
HAL Id: tel-01127919
https://theses.hal.science/tel-01127919

Submitted on 9 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling for new computing platforms with GPUs
Florence Monna

To cite this version:
Florence Monna. Scheduling for new computing platforms with GPUs. Data Structures and Algo-
rithms [cs.DS]. Université Pierre et Marie Curie - Paris VI, 2014. English. �NNT : 2014PA066390�.
�tel-01127919�

https://theses.hal.science/tel-01127919
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE
l'UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par

Florence MONNA

Pour obtenir le grade de

DOCTEUR de l'UNIVERSITÉ PIERRE ET MARIE CURIE

Sujet de la thèse :

Ordonnancement pour les nouvelles plateformes de calcul avec

GPUs

devant le jury composé de :

M. Jacek Blazewicz Examinateur Université de Technologie de Poznan
M. Christophe Cérin Rapporteur LIPN, Université Paris XIII
Mme Sa�a Kedad-Sidhoum Directrice de thèse LIP6, Université Pierre et Marie Curie
M. Grégory Mounié Examinateur LIG, Université de Grenoble
Mme Alix Munier Examinateur LIP6, Université Pierre et Marie Curie
M. Rizos . Sakellariou Rapporteur Université de Manchester
M. Samuel Thibault Examinateur INRIA, Université de Bordeaux
M. Denis Trystram Directeur de thèse ENSIMAG

2

Résumé

Depuis de nombreuses années, les problèmes d'ordonnancement ont traité des systèmes
avec des processeurs en parallèle ou bien avec des processeurs dédiés. Avec le
développement de nouvelles architectures de calcul, cette classi�cation n'est plus si
évidente. De plus en plus d'ordinateurs utilisent des architectures hybrides combinant
des processeurs multi-coeurs (CPUs) et des acc¨eérateurs matériels comme les GPUs
(Graphics Processing Units). Ces plates-formes parallèles hybrides exigent de nouvelles
stratégies d'ordonnancement adaptées. Cette thèse est consacrée à une caractérisation
de ce nouveau type de problèmes d'ordonnancement. L'objectif le plus étudié dans ce
travail est la minimisation du makespan, qui est un problème crucial pour atteindre le
potentiel des nouvelles plates-formes en Calcul Haute Performance.
Après une introduction approfondie de ce nouveau type de systèmes de calcul, une
extension de la notation classique des problèmes d'ordonnancement est proposée. Le
problème central étudié dans ce travail est le probeème d'ordonnancement e�cace de n
tâches séquentielles indépendantes sur une plateforme de m CPUs et k GPUs, où chaque
tâche peut être exécutée soit sur un CPU ou sur un GPU, avec un makespan minimal.
Après un aperçu des méthodes de résolution qui ont été utilisées dans ce travail pour
s'attaquer à ce nouveau problème, et les problèmes classiques associés, nous présentons
les méthodes que nous avons développées pour résoudre le problème d'ordonnancement
en premier lieu sur un seul CPU et un GPU, puis ensuite sur m CPUs et k GPUs. Ces
problèmes d'ordonnancement sont NP-di�ciles, nous proposons donc des algorithmes
d'approximation avec des garanties de performance allant de 2 à 2q+1

2q
+ 1

2qk
, q > 0, et des

complexités polynomiales correspondantes de O (n log n) à O (n2kq+1mq), augmentant
lorsque les ratios diminuent, en gardant à l'esprit qu'une véritable plate-forme de calcul
a besoin d'e�cacité autant que de précision dans l'ordonnancement de ses calculs. La
méthode de résolution est basée sur un schéma d'approximation duale qui utilise la
programmation dynamique de façon à répartir de manière équitable la charge entre les
ressources hétérogènes. La méthode de résolution proposée dans ce travail est le premier
algorithme générique pour la plani�cation sur des machines hybrides avec une garantie
de performance théorique qui peut être utilisé à des �ns pratiques.
Des variates du problème d'ordonnancement avec m CPUs et k GPUs sont étudi�dees.
Un cas particulier où toutes les tâches sont acc¨eérées quand elles sont a�ectées à un
GPU, avec un algorithme d'approximation rapide avec un ratio de 3

2
pour n'importe

quel nombre de GPUs est analysé. Une attention est également accordé aux

3

4

préemptions, qui peuvent être autorisées sur les CPUs, mais pas sur les GPUs en raison
de leur architectures di�érentes. Nous considérons ensuite le problème de l'intégration
du modèle de tâches malléables dans la problématique de l'ordonnancement sur
plate-forme hétérogène, et proposons un algorithme avec un ratio d'approximation de 3

2
.

Certains de ces algorithmes ont été implémentés. Des expériences basées sur des critères
réalistes ont été réalisées. Ces algorithmes ont été intégré dans l'ordonnanceur du
système d'exécution xKaapi pour les noyaux d'algèbre linéaire, et comparés au classique
algorithme HEFT.
En�n, nous étudions le problème de plani�cation de tâches dépendantes sur des CPUs et
GPUs. Nous proposons un algorithme d'approximation avec une garantie de
performance de 6 pour ce problème. L'algorithme a une méthode de résolution en deux
phases: une première phase basée sur l'arrondi d'une solution fournie par la résolution
d'une formulation en programmation linéaire pour l'a�ectation des tâches aux ressources.
Une deuxième phase utilise un algorithme classique de liste pour plani�er les tâches en
fonction de l'a�ectation déterminée dans la première phase. C'est le premier algorithme
avec une garantie de performance pour la plani�cation des tâches avec contraintes de
précédence sur les plates-formes hybrides avec des ressources CPUs et GPUs.

Abstract

For many years, scheduling problems have been concerned either with parallel processor
systems or with dedicated processors. With the development of new computing
architectures this partition is no longer so obvious. More and more computers use
hybrid architectures combining multi-core processors (CPUs) and hardware accelerators
like GPUs (Graphics Processing Units). These hybrid parallel platforms require new
scheduling strategies. This work is devoted to a characterization of this new type of
scheduling problems. The most studied objective in this work is the minimization of the
makespan, which is a crucial problem for reaching the potential of new platforms in
High Performance Computing.
After a thorough introduction of this new type of computing systems, an extension of
the classical notation of scheduling problems is proposed. The core problem studied in
this work is scheduling e�ciently n independent sequential tasks with m CPUs and k
GPUs, where each task of the application can be processed either on a CPU or on a
GPU, with minimum makespan.
After an overview of the solving methods that were used in this work to tackle this new
problem, and the classical problems associated with them, we present the methods we
developed to solve the problem of scheduling on �rst only one CPU and one GPU, then
m CPUs and k GPUs. These scheduling problems are NP-hard, therefore we propose
approximation algorithms with performance ratios ranging from 2 to 2q+1

2q
+ 1

2qk
, q > 0,

and corresponding polynomial time complexities from O (n log n) to O (n2kq+1mq),
increasing when the ratios drop, keeping in mind that a real computing platform need
e�ciency as much as accuracy in the scheduling of its calculations. The solving method
is based on a dual approximation scheme which uses dynamic programming to balance
evenly the load between the heterogeneous resources. The proposed solving method is
the �rst general purpose algorithm for scheduling on hybrid machines with a theoretical
performance guarantee that can be used for practical purposes.
Some variants of the scheduling problem with m CPUs and k GPUs are studied. A
special case where all the tasks are accelerated when assigned to a GPU, with a faster
3
2
-approximation algorithm for any number of GPUs is analyzed. An attention is also

paid to preemptions, that can be allowed on CPUs but not on GPUs due to their
di�erent architectures. We also consider the problem of integrating the model of
malleable tasks into the problem of scheduling on heterogeneous platform, and proposed
an algorithm with a performance ratio of 3

2
.

5

6

Some of these algorithms were implemented. Experiments based on realistic benchmarks
have been conducted. These algorithms have been integrated into the scheduler of the
xKaapi runtime system for linear algebra kernels, and compared to the state-of-the-art
algorithm HEFT.
Finally, we study the problem of scheduling dependent tasks on CPUs and GPUs. We
provide an approximation algorithm with a performance guarantee of 6 to solve this
problem. The algorithm is a two-phase solving method: a �rst phase based on rounding
the solution provided by solving a linear programming formulation for the assignment of
the tasks to the resources. A second phase uses a classical list algorithm to schedule the
tasks according to the assignment determined in the �rst phase. This is the �rst
algorithm with a performance guarantee for scheduling tasks with precedence
constraints on hybrid platforms with CPUs and GPUs resources.

Contents

1 Introduction 15
1.1 Context . 15
1.2 Objectives and Contributions . 17
1.3 Outline . 18

2 Introduction to HPC and GPUs 19
2.1 High Performance Computing and Supercomputers 19
2.2 Graphical Processing Units . 21

2.2.1 GPU Architecture . 22
2.2.2 GPU Programming . 24

2.3 Summary . 26

3 New Notations and Related Works on GPU Scheduling Algorithms 29
3.1 Notations . 29

3.1.1 Machines (α) . 30
3.1.1.1 Sets of Identical CPUs and Identical GPUs 30
3.1.1.2 Sets of Uniform CPUs and Uniform GPUs 31
3.1.1.3 Unrelated CPUs and unrelated GPUs 32

3.1.2 Tasks (β) . 32
3.1.2.1 One type of tasks . 32
3.1.2.2 Partial Preemption . 32

3.2 Related Work on Scheduling Independent Sequential Tasks 34
3.2.1 Exact Methods . 34

3.2.1.1 Linear Programming . 34
3.2.1.2 Transportation Networks and Network Flow Algorithms . 36
3.2.1.3 Dynamic programming . 38

3.2.2 Approximation Methods . 39
3.2.2.1 List Scheduling . 39
3.2.2.2 Dual Approximation Technique 44
3.2.2.3 Polynomial Time Approximation Scheme 45
3.2.2.4 Heuristics . 46

7

8 CONTENTS

4 Minimizing the Makespan with Independent Sequential Tasks 49
4.1 Considering only one CPU and one GPU 49

4.1.1 An arbitrary list scheduling algorithm 50
4.1.2 Minimizing the sum of the makespans 51
4.1.3 A knapsack based approach . 53

4.2 Fast algorithms with m CPUs, k GPUs 58
4.2.1 HEFT algorithm . 58
4.2.2 Extending the Knapsack-based Approach 59
4.2.3 Dual approximation Scheme for solving (Pm,Pk) || Cmax 62

4.3 Improving the Performance Ratio for (Pm,P1) || Cmax 65
4.3.1 Principle of the Scheduling Algorithm 65
4.3.2 Structure of an Optimal Schedule 67
4.3.3 Partitioning the Tasks into Shelves 68

4.4 Extending the 4
3
-appproximation Algorithm to the multi-GPUs case 72

4.5 Summary . 74

5 Two families of algorithms 77
5.1 Rationale of the Solving Method . 77
5.2 Theoretical Analysis . 80

5.2.1 Structure of an Optimal Schedule of Length at most λ 80
5.2.2 Building the Shelves . 81
5.2.3 Assigning the Tasks to the Shelves 86
5.2.4 Dynamic Programming . 87

5.3 Solving the problem with k > 2 . 90
5.4 Complementary Family of Approximation Algorithms 92
5.5 Summary . 94

6 Other Instances with Independent tasks 97
6.1 All the tasks are accelerated on GPU . 97
6.2 Partial Preemption . 99

6.2.1 Single GPU Case . 99
6.2.2 Multiple GPUs Case . 100

6.3 Moldable Tasks . 101
6.3.1 Problem De�nition . 102
6.3.2 Related Work . 103
6.3.3 Building a feasible Schedule . 104

6.3.3.1 Structuring Tasks into Shelves 104
6.3.4 Analysis . 105

6.3.4.1 Structure of a Schedule 105
6.3.5 Formulation as a Linear Program 108

6.4 Looking at uniform CPUs and uniform GPUs 112

CONTENTS 9

7 Experiments 115
7.1 4

3
-approximation Algorithm Experimental Analysis 115

7.1.1 First experiments based on random simulations 115
7.1.2 A more realistic benchmark . 118

7.2 Experiments with the 2-approximation algorithm and the algorithm for the
case when all the tasks are accelerated . 120

7.3 Experiments on a real run-time . 122
7.3.1 Implementation of the 4

3
-approximation algorithm 122

7.3.2 Practical issues: 2-approximation algorithm versus HEFT 123
7.4 An Application to Biological Sequence Comparison 124

7.4.1 Motivation . 124
7.4.2 Biological Sequence Comparison and Smith-Waterman Algorithm . 125
7.4.3 SWDUAL implementation . 127
7.4.4 Experimental Results . 127

7.4.4.1 Comparison to other implementations 128
7.4.4.2 Comparison to 5 genomic databases 130
7.4.4.3 Comparison of homogeneous and heterogeneous sets . . . 131

7.5 Summary . 131

8 Minimizing the Makespan with Dependent Sequential Tasks 133
8.1 Problem De�nition . 133
8.2 Related Work . 134
8.3 Approximation Algorithm . 134

8.3.1 Preliminaries . 134
8.3.2 Principle of the algorithm . 135
8.3.3 Linear Program . 135
8.3.4 Scheduling Algorithm . 137

8.4 Analysis of the Algorithm . 138
8.4.1 Properties resulting from the rounding phase 138
8.4.2 A closer look at the schedule . 139

8.5 A More Accurate Model for Communications 141

9 Conclusion 143

10 CONTENTS

List of Figures

2.1 An image of Titan, computing platform with GPUs. 20
2.2 Sketch of a CPU architecture (left), and a GPU architecture (right). 22

3.1 An example with m = 6 CPUs and k = 2 GPUs. 31
3.2 Schedule resulting from an LPT algorithm. 40

4.1 List scheduling algorithm with two di�erent list orders. 50
4.2 Scheduling with minimal makespan criteria. 52
4.3 HEFT schedule and the optimal solution with m = 4, k = 1. 59
4.4 Optimal Schedule of the instance when considered as (P1, P1) || Cmax,

with makespan Cmax(P1, P1). 61
4.5 Schedule for the (P2, P2) || Cmax problem following the (P1, P1) || Cmax

assignments, and the optimal solution. 62
4.6 Optimal schedule for (P2, P2) || Cmax when considered as a (P1, P1) ||

Cmax problem. 62
4.7 Schedule resulting from Algorithm 4.2.3 for a guess λ. The computational

area on the CPUs is lower than mλ, otherwise λ is lower than C∗max. 63
4.8 Partitioning the set of tasks on the CPUs into two sets of two shelves, the

�rst one occupying µ CPUs, the second m− µ CPUs. 66
4.9 Rounded assignment of two tasks T1 with p1 = 6.5 and T2 with p2 = 4.7

on a GPU. 70
4.10 All the shelves on CPUs and GPUs. 74

5.1 Two sets of two shelves for g = 5/4 (q = 2), with m = 14 CPUs: the �rst
set with two shelves of length λ and λ/4, and the second one with two
shelves of length 3λ/4 and 2λ/4. 78

5.2 Example for g = 5/4 with two sets of two shelves (S1, S
′
1) and (S2, S

′
2). . . 81

5.3 Example for g = 5/4 with m = 14, µ1 = 8 CPUs 82
5.4 Example for g = 5/4 with m = 14, µ1 = 8, µ2 = 5 CPUs 83
5.5 Example for g = 5/4. The shelf S ′q and where the tasks with processing

time lower than λ
2q

can be assigned to (for q = 2). 84
5.6 Example for g = 5/4. The free computational space WL is represented by

the stripped area. 85

11

12 LIST OF FIGURES

5.7 Example for g = 6/5, where λ is the guess. 93
5.8 Di�erent approximation ratios for the two families of algorithms for k = 1. 95

6.1 Structure of the schedule. For a better understanding, the processors are
overloaded. 105

7.1 Gaps for various acceleration factors, n = 40, m = 1 and k = 1. 116
7.2 Gaps for various numbers of tasks, m = 16 and k = 4. 118
7.3 Maximun, mean and minimum deviations for various numbers of tasks,

m = 16 and k = 4. 119
7.4 Gaps for various numbers of tasks, m = 1 and k = 1. 120
7.5 Maximun, mean and minimum deviations for various numbers of tasks,

m = 1 and k = 1. 120
7.6 Mean deviations of Ratio2, HEFT and Accel for various n. 122
7.7 Execution time of a Cholesky factorization scheduled by Ratio2, DP (4/3)

and HEFT for various block sizes, on 3 hyper threaded CPUs and a single
GPU . 123

7.8 Example of an alignment and score . 125
7.9 Execution times in seconds for the compared implementations. 129
7.10 Execution times for the compared databases with SWDUAL. 131
7.11 Execution times for the heterogeneous and homogeneous sets for SWDUAL.132

8.1 An illustration of the di�erent types of time intervals. 140

List of Tables

3.1 Problems with no equivalent counterpart in the literature studied in this
work. 33

3.2 Problems related to classical scheduling problems. 33

4.1 Problems studied in this chapter and the algorithms developed for them. . 75

5.1 Associated costs and ratios for di�erent values of k. 95
5.2 Associated costs and ratios for di�erent values of q. 95

7.1 Mean deviation for m = 16 and k = 1, 4 with di�erent values of n 117
7.2 Mean deviation for m = 16 and k = 1, 4 with di�erent acceleration factors . 117
7.3 Maximal deviations (%) for Ratio2, HEFT and Accel. 121
7.4 Performance of the 2-approximation algorithm and HEFT for Cholesky

factorization with m=4 CPUs and k=8 GPUs 124
7.5 Applications included in the comparison. 128
7.6 Execution times (s) for the compared implementations. 129
7.7 Genomic Databases used on the tests. 130
7.8 Results running on CPUs and GPUs. 130
7.9 Results running the homogeneous and the heterogeneous sets for SWDUAL.132

9.1 Problems related to the classical ones and the corresponding algorithm costs.143
9.2 Problems with no equivalent counterpart in the literature studied in this

work. 145

13

14 LIST OF TABLES

Chapter 1

Introduction

1.1 Context

In several domains, complex and powerful computations are necessary. Their
applications are very diverse, such as real-time �nance, weather predictions, molecular
modeling, and countless areas of physics.
This need for more computational resources and the considerable technological advances
of these last few years have led to the construction of large-scale hierarchical computing
platforms for High Performance Computing (HPC). These new platforms are
constituted of parallel multi-core processors with a great number of computing units
(again called processors), where these units can be heterogeneous: at the �nest level,
classical processors (CPUs) share a large memory with additional hardware accelerators
like General Purpose Graphical Processing Units (GPGPUs, or, in short GPUs) [56].
Indeed, in some domains requiring HPC, the parallelism of processors of the same type
is not the best solution. An example where di�erent types of parallel processors are used
is DNA assembling problem, where hundreds of millions of DNA chains have to be
aligned and the resulting chromosome is to be constructed. In short, this approach
requires at the �rst stage (alignment of DNA chains) a multi-GPU machine, while the
second stage (construction of a corresponding DNA graph and �nding the resulting
path) should be done on a parallel CPU system [7,8,53], meaning several CPUs working
in parallel to execute complex calculations.
There is an increasing complexity within the internal nodes of such hybrid parallel
systems, mainly due to the heterogeneity of the computational resources. To take
advantage of the bene�ts o�ered by these new features in terms of performance, there is
an important need for an e�ective, automatic management of these hybrid resources at
the �nest level. Indeed, no just a computing platform does not execute one calculation
at a time. There are only a few of these machines for a much greater number of
customers with calculations to perform.
These new characteristics have given rise to new scheduling problems, consisting in
allocating and sequencing the computations on the di�erent resources such that a given

15

16 CHAPTER 1. INTRODUCTION

objective is optimized. The objective in High Performance Computing (HPC) is to
execute as fast as possible all the tasks of an application. This means that the aim is to
determine the ending time of the execution of the application de�ned by the largest
completion time (makespan) of the tasks on CPUs and GPUs.

The existing scheduling algorithms and tools, abundantly studied and used on previous
generation execution systems, are often not well-suited for these new platforms. Then
the main challenge is to create adequate generic scheduling methods and software tools
that ful�ll the requirements for optimizing the performances.

In the �eld of parallel processing, a huge amount of work has been devoted to
implementations of ad hoc algorithms using GPU or hybrid CPU-GPU architectures.
They expand over several aspects of parallelism from operating system, runtime,
application implementation or languages. However, only few of them focus on the
intermediate problem of scheduling on hybrid platforms [71]. Most of the works in the
literature consist in studying the gains and performances of parallel implementation of
some speci�c numerical kernels [1,80], or speci�c applications like multiple alignments of
biological sequences [13], or molecular dynamics [70]. The existing scheduling algorithms
and tools are usually not well-suited for general purpose applications since the internal
hardware organization of a GPU highly di�ers from a CPU and thus, the GPU should
be considered as a new type of resources in order to determine e�cient approaches.
Scheduling is usually done on a case by case basis and often o�ers good performances,
however, it lacks high-level mechanisms that provide transparent and e�cient schedules
for any application. Some actual runtime systems include the basic mechanisms for
developing scheduling algorithms like OMPSS [16], StarPU [3] or XKaapi [34]. Several
scheduling algorithms have been implemented on top of these systems and most
scheduling policies are restricted to fast greedy algorithms or work stealing [10,59]. An
online algorithm with a performance guarantee [18] has recently been developed for
CPU-GPU platforms, but , to the best of our knowledge, there is no performance
guarantee for any o�ine problem on these systems.

This means that if a customer of a computing platform wishes his/her calculation done
in a reasonable amount of time by the platform, considering other users' calculations,
there is a chance that the platform scheduling algorithm will assign the calculation to a
not-so-well suited processor that will upset the whole schedule of the platform and delay
the obtaining of results for all the users of the computing platform.

Let us consider for example the case of one user: a nuclear physicist needs to calculate
the independent trajectories of 10 billion neutrons, photons, electrons and positrons
inside a nuclear reactor to determine the energy deposition that results from these
particle movements inside the reactor [87]. In order to simulate these trajectories, he
requests for 512 processors on the CEA computing platform Curie (see Chapter 2) for
approximately 24 hours. The batch scheduler of Curie receives the request and assigns
the 10 billion calculations a priority depending on the physicist computational quota on
Curie. When there is no more calculations with a higher priority in the queue of Curie
or if the occupation of 512 processors for 24 hours has not impact on the completion

1.2. OBJECTIVES AND CONTRIBUTIONS 17

time of any task with a higher priority waiting to be scheduled, the physicist calculations
are assigned to the �rst group of 512 processors that become free on the platform. The
scheduler then considers those 512 processors occupied for the next 24 hours whereas
the calculations could be �nished earlier with a �ner scheduling on these 512 processors.
That is the problem we focused on during this PhD. We worked on providing scheduling
algorithms for a given set of calculations on a given set of processors, composed on
CPUs and GPUs, all gathered on a computing platforms.

1.2 Objectives and Contributions

Since no generic method existed for scheduling calculations on a CPU-GPU platform
prior to this work, our objective is to propose a characterization of this type of platform
in the scheduling area as well as new scheduling algorithms for a general purpose
execution on hybrid CPU-GPU architectures designed for HPC, algorithms that may
remain suitable for the successive generations of the evolving computing platforms. The
methods that we developed determine the assignment and schedule of the tasks of an
application to the computing units, CPUs and GPUs. To the best of our knowledge,
there was no automatic approach to solve this strategic problem prior to this work.
Various sides were possible to address this problem. A �rst possibility was to adapt
existing models such as unrelated processors or dedicated processors. Another way was
to see this problem as the placement of malleable tasks with varying processing times.
We could have also considered scheduling problems where it is assumed that the
duration of tasks can be reduced with a compression cost [76]. Approaches such as work
stealing [10,59] from GPU to CPU might also have been considered.
The approach we followed was to �rst determine an appropriate model, capable of
taking into account the new characteristics of these systems, and devise appropriate
notations for the corresponding scheduling problems. We then developed several
algorithms for the case with independent tasks, using several methods such as dynamic
programming and the dual approximation technique [43]. Those algorithms are a major
contribution to the �eld of heterogeneous scheduling, being the �rst in this �eld to have
both practical e�ciency and performance guarantee. From this basis we moved on to
more speci�c or complex instances, such as the speci�c case where all the tasks to be
scheduled are accelerated when assigned to a GPU, but not necessarily with the same
acceleration factor for all the tasks, which is a case frequently encountered in practice,
for instance in DNA sequence comparisons. Another case studied was the case where
preemptions are allowed for the tasks assigned to the CPUs, but not for the tasks on the
GPUs, since preemptions are possible on classical processors but not on GPUs. The case
where the tasks are considered malleable when they are assigned to a CPU and
sequential when assigned to a GPU was also considered, since the malleable task model
is often used when communications occur within a platform. Finally, not every
calculation is independent from the others on a computing platform, therefore the case
where the tasks are linked by precedence relations. The last two problems mentioned

18 CHAPTER 1. INTRODUCTION

represent again a signi�cant contribution to the heterogeneous scheduling �eld. We
validated these algorithms conventionally in the combinatorial optimization community
through complexity and approximation analysis, but also by real-sized tests on cards
that were available, notably in Grenoble1, and applied them to DNA sequence
comparisons on real genomic database.

1.3 Outline

The outline of the manuscript is as follows. We present in Chapter 2 an introduction to
the multiprocessor architectures and the uses of GPUs. In Chapter 3 we introduce new
notations for this type of scheduling problems, and present some related works in the
�eld of scheduling and highlight the gaps that need �lling in the area of CPU-GPU
scheduling. We present in Chapter 4 a formal description of the problem of minimizing
the makespan with independent tasks on m CPUs and k GPUs, which is followed by the
detail of di�erent approaches, and the corresponding experiments. In Chapter 5, we
generalize the approach developed in the previous chapter into a whole family of
approximation algorithms for the same scheduling problem. Chapter 6 deals with other
scheduling problems with independent tasks we investigated, such as the special case
where all the tasks are accelerated when assigned to a GPU, or the problem where the
tasks are considered malleable, or when preemptions are allowed on the CPUs.
Experiments realized for the problems studied in these chapters are presented in
Chapter In Chapter 8, we present the problem of scheduling tasks linked by precedence
constraints on CPUs and GPUs and the approximation algorithm we developed to solve
this problem. Finally, the conclusion and perspectives of this work is presented in
Chapter9.

1the tests were performed by the MOAIS team from the LIG, notably Grégory Mounié, Raphaël Bleuse and
Fernando Mendonca.

Chapter 2

An Introduction to High Performance

Computing and GPUs

In Chapter 1, we have seen the need for large computing platforms with a great number
of processors, an introduction to these platforms should be given more thoroughly, and
the same should be done concerning the Graphical Processing Units (GPUs) that are
the focus of this work. This chapter is more technical than the rest of the thesis, in
order to highlight the major di�erences and therefore speci�cities of the heterogeneous
platforms with GPUs that we dealt with in this work in terms of scheduling.

2.1 High Performance Computing and Supercomputers

The �rst large-scale computing platforms were designed in the 1960s by Seymour
Cray [19] for the biggest company in the �eld of supercomputers until the 1970s, Control
Data Corporation (CDC). Seymour Cray left CDC in the 1970s, and founded Cray
Research, a company that surpassed CDC and its other opponents until 1990 [72].
During the 1980s, a lot of small companies went in the business of supercomputers, but
most of them sank during the crash of this market in the middle of the 1990s. In the
21st century, large-scale computing platforms are mostly conceived as unique objects by
traditional computer �rms such as IBM, HP or Bull, whether they have a long lasting
tradition in the domain (IBM) or that they bought in the 1990s some specialized
companies to acquire their expertise.
The term computing platform varied with time, since the most powerful computers in
the world at one moment in time tend to be equaled and then surpassed by ordinary
desktop computers later on. The �rst supercomputers CDC were simple computers with
a single processor (but having sometimes up to ten peripheral processors for the inputs
and outputs) around ten times faster that their opponents [89]. During the 1970s, most
supercomputers adopted vectorial processors, that decoded an instruction only once to
apply it to a whole series of operations. It is only at the end of the 1980s that the
technique of massively parallel systems was adopted, with the use in one computing

19

20 CHAPTER 2. INTRODUCTION TO HPC AND GPUS

platform of thousands of processors [27]. Nowadays, some computing parallel platforms
use Reduced Instruction Set Computer (RISC) microprocessors designed for serial PCs,
such as PowerPC (IBM) or PA-RISC (HP) processors [4]. Others use cheaper processors
with a Complex Instruction Set Computer (CISC) [54] outer appearance that are
microprogrammed in RISC in the chip (AMD, Intel), such as x86 processors: the
performances are a little hindered, but the memory access, usually a key parameter, is
far less solicited.
Computing platforms are used for all the tasks that need large computing power, such
as weather predictions, climate studies, DNA sequencing, molecular modeling, physics
simulations (aerodynamics, material resistance, nuclear explosions, nuclear fusion...),
cryptography, �nance and insurance simulations, etc... Research institutions, both civil
and military, are some of the biggest users of computing platforms.
The scale and capabilities of these platforms have grown considerably since the �rst
computing platforms were designed. The Top500 website [83] lists the 500 most powerful
computing platforms in terms of the number of operations per second they can achieve.
In the June 2014 list, the Chinese computing platform Tianhe-2 was ranked number one
with a computing power of 33.86 PFlops (1015 FLoating point Operations Per Second).
It is composed of 16,000 computer nodes, each comprising two Intel Ivy Bridge Xeon
CPUs and three Xeon Phi accelerator chips, counting a total of 3,120,000 cores.
The second place on the June 2014 list is occupied by a heterogeneous platform with
GPUs: Titan, built by Cray Inc. for Oak Ridge national laboratory in Tennessee (see
Figure 2.1). It uses a hybrid architecture composed of 18 688 CPUs, processors with 16
cores at 2.2 GHz, AMD Opteron 6274, and 18688 Nvidia GPU accelerators, Tesla K20X.

Figure 2.1: An image of Titan, computing platform with GPUs.

Titan's computing power reaches 17.59 PFlops, and could reach theoretically up to 27
PFlops at peak performance. It was also ranked 3rd on the Green500 list of November
2012, thanks to its hybrid architecture with GPUs: its performance per watt is about
2.1 GFlops/W.
In France, we �nd these machines in the computing centers of universities such as
IDRIS, CINES, but also in the CEA and also in some large companies (Total, EDF or
Meteo-France). One of these platforms is Curie, a computing platform for the CEA,
designed by Bull, with a computing power of 2 PetaFlops (PFlops). It possesses three

2.2. GRAPHICAL PROCESSING UNITS 21

computing architectures, the "fat" nodes, the "thin" nodes and the "hybrid" nodes, the
last category being composed of heterogeneous processors with GPU accelerators: the
"hybrid" nodes are composed of a combination of Intel Westmere CPUs and Nvidia
M2090 T20A GPUs, for a total of 288 Intel and 288 Nvidia processors. In October 2012,
Curie was the 9th most powerful computing platform in the world, and the most
powerful computing platform in France until the Ada and Turing systems were installed
at IDRIS in January 2013, and in march 2013, the computing platform Pangea, owned
by Total, was launched, becoming the most powerful computing platform in France,
with a computing power of 2.3 PFlops. Pangea and Curie were respectively ranked 16th

and 26th on the June 2014 Top500 list.

We can see that computing platforms have reached high levels of computational power
over the years and their overall complexity has grown with them. These platforms are
able to process and transfer massive amounts of data in a very short amount of time.
However, information cannot travel faster than the speed of light between two parts of a
given platform. Therefore, when the size of a computing platform goes over several
meters, the latency between some components can be counted in dozens of nanoseconds.
The components of the platform have to be organized to limit the length of the cables
linking the components, and the design of a computing platform must ensure that all
data can be read, transferred and stored quickly, otherwise the computing power of the
processors would be under-exploited. A possible solution to that problem is to use
accelerating processors such as Intel Xeon Phi processors or GPUs, that are able to
perform simple parallel computation at a very high speed, saving space and power.
However, GPUs were not designed for such a general purpose use. Let us focus on the
speci�cities of these processors.

2.2 Graphical Processing Units

Graphic calculations can be very costly, especially if the rendering must be of good
quality. The �rst computers did not have graphical processors. Central processors
(CPUs) did all the calculations necessary. In order to focus the CPUs resources on more
demanding calculations, graphical processors were added to computers. A GPU
(Graphical Processing Unit) was dedicated to the calculations regarding graphics. This
specialization made it very fast, in opposition to the common CPU, with a more generic
purpose and therefore slower. Over the years GPUs became more complex and versatile.
At the end of the 90s, GPUs were capable of computing the calculations necessary for
three dimensional graphics. During the 2000s, GPUs slowly became programmable for
applications other than graphical imagery and video games. Two important companies
design GPUs: NVIDIA and ATI. They increased over the years the raw computing
power of their GPUs and at the same time rethought the processors' architecture to
enable a more comfortable use. In 2007, NVIDIA released CUDA 1.0, a programming
language only for its GPUs. ATI did not release its own software, but support a more
generic language that works on the GPUs of both companies, OpenCL. From this point

22 CHAPTER 2. INTRODUCTION TO HPC AND GPUS

forward, the new generations of GPUs are called General Purpose Graphical Processing
Units (GPGPU). This PhD thesis focuses on the newest generations of GPUs that are
used in High Performance Computing, therefore the GPUs considered are all GPGPUs,
but for simplicity, they will be called GPUs.

2.2.1 GPU Architecture

Since it was originally designed to perform only graphical calculation, a GPU's
architecture di�ers greatly from a CPU's architecture.
In Figure 2.2, di�erent elements of GPUs and CPUs are represented. The size of the
blocks in the �gure is proportional to the real size of the components, considering the
number of transistors in each component [29]. A CPU (resp. GPU) is composed of the
upper block in the �gure, the Dynamic Random Access Memory (DRAM) being
physically separated from it.

Fig. 2.1 – Structure d’un processeur (gauche) - d’une carte graphique (droite).

détermine l’ordre. Le deuxième point important concerne la latence mémoire. Lorsque
le processus qui occupe le processeur a besoin d’une variable stockée en mémoire pour
continuer le calcul, il y a deux possibilités : cette variable est en cache (accès rapide) et
le calcul n’est pas ralenti ; ou alors la variable est dans la mémoire centrale, à accès lent.
Dans ce second cas, on parle d’un “cache miss” et le temps que la variable soit lue est
du temps perdu pour le processeur tout entier. Afin d’utiliser ce temps judicieusement,
la prédiction de branchement “postule” la valeur de la variable et continue le calcul.
Lorsque la lecture en mémoire est terminée, la valeur postulée est comparée à la vraie
valeur : dans certains cas c’est la même et le processeur n’a pas perdu de temps. Sinon,
le temps est perdu (et il aurait été perdu de toute façon si ce mécanisme de ”postulat
de valeur” n’existait pas). Ce procédé est particulièrement performant pour les boucles
conditionnelles du type :

if (condition) then

calcul1

else

calcul2

end

Le processeur démarre l’un des deux calculs et a (en moyenne) 50% de chance de conser-
ver ce qu’il aura commencé à calculer.

Évoquons maitenant le GPU. Environ 90% des transistors sont dédiés aux unités de
calcul, ce qui lui assure une puissance de calcul brute très élevée. Ces unités de calcul
sont individuellement beaucoup plus simples (et moins e�caces) que celles du CPU,
mais leur nombre colossal compense largement cette faiblesse. Les GPU présents sur
les calculateurs du CEA possèdent 240 unités de calculs (appelés Streaming Processor,
ou SP), groupés à di↵érentes échelles. Huit Streaming Processor forment un Streaming
Multiprocessor (SM). Trois Streaming Multiprocessor forment un Thread Processing
Cluster (TPC). On compte 10 TPC par carte. C’est-à-dire 10 ⇥ 3 ⇥ 8 = 240 SP. Tous
les SP d’un même Streaming Multiprocessor exécutent la même tâche (appelée thread)
sur des données di↵érentes. Chaque SM possède une mémoire partagée accessible par
les 8 SP. Cumulée, la mémoire cache du GPU est plus petite que sur le CPU. Cela ne
pose pas de problème particulier, le besoin en cache sur GPU est plus faible que sur
CPU. Finalement, les structures de contrôles sont au nombre de 30, une par SM. Ces
structures sont très di↵érentes de celle qu’on observe sur CPU en raison de contraintes
spécifiques. On a évoqué pour le CPU le problème d’accès à une variable en mémoire
centrale qui ralentit l’exécution. Le mécanisme de prédiction de valeur n’existe pas sur
GPU, car il existe une meilleure solution. Dans la bonne configuration, le GPU est chargé
avec davantage de threads qu’il ne peut en faire calculer simultanément. Ainsi, quand

6

Figure 2.2: Sketch of a CPU architecture (left), and a GPU architecture (right).

A CPU �rst has a cache, a memory space of a small size but extremely fast. It is used as
a work memory for the CPU calculations. Half of the processor's transistors compose
the cache. The Arithmetic Logic Unit (ALU, see Figure 2.2) are the calculation units.
Their number varies from one architecture to the other. They represent one quarter of
the CPU's transistors. Finally, the control structure (Control in Figure 2.2) occupies the
last quarter of the CPU's transistors. It contains the connection prediction and has two
functions. A CPU is able to perform a great number of operations, so using its di�erent
calculation units at the same time can be di�cult. The operations are computed in a
random order (when it is possible) to optimize the occupation of the ALUs of the CPU,
and the control structure determines the order of these operations. The second function
of this structure deals with memory latency [55]. When the process occupying the
processor needs a variable stored in the memory to go on with the calculations, there are
two possibilities: the variable is in the cache (fast access) and the calculation is not
slowed, or the variable is in the central memory, with a slow access. The second case is
called a "cache miss", and the time lost to retrieve the variable is a time lost for the

2.2. GRAPHICAL PROCESSING UNITS 23

whole processor. In order to use this time better, the connection prediction makes an
assumption on the value of the variable and goes on with the calculation. When the
memory access is �nished, the assumed value is compared to the real value: in some
cases it is identical, and the processor has not lost any time. Otherwise the time is lost
anyway. This method is particularly e�cient on conditional loops such as:

if (x>0) then
a=b*x;

else
a=-b*x;

end

The processor starts one of the two calculations and has (on average) a 50% chance to
keep its calculations at the end of the memory access.
On a GPU, roughly 90% of the transistors are dedicated to the calculation units, giving
it a raw calculation power extremely high. These calculation units are individually
simpler (and thus less e�cient) than the ones of a CPU, but their huge number greatly
compensate this weakness. The GPU's calculation units are called Streaming Processor
(SP), and are grouped at di�erent scale. Eight Streaming Processor form a Streaming
Multiprocessor (SM). Three Streaming Multiprocessor form a Thread Processing Cluster
(TPC). All the SP of one Streaming Multiprocessor execute the same task called thread
on di�erent data. Each SM has a shared memory accessible by the eight SPs.
Cumulated, the cache memory of the GPU is smaller than the cache memory of the
CPU. This does not create too many problems, the cache requirements of a GPU being
lower than the ones of a CPU. Finally there is one control structure per SM. These
structures are very di�erent from the ones observed on CPU because of speci�c
constraints. There is no prediction mechanism on the GPU because there exists a more
e�cient solution. In the right con�guration, the GPU has more threads to compute than
it can run simultaneously. Therefore, when a thread being computed needs a value from
the DRAM for a variable, it is put aside and a thread in a waiting queue gets access to
the GPU and starts (or resumes) its calculation. This process exchange is called a
content change. When the �rst thread receives the value for its variable in the GPU
cache, it resumes its calculation. Context changes are extremely fast on GPU, and very
slow on CPU, which explains why this solution is not used with CPUs. Therefore, it is
essential to occupy the GPU with a great number of simultaneous tasks to allow it
context changes as often as it needs.
Since a CPU sequentially processes complex tasks, it needs complex control structures
with an important number of transistors. The cache must be large enough to ensure
that the majority of the variables necessary for the calculations can be included in it.
Since a GPU processes groups of simple identical tasks, its control structures have a
small size and small caches are su�cient.

From a scheduling point of view, this indicates that the type of a task in�uences the
values of its processing times on CPU and on GPU: if it requires a lot of data, its

24 CHAPTER 2. INTRODUCTION TO HPC AND GPUS

processing time on GPU will not be much better than its processing time on CPU, since
any computational time gained will be hindered by the time needed to fetch the data
required for the computations, too big to �t on the small GPU cache. If the calculation
time is much smaller than the time for data transfer, the full execution can actually take
longer on GPU than on CPU. The calculations that are good candidates for an
execution on GPU are complex calculations on a small data volume.

Example 2.2.1. Calculating the sum of two diagonal square matrix of size n.
The time complexity of the calculation is in O(n), when the sizes of the entry data and
exit data to copy vary in O (n).

Example 2.2.2. Inverting a square matrix of size n.
The size of the data to copy varies in O (n2), and the time complexity of the calculations
varies in O (n3).

Example 2.2.2 seems to be a better candidate for GPU execution. Indeed, for a value of
n large enough, the time of data transfer becomes negligible compared to the calculation
time.
The di�erent architectures of CPUs and GPUs leads to di�erent memory management
mechanisms that in�uence the processing times of a task on CPU and GPU, depending
on the type of the task to compute.

2.2.2 GPU Programming

The di�erent memory management mechanisms on CPU and GPU discussed in the
previous section have an impact on the programming of GPUs. Indeed, the �rst phase of
a calculation on a GPU must be the copy of the entry variables from the CPU memory
to the GPU memory, and the last phase is always the copy of the exit variables from the
GPU memory to the CPU memory. Let us take an example to visualize the di�erent
steps in a GPU calculation.

Example 2.2.3. Vector addition element by element
Compute Y = α +X, Y and X being two vectors of 1024 �oat.

The program allocate memory on the CPU (input, output) and on the GPU
(input_ gpu,output_gpu)

input = OpenCL::VArray::new(FLOAT, 1024)
output = OpenCL::VArray::new(FLOAT, 1024)
input_gpu = create_buffer(1024*4)
output_gpu = create_buffer(1024*4)

The command to copy the input bu�er from the CPU memory to the GPU memory is
the following one in the programming language OpenCL

enqueue_write_buffer(1024*4, input, input_gpu)

2.2. GRAPHICAL PROCESSING UNITS 25

and the following command is for copying the output bu�er from the GPU memory to
the CPU memory

enqueue_read_buffer(1024*4, output_gpu, output)

As we have seen in the previous section, these memory transfers have a non negligible
impact on the total execution time on GPU and must be done carefully, in order to keep
these transfer times minimal compared to the computation time of a task.

The other phase in a GPU calculation is the calculation itself. In order to get a good
acceleration on the processing time of a task when compared to its CPU processing
time, the calculations executed on GPUs must also be programmed with a lot of
parallelization in their code, and therefore they have to be parallelizable. Matrix
calculations are good candidates with respect to this criterion: there can be as many
threads on the GPU as there are matrix coe�cients. Each SP takes care of one
coe�cient of the calculation. It is up to the programmer to specify the number of
threads he wants to execute, as well as their organization. On GPU, the parallel
routines are called kernels: the threads of one kernel execute the same code on di�erent
data. The code for the calculation on the GPU corresponding to Example 2.2.3 is the
following in OpenCL:

prog = create_program([<<EOF
__kernel void addition(float alpha,

__global const float *x,
__global float *y) {

size_t ig = get_global_id(0);
y[ig] = alpha + x[ig];

}
EOF
])
create_kernel("addition",prog)

In a kernel, threads are organized in blocks: a block can have one, two or three
dimensions, depending on the programmer's choice and the material constraints. The
blocks themselves are organized into a grid of blocks. Similarly, the grid can have one,
two or three dimensions. Each thread has access to variables specifying its position in
the grid and in the corresponding block. Therefore, a thread in a typical kernel working
on matrix starts by using these variables to de�ne a couple of indexes (i, j) that are
speci�c to this thread. As a result, the thread works on index (i, j) of the matrix. This
corresponds to the following command in OpenCL for Example 2.2.3, that computes the
kernel with the arguments and vector of size 1024 = 16× 64 �oat split into a grid of 16
blocs, each block containing 64 threads:

args= set_args([OpenCL::Float::new(5.0),
input_gpu, output_gpu])

enqueue_NDrange_kernel(prog, args, [1024], [64])

26 CHAPTER 2. INTRODUCTION TO HPC AND GPUS

Since threads share the same global memory, it is necessary to prevent di�erent threads
from writing in the same memory space at the same time. Loading threads regularly is
also very important. GPU executes threads in groups (or warps), and the processing of
one group is �nished when all the threads of the group are �nished. It is therefore
essential to avoid conditional loops that disturb load balance.
These programming di�culties have to be considered by the programmer and are in no
way handled by the scheduler of a computing platform, but it a�ects the processing
times the tasks of the programmer will have on GPU, and therefore are another reason
why the processing time of a task on GPU can be very variable and may not be
determined with an acceleration rule corresponding to its type or its degree of
parallelization. Depending of the skills of the programmer and the hardware
speci�cations of the platform GPUs, this degree of parallelization may not be exploited
to its full potential. However, it is commonly admitted that an accurate estimation of
the processing times of tasks can be obtained at compile time for regular numerical
applications in HPC. Therefore, from a scheduling point of view, this aspect only add to
the arbitrariness of the ratio of the processing times of tasks on CPU and on GPU, with
no impact on the knowledge of these processing times.

One last characteristic of the GPU to observe: the architecture of GPUs prevents them
from preempting a task while it is executed on a GPU. A GPU computation is
unstoppable, and has to run its course until the end of the execution. It cannot even be
canceled during the processing. This means that the scheduling problems we study have
no preemption of the tasks allowed on the GPUs, not even the cancellation of the tasks
being allowed on GPU.

2.3 Summary

Computing platforms have reached high levels of computational power over the years,
opening new �elds of interest for High Performance Computing, ranging from economy
with �nance computations to scienti�c research with nuclear physics, �uids mechanics or
DNA sequencing... The overall complexity has grown with their ability to process and
transfer massive amounts of data in a very short amount of time, and new techniques
and processors have been developed to create these new platforms, resulting in an often
heterogeneous distribution of processors within these platforms.
One type of accelerating processors used on these platforms is the GPUs, that are able
to perform simple parallel computation at a very high speed, since it is what they were
designed to do in their primary use, graphical processing. However, this primary
purpose of the GPUs means they have an architecture that greatly di�ers from a
common CPU architecture, creating speci�c characteristics that alter the processing
time of a task on a GPU. The two main di�erences are memory management, and the
parallelization of the operations of a task.
Since these di�erence are based on to the GPU hardware and the user's programming,
when given an arbitrary set of tasks to schedule, we have to assume that the processing

2.3. SUMMARY 27

times of a task on CPU and GPU cannot be linked by any rule, and therefore have to be
completely arbitrary in the generic case. If the tasks to be scheduled however share the
same memory characteristics and have the same parallelization potential, we can assume
that all the tasks will either be accelerated when assigned to a GPU, or slowed down.
Another scheduling constraint to add to our model is that the tasks assigned to a GPU
cannot be preempted or canceled.
With these scheduling parameters in mind, we can de�ne the problems we studied
during the course of this PhD thesis and present new notations for this new type of
scheduling problems, as well as the methods from related scheduling problems that we
used during this PhD thesis to tackle these problems.

28 CHAPTER 2. INTRODUCTION TO HPC AND GPUS

Chapter 3

New Notations and Related Works on

GPU Scheduling Algorithms

New computing platforms are composed of various processors, including standard
processors, CPUs, but also accelerators like GPUs. Scheduling the calculations
submitted by the platform users is a crucial problem in term of e�ciency for a �eld
where performance is key. These heterogeneous processors make the scheduling problem
on these platforms at least atypical and very hard in terms of known problems,
especially since there was no theoretical method prior to this work to deal with this
particular scheduling problem. The closest problem in the classical literature would be
the problem of scheduling tasks on unrelated processors, but it is far too generic for our
problem, with only two types of unrelated processors.
The classical nomenclature for scheduling problems does not have a notation adapted to
the problem of scheduling tasks on a heterogeneous platform composed of CPUs and
GPUs. We extend here the traditional notation α | β | γ introduced by Graham et
al. [39] to �t our new scheduling problems, and then cover the related scheduling
problems we have used during this work to establish and study a new adequate class of
scheduling model.

3.1 Notations

In this work, only deterministic scheduling problems are considered, meaning that the
number of tasks, the number of parallel processors, and all task characteristics (like
processing times) of the problems are known in advance.
Each �eld of the classical three �eld notation α | β | γ [39] represents a particular
characteristic of a scheduling problem, where

• α represents the resources of the problem, i.e. the available machines, or in our
case, the number of CPUs available and the number of GPUs available. In the
classical notation, when the machines are identical, α = P , when the machines are

29

30CHAPTER 3. NEWNOTATIONS AND RELATEDWORKS ONGPU SCHEDULING ALGORITHMS

uniformly related i.e. when the machines have di�erent speeds, α = Q, and when
the machines are unrelated, α = R.

• β represents the hypothesis on the tasks and the constraints imposed on the tasks.
In our case, we assume that all processing times are positive integers.

• γ represents the objective to minimize or maximize. In HPC, the favored objective
is the minimization of the makespan, Cmax, i.e. the maximum completion time over
all tasks. Indeed, when dealing with parallel processors, the makespan becomes an
objective of signi�cant interest. In practice, one often has to deal with the problem
of balancing the load on processors in parallel and by minimizing the makespan the
scheduler ensures a good balance of the load.

Now we present the extensions we introduced in this notation in order to characterize
our scheduling problem, starting with the α �eld.

3.1.1 Machines (α)

3.1.1.1 Sets of Identical CPUs and Identical GPUs

We denote by (Pm,Pk) the problem of scheduling a set T = {T1, . . . , Tn} of n tasks on
a heterogeneous computing platform constituted of m identical CPUs (Pm) and k
identical GPUs (Pk), where a task Tj has two distinct processing times, pj if it is
executed on a CPU and pj if it is processed on a GPU. The m CPUs are considered
independent from the GPUs that are commanded by some extra driving CPUs, not
mentioned here because they do not execute any task. Since the CPUs (resp. GPUs) are
all identical, there is no need for a more complex notation involving the number of the
CPU (resp. GPU) where one task is processed. The default hypothesis is that the
acceleration factor pj

pj
= qj of the di�erent tasks is arbitrary. Tasks with a great degree

of parallelism can have their processing times greatly reduced when assigned to a GPU,
while some other tasks may have similar processing times on CPU and on GPU, or some
might even be slowed down when assigned to a GPU. We assume that both processing
times of a task are known in advance as it is commonly admitted. As we previously
mentioned, an accurate estimation can be obtained at compile time for regular
numerical applications in HPC.
For instance the problem (Pm,Pk) || Cmax will denote the problem of scheduling n
independent sequential tasks (i.e. they are only executed on one processor) on m CPUs
and k GPUs where the objective is to minimize the makespan,
Cmax = max

(
CCPU
max , C

GPU
max

)
(see Figure 3.1). Other classical objectives found in the

literature can also be integrated in this notation, as for example the sum of completion
times,

∑
Cj.

The notation (P, P) is used when the numbers of CPUs and GPUs are arbitrary, but all
the CPUs are still considered identical as well as the GPUs.

3.1. NOTATIONS 31

pi

m CPUs

k GPUs
pj

CCPU
max = Cmax

CGPU
max

Figure 3.1: An example with m = 6 CPUs and k = 2 GPUs.

3.1.1.2 Sets of Uniform CPUs and Uniform GPUs

With the same reasoning as for identical processors, we denote by (Qm,Qk) the
problem with n independent sequential tasks on a platform with m uniform CPUs (Qm)
and k uniform GPUs (Qk). In this case, a task can have several distinct processing
times. We denote by pj the processing time of task j on the slowest CPU, taken as the
reference CPU. From there, the processing time of task j on CPU i is de�ned by
pij =

pj
si
, where si is the speedup factor of CPU i compared to the slowest CPU, whose

speedup is 1, as described for classical scheduling problems with uniform machines.
We introduce the same processing times for the GPUs, where pj denotes the processing
time of a task j on the slowest GPU. The processing time of task j on GPU i is then
de�ned by pij =

pj

si
, where si is the speedup factor of GPU i compared to the slowest

GPU, whose speedup is 1.
Using this notation, we de�ne similarly the acceleration ratio of a task from its
parallelization on a GPU with the processing times on the reference processors: qj =

pj
pj
.

Once again, the default hypothesis is that all the acceleration ratios of the di�erent
tasks can be arbitrary. The parallelization process allowing much greater acceleration
that any increase in computing speed, it is assumed that even the largest speedup factor
si among the CPUs is lower than the smallest acceleration factor qj for a task j on the
reference GPU.
Again, the notation (Q,Q) is used when the numbers of CPUs and GPUs are arbitrary,
as for instance in the problem of minimizing the makespan: (Q,Q) || Cmax, but other
objectives than the makespan could also be considered for this problem.

This new notation allows us to consider all the combinations for the sets of CPUs and
GPUs: we could for instance study the problem (P2, Q2) corresponding to a simple
laptop with 2 CPU cores and its built-in GPU on which another, di�erent, GPU has

32CHAPTER 3. NEWNOTATIONS AND RELATEDWORKS ONGPU SCHEDULING ALGORITHMS

been plugged for graphical purposes.

3.1.1.3 Unrelated CPUs and unrelated GPUs

Extending the previous notation to unrelated sets of CPUs and GPUs would bring no
additional material to the notation of α = R, the processing times being completely
arbitrary from one task and one machine to another.

3.1.2 Tasks (β)

In the generic case, the tasks can be independent or linked by some precedence
constraints, they can be considered either sequential (i.e. they are only executed on only
one processor), or malleable (they can be executed on several processors and their
processing time depends on the number of processors they are assigned to).

3.1.2.1 One type of tasks

As mentioned in the previous section, the default hypothesis in the new notation is that
the acceleration factors pj

pj
= qj for the di�erent tasks can be arbitrary. A restricted

version of this hypothesis can be made in order to consider the problems dealing with
the scheduling of only one type of tasks, i.e. all the considered tasks would have the
same acceleration factor: pj

pj
= q for j = 1, . . . , n.

For instance, the problem (Pm,Pk) || Cmax with only one type of tasks will be denoted
by (Pm,Pk) | qj = q | Cmax in the same way as equal processing times are denoted by
pj = p in the β �eld of the classical notation. All other entries from the β �eld in the
classical notation can be integrated in order to re�ne the problem, with the exception of
the preemption which is detailed in the following section.

3.1.2.2 Partial Preemption

Due to the di�erent architectures of the GPUs as well as the di�erent programming
languages, it is di�cult and costly to start a task on a CPU, interrupt it and pick it up
where it was stopped on a GPU: complete preemption cannot be allowed between a
CPU and a GPU. The GPU peculiar structure requires complex management of the
preemption even between the GPUs themselves [6].
We introduce the notion of "partial preemption", denoted by ppmtn, where preemption
is only allowed for tasks remaining on the CPUs. For the rest of the manuscript, we will
suppose that preemption is not allowed between GPUs, or between a CPU and a GPU.
The notion may evolve in the next few years with new accelerator architectures as the
Intel MIC (Many Integrated Core) architecture of the Xeon Phi, which is roughly a
"standard" 60 core disk-less system. Preemption inside a MIC should be much easier.
Nevertheless, e�cient task migration between the CPU and the MIC remains an open
problem.

3.1. NOTATIONS 33

With these notations, Table 3.1 summarizes the new scheduling problems we studied as
well as the performance of the corresponding algorithms we developed during the course
of this PhD, including several algorithms for the case with independent tasks, the
speci�c case where all the tasks to be scheduled are accelerated when assigned to a
GPU, but not necessarily with the same acceleration factor for all the tasks, the case
where preemptions are allowed for the tasks assigned to the CPUs, but not for the tasks
on the GPUs, the case where the tasks are considered malleable when they are assigned
to a CPU and sequential when assigned to a GPU, and the case where the tasks are
linked by precedence relations.

Problem Approximation ratio achieved Section

(P1, P1) || Cmax 3
2 4.1.3

1 + ε

2 4.2.3
(Pm,Pk) || Cmax 4

3 + 1
3k 4.3, 4.4

2r+1
2r + 1

2rk , r > 0 5
2(r+1)
2r+1 + 1

(2r+1)k , r > 0

(Pm,Pk) | qj > 1 | Cmax 3
2 6.1

(Pm,P1) | ppmtn | Cmax 1 + 1
m 6.2.1

(Pm,P1) | qj = q, ppmtn | Cmax 1 + 1
q

1 + max
(
1
m , 1− 1

k

)
(Pm,Pk) | ppmtn | Cmax 1 + max

(
1
m ,

1
2r +

1
2rk

)
, r > 0 6.2.2

1 + max
(

1
m ,

1
2r+1 + 1

(2r+1)k

)
, r > 0

(Pm,Pk) | mall | Cmax 3
2 6.3

(Pm,Pk) | prec | Cmax 6 8

Table 3.1: Problems with no equivalent counterpart in the literature studied in this work.

Table 3.2 shows new scheduling problems that we linked to existing scheduling
problems, that are presented in the following section.

Problem Corresponding Problem Section

(Pm,Pk) | qj = q, pj = 1 | Cmax Q | pj = 1 | Cmax 3.2.1.2

(Qm,Qk) | qj = q, pj = 1 | Cmax
(Pm,Pk) | qj = q | Cmax Q || Cmax 3.2.2.1
(Qm,Qk) | qj = q | Cmax

(Pm,Pk) ||∑Cj R ||∑Cj 3.2.1.2
(Pm,Pk) | ppmtn |∑Cj

Table 3.2: Problems related to classical scheduling problems.

34CHAPTER 3. NEWNOTATIONS AND RELATEDWORKS ONGPU SCHEDULING ALGORITHMS

3.2 Related Work on Scheduling Independent Sequential Tasks

In this chapter we present the classical methods [85] used to solve scheduling problems
on parallel processors with independent sequential tasks, and the best approximation
results obtained with for classical problems so far. These methods were used during the
course of this PhD to study the �rst new problems of scheduling on CPUs and GPUs.
Problems with malleable tasks or with dependent tasks were also studied during the
course of this PhD. The corresponding related works in the literature are presented at
the beginning of the corresponding chapters (see Table 3.1).

Some speci�c problems with CPUs and GPUs can be directly linked to classical
problems in the literature, presented in Table 3.2. In fact, if we considered an instance
where all the tasks have the same ratio when comparing their processing times on CPU
and on GPU, our problem would reduce to a uniform machine problem. The methods
used in the literature to solve the corresponding classical problems are presented in this
chapter in the speci�c cases of heterogeneous scheduling. We start with exact methods
that solve entirely the problems they deal with.

3.2.1 Exact Methods

Exact methods cannot be used to solve directly problem (Pm,Pk) || Cmax in polynomial
time, but the techniques we present below are used in the design of the approximation
algorithms developed in this work.

3.2.1.1 Linear Programming

Linear programming [88] (LP) is a method to solve optimization problems that have
only linear constraints of equality and inequality and a linear objective function. Its
feasible region is a convex polyhedron, which is a set de�ned as the intersection of
�nitely many half spaces, each of which is de�ned by a linear inequality. Its objective
function is a real-valued a�ne function de�ned on this polyhedron. A linear
programming algorithm �nds a point in the polyhedron where this function has the
smallest (resp. largest) value if such a point exists in the case where we aim at
minimizing (resp. maximizing) the objective function.

Scheduling problems where preemption is allowed can typically be solved by linear
programming. The problem P | pmtn | Cmax can be formulated as the following linear

3.2. RELATED WORK ON SCHEDULING INDEPENDENT SEQUENTIAL TASKS 35

program:

min Cmax

s.t.
m∑
i=1

xij = 1, j = 1, . . . , n

(LP)
m∑
i=1

xijpj 6 Cmax, j = 1, . . . , n

n∑
j=1

xijpj 6 Cmax, i = 1, . . . ,m

0 6 xij 6 1, i = 1, . . . ,m, j = 1, . . . , n

where pj represents the processing time of a task Tj, xij is a variable in the interval [0, 1]
that represents the portion of task Tj that is processed on processor Pi, m is the number
of processors and n the number of tasks. The objective function here corresponds to the
makespan of the schedule, and the constraints represents the facts that the totality of
each task must processed by the m processors, that each task must be entirely processed
before the end of the schedule and that the computational load on each processor must
not be larger than the makespan.
This problem can be solved very e�ciently. The length of a preemptive schedule cannot
be smaller than the maximum of two values: the maximum processing time of a task
and the mean processing requirement of a processor i.e.:

C∗max = max

{
max
j
{pj} ,

1

m

n∑
j=1

pj

}
.

An algorithm given by McNaughton [65] constructs a schedule whose length is equal to
C∗max with a complexity of O (n). This is therefore a polynomially solvable problem.
However, in practice, we cannot preempt at will the tasks of an instance. Every
preemption made has a cost, for example in data transfer from one processor to another,
and one cannot divide a task into an in�nity of very small fractions of task. This
suggests the introduction of a scheduling model where task preemptions are only allowed
after the tasks have been processed continuously for some given amount g of time. The
value for g (preemption granularity) should be chosen large enough so that the time
delay and cost overheads connected with preemption are negligible. For given
granularity g, upper bounds on the preemption overhead can easily be estimated since

the number of preemptions for a task of processing time p is limited by
⌊
p
g

⌋
. In [25], the

problem P | pmtn | Cmax with g-restricted preemption is discussed : if pj 6 g, then
preemption is not allowed, otherwise preemption may take place after the task has been
continuously processed for at least g units of time. For the remaining part of a
preempted task the same rule is applied. For 2 processors, both the g-preemptive and

36CHAPTER 3. NEWNOTATIONS AND RELATEDWORKS ONGPU SCHEDULING ALGORITHMS

the exact-g-preemptive (preemptions are only allowed every g units of time, or a
multiple of g) scheduling problems can be solved in time O (n). For more than 2
processors, both problems are NP-hard.
Problems Q | pmtn | Cmax and R | pmtn | Cmax can also be solved in polynomial time
using linear programming. However these problems cannot be linked directly to any
CPU-GPU problem, since the architecture of the GPUs prevents any preemption of any
task, as seen in the previous chapter.
In this thesis, linear programming is used in the resolution of problem
(Pm,Pk) | ppmtn | Cmax (see Chapter 6, Section 6.2) as well as in part of the resolution
of (Pm,Pk) | prec | Cmax (see Chapter 8).

3.2.1.2 Transportation Networks and Network Flow Algorithms

In graph theory, a transportation network is a directed graph where each arc has a
capacity and each arc receives a �ow. The amount of �ow on an arc cannot exceed the
capacity of the arc. A �ow must satisfy the restriction that the amount of incoming �ow
into a node equals the amount of outgoing �ow, unless it is a source, which has more
outgoing �ow, or sink, which has more incoming �ow. A transportation network can be
used to model tra�c in a road system, circulation with demands, �uids in pipes,
currents in an electrical circuit, or anything similar in which something travels through a
network of nodes. Such a problem can be solved polynomially.
Some speci�c scheduling problems may be formulated as transportation networks
problems by creating sources, sinks, capacities and arcs from the original problem
parameters. A transportation network formulation has been presented for problem
Q | pj = 1 | Cmax in [39], which in turn can be used to formulate problem
(Pm,Pk) | qj = q, pj = 1 | Cmax as a transportation network problem as follows.

There are n sources j = 1, . . . , n, each corresponding to a task Tj, and (m+ k)n sinks
(i, v) for the processors with i = 1, . . . ,m+ k, and the positions v = 1, . . . , n (see
Equation (3.1)). A task is considered to be in the vth position on a processor when it is
the vth task executed on that processor. The �rst m machines correspond to the CPUs
and the last k ones to the GPUs. The cost of arc (j, (i, v)) is

cijv =

{
v if machine i is a CPU (i.e. i = 1, . . . ,m),

v/q if machine i is a GPU (i.e. i = m+ 1, . . . ,m+ k).

The arc �ow is

xijv =

{
1 if task Tj is executed on machine i in the vth position

0 otherwise.
(3.1)

3.2. RELATED WORK ON SCHEDULING INDEPENDENT SEQUENTIAL TASKS 37

The problem is to minimize Cmax = max
i,j,v
{cijvxijv} subject to constraints

∑
i,v

xijv = 1 ∀j∑
j

xijv 6 1 ∀i, v

xijv > 0 ∀i, j, v

This problem can be solved by a standard transportation procedure which results in
O (n3) time complexity.

The problem of minimizing the sum of completion times on unrelated processors,
R ||∑Cj, is also polynomially solvable via a transportation problem formulation [15].
The problem of scheduling on m CPUs and k GPUs with minimum sum of completion
times, (Pm,Pk) ||∑Cj, is a speci�c case of the classical problem R ||∑Cj. We can
adapt an approach to the solution of R ||∑Cj to (Pm,Pk) ||∑Cj: the method is
based on the observation that task Tj processed on machine i in the last position

contributes its processing time pij =

{
pj if i ∈ {1, . . . ,m}
pj if i ∈ {m+ 1, . . . ,m+ k} to the sum of the

completion times
∑
Cj for problem (Pm,Pk) ||∑Cj. The same task processed in the

last but one position on the same processor contributes 2pij to
∑
Cj and so on. This

reasoning allows us to construct an (2n)× n matrix Q presenting the contributions of
the tasks when they are processed in di�erent positions on di�erent processors to the
value of

∑
Cj:

Q =



p1 . . . pj . . . pn
2p1 . . . 2pj . . . 2pn
...

...
...

np1 . . . npj . . . npn
p1 . . . pj . . . pn
2p1 . . . 2pj . . . 2pn
...

...
...

np1 . . . npj . . . npn


The problem is now to carefully choose n elements from matrix Q in order to minimize

n∑
j=1

n∑
v=1

(
m∑
i=1

Qv,j +
m+k∑
i=m+1

Qv+m,j

)
xijv

38CHAPTER 3. NEWNOTATIONS AND RELATEDWORKS ONGPU SCHEDULING ALGORITHMS

under the constraints

m+k∑
i=1

n∑
v=1

xijv = 1 ∀j ∈ {1, . . . , n}

n∑
j=1

xijv 6 1 ∀i ∈ {1, . . . ,m+ k} , v ∈ {1, . . . , n}

where

xijv =

{
1 if Tj is put on i in the vth position, starting counting from the end,

0 otherwise.

The problem is a transportation problem solved using classical transportation
algorithms, in O (n3) [15].

3.2.1.3 Dynamic programming

Dynamic programming [88] is a method for solving complex problems by breaking them
down into simpler subproblems. The idea behind dynamic programming is quite simple.
In general, to solve a given problem, we need to solve di�erent parts of the problem
(subproblems), then combine the solutions of the subproblems to reach an overall
solution. Often when using a more naive method, many of the subproblems are
generated and solved many times. The dynamic programming approach seeks to solve
each subproblem only once, thus reducing the number of computations: once the
solution to a given subproblem has been computed, it is stored or memorized: the next
time the same solution is needed, it is simply looked up. This approach is especially
useful when the number of repeating subproblems grows exponentially as a function of
the size of the input.
An example of problem solved using dynamic programming is the knapsack
problem [64]. The knapsack problem is to determine, given a set of items, each with a
mass and a value, the number of each item to include in a collection so that the total
weight is less than or equal to a given limit and the total value is as large as possible. It
derives its name from the problem faced by someone who is constrained by a �xed-size
knapsack and must �ll it with the most valuable items.
This knapsack problem and its dynamic programming solving method will be used in
the following chapter, Section 4.1.3, to develop an approximation algorithm for problem
(P1, P1) || Cmax and then problem (Pm,Pk) || Cmax in the following sections.

These are some scheduling problems that are polynomially solvable with exact methods.
However, when the problems become more complex, these methods do not work, and
there is a need for the use of approximation algorithms.

3.2. RELATED WORK ON SCHEDULING INDEPENDENT SEQUENTIAL TASKS 39

3.2.2 Approximation Methods

Non-preemptive parallel scheduling problems with minimal makespan tend to be
di�cult to solve. The vast majority of them are NP-hard already for the case with a
�xed number of processors. Even the scheduling problem with two identical processors
P2 || Cmax is already is NP-hard in the ordinary sense since PARTITION [33]
polynomially reduces to it. Here, each processor represents a set of a partition and the
tasks are the items which we want to divide evenly into these two partitions. Thus, it is
unlikely (unless P = NP) that there exists a polynomial-time algorithm for computing a
minimal makespan for a scheduling problem on hybrid platforms.
A standard way of dealing with NP-hard problems is not to search for an optimal
solution, but to search for near-optimal solutions. An algorithm that returns
near-optimal solutions is called an approximation algorithm [42]. If it runs in
polynomial time, then it is called a polynomial time approximation algorithm.
We aim at developing approximation algorithms whose schedules are relatively close to
the optimal schedule while remaining practical, i.e. with a reasonable time complexity
making them good candidates for an integration on a real computing platform. To
characterize the proximity of the solutions delivered by an approximation algorithm to
the corresponding optimal solutions, we determine the approximation ratio of said
algorithm.

De�nition 3.2.1. The approximation ratio ρA, or performance guarantee of an
approximation algorithm A is de�ned as the maximum over all the instances I of the
ratio f(I)

f∗(I)
where f is any minimization objective and f ∗ is its optimal value.

3.2.2.1 List Scheduling

The original list scheduling (LIST) algorithm was developed by Graham [37] in 1969 for
solving problem P || Cmax. It is based on a list of tasks ready to be executed in an
arbitrary order: the algorithm assigns the �rst task on the list when a processor
becomes free.
This algorithm is not optimal but it achieves the following approximation ratio:

Proposition 3.2.2. The worst-case performance guarantee of the LIST algorithm is:

Cmax(LIST)

C∗max
6 2− 1

m

The proof of this result is simple, but quite important since a lot of results are proven
with arguments similar to the ones used in this proof (see the proof of Algorithm 4.2.3
in Chapter 4, Section 4.2.3). If we note p1, . . . , pn the respective processing times of the
n tasks, the proof uses the notable inequality [41]:

Cmax(LIST)

C∗max
6 1 + (m− 1)

max
j
pj

n∑
j=1

pj

,

40CHAPTER 3. NEWNOTATIONS AND RELATEDWORKS ONGPU SCHEDULING ALGORITHMS

and the classical lower bounds on the optimal makespan of P || Cmax

C∗max > max
j
pj and C∗max >

∑n
j=1 pj

m
.

The list principle guarantees that the idle times on the processors are regrouped at the
end of the schedule, the last processor to �nish its task execution determining the
makespan of the schedule. This observation allowed Graham in [38] to reduce the
approximation ratio of his algorithm for P || Cmax with the assignment of the smallest
tasks at the end of the schedule where they can be used to balance the loads. The new
scheduling algorithm is said to be using the longest processing time �rst (LPT) rule.
The algorithm assigns at time t = 0 the m largest tasks to the m processors. After that,
whenever a processor is freed, the largest unscheduled task is put onto the processor. If
the tasks are selected in the LPT order the approximation ratio of the list scheduling
algorithm for problem P || Cmax can be considerably improved:

Proposition 3.2.3. The LPT scheduling algorithm has a performance guarantee of

Cmax(LPT)

C∗max
6

4

3
− 1

3m
,

This new bound is tight, meaning that we can found an instance of P || Cmax whose
schedule constructed via the LPT algorithm has a makespan 4

3
times greater than its

optimal makespan.

Remark 3.2.4. We can note that if we order the tasks according to the LPT rule, we
have a �nal schedule in two parts (see Figure 3.2): the �rst part has a number of idle
processors lower than m

2
, and the second part has a number of idle processors greater

than m
2
.

Part 1 Part 2

Figure 3.2: Schedule resulting from an LPT algorithm.

3.2. RELATED WORK ON SCHEDULING INDEPENDENT SEQUENTIAL TASKS 41

This remark will be used in the design of the algorithm of Chapter 4, Section 4.3.

Other problems than P || Cmax have list algorithms to approximate them. One of these
problems is the scheduling problem on uniformly related (or just related, for short)
processors, Q || Cmax. Here, we are given a set of n independent tasks with sizes pj that
are to be executed on m non-identical processors. These processors run at di�erent
speeds vi. More precisely, if task Tj is processed on processor Pi, it takes time pj/vi to
be completed.
Graham [37,38] generalized his LPT scheduling policy to make it applicable for the
Q || Cmax problem. This natural extension works as follows. It assigns each task, in
order of non-increasing size pj, to a processor on which it will be completed soonest, i.e.,
it assigns task Tj to processor i for which δi + pj/vi is minimized. Here, δi is the load on
processor i just before the assignment of task Tj.
For the general case Gonzales et al. [35] showed

Cmax(LPT)

C∗max
6 2− 2

m+ 1
.

Additionally, they gave examples for which Cmax(LPT)/C∗max approaches
3
2
as m tends

to in�nity.

A speci�c version of the heterogeneous problem (Pm,Pk) || Cmax, where all the tasks
have the same behavior on the GPUs, i.e. pj

pj
= q constant, denoted by

(Pm,Pk) | qj = q | Cmax, could be assimilated to Q || Cmax: the m CPUs would have a
speed vc = 1 and the GPUs a speed vG = q, for all the tasks. We can use the
generalization of the LPT rule presented above. The algorithm would assign each task,
in the order of longest processing time, to the processor (GPU or CPU) it will be
completed soonest. The ratio is then 2− 2

m+k+1
.

For two uniform processors, i.e. Q2 || Cmax, Gonzales et al. showed that for any speed
ratio q > 1, the approximation factor of the LPT algorithm is at most
1
4
(1 +

√
17) ≈ 1.28. Here, q is the ratio between the speed of the faster processor and the

speed of the slower processor. Recently, this case was investigated by Epstein and
Favrholdt [26]. They gave the exact approximation factor of LPT in function of speed
ratio q.
For a general setting of m uniform processors, Friesen [31] proved that the
approximation factor of the LPT scheduling policy satis�es

1.52 6
Cmax(LPT)

C∗max
6

5

3
.

Another list scheduling algorithm has been presented in [60] for the speci�c case of
Q || Cmax with m+ 1 processors and where the �rst m processors have a processing
speed factor equal to 1 and the remaining processor has a processing speed factor of q.
The problem is denoted Q(m+ 1) || Cmax and the list algorithm is as follows: the tasks

42CHAPTER 3. NEWNOTATIONS AND RELATEDWORKS ONGPU SCHEDULING ALGORITHMS

are ordered on the list in the non-increasing order of their longest processing times and
processors are ordered in the non-increasing order of their processing speeds. Whenever
a processor becomes free, it gets the �rst non-assigned task of the list. If there are two
or more free processors, the fastest is chosen.

Proposition 3.2.5. This list scheduling algorithm has a performance ratio of

Cmax(LIST)

Cmax∗
6

{
2(m+q)
q+2

for q 6 2
m+q
2

for q > 2.

This problem can be also interpreted as the speci�c problem of scheduling tasks on m
CPUs and one GPU, where all the tasks have the same acceleration when a�ected to the
GPU, (Pm,P1) | qj = q | Cmax. The performance ratio of the ratio remains unchanged,
q being the speedup of the GPU.

Remark 3.2.6. We can note that the problems (Pm,Pk) | qj = q, pj = 1 | Cmax and
(Pm,Pk) | qj = q | Cmax described in the previous sections were particular cases of the
classical problems Q | pj = 1 | Cmax and Q || Cmax. We can show in a similar manner
that problems (Qm,Qk) | qj = q, pj = 1 | Cmax and (Qm,Qk) | qj = q | Cmax are also
speci�c cases of Q | pj = 1 | Cmax and Q || Cmax, respectively. The proofs would be
similar and the methods used to solve these problems would remain unchanged.

Another scheduling problem with list scheduling algorithms is the problem presented by
Imreh in [48], consisting in scheduling n sequential tasks on two sets of identical
machines with minimum makespan. This scheduling problem corresponds exactly to
(Pm,Pk) || Cmax, the �rst set CPU being the m CPUs, the second GPU corresponding
to the k GPUs. The two sets of processors are identi�ed as CPU and GPU in the
following presentation of the associated list scheduling algorithms. We assume here that
k 6 m.
The �rst list scheduling algorithm denoted LG for this problem is as follows:

• We �rst preassign the n tasks: they are divided between the sets CPU and GPU
using the following rule:

Task Tj it is assigned to GPU if
pj

k
6 pj

m
, otherwise it is assigned to CPU .

• For each set we assume that we have an arbitrary ordered list LIST of all tasks.
We then assign the tasks according to the order of LIST to the �rst processor
available in the considered set.

Proposition 3.2.7. Algorithm (LG) has a performance guarantee of

Cmax(LG)

C∗max
6 2 +

m− 1

k
.

3.2. RELATED WORK ON SCHEDULING INDEPENDENT SEQUENTIAL TASKS 43

Remark 3.2.8. When, after preassigning the tasks to the sets CPU and GPU in LG, the
tasks in each set could be ordered according to the LPT rule rather than choosing an
arbitrary list, creating a variant of the LG algorithm, LGLPT . We have then the
following result for the problem P || Cmax with f tasks: Cmax(LPT)

C∗max(P ||Cmax)
6 4

3
− 1

3f
.

This result can be applied to the set of tasks to be scheduled on the CPUs as well as to
the set of tasks assigned to the GPUs by LGLPT . If we denote by C

GPU∗LG
max (Pk || Cmax)

(resp. C
CPU∗LG
max (Pm || Cmax)) the optimal makespan for the instance of Pk || Cmax (resp.

Pm || Cmax) constituted of the tasks to be scheduled on the GPUs (resp. CPUs) by
LGLPT , and by C∗max the optimal makespan for the corresponding instance of problem
(Pm,Pk) || Cmax, we obtain:

Cmax(LGLPT)

C∗max
6

max

((
4

3
− 1

3k

)
C
GPU∗LG
max (Pk || Cmax)

C∗max
,

(
4

3
− 1

3m

)
C
CPU∗LG
max (Pm || Cmax)

C∗max

)
.

A way to link the optimal makespan of the problems with identical processors to the
optimal makespan of the problem with two sets could greatly improve the performance
ratio of the modi�ed LG algorithm. However, no result has been obtained on this
subject.

Remark 3.2.9. If we suppose that pj = αjpj + βj, we can show that the list scheduling

algorithm with a repartition rule of αjpj+βj
k

6
pj

m
achieves the same guarantee.

Another greedy algorithm presented by Imreh [48] has an approximation ratio of 4− 2
m
.

An online algorithm was designed speci�cally for a CPU-GPU cluster in [18], and it uses
rules similar to the one from LG to schedule the tasks onto a CPU or a GPU. It
approximation ratio is 4.
These algorithms are fast enough for being implemented in modern platforms,
nevertheless the approximation ratios of these algorithms are quite high.

Remark 3.2.10. List scheduling algorithms are also employed to solve scheduling
problems with other objectives than the makespan and can sometimes provided an exact
resolution of a problem in polynomial time, for instance with the objective of the sum of
the completion times of the tasks, P ||∑Cj. The nature of criterion

∑
Cj is such that,

in the case of one processor, assigning tasks in increasing order of their processing times
minimizes the sum of the completion times. Conway et al. [22] showed that a
generalization of this rule called Shortest Processing Time �rst (SPT) leads to an
optimal list scheduling algorithm for problem P ||∑Cj, with a time complexity of
O (n log n).
From the viewpoint of the value of the sum of the completion times, McNaughton [65]
showed that preemptions are not pro�table. Therefore, the SPT rule and the resulting
list scheduling algorithm are also optimal for problem P | pmtn |∑Cj.

44CHAPTER 3. NEWNOTATIONS AND RELATEDWORKS ONGPU SCHEDULING ALGORITHMS

If we now consider problem (Pm,Pk) | ppmtn |∑Cj, where preemptions are only
allowed on the CPUs that are considered identical, since the problem P | pmtn |∑Cj is
polynomially solvable, the scheduling of the tasks of (Pm,Pk) | ppmtn |∑Cj can be
done with the method used with the previous problem, (Pm,Pk) ||∑Cj, solved in
Section 3.2.1.2. Therefore, the problem remains easy to solve when partial preemptions
are allowed.

Sometimes a greedy behavior such as the one of a list scheduling algorithm is not
enough to approximate the solution of a problem to a satisfying degree. In those cases,
one method employed in scheduling is the dual approximation technique.

3.2.2.2 Dual Approximation Technique

De�nition 3.2.11. A g-dual approximation [43] algorithm for a generic problem takes
a real number λ (guess) as an input, assumes that there exists a schedule of length at
most λ and either delivers a schedule of makespan at most gλ, or answers correctly that
there exists no schedule of length at most λ. A binary search is used to try di�erent
guesses to approach the optimal makespan as follows: we �rst take an initial lower
bound Bmin and an initial upper bound Bmax of the optimal makespan. We start by
solving the problem with a λ equal to the average of these two bounds, λ = Bmax+Bmin

2
,

and then the bounds are updated as follows:

• If the algorithm returns a schedule of makespan at most gλ, then there exists a
schedule of makespan at most λ and λ becomes the new upper bound.

• If the algorithm cannot delivers a schedule of length at most gλ, then λ becomes
the new lower bound and the guess is again updated accordingly.

The number of iterations of the binary search is bounded by log2 (Bmax −Bmin) .
Hence, a g-dual approximation algorithm can be converted, by bisection search, in a
g(1 + ε)-approximation algorithm with a similar running time.

This dual approximation technique is �rst used in the following chapter, Section 4.2.3 to
tackle the di�culty of having more than one CPU and one GPU. This method is the key
to all the algorithms developed in this PhD. Without the guess of the dual
approximation technique, it would be extremely hard to handle two sets of processors
that process tasks in a completely di�erent way.

There also exist more complex approximations algorithms with smaller approximation
ratios in the literature. We give below a presentation of one of these types of algorithms,
the polynomial time approximation scheme.

3.2. RELATED WORK ON SCHEDULING INDEPENDENT SEQUENTIAL TASKS 45

3.2.2.3 Polynomial Time Approximation Scheme

De�nition 3.2.12. A family of (1 + ε)-approximation algorithms over all ε > 0 with
polynomial running times is called a Polynomial Time Approximation Scheme (PTAS).
If the time complexity of a PTAS is also polynomially bounded in 1/ε, then it is called a
Fully Polynomial Time Approximation Scheme (FPTAS).

With respect to relative performance guarantees, an FPTAS is essentially the strongest
possible polynomial-time approximation result that we can derive for an NP-hard
problem. The inconvenient of PTAS and FPTAS is that in order to achieve these levels
of precision for the approximation ratio, the time complexity of the algorithms, although
polynomial, is very high and renders them usually to time consuming to be implemented
on real-time scheduling platforms, which is an objective of this PhD work.

For problem P || Cmax, Sahni [74] presented a family of approximation algorithms,
where algorithm Aε has a running time O(n(n2/ε)m−1), m being the number of
machines, and an approximation ratio of

Cmax(Aε)

C∗max
6 1 + ε.

When m is �xed, the family of algorithms Aε becomes a PTAS. Later, Hochbaum and
Shmoys [43] gave a better PTAS for P || Cmax which runs in O((n/ε)1/ε) time, which
unfortunately is still too high to be implemented in practice.

The �rst PTAS for Q || Cmax was given by Hochbaum and Shmoys [44]. Since the
problem is strongly NP-complete, their results are the best possible in the sense that if
there were an FPTAS for this problem, then P = NP . Their approximation algorithm is
based on a decision procedure which tests if there exists a schedule for a given problem
instance where all tasks are completed by time C. Thus, the decision problem can be
viewed as a bin-packing problem with variable bin sizes. The minimum value of C is
computed by a simple binary search procedure. The overall running time of the
algorithm is O

((
logm+ log

(
3
ε

)) (
m
ε

) (
n
ε

)
1
ε

)
.

Since we saw that a speci�c version of our problem, (Pm,Pk) | qj = q | Cmax, where all
the tasks have the same behavior on the GPUs could be assimilated to Q || Cmax, we
can theoretically use the PTAS developed for Q || Cmax for this speci�c case. However,
the time complexity is prohibitive when it comes to practical matters.

For problem R || Cmax, Horowitz and Sahni [45] presented a non-polynomial-time
dynamic programming algorithm to compute a schedule with minimum makespan. They
gave also the �rst FPTAS to approximate an optimum schedule with minimum
makespan for the case when the number of unrelated processors m is �xed. They proved
that, for any ε > 0, an (1 + ε)-approximate solution can be computed in
O(nm(nm/ε)m−1) time, which is polynomial in both n and 1/ε if m is �xed. However,
for the case where the number of processors is speci�ed as a part of the problem
instance, an FPTAS is unlikely to exist.

46CHAPTER 3. NEWNOTATIONS AND RELATEDWORKS ONGPU SCHEDULING ALGORITHMS

Lenstra et al. [57] also gave a PTAS for the problem with running time bounded by the
product of (n+ 1)m/ε and a polynomial of the input size. Although for a �xed m their
algorithm is not fully polynomial, it has a much smaller space complexity than the one
in [45]. In addition, the authors proved that unless P = NP , there is no
polynomial-time approximation algorithm for the R || Cmax problem with approximation
factor less than 3

2
, and they also presented a polynomial-time 2-approximation

algorithm. This algorithm computes �rst an optimal fractional (or preemptive) solution
obtained via linear programming and then uses rounding to obtain a schedule for the
discrete problem with an approximation factor of 2. Shmoys and Tardos [78] generalized
this technique to obtain the same approximation factor for the generalized assignment
problem. Furthermore, they generalized the rounding technique to hold for any
fractional solution.
In 2004, Shchepin and Vakhania [77] introduced a new rounding technique which yields
an improved approximation factor of 2− 1

m
for a similar time complexity as [57]. To the

best of our knowledge, this is so far the best low-cost approximation result for this
problem. However, the prohibitive computational cost of these algorithms prevents their
usage on actual computing platforms.
The fractional unrelated scheduling problem can also be formulated as a generalized
maximum �ow problem, where the network is de�ned by the scheduling problem and the
capacity of some edges, that corresponds to the makespan, is minimized. This
generalized maximum �ow problem is a special case of linear programming (LP).

We can note that the R || Cmax reference problem is more generic than the problems
studied in this PhD. It can be re�ned to better �t the constraints of the hybrid
platforms.
Bonifaci and Wiese [12] presented a PTAS to solve a scheduling problem with unrelated
machines of few di�erent types. The tools used in their solving method are somewhat
similar to the ones used for solving R || Cmax, and the rounding phases of the algorithm
require a signi�cant amount of time, raising the time complexity of the algorithm to an
impractical level, even when only two types of machines are considered, as it would be
the case for a CPU-GPU platform.

There is a need to consider other algorithms than these PTAS to design algorithms that
could be implemented on actual platforms. A PTAS with a reasonable time complexity
has been developed for the online version of the problem of the assignment of sporadic
tasks on hybrid platforms [69]. However, an o�ine version of the problem with
non-periodic tasks has not been studied and the algorithm cannot be trivially extended
to the problem (Pm,Pk) || Cmax.

3.2.2.4 Heuristics

Another possibility for solving di�cult scheduling problems is to consider heuristic
algorithms in hope of providing good results. This is the kind of scheduling algorithm
that is used by most computing platforms today, most notably the HEFT

3.2. RELATED WORK ON SCHEDULING INDEPENDENT SEQUENTIAL TASKS 47

algorithm [84], that is studied in the following chapter, in Section 4.2.1. However, by
using heuristics, there is usually no approximation ratio for the quality of solution, and
most of the time we can only have a bound on the computation time of the schedule.

This PhD focused more on providing guarantees for the algorithms we developed while
keeping the time complexity of the algorithms reasonably low to be used on a real
platform.

We have seen several methods used to solve classical scheduling problems with
independent sequential that could be used to tackle the scheduling problem on a hybrid
platform with CPUs and GPUs. Some speci�c versions of this problem can be solved
using some of these methods. However, for the more generic problem (Pm,Pk) || Cmax,
none of the above methods are satisfactory in terms of performance guarantee and
practical use. Hence, new algorithms need to be developed for these problems, with an
approximation ratio and a realistic time complexity.
We started studying problem (Pm,Pk) || Cmax and developed new algorithms for it.
The �rst methods and subsequent algorithms are presented in the following chapter.

48CHAPTER 3. NEWNOTATIONS AND RELATEDWORKS ONGPU SCHEDULING ALGORITHMS

Chapter 4

Minimizing the Makespan with

Independent Sequential Tasks

This chapter presents the �rst problem of scheduling on a hybrid platform with CPUs
and GPUs that we studied during this PhD: minimizing the makespan with independent
tasks on m CPUs and k GPUs. We analyze the problem and try di�erent algorithms,
starting with a simple version of the problem with only one CPU and one GPU, then
increasing the number of processors. The organization of this chapter is progressive and
the size of the problems (in terms of numbers of processors) grows as we advance in our
analysis.
We consider in this chapter the problem of scheduling on a multi-core parallel platform
with m identical CPUs and k identical GPUs, (Pm,Pk) || Cmax, previously described in
Chapter 3, Section 3.1.1.1. We recall that the set of tasks to schedule, T , is composed of
n tasks T1, . . . , Tn, each of these tasks having two processing times depending on which
type of processor it is assigned to: pj if task Tj is processed on a CPU and pj if it is
processed on a GPU, both processing times being known in advance. The acceleration
factor of task Tj is still given by the ratio qj =

pj
pj
,as it was in the previous chapter. The

objective is still to minimize the makespan of the whole schedule,
Cmax = max

(
CCPU
max , C

GPU
max

)
.

We observe that if both processing times are equal (pj = pj) for j = 1, . . . , n, the
problem (P1, P1) || Cmax is equivalent to the classical P2 || Cmax problem, which is
NP-hard [32]. Thus, the problem of scheduling with GPUs is also NP-hard and we aim
at �nding e�cient approximation algorithms with a good performance guarantee.
In order to do that, we �rst study the simplest version of the problem, with only one
CPU and one GPU, (P1, P1) || Cmax.

4.1 Considering only one CPU and one GPU

The �rst method we tried to apply in order to solve problem (P1, P1) || Cmax was the
list scheduling paradigm.

49

50CHAPTER 4. MINIMIZING THEMAKESPANWITH INDEPENDENT SEQUENTIAL TASKS

We can remark that this problem is exactly like R2 || Cmax, since we have on one side a
CPU and on the other side a GPU and the processing times of tasks on these two
processors cannot be linked by any law. Ibarra and Kim [47] gave an approximation
algorithm for this problem with an approximation ratio of 1+

√
5

2
, which is quite high

interesting. However, the algorithm cannot be extended to the case where the number of
machines increases. We tried to approach the problem as completely new in order to
developed a speci�c approximation algorithm that could be better adapted to the case
where there are more than one CPU and one GPU.

4.1.1 An arbitrary list scheduling algorithm

In the list scheduling paradigm (see Chapter 3, Section 3.2.2.1), the set of tasks that are
ready to be executed are kept in a priority list. When a computing resource becomes
available, the task with the highest priority is scheduled on this resource. If no priority
is speci�ed, the tie is broken randomly. However, the use of the same strategy in a
hybrid system, leads to a large value of worst case performance ratio, as demonstrated
in the following lemma.

Lemma 4.1.1. For problem (P1, P1) || Cmax, a list scheduling algorithm has a worst
case performance ratio larger than the maximum acceleration of the tasks.

Proof. Let CLIST
max denote the value of the makespan obtained by any list scheduling

algorithm and C∗max its optimal value. Let us consider an instance of problem
(P1, P1) || Cmax composed of two tasks T1 and T2, with p1 = p1 = 1, p2 = x and p2 = 1.
If the algorithm assigns T1 to the GPU and T2 to the CPU, we get a makespan of
CLIST
max = x (cf. Figure 4.1a). Since both processors are unrelated, we can always �nd an

instance such as the �rst task selected by the list algorithm is similar to T1.

CPU

GPU

T2

T1

0 x1

(a) T1 on the GPU

GPU

T1

T2

1

CPU

0

(b) Optimal Solution

Figure 4.1: List scheduling algorithm with two di�erent list orders.

An optimal solution can be obtained by assigning T1 to the CPU and T2 to the GPU
leading to C∗max = 1 (cf. Figure 4.1b). The approximation ratio is equal to x and thus
the solution can be arbitrarily far from the optimum.

Since this list scheduling algorithm was inconclusive in terms of performance with the
objective of minimizing the makespan, we tried another approach. The main problem of
the list scheduling algorithm is that it can only minimize a makespan on one type of
processors, whereas the objective of minimizing the global makespan of the schedule
implies to try to minimize both the makespan on the CPU and the makespan on the

4.1. CONSIDERING ONLY ONE CPU AND ONE GPU 51

GPU at the same time. Remaining with a single objective function to minimize, another
objective was chosen, in order to be closer to the minimization of both makespans: we
tried to minimize the sum of the makespans on the CPU and on the GPU.

4.1.2 Minimizing the sum of the makespans

We consider a combination of the two makespans on CPU and GPU to have only one
makespan to minimize. We de�ne δj = pj − pj for each task Tj.
We use a binary variable to characterize the assignment of a task Tj to the CPU or the
GPU, for all j ∈ {1, . . . , n}:

xj =

{
1 if task Tj is assigned to the CPU

0 if task Tj is assigned to the GPU

The respective makespans on the CPU and the GPU can be expressed respectively as
n∑
j=1

pjxj and
n∑
j=1

pj (1− xj). If we calculate the sum of these two makespans, we obtain

n∑
j=1

pj +
n∑
j=1

(
pj − pj

)
xj, which is the objective we want to minimize. In a sense, we are

minimizing the global computational area of the schedule, which corresponds to the sum

of the processing times of the tasks in the schedule. The term
n∑
j=1

pj being constant, we

look at minimizing
n∑
j=1

δjxj.

Since δj represents the di�erence between the processing time of task Tj on CPU and its

processing time on GPU, minimizing
n∑
j=1

δjxj is equivalent to choosing to assign to the

CPU the tasks whose processing time varies the least when changing processors. This
means that we want to assign to the GPU the tasks that provide the largest gain in
terms of computational area.
Let us consider the following greedy algorithm:

Algorithm 4.1.2.

• Start by assigning all the tasks to the CPU.

• Sort the tasks by decreasing δj and assign them according to this order to the GPU
as long as CGPU

max 6 CCPU
max .

This algorithm returns a schedule of makespan Cmax(δ). However, there exists an
instance where this makespan is equal to 2C∗max (see Figure 4.2), so we cannot expect to
have a better performance guarantee than 2 for Algorithm 4.1.2.

52CHAPTER 4. MINIMIZING THEMAKESPANWITH INDEPENDENT SEQUENTIAL TASKS

CPU

GPU

T2

δ0 ε

T1

(a) T1 on the GPU

0 δ

T2GPU

CPU

δ + ε

T1

(b) Optimal Solution

Figure 4.2: Scheduling with minimal makespan criteria.

Indeed, consider an instance of the problem with two tasks such as p1 = δ + ε+ ε′,
p1 = ε, p2 = 2δ and p2 = δ, where δ, ε < δ, and ε′ � ε are given. According to the
de�nition of δj, we have δ1 = δ + ε′ and δ2 = δ, therefore Algorithm 4.1.2 schedules task
T1 on the GPU and task T2 on the CPU: the resulting schedule has a makespan of 2δ. If
we put task T2 on the GPU and task T1 on the CPU, we obtain an optimal schedule
with a makespan of δ. The ratio is then 2, therefore the performance guarantee of
Algorithm 4.1.2 us at least 2.
Moreover, we have two straightforward lower bounds of the optimal makespan:

C∗max > max
16j6n

pj and C∗max >
1
2

n∑
j=1

pj. Assuming that the tasks are reindexed according

to their assignment to the GPU �rst and then their assignment to the CPU, we de�ne Tl
as the last task scheduled on the GPU. The makespan on the CPU becomes

CCPU
max =

n∑
j=l+1

pj, and we have

n∑
j=l+1

pj

C∗max
6

n∑
j=1

pj

1
2

n∑
j=1

pj

6 2

n∑
j=1

pj

n∑
j=1

αjpj

n∑
j=l+1

pj

C∗max
6

2

min16j6n αj

This guarantee is worse than the one provided by the greedy algorithm developed for
the problem of scheduling on two sets of identical processors [48] mentioned in
Chapter 3, Section 3.2.2.1, where we have a guarantee of 2 when m = k = 1. When k
and m are arbitrary, we have a guarantee of 2 + m−1

k
with the algorithm from [48], which

is not satisfactory on large computing platforms, where the number of CPUs can be very
high and the number of GPUs can remain very low.

4.1. CONSIDERING ONLY ONE CPU AND ONE GPU 53

This objective was also inconclusive in terms of performance, therefore another approach
had to be explored. Since the core problem is to keep both the makespan on the CPU
and the makespan on the GPU at a minimum value, we tried to minimize one of the
makespans while keeping the other makespan lower than the �rst one.

4.1.3 A knapsack based approach

Here, we minimize one of the makespan (for example the one on the CPU) while forcing
the other makespan (the one on the GPU) to remain below the �rst makespan, in order
to obtain a knapsack formulation of our problem (see Chapter 3, Section 3.2.1.3).
De�ning σj = pj + pj, and using the same decision variables xj as before, we can write
the problem of minimizing CCPU

max while forcing CGPU
max to remain lower than CCPU

max as
follows:

min
n∑
j=1

pjxj

s.t.
n∑
j=1

pj (1− xj) 6
n∑
j=1

pjxj

xj ∈ {0, 1} ∀j ∈ {1, . . . , n}
which is equivalent to

max
n∑
j=1

(−pj)xj

s.t.
n∑
j=1

(
−pj − pj

)
xj 6

n∑
j=1

(
−pj

)
xj ∈ {0, 1} ∀j ∈ {1, . . . , n}

If we de�ne C =
n∑
j=1

pj, we obtain the following knapsack problem:

max
n∑
j=1

(−pj)xj

(KC) s.t.
n∑
j=1

(−σj)xj 6 −C

xj ∈ {0, 1} ∀j ∈ {1, . . . , n}
with task Tj having a value of (−pj), a weight of (−σj) , and the knapsack having a

capacity of
n∑
j=1

(
−pj

)
= −C < 0.

54CHAPTER 4. MINIMIZING THEMAKESPANWITH INDEPENDENT SEQUENTIAL TASKS

The other problem of minimizing the makespan of the GPU while forcing CCPU
max 6 CGPU

max

can also be written as a knapsack problem:

max
n∑
j=1

pjxj

(KG) s.t.
n∑
j=1

σjxj 6 C

xj ∈ {0, 1} ∀j ∈ {1, . . . , n}

with task Tj having a value of pj, a weight of σj, and the knapsack having a capacity of

C =
n∑
j=1

pj > 0.

We present now an algorithm with a performance ratio for our problem, which is based
on a greedy algorithm [64] for the knapsack problem (with values pj, weights wj,
capacity W). The greedy algorithm is as follows:

Algorithm 4.1.3. Take the tasks by decreasing order of importance,
pj
wj

and assign

xj = 1 as long as the sum of the weights of the assigned tasks stays lower than the
capacity W .

This algorithm does not have a constant guarantee, but one that has [64] can be derived
from it:

Algorithm 4.1.4.

• Compute a solution to the knapsack problem with algorithm 4.1.3, Simp, and
memorize the �rst task too big to �t in the knapsack.

• Create a new solution to the knapsack problem composed only of the �rst task
discarded by algorithm 4.1.3, Sdis.

• Take the solution S of maximum value between Simp and Sdis.

Lemma 4.1.5. Algorithm 4.1.4 has a performance guarantee of 3
2
for a knapsack

formulation of problem (P1, P1) || Cmax.

Proof. Let Tj0 be the �rst task discarded by the decreasing order of importance
assignment. We note val(I) the value of a knapsack solution computed by algorithm
4.1.4 and val∗ the value of the optimal solution for the associated knapsack formulation
of the problem. With these notations, we have the inequality val∗ 6 val(Simp) + pj0 .
The value of the selected solution S is greater than the average of the values of solutions
Simp and Sdis (whose value is equal to pj0), so we have

4.1. CONSIDERING ONLY ONE CPU AND ONE GPU 55

val(S) >
val(Simp) + pj0

2
>
val∗

2
,

which gives us, for (P1, P1) || Cmax, represented by (KG):

n∑
j=1

pjxj(S) >
n∑
j=1

pjx
∗
j

2
,

n∑
j=1

pj (1− xj(S)) 6

n∑
j=1

pj

2
+

1

2

n∑
j=1

pj
(
1− x∗j

)
,

Cmax(S) 6

n∑
j=1

pj

2
+
C∗max

2
.

We know that

n∑
j=1

pj

2
6 C∗max, which gives us a performance guarantee of 3

2
for the

algorithm.
A similar proof can be written for the (KC) knapsack formulation of problem
(P1, P1) || Cmax, with the same performance guarantee of 3

2
for the algorithm.

Dynamic Programming We can also use dynamic programming (see Chapter 3,
Section 3.2.1.3) to solve the knapsack problem, and by extension, (P1, P1) || Cmax.
Ibarra and Kim designed a pseudo-polynomial algorithm with dynamic programming
and an FPTAS for the knapsack problem [46]. From their algorithms we can derived a
pseudo-polynomial algorithm and an FPTAS for problem (P1, P1) || Cmax. For
simplicity, we will use the knapsack problem formulation (KG):

max
n∑
j=1

pjxj

(KG) s.t.
n∑
j=1

σjxj 6
n∑
j=1

pj

xj ∈ {0, 1} ∀j ∈ {1, . . . , n}

where C =
n∑
j=1

pj. We de�ne P = max
j∈{1,...,n}

pj as the highest value of any task. Then nP

is a trivial upper bound on the value that can be achieved by any solution.
We assume here that every processing time on the GPU for every task is an integer. For
each j ∈ {1, . . . , n} and p ∈ {1, . . . , nP}, we de�ne a subset Sj,p of {1, . . . , j} whose total

56CHAPTER 4. MINIMIZING THEMAKESPANWITH INDEPENDENT SEQUENTIAL TASKS

value is exactly p (i.e.
∑
l∈Sj,p

pl = p) and whose total capacity, denoted by A(j, p), is

minimized (i.e. A(j, p) =
∑
l∈Sj,p

σl = minS⊂{1,...,j}
∑
l∈S

σl. We A(j, p) =∞ if no set Sj,p

de�ned as before can exist.
Clearly A(1, p) is known for every p ∈ {1, . . . , nP}. The following recurrence helps
compute all values A(j, p) with a time complexity in O (n2P):

A(j + 1, p) =

{
min

{
A(j, p), σj+1 + A

(
j, p− pj+1

)}
if pj+1 6 p

A(j, p) otherwise

The maximum value achievable by tasks of total weight bounded by C is

max
{
p| A(n, p) 6 C

}
.

Therefore we have a pseudo-polynomial algorithm for the knapsack problem, and, by
extension, for problem (P1, P1) || Cmax.

FPTAS From the dynamic programming algorithm we can build an FPTAS (see
Chapter 3, Section 3.2.2.3) for our problem: if the values of our tasks in the knapsack
formulation were bounded by a polynomial in n, then we would have a regular
polynomial time algorithm. In our approximation scheme we ignore a certain number of
least signi�cant bits of values of tasks (depending on the error parameter ε), so that the
modi�ed values can be viewed as numbers bounded by a polynomial in n and 1/ε. This
enables us to �nd a solution whose knapsack value is at least (1− ε)val∗, where val∗ is
the value of an optimal solution of the corresponding knapsack formulation, in time
bounded by a polynomial in n and 1/ε.

Algorithm 4.1.6 (FPTAS).

1. Given an instance I and ε > 0, let K = εP
n
.

2. For each task Tj, de�ne p
′
j =

⌊
pj

k

⌋
.

3. De�ne a new instance I ′ with the p′j as values of the tasks and, using the dynamic

programming algorithm, �nd the most valuable set S ′.

4. Return S ′.

Lemma 4.1.7. Algorithm 4.1.6 is an FPTAS for problem (P1, P1) || Cmax.

Proof. For any task Tj, because of the rounding step, Kp′j can be smaller than pj but by
no more than K. Therefore,

val∗ − val′∗ 6 nK.

4.1. CONSIDERING ONLY ONE CPU AND ONE GPU 57

The dynamic programming step must return a set at least as good as the optimal one
under the new values for the knapsack formulation. Therefore

val(S ′) > Kval′∗

> val∗ − nK = val∗ − εP (4.1)

> (1− ε)val∗,

where the last inequality follows from the observation that val∗ > P .
The running time of the algorithm is in O

(
n2
⌊
P
K

⌋)
= O

(
n2
⌊
n
ε

⌋)
, which is polynomial

in n and 1
ε
.

If we look at our formulation (KG) of problem (P1, P1) || Cmax, Inequality (4.1) becomes

n∑
j=1

pjxj >
n∑
j=1

pjx
∗
j − ε max

16j6n
pj,

where x∗j refers to the assignment of task Tj in the optimal solution. We can reverse this
inequality

−
n∑
j=1

pjxj 6 −
n∑
j=1

pjx
∗
j + ε max

16j6n
pj,

n∑
j=1

pj (1− xj) 6
n∑
j=1

pj
(
1− x∗j

)
+ ε max

16j6n
pj,

CGPU
max (S) 6 CGPU

max (OPT) + ε max
16j6n

pj,

where CGPU
max (OPT) represents the makespan on the GPU in the optimal schedule.

Moreover, max
16j6n

pj 6 CGPU
max (OPT), so

CGPU
max (S) 6 (1 + ε)CGPU

max (OPT).

The same result can be obtained with the (KC) knapsack formulation of the problem.
We denote by SG (resp. SC) the solution obtained when solving knapsack formulation
(KG) (resp. (KC)) with Algorithm 4.1.6, and CGPU

max (OPT) (resp. CCPU
max (OPT)) the

optimal solution of the corresponding problem. The makespan of the schedule obtained
by Algorithm 4.1.6 becomes

Cmax = min
{
CGPU
max (SGPU), CCPU

max (SCPU)
}

6 (1 + ε) min
{
CGPU
max (OPTGPU), CCPU

max (OPTCPU)
}

6 (1 + ε)C∗max.

58CHAPTER 4. MINIMIZING THEMAKESPANWITH INDEPENDENT SEQUENTIAL TASKS

We therefore have two scheduling algorithms for (P1, P1) || Cmax, a greedy one, with a
performance guarantee of 3

2
, and an FPTAS based on dynamic programming.

Now we move on to the problem where we have more than one CPU and more than one
GPU.

4.2 Fast algorithms with m CPUs, k GPUs

In this section, we �rst study one of the most used scheduling algorithm on
heterogeneous platforms, HEFT [84], and then propose an algorithm of our own design
with a performance guarantee for our new scheduling problem: (Pm,Pk) || Cmax.

4.2.1 HEFT algorithm

The heuristic scheduler like Heterogeneous-Earliest-Finish-Time or HEFT [84] (see
Chapter 3, Section 3.2.2.4) proceeds in two phases as follows:

• prioritization of the tasks that are sorted the tasks by decreasing average execution
time.

• then the processor selection is obtained with the heterogeneous earliest �nish time
rule: tasks are scheduled in the order of prioritization and they are assigned to the
processor that will allow them to �nish their processing at the earliest possible
time, regardless of the type of processor.

Despite appearing similar, HEFT is not a list scheduling algorithm since some
computing resources may stay idle even if a task could be executed on it.

Lemma 4.2.1. For problem (Pm,P1) || Cmax, the worst case performance ratio of
HEFT is larger than m/2.

Proof. We show on the following instance (cf. Figure 4.3) that the prioritizing phase can
provide a schedule whose makespan is arbitrarily far from the optimum.
Let us consider an instance with a list of the following tasks:

• m tasks of equal length such that pj = ε and pj = m+ k + 1 (these tasks have a
long execution time on the GPU).

• m sets of m+ 1 tasks, with, for i = 0, · · · ,m− 1:

� a single task of type A such that p = p = 1− i/m;

� m tasks of type B, of equal length, such that pj = 1− i/m and pj = 1/m2

(these tasks are executed faster on the GPU).

On this instance, HEFT �lls �rst the m CPUs. Then, the algorithm �lls alternatively
the GPU with one task of type A and the m CPUs with m tasks of type B. HEFT ends
up with a makespan equal to m/2 + 3/2− 1/m (cf. Figure 4.3-a). It is easy to check
that the optimal makespan is equal to C∗max = 1 (cf. Figure 4.3-b).

4.2. FAST ALGORITHMS WITH M CPUS, K GPUS 59

m CPUs

GPU

B
B
B
B

B
B
B
B

B
B
B
B

B
B
B
B

A

ε
ε
ε
ε

A A A A

0 2− 1/4 3− 3/4 4− 6/41

ε 1 + ε 2− 1/4 + ε 3− 3/4 + ε 4− 6/4 + ε

(a) HEFT schedule

GPU

m CPUs

εεεε

11/160

B B BB B B BB B BB B B BB B

A
A

A
A

(b) Optimal solution

Figure 4.3: HEFT schedule and the optimal solution with m = 4, k = 1.

HEFT is therefore not a suitable algorithm when looking for performance guarantees.
We therefore turn to the methods we developed for problem (P1, P1) || Cmax , and try
to adapt them to problem (Pm,Pk) || Cmax.

4.2.2 Extending the Knapsack-based Approach

We look at adapting the knapsack-based approach used for problem (P1, P1) || Cmax for
the same problem with larger values of m and k, but problem (Pm,Pk) || Cmax cannot
be decomposed in two knapsack problems such as (KC) and (KG) for (P1, P1) || Cmax.
An idea is to consider all the CPUs as one large CPU and all the GPUs as one large
GPU. The makespan of this large CPU (resp. GPU) is considered to be the computing
area of the CPUs (resp. GPUs), i.e. the sum of the processing times of the tasks on all
the CPUs (resp. GPUs), divided by the number of CPUs (resp. GPUs). We can then
solve this problem as a (P1, P1) || Cmax problem and have a lower bound of the
makespan of problem (Pm,Pk) || Cmax. This resolution assigns each task of the original
problem to a type of processor, either a CPU or a GPU. Then we can schedule with the
LPT rule on the CPUs all the tasks assigned by this resolution to the large CPU and do
the same on the GPUs. If we denote by Cmax(ALG) the makespan of the schedule
resulting from this algorithm we call ALG, C∗max the optimal makespan for problem
(Pm,Pk) || Cmax, Cmax((P1, P1)) and C∗max(P1, P1) respectively the makespan of the
algorithm used to solve the corresponding problem (P1, P1) || Cmax and the optimal
makespan for this problem, we have the following lemma:

Lemma 4.2.2. Cmax(ALG)
C∗max

6
(
2− 1

m

) Cmax(P1,P1)
C∗max(P1,P1)

, if m > k.

60CHAPTER 4. MINIMIZING THEMAKESPANWITH INDEPENDENT SEQUENTIAL TASKS

Proof. The assignment of the tasks according to problem (P1, P1) || Cmax is denoted by
the binary variable

x0j =

{
1 if task Tj is scheduled on a CPU

0 if task Tj is scheduled on a GPU

We have Cmax(P1, P1) = max

(
n∑
j=1

pj
m
x0j ,

n∑
j=1

pj

k

(
1− x0j

))
, and since solving

(P1, P1) || Cmax here is equivalent to minimizing the maximum of the computing areas
of the CPUs and the GPUs, divided by their respective number of processors, we can
write

C∗max(P1, P1) = min
xj

max

(
n∑
j=1

pj
m
xj,

n∑
j=1

pj

k
(1− xj)

)
6 Σ∗,

where Σ∗ = max

(
n∑
j=1

pj
m
x∗j ,

n∑
j=1

pj

k

(
1− x∗j

))
, and x∗j represents the assignment of task

Tj to a CPU or a GPU in the optimal solution for problem (Pm,Pk) || Cmax.
Suppose that there exists an instance with an optimal solution such that
Cmax(ALG)

C∗max
>
(
2− 1

m

)
Cmax(P1,P1)
C∗max(P1,P1)

. If we consider the instance with the smallest number of
tasks among the instances verifying the previous inequality, the last task Tα (the one
with the smallest processing time) to start its processing on the CPUs is also the one
that �nishes his processing last, at CCPU

max , the makespan of the CPUs. Since all the
processors are busy before Tα starts, we have

CCPU
max − pα 6

n∑
j=1, j 6=α

pjx
0
j

m
,

CCPU
max 6

n∑
j=1

pjx
0
j

m

6 pα

(
1− 1

m

)
+ Cmax(P1, P1)

6 pα

(
1− 1

m

)
+ C∗max(P1, P1)

Cmax(P1, P1)

C∗max(P1, P1)

CCPU
max 6 pα

(
1− 1

m

)
+ Σ∗

Cmax(P1, P1)

C∗max(P1, P1)
.

The value of Σ∗ is a lower bound of the optimal makespan C∗max since it is the makespan
in the case where all the tasks on the CPUs �nish their processing at the same time and
the same inequality holds for the GPUs. Therefore

4.2. FAST ALGORITHMS WITH M CPUS, K GPUS 61

CCPU
max 6 pα

(
1− 1

m

)
+ C∗max

Cmax(P1, P1)

C∗max(P1, P1)
,

CCPU
max

C∗max
6
pα
(
1− 1

m

)
C∗max

+
Cmax(P1, P1)

C∗max(P1, P1)
.

We assumed
(
2− 1

m

) Cmax(P1,P1)
C∗max(P1,P1)

< CCPUmax

C∗max
, so we obtain C∗max < pα

C∗max(P1,P1)
Cmax(P1,P1)

, and since
C∗max(P1, P1) 6 Cmax(P1, P1), we have C∗max < pα.
The same reasoning can be done with the GPUs, and we obtain, with Tγ being the last
task to start its processing on the GPUs, �nishing at CGPU

max :

CGPU
max

C∗max
6
pγ
(
1− 1

k

)
C∗max

+
Cmax(P1, P1)

C∗max(P1, P1)
.

If we suppose k 6 m, we have
(
2− 1

k

)
Cmax(P1,P1)
C∗max(P1,P1)

6
(
2− 1

m

)
Cmax(P1,P1)
C∗max(P1,P1)

< CGPUmax

C∗max
, so we

obtain C∗max < pγ
C∗max(P1,P1)
Cmax(P1,P1)

and �nally C∗max < pγ.
Therefore in the optimal solution we have all the assignments that are reversed in
comparison to the solution derived from problem (P1, P1) || Cmax.
If we look at a task Tj such as x0j = 0, x∗j = 1, we have pj < pα and pj < pγ, but pj > pγ,
so pj > pj, which is impossible. This contradicts the existence of an instance such that(
2− 1

m

) Cmax(P1,P1)
C∗max(P1,P1)

< Cmax(ALG)
C∗max

.

However, there exists an instance of problem (P2, P2) || Cmax where we have
Cmax(ALG) = 3

2
C∗max. This instance consists in 4 tasks to schedule on 2 CPUs and 2

GPUs, such as p1 = 6, p1 = 4, p2 = p2 = 1, p3 = 25, p3 = 3 + ε, p4 = 4− ε and
p4 = 4− 2ε.
The optimal solution for the corresponding (P1, P1) || Cmax problem is the assignment
given in Figure 4.4. Here the ratio Cmax(P1,P1)

C∗max(P1,P1)
is equal to 1.

GPU

T1

T3 T4

T2CPU

6 70 3 + ε

7− ε

Figure 4.4: Optimal Schedule of the instance when considered as (P1, P1) || Cmax, with
makespan Cmax(P1, P1).

We can compare the assignments provided by algorithm ALG on our four processors
with the LPT rule on the CPUs and the GPUs to the optimal solution, as we can see in
Figure 4.5.

62CHAPTER 4. MINIMIZING THEMAKESPANWITH INDEPENDENT SEQUENTIAL TASKS

GPUs

T1

T2

T3

T4

CPUs

0 1 6

4− 2ε

3− ε

(a) Schedule of the instance with
(P1, P1) || Cmax assignments followed by
LPT (Cmax(ALG))

GPUs

T2

T3

CPUs

T1

T4

0 1 43− ε
4− ε

(b) Optimal Schedule (C∗max)

Figure 4.5: Schedule for the (P2, P2) || Cmax problem following the (P1, P1) || Cmax assign-
ments, and the optimal solution.

But with the assignments of the optimal solution, the corresponding (P1, P1) || Cmax
schedule would have been the one in Figure 4.6, which explains why this solution was
not considered.

T4 T2

T1 T3

CPU

GPU

0 4 5− ε 7 + ε

4− ε

Figure 4.6: Optimal schedule for (P2, P2) || Cmax when considered as a (P1, P1) || Cmax
problem.

The ratio is 6
4

= 3
2
, so this algorithm cannot have a better approximation ratio than

3
2
C∗max.

Moreover, to this approximation ratio must be added the approximation ratio of the
algorithm used to determine the solution of the corresponding (P1, P1) || Cmax problem,
which was 1 in the previous example. In the generic case, if we take the greedy
algorithm presented in Section 4.1.3 for this problem, its approximation ratio is 3

2
. This

gives us a �nal approximation ratio of 3− 3
2m

. Dynamic programming could allow us to
remain at a ratio of 2 but the algorithm would not be polynomial anymore.

4.2.3 Dual approximation Scheme for solving (Pm,Pk) || Cmax
In order to get a performance ratio with a knapsack based approach derived from the
resolution of (P1, P1) || Cmax for problem (Pm,Pk) || Cmax, we use the dual
approximation technique (see Chapter 3, Section 3.2.2.2): we take a guess λ, assumes
that there exists a schedule of length at most λ and either delivers a schedule of
makespan at most gλ (g being the desired approximation ratio), or answers correctly
that there exists no schedule of length at most λ.

4.2. FAST ALGORITHMS WITH M CPUS, K GPUS 63

The guess of the dual approximation technique allows us to consider, at each main step
of the dual approximation, the (Pm,Pk) || Cmax problem as only one large CPU and
one large GPU to be �lled, meaning that we can apply a knapsack algorithm similar to
the one designed for the (P1, P1) || Cmax problem (cf Figure 4.7). At one step of the
dual approximation, the algorithm is as follows:

Algorithm 4.2.3.

• Extract from the set of tasks those that are necessarily assigned to the GPUs
(pj > λ, where λ is the current guess), put them on the GPUs and then �ll the

GPUs with the tasks with the largest acceleration factor (de�ned by
pj
pj
) up to the k

times the guess.

• Put all the remaining tasks on the m CPUs, ordering them according to the LPT
rule.

• Reorder the tasks on the GPUs according to the LPT rule.

m

k

λ

Figure 4.7: Schedule resulting from Algorithm 4.2.3 for a guess λ. The computational area on
the CPUs is lower than mλ, otherwise λ is lower than C∗max.

After Algorithm 4.2.3 is applied, the guess of the next step of the dual approximation
has to be determined. The condition of validation of the dual approximation algorithm
is here that the computational area on the CPUs must be lower than mλ. If that
condition is satis�ed by guess λ, then λ becomes the new upper bound in the
determination of the next guess of the dual approximation, and it becomes the new
lower bound if it does not satisfy the condition.

Theorem 4.2.4. Combined with the dual approximation, Algorithm 4.2.3 has an
approximation ratio of 2, with a time complexity in O (n log n).

64CHAPTER 4. MINIMIZING THEMAKESPANWITH INDEPENDENT SEQUENTIAL TASKS

Proof. We de�ne for each task Tj a binary decision variable xj such that xj = 1 if Tj is
assigned to a CPU or 0 if Tj is assigned to the GPU, as previously de�ned in this
chapter. The makespan on the CPUs, CCPU

max , is bounded by the following inequality:

CCPU
max 6 max

16j6n
(pjxj) +

n∑
j=1

pjxj

n∑
j=1

xj

Let us consider one step of the dual approximation, with a guess λ satisfying the dual
approximation condition, ie the computational area on the CPUs is lower than mλ. All
the tasks assigned to the CPUs have a processing time lower than λ, therefore

max
16j6n

pjxj 6 λ and
n∑
j=1

pjxj 6 mλ with the hypothesis that the computational area on

the CPUs is lower than mλ. We obtain

CCPU
max 6

1 +
m
n∑
j=1

xj

λ

Moreover, we can assume
n∑
j=1

xj > m, otherwise the optimal solution is straightforward

(one task per CPU), thus

CCPU
max 6 2λ

Let us examine the case of the GPUs. Let jlast be the index of the last task Tjlast
scheduled by the algorithm on the GPUs. Hence, task Tjlast has no in�uence at all on
the scheduling of all the other tasks.
Two cases hold (cf. Equation (4.2)): either task Tjlast is not the last to be completed or
it is. In the �rst case, Tjlast can be removed from the schedule instance without changing
the makespan. The computational area of all tasks except Tjlast is smaller than kλ thus
the guarantee is the same as the one derived for the CPU schedule. In the second case,
the computational area of all tasks save Tjlast is also smaller than kλ thus, when the list
algorithm schedules task Tjlast , the least loaded of the k GPUs has a load lower than λ.
Hence task Tjlast ends before 2λ.

CGPU
max 6


max

16j6n|j 6=jlast

(
pj(1− xj)

)
+

n∑
j=1

pj(1−xj)−pjlast

k
6 2λ(

pj(1− xj)
)

+

n∑
j=1

pj(1−xj)−pjlast

k
6 2λ

(4.2)

Since the makespan of the schedule is the maximum of the makespans on the CPUs and
on the GPUs, we get

4.3. IMPROVING THE PERFORMANCE RATIO FOR (PM,P1) || CMAX 65

Cmax 6 2λ.

Therefore if λ satis�es the dual approximation condition, we can construct a schedule of
makespan at most 2λ.
If now we suppose that λ does not satisfy the dual approximation condition, i.e.
n∑
j=1

pjxj > mλ, we observe that the tasks assigned to the GPUs by Algorithm 4.2.3 have

the largest acceleration factors. If we were to exchange two tasks between a CPU and a
GPU to reduce the computational area on the CPUs, then the computational area on
the GPUs would be increased and become greater than kλ. Therefore there is no
possible assignment of the tasks that could result in a schedule of makespan λ.
With these updates on either the lower bound or the upper bound for the calculations of
the guess of the dual approximation, a bisection search narrows down the value of the
guess up to the optimal makespan of the schedule. Since the con�guration created by
Algorithm 4.2.3 is the con�guration with the minimum computational area on the
CPUs, we can construct a schedule of makespan at most 2C∗max, and therefore the
approximation ratio of the dual approximation combined with Algorithm 4.2.3 is 2.

Now that we have an approximation algorithm for (Pm,Pk) || Cmax, we work on
improving the performance ratio for this problem. We start with problem
(Pm,P1) || Cmax, then extend the results to k GPUs.

4.3 Improving the Performance Ratio for (Pm,P1) || Cmax
4.3.1 Principle of the Scheduling Algorithm

The algorithm here also uses the dual approximation technique described in Chapter 3,
Section 3.2.2.2. We target here a performance ratio of g = 4

3
. Let λ be the current guess

for the dual approximation. The key point is to show how it is possible to build a
schedule of length at most 4λ

3
, starting from the assumption that there exists a schedule

of length lower than λ.
The idea is to partition the set of tasks on the CPUs into two sets, each consisting of
two shelves (see Figure 4.8): a �rst set with a shelf of length λ and the other of length
λ
3
, and a second set with two shelves of length 2λ

3
.

The partition ensures that the makespan on the CPUs is lower than 4λ
3
. If we force the

makespan on the GPU to remain lower than 4λ
3
, since the tasks are independent, the

scheduling strategy is straightforward when the assignment of the tasks has been
determined and yields directly a solution of length at most 4λ

3
. The main problem is to

assign the tasks in each shelf on the CPUs or on the GPU in order to obtain a feasible
solution. This is done using dynamic programming (see Chapter 3, Section 3.2.1.3). The
main steps are summarized in the following algorithmic scheme:

66CHAPTER 4. MINIMIZING THEMAKESPANWITH INDEPENDENT SEQUENTIAL TASKS

m CPUs

S4S3

µ

λ/3 2λ/3 4λ/30 λ

S1
S2

Figure 4.8: Partitioning the set of tasks on the CPUs into two sets of two shelves, the �rst one
occupying µ CPUs, the second m− µ CPUs.

1. Compute the guess λ = Bmin+Bmax
2

where Bmin (resp. Bmax) is a lower (resp.
upper) bound of the optimal makespan.

2. Search for an allotment of the tasks such that:

• the total load (work) on CPUs is at most mλ,

• the makespan on GPUs is at most λ,

• the tasks assigned to the CPUs whose processing time is strictly greater than
2λ
3
occupy a maximum number of CPUs denoted by µ.

• the tasks assigned to the CPUs whose processing time is strictly greater than
λ
3
and lower than 2λ

3
can be assigned two by two to a maximum number of

CPUs denoted by µ′/2.
The total number of CPUs must not exceed m, i.e. µ+ µ′/2 6 m,

• the tasks assigned to the CPUs with processing time lower that λ
3
can be

scheduled such that the induced makespan on the CPUs is at most equal to 4λ
3
.

3. If such an allotment does not exist, adjust the bound Bmin to λ and restart the
process (Step 1).

4. If such an allotment exists, build the corresponding schedule with sets of shelves
such that the makespan is lower than 4

3
λ, adjust the bound Bmax to λ and restart

the process.

4.3. IMPROVING THE PERFORMANCE RATIO FOR (PM,P1) || CMAX 67

4.3.2 Structure of an Optimal Schedule

We introduce an assignment function π(j) of a task Tj which corresponds to the
processor where the task is processed. The set C (resp. G) is the set of all the CPUs
(resp. GPU). Therefore, if a task Tj is assigned to a CPU, we can write π(j) ∈ C. We
de�ne WC as the computational area of the CPUs on the Gantt chart representation of a
schedule, i.e. the sum of all the processing times of the tasks assigned to the CPUs:
WC =

∑
j / π(j)∈C

pj. This corresponds to the computational load of all the CPUs.

To take advantage of the dual approximation paradigm, we have to make explicit the
consequences of the assumption that there exists a schedule of length at most λ. We
state below some straightforward properties of such a schedule. They should give the
insight for the construction of the solution.

Proposition 4.3.1. In an optimal solution, the execution time of each task is at most
λ, and the computational area on the CPUs is at most mλ.

Proposition 4.3.2. In an optimal solution, if there exist two tasks executed on the
same CPU such that one of these tasks has an execution time greater than 2λ

3
, then the

other one has an execution time lower than λ
3
.

Proposition 4.3.3. Two tasks with processing times on CPU greater than λ
3
and lower

than 2λ
3
can be executed on the same CPU within a time at most 4λ

3
.

The basic idea of the solution that we propose comes from the analysis of the shape of
an optimal schedule. From Proposition 4.3.2, the tasks whose execution times on CPU
are strictly greater than 2λ

3
do not use more than m CPUs, and hence can be executed

concurrently in the �rst set in a shelf denoted by S1, occupying µ CPUs (see Figure 4.8).
The tasks whose execution times are lower than 2λ

3
and strictly greater than λ

3
on CPU

cannot be executed on the µ CPUs occupied by S1 from Proposition 4.3.1. Moreover,
from Proposition 4.3.3, 2(m− µ) of these tasks on CPU can be executed in time at most
4λ
3
on the remaining (m− µ) CPUs in the second set and �ll two shelves S3 and S4 of

equal length 2λ
3
.

The tasks remaining to be assigned to the CPUs have a processing time lower than λ
3
.

The µ longest remaining tasks are assigned to the �rst set on the CPUs in another shelf
denoted by S2. The length of S2 is λ

3
.

WL will denote the computational area on the CPUs remaining idle after this
assignment in the schedule of length 4λ

3
. WL corresponds to the stripped areas in

Figure 4.8. Regarding the question of how the remaining tasks �t in the constructed
schedule, we state the following lemma:

Lemma 4.3.4. The tasks remaining to be assigned on the CPUs after the construction
of S1, S2, S3, S4 �t in the remaining free computational space WL between these shelves.

Proof. The tasks remaining to be assigned after the construction of S1, . . . , S4 all have a
processing time lower than λ

3
by construction and they necessarily �t into the remaining

68CHAPTER 4. MINIMIZING THEMAKESPANWITH INDEPENDENT SEQUENTIAL TASKS

computational space WL, otherwise the schedule would not satisfy Property 4.3.1. The
following algorithm can be used to schedule these tasks:

• Consider the remaining tasks ordered by decreasing order of processing time on
CPU T1, . . . , Tf , f being the total number of tasks remaining to be assigned.

• At each step i, i = 1, . . . , f , assign task Ti to the least loaded processor, at the
latest possible date. Update its load.

At each step, the least loaded processor has a load at most λ; otherwise it would
contradict the fact that the total work area of the tasks is bounded by mλ (according to
Property 4.3.1). Hence, the idle time interval on the least loaded CPU has a length at
least equal to λ

3
and can contain the task Ti, which proves the correctness of the

scheduling algorithm.

4.3.3 Partitioning the Tasks into Shelves

In this section, we detail how to �ll the shelves on the CPUs (see Figure 4.8) and to
assign the tasks to the GPU by specifying an initial assignment of the tasks to the
processors.
In order to obtain a 2-sets and 4-shelves schedule on the CPUs, we look for an
assignment satisfying the following constraints:

• (C1) The total computational area WC on the CPUs is at most mλ.

• (C2) The set T1 of tasks on the CPUs with an execution time strictly greater than
2λ
3
in the assignment, to be scheduled in S1, uses a total of at most m processors.

We still denote by µ the number of processors they use.

• (C3) The set T2 of tasks on the CPUs with an execution time lower than 2λ
3
and

strictly greater than λ
3
in the assignment, to be scheduled in S3 or S4, uses a total

of at most 2(m− µ) processors.

• (C4) The total execution time of the tasks on the GPU is lower than 4λ
3
.

Let us notice that if Constraint (C3) is satis�ed, then Constraint (C2) will also be
satis�ed. Hence, Constraint (C2) is relaxed.
We consider for each task Tj a binary decision variable xj such that xj = 1 if Tj is
assigned to a CPU or 0 if Tj is assigned to the GPU, as this was previously done in this
chapter.
Determining if an allotment satisfying (C1), (C3) and (C4) exists reduces to solving a
two-dimensional knapsack problem that can be formulated as follows:

4.3. IMPROVING THE PERFORMANCE RATIO FOR (PM,P1) || CMAX 69

W ∗
C = min

n∑
j=1

pjxj (4.3)

s.t.
1

2

∑
2λ/3>pj>λ/3

xj +
∑

pj>2λ/3

xj 6 m (4.4)

n∑
j=1

pj (1− xj) 6
4λ

3
(4.5)

xj ∈ {0, 1}, ∀j ∈ {1, . . . , n} (4.6)

Equation (4.3) represents the minimal workload on all the CPUs. Constraint (4.4)
imposes that no more than m tasks can be executed on the CPUs with a processing
time greater than 2λ

3
, we note µ =

∑
pj>2λ/3

xj their number; and that there cannot be

more than 2(m− µ) tasks on the CPUs with a processing time lower than 2λ
3
and

greater than λ
3
(cf. Constraints (C2)). Constraint (4.5) imposes an upper bound on the

makespan of the GPU which is 4λ
3

= λ+ λ
3
(cf. (C4)). This problem corresponds to a

two-dimensional knapsack problem.
We propose a dynamic programming algorithm in O (n2m2) to solve the knapsack
problem. For this purpose, we �rst discretize the processing times of the tasks on the

GPU. We introduce νj =
⌊

pj

λ/(3n)

⌋
to represent the number of integer time intervals of

length λ
3n

required for a task Tj if it is executed on the GPU, as shown in Figure 4.9.
N =

∑
π(j)∈G

νj denotes the total integer number of these intervals on the GPU. We thus

de�ne the error on the processing time of each task εj = pj − νj λ3n induced by this time
discretization.
This result allows us to consider only N states in the dynamic programming regarding
the workload on the GPU. The error εj on each task is at most λ

3n
so if all the tasks were

assigned to the GPU, we would have underestimated the processing time on the GPU by
at most n λ

3n
= λ

3
. We have

N =
∑
π(j)∈G

νj

=
n∑
j=1

⌊
pj

λ/(3n)

⌋
(1− xj)

=
n∑
j=1

pj − εj
λ/(3n)

(1− xj)

70CHAPTER 4. MINIMIZING THEMAKESPANWITH INDEPENDENT SEQUENTIAL TASKS

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

...

0 1 2 3 4 5 6 7 8 9 10

GPGPU

Task T1 Task T2

λ
3n

λ
3n

ν2 times︷ ︸︸ ︷
p1

Figure 4.9: Rounded assignment of two tasks T1 with p1 = 6.5 and T2 with p2 = 4.7 on a GPU.

Then we can rewrite Constraint (4.5),
n∑
j=1

pj (1− xj) 6 4λ
3
, as

n∑
j=1

(
pj − εj

)
(1− xj) +

n∑
j=1

εj (1− xj) 6
4λ

3
,

n∑
j=1

(
pj − εj

)
(1− xj) 6

4λ

3
−

n∑
j=1

εj (1− xj) ,

λ

3n
N 6

4λ

3
−

n∑
j=1

εj (1− xj) .

In order to always satisfy Constraint (4.5), we have to consider that we are in the worst
possible case, i.e. all the tasks are assigned to the GPU and the error for each task is λ

3n
.

We obtain
λ

3n
N 6

4λ

3
− λ

3
.

Therefore Constraint (4.5) becomes:

N =
∑
π(j)∈G

νj 6 3n (4.7)

Remark 4.3.5. This discretization technique is used again in Chapter 5, Section 5.2.4 as
well as in Chapter 6, Section 6.2.2. It is a crucial part of the algorithm, since this allows
us to achieve a polynomial time complexity.

4.3. IMPROVING THE PERFORMANCE RATIO FOR (PM,P1) || CMAX 71

The approximated makespan of the GPU is at most λ and thus, with the
underestimation detailed above, the makespan of the GPU remains lower than 4λ

3
. Some

of the schedules produced by this algorithm can therefore seem non optimal because of
this approximation, with a makespan on the GPU remaining lower than 4λ

3
.

We de�ne WC(j, µ, µ′, N) as the minimum sum of all the processing times of the tasks
on the CPUs when the �rst j tasks are considered, with among the tasks assigned to the
CPUs, µ of them having processing times greater than 2λ

3
and µ′ of them having

processing times lower than 2λ
3
and greater than λ

3
and where N time intervals are

occupied on the GPU.
We use a dynamic programming which allows us to compute the value of WC(j, µ, µ′, N)
using the values of WC for j − 1 tasks.
If task Tj is put on a CPU, the resulting sum of all the processing times of the tasks on
the CPUs is then

FCPU(j, µ, µ′, N) = pj +WC

(
j − 1, µ− I(pj> 2λ

3), µ
′ − I(2λ

3
>pj>

λ
3), N

)
where I(pj> 2λ

3) and I(2λ
3
>pj>

λ
3) are indicating functions:

I(pj> 2λ
3) =

{
1 if pj > 2λ

3

0 otherwise

I(2λ
3
>pj>

λ
3) =

{
1 if 2λ

3
> pj >

λ
3

0 otherwise

If task Tj is put on the GPU, the sum of all the processing times of the tasks on the
CPUs is then

WC (j − 1, µ, µ′, N − νj)
The dynamic programming is then based on the following recursive equation:

WC (j, µ, µ′, N)
16j6n,16µ6m

16µ′62(m−µ), 06N63n

= min (FCPU(j, µ, µ′, N),WC(j − 1, µ, µ′, N − νj))

In order to satisfy the constraints imposing that µ 6 m tasks are processed on a CPU
with a processing time greater than 2λ

3
and no more than 2(m− µ) tasks are processed

on a CPU with a processing time lower than 2λ
3
and greater than λ

3
and that the

makespan of the GPU is not greater than 4λ
3
, we have border conditions:

WC (j, µ, µ′, N) = +∞


if µ > m

if µ′ > 2(m− µ)

if
∑

π(j)∈G
νj > 3n

The optimal value of the computational area WC on the CPUs is then given by

72CHAPTER 4. MINIMIZING THEMAKESPANWITH INDEPENDENT SEQUENTIAL TASKS

W ∗
C = minWc (n, µ, µ′, N)

06µ6m, 06µ′62(m−µ), 06N63n

If W ∗
C is greater than mλ, then there exists no solution with a makespan at most λ, and

the algorithm answers �NO� to the dual approximation framework. Otherwise, the guess
λ is large enough, we construct a feasible solution with a makespan at most 4λ

3
, with the

corresponding shelves on the CPUs and the corresponding µ, µ′ and N values.
The dynamic programming algorithm represents one step of the dual-approximation
algorithm, with a �xed guess λ. A binary search is then used to try di�erent guesses to
approach the optimal makespan as explained in Section 4.3.1.

Cost Analysis. Solving the dynamic program for a �xed value of λ requires to consider
O (n2m2) states. Since 1 6 j 6 n, 1 6 µ 6 m, 1 6 µ′ 6 2(m− µ) and 0 6 N 6 3n, the
time complexity of each step of the binary search is O (n2m2).

We have an approximation algorithm for (Pm,P1) || Cmax with a performance ratio of
4
3
. Now we extend it to the case with k > 1 GPUs.

4.4 Extending the 4
3-appproximation Algorithm to the

multi-GPUs case

The algorithm described in the previous section can be extended to the problem with
k > 2 GPU, using the same structure for the GPUs as we did with the CPUs. The
target performance ratio is 4

3
+ 1

3k
.

An analysis of an optimal solution leads to the following properties:

Proposition 4.4.1. In an optimal solution, the execution time of each task is at most λ
and the computational area on the GPUs is at most kλ.

Proposition 4.4.2. In an optimal solution, if there exist two tasks executed on the
same GPU such that one of these tasks has an execution time on GPU greater than 2λ

3
,

then the other one has an execution time lower than λ
3
.

Proposition 4.4.3. Two tasks with processing times on GPU greater than λ
3
and lower

than 2λ
3
can be executed on the same GPU within a time at most 4λ

3
.

Using the same notations as before (the set G is now the set of all the GPUs, and k sets
of 3n integer time intervals will be considered for the discretization phase), the problem
can be formulated in the same way, with the following constraints on the GPUs:

1

2

∑
2λ/3>pj>λ/3

xj +
∑

pj>2λ/3

xj 6 k,

N =
∑
π(j)∈G

νj 6 3kn.

4.4. EXTENDING THE 4
3 -APPPROXIMATION ALGORITHMTOTHEMULTI-GPUS CASE73

Then, the problem becomes:

W ∗
C = min

n∑
j=1

pjxj

s.t.
1

2

∑
2λ/3>pj>λ/3

xj +
∑

pj>2λ/3

xj 6 m

1

2

∑
2λ/3>pj>λ/3

xj +
∑

pj>2λ/3

xj 6 k

N =
∑
π(j)∈G

νj 6 3kn

xj ∈ {0, 1}, ∀j ∈ {1, . . . , n}

If all the tasks are assigned to one GPU, the error ε =
n∑
j=1

εj is still λ3 , so the

computational area of the GPUs is lower than
(
k + 1

3

)
λ.

The same partition of the tasks on the CPUs on two sets, each consisting of two shelves
S1 and S2, and S3 and S4 can be done and leads to a schedule on the CPUs with a
makespan lower than 4λ

3
.

Among the tasks assigned to the GPUs, the distribution between the di�erent
processors can be made in two sets, each consisting of two shelves S5 and S6, and S7 and
S8. The �rst constraint we formulated on the GPUs sets that at most k tasks of
processing times greater than 2λ

3
, that are put in the shelf S5 which length is λ. We note

κ the number of processors occupied on S5. The tasks with processing times lower than
2λ
3
and greater than λ

3
are then assigned to the shelves S7 and S8, their number being

lower than 2(k − κ). Finally, the tasks remaining to be assigned to the GPUs have a
processing time lower than λ

3
. The κ longest remaining tasks are assigned to the �rst set

on the GPUs in another shelf denoted by S6. The length of S6 is λ
3

+ λ
3k
. WR denotes

the computational area on the GPUs remaining idle after this assignment in the
schedule of length 4λ

3
+ λ

3k
(see Figure 4.10).

After the discretization of the processing times of the tasks assigned to the GPUs, the
approximated computational area of the GPUs is at most kλ and thus, the full
computational area on GPU remains lower than kλ+ λ

3
. This allows us to answer the

question of how the remaining tasks �t in the constructed schedule with the following
lemma:

Lemma 4.4.4. The tasks remaining to be assigned on the GPUs after the construction
of S5, S6, S7, S8 �t in the remaining free computational space WR between these shelves.

Proof. The proof is similar to the one of Lemma 4.3.4. If we modify the starting time of
the tasks of S6, currently λ, so that all the working processors complete their tasks at

74CHAPTER 4. MINIMIZING THEMAKESPANWITH INDEPENDENT SEQUENTIAL TASKS

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

S3
S4

λ/3 2λ/3 4λ/30 λ

WL
µ

m CPUs

κ

k GPUs

S1 S2

S5

S7 S8

S6WR

Figure 4.10: All the shelves on CPUs and GPUs.

4λ
3

+ λ
3k
, creating an idle time interval between the end of S5 and the starting time of S6,

the load of a GPU is equal to 4λ
3

+ λ
3k

minus the length of the idle time interval.
With the same arguments as for Lemma 4.3.4, the only problem that may occur is if a
task Ti remaining to be assigned cannot be completed before the starting time of the
tasks of S6. But at each step, the least loaded processor has a load at most λ+ λ

3k
since

the total work area of the tasks is bounded by k
(
λ+ λ

3k

)
. Hence, the idle time interval

on the least loaded GPU has a length at least λ
3
and can contain the task Ti.

We can conclude that the approximation algorithm can be extended to the problem with
k > 2 GPUs with a performance guarantee of 4

3
+ 1

3k
. In order to solve each step of the

binary search, we have to consider O (n2k3m2) states, since 1 6 j 6 n, 1 6 µ 6 m,
1 6 µ′ 6 2(m− µ), 1 6 κ 6 k, 1 6 κ′ 6 2(k − κ), and 0 6 N 6 3kn.

4.5 Summary

In this chapter, we have presented two algorithms for problem (P1, P1) || Cmax, and two
algorithms for the more generic problem (Pm,Pk) || Cmax, one with performance ratio
of 2 and the other with a performance ratio of 4

3
in the case with one GPU, and a ratio

of 4
3

+ 1
3k

in the case of k > 2 GPUs, all of them being new contributions in scheduling
theory, as summarized in Table 4.1.
The algorithm with a performance ratio of 4

3
can be generalized into two families of

approximation algorithms for problem (Pm,Pk) || Cmax with di�erent approximation

4.5. SUMMARY 75

Problem Algorithm optimality ratio Algorithm cost

(P1, P1) || Cmax 3
2 O (n log n)

1 + ε FPTAS

2 O (n log n)
(Pm,Pk) || Cmax 4

3 + 1
3k O

(
n2m2k3

)
Table 4.1: Problems studied in this chapter and the algorithms developed for them.

ratios and di�erent time complexities. These families are detailed in the following
chapter.

76CHAPTER 4. MINIMIZING THEMAKESPANWITH INDEPENDENT SEQUENTIAL TASKS

Chapter 5

Two families of algorithms for

(Pm,Pk) || Cmax with ratios of
2q+1
2q + 1

2qk and
2(q+1)
2q+1 + 1

(2q+1)k

This chapter presents the generalization of the approximation algorithm presented in
Chapter 4, Sections 4.3 and 4.4, into two families of approximation algorithms using
dual approximation and dynamic programming. For the case of m CPUs and one GPU,
we have a family of approximation algorithms that achieve ratios of 2q+1

2q
+ ε for any

integer q > 1, with computational costs in O (n2mq) per step of dual approximation.
This family is extended to the case of k > 2 GPUs, and the approximation ratios
become 2q+1

2q
+ 1

2qk
+ ε (for any integer q > 1). The associated cost is in O (n2kq+1mq)

per step of dual approximation. The other family of algorithms developed has
approximation ratios of 2(q+1)

2q+1
+ ε (q > 0) with one GPU and 2(q+1)

2q+1
+ 1

(2q+1)k
+ ε (q > 0)

with k > 2 GPUs. The associated costs are respectively in O (n2mq+1) for a single GPU
and in O (n2kq+2mq+1) for k > 2, per step of the dual approximation.
These two families are a major contribution of this PhD.
In order to be as clear as possible, we choose to present the entire method for the
families of algorithms, even if some steps are similar to the some used in the algorithms
of Chapter 4 that were the basis for the construction of these families of algorithms. As
a result, even if this chapter is practically self content, the notions already introduced in
the manuscript are not always recalled.

5.1 Rationale of the Solving Method

The proposed algorithms are again based on the dual approximation technique (see
Chapter 3, Section 3.2.2.2). For the (Pm,Pk)||Cmax problem, we propose two families of
algorithms that are developed in this chapter. Both families are complementary in the

77

78 CHAPTER 5. TWO FAMILIES OF ALGORITHMS

sense that the sequence of approximation ratios are interleaved (see summary at the end
of this chapter).

• In a �rst family of algorithms, we target g = 2q+1
2q

(resp. g = 2q+1
2q

+ 1
2qk

) in the case
of one (resp. k > 2) GPU(s), for any given q > 0.

• In a second family of algorithms, we target g = 2(q+1)
2q+1

(resp. g = 2(q+1)
2q+1

+ 1
(2q+1)k

)
for one (resp. k > 2) GPU(s), for any given q > 0.

For the sake of clarity, we will consider in what follows the problem with a single GPU
(k = 1) and focus on the construction of the algorithms of the �rst family. Let λ be the
current guess for the dual approximation. The key point is still to show how it is
possible to build a schedule of length at most 2q+1

2q
λ, q > 0, starting from the assumption

that there exists a schedule of length lower than λ.
The idea is to partition the set of tasks on the CPUs into several sets of two shelves,
starting with a shelf of length λ and the other of length λ

2q
(q > 0), and for each new set,

gradually lowering the length of the �rst shelf by λ
2q
, the length of the second shelf is

2q+1
2q
λ minus the length of the �rst shelf, while keeping the makespan on the GPUs lower

than the target bound 2q+1
2q
λ. In Figure 5.1, an example is given for the CPUs in the

case where q = 2: the �rst set has a shelf of length λ and the other of length λ
4
, and the

second set has a shelf of length 3λ
4
and the other of length 2λ

4
.

2nd set

1st set

λ/4 2λ/4 3λ/4 5λ/40 λ

m CPUs

Figure 5.1: Two sets of two shelves for g = 5/4 (q = 2), with m = 14 CPUs: the �rst set with
two shelves of length λ and λ/4, and the second one with two shelves of length 3λ/4 and 2λ/4.

The assignment of the tasks to the di�erent shelves on the CPUs is done according to
their processing time on CPU, each shelf corresponding to a time interval of length λ

2q
for the processing times.

5.1. RATIONALE OF THE SOLVING METHOD 79

• For the �rst shelf of each set, we have pj ∈
(

(2q−h)λ
2q

, (2q−h+1)λ
2q

]
in the shelf of length

(2q−h+1)λ
2q

, h ∈ {1, . . . q}.

• For the second shelf of each set, we have pj ∈
(

(q−h)λ
2q

, (q−h+1)λ
2q

]
in the shelf of

length (q−h+1)λ
2q

, h ∈ {1, . . . q}.

The partition ensures that the makespan on the CPUs is lower than 2q+1
2q
λ. Depending

on the numbers of tasks with processing times in the time intervals of length λ
2q
, there

can be some CPUs left idle or some second shelves with gaps. These gaps are �lled with
tasks with smaller processing times and the details of this assignment are explained in
the next section.
The tasks being independent, the scheduling strategy is straightforward when the
assignment of the tasks has been determined and yields a solution of length at most
(2q+1)λ

2q
. The main issue is to assign the tasks in each shelf on the CPUs or on the GPU

in order to obtain a feasible solution. This will be done using a dynamic programming
algorithm. The main steps are summarized in the following algorithmic scheme:

1. Compute the guess λ = Bmin+Bmax
2

where Bmin (resp. Bmax) is a lower (resp.
upper) bound of the optimal makespan.

2. Search for an assignment of the tasks such that:

• the total load (work) on CPUs is at most mλ,

• the makespan on the GPU is at most λ,

• the tasks assigned to the CPUs whose processing time is in the time interval(
(2q−h)λ

2q
, (2q−h+1)λ

2q

]
, h ∈ {1, . . . , q}, occupy a maximum number of CPUs

denoted by µh.
The total number of processors used over all the intervals must not exceed m,

i.e.
q∑

h=1

µh 6 m,

• the tasks assigned to the CPUs with processing time lower that λ
2
can be

scheduled such that the induced makespan on CPU will be at most equal to
(2q+1)λ

2q
.

3. If such an assignment does not exist, adjust the bound Bmin to λ and restart the
process (Step 1).

4. If such an assignment exists, build the corresponding schedule with sets of shelves
such that the makespan is lower than 2q+1

2q
λ, adjust the bound Bmax to λ and

restart the process.

80 CHAPTER 5. TWO FAMILIES OF ALGORITHMS

In the following, we �rst analyze the structure of an optimal solution (Section 5.2.1),
leading to a partition of the tasks into several shelves. Then, we show how the shelves
are built (Section 5.2.2). The way to determine such a partition is �nally described in
Section 5.2.3.

5.2 Theoretical Analysis

In this section, we consider the problem with a single GPU (k = 1) to describe the �rst
family of algorithms.

5.2.1 Structure of an Optimal Schedule of Length at most λ

As in Chapter 4, Section 4.3.2, we introduce an assignment function π(j) of a task Tj
which corresponds to the processor where the task is processed. The set C (resp. G) is
the set of all the CPUs (resp. the GPU). Therefore, if task Tj is assigned to a CPU, we
can write π(j) ∈ C. We de�ne WC as the computational area of the CPUs on the Gantt
chart representation of a schedule, i.e. the sum of all the processing times of the tasks
assigned to the CPUs: WC =

∑
j / π(j)∈C

pj. This corresponds to the computational load of

all the CPUs.
Since we assume at each step of the dual approximation that there exists a schedule of
length at most λ, we state below some straightforward properties of a feasible schedule
of length at most λ. These properties will help in the construction of the solutions in the
general solving framework.

Proposition 5.2.1. In an optimal solution, the execution time of each task is at most
λ, and the computational area on the CPUs is at most mλ.

Proposition 5.2.2. In an optimal solution, if there exist two tasks Ti, Tj executed on

the same CPU, such that pi >
(2q−1)λ

2q
, then pj 6 λ

2q
.

Proposition 5.2.3. If there exist two tasks Ti, Tj processed on the same CPU, such

that (2q−2)λ
2q

< pi 6
(2q−1)λ

2q
, then pj 6 2λ

2q
.

This can be formulated more generally in the following property.

Proposition 5.2.4. If there exist two tasks Ti, Tj executed on the same CPU, such that
(2q−h)λ

2q
< pi 6

(2q−h+1)λ
2q

, then pj 6 hλ
2q
, for h ∈ {1, . . . , q}.

Property 5.2.4 can be derived in speci�c properties similar to Properties 5.2.2 and 5.2.3

for each time interval of length λ
2q
, i.e. pj ∈

(
(2q−h)λ

2q
, (2q−h+1)λ

2q

]
, h ∈ {1, . . . q}.

Property 5.2.2 corresponds to the case h = 1, and Property 5.2.3 to the case h = 2. The
case h = q corresponds to the following property:

5.2. THEORETICAL ANALYSIS 81

Proposition 5.2.5. If there exist two tasks Ti, Tj processed on the same CPU, and if
λ
2

= qλ
2q
< pi 6

(q+1)λ
2q

, then pj 6 λ
2
.

In the following section, we describe how to build the shelves using the previous
properties.

5.2.2 Building the Shelves

The properties presented in the previous section provide strong characteristics on the
structure of optimal schedules. Based on these properties, we describe in what follows
the partition of the tasks into shelves for the m CPUs.
Each schedule is composed of q sets of two shelves (Si, S

′
i) on the CPUs, for i = 1, . . . , q.

Without loss of generality, we consider that the tasks in Si (resp. S ′i) are shifted to the
left (resp. to the right), for i = 1, . . . , q. Figure 5.2 illustrates the structure of the
schedule for q = 2. We start by building S1, . . . , Sq and continue with S ′q, . . . , S

′
1.

S2 S ′2

1st set (S1, S
′
1)

2λ/4 3λ/4 5λ/40 λλ/4

2nd set (S2, S
′
2)

S1 S ′1

Figure 5.2: Example for g = 5/4 with two sets of two shelves (S1, S
′
1) and (S2, S

′
2).

Building S1. From Property 5.2.2, the tasks assigned to a CPU whose execution times
are strictly greater than (2q−1)λ

2q
do not use more than m CPUs, and hence can be

executed concurrently. These tasks are assigned to the �rst set, in shelf S1, of length λ.
µ1 denotes the number of CPUs occupied by these tasks (see Figure 5.3).

Building S2. The tasks assigned to a CPU whose execution times are lower than
(2q−1)λ

2q
and strictly greater than (2q−2)λ

2q
cannot be executed on the µ1 CPUs occupied by

S1 from Property 5.2.1. Therefore, these tasks cannot be assigned to the �rst set, they
are assigned to the second set, in shelf S2, of length

(2q−1)λ
2q

. From Property 5.2.3, they

82 CHAPTER 5. TWO FAMILIES OF ALGORITHMS

λ/4 2λ/4 3λ/4 5λ/40 λ

µ1
S1

Figure 5.3: Example for g = 5/4 with m = 14, µ1 = 8 CPUs

are processed by at most m− µ1 CPUs. µ2 denotes the number of CPUs used in S2 (see
Figure 5.4).

Building Sh, h ∈ {3, . . . , q}. The tasks assigned to a CPU whose execution times are

lower than (2q−h+1)λ
2q

and strictly greater than (2q−h)λ
2q

cannot be executed on the
h−1∑
l=1

µl

CPUs occupied by S1, . . . , Sh−1 from Property 5.2.1. These tasks cannot be assigned to
any of the �rst h− 1 sets, they are assigned to shelf Sh of the hth set, of length

(2q−h+1)λ
2q

.

From Property 5.2.4, they occupy at most m−
h−1∑
l=1

µl CPUs. µh denotes the number of

CPUs used in Sh.

Coupling Constraint. As the number of available CPUs is m, we have to ensure that:

q∑
l=1

µl 6 m (5.1)

The tasks assigned to a CPU but not to shelves S1, . . . , Sq have execution times lower
than λ

2
and can be assigned to shelves S ′1, . . . , S

′
q or to the remaining idle CPUs if

q∑
l=1

µl < m. We describe in what follows the construction of the S ′i shelves starting from

i = q to 1, and the case of CPUs left idle.

5.2. THEORETICAL ANALYSIS 83

λ/4 2λ/4 3λ/4 5λ/40 λ

S2
µ2

Figure 5.4: Example for g = 5/4 with m = 14, µ1 = 8, µ2 = 5 CPUs

Building S′q. The tasks assigned to a CPU whose execution times are lower than qλ
2q

and

strictly greater than (q−1)λ
2q

can only be executed on idle CPUs or after a task assigned to

Sq, in the shelf S ′q of length
λ
2
(see Figure 5.5). They satisfy the following constraint

∑
j / π(j)∈S′q

pj 6 λ

(
m−

q∑
l=1

µl

)
+ λµq −

∑
j / π(j)∈Sq

pj

that is equivalent to ∑
j / π(j)∈S′q∪Sq

pj 6 λ

(
m−

q−1∑
l=1

µl

)
(5.2)

When
q∑
l=1

µl is equal to m (Constraint (5.1)), then a task with a processing time greater

than λ
2
is assigned to each CPU, implying that there can be at most µq tasks assigned to

the CPUs with execution times lower than qλ
2q

and strictly greater than (q−1)λ
2q

, since
these tasks cannot be assigned to the m− µq CPUs that were assigned tasks from

S1, . . . , Sq−1. However, if we have
q∑
l=1

µl < m, this means that some CPUs are left idle,

and therefore some tasks with execution times lower than qλ
2q

and strictly greater than

(q−1)λ
2q

can be assigned to these m−
q∑
l=1

µl idle CPUs, �nishing their execution before qλ
2q
.

In a sense, shelf S ′q now spreads across the µq CPUs of Sq and the idle CPUs. In Figure
5.5, we can see that S ′q occupies µq+1 CPUs, and some tasks with execution times lower

84 CHAPTER 5. TWO FAMILIES OF ALGORITHMS

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

λ/4 2λ/4 3λ/4 5λ/40 λ

S ′q µq + 1
µq

Figure 5.5: Example for g = 5/4. The shelf S′q and where the tasks with processing time lower

than λ
2q can be assigned to (for q = 2).

than qλ
2q

and strictly greater than (q−1)λ
2q

could be assigned to the stripped area of the

�gure. These tasks with execution times lower than qλ
2q

and strictly greater than (q−1)λ
2q

all �t in S ′q and in the space remaining on the CPUs that were still idle after the
construction of shelves S1, . . . , Sq. The proof of this assertion is done with a surface
argument and is similar to the one of Lemma 5.2.6 described in what follows.

Building S′q−1, . . . , S
′
2. The same process can be applied for building the shelves

S ′q−1, . . . , S
′
2, assigning the tasks on CPUs whose execution times are lower than hλ

2q
and

strictly greater than (h−1)λ
2q

to the shelf S ′h of length
hλ
2q
, or to the shelf S ′h−1 if it is not

�lled, for h = q − 1, . . . , 2. With the creation of these q − 2 additional shelves, q − 2
constraints are imposed in addition to Constraints (5.1) and (5.2), the last one is:∑

j / π(j)∈S′q∪Sq∪···∪S′2∪S2

pj 6 λ (m− µ1) (5.3)

Again, there can be only µh tasks with corresponding execution times assigned to CPUs
in shelf S ′h, h = q − 1, . . . , 2, if the previous shelf to be built S ′h+1 is full, i.e. occupies at
least the µh+1 CPUs also occupied by shelf Sh+1. However, if there are less than µq+1

tasks in S ′q+1, it is possible to place some tasks normally assigned to S ′h in the remaining
space in S ′h+1 and therefore the number of tasks normally assigned to S ′h can be higher
than µh. There can even be two tasks with processing times lower than hλ

2q
and strictly

greater than (h−1)λ
2q

that might �t in the remaining space in between Sh+1 and S ′h+1. The
same surface argument as for shelf S ′q can be used to prove that all the tasks with

5.2. THEORETICAL ANALYSIS 85

processing times lower than hλ
2q

and strictly greater than (h−1)λ
2q

�t in S ′h and in the space
remaining between shelves Sq, . . . , Sh+1 and S ′q, . . . , S

′
h+1 (see the proof of Lemma 5.2.6),

for h = q − 1, . . . , 2.

Building S′1. After the construction of shelves S1, . . . , Sq and S ′q, . . . , S
′
2, the tasks

remaining to be assigned to a CPU have a processing time lower than λ
2q
. If shelf S ′2 is

not �lled, we assign the remaining tasks with the longest processing time to this shelf
until it is completely �lled. Then, we assign the µ1 longest remaining tasks to shelf S ′1,
of length λ

2q
, if µ1 6= 0.

WL will denote the computational area on CPU remaining idle after this assignment in
the schedule of length (2q+1)λ

2q
. WL corresponds to the stripped area in Figure 5.6.

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

λ/4 2λ/4 3λ/4 5λ/40 λ

S ′1

Figure 5.6: Example for g = 5/4. The free computational space WL is represented by the
stripped area.

Regarding the question of how the remaining tasks �t in the constructed schedule, we
state the following lemma:

Lemma 5.2.6. The tasks remaining to be assigned on CPUs after the construction of
S1, . . . , Sq, S

′
q, . . . , S

′
1 �t in the remaining free computational space WL between these

shelves.

Proof. The proof is similar to the one of Lemma 4.3.4. The tasks remaining to be
assigned after the construction of S1, . . . , Sq, S ′q, . . . , S

′
1 all have a processing time lower

than λ
2q

by construction and they necessarily �t into the remaining computational space
WL, otherwise the schedule would not satisfy Property 5.2.1. The following algorithm
can be used to schedule these tasks:

86 CHAPTER 5. TWO FAMILIES OF ALGORITHMS

• Consider the remaining tasks ordered by decreasing order of processing time on
CPU T1, . . . , Tf , f being the total number of tasks remaining to be assigned.

• At each step i, i = 1, . . . , f , assign task Ti to the least loaded processor, at the
latest possible date. Update its load.

At each step, the least loaded processor has a load at most λ; otherwise it would
contradict the fact that the total work area of the tasks is bounded by mλ (according to
Property 5.2.1). Hence, the idle time interval on the least loaded CPU has a length at
least equal to λ

2q
and can contain the task Ti, which proves the correctness of the

scheduling algorithm.

When a shelf S ′h, h = q . . . , 2, do not use the same number of processors as its
corresponding shelf Sh, the same arguments as the ones from the proof of Lemma 5.2.6
can be used to prove that all the tasks with the execution times corresponding to the
considered shelf S ′h, h = q, . . . , 2, �t in the space remaining for their assignment.
Otherwise it would contradict the fact that the total computational area on the CPUs is
bounded by mλ (see Property 5.2.1). Therefore all the tasks can be assigned following
the construction described in the algorithm of Lemma 5.2.6's proof.

5.2.3 Assigning the Tasks to the Shelves

In this section, we detail how to �ll the shelves on the CPUs and the GPU by specifying
an initial assignment of the tasks to the processors according to Section 5.2.2.
Determining if such an assignment exists reduces to solving a multi-dimensional
knapsack minimization problem.

We use for each task Tj a binary decision variable xj as de�ned previously, such that
xj = 1 if Tj is assigned to a CPU and 0 if Tj is assigned to the GPU. The problem can
then be formulated as follows:

5.2. THEORETICAL ANALYSIS 87

W ∗
C = min

n∑
j=1

pjxj (5.4)

s.t.
∑

j / pj>λ/2

xj 6 m (5.5)



∑
j / π(j)∈S′q∪Sq

pjxj 6 λ

(
m−

q−1∑
l=1

µl

)
... ∑
j / π(j)∈S′q∪Sq∪···∪S′2∪S2

pjxj 6 λ (m− µ1)

(5.6)

n∑
j=1

pj (1− xj) 6
(2q + 1)λ

2q
(5.7)

xj ∈ {0, 1}, j ∈ {1, . . . , n} (5.8)

Equation (5.4) represents the minimal workload on all the CPUs. Constraint (5.5)
imposes that no more than m tasks can be executed on the CPUs with a processing
time greater than λ

2q
, considering all the �rst shelves of each set, S1, . . . , Sq.

Constraints (5.6) represent the �lling constraints related to the second shelves of each
set, S ′q, . . . , S

′
2. Constraint (5.7) corresponds to the fact that the makespan on the GPU

must be lower than (2q+1)λ
2q

.

5.2.4 Dynamic Programming

We propose a dynamic programming algorithm in O (n2mq) to solve the minimization
knapsack problem. For this purpose, we �rst discretize the processing times of the tasks
on the GPU, as it was described in Chapter 4, Section 4.3.3. We introduce

νj =
⌊

pj

λ/(2qn)

⌋
to represent the number of integer time intervals of length λ

2qn
for a task

Tj if it is executed on the GPU. For a graphical representation, see Figure 4.9. We
denote by N =

∑
π(j)∈G

νj the total number of these intervals on the GPU. We thus de�ne

the error on each task εj = pj − νj λ
2qn

induced by this time discretization.

This result allows us to consider only N states in the dynamic programming algorithm
regarding the workload on the GPU. The error εj on each task is at most λ

2qn
so if all the

tasks were assigned to the GPU, we would have underestimated the processing time on

88 CHAPTER 5. TWO FAMILIES OF ALGORITHMS

the GPU by at most n λ
2qn

= λ
2q
. We have

N =
∑
π(j)∈G

νj

=
n∑
j=1

⌊
pj

λ/(2qn)

⌋
(1− xj)

=
n∑
j=1

pj − εj
λ/(2qn)

(1− xj)

Then we can rewrite Constraint (4.5),
n∑
j=1

pj (1− xj) 6 (2q+1)λ
2q

, as

n∑
j=1

(
pj − εj

)
(1− xj) +

n∑
j=1

εj (1− xj) 6
(2q + 1)λ

2q
,

n∑
j=1

(
pj − εj

)
(1− xj) 6

(2q + 1)λ

2q
−

n∑
j=1

εj (1− xj) ,

λ

2qn
N 6

(2q + 1)λ

2q
−

n∑
j=1

εj (1− xj) .

In order to always satisfy Constraint (4.5), we have to consider that we are in the worst
possible case, i.e. all the tasks are assigned to the GPU and the error for each task is λ

3n
.

We obtain
λ

2qn
N 6

(2q + 1)λ

2q
− λ

2q
.

Therefore Constraint (5.7) becomes:

N =
∑

j / π(j)∈G

νj 6 2qn (5.9)

The approximated makespan on the GPU will be at most λ and so with the
underestimation detailed above the makespan on the GPU will remain lower than
(2q+1)λ

2q
. Once this reduction is done, we de�ne WC(j, µ1, . . . , µq, N) as the minimum sum

of all the processing times of the tasks on the CPUs when the �rst j tasks are
considered, where µl, (l = 1, . . . , q) denotes the number of processors occupied by the
shelf Sl, and where N time intervals are occupied on the GPU.
We use a dynamic programming algorithm to compute the value of the objective
function WC(j, µ1, . . . , µq, N).
If task Tj is assigned to the GPU, the sum of all the processing times of the tasks on the
CPUs is then

5.2. THEORETICAL ANALYSIS 89

FGPU(Tj) = WC (j − 1, µ1, . . . , µq, N − νj)
The dynamic programming algorithm is then based on the following recursive equation:

WC (j, µ1, . . . , µq, N) = min (FCPU(Tj), FGPU(Tj))

If task Tj is assigned to a CPU, the resulting sum of all the processing times FCPU(Tj)
of the tasks on the CPUs is then

FCPU(Tj) = pj +WC

(
j − 1, µ1 − I(pj> (2q−1)λ

2q), . . . , µq − I((q+1)λ
2q

>pj>
λ
2), N

)
where I(pj> (2q−1)λ

2q), . . . , I((q+1)λ
2q

>pj>
λ
2) are indicating functions:

I(pj> (2q−1)λ
2q) =

{
1 if pj >

(2q−1)λ
2q

0 otherwise

...

I((q+1)λ
2q

>pj>
λ
2) =

{
1 if (q+1)λ

2q
> pj >

λ
2

0 otherwise

In order to satisfy Constraints (5.6) and (5.9), we have the following border conditions:

WC (j, µ1, . . . , µq, N) =



+∞ if µ1 > m

. . .

+∞ if µq > m−
q−1∑
l=1

µl

+∞ if
∑

j / π(j)∈G
νj > 2qn

The optimal value of the computational area WC on the CPUs, will be given by

W ∗
C = minWc (n, µ1, . . . , µq, N)

06µ16m,..., 06µq6m−
q−1∑
l=1

µl, 06N62qn

If W ∗
C is greater than mλ, then there exists no solution with a makespan at most λ, and

the algorithm answers �NO� to the dual approximation. This means that the chosen
guess λ is too small. Otherwise the guess λ is large enough, we construct a feasible
solution with a makespan at most (2q+1)λ

2q
, with the corresponding shelves on the CPUs

and the corresponding µ1, . . . , µq and N values.
This dynamic programming algorithm represents one step of the dual-approximation
algorithm, with a �xed guess λ. A binary search is then used to try di�erent guesses to
approach the optimal makespan as explained in Section 5.1.

90 CHAPTER 5. TWO FAMILIES OF ALGORITHMS

Cost Analysis. Solving the dynamic program for a �xed value of λ requires to consider

O (n2mq) states, since 1 6 j 6 n, 1 6 µ1 6 m, 1 6 µh 6 m−
h−1∑
l=1

µl, for h ∈ {2, . . . , q}
and 0 6 N 6 2qn. Therefore, the time complexity of each step of the binary search is
O (n2mq), which is polynomial for a �xed value of q. We have to solve one of these
problems at each step of the binary search.

5.3 Solving the problem with k > 2

The algorithm described in Section 5.1 can be extended to the problem with k > 2
GPUs, using the same structure for the GPUs as the one used for the CPUs in
Section 5.2. The analysis of an optimal solution leads to the following properties:

Proposition 5.3.1. In an optimal solution, the execution time of each task is at most
λ, and the computational area on the GPUs is at most kλ.

Proposition 5.3.2. In an optimal solution, if there exist two tasks Ti, Tj executed on a

GPU such that pi >
(2q−1)λ

2q
, then pj 6 λ

2q
.

Proposition 5.3.3. If there exist two tasks Ti, Tj processed on a GPU such that
(2q−2)λ

2q
< pi 6

(2q−1)λ
2q

, then pj 6 2λ
2q
.

These properties can be formulated more generally as

Proposition 5.3.4. If there exist two tasks Ti, Tj executed on a GPU such that
(2q−h)λ

2q
< pi 6

(2q−h+1)λ
2q

, then pj 6 hλ
2q
, for h = 1, . . . , q.

We use the same notations as before:

• The set G is now the set of all the GPUs.

• k sets of 2qn integer time intervals will be considered.

• We create q sets of two shelves on the GPUs, with the shelves G1, . . . , Gq similar to
the shelves S1, . . . , Sq on the CPUs, as well as the shelves G′1, . . . , G

′
q similar to the

shelves S ′1, . . . , S
′
q.

• The number of GPUs used in each shelf Gl is denoted by κl.

• The free computational space remaining after the construction of the sets of
shelves is still denoted by WL on CPUs and is denoted by WR on GPUs.

5.3. SOLVING THE PROBLEM WITH K > 2 91

The problem can be formulated in the same way, with the following constraints on the
GPUs: ∑

j / pj>λ/2

(1− xj) 6 k



∑
j / π(j)∈G′q∪Gq

pj(1− xj) 6 λ

(
k −

q−1∑
l=1

κl

)
... ∑
j / π(j)∈G′q∪Gq∪···∪G′2∪G2

pj(1− xj) 6 λ (k − κ1)

N =
∑

j / π(j)∈G

νj 6 2qkn

Then, the problem becomes:

W ∗
C = min

n∑
j=1

pjxj

s.t.
∑

j / pj>λ/2

xj 6 m



∑
j / π(j)∈S′q∪Sq

pjxj 6 λ

(
m−

q−1∑
l=1

µl

)
... ∑
j / π(j)∈S′q∪Sq∪···∪S′2∪S2

pjxj 6 λ (m− µ1)∑
j / pj>λ/2

(1− xj) 6 k



∑
j / π(j)∈G′q∪Gq

pj(1− xj) 6 λ

(
k −

q−1∑
l=1

κl

)
... ∑
j / π(j)∈G′q∪Gq∪···∪G′2∪G2

pj(1− xj) 6 λ (k − κ1)

N =
∑

j / π(j)∈G

νj 6 2qkn

xj ∈ {0, 1}, j ∈ {1, . . . , N}

If all the tasks are assigned to GPUs, the error ε =
n∑
j=1

εj is still λ
2q
, so the computational

area of the GPUs is lower than
(
k + 1

2q

)
λ.

92 CHAPTER 5. TWO FAMILIES OF ALGORITHMS

This problem covers the assignment of the tasks with a processing time greater than λ
2q
.

As in Section 5.2.2, we have the following lemma:

Lemma 5.3.5. The tasks remaining to be assigned on CPUs (resp. GPUs) �t in the
remaining computational space WL (resp. WR) on the CPUs (resp. GPUs).

Proof. The proof that the tasks remaining to be assigned on CPUs �t in WL is identical
to the proof of Lemma 5.2.6. The proof that the tasks remaining to be assigned on
GPUs �t in WR is very similar to the one of Lemma 5.2.6. The tasks remaining to be
assigned to the GPUs after the construction of G1, . . . , Gq and G′q, . . . , G

′
2 all have a

processing time lower than λ
2q

by construction and they necessarily �t in WR, otherwise
the schedule would not satisfy Property 5.3.1. The following algorithm is used to
schedule the tasks:

• Consider the remaining tasks ordered in decreasing order of processing time on
GPU, T1, . . . , Tf , f being the total number of tasks remaining to be assigned.

• At each step i, i = 1, . . . , f , assign task Ti to the least loaded GPU, at the latest
possible date. Update its load.

At each step, the least loaded GPU has a load at most λ+ λ
2qk

; otherwise it would

contradict the fact that the total work area of the tasks is bounded by k
(
λ+ 1

2qk

)
λ

(according to Property 5.3.1). Hence, the idle time interval on the least loaded GPU has
a length at least equal to λ

2q
and can contain the task Ti, which proves the correctness of

the scheduling algorithm.

As for the CPUs, when a shelf G′h, h = q . . . , 2, do not use the same number of
processors as its corresponding shelf Gh, the same arguments as the ones from the proof
of Lemma 5.3.5 can be used to prove that all the tasks with the execution times
corresponding to the considered shelf G′h, h = q, . . . , 2, �t in the space remaining for
their assignment. Otherwise it would contradict the fact that the total work area on the

GPUs is bounded byk
(
λ+ 1

2qk

)
λ (see Property 5.3.1). Therefore all the tasks can be

assigned following the construction described in the algorithm of Lemma 5.3.5's proof.

The family of approximation algorithms presented in the previous sections can be
extended to the problem with k > 2 GPUs with a performance guarantee of 2q+1

2q
+ 1

2qk
.

In order to solve each step of the binary search, we have to add q parameters to WC in
the dynamic programming and parameter N now varies between 0 and 2qkn, so we have
a time complexity of O (n2mqkq+1).

5.4 Complementary Family of Approximation Algorithms

We can derive similarly another family of algorithms with ratios of 2(q+1)
2q+1

for the case

k = 1 and ratios of 2(q+1)
2q+1

+ 1
(2q+1)k

when k > 1. The lengths and numbers of the shelves
have to be adapted but the idea is similar.

5.4. COMPLEMENTARY FAMILY OF APPROXIMATION ALGORITHMS 93

The same properties are veri�ed and we construct the shelves S1, . . . , Sq and G1, . . . , Gq

in the same way, except the length of the time intervals which is now λ
2q+1

instead of λ
2q
.

We have then considered the tasks with processing time strictly greater than (q+1)λ
2q+1

. But

some of the remaining tasks still have a processing time greater than λ
2
. We have two

additional properties:

Proposition 5.4.1. If there exist two tasks Ti, Tj executed on the same CPU such that
λ
2

= (q+1/2)λ
2q+1

< pi 6
(q+1)λ
2q+1

, then pj 6
qλ
2q
.

Proposition 5.4.2. If there exist two tasks Ti, Tj processed on the same GPU such that
λ
2

= (q+1/2)λ
2q+1

< pi 6
(q+1)λ
2q+1

, then pj 6
qλ
2q
.

0 λ/5 6λ/5λ2λ/5 3λ/5 4λ/52.5λ/5 3.5λ/5

µq+ 1
2

S ′
q+ 1

2

Figure 5.7: Example for g = 6/5, where λ is the guess.

These tasks are executed in a
(
q + 1

2

)th
additional set, see Figure 5.7, in a shelf Sq+ 1

2

(resp. Gq+ 1
2
), with µq+ 1

2
CPUs (resp. κq+ 1

2
GPUs), such that µq+ 1

2
and κq+ 1

2
satisfy the

following constraints:

µq+ 1
2
6 m−

q∑
l=1

µl

κq+ 1
2
6 k −

q∑
l=1

κl

The execution times of the tasks remaining to be assigned on the CPUs (resp. GPUs)
are lower than λ

2
and some of them can be executed on the same CPUs (resp. GPUs)

used by the tasks with processing times greater than λ
2
.

94 CHAPTER 5. TWO FAMILIES OF ALGORITHMS

The tasks on CPUs (reps. GPUs) whose execution times are lower than (q+1/2)λ
2q+1

and

strictly greater than qλ
2q+1

can only be executed on idle CPUs (resp. idle GPUs) or
following a task from Sq+ 1

2
(resp. Gq+ 1

2
). They form the shelf S ′

q+ 1
2

(resp. G′
q+ 1

2

), and

they satisfy the following constraints

∑
π(j)∈S′

q+1
2

∪S
q+1

2

pjxj 6 λ

(
m−

q∑
l=1

µl

)

∑
π(j)∈G′

q+1
2

∪G
q+1

2

pj (1− xj) 6 λ

(
k −

q∑
l=1

κl

)

We iterate this process, as in the previous section, with each interval of processing times
for the remaining tasks, 2(q − 2) additional constraints have to be considered, the last
two being: ∑

j / π(j)∈S′
q+1

2

∪S
q+1

2
∪···∪S′2∪S2

pjxj 6 λ (m− µ1)

∑
j / π(j)∈G′

q+1
2

∪G
q+1

2
∪···∪G′2∪G2

pj (1− xj) 6 λ (k − κ1)

We can also write lemmas similar to Lemma 5.2.6 and Lemma 5.3.5, stating that the
tasks remaining to be assigned after the construction of the shelves all �t in the
remaining free computational space so that we obtain the desired approximation ratios.
The proofs would be nearly identical, except the number of shelves considered and the
resulting parameters.

Cost Analysis In the case of k = 1, we have to consider the same inequalities as for
the ratios of 2q+1

2q
, and one more for µq+ 1

2
. The time complexity of the algorithms with

ratios of 2(q+1)
2q+1

becomes O (n2mq+1) . If k > 1, we consider the same inequalities as for

the ratios of 2q+1
2q

+ 1
2qk

, and two additional ones for µq+ 1
2
and κq+ 1

2
, which gives a time

complexity of O (n2mq+1kq+2) for the algorithms with ratios of 2(q+1)
2q+1

+ 1
(2q+1)k

.

5.5 Summary

Tables 5.1 and 5.2 summarize the ratios achieved for di�erent values of k and q.
Figure 5.8 shows for k = 1 that the ratios of the two families of algorithms are
intertwined and the ratios are closer together as q increases.

5.5. SUMMARY 95

Ratio Cost

k = 1
2q+1
2q O

(
n2mq

)
2(q+1)
2q+1 O

(
n2mq+1

)
k > 1

2q+1
2q + 1

2qk O
(
n2mqkq+1

)
2(q+1)
2q+1 + 1

(2q+1)k O
(
n2mq+1kq+2

)
Table 5.1: Associated costs and ratios for di�erent values of k.

q Ratio Cost

0 2 O
(
n2k

)
1

3
2 + 1

2k O
(
n2mk2

)
4
3 + 1

3k O
(
n2m2k3

)
2

5
4 + 1

4k O
(
n2m2k3

)
6
5 + 1

5k O
(
n2m3k4

)
Table 5.2: Associated costs and ratios for di�erent values of q.

Now that we have established a complete set of approximation algorithms for problem
(Pm,Pk) || Cmax, we can study other instances of the problem of scheduling
independent tasks, such as more speci�c cases regarding the nature of the tasks, or other
objectives than the makespan. This is studied in the following chapter.

1

Family 1

Family 2

2

5
4

3
2

4
3

2q+1
2q

6
5

2(q+1)
2q+1

Figure 5.8: Di�erent approximation ratios for the two families of algorithms for k = 1.

96 CHAPTER 5. TWO FAMILIES OF ALGORITHMS

Chapter 6

Scheduling Other Instances with

Independent Tasks

After studying in great details the (Pm,Pk) || Cmax problem, we looked at possible
variations of this core problem. In this chapter, we study some other instances of the
problem of scheduling independent tasks on CPUs and GPUs. We �rst study the
speci�c case of problem (Pm,Pk) || Cmax where all the tasks of the instance have
accelerated processing times when assigned to a GPU. Then we move on to the special
case of (Pm,Pk) || Cmax where preemption are allowed on the CPUs, which is a
possibility that can be encountered in practice. Then, we look at the problem of
scheduling on heterogeneous platform with a model of tasks designed to deal with
communication issues between processors, which is a problem that can be encountered
on computing platforms, the tasks being still independent but moldable on CPU, not
sequential, meaning that they can be assigned to more than one CPU. Finally we brie�y
study the case of uniform CPUs and/or uniform GPUs.

6.1 All the tasks are accelerated on GPU

We consider, in this section, a version of the problem (Pm,Pk) || Cmax where all the
tasks are accelerated when assigned to a GPU, since this is the case in most
applications, i.e qj =

pj
pj

> 1 for j = 1, . . . , n (all the tasks do not have the same

acceleration factor on GPU). This speci�c case if denoted (Pm,Pk) | qj > 1 | Cmax. No
improvement in the time complexity of the algorithms presented in Chapters 4 and 5 is
observed for the case where qj =

pj
pj

> 1 for j = 1, . . . , n. Therefore we present an new

algorithm for this case, based on a scheme similar to the one for the 4
3
-approximation

algorithm presented in Chapter 4, Sections 4.3 and 4.4, but with a much lower time
complexity for an approximation ratio of 3

2
.

The algorithm is also based on the dual approximation technique (see Chapter 3,
Section 3.2.2.2. At each step, we have a guess on the optimal makespan. Let us consider

97

98 CHAPTER 6. OTHER INSTANCES WITH INDEPENDENT TASKS

one step of the dual approximation scheme and let as before λ be the current guess.
The idea is to divide the set of tasks T into four sets of tasks, two of them whose tasks
will be assigned to a CPU, C1, C2, and the other two whose tasks will be assigned to a
GPU, G1 and G2. We denote the cardinality of set Ci (resp. Gi) by |Ci| (resp. |Gi|),
i = 1, 2. The algorithm is as follows for one step of the dual approximation, λ being the
current guess.

Algorithm 6.1.1.

1. For each task Tj:

• If pj 6 λ
2
, task Tj is assigned to C2.

• Otherwise, λ
2
< pj, task Tj is assigned to G1.

2. Reorder the tasks of C2 by decreasing order of pj − pj.
Do the same reordering for the tasks or G1.

3. While WG =
∑

Ti∈G1∪G2
pi 6 kλ,

(a) Assign the �rst task of set C2 to G2.
(b) If |C1| < m, assign the �rst task from G1 to C1.

The �rst step of the algorithm consists in a preliminary assignment of the tasks of the
whole set T to two of the sets: G1 and C2. This pre-assignment of each task Tj is done
by considering the value of the processing time pj of Tj on CPU.
Unfortunately, this pre-assignment does not guarantee that the resulting schedule will
have a makespan lower than 3

2
λ, even if there exists a schedule of makespan lower than

λ. However, we note that if |G1| > k +m, there are too many tasks with a processing
time on CPU greater than λ

2
to �t in a schedule of makespan lower than λ. The dual

approximation rejects this guess λ.
In the second step of the algorithm, we order the tasks of sets C2 and G1 in decreasing
order of the computational surface change induced when a task Tj changes from a CPU
to a GPU, pj − pj.
In order to achieve the desired performance ratio, we have to reassign some of the tasks
assigned to C2 to G2 and some of the tasks assigned to G1 to C1 in the third step of the
algorithm. In Step 3.b), one exception has to be made for set G1: some tasks can have a
processing time on CPU larger than λ. These tasks are too big to �t on the CPUs with
the current guess. They cannot be reassigned and are put at the end of G2, no matter
the impact they can have on the computational surfaces. We can note that at most m
tasks of set G1 can be reassigned to C1. The two substeps of Step 3 are therefore
repeated at most m+ 1 times, as long as we have WC > mλ+ λ

2
or WG > kλ+ λ

2
.

With this assignment, the computational area on the CPUs has been reduced to a
minimum with the constraint of keeping the computational area on the GPUs lower than

6.2. PARTIAL PREEMPTION 99

kλ+ λ
2
. Therefore, the value of WC obtained by our algorithm is smaller than the value

of the computational area on the CPUs of the optimal schedule, the most accelerated
tasks having been assigned to the GPUs. Therefore, if WC > mλ+ λ

2
, we conclude that

the value of λ is too small and adjust the bounds of our binary search accordingly.
If WC 6 mλ+ λ

2
, we can construct a feasible schedule with a makespan lower than 3

2
λ

with the previous algorithm. Indeed, the number of tasks in C1 is lower than m so we
can build a shelf S1 as we did in Chapter 4, Section 4.3, occupying |C1| CPUs, with a
length at most λ. The same arguments given in the proof of Lemma 4.3.4 can be used
for building a shelf S2 of length λ

2
and all the tasks from C2 can be �tted in the schedule

as before. For the GPUs, the algorithm makes sure that the number of tasks in G1 is
lower than k and that WG does not go over the bound of kλ+ λ

2
so shelves similar to S1

and S2 can be built easily. However, we did not have to make any discretization on the
processing times of the tasks assigned to the GPUs here, so, contrary to Chapter 4,
Section 4.4, we get the same performance ratio of 3

2
for any number k of GPUs. The

time complexity of an algorithm based on this principle is in O (mn log n).

6.2 Partial Preemption

In the existing scheduling algorithms, a GPU is usually seen as a co-processor of a CPU,
and, up to now, it is di�cult and costly to interrupt the execution of a task on a CPU
and resume it on a GPU or even to preempt a task on GPUs. No de�nitive solution has
been given to the matter of preemption of the tasks on these platforms. However, the
use of preemption could yield much better schedules for the CPUs. Thus, we investigate
in this section how preemptions can be introduced in order to improve global
computations. Here, preemption is allowed for the tasks scheduled on the CPUs and
even between CPUs, but, due to the architecture of the GPUs, preemptions of the tasks
are not allowed in the latter. Therefore only a "partial" preemption on CPUs, denoted
ppmtn, is addressed in this section.
(Pm,Pk) | ppmtn | Cmax is NP-hard, since if we consider the problem with m = 1,
k = 1 and only one type of tasks, i.e. qj = q, the problem is equivalent to the classical
Q2 || Cmax problem, which is NP-hard. We develop a dual approximation algorithm
running in O (n log n). Depending on the value of k, the approximation ratio of the
algorithm varies. As before, we �rst present the case with only one GPU.

6.2.1 Single GPU Case

For (Pm,P1) | ppmtn | Cmax, the algorithm have the following steps for each guess λ of
the dual approximation scheme:

• Extract from the set of tasks those which necessarily �t in the GPU (pj > λ), and
complete them by the tasks with the largest acceleration factor qj =

pj
pj

up to the
guess.

100 CHAPTER 6. OTHER INSTANCES WITH INDEPENDENT TASKS

• Put all the remaining tasks on the m CPUs.

Lemma 6.2.1. This algorithm has an approximation ration of 1 + 1
m
.

Proof. If at one step of the algorithm the current guess λ is lower than the optimal
makespan of the schedule, then the workload of the CPUs cannot be lower than
m
(
1 + 1

m

)
C∗max with the task assignment given by the algorithm. If the guess is larger

than C∗max, the assignment of the tasks with the largest acceleration factors to the GPU
ensures that the workload of the CPUs is lower than m

(
1 + 1

m

)
C∗max. Therefore, the

dual approximation scheme narrows the value of λ down to C∗max.
When λ = C∗max, let us consider the last task assigned to the CPUs, Tlast. If Tlast was
assigned to the GPU, the makespan of this processor would go over C∗max, and therefore
the remaining tasks on the CPUs would have a workload lower than the optimal one.
Indeed, this workload cannot be lowered by swapping a task on the CPUs with a task on
the GPU, the acceleration factors of the tasks assigned to the GPU being larger than
the ones remaining on the CPUs. Therefore, we have

W−
C

m
6 C∗max,

where W−
C represents the workload of the CPUs without the last task assigned to the

CPUs by the algorithm. We have W−
C = WC − plast (WC being the workload of the

CPUs), and it follows that

WC

m
6
plast
m

+ C∗max.

WC

m
corresponds to the makespan of the CPUs for the schedule determined by the

algorithm, since preemptions are allowed on these processors. Since all the tasks too
large to �t on one CPU have been assigned to the GPU, plast 6 C∗max, hence leading to
the approximation ratio of 1 + 1

m
for this algorithm.

Remark. One sub-problem of (Pm,P1) | ppmtn | Cmax worth investigating is
(Pm,P1) | qj = q, ppmtn | Cmax. It is a particular case of Q2 || Cmax, so the problem is
still NP-hard, but, for this particular case, the dual approximation scheme is not
necessary in order to obtain a similar approximation ratio. Here, a lower bound of the
makespan of the schedule is

∑n
i=1 pi/(m+ q). The tasks with the largest processing

times are assigned to the GPU up to this bound, and one more task is assigned to the
GPU. This additional task plays the same part as Tlast in the previous proof. Since the
additional task is placed on the GPU here, the approximation ratio becomes 1 + 1

q
, and

the time complexity of the algorithm is still O(n log n).

6.2.2 Multiple GPUs Case

For problem (Pm,Pk) | ppmtn | Cmax, with k > 2, the algorithm proposed for k = 1
provides a ratio of 1 + max

(
1
m
, 1− 1

k

)
: the computing area on the GPUs is �lled up to

6.3. MOLDABLE TASKS 101

kλ, but for k > 2 the scheduling of the tasks assigned to the GPUs cannot be done as
easily as before since the performance ratio of the scheduling algorithm on the GPUs is
similar to the one of the classical list algorithm: 2− 1

k
.

We can also extend the approximation algorithm developed for problem
(Pm,Pk) || Cmax in Chapter 4, Section 4.4, to problem (Pm,Pk) | ppmtn | Cmax, with
an approximation ratio of 4

3
+ 1

3k
and a time complexity in O (n2k3).

If λ is the current guess of the dual approximation, the algorithm presented for
(Pm,Pk) || Cmax in Chapter 4, Section 4.4 partitions the set of tasks on CPUs into two
sets, each set consisting of two shelves, and does the same partition on the GPUs: a �rst
set with a shelf S1 of length λ and the other S2 of length λ

3
, occupying κ GPUs and a

second set with two shelves S3, S4 of length 2λ
3
, occupying k − κ GPUs. In order to do

so, the number of tasks on each shelf is constrained, for the CPUs and the GPUs.
However, in (Pm,Pk) | ppmtn | Cmax, there is no need for the shelves on the CPUs,
since preemption renders the objective of minimizing the makespan equivalent to the
objective of minimizing the computational area. By construction of the shelves, the
makespan on the GPUs does not go over 4λ

3
+ λ

3k
. Since preemptions are allowed on

CPUs, the makespan on the CPUs equals to WC

m
, We obtain the following problem, using

the same variables as in the previous chapters:

W ∗
C = min

n∑
j=1

pjxj (6.1)

s.t.
1

2

∑
2λ/3>pj>λ/3

(1− xj) +
∑

pj>2λ/3

(1− xj) 6 k (6.2)

N =
∑

Tj / xj=0

νj 6 3kn (6.3)

xj ∈ {0, 1} (6.4)

This problem is solved by dynamic programming with a time complexity in O (n2k3) per
step of the dual approximation.

Remark 6.2.2. We can note that the introduction of preemptions on CPUs achieves a
saving of m2 in the time complexity bound of the algorithm described in Chapter 4,
Section 4.4.

6.3 Moldable Tasks

With the development of parallel and distributed systems came a new type of
application, more complex than the previous programs: parallel application. The tasks
of a parallel program can be considered as indivisible pieces of the application that are
executed sequentially on a processor. Scheduling these tasks requires sophisticated

102 CHAPTER 6. OTHER INSTANCES WITH INDEPENDENT TASKS

algorithms to determine a date for each task to start its execution together with a
processor location. Then arises the question of considering the communications between
tasks of the same application executed on di�erent processors.
In the moldable tasks model (denoted MT) [24], a function represents the parallel
execution time of a task with the penalty due to the management of the parallelism
including communications between parallel processors, synchronization, etc. In this
model, a moldable task is a computational unit which may be executed on several
processors with a running time that depends on the number of processors assigned to it.

6.3.1 Problem De�nition

We consider again a multi-core parallel platform composed of m identical CPUs and k
identical GPUs. An instance of the problem is described as a set {T1, . . . , Tn} of n
independent tasks considered as moldable when assigned to the CPUs and sequential
when assigned to a GPU, together with a set of n functions pi : l 7→ pi,l that represent
the processing time of task Ti when executed on l CPUs and a set of n numbers pi
corresponding to the processing time of Ti when executed on a GPU. We assume that
these processing times are known in advance (it is a common assumption in case of
classical numerical codes like those considered in the experiments).
The problem consists in �nding for each task Ti a starting time σ(i) and a subset Pi of
processors to execute it, under the constraints that a task Ti starts its execution
simultaneously on all the processors of Pi and occupies them without interruption until
its completion time Ci = σ(i) + ti,Pi , where

ti,Pi =

{
pi,|Pi| if Pi corresponds to |Pi| CPUs
pi if Pi corresponds to a GPU

We de�ne the CPU work function wi of a task Ti, which corresponds to its
computational area on the CPUs in the Gant chart representation of a schedule, as
wi : l 7→ wi,l = l× pi,l for l 6 m. According to the usual executions of parallel programs,
we assume that the tasks assigned to the CPUs are monotonic: allocating more CPUs to
a task usually decreases its execution time at a price of increasing its work (with some
internal communications and synchronizations). There are two types of monotony,
namely the time monotony which is achieved when pi is a decreasing function for all the
tasks and the work monotony which is achieved when wi is an increasing function for
the tasks. A set of tasks is said monotonic when it achieves both monotonies. This
assumption may be interpreted by the well-known Brent's lemma [14], which states that
the parallel execution of a task achieves some speedup if it is large enough, but does not
lead to super-linear speedups. Notice that an instance of the problem can always be
transformed to ful�ll the time monotony property, replacing function pi by
p′i : l 7→ min {pi,q | q = 1, . . . , l}. Such a transformation does not a�ect the optimal
solution of the scheduling. In the sequel, we always assume that the set of tasks of the

6.3. MOLDABLE TASKS 103

considered instance is monotonic. There is no need of such an hypothesis on the GPUs,
since the tasks can only be processed on one GPU at the same time.
For the problem considered here, the objective is to minimize the makespan of the whole
schedule, which is the maximum of the makespan on the CPUs (denoted by CCPU

max) and
the makespan on the GPUs (CGPU

max).
This study is restricted to algorithms that provide non-preemptive schedules with
contiguous processor allocation. It is clear that the optimal assignment could use CPUs
that are not consecutive ones. However, this restriction does not have a substantial
impact on the achieved results [67].

6.3.2 Related Work

The problem of scheduling independent moldable tasks on homogeneous parallel systems
has been extensively studied in the last decade. Among other reasons, the interest in
studying this problem was motivated by scheduling jobs in batch processing in HPC
clusters. Classical scheduling (i.e. those with sequential tasks) are a particular case of
this problem, and hence their complexity results apply directly to MT problems. It
implies that scheduling independent moldable tasks is NP-hard [33], in the ordinary
sense if the number of machines m is �xed.
Jansen and Porkolab [49] proposed a polynomial time approximation scheme based on a
linear programming formulation for scheduling independent moldable tasks. The
complexity of their scheme, although linear in the number of tasks, is high dependent of
the accuracy of the approximation due to an exponential factor in the number of
processors. Thus, even though the result is of signi�cant theoretical interest, this
algorithm cannot be considered for a practical use.
Most existing previous works are based on a two-phase approach, initially proposed by
Turek, Wolf and Yu [86]. The basic idea here was to select �rst an assignment (the
number of processors assigned to each task) and in a second step to solve the resulting
rigid (non-moldable) scheduling problem, which is a classical scheduling problem with
multiprocessor tasks. As far as the makespan objective is concerned, this problem is
related to a 2-dimensional strip-packing problem for independent tasks [5, 21].
It is clear that applying an approximation of guarantee λ for the rigid problem on the
assignment of an optimal solution provides the same guarantee λ for the moldable
problem if ever an optimal assignment can be found. Two complementary ways have
been proposed for solving the problem, either focusing on the �rst phase of assignment
or on the scheduling (second phase). Ludwig [62,63] improved the complexity of the
assignment selection in the special case of monotonic tasks leading to a 2-approximation.
The other way corresponds to choosing an assignment such that the resulting
non-moldable problem is not a general instance of strip-packing, and hence better
speci�c approximation algorithms can be applied. Using the knapsack problem as an
auxiliary problem for the selection of the assignment, this technique leads to a
(
√

3 + ε)-approximation for monotonic tasks [66]. Then, Mounié et al. [67] focused on

104 CHAPTER 6. OTHER INSTANCES WITH INDEPENDENT TASKS

the second approach and showed how a (3
2

+ ε)-approximation algorithm can be
obtained for any ε > 0.

6.3.3 Building a feasible Schedule

The principle of the algorithm is again to use the dual approximation technique.
We target g = 3

2
. Let λ be the current real number input for the dual approximation. In

the following, we assert that there exists a schedule of length lower than λ. Then, we
have to show how it is possible to build a schedule of length at most 3λ

2
.

Given a real number h, we can de�ne as in [67] for each task Ti its canonical number of
CPUs γ(i, h) as the minimal number of CPUs needed to execute task Ti in time at most
h. If Ti cannot be executed in time less than h on m CPUs, we set by convention
γ(i, h) = +∞.
Notice that if the set of tasks is monotonic, the canonical number of CPUs can be found
in time O(logm) by binary search. In addition wi,γ(i,h) is also the minimal work area
needed to execute Ti on CPUs in time less than h.
From [67], we know that, given a real number h, if γ(i, h) < +∞, the execution time of
task Ti on its canonical number of CPUs satis�es the inequality

h > pi,γ(i,h) >
γ(i, h)− 1

γ(i, h)
h. (6.5)

This inequality is a consequence of the monotonic behavior of the tasks on the CPUs,
and if the canonical number of CPUs for a task Ti is at least 2, Equation 6.5 can be
simpli�ed into

2 pi,γ(i,h) > pi,γ(i,h)−1 > h > pi,γ(i,h) >
1

2
h. (6.6)

6.3.3.1 Structuring Tasks into Shelves

The idea of the algorithm is to partition the set of tasks on the CPUs into �ve sets, and
the set of tasks on the GPUs into two sets, as depicted in Figure 6.1.
On the CPUs:

• (0): the set containing the tasks sequentially assigned to the CPUs with a
processing time lower than λ

2
;

• (1): the set containing the tasks sequentially assigned to the CPUs with a
processing time strictly greater than λ

2
and lower than 3λ

4
; this set can be divided

into 2 shelves: the left shelf (L in Figure 6.1) and the right shelf (R in Figure 6.1).

• (2): the set containing the tasks assigned to the CPUs with di�erent canonical
numbers of CPUs for the times λ and 3λ

2
. Task Ti is then assigned to γ(i, 3λ/2)

CPUs;

6.3. MOLDABLE TASKS 105

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

0 3λ/4 λ 3λ/2λ/2

(2)

(3) (4)

(5) (6)

(0)

(1)R(1)L

Figure 6.1: Structure of the schedule. For a better understanding, the processors are overloaded.

• (3): the set containing the tasks assigned to their canonical number of CPUs for
time λ; if this number is 1, then the processing time of the corresponding task is
strictly greater than 3λ

4
;

• (4): the set containing the tasks assigned to their canonical number of CPUs for
time λ

2
, which is greater than 1.

On the GPUs:

• (5): the set containing the tasks assigned to a GPU with a processing time strictly
greater than λ

2
;

• (6): the set containing the tasks assigned to a GPU with a processing time lower
than λ

2
.

The partition ensures that the makespans on the CPUs and on the GPUs are lower than
3λ
2
.

6.3.4 Analysis

6.3.4.1 Structure of a Schedule

To take advantage of the dual approximation paradigm, we have to make explicit the
consequences of the assumption that there exists a schedule of length at most λ. We
state below some straightforward properties of such a schedule. They should give the
insight for the construction of the solution.

Proposition 6.3.1. In an solution of makespan at most λ, the execution time of each
task is at most λ and the computational area on the CPUs is at most mλ, as well as the
computational area on the GPUs is at most kλ.

106 CHAPTER 6. OTHER INSTANCES WITH INDEPENDENT TASKS

We can note that for the problem of scheduling moldable tasks on identical
processors [67], we only have to look at the 2m tasks with the longest processing times.
If they have a computational area larger than mλ, then a schedule of length λ cannot
exist. In the case of heterogeneous processors some of these tasks can be assigned to a
GPU, therefore the n tasks have to be considered here.

Proposition 6.3.2. In an solution of makespan at most λ, if there exist two consecutive
tasks on the same processors such that one of them has an execution time greater than
λ
2
, then the other one has an execution time lower than λ

2
.

Proposition 6.3.3. Two tasks with sequential processing times on CPU greater than λ
2

and lower than 3λ
4
can be executed successively on the same CPU within a time at most

3λ
2
.

These properties allow us to write the following lemma.

Lemma 6.3.4. If there exists an schedule S of makespan λ, then we can construct a
schedule S ′ with the tasks partitioned into sets (0), (1), (2), (3), (4), (5) and (6) with a
makespan at most 3λ

2
and a CPU load lower than the CPU load of S.

Proof. The tasks in the optimal schedule can be divided into two categories: those
processed on the CPUs and those on the GPUs. The tasks are considered assigned to
the canonical number of processors corresponding to their processing time in the
optimal schedule. Assigning a task to more processors would only be a waste of
resources and therefore would be suboptimal.
Let us start with the tasks assigned to the GPUs in the optimal schedule. The tasks are
all sequential here, and can therefore be divided in two distinct sets, those with a
processing time strictly greater than λ

2
, and those with a processing time lower than λ

2
,

which corresponds exactly to the partition of sets (5) and (6) without changing anything
to the optimal schedule.
Now we deal with the more complex case of the tasks assigned to the CPUs in the
optimal schedule. We can classify the tasks into distinct categories:

• The tasks assigned to one CPU with a processing time lower than λ
2
. These tasks

corresponds to those assigned to set (0).

• The tasks assigned to one CPU with a processing time strictly greater than λ
2
and

lower than 3λ
4
. These tasks corresponds to those assigned to set (1).

• The tasks assigned to one CPU with a processing time strictly greater than 3λ
4
and

the tasks assigned to their canonical number of CPUs for time λ, when this number
is strictly greater than 1. These tasks corresponds to those assigned to set (3).

• The tasks assigned to their canonical number of CPUs for time λ
2
, when this

number is strictly greater than 1. These tasks corresponds to those assigned to set
(4).

6.3. MOLDABLE TASKS 107

• The tasks assigned to their canonical number of CPUs for time h, where λ
2
< h < λ

and for a task Tj, γ(j, λ) < γ(j, h) < γ(j, λ/2). These tasks have no corresponding
set in the partition we are aiming at. We consider them for now in a set (u).

It is clear that sets (0), (1) have no task in common and that they share no task with
sets (3) and (4). What is unclear is the intersection of sets (3) and (4). If a task Tj had
the same canonical number of processors for times λ and λ

2
, this would mean that its

processing time when assigned to λ processors, pj,γ(j,λ), is lower than λ
2
. However, we

know, from Equation (6.6), that pj,γ(j,λ) > λ
2
, which leads to a contradiction. We

conclude that sets (3) and (4) have no tasks in common.
The only point that remains is the assignment of the tasks in set (u). From
Proposition 6.3.2, the tasks whose execution times on CPUs are strictly greater than λ

2
do not use more than m CPUs, so we know that the tasks from sets (1), (3) and (u)
cannot be executed on the same processors. Since there can only be one of these tasks
on each CPU and all the tasks are independent, we can rearrange the order in which the
tasks are processed so that the task starting its processing at time 0 on each CPU is a
task from set (1), (3) or (u) if such a task was processed on this CPU. The only tasks
that can be executed on the same processors after one of the tasks from sets (1), (3) and
(u) are the tasks from sets (0) and (4) that �t in the remaining computational space.
Let us consider only the CPUs occupied by a task from (1), (3) or (u) and denote their
number by m1. The time available in the optimal schedule to process tasks from sets (0)
and (4) on each of these processors is lower than λ

2
. In the schedule we aim to construct,

the makespan is at most 3λ
2
, meaning that we add a time of λ

2
to the optimal schedule,

which is enough to execute the tasks from sets (0) and (4) and still have a computation
are of m1λ available to process the tasks from (1), (3) and (u). This means that each
task Tj from (u) can now be processed in time λ, i.e. be assigned to γ(j, λ) processors
and therefore can be assigned to either set (1) or (3) depending on the value of γ(j, λ).
Therefore we have a partition of the tasks on the CPUs with sets (0), (1), (3) and (4).
Set (2) is empty, but could be constructed easily if there are tasks from (3) with no other
task executed on their processors and their canonical number of processors for time 3λ

2
is

di�erent from the one for time λ. In that case, there is no obstacle to the processing of
these tasks in time 3λ

2
on a reduced number of processors and with a lower work.

Now that we have proven that a schedule with our seven sets can be contracted from an
optimal schedule, we look at exploiting the properties of said optimal schedule, in order
to construct our sets.

• From Proposition 6.3.3, if we aim at a makespan of 3λ
2
, two tasks from (1) can be

executed successively on the same CPU, occupying µ(1) CPUs.

• From Proposition 6.3.2, the tasks whose execution times on CPUs are strictly
greater than λ

2
do not use more than m− µ(1) CPUs, and hence can be executed

concurrently on the CPUs in set (3). They occupy µ(3) CPUs.

108 CHAPTER 6. OTHER INSTANCES WITH INDEPENDENT TASKS

• Set (2) does not exist in an optimal solution, since the processing times of all the
tasks in (2) are greater than λ with the number of CPUs they are assigned to.
However, with this assignment and the monotony of the tasks on CPUs, the work
of the tasks in (2) is lower than their corresponding work in the optimal schedule.
Therefore, every task assigned to (2) in the constructed schedule is a gain on the
total work on the CPUs. The tasks of (2) occupy µ(2) CPUs and the inequality
µ(3) + µ(2) + µ(1) 6 m must be satis�ed.

• The remaining tasks on CPUs have execution times lower than λ
2
on CPU and

those who are not sequential can be executed within a time at most λ
2
in set (4).

These tasks cannot be executed on the CPUs occupied by tasks from set (2) but
can be processed after the tasks from set (3). They cannot go on the CPUs that
already process two tasks from (1), but if the number of tasks in (1) is odd, there is
a CPU that only processes one task from (1) and a task from (4) can be executed
on this CPU. Therefore, if we denote by µ(4) the number of CPUs occupied by
tasks of (4), the inequality µ(4) + µ(2) + µ(1) − 1µ(1) uneven 6 m must be satis�ed.

• The remaining sequential tasks on CPUs have execution times lower than λ
2
on

CPU and are executed in set (0).

• With the same reasoning, the tasks on GPUs whose execution times are strictly
greater than λ

2
do not use more than k GPUs, and hence can be executed

concurrently in set (5). We note κ the number of GPUs executing these tasks.

• The remaining tasks on GPUs have execution times lower than λ
2
on GPU and can

be executed within a time at most λ
2
in set (6) on the GPUs, after a task from (5)

or on the remaining free GPUs.

Thus, we are looking for a schedule on the CPUs in �ve sets and a schedule on the
GPUs in two sets.

6.3.5 Formulation as a Linear Program

We de�ne WC as being the computational area of the CPUs on the Gantt chart
representation of a schedule, i.e. the sum of all the works of the tasks assigned to some
of the CPUs:

WC =
∑

Tj∈(0)∪(1)

wj,1 +
∑
Tj∈(2)

wj,γ(j,3λ/2) +
∑
Tj∈(3)

wj,γ(j,λ) +
∑
Tj∈(4)

wj,γ(j,λ/2).

In order to obtain a 5-set schedule on the CPUs and a 2-set schedule on the GPUs, we
look for an assignment satisfying the following constraints:

(C1) The total computational area WC on the CPUs is at most mλ.

(C2) Sets (1), (2) and (3) use a total of at most m processors.

6.3. MOLDABLE TASKS 109

(C3) Sets (1), (2) and (4) use a total of at most m processors, minus one if the number
of tasks in set (1) is odd.

(C4) The total computational area on the GPU is lower than kλ.

(C5) Set (5) uses a total of at most k processors.

(C6) Each task is assigned to exactly one set.

(C7) The number of tasks assigned to Set (1) is the sum of the numbers of tasks
processed in each of its two shelves.

(C8) The task of Set (1) are evenly shared between its two shelves, with at most one
task less in the right shelf, which is processing tasks at the same time as Set (4).

Such an assignment clearly de�nes a schedule of length at most 3λ
2
which would allow us

to build a solution for our problem.

Due to the monotonic assumption, we then have only �ve assignments to consider for a
task: if it is selected to belong to (3), clearly γ(i, λ) is a dominant assignment; if it is
selected to belong to (2), γ(i, 3λ/2) is a dominant assignment; if it is selected to belong
to (4), γ(i, λ/2) is a dominant assignment; if it is selected to belong to (1) or (0), the
task is considered sequential and executed on a CPU. Otherwise it is selected to belong
to (5) or (6), i.e. be on the GPU and the tasks scheduled on the GPU are considered
sequential. According to Proposition 6.3.1, we note that γ(i, λ) is at most m for all the
tasks.

Determining if such an assignment exists reduces to solving a linear program (LP) that
can be formulated as follows.

We de�ne for each task Tj seven binary variables x(q)j , q = 0, . . . , 6, such that x(q)j = 1 if
Tj is assigned to Set (q) or 0 if Tj is assigned to another set. We also de�ne for Set (1)
the variable left(1) (resp. right(1)), corresponding to the number of tasks assigned to the
left (resp.right) shelf of Set (1) (see Figure 6.1).

110 CHAPTER 6. OTHER INSTANCES WITH INDEPENDENT TASKS

min W
(LP)
C =

n∑
j=1

[
wj,1(x

(0)
j + x

(1)
j) + wj,γ(j,3λ/2)x

(2)
j +

wj,γ(j,λ)x
(3)
j + wj,γ(j,λ/2)x

(4)
j

]
(C1)

s.t.
n∑
j=1

(
γ(j, λ)x

(3)
j + γ(j, 3λ/2)x

(2)
j

)
+ left(1) 6 m (C2)

n∑
j=1

(
γ(j, λ/2)x

(4)
j + γ(j, 3λ/2)x

(2)
j

)
+ right(1) 6 m (C3)

n∑
j=1

pj

(
x
(5)
j + x

(6)
j

)
6 kλ (C4)

n∑
j=1

x
(5)
j 6 k (C5)

6∑
q=0

x
(q)
j = 1 ∀j ∈ 1, . . . , n (C6)

n∑
j=1

x
(1)
j = left(1) + right(1) (C7)

0 6 left(1) − right(1) 6 1 (C8)

x
(q)
j ∈ {0, 1} ∀j ∈ 1, . . . , n ∧ ∀q ∈ 0, . . . , 6 (C9)

left(1), right(1) ∈ N (C10)

The �rst eight equations of this linear program correspond to the constraints listed
above in order to obtain a 5-set schedule on the CPUs and a 2-set schedule on the
GPUs. The last two equtations (C9), (C10) are integrity constraints for the variables of
the linear program.
If we assume that there exists a schedule of makespan at most λ, and moreover that the
condition of validation of the guess of the dual approximation is satis�ed, i.e. if
W

(PL)
C 6 mλ, we have the following lemmas:

Lemma 6.3.5. With the assumption that W
(LP)
C 6 mλ, the tasks assigned to sets (1),

(2), (3) and (4) occupy at most m CPUs, in a time at most 3λ/2.

Proof. From Constraints (C2) and (C3), we have the proof that the assignment of the
tasks of these four sets is such that they occupy at most m CPUs when scheduled two
by two in (1) and the tasks of (4) are scheduled after tasks from (3) or on remaining free
CPUs, with the possibility of occupying one processor previously occupied by a task

6.3. MOLDABLE TASKS 111

from (1) if this set has an odd number of tasks. With this schedule, at most m CPUs
are occupied and the makespan is lower than 3λ/2.

Lemma 6.3.6. If W (LP)
C 6 mλ, the tasks assigned to set (0) �t in the remaining free

computational space, while keeping the makespan under 3λ/2.

Proof. The tasks of set (0) all have a sequential processing time on CPU lower than λ
2

by construction and they necessarily �t into the remaining computational space in the
allowed area of 3mλ/2, otherwise the schedule would not satisfy Proposition 6.3.1.
The following algorithm can be used to schedule these tasks:

• Consider the remaining tasks ordered by decreasing order of sequential processing
time on CPU, T1, . . . , Tf , f being the total number of tasks remaining to be
assigned.

• At each step i, i = 1, . . . , f , assign task Ti to the least loaded CPU, at the latest
possible date, or between Set (3) and Set (4) if relevant. Update its load.

At each step, the least loaded CPU has a load at most λ; otherwise it would contradict
the fact that the total work area of the tasks is bounded by mλ (according to
Proposition 6.3.1). Hence, the idle time interval on the least loaded CPU has a length at
least equal to λ

2
and can contain the task Ti, which proves the correctness of the

scheduling algorithm.

Lemma 6.3.7. If W (LP)
C 6 mλ, the tasks assigned to sets (5) and (6) occupy at most k

GPUs, in a time at most 3λ/2.

Proof. When the tasks of set (5) are assigned to the GPUs, they take up to k GPUs
from Constraint (C5) and their processing time is lower than λ, otherwise the dual
approximation would reject the solution.
The tasks of set (6) all have a processing time on GPU lower than λ

2
by construction

and they necessarily �t into the remaining computational space in the allowed area of
3kλ/2, otherwise the schedule would not satisfy Proposition 6.3.1 and Constraint (C4).
The following algorithm can be used to schedule these tasks:

• Consider the remaining tasks ordered by decreasing order of processing time on
GPU, T1, . . . , Tf , f being the total number of tasks remaining to be assigned.

• At each step i, i = 1, . . . , f , assign task Ti to the least loaded GPU, at the latest
possible date. Update its load.

At each step, the least loaded GPU has a load at most λ; otherwise it would contradict
the fact that the total work area of the tasks is bounded by kλ (according to
Proposition 6.3.1 and Constraint (C4)). Hence, the idle time interval on the least loaded
GPU has a length at least equal to λ

2
and can contain the task Ti, which proves the

correctness of the scheduling algorithm.

112 CHAPTER 6. OTHER INSTANCES WITH INDEPENDENT TASKS

These three lemmas allow us to write the following theorem:

Theorem 6.3.8. If W (LP)
C 6 mλ, then, with the assignment of the tasks given by the

solution of (LP), we can construct a schedule of length at most 3λ
2
.

Proof. The solution of (LP) returns an assignment such that the computational area on
the CPUs is minimized, therefore its value W (LP)

C is lower than the computational area
on the CPUs in the optimal schedule, W ∗

C , which is lower than mλ since we assumed
that there exists a schedule of makespan at most λ. The three lemmas allow us to
conclude that the schedule constructed with the assignment of the tasks given by the
solution of (LP) has a makespan lower than 3λ/2.

If the value of the guess of the dual approximation, λ, is rejected, then the
computational area on the CPUs returned by the solution of (LP), W ((LP))

C , is greater
than mλ. Since we minimize the computational area on the CPUs in the resolution of
(LP), then if we had λ 6 C∗max, we would get W (LP)

C 6 W ∗
C , which is impossible since we

have W ∗
C 6 mλ. Therefore in that case there exists no solution with a makespan at most

λ, and the algorithm answers "NO" to the dual approximation. Otherwise, we can
construct a solution with a makespan at most 3λ

2
, with the corresponding sets on the

CPUs and GPUs.

Binary Search We have described one step of the dual-approximation algorithm, with
a �xed guess. A binary search will be used to try di�erent guesses to approach the
optimal makespan as follows.
We �rst take an initial lower bound Bmin and an initial upper bound Bmax of the
optimal makespan. We start by solving the problem with λ equal to the average of these
two bounds and then we adjust the bounds:

• If the previous algorithm returns �NO�, then λ becomes the new lower bound.

• If the algorithm returns a schedule of makespan at most 3λ
2
, then λ becomes the

new upper bound.

The number of iterations of this binary search can be bounded by
log (Bmax −Bmin).

6.4 Looking at uniform CPUs and uniform GPUs

The problems we studied in this work were all dealing with a set of identical CPUs and
a set of identical GPUs to schedule our tasks on. However, it can happen that on some
platforms, the CPUs are not identical and the same can be said for the GPUs. Since the
non-identical CPUs would have a similar architecture, it is safe to assume that the
processing times of a set of tasks on a type of CPU would be proportional to the
processing times these tasks would have on another type of CPU. Therefore, the CPUs

6.4. LOOKING AT UNIFORM CPUS AND UNIFORM GPUS 113

can be considered as uniform machines, as well as the GPUs. Computing platforms
being composed of a great number of processors, it is clear that an occurrence of only
one processor of a given type would highly unlikely. We therefore consider an instance of
the problem with c di�erent types of CPUs, composed of m1, . . . ,mc processors for each
type, and g di�erent types of GPUs, with k1, . . . , kg processors for each type. The tasks
are again considered sequential on both the CPUs and the GPUs.
Using the dual approximation technique, we can adapt the knapsack formulation of
problem (Pm,Pk) || Cmax we presented in Section 4.4, by replacing the constraints
imposing a certain number of tasks in each shelf by additional constraints regarding the
computational areas of the di�erent types of processors. Indeed, if the objective to
minimize is now the computational area of the �rst set of identical CPUs, all the other
computational areas should be constrained to remain lower than the value of the
objective function. If λ is the current guess of the dual approximation, and we introduce
binary variables xmij , xkh corresponding to the type of processor a task Tj is assigned to
(i = 1, . . . , c, h = 1, . . . , g), smi , skh being the corresponding speeds, we have the
following formulation:

W ∗
C = min

n∑
j=1

pj
sm1

xm1
j

s.t.
n∑
j=1

pj
sm2

xm2
j 6 m2λ

...
n∑
j=1

pj
smc

xmcj 6 mcλ

n∑
j=1

pj

sk1
xk1j 6 k1λ

...
n∑
j=1

pj

smg
x
kg
j 6 kgλ

xj ∈ {0, 1} j = 1, . . . , n

This problem can be solved with dynamic programming in polynomial time if we
discretize the constraints with the same discretization technique that was used in
Chapter 4, Section 4.3.3. With mc − 1 + kg constraints to discretize, we obtain a time
complexity of O

(
nmc+kgm1 . . .mck1 . . . kg

)
per step of dual approximation.

It is interesting to note that the power of the number of tasks in the time complexity of
the algorithm is equal to the number of types of processors considered in the problem.

114 CHAPTER 6. OTHER INSTANCES WITH INDEPENDENT TASKS

However, with such an exponent, it is clear that with several types of processors, such
an algorithm would not be practical for a real-time implementation.

Chapter 7

Experiments

To assess the good behavior of the scheduling algorithms proposed in the previous
chapters, we drive an experimental analysis based on various classes of instances. Some
of them are obtained using a generation scheme with random values and others are
derived from real data. The 4

3
-approximation algorithm presented in Chapter 4,

Sections 4.3 and 4.4 is compared to other existing scheduling algorithm as well as a
lower bound or an optimal value derived from the integer linear programming
formulation of the problem. Experiments were also conducted to compare the
2-approximation algorithm from Chapter 4, Section 4.2.3 to the classical HEFT
algorithm presented in Chapter 4, Section 4.2.1. Then, an implementation of both the 2
and 4

3
-approximation algorithms on a real run-time system were realized and tested on a

classical Linear Algebra kernel. Finally, we present an application of our approximation
algorithm with a performance ratio of 3

2
(see Chapter 5) for the implementation of the

Smith Waterman algorithm in the �eld of biological sequence comparison.

7.1 4
3-approximation Algorithm Experimental Analysis

We compare �rst the 4
3
-approximation algorithm presented in Chapter 4, Sections 4.3

and 4.4, denoted by DP for dynamic programming, with a ratio of 4
3

+ 1
3k

to two greedy
list algorithms, namely, an arbitrary list algorithm (LIST) and the LPT algorithm, then,
to the HEFT algorithm. All the algorithms are implemented in C++ programming
language and run on a 3.4 GHz PC with 15.7 Gb RAM. All the experiments show that
the CPU time of the DP algorithm is fast for small instances but it is limited for too
large instances. This is not surprising since the time complexity of the 4

3
-approximation

algorithm is O(n2m2k3).

7.1.1 First experiments based on random simulations

We �rst run a series of experiments on random instances of various sizes: 10, 20, 40 and
80 tasks, 1, 2, 4, 8, 16, 32 and 64 CPUs, 1, 2, 4 and 8 GPUs. The processing times on

115

pj ∈ {1, . . . , 100} Tj q

{1, 5, 10, 50} pj =
pj
q

40 m = 1 k = 1

n = 40 m = 1 k = 1

m = 16 k = 1 k = 4
q

7.1. 4
3 -APPROXIMATION ALGORITHM EXPERIMENTAL ANALYSIS 117

m = 16, k = 1
n Gap DP Gap List Gap LPT

10 14,01% 317,96% 317,96%
20 12,68% 148,00% 148,72%
40 27,45% 113,17% 72,56%
80 19,82% 72,32% 33,11%

m = 16, k = 4
n Gap DP Gap List Gap LPT

10 23,84% 1252,52% 1252,52%
20 18,93% 719,44% 750,07%
40 16,45% 309,34% 297,64%
80 16,98% 152,83% 129,28%

Table 7.1: Mean deviation for m = 16 and k = 1, 4 with di�erent values of n

m = 16, k = 1
Acc. Fact. Gap DP Gap List Gap LPT

1 10,77% 15,5% 3,87%
5 10,68% 38,29% 18,69%
10 18,88% 86,1275% 70,98%
50 33,63% 511,53% 478,82%

m = 16, k = 4
Acc. Fact. Gap DP Gap List Gap LPT

0,02 24,47% 1906,74% 1944,81%
0,1 19,47% 369,91% 345,01%
0,2 15,56% 130,81% 123,27%
1 16,71% 26,69% 16,42%

Table 7.2: Mean deviation for m = 16 and k = 1, 4 with di�erent acceleration factors

118 CHAPTER 7. EXPERIMENTS

7.1.2 A more realistic benchmark

The second series of experiments were conducted using a more realistic benchmark. As
we did not �nd adequate datasets, we constructed our own benchmark as follows: the
execution time of the independent tasks have been extracted from the actual RICC log
(the last one of the collection Parallel Workloads Archive at the time, May 2010) of
Feitelson [30]. We extracted randomly 30 sets of 80 sequential tasks, among the
sequential tasks with a running time between 5 seconds and 5 minutes (25% of the 6974
tasks of the RICC Log). The distribution of the acceleration factors on the GPU have
been measured in [75] using the classical numerical kernels of Magma [2] in a multi-core
multi-GPU machine hosted by the Grid'5000 infrastructure experimental platform [11].
We extracted a distribution of the acceleration factors qj which re�ects the qualitative
speed-up on real kernels: we assign to each task an acceleration factor qj =

pj
pj

of 15 or

35 with a probability of 1/2. Then, we extract randomly the tasks by groups of size 10
to 70 from these sets.
Every point in Figures 7.2, 7.3, 7.4 and 7.5 represents the average value over 30
instances. In these experiments, we compared the performance of our 4

3
-approximation

algorithm with only HEFT.

Figure 7.2: Gaps for various numbers of tasks, m = 16 and k = 4.

Figure 7.2 represents the mean deviations of the makespan compared to the last lower
bound computed by the dual approximation in the binary search, for various numbers of
tasks, and m = 16, k = 4. As we can see, our algorithm outperforms HEFT for small
instances, and their performances are similar for larger instances.
We represented in Figure 7.3 the maximum deviation and minimum deviation in
addition to the mean deviation of the previous �gure for both algorithms, and we
observe that the maximum deviation of HEFT often goes over the 33% limit of the 4

3

4
3

m = 16
k = 4

m = 1 k = 1

m = 1 k = 1

m = 1
k = 1

(Pm,Pk) || Cmax
4
3
+ 1

3k

7.2. EXPERIMENTSWITH THE 2-APPROXIMATION ALGORITHMANDTHE ALGORITHM FOR THE CASEWHENALL THE TASKS ARE ACCELERATED121

complexity. However, this running cost is not comparable to the one of HEFT which
basically only needs to sort the tasks (O(n log n)). But we also have a 2-approximation
algorithm for problem (Pm,Pk) || Cmax with a running time of O(n log n) per step of
dual approximation, presented in Chapter 4, Section 4.2.3. This algorithm is comparable
to HEFT in terms of running time and still provides a performance guarantee. This
2-approximation algorithm, denoted by Ratio2 in what follows, was implemented and
compared to HEFT by simulations based on various classes of instances. Moreover, for
the special case where all the tasks are accelerated, we implemented the algorithm
presented in Chapter 6, Section 6.1, denoted by Accel, which provides a performance
ratio of 3

2
with a time complexity of O (mn log n). All these algorithms were again

implemented in C++ programming language and run on a 3.4 GHz PC with 15.7 Gb
RAM.
We report below a series of experiments run on the same random instances as in
Section 7.1.2: from 10 to 1000 tasks, with a step of 10 tasks, 2a CPUs, a varying from 0
to 6, and 2b GPUs, b varying from 0 to 3. For each combination of these sizes, 30
instances were considered, bringing us to a total of 10500 tested instances. The
processing times on the CPUs are again randomly generated using the uniform
distribution U [10, 100]. The distribution is the one based on the Magma kernels
presented in the previous section. Since in this generation scheme all the tasks of these
instances are accelerated on GPU, DP, HEFT and Accel were all compared on these
instances. The running time of the three algorithms is always under one second, even for
the largest instances. We calculated the mean and maximal deviations of the makespans
of the solutions returned by these algorithms from the lower bound of the makespan
derived from the binary search of the approximation algorithm, over all the instances.
As we can see in Table 7.3, the maximal deviations of Ratio2 are usually below the
maximal deviations of HEFT and more importantly these deviations respect the
theoretical performance guarantee in the case of Ratio2 whereas the maximal deviations
of HEFT sometimes go over the 100% barrier corresponding to a performance ratio of 2.
The same can be said for Accel, with maximal deviations staying below the 50% barrier
corresponding to a performance ratio of 3

2
.

n 120 160 220 260 360 380
Ratio2 76.88 72.73 70.37 69.14 70.00 70.00
HEFT 123.53 98.44 92.55 91.90 110.37 91.78
Accel 46.15 42.86 50.00 41.18 37.82 43.59

n 660 700 760 780 920 940
Ratio2 67.42 50.82 42.77 54.47 91.77 63.07
HEFT 113.48 98.10 98.77 103.15 116.46 96.31
Accel 36.36 40.91 32.52 37.04 48.24 34.65

Table 7.3: Maximal deviations (%) for Ratio2, HEFT and Accel.

Figure 7.6 shows that in average, Ratio2 even outperforms HEFT for large instances.

3
2

3
2

n

4
3

4
3

4
3

124 CHAPTER 7. EXPERIMENTS

(scalar processors) running at 1.15 GHz each (2688 GPU cores total) with 3 GB
GDDR5 per GPU (18 GB in total). It has 4 PCIe switches to support up to 8 GPUs.
When 2 GPUs share a switch, their aggregated PCIe bandwidth is bounded by the one
of a single PCIe 16x.
The structure of the 2-approximation algorithm allowed us to combine its
implementation with an improved local mapping in order to minimize data transfers [9].
We studied the number of operations per second and the size of the memory transfers for
both the Ratio2 algorithm and the HEFT algorithm. The results are shown in Table 7.4

Algorithm G�ops Memory transfer/GB

HEFT 535 2.62
Ratio2 565 1.91

Table 7.4: Performance of the 2-approximation algorithm and HEFT for Cholesky factorization
with m=4 CPUs and k=8 GPUs

With 8 GPUs, the Ratio2 algorithm outperforms HEFT both in the raw performance
and memory transfers. We can note that if the number of operations per second is not
dramatically improved by the 2-approximation algorithm, the introduction of the
procedure of local mapping allowed by the dual approximation algorithm leads to great
results in terms of memory transfers. The execution times are close to each other in all
cases, but our algorithm has the major advantages of having a performance guarantee
on the makespan of the resulting schedule and providing a decrease in the volume of
communication with the improved mapping.

7.4 An Application to Biological Sequence Comparison

7.4.1 Motivation

The family of approximation algorithms presented in Chapters 4 and 5 with di�erent
approximations ratios was applied to the implementation of a biological problem
regarding the comparison of biological sequences with the performance ratio 3

2
.

Indeed, once a new biological sequence is discovered, its functional/structural
characteristics must be established. In order to do that, the newly discovered sequence
is compared against other sequences, looking for similarities. Sequence comparison is,
therefore, one of the most crucial operations in Bioinformatics [68].
The most accurate algorithm to execute pairwise comparisons is the one proposed by
Smith-Waterman (denoted by SW in short) [79], which is based on dynamic
programming and run in quadratic time and space complexity in the length of the
sequences. This can easily lead to very large execution times and huge memory
requirements, since the size of biological databases is growing exponentially. Parallel
implementations can be used to compute results faster, reducing signi�cantly the time
needed to obtain results with the SW algorithm. GPUs have been explored to speed-up
the SW algorithm [23,51,61].

7.4. AN APPLICATION TO BIOLOGICAL SEQUENCE COMPARISON 125

In [52], a new implementation of the Smith-Waterman algorithm, SWDUAL, on hybrid
platforms composed of multiple processors and multiple GPUs, is proposed, with the
scheduling of the calculations based on the 3

2
-approximation scheduling algorithm

derived from the algorithms presented in Chapters 4 and 5.
Given a set of query sequences and a biological database, the strategy uses a one round
master-slave approach to assign tasks to the processing elements according to the dual
approximation scheduling algorithm.
First, a word on the sequence comparison problem and the classical SW algorithm.

7.4.2 Biological Sequence Comparison and Smith-Waterman Algorithm

A biological sequence is a structure composed of nucleic acids or proteins. It is
represented by an ordered list of residues, which are nucleotide bases (for DNA or RNA
sequences) or amino acids (for protein sequences). DNA and RNA sequences are treated
as strings composed of elements of the alphabets

∑
= {A, T,G,C} and∑

= {A,U,G,C}, respectively. Protein sequences are also treated as strings which
elements belong to an alphabet with, normally, 20 amino acids.
Since two biological sequences are rarely identical, the sequence comparison problem
corresponds to approximate pattern matching. To compare two sequences, a good
alignment between each other should be determined. This corresponds to placing one
sequence above the other, making clear the correspondence between similar
characters [68], creating two columns of two bases. Furthermore, in an alignment, some
gaps (space characters) can be inserted in arbitrary locations such that the sequences
end up with the same size. Given an alignment between sequences s and t, a score is
associated to it as follows. For each two bases in the same column:

• a punctuation ma is associated if both characters are identical (match);

• a penalty mi, if the characters are di�erent (mismatch);

• a penalty g, if one of the characters is a gap.

The score is obtained by the addition of all these values. The maximal score is called
the similarity between the sequences. Figure 7.8 presents one possible global alignment
between two DNA sequences and its associated score. In this example, ma = +1,
mi = −1 and g = −2.

A C T T G T C C G
A − T T G T C A G

+1 −2 +1 +1 +1 +1 +1 −1 +1︸ ︷︷ ︸
score = 4

Figure 7.8: Example of an alignment and score

126 CHAPTER 7. EXPERIMENTS

Smith-Waterman (SW) Algorithm

The SW algorithm [79] is an exact method based on dynamic programming to obtain
the optimal pairwise local alignment in quadratic time and space in the length of the
sequences.
The �rst phase of the SW algorithm starts by two input sequences s and t, with |s| = m
and |t| = n, where |s| is the size of sequence s. The similarity matrix is denoted by
Hm+1,n+1, where Hi,j contains the score between pre�xes s[1..i] and t[1..j]. At the
beginning, the �rst row and column are �lled with zeros. The remaining elements of H
are obtained from Equation (7.1). In addition, each cell Hi,j contains the information
about the cell that was used to produce the value. Si,j is a similarity score for the
elements i and j

Hi,j = max


Hi−1,j−1 + Si,j
Hi,j−1+g

Hi−1,j+g

0

(7.1)

The SW algorithm assigns a constant cost to gaps. Nevertheless, in nature, gaps tend to
appear in groups. For this reason, a higher penalty is usually associated to the �rst gap
and a lower penalty is given to the following ones (this is known as the a�ne-gap
model). Gotoh [36] proposed an algorithm based on SW that implements the a�ne-gap
model by calculating three dynamic programming matrices, namely H, E and F , where
E and F keep track of gaps in each of the sequences. The gap penalties for starting and
extending a gap are Gs and Ge, respectively. These recursion formulas are given by the
following equations:

Hi,j = max


Hi−1,j−1 + Si,j
Ei,j

Fi,j
0

Ei,j = −Ge + max

{
Ei,j−1

Hi,j−1 −Gs

Fi,j = −Ge + max

{
Fi−1,j

Hi−1,j −Gs

To parallelize the SW algorithm, the SWDUAL implementation uses a combination of
classical parallelization approaches (see [52] for more details). Each of the platform
computing processors compares one query sequence to one database sequence, in a more
or less parallelized way depending on the type of processor used for the comparison. At
the same time, other computing processors compare other sequences of the query set to
the database in the same way.

7.4. AN APPLICATION TO BIOLOGICAL SEQUENCE COMPARISON 127

7.4.3 SWDUAL implementation

In SWDUAL, the problem is to determine an allocation of the tasks to the computing
CPUs and GPUs that minimizes the global completion time, i.e. the makespan. A
master CPU uses the approximation algorithm from the family of algorithms described
in Chapter 5 with a performance ratio of 3

2
to schedule tasks to the computing

processors, CPUs and GPUs. Each task is equivalent to the comparison of one sequence
of a query set to a sequence of a database, i.e. a pairwise comparison. Additionally, all
the sequences sizes are known beforehand, which simpli�es the memory allocation
process. This 3

2
-approximation algorithm has a time complexity in O (n2mk2) per step

of the binary search, where n corresponds to the number of tasks to schedule, m and k
are respectively the number of CPUs and GPUs available on the platform to execute the
sequence comparisons.
This time complexity is important, but it can be lowered with special instances where
all the considered tasks are accelerated when assigned to a GPU, which is the case for
the sequence comparison problem addressed here. With the algorithm for this special
case (see Chapter 6, Section 6.1), the time complexity reduces to O(mn log(n)), which is
satisfactory for real implementations.

7.4.4 Experimental Results

The 3
2
-approximation scheduling algorithm was implemented in C++ with SSE

extensions and CUDA. The SWDUAL strategy was implemented in C with SSE
extensions and CUDA, and it integrates techniques from the classical SW methods
CUDASW++ 2.0 [61] and SWIPE [73] into the code. This code was compiled with the
CUDA SDK 4.2.9 and gcc 4.5.2. The operating system used was Linux 3.0.0-15 Ubuntu
64 bits. The tests were conducted with 40 real query sequences of minimum size 100 and
maximum size 5,000 amino acids, which were compared to 5 real genomic databases:
Uniprot with 537,505 sequences (www.uniprot.org), Enbembl (www.ensembl.org) Dog
with 25,160 sequences and Rat with 32,971 sequences and RefSeq
(www.ncbi.nlm.nih.gov/RefSeq) Human with 34,705 sequences and Mouse 29,437
sequences.
The tests were executed in the Idgraf high performance computer located at Inria
Grenoble. It contains 2 Intel Xeon 2.67GHz processors with 6 cores each (i.e. 12 CPUs
in total), 74GB of RAM and 8 Nvidia Tesla C2050 GPUs.

Remark 7.4.1. We can note that even if 12 CPUs are available on the Idgraf platform,
they cannot be all used for comparing sequences. Indeed, each GPU used for
computations needs to be controlled by a CPU dedicated to this speci�c task, meaning
for instance that if all the Idgraf GPUs are used to compare sequences, only 4 CPUs
remain available for performing computations, leading to a total number of 12
processors available for calculations.

The Idgraf machine was reserved for exclusive use for the duration of the test to ensure
that no other major process was running concurrently. All the sequences used were

128 CHAPTER 7. EXPERIMENTS

available locally to minimize the in�uence of the network and �le reading time. All
combinations of programs, number of processors, query and database sequences were
executed twenty-�ve times and the average total wall-clock execution time was recorded.
Also, processor a�nity was used to ensure that each process stayed in the same
processor during the whole execution.

7.4.4.1 Comparison to other implementations

Table 7.5 shows the state-of-the-art implementations that were compared to SWDUAL,
as well as their version number and command line options. For the commands, the
variables were T for the number of threads, Q query sequence and D database sequence.

Table 7.5: Applications included in the comparison.

Application Version Command line

SWIPE 1.0 ./swipe -a $T -i $Q -d $D

STRIPED ./striped -T $T $Q $D

SWPS3 20080605 ./swps3 -j $T $Q $D

CUDASW++ 2.0 ./cudasw -use_gpus $T -query $Q -db $D

The SWDUAL implementation was compared against SWIPE, STRIPED, SWPS3 and
CUDASW++.
SWIPE [73] was written mostly in C++ with some parts hand coded in assembly. It
was compiled using the provided Make�le. The source code for the Farrar's STRIPED
implementation of the SW algorithm [28] was compiled using the provided Make�le. It
was written mainly in C with some parts also coded in assembly or Intel intrinsics.
SWPS3 [82] was downloaded from the author's website and was written in C. It was
compiled using the provided Make�le. CUDASW++ 2.0 [61] was also downloaded from
the author's website and was written in C++ and CUDA. It was compiled using the
provided Make�le. CUDA 4.1 was used in the compilation.
The tests were conducted using the UniProt database (www.uniprot.org) and 40 query
sequences taken from it. Also, were used in this test up to four CPUs and four GPUs.
For that reason the considered applications were executed with up to four processors,
while SWDUAL, that uses both types of processors, CPUs and GPUs, was executed
with a number of processors between two and eight: we start with one GPU and one
CPU, then add one processor, alternating between types, starting with a GPU (i.e.
three processors means two GPUs and one CPU).
The SWDUAL implementation was able to signi�cantly reduce the execution time of the
sequence database searches using the Smith-Waterman algorithm compared to earlier
proposals that use only CPUs, i.e. SWPS3, STRIPED and SWIPE, as it can be seen on
Figure 7.9 and Table 7.6. When executing with two processors, SWDUAL showed a
reduction of 54.7%, 85% and 98% when compared to the same execution on SWIPE,

7.4. AN APPLICATION TO BIOLOGICAL SEQUENCE COMPARISON 129

STRIPED and SWPS3, respectively. When executing with four processors, a reduction
of 55.3% was obtained when compared to the execution on SWIPE, 73.5% when
compared to STRIPED and 98.6% on SWPS3.

Application
Number of processors

1 2 3 4

SWPS3 69208.2 36174.09 25206.563 18904.31

STRIPED 7190 3615.38 1369.33 1027.28

SWIPE 2367.24 1199.47 816.61 610.23

CUDASW++ 785.26 445.611 350.09 292.157

SWDUAL 543.28 472.84 271.98

Application
Number of processors

5 6 7 8

SWDUAL 266.69 239.04 183.12 142.98

Table 7.6: Execution times (s) for the compared implementations.

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Number of workers

SWPS3 (CPU)
STRIPED (CPU)

SWIPE (CPU)
CUDASW++ (GPU)

SWDUAL (Mixed)

Figure 7.9: Execution times in seconds for the compared implementations.

The case of CUDASW++ is di�erent. This classical implementation is designed to run
on GPUs only, and when compared to SWDUAL using up to four processors, the
execution times are comparable. This can be explained by the fact that CUDASW++ is
the implementation we used to program the sequence comparison on GPU in SWDUAL.
However, we can note that the hybrid implementation SWDUAL allow us to use more
processors to perform the computations, and for the same number of computing

130 CHAPTER 7. EXPERIMENTS

processors, SWDUAL actually uses less processors than CUDASW++: indeed, when
CUDASW++ works on four GPUs, four CPUs are also working to control the GPUs,
meaning a total of eight processors, whereas SWDUAL only uses two CPUs and two
GPUs for the computations, and only two CPUs to control the GPUs, meaning only six
processors in total.

7.4.4.2 Comparison to 5 genomic databases

In this case, the tests were conducted with 40 real query sequences of minimum size 100
and maximum size 5,000 amino acids, which were compared to 5 real genomic
databases, listed in Table 7.7.

Database
Number of Smallest Longest

database seqs query seq query seq

Ensembl Dog Proteins 25,160 100 4,996

Ensembl Rat Proteins 32,971 100 4,992

RefSeq Human Proteins 34,705 100 4,981

RefSeq Mouse Proteins 29,437 100 5,000

UniProt 537,505 100 4,998

Table 7.7: Genomic Databases used on the tests.

In order to measure the bene�ts of using a hybrid platform, the wall-clock execution
time and GCUPs (billion cell updates per second) obtained were measured when
comparing 40 query sequences to the �ve genomic databases.

Nb CPUs/ Nb GPUs 1/1 2/2 4/4 4/8

Database
Time (s) Time (s) Time (s) Time (s)
GCUPS GCUPS GCUPS GCUPS

Ensembl Dog
78.36 39.63 20.45 12.87
18.91 37.39 72.45 115.13

Ensembl Rat
75.85 37.97 20.17 12.86
22.97 45.89 86.38 135.48

RefSeq Mouse
84.40 46.25 23.59 14.99
18.99 34.66 67.95 106.93

RefSeq Human
95.09 48.01 24.82 15.40
20.70 41.00 79.31 127.82

Uniprot
543.28 271.98 142.98 86.16
35.81 71.53 136.06 225.78

Table 7.8: Results running on CPUs and GPUs.

As can be seen on Table 7.8, SWDUAL was able to obtain good speedups while

7.5. SUMMARY 131

combining CPUs and GPUs, reducing the execution time repeatedly while adding
processing elements. For the Uniprot database the execution time was reduced from 543
seconds (approximately 10 minutes) to 86 seconds when executing on four CPUs and
eight GPUs. Figure 7.10 shows the execution times obtained when comparing the
databases.

 10

 100

 1000

 2 3 4 5 6 7 8

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Number of workers

Ensembl Dog
Ensembl Rat

RefSeq Human
RefSeq Mouse

Uniprot

Figure 7.10: Execution times for the compared databases with SWDUAL.

7.4.4.3 Comparison of homogeneous and heterogeneous sets

For this test, two additional query sets were created from the Uniprot database. Each
query set have, like in the previous tests, 40 sequences. In this case, the sequences in the
homogeneous set range in size from 4500 to 5000 and the ones in the heterogeneous set
have sizes between 4 (the smallest sequence in the database) and 35213 (the largest
sequence in the database).
The idea is to verify that the allocation strategy and the application as a whole is
equally able to work with sequences, and therefore tasks, that are similar in terms of
size as well as tasks with very di�erent sizes.
Table 7.9 shows the execution times and the GCUPs obtained when comparing these
two sets to the UniProt database. In this case, SWDUAL was able to achieve good
performance on both sets. Figure 7.11 also shows the results obtained in these
comparisons.

7.5 Summary

In this chapter we presented the di�erent experiments that were conducted in order to
practically validate some of the algorithms presented in Chapters 4, 5 and 6. The

132 CHAPTER 7. EXPERIMENTS

Nb CPUs/ Nb GPUs 1/1 2/2 4/4 4/8

Sets
Time (s) Time (s) Time (s) Time (s)
GCUPS GCUPS GCUPS GCUPS

Heterogeneous
3554.36 1785.73 908.45 528.26
37.55 74.74 146.92 252.67

Homogeneous
998.27 484.74 249.69 138.38
36.3 74.76 145.14 261.9

Table 7.9: Results running the homogeneous and the heterogeneous sets for SWDUAL.

 100

 1000

 10000

 2 3 4 5 6 7 8

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Number of workers

Heterogeneous set
Homogeneous set

Figure 7.11: Execution times for the heterogeneous and homogeneous sets for SWDUAL.

experiments ranged from simulations on instances generated with random values to an
actual implementation on a run-time and an application of our scheduling method to
biological sequence comparison. Overall these experiments, the performance ratios of all
the algorithms developed in this work were experimentally validated, and the dual
approximation technique allowed good local mapping to minimize memory transfers, a
point that can be crucial when performing calculations on GPUs. The time complexity
of the algorithms with small approximation ratios may be too high for a generic use on a
large-scale computing platform, however it may be of interest for some users who have
very long calculations to schedule, for whom a mistake in the scheduling may result in
an important delay in the acquisition of their results.

Chapter 8

Minimizing the Makespan with

Dependent Sequential Tasks

In Chapters 4 to 6, we studied various instances of the problem of scheduling
independent tasks on CPUs and GPUs with minimum makespan. However, it can
happen that some tasks need the results of the execution of other tasks to start their
processing. In that case, these tasks cannot be executed before the tasks whose results
they need have �nished their processing. The problem of interest in this chapter is the
problem of scheduling dependent tasks on hybrid platforms.

8.1 Problem De�nition

We consider again a multi-core parallel platform with m identical CPUs and k identical
GPUs. An application is here composed of n sequential non-preemptive tasks denoted
by T = {T1, . . . , Tn}, linked by precedence constraints. Let G = (V,E) be a directed
acyclic graph, where V = {1, . . . , n} represents the set of sequential tasks, and
E ⊆ V × V represents the set of precedence constraints among the tasks. If there is an
arc (i, j) ∈ E, then task Tj cannot be processed before the completion of task Ti. Task
Ti is called a predecessor of Tj, while Tj is called a successor of Ti. We denote by Γ−(j)
(resp. Γ+(j)) the sets of the predecessors (resp. successors) of Tj. If a task has no
predecessor, it is assigned a �ctive predecessor T0 which completes its execution at time
0. As in previous chapters, each sequential task has two processing times depending on
which type of processor it is assigned to, pj if Tj is processed on a CPU and pj if it is
processed on a GPU. We still assume that both processing times of a task are known in
advance, or at least can be estimated at compile time. We will compute for each task Tj
an associated completion time Cj and a starting time tj. Again, we denote by C (resp.
G) the sets of tasks assigned to the CPUs (resp. GPUs).
With the notations introduced in Chapter 3, we denote by (Pm,Pk)|prec | Cmax the
considered problem with m CPUs and k GPUs with dependent tasks. This scheduling
problem is clearly more di�cult to solve than its counterpart without precedence

133

134CHAPTER 8. MINIMIZING THEMAKESPANWITH DEPENDENT SEQUENTIAL TASKS

constraints, (Pm,Pk) || Cmax, which is already NP-hard, therefore problem
(Pm,Pk)|prec | Cmax is also NP-hard and we look for e�cient approximation
algorithms for this problem.
Since we only studied independent tasks in previous chapters of this work, we start with
some related work on the subject on tasks linked by precedence constraints before diving
into the heart of the matter.

8.2 Related Work

The problem considered here is more complex than the problem of scheduling tasks with
precedence constraints on uniform machines, Q | prec | Cmax according to the classical
scheduling notation [39] but easier than the same problem with unrelated machines,
R | prec | Cmax. There are very few results concerning the problem of scheduling tasks
linked by precedence constraints on unrelated machines.
Chudak and Shmoys [20] developed a polynomial-time approximation algorithm for
Q | prec | Cmax with worst-case performance guarantee O (logm), where m is the total
number of machines. Chekuri and Bender [17] gave another polynomial-time
approximation algorithm with the same order of worst-case performance. They also
proved that for the special case where the precedence graph of the problem is only
constituted by chains of tasks, Q | chain | Cmax, their algorithm is a 6-approximation
algorithm. Woeginger [90] presented a 2-approximation algorithm for the same problem,
based on a transformation of an instance of Q | chain | Cmax into other instances
considered from the same problem without precedence constraints, Q || Cmax and the
one without precedence constraints but with preemptions, Q | pmtn | Cmax and the
comparison of the respective optimal makespans.
When the tasks are considered malleable and the processors are all identical, i.e.
problem P | mal, prec | Cmax, Lepere et al. [58] developed an algorithm with an
approximation ratio of

(
2 +
√

5
)
∼ 5.23606. Jansen et al. [50] later improved this ratio

to 100/62 + 100
(√

6469 + 13
)
/5481 ∼ 3.291919.

8.3 Approximation Algorithm

8.3.1 Preliminaries

It has been shown [81] that it is NP-hard to approximate the scheduling problem
P | prec | Cmax within a factor strictly less than 2− ε, even in the case of unit processing
times, making Graham's list scheduling algorithm [38] the best possible approximation
approach, with a ratio of 2− 1

m
, m being the number of identical processors considered.

In the list scheduling paradigm, the set of tasks that are ready to be executed, i.e. the
tasks whose predecessors have �nished their processing, are kept in a priority list. When
a computing resource becomes available, the task with the highest priority, and the
earliest starting time, is scheduled on this resource. If no priority is speci�ed, the tie is

8.3. APPROXIMATION ALGORITHM 135

broken randomly. If the processors of problem (Pm,Pk) | prec | Cmax were all identical,
the ratio of the list scheduling algorithm for problem P (m+ k) | prec | Cmax would be
2− 1

m+k
. The idea of the proof providing this ratio is based on the expression of the

makespan of the resulting schedule: the Graham's bound has two consecutive terms,
cumulative in the worst case, representing the critical path and the workload on the

processors: Cmax = 1
m+k

(
n∑
l=1

pl +
∑
φ idle

pφ

)
, where φ represents a dummy task

representing one idle time in the schedule, and pφ the corresponding �ctive processing
time, representing the time a given processor remains idle. These two sums are bounded
separately, and the sum of their upper bounds provides the expected ratio. In the list
scheduling algorithm, a computing resource is never idle if one of the remaining tasks
could be started on the resource at that time. This is the key point to achieve
guaranteed performance ratio, even in the case of multiple resource constraints [32].
However, the use of the same strategy in a hybrid system, leads to a large value of the
worst case performance ratio, even when there are no precedence constraints. Another
technique has to be used.
If the acceleration ratios de�ned as pj

pj
= qj were identical for all the tasks considered in

(Pm,Pk) | prec | Cmax, then the problem would reduce to Q(m+ k) | prec | Cmax. Liu
and Liu [60] have shown that, when unforced idleness or preemption is allowed, the ratio
of the makespan given by a list scheduling algorithm over the optimal makespan with
unforced idleness is lower than 1 + maxi{qi}

mini{qi} −
maxi{qi}∑

i qi
and then the same inequality is

valid for the ratio of the makespan obtained with a list scheduling algorithm and the
optimal makespan with preemptions allowed.

8.3.2 Principle of the algorithm

We propose a two-phase approximation algorithm, aiming for a ratio of 6. In the �rst
phase of the approximation algorithm, we solve an assignment problem. The goal of this
assignment problem is to �nd an assignment α : V → {C,G} deciding the type of
processor (CPU or GPU) assigned to execute the tasks such that the makespan is
minimized while the precedence constraints are satis�ed. We solve the linear relaxation
of this problem. The fractional solution of this linear program is then rounded to a
feasible solution to the assignment problem. In the second phase, we apply a variant of
list scheduling algorithm to generate a feasible schedule.

8.3.3 Linear Program

In the �rst phase, we develop a linear program. By rounding its fractional solution with
a parameter M = 2, we are able to obtain a feasible assignment for the tasks such that
each task Tj is assigned to either a CPU or a GPU. We introduce the binary variable xj
representing the assignment of task Tj:

136CHAPTER 8. MINIMIZING THEMAKESPANWITH DEPENDENT SEQUENTIAL TASKS

xj =

{
1 if Tj is assigned to a CPU

0 otherwise

In any schedule, we know that the makespan is an upper bound of the critical path
length L and the total works (i.e. the computational areas) on CPUs and GPUs divided
by their respective number of processors, WC

m
and WG

k
respectively, i.e.

max
{
L, WC

m
, WG

k

}
6 Cmax. In the �rst phase of the algorithm, the assignment problem

to solve consists in the following problem (P):

min C

s.t. Ci + pjxj + pj (1− xj) 6 Cj, ∀i ∈ Γ−(j),∀j (8.1)

0 6 Cj 6 C ∀j (8.2)

(P)
n∑
j=1

pjxj 6 mC (8.3)

n∑
j=1

pj (1− xj) 6 kC (8.4)

xj ∈ {0, 1} ∀j (8.5)

Constraints (8.1) are the precedence constraints. They impose that the predecessors of
each task must be completed before its execution. Constraints (8.2) indicates that the
completion time of every task is bounded by the makespan. The goal is to minimize the
makespan C. Constraints (8.3) and (8.4) ensure that the computational areas on CPUs
and GPUs do not exceed the makespan. Finally, Constraints (8.5) are the integrity
constraints. The variables of (P) are xj and Cj for j = 1, . . . , n.
In order to have an easier problem, we relax Constraints (8.5) and allow any task to be
assigned fractionally to a CPU and the rest to a GPU. This means that xj ∈ [0, 1]. The
new problem (PR) is as follows:

min C

s.t. Ci + pjxj + pj (1− xj) 6 Cj, ∀i ∈ Γ−(j),∀j (8.6)

Cj 6 C ∀j (8.7)

(PR)
n∑
j=1

pjxj 6 mC (8.8)

n∑
j=1

pj (1− xj) 6 kC (8.9)

xj ∈ [0, 1] ∀j (8.10)

8.3. APPROXIMATION ALGORITHM 137

We denote by xRj the assignment of task Tj in an optimal solution of the linear program
(PR). The corresponding assignment of all the tasks is denoted by αR for the optimal
solution of (PR). If xRj is an integer, it is a feasible assignment for scheduling task Tj in
problem (P), otherwise, it has to be rounded to either 0 or 1. We apply the following
rounding strategy to create another assignment denoted by xAj for Tj: if xRj > 1

M
, where

M is a real number greater than 1, xRj will be rounded up to xAj = 1, otherwise it will be
rounded down to xAj = 0. The optimal value of M for our problem is M = 2. The
explanation of this choice will be given in Lemma 8.4.2. Here the total assignment of
this solution is denoted by αA. With this new assignment, the completion times CR

j of
all tasks Tj are not accurate anymore. In order to obtain a feasible schedule, the new
completion times CA

j are determined by the scheduling algorithm described in the
following section, leading to a new value of the makespan.

8.3.4 Scheduling Algorithm

With the previous assignment αA determined by the rounding of the solution αR of (PR)
presented in the previous section, we schedule the tasks according to the following
algorithm. We obtain a feasible schedule SA for problem (Pm,Pk) | prec | Cmax.

Algorithm 8.3.1.

1. Compute assignment αR by solving (PR).

2. Compute a feasible assignment αA by rounding αR.

3. Build a feasible schedule SA according to αA.

• SA ← ∅;
• While SA 6= T do

� R←
{
Tj | Γ−(j) ⊆ SA

}
;

� Compute the earliest possible starting time for all tasks in R with respect
to the precedence constraints according to αA;

� Schedule the task Tj ∈ R with the smallest possible starting time;

� SA = SA ∪ {Tj};

The algorithm is composed of three steps. The �rst one is the resolution of the
previously mentioned linear program (PR), implying a polynomial time complexity
B(n,m, k). The second step can be done in linear time, and the third step consists in
the scheduling algorithm of the assignment determined in the previous steps. This last
step corresponds to a classical list scheduling algorithm. This can be executed in O(n2),
since the determination of the set R and the computations of the starting times of the
tasks in R can be done in linear time for each iteration. Therefore, the algorithm has an
overall polynomial time complexity in O (B(n,m, k) + n2).

138CHAPTER 8. MINIMIZING THEMAKESPANWITH DEPENDENT SEQUENTIAL TASKS

8.4 Analysis of the Algorithm

We shall determine the approximation ratio of Algorithm 8.3.1. We denote by LA, WA
C ,

WA
G and CA

max respectively the critical path length, the total works on CPUs and GPUs
and the makespan of the �nal schedule SA provided by Algorithm 8.3.1. Furthermore,
we denote by CR

max the optimal objective value of the linear program (PR), and LR, WR
C ,

WR
G respectively the (fractional) critical path length and the (fractional) works on CPUs

and GPUs in the optimal solution of the linear program (PR). We denote by C∗max the
optimal makespan (over all feasible schedules with integral number of processors
assigned to all tasks), of the optimal solution of (P).

8.4.1 Properties resulting from the rounding phase

Let start by the following straightforward lower bounds:

max

{
LR,

WR
C

m
,
WR
G

k

}
6 CR

max 6 C∗max.

Lemma 8.4.1. For any task Tj, in the assignment αA derived from the rounding of the
solution αR of the linear program (PR), its processing time satis�es the following
inequalities:

pjx
A
j 6 2pjx

R
j , pj

(
1− xAj

)
6 2pj

(
1− xRj

)
.

Proof. The two inequalities correspond to the two possible values for xAj .

• Suppose that xAj = 1. According to the rounding rule, this means that xRj > 1
2
, so

that pjxRj > 1
2
pj, leading to pj 6 2pjx

R
j , which is the �rst inequality of the lemma,

since xAj = 1.

• If now xAj = 0, then we have, according to the rounding rule, −xRj > −1
2
, so(

1− xRj
)
pj >

(
1− 1

2

)
pj, which becomes 2

(
1− xRj

)
pj > pj

(
1− xAj

)
, since xAj = 0,

which is the second inequality of the lemma.

Lemma 8.4.2. The best value for the rounding strategy parameter M is 2 for a
makespan minimization.

Proof. If we look closely at the proof of the previous lemma, we can see why the
rounding strategy parameter M was chosen equal to 2. Indeed, with an arbitrary value
for M , the �rst inequality of the lemma becomes pjxAj 6Mpjx

R
j , and the second one is

pj
(
1− xAj

)
6
(
1 + 1

M−1

)
pj
(
1− xRj

)
since in that case we have 1− xRj > 1− 1

M
i.e

pj <
1

1− 1
m

(
1− xRj

)
. The functions f(x) = x and g(x) = 1 + 1

x
have opposite variations,

so the best value for x in our case is when f(x) = g(x) i.e. 1 + 1
x−1 = x. This equation

8.4. ANALYSIS OF THE ALGORITHM 139

has one non-zero solution which is x = 2. This explains why the rounding parameter is
chosen equal to 2. That way, the loads on the two types of processors are somewhat
balanced.

We have an immediate corollary to Lemma 8.4.1:

Lemma 8.4.3.
WA
C 6 2mC∗max, WA

G 6 2kC∗max.

Proof. We write down the de�nition of the work on CPUs:

WA
C =

∑
xAj =1

pj =
∑
xRj >

1
2

pj

6
∑
xRj >

1
2

2pjx
R
j

6 2WR
C 6 2mC∗max

Similarly, we can write the de�nition of the work on GPUs:

WA
G =

∑
xAj =0

pj 6
∑
xRj <

1
2

2pjx
R
j 6 2WR

G 6 2kC∗max.

8.4.2 A closer look at the schedule

In this section, we focus more on the structure of the schedule SA built by the previous
algorithm.

Time Interval Types. The time interval [0, CA
max] of schedule S

A can be divided into
two subsets T2 and T1 (see Figure 8.1) de�ned as follows:

• T2 =
{
t ∈ [0, CA

max] | at least one CPU and one GPU are idle at time t
}
.

• T1 = [0, CA
max]\T2.

If we look more closely at subset T1, we note that at every time t ∈ T1, either all the
CPUs are busy at time t, or all the GPUs are busy at time t. We note T C1 (resp. T G1)
the subset of T1 where all the CPUs (resp. GPUs) are busy all the time (see Figure 8.1).
The number of unitary time slots of type Ti is denoted by |Ti| for i ∈ {1, 2}.

Lemma 8.4.4.
|T1| 6 4C∗max.

140CHAPTER 8. MINIMIZING THEMAKESPANWITH DEPENDENT SEQUENTIAL TASKS

�����������
�����������
�����������

�����������
�����������
�����������

�����
�����
�����

�����
�����
����� �����

�����
�����
�����

�����
�����
�����
�����

1

2

3 4

5 6 7

8

9 10

11

T C1

T G1

T2

(a) A schedule

6

1

2

8

9

5

3

7

4

10

11

(b) The corresponding prece-
dence graph

Figure 8.1: An illustration of the di�erent types of time intervals.

Proof. Since all the CPUs (resp. GPUs) are busy at any time t of T C1 (resp. T G1), we
have the following inequalities:

∣∣T C1 ∣∣ 6 WA
C

m
,

∣∣T G1 ∣∣ 6 WA
G

k
.

By combining these two inequalities, we get |T1| 6 WA
C

m
+

WA
G

k
, and we know from

Lemma 8.4.3 that WA
C

m
6 2C∗max and

WA
G

k
6 2C∗max, so we obtain:

|T1| 6 4C∗max.

Construction of a Directed Path. In order to estimate the length of the critical path
of the �nal schedule SA, we can construct a directed path P of tasks executed during
the time slots in T2, where at least one CPU and one GPU are idle. The last task in the
path P is any task Tj1 that completes at time CA

max, the makespan of SA.
As we have de�ned the last i > 1 tasks Tji → Tji−1

→ · · · → Tj2 → Tj1 on the path P ,
we can determine the next task Tji+1

as follows: consider the latest time slot t in T2 that
is before the starting time of task Tji in the �nal schedule. Let V ′ be the set of task Tji
and its predecessor tasks that start after time t in the schedule. Since during time slot t
at most m− 1 CPUs and k − 1 GPUs are busy, no task in V ′ is ready for execution
during the time slot t. Therefore for every task in V ′ a predecessor is being executed
during the time slot t. Then we select any predecessor of task Tji that is running during
time slot t as the next task Tji+1

on the path P . This search procedure stops when P
contains a task that starts before any time slot in T2.

Lemma 8.4.5.
|T2| 6 2C∗max.

8.5. A MORE ACCURATE MODEL FOR COMMUNICATIONS 141

Proof. We examine the stretch of processing time for all tasks in P in the rounding
procedure of the �rst phase. For any task Tj in P processed during any time slot in T2,
the processing time of the fractional solution to the linear program (PR) increases by at
most a factor 2. The processing time does not change in the second phase as Tj is
assigned to the type of processors determined in the �rst phase. Therefore, for such kind

of tasks we have pjxAj + pj
(
1− xAj

)
6 2

(
pjx

R
j + pj

(
1− xRj

))
by combining the two

inequalities from Lemma 8.4.1.
By construction, the directed path P covers all time slots in T2 in the �nal schedule. In
addition , because of Lemma 8.4.1, the tasks processed in T2 in the �nal schedule
contribute a total length of at least 1

2
|T2| to LR(P), the length of the critical path P in

the fractional solution of the linear program (PR). Since the critical path LR(P) is not
more than the makespan CR

max, and that CR
max 6 C∗max since the optimal solution of (P)

is a solution of (PR), we have proved the claimed inequality.

By combining the two inequalities on the subsets forming [0, CA
max], we obtain the

following bound on the makespan of the �nal schedule SA:

Theorem 8.4.6. The makespan of the schedule SA delivered by our algorithm is
bounded as follows:

CA
max 6 6C∗max.

Now that we have an approximation algorithm for the problem of scheduling dependent
sequential tasks on CPUs and GPUs, we can recall what we observed in Chapter 2
concerning the importance of data transfers on GPUs, since their local memory was
limited. While the tasks were considered independent in this work, the processing times
were arbitrary and therefore we could assume that communication times were taken into
account in these processing times. However, when the tasks are linked by precedence
constraints, such an assumption cannot be made anymore, and a more accurate model
taking into account these communications should be developed in order to be closer to
the reality of hybrid platform computing. Such a model was not developed in this work,
but we give below some perspectives we think are interesting to study further in the
future.

8.5 A More Accurate Model for Communications

Communications between CPUs and GPUs or even between GPUs themselves are
actually not without a cost, and sometimes the time delay created by these
communications is not negligible when compared to the very short processing times of a
GPU. Several models could be considered for integrating these communications into the
studied problems.

142CHAPTER 8. MINIMIZING THEMAKESPANWITH DEPENDENT SEQUENTIAL TASKS

One of these models consider the communication as a standard time delay that add up
to the processing time. According to previous notations, the processing time of a task Tj
on a GPU becomes pj =

pj
qj

+ βj, βj being the communication cost for the transfer of
data. However, that model seems to be a little over simplistic, especially when
considering that two tasks linked by precedence constraints and executed successively on
the same GPU do not have that need for a communication time. A less systematic
modeling of communications should be developed.
Another point to consider is that the GPU can at the same time process one task and
communicate with another processor at the same time. With this other model there are
again two possible con�gurations that are actually encountered on platforms: the �rst
one is that there can be one communication channel for each GPU, and a complete
communication/processing overlap is possible. However, sometimes there are hardware
restrictions and some GPU have to share a communication channel: the case of partial
communication/processing overlap has to be considered too. The simplest hypothesis
that can happen in reality would be to consider the situation with complete
communication/processing overlap.
It should also be noted that communications may not take the same amount of time
when transferring data from a CPU to a GPU and when transferring data from this
same GPU to the same CPU. Both ways should be considered separately.

Chapter 9

Conclusion

Synthesis

In this work, we presented and analyzed new algorithms for scheduling problems that
occur in modern hybrid platform architectures. Most of the new computing platforms
today are built with a hybrid structure constituted of multi-core CPUs coupled with
several GPU accelerators. Several new applications as for example DNA assembling
problem highly bene�t from these hybrid architectures. These platforms create a need
for generic scheduling algorithms on such heterogeneous systems. Some problems of
scheduling on CPUs and GPUs can be linked to existing problems in the scheduling
literature (Table 9.1 resumes these considered problems and the corresponding
algorithm ratios and time complexities). However, for some problems, such an analogy is
impossible.

Problem Corresponding problem Algorithm cost Section

(Pm,Pk) | qj = q, pj = 1 | Cmax Q | pj = 1 | Cmax O
(
(m+ k)2

)
3.2.1.2

(Qm,Qk) | qj = q, pj = 1 | Cmax
(Pm,Pk) | qj = q | Cmax Q || Cmax as Q || Cmax 3.2.2.1
(Qm,Qk) | qj = q | Cmax

(Pm,Pk) ||∑Cj R ||∑Cj O
(
n3
)

3.2.1.2
(Pm,Pk) | ppmtn |∑Cj

Table 9.1: Problems related to the classical ones and the corresponding algorithm costs.

We presented in this thesis original algorithms for these new scheduling problems on
hybrid architectures using a generic methodology (in the opposite of speci�c ad hoc
algorithms). We proposed several algorithms with constant approximation ratios in the
case of independent tasks with a reasonable time complexity, the �rst algorithms
combining performance guarantee and practical time complexity in this �eld of
scheduling. The main idea of the approach is to determine an adequate partition of the
set of tasks on the CPUs and the GPUs using a dual approximation scheme. We

143

144 CHAPTER 9. CONCLUSION

provided several algorithms with di�erent performance ratios for the case of problem
(Pm,Pk) || Cmax, that are summarized in the �rst lines of Table 9.2, so these families
can be used by the programmers to choose which algorithm represents for them the best
trade-o� between a good performance guarantee and a suitable time complexity. If the
time complexity is crucial (practical applications), the algorithm with a ratio of
2 = 2(q+1)

2q+1
when q = 0 is probably the best with a low lime complexity of O (n log n), but

the users can re�ne the performance by tuning parameter q, depending on the time
complexity they are willing to allow for the scheduler. We also dealt with the special
cases where all the tasks were accelerated when assigned to GPU, preemption was
allowed on the CPUs, or when the tasks were considered malleable when a�ected to the
CPUs.
The problem with dependent tasks was also studied in this work. We proposed a fast
algorithm with a constant approximation ratio of 6 in the case of dependent tasks on a
multi-core machines with GPUs, with precedence constraints being an arbitrary acyclic
graph. The main idea of the approach is to determine a fractional assignment of the
tasks to the CPUs and the GPUs via linear programming, round this fractional
assignment to an integer assignment which is used with a list scheduling algorithm.
Table 9.2 recapitulates the problems we studied and the di�erent approximation ratios
of the algorithms we developed along with their time complexities.
We also provided a simulation (based on realistic benchmarks) and experimental
analysis on a real run-time system (xKaapi) in order to assess the computational
e�ciency of some of the proposed methods. The main conclusion is that these
algorithms are stable because of their approximation guaranties, however, the high
running time is often dominated by the cost of the scheduling itself, leading to
ine�ciency if the size of tasks is too small. According to our experimental setting, the
algorithm with an approximation ratio equal to 2 was the best trade-o� for arbitrary
tasks. However, with long computations, we could argue that the scheduling time of an
algorithm with a better performance ratio would be negligible compared to the gain in
time on the schedule, because here the misplacement of one long task could have
catastrophic consequences on the overall makespan of the schedule.

145

P
ro
b
le
m

A
lg
or
it
h
m

op
ti
m
al
it
y
ra
ti
o

A
lg
or
it
h
m

co
st

S
ec
ti
on

(P
1,
P
1)
||
C
m
a
x

3 2
O
(n

lo
g
n
)

4.
1.
3

1
+
ε

F
P
T
A
S

2
O
(n

lo
g
n
)

4.
2.
3

(P
m
,P
k
)
||
C
m
a
x

4 3
+

1 3
k

O
(n2 m

2
k
3
)

4.
3,
4.
4

2
r
+
1

2
r

+
1

2
r
k
,
r
>

0
O
(n2 m

r
k
r
+
1
)

5
2
(r
+
1
)

2
r
+
1

+
1

(2
r
+
1
)k
,
r
>

0
O
(n2 m

r
+
1
k
r
+
2
)

(P
m
,P
k
)
|q
j
>

1
|C

m
a
x

3 2
O
(n

lo
g
n
)

6.
1

(P
m
,P

1)
|p
p
m
tn
|C

m
a
x

1
+

1 m
O
(n

lo
g
n
)

6.
2.
1

(P
m
,P

1)
|q
j
=
q,
p
p
m
tn
|C

m
a
x

1
+

1 q
O
(n

lo
g
n
)

1
+
m
ax
(1 m

,1
−

1 k

)
O
(n

lo
g
n
)

(P
m
,P
k
)
|p
p
m
tn
|C

m
a
x

1
+
m
ax
(1 m

,
1 2
r
+

1
2
r
k

) ,r
>

0
O
(n2 k

r
+
1
)

6.
2.
2

1
+
m
ax
(1 m

,
1

2
r
+
1
+

1
(2
r
+
1
)k

) ,
r
>

0
O
(n2 k

r
+
2
)

(P
m
,P
k
)
|m

a
ll
|C

m
a
x

3 2
O
(n

lo
g
n
)

6.
3

(P
m
,P
k
)
|p
re
c
|C

m
a
x

6
O
(n

lo
g
n
)

8

T
ab
le
9.
2:

P
ro
b
le
m
s
w
it
h
n
o
eq
u
iv
al
en
t
co
u
n
te
rp
ar
t
in

th
e
li
te
ra
tu
re

st
u
d
ie
d
in

th
is
w
or
k
.

146 CHAPTER 9. CONCLUSION

Perspectives

As we mentioned earlier, when a task is to be scheduled on a real life computing
platform, both its execution time on CPU and on GPU are only estimated by either the
user of the platform, or a program of the platform scheduler. However, depending on the
method of estimation, sometimes measurement uncertainty could be enough to greatly
a�ect the scheduling of the tasks. It would be interesting to test the robustness of the
presented algorithms to some perturbations in the estimations of the execution times of
the tasks.

In the dependent tasks problem we studied, we remained on a generic approach and
considered an arbitrary directed acyclic graph to represent the precedence constraints
linking the tasks of the instances. The resulting algorithm has a performance ratio of 6,
which is quite high. An interesting point to investigate further would be to study the
tightness of this performance ratio, or try to estimate a lower bound of the tight
performance ratio. An experimental analysis could provide good insight into the impact
of each phase of the algorithm on the resulting schedule, helping with the tightness
analysis. Because of the rounding phase and the list scheduling algorithm on top of it,
the ratio of 6 is probably not the tight bound, which may be around 3 or 4.
Another perspective for this work would be to re�ne our analysis of the dependent tasks
problem to more speci�c precedence constraints, such as chains of tasks, trees (in an
out) and see the improvements that could be made to the algorithm with these more
speci�c graphs.
On the subject of dependent tasks, the introduction of the malleable tasks model would
be an interesting perspective to study, since this model seems to take into account some
communications between tasks in the malleable property of the tasks. This would be a
�rst step to consider the problem of communications between tasks on di�erent types of
processors.

Communications constraints between the CPUs and the GPUs could also be added
explicitly to the problem, as stated in the previous chapter. As it was mentioned in
Chapter 2, even the geometry of large computing platforms has to be carefully planned
in order to minimize the cable lengths to reduce communications delays between
processors located far from each other. Since many technical problems can in�uence the
communications between CPUs and GPUs, maybe the malleable tasks model may not
provide enough �exibility to take into account the complex problem of communications
on hybrid platforms. A completely new model may be needed in order to fully represent
the material constraints on communications.

Another point that would be of interest is the consideration of other objectives for the
scheduling problem. In High Performance Computing, the main objective is usually to
execute the tasks as quickly as possible, as therefore the makespan was the obvious
choice for a �rst study of the problem of scheduling on hybrid architectures. However,
some platforms may allow users to assign priorities to the calculations they submit, or
these priorities may be assigned to the users according to some quota, for instance.

147

Some calculations may also have due dates assigned to them, and the objective could
become one of minimum lateness instead of minimum makespan.

The addition of the energy constraints required by the platform to the problem should
also be investigated. Large computing platforms require a lot of power, for their
calculations and for their cooling systems. It would be interesting to study the impact
that the di�erent architecture of the GPUs has on the power consumption of a platform,
and if the scheduling of the calculations could be adapted accordingly.

This work was started three years ago, and, in the meantime, the computing platforms
have evolved. We can wonder if the algorithms designed in this work are still valid for
the new generation of platforms being built right now. Given that the �rst and second
platforms in the Top500 list [83] are Tianhe-2 and Titan, respectively a platform with
hybrid processors and a platform with CPUs and GPUs, it is safe to say that GPUs are
not o� the market just yet, and so the algorithms of this work are not as well.
In addition of CPUs, Tianhe-2 has Xeon Phi accelerator chips instead of GPUs.
However, since we used a very generic model for the GPUs, with most of the time the
hypothesis that the processing times of the tasks when assigned on CPUs or on GPUs
are not related at all and are considered completely arbitrary, we could apply most of
the algorithms presented in this work to computing platforms using two types of
unrelated processors.
An extension of this work would be to see how far this adaptation could go. Another
processor with a new architecture to consider could be the MIC processor. Some
computing platforms may choose this type of processor, and we could see if the
algorithms of this work could be adapted to this new type of processor, or if new
algorithms are needed in this case.
It is important to keep in mind that the computing platforms of today tend to be more
and more heterogeneous, and therefore our work is the �rst generic method for the
ever-more complex �eld of scheduling on heterogeneous platforms.
The work started on the problem of scheduling on uniform CPUs and uniform GPUs
could be further extended in order to take into account no just di�erent models of GPUs,
but also the MIC processors and all the other processors used in these new platforms.

148 CHAPTER 9. CONCLUSION

Publications

Journals

• Concurrency and Computations: Practice and Experiments, Bleuse R.,
Kedad-Sidhoum S., Monna F., Mounié G., Trystram D., "Scheduling Independent
Tasks on Multi-Cores with GPU Accelerators".

• Pending: Algorithmica, Kedad-Sidhoum S., Monna F., Mounié G., Trystram D.,
"A family of scheduling algorithms for Hybrid parallel platforms".

• Pending: Discrete Applied Math, Blazewicz J., Kedad-Sidhoum S., Monna F.,
Mounié G., Trystram D., "A Study of Scheduling Problems with Preemptions on
Multi-Core Computers with GPU Accelerators".

Conferences

• Workshop New Challenges in Scheduling Theory 2012, Kedad-Sidhoum S., Monna
F., Mounié G., Trystram D., "Scheduling Independent Tasks on Heterogeneous
Platforms with GPUs", Fréjus, France.

• ECCO 2013, Blazewicz J., Kedad-Sidhoum S., Monna F., Mounié G., Trystram D.,
"Preemptive Scheduling with GPU", Paris, France.

• MAPSP 2013, Kedad-Sidhoum S., Monna F., Mounié G., Trystram D.,
"Scheduling on Multi-Cores with GPU", Pont-à-Mousson, France.

• HeteroPar 2013, Kedad-Sidhoum S., Monna F., Mounié G., Trystram D.,
"Scheduling Independent Tasks on Platforms with GPUs", Aachen, Germany.
Best paper award.

• ICCP 2014, Kedad-Sidhoum S., Mendonca F., Monna F., Mounie G., Trystram D.,
"Fast biological Sequence Comparison on Hybrid Platforms", Mineapolis, USA.

• Pending: IPDPS 2015, Bleuse R., Hunold S., Kedad-Sidhoum S., Monna F.,
Mounié G., Trystram D., "The Power of Heterogeneity: Scheduling Independent
Moldable Tasks on Multi-Cores with GPUs", Wroclaw, Poland.

149

150 CHAPTER 9. CONCLUSION

Bibliography

[1] E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief, S. Thibault, and
S. Tomov. QR factorization on a multicore node enhanced with multiple GPU
accelerators. In IEEE Int. Parallel & Distributed Processing Symposium (IPDPS),
2011.

[2] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief,
P. Luszczek, and S. Tomov. Numerical linear algebra on emerging architectures:
The PLASMA and MAGMA projects. Journal of Physics: Conference Series, 180,
2009.

[3] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: A uni�ed
platform for task scheduling on heterogeneous multicore architectures. Concurrency
and Computation: Practice and Experience, 23:187�198, 2011.

[4] D. Lyla B. The X86 Microprocessors: Architecture And Programming, 8086 to
Pentium. Pearson, 2010.

[5] B. S. Baker, E. G. Co�man, and R. L. Rivest. Orthogonal packings in two
dimensions. SIAM J. Comput., 9:846�855, 1980.

[6] C. Basaran and K.-D. Kang. Supporting preemptive task executions and memory
copies in GPGPUs. Euromicro Conference on Real-Time Systems (ECRTS), pages
287�296, July 2012.

[7] J. Blazewicz, M. Bryja, M. Figlerowicz, P. Gawron, M. Kasprzak, E. Kirton,
D. Platt, J. Przybytek, A. Swiercz, and L. Szajkowski. Whole genome assembly
from 454 sequencing output via modi�ed DNA graph concept. Computational
Biology and Chemistry, 33:224�230, 2009.

[8] J. Blazewicz, P. Formanowicz, F. Guinand, and M. Kasprzak. A heuristic managing
errors for dna sequencing. Bioinformatics, 18:652�660, 2002.

[9] R. Bleuse, T. Gautier, J. F. Lima, G. Mounié, and D. Trystram. Scheduling data
�ow program in xKaapi: A new a�nity-based algorithm for heterogeneous
architectures. In 20th International European Conference on Parallel Processing,
ARCoSS/LNCS, Porto, Portugal, Aug 2014. Springer. to appear.

151

152 BIBLIOGRAPHY

[10] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by
work stealing. J. ACM, 46(5):720�748, 1999.

[11] R. Bolze, F. Cappello, E. Caron, M. J. Daydé, F. Desprez, E. Jeannot, Y. Jégou,
S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst, P. Primet, B. Quétier,
O. Richard, E.-G. Talbi, and I. Touche. Grid'5000: A large scale and highly
recon�gurable experimental grid testbed. IJHPCA, 20(4):481�494, 2006.

[12] V. Bonifaci and A. Wiese. Scheduling unrelated machines of few di�erent types.
CoRR, abs/1205.0974, 2012.

[13] A. Boukerche, J. M. Correa, A. Melo, and R. P. Jacobi. A hardware accelerator for
the fast retrieval of dialign biological sequence alignments in linear space. IEEE
Transactions on Computers, 59:808�821, 2010.

[14] R. P. Brent. The parallel evaluations of general arithmetic expressions. J. ACM,
21:201�206, 1974.

[15] J. Bruno, E. G. Co�man, and R. Sethi. Scheduling independant tasks to reduce
mean �nishing time. Comm. ACM, 17:155�178, 1974.

[16] J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell, E. Ayguadé, and
J. Labarta. Productive programming of GPU clusters with OmpSs. In IPDPS,
pages 557�568. IEEE Computer Society, 2012.

[17] C. Chekuri and M. Bender. An e�cient approximation algorithm for minimizing
makespan on uniformly related machines. In Integer Programming and
Combinatorial Optimization (IPCO), 1998.

[18] L. Chen, D. Ye, and G. Zhang. Online scheduling on a CPU-GPU cluster. TAMC,
7876:1�9, 2013.

[19] S.-J. Chen, G.-H. Lin, P.-A. Hsiung, and Y.-H. Hu. Hardware software co-design of
a multimedia SOC platform. Springer, 2009.

[20] F. A. Chudak and D. B. Shmoys. Approximation algorithms for
precedence-constrained scheduling problems on parallel machines that run at
di�erent speeds. Journal of Algorithms, 30(2):323�343, February 1999.

[21] E. G. Co�man, M. R. Garey, D. S. Johnson, and R. E. Tarjan. Performance bounds
for level-oriented two-dimensional packing algorithms. SIAM J. Comput.,
9:808�826, 1980.

[22] R. W. Conway, W. L. Maxwell, and L. W. Miller. Theory of Scheduling.
Addison-Wesley, 1967.

BIBLIOGRAPHY 153

[23] E. F. de O Sandes and A. C. M. A. de Melo. Smith-Waterman alignment of huge
sequences with GPU in linear space. In Parallel & Distributed Processing
Symposium (IPDPS), 2011 IEEE International, pages 1199�1211, 2011.

[24] P.-F. Dutot, G. Mounié, and D. Trystram. Scheduling Parallel Tasks:
Approximation Algorithms. In Joseph T. Leung, editor, Handbook of Scheduling:
Algorithms, Models, and Performance Analysis, chapter 26, pages 26�1 � 26�24.
CRC Press, 2004.

[25] K. H. Ecker and R. Hirschberg. Task scheduling with restricted preemptions. Proc.
PARLE93 - Parallel Architectures and Langueges, Munich, 1993.

[26] L. Epstein and L. M. Favrholdt. Optimal non-preemptive semi-online scheduling on
two related machines. ACM Journal of Algorithms, 57(1):49�73, 2005.

[27] A.R. Ho�man et al. Supercomputers: directions in technology and applications.
National Academies, 1990.

[28] M. Farrar. Striped Smith-Waterman speeds database searches six times over other
SIMD implementations. Bioinformatics, 23(2):15�161, 2007.

[29] K. Fatahalian and M. Houston. A closer look at GPUs. Communication of the
ACM, 51:50�57, October 2008.

[30] D. Feitelson. Parallel workloads archive, 2010.

[31] D. K. Friesen. Tighter bounds for lpt scheduling on uniform processors. SIAM
Journal on Computing, 16(3):554�560, 1987.

[32] M. R. Garey and R. L. Graham. Bounds for multiprocessor scheduling with
resource constraints. SIAM Journal on Computing, 4:187�200, 1975.

[33] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[34] T. Gautier, L. Ferreira, V. Joao, N. Maillard, and B. Ra�n. xKaapi: A runtime
system for data-�ow task programming on heterogeneous architectures. In Proc. of
IEEE Int. Parallel and Distributed Processing Symposium (IPDPS), 2013.

[35] T. Gonzalez, O. H. Ibarra, and S. Sahni. Bounds for LPT schedules on uniform
processors. SIAM Journal on Computing, 6(1):155�166, 1977.

[36] O. Gotoh. An improved algorithm for matching biological sequences. Journal of
molecular biology, 162(3):705�708, 1982.

[37] R. L. Graham. Bounds for certain multiprocessor anomalies. Bell System Technical
Journal, 45:1563�1581, 1966.

154 BIBLIOGRAPHY

[38] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal of
Applied Mathematics, 17(2):416�429, 1969.

[39] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan.
Optimization and approximation in deterministic sequencing and scheduling: A
survey. Annals of Discrete Mathematics, 5:287�326, 1979.

[40] D. M. Gray. User's Manual for CPLEX. IBM, 1999.

[41] GOThA group under the coordination of P. Baptiste, E. Néron and F. Sourd.
Modèles et Algorithmes en Ordonnancement, Exercices et Problèmes Corrigés.
Ellipses, 2004.

[42] D. Hochbaum. Approximations algorithms for NP-hard problems. Chapman and
Hall, 1995.

[43] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for
scheduling problems theoretical and practical results. J. ACM, 34(1):144�162, 1987.

[44] D. S. Hochbaum and D. B. Shmoys. A polynomial approximation scheme for
scheduling on uniform processors: using the dual approximation approach. SIAM
Journal on Computing, 17(3):539�551, 1988.

[45] E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling
nonidentical processors. Journal of the Association for Computing Machinery,
23(2):317�327, 1976.

[46] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and
sum of subset problems. Journal of the ACM, 22:463�468, 1975.

[47] O. H. Ibarra and C. E. Kim. Heuristic algorithms for scheduling independent tasks
on nonidentical processors. Journal of the ACM, 24:280�289, 1977.

[48] C. Imreh. Scheduling problems on two sets of identical machines. Computing,
70:277�294, 2003.

[49] K. Jansen and L. Porkolab. Linear-time approximation schemes for scheduling
malleable parallel tasks. In Proceedings of the Tenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 99), pages 490�498, Baltimore, MD,
1999.

[50] K. Jansen and H. Zhang. Scheduling malleable tasks with precedence constraints.
Journal of Computer and System Sciences, 78:245�259, 2012.

[51] X. Jiang, X. Liu, L. Xu, P. Zhang, and N. Sun. A recon�gurable accelerator for
Smith-Waterman algorithm. Circuits and Systems II: Express Briefs, IEEE
Transactions on, 54(12):1077�1081, 2007.

BIBLIOGRAPHY 155

[52] S. Kedad-Sidhoum, F. Mendonca, F. Monna, G. Mounié, and D. Trystram. Fast
biological sequence comparison on hybrid platforms. In ICPP Proceedings, 2014.

[53] M. Kierzynka, J. Blazewicz, W. Frohmberg, and P. Wojciechowski. G-MSA -
GPU-based, fast and accurate algorithm for multiple sequence alignment. Journal
of Parallel and Distributed Computing, 73:32�41, 2013.

[54] P. R. Lakhe. A technology in most recent processor is complex reduced instruction
set computers (CRISC): A survey. International Journal of Innovation Research
and Studies, 2(6):711�715, June 2013.

[55] P.-F. Lavallée. La programmation paralléle hybride MPI- OpenMP. La lettre de
l'IDRIS, Février 2012.

[56] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish,
M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey.
Debunking the 100X GPU vs. CPU myth: an evaluation of throughput computing
on CPU and GPU. In ISCA, pages 451�460. ACM, 2010.

[57] J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation algorithms for
scheduling unrelated parallel machines. Mathematical Programming, 46:259�271,
1988.

[58] R. Lepere, D. Trystram, and G. J. Woeginger. Approximation algorithms for
scheduling malleable tasks under precedence constraints. Internat. J. of
Foundations of Computer Science, 13(4):613�627, 2002.

[59] J.V.F. Lima, T. Gautier, N. Maillard, and V. Danjean. Exploiting concurrent gpu
operations for e�cient work stealing on multi-GPUs. In 24rd International
Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD), Columbia University, New York, USA, oct 2012.

[60] J. W. S. Liu and C. L. Liu. Bounds on scheduling algorithms for heterogeneous
computing systems. Information Processing, J. L. Rosenfeld, ed., North-Holland,
Amsterdam, 74:349�353, 1974.

[61] Y. Liu, B. Schmidt, and D. L. Maskell. Cudasw++ 2.0: enhanced Smith-Waterman
protein database search on CUDA-enabled GPUs based on SIMT and virtualized
SIMD abstractions. BMC research notes, 3(1):93, 2010.

[62] W. Ludwig and P. Tiwari. Scheduling malleable and nonmalleable parallel tasks. In
Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 167�176, D. D. Sleator, ed., Arlington, VA, 1994.

[63] W. T. Ludwig. Algorithms for scheduling malleable and nonmalleable parallel
tasks. Master's thesis, Department of Computer Sciences, University of
Wisconsin-Madison, Madison, WI, 1995.

156 BIBLIOGRAPHY

[64] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer
Implementations. John Wiley & Sons, 1st edition, 1990. Wiley Series in Discrete
Mathematics and Optimization.

[65] R. McNaughton. Scheduling with deadlines and loss functions. Management Sci.,
6:1�12, 1959.

[66] G. Mounie, C. Rapine, and D. Trystram. E�cient approximation algorithms for
scheduling malleable tasks. In Proceedings of the Eleventh ACM Symposium on
Parallel Algorithms and Architectures (SPAA 99), pages 23�32, New York, 1999.
ACM Press.

[67] G. Mounie, C. Rapine, and D. Trystram. A 3/2 approximation algorithm for
scheduling independent monotonic malleable tasks. SIAM J. Computing,
37(2):401�412, 2007.

[68] D. W. Mount. Sequence and genome analysis. Bioinformatics: Cold Spring
Harbour Laboratory Press: Cold Spring Harbour, 2, 2004.

[69] V. Nélis and G. Raravi. A ptas for assigning sporadic tasks on two-type
heterogeneous multiprocessors. RTSS, 2012.

[70] J. C. Phillips, J. E. Stone, and K. Schulten. Adapting a message-driven parallel
application to GPU-accelerated clusters. In SC, 2008.

[71] F. Pinel, B. Dorronsoro, and P. Bouvry. Solving very large instances of the
scheduling of independent tasks problem on the GPU. Journal of Parallel Distrib.
Comput., 2012.

[72] E. D. Reilly. Milestones in computer science and information technology.
Greenwood Publishing Group, 2003.

[73] T. Rognes. Faster Smith-Waterman database searches with inter-sequence SIMD
parallelization. BMC bioinformatics, 12(1):221, 2011.

[74] S. Sahni. Algorithms for scheduling independent tasks. Journal of the ACM,
23:116�127, 1976.

[75] S. Seifu. Scheduling on heterogeneous cluster environments. Master's thesis,
Grenoble university, June 2012.

[76] D. Shabtay and G. Steiner. A survey of scheduling with controllable processing
times. Discrete Applied Mathematics, pages 1643�1666, 2007.

[77] E. V. Shchepin and N. Vakhania. An optimal rounding gives a better approximation
for scheduling unrelated machines. Operations Research Letters, 33:127�133, 2004.

BIBLIOGRAPHY 157

[78] D. B. Shmoys and E. Tardos. An approximation algorithm for the generalized
assignment problem. Mathematical Programming, 62:461�474, 1993.

[79] T. F. Smith and M. S. Waterman. Identi�cation of common molecular
subsequences. Journal of molecular biology, 147(1):195�197, 1981.

[80] F. Song, S. Tomov, and J. Dongarra. Enabling and scaling matrix computations on
heterogeneous multi-core and multi-GPU systems. In 26th ACM International
Conference on Supercomputing (ICS 2012), Venice, Italy, June 2012. ACM.

[81] O. Svensson. Hardness of precedence constrained scheduling on identical machines.
SIAM J. Computing, 40(5):1258�1274, 2011.

[82] A. Szalkowski, C. Ledergerber, P. Krähenbühl, and C. Dessimoz. Swps3-fast
multi-threaded vectorized Smith-Waterman for IBM Cell/BE and x86/SSE2. BMC
Research Notes, 1(1):107, 2008.

[83] Top500. http://www.top500.org/lists/2014/06/.

[84] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-e�ective and low-complexity
task scheduling for heterogeneous computing. IEEE TPDS, 13(3):260�274, 2002.

[85] D. Trystram. Les riches heures de l'ordonnancement. Technique et science
informatique, 31(8):1021�1047, 2012.

[86] J. Turek, J. Wolf, and P. Yu. Approximate algorithms for scheduling parallelizable
tasks. In Proceedings of the Fourth Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 323�332, 1992.

[87] C. Vaglio-Gaudard, K. Stoll, S. Ravaux, M. Lemaire, A. C. Colombier, J. P.
Hudelot, D. Bernard, H. Amharrak, J. Di Salvo, and A. Gruel. Monte carlo
interpretation of the photon heating measurements in the integral AMMON/REF
experiment in the EOLE facility. IEEE Transactions on Nuclear Science, 61(1),
February 2014.

[88] V. V. Vazirani. Approximation Algorithms. Springer, 2003.

[89] Wikipedia. http://fr.wikipedia.org/wiki/Superordinateur.

[90] G. J. Woeginger. A comment on scheduling on uniform machines under chain-type
precedence constraints. Operations Research Letters, 26:107�109, 2000.

