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Introduction

“He put his arms around his sons’ shoulders.

‘Lads’, he said proudly. ‘It’s looking really quantum’ ”

— Terry Pratchett, Pyramids, 1989 [1]

The amazingly apropos sentence by Terry Pratchett is only one of his many hilarious
quotes involving science in general and quantum physics in particular. What Pratchett
really makes fun of in these lines is the propension of many a science-fiction writer to invoke
quantum physics as a kind of modern magic. “Don’t ask, it’s quantum” has become the
sci-fi equivalent of “don’t ask, it’s magic” in fantasy. And indeed, the quantum wordage
has even crossed the borders of sci-fi literature and has started to invade the language of
plain commercials: I can go to my supermarket and buy a quantum detergent! Has it
anything to do with something a physicist would call “quantum” ? Of course not! It’s just
the modern magic thing...

Are we, quantum physicists, modern wizards ? Some people would probably be affirma-
tive, conjuring up the wonders of technique such as lasers, computer hardwares, ultrafast
communications... I would prefer to attribute these wonders to a nature that generations
of scientists and engineers have understood and tamed for their (and our) own purposes,
and leave magic dwell in other realms. Wording quantum physics in terms of magic may
be misleading. Leaving magic aside, a simple question for the quantum wizards-or-not
is: how can you tell if something is quantum or not ? And ironically, it is a tough one.
Most definitions of “quantum” use negative properties: “it can’t be explained by a classical
theory”, “it cannot be measured simultaneously”, “it cannot be factored as the product of
two independant single-particle states”... Borrowing another line from Pratchett, “It’s very
hard to talk quantum using a language originally designed to tell other monkeys where the
ripe fruit is.” [2]. And it is precisely because they play with the limits of our intelligence
that quantum phenomena fascinate so many of us even among experienced physicists. As
if to illustrate that the quantumness question is a far from trivial one, a little part of the
work presented here was focused on proving that what we were doing was really quantum
(section 3.4.b). In fact, it would have no interest at all if it weren’t quantum.

So, what have I been doing over the three last years (appart from getting married,
getting a home, and getting a Terry Pratchett book collection) ? My intimate relationship
with quantum physics, and quantum information in particular, began in my mid-teens with
the reading of the popular science book Alice in Quantumland by Pr. Robert Gilmore [3].
The idea that manipulating quantum properties of objects can lead to a different way of
conceiving (and handling) information itself held an incredible appeal to me, and I decided
I wanted to play a part in the big game when I grew up. During my master’s year, I
came across the quantum memory laboratory of Pr. Julien Laurat, and this resulted in
the aftermaths you’re currently holding in your hands.
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The general topic of this thesis is the study of (a particular kind of) quantum memories
for light. A quantum memory means a device that can record faithfully the entire quantum
state of a light field. In contrast, a classical memory for light is a device able to record
a light field without its quantum properties, such as a standard camera, a photodiode, a
wavefront analyzer... One of the characteristics of a quantum state of light is that some of
its properties cannot be measured at the same time (again a negative definition). Consider
for example the phase and amplitude patterns of a light beam, which you can respectively
measure with a camera and a wavefront analyzer. By splitting a classical (bright) beam
of light into two beams with a half-reflecting mirror, you can measure the beam phase
and intensity simultaneously by putting the two detectors in different sub-beams. But
imagine you have only a single photon. A single photon is the smallest possible amount of
light. A single photon can be detected either here, or there, but not in the two places at
the same time: there is only one photon to be detected. In this case, the photon will go
either to the intensity detector or to the phase detector (let’s not mention the fact that
one would intrinsically need many photons to record a full intensity or phase pattern, the
argument is just a hand-waving one 1, but it conveys the correct idea). What if we put
the phase detector after (or before for that matter) the intensity detector ? Then the first
measurement will randomly alter the photon’s state, so that the second detector will not
measure the state of the photon as it was before. The fact that a measurement changes the
object being measured is an essential aspect of quantum physics, the weirdness of which
contributes to quantum physics being temptingly qualified of “magical”. Either way, only
one property out of two can be measured. The fundamental reason behind this lies in
the fact that physical quantities are (represented by) mathematical operators that do not
necessarily commute, and hence cannot be simultaneously diagonalized 2.

So the characteristic feature of a quantum memory is that it records the entire quan-
tum state of a light field, for example of a single photon as the case may be, something
a classical camera cannot do. Of course, a quantum memory does not violate the laws of
physics which means that it is not equivalent to measuring the light state. Indeed, another
name for quantum memories underlines their fundamental difference with a classical mea-
surement: “stopped light”. I like the expression very much because light evokes something
tremendously fast even to a non-physicist. Stopping the fastest thing in the universe pretty
much looks like modern magic to me. As with magic, there is a trick here: light is not
stopped, its state is merely transfered to something that doesn’t move (a bunch of very
cold gaseous atoms in our case).

But what is it good for ? Quantum memories are expected to find an application in what
is known as quantum cryptography, a set of techniques for transmitting secret messages,
in which the security of the message is guaranteed by the laws of quantum physics (like
the impossibility to completely characterize a quantum state by classical measurements).
Quantum cryptography typically relies on the exchange of single photons as information
carriers. The challenge faced by these techniques is that the probability for a single photon
to be sucessfully transmitted (e.g. through an optical fiber) decreases exponentially with
the travel distance. Moreover, because of the quantum nature of the signal, classical
repeaters (i.e. amplificators) are of no use for them. This can be intuitively understood
in the following way. If a single photon arrives to the amplificator, then it needs not be

1It could be made rigorous for example by a more careful choice of parameters, such as the polarization
of light.

2I.e. there are states of a physical system for which one parameter is well defined (the state is an
eigenvector of the measurement operator) but the other one is not.
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amplified. If the photon has been lost, then there is nothing left to amplify. It is just
another hand-waving argument, but I believe it sort of conveys the idea.

An idea to overcome this issue is the concept of a quantum repeater, which proposes to
divide the quantum communication line in a succession of smaller segments, over which so-
called entangled pairs of photons are distributed. At the nodes between adjacent segments,
photons from different pairs are combined together, which results in the other ends of the
two pairs merging in a single entangled pair. When all segments have been connected in
this fashion, only one entangled pair remains, which has one particle at one end of the
line and the other particle at the other end. One feature of entangled pairs is that they
allow to perform quantum cryptography. This protocole can be made more efficient than
the direct transmission by the following trick, which critically requires quantum memories.
Two pairs will be connected if and only if no photon has been lost. In the case of a photon
being lost, then the other one will be stored in a quantum memory and wait there for a
new partner to arrive on the other side. The time gained by this protocole makes all the
difference between what’s possible and what’s not.

When I joined Julien’s quantum memory group in 2011, a new free-space cold atom
setup was being built there. I still remember vividly my first group meeting, everyone
explaining me how everything fitted together and me trying to retain the funny nicknames
of all the lasers: Zeus, Casper, Shadok... During my first six months, I learned a lot and
participated in finalizing the construction of the experiment alongside Michael Scherman,
Lambert Giner and Lucile Veissier. Former PhD student Sidney Burks had conceived a
huge Labview program to control the entire experiment, and I am thankful to Lucile
(and later Dominik) for taking it over. I am also thankful to Michael who guided my first
steps through the lab. We enjoyed the visits of Itay and Ben who worked with us on the
magneto-optical trap construction and characterization. The theory part of the job was
done by Oxana and Sasha. My main contribution to the experiment, which occupied me
for the next one-and-a-half year, was focused on proving the spatial multimode capability
of our quantum memory. This means proving that the memory can store (in a quantum
fashion) light beams of different shapes, at the single-photon level. In this project, I mostly
collaborated with Dominik, to whom I am being thankful for the impressive amount of
work he did in computer programing and also for sharing late nights in the lab during
the long measurements sessions. With Dominik and Lucile, we shaped photon wavefronts
into various spiraling patterns to give them orbital angular momentum. We analyzed the
orbital angular momentum state of our photon pulses and studied how it was preserved
when the light was stored in our quantum memory. In parallel (and mostly over the
course of my final year), I moved on with Dominik towards another project, which aims at
interfacing a cold atom quantum memory with a nanowaveguide. The lead PhD student on
this project, the passionate Baptiste, had been working already for one year on the topic,
designing a home-made facility for the fabrication of the nanowaveguides. About that time
also, our group was joined by Valentina and then Christophe, who took over the previous
setup and conducted single-photon generation experiments. While I am completing this
manuscript, Baptiste and Dominik are just getting the first “quantum” measurements with
the nanowaveguide.

As for how this manuscript is organized, the first chapter introduces the concept of
quantum memories, why they are required and what is expected from them. The sec-
ond chapter describes stopped-light quantum memories and their underlying mechanism,
electromagnetically induced transparency. Our experimental implementation of such sys-
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tems is discussed. The third chapter then details everything we did in relation to the
orbital angular momentum of light, from the theoretical description of orbital-angular-
momentum-carrying beams, to the precise experimental characterization of the quantum
storage of quantum bits encoded in this degree of freedom. The fourth chapter finally
presents the goal of and our experimental progresses towards the interfacing of cold-atom-
based quantum memories with nanowaveguides.

Some publications

Here follows a list of publications issued in relation with the work presented here:

• L. Giner, L. Veissier, B. Sparkes, A. S. Sheremet, A. Nicolas, O. S. Mishina, M. Scher-
man, S. Burks, I. Shomroni, D. V. Kupriyanov, P. K. Lam, E. Giacobino, and J. Lau-
rat1. Experimental investigation of the transition between autler-townes splitting
and electromagnetically-induced-transparency models. Physical Review A, 87:013823,
2013 [4]

• L. Veissier, A. Nicolas, L. Giner, D. Maxein, A. S. Sheremet, E. Giacobino, and
J. Laurat. Reversible optical memory for twisted photons. Optics Express, 38:712,
2013 [5]

• A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat. A quantum
memory for orbital angular momentum photonic qubits. Nature Photonics, 8:234,
2014 [6]

• Adrien Nicolas, Lucile Veissier, Elisabeth Giacobino, Dominik Maxein, and Julien
Laurat. Quantum state tomography of orbital angular momentum photonic qubits
via a projection-based technique. to be submitted, 2014 [7]

Notions and notations

As any quantum optics thesis, this manuscript deals with light and matter, and the relations
between them. It is out of the scope of this work to rewrite the full derivations of the
concepts involved, but I wish to make it as consistent as possible and therefore take some
time to define the notations and concepts that will be encountered.

Space shall be parametrized using cartesian coordinates ~x =(x, y, z) or cylindrical
coordinates (~r, z) = (r, θ, z). Time is denoted t.

The usage of the ket notation | 〉 will be restricted to quantum states solely (whether
of light or of matter).

Constants We shall use the standard notations for the physical constants:

c = 299792458 m · s−1 light speed in vacuum

ǫ0 ∼ 8.854187817620× 10−12 F ·m−1 vacuum permittivity

µ0 = 4π × 10−7 H ·m−1 vacuum permeability

h ∼ 6.626 J · s Planck’s constant

~ ∼ 1.055 J · s reduced Planck’s constant

(1)



CONTENTS xiii

In addition, we will often encounter the following 133Cs constants:

Γ ∼ 32.9× 106 s−1 62P3/2 → 62S1/2 (D2 line) decay rate in 133Cs

Γ ∼ 2π × 5.234× 106 MHz and the associated homogeneous linewidth

(FWHM, angular frequency units)

m = 2.207× 10−25 kg atomic mass

(2)

On the description of light Light will be described either classically as a periodically
varying electrical field ~E(~x, t), or quantum-mechanically as a train of photons. A mathe-
matically complete derivation of the notion of a photon can be found in any textbook on
quantum optics (for example [8]). Classical light will be typically a plane wave, given by
its complex electric field ~E(~x, t) = ~E0e

i(ωt−~k · ~x), or a gaussian beam like the fundamental
TEM00 beam (propagation direction z) given by its (complex) electric field:

~E(r, θ, z, t) = ~E0
w0

w(z)
e
− r2

w(z)2 ei(ωt−kz)e
−ik r2

2R(z) eiζ(z) (3)

Following the usual notations, we call ~E0 the complex amplitude of the electric field
(the real physical electric field being its real part) and we have:

ω optical angular frequency

ν or f (ω = 2πν) optical real frequency

λ =
c

ν
wavelength

k =
2π

λ
=

ω

c
wave vector

(4)

For the gaussian beam, we have in addition:

w(z) = w0

√

1 +

(

z

zR

)2

radius at position z

w0 waist

R(z) = z

(

1 +
(zR

z

)2
)

radius of curvature at position z

zR =
πw2

0

λ
Rayleigh length

ζ(z) = arctg(z/zR) Gouy phase

(5)

Such a gaussian beam is the spatial shape of the output of an ideal laser. Putting aside
the information relative to the spatial mode, the quantum mechanical description of such
an ideal laser beam is given by a coherent state of amplitude α, defined by:

|α〉 = e−
α2

2

∑

n∈N

αn

√
n!
|n〉 (6)

where α is proportional to the electric field’s amplitude and α2 gives the mean photon
number. We use the standard notation |n〉 for the Fock (photon number) state with n ∈ N
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photons. It is assumed that all photons in the above state are in the same spatial (and
temporal) mode. Indeed, in order to be well defined, a photon state must be specified in
a given spatiotemporal mode. In the case of the ideal gaussian beam, the spatial mode is
given by the gaussian function of equation (3) and the temporal mode is an (also slightly
ill-defined) infinitely extending envelope.

The action of a standard single-photon detector (such as an avalanche photodiode) is a
projection over the Fock state |1〉 where the temporal mode is the discrete arrival time of
the photon (with some spread given by the detector’s time resolution). This gives another
view of the coherent state: it is a flux of (temporally localised) photons with uncorrelated
arrival times. Thus, over any time interval, the photon number statistics of a coherent
states follows a Poisson probobility distribution (which can also be seen directly from
equation (6)).

Frequency, decay rate and linewidth. Throughout this manuscript, we’ll describe
light’s frequency using angular frequency ω, which is (in principle) expressed in radian per
second 3.

The decay rate of an atomic excited level is denoted Γ and expressed in s−1. It is the
decay constant of the power of the light emitted by a decaying atom. By Fourier trans-
forming the wavefunction of the emitted electric field E0e−Γt/2e−iω0t into E0 1

Γ/2−i(ω−ω0)
,

the decay rate Γ appears to be also the natural linewidth (FWHM) of the atomic emis-
sion/absorption line. Following a widespread notation, we shall write Γ ∼ 2π × 5.2 MHz
when we refer to the linewidth in angular frequency units (the 2π factor may be thought
of as carrying the unit rad) and Γ ∼ 32.9× 106 s−1 when we refer to the decay rate.

Figure 1: The decay of a two-level atom and the Lorentzian shape of the emitted
spectrum. Quantum memories of the kind consedered here rely on a modification of this
lineshape through a phenomenon called Electromagnetically Induced Transparency (EIT)
to slow and trap light inside an atomic medium.

Entanglement. We will assume the reader to be familiar with the notion of entanglement
[9], ie the fact that a pair of particles at spatially separated positions can be in a non-
separable state, leading in particular in correlations that cannot be explained by local
realistic assumptions. For particles a and b at positions A and B having possible states |0〉
and |1〉, the typical entangled wave function is (proportional to):

3Note that french people have a slight vocabulary advantage at distinguishing between frequency
(“fréquence”) and angular frequency (“pulsation”).
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|ΨEPR〉ab = |0〉a|1〉b + |1〉a|0〉b (7)

Fock states, logical states and OAM states: avoiding confusions in various |n〉
notations. In order to have distinct notations for distinct notions, we shall use:

1. |n〉 with n ∈ N for the Fock state containing n photons (in a given spatio temporal
mode).

2. |0〉 and |1〉 for the logical states in qubit space (bold font).

3. |l = n〉 with n ∈ Z for orbital angular momentum eigenstates.

Atom cooling and trapping We will assume the reader to be familiar with the physics
and techniques of atom cooling and trapping, especially with the basics of magneto-optical
trapping (MOT).

Some more notations and abbreviations

APD: avalanche photodiode (or SPD: single-photon detector),
VBG: volume Bragg grating,
FBG: fiber Bragg grating,
IF: interference filter,
UHV: ultra-high vacuum (pressures below 10−9 Torr),
OAM: orbital angular momentum,
SLM: spatial light modulator,
LC: liquid crystals,
LG, HG: Laguerre-Gaussian and Hermite-Gaussian beams,
DLCZ: quantum repeater protocole proposed in 2001 [10].

FWHM, HWHM: Full Width at Half Maximum, Half Width at Half Maximum,
SNR: Signal-to-Noise Ratio,
Tr: trace of a matrix or operator,
ρ̂: atomic or photonic density matrix (operators are written with a hat).
Î: identity matrix.
σ̂1, σ̂2, σ̂3: Pauli matrices.
|Ψ〉: quantum state. Typically, the state of a qubit:

|Ψ〉 = α|0〉+ β|1〉
= a|0〉+ beiφ|1〉
= cos(ϑ/2)|0〉+ sin(ϑ/2)eiφ|1〉

with a,b ∈ R or ϑ ∈ [0, π[, φ ∈ [0, 2π[.
F = 〈Ψ|ρ̂|Ψ〉: fidelity of a quantum state of density matrix ρ̂ to a target state |Ψ〉.
S1, S1, S1: Stokes parameters (see main text – section 3.3.1).
α: the angle between the signal and control beams in EIT experiments, or a complex

number.
αd: the angle of the dark axis in a HG mode.
η: quantum memory efficiency,
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τ or τm: decay time of the quantum memory,
τs and ls = c · τs: duration and free-space length of a signal pulse,
d0: optical depth of an atomic ensemble.
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This thesis is about quantum memories, that are promised to be ubiquitous devices in
future quantum information hardwares. In this chapter, we first introduce quantum infor-
mation as a general framework, then we focus on quantum communications and highlight
why quantum memories are the key element for them to become viable at long distances.
We then give a short overview of the different physical substrates and protocols that can be
used to implement such a quantum memory and finally detail their expected characteristics
and the current state of the art.

1.1 Quantum information science

Quantum information and qubits. Quantum Information Science (QIS) has emerged
over the last decades building over the idea that information itself can be manipulated as
a quantum object. An extensive review on the state of the art of QIS in Europe can be
found in [11].

To be a bit more specific, one can say that QIS is the research area that utilizes all
quantum properties of the physical information carriers. To the notion of a classical bit of
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information is thus substituted the notion of a quantum bit or qubit. While a classical bit
is an object that can take two values, commonly denoted by 0 and 1, a qubit is an object
that lives in a two-dimensional Hilbert space spaned by two basis states commonly denoted
by |0〉 and |1〉. A quantum bit is the fundamental information quantity in QIS just as a
classical bit is the elementary piece of information in classical information science. The
main difference comes from the fact that the qubit can exist in any superposition of |0〉
and |1〉 – which has no equivalent in classical information science. A complete introduction
to quantum information science can be found in [12].

Let us now examine briefly the motivations for QIS and the reasons why it has emerged
as an active field of research over the last decades.

Moore’s law up to the atomic scale. QIS was motivated on one side by the extrapo-
lation of Moore’s law (the observation that the size of transistors is reduced by half every
two years) to the point where the computer’s elementary circuits would become so small
that they would reach the size of single atoms or molecules. In this extrapolated future,
classical physics would fail to predict their behavior and computer designers would de facto
have to work with quantum information carriers and processors. But this is not the main
reason for the interest in QIS, since reducing the size of transistors is not the only way to
ensure an exponential increase in computational power – at least for a few more decades.

Quantum simulation. A stronger motivation for the development of QIS was the fact
that the behavior of large quantum systems is intrinsically hard to simulate on classical
computers. A (slightly oversimplified) explanation for this is the following argument. In
the simulation of a classical system, if the state of one particle is decribed by just one bit
of information, then the state of N particles can be described with N bits. This can be
already quite big, but it scales linearly with the number of particles. In the simulation
of a quantum system, the quantum state of one particle is defined by one qubit (which is
the smallest amount of information regarding a quantum system). Then, the state of N
particles will have to be described by a vector living in a 2N dimensional Hilbert space.
This means that defining the system’s state already requires 2N real coefficients! Due to
this exponential scaling, the information content of a quantum system is much much bigger
than that of a classical one. One can find in popular science many picturesque descriptions
of how the mere expression of the quantum state of a nanogram of matter would represents
more information than could be stored on hard drives even if all the mass of Earth were
used solely for this purpose.

Of course, some large quantum systems can be simulated given they are studied in
a certain range of parameters. However, these are only exceptions and there are large
quantum systems of interest that are intrinsically hard to simulate on a classical com-
puter. However, the evolution of a large quantum system does produce the result of the
simulation... of itself! While this is self evident, it was the origin of the idea of quantum
simulation.

If a well controlled quantum system is created whose quantum evolution follows the
same rules as that of another system, then the controlled evolution of the first system is
a simulation of the second one. The second system may be a system of interest which
is difficult to simulate on classical computers (as explained before) and not accessible to
direct experimental control. This is the essence of quantum simulation.

A universal quantum simulator would be a device able to simulate the behavior of any
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other quantum system. While no such universal simulator is likely to come to life in a close
future, specific quantum simulators, designed to simulate given problems in many-body or
high energy physics, are currently being developed (see [13] or [14] for reviews on this
topic).

More futuristic versions of quantum simulators, relying on yet-to-be-developed univer-
sal quantum computers (see next) will require the development of quantum memories.

Quantum computers. The most ambitious goal in QIS, quantum computation, is the
quantum manipulation of qubits with the purpose of performing the same tasks as a
classical computer. In this respect, it complies with the Church-Turing thesis. The only
difference may be in the efficiency with which a computation is performed. And indeed,
a seminal discovery (and boost to the interest in quantum computing) came in 1993 with
the finding of quantum algorithms able to outperform their classical counterparts. The
efficiency of quantum algorithms is often explained intuitively as resulting from one of the
properties of qubits mentionned earlier, namely that they can exist in a superposition of
states |0〉 and |1〉, so they can be thought of as exploring multiple alternatives in parallel
while a classical algorithm sometimes has to enumerate them all.

The efficiency of an algorithm is measured by its complexity class [15]. It describes
how the ressources required for the computation (mainly computation time and possibly
memory size) grow with the size of the input.

Shor’s quantum algorithm [16, 17] allows to factor integers into primes in a time that
grows “only” polynomially with the input size. The problem of integer factorization is
well known in classical computing for being a “hard” problem, i.e. a problem for which
the best known algorithm’s complexity is exponential. It is even strongly believed to be
intrinsically hard, meaning that not only no polynomial algorithm has been found yet, but
that no such algorithm exists. The belief in the “hardness” of the factorizataion problem
is so strong that it is the basis of virtually all modern cryptography through the RSA
algorithm. Due to this fact, the quest for a quantum computer has been jokingly described
as “solely motivated to create a market for quantum cryptography” (a set of QIS based
cryptographic techniques, see next).

Heroic experimental implementations of Shor’s algorithm have been performed over
the past thirteen years, starting with the factorization of 15 = 3 × 5 in an NMR system
[18], followed by several other implementations in different physical systems [19–21], and
culminating with the factorization of 143 = 11× 13 [22]. Other quantum algorithms have
been theoretically shown to improve over classical ones and have known similar heroical
experimental implementations using custom made hardware, such as Grover’s algorithm
for the search in an unordered database [23–26], or algorithms for linear solvers [27, 28] or
data fitting [29].

Even if the various experimental demonstrations give proofs-of-concepts of the quantum
algorithms, we are not even close today to having the basic buidling blocks of a universal
quantum computer. Indeed, all the implementations up to date require a custom hardware
and are not scalable. A real quantum computer should be able to perform any quantum
factorization (even any quantum computation) on the same hardware.

Let us note that there is one company today claiming to produce and sell quantum
computers (or rather quantum annealers, which is a weaker claim), but despite their recent
mediatised broadcasting, their is a strong lack of agreement in the scientific world as to
whether or not their device is really quantum [30].
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There is no consensus today on which physical substrate to use for the implementation
of qubits – let alone for a quantum computer. One thing however is pretty likely : future
quantum computers will need to store (at least some) qubits in analogues of RAM memory
during their calculations. And this is one of the reasons for the quest for quantum mem-
ories. Another reason, as will be detailed just next, is the development of long distance
quantum communications.

1.2 Quantum communications

If the last section has depicted quantum computing as a somewhat far-away goal, QIS does
have a shorter-term application in quantum communications and quantum cryptography.

Quantum communications can be defined as the art of transferring quantum states
between remote places [31].

In this framework, quantum cryptography 1 is a set of techniques utilizing quantum
communication to enable a secure (secret) communication between different parties.

We now give a general presentation of quantum communcations and explain why quan-
tum memories are expected to play such a crucial role in their ability to operate at long
distances.

1.2.1 Historical development and main features.

It was not long after the first experimental violation of Bell’s inequalities [33–36] that the
potential of quantum physics for secret communications was realized. The first quantum
key distribution (QKD) protocol was proposed in 1984 [37]. It uses single photons as
information carriers and the non-commutation of (polarization) observables to guarantee
the generation of a secret key shared only by the trusted parties.

It was followed by several other proposals over the years. The first ones used single
photons as quantum information carriers [38–40]. More recently, the use of continuous
variables, ie coherent or squeezed states of light emerged as promising alternatives [41–45].
Some of them utilize entanglement explicitly as their primary source of privacy [38, 39, 41],
while others rely on the no-cloning theorem [37, 40, 44] (see [46] for the no-cloning theorem).
In all cases the source of privacy in QKD can be ultimately tracked down to the non-
commutation of observables (or equivalently the uncertainty principle). In all cases also,
the quantum information carriers are made of light because it travels fast and has little
interaction with its environment. Moreover, in most cases it can benefit from the already
existing fiber optics technologies and infrastructures.

To date, at least four companies already commercialize QKD devices, including the
pioneering swiss ID Quantique and the french SeQureNet. Full scale prototypes of quantum
networks have been developed in metropolitan areas like SECOCQ in Vienna in 2008 [47]
or the QuantumCity in Durban in 2010 [48].

All QKD schemes use two channels: a quantum channel in which (secret) quantum
information is transferred, and an open classical channel. Communication through the
classical channel is required in order to extract a secret key from the quantum channel.
Spying on the classical channel does not give any information to an eavesdropper because

1Although it is the main topic adressed here, quantum cryptography is not the only application of
quantum communications. The more general concept of a quantum network ([32]) is another possible
application of quantum communications, though probably a longer term one.
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the key cannot be obtained without the quantum data. But the eavesdropper cannot copy
or measure the quantum data without altering it – and hence revealing him- or herself.

Quantum information may be encoded in light pulses in many different ways. Polar-
ization qubits are easily processed in local optical hardware, but they are limited to their
fixed dimensionality and suffer from dispersion in optical fibers. They are therefore often
converted to time-bin qubits [49, 50]. Ideally, polarization and time-bin qubits are carried
by single-photons, but weak coherent states (with less than one photon per pulse in aver-
age) are more easily produced and they can prove sufficient in some useful cases. Ideally
too, quantum states would be at telecom wavelength (λ = 1550 nm) where the attenuation
in optical fibers is the smallest. There are however also proposals for free space QKD
(such as satellite based QKD) [51, 52] in which the wavelength requirements are linked to
atmospheric rather than glass transmission. Quantum information can be also encoded in
a phase and/or amplitude modulation of a coherent state, or in its quantum fluctuations
(squeezed states or Schrödinger cat states). In chapter 3, we shall study qubits encoded in
the spatial mode of single photons, which can in principle give acces to higher dimensional
states (called qudits).

1.2.2 Current limitation of practical long distance QKD.

The assertion in the previous paragraph that conventional fiber optics technology can be
used also for quantum communications was a little bit exaggerated because it neglects one
very important issue: signal attenuation in fibers and optical repeaters. Although the glass
out of which fibers are made is transparent, it’s not perfectly transparent. Even at their
maximum transmission, which is for λ = 1550 nm, the most widely used wavelength in
standard fiber communications, their is a residual absorption of 0.2 dB/km or equivalently
∼ 4.6 %/km. Consequently, the energy of a signal travelling through a fiber undergoes an
exponential decay with the propagation length (see focus).

Imagine a source sending telecom wave-
length single photon qubits at a rate of
1 Gbit · s−1. The average time for trans-
mitting a qubit would be: about 1 second
for 500 km, about 300 years for 1000 km.

While this is overcome with optical re-
peaters installed at regular intervals along
the fiber in the case of classical communica-
tion, quantum signals cannot be handeled
that easily. Indeed, the no-cloning theorem
prevents noiseless amplification of a quan-
tum signal. So optical repeaters, which are
an essential asset of fiber communications are not re-usable for QKD.

The world record for distant QKD, between 100 and 200 kilometers [53, 54] to date is
limited by this exponential decay.

1.2.3 Quantum repeaters: the need for quantum memories for light.

To overcome the exponential attenuation of the quantum signal, architectures for quantum
repeaters [55] have been proposed around the turn of the millenium. The concept of quan-
tum repeaters is sumarized in figure 1.1. It consists in dividing the quantum channel of
length L into N adjacent segments over which entangled pairs of particles are distributed.
Not all QKD protocols use entanglement as their main ressource, but thanks to the quan-
tum teleportation process [56–59], entanglement allows to transmit any desired quantum
state. When two adjacent links are equipped with entangled pairs, an entanglement swap-
ping operation is performed, projecting the state of the particles at the far ends of the
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links onto an entangled state [60]. Thus, entanglement over two links of length L/N is
transformed into entanglement over a single link of length 2L/N .

All the subtility in the previous paragraph is hidden in the innocent-looking expression
“when two links are equipped”. Imagine we are dealing with single photons here. If the
quantum channel has a loss rate per unit of length α, then the probability to successfully
equip a single link with an entangled pair is e−αL/N . And consequently, if nothing else is
done, the probability to have two adjacent links ready is e−2αL/N ... So that as the proba-
bilities to have adjacent links ready multiply, the overall success probability drops back to
the original exponential decay e−NαL/N = e−αL. In order to overcome this, entanglement
swapping operations must be done only when adjacent links are ready, i.e. the protocol
must be synchronized. So photons must be told to “stop” at the link ends and wait for their
partners to be ready. When doing so, the success probabilities do not multiply anymore.
The detailed analysis shows that the initially exponential decay of the success probability is
turned into a sub-exponential (polynomial) decay. This scheme lets long distance quantum
communications step into the realm of feasible protocols.

Figure 1.1: Principle of a quantum repeater. (a) The practical distribution of entan-
glement between far away parties X and Y cannot be performed by the direct transmission
of an entangled pair because the success probability decreases exponentially with the dis-
tance between X and Y. (b) In a quantum repeater architecture, the quantum channel is
split into many smaller segments over which entangled pairs are distributed. (c) Storing
the entanglement in quantum memories (denoted Mi, i ∈ N) and iterating the process
allows to purify the entanglement [55] until it is ready for swapping. Blue lines linking
two memories together symbolize their entanglement. (d) When adjacent links are ready
(quantum memories are equipped with purified entanglement), entanglement is swapped
between them, resulting in entanglement at a longer distance. (e) This process is iterated
until the quantum memories at X and Y become entangled. Although this protocol is
obviously much more complex than the direct transmission scheme, its success probability
decreases polynomially with the X-Y distance instead of exponentially.

In order to stop the information carriers at the links’ ends and synchronize the entangle-
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ment swapping chain of operations, quantum memories for light are required, i.e. devices
able to store and recall arbitrary quantum states of light while preserving their quantum
coherence.

Let us now focus on quantum memories for light and review the characteristics expected
from them, how they can be constructed and what achievements have been obtained so
far.

1.3 Quantum memories

The last two sections presented why quantum memories are expected to be a key element
in the future development of QIS in general, and how photonic quantum memories (i.e. for
light) are the next step towards quantum repeaters and hence long-distance quantum com-
munications. With this in mind, we now explore in more details what quantum memories
should be, could be, and what they currently are.

1.3.1 Definition and requirements

As it has been hinted at before, a quantum memory is a device able to record faithfully and
recall on demand the quantum state of a quantum information carrier as sketched on figure
1.2 . For quantum communications, which we are mainly interested in, the information
carriers are made of light.

Obviously, a classical measurement device such as a CCD cannot fully record a quantum
state because it projects (and thus alters) the state. A CCD camera for example would
record the intensity at the expense of loosing the information on the phase. So a quantum
memory must rely on the reversible and faithful mapping of a quantum state of light onto
a (hopefully long-lived) quantum state of a piece of stationary matter.

Benchmarks for quantum memories. The following parameters are the main ele-
ments to assess the quality of a quantum memory.

• Fidelity (F ). The fidelity measures quantitatively how closely the quantum state
that is retrieved out of the memory after storage resembles the input state. The
fidelity between two pure states |Φ〉 and |Ψ〉 is given by the square modulus of their
overlap: F = |〈Φ|Ψ〉|2. The fidelity of a mixed state of density matrix ρ̂ to a pure
state |Ψ〉 is given by the analogous formula: F = 〈Ψ|ρ̂|Ψ〉. The fidelity can be a good
measure of “how quantum” a memory really is. For example if one tries to make a
copy of an unknown single qubit using a classical measurement, then the fidelity of
the copy will be bounded by 2/3 on average. Therefore, the ability to store a qubit
(in any of its possible states) with a fidelity exeeding this threshold is a very strong
indication of a quantum behavior, which we shall use explicitly in chapter 3. When
the memory has a non-unit efficiency (see next point), the conditionnal fidelity is
often used, which has the same definition but is computed only if the memory yields
a non-empty output.

• Efficiency (η). Efficiency measures the energy ratio between the retrieved and input
states. For single-photon input states, it translates into the success probability of
the memory process. A less than unity efficiency counts as additionnal losses along
the transmission line. It should therefore be as close as possible to 100 % .
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Figure 1.2: Generic principle of a quantum memory. (a) At time t = 0, a qubit
|Ψin〉 (or a more complex quantum state, as the case may be) arrives at the memory into
which it is transferred. (b) The qubit remains stored in the memory for an arbitrary time.
(c) At a later time t′′, when the user pushes a button, the quantum state is released out
of the memory. The fidelity of the retrieved state (of density matrix ρ̂out) to the input
state F = 〈Ψin|ρ̂out|Ψin〉 measures the quality of the storage. The efficiency of the memory
η is the probability to successfully retrieve the qubit. If the storage time t′′ exceeds the
memory lifetime τ , then these figures of merit start to decrease.

• Memory time (τ or τm) or time-bandwidth product. The memory time is the
time over which the quantum state remains faithfully stored. A limited storage time
results from decoherence inside the memory and affects both the fidelity and the
efficiency of the storage. For a quantum memory to be useful in a real-world quan-
tum communication scheme, it must have a long enough memory time. Depending
on the protocol used and in the number of parallel channels available ([61, 62]), the
requirements on the memory time vary between the time it takes to establish entan-
glement over an elementary link (of length L/N) to the time it takes to establish
it over the full length L. For L = 1000 km and other realistic assumuptions, it
translates into storage times from a few tens of milliseconds to a few seconds. As
the duration of input states may vary considerably from one implementation to the
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other (from the picosecond to the microsecond range!), a more inclusive measure is
the time-bandwidth product, where the bandwidth refers to the inverse of the input
state duration. It describes qualitatively the number of quantum states that can
undergo logical operations before the memory decoheres.

• Multimode capacity. Quite understandably, the speed (and in some cases the
efficiency) of quantum communication protocols will increase with the number of
quantum information carriers that can be prcessed in parallel, so the number of ele-
mentary states that can be stored in parallel inside the memory is also an important
feature. Chapter 3 will show a proof-of-principle experiment indicating that our type
of ensemble-based quantum memory (see 2.2.3) is well suited for mutlimode storage.

• Wavelength (λ). For fiber-optics-based quantum communications, memories should
operate on a signal at telecom wavelength (λ = 1.3 to 1.5 µm). This is not an abso-
lute necessity since quantum interfaces are being investigated that allow to transform
telecom wavelength photons into memory compatible (visible) photons and vice versa
[63, 64], but operating directly at the right frequency would be an undeniable advan-
tage.

• Signal-to-noise ratio. Very often, quantum memories involve the use of auxilliary
bright beams of light while the interesting signal is the smallest possible amount of
light: a single photon! It is essential that these auxilliary beams do not pollute the
quantum signal. Indeed, some very promising memory schemes have not been able
to demonstrate their “quantumness” because the noise induced by the auxilliary light
overwhelms the quantum signal. These issues will be given some considerations in
sections 2.3.4 and 4.3.

These characteristics are hard to find all together in a single system. Indeed, no quan-
tum memory to date is even close to meeting all the requirements. The next section
illustrates how many different approaches are currently being investigated in the quest for
quantum memories.

1.3.2 Physical substrates and protocols: many candidates

The variety of quantum memory candidates fall roughly into two categories, according to
whether they rely on single quantum emitters or large ensembles of particles. They further
differ in both the physical substrate onto which quantum information is mapped and the
protocol used to realize this mapping.

Among the quantum memories based in single quanta one can find:

• Single atoms in cavities. Optically trapped single atoms in cavities have been
used to demonstrate the storage of polarization qubits [65, 66] and the generation of
matter-matter entanglement between remote places [67]. The best reported qubit
storage showed an efficiency of η = 9%, a fidelity of 93% and a decay time of
τ = 180 µs.

• Individual trapped ions. Electrically trapped ions in vacuum chambers are well
controlled and individually adressable single quantum systems. Their applications
to quantum networks have been reviewed in [68] and [69]. They have been shown to
exhibit long coherence times [70]. Recent achievements with these systems include



10 CHAPTER 1. Quantum information and quantum memories

the quantum teleportation of a qubit between remote ions [71] and the mapping of
a single-photon polarization state onto a single ion [72]. In this last experiment, the
storage fidelity was 95% and the low efficiency (below 1%) was compensated by a
heralding mechanism. Müller and Eschner [73] have proposed to use single 40Ca+

ions as a substrate for the storage of a polarization qubit at λ = 854 nm.

• Nitrogen-vacancy centers in diamond. Nitrogen-vacancy centers (NVC) are
naturally occuring or engineered defects in bulk diamond exhibiting rich quantum
properties. Entanglement between a single photon and the electronic spin of a NVC
has been demonstrated [74] as well as the transfer of the electronic state of the NVC
to its nuclear spin [75] – which has a much larger coherence time, on the order of
the millisecond, and that can be further prolonged up to the scale of the second [76].
Long distance entanglement of two NVC has been reported recently in [77].

• Quantum dots have also been investigated as potential memory systems in recent
experiments [78, 79].

Ensemble-based quantum memories are more versatile as their intrinsic multimode nature
gives them the capacity to store not only “regular” (polarization) qubits but also various
types of continuous variable quantum states such squeezed states or even Schrödinger cats.
They also support a variety of different memory protocols. So far, they include:

• Cold or ultra-cold atomic gases, which are the earliest media used for light
storage. Very pure gases of alkali atoms are prepared via laser cooling at various
temperatures, from a few millikelvins in magneto-optical traps to microkelvins in
dipole traps and even in the nanokelvin range in Bose-Einstein condensates (BEC).
Once cooled and trapped, cold atoms can be used to implement various memory
protocols. The first one ever demontrated relied on Electromagnetically Induced
Transparency (EIT) and the associated ultraslow light effect [80, 81]. While being
the oldest memory protocol, it has very promising features and is therefore still the
subject of intense reserach. In particular, it is the one we will use in the rest of
this thesis. Cold atomic ensembles in off-resonant EIT (Raman) conditions are also
the medium of choice for the implementation of the DLCZ protocol (see 1.3.4 and
[10, 82]). Other quantum storage protocols, such as the more recent Gradient Echo
Memory (GEM) [83] have also known sucessful implementations with these systems.

• Warm atomic vapors. Hot gases support memory protocols that are very similar
to the ones implemented in cold atomic ensembles (six orders of magnitude in tem-
perature put aside). EIT based light storage was demonstrated in them almost at the
same time as in cold atoms [84]. They have been used in several EIT or Raman-based
optical storage experiments (some of which exhibited a quantum behavior) [85, 86],
in GEM experiments [87] or in Faraday-interaction-based memory experiments [88].

• Rare earth doped crystals. These materials can experience extremely long coher-
ence times at cryogenic temperatures. They are therefore studied as versatile light
storage media. Following the demonstrations of EIT-based light storage in atomic
gases, a similar experiment was performed in a crystal [89]. In addition to EIT, crys-
tals are also well suited for photon echo protocols such as the Controlled Reversible
Inhomogeneous Broadening (CRIB) [90] an equivalent of the Gradient Echo Memory
or its discrete version, the Atomic Frequency Comb (AFC) [91–94]. Novel rephasing
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protocols such as the poetically named Revival Of Silenced Echo (ROSE) [95] have
also been successfully implemented in crystals.

• Microcavity coupled NVC ensemble. A recent theoretical proposal suggested
that NV centers in diamond could also be used as a medium for an ensemble-based
memory with very large time-bandwidth product [96].

1.3.3 The archenemy of quantum memories: decoherence

QIS as a whole is concerned with manipulating (complex) quantum states. While there
are of course quantum states that are robust against external noise (they will not change
significatively in the presence of a perturbation), they constitute but a small minority of
all possible quantum states. Most states are indeed dreadfully fragile. And quantum infor-
mation has to deal with them too. The eigenstates of common observables (often used as
basis states) can be relatively stable. But in a superposition of such eigenstates, the phase
(or coherence term) between them is often a very fragile element that gets blurred as time
goes. This blurring of the phase or decoherence eventually destroys pure quantum states
and turns them into classical (non-quantum) mixture states that are useless for quantum
information purposes. It is recognised as the strongest obstacle to the development of
quantum information technologies.

Quantum memories too have to cope with decoherence, and one of the essential issues
of the research in this area is the fight against and control of its various sources.

Some people consider decoherence as a characteristic trait of the quantumness of a
system. According to the most extreme version of this opinion, decoherence must forever
prevent the emergence of quantum information technologies. In the quest for quantum
memories, one needs of course to have faith in the existence of at least some systems in
which interesting quantum states can live for long times!

We will examine the sources of decoherence that affect our type of quantum memory
theoretically in section 2.2.5 and experimentally in section 2.3.2.

1.3.4 A closely related cousin: the DLCZ protocol

In our definition of a quantum memory it was implicitely assumed that a quantum memory
has to be able to record the quantum state of a light pulse impinging on it. But in 2001, a
protocol has been proposed for a quantum repeater involving a type of quantum memory
where the quantum signal (a single photon) does not enter into the memory, but is created
directly inside of it in a proabilistic (but heralded) process [10]. The DLCZ protocol, as
it is commonly refered to, relies on ensemble-based memories intereacting with light in a
configuration similar to the Raman (off resonant EIT) case. It is schematized in figure 1.3.

The memory unit consists in an ensemble of three-level atoms having two ground states
|g〉 and |s〉 and one excited state |e〉. It is initialized by putting all atoms in the ground state
|g〉. Light-matter entanglement can be created by shining a weak off-resonant write laser
pulse on the ensemble. Being weak and off-resonant, this pulse has a strong probability to
do nothing, and a weak probability to promote one of the atoms to the excited state, which
can then decay either back into |g〉 or into |s〉. In this second case, a single photon, refered
to as field 1 (in blue in the figure), is emitted which heralds the transfer of one single atom
from |g〉 to |s〉 (see top part of figure 1.3). Now if two nearby ensembles are being shined
on by write pulses, and if their field 1 paths are interfered on a 50 : 50 beam splitter,
then the detection of one photon after the beam splitter heralds the creation of one atomic
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transfer in one of the two ensembles (but the which ensemble information is destroyed).
This means that such a detection event heralds the entanglement of the atomic ensembles.
It also means that the creation of the single quantum of excitation and its storage in a
memory are merged into a single operation.

Once pairs of memories have become entangled, entanglement can be propagated as
shown in the lower part of figure 1.3. Bright resonant read pulses simultaneously illumi-
nate two memories, so that if one atomic excitation is present in an ensemble, it will be
transferred back into state |g〉 with a high probability while emitting a photon in so-called
field 2. Field 2 photons from different memories are brought to interfere on a 50 : 50 beam
splitter. After the beam splitter, it is again impossible to tell from which ensemble came
a single photon. So the detection of one (and only one) photon at the output of the beam
splitter projects the two remaining memories onto an entangled state in which they share
a single delocalized atomic excitation. In the absence of such an event, the process failed
and must be repeated.

The presence of entanglement storage at each step of the protocol ensures that the time
required to generate long distance entanglement scales polynomially in the total distance.

Critical to the DLCZ protocol is the use of ensemble of atoms, in which the collective
enhancement effect (see section 2.2.3) ensures the high quality of the light-matter entan-
glement. Since its proposal, the memory part of the DLCZ protocol has known numerous
lab demonstrations, although the entanglement swapping operation remains a tricky part
[82]. The memory part of the protocol has been realized with an efficiency and a memory
time reaching respectively 73% and 3 ms [97].

Although the fact that the quantum signal generation and its storage are merged in a
single step is an attractive feature of the DLCZ protocol, its probabilistic nature also has
some serious drawbacks. Indeed, in order to generate high purity single photons, the success
probability must be very low. In addition to the low count rate itself, this makes the whole
process more sensitive to any experimental imperfection such as signal contamination by
scattered light or detectors’ dark counts. For this reason, the development of quantum
memories as described in section 1.3.1 where the generation of the quantum signal and its
subsequent storage are distinct procedures is still a meaningful goal.

1.3.5 State of the art

Let us finish this introductive chapter with a brief overview of the state of the art in
quantum memories, focusing on quantum memories based on EIT in cold atomic ensembles,
which are the type of memories studied in the rest of this manuscript. Many review articles
can give a much more detailed account such as [98–100].

The first experimental demonstrations of light storage using EIT date back to 2001 with
an experiment in an ultra cold atom cloud (Bose-Einstein Condensate) [81] and another in
a warm atomic vapor [84]. They were followed the year after by the demonstration of an
EIT memory in a rare earth doped crystal [89]. In these papers, the stored optical signals
were bright pulses of light so that the quantumness of the memory could not be assessed.
Furthermore, memory lifetime and storage efficiencies were limited.

The first really quantum memories were produced in 2005 and were used to store single
photons. Again, two independant groups did the same storage experiment, one in a cold
atomic sample [101], the other in a warm atomic vapor [102]. It was checked that after a
few microseconds of storage, the single photon character of the signal was preserved.

From there on, experimentalists strived either to push further the quantumness of
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Figure 1.3: The DLCZ protocol. Upper part: generation of entangled single excitations
stored inside quantum memories. (a) Atomic level scheme in the memories. (a’) The
probablistic creation of a single excitation into two memories by the weak off-resonant
write pulse, followed by the detection of a single heralding photon after a beam splitter
projects the quantum memories onto (a”) an entangled state. Lower part: entanglement
swapping between adjacent pairs of entangled memories. Initially, memories 1 and 2 are
entangled and so are memories 3 and 4. (b) and (b’) A bright resonant read pulse shined at
memories 2 and 3 deterministically returns any atomic excitation back into state |g〉 while
generating single photons in field 2. The paths of field 2 photons are brought together
on a beam splitter after which it is impossible to tell where a photon came from. If a
single photon is detected, then the procedure is successful and leaves memories 1 and 4
entangled (b”). Mathematically, the entanglement swapping operation is a projection of the
four particle wavefunction (|0〉1|1〉2 + |1〉1|0〉2)⊗ (|0〉3|1〉4 + |1〉3|0〉4) on the two particle
state |0〉2|1〉3 + |1〉2|0〉3, resulting in the generation of the state: |0〉1|1〉4 + |1〉1|0〉4 in
which excitations in memories 1 and 4 have become entangled although they have never
interacted before!

the memories, or to improve their figures of merit. On the way towards the greatest
quantumness, EIT in cold atomic ensembles was used to store entangled photon pairs in
2008 [103] as well as squeezed vacuum pulses [104, 105]. More recently, it was used to store
a quantum bit encoded in the polarization of a single photon with memory times hitting
the millisecond range [106–108]. On the way towards better and better figures of merit,
recent experiments performed on classical signals have been reported with storage times
above 16 seconds [109] or with efficiencies reaching 78% [110]. Using the DLCZ protocol,
storage efficiencies of 73% have also been observed [97], as well as storage times of one
tenth of a second [111]. The (spatially) multimode nature of these storage media have
also been discussed in [112] and probed experimentally by Inoue et al. [113, 114] using the
DLCZ protocol, and more recently by Veissier et al. [5], Nicolas et al. [6] using EIT. This
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Qubit Multimode Fidelity Efficiency memory
storage capacity F η time τ

EIT X X(3) [114] 98.6% [108] 78% [110] 16 s [109]
to 100% [107]

GEM todo X(20) [115] todo 80% (cold atoms) [83] 20 µs [115]
87% (warm atoms) [116]

DLCZ X X(3) [113, 114] none 73% [97] 100 ms [111]
AFC X X(1060) > 99% 56% [117] 20 µs [118]

(crystals) [119] [92–94]

Table 1.1: Summary of the best achievements in quantum memories for a se-
lection of systems. For all four systems, record-breaking values come from different
experiments and have not been observed simultaneously yet. Note that coherence times
exceeding one second have been reported in experiments with rare-earth-doped crystal
[120].

demonstration constitutes a major part of this thesis and is reported in details in chapter
3.

Table 1.1 compares the best reported figures of merit of different memory media and
protocols. Electromagnetically Induced Transparency in cold atoms appears to be a very
promising way to implement quantum memories due to its potential high efficiencies, long
lifetimes and high fidelities. EIT memories also have a certain multimode capacity in the
spatial domain and have been employed sucessfully for the storage of complex quantum
states (single-photon qubits, squeezed vacuum, entangled pairs, ...). Of course, these nice
figures of merit have not been achieved simultaneoulsy yet, and this is why research must
go on.

1.4 Conclusion

In this chapter, we have drawn a panorama of the research on quantum memories and
put them in perspective with quantum information science and especially with quantum
communications.

• In future quantum communication networks, quantum repeaters will be
based on quantum memories for light.

• Critical parameters estimating the quality of a potential quantum mem-
ory include mainly the fidelity of the storage, the memory lifetime, its
efficiency and multimode capacity.

• No ideal quantum memory candidate has revealed itself yet, but many sys-
tems are being investigated and improvements are going on at a high pace
with new record-breaking experiments every few months.

In the remaining of this manuscript, we shall report on some experiments done in our
lab with two quantum memory candidates. Both quantum memory candidates are imple-
mented using the Electromagnetically Induced Transparency (EIT) protocol in ensembles
of cold atoms (or occasionnally the DLCZ protocol).
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In odrer to understand the memory protocol, the next chapter is dedicated to EIT and
its application to light slowing and trapping.
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Chapter 2

EIT, slow and stopped light for

quantum memories
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In this thesis, we implement quantum memories in large ensembles of cold atoms using
the phenomenon known as Electromagnetically Induced Transparency (EIT). Historically,
EIT-based stopped light in atomic ensembles is the first procedure proposed and used to
realize a quantum memory ([81, 101]), and it remains today one of the most promising
avenues towards quantum memories.

In this chapter, we explain the general functionning of EIT-based quantum memories
and present the experimental setup that we use to implement it in the lab.
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2.1 Electromagnetically Induced Transparency and slow light

EIT occurs in some media when a light beam that should normally be absorbed is instead
transmitted due to a quantum interference with another light beam, usually called the
control beam. Light propagating in an EIT medium experiences an extremely reduced
(and tunable at will) group velocity. To store a light pulse using EIT, its group velocity is
adiabadically reduced to zero while it propagates inside the medium. This process transfers
the quantum state of the stored light pulse into an atomic coherence.

2.1.1 Linear susceptibility in EIT systems

To understand how EIT quantum memories work, let us first have a look at the response
of such a medium to a probe (signal) beam undergoing EIT.

The model is a three-level atom in a Λ configuration with states {|g〉,|s〉,|e〉 } as depicted
in figure 2.1. It is initially in state |g〉. State |e〉 has a spontaneous decay rate Γ into states
|g〉 and |e〉. The reader can refer to appendix A.1 for a more detailed explanation and for
the details of the calculation.

The signal field is close to resonance with the |g〉 ↔ |e〉 transition. We note ω the signal
beam frequency and δ its detuning. EIT for the signal field is engineered by a control field
on resonance with the |s〉 ↔ |e〉 transition (frequency ωc). In situations where the control
can be off resonance, it is common to use δ as the two-photon detuning, but here this will
make no difference. The strength of the light-matter interaction for both fields is described
by their Rabi frequencies Ωs (signal) and Ωc (control).

Figure 2.1: Atomic levels and light fields scheme for EIT. The signal field is close
to resonance with the |g〉 ↔ |e〉 transition (frequency ω, detuning δ, Rabi frequency Ωs).
The transmission properties of the atom (initially in state |g〉) are modified by the control
field, which is on resonance with the |s〉 ↔ |e〉 transition (frequency ωc, Rabi frequency
Ωc). Excited state |e〉 has a spontaneous decay rate Γ.

In the absence of the control field, the signal experiences maximum absorption at
resonance (δ = 0), and the absorption profile around resonance exhibits a Lorentzian
shape with a full width at half maximum equal to Γ.

For simplicity, we chose to neglect the decoherence term γgs between gound levels |g〉
and |s〉. The action of a dielectric material on a propagating light wave is described by the
susceptibility χ, which appears in the wave equation in the presence of matter:
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∇2 ~E − (1 + χ)
1

c2
∂2

∂t2
~E = 0 (2.1)

With the given notations, the linear susceptibility per atom is given by:

χ(δ) = κ
iδ

i
(

δ2 − Ω2
c

4

)

+ δΓ
2

(2.2)

Where κ = d2

eg/2ǫ0~. The real part of χ gives the dispersion (phase-shifting) coefficient while
the imaginary part provides the absorption coefficient.

In the moderate control field regime defined by Ωc <
Γ
2 , the poles of χ(δ) are imaginary,

which allows to re-write the absorption resulting from equation (2.2) as:

AEIT (δ) =
C+

δ2 + δ2+
+

C−
δ2 + δ2−

(2.3)

The expressions of C+, C−, δ+ and δ− are given in appendix A.2. This is the “pure EIT”

Figure 2.2: Absorption and dispersion profiles in an EIT medium. Imaginary (left
side, blue curve) and real (right side, red curve) components of the susceptibility χ(δ) given
by equation (2.2) as a function of the signal’s detuning δ. Both are zero at zero detuning,
meaning perfect transparency for a resonant signal. The group velocity however, which is
linked to d

dδRe(χ(δ)) is extremely reduced in this region as explained in section 2.1.2. The
plot is made for Ωc = Γ/2.

region, where the absorption profile looks like the unperturbed (Lorentzian) resonance in
which a narrow “transparency window” of width Ω2

c/Γ has been opened. Figure 2.2 shows
the theoretical shape of χ(δ) as defined by equation (2.2).

As the power of the control field Ω2
c increases, the transparency window becomes wider

and wider until the two halves of the absorption spectrum become two well separated
resonances. In the limit of very intense control field, the absorption profile looks like
two distinct resonances of width Γ/2 separated by Ωc, a phenomenon also known as the
Autler-Townes splitting.

Recently, the distinction between EIT and Autler-Townes splitting (ATS) has raised
some discussions [4, 121, 122]. This was due in part to the fact that EIT alone can lead
to quantum memories while ATS alone cannot. In the model presented here, the two
phenomena appear as different behaviors of a single system that depend on the value of
one parameter. But there are other systems which can exhibit ATS without EIT [121, 123,
124], in particular in the presence of large decoherence (γsg). Our group has investigated
experimentally the transition between the two behaviors in [4] in the well-controlled system
that we use to implement a quantum memory. Figure 2.3 shows how the absorption
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profile evolves with increasing values of Ωc (see section 2.3 or Giner [125], Veissier [126] for
experimental details).

This study was reported in [4] and in the PhD dissertations by Giner [125] and Veissier
[126]. It was found that in the weak control field region (which is relevant for the imple-
mentation of quantum memories), the EIT model of equations (2.2) and (2.3) fits very well
to the experimental data. With increasing values of Ωc however, the simple three level
model breaks down as the more intricate structure of the atoms begins to play a significant
role [123]. In the region Ωc . Γ which is relevant for quantum memories however, this will
not be an issue.

Figure 2.3: Experimental absorption profiles for various values of the control
Rabi frequency Ωc. The vertical axis shows the absorption coefficient (or more precisely
the optical depth as defined in equation (2.6)), the left-right horizontal axis gives the
detuning δ of the signal and the back-front horizontal axis the (dimensionless) power of
the control field Ωc/Γ (where Γ = 2π × 5.2 MHz). As the power of the control field
increases, the transparency window broadens until the atomic resonance is finally split
into well separated peaks. However, the complex detailed structure of the atoms used in
the experiment prevents the formation of two nice resonances as in a naive ATS model.
In these measurements, the convention for naming the ground states |g〉 and |s〉 of 133Cs
was the opposite of the one that will be used for the quantum memory implementation in
section 2.3 but this is merely a matter of definition. Credits: Giner et al. [4].

Let us now turn to the consequence of EIT that is relevant for quantum memory
implementation: the slow light effect. For this, we consider an ensemble of atoms of
density n0 and length L, so that the susceptibility experienced by the signal field is now
given by: n0 χ(δ).

2.1.2 Slow light in an EIT medium

Even if the susceptibility in equation (2.2) is zero at exact resonance (meaning that a
resonant pulse can propagate without absorption), there is a strong light-matter coupling.
This coupling manifests itself as a spectacular slow light effect.

The group velocity vg of a wave packet of frequency ω and wave vector k is given
by: 1/vg = dk/dω. The wave vector k(ω) (or k(δ)) is derived from the propagation
equation (2.1): k(ω)2 = ω2

c2
(1 + Re(χ(ω))). In the vicinity of resonance, this leads to:
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vg =
c

1 + 1
2ω

d
dδRe(χ(δ))

(2.4)

Yet it can be seen from figure 2.2 that the dispersion is extremely steep in the vicinity
of the resonance. At the linear order in δ, from equation (A.16), we have: Re(χ(δ)) ∼
−κδ/δ+δ− ∼ 4κδ/Ω2

c . So if the power of the control field is decreased towards zero, then
the group velocity of a signal pulse can be made arbitrarily small, according to:

vg ∼
δ→0

c

1 + 2n0κω
Ω2

c

(2.5)

In this equation and from now on, we take into account the fact that we’re considering
an ensemble of atoms through the replacement: κ → n0 κ.

It is useful to introduce the optical depth (OD) of the atomic ensemble, which is defined
as the absorption of a resonant (δ = 0) signal in the absence of control field by the whole
length of the ensemble in logarithmic units1:

d0 = 4
n0ωκL

cΓ
(2.6)

In terms of the OD, the group velocity of equation (2.5) can be rewritten as:

c

1 + d0Γc
2LΩ2

c

(2.7)

In practice, the most spectacular experimental demonstration of this ultra slow light
effect was done by Hau et al. [80] in 1999. They measured a signal group velocity of
17 ms−1 in a Bose Einstein condensate of sodium atoms.

The slow light effect can be seen as the working principle of EIT-based quantum mem-
ories as will be detailed in the next section.

2.2 EIT quantum memory in an ensemble of atoms

In this section, we consider the realization of a quantum memory inside an ensemble of
atoms described by the EIT model introduced in the previous section.

2.2.1 Stopping light in an EIT medium

The working principle of an EIT quantum memory can be explained following the steps of
figure 1.2:

• In step (a), the memory is initialized. An ensemble of three-level atoms with the
Λ structure of figure 2.1 is prepared with all atoms in state |g〉. A control beam of
Rabi frequency Ωc ∼ Γ is shined on them, so that a signal beam would experience an
atomic susceptibility χ(δ) as given in equation (2.2). Then, a signal pulse of duration
τs and free space length ls = c · τs impinges on the atomic ensemble.

1Following the tradition in atomic physics, the optical density is defined here in the natural base e.
Safety goggle manufacturers use base 10 OD instead.
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• Between steps (a) and (b), the signal pulse enters into the atomic ensemble. There,
it propagates without absorption at a reduced group velocity vg depending on the
value of Ωc. For absorption to be completely suppressed, the signal bandwidth,
given roughly by 1/τs, must fit entirely inside the transparency window, which means
Ωc > 1/τs. As it gets slower, the signal pulse is also spatially compressed by a ratio
equal to the slowing factor vg/c. Thanks to this huge reduction in size, a signal pulse
measuring several hundred meters in free space can fit inside an atomic ensemble of
a few millimeters!

• From equation (2.5), it appears that vg can be made zero by switching off the control
beam. When Ωc approaches 0, vg scales linearly with the power of the control beam
(Ω2

c): vg ∼ 2cΩ2
c/κn0ω. If this happens while the signal pulse is still inside the

atomic ensemble, it remains “trapped” there until vg is finally made non-zero again.
Since this also closes the transparency window, one may have doubts about how
the signal can be trapped in a medium which is not any more transparent for it.
This apparent riddle is solved by the fact that there is no more light in “stopped”
light : as vg is reduced to zero, the signal is turned entirely into atomic coherence,
which is of course not concerned with transparency issues. For each photon in the
signal field, one atom is transferred from state |g〉 to state |s〉. This is formalized by
the concept of dark state polaritons (see section 2.2.2 and Fleischhauer and Lukin
[127, 128], Lukin [129], Fleischhauer et al. [130] for details).

• In step (b), the signal remains trapped inside the atomic ensemble as long as the
control beam remains off. In reality, the amplitude of the stored signal decreases on
a timescale set by the coherence time of the memory τ .

• In step (c), the hand-pressing-a-button stands for switching the control beam back on,
reestablishing a non-zero group velocity vg for the signal, which can thus propagate
again inside the atomic ensemble and finally leave it.

In this description of the memory protocol, it becomes clear that the power of the
control beam Ω2

c is at the center of a trade-off governing the efficiency of the storage. For
a given signal, this power must be large enough for the signal spectrum of width ∼ 1/τs
to fit in the transparency window, but it must also be small enough for the signal spatial
extension (compressed to ∼ τs · vg) to fit inside the atomic ensemble. On one hand, if Ωc

is too small, the high-frequency components of the signal will be out of the transparency
window and they will be absorbed: the memory will act as a frequency filter removing
the signal sharp rising and falling edges. This not only changes the signal shape but also
causes loss, i.e. it lowers the efficiency η. On the other hand, if Ωc is too large, then the
signal pulse length will remain too long to fit inside the ensemble and some of it will leak
out of the memory medium and won’t be stored, also lowering η.

The first condition (large Ωc) translates into τsΩc > 1 – which importantly does not
depend on n0. The second condition (small Ωc) translates into τsΩ

2
c < Lκωn0/c =

d0Γ
4 . It

results from these conditions that in order to maximize the efficiency of an EIT memory,
one has to chose the smallest Ωc value that allows the transparency window to cover the
entire signal bandwidth, and use an ensemble as dense and as long as possible. The optical
density appears to be the name of the game enabling both conditions to be satisfied (if and
only if it is large enough). Let us inderline that the inclusion of a non-zero dephasing term
γgs between levels |g〉 and |s〉 in the model of section 2.1 sets a limit to the transparency
that can be achieved [86, 123]. The resonant (δ = 0) single-atom absorption coefficient
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at finite control power is no longer zero but given by κγgs/(
Ω2

c

4 +
Γγgs
2 ). Since non-zero

absorption means reduced efficiency for the memory, it is crucial to choose a medium in
which the dephasing between levels |g〉 and |s〉 is as small as possible.

2.2.2 Dark state polariton description

An alternative and insightful point of view on slow and stopped light in EIT media was
introduced by Fleischhauer and Lukin [127] under the stage name of Dark-State Polaritons.
The dark state arises as an eigenstate of the atomic hamiltonian (in the rotating frame)
given in (A.9) at resonance (δ = 0):

ĤRWA =





0 0 Ωs

0 0 Ωc

Ωs Ωc 0



 (2.8)

It has three eigenstates:

|Ψ0〉 =
1

√

Ω2
s +Ω2

c

(Ωc|g〉 − Ωs|s〉) with eigenvalue: 0

|Ψ±〉 =
1√
2

(

|e〉 ± 1
√

Ω2
s +Ω2

c

(Ωs|g〉+Ωc|s〉)
)

with eigenvalues: ±
√

Ω2
s +Ω2

c

The state |Ψ0〉 does not contain the excited state |e〉 so it cannot decay radiatively. That’s
why it’s called the dark state. If the signal and control are out of resonance by the same
amount, then the fraction of the excited state |e〉 contained in the bright states |Ψ±〉 is
modified, but the dark state |Ψ0〉 is unchanged. The proportions of states |g〉 and |s〉 in
the dark state depend on the relative intensities of the control and signal beams. This
dependence of |Ψ0〉 on Ω2

s/Ω
2
c leads to an alternative description of the memory process.

Consider a single atom prepared in the EIT conditions and let us switch to a quantum
description of the signal beam. In the begining, the signal is in the vacuum state |0〉 (so
that Ωs = 0) and the control beam has a non-zero Rabi frequency Ωc. Consequenlty, the
atom is initially in eigenstate |Ψ0〉 = |g〉. Let one signal photon |1〉 encounter the atom.
This translates into an increase of Ωs to a non-zero value, so that the atomic eigenstate is
slightly modified into |Ψ0〉 = 1√

Ω2
s+Ω2

c

(Ωc|g〉 − Ωs|s〉) ∼ |g〉. As required by the memory

protocol, the control power Ω2
c is then decreased. If the variation is adiabatic 2, the atom

will remain in the same eigenstate |Ψ0〉 while |Ψ0〉 evolves from almost |g〉 to exactly |s〉
when Ωc reaches zero. The atom has been transferred from |g〉 to |s〉! If one has an
atomic ensemble and multiple signal photons, then for each one of them, one single atom
is tranferred from |g〉 to |s〉. And for each of these atomic transfers, one photon is emitted
into the control beam, as required for energy conservation.

What happens to the signal photons becomes more evident if we notice the following.
As the atomic state inside the ensemble is modified by the EIT process (atoms are promoted
from |g〉 to some other state |Ψ0〉 6= |g〉), what is really propagating inside the ensemble at

2In fact, it has been argued by Liu et al. [81], Matsko et al. [131] that the adiabatic condition is
unecessary in the case of EIT light storage: even in the case of a rapid (instantaneous) switch-off of the
control beam, the atomic state follows instantly and no additionnal absorption is caused. For this reason, in
practice all EIT light storage experiment use the fastest possible switch, on the order of a few nanoseconds.
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velocity vg (equation (2.4)) is a mixed state of (signal) electric field and atomic coherence
(or spin wave).

The state of such a light-matter superposition has been shown to be [130]:

Ψ(z, t) =
Ωc

√

Ω2
c + g2n0

Es(z, t)−
g
√
n0

√

Ω2
c + g2n0

√
n0ρ̂sg(z, t) (2.9)

In which Es(z, t) stands for the signal electric field envelope, ρ̂sg(z, t) for the local average
atomic coherence between states |s〉 and |g〉, and the signal Rabi frequency Ωs has been re-
placed by the single-photon coupling strength Ω2

s → g2n0. In this expression, the relative
proportions of photonic and atomic components are given by the same coefficients that
gave the ratio between states |g〉 and |s〉 in the dark state |Ψ0〉 (equation (2.9)). Without
entering into details, Fleischhauer and Lukin [127, 128] have used a fully quantum descrip-
tion to prove that the field Ψ has a bosonic behavior and its excitations are multi-atomic
analogous of the dark state |Ψ0〉 (equation (2.9)) called dark state polaritons that prop-
agate with the group velocity given by equation (2.4). It also appears that a polariton
with zero group velocity (at Ωc = 0) has lost all its photonic part and consists solely of a
(stationnary) spin wave.

2.2.3 The role of the ensemble: collective enhancement

The EIT susceptibility of equation (2.2) has been derived for a single atom and spatial
features of the signal and control beams such as their directions and shapes have not been
considered. But as has been already argued in section 2.2.1, the interaction strength with a
single atom is far too weak to perform efficient light slowing and stopping 3. Besides, if we
were to implement a quantum memory with a single atom in free space, then the re-emission
of the stored photon would have no reason to happen in the signal’s own spatial mode.
Fortunately, the use of an extended ensemble of atoms automatically solves this problem,
thanks to a phenomenon known as collective enhancement. In short, when a signal pulse
is stored as an atomic spin state |s〉 inside an ensemble, every atom participates in the
absorption, and each one of them retains a phase that reflects the spatial interference of the
control and signal fields. When the control field is turned back on after storage, the emission
is forced in the mode which results from maximal constructive interference between the
control and the stored excitation in a fashion that reminds of holography. Some authors
have therefore named ensemble-based quantum memories “quantum holograms” [112].

The state of the ensemble is better described by so-called collective states, in which a
single atomic excitation is delocalized over the entire ensemble:

|g〉 = |g1, g2, · · · gN 〉

|s〉 = 1√
N

∑

1≤i≤N

|g1, g2, · · · gi−1, si, gi+1, · · · gN 〉

|e〉 = 1√
N

∑

1≤i≤N

|g1, g2, · · · gi−1, ei, gi+1, · · · gN 〉

(2.10)

3An alternative way to enhance the light matter coupling and to maximize memory re-emission into
the desired mode is to put the atom in a cavity which is resonant with the signal beam. However, this
cavity has to be stabilized and this brings in additionnal complexities. Moreover, a single atom in a cavity
remains intrinsically a singlemode quantum interface. It must be noted that the two techniques (the use
of an ensemble and a resonant cavity) can be (and have been) combined such as shown in a recent DLCZ
experiment [97].
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Where the sum runs over all N atoms inside the ensemble. In addition to the single-
excitation states |s〉 and |e〉, multiply excited states can be defined:

|ss〉 = 1
√

N(N − 1)

∑

1≤i<j≤N

|g1, · · · si · · · sj · · · gN 〉 (2.11)

Similar definitions go for states with higher excitation numbers, and for the |e〉 state as
well. As long as the number of excitations is small enough compared to the total number
of atoms, the states |s〉,|ss〉,... behave as Fock states. They are the dark state polaritons
(see previous section) in the purely atomic case (Ωc = 0). When a signal pulse

∑

n an|n〉 is
stored in the ensemble via EIT, it is mapped onto the atoms as

∑

n an|sn〉 (where |s0〉 = |g〉,
|s1〉 = |s〉, |s2〉 = |ss〉 and so on).

Collective enhancement arises from a subtelty that was hidden in equation (2.10).
During the spin-flip process, the atom i at position ~ri absorbs a signal photon of wave
vector ~ks and simultaneously emits a control photon of wave vector ~kc, so it comes in the
superposition (2.10) with a phase factor ei(

~ks−~kc) ·~ri . In the memory readout, it absorbs a
control photon of wave vector ~k′c and re-emits a signal photon of wave vector ~kout. The
ensemble is returned in the collective state

(

1√
N

∑

1≤i≤N ei(
~ks−~kc+~k′c−~kout) ·~ri

)

|g〉. The

global factor before |g〉 gives the square root of the probability amplitude of this process.
It is significant if and only if ~kout = ~ks−~kc+~k′c. If one has two independent control beams,
this allows to control at will the direction of the retrieved photon. In practice, for reasons
that will be explained in section 2.2.5, it is desirable to have the smallest possible angle
between the signal and control beams. In our case, we adopt what is known as the forward
configuration by chosing a single control beam ~k′c = ~kc. This causes the photon to be re-
emitted in in the same spatial mode and direction as the signal (~kout = ~ks). The amplitude
of each term in equation (2.10) also varies depending on the intensity distribution of the
signal and control beams but this leaves the present discussion unaltered.

In addition to the collective enhancement effect, the ensemble nature of the storage
medium provides it with an intrinsic multimode capacity that will be used extensively in
chapter 3 where we will demonstrate the storage of various superpositions of spatial modes
[6].

2.2.4 A glance beyond the simple model

Let us now address briefly some questions that arise at the boundaries of the model pre-
sented heretofore.

• Is it still EIT when there is no more control field ? The derivation given
in appendix A.1 is done perturbatively in the case of a strong control field and a
weak signal. But when the control field is switched off, it necessarily becomes less
intense than the signal, casting doubt on the validity of the perturbative approach.
The dark state polariton picture of section 2.2.2 provides an answer by showing
that signal photons progressively disappear as a light pulse is slowed down, so that
the signal can still be considered as perturbatively small relative to the control. The
question could also be formulated equivalently as: how to fit a signal pulse’s spectrum
inside a shrinking EIT bandwidth ? Fleischhauer and Lukin [127, 128] argued that
the time variation of the dispersion curve also modifies the signal’s spectrum. As the
signal pulse is dynamically slowed down, its spectrum is gradually compressed. If
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the signal spectrum initially fits inside the transparency window, then this property
is conserved while the control field power is decreased.

• The multilevel structure of real atoms. Real atoms have more complex level
structures than ideal Λ ones used in the model of section 2.1. In the cesium atom for
example (which we use in our experiments) the levels |g〉 and |s〉 are split respectively
into 9 and 7 different Zeeman sublevels. The excited state |e〉 is also split in multiple
sublevels. Moreover, adjacent levels not directly involved in the main EIT process
may perturb it. This effect is especially important if the atoms are hot, leading to
large Doppler broadening, or if the power of the control field Ωc is too important
(much larger than Γ) as shown in [4]. In the last years, our group had studied the
effect of multiple levels in coherent processes [124, 132]. A detailed theoretical model
has been given by Sheremet et al. [123].

As such, the multilevel atomic structure is not a problem for EIT or for memories.
It merely causes atoms in different sublevels to act as several independant three-
level Λ systems. In each of these subsystems, both the signal and control beam may
have different Rabi frequencies, depending on the state magnetic moment and on
the light polarization. As long as Ωc satisfies the conditions for efficient memory
given in section 2.2.1 in all the subsystems, the EIT memory works just as well. The
multilevel structure becomes a trouble if the different Λ subsystems have different
energy splittings as will be seen in the next section.

• Off resonant EIT and Raman quantum memories. EIT also exists in the case
of a non resonant control beam (ωc 6= ωes) in which case the perfect transparency
(“off-resonant EIT”) occurs at the exact two photon resonance (ω − ωc = ωgs), just
next to a stimulated Raman absorption line (see [86]). Off-resonant EIT causes slow
light in the same way as in the resonant case and can lead to quantum memories with
various control detuning ([85, 86]). The linear susceptibility in Raman configuration
is shown in figure 2.4. It is given by:

χ(δ) =
iγsg + δ

δ2 + iδ
(

Γ
2 + γsg

)

+ δ∆c + i∆c
Γ
2 − γsg

Γ
2 − Ω2

c

4

(2.12)

The derivation for this can be found for example in the PhD dissertation by Scherman
[86], Cviklinski [133].

All experiments reported in the rest of this manuscript have used resonant EIT only.
It was diagnosed that one of the mechanisms limiting the storage efficiency is a
residual absorption of the signal caused, e.g. by a mismatch of the control and sig-
nal beams, as well as a limited transparency. In experiments performed after this
manuscript was under completion, Dr. Valentina Parigi and Dr. Christophe Arnold
showed that switching to a slightly off-resonant EIT configuration (or Raman con-
figuration) allowed to mitigate this residual absorption and to significantly increase
the storage efficiency.

After having explained the basic functionning of EIT quantum memories, we now turn
our attention to mechanisms governing a very important parameter: the memory time τm.
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Figure 2.4: Level scheme (right) and linear susceptibility (left) in off-resonant
EIT (or Raman) configuration. Credits: Scherman [86].

2.2.5 Inhomogeneous broadening and decoherence: the dark side of us-
ing an ensemble

Using ensemble of atoms enables for a strong light-matter coupling, gives rise to collective
enhancement and directional re-emission of the signal and provides us with a multimode
storage medium. But it also opens a back door to the enemy of quantum memories: deco-
herence. Inhomogeneous broadening in an ensemble of atoms induces specific decoherence
mechanisms that are of course absent in the single-atom EIT model.

In short, inhomogeneities will cause different atoms (at different positions or in different
velocity classes or in different internal sublevels) to evolve with uncorrelated individual
phase factors. Since the re-emission process happens as a collective in-phase emission from
all the atoms, an uncontroled dephasing will oppose to this beautiful collective re-emission.

It has been stressed in section 2.2.3 that in the superposition state of equation (2.10),
different atoms come with different static phases. They reflect the interference pattern of
the signal and control beams, and are responsible for the maximization of the signal re-
emission in the desired mode. But any inhomogeneity in the atomic eigenfrequencies ωgs

will result in different atoms in equation (2.10) also coming with different dynamic phases:
phases that will evolve in time at different rates! Now in this case, when the control pulse
is reapplied on the atomic ensemble to retrieve the stored signal, atoms will have dephased
and the collective re-emission will be decreased.

In the collective state (2.10), let now atom number i evolve with a phase Φi(τ) over a
time τ . Then at time τ , the collective state has changed to:

|s(τ)〉 = 1√
N

∑

1≤i≤N

eiΦi(τ)|g1, · · · gi−1, si, gi+1, · · · gN 〉 (2.13)

But the probability to retrieve the signal in the correct mode (i.e. the memory ef-
ficiency) is still given by the same interference condition with the control beam. The
efficiency thus scales with time as:
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η(τ) = |〈s(0)|s(τ)〉|2

=

∣

∣

∣

∣

∣

∣

1

N

∑

1≤i,j≤N

eiΦi(τ)〈g1, · · · , gj−1, sj , gj+1, · · · , gN |g1, · · · , gi−1, si, gi+1, · · · , gN 〉
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(2.14)

Taking the continous limit, this expression turns into:

η(τ) =

∣

∣

∣

∣

∫

dΦτ n(Φτ )e
iΦτ

∣

∣

∣

∣

2

(2.15)

Where n(Φτ ) is the distribution of the individual phases at time τ .

Inside a cold atom setup, three main sources of inhomogeneous broadening exist, as
will be now detailed:

• Magnetic field inhomogeneities. The states |g〉 and |s〉 are in fact two manifolds
of magnetic sublevels labelled |mF 〉, mF = −F · · · + F as depicted in figure 2.6.
In the presence of a non-zero magnetic field of projection B along the quantization
axis, these sublevels are shifted by δωgs = µB gF mF B (µB is the Bohr magneton,
gF the Landé factor of state |F 〉 = |g〉 or |s〉 and mF the index of the magnetic
sublevel). If moreover the magnetic field is not constant in space, an atom in state
mF at position z will evolve with a phase:

Φi,mF
(τ, z) = µBgFmFB(z)τ/~ (2.16)

The efficiency given by equation (2.15) becomes an integral over space. Noting
nmF

0 (z) is the local density of atoms in the mF sublevel, we obtain:

η(τ) =

∣

∣

∣

∣

∣

∣

∑

mF=−F ···+F

∫

dz nmF

0 (z)eiµBgFmFB(z)τ/~

∣

∣

∣

∣

∣

∣

2

(2.17)

Taking a gaussian atomic spatial distribution nmF

0 (z) = 2
L
√
π
e−4z2/L2

(as expected
in a magneto-optical trap with a cloud of length L), a first order approximation
(gradient) to B(z) and a single mF sublevel with µBgFmFB(z) = αmF

· z we have:

η(τ) =

∣

∣

∣

∣

∫

R

dz e−
4z2

L2 eiαmF
zτ

∣

∣

∣

∣

2

∝ e−L2α2
mF

τ2/8 (2.18)

i.e. a gaussian decay with a memory time:

τm = 2
√
2/LαmF

(2.19)

Assuming the following parameters: L = 2 mm, µB · gF = 350 kHz/G and taking
mF to be the maximum difference ∆mF = 16 between magnetic levels in 133Cs (see
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Figure 2.5: Expected decay of the memory efficiency with time caused by various
decoherence mechanisms. The blue curve refers to magnetic field inhomogeneities
as given by equation (2.19). This estimation is done with the following experimental
parameters: L = 2 mm, ∆B ∼ ±5 mG, and mF → ∆mF = 16 and for the tabulated value
of µB · gF = 350 kHz/G [134]. Their measurement will be described in section 2.3.2. The
resulting memory time is τm ∼ 50 µs. The red curve shows the expected decay resulting
from the thermal motion of the atoms in the presence of an angle α between the signal
and control beams. It appears to put a much more stringent limitation on the storage
time. It has been obtained from equation (2.20) using parameters: λ = 852 nm, α = 1.8◦,
T = 800 µK yielding a decay time τm ∼ 15 µs.

insert in figure 2.6), we obtain a theoretical memory time on the order of 50 µs as
shown in figure 2.5.

A more realistic model should take into account the populations nmF

0 (z) of the various
mF sublevels as well as the relative dephasing between levels from the |g〉 and |s〉
manifolds, not only one mF sublevel of |s〉 as done here. However, the simple formula
(2.19) gets all the physics of the process and gives the correct order of magnitude for
the memory time τm.

This Zeemann dephasing model was introduced by [135] in order to explain the
extremely short memory times in the pioneering DLCZ photon-pairs generation ex-
periments that have been performed at Caltech in a magneto-optical trap.

• Thermal atomic motion. Atomic motion also causes dephasing, because if an
atom moves during the storage, then it will not have the correct phase factor for its
new position when the control beam will be re-applied for memory readout. This
effect will be all the more important as the phase between the signal and control
beams will have changed between the two atomic positions. It therefore depends on
the angle α between the two beams.

More precisely, if the i-th atom is transferred from |g〉 to |s〉 at position ~ri and
then back from |s〉 to |g〉 at position ~r′i, then it aquires a phase factor equal to:
Φi = (~kc − ~ks) · (~ri − ~r′i). If the atom displacement results from thermal motion,
then it can be more efficiently parametrized using the atom velocity ~vi, so that we
can write: Φi(τ) = (~kc − ~ks) ·~viτ . The integral in equation (2.15) becomes an
integral over the atomic velocity. In a Maxwell-Boltzmann distribution ∝ e−mv2/2kBT ,
such as expected in a magneto-optical trap, this leads to:
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η(τ) =

∣

∣

∣

∣
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R

d3~ve
− mv2

2kBT ei(
~kc−~ks) ·~viτ

∣

∣

∣

∣

2

∝ e−2δk2τ2kBT/m (2.20)

m = 2.207× 10−25 kg denotes the mass of a 133Cs atom, kB the Boltzmann constant,
and the wave-vector difference along the signal axis is given by δk = 2π sin(α)/λ.
Again, the efficiency decays in time as a gaussian with a time constant:

τm =
λ

2π sin(α)
√

2kbT/m
(2.21)

This can ben qualitatively understood as the time required for an atom moving at the
most probable velocity to travel a distance equal to the width of an interference fringe
between the signal and control. With α ∼ 1.8◦ as used in our setup and assuming
a typical magneto-optical trap temperature equal to the 133Cs Doppler temperature
TD = 125 µK we estimate a limit on the memory time τm on the order of 35 µs.
Given our good cancellation of magnetic field gradients, this is already a stronger
constraint than the 50 µs expected from magnetic field inhomogeneities. Moreover,
a much higher temperature than TD has been measured in our setup (T ∼ 0.8 mK)
leading to a still smaller τm ∼ 15 µs (2.3.2). The expected decay curve is shown in
figure 2.5.

• Differential light shift in dipole traps. In the rest of this chapter and in the
next one, our quantum memory medium will be a cloud of atoms freely falling from a
magneto-optical trap (MOT), so we won’t be concerned with light shifts. However, in
setups involving atoms in dipole traps – such as will be considered briefly in chapter
4 – inhomogeneous light shifts caused by the trapping light are an additionnal cause
of decoherence.

Indeed, in the presence of an off-resonance laser field ~E0(~x)e
iωt, an energy level is

subjected to a light shift that proportionnal to the spatially varying intensity ~E2
0(~x)

(and also depends on the squared amplitudes of all (allowed) transitions and on
the laser frequency ω) [136]. Except in some very special cases, different levels are
shifted differently. In particular, the energy difference between |g〉 and |e〉 will vary
proportionnally to ~E2

0(~x), causing an inhomogeneous broadening of the EIT optical
transitions as soon as ~E0(~x) is not constant over the whole atomic sample.

In certain atoms the light shifts on different levels compensate each other exactly at
so-called magic wavelengths. Such is the case of the 133Cs atom, and this property
will be an important asset in the experiment of chapter 4.
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The two previous sections have given an overview of the theoretical tools required
to describe and understand the slow light effect and its application to optical
quantum memories. The parameters playing a key role in EIT quantum memories
have been identified:

• Light slowing and the trade-off governing the control Rabi fre-
quency Ωc. The control power must be small enough for efficient light
slowing and large enough for the transparency window to encompass the
signal whole spectrum. Increasing the optical depth (OD) d0 of the
atomic ensemble allows to satisfy both criteria.

• Inhomogeneous broadening in extended atomic media must be tightly
controlled since it leads to decoherence and hence to a reduction of the ex-
pected memory time. Especially worrisome mechanisms are the dephasing
of Zeeman sublevels in inhomogeneous magnetic fields and the ther-
mal motion of atoms combined with a non-collinear signal and control
configuration.

In the next section, we will describe how this theoretical model can be realized in
practice in an ensemble of magneto-optically trapped cold cesium atoms.

2.3 Implementation in a cold atomic ensemble

In the previous sections, we have given the basic theory underlying the functioning of
EIT and EIT-based quantum memories in atomic ensembles, and we have described the
physical mechanisms accounting for the quality of the memory. In this section, we will
now describe our experimental implementation of such a cold-atom-based EIT quantum
memory.

2.3.1 Preparation of the memory medium in a magneto-optical trap

As previously mentionned, our memory medium is provided by a cloud of cold cesium
atoms. Alkali atoms have the advantage of being easy to manipulate by laser cooling and
trapping techniques, they have very small homogeneous dephasing rates γgs and a strong
interaction with light on optical transitions that are suitable for EIT. In addition, 133Cs
has two magic wavelengths, allowing it to be used in dipole traps that are exempt of light
shift induced broadening, something we’ll take advantage of in chapter 4.

The atoms are cooled and trapped in a magneto-optical trap (MOT). Most of the
technical details of the setup used in this work have been already described extensively by
Giner [125], so only the most essential parts are given in the following. The 133Cs level
scheme is shown in figure 2.6 with the various beams used for atomic cooling and trapping
(MOT generation), for atomic probing and for memory implementation.

Atoms are provided by dispensers 4 placed about 15 cm below the MOT itself. A
pressure below 10−9 Torr ∼ 10−12 bar is maintained by a 40 L/s ion pump 5. The MOT
is generated by three pairs of one-inch-wide retro-reflected beams. As indicated on figure
2.6, the trapping laser (T) is close to (10 MHz below) the |6S1/2, F = 4〉 → |6P3/2, F

′ = 5〉
4By SAES Getters
5Model Starcell VacIon Plus 40 by Agilent



32 CHAPTER 2. EIT, slow and stopped light for quantum memories

Figure 2.6: 133Cs levels and laser beams used for MOT preparation and prob-
ing (green arrows) and EIT subsystem (red and blue arrows). Vertical energy
splittings are not to scale. Atoms are prepared in the |g〉 = |6S1/2, F = 4〉 hyperfine
ground state. All optical transitions are part of the D2 line |6S1/2〉 → |6P3/2〉 of wave-
length λ ∼ 852 nm. Levels |g〉, |e〉 = |6P3/2, F

′ = 4〉 and |s〉 = |6S1/2, F = 3〉 involved
in EIT have been highlighted. Light beams on the left (green arrows) are involved in the
MOT preparation: T: Trapping, R: Repumper, OP: Optical pumping (not used in the
experiment of chapter 3), P: Zeeman probe (see 2.3.2). Light beams on the left (same
color code as in figure 2.1) are used to implement EIT. All lasers are provided by external
cavity diode lasers except the signal that comes from a CW Ti:Sapph laser. Signal and
control are locked in phase and frequency at the 133Cs hyperfine splitting. Appart from the
control-signal locking, all lasers are locked on an atomic reference via saturated absorption
spectroscopy. The insert shows the Zeeman sublevel structure of the two ground states
|g〉 and |s〉 and their first order magnetic splitting coefficients µB · gF . The orange arrow
symbolizes the microwave field of variable frequency f used to probe the Zeeman structure
and the magnetic field percieved by the atoms (section 2.3.2).

transition ands the repumper laser (R) is resonant to the |6S1/2, F = 3〉 → |6P3/2, F
′ =

4〉 transition. They are generated by extended cavity diodes lasers that were built by
former PhD student members of the group after an original design by the SYRTE at the
Observatoire de Paris [137]. Commercial versions of these lasers are now available. The
fabrication of the diode lasers that we used is described in details in the PhD dissertations
by Scherman [86] and Giner [125]. They were frequency-locked on atomic lines by saturated
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absorption spectroscopy, yielding a (locked) laser linewidth of 400 kHz [86]. The lasers are
brought to the MOT vacuum chamber by optical fibers. They are timed using single-pass
acousto-optic modulators. The power used in the three trapping beams and in the two
repumping beams is on the order of 3× 25 mW and 2× 2 mW respectively. A pair of coils
close to the anti-Helmholtz configuration generate a magnetic field gradient on the order
of 20 G/cm along their common axis. The shape and position of the resulting MOT (see
the right panel in figure 2.7) can be slightly adjusted by changing the direction of the T
and R beams. It has a typical length L = 2 mm and a diameter on the order of 1 mm.

Since the MOT preparation involves powerful magnetic field gradients and since mag-
netic inhomogeneities are a source of decoherence (see section 2.2.5), the trap is turned off
during the actual experiment so that the atoms are freely falling. The MOT is regenerated
every 15 ms during a 11.5 ms phase in which trapping and repumping beams are on as
well as the magnetic gradient. It is followed by a 3.5 ms phase used for the experiments
in which the magnetic gradient and the T and R beams are progressively turned off. The
timing sequence is shown in figure 2.7. In order to get rid of the magnetic gradient as fast
as possible a custom switching circuit has been specially fabricated by the lab’s electronic
facility [125] 6. Non-magnetic material has been used whenever possible, so as to limit the
influence of eddy currents. In particular, the MOT chamber itself is made out of glass.
Trapping and Repumping beams are also switched off, albeit a little bit later than the
magnetic field. Repumper is switched off last so as to ensure that all atoms are prepared
in level |g〉 as required for EIT. All EIT and memory measurements were performed be-
tween 2 and 3 millisecond after the magnetic field was switched off. This caused us to work
at a lower optical density than what shorter times could permit, but it was a necessary
compromise to ensure that we worked at zero magnetic field.

The optical depth in the signal path d0 has been measured at various times using
a weak probe beam (optical power on the order of a few hundreds of nanowatts so as
to remain well below the saturation intensity) in the same spatial mode as the signal.
The probe beam had the same frequency as the Trapping beam: about 2 × Γ or 10 MHz
below the |6S1/2, F = 4〉 → |6P3/2, F

′ = 5〉 transition. In order to get the value of d0
(at resonance on the signal transition |g〉 = |6S1/2, F = 4〉 → |e〉 = |6P3/2, F

′ = 4〉), the
logarithm of the ratio of the output to input powers is corrected to compensate for the
different transition strengths and for the probe detuning.

d0 =
S44′

S45′

(

1 +
4δ2

Γ2

)

Log

(

I(L)

I(0)

)

(2.22)

where the Sij are the relative transition strength factors between levels |i〉 and |j〉, δ is
the probe detuning and I(0) and I(L) are the probe intensities before and after traversing
the cloud’s length. This gives a typical value d0 ∼ 15 when the memory experiment starts
which decreases with time due to the cloud expanding and falling as displayed in figure
2.7.

Inside this atomic cloud, we use the following 133Cs levels to implement EIT:

|g〉 = |6S1/2, F = 4〉 (ground state)

|s〉 = |6S1/2, F = 3〉 (storage state)

|e〉 = |6P3/2, F
′ = 4〉 (excited state)

(2.23)

6Faster switching circuits have been reported in Gradient Echo Memory experiments [83]
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Figure 2.7: Right: One of the first image of our MOT. Left: Decrease of the
optical depth d0 after the switch-off of the magnetic gradient. The picture on the
right was taken with a standard CCD camera after removing the infrared filter. The three
pairs of trapping beams are clearly visible as well as the atom cloud in the center. (Credits:
Giner [125], Veissier [126]). On the left panel, the blue dots show the measured optical
depth d0 at various times after the switch-off of the magnetic field. The 1 ms-long period
used for EIT and quantum memory experiments is highlighted in green. It results from a
compromise between a good extinction of residual magnetic fields (eddy currents) and a
sufficient OD. The time origin is the instant when we send the command to switch off the
magnetic gradient. The trapping (T) and repumping (R) lasers stay on a little longer to
ensure all atoms are prepared in level |g〉 as shown by the black boxes.

But before moving to EIT and stopped light measurements, let us turn our attention to
the decoherence sources mentionned in section 2.2.5.

2.3.2 Measure and control of decoherence sources

In a cold atom setup such as the one we just described, we need to investigate inhomoge-
neous broadening mechanisms resulting from two origins: magnetic field inhomogeneities
and thermal atomic motion.

2.3.a Magnetic field fluctuations

We have mentionned in 2.2.5 that magnetic inhomogeneities constitute a major source of
decoherence in EIT-based quantum memories. For this reason, the use of magnetic material
has been avoided whenever possible (the MOT is prepared in a vacuum chamber made out
of glass and the stands for the coils are made out of plastic) and the whole experiment is
surrounded by three pairs of coils used to compensate stray magnetic fields.

In order to get the most sensitive measurement, the magnetic field is measured directly
by the observation of the splitting of the magnetic levels of the atoms inside the cloud after
the trapping gradient has been turned off. The magnetic field measurement results from a
two-step process iterated over a given frequency range:

• In a fist step, a microwave pulse of very precise frequency f ∼ 9.2 GHz (near the
hyperfine ground state splitting) is sent on the atoms. It is generated by a high
precision RF generator 7 and shined on the atoms using a linear antenna. It drives a

7SMB100A by Rhode & Schwarz.
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magnetic transition (Rabi oscillation) between levels |F = 4,mF 〉 and |F = 3,m′
F 〉 if

and only if the microwave frequency matches the transition frequency between these
levels.

• In a second step, the optical depth is probed in level |s〉 = |6S1/2, F = 3〉 with a
laser beam resonant with the |6S1/2, F = 3〉 → |6P3/2, F

′ = 2〉 transition (beam “P”
in figure 2.6), giving a measure of how many atoms have been transferred during the
first step.

This process is repeated over mutliple MOT realizations while the microwave frequency f
is scanned. Each time f meets a particular transition frequency, a peak appears in the
probe absorption. A typical spectrum is displayed in figure 2.8.

Magnetic transitions must of course comply with the selection rules imposing that only
transitions with ∆mF = 0 , ±1 are allowed. This leads to a total of 21 possible transitions:
7 π and 14 σ transitions. Out of them, six pairs of σ transitions are degenerate as the
Zeeman splitting constant is equal in magnitude and opposite in sign for manifolds |F = 4〉
and |F = 3〉. This leaves a total of fifteen distinguishable transitions. Consequently,
we obtain spectra exhibiting 15 equally spaced peaks such as shown in figure 2.8. The
distance between the peaks gives the constant part of the magnetic field and the width
of the extremal peaks provides a measure of the field’s inhomogeneity across the atomic
ensemble.

Figure 2.8: Zeeman spectroscopy used to determine the magnetic field. The
vertical axis gives the probe absorption and the horizontal axis is the microwave detuning f .
In this measurement, there was a constant bias field causing a neat separation of the
different peaks. A strong gradient can also be seen as the peaks get larger and larger as
their mF quantum number increases in absolute value (from the middle to the sides). The
Zeeman peaks are colored in red and the nature of the transition (π or σ) is indicated for
each peak. The measured background is shown in blue its mean value in green. Insert:
absorption profile after magnetic field compensation. All peaks are now gathered within
±10 kHz, which corresponds to a total magnetic gradient of about 4 mG across the whole
ensemble. Typical magnetic field fluctuations caused the peaks to move within ±25 kHz.

Without compensation, a typical splitting of about 200 kHz between adjacent peaks is
observed, corresponding to a constant magnetic field of about ∼ 0.6 Gauss resulting from



36 CHAPTER 2. EIT, slow and stopped light for quantum memories

Earth’s field plus some additionnal parasitic sources in the lab. When the compensation
coils are on and their bias current is optimized 8, all the peaks can be brought inside
a ±10 kHz (best case) to ±25 kHz (worst case) wide window, which corresponds to a
maximum magnetic gradient of 4 to 10 milligauss across the whole ensemble. If no other
mechanism entered into the game, we should be able to compensate (linearly varying)
magnetic inhomogeneities well enough to merge all the Zeeman peaks into a single peak
of the same width as the central (mF = 0 → mF = 0) peak which is on the order of one
kilohertz (see figure 2.9). In practice, we typically achieved a ±20 kHz residual spread,
and we observed fluctuations around this value from one run to another. The origin of
these remaining fluctuations remains unclear at the present time and they set the limit
to the precision of the magnetic field cancelling that we can achieve. The insert in figure
2.8 shows a typical Zeeman profile after compensating the magnetic field. From equation
(2.19) we expect a decoherence time of τm ∼ 50 µs.

Even if the previous analysis is enough to measure and reasonably control the magnetic
field inhomogeneities, we should be able to extract more information from the Zeeman
spectroscopy signals. Indeed, via the measurement of the number of transferred atoms
in each peak, one could determine the population in each magnetic sublevel by solving a
linear system as we’ll now explain.

To do so properly, we have take a closer look at how all the various transitions (some
of which happen in the same time) affect the probe absorption. π transitions are easier to
model because they are not degenerate. If the microwave pulse is sent on the atoms over
a time t, the populations P4 and P3 of levels |F = 4,mF 〉 and |F = 3,mF 〉 undergo Rabi
oscillations according to:

P4(t) = P4(t = 0)

(

cos2
(

Ω̃t
)

+

(

δf

Ω̃

)2

sin2
(

Ω̃t
)

)

P3(t) = P4(t = 0)

(

Ω

Ω̃

)2

sin2
(

Ω̃t
)

(2.24)

where Ω̃ =
√

Ω2 + (δf)2/4 and Ω are the off- and on-resonance Rabi frequencies of the
considered transition and δf is the detuning of the microwave frequency to this particular
transition. Ω̃ and Ω depend on the Clebsch-Gordan coefficient of the transition and on the
microwave polarization and power. The absorption of the probe beam is then proportionnal
to P3(t) and to the square of the Clebsch-Gordan coefficient of the specific |F = 3,mF 〉 →
|F ′ = 2,m′

F 〉 probing transitions (taking the probe polarization into account).
From equation (2.24), we see that the combination of microwave pulse power and

duration must be optimized so that all Zeeman transitions give rise to easily understandable
peaks. Figure 2.9 (a) shows the theoretical evolution of a single peak described by P3(t)
as the microwave pulse duration t increases. Zooms on the central peak recorded for
various microsave pulse durations t (2.9 (b) and (c)) show an excellent agreement with
the predicted shape. A good combination of microwave pulse duration and power should
allow for all the peaks to resemble curve (b). In our case, this led to a power of 27 dBc

and a pulse duration t = 500 µs. Changing the orientation of the antenna modifies the
microwave polarization seen by the atomic ensemble and hence modifies the ratio between
the π and σ transitions. It was chosen so that both of them were visible.

8We can control independantly the current in all six coils, so in principle we can compensate both the
constant and the linearly varying parts of the magnetic field.
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Figure 2.9: Zeeman spectroscopy: zoom on a single peak. (a) Theoretical evolution
of a single peak calculated from equation (2.24). Experimental zooms on the central
Zeeman peak for microwave pulse durations t = 400 µs (b) and t = 900 µs (c). The data
(blue) shows an excellent agreement with the model (red). The slight offset of the center
of the curves relative to zero detuning reflects the calibration defect of the microwave
generator.

The populations in each of the mF sublevels with mF = −3 · · ·+3 could be extracted by
computing the area under each π transition peak and normalizing it by both the (square
of the) Clebsch-Gordan coefficient of the corresponding probe (|F = 3〉 → |F ′ = 2〉)
transition and the transfer coefficient extracted from equation (2.24). The populations in
the remaining mF = ±4 sublevels could be extracted from the extremal (non-degenerate)
σ transitions with an analogous normalization.

Unfortunately, the (small) flucutations of the magnetic field over time and the time
it takes to record a full spectrum such as in figure 2.8 make this beautiful analysis break
down. The scanning is so slow (up to half a minute if one wants a good enough resolution)
that the peaks have time enough to move into and out of the resonance condition, so that
it is not possible to extract a quantitative information from the scans. However, it does
give a qualitative indication of the population of the various |mF 〉 sublevels, as well as a
quantitative measurement of the magnetic field which was its primary goal.

As another way to get rid of the decoherence caused by the magnetic inhomogeneities,
we tried to optically pump all atoms to the single mF = 0 sublevel, which is insensitive to
magnetic field.

To this end, an additionnal pair of coils was used to induce a moderate constant bias
magnetic field of about one Gauss, thus defining the quantization axis along the signal
path. A collimated, linearly polarized pump beam (beam “OP” in figure 2.6), resonant
with the |g〉 = |6S1/2, F = 4〉 to |6P3/2, F = 4〉 was sent from the both sides of the
chamber to induce π transitions (it was sent simultaneously from both sides to avoid
pushing the atoms away to one side). The pump was started after the atoms were released
from the trap and before the time at which the memory measurements would take place. A
copropagating and identically polarized repumper beam was mixed with the pump beam
in order to prevent the atoms from escaping into level |s〉. The Clebsch-Gordan coefficient
for the |F = 4,mF = 0〉 to |F ′ = 4,mF = 0〉 transition being zero, all atoms should
accumulate in the “dark” sublevel |mF = 0〉.

The effect of this procedure on the Zeeman spectra was clearly visible as can be seen
on figure 2.10. However, before all atoms could reach the target level, losses started to
dominate and the cloud OD dropped dramatically. We tried variously detuned OP beams,
various OP and R powers and various pumping durations but could not reach a satisfying
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Figure 2.10: Optical pumping trials. Zeeman spectroscopic scan (a) without and (b)
with optical pumping beams. Some of the population has been transferred from adjacent
sublevels to the sublevel |mF = 0〉 (whose peak has risen up), but the overall optical
density is also lower. When either the pumping power or time get higher, the central peak
does not gain any more but the OD continues to decrease. Credits: Veissier [126].

level of atomic transfer to the sublevel mF = 0 while not losing completly the optical
density. Several factors may be responsible for the limited efficiency of our optical pumping
trials. The main ones are the size of the |g〉 = |6S1/2, F = 4〉 manifold (because of which so
many optical pumping cycles are necessary before the atoms are caught in the dark state)
and the high OD of the cloud (because of which the pump beams do not easily access the
center of the cloud unless their power be raised too high which in turn causes heating and
losses) as well as the cloud temperature (see next). For these reasons, and because the
magnetic field was not the main source of decoherence, optical pumping was not used in
the subsequent experiments nor was it used in the qubit storage experiment of chapter 3.

Beyond working to establish a more effective optical pumping, another possibility to
get rid of some of the magnetic field fluctuations would be to sychronize the experiment
on the room power source. This track is being investigated for the nanofiber-based setup
that will be described in chapter 4.

As mentionned in 2.2.5, the remaining magnetic field inhomogeneities measured in our
setup lead to an expected memory time on the order of a few tens of microseconds.

τm ∼ 50 µs (magnetic inhomogeneities)

The other important parameter governing the memory decay time is the temperature
of the atomic ensemble which we will now consider.

2.3.b MOT temperature

The temperature of our cloud was extracted from absorption profile measurements as shown
in figure 2.11 after the magnetic field was cancelled down to less than ∼ ± 5 mG, inducing
an overall inhomogeneous broadening of less than ∼ ±25 kHz in the worst case which is
completely neglegible regarding the natural lineshape Γ.

In the absence of Doppler broadening, the natural linewidth of the D2 line is Γ ∼
5.234 MHz [134]. In the presence of Doppler broadening, the absorption profile is described
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by a Voigt function, which is the convolution of a gaussian function of width given by the
Doppler broadening with a Lorentzian of width Γ.

Figure 2.11: Absorption profile of the signal in the MOT. The red dots are the
actual measurements and the black line is the theoretical Lorentzian shape. For technical
reasons, the atoms were first transferred from |g〉 to |s〉 for this particular measurement,
but this doesn’t affect the linewidth (each atom is expected to absorb only two photons
on average in this transfer process, so the possible induced heating is much smaller than
the temperature scales that are expected). The small but measurable discrepancy between
the ideal and observed linewidths is a signature of the temperature of the cloud. A fitting
of these data to a Voigt profile provided an estimate of T ∼ 0.8 mK. Credits: Giner [125].

We measured a temperature around 0.8 mK. With an angular separation of 1.8± 0.2◦,
this sets a theoretical limit of τm ∼ 15 µs on the memory time (see equation (2.20)). So in
the present state of the setup, the MOT temperature constitutes the main limitation on
the memory time.

τm ∼ 15 µs (thermal dephasing)

After the completion of the work reported in this manuscript, additionnal work was led
by Dr. Valentina Parigi and Dr. Christophe Arnold regarding the cooling of the atomic
cloud. The inclusion of a phase of Sisyphus cooling after the magnetic gradient switch-off
allows to reach lower temperatures and holds much promise regarding the memory time.

After this characterization of the memory medium, we now expose how the signal and
control beams are generated for the EIT and quantum memory experiments.

2.3.3 Signal generation

The signal beam is generated by a continuous wave titanium-sapphire laser operating at
λ = 852.12 nm. It is locked on the atomic transition |g〉 = |6S1/2, F = 4〉 → |e〉 =
|6P3/2, F

′ = 4〉 line via saturated absorption spectroscopy and has a linewidth on the order
of 10 kHz. It is focused inside the MOT to a w0s ∼ 50 µm waist where it overlaps with
the (wider) control beam as depicted in figure 2.12. Signal and control propagate with
a relative angle of α ∼ 1.8± 0.2◦. To achieve this tight angle, the signal is reflected on
the edge of a mirror which has been cut in order to let the control pass without being
diffracted). The control frequency is locked in phase with the signal by mixing parts of
the two beams and measuring their beat note. In the atomic cloud, the beams have linear
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orthogonal polarizations correponding to the simultaneous (and equiprobable) driving of
σ+ and σ− transitions. This polarization configuration allows to form all possible EIT
subsystems within the atomic structure of 133Cs (2.6 and A.3), so that no part of the
signal should find a way to be absorbed without interacting with the control.

In order to probe the functionning of the memory in the quantum regime, we prepare
brief signal pulses with cascaded acousto-optic modulators. The mean photon number in
the pulses is adjusted with neutral density filters. If it is low enough and the pulses are
detected by a photon counting device such as an avalanche photodiode, then the signal
is a good approximation to the Fock state |1〉 after postselection over positive detection
events.

The signal pulses are also modulated in time to have a smooth shape. Sharp edges in
a photon temporal mode broaden its spectrum and increase the risk that it won’t fit into
the EIT window as discussed in section 2.2.1. Ideally, because of time-reversal symmetry,
the best timeshape a photon could have in order to maximize its absorption by a single
quantum emitter would be the exact time-reverse shape of the spontaneously emitted
photons, which would be a rising exponential followed by a sharp falling edge. In practice,
our pulses have a gaussian rising edge followed by a sharp falling one. Their half-maximum
length (duration) is τs ∼ 350 ns.

Since the signal will be detected at the single-photon level with an avalanche photodi-
ode, we need to isolate it from any possible external noise (parasitic light) sources, as we
will now describe.

2.3.4 Filtering the single-photon signal pulses

The separation of the signal from parasitic light sources is a very strong requirement for
single-photon level memory operation. The MOT trapping and repumping lights are off
during the memory measurement and the experimental setup has been enclosed behind a
black curtain. The main parasitic light source is the control beam, which has to overlap
with the signal inside the atomic cloud as shown in figure 2.12.

The typical control power used in the quantum memory experiments was between
10 µW and 20 µW. At λ = 852 nm, this represents some 4.3 to 8.6 × 1013 photons per
second. As a comparison, the intrinsic dark noise of our single-photon detectors (avalanche
photodiodes SPCM-AQR-14-FC by Perkin Elmer) is around 100 Hz. To get a smaller
contribution from the control than from the detector intrinsic noise, an attenuation of the
control by ∼ 120 dB is required.

Theoretically, the angular separation between the signal and control beams should be
more than enough (by far!) to guarantee a sufficient level of filtering. The angle between
the two beams is α ∼ 1.8± 0.2◦ – which is much larger than the sum of the beams
divergences. They overlap at their waists (inside the MOT) where they have respective
radii of ws0 ∼ 50 µm (signal) and wc0 ∼ 200 µm (control). The signal is mode-matched to
and coupled into a singlemode fiber after leaving the vacuum chamber. The fiber is then
directed to a single-photon detector. The total distance between the center of the atomic
cloud and the fiber coupler is on the order of 75 cm.

At a distance d = 25 cm after the cloud center, the beams encounter a lens (f ′ =
250 mm) that recollimates the signal and prepares it for being injected into the fiber. At
this point, the spatial separation between the beams centers is already 7.8± 0.9 mm, while
their radii are respectively 1.35 mm (signal) and 0.4 mm (control). We can get an upper
bound to the control-signal overlap at a distance d from the cloud center by integrating a
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Figure 2.12: Signal and control beam paths. The outline on the left shows the way
the signal and control beams overlap inside the MOT. The angle α between them has been
purposfully exagerated. The pictures on the right show the beams (s: signal, c: control)
(a) 10 cm before the position of the MOT, (b) inside the MOT, and (c) 9 cm after the
MOT.

gaussian function of width equal to the control width on an interval of length equal to the
signal diameter (roughly four times ws(d)). This, in turn, should give an upper bound to
the leakage of the control inside the signal mode. At d = 25 cm, the attenuation is already
∼ 1500± 500 dB. Since this estimation does not take into account the precise shape of
the signal, it is a very conservative bound, and we should expect a significantly higher
attenuation. Nor does it take into account the losses on the various optical elements or
the non-unit efficiency of the single-photon detectors. It is considerably higher than the
required level of filtering. Figure 2.13 shows the theoretical evolution of the signal and
control beam profiles from the center of the MOT to the first lens.

Figure 2.13: Theoretical overlap between the control (blue) and signal (red)
beams. (a) At the cloud center, (b) 10 cm after the cloud center, and (c) 25 cm after
the cloud center (i.e. at the position of the recollimating lens). The overlap of the beams
is maximum in (a). It decreases fast with the propagation distance and is already below
−650 dB at position (b) and −1500 dB at position (c).

In reality, the control leakage proved to be much more important than estimated by
this method, with an overall attenuation of 100 dB. In addition to the angular filtering, we
took advantage of the fact that the signal and control had linear orthogonal polarizations
to further filter the control with a Glan-Taylor prism. Far from gaining 40 dB in control
attenuation as we would expect for well polarized beams, we gained only a factor 10. So, we
attribute the remaining control leakage to unpolarized reflections on the vacuum chamber
surfaces and possibly other optical surfaces. The noise remaining after filtering is reported
in table 2.1.

In conclusion, the noise level in our setup is mainly determined by the leakage of
the control into the signal beam. An overall noise rate on the order of 1 kHz was achieved
essentially through the angular separation of the beams. As we will see in the next chapter,
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Source Rate

APD dark counts ∼ 80 Hz

MOT scattering ∼ 200 Hz

Control leakage ∼ 800 Hz
(at 15 µW)

Table 2.1: Experimentally measured sources noise. The noise is given as the cor-
responding average rate of single-photon detection events on the APD. Each noise source
has been measured independently from the others (except for the APD dark count rate).

this enabled us to characterize the quantumness of our memory when we probed it with
weak coherent pulses containing down to 0.4 photon on average. In the next section, we
will describe the EIT and preliminary quantum memory measurements, and compare them
to the expectations from the last sections. This will open the way to the multimode storage
experiments reported in chapter 3.

2.4 EIT and stopped light measurements

The control beam, which is responsible for EIT, has been introduced in the last two sections
and in figure 2.12. As the result of an experimentally determined compromise between
light slowing and transparency, its power was set to ∼ 15 µW, which corresponds to
a Rabi frequency Ωc ∼ 1.3Γ (given its gaussian TEM00 shape with a waist radius of
w0c = 200 µm).

The control-induced transparency was measured with moderate power (i.e. non single-
photon) signal pulses9. The frequency difference in the locking of the control and signal
was adjusted to maximize transparency, as was the overlap between the beams shown
in figure 2.12. Typical transparency measured in these conditions was ∼ 45% (at zero
signal detuning, i.e. δ = 0). This has to be compared with the absorption the signal
would normally undergo in the absence of the control beam. At 2 ms (after the magnetic
field switch-off), where the memory experiment period starts and where the transparency
measurements were made, the optical depth is d0 ∼ 15, which means the transmission
should be: e−15 ∼ 3 × 10−5 % !

In order to measure the light slowing effect and to confirm the transparency measure-
ments, we went to the single-photon regime with 350 ns short and few-photon signal pulses
such as described in 2.3.3. From equations (2.5) and (2.6), we expect the group velocity
in our atomic ensemble to be:

vg =
c

1 + d0Γc
2LΩ2

c

∼ 3.3× 10−5c (2.25)

This amounts to compressing a pulse of length ls = 90 m in vacuum to no more than
3 mm. However impressive it be, it is still longer than the atom cloud itelf (L ∼ 2 mm),
so we expect that the signal slowing won’t be sufficient to trap all of it inside the memory.
Shorter pulses wouldn’t help however because we would then be limited by the fact that
their sepectrum wouldn’t fit in the EIT window anymore as explained in section 2.2.1.
Only an increase of the optical density d0 could allow to circumvent this issue.

9The signal power was in the nanowatt range (so as to respect the weak signal beam approximation of
section 2.1) and the pulses had a duration of ten to twenty microseconds.
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And indeed, this is what we observe when we switch off and on the control beam
(performing the memory protocol described in 2.2.1). A fraction 8% of the total pulse
energy leaks out of the memory before the control has been fully turned off, a fraction
15± 2% is stored and retrieved at a later time and the rest is lost. The ratio between the
leaking and stopped parts of the signal reflects the ratio between the ensemble length L
and the signal length when compressed by the slow light effect.

Figure 2.14: Typical outcome of a quantum memory experiment. The curves show
the average single-photon count rates versus time. The input pulse (reference) is displayed
in bluish purple. It is recorded when no atoms are present. The signal has a half-gaussian
time shape of FWHM 350 ns. In this experiment, the mean photon number has been set to
0.6 per pulse. The output pulse is displayed in reddish purple. Since the pulse contraction
induced by the group velocity reduction is not enough for the whole pulse to fit inside
the ensemble’s length L, part of it leaks out before the control is turned off. Part of it
(representing a storage efficiency of ∼ 15%) is stored and retrieved when the control beam
is turned back on. The storage time τm can be varied. It is 1 µs in this example. Reference
and outcome photons are detected on an avalanche photodiode (Model SPCM-AQR-14-FC
by Perkin-Elmer) and the experiment is repeated many times (in this case 106 times) in
order to have a good statistics and to reconstruct correctly the temporal profile of the
photons. The background noise is mainly due to the control beam. The ON/OFF state
of the control beam, which governs the memory protocol, is indicated below the time axis.
Its power was 15 µW, corresponding to Ωc ∼ 1.3× Γ.

The remaining losses (since 15% and 8% do not add up to the expected 45% trans-
parency that was measured with longer and stronger signal pulses) are expected to be
caused by some remaining absorption process possibly linked to the presence of absorbing
atoms on the edges of the storage window (atoms that do not see the control well enough
due to spatial misposition or spectral shifting). Although this has been investigated only
after the main results of the next chapter were obtained, we believe that moving from
resonant EIT to off-resonant EIT will contribute to mitigate this issue.

A typical memory experiment is shown in figure 2.14. When performing the few-photon
memory experiments, we also noticed the importance of the temporal shaping of the signal.
If the signal shape is replaced by a square pulse for example, then we see high-frequency
sidebands on the edges of the signal that do not feel the slow light effect and simply leak
out of the memory without being stored.

Least, by varying the time at which the control field si turned back on, we can measure
the memory decay time τm. The measured decay ∼ 15 µW confirms our expectations from



44 CHAPTER 2. EIT, slow and stopped light for quantum memories

the 800 µK temperature measurements of section 2.3.2. More details on the experimental
measure of the efficiency decay time will be given in the next chapter.

2.5 Conclusion

In this chapter, we have described the Electromagnetically Induced Transparancy phe-
nomenon and its application to quantum memories in atomic ensembles. We have taken
care to emphasize the elements underlying the quality of an EIT-based quantum mem-
ory, and we have discussed the limiting mechanisms that are relevant for our experimental
implementation.

We have then described how we realized the EIT conditions in the lab with a cold
ensemble of magneto-optically trapped 133Cs atoms. Coherently with the previously dis-
cussed model, we have characterized the parameters responsible for the performance of the
quantum memory.

MOT experimental parameters:

• MOT repetition rate: 15 ms
MOT buildup time: 11.5 ms
MOT free expansion time: 3.5 ms
Usefull time slot for EIT quantum memory: from 2 ms to 3 ms after
magnetic field switch-off

• MOT physical and optical properties:
Length: L ∼ 2 mm
Optical depth (|F = 4〉 → |F ′ = 4〉): d0 = 15 (at 2 ms after magnetic field
switch-off)
Temperature: T ∼ 800 µK
Magnetic field spread: ∆B ∼ ±5 mG

• 133Cs levels used for EIT:

|g〉 = |6S1/2, F = 4〉 (ground state)

|s〉 = |6S1/2, F = 3〉 (storage state)

|e〉 = |6P3/2, F
′ = 4〉 (excited state)
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Quantum memory characteristics:

• The memory time is currently limited by the atomic temperature and the
angle between the signal and control beams to a value τm ∼ 15 µs .

• Current limitation on the memory efficiency η ∼ 15 ± 2% is the result
of the compromise governing the control power. The Rabi frequency Ωc ∼
1.3 Γ was chosen to ensure a good enough transparency (45% at resonance)
and an (almost) sufficient group velocity reduction (by a factor over 105).
Residual absorption during the re-emission of the signal is also strongly
suspected to play negatively against η.

Perspectives:

• The lowering of the cloud’s temperature with the goal of extending the
memory time is currently under development in the group.

• The improvement of the memory efficiency by adopting a slightly off-
resonance (Raman) EIT configuration is also being explored and has given
promising preliminary results: with a signal detuning on the order of
δ ∼ 2 × Γ ∼ 2π × 10 MHz, the memory’s efficiency has been reliably in-
creased to η ∼ 25 ± 2%. The reason for the improvement is that the
off-resonant signal suffers less from residual absorption during re-emission.
These two last upgrades are being endeavored thanks to the work of Dr.
Valentina Parigi and Dr. Christophe Arnold.

• In addition, the realization of a higher OD atomic cloud using an elongated
“dark and compressed” MOT is under investigation in the course of the
PhD work by Pierre Vernaz-Gris within a partnership with the Autralian
National University.

• The next chapter will be devoted to the question of the memory multimode
capacity, through the demonstration of the storage of multiple transverse
modes in the quantum regime and the storage of a qubit encoded in the
Orbital Angular Momentum (OAM) state of the signal.
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Introduction

In the previous chapter, we have described EIT-based slow light media and given a descrip-
tion of our cold-atom implementation of such a system. We have given its main properties
and detailed how it can be used to implement a quantum memory. We have seen that,
being an ensemble-based quantum memory medium, it is subject to specific inhomogeneous
broadening mechanisms (magnetic field fluctuations and thermal Doppler broadening) lead-
ing to decoherence effects that have to be mitigated. However, this ensemble-based ap-
proach also provides our quantum memory system with an advantageous property, namely
a genuine multimode capability. This has to be contrasted to quantum memories based on
single quantum emitters that are intrinsically singlemode.

In this chapter, we focus on this multimode nature by showing that our memory can
reliably store quantum states of light in different spatial modes. Prior to our study, image
storage using EIT in atomic gases had already been demonstrated in the classical regime
[138, 139]. Delayed heralded single-photon emission had also been shown to exhibit spatial
mode entanglement in DLCZ-like experiments [113, 114].

For our study, we chose to work with so-called Laguerre-Gaussian beams, also known
as twisted beams, whose main feature is to exhibit a quantized orbital angular momentum.
Over the past ten years, the orbital angular momentum of light has known a growing
interest in the scientific community. It is in particular considered an attractive degree of
freedom for quantum information encoding due to its unbounded Hilbert space structure
[140, 141].

In our work, we extended the spatial mode storage to the quantum regime by storing
pulses at the single-photon level in different Laguerre-Gaussian modes [5]. Then, we worked
on the quantum storage of Laguerre-Gaussian modes superpositions, i.e. orbital angular
momentum encoded Qubits. The fidelity of the storage is high enough to establish the
quantum nature of the process, as reported in [6].

It is noteworthy that the subject of the quantum storage of light’s spatial modes has
attracted interest in different teams at the very same time. Work on Laguerre-Gaussian
modes storage have been reported simultaneously by a group in Hefei [142].

The first section introduces Laguerre-Gaussian beams and the orbital angular momen-
tum of light. The second and third sections describe respectively our experimental genera-
tion and the measurement of orbital-angular-momentum-carrying light beams. The fourth
section integrates these experimental capabilities with the quantum memory of chapter 2.

3.1 Transverse Modes

In this first section, we introduce the transverse modes of a light beam with a focus on light
orbital angular momentum which we’ll use afterwards for quantum information encoding.

3.1.1 Laguerre-Gaussian modes and light orbital angular momentum

3.1.a Laguerre-Gaussian modes

Our study was focused on a set of modes known as Laguerre-Gaussian modes (LG). They
appear as a complete orthonormal set of solutions to the paraxial wave propagation equa-
tion:
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2ik
∂

∂z
+

∂2

∂x2
+

∂2

∂y2
= 0 (3.1)

Solving this equation yields a family of functions that give the envelope of the electric field
of a light beam propagating with a mean wave-vector ~k along coordinate z. Assuming a
polar symmetry in the transverse (x,y) or (r,θ) plane, we obtain:
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where E0 is the electric field amplitude, Klp =
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(l+p)! is a normalization constant, and
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, and ζ(z) = arctg(z/zR) are respectively the radius,
Rayleigh length, radius of curvature and Gouy phase for a beam of waist w0 and wavelength
λ = 2π/k. The electric field itself is obtained by multiplying LGl

p(r, θ, z) by the plane-wave
component ei(ωt−kz).

In contrast to the standard TEM00 = LGl=0
p=0 mode, the higher-order Laguerre-Gaussian

modes exhibit some specific features. They have a rotating phase profile eilθ with a singular-
ity at the origin. Due to this rotating phase, the local Poynting vector has a non-vanishing
component along the orthoradial direction and the beam thus possesses an orbital angular
momentum (OAM) around its propagation axis. The orbital angular momentum carried
by each photon in such a mode is equal to the index l ∈ Z (in ~ units) which is also equal to
the circulation of the phase around the axis divided by 2π 1. As the LG modes are eigen-
functions of the propagation equation (3.1), their transverse shape, and hence the OAM
of the photons is preserved. This makes the OAM number l a relevant quantum number
for information encoding. As required for the smoothness of the electric field amplitude,
the phase singularity is associated with an intensity nulling in r = 0 as the 2|l|-th power
of the radial coordinate ( r

√
2

w(z))
2|l|. This feature gives the LG modes their characteristic

doughnut-shaped intensity profiles.

Figure 3.1: Intensity and phase profiles of the first modes of the Laguerre-
Gaussian family. Azimuthal index l increases from left to right and radial index p
increases from top to bottom. The phase is displayed in hue colors as shown on the right.
The l = 0, p = 0 mode corresponds to the fundamental TEM00 mode.

1This was first realized by Allen et al. [143] when they computed the total OAM carried by a LG beam
of given intensity and divided this value by the photon flux in such a beam.
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The other index, p ∈ N, describes the radial shape of the beam. With each additional
p unit, the amplitude has an additional sign change along the radius and the intensity
an additional zero-value ring. This number has a less straightforward interpretation than
the orbital index l and has therefore been subject to less scientific investigation hitherto
[144, 145]. It appears only as the index of the generalized Laguerre polynomial, which is
of degree p. In the rest of this work, we consider only p = 0 modes for which:

L
|l|
p=0 = constant ∀l ∈ N (3.3)

and which have (at most) one single bright ring. Figure 3.1 shows the intensity and phase
profiles of the first LG beams.

3.1.b Interference with a gaussian beam

A straightforward and widely used method to measure a beam phase pattern is to look at
its interference with a plane wave (or a gaussian TEM00 beam). Depending on the details
of the beams (curvature and propagation direction), the interference of a LG beam with a
TEM00 beam gives rise to two characteristic patterns: the spirale and the fork. We will use
this method to check the phase patterns of our experimentally generated beams in section
3.2.2.

The spirale results from the interference of a plane wave with a rotating-phase wave of
different curvature radius R. Taking only the relevant factors into account, the intensity
in the (r,θ) plane is given by:
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(3.4)

The fork results from the interference of a plane wave with a rotating-phase wave of same
curvature radius but with a different transverse mean momentum kx. Mixing polar (r,θ)
and cartesian (x,y) coordinates for simplicity and taking only the relevant factors into
account, the intensity in the transverse plane is given by:

I(x, y) ∝ |1 + ei(kxx+lθ) |2 = |1 + cos (kxx+ lθ) + i sin (kxx+ lθ) |2

= (1 + cos (kxx+ lθ))2 + sin2 (kxx+ lθ)

= 2 [1 + cos (kxx+ lθ)]

(3.5)

The resulting interference patterns are shown in figure 3.2.

3.1.c Hermite-Gaussian modes

Solving the paraxial equation assuming cartesian symmetry yields another well-known
familiy of light beams: the Hermite-Gaussian (HG) modes, defined by the following am-
plitude profile:
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Figure 3.2: Theoretical spirale (top line) and fork (bottom line) interference
patterns. The interferences are computed for various values of the OAM quantum number
l and with a gaussian envelope, which was not explicitly written in equations (3.4) and
(3.5). The winding direction of the spirale indicates the sign of l and the number of bright
fringes gives the value of |l|. The upwards or downwards pointing of the fork gives the sign
of l and the number of branches in the fork gives the value of |l|.

where K ′
nm = 1√

2n+m+1πn!m!
is a normalization constant and Hn is the Hermite polynomial

of order n. The indices n,m ∈ N give the number of phase flips along the x and y
directions. In the following, we will use only the first order modes with indiced n,m =
0 or 1, corresponding to:

H0(x) = 1

H1(x) = x
(3.7)

Each phase flip is also associated with a zero of the intensity to ensure the smoothness
of the electric field. The intensity patterns of the first HG modes are displayed in figure
3.3. HG and LG modes can be turned into one another by linear combination. Such LG
mode superpositions will be required in the next sections in order to describe some possible
states of an OAM-encoded quantum bit.

In the next section, we will show how we use the l number as a degree of freedom to
implement a qubit.

3.1.2 Quantum information using OAM

The orbital angular momentum of light is considered an attractive degree of freedom for
quantum information encoding because it evolves in a discrete infinite-dimensional Hilbert
space [146]. Using high-dimensional encoding has been shown to increase the security of
quantum cryptography protocols [147], while also increasing the information transmission
rate. This prospect has boosted the interest in OAM quantum information encoding. In
this section, we describe how to implement a qubit using the OAM degree of freedom.

For a proof-of-principle that the quantum memory described in section 2.3 can store
multiple spatial modes in parallel, we considered a two-dimensional subspace of all possible
transverse modes spanned by the two modes LGl=±1

p=0 . A single photon in this subspace
with a given polarization and temporal shape defines a qubit. The logical basis states are
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Figure 3.3: Theoretical intensity profiles of the first modes of the Hermite-
Gaussian family. The phase is piecewise constant with a π jump at every dark line.
The indicex n (resp. m) give the number of bright spots (or lines of bright spots) in the
horizontal (resp. vertical) direction.

defined as:
|0〉 = |l = +1〉 = |R〉
|1〉 = |l = −1〉 = |L〉

(3.8)

where the letters R and L refer to the right or left helicity of the photon wavefront. In
addition to the logical basis states, it will be useful to define four additionnal states as
equal-weight superpositions of |R〉 and |L〉:

|H〉 = (|R〉+ |L〉)/
√
2

|D〉 = (|R〉+ i|L〉)/
√
2

|V〉 = (|R〉 − |L〉)/
√
2

|A〉 = (|R〉 − i|L〉)/
√
2

(3.9)

Their corresponding spatial modes are Hermite-Gaussian modes. Indeed, it can be checked
that the superposition of two first order (l = ±1) LG modes with a relative phase φ gives
a two-lobed HG mode, the orientation of which is given by φ/2. Dropping all irrelevant
factors from equation (3.2), we have:
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(3.10)

The last line shows that the amplitude of such a superposition varies linearly with a spatial
cartesian coordinate rotated by φ/2 with respect to the x axis as illustrated in figure 3.4.
The letters H, D, V and A used to label these states refer to the (horizontal, diagonal,
vertical or anti-diagonal) orientation of the two bright lobes of the corresponding HG
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mode. If one denotes αd the angle made by the dark line with the horizontal axis in such
a superposition (as will be done later in this chapter), then from equation (3.10), we have:

αd = (φ− π)/2 (3.11)

Let us note that from equation (3.2), the modes supporting the logical basis states of
the qubit |R〉 and |L〉 evolve with the same Gouy phase factor e2iζ(z), which is twice the
Gouy phase of a TEM00 beam. Therefore, the |R〉 and |L〉 components in a superposition
state will not dephase as a result of the propagation. In particular, the |H〉, |D〉, |V〉
and |A〉 states propagate without deformation, which is also a consequence of them being
eigenmodes of the paraxial equation (3.1). If one wishes to use a larger fraction of the
OAM Hilbert space and keep this enjoyable property, one needs to include p 6= 0 modes as
well in order to keep 2p+ |l| constant. Otherwise, superposition modes will be affected by
the propagation. One can of course get rid of this issue if one looks at the beams only at
mutually conjugated positions.

Figure 3.4: Intensity profile of the superposition of two LG modes. As explained
in equation (3.10), the superposition LGl=+1

p=0 + eiφLGl=−1
p=0 results in a HG mode rotated

by φ/2 in the transverse plane. The image has been drawn for φ = 2π/3 so the axis of
the HG mode makes a π/3 angle with the horizontal axis x. The dark line in the middle
(across which the phase jumps from 0 to π) is characterized by the angle αd = (φ− π)/2 as
given by equation (3.11).

A quantum bit can be efficiently represented using the so-called Bloch sphere [12]. The
most general expression of a quantum bit in a pure state can be written as:

|Ψ〉 = α|0〉+ β|1〉
= a|0〉+ beiφ|1〉
= cos(ϑ/2)|0〉+ sin(ϑ/2)eiφ|1〉

(3.12)

with |α|2 + |β|2 = 1, or a, b ∈ R and φ ∈ [0, 2π[, or tg(ϑ/2) = b/a ⇒ ϑ ∈ [0, π[. The angles
ϑ and φ completely characterize |Ψ〉, and they also correspond to the position of a point
on the unit sphere expressed in spherical coordinates. So a state |Ψ〉 can be represented
as a point on the surface of the unit sphere as shown in figure 3.5. The poles of the sphere
correspond to the logical basis states |0〉 = |R〉 and |1〉 = |L〉, which are the LG modes
in our implementation. The equatorial plane of the Bloch sphere is spanned by the HG
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Figure 3.5: Bloch sphere for the qubit basis {|0〉, |1〉} = {|R〉, |L〉}, and representation
of the phase and amplitude profiles of relevant basis modes. Using the notations of equation
3.12: |Ψ〉 = a|R〉+ beiφ|L〉, the azimuthal angle φ inside the equatorial plane is the relative
phase between the |R〉 and |L〉 components, and the polar angle is equal to ϑ = 2arctg(b/a).

modes of equation (3.9) and the angle φ in the sphere is precisely the angle φ between the
two components |0〉 and |1〉 of the qubit.

Now that we have theoretically presented the LG modes and how to use them to
implement an OAM qubit, we turn to their experimental generation and manipulation in
the lab.

3.2 Experimental generation of an OAM Qubit

Our OAM qubit is defined as a linearly polarized signal pulse at the single-photon level
in which the information is encoded through the value of the orbital angular momentum
quantum number l. This section describes how we produced such a qubit.

3.2.1 Generating transverse modes with a spatial light modulator

The standard light ressource in any optics lab being a gaussian TEM00 beam, higher order
LG (or HG) beams have to be produced out of it. Many techniques have been developed
over the years to achieve such a goal. A review of these techniques can be found for
example in [140]. We decided to work with a spatial light modulator (SLM) because it
offers a maximal versatility and ease-of-use, in that it allows to switch straightforwardly
from one mode to another one.

A spatial light modulator is a liquid-crystal screen with voltage-adressed pixels. The
one we used had a 792×600 resolution with 20× 20 µm2 wide pixels for a useful surface of
1.2× 1.6 cm 2. Liquid crystals (LC) being birefringent, a (linearly) polarized light beam
passing through LC will be phase-shifted by a quantity depending on the angle between its
polarization and the LC orientation. The voltage applied to a pixel governs the orientation
of the LC and thus the dephasing imposed to the beam at this position. The light is
reflected on a mirror behind the liquid crystals so it passes twice through them. This
process is shown schematically in figure 3.6. A picture of the SLM is shown in figure 3.7.

2Model LCOS-SLM X10468 by Hamamatsu.
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The SLM is controlled by a computer with which it is interfaced as an additionnal screen.
The desired phase patterns are coded and sent to the SLM as grayscale pictures. Example
of such phase pictures (or holograms) are shown in figures 3.9 and 3.10.

Since the back mirror of the SLM is not perfectly flat, it induces aberrations that must
be corrected. To this end, a calibration phase pattern is provided by the manufacturer. This
phase pattern is added to the desired one before it is sent to the device. The importance
of this calibration is illustrated in figure 3.8.

The amount of phase modulation obtained for a given voltage depends on the wave-
length of the incident light. By using all the allowed dynamic range of the device, we had
a phase modulation amplitude above 2π at our wavelength of λ = 852 nm. The device is
thus factory calibrated (as a function of the wavelength) in such a way that it interprets
0 to 255 grayscale levels as a 0 to 2π phase shift. Phase modulation by more than 2π
can be reached by taking the modulo of the phase by 2π in a process that ressembles the
construction of a Fresnel lens.

In order to explore the possibilities of the SLM and to show its good functionning, we
generated arbitrary intensity patterns in the far field of the SLM (observed at the focal
plane of a lens). The SLM allows to control the phase of a beam in a given plane, but the
intensity distribution there is given by the beam illuminating it. In such conditions, it is
not possible to obtain an arbitrary distribution of both amplitude and phase at the output
[148]. However, if we leave aside the phase in the output plane, for any intensity pattern
in the output plane, it is possible to find a phase distribution in the plane of the SLM
which will produce this intensity distribution. An iterative algorithm [149] allows to find
the corresponding phase pattern. Its principle is illustrated in figure 3.9 together with an
example of generated phase pattern (or hologram) and the image obtained experimentally
when this phase pattern is fed to the SLM.

Even if this procedure allows to obtain an arbitrary intensity distribution in the far-
field, it is not very useful for our needs, since we are deeply concerned with the production
of specific phase patterns.

To produce LG and HG beams, we simply impose the phase that these beams should
have. The corresponding holograms are shown in figure 3.10. For a LG beam, we impose
the rotating phase pattern: e±iφ, and for a HG beam, we use a phase-flip pattern. In the
next section, we will discuss the quality (i.e. mode purity) of the beams generated by this
method.

3.2.2 Quality of the experimentally generated modes

The mode production by phase-only modulation cannot perform a 100 % efficient mode
conversion as the intensity pattern in the SLM plane is still that of a TEM00 mode. Since
we illuminate the SLM with a collimated beam (of radius w0), the electric field amplitude
in the plane of the SLM has the following envelope:

eiφe−r2/w2
0 for a LGl=+1

sgn(x)e
−x2+y2

w2
0 for a HGH

(3.13)

where sgn(x) = x/|x| designates the sign function. These expressions can be expanded
onto the LG or HG bases. The (square of the) coefficients of the various modes in these
decompositions give their proportions inside the SLM output defined by equation (3.13).
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Figure 3.6: Principle of a liquid crystal SLM. Credits: Hamamatsu.

Figure 3.7: The SLM on the optical table. (a) Picture of the SLM. (b) Diagram of
the setup. The light beam is brought to the SLM via a single-mode optical fiber to ensure
a good mode quality. It is expanded to a 1/e2 diameter of 7.8 mm with a commercial
beam expander (Thorlabs F810APC-842) so that it illuminates a large enough area on the
SLM without being cut by the edges of the SLM screen. A non-polarizing beam splitter
(NPBS) separates the beam into two paths, one directed towards the SLM and one directed
towards an optional mirror. It enables to check the phase pattern of the modulated beams
by means of interference as explained in section 3.1.b.

Figure 3.8: The importance of correcting for the planeity defects of the SLM
back mirror. Theoretical and experimentally achieved beam shapes for two different
target beams. Top line: TEM00 beam, bottom line: LGl=1

p=0. We are closer to the ideal
mode shapes when using the SLM calibration phase pattern (right colunm) than with the
uncalibrated SLM (middle column).
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Figure 3.9: Example of the implementation of the Gerchberg-Saxton algorithm.
(a) Principle of the algorithm. The amplitude pattern is propagated forward and back-
ward between the SLM and output planes. At each position, the simulated phase pattern
provides the phase assumption for the next step, while the intensity assumption is given
by the SLM illumination pattern in the SLM plane and by the target intensity pattern
in the output plane. By successive iterations, the simulated phase pattern in the plane
of the SLM converges towards one that will produce the target intensity in the output
plane. (b) Example of a hologram generated after 50 iterations (left). The phase is coded
in grayscale, black meaning 0 and white meaning 2π. Intensity pattern recorded with a
CCD camera in the focal plane of a lens when the SLM is fed with this hologram (right).

Figure 3.10: Holograms used to generate LG and HG beams. The phase is encoded
in grayscale as indicated on the right.

For the LG beam generation, the coefficients are given by:

Cl,p =

∫ ∫

LGl
p(r, θ, z = 0) e−r2/w2

0 eiφ rdrdθ (3.14)

Of course, the rotating phase pattern in the output beam is the correct one, as it is imposed
by the SLM. Consequently, only l = +1 modes will be populated, which is also visible in
equation (3.14) as the vanishing of the integral over θ for any value of l 6= 1. This can
be interpreted physically as the fact that the OAM state is well defined – which is what
matters for our OAM information encoding. However, different p modes are produced –
in fact infinitely many. Numerically computing the integrals in equation (3.14) gives the
proportions of the various p modes. We find (see table 3.1) that about 78% of the energy
is contained in the p = 0 mode.

Since modes with a different p index acquire different Gouy phases as a result of their
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propagation, their superposition (defined by equation (3.13)) is not propagation invariant.
Close to the SLM, the intensity pattern is dominated by the TEM00 envelope of the illu-
minating beam. As the distance increases, a hole appears in the center as a consequence
of the phase singularity eiφ: the beam acquires a doughnut-like shape that is characteristic
of LG modes. Additional intensity rings surround the central bright ring. These are the
consequence of the presence of higher-order p modes. When the focus is approached, they
become less and less visible because they have a stronger diffraction than the LGl=+1

p=0 mode.
Figure 3.11 shows the observed evolution of the beam as it moves further and further away
from the plane of the SLM.

p 0 1 2 3 4 5 6 7 8 9
Cl=1,p 78.5% 9.8% 3.7% 1.9% 1.2% 0.8% 0.6% 0.4% 0.3% 0.2%

Table 3.1: Theoretical overlap of the SLM output with the first LG modes
computed from equation (3.14) when using a rotating phase hologram such as in the top
line of equation (3.13) or shown in figure 3.10. The coefficient of the target LGl=+1 mode
is written in bold font.

Figure 3.11: Evolution of the beam after being reflected on the SLM. The rotating
phase hologram eiφ is displayed on the leftmost part of the figure. Starting from a gaussian
illumination beam, about 78% of the energy is transfered to a LGl=+1

p=0 mode. The remaining
energy populates the various LGl=+1

p>0 modes according to the distribution given in table
3.1. As it propagates away from the SLM the beam shape changes from a TEM00 envelope
(a horizontal dark line is visible: it is a consequence of the imperfections in the phase
jump from 0 to 2π when the hologram is displayed on the SLM) to a doughnut shaped
mode surrounded by dim additionnal rings. When we near the focus (rightmost image),
the additional rings originating from the higher order p modes are no more visible. A very
little astigmatism is responsible for the mode being slightly deformed at the focus [150].
Pictures are taken at different scales.

The same modal decomposition goes for HG modes. The “flipped mode” defined by the
bottom line in equation (3.13) is not a pure HG mode but it can be decomposed on the
HG basis. Taking the example of the HGH mode, the coefficients in this decomposition
are given by:

Cn,m =

∫ ∫

HGn,m(x, y) sgn(x) e−(x2 + y2)/w2

0dxdy (3.15)

Once again, the phase structure is imposed by the SLM and it cannot deviate from it. For
HG modes, this translates into the fact that the produced mode has the correct symmetry:
in the case of a horizontal HG, only (horizontal) HGn∈2N+1,m=0 modes will be populated.
In terms of LG mode basis, this means that the produced beam can be written as a
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superposition of a l = +1 component and a l = −1 component with a relative phase factor
equal to the desired phase φ (φ being 0 in the case of a horizontal HG beam). The two
“pure-l” components however each contain multiple p modes. A difference between the HG
and the LG case is that the overlap of the flipped mode with the target HGH computed by
evaluating the integral in equation (3.15) is only 64%. The first (squared) Cn,m coefficients
are given in table 3.2. This smaller overlap also translates in the apparition of more

n 0 1 2 3 4 5 6 7 8 9
Cn,m=0 0% 63.7% 0% 10.6% 0% 4.8% 0% 2.8% 0% 1.9%

Table 3.2: Theoretical overlap of the SLM output with the first HG modes
computed from equation (3.15) when using a phase-flip hologram such as in the bottom line
of equation (3.13) or shown in figure 3.10. The coefficient of the target HGH = HGn=1,m=0

mode is written in bold font. The HG0,0 mode is equal to the TEM00 mode. All modes with
the wrong parity are absent from the decomposition. The convergence of the coefficients
towards zero is slower than in the LG case (table 3.1).

pronounced “higher-order wings” in the exprimentally generated HG beams.
In order to produce better quality HG (and possibly LG) modes, we tried to perform

a pseudo-amplitude modulation with the SLM [151]. The principle is to add to the phase
hologram a blazed diffraction grating, i.e. a saw-tooth phase profile. If the depth of the
saw-tooth grating is 2π, then (ideally) all the incoming light is diffracted in the first order.
This is indeed equivalent to adding a linear phase to the beam, which just changes its
transverse momentum (or propagation direction). If the depth of the grating is smaller
than 2π, then part of the light will be diffracted in the first order and part will be reflected
back in the zero-th order. This process is illustrated in figure 3.12. Changing locally the
phase depth of the grating thus allows in principle to modulate the intensity pattern inside
the first diffraction order. Adding a custom phase profile to the grating allows in principle
to generate an arbitrary phase and intensity pattern in the first order [151]. However, this
is also a lossy process because a single phase-modulation step cannot perform a unitary
manipulation of transverse modes [148].

In the end, however, the pseudo-modulation technique was much more lossy than the
“brute force” (phase-flip) method and the required level of control over the shape of the
mode made it difficult to combine this mode generation method with our detection setup
(see next section). So we used the straightforward phase-only modulated holograms of
figure 3.10.

Figure 3.12: Principle of amplitude pseudo-modulation with a SLM and a saw-
tooth phase grating. Left: a blazed diffraction grating with a depth of 2π diffracts all
the light into the first order. Right: by modulating the depth of the grating, a customizable
percentage of the light can be sent to the first diffraction order or left in the zero-th order.
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We verified the phase pattern of all the beams by interfering them with a reference wave
using the optional mirror shown in figure 3.7. For LG modes, we observed both the fork
and the spirale shapes. For HG modes, we observed straight interference fringes that are
shifted by half an interfringe across the phase-flip line. These observations confirmed that
the phase patterns of the SLM output is correctly defined by the holograms shown in figure
3.10. Since we only encode information in the OAM l quantum number and leave aside
the p degree of freedom, we were not sensitive to the limited mode conversion efficiency.

Figure 3.13: Interferometric observation of the phase of the beams. Top line: LG
modes, bottom line: HG modes.
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Summary: LG modes and OAM qubit

• In the two previous sections, we have introduced the LG and HG families of
spatial transverse modes, we have detailed how to generate these beams
experimentally with a spatial light modulator. We have described how
the OAM state of a single-photon can encode a qubit.

• Since our goal is to interface these OAM qubits with our quantum memory
(chapter 2), we prepared weak coherent signal pulses and spatially shaped
them to one of the six modes |R〉, |L〉, |V〉, |D〉, |H〉, |A〉 using the SLM as
described in 3.2. The pulses were additionaly time shaped to a half-gaussian
profile of FWHM 350 ns as described in section 2.3.3. Their average photon
number can be customized by neutral density filters. It is typically lower
than one photon per pulse.

• The efficiency of the mode generation with the SLM is limited to 78% for
LG modes and 64% for HG modes. However, this will not prove detrimental
in the quantum memory experiment because:

◦ the OAM structure of the beams – which carries the information in
our encoding – is correct,

◦ we use a projective detection setup as will be described in the next
section, so we simply do not detect the higher-order modes.

The non-perfect efficiency of the beam generation thus merely causes a lower
count rate as will be explained at the end of section 3.3.c.

The next section will present in details the setup we developed in order to measure
the state of the qubit by projecting it onto any of the states |R〉, |L〉, |H〉, |D〉,
|V〉 and |A〉, as required for quantum state tomography.

3.3 Quantum state tomography of OAM qubits

This section exposes the setup we developed to perform the quantum state tomography of
the OAM-encoded qubits. A certain amount of work was dedicated to the measurement
of the relative phase between different pure-OAM components.

3.3.1 Qubit tomography

In this section, we introduce the tools necessary to understand the characterization of a
qubit, i.e. a two-dimensional quantum system evolving in a Hilbert space spanned by the
two basis vectors denoted |0〉 and |1〉. For a pure state, the qubit can be written as in
equation 3.12: |Ψ〉 = α|0〉+ β|1〉.

The tomography of such superposition states require measurements performed in a
complete set of mutually unbiased bases, i.e. three linearly independent ones [152]. In
addition to the logical basis {|0〉,|1〉}, two additional mutually unbiased bases can be
defined as the superpositions: {|±〉 = |0〉 ± |1〉} and {| ± i〉 = |0〉 ± i|1〉} 3. Measuring the

3The correspondance with the notations of equation (3.9) is |+〉 = |H〉, |−〉 = |V〉, | + i〉 = |D〉 and
| − i〉 = |A〉.
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qubit in the logical basis will yield the values of |α|2 and |β|2 and measurements in the
two superposition bases will provide the relative phase between the coefficients α and β.
This sequence of measurement actually allows to perform the reconstruction of the density
matrix of any mixed state, which in the general case can be expressed as :

ρ̂ =
1

2

(

Î+
3
∑

i=1

Siσ̂i

)

=
1

2

(

1 + S1 S2 − i S3
S2 + i S3 1− S1

)

(3.16)

where the σ̂i are the Pauli matrices and the coefficients Si = Tr(ρ̂σ̂i) are usually called
Stokes parameters in analogy with the polarization states terminology. The Si coefficients
indicate the relative weights of either state in the each basis. Indeed, they can written as
S1 = p|0〉 − p|1〉, S2 = p|+〉 − p|−〉 and S3 = p|+i〉 − p|−i〉, where p|Ψ〉 is the probability to
measure the qubit in the state |Ψ〉.

If the qubit is in a pure state as in equation 3.12, then

ρ̂ = |Ψ〉〈Ψ| = α2|0〉〈0|+ β2|1〉〈1|+ αβ∗|0〉〈1|+ βα∗|1〉〈0| ,

and the Stokes parameters can be easily related to the α and β coefficients:

S1 = |α|2 − |β|2 S2 = 2Re(αβ∗) S3 = −2Im(αβ∗).

The quantum state tomography of a qubit requires to measure the various prob-
abilities pi, i.e. to project the qubit over different (mutually unbiased) bases. In
the case of the OAM-encoding presented in section 3.1.2, this means projecting
the qubit over the Laguerre-Gaussian modes LGl=+1 and LGl=−1 and over the
Hermite-Gaussian modes HGH, HGD, HGV and HGA. How these projections are
realized experimentally is the subject of the next sections.

3.3.2 How to detect the OAM state of a single-photon ?

The determination of the OAM state of a bright beam of light can be done by standard
imaging and wavefront measurements (either using interferometry or a microlens array, or
any equivalent commercially available technique). These techniques intrinsically require
many photons. Measuring the OAM state at the single-photon level asks thus for other
methods. The different techniques developed so far can be classified into two categories:

• Projective-based techniques. In these methods, the photons are projected onto
an OAM eigenstate before being detected. The mode projectors are typically made
of a hologram that converts an input mode with non-zero l value into a TEM00 mode
followed by a spatial filter (pinhole or single-mode fiber). The holograms can be
either fixed [153] or dynamically programmed with a spatial light modulator [154],
they can be either intensity [155] or phase holograms [153], they can diffract the
light to all directions or be optimized for a single output direction. In any case, the
projector only selects one mode and photons in other modes are lost.

• Mode-sorting techniques. Here, the propagation direction of the photons is
changed depending on their OAM value. This feature overcomes the problem of
losses inherent to mode projection. However, these methods are often more challeng-
ing than the previous ones. Among them, one can cite a Mach-Zehnder interferometer
in the arms of which Dove prisms have been inserted [156]. Another method that has
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seen significant developments in the few past years relies on a log-polar coordinate
interpolation realized with two phase-modulating elements. The radial and polar
coordinates r, θ in one plane are mapped one by one onto the cartesian x and y
coordinates in a subsequent plane. This approach was first implemented with two
spatial light modulators [157] then with fixed refractive optics [158–160]. It is also
possible to take benefit from the fact that any unitary manipulation of transverse
modes (and hence mode sorting) can be achieved by multiple phase modulation steps
separated by optical Fourier transforms [161].

In our work, we employed a projective-based method using fixed holograms as in [153]
to discriminate between LG modes because of the high distinction ratio and the great
simplicity of this method. To discriminate between HG modes (or equivalently to mea-
sure the phase φ between the |R〉 and |L〉 components in a superposition state), we first
thought of combining this mode-projection technique with the projective slit-wheel method
introduced in [162]. It consists in sending the beam through a cache with multiple aper-
tures corresponding to the number of expected bright spots in the HG mode (in our case:
two diametrally opposed slits for two bright spots). By rotating the cache, one should
in principle be able to record a sinusoidal intensity modulation behind the cache if the
input mode is a coherent superposition of LGl=+1 and LGl=−1, and a constant intensity
in the case of an incoherent superposition. However, the two projective techniques (OAM
mode conversion and slit-wheel) do not go along very well together, so we went for a mode
sorting interferometric design instead. This also has the advantage to ressemble very much
the quantum tomography of (more conventional) polarization-encoded qubits – with some
additional losses however.

The aborted slit-wheel method trial is reported in the appendix A.4 while the next
section describes the setup we finally resorted to. The possibility to extend this OAM
measurement setup to higher-dimensional OAM Hilbert spaces is also discussed in appendix
A.5.

3.3.3 Interferometric setup for quantum state tomography of OAM qubits

3.3.a Interferometer and mode projectors

The apparatus is schematized in figure 3.15. The incoming state is first split using a
non-polarizing beam splitter. Each of the subsequent paths includes a mode projector
onto an OAM eigenstate. These mode projectors are based on the combination of a fixed
hologram and a single-mode fiber [153]. A blazed fork phase-hologram diffracts the light
and performs OAM addition or subtraction depending on its orientation as illustrated in
figure 3.14. Thus, on one path, the mode LGl=+1 is converted into a mode LGl=0 = TEM00,
which is then efficiently coupled to the single-mode fiber, while any other mode is converted
into a Laguerre-Gaussian beam with a non-vanishing l value and hence not coupled to the
subsequent fiber. There are two such paths, denoted R and L, that are arranged to project
the incoming signal onto the |R〉 and |L〉 states respectively. The diffraction efficiency of
the holograms is 80% and the coupling efficiency to the single-mode fiber is also around
80%, leading to an overall transmission of about 65%. The rejection of the other mode was
measured to be 23 dB in the worst case and up to 37 dB in the best case. Typical value
was 25 dB. The mode transformation performed by the holograms will be shown in table
3.5 when we will present the procedure for the alignment of the setup.
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Figure 3.14: Principle of OAM addition and mode conversion with a blazed fork
hologram. The phase pattern of the hologram is given in hue colors and in grayscale.
An impinging light beam in a given LG mode with OAM number l is diffracted by the
hologram. Light in diffraction order i is added i units of orbital angular momentum.
Thanks to the waw-tooth structure of the hologram, most of the power (about 80%) goes
to the first order for which ∆l = −1. Spatial filtering of the first diffraction order by a
pinhole or a single-mode fiber thus selects the LGl=+1 component of the input beam.

Figure 3.15: Experimental setup for OAM qubit tomography. The state to be
characterized enters a two-path interferometer, where each path includes a mode projector
based on a blazed fork hologram (phase pattern shown) and a single-mode fiber. Depending
on the orientation of the hologram’s fork, one unit of OAM is added or subtracted from
the light that is diffracted on it. Hologram labelled l = +1 in path R converts a LGl=+1

mode into a TEM00 one and hologram l = −1 in path L converts a LGl=−1 mode into a
TEM00 one. The beams are then coupled into single-mode fibers that act as spatial filters
for the TEM00 mode, hence selecting only one OAM component in each path. The fibers
are then recombined at a fibered beam splitter with two outputs labelled X and Y, where
single-photon detectors (SPD) are located. A phase reference beam, symbolized by the
green arrows, is injected backwards and detected by a digital camera at the input beam
splitter in order to measure the phase ϕ of the interferometer. The value of ϕ defines the
measurement basis.
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As shown in figure 3.15, the two paths are then recombined via a fiber beam splitter
with two outputs labelled X and Y. The difference in propagation length along the two
arms of the interferometer causes a phase shift denoted ϕ. If the input is in a Laguerre-
Gaussian mode |R〉 or |L〉, then only one of the interferometer arm will contain light, and
this light will be equally distributed over X and Y regardless of ϕ. In contrast, if the input
is in a superposition state, then there is a non-zero amplitude in both arms and these
amplitudes will interfere. The probabilities to detect light at either outputs X or Y will
vary sinusoidally with ϕ.

More specifically, let us take the example of a pure state |Ψ〉 = a|R〉+beiφ|L〉 (a, b ∈ R)
entering the device. Up to a global attenuation factor, it will be transformed into:

[

(a+ bei(φ+ϕ))|X〉+ (a+ be−i(φ+ϕ))|Y 〉
]

(3.17)

where we have assumed the mode projectors have perfect transmission of their target mode
and perfect rejection of all other modes. The number of events detected at the output X
for instance will thus be proportional to

P = a2 + b2 + 2ab cos(φ+ ϕ). (3.18)

These events corresponds to the projection of the incoming state on the state |R〉+eiϕ|L〉.
By choosing ϕ, any projection basis in the equatorial plane of the Bloch sphere can thus
be chosen.

L path R path Full interferometer
blocked blocked ϕ = 0 ϕ = π/2 ϕ = π ϕ = 3π/2

Output X |R〉 |L〉 |H〉 |A〉 |V〉 |D〉
Output Y |R〉 |L〉 |V〉 |D〉 |H〉 |A〉

Table 3.3: Mode projection in output X and Y as a function of the configuration
of the interferometer. The relative phase ϕ defines the projection basis in the equatorial
plane of the Bloch sphere. Blocking one of the more projector path turns the measurement
basis to the logical (LG) basis.

In summary, the interferometer acts as a mode-sorter in a given Hermite-Gaussian basis:
it directs one mode towards output X and the orthogonal mode to output Y. The basis
in which this mode sorting occurs depends on the value of the phase ϕ. For instance, for
ϕ = 0, all photons in the |H〉 state will be directed towards output X while photons in state
|V〉 will be directed towards output Y. In the same way, for ϕ = π/2, the incoming photons
are projected on the basis vectors |A〉 (output X) and |D〉 (output Y). Finally, if one of the
paths is blocked, then the device will act as a projector onto the OAM eigenstate |R〉 or
|L〉, as a function of the non-blocked path. In this case, the detectors at X and Y receive
the same signal, which is proportional to the a or b coefficient of the qubit decomposition
(equation (3.12)). Therefore, when the device is properly calibrated (as will be explained
in section 3.3.c), it can be regarded as a black box performing state projection and yielding
photon counts in the outputs X and Y as summarized in Table 3.3.

We now turn to the control of the interferometric phase ϕ.

3.3.b Variation and measurement of the interferometer phase

In order to change the projection basis, one mirror inside the interferometer is mounted
on a piezoelectric transducer, thus allowing to vary ϕ. In the following, we explain how to
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access this phase using backwards-propagating reference light.

Phase-reference beam. Thermal and mechanical drifts continuously change the inter-
ferometer phase ϕ on a scale of a few degrees in a few seconds. To access this phase, an
auxiliary phase-reference beam is injected backwards into the interferometer (green arrows
in figure 3.15). At the input beam splitter, the reference light from paths R and L recom-
bines. While it propagates backwards, the reference beam crosses the two holograms. The
TEM00 modes emerging out of the fibers are converted into a |L〉 mode in the R path, and
into a |R〉 mode in the L path. These modes are superposed at the input beam splitter with
a phase difference that is precisely equal to the interferometer phase ϕ. As a result, we get
the superposition

(

|R〉+ eiϕ|L〉
)

. As shown in equations (3.10) and (3.11), the equal-weight
superposition of LGl=+1 and LGl=−1 modes with a relative phase ϕ results in a rotated
Hermite-Gaussian mode, consisting of two bright spots of opposite phase separated by a
dark line. The dark line makes an angle

αd = (ϕ− π)/2 (3.19)

with the horizontal axis. Measuring this angle enables to access the interferometer phase.
The phase reference beam is recorded at a rate of about 10 images per second by a digital
camera at the input-BS.

We now detail how to analyze the images taken by the digital camera to efficiently
extract the value of ϕ.

Image analysis routine. In a preparational step, all images are enhanced by applying
a median filter (to reduce high-frequency noise and dead pixels) and a midtone stretching
filter (to increase the contrast in the middle intensity region and to reduce variations in
the high- and low-intensity regions).

When ϕ varies, the dark line in the intensity pattern of the phase reference beam rotates
around the beam axis, according to equation 3.19. First, the center around which the dark
line rotates has to be determined. For this purpose, many images for different values of
ϕ are required, covering roughly uniformly the whole range of ϕ ∈ [0, 2π[ (corresponding
to the range of [0, π[ for the angle αd of the dark line). Averaging them results in a
ring-shaped image, as shown in table 3.4, to which a doughnut-like distribution is fitted.
The fit provides two parameters: the position of the center and the radius of interest.
As long as the alignment of the reference path is not changed, these values remain valid
for all images. Consequently, this initial procedure has to be performed only once for a
measurement series: either during the calibration, if a real-time analysis of the phase is
desired, or using a part of the stored images, if post-processing is performed.

The following analysis of the individual images is illustrated in figure 3.16. The center
is used as the origin of polar coordinates (r,θ), while the radius of interest defines the area
that will be analyzed.

• This circular area is first divided into N angular bins (“pie slices”), where N has to
be divisible by 8 so that there will be angle bins corresponding to each of the four
|H〉, |D〉, |V〉 and |A〉 modes 4. In our experiments, a typical value of N was 120.

4The angular coordinate θ ∈ [0, 2π[ is divided into N angle bins, so the angle value of each bin is
θk = 2kπ/N , with k ∈ [[0, N − 1]]. The angle bin θk matching the dark-line angle αd of mode |D〉 is equal
to θk = αd = π/4, which implies N = 8k.
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Image Enhanced
without image Fitted center

enhancement & projections

Table 3.4: Illustration of the steps involved in determining the center of sym-
metry of the images. The image displayed in the first column is the average of a few
hundred phase-reference pictures. After treating it with the median filtering and midtone
stretching operations explained in the text, the second image is obtained. Their difference
shows the importance of the image processing; without it, the background would be strong
enough to shift the center out of its actual position. In the second image, the projections
of the intensity onto x and y axes are shown. They are used to obtain the starting values
for the fit: the first-order momenta give an estimated center position (indicated with a red
dot), the second-order momenta a starting value for the width of the ring. The last column
shows the fit output: the obtained center is depicted in red and the circle with the radius
of interest in green.

• For each angular bin k, the average intensity I(θk) is calculated. The first half of
this data (0− 180◦) is plotted in figure 3.16c as open red circles. We could now fit
a sinusoidal function to I(θk) to determine αd. However, since we have to process
many images and since fits are computationally expensive, we choose the following
straight-forward calculation instead.

• Since we are only interested in an axis and not a direction, we “fold” our angle bins:
The intensities of each two opposing bins, i.e. lying 180◦ appart, is added. This
leaves us with only N/2 bins.

• The dark line should be along the axis of least intensity, but also orthogonal to the
axis with most intensity. To account at once for both conditions, we substract from
the intensity of each bin the intensity of the (unique) bin at 90◦ from it. These last
two steps also overcome slight image asymmetries and participate in the algorithm
robustness against beam misalignment.

• Some fluctuations always remain in the intensity distribution. Therefore, the data is
smoothed. The processed intensity Ĩ(θk) of bin k is calculated as the average over
a 45◦ wide sector centered around that bin. The data Ĩ is shown in figure 3.16c as
blue dots.

• The angle of the bin with the smallest Ĩ is the angle αd of the dark axis, giving us
the interferometer phase ϕ via equation 3.19.

Algorithm stability. Since the alignment of the beams from the Left and Right paths is
subjected to experimental imperfections, the image analysis routine has been tested against
computer-generated images presenting various simulated defects. For this, we numerically
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Figure 3.16: Determination of the dark-line angle αd. (a) Around the fitted center
(indicated by a red spot), the image is split (b) in equally-weighted angular bins. On this
figure, only 24 angular bins are shown for clarity, but N = 120 bins are actually used in
the real analysis. For each of them, the intensity I is computed. Half of these values (for
θ between 0 and 180◦) are shown in the plot (c) as red open circles, as a function of the
bin angle θk. The intensity values are processed as explained in the text to obtain the
folded and averaged intensity values Ĩ. These are plotted as blue dots. In this example,
the smallest value of Ĩ was found in the 48◦ angle bin, which is marked by a blue box and
corresponds to the angle αd of the dark axis. In panel (d), the pixels belonging to this
angular bin are colored in blue to mark the dark axis, and the area of interest is indicated
by the green circle. The original image size was 330× 330 pixels.

generated superpositions of Laguerre-Gaussian beams with either positional or angular
misalignment. Example of such test images are given in figure 3.17. The test beams have
a more pronounced deformation than the experimentally observed phase reference beam.
Yet, the image analysis routine gives the correct output for all of them: the phase φ that
was put in the theoretical expression of the mode superposition.

Timing and noise issues. The reference light is running backwards through the inter-
ferometer setup, but a tiny fraction of it is scattered towards the single-photon detectors at
the outputs. To avoid any danger for the detectors and reduce potential noise, we wanted
a very low power for the reference beam. The power chosen (∼ 2 nW) and the camera ex-
posure time (∼ 100 ms) finally resulted from a compromise between the reduction of this
noise source and the recording of an image within a time shorter than the typical phase
drift.

At this low power level, the detectors’ count rate due to the scattered reference light
(106 Hertz) is already close to saturation. During the actual signal measurements, we
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Figure 3.17: Test of the robustness of the image analysis routine on a sample
of test pictures. On the left of the figure is the experimental reference beam as it is
seen on the camera for a certain value of ϕ. It is in fact the same image as in figure 3.16
for which our image analysis routine found ϕ = 48◦. On the right of the figure, we show
a selection of simulated deformed beams. The beams were computed as the sum of two
ideal LG beams (defined by equation (3.2)) with a relative phase φ. In the top line, we
simulated the effect of a small mismatch in the position of the center of the beams. In
the bottom line, we simulated the effect of a small angle between the beams. Both defects
yield a deformed HG mode in which one lobe is brighter than the other. This asymetry is
also present in the experimental reference beam on the left, but it is less pronounced than
in the displayed simulations. When the simulated images were fed to the image analysis
routine, the output was the correct φ value indicated above the pictures.

therefore interrupt the reference beam using acousto-optic modulators (AOMs). This in-
terruption is short compared to the duration of the experimental cycle, which is in turn
much shorter than the exposure time of the reference camera, so this has no influence on
the reference image acquisition. In addition, we switched off (gated) the single-photon
detectors while the reference light was on.

Even in this configuration, we still noted an influence of the reference light on the
background counts within the measurement window: when the reference light was com-
pletely blocked, the dark count rate was at about 80 Hz. With the reference light switched
on as described above, the dark noise increased to 200− 250 Hz within the measurement
window. Using mechanical shutters, we excluded light leaking through the AOMs as the
reason. The dark count rate of the detector decreased over tens of milliseconds after the
reference beam was turned off. Phenomenologically, the decay might be described by a
stretched-exponential function [163]. This behaviour has already been observed in other
experiments, e.g. [164], and it might be explained by delayed afterpulses of the avalanche
photodiodes [165].

Polarization and wavelength of the phase reference beam. We show now that it
is highly desirable to use the same polarization and the same wavelength for the reference
light as for the signal.

First, the polarization maintaining fibers and the fibered beam splitter, but also dielec-
tric mirrors, are indeed birefringent, so the interferometer phase experienced by the signal
and by the reference beam will differ if they have different polarizations. Furthermore,
the birefringence changes with the mechanical stress of the fibers as with the temperature
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drifts, thus this difference will not stay constant.
Second, if the two optical paths differ geometrically by ∆L, two beams at different

wavelengths will accumulate different interferometer phases. The variation of the measured
interferometer phase around a certain wavelength λ = c/ν can be easily calculated as:

(dϕ/dν) ≈ 12◦/(cmGHz)×∆L , (3.20)

where ν is the light frequency. So with a path difference ∆L on the order of a few cen-
timeters, a difference by a few hundreds of MHz in the light providing the phase reference
beam is already enough to change the inferred value of ϕ by several tens of degrees.

Finally, dispersion can also play a significant role since a part of the interferometer is
fibred. In a single-mode fibre, the change of the effective refractive index is dominated by
the dispersion of the material [166]. We can thus estimate the dispersion dn/dν of our silica
fibres to be on the order of 10−3/100 nm for our fibres [167]. In a perfectly symmetrical
situation, the first-order contribution of dispersion vanishes. However, even if the optical
path lengths are precisely equal, there might be a difference in their composition in terms
of free-space and fibred lengths. Let us call this difference in fibre length ∆Lfib. With
this, we find:

(dϕ/dν) ≈ −0.1◦/(cmGHz)×∆Lfib . (3.21)

This effect will be smaller than the previous one for typical configurations, but can still
play a role if signal and reference are separated by several GHz.

If the frequencies of signal and reference are different, but stay constant, these two
contributions lead, first, to a constant offset that could be determined, and second, to
a different change of the phase when varying the path length. The latter difference is
proportional to the relative wavelength difference and can thus in many cases be neglected
for close wavelengths. As soon as the frequencies vary however, especially with respect to
each other, the correlation between signal and reference interferometer phase will be lost.
We therefore avoided these problems by using light from the same source as those used for
the signal state to be measured.

In this section, we have presented a detailed description of our OAM detection setup,
and discussed the relevant issues relative to the phase reference. The next section gives
a detailed calibration procedure, together with the main figures of merit that have been
measured thoroughly.

3.3.c Calibration procedure and benchmarking

The detection setup presented here is very sensitive to the incoming beam position on the
hologram dislocation and to its direction. The required fine tuning allows to calibrate and
assess the performance of the setup.

Optimizing couplings and limiting cross-talk. The goal of the alignment procedure
is twofold. First, we look for an optimal coupling of the respective LG mode into the
fiber of the respective path. Second, we want a good rejection of all the other modes, as
demanded by the mode selection requirement. The alignment is performed using classical
bright beams aligned with the signal to be analyzed later, their path being defined by the
same single-mode fiber. The spatial light modulator described in section 3.2 enables to
send various spatial modes into the detection setup.
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In a first step, the position of the holograms is set. For this purpose, we use the fact
that the intensity distribution in the far field of the hologram depends strongly on the
relative position between the incoming beam and the hologram center. This distribution
is observed with a camera placed after the hologram. Sending in a LGl=+1 mode, we can
thus optimize the observed intensity distribution to be close to a TEM00 profile in the R
path. In the same way, the position of the L path hologram is optimized by sending in a
LGl=−1 mode. The mode conversion performed when the holograms are well centered is
shown in table 3.5. Even a small deviation of the hologram by a few micrometers become
clearly visible. Then, the coupling into the fibers is optimized. Using two mirrors behind
each of the holograms, we are able to adapt the mode exiting the hologram by maximizing
the coupling efficiency up to 80%.

Mode at input LGl=+1 TEM00 LGl=−1

R path

L path

Table 3.5: Mode conversion performed by the holograms. After finely tuning the
position of the hologram center, the impinging mode LGl=+1 (resp. LGl=−1) is converted
into a TEM00 mode in the far field of the R path (resp. L path), while other modes are
converted to higher l-valued modes with doughnut shapes.

The next stage consists in sending a TEM00 mode and use the same mirrors to now
minimize its coupling. The rejection pattern of the setup is more pronounced than the
acceptance and thus allows a better approach to the optimal point. Finally, a random
search in the region around the found optimum allows to do some fine tuning. Here, all
6 degrees of freedom (2 transversal positions of the hologram and 4 directions for the 2
mirrors) are slightly varied while switching between the coupled mode and the unwanted
modes (such as TEM00). This way, the ratio ηothers/ηLG is minimized (where ηΛ is the
coupling efficiency of a mode Λ into the single-mode fiber), while the coupling ηLG of the
matching mode is kept at or close to the maximum.

Each path is then characterized by measuring the coupling for different LG modes
sent into the setup. In the R path for example, we record the transmission of the mode
corresponding to that path (LGl=+1), the two neighbors in the l number (LGl=+2 and
LGl=0 = TEM00), and the mode corresponding to the other path (LGl=−1). We typically
obtain an average rejection of 17 dB for the next neighbors (2% transmission), while the
suppression for the opposite mode (with ∆l = 2) is 25± 3 dB 5 . An example of detailed
coupling figure of merit is given in table 3.6.

5In fact, one of the hologram had a tiny scratch on its surface, leading to a lower efficiency.
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Mode R path Lpath

LGl=−2 0.1 % 2.8%
LGl=−1 0.5 % 77.8 %
LGl=0 0.1 % 1.7 %
LGl=+1 82.3 % 0.03%
LGl=+2 5.7% 0.04 %

Table 3.6: Coupling efficiency in both paths for various input Laguerre-Gaussian
modes.

Calibration of ϕ. An additional characterization is performed by sending classical
beams carrying the four Hermite-Gaussian modes HGV, HGD, HGH and HGA. Theo-
retically, all four modes should lead to the same power of coupled light into both fibers.
However, we observed that the power balance is not strictly mode-independent. Most of
this imbalance can be explained by the imperfect mode filtering given in table 3.6. In path
R for example, 82 % transmission for mode LGl=+1 and 0.5 % for mode LGl=−1 make up
for a ±6 % fluctuation in transmission between different HG modes. These mode selec-
tive losses decrease the count rate and can additionnally lead to a reduction of the fringe
visibility, leading in turn to a decrease in the maximal measurable fidelity.

Finally, the fiber beam splitter is installed, the phase reference beam is injected as
described in 3.3.b and the interferometer phase slowly scanned. Sending again the modes
HGV, HGD, HGH and HGA, we measure the power in outputs X and Y correlate their
values to the interferometer phase ϕ obtained from the reference. The resulting fringes
allow to check first for a good fringe visibility (typical values above 93 %) and second
for the correct phase relation between signal and reference. Figure 3.18 illustrates this
process. As seen before, the power detected at the output X should exhibit a sinusoidal
dependence in ϕ = 2α + π (equation (3.11)). The condition for minimum power, i.e.
ϕ = φ + π ↔ 2α = φ resulting from equation 3.17, allows to deduce the value of φ from
the position of the resulting fringes. We checked that this was indeed the case and found
good agreement within ±3◦ which corresponds to our phase discretization.

The setup thus enables to accurately project an input state on various target modes.
We will finally discuss the detection efficiency of the setup.

Detection power efficiency. The overall power efficiency of the device comes from the
limited transmission of various components:

• Input-BS and filtering: ∼ 50%. The combination of the 50/50 beam splitter at
the input and the subsequent mode selection causes a 50 % fraction of the signal to
go “into the wrong path” no matter what the input mode. This fraction is filtered
out and lost.

• Hologram diffraction efficiency and other optics: ∼ 80%.

• Fiber coupling efficiency: ∼ 80%.

• Beam splitter for phase reference: ∼ 25% losses if we take in to account data
from both output X and Y. In order to inject the phase reference into the inter-
ferometer, an additional fiber beam splitter is inserted between output Y and the
single photon detector, causing to lose part of the signal. In principle, if it has a
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Figure 3.18: Calibration of the interferometer phase ϕ. (a) Fringes measured during
the calibration procedure. Different HG beams (with a power on the order of a fraction
of milliwatt) were used for this measurement. The vertical axis reprensents the power
transmimtted to output X and the horizontal axis represents the interferometer phase ϕ−π
measured using the phase reference beam and the image analysis routine as explained in
the text. As expected, the fringe shifts horizontally in π/2 steps as the various modes are
sent (i.e. when the phase φ between the R and L components of the superposition (3.10)
is changed). The position of the extrema (indicated by black arrows) indicates where we
have: φ + ϕ ≡ π (mod 2π). (b) From this measurement, we locate the four HG modes
on the equator of the Bloch sphere (seen from top, so that φ increases counterclockwise).
The fringe positions (black arrows) measured in (a) are shown as blue lines. The red lines
show their average position: is the cross whose arms are the closest possible to the blue
lines while enforcing 90◦ between its arms. In this particular example, the fringe visibility
reaches 93±2%, and the inferred φ values were respectively −0.1◦, 86.5◦, 176.1◦ and 268.6◦

for the modes H, D, V and A. The average deviation from the ideal φ values is 2.2± 1.6◦.
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power transmission factor T, then a fraction T of the signal in the Y path will be
lost. Even if the amount of photons in the Y path itself may vary depending on the
input state and on the device configuration (or which fraction of the light inside the
interferometer exits at output Y ? ), the average losses induced by the phase reference
injection are T/2, in our case 25% with a 50:50 beam splitter 6. In some situations,
for simplicity, we simply do not look at output Y and only take into acount mea-
surements in output X. In this case, the output-BS itself induces 50% losses (and the
beam splitter for phase-reference beam injection does not play a role anymore).

From all these parameters, we extract the detection efficiency:

24%± 3%

or 16% if we only consider output X
(3.22)

Note that for HG modes measured in the equatorial plane of the Bloch sphere, this is
only the mean efficiency. Since we expect a fringe, if we look at output X only, then the
detection efficiency will be double at the fringe maximum, and close to zero at the fringe
minimum.

Moreover, in our implementation, the power efficiency for the HG modes was slightly
lower than for the LG modes. This was due not to the detection setup itself but to the
imperfections of the HG mode generation as indicated in 3.2.2. Only 64% of the total
beam energy is carried by LGl=+1 and LGl=−1 modes. The rest of the power is carried
by higher order p > 0 modes that are not not coupled into our mode projectors. Even if
these effective losses depend on the input mode, they do not degrade the quality of the
tomography (the visibility of the fringe recorded when ϕ is scanned and then the fidelity),
because the two modes of a given basis experience the same transmission.

Additionnaly, when we will perform measurements in the single-photon regime (as will
be described in the next section) the setup transmission given by equation 3.22 has to be
multiplied by the quantum efficiency of the single-photon detectors, which was around 45%
in our case.

Effects of imperfections on the measured fidelity. The various imperfections can
lead to mistaking one mode for another. This effect can be quantitatively estimated as an
upper bound on the fidelity that can be obtained when measuring an ideal input state.
This in turn gives an estimate of the error we make when we derive the fidelity of an
experimental mode to a target mode from measurements with our device.

The fidelity of HG states at the entrance is especially sensitive to a reduced visibility
V , setting a limit of Fmax = 1/2(1 + V ). The reduced visibility can originate from a
contamination by background noise, imperfect mode filtering or mode-dependent fiber-
coupling. An imbalance of ±∆ in the fiber coupling of orthogonal HG modes will decrease
the visibility of the fringe by approximately ∆2/2. A 93% fringe visibility as in figure 3.18
leads to a maximum fidelity of 97% 7. A visibility extrapolated to 97% if background noise
is subtracted allows to reach close to 99% fidelities.

6Greater splitting ratios, such as 90:10 or even 99:1 would reduce these losses as well as the detection
efficiency fluctuations.

7For technical reasons, the contamination with reference light is much stronger during the calibration
than during the APD measurements.
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A shift in the interferometer calibration (figure 3.18) by an angle ǫ will decrease the
maximum fidelity by an amount ǫ2. For ǫ as large as 5◦, the fidelity decreases by less than
a percent. As can be seen from figure 3.18, this phase shift was quite easily controled to
better than 3◦.

For LG modes at the entrance, no fringe should be present in the ideal case when
scanning ϕ. Therefore, their fidelity is insensitive to visibility reduction. However, a small
relative leakage ǫ of mode L in path R (and vice versa) leads to a spurious fringe with a
visibility 2

√
ǫ and to a decrease of the maximum fidelity to 1 − ǫ. With a leakage of less

than −25 dB, the resulting error on the fidelity is limited to a fraction of a percent.

When we proceeded to the quantum memory experiments, this calibration proce-
dure was repeated everyday. Since the memory measurements lasted sometimes up
to several hours, we checked that the calibration was stable over these timescales.
In particular, for every set of quantum memory measurements, the calibration
procedure was first performed before the memory experiment series and then
checked after the memory series was completed. Everytime, the calibration had
remained unaltered, even after several hours.

The next subsection will give examples of the full tomography of some OAM-encoded
qubits using the setup we’ve just described.

3.3.4 Example of OAM tomography in the single-photon regime

In this subsection, the detection setup is regarded as a black-box, yielding photon counts
at the different outputs according to the interferometer configuration as described in table
3.3. For simplicity, the forecoming analysis will be done only with data from Output X
unless stated otherwise.

The data presented here is the measurement of the input pulse (reference) at a mean
photon-number equal to 0.6 photon per pulse. The signal is a weak coherent state with a
half-gaussian temporal mode of FWHM 350 ns as described in section 2.3.3. With the setup
in the HG bases configuration (i.e. measuring the fringe), three million measurements were
made for each of the HG input modes, while one million measurements were performed
for the LG input modes, giving respectively about 50000 and 17000 measurement per 6◦

phase bin. In the configurations for measuring in the LG basis (i.e. with a blocked arm
in the interferometer), one million measurements were performed for each of the two basis
states, irrespective of the input state.

The measured count rates for input modes |R〉, |L〉, |H〉 and |D〉 at outputs X and Y are
given in appendix A.6. The corresponding Stokes parameters and the fidelity to ideal states
are given in table A.5 (using output X data only for simplicity). From these measurements,
the density matrix of the input states can be reconstructed using the formulae given in
section 3.3.1 (see equation (3.16)):

S1 = p|0〉 − p|1〉

S2 = p|+〉 − p|−〉

S3 = p|+i〉 − p|−i〉

(3.23)

where p|Ψ〉 is the probability to measure the qubit in the state |Ψ〉. In table 3.7, we give
the density matrix parameters resulting from these calculations. In figure 3.19, we give a
more graphical view of these data for the two modes |R〉 and |V〉 (see legend for details).
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Mode S1 S2 S3 S2 F

|R〉 0.99 0.01 -0.09 0.99 99.2 %
|L〉 -0.97 0.0 -0.14 0.96 98.3 %
|H〉 0.15 0.95 -0.17 0.95 97.6 %
|D〉 -0.07 0.11 0.98 0.98 99.0 %
|V〉 0.15 -0.95 -0.09 0.93 97.4 %
|A〉 0.32 -0.15 -0.92 0.97 95.8 %

Table 3.7: Stokes parameters and state fidelities extracted from the analysis of co-
herent pulses with a mean photon-number slightly below 0.6. The S2 = S2

1 + S2
2 + S2

3

parameter measures the purity of the state. In this particular example, the recontruction
of mode |A〉 suffers from the coupling imbalance between paths R and L and from our
imperfect mode preparation. The fidelity of the other modes is mostly limited by the
background noise, which hasn’t been subtracted here. The error bar on the fidelities is on
the order of 0.5 percentage points. For simplicity, data from Output X only has been used
here, but data from Output Y yields identical results.

After computing the density matrix ρ̂ of a given state from the count rate measurements
described thereabove, we can measure the state resemblance to a target state |Ψ〉 by
computing the fidelity:

F = 〈Ψ|ρ̂|Ψ〉 (3.24)

In the data presented here, no noise has been subtracted. We can estimate our Signal-

to-Noise Ratio (SNR) from the count rate and background noise. First, let us discuss
the SNR for the measurements in the HG bases (fringe):

• The measured average signal rate n̄Sig (i.e., the rate at the average height of the
fringes) was 0.03 clicks/measurement.

• The background noise originated from the APD dark noise (about 200 Hz as discussed
in section 3.3) and the light beams (mainly the control) required for the quantum
memory operation as discussed in section 2.3.4. With about 1 kHz, they constitute
the major background contribution. Even though the signal pulses have a FWHM
of 350 ns, we recorded single-photon detection events over their whole length, which
is 800 ns in order to capture their whole timeshape. This gives a background rate
of about n̄Bg = 10−3 background events per measurement, leading to a SNR on the
order of 30 (n̄Bg/n̄Sig = 3.3%).

• While the total number of measurements is in the millions, the number of events
in a single bin is much smaller, thus a significiant Poissonian fluctuation can be
expected. The angular bins at different ϕ values were only roughly equally covered
by measurements, showing a standard deviation of up to 35%. The average numbers
of detection events per bin were 557 (4.2% statistical errors) for the LG input states
and 1400 (2.7% statistical errors) for the HG input states.

If we include the statistical errors in the SNR, the SNR for measurements in the HG bases
is thus about 17 in average. For the measurements in the LG basis (where one arm of the
interferometer is blocked), the train of thought is the same, but the numbers are slightly
different, leading to a SNR of about 14 for this measurement. In summary, we can state a
typical SNR value of about 15 for the whole state characterization (HG and LG bases).
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In summary, this section has shown the reliability of our setup for OAM qubit
tomography. Its performances can be summarized by the following parameters:

• Cross-talk suppression (in LG basis): ∼ 25 dB,

• Precision in phase measurement: better than 3◦,

• Detection efficiency: 16% (output X only, not counting the APD quantum
efficiency.)

• Stability: calibration remains unchanged over several hours of continous
operation.

In the next section, we will use this detection setup to demonstrate the quantum
storage of the OAM-encoded qubits defined in section 3.1.2 inside the quantum
memory presented in chapter 2.
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3.4 A quantum memory for OAM encoded Qubits

Thanks to the experimental tools for LG modes manipulation that have been presented
in the previous sections, we first demonstrated the storage of LG modes at the single-
photon level. Then, we demonstrated the quantum storage of an OAM-encoded qubit.
Importantly, we measured the memory decay time and verified that the storage fidelity
validated the quantumness benchmarks.

3.4.1 EIT optical memory and OAM preservation

In a first experiment [5], we showed that our quantum memory can store weak coherent
pulses with different spatial (LG) modes, and that the OAM of the stored pulses is preserved
in the process. These measurements involved only the mode projectors and did not require
the interferometric phase measurement.

LG (and HG) coherent pulses at the single-photon level have been stored and retrieved
out of the memory, showing that the OAM quantum number l is conserved. A selection
of memory curves with 0.6 photon per pulse is displayed in figure 3.20 (see caption for
details). The six modes LGl=+1, LGl=−1, HGV, HGD, HGH and HGA were stored with
the same efficiency (η = 16% ± 2% measured after a 1 µs storage time) as a gaussian
TEM00 mode.

3.4.2 memory decay time for stored LG modes

The memory decay time has been studied with LG and HG modes by varying the readout
time. The different spatial modes exhibitied a similar characteristic memory decay time.
The decay of the memory efficiency can be fitted by a gaussian function as predicted in
section 2.2.5 (seefigure 3.21). The characteristic time of this gaussian fit is τm = 15 µs,
which corresponds to the motional dephasing estimated in section 2.3.2.

3.4.3 Full characterization of the quantum storage

3.4.a Full Qubit tomography and quantum storage

The study of the OAM preservation in subsection 3.4.1 is not enough to draw a conclusion
regarding the quantum nature of the memory process. Indeed, a two-way OAM mode
sorter (or even a two-way OAM mode projector) and classical detectors combined with a
light source and a SLM could be enough to reproduce the behavior reported in figure 3.20.
In a quantum cryptography hacking scheme, this would be called an intercept-and-resend
attack [168].

In order to prove that the storage in indeed coherent, we must show that not only
the |R〉 and |L〉 components of a qubit are preserved (as done in section 3.4.1) but also
that the phase φ between them is identical before and after the memory. It is to this
end that we developed the interferometric setup that was described extensively in section
3.3.a. Figure 3.22 shows a sketch of the entire experiment, from the signal generation to
the qubit measurement setup with the quantum memory inbetween.

The preservation of the phase φ during the storage process is illustrated in figure 3.23.
It shows how the count rates at the output of the detection setup for HG input qubits are
modulated when ϕ is varied from 0 to 2π. Such modulation is of course (almost) absent
when the qubit is in a |R〉 or |L〉 state as can be seen in figure 3.19. The presence of the
fringe indicates that the state is in a coherent superposition of states |R〉 and |L〉. The
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horizontal position of the fringe gives the value of the phase φ between the |R〉 and |L〉
components of the qubit. This is just the same as in the calibration process illustrated by
figure 3.18, except we are now measuring less-than-single-photon pulses instead of bright
beams. The overall count rate decreases by 85% after storage as a consequence of the
η = 15% efficiency of the memory. As a consequence, the visibility of the fringes also
decreases because the signal-to-noise ratio is reduced by the same factor. Nevertheless, the
fringes are still highly visible after storage, proving that the coherence of the |R〉 and |L〉
components has been preserved during storage.

In order to make this assertion quantitative, we perform the full qubit tomography, as
explained in section 3.3.1. We compute the Stokes parameters and recontruct the state
density matrix. Then, we compare this density matrix to the target density matrix and
quantify their resemblance by computing the fidelity. In table 3.8 and in figure 3.24,
we illustrate this process for a set of measurements for which the mean photon number
per pulse was n̄ = 0.6 and the memory time τ = 1 µs. Table 3.8 gives the fidelities of
the states after they have been stored and recalled from the memory. The mean fidelity
without background noise correction is Fmean,raw = 92.5%. It is Fmean,cor = 98.1% if we
subtract the background noise from the count rates.

But even now, the question remains: was it truly quantum ? 8 If we were probing
our memory with true single-photons, the fidelities presented in table 3.8 would leave no
doubt as to the “quantumness” of the memory. But in order to answer the question in
a satisfactory manner for qubits implemented with weak coherent states, a more detailed
analysis is required as will be presented in the next subsection.

3.4.b Weak-coherent-state qubits and quantum storage

It is known that the best guess that one can do with classical measurements of the quantum
state of a two-dimensional single quantum system yields an average fidelity of 2/3. When
a classical observer has n identical copies of such a two-dimensional quantum system, the
best guess he can make allows him to reconstruct the state with the following fidelity value
(see [169] for a derivation):

Fmax(n) =
n+ 1

n+ 2
(3.25)

Consequently, if a classical observer measures a weak coherent state |α〉 with n̄ = α2

photons on average, he can in principle guess the system state with a fidelity bounded by:

Fmax(n̄) =
1

1− e−n̄

∑

n∈N∗

n+ 1

n+ 2

e−n̄ n̄n

n!
(3.26)

In this expression the first factor 1/(1− e−n̄) reflects the fact that events where no photon
is detected do not contribute to the observer’s guess and the sum over all possible photon
numbers n is the average of the maximal fidelities Fmax(n) weighted by the poissonian
photon number distribution.

However, in a quantum cryptography scenario, this is still too optimistic. Indeed, it
assumes that the classical observer (which is in fact a quantum hacker in this case) will
always perform a measure-and-resend-attack, which means we are comparing the classical
observer to a unit efficiency memory. But since our quantum memory has a 15% efficiency,

8Could not a classical measurement scheme mimick the memory behavior with the same efficiency η
and fidelity F ?
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a potential quantum hacker must be allowed a similar level of losses if we are to make a
fair comparison. The strategy developed by Specht et al. [66] and Gündoğan et al. [93]
allows a classical observer to draw the maximal advantage from such a lower-than-unity
efficiency. If the quantum hacker knows the average photon number n̄ and if he is allowed
a (known) loss percentage 1− η, then he can find a threshold value Nthresh(n̄, η) such that
he will perform the intercept-and-resend attack if and only if the actual number of photons
inside the pulse is greated than Nthresh(n̄, η), and induce losses otherwise. This way, he
takes a maximal advantage of the higher Fmax(n) for large n, given a specific allowed
loss percentage 1 − η. With this strategy, a purely classical measurement 9 can reach a
maximum fidelity given by:

Fmax(n̄, η) =

Nthresh(n̄,η)+1
Nthresh(n̄,η)+2 p(n̄, η) +

∑

n>Nthresh(n̄,η)

n+1
n+2

e−n̄ n̄n

n!

p(n̄, η) +
∑

n>Nthresh(n̄,η)

e−n̄ n̄n

n!

(3.27)

where p(n̄, η) is the probability to perform a measurement-and-resend attack if the number
of photons in precisely Nthresh(n̄, η). The numerator of equation (3.27) is the sum of the
Fmax(n) =

n+1
n+2 maximal fidelities weighted by the photon number probability distribution

if the observer does perform a measurement, i.e. if n ≥ Nthresh(n̄, η). The denomina-
tor reflects the fact that the observer induces losses in all other cases. The p(n̄, η) and
Nthresh(n̄, η) functions are computed in the following way. Nthresh(n̄, η) is the smallest inte-

ger satisfying 1−
Nthresh
∑

n=0

e−n̄ n̄n

n! ≤ (1−e−n̄)η and p is equal to p = (1−e−n̄)η−
∑

n>Nthresh

e−n̄ n̄n

n! .

In order to compare the output of our quantum memory to the maximal classically
achievable fidelity defined by equation (3.27), we performed quantum memory experiments
for a wide range of mean number of photons per pulse n̄. The results are plotted in figure
3.25. For almost all the photon numbers we worked with, we beat the classical threshold by
several standard deviations, even if the fidelity is computed without background subtrac-
tion. At too low n̄, the signal-to-noise ratio is too small to achieve a high enough fidelity
and at too high n̄, the classical limit reaches unity, which can of course not be beaten.

A single data point in figure 3.25 results from the integration of many measurements.
In the following lines, we give an idea of all the steps required to such an end.

9As it is done in quantum security proofs, the procedure described here for maximizing the classically
achievable fidelity is in principle feasible, in that it is not forbidden by known physical rules, but it is
completely out-of-reach of the current technology.
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Steps required for a single data point in figure 3.25

• MOT preparation. In particular: magnetic field cancelation and EIT
optimization.

• OAM detection setup calibration. As described in section 3.3.c.

• Choice of n̄ and τ values.

• Quantum memory experiments. Qubits with an average photon num-
ber n̄ are prepared in all the six |R〉, |L〉, |H〉, |D〉, |V〉 and |A〉 states. Each
state is sent to the memory where it is stored for a time τ , before it is read
out and detected. Each state is measured both in the LG basis (by blocking
alternatively the R and L path of the detection setup) and in the HG bases
(by scanning ϕ). At the lowest photon number, up to 15 × 106 measure-
ments were performed in the equatorial plane of the Bloch sphere for each
input state. Critical for this measurement was the stability of the detec-
tion setup over long timescales. All the measurements are then repeated
with the memory turned off (no MOT) in order to get a reference (i.e. to
characterize the input pulse without storage).

• Data treatment. The memory parameters η(τ) and F (τ) are computed
for each qubit state and then averaged.
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3.5 Conclusion

This chapter has presented the interfacing of non-trivial spatial modes and light angular
momentum with the quantum memory presented in chapter 2. Our experimental tools for
manipulating such spatial modes have been discussed in detail.

More advanced OAM mode sorting techniques like the one developed by Lavery et al.
[158] and Mirhosseini et al. [160], and mode more advanced generation techniques such a
the unitary programmable mode converter developed by Morizur [148], could enable to use
efficiently a much greater span of the OAM Hilbert space.

• In this chapter, we have proven the multimode nature of our cold-atom-
based quantum memory by storing and retrieving multiple spatial modes.

• We have seen theoretically and experimentally how to implement quantum
bits using a 2-dimensional subspace of the orbital angular momentum
Hilbert space, and we have presented a detailed method for characterizing
them.

• The quantum memory benchmarking parameters η ∼ 15% and τm ∼ 15 µs
were shown to be the same for all the investigated spatial modes. Based on
the size of our ensemble and on the

√
l scaling of the LG modes, we can

conjecture that this figure of merit will remain true for about 100 stored LG
modes.

• We have compared the fidelity of the storage process to the maximal clas-
sically achievable fidelity and solidly established the quantum nature of the
storage.

One of the limitations of the current memory implementation is the MOT tem-
perature which limits the memory time τm as has already been noted in chapter
2. Even if the MOT temperature is dramatically reduced and if the influence
of the magnetic field can be mitigated, the fact that the atoms are freely falling
will ultimately limit the memory time to a fraction of a millisecond. Moreover,
the free-space implementation can increase the difficulty to collect the photons
emitted from the memory. Permanently trapped atoms can allow to beat these
limitations.
The next chapter will present our first efforts towards a new light matter interface
which answers these issues (at the expense of the spatially multimode property)
by trapping cold atoms in the vicinity of a nano-waveguide made of an elongated
optical fiber.
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Figure 3.19: Measurement of different input qubit states with a mean photon number
equal to 0.6. Panels (a), (b) and (c) respectively correspond to the |R〉, |D〉 and |H〉
modes. The bar diagrams show the count rates (average number of detected photons per
experimental trial) recorded at output X for various device configurations, corresponding
to projections of the qubit over the states |R〉, |L〉, |H〉, |A〉, |V〉 and |D〉. Typical images
of the phase reference beam are shown below the axes in (a), corresponding to ϕ = 0, π/2,
π and 3π/2. The superimposed fringes (dots : experimental data, solid line : sinusoidal
fit) show the variation of the count rates when the interferometer phase ϕ is scanned. In
(a), the spurious modulation of the count rate as a function of ϕ comes from the small
power leakage ǫ of the mode |R〉 in the Left path, as explained at the end of the last
section. In (b) and (c) for the equal-weight superpositions |D〉 and |H〉, the count rates
in both Laguerre-Gaussian configurations is nealry the same, up to the poissonian error in
the photon number statistics, and the visibility recorded when scanning ϕ is high. It is not
exactly unity because no background subtraction has been performed. The reconstructed
density matrices are given next to the figure as well as the fidelity with the ideal target
state. The error bar on the fidelities is on the order of 0.5 percentage points.
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Figure 3.20: Preservation of the OAM number l during storage and retrieval of
LGl=+1, LGl=−1, and HG10 modes at the single-photon level. The number of counts is
represented as a function of time. Pink lines represent the incoming signal pulses recorded
without memory operation and blue lines correspond to memory output. The early detec-
tion events show the leakage of the signal, while the later ones correspond to the readout
of the memory (memory time: 1 µs). Each curve results from 5.105 repetitions of the ex-
periment. The low level of cross-talk in the pink curves (input state measurements) shows
that the detection setup disciminates well between LGl=+1 and LGl=−1 modes. Note that
the residual leakage of the LGl=−1 mode in the R path is more important than the leakage
of the LGl=+1 mode in the L path, which is coherent with the values given in table 3.6.
The low level of cross-talk in the blue curves (memory readout state measurements) shows
that the memory preserves the l-number of the stored photons.
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Figure 3.21: Measurement of the time decay of the memory efficiency. The
experimental points show the memory efficiency η(τ) (vertical axis) as a function of the
storage time τ (horizontal axis). Following the model given in section 2.2.5, a gaussian
shape is fitted to the data, providing a characeristic decay time of 15 µs. The data presented
in this figure results from the storage of LGl=−1 pulses with mean photon number 0.6.
The memory parameters are identical to the ones given at the end of chapter 2: a control
beam power on the order of Ωc ∼ 1.3 × Γ, leading to a group velocity ∼ 3 × 10−5c
and a pulse compression to a length of 3 mm. The measured 15 µs memory decay time
corresponds to a thermal-dephasing-limited memory whose characteristic time is given by
λ/(2π sin(α)

√

2kBT/m), with T ∼ 1 mK and α ∼ 1.8◦.

Input mode Raw fidelity Corrected fidelity

|R〉 95.1± 0.5% 99.3± 0.5%

|L〉 90.0± 0.8% 97.7± 0.6%

|V〉 90.3± 1.1% 98.8± 0.5%

|D〉 94.0± 0.9% 98.7± 0.5%

|H〉 94.7± 0.9% 98.1± 0.5%

|A〉 90.6± 1.1% 96.2± 0.8%

Table 3.8: State fidelities. Fidelities of the readout states for six input qubits without
and with background noise subtraction. The mean photon number per pulse is n̄ = 0.6.
Errors were estimated assuming Poissonian statistics and taking into account the phase
binning and residual error on the calibration of the interferometer. The mean fidelity is
Fmean,raw = 92.5% without background correction and Fmean,cor = 98.1% with background
subtraction. These after-storage fidelities may be compared to the before-storage fidelities
reported in table 3.7 for the same set of experimental parameters and at the same photon
number: since the corrected fidelity is almost the same as before (up to a 0.5% uncertainty),
the lower F values can be attributed to a lower SNR caused only by the decrease in the
count rate for an identical background noise.
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Figure 3.22: Experimental setup for quantum storage and analysis of OAM
qubits. An orbital angular momentum photonic qubit encoded with a spatial light mod-
ulator (SLM) is coherently mapped into a large atomic ensemble of cold cesium atoms
and retrieved on demand at a later time. The control and OAM qubit beams have lin-
ear orthogonal polarizations, copropagate with an angle of 1.8◦ and are separated after
the memory interface by a Glan-Taylor polarizing beam splitter. To fully reconstruct the
density matrix of the retrieved qubits, the photons enter into a two-path interferometer,
where each path includes a mode projector based on a blazed-fork computer-generated
hologram (CGH) and a single-mode fiber. The two paths are arranged in a way to project
the photons respectively into the |L〉 (LG Left path) and |R〉 (LG Right path) qubits states.
Events are detected at the output of a fiber beam splitter by single-photon counting mod-
ules (APD 1 and APD 2). The relative phase ϕ between the two paths is scanned and
experimentally determined by sending a phase-reference beam backward and analyzing its
spatial structure at the input of the interferometer via a CCD camera. The zoom in inset
shows a false color image of the atomic ensemble.
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Figure 3.23: Fringes before (top) and after (bottom) quantum storage. Qubits in
four different HG states (|H〉, |D〉, |H〉 and |A〉) are sent into and recalled from the memory
with a 15% efficiency after a 1 µs storage. The interferometer phase ϕ is scanned slowly
and measured while the experiment is performed. Plotting the count rates at the output of
the detection setup as a function of ϕ reveals a series of fringes, proving that the measured
state is a coherent superposition of |R〉 and |L〉 states. Although the visibility of the fringes
slightly decreases after the memory readout as a result of the signal-to-noise ratio being
reduced by the memory efficiency, the coherent nature of the superposition states recalled
from the memory is clearly visible. This is particularly true if we compare the bottom of
the fringes to the (independently measured) background noise level indicated by the gray
line. The solid lines are sinusoidal fits to the data. Output X only is displayed in the figure
for clarity. Output Y gives similar but with opposite phases. Images in the middle show a
few of the phase reference pictures that were taken in order to measure ϕ.
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Figure 3.24: Quantum tomography of OAM qubits after memory readout. Re-
constructed density matrices for the four input states |R〉, |L〉, |H〉 = (|R〉+ |L〉) /

√
2 and

|D〉 = (|R〉+ i|L〉) /
√
2. The mean number of photons per pulse is here n̄ = 0.6, and the

storage time is 1 µs. No background correction has been applied. The first column displays
the location of the state on the Bloch sphere, the phase pattern imprinted by the SLM and
the associated spatial mode’s (theoretical) intensity pattern. The associated state fidelities
are given in table 3.8: respectively 95.1%, 90.0%, 94.7% and 94.0%.
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Figure 3.25: Average fidelities of the retrieved qubits after quantum storage. The
state fidelity after storage, averaged over the six input qubits, is given as a function of the
mean photon-number per pulse n̄. The purple points correspond to the raw data while the
green ones are corrected from background noise. The blue dotted line gives the classical
limit for a memory with unity storage and readout efficiency (equation (3.26)) and the
red line shows the classical limit for the actual efficiency of our memory device (equation
(3.27)). The pink shaded area represents the uncertainty on the efficiency. Vertical and
horizontal error bars indicate respectively standard deviation on the fidelity measurements
and on the mean photon number.
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Introduction

In the two previous chapters, we have presented the implementation and the characteri-
zation of a free-space cold-atom-based optical quantum memory. The last chapter was in
particular devoted to demonstrating the intrinsic spatial multimode nature of the mem-
ory and using this feature to store and recall OAM-encoded quantum bits. However, this
system suffers from several imperfections, such as the temperature not being low enough,
the optical depth too limited, and the fact that the atoms will eventually fall because
the magneto-optical trap must be turned off during the memory operation. Moreover in
free-space light-matter interfaces, the collection of photons emitted from the memory may
be an additionnal trouble, especially in delayed single-photon generation experiments such
as the DLCZ protocol.
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These issues could potentially be more efficiently handled in a recently-proposed design
in which neutral atoms are loaded in a dipole trap in the vicinity of a nanofiber. A nanofiber
is an optical fiber which has been tapered down to a subwavelength diameter. If the angle
of the taper region is small enough, then the transition is adiabatic [170] and the fiber can
still guide the light even at very low diameters, but a significant fraction of the guided
power travels in the form of an evanescent field around the nanofiber. The evanescent field
in such systems has been used in various research applications, such as evanescent coupling
to and photon collection from microdevices [171]. Since the light in the evanescent field is
very tightly confined, its corresponding electric field is huge. Atoms located in its vicinity
will interact strongly with it, which means light-matter interfaces with high optical depth
can be realized. The evanescent field can also be used to hold the atoms for a long time
around the nanofiber by means of a suitably designed dipole trap. Following the initial
proposal by Balykin et al. [172] in 2004, two research teams, led by Arno Rauschenbeutel
in Mainz and Jeff Kimble in Caltech, started to develop such systems with the goal of
studying one-dimensional many-body physics or light-matter interaction at the quantum
level in cavity QED context. Motivated by the promises of such systems to realize high-
efficiency light-matter quantum interfaces, which has not been demonstrated heretofore,
our group started to investigate them around 2012.

Figure 4.1: SEM image of a nanofiber. On this picture, a nanofiber of diameter
∼ 400 nm lies on top of another fiber of larger diameter. Scanning electron microscopy
allowed to characterize the nanofibers by measureing their diameter at various positions.
Credits: UPMC.

In this chapter, we will describe the first steps we took towards this new plateform for
light-matter interfacing.

4.1 Nanofibers as a light-matter interface

It is a very remarkable feature that a waveguide can be made of a refractive structure
with dimensions smaller than the light wavelength. Yet, the field of nanofiber fabrication
and applications has been booming over the last decade (see for example [173] or [174] for
topical reviews). In this section, we introduce the concept of a nanofiber and describe how
the propagation of light in such structures can be utilized to create an efficient light-matter
interface based on dipole trapping and evanescent coupling.
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4.1.1 Light propagation in a nanofiber-based waveguide

This subsection describes the way light can be guided in nano-waveguides, i.e. waveguides
whose transverse dimensions (defined by the radius ρ) are smaller than the wavelength of
the guided light λ.

The description of light propagation is similar to that in standard step-index optical
fibers (figure 4.2). The standard theory of conventional optical waveguides is exposed in
details in [175]. The fiber is modeled as a medium with a core index nCo and a cladding
index nCl. Thus, the index profile of the waveguide is defined stepwise by: n(r) = nCo if
r < ρ and n(r) = nCl if r > ρ. In conventional fibers, both indices are very close to the
mean silica index. In a nanofiber, the cladding is replaced by the vacuum, so that nCl = 1
and nCo ∼ 1.5.

Figure 4.2: Sketch of a conventional fiber and a nanofiber with a transition region
inbetween. On the left, conventional fibers (for light at λ = 852 nm) are made of a ∼ 5.6 µm
diameter core surrounded by a 125 µm diameter cladding, both made out of silica. A very
small difference in their refraction indices nCo and nCl is enough to confine the light in the
core. The red bell-shaped curve shows how the guided light remains inside the core with
an moderate evanescent field extending through the cladding. On the right, the fiber has
been tapered into a nanofiber with a subwavelength diameter of 2R ∼ 400 nm. The silica
from the cladding fills the equivalent of the core, while vacuum provides the equivalent of
the cladding. Light is still guided in such a system, but due to the smaller core diameter,
a much larger proportion of the light energy now travels inside the evanescent part of the
field.

The electric field of a guided mode propagating towards increasing z values is expressed
as:

~E(r, θ, z, t) = ~e(r, θ)ei(ωt−βz) (4.1)

where the propagation constant β plays an analogous role to the wavevector k in vacuum
and must satisfy: knCl < β < knCo. Solving Maxwell’s equation in cylindrical coordinates,
the amplitude ~e can be separated in a radial part, which is given by combinations of Bessel
functions, and an azimuthal part which is a periodic function of θ. A major difference
with free-space modes such as the ones we manipulated in the previous chapter, is that the
guided modes have a non-vanishing component along the z direction, i.e. a longitudinal
component. This characteristic feature of beyond-paraxial-approximation beams has been
utilized very recently to engineer spin-orbit coupling in photons and directional light emis-
sion [176, 177]. Using an adimensional radial parameter R, this longitudinal component is
given by:

ez =
Jν(UR)

Jν(U)
fν(θ) for 0 < R < 1

ez =
Kν(WR)

Kν(W )
fν(θ) for R > 1

(4.2)
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where fν(θ) can be either cos(νθ) (so-called even modes) or sin(νθ) (odd modes), and where
Jν and Kν are respectively Bessel functions of the first kind and modified Bessel functions
of the second kind. The parameters U and W give the (inverse of the) characteristic length
in the transverse direction, and are given by:

R =
r

ρ
dimensionless radius

V = kρ
√

n2
Co − n2

Cl

U = ρ

√

(knCo)
2 − β2 inverse of the characteristic length in the core

W = ρ

√

β2 − (knCl)
2 inverse of the characteristic length in the cladding

(4.3)

Depending on the value of ν ∈ N in equation (4.2), three different kinds of modes can be
defined:

• For ν = 0 and if fν is a sine function, then the z component of the electric field
vanishes. These modes are called transverse electric modes or TE0m modes.

• For ν = 0 and if fν is a cosine function, then the z component of the magnetic field
vanishes. They are the transverse magnetic TM0m modes.

• For ν > 1, we have the so-called HEνm and EHνm hybrid modes.

The index 0 or ν ∈ N
∗ is related to the azimuthal dependence of the mode and the index

m ∈ N
∗ is related to the value of β. Indeed, β cannot be arbitrary: it is given by the

continuity equation for the θ component of the electric field. Depending on the value of
the V parameter, it may have several solutions, or a single one. In the case of a single-mode
fiber, which corresponds roughly to V < 2.405, there is only one possible β value, which
corresponds to the HE11 mode.

Interestingly, all the light energy does not propagate inside the core. The decay of the
electric field out of the cladding follows an exponential profile that can be approximated
by:

Kν(WR) ∼
√

π

2WR
e−WR as R → +∞ (4.4)

So if the nanofiber radius ρ is small enough, a significant proportion of the beam energy
can be located around the nanofiber in the form of an evanescent field.

It is this evanescent field that holds much promise for light-matter interfacing. Indeed,
light is tightly confined over large distances, yet a large part of its energy is located in
vacuum where it can be interfaced with neutral atoms. A very interesting proposal consists
in taking advantage of the different decay lengths 1/W of the different wavelengths to create
a two-color dipole trap that can hold atoms in the vicinity of the nanofiber for long times
while they remain adressable by another beam propagating inside the fiber.The principle
of the two-color dipole trap, first proposed by Balykin et al. [172] is briefly explained in
the next section.

4.1.2 A two-color dipole trap in the evanescent field of the nanofiber

The variation of the decay length 1/W with the wavelength cannot be seen directly from
equation (4.3) because the propagation parameter β itself is a non-trivial function of λ.
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Moreover, β is given by a transcendental equation and has thus no simple analytical form.
From numerically solving the equation for 1/W , one finds that it has the type of dependence
one would normally expect in such a case: shorter wavelengths decay more rapidly than
longer ones.

This allows for a very beautiful two-color trapping scheme first proposed by Balykin
et al. [172]. A red-detuned laser propagating inside the nanofiber creates a long-range at-
tractive dipole potential. To avoid atoms getting adsorbed on the surface, a phenomenon
which can be modeled by the inclusion of a Van der Waals potential (following an attrac-
tive short-range inverse-power law), a blue-detuned laser is added to the first one. Since
the “Blue” laser evanescent field decays more rapidly than the “Red” one, one can find a
combination of laser intensities that creates a repulsive potential barrier followed by an
attractive potential well. Cold atoms can thus be trapped in the vicinity of the nanofiber
by the Red laser, while adsorbing on the surface is prevented by the Blue one. Figure 4.3
shows a qualitative plot of the possible dipole potential.

Such an architecture offers a radial confinement of the atoms, and possibly an azimuthal
confinement if the polarizations of the red- and blue-detuned lasers are well chosen (linear
orthogonal). By employing two red-detuned beams, a standing wave is created in the
nanofiber, resulting in a periodic trapping potential along the z direction with individual
trapping sites separated by half a red wavelength.

Figure 4.3: Qualitative plot of the potential for a two-color dipole trap such as
proposed by Balykin et al. [172]. The red and blue curves give the dipole potential (square
of the electric field) of the red- (attractive) and blue- (repulsive) detuned lasers. The black
curve is a model of the Van Der Waals forces responsible for surface adsorption and the
total potential is shown in green.

Such trapping architectures have been realized recently in several research groups for
various purposes [178–180]. One early realization in such systems was that the dipole
potential led to inhomogeneous light shifts as briefly introduced in section 2.2.5. In par-
ticular, Le Kien et al. [181] realized that in general, the inhomogeneous light shifts caused
by the different trapping lasers will cause different magnetic sublevels |mF 〉 to be inho-
mogeneously shifted, as if under the influence of an external magnetic field gradient. For
quantum information applications such as EIT quantum memories introduced in chapter 2,
such inhomogeneous broadening mechanisms should be avoided. Schneeweiss et al. [182]
partially solved the issue by introducing a well-controlled external magnetic field in their
experimental setup.

Another solution, proposed by Le Kien et al. [183], is to make use of so-called “magic
wavelengths” for the red- and blue-detuned trapping beams, i.e. wavelengths for which the
light shifts exactly cancel. Not all neutral atoms can be trapped with magic wavelengths,
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but the case of 133Cs is a favorable one. This approach was endeavored by Kimble’s group
as reported in [179, 184]. The tabulated magic wavelengths are [183]:

λBlue ∼ 685 nm

λRed ∼ 935 nm
(4.5)

Due to its simplicity of principle, we decided to follow the magic-wavelength approach to
realize our own state insensitive dipole trap.

In addition, Lacroûte et al. [179] proposed to use parallel (instead of orthogonal) lin-
ear polarizations for the red- and blue-detuned lasers, arguing that this would lower the
requirements on the laser power for a given trapping potential depth. This however, would
lead to an increased light shift that is not compensated for by the magic wavelengths. To
overcome this additionnal shift, they propose to use yet another blue-detuned laser, prop-
agating in the opposite direction to the first blue-detuned laser. In order to avoid forming
a standing wave, slightly different frequencies (i.e. with ∆f in the tens of gigahertz range)
should be used for the two blue-detuned lasers.

Figure 4.4: Possible trapping schemes. (a) Trapping scheme by Le Kien et al. [181]
uses two Red lasers to create a standing wave and an orthogonally polarized Blue laser.
Wavelengths are arbitrary but a carefully controlled magnetic field is required to compen-
sate for differential light shifts. (b) Trapping scheme by Lacroûte et al. [179] uses two
identical-frequency Red lasers and two identically polarized, slightly detuned Blue lasers.
The usage of magic wavelengths guarantees a state-independant potential exempt of inho-
mogeneous differential light shifts. The goal of our group is to implement scheme (b) for
quantum memory applications.

This results in a total of four dipole trapping beams, all having the same linear po-
larization. Two counter-propagating identical-frequency red-detuned lasers at λ ∼ 935 nm
create an attractive standing-wave potential and two counter-propagating blue-detuned
lasers at λ ∼ 685 nm separated in frequency by a few tens of gigahertz produce a repulsive
shell around the nanofiber that prevents the atoms from adsorbing on the nanofiber and
compensate for light shifts. The required power is estimated to be about 2× 0.95 mW for
the red-detuned laser and about 2× 16 mW for the blue-detuned one [179] (from here on
labeled “Red” and “Blue”). Figure 4.4 shows the proposed laser configuration inside the
nanofiber.

The next sections will describe our experimental progress towards the realization of
such a nanofiber-based light-matter interface.

4.2 Setting up the experiment

4.2.1 Nanofiber fabrication

The first step towards the contruction of a nanofiber-based light-matter interface was to
develop our own nanofiber fabrication stage. We used the so-called flame pulling technique
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(which was reviewed recently by Ward et al. [185] and independantly by Hoffman et al.
[186]), which consists in tapering a standard optical fiber by holding it on top of a flame (so
as to bring it a little below silica metling temperature or ∼ 1100 ◦C) and pulling on it on
both sides. The elongation of the fiber due to the pulling and the matter conservation lead
to the production of a taper region of constant diameter (the length of which is determined
by the length of fiber which is exposed to the flame) connected to the untapered parts of
the fiber by exponentially narrowing profiles. The transmission is monitored in real time
and gives valuable information on where to stop the pulling process. Indeed, as the fiber
gets thinner and thinner with the pulling process, it comes to a point where it does not
satisfy the monomode condition anymore and multiple modes become populated. The
interference of the different modes as the propagation length is continuously changed gives
rise to a beating of characteristic frequency. At some point, the nanofiber region reaches
a new singlemode condition. The disappearance of the beating notes in the transmitted
power is thus a signature that the tapered region satisfies the singlemode condition once
again. If the angle of the tapered region is small enough [170], then the fundamental HE11

mode of the untapered region couples with high efficiency to the fundamental HE11 mode
of the subwavelength-diameter region. A very critical parameter for this process to be
successful is the absolute property of the fiber being elongated and of the whole pulling
unit. Indeed, a single speck of dust is enough to make the fiber burn if it comes in contact
with the evanescent field in the tapered region.

Baptiste Gouraud was in charge of this project, which resulted in the reliable production
of optical nanofibers with > 95% transmissions. SEM images recorded at UPMC, such
as shown in figure 4.1, confirmed that taper diameters on the order of 400 nm and taper
lengths of several millimeters were reached. All these results will be presented in much
greater details in Baptiste’s PhD dissertation.

The rest of this section describes the laser and vacuum setup developed for cold-atom
trapping.

4.2.2 Preparing the free-space MOT

The first step was to prepare a free-space MOT similar to the one that was presented in
section 2.3. It is intended to provide the cold-atom source required to load the future
dipole trap.

The design was basically the same with a few upgrades allowing for a greater ease-of-
use and reproducibility. The atomic levels and corresponding laser frequencies used for the
MOT generation are identical to the ones that were presented in figure 2.6. Here follows a
list of the main changes in the laser and vacuum system design.

We resorted to commercial versions of the interference-filter-based extended cavity
diode lasers developed at the SYRTE [136] 1. As in the previous implementation, they are
stabilized by saturated absorption spectroscopy. For a greater stability and reliability of
the MOT laser system, we are currently looking to replace the analogue lock-in-amplifiers
for the laser frequency stabilization by digital locking loops with auto-relock function.
Olivier Morin, Anna Lejeannic and Kun Huang have made signigicant progress towards
such an end.

A noteworthy change in the optical layout of the lasers was the systematic inclusion of
double-pass acousto-optic modulators (AOM) for the laser timing, and the inclusion

1Commercialized by Radian Dyes and Laserlabs.
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of a more versatile control electronics. Double-passing instead of single-passing the
AOM necessarily decreases the overall diffraction efficiency 2, but is also allows to shift
the laser frequency without the need to re-align the setup. These changes should permit
to have a direct computer control of the laser detunings. Also in constast with the
previous design, the MOT beam collimators and retro-reflectors have been fixed directly
on the vacuum chamber in order to optimize space and reduce mechanical vibrations.

Figure 4.5: Vacuum system plan and setup under construction. (a) Plan of the
(floor-level of the) vacuum system. The MOT chamber itself (not displayed) is fixed above
the plane of the drawing. (b) picture of the system during construction. Part of the laser
table for the free-space MOT generation is visible in the foreground. Behind it, the vacuum
chamber is still partially covered in its protective covers. Two MOT collimators and their
associated retroreflectors are attached to the chamber. They are fed by polarization-
maintaining optical fibers coming from the laser table. Behind the black curtain lies the
nanofiber fabrication stage.

Least, we dropped the all-glass chamber design and switched back to a more classical
metallic vacuum chamber with detachable glass windows. This allows to have a more
direct access to the core of the chamber in order to install the nanofiber inside of it. We

2Still, we achieved overall efficiencies ranging from about 50% to up to 75% depending on the mode
quality at the output of the diode. Even if the diode outputs have been reshaped using anamorphic prisms
and cylindrical lenses, some diodes just have lower-quality output spatial modes than others.
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use the same 40 L/s ion pump3 as in the previous experiment. The cesium atoms are
provided by the same dispensers by SAES Getters. As we expect that we may need to
open the chamber on a more regular basis than in the previous experiment (to replace the
nanofiber), we installed a three-way airlock allowing to connect the chamber alternatively
to a clean nitrogen source for venting, a turbo pump for mid-vacuum generation or only
to the ion pump. The plans for this vacuum system and a picture of the early stages of its
construction are shown in figure 4.5.

Laser diodes for the dipole trap. The Red and Blue light beams for the dipole trap
are provided by three DL100 pro diode lasers by TOPTICA. They are labeled A, B and C.
Without wavelength tuning, diode A provides ∼ 76 mW of Red light at 936.75 nm, diode
B provides ∼ 16.5 mW of Blue light at 686.16 nm and diode C ∼ 21.7 mW of Blue light
at 686.12 nm, as summarized in table 4.1.

Laser diode Available power (mW) Wavelength (nm)
A (Red) 76 936.75
B (Blue) 16.5 686.16
C (Blue’) 21.7 686.12

Table 4.1: Power and wavelength of the free-running laser sources for the magic
wavelength dipole trap.

However, the first experimental demonstrations did not involve the dipole trap yet.
They will be presented in the next subsection.

4.2.3 MOT-nanofiber interfacing.

The second milestone in this long-term project was the insertion of a low-loss subwavelength-
diameter optical fiber inside the vacuum chamber and its first interfacing with the magneto-
optical trap.

Insertion of the nanofiber in the vacuum chamber. The position of the nanofiber
in the vacuum chamber is schematized in figure 4.6. Inserting the nanofiber in its final
position requires to open the large lateral window and to insert the two ends of the nanofiber
through ultra-high vacuum compatible feedthrouhgs.

The nanofiber fabrication and the MOT chamber opening are done in parallel. An
extreme level of cleanliness is required. Since the fiber is to be inserted in an ultra-high
vacuum (UHV) environment, it is cleaned several times with propanol over the entire
length that is to be inserted in vacuuum. The fiber transmission is monitored continuously
throughout the various stages of the procedure. To this end, the piece of fiber being
tapered4 is connectorized at both ends with universal bare fiber terminators and ceramic
ferrules5. On each side of the few-centimeter-long part which is used for the tapering, one
meter of bare fiber length is cleaned and reserved for later insertion in vacuum. From
one side, a 780 nm wavelength laser6 is injected into the fiber while it is detected by a

3Equipped with the same µ-metal shielding.
4SM800, core diameter 5.6 µm, cladding diameter 125 µm by Thorlabs
5BFTU and Senki FC/PC 126 µm, 3 mm Single Mode Connector by Thorlabs.
6S1FC780PM by Thorlabs.
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commercial photodiode on the other side. During the tapering process, the measurement of
this probe light gives information relative to both the overall transmission of the nanofiber
(regardless of the light wavelength) and to its diameter (through the observation of mode
beating).

After the tapering is complete, the flame used in this process is removed and the
fiber is glued on a steel holder using a low degasing (UHV compatible) glue. The glue
is fixed by UV illumination. Then, the fiber and its holder are moved into the vacuum
chamber. Extreme care must be taken during this step in order to avoid breaking the fiber
or contaminating it with dust. Transmission is still being recorded. The lose ends of the
fiber (still attached to the laser source and photodiode for transmission monitoring) need
to be fed through UHV airtight feedthroughs to the exterior of the chamber. Home-made
bored cone-shaped Teflon feedthroughs were designed at the lab in teamwork with Kevin
Makles from the group of Antoine Heidmann. The fiber is fed through the hole in the
middle of the cone, which is then screwed on a UHV flange with a Swagelok nut. The
tightening of the Swagelok nut compresses the Teflon feedthrough in such a way that the
ensemble becomes completely airtight. This method has been tested with a helium leak
detector and was found robust down to the limit sensitivity of the detector (roughly below
10−10 Torr).

Figure 4.6: Drawing of the nanofiber inside the vacuum chamber. The nanofiber
passes through two home-made Teflon feedthroughs able to maintain a vacuum below 10−9

Torr. It is glued on a steel-made holder with UHV compatible glue. It makes a 15◦ angle
with the axis of the vacuum chamber. A control beam for EIT or DLCZ experiments will
be injected in the chamber along this axis. The MOT is superposed with the subwavelength
part of the nanofiber in the middle of the chamber. The pictures on the right show the
feedthroughs used to fit the nanofiber inside the vacuum chamber. Bottom: home-made
Teflon cone with a 130 µm diameter hole, and swagelok nut. Top: Whole assembly with
the nanofiber inserted in the chamber.

At this point, it becomes necessary to remove the bare-fiber terminator and ferrule
from the fiber lose end in order to feed it through the UHV flange. Since we do not have a
sufficient precision to guarantee that a fiber coupling will remain identical after removing
and re-installing its detachable ferrule, we first remove the ferrule on the side which is
connected to the photodiode7. A UHV-clean Teflon pipe was used to guide the fiber lose
end through the UHV flange before it is inserted in the Teflon feedthrough. Then, the

7The photodiode alignment is far less sensitive than a fiber-to-fiber coupling as on the side of the light
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fiber end is re-functionalized with a fiber connector and we check the power transmission
before tightening the swagelok nut. This way, we check that this step, which necessarily
induces some mechanical strain on the fiber, does not degrade its overall transmission.
In a last step, we repeat this operation on the other lose end of the fiber (the one that
is connected to the monitoring light source). Disconnecting and reconnecting it is the
largest source of uncertainty in our fiber insertion protocol. Even with this uncertainty,
an overall transmission over 95% was achieved, the reference for 100% transmission being
taken before the tapering process started.

This fiber has been in the vacuum chamber for five months now, and has been succes-
fully interfaced with the cold atom cloud as will now be presented.

Collection of the MOT fluorescence into the nanofiber. In a first time, the MOT
was superimposed on the tapered part of the fiber by playing with the fine alignment knobs
of the MOT beams and on the coil current offset while monitoring the MOT position with a
camera. By turning on and off the MOT beams and recording the transmitted power in the
nanofiber in the absence of other light sources, we could measure that a small fraction of
the MOT scattered light was collected in the nanofiber. Optimizing this MOT fluorescence
collection is thus a good way to maximize the overlap of the MOT with the nanofiber.

Figure 4.7: An early image of the MOT inside the nanofiber chamber.

In-fiber optical density measurements. In a second time, by turning off the MOT
trapping beams and magnetic field in a similar fashion as in the previous experiment
(chapters 2 and 3) and by sending a resonant probe beam on the |F = 4〉 → |F ′ = 4〉
transition, an optical depth of a few units has been measured. A major difference with the
previous experiment however, was that the power of the probe had to to be much weaker
for this measurement. Several phenomena contribute to this difference. First, the light
being so tightly confined in the vicinity of the nanofiber, the electric field and hence the
light-matter coupling strength for a given optical power is much higher (as a comparison,
the signal path in the previous experiment had a 50 µm radius while the field in the present
experiment is concentrated in a small fraction of a micrometer). Also because the field
is concentrated over very small regions, less atoms are present in the interaction zone for
an identical atomic density. Standard commercial photodiodes did not have the required
combination of dynamic range and response time, so we used a custom-design fast and
amplified photodiode by our electronic facility.

Typical values of optical depth around d0 ∼ 5 ± 1 were measured routinely. This is
still low enough to allow for direct on-resonance measurements on the signal transition
|F = 4〉 → |F ′ = 4〉, at the further expense of the probe beam power (because using a
non-cycling transition means we need to use very little power in order to avoid population

source injection.
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transfer mechanisms). This OD value is still much lower than in the previous experiment
(chapters 2 and 3), but let us underline that this was measured in the absence of further
(Sisyphus) cooling mechanism and without loading the dipole trap (d0 ∼ 100 is targeted).
We expect this figure of merit to increase to much higher values when we will load the
dipole trap. Still this is enough to perform a proof-of-principle that the system is well
suited for the implementation of a light-matter interface at the quantum level.

Before presenting the very first EIT results and the quantum interfacing of the nanofiber
with the atoms, the next section will describe an important aspect of the still-to-be-
completed dipole trapping scheme: the separation of the single-photon level signal from
the milliwatt-level dipole-trap light.

4.3 Spectral filtering

4.3.1 Position of the problem and possible solutions

In this experiment, the signal light at 852 nm will ultimately propagate in the nanofiber
together with the intense light at 685 nm and 935 nm that generate the dipole trap. Since
we will want to detect single-photon signal pulses, it is crucial to be able to separate it from
the dipole trap wavelengths with an amazingly high extinction ratio. Indeed, as indicated
in section 4.1.2, up to about fifteen milliwatts of dipole trap light will be sent through the
fiber.

In the free-space experiment for comparison, the main source of background noise
was the leakage of a tiny fraction of the fifteen microwatt control beam. Although the
wavelengths of the signal and noise were much closer in this case, the angular separation
of the beams and some polarization filtering were enough to keep the induced noise at a
reasonable level.

To get an idea of the orders of magnitude, a power P = 15 mW of light at λ = 685 nm
represents a flux of N = Pλ/(hc) ∼ 5× 1016 photons per second. For ∼ 1 mW of the Red
magic light, we get about one order of magnitude less. So if we target about the same
noise level as in the previous experiment, we need an attenuation factor on the order of
140 dB.

To reach such a high attenuation (for which a standard dielectric dichroic mirror would
be pointless) several solutions have been considered:

• Volume Bragg Gratings (VGB). Also referenced by [179], these volume holo-
grams have been specially developped by Optigrate to achieve a very narrow high
reflectivity window centered arround 852 nm, while other wavelengths are transmit-
ted – allowing to combine the signal with the trapping light. The rejection of the
undesired wavelengths is on the order of 70 to 90 dB. For a review on VBG, see
[187].

• Interference filters (IF) are another commercially available solution providing a
narrow high transmission window arround 852 nm and up to 60 dB of broadband
attenuation elsewhere. They are also less sensitive to the angle of incidence but do
not allow for a simple design to combine signal and dipole-trap beams.

• Fiber Bragg Gratings (FBG). Bragg gratings inscribed in fiber components were
an attractive option because they held the promise of integration in a completely
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fibered device. However, their performances are limited by the quality of the circula-
tors they have to be used in conjunction with. At 852 nm, the commercially available
circulators could not compete with either of the two previous solutions. The cross
talk of the circulator itself would have limited the attenuation of the unwanted wave-
lengths to less than 40 dB.

So in our experiment, we chose to work with a combination of volume Bragg gratings
(see figure 4.8) and interference filters.

Figure 4.8: Picture of a VBG in its holder. The active area is 5 mm× 7 mm wide and
the grating is 8 mm thick. Specified input and output angles are respectively 2 ± 1◦ and
−8± 1◦.

4.3.2 Alignment and characterization of the filtering setup

In figure 4.9, we show a schematic view of the filtering setup (an alternative version using
one VBG and one IF is shown in figure 4.10). The alignment is done as follows.

In a first stage, the light coming from the nanofiber collimator is matched to the first
VBG with a pair of ultrabroadband mirrors. The angle of the first VBG is carefully
adjusted while monitoring the transmission of light at 852 nm. It is finely tuned until min-
imum transmission is reached. It is checked that both magic wavelengths are transmitted
and that “close to nothing” of them is reflected (the reflected power at these wavelengths is
out of the reach of a standard lab powermeter). In addition to the angle of incidence, the
wavefront’s flatness is a crucial parameter. The second VBG is aligned following the same
procedure as the first. The power efficiency of the combined two VBG is around 93%.

In a second stage, the filtered signal is coupled into a fiber with another pair of mirrors.
In the first implementation, the fiber coupling efficiency was limited to ∼ 36% due to an
imperfect mode matching. This is expected to be improved significantly as soon as we will
make use of a more adequate lensing system at fiber output. The filtering quality of the
setup is then measured by monitoring the power in this signal fiber when injecting Red
and Blue magic light from the nanofiber collimator.

For a first test, the light was detected with a highly sensitive photodetector (Thorlabs
PDF10A) which has a sensitivity of 0.6 V/pW over a wide wavelength range. Doing the
test with 4 mW of either wavelength, the leakage was below the detector’s sensitivity. So
the precision was limited by the noise measured on the oscilloscope in the absence of light:
about 20 mV which corresponds to a maximum power of 30 fW. This means that the
achieved filtering is better than 110 dB at both magic wavelengths.
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Figure 4.9: The spectral filtering setup using VBG only. The first VBG reflects
only the light at 852 nm and transmits the Red and Blue magic wavelengths. A second
VBG enhances the attenuation of the Red and Blue light in the signal path. The tight
angle in the beam direction (∼ 10◦) is imposed by the design of the VBG. The signal
collimator collects the filtered light at 852 nm. Behind the first VBG, a dichroic mirror
(HR@685+HT@935) separates the Red and Blue light. Of course, this works in both
directions and so it allows both to inject the Red and Blue magic light as well as a probe
into the nanofiber, and to separate the probe from the beams being injected into or leaving
the nanofiber.

In order to measure the real filtering quality of the setup, a further characterization
has been performed with an avalanche photodiode, yielding attenuation factors around
128 dB at 685 nm and 120 dB at 935 nm. This is close to but a little lower than the target
values. It should be noted that this measurement was done with a coarse filtering of the
background emission of the laser diodes A, B and C (see next section), so it gives only
a lower bound to the real attenuation factor. We expect that if we properly remove the
diode laser background emission, then the targeted attenuation factor of 140 dB will be
reached.

Apart from the improvement of the suppression of the laser diode’s background emis-
sion, efforts to reach the desired filtering level can include a perfecting of the phasefront’s
planeity and the addition of an IF after the VBG.

In a third stage, a dichroic mirror8 is installed after the first VBG to separate the Red
and Blue light beams (which are still being injected from the nanofiber collimator). Each
one of them is coupled into its specific collimator. We measured the VBG’s transmission
to be 72% for the Blue and 94% for the Red. The dichroic mirror causes neglectible losses
on both beams (< 0.5% on Blue and ∼ 1.5% on Red).

In a last step, we reverse the direction of light propagation and inject the Red and Blue
light from their respective collimators into the nanofiber collimator. Thus, it is checked
that the injection of the trapping light into the nanofiber can be efficiently done with
this setup as expected from time reversal symmetry of the previous alignment procedure.
Indeed, within a few percents uncertainty, the coupling is the same in both directions,
namely ∼ 40% for the Blue and ∼ 50% for the Red. These values include the limited
transmission of the VBG.

The interference filters have been tested in a simpler setup. The IF was simply put
between a photodetector and a collimated laser beam emerging from an optical fiber. The
transmission of the IF at 852 nm was found to be above 96%. Their measured isolation
was above 53 dB at 935 nm and 57 dB at 685 nm, but this was measured without a proper
filtering of the diode background emission.

8Custom design by Altechna.
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Figure 4.10: Alternative spectral filtering setup using one VBG and one IF.

4.3.3 Leakage due to the background emission of the Red magic diode

While following the alignment procedure described in the previous section, it was noticed
that the laser diode at the Red magic wavelength has a relatively high level of background
emission at 852 nm (see figure 4.11).

Our first filtering measurements showed a leakage of ∼ 0.25 pW per milliwatt of Red
light through the pair of VBG units. The corresponding attenuation was below 95 dB which
is clearly not enough. Inserting an IF in the filtering path didn’t change the attenuation
which tended to indicate that this leakeage was close to 852 nm.

We first feared that anti-Stokes scattering in the fibers might be involved. However,
the orders of magnitude are incompatible with the amount of observed leakage. Typical
anti-Stokes scattering power is 40 pW per kilometer of fiber at 500 mW pump power. With
an excitation power 50 times lower and three orders of magnitude less in the fiber length,
the fraction of picowatt we observed could not be explained by anti-Stokes scattering.

Figure 4.11: Emission spectrum of laser diode A providing the trapping light at the
Red magic wavelength (685 nm). Reproduced from the factory test sheet by TOPTICA.
Although spontaneous emission around 852 nm is expected to be extremely reduced (maybe
about 60 dB lower than the laser emission), we still detected parasitic light when spectrally
filtering very sharply around 852 nm. The addition of a dichroic mirror at the output of
the diode removed most of this parasitic light.
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Filtering the output of the Red laser diode with a standard dichroic mirror (R >
99%@852 nm, T > 85%@917 nm) allowed us to remove most of the parasitic sponta-
neous emission at 852 nm – and confirmed the origin of the residual leakage! With this
purification, we performed the measurements reported in the previous section

We expect that the figure of merit of the filtering setup can be improved by a better
purification of the outputs of the magic laser diodes, such as can be done with narrower
and higher attenuation filters.

4.3.4 Spectral filtering setup: a short summary

Let us summarize in a few key numbers the outcomes of the testing of the filtering setup
of figure 4.9.

Attenuation by two VBG
along the signal path

Wavelength (nm) Target (dB) Measured (dB)
685 (Blue) 140 128
935 (Red) 130 124

852 (signal) 0 0.3

Efficiency of the injection
into the nanofiber

Wavelength (nm) VBG losses Overall injection efficiency
685 (Blue) 72 % ∼ 40%

935 (Red) 94 % ∼ 50%

IF transmission properties

Wavelength (nm) Transmission
685 (Blue) −57 dB

935 (Red) −53 dB

852 (signal) > 96%

As a summary of this section, our filtering setup is almost up to the specifications.
With the minor improvements proposed, it should enable operation at the single-
photon level. It has also reveald to us the importance of filtering the magic diode
background emission.
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4.4 Recent progress and towards optical quantum memories

When I left the lab to start writing this manuscript, we had gone as far as taking the first
OD measurements without dipole trap. In this last section, I would like to acknowledge
the milestones that Baptiste Gouraud, Dominik Maxein and Olivier Morin have reached
since then.

The subsequent measurements were done by directly interfacing the MOT with
the nanofiber as done in section 4.2.3 without turning the dipole trap on. Yet,
they prove that the setup is suitable for performing of interesting tasks in the
quantum realm.

• Magnetic field measurements. The same microwave generator and an-
tenna as in section 2.3.2 were used to probe the magnetic field seen by the
atoms. A similar set of compensation coils and a controlled current source
were built in order to cancel the remaining magnetic fields. For reasons
that still need to be elucidated, the best magnetic field cancellation shows a
spread of ±50 kHz, which leads to expect a magnetic field induced memory
decay time of τm = 30 µs from section 2.2.5.

• Polarization control inside the nanofiber. Even with all the precau-
tions taken in the fabrication and vacuum insertion of the nanofiber, some
imperfections remain, in the form of dipole scattering sites at the surface of
the fiber. Yet, these defects can be utilized to probe the polarization of the
light inside the nanofiber as proposed by Vetsch et al. [188], by looking at
the light they scatter through a polarizer. This technique allowed to control
the polarization of signal probe beam inside the nanofiber.

• EIT in the nanofiber. An external control beam has been added as
foreseen in figure 4.6, making a 15◦ angle with the nanofiber axis. An EIT
effect reaching a 35% transparency has been measured by using the same
laser beams and the same optical phase-and-frequency lock as in section 2.3.

• First quantum memory signal in the single-photon regime. Follow-
ing the first EIT measurements with classical beams, the quantum memory
protocol was implemented with signal pulses at the single-photon level. To
get rid of the contamination by the control (even though α ∼ 15◦ !), the
usage of an atomic filter cell was necessary to isolate the low-photon num-
ber signal. The first memory experiments show a typical efficiency on the
order of η ∼ 5%, which is currently limited by the low optical depth. In-
deed, most of the signal leaks out of the memory before being stopped, as
discussed in section 2.2.1. Going to lower temperatures and loading the
dipole trap should open the way to higher-performance quantum memory
applications.

These recent achievements prove the in-principle feasibility of a quantum light-matter
interface with the system we developed.
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4.5 Conclusion

In this chapter, we have introduced our new setup for a nanofiber-based quan-
tum interface. The principle of a two-color dipole trap and its usage for
fibered quantum information tasks were schematically explained. Our experi-
mental progress have shown that we can interface a nanofiber waveguide with a
cold atom cloud down to the quantum regime and a quantum memory effect has
now been observed, which remains to be improved.
When the full setup will be put together (including the dipole trap), we expect
that the figures of merit of this new interface will exceed that of the previous
(free-space) implementation. As an important step towards this goal, we have
presented the characterization of the filtering setup enabling to isolate the single-
photon level quantum signal from the intense dipole trap light.

The group’s efforts are currently focused on the possibility to use the nanofiber
interface to store and recall heralded single photons emitted from the free space
MOT, and to implement the DLCZ protocol inside the nanofiber, making it an
intrinsically fibered single-photon source.
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Conclusion

So we have come to the end of this journey through optical quantum memories, light orbital
angular momentum and nanowaveguide-coupled light-matter interfaces.

The foregoing pages have given an introduction to quantum memories and their place
within quantum information research. They have included a basic theoretical description of
electromagnetically induced transparency in cold atomic ensembles, and its experimental
implementation in our lab. The quantum memory resulting from this implementation
was benchmarked and compared to the model predictions. Special emphasis was put on
the memory efficiency η and lifetime τm. The experimental tools to fight against known
decoherence mechanisms (thermal motion and magnetic field inhomogeneities) have been
presented in detail. We have also detailed the spatial multimode capability of our quantum
memory. For this, the Laguerre-Gaussian modes and the associated concept of light orbital
angular momentum have been introduced, as well as the method for manipulating them
in the lab. A complex detection setup was designed and characterized in order to realize
the full quantum tomography of orbital-angular-momentum-encoded qubits. This brings
us to what is probably the main result of this thesis:

The (first) quantum storage of a quantum bit encoded in the orbital
angular momentum state of a weak light pulse at the single-photon
level. The memory was implemented using the EIT protocol in a cold atomic
ensemble. Measured storage parameters include the efficiency η ∼ 15 ± 2%, the
storage lifetime τm ∼ 15 µs, and the qubit fidelity after storage (without noise
correction) F ∼ 92± 1%.

At last, we introduced a new class of light-matter interfaces based on the trapping of
cold atomic ensembles around nanofibers. Our experimental progress towards the construc-
tion and full operation of such a device has been reported, including the characterization of
the setup required to separate the single-photon level signal from the yet-to-be-completed
two-color dipole trap. First measurements of the atomic cloud optical density using a
probe beam propagating inside the nanofiber yield promising perspectives for future quan-
tum memory implementations.

Recent achievements and reasonable prospects for a foreseeable future include:

• The increase of the free-space memory efficiency η by switching to a Raman configu-
ration. Experiments with a signal detuning of δ ∼ 2×Γ(2π × 10 MHz) have already
shown a memory increase to η ∼ 25± 2%.

• The inclusion of better cooling mechanisms and the construction of a lower-temperature,
higher-density magneto-optical trap will be the next steps. Memory times on the or-
der of hundreds of microseconds should then get within range.
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• The storage of other kinds of complex modes such as polarization-OAM hybrid modes
is about to be demonstrated soon, while using the higher-efficiency Raman memory
configuration.

• The possible scaling of the number of stored orbital angular photonic modes in the
memory could be considered afterwards. The current atomic cloud is expected to be
able to support several dozens of modes without efficiency loss.

• The further development of the nanofiber-based interface, in particular the inclusion
of the fiber-embeded two-color dipole trap, and the demonstration of the system
quantum-information-relevant capabilities. Preliminary results have already shown
a quantum memory effect with an efficiency (η ∼ 5 ± 1%) limited by the currently
low optical depth.

The results obtained within this thesis add another tile to the road of quantum infor-
mation science and technology. While we are still far from meeting the performances that
would make a quantum memory useful in a realistic quantum communication scenario,
they participate in extending the level of control we have over nature, and in suggesting
that quantum-related technologies haven’t reached their limit yet. As a former reader of
Alice in Quantumland [3] and long-time sci-fi fan, I am happy to have been able to get
(modestly) involved in this fascinating (though not magical) scientific adventure. It will
continue long after I’ll have left the group, here at Laboratoire Kastler Brossel and in many
other places around the world.
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Appendix A

Appendix

A.1 Derivation of the EIT linear susceptibility

The aim of this appendix is to justify the expression of the linear susceptibility in an EIT
medium given in equation (2.2).

A.1.1 Model

Let us first present in details the model underlying the calculation.

We consider a single atom in a three-level Λ scheme as depicted in figure A.1. The atom
interacts with a control field at angular frequency ωc on the |s〉 ↔ |e〉 transition and with
a signal field at angular frequency ω on the |g〉 ↔ |e〉 transition. 1 The atom is treated
quantum mechanically in the basis {|g〉, |s〉, |e〉 }. The light is described classically by the
electric fields:

~Ec = ~Ec0e
iωct (control)

~Es = ~Es0e
iωt (signal)

(A.1)

For simplicity, the control field is assumed to be on resonance, which means ~ωc =
~ωse = E|e〉 − E|s〉. The signal has a detuning δ defined by: ω = ωge + δ where ~ωge =
E|e〉 − E|g〉.

We neglect any dephasing mechanism other than the one resulting from the decay of
state |e〉. In particular, we neglect the homogeneous dephasing between levels |s〉 and |g〉.

In our experiments, we use 133Cs atoms
with |g〉 =|F = 4〉, |s〉 =|F = 3〉, and
|e〉 =|F ′ = 4〉 on the D2 line so we have
Γeg/Γes ∼ 1.09 [134].

The decay rate Γ of the excited state results
from the contributions of the decay rates
in both channels |e〉 → |g〉 and |e〉 → |s〉:
Γ = Γeg +Γes. The relative strength of the
two decay rates is given by the square of
the ratio of the dipole matrix elements of
the transitions.

The free atomic hamiltonian in Schrödinger picture in the {|g〉, |s〉, |e〉 } basis is given
by:

1Because we are concerned with the application of EIT to quantum memory systems, we use the “control”
and “signal” terminology from the quantum memory background, which are more commonly refered to as
“control” and “probe” in the EIT community.
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Figure A.1: Energy levels and light fields involved in EIT. The atom is initially in
state |g〉. It interacts with a signal field of Rabi frequency Ωs and of frequency ω close to
resonance with the |g〉 ↔ |e〉 transition, and with a control field of Rabi frequency Ωc and
of frequency ωc at resonance with the |s〉 ↔ |e〉 transition (detuning δ). Excited state |e〉
decays spontaneously into states |s〉 and |g〉 at rates Γes and Γeg.

Ĥ0 = ~





0 0 0
0 ωge − ωse 0
0 0 ωge



 (A.2)

The energy reference is level |g〉. Levels |s〉 and |e〉 have phases oscillating respectively in
the microwave and optical frequency ranges.

The coupling between the light fields and the atom is given by the dipole interaction

V̂ = − ~̂d · ~E, where ~̂d is the atomic electric dipole moment operator. In our model, this
translates into:

V̂ (t) =− ~Ec0 · ~des cos(ωct) (|e〉〈s|+ |s〉〈e|)
− ~Es0 · ~deg cos(ωt) (|e〉〈g|+ |g〉〈e|)

(A.3)

Using the real expression of the electric fields will allow us to detail the rotating wave
approximation in the next section. We merge the dipole strength and the electric field
amplitude in a single quantity, the Rabi (angular) frequency defined by:

Ωc = −
~Ec0 · ~des

~

Ωs = −
~Es0 · ~deg

~

(A.4)

These quantities depend on the polarization of the electric fields and on the spin ori-
entation of the atoms in the levels |g〉, |s〉 and |e〉.

Our aim is to find how the atomic medium reacts to the signal field. This is described
by the susceptibility χ, defined at the linear order as the proportionality coefficient between
the applied signal field ~Es and the resulting atomic polarization ~P :

~P = ǫ0χ~Es (A.5)

If the atom is described by its density matrix ρ̂ with a dipole element ρeg coupled to
the signal field ~Es, then the polarization per atom will be given by:
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~P = ~degρeg (A.6)

Once χ will be known, the propagation of the signal wave will be deduced from the
modified d’Alembert equation (2.1). So all we need to do is to compute coherence term
ρeg of the atomic density matrix.

A.1.2 Derivation of the expression of the linear susceptibility

With the elements introduced in the previous section, the computation of the linear sus-
ceptibility will consist in the following steps:

• writing down the full atomic hamiltonian in the rotating frame and proceeding to
the rotating wave approximation (RWA).

• Writing down the master equation for the atomic density matrix ρ̂ in the rotating
frame in the basis {|g〉, |s〉, |e〉 } (this includes the calculation of the commutator
of the density matrix with the hamiltonian and the addition of the Lindblad deco-
herence terms). This will yield a set of coupled differential equation for the various
components of the density matrix.

• Then, assuming that the signal acts a small perturbation on the initial density matrix
ρ̂ = |g〉〈g|, a pair of coupled equations involving the coherences ρsg and ρeg are
extracted from the steady-state condition to this differential system.

• The expression of ρeg resulting from it then gives the desired linear susceptibility.

The full atomic hamiltonian is given from equations (A.2) and (A.3):

Ĥ = ~





0 0 0
0 ωge − ωse 0
0 0 ωge



+ ~Ωc cos(ωct)





0 0 0
0 0 1
0 1 0



+ ~Ωs cos(ωt)





0 0 1
0 0 0
1 0 0



 (A.7)

Moving to the rotating frame, i.e. to the frame rotating at the frequency imposed by
the optical fields ~Es and ~Ec, is done by multiplying the atomic state vector by the operator

Û(t) = exp(i





0 0 0
0 ω − ωes 0
0 0 ω



 t). Writing the Schrödinger equation for the rotating state

vector gives the expression of the hamiltonian in the rotating frame:

Ĥrot = i~∂tÛ(t) + Û(t)Ĥ0Û
†(t) + ~Ωc cos(ωct)Û(t)





0 0 0
0 0 1
0 1 0



 Û †(t)

+ ~Ωs cos(ωt)Û(t)





0 0 1
0 0 0
1 0 0



 Û †(t)

(A.8)

Next, the rotating wave approximation (RWA) is applied. It consists in developping the
cosines, computing the matrix products, and neglecting the fast oscillating terms in front
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of the slow (constant) ones. Thus, only the positive frequency part of the light couples to
the desexcitation terms:

ĤRWA = −~δ





0 0 0
0 1 0
0 0 1



+
1

2
~Ωc





0 0 0
0 0 1
0 1 0



+
1

2
~Ωs





0 0 1
0 0 0
1 0 0



 (A.9)

The density matrix in the rotating frame is denoted ρ̂. Its evolution is governed by the
Lindblad equation:

∂tρ̂ =
1

i~

[

ĤRWA,ρ̂
]

+
Γeg

2
(2|g〉〈e|ρ|e〉|g〉 − |e〉〈e|ρ− ρ|e〉〈e|)

+
Γes

2
(2|s〉〈e|ρ|e〉|s〉 − |e〉〈e|ρ− ρ|e〉〈e|)

(A.10)

Computing all the terms in the equation thereabove yields the following optical Bloch
equations:

∂tρgg = − i

2
Ωs(ρeg − ρge) + Γegρee

∂tρss = − i

2
Ωc(ρes − ρse) + Γesρee

∂tρee =
i

2
Ωc(ρes − ρse) +

i

2
Ωs(ρeg − ρge)− Γρee

∂tρgs = −iδρgs +
i

2
Ωcρge −

i

2
Ωsρes

∂tρge = −iδρge +
i

2
Ωcρgs −

i

2
Ωs(ρee − ρgg) +

Γ

2
ρge

∂tρse = − i

2
Ωc(ρee − ρss)−

i

2
Ωsρsg +

Γ

2
ρse

(A.11)

Interestingly, the relaxation does not appear in the equation governing the coherence
between the two ground levels ρgs. Of coures, it was a choice on our part not to include
a specific γgs dephasing term, but although the coupling between levels |g〉 and |s〉 is
mediated by a transition via the excited level |e〉, there is no influence of the relaxation
experienced by |e〉. The susceptibility is found by looking for a perturbative steady state
solution to the optical Bloch equations. The zero order density matrix is assumed to be
ρ ∼ ρgg|g〉〈g|. Terms of order one are the signal’s (angular) Rabi frequency Ωs as well as
all other density matrix coefficients.

With this assumption, the steady state condition for ρgs and ρge gives a linear set of
equations:

0 = −iδρgs +
i

2
Ωcρge

0 = −iδρge +
i

2
Ωcρgs +

i

2
Ωs −

Γ

2
ρge

(A.12)

From which the coherence term ρeg can be extracted as desired:

ρeg =
i
2δΩs

(

iδ2 − Ω2
c

4

)

+ Γδ
2

(A.13)
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Then, recalling equations (A.5) and (A.6), the susceptibility (per atom) is expressed
as:

χ(δ) =
d2eg
2ǫ0~

iδ

i
(

δ2 − Ω2
c

4

)

+ δΓ
2

(A.14)

The properties resulting from this expression will be examined in section A.2, but let’s
first give a dictionary to translate the notations of this manuscript into other author’s
notations.

A.1.3 Comparison with notation systems from other works

In order to facilitate the comparison with different articles cited in the bibliography, I give
here the correspondance with the notations of different authors.

Fleischhauer et al. [130] This manuscript
γ12 0

∆1 , ∆ −δ

δ −δ

∆2 0
γ13 Γ

Ωp Ωs

Table A.1: Correspondance with the notations used in [130]

Anisimov and Kocharovskaya [189] This manuscript
∆ 0
α Ωs/2

Ω Ωc/2

γab Γ/2

Γbc 0

Table A.2: Correspondance with the notations used in [189]

Scherman [86], Mishina et al. [124] This manuscript
∆s δ

Ωc
se Ωc

Ωs
ge Ωs

γsg 0
γeg Γ/2

∆c 0

Table A.3: Correspondance with the notations used in [86, 124]
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A.2 EIT linear susceptibility: from EIT to ATS

Let us examine a little bit more the expression of the susceptibility χ given by equation
(A.14).

It has poles given by [189]:

δ̃± =
1

2

(

i
Γ

2
±
√

Ω2
c −

Γ2

4

)

(A.15)

and thus a partial fraction decomposition as:

χ(δ) =
C+

δ − δ̃+
+

C−
δ − δ̃−

(A.16)

with coefficients:

C± = ±κ
δ̃±

δ̃+ − δ̃−
∈ R

⋆± (A.17)

where κ = d2

eg/2ǫ0~. If Ωc < Γ/2, then from equation A.15, we have: δ̃± ∈ iR [189].
In this case, the imaginary part of the susceptibility, which is the absorption coefficient,
has a remarkably simple expression: it is the difference between two Lorentzian functions
centered on resonance (δ = 0). Defining δ± = δ̃±/i to get real quantities, the absorption is
written as (recall that C+ and C− are real and have opposite signs):

AEIT(δ) =
C+δ+
δ2 + δ2+

+
C−δ−
δ2 + δ2−

(A.18)

This corresponds to the “pure EIT” case. In the low control field region, δ+ tends towards
Γ/2 and δ− tends towards Ω2

c/Γ. So that the first term in equation (A.18) acts as the
unperturbed atomic resonance line (a Lorentzian of width Γ) and the second term describes
a Lorentzian dip of width Ω2

c/Γ, defining the transparency window within the resonance.
If Ωc > Γ/2, then of course the partial fraction decomposition (A.16) for χ still holds,

but equation (A.18) does not anymore describe the absorption because δ̃± now have real
as well as imaginary parts.

For the typical parameters used in mem-
ory experiments (15 µW in a control
beam with a 200 µm waist), we are a lit-
tle above the “pure EIT” threshold with
Ωc/Γ ∼ 1.3.

In the limit of very large control field
Ωc >> Γ/2, the absorption can be approx-
imated by the sum of two Lorentzian func-
tions of width Γ/2 (half the unperturbed
resonance width) shifted away by approx-
imately ±Ωc/2 from the δ = 0 resonance
as predicted in the model by Autler and
Townes [190].
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A.3 Cesium D2 line

Figure A.2: 133Cs D2 line properties. Credits: Steck [134]
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A.4 HG modes discrimination with a slit-wheel

The slit wheel method for HG beam discrimination [162] consists in letting the beam
propagate through a cache with a number of transparent angular sectors equal to the
number of bright spots in the beam 2. If the cache is aligned so that the angular position
of the bright spots (defined by the phase φ between the pure-OAM components of the
beam) matches that of the transparent sectors, then a detector behind the cache will
record a maximal intensity. Conversely, if the bright spots are aligned with the opaque
sectors, then the detector will record a minimal intensity.

This works very well with a bucked detector placed just after the cache that integrates
the intensity over the whole beam section. For single-photon regime operation however,
we wished to couple the light into single-mode fibers in order to bring it to our APD. So
we installed the cache before the input-BS of figure 3.15 and the subsequent OAM mode
projectors. Unfortunately, the mode deformation induced by the cache and the subsequent
propagation was too strong for the mode projectors to perform efficiently. When we sent
HG beams and when we varied the angle of the cache, we observed intensity minima, but
we could not record a full sinusoidal fringe as we could expect if we had a bucket detector.
This whole process is summarized in figure A.3.

Figure A.3: Summary of the slit-wheel method trial. Left: picture of our prototype
cache. Midde: images of the cache illuminated with a TEM00 beam. The center is well
aligned on the beam center and the different positions shown correspond to a projection
on the four different HG modes A, H, D and V. Right: power transmitted after the cache
and the LG projection versus cache orientation for different HG modes. If the minima of
the fringes are reasonably well defined, their maxima on the other hand are not at all in
agreement with a theoretical sinusoidal behavior. This was due to the fact that we could
not use a bucket detector but had to recouple the light into optical fibers instead, using
the LG mode projectors described in 3.3.a.

After trying this slit-wheel method, we developed the interferometric device presented
in section 3.3.a, which also had the advantage that the results can be more easily interpreted
and compared to standard polarization qubit measurements.

2In fact it works for LGl=+l and LGl=−l superpositions, which happens to be a HG mode in the case
of l = 1.
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A.5 Possibility of higher-dimensional OAM tomography

The OAM tomography setup presented in section 3.3.a is not limited to two-dimensional
system analysis and can in principle be extended to higher-dimensional encoding.

To do so, one can introduce additional beam-splitters after the first one. Figure A.4
shows for example an extended setup to perform quantum state tomography in a four-
dimensional Hilbert space spanned by the modes LGl=−3, LGl=−1, LGl=+1 and LGl=+3.
In each of the subsequent paths, a mode projector on a different OAM value is inserted.
Keeping an OAM difference ∆l = 2 between different modes ensures a better mode filtering.
Fibers at the end of the mode projectors are to be connected to a series of cascading fiber
beam-splitters, creating an array of nested interferometers. Alternatively, these nested
interferometers could be engraved in photonic circuitry [191, 192], which would also provide
greater simplicity and a better phase stability. Similarly to the two-dimensional setup, a
phase reference beam is sent backwards. The various unused output ports allow the imaging
of the phase reference beams, and the determination of all the relevant phases. The image
analysis routine 3.3.b can be directly used to compute the relevant phases between pairs
of modes, given the fact that the phase reference is timed in order to image only two-
mode superpositions. To do so, mechanical shutters 3 need to be added in the arms of the
interferometer array.

One more series of beam splitters would allow quantum tomography in an eight-
dimensional space, but it would become challenging and time consuming. Indeed, the
addition of more beam-splitters will result in degrading the count rates exponentially in
the number of beam splitters (linearly in the number of detected modes). Also the phase
measurement and/or stabilization can become a more serious issue if the dimension of
Hilbert space increases too much.

Criteria
Current

Technique 1 Technique 2
Device

Hilbert space
2 4 15

dimension
Losses 75 % 88 % 40 %

Crosstalk
Suppression > 27 dB > 27 dB > 30 dB

(∆l = 2)

Table A.4: Expected performances of two possible extensions of the current
device to higher dimensional Hilbert spaces. Detection efficiency does not take into
account the quantum efficiency of the single-photon counters. Technique 1 refers to the
multiple input-BS scheme shown in figure A.4 and Technique 2 to the OAM mode sorter
scheme shown in figure A.5.

Another way to reach higher-dimensional spaces would be to take advantage of the
recently developed OAM mode-sorting techniques [158–160, 193] where OAM states are
converted into transverse momentum states. As proposed in figure A.5, the input beam-
splitter can indeed be replaced by an OAM mode sorter made out of refractive elements
as described in [158] with a separation enhancer [160]. This combination would perform
both the separation and mode conversion in the same time, thus largely improving the

3rise times on the order of ten milliseconds are by far sufficient
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detection efficiency and versatility. Indeed, the detection efficiency would remain (almost)
constant as the number of detected modes increases. The reduction in the required number
of optical elements may also provide a better phase stability.

Table A.4 summarized the performances one can foresee assuming some realistic pa-
rameter estimations extracted from [160, 193].



A.6. Example of data table for complete qubit tomography 121

A.6 Example of data table for complete qubit tomography

Mode at input Config. X output Y output

|R〉

L blocked 0.040407 0.018179
R blocked 0.000309 0.000324
ϕ = 0 0.0390341 0.0186364

ϕ = π/2 0.0436709 0.0154430
ϕ = π 0.0386111 0.0164444

ϕ = 3π/2 0.036705 0.022386

|L〉

L blocked 0.000527 0.000457
R blocked 0.030068 0.016251
ϕ = 0 0.0306863 0.0164706

ϕ = π/2 0.0255 0.020222
ϕ = π 0.0307 0.0163

ϕ = 3π/2 0.033967 0.015667

|H〉

L blocked 0.016764 0.007461
R blocked 0.012353 0.006762
ϕ = 0 0.0569388 0.0005357

ϕ = π/2 0.0235054 0.0172554
ϕ = π 0.0013889 0.0304259

ϕ = 3π/2 0.0328398 0.0138835

|D〉

L blocked 0.013232 0.006034
R blocked 0.015124 0.008112
ϕ = 0 0.0318928 0.0135489

ϕ = π/2 0.0567808 0.0006164
ϕ = π 0.025389 0.016635

ϕ = 3π/2 0.000601 0.0294231

Table A.5: Photon rates detected on outputs X and Y for different configurations of
the detection setup and for a selection of input qubit modes. As expected, output Y
experiences a lower count rate due to the phase reference injection. The mean number of
photons per pusle was 0.6. No noise subtraction has been performed. Figure 3.19 displays
these data in a more visual way. The Stokes parameters and fidelities given in table 3.7
are computed from the count rates presented here.
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Figure A.4: Similar setup for quantum state tomography in a four-dimensional
Hilbert space spanned by |l = −3〉, |l = −1〉, |l = +1〉 and |l = +3〉. The mode to be
measured is split between four paths by three cascaded beam-splitters. Each path contains
a mode projector based on a fork hologram and a single-mode fiber. The transmitted light
(corresponding to different projections on the OAM eigenstates) is brought to interfere in
an array of beamsplitters and directed to single-photon detectors (SPD). A phase reference
beam (sketched by the green arrows) is injected backwards and detected at the three input
beam-splitters. Ref. 1, 2 and 3 denote the outputs of the phase-reference beam allowing
to measure the phases ϕ1,2,3 respectively. Expected intensity patterns are displayed. In
order to get the Ref. 1 intensity pattern (which allows a simple measurement of ϕ1), the
l = +1 and l = −3 paths must be blocked, e.g. using fast switching mechanical shutters.
The mode displayed at the input, i.e. |l = +1〉+ |l = −1〉 − |l = +3〉 − i|l = −3〉, is shown
for illustrative purpose.
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Figure A.5: A possible alternative implementation for extending the device to higher-
dimensional Hilbert spaces, using mode sorting refractive optics R1 and R2 as developed
in [158, 160]. The input beam-splitters and subsequent holograms can be replaced by the
combination of a circulator (to separate the signal and the phase reference beam) and
an OAM mode sorter made of two refractive elements R1 and R2. The reformatter R1
performs a log-polar to cartesian coordinate mapping and the phase corrector R2 cor-
rects for the different propagation lengths from R1 to R2. These two elements transform
copropagating LG beams with different l values into approximate TEM00 beams with a
propagation direction tilted by an angle proportional to l. The fan-out separation enhancer
is a specific periodic phase-only hologram that increases the angular separation between
the different modes by decreasing the residual mode-overlap. After being separated and
losing their specific spatial shapes, the different OAM components can be brought to inter-
fere in a controlled array of beam-splitters, then directed towards single-photon detectors
(SPD). A good timing of the phase reference should be ensured with appropriated shutters
inserted in the interferometer array in order to record all the relevant phase differences.
The superposition |l = +6〉+ |l = −6〉 is shown at the input for illustrative purpose.
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