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Résumé

Fonction de Hilbert non standard et nombres de Betti gradués
des puissances d’idéaux

En utilisant le concept des fonctions de partition , nous étudions le comportement asymptotique des

nombres de Betti gradués des puissances d’idéaux homogènes dans un polynôme sur un corp.

Pour un Z-graduer positif, notre résultat principal affirme que les nombres de Betti des puissances

est codé par un nombre fini des polynômes. Plus précisément, Z2 peut être divisé en un nombre fini

des régions telles que, dans chacun d’eux, dimk
(
TorS

i (I t ,k)µ
)

est un quasi-polynôme en (µ, t ). Ce affine,

dans une situation graduée, le résultat de Kodiyalam sur nombres de Betti des puissances dans [33].

La déclaration principale traite le cas des produits des puissances d’idéaux homogènes dans un al-

gèbre Zd -graduée , pour un graduer positif, dans le sens de [37] et il est généralise également pour les

filtrations I -good

.

Dans la deuxième partie, en utilisant la version paramétrique de l’algorithme de Barvinok, nous

donnons une formule fermée pour les fonctions de Hilbert non-standard d’anneaux de polynômes, en

petites dimensions.

Mots-clefs

Nombres de Betti, Fonction de Hilbert non standard , Fonction de partition vectorielle.
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Abstract

Non-standard Hilbert function and graded Betti numbers of pow-
ers of ideals

Using the concept of vector partition functions, we investigate the asymptotic behavior of graded

Betti numbers of powers of homogeneous ideals in a polynomial ring over a field.

For a positive Z-grading, our main result states that the Betti numbers of powers is encoded by finitely

many polynomials. More precisely, Z2 can be splitted into a finite number of regions such that, in each

of them, dimk
(
TorS

i (I t ,k)µ
)

is a quasi-polynomial in (µ, t ). This refines, in a graded situation, the result

of Kodiyalam on Betti numbers of powers in [33].

The main statement treats the case of a power products of homogeneous ideals in a Zd -graded alge-

bra, for a positive grading, in the sense of [37] and it is also generalizes to I -good filtrations .

In the second part , using the parametric version of Barvinok’s algorithm, we give a closed formula for

non-standard Hilbert functions of polynomial rings, in low dimensions.

Keywords

Betti numbers, Nonstandard Hilbert function, Vector partition function.
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1
INTRODUCTION

The study of homological invariants of powers of ideals goes back, at least, to the work of Brodmann in

the 70’s and attracted a lot of attention these last two decades.

One of the most important results in this area is the result on the asymptotic linearity of Castelnuovo-

Mumford regularity obtained by Kodiyalam [34] and Cutkosky, Herzog and Trung [19], independently.

The proof of Cutkosky, Herzog and Trung further shows the eventual linearity in t of end
(
TorS

i (I t ,k)
)

:=

max{µ|TorS
i (I t ,k)µ �= 0}.

It is natural to investigate the asymptotic behavior of Betti numbers βi (I t ) := dimk TorS
i (I t ,k) as t

varies. In [39], Northcott and Rees already investigated the asymptotic behavior of βk
1 (I t ). Later, using

the Hilbert-Serre theorem, Kodiyalam [33, Theorem 1] proved that for any non-negative integer i and

sufficiently large t , the i -th Betti number, βk
i (I t ), is a polynomial Qi in t of degree at most the analytic

spread of I minus one.

1



2 CHAPTER 1. INTRODUCTION

Recently, refining the result of [19] on end
(
TorS

i (I t ,k)
)
, [6] gives a precise picture of the set of degrees γ

such that TorS
i (I t , A)γ �= 0 when t varies in N. The article [6] considers a polynomial ring S = A[x1, . . . , xn]

graded by a finitely generated abelian group G over a Noetherian ring A, see [6, Theorem 4.6].

When A = k is a field and the ideal is generated by a single degree d ∈G , it is proved that for any γ and

any j , the function

dimk TorS
i (I t ,k)γ+td

is a polynomial in t for t � 0, See [6, Theorem 3.3] and [44].

My Thesis is here interested in the behavior of dimk TorS
i (I t ,k)γ when I is an arbitrary graded ideal

and S = k[x1, . . . , xn] is a Zp -graded polynomial ring over a field k, for a positive grading in the sense of

[37].

In the case of a positive Z-grading, the result takes the following form:

Theorem 1.0.1. (See Theorem 5.1.2). Let S = k[x1, . . . , xn] be a positively graded polynomial ring over a

field k and let I be a homogeneous ideal in S.

There exist, t0,m,D ∈ Z, linear functions Li (t ) = ai t +bi , for i = 0, . . . ,m, with ai among the degrees

of the minimal generators of I and bi ∈ Z, and polynomials Qi , j ∈Q[x, y] for i = 1, . . . ,m and j ∈ 1, . . . ,D,

such that, for t ≥ t0,

(i) Li (t ) < L j (t ) ⇔ i < j ,

(ii) If µ< L0(t ) or µ> Lm(t ), then TorS
i (I t ,k)µ = 0.

(iii) If Li−1(t ) ≤µ≤ Li (t ) and ai t −µ≡ j mod (D), then

dimk TorS
i (I t ,k)µ =Qi , j (µ, t ).
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Our general result, Theorem 4.2.4, involves a finitely generated graded module M and a finite col-

lection of graded ideals I1, . . . , Is . The grading is a positive Zp -grading, and a special type of finite de-

composition of Zp+s is described in such a way that in each region dimk (TorS
i (M I t1

1 ...I ts
s ,k)γ) is a quasi-

polynomial in (γ, t1, . . . , ts), with respect to a lattice defined in terms of the degrees of generators of the

ideals.

The central object in this study is the Rees modification MR I . This graded object admits a graded free

resolution over a polynomial extension of S, from which we deduce a Zp+s-grading on Tor modules as in

[6]. Investigating Hilbert series of modules for such a grading, using vector partition functions, leads to

the results.

In the last chapter we will study the structure and dimension of each pieces of Tor module of I -good

filtrations the main result takes the following form :

Theorem 1.0.2. (See Theorem 5.2.3)Let S = A [x1, · · · , x1] be a graded algebra over a Noetherian local ring

(A,m) ⊂ S0 . Let ϕ = {ϕ(n)}n≥0 be a I -good filtration of ideals ϕ(n) of R and ϕ(1) = ( f1, f2, ..., fr ) with

deg fi = di be Z-homogenous ideal in S, and let R = S[T1, . . . ,Tn] be a bigraded polynomial extension of S

with deg(Ti ) = (di ,1) and deg(a) = (deg(a),0) ∈Z× {0} for all a ∈ S.

(1)Then for all i , j :

TorA
i (TorR

j (Rϕ, A),k) is finitely generated k[T1, . . . ,Tr ]-module .

(2) There exist, t0,m,D ∈ Z, linear functions Li (t ) = ai t +bi , for i = 0, . . . ,m, with ai among the degrees
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of the minimal generators of I and bi ∈ Z, and polynomials Qi , j ∈Q[x, y] for i = 1, . . . ,m and j ∈ 1, . . . ,D,

such that, for t ≥ t0,

(i) Li (t ) < L j (t ) ⇔ i < j ,

(ii) If µ< L0(t ) or µ> Lm(t ), then TorS
i (ϕ(t ),k)µ = 0.

(iii) If Li−1(t ) ≤µ≤ Li (t ) and ai t −µ≡ j mod (D), then

dimk TorS
i (ϕ(t ),k)µ =Qi , j (µ, t ).

Other interest of my thesis is about Non-standard Hilbert functions, actually non-standard Hilbert

functions first raised in the in Gabber’s proof of Serre non-negativity conjecture [41]. It has been studied

by several authors [21, 41, 42]. As it was noticed in [6] , the module ⊕t TorS
i (I t ,k) for a homogeneous ideal

I in graded ring S has the structure of a finitely generated graded module over a non-standard graded

polynomial ring over k , from which one can deduce the behavior of TorS
i (I t ,k) when t varies.

It is also desirable to give closed formula for quasi-polynomials coming from a vector partition func-

tion. However, in general, such a formula doesn’t exist . An algorithm that uses a continued fraction

expansion and gives closed formula for the generating function corresponding to a two dimensional

polytope was given by Barvinok. We use a parametric version of his algorithm and deduce the Hilbert

function of polynomial ring B = k[T1, . . . ,Tn] such that {degTi |1 � i � n} = {(d j ,1)|1 � j � 4} more pre-

cisely for the associated polytope P (b = (b1,b2)) = {x ∈Rr |Ax = b; x 
 0}, where A =




d1 d2 d3 d4

1 1 1 1


,

of the Hilbert function HF (B , (b1,b2)).The problem is that P (b) is not full dimensional. To be able use the

Barvinok algorithm, one should transform P (b) to the full dimensional polytope Q which has the same

lattice point as P (b) .The following lemma gives us the complete information about Q:
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Lemma 1.0.3. (See Lemma 3.5.4)Let A =




d1 d2 d3 d4

1 1 1 1


 for d1 < d2 < d3 < d4 then there is a one to

one correspondence between the integer points of P (b) and Q ⊂R2 and we have the following about Q:

1. Q = {
(λ1,λ2) ∈R2|λ1(d2 −d1) � 0; λ2(d2 −d1) � 0;

λ1(d1 −d4)+λ2(d1 −d3)+ d1b2−b1
d2−d1

� 0; λ1(d4 −d2)+λ2(d3 −d2)+ b1−d2b2
d2−d1

� 0 f or b1,b2 > 0
}
,

2. Q has the following vertices :

Q1 = ( d3b2−b1
(d2−d1)(d4−d3) , ( b1−d4b2

(d2−d1)(d4−d3) ) ,

Q2 = ( d2b2−b1
(d2−d1)(d4−d2) ,0) ,

Q3 = (0, d2b2−b1
(d2−d1)(d3−d2) ) ,

Q4 = ( b1−d1b2
(d2−d1)(d1−d4) ,0) ,

Q5 = (0, b1−d1b2
(d2−d1)(d1−d3) ) ,

Q6 = (0,0),

3. The generation function of Q in the first chamber C1 is :

fC1 (Q,x) = 1
(1−x−1

1 )(1−x−1
2 )

+ x
�s1�
1

(1−x1)(1−x−1
2 )

− x
�s1�
1 x

−(�a0 s1�+a0�s1�)
2

(1−x−1
2 )(1−x1x

−a0
2 )

+

x
(�(a0 a1+1)s1�−a1�a0 s1�)
1 x

−(a0�(a0 a1+1)s1�−(a0 a1+1)�s1�)
2

(1−x1x
−a0
2 )(1−x

a1
1 x

−(a1 a0+1)
2 )

+ x
−�s2�
2

(1−x−1
2 )(1−x1x

−a0
2 )

−

x
(�−a1 s2�+a1�s2�)
1 x

−(a0�−a1 s2�+(a0 a1+1)�s2�)
2

(1−x1x
−a0
2 )(1−x

a1
1 x

−(a1 a0+1)
2 )
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Where s1 := b1−d1b2
(d2−d1)(d1−d4) and s2 := b1−d1b2

(d2−d1)(d1−d3) .

Finally evaluating fC1 (Q,x) at x = (1,1) gives us HF (B , (b1,b2)). But our generating function has a pole

at x = (1,1), so that we use the Yoshida et al[24] method to find the explicit formula of the Hilbert function

of B from theorem 3.5.6 .
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2
PRELIMINARIES

2.1 commutative algebra

2.1.1 Graded Rings and Modules

Definition 2.1.1. A N-graded ring R is a ring together with a decomposition (as abelian groups) R =

R0⊕R1⊕ . . . such that Rm .Rn ⊆ Rm+n for all m,n ∈Z≥0, and where R0 is a subring (i.e. 1 ∈ R0). A Z-graded

ring is one where the decomposition is into R =⊕n∈ZRn . In either case, the elements of the subgroup Rn

are called homogeneous of degree n.

Let R be a ring and x1, . . . , xn indeterminates over R. For u = (u1, · · · ,un) ∈Nn let xu = xu1
1 · · ·xun

n , then

one can consider the polynomial ring S = R[x1, . . . , xn] as a graded ring by the total degree of polynomial

9
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where in this case the graded pieces can be write as

Sm = {
m∑

ui∈Nn ;i=1
aui xui |aui ∈ R and u1 +·· ·+un = m}

Definition 2.1.2. A graded R-module is an ordinary R-module M together with a decomposition M =

⊕k∈ZMk as abelian groups, such that Rm .Mn ⊆ Mm+n for all m ∈Z≥0 and n ∈Z. Elements in one of these

pieces are called homogeneous. Any m ∈ M is thus uniquely a finite sum
∑

mni where each mni ∈ Mni is

homogeneous of degree ni and ni �= n j for i �= j .

In the category of graded R-modules, the morphisms of R-modules are the ones that preserve the

grading. In other words, morphisms of graded modules take homogeneous elements to homogeneous

elements of the same degree.

Definition 2.1.3. If M is a graded module, we set M(n) for the same R-module but with the grading

M(n)k = Mn+k .

A graded homomorphism (of degree 0 )between graded R-modules M , N is defined to be an R-module

homomorphism sending Mn to Nn for any n.

Example 2.1.4. 1. If R is a graded ring, then R is a graded module over itself.

2. If S is any ring, then S can be considered as a graded ring with S0 = S and Si = 0 for i > 0. Then a

graded S-module is just a Z-indexed collection of (ordinary) S-modules.

3. (The blow-up algebra ,also called Rees algebra) Let S be any ring, and let J be an ideal of S. We can

make R = S ⊕ J ⊕ J 2 ⊕ . . . (the blow-up algebra) into a graded ring, by defining the multiplication
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from the one of S after noticing that J i J j ⊆ J i+ j . Given any S-module M , there is a graded R-

module M ⊕ J M ⊕ J 2M ⊕ . . ., where multiplication is defined in the obvious way. We thus get a

functor from S-modules to graded R-modules.

Definition 2.1.5. Let R be a graded ring, M be a graded R-module and N ⊆ M an R-submodule. N is

called a graded submodule if the homogeneous components of elements in N are in N . Similarly, if

M = R, a graded ideal is also called homogeneous ideal.

Proposition 2.1.6. Let R be a graded ring, M a graded R-module and N a submodule of M. Then the

followings are equivalent :

(1) N is a graded R-module.

(2) N =∑
n N

⋂
Mn .

(3) If u = u1 +·· ·+un ∈ N then ui ∈ N for 1 � i � n.

(4) N has a homogeneous set of generators.

2.1.2 Rees filtration

The notion of Rees algebra is classically extended as follows :

Definition 2.1.7. Let R be a commutative ring and I = {In}∞n=0 a sequence of ideals of R. Then I is

called filtration of R if,

(1) I0 = R

(2) In ⊃ In+1 ∀n ∈N
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(3) In .Im ⊆ In+m .

Let I be a filtration of R then we define the Rees algebra and associated graded ring associated to I by

RI =⊕n
0In , g rI =⊕n
0
In

In+1

One of the most impotent example is when a filtration I is given by a power of ideal I , in this case if I

is generated by { f1, · · · , fm} ⊂ R then Rees algebra can be described as subring of the graded polynomial

ring R [t ] and denoted by R [I t ] . One can define the R-algebra surjective homomorphism as follows :

ψ : R [T1, · · ·Tn] →ψR [I t ] , ψ(Ti ) = fi t

Remark 2.1.8. If R is a ring with a filtration I given by powers of an ideal I , then R[I t ] is a Noetherian.

If a Rees ring with respect to a filtration I is Noetherian, then I is called a Noetherian filtration . The

following proposition gives some equivalent conditions.

Proposition 2.1.9. Let R be a ring with a filtrationI = {In}∞n=0. The following conditions are equivalent:

(i) I is Noetherian.

(ii) R is Noetherian, and RI is finitely generated over R.

(iii) R is Noetherian, and RI+ is finitely generated over R.

2.1.3 Graded Free Resolution

Definition 2.1.10. Let M be a finite module over local ring (S,m,k) , the following exact sequence is

called a minimal free resolution

� · · ·Fn −→dn Fn−1 −→dn−1 · · · −→ F0 −→d−→ M −→ 0

if it statisfies the following conditions :
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(1) Fi are free S-module for all i ∈N

(2) di (Fi ) ⊂ mFi−1

(3)d : F0
⊗

k −→ M
⊗

k is an isomorphism

The Hilbert Syzygy theorem says that every module M over a polynomial ring S over a field has a free

resolution with length at most the number of variables.

Theorem 2.1.11. (Hilbert’s Syzygy Theorem). Let M be a finitely generated graded module over the poly-

nomial ring S = k[x1, x2, . . . , xn]. Then there exists a minimal free resolution:

0 → Fs → . . . → F1 → F0 → M → 0

with s � n and the rank of the Fi ’s in any minimal resolution only depends on M.

We can choose all the generators of various syzygy modules to be homogeneous and we can define

the generators of the free modules in a way that all the maps are of degree zero.

Furthermore, in each step, if we choose a minimal generating set for the syzygy modules, we get a

minimal free resolution of M . In this way, we can write

Fi =
⊕
j∈Z

S(− j )βi , j

for some natural numbers βi , j . These numbers form a set of invariants of M as a graded S-module and

we can also obtain them as the homological invariants βi , j (M) = dimk TorS
i (M ,k) j . These numbers are

called graded Betti numbers.

Indeed, a minimal free resolution is an invariant associated to a graded module over a ring graded

by the natural numbers N, or more generally by Nn . The information provided by free resolutions is a

refinement of the information provided by the Hilbert polynomial and Hilbert function.
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Proposition 2.1.12. If F : . . .F1 → F0 is the minimal free resolution of a finitely generated graded S-module

M, and k denotes the residue field S/m, then any minimal set of homogeneous generators of Fi contains

precisely dimk TorS
i (k, M) j generators of degree j.

Proposition 2.1.13. Let {βi , j } be the graded Betti numbers of a finitely generated S-module. If βi , j = 0 for

all j ≤ d then βi+1, j = 0 for all j ≤ d.

2.1.4 Hilbert functions and Hibert seies

We can define graded modules similarly to the classical Z-graded case. When G =Zd and the grading is

positive, (generalized) Laurent series are associated to finitely generated graded modules:

Definition 2.1.14. The Hilbert function of a finitely generated module M over a positively graded poly-

nomial ring is the map:

HF (M ;−) : Zd −→ N

µ �−→ dimk (Mµ).

The Hilbert series of M is the Laurent series:

H(M ; t ) =
∑

µ∈Zd

dimk (Mµ)tµ.

Remark 2.1.15. By [37, 8.8], if S is positively graded by Zd , then the semigoup Q = deg(Nn) can be em-

bedded in Nd . Hence, after such a change of embedding, the above Hilbert series are Laurent series in

the usual sense.

We recall that the support of a Zd -graded module N is

SuppZd (N ) := {µ ∈Zd |Nµ �= 0},

and use the abbreviated notationsZ[t ] :=Z[t1, . . . , td ] for t = (t1, . . . , td ) and tµ := tµ1

1 · · · tµd

d forµ= (µ1, . . . ,µd ) ∈

Zd .
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Proposition 2.1.16. Let S = k[x1, . . . , xn] be a positively graded Zd -graded polynomial ring over the field

k. Then the followings hold:

1. The Hilbert series of S(−µ) is the development in Laurent series of the rational function

H(S(−µ); t ) = tµ∏n
i=1(1− tµi )

.

where µi = deg(xi ).

2. If M is a finitely generated graded S-module, setting ΣM :=∪� SuppZd (TorR
�

(M ,k)) and

κM (t ) :=
∑

a∈ΣM

(∑
�

(−1)� dimk (TorR
� (M ,k))a

)
t a ,

one has H(M ; t ) =κM (t )H(S; t ).

2.1.5 Closures of ideals

Here we recall some basic fact of closures about ideal froms [49] which is usefull for the last chapter.

2.1.5.1 Integral Closure

Definition 2.1.17. Let R ⊆ S be rings. An element f ∈ S is integral over R if f satisfies a monic polynomial

equation

f n +a1 f n−1 + . . .+an = 0

with coefficients in R. The integral closure of R in S is the set of all elements of S integral over R, it turns

out to be a subring of S.

The ring R is integrally closed in S if all elements of S that are integral over R actually belong to R. The

ring R is normal if it is integrally closed in the ring obtained from R by inverting all non-zerodivisors.
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Instead of a ring, the integral closure of an ideal is defined as follows:

Definition 2.1.18. Let R be a ring and I be an ideal of R. An element z ∈ R is integral over I if it satisfies

the following equation.

zn +a1zn−1 +·· ·+an = 0 ai ∈ I i

The set of all integral elements over I is called integral closure of I and denoted by I

2.1.5.2 Ratliff-Rush closure

Definition 2.1.19. Let A be a Noetherian local ring and I ⊂ A an ideal with grade(I ) > 0 . The Ratliff-Rush

closure of I is the ideal:

Ĩ := ⋃
n
1

I n+1 : I n .

One of basic facts about Ratliff-Rush closure of powers of ideals is the following:

Theorem 2.1.20. Let I be an ideal containing regular elements. Then there exists an integer n0 such that

Ĩ n = I n for n 
 n0.

So we can define an invariant for I ρ̃(I ) := mi n{n0 
 0|Ĩ n = I n f or al l n 
 n0} and it can be

calculated by the following lemma.

Lemma 2.1.21. Let (A,m) be a local Noetherian ring and let I ⊂ A be an ideal of grade(I ) > 0. Suppose

that
[
H 1

R+(R)
]

0 = 0 . Then a1
R+(R)+1 = ρ̃(I ). Where R =⊕n
0I n and a1

R+ = sup{n ∈Z|[H 1
R+(R)

]
n �= 0}.
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2.1.6 Spectral sequence

In this section, we are going to collect some necessary notations and terminologies about spectral se-

quences from [52].

Definition 2.1.22. A spectral sequence in an abelian category A is a collection of the following data:

1. A family {E r
p,q } defined for all p, q ∈Z.

2. Maps d r
p,q : E r

p,q → E r
p−r,q+r−1 are differentials in the sense that d r d r = 0.

3. There is isomorphisms between E r+1
p,q and homology of E r∗,∗ at the spot E r

p,q :

E r+1
p,q

∼=
ker(d r

p,q )

Im(d r
p+r,q−r+1)

Definition 2.1.23. 1. A spectral sequence is called bounded if for each n there are only finitely many

nonzero terms of total degree n in E n∗,∗, more precisely there is an n0 such that E n
p,q = E n+1

p,q for all

p, q ∈Z and n 
 n0. We represent the stable value of E n
p,q by E∞

p,q .

2. A bounded spectral sequence is called converges to a given family {Hn} of objects of an abelian

category A, if we have a following filtration for each Hn :

0 = Fs Hn ⊆ ·· · ⊆ Fp−1Hn ⊆ Fp Hn ⊆ Fp+1Hn ⊆ ·· ·Ft Hn = Hn

and we are given isomorphisms :

E∞
p,q = Fp Hp+q

Fp−1Hp+q

and we write E r
p,q ⇒ Hp+q to represent this fact .
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2.1.6.1 Spectral Sequence of Double Complex

Let C =C∗,∗ be a double complex in an abelian category A with total complex Tot (C )n =⊕i+ j=nCi , j . We

define two filtrations on the total complex by rows and columns.

. . .

��

. . .

��

. . .

��
. . . Cp−1,q+1

��

��

Cp,q+1
��

��

Cp+1,q+1
��

��

. . .��

. . . Cp−1,q
��

��

Cp,q
��

��

Cp+1,q
��

��

. . .��

. . . Cp−1,q−1
��

��

Cp,q−1
��

��

Cp+1,q−1
��

��

. . .��

. . . . . . . . .

More precisely we define two filtrations I Fp (Tot (C )) and I I Fp (Tot (C )) as follows:

I F n
p (Tot (C )) = ⊕

m
p
Cm,n−m

I I F n
p (Tot (C )) = ⊕

m
p
Cn−m,m

Theorem 2.1.24. Let C be a first quadrant double complex in an abelian category A. There are two spectral

sequences
′
E n and

′′
E n determined by I Fp (Tot (C )) and I I Fp (Tot (C )) filtrations respectively with

′
E 0

p,q =Cp,q ,
′
E 1

p,q = H q
ver t (Cp,∗) ,

′
E 2

p,q = H p
hor H q

ver t (C ) ,

′′
E 0

p,q =Cq,p ,
′′
E 1

p,q = H q
hor (C∗,p ) ,

′′
E 2

p,q = H p
ver H q

hor (C )

Both spectral sequences
′
E n and

′′
E n converge to Hp+q (Tot (C )).
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One of the applications of these different spectral sequences with the same convergence could be

for computing Tor modules, more precisely here we recall the Base-change theorem about Tor modules

which is useful in the last chapter .

Theorem 2.1.25. Let f : R → S be a ring map. Then there is a first quadrant homology spectral sequence

E 2
p,q = TorS

p (TorR
q (A,S),B) ⇒ TorR

p+q (A,B)

for every R-module A and S-module B.

2.1.7 Castelnuovo-Mumford Regularity

One of the most important invariants which measures the complexity of a coherent sheaf F , on Pr is

the Castelnuovo-Mumford regularity. It was first introduced by Mumford in [38, Chapter 14] as how

much one has to twist a coherent sheaf F in order for the higher cohomology to vanish. Alternatively a

coherent sheaf F is called m-regular if,

Hi (Pr ,F ⊗Pr (m − i )) = 0

for all i > 0 then reg(F ) = min{m ∈Z|F is m − regular}.

A related idea in commutative algebra was given by Eisenbud and Goto [26]. Let R = k [x1, · · · , xn] be

a polynomial ring over a field k and M a finitely generated graded R-module. Assume M has a minimal

graded free resolution as:

F• : 0 → Ft → . . . → F2 → F1 → F0 → M → 0

Set

ai (M) := max{µ|H i
m(M)µ �= 0}
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if H i
m(M) �= 0 and ai (M) :=∞ else,

bi (M) := max{µ|TorR
i (M ,k)µ �= 0}

if TorR
i (M ,k) �= 0 and bi (M) :=∞ else, then the Castelnuovo-Mumford regularity of M is defined as:

r eg (M) := maxi {ai (M)+ i } = maxi {bi (M)− i }.

Central motivation of current thesis concerns the remarkable result about linearity behavior of regularity

of powers of graded ideal I in R due to Kodiyalam [34], Coutkosky,Herzog and Trung [19] , Trung and

Wang [48] and Chardin [17] . We state it as:

Theorem 2.1.26. Let A be a standard graded Noetherian algebra . If I is a graded ideal and M �= 0 a finitely

generated graded A-module, then there exists n1 and b such that

reg(I n M) = nd +b, ∀n 
 n1

with

d := min{µ| ∃m 
 1, (I�µ)I m−1M = I m M }

Similar question studied for ideal sheaves, but the behavior is much more complicated than for graded

ideals. Let I be a graded ideal generated in degree at most d in the standard algebra over a field and

m = A+ . We denote the saturation of I with respect to m by I sat := ⋃
n(I : mn) , it has been shown in

[19] that the regularity of (I n)sat is in several cases not eventually linear but at least Cutkosky, Ein and

Lazarsfeld proved in [] that the following limit exists

s(I ) = lim
n→∞

reg(I n)sat

n

where s(I ) equals the invesrse of a Seshadri constant.
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2.2 Discrete Geometry

2.2.1 Polytopes

There are two notions of polytopes (H-polytope and V-polytope ) where their equivalence have been

proved in the main theorem of polytopes (see 2.2.3) but first we look at their definitions and related

concepts .

Definition 2.2.1. 1. A hyperplane in Rd is a set H := {x ∈Rd |a1x1 +·· ·+ad xd = b}.

2. A convex combination of finite points q1, · · · , qt is a set

com({q1, · · · , qt }) := {x ∈Rd |
t∑

i=1
λi qi f or λi 
 0 ,

∑
λi = 1}

The set of all convex combination of the points q1, · · · , qt is called convex hull of q1, · · · , qt and it

denoted by conv(q1, · · · , qt ).

3. The minkowski sum of two sets P,Q ⊆Rd is defined as:

P +Q = {x + y |x ∈ P, y ∈Q}

Definition 2.2.2. 1. A H-polyhedron in Rd denotes as the intersection of closed halfspaces in Rd in

the following form

P = {x ∈Rd |Ax � b}

where A ∈R(n×d) and b ∈Rn . A bounded H-polyhedron is called H-polytope.

2. A V-polyhedron in Rd denotes as the convex hull of a finite number of points and it is of form

P = conv(q1, · · · , qt ) . A bounded V-polyhedron is called V-polytope.

Theorem 2.2.3. [53] Every V-polytope has a description by inequalities as H-polytope and every H-polytope

is the convex hull of minimal number of finitely many points .
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Based on the above theorem, we will only use the term polytope for both notions of polytops.

2.2.1.1 Faces of Polytopes

Definition 2.2.4. Let P ⊆ Rd be convex polytope. The inequality c.x � c0 is called valid for P if all points

x ∈ P satisfy this inequality. The hyperplane H = {x ∈Rd |c.x = c0} is called supporting hyperplane of P . A

face of P is set of form F = P ∩H and the dimension of a face of P is the dimension of its affine hull.

2.2.1.2 Gale Diagrams

Let n points v1, · · · , vn be in Rd−1 whose affine hull has dimension d −1 . Consider the matrix

A :=




1 1 · · · 1

v1 v2 · · · vn




the kernel of A is defined as:

ker(A) := {x ∈Rn |Ax = 0}

Definition 2.2.5. Let x ∈Rn and v1, · · · , vn vectors in Rn .

(1) If
∑n

i=1 vi xi = 0 and
∑n

i=1 xi = 0 then x is called an affine dependence relation on v1, · · · , vn .

(2) If
∑n

i=1 vi xi = 0 then x is called a linear dependence relation on v1, · · · , vn .

(3) If x = 0 is the only solution of
∑n

i=1 vi xi = 0 and
∑n

i=1 xi = 0 then v1, · · · , vn is called affinely indepen-

dent.
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Let B1, · · · ,Bn−d ∈Rn be a basis for the vector space ker(A) and put them as the columns of n× (n−d)

matrix.

B :=
(
B1 B2 · · · Bn−d

)

Definition 2.2.6. Let G ={b1, · · · ,bn} ⊂Rn−d be the n ordered rows of B . Then G is called a Gale transform

of {v1, · · · , vn} . The Gale diagrams of {v1, · · · , vn} is the vector configuration G in Rn−d .

Example 2.2.7. Let

A =




d1 . . . dn

1 . . . 1




be a 2×n-matrix with entries in N such that d1 ≤ . . . ≤ dn . By computing a basis for the kernel of A, we

have:

B =




d2 −d3 d2 −d4 · · · d2 −dn

d3 −d1 d4 −d1 · · · dn −d1

d1 −d2 0 · · · 0

0 d1 −d2 · · · 0

· · · · · · · · · · · ·

· · · · · · · · · · · ·

· · · · · · · · · · · ·

0 0 · · · d1 −d2




.
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2.2.2 Lattices

A lattice is an additive subgroup of Rn , here we recall some basic definitions and algorithms about the

lattice which is usefull for the thesis.

Definition 2.2.8. consider < ., . > as an inner product.

(1) The dual Λ∗of a lattice Λ is the lattice of vectors v such that < v, w >∈ Z where w ∈ {x ∈ Rn | < x,s >∈

Z f or al l s ∈Λ}.

(2) A lattice Λ is called integral if < v, w >∈Z for all v, w ∈Λ.

(3) A lattice Λ is called unimodular when Λ∗ =Λ .

(4) The volume of a lattice Λ is the volume of it’s fundamental domain which is det(A) where A is the

matrix of Z-basis of Λ.

It is well-known that if U1 and U2 are two m ×n-matrices and L1 and L2 are the corresponding lattice

generated by columns of the matrices Ui , we can apply the following algorithm to find the generators of

L1 ∩L2:

Algorithm.

• Given basis U1 = (u1, . . . ,un) and V2 = (v1, . . . , vn).

• Take dual of Ui by D(Ui ) =Ui
(
U t

i Ui
)−1 = (

U t
i

)−1.

• Set K the matrix of adjunction of D(U1) and D(U2).

• Compute Hermite normal form of K , say H .

• Compute dual of H .
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End of algorithm.
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3
NON STANDARD HILBERT FUNCTION

3.1 Grading over abelian group

Let S = k[x1, . . . , xn] be a polynomial ring over field k. We first make clear our definition of grading.

Definition 3.1.1. Let G be an abelian group. A G-grading of S is a group homomorphism deg : Zn −→G

and deg(xu) := deg(u) for a monomial xu = xu1
1 ...xun

n ∈ S. An element
∑

cu xu ∈ S is homogeneous of de-

gree µ ∈G if deg(u) = µ whenever cu �= 0 and an ideal I ⊂ S is homogeneous if every polynomial in I is a

sum of homogeneous polynomials under the given grading.

Theorem 3.1.2. (See [37, Theorem 8.6]) Let Q = deg(Nn) and L = ker(deg) of the above group homomor-

phism . Then the following canditions are equivalent for a polynomial ring S graded by G.

27
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(1) There exists µ ∈Q such that the vector space Sµ is finite-dimensional.

(2) The only polynomials of degree zero are the constants ; i.e., S0 = k.

(3) For all µ ∈G , the k-vector space Sµ is finite-dimensional.

(4) For all finitely generated graded modules M and degreeµ ∈G , the k-vector space Mµ is finite-dimensional.

(5) The only nonnegative vector in the lattice L is 0 ; i.e., L∩Nn = {0} .

(6) The semigroup Q has no units, and no variable xi has degree zero .

Definition 3.1.3. [37] If the equivalent conditions of the above theorem hold for a torsion-free abelian

group G then we call grading by G positive, and for the polynomial ring S = k[x1, . . . , xn] which is graded

by G we say that S is a positively graded polynomial ring.

Remark 3.1.4. There is a two important cases about the image of group homomorphism deg : Zn −→G

where it has torsion or not. In the case where image of deg has a torsion it can be happen that associated

primes of G-graded S-module M are not graded but in the other the associated primes of M are graded

by following proposition.

Proposition 3.1.5. (See [37, Theorem 8.11]) Let S = k[x1, . . . , xn] be a polynomial ring over field k graded

by a torsion-free abelian group G and let M be a G-graded S-module. If P be an associated prime of M

then P is homogeneous and P = ann(m) where m is homogeneous element of M.
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3.2 Vector Partition functions

We first recall the definition of quasi-polynomials. Let d ≥ 1 and Λ be a lattice in Zd .

Definition 3.2.1. [3] A function f : Zd →Q is a quasi-polynomial with respect to Λ if there exists a list of

polynomials Qi ∈Q[T1, . . . ,Td ] for i ∈Zd /Λ such that f (s) =Qi (s) if s ≡ i mod Λ.

Notice that Zd /Λ has |det(Λ)| elements, and that when d = 1, Λ= qZ for some q > 0, in which case f

is also called a quasi-polynomial of period q .

Now assume that a positive grading of S by Zd with Q := deg(Nn) ⊆ Nd is given and that Q spans a

subgroup of rank d in Zd . In other words, the matrix A = (ai , j ) representing deg : Zn → Zd is a d ×n-

matrix of rank d with entries in N. Let a j := (a1, j , . . . , ad , j ) and

ϕA : Nd −→ N

u −→ #
{
λ ∈Nn |A.λ= u

}
.

Equivalently, ϕA(u) is the coefficient of t u in the formal power series
∏n

i=1
1

(1−t ai ) .

Notice that ϕA vanishes outside of Pos(A) := {
∑
λi ai ∈Rn |λi ≥ 0,1 ≤ i ≤ n}.

Blakley showed in [10] that Nd can be decomposed into a finite number of parts, called chambers,

in such a way that ϕA is a quasi-polynomial of degree n −d in each chamber. Later, Sturmfels in [47]

investigated these decompositions and the differences of polynomials from one piece to another.

Here we briefly introduce the basic facts and necessary terminology of vector partition functions, spe-

cially the chambers and the polynomials (quasi-polynomials) obtained from vector partition functions

corresponding to a matrix A. For more details about the vector partition function, we refer the reader to

[10, 13, 47].

Definition 3.2.2. [53] A polyhedral complex ℑ is a finte collection of polyhedra in Rd such that
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1. the empty polyhedron is in ℑ,

2. if P ∈ℑ, then all the faces of P are also in ℑ,

3. the intersection P ∩Q of two polyhedra P,Q ∈ℑ is a face of both of P and of Q.

Definition 3.2.3. [22] A vector configuration in Rm is a finite set A = (p j : j ∈ J ) of labeled vectors p j ∈Rm .

Its rank in the same as its rank as a set of vectors. A subconfiguration is any (labeled) subset of it .

For any subset C of the label set J we will associate the followings :

ConeA := {
∑
j∈C

λ j p j |λ j 
 0,∀ j ∈C }

and

relintA := {
∑
j∈C

λ j p j |λ j > 0,∀ j ∈C }

The above definitions help us to understand the following definition of polyhedral subdivision of a set of

vectors.

Definition 3.2.4. [22] A polyhedral subdivision of a vector configuration A is a collection ℜ of subconfig-

urations of A in Rd that satisfies the following conditions :

1. If C ∈ℜ then all the faces of C are also in ℜ ,

2.
⋃

C∈ℜ Cone(C ) ⊇ Cone(A) ,

3. relint(C )∩ relint(C
′
) �= � for C ,C

′ ∈ ℜ implies that C =C
′
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Remark 3.2.5. 1. The elements of a polyhedral subdivision ℜ are called cells. Cells of the same rank

as A are maximal. Cells of rank 1 are called rays of ℜ. A triangulation of A is a polyhedral subdivi-

sion whose cells are simplices.

2. A subdivision ℜ refines another one ℜ′
(written ℜ�ℜ′

) if every face of ℜ is a subset of some face of

ℜ′

In the following we recall the definition of the chamber complex of given set A = {a1, . . . , an} of non-

zero vectors in Rd follows from [9].

Definition 3.2.6. The chamber complex Γ(A) of A is defined to be the coarsest polyhedral complex that

covers Pos(A) and that refines all triangulations of A.

Note that the chamber complex is a polyhedral subdivision of a vector configuration contaning A

strictly possible. Now for a given point x0 ∈ Pos(A) we can associate the unique cell Γ(A, x0) of Γ(A) which

is containing x0 . This can be written:

Γ(A, x0) =⋂
{relintA′ |A′ ⊆ A, x0 ∈ relintA′ }

If σ ⊆ {1, . . . ,n} is such that the ai ’s for i ∈ σ are linearly independent, we will say that σ is indepen-

dent. We set Aσ := (ai )i∈σ and denote by Λσ the Z-module with base the columns of Aσ and ∂Pos(Aσ)

the boundary of Pos(Aσ) . When σ has d elements (i. e. is a maximal independent set), Λσ is a sublattice

of Zd .
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Let
∑

A be the set of all simplicial cones whose extremal rays are generated by d-linearly independent

column vectors of A . Then, following [23, end of section 3] the maximal chambers C of the chamber

complex of A are the connected components of Pos(A)−⋃
�∈∑

A
∂�. These chambers are open and convex.
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Figure 3.1: Triangulation of pentagonal cone for a 2-dimensional slice
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a1

Figure 3.2: The chamber complex with its 11-maximal chambers

Associated to each maximal chamber C there is an index set ∆(C ) := {σ ⊂ {1, . . . ,n} | C ⊆ Pos(Aσ)}

and σ ∈ ∆(C ) is called non-trivial if Gσ := Zd /Λσ �= 0, equivalently if det(Λσ) �= ±1 (Gσ is finite because
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C ⊆ Pos(Aσ)).

Now, we are ready to state the vector partition function theorem, which relies on the chamber decom-

position of Pos(A) ⊆Nd .

Theorem 3.2.7. (See [47, Theorem 1]) For each chamber C of maximal dimension in the chamber complex

of A, there exist a polynomial P of degree n−d, a collection of polynomials Qσ and functions Ωσ : Gσ\{0} →

Q indexed by non-trivial σ ∈∆(C ) such that, if u ∈NA∩C ,

ϕA(u) = P (u)+
∑

{Ωσ([u]σ).Qσ(u) : σ ∈∆(C ), [u]σ �= 0}

where [u]σ denotes the image of u in Gσ. Furthermore, deg(Qσ) = #σ−d.

Corollary 3.2.8. For each chamber C of maximal dimension in the chamber complex of A, there exists a

collection of polynomials Qτ for τ ∈Zd /Λ such that

ϕA(u) =Qτ(u), if u ∈NA∩C and u ∈ τ+ΛC .

where ΛC =∩σ∈∆(C )Λσ

Proof. The class τ of u modulo Λ determines [u]σ in Gσ =Zd /Λσ. The term of the right-hand side of the

equations in the above theorem is a polynomial determined by [u]σ, hence by τ.

Notice that setting Λ for the intersection of the lattices Λσ with σ maximal, the class of u mod Λ de-

termines the class of u mod ΛC , hence the corollary holds with Λ in place of ΛC .

It is important to know about the relation between the partion function associated to a list of vectors

in Zs and partion function associated to it’s sublist, because it help us to find some recursive formula to
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compute the partion functions. Let X be a list of vectors a1, · · · , an in Zs − {0}, in general for any aublis V

of X one has the following

ϕX (u) =ϕX−{V }(u)∗ϕV (u)

where ∗ denotes discrete convolution, more precisely (g ∗ f )(u) =∑
µ∈Zs g (u −µ) f (µ).

Lemma 3.2.9. Let X be a list of vectors x1, · · · , xn in Zs − {0} then the following recursive formula hols for

the vector partition function ϕX (u)

ϕX (u) =
∞∑

j=0
ϕX−{xi }(u − j xi )

Proof. Let V = xi be a sublist of X then by using the above formula

ϕX (u) =ϕX−{xi }(u)∗ϕ{xi }(u)

=∑
µ∈Zs ϕX−{xi }(u −µ)ϕ{xi }(µ)

=∑∞
j=0ϕX−{xi }(u − j xi )

By the above lemma we can do the new proof for the Hilbert function of standard graded polynomial

rings.

Proposition 3.2.10. Let S = k [x1, · · · , xn] be a polynomial ring over a field k and deg xi = 1 for 1 � i � n.

Then

HF (S;m) =




m +n −1

n −1



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Proof. First we can translate the Hilbert function of S into partition function associated to Xn where it

consists of repetitions n-times of 1, then by using induction on n. For the case of n=1 is clear. Now by

lemma3.2.9 we have

HF (S;m) =ϕXn (m) =
∞∑

j=0
ϕXn−1 (m − j )

we now use our assumption that the formula is true for n −1 and Pascal formula

ϕXn (m) =
∞∑

j=0




m − j +n −2

n −2


=

∞∑
j=0

{


m − j +n −1

n −1


−




m − j +n −2

n −1




}
=




m +n −1

n −1




3.3 Lattice points problem and Barvinok algorithm

Definition 3.3.1. [7] A rational polyhedron P ⊂ Rd is the set of solutions of a finite system of linear in-

equalities with integer coefficient :

P = {x ∈Rd :< ci , x >�βi f or i = 1, · · · ,m}

A bounded rational polyhedron is called a polytope. A polytope P ⊂ Rd is called integer polytope if its

vertices are points from Zd

First we recall the definition of a polytope and a very classical of G.Pick[1899] for a two-dimensional

polygone :

Proposition 3.3.2. [G.Pick] Suppose that P ⊂R2 is an integer polygon. Then the number of integer points

inside P is :

|P ∩Z2| = ar ea(P )+ |∂P ∩Z2|
2

+1
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One of important generalizations of the Pick formula is the theorem of Ehrhart which shows the

polynomial behavior of lattice point enumeration independ of the dimension.

Theorem 3.3.3. [Ehrhart 1977] Let P ⊂Rd be a polytope where its vertices have a rational coordinate. Let

nP = {nx|x ∈ P } for a positive integer n then the function #(nP ∩Zd ) is a quasi-polynomial of degree dimP

. Further more if C is an integer where C P is an integer polytope, then C is a period of #(nP ∩Zd ) . In the

particular case where P is an integer polytope , the Ehrhart polynomial is as follows :

#(nP ∩Zd ) = q(n) wher e q(n) = vol (P )nd +ad−1nd−1 +·· ·+a1x +1.

In the general case for any rational polyhedron P ⊂Rn we consider following generationg function:

f (P,x) =
∑

m∈P∩Zn

xm

where m = (m1, · · · ,mn) and xm = xm1
1 · · ·xmn

n .

3.3.1 Valuations and generating functions of rational polyhedra

To explain berifly the Barvinok method first we should define the vertex cone and generating function

associated to each polytope.

Definition 3.3.4. For a set A ⊂Rd , the indicator function of A defined by

[A] : Rd →R

[A](x) =





1 if x ∈ A

0 if x ∉ A



3.3. LATTICE POINTS PROBLEM AND BARVINOK ALGORITHM 37

Write the vector space ℑ(Rd ) over Q generated by the indicator functions of all polyhedra inside Rd also

ℑc (Rd ) ( ℑk (Rd ) )denote for the subspace spanned by the indicator functions of polytopes (respectively.

cones ) in Rd .

Remark 3.3.5. The pointwise multiplication of indicator functions make’s ℑ(Rd ) a commutative algebra

and ℑc (Rd ),ℑk (Rd ) are subalgebra of ℑ(Rd ).

Definition 3.3.6. A linear transformation Ψ : ℑ(Rd ) →V where V is a vector space over Q, is called valu-

ation.

Theorem 3.3.7. [7] There is a map Φ which , to each rational polyhedron P ⊂ Rd associates a rational

function f (P ;x) in the d complex variables x ∈Cd such that the following properties are stisfied:

(1) The map Φ is a valuation.

(2) If u +P is a translation of P by an integer vector u ∈Zd , then

f (u +P ;x) = xu f (P ;x).

(3) We have

f (P,x) =
∑

m∈P∩Zn

xm

for any x ∈Cd such that the series converges absolutely.

(4) If P contains a straight line then f (P,x) ≡ 0.
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Definition 3.3.8. [7] Let P ⊂ Rd be a polyhedron and let v ∈ P be a vertex of P. The tangent cone K =

cone(P, v) of P at v is defiend as follows:

suppose that

P = {x ∈Rd :< ci , x >�βi f or i = 1, · · · ,m}

is a representation of P , where ci ∈ Rd and βi ∈ R. Let Iv = {i :< ci , v >= βi } be the set of constraints that

are active on v . Then

K = cone(P, v) = {x ∈Rd :< ci , x >�βi f or i ∈ Iv }

Lemma 3.3.9. [4]Let K ⊂ Rd be a pointed rational cone. Then K = co(w1, · · · , wn) for some w1, · · · , wn ∈

Zd − {0}. Let us define

WK = {x ∈Cd | |xwi | < 1 f or i = 1, · · · ,n}.

Then WK is a non-empty open set and for every x ∈ WK , the series
∑

m∈K∩Zn xm converges to a rational

function f (K ,x) of the type

f (K ,x) =
∑
i∈I

εi
xvi

(1−xui 1 ) · · · (1−xui d )

where εi ∈ {1,−1}, vi ∈Zd and ui j ∈Zd − {0} for all i and j .

Now by Brion’s theorem, the generating function of the polytope P is equal to the sum of the generat-

ing functions of its vertex cones, more precisely

f (P ;x) =
∑

m∈P∩Zn

xm =
∑

v∈Ω(P )
f (K ;v)

where Ω(P ) is the set of vertices of P .
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Example 3.3.10. [55]Consider the quadrilateral with the vertex V1 = (0,0), V2 = (5,0), V3 = (4,2), and

V4 = (0,2). Then wen obtain the following rational functions for each vertex :

f (K ,V1) = 1

(1−x1)(1−x2)
, f (K ,V1) = (x5

1 +x4
1 x2)

(1−x−1
1 )(1−x2

2 x−1
1 )

f (K ,V3) = (x4
1 x2 +x4

1 x2
2)

(1−x−1
1 )(1−x1x−2

2 )
, f (K ,V4) = x2

2

(1−x−1
2 )(1−x1)

3.3.2 Decomposing a rational cone into unimodular cones

In order to finding the generation function of arbitrary pointed cones Stanly give the formula by using

a triangulation of a rational cone into simplicial cones but instead in 1994 Barvinok proved the general

fact that every rational poolyhedral cone can be triangulated into uimodular cones as follows:

Theorem 3.3.11. [7] Fix the dimension d . Then , there exists a polynomial time algorithm, for a rational

polyhedral cone K ⊂Rd , which computes unimodular cones Ki , i ∈ I = {1, · · · ,r } , and numbers ε ∈ {−1,1}

such that

[K ] =
∑
i∈I

ε[Ki ].

Remark 3.3.12. By having the above decomposition of cones we can write f (K ,x) = ∑
i∈I εi f (Ki ,x), as

we have an explicit formula for the unimodular case so we can calculate an explicit formula for rational

cones , it is a key idea of the section3.5.

Theorem 3.3.13. [7] Fix the dimension d . There exists a polynomial time algorithm, for a rational poly-

hedron P ⊂Rd ,

P = {x ∈Rd :< ci , x >�βi f or i = 1, · · · ,m} wher e ci ∈Zd and βi ∈Q

computes the generation function f (P,x) =∑
m∈P∩Zn xm as follows

f (P,x) =
∑
i∈I

εi
xai

(1−xbi 1 ) · · · (1−xbi d )
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where εi ∈ {1,−1}, ai ∈Zd and bi 1, · · · ,bi d form a basis of Zd for each i .

Suppose that the vectors ci for 1 � i � m are fixed and the βi vary in such a way that the combinatorial

structure of polyhedron P = P (β) stays the same . Then the exponents bi j in the denominators remain the

same , whereas the exponents ai = ai (β) in the numerator change with β ∈Qm as

ai =
d∑

i=1
�li j (β)�bi j

Where the li j : Qm :→Q are linear functions. If β is such that P (β) is an integer polytope, then li j ∈ Z

for each pair i,j .
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b1

b2

u1
1v1 L3

2E2

E1

Figure 3.3: Unimodular decomposition.

3.3.3 Decomposition of two-dimensional cones and continued fraction

Here we recall the algorithm of continued fraction expansion of a real number r as follows:

we can write r as r = �r �+ρ(r ) where 0 � ρ(r ) < 1 and let r0 = �r �,

if ρ(r ) = 0 we stop the algorithm ,

if not we put a as 1
ρ(r ) then we repeat as above. At the end we represent by it’s continued fraction as
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r = [r0;r1, · · · ,rn , · · · ]

Example 3.3.14. Let r = −42
10 then by the above we write

−42

10
=−5+ 1

1+ 1
3+ 1

1

so we can write the expansion of r as [−5;1,3,1].

Theorem 3.3.15. [4]Let K ⊂R2 be a cone generated by vectors (1,0) and (q, p) where q and p are coprime

positive integers. Let p
p = [a0, · · · , an] , we define the cone Ki for i =−1,0, · · · ,n as follows :

consider

pi

qi
= [a0, · · · , ai ] f or i = 0, · · · ,n.

Let K−1 be the cone generated by (1,0) and (0,1) , K0 as the cone generated by (0,1) and (1, p0) , and

Ki as the cone generated by (qi−1, pi−1) and (qi , pi ) for i = 1, · · · ,n . Then Ki are unimodular cones for

i =−1,0,1, · · · ,n and we can write K as follows :

[K ] =





∑n
i=−1(−1)i+1[Ki ] if n i s odd

∑n
i=−2(−1)i+1[Ki ] if n i s even

where K−2 is the ray emanating from the origin in the direction of (qn , pn).

Remark 3.3.16. It is not hard to see that an arbitrary 2-dimensional cones can be represented as a com-

bination of two 2-dimensional cones each of them generated by (1,0) and some other integer vector, and

one 1-dimensional cone.

(1) In the above theorem if q < 0, we let K1 be the cone generated by (1,0) and (−q,−p) then the indicators

[K ] and [K1] differ by a halfplane and some boundary rays.
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a

b

c

= + -

Figure 3.4: changing into the cone generated by (1,0) and some other integer vector

(2) I the above theorem if p < 0 we let K1 be the cone generated by (1,0) and (q,−p) then f (K1, (x1, x2)) =

f (K2, (x1, x−1
2 )) .

3.4 Hilbert functions of non-standard bigraded rings

Let S = k[y1, . . . , ym] be a Zd−1-graded polynomial ring over a field and let I = ( f1, . . . , fn) be a graded

ideal, with fi homogeneous of degree di . To get information about the behavior of i -syzygy module

of I t as t varies, we pass to Rees algebra R I = ⊕t≥0I t which is a (Zd−1 ×Z)-graded algebra such that

(R I )(µ,n) = (I n)µ.

Recall that R I is a graded quotient of R := S[x1, . . . , xn] with grading extended from the one of S by

setting deg(a) := (deg(a),0) for a ∈ S and deg(x j ) := (d j ,1) for all j . As noticed in [6], if G• is a Zd -graded

free R-resolution of R I , then, setting B := k[x1, . . . , xn] = R/(y1, . . . , ym),

TorS
i (I t ,k)µ = Hi (G• ⊗R B)(µ,t ).

The complex G• ⊗R B is a Zd -graded complex of free S-modules. Its homology modules are therefore
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finitely generated Zd -graded S-modules, on which we will apply results derived from the ones on vector

partition functions describing the Hilbert series of S.

As an example, we describe the chamber complex associated to the matrix corresponding to the de-

grees (di ,1), when d = 1 (i.e. di ∈N).

Lemma 3.4.1. Let

A =




d1 . . . dn

1 . . . 1




be a 2×n-matrix with entries in N such that d1 ≤ . . . ≤ dn. Then the chambers corresponding to Pos(A) are

positive polyhedral cones (∆) where ∆ is generated by {(di ,1), (di+1,1)} for all di �= di+1 where i runs over

{1, . . . ,n}.

Proof. Since any arbitrary pair {(di ,1), (d j ,1)} makes an independent set whenever di �= d j , the common

refinement consists of disjoint union of open convex polyhedral cones generated by {(di ,1), (di+1,1)} for

all i = 1, . . . ,n s.t.di �= di+1.

Now we are ready to prove the main result of this section.

Proposition 3.4.2. Let B = k[T1, . . . ,Tn] be a bigraded polynomial ring over field k with deg(Ti ) = (di ,1).

Assume that the number of distinct di ’s is r ≥ 2. Then there exist a finite index sublattice L of Z2 and

collections of polynomials Qi j of degree n−2 for 1 ≤ i ≤ r −1 and 1 ≤ j ≤ s such that for any (µ,ν) ∈Z2∩Ri

and
(
µ,ν

)≡ g j mod L in Z2/L := {g1, . . . , gs},

HF (B , (µ,ν)) =Qi j (µ,ν)

where Ri is the convex polyhedral cone generated by linearly independent vectors {(di ,1), (di+1,1)}.
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Furthermore, Qi j (µ,ν) =Qi j (µ′,ν′) if µ−νdi ≡µ′ −ν′di mod (det(L)).

Proof. Let

A =




d1 . . . dn

1 . . . 1




be a 2×n-matrix corresponding to degrees of Ti .

The Hilbert function in degree u = (µ,ν) is the number of monomials T α1
1 . . .T αn

n such that α1(d1,1)+

. . .+αn(dn ,1) = (µ,ν). This equation is equivalent to the system of linear equations

A.




α1

...

αn



= ( µ ν ).

In this sense HF (B , (µ,ν)) will be the value of vector partition function at (µ,ν). Assume that (µ,ν) be-

longs to the chamber Ri which is the convex polyhedral cone generated by {(di ,1), (di+1,1)}. By 3.2.8, we

know that for (µ,ν) ∈ Ri and (µ,ν) ≡ g j mod (detL),

ϕA(µ,ν) =Qi j (µ,ν). (3.4.1)

Notice that in the proposition 3.4.2, if moreover we suppose that di �= d j for all i �= j , then the Hilbert

function in degree (µ,ν) will also be the number of possible ways to reach from (0,0) to (µ,ν) in Z2 but

it is not necessarily correct when we have equalities between some of degrees. For example if one has

di = di+1 < di+2, so the independent sets of vectors {(di ,1), (di+2,1)} and {(di+1,1), (di+2,1)} generate the

same chamber and the number of possible ways to reach from (0,0) to (µ,ν) is less than HF(B , (µ,ν)).

In the following example, we are going to give a formula for Hilbert function of a non-standard graded

polynomial ring in the case of three indeterminates which is a special case of formula done by Xu in [54].
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Example 3.4.3. Let B = k[T1,T2,T3] be a polynomial ring over field k and degTi = (di ,1) for 1 ≤ i ≤ 3

such that di −di+1 � 0 for i = 1,2. Set Yi j = di −d j and suppose that gcd(Y12,Y13,Y23) = 1. Then there

exist fi j , gi j such that

f12Y23 + g12Y23 = gcd(Y23,Y13) gcd( f12Y13 + g12Y23,Y12) = 1,

f13Y12 + g13Y23 = gcd(Y12,Y23) gcd( f13Y12 + g13Y23,Y13) = 1,

f23Y13 + g23Y12 = gcd(Y13,Y12) gcd( f23Y13 + g23Y12,Y23) = 1,

with (
f12Y13 + g12Y23

)−1 (
f12Y13 + g12Y23

)≡ 1 mod Y12

(
f13Y12 + g13Y23

)−1 (
f13Y12 + g13Y23

)≡ 1 mod Y13

(
f23Y13 + g23Y12

)−1 (
f23Y13 + g23Y12

)≡ 1 mod Y23.

and f12, g12, f13, g13, f23 and g23 can be calculated by an Euclidean algorithm.

Our chambers are regions

Ωi = {(µ,ν) | νdi >µ> νdi+1}

for i = 1,2.

Then for (n1,n2) belonging to the positive cone generated by vectors {(d1,1), (d2,1), (d3,1)}. When (n1,n2)t ∈

Ω1 ∩Z2, it is proved in [54, Theorem 4.3] that

HF(B , (n1,n2)) = n2d1−n1
Y12Y13

+1

−
{

( f12Y13+g12Y23)−1(n2( f12d1+g12d2)−n1( f12+g12)
Y12

}

−
{

( f13Y12+g13Y23)−1(n2( f13d1+g13d3)−n1( f13+g13))
Y13

}
.
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3.5 Explicit formula for non-standard Hilbert function

In this section we want to give an explicit formula for non standard Hilbert functions of polynimial ring

in low dimensions by the using theory of lattice points in the convex polytope.

3.5.1 Variable Polytopes of partition function

Let ei be the standard basis of the space Rr for 1 � i � r and linear map f : Rr →R2 defined by f (ei ) = vi .

Let a ∈R2 , we define the following convex polytope:

P (a) := f −1(a)∩Rr

0 = {x ∈Rr |Ax = a; x 
 0}

Where A is the matrix of f .

Proposition 3.5.1. [16] Let A = {a1, · · · , an} be a set of vectors in Rd . If b is in the interior of Pos(A) :=

{
∑n

i=1λi ai ∈Rd |λi ≥ 0,1 ≤ i ≤ n}, the polytope P (b) has dimension n −d .

Definition 3.5.2. Let A = {a1, · · · , an} be a set of vectors in Rd .

1. Let b ∈ Pos(A). A basis ai1 , · · · , ais extracted from A with respect to which b has positive coordinares

called b-positive.

2. A point c ∈ Pos(A) is called strongly regular if there is no sublist Y ⊂ A lying in a proper vector sub-

space , such that c ∈ Pos(Y ). A point in Pos(A) is called strongly singular if it is not strongly regular

.
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For using the Barvinok algorithm on the variable polytope P (b) we need to know about it’s structures

as vertices and faces which done by the following theorem .

Theorem 3.5.3. [16] Let b ∈ Pos(A) be a strongly regular point . Then

(i) The vertices of P (b) are of the form PY (b) = {x ∈Rr |Y x = a; x 
 0} with Y a b-positive basis.

(ii) The faces of P (b) are of the form PZ (b) where Z runs over the subsets of A containing a b-positive

basis. |Z |−d is the dimension of PZ (b) and positive basis in Z correspond to vertices of PZ (b)

Now we consider the polytope P (b) such that A is




d1 d2 d3 d4

1 1 1 1


 for d1 < d2 < d3 < d4 then by

the method of Barvinok we want to calculate the generating function of the tangent cones of the poly-

topes depending on b, before that we should mention that the polytope P (b) associated to the matrix A

is not full dimensional so to use the Barvinok metod we need to transform P (b) to polytope Q which is

full dimensional and the integer points of Q are in one-to-one correspondence to the integer points of

P (b). The following procedure describes how it can be done:

1. let P = {x ∈Rn |Ax = a,B x � b} be a polytope related to full row-rank d ×n matrix A.

2. Find the generators {g1, · · · , gn−d } of the integer null-space of A.

3. Find integer solution x0 to Ax = a.

4. Substituting the general integer solution x = x0 +∑n−d
i=1 βi gi into the inequalities B x � b.

5. By Substitution of (4) we arrive at a new system Cβ � c which defines the new polytope Q = {β ∈

Rn−d |Cβ� c}.
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By using above procedure we will associat to the polytope P (b) the full dimensional polytope Q in the

following lemma:

Lemma 3.5.4. Let A =




d1 d2 d3 d4

1 1 1 1


 for d1 < d2 < d3 < d4 then there is a one to one correspondence

to the integer points of P (b) and Q ⊂R2 and we have the followings about Q:

1. Q = {
(λ1,λ2) ∈R2|λ1(d2 −d1) � 0; λ2(d2 −d1) � 0;

λ1(d1 −d4)+λ2(d1 −d3)+ d1b2−b1
d2−d1

� 0; λ1(d4 −d2)+λ2(d3 −d2)+ b1−d2b2
d2−d1

� 0 f or b1,b2 > 0
}
,

2. with the following vertices :

q1 = ( d3b2−b1
(d2−d1)(d4−d3) , ( b1−d4b2

(d2−d1)(d4−d3) ) ,

q2 = ( d2b2−b1
(d2−d1)(d4−d2) ,0) ,

q3 = (0, d2b2−b1
(d2−d1)(d3−d2) ) ,

q4 = ( b1−d1b2
(d2−d1)(d1−d4) ,0) ,

q5 = (0, b1−d1b2
(d2−d1)(d1−d3) ) ,

q6 = (0,0),

3. The generation function of Q in the first chamber C1:

fC1 (Q,x) = 1
(1−x−1

1 )(1−x−1
2 )

+ x
�s1�
1

(1−x1)(1−x−1
2 )

− x
�s1�
1 x

−(�a0 s1�+a0�s1�)
2

(1−x−1
2 )(1−x1x

−a0
2 )

+

x
(�(a0 a1+1)s1�−a1�a0 s1�)
1 x

−(a0�(a0 a1+1)s1�−(a0 a1+1)�s1�)
2

(1−x1x
−a0
2 )(1−x

a1
1 x

−(a1 a0+1)
2 )

+ x
−�s2�
2

(1−x−1
2 )(1−x1x

−a0
2 )

−
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x
(�−a1 s2�+a1�s2�)
1 x

−(a0�−a1 s2�+(a0 a1+1)�s2�)
2

(1−x1x
−a0
2 )(1−x

a1
1 x

−(a1 a0+1)
2 )

Where s1 := b1−d1b2
(d2−d1)(d1−d4) and s2 := b1−d1b2

(d2−d1)(d1−d3) .

Proof. (1) It is not hard to see that a generators of integer null-space of A =




d1 d2 d3 d4

1 1 1 1


 are −→g1 =

(d2−d4,d4−d1,0,d1−d2) and −→g2 = (d2−d3,d3−d1,d1−d2,0) and ( b1−d2b2
(d1−d2) , d1b2−b1

(d1−d2) ,0,0) is the solution of

linear system then considering the five steps in which describe before this lemma we can get supporting

half planes of Q. (2) can easily calculated from (1). As we suppose that b ∈ C1 then only vertices Q6,Q4

and Q5 are active, then we associate to each one a tangent cone as follows:

Cone(Q, q5) = co((1,0), (d3 −d1,d1 −d4)),

Cone(Q, q4) = co((0,1), (d1 −d3,d4 −d1)),

Cone(Q, q4) = co((−1,0), (0,−1)).

The first two tangent cones are necessarily unimodular so as our cone are 2-dimensional we can decom-

pose it to unimodular cone by continued fraction. For simplicity of calculations suppose that d4−d1
d3−d1

=

[a0; a1] = a0 + 1
a1

then

[Cone(Q, q5)] = [K−1 = co((1,0), (0,1))]+ [K0 = co((0,1), (1, a0))]+ [K1 = co((1, a0), (a1, a0a1 +1))]
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using the 3.3.13 and 3.3.16 we can decompose the generating function of Cone(Q, q5)

f (Cone(Q, q5), (x1, x2)) = f (K−1, (x1, x−1
2 ))+ f (K0, (x1, x−1

2 ))+ f (K1, (x1, x−1
2 ))

we can decompose Cone(Q, q4) in the same way [Cone(Q, q4)] = [S−1 = co((1,0), (0,1))]+[S0 = co((0,1), (1, a0))]+

[S1 = co((1, a0), (a1, a0a1 +1))]− [S2 = co((1,0), (0,1))]

f (Cone(Q, q4), (x1, x2)) = f (S0, (x1, x−1
2 ))+ f (K1, (x1, x−1

2 ))

So (3) can be achieved from 3.3.13.
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Remark 3.5.5. In the above polytope Q when we fix a chamber there are some vertices which are inactive,

more precisely if the point b = (b1,b2) is in the first chamber then b1 −d1b2 
 0 and d2b2 −b1 
 0 so only

vertices Q6,Q5,Q4 are active.

Now we are able to optain the explicit formula for non-standard Hilbert function by above lemma.

Theorem 3.5.6. Let B = k[T1, . . . ,T4] be a graded polynomial ring over a field k with degTi = (di ,1) and

di �= d j for 1 � i � 4 . Suppose that d4−d1
d3−d1

= a0 + 1
a1

and set s1 := b1−d1b2
(d2−d1)(d1−d4) and s2 := b1−d1b2

(d2−d1)(d1−d3) . Then

the Hilber function of B at degree (b1,b2) ∈C1 given by following formula:

HF (B ; (b1,b2)) =
{

(a0+2)(a0+1)
2(a0−1) + 4a0(a0+2)−3a2

0
12 + a0(a0+2)

2(a0−1)

}
+

{
(a0�s1�+2)(a0�s1�+1)

2(a0−1) + a0(a0�s1�+2)
2(a0−1) + 4a0(a0+2)−3a2

0
12

}

{
4a0(a0+2)−3a2

0
6 + a0(a0�s1�+2�a0s1�+1)(a0�s1�+2�a0s1�+1)

2(a0−1) + a0(a0+2)(a0+1)
2(a0−1) + a0(a0+2)

2(a0−1) +(a0+2)(a0�s1�+2�a0s1�)+ a0(a0�s1�+2�a0s1�)
2(a0−1)

}
+

{
(4a0(a0+2)−3a2

0)(2a0a1+3)
12(2a0a1+1) + (a0�(a0a1+1)s1�)(a0�(a0a1+1)s1�+1)

2(a0−1) + (4(a0a1+2)(a0a1+4)−3(a0a1+2)2)((2a0−1))
12(a0−1) +

(a0a1�s1�+2�s1�+a0a1+2)(a0a1�s1�+2�s1�+a0a1+1)(a2
0 a1+2a0−1)

(a0−1)(a0a1+1) + (a0a1�s1�+2�s1�+a0a1+2)a0
2(a0−1) +

(a0a1�s1�+2�s1�+a0a1+2)((a0�(a0a1+1)s1�))
1 + (a0a1�s1�+2�s1�+a0a1+2)(a0a1+2)

2(a0a1+2) + (a2
0�(a0a1+1)s1�)

2(a0−1)

a0(a0a1+2))
2(a0−1)(a0a1+1) + (a0�(a0a1+1)s1�)(a0a1+2)

2(a0a1+1)

}
+

{
a0(a0+2)(a0+1)

2(a0−1) + a0(2�s2�)(2�s2�+1)
2(a0−1) + 4a0(a0+2)−3a2

0
6
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a0(a0+2)
2(a0−1) + 2(a0+2)�s2�

1 + 2a0�s2�
2(a0−1)

}
+

{
(a0a1+1)(a0a1+2)(a2

0 a1+2a0−1)
2(a0−1)(a0a1+1) + (4a0(a0+2)−3a2

0)(2a0a1+3)
12(2a0a1+1) +

(2a0−1)(4(a0a1+2)(a0a1+4)−3(a0a1+2)2)((2a0−1))
12(a0−1) + (a0�a1s2�+2�s2�+a0a1�s2�)(a0�a1s2�+2�s2�+a0a1�s2�+1)(a2

0 a1+2a0−1)
2(a0−1)(a0a1+1)

a0(a0a1+2)
2(a0−1) + (a0a1+2)2

2(a0a1+1) + (a0a1+2)(a0�a1s2�+2�s2�+a0a1�s2�)
1 + a0(a0a1+2))

2(a0−1)(a0a1+1) + a0(a0�a1s2�+�s2�+a0a1�s2�)
2(a0−1

(a0a1+2)(a0�a1s2�+2�s2�+a0a1�s2�)
2(a0a1+2)

}
.

Proof. If b = (b1,b2) ∈ C1 then it is clear from 3.5.4 that HF (B , (b1,b2)) = fC1 (Q,(1,1)) however f has a

pole at x = (1,1) , it is analytic at x = (1,1). Because of cancelation of the coefficients of negative powers

in the Luarent series at x = (1,1) so the value at x = (1,1) it is the sum of the cofficients of the constant term

in Laurent series of each term in 3.5.4(3), to be able of computions first we change f from multivariate

to univariate by following the Yoshida at al.[24] method.

Choose the vector η = (a0,2) which is not orthogonal to any generators of the vertex cones of Q and

variable substituition xi = (s +1)ηi for i = 1,2 then we obtain:

fC1 (Q, ((s +1)a0 ), (s +1)2)) = (s+1)a0+2

(1−(s+1)a0 )(1−(s+1)2)− (s+1)a0�s1�+2

(1−(s+1)a0 )(1−(s+1)2) + (s+1)a0+2−2�a0 s1�−a0�s1�
(1−(s+1)a0 )(1−(s+1)2)+

(s+1)−a0�(a0 a1+1)s1�+a0 a1�s1�+2�s1�+a0 a1+a0+2

(1−(s+1)a0 )(1−(s+1)a0 a1+2) − (s+1)a0+2+2�s2�
(1−(s+1)a0 )(1−(s+1)2) + (s+1)−a0�a1 s2�−a0 a1�s2�−2�s2�+a0 a1+a0+2

(1−(s+1)a0 )(1−(s+1)a0 a1+2)



54 CHAPTER 3. NON STANDARD HILBERT FUNCTION

Now we using following general expansions:

(s +1)n ≡ 1+ns + n(n −1)

2
s2 mod s3

and

1

s +2
≡ 1

2
− 1

4
s + 1

4
s2 mod s3

we obtain:

(s +1)a0+2

(1− (s +1)a0 )(1− (s +1)2)
≡ (1+ (a0 +2)s + (a0 +2)(a0 +1)s2

2
)(

1

a0 −1
+ a0s

2(a0 −1)
+ (4a0(a0 +2)−3a2

0)s2

12
)

,

(s +1)a0�s1�+2

(1− (s +1)a0 )(1− (s +1)2)
≡ (1+(a0�s1�+2)s+(

(a0�s1�+2)(a0�s1�+1)

2
)s2)(

1

a0 −1
+ a0s

2(a0 −1)
+ (4a0(a0 +2)−3a2

0)s2

12
)

,

(s +1)a0+2−2�a0s1�−a0�s1�

(1− (s +1)a0 )(1− (s +1)2)
≡ (1+ (a0 +2)s + (a0 +2)(a0 +1)s2

2
)(

1

a0 −1
+ a0s

2(a0 −1)
+ (4a0(a0 +2)−3a2

0)s2

12
)

(1+(a0�s1�+2�a0s1�)s+ (1+a0�s1�+2�a0s1�)(a0�s1�+2�a0s1�)

2
s2)(

1

a0 −1
+ a0s

2(a0 −1)
+ (4a0(a0 +2)−3a2

0)s2

12
)

,

(s +1)−a0�(a0a1+1)s1�+a0a1�s1�+2�s1�+a0a1+a0+2

(1− (s +1)a0 )(1− (s +1)a0a1+2)
≡ (1+ (a0a1�s1�+2�s1�+a0a1 +a0 +2)s+
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(a0a1�s1�+2�s1�+a0a1 +a0 +2)(a0a1�s1�+2�s1�+a0a1 +a0 +1)

2
s2)

(
1

a0 −1
+ a0s

2(a0 −1)
+ (4a0(a0 +2)−3a2

0)s2

12
)(1+(a0�(a0a1+1)s1�)s+ (a0�(a0a1 +1)s1�)(a0�(a0a1 +1)s1�+1)

2
s2)

(
1

(a0a1 +1)
+ (a0a1 +2)

2(a0a1 +1)
s + 4(a0a1 +2)(a0a1 +4)−3(a0a1 +1)2

12
s2)

,

(s +1)a0+2 +2�s2�
(1− (s +1)a0 )(1− (s +1)2)

≡ (1+ (a0 +2)s + (a0 +2)(a0 +1)

2
s2)(

1

a0 −1
+ a0

2(a0 −1)
s + 4a0(a0 +2)−3a2

0

12
s2)

(1+2�s2�s + (2�s2�)(2�s2�+1)

2
s2)

and

(s +1)−a0�a1s2�−a0a1�s2�−2�s2�+a0a1+a0+2

(1− (s +1)a0 )(1− (s +1)a0a1+2)
≡ (1+(a0a1+2)s+ (a0a1 +2)(a0a1 +1)

2
s2)(

1

a0 −1
+ a0

2(a0 −1)
+4a0(a0 +2)−3a2

0

12
s2)

(
1

a0a1 +1
+ a0a1 +2

2(a0a1 +2)
s + 4(a0a1 +2)(a0a1 +4)−3(a0a1 +2)2

12
s2)

(1+ (a0�a1s2�+a0a1�s2�+2�s2�)s + (a0�a1s2�+a0a1�s2�+2�s2�)(a0�a1s2�+a0a1�s2�+2�s2�+1)

2
s2)

So the number of lattice points in the polytope Q is given by the sum of the coefficients of s2 which is the

final formula.
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Q0Q4

Q5

Figure 3.5: transformed polytope in R2 related to the first chamber
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ASSYMPTOTIC BEHAVIOR BETTI NUMBER OF POWERS

OF IDEALS

4.1 Kodiyalam Polynomials

Let R be a Noetherian local ring with maximal ideal m and residue field k. Let I be a proper ideal of

R. Kodiyalam in [33] proved the polynomial behavior of Betti number and Bass number of a finitely

generated graded module as follows :

Theorem 4.1.1. Let S = ⊕
n
0 Sn be a Noetherian graded ring generated as an S0-algebra by S1 and

with S0 local with maximal ideal m. Let M = ⊕
n
0 Mn be a finitely generated graded S -module. Then

both β
S0

i (Mn) and µi
S0

(Mn) are polynomials for n � 0 and for any i 
 0. The degrees of those polynomials

are at most dim( M
mM )−1 .

57



58 CHAPTER 4. ASSYMPTOTIC BEHAVIOR BETTI NUMBER OF POWERS OF IDEALS

In the case where M = ⊕
n
0 I n the polynomials P i (k) = βi ( R

I k ) = dimTorR
i ( R

m , R
I k ) are called the

Kodiyalam Polynomials of I for k � 0 and i 
 0 .

One of the above theorem’s outcomes is about projective and injective dimensions of R
I k which is proved

first by Brodmann[12] .

Theorem 4.1.2. Let R be a Noetherian local ring with maximal ideal m. Let M be a finitely generated

R-module and M =⊕
n
0 I n M. Then both prR ( M

I n M ) and i dR ( M
I n M ) stabilizes for k 
 0.

Example 4.1.3. [20] Let I = (x3, x2 − y z, y4 + xz3, x y − z2) ⊂ R = k
[
x, y, z

]
, the Kodiyalam polynomials of

I are as follows:

P1(I )(k) = (k +1)2 , P2(I )(k) = (
5

2
k + 7

2
)k , P3(I )(k) = 3

2
k(k +1) .

Kodiyalam asked in [34] that " is it true that polynomials Pi (I )(n) for � 0 either vanishes or has degree

l (I )−1 ? " , then J. Herzog and V. Welker proved in [20] the following result about degrees of Pi (I )

Proposition 4.1.4. l −1 = degP1(I )(k) 
 P2(I )(k) 
 ·· · 
 Pn(I )(k).

In fact, the Kodiyalam polynomials is explained asymptotic behavior of total Betti numbers of powers

of ideals. More generally, in the next section, we will study the asymptotic behavior of graded Betti num-

bers of powers of homogeneous ideals.
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4.2 The general case

Before studying the graded Betti numbers of powers of ideals let me recall the result in [6] about the im-

portent case where the generators of the ideal I have the same degree.

Theorem 4.2.1. Let R = S[T1, . . . ,Tr ] be a G×G ′-graded polynomial extension of S with degG×G ′(a) ∈G×0

for all a ∈ S and degG×G ′(T j ) ∈ 0×G ′ for all j . Let M be a finitely generated G ×G ′-graded R-module and

let i be an integer. Assume that i = 0 or A is a Noetherian ring. Then

1. There exists a finite subset ∆i ⊆G such that, for any t , TorS
i (M(∗,t ), A)δ = 0 for all δ �∈∆i .

2. Assume that G ′ = Zs . For δ ∈ ∆i , TorS
i (M(∗,t ), A)δ = 0 for t � 0 or TorS

i (M(∗,t ), A)δ �= 0 for t � 0. If,

furthermore, A → k is a ring homomorphism to a field k, then for any j , the function

dimk TorA
j (TorS

i (M(∗,t ), A)δ,k)

is polynomial in the ti s for t � 0, and the function

dimk TorS
i (M(∗,t ),k)δ

is polynomial in the ti s for t � 0.

Now we return to the main result on Betti numbers of powers of ideals. We can treat without any fur-

ther effort the case of a collection of graded ideals and include a graded module M . Hence, we will study

the behaviour of dimk TorR
i (M I t1

1 · · · I ts
s ,k)µ for µ ∈ Zp and t � 0. To this aim, we first use the important

fact that the module

Bi :=⊕t1,...,tp TorR
i (M I t1

1 · · · I ts
s ,k)
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is a finitely generated (Zp ×Zs)-graded ring, over k[Ti , j ] setting deg(Ti , j ) = (deg( fi , j ),ei ) with ei the i -th

canonical generator ofZs and fi , j ’s minimal generators of Ii . Hence, TorR
i (M I t1

1 · · · I ts
s ,k)µ = (Bi )µ,t1e1+···+ts es .

The following result applied to Bi will then give the asymptotic behavior of Betti numbers. In the par-

ticular case of one Z-graded ideal, we will use it to give a simple description of this eventual behaviour.

Let ϕ : Zn →Zd with ϕ(Nn) ⊆Nd be a positive Zd -grading of R := k[Ti , j ]. Set Zn := ∑n
i=1Zei , let E be

the set of d-tuples e = (ei1 , ...,eid ) such that (ϕ(ei1 ), ...,ϕ(eid )) generates a lattice Λe in Zd , and set

Λ :=∩e∈EΛe , sΛ : Zd can �� Zd /Λ .

Denote by Ci , i ∈ F , the maximal cells in the chamber complex associated to ϕ. One has

Ci = {ξ | Hi , j (ξ) 
 0, 1 � j � d}

where Hi , j is a linear form in ξ ∈Zd .

Proposition 4.2.2. With notations as above, let B be a finitely generated Zd -graded R-module. There exist

convex sets of dimension d in Rd of the form

∆u = {x | Hi , j (x) 
 au,i , j ,∀(i , j ) ∈Gu} ⊆Rd

for u ∈U , U finite, with au,i , j = Hi , j (a) for a ∈∪� SuppZd (TorR
�

(B ,k)), Gu ⊂ F × {1, . . . ,d} and polynomials

Pu,τ for u ∈U and τ ∈Zd /Λ such that:

dimk (Bξ) = Pu,sΛ(ξ)(ξ), ∀ξ ∈∆u ,

and dimk (Bξ) = 0 if ξ �∈ ∪u∈U∆u.

Proof. By Proposition 2.1.16, there exists a polynomial κB (t1, . . . , td ) with integral coefficients such that

H(B ; t ) = κB (t )H(R; t )
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and κB (t ) =∑
a∈A ca t a with A ⊂∪� SuppZd (TorR

�
(B ,k)). Let Di :=∪ j {x | Hi , j (x) = 0} be the minimal union

of hyperplanes containing the border of Ci . The union C of the convex sets Ci + a can be decomposed

into a finite union of convex sets ∆u , each u ∈ U corresponding to one connected component of C \

⋃
i ,a(Di + a). (Notice that Rd \

⋃
i ,a(Di + a) has finitely many connected components, which are convex

sets of the form of ∆u , and that we may drop the ones not contained in C as the dimension of Bξ is zero

for ξ not contained in any Ci + a.) We define u as the set of pairs (i , a) such that (Ci + a)
⋂
∆u �= �, and

remark that if (i , a) ∈ u then ( j , a) �∈ u for j �= i .

If ξ �∈ ⋃
i Ci + a, then dimk Rξ−a = 0, while if ξ ∈ Ci + a then it follows from Corollary 3.2.8 that there

exist polynomials Qi ,τ such that

dimk Rξ−a =Qi ,τ(ξ−a) if ξ−a ≡ τ mod (Λ).

Hence, setting Q ′
i ,a,τ(ξ) :=Qi ,τ+a(ξ−a), one gets the conclusion with

Pu,τ =
∑

(i ,a)∈u
caQ ′

i ,a,τ.

Remark 4.2.3. The above proof shows that if one has a finite collection of modules Bi , setting A :=

∪i ,� SuppZd TorR
�

(Bi ,k), there exist convex polyhedral cones ∆u as above on which any Bi has its Hilbert

function given by a quasi-polynomial with respect to the lattice Λ.

Let S = k[y1, . . . , ym] be a Zp -graded polynomial ring over a field. Assume that deg(y j ) ∈Np for any j ,

and let Ii = ( fi ,1, . . . , fi ,ri ) be ideals, with fi , j homogeneous of degree di , j .

Consider R := k[Ti , j ]1≤i≤s,1≤ j≤ri , set deg(Ti , j ) = (deg( fi , j ),ei ), with ei the i -th canonical generator of

Zs and the induced grading ϕ : Zr1+···+rs →Zd :=Zp ×Zs of R.
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Denote as above byΛ the lattice inZd associated toϕ, by sΛ : Zd →Zd /Λ the canonical morphism and

by Ci , for i ∈ F , the maximal cells in the chamber complex associated toϕ. One has Ci = {(µ, t ) | Hi , j (µ, t ) 


0,1 � j � d} where Hi , j is a linear form in (µ, t ) ∈Zp ×Zs =Zd .

Theorem 4.2.4. In the situation above, there exist a finite number of polyhedral convex cones

∆u = {(µ, t )|Hi , j (µ, t ) 
 au,i , j , (i , j ) ∈Gu} ⊆Rd ,

polynomials P�,u,τ for u ∈U and τ ∈Zd /Λ such that, for any �,

dimk (TorS
�(M I t1

1 ...I ts
s ,k)µ) = P�,u,sΛ(µ, t ), ∀(µ, t ) ∈∆u ,

and dimk (TorS
�

(M I t1
1 ...I ts

s ,k)µ) = 0 if (µ, t ) �∈ ∪u∈U∆u.

Furthermore, for any (u, i , j ), au,i , j = Hi , j (b), for some

b ∈⋃
i ,�

SuppZd TorR
� (TorS

i (MR I1,...,Is ,R),k).

Proof. It has been presented in [6] that Bi :=⊕t1,...,tt TorS
i (M I t1

1 · · · I ts
s ,k) is a finitely generated Zd -graded

module over R. As Bi �= 0 for only finitely many i , the conclusion follows from proposition4.2.2 and

remark4.2.3.

From above results, it can be concluded that Rd could be decomposed in a finite union of convex

polyhedral cones ∆u on which, for any �, the dimension of TorS
�

(M I t1
1 ...I ts

m ,k)µ, as a function of (µ, t ) ∈

Zp+s is a quasi-polynomial with respect to a lattice determined by the degrees of the generators of the

ideals I1, . . . , Is .

This general finiteness statement may lead to pretty complex decompositions in general, that depend

on the number of ideals and on arithmetic properties of the sets of degrees of generators. This complexity

is reflected both by the covolume of Λ as defined above and by the number of simplicial chambers in the

chamber complex associated to ϕ.
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4.3 The case of one graded ideal on a positively Z-graded ring

We now explain in detail an important special case: one ideal in a positively Z-graded polynomial ring

over a field. We will use the following elementary lemma.

Lemma 4.3.1. For a strictly increasing sequence d1 < ·· · < dr , and points of coordinates (β j
1,β j

2) ∈ R2 for

1 ≤ j ≤ N , consider the half-lines L j
i := {(β j

1,β j
2)+λ(di ,1), λ ∈R≥0} and set L j

i (t ) := L j
i ∩ {y = t }. Then there

exist a positive integer t0 and permutations σi , for i = 1, · · · ,r , in the permutation group SN such that, for

all t ≥ t0, the following properties are satisfied :

(1) Lσi (1)
i (t ) � Lσi (2)

i (t ) � ·· · � Lσi (N )
i (t ) for 1 � i � r ,

(2) Lσi (N )
i (t ) � Lσi (1)

i+1 (t ).

Moreover t0 can be taken as the biggest second coordinate of the intersection points of all pairs of half

lines.

Proof. If two half-lines L j
i and Lv

u intersect at a unique point A(xA , y A), then

y A =

det




βv
1 du

βv
2 1


−det




β
j
1 di

β
j
2 1




di −du
.

Choose t0 as the max of y A , A running over the intersection points. For t ∈ [t0,+∞[ the ordering of the

intersection points L j
i (t ) on the line {y = t } is independent of t . Furthermore, as the di ’s are strictly

increasing (2) holds, which shows (1) as the ordering is independent of t .
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Figure 4.1: 3-Shifts.

Now we are ready to give a specific description of TorS
i (I t ,k) in the case of a Z-graded ideal. Let

E := {e1, . . . ,es} with e1 < ·· · < es be a set of positive integers. For � from 1 to s −1, let

Ω� := {a

(
e�
1

)
+b

(
e�+1

1

)
, (a,b) ∈R2

≥0}

be the closed cone spanned by
(e�

1

)
and

(e�+1
1

)
. For integers i �= j , let Λi , j be the lattice spanned by

(ei
1

)
and

(e j

1

)
and

Λ� :=∩i≤�< jΛi , j .
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n � 0

Figure 4.2: regions when n is sufficiently large.

,

Λ :=∩i< jΛi , j wi th ∆= det(Λ)

In the case E := {d1, . . . ,dr }, e1 = d1 and es = dr , and, if s ≥ 2, it follows from Theorem 3.2.7 that

(i) dimk Bµ,t = 0 if (µ, t ) �∈Ω :=∪�Ω�,

(ii) dimk Bµ,t is a quasi-polynomial with respect to the lattice Λ� for (µ, t ) ∈Ω�.

Notice further that Λ :=∩i< jΛi , j is a sublattice of Λ� for any �.
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Proposition 4.3.2. In the above situation, if M is a finitely generated graded B-module, there exist t0, N

and Li (t ) := ai t +bi for i = 1, . . . , N with bi ∈Z and {a1, . . . , aN } = E such that for t ≥ t0:

(i) Li (t ) < L j (t ) ⇔ i < j ,

(ii) Mµ,t = 0 if µ< L1(t ) or µ> LN (t ),

(iii) For t ≥ t0 and Li (t ) ≤ µ≤ Li+1(t ) 1 ≤ i < N , dimk (Mµ,t ) is a quasi-polynomials Qi (µ, t ) with respect

to the lattice Λ.

Proof. By Proposition 2.1.16, there exists a polynomial P (x, y) with integral coefficients such that

H(M ; (x, y)) = P (x, y)H(B ; (x, y))

of the form P (x, y) =∑
(a,b)∈A ca,b xa yb with A ⊂∪� SuppZ2 (TorR

�
(M ,k)). Write :

A = {(β1
1,β1

2), . . . , (βN
1 ,βN

2 )}.

Now let L j
i (t ) := di t+b j be the half-line parallel to the vector (di ,1) and passing through the point (β j

1,β j
2)

for 1 ≤ i , j ≤ N . Then by description before proposition item(i) follows directly from 4.3.1 (i) and item(ii)

from the fact that M(µ,t ) = 0 unless (µ, t ) ∈⋃N
i=1(βi

1,βi
2)+Ω.

To prove (iii), following 4.3.1 we can consider two type of intervals as follows:

I j
i := [Lσi ( j )

i (n),Lσi ( j+1)
i (n)] f or j < N
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and

I N
i := [Lσi (N )

i (n),Lσi+1(1)
i+1 (n)] f or i < r

And wite INp+q := I
σp (q)
p ,LNp+q = L

σp (q)
p for 0 ≤ q < N then for any degree (α,n) in the support of M there

is two cases :

case I. if α ∈ I j
i , then (α,n) belongs to i-th chamber of shifts {(β

σ j (1)
1 ,β

σ j (1)
2 ), . . . , (βσi ( j )

1 ,βσi ( j )
2 )} and for the

other shifts (α,n) belongs to (i −1)-th chambers.

case II. if α ∈ I N
i , then (α,n) belongs to i -th chamber for all of the shifts.

Then by Proposition 3.4.2 there exist polynomials Qi j such that dimB(µ,t ) =Qi j ((µ, t )),

if µ− tdi ≡ j mod (∆).

By setting Q̃ j
i k = c

(β j
1,β j

2)
Q

i ,(k−β j
1+β j

2di )
(x −β

j
1, y −β

j
2) we can conclud that:

if α ∈ I j
i , then

di mk (Mα,t ) =
j∑

c=1
Q̃c

i ,(α−tdi )(α,n)+
N∑

c= j+1
Q̃c

(i−1),(α−tdi−1)(α, t )

Theorem 4.3.3. Let S = k[x1, . . . , xn] be a positively graded polynomial ring over a field k and let I be a

homogeneous ideal in S.
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There exist, t0,m,D ∈ Z, linear functions Li (t ) = ai t +bi , for i = 0, . . . ,m, with ai among the degrees

of the minimal generators of I and bi ∈ Z, and polynomials Qi , j ∈Q[x, y] for i = 1, . . . ,m and j ∈ 1, . . . ,D,

such that, for t ≥ t0,

(i) Li (t ) < L j (t ) ⇔ i < j ,

(ii) If µ< L0(t ) or µ> Lm(t ), then TorS
i (I t ,k)µ = 0.

(iii) If Li−1(t ) ≤µ≤ Li (t ) and ai t −µ≡ j mod (D), then

dimk TorS
i (I t ,k)µ =Qi , j (µ, t ).

Proof. We know from [6] that M := TorS
i (I t ,k) is a finitely generated Z2-graded module over R. Then it

follows from Proposition 4.3.2

.
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GRADED BETTI NUMBERS OF HILBERT FILTRATIONS

5.1 structure of Tor module of Rees algebra

Let S = A[x1, . . . , xn] be a graded algebra over a commutative noetherian local ring S0 = (A,m) with

residue field k and set R = S[T1, . . . ,Tr ] and B = k[T1, . . . ,Tr ] . We set deg(Ti ) = (di ,1) and extended the

grading from S to R by setting deg(xi ) = (deg(xi ),0). In this section we use the two important following

fact that were already at the center of the work [6] . The first one is that TorR
i (MR I ,B) is a finitely gener-

ated graded B-module. The second is that :

TorR
i (MR I ,B)(µ,t ) = TorS

i (M I t ,k)µ

.

71
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In particular, it provides a B-structure on ⊕t TorS
i (M I t ,k) making it a finitely generated B-module.

Slightly more generally, it was showed in [6] that the following holds.

Theorem 5.1.1. [6] Let S = A[x1, . . . , xn] be a G-graded algebra over Notherian local ring (A,m,k). Let

I = ( f1, f2, ..., fr ) with deg fi = di be G-homogenous ideal in S, and let R = S[T1, . . . ,Tn] be a bigraded poly-

nomial extension of S with deg(Ti ) = (di ,1) and deg(a) = (deg(a),0) ∈ G× {0} for all a ∈ S. Let M be a

finitely generated G-graded S-module. Then for all i , j :

1. TorA
i (TorR

j (MR I , A),k) is a finitely generated k[T1, . . . ,Tr ]-module .

2. TorR
i (MR I ,k) is a finitely generated k[T1, . . . ,Tr ]-module .

Theorem 5.1.2. In the above situation if I is a homogeneous ideal in S and G=Z.

There exist, t0,m,D ∈ Z, linear functions Li (t ) = ai t +bi , for i = 0, . . . ,m, with ai among the degrees

of the minimal generators of I and bi ∈ Z, and polynomials Qi , j ∈Q[x, y] for i = 1, . . . ,m and j ∈ 1, . . . ,D,

such that, for t ≥ t0,

(i) Li (t ) < L j (t ) ⇔ i < j ,

(ii) If µ< L0(t ) or µ> Lm(t ), then TorS
i (I t ,k)µ = 0.

(iii) If Li−1(t ) ≤µ≤ Li (t ) and ai t −µ≡ j mod (D), then

dimk TorS
i (I t ,k)µ =Qi , j (µ, t ).
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Proof. By the above the theorem we know that TorR
i (MR I ,k) is finitely generated k[T1, . . . ,Tr ]-module

then the result follows from proposition 4.3.2.

5.2 structure of Tor module of Hilbert filtrations

To study blowup algebras, Northcott and Rees defined the notion of reduction of an ideal I in a commu-

tative ring R. An ideal J ⊆ I is a reduction of I if there exists r such that J I r = I r+1 (equivalently this hold

for r � 0) . An impotent fact about reduction ideal J of I is that it is equivalent to ask that

R J =⊕n J n →R I =⊕n I n

is a finite morphism. Okon and Ratliff in [40] extended the above notion of reduction to the case of fil-

trations by setting the following definition:

Definition 5.2.1. If R is a ring and I and J be ideals in R, then:

(1) A filtration ϕ = {ϕ(n)}n≥0 on R is a decreasing sequence of ideals ϕ(n) of R such that ϕ(0) = Rand

ϕ(m)ϕ(n) ⊆ϕ(m +n) for all nonnegative integers m and n.

(2) If ϕ and γ are filtrations on R, then ϕ= γ in case ϕ(n) = γ(n) for all n ≥ 0, and ϕ≤ γ in case ϕ(n) ⊆ γ(n)

for all n ≥ 0.

(3) If ϕ and γ are filtrations on R, then ϕ is a reduction of γ in case ϕ≤ γ and there exists a positive integer

d such that γ(n) =∑d
i=0ϕ(n − i )γ(i ) for all n ≥ 1.

(4) Let I be an ideal of R and ϕ is filtration on R, then ϕ is called I -good filtration if Iϕi ⊆ϕi+1 for all i ≥ 0

and ϕn+1 = Iϕn for all n � 0.
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(5) Let γ be I -good filtration , then a J-good filtration ϕ is called good reduction of γ if it is a reduction in

the sense of (3).

In opposite to the ideal case, minimal reduction of a filtration does not exist in general. But Hoa and

Zarzuela showed in [32] the existence of a minimal reduction for I -good filtrations as follows :

Proposition 5.2.2. Let ϕ and γ are filtrations on R, then ϕ is the minimal reduction of a good filtration γ

if and only if ϕ= {J n}n
0 , where J is a minimal reduction of γ1). In particular, a minimal reduction of γ

do exist.

Ifϕ= {ϕ(n)}n≥0 is an I -good filtration on R, then Rϕ is a finite R I -module(See [11, Theorem III.3.1.1]),

that is why we are interested about I -good filtration to generalize the previous results. The following the-

orem explain the structure of Tor module of I -good filtrations:

Theorem 5.2.3. Let S = A [x1, · · · , xn] be a graded algebra over a Noetherian local ring (A,m,k) ⊂ S0 . Let

ϕ = {ϕ(n)}n≥0 be an I -good filtration of ideals ϕ(n) of R and ϕ(1) = ( f1, f2, ..., fr ) with deg fi = di be Z-

homogenous ideal in S, and let R = S[T1, . . . ,Tn] be a bigraded polynomial extension of S with deg(Ti ) =

(di ,1) and deg(a) = (deg(a),0) ∈Z× {0} for all a ∈ S.

(1)Then for all i :

TorR
i (Rϕ,k) is a finitely generated k[T1, . . . ,Tr ]-module.
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(2) There exist, t0,m,D ∈ Z, linear functions Li (t ) = ai t +bi , for i = 0, . . . ,m, with ai among the degrees

of the minimal generators of I and bi ∈ Z, and polynomials Qi , j ∈Q[x, y] for i = 1, . . . ,m and j ∈ 1, . . . ,D,

such that, for t ≥ t0,

(i) Li (t ) < L j (t ) ⇔ i < j ,

(ii) If µ< L0(t ) or µ> Lm(t ), then TorS
i (ϕ(t ),k)µ = 0.

(iii) If Li−1(t ) ≤µ≤ Li (t ) and ai t −µ≡ j mod (D), then

dimk TorS
i (ϕ(t ),k)µ =Qi , j (µ, t ).

Proof. Let F• be a Z×Z-graded minimal free resolution of Rϕ over R. Each Fi is of of finite rank due to

the Noetherianity of A . The graded stanf F t• := (F•)∗,t is a Z-graded free resolution of ϕ(t ) over S = R(∗,0).

Thus,

TorS
i (ϕ(t ),k) = Hi (F t

• ⊗S k).

Moreover, taking homology respects the graded structure, and therefore,

Hi (F t
• ⊗S k) = Hi (F• ⊗R R/m+nR)(∗,t ),

where n = (x1, . . . , xn) is the homogeneous irrelevant ideal in S. So it follws that TorR
j (R I ,k) is finitely

generated graded k[T1, . . . ,Tr ]-module .The second fact comes from proposition 4.3.2.
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This in particular applies to the ideals when ever (A,m,k) is local Noetherian ring and S be a graded

local Noetherian algebra over A:

• If I be a graded ideal of S and S be analytically unramified ring without nilpotent elements then

ϕ(n) = I n is I -good filtration then result follows from theorem 5.2.3.

• If I be a graded ideal of S then by theorem 2.1.20 the filtration ϕ(n) = Ĩ n is I -good filtration then

result follows from theorem 5.2.3.

.
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