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:I Image %
:N Number of pixels inimage I %

1{ ,..., },         .N set of N pixeX x x ls or elements to classify=
%

1 2{ , ,..., },    . = Nf set of Nf featF a a uresa
%

        ji j ia the value of the feature a for the pixel x
%

1 2
, ..., ,         ⎡ ⎤= ⎣ ⎦i i Nfi ii vector of Nf features representing the pixeF a la xa

%

1 2
, ,..    .  ,     ,  

j j

T
j

jN jvalues of featF a a a ure fovector of r all ea N pix ls⎡ ⎤= ⎣ ⎦ %

:  iC Class i %
:   NC Number of classes %

ˆ :    NC Number of classes estimated %

( ):i iNC Card C %

:  MI Multithresholded image %
:  RI Partitioned image %

( ) :     i ig C Center of gravity of C
%

:      COLN Number of columns in an image%
:     LINN Number of lines or row in an image %

:      NG Number of gray levels in image I %
( ) :  l i ig C Average gray level of class C

%

( ) :        lg x Gray level of pixel x in image I %

( ) :       ˆlg x Average gray level of pixels around x %

( ).,. :  d Euclidean distance %
|| . ||:  Euclidean norm %

:   ND Number of directions %
( ), :     dP i j The entries of cooccurence matrixθ %

:  Cov Covariance matrix %
:  W Analysis window
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Résumé%Substantielle% 

Introduction Générale 

Les nombreux travaux menés dans la littérature traitant le problème du 

partitionnement des images, montrent que ce problème est difficile et loin d'être 

résolu.  

En général, l’application d’une technique simple n'est pas suffisante pour analyser 

correctement l'ensemble du contenu des images. En effet, de nombreuses études 

effectuées dans notre laboratoire montrent que l'utilisation d'une seule méthode dans 

des domaines d’application différents ne donne pas de résultats pertinents. Le 

problème majeur des méthodes de classification est leur incapacité à s'adapter au 

contenu local de l'image. En outre, avec l'avènement récent des systèmes d'acquisition 

d'image de pointe, la scène est mieux décrite et la taille des images devient de plus en 

plus grande (imagerie multispectrale et hyperspectrale). L'analyse et l'interprétation de 

ce type d'images est donc de plus en plus fastidieux et complexe.  

Le problème du partitionnement des images est un problème mal posé, et aucune 

méthode générique ne peut prétendre donner un résultat de partitionnement optimal. 

Les erreurs de partitionnement sont inévitables (sur ou sous-partitionnement) ; le sur-

partitionnement génère des régions qui ne correspondent pas aux objets réels de la 

scène, et le sous-partitionnement ne distingue pas tous les objets d’une scène.  

  Pour surmonter ce problème et trouver une solution, plusieurs chercheurs ont 

proposé l’utilisation de schémas coopératifs, qui combinent plusieurs méthodes pour 

partitionner une image. Ce processus de coopération exploite la redondance et la 

complémentarité du contenu de l'information dans l'image, permettant ainsi une 

meilleure compréhension du contenu informationnel d’une image. C’est pourquoi 

nous avons décidé de développer un système de coopération adaptatif pour le 

partitionnement des images hyperspectrales. La coopération est réalisée par plusieurs 

méthodes qui s’adaptent aux régions uniformes et texturées de l'image à partitionner.  
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L'objectif de cette thèse est donc de développer un système coopératif et adaptatif 

robuste pour classer les pixels des images hyperspectrales. Par système coopératif, 

nous entendons un système qui exploite plus d’une méthode de partitionnement. 

L’adaptativité concerne ici l’extraction des caractéristiques des pixels en fonction de 

la nature des régions.  

Cette thèse est divisée en deux parties: la première est consacrée aux travaux de 

l’état de l’art, et la seconde à la présentation du système de classification développé.  

Première Partie : État de l’art 

La première partie est consacrée aux travaux de l'état de l'art portant sur le  

partitionnement des images et les critères d'évaluation. Les méthodes de 

partitionnement sont soit non coopératives, tels que les algorithmes génétiques, Fuzzy 

C-means (FCM), Linde-Buzo-Gray algorithme (LBG), Artificial Neural Network 

(ANN), k-means, et Affinity Propagation (AP), ou des approches coopératives qui 

combinent les méthodes non coopératifs ci-dessus. Des études expérimentales sont 

effectuées pour analyser les méthodes non-coopératives et montrer leurs limites.  

Dans cette partie, nous présentons aussi un examen des critères d'évaluation non 

supervisés.  

Cette partie est organisée en deux chapitres. Le premier est consacré à la 

description des méthodes de classification de manière générale. Il présente de manière 

détaillée les méthodes semi-supervisées et les méthodes non supervisées, et d'autre 

part les méthodes coopératives de classification. Par ailleurs, le second chapitre 

comprend un état de l’art dédié à l’analyse des critères d'évaluation non supervisés 

pour évaluer les résultats de la classification.  

Seconde Partie : Système développé 

Dans la seconde partie de cette thèse, les différents modules du système de 

partitionnement développé sont présentés en détail. Chaque module est évalué et 



Résumé Substantielle  
 
%

%

% v 

validé séparément sur plusieurs images synthétiques et réelles mono et multi-

composantes. Le système développé est également comparé à d'autres méthodes non 

coopératives et coopératives. Enfin, le système est également testé sur deux 

applications réelles relatives à la gestion du problème de l'environnement. 

L’architecture du système développé pour le partitionnement d’images 

monocomposantes est présentée en Figure A. La Figure B présente son extension aux 

cas des images multicomposantes (multispectrales et hyperspectrales). 

 

Figure%A%:%Architecture du système coopératif de classification cas d’images monocomposantes 
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Figure B: Extension du système de la Figure A aux cas des images multicomposantes. 

Cette partie est organisée également en deux chapitres. Le premier est consacré à la 

détection de la nature des régions et à l'extraction des attributs tenant compte de la 

nature de la région détectée (module 1). Il s’agit de partitionner l’image en deux types 

de régions texturées et non texturées, puis de caractériser les pixels en fonction de leur 

appartenance à ces régions. Plusieurs attributs de texture sont utilisés pour les pixels 

appartenant aux régions texturées, tandis que la moyenne locale est utilisée pour les 

pixels appartenant aux régions non texturées.  

Le second chapitre présente les détails sur l’approche de classification coopérative, 

non supervisée, et non paramétrique. Ce chapitre inclut l'optimisation des algorithmes 

de classification FCM et AILBG (module 2), le processus d'évaluation et de gestion 

des conflits (module 3), et la réunion des résultats de partitionnement des régions 

texturées et non texturées (module 4). En outre, il inclut également l'évaluation du 

système développé  sur deux applications réelles. Le descriptif de ces trois modules 

est présenté ci-dessous:  

Le deuxième module fait coopérer parallèlement deux classifieurs optimisés : 

Fuzzy C-means (FCM), et l'algorithme Adaptatif Incrémental Linde-Buzo-

Gray (AILBG) appelés respectivement FCMO et AILBGO, pour partitionner chaque 

composante. Pour rendre ces algorithmes non supervisés, le nombre de classes est 

estimé suivant un critère basé sur la dispersion moyenne pondérée des classes.  

Résultat 
Final 

 
 
 

Procédure 
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Composante 1 Système de partitionnement  

Composante 2 Système de partitionnement  

Composante N Système de partitionnement  
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Le troisième module évalue et gère suivant deux niveaux les conflits des résultats 

de classification obtenus par les algorithmes FCMO et AILBGO. Le premier identifie 

les pixels classés dans la même classe par les deux algorithmes et les reportent 

directement dans le résultat final d'une composante. Le second niveau utilise un 

algorithme génétique (GA), pour gérer les conflits entre les pixels restant. 

Le quatrième module consiste à reporter les résultats de classification des régions 

texturées et non texturées dans la même image.  

Dans le cas des images multicomposantes, les trois premiers modules sont 

appliqués tout d’abord sur chaque composante indépendamment. Les composantes 

adjacentes ayant des résultats de classification fortement similaires sont regroupées 

dans un même sous-ensemble et les résultats des composantes de chaque sous-

ensemble sont fusionnés en utilisant le même GA. Le résultat de partitionnement final 

est obtenu après évaluation et fusion par le même GA des différents résultats de 

chaque sous-ensemble.  

Le système développé est testé avec succès sur une grande base de données 

d'images synthétiques (mono et multicomposantes) et également sur deux applications 

réelles : la classification des plantes invasives et la détection des Pins. 

%
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ABSTRACT%

Hyperspectral and more generally multicomponent images are complex images, 
and cannot be successfully partitioned using a single classification method. The 
existing non-cooperative classification methods, parametric or nonparametric can be 
categorized into three types: supervised, semi-supervised and unsupervised. 
Supervised parametric methods require a priori information and also require making 
hypothesis on the data distribution model. Semi-supervised methods require some a 
priori knowledge (e.g. number of classes and/or iterations), while unsupervised 
nonparametric methods do not require any a priori knowledge. 

Applying several non-cooperative methods on the same image is very unlikely to 
give identical partitions, and each result contains correct and incorrect information. 
For this reason, in this thesis an unsupervised cooperative and adaptive partitioning 
system for hyperspectral images is developed. Its originality relies on i) the adaptive 
nature of the feature extraction ii) the two-level evaluation and validation process to 
fuse the results, iii) the non requirement of training samples or the number of classes. 
This system is composed of four modules: 

 The first module classifies automatically the image pixels into textured and non-
textured regions, and then different features of pixels are extracted according to the 
region types. Texture features are extracted for the pixels belonging to textured 
regions, and the local mean feature for pixels of non-textured regions. 

The second module consists of an unsupervised cooperative partitioning of each 
component, in which pixels of the different region types are classified in parallel via 
the features extracted previously using optimized versions of Fuzzy C-Means (FCM) 
and Adaptive Incremental Linde-Buzo-Gray algorithm (AILBG) noted respectively as 
FCMO and AILBGO. For each algorithm the number of classes is estimated 
according to the weighted average dispersion of classes. 

The third module is the evaluation and conflict management of the intermediate 
classification results for the same component obtained by the two classifiers. To 
obtain a final reliable result, a two-level evaluation is used; the first one identifies the 
pixels classified into the same class by both classifiers and report them directly to the 
final classification result of one component. In the second level, a genetic algorithm 
(GA) is used to remove the conflicts between the invalidated remaining pixels.   

The fourth module unifies the results of textured and non-textured regions in the 
same labeled image.  

In the case of a multicomponent image, the system handles all the components in 
parallel; where the above modules are applied on each component independently. The 
results of the different components are compared, and the adjacent components with 
highly similar results are grouped within a subset and fused using the same GA. To 
get the final partitioning result of the multicomponent image, the intermediate results 
of the subsets are evaluated and fused by GA. 

The system is successfully tested on a large database of synthetic images (mono 
and multicomponent) and also tested on two real applications: the classification of 
invasive plants and the Pine trees detection. 
Key words: partitioning, classification, non-parametric, parallel cooperation, unsupervised, 

estimation, evaluation, validation, fusion, hyperspectral, image, validation, invasive 
vegetation, Pine trees. 
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General%Introduction%

Images are one of the most important modes of communication. An image is a 

planar representation of a scene or an object in the space. There exist many types of 

images such as monochrome, color, multispectral and hyperspectral images 

depending on the number of components they contain. 

In the recent years, the limitations of traditional RGB (color) imaging have become 

more and more evident as the requirements in terms of image quality are being raised, 

and new uses and applications are being conceived within the digital imaging field. At 

the same time, hyperspectral imaging has been emerging as a technology that allows 

the acquisition of up to several hundred of components of the same scene 

corresponding to its spectral decomposition. This large amount of information enables 

recognizing the content of the image with precision. Hyperspectral imagery can be 

used in many applicative domains; although it was originally developed for mining 

and geology [1], it has now spread into fields  such as ecology [2], civil or military 

surveillance [3], agriculture [4], medicine [5], food safety and quality [6]. 

From a general viewpoint, the processing and analysis chain for mono and 

multicomponent images consists of the following steps: 

• Contrast enhancement, to improve the dynamic of the image, 

• Filtering, to remove the noise contained in the image that comes from 

disturbances during acquisition and digitization of the image, 

• Restoration to remove the blur that can be generated by the source acquisition 

or the motion of the sensors, 

• Classification to partition the image into a set of regions in order to analyze 

and interpret its content. 

The general framework of this thesis concerns the classification process. 
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Problem position 

If we refer to the literature of image partitioning, we can state that this problem is 

difficult and is far from being resolved.  

Generally a single technique is not sufficient to grasp all the different contents of 

the image, many studies done in our laboratory show that the use of only one method 

in different domains does not give relevant results [7]–[12]. The major problem of 

classification methods is their inability to adapt to the local contents of the image. 

Moreover, with the recent advent of advanced image acquisition systems, the scene is 

better described and the size of images is getting larger and larger (multispectral and 

hyperspectral imagery). The analysis and interpretation of this type of images is 

therefore getting more and more tedious and complex. 

The problem of image partitioning is an ill-posed problem [13], and no generic 

method can give the best partitioning result. Partitioning errors are inevitable (over or 

under-partitioning); over-partitioning generates regions that do not belong to any 

object in the scene, and under-partitioning does not distinguish all the objects in the 

scene.  

 To overcome this problem and find a solution, researchers have proposed to use a 

cooperative paradigm, which consist of combining several methods to partition an 

image. Cooperation uses redundancy and complementarity of the information content 

in the image. This paradigm allows better understanding of the information contained 

in the image. For this reason, we decided to develop a cooperative and adaptive 

system for hyperspectral image partitioning. The cooperation is realized by several 

methods that can be adapted to uniform and textured regions in the image.  
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Objective  

The objective of this thesis is to develop a robust cooperative and adaptive system 

to classify the pixels of hyperspectral images. ‘Cooperative system’ means using 

more than one method and ‘adaptive’ means automatically extracting the features of 

pixels according to the nature of the regions. 

This thesis is divided into two parts: 

• In the first part the state of the art of image partitioning and evaluation criteria 

is presented. The partitioning methods are either non-cooperative, such as 

genetic algorithms, Fuzzy C-means (FCM), Linde-Buzo-Gray algorithm 

(LBG), Artificial Neural Network (ANN), k-means, and Affinity Propagation 

(AP), or cooperative approaches that combine the above non-cooperative 

methods. Some experiments are done to analyze the non-cooperative methods. 

In this part, we also present a review of unsupervised evaluation criteria.   

• In the second part of this thesis, the different modules of the developed 

partitioning system are presented in details. Each module is evaluated and 

validated separately on several synthetic and real mono and multicomponent 

images. Our developed system is also compared with other non-cooperative 

and cooperative methods. Finally, the system is also tested on two real 

applications related to the management of the environment problem.  
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Introduction 
%

The objective of this review is to help us to select the methods which will be 

incorporated in the partitioning system we wish to design. The literature in the general 

field of statistical data analysis and image vision is vast and represents very active 

research areas. Among the areas of investigation in statistical data analysis, 

classification is one of the most prominent. 

Herein, the main advantages and drawbacks of the methodologies of 

classification and evaluation criteria found in the literature are analyzed. In the 

present thesis, data classification and its application to multivariate images will be the 

central objective. More precisely, we will concentrate on unsupervised techniques, for 

the main and important reason that this paradigm remains free of any subjectivity that 

can be brought by the user. 

In this review, we will first focus on the different families of classification 

approaches, starting from the set of methods used in a standalone manner (which will 

be referred to as non-cooperative methods), and generalizing to cooperative 

approaches, i.e. approaches which can combine several individual methods. The 

methods described will be discussed regarding their advantages and drawbacks, and 

whenever possible, their performances compared to other methods.  

Classification assessment is often performed using external information such as 

ground truths. However, this information is not always available to the user who still 

wants to evaluate a given classification result. Internal assessment criteria can be 

helpful for this purpose, but also to improve the unsupervised classification method 

itself. This is why we also present a short review of evaluation criteria, mainly 

focusing on unsupervised criteria, since the absence of any supervision or a priori 

information is a strong requirement throughout the present work. 

This part is organized in two chapters. The first one is dedicated to the 

description of the classification approaches. This chapter first details semi-supervised 

and unsupervised methods and secondly, cooperative classification approaches. 

Besides, the second chapter includes a review of unsupervised evaluation criteria to 

assess classification results. 
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Chapter%1 Classification%approaches%

1.1 Introduction 

Image partitioning is one of the most important operations in image analysis chain. 

Its goal is to simplify and/or change the representation of an image into another mode 

of representation that is more meaningful and easier to analyze [14]. Image 

partitioning is typically used to locate objects in images. More precisely, image 

partitioning is the process of assigning a label to every pixel in an image such that 

pixels with the same label share some characteristics. In the framework of this thesis, 

we are interested in developing an automatic cooperative and adaptive partitioning 

system for hyperspectral images, where no a priori information or knowledge is 

required. 

The growth and the availability of hyperspectral images, which contain rich 

information, have opened new possibilities of applications in many domains. In order 

to interpret this richness of information, a large diversity of image classification 

approaches can be found in the literature. In [12], these approaches are classified into 

two groups: non-cooperative and cooperative approaches. Non-cooperative 

approaches use only one classification method and cooperative approaches use two or 

more methods.  

The purpose of this review is to analyze several classification methods, showing 

their advantages and disadvantages. This review will help us to find the methods that 

are the most suitable for our proposed cooperative/adaptive paradigm. In addition, we 

also present a review of some cooperative approaches and reveal their advantages and 

disadvantages. 

The remaining of the present chapter is organized as follows: the second section 

will review the non-cooperative classification methods (semi-supervised and 

unsupervised) in order to select the most relevant ones to integrate them in the system 
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to be developed. In the third section we analyze the cooperative classification 

approaches of the literature. The last section concludes this chapter. 

1.2 Non-cooperative classification methods 

As we have mentioned above image partitioning is an ill-posed problem [13], and 

this has greatly stimulated researchers to develop new methods. These methods can be 

generally divided into three categories: supervised, semi-supervised and 

unsupervised. These categories can be either parametric or nonparametric.  

Parametric methods require some hypothesis on the data distribution model (e.g. 

Gaussian model), which often does not correctly match the observed distribution of 

complex images such as hyperspectral images, while nonparametric methods can be 

used when no assumption can be made about the characterizing features. 

Supervised/parametric methods like Maximum Likelihood (ML) [15], Support Vector 

Machines (SVM) [16], Expectation Maximization (EM) [17], are the most commonly 

used. Supervised methods need a priori knowledge (e.g. training samples) to 

accomplish the classification task. However this information is not available in all 

application cases. Because of the two above reasons, supervised and parametric 

methods cannot be integrated into an unsupervised partitioning system.  

Besides the semi-supervised methods require minimal input from the operator (e.g. 

number of classes, threshold, number of iterations) like k-means [18], Linde-Buzo-

Gray (LBG) [19], Self Organizing Map (SOM) and Fuzzy C-Means (FCM) [20]. 

These methods all require the number of classes to be known in advance.  

Unsupervised classification is a kind of classification that does not need training 

samples or any other a priori knowledge. One of the most recent unsupervised 

methods is Affinity Propagation (AP) [21] which does not need any information about 

the dataset. Unfortunately, AP is found to highly overestimate the number of classes, 

and it is practically inapplicable to large image datasets because of its computational 

complexity, which is quadratic in the number of objects.   
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Taking into account the brief general analysis on the classification method types, 

in the following we merely give more details about semi-supervised and unsupervised 

methods. 

1.2 .1 Semi-supervised methods  

In this subsection the main semi-supervised classification algorithms are presented 

and analyzed. 

• k-means 

k-means [18] is one of the basic semi-supervised algorithms that classify each 

object according to their similarity/dissimilarity requiring the number of classes (NC) 

fixed a priori by the user. This algorithm aims at minimizing an objective function 

(sum of squared error): 

( )2

1 1

( )
NC N

i j
j i

CJ F g
= =

= −∑∑  (1.1) 

where NC is the number of classes, N is the number of data points in the dataset,  iF  

is the vector of Nf features representing the pixel xi, ( )jCg  is the center of gravity of 

class Cj.  

In summary the algorithm is executed as follows [22]:  

Step 1: Define the centroid of the classes randomly.  

Step 2: Assign each object to the class that has the closest centroid.  

Step 3: When all objects have been assigned, recalculate the positions of the NC 

centroids.  

Step 4: Repeat Steps 2 and 3 until the centroids remain unchanged.   

Although it is proven that this algorithm will always converge, the k-means 

algorithm does not necessarily find the most optimal configuration. This algorithm is 

significantly sensitive to the initial randomly selected cluster centroid [23]–[25] 

which makes it unstable, hence giving varying results on the same dataset from a run 
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to another. For these reasons this algorithm must be further optimized as shown below 

in this section. 

• Self-Organizing Map (SOM) 

One of the most famous semi-unsupervised neural networks is the self-organizing 

map (SOM), which was originally developed by Kohonen [26].  

The SOM neural network consists of two layers, as shown in Figure 1.1. For every 

neuron in the input layer, there is a link to every neuron in the output layer. During 

the training process of SOM network, for each input vector one best matching neuron 

in the output layer is got. A competitive learning algorithm is used to adjust weight 

vectors in the neighborhood of best matching neuron. The adjustment decreases as the 

time and the range of neighborhood increases.  

 
Figure 1.1: Self organizing map (SOM) structure 

The SOM algorithm is described as follows: 

Step 1: Randomly initialize the weights (0), 1,2,...,iWt i NC= , NC here is the number 

of the neurons in the output layer (number of classes). Set the maximum 

number of iterations as K. 

Step 2: For iteration step k=1, 2... K: Get an input vector from the dataset X randomly 

or in predefined order. 

Step 3: Find the best matching unit (BMU) i* at iteration k, using the minimum 

distance:  
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[ ] ( )* ( ) min ( ), ( ) , 1,2,..., ;  1jj
i X n d X n wt k j NC n N= = ≤ ≤  (1.2) 

Step 4: Adjust the weight vectors of all neurons using: 

[ ]*( 1) ( ) ( ) ( , , ( ) ) ( ( ) ( ))i i iwt k wt k k k j j X n X n wt kµ γ+ = + − . (1.3) 

where ( )kµ is a learning rate parameter, [ ]*( , ( ) )j j X nγ is a neighborhood function 

centered around the winning neuron. The size of the neighborhood is determined by a 

parameter ( )kσ .  

The parameters ( )kµ , [ ]*( , ( ) )j j X nγ and ( )kσ  are calculated as follows: 

[ ]
* 2

*

2

1( )

( , )( , ( ) ) exp ( )
( )

( )

k
k

d j j
j j X n

k

k
k

µ

γ
σ

σσ °

=

= −

⎛ ⎞= ⎜ ⎟⎝ ⎠

 (1.4) 

Step 5: Go to step 2 until no more changes in the weight space are observed or until 

the maximum iteration is achieved. 

The performance of the SOM Neural Network depends on a lot of adjusting 

parameters:  

− Number of output neurons: the ideal numbers of output neurons must be equal 

to the number of ground truth classes, associating exactly one neuron with one 

class. 

− Weight initialization: the weights iwt initially associated with each neuron 

contain random values.  

− Choice of the neighborhood function (e.g. Gaussian).  
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This algorithm is often used to reduce the dimensionality of the datasets [27]–[29] 

rather than being used as a direct classifier.%

• Fuzzy C-Means (FCM) 

The Fuzzy C-means (FCM) is derived from the k-means algorithm by adding a 

fuzzification operation to solve ambiguous clustering problems [30]. FCM was 

originally developed by Dunn [31] and generalized by Bezdek [20]. This iterative 

algorithm assigns a class membership to a data point, depending on the similarity of 

the data point to a particular class relative to all other classes.  

FCM seeks to minimize the following objective function:  

( )2

1 1

( )
= =

= −∑∑
NC N

m
ij i j

j i

CJ u F g  (1.5) 

with the following constraint: 

1

1     
NC

m
ij

j

u i
=

= ∀∑  (1.6) 

where NC is the number of classes, N is the number of pixels in the image, iF  is the 

vector of Nf features representing the pixel xi, ( )jCg  is the center of gravity of class 

Cj, [1, [m∈ ∞ %is the fuzzification factor, and uij represents the entry (i,j) of the partition 

matrix, with 0 1iju≤ ≤ .  

The objective function is minimized when data points close to the centroid of their 

clusters are assigned high membership values, and low membership values are 

assigned to data points far from the centroid. The class centers and membership 

functions are updated by the following expressions: 

1
1

( )
mN
ij

j N m
i ik

i

k

u
g c

u
F

=
=

=∑∑
 (1.7) 



Chapter 1: Classification Approaches  
 
%

%

% 13 

1
1

1
1

1

( )

( )

m
i j

ij
NC m

i jj

F g c
u

F g c

−

−
=

−
=

−∑
 (1.8) 

The four steps of FCM are: 

Step 1: Initialize the membership matrix ,   1 ,   1ijU u j NC i N⎡ ⎤= ≤ ≤ ≤ ≤⎣ ⎦  with 

random values ranging between 0 and 1 satisfying the constraint in Equation 

(1.6). 

Step 2: Calculate cluster centers ( )jg C  using Equation (1.7). 

Step 3: Update the membership degree iju  using Equation (1.8). 

Step 4: Repeat steps 2 and 3 until the algorithm converges. This means that the 

difference between the current membership matrix and the previous 

membership matrix is below a specified tolerance value or the number of 

iteration reaches the maximum value specified by the user. 

 

This algorithm is one of the most widely and successfully used methods and 

frequently applied in many domains such as: agricultural engineering, astronomy, 

chemistry, geology, medical diagnosis and pattern recognition [32], [33]. However, 

the choice of the fuzzification parameter m is very difficult because it influences the 

effectiveness of FCM and should be changed for each application type. Pal and 

Bezdek [34] suggested taking m∈[1.5, 2.5], while in [35] the authors suggest 

implementing FCM  with  m∈[1.5, 4]. 

To explore the impact of the fuzzification parameter on the performance of the 

FCM1 we have tested it on synthetic images by changing the value of m (2, 4, 6 and 

8) and fixed the number of classes (NC) to 5. The synthetic images includes images 

composed of five textured classes (textures are taken from the Brodatz album [36]). 

We also tested the impact of this parameter on the stability of this algorithm by 

executing it 100 times with a fixed value of m. Based on these experimental results 

(see Figure 1.2), the choice of the fuzzification parameter m affects the accuracy and 

the stability of the algorithms significantly.  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1 The FCM algorithm used is the one provided by Matlab™ in release 7.11.0. 



Chapter 1: Classification Approaches  
 
%

%

% 14 

60,00

70,00

80,00

90,00

100,00

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

A
C
C
R

(

%)

Execution;Number

%
m=2 

60,00

70,00

80,00

90,00

100,00

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

A
C
C
R

(

%)

Execution;number

%
m=4 

60,00

70,00

80,00

90,00

100,00

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

A
C
C
R

(

%)

Execution;number

%
m=6 

60,00

70,00

80,00

90,00

100,00

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

A
C
C
R

(

%)

Execution;number

%
m=8 

Figure 1.2: Effect of the fuzzification parameter (m) on the stability and the performance of FCM 
algorithm (NC= 5) 
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From the results shown in Figure 1.2, we observe that there is a high fluctuation of 

classification result accuracy, in the cases when m=2, 6 and 8. Contrarily when m=4 

the results accuracy is more stable. 

• Modified versions FCM 

Many efforts have been done to enhance FCM algorithm especially in the field of 

image partitioning. In [37] an algorithm called FCM_S is proposed, in which the 

authors have changed the standard objective function of FCM by adding another term 

similar to the standard one as follows: 

( )( ) ( ) ( )( )2 2

1 1 1 1

( ) ( )α
= = = = ∈

⎛ ⎞
= − + −⎜ ⎟⎜ ⎟⎝ ⎠
∑∑ ∑∑ ∑

r i

NC N NC

l i l

N
m m
ij j ij j

j i j
r

i x Wi

x xJ u g g C u g g C
Card W

 (1.9) 

where ( )l ig x is the gray level of the pixel xi , iW  stands for the set of pixel neighbors 

in the window around ix , ( )iCard W is the number of pixels in iW and α is a 

regularizing parameter introduced to control the effect of the added term in the 

objective function. The added term takes into account the neighborhood of the pixel 

to be classified. The neighborhood effect biases the solution toward piecewise-

homogeneous labeling. The value of α must be adjusted in regard to the type and level 

of the noise. Generally, the type of noise present in the image is unknown, so α is set 

empirically. The number of the neighbor pixels chosen also influences the result. 

Actually, the added term in the objective function (1.9) highly increases the 

calculation time. In order to reduce the computation time FCM_F algorithm [38] was 

developed, in which the neighborhood term added to the basic objective function in 

FCM_S is changed by only integrating the current pixel of a previously filtered 

version of the original image. The objective function of FCM_F algorithm is defined 

by: 

( )( ) ( )( )2 2

1 1 1 1

( ) (ˆ )α
= = = =

= − + −∑∑ ∑∑
NC N NC N

m m
ij j ij l i j

j i j
i

i
lJ u g g C u g x g Cx  (1.10) 



Chapter 1: Classification Approaches  
 
%

%

% 16 

where ( )ˆl ig x  is the mean or median of neighboring pixels lying within a window 

around ix . This algorithm processes the original image and the filtered image 

simultaneously. The Average Correct Classification Rate (ACCR) is practically the 

same as with FCM_S, but with much less computation time. FCM_F has the same 

disadvantages as FCM_S; in addition it requires a filtering operation in advance.  The 

authors in [39] proposed EnFCM, also to enhance FCM_S. In EnFCM the image is 

segmented after a local linear transformation that takes into account the gray level of 

the current pixel and the local mean of its neighborhood as follows: 

( ) ( )1
1 ( )

αξ
α ∈

⎛ ⎞
= +⎜ ⎟⎜ ⎟+ ⎝ ⎠

∑
i

i
r Wi

l i l rg g
Car W

x
d

x  (1.11) 

The partitioning is done by means of the histogram of the locally transformed 

image ξ. The objective function is the same as the standard FCM, except that a 

variable is added which is the frequency of occurrence of the gray values in the 

histogram of the filtered image. In EnFCM the computational load is highly reduced 

relative to FCM_S. Besides, the quality of the image partitioned by EnFCM is 

comparable to that of FCM_S. In [40] the same authors present a modified FCM 

based method that targets accurate and fast partitioning in the presence of mixed 

noise. This method extracts a scalar feature value from the neighborhood of each 

pixel, using a context dependent filtering technique that deals with both spatial and 

gray level distances. The authors in [41] propose FGFCM that changes only the way 

that the pre-filtered image is calculated in EnFCM [39]. For the transformation of the 

image, it defines coefficients for each window centered on the concerned pixel. These 

coefficients are calculated by taking into account spatial and gray level information, 

and then these coefficients are used to weight the neighbor pixels in the local 

transformation of the image. The partitioning is also done by means of the 

transformed image histogram. The pre-filtered image is influenced by the weighting 

spatial and gray level factors, which in turn are influenced by two other scale factors.  

The presented algorithms above (EnFCM, FCM_S, FGFCM, FCM_F) are based 

on the standard FCM [20]. They either add a term to the objective function, or filter 

the image beforehand. In order to compare the classification results of the modified 
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algorithms with FCM, we have chosen the FCM_S2 algorithm since these modified 

algorithms all give comparable results. Figure 1.3 shows the results of this 

comparison in Average Correct Classification Rates (ACCR)3 by using only the gray 

level as feature. In this experiment the number of classes (NC) is set to 5.  

 
 

Non-noisy image 

 
 

FCM result  
(ACCR: 100%) 

 

 
 

FCM_S result 
α=0.85  

(ACCR: 97.50%) 
 

 
 

Noisy image 
(µ=0,σ=6) 

 
 

FCM result  
(ACCR: 100%) 

 
 

FCM_S result 
α=0.85  

(ACCR: 97.12%) 
 

 
 

Noisy image 
(µ=0,σ=8) 

 
 

FCM result  
(ACCR: 100%) 

 
 

FCM_S result 
α=0.85  

(ACCR: 96.94%) 

Figure 1.3: Classification results of FCM and FCM_S methods (NC=5) 

In [42] another algorithm called FLICM is proposed which modifies the standard 

FCM objective function by adding a new fuzzy local neighborhood factor, which can 

automatically determine the spatial and gray level relationship. Contrarily to [37]–

[41], FLICM algorithm is free of any empirically adjusted parameters.  

These modified algorithms which were normally developed to partition noised 

images do not give the expected results. In the experiment shown in Figure 1.3, FCM 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 FCM_S is programmed in Matlab™. The codes are available on the Matlab Central, File Exchange. 
3 Sum of correct classification rate of each class divided by number of classes. 
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gives better results whatever the noise level. In addition the problem of the choice of 

the fuzzification parameter is not resolved.   

Another modified version of FCM is presented in [43]. This improved algorithm 

adds geometrical information during the classification process. The local 

neighborhood of each pixel determines the condition of each pixel, which guides the 

clustering process. In more details, the FCM objective function is modified to include 

two parameters: the membership degree of the labeled pixels and a Boolean variable 

to distinguish between labeled and unlabeled pixels. This algorithm outperforms the 

results of FCM but it requires a priori knowledge about the image to be partitioned. 

Another unsupervised version of FCM is presented below in the unsupervised 

methods subsection (see Section 1.2.2). 

• Linde-Buzo-Gray (LBG) Algorithm  

The LBG algorithm [20] is also a very well known algorithm especially in the 

domain of vector quantization. Since it is simple and easy to implement, it has been 

widely used in many other applications, such as pattern recognition, image 

segmentation, speech recognition and face detection [44], [45]. This algorithm is 

based on the idea of k-means clustering. The only difference between them is that the 

class centers in LBG are introduced incrementally. The algorithm of LBG can be 

briefly described by the following steps: 

Step 1: Set number of clusters K. Set the dispersion Dt-1=∞. Set the iteration counter 

t=0, set k=1, set the initial class center 0g  as the mean of all data points, set ε 

to a small positive value. 

Step 2: Place new class centers near each class center in 0g   and then modify k→2k. 

Step 3: Affect each data point in the dataset to the nearest class center including the 

new ones.  

Step 4: t=t+1, calculate the overall distortion: ( )

1 1

1 ( , ( ))
iNCk

i
t j i

i j

D d F g C
N = =

= ∑∑
 

where N is the number of data points in the dataset, and NCi is the number of 

objects in class i,  i=1…k. Fi is the feature set representing the pixel xi 
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Step 5: calculate the centroids by ( ) ( )

1

1 iN
i

j
j

i
i

F
NC

g C
=

= ∑   i=1…k. 

Step 6: if ε>−− ttt DDD /)( 1 , go to step 3; otherwise go to Step 7,  

Step 7: if k=K stop, otherwise Dt-1=Dt, g0=g, and then go to Step 2. 

The drawback of this algorithm as well as the k-means is that the quality of the 

solution highly depends on the initial location of the class centers [46]. The result of 

the experiments that we have conducted confirms this drawback (see Figure 1.4(a)).   

Obviously, if the initial values are near an acceptable solution, a higher probability 

exists that the algorithm will find a better solution. If not, finding the optimal solution 

is not guaranteed and for these reasons many efforts have been done to overcome this 

problem of the algorithm. In [47] an algorithm called LBG with utility (LBG-U) is 

proposed which consists mainly of repeated runs of the standard LBG algorithm. Each 

time LBG converges, however, a utility measure is assigned to each class center. 

Thereafter, the center of the class with minimum utility is moved to a new location, 

LBG is run on the resulting modified class center until convergence, another center is 

moved, and so forth. This algorithm is more time consuming than LBG, and still 

affected by the initial choice of class centers. Another method is proposed in [48] 

called Enhanced LBG (ELBG). The basic idea of ELBG is the introduction of a utility 

measure as in LBG-U [47], but the technique of moving the class centers differs. Here 

the class center displacement is not validated unless it decreases the dispersion of the 

solution found. ELBG is less sensitive than LBG and LBG-U to the initial choice of 

class centers, and it is less time consuming than LBG-U. In [49], a method called 

Adaptive Incremental LBG (AILBG) is presented; in this method the class centers are 

inserted incrementally. New class centers are inserted in regions of the input vector 

space where the distortion error is highest until the desired number of centers is 

achieved. During the incremental process, a removal-insertion technique is used to 

fine-tune the class centers in order to make it independent of the initial conditions. 

Acutely we have confirmed the stability of AILBG by the experiments conducted on 

some synthetic images (see Figure 1.4(b)). The overhead time of AILBG to standard 

LBG is negligible. In [49] the authors also present a comparative study between the 

different versions of LBG algorithm, and found that AILBG outperforms all of them. 
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However AILBG like all other extensions is a semi-supervised method and requires 

the number of classes to be fixed in advance. In [50] an unsupervised version of LBG 

called modified LBG (MLBG) is proposed but its computing time is very high. 

Figure 1.5 shows a comparison of classification results between LBG and AILBG4 

by fixing class number to 5. In the case of noisy images, LBG is trapped in a local 

minimum and gives an incorrect result, while AILBG is able to avoid this local 

minimum and finds a better result.  
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Figure 1.4: Stability of LBG and AILBG algorithms (NC = 5)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 The algorithms of LBG and AILBG used are programmed in Matlab™ by our laboratory.%
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Noise free image 

 
 

LBG result  
(ACCR: 100%) 

 

 
 

AILBG result 
(ACCR: 100%) 

 
 

Noisy image 
(µ=0,σ=6) 

 
 

LBG result  
(ACCR: 70.68%) 

 
 

AILBG result 
(ACCR: 100%) 

 

Figure 1.5: Classification results of LBG and AILBG methods (NC = 5) 

• Complementarities of FCM and AILBG 

FCM and AILBG are the most successful algorithms of semi-supervised 

classification [51], [52], and they have many common advantages: guaranteed 

convergence, fast execution time, easy implementation, and compatibility with 

different distance types. Besides, they differ from each other in many points; firstly 

the decision concept of the methods is completely different; FCM is based on fuzzy 

decision, while AILBG is based on hard decision. Secondly, in FCM all the class 

centers are initialized randomly once at the start of the algorithm, while in AILBG the 

class centers are introduced along the iterations. Lastly the objective function of FCM 

(see Equation 1.5) is composed of the mean squared error weighted by the 

membership value of each individual in the dataset, while the objective function of 

AILBG algorithm is the standard mean square error.  

The above-mentioned differences between these two methods make them produce 

very different results for the same dataset.  In the following we show some specific 

important cases where FCM, LBG and AILBG algorithms give different results: 

− FCM is found to give better results than LBG and AILBG in the case of non-

convex shaped clusters. Figure 1.6 shows an example of compared 
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classification results between FCM, LBG and AILBG algorithms on an image 

by using contrast and correlation features. In this experiment, the number of 

classes is fixed to 5.  

− FCM creates fuzzy intermediate classifications, rather than hard ones; this is 

useful when the boundaries between the clusters are ambiguous and not well 

separated [53]. In other words, thanks to the fuzzy membership, FCM is able 

to find uncertain boundaries that AILBG and all other hard decision clustering 

algorithms fail to obtain. Figure 1.7 shows an example of this case where 

contrast and sum average features are used. The comparison of classification 

results of FCM, LBG and AILBG algorithms is also given. The number of 

classes is fixed to 5. 

− LBG and AILBG work much better than FCM in the case when the dataset 

contain small clusters (clusters with few objects); in such case FCM tends to 

locate centroids in the neighborhood of the larger clusters and misses the small 

clusters [54]. In Figure 1.8 we show the classification results of FCM, LBG, 

and AILBG on an example of six classes generated according to Gaussian 

models where two classes among them are low-populated. Therefore, in this 

experiment, the number of classes is fixed to 6.  

We precise in these experiments, the FCM fuzzification factor is set to 4. 

In Figure 1.6, Figure 1.7 and Figure 1.8 we give two different results of LBG, 

because the result varies from a run to another on the same dataset, but for the FCM 

and AILBG the results remain unchanged in most cases. The tested cases show the 

difference between the results of FCM, AILBG and LBG. They also show that 

AILBG is much more stable than LBG and always gives much better results, with no 

additional parameters and a very negligible overtime. The cases mentioned in the 

previous paragraphs make FCM and AILBG good candidates to be put together in a 

cooperative classification approach. 
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(a) Synthetic image (b) Dataset with non-convex classes 
(contrast, correlation features) 

 
 

 
(c) FCM result 

 ACCR: 99.97% 
 

 

 
(d) LBG result trial 1 

ACCR: 70.77% 

 

 

 
(e) LBG result trial 2 

ACCR: 69.45% 
 

 

 

 
(f) AILBG result 
ACCR: 99.91% 

Figure 1.6: Classification results using FCM, LBG and AILBG methods on a dataset containing non-
convex classes (NC = 5). 
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(a) Synthetic image (b) Dataset with overlapping classes 
(contrast, sum average features) 

 

 

 
(c) FCM result, 

ACCR: 98.08% 

 

 

 
(d) LBG result trial 1, 

ACCR: 74.43% 

 

 

 
(e) LBG result trial 2  

ACCR: 74.38% 

 

 
(f) AILBG result 

ACCR: 95.80% 

 
Figure 1.7: Classification results using FCM, LBG and AILBG methods on a dataset containing 

overlapping classes (NC = 5). 
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(a) Dataset with two small 

classes 

 

(b) FCM result  

ACCR: 54.32% 

 

(c) LBG result trial 1 

ACCR: 75.16% 

 

d) LBG result trial 2 

 ACCR: 75.05% 

 

(e) AILBG result 

 ACCR: 99.50% 

Figure 1.8: Classification results using FCM, LBG and AILBG algorithms on a dataset containing 
small classes (NC = 6). 

1.2 .2 Unsupervised methods  

In this subsection we present the main unsupervised and nonparametric methods. 

We recall that it is meant by unsupervised methods those which do not require any a 

priori knowledge (e.g. number of classes, training samples and threshold values). 

• Genetic algorithms  

A genetic algorithm is a search heuristic that mimics the process of natural 

evolution. It is a searching procedure based on the laws of natural selection and 

genetics. A genetic algorithm is composed of five parts [55]: 

− Genotype (chromosome): it is the genetic makeup of an individual.  
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− Initial population: a group of individuals characterized by their genotypes. 

− Objective (fitness) function: this function measures the adequacy of an 

individual to its environment by considering its genotype. 

− Genetic operations: these operations are performed on genotypes in order to 

evolve the population during the generations. There are three types of genetic 

operations: 

# Mutation: the genes of an individual are modified in order to better 

adapt to the environment.  

# Selection: the individuals that best fit to the environment have bigger 

chance to be selected for reproduction. 

# Crossover: two or more individuals reproduce by combining their 

genotypes. 

− Stopping criterion: this criterion allows stopping the evolution of the 

population. 

The execution of the genetic algorithm is performed in five steps: 

Step 1: Initial population definition and calculating the fitness of each 

individual. 

Step 2: Selection and mutation of the current population. 

Step 3: Apply crossover operation. 

Step 4: Evaluate the individuals in the population. 

Step 5: Go to the second step if the stopping criterion is not satisfied. 

This algorithm has two main advantages: i) ability of solving problems with 

multiple solutions, ii) solving multi-dimensional, non-differential, non-continuous, 

and even non-parametrical problems. For these reasons this unsupervised algorithm is 

used for many applications, and widely used for data fusion.   

However it presents some difficulties: i) the choice of the fitness function 

conditions the results; ii) it requires a large number of chromosomes to avoid 

premature convergence to local minima solution. In this case its computation time is a 

burden. 
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• Hierarchical Genetic Algorithm: 

An HGA is presented in [56] that overcomes the difficulties encountered when using 

the conventional Genetic Algorithm (GA). The HGA simultaneously estimates the 

proper number of classes and then partitions the image into several homogeneous 

classes. The main difference between conventional GA and hierarchical GA is that the 

genetic structure of a chromosome is formed by a number of gene variations that are 

arranged in a hierarchical manner (see Figure 1.9). In HGA the chromosome consists 

of two types of genes, the control genes and the parametric genes. The purpose of 

control genes is to determine which parametric gene should be utilized and which one 

can be disabled during the evolution process. 

The results of this method are compared to the ones of Dynamic Thresholding, and 

Contextual-Constraint based Hopfield neural cube. The accuracies of the obtained 

results are 100%, 85% and 90% respectively. The test is realized on a simple 

monocomponent image 

%

Figure 1.9: An example of chromosome representation [57] 

• Hybrid Genetic Algorithm 

In [57]  a hybrid genetic algorithm incorporating the traditional genetic algorithm 

and k-means clustering method within a multiresolution framework is presented. It is 

another variant of GA where the crossover operator is replaced by k-means clustering 

method while the other operators are adopted. This replacement is done because the 

select-operator of genetic algorithm picks solutions according to the fitness values of 

%%%%33               125                    173            210 

1       0         1       0 Control genes 

Parametric genes 
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the chromosome (global information), instead of the local interaction among the 

genes. 

In this method, first, a quad-tree structure is constructed and the input image is 

partitioned into blocks at different resolution levels. Texture features are then 

extracted from each block (mean gray value is the only employed as texture feature). 

 The whole image is then mated as a chromosome/solution and each block is seen as a 

gene. That is to say, instead of encoding a chromosome as a string of symbols, a 

chromosome is a two dimensional array of genes. Therefore, each gene will have four 

immediate neighbors except the ones along the image/chromosome borders.  

The hybrid genetic algorithm is then performed to partition the image by assigning an 

optimal allele (texture class label) to each gene. Once the algorithm converges at a 

specific level, the allele of each gene (partitioning result) of the current level is 

propagated down to the next level as the initial alleles of its child genes in the lower 

level. The algorithm in each resolution level stops when a stop criterion is met.  

 

The different steps of this algorithm for each resolution level can be summarized as: 

Step 1: Extract texture features from each block  

Step 2: Partition current level as follows:  

• Initialize population  

• Do 

− Perform k-means clustering. 

− Mutate. 

− Evaluate fitness.  

− Select chromosomes according to their fitness for next 

generation.  

While there is evolution in the population. 

Step 3: Propagate partitioning result to the next level; if last level stop.  

Step 4: Go to step 1. 
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The application of this algorithm on monocomponent image shows that the rate of 

misclassification is decreasing as the level of resolution increases. This method has 

the same drawback than the k-means algorithm. 

• Multi-objective variable length string GA: 

An important approach for unsupervised land-cover classification in remote 

sensing images is the clustering of pixels in the spectral domain into several fuzzy 

partitions. In [58] a multi-objective optimization algorithm is used to tackle the 

problem of fuzzy partitioning where a number of fuzzy cluster validity indexes are 

simultaneously optimized. This method uses a simultaneous optimization of two 

cluster validity measures: an index indicating the goodness of the obtained clustering 

and the fuzzy C-means (FCM) measure which calculates the global cluster variance. 

This method is compared with two other classification methods FCM and GA with 

one objective. The multi-objective GA shown higher classification efficiency 

compared to GA with one objective function and FCM.  

The performance of this multi-objective clustering method depends highly on the 

choice of objectives, which should be as contradictory as possible. It also suffers from 

slow convergence. 

 
• Unsupervised modified FCM  

In [59] an unsupervised version of FCM which is adapted for high dimensional 

multiclass pattern recognition problems is presented. Its main objectives are to 

increase the accuracy and stability of the well-known FCM. It is based on two 

concepts: the unsupervised weighted mean and cluster centroids from nonparametric 

weighted feature extraction, and discriminant analysis feature extraction. The 

advantage of this method is its unsupervised nonparametric skills where the system 

finds the number of classes; besides, it is more robust than the FCM algorithm. 

However, it is not completely stable since for some complex images, the level of 

variability of the results is high. 
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1.2.3 Discussion  

Several non-cooperative methods are presented above which are either semi-

supervised or unsupervised but are all non parametric. Each method has its own 

advantages and drawbacks. A summarized analysis of these non-cooperative methods 

is shown in Table (A.1) in Appendix A. 

Despite the existence of a vast number of algorithms [60]–[64] yet no single non-

cooperative method or algorithm is able to identify all kinds of cluster shapes and 

structures that are encountered in practice. Each algorithm has its own approach, 

and  imposes a structure on the data [65]–[67][68]–[70]. 

Since there is no general solution to the image segmentation/classification 

problem, using multiple methods allows to better interpret the data [71]; in this case, 

each method extracts an information, which is not always localized by the other 

methods. In fact, applying different methods or the same method with a tiny 

modification of initial data on the same image is very unlikely to give identical 

results, even when the number of classes is given in advance. Each result obtained 

using different methods contain correct and incorrect information, some pixels being 

correctly classified, while others are not. This situation thus makes the quality 

assessment difficult for the choice of a particular method. Therefore, cooperation 

between methods is highly recommended. However to produce reliable results, the 

choice of the methods to be put in cooperation should be operated carefully in such a 

way that the disadvantage of a method should be covered by the advantages of the 

others.  

The following section presents some developed cooperative methods found in the 

literature. 
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1.3 Cooperative classification approaches 

Since getting reliable results is difficult to obtain using one single classification 

method, many partitioning cooperative approaches have been developed in the 

literature in order to combine the advantages of the non-cooperative methods. Some 

of them are adapted for non-textured images using edge-region combination [72]–

[76], and others dedicated for textured and/or non-textured images or other non-image 

data [7], [71], [77]–[80]. 

Voisine [11] defined the cooperation of the methods as two types: informal and 

formal cooperation. These methods are considered as agents according to the rules 

and the criteria that combine them. The informal cooperation takes place at a high 

level by the rules or the common criteria of the classification methods. In informal 

cooperation the image treatment takes place independently to each other but towards 

the same objective. The objective imposes the behavioral rules of the classification 

methods. In the informal approach different partitioning results or different 

classification methods might be exploited. Besides, formal cooperation defines the 

interaction between the classification methods. In this case all the rules of cooperation 

are defined by the user in advance, and share a common objective. 

The cooperation between methods can be done using three different schemes [12]:  

• Sequential [7], [8], [81], [82],  

• Parallel [71], [77], [78], [80], [83]–[85],  

• Hybrid [79], [86]–[88].  

 

In the following section we present each of these structures. 

1.3.1 Sequential cooperation 

The principle of sequential cooperation scheme is to combine two or more 

methods in a way that the classification result of a method is the starting point of 

another one. In the following the main cooperative approaches are presented. 
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• k-means and genetic algorithm 

In [89] a partitioning technique for multiband image that uses k-means and genetic 

algorithm in sequential manner is presented. Considering the edge ambiguity in the 

image, a novel fuzzy-set-based edge-boundary-coincidence measure is combined with 

a region heterogeneity measure to guide the GA and tune the partitioning process. The 

image partitioning is done by the following steps:  

Step 1: The k-means clustering method is applied to generate an initial finely 

partitioned image. The k-means clustering result is used as the seed 

chromosome to generate the initial population for the GA.  

Step 2: GA is used to control the splitting and merging of classes so as to optimize 

an evaluation function.  

This image clustering technique has the following characteristics:  

− The finely partitioned image from the k-means clustering is used as the 

input to the GA. This approach greatly reduces the search space of the 

GA. In addition, feature information conjuncts with spatial information 

globally.  

− Evaluation criteria are used that incorporate both edge information and 

region information.  

The results show that k-means and GA method provides better results than the 

other conventional edge detection methods. This method is dedicated to edge 

detection. 

• Split and merge using Fuzzy C-Means and Orthogonal arrays 

A generic splitting/merging partitioning method has been proposed in [90] that 

combines FCM and orthogonal arrays. The FCM algorithm is used to split the image 

into many small regions depending on the measurement of the contrast and the 

compactness between classes. To merge two adjacent classes C1 and C2 the difference 

between the average gray levels is considered, the smaller the difference, the higher 

the possibility of their mergence. In addition, the intensity distance along boundary 
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pixels among adjacent classes (Ci, Cj) is used to define the evaluation function of 

class discrimination for adjacent classes. A validity check is done to ensure the 

existence of common edges between regions and to determine the emergence 

probability based on the rank of significance of their contribution using orthogonal 

array (ISOA).  

Let IN be the initial number of edges, EN be the new number of edges after the 

mergence operation. PN be the number of edges before the mergence operation, and 

DE be the number of deleted edges in one mergence operation.  

The ISOA algorithm is presented as follows:  

Step 1: Initially, let EN = IN and PN = IN.  

Step 2: Evaluate the values of edge.  

Step 3: Select an orthogonal array Ln(2N) where n=2log2 EN+1 and N=n-1. Use 

the first EN columns of the orthogonal array. 

Step 4: Compute the main effect of every edge using the objective function in the 

orthogonal array and rank the edges using the main effect values of 

level 1. The edges with large evaluation value have a higher rank.  

Step 5: (Mergence operation) remove the worst DE edges having the lowest 

ranks.  

Step 6: End the algorithm if the predefined region numbers is satisfied or some 

stopping condition is met or EN – DE < 1.  

Step 7: Let PN = EN and EN = EN – DE, go to step 3.  

The method is tested on different generic and noisy artificial images; it is also 

tested on noisy, and blurred natural images. From the tests it is found that the method 

is fast and robust. This method is also dedicated to edge detection. 

• FCM and Hybrid Dynamic Genetic Algorithm (HDGA) 

In [7] a sequential cooperative approach is proposed. It puts in cooperation FCM 

and Hybrid Dynamic Genetic Algorithm (HDGA); FCM gets the cluster centers from 

HDGA in order to classify the content of different types of images. This approach is 

tested on two multicomponent satellite images (Ikonos and Landsat) to detect 
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different land covers in the images i.e. urban, bare land and agriculture. The 

classification rates are 90%, and 97% respectively. The spectral signatures are used as 

features in this approach. 

• Radial Basis Function Neural Network (RBFNN) and GA 

Another sequential approach for satellite image partitioning is presented in [82] 

that combines Radial Basis Function Neural Network (RBFNN) and GA. During the 

learning process of the RBFNN, GA is employed to automatically determine the 

hidden layer parameters. The image used to assess this approach is an RGB 

QuickBird satellite image taken over rural areas that contain vegetation and bare soil. 

Many features are extracted from the images like: entropy, second momentum, and 

dissimilarity. The best classification rate for this approach is 88%. The disadvantage 

of this approach relies in the fact that it uses a parametric method which requires 

making some hypothesis on the distribution of the image pixels. 

• Self-Organizing Map and Genetic algorithm 

A sequential approach presented in [81] combines SOM and GA. This approach 

divides the original image into many small rectangular regions and extracts texture 

features from the data using two-dimensional autoregressive model, and other features 

such as fractal dimension, mean, and variance. Various experiments were performed 

on a set of monocomponent synthetic images with 3 or 4 different real textures. 

Texture features are extracted to describe the textures in the image. The authors found 

that the combination of both methods is visually more accurate as compared to using 

both methods separately. The obtained results are shown without any Average Correct 

classification rate (ACCR). The authors conclude that the methods are effective for 

partitioning images that contain similar texture fields. The advantage of this 

sequential approach is that it uses two unsupervised methods.  

In conclusion, the main drawback of a sequential cooperation scheme is that the 

quality of the classification results is strongly influenced by!the sequencing order of 

the methods. 
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1.3.2 Parallel cooperation 

Parallel cooperation schemes consist of combining or fusing classification results 

of different methods. These results are either fused in parallel or sequentially. A 

fusion stage is therefore required at the end of the process. Whatever is the type of the 

fusion, it is important to associate an index of confidence to the results of the 

classification or segmentation to be fused [91]. 

The data fusion approaches developed in the literature involve statistics theory, 

neural network, fuzzy logic, expert system, majority voting, weighted majority voting, 

weighted-linear opinion pool, minimum spanning forest, evidence commutation, 

fusion with background knowledge , GA based fusion, and mutual information [10], 

[71], [80], [84], [92]–[96].   

In the following we first present the main fusion approaches and then we describe 

complete parallel partitioning approaches.  

1.3.2.1 Fusion approaches 

In the following we review some approaches from the literature that detail only the 

fusion process often used in cooperative parallel methods. 

• Evidence accumulation fusion 

In [80] a fusion approach called evidence accumulation is presented. The main 

idea of this approach is to produce a co-association matrix from the different initial 

results. This matrix gives the information of the number of times that two data objects 

have been put together in the same cluster. A hierarchical clustering is then used.  

This hierarchical method utilizes the co-association matrix as a distance matrix, to 

cluster the objects into the final partition. This approach is tested on 9 different 

synthetic and real datasets, for example: iris, breast cancer, three rings, and a synthetic 

textured monocomponent image represented by 19 texture features. The features 

extracted from the monocomponent images are not specified. The best correct 

classification rate for the monocomponent image is 92%. 
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• Fusion with background knowledge 

Another parallel approach proposed in [71], in which different unsupervised 

methods are used to cluster the same dataset, and then the different results are 

combined. The disadvantage of this approach is that it requires some background 

knowledge while fusing the results of the different methods. In this work the methods 

used in parallel are not specified, the authors are focusing on the fusion process in 

particular. This approach is tested on many real non-image datasets (iris, wine, 

ionosphere, and segment). The best correct classification rate obtained is 95% for the 

segment dataset. 

• Fusion by conflict resolution 

In [84] three other iterative and a GA based approaches for conflict resolution are 

proposed. The iterative approaches are called: the worst conflict choice (WCC), 

stochastic conflict choice (SCC), and roulette-wheel conflict choice (R-WCC).  

The advantage of these approaches is that they do not take into account any 

change unless they improve the global result, but unfortunately they could give 

suboptimal results. These approaches are tested on synthetic and real non-image 

datasets (iris, wine, and segment). The results obtained are assessed using different 

evaluation indices (Rand, Jaccard & Mallow, and F-measure). According to all the 

evaluation indices, GA gives the best results for all the datasets. 

• Fusion maximizing the mutual information 

In [96] another fusion approach is proposed that is based on maximizing the 

mutual information among the results. This information is measured through the 

Average Mutual Information (AMNI). This approach is tested on two real and two 

synthetic (non-image) datasets. The synthetic datasets contain Gaussian distributed 

clusters, while the two real datasets contain information for text recognition and 

clustering. The disadvantage of this approach is that it is sensitive to class sizes and 

seeks only for balanced-size classes (i.e. all the class should have approximately the 

same number of data objects).  
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• Fusion by k-means 

Topchy et al. in [97] described how to create a new feature space from multiple 

results by interpreting them as a new set of categorical features. The k-means 

algorithm is applied on this new standardized feature space using a category utility 

function to evaluate the quality of the consensus. This approach is also tested on two 

real and two synthetic non-image datasets only. The correct classification rate 

obtained is 97% for the real dataset, and 100% for the synthetic ones.%

1.3.2.2 Complete parallel cooperative approaches 

Many complete parallel approaches where developed in the literature using 

different strategies. In the following we describe the main ones. 

• SVM +ISODATA and SVM + EM 

In [77] Tarabalka et al. propose two parallel cooperative approaches for 

hyperspectral images, each of them putting in cooperation two classification methods: 

the first one combines SVM and ISODATA methods, while the second one combines 

SVM and EM methods. In this approach the SVM associated to EM or ISODATA 

classifies image pixels in parallel, and the results obtained by the EM or ISODATA 

are used to create a dynamically shaped mask that is used to relax the SVM results 

afterwards. The partitioning of the images is done using the spectral signatures as 

features. Two hyperspectral images are used in the experiments, AVIRIS Indian Pine 

containing 16 types of vegetation and ROSIS Pavia University containing 9 land 

covers (buildings, asphalt, green area, trees, etc.). The obtained correct classification 

rates for the AVIRIS image are 80.60% and 71.90% for SVM+ISODATA and 

SVM+EM respectively. While for the ROSIS image the correct classification rates are 

92.94% and 95.21% for SVM+ISODATA and SVM+EM respectively. SVM 

cooperating with ISODATA globally gives better classification results. In addition 

before partitioning the image using EM, a band selection process is required. 
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• SVM, Watershed, EM and Recursive Hierarchical Segmentation (RHSEG) 

In [98] the same authors  propose another parallel partitioning approach that uses 

SVM classifier, watershed segmentation, segmentation by EM and RHSEG 

segmentation. This approach is designed for hyperspectral images. The fusion process 

in this approach is based on majority voting and minimum spanning forest (MSF). 

The partitioning of the images is done using the spectral signatures only and no 

features are extracted. This system is tested on the same images used in [77]. The 

correct classification rates are: 94.28% for Indian Pine image, and 98.50% for Pavia 

University image.% 

The disadvantage of these approaches resides in using supervised and parametric 

methods like SVM, ISODATA, and EM. 

• Only ML (changing features) 

A recent parallel approach proposed in [78] to partition hyperspectral images that 

uses only ML classification method to partition the same image changing the features 

extracted from the image each time, and then the results are fused to get the final 

result. The fusion technique is based on weighted-linear opinion pool (WLOP), and 

weighted majority voting (WMV) to combine the class labels from this bank of 

classifiers. The partitioning of the images is done using the derivatives of the spectral 

signatures to detect variations in chemical stress on the corn crop from an airborne 

hyperspectral image. The obtained correct classification rate is 80%. The 

disadvantage of this method is that it uses a parametric method. 

In conclusion parallel cooperation has many advantages: i) the classification 

methods are applied independently, ii) there is no imposed order of the applied 

methods that highly conditions the results, iii) applying the methods in parallel 

reduces computation time. The main overall difficulty of the parallel scheme is the 

fusion process that requires a robust decision rule to give optimal results.  
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1.3.3 Hybrid cooperation 

The third cooperation scheme to partition an image is the hybrid cooperation that 

combines the two previous schemes simultaneously. In other words hybrid methods 

use elaborated concept such as adding intentionally intermediate results, context 

adaptation according to the obtained results. In the following we present some 

methods which cooperate in a hybrid way. 

• Neural network (NN) and ML 

A hybrid approach, presented in [79], involves the cooperation of Neural Networks 

(NN) and ML method. In this approach NN and ML methods classify the pixels of the 

image in parallel; then the results are fused and a set of validated and invalidated pixel 

results are obtained. The invalidated results are classified by another NN. The 

drawback of this approach is the use of supervised and parametric classification 

methods. This approach is designed for hyperspectral images. The partitioning of the 

images is done using the spectral signatures. This approach is tested on the 

hyperspectral AVIRIS Hekla (active volcano in Iceland) image that contains 16 

different land covers. The best correct classification rate is 91%.  

• SOM, HGA, FCM, HDGA , NURB and GA 

In [7]–[9] a hybrid cooperative multicomponent image partitioning system using 

the minimum a priori knowledge is proposed by Awad et al. The partitioning 

methods used in this system are nonparametric. This system is composed of three 

subsystems; each of them is composed of more than one classification methods which 

cooperate in a sequential way. Then the results of the subsystems are fused to obtain 

the final partitioning result (see Figure 1.10). 

The system works by analyzing the image in several hierarchical levels of 

complexity while integrating several methods in cooperation mechanisms. Three 

sequential cooperative approaches are created between different methods such as 

SOM (Self-Organizing Map)- HGA (Hybrid Genetic Algorithm), FCM 

(Fuzzy C-Means)-HDGA (Hybrid Dynamic Genetic Algorithm), and Non-Uniform 

Rational B-Spline (NURB-HDGA) [99], [100]. 
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Figure 1.10: Hybrid cooperative partitioning system [9]% 

In order to combine the results of the above three approaches, a genetic fusion 

process is used. This approach is tested on three multicomponent satellite images 

Ikonos, Landsat and SPOT to detect land covers, i.e. urban, bare land and agriculture. 

The classification rates are: 97%, 88% and 97% respectively. These results are 

obtained by using only the pixels values, and no other features are extracted. 

The disadvantage of this approach is that: i) some of the methods used require a 

priori knowledge, and ii) the evaluation technique used in the fusion process also 

needs some parameter initialization. 

• MLBG, GA and k-means 

Another hybrid cooperative and adaptive system is developed by Rosenberger et 

al. in [10], [101] for partitioning mono and multicomponent images. In this system the 

image to be partitioned is processed in many different steps, first the image is globally 

analyzed to determine different region types; then features of pixels are extracted 

according to the region types. A classifier called MLBG is used to partition the image 

via the features extracted. The author proposes using the same classifier on the same 

image to obtain different results. The results are then fused using a GA with an 
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unsupervised evaluation criterion. The evaluation criteria used is based on within-

class and between-class disparities that are calculated in different ways for the 

textured and non-textured regions in the image. The evaluation of the developed 

system is done using different texture features extracted from synthetic images. The 

obtained correct classification rate for the monocomponent synthetic images is 93%.  

The disadvantages of this system are: i) the classifier used (MLBG) is very time 

consuming, ii) same classifier is used several times, to get different results, iii) while 

calculating the within-class disparity for the textured regions a k-means is used in the 

process which is not a stable method and adds a very big overhead time to the 

evaluation process, iv) mutation is not used in the GA, this makes it easily get trapped 

in local minima, and finally v) the GA fusion used is very time consuming.   

1.3.4 Discussion 

The approaches presented in Section 1.3 show that cooperation between 

classification methods is a very interesting direction of research and worth further 

studying to resolve the different problems of image partitioning. Cooperative 

techniques appear to combine the advantages of non-cooperative methods, and to 

correct or to cover the disadvantage of a method by the advantages of the others. 

Sequential cooperation approaches generally lead to robust algorithms but have the 

inconvenient of requiring a predefined order for sequencing the methods. Parallel 

cooperation approaches do not have the problem of sequencing and offers the 

advantage to produce redundant results which can be used as additional confirming 

information in the fusion process. Hybrid approaches combine the two above 

approaches at the same time; this cooperation type has the same disadvantages as 

sequential cooperation, and in addition the design of such methods is difficult to 

implement.  

A summarized analysis of sequential, parallel and hybrid cooperative approaches 

are shown in Tables (B.1, B.2 and B.3) respectively in Appendix B. 
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1.4 Conclusion 

From this literature review we can provide several conclusions. First of all, the 

problem of image partitioning is not yet satisfactorily resolved. The diversity of the 

information contained in images is the major problem of the partitioning systems 

developed until now. Non-cooperative partitioning methods give good results for 

some particular types of images and may not be applied to all types of images.  

These methods use the same strategy for the whole image, however real images are 

rarely totally textured or totally non-textured. Applying one classification method to 

the entire image does not give reliable results because of the diversity of the 

information it contains. This is why adapting multiple strategies in a cooperative 

classification approach appears to be a good direction of research. Indeed it a fact that 

more and more researchers focus their effort on developing cooperative approaches. 

As we have seen above most of the presented cooperative approaches partition an 

image without considering the types of regions it contains. Besides, most of the 

partitioning methods make implicit assumptions about the input images; however 

these assumptions are often not verified in practice. A relevant approach must identify 

the failure of a method and use this information to adjust the final classification result.  

To achieve a reliable partitioning of an image, a suitable partitioning method must 

be applied locally to the data. While designing a partitioning system, the emphasis 

should be focused on the development of a local contextual correspondence between 

several appropriate partitioning methods. 

In the sequel, we have chosen to adapt the partitioning of an image by detecting the 

presence or absence of texture. This choice seems justified since the features used to 

characterize these types of area are relatively distinct. Following this principle, the 

pixels in the different region types must be characterized by adapted sets of features. 

The average of pixel values is sufficient to classify the pixels of the non-textured 

regions, while classifying the pixels from the textured regions is more sensitive and 

requires more features. 
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In the overall strategy of the system to be defined, the difficulty relies in the 

selection of appropriate partitioning methods for each area type. Insofar as we take a 

special interest in unsupervised approaches, we have chosen to develop a general and 

unsupervised cooperative partitioning paradigm. This scheme is expected to present 

many advantages: 

• Effectiveness for partitioning different region types (textured, non-

textured). 

• Natural adaptation to the local nature of the image by choosing appropriate 

features of pixels in the textured and non-textured regions.   

• Automatic estimation of the number of classes. 

• Fast convergence. 
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Chapter%2 Evaluation%criteria%

2.1 Introduction 

The evaluation of classification results is an unavoidable process used to quantify 

the performance of existing partitioning or segmentation algorithms. In addition this 

process can also be used in designing classification methods or approaches.  

The quality evaluation of a classification result is an active area of research and 

many criteria are being developed regularly. Unfortunately, the evaluation of a 

partitioning result always contains some elements of subjectivity and the criteria do 

not always give satisfactory evaluation. For this reason, it is impossible to define a 

universal criterion to evaluate the results produced by all the existing criteria. 

However, a number of criteria exist and are repeatedly used by many researchers to 

compare classification results. Since there are a large number of possible partitioning 

results for the same dataset, the objective is to assess whether any of these results is 

better than another. So to correctly evaluate the partitioning results, it can be 

necessary to use multiple evaluation criteria. 

In this chapter, we provide generalities of the evaluation criteria, and then focus on 

the unsupervised ones. 

2.2 Evaluation criteria types  

Several types of evaluation methods have been proposed in the literature [102]–

[104]. They are classified into three main groups. The first group contains 

unsupervised criteria that use only internal information of the data such as the 

distance between objects. These criteria are also called internal quality measures. The 

second group contains supervised criteria that calculate the degree of correspondence 

between the clustering produced by the algorithm and a known data partitioning. 

These criteria are also known as external quality measures. The last group is called 

relative criteria; this type of evaluation allows comparing the results obtained from 
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the same algorithm. These measures are simply the use of internal or external criteria 

to evaluate multiple results produced by the same algorithm and to choose the best 

one among them. As the partitioning system proposed in this thesis is unsupervised, 

we will review only internal quality criteria. 

2.3 Unsupervised evaluation criteria 

Unsupervised evaluation criteria [105] are based on internal information and do 

not need any a priori knowledge. This type of criteria generally computes statistical 

measures such as the standard deviation or the disparity of the classes. These 

measures are often based on the simplest definition of partitioning which says that 

objects from the same class should be as close as possible, and that objects from two 

distinct classes should be as far apart as possible [106]. To assess whether a 

classification result complies with this intuitive definition, the distances between the 

class centers and the class objects are calculated. These unsupervised measures assess 

the compactness and the separability of the classes. The evaluation of the quality of a 

partition is not formally defined, so there are many different criteria, which estimate 

the quality of the results differently. Some of these criteria can be directly used as the 

objective function of a classification algorithm. However others are very time-

consuming, and therefore intended to be calculated after the application of the 

algorithm for the final evaluation process. 

One of the most intuitive criteria able to quantify the quality of a partitioning result 

is the within-class uniformity. The simplest way to calculate this uniformity is the 

sum of the squared errors (SSE) which is calculated as follows: 

( ) ( )2

1

( )
i

NC

R i
x ci

SSE I d x g C
∈=

= −∑∑
 

(2.1) 

where ( )ig C is the center of the class iC  and d is a distance measure. 

 Weszka and Rosenfeld [107] proposed such a criterion with thresholding that 
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measures the effect of noise to evaluate some thresholded images. Based on the same 

idea of within-class uniformity, Levine and Nazif [108] also defined a criterion that 

calculates the uniformity of a class as follows: 

( )
( ) ( )
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(2.2) 

where 

• RI  is the partitioning result of the image I into NC classes 

{ }1,..., NCC C C=  , 

• N  is the number of pixels of the image I,  

• ( )lg x is the gray level of pixel x in the image I.  

A standardized uniformity measure was proposed by Sezgin and Sankur [109] that 

is based on the Cochran homogeneity measurement [110]. However, this method 

requires a threshold that is often arbitrarily selected, thus limiting the usage of this 

criterion. Another criterion to measure the within-class uniformity was developed by 

Pal and Pal [111]. It is based on a thresholding that maximizes the local entropy of the 

classes in a partitioning result. In the case of slightly textured images, these criteria of 

within-class uniformity prove to be effective and very simple to use. However, the 

presence of textures in an image often generates improper results due to the over-

influence of small regions.  

Complementary to the within-class uniformity, Levine and Nazif [108] defined a 

disparity measure between two classes to evaluate the dissimilarity of different classes 

in a partitioning result. The formula of total between-class disparity is defined as 

follows: 
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where
kcw  is a weight associated to kC  that can be dependent of its area, ( )l kg C is the 

average of the gray level of kC  and \k jC Cp  is the length of the boundary of the class kC  

common to the perimeter of the class jC . This type of criterion has the advantage of 

penalizing over-segmentation.  

Zeboudj  [112] proposed a measure based on the combined principles of maximum 

between-class (external) disparity and minimal within (interior) class disparity 

measured at the pixel’s neighborhood.  

Let ( ) ( ) ( )
,

–1
−

= l lxg g
c

z
x z

L
 be the disparity between two pixels x and z 

 and ix z C∈ , and L be the maximum gray level.  

The interior disparity ( )iCI C of the class iC is defined as follows: 

( ) ( ){ }1 max , ,   ,  
∈

= ∈ ∈∑
i

i s i
x Ci

CI C c x z z V z C
NC

 (2.4) 

where iNC  is the number of pixels in class iC and sV  is the neighborhood of the pixel 

x.  

The external disparity ( )iCE C  of the class iC  is defined as follows: 

( ) ( ){ }1 max , , ,  
∈

= ∈ ∉∑
i

i s i
x Ci

CE C c x z z V z C
p

 (2.5) 

where pi is the length of the boundary of class iC . 

Lastly, the disparity of the class iC  is defined by the measurement ( )iD C  � [0, 1] 

expressed as follows: 
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Zeboudj’s criterion is defined by: 

( ) ( )
1
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NC xD
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= ∑  (2.7) 

where N is the number of pixels in the image.  

This criterion has the disadvantage of not correctly taking into account strongly 

textured regions. 

Another criterion that is based on the combination of the within-class and between-

class disparities is the Davies-Bouldin index [113]. It estimates the within-class 

disparity based on the distance from the points in a class to its centroid and the 

between-class disparity based on the distance between centroids. It is defined as: 
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where Fk is vector of Nf features representing the pixel xk. 

 Another criterion of this type is the Silhouette index [114]. This index is a 

normalized summation-type index. The within-class is measured based on the 

distance between all the points in the same cluster and the separation is based on the 

nearest neighbor distance.  
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Let ( )1 jd x  
be the average dissimilarity of jx  with all other pixels of its class iC  

( )1 jd x  
indicates how well jx  is assigned to its class (the smaller the value, the better 

the assignment).  

Let ( )2 jd x  be the lowest average dissimilarity of jx  to any other 

class 1,2,..., ;= ≠l withC l K l i .  

The class with the lowest average dissimilarity is said to be the "neighboring 

cluster" of jx  because it is the next best-fit class for it; and then the size of the 

silhouette ( )jSil x  is defined as: 

( ) ( )
( ) ( )

2 1

2 1

( )
,

−
=

⎡ ⎤⎣ ⎦

j j
j

j j

d x d x
Sil x

max d x d x
 (2.9) 

Basing on the definition of ( )jSil x , the silhouette of the class iC is defined as: 

)( ( )1
∈

= ∑
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j
x C

i
i
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NC

 (2.10) 

Finally the global silhouette for a partition is defined as: 

( )
1

1 ( )
=

= ∑
NC

R i
i

Sil I sil C
NC

 (2.11) 

This criterion is very efficient but its time complexity makes it inapplicable to 

large datasets. 

The Dunn’s index (Du) [115] is another unsupervised criterion that measures the 

compactness of a class and the separateness between classes as follows:   
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where ( )( ), ( )ij i jd g C g C is the distance between the center of classes i jC and C , 

which is defined here as the minimum distance between the objects of different 

classes (see Equation (2.13)). ( ( ), ( ))ii i id g C g C is the maximum distance between two 

objects in the same class (see Equation (2.14)).  

( )
,
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∈ ∈
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∈

=  (2.14) 

This evaluation criterion has two disadvantages: firstly, it is very time consuming 

and secondly it is highly affected by the presence of noise in the dataset. 

In [10], [101] Rosenberger and Chehdi presented a criterion that enables estimating 

the within-class homogeneity and the between-class disparity considering the types of 

regions (textured or non-textured) in the partitioning result. This criterion quantifies 

the quality of a partitioning result as follows: 

( ) ( ) ( )1
2

R R
R

D I D I
ROS I

+ −
=  (2.15) 

The global within-class disparity ( )RD I  quantifies the homogeneity of each class 

obtained in the partitioning result IR of image I. On the other hand, the global 

between-class disparity ( )RD I quantifies how well the classes obtained are separated 

from each other. 
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The global within-class disparity ( )RD I  reflects the statistical stability of each 

class. It is calculated from the within-class disparity ( )iD C of the different classes in 

a partitioned image: 

( ) ( )
1

1 NC
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R i
i

NC
D I D C

NC N=

= ∑  (2.16) 

The weight of the within-class disparity of a class iC in the global within-class 

disparity is proportional to the number of pixels for this class. The same principle is 

used to calculate the between-class disparity ( )RD I  of the partitioned image RI  that 

measures the disparity of each class with the other classes: 

( ) ( )
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1 NC
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NC
D I D C
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= ∑  (2.17) 

This criterion is calculated using the between-class disparity ( )iD C  and the with-

in class disparity ( )iD C  of each class iC . The calculation of these two criteria is 

detailed in the following: 

− Within-class disparity criterion 

This criterion evaluates the homogeneity of a class, i.e. the variation of the 

statistics in the interior of this class. In the calculation of the within-class disparity, 

the nature of the regions (i.e. textured and non-textured) is taken into account. 

In the non-textured case, this criterion for class iC is defined as: 
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This criterion is sufficient to characterize the within-class disparity of a non-

textured region. However, in the textured case, each class is characterized by a set of 
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texture feature vectors. The dispersion of this set of vectors allows calculating the 

within-class disparity in the textured case. 

− Between-class disparity criterion 

The evaluation process of between-class disparity of a class is similar to the with-

in class disparity, but instead of estimating the homogeneity of a class, it is disparity 

with the other classes is calculated. The between-class disparity is also calculated 

according to the nature of the regions as follows: 

• Between classes of the same region type: 

o The disparity between two classes belonging to uniform regions 

( ),i jD C C is defined as: 

( ) ( ) ( )
,

−
=

l i l j

i j

g C g C
D C C

NG
 (2.19) 

where NG is the number of the gray levels in the image 

o The disparity between two classes belonging to textured regions 

( ),i jD C C is defined as: 

( ) ( ) ( )( )
( ) ( )
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, =

+
i j

i j

i j

d g c g c
D C C

g c g c
 (2.20) 

where d(.,.) is the Euclidean distance, g(Ci) is the centroid of class iC , 

and  .  denotes the Euclidean norm. 

• Between classes of different region types: the disparity between classes of 

different region types is set as the maximum value, i.e. 1. 
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2.4 Conclusion 

The evaluation of classification results is unavoidable to assess the quality of the 

results obtained.  

In this chapter, we have presented various unsupervised evaluation criteria used to 

assess the quality of a partitioning result. These criteria are also called internal criteria 

because they do not use any external information in the evaluation process. Some of 

these criteria are effective in the case of non-textured or slightly textured images, 

while others give effective results in the case of textured images. 

None of the evaluation methods can prove satisfactory in all the cases. Therefore, 

to correctly evaluate the algorithms and their results we have to use more than one 

evaluation technique and to combine their results. 

Hyperspectral images are complex in their nature and contain different region 

types (i.e. textured and non-textured), so using an adaptive evaluation criterion that 

takes into account the nature of the regions of this type of images is recommended. 
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Introduction 

The research efforts in image partitioning have led to create a vast number of 

classification algorithms during the past decades. However, most of the developed 

non cooperative and cooperative approaches are dedicated to a specific application, 

and cannot be used in all general cases or applications. 

To make these systems more efficient, it would be necessary that they have general 

capacity, flexibility and adaptability to classify the image content for a wide range of 

applicative domains. In this way, we propose in the framework of this thesis a 

partitioning system that adapts itself locally to the image content. We can expect 

better efficiency by adapting the cooperative process of partitioning to the data 

encountered, rather than applying a single non-cooperative classification method. In 

the case of using more than one partitioning method on the same data, the results of 

these methods are integrated in the final partitioning result using a genetic algorithm. 

In the case of multicomponent images, the classification results of all the components 

are fused to get the final result. 

In the following, we first describe the principles of our proposed system, and 

secondly we give some details on the modules that compose it. 

Scheme of the proposed system 

To develop a partitioning system, it is necessary to adapt the classification process 

to the content of the image. This concept is inspired by the human visual system, 

where each component has a specific task, and these components cooperate to get the 

global correct vision of a scene. 

 Monocomponent case  

The basic system that we propose to partition a monocomponent image is 

composed of four modules: adaptive feature extraction, unsupervised parallel 

classification, evaluation and conflict management, and merging results. Figure 1 
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displays the overall layout of the proposed system and Figure  2 gives its extension to 

multicomponent evaluation and conflict management. 

Module 1 (Adaptive feature extraction):  in this module, the image is divided into 

two types of regions, i.e. textured and non-textured. The adaptive characterization of 

pixels, taking into account the textured or non-textured nature of the region to which 

they belong, is an essential step before the classification process. Indeed, the features 

dedicated to the description of regions with low variance do not have sufficient 

discriminating power for textured regions, and vice versa.  

Module 2 (Unsupervised parallel classification):  in this module, the image is 

partitioned using two different, unsupervised nonparametric classification methods 

(FCM and AILBG) selected after the analysis conducted in Part I, Chapter 1. These 

methods are optimized by estimating the number of classes in order to make them 

unsupervised. Moreover the problem of FCM instability is also resolved. We named 

these optimized algorithms FCMO and AILBGO. In this step, the pixels belonging to 

textured or non-textured regions are classified separately and in parallel, using 

appropriate feature sets. 

Module 3 (Evaluation and conflict management): this module includes two 

validation processes. Firstly the pixels that are coherently classified by the two 

methods are validated, and secondly, the conflicting classification results are 

processed by using a GA. The objective function of the genetic algorithm is based on 

between-class and within-class disparities to evaluate and manage the conflicting 

pixels between the partitioning results.  

Module 4 (Union of results): in this module, the results of textured and non textured 

regions are unified in the same labeled image.  
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 Multicomponent case  

In this case the four modules are first applied independently on each component, 

and the corresponding results are managed and fused by a dedicated process (see 

Figure  2). In this module, an evaluation and conflict management procedure which 

includes the identification of pixels belonging to identical classes of partitioning 

results for adjacent components is applied. In this step, the results from the different 

components are grouped into subsets, depending on the number of pixels that are 

classified to the same class in different components. Then these subsets are processed 

independently to get one classification result for each of them. The same process as in 

the third module of Figure 1 is used to evaluate and fuse the subsets results and then 

getting the final result of the multicomponent image. 

The remaining of this part is organized in two chapters. The first one is dedicated 

to the description the region nature detection and the adaptive feature extraction 

(module 1). The second chapter presents the details about the unsupervised 

cooperative classification. This chapter includes the optimization of the FCM and 

AILBG algorithms (module 2), the process of evaluation and conflict management 

and merging results (modules 3 and 4). Besides, it includes also the assessment of the 

developed system on real applications. 
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Figure 1: The general layout of the proposed basic partitioning system (case of a monocomponent 
image) 

 

Figure  2: The general layout of the proposed partitioning approach (case of a multicomponent image)  
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Chapter%3 Region%nature%detection%and%

adaptive%feature%extraction%

3.1 Introduction 

In this chapter, we present the proposed module of detection of the textured and 

non-textured regions in the image. We recall that the distinction between these two 

types of regions permits extracting appropriate feature sets of pixels for the different 

types of regions is introduced in order to obtain optimal partitioning results. The idea 

of dividing the image into different region types was introduced by Rosenberger and 

Chehdi [116].  

This module is composed of two steps: 

• Region nature detection:  

To assign a pixel to one of the textured or non textured classes, we have used the 

uniformity feature, which is calculated from the co-occurrence matrices [117].  

− Global detection 

Here, the global nature of the image is identified by calculating the uniformity 

feature on the whole image.  

− Local detection 

To classify the pixels into two categories (textured and non-textured), the 

uniformity feature is calculated locally and in a multi-resolution framework by 

changing the size of the analysis window. The window sizes are chosen 

according to the global nature of the image. 

 
• Adaptive feature extraction: in this step the pixels in each region type detected 

in the previous step are characterized by a different set of features in order to be 

classified afterwards. 
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In the following section, first we recall the detection method developed in [116] used 

in the detection of the global nature of an image to adapt the window sizes and the 

features extracted. Secondly we describe in details its optimization for local region 

nature detection and provide some experimental results. 

3.2 Region nature detection 

If we refer to the literature, the characterization of textured and non-textured 

regions is usually done by considering the standard deviation [118]. In this case, a 

region in an image is considered as textured if its standard deviation is greater than a 

predefined threshold. However, the characterization of the region types using only the 

standard deviation is not sufficient. The notion of texture is more complex and it is 

related to the resolution of the observation; for example, among two images having 

the same standard deviation, one could be textured and the other non-textured [10]. 

For this reason, we have chosen a method based on the uniformity feature 

calculated from the co-occurrence matrix [117], which is well adapted to describe 

textures.  

In the following sub-sections we describe in details the developed method.  

3.2.1 Uniformity criterion to detect the global nature of an image  

The developed scheme for the detection of the global nature of an image is given 

in Figure 3.1 [10], [116]. In this scheme, the uniformity criterion is used [117]. This 

feature characterizes the frequency of transitions between identical gray levels of a 

pixel and its connected neighborhood. If the co-occurrence matrix trace (uniformity 

feature) is greater than the sum of other elements of this matrix, this reflects 

homogeneity of transition, which is characteristic of uniform areas. Contrarily, 

disordered transitions indicate the presence of texture [117]. Unfortunately, the 

calculation time of this matrix is very high for an image in its original gray levels. In 

order to reduce the gray levels number of an image while preserving the significant 

information at the same time, we have used the multi-threshold method described in 
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[12]. This multi-threshold process selects the significant gray levels after a local 

analysis of the image. The approach consists of classifying the points of the image 

according to their gray levels using threshold values determined by analyzing the 

global histogram, this one being calculated from the significant modes issued by local 

histograms [12]. This procedure eliminates the irrelevant information and brings out 

the most important elements of the textures.  

The co-occurrence matrix of the multi-threshold image has a lower dimension than 

the one of original image and is then easier to handle on one hand, and on the other 

hand it is more robust when the image is affected by noise, because only the 

significant transitions are preserved after the thresholding process.  

 
 

Figure 3.1: Diagram of region type detection by automatic thresholding 

The uniformity parameter U calculated on the multi-thresholded image IM is 

defined by: 
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where, NG is the number of gray levels in the thresholded image IM, Pd, θ (.,.) are the 

entries of the co-occurrence matrix obtained with inter-pixel distance d (d=1and 2 ), 
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where, ( )MU I is an adaptive threshold parameter also estimated from the thresholded 

image IM as follows: 

( )
811 −⎛ ⎞= − ⎜ ⎟⎝ ⎠M

NG
U I

NG
 (3.3) 

The value of ( )MU I reflects the probability of transition of a pixel gray level with 

8 connected neighborhood under the hypothesis of gray level independence.  

To verify the validity of this criterion and show its insensitivity to gray level 

variation of image IM, we have tested it on a large database of real and synthetic 

images. Figure 3.2% shows three example images and Table 3.1% shows the values of 

  U and U  for each image by varying the number of gray levels given by multi-

thresholding method and also the detection results of the images global nature. The 

gray level variation is obtained by choosing different window sizes in the multi-

thresholding method used. The results obtained show the independence of the 

criterion to the number of the gray levels in the multi-threshold image. The visual 

analysis confirms the efficiency of the criteria, because all the tested images are 

correctly classified (i.e. in majority textured or in majority non-textured).  

 

(a) GSTB04 

 

(b) GSTB06 

 

(c) SYNTH01 

Figure 3.2: Sample of monocomponent images used to validate the global uniformity criterion 
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Table 3.1: Detection of global image nature by varying the number of gray levels 

Image 
Number of 

gray levels 
U U  

Detection  result  

of global nature of an image 

GSTB04 
20 0.44 0.33 Non-textured 

15 0.53 0.42 Non-textured 

GSTB06 
15 0.33 0.42 Textured 

12 0.41 0.50 Textured 

SYNTH01 
19 0.39 0.35 Non-textured 

14 0.53 0.45 Non-textured 

This experiment confirms that the detection method is independent of the number 

of gray levels in the multi-thresholded images. Therefore, this step will be used in our 

system to better adapt the further processing to the content of images. 

3.2.2 Detection of local textured and non-textured regions 

In [10], [116], the previous detection step is applied locally and in multi-resolution 

on the image to identify if a pixel belongs to textured or non-textured regions in order 

to adapt the extraction of the features. However, its application is not optimal, since 

pixels belonging to the edge of a non-textured region near a textured region might be 

labeled as textured. In order to overcome this problem, we have used the same 

scheme, but instead of using the decision operator that compares U and U , we have 

used a classifier after extraction of the multi-resolution uniformity feature as shown in 

Figure 3.3.  

 
 

Figure 3.3: Local region type detection 

Detection 
of region 
nature 
map         

 
Gray level 
reduction 

Calculation of co-
occurrence matrix 

locally and in 
multi-resolution 
and extraction of 

uniformity feature 

 
FCM classifier 

 (NC=2)%Image           



Chapter 3: Region Nature Detection and Adaptive Feature Extraction  
 
 

%

% 64 

The notion of textured and non-textured regions in the image is related to the 

resolution of observation, this is why a multi-resolution approach, calculating the 

uniformity feature U at different resolutions using several window sizes, is used in 

[10], [116]. The choice of the window sizes is done according to the global nature of 

the image identified in the previous step.  

If the image is globally composed of uniform regions, the uniformity feature is 

calculated using different window sizes ×
iW i WN N for 1,..,5=i  where 2 1= +i

W iN  on 

image I with NCOL columns and N LIN rows (see Figure 3.4). On the other hand, in the 

case where the image is globally composed of textured regions, the sizes of the 

windows must be greater to take into account all texture types. The uniformity 

parameter is calculated using windows of size: 22 1.i
W iN += +   

The uniformity feature ( )iU W  is calculated from the co-occurrence matrix of the 

window iW centered on the current pixel x. If x does not have sufficient neighborhood, 

which is the case when the pixels are on or near the borders of the image, we apply 

image mirroring for symmetry. The number of rows and columns mirrored depend on 

the size of iW , which is equal to 1
2
−W iN  rows and columns added to each edge. 

After this step, each pixel is characterized by a set of five uniformity features (one 

for each resolution) which are extracted using different window sizes. These features 

are injected into a partitioning method to classify pixels into two region types.  

To detect the nature of regions, by using the features extracted, three different 

semi-supervised classifiers, namely: k-means, AILBG, and FCM can be applied.  

Here, we assessed the performance of the proposed detection approach by using 

FCM, AILBG or k-means algorithms as classifiers, and we have compared it with the 

approach based on the uniformity threshold estimation [116]. 

For this experimental study we have tested the proposed region nature detection 

approach on a database of 100 synthetic images and on a set of real images. The 

database of synthetic images includes images composed of two types of regions, i.e. 

textured regions (more than 300 textures are taken from the Brodatz album [36]) and 
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three non-textured regions. The average correct detection rates for the synthetic 

images using FCM, AILBG and k-means are respectively: 98.60%, 93.12%, 89.72%, 

whereas the detection by automatic thresholding provided a rate of 85.13%. 

 
Figure 3.4: Multi-resolution feature extraction 

 

Figure 3.5 shows an example of the region nature detection using FCM 

classification on two synthetic images. We can observe that the results for the two 

images are relevant, where the boundary between the texture and non textured regions 

are accurate. 

We have also tested this detection method on real gray level images. We have been 

observing that the detection using the FCM algorithm gives the best results, which is 

confirmed by visual inspection on Figure 3.6. This is the reason why we will be using 

this method in our partitioning system. 

3.3 Adaptive feature extraction 

The choice of an appropriate feature extraction method for pixel characterization is 

a difficult task. There exist many methods in the literature, but each of them is 

adapted to some specific type of images, and gives reliable results for a limited type 

of applications. To be able to partition a large variety of images and give correct 

result for a wider range of applications, the choice of the features according to the 

content of the image (i.e. textured and non-textured regions) is very important, as we 

have discussed in previous sections. Identifying pixels belonging to one between two 

types of regions brings two advantages, i.e. a natural adaptation of feature extraction, 

and a time reduction of the feature extraction step. 
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In the case where pixels belong to a non-textured region, the local average of pixel 

values is a sufficient feature to characterize it. However, in the case of a textured 

region, there are many features extraction methods, where each of them is adapted to 

a certain type of textures. Therefore to make a good adequacy between the feature 

extraction methods and the textured regions detected in the previous step, it would be 

necessary to extract several texture descriptive features. 

 
 

(a) Original image 

 
 

(b) Detected region type  
(White: textured, black: non-textured) 

 
 

 
 

(c) Original image 

 
 

(d) Detected region type  
(White: textured, black: non-textured) 

 
 

Figure 3.5: Examples of region nature detection of synthetic images using FCM  
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(a) Original image 

 
 

(b) Detected region type  
(White: textured, black: non-textured) 

 

 
 

(c) Original image 

 
 

(d) Detected region type  
(White: textured, black: non-textured) 

 

Figure 3.6: Examples of region nature detection of real images by a classifier using FCM 

3.3.1 Choice and analysis of the features  

There are a large number of texture descriptive features in the literature; herein we 

analyze some of them to determine their redundancy and their discriminative power. 

The features analyzed are the followings: 

• Moments of order 1 to 4, 

• 15 from co-occurrence matrix [117], 

• 5 from run-length matrix [119], 

• 2 from local histograms [120], 

• 4 from local extrema [10], 

• 4 from curvilinear integral [10]. 
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These features are widely used in texture characterization. They are normally able 

to distinguish between different texture classes. The number of features is large (34 

features in total), hence we have opted for the reduction method presented in [116], 

which calculates the correlation coefficients between the different features, and 

retains the less correlated ones. The correlation coefficient (ρ) between features Fi and 

Fj is calculated as follows: 

( ) ( )
( ) ( )

,
,

, ,
ρ =

i j
i j

i i j j

Cov F F
F F

Cov F F Cov F F
 (3.4) 

where ( ) ,i jCov F F is the covariance between two features  and i jF F .  

The correlation matrix between all features is symmetric and its elements have 

values in the interval[ ]1,1− . The correlation is high between two features  and i jF F if 

( ),ρ i jF F  is close to 1. This will allow the identification of the features that do not 

give any additional information for the classification of the textured region. 

Therefore, two features are complementary and relevant if the absolute value of ρ is 

low. Otherwise, the features  and i jF F are redundant if: ( ),ρ ζ>i jF F , where ζ is 

the maximum redundancy tolerated for two features. Practically ζ is set to a value 

very close to 1, to avoid losing any important information that describes the texture. 

Once it is known that two features are redundant, we should discard one of them. 

To get this done we use the following criterion that takes into account the redundancy 

of one feature with respect to all other features:  

( , ) ( , ),     

   

k i k j i

k k

j

if F F F F then F is discarded

else F is discarded

ρ ρ⎧ >⎪
⎨
⎪⎩

∑ ∑
 (3.5) 

By setting the threshold value ζ= 0.95, the features retained after the above 

procedure is 15 in total: 
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• The four statistical moments of order 1 to 4 (mean, variance, skewness, and 

kurtosis). 

• 9 among the 15 standard features issued from the co-occurrence matrix, 

which are: contrast, correlation, inverse difference moment, sum average, 

sum entropy, entropy, first information measure of correlation, second 

information measure of correlation and contour information [10], [116], 

[117]. 

• 2 features from the curvilinear integral (using two angles) [10]. 

3.3.2 Adapting the feature extraction to the region types 

After detecting the region type we use the local mean to characterize the pixels in 

the non-textured regions and the 15 features described in the previous section for the 

textured regions. The feature extraction process is done using an analysis window 

with maximum overlapping. All the features described before are extracted using an 

analysis window W  of size ×W WN N  ( WN  odd), which is centered on the pixel to be 

analyzed.  

The choice of the local mean feature is sufficient to characterize the pixels in the 

non-textured regions using a window of size  3× 3 pixels. In the case of textured 

regions, we extract the 15 texture features using an analysis window of size  9× 9 . In 

this case the window size is larger to take into account all texture types (random, 

deterministic, coarse, and smooth) that could be found in the image. After this step, 

the calculated features are normalized and centered.%

3.4 Conclusion 

This module permits detecting the region types and characterizing appropriately 

the pixels in function of the region types in monocomponent image. We have 

developed a region detection method that uses the uniformity feature issued from the 

co-occurrence matrix in multi-resolution, with which the pixels of the image are 

classified into two classes (i.e. textured and non-textured) using FCM. The sizes of 
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the analysis windows are set automatically according to the identification of the 

global nature of region types present in the image to be partitioned. To characterize 

pixels belonging to the non-textured areas of the image we have used the local mean 

feature, whereas for pixels in the textured regions we have used a set of 15 texture 

descriptive features.  

In the following chapter, we will investigate and assess their discriminating power.  
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Chapter%4 Unsupervised%cooperative%

classification%

4.1 Introduction 

The choice of a classification method is still a challenging problem in the field of 

image partitioning. Despite the existence of a vast number of classification methods, 

each of them is only adapted to some specific type of images and applications. In 

order to be able to partition a wide range of image types, and for different 

applications, the choice of the features and of the classification methods is a crucial 

issue. 

In this chapter we present the last three modules (unsupervised parallel 

classification, monocomponent evaluation and conflict management and merging 

results) of the proposed basic cooperative and adaptive partitioning system, in three 

sections and its extension to multicomponent image. In the fourth section we assess 

the developed system on two real applications. 

4.2 Parallel unsupervised classification  

In general, unsupervised classification methods do not require any training or any 

other a priori knowledge, while semi-supervised methods require the number of 

classes, or other knowledge to be defined in advance as an input parameter (e.g. 

number of classes, iteration number, and minimum number of pixels in a class). 

Furthermore, unfortunately some of these methods are influenced by the position of 

the initial class centers as was shown in Part I, Chapter 1.  

To make the approach more robust, we use two different classification methods 

(AILBG and FCM) in cooperation. Before putting the results of these methods in 

parallel cooperation, we have optimized each of them. Both AILBG and FCM require 



Chapter 4: Unsupervised cooperative classification 
 
 

%

% 72 

the number of classes to be defined at the beginning. In addition, the FCM is 

sensitive to the initial class centers and to the value of the fuzzification parameter m. 

To overcome these problems in the following section we propose the optimization of 

FCM and AILBG (FCMO and AILBGO). These two new unsupervised classification 

methods will be used in parallel to produce two partition results of the same image 

that will be fused in the next module.  

4.2.1 Optimization of FCM and AILBG algorithms 

We recall that a robust classification method should have the following properties: 

• Automatic class number estimation. 

• Insensitivity to the choice of the initial class centers.  

• Unsupervised evaluation of the intermediate results (without ground truth 
knowledge). 
%

To determine the best partition of a dataset X, the following important steps are 

required to optimize either FCM or AILBG (see Figure 4.1): 

Step 1: Choice of the class to be subdivided: at the beginning (K=1), the class to 

be divided is the whole dataset X. When K>1, choose the most 

expanded class.  

Step 2: Choice of the initial class centers: after choosing the class to be 

subdivided into two classes, we need to identify two initial class centers. 

The first class center will be the center of gravity of the chosen class, 

and the other class center is chosen randomly. 

Step 3: Classification with class center fine-tuning: we classify the dataset using 

FCM or AILBG. To make the approach independent of the initial class 

centers a removal-insertion fine-tuning process is used. 

Step 4: Evaluate the obtained intermediate partitioning using an unsupervised 

criterion: if this criterion is satisfied the partitioning into K+1 classes is 

validated, then go to step 1. If the criterion is not satisfied go to step 1 

and change the class to be subdivided, choosing the next most 

expanded. The algorithm stops in case none of the classes satisfy the 
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criterion, in other words if any class of the current partition is not 

divisible, the current number of class is considered as optimal. 

In the following we give details of the above four steps of the algorithm. 

 

Figure 4.1: The general layout of the developed unsupervised classification approach 

• Choice of the class to be subdivided 

We suppose that we have obtained so far K classes { }1,..,= KC C C , and we try to 

subdivide one of them to obtain K+1 classes. Intuitively the most expanded class will 

be the best candidate to be divided. So we calculate a dispersion measure for each 

class iC ( 1,..,=i K ) as follows:  

( ) ( )
1

)1 ( ,
i

i i
j

NC
i
j

i

Dispersion C d g C
NC

x
=

= ∑  (4.1) 

where iNC  is the number of elements in the class iC  with the center of 

gravity ( )ig C , ( ).,.d  is the Euclidean distance, and 
 
x j

i  is the jth element in the 

class iC .  

The dispersion values are calculated for each class iC ( 1,..,=i K ) and they are 

arranged in decreasing order. The most expanded class is chosen to be subdivided. 

Choice of the class to be subdivided 

Choice of the initial class centers 

Classification with fine-tuning 

Evaluation of the result 

Choose 
another class New class 
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• Choice of the initial class centers 

After choosing the class to be subdivided iC , the initial class centers of the new 

class are determined. This class will be divided into two sub-classes. The most 

representative point in the class is its center of gravity ( )ig C , we keep this point as 

the first class center, and the center of the second class is chosen randomly (one of 

the data point in the class).   

• Classification with class center fine-tuning 

After choosing the initial class centers; the whole dataset is partitioned with K+1 

class centers. To make our method independent of the initial class centers, we have 

adopted a removal-insertion process proposed in [49] to fine-tune the class centers. 

This removal-insertion process is based on the assumption that the dispersion of each 

class will be mutually equal. According to this assumption, the empty classes and the 

class that has the lowest value of dispersion are removed. Then, a new class center is 

inserted within the class with the largest dispersion, and then a classification is 

applied on the dataset. This process is repeated until no decrease in the dispersion can 

be obtained. In the following we explain in details the removing and inserting criteria 

of this process: 

• Removing criterion: if a class is empty it is removed directly, and then the 

class with the lowest dispersion (called the loser class) is removed also. The 

class adjacent to the loser class (called neighbor of loser class) and the loser 

class are merged and the center of gravity of this merged class (loser + 

neighbor of loser) is then recalculated. Figure 4.2 shows an example: the class 

center label with ‘2’ is removed (empty class), and then the class center 

labeled with ‘4’ (loser class) is also removed, and the individuals of this class 

are merged with class ‘3’. 

• Insertion criterion:  a new class center is inserted near the class with highest 

local dispersion (called winner class); this class is inserted by randomly 

choosing an individual from the winner class. Figure 4.2 (c) illustrates an 

example where a class center is inserted near class ‘1’ (winner class).  
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• Stopping condition: when the removal-insertion process cannot generate a 

decrease in the dispersion, then the process stops.  

 
 

(a) Classification result, four classes 

%
 

(b) Remove zero and lowest dispersion classes 
%

 
 

(c) Insert a new class within the most expanded class 

Figure 4.2: Class centers fine-tuning example 

• Evaluation of partitioning (estimation of the optimal number of classes) 

This step validates or rejects the partitioning obtained with K+1 classes. Here, it is 

verified that the partition obtained is coherent. In other words we here want to detect 

the invalid partitions obtained. The K+1 classes partitioning is validated if:  

1
2

3

4

Remove 

%

1 

2 
New class formed with 
a new center of gravity 
after merging the two 
classes.%

Insert a new class 
center within the most 
dispersed class.%

3 
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2 
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( )( ) ( )( ) ( )( )1 K KK
R R RROS I ROS I ROS Iη+ − <  (4.2) 

where ( )RROS I  is the criterion defined in Part I, Chapter 2, Equation 2.15 and η  is 

a low percentage value that guarantees the termination of the subdivision algorithm 

(in our experiments the value of η  is set to 10-3). Hence, the evaluation of the 

obtained partitioning is done by considering the coherency of the obtained classes. 

After this evaluation process, two cases might be encountered:  

• A valid partitioning is obtained, and then the algorithm is repeated, trying to 

subdivide the most expanded class among the ones created so far. 

• If not, the algorithm is repeated, trying to subdivide the second most 

expanded class, and if none of the classes give valid subdivision, the current 

number of class K is considered as optimal.   

4.2.2 Evaluation of FCMO and AILBGO algorithms 

We have tested our proposed classification approaches FCMO and AILBGO 

regarding three aspects: firstly for its stability, secondly for the correct estimation of 

number of classes and lastly for its time complexity.  

To check the stability of the two proposed algorithms (see Figure 4.1) we have 

executed each of them 100 times on 50 different synthetic datasets. The results were 

found to be 100% stable as they are identical from a run to another on the same 

dataset for FCMO (m=2, 4, 6, 8) (see Figure 4.3) and AILBGO. We have also tested 

the non optimized FCM, LBG and k-means for stability on the same datasets to 

compare their rates with our FCMO and AILBGO. The ACCRs obtained in function 

of the runs are: 87% for FCM (m=2), 94% for FCM (m=4), 74% for LBG and 59% 

for k-means stable. 

In these experiments we observe that the FCMO gives better classification results 

when the fuzzification parameter m is set to 4 (see Figure 4.3).  
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Figure 4.3: Assessments of accuracy and stability of FCMO in function of m 

Concerning the correct estimation of the number of classes, we have tested FCMO 

(with m=4) and AILBGO on the image database described previously in Chapter 3, 

which contains 100 synthetic images. The average correct class number estimation 

over the tested image set is 90%. This rate is coherent because in some images in the 

defined database there are high fluctuations within same classes so that these latter is 

detected as more than one single class. For example, the class labeled as “1” in the 

image presented in Figure 4.4(a) is composed of wood, where a part of this class 

shows defects. It is clear from visual inspection that the area inside the highlighted 

red oval (wood defect) is not the same as the rest of the class and it is divided into 

two subclasses, which is actually true. Figure 4.5 shows an example of the evolution 

of the criterion described in Part I, Chapter 2 (Equation 2.15) used in Equation 4.2 to 

estimate the number of classes for the image in the Figure 4.4(a). We can observe 

that the maximum of this criterion gives three classes for textured regions and three 

classes for non-textured region. The number of classes estimated N̂C is 6. 

We can point out that if this kind of information was accounted for in the ground 

truth of the tested image set, the correct class estimation rate would be greater than 

90%.  

For the time complexity aspect we have compared FCMO and AILBGO with 

MLBG by running them on the same datasets and inspecting the time elapsed to 
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accomplish the run. After the tests we have found that the optimized algorithms are 

more than three times faster than MLBG algorithm. 

 
(a) Original image 

 

(b) Classification result ( ˆ 6NC = ) 

Figure 4.4: Example of estimation of the number  of classes using FCMO (m=4) 
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Figure 4.5: Evolution of the evaluation criteria ROS(IR) on synthetic image of  Figure 4.4(a) 

4.3 Conflict management by fusion and result merging 

A process of conflict resolution or fusion is applied to improve the accuracy and 

get more reliable results by combining multiple results of the same image, or 

combining the results of different components in the case of multicomponent images. 

We herein propose an approach for conflict resolution and fusion that is based on 

genetic algorithms (GA). A genetic algorithm solves problems of operational 

research, which cannot be solved by classic techniques. In the genetic algorithm 
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which is used hereafter, an unsupervised evaluation criterion is defined as the 

objective function. The unsupervised evaluation criterion used estimates the quality 

of the results at a global level without any a prior knowledge of the ground truth, and 

is able to adapt itself to the type of regions in the
 
image

 
[10], [121].

 

In this section we describe in details our proposed method for conflict resolution, 

between the partitioning results of the same image using different methods and also 

the fusion of different components results of a multicomponent image. 

4.3.1 Monocomponent image case 

To validate, and fuse the different classification results obtained by the application 

of each of the methods (FCMO and AILBGO) according to the diagram of Figure 4.1 

and getting the best partition possible, a two-level evaluation process is applied [122], 

[123]. First, the pixels which are assigned to the same class by both methods are 

considered directly as valid pixels, and reported to the final partitioning result. 

Besides, the pixels that are classified differently by the two methods are considered 

as invalidated, and are subject to a second evaluation process using an objective 

function optimized by a GA. This two-level validation step reduces considerably the 

processing complexity. 

The objective function used in the GA is the criterion of Rosenberger and Chehdi. 

presented in [10], [116], [124]. Using this criterion provides some advantages: i) it is 

unsupervised, i.e. no a prior knowledge is required [125]–[127]; ii) it adapts itself 

automatically to the nature of the regions (textured, non-textured) and works well in 

both cases [128], and iii) finally it controls efficiently the issue of under and over 

classification [121].  

In our system, the implementation of the genetic algorithm presented in Part I, 

Chapter 1, Section 1.2.2 is performed as follows for the fusion process: 

Step 1: Define the chromosomes of the initial population as the invalidated 

classification results (a chromosome for each result) and then 
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calculate the fitness of each chromosome using the above described 

criterion. 

Step 2: Select chromosomes from the current population for reproduction 

using fitness proportionate selection [129], and mutate them by using 

single point mutation. 

Step 3: Apply crossover operation on the selected chromosomes using 

uniform cross-over [130]. 

Step 4: Evaluate the chromosomes in the population. 

Step 5: Stop if no better chromosomes are created, else go to step 2.%

The selection operation used in this process allows weaker solutions to survive the 

selection process. Besides, the type of cross-over operation used enables the parent 

chromosomes to exchange at the gene level rather than at the segment level, and this 

allows better combination between the chromosomes.  

At termination of the GA5, the best-evaluated chromosome in the population is 

considered as the final result for the conflicting pixels. Eventually, these pixels are 

grouped with the valid pixels from the first level.  

After the conflict management by fusion we unify the results of textured and non-

textured regions by reporting them into the same labeled image. 

To prove the reliability of the three modules, we have assessed them on the image 

database previously described in Chapter 3. In this experiment and the other 

experiments in this thesis, the fuzzification factor m is set to 4 [35] for the FCMO 

classifier, the tolerance threshold factor ε is set 10-10 for the GA, FCMO and 

AILBGO, the swipe probability of the uniform crossover operation in the GA is set to 

0.5 [130].  

Figure 4.6 and Table 4.1 show a sample image and the obtained results including 

the detected region natures, the results of AILBGO and FCMO, the result of our 

cooperative approach, and the corresponding average correct classification rates 

(ACCR). In this example, the result given by the AILBGO method only mixes up two 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5%The GA used is the one provided by Matlab™, in release 7.11.0.%
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regions of the image, yielding a low correct classification rate, while the result 

obtained by FCMO is clearly more robust. The number of classes estimated ( N̂C) for 

each method is 5. Another remark is that some pixels from the AILBGO method 

result are classified in the correct class, which is not true with the FCMO method. 

The application of the cooperative approach has kept the pixels correctly classified 

and reassigns those which were not previously correctly classified. The final number 

of classes estimated ( N̂C ) after cooperation process is 5. 

The global average correct classification rate (GACCR), for the set of 100 test 

images (described previously in Chapter 3) is: 94.71% for FCMO method, 88.31% 

for AILBGO method and 97.19% after fusion of both. 

In order to assess the importance of the region nature detection and adapting the 

features extraction step, we have also tested our system without region nature 

detection step on the same set of synthetic images (see Figure 4.7). Figure 4.8 

summarizes the ACCRs for the developed approach with and without the region 

nature detection. This confirms that adapting the feature extraction in function of the 

region types improves the quality of the classification results. 

In addition we have compared the developed cooperative system with the one 

described in Section 1.3.2 (parallel cooperation) that cooperates SVM and ISODATA 

algorithms6 [77].  Since SVM requires training data, 10%   of the ground truth pixels 

were used to train it. The optimal parameter regularization for the SVM classifier was 

chosen by fivefold cross validation and the kernel function used is the Gaussian RBF."

The parameters set for the ISODATA algorithm are: minimum and maximum 

numbers of classes, minimum number of pixels in a class, and change threshold. 

Their values are respectively: 4, 10, 2, and 5%. Figure 4.9 and Figure 4.10 show that 

the obtained results with our system are significantly improved (ACCR: +4.27%). 

Moreover the Figure 4.11 shows that the choice of the methods in a cooperative 

process is important to contribute in getting reliable results. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6 The SVM and ISODATA algorithms used are the ones provided in the Envi™ software. 
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 (a) Original image 

 

 
 

(b) Region nature detection (white: 
textured, black: non-textured) 

 
 

 

 
 

(c) AILBGO result  
( ˆ 5NC = , ACCR: 78.20%) 

 

 
 

(d) FCMO result  
( ˆ 5NC = , ACCR: 98.58%) 

 

 
 

(e) Validation map (white: valid, 
black: invalid) 

 

 
 

(f) System result  
( ˆ 5NC = , ACCR: 99.00%) 

 
Figure 4.6: Classification results of a synthetic monocomponent image by the developed system 

 

Table 4.1: Confusion matrix of classification result of a synthetic monocomponent image using the 
proposed cooperative approach (Figure 4.6 (f)) 

(CCR in %, number of pixels (.)) 
%

 Ground truth classes (number of pixels) 
Classes 

discriminated 
automatically by 

our approach 

Class 1 (13437) 
(Textured) 

Class 2 (13607) 
(Textured) 

Class 3 (13607) 
(Non-textured) 

Class 4 (13608) 
(Non-textured) 

Class 5 (11277) 
(Non-textured) 

Class 1  99.73%  
(13401) 

1.20%  
(163) 0 1.08%  

(147) 
0.31%  
(35) 

Class 2 0.27%  
36) 

98.33%  
(13380) 

0.26%  
(36) 

0.11%  
(15) 

1.25% 
 (142) 

Class 3 0 0.47%  
(64) 

99.74%  
(13571) 

0.03%  
(4) 0 

Class 4 0 0 0 98.75% 
 (13438) 0 

Class 5 0 0 0 0.03%  
(4) 

98.44% 
(11100) 
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 (a) Original image 

 
 
 

 

 
 

(b) AILBGO result  
( ˆ 6NC = , ACCR: 88.14%)  

 

 
 

(c) FCMO result  
( ˆ 6NC = , ACCR: 92.69%)  

!
 

 
 

(d) Validation map (white: valid, 
black: invalid) 

 

 
 

(e) Fusion result  
( ˆ 6NC = , ACCR: 93.44%)  

 

Figure 4.7: Classification results of a synthetic monocomponent image by the developed system 
(without region nature detection)  
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Figure 4.8: ACCR of the proposed approach with and without region nature detection.
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        Original image 
 
 
 
 
Methods 

  
 

SVM Classification 
result 

 

  
ACCR (%) 93.68 ( 5NC = ) 85.97 ( 5NC = ) 

ISODATA 
Classification result 

 

  
ACCR (%) 74.34 ( ˆ 7NC = ) 74.54 ( ˆ 9NC = ) 

SVM+ISODATA   
Classification result 

[77] 
 

  
ACCR (%) 94.27 ( 5NC = ) 87.62 ( 5NC = ) 

Figure 4.9: Partitioning results of the system that  uses SVM and ISODATA [77] 
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        Original image 
 
 
 
 
Methods 

  
 

AILBGO 
Classification result 

 

  
ACCR (%) 99.64 ( ˆ 5NC = ) 90.45 ( ˆ 5NC = ) 

FCMO 
Classification result 

 

  
ACCR (%) 99.47 ( ˆ 5NC = ) 89.80 ( ˆ 5NC = ) 

Our System 
Classification result 

 

  
ACCR (%) 99.72 ( ˆ 5NC = ) 90.71 ( ˆ 5NC = ) 

Figure 4.10: Partitioning results of the developed cooperative system 
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Figure 4.11: Performance of the compared approaches and the algorithms used in them (ACCR) 

We have also tested our approach on real monocomponent images. Figure 4.12 

shows an example. The values of the evaluation criterion Equation 2.15 are given to 

assess the results obtained because the image used does not have any associated 

ground truth data (see Figure 4.13). 

4.3.2 Multicomponent image case 

In this case, the results from the different components are evaluated and fused to 

get the final classification result. To do this, we propose a method [122], [123] in 

which the results of different components are compared, and adjacent components 

with high similar classification results are grouped within the same subset. The 

contents of each subset are fused independently. At the beginning the first component 

result is taken as reference and compared with the adjacent components result. The 

reference component is changed if the number of identical pixels decreases. For 

example, if the first component result is compared with the second component result 

and some percentage of the pixels where found to be classified identically, then the 

first component result is compared with the third component result, if the percentage 

of the identical classified pixels are greater than this percentage, the reference 

component remains unchanged and compared with a further component result; if not, 

the first and second component results are considered as one subset and the third 

component result becomes the reference component, and the same procedure is 

repeated until the last component is processed. 
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The component results in each subset are fused separately, and then the results of 

the subsets are fused to get the final partitioning result of the multicomponent image. 

GA is used in the fusion process where the objective function is the same as in the 

monocomponent case, but the fitness function is modified in order to evaluate a 

classification result by taking into account each concerned component. This 

parameter equals the average of the evaluation criteria calculated for the concerned 

components. 

 
 

(a) Original image 

 
 

(b) Region nature detection (white: 
textured, black: non-textured) 

 
 

(c) AILBGO result ( ˆ 9NC = ) 
Ros (IR) criterion for non-textured 

regions: 0.6220 
Ros (IR) criterion for textured regions: 

0.8874 
 

 
 

(d) FCMO result ( ˆ 9NC = ) 
Ros (IR) criterion for non-textured 

regions: 0.6262 
Ros (IR) criterion for textured 

regions: 0.8874 

 
 

(e) Validation map (white: valid, 
black: invalid) 

 
 

(f) proposed approach result ( ˆ 9NC = ) 
Ros (IR) criterion for non-textured 

regions: 0.6351 
Ros (IR) criterion for textured 

regions: 0.8874 
 

Figure 4.12: Classification results of a real monocomponent image by the developed cooperative 
system 
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Figure 4.13: Evolution of the evaluation criteria ROS(IR) on a monocomponent real image  

To validate this approach of evaluation and fusion, it is applied on a synthetic 

hyperspectral image which is constructed from the ground truth regions of a real 

hyperspectral image collected by AISA Eagle sensor of our laboratory. This image is 

collected on October 1st 2010, over the region of Cieza in southeastern Spain. It is 

acquired at 0.5 meter spatial resolution in 62 spectral bands within the range 

[400, 970] nm. The data used to construct the test image are taken randomly from 5 

different regions of the original image. The 5 land covers are: Water, Pinus 

halepensis, Peach trees, Arundo donax, and Buildings. 

To assess the proposed system on this test image, we compare its result with each 

of the four non-cooperative methods (FCMO, AILBGO, ISODATA, SVM) and with 

the cooperative approach, which uses SVM and ISODATA [77]. Since SVM requires 

training data, 400 pixels over 4096 pixels of the ground truth were used to train it. 

The optimal parameter regularization for the SVM classifier was chosen by fivefold 

cross validation: 100, 0.16γ= =C  and the kernel function used is the Gaussian 

RBF. The parameters set for the ISODATA algorithm are: minimum and maximum 

numbers of classes, minimum number of pixels in a class, and change threshold. 

Their values are respectively: 4, 10, 2, and 5%.  

 The results for this test are shown in Figure 4.14. The average correct 

classification rates for all tested methods are: 91.68% for FCMO, 69.59% for 

AILBGO, 84.34% for ISODATA, 94.52% for SVM, 94.60% for SVM+ISODATA, 

and 98.13% for the proposed approach. Table 4.2 gives the confusion matrix for the 
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proposed approach and Table 4.3 provides details of the per-class correct 

classification rates for each method tested.  

 
 

(a) Original image (RGB components 
over 62 for visualizing only) 

 

 
 

(b) Ground truth masks 

 
 

(c) FCMO result  
( ˆ 5NC = , ACCR: 91.68%)  

 
 

(d) AILBGO result  
( ˆ 5NC = , ACCR: 69.59%)  

 
 

(e) SVM result  
( 5NC = , ACCR: 94.52%)  

 
 

(e) ISODATA result  
( ˆ 5NC = , ACCR: 84.34%) 

 
 

(f) SVM+ISODATA+PR result 
( 5NC = , ACCR: 94.90%) 

 
 

(g) Proposed system result  
( ˆ 5NC = , ACCR: 98.13%) 

Water 

Pinus halepensis 

Peach trees 

Arundo donax 

Buildings 

Figure 4.14: Comparison of synthetic hyperspectral image classification results between five methods 

and the proposed cooperative system  
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Table 4.2: Confusion matrix of classification result of the synthetic hyperspectral image using the 
proposed cooperative system  

(CCR correct classification rate in %, number of pixels (.)) 

 Ground truth classes (number of pixels) 

Classes 

discriminated by 

our approach 

Water (452) 
Pinus halepensis 

(500) 

Peach trees 

(1189) 

Arundo donax 

(1068) 

Buildings 

(887) 

Water 
100%  

(452) 
0 

0.93% 

 (11) 
0 0 

Pinus halepensis 0 
100%  

(500) 

5.55% 

 (66) 
0 0 

Peach trees 0 0 
91.50%  

(1088) 
0.85% (9) 0 

Arundo donax 0 0 
2.02% 

 (24) 

99.15% 

 (1059) 
0 

Buildings 0 0 0 0 
100%  

(887) 

 

Table 4.3: Comparison of classification results of six methods on the synthetic hyperspectral image  
(CCRs and ACCRs in %) 

 FCMO AILBGO ISODATA SVM SVM+ISODATA Our cooperative 
approach 

Water 100% 100% 100% 97.35% 96.90% 100.00% 

Pinus halepensis 91.80% 0.12% 73.60% 97.00% 96.80% 100.00% 

Peach trees 83.68% 48.6% 83.59% 79.73% 83.10% 91.51% 

Arundo donax 82.96% 98.13% 64.51% 98.50% 98.69% 99.16% 

Buildings 100% 100% 100% 100% 98.99% 100.00% 

ACCR 91.69% 69.37% 84.34% 94.52% 94.90% 98.13% 

!

%
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4.4 Assessment on real applications 

Our classification approach was also evaluated on two real applications. More 

precisely we have used a hyperspectral image for identification of invasive and non-

invasive vegetation in the region of Cieza (Spain) as well as a multispectral image for 

the detection of Pine trees. The ground truths data were provided with these images. 

These data were collected in the framework of two projects, the first one with 

Infrastructure and Ecology SA, INFRAECO, Chile, and the second with the Lebanese 

National Remote Sensing Center.   

An important key point to mention is that the proposed approach does neither 

require any training nor any other a priori knowledge about the data to be partitioned. 

The ground truths provided with the image data are only used for evaluating the 

obtained results by which the Average Correct Classification Rate (ACCR) is 

calculated.  

4.4.1 Detection of invasive and non-invasive vegetation 

Detection of invasive plants such as Phragmites australis, Arundo donax and 

Tamarix, at an early stage has a great interest in environmental and economical 

aspects. The goal of this early detection is to undertake appropriate management 

actions to limit their development in a given area.  

For this application, the ground truth of the tested image described in Section 4.3.2 

includes six different invasive and non-invasive vegetation classes, which consist of 

9207 pixels, namely: Phragmites australis, Arundo donax, Tamarix, Ulmus minor, 

Pinus halepensis, and Peach trees. The spatial size of this image is 1000 lines by 

1000 columns. This image is composed of 62 spectral bands. 

To assess our unsupervised cooperative system, the correct classification rates are 

calculated using available ground truth areas.  
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In this section, the result of proposed system is compared to the results of five 

non-cooperative (SVM, SVM with post relaxation, ISODATA, AILBG, FCM) and 

two cooperative approaches (SVM+ISODATA, SVM+ISODATA with post 

relaxation). We give also the results of the proposed system by using only FCMO or 

AILBGO algorithm in the classification step. The optimal parameter regularization 

for the SVM classifier was chosen by fivefold cross validation: 100,  0.1C γ= =  and 

the kernel function used is the Gaussian RBF. The number of pixels used to train 

SVM is 3433 pixels over 9207 pixels of the ground truth. 

We recall that 15 features are used for the textured regions, and the local mean for 

the non-textured regions. 

Figure 4.15 and Table 4.4 respectively show the result of our classification 

approach and the corresponding confusion matrix. This result shows that the 

proposed system provides a very good classification result with an ACCR 99.13%, 

for estimated number of classes ˆ 6NC = . 

Table 4.5 summarizes the results obtained by the different methods. We can 

observe from these results that our cooperative approach outperforms all the other 

tested methods. We can also observe that the paradigm of the proposed approach 

using only one classification method (i.e. without cooperation) gives similar results 

(-0.43% for AILBGO and -0.58% for FCMO), and that the results given by SVM 

with post relaxation (-3.1%), SVM+ISODATA with post relaxation (-5.46%), SVM 

(-5.93%), SVM+ISODATA (-8.02%) and ISODATA (-76%) are all lower than our 

approach paradigm with and without cooperation. 

We also state that the results of the proposed approach scheme using either FCMO 

or AILBGO are very high compared to the results of FCM (-52.19%) and AILBG     

(-53.74%) when they are used directly on the hyperspectral image. 

Overall, the present experimental study shows that analyzing a multicomponent/ 

hyperspectral image by our cooperative system outperforms all the other compared 

methods SVM, ISODATA, FCM, AILBG, SVM+ISODATA and SVM+ISODATA 

with post relaxation.   
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(a) Original Image (3 components over 62 for 
visualizing only) 

%

 
 

(b) Ground truth masks%

 
 

(c) Pixels of ground truth to classify 

 
 

(d) Our cooperative approach classification result 
( ˆ 6NC = , ACCR: 99.13%) 

%

Phragmites australis 
Arundo donax 
 Tamarix 

%

 Ulmus minor 
 Pinus halepensis 
 Peach  trees%

Figure 4.15: Detection of invasive and non-invasive vegetation results of hyperspectral image using 
cooperative approach.%
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Table 4.4: Confusion matrix of classification result using the proposed approach for detection of 
invasive and non-invasive vegetation 

 (CCR in %, (.): number of pixels) 

 Ground truth classes (number of pixels) 

Classes 

discriminated by 

our approach 

Phragmites 

australis 

(544) 

Arundo donax 

(4200) 

Tamarix 

(162) 

Ulmus minor 

(764) 

Pinus 

halepensis 

(274) 

Peach trees 

(3115) 

Phragmites australis 
99.08%  

(539) 

0.16% 

 (7) 

2.47%  

(4) 

0.52% 

 (4) 

0.73% 

 (2) 

0.33%  

(10) 

Arundo donax 0 
99.84%  

(4193) 
0 0 0 0 

Tamarix 0 0 
97.53% 

 (158) 
0 0 0 

Ulmus minor 
0,55%  

(3) 
0 0 

99.48%  

(760) 
0 

0.07% 

 (2) 

Pinus halepensis 
0.37%  

(2) 
0 0 0 

99.27%  

(272) 
0 

Peach trees 0 0 0 0 0 
99.6%  

(3103) 

Table 4.5: Comparison of classification results of five non-cooperative and five cooperative 
approaches on the Cieza hyperspectral image 

(CCRs and ACCRs in %)  

 SVM 
SVM+ 

PR7 
ISODATA SVM+ 

ISODATA 

SVM+ 
ISODATA

+PR8 
AILBG FCM 

AILBGO 
by 

component 

FCMO by 
component 

Our 
cooperative 

system 

Phragment
es australis 94.96% 99.64% 26.07% 98.56% 99.64% 62.41% 64.02% 98.95% 98.75% 99.10% 

Arundo 
donax 97.67% 98.67% 31.24% 94.23% 97.77% 42.90% 45.13% 98.86% 98.66% 99.83% 

Tamarix 82.71% 88.88% 4.93% 83.33% 87.65% 12.96% 14.19% 97.39% 97.43% 97.53% 

Ulmus 
minor 97.23% 99.37% 29.18% 89.55% 90.94% 46.79% 47.80% 99.43% 99.15% 99.49% 

Pinus 
helepensis 95.98% 97.81% 24.08% 91.24% 95.25% 52.18% 56.20% 98.97% 98.92% 99.27% 

Peach trees 90.65% 91.81% 23.24% 89.75% 90.78% 55.12% 54.28% 98.58% 98.36% 99.61% 

ACCR 93.20% 96.03% 23.13% 91.11% 93.67% 45.39% 46.94% 98.70% 98.55% 99.14% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7 The process of Post Relaxation (PR) is programmed in Matlab™ by our laboratory. 
8%The%system%is%programmed%in%our%laboratory.%
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4.4.2 Detection of Pine trees 

In the framework of this application, we seek to determine the discriminating 

power of multispectral images in the estimation of the land covered by Pine trees.  

The multispectral image was acquired by the Earth observation satellite Ikonos on 

July 11, 2005, in the region of Baabdat (Lebanon) and it is used to detect the presence 

of Pine trees. The ground pixel size of this three bands (RGB) image is 0.8m. These 

data are provided by the Lebanese National Remote Sensing Center.  

Here, the proposed approach is assessed by using available ground truth areas, in 

order to calculate the correct classification rate. The results of Pine trees detection are 

presented in Figure 4.16. This figure shows the detection result for each component 

and the final result issued from their fusion. The ground truth of the image contains 

11736 pixels labeled as Pine trees and 11410 of these pixels are correctly detected as 

Pine trees, yielding 97.22% of correct detection. In this test the number of classes 

detected is two within the pixels of the ground truth. Using only FCMO or AILBGO 

in the paradigm of the proposed approach gives 96.52% and 96.73% of correct 

detection rates respectively. 

4.5 Conclusion 

In this chapter, an original paradigm is proposed which makes use of the FCMO 

and AILBGO algorithms in cooperation. For each algorithm, the number of classes is 

estimated making them unsupervised. To fuse the results obtained by these two 

unsupervised proposed algorithms of the same component, an original two-level 

technique of validation is used. The pixels which are assigned to the same class by 

both methods are considered directly as valid pixels, while the pixels that are 

classified to different classes are subject to a second evaluation using GA. In case of 

multicomponent images; each component is partitioned independently and then these 

results are fused again using GA to get the final partition. 

%
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The experimental results show the efficiency of the proposed cooperative 

approach on different types of images, outperforming all the other non-cooperative 

and cooperative approaches tested.%We state that the results of FCMO or AILBGO 

used in the proposed paradigm are 50% better compared to the results of direct 

application of FCM or AILBG on the multi/hyperspectral images. 
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(a): Original Image RGB 

 
(b) Pixels of Ground Truth to classify RGB 

 
(c): Ground Truth mask of Pine trees 

 
(d) R component  

 
(e) Pixels of Ground Truth to classify R 

 
(f) Partitioning results of R component by 

fusion results of FCMO and AILBGO  

 
(g) G component 

 
(h) Pixels of Ground Truth to classify G 

 
(i) Partitioning results of G component by 

fusion results of FCMO and AILBGO  

 
(j) B component 

 
(k) Pixels of Ground Truth to classify B 

  
(l) Partitioning results of B component  by 

fusion results of FCMO and AILBGO 

 
(m): System classification result (fusion of RGB components results): (CCR: 97.22%) 

 Pine trees,  Other 
Figure 4.16: Detection results of Pine trees from a multicomponent image
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Conclusion%

In the framework of this thesis, we have developed an unsupervised and adaptive 

partitioning system for hyperspectral images. The originality of the developed system 

relies i) on the adaptive nature of the feature extraction, since features of pixels are 

extracted taking into account different region types (i.e. textured and non-textured), 

and the fact that the region types which are detected automatically are treated 

independently from the feature extraction step to the final results, ii) on the 

introduction of several levels of evaluation and validation of intermediate partitioning 

results before obtaining the final result, iii) on the fact that it requires neither training 

samples nor the number of classes. 

Each step of the proposed system is optimized to obtain the best possible 

intermediate and final results: 

− To detect the regions type, we have proposed a new method to partition the 

image into two types of regions (i.e. textured and non-textured). After 

detecting the region type, we use the local mean to characterize the pixels 

detected in non-textured regions, and a set of 15 texture features for the ones 

in textured regions. 

− The features extracted are used to classify the pixels by using FCMO and 

AILBGO algorithms. We have improved these two classifiers on two aspects: 

automatic class number estimation for both and insensitivity to the initial class 

centers for FCM. 

− The results obtained from the two classifiers are fused to get one reliable 

result. We have used a GA for the process of conflict resolution or fusion. 

GAs are in general time consuming, but we have reduced this computation 

time by directly validating the pixels assigned to the same class by the two 

classifiers. In other words, the GA processes only the conflicting pixels. An 
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unsupervised evaluation criterion based on within and between class 

disparities is used as the objective function of the GA. 

− In the case of multicomponent images, each component is partitioned 

separately and independently using the above steps. Then the results of the 

different components are fused to get the final result of the multicomponent 

image. The same evaluation criterion is used, but it is modified so as to take 

into account all the components of the image while evaluating the partitioning 

results. 

 

The architecture of the developed system permits the parallel execution of the 

different steps, thereby reducing the calculation time. 

The experimental results obtained on different images (multispectral/ 

hyperspectral) have shown the efficiency of the developed system.  

It is expected that this system will be improved in the following aspects: 

− The features extracted could be extended to take into account the spectral 

dimension also. Indeed, recent advances in the use of higher order statistic 

features following also spectral information of hyperspectral images show that 

they can significantly improve the classification of pixels. 

− Each classifier could be used more specifically according to the type of 

regions in order to better partition the images and reduce the computing time. 
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Appendix!A:!Summary!of!non4cooperative!methods!!
Table A.1: Unsupervised and semi-supervised non-cooperative and non-parametric methods 

 
Unsupervised methods 

Method Input used Input parameters Remarks Applicable to 
multicomponent 

Genetic Algorithms [55] Depends on the 
application 

None Requires large amount of data to 
give optimal results 

Yes 

Hierarchical Genetic Algorithm [56] Gray level value of 
pixels 

Predefined 
threshold value. 

Developed to overcome the 
difficulties of GA 

Yes  

Hybrid Genetic Algorithm [57]  Mean gray value Population size, 
iteration number. 

Crossover replaced by k-means Yes with 
modifications 

Multi-objective variable length 
string GA [58]  

Gray level value of 
the pixels 

Population size, 
iteration number, 

crossover 
probability. 

Evaluation method used does not 
require any knowledge 

Already used  

Modified Fuzzy C-means clustering 
[59] 

Grey level value of 
pixels 

Fuzzification 
value, iteration 

number 

Developed to improve the FCM 
(stability, and accuracy). Slight 

improvement 

Already used 
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Semi-supervised methods 

Method Input used Input parameters Remarks Applicable to 
multicomponent 

k-means [18] Depends on the 
application 

Number of classes 
and iterations 

Unstable  Yes 

Kohonen Neural Network Self-
Organizing Maps (SOM) [26] 

Hyperspectral 
signatures of the 

pixels 

Number of 
iterations, 

neighborhood 
starting value  

Number of iterations, neighborhood 
starting value effect the final result 

Already used 

FCM [20] Depends on the 
application 

Number of classes 
and iterations, 

fuzzification factor  
m 

Unstable, choice of m effect the 
results 

Yes 

LBG [46] Grey level value of 
pixels 

Number of classes 
and iteration 

Unstable, developed for vector 
quantization 

Yes 

AILBG [49] Grey level value of 
pixels 

Number of classes 
and iterations 

Stable, developed for vector 
quantization 

Yes 

Geometric Guided Fuzzy C-Means 
Clustering [43] 

Grey level value of 
pixels 

Prior geometric 
knowledge 

Adds geometrical information 
during clustering 

Yes 
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Appendix!B:!Summary!of!cooperative!approaches!!
Table B.1: Sequential cooperative approaches 

 

Method Input used Input parameters Remarks Applicable to 
multicomponent 

k-means and GA [89] Gray level values of 
pixels 

Population size, 
iteration number, 

crossover probability. 
 

Dedicated to edge detection Already used 
 

FCM and orthogonal array [90] 
Gray level value of 

pixels 
 

None 
 

Can be used in two modes 
(supervised and unsupervised), 

dedicated to edge detection 
Yes 

Radial Basis Function Neural Network 
(RBFNN) and genetic algorithm [82] Texture features None One of the methods used in 

cooperation is parametric Already used 

Self-Organizing Maps (SOMs) and 
Genetic algorithm (GA) [81] Texture Features Grid size and topology 

of the SOM map 
Effective for partitioning images that 

contain similar texture fields Already used 
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Table B.2: Parallel cooperative approaches 

Method Input used Input parameters Remarks Applicable to 
multicomponent 

SVM and ISODATA/ SVM 
and EM [77] 

Spectral values of the 
image pixels 

Training samples, number of 
classes, ISODATA adjusting 

parameters 

The ISODATA or EM results are 
used as a dynamic mask to relax 

SVM results 
Already used 

SVM, Watershed, EM and 
Recursive Hierarchical 
Segmentation (RHSEG) [98] 

Spectral values of the 
image pixels 

Training samples, number of 
classes, ISODATA adjusting 

parameters 

Uses minimum spanning forest for 
the fusion process Already used 

Only ML (Changing features) 
[78] 

Spectral values of the 
image 

ML adjusting parameters and 
type of function used in it 

The fusion technique is based on 
weighted-linear opinion pool Already used 

 
Table B.3: Hybrid cooperative approaches  

 
Method Input used Input parameters Remarks Applicable to 

multicomponent 

Neural network and ML[79] Spectral values of the 
image pixels 

Training samples, number 
of classes 

Invalidated classification results are 
called into question Already used 

SOM+Hybrid GA, FCM+ 
Hybrid Dynamic GA, 
NURBS+ Hybrid Dynamic 
GA [9] 

Gray level value of the 
pixels 

 
 

Interactive data for the 
NURBS 

The system is composed of three 
sequentially cooperative subsytems 
then the results are fused using GA. 
The fusion process needs also some 

parameter initialization 

Already used 

MLBG and GA [10] Texture features Major number of classes MLBG is very time consuming. 
Adaptive to the content of the image 

Already used 
 



Appendix C 
 

!
! 118 

Appendix!C:!Summary!of!unsupervised!evaluation!criteria!
Table C.1: Summary of main internal (unsupervised) evaluation criteria!

Evaluation Criteria Remarks 

Sum of squared errors Measures within-class disparity. 

Levine and Nazif (LEV1) [108] Measures within-class disparity. 

Levine and Nazif (LEV2) [108] Measures within class and between class disparities. 

Zeboudj index [112] Measures within class and between class disparities. 

Davies-Bouldin index [113] Measures within class and between classes, time consuming. 

Silhouette index [114] Measures with-in class and between classes, very time 
consuming. 

Dunn index [115] Measures with-in class and between class disparities, not 
effective in case of noisy images 

Rosenberger and Chehdi [10], 
[101] 

Measures with-in class and between class disparities, takes into 
account the region type (textured and non textured) 

!


