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ÉCOLE CENTRALE DE LILLE

THESIS

Submitted for the degree of

DOCTOR

Specialty : Automatic Control, Computer Science, Signal Processing and Image

By

Hassan Omran
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Thesis co-supervisor : M. L. Hetel CNRS Research Associate at LAGIS

Thesis prepared at

Laboratoire d’Automatique, Génie Informatique et Signal
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Introduction

The use of digital technologies has been contributing significantly to the applicability of

automatic control methods. Today, a digital computer is an essential part of almost any

control loop. A classical sampled-data control system is shown in Fig. 1. It is consti-

tuted of a continuous-time plant (based on power exchanges and energy transformation),

interacting in a feedback loop with a digital controller (based on a discrete-time control

algorithm). The continuous-time signal corresponding to the output of the system is

measured at sampling instants. The controller uses the sampled-data signal to calculate

a corresponding control action. The interface between the continuous-time signals and

the discrete-time signals is done by means of sample-and-hold devices.

In many present applications (such as cars, aircrafts, robots...) all these components are

embedded and the control parts are deployed on several microcontrollers, which have

to schedule their various tasks (measure, actuate, compute, communicate...) regarding

to real-time specifications and expected performances. The complexity in the design

of control algorithms is linked to the kind of modeling hypotheses one can accept as

“sufficiently realistic”. Among these, linearity of the process model and periodicity of

the sampling have been supposed for a long time, mainly because sampled-data control

✛

✲ Process

SH
Digital

controller

outputinput

✻

✲

✻

✲

Figure 1: Sampled-data control system.

xiii
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theory was well developed for the case of Linear-Time Invariant (LTI) systems with

constant sampling intervals.

However, these hypotheses are probably more related to the kind of control one can

compute under theoretical guarantees, than to the physics of the processes or the nature

of the controllers. When the interval between two successive sampling instances is time-

varying, sampled-data systems become much more complex: basically, even guaranteeing

stability in this case is not straightforward. It is also well recognized that, despite a rich

and dense effort, nonlinear systems remain complex by nature and still constitute a

research topic.

Nevertheless, from the engineer’s point of view, the situation of a nonlinear process with

an aperiodic controller has became the standard rather than the exception. Processes

are expected to reach their maximum performance of speed, low power consumption,

etc., and this makes non negligible nonlinear phenomena appear. In the same time,

microprocessors have to schedule more tasks, including communication with each others.

This increases their practical timing constraints and unavoidably generates imperfections

on the sampling rates.

Thus, already for linear systems and even more for nonlinear ones, it is of great interest

to be able to determine an upper bound on the sampling intervals which guarantees the

stability of a sampled-data controlled system. In the literature, this bound is referred

to as the MASP, which acronym comes from Maximum Allowable Sampling Period.

However, note that in the case of aperiodic sampling, the period does not exist anymore.

Along this manuscript, we will keep this acronym but it will rather refer to a Maximum

Allowable Sampling interval.

For the case of linear systems, several pioneering approaches exist for analyzing stability

under aperiodic sampling. These approaches share the advantage of being constructive,

thus quantitative estimations of the MASP may be provided. For the case of nonlinear

systems, several generic methods exist. However, in practice it is not always clear how

to apply them, and only few works provide a constructive tool for estimating the MASP.

Providing efficient methodology for computing the MASP in the nonlinear case is a

challenging, open problem.
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Objectives

The work in this thesis is dedicated to the following problem:

Find stability criteria for nonlinear sampled-data control systems, which provide a com-

putable estimate of the MASP.

A particular attention will be first given to the case of bilinear system. These systems

represent an intermediate between linear and nonlinear models. Their study is relevant

in theory, since they may approximate various nonlinear systems. It is also relevant in

practice, since they appear naturally in several application domains. We intend to study

the stability of bilinear systems with aperiodic sampled-data control. This will allow

for tackling the difficulties of nonlinear systems, while using the quasi-linear structure

of the considered class of systems. Our goal is to provide constructive methods for this

case.

Furthermore, we will show how the methodology can be extended for the much more

general case of nonlinear systems affine in the control.

Structure of the thesis

The thesis is organized as follows.

Chapter 1

In the first chapter we intend to present an overview of sampled-data control techniques.

We introduce general sampled-data systems, and a very short history of using digital

technology in control engineering. Then, we focus on the stability of sampled-data

control systems with aperiodic sampling. Without being exhaustive, we present what

we think to be the main methodologies for stability analysis in both the LTI and the

nonlinear cases.

Chapter 2

The second chapter is dedicated to the local stability analysis of bilinear sampled-data

systems, controlled via a linear state-feedback static controller, using a hybrid system

methodology.
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The proposed stability conditions are formulated as Linear Matrix Inequalities (LMIs).

Two constructive methods are considered. They are based on a hybrid system approach,

which has been presented in Chapter 1. The first method is a specialization of a generic

result used for the nonlinear case. The contribution here is to find a constructive way to

apply this generic method for the particular case of bilinear systems. The second method

is based on a direct search of a Lyapunov function using LMIs. The novelty here is to

avoid some conservative upper bounds on the derivative of a Lyapunov function in the

first method. The results of this chapter have been published in [95].

Chapter 3

This chapter re-considers the problem of local stability of bilinear systems with aperiodic

sampled-data linear state feedback control using a new approach. The method is based

on the analysis of contractive invariant sets, and it is inspired by the dissipativity theory.

Local stability is investigated via an invariance property of some ellipsoidal sets. State-

space constraints are easily included in the analysis. The region of attraction is estimated

by a certain level surface of a quadratic function, which can be interpreted as a discrete-

time Lyapunov function. An LMI optimization allows for choosing, among quadratic

Lyapunov functions, the one which maximizes the MASP. The results of this chapter

have been published in [92, 94].

Chapter 4

This chapter generalizes the results from Chapter 3 to the case of nonlinear sampled-

data systems affine in the input. Assuming that a stabilizing continuous-time controller

exists and has to be implemented digitally, we intend to provide sufficient asymptotic/-

exponential stability conditions for the obtained sampled-data system. The main idea of

the chapter is to address the stability problem using the concept of exponential dissipa-

tivity. Furthermore, the result is particularized for the class of polynomial input-affine

sampled-data systems, where stability may be tested numerically using Sum Of Squares

(SOS) decomposition and semi-definite programming. The SOS techniques are used to

derive storage and supply functions. The results of this chapter have been published in

[93, 96, 97].
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des systèmes non linéaires sous échantillonnage apériodique”. Journal Européen
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Chapter 1

Sampled-data control systems

1.1 Introduction

In this chapter we intend to present an overview on sampled-data control. We introduce

first general sampled-data systems, and a short history of using digital technology in

control engineering. Then, we focus on the stability of sampled-data control systems with

aperiodic sampling. We present the main methodologies for stability analysis in both

the Linear Time-Invariant (LTI) and the nonlinear cases. Without being exhaustive,

which would be neither possible nor useful, we try to give a structural survey of what

we think to be the main results and issues in this domain.

1.2 Evolution of sampled-data control

Technological advances offer faster and wider range of innovation, yet exploiting them

requires more research and engineering effort: automatic control did not escape it since

digital technology appeared. The rapid development and growth of digital technologies

have contributed significantly to the development of all engineering domains. Till the

1950’s, control engineering was entirely depending on analog components, while today

almost all control systems are digitally implemented. Making full use of the potentials

of computers and networks in control needed a deep understanding of the emerging

research domain. This issue has attracted the attention of researchers since the mid

20th century [56]. In 1960, Rudolph Kalman stated the following [57]:

In no small measure, the great technological progress in automatic con-

trol and communication systems during the past two decades has depended

1
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on advances and refinements in the mathematical study of such systems.

Conversely, the growth of technology brought forth many new problems (such

as those related to using digital computers in control, etc.) to challenge

the ingenuity and competence of research workers concerned with theoretical

questions.

In the 1950’s, computers were used for supervisory tasks, including scheduling, pro-

duction planning and reporting. Analog control loops were needed anyway as early

computers were unreliable, slow and expensive [106]. Then, in the 1960’s computers

began to take the place of the analog devices in some large industrial systems. The first

use of a digital computer for fully direct control of a process was initiated by Imperial

Chemical Industries (ICI) who began to work in 1959 with the Ferranti Company on

a Direct Digital Control (DDC) scheme for a soda ash plant at Fleetwood, Lancashire

[10].

Late in the 1960’s and in the 1970’s, technological progress made it possible to produce

smaller, cheaper and more reliable computers, with enhanced computing power [106].

The development of minicomputers and microcomputers permitted to widen the domain

of application of computers in control. It became possible to use them in smaller projects,

and the number of computers used in control systems, has been increasing rapidly [7].

Later, innovative efforts led to the crucial use of data networks in control systems. In

1986, Bosch introduced the Control Area Network (CAN) [8], and nowadays several net-

works (Fieldbus, industrial Ethernet, etc) are used in control applications. The domain

of application includes automotive industry, process control, teleoperation and others.

The advantages of using data networks in control are numerous: low-cost, avoidance of

unnecessary wiring, ease of maintenance, flexibility of adding new modules to the control

loop, etc. However, networks impose many imperfections that must be taken into ac-

count [8, 107, 129]. This motivated a new domain of academic research called Networked

Controlled Systems (NCSs) [47], where sampling belongs to the essential issues.

1.3 Sampled-data systems with aperiodic sampling

Most of the plants in engineering practice are continuous-time “by nature”. Speed and

position of a vehicle, temperature and pressure in a chemical process, current of an

electrical device are few examples. The class of sampled-data control systems combines

features of both continuous-time and discrete-time systems. A sampled-data control

system is formed of a continuous-time plant, controlled by a discrete-time algorithm.

The mixture of two different types of signals results in a system of a hybrid nature. The
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Clock

Algorithm D/AA/D Process✲ ✲ ✲ ✲✲

❄ ❄❄
y(t)u(t){u(tk)}{y(tk)}

Computer

Figure 1.1: Diagram of a sampled-data control system.

controller is implemented using a digital computing unit, which can be a computer or a

microcontroller, on-board or connected via a data network.

A schematic of a general sampled-data control system is shown in Fig. 1.1. It consists of

continuous-time process with input u and output y, interconnected with a digital com-

puting unit. The interface between the continuous-time process and the discrete-time

controller is made using analog-to-digital (A/D) and digital-to-analog (D/A) converters.

The output y(t) which is a continuous-time signal, is converted to a discrete sequence

{y(tk)} using an A/D converter. The computer then generates the control action which

is the sequence {u(tk)}. This sequence is converted to a continuous-time input u(t) us-

ing a D/A converter. One way to do the D/A conversion is to keep the signal constant

between two sampling instants, this mechanism is called zero-order hold (ZOH).

The digital controller must synchronize the sampling instants, receive the sampled mea-

sured value from the A/D converter, calculate the control action and send it to the D/A

converter. This is commonly considered to be occurring in a periodic way, with constant

sampling intervals. However, the intervals between two successive sampling instants may

be varying due to practical constraints. In point-to-point digital control systems, jitter

can be caused by clock inaccuracy, imperfect synchronization, computational delays,

system architecture characteristics and real-time scheduling [127]. Aperiodic sampling

intervals may also be encountered in NCSs, as constraints are induced by the network

[107, 129]. For examples, packet dropouts are almost inevitable in NCSs, especially in

the case of wireless networks, and they cause variations of the sampling intervals. As a

matter of fact, the sampling interval will be a multiple of the nominal one when packets

are dropped out, as it can be seen in Fig. 1.2 (here, packets containing the samples 4, 7

and 8 are lost).

Solutions to such a problem can be obtained by means of choosing a hardware with more

powerful capabilities. However, these solutions are usually expensive, and they may not
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Figure 1.2: Aperiodic sampling as a result of packet dropouts.

always be available. One can also think of solutions from the computer science point of

view, like improving the efficiency of calculations, optimizing the codes and enhancing

the scheduling policies. Again, these solutions may be limited. From control theory point

of view, the solution is to take the imperfections into account, and to design controllers

that are less sensitive to the variations of the sampling intervals. Nevertheless, this

requires studying systems with complex behaviors, and addressing challenging control

problems. In fact, variations of the sampling intervals can have a major effect on stability

and performance of sampled-data systems.

Besides, it must be mentioned that there exist several approaches that consider changing

intentionally the sampling intervals, in order to sample as less as possible [4, 32, 45, 118].

In event-based control [118], the sensor measures continuously the output of the system,

but it sends the information to the controller only if specific conditions are satisfied. For

example, if the difference between the currently measured value and the last transmitted

one exceeds some threshold. In self-triggered control [4], the next sampling instant

is calculated as well as the control action, based on the current sampled value. The

methodology in state-dependent sampling control [32] is like the one in self-triggered

control, the difference is that in the former method the next sampling interval is pre-

calculated off-line, while in the latter one the calculations are real-time.

In this thesis we focus on the robustness aspects with respect to time-varying sampling

intervals. This problem will be mathematically formalized in the following sections.
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1.4 Analysis and controller design approaches for sampled-

data systems

Because of the hybrid nature of sampled-data systems, there exist specific methods for

controller design. Two approaches have attracted most of the attention in the literature:

emulation and discrete-time. These approaches will be discussed later in Section 1.6.1

and Section 1.6.2, but we give here a rough overview of their main lines.

Emulation

The principle of the emulation approach is to design a continuous-time controller using

one of the methods from continuous-time control theory. This is done while completely

ignoring the sampling. Then, the controller is discretized using methods such as Euler,

Runge-Kutta or Tustin. Finally, the discretized control law is implemented digitally us-

ing sample-and-hold devices such as ZOH. This is a popular and easily applied approach.

However, a fundamental question, which is important from both practical and academic

points of view, needs to be addressed: how to choose the sampling period so that the

system with the emulated controller, will have a satisfactory performance? Intuitively

a “fast” sampling is needed, but an exact qualitative answer to this question is a very

important issue.

Discrete-time

In this approach, an exact or an approximate discrete-time model of the plant is found

first. Then, a discrete-time controller of the discrete-time model is designed and imple-

mented using a ZOH. This method is straightforward for the case of LTI systems with

a fixed sampling period, as an exact linear discrete-time model can be found. This case

has been studied since the 1950’s, leading to a mature discrete-time control theory for

LTI systems. For other cases, it is usually harder to use this approach. For example, an

exact discrete-time model of a nonlinear continuous-time plant is usually unavailable,

and an approximation is often used in order to design the controller. However, in this

case it is not guaranteed that the discrete-time controller, which is designed to stabilize

the approximate discrete-time model of the plant, will also stabilize the sampled-data

system.



Chapter 1. Sampled-Data Control Systems 6

Sampled-data approach

This approach is related to the emulation one. The main difference is the use of a

discrete-time model of the plant. The approach takes into account the inter-sample

behavior of the system, like in [25] where lifting technique is used to study linear sampled-

data systems. For more information about this approach see [25, 49, 80, 128] and the

references therein.

1.5 Stability analysis of LTI sampled-data systems

Consider the following LTI continuous-time plant:

ẋ(t) = A0x(t) +B0u(t), (1.1)

where x ∈ R
n is the state vector, and u ∈ R

m is the input vector. Assume that the

following assumptions hold:

• The state vector x is available only on a set of sampling instants {tk}k∈N:

0 = t0 < t1 < · · · < tk < · · · ; tk ∈ R+, ∀k ∈ N; lim
k→∞

tk = ∞. (1.2)

• The sampling intervals are time-varying, and they are bounded in the interval

[h, h]:

0 < h ≤ tk+1 − tk ≤ h, ∀k ∈ N. (1.3)

• The control is a piecewise-constant:

u(t) = Kx(tk), ∀t ∈ [tk, tk+1), (1.4)

for a matrix K with appropriate dimensions.

In the literature, the value h is often referred to as Maximum Allowable Sampling Period

(MASP). Note that we are supposing that there is no transmission delays and no data-

processing time. Under these assumptions, we obtain the closed-loop sampled-data

system:

ẋ(t) = A0x(t) +B0Kx(tk), ∀t ∈ [tk, tk+1), ∀k ∈ N. (1.5)
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The solution x(·) of (1.5) at any instant t ∈ [tk, tk+1) is

x(t) = Φ(t− tk)x(tk) + Γ(t− tk)u(tk)

=
(
Φ(t− tk) + Γ(t− tk)K

)
x(tk),

where 





Φ(t− tk) := eA0(t−tk),

Γ(t− tk) :=
∫ t−tk
0 eA0sB0ds.

(1.6)

Then,

x(t) = Λ(t− tk)x(tk), (1.7)

with Λ(s) = Φ(s) + Γ(s)K. Denoting θk := tk+1 − tk, x(k) := x(tk) and u(k) := u(tk) =

Kx(k), we get the discrete-time model

x(k + 1) = Φ(θk)x(k) + Γ(θk)u(k), (1.8)

which in closed-loop becomes

x(k + 1) = Λ(θk)x(k). (1.9)

The controller is found via the emulation approach. First, the gain K is determined by

classical continuous-time methods for the system (1.1). Then, it is discretized using a

ZOH (1.4). Alternatively, this gain can be obtained by discrete-time methods for the

model (1.8). This is called discrete-time approach.

Periodic sampling

Consider the sampled-data system (1.5) with periodic sampling, i.e. where the sampling

instants satisfy

tk+1 − tk = T, ∀k ∈ N. (1.10)

In this case, an exact discrete-time model can be obtained from (1.9):

x(k + 1) = Λ(T )x(k). (1.11)

The system (1.11) is a LTI discrete-time system. Well known necessary and sufficient

conditions for its asymptotic stability are called in the following theorem.

Theorem 1.1. The discrete-time LTI system (1.11) is asymptotically stable if and only

if the matrix Λ(T ) is Schur, i.e. all its the eigenvalues are strictly within the unit circle.
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Figure 1.3: Stability of the sampled-data system in Example 1.1 with periodic sam-
pling intervals.

The case of periodic sampling is well understood, since control theory is well developed

for discrete-time LTI systems. See also [25, 34, 35, 106] where other advanced topics can

be found, such as: optimal control, robust controller design, identification, etc.

Aperiodic sampling

Consider the sampled-data system (1.5) with aperiodic sampling, i.e. where the sampling

instants satisfy (1.3). Since 1989, much attention has been given to the stability analysis

of such systems [108, 123, 127]. Control systems with aperiodic sampling are more

complicated to study than the periodic case, as the variations of the sampling intervals

can degrade the stability and the performance of sampled-data control systems. The

following motivating example from [130] shows how variations of the sampling intervals

can cause instability.

Example 1.1. Consider the LTI sampled-data system (1.5), where

A0 =

[

1 3

2 1

]

, B0 =

[

1

0.6

]

, K =
[

−1 −6
]

. (1.12)

In the case of constant sampling intervals, the sampled-data system is stable for both

sampling intervals T1 = 0.18 and T2 = 0.54. This can be seen from Theorem 1.1, as the

eigenvalues of the matrices Λ(T1) and Λ(T2) defined in (1.11) satisfy

|λi(Λ(T1))| = 0.7761, i = 1, 2;

|λi(Λ(T2))| = 0.7083, i = 1, 2.
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Figure 1.4: Instability of the sampled-data system in Example 1.1 with alternating
sampling intervals T1 → T2 → T1 · · · .

An illustration of the systems evolution, for both of these constant sampling intervals, is

given in Fig 1.3. One may think that alternating the sampling interval between T1 and

T2 will not affect the stability. However, the sampled-data system with periodically time-

varying sampling intervals T1 → T2 → T1 · · · is unstable, as it can be seen in Fig 1.4.

This example shows the importance of taking into consideration the variations of the

sampling intervals, when analyzing the stability of sampled-data systems.

In what follows, we present different approaches in the literature which provide sufficient

conditions for the stability of LTI sampled-data systems under aperiodic sampling.

1.5.1 Input-delay approach

This approach was first introduced in [73] and further developed in [37], and then in

several other works like [36, 113, 114]. In this approach, the sampled-data system is

modeled as a continuous-time system, with delayed control input. The basic idea in this

approach is to write the sampled-data control (1.4) as a delayed control

u(t) = Kx(tk) = Kx(t− τ(t)),

τ(t) = t− tk, ∀t ∈ [tk, tk+1), (1.13)

where the delay is piecewise-linear, and satisfies τ̇(t) = 1 for t 6= tk, and τ(tk) = 0. This

delay indicates time that has passed since the last sampling instant, see Fig. 1.5. This

permits to use tools for stability of systems with time-varying delays. Time-delay are

described by means of functional differential equations.

Definition 1.2 (Retarded Functional Differential Equations). The general form of a

retarded functional differential equation for a maximum delay h > 0 is

ẋ = f(t, xt), (1.14)

xt0 = φ(t0 + θ), ∀θ ∈ [−h, 0],
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Figure 1.5: The piecewise-linear delay induced by sampling.

where x(t) ∈ R
n and f : R × C

(
[−h, 0],Rn

)
→ R

n. The notation C
(
[a, b],Rn

)
denotes

the set of continuous functions mapping the interval [a, b] into R
n, and xt(θ) = x(t+ θ),

∀θ ∈ [−h, 0].

Lyapunov methods are an efficient tool for stability analysis. In the case of delay-free

systems, stability is guaranteed via the construction of a classical Lyapunov function,

which is a positive definite function V (t, x(t)), whose time derivative is negative definite

along the system trajectories. For a time-delay system, the evolution of the state at

instant t is determined by xt, instead of x(t). Thus, it is natural to study the stability

using a Lyapunov functional V (t, xt).

Theorem 1.3 (Lyapunov-Krasovskii Stability Theorem [42]). Consider the continuous,

non-decreasing functions α, β, γ : R+ → R+, where α(s), β(s) are strictly positive and

satisfy α(0) = β(0) = 0. Suppose that the function f in (1.14) maps R × bounded set in C
into a bounded set in Rn. If there exists a differentiable functional V : R×C

(
[a, b],Rn

)
→

R such that

α(|φ(0)|) ≤ V (t, φ) ≤ β(‖φ‖c),

and

V̇ (t, φ) ≤ γ(‖φ‖c),

where | · | denotes a norm over R
n, and ‖φ‖c = maxa≤ξ≤b |φ(ξ)| is the associated con-

tinuous norm of φ ∈ C([a, b],Rn), then the origin of the system (1.14) is stable. If

γ(s) > 0 for s > 0, then it is Uniformly Asymptotically Stable (UAS). If, in addition,

lims→∞ α(s) = ∞, then it is Globally Uniformly Asymptotically Stable (GUAS).
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A functional which satisfies the hypothesis of Theorem 1.3 is called Lyapunov-Krasovskii

Functional (LKF). An example of such LKF is given by:

V (xt) = xT (t)Px(t) +

∫ 0

−h

∫ t

t+θ

ẋT (s)Uẋ(s) ds dθ, (1.15)

where P > 0 and U > 0. This LKF has been used for several time-delay systems, and

in particular for sampled-data systems [37]. We recall also the following discontinuous

time-dependent Lyapunov functional from [36]:

V (t, x(t), ẋt) = xT (t)Px(t) + (h− τ(t))

∫ t

t−τ(t)
e2α(s−t)ẋT (s)Uẋ(s). (1.16)

The analysis of the derivatives of the functionals (1.15) and (1.16) leads to LMI condi-

tions. Upper bounding techniques are usually used to ensure the negativity of their time

derivatives, and the proposed LMIs are only sufficient for the existence of these LKFs.

The LKF in (1.16) provides less conservative results than the one in (1.15), as it takes

into account the information about the particularity of the sampling-induced saw-tooth

delay. Thus, it can ensure the stability for time-varying delays which are longer than

any constant delay that preserves stability. A drawback of this approach is, as usual

with Lyapunov techniques, that it is not clear how to choose the Lyapunov functional.

Currently, an important effort of research is dedicated to finding and exploiting better

ones.

1.5.2 Impulsive modeling approach

In this approach, the sampled-data system is modeled as an impulsive system. The

stability is studied in a hybrid systems framework, using Lyapunov functions with dis-

continuities at the impulse times [13, 82].

Definition 1.4 (Impulsive Systems [82]). Consider the system

ẋ(t) = fk(x(t), t), t 6= tk, ∀k ∈ N, (1.17)

x(tk) = gk(x(t
−
k ), tk), t = tk, ∀k ∈ N,

where fk, gk : Rn×R → R are locally Lipschitz functions such that f(0, t) = 0, g(0, t) =

0, ∀t ≥ t0, with an impulse sequence tk which is strictly increasing in [t0,∞) for some

initial time t0.

The stability of the impulsive system (1.17) can be ensured by using Lyapunov methods,

involving Lyapunov functions that are discontiuous at impulse instants. Recall the
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notation in (1.13) τ(t) = t− tk, ∀t ∈ [tk, tk+1). We state the following stability result

from [82].

Theorem 1.5 ([82]). Assume that there exist positive scalars c1, c2, c3, b and a Lya-

punov function V : Rn × R → R, such that:

c1|x|b ≤ V (x, τ) ≤ c2|x|b, ∀x ∈ R
n, ∀τ ∈ [0, h].

Suppose that for any impulse sequence {tk}k∈N such that:

{tk| ǫ ≤ tk+1 − tk ≤ h, k ∈ N}, (1.18)

with some 0 ≤ ǫ ≤ h, the corresponding solution x(·) to (1.17) satisfies:

dV (x(t), τ(t))

dt
≤ −c3V (x(t), τ(t)), ∀t 6= tk, ∀k ∈ N,

and

V (x(tk), 0) ≤ lim
t↑tk

V (x(t), τ(t)), ∀k ∈ N.

Then, the equilibrium point x = 0 of system (1.17) is Globally Uniformly Exponentially

Stable (GUES) over the class of sampling impulse instants (1.18), i.e. there exist c, λ > 0

such that for any sequence {tk} that belongs to the set (1.18):

|x(t)| ≤ c|x(t0)|e−λ(t−t0), ∀t ≥ t0.

In order to apply this method to the stability problem of sampled-data systems, system

(1.5) is written as an impulsive system (1.17) with the state ξ(t) = [xT (t), zT (t)]T , where

z(t) = x(tk), ∀t ∈ [tk, tk+1). The dynamics of the system can be written as

ξ̇(t) = Fξ(t), t 6= tk, ∀k ∈ N,

ξ(tk) =

[

x(t−k )

x(t−k )

]

, t = tk,∀k ∈ N,

with the notation x(t−) = limθ↑t x(θ), and

F :=

[

A0 B0K

0 0

]

.
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The stability analysis can be led in this hybrid framework, using time-varying discon-

tinuous Lyapunov functions. For example, in [82] the following function is considered:

V (ξ(t)) = xT (t)Px(t) + ξT (t)
( ∫ 0

−τ(t)
(s+ h)(FeFs)T R̃(FeFs)ds

)

ξ(t)

+(h− τ(t))(x(t) − z(t))TX(x(t) − z(t)),

where R̃ :=

[

R 0

0 0

]

and P , R X are symmetric positive definite matrices. This dis-

continuous Lyapunov function is inspired by the Lyapunov-Krasovskii functional from

the input-delay approach, like the one in [37]. Vice versa, this approach has also in-

spired the use of discontinuous Lyapunov functionals in the time-delay approach (see

for example the functional (1.16)). Hybrid and input-delay approaches share the same

advantages and drawbacks. Both of them are constructive, and LMI conditions are used

to construct the Lyapunov functionals/functions. On the other hand, conservatism is

added by the upper boundings introduced when studying the derivatives of Lyapunov

functionals/functions.

1.5.3 Robust control theory approach

In this approach, sampling effect is seen as a perturbation, and tools from robust control

theory are used to ensure stability. The main idea is to write the sampled-data system

(1.5) on each interval [tk, tk+1) as:

ẋ(t) =
(
A0 +B0K
︸ ︷︷ ︸

:=A

)
x(t) +B0K

︸ ︷︷ ︸

:=B

(x(tk)− x(t)
︸ ︷︷ ︸

:=w(t)

). (1.19)

Then, the system can be represented equivalently by the feedback interconnection of the

operator ∆sh : y → w defined by:

w(t) = (∆sh y)(t) = −
∫ t

tk

y(τ)dτ, ∀t ∈ [tk, tk+1), (1.20)

with the system G

G :=







ẋ(t) = Ax(t) +Bw(t),

y(t) = Cx(t) +Dw(t),
(1.21)

where C = A = A0 + B0K and D = B = B0K, which yields y(t) = ẋ(t). Note that the

nominal system (1.21) is LTI. It represents the dynamics of the continuous-time (delay-

free) system with an additive input perturbation w(·). The operator ∆sh captures both

the effects of sampling and its variations. This can be seen in Fig. 1.6. The stability can

then be studied by analyzing the equivalent model (1.21), (1.20). Small gain theory [42]
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Figure 1.6: Equivalent representation of the sampled-data system, from a robust
control theory point of view.

constitutes an interesting tool in this framework: the stability of the interconnection G,
∆sh is guaranteed if the following condition holds:

‖∆sh‖‖G‖ < 1,

where ‖G‖ is the L2-induced norm of operator G : w → y, and it is equal to ‖Ĝ(s)‖∞
the H∞ norm of Ĝ(s) = s(sI − A)−1B. ‖∆sh‖ is the L2-induced norm of operator

∆sh : y → w. In order to check the small gain condition, ‖∆sh‖ must be estimated.

An estimate of the norm has been computed in [59], with the purpose of studying the

stability of single-input single-output time-delay systems, with a time-varying delay. As

a matter of fact, a more general uncertain delay operator has been considered:

∆d : y(t) → w = (∆dy)(t) =

∫ t

t−τ(t)
y(s)ds, (1.22)

where τ(t) ∈ [0, h].

Lemma 1.6 ([59]). The L2-induced norm of the operator ∆d (1.22) is bounded by h.

Using this property, and the fact that the operator satisfies M∆d = ∆dM for M ∈ R
n×n,

Mirkin [74] provided the following small gain condition

∃M ∈ R
n×n, M > 0 such that ‖MĜ(s)M−1‖∞ <

1

h
. (1.23)

Interestingly, it is also shown that (1.23) is related to the condition in [37] which is

obtained using the input-delay approach and the Lyapunov-Krasovskii functional (1.15).

The same LMI can be used to check both conditions. Mirkin then showed that the bound

on the operator gain can be enhanced by exploiting the properties of ∆sh.

Lemma 1.7 ([74]). The operator ∆sh defined in (1.20) is bounded on L2 and its L2-

induced norm is

δ0 =
2

π
h, (1.24)
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and thus

〈∆shz,∆shz〉 ≤ δ20〈z, z〉,

for all z ∈ L2.

This bound on the norm is actually exact, and it is attained when tk+1 − tk = h. This

leads to the following sufficient stability condition, improving (1.23):

∃M ∈ R
n×n, M > 0 such that ‖MĜ(s)M−1‖∞ <

π

2h
. (1.25)

Note that π
2 ≈ 1.57, and thus the conservatism of (1.25) is reduced by about 57% with

respect to (1.23). Fujioka [39] showed that the operator ∆sh also satisfies the following

passivity-like property.

Lemma 1.8 ([39]). The operator ∆sh defined in (1.20) satisfies

〈∆shz, z〉 ≤ 0, (1.26)

for all z ∈ L2.

The two above properties of ∆sh are grouped into the following integral property for

0 ≤ Y = Y T ∈ R
n×n, 0 < X = XT ∈ R

n×n:

∫
∞

0

[

y(τ)

w(τ)

]T [

δ20X −Y

−Y −X

] [

y(τ)

w(τ)

]

dτ ≥ 0. (1.27)

Using the integral property (1.27), Fujioka [39] has proposed a stability condition based

on Integral Quadratic Constraints (IQCs) [72].

Theorem 1.9 ([39]). Suppose that A = A0 +B0K (1.19) is Hurwitz. The system (1.5)

is GUAS if there exist ǫ > 0, 0 < X = XT ∈ R
n×n, 0 ≤ Y = Y T ∈ R

n×n satisfying

[

Ĝ(jω)

I

]T [

δ20X −Y

−Y −X

] [

Ĝ(jω)

I

]

≤ −ǫI, (1.28)

for all ω ∈ R.

Note that only input-output stability (L2-stability) is ensured under condition (1.28) in

Theorem 1.9, as well as under (1.25) or (1.23). However, it has been shown in [39] that

when A is Hurwitz, the input-output stability implies the asymptotic stability of the

origin x = 0.
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Checking (1.28) in Theorem 1.9 requires verifying the condition at infinite number

of points. The following equivalent LMI condition has been proposed using Kalman-

Yakubovich-Popov Lemma [105].

Theorem 1.10 ([39]). The system (1.5) is UGAS if there exist 0 < P = P T ∈ R
n×n,

0 < X = XT ∈ R
n×n, 0 ≤ Y = Y T ∈ R

n×n satisfying

[

ATP + PA PB

BTP 0

]

+

[

C D

0 I

]T [

δ20X −Y

−Y −X

][

C D

0 I

]

< 0. (1.29)

The approach is interesting, because condition (1.29) is simple and has few variables. It

enhances the applicability, especially from an engineering point of view. Nevertheless,

it is only applicable to LTI systems, and it is not clear how to extended it to systems

with time-varying parametric uncertainties. In Chapter 3, we will propose an extensible

alternative via dissipativity theory

1.5.4 Convex-embedding approach

With the convex-embedding approach [27, 38, 48], the stability is studied in the discrete-

time domain. Denote θk = tk+1 − tk, and consider the discrete-time system (1.9)

xk+1 = Λ(θk)xk, (1.30)

where, as in Section 1.5:

Λ(η) = eA0(η) +

∫ η

0
eA0sBdsK. (1.31)

The system (1.30) is Linear Parameter-Varying (LPV), where Λ(θk) is an exponen-

tial uncertainty with a time-varying parameter θk ∈ [h, h]. Stability of (1.30) can be

guaranteed by showing the existence of discrete-time Lyapunov functions. For exam-

ple, the system is exponentially stable if one can find a quadratic Lyapunov function

V (x) = xTPx such that

P > 0,

ΛT (η)PΛ(η) − P < 0, ∀η ∈ [h, h]. (1.32)

Note however that verifying the previous condition requires verifying an infinite set of

inequalities. The main idea here is to find a finite set of sufficient conditions for (1.32)

by embedding the set W := {Λ(η), η ∈ [h, h]} in a larger set W̄, defined as the following
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W

W̄

Λ1

Λ2

Λn

Figure 1.7: Embedding of the uncertainty set W in W̄ .

convex hull with finite number of vertices Λi, i = 1, · · · , N :

W := {Λ(η), η ∈ [h, h]} ⊆ W̄ := conv{Λ1,Λ2, · · · ,ΛN}, (1.33)

=

{ N∑

i=1

αiΛi |αi ≥ 0, i = 1, · · · , N,
N∑

i=1

αi = 1

}

.

This idea is illustrated in Fig. 1.7. The main difficulty in constructing the polytope

W̄ is the exponential nature of the uncertainty (1.31). Several approaches exist for the

computation of the vertices Λi. See for example [48] for a Taylor series approximation,

[38, 110] for a method using gridding and [27] for another one based on the real Jordan

form.

Using the vertices in (1.33), the infinite dimensional inequality problem in (1.32) is

guaranteed to be satisfied if the following LMIs are satisfied

P > 0,

ΛT
i PΛi − P < 0, i = 1, · · · , N, (1.34)

by applying twice the Schur complement lemma. Note that in the previous approaches,

stability was guaranteed by means of a continuous-time Lyapunov function or functional

(with or without discontinuities), while here a discrete-time Lyapunov is considered.

Thus, the stability is guaranteed for the sequence x(tk), without consideration of the

intersample behavior. However, in [39], the following proposition has shown that for

linear sampled-data system, the stability for the convergence of the state in continuous-

time and in discrete-time, is equivalent.

Proposition 1.11 ([39]). Consider the sampled-data system (1.5) with (1.3). For a

given x(t0), the following conditions are equivalent:

1. limt→∞ x(t) = 0

2. limk→∞ x(tk) = 0
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In [49] the convex embedding approach is extended to the continuous-time case, using

a quasi-quadratic Lyapunov function. This method considers intersample behavior. It

provides an accurate analysis, the precision of which can be tuned according to the ac-

curacy of the polytopic approximation (1.33). However, this may increase the number

of vertices, and therefore the computational complexity of the analysis. Furthermore, it

seems difficult to adapt the method to systems with time-varying parametric uncertain-

ties.

1.6 Stability analysis of nonlinear sampled-data systems

A system which includes a nonlinear plant and a sampled-data control law is called

a nonlinear sampled-data control system. The linearization of the nonlinear model in

the neighborhood of an operating point yields a linear approximation which permits

to use tools from linear control theory. Nevertheless, the approximation is only valid

sufficiently near the operating point, and the nonlinearity must be taken into account

in order to analyze the stability. Either for the periodic or the aperiodic sampling

cases, the nonlinear sampled-data control is less understood than the linear one. In

the following, an overview of methods and tools for studying nonlinear sampled-data

systems is presented. The main research lines are classified according to the way the

controller is obtained. There are two main approaches: the emulation approach, and the

discrete-time approach. The steps of these two approaches are given in Table 1.1 from

[84].

1.6.1 Emulation approach for nonlinear systems

In the emulation approach, it is assumed that some controller is designed in continuous-

time. Then, this controller is discretized using one of the numerical methods, such as

Euler, Runge-Kutta or Tustin [117]. Finally, it is implemented using a sample-and-hold

device. Thus, the controller design is separated from the sampling issue, and several

Table 1.1: The steps of the discrete-time and the emulation approaches.

Emulation Discrete-time

continuous-time plant model continuous-time plant model
↓ ↓

continuous-time controller discretize plant model
↓ ↓

discretize controller discrete-time controller
↓ ↓

implement the controller implement the controller
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classical tools from continuous-time control theory [64] can be used. On the other hand,

in order to make the sampled-data system inherit the properties of the continuous-time

system, fast sampling is required, and choosing the upper bound of the sampling interval

is a critical question.

Consider the following plant:

ẋp(t) = fp(xp(t), u(t)), y(t) = gp(xp(t)), (1.35)

where xp is the plant state, u is the control input, y is the measured output. Suppose

that stability in some sense (UGAS, ISS, etc) is guaranteed by the continuous-time

controller:

ẋc(t) = fp(xc(t), y(t)), u(t) = gc(xc(t), y(t)), (1.36)

where xc is the controller state. The implementation of this controller using a ZOH

yields:

t ∈ [tk, tk+1) :

{

ẋp(t) = fp(xp(t), u(tk)),

y(t) = gp(xp(t)),
(1.37)

t ∈ [tk, tk+1) :

{

ẋc(t) = fc(xc(t), y(tk)),

u(t) = gc(xc(t), y(tk)).
(1.38)

Note that in this case, the controller is supposed to be calculated in continuous-time, as

can be seen from (1.38). The values of y and u are transmitted on sampling instants tk.

When the controller is computed numerically, (1.38) is to be replaced by:

tk = kT, k ∈ N :

{

xc(k + 1) = F c
T (xc(k), y(k)),

u(k) = gc(xc(k), y(k)),
(1.39)

where T is a constant sampling interval, y(k) := y(tk) and u(k) := u(tk). Note that in

this second model, periodic sampling is supposed. Moreover, the closed-loop system is

determined by a differential equation which represents the continuous-time plant, and

a difference equation which represents the discrete-time controller. The term F T
c is

obtained by calculating a discrete-time model of (1.38).

1.6.1.1 Qualitative properties of sampled-data systems under emulation

The choice of sampling intervals is a critical issue in the emulation approach. Intuitively,

by choosing a sufficiently fast frequency of sampling, the stability will be preserved under

sampled-data implementation. This conjecture has been confirmed in [46], for the case

of input-affine systems:
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Theorem 1.12 ([46]). Consider the system

ẋp(t) = f(t, xp(t)) + g(xp(t))u(t), (1.40)

with xp ∈ R
n, f : R × R

n → R
n and g : Rn → R

n, |g| ≤ c, c > 0 . Suppose that a

control uC(xp(t)) exists and stabilizes the system exponentially, and that f(·), g(·) and

uC(·) are smooth with respect to t and xp. Furthermore, the continuous-time controlled

system shall have the Lipschitz properties:

|f(t, x1)− f(t, x2)| ≤ Kf |x1 − x2|,

|uC(x1)− uC(x2)| ≤ Ku |x1 − x2|.

Finally it is assumed that the open-loop system (1.40) has no finite escape time for any

bounded input u. For discretized control let the state be available at well defined time

instants tk = t0+kT , k = 0, 1, · · · : xp(tk) = xp(t)|t=tk . Consider that the control applied

to (1.40) is discretized:

u(t) = uC(xp(tk)), ∀t ∈ (tk, tk+1], u(t0) = 0.

Then, there exists a sufficiently small T̂ such that for any T < T̂ the discretized control

for the system (1.40) is stable.

Even thought Theorem 1.12 does not give an estimation of the stabilizing sampling

frequency, it proves the interesting fact that the discretization of stabilizing continuous-

time nonlinear control law with Lipschitz property preserves the stability of the initial

nonlinear system, for constant and sufficiently small sampling intervals. This result has

been generalized in [16] to the case of time-varying sampling intervals, with dynamical

control laws which are discretized using Euler approximation.

In the case of ISS, a similar result is presented in [121]. It shows that when the pe-

riodic sampling is sufficiently fast, ISS property of a nonlinear system is semi-globally

practically preserved. The semi-global practical stability means that for any region of

initial conditions, there exists a sufficiently small sampling period that asymptotically

stabilizes the origin of the system. The result is based on exploiting a Razumikhin-type

theorem for ISS.

1.6.1.2 Stability analysis based on linearization

For a special class of nonlinear sampled-data systems, it is shown in [52] that stability

conditions can be obtained by analyzing a linearized model.
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Theorem 1.13 ([52]). Consider the sampled-data nonlinear system with a constant

sampling interval tk+1 − tk = T :

t ∈ [tk, tk+1) : ẋp(t) = f(xp(t)) +B0xc(tk),

k ∈ N : xc(k + 1) = Cxc(k) +Dxp(k), (1.41)

where B0, C and D are real matrices with appropriate dimensions, and xc(k) := xc(tk),

xp(k) := xp(tk). The function f : Rn → R
n is assumed to be continuously differen-

tiable with f(0) = 0. Then, the equilibrium (xTp , x
T
c ) = (0, 0) of (1.41) is uniformly

asymptotically stable, if the equilibrium of the linear sampled-data system

t ∈ [tk, tk+1) : ẋp(t) = A0xp(t) +B0xc(tk),

k ∈ N : xc(k + 1) = Cxc(k) +Dxp(k), (1.42)

is exponentially stable, where A0 ∈ R
n×n denotes the Jacobian of f at xp = 0

A0 =
∂f

∂xp

∣
∣
∣
∣
xp=0

.

The nature of the result is in the spirit of the Lyapunov’s First Method [64], as it permits

to guarantee the stability of the equilibrium of the nonlinear system, by studying the

stability of its linearization at the origin. However, in the same way, it does not provide

any estimate of the domain of attraction. Note that the origin of the linear sampled-data

system (1.42) is exponentially stable if and only if the matrix

[

Φ(T ) Γ(T )

D C

]

is Schur, where Φ(T ) and Γ(T ) are given in (1.6). This can be found directly from

Theorem 1.1. This result has been generalized in [53] to the case of time-varying sampling

intervals, with a more general class of nonlinear systems. In [69], stability conditions are

given, based on an appropriate linearization of the plant and of the controller. However,

here again these methods do not provide any estimate of the domain of attraction.

1.6.1.3 Dissipation preservation under emulation

In [5, 9, 68, 84], some results concerning the emulation approach were generalized and

unified in a methodological framework, by considering the preservation of dissipation

inequality under sampling. It is shown that if a continuous-time controller provides
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some dissipation properties, then the resulting sampled-data system satisfies similar

properties in a semi-global practical sense.

Consider the general nonlinear plant:

ẋp = fp(xp, u, w), y = gp(xp), (1.43)

where xp is the plant state, u is the control input, y is the measured output and w is

the disturbance. Suppose that stability is guaranteed by the continuous-time dynamic

output feedback:

ẋc = fc(xc, y), u = gc(xc), (1.44)

where xc is the controller state. Consider the emulation of this controller, with a sequence

of periodic sampling instants tk = kT , k ∈ N. In [5], the discrete-time model of the

closed-loop system with a ZOH is denoted as:

xp(k + 1) = F p
T (xp(k), xc(k), w[k]), (1.45)

xc(k + 1) = F c
T (xp(k), xc(k), w[k]),

where xp(k) := xp(tk), xc(k) := xc(tk) and w[k] := {w(t) : t ∈ [tk, tk+1]}.

Theorem 1.14 ([5]). Suppose that there exists a differentiable storage function V (xp, xc)

and a continuous supply rate S(xp, xc, w) such that the following holds for all (xp, xc)

and w along (1.43) (1.44):

V̇ =

〈
∂V

∂x
, f

〉

≤ S(xp, xc, w), (1.46)

where x := (xp, xc) and f := (fp, fc). Then for any strictly positive numbers D > ν > 0

there exists T ∗ > 0 such that for all T ∈ (0, T ∗), all (xp, xc, w) with |(xp(k), xc(k))| ≤ D,

ess supθ∈[tk,tk+1] |w(θ)| ≤ D we have that (1.45) satisfies:

∆V

T
≤ 1

T

∫ tk+1

tk

S(xp(k), xc(k), w(t))dt + ν,

where ∆V := V
(

xp(k + 1), xc(k + 1)
)

− V
(

xp(k), xc(k)
)

.

The advantage of this method is that dissipation inequalities permit to study several

properties of the sampled-data system with an emulated controller. These properties

include stability, ISS, Lp-stability, passivity, etc. See [84] for an application of dissipation

inequalities to the study of ISS and passivity. This preservation of dissipation is satisfied

for sufficiently small sampling intervals upper bounded by T ∗. However, the result does

not provide any quantitative estimate of T ∗.
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1.6.1.4 Quantitative estimation of the MASP

The previous results are qualitative and prove some nice properties of sampled-data

systems, for sufficiently small sampling intervals. However, they do not provide any

method for estimating the maximum allowable sampling intervals, for which the stability

properties are preserved. In the following, we review some works which provide such an

estimation.

Hybrid system approach

In [86], Lp-stability properties have been studied for NCS with scheduling protocols.

The results are based on the hybrid modeling approach and the small gain theorem, and

they can be applied to the sampled-data case to calculate the MASP. In [18, 19], the

bound on the MASP has been improved, using a Lyapunov-based method, which result

has been particularized to the sampled-data case in [88]. Consider the plant:

ẋp = fp(xp, u), y = gp(xp),

where xp is the plant state, u is the control input, y is the measured output. Suppose

that asymptotic stability is guaranteed by the continuous-time output feedback:

ẋc = fc(xc, y), u = gc(xc),

where xc is the controller state. The sampled-data implementation of the controller can

be written in the following form:

ẋp = fp(xp, û), t ∈ [tk, tk+1),

y = gp(xp),

ẋc = fc(xc, ŷ), t ∈ [tk, tk+1),

u = gc(xc),

˙̂y = 0, t ∈ [tk, tk+1),

˙̂u = 0, t ∈ [tk, tk+1),

ŷ(t+k ) = y(tk),

û(t+k ) = u(tk),

(1.47)

where xp and xc are respectively the states of the plant and of the controller, y is the

plant output and u is the controller output; ŷ and û are the most recently transmitted

plant and controller output values. In between sampling instants, the values of ŷ and

û are held constant. Define the augmented state vector x(t) and the network-induced
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error e(t):

e(t) =

(

ey(t)

eu(t)

)

:=

(

ŷ(t)− y(t)

û(t)− u(t)

)

∈ R
ne , x(t) :=

(

xp(t)

xc(t)

)

∈ R
nx . (1.48)

Note that the error vector is subject to resets at each sampling instant. The sampled-

data system (1.47) can be written as a system with jumps:

ẋ = f(x, e) t ∈ [tk, tk+1), (1.49)

ė = g(x, e) t ∈ [tk, tk+1),

e(t+k ) = 0,

with 0 < ǫ ≤ tk+1 − tk ≤ h, for all k ∈ N, x ∈ R
nx , e ∈ R

ne . The functions f and g are

obtained by direct calculations from the sampled-data system (1.47) (see [88] and [86]):

f(x, e) :=

(

fp(xp, gc(xc) + eu)

fc(xc, gp(xp) + ey)

)

; g(x, e) :=

(

− ∂gp
∂xp

fp(xp, gc(xc) + eu)

− ∂gc
∂xc

fc(xc, gp(xp) + ey)

)

.

It should be noted that ẋ = f(x, 0) is the closed loop system without the sampled-

data implementation. Considering a clock τ which evolves with respect to the sampling

instants, system (1.49) can be written as the following hybrid system:

ẋ = f(x, e)

ė = g(x, e)

τ̇ = 1







τ ∈ [0, h),

x+ = x

e+ = 0

τ+ = 0







τ ∈ [ǫ, h], (1.50)

with x ∈ R
nx , e ∈ R

ne , τ ∈ R+, h ≥ ǫ > 0. The following theorem provides a

quantitative method to estimate the MASP, using the model (1.50).

Theorem 1.15 ([88]). Suppose there exist ∆̃x, ∆̃e > 0, a locally Lipschitz function

W : Rne → R+, a locally Lipschitz, positive definite, radially unbounded function V :

R
nx → R+, real numbers L > 0, γ > 0, functions αW , αW ∈ K∞ and a continuous,

positive definite function ̺ such that, ∀e ∈ R
ne:

αW (|e|) ≤ W (e) ≤ αW (|e|),
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and for almost all |x| ≤ ∆̃x and |e| ≤ ∆̃e:

〈∂W (e)

∂e
, g(x, e)

〉

≤ LW (e) +H(x, e),

〈∇V (x), f(x, e)〉 < −̺(|x|)− ̺(W (e)) −H2(x, e) + γ2W 2(e).

Finally, consider that the MASP h satisfies 0 < ǫ ≤ h < T (γ,L), given by the following

function:

T (γ, L) :=







1
Lr

arctan(r) γ > L,
1
L

γ = L,
1
Lr

arctanh(r) γ < L,

with r =

√
∣
∣
γ2

L2
− 1
∣
∣.

Then, for all sampling intervals less than h the set {(x, e, τ) : x = 0, e = 0} is UAS,

i.e. there exist ∆ > 0 and β ∈ KL such that for each initial condition τ(t0) ∈ R+,

|
(
x(t0), e(t0)

)
| ≤ ∆:

∣
∣
∣
∣
∣

[

x(t)

e(t)

]∣
∣
∣
∣
∣
≤ β

(∣
∣
∣
∣
∣

[

x(t0)

e(t0)

]∣
∣
∣
∣
∣
, t

)

, ∀t ≥ t0.

To our best knowledge, Theorem 1.15 is among the first results providing an explicit for-

mulation of the MASP. It is applicable for both constant and variable sampling intervals.

The proof is based on studying a hybrid Lyapunov function, and it addresses asymp-

totic/exponential stability. Moreover, it has the advantage of considering a general class

of nonlinear systems. Nevertheless, it is not clear how to construct the functions V (x),

W (e) and H(x, e) which satisfy the hypotheses.

Time-delay approach

Recently, a new approach has been proposed by Mazenc et al. [71], for the case of control

affine non-autonomous systems. It is based on extending the idea in [37] for the case

of LTI systems. This result considers the robustness of nonlinear systems, with respect

to both sampling and delay. We state as follows an adaptation where only sampling is

considered. Consider the nonlinear system:

ẋp(t) = f(t, xp(t)) + g(t, xp(t))u(t), (1.51)

with the state xp ∈ R
n and the input u ∈ R

m, and with functions f , g that are locally

Lipschitz with respect to xp and piecewise continuous in t. Assume that the C1 con-

troller u(t) = uc(t, xp) is designed in order to make the system (1.51) UGAS. Moreover,

assume that there exist a C1 positive definite and radially unbounded function V , and
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a continuous positive definite function W such that:

Wb(t, xp) := −
[∂V

∂t
(t, xp) +

∂V

∂xp
(f(t, xp) + g(t, xp)uc(t, xp))

]

(1.52)

satisfies Wb(t, xp) ≥ W (xp), for all t ≥ t0 and xp ∈ R
n. Also, consider uc(t, 0) = 0 for

all t ∈ R. Hence, V is a strict Lyapunov function for ẋp = f(t, xp) + g(t, xp)uc(t, xp),

and one can fix class K∞ functions α1 and α2 such that α1(|xp|) ≤ V (t, xp) ≤ α2(|xp|),
for all t ≥ t0 and xp ∈ R

n. Define the function h(·) by:

h(t, xp) =
∂uc
∂t

(t, xp) +
∂uc
∂xp

(

f(t, xp) + g(t, xp)uc(t, xp)
)

. (1.53)

Theorem 1.16 ([71]). Suppose that there exist constants c1, c2, c3 and c4 such that:

|∂uc
∂xp

(t, xp)g(t, xp)|2 ≤ c1, (1.54)

| ∂V
∂xp

(t, xp)g(t, xp)|2 ≤ c2, (1.55)

|h(t, xp)|2 ≤ c3W (xp), (1.56)

| ∂V
∂xp

(t, xp)g(t, xp)uc(t, xp)|2 ≤ c4(V (t, xp) + 1), (1.57)

hold for all t ≥ t0 and xp ∈ R
n. Consider the system (1.51) in closed-loop with:

u(t) = uc(tk, xp(tk)), t ∈ [tk, tk+1),

where the sequence {tk} satisfies t0 = 0, 0 < h ≤ tk+1 − tk ≤ h, ∀k ∈ N. Then, the

closed-loop system is UGAS if:

h ≤ 1√
4c1 + 8c2c3

. (1.58)

Note that the estimate of the MASP (1.58) is given directly in terms of the system

dynamics, the control and the Lyapunov function. The stability is proven by means of

a Lyapunov functional. However, it is not clear how conservative the result is.

1.6.1.5 Further notes and references on emulation approach

It must be mentioned that other works can be found in the literature. In [131] an

analytical relationship between sampling rates and the domains of attraction of the

system is derived, for a special class of nonlinear sampled-data systems. In [60], the

input-delay approach is explored on the basis of vector Lyapunov functions. In [62],

stabilization of nonlinear systems is considered, with inputs that are subject to both
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delays and sampling. It is shown that sampled-data feedback laws with a predictor-

based delay compensation can guarantee global asymptotic stability for the closed-loop

system. Results on global stabilization under sampled-data control can be found in [61]

for the case of feedforward system, based on a discontinuous feedback.

1.6.2 Discrete-time approach for nonlinear systems

The main motivation for considering direct discrete-time design, is to avoid the dis-

advantages of the emulation approach, among which is the necessity of a relatively

fast sampling. Moreover, some properties such as dead-beat control [106], can not be

achieved in continuous-time. This approach has shown a promising potential to find

better performing controllers, since sampling is taken into account for the design.

1.6.2.1 Discrete-time modeling

Consider the nonlinear continuous-time plant:

ẋp = fp(xp, u), xp(t0) = x0, (1.59)

with a set of sampling instants 0 = t0 < t1 < · · · < tk < · · · which satisfy:

tk+1 − tk = T, (1.60)

and with a sampled-data control u(t) = u(k) := u(tk), ∀t ∈ [tk, tk+1). The relation

between the states xp(k) := xp(tk) is given by the exact discrete-time model of (1.59):

xp(k + 1) = xp(k) +

∫ tk

tk+1

f(xp(s), u(k))ds (1.61)

= F p
T (xp(k), u(k)). (1.62)

In [80], the equivalent discrete-time model of the nonlinear continuous-time system is

provided, using the formalism of asymptotic expansion. It is shown that solutions to

non-autonomous differential equations can be described by their asymptotic expansion

in powers of the sampling period. Considering the autonomous vector field fp, the

differential equation

ẋp(t) = fp(xp(t)), (1.63)

is transformed, under sampling, into the difference equation

xp(k + 1) = F p
T (xp(k)), (1.64)
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with

F p
T (xp) = xp +

∑

i≥1

T i

i!
Li
f (xp), (1.65)

where the map F p
T (x) : (0, T ]×R

n → R
n is deduced from the flow associated with (1.63).

It is parameterized by the sampling period T , and the Lie derivatives of fp:

Li
fp
(xp) =

∂Li−1
fp

(xp)

∂xp
f(xp) = f i

p(xp), L0
fp
(xp) = fp(xp). (1.66)

A similar result using Lie derivatives may also be established, for non-autonomous sys-

tems (see [80] for details). Several works consider that it is possible to obtain an exact

discrete-time model of the plant (1.62) (see for example [66]). Nevertheless, this as-

sumption is rarely applicable: as a matter of fact, calculating the discrete-time model

of a nonlinear continuous-time plant, is a very hard problem. It requires an explicit

analytic solution of a nonlinear differential equation. Alternatively, it is possible to con-

sider a family of approximate models F̃ p
T which converge to the exact model when an

approximation parameter (such as the sampling period) approaches to zero:

xp(k + 1) = F̃ p
T (xp(k), u(k)). (1.67)

Numerical approximation method permits to find such approximate discrete-time mod-

els. The Euler method is the easiest one, and it is the most popular in the literature.

Using this method, the discrete-time model (1.62) can be approximated by:

F̃ p
T (xp(k), u(k)) := xp(k) + Tfp(xp(k), u(k)) (1.68)

Using series expansion methods is another way to find the approximate model. Consider

again the system (1.63). Although the series expansion (1.65) is calculated over infinite

terms to get the exact solution, it is pointed out in [81] that a truncation of the series

may provide an efficient approximation. It yields an approximate model of order z in

T , and with an error in O(T z+1). [81] also gives more details about series expansion,

and the relation between continuous-time dynamics under holding devices, as well as

discrete-time mappings.
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1.6.2.2 Discrete-time controller design

Once the family of approximates (1.67) is calculated, classical discrete-time design meth-

ods are used to calculate a controller that stabilizes F̃ p
T :

xc(k + 1) = F c
T (xc(k), xp(k)), (1.69)

u(k) = Gc
T (xc(k), xp(k)).

At this stage, a critical question is whether the controller (1.69), which is designed in

order to stabilize the approximate model (1.67), will also stabilize the exact one (1.62).

This must be guaranteed without knowing the exact model. Several examples in [85]

show that if the controller or the approximation is not chosen properly, then stability

may not be preserved. The following case is taken from those examples.

Example 1.2 ([85]). Consider the sampled-data control of a triple integrator

ẋ1 = x2, (1.70)

ẋ2 = x3,

ẋ3 = u.

Note that the exact LTI discrete-time model of this system can be computed. Neverthe-

less, an approximate model is considered in order to illustrate the main problem encoun-

tered in step (1.69). The Euler approximate discrete-time model is:

x1(k + 1) = x1(k) + Tx2(k), (1.71)

x2(k + 1) = x2(k) + Tx3(k),

x3(k + 1) = x3(k) + Tu(k).

A minimum-time dead-beat controller for the Euler discrete-time model is given by

u(k) = −x1(k)

T 3
− 3x2(k)

T 2
− 3x3(k)

T
. (1.72)

On the one hand, the closed-loop system (1.71) (1.72) has all poles equal zero for all

T > 0, and hence the controller stabilizes asymptotically the Euler-based closed-loop

system for all T > 0. On the other hand, the closed-loop system consisting of the exact

discrete-time model of the triple integrator and the controller (1.72) is unstable for all

T > 0.

Various conditions guaranteeing that (1.69) will stabilize (1.62) are presented in [5, 85,

89]. We present here the conditions in [5]. As stated by the authors, these conditions
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are strong, but they are relatively easy to state. Consider the following properties:

Definition 1.17 (Equi-Lipschitz Lyapunov function [5]). Suppose that there exist a

Lyapunov function VT , functions α1, α2, α3 ∈ K∞, and T ∗ > 0 such that for all T ∈
(0, T ∗) and all x̃ := (xc, xp) we have:

α1(|x̃|) ≤ VT (x̃) ≤ α2(|x̃|), (1.73)
∆V a

T
≤ −α3(|x̃|), (1.74)

where ∆V a := VT

(

F̃ p
T (xp(k), u(k)), F

c
T (xc(k), xp(k))

)

− VT (x̃(k)), and u(k) is defined

in (1.69). Moreover, suppose that there exist L > 0 and T ∗ > 0 such that for all

T ∈ (0, T ∗), x1, x2 and all z we have:

|VT (x1, z)− VT (x2, z)| ≤ L|x1 − x2|. (1.75)

If VT satisfying (1.73), (1.74), (1.75) exists, it is called an equi-Lipschitz Lyapunov func-

tion for the system (1.67) (1.69).

Definition 1.18 (One-step consistency [5]). Suppose that there exist T ∗ and ρ, α4 ∈ K
such that for all T ∈ (0, T ∗) and all xp, u we have:

|F̃ p
T (xp, u)− F p

T (xp, u)| ≤ Tρ(T )α2(|(xp, u)|). (1.76)

Then F̃ p
T and F p

T are said to be one-step consistent.

Definition 1.19 (Boundedness of Gc
T [5]). Suppose there exist T ∗ > 0 and α5 ∈ K such

that for all T ∈ (0, T ∗) and all x̃ := (xc, xp) we have:

|Gc
T (x̃)| ≤ α5(|x̃|). (1.77)

Then Gc
T is said to be bounded uniformly in small T .

Theorem 1.20 ([5]). Suppose that the following conditions hold:

1. There exists an equi-Lipschitz Lyapunov function for the closed-loop system (1.67),

(1.69).

2. F̃ p
T and F p

T are one-step consistent.

3. Gc
T is bounded uniformly in small T .
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Then, there exists β ∈ KL such that for any positive numbers D, ν, T ∗ > 0 such that for

any T ∈ (0, T ) and any |x̃| ≤ D solutions of the exact closed-loop (1.62), (1.69) satisfy:

|x̃(k)| ≤ β(|x̃(0)|, kT ) + ν, k ≥ 0. (1.78)

Note that even if F̃ p
T is not known explicitly, consistency can still be checked. As a

matter of fact, the conditions in Theorem 1.20 can be checked when the continuous-time

system (1.59), the approximate model (1.67) and the controller (1.69) are available. The

theorem provides a framework for controller design, but does not tell how to construct

a stabilizing controller. In some particular cases, it is possible to design a controller

that satisfy the conditions: for example, a backstepping control has been investigated

in [87, 103].

For the more general case, one manner for approaching the controller synthesis problem

is to redesign a continuous-time controller for sampled-data implementation [83, 87, 103].

Assume that a continuous-time controller uc(x) has been designed for the closed-loop

continuous-time system, together with a Lyapunov function V (·). Instead of a direct

emulation, the following sampling period dependent controller can be implemented:

usd(x) = uc(x) +
N∑

i=1

T iui(x), (1.79)

where T is the sampling period, and ui(x) are extra terms that are determined through

the redesign process. In [87, 103], ui(x) are determined using backstepping techniques.

See also [83], where Fliess series expansions of the first difference for V (·) along solutions

of the system controlled by usd(x), are used to determine ui(x). For application, see [67]

where redesign methods have been considered for a jet engine, and an inverted pendulum

examples.

1.6.2.3 Further notes on discrete-time approach

To end with this section, note that discrete-time approach was considered only for peri-

odic sampling, even if it might be possible to extend it in same way to aperiodic cases.

Besides, it must be noted that structural properties of a given continuous-time plant may

not be inherited to its discrete-time (exact or approximate) model [63]. The affinity of

the system in control and the minimum phase properties are among the properties that

may be lost in the sampled-data model. However, the approach is complex, and does

not have the attractive easiness of the emulation counterpart approach. At last, note

that when using discrete-time methods, no inter-sample behavior is taken into account.
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Consequently, the behavior of the sampled-data system, between sampling instants is

not necessarily guaranteed.

1.7 Conclusion

In this chapter, an overview of results on stability and stabilization of sampled-data

systems is presented. Attention has been given to robust stability analysis, with time-

varying sampling intervals. It appears that robustness with respect to the time-variations

of sampling intervals, is a very challenging problem for both linear and nonlinear systems.

For the case of linear systems, it is shown that several pioneering approaches exist in the

literature. These approaches share the advantage of being constructive using LMIs, thus

they are numerically tractable. In particular, the MASP that guarantees the stability

of a given controller can be efficiently estimated. However, it is not clear how these

methods can be extended to the nonlinear case.

For the case of nonlinear systems, the main results are classified into two categories:

emulation approach, and discrete-time approach. This classification takes into account

the way the controller is synthesized. Concerning the main challenges of the discrete-

time approach, we underline the difficulty of constructing an accurate discrete-time

model for a nonlinear plant. Another important challenge, is guaranteeing the stability

of the closed-loop, with the limitation of using only an approximation of the discrete-

time model. In the emulation approach, the main difficulty is to provide a quantitative

estimation of the MASP. Only few works provide a constructive method for estimating

the MASP, which shows that the problem is more challenging in the nonlinear case, than

the linear one.

In the following chapters, we intend to provide a contribution to the stability analysis

of nonlinear systems under time-varying sampling intervals. The main objective is to

provide tractable stability criteria, which allow for estimating the MASP.

We address first the case of bilinear systems, which represents a simple class of nonlinear

systems, and can be considered as an intermediate between linear and nonlinear systems.

Two approaches are being considered for bilinear systems: the first one relies on the

hybrid dynamical systems framework, while the second one is based on robust control

theory.

After that, we will consider a more general class of nonlinear systems, with aperiodic

sampled-data control.



Chapter 2

Stability of bilinear sampled-data

systems - hybrid systems

approach

2.1 Introduction

This chapter is dedicated to the local stability analyzis of bilinear sampled-data systems,

controlled via a linear state feedback static controller, using a hybrid systems method-

ology. When a continuous-time controller is emulated, intuitively the stability will be

preserved if the sampling intervals are sufficiently small. Nevertheless, this issue has

been rarely addressed in a formal quantitative study for bilinear systems. Our purpose

is to find a constructive way to calculate the MASP.

Two constructive methods are considered. They are both based on the hybrid systems

framework, presented in Section 1.6.1.4. The first method is a specialization of the result

used for the general nonlinear case [88]. The contribution here is to find a constructive

way to apply this generic method, for the particular case of bilinear systems. The second

method is based on a direct search of a Lyapunov function using LMIs. The novelty here

is to avoid some conservative upper bounds on the derivative of a Lyapunov function in

the first method.

The chapter is organized as follows. First, bilinear systems are introduced in Section 2.2.

In Section 2.4, we formulate the problem under study. Section 2.5 is dedicated to system

modeling. In Section 2.6, we introduce the main results, where sufficient conditions for

the local stability of sampled-data bilinear systems are provided. Finally, the results are

illustrated by means of a numerical example in Section 2.7.

33
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2.2 Bilinear systems

Bilinear systems are considered as the “simplest” class of nonlinear systems. They

are linear separately with respect to the state and the control, but not to both of

them jointly. Since the beginning of 1970’s, they have attracted the attention of many

researchers [15, 30, 75, 101]. The associated state-space model is:

ẋ(t) = A0x(t) +
m∑

i=1

[u(t)]iNix(t) +B0u(t), ∀t ≥ t0, (2.1)

where the state vector is x(t) ∈ R
n, and the control input is u(t) ∈ R

m. The term A0x is

called the drift, B0u is the additive control and
∑m

i=1[u]iNix is the multiplicative control

[30].

Bilinear systems have applications in various domains since many processes can be mod-

eled by this way. Examples of these processes are found in engineering application such as

power electronics [54, 116], a.c. transmission systems [78], controlled hydraulic systems

[43] and chemical processes [31]. Bilinear systems can also be encountered in domains

such as ecology, socio-economics, biology and immunology [75, 76], only to cite a few.

From the point of view of nonlinear systems theory, the study of bilinear systems is very

interesting since such models offer a more accurate approximation to nonlinear systems

than the classical linear ones. This can be seen in the added bilinear terms, in state and

control, which may come from a Taylor series truncation: [79, 101] and the references

therein give more insight to the approximation of more highly nonlinear systems by

bilinear models. As a matter of fact, bilinear systems have also an interesting variable

structure characteristic. For example, it has been shown in [75] that bilinear models

have more powerful controllability properties than the linear ones. For information

about structural properties, system characterization and solutions, see [77].

2.3 Stabilization of bilinear systems

Even for such “simplest” class of nonlinear systems, the feedback stabilization of bilinear

systems is a challenging problem, and several controller structures can be found in

the literature [1, 44, 70, 77, 109, 115]. We mention as follows some of the notable

approaches. Linear state feedback u = Kx has been proposed in several works [1, 77].

Quadratic controller has been considered in [44, 77, 109], and improvements have been

provided in the literature (see [23, 115] for normalized quadratic control methods). In
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Figure 2.1: Bilinear system state diagram.

[70, 77] a discontinuous bang-bang controller has been proposed. In the special case of

dyadic bilinear systems ẋ = A0x +
∑m

i=1 bi(c
T
i x + 1)u, several authors have considered

stabilization using the so-called division controllers [24, 44]. In [55], necessary and

sufficient conditions for the global asymptotic stabilization by using a homogeneous

feedback is provided for a class of bilinear systems (with scalar multiplicative control

and no additive control). Sliding mode control has also been applied, see for example

[119]. In [58], a polynomial static output feedback controller has been proposed, with a

guaranteed upper bound of a performance index. Global asymptotic stabilization using a

hybrid controller has been proposed in [3]. Finally, stabilisation of bilinear discrete-time

systems using polyhedral Lyapunov functions, has been considered in [6].

2.3.1 Linear state-feedback control

The linear state feedback is an interesting solution because of its simplicity [1]. It is

easily implemented, and several results address the problem of finding such controllers.

Unfortunately, in nontrivial cases it has been shown that it is usually impossible to

stabilize globally the bilinear systems with linear feedback control [77] (page. 39). As

a matter of fact, in the scalar case (n = 1), it is impossible. For planar single-input

systems (n = 2,m = 1), necessary and sufficient conditions are given in [65]. To our

best knowledge, the problem is not fully analyzed yet for n > 2.

Recently in [1, 2, 120], numerically tractable conditions have allowed for the design of a

linear state feedback controller that ensures local asymptotic stabilization.
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Theorem 2.1 ([1]). Given the system (2.1) and the polytope containing the origin:

Pc = conv{x1, x2, . . . , xp} (2.2)

= {x ∈ R
n : aTj x ≤ 1, j = 1, 2, . . . , r}. (2.3)

Then, a controller:

u(t) = Kx(t), K ∈ R
m×n,

which guarantees the asymptotic stability of the resulting closed-loop system, can be found

if there exist scalars γ and c, a symmetric matrix P ∈ R
n×n, and a matrix W ∈ R

m×n

such that

0 < γ < 1,

c > 0,

P > 0,
[

1 γaTj Pc

cPajγ Pc

]

≥ 0, j = 1, 2, . . . , r,

[

1 xTi

xi cP

]

≥ 0, i = 1, 2, . . . , p,

γ(A0P + PAT
0 ) + γ(B0W +W TBT

0 ) +










xTi N1

xTi N2

...

xTi Nm










W

+W T
[

NT
1 xi NT

2 xi · · · NT
mxi

]

< 0,

i = 1, 2, . . . , p.

The controller is given by K = WP−1 and Pc belongs to the domain of attraction of the

equilibrium.

The LMI conditions depend on the vertices of the convex polytope Pc (2.2), and the

dual representation (2.3) where the polytope is presented by r hyperplanes. The pro-

posed conditions are sufficient only for the local stabilization. Note that the above LMI

conditions require the pair (A0, B0) to be asymptotically stabilizable. However, this

condition is not necessary for the stabilization of bilinear systems. This can be seen in

following example.

Example 2.1.

ẋ = A0x+B0u+ uNx, u = Kx,
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with

A0 =

[

−1 0

0 0

]

; B0 =

[

0

0

]

; N =

[

0 −1

1 0

]

; K =
[

0 1
]

is equivalent to:
{

ẋ1 = −x1 − x22,

ẋ2 = x1x2.

Even though the pair (A0, B0) is not stabilizable, the system is still shown to be asymp-

totically stable using center manifold method 1.

In spite of this academic example, this state feedback design strategy has shown its

interest in practical applications [1, 91]. The question now is how to guarantee the

stability of the closed loop with a discrete controller implementation.

2.4 Problem formulation

Consider the bilinear system (2.1). We suppose that the following assumptions hold:

A1 The control is a piecewise-constant control law

u(t) = Kx(tk), ∀t ∈ [tk, tk+1),

with a set of sampling instants {tk}k∈N satisfying:

0 < ǫ ≤ tk+1 − tk ≤ h, ∀k ∈ N, (2.4)

where h is a given MASP.

A2 The pair A0, B0 is stabilizable, and the linear feedback gain K ∈ R
m×n is calcu-

lated so that the system (2.1) with the continuous state feedback u(t) = Kx(t)

has a locally asymptotically stable equilibrium point at x = 0. The actual domain

of attraction (a connected neighborhood of x = 0, see [41]) is denoted D0.

A3 The state variables are subject to constraints defined by a polytopic set P ⊂ D0:

P = conv{x1, x2, . . . , xp} (2.5)

= {x ∈ R
n : aTj x ≤ 1, j = 1, 2, . . . , r} (2.6)

corresponding to an admissible set in the state-space 2.

1Jean-Pierre Richard, Lecture Notes: Systèmes Dynamiques,
http://researchers.lille.inria.fr/~jrichard/pdfs/SystDynJPR2009_part3.pdf

2The equivalence between the representations in (2.5) and (2.6) is given in [26] (Theorem 1.29).

http://researchers.lille.inria.fr/~jrichard/pdfs/SystDynJPR2009_part3.pdf
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Under these assumptions, we obtain the closed-loop sampled-data system:

ẋ(t) =
(
A0 +

m∑

i=1

[Kx(tk)]iNi

)
x(t) +B0Kx(tk), ∀t ∈ [tk, tk+1), ∀k ∈ N. (2.7)

System (2.7) may also be written as follows

ẋ(t) = Ã[x(t), e(t)]x(t) +Be(t), ∀t ∈ [tk, tk+1) (2.8)

with

e(t) = x(tk)− x(t),

Ã[x, e] := A0 +B0K +

m∑

i=1

[K(x+ e)]iNi, (2.9)

and

B = B0K. (2.10)

The goal of the chapter is twofold. First, we would like to ensure that the obtained

sampled-data system satisfies the state-space constraints (2.5) or (2.6) for any x0 ∈ P.

Secondly, we would like to provide conditions that guarantee the asymptotic convergence

of the system solutions to the origin.

Problem: Find a criterion for the local asymptotic stability of the equilibrium point

x = 0 of the bilinear sampled-data system (2.7), together with an estimate E ⊂ P of the

domain of attraction, such that for any initial condition x(t0) ∈ E the system solutions

satisfy x(t) ∈ P, ∀t > t0, and x(t) → 0.

2.5 Hybrid system framework

Several works about sampled-data systems [19, 33, 88] adopt the hybrid systems frame-

work [40]. A hybrid system H is a tuple (A,B, F,G), where A ⊆ R
n and B ⊆ R

n are,

respectively, the flow set and the jump set, while F : Rn → R
n and G : Rn → R

n are,

respectively, the flow map and jump map. The hybrid system is usually represented by:

H :

{

ξ̇ = F (ξ) ξ ∈ A
ξ+ = G(ξ) ξ ∈ B

The dynamics given by F , determines the continuous-time evolution (flow) of the state

through A, while G determines the discrete-time evolution (jumps) in B. See [40] for

more details about hybrid dynamical systems.
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In Section 1.6.1.4, it has been shown how the sampled-data system (1.47) can be repre-

sented by a hybrid model (1.50). In a similar way, we fit the sampled-data system (2.7)

into a hybrid model. The system (2.7) is formulated similarly to (1.47) as follows:

ẋ = A0x(t) +
∑m

i=1 ui(t)Nix(t) +B0u(t), t ∈ [tk, tk+1),

y = x,

u = Kŷ,

˙̂y = 0, t ∈ [tk, tk+1),

ŷ(t+k ) = y(tk).

(2.11)

The hybrid model for this case is determined by

ẋ = f(x, e) = Ã[x, e]x +Be

ė = g(x, e) = −Ã[x, e]x−Be

τ̇ = 1







τ ∈ [0, h)

x+ = x

e+ = 0

τ+ = 0







τ ∈ [ǫ, h] (2.12)

with Ã[x, e] and B given in (2.9) and (2.10), and ǫ given in (2.4). Note that in contrast to

the general case model, there is no û in (2.11). This is due to the fact that the considered

controller is a static one. In this case, we may consider only one ZOH mechanism in the

input side of the controller.

For the hybrid system (2.12), we are only interested in stability with respect to the

variables x and e. We consider the following definition of stability with respect to the

set {(x, e, τ) : x = 0, e = 0}, adapted from [88].

Definition 2.2. Consider the hybrid system (2.12). The set {(x, e, τ) : x = 0, e = 0}
is uniformly asymptotically stable (UAS) if there exist ∆ > 0 and β ∈ KL such that for

each initial condition τ(t0) ∈ R+, |
(
x(t0), e(t0)

)
| ≤ ∆:

∣
∣
∣
∣
∣

[

x(t)

e(t)

]∣
∣
∣
∣
∣
≤ β

(∣
∣
∣
∣
∣

[

x(t0)

e(t0)

]∣
∣
∣
∣
∣
, t

)

, ∀t ≥ t0. (2.13)

2.6 Local stability and MASP estimation

In this section, we provide sufficient stability conditions for the considered case of

sampled-data bilinear systems (2.7), or equivalently (2.12). The conditions are used

to estimate an upper bound on the MASP. Two methods are to be considered. First,

we introduce a method that is based on the application of results for general nonlin-

ear sampled-data systems in [88] (Method 1). Next, to avoid the use of conservative
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bounds in the previous method, we look directly for an underlying Lyapunov function

by formalizing the conditions as LMIs (Method 2). In both of these methods, we will be

dealing with local asymptotic stability. Consider the the polytope P defined in (2.5). If

x(tk) is in the polytope P, then

A[x(tk)] := Ã[x(t), e(t)] ∈ conv{A1, A2, . . . , Ap},

with

Aq = A[xq] ∀q ∈ {1, 2, . . . , p}. (2.14)

Note that the set of barycentric coordinates that determine x(tk) with respect to the

vertex of the polytope P, determine also A[x(tk)] with respect to the vertices in (2.14).

This is due to the linearity of A[x(tk)] in x(tk), and it can be seen as follows. If x(tk) ∈ P,

then there exist positive scalars

{λq(tk)}pq=1,

p
∑

q=1

λq = 1 (2.15)

such that

x(tk) =

p
∑

q=1

λqxq

hence

p
∑

q=1

λqAq =

p
∑

q=1

λq

(

A0 +B0K +

m∑

i=1

[Kxq]iNi

)

= A0 +B0K +
m∑

i=1

[

K(

p
∑

q=1

λqxq)
]

i
Ni

= A[x(tk)].

2.6.1 Method 1: adaptation of a result on general nonlinear sampled-

data systems

The following theorem proposes stability conditions using an adaptation of the results

in [88] for the case of bilinear systems.

Theorem 2.3. Consider the bilinear sampled-data system (2.12), the polytope P in

(2.5), the notations (2.14) and a function

T (γ, L) :=







1
Lr

arctan(r) γ > L
1
L

γ = L
1
Lr

arctanh(r) γ < L

(2.16)
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with

r =

√
∣
∣
γ2

L2
− 1
∣
∣ (2.17)

where L is given by

L =
1

2
max{−λmin(B

T +B), 0} (2.18)

and γ is the solution to the following optimization problem:

γ = min γ′ (2.19)

satisfying the constraints ∃P ∈ R
n×n a symmetric positive definite matrix , ∃γ′ > 0 and

∃α > 0, such that

Mlj =

[

AT
l P + PAl +

1
2(A

T
l Aj +AT

j Al) + αI PB

∗ (α− γ′2)I

]

< 0,

∀l, j ∈ {1, 2, ..., p}, (2.20)

where Al and Aj are the vertices given in (2.14). Assume that the MASP is strictly

bounded by T (γ, L), i.e. h < T (γ, L). Then, for the bilinear sampled-data system (2.12),

the set {(x, e, τ) : x = 0, e = 0} is locally uniformly asymptotically stable.

Proof. This proof is mainly based on an adaptation of Theorem 1 in [88] to the bilinear

case.

Let φ : [0, T̃ ] → R be the solution to

φ̇ = −2Lφ− γ(φ2 + 1) φ(0) = λ−1 (2.21)

where λ ∈ (0, 1). We recall the following result.

Claim 2.6.1. [19] φ(τ) ∈ [λ, λ−1] for all τ ∈ [0, T̃ ]. Moreover, we have that φ(T̃ ) = λ for

T̃ given by

T̃ (λ, γ, L) :=







1
Lr

arctan
(

r(1−λ)

2 λ
1+λ

( γ
L
−1)+1+λ

)

γ > L

1
L

1−λ
1+λ

γ = L
1
Lr

arctanh
(

r(1−λ)

2 λ
1+λ

( γ
L
−1)+1+λ

)

γ < L

(2.22)

with r is given in (2.17).
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Consider the following notations

ξ := [xT , eT , τ ]T , (2.23)

F (ξ) := [f(x, e)T , g(x, e)T , 1]T . (2.24)

Note that T̃ (λ, γ, L) in (2.22) and T (γ, L) in (2.16) satisfy T (γ, L) = T̃ (0, γ, L), and for

a fixed L and γ we have that T̃ (·, γ, L) is strictly decreasing. Hence, since the conditions

of the theorem require h to be strictly smaller than T (γ, L), there exists λ ∈ (0, 1) such

that h = T̃ (λ, γ, L). For the considered value of λ, define the function

U(ξ) = V (x) + γφ(τ)W 2(e) (2.25)

with a quadratic function V (x) = xTPx, and W (e) = |e|. The function U(ξ) will be

used as a Lyapunov function. Note that

λmin(P )|x|2 + λγ|e|2 ≤ U(ξ) ≤ λmax(P )|x|2 + λ−1γ|e|2. (2.26)

The Lyapunov function is non-increasing at sampling instants as it can be seen from the

following

U(ξ+) = V (x+) + γφ(τ+)W 2(e+)

= V (x)

≤ V (x) + γφ(τ)W 2(e) = U(ξ). (2.27)

In order to treat the quantity 〈∇U(ξ), F (ξ)〉 we need two inequalities that correspond

to both 〈∂W (e)
∂e

, g(x, e)〉 and 〈∇V (x), f(x, e)〉. We get the first inequality as follows:

〈∂W (e)

∂e
, g(x, e)

〉

=
eT (t)

W (e)
[−A[x(tk)]x(t)−Be(t)]

= − 1

2W (e)
eT (t)(BT +B)e(t)− 1

W (e)
eTA[x(tk)]x(t)

≤ 1

2
max{−λmin(B

T +B), 0}W (e) + |A[x(tk)]x(t)|

〈∂W (e)

∂e
, g(x, e)

〉

≤ LW (e) +H(x, e) (2.28)

with

H(x(t), e(t)) =
∣
∣Ã[x(t), e(t)]x(t)

∣
∣ =

∣
∣A[x(tk)]x(t)

∣
∣. (2.29)
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and L given in (2.18).

In order to obtain the second inequality, consider

〈∇V (x), f(x, e)〉 = ẋTPx+ xTPẋ

= xTAT [x(tk)]Px+ xTPA[x(tk)]x

+xTPBe+ eTBTPx. (2.30)

Note that by multiplying the LMIs in (2.20) each by the appropriate coefficients λl(tk)

from (2.15), and then taking the sums over l ∈ {1, 2, · · · , p} we obtain

[

AT [x(tk)]P + PA[x(tk)] +
1
2 (A

T [x(tk)]Aj +AT
j A[x(tk)]) + αI PB

∗ (α− γ2)I

]

< 0,

∀j ∈ {1, 2, ..., p}. Similarly, by multiplying the resulting inequalities by λj(tk), and

taking the sum we get

[

AT [x(tk)]P + PA[x(tk)] +AT [x(tk)]A[x(tk)] + αI PB

BTP (α− γ2)I

]

< 0. (2.31)

Define the continuous, positive definite function ̺(s) = αs2. From (2.31) and (2.30) the

following inequality will be satisfied locally inside the addressed polytopic region

〈∇V (x), f(x, e)〉 < −̺(|x|)− ̺(W (e)) −H2(x, e) + γ2W 2(e). (2.32)

From (2.28) and (2.32) we have

〈∇U(ξ), F (ξ)〉 < −̺(|x|)− ̺(W (e)) −H2(x, e) + γ2W 2(e)

+2γφ(τ)W (e)(LW (e) +H(x, e))

−γW 2(e)(2Lφ(τ) + γ(φ2(τ) + 1))

< −̺(|x|)− ̺(W (e)) −H2(x, e)

+2γφ(τ)W (e)H(x, e) − γ2W 2(e)φ2(τ)

yielding

〈∇U(ξ), F (ξ)〉 < −̺(|x|)− ̺(W (e)). (2.33)

The local stability is straightforward, since ̺(·) is positive definite.
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Remark 2.4. In this method, the MASP is calculated by the expression (2.16), based

on L and γ. L is calculated analytically, whereas γ is found by solving LMI conditions.

The optimization problem is a minimization of γ′ because for any constant L, T (·, L) is
a strictly decreasing function.

Remark 2.5. Note that since γ does not depend on L, and from the continuity of T (γ, ·):

T (γ, 0) = lim
L→0

T (γ, L) = lim
L→0

arctan(
√
∣
∣ γ

2

L2 − 1
∣
∣)

√∣
∣γ2 − L2

∣
∣

=
π

2γ
.

Remark 2.6. The stability conditions presented in this theorem are based on the generic

inequalities (2.32), (2.28) for nonlinear system presented in [88]. Our contribution is

to provide a constructive manner to apply this result to the case of bilinear systems.

We provide explicit forms of H(x, e), W (e), V (x), and we find L, γ that gives the

upper bound on MASP. We provide as well, an LMI formulation that allows us to

obtain sufficient stability condition. Note that in order to obtain LMI based stability

conditions the approach has been adapted to the bilinear case: the function H(·, ·) used
here has been modified to depend both on the error e(t) and the state x(t), while in [88]

it is only a function of x.

2.6.2 Method 2: direct Lyapunov function approach

In the previous method, the stability conditions are obtained using upper estimations of

the derivative of a Lyapunov function in (2.28) and (2.32). Such upper estimations may

be found conservative. In order to avoid them, we provide as follows a second method

which evaluates directly the derivative of the Lyapunov function.

Theorem 2.7. Consider the bilinear sampled-data system (2.12). Suppose that MASP

is bounded by a value T , i.e. h ≤ T . Assume that there exist symmetric positive definite

matrices P,Q,X, Y ∈ R
n×n, such that the following LMIs are satisfied

[

AT
l P + PAl +X PB −AT

l Q

∗ −BTQ−QB − 1
T Q+ Y

]

< 0,

∀l ∈ {1, 2, ..., p}. (2.34)
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[

AT
l P + PAl +X PB −AT

l Q exp(−1)

∗ [−BTQ−QB − 1
T Q] exp(−1) + Y

]

< 0,

∀l ∈ {1, 2, ..., p}. (2.35)

where Al are the vertices in given in (2.14). Then the set {(x, e, τ) : x = 0, e = 0} of the

bilinear sampled-data system (2.12) is locally uniformly asymptotically stable.

Proof. We consider the function

U ′(ξ) = V ′(x) +W ′(τ, e) (2.36)

with V ′(x) = xTPx, and W ′(τ, e) = exp(−τ
T )eTQe. We recall the notations ξ and F (ξ)

defined as in (2.23), (2.24). This Lyapunov function will be used to prove the stability

of the hybrid system (2.12). It is inspired by the Lyapunov functions from [88] and [19].

From the fact that P > 0, Q > 0, we have that U ′(ξ) satisfies

U ′(ξ) ≥ λmin(P )|x|2 + λmin(Q) exp(−1)|e|2, (2.37)

U ′(ξ) ≤ λmax(P )|x|2 + λmax(Q)|e|2. (2.38)

At sampling instants, U ′(ξ) is non increasing

U ′(ξ+) = V ′(x+) +W ′(τ+, e+)

= xTPx

≤ xTPx+W ′(τ, e) = U ′(ξ). (2.39)

In order to study the derivative of U ′(ξ), we note that

〈∇U ′(ξ), F (ξ)〉 =ẋTPx+ xTPẋ− 1

T eT [Q exp(
−τ

T )]e

+ ėT [Q exp(
−τ

T )]e+ eT [Q exp(
−τ

T )]ė.

by replacing ẋ and ė from (2.12) we have that

〈∇U ′(ξ), F (ξ)〉 =xTAT [x(tk)]Px+ xTPA[x(tk)]x+ eTBTPx+ xTPBe

− xTAT [x(tk)][Q exp(
−τ

T )]e− eT [Q exp(
−τ

T )]A[x(tk)]x

− eT (BTQ+QB +
Q

T ) exp(
−τ

T )e
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and we can write the following matrix form

〈∇U ′(ξ), F (ξ)〉 + xTXx+ eTY e = (2.40)
[

x

e

]T [

A[x(tk)]
TP + PA[x(tk)] +X PB −A[x(tk)]

TQ exp(− τ
T )

∗ [−BTQ−QB − Q
T ] exp(− τ

T ) + Y

] [

x

e

]

. (2.41)

By multiplying the LMIs in (2.34) and (2.35) by the appropriate coefficients λl(tk) from

(2.15), and taking the sums over each of the resulting inequalities we obtain

Mµ1 =
[

AT [x(tk)]P + PA[x(tk)] +X PB −AT [x(tk)]Q

∗ [−BTQ−QB − 1
T Q] + Y

]

< 0, (2.42)

Mµ2 =
[

AT [x(tk)]P + PA[x(tk)] +X PB −AT [x(tk)]Q exp(−1)

∗ [−BTQ−QB − 1
T Q] exp(−1) + Y

]

< 0. (2.43)

For any τ ∈ [0,T ], we have that exp(−τ/T ) ∈ [exp(−1), 1]. Finally from (2.42), (2.43)

and (2.40) there exists then θ(τ) ∈ [0, 1] such that

〈∇U ′(ξ), F (ξ)〉 + xTXx+ eTY e =

[

x

e

]T
[
θ(τ)Mµ1 +

(
1− θ(τ)

)
Mµ2

]

[

x

e

]

< 0.

This yields

〈∇U ′(ξ), F (ξ)〉 < −xTXx− eTY e, ∀τ ∈ [0,T ]. (2.44)

From (2.38) we have that for any σ > 0,

− σU ′ ≥ −σλmax(P )|x|2 − σλmax(Q)|e|2. (2.45)

Moreover, from the fact that X > 0, Y > 0 we have

− xTXx− eTY e ≤ −λmin(X)|x|2 − λmin(Y )|e|2. (2.46)

If σ satisfies

0 < σ ≤ min

{
λmin(Y )

λmax(Q)
,
λmin(X)

λmax(P )

}

(2.47)
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then from (2.44), (2.45) and (2.46),

〈∇U ′(ξ), F (ξ)〉 < −xTXx− eTY e

≤ −σλmax(P )|x|2 − σλmax(Q)|e|2

≤ −σU ′. (2.48)

Asymptotic stability follows using standard Lyapunov arguments.

Remark 2.8. In this method the MASP is found by solving a set of LMIs for the maximum

value possible of T . The existence of a solution to the LMI conditions, guarantees the

existence of a Lyapunov function that will yield the asymptotic stability. Note that the

proposed conditions directly study the derivative of the Lyapunov function. Numerical

examples will show the conservatism reduction in comparison with the approach in

Method 1. Note that both the approach of Method 1 and Method 2 are robust not only

to the sampled-data implementation but also to variations of the sampling intervals.

Remark 2.9. Note that the local asymptotic stability of the hybrid system (2.12) implies

the local asymptotic stability of (2.7). As a matter of fact, the established asymptotic

stability is local in both Method 1 and Method 2, since the inequalities (2.33) and (2.48)

are satisfied only inside the studied polytope P. Moreover, one can find an invariant set

E ∈ P, such that for x(t0) ∈ E one has |(x(t0), e(t0))| = |(x(t0), 0)| ≤ ∆ for some ∆ > 0,

for which the inequality (2.13) is satisfied.

2.7 Numerical example

In this section we present a numerical comparison of the two proposed methods. Consider

the example of bilinear systems in [2] and [120], where a continuous-time state feedback

controllers has been computed in order to locally stabilize the bilinear system. The

system is described by the matrices

A0 =







−0.5 1.5 4

4.3 6.0 5.0

3.2 6.8 7.2






; B0 =







−0.7 −1.3

0 −4.3

0.8 −1.5







N1 =







−1 0 0

0 0 0

0 0 0






; N2 =







0 1 0

0 0 0

0 0 0






.
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In [120], the linear state feedback

K =

[

0.0016 0.0035 0.0034

2.2404 3.2676 5.9199

]

was proven to establish the local stability for the bilinear system (in the continuous-time

case), inside an ellipsoidal region D0. We consider a local polytopic region P ⊂ D0

P = [−1.35,+1.35] × [−0.75,+0.75] × [−0.65,+0.65].

Using Method 1, we found that the system is locally stable if h < T = 2.7× 10−3. This

was calculated from (2.16) for L = 29.79, and γ = 563.3. The other variables in the

optimization problem were α = 5.84, and

P =







281.3 210.6 882.2

210.6 622 565.1

882.2 565.1 3688.3






.

Using Method 2, we found that the sampled-data system is locally stable for a larger

MASP h ≤ T = 12× 10−3. The LMIs in (2.34) and (2.35) have a solution for this value

of MASP with

P =







1.2722 0.5769 3.8769

0.5769 2.4533 1.1283

3.8769 1.1283 16.9212







Q =







5.6140 8.1180 14.7162

8.1180 12.0092 21.2460

14.7162 21.2460 39.7534







X =







0.4274 0.7044 0.8281

0.7044 1.1646 1.3662

0.8281 1.3662 1.6119







Y =







0.0356 −0.0081 −0.0187

−0.0081 0.3417 −0.1550

−0.0187 −0.1550 1.0122







The results illustrate the reduction of conservatism in Method 2 with respect to Method 1.

Simulations show that the system is unstable for a larger sampling intervals. However,

it is not clear how to improve the method in order to obtain a larger estimate of the

MASP.
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2.8 Conclusion

In this chapter, we have provided sufficient conditions for the local stability of bilinear

sampled-data systems, controlled via a linear state feedback controller. We presented

results for estimating the MASP that guarantees the local stability of the system. Two

methods which are based on a hybrid system approach were considered. The first method

is an adaptation of results on the general nonlinear case, while the second one is based on

a direct search of a Lyapunov function for the hybrid model. The stability conditions,

in both methods, were given in the form of LMIs, which are easily computationally

tractable. The results were illustrated by a numerical example.





Chapter 3

Stability of bilinear sampled-data

systems - dissipativity approach

3.1 Introduction

This chapter considers the problem of local stability of bilinear systems with aperiodic

sampled-data linear state feedback control. This problem has been considered in Chap-

ter 2, and we intend to address it using a new approach in this chapter. The method is

based on the analysis of contractive invariant sets, and it is inspired by the dissipativity

theory.

The notion of dissipativity was introduced by [124]. Since its introduction, the dis-

sipativity theory has been attracting an increasing attention. It can be used to study

stability, passivity, robustness and other analysis and design problems. It was motivated

by passivity properties of electrical circuits, and it can be seen as a generalized notion

of abstract energy for dynamical systems. See the Appendix A for more details.

In this chapter, local stability of bilinear sampled-data systems will be investigated via an

invariance property of some ellipsoidal sets [64], [11]. The proposed method is inspired

by the results of [39] for the linear case, and by the dissipativity theory [124, 125].

State-space constraints are easily included in the analysis. It will be proven that the

invariance property leads to local asymptotic stability, and the region of attraction will

be estimated by a certain level surface of a quadratic function, which can be interpreted

as a discrete-time Lyapunov function. An LMI optimization allows for choosing, among

quadratic Lyapunov functions, the one which maximizes the MASP. The results are

illustrated by means of numerical examples.

51
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This chapter is organized as follows. Technical lemmas are presented in Section 3.2.

Sufficient conditions for the invariance and the local stability are given in Section 3.3.

Finally, the results are illustrated by means of two examples in Section 3.4.

3.2 Technical preliminaries

Consider again the problem formulation from Section 2.4. The bilinear system

ẋ(t) = A0x(t) +

m∑

i=1

[u(t)]iNix(t) +B0u(t), ∀t > t0, x(t0) = x0,

with a sampled data state feedback u(t) = Kx(tk) from equation (2.7), can be written

as follows:

ẋ(t) =
(
A0 +B0K +

m∑

i=1

[Kx(tk)]iNi

︸ ︷︷ ︸

:=A(x(tk))

)
x(t) +B0K

︸ ︷︷ ︸

:=B

(x(tk)− x(t)
︸ ︷︷ ︸

:=w(t)

). (3.1)

Defining

C(x(tk)) = A(x(tk)) = A0 +B0K +

m∑

i=1

[Kx(tk)]iNi, D = B = B0K, (3.2)

this shows that the closed-loop bilinear sampled-data system, can be represented by the

feedback connection of the system

G :=







ẋ(t) = A(x(tk))x(t) +Bw(t),

y(t) = C(x(tk))x(t) +Dw(t),
(3.3)

with the operator ∆sh : y → w,

w(t) = (∆sh y)(t) = −
∫ t

tk

y(τ)dτ, ∀t ∈ [tk, tk+1). (3.4)

3.2.1 The properties of the operator ∆sh

We recall that the operator ∆sh in (3.4) has been studied in the LTI systems context,

and has two important properties. The first one concerns the gain, and the second is of

the passivity-type. In [74], it has been shown that the gain of the operator is is bounded

on L2 and its L2-induced norm satisfies ‖∆sh‖ ≤ δ0 with δ0 = 2
π
h (see Lemma 1.7).
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Moreover, it has been shown that for any v ∈ L2[0, h), the L2[0, h)-induced norm is also

bounded by δ0:

∫ t

tk

(∆shv)
T (τ)(∆shv)(τ)dτ ≤ δ20

∫ t

tk

vT (τ)v(τ)dτ, ∀t ∈ [tk, tk+1). (3.5)

The passivity-type property is given in [39], where it is shown that for any 0 ≤ Y =

Y T ∈ R
n×n and v ∈ L2 :

〈Y∆shv, v〉 =
∫ ∞

0
vT (τ)Y (∆shv)(τ)dτ ≤ 0.

This relation is based on the fact that for any v ∈ L2[0, h)

∫ t

tk

vT (τ)Y (∆shv)(τ)dτ ≤ 0, ∀t ∈ [tk, tk+1).

In the LTI context, the two properties lead to LMI conditions for stability, which are

based on Integral Quadratic Constraints (IQC) [72], and on the Kalman-Yakubovich-

Popov lemma [105]. The application of these techniques is restricted to the LTI case, and

their extension to bilinear sampled-data systems is not direct. This is why we propose

to use the operator’s properties to define contractive invariant sets.

3.2.2 Two technical lemmas

The following technical lemmas are based on the work in [39].

Lemma 3.1. Let ∆sh be the operator defined in (3.4). Then, for any v ∈ L2[0, h) and

0 < XT = X ∈ R
n×n, the following inequality holds:

I1(t) =
∫ t

tk

[

(∆shv)
T (τ)X(∆shv)(τ) − δ20v

T (τ)Xv(τ)
]

dτ ≤ 0, ∀t ∈ [tk, tk+1). (3.6)

Proof. First of all, we note that since XT = X > 0, then there exists U ∈ R
n×n such

that X = UTU . For any t ∈ [tk, tk+1) one has

I1(t) =
∫ t

tk

[(
U(∆shv)(τ)

)T
(U(∆shv)(τ)) − δ20

(
Uv(τ)

)T (
Uv(τ)

)]

dτ.

From (3.4) we can see that U(∆shv) = ∆sh(Uv), then

I1(t) =
∫ t

tk

[(
(∆sh(Uv))(τ)

)T (
(∆sh(Uv))(τ)

)
− δ20

(
Uv(τ)

)T (
Uv(τ)

)]

dτ.
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Considering the vector z = Uv ∈ L2[0, h), we have

I1(t) =
∫ t

tk

(∆shz)
T (τ)(∆shz)(τ) dτ − δ20

∫ t

tk

zT (τ)z(τ) dτ

which can be seen to be negative directly from (3.5).

Lemma 3.2. Let ∆sh be the operator defined in (3.4). Then, for any v ∈ L2[0, h) and

0 ≤ Y T = Y ∈ R
n×n, the following inequality holds:

I2(t) =
∫ t

tk

[

(∆shv)
T (τ)Y v(τ) + vT (τ)Y (∆shv)(τ) d

]

τ ≤ 0, ∀t ∈ [tk, tk+1). (3.7)

Proof. For any t ∈ (tk, tk+1) we have d
dt
(∆shv)(t) = −v(t), hence

I2(t) = 2

∫ t

tk

vT (τ)Y (∆shv)(τ) dτ = −
∫ t

tk

d

dτ

(

(∆shv)
T (τ)Y (∆shv)(τ)

)

dτ

=
[
− (∆shv)

T (τ)Y (∆shv)(τ)
]t

tk
= −(∆shv)

T (t)Y (∆shv)(t) ≤ 0.

3.3 Stability results

In this section we give first a useful generic lemma concerning the positive invariance of

nonlinear sampled-data systems, controlled by a linear state feedback. Then we provide

the LMI conditions for the stability of bilinear sampled-data systems.

3.3.1 Invariance property

In the following, we derive sufficient conditions for the positive invariance (see [64]) of

some sub-level sets for a class of nonlinear sampled-data systems:







ẋ(t) = fk
(
x(t)

)
+ gk

(
x(t)

)
Kx(tk), ∀t ∈ [tk, tk+1), ∀k ∈ N, t > t0,

x(t0) = x0,
(3.8)

where K ∈ R
m×n is the linear feedback gain and, for any k ∈ N, fk : Rn → R

n and

gk : Rn → R
n×m are Lipschitz continuous functions 1. We also suppose that the state

of system (3.8) does not exhibit impulsive behaviors at the sampling instants, thus the

solution is everywhere continuous. The set of sampling instants {tk}k∈N satisfies (2.4).

1One can also consider less conservative conditions, i.e. local Lipschitz continuity, by adding bound-
edness conditions on the solutions of (3.8), see Theorem 3.3 in [64].
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Definition 3.3 (Positively Invariant Set [64]). Let x(t) be the solution of (3.8), the set

E ⊂ R
n is said to be positively invariant w.r.t. the system (3.8) if:

∀t0 ∈ R, x(t0) ∈ E ⇒ x(t) ∈ E , ∀t ≥ t0.

Lemma 3.4. Consider the system (3.8), a differentiable positive definite function V :

R
n → R

+, and the function S(·, ·) defined by the quadratic form

S(ẋ(t), x(tk)− x(t)) =

[

ẋ(t)

x(tk)− x(t)

]T [

−δ20X Y

Y X

][

ẋ(t)

x(tk)− x(t)

]

(3.9)

with δ0 = 2
π
h, 0 < XT = X ∈ R

n×n, and 0 ≤ Y T = Y ∈ R
n×n. Assume that:

for ẋ(tk) 6= 0,
d

dt
V (x(t)) < S(ẋ(t), x(tk)− x(t)), ∀t ∈ [tk, tk+1). (3.10)

For a positive scalar β, consider the sub-level set defined by:

Lβ := {x ∈ R
n : V (x) ≤ β}. (3.11)

Then all the sub-level sets LV (x(tk)) are positively invariant and

a) if ẋ(tk) 6= 0, the sets LV (x(tk)) are in contraction :

V (x(tk+1)) < V (x(tk)), ∀k ∈ N, s.t. ẋ(tk) 6= 0. (3.12)

b) if ẋ(tk) = 0 then the sets LV (x(tk)) and LV (x(tk+1)) are equal.

Proof. a) Note that the system in (3.8) can be written as

ẋ(t) = fk
(
x(t)

)
+ gk

(
x(t)

)
Kx(t)

︸ ︷︷ ︸

Fk(x(t))

+ gk
(
x(t)

)
K

︸ ︷︷ ︸

Gk(x(t))

(x(tk)− x(t)
︸ ︷︷ ︸

w(t)

)

and thus it can be written as an interconnection of the system

N :=







ẋ(t) = Fk

(
x(t)

)
+Gk

(
x(t)

)
w(t)

y(t) = ẋ(t)
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with the operator ∆sh : y → w given in (3.4). Since ẋ(tk) 6= 0, then, for any t ∈ (tk, tk+1)

and for any k ∈ N, integrating (3.10) from tk to t yields

V (x(t))− V (x(tk)) <

∫ t

tk

S(y(τ), w(τ))dτ. (3.13)

Then, from (3.9), Lemma 3.1 and Lemma 3.2 we find directly

∫ t

tk

S(y(τ), w(τ)) dτ = I1(t) + I2(t) ≤ 0, ∀t ∈ [tk, tk+1) (3.14)

with I1(t) and I2(t) given in (3.6) and (3.7) respectively. For t → tk+1, we obtain

I1(tk+1) + I2(tk+1) ≤ 0. Using (3.13) and (3.14) we see that V (x(t)) < V (x(tk)),

∀t ∈ (tk, tk+1], ∀k ∈ N.

b) Assume that ẋ(tk) = 0. Due to the Lipschitz continuity of the vector field, and

Theorem 3.2 in [64], for any interval [tk, tk+1) we have

∃s ∈ [tk, tk+1) s.t. ẋ(s) = 0 ⇒ ẋ(t) = 0, ∀t ∈ [tk, tk+1). (3.15)

Thus, since the state x(t) is continuous at the sampling instants, if ẋ(tk) = 0, (3.15)

implies that x(t) = x(tk) and V (x(t)) = V (x(tk)),∀t ∈ [tk, tk+1].

Note that for both points a) and b) we get the positive invariance of LV (x(tk)), which

completes the proof.

3.3.2 LMI stability conditions for bilinear sampled-data systems

In the next theorem, sufficient conditions are provided under the form of LMIs, for (2.7)

to be locally asymptotically stable at x = 0, inside a given polytopic region P defined

by (2.5) and (2.6). The result is based on the application of the Lemma 3.4.

Theorem 3.5. Consider the system (2.7), the equivalent representation (3.3) and (3.4).

Suppose there exist symmetric positive definite matrices X,Y, P ∈ R
n×n, matrices P2, P3 ∈

R
n×n, and a scalar γ > 0 such that the following optimization problem is feasible

γ∗ = min γ, under the constraints: (3.16)

Ej =

[

γ aTj

aj P

]

≥ 0, ∀j ∈ {1, 2, ..., r}, (3.17)



Chapter 3. Dissipativity approach 57

and

Mq =







AT
q P2 + P T

2 Aq P − P T
2 +AT

q P3 P T
2 B

P − P2 + P T
3 Aq −P3 − P T

3 + δ20X P T
3 B − Y

BTP2 BTP3 − Y −X






< 0, (3.18)

∀q ∈ {1, 2, ..., p}

where the vertices {Aq}q∈{1,2,··· ,p} are defined by

Aq := A(xq) = A0 +B0K +
m∑

i=1

[

Kxq

]

i
Ni (3.19)

with {xq}q∈{1,2,...,p} given in (2.5). Then the equilibrium x = 0 of (2.7) is locally asymp-

totically stable, and an estimate of its domain of attraction is given by the ellipsoid

Ec∗(P ) = {x ∈ R
n : xTPx ≤ c∗} ⊂ P, with c∗ = 1/γ∗. (3.20)

Proof. The proof consists of two steps. First we show that the existence of a solution for

(3.18) makes the quadratic function V (x) = xTPx satisfy the conditions of Lemma 3.4,

and thus leads to the positive invariance of the sub-level sets LV (x(tk)). In the second

step, we show that this positive invariance leads to the local asymptotic stability in

Ec∗(P ). In the proof, we consider the more general representation G′ instead of G in

(3.3):

G′ :=







ẋ(t) = A(ηk)x(t) +Bw(t),

y(t) = C(ηk)x(t) +Dw(t),

ηk ∈ P, ∀k ∈ N,

(3.21)

C(ηk) = A(ηk) = A0 +B0K +

m∑

i=1

[Kηk]iNi, D = B = B0K

Obviously, system G (3.3) corresponds to G′ (3.21) in the particular case ηk = x(tk).

The interconnection of G′ with the operator ∆sh : y → w in (3.4) may also be expressed

as:

ẋ(t) =
(
A0 +

m∑

i=1

[Kηk]iNi

)
x(t) +B0Kx(tk), ∀t ∈ [tk, tk+1), ∀k ∈ N. (3.22)

Step 1 : Assume that ηk is in the polytope P. Let {λq(ηk)}q∈{1,2,··· ,p} represent the

barycentric coordinates of ηk in P, i.e. ηk =
∑p

q=1 λqxq. The set of barycentric coordi-

nates that determines ηk with respect to the vertices of P, also determine A(ηk) with

respect to the vertices in (3.19). This is due to the linearity of A(ηk) in ηk. Multiplying
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each of the inequalities (3.18) by the appropriate λq, and taking the sum over of the

resulting inequalities yields:







AT (ηk)P2 + P T
2 A(ηk) P − P T

2 +AT (ηk)P3 P T
2 B

P − P2 + P T
3 A(ηk) −P3 − P T

3 + δ20X P T
3 B − Y

BTP2 BTP3 − Y −X






< 0. (3.23)

Recall the notations with y(t) = ẋ(t), w(t) = x(tk)−x(t) defined in (3.3) and (3.4), and

the quadratic supply rate function S(·, ·) defined in (3.9). Thus, for all [xT (t) yT (t)wT (t)] 6=
0, the LMI (3.23) implies:

2
(
xTP T

2 + yTP T
3

)(
− y +A(ηk)x+Bw

)
+ 2yT (t)Px(t) − S(y(t), w(t)) < 0, (3.24)

where we get the first term using the descriptor method [37]:

2
(
xTP T

2 + yTP T
3

)(
− y +A(ηk)x+Bw

)
= 0.

From (3.24), we see that for ηk ∈ P the inequality in (3.23) is equivalent to the condition:

V̇ (x(t)) < S(y(t), w(t)), whenever [xT (t) yT (t)wT (t)] 6= 0. (3.25)

Note that ẋ(tk) 6= 0 implies that ẋ(t) 6= 0 for all t ∈ [tk, tk+1), therefore [x(t)
T y(t)T w(t)T ] 6=

0, and Lemma 3.4 leads to the positive invariance of the sub-level sets LV (x(tk)), and

also

V (x(tk+1)) < V (x(tk)) whenever ẋ(tk) 6= 0, ηk ∈ P. (3.26)

This shows the positive invariance of the sets LV (x(tk)).

Step 2 : Now we show that the positive invariance property obtained in Step 1, leads to

local asymptotic stability. From (3.22), the state evolution over the interval t ∈ [tk, tk+1)

is:

x(t) = Λ
(
ηk, σ

)
x(tk), (3.27)

with Λ (ηk, σ) = eÃ0(ηk)σ +
∫ σ

0 eÃ0(ηk)(σ−s)B0Kds, Ã0(ηk) = A0 +
∑m

i=1[Kηk]iNi and

σ = t− tk. From (3.26)

xT (tk+1)Px(tk+1) < xT (tk)Px(tk), whenever ẋ(tk) 6= 0, ηk ∈ P. (3.28)
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For any non-zero vector y ∈ R
n, multiplying the LMI in (3.23) by [yT yTAT (ηk) 0]

from the right, and by its transpose from the left yields:

yT
(
AT (ηk)P + PA(ηk) + δ20A

T (ηk)XA(ηk)
)
y < 0, y 6= 0.

This shows that A(ηk) is Hurwitz for ηk ∈ P, thus from (3.28) we have:

xT (tk)
(
ΛT
(
ηk, hk

)
PΛ
(
ηk, hk

)
− P

)
x(tk) < 0,

for all x(tk) 6= 0, ηk ∈ P and 0 < hk ≤ h. Therefore ΛT
(
ηk, hk

)
PΛ
(
ηk, hk

)
− P is

negative definite. Given that P is positive definite, then there exists a sufficiently small

̺ > 0 which is independent of k, such that:

ΛT
(
ηk, hk

)
PΛ
(
ηk, hk

)
− P ≤ −̺P.

Setting 0 < α = 1 − ̺, 0 < α < 1, as a result we obtain V (x(tk)) ≤ αkV (x(t0)), which

leads to

lim
k→∞

V (x(tk)) = 0 ⇒ lim
k→∞

x(tk) = 0.

From (3.27), since ηk belongs to the compact set P and σ is bounded, then by the

continuity of Λ, the image of Λ : P × [ǫ, h) → R
n×n is compact, and ∃µ > 0 such that

the Euclidean norm of x(t) satisfies |x(t)| ≤ µ|x(tk)| for any t ∈ [tk, tk+1). As a result

one has

lim
k→∞

x(tk) = 0 ⇒ lim
t→∞

x(t) = 0

and x = 0 is locally asymptotically stable for (3.22). The local asymptotic stability

of (2.7) follows from the particular case ηk = x(tk). However, we still need to find a

positive invariant set inside P. The desired ellipsoid (3.20) is found, as according to

[12] (page. 70). Note that Ec∗(P ) is the largest sub-level set of xTPx contained in the

polytope P.

Remark 3.6. The last theorem provides sufficient, thus possibly conservative conditions

for the local stability of bilinear sampled-data systems with state constraints. These con-

ditions exploit dissipativity properties, and depend on the chosen supply rate function.

Besides, the obtained MASP depends on the choice of the analytical polytope.

Remark 3.7. For given P, K and h, the provided conditions represent LMIs, thus they

are numerically tractable. Note that the set of LMI conditions in (3.18) require the pair

(A0, B0) to be stabilizable. Thus, the open-loop system can be unstable. Numerical

examples of the proposed approach will be given in the following section.
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Figure 3.1: The polytope (blue boxes) and the corresponding region of stability
Ec∗(P ).

3.4 Numerical Examples

3.4.1 Example 1

Consider the bilinear sampled-data system in (2.7) defined by

A0 =







−0.5 1.5 4

4.3 6.0 5.0

3.2 6.8 7.2






, B0 =







−0.7 −1.3

0 −4.3

0.8 −1.5






,

N1 =







−1 0 0

0 0 0

0 0 0






, N2 =







0 1 0

0 0 0

0 0 0






.

In [120], the state feedback

K =

[

0.0016 0.0035 0.0034

2.2404 3.2676 5.9199

]

was proven to locally stabilize the continuous-time bilinear system, inside an ellipsoidal

region containing the box:

P = [−1.35,+1.35] × [−0.5,+0.5] × [−0.5,+0.5].
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Figure 3.2: State evolution for the bilinear sampled-data system in Example 1, with
a variable sampling which is bounded by h = 0.051.

Our objective here is to find a MASP for which the local stability of the bilinear system

with aperiodic sampled-data control is guaranteed, while satisfying the set constraints

defined by P. Using the method of Theorem 2.3, we find that the LMI conditions in

(3.18) are feasible for h = 0.051, with

P = 103







34.27 10.82 92.73

10.82 50.43 28.41

92.73 28.41 394.23






.

The domain of attraction Ec∗(P ) given in (3.20) for c∗ = 10.84 × 103 (see Fig.3.1).

Considering the initial state x0 = [−0.8 +0.2 +0.25]T , the time evolution of the state is

shown in Fig. 3.2. The random sequence of sampling periods satisfies the hypothesis in

(2.4) with h = 0.051. The stability is ensured as the initial state is located inside Ec∗(P ).

Numerical solutions starting from the same initial conditions, show that for a uniform

sampling interval tk+1 − tk = 0.09 the solution of the system becomes unbounded (see

Fig. 3.3). This gives an idea about the conservatism induced by the proposed analysis

method.

Considering the same box P, other methods are used to find the MASP that ensures the

stability, and a comparison is given in Table 3.1. The results (a) and (b), are based on

the hybrid system theory. It must be noted that [88] treats a general class of nonlinear

systems, and Theorem 2.3 is its specialization for the bilinear case, with constructive

LMI conditions. The results (c) and (d), are based on dissipativity theory, and the

contractivity of invariant sets. The reduction of conservatism in (d) with respect to
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Figure 3.3: State evolution for the bilinear sampled-data system in Example 1, with
a constant sampling intervals tk+1 − tk = 0.09.

the preliminary results in (c) is due to the use of the descriptor method in formalizing

the LMI conditions, which avoids some conservative cross products. Note that in this

example, dissipativity-based techniques give better estimation than hybrid ones.

3.4.2 Example 2: DC-DC Power Converter

Consider the buck-boost converter in Fig. 3.4, where a pulse width modulator is used to

adjust the duty cycle of the switching device. Consider the average-value model of the

converter [54, 116]:

˙̄x =
(
DA1 + (1−D)A2

)
x̄+

(
DB1 + (1−D)B2

)
v.

In the system state x̄ = [īL v̄c]
T , īL is the average inductor current, and v̄c the average

capacitor voltage. The system matrices are

A1 =

[

−RON+RL

L
0

0 − 1
RC

]

; A2 =

[

−RL

L
1
L

− 1
C

− 1
RC

]

;

Table 3.1: Estimation of the MASP that guarantees the local asymptotic stability of
the system in Example 1.

(a) (b) (c) (d)

Theorem 2.3 and [88] Theorem 2.7 Theorem 4 [92] Theorem 3.5

h 5.4× 10−3 13.8 × 10−3 43× 10−3 51× 10−3
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Figure 3.4: Buck-boost converter.

B1 =

[
1
L

0

0 0

]

; B2 =

[

0 − 1
L

0 0

]

; v =

[

VDC

vD

]

.

RON is the on-resistance of the switching device, vD is the diode voltage, and VDC is

the source voltage. D ∈ [D1,D2] = [0, 1] is system input representing the duty cycle.

The system is subjected to saturation due to the hard limits on the duty cycle. Several

works have dealt with stability and stabilization of DC-DC converter. Examples like

in [54] and [91] consider a nonlinear systems approach to design continuous time state-

feedback controller that achieves stabilization and tracking, and guarantees robustness

with respect to bilinearities and saturation. However, less attention has been paid to

study robustness with respect to sampled-data implementation. For a certain working

point x̄0, D0 we have

0 =
(
D0A1 + (1−D0)A2

)
x̄0 +

(
D0B1 + (1−D0)B2

)
v.

Considering x̂ = x̄− x̄0, and the input signal u = D −D0, we can see that

˙̂x = A0x̂+B0u+Nux̂, (3.29)

where A0 = (D0A1+(1−D0)A2), B0 = ((A1−A2)x̄0+(B1−B2)v), and N = (A1−A2).

Consider the following values VDC = 6V , R = 50Ω, L = 20mH, C = 220µF ,

RON = 0.08Ω, RL = 0.34Ω, and vD = 0.67V . From the constraints over the duty

cycle we see that u must be bounded by −D0 + D1 ≤ u ≤ D2 − D0. We consider

D0 = (D1 +D2)/2, which corresponds to the equilibrium point x̄0 = [+0.21 − 5.17] and

|u| ≤ umax = (D2 −D1)/2.

We are interested in the state-space region where a linear control u = Kx̂ is not sat-

urated, i.e. {x̂ ∈ R
2 : |Kx̂| ≤ umax}. Moreover, we assume that the errors sat-

isfy |̂iL| < 0.5A, |v̂c| < 3V . By intersection, this leads to considering the polytope

P := {(−0.42,−3), (−0.16,+3), (+0.16,−3), (+0.42,+3)}. Using classical results for
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Figure 3.5: The domain of attraction Ec∗(P ) for the system (3.29) when controlled
with the static feedback controller, in the aperiodically sampled-data case with hmax =
1.5 ms. The curves in black are simulations of the sampled-data system, for different

initial states.

the stabilization of the continuous-time system, we find the following controller

K = [−1.7329 + 0.0738].

Finally, in order to study the robustness with respect to aperiodic sampling, we apply

Theorem 3.5. We find that the system is stable under sampled-data implementation of

the feedback controller K with variable sampling periods bounded by h = 1.5 ms. The

guaranteed domain of attraction Ec∗(P ) is given in (3.20), for c∗ = 37.81 × 103 and

P = 103

[

554.9 −49.62

−49.62 14.01

]

.

The domain of attraction is shown in Fig. 3.5, together with simulations of the evolutions

of the state of the sampled-data system. Different initial conditions are considered, and

random variable sampling periods, bounded by h = 1.5 ms are used in the simulations.

Simulations show that by slightly increasing the sampling interval, the system becomes

unstable. For example, with the initial condition x0 = [−0.15 − 1.7]T ∈ Ec∗(P ), we

obtain an unstable behavior when choosing a constant sampling tk+1 − tk = 2.1ms.

However, for the same initial condition the system state converges to the origin if the

bound h = 1.5 ms is respected (as shown in Fig. 3.5).
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3.5 Conclusion

In this chapter we have provided sufficient conditions for the local stability of bilinear

sampled-data systems, when controlled via a linear state feedback. Polytopic state-space

constraints have been included in the analysis. The local stability is guaranteed inside

an ellipsoid contained in the addressed convex hull. The conditions for the stability

analysis, as well as the estimate of the domain of attraction, were given in the form of

LMIs, which makes them computationally tractable. The results have been illustrated by

numerical examples, and compared to the exiting literature. Note that Lemma 3.8 treats

a more general case of nonlinear systems. However, it only shows invarince property. In

the next chapter, we intend to show how such a result can be extended in order to cover

the asymptotic stability of a general class of nonlinear systems.





Chapter 4

Stability of input-affine nonlinear

systems with sampled-data

control

4.1 Introduction

This chapter is dedicated to the stability analysis of nonlinear sampled-data systems,

which are affine in the input. Assuming that a stabilizing continuous-time controller

exists and is to be implemented digitally, we intend to provide sufficient conditions for

the sampled-data system to be asymptotically/exponentially stable. The main idea of

the chapter is to extend the results from Chapter 3 using an approach inspired by the

dissipativity theory.

In Chapter 3, local asymptotic stability of bilinear sampled-data systems controlled

by a linear state feedback has been considered by using the analysis of contractive

invariant sets and the dissipativity theory. The obtained results are constructive, but

their extension for generic nonlinear systems does not seem to be trivial. Here we

keep the objectives of Chapter 3, and enlarge them to the case of input-affine nonlinear

systems. Dissipativity will constitute the keystone for the MASP estimation, and the

robustness analysis with respect to the sampling jitters. The method will be applied to

local and global analysis. Additionally, the particular case of polynomial systems will

be studied in relation with SOS techniques. The result will be applied to a benchmark

example from the literature in order to show the usefulness of the proposed stability

conditions.

67
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✛

✲ ẋ = f(x) + g(x)u

SH K(x(tk))

x(t)u(t)

Figure 4.1: The sampled-data feedback control of an affine nonlinear system.

The chapter is organized as follows. The problem under study is introduced in Sec-

tion 4.2. In Section 4.3 the system is represented by an equivalent model which is

adopted to our dissipativity analysis. Sufficient conditions for the asymptotic/exponen-

tial stability of affine nonlinear sampled-data systems are given in Section 4.4. Finally,

illustrative examples are presented in Section 4.5.

4.2 Problem formulation

Consider the affine nonlinear control system given by

ẋ(t) = f
(
x(t)

)
+ g
(
x(t)

)
u(t), ∀t > t0, x(t0) = x0, (4.1)

where x(t) ∈ R
n and u(t) ∈ R

m are the state and the input, respectively. The functions

f : Rn → R
n with f(0) = 0, and g : R

n → R
n×m are sufficiently smooth to make

the system well defined, i.e. for any x(t0) and any admissible u(·), the existence and

uniqueness of a solution is ensured on [t0,∞). We suppose that a continuous-time

controller u(t) = K
(
x(t)

)
stabilizes asymptotically/exponentially the equilibrium x = 0

of the system, where K : Rn → R
m is a continuously differentiable function.

We consider the emulation of the controller u = K(x) with the following assumptions:

• the set of uncertain sampling instants {0 = t0 < t1, . . . < tk < . . .} satisfies

0 < tk+1 − tk ≤ h, ∀k ∈ N,

for a given MASP h, and

lim
k→∞

tk = ∞;

• the control input is then calculated based on the sampled-data version of the state:

u(t) = K
(
x(tk)

)
, ∀t ∈ [tk, tk+1). (4.2)
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✛

✲
{

ẋ = fn(x) + gn(x)w

y = ∂K
∂x

ẋ

∆sh

y(t)w(t)

Figure 4.2: The equivalent representation of the sampled-data system (4.3).

Under these assumptions, we obtain a closed-loop sampled-data system (see also Fig. 4.1):

ẋ(t) = f
(
x(t)

)
+ g
(
x(t)

)
K
(
x(tk)

)
,

∀t ∈ [tk, tk+1), k ∈ N. (4.3)

We consider the following notions of stability:

Definition 4.1 ([64]). The equilibrium point x = 0 of the system (4.3) is locally uni-

formly asymptotically stable, if there exists a class KL function β(·, ·), such that

|x(t)| ≤ β(|x(t0)|, t− t0), ∀t ≥ t0, ∀x(t0) ∈ D0. (4.4)

In this case D0 is an estimate of the domain of attraction of x = 0. The equilibrium

point x = 0 is globally uniformly asymptotically stable if (4.4) is satisfied for any initial

state x(t0) ∈ R
n (i.e. , D0 = R

n).

Definition 4.2 ([64]). The equilibrium point x = 0 of the system (4.3) is locally uni-

formly exponentially stable in a neighborhood D0 of the equilibrium, if (4.4) is satisfied

with

β(s, t) = cse−λt, c > 0, λ > 0.

In this case D0 is an estimate of the domain of attraction of x = 0. The equilibrium

point x = 0 is globally uniformly exponentially stable if this condition is satisfied for any

initial state x(t0) ∈ R
n, (i.e. , D0 = R

n).

Problem: Find a criterion for the local/global asymptotic/exponential stability of the

equilibrium point x = 0 of the sampled-data system (4.3).
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4.3 Robustness analysis representation

The system (4.3) can be written as

ẋ(t) = fn(x(t)) + gn(x(t))w(t), ∀t ∈ [tk, tk+1), k ∈ N, (4.5)

where fn(x) = f(x)+g(x)K(x), gn(x) = g(x) and w(t) = K
(
x(tk)

)
−K

(
x(t)

)
. Note that

fn(x) represents the dynamics of the nominal, continuous-time, closed-loop system, i.e.

the dynamics without the sampled-data implementation. From (4.5) the sampled-data

system (4.3) can be represented by the equivalent feedback connection of

G :=







ẋ = fn(x) + gn(x)w,

y = ∂K
∂x

ẋ,
(4.6)

with the operator ∆sh : y → w

w(t) = (∆sh y)(t) = −
∫ t

tk

y(τ)dτ, ∀t ∈ [tk, tk+1). (4.7)

This representation is shown in Fig. 4.2. Recall that the properties of the operator ∆sh

have been shown in Section 3.2.1.

4.4 Main results

4.4.1 Stability analysis

In the following we provide the main results of this chapter.

Theorem 4.3. Consider the sampled-data system (4.3) and the equivalent representa-

tion (4.6), (4.7). Consider the quadratic form:

S
(
y,w

)
=

[

y

w

]T [

−δ20X Y

Y X

] [

y

w

]

, (4.8)

with δ0 = 2
π
h, 0 < XT = X ∈ R

m×m, and 0 ≤ Y T = Y ∈ R
m×m. Consider a

neighborhood D ⊂ R
n of the equilibrium point x = 0, and suppose that there exist a

differentiable positive definite function V : D → R
+, such that there exist α > 0 and

class K functions β1 and β2, verifying

β1(|x|) ≤ V (x) ≤ β2(|x|), ∀x ∈ D, (4.9)
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and for and any x(t) ∈ D:

V̇
(
x(t)

)
+ αV

(
x(t)

)
≤ S

(
y(t), w(t)

)
, (4.10)

V̇
(
x(t)

)
+ αV

(
x(t)

)
≤ S

(
y(t), w(t)

)
e−αh. (4.11)

Then, the equilibrium x = 0 of the system (4.3) is locally uniformly asymptotically stable.

Moreover, consider the sub-level set defined by V (·) and a scalar c > 0

Lc := {x ∈ R
n : V (x) ≤ c}. (4.12)

Then the set Lc∗ defined by the maximal sub-level set of V contained in D

c∗ = max
Lc⊂D

c (4.13)

is an estimate of the domain of attraction. Finally, if all the conditions are satisfied

for D = R
n, with class K∞ functions β1 and β2, then the equilibrium x = 0 is globally

uniformly asymptotically stable.

Proof. To show the stability of the sampled-data system, we define first the function

W (t) = V
(
x(t)

)
eα(t−tk) −

∫ t

tk

S
(
y(τ), w(τ)

)
dτ,

for any t ∈ [tk, tk+1). The conditions (4.10) and (4.11) are sufficient to have

Ẇ (t) ≤ 0, ∀t ∈ [tk, tk+1), ∀x(t) ∈ D. (4.14)

The last equation yields

V
(
x(t)

)
eα(t−tk) −

∫ t

tk

S
(
y(τ), w(τ)

)
dτ ≤ V (tk). (4.15)

From Lemma 3.1 and Lemma 3.2, it is easy to see that

V
(
x(t)

)
≤ e−α(t−tk)V

(
x(tk)

)
, ∀t ∈ [tk, tk+1), ∀x(t) ∈ D. (4.16)

Clearly, the set Lc∗ is positively invariant [64], and it is the largest sub-level set contained

in D. Consider an initial condition x0 ∈ Lc∗ . From the continuity of the solution x(t),

(4.16) leads to

V
(
x(t)

)
≤ e−α(t−t0)V

(
x(t0)

)
, ∀t ≥ t0, ∀x0 ∈ Lc∗ . (4.17)
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From (4.9) and (4.17), we see that for any solution with x(t0) ∈ Lc∗

|x(t)| ≤ β−1
1

(
V
(
x(t0)

)
e−α(t−t0)

)

≤ β−1
1

(
β2(|x(t0)|)e−α(t−t0)

)

:= β(|x(t0)|, t− t0), ∀t ≥ t0, ∀x(t0) ∈ Lc∗ .

The function β(·, ·) can be easily seen to be a class KL function. This shows that x = 0

is locally uniformly asymptotically stable. Finally, it is trivial to see that if all the

conditions are satisfied for D = R
n, with class K∞ functions β1 and β2, then x = 0 is

globally uniformly asymptotically stable. This completes the proof.

Corollary 4.4. Suppose that all the conditions of Theorem 4.3 are satisfied with

β1(|x|) ≥ k1|x|q, β2(|x|) ≤ k2|x|q, for some k1, k2, q > 0. (4.18)

Then, the equilibrium x = 0 is locally exponentially stable. Moreover, the sub-level set

Lc∗ defined in (4.13) and (4.12), is an estimate of the domain of attraction. If the

conditions hold for D = R
n, then x = 0 is globally exponentially stable.

Proof. Following the same steps as in the proof of Theorem 4.3, we get

V
(
x(t)

)
≤ e−α(t−t0)V

(
x(t0)

)
, ∀t ≥ t0, ∀x0 ∈ Lc∗ .

Thus, from (4.9) and (4.18)

|x(t)| ≤
(V
(
x(t0)

)
e−α(t−t0)

k1

)1/q

≤
(k2|x(t0)|qe−α(t−t0)

k1

)1/q

=
(k2
k1

)1/q

|x(t0)|e−(α/q)(t−t0), ∀t ≥ t0, ∀x(t0) ∈ Lc∗ .

This shows that x = 0 locally exponentially stable. If the conditions hold for D = R
n,

the proof of global exponential stability is trivial.

Remark 4.5. Considering the storage function V
(
x(t)

)
, the inequalities (4.10) and (4.11)

show that (4.6) is exponentially dissipative with respect to the supply rates S
(
y,w

)
and

e−αhS
(
y,w

)
respectively, with S defined in (4.8). See Section A.4 for the definitions of

exponential dissipativity.
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4.4.2 Sum of squares stability conditions for the class of polynomial

systems

When the linear approximation fails, the dynamics of many physical phenomena can

be modeled by polynomial differential equations. They are frequently found in several

domains like process control, biology, robotics, and electrical systems. For this class of

systems, SOS decomposition and semi-definite programming [102], are shown to be a

useful tool. It has been used in several analysis and synthesis control problems [100].

In this section we specialize the previous result for the class of affine polynomial sampled-

data systems, using SOS decomposition and semi-definite programming techniques. We

formulate a constructive method to find a storage function and a supply rate, which

satisfy the asymptotic/exponential stability conditions proposed in the previous section.

Let us consider the stability problem defined in Section 4.2 for the particular case where

the f(x), g(x) and K(x) are polynomial functions. The system (4.6) will be defined by:







ẋ = F (x,w)

y = G(x,w)
(4.19)

where

F (x,w) := fn(x) + gn(x)w,

and

G(x,w) :=
∂K

∂x
F (x,w).

When looking for a polynomial storage function V (x), verifying the dissipativiy inequal-

ities in Theorem 4.3 is a problem of checking the non negativity of polynomials. This

can be seen from (4.8) and (4.19), as for the polynomial case (4.10) and (4.11) are,

respectively, equivalent to

0 ≤ −∂V

∂x
F (x,w) − αV (x) +

[
− δ20G

T (x,w)XG(x,w) + 2GT (x,w)Y w + wTXw
]
,

and

0 ≤ −∂V

∂x
F (x,w) − αV (x) +

[
− δ20G

T (x,w)XG(x,w) + 2GT (x,w)Y w + wTXw
]
e−αh,

for any x ∈ D. In fact, the right terms in the last inequalities can be written as

polynomials of the form p(ξ) ≥ 0, with p(ξ) ∈ R[ξ], and ξ = (x,w).
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Checking the non negativity of a polynomial is known to be a difficult problem. Recent

methods relaxed this problem using semi-definite programming and the SOS decompo-

sition [102]. The relaxation is based on checking whether a polynomial is a SOS, which

is sufficient to ensure the semi-definite positivity.

Definition 4.6. [100] A multivariate polynomial p(x) ∈ R[x] is said to be a sum of

squares (SOS), if there exist some polynomials pi(x) ∈ R[x], i ∈ {1, . . . ,M}, such that

p(x) =
∑M

i=1 p
2
i (x).

The relaxation is only sufficient, but there are suggestions in the literature which indicate

that it is not too conservative (see [100] and the references therein). However, it must be

noted that the computational complexity of the algorithms testing whether a polynomial

p(x) is an SOS increases rapidly with the degree of p(x).

SOS techniques are shown to be very useful in systems analysis [100]. In the following, we

reformalize Theorem 4.3 and Corollary 4.4 using the SOS method. The local applicability

of the dissipativty inequalities inside a region D is ensured using a technique similar to

the S-procedure [12]. Note that when looking for a Lyapunov or a storage function,

we need to ensure its positive definiteness. Thus, guaranteeing that it is an SOS is not

sufficient, as it only guarantees its non negativity. To overcome this problem, we use

the following proposition:

Proposition 4.7. [100] Given a polynomial V (x) ∈ R[x] of degree 2d, let

ϕ(x) =

n∑

i=1

d∑

j=1

ǫijx
2j
i , such that

d∑

j=1

ǫij > γ, ∀i = 1, . . . , n (4.20)

with γ a positive number, and ǫij ≥ 0 for all i and j. Then the condition

V (x)− ϕ(x) is SOS, (4.21)

guarantees the positive definiteness of V (x).

Corollary 4.8. Assume that the functions f(x), g(x) and K(x) in the sampled-data

system (4.3) are polynomial functions. Consider the equivalent representation (4.19)

and (4.7). Let D = {x ∈ R
n : µl(x) ≥ 0, l = 1, 2, . . . , s} be a neighborhood of the origin

x = 0. Suppose that there exist a polynomial function V (x) ∈ R[x], and sums of squares

σl(ξ) and ςl(ξ), with l ∈ {1, . . . , s} and ξ = (x,w), such that the following polynomials

are SOS
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V̂ (x) = V (x)− ϕ(x), (4.22)

ρ1(ξ) = −
s∑

l=1

σl(ξ)µl(x)−
∂V

∂x
F (x,w)− αV (x)

+
[
− δ20G

T (x,w)XG(x,w) + 2GT (x,w)Y w + wTXw
]
, (4.23)

ρ2(ξ) = −
s∑

l=1

ςl(ξ)µl(x)−
∂V

∂x
F (x,w)− αV (x)

+
[
− δ20G

T (x,w)XG(x,w) + 2GT (x,w)Y w + wTXw
]
e−αh. (4.24)

with δ0 = 2
π
h, 0 < XT = X ∈ R

m×m, 0 ≤ Y T = Y ∈ R
m×m, and ϕ(x) a positive

definite polynomial defined in (4.20). Then, the equilibrium x = 0 of the system (4.3) is

locally uniformly asymptotically stable. Moreover, the sub-level set Lc∗ defined in (4.13)

and (4.12), is an estimate of the domain of attraction. Finally, if (4.23) and (4.24) are

SOS while µl(x) = 0, for all l ∈ {1, 2, . . . , s}, then the equilibrium is globally uniformly

asymptotically stable.

Proof. First, note that from (4.22) and Proposition 4.7, the function V (x) is ensured

to be definite positive and radially unbounded (V (x) → ∞ when x → ∞). Therefore,

using Lemma 4.3 from [64], there exist class K functions β1 and β2, such that

β1(|x|) ≤ V (x) ≤ β2(|x|), ∀x ∈ R
n.

Moreover, when x ∈ D, i.e. µl(x) ≥ 0 for all l ∈ {1, 2, . . . , s}, then from the non

negativity of the SOS polynomials σl(ξ) and ςl(ξ), we can see that ρ1(ξ) ≥ 0 ( resp.

ρ2(ξ) ≥ 0). The later implies that the dissipativity condition (4.10) ( resp. (4.11)) is

satisfied. Thus all the local stability conditions of Theorem 4.3 are satisfied. The case

where (4.23) and (4.24) are SOS for µl(x) = 0 ∀l ∈ {1, 2, . . . , s} satisfies obviously the

global stability conditions in Theorem 4.3.

Corollary 4.9. Suppose that all the conditions of Corollary 4.8 are satisfied, and that

the storage function V (x) satisfies

k1|x|q ≤ V (x) ≤ k2|x|q, ∀x ∈ R
n. (4.25)

Then, the equilibrium x = 0 is locally exponentially stable. Moreover, the sub-level set

Lc∗ defined in (4.13) and (4.12), is an estimate of the domain of attraction. If the

conditions hold for D = R
n, then x = 0 is globally exponentially stable.
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Proof. The proof follows the same steps as the one of Corollary 4.8. It is a direct result

of Corollary 4.4.

4.5 Illustrative Examples

In the following, we apply the proposed method on two nonlinear systems. First we

revisit the example in [88]. We find the MASP which guarantees the global uniform

asymptotic stability of the sampled-data system. Next, we consider another example

that illustrates the applicability of the results for local exponential stability.

4.5.1 Example 1

Consider the following system from [88]

ẋ = dx2 − x3 + u,

with a bounded time-varying |d| ≤ 1, and a stabilizing control u = K(x) = −2x.

Emulating this controller results in a sampled-data system that can be represented by

the operator ∆sh in (4.7), and a system (4.6) described by







ẋ = dx2 − x3 − 2x+ w,

y = −2(dx2 − x3 − 2x+ w).

We apply the Corollary 4.8 in order to find a storage function of the form V (x) =

ax2 + bx4, such that (4.22), (4.23) and (4.24) are SOS. We choose ϕ(x) = 10−3x2,

α = 0.1 and h = 0.72. We intend to test the global stability of the closed-loop sampled-

data system at the origin. In this case, the polynomials (4.23) and (4.24) take the

form

ρ1(ξ) = −(2ax+ 4bx3)(dx2 − x3 − 2x+ w)− α(ax2 + ax4)

+
[
− 4δ20X(dx2 − x3 − 2x+w)2

− 4Y (dx2 − x3 − 2x+ w)w +Xw2
]
, (4.26)

ρ2(ξ) = −(2ax+ 4bx3)(dx2 − x3 − 2x+ w)− α(ax2 + ax4)

+
[
− 4δ20X(dx2 − x3 − 2x+w)2

− 4Y (dx2 − x3 − 2x+ w)w +Xw2
]
e−αh, (4.27)
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Figure 4.3: Tradeoff between α (the exponential decay rate of the storage function),
and the estimation of the MASP h.

where a, b,X, Y are decision variables. Note that the time-varying terms d and d2 appear

in the polynomial expressions. However, if both (4.26) and (4.27) are ensured to be SOS

for all the values of (d, d2) ∈ {(1, 0), (1, 1), (−1, 0), (−1, 1)}, then they will be SOS for any

time-varying |d| ≤ 1. This requirement is found to be satisfied using the SOSTOOLS

software [104], for the storage function V (x) = 0.77402x2 + 0.19911x4, and the supply

function (4.8) defined by X = 0.47522 and Y = 0.62302 10−3 . By Corollary 4.8, we

obtain the global uniform asymptotic stability of the equilibrium x = 0, of the sampled-

data system. This result cannot be obtained when trying a quadratic storage function.

Increasing α (the exponential decay rate of the storage function), results in the decrement

of the maximum value of h for which the problem is feasible. This can be seen in Fig 4.3.

Previous works considered this example in the literature for estimating the MASP. In

[88], a bound of h = 0.368 is found. In [60], the proposed upper bound is h = 0.1428.

The conditions proposed in this paper are found feasible for h = 0.72. State trajectory

evolutions are shown in Fig 4.4. It can be seen that the state trajectory is asymptotically

stable when the sampling periods are inferior to the bound h = 0.72. Also, note that

for a uniform sampling period of tk+1 − tk = 1.05, asymptotic stability is no longer

guaranteed.

4.5.2 Example 2

Consider the following system

ẋ = x2 + (x− 1)u,
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Figure 4.4: State trajectory evolution for two sequences of sampling intervals.

with the controller u = K(x) = x+ 2x2, which stabilizes the system at the equilibrium

point x = 0. Note that, in the continuous-time case, this equilibrium is only locally

stable. Our purpose is to find the maximum value of h that guarantees the local expo-

nential stability of x = 0, when the controller is emulated. We consider the neighborhood

x ∈ [−0.4,+0.4]. The sampled-data system can be represented by the operator ∆sh in

(4.7), and a system (4.6) described by







ẋ = −x+ 2x3 + (x− 1)w,

y = (1 + 4x)(−x+ 2x3 + (x− 1)w).

We consider applying Corollary 4.9 with a quadratic storage function V (x) = ax2. Note

that V (x) satisfies (4.25) with k1 = k2 = a and q = 2. We choose ϕ(x) = 10−3x2,

α = 0.25 and h = 0.6. The considered domain D is described by {x ∈ R : µ1(x) ≥ 0}
with µ1(x) = (x+ 0.4)(0.4 − x). The polynomials (4.23) and (4.24) are in this case

ρ1(ξ) = −σ1(ξ)µ1(x)− (2ax)(−x+ 2x3 + (x− 1)w) − α(ax2)

+
[
− δ20X(1 + 4x)2(−x+ 2x3 + (x− 1)w)2

+ 2Y (1 + 4x)(−x+ 2x3 + (x− 1)w)w +Xw2
]
, (4.28)

ρ2(ξ) = −ς1(ξ)µ1(x)− (2ax)(−x+ 2x3 + (x− 1)w) − α(ax2)

+
[
− δ20X(1 + 4x)2(−x+ 2x3 + (x− 1)w)2

+ 2Y (1 + 4x)(−x+ 2x3 + (x− 1)w)w +Xw2
]
e−αh, (4.29)
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where a,X, Y are decision variables, and σ1(ξ), ς1(ξ) are decision SOS polynomials. Us-

ing the software SOSTOOLS we find that (4.28) and (4.29) are SOS with a = 0.12015,

X = 0.25506, Y = 0.88456 10−2 . The decision SOS polynomials are

σ1(ξ) = 0.62335w2 − 0.3616xw2 + 1.6714x2w2

− 0.67622x3w + 2.0314x4w + 3.228x6,

ς1(ξ) = 0.52025w2 − 0.31686xw2 + 1.4349x2w2

− 0.54824x3w + 1.60754x4w + 2.8846x6.

Thus all the conditions of Corollary 4.9 are satisfied, and x = 0 is locally exponentially

stable. The estimation of the domain of attraction Lc∗ can be easily seen to be equals

to the studied domain [−0.4,+0.4].

4.6 Conclusion

In this chapter we have provided sufficient conditions for the stability of nonlinear

sampled-data systems, which are affine in the control. The main idea of the chapter

is to use the dissipativity theory to provide an estimate of the MASP. The provided

results can be used to analyze asymptotic/exponential stability, and can be applied

locally or globally. The results are numerically tractable for the case of polynomial sys-

tems, with the use of SOS decomposition and semi-definite programming. The method

is applied to a benchmark example from the literature, and it has been shown that it

can provide a good estimate of the MASP. The novelty of this contribution is that it

provides a quantitative estimate of the MASP using robust control tools based on the

dissipativity theory.





General conclusion

This thesis has provided contributions to the stability analysis of nonlinear systems

under aperiodic sampling. A continuous-time controller is supposed to be designed

without taking the sampling into consideration, and it is emulated in discrete-time. The

main objective was to provide tractable stability criteria which allow for estimating the

Maximum Allowable Sampling Period (MASP)1.

A particular attention has been given to the case of bilinear systems, which are a special

class of nonlinear systems. They represent a challenging intermediate between linear

and nonlinear systems, which is relevant in practical applications. The study of such

systems allows for tackling the difficulties of nonlinear systems while exploiting their

quasi-linear structure. New theoretical methods have been proposed for this class of

systems. Afterwards, the results have been extended to more general classes of nonlinear

systems. We describe, in what follows, the contributions of the thesis with a little more

detail.

In Chapter 1, we proposed an overview of the techniques involved in sampled-data

control, ranging from Lyapunov-Krasovskii functionals, impulsive modeling, small gain

and convex-embedding approaches for LTI systems, to different emulation and discrete-

time approaches for nonlinear systems.

In Chapter 2, we have provided sufficient conditions for the local stability of bilinear

sampled-data systems, controlled via a linear state feedback controller. New results for

estimating the MASP that guarantees the local stability of the system are given. Two

methods were considered via the hybrid system modeling approach. The first method

[95] is a constructive adaptation of a generic result for nonlinear case [88], while the

second one is based on a direct search of a Lyapunov function for the hybrid model

[95]. The stability conditions of both methods are given in the form of Linear Matrix

Inequalities (LMIs), which are easily tractable in terms of computation.

1Note that the term “period” is usually employed, but should rather be called “interval” since it
contains the asynchronous sampling case.
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In Chapter 3, the local stability of bilinear sampled-data systems has been investigated

using a new approach inspired by dissipativity [92, 94]. Sufficient conditions have been

provided based on the analysis of contractive invariant sets. Polytopic state-space con-

straints have been included in the analysis. The local stability is guaranteed inside an

ellipsoidal estimate of the domain of attraction. The stability analysis criteria, as well

as the conditions for estimating the domain of attraction, are given in the form of LMIs.

In Chapter 4, we have provided sufficient conditions for the stability of nonlinear sampled-

data systems, affine in the control. The main idea of this contribution is to extend the

dissipativity-based results developed for bilinear systems to a more general nonlinear

case [93, 96, 97]. The method provides a quantitative estimate of the MASP and can

be used to analyze asymptotic/exponential stability. It is shown that the results are

numerically tractable for the case of polynomial systems. In this case, the tractability

refers to the use of SOS decomposition and semi-definite programming.

We believe that the results of this thesis reveal several perspectives, and emerging re-

search directions can now be considered as follows.

First, the provided results contribute to stability analysis of Networked Control Systems

(NCSs), as for such systems robustness with respect to aperiodic sampling is an essential

issue. However, networks impose other communication imperfections that must also be

taken into account: time-varying delays, constraints on the number of nodes accessing

the network, and quantization. Extending our methodology in order to include these

additional network imperfections would be of great interest.

Second, although the results we provided are shown to have rather low levels of conser-

vatism, it is still possible to improve the numerical solvability of the proposed conditions.

These conditions can be enhanced by giving more insight into the mathematical model

of the sampling effects. This would lead to new characterizations of supply functions

used in the dissipativity-based approach. Moreover, information about the lower bound

of the sampling interval could be useful in the analysis. Analyzing stability while taking

into consideration both the upper and the lower bound on the sampling intervals could

enhance the results.

Third, the present work addresses stability analysis for sampled-data systems with an

emulated controller. It means we considered that a controller has been designed in

continuous-time without taking the sampling into account. In the future, we may try

to build on our progress in order to design (possibly more complex) sampled-data con-

trollers. This constitutes a challenging issue.

Finally, the thesis was focused on the robust stability with respect to aperiodic sampling.

From this point of view, the variations of the sampling intervals are seen as perturbations.



General conclusion 83

Nevertheless, there exist various approaches where the sampling intervals are supposed

to be controllable. These approaches include event-based control, self-triggered control

and state-dependent sampling control: the idea is to guarantee stability while sampling

as less as possible. Extending our results for these controlled sampling methodologies is

another interesting research direction.
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Introduction

La technologie numérique contribue considérablement à l’implémentation des contrôleurs

automatiques. De nos jours, les instruments de calcul numérique sont essentiels dans la

plupart des boucles de contrôle. Une boucle de commande classique avec retour d’état

échantillonné est montrée dans la Fig. 5. Elle est constituée d’un processus en temps

continu, bouclé par un contrôleur numérique. Le signal de sortie y (temps continu) est

mesuré aux instants d’échantillonnage. Le contrôleur utilise le signal échantillonné pour

calculer le signal de commande (temps discret). L’interface, depuis les valeurs discrètes

vers les signaux continus, est réalisée par un bloqueur, comme le bloqueur d’ordre zéro.

La complexité de l’algorithme de commande est liée aux hypothèses de modélisation.

Parmi celles-ci, la linéarité du processus et la périodicité de l’échantillonnage ont dû

être supposées pendant longtemps, principalement parce que la théorie de la commande

des systèmes échantillonnés est bien développée pour le cas des systèmes linéaires in-

variants dans le temps, avec échantillonnage uniforme. Ces hypothèses sont considérées

à cause des limites des outils développés pour synthétiser un contrôleur. Cependant,

les phénomènes physiques sont fondamentalement non linéaires et les intervalles entre

les instants d’échantillonnage varient dans le temps à cause des contraintes de temps

réel. Ceci rend le problème d’analyse de stabilité plus difficile. En fait, la stabilité des

✛

✲ Processus

SH Commande

yu

✻

✲

✻

✲

Figure 5: Commande du système avec retour d’état échantillonné.
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systèmes non linéaires échantillonnés est un sujet complexe par nature et constitue un

sujet de recherche intéressant.

L’approche de synthèse par émulation est souvent considérée. Dans cette approche, une

commande qui stabilise le système en temps continu est implémentée en utilisant un

bloqueur d’ordre zéro (BOZ). Intuitivement, on se doute que des pas d’échantillonnage

“suffisamment petits” vont assurer la stabilité : au-delà de cette approche qualitative,

il est concrètement important d’avoir une estimation quantitative de ce qu’on appelle le

plus grand pas d’échantillonnage permis (MASP en anglais).

Plusieurs travaux dans la littérature se sont penchés sur ce problème. Le cas des

systèmes échantillonnés linéaires a été largement étudié, et les résultats sont construc-

tifs. Quelques travaux plus rares traitent le cas des systèmes non linéaires. Notons dès

à présent qu’il n’est pas toujours évident de les appliquer et de calculer une estimation

numérique du plus grand pas d’échantillonnage qui garantit la stabilité.

Le travail présenté dans cette thèse est dédié au problème suivant:

Fournir un critère de stabilité pour les systèmes non linéaires, qui permet de calculer

une estimation du plus grand pas d’échantillonnage permis.

Le travail se concentre d’abord sur le cas des systèmes bilinéaires. Ces systèmes

représentent un cas intermédiaire entre les modèles linéaires et les modèles non linéaires

les plus généraux. Ils peuvent servir d’approximation pour les systèmes non linéaires,

et modéliser des processus dans une bonne variété de domaines. L’objectif de ce travail

est donc tout d’abord d’étudier le problème de stabilité des systèmes bilinéaires avec

échantillonnage apériodique. Ensuite, on généralise les résultats pour une classe plus

large de systèmes non linéaires.

Structure du mémoire

Cette thèse est organisée comme suit:

Chapitre 1

Dans ce chapitre, on présente une vue d’ensemble des systèmes de commande

échantillonnés. D’abord, on introduit ces systèmes et on présente un très bref his-

torique de l’utilisation de la technologie numérique en automatique. Ensuite, on se

concentre sur le problème de l’analyse de la stabilité des systèmes linéaires et non

linéaires échantillonnés. Comme de nombreuses publications et plusieurs théories sont
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consacrées à l’analyse de stabilité sous échantillonnage périodique ou apériodique, ce

chapitre présente un aperçu bref mais structuré des principaux résultats de ce domaine.

Chapitre 2

Ce chapitre est dédié à l’analyse de la stabilité locale des systèmes bilinéaires

échantillonnés, contrôlés par un retour d’état statique. La stabilité est étudiée en util-

isant une formulation de type système hybride. L’objectif est de trouver un critère de

stabilité et une méthode constructive pour estimer le plus grand pas d’échantillonnage

permis. Ce problème a rarement été considéré pour les systèmes bilinéaires, et à notre

connaissance, jamais de façon constructive.

Deux méthodes sont considérées. Elles sont développées dans le cadre des systèmes

hybrides. La première méthode est une spécialisation d’un résultat concernant les

systèmes non linéaires généraux. Le but est de trouver une méthode constructive afin

de l’appliquer pour le cas des systèmes bilinéaires. La deuxième méthode est basée sur

une recherche directe d’une fonction de Lyapunov en utilisant des inégalités matricielles

linéaires (LMIs).

Formulation du problème

On considère le système bilinéaire:

ẋ(t) = A0x(t) +

m∑

i=1

[u(t)]iNix(t) +B0u(t), ∀t ≥ t0. (1)

On suppose que les hypothèses suivantes sont satisfaites:

A1 La commande est constante par morceaux

u(t) = Kx(tk), ∀t ∈ [tk, tk+1),

avec un ensemble des instants d’échantillonnage {tk}k∈N qui satisfait:

0 < ǫ ≤ tk+1 − tk ≤ h, ∀k ∈ N, (2)

où h est un plus grand pas d’échantillonnage permis.
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A2 La paire (A0, B0) est stabilisable et le retour d’état linéaire u(t) = Kx(t) est

calculé afin de stabiliser asymptotiquement localement l’origine du système (1).

Le domaine d’attraction est D0.

A3 Les variables d’état sont soumises à des contraintes données par un polytope P ⊂
D0:

P = conv{x1, x2, . . . , xp}, (3)

= {x ∈ R
n : aTj x ≤ 1, j = 1, 2, . . . , r}. (4)

Sous ces hypothèses, le système en boucle fermée est:

ẋ(t) =
(
A0 +

m∑

i=1

[Kx(tk)]iNi

)
x(t) +B0Kx(tk), ∀t ∈ [tk, tk+1), ∀k ∈ N. (5)

Le système (5) peut être représenté par

ẋ(t) = Ã[x(t), e(t)]x(t) +Be(t), ∀t ∈ [tk, tk+1) (6)

avec

e(t) = x(tk)− x(t),

Ã[x, e] := A0 +B0K +

m∑

i=1

[K(x+ e)]iNi, (7)

et

B = B0K. (8)

Si x(tk) est dans le polytope P, alors

A[x(tk)] := Ã[x(t), e(t)] ∈ conv{A1, A2, . . . , Ap},

avec

Aq = A[xq] ∀q ∈ {1, 2, . . . , p}. (9)

Problème:

Trouver un critère de stabilité asymptotique locale de l’équilibre x = 0 du système (5),

ainsi qu’une estimation du domaine d’attraction E ⊂ P de telle sorte que pour tout

x(t0) ∈ E les solutions satisfont x(t) ∈ P, ∀t > t0, et x(t) → 0.
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Le système bilinéaire échantillonné peut être représenté par:

ẋ = A0x(t) +
∑m

i=1 ui(t)Nix(t) +B0u(t), t ∈ [tk, tk+1),

y = x,

u = Kŷ,

˙̂y = 0, t ∈ [tk, tk+1),

ŷ(t+k ) = y(tk).

(10)

Le système (10) peut être représenté par le modèle hybride suivant:

ẋ = f(x, e) = Ã[x, e]x +Be

ė = g(x, e) = −Ã[x, e]x−Be

τ̇ = 1







τ ∈ [0, h)

x+ = x

e+ = 0

τ+ = 0







τ ∈ [ǫ, h] (11)

Méthode 1:

Le théorème suivant est une adaptation du résultat de [88] pour le cas bilinéaire.

Théorème .0.1. On considère le système (11), le polytope P dans (3), la notation (9) et

une fonction T donnée par

T (γ, L) :=







1
Lr

arctan(r) γ > L
1
L

γ = L
1
Lr

arctanh(r) γ < L

(12)

avec

r =

√
∣
∣
γ2

L2
− 1
∣
∣ (13)

où L est donné par

L =
1

2
max{−λmin(B

T +B), 0} (14)

et γ est la solution du problème d’optimisation suivant

γ = min γ′ (15)
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sous les contraintes ∃P ∈ R
n×n, une matrice symétrique définie positive , ∃γ′ > 0 et

∃α > 0, telle que

Mlj =

[

AT
l P + PAl +

1
2(A

T
l Aj +AT

j Al) + αI PB

∗ (α− γ′2)I

]

< 0,

∀l, j ∈ {1, 2, ..., p}, (16)

où Al and Aj sont des sommets donnés par (9). On suppose que h < T (γ, L). Alors,

pour le système (11), l’ensemble {(x, e, τ) : x = 0, e = 0} est localement uniformément

asymptotiquement stable.

Méthode 2:

Dans cette méthode, on cherche directement une fonction de Lyapunov pour le modèle

hybride. L’objectif est d’éviter le conservatisme présent dans la méthode précédente, dû

aux bornes supérieures sur la dérivée de la fonction de Lyapunov.

Théorème .0.2. On considère le système (11). On suppose que h ≤ T . On suppose qu’il

existe des matrices symétriques définies positives P,Q,X, Y ∈ R
n×n telles que les LMIs

suivantes sont satisfaites:

[

AT
l P + PAl +X PB −AT

l Q

∗ −BTQ−QB − 1
T Q+ Y

]

< 0,

∀l ∈ {1, 2, ..., p}, (17)

[

AT
l P + PAl +X PB −AT

l Q exp(−1)

∗ [−BTQ−QB − 1
T Q] exp(−1) + Y

]

< 0,

∀l ∈ {1, 2, ..., p}, (18)

où Al des sommets donnés par (9). Alors, pour le système (11), l’ensemble {(x, e, τ) :

x = 0, e = 0} est localement uniformément asymptotiquement stable.

Chapitre 3

Ce chapitre est dédié à l’analyse de la stabilité locale des systèmes bilinéaires

échantillonnés, contrôlés par un retour d’état statique. Ce problème a été considéré dans



Résumé étendu en français 91

le Chapitre 2, mais l’objectif de ce chapitre est de le traiter en utilisant une nouvelle

approche. Le problème de l’analyse de stabilité est étudié via une propriété d’invariance

des sous ensembles ellipsöıdaux. La méthode présentée ici est inspirée par la théorie de

la dissipativité.

La notion de dissipativité a été introduite par Willems [124]. Depuis son introduction,

cette approche a attiré beaucoup d’attention, car elle peut être utilisée pour étudier la

stabilité, la passivité, la robustesse et d’autres problèmes d’analyse et de synthèse. Ces

travaux sont inspirés par les propriétés de passivité des circuits électriques et peuvent être

considérés comme la généralisation d’une notion abstraite d’énergie pour les systèmes

dynamiques.

L’équation (5) peut être écrite

ẋ(t) =
(
A0 +B0K +

m∑

i=1

[Kx(tk)]iNi

︸ ︷︷ ︸

A(x(tk))

)
x(t) +B0K

︸ ︷︷ ︸

B

(x(tk)− x(t)
︸ ︷︷ ︸

w(t)

).

On définit

C(x(tk)) = A(x(tk)) = A0 +B0K +
m∑

i=1

[Kx(tk)]iNi, D = B = B0K, (19)

ce qui montre que le système échantillonné peut être representé par le bouclage du

système

G :=







ẋ(t) = A(x(tk))x(t) +Bw(t),

y(t) = C(x(tk))x(t) +Dw(t),
(20)

avec l’opérateur ∆sh : y → w,

w(t) = (∆sh y)(t) = −
∫ t

tk

y(τ)dτ, ∀t ∈ [tk, tk+1). (21)

On remarque que l’effet des variations des pas d’échantillonnage est modélisé par

l’opérateur ∆sh. Cette approche est considérée dans [74] et [39] avec l’objectif d’étudier

la stabilité des systèmes échantillonnés linéaires. Dans [74], une limite supérieure sur le

gain de l’opérateur ∆sh est trouvée. Il est montré que ‖∆sh‖ ≤ δ0 avec δ0 = 2
π
hmax.

Cette limite est atteinte (‖∆sh‖ = δ0) pour tk+1 − tk = hmax. Des conditions de sta-

bilité basées sur le théorème du petit gain sont fournies sous la forme de LMI. Dans

[39], la propriété précédente est associée à une propriété de passivité pour trouver des

conditions moins contraignantes. Le résultat est basé sur des techniques de commande

robuste, utilisant une approche fréquentielle et le lemme de Kalman-Yakubovich-Popov.
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Théorème .0.3. On considère le système (11), la représentation équivalente (21) et (20).

On suppose qu’il existe des matrices symétriques définies positives X,Y, P ∈ R
n×n, et

des matrices P2, P3 ∈ R
n×n telles que le problème d’optimisation suivant admet une

solution

γ∗ = min
Ej≥0,Mq<0

γ, ∀j ∈ {1, 2, ..., r}, ∀q ∈ {1, 2, ..., p} (22)

avec

Ej =

[

γ aTj

aj P

]

≥ 0 (23)

et

Mq =







AT
q P2 + P T

2 Aq P − P T
2 +AT

q P3 P T
2 B

P − P2 + P T
3 Aq −P3 − P T

3 + δ20X P T
3 B − Y

BTP2 BTP3 − Y −X






< 0 (24)

avec δ0 = 2
π
hmax, et les sommets {Aq}q∈{1,2,··· ,p} sont donnés par

Aq := A(xq) = A0 +B0K +

m∑

i=1

[

Kxq

]

i
Ni (25)

avec {xq}q∈{1,2,...,p} donné dans (3). Alors, l’équilibre x = 0 du système (11) est locale-

ment asymptotiquement stable et le domaine d’attraction est estimé par

Ec∗[P ] = {x ∈ R
n : xTPx ≤ c∗} ⊂ P, with c∗ = 1/γ∗. (26)

Chapitre 4

Dans ce chapitre on généralise les résultats du Chapitre 3 pour le cas des systèmes

non linéaires affines en l’entrée. Nous supposons qu’il existe une commande stabil-

isante en temps continu. Lors de l’implémentation numérique de cette commande, il

s’agit de trouver des conditions préservant la stabilité asymptotique/exponentielle sous

échantillonnage. Les conditions sont formulées à la fois pour la stabilité globale et la

stabilité locale. L’idée principale est d’aborder le problème dans le cadre de la dissipa-

tivité exponentielle. Le résultat est ensuite repris dans le cas spécifique des systèmes

non linéaires polynomiaux, où les conditions de stabilité sont vérifiées numériquement en

utilisant la décomposition en somme des carrés (SOS) et la programmation semi-définie.

Formulation du problème

On considère le système non linéaire
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ẋ(t) = f
(
x(t)

)
+ g
(
x(t)

)
u(t), ∀t > t0, x(t0) = x0, (27)

où x(t) ∈ R
n et u(t) ∈ R

m sont respectivement l’état et l’entrée. Les fonctions f : Rn →
R
n avec f(0) = 0, et g : Rn×m → R

n sont suffisamment lisses pour qu’à chaque x(t0)

et u(·) admissible corresponde une seule solution sur [t0,∞). On suppose qu’il existe

une commande u = K(x) qui stabilise l’équilibre en temps continu, où K : Rn → R
m

est une fonction continûment différentiable. On considère l’émulation de la commande

u = K(x) en supposant que:

• les instants d’échantillonnage {0 = t0 < t1, . . . < tk < . . .} satisfont

0 < tk+1 − tk ≤ h, ∀k ∈ N,

pour une borne supérieure finie h,

lim
k→∞

tk = ∞;

• le contrôle est un retour d’état constant par morceaux:

u(t) = K
(
x(tk)

)
, ∀t ∈ [tk, tk+1). (28)

On obtient alors le système en boucle fermée:

ẋ(t) = f
(
x(t)

)
+ g
(
x(t)

)
K
(
x(tk)

)
,

∀t ∈ [tk, tk+1), k ∈ N. (29)

Problème : Notre objectif est de trouver un critère de stabilité asymptotique et expo-

nentielle locale/globale de l’équilibre x = 0 du système non linéaire échantillonné (29).

Une représentation équivalente

On note que le système (29) s’écrit aussi :

ẋ(t) = fn(x(t)) + gn(x(t))w(t), ∀t ∈ [tk, tk+1), k ∈ N, (30)
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où fn(x) = f(x) + g(x)K(x), gn(x) = g(x) et w(t) = K
(
x(tk)

)
− K

(
x(t)

)
. On note

que fn(x) représente la dynamique de boucle fermée en temps continu. L’équation (29)

montre que le système échantillonné peut être représenté par le bouclage du système:

G :=







ẋ = fn(x) + gn(x)w,

y = ∂K
∂x

ẋ,
(31)

avec l’opérateur ∆sh : y → w

w(t) = (∆sh y)(t) = −
∫ t

tk

y(τ)dτ, ∀t ∈ [tk, tk+1). (32)

Les propriétés de l’opérateur ∆sh sont présentées dans la Section 3.2.1. Nous considérons

ici l’exploitation de ces propriétés afin de développer un critère de stabilité pour le

contrôle échantillonné des systèmes non linéaires. L’approche s’inspire de la notion de

dissipativité exponentielle.

Analyse de stabilité

On considère les définitions de stabilité suivantes.

Définition .0.1. Le point d’équilibre x = 0 de (29) est localement uniformément asymp-

totiquement stable dans un voisinage D0 de l’équilibre, s’il existe une fonction β(·, ·) de
classe KL, telle que

|x(t)| ≤ β(|x(t0)|, t− t0), ∀t ≥ t0, ∀x(t0) ∈ L. (33)

Il est globalement uniformément asymptotiquement stable si (33) est satisfaite pour D0 =

R
n.

Théorème .0.4. Soient le système non linéaire échantillonné (29) et sa présentation

équivalente (31), (32). On considère la forme quadratique:

S
(
y(t), w(t)

)
=

[

y(t)

w(t)

]T [

−δ20X Y

Y X

][

y(t)

w(t)

]

, (34)

avec δ0 =
2
π
h, 0 < XT = X ∈ R

m×m et 0 ≤ Y T = Y ∈ R
m×m. Considérons un voisinage

D ⊂ R
n de l’équilibre x = 0 et une fonction différentiable définie positive V : D → R

+,

pour laquelle il existe α > 0 et des fonctions β1 et β2 de classe K, telles que:

β1(|x|) ≤ V (x) ≤ β2(|x|), ∀x ∈ D, (35)
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et pour tout x(t) ∈ D, V satisfait:

V̇
(
x(t)

)
+ αV

(
x(t)

)
≤ S

(
y(t), w(t)

)
, (36)

V̇
(
x(t)

)
+ αV

(
x(t)

)
≤ S

(
y(t), w(t)

)
e−αh. (37)

Alors, l’équilibre x = 0 du système (29) est localement uniformément asymptotiquement

stable. De plus, considérons les ensembles définis par V (·) et un scalaire c > 0:

Lc := {x ∈ R
n : V (x) ≤ c}. (38)

Alors, l’ensemble Lc∗ défini par la surface de niveau maximal de V contenue dans D:

c∗ = max
Lc⊂D

c (39)

est une estimation du domaine d’attraction de x = 0. Enfin, si toutes les conditions

sont satisfaites pour D = R
n, avec des fonctions β1 et β2 de classe K∞, alors x = 0 est

globalement uniformément asymptotiquement stable.

Conclusion

Cette thèse a contribué à l’analyse de stabilité des systèmes non linéaires sous

échantillonnage apériodique. En adoptant une démarche d’émulation, un contrôleur

en temps continu est tout d’abord synthétisé sans prendre l’échantillonnage en con-

sidération. Ensuite il est implémenté en temps discret. L’objectif principal est de fournir

un critère de stabilité qui permet d’estimer le plus grand pas d’échantillonnage admissi-

ble.

Dans ce travail nous nous sommes essentiellement concentrés sur les systèmes bilinéaires.

Ils représentent un cas particulier des systèmes non linéaires, mais aussi un cas in-

termédiaire entre les systèmes linéaires et non linéaires généraux. Plusieurs méthodes

théoriques ont été proposées pour ce cas. Ensuite, les résultats ont été étendus au cas

non linéaire général (sous l’hypothèse affine en la commande).

Nous sommes convaincus que les perspectives qui émergent des travaux présentés dans

cette thèse sont multiples.

Tout d’abord, les résultats de cette thèse représentent une contribution à l’analyse de sta-

bilité des systèmes de commande en réseau, car ils traitent le problème d’échantillonnage

apériodique. Un axe de recherche intéressant serait de considérer d’autres imperfections
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du réseau: le retard variant dans le temps, les contraintes sur le nombre des capteurs/ac-

tionneurs qui ont accès au réseau, la quantification, etc.

Un autre axe de recherche serait de réduire le conservatisme des résultats. Ceci

peut être réalisé en étudiant plus profondément le modèle mathématique de l’effet de

l’échantillonnage. De plus, prendre en compte une borne inférieure sur les intervalles

d’échantillonnage pourrait permettre d’améliorer les résultats.

Enfin, dans ce travail on considère l’analyse de stabilité pour un contrôleur donné. Le

contrôleur est calculé en temps continu, sans prendre l’échantillonnage en considération.

Il serait intéressant de prendre l’échantillonnage en compte afin de calculer directement

un contrôleur discret.



Appendix A

Dissipative dynamical systems

A.1 Introduction

The purpose of this appendix is to provide a brief presentation of the notion of dis-

sipativity of dynamical systems. This notion was initiated by Willems [124, 125]. It

was motivated by the concept of passivity from electrical networks theory. Dissipativity

extends, in an abstract sense, the notion of energy. It can be seen as a generalization of

Lyapunov functions technique, for input-output systems. Since the 1970’s, dissipativ-

ity has been providing several useful tools for studying dynamical systems, and several

researchers have been considering it (see the references [14, 29, 50, 51, 124, 126], just

to name a few). Consider the continuous-time dynamical system Σ described by the

equations

Σ :=







ẋ = f(x) + g(x)w,

y = h(x) + j(x)w,
(A.1)

where the values of the state x, the input w and the output y lie in R
n, Rm and R

p,

respectively. The functions in (A.1) are supposed to be smooth enough to guarantee

the existence of a solution for any initial condition x(t0) = x0 ∈ R
n. Moreover, they

satisfy f(0) = 0 and h(0) = 0. Suppose there exists a function S(y,w) : Rp × R
m → R

such that S(0, 0) = 0 and for all input-output pairs w ∈ R
m and y ∈ R

p, it satisfies
∫ t2
t1

|S(y(s), w(s))|ds < ∞, for t2 ≥ t1 ≥ t0. The following definition introduces the

notion of dissipativity.

Definition A.1 (Dissipativity [14]). System Σ (A.1) is said to be dissipative with respect

to the supply rate S(y,w), if there exists a storage function V (x) : Rn → R+ such that
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the following dissipation inequality holds:

V (x(t2))− V (x(t1)) ≤
∫ t2

t1

S(y(s), w(s))ds, (A.2)

for all t1 ≤ t2 and all signals (w, y, x) which satisfy (A.1).

Definition A.1 can be interpreted as follows. The positive semi-definite, memoryless stor-

age function V (x), generalizes the notion of energy. The memoryless function S(y,w)
represents the rate at which power flows into the system. Finally, the dissipation in-

equality (A.2) shows that over the time interval [t1, t2], the change of stored energy

V (x(t2))− V (x(t1)) is bounded by the amount of supply that flows into the dissipative

system Σ. Definition A.1 is sometimes referred to as Willems dissipativity. It is a general

definition, and does not require any regularity of the storage function. When the storage

function V is smooth, then (A.2) can be written as

V̇ (x(t)) ≤ S(y(t), w(t)), t ≥ t0.

It must be noted that there exists a variety of definitions for dissipativity in the literature.

For example, the following definition is provided by Hill and Moylan:

Definition A.2 ([50]). System Σ is dissipative with respect to the supply rate S(y,w),
if for all admissible w(·) and all t ≥ t0 one has

∫ t

t0

S(y(s), w(s))ds ≥ 0, (A.3)

with x(t0) = 0, and along trajectories of Σ.

See [14] and the references therein for relationships between several types of definitions.

A.2 Dynamical control properties via dissipativity

Using dissipativity allows for considering various properties of control systems from a

single point of view. These properties have a wide range of applications in control and

systems theory. Here, we point out some of these properties, and provide some useful

references.

Passivity:

The concept of passivity was first studied in control theory by Popov in the 1960s. It was

motivated by electrical networks theory. In specific, a single input electrical circuit which
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consists of resistors, capacitors, and inductors (refereed to as RLC circuit), satisfies the

following property:

E(t2)− E(t1) ≤
∫ t2

t1

v(s)i(s)ds, t1 ≤ t2, (A.4)

where E(t) is the energy stored in the circuit at instant t, v(t) is the applied input

voltage , and i(t) is the corresponding drawn current. The inequality (A.4) captures the

fact that the energy stored in the circuit at instant t2, cannot exceed the sum of what

was already stored in the circuit at time t1, and the accumulated power over the interval

[t1, t2]. Definition A.4 corresponds to Definition A.2 with E(·) as a storage function, and

the product of voltage and current as a supply function. This has motivated the general

definition of passive dynamical systems:

Definition A.3 (Passivity). System Σ (A.1) with p = m is said to be passive if it

satisfies the Definition A.1 with the supply function S(y,w) = wT y.

Passive dynamical systems have several appealing properties which are used in optimal

control, design, large-scale networks and others. See [17, 90, 98, 99, 112, 122] for more

information about passivity and its applications.

L2-Gain:

Gain properties describe how a system attenuates or amplifies a class of input signals.

They are given by the quotient between some measures of output and input signals.

In control systems theory, Lebesgue integrable functions are often considered, and the

L2-gain is defined based on the L2-norm:

Definition A.4. Consider the system Σ (A.1) with j(·) = 0, that is:







ẋ = f(x) + g(x)w,

y = h(x),
(A.5)

and with x(0) = 0. The system (A.5) has an L2-gain less or equal to γ if

sup
0<‖w‖L2

<∞

‖y‖L2

‖w‖L2

≤ γ.

The following theorem illustrates how an estimate of the L2-gain of a system can be

obtained using dissipation inequalities.

Theorem A.5 ([122]). The system (A.5) has an L2-gain less or equal to γ if there exists

a positive definite and proper storage function V , such that the system is dissipative with
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respect to the supply rate

S(y,w) = γ2|w|2 − |y|2. (A.6)

Theorem A.5 provides a sufficient condition. Moreover, for linear control systems, it is

shown that it is also a necessary one. L2-gains properties have several applications in

control theory. For example, they can be used to show the stability of interconnected

systems using small gain theorem [64]. Furthermore, they play an important role in H2

theory and H∞ theory [28, 111].

It must be noted that there exist several properties which can be studied in the frame-

work of dissipativity. These properties include stability, ISS and minimum phase behav-

ior. See [29] for more information and references about this issue.

A.3 Kalman-Yakubovich-Popov Lemma

The Kalman-Yakubovich-Popov (KYP) Lemma was motivated by the absolute stability

Lur’e problem, and it has a very wide range of applications in control and systems theory

including dissipativity, stability, absolute stability, optimal control, adaptive control and

others [14]. The lemma originates from a stability criterion of nonlinear feedback systems

given by Popov. Then, Yakubovich and Kalman introduced the celebrated lemma, which

shows that the frequency condition of Popov is equivalent to the existence of a Lyapunov

function of certain simple form. See [105] and references therein for more details.

The KYP lemma provide the following interesting result for LTI systems.

Theorem A.6 ([111]). Consider the following system ΣL defined by

ΣL :=







ẋ = Ax+Bw,

y = Cx+Dw,
(A.7)

Suppose that ΣL is controllable, and let S be the supply rate (A.10). Then, the following

statements are equivalent.

1. There exists P T = P ∈ R
n×n such that

[

ATP + PA PB

BTP 0

]

−
[

C D

0 I

]T [

Q S

ST R

][

C D

0 I

]

< 0. (A.8)
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2. For all ω ∈ R with det(jωI−A) 6= 0, the transfer function Ĝ(s) := C(sI−A)−1B+

D satisfies
[

Ĝ(jω)

I

]T [

Q S

ST R

][

Ĝ(jω)

I

]

> 0, (A.9)

Theorem A.6 shows the equivalence between a frequency domain condition (A.9) and

an LMI condition (A.8). Note that the condition (A.9) needs to be tested at an infinite

number of points. However, using Theorem A.6 it is possible to verify the equivalent

condition (A.8), which can be easily tested. This has many applications in control

theory, such as in the IQCs stability theorem [72].

The following theorem, which is known as the nonlinear KYP Lemma, provides necessary

and sufficient conditions for the system Σ to be dissipative with respect to Definition A.2.

Theorem A.7 ([50]). Suppose that the Σ (A.1) is reachable from the origin. More

precisely given any x1 and t1, there exists t0 ≤ t1 and an admissible control u(·) such

that the state can be driven from x(t0) = 0 to x(t1) = x1. Consider the quadratic supply

rate

S(y,w) =
[

y

w

]T [

Q S

ST R

][

y

w

]

= yTQy + 2yTSw + wTRw, (A.10)

with Q = QT , R = RT . Then, the nonlinear system Σ is dissipative in the sense of

Definition A.2 with respect to the supply rate (A.10) if and only if there exist func-

tions V : Rn → R, L : Rn → R
q, W : Rn → R

q×m (for some integer q), with V (·)
differentiable, such that:

V (x) ≥ 0,

V (0) = 0,

∇V T (x)f(x) = hT (x)Qh(x) − LT (x)L(x),
1

2
gT (x)∇V (x) = Ŝ(x)h(x) −W T (x)L(x),

R̂(x) = W T (x)W (x),

where

Ŝ(x) = Qj(x) + S,

R̂(x) = R+ jT (x)S + ST j(x) + jT (x)Qj(x).
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A.4 Exponential dissipativity

With the objective of generalizing the Strict Positive Real Lemma and the Strict Bounded

Real Lemma to nonlinear systems, the notion of exponential dissipativity has been in-

troduced in [22].

Definition A.8 (Exponential Dissipativity [22]). The system Σ (A.1) is exponentially

dissipative with respect to the supply rate S(y,w), if there exists a continuous exponential
storage function V : Rn → R+ and a constant α ≥ 0 satisfying:

eαt2V (x(t2))− eαt1V (x(t1)) ≤
∫ t2

t1

eαsS(y(s), w(s))ds, (A.11)

for all t1 ≤ t2 and all signals (w, y, x) which satisfy (A.1).

Note that Definition A.8 and Definition A.1 coincide when α = 0. When the storage

function V is smooth, then the integral inequality (A.11) can be written as:

V̇ (x(t)) + αV (x(t)) ≤ S(y(t), w(t)), t ≥ t0.

This notion has several interesting applications. In [22], exponential dissipativity has

been used to provide a nonlinear analog to the classical real positivity and small gain

theorems for linear feedback systems. Moreover, it has been used to provide sufficient

conditions for asymptotic stability of a time delay system [20, 21]. We also use it in this

work (see Theorem 4.3).
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Contribution to the control of nonlinear systems under aperiodic sampling 

 

Abstract: This PhD thesis is dedicated to the stability analyzis of nonlinear systems under sampled-data 

control, with arbitrarily time-varying sampling intervals. When a controller is designed in continuous-time, and 

then implemented digitally (emulation approach), it is of great interest to provide stability criteria, and to 

estimate the bound on the sampling intervals which guarantees the stability of the sampled-data system. 

Whereas several works deal with linear models, the issue has been rarely addressed in a formal quantitative 

study in the nonlinear case. 

First, an overview on sampled-data control is presented. Challenges and main methodologies for stability 

analysis are presented for both the linear time-invariant and the nonlinear cases.  Then, local stability of 

bilinear sampled-data systems controlled by a linear state feedback is considered by using two approaches: the 

first one is based on hybrid systems theory; the second one is based on the analyzis of contractive invariant 

sets and is inspired by the dissipativity theory. Both approaches provide sufficient stability conditions in the 

form of LMI. Finally, the dissipativity–based stability conditions are extended for the more general case of 

nonlinear systems which are affine in the input, including the case of polynomial systems which leads to 

conditions in the form of sum of squares (SOS). 

Keywords: Sampled-data systems, bilinear systems, nonlinear systems, hybrid dynamical systems, aperiodic 

sampling, stability, dissipativity, linear matrix inequalities (LMIs), sum of squares (SOS). 

 

 

 

 

Contribution à la commande de systèmes non linéaires sous échantillonnage apériodique 

 

Résumé: Cette thèse est dédiée à l’analyse de stabilité des systèmes non linéaires sous échantillonnage variant 

avec le temps. Lors de l’implémentation numérique d’un contrôleur qui est calculé en temps-continu (approche 

par émulation), il est d'un grand intérêt de fournir des critères de stabilité et d’estimer la borne supérieure de 

l’intervalle d’échantillonnage qui garantit la stabilité du système en temps discret. Plusieurs travaux récents ont 

abordé ces questions dans le cas de modèles linéaires, mais la question a rarement été abordée dans une 

étude quantitative et formelle pour les systèmes non linéaires. 

Tout d'abord, le mémoire présente un aperçu sur les systèmes échantillonnés. Les défis et les principales 

méthodes pour l'analyse de stabilité sont présentés pour le cas des systèmes linéaires invariants dans le temps 

et celui des systèmes non linéaires. Ensuite, l’analyse de la stabilité locale des systèmes bilinéaires 

échantillonnés contrôlés par un retour d'état linéaire est considérée. Deux approches sont utilisées, la 

première basée sur la théorie des systèmes hybrides, la seconde basée sur l’analyse des ensembles invariants 

contractants. Cette dernière approche est inspirée par la théorie de la dissipativité. L’ensemble de ces résultats 

conduisent à des conditions suffisantes de stabilité exprimées sous forme LMI. Enfin, les conditions de stabilité 

basées sur la dissipativité sont étendues au cas des systèmes non linéaires affines en l'entrée. Les résultats sont 

ensuite repris dans le cas  spécifique des systèmes non linéaires polynomiaux où les conditions de stabilité sont 

vérifiées numériquement en utilisant la décomposition en somme des carrés (SOS). 

Mots-clés : Systèmes échantillonnés, systèmes bilinéaires, systèmes non linéaires, systèmes dynamiques 

hybrides, échantillonnage apériodique, stabilité, dissipativité, inégalités matricielles linéaires (LMIs), somme 

des carrés (SOS). 
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