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Abstract

SPARQL is the standard query language for graphs of data in the Semantic Web. Eval-
uating queries is closely related to graph matching problems, and has been shown to
be NP-hard. State-of-the-art SPARQL engines solve queries with traditional relational
database technology. Such an approach works well for simple queries that provide
a clearly defined starting point in the graph. However, queries encompassing the
whole graph and involving complex filtering conditions do not scale well.

In this thesis we propose to solve SPARQL queries with Constraint Program-
ming (CP). CP solves a combinatorial problem by exploiting the constraints of the
problem to prune the search tree when looking for solutions. Such technique has
been shown to work well for graph matching problems. We reformulate the SPARQL
semantics by means of constraint satisfaction problems (CSPs). Based on this denota-
tional semantics, we propose an operational semantics that can be used by off-the-
shelf CP solvers.

Off-the-shelf CP solvers are not designed to handle the huge domains that come
with SemanticWeb databases though. To handle large databases, we introduce Castor,
a new SPARQL engine embedding a specialized lightweight CP solver. Special care
has been taken to avoid as much as possible data structures and algorithms whose
time or space complexity are proportional to the database size.

Experimental evaluations on well-known benchmarks show the feasibility and
efficiency of the approach. Castor is competitive with state-of-the-art SPARQL en-
gines on simple queries, and outperforms them on complex queries where filters can
be actively exploited during the search.
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Résumé

SPARQL est le langage de requête standard pour les graphes de données du Web Sé-
mantique. L’évaluation de requêtes est étroitement liée aux problèmes d’appariement
de graphes. Il a été démontré que l’évaluation est NP-difficile. Les moteurs SPARQL
de l’état-de-l’art résolvent les requêtes SPARQL en utilisant des techniques de bases
de données traditionnelles. Cette approche est efficace pour les requêtes simples
qui fournissent un point de départ précis dans le graphe. Par contre, les requêtes
couvrant tout le graphe et impliquant des conditions de filtrage complexes ne passent
pas bien à l’échelle.

Dans cette thèse, nous proposons de résoudre les requêtes SPARQL en utilisant
la Programmation par Contraintes (CP). La CP résout un problème combinatoire en
exploitant les contraintes du problème pour élaguer l’arbre de recherche quand elle
cherche des solutions. Cette technique s’est montrée efficace pour les problèmes
d’appariement de graphes. Nous reformulons la sémantique de SPARQL en termes de
problèmes de satisfaction de contraintes (CSPs). Nous appuyant sur cette sémantique
dénotationnelle, nous proposons une sémantique opérationnelle qui peut être utilisée
pour résoudre des requêtes SPARQL avec des solveurs CP génériques.

Les solveurs CP génériques ne sont cependant pas conçus pour traiter les do-
maines immenses qui proviennent des base de données du Web Sémantique. Afin de
mieux traiter ces masses de données, nous introduisons Castor, un nouveau moteur
SPARQL incorporant un solveur CP léger et spécialisé. Nous avons apporté une atten-
tion particulière à éviter tant que possible les structures de données et algorithmes
dont la complexité temporelle ou spatiale est proportionnelle à la taille de la base de
données.

Des évaluations expérimentales sur des jeux d’essai connus ont montré la fais-
abilité et l’efficacité de l’approche. Castor est compétitif avec des moteurs SPARQL
de l’état-de-l’art sur des requêtes simples, et les surpasse sur des requêtes complexes
où les filtres peuvent être exploités activement pendant la recherche.
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Chapter 1

Introduction

The Internet has become the privileged means of looking for information in every-
day’s life. While the information abundantly available on the Web is increasingly
accessible for human users, computers still have trouble making sense out of it. De-
velopers have to rely on fuzzy machine learning techniques [CHM11] or site-specific
APIs (e.g., Google APIs), or resort to writing a specialized parser that has to be updated
on every site layout change.

The Semantic Web is an initiative of the World Wide Web Consortium (W3C) to
enable sites to publish computer-readable data aside of the human-readable docu-
ments. Merging all published Semantic Web data results in one large global database.
The global nature of the Semantic Web implies a much looser structure than tradi-
tional relational databases. A loose structure provides the needed flexibility to store
unrelated data, but makes querying the database harder.

Amongst the various technologies related to the Semantic Web, we will focus on
RDF and SPARQL. The Resource Description Framework (RDF) [KCM04] allows us to
describe knowledge as a graph. Nodes are resources (e.g., people, objects, web pages,
concepts, etc.) and literal values (e.g., numbers, strings, dates, etc.). Nodes are linked
together with labeled edges to represent properties of a resource or relations between
two resources. SPARQL [PS08] is the standard query language for RDF graphs. A
SPARQL query basically consists of a pattern graph to be matched with the RDF graph
containing the knowledge. The pattern graph may contain alternative or optional
parts, as well as filtering conditions on the variables, making the evaluation more
complex. Evaluating SPARQL queries in the general case has been shown to be
PSPACE-complete [PAG09].

Example 1.1. Suppose we want to know which places are near each other, but have a
big difference in average high temperature in August. TheWikipedia project contains
a lot of facts about various places around the world. Those facts have been made
available in the Semantic Web through the DBpedia project [Leh+13]. Figure 1.1
shows a subset of what can be found about Cotonou city. Now, we can write the
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Cotonou

dbpedia-owl:Place

27.8

dbpedia:Cotonou

dbpedia:Benin

rdfs:label

rdf:type

dbpprop:augHighC

dbpedia-owl:country

Figure 1.1: The DBpedia project [Leh+13] publishes facts found in Wikipedia as

RDF data. This small excerpt shows information about the Cotonou city.

SPARQL query shown in listing 1.1 to solve our question. The query makes heavy
use of filters and involves two initially undefined places. It is likely a complex query.

State-of-the-art SPARQL engines rely on relational database technology to solve
queries. The RDF graph is usually stored in one big three-column table. Each row
corresponds to an edge with its source node, destination node, and edge label. Every
edge in the pattern graph of the query is mapped to a query on this table. The
result sets then have to be joined together. Such operation can be costly if those
intermediate result sets are large, e.g., if the pattern graph has no well-defined anchor
in the RDF graph. Furthermore, filtering conditions involving different edges of the
pattern graph can only be processed after the corresponding result sets have been
joined. Hence, state-of-the-art engines do not perform well on complex queries. On
the author’s system, the query of example 1.1 was solved in 52 seconds using the
state-of-the-art Virtuoso engine.1

Constraint Programming (CP) is a technique to solve hard combinatorial prob-
lems. Basically, it enumerates all solutions by traversing a search tree. To speed up
such a search, it exploits the constraints of the problem to prune parts of the search
tree that do not contain any solution. CP is an effective technique to solve graph
matching problems [CDS09; ZDS10]. Filtering conditions can also be exploited early
on during the search. Hence, we investigate whether CP could provide a good alter-
native to solve complex SPARQL queries. On the author’s system, the same query of
example 1.1 was solved in under 5 seconds with Castor, our CP-based engine.

Scope of the thesis

This thesis focuses on the database aspects of the SemanticWeb, i.e., how data is stored
and queried. We aim at exploring an alternative computation model for SPARQL

1On a Core i5 520M laptop with SSD and 8 GB RAM, running Arch Linux. The queried graph is
a concatenation of the article-categories, category-labels, geo-coordinates, infobox-properties, infobox-
property-definitions, instance-types, mappingbased-properties, persondata, skos-categories, and specific-
mappingbased-properties datasets of the English DPpedia 3.8.
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SELECT * WHERE {

?place1 rdf:type dbpedia-owl:Place ;

dbpprop:augHighC ?temp1 ;

geo:lat ?lat1 ;

geo:long ?lon1 .

?place2 rdf:type dbpedia-owl:Place ;

dbpprop:augHighC ?temp2 ;

geo:lat ?lat2 ;

geo:long ?lon2 .

FILTER ( ?lat1 - ?lat2 < 0.1 && ?lat1 - ?lat2 > -0.1 &&

?lon1 - ?lon2 < 0.1 && ?lon1 - ?lon2 > -0.1 &&

?temp1 - ?temp2 > 5 &&

?place1 != ?place2 )

} LIMIT 10

Listing 1.1: SPARQL allows one to ask rich queries. Here, we are looking for places

that are near each other, and whose average high temperature in August differ by

more than 5°C.

queries, resulting in more efficient handling of complex queries.

Other Semantic Web aspects are left as future work. In particular, we do not
consider reasoning on the data. With reasoning, one can infer more knowledge from
the data, possibly changing the results of the queries. The conclusion chapter gives
some leads on how the work of this thesis could be extended with reasoning.

Contributions

The first contribution of this thesis is themodeling of SPARQL queries in the CP frame-
work. We reformulate the SPARQL semantics by means of Constraint Satisfaction
Problems (CSPs), which is a declarative way to state combinatorial problems. The
CSP reformulation extends the CSP framework slightly to accommodate for SPARQL
features such as optional or alternative parts in the pattern graph. Based on the CSP
reformulation, we propose an operational semantics that can be easily implemented
in off-the-shelf solvers.

The second contribution is Castor, a SPARQL engine embedding a specialized
lightweight CP solver. The CP models corresponding to SPARQL queries usually
have few variables and constraints, but huge domains including all nodes of the
RDF graph. Off-the-shelf solvers do not handle large domains well. Hence, we
introduce a lightweight solver designed to cope with large domains. To achieve such
a design goal, we avoid as much as possible data structures and algorithmswhose time
or space complexity is proportional to the domain sizes. All operations on the domains
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are performed in constant time. Constraints achieve forward-checking consistency,
except where we can do better without maintaining costly internal structures.

Experimental evaluations on well-known benchmarks show the effectiveness
of the approach and design. Castor is competitive with state-of-the-art engines on
simple queries, thanks to its lightweight design. It is able to outperform them on
complex queries involving filters on multiple variables, thanks to exploiting those
filters during the search.

Outline

The first part gives background information about RDF and SPARQL (chapter 2), state-
of-the-art SPARQL engines (chapter 3), and Constraint Programming (chapter 4).
The second part details our contributions. Chapter 5 defines the reformulation of
SPARQL queries by means of CSPs and gives a proof of correctness. It also shows
the CP operational modeling. Chapter 6 explains the inner working of Castor and its
lightweight solver. Finally, chapter 7 evaluates the effectiveness of our approach.

Publications

Parts of this thesis have been presented at the 17th International Conference on
Principles and Practice of Constraint Programming [CDS11], at the 9th Extended
Semantic Web Conference [Clé+12], and at the TRICS workshop collocated with
the 19th International Conference on Principles and Practice of Constraint Program-
ming [Clé+13].

[CDS11] Vianney le Clément de Saint-Marcq, Yves Deville, and Christine Solnon.
“An Efficient Light Solver for Querying the Semantic Web”. In: Principles
and Practice of Constraint Programming – CP 2011. Ed. by Jimmy Lee.
Vol. 6876. Lecture Notes in Computer Science. Springer, 2011, pp. 145–
159. isbn: 978-3-642-23785-0.

[Clé+12] Vianney le Clément de Saint-Marcq, Yves Deville, Christine Solnon, and
Pierre-Antoine Champin. “Castor: A Constraint-Based SPARQL Engine
with Active Filter Processing”. In: The Semantic Web: Research and Appli-

cations. Ed. by Elena Simperl et al. Vol. 7295. Lecture Notes in Computer
Science. Springer, 2012, pp. 391–405. isbn: 978-3-642-30283-1.

[Clé+13] Vianney le Clément de Saint-Marcq, Pierre Schaus, Christine Solnon,
and Christophe Lecoutre. “Sparse-Sets for Domain Implementation”. In:
Techniques for implementing constraint programming systems (TRICS)

workshop at CP 2013. 2013.
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The Castor system is available under the GPLv3 open-source license on the fol-
lowing web sites.

• https://github.com/vianney/castor

• http://becool.info.ucl.ac.be/castor
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Chapter 2

The Semantic Web

The main idea of the Semantic Web is best defined by Berners-Lee et al. [BHL01]:

The Semantic Web is not a separate Web but an extension of the
current one, in which information is given well-defined meaning, better
enabling computers and people to work in cooperation.

The Semantic Web aims at complementing the web of documents by a web of data.
As with the Hypertext Markup Language (HTML), data coming from various sources
in the Semantic Web can be freely linked together.

To enable such linked data, publishers have to agree on common vocabularies.
Many vocabularies have been proposed for various domains, e.g., for social net-
works [BM10], electronic publishing [Wei+98], bioinformatics [Bel+08], personal
data management [Sce+07], geospatial data [BK11], etc.

Figure 2.1 shows the stack of technologies involved. The rest of this chapter
focuses on the technologies used in the thesis.

2.1 Resource Description Framework (RDF)

The Resource Description Framework (RDF) [KCM04] allows one tomodel knowledge
as a set of statements about things. Things described in RDF can be any arbitrary
resource, ranging from real-world entities such as people, companies, objects, etc., to
virtual things such as web pages, electronic documents, etc., or abstract concepts such
as topics of interest, properties, categories, etc. In this section, we first provide a high-
level overview of RDF (section 2.1.1). Then, we define RDF formally (section 2.1.2).

2.1.1 Overview

As a running example used throughout the thesis, fig. 2.2 shows the relations be-
tween some characters appearing in PhD Comics.1 The graph encodes the following

1http://www.phdcomics.com/



10 CHAPTER 2. THE SEMANTIC WEB

URI/IRI

RDF
XML

SPARQL

RDF Schema

Ontology: OWL

R
u
le
:R

IF

Unifying logic

Proof

C
ry
pt
og

ra
ph

y

Trust

User Interface & Applications

Figure 2.1: The SemanticWeb includes a stack of technologies (schema from [Bra07]).

This chapter covers the technologies written in bold. The thesis focuses on SPARQL

and its underlying technologies.

knowledge by means of relations between resources:

Tajel, Cecilia, and Mike are students who are respectively 29, 26, and
35 years old. Tajel and Cecilia know each other. Tajel also knows Mike,
whose name is Michael Slackenerny. Mike knows Brian S. Smith, aged 56.
Mike is interested in procrastination and free food. Smith is interested in
research. Cecilia is interested in procrastination and maintains a blog on
that topic at http://www.phdcomics.com/blog.php, created on 10 July
2005 at 8:20 AM. The blog’s subjects are first about comics, and second
about procrastination.

The “Friend of a Friend” (FOAF) vocabulary [BM10] is used to describe properties of
the characters, such as name and age, group membership and topics of interest. The
“Dublin Core Metadata Initiative” (DCMI) vocabulary [Wei+98] is used to describe
properties on electronic documents, such as creation date and subject.

Resources are identified by Uniform Resource Identifiers (URIs) [BFM05]. A web
address, such as http://www.phdcomics.com/blog.php, is an example of URI. URIs
are defined as US-ASCII strings. As such encoding poses problems in an international
environment, the RDF standard defines RDF URI references to be Unicode strings
that can be mapped to ASCII URIs by a well-defined encoding. Such Unicode URIs
were later standardized as Internationalized Resource Identifiers (IRIs) [DS05]. The
SPARQL standard is defined using IRIs. This thesis considers all resources to be
identified by IRIs. In the Semantic Web, IRIs are often abbreviated. For example,
foaf:name is an abbreviation for http://xmlns.com/foaf/0.1/name, as defined in
the header of listing 2.1.
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Figure 2.2: An RDF graph representing relations between PhD Comics characters.

Rounded rectangles are IRIs, square rectangles are literals, circles are blank nodes.

The datatypes of the literals are not shown in the graph.
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An RDF graph may be encoded as a set of statements. A statement is encoded
as a triple (subject,predicate,object). Such triple expresses a relation, defined by the
predicate, between the subject and the object. For example, the triple (phd:Tajel,

foaf:member,phd:Students) states that Tajel is a member of the students group. All
three elements may be any IRI. A predicate may thus appear as a subject in another
statement. Note that the graph and triples representations are equivalent. This means
that isolated nodes in the graph are not allowed.

Besides IRIs, subjects and objects may also be blank nodes. A blank node is a
resource whose name is not known. A blank node can also be considered as an
existential quantifier, i.e., indicating something should be here, but we do not know
what. Even though the RDF standard defines blank nodes as existential quantifiers,
using blank nodes as anonymous resources is more widespread [ACM10]. In fig. 2.2,
a blank node is used to group the subjects of the blog (comics and procrastination)
in an ordered sequence.

Finally, objects may also be literals. A literal is a string with an optional type IRI
or an optional language tag. The type IRI indicates how the string shall be interpreted.
For example, ("29",xsd:integer) represents the integer number 29.

Listing 2.1 shows the triple representation of fig. 2.2 in N-Triples syntax. Full
IRIs are enclosed in angled brackets, e.g., <http://www.phdcomics.com/blog.php>.
Literals are surrounded by quotes, e.g., "Tajel". The optional type IRI of the literal
is appended with the ^^ operator, e.g., "29"^^xsd:integer. Other popular syntaxes
include XML (the original syntax), Turtle (used in SPARQL queries), and RDFa (for
embedding RDF data inside HTML documents).

An RDF graph may be assembled from various sources. IRIs serve as globally
unique identifiers. The same IRI appearing in different RDF documents refers to the
same node in the combined graph.

2.1.2 Formal Definition

Let I, B, L, and S be pairwise disjoint infinite sets respectively representing IRIs,
blank nodes, literals, and Unicode strings. The set of all RDF terms is denoted by
T = I ∪ B ∪ L. These notations will be used throughout this document.

An RDF triple is a triple (s,p,o) ∈ (I∪B) × I × (I∪B∪L). An RDF graphG is a
set of RDF triples. We denote TG the finite set of RDF terms appearing in graph G.

Definition 2.1. An RDF graph (or RDF dataset) is a finite set of triplesG ⊂ (I∪B) ×
I × (I ∪ B ∪ L).

Literals are partitioned in plain literals (denoted by Lp) and typed literals (de-
noted by Lt ). Plain literals are strings with an optional language tag. Typed literals
are strings with a mandatory type IRI. In contrast to plain literals, typed literals
can be further interpreted according to the type IRI. For example, the typed literal
"29"^^xsd:integer represents the integer number 29. Note that there are two kinds
of strings: plain literals, e.g., "Tajel", and typed strings, e.g., "Cecilia"^^xsd:string.
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@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix dc: <http://purl.org/dc/terms/> .

@prefix dbp: <http://dbpedia.org/resource/> .

@prefix phd: <http://phdcomics.com/#> .

phd:Students rdf:type foaf:Group .

# From Tajel’s foaf.rdf

phd:Tajel foaf:member phd:Students .

phd:Tajel foaf:name "Tajel" .

phd:Tajel foaf:age "29"^^xsd:integer .

phd:Tajel foaf:knows phd:Cecilia .

phd:Tajel foaf:knows phd:Mike .

# From Cecilia’s homepage

phd:Cecilia foaf:member phd:Students .

phd:Cecilia foaf:name "Cecilia"^^xsd:string .

phd:Cecilia foaf:age "26"^^xsd:integer .

phd:Cecilia foaf:knows phd:Tajel .

phd:Cecilia foaf:interest dbp:Procrastination .

phd:Cecilia foaf:weblog <http://www.phdcomics.com/blog.php> .

<http://www.phdcomics.com/blog.php> foaf:topic dbp:Procrastination .

# From embedded RDFa on the page

<http://www.phdcomics.com/blog.php> dc:created

"2005-07-10T08:20:00"^^xsd:dateTime .

<http://www.phdcomics.com/blog.php> dc:subject _:a .
_:a rdf:type rdf:Seq .
_:a rdf:_1 "comics" .
_:a rdf:_2 "procrastination" .

# From Mike’s foaf.rdf

phd:Mike foaf:member phd:Students .

phd:Mike foaf:name "Michael Slackenerny" .

phd:Mike foaf:age "35"^^xsd:decimal .

phd:Mike foaf:interest dbp:Procrastination .

phd:Mike foaf:interest phd:Free%20Food .

phd:Mike foaf:knows phd:Smith .

# Generated from the department’s database

phd:Smith foaf:name "Brian B. Smith" .

phd:Smith foaf:age "56"^^xsd:integer .

phd:Smith foaf:interest dbp:Research .

Listing 2.1: Triples notation of the RDF graph depicted in fig. 2.2. The graph has been
constructed by combining smaller graphs from various fictional sources. IRIs serve
as globally unique identifiers.



14 CHAPTER 2. THE SEMANTIC WEB

A plain literal is a couple (s,l ) where s ∈ S is the lexical form and l ∈ S the
language tag, representing the language in which s is written. A simple literal is a
plain literal with the empty string as language tag (l = ""). We denote Lps the set of
simple literals, and Lpl the set of plain literals that are not simple literals, i.e., plain
literals with a non-empty language tag. A typed literal is a tuple (s,t ) where s ∈ S is
the lexical form and t ∈ I the datatype, defining how s should be interpreted.

To conveniently access the different parts of literals, we define the str, lang and
datatype functions. Given a literal a ∈ L, str(a) is the lexical form of a. For an
IRI i ∈ I, we also define str(i ) to be the string representation of i . Given a plain
literal a = (s,l ) ∈ Lp , lang(a) � l is the language tag of a. Given a typed literal
a = (s,t ) ∈ Lt , datatype(a) � t is the datatype IRI of a.

RDF itself does not care about the interpretation of typed literals, but SPARQL han-
dles some standard datatypes. We further partition the set of typed literals into strings
(Lts ), boolean values (Ltb ), numeric values (Ltn), dates (Ltd ) and other values (Lto).
The partitioning is based on the datatype IRI. The sets Ltb , Ltn and Ltd may contain
ill-formed literals that cannot be interpreted. For example, ("z",xsd:integer) ∈ Ltn

is a valid literal, but not a valid number. Figure 2.3 shows a summary of the type
hierarchy.

Let a ∈ Lt , we denote value(a) the interpreted value of the typed literal a. If
a ∈ Lto or if a is ill-formed, value(a) is the special value error. If a ∈ Lts , value(a) =
str(a). If a ∈ Ltb ∪ Ltn ∪ Ltd , value(a) is respectively the interpreted boolean,
numeric or date value of str(a). Boolean values are denoted by true and false. Note
that different lexical forms may have the same interpreted value. The value function
is not injective.

The reverse operation, i.e., converting an interpreted value into an RDF term, is
handled by the RDF function. For any typed literal a and interpreted valuev , we have
RDF(v ) = a ⇒ value(a) = v . As a convenience for propagating errors, we define
RDF(error) = error.

2.2 Vocabularies and Inference

In its most basic form, a vocabulary consists of a set of RDF terms. Most vocabularies
designed for reuse in the Semantic Web, come with additional information describ-
ing relations between vocabulary terms. For example, if a resource is a member of
another resource, that other resource is a group. Such rules are often described with
RDF Schema [Hay04] or the Web Ontology Language (OWL) [DS04].

RDF Schema allows to define a hierarchy of classes and to specify the domain
and the range of properties. For example, fig. 2.4 shows a part of the RDF Schema
rules for the FOAF vocabulary. The rules state the following:

• If x is the subject or object of a triple with predicate foaf:knows, then we can
infer the triple (x ,rdf:type,foaf:Person), i.e., resources knowing each other
are persons.
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RDF terms (T)

IRIs (I) Blank nodes (B) Literals (L)

Plain literals (Lp)

Simple (Lps )

with language tags (Lpl )

Typed literals (Lt )

Strings (Lts )

Booleans (Ltb )

Numbers (Ltn)

Dates (Ltd )

Others (Lto)

phd:Cecilia _:a

("Tajel", "")

("Thèse", "fr")

("Cecilia",xsd:string)

("true",xsd:boolean)

("29",xsd:integer)

("2005-07-10T08:20:00",

xsd:dateTime)

("D0D4C5D8",

xsd:hexBinary)

Figure 2.3: RDF terms are partitioned into a type hierarchy. Examples are shown

below the classes.
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foaf:knows foaf:Person foaf:Agent

rdfs:Property rdfs:Class

rdfs:domain

rdfs:range

rdfs:subClassOf

rdf:type rdf:type rdf:type

Figure 2.4: With RDF Schema, one can specify that if two resources know each other,

then both are persons. Every person is also an agent. This graph is part of the FOAF

specification [BM10].

foaf:Person foaf:Organization

owl:Class

owl:disjointWith

owl:disjointWith

rdf:type rdf:type

Figure 2.5: With OWL, one can specify that a resource cannot be a person and an

organization at the same time. This graph is part of the FOAF specification [BM10].

• If we have (x ,rdf:type,foaf:Person), thenwe can infer the triple (x ,rdf:type,
foaf:Agent), i.e., a person is an agent.

RDF Schema has if-semantics [Hor05], i.e., it cannot add contradictory knowledge.
An RDF graph can never be invalid in such semantics.

OWL extends RDF Schema to allow rules such as equivalences between classes
or properties, mutual exclusions, cardinality constraints, etc. OWL has iff-semantics,
meaning some RDF graphs may be incoherent. For example, fig. 2.5 states that
an RDF graph may not contain both (x ,rdf:type,foaf:Person) and (x ,rdf:type,

foaf:Organization) at the same time for any resource x .

RDF defines the notion of entailment [Hay04]. A graph G1 entails a graph G2,
noted by G1 |= G2, if G1 contains more knowledge than G2. Formally, entailment
is defined by means of interpretations. The exact definition depends on the used
entailment regime, e.g., RDF Schema or OWL rules. When no such regime is used,
i.e., when simple entailment is used,G1 |=G2 if and only if there exists a homomorphism
from G2 into G1. A homomorphism exists if there exists a mapping μ from the blank
nodes of G2 to the terms of G1 such that μ[G2] ⊆ G1, where μ[G2] is the graph
obtained by replacing the blank nodes of G2 by their value in μ [Bag05]. From the
entailment perspective, any blank node is an existential quantifier. If there are no
blank nodes in G2, G1 |=G2 ⇔ G2 ⊆ G1.

Example 2.1. Consider the graphG shown in fig. 2.2, and the graphsG1 consisting of
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the single triple (phd:Tajel,foaf:member,phd:Students), and G2 consisting of the
single triple (b,foaf:member,phd:Students), whereb is a blank node. We haveG |=G1,
because the triple set ofG1 is a subset of the triple set ofG. Let μ = { (b,phd:Tajel) },
we have μ[G2] ⊂ G, and thus G |=G2. Note that other mappings μ are possible.

For the RDF Schema and OWL entailment regimes, G1 |= G2 if and only if G2

is entailed by the deductive closure of G1 with respect to the considered regime.
The deductive closure of a graph is obtained by adding all triples inferred by the
RDF Schema or OWL rules. In practice, the deductive closure is not necessarily
computed entirely.

Example 2.2. Using the RDF Schema entailment regime with the rules of fig. 2.4, the
graph consisting solely of the triple (phd:Tajel,rdf:type,foaf:Agent) is entailed
by the graph of fig. 2.2. Because phd:Tajel is the subject of a triple with predicate
foaf:knows, we infer that Tajel is of type foaf:Person. As every person is an agent,
we further infer that Tajel is of type foaf:Agent.

Verifying that G1 |= G2 under simple entailment or the RDF Schema regime is
NP-complete, except when there are no blank nodes inG2 [Hor05]. Entailment under
the OWL regime is undecidable. OWL DL is a decidable subset of OWL designed to
circumvent this drawback.

2.3 SPARQLQuery Language

SPARQL [PS08] is a query language for RDF. In its simplest form, a query is a set of
triple patterns, i.e., triples where elements may be replaced by variables. Figure 2.6
shows an example querying the names of all PhD students. The set of triple patterns,
called the basic graph pattern, defines a pattern graph that has to be matched with the
target dataset. A solution consists of a mapping of the variables of the pattern graph
to terms of the dataset. This is similar to the entailment of RDF graphs explained in
section 2.2. However, we are now interested in the mappings themselves instead of
merely their existence.

SELECT ?name WHERE {

?p foaf:member phd:Students .

?p foaf:name ?name .

}

(a) SPARQL query

p name

phd:Students

foaf:name

foaf:member

(b) Associated pattern graph

Figure 2.6: Simple SPARQL query for the dataset shown in fig. 2.2. The query returns

the names of all the PhD students.
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SPARQL queries combine basic graph patterns into compound patterns with
composition, optional or alternative parts. Filters add constraints on the variables.
Similarly to SQL, from which SPARQL borrows its syntax, the results may be sorted,
projected, filtered from duplicates, etc.

This section presents the abstract syntax (section 2.3.1) and the semantics (sec-
tion 2.3.2) of the SPARQL language, based on Pérez et al. [PAG09]. In order to cover a
broader part of the SPARQL specification, we define the full semantics of the expres-
sions, and explain the solution modifiers. Compared to the official W3C recommen-
dation [PS08], the following definition makes some simplifying assumptions without
restricting the expressiveness of the language, as explained by Angles and Gutierrez
[AG08]. For the sake of readability, this chapter uses set semantics instead of the bag
semantics described in the recommendation. Such simplifications are also done by
Pérez et al. [PAG09]. The results can be easily extended to bag semantics.

2.3.1 SPARQL Syntax

A SPARQL query consists of two parts: a graph pattern and solution modifiers. The
graph pattern is to be matched with the RDF graph. The resulting solution set is
transformed into a list according to the solution modifiers.

To avoid dealing with parsing specificities, we present here an algebraic syntax
for SPARQL queries. We first present expressions that may appear in various parts
of the query. Then we define graph patterns and solution modifiers.

Let V be an infinite set representing variables. The set of variables is disjoint
from the set of RDF terms, i.e., V ∩ T = ∅.

Definition 2.2. An expression is recursively defined as follows.

• If a ∈ I ∪ L, then (a) is an expression.

• If x ∈ V, then (x ) and (bound(x )) are expressions.

• If E is an expression, then (¬E), (isIRI(E)), (isBlank(E)), (isLiteral(E)), (str(E)),
(lang(E)) and (datatype(E)) are expressions.

• If E1 and E2 are expressions, then (E1 ∧ E2), (E1 ∨ E2), (E1 = E2), (E1 � E2),
(E1 < E2), (E1 � E2), (E1 > E2), (E1 � E2), (sameTerm(E1,E2)), (E1 ∗ E2),
(E1/E2), (E1 + E2) and (E1 − E2) are expressions.

To summarize, an expression consists of IRIs, literals and variables, but not blank
nodes, composed together with logical connectives, comparison operators, arithmetic
operators, unary functions and unary and binary predicates. The SPARQL standard
also defines the langMatches and regEx predicates, as well as type casting operators.
For concision, we do not consider such operators in this chapter.

The building block of a graph pattern is a triple pattern. A triple pattern is an
RDF triple, where components may be replaced by variables. A set of triple patterns
is called a basic graph pattern (BGP). BGPs may be composed together with binary
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operators to build more complex graph patterns. Patterns may also be filtered by
expressions.

Let P be a graph pattern, we denote vars(P ) the set of variables appearing in P .
Similarly, if E is an expression, we denote vars(E) the set of variables appearing in E.

Definition 2.3. A triple pattern is a tuple (s,p,o) where s ∈ I ∪ V, p ∈ I ∪ V, and
o ∈ I ∪ L ∪ V.

Definition 2.4. A graph pattern is recursively defined as follows.

1. P ⊂ (I ∪V) × (I ∪V) × (I ∪ L ∪V) is a basic graph pattern, i.e., a set of triple
patterns.

2. Let P1 and P2 be graph patterns. (P1 and P2), (P1 union P2), (P1 diff P2) and
(P1 opt P2) are compound graph patterns.

3. Let P be a graph pattern and E be an expression, such that vars(E) ⊆ vars(P ),
(P filter E) is a constrained graph pattern.

Without loss of generality, we have excluded blank nodes from appearing in triple
patterns. Blank nodes appearing in a query are considered as existential quantifiers
and may be replaced by fresh variables [Mal+11].

The and, union and opt operators map respectively to the period (.), UNION and
OPTIONAL keywords in SPARQL. The W3C recommendation does not define a diff
operator. However, such operator can be obtained by combining opt and filter
operators as shown in Angles and Gutierrez [AG08].

For reasons of simplicity, we also restrict the scope of a filter expressions to the
pattern it constrains. Such approach is also followed by Pérez et al. [PAG09] and does
not alter the expressive power of the language [AG08].

Solution modifiers determine which variables of which solutions should be re-
turned and inwhat order. A set of solutionmodifiers may contain at most one solution
modifier of each type.

Definition 2.5. A solution modifier is one of

• project(X ), where X ⊂ V,

• distinct,

• limit(n), where n ∈ N,
• offset(n), where n ∈ N,
• order(〈O〉), where 〈O〉 is a sequence of couples (E,D) with E an expression
and D ∈ { asc,desc }.

A graph pattern and a set of modifiers together is a complete SPARQL query. The
W3C recommendation also specifies three query forms: select, ask and construct.
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The select form returns the list of solutions as mappings between variables and
RDF terms. The ask form implies the limit(1) solution modifier. The result is “yes”
if there is a solution and “no” otherwise. The construct form generates an RDF
graph for every solution, by replacing variables with their values in a template graph.
Query forms are mostly cosmetic and do not alter the way the query is solved. As
such, we restrict ourselves to the select query form.

Definition 2.6. A query is a couple Q = (P ,M ), with P a graph pattern andM a set
of solution modifiers. A query instance is a couple (Q ,G ), with Q a query and G an
RDF graph.

2.3.2 SPARQL Semantics

A solution of a query instance is an assignment of variables to RDF values. The
solutions of a query instance are defined in two steps. Evaluating the graph pattern,
results in a set of solutions. The solution modifiers determine how to transform this
set into a list.

Definition 2.7. A solution mapping is a partial function μ : V→ T. The domain of
the mapping is denoted by dom(μ ).

A solution mapping is also represented as a set of assignments (x ,v ). Set opera-
tions, like the union of two sets, can be applied on solution mappings, provided the
operands are compatible.

Definition 2.8. Two mappings μ1 and μ2 are said to be compatible, denoted by
μ1 ∼ μ2, if ∀x ∈ dom(μ1) ∩ dom(μ2),μ1 (x ) = μ2 (x ).

Two mappings are compatible if they agree on their shared variables. Intuitively,
one mapping can be extended into the other by assigning more variables. Note that
the ∼ relation is reflexive and symmetric, but not transitive.

Before defining the evaluation of a graph pattern, we show the evaluation of
an expression. Expressions are evaluated when handling constrained patterns and
solution modifiers. Given a solution mapping μ, we first substitute each variable
assigned by μ by its assigned value. Then, we get the value of the resulting expression.
Any variable left is unbound and results in an error.

Definition 2.9. The substitution of a solution mapping μ in an expression E, denoted
by μ[E], is the expression obtained by applying the following operations on E for any
x ∈ dom(μ ).

1. Replace each occurrence of bound(x ) by the value RDF(true).
2. Replace each occurrence of x that is not the operand of a bound() predicate by

the value μ (x ).

As the evaluation of an expression may result in an error, a three-state Boolean
logic is used. The states true and false have their usual meaning. An additional state
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a ∧ b true false error

true true false error

false false false false

error error false error

a ∨ b true false error

true true true true

false true false error

error true error error

Table 2.1: Truth tables for logical connectives in a three-state boolean logic. Note

that the error propagation may seem counter-intuitive.

error indicates an evaluation error. Negating error has no effect, i.e., ¬error = error.
The semantics of the ∧ and ∨ connectives are given by the truth tables in table 2.1.

The value of an expression E, denoted by �E�, is either an RDF term or error.
Any RDF term can be used as a Boolean predicate. The conversion of an RDF term v

into a Boolean value is called the effective Boolean value of the RDF term, denoted
by EBV(v ). For convenience, we also define EBV(error) = error.

Definition 2.10. The effective Boolean value of a value v ∈ T ∪ { error }, denoted by
EBV(v ), is

EBV(v ) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true if (v ∈ Ltb ∧ value(v ) = true)∨
(v ∈ Ltn ∧ value(v ) � { 0,NaN })∨
(v ∈ Lp ∪ Lts ∧ str(v ) � "")

error if t � Ltb ∪ Ltn ∪ Lp ∪ Lts

false otherwise

where NaN is the special not-a-number value of standard IEEE 754 floating point
arithmetic.

Definition 2.11. The value of an expression E, denoted by �E�, is an RDF term or
an error, recursively defined as follows.

1. If E ≡ (a), where a ∈ T, �E� � a.

2. If E ≡ (x ), where x ∈ V, �E� � error.

3. If E ≡ (¬E ′), �E� � RDF
(
¬EBV(�E ′�)

)
.

4. If E ≡ (E1 • E2), where • ∈ { ∧,∨ }, �E� � RDF
(
EBV(�E1�) • EBV(�E2�)

)
.

5. If E ≡ sameTerm(E1,E2),

�E� �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

RDF(true) if �E1� = �E2�

error if �E1� = error ∨ �E2� = error

RDF(false) otherwise.
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6. If E ≡ (E1 = E2),

�E� �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RDF(true) if �E1� = �E2�

RDF
(
value(�E1�) = value(�E2�)

)
if (�E1� ,�E2�) ∈
L
2
ts ∪ L

2
tb
∪ L

2
tn ∪ L

2
td

RDF
(
str(�E1�) = str(�E2�)

)
if (�E1� ,�E2�) ∈ L2

ps

RDF(false) if (�E1� ,�E2�) � L2∧
�E1� � �E2�

error otherwise.

7. If E ≡ (E1 � E2), �E� =
�¬(E1 = E2)

�
.

8. If E ≡ (E1 • E2), where • ∈ { <,�,>,� },

�E� �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

RDF
(
value(�E1�) • value(�E2�)

)
if (�E1� ,�E2�) ∈
L
2
ts ∪ L

2
tb
∪ L

2
tn ∪ L

2
td

RDF
(
str(�E1�) • str(�E2�)

)
if (�E1� ,�E2�) ∈ L2

ps

error otherwise.

9. If E ≡ (E1 • E2), where • ∈ { ∗,/,+,− },

�E� �
⎧⎪⎨⎪⎩
RDF

(
value(�E1�) • value(�E2�)

)
if (�E1� ,�E2�) ∈ L2

tn

error otherwise.

10. If E ≡ bound(x ), �E� � false.

11. If E ≡ f (E ′), where f = isIRI (resp. isBlank and isLiteral),

�E� �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

RDF(true) if �E ′� ∈ I (resp. B and L)

error if �E ′� = error

RDF(false) otherwise.

12. If E ≡ str(E ′), �E� �
⎧⎪⎨⎪⎩
(str(�E ′�), "") if �E ′� ∈ I ∪ L

error otherwise.

13. If E ≡ lang(E ′), �E� �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(lang(�E ′�), "") if �E ′� ∈ Lp

("", "") if �E ′� ∈ Lt

error otherwise.

14. If E ≡ datatype(E ′), �E� �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

datatype(�E ′�) if �E ′� ∈ Lt

xsd:string if �E ′� ∈ Lps

error otherwise.
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Note that the SPARQL specification distinguishes between identity and equiva-
lence. The (sameTerm(E1,E2)) predicate asserts the identity of E1 and E2, i.e., whether
they refer to the exact same RDF term. The (E1 = E2) predicate asserts the equiv-
alence of E1 and E2, i.e., whether their interpreted values are equal. The notion of
equivalence is only defined on pairs of literals of the same type that SPARQL un-
derstands, i.e., simple literals, strings, booleans, numbers and dates. If E1 and E2 do
not have the same type, or they have a type that is not understood by SPARQL, they
are said to be incomparable. Plain literals with non-empty language tags are also
incomparable. In such cases, �E1 = E2� falls back on the identity. If the values of
E1 and E2 are not identical, the result is false, except if both operands are literals, in
which case the result is error.

Similarly to expressions, we define the substitution of a solution mapping in a
graph pattern. The evaluation of a graph pattern P over a graph G is denoted by
�P�G .

Definition 2.12. The substitution of a solution mapping μ in a graph pattern P ,
denoted by μ[P], is the graph pattern obtained by applying the following operations
on P .

1. Replace any variable x ∈ dom(μ ) occurring in triple patterns appearing in P

by the value μ (x ).
2. Replace any expression E appearing in P by the substitution μ[E].

Definition 2.13. The evaluation of a graph pattern P over a graph G, denoted by
�P�G , is a set of solution mappings recursively defined as follows.

1. If P is a basic graph pattern, �P�G � { μ | dom(μ ) = vars(P ) ∧ μ[P] ⊆ G }.
2. If P ≡ (P1 and P2), �P�G � { μ1 ∪ μ2 | μ1 ∈ �P1�G ∧ μ2 ∈ �P2�G ∧ μ1 ∼ μ2 }.
3. If P ≡ (P1 union P2), �P�G � { μ | μ ∈ �P1�G ∨ μ ∈ �P2�G }.
4. If P ≡ (P1 diff P2), �P�G � { μ1 | μ1 ∈ �P1�G ∧ ¬∃μ2 ∈ �P2�G ,μ1 ∼ μ2 }.
5. If P ≡ (P1 opt P2), �P�G �

�
(P1 and P2) union (P1 diff P2)

�
G .

6. If P ≡ (P ′ filter E), �P�G � { μ | μ ∈ �P ′�G ∧ EBV(
�
μ[E]
�
) = true }.

Evaluating a basic graph pattern involves finding a matching subset of the RDF
graph. Such definition assumes no entailment regime is used. When using an entail-
ment regime such as RDF Schema or OWL, evaluating a BGP amounts to finding an
instance of the pattern graph that is entailed by the target RDF graph. Formally, the
definition becomes �P�G � { μ | dom(μ ) = vars(P ) ∧G |= μ[P] }. If G is the deduc-
tive closure of the target RDF graph, the definitions are equivalent.

Example 2.3. Consider the target RDF graph G depicted in fig. 2.2, and the BGP
{(p,rdf:type,foaf:Person)}, where p is a variable. Under the simple entailment
regime, the evaluation of the BGP yields no solution. When using the RDF Schema
entailment regime with the rules depicted in fig. 2.4, the results are phd:Tajel,
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phd:Cecilia, phd:Mike, and phd:Smith. Indeed, we infer they are persons as they
are involved in foaf:knows relations.

The and operator is the concatenation of two patterns. The union operator
produces the union of the solution sets of the operand patterns. The diff operator
returns all the solutions of the left-hand operand that cannot be extended with a
solution of the right-hand operand. Intuitively, (P1 opt P2) tries to extend solutions
of P1 with solutions of P2. However, if the extension of a solution μ1 ∈ P1 fails
(i.e., μ1 ∈ �P1 diff P2�G ), that solution μ1 becomes a solution of the opt pattern
too. Figure 2.7 shows examples of the evaluation of compound patterns. The filter
pattern only keeps the solutions of the subpattern for which the condition expression
is satisfied.

Corollary. Any solution mapping in the evaluation of a pattern P does not cover more

variables than appear in P , i.e., dom(μ ) ⊆ vars(P ) for all μ ∈ �P�G .
By construction, the domain of a solution of a basic graph pattern is the set of

variables appearing in the pattern. The evaluation of a compound pattern combines
the evaluation of the subpatterns without adding new variables.

The set of solution modifiers of a query is transformed into a modifier function.
That function is applied on the evaluation of the graph pattern and returns the
(modified) solutions in a sequence. The modifier function is composed of the Sort,
Project, FilterDups and Slice functions.

The Sort(〈O〉,Ω) function returns all the elements of the set Ω in a sequence
ordered by 〈O〉 lexicographically. For every ordering criterion (E,D) in 〈O〉, the sort
key is given by

�
μ[E]
�
with μ ∈ Ω. If D = asc, the order direction is ascending. If

D = desc, the direction is descending.
The Project(X ,〈μ1, . . . ,μn〉) function returns a sequence 〈μ ′1, . . . ,μ ′n〉, where ∀i ∈

{ 1, . . . ,n } ,dom(μ ′i ) = dom(μi ) ∩ X and ∀i ∈ { 1, . . . ,n } ,x ∈ dom(μ ′i ),μ
′
i (x ) = μi (x ).

The FilterDups(〈μ1, . . . ,μn〉) function returns the input sequence without dupli-
cate elements. If there are duplicate elements at different positions of the input
sequence, it is not specified which element to keep.

The Slice(nO ,nL,〈μ1, . . . ,μn〉) function returns the sequence 〈μnO+1, . . . ,μnO+nL〉.
Definition 2.14. Themodifier functionm, mapping a set of solutions Ω to a sequence
of solutions, associated with a set of solution modifiersM is

m(Ω) =
⎧⎪⎨⎪⎩
Slice(nO ,nL,FilterDups(Project(X ,Sort(〈O〉,Ω)))) if distinct ∈ M
Slice(nO ,nL,Project(X ,Sort(〈O〉,Ω))) otherwise,

where nO = n if offset(n) ∈ M or 0 otherwise, nL = n if limit(n) ∈ M or ∞
otherwise, X is the set given by project(X ) if project(X ) ∈ M or V otherwise,
〈O〉 is the sequence given by order(〈O〉) if order(〈O〉) ∈ M or the empty sequence
otherwise.

Definition 2.15. The evaluation of a query instance (Q ,G ), with Q = (P ,M ), is the
sequence of solution mappingsm(�P�G ), wherem is the modifier function associated
toM .
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P1
p a

phd:Cecilia 26

phd:Mike 35

phd:Tajel 29

P2
p t

phd:Cecilia dbp:Procrastination

phd:Mike dbp:Procrastination

phd:Mike phd:Free Food

phd:Smith dbp:Research

P1 and P2
p a t

phd:Cecilia 26 dbp:Procrastination

phd:Mike 35 dbp:Procrastination

phd:Mike 35 phd:Free Food

P1 union P2
p a t

phd:Cecilia 26

phd:Mike 35

phd:Tajel 29

phd:Cecilia dbp:Procrastination

phd:Mike dbp:Procrastination

phd:Mike phd:Free Food

phd:Smith dbp:Research

P1 diff P2
p a

phd:Tajel 29

P1 opt P2
p a t

phd:Cecilia 26 dbp:Procrastination

phd:Mike 35 dbp:Procrastination

phd:Mike 35 phd:Free Food

phd:Tajel 29

Figure 2.7: Examples of pattern evaluation on the example graph of fig. 2.2 for com-

binations of the BGPs P1 ≡ {(p,foaf:member,phd:Students), (p,foaf:age,a)} and
P2 ≡ {(p,foaf:interest,t )}. Each row is a solution. A blank cell indicates that the

variable is not present in the solution.
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Example 2.4. Consider the solution set Ω of the graph pattern P1 opt P2 in fig. 2.7,
and the solution modifiers

M =
{
project({p,a}),distinct,order(〈(a,asc)〉),limit(2),offset(1)

}
.

The associated modifier function is

m(Ω) = Slice(1,2,FilterDups(Project({p,a},Sort(〈(a,asc)〉,Ω)))) .

Figure 2.8 shows the intermediate result for each function.

Ω0 = �P�G
p a t

phd:Cecilia 26 dbp:Procrastination

phd:Mike 35 dbp:Procrastination

phd:Mike 35 phd:Free Food

phd:Tajel 29

Ω1 = Sort(〈(a,asc)〉,Ω0)

p a t

phd:Cecilia 26 dbp:Procrastination

phd:Tajel 29

phd:Mike 35 dbp:Procrastination

phd:Mike 35 phd:Free Food

Ω2 = Project({p,a},Ω1)

p a

phd:Cecilia 26

phd:Tajel 29

phd:Mike 35

phd:Mike 35

Ω3 = FilterDups(Ω2)

p a

phd:Cecilia 26

phd:Tajel 29

phd:Mike 35

Ω4 = Slice(1,2,Ω3)

p a

phd:Tajel 29

phd:Mike 35

Figure 2.8: The solution set of the graph pattern is transformed by the modifier

function into the solution sequence of the query. The set Ω0 is the evaluation result

of the P1 opt P2 pattern from fig. 2.7. The sequence Ω4 is the result of the query.



Chapter 3

Relational Databases Technology

used in SPARQL Engines

State-of-the-art SPARQL engines rely on relational database technology. This chapter
will explain how such engines store RDF graphs and how they evaluate SPARQL
queries. As a running example, we will consider the dataset shown in the previous
chapter in fig. 2.2, and the query of fig. 3.1. This chapter is based on surveys by Sakr
and Al-Naymat [SA10], Hose et al. [Hos+11], and Luo et al. [Luo+12].

The first sectionwill provide a broad overview of state-of-the-art SPARQL engines.
The following sections will dive into the details of data storage (section 3.2) and query
processing (section 3.3).

3.1 Overview of State-of-the-art SPARQL Engines

State-of-the-art SPARQL engines based on relational database technology store the
triples of an RDF graph in relational tables. A SPARQL query can then be seen as an
SQL query over those tables. The SQL query is evaluated using standard techniques.

Hose et al. [Hos+11] divides state-of-the-art systems in three classes, based on
the structure of the relational tables:

1. triple stores that store the whole dataset in one three-column table,

2. vertically partitioned tables that maintain one table for each predicate, and

3. property tables where several predicates are jointly represented.

This section gives an overview of each class.
Because of their popularity, the next sections will focus on triple stores. Verti-

cally partitioned tables have few advantages over triple stores with efficient indexes.
Property tables are a middle-ground between the open nature of the semantic web
and the structured data of relational databases.
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SELECT ?p1 ?p2 WHERE {

?p1 foaf:member phd:Students . (t1)

?p1 foaf:age ?a1 . (t2)

?p2 foaf:member phd:Students . (t3)

?p2 foaf:age ?a2 . (t4)

FILTER (?a1 < ?a2) (E)

}

(a) SPARQLQuery

a1 a2

p1 p2

phd:Students

f
o
a
f
:
a
g
e

f
o
a
f
:
a
g
e

fo
af
:m
em
be
r foaf:member

<

(b) Associated BGP

Figure 3.1: The example query finds all pairs of PhD students where the first one is

strictly younger than the second one. Such inequality filters are common to break

symmetries.

subject predicate object

phd:Students rdf:type foaf:group

phd:Tajel foaf:member phd:Students

phd:Tajel foaf:name ("Tajel", "")

phd:Tajel foaf:age ("29",xsd:integer)

phd:Tajel foaf:knows phd:Cecilia

phd:Tajel foaf:knows phd:Mike

phd:Cecilia foaf:member phd:Students

phd:Cecilia foaf:name ("Cecilia",xsd:string)

. . . . . . . . .

Figure 3.2: A triple store stores all triples in one single triple table. To save space,

terms are usually mapped to identifiers (not shown here).

3.1.1 Triple Stores

Triple stores store the whole dataset in one giant table, called the triple table. Each
row in the table represents one triple. Figure 3.2 shows a part of the triple table for the
dataset of our running example (see fig. 2.2). Examples of SPARQL engines which use
triple stores are Sesame [BKH02], 4store [HLS09], Virtuoso [EM09], RDF-3X [NW08],
and Hexastore [WKB08].

To save space and improve efficiency, most systems assign an integer identifier
to every RDF term appearing in the dataset, e.g., with a hashing function or with
consecutive integers. The triple table then contains only the identifiers, making it
more compact. Of course, the mapping has to be stored in an additional table.

Some systems, e.g., Sesame, 4store or Virtuoso, are able to store multiple RDF
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graphs at once. The relational table is extended with a fourth column, identifying for
each triple the provenance graph by its IRI. Such extended table is called a quadruple
table. In this thesis, we will focus on triple tables. In most cases, the extension to
quadruple tables is straightforward.

The basic query operation on a triple store is to retrieve all triples matching a
triple pattern. Remember a triple pattern is a triple where each component is either
a constant term or a variable, meaning any term can appear at that place. To answer
such queries efficiently, indexes are maintained on (a subset of) all combinations of
columns of the triple table. The size of an index is approximately as large as the triple
table. Thus, the number of indexes maintained in a system is usually limited, or the
index has to be stored in a compressed format. Section 3.2 will provide more details.

A SPARQL query can be translated to an SQL query on the triple table. For each
triple pattern of the query, a copy of the triple table is included in the query. Whenever
a common variable is used in two triple patterns, a join is introduced between the two
corresponding table instances on the columns where the variable occurs. A condition
is added for every constant. Filters are translated to an equivalent SQL condition.

Example 3.1. The query in fig. 3.1 is translated to the following SQL query.

SELECT t1.s, t3.s

FROM triples t1, triples t2, triples t3, triples t4

WHERE t1.p = ’foaf:member’

AND t1.o = ’phd:Students’

AND t2.p = ’foaf:age’

AND t3.p = ’foaf:member’

AND t3.o = ’phd:Students’

AND t4.p = ’foaf:age’

AND t1.s = t2.s

AND t3.s = t4.s

AND t2.o < t4.o

A copy of the triple table, named triples, is included for each triple pattern. Four
copies are included, named t1, t2, t3, and t4. Conditions are stated on the subject (s),
predicate (p), and object (o) columns. In a real system, the constants would be first
mapped to the corresponding identifiers. Similarly, the results would be translated
back to RDF terms.

The obtained SQL query can be evaluated using standard relational database
techniques. This involves converting the query in an equivalent tree of abstract
operators, i.e., join, projection, and selection operators. The abstract operators are
then mapped to physical operators that are executed. Key choices are the ordering
of the operators and the choice of the physical operators. Standard heuristics for
relational databases rely on statistics on the columns of the tables. However, such
statistics do not provide enough information when applied on the single triple table.
Specific heuristics are thus needed for SPARQL processing. Such heuristics, along
with a more detailed description of the query processing, are described in section 3.3.
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foaf:member

subject object

phd:Tajel phd:Students

phd:Cecilia phd:Students

phd:Mike phd:Students

foaf:age

subject object

phd:Tajel ("29",xsd:integer)

phd:Cecilia ("26",xsd:integer)

phd:Mike ("35",xsd:decimal)

phd:Smith ("56",xsd:integer)

foaf:name

subject object

phd:Tajel ("Tajel", "")

phd:Cecilia ("Cecilia",xsd:string)

phd:Mike ("Michael Slackenerny", "")

phd:Smith ("Brian B. Smith", "")

. . .

Figure 3.3: A system with vertically partitioned tables groups the triples by predicate

(not all tables are shown). The evaluation of triple patterns with constant predicate

involves much smaller tables than in a triple store. As for triple stores, terms are

usually mapped to identifiers (not shown here).

3.1.2 Vertically Partitioned Tables

In most real-world SPARQL queries, predicates are constant. Vertically partitioned
tables exploit this property. A two-column table is created for each predicate p,
containing the subject-object pairs of the triples with predicate p. Figure 3.3 shows
how the RDF graph of fig. 2.2 is stored in such scheme. SW-Store [Aba+09] is an
example of vertically partitioned system.

Instead of storing the tables in a traditional relational database, i.e., a row store, one
can also rely on a column store. A row store considers a table as a collection of rows.
A column store stores a table as a collection of columns. As all data within a column
have the same type, such columns can be compressed efficiently. MonetDB [Idr+12]
is the prime example of column store. Recently, Virtuoso has added support for
column-wise tables [Erl12].

Vertically partitioned tables have two main advantages with respect to query
processing. Triple patterns with constant predicate can be evaluated efficiently by
scanning the table of the predicate, which is much smaller than the triple table
of triple stores. However, such advantage is limited when using efficient indexes
in triple stores (see section 3.2). Statistics on the vertically partitioned tables give
more accurate estimations when using standard heuristics. Specialized heuristics are
thus less needed. On the other hand, queries involving variable predicates are very
expensive to compute because they need to iterate over all two-column tables and
return the union of the results.

Example 3.2. The query in fig. 3.1 is translated to the following SQL query.

SELECT t1.s, t3.s
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FROM ‘foaf:member‘ t1, ‘foaf:age‘ t2, ‘foaf:member‘ t3, ‘foaf:age‘ t4

WHERE t1.o = ’phd:Students’

AND t3.o = ’phd:Students’

AND t1.s = t2.s

AND t3.s = t4.s

AND t2.o < t4.o

3.1.3 Property Tables

While RDF does not require any structure for the data, most datasets have an implicit
structure. Many resources appearing as subjects in the dataset can be partitioned in
a set of classes. Subjects in a class share the same, or a largely overlapping, set of
properties. For example, in fig. 2.2 every person has a name and an age. Property
tables group together all the properties of a subject in one row. Jena [Car+04] is an
example of such system.

A row in a property table represents a set of triples with the same subject. The
first column is the subject s . The other columns represent various predicates. The
value of a column p is the object p if the triple (s,p,o) exists in the dataset or NULL
otherwise. Figure 3.4 shows the property tables of the people and the web pages of
fig. 2.2.

Queries often access multiple properties of a subject. This is the case in our
running example of fig. 3.1, where we access the group and the age of each person.
Property tables are able to handle queries more efficiently by avoiding to join tables to
combine multiple properties. For this reason, property tables are able to outperform
triple stores and vertically partitioned tables on very structured datasets [LM09].

Example 3.3. The query in fig. 3.1 is translated to the following SQL query.

SELECT p1.subject, p2.subject

FROM Person p1, Person p2

WHERE p1.‘foaf:member‘ = ’phd:Students’

AND p2.‘foaf:member‘ = ’phd:Students’

AND p1.‘foaf:age‘ < p2.‘foaf:age‘

The above query is very similar to what one may obtain when using standard rela-
tional databases instead of RDF.

Property tables have a number of limitations however. Because RDF has a schema-
less nature, the structure of the data needs to be (re)discovered. If the user provides
a schema, e.g., with RDF-Schema or OWL, such information can be used. Otherwise,
heuristics are needed. There should not be too many NULLs in the tables as they
increase the storage space. Thus, storing the whole dataset in one table is not an
option. Instead, the triples need to be clustered heuristically in some way.

Another problem comes with multi-valued properties, i.e., triples with the same
subject and predicate, but different objects. In our example, this happens with the
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Person

subject foaf:member foaf:name foaf:age foaf:weblog

phd:Tajel phd:Students "Tajel" 29 NULL

phd:Cecilia phd:Students "Cecilia" 26 http://...

phd:Mike phd:Students "Mike" 35 NULL

phd:Smith NULL "Brian B. Smith" 56 NULL

Web page

subject foaf:topic dc:created dc:subject

http://... dbp:Procrastination 2005-07-10 _:a

...
Remainder

subject predicate object

phd:Tajel foaf:knows phd:Cecilia

phd:Tajel foaf:knows phd:Mike

phd:Cecilia foaf:knows phd:Tajel

phd:Mike foaf:knows phd:Smith

. . . . . . . . .

Figure 3.4: Property tables group together the properties of a subject in a single row

(not all tables are shown). Such tables reflect the underlying structure of the data.

They are very close to the tables of a standard relational database. To fit on the page,

the datatypes of the literals are omitted.
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foaf:knows predicate. One solution would be to duplicate the columns to accommo-
date for multiple values. However, this can only be done if we know the maximum
number of values in advance. The other solution is to resort to a triple table to store
the remainder triples that cannot be expressed inside property tables. Such solution
is shown in fig. 3.4.

3.2 Triple Indexes

The simplest queries consist of a single triple pattern. Such queries are the basis of
more complex queries. To answer them efficiently, triple stores make use of indexes.
An index is an auxiliary data structure that helps to efficiently retrieve triples sat-
isfying some conditions, e.g., all triples whose predicate is foaf:member and whose
object is phd:Students. Note that our definition of index is intentionally large. Not
all indexes return full triples. For example, an index could return only the subjects
that appear in triples whose predicates are foaf:member.

In this section, we will first introduce the underlying data structures. Then, we
will show how they are used in state-of-the-art triple stores.

3.2.1 Data Structures

Conceptually, the data structures used for indexes are maps. They map keys (e.g.,
a predicate) to values (e.g., the triples with the given predicate). In the context of
databases, a value is also called a payload. Maps can also be used as mathematical
sets by using an empty payload. Table 3.1 shows an overview of the data structures
presented in this section.

B-trees

B-trees [Com79] are the most common data structures used for indexing in relational
databases. The complexity of a look-up is O (logn), with n the number of indexed
keys. B-trees are designed to work well when the cost of reading a node is high, e.g.,
it has to be read from the hard disk. We will discuss a particular variant, B+-trees,
that often occur in relational databases.

B-tree Radix trie Hash table Bitmap

Use Map or set Map or set Map or set Set
Look-up complexity O (logn) O (k ) O (1) O (1)
In-order traversal Yes Yes No Yes

Table 3.1: Indexes can be implemented with various data structures having different

strengths and weaknesses.
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O R

D H P W

A B D G H I K L O P R U W

Figure 3.5: In a B+-tree, the key-value pairs are stored in the leaf nodes, i.e., the

bottom level (only the keys are shown here). Internal nodes have multiple keys. Leaf

nodes are usually linked together to allow efficient in-order traversal (shown with

dotted arrows).

AB+-tree distinguishes between internal nodes and leaf nodes. Leaf nodes contain
consecutive keys along with their values. Internal nodes contain only keys. An
internal node with k keys has k + 1 children, partitioning the keys of its children.
For example, an internal node with keys ‘O’ and ‘R’ will have three child subtrees.
The first one will have all keys smaller than ‘O’, the second one keys between ‘O’
(inclusive) and ‘R’ (exclusive), and a third one with keys greater than or equal to
‘R’. To provide efficient in-order traversal, leaf nodes are usually linked together.
Figure 3.5 shows an example of a B+-tree.

In a B+-tree, all nodes take the same amount of space on disk, called a page. The
time to read a page includes access time, i.e., the time to find the page on the disk,
and read time, i.e., the time to actually read the content of the page. On traditional
hard disks, the access time is not negligible, and the page size is a trade-off between
access time and read time. Typical page sizes are 8 or 16 KB. The number of keys
stored in a node depends on the compression scheme inside the pages.

To ensure good look-up performances, the tree has to be balanced. Updating the
tree, i.e., inserting or removing keys, may involve splitting or merging nodes up to the
root in order to keep the balanced property. Because such operations can be costly,
engines sometimes resort to tricks to reduce the number of balancing operations
that have to be performed. One trick is to leave some empty space in all nodes to
accommodate for small insertions [Erl12]. Another trick is to maintain a small delta
structure that is periodically merged into the B+-tree [Hém+08; NW10].

Radix tries

A radix trie, also known as a Patricia tree [Mor68], is a prefix tree where a node with
a single child is merged with its child. The worst-case complexity of a look-up is
O (k ), with k the size of the keys. This is worse than the complexity of B-trees since
k � logn (we need at least logn bits to distinguish between n elements). On the other
hand, updates to the data structure do not need costly balancing operations.
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Figure 3.6: A radix trie is a prefix tree where edge labels may be sequences of elements,

i.e., strings, instead of a single element. Values are attached to the leaf nodes (not

shown here).

In a radix trie, edges are labeled with sequences of elements. An element is a part
of a key, e.g., a character, a bit, a byte, etc. The key corresponding to a leaf node can
be reconstructed by concatenating the labels on the path to the leaf. Internal nodes
are empty. The leaves contain the payloads. Figure 3.6 shows an example of a radix
trie.

Hash tables

In a hash table, a key is transformed to a table index by applying successively a
hashing and a compression function. That index points to an entry of the hash table.
A collision occurs when two different keys map to the same index. An entry can be a
list, also known as a bucket, of key-value pairs with all colliding keys. Alternatively,
an entry can also be a single key-value pair. A new key having the same index will
then be stored in the nearest empty entry. Such method is called open addressing.

The average time complexity of a look-up is O (1) if there are not too many
collisions. When inserting new keys, the table sometimes has to be extended. The
extension is a very costly operation as all items have to be rehashed and moved to
the new index.

Bitmaps

Bitmaps can only represent mathematical sets, i.e., maps with no payloads. A bitmap
consists of a bit array, also called a bit vector. A key is a natural number, representing
the index of a bit in the bit vector. The set contains the key if and only if its associated
bit is 1. Such look-up is performed in constant time.

A big advantage of bitmaps is the ability to perform bit-wise operations. For
example joining two bitmaps, i.e., computing the intersection of two sets, involves a
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bit-wise AND operation. Computers perform such operations very efficiently.

3.2.2 Mapping RDF Terms to Identifiers

Before diving into the details of how triple stores store their indexes, we will briefly
explain howRDF terms aremapped to integer identifiers. Handling identifiers has two
major advantages over dealing with terms directly. First, identifiers have fixed length
in contrast to the variable length of RDF terms. More efficient fixed-length records
can thus be used. Second, IRIs often appear multiple times in an RDF graph. Storing
them only once and replacing them with shorter identifiers results in significant
space savings. There are two general approaches to the problem: hash-based and
counter-based.

Hash-based approaches apply a hash function to the RDF terms. For example,
4store [HLS09] uses a 64-bit key to identify the terms. Care must be taken to distin-
guish between the various types of RDF terms, e.g., IRIs and literals. In 4store, such
information is encoded in the most significant bits. Hash collisions must be handled
to avoid wrong query results. Because collisions are unlikely, 4store refuses to load a
triple if it detects a collision.

Counter-based approaches simply assign consecutive integers to RDF terms.
When a new term is encountered, a counter is incremented and the value of the
counter is the new identifier. Such approach is chosen by RDF-3X [NW08].

To translate identifiers back to their original term, a dictionary table is needed.
The dictionary can use various data structures. For example, 4store uses a hash table,
and RDF-3X uses a B+-tree.

Variations on the general approaches are possible. For instance, Virtuoso [Erl12]
uses small terms (up to 8 bytes) directly as identifiers. Common prefixes of IRIs can
also be compressed more efficiently.

3.2.3 Indexes in Triple Stores

State-of-the-art triple stores have different approaches to index the triple table. In
this section, we will give an overview of the indexes used by Virtuoso, 4store, and
RDF-3X.

As noted above, an index is basically a key-value map. We will denote keys by
combinations of the following letters: S (subject), P (predicate), O (object), and G
(graph IRI). For example, the keys of an SP index are pairs of subjects and predicates.
In a B-tree, the order of the components specify the lexical ordering in the tree. For
example, keys in an SP index will first be ordered by subject, then by predicate.

We distinguish between full and partial indexes. In a full index, it is possible to
reconstruct full triples with the keys and their payloads. A full index is effectively
a complete copy of the triple table, albeit ordered differently. On the other hand, a
partial index alone does not allow to reconstruct the triple table.
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Virtuoso

Virtuoso [Erl12] is very flexible and allows the database administrator to specify the
indexes to create. The default indexing scheme includes 2 full indexes and 3 partial
indexes.

The first full index is a B-tree with PSOG keys and no payload. This index is used
to answer triple patterns with constant predicate, and possibly constant subject. To
handle patterns with constant predicate and object, the second full index is a B-tree
with POG keys and S bitmaps as payloads. Hence, for every combination of predicate,
object, and graph IRI appearing in the dataset, a bitmap containing the associated
subjects is stored.

To answer queries with variable predicates or constant graph IRI, the OP, SP, and
GS partial indexes are introduced. E.g., the OP index maps an object to predicates.
The full PSOG index can then be queried with the resulting predicates to retrieve the
full triples. The OP index is a B-tree with OP keys and no payloads. The SP (resp. GS)
index is a B-tree with S (resp. G) keys and P (resp. S) bitmap payloads.

4store

Even though 4store [HLS09] is considered as a triple store, its index structure re-
sembles vertically partitioned tables. For each predicate, two radix tries are built,
one with the subjects as keys, the other with predicates. The payloads contain lists
of triples matching the predicate and subject/object. Because the indexes are full
indexes, the triple table is not stored on disk.

A hash table maps graph IRIs to lists of triples. This full index allows to efficiently
retrieve the triples of one graph. As a side effect, it also allows to quickly delete a
whole graph.

The authors of 4store have chosen radix tries over B-trees for their easy insertions
without costly balancing operations. Because identifiers are evenly distributed thanks
to the hashing function, the worst-case conditions of radix tries should be uncommon.

RDF-3X

In contrast to the previous engines, RDF-3X does not support multiple graphs. The
triple table is not materialized. Instead, full B+-tree indexes with no payloads are
maintained for all six permutations of the columns: SPO, SOP, PSO, POS, OSP, and
OPS. While three indexes are enough to handle any triple pattern, the additional
indexes allow for different orderings of the results. For example, for a triple pattern
with constant predicate, the PSO index will return triples ordered first by subject,
then by object. The POS index will instead return triples ordered first by object, then
by subject. The order of the results have an impact on the join operators described
in section 3.3.

RDF-3X also stores aggregated (partial) indexes for all possible pairs of columns:
SP, SO, PS, PO, OS, and OP. A payload in one of those indexes consists of the number
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of triples with the components specified by the key. For example, the PO index of the
graph shown in fig. 2.2 will return 3 for key (foaf:member,phd:Student), because
there are three triples with that predicate and object. Similar aggregated indexes are
also created for S, P, and O, returning the number of triples with the given subject,
predicate, or object.

Aggregated indexes are used to efficiently answer queries such as SELECT ?s ?o

WHERE { ?s ?p ?o }. Scanning through the SOP index would unnecessarily return
all predicates for each SO pair. Using the SO index instead skips over the predicates.
Aggregated indexes also give useful statistics to use during the query execution (see
section 3.3).

To reduce the space requirements of the indexes, RDF-3X compresses the leaf
pages of the B+-trees. Because all identifiers are consecutive integers and the triples
in a leaf are sorted, a delta-compression scheme is applied. The leaf starts with a full
triple. For the next triples, only the difference with the previous triple is stored.

3.3 Query Execution and Optimization

Thanks to the indexes described in the previous section, triples matching a triple
pattern can be efficiently retrieved. From each triple, a solution mapping can be
constructed, assigning RDF terms to the variables. In order to evaluate a complete
query, the result sets of the triple patterns must be combined. The first step in the
query execution is to convert the SPARQL query into a tree of abstract operators. A
physical operator, i.e., an implementation, is then chosen for each abstract operator,
and the tree is executed bottom-up. The result set of the query is the result set of the
root operator.

In this section, we will first describe the two steps of the query execution, i.e., the
abstract and physical operators. Then, we will explain how state-of-the-art systems
optimize the query execution.

3.3.1 Abstract Operators

An abstract operator transforms/combines the result sets of its operand(s) and returns
a new result set. A SPARQL query is transformed in a tree of abstract operators. Such
a tree is very similar to the input query as described in section 2.3.2. However, basic
graph patterns are split into their triple patterns, which are combined with and
operators.

Figure 3.7 shows the abstract operator tree for the query of fig. 3.1. The leaves
of the abstract operator tree are the triple patterns. The inner nodes are one of the
following operators. The projection operator (π ) restricts the domain of the solutions
to a set of variables. The join (�), union (∪), difference (\), left-join (�), and selection
(σ ) operators correspond respectively to the SPARQL and, union, diff, opt, and
filter operators.
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By evaluating the abstract operator tree bottom-up, we obtain the solutions of the
query. Figure 3.8 shows the intermediate result tables of the abstract operators when
evaluating the tree of fig. 3.7 on the RDF graph of fig. 2.2. Depending on the physical
operators chosen to implement the abstract operators (see section 3.3.2), some of the
intermediate result tables need to be materialized, while others do not. Materializing
an intermediate result involves computing the complete result set and storing it in
memory or on disk for further processing by the parent operator.

Splitting a basic graph pattern into a tree of joined triple patterns can be done in
various ways. Choosing the right tree has a great impact on the performances. For
example, if we had chosen to first join t1 and t3, which have no common variable, the
intermediate result tables would have been larger. Some ways of dealing with this
problem are explained in section 3.3.3.

3.3.2 Physical Operators

Each abstract operator can be implemented in various ways. An implementation is
called a physical operator. In the best case, an operator does not need to materialize
the result tables of its operands. In such cases, the operator is applied on iterators
that compute the solutions lazily. Hence, only one solution per operator needs to be
kept in memory.

Some operators, such as the projection or the selection operators, are trivial to
implement. In contrast, there exist a lots of physical operators implementing the join
operator. The choice of physical operator depends on the operators lower in the tree
and on the available indexes. We will describe the three fundamental physical join
operators: nested loop join, hash join, and merge join. In what follows, we consider
the join A � B of two tables, such that variable x is shared between the two tables.
One can easily generalize to multiple shared variables.

The nested loop join is the simplest implementation. For each solution μA ∈ A,
we iterate over the solutions μB ∈ B. If the two solutions are compatible, μA ∪ μB is
returned. The nested loop join requires one of the two result tables to be materialized,
as we need to traverse it multiple times.

The hash join also requires one of the tables, e.g., B, to be materialized. We first
build a hash table, mapping values for x to solutions of table B. Then, we traverse
tableA. For each solution μA, we look up μA(x ) in the hash table. If we find a solution
μB , we return μA ∪ μB . Otherwise, no compatible solution exist and we advance to
the next solution of A.

The merge join is the most efficient implementation. No table needs to be materi-
alized. However, the tables A and B are required to be sorted by x . Let μA (resp. μB)
be the current solution of the iterator on table A (resp. B). There are three cases:

1. If μA(x ) = μB (x ), both solutions are compatible and we return μA ∪ μB . The
iterators on either A or B is advanced.

2. If μA(x ) < μB (x ), we advance the iterator on A.
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SELECT ?p1 ?p2 WHERE {

?p1 foaf:member phd:Students . (t1)

?p1 foaf:age ?a1 . (t2)

?p2 foaf:member phd:Students . (t3)

?p2 foaf:age ?a2 . (t4)

FILTER (?a1 < ?a2) (E)

}

(a) SPARQL query from fig. 3.1

πp1,p2

σE

�C

�B

t4t3

�A

t2t1

(b) Abstract operator tree

Figure 3.7: A SPARQL query is converted to an abstract operator tree. Such a tree is

similar to the SPARQL query with the exception of basic graph patterns, which are

decomposed into triple patterns.

t1
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phd:Mike

phd:Tajel

t2
p1 a1
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phd:Smith 56
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p2
phd:Cecilia

phd:Mike

phd:Tajel
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Figure 3.8: The abstract operator tree in fig. 3.7 is evaluated bottom-up. The solutions

of the query are the results of the root operator πp1,p2 . Because �A and �B do not

share any variable, the result set of �C is the Cartesian product of both tables.

Depending on the physical operators, the intermediate result tables are not always

materialized. Note that the datatypes of literals have been omitted in the tables.
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3. If μA(x ) > μB (x ), we advance the iterator on B.

The algorithm is repeated until one of the two iterators reaches the end of the table.

3.3.3 Query Optimization

Building an efficient query plan, i.e., constructing the abstract operator tree and
assigning physical operators, has a high impact on the query evaluation performances.
Relational database systems resort to dynamic programming or randomized search
to select the best plan [NW09]. Such techniques need to estimate the cost of a query
plan. The cost of a query plan is directly related to the number of solutions generated
by each operator, i.e., the selectivity of the operator.

A standard technique used in off-the-shelf relational databases involves attribute-
level histograms. Such histograms represent the distribution of the values for each
column of each table. However, the histograms ignore the correlation of columns.
Therefore, the estimates are often wrong for the single triple table of our triple stores.

RDF-3X uses the counts stored in the aggregated indexes as better histograms.
With these indexes, it can accurately predict the number of triples that a triple pattern
will generate. The information is then used to infer estimates for the join operators.

Virtuoso relies on query-time sampling. For triple patterns with constant predi-
cate and object, Virtuoso loads the first page of the bitmap in the POGS index. Based
on this page, it extrapolates the number of results that the triple pattern would gen-
erate.

Many other optimization techniques exist for processing SPARQL queries, in-
cluding algebraic rewriting (e.g., pushing filters down the operator tree) [SML10]
and sideways information passing letting join operators communicate with each
other [NW09].
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Chapter 4

Constraint Programming

Constraint Programming (CP) is a programming paradigm designed to solve combi-
natorial NP-hard problems. CP has been shown to be efficient for graph matching
problem [CDS09], which are closely related to SPARQL queries [Bag05].

The first section gives a general overview of CP. The following sections focus
on essential aspects of the CP framework: variables (section 4.2), constraints (sec-
tion 4.3), and search (section 4.4). Finally, section 4.5 presents the Comet solver,
and section 4.6 gives a short overview of existing CP approaches for solving graph
matching problems.

4.1 Overview of Constraint Programming

Constraint Programming is basically a technique to solve Constraint Satisfaction
Problems (CSPs). A CSP is a declarative way to state a problem where one has to
assign values to variables, such that a set of constraints are satisfied. The domain of
each variable restricts the set of values that can be assigned to that variable. In this
chapter, we consider finite domains and, without loss of generality, we assume that
domains are sets of integer values.

Definition 4.1. A Constraint Satisfaction Problem (CSP) is a triple (X ,D,C ) where

• X is a set of variables,

• D : X → PN is a function mapping each variable to a domain, i.e., the finite
set of integer values that can be assigned to the variable,

• C is a set of constraints on the variables of X .

Definition 4.2. A constraint c over a set of variables vars(c ) = { x1, . . . ,xk } is a
mathematical relation c ⊂ N

k . An assignment μ : vars(c ) → N satisfies the constraint
c if (μ (x1), . . . ,μ (xk )) ∈ c .
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Definition 4.3. A solution of a CSP (X ,D,C ) is an assignment μ : X → N of all the
variables in X , such that ∀x ∈ X ,μ (x ) ∈ D (x ) and all the constraints inC are satisfied
by μ.

Example 4.1. A Latin square is an n × n grid that contains numbers from 1 to n such
that each number appears only once on any row and any column. Figure 4.1 shows
an example. Finding a Latin square amounts to solving the CSP (X ,D,C ) such that

• X = { xi j | 1 � i � n,1 � j � n },
• D (x ) = { 1, . . . ,n } ∀x ∈ X ,

• C = { xi j � xik | 1 � i � n,1 � j � n, j < k � n }
∪ { xi j � xkj | 1 � i � n,1 � j � n,i < k � n }.

Every cell of the grid corresponds to a variable. Each cell can take any value between
1 and n. The constraints ensure that two cells on the same row or on the same
column are assigned different values. Alternatively, we could also have written the
constraints

C = { allDiff (xi1, . . . ,xin ) | 1 � i � n } ∪ { allDiff (x1j , . . . ,xnj ) | 1 � j � n } ,
where the allDiff constraint is satisfied when all its arguments are assigned different
values.

Solving general CSPs is an NP-complete problem. Constraint Programming (CP)
is a complete technique to solve CSPs. Complete means that CP guarantees to find
all solutions given enough time.

CP uses a divide-and-conquer strategy. A CSP A is split into smaller CSPs Bi ,
such that the solution set of A is equal to the union of the solution sets of all Bi . A
CSP is smaller if the domain of at least one variable is smaller and the domains of the
other variables are smaller or equal.

By recursively splitting the CSPs into smaller CSPs, we obtain a tree. The child
nodes are either inconsistent CSPs, or CSPs where the domain of each variable is a

2 1 4 3

1 2 3 4

3 4 1 2

4 3 2 1

Figure 4.1: A Latin square is a simplified Sudoku. Numbers from 1 to n have to be

placed in an n × n grid such that all numbers are different in any row or any column.
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singleton. Such a CSP has one trivial solution if the assignment satisfies all the con-
straints, or no solution otherwise. Solving the original CSP, i.e., finding all solutions,
amounts to traversing the whole tree.

To speed up the search, CP exploits the constraints to prune parts of the search
tree. At every node, propagators try to detect inconsistent values from the domains
of the variables and remove them. A value is inconsistent if it is part of no solution of
the CSP. Thus, after a propagation step, the resulting CSP is equivalent, i.e., it has the
same solution set, but the domains are smaller than or equal to the original domains.
Propagators are called until a fix-point is reached. If a domain becomes empty as a
result of propagation, the CSP has no solution and the corresponding node can be
pruned.

Detecting inconsistent values may be a hard problem. A trade-off has to be found
between the time spent propagating and the time spent searching.

The following sections present the main aspects of a CP solver, i.e., how variables
and their domains are represented, how propagators remove inconsistent values, and
how the search tree is constructed and traversed.

4.2 Variables and Domains

Variables in CSPs can be of many types: integers, floating-point numbers, sets, graphs,
etc. Each variable has an associated domain, i.e., a representation of the set of values
that can be assigned to the variable. The representation may be exact or approximate,
e.g., by remembering only a lower and upper bound.

Typical implementations of domains include [SC06]:

• Bitsets: the presence of each value in the domain is represented by a bit.

• Bounds: only the lowest and highest values of the domain are remembered.
Values in between the bounds are assumed to be present in the domain. With
the bounds implementation, we cannot represent holes in the domain.

• Range sequences: an extension of the bounds implementation, allowing holes
in the domain. Consecutive values are grouped in a range. The domain is
represented by a set of such ranges.

Each node of the search tree is a CSP and should have its own domains. Copying
the whole domains for each node is the easiest way to achieve this. However, the
search only looks at one node at a time. Thus, only one copy of the domains could
be present in memory, along with enough information to restore the domains to any
previous node. Such technique is called trailing.

A generic trail contains all operations that were performed on the domain, e.g.,
removing a value. When restoring the domain, the inverse operations are applied.
Some domain implementations allow for more efficient specialized trails. For example,
the trail of a bitset consists of copies of the bytes that have changed. Hence, multiple
operations can be compressed.
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4.3 Propagators

The constraints define which assignments of values to the variables are solutions of
the CSP. A constraint is a relation between two or more variables. An assignment is a
solution of the CSP if it satisfies all the constraints (see definitions 4.2 and 4.3). Some
values, called inconsistent values, can never be part of a solution and can be removed
early on. For example, if x is assigned to 3 and we have the constraint x � y, we can
remove the value 3 from the domain of y.

Definition 4.4. A couple (x ,v ) is inconsistent with respect to constraint c if the CSP
(X ,D, { c }) has no solution μ such that μ (x ) = v .

The process of removing inconsistent values from the domains of the variables
is called propagation. At every node of the search tree, propagation is performed for
each constraint individually and is iterated until no values are removed anymore and
a fix-point has been reached.

A propagator is an algorithm that performs the propagation for a constraint. The
rest of this section presents the properties of propagators and how the propagators
are called.

4.3.1 Properties of Propagators

Finding all inconsistent values for a constraint can be an NP-hard problem in itself.
Propagators can achieve different levels of consistency, depending on how much
values they prune [Bes06]. A consistency level is a property of the domains after the
propagator has run.

• Checking: no pruning. The propagator only checks if the constraint is satisfied
once all variables are assigned.

∀xi ∈ vars(c ),D (xi ) = {vi } ⇒ c (v1, . . . ,vk )

• Forward checking: as soon as all variables of the constraint but one are assigned,
remove inconsistent values from the domain of the unbound variable.

∃x ′ ∈ vars(c ),∀xi ∈ vars(c ) \ { x ′ } ,D (xi ) = {vi }
⇒ ∀v ′ ∈ D (x ′),c (v1, . . . ,v ′, . . . ,vk )

• Bound consistency: considering a bound approximation of the domains of the
involved variables, ensure the lower and upper bounds are consistent.

∀x ′ ∈ vars(c ),∀v ′ ∈ {min(D (x ′)),max(D (x ′)) } ,
∀xi ∈ vars(c ) \ { x ′ } ,∃vi ,min(D (xi )) � vi � max(D (xi )),

c (v1, . . . ,v
′, . . . ,vk )
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• Domain consistency: ensure every value of the domains of the involved vari-
ables appear in at least one solution of the constraint.

∀x ′ ∈ vars(c ),∀v ′ ∈ D (x ′),
∀xi ∈ vars(c ) \ { x ′ } ,∃vi ∈ D (xi ),

c (v1, . . . ,v
′, . . . ,vk )

Note that if all constraints of a CSP are domain consistent, it does not mean that there
exists a solution for the CSP. Domain consistent propagators always perform at least
the same amount of pruning than the other consistency levels (see fig. 4.2). Forward
checking and bound consistency are not comparable (see fig. 4.3).

Two desired properties of propagators are monotonicity and idempotency. Prop-
agators are monotonic if the order in which they are called does not affect the per-
formed pruning. A propagator is idempotent if it will not perform any more pruning
if called immediately after itself.

Like mathematical relations, constraints may be described in intension or in exten-

sion. When described in intension, a specialized propagator is needed to implement
the semantics of the constraint. When described in extension, a generic propagator
can be used [CY10; Lec11]. Such constraints are called table constraints, as the whole
table of valid tuples is known in advance.

At some point during the search, a constraint may become entailed. An entailed
constraint is satisfied by any combination of values from the domains of the variables.
For example, if all variables on which the constraint is stated, are assigned, and the
constraint is satisfied, then the constraint is entailed.

4.3.2 How Propagators are Called

The general propagation algorithm is responsible for calling all propagators until a
fix-point is reached. The general propagation algorithm can be constraint-based or
value-based.

Constraint-based propagation maintains a queue of propagators, while value-
based propagation maintains a queue of propagator-variable-value tuples. In order
to prioritize some propagators, multiple queues can be used. As an optimization,
entailed constraints may be ignored.

Constraint-based propagation

The constraint-based propagation algorithm maintains a queue of propagators to be
called. On initialization, propagators register themselves to events of variables, e.g.,
when a value is assigned to the variable. When an event occurs, the propagator is
added to the queue. Propagators are removed from the queue and called until the
queue is empty.
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(b) Domain consistency

Figure 4.2: Domain consistent propagators can perform more pruning than forward

checking propagators. For the domain consistency example, the global allDiff con-

straint is used on whole rows and whole columns.
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(b) Bound consistency

Figure 4.3: When the upper left corner is assigned to the value 2, the forward-

checking propagator removes that value from the domains of the variables on the

same row and on the same column. As the lower bound (1) and upper bound (4) are
still consistent, the bound consistent propagator cannot perform any pruning.
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The events which the propagators can register to, vary by variable type and
domain implementation. For integer variables, standard events are

• bind: when a value has been assigned to the variable, i.e., the domain has
become a singleton;

• remove: when a value has been removed from the domain;

• updateBound: when the lower or upper bound has been changed.

While solving a CSP, a propagator can be in one of the following three states:

• propagating, when the propagator is currently being executed (only during the
propagation phase),

• queued, when the propagator is in the propagation queue, and

• unqueued, otherwise.

When an event occurs to which a propagator is registered, the propagator will be
added to the queue if it is currently unqueued. If the propagator is currently propa-
gating, it will also be added to the queue if it is not idempotent. If the propagator is
idempotent, calling it again would perform no more pruning and would only waste
time. At last, if the propagator is already queued, nothing is done.

In the worst case, all propagators are queued. Considering only one propagator
per constraint, the size of the queue is thus O (m), withm the number of constraints.

Value-based propagation

A value-based propagation algorithmmaintains a queue of propagator-variable-value
tuples. On initialization, propagators register themselves to variables. When a value
v is removed from a variable x , the tuple (p,x ,v ) is added to the queue for each
registered propagator p.

The general propagation algorithm removes a tuple (p,x ,v ) from the queue and
calls the propagator p with arguments x and v . Thus, the propagator only handles
the removal of value v from D (x ). Such operation can sometimes be done efficiently
without traversing the whole domains of the variables. For example, the propagator
of constraint x = y removes the value v from the domain of the other variable in
constant time. Tuples are removed and propagators are called until the queue is
empty.

Tuples are added to the queue unless they are already queued. Because propaga-
tors only handle the removal of one value, there is no concept of idempotency unlike
for constraint-based propagation.

The queue in value-based propagation ismuch bigger than the queue in constraint-
based propagation. The space complexity is O (mnd ), with m the number of con-
straints, n the number of variables, and d the size of the largest domain.



50 CHAPTER 4. CONSTRAINT PROGRAMMING

4.4 Search

The propagation phase, explained in the previous section, allows to reduce the do-
mains of a CSP. Once the fix-point is reached, one has to search for solutions in the
remaining solution space. In the search phase, CP divides the solution space by split-
ting the CSP into smaller CSPs. Propagation is applied on each smaller CSP, which
are then split again. By alternating between propagation and search phases, we build
a tree of CSPs. The leaf nodes are either solutions, i.e., assignments satisfying all
constraints, or a failure. A failure occurs when a propagator detects that a constraint
cannot be satisfied.

The search tree can be explored using any standard tree enumeration algorithm,
such as breath-first search (BFS) or depth-first search (DFS). To avoid high space
complexity, DFS is most often used. Because we have a finite number of variables,
the depth of the search tree is also finite. Thus, the DFS algorithm cannot be stuck in
an infinite branch. The search is complete.

Along one branch of the depth-first traversal, propagation and search decision
operations are applied successively on the domains resulting from the previous op-
eration. Thus, the same domain structures can be used for each node along the
branch. When the search backtracks, the structures can be restored using the trailing
information.

How the search tree is constructed, is defined by a search heuristic. At each node,
the search heuristic selects a variable and splits its domain to generate the child nodes.
The search heuristic is thus a combination of a variable selection heuristic and a value
selection heuristic. Note that the search tree is never constructed entirely in memory,
but rather on-demand while traversing the tree.

Variable selection heuristics follow the first-fail principle. Variables leading to
failures quicker should be selected first. The earlier a failure appears in the search tree,
the larger the pruned search space and the more efficient the search will be. Some
standard variable selection heuristics following the first-fail principle are [Lec09]:

• dom: select the variable with the smallest domain;

• deg: select the variable with the highest degree, i.e., the variable involved in
the most constraints;

• ddeg: select the variable with the highest dynamic degree, i.e., the variable
involved in the most constraints that are not entailed;

• dom/deg: select the variable with the smallest domain size over degree ratio;

• dom/ddeg: select the variable with the smallest domain size over dynamic
degree ratio.

All the above heuristics, except deg, are dynamic so that the ordering of the variables
selected by the heuristic depends on the state of the search. The deg heuristic is static
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as the degree of a variable does not change during the search, except when adding
new constraints during the search.

Search heuristics can also be adaptive. An adaptive heuristic learns which vari-
ables are difficult during the search. It then changes its behavior to select those
variables as early as possible. For example, the wdeg heuristic maintains a weight for
each constraint. When a constraint causes the search to fail, its weight is increased.
The weight of a variable is defined as the sum of the weights of the constraints in
which it is involved. Over time, difficult variables will receive a larger weight.

The value selection heuristic splits the domain of the chosen variable into smaller
domains. When every resulting domain is a singleton, the heuristic is called a labeling
heuristic. Labeling heuristics are common for finite domains. An alternative is to
split the domain in two even parts.

Value selection heuristics are less important than variable selection heuristics
when searching for all solutions. Indeed, the order in which the branches will be
explored is not important as they will all be explored. This does not hold however
when using an adaptive variable selection heuristic. In such cases, or when searching
for one solution, the value selection heuristic should select the value that has the
greatest probability of participating in a solution.

Finally, one can add constraints during the search. A useful application is the
branch-and-bound technique, where we look for the solution minimizing some ob-
jective function f . As soon as we have found a solution μ, we can post an additional
constraint f (X ) < f (μ ) in each unexplored node. Next solutions are then guaranteed
to have a smaller f -value. The additional constraint can be exploited during the
propagation phase to further prune the search space.

4.5 The Comet System

Comet [Dyn10] is a constraint-based optimization system supporting constraint pro-
gramming, local search, linear programming and mixed integer programming. Opti-
mization problems are encoded in the systemwith the Comet language. The language
is object-oriented and resembles C++ and Java. One notable feature is the ability to
write non-deterministic programs to describe the search tree. Because of this, we will
use Comet to describe our CP model in chapter 5. This section will briefly present
the syntax and core features of Comet with a focus on CP.

A Comet CP program consists of two parts. The first part allows the user to state
the problem by means of constraints in a declarative way. The second part is a non-
deterministic program that constructs the search tree. Listing 4.1 shows an example
solving the Latin square problem of example 4.1. The solve<cp>{. . .} using {. . .}

construct partitions the program in the two parts. The solve keyword searches for
the first solution. To explore the whole search tree for all solutions, one can use the
solveall keyword instead.

Constraints are posted with the postmethod. As shown in listing 4.1, constraints
may be posted in the declarative part at the root node, or during the search. Con-
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1 Solver<CP> cp();

2 int N = 4;

3 var<CP>{int} X[1..N,1..N](cp, 1..N);

4 solve<cp> {

5 forall(i in 1..N, j in 1..N, k in (j+1)..N) {

6 cp.post(X[i,j] != X[i,k]);

7 cp.post(X[i,j] != X[k,j]);

8 }

9 } using {

10 forall(i in 1..N, j in 1..N) {

11 tryall<cp>(v in 1..N : X[i,j].memberOf(v))

12 cp.post(X[i,j] == v);

13 }

14 cout << X << endl;

15 }

Listing 4.1: A Comet CP program consists of a declarative part where the user posts

the constraints (lines 5–8), and a non-deterministic program defining the search

tree (lines 10–13). This example solves the Latin square problem formulated in

example 4.1.

straints that are posted during the search are removed when backtracking to an
ancestor node.

During the search, a binary choice point is introduced with the following struc-
ture.

try<cp> {

// left branch
}|{

// right branch
}

In a depth-first search, Comet will first execute the left branch and continue the
execution after the try block. When backtracking, CP variables and local variables
are restored to their state before the try block. The right branch is then executed,
followed by the code after the try block.

A backtrack occurs when a domain becomes empty due to constraint propaga-
tion, i.e., the branch has failed. One can also force a branch to fail by calling the
cp.fail() method. When using the solveall structure, the search also backtracks
when reaching the end of the using block in order to search for other solutions. The
whole search can be interrupted with the cp.exit() method.

When backtracking, both CP variables (e.g., X) and local variables (e.g., i and
j) are restored. However, referenced objects are not restored. Hence, one can use
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objects to transfer information, such as the number of solutions found so far, between
branches. To this end, primitive types (e.g., int and bool) also exist in object form
(e.g., Integer and Boolean).

The tryall structure of lines 11–12 in listing 4.1 is similar to the try structure, but
introduces a variable number of child nodes. The algorithm described in lines 10–13
of the example is very basic and could be abbreviated by label(X). The built-in label

function asks Comet to label all the variables, i.e., to try all possible assignments for
those variables.

The Solution class creates a snapshot of the current solution. That solution can
then be restored with the restore method.

4.6 Graph Matching with CP

SPARQL queries may be viewed as special kinds of graph matching problems. Graph
matching problems consist in finding a matching function between the nodes of two
graphs. Let us consider two graphs G1 = (N1,E1) and G2 = (N2,E2), with N1 and
N2 the sets of nodes, and E1 ⊆ N 2

1 and E2 ⊆ N 2
2 the sets of edges. A matching is

a function μ : N1 → N2 satisfying some conditions. Common matching problems
include:

• graph homomorphism, when μ is a total function preserving the edges of G1,
i.e., ∀(u,v ) ∈ E1, (μ (u),μ (v )) ∈ E2;

• subgraph isomorphism, when μ is also injective so that each node of G1 is
matched to at most one node of G2, i.e., ∀(u,v ) ∈ N 2

1 ,u � v ⇒ μ (u) � μ (v );

• graph isomorphism, when μ is a total bijective function and both μ and μ−1 are
homomorphisms.

The graph homomorphism and subgraph isomorphism problems are known to be
NP-complete. Is is unknown if the graph isomorphism problem is NP-complete or in
P.

Graphmatching problems can easily be modeled by means of CSPs [CDS09]. Each
nodeu ofG1 is represented by a variable xu . The domain of every variable is the set of
nodes ofG2. The constraints encode the specific matching problem. For example, the
following CSP models the graph homomorphism problem, which is closely related
to the evaluation of basic graph patterns in SPARQL queries.

• X = { xu | u ∈ N1 },
• D (xu ) = N2 ∀xu ∈ X ,

• C = { (xu ,xv ) ∈ E2 | (u,v ) ∈ E1 }.
Larrosa and Valiente [LV02] have proposed a domain-consistent propagator for

the edge preservation constraint. For the subgraph isomorphism problem, more
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pruning can be obtained by exploiting the fact that a different value must be assigned
to every variable [ZDS10; Sol10]. However, the propagators maintain auxiliary data
structures that need to be trailed. As will be explained in chapter 6, such structures
are impracticable for solving SPARQL queries on large graphs.
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Chapter 5

CP Modeling of SPARQLQueries

This chapter covers the reformulation of SPARQL queries by means of Constraint
Satisfaction Problems (CSPs). The reformulation gives an alternative denotational
semantics of SPARQL. It is then turned into an operational semantics to solve SPARQL
queries with CP solvers.

5.1 Denotational CSP Formulation

This section gives a translation of SPARQL semantics for graph pattern evaluation
by means of CSPs. By doing so, we transform a declarative semantics (SPARQL) into
another declarative semantics (CSP). Hence, we use the term reformulation instead
of model.

To make the section easier to read, we build up the reformulation starting from
the straightforward case of basic graph patterns (section 5.1.1). Then, we add simple
compositions of basic graph patterns (section 5.1.2). Finally, section 5.1.3 shows the
complete semantics for the general case, and proves the equivalence with the SPARQL
semantics described in chapter 2.

5.1.1 Basic Graph Patterns and Filters

The translation of a basic graph pattern to a CSP is straightforward. Each variable of
the BGP is mapped to a CSP variable. Each triple pattern is a constraint.

Definition 5.1. Let P be a basic graph pattern, i.e., a set of triple patterns, and G an
RDF graph. The CSP (X ,D,C ) associated with (P ,G ) is defined as follows.

• X = vars(P ),

• ∀x ∈ X ,D (x ) = TG , where TG is the set of all RDF terms appearing in G,

• C =
{
Member

(
(s,p,o),G

) ��� (s,p,o) ∈ P
}
, where Member(x ,S ) is the set mem-

bership constraint which is satisfied if x ∈ S .



58 CHAPTER 5. CP MODELING OF SPARQL QUERIES

Theorem 5.1. Let P be a basic graph pattern, and G an RDF graph. The set �P�G is

the set of solutions of the CSP associated with (P ,G ).

Proof. According to definition 2.13, �P�G � { μ | dom(μ ) = vars(P ) ∧ μ[P] ⊆ G }. Let
μ be a solution mapping such that dom(μ ) = vars(P ) (but not necessarily μ ∈ �P�G ).
Let fμ be an extension of μ such that

∀x ∈ dom(μ ) ∪ T, fμ (x ) =
⎧⎪⎨⎪⎩
μ (x ) if x ∈ dom(μ )

x if x ∈ T.
We can rewrite the second condition of the definition.

μ[P] ⊆ G ⇔ ∀(s,p,o) ∈ μ[P], (s,p,o) ∈ G
⇔ ∀(s,p,o) ∈ P , ( fμ (s ), fμ (p), fμ (o)) ∈ G
⇔ ∀(s,p,o) ∈ P ,Member

(
(s,p,o),G

)
is satisfied by solution μ.

By definition, variables appearing in a Member constraint cannot be assigned a value
that does not occur in G. Thus, the domains of the variables can be restricted to TG .
Hence, the set �P�G is equivalent to the set of solutions of the CSP associated with
(P ,G ). �

In the semantics of definition 2.13, the expression in a constrained graph pattern
is checked for every solution of the sub-pattern in a post-processing step. When the
sub-pattern is a basic graph pattern, such post-processing is equivalent to adding the
expression to the set of constraints of the associated CSP. By doing so, the expression
can be used to reduce the search space of the CSP.

Definition 5.2. Let P be a basic graph pattern, E an expression, andG an RDF graph.
The CSP (X ,D,C ) associated with (P filter E,G ) is defined as follows.

• X = vars(P ),

• ∀x ∈ X ,D (x ) = TG , where TG is the set of all RDF terms appearing in G,

• C =
{
Member

(
(s,p,o),G

) ��� (s,p,o) ∈ P
}
∪ { IsTrue(E) }, where Member is the

set membership constraint, and IsTrue is a constraint ensuring the effective
Boolean value of an expression is true.

Theorem 5.2. Let P be a basic graph pattern, E an expression and G an RDF graph.

The set �P filter E�G is the set of solutions of the CSP associated with (P filter E,G ).

Proof. Trivial from definition 2.13 and theorem 5.1. �

5.1.2 Simple Compound Patterns

Contrarily to classical CSPs, a solution of a compound graph pattern does not have to
cover all the variables appearing in the pattern. For example, if a variable x appears
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1 2 3 4 5

μA μB μC

P1 P2

(a) Without replacement semantics

1

A

μA

B

μB

3

C

μC

2

P1

P2

(b) With replacement semantics

Figure 5.1: Evaluating a compound pattern can be done by solving smaller CSPs for

every solution of the first sub-pattern. Triangles represent the search trees of the

CSP associated with the basic graph patterns.

only in an optional part that is not matched in a solution μ, then x � dom(μ ). Such
variables are said to be unbound. Hence, compound patterns cannot be directly
translated to CSPs. This section explains how to handle such patterns efficiently in
the case where the sub-patterns are basic graph patterns. The next section will show
the full reformulation for more complex patterns.

To solve compound graph patterns, we could solve all the basic graph patterns
separately with CSPs. Then, we can merge the solution sets together following
definition 2.13, as illustrated in fig. 5.1a. However, such procedure is inefficient as it
keeps all the solution sets in memory, and merging two sets can be costly if the sets
are not ordered.

A better way to handle a compound pattern with two sub-patterns P1 and P2 is to
solve the sub-pattern P1 first. For every solution μ1, we solve the sub-pattern μ1[P2],
obtained by replacing the variables of μ1 in P2 by their values (see fig. 5.1b). The CSPs
for μ1[P2] will be smaller and thus usually more efficient to solve.

Disjunctions are introduced by the union operator. The solution set of the union
of two patterns is the union of the solution sets of both patterns. Basically, the
solutions of the two patterns are computed separately.

�P1 union P2�G = �P1�G ∪ �P2�G
P1

1

μA

2

μB

P2
3

μC

The figure on the right depicts an example. A triangle represents the search tree of
the CSP associated to a basic graph pattern. Circles at the bottom of a triangle are
the solutions of the CSP. Circles 1 and 2 represent �P1�G . Circle 3 is the only element
in �P2�G .

Two patterns can be concatenated with the and operator. The solution set of
a concatenation is the cartesian product of the solution sets of both patterns. Such
cartesian product is obtained by merging every pair of solutions assigning the same
values to the common variables. Note that the operator is commutative, i.e., P1 andP2
is equivalent to P2 and P1. The set of solutions is defined as follows.
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�P1 and P2�G =

{ μ1 ∪ μ2 | μ1 ∈ �P1�G ,μ2 ∈
�
μ1[P2]

�
G } .

1

4

μA

5

μB

3

6

μC

2

P1

P2

In the example, circles 1, 2 and 3 represent �P1�G . Solution 1 is extended into the
solutions 4 and 5 in the search tree of

�
μ1 (P2)

�
G . Solutions 4, 5 and 6 are the solutions

of the concatenation.

As P1 and P2 are both basic graph patterns, we can compute the concatenation
more efficiently by merging both sets of triple patterns. Then, the resulting basic
graph pattern can be solved as shown in section 5.1.1. However, such method cannot
be extended to the case where P1 or P2 are themselved compound patterns. Hence,
we have provided the above definition.

The difference of two patterns P1 and P2, introduced by the diff operator, returns
the solutions of P1 that cannot be extended into a solution of P2, i.e., each solution
μ such that μ[P2] is inconsistent. Such inconsistency check makes the search dif-
ficult. Indeed, because checking the consistency of a CSP is NP-hard, checking its
inconsistency is coNP-hard.

�P1 diff P2�G = { μ ∈ �P1�G |
�
μ (P2)

�
G = ∅ } 1

4 5

3

6

2
μA

P1

P2

Only circle 2 is a solution of the diff pattern because the underlying CSP is inconsis-
tent.

The opt operator is a combination of the and and diff operators. Intuitively, it
solves its left-hand side subpattern P1 and tries to solve its right-hand side subpattern
P2. If a solution of P1 cannot be extended into a solution of P1 and P2, then that
solution of P1 becomes a solution of the pattern too.

�P1 opt P2�G = �P1 and P2�G ∪ �P1 diff P2�G 1

4

μA

5

μB

3

6

μD

2
μC

P1

P2

Compared to the example for the concatenation operator, circle 2 in the figure be-
comes a solution of the compound pattern.

5.1.3 Complete CSP Formulation

The reformulation described in section 5.1.2 can be directly extended to the general
case, where compound patterns may be composed of compound patterns. However,
care must be taken with variables that appear in different basic graph patterns. The
SPARQL semantics described in section 2.3.2 considers each basic graph pattern
separately, and merges the results afterwards. Thus, variables appearing in different
basic graph patterns are completely independent until the result sets are joined.
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The replacement semantics introduced in section 5.1.2 propagates partial assign-
ments to basic graph patterns before those are evaluated. Hence, variables appearing
in different basic graph patterns are not independent anymore. This is not a problem
if the solutions have to be compatible anyway, e.g., in an and pattern. However, in
patterns of the form P1 diff P2, a variable x of P2 may only be replaced by a value v
if x is guaranteed to be part of every solution of P1. If this is not the case, a solution
μ1 of P1 that does not assign x might be compatible with a solution μ2 of P2, where
μ2 (x ) � v . But that solution does not appear in the evaluation of the substituted P2.
Hence, μ1 can wrongly become a solution of the pattern. The same condition on the
variables of P2 holds for patterns of the form P1 opt P2. Constrained patterns of the
form P ′ filter E have a similar condition on the variables of E.

Example 5.1. Let us consider the RDF graph { (:s,:p,:a), (:t,:p,:b) } and three BGPs
P1 ≡ (x ,:p,:a), P2 ≡ (y,:p,:a), and P3 ≡ (x ,:p,:b). We want to evaluate P ≡ P1 and
(P2 diff P3). The sub-pattern P3 will yield solution { (x ,:t) }, which is compatible
with any solution of P2 as P2 and P3 do not share any variables. Hence, the evaluation
of P2 diff P3 is the empty set. The whole pattern P has no solution. Now, if we solve
P1 first and replace every occurrence of x by :s in P2 and P3, then P3 has no solutions.
The evaluation of P2 diff P3 returns a solution { (y,:s) }. The whole pattern then has
a solution { (x ,:s), (y,:s) }, which is wrong.

To precisely define which variables may be substituted, we introduce the notion
of unsafe variables. Intuitively, an unsafe variable is a variable that must not be
substituted in order to keep the SPARQL semantics. In example 5.1, variable x is
an unsafe variable. The definition of unsafe variables uses another notion, certain
variables. A certain variable of a pattern is a variable that is always assigned in any
solution of the pattern. Note that the notions of unsafe and certain variables are
orthogonal. Variable x in example 5.1 is both a certain and an unsafe variable.

Definition 5.3. Let P be a graph pattern, the set of certain variables cvars(P ) is
recursively defined as follows.

1. If P is a basic graph pattern, cvars(P ) � vars(P ).
2. If P ≡ (P1 and P2), cvars(P ) � cvars(P1) ∪ cvars(P2).
3. If P ≡ (P1 union P2), cvars(P ) � cvars(P1) ∩ cvars(P2).
4. If P ≡ (P1 diff P2) or P ≡ (P1 opt P2), cvars(P ) � cvars(P1).
5. If P ≡ (P ′ filter E), cvars(P ) � cvars(P ′).

Corollary. Given a graph pattern P , an RDF graphG and a variable x ∈ cvars(P ), we
have ∀μ ∈ �P�G ,x ∈ dom(μ ).

Definition 5.4. Let P be a graph pattern, the set of unsafe variables unsafe(P ) is
recursively defined as follows.

1. If P is a basic graph pattern, unsafe(P ) � ∅.
2. If P ≡ (P1 and P2) or P ≡ (P1 union P2), unsafe(P ) � unsafe(P1) ∪ unsafe(P2).
3. If P ≡ (P1 diff P2) or P ≡ (P1 opt P2),

unsafe(P ) � unsafe(P1) ∪ unsafe(P2) ∪ (vars(P2) \ cvars(P1)).
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4. If P ≡ (P ′ filter E), unsafe(P ) � unsafe(P ′) ∪ (vars(E) \ cvars(P ′)).
The cornerstone of the CSP declarative semantics is lemma 5.5. Basically, the

lemma states that the replacement semantics is correct provided we do not substitute
unsafe variables. Given a solution mapping μ∗, evaluating a pattern P and keeping
only solutions compatible with μ∗, is the same as evaluating P where all variables of
μ∗ have been replaced by their values.

Before stating lemma 5.5, we first show the distributivity property on the compat-
ibility relation (lemma 5.3) which is needed for the proof. Then, we show a relaxed
version (lemma 5.4) when substituting only one variable. Finally, we show the full
lemma 5.5.

Lemma 5.3 (Distribution of ∼ over ∪). Given three solution mappings μ1, μ2 and μ3,

(μ1 ∼ μ2) ∧ ((μ1 ∪ μ2) ∼ μ3) ⇔ (μ1 ∼ μ2) ∧ (μ1 ∼ μ3) ∧ (μ2 ∼ μ3).

Proof. We first prove (μ1 ∼ μ2)∧ ((μ1∪μ2) ∼ μ3) ⇒ (μ1 ∼ μ2)∧ (μ1 ∼ μ3)∧ (μ2 ∼ μ3).
By definition, μ1 ∼ μ3 ⇔ ∀x ∈ dom(μ1) ∩ dom(μ3),μ1 (x ) = μ3 (x ). As μ1 ∼ μ2, we
have (μ1 ∪ μ2) (x ) = μ1 (x ). As (μ1 ∪ μ2) ∼ μ3, we have (μ1 ∪ μ2) (x ) = μ3 (x ), and thus
μ1 (x ) = μ3 (x ). The same holds for μ2 ∼ μ3.

We now prove (μ1 ∼ μ2) ∧ (μ1 ∼ μ3) ∧ (μ2 ∼ μ3) ⇒ (μ1 ∼ μ2) ∧ ((μ1 ∪ μ2) ∼ μ3).
As μ1 ∼ μ2, the construction μ1 ∪ μ2 is valid. By definition, (μ1 ∪ μ2) ∼ μ3 ⇔ ∀x ∈
dom(μ1 ∪ μ2) ∩ dom(μ3), (μ1 ∪ μ2) (x ) = μ3 (x ). If x ∈ dom(μ1), the condition is true
because μ1 ∼ μ3. If x ∈ dom(μ2), the condition is true because μ2 ∼ μ3. �

Lemma 5.4. Let P be a graph pattern,G an RDF graph, and μ∗ = { (x∗,v∗) } a solution
mapping such that x∗ � unsafe(P ),

{ μ∗ ∪ μ | μ ∈ �P�G ∧ μ∗ ∼ μ } = { μ∗ ∪ μ ′ | μ ′ ∈ �μ∗[P]�G } .

Proof. There are two cases, depending on μ∗. First, when μ∗ does not share any
variable with P , i.e., x∗ � vars(P ), then μ∗[P] = P and μ∗ is compatible with any
solution of �P�G . Thus, lemma 5.4 holds. Second, when x∗ ∈ vars(P ), we build the
proof by induction on the number of composition operators in P , i.e., the number of
and, union, diff, opt, and filter operators appearing in P .

Base case. Let us show that lemma 5.4 holds when P has no composition operator, i.e.,
P is a basic graph pattern.1

LHS = { μ∗ ∪ μ | μ ∈ �P�G ∧ μ∗ ∼ μ }
= { μ∗ ∪ μ | dom(μ ) = vars(P ) ∧ μ[P] ⊆ G ∧ μ∗ ∼ μ } (definition 2.13)

= { μ∗ ∪ μ | dom(μ ) = vars(P ) ∧ μ[P] ⊆ G ∧ (x∗ � dom(μ ) ∨ μ (x∗) = v∗) }
(definition 2.8)

= { μ∗ ∪ μ | dom(μ ) = vars(P ) ∧ μ[P] ⊆ G ∧ μ (x∗) = v∗ } (x∗ ∈ vars(P ) ⇒ x∗ ∈ dom(μ ))

1Throughout the proofs in this chapter, we will use LHS (resp. RHS) to refer to the left-hand side (resp.
right-hand side) of the theorem or lemma.



CHAPTER 5. CP MODELING OF SPARQL QUERIES 63

= { μ∗ ∪ μ ′ | dom(μ ′) = vars(P ) \ {x∗} ∧ μ ′[μ∗[P]] ⊆ G } (let μ ′ = μ \ μ∗ ; μ = μ ′ ∪ μ∗)

= { μ∗ ∪ μ ′ | dom(μ ′) = vars(μ∗[P]) ∧ μ ′[μ∗[P]] ⊆ G }
= { μ∗ ∪ μ ′ | μ ′ ∈ �μ∗[P]�G } = RHS (definition 2.13)

Induction hypothesis. Let k � 0. Let us assume that lemma 5.4 holds when P has at
most k composition operators.

Inductive step. Let us show that lemma 5.4 holds when P has k + 1 composition
operators. We have either P ≡ (P1 • P2) with • ∈ { and,union,diff,opt }, or P ≡
(P1 filter E). In both cases, P1 and P2 have at most k composition operators.

If P ≡ (P1 and P2):

LHS = { μ∗ ∪ μ | μ ∈ �P�G ∧ μ∗ ∼ μ }
=
{
μ∗ ∪ μ ��� μ ∈ { μ1 ∪ μ2 | μ1 ∈ �P1�G ∧ μ2 ∈ �P2�G ∧ μ1 ∼ μ2 } ∧ μ∗ ∼ μ

}
(definition 2.13)

= { μ∗ ∪ μ1 ∪ μ2 | μ1 ∈ �P1�G ∧ μ2 ∈ �P2�G ∧ μ1 ∼ μ2 ∧ μ∗ ∼ (μ1 ∪ μ2) }
= { μ∗ ∪ μ1 ∪ μ2 | μ1 ∈ �P1�G ∧ μ∗ ∼ μ1 ∧ μ2 ∈ �P2�G ∧ μ∗ ∼ μ2 ∧ μ1 ∼ μ2 }

(distribution)

= { μ∗ ∪ μ1 ∪ μ2 | μ1 ∈ �P1�G ∧ μ∗ ∼ μ1 ∧ μ2 ∈ �P2�G ∧ μ∗ ∼ μ2

∧ (μ∗ ∪ μ1) ∼ (μ∗ ∪ μ2) } (inverse distribution)

=
{
μ ′′1 ∪ μ ′′2

��� μ ′′1 ∈ { μ∗ ∪ μ1 | μ1 ∈ �P1�G ∧ μ∗ ∼ μ1 }
∧ μ ′′2 ∈ { μ∗ ∪ μ2 | μ2 ∈ �P2�G ∧ μ∗ ∼ μ2 } ∧ μ ′′1 ∼ μ ′′2 )

}
= { μ ′′1 ∪ μ ′′2 | μ ′′1 ∈ { μ∗ ∪ μ ′1 | μ ′1 ∈

�
μ∗[P1]

�
G }

∧ μ ′′2 ∈ { μ∗ ∪ μ ′2 | μ ′2 ∈
�
μ∗[P2]

�
G } ∧ μ ′′1 ∼ μ ′′2 } (induction hypothesis)

= { μ∗ ∪ μ ′1 ∪ μ ′2 | μ ′1 ∈
�
μ∗[P1]

�
G ∧ μ ′2 ∈

�
μ∗[P2]

�
G ∧ (μ∗ ∪ μ ′1) ∼ (μ∗ ∪ μ ′2) }

= { μ∗ ∪ μ ′1 ∪ μ ′2 | μ ′1 ∈
�
μ∗[P1]

�
G ∧ μ ′2 ∈

�
μ∗[P2]

�
G

∧ μ∗ ∼ μ ′1 ∧ μ∗ ∼ μ ′2 ∧ μ ′1 ∼ μ ′2 } (distribution)

= { μ∗ ∪ μ ′1 ∪ μ ′2 | μ ′1 ∈
�
μ∗[P1]

�
G ∧ μ ′2 ∈

�
μ∗[P2]

�
G ∧ μ ′1 ∼ μ ′2 }

(dom(μ∗ ) ∩ vars(μ∗[P1]) = ∅⇒ dom(μ∗ ) ∩ dom(μ ′1 ) = ∅⇒ μ∗ ∼ μ ′1; same for μ ′2)

=
{
μ∗ ∪ μ ′ ��� μ ′ ∈ { μ ′1 ∪ μ ′2 | μ ′1 ∈

�
μ∗[P1]

�
G ∧ μ ′2 ∈

�
μ∗[P2]

�
G ∧ μ ′1 ∼ μ ′2 }

}

= { μ∗ ∪ μ ′ | μ ′ ∈ �μ∗[P1] and μ∗[P2]
�
G } (definition 2.13)

= { μ∗ ∪ μ ′ | μ ′ ∈ �μ∗[P]�G } = RHS

If P ≡ (P1 union P2):

LHS = { μ∗ ∪ μ | μ ∈ �P�G ∧ μ∗ ∼ μ }
=
{
μ∗ ∪ μ ��� μ ∈ { μ | μ ∈ �P1�G ∨ μ ∈ �P2�G } ∧ μ∗ ∼ μ

}
(definition 2.13)

= { μ∗ ∪ μ | (μ ∈ �P1�G ∨ μ ∈ �P2�G ) ∧ μ∗ ∼ μ }
= { μ∗ ∪ μ | (μ ∈ �P1�G ∧ μ∗ ∼ μ ) ∨ (μ ∈ �P2�G ∧ μ∗ ∼ μ ) } (distribution)
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= { μ∗ ∪ μ | μ ∈ �P1�G ∧ μ∗ ∼ μ } ∪ { μ∗ ∪ μ | μ ∈ �P2�G ∧ μ∗ ∼ μ }
= { μ∗ ∪ μ ′ | μ ′ ∈ �μ∗[P1]�G } ∪ { μ∗ ∪ μ ′ | μ ′ ∈ �μ∗[P2]�G } (induction hypothesis)

= { μ∗ ∪ μ ′ | μ ′ ∈ �μ∗[P1]�G ∨ μ ′ ∈ �μ∗[P2]�G }
= { μ∗ ∪ μ ′ | μ ′ ∈ { μ ′ | μ ′ ∈ �μ∗[P1]�G ∨ μ ′ ∈ �μ∗[P2]�G } }
= { μ∗ ∪ μ ′ | μ ′ ∈ �μ∗[P1] union μ∗[P2]

�
G } (definition 2.13)

= { μ∗ ∪ μ ′ | μ ′ ∈ �μ∗[P]�G } = RHS

If P ≡ (P1 diff P2):

LHS = { μ∗ ∪ μ | μ ∈ �P�G ∧ μ∗ ∼ μ }
=
{
μ∗ ∪ μ ��� μ ∈ { μ1 | μ1 ∈ �P1�G ∧ ¬∃μ2 ∈ �P2�G ,μ1 ∼ μ2 } ∧ μ∗ ∼ μ

}
(definition 2.13)

= { μ∗ ∪ μ1 | μ1 ∈ �P1�G ∧ μ∗ ∼ μ1 ∧ ¬∃μ2 ∈ �P2�G ,μ1 ∼ μ2 }
= { μ∗ ∪ μ1 | μ1 ∈ �P1�G ∧ μ∗ ∼ μ1 ∧ ¬∃μ2 ∈ �P2�G , (μ∗ ∪ μ1) ∼ μ2 }

(x∗ � unsafe(P ); by definition 5.4, either x∗ � vars(P2 ) and μ∗ ∼ μ2, or x
∗ ∈ cvars(P1 ) and μ∗ ⊆ μ1)

=
{
μ ′′1

��� μ ′′1 ∈ { μ∗ ∪ μ1 | μ1 ∈ �P1�G ∧ μ∗ ∼ μ1 } ∧ ¬∃μ2 ∈ �P2�G ,μ ′′1 ∼ μ2
}

=
{
μ ′′1

��� μ ′′1 ∈ { μ∗ ∪ μ ′1 | μ ′1 ∈
�
μ∗[P1]

�
G } ∧ ¬∃μ2 ∈ �P2�G ,μ ′′1 ∼ μ2

}
(induction hypothesis on P1)

= { μ∗ ∪ μ ′1 | μ ′1 ∈
�
μ∗[P1]

�
G ∧ ¬∃μ2 ∈ �P2�G , (μ∗ ∪ μ ′1) ∼ μ2 }

= { μ∗ ∪ μ ′1 | μ ′1 ∈
�
μ∗[P1]

�
G ∧ ¬∃μ2 ∈ �P2�G ,μ∗ ∼ μ2 ∧ μ ′1 ∼ μ2 } (distribution)

= { μ∗ ∪ μ ′1 | μ ′1 ∈
�
μ∗[P1]

�
G ∧ ¬∃μ2 ∈ �P2�G ,μ∗ ∼ μ2 ∧ μ ′1 ∼ (μ∗ ∪ μ2) }

(inverse distribution)

= { μ∗ ∪ μ ′1 | μ ′1 ∈
�
μ∗[P1]

�
G ∧ ¬∃μ∗ ∪ μ2,μ2 ∈ �P2�G ∧ μ∗ ∼ μ2 ∧ μ ′1 ∼ (μ∗ ∪ μ2) }

=
{
μ∗ ∪ μ ′1

��� μ ′1 ∈
�
μ∗[P1]

�
G

∧ ¬∃μ ′′2 ,μ ′′2 ∈ { μ∗ ∪ μ2 | μ2 ∈ �P2�G ∧ μ∗ ∼ μ2 } ∧ μ ′1 ∼ μ ′′2
}

=
{
μ∗ ∪ μ ′1

��� μ ′1 ∈
�
μ∗[P1]

�
G ∧ ¬∃μ ′′2 ,μ ′′2 ∈ { μ∗ ∪ μ ′2 | μ ′2 ∈

�
μ∗[P2]

�
G } ∧ μ ′1 ∼ μ ′′2

}
(induction hypothesis on P2)

= { μ∗ ∪ μ ′1 | μ ′1 ∈
�
μ∗[P1]

�
G ∧ ¬∃μ∗ ∪ μ ′2,μ

′
2 ∈
�
μ∗[P2]

�
G ∧ μ ′1 ∼ (μ∗ ∪ μ ′2) }

= { μ∗ ∪ μ ′1 | μ ′1 ∈
�
μ∗[P1]

�
G ∧ ¬∃μ ′2 ∈

�
μ∗[P2]

�
G ,μ

′
1 ∼ (μ∗ ∪ μ ′2) }

= { μ∗ ∪ μ ′1 | μ ′1 ∈
�
μ∗[P1]

�
G ∧ ¬∃μ ′2 ∈

�
μ∗[P2]

�
G ,μ

′
1 ∼ μ∗ ∧ μ ′1 ∼ μ ′2 ∧ μ∗ ∼ μ ′2 }

(distribution)

= { μ∗ ∪ μ ′1 | μ ′1 ∈
�
μ∗[P1]

�
G ∧ ¬∃μ ′2 ∈

�
μ∗[P2]

�
G ,μ

′
1 ∼ μ ′2 }

(x∗ � dom(μ ′1 ) ∧ x∗ � dom(μ ′2 ))

=
{
μ∗ ∪ μ ′ ��� μ ′ ∈ { μ ′1 | μ ′1 ∈

�
μ∗[P1]

�
G ∧ ¬∃μ ′2 ∈

�
μ∗[P2]

�
G ,μ

′
1 ∼ μ ′2 }

}

= { μ∗ ∪ μ ′ | μ ′ ∈ �μ∗[P1] diff μ∗[P2]�G } (definition 2.13)

= { μ∗ ∪ μ ′ | μ ′ ∈ �μ∗[P]�G } = RHS
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If P ≡ (P1 optP2), then �P�G =
�
(P1 and P2) union (P1 diff P2)

�
G . Lemma 5.4 holds

because of the cases above.

If P ≡ (P1 filter E):

LHS = { μ∗ ∪ μ | μ ∈ �P�G ∧ μ∗ ∼ μ }
=
{
μ∗ ∪ μ ��� μ ∈ { μ | μ ∈ �P1�G ∧ EBV(

�
μ[E]
�
) = true } ∧ μ∗ ∼ μ

}
(definition 2.13)

= { μ∗ ∪ μ | μ ∈ �P1�G ∧ EBV(
�
μ[E]
�
) = true ∧ μ∗ ∼ μ }

= { μ∗ ∪ μ | μ ∈ �P1�G ∧ EBV(
�
μ[μ∗[E]]

�
) = true ∧ μ∗ ∼ μ }

(x∗ � unsafe(P ); by definition 5.4, either x∗ � vars(E) and μ∗[E] = E, or x∗ ∈ cvars(P1 ) and μ∗ ⊆ μ)

= { μ∗ ∪ μ | μ ∈ �P1�G ∧ EBV(
�
(μ ∪ μ∗)[E]

�
) = true ∧ μ∗ ∼ μ }

=
{
μ ′′ ��� μ ′′ ∈ { μ∗ ∪ μ | μ ∈ �P1�G ∧ μ∗ ∼ μ } ∧ EBV(

�
μ ′′[E]

�
) = true

}

=
{
μ ′′ ��� μ ′′ ∈ { μ∗ ∪ μ ′ | μ ′ ∈ �μ∗[P1]�G } ∧ EBV(

�
μ ′′[E]

�
) = true

}

(induction hypothesis)

= { μ∗ ∪ μ ′ | μ ′ ∈ �μ∗[P1]�G ∧ EBV(
�
(μ ′ ∪ μ∗)[E]

�
) = true }

=
{
μ∗ ∪ μ ′ ��� μ ′ ∈ { μ ′ | μ ′ ∈

�
μ∗[P1]

�
G ∧ EBV(

�
μ ′[μ∗[E]]

�
) = true } }

= { μ∗ ∪ μ ′ | μ ′ ∈ �μ∗[P1] filter μ∗[E]�G } (definition 2.13)

= { μ∗ ∪ μ ′ | μ ′ ∈ �μ∗[P]�G } = RHS

�

Lemma 5.5. Let P be a graph pattern, G an RDF graph, and μ∗ a solution mapping

such that dom(μ∗) ∩ unsafe(P ) = ∅,

{ μ∗ ∪ μ | μ ∈ �P�G ∧ μ∗ ∼ μ } = { μ∗ ∪ μ ′ | μ ′ ∈ �μ∗[P]�G } .

Proof. We build the proof by induction on the cardinality of μ∗.
Base case. Let us show that lemma 5.5 holds when |μ∗ | = 0, i.e., μ∗ = ∅. As the empty
mapping is compatible with any mapping and μ∗[P] = P , we have

LHS = { μ∗ ∪ μ | μ ∈ �P�G ∧ μ∗ ∼ μ } = { μ∗ ∪ μ | μ ∈ �P�G }
= { μ∗ ∪ μ | μ ∈ �μ∗[P]�G } = RHS .

Inductive hypothesis. Let k � 0. Let us assume that lemma 5.5 holds when |μ∗ | � k .

Inductive step. Let us show that lemma 5.5 holds when |μ∗ | = k + 1. Let (xi ,vi ) ∈ μ∗,
and μk = μ∗ \ { (xi ,vi ) }. We have |μk | = k . Because dom(μ∗) ∩ unsafe(P ) = ∅,
xi � unsafe(P ). We denote μi = { (xi ,vi ) }. Hence, μ∗ = μk ∪ μi . We can rewrite the
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left-hand side of the lemma.

LHS = { μ∗ ∪ μ | μ ∈ �P�G ∧ μ∗ ∼ μ }
= { μk ∪ μi ∪ μ | μ ∈ �P�G ∧ (μk ∪ μi ) ∼ μ }
= { μk ∪ μi ∪ μ | μ ∈ �P�G ∧ μk ∼ μ ∧ μi ∼ μ } (distribution)

= { μk ∪ μi ∪ μ | μ ∈ �P�G ∧ μk ∼ μ ∧ μi ∼ (μk ∪ μ ) } (inverse distribution)

=
{
μ ′′ ∪ μi

��� μ ′′ ∈ { μk ∪ μ | μ ∈ �P�G ∧ μk ∼ μ } ∧ μi ∼ μ ′′
}

= { μ ′′ ∪ μi | μ ′′ ∈ { μk ∪ μ ′ | μ ′ ∈ �μk[P]�G } ∧ μi ∼ μ ′′ } (induction hypothesis)

= { μk ∪ μi ∪ μ ′ | μ ′ ∈ �μk[P]�G ∧ μi ∼ (μk ∪ μ ′) }
= { μk ∪ μi ∪ μ ′ | μ ′ ∈ �μk[P]�G ∧ μi ∼ μk ∧ μi ∼ μ ′) } (distribution)

= { μk ∪ μi ∪ μ ′ | μ ′ ∈ �μk[P]�G ∧ μi ∼ μ ′) } (μ i ∼ μk by construction)

Let P ′ = μk[P]. We have μ∗[P] = μk[μi[P]] = μi[μk[P]] = μi[P ′]. As μk and μi do
not share any variable, the order in which we apply the substitutions does not matter.
We have to prove

{ μk ∪ μi ∪ μ ′ | μ ′ ∈ �P ′�G ∧ μi ∼ μ ′ } = { μk ∪ μi ∪ μ ′′ | μ ′′ ∈ �μi[P ′]�G } .
As the domain of μk is disjoint from the domain of μi (by construction) and from the
domain of any μ ′ and μ ′′ (because dom(μk ) ∩ vars(P ′) = ∅), the following equation
is equivalent.

{ μi ∪ μ ′ | μ ′ ∈ �P ′�G ∧ μi ∼ μ ′ } = { μi ∪ μ ′′ | μ ′′ ∈ �μi[P ′]�G }
This equation is verified by lemma 5.4, because xi � unsafe(P ′). �

Thanks to lemma 5.5, we can now define the evaluation of compound patterns
using replacement semantics. The definitions are the same as the ones presented in
section 5.1.2, except that unsafe variables must not be replaced. Such condition limits
the SPARQL queries that our semantics can handle. However, unsafe variables are a
counter-intuitive corner case. Real queries are usually free of unsafe substitutions.

Theorem 5.6. Given a compound pattern P ≡ P1 and P2, such that vars(P1) ∩
unsafe(P2) = ∅, and an RDF graph G,

�P�G = { μ1 ∪ μ2 | μ1 ∈ �P1�G ∧ μ2 ∈ �μ1[P2]�G } .
Proof. By applying lemma 5.5 in definition 2.13, we obtain

LHS = �P�G = { μ1 ∪ μ ′2 | μ1 ∈ �P1�G ∧ μ ′2 ∈ �P2�G ∧ μ1 ∼ μ ′2 } (definition 2.13)

=
{
μ ��� μ1 ∈ �P1�G ∧ μ ∈ { μ1 ∪ μ ′2 | μ ′2 ∈ �P2�G ∧ μ1 ∼ μ ′2 }

}

=
{
μ ��� μ1 ∈ �P1�G ∧ μ ∈ { μ1 ∪ μ2 | μ2 ∈ �μ1[P2]�G }

}
(lemma 5.5; vars(P1 ) ∩ unsafe(P2 ) = ∅⇒ dom(μ1 ) ∩ unsafe(P2 ) = ∅)

= { μ1 ∪ μ2 | μ1 ∈ �P1�G ∧ μ2 ∈ �μ1[P2]�G } = RHS .

�
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Theorem 5.7. Given a compound pattern P ≡ P1 union P2, and an RDF graph G,

�P�G = �P1�G ∪ �P2�G .

Proof. Trivial from definition 2.13. �

Theorem 5.8. Given a compound pattern P ≡ P1 diff P2, such that vars(P1) ∩
unsafe(P2) = ∅, and an RDF graph G,

�P�G = { μ1 | μ1 ∈ �P1�G ∧
�
μ1[P2]

�
G = ∅ } .

Proof. By applying lemma 5.5 in definition 2.13, we obtain

LHS = �P�G = { μ1 | μ1 ∈ �P1�G ∧ ¬∃μ2 ∈ �P2�G ,μ1 ∼ μ2 } (definition 2.13)

=
{
μ1

��� μ1 ∈ �P1�G ∧ ¬∃μ ∈ { μ1 ∪ μ2 | μ2 ∈ �P2�G ,μ1 ∼ μ2 }
}

=
{
μ1

��� μ1 ∈ �P1�G ∧ ¬∃μ ∈ { μ1 ∪ μ ′2 | μ ′2 ∈
�
μ1[P2]

�
G }

}
(lemma 5.5; vars(P1 ) ∩ unsafe(P2 ) = ∅⇒ dom(μ1 ) ∩ unsafe(P2 ) = ∅)

= { μ1 | μ1 ∈ �P1�G ∧ ¬∃μ ′2 ∈
�
μ1[P2]

�
G }

= { μ1 | μ1 ∈ �P1�G ∧
�
μ1[P2]

�
G = ∅ } = RHS .

�

An opt pattern can be rewritten as a combination of and, union, and diff op-
erators (see definition 2.13). Hence, the evaluation of the pattern is handled by the
theorems above.

Filters on compound patterns cannot be added to the constraint set as in sec-
tion 5.1.1. Instead, the standard SPARQL semantics have to be applied, i.e., post-
processing the filters. For each solution of the pattern, we check if the filter expression
is satisfied.

To avoid the post-processing, filters can sometimes be pushed down onto the
sub-patterns [SML10]. For example, (P1 union P2) filter E can be rewritten as
(P1 filter E) union (P2 filter E). When P1 or P2 is a basic graph pattern, E can be
added to the constraint set of the associated CSP.

5.2 Operational CP Modeling

The denotational semantics of SPARQL can be turned into an operational semantics
using conventional CP solvers, provided they allow posting constraints during the
search.

We will explain the posting of the constraints and the search by means of a non-
deterministic program. A non-deterministic program can introduce choice points. At
such point, the execution will continue in either the left or the right branch. When
the execution arrives at the end of the program or at an explicit failure point, all data
structures are restored up to a previous choice point and the execution continues
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in the other branch. In the pseudo-codes throughout this section, we will use the
Comet [Dyn10] notation, introduced in section 4.5.

The proposed operational semantics assumes a depth-first execution. At each
choice point, the left branch is explored first. At the end of the program or at a failure
point, the search backtracks to the most recently created choice point.

To solve a query instance ((P ,M ),G ), we define a global array of CP variables
X = vars(P ). The initial domain of each variable x ∈ X is D (x ) = TG , i.e., all the
RDF terms appearing in G. The set of constraints C is initially empty. When no
solution modifiers are used, the program solving the query instance is

1 solveall<cp> {

2 } using {

3 eval(P);

4 output(X);

5 }

where line 3 evaluates the graph pattern and line 4 is called for each solution. Note that
we do not post any constraint in the declarative part of the program. All constraints
are posted during the search.

The next section describes the evaluation of the graph pattern, i.e., the imple-
mentation of the eval method. Section 5.2.2 explains how solution modifiers are
handled.

5.2.1 Graph Pattern Evaluation

The eval method is recursively defined for every type of graph pattern. Listing 5.1
shows the eval method for basic graph patterns. Filters on a basic graph pattern are
posted with the triple patterns. Simple compound graph patterns are shown in list-
ing 5.2. For the concatenation pattern P1 and P2, we solve P1 first. For every solution
μ1, P2 is evaluated without restoring the domains of the variables. This effectively
computes μ1[P2]. The union pattern solves the two sub-patterns independently in
separate branches.

function eval(P) {

forall((s,p,o) in P) {

cp.post(Member((s,p,o),G ));

}

label(vars(P ));
}

(a) P is a basic graph pattern

function eval(P filter E) {

forall((s,p,o) in P) {

cp.post(Member((s,p,o),G ));

}

cp.post(IsTrue(E));
label(vars(P ));

}

(b) A constrained basic graph pattern

Listing 5.1: A basic graph pattern is a straightforward CP program.
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function eval(P1 and P2) {

eval(P1);

eval(P2);

}

(a) Concatenation

function eval(P1 union P2) {

try<cp> {

eval(P1);

}|{

eval(P2);

}

}

(b) Union

Listing 5.2: The and and union operators are easy to implement thanks to the re-

placement semantics.

The diff and opt patterns, shown in listing 5.3, are similar to the and pattern.
First, P1 is solved. For every solution μ1, before evaluating P2, a choice point is
introduced. The left branch computes

�
μ1[P2]

�
G , hence providing solutions to (P1and

P2). If it succeeds, the right branch is pruned. Otherwise, the right branch is empty
and μ1 is returned as a solution of the opt pattern. In the case of the diff pattern, the
left branch is also pruned after the first solution found. Note that the eval method
here relies on a depth-first search strategy. The left branch must be fully explored
before the right branch.

Not every variable is labeled along every branch. The domain of some variables
may be untouched when outputting the solution. Such variables are considered
unbound and are not part of the solution. Indeed, we always label all variables of a
basic graph pattern. Unbound variables do not appear in the basic graph patterns
along one branch, due to disjunctions introduced by union or differences introduced
by diff. No constraints are posted on such variables. Their domains are not reduced.

Filters on a compound pattern can only be checked after each solution of the
pattern, as shown in listing 5.4. The condition E is not posted as a constraint. Indeed,
some variables may be unbound and need to be handled as such.

5.2.2 Handling Solution Modifiers

The complete algorithm for solving a query instance depends on the solution modi-
fiers. In the simpler cases, the solutions are output during the search and forgotten
immediately. In more complex cases, e.g., involving sorting, the solutions found need
to be stored in memory.

Let XS , nO , nL and 〈O〉 be respectively the arguments of the project, offset,
limit and order modifiers. In the absence of the corresponding modifier, XS = X =

vars(P ), nO = 0, nL = ∞ and 〈O〉 is the empty sequence. Listing 5.5 shows the pseudo-
code corresponding to the two cases. The simple variant handles the project, offset
and limit modifiers as well as the distinct modifier in some cases. The complete
variant solves any case at the expense of keeping all the solutions in memory.
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function eval(P1 diff P2) {

eval(P1);

Boolean consistent(false);

try<cp> {

eval(P2);

consistent := true;

cp.fail();

}|{

if(consistent)

cp.fail();

}

}

(a) Difference

function eval(P1 opt P2) {

eval(P1);

Boolean consistent(false);

try<cp> {

eval(P2);

consistent := true;

}|{

if(consistent)

cp.fail();

}

}

(b) Optional

Listing 5.3: Compound patterns checking the consistency of a sub-pattern exploit

the depth-first search strategy.

function eval(P ′ filter E) {

eval(P ′);
if(EBV(

�
μ[E]
�
) � true)

cp.fail();

}

Listing 5.4: Filters on compound patterns need to be post-processed.
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Integer nsols(0);

solveall<cp> {

} using {

eval(P);

if(distinct) {

Solution μ(cp);

cp.postStatic(
∨

x ∈XS
x � μ (x ));

}

if(nsols � nO)

output(XS);

nsols := nsols + 1;

if(nsols � nO + nL)
cp.exit();

}

(a) Simple variant: solutions are output during the

search.

if(distinct)
SortedSet S(〈O〉, XS);

else

SortedList S(〈O〉);
solveall<cp> {

} using {

eval(P);

Solution μ(cp);

if(distinct ∧ XS ∩ unsafe(P ) = ∅)
cp.postStatic(

∨
x ∈XS

x � μ (x ));

S.insert(μ);

if(|S | > nO + nL)
S.removeLast();

}

forall(μ in S[nO .. nO + nL]) {

μ.restore();

output(XS);

}

(b) Complete variant: solutions are stored in mem-

ory and output at the end.

Listing 5.5: The complete algorithm for solving a query instance depends on the used

solution modifiers.
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The SortedSet and SortedList data structures insert solutions in the specified
order. The SortedSet data structure does not insert solutions that are already present
in the set, considering only the specified variables (here,XS ). The postStaticmethod
allows to post constraints that will not be removed when backtracking. Instead, those
static constraints are reposted after restoring the domains. The postStatic method
does not exist directly in Comet, but the same effect can be obtained with more
complicated structures.

When no selected variables are unsafe, i.e., XS ∩ unsafe(P ) = ∅, the distinct
modifier can be translated to additional static constraints posted after every solution.
Such constraints state that any further solution must be different from the solutions
so far, considering only the variables in XS . If a variable in XS is unsafe, reducing
its domain may alter the solutions of a diff or filter pattern. In such cases, the
complete variant without postStatic must be used. The SortedSet data structure
handles the distinctness of the solutions.

When an order is given, the complete variant must be used. Solutions are inserted
in a list (or a set if the distinct modifier is specified) at their right places according
to the order. If the list grows larger than the offset plus the limit, the extra solutions
at the end of the list are discarded.

If the order and limit modifiers are used together, the search can be further
optimized with the branch-and-bound technique. After nO + nL solutions have been
found, we can post an additional static constraint stating that any further solution
must be better than the worst solution found so far. The meaning of better is de-
fined by the ordering expressions and their directions. Such optimization may only
be performed when no variables appearing in the ordering expressions are unsafe.
Otherwise, the pruning of the additional constraints may alter the solutions of diff
or filter patterns.



Chapter 6

Castor,

a Specialized Lightweight Solver

The operational model described in chapter 5 can be used to solve SPARQL queries
with off-the-shelf CP solvers. However, due to the huge domains and triple table, such
solvers may not be efficient for the task. This chapter presents Castor, a specialized
solver designed to solve SPARQL queries. This solver is experimentally compared
with state-of-the-art SPARQL engines and with the Comet CP solver in chapter 7.

The first section presents the data structures that represent the RDF graph. Sec-
tion 6.2 explains how the domains are implemented in order to cope with their large
size. Section 6.3 shows the constraints and their propagators. Section 6.4 describes
the search process. Section 6.5 presents the prototype implementation.

6.1 Dataset Representation

The representation of the dataset in Castor is inspired by the RDF-3X engine [NW08].
The main difference is the representation of the values. RDF-3X focuses on triple
patterns and does not implement many filters. It considers values to be strings
without further interpretation. One of the goals of Castor is to provide efficient
filtering. Hence, it needs more information about the values and their interpretation.

The dataset is represented using an on-disk data structure. When Castor loads
the dataset, the whole file is memory-mapped. We can thus access any part of the
file as if it was in main memory, letting the operating system handle the reading and
caching of the file. For performance reasons, it is obviously better to avoid reading
the dataset randomly on traditional hard disk drives. The file is partitioned in pages
of 16 KB.
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Order Category Values Intra-category ordering

1 Blank nodes b ∈ B internal identifier of b
2 IRIs i ∈ I str(i )

3 Simple literals a ∈ Lps str(a)

4 Typed strings a ∈ Lts str(a)

5 Booleans a ∈ Ltb (value(a),str(a))
6 Numbers a ∈ Ltn (value(a),datatype(a),str(a))
7 Dates a ∈ Ltd (value(a),str(a))
8 Other plain literals a ∈ Lpl (lang(a),str(a))

9 Other typed literals a ∈ Lto (datatype(a),str(a))

Table 6.1: Values are partitioned in nine categories, which are shown in ascending

order. Inside each category, values are ordered according to the key given in the

last column. When a couple of keys is given, the order is lexicographic. Because

multiple literals can have the same interpreted value, we break ties by ordering on

the uninterpreted lexical form.

6.1.1 Mapping RDF Values to Integer Identifiers

Like in RDF-3X, values are mapped to consecutive integers. The mapping function,
however, differs from RDF-3X. Let id(v ) be the identifier mapped to the RDF value v .
To efficiently implement a bound consistent propagator for inequality filters, we want
v1 <F v2 ⇒ id(v1) < id(v2), where <F is the partial order operator for comparing
SPARQL expressions (see definition 2.11). The SPARQL specification only defines <F
between numerical values, between simple literals, between strings, between Boolean
values, and between dates.

To efficiently implement the order solution modifier, we also want v1 <O v2 ⇒
id(v1) < id(v2), where <O is the partial order defined in the SPARQL specification.
This order introduces a precedence between blank nodes, URIs and literals. Literals
are ordered with respect to <F , so that v1 <F v2 ⇒ v1 <O v2.

To map each RDF value to a unique identifier, we introduce a total order <T that
is compatible with both partial orders, i.e.,

∀(v1,v2) ∈ T × T,v1 <O v2 ⇒ v1 <T v2 .

Values are partitioned into categories as shown in table 6.1. Inside each category,
values are ordered according to the rules specific to the category. The total order <T
is defined as the lexicographic order of the inter- and intra-category ordering.

We map the values of a dataset to consecutive integers starting from 1, such that
v1 <T v2 ⇔ id(v1) < id(v2). Table 6.2 shows the mapping of the terms appearing
in our running example to identifiers. Identifiers in Castor are encoded with 32 bits.
Hence, a dataset cannot contain more than 4 billion values. If more values are needed,
one could enlarge identifiers to 64 bits.
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Category Identifier Term

1 1 _:a

2 2 http://dbpedia.org/resource/Procrastination

2 3 http://dbpedia.org/resource/Research

2 4 http://phdcomics.com/#Cecilia

2 5 http://phdcomics.com/#Free Food

2 6 http://phdcomics.com/#Mike

2 7 http://phdcomics.com/#Smith

2 8 http://phdcomics.com/#Students

2 9 http://phdcomics.com/#Tajel

2 10 http://purl.org/dc/terms/created

2 11 http://purl.org/dc/terms/subject

2 12 http://www.phdcomics.com/blog.php

2 13 http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq

2 14 http://www.w3.org/1999/02/22-rdf-syntax-ns#_1

2 15 http://www.w3.org/1999/02/22-rdf-syntax-ns#_2

2 16 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

2 17 http://www.w3.org/2001/XMLSchema#dateTime

2 18 http://www.w3.org/2001/XMLSchema#decimal

2 19 http://www.w3.org/2001/XMLSchema#integer

2 20 http://www.w3.org/2001/XMLSchema#string

2 21 http://xmlns.com/foaf/0.1/Group

2 22 http://xmlns.com/foaf/0.1/age

2 23 http://xmlns.com/foaf/0.1/interest

2 24 http://xmlns.com/foaf/0.1/knows

2 25 http://xmlns.com/foaf/0.1/member

2 26 http://xmlns.com/foaf/0.1/name

2 27 http://xmlns.com/foaf/0.1/topic

2 28 http://xmlns.com/foaf/0.1/weblog

3 29 ("Brian B. Smith", "")

3 30 ("Michael Slackenerny", "")

3 31 ("Tajel", "")

3 32 ("comics", "")

3 33 ("procrastination", "")

4 34 ("Cecilia",xsd:string)

6 35 ("26",xsd:integer)

6 36 ("29",xsd:integer)

6 37 ("35",xsd:decimal)

6 38 ("56",xsd:integer)

7 39 ("2005-07-10T08:20:00",xsd:dateTime)

Table 6.2: The RDF terms appearing in the running example of fig. 2.2 are mapped

to consecutive integers.
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Categories that can be interpreted by SPARQL, i.e., strings, booleans, numbers
and dates, are ordered by their interpreted value. Hence, equivalent values that are
not identical, are assigned to consecutive identifiers. For example, ("1",xsd:integer),
("1",xsd:float), and ("1.0",xsd:float) will have consecutive identifiers.

6.1.2 Representing an RDF Value

The strings appearing in the dataset, i.e., IRI strings, lexical forms and language
tags, are stored separately from values. As for values, each string is mapped to a
consecutive integer identifier, starting from 1. The string table is stored on disk along
with a B+-tree mapping hash values to the corresponding string identifiers.

A value on disk is a fixed-size data structure with the following fields.

• the 32-bits identifier,

• the category (see table 6.1),

• the numerical subcategory for numbers: integers, floating point numbers or
decimal numbers with arbitrary precision,

• the identifier of the datatype (pointing to an IRI value),

• the identifier of the language tag or the lexical form of the datatype (pointing
to a string),

• the identifier of the lexical form (pointing to a string),

• a 64-bit integer approximation if the value is a number.

The numerical subcategory indicates how the lexical form must be converted to a
number. For typed literals, the lexical form of the datatype gives quick access to the
string representation of the datatype IRI. It is redundant with the datatype in the
previous field. The integer part of a numeric value is encoded in the last field. Such
approximation is used to propagate arithmetic constraints.

The value table is stored on disk along with a B+-tree mapping hash values to the
corresponding value identifiers. The hash value of an RDF value is computed with
the category, numerical subcategory, language tag or lexical form of the datatype,
and lexical form fields.

Values that are not identical, may still be equivalent. For example, the integer
("1",xsd:integer) and the floating-point number ("1.0",xsd:float) are equivalent,
but are different values with different identifiers. The equivalence class of a value
v is the set of values that are equivalent to v . Equivalent values have neighboring
identifiers. Thus, the equivalence class of a value is represented as a simple range of
identifiers.

To quickly look up the equivalence class of a value, we store a bitmap on disk
with one bit per value. Bit i is 1 if the value with identifier i is the first value in its
equivalence class, and 0 otherwise. Hence, finding the range of identifiers that are
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equivalent to a value, amounts to finding the indexes of the preceding and following
bit 1. Such bit-wise operations are handled efficiently by the CPU.

Example 6.1. Consider the numeric values ("0",xsd:integer), ("1",xsd:integer),
("1.0",xsd:float), ("1.00",xsd:float), and ("2",xsd:float). The associated bitmap
is 11001. The equivalence class for the third value (1.0) is represented by the identifier
range [2,4].

6.1.3 Representing Triples

RDF triples are represented by three integers. To provide efficient look-up, triples
are stored three times in different lexicographical orders: SPO, POS and OSP, where
S stands for subject, P for predicate and O for object. For example, SPO means the
triples are ordered first by subject, then by predicate and finally by object.

The sorted triples are written on disk as B+-trees. One page corresponds to one
node of the tree. Leaves are linked together to allow efficient in-order traversal. The
triples inside a leaf are compressed using the delta-algorithm described in Neumann
and Weikum [NW08].

Because the same leaf pages are often used in the propagators, and decompressing
a leaf is costly, Castor keeps a small cache of the most recently used decompressed
pages.

Given two triples tmin = (smin,pmin,omin ) and tmax = (smax ,pmax ,omax ), the
Fetch(tmin,tmax ) operation returns the set of triples between tmin and tmax , accord-
ing to the lexicographic order of the index specified in table 6.3. When all components
are fixed, i.e., tmin = tmax , the set is a singleton if the triple appears in the dataset
and empty otherwise. When only one component is not fixed, e.g., smin = smax and
pmin = pmax but omin < omax , that component is guaranteed to be within its bounds
in the returned triples. However, when more than one component is not fixed, no
such property can be guaranteed, due to the in-order traversal of the B+-tree.

Example 6.2. Consider the graph G = {(1,2,5), (1,2,7), (1,3,4), (1,3,8)}. Executing
the Fetch((1,2,3), (1,2,6)) operation will use the SPO index because both subject and
predicate are fixed. The single result is the triple (1,2,5). The Fetch((1,2,7), (1,3,8))
operation will also use the SPO index because only the subject is fixed. In this case,
the result set is {(1,2,7), (1,3,4), (1,3,8)}. Note the presence of triple (1,3,4) even
though object 4 is smaller than the requested lower bound 7.

In addition to the triple indexes, the whole table is also stored uncompressed. The
table is used by propagators needing direct access to the whole table, such as the
domain-consistent triple propagator (see section 6.3.1).

6.2 Variables and Domains

Each variable in a SPARQL query is a decision variable in Castor. Domains of decision
variables are identifiers of all RDF values appearing in the dataset, along with the
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smin = smax pmin = pmax omin = omax Index

Yes Yes Yes POS
Yes Yes No SPO
Yes No Yes OSP
Yes No No SPO
No Yes Yes POS
No Yes No POS
No No Yes OSP
No No No POS

Table 6.3: Given the triples tmin = (smin,pmin,omin ) and tmax = (smax ,pmax ,omax ),

the index is chosen so that the fixed components come first in the ordering. Three

different orderings are sufficient to cover all cases. Note that the index of the first

and last row does not matter for correctness. POS has been chosen to maximize the

cache usage.

special value 0. As long as 0 is in the domain of a variable, that variable is considered
unbound in the SPARQL semantics and is not part of the solution mapping.

When posting filters, auxiliary variables are introduced, as explained in sec-
tion 6.3.2. The results of predicates are represented by Boolean variables. To conform
to the SPARQL semantics, the domain of Boolean variables have three values: true,
false and error. Arithmetic constraints are posted on numeric variables whose do-
mains only contain integers. Integers were chosen over floating point numbers to
avoid numerical instabilities.

During the search, domains get reduced at each choice point and restored when
backtracking. The data structures representing domains should perform such opera-
tions efficiently. There are two kinds of representations. The discrete representation
keeps track of every single value in the domain. The bound representation only keeps
the lowest and highest value of the domain.

Boolean auxiliary variables use the discrete representation. Numeric auxiliary
variables use the bound representation, as it is impossible to store all possible integers
in main memory. For decision variables, we propose a dual view, leveraging the
strengths of both representations.

6.2.1 Discrete Representation

The discrete representation is based on sparse sets presented by Briggs and Torczon
[BT93]. The domain of each variable x is represented by its size sizex and two arrays
domx and mapx . The sizex first elements of domx are in the domain of x , the others
have been removed (see fig. 6.1). Themapx array maps values to their position in the
domx array.

Note that this is not the standard representation of discrete domains in CP. How-
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Figure 6.1: Example representation of the domain {b,c,d, f ,д,h }, such that sizex = 6,
when the initial domain is { a, . . . ,i }. The sizex first values in domx belong to the

domain; the other values have been removed earlier. The mapx array maps values to

their position in domx . For example, value b has index 4 in the domx array. In such

representation, only the size needs to be kept in the trail.

ever, the trail, i.e., the data structure needed to restore the domain to any ancestor
node of the search tree, of standard representations is too heavy for our purpose and
size of data.

For a variable x , the following invariants hold:

• D (x ) = { domx [i] | 0 � i < sizex }

• mapx [v] = i ⇔ domx [i] = v

• The values in domx [sizex .. capx −1] are not modified by any operation, where
capx is the size of the domx array, i.e., the size of the initial domain.

Thanks to the last invariant, the domain can be restored in constant time by setting
the sizex marker back to its previous position. The trail is thus a stack of the sizes.

To remove a value, we swap it with the last value of the domain (i.e., the value
directly to the left of the sizex marker), reduce sizex by one and update the mapx
array. Such operation is done in constant time, as shown in algorithm 6.1.

Alternatively, we can restrict the domain to the intersection of itself and a set
M . We first move all values of M which belong to the sizex first elements of domx ,
i.e., which are still in the domain, at the beginning of domx . Such operation is called
Mark in algorithm 6.1. The markx counter keeps track of the marked values (see
fig. 6.2). We denote the set of marked values byMx . Once all values are marked, we
set sizex to the size of the intersection, i.e., markx . The whole operation is done in
O ( |M |), with |M | the size ofM . Castor uses the restriction operation in propagators
achieving forward-checking consistency.

Operations on the bounds however are inefficient. This major drawback is due to
the unsorted domx array. Searching for the minimum or maximum value requires the
traversal of the whole domain. Increasing the lower bound or decreasing the upper
bound involves removing every value between the old and new bound one by one.
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function Contains(x ,v) � v ∈ D (x )

Return mapx [v] < sizex
end function

procedure Swap(x ,i, j) � Swap elements at positions i and j in domx .
domx [i],domx [j]← domx [j],domx [i]
mapx [domx [i]]← i

mapx [domx [j]]← j

end procedure

procedure Bind(x ,v) � D (x ) ← D (x ) ∩ {v }
if mapx [v] � sizex then

sizex ← 0
else

Swap(x ,mapx [v],0)
sizex ← 1

end if

end procedure

procedure Remove(x ,v) � D (x ) ← D (x ) \ {v }
if mapx [v] < sizex then

Swap(x ,mapx [v], sizex −1)
sizex ← sizex −1

end if

end procedure

procedure ClearMarks(x ) � Mx ← ∅
markx ← 0

end procedure

procedure Mark(x ,v) � Mx ← Mx ∪ (D (x ) ∩ {v })
if mapx [v] < sizex ∧mapx [v] >= markx then

Swap(x ,mapx [v],markx )
markx ← markx +1

end if

end procedure

procedure Restrict(x ) � D (x ) ← Mx

sizex ← markx
end procedure

Algorithm 6.1: Operations on the discrete representation of variables involve swap-

ping values in the domx array. All procedures have O (1) time complexity.
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Figure 6.2: Values can be marked in the discrete representation of a domain by

moving them to the beginning of the domx array and increasing the markx marker.

To restrict the domain to only the marked values, we set sizex to markx .

6.2.2 Bound Representation

The domain of every variable x is also represented by its bounds, i.e., its minimum and
maximum values. In contrast to the discrete representation, the bound representation
is an approximation of the exact domain. We assume all values between the bounds
are present in the domain.

In such a representation, we cannot remove a value in the middle of the domain as
we cannot represent a hole inside the bounds. However, increasing the lower bound
or decreasing the upper bound is done in constant time.

The data structure for this representation being small (only two numbers), the
trail contains copies of the whole data structure. Restoring the domains involves
restoring both bounds.

6.2.3 Dual View

Propagators achieving forward-checking or domain consistency remove values from
the domains. Thus, they require a discrete representation. However, propagators
achieving bound consistency only update the bounds of the domains. For them to
be efficient, we need a bound representation. Hence, Castor creates two variables
xD and xB (resp. with discrete and bound representation) for every SPARQL variable
x . Constraints are stated using only one of the two variables, depending on which
representation is the most efficient for the associated propagator. In particular, arith-
metic inequality constraints are stated on xB whereas triple pattern constraints are
stated on xD .

An additional constraint xD = xB ensures the correctness of the dual approach.
Achieving domain consistency for this constraint is too costly, as it amounts to per-
form every operation on the bounds also on the discrete representation. Instead, the
propagator in Castor achieves forward-checking consistency, i.e., once one variable
is assigned, the same value will be assigned to the other variable.

For practical reasons, the two representations xD and xB are implemented as one
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procedure ClearMarks(x ) � Mx ← ∅
markx ← 0
markmin

x ,markmax
x ← +∞,−∞

end procedure

procedure Mark(x ,v) � Mx ← Mx ∪ (D (x ) ∩ {v })
if mapx [v] < sizex ∧mapx [v] >= markx ∧minx � v � maxx then

Swap(x ,mapx [v],markx )
markx ← markx +1
markmin

x ← min(markmin
x ,v )

markmax
x ← max(markmax

x ,v )

end if

end procedure

procedure Restrict(x ,v) � D (x ) ← Mx

sizex ← markx
minx ,maxx ← markmin

x ,markmax
x

end procedure

Algorithm 6.2: In the dual representation, the Restrict operation is done on both

representations at the same time without additional complexity.

object. The propagation of the channeling constraint xD = xB is embedded inside the
Bind operation. As an optimization, when restricting a domain to its intersectionwith
a setM , we filter out values ofM which are outside the bounds and update the bounds
of xB . Such optimization does not change the complexity of the operation, as it has
to traverse the whole setM anyway. The new operation is shown in algorithm 6.2.

6.3 Constraints and Propagators

The domains of the variables can be huge. A value-based propagation queue can grow
very large. To avoid this problem, Castor uses constraint-based propagation queues.
There are three priority levels and a separate queue for each of them. Constraints with
higher priority are always propagated before lower-priority constraints. Constraints
are given priorities based on the consistency level they achieve:

• Highest priority: domain consistent and bound consistent propagators. Such
propagators are very fast. Bound consistent propagators have constant time
complexity. Domain consistent propagators behave linearly with respect to the
number of removed values.

• Medium priority: forward checking propagators. Such propagators are entailed
after they are called. They do not need to be called again later in the branch.
However, they have to iterate over all the values of a domain.
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Figure 6.3: If “old sizex” was the size of the domain of x on the last propagation

of a constraint, the values c , b and h have been removed since then. To perform

value-based propagation, the propagator only has to check the values for which c , b

or h was a support. Note that the “old sizex ” marker is a property of the propagator

and is different for each propagator, while sizex is a property of the domain of x .

• Lowest priority: non-monotonic propagators. The order in which they are
called affect the amount of pruning they perform. The smaller the domains,
the better the pruning. Because they also have a high complexity, similar to
forward checking propagators, they are called last.

While the propagation queues are constraint-based, it is still possible to perform
value-based propagation in a constraint. At the end of the propagation of a constraint,
we remember the sizes of the domains. On the next propagation, the values that have
been removed from the domains will be between the saved sizex and the new sizex , as
shown in fig. 6.3. By iterating over the values between the twomarkers, we effectively
perform value-based propagation. When backtracking, the saved sizes must be reset.

All propagators in Castor are considered to be idempotent, i.e., calling the same
propagator again immediately after it has finished, does not perform any more prun-
ing. Thus, the currently running propagator is never added back in the propagation
queue.

6.3.1 Triple Patterns

The most used constraint when solving a SPARQL query is the triple pattern. A triple
pattern involves three variables xs , xp and xo . It is satisfied if the triple (xs ,xp ,xo )

is present in the dataset. Basically, a triple pattern is a table constraint with arity 3
and the table being the whole dataset. The difficulty arises from the size of the
domains and of the table. Propagators maintaining supports for every variable-value
pair, require too much memory and are too heavy to backtrack. Thus, they are
not considered. In this section, we present three propagators for the triple pattern
constraint, achieving different levels of consistency.

The forward-checking propagator (FC) is shown in algorithm 6.3. When all vari-
ables but one are assigned, the domain of the unassigned variable is restricted to the
values for which there exists a support triple in the dataset. The Fetch operation
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procedure TripleFC((xs ,xp ,xo ))
if there is at most one unassigned variable in { xs ,xp ,xo } then

tmin ← (minxs ,minxp ,minxo )

tmax ← (maxxs ,maxxp ,maxxo )

T ← Fetch(tmin,tmax )

ClearMarks(xs )
ClearMarks(xp)
ClearMarks(xo)
for all (s,p,o) ∈ T do

Mark(xs ,s)
Mark(xp ,p)
Mark(xo ,o)

end for

Restrict(xs )
Restrict(xp)
Restrict(xo)

end if

end procedure

Algorithm 6.3: The forward-checking propagator for a triple pattern waits for all but

one variable to be assigned.

is called to fetch the support triples (see section 6.1.3). The time complexity of the
propagator is O (t ) with t the number of triples fetched from the store.

Additional pruning can be obtained by propagating as soon as one variable is
assigned. Such a propagator, called FC+, is shown in algorithm 6.4. The propagator
achieves forward-checking consistency, like the FC propagator. However, when
one variable is bound, it also achieves one-time domain consistency. The domain
consistency is not maintained in further propagation calls. This is similar to nFC2
described by Bessière et al. [Bes+99]. As more than one variable may be unassigned,
the database Fetch operation may return triples that are outside the given bounds,
as explained in section 6.1.3. Thus, we check that every component of the support
triple does appear in the domain of the corresponding variable. Consider for example
the domains D (xs ) = { 1 }, D (xp ) = { 2,3 }, D (xo ) = { 2,4 } and the support triples
T = { (1,2,3), (1,3,4) }. Without the check, the domain of xp would not be reduced,
even though there are no supports in D (xo ) for xp = 2.

Even more pruning can be obtained with the domain-consistent propagator (DC)
shown in algorithm 6.5. The propagator is an instance of the STR algorithm [Lec11]
for tables of arity 3. The trailable set of support triples S initially contains all the
triples of the dataset. The set is implemented as a sparse set, similar to the discrete
representation of variable. Hence, only its size has to be trailed. The time complexity
of the DC propagator is O (t ) with t the number of triples in the support set. As the
propagator is called whenever a domain changes, the cost is quite high, as will be
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procedure TripleFC+((xs ,xp ,xo ))
if there are at most two unassigned variables in { xs ,xp ,xo } then

tmin ← (minxs ,minxp ,minxo )

tmax ← (maxxs ,maxxp ,maxxo )

T ← Fetch(tmin,tmax )

ClearMarks(xs )
ClearMarks(xp)
ClearMarks(xo)
for all (s,p,o) ∈ T do

if s ∈ D (xs ) ∧ p ∈ D (xp ) ∧ o ∈ D (xo ) then

Mark(xs ,s)
Mark(xp ,p)
Mark(xo ,o)

end if

end for

Restrict(xs )
Restrict(xp)
Restrict(xo)

end if

end procedure

Algorithm 6.4: The extended forward-checking propagator for a triple pattern addi-

tionally achieve domain consistency once when at least one variable is assigned. It

does not maintain the domain consistency property.
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procedure TripleDC((xs ,xp ,xo ))
ClearMarks(xs )
ClearMarks(xp)
ClearMarks(xo)
for all (s,p,o) ∈ S do

if s ∈ D (xs ) ∧ p ∈ D (xp ) ∧ o ∈ D (xo ) then

Mark(xs ,s)
Mark(xp ,p)
Mark(xo ,o)
if ∀x ∈ { xs ,xp ,xo } ,mark(x ) = size(x ) then

Return
end if

else

S ← S \ { (s,p,o) }
end if

end for

Restrict(xs )
Restrict(xp)
Restrict(xo)

end procedure

Algorithm 6.5: The domain-consistent propagator is an instance of the STR algo-

rithm [Lec11]. It maintains a support set S using a sparse set data structure similar

to the discrete domains.

shown in section 7.4.3. Hence, the DC propagator is not used in Castor.

6.3.2 Filter Expressions

The second type of constraints in Castor are expressions used as filters. Such filter
constraints have the form

filter(E,b) ≡ EBV(
�
μ[E]
�
) = b

where μ is the solution mapping that maps each variable x ∈ vars(E) to its value.
Filter constraints are reified constraints, with b as their truth value. The variable b is
a Boolean variable using SPARQL semantics. Hence, its domain contains three states,
including the error state.

Considering an implementation computing EBV(
�
μ[E]
�
) using the semantics

described in chapter 2, we have a generic forward-checking propagator for any filter
constraint. As soon as all variables but one are assigned, we iterate over all values
of the domain of the unassigned variable. Only values for which the evaluation
has a truth value that is in the domain of b are kept. The propagator is shown in
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procedure FilterFC(E,b)
if all variables of vars(E) are assigned then

μ ← { (x ,v ) | x ∈ vars(E),v ∈ D (x ) }
Bind(b,EBV(

�
μ[E]
�
))

else if only one variable of vars(E) is unassigned then

xu ← the unassigned variable of vars(E)
μ ← { (x ,v ) | x ∈ vars(E) \ { xu } ,v ∈ D (x ) }
ClearMarks(xu )
for all v ∈ D (xu ) do � Efficient iteration over domxu [0 .. sizexu −1]

μ ′ ← μ ∪ { (xu ,v ) }
if EBV(

�
μ ′[E]

�
) ∈ D (b) then

Mark(xu ,v)
end if

end for

Restrict(xu )
end if

end procedure

Algorithm 6.6: The generic forward-checking propagator for filter constraints allows

Castor to handle any SPARQL filter, provided we can evaluate expressions. The

propagator is however much less efficient than specialized propagators.

algorithm 6.6. While this provides a fallback for full SPARQL compliance, we can use
more efficient propagators in some cases.

For Boolean operators (¬b), (b1 ∧ b2) and (b1 ∨ b2), domain-consistent propa-
gators are easily written. However, special care needs to be taken with the error

state. Thanks to the reification of the filter constraints, any Boolean combination of
expressions can be propagated in this way.

Comparisons between two variables can also be handled efficiently by specialized
propagators. The sameTerm(x ,y) filter is true if x and y are assigned the same value,
i.e., the same identifier. Such constraint is implemented with value-based domain-
consistency. When an identifier is removed from x , it is also removed from y and
conversely. If the constraint is false, a forward-checking propagator is used. When
one variable is assigned, we remove the assigned identifier from the domain of the
other variable.

The equality filter x = y is similar to the sameTerm filter, but we must take into
account the fact that identity is not the same as equality in SPARQL. Two values with
different identifiers may still be equivalent. To propagate the equality filter, we use
a property of the value ordering, stating that equivalent values have neighboring
identifiers. For each value, we can retrieve its equivalence class. Hence, the equality
filter means that x must be an identifier in the equivalence class of y and conversely.

Inequality filters between two variables, like x < y, are easily implemented with
bound-consistent propagators. As for the equality filter, care must be taken to use
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the equivalence classes of the values.

For arithmetic expressions, like x1 + x2 = y, we introduce numerical auxiliary
variables. The domains of the auxiliary variables are integer numbers and are im-
plemented with the bound representation. Bound-consistent channeling constraints
map RDF variables to numerical auxiliary variables. Bound-consistent propagators
for the arithmetic constraints are posted on the auxiliary variables. An integer value
i in the domain of a numerical variable is interpreted as the range [i,i + 1), i.e., all
integer, floating-point or decimal numbers whose integer part is i . The auxiliary
variables thus represent an approximation of the real value. For correctness, the
generic forward-checking propagator described above is used. The propagators for
arithmetic constraints are used for additional pruning.

6.4 Search

The search tree is defined by using a labeling strategy. At each node, an unassigned
decision variable is chosen and a child node is created for each value in the domain
of the variable. All the variable selection heuristics presented in section 4.4 have
been implemented in Castor. First experiments have not shown much differences
between the various standard heuristics (see also section 7.4.1). Hence, research
on the search heuristics in Castor has been left for future work. The default vari-
able selection heuristic in Castor is dom/deg, which was marginally better on one
query. The ordering of the values is defined by their current order in the domx array
representation.

The search tree is explored with a depth-first search algorithm. Such exploration
is required for efficient inconsistency check of optional subqueries (see section 5.2.1)
and efficient restore of the domains. To restore the discrete representation of a domain,
we only reset its size. This assumes that removed values, i.e., values above sizex in
domx , have not changed. Operations on the domain do not change the order of
removed values, but do move values that are still in the domain. Restoring a domain,
i.e., resetting its size, invalidates any later checkpoints, i.e., whose size is smaller.
Hence, only a depth-first search algorithm can be used.

To enable posting constraints during the search, we introduce subtrees. A subtree
consists of a set of constraints and a set of decision variables to label. Each subtree
in Castor corresponds to a BGP of the query. It iterates over all assignments of the
variables satisfying the constraints, i.e., the solutions of the BGP, taking into account
the variables that were assigned previously. At each solution, Castor can create a
new subtree or output the solution, according to the operational semantics described
in section 5.2.1. When a subtree has been completely explored, the domains of the
variables are restored to their state when the subtree was created and the constraints
are removed. The search can then continue in the previous subtree.
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6.5 The Castor Open Source System

The system described in the previous sections of this chapter has been implemented
as an open-source library.1 It is written in C++11 and contains about 16,000 lines of
code. The library relies on the the raptor and rasqal libraries [Bec01] to parse the
RDF and SPARQL syntax.

This section describes the implementation of the system. Section 6.5.1 shows the
working of the library. Section 6.5.2 present the tools shipped with Castor. Finally,
section 6.5.3 discusses some limitations of the system.

6.5.1 The Library

The main classes of the library are Store and Query. The Store class contains all the
operations for reading the on-disk dataset presented in section 6.1. The Query class
implements query parsing and evaluation. An instance of the Query class is bound
to a specific query and is discarded after execution. An instance of the Store class
may be reused for different queries, thus keeping the cache of decompressed triple
pages. Currently, Castor does not allow concurrent access to the store.

Because a dataset can contain a huge number of values, the domain initialization
can take some time. To avoid performing the initialization again for every query, the
store keeps a pool of domains. When creating a query, domains are requested from
the store. They are returned to the store when the query is done. Such optimization
is possible because the domain initialization depends solely on the dataset and not
on the query to be solved.

Listing 6.1 shows an example usage of the Castor library. Lines 2 and 3 respectively
create the store and the query. The query creation does not start the CP search.
Lines 4–12 iterate over the solutions and print them out. Each time the next()

function is called, a portion of the search space is explored. If a solution is found, the
execution is halted and next() returns true. The next call to the function resumes
the search, starting from that solution. When the whole search space is explored,
next() returns false.

The call to ensureDirectStrings on line 9 is needed to print out the value. Re-
member that strings in values are represented by identifiers. Value look-ups happen
often when evaluating SPARQL expressions. In such cases, string identifiers often
suffice. Looking up the content of the string would add an unneeded cost. Hence,
string identifiers are not resolved automatically when looking up values.

6.5.2 Tools

Along with the library, Castor provides a set of tools. The castorld program (“ld”
stands for “load”) transforms an RDF dataset from any syntax understood by raptor

to the Castor representation explained in section 6.1. It is responsible for sorting

1available on https://github.com/vianney/castor
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1 int main(int argc, char* argv[]) {

2 castor::Store store("dataset.db");

3 castor::Query query(&store, "SELECT * WHERE { ?s ?p ?o }");

4 while(query.next()) {

5 cout << "Solution:" << endl;

6 for(int i = 0; i < query.requested(); i++) {

7 castor::Variable* x = query.variable(i);

8 castor::Value val = store.lookupValue(x->valueId());

9 val.ensureDirectStrings(store);

10 cout << " " << x->name() << ": " << val << endl;

11 }

12 }

13 cout << "Found " << query.count() << " solutions." << endl;

14 return 0;

15 }

Listing 6.1: Example code solving a simple query with the Castor library. The store

may be reused for other queries.

the strings, the values and the triples and for constructing the B+-trees. As the
dataset may not fit entirely in main memory, an external sort algorithm is used. Thus,
the memory consumption of castorld is constant with respect to the dataset size,
assuming raptor can read the input syntax incrementally.

The castor and castord programs solve SPARQL queries on a dataset generated
by castorld. The castor tool executes a single query, received as an argument,
and outputs the solutions on the standard output. The castord tool (“d” stands
for “daemon”) implements a SPARQL endpoint. It launches a basic HTTP server
answering queries following the SPARQL Protocol [CFT08]. Note that this server
is not production-ready. A query will block the whole server until completion. No
limitations, e.g., a timeout or a limit on the number of results, are enforced, and
concurrent queries are not supported.

6.5.3 Limitations

Castor is a research prototype. It is not yet suitable for real-world applications. In
this section, we discuss some limitations of the current implementation.

Castor targets the SPARQL 1.0 specification [PS08]. The following parts are
however not yet implemented.

• Named graphs. A SPARQL query can be performed over multiple datasets. A
graph operator allows to restrict part of the query to one of the datasets. Such
functionality can be implemented by extending our triple store into a quad
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store, i.e., storing (д,s,p,o) quads instead of (s,p,o) triples. The д component
corresponds to the IRI of the originating graph.

• construct queries. The results of a select query can be easily transformed
into an RDF graph with the construct template.

• describe queries. Like for the construct query form, a describe query re-
turns an RDF graph instead of a solution mapping. The graph should contain
a description of the result values. The precise definition of the description is
not specified.

• Casting operators. In a SPARQL filter, values can be interpreted as another
type. For example, xsd:integer("42")will evaluate to the numerical literal 42.
Such operators should not be difficult to add to the generic forward-checking
propagator.

Thanks to the generic forward-checking propagator, most SPARQL filters are sup-
ported. However, the generic propagator is not efficient. Specialized propagators ex-
ist for arithmetic constraints, variable-to-variable comparisons and variable-to-value
comparisons. More complex filters will likely be slow due to the generic propagator.

The dataset representation is read-only. To add a triple to the dataset, the entire
on-disk structure must be recreated. Castor relies on the ordering of values and
triples to efficiently retrieve data of interest. Adding a value or a triple involves
rebuilding the B+-trees. One possible solution is to use deferring indexes [NW10],
keeping updates in additional trees. Such trees are then periodically merged with the
main indexes when the server is idle.
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Chapter 7

Evaluation

In this chapter, we evaluate the performances of Castor. We first present the bench-
marks that will be used. Then, we compare Castor with state-of-the-art engines. The
third section briefly compares Castor with the Comet CP solver. The last section
covers some technical design choices made by Castor.

7.1 Benchmarks

In order to evaluate the performances of Castor, we use standard benchmarks. The
SPARQL Performance Benchmark, presented in section 7.1.1, is especially interesting
as it contains difficult queries. Even state-of-the-art engines have difficulties to solve
such queries. The Berlin SPARQL Benchmark, shown in section 7.1.2, is used to assess
the scalability of the engines. The queries are simpler, but the datasets are larger.

7.1.1 SPARQL Performance Benchmark

The SPARQL Performance Benchmark (SPPB) [Sch+09] is modeled after the DBLP
database [Ley13]. The DBLP database contains metadata about academic publications,
including their authors, the publishing journal, etc. The social-world distribution of
the DBLP database, i.e., most nodes have a low degree, captures the social network
aspect of the Semantic Web well. Indeed, the Semantic Web is built by combining
many small datasets.

The SPPB includes a deterministic generator that produces DBLP-like datasets
of arbitrary size. The benchmark uses sizes ranging from 10,000 to 5 million triples.
The values over triples ratio is roughly 0.6. Thus, for the 5 million triples dataset, the
initial domain of each variable contains 3 million values or so.

The benchmark provides 17 hand-made queries, designed to cover many use
cases. Some queries are variants of other queries. They are suffixed with a small
letter. Table 7.1 shows an overview of the queries and their general form.
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Query Description

S1 Single BGP with one result
S2 P1 opt P2, where P2 is a single triple pattern
S3a P filter (x = c ) with many results
S3b P filter (x = c ) with few results
S3c P filter (x = c ) with no results
S4 P filter (x < y) with a very large number of results
S5a P filter (x = y)

S5b Single BGP, same results as S5a
S6 P1 diff (P2 filter (x1 = x2 ∧ y1 < y2))

S7 P1 diff (P2 diff P3)
S8 P1 and ((P2 filter E1) union (P3 filter E2))
S9 P1 union P2 with unbound predicates
S10 Single triple pattern with unbound predicate
S11 Single triple pattern with limit and order modifiers
S12a ask version of S5a
S12b ask version of S8
S12c ask query of a single triple not present in the dataset

Table 7.1: The queries provided by the SPARQL Performance Benchmark cover a wide

range of use cases. The authors of the benchmark have identified queries S4, S5a,

S6 and S7 as being the most challenging for current SPARQL engines. The complete

queries are included in appendix A.1.
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SELECT DISTINCT ?person ?name

WHERE {

?art rdf:type bench:Article .

?art dc:creator ?person .

?inproc rdf:type

bench:Inproceedings .

?inproc dc:creator ?person2 .

?person foaf:name ?name .

?person2 foaf:name ?name2

FILTER (?name=?name2)

}

(a) Query S5a

SELECT DISTINCT ?person ?name

WHERE {

?art rdf:type bench:Article .

?art dc:creator ?person .

?inproc rdf:type

bench:Inproceedings .

?inproc dc:creator ?person .

?person foaf:name ?name

}

(b) Query S5b

Listing 7.1: Query S5a returns the names of all persons that occur as author of at

least one inproceeding and at least one article. The filter involving two variables

is challenging for SPARQL engines. Query S5b computes the same set of results

without the filter.

Query S1 is a simple basic graph pattern with only one result. With efficient
indexes, the execution time is expected to be constant with respect to the dataset
size.

Query S2 has an optional pattern consisting of a single triple pattern with a shared
variable. For every solution of P1, there is at most one solution for P2.

Queries S3a, S3b and S3c are small basic graph patterns with a filter assigning a
constant value to a variable. The queries differ only by the constant value appearing
in the filter.

Query S4 has the particularity of computing a very large result set, two orders of
magnitude larger than the other queries.

Query S5a, shown in listing 7.1, is a basic graph pattern with an equality filter
between two variables. As shown in chapter 2, the equivalence between two values
does not always mean that those two values are identical. However, in this particular
dataset, there is a one-to-one mapping between the persons and their names. Query
S5a can thus be rewritten as query S5b, without a filter.

Queries S6 and S7 make use of negations. The filters in S6 always involve a
variable of P1 and a variable of P2.

Query S8 involves an union pattern with filters. The filters are all of the form
x � y.

Queries S9 and S10 involve unbound predicates, i.e., triple patterns with a variable
as predicate. SPARQL engines tend to be less optimized for such less common queries.

Query S11 returns the top-n results of a query by combining an order and a
limit solution modifier.
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Queries S12a, S12b and S12c are ask queries, i.e., limited to the first result found.
The authors of the benchmark have found that queries S4, S5a, S6 and S7 are

the most challenging ones for current SPARQL engines. Those queries involve fil-
ters with more than one variable and/or diff patterns. Engines based on relational
database technology usually post-process filters. Constraint programming, however,
can exploit filters during the search.

The benchmark procedure is to run each query on a freshly started store. The
system cache should be cleared between each query. Such procedure is motivated
because the queries are not randomized. An engine could cache the results for a
query and serve it back when called again. Measuring such behavior would not be
relevant.

7.1.2 Berlin SPARQL Benchmark

The Berlin SPARQL Benchmark (BSBM) [BS09] is described as follows on its website1.

The Berlin SPARQL Benchmark (BSBM) defines a suite of bench-
marks for comparing the performance of [SPARQL endpoints] across
architectures. The benchmark is built around an e-commerce use case
in which a set of products is offered by different vendors and consumers
have posted reviews about products. The benchmark query mix illus-
trates the search and navigation pattern of a consumer looking for a
product.

The BSBM includes a deterministic data generator that produces datasets of arbi-
trary size, specified by a scale factor. The experiments conducted by the authors of
the benchmark use datasets with 25 million, 50 million, 100 million, and 200 million
triples. The values over triples ratio is about ¼. Thus, the 100 million triples dataset
contains 25 million values or so.

The BSBM covers three use cases.

• The Explore use case simulates a consumer looking for a product.

• The Explore and Update use case simulates a read/write scenario using SPARQL
1.1 Update queries.

• The Business Intelligence use case rely on SPARQL 1.1 features such as group-
ing and aggregation.

Because Castor does not support the additional SPARQL 1.1 features, we focus on
the Explore use case.

The Explore use case contains 12 SPARQL query patterns to be instantiated by
the test driver, by replacing placeholders with random values. The test driver sends
queries successively to the tested SPARQL engine and measures the total time taken
for the whole query mix, as well as the execution time of each query.

1http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
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Query Description distinct order + limit

B1 P filter (x > c ) � �
B2 BGP with simple opt patterns
B3 diff pattern �
B4 union pattern � �
B5 BGP with arithmetic constraints � �
B7 Complex opt patterns
B8 langMatches filter �
B11 Unbound predicates

Table 7.2: The queries provided by the Berlin SPARQL Benchmark are similar to

relational database access. The complete queries are given in appendix A.2.

In contrast to the SPPB, the BSBM is designed to evaluate engines with a warm
cache. It does so by first running 2000 warm-up query mixes without measuring
the performances. Then it performs the real benchmark with 500 query mixes. The
procedure is sound because the queries are randomized. Measuring warm-cache
performance gives a better insight on real-world performances than cold-cache per-
formances. In real-world applications, SPARQL engines are often long-lasting servers.

The queries are very similar to relational database accesses. Table 7.2 shows an
overview of the queries. Four queries out of 12 were left out:

• Query B6 has a regular expression filter and is deprecated by the authors of
the benchmark.

• Queries B9 and B12 respectively use the describe and construct query forms.

• Query B10 uses a casting operator in a SPARQL expression.

Such features are unsupported by Castor (see section 6.5.3).
As shown in table 7.2, most queries include an order and a limit solutionmodifier.

In such queries, the highest limit is 20 solutions. A simple opt pattern consists of a
single triple pattern with only one non-shared variable.

Query B1 searches for products with specific features. Hence, it touches a lot
of data across the whole RDF graph. Query B2 gathers information about a single
product. The evaluation only covers a small subgraph of the dataset.

Query B5 is interesting as it uses arithmetic constraints. It is shown in listing 7.2.
The arithmetic constraints can be efficiently exploited by Castor during the search.

7.2 SPARQL Engine Comparison

To evaluate the performances of Castor, we compare against state-of-the-art SPARQL
engines on the benchmarks described above. In the first part of the section, we present
the contenders. Then, we show the results of the SPPB and the BSBM benchmarks.
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SELECT DISTINCT ?product ?productLabel

WHERE {

?product rdfs:label ?productLabel .

FILTER (%ProductXYZ% != ?product)

%ProductXYZ% bsbm:productFeature ?prodFeature .

?product bsbm:productFeature ?prodFeature .

%ProductXYZ% bsbm:productPropertyNumeric1 ?origProperty1 .

?product bsbm:productPropertyNumeric1 ?simProperty1 .

FILTER (?simProperty1 < (?origProperty1 + 120) &&

?simProperty1 > (?origProperty1 - 120))

%ProductXYZ% bsbm:productPropertyNumeric2 ?origProperty2 .

?product bsbm:productPropertyNumeric2 ?simProperty2 .

FILTER (?simProperty2 < (?origProperty2 + 170) &&

?simProperty2 > (?origProperty2 - 170))

}

ORDER BY ?productLabel

LIMIT 5

Listing 7.2: Query B5 searches for products that are similar to another one. The

arithmetic filter can be efficiently exploited in constraint programming.

7.2.1 Considered SPARQL Engines

We consider three well-known open-source SPARQL engine.

Sesame [BKH02] is a modular Java API to access the Semantic Web, developed
by Aduna. It includes an in-memory and an on-disk triple store capable of solving
SPARQL queries. The store can be swapped with another implementation by using
plugins, such as Ontotext’s proprietary OWLIM. In this chapter, we use the built-in
on-disk triple store.

Sesame is not known for stellar performances, but it gives a baseline of the per-
formances of common non-optimized engines. We use Sesame 2.6.1 running on Java
1.6.0 update 30. The native on-disk store is configured with 3 indexes: SPOG, POSG,
and OSPG.

4store [HLS09] is an efficient SPARQL engine written in C, developed at Garlik
with a focus on scalability. It is designed to operate in large clusters on datasets with
billions of triples. We use 4store 1.1.5 with the default configuration.

Virtuoso [EM09] is a large database system written in C, developed by OpenLink
Software. It is both a relational database system and an RDF triple store. The main
DBPedia servers are powered byVirtuoso. We use the open-source edition of Virtuoso,
version 6.1.6, with the default configuration.

Virtuoso is known to have good performances due to aggressive optimization.
However, such optimization does not always respect the SPARQL specification. For
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example, Virtuoso does not distinguish between the values ("1",xsd:integer) and
("1.0",xsd:float).

Even though Castor borrows some concepts from RDF-3X, we do not compare
with it. RDF-3X implements only basic graph patterns and does not handle filters.

7.2.2 SPARQL Performance Benchmark

We have generated 5 datasets with 10k, 25k, 250k, 1M and 5M triples. We have
performed cold runs of each query over all the generated datasets, i.e., between two
runs the engines were restarted and the system caches were cleared with “sysctl -w

vm.drop_caches=3”. We have set a timeout of 30 minutes.

Each query is run three times for each dataset to exclude variations incurred by
the operating system. We have observed no significant variance in query execution
time.

Note that cold runs may not give the most significant results for some engines.
E.g., Virtuoso aggressively fills its cache on the first query in order to perform better
on subsequent queries. However, such setting is required by the non-randomized
queries.

All experiments were conducted on an Intel Pentium 4 3.2 GHz computer running
ArchLinux 64bits with kernel 3.8.8, 3 GB of DDR-400 RAM and a 40 GB Samsung
SP0411C SATA/150 disk with ext4 filesystem. We report the time spent to execute the
queries, not including the time needed to load the datasets. The mean execution times
are shown in fig. 7.1. We do not show the standard deviation of the measurements,
as it was negligible for all instances.

Exploiting the constraints during the search gives an advantage to Castor. Queries
S5a and S5b compute the same set of solutions. S5a enforces the equality of two
variables with a filter, whereas S5b uses a single variable for both. Note that such
optimization is difficult to do automatically, as equivalence does not imply identity in
SPARQL (see chapter 2). Detecting whether one can replace the two equivalent vari-
ables by a single one requires a costly analysis of the dataset, which is not performed
by any of the tested engines. Sesame and 4store timed out when trying to solve query
S5a on the 250k and above datasets. Because Virtuoso breaks the SPARQL standard
and treats equality as identity, it performs as well on both queries S5a and S5b. Castor
does no query optimization, but still performs equally well on both variants thanks
to its ability to exploit the filter at every node of the search tree.

Query S12a replaces the select query form by ask in S5a. The solution is a
boolean value reflecting whether there exists a solution to the query. Thus, we only
have to look for the first solution. However, Castor still needs to initialize the search
tree, which is the greatest cost. A similar behavior is observed in query S1. Sesame
and 4store show a near-constant execution time, while Castor has to go through the
entire CP process.

Executing query S4 results in many solutions (e.g., for the 1M dataset, S4 results
in 2.5 × 106 solutions versus 3.5 × 104 solutions for S5a). The filter does not allow for
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Figure 7.1: Castor outperforms state-of-the-art engines on queries from SPPB with

filters. It is competitive on other queries. The x-axis shows the dataset sizes. The

y-axis shows the query execution time. Note that both axes have a logarithmic scale.
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Figure 7.2: Comparison of SPARQL engines on the SPPB benchmark (continued)
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much pruning. Nevertheless, Castor is still competitive with the other engines. None
of the engines were able to solve the query for the 5M dataset in less than 30 minutes.

Queries with negations, i.e., S6 and S7, are not handled well by Castor, nor by
Sesame or 4store. Only Virtuoso is able to return results in a reasonable amount of
time.

On other queries, Castor is very competitive with state-of-the-art engines. How-
ever, the execution time increases quicker than for other engines (see for example
queries S2, S8, S10 and S12b). This observation leads to the question whether the con-
straint programming approach scales to large datasets. Such question is investigated
in the next section.

7.2.3 Berlin SPARQL Benchmark

We have generated 4 datasets with 25M, 50M, 100M, and 200M triples. The provided
test driver is used to run 2000 warm-up query mixes and 500 benchmark query mixes.
For each combination of dataset and engine, we followed the following procedure.

1. Start the server.

2. Create a new database and import the RDF graph.

3. Shutdown the server, clear caches with “sysctl -w vm.drop_caches=3”, and
restart the server.

4. Launch the BSBM test driver.

All experiments were conducted on a KVM virtual machine running on an AMD
Opteron 6284 2.7 GHz computer with ArchLinux 64bits, kernel 3.9.3, 16 GB of main
memory, and 500 GB of disk space with ext4 filesystem. The virtual disk partition
was directly mapped to an LVM volume, using the virtio driver, providing low virtual-
ization overhead. One core was allocated to the virtual machine. To make better use
of the available RAM, Castor was configured to keep a cache of 50,000 triple pages,
amounting to 9.2 GB. We report the average time spent to execute the queries, not
including the time needed to load the datasets. The mean execution times are shown
in fig. 7.3.

Overall, Castor is competitive with state-of-the-art engines on these larger graphs.
As expected, Castor is able to outperform other engines on query B5 by efficiently
exploiting the arithmetic constraints. Surprisingly, Castor is also able to best Virtuoso
and 4store on query B11. Query B11 is a union of two single triple patterns with
unbound predicates. We suspect the performances of Castor can be attributed to the
more complete RDF-3X indexes.

7.3 The Need for a Specialized Solver

The model described in chapter 5 can be used to solve SPARQL queries with an off-
the-shelf CP solver. However, the huge domains and large triple table make their use
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Figure 7.3: Castor is competitive with state-of-the-art engines on large datasets

from the BSBM. On queries with complex filters, e.g., B5, Castor keeps a distinct

advantage. The x-axis shows the dataset size in number of triples. The y-axis shows

the average query execution time. Both axes have a logarithmic scale.
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impractical.

To show this point, we have implemented the model in Comet [Dyn10]. Values
are mapped to integer identifiers as described in section 6.1.1. The built-in table
constraint is used. The entire triple table is loaded in memory. The loading itself is
not included in the execution time. Built-in constraints are used for the filters. Such
constraints do not respect the SPARQL specification entirely, but nevertheless return
correct results in our particular test settings. The built-in labelFF search strategy is
used.

We have run a subset of the SPPB benchmark, including the challenging queries.
As we have not implemented solution modifiers in our Comet model, we have modi-
fied the queries to remove any solution modifier.

The Comet implementation performs very badly on all queries as shown in fig. 7.4.
The results are worse than state-of-the-art SPARQL engines on all queries, except
S5a′, where Comet efficiently exploits the equality filter during the search.

A specialized solver is thus needed in Castor in order to compete with state-of-
the-art SPARQL engines.

7.4 Impact of Technical Choices

Chapter 6 presented alternative design choices of some aspects. In this section, we
evaluate the various alternatives and show the rationale behind the default choices
made by Castor.

The following subsections deal with the search heuristics, the propagation of the
triple constraints, the propagation of the filter constraints and the size of the triple
cache.

7.4.1 Search Heuristics

To evaluate the impact of the variable selection heuristic on the query execution time,
we have run the SPPB benchmark with the following heuristics.

• dom: select the variable with the smallest domain,

• deg: select the variable with the highest degree,

• ddeg: select the variable with the highest dynamic degree,

• dom/deg: select the variable with the smallest domain size over degree ratio,

• dom/ddeg: select the variable with the smallest domain size over dynamic
degree ratio.

• random: select an unassigned variable at random. Results for the random
heuristic are averaged over 10 runs.
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Figure 7.4: The off-the-shelf Comet solver does not perform well on any query. It is

however able to best 4store on query S5a′ by exploiting the equality filter. Note that

all solution modifiers have been removed from the queries.
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The deg heuristic is static, i.e., the ordering of the variables does not change during
the search. The other heuristics are dynamic.

The search for a solution of query S1, S3b, S3c, S10, S12a, S12b, or S12c, is (mostly)
backtrack-free. Hence, the chosen search heuristic has no impact on the performances
of solving the query. The results for the other queries are shown in fig. 7.5. Generally,
all search heuristics perform equally well, with a slight advantage for the dom/deg
heuristic. It is thus the default heuristic in Castor.

Heuristics based on variable degree alone have a slight disadvantage. Considering
the small number of constraints involved in a query, this is not surprising. The degrees
are not different enough to differentiate between the variables. On the other hand,
the domain size gives an effective measure. Due to the large number of values in the
dataset, the domain size can vary widely from one variable to another.

Query S11 has only two variables and only one triple, involving both variables.
As the order and limit solution modifiers are used together, the branch-and-bound
technique described in section 5.2.2 is used. The variable to be minimized has degree
2, because it is also involved in the bounding constraint. Hence, it is chosen first
by the variable selection heuristics deg and dom/deg, which obviously is the right
choice.

7.4.2 Consistency Level of the Triple Constraint

Section 6.3.1 presented three different propagators for the triple pattern constraint.
To evaluate which consistency level should be achieved, we have run the SPPB bench-
mark using the following three propagators.

• FC: simple forward checking,

• FC+: forward checking with one-time domain consistency when only two
variables are unassigned,

• DC: full domain consistency.

The FC+ propagator is always better than the DC propagator, as shown in fig. 7.6.
This is expected, as the DC propagator is called on each variable modification and has
to traverse the whole table. The FC+ propagator only achieves domain consistency
once, when one variable is bound.

Compared to the simpler FC propagator, the FC+ propagator performs better in
the challenging queries S5a and S7, as well in queries S5b, S9, S10 and S11. The
additional propagation performed higher up in the tree (when two variables are
unassigned) allows FC+ to prune larger parts of the search tree. Triple patterns
in SPARQL queries often have at least one constant component. Hence, the FC+
propagator can often achieve its one-time domain consistency at the very beginning
of the search.

The FC propagator performs slightly better on ask queries where we stop after
the first solution found. The additional pruning performed by the FC+ propagator
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Figure 7.5: The dom/deg search heuristic is the overall winner. Only queries where
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Figure 7.6: The FC+ propagator for the triple constraint is the overall best-performing.

However, the FC propagator is clearly better on the challenging query S6.
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Figure 7.7: Comparison of propagators for the triple constraint (continued)
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is unnecessary if the solution can be reached without too many backtracks. Such
behavior also appears in the challenging query S6. When evaluating the P1 diff P2
pattern, we only want to know whether P2 is satisfiable. Hence, we also stop after the
first solution. While we gain some performances by using FC if there is a solution,
we may also loose efficiency if there are no solutions. In such cases, the whole search
(sub)tree must be explored. The FC+ propagator is then more efficient, as shown by
the results of query S7.

No easy rule could be found for choosing between FC and FC+. The FC+ propaga-
tor is however more efficient than FC in most cases. Hence, it was chosen as default
propagator in Castor.

7.4.3 Propagation of Filter Constraints

Exploiting filters during the search is one of the main interests of using constraint
programming to solve SPARQL queries. To assess such claim, we have run the SPPB
benchmark with three configurations of Castor.

• Post-process: all filters are post-processed as current SPARQL engines without
optimization would do. In this configuration, the P1 diff P2 pattern is handled
as a (P1 optP2) filter (¬ bound(x )) pattern, where the filter is post-processed.

• FC: the diff pattern is handled as explained in chapter 5. All other filters are
enforced using the generic forward-checking propagator shown in section 6.3.2.

• Specialized: filters are enforced using specialized propagators. Equality con-
straints achieve domain consistency. Inequality constraints achieve bound
consistency.

The configuration with specialized propagators outperforms the other configu-
rations on all queries with filters, as shown in fig. 7.8. On challenging queries like
S5a and S6, having specialized propagators is especially important. In such queries,
the specialized propagators achieve a higher consistency level than the generic FC
propagator. Hence, more pruning is performed higher up the search tree.

Note that the generic forward checking propagator has a high cost due to the
traversing of the whole domain of the unbound variable. It is sometimes better to
post-process the filters, as demonstrated by the challenging queries S4 and S6. Both
queries have inequality filters x < y. We speculate that the cost of performing the
generic forward checking propagator on such filters is too high compared to the few
pruning gained.

7.4.4 Impact of the Triple Cache

The propagation of the triple constraints accesses the triple store. Such propagation
is performed many times during the evaluation of a query. Leaf pages in the triple
store are compressed. To avoid decompressing the same leaf pages over and over,
Castor maintains a cache of recently decompressed leaf pages.
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Figure 7.8: Specialized filters improve on all queries. Using the generic forward-

checking propagator (FC) is usually better than post-processing the filter (Post-

process). However, there are cases where traversing the whole domain is too costly,

e.g., queries S4 and S6.
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To evaluate the impact of the cache size, we have run the BSBM benchmark on
the 100M dataset with varying sizes. The results in fig. 7.9 show little impact of the
cache size on the query execution time. As expected, the performances are slightly
improving with higher cache sizes.

However, with very large sizes, i.e., 50k and 100k, the query execution times are
slightly increasing again. Higher cache size implies higher memory usage. Hence,
less memory is left for the system cache and disk reads are slower.
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Figure 7.9: The size of the triple cache does not have a high impact on the query

execution time. The graphs show the average query execution time of Castor on the

100M dataset. The x-axis represents the size of the triple cache.
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Chapter 8

Conclusion

The goal of this thesis is to evaluate the feasibility and efficiency of solving SPARQL
queries using Constraint Programming (CP). To this effect, we proposed a reformula-
tion of SPARQL semantics by means of CSPs, and an operational semantics that can
be implemented in off-the-shelf CP solvers. We also introduced Castor, a SPARQL
engine implementing our semantics with a lightweight specialized solver. Section 8.1
recalls the main achievements of this thesis. Section 8.2 outlines the limitations of
our approach, as well as possible directions for future research.

8.1 Results

The first step in solving SPARQL queries with CP consists in reformulating the seman-
tics by means of Constraint Satisfaction Problems (CSPs). This is done in chapter 5.
A basic graph patterns (BGP) is translated directly into a CSP with table constraints.
Filters on BGPs are added to the set of constraints, and are thus exploited during the
search.

Compound patterns cannot always be translated to pure CSPs. Unlike CSPs, not
all variables need to be assigned in the solutions of SPARQL queries. The SPARQL
semantics for compound patterns is defined by merging the result sets of BGPs.
We proposed replacement semantics to solve the CSPs associated with the BGPs
sequentially, taking into account the partial solution found so far. Such semantics is
better suited for use in a tree search. We proved that the semantics are correct, under
some conditions that are not restrictive in real-life queries.

Based on the denotational CSP semantics, we proposed an operational CP se-
mantics that can be implemented with off-the-shelf CP solvers that allow posting
constraints during the search. Experimental evaluation with the Comet [Dyn10]
solver shows us that such approach is feasible, albeit not efficient (see chapter 7). The
problem is that off-the-shelf solvers are not optimized for handling huge domains
and tables.
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In chapter 6, we introduced Castor embedding a specialized CP solver designed
with large domains in mind. The key idea is to avoid as much as possible data
structures and algorithms whose time or space complexity is proportional to the
database size. The table constraints achieve forward-checking consistency with an
on-disk table structure borrowed from RDF-3X [NW08].

We use a sparse set representation for finite domains. We complemented the
representationwith a bound representation that is synchronized lazily with the sparse
set representation. Thanks to the dual representation, all operations on the domains
are performed in constant time. We also extended the sparse set representation to
allow for value-based propagation with a constraint-based queue.

Experimental evaluation (see chapter 7) shows the efficiency of our lightweight
approach. Castor is competitive with state-of-the-art SPARQL engines, even on large
databases. On complex queries with filters involving multiple variables, Castor is
able to outperform state-of-the-art engines. However, we also observed that the per-
formances of Castor on simple queries degrade quicker than state-of-the-art engines
when increasing the database size. Our approach does not scale as well as relational
database technology.

8.2 Perspectives

Castor is a research prototype and has several limitations as detailed in chapter 6.
Apart from those implementation limitations, two research directions emerge for
future work: increasing the performances and improving the expressiveness.

8.2.1 Performances

On the performance side, one open research question is how to deal with filters on
compound patterns that cannot be pushed down onto basic graph patterns. If we
exploit such filters during the search, solutions of an opt or diff pattern could be
pruned, yielding erroneous results. Hence, those filters are currently post-processed.
However, one could investigate whether there are cases where some amount of
pruning could be performed.

The search heuristics used by Castor are very basic. While the standard heuristics
all seem more or less equally good (see chapter 7), we did not evaluate specialized
heuristics. One could use the statistics generated by relational databases, such as
selectivity estimates, to provide such specialized search heuristics. The statistics could
also be used to order the propagators that are waiting to be called in the propagation
queue. As we do not maintain domain consistency, the order in which the propagators
are called may impact the resulting pruning.

A broader question is the potential combination of relational database technol-
ogy (RDB) and constraint programming. RDB gives one point of view on how to
solve SPARQL queries. This thesis provides an alternative point of view based on
CP. Some features are considered an optimization in one domain, while they come
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standard in the other. For example, exploiting filters during the search is standard in
CP, while it is an optimization in RDB.

By propagating each triple pattern separately, Castor basically performs a kind of
nested loop join. There are much more efficient join operators in relational databases.
To take advantage of such operators, one could group multiple triple patterns and
propagate those together using RDB techniques. An open question is how many and
which triple patterns should be grouped.

Similarly, we could use RDB to pre-process the query. In such case, RDB would
process the query, joining result sets together, up to the point where the results of a
join would grow too large. Then, CP would take over the search with the hope that
filters would be able to reduce the search space.

8.2.2 Expressiveness

Castor currently implements most of SPARQL 1.0 features. Recently, the W3C has
standardized an update to the language, SPARQL 1.1 [HS13]. One notable new feature
is the ability to specify property paths in place of triples in basic graph patterns. Such
property paths describe a path in the RDF graph with a language that is similar to
regular expressions. Specialized propagators could be designed to handle such path
constraints efficiently.

The SPARQL language allows for engine-specific extensions through custom func-
tions in filter expressions. Using this facility, a large number of additional constraints
could be provided to the user. However, the propagators of such constraints would
have to be able to handle the large domains of the variables.

Throughout the thesis, we have ignored reasoning mechanisms, such as RDF-
Schema and OWL. By applying rules, such mechanisms can infer additional triples
in an RDF graph. To use Castor with the additional triples, we could compute the
full deductive closure of the input graph. However, such approach is very inefficient.
A better alternative would be to somehow integrate the inference rules in the CP
model. We would need to redefine how a triple pattern is translated to constraints in
the CSP corresponding to the basic graph pattern.

For example, if we consider an RDF Schema class hierarchy, a triple pattern
(p,rdf:type,foaf:Agent) could be translated to theMember((p,rdf:type,x ),G ) con-
straint, introducing an additional variable x . The domain of x would be foaf:Agent
and all of its subclasses.

One could also be interested in the qualitative aspects of the solutions. SPARQL
allows to order the solutions by some criteria, defined as expressions involving the
query variables. We could enhance the ordering by taking into account other param-
eters, such as the trustworthiness or the relevance of the involved triples.

Finally, the SPARQL standard only defines complete evaluation of queries, i.e.,
we are looking for all the solutions. Doing so makes sense under a closed-world
assumption, where an absent statement means the statement is false. The graph is
thus assumed to contain all the knowledge. However, under an open-world assump-
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tion, we cannot guarantee that we dispose of the entire knowledge. The open-world
assumption is common in the Semantic Web. In such a setting, finding all the so-
lutions might be irrelevant, because there is no guarantee that there cannot be any
more solutions. Instead, one might be interested in solving the query approximately.
Random restarts or large neighborhood search can greatly increase the speed of the
CP search, at the cost of losing completeness.
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Appendix A

BenchmarkQueries

This appendix contains the complete SPARQL queries that were used in the bench-
marks described in chapter 7. To improve clarity, the prefix definitions are omitted.

A.1 SPARQL Performance Benchmark

Here, we present the queries of the SPARQL Performance Benchmark [Sch+09]. The
descriptions of the queries are those given by the authors of the benchmark. Where
applicable, we also show the simplified queries that were used to compare with Comet
(see section 7.3).

S1

Return the year of publication of “Journal 1 (1940)”.

SELECT ?yr

WHERE {

?journal rdf:type bench:Journal .

?journal dc:title "Journal 1 (1940)"^^xsd:string .

?journal dcterms:issued ?yr

}

S2

Extract all inproceedings with properties dc:creator, bench:booktitle, dc:title,
swrc:pages, dcterms:partOf, rdfs:seeAlso, foaf:homepage, dcterms:issued, and
optionally bench:abstract, including these properties.

SELECT ?inproc ?author ?booktitle ?title

?proc ?ee ?page ?url ?yr ?abstract
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WHERE {

?inproc rdf:type bench:Inproceedings .

?inproc dc:creator ?author .

?inproc bench:booktitle ?booktitle .

?inproc dc:title ?title .

?inproc dcterms:partOf ?proc .

?inproc rdfs:seeAlso ?ee .

?inproc swrc:pages ?page .

?inproc foaf:homepage ?url .

?inproc dcterms:issued ?yr

OPTIONAL {

?inproc bench:abstract ?abstract

}

}

ORDER BY ?yr

Simplified query S2′:

SELECT ?inproc ?author ?booktitle ?title

?proc ?ee ?page ?url ?yr ?abstract

WHERE {

?inproc rdf:type bench:Inproceedings .

?inproc dc:creator ?author .

?inproc bench:booktitle ?booktitle .

?inproc dc:title ?title .

?inproc dcterms:partOf ?proc .

?inproc rdfs:seeAlso ?ee .

?inproc swrc:pages ?page .

?inproc foaf:homepage ?url .

?inproc dcterms:issued ?yr

OPTIONAL {

?inproc bench:abstract ?abstract

}

}

S3a

Select all articles with property swrc:pages.

SELECT ?article

WHERE {

?article rdf:type bench:Article .

?article ?property ?value

FILTER (?property = swrc:pages)

}
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S3b

Select all articles with property swrc:month.

SELECT ?article

WHERE {

?article rdf:type bench:Article .

?article ?property ?value

FILTER (?property = swrc:month)

}

S3c

Select all articles with property swrc:isbn.

SELECT ?article

WHERE {

?article rdf:type bench:Article .

?article ?property ?value

FILTER (?property = swrc:isbn)

}

S4

Select all distinct pairs of article author names for authors that have published in the
same journal.

SELECT DISTINCT ?name1 ?name2

WHERE {

?article1 rdf:type bench:Article .

?article2 rdf:type bench:Article .

?article1 dc:creator ?author1 .

?author1 foaf:name ?name1 .

?article2 dc:creator ?author2 .

?author2 foaf:name ?name2 .

?article1 swrc:journal ?journal .

?article2 swrc:journal ?journal

FILTER (?name1 < ?name2)

}

Simplified query S4′:

SELECT ?name1 ?name2

WHERE {

?article1 rdf:type bench:Article .

?article2 rdf:type bench:Article .
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?article1 dc:creator ?author1 .

?author1 foaf:name ?name1 .

?article2 dc:creator ?author2 .

?author2 foaf:name ?name2 .

?article1 swrc:journal ?journal .

?article2 swrc:journal ?journal

FILTER (?name1 < ?name2)

}

S5a

Return the names of all persons that occur as author of at least one inproceeding and
at least one article.

SELECT DISTINCT ?person ?name

WHERE {

?article rdf:type bench:Article .

?article dc:creator ?person .

?inproc rdf:type bench:Inproceedings .

?inproc dc:creator ?person2 .

?person foaf:name ?name .

?person2 foaf:name ?name2

FILTER (?name = ?name2)

}

Simplified query S5a′:

SELECT ?person ?name

WHERE {

?article rdf:type bench:Article .

?article dc:creator ?person .

?inproc rdf:type bench:Inproceedings .

?inproc dc:creator ?person2 .

?person foaf:name ?name .

?person2 foaf:name ?name2

FILTER (?name = ?name2)

}

S5b

Return the names of all persons that occur as author of at least one inproceeding and
at least one article (same as S5a).

SELECT DISTINCT ?person ?name

WHERE {
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?article rdf:type bench:Article .

?article dc:creator ?person .

?inproc rdf:type bench:Inproceedings .

?inproc dc:creator ?person .

?person foaf:name ?name

}

Simplified query S5b′:

SELECT ?person ?name

WHERE {

?article rdf:type bench:Article .

?article dc:creator ?person .

?inproc rdf:type bench:Inproceedings .

?inproc dc:creator ?person .

?person foaf:name ?name

}

S6

Return, for each year, the set of all publications authored by persons that have not
published in years before.

SELECT ?yr ?name ?document

WHERE {

?class rdfs:subClassOf foaf:Document .

?document rdf:type ?class .

?document dcterms:issued ?yr .

?document dc:creator ?author .

?author foaf:name ?name

OPTIONAL {

?class2 rdfs:subClassOf foaf:Document .

?document2 rdf:type ?class2 .

?document2 dcterms:issued ?yr2 .

?document2 dc:creator ?author2

FILTER (?author = ?author2 && ?yr2 < ?yr)

} FILTER (!bound(?author2))

}

S7

Return the titles of all papers that have been cited at least once, but not by any paper
that has not been cited itself.

SELECT DISTINCT ?title
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WHERE {

?class rdfs:subClassOf foaf:Document .

?doc rdf:type ?class .

?doc dc:title ?title .

?bag2 ?member2 ?doc .

?doc2 dcterms:references ?bag2

OPTIONAL {

?class3 rdfs:subClassOf foaf:Document .

?doc3 rdf:type ?class3 .

?doc3 dcterms:references ?bag3 .

?bag3 ?member3 ?doc

OPTIONAL {

?class4 rdfs:subClassOf foaf:Document .

?doc4 rdf:type ?class4 .

?doc4 dcterms:references ?bag4 .

?bag4 ?member4 ?doc3

} FILTER (!bound(?doc4))

} FILTER (!bound(?doc3))

}

Simplified query S7′:

SELECT ?title

WHERE {

?class rdfs:subClassOf foaf:Document .

?doc rdf:type ?class .

?doc dc:title ?title .

?bag2 ?member2 ?doc .

?doc2 dcterms:references ?bag2

OPTIONAL {

?class3 rdfs:subClassOf foaf:Document .

?doc3 rdf:type ?class3 .

?doc3 dcterms:references ?bag3 .

?bag3 ?member3 ?doc

OPTIONAL {

?class4 rdfs:subClassOf foaf:Document .

?doc4 rdf:type ?class4 .

?doc4 dcterms:references ?bag4 .

?bag4 ?member4 ?doc3

} FILTER (!bound(?doc4))

} FILTER (!bound(?doc3))

}
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S8

Compute authors that have published with “Paul Erdoes”, or with an author that has
published with “Paul Erdoes”.

SELECT DISTINCT ?name

WHERE {

?erdoes rdf:type foaf:Person .

?erdoes foaf:name "Paul Erdoes"^^xsd:string .

{

?document dc:creator ?erdoes .

?document dc:creator ?author .

?document2 dc:creator ?author .

?document2 dc:creator ?author2 .

?author2 foaf:name ?name

FILTER (?author != ?erdoes &&

?document2 != ?document &&

?author2 != ?erdoes &&

?author2 != ?author)

} UNION {

?document dc:creator ?erdoes.

?document dc:creator ?author.

?author foaf:name ?name

FILTER (?author != ?erdoes)

}

}

Simplified query S8′:

SELECT ?name

WHERE {

?erdoes rdf:type foaf:Person .

?erdoes foaf:name "Paul Erdoes"^^xsd:string .

{

?document dc:creator ?erdoes .

?document dc:creator ?author .

?document2 dc:creator ?author .

?document2 dc:creator ?author2 .

?author2 foaf:name ?name

FILTER (?author != ?erdoes &&

?document2 != ?document &&

?author2 != ?erdoes &&

?author2 != ?author)

} UNION {

?document dc:creator ?erdoes.
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?document dc:creator ?author.

?author foaf:name ?name

FILTER (?author != ?erdoes)

}

}

S9

Return incoming and outcoming properties of persons.

SELECT DISTINCT ?predicate

WHERE {

{

?person rdf:type foaf:Person .

?subject ?predicate ?person

} UNION {

?person rdf:type foaf:Person .

?person ?predicate ?object

}

}

Simplified query S9′:

SELECT ?predicate

WHERE {

{

?person rdf:type foaf:Person .

?subject ?predicate ?person

} UNION {

?person rdf:type foaf:Person .

?person ?predicate ?object

}

}

S10

Return all subjects that stand in any relation to “Paul Erdoes”. In our scenario, the
query might also be formulated as: return publications and venues in which “Paul
Erdoes” is involved either as author or as editor.

SELECT ?subject ?predicate

WHERE {

?subject ?predicate person:Paul_Erdoes

}
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S11

Return (up to) 10 electronic edition URLs starting from the 51th publication, in lexi-
cographical order.

SELECT ?ee

WHERE {

?publication rdfs:seeAlso ?ee

}

ORDER BY ?ee

LIMIT 10

OFFSET 50

A.2 Berlin SPARQL Benchmark

Here, we present the queries of the Berlin SPARQL Benchmark [BS09]. The descrip-
tions of the queries are those given by the authors of the benchmark.

B1

Find products for a given set of generic features.

SELECT DISTINCT ?product ?label

WHERE {

?product rdfs:label ?label .

?product a %ProductType% .

?product bsbm:productFeature %ProductFeature1% .

?product bsbm:productFeature %ProductFeature2% .

?product bsbm:productPropertyNumeric1 ?value1 .

FILTER (?value1 > %x%)

}

ORDER BY ?label

LIMIT 10

B2

Retrieve basic information about a specific product for display purposes.

SELECT ?label ?comment ?producer ?productFeature

?propertyTextual1 ?propertyTextual2 ?propertyTextual3

?propertyNumeric1 ?propertyNumeric2 ?propertyTextual4

?propertyTextual5 ?propertyNumeric4

WHERE {

%ProductXYZ% rdfs:label ?label .
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%ProductXYZ% rdfs:comment ?comment .

%ProductXYZ% bsbm:producer ?p .

?p rdfs:label ?producer .

%ProductXYZ% dc:publisher ?p .

%ProductXYZ% bsbm:productFeature ?f .

?f rdfs:label ?productFeature .

%ProductXYZ% bsbm:productPropertyTextual1 ?propertyTextual1 .

%ProductXYZ% bsbm:productPropertyTextual2 ?propertyTextual2 .

%ProductXYZ% bsbm:productPropertyTextual3 ?propertyTextual3 .

%ProductXYZ% bsbm:productPropertyNumeric1 ?propertyNumeric1 .

%ProductXYZ% bsbm:productPropertyNumeric2 ?propertyNumeric2 .

OPTIONAL {

%ProductXYZ% bsbm:productPropertyTextual4 ?propertyTextual4

}

OPTIONAL {

%ProductXYZ% bsbm:productPropertyTextual5 ?propertyTextual5

}

OPTIONAL {

%ProductXYZ% bsbm:productPropertyNumeric4 ?propertyNumeric4

}

}

B3

Find products having some specific features and not having one feature.

SELECT ?product ?label

WHERE {

?product rdfs:label ?label .

?product a %ProductType% .

?product bsbm:productFeature %ProductFeature1% .

?product bsbm:productPropertyNumeric1 ?p1 .

FILTER (?p1 > %x%)

?product bsbm:productPropertyNumeric3 ?p3 .

FILTER (?p3 < %y%)

OPTIONAL {

?product bsbm:productFeature %ProductFeature2% .

?product rdfs:label ?testVar

}

FILTER (!bound(?testVar))

}

ORDER BY ?label

LIMIT 10
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B4

Find products matching two different sets of features.

SELECT DISTINCT ?product ?label ?propertyTextual

WHERE {

{

?product rdfs:label ?label .

?product rdf:type %ProductType% .

?product bsbm:productFeature %ProductFeature1% .

?product bsbm:productFeature %ProductFeature2% .

?product bsbm:productPropertyTextual1 ?propertyTextual .

?product bsbm:productPropertyNumeric1 ?p1 .

FILTER (?p1 > %x%)

} UNION {

?product rdfs:label ?label .

?product rdf:type %ProductType% .

?product bsbm:productFeature %ProductFeature1% .

?product bsbm:productFeature %ProductFeature3% .

?product bsbm:productPropertyTextual1 ?propertyTextual .

?product bsbm:productPropertyNumeric2 ?p2 .

FILTER (?p2 > %y%)

}

}

ORDER BY ?label

OFFSET 5

LIMIT 10

B5

Find product that are similar to a given product.

SELECT DISTINCT ?product ?productLabel

WHERE {

?product rdfs:label ?productLabel .

FILTER (%ProductXYZ% != ?product)

%ProductXYZ% bsbm:productFeature ?prodFeature .

?product bsbm:productFeature ?prodFeature .

%ProductXYZ% bsbm:productPropertyNumeric1 ?origProperty1 .

?product bsbm:productPropertyNumeric1 ?simProperty1 .

FILTER (?simProperty1 < (?origProperty1 + 120) &&

?simProperty1 > (?origProperty1 - 120))

%ProductXYZ% bsbm:productPropertyNumeric2 ?origProperty2 .

?product bsbm:productPropertyNumeric2 ?simProperty2 .

FILTER (?simProperty2 < (?origProperty2 + 170) &&
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?simProperty2 > (?origProperty2 - 170))

}

ORDER BY ?productLabel

LIMIT 5

B7

Retrieve in-depth information about a specific product including offers and reviews.

SELECT ?productLabel ?offer ?price ?vendor ?vendorTitle

?review ?revTitle ?reviewer ?revName ?rating1 ?rating2

WHERE {

%ProductXYZ% rdfs:label ?productLabel .

OPTIONAL {

?offer bsbm:product %ProductXYZ% .

?offer bsbm:price ?price .

?offer bsbm:vendor ?vendor .

?vendor rdfs:label ?vendorTitle .

?vendor bsbm:country

<http://downlode.org/rdf/iso-3166/countries#DE> .

?offer dc:publisher ?vendor .

?offer bsbm:validTo ?date .

FILTER (?date > %currentDate%)

}

OPTIONAL {

?review bsbm:reviewFor %ProductXYZ% .

?review rev:reviewer ?reviewer .

?reviewer foaf:name ?revName .

?review dc:title ?revTitle .

OPTIONAL { ?review bsbm:rating1 ?rating1 . }

OPTIONAL { ?review bsbm:rating2 ?rating2 . }

}

}

B8

Give me recent reviews in English for a specific product.

SELECT ?title ?text ?reviewDate ?reviewer ?reviewerName

?rating1 ?rating2 ?rating3 ?rating4

WHERE {

?review bsbm:reviewFor %ProductXYZ% .

?review dc:title ?title .

?review rev:text ?text .
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FILTER (langMatches(lang(?text), "EN"))

?review bsbm:reviewDate ?reviewDate .

?review rev:reviewer ?reviewer .

?reviewer foaf:name ?reviewerName .

OPTIONAL { ?review bsbm:rating1 ?rating1 . }

OPTIONAL { ?review bsbm:rating2 ?rating2 . }

OPTIONAL { ?review bsbm:rating3 ?rating3 . }

OPTIONAL { ?review bsbm:rating4 ?rating4 . }

}

ORDER BY DESC(?reviewDate)

LIMIT 20

B11

Get all information about an offer.

SELECT ?property ?hasValue ?isValueOf

WHERE {

{ %OfferXYZ% ?property ?hasValue }

UNION

{ ?isValueOf ?property %OfferXYZ% }

}
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