

¸
fpξ, ωqdνNpθ pξ, ωq

´ 1
Nd´1

ż dÿ

j“1

ÿ

xPΛN

Gℓpx{Nqηipxq
˜ÿ

u‰i
ηupx ` ejq

¸
fpξ, ωqdνNpθ pξ, ωq

“ 1
Nd´1

ż dÿ

j“1

ÿ

xPΛN

ÿ

u‰i
Gℓpx{Nqηupx ` ejqηipxqRx,y

i,u ppθqfpξx,y, ωx,yqdνNpθ pξ, ωq

` 1
Nd´1

ż dÿ

j“1

ÿ

xPΛN

ÿ

u‰i
Gℓpx{Nqηupx ` ejqηipxq

´
fpξx,y, ωx,yq ´ fpξ, ωq

¯
dνNpθ pξ, ωq

The first term of the right-hand side is of order OpN´1q by expanding R
x,y
i,u , while by

inequality (5.3.17), the second term is bounded by

N2´dD0
Npfq

` 1
Nd

ż dÿ

j“1

ÿ

xPΛN

ÿ

u‰i
G2
ℓpx{Nqηupx ` ejqηipxq

´a
fpξx,y, ωx,yq `

a
fpξ, ωq

¯2

dνNpθ pξ, ωq

(5.4.19)
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Chapter 5. With stochastic reservoirs or in infinite volume

To get rid of the second term, note that
ż ´a

fpξx,y, ωx,yq `
a
fpξ, ωq

¯2

dνNpθ pξ, ωq

“
ż
fpξx,y, ωx,yqdνNpθ pξ, ωq `

ż
fpξ, ωqdνNpθ pξ, ωq `

ż a
fpξx,y, ωx,yq

a
fpξ, ωqdνNpθ pξ, ωq

After a change of variable by Lemma 5.A.1, the first and second integrals are equal to
a constant times the L1-norm of f . Use inequality (5.3.17) to divide the third integral
into two similar terms. Then, since f is a density with respect to νNpθ , for all positive A,
(5.4.19) is bounded by

N2´dD0
Npfq ` C 1

A

1
Nd

ÿ

xPΛN

G2
ℓ,tpx{Nq

The expression between brackets in (5.4.17) is then bounded by

C 1

ANd

ÿ

xPΛN

G2
ℓ,tpx{Nq

Choose 2C 1 “ A to conclude.

Lemma 5.4.5 (Energy estimate). Let Qpb,˚ be a limit point of the sequence pQN,pb
µN

qNě1.
Then,

Q
pb,˚
´
L2pr0, T s, H1pΛq

¯
“ 1 (5.4.20)

Proof. Fix 1 ď j ď d. Remark that

lim
NÑ8

ż T

0

AGt
i pξt, ωtqdt “

dÿ

j“1

ż T

0

ż

Λ

Bej
Gℓ,tpuqπitpuqdt du.

If pQN,pb
µN

qNě1 converges weakly to Q
pb,˚, by Lemma 5.4.4,

E
pb,˚

˜
max
1ďℓďk

´ ż T

0

ż

Λ

Bej
Gℓ,spuqπispuqdu ds ´ 1

2

ż T

0

ż

Λ

Gℓ,spuq2du ds
¯¸

ď C0.

Since pGℓqℓě1 is dense in C8
c pr0, T s ˆ Λ;Rq, taking the limit as k goes to infinity, one has

by monotone convergence theorem,

E
pb,˚

˜
sup

GPC8
c pr0,T sˆΛ;Rq

´ ż T

0

ż

Λ

Bej
Gspuqπispuqdu ds ´ 1

2

ż T

0

ż

Td

Gspuq2du ds
¯¸

ď C0.

Therefore, for all i, there exists some positive constant C so that for any smooth function
G P C8

c pr0, T s ˆ Λ,Rq, under Q
pb,˚,

dÿ

j“1

ż T

0

ds

ż

Λ

du ρips, uqBej
Gspuq ď 1

2

ż T

0

ds

ż

Λ

duGspuq2 ` C

hence, pρ P L2pr0, T s, H1pΛqq3.
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5.4. Hydrodynamics in a bounded domain

5.4.3 The hydrodynamic limit.

To derive the hydrodynamic behaviour of our system, we divide the proof into several
steps :

(1) tightness of the measures pQN,pb
µN

qNě1 ;
(2) uniqueness of a weak solution to the hydrodynamic equation (5.2.31) ;
(3) identification of the limit points of pQN,pb

µN
qNě1 as unique weak solutions of (5.2.31).

The identification of the limit points is provided by the following Proposition and Lem-
mata.

Lemma 5.4.6 (Tightness). The sequence pQN,pb
µN

qNě1 is tight and all its limit points Qpb,˚

are concentrated on

Q
pb,˚
´
pπ : 0 ď pπtpuq ď 1, pπtpduq “ pπtpuqdu, t P r0, T s

¯
“ 1. (5.4.21)

Proof. For this proof, we refer to Chapter 4, indeed to estimate xMN,iyt for the mar-
tingale (5.4.1), note that pG vanishes at the boundaries on Λ. Therefore, see (5.4.2), the
involved generator to derive xMN,iyt is in fact N2LN ` LN . It yields

xMN,iyt ď pCpλ1, λ2, rq}Gi}8 ` Cqt
Nd

which converges to zero as N Ñ 8. And on the other hand, recall we have (5.4.2) so
that |N2LNxπN,it , Giy| ď }∆Gi}1 ` 2}∇Gi}1.

Denote by ιǫ the approximation of the identity

ιǫ “ p2ǫq´d1tr´ǫ, ǫsdu.

To show Q
pb,˚ is supported on densities pρ that are weak solutions of (5.2.31).

Lemma 5.4.7 (Identification of limit points). All limit points Q
pb,˚ of the sequence

pQN,pb
µN

qNě1 are concentrated on trajectories that are weak solutions of system (5.2.31).

For further details on the proof, we refer to Chapter 4. The difference here is we need
to highlight the replacement of local functions at boundaries. Define the functional pBǫ

for any function pG P C1,2
0 pr0, T s ˆ Λ;R3q whose first component is given by

B1
ǫ ppπN. q :“ xπN,1T , G1,T y ´ xπN,10 , G1,0y

´
Tż

0

xπN,1s , BsG1,syds ´
Tż

0

xπN,1s ,∆NG1,syds

`
ż T

0

ÿ

xPΓ`
N

Be1
G1,spx{Nqb1px{Nqds ´

ż T

0

ÿ

xPΓ´
N

Be1
G1,spx{Nqb1px{Nqds
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Chapter 5. With stochastic reservoirs or in infinite volume

´
Tż

0

2dλ1

Nd

ÿ

ΛN

G1,spx{NqpπN,1s ˚ ιǫqpπN,0s ˚ ιǫqds

´
Tż

0

2dλ2

Nd

ÿ

ΛN

G1,spx{NqpπN,3s ˚ ιǫqpπN,0s ˚ ιǫqds

´ r

Tż

0

xπN,3s , G1,syds `
Tż

0

pr ` 1qxπN,1s , G1,syds

while other component are defined the same way. It is enough to treat the case i “ 1.
By Proposition 5.4.1, we may replace local functions of pξ, ωq in the martingale (5.4.1).
Since occupations variables ηipxq are of mean ηǫNi , resp. bipx{Nq, under the measure
νNpηǫn , resp. νNpb , one has

lim
ǫÑ0

lim
NÑ8

Q
pb,˚
µN

´
sup

0ďtďT

ˇ̌
B1
ǫ ppπNt

ˇ̌
ą a

¯
“ 0.

Notice π¨ ÞÑ B1
ǫ ppπT q is continuous with respect to the Skorohod topology and let N go

to infinity. We conclude using Lemma 5.4.6 and letting ǫ go to zero.

5.5 Empirical currents

In this section, we derive the law of large numbers for the empirical currents stated
in Proposition 5.2.1. Recall that for x P ΛN and j “ 1, . . . , d, W x,x`ej

t pηiq stands for the
conservative current of particles of type i across the edge tx, x ` eju, and Qx

t pηiq the
total number of particles of type i created minus the total number of particles of type i
annihilated at site x before time t. We have the following families of jump martingales
(see Lemma 5.B.1 for details) : for all 1 ď j ď d, x P ΛN ,

ĂW x,x`ej

t pηiq “ W
x,x`ej

t pηiq ´ N2

ż t

0

´
ηi,spxqp1 ´ ηi,spx ` ejqq

´p1 ´ ηi,spxqqηi,spx ` ejq
¯
ds (5.5.1)

with quadratic variation (because Jx,x`ej

t pηiq and J
x`ej ,x
t pηiq have no common jump)

xĂW x,x`ej pηiqyt “ x rJx,x`ej pηiqyt ` x rJx`ej ,xpηiqyt (5.5.2)

“ N2

ż t

0

´
ηi,spxqp1 ´ ηi,spx ` ejqq ` p1 ´ ηi,spxqqηi,spx ` ejq

¯
ds

and
rQx
t pηiq “ Qx

t pηiq ´
ż t

0

τxfipξs, ωsqds (5.5.3)
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5.5. Empirical currents

where pf “ pf1, f2, f3q : pΣN Ñ R3 is defined by
$
’&
’%

f1pξ, ωq “ βNp0, ξ, ωqη0p0q ` η3p0q ´ pr ` 1qη1p0q ,
f2pξ, ωq “ rη0p0q ` η3p0q ´ βNp0, ξ, ωqη2p0q ´ η2p0q ,
f3pξ, ωq “ βNp0, ξ, ωqη2p0q ` rη1p0q ´ 2η3p0q .

(5.5.4)

with quadratic variations
$
’’’&
’’’%

x rQxpη1qyt “
şt

0
τx

´
βNp0, ξs, ωsqη0,sp0q ` η3,sp0q ` pr ` 1qη1,sp0q

¯
ds

x rQxpη2qyt “
şt

0
τx

´
rη0,sp0q ` η3,sp0q ` βNp0, ξs, ωsqη2,sp0q ` η2,sp0q

¯
ds

x rQxpη3qyt “
şt

0
τx

´
βNp0, ξs, ωsqη2,sp0q ` rη1,sp0q ` 2η3,sp0q

¯
ds

(5.5.5)

Proof of Proposition 5.2.1. Given a smooth continuous vector field G “ pG1, ..., Gdq P
C8
c pΛ,Rdq, after definition (5.2.35), sum the martingale (5.5.1) over tx, x ` ej P ΛNu

to get the martingale ĂMG
t , given by

ĂMG
t pηiq “

dÿ

j“1

˜
xWN

j,tpηiq, Gjy

´ N2

Nd`1

ÿ

x,x`ejPΛN

ż t

0

Gjpx{Nq
´
ηi,spxq ´ ηi,spx ` ejq

¯
ds

¸

“ xWN
t pηiq,Gy ´ 1

Nd

dÿ

j“1

ÿ

xPΛN

ż t

0

Bxj
Gjpx{Nqηi,spxqds ` OpN´1q

“ xWN
t pηiq,Gy ´

dÿ

j“1

xπN,is , Bxj
Gjy ` OpN´1q

where we did a Taylor expansion. Relying on (5.5.2), the expectation of xĂMGyt vanishes
when N Ñ 8, so that by Doob’s martingale inequality,

lim
NÑ8

PN,
pb

µN

”
sup

0ďtďT

ˇ̌zĂ G
Mt

ˇ̌
ą δ

ı
“ 0 ,

for any δ ą 0. Using that the empirical density pπ converges towards the solution of
(5.2.31), this concludes the law of large numbers (5.2.36) for the current WN

T .

Fix a smooth vector field pH “ pH1, H2, H3q P C8
c pΛ,R3q. Sum (5.5.3) over x P ΛN

to get the martingale

rNH
t pηiq “ xQN

t pηiq, Hiy ´ 1
Nd

ÿ

xPΛN

ż t

0

Hipx{Nqτxfipξs, ωsqds
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Relying on (5.5.5), the expectation of its quadratic variation vanishes as N Ñ 8 as
well. Use the Replacement lemma to express rNH

t pηiq with functionals of the density
fields and conclude to (5.2.37) by Doob’s martingale inequality having for any δ ą 0,

lim
NÑ8

PN,
pb

µN

”
sup

0ďtďT

ˇ̌zĂH
Nt

ˇ̌
ą δ

ı
“ 0.

5.6 Hydrodynamics in infinite volume

In this section, we derive the hydrodynamic limit in infinite volume of Theorem 5.2.2.

5.6.1 Replacement lemma

To close the equations in the expression of martingales, we state here the replace-
ment lemma for the infinite volume. It relies on uniform upper bounds on the entropy
production and the Dirichlet form given by Theorem 5.2.1 and proved in Section 5.3.

We shall make use of Theorem 5.2.1, with a slight difference : we consider here
for any n ě 1, a large finite box Bn “ t´n, ..., nud (instead of ΛN,n “ t´N, ..., Nu ˆ
t´n, ..., nud´1), since we do not require boundary conditions. Indeed, to reach Zd, in
the proof of Lemma 5.2.1 we need to expand the box Bn over Bn`1 in each direction
pe1, ..., edq so that in our estimates : nd´1 is replaced by nd. Therefore, the result of
Theorem 5.2.1 still holds.

Lemma 5.6.1 (replacement lemma). For any G P C8
c pr0, T s ˆ Λ,Rq,

lim
ǫÑ0

lim
NÑ8

ENµN

´ 1
Nd

ÿ

xPZd

ż T

0

|Gspx{Nq|τxVǫNpξs, ωsqds
¯

“ 0, (5.6.1)

where VǫNpξ, ωq was defined in (5.4.6)

Proof. Let M ą 0 so that G has compact support contained in r´M,M sd. Therefore,

ENµN

´ 1
Nd

ÿ

xPZd

ż T

0

|Gspx{Nq|τxVǫNpξs, ωsqds
¯

ď }G}8E
N
µN

˜
1
Nd

ÿ

xPBMN

ż T

0

τxVǫNpξs, ωsqds
¸
. (5.6.2)
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Now, VǫNpξ, ωq depends on configurations only through occupations variables tpξ, ωqpxq :
x P BMNu, by Fubini’s theorem and Theorem 5.2.1, there exists some positive constant
C1 such that the expectation in (5.6.2) is bounded by

T

Nd

ż ÿ

xPBMN

τxVǫNpξ, ωqf̄T pξ, ωqdνNpθa
pξ, ωq ´ γTN2´dD0

pM`2qNpf̄T q ` γC1,

for all positive γ, where f̄T “ T´1

ż T

0

f spM`2qNds, with f tpM`2qN standing for the density

of µNptq with respect to νpM`2qN
pθ , the restriction of νpθ to the box BNM . It thus remains

to show that

lim
ǫÑ0

lim
NÑ8

sup
f

#ż
1
Nd

ÿ

xPBMN

τxVǫNpξ, ωqfT pξ, ωqdνpM`2qN
pθ pξ, ωq

´ γN2´dD0
pM`2qNpfT q

+
“ 0.

This limit is a consequence of the one and two blocks estimates (5.4.2)–(5.4.3), for which
we refer to Chapter 4 since we reduced ourselves to a finite volume and conclude by
letting γ go to 0.

5.6.2 The hydrodynamic limit

To conclude to the hydrodynamic behaviour of our system, we still need to prove :
tightness of the measures pQN,pb

µN
qNě1 ; identification of the limit points of pQN,pb

µN
qNě1 ;

uniqueness of weak solutions of the hydrodynamic equation.
The two first steps are analogous to the proofs done in finite volume, we refer the

reader to Chapter 4 for details. Though, we prove the uniqueness of weak solutions for
the generalized contact process in infinite volume with stochastic reservoirs in Section
5.7, the method yields to prove the uniqueness of weak solutions of the system (5.2.38),
this is given by Proposition 5.2.2 whose proof is postponed to Section 5.7.

5.7 Uniqueness of weak solutions

To conclude, we derive in this section the uniqueness of the weak solutions of Section
5.2.

5.7.1 Uniqueness in finite volume

Proof of Lemma 5.2.2. Let pρp1q and pρp2q be two weak solutions of 5.2.31 satisfying (B1)
and (B2), starting from the initial profile pγ. For a given δ ą 0, denote by Aδ the
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Chapter 5. With stochastic reservoirs or in infinite volume

regularized absolute value function

Aδpuq :“ u2

2δ
1t|u| ď δu `

´
|u| ´ δ

2

¯
1t|u| ą δu.

Since C8
c pΛ;Rq is dense in H1pΛq, by approximating Aδ by smooth functions and using

(B2), we get (cf. [28])

ÿ

i

Bt
ż
Aδ

´
ρ

p1q
i pt, uq ´ ρ

p2q
i pt, uq

¯
du

“
ÿ

i

ż
A1
δ

´
ρ

p1q
i pt, uq ´ ρ

p2q
i pt, uq

¯
Bt
´
ρ

p1q
i pt, uq ´ ρ

p2q
i pt, uq

¯
du

“ ´
ÿ

i

ż !
∇A1

δ

´
ρ

p1q
i pt, uq ´ ρ

p2q
i pt, uq

¯´
∇ρ

p1q
i pt, uq ´ ∇ρ

p2q
i pt, uq

)
du

`
ÿ

i

ż
A1
δ

´
ρ

p1q
i pt, uq ´ ρ

p2q
i pt, uq

¯´
Fippρp1qpt, uqq ´ Fipρp2qpt, uqq

¯
du

“ ´1
δ

ÿ

i

ż
∇
´
ρ

p1q
i pt, uq ´ ρ

p2q
i pt, uq

¯
.∇

´
ρ

p1q
i pt, uq ´ ρ

p2q
i pt, uq

¯
1Vδ

du

`
ÿ

i

ż ´
Fippρp1qpt, uqq ´ Fipρp2qpt, uqq

¯´ρp1q
i pt, uq ´ ρ

p2q
i pt, uq

δ
1Vδ

` 1V c
δ

¯
du

ď ´1
δ

ÿ

i

ż ››∇
`
ρ

p1q
i pt, uq ´ ρ

p2q
i pt, uq

˘››2
1Vδ

du

`
ÿ

i

ż ˇ̌
ˇFippρp1qpt, uqq ´ Fipρp2qpt, uqq

ˇ̌
ˇdu

where Vδ “ tpt, xq P r0, T s ˆ Λ : |pρp1q ´ pρp2q| ď δu. Remark now that pF is Lipschitz,

|Fippρp1qq ´ Fippρp2qq| ď Cpλ1, λ2, rq
ÿ

i

|ρp1q
i ´ ρ

p2q
i |, for all i “ 1, 2, 3.

Therefore,

ÿ

i

Bt
ż
Aδ

´
ρ

p1q
i pt, uq ´ ρ

p2q
i pt, uq

¯
du ď Cpλ1, λ2, rq

ÿ

i

ż ˇ̌
ˇρp1q
i pt, uq ´ ρ

p2q
i pt, uq

ˇ̌
ˇdu.

One concludes by letting δ Ó 0 and using Gronwall’s inequality.

5.7.2 Uniqueness in infinite volume with boundaries

Proof of Proposition 5.2.2. The proof follows the arguments in [61] adapted to the our
case. For u “ pu1, ¨ ¨ ¨ , udq P Λ8, denote by ǔ “ pu2, ¨ ¨ ¨ , udq P Rd´1, so that u “ pu1, ǔq.
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Denote by L2pp´1, 1qq the Hilbert space on the one-dimentional bounded interval p´1, 1q
equipped with the inner product,

xϕ, ψy2 “
ż 1

´1

ϕpu1qψpu1q du1 ,

where, for z P C, z̄ is the complex conjugate of z and |z|2 “ zz̄. The norm of L2pp´1, 1qq
is denoted by } ¨ }2.

Let H1pp´1, 1qq be the Sobolev space of functions ϕ with generalized derivatives
Bu1

ϕ in L2pp´1, 1qq. H1pp´1, 1qq endowed with the scalar product x¨, ¨y1,2, defined by

xϕ, ψy1,2 “ xϕ, ψy2 ` xBu1
ϕ , Bu1

ψy2 ,

is a Hilbert space. The corresponding norm is denoted by } ¨ }1,2.
Consider the following classical boundary-eigenvalue problem for the Laplacian :

"
´∆ϕ “ αϕ ,

ϕ P H1
0 pp´1, 1qq . (5.7.1)

From the Sturm–Liouville theorem (cf. [77]), one can construct for the problem (5.7.1)
a countable system tϕn, αn : n ě 1u of eigensolutions which contains all possible eigen-
values. The set tϕn : n ě 1u of eigenfunctions forms a complete orthonormal system
in the Hilbert space L2pp´1, 1qq. Moreover each ϕn belong to H1

0 pp´1, 1qq and the set
tϕn{α1{2

n : n ě 1u is a complete orthonormal system in the Hilbert space H1
0 pp´1, 1qq.

Hence, a function ψ belongs to L2pp´1, 1qq if and only if

ψ “ lim
nÑ8

nÿ

k“1

xψ, ϕky2 ϕk

in L2pp´1, 1qq. In this case, for each ψ1, ψ2 P L2pp´1, 1qq

xψ1, ψ2y2 “
8ÿ

k“1

xψ1, ϕky2 xψ2, ϕky2 .

Furthermore, a function ψ belongs to H1
0 pp´1, 1qq if and only if

ψ “ lim
nÑ8

nÿ

k“1

xψ, ϕky2 ϕk

in H1
0 pp´1, 1qq, and

xψ1, ψ2y1,2 “
8ÿ

k“1

αkxψ1, ϕky2 xψ2, ϕky2 (5.7.2)

for all ψ1, ψ2 in H1
0 pp´1, 1qq. One can easily check that in our case, αn “ n2π2 and

ϕnpu1q “ sinpnπu1q, n P N.
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Chapter 5. With stochastic reservoirs or in infinite volume

Fix T ą 0, define the heat Kernel on the the time interval p0, T s defined by the
following expression

p1pt, u1, v1q “
ÿ

ně1

e´αntϕnpu1qϕnpv1q , t P r0, T s , u1, v1 P r´1, 1s .

Let g P C0
c pp´1, 1q;Rq and denote by δ¨ the Dirac function. The heat Kernel p1 is such

that p1p0, u1, v1q “ δu1´v1
, p P C8pp0, T s ˆ p´1, 1q ˆ p´1, 1q;Rq and the function defined

via the convolution operator :

ϕ1pt, u1q :“ pp1 ‹ gqpt, u1q “
ż 1

´1

p1pt, u1, v1qgpv1qdv1

solves the following boundary value problem
$
&
%

Btϕ “ B2
u1
ϕ ,

ϕp0, ¨q “ gp¨q ,
ϕpt, ¨q P H1

0 pp´1, 1qq for 0 ă t ď T .

(5.7.3)

Let p̌ be the heat kernel for pt, ǔ, v̌q P p0, T q ˆ Rd´1 ˆ Rd´1

p̌pt, ǔ, v̌q “
`
4πt

˘´pd´1q{2
exp

#
´ 1

4t

dÿ

k“2

puk ´ vkq2

+
.

For each function f̌ P CcpRd´1;Rq

ȟ
f̌
t pt, ǔq :“ pp̌ ‹ f̌qpt, ǔq “

ż

Rd´1

p̌pt, ǔ, v̌qf̌pv̌qdv̌ .

It is known that ȟft solves the equation Btρ̌ “ ∆ρ̌, ρ̌0 “ f , on p0, ts ˆ Rd´1. Moreover
ȟ P C8pp0, T s ˆ Rd´1;Rq.

For a positive time t P p0, T s, pf “ pf1, f2, f3q P CcpΛ8;R3q and ε ą 0 small enough,
let Hf

t,ε : r0, ts ˆ Λ8 ÝÑ R be defined by

H
pf
t,εps, uq :“

3ÿ

i“1

Hfi
t,εps, uq :“

3ÿ

i“1

`
p ˚ fi

˘
pt ` ǫ ´ s, uq,

where p is the heat kernel on p0, T s ˆ Λ8 ˆ Λ8 given by

ppt, u, vq “ p1pt, u1, v1qp̌pt, ǔ, v̌q.

It is easy to check that Hf
t,ε solves the equation Btρ “ ∆ρ on p0, ts ˆ Rd, ρ0 “ f .

Consider pρp1q “ pρp1q
1 , ρ

p1q
2 , ρ

p1q
3 q and pρp2q “ pρp2q

1 , ρ
p2q
2 , ρ

p2q
3 q two weak solutions of

(5.2.31) associated to an initial profile pγ “ pγ1, γ2, γ3q : Λ8 Ñ r0, 1s3. Set mi “ ρ
p1q
i ´ρp2q

i ,
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1 ď i ď 3. We shall prove below that for any function mp¨, ¨q P L8pr0, T s ˆ Λ8q and
each i ď i ď d,

ż t

0

ds

ˇ̌
ˇ̌
ż

Λ8

mps, uqHfi
t,εps, vqdv

ˇ̌
ˇ̌ ds ď C1t }m}8}fi}1, (5.7.4)

for some positive constant C1, where for a trajectory m : r0, ts ˆ Λ8 Ñ R, }m}8 “
}m}L8pr0,tsˆΛ8q stands for the infinite norm in L8pr0, ts ˆ Λ8q.

On the other hand, from the fact that ρp1q
i , ρ

p2q
i , 1 ď i ď 3 are in L8pr0, T s ˆ Λ8q,

it follows that there exists a positive constant C2 such that, for almost every ps, uq P
r0, ts ˆ Λ8, for every 1 ď i ď 3,

ˇ̌
Fipρp1q

i ps, uqq ´ Fipρp2q
i ps, uqq

ˇ̌
ď C2

3ÿ

i“1

}ρp1q
i ´ ρ

p2q
i }8 .

Since pρp1q and pρp2q are two weak solutions of (5.2.31), we obtain by (5.7.4) that for all
0 ď τ ď t, 1 ď i, k ď 3

ˇ̌
ˇ
〈

mipτ, .q,Hfk
τ,εpτ, .q

〉

ˇ̌
ˇ “

3ÿ

i“1

ˇ̌
ˇ
ż τ

0

〈

Fippρp1qq ´ Fippρp2qq,Hfk
τ,εpτ, .q

〉

ˇ̌
ˇ

ď C 1
1t
´ 3ÿ

i“1

}ρp1q
i ´ ρ

p2q
i }8

¯
}fk}1 ,

for C 1
1 “ C1C2.

By observing that ppε, ¨, ¨q is an approximation of the identity in ε, we obtain by
letting ε Ó 0,

ˇ̌
ˇ
〈

mipτ, .q, fk
〉

ˇ̌
ˇ ď C 1

1t
´ 3ÿ

i“1

}ρp1q
i ´ ρ

p2q
i }8

¯
}fk}1 . (5.7.5)

We claim that mi P L8pr0, ts ˆ Λ8q and

}mi}8 ď C 1
1 t

´ 3ÿ

i“1

}ρp1q
i ´ ρ

p2q
i }8

¯
. (5.7.6)

Indeed (cf. [67], [61]), denote by Rptq “ ř3

i“1 }ρp1q
i ´ ρ

p2q
i }8 , by (5.7.5), for any open set

U of Λ8 with finite Lebesgue measure λpUq, we have for all 0 ď τ ď t,
ż

U

mipτ, uqdu ď C 1
1 t RptqλpUq. (5.7.7)

Fix 0 ă δ ă 1. For any open set U of Λ8 with finite Lebesgue measure and for 0 ď τ ď t

let
BU
δ,τ “

!
u P U : mipτ, uq ą C 1

1 t Rptqp1 ` δq
)
.
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Suppose that λpBU
δ,τ q ą 0, there exists an open set V , such that, BU

δ,τ Ă V and
λ
`
V zBU

δ,τ

˘
ď λpV q δ

2
and we have

λpV q
`
C 1

1 t Rptq
˘

ă λpV q
`
C 1

1 t Rptq
˘
p1 ` δqp1 ´ δ{2q

“
`
C 1

1 t Rptq
˘
p1 ` δq

`
λpV q ´ λpV qδ{2

˘

ď
`
C 1

1t Rptq
˘
p1 ` δq

`
λpV q ´ λ

`
V zBU

δ,τ

˘˘

“
`
C 1

1

?
tRptq

˘
p1 ` δqλ

`
BU
δ,τ

˘

ă
ż

BU
δ,τ

mipτ, xqdx .

Thus, from (5.7.7) and since BU
δ,τ Ă V , we get

λpV q
`
C 1

1 t Rptq
˘

ă
ż

V

mipτ, xqdx

ď
`
C 1

1 t Rptq
˘
λpV q ,

which leads to a contradiction.
By the arbitrariness of 0 ă δ ă 1 we obtain that if U is any open set of Λ8 with

λpUq ă 8,

λ
´!
u P U : mipτ, uq ą C 1

1 t Rptq
)¯

“ 0.

This implies

mipτ, xq ď C 1
1 t Rptq a.e. in Λ8

and concludes the proof of (5.7.6) by the arbitrariness of τ P r0, ts.
We now turn to the proof of the uniqueness, from (5.7.6),

}mi}8 ď C 1
1 t

´ 3ÿ

j“1

}mj}8

¯
,

and then

Rptq ď 3C 1
1 t Rptq .

Choosing t “ t0 such that 3C 1
1 t0 ă 1, this gives uniqueness in r0, t0s ˆ Λ8. To conclude

the proof we have just to repeat the same arguments in rt0, 2t0s, and in each interval
rkt0, pk ` 1qt0s, k P N, k ą 1.
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it remains to prove inequality (5.7.4). From Fubini’s Theorem, we have
ż t

0

ˇ̌
ˇ̌
ż

Λ8

mps, uqHfi
t,εps, uqdu

ˇ̌
ˇ̌ ds

ď
ż t

0

ds

ż

Rd´1

dv̌

ż

Rd´1

dǔ

ˇ̌
ˇ̌
ˇ
ÿ

ně1

e´n2π2pt`ε´sq
ż 1

´1

dv1

!
sinpnπv1qfipv1, v̌q

)

ˆ
ż 1

´1

du1

!
sinpnπu1qp̌pt ` ε ´ s, ǔ, v̌qmps, u1, ǔq

)ˇ̌ˇ̌
ˇ

ď
ż t

0

ds

ż

Rd´1

dv̌

ż

Rd´1

dǔ p̌pt ` ε ´ s, ǔ, v̌q

ˆ
ˇ̌
ˇ̌
ˇ
ÿ

ně1

〈

ϕn,mps, p¨, ǔqq
〉

ˆ
〈

ϕn, fip¨, v̌q
〉

ˇ̌
ˇ̌
ˇ

ď
ż t

0

ds

ż

Λ8

du

ż

Λ8

dv
!

|mps, uq| |fipvq| p̌pt ` ε ´ s, ǔ, v̌q
)

ď 4 t }m}8}fi}1 ,

where we used the fact that p̌ps, ¨, ¨q is a probability kernel in Rd´1 for all s ą 0.

5.A Changes of variables formulas

In the following, one states useful formula concerning change of variables with respect
to a varying smooth profile. It is convenient to use the form (5.2.17) of the reference
measure.

Lemma 5.A.1. For pi, jq P t0, 1, 2, 3u2, i “ j,

ż
ηipxqηjpyqfpξx,y, ωx,yqdνNpθ pξ, ωq

“
ż
ηjpxqηipyqepϑjpy{Nq´ϑjpx{Nqq´pϑipy{Nq´ϑipx{Nqqfpξ, ωqdνNpθ pξ, ωq

Proof. Let us detail the change of variable when pi, jq “ p1, 2q, the other ones are similar.
Posing pξ1, ω1q “ pξx,y, ωx,yq one has,

ż
η1pxqη2pyqfpξx,y, ωx,yqdνNpθ pξ, ωq

“
ż
ξpxqp1 ´ ωpxqqp1 ´ ξpyqqωpyqfpξx,y, ωx,yqdνNpθ pξ, ωq

“
ż

p1 ´ ξ1pxqqω1pxqξ1pyqp1 ´ ω1pyqqfpξ1, ω1qdνpθpξ
1x,y, ω1x,yq

dνpθpξ1, ω1q dνNpθ pξ1, ω1q
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Chapter 5. With stochastic reservoirs or in infinite volume

“
ż
η1

2pxqη1
1pyqfpξ1, ω1qdνpθpξ

1x,y, ω1x,yq
dνpθpξ1, ω1q dνNpθ pξ1, ω1q

but
νNpθ pξx,y, ωx,yq
νNpθ pξ, ωq “ exp

#
3ÿ

ℓ“0

´
ϑℓpx{Nq ´ ϑℓpy{Nq

¯´
ηℓpyq ´ ηℓpxq

¯+

so that
ż
η1pxqη2pyqfpξx,y, ωx,yqdνNpθ pξ, ωq

“
ż
η2pxqη1pyqepϑ2py{Nq´ϑ2px{Nqq´pvarθ1py{Nq´ϑ1px{Nqqfpξ, ωqdνNpθ pξ, ωq

Lemma 5.A.2. (i) for each pi, jq P tp1, 2q, p2, 1q, p3, 0q, p0, 3qu,
ż
ηipxqfpσxξ, σxωqdνNpθ pξ, ωq “

ż
ηjpxqepϑipx{Nq´ϑjpx{Nqqfpξ, ωqdνNpθ pξ, ωq

(ii) for each pi, jq P tp1, 0q, p0, 1q, p3, 2q, p2, 3qu,
ż
ηipxqfpσxξ, ωqdνNpθ pξ, ωq “

ż
ηjpxqepϑipx{Nq´ϑjpx{Nqqfpξ, ωqdνNpθ pξ, ωq

(iii) for each pi, jq P tp1, 3q, p3, 1q, p2, 0q, p0, 2qu,
ż
ηipxqfpξ, σxωqdνNpθ pξ, ωq “

ż
ηjpxqepϑipx{Nq´ϑjpx{Nqqfpξ, ωqdνNpθ pξ, ωq

Proof. Let us show the lemma for (i) when pi, jq “ p1, 2q. By the change of variables
pξ1, ω1q “ pσxξ, σxωq we have

ż
η1pxqfpσxξ, σxωqdνNpθ pξ, ωq

“
ż
ξpxqp1 ´ ωpxqqfpσxξ, σxωqdνNpθ pξ, ωq

“
ż

p1 ´ ξ1pxqqω1pxqfpξ1, ω1qdνpθpσ
xξ1, σxω1q

dνpθpξ1, ω1q dνNpθ pξ1, ω1q

but

νNpθ pσxξ, σxωq
νNpθ pξ, ωq “ exp

#´
ϑ1px{Nq ´ ϑ2px{Nq

¯´
η2pxq ´ η1pxq

¯
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`
´
ϑ3px{Nq ´ ϑ0px{Nq

¯´
η0pxq ´ η3pxq

¯+
,

so that
ż
η1pxqfpσxξ, σxωqdνpθpξ, ωq “

ż
η2pxqepϑ1px{Nq´ϑ2px{Nqqfpξ, ωqdνNpθ pξ, ωq

Deduce (ii) and (iii) similarly by computing respectively

νNpθ pσxξ, ωq
νNpθ pξ, ωq “ exp

#´
ϑ1px{Nq ´ ϑ0px{Nq

¯´
η0pxq ´ η1pxq

¯

`
´
ϑ2px{Nq ´ ϑ3px{Nq

¯´
η3pxq ´ η2pxq

¯+
,

and

νNpθ pξ, σxωq
νNpθ pξ, ωq “ exp

#´
ϑ1px{Nq ´ ϑ3px{Nq

¯´
η3pxq ´ η1pxq

¯

`
´
ϑ2px{Nq ´ ϑ0px{Nq

¯´
η0pxq ´ η2pxq

¯+
.

5.B Quadratic variations computations

We compute here the quadratic variations of the two jump martingales appearing in
Section 5.5. Using computations as in C. Cocozza and C. Kipnis [14],

Lemma 5.B.1. For t ě 0, 1 ď i ď 3, 1 ď j ď d such that x, x` ej P ΛN , rJx,x`ej

t pηiq “
J
x,x`ej

t pηiq ´N2
şt

0
ηi,spxqp1 ´ ηi,spx` ejqqds and rJx`ej ,x

t pηiq “ J
x`ej ,x
t pηiq ´N2

şt
0
ηi,spx`

ejqp1 ´ ηi,spxqqds are two PNµN
-martingales whose quadratic variations are given by

x rJx,x`ej pηiqyt “ N2

ż t

0

ηi,spxqp1 ´ ηi,spx ` ejqqds (5.B.1)

x rJx`ej ,xpηiqyt “ N2

ż t

0

ηi,spx ` ejqp1 ´ ηi,spxqqds (5.B.2)

Proof. Consider jumps over the bond px, x ` ekq, by writing the generator of diffusion
as in (5.3.9), we shall decompose the jumps associated to the exchanges of particles
between each type i and j, i, j P t0, 1, 2, 3u. That is,

Jx,x`e1pηiq “
ÿ

j‰i
J
x,x`e1

iÑj pξ, ωq and Jx,x`e1pηiq “
ÿ

j‰i
J
x,x`e1

jÐi pξ, ωq.
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where for fixed i, Jx,x`e1

iÑj correspond to the exchanges of particles over the bond px, x`e1q
when x is in state i and x ` e1 is in state j.

For z, z ` ek P ΛN , consider the function f
z,z`ek

iÑj pξ, ωq “ η3pzqη1pz ` ekq. Then,

LNfzpηiq “
ÿ

x,yPΛN

}x´y}“1

´
η
x,y
j pzqηx,yi pz ` ekq ´ ηjpzqηipz ` ekq

¯

“
ÿ

uPΛN

}u´z}“1,u‰z`ek

´
ηjpuqηipz ` ekq ´ ηjpzqηipz ` ekq

¯

`
´
ηjpz ` ekqqηipzq ´ ηjpzqηipz ` ekq

¯

`
ÿ

vPΛN

}v´pz`ekq}“1,v‰z

´
ηjpzqηipvq ´ ηjpzqηipz ` ekq

¯

The martingale problem states that

rf iÑj
z,z`e1

pξt, ωtq :“ f
iÑj
z,z`e1

pξt, ωtq ´
ż t

0

LNf
iÑj
z,z`e1

pξs, ωsqds

is a PNµN
-martingale. Consider the predictable process giÑj

z,z`e1
pξs, ωsq “ ηi,s´pzqηj,s´pz `

e1qq. Since the set ts : ηi,s´pzqηj,s´pz ` ek ‰ ηi,spzqηj,spz ` ekqu is ds-negligible,
ż t

0

g
iÑj
z,z`ek

pξs, ωsqd rf iÑj
z,z`ek

pξs, ωsq

“
ż t

0

g
iÑj
z,z`ek

pξs, ωsqdf iÑj
z,z`ek

pξs, ωsq ´
ż t

0

g
iÑj
z,z`ek

pξs, ωsqLN

´
f
iÑj
z,z`ek

pξs, ωsqds

“
ÿ

sďt
g
iÑj
z,z`ek

pξs, ωsq
´
ηj,spzqηi,spz ` ekq ´ ηj,s´pzqηi,s´pz ` ekq

¯

´
ż t

0

# ÿ

uPΛN

}u´z}“1,u‰z`ek

´
ηj,spuqηi,spz ` ekq ´ ηj,spzqηi,spz ` ekq

¯
ηi,spzqηj,spz ` ekqq

´
´
ηj,spz ` ekqqηi,spzq ´ ηj,spzqηi,spz ` ekq

¯
ηi,spzqηj,spz ` ekqq

´
ÿ

vPΛN

}v´pz`ekq}“1,v‰z

´
ηj,spzqηi,spvq ´ ηj,spzqηi,spz ` ekq

¯
ηi,spzqηj,spz ` ekq

+
ds

“ J
iÑj
z,z`ej

pξt, ωtq ´
ż t

0

ηi,spzqηj,spz ` ekqds.

Let V iÑj
z,z`ek

pξt, ωtq “
şt

0
LNf

iÑj
z,z`ek

pξs, ωsqds. By Itô’s lemma,
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5.B. Quadratic variations computations

rf iÑj
z,z`ek

pξt, ωtqf iÑj
z,z`ek

pξt, ωtq

“
ż t

0

´
f
iÑj
z,z`ek

pξs, ωsq rf iÑj
z,z`ek

pξs, ωsq `
ż t

0

rf iÑj
z,z`ek

pξs, ωsqf iÑj
z,z`ek

pξs, ωsqds.

Therefore, rf iÑj
z,z`ek

pξt, ωtqV iÑj
z,z`ek

pξt, ωtq´
şt

0

´
rf iÑj
z,z`ek

pξs, ωsqV iÑj
z,z`ek

pξs, ωsqds is a martingale
and
´
rf iÑj
z,z`ek

pξt, ωtq
¯2

“ rf iÑj
z,z`ek

pξt, ωtq ´ 2
´
rf iÑj
z,z`ek

pξt, ωtqV iÑj
z,z`ek

pξt, ωtq

´
ż t

0

´
rf iÑj
z,z`ek

pξs, ωsqdV iÑj
z,z`ek

pξs, ωsq
¯

`
ż t

0

p1 ´ f
iÑj
z,z`ek

pξs, ωsqdV iÑj
z,z`ek

pξs, ωsqds.

By Doob’s decomposition,
A
rf iÑj
z,z`ek

pξ, ωq
E
t

“
şt

0

´
1 ´ 2f iÑj

z,z`ek
pξs, ωsq

¯
dV

iÑj
z,z`ek

pξs, ωsqds.

Hence, since
şt

0

´
g
iÑj
z,z`ek

pξs, ωsqd rf iÑj
z,z`ek

pξs, ωsqds “ rJ iÑj
z,z`ek

pξt, ωtq,
A
rJ iÑj
z,z`ek

pξ, ωq
E
t

“
ż t

0

´
ηi,spzqηj,spz ` ekq

¯2´
1 ´ f

iÑj
z,z`ek

pξs, ωsq
¯
dV

iÑj
z,z`ek

pξs, ωsqds

“
ż t

0

ηi,spzqηj,spz ` ekq
¯
dV

iÑj
z,z`ek

pξs, ωsq

“
ż t

0

ηi,spzqηj,spz ` ekqds

By inverting the direction of the jumps, we compute similarly that
A´

rJ iÐj
z,z`ek

pξ, ωq
¯E

t
“
ż t

0

ηj,spzqηi,spz ` ekq
¯
ds

Lemma 5.B.2. For t ě 0, 1 ď i ď 3 and x P ΛN , rQx
t pηiq “ Qx

t pηiq ´
şt

0
τxfipξs, ωsqds is

a PNµN
-martingale whose quadratic variations is given by

Proof. As in previous lemma, one shall decompose the non-conservative dynamics ac-
cording to interaction between each type of particles i, j P t0, 1, 2, 3u. That i,s

Qx
t pηiq “

ÿ

j‰i
QiÑj
z pξ, ωq ´ QjÐi

z pξ, ωq

where for fixed i, QiÑj
z pξ, ωq corresponds to state j when z is in state i and QiÐj

z pξ, ωq
corresponds to flips to state i when z is in state j. It suffices to consider the case
i “ 0, j “ 1 as others follow a similar way.

As in the proof of Lemma 5.B.1, for z P ΛN consider f 1Ð0
z pξt, ωtq “ η1,spzq and

g1Ð0
z pξt, ωtq “ η0,s´pzq. Identical computations give

A´
Q1Ð0
z pξ, ωq

¯E
t

“
ż t

0

βpz, ξ, ωqηs,0pzqds.
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To conclude the case Qx
t pη1q, compute as well

xQ1Ð3
z pξ, ωqyt “

ż t

0

η3,spzqds, xQ1Ñ0
z pξ, ωqyt “

ż t

0

ηs,1pzqds,

xQ1Ñ3
z pξ, ωq

¯
yt “

ż t

0

rηs,1pzqds.

5.C Estimates in bounded domain

Lemma 5.C.1. For a smooth profile pθ : Λ Ñ p0, 1q3 such that θ
ˇ̌
Γ

“ pb, there exist

positive constants A0, A1
0 and A1 depending only on pθ such that for any c ą 0, for any

f P L2pνNpθ q,

xLpb,Nf, fy “ ´Dpb
Npf 2q, (5.C.1)

xLNf, fy “ ´A0D
0
Npf 2q ` A1

0N
d´2}f}2

L2pνN
pθ

q, (5.C.2)

xLNf, fy “ A1N
d}f}2

L2pνN
pθ

q. (5.C.3)

Proof. Since νNpθ is reversible with respect to the generator Lpb,N , (5.C.1) is immediate.
To prove (5.C.2), remark that for all A,B, c ą 0, ApB ´ Aq “ ´pB ´ Aq2 ` BpB ´ Aq
and use (5.3.17)

xLNf, fy “
ÿ

x,yPΛN

ż
fpξ, ωq

´
fpξx,y, ωx,yq ´ fpξ, ωq

¯
dνNpθ pξ, ωq

“ ´1
2
D0
Npfq ` 1

2

ÿ

x,yPΛN

ż
fpηx,yqpfpηq ´ fpηx,yqqdνNpθ pξ, ωq

` 1
2

ÿ

x,yPΛN

ż
fpηq

´
fpηx,yq ´ fpηq

¯
dνNpθ pξ, ωq

“ ´1
2
D0
Npfq ` 1

2

ÿ

x,yPΛN

ÿ

i,j

´
fpηq ´ fpηx,yq

¯
fpηqRx,y

i,j ppθqdνNpθ pξ, ωq

ď ´p1
2

´ 1
4c

qD0
Npf 2q ` c

2
Nd´2}f}2

L2pνN
pθ

q ` Op 1
N2

q

where we did a Taylor expansion of Rx,y
i,j ppθq which was defined in 5.3.8.

xLNf, fy “ I1 ` I2

“
ÿ

xPΛN

ż ´
βNpx, ξ, ωqp1 ´ ξpxqq ` ξpxq

¯
fpξ, ωq

´
fpσxξ, ωq ´ fpξ, ωq

¯
dνNpθ pξ, ωq
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`
ÿ

xPΛN

ż ´
rp1 ´ ωpxqq ` ωpxq

¯
fpξ, ωq

´
fpξ, σxωq ´ fpξ, ωq

¯
dνNpθ pξ, ωq

Let us deal with the first integral, the second will follow the same way. Since all the
rates are bounded, we have

I1 ď Cpλ1, λ2, rq
ÿ

xPΛN

ż ´
fpξ, ωqfpσxξ, ωq ´ fpξ, ωq2

¯
dνNpθ pξ, ωq

ď Cpλ1, λ2, rq
ÿ

xPΛN

ż ´ c
2
fpξ, ωq2 ` 1

2c
fpσxξ, ωq2 ´ fpξ, ωq2

¯
dνNpθ pξ, ωq

for an arbitrary c ą 0 with use (5.3.17) for the last inequality. Choosing c “ 2,

I1 ď Cpλ1, λ2, rq
4

ÿ

xPΛN

ż
fpσxξ, ωq2dνNpθ pξ, ωq

ď Cpλ1, λ2, rqBppθq
4

ÿ

xPΛN

ż
fpξ, ωq2dνNpθ pξ, ωq

for some positive constant Bppθq depending on pθ through a change of variables related
to Lemma 5.A.2(ii). Similarly, one gets

I2 ď Cpλ1, λ2, rqB1ppθq
4

ÿ

xPΛN

ż
fpξ, ωq2dνNpθ pξ, ωq

for some positive constant B1ppθq from a change of variables corresponding to Lemma
5.A.2(iii). Since f P L2pνpθq, we have

xLNf, fy ď A1N
d}f}2

L2pνN
pθ

q.

with A1 “ Cpλ1, λ2, rqBppθq
4

` Cpλ1, λ2, rqB1ppθq
4

.
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Perspectives
So far, we have been concerned with a competition model for a population dynamics

with random environment. Our results proved the existence of a unique phase transition
on Zd within a dynamic random environment on one hand, and survival and extinction
conditions on Z within a quenched random environment on the other hand. Assuming
these stochastic dynamics are underlying a microscopic scale, the hydrodynamic equa-
tion of the system with stirring is given by a non-linear reaction-diffusion system, with
additionally Dirichlet boundary conditions when in presence of stochastic reservoirs.

The following is an overview of possible guidelines.

Weak survival. Let Td be the homogeneous tree whereby each vertex has d ` 1
neighbours. A particular property that belongs to the basic contact process is that it
exhibits two phase transitions on Td, meaning that according to Definitions (1.2) of
Chapter 1, λc and λs are distinct. Following works on percolation by G. Grimmett and
C. Newman [36], R. Pemantle [68] proved that in dimension 3, weak survival occurs and

λc ă λs, λc ď 1
d ´ 1

, λs ě 1

2
?
d
.

Extensions to dimension 2 and inhomogeneous trees were done by T.M. Liggett [56, 55]
and A. Stacey [73]. Still close to percolation behaviours [36], R. Durrett and R. Schinazi
[24] proved the existence of infinitely many invariant measure in the intermediate phase.

See R. Schinazi [69, Chapter VII], T.M. Liggett [57, Part I.4] for further details on
the contact process on the tree.

The existence of a weak survival arose interests in investigating the behaviour of the
process within the intermediate phase. Biologically, a weak survival phase is thought of
as being the tipping phase where the SIT program would fail or success.

Some observations lead to think the behaviour of our symmetric multitype process
is similar to the basic contact process. Though, D. Griffeath showed that weak survival
can occur for totally asymmetric contact processes on Z.

Random environment. We studied the contact process in a particular quenched
random environment. Improved results would rely on finding conditions on the distri-
bution of the environment for the survival or extinction of the process such as in C.
Newman and S. Volchan [66] did in a 1-dimension case. Primarily based on percola-
tion techniques, they proved the survival of the process with conditions on the tail of
distribution of the environment, when the growth rate is small enough.

Studying the hydrodynamics of our system, it is foreseeable to investigate the process
in the presence of a macroscopic random environment or disorder.

Stirring limits and Predator-prey systems. By scaling and stirring the particle
system in Chapters 4 and 5, we proved it converges to the solution of a reaction-diffusion
system. As stated by R. Durrett [19, Chapter 9], it seems if one gets enough information
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on the limiting differential system, one would be able to derive the existence of stationary
distributions for the system with stirring.

Here, we studied a system evolving in a bulk in contact with stochastic reservoirs,
creating a flow of particles through the volume. The macroscopic system has been in-
vestigated in a more intricate way than the microscopic one used to be. Going back to
a microscopic scale, thus to the dynamics of population, it is relevant to ask ourselves
how it alters the survival and extinction phases of the process.

Hydrostatics. In finite volume, e.g. when ΛN “ t´N, ¨ ¨ ¨ , Nu ˆ Td´1
N , the Markov

process pξt, ωtqtě0 on ΛN is irreducible : for each N ě 1, there exists a unique invariant
measure µstatN . In this case, we may derive the hydrostatic limit of the system.
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