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Titre : STATIQUE ET DYNAMIQUE DES VORTEX DANS LES 
SUPRACONDUCTEURS ANISOTROPIQUES 
ET/OU MAGNÉTIQUES 

Résumé : Récemment, les études des propriétés de vortex Abrikosov dans des 
systèmes fortement anisotropes et magnétiques ont été stimulées par la découverte 
des supraconducteurs à base de fer et des supraconducteurs ferromagnétiques. 
Dans cette thèse nous étudions la statique et la dynamique de vortex dans ces 
systèmes. D’abord, le problème de l'interaction de vortex avec un petit défaut a été 
examiné dans le cadre de la théorie de Ginzburg-Landau. Le potentiel de pinning 
pour une cavité cylindrique elliptique a été calculé. D'autre part, la conductivité d'un 
supraconducteur anisotrope à l'état mixte a été analysée en détail dans le cadre de 
la théorie de Ginzburg-Landau dépendant du temps. 

Une partie significative de la thèse est consacrée à l'étude de l'interaction entre les 
ondes de spin (magnons) et vortex dans les supraconducteurs ferromagnétiques. 
Nous avons démontré que le spectre de magnon acquiert une structure de bande en 
présence d'un réseau de vortex idéal. En utilisant les équations phénoménologiques 
de London et de Landau-Lifshitz-Gilbert, nous avons étudié les réponses ac et dc de 
vortex dans les supraconducteurs ferromagnétiques. Enfin, nous avons examiné 
l'état de vortex dans des structures hybrides supraconducteur(S)-ferromagnétique(F) 
(par exemple, super-réseaux FS) avec une forte dispersion spatiale de la 
susceptibilité magnétique. Dans ces systèmes l'électrodynamique supraconductrice 
peut être fortement non locale, qui mène à l'attraction des vortex et à une transition 
de phase du premier ordre dans la phase de vortex. 

Mots clés : Vortex Abrikosov, pinning, écoulement de vortex, supraconducteurs 
ferromagnétiques, ondes de spin 

 

 

 

 

 

 

 

 

 



Title : VORTEX STATICS AND DYNAMICS IN ANISOTROPIC 
AND/OR MAGNETIC SUPERCONDUCTORS 

Abstract :  

Recently, the studies of the properties of Abrikosov vortices in strongly anisotropic 
and magnetic media have been stimulated by the discovery of the iron-based and 
ferromagnetic superconductors. In this thesis an analysis of vortex statics and 
dynamics in such systems has been carried out. Firstly, the problem of vortex pinning 
on a small defect has been considered. Within the Ginzburg-Landau theory the 
pinning potential for a cavity in the form of an elliptical cylinder has been derived. 
Secondly, the flux-flow conductivity of an anisotropic superconductor has been 
analyzed in detail within the time-dependent Ginzburg-Landau theory.  

A significant part of the thesis is devoted to the study of interplay between spin 
waves (magnons) and vortices in ferromagnetic superconductors. We have 
demonstrated that the magnon spectrum acquires a Bloch-like band structure in the 
presence of an ideal vortex lattice. Using the phenomenological London and Landau-
Lifshitz-Gilbert equations, we studied the ac and dc responses of vortices in 
ferromagnetic superconductors. Finally, we investigated the vortex state in 
superconductor-ferromagnet (FS) hybrid structures (e. g., FS superlattices) with 
strong spatial dispersion of the magnetic susceptibility. In such systems the 
superconducting electrodynamics may be strongly nonlocal, which leads to the 
attraction of vortices and to a first order phase transition at the lower critical field. 

Keywords : Abrikosov vortices, pinning, flux-flow, ferromagnetic 
superconductors, spin waves 
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Résumé détaillé de la thèse 

L'existence d'une résistance électrique non nulle dans les supraconducteurs de type II dans 
l'état mixte est reliée aux mouvements des vortex de flux magnétique. Dans un 
supraconducteur dans l'état mixte la conductivité σ est donnée par 
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où c est la vitesse de la lumière, B0 le champ magnétique dans l'échantillon, Φ0 le quantum de 
flux, et η est le coefficient de viscosité, qui figure dans l'équation de mouvement des vortex: 
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Dans cette relation, jtr est la densité de courant de transport, et VL la vitesse de flux. Dans le 
cas général σ et η sont des tenseurs. Les études théoriques sur les écoulements des vortex dans 
les matériaux anisotropes ont été stimulées par la découverte de supraconducteurs à haute 
température critique, qui possèdent une structure en couches. En outre, les supraconducteurs à 
base de fer découverts récemment sont également fortement anisotropes. 
Toutefois, les caractéristiques courant-tension typiques des supraconducteurs de type II ne 
sont pas décrites par la loi d'Ohm. Le supraconducteur peut supporter sans dissipation une 
densité de courant n'excédant pas une valeur critique jcr. Ceci s'explique par la présence de 
défauts dans le supraconducteur, agissant comme des centres de piégeage. Ces défauts 
peuvent piéger les vortex, de sorte qu'ils restent immobiles quand un petit courant circule dans 
le supraconducteur. L'implantation des centres de piégeage colonnaires artificiels dans les 
supraconducteurs peut induire une augmentation drastique du courant critique, si les lignes de 
flux sont alignées le long de ces défauts. 
Ainsi, pour interpréter quantitativement les données expérimentales sur la résistivité des 
supraconducteurs de type II, il est nécessaire d’estimer la force de fixation et la viscosité η. 
La physique de vortex deviens beaucoup plus riche dans les hybrides supraconducteurs et 
magnétiques. Au cours des 14 dernières années, un certain nombre de composés très 
intéressants ont été découverts révélant la coexistence de la supraconductivité et du 
ferromagnétisme en volume: UGe2 (température critique Tc = 0.7 K) , URhGe (Tc = 0.25 K), 
UCoGe (Tc = 0.8K), et EuFe2As2  dopé (Tc = 25 K). De plus, récemment des succès 
significatifs ont été obtenus dans la fabrication et la caractérisation des super-réseaux 
supraconducteur-ferromagnétique (SF). Dans ces systèmes différents effets intéressants 
peuvent résulter de l'interaction entre les vortex d’Abrikosov et les ondes de spin, ou les 
magnons. En particulier, il a été prédit que la viscosité de vortex η sera augmentée en raison 
de l'irradiation de magnons par des vortex mobiles. 
La thèse présentée est consacrée à l'étude théorique des propriétés statiques et dynamiques des 
vortex d’Abrikosov dans les deux supraconducteurs ordinaires et ferromagnétiques. Ce travail 
utilise les approches analytiques suivantes:  

- La théorie de London, les théories de Ginzburg-Landau ordinaires et dépendante du 
temps pour la description de la supraconductivité; 

- L'équation de Landau-Lifshitz-Gilbert pour la dynamique de magnétisation. 



 
Fig. 1. La section transversale de l'un des systèmes étudiés dans cette thèse: un vortex en interaction avec un 

petit défaut. ξ est la longueur de cohérence. 

Les principaux résultats obtenus dans cette thèse sont: 
- Dans le cadre de la théorie de Ginzburg-Landau, une nouvelle approche pour le calcul 

du potentiel d'interaction de vortex avec un petit défaut isolant cylindrique a été 
développée. Le potentiel de piégeage pour un défaut cylindrique elliptique et le 
courant de «désencrage » d'un défaut cylindrique circulaire ont été déterminés. Nous 
avons prédit l'existence d'un état lié métastable, où le centre du vortex est situé hors du 
défaut (voir Fig. 1), bien que le vortex reste épinglé. Cet état peut être vu 
expérimentalement en utilisant la microscopie à effet tunnel ou un nano-SQUID. 

- Le tenseur de viscosité ̂ du vortex  a été calculé pour un supraconducteur avec un 

décalage d’anisotropies de la masse de paire de Cooper et la conductivité normale. 
Nous avons prédit que l'anisotropie de la conductivité dans l'état mixte peut dépendre 
fortement de la température, même dans le proche voisinage de Tc. Ces résultats 
peuvent être utiles pour l'interprétation des données expérimentales sur la résistivité 
des supraconducteurs à base de fer et des supraconducteurs «cuprates», qui sont 
fortement anisotropes. 

- Nous avons démontré que le spectre de magnons d'un supraconducteur 
ferromagnétique à l'état mixte a une structure de bande. Le spectre a été calculé 
analytiquement et numériquement (voir Fig. 2). 

- Nous avons aussi calculé la force induite par les moments magnétiques agissant sur les 
vortex mobiles dans les structures SF hybrides dans les cas d’un courant de transport  
continu ou alternatif, et pour un réseau de vortex parfait ou désordonnée. Quand les 
vortex rayonnent des magnons, cette force est augmentée. Par conséquent, certains 
éléments résonants doivent apparaître sur la courbe I-V de l'échantillon et sur les 
dépendances de l'impédance de surface en fonction du champ magnétique et de la 
fréquence. 

- Nous avons démontré que dans des systèmes SF avec une grande largeur de la paroi 
de domaine de Bloch la structure magnétique de vortex est sensiblement modifiée. En 
particulier, le champ d'un vortex peut changer de signe, qui peut être confirmé 
expérimentalement en utilisant la technique de rotation de spin de muonique. 
L'inversion de signe de champ des vortex mène à une interaction attractive entre les 
vortex et à une transition de phase du premier ordre dans la phase des vortex. Une 



conséquence de ceci est la formation d'un état mixte intermédiaire dans une dalle (voir 
Fig. 3), qui peut être visualisé à l'aide de la technique de décoration de Bitter. 

 
Fig. 2. Spectre des ondes de spin propageant perpendiculairement à l'axe de magnétisation facile dans un 

supraconducteur ferromagnétique dans l'état mixte. La première zone de Brillouin pour un réseau triangulaire de 
vortex est affiché. (a), (b) et (c) correspondent à la première, la deuxième et la troisième bande du spectre. 

 
Fig. 3. Une dalle supraconductrice dans l'état mixte intermédiaire. He est le champ magnétique externe. 
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Introduction

The phenomenon of superconductivity, discovered by Kamerlingh Onnes in 1911, has two
main hallmarks: a vanishing electrical resistance and the expulsion of the magnetic field,
referred to as the Meissner-Ochsenfeld (or simply Meissner) effect [1]. For a long time an
unequivocal explanation of these experimental facts had been lacking, until the advent
of the Bardeen-Cooper-Schrieffer (BCS) theory [2] in 1957. According to this theory,
the emergence of superconductivity is connected with the mutual attraction of electrons
due to the exchange of virtual phonons. At low temperatures electrons with opposite
spins and momenta form the so-called Cooper pairs, whose size equals the superconduct-
ing coherence length ξ. A finite energy is required to destroy these pairs, thereby the
quasiparticle spectrum of a superconductor has an energy gap. The presence of this gap
explains the zero resistance of the electron gas, as follows from the Landau superfluidity
criterion [3]. Note that in the conventional BCS picture the Cooper pairs have a zero
spin and angular momentum.

Before the establishment of the BCS theory several simple phenomenological descrip-
tions of superconductivity had been proposed. Among them, the most well-known are
the London [4] and Ginzburg-Landau (GL) theories [5]. These were especially successful
in describing the perfect conductivity phenomenon and Meissner effect, and, in addition,
concealed in themselves some fascinating predictions, which were later confirmed experi-
mentally. In particular, the London theory asserts that an external magnetic field decays
exponentially inside the superconductor over a length λ, which is called the London pen-
etration depth. The GL theory predicts that all superconductors can be divided into two
classes, based on the value of the GL parameter κ = λ/ξ. Materials with κ < 1/

√
2 have

a positive superconductor-normal metal boundary energy. The phase diagram of these
so-called type-I superconductors in the plane temperature (T )-magnetic field (H) is quite
simple (see Fig. 1a): at T < Tc, where Tc is a critical temperature, when H < Hc(T ) the
material is in the superconducting Meissner state (with a vanishing internal induction B),
and at H > Hc(T ) it is in the normal state. The field Hc(T ), called the thermodynamic
critical field, is given by [6]

Hc =
Φ0

2
√
2πλ(T )ξ(T )

, (1)

where Φ0 = π~c/e ≈ 2.06 × 10−7Gs · cm2 is the magnetic flux quantum, c is the light
velocity, and e > 0 is the elementary charge. Equation (1) is valid at Tc−T ≪ Tc, where
the Ginzburg-Landau theory is applicable.

In compounds with κ > 1/
√
2 — the type-II superconductors — the energy of the

superconducting-normal phase interface is negative. At first, type-II superconductivity
was believed to be unphysical. Abrikosov was the first to realize how in materials with
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κ > 1/
√
2 the superconducting and normal phases may coexist. In his paper [7] he

suggested that type-II superconductors may exhibit a mixed state. In this unusual state
the magnetic field penetrates the sample in the form of flux lines, known as Abrikosov
vortices, carrying one flux quantum Φ0 each. The vortices have a normal core, which is
separated from the rest of the superconductor by a circulating supercurrent. Thus, the
boundary between the normal and superconducting phases becomes largely extended,
allowing for a gain in the interface energy. In a homogeneous superconductor the vortices
should form an ideal 2D-lattice. The field and order parameter profiles of a vortex are
depicted in Fig. 1b, and the phase diagram of a type-II superconductor is shown in Fig.
1c. Apart from the Meissner and normal states, it contains the mixed state (or Shubnikov
phase), which exists atHc1(T ) < H < Hc2(T ), whereHc1 andHc2 are the lower and upper
critical fields, respectively. The London theory in the high-κ limit (κ ≫ 1) gives for Hc1

the value

Hc1 ≈
Φ0

4πλ2
ln
λ

ξ
. (2)

The upper critical field, according to the GL theory [6], equals

Hc2 =
Φ0

2πξ2
. (3)

Note that in type-II superconductors Hc2 > Hc, and in type-I superconductors Hc2 < Hc.
For this reason the vortex state is unstable in the latter.

c

c

c

∞

a

b

c

Figure 1: (a) Phase diagram of a type-I superconductor [6]. (b) The magnetic field
(h(r)) and order parameter modulus (|ψ(r)|) profiles of a single Abrikosov vortex [6]. (c)
Phase diagram of a type-II superconductor [8]. The third critical field, Hc3, and surface
superconductivity are not discussed here.

An experimental confirmation of Abrikosov’s prediction was obtained in 1964, when
the vortex lattice was observed by neutron diffraction [9]. Later, the Bitter decoration
technique allowed to see individual vortices [10].
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One of the fundamental effects connected with the existence of Abrikosov vortices is
the presence of a non-zero resistance in type-II superconductors in the mixed state. This
fact is explained by the transport current exerting a force

FL =
Φ0

cB0

jtr ×B0 (4)

on the flux lines [6], setting them in motion. Here, B0 is the average magnetic field in
the superconductor, and jtr is the transport current density. FL is called the Lorentz
force. In defect-free superconductors in the stationary flux-flow regime the Lorentz force
is balanced by the viscous drag force:

FL − ηVL = 0, (5)

where VL is the velocity of the vortices, and η is a viscosity coefficient. It follows from
Faraday’s law that the moving magnetic flux induces in the superconductor an average
electric field

E =
1

c
B0 ×VL. (6)

The, from Eqs. (4) - (6) we obtain Ohm’s law, jtr = σE, where the conductivity is

σ =
c2η

B0Φ0

. (7)

In anisotropic superconductors both σ and η are tensors. Then, Eq. (7) is generalized as
follows:

σ̂ =
c2

B0Φ0

(
ηyy −ηyx

−ηxy ηxx

)
, (8)

when the z-axis is directed along the magnetic field. The peculiar structure of the con-
ductivity tensor is explained by the fact that the x component of the electric field depends
on the y component of the vortex velocity, and vice versa.

Typical current-voltage characteristics of type-II superconductors, however, are not
described by the simple Ohm’s law. The superconductor may support a dissipationless
current density jtr not exceeding some critical value jcr [11]. A finite voltage must be
applied to introduce in the sample a current density larger than jcr. This is explained by
the presence of defects in the superconductor, acting as “pinning” centers. These defects
may trap (pin) vortices, so that they remain immobile when a small current is flowing
through the superconductor. The implantation of artificial columnar pinning centers
into superconductors may lead to a drastic increase of the critical current jcr, if the flux
lines are aligned along the defects (see [12, 13, 14, 15, 16, 17] and references therein).
Nowadays, various techniques exist allowing to create disordered arrays of such defects
[12, 13], as well as regular defect lattices [18, 19, 20].

When the applied current is sufficiently large (jtr > jcr), the Lorentz force will de-
pin the vortices. Then the dissipative flux-flow regime sets in, where vortex motion is
governed by Eq. (5), if the pinning force is negligible. Thus, for the quantitative inter-
pretation of experimental data on the resistivity of type-II superconductors, estimates of
the pinning force and of the viscosity η are required.
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The theoretical investigation of collective pinning of the vortex lattice is known to
be a quite complicated task. An extensive review of existing theories, which account for
vortex-defect as well as vortex-vortex interactions, can be found in [11]. In order to deduce
results which can be quantitatively compared with experimental data, these theories
require the individual vortex pinning potential as input. It is known that the efficiency of
a pinning array depends not only on the depth of the potential well for a vortex, but also
on the shape of the well [21]. Thus, a detailed investigation of single vortex-single defect
interactions provides the basis for considerations of many-vortex systems. The problem
of individual vortex pinning has been solved exactly for insulating columnar defects of
different shapes within the London theory [22, 23, 24, 25, 26, 27]. This approach allows to
consider only relatively large defects, with the characteristic cross-section size D ≫ ξ. In
the case D . ξ, the Ginzburg-Landau theory may be applied. Analysis of the interaction
of vortices with columnar defects with the size D ∼ ξ has been carried out in a number of
papers [28, 29, 30, 31]. Due to the nonlinearity of the GL equation, its analytical solution
presents a theoretical challenge, especially when the vortex is not centered at the defect.
For that reason this equation has been mainly analyzed numerically. Exact expressions
for the vortex pinning potential and the depinning current in the case D . ξ have been
lacking so far.

For the calculation of the viscosity η (and, correspondingly, the flux-flow conductivity)
two theoretical approaches have been developed. The first method, proposed by Bardeen
and Stephen (BS) [32], is based on the London theory and on the simplifying assumption
of a step-like order parameter profile of a vortex. This approach usually allows to obtain
a correct order-of-magnitude estimate for η. The second, more rigorous method for
the calculation of the viscosity is based on the non-stationary generalization of the GL
theory — the time-dependent Ginzburg-Landau (TDGL) equation [33, 34, 35]. Within
this approach, the flux-flow conductivity has been evaluated for isotropic superconductors
in several papers [36, 37, 38].

Theoretical studies of free flux flow in anisotropic materials have been stimulated by
the discovery of high-temperature superconductors, which appeared to possess a rather
strong anisotropy [39]. A number of papers have addressed this problem using the TDGL
equation [40, 41]. It has been shown that the procedure of viscosity calculation can
be significantly simplified in the limit of dirty uniaxial superconductors with the ratio
s0 = mcσc/mabσab equal to unity. Here, σc, σab and mc, mab are the normal conductivities
and Cooper-pair masses in the direction of the anisotropy axis c and in the perpendicular
ab plane, respectively. The condition s0 = 1 allows to reduce the problem of anisotropic
vortex dynamics to an isotropic one by means of a scaling transformation [41]. Yet, this is
not true in the case s0 ̸= 1, i.e, for a mismatch of anisotropies of Cooper-pair masses and
normal conductivities. Such a mismatch is theoretically possible in the relatively clean
limit [35] and it may have been experimentally observed in the Fe-based pnictide super-
conductors [42]. To estimate the parameter s0 of these materials using given experimental
data, we may use the fact that in the vicinity of the critical temperature

s0 = γ2H/γσ,

where

γH = Hc2,ab/Hc2,c, γσ = σab/σc,
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and Hc2,c and Hc2,ab are the second critical fields along and perpendicular to the c axis,
respectively. In literature we can find the values γH = 1.15 and γσ = 3.3 for LiFeAs
[43], γH = 5 and γσ = 30− 45 for Tl0.58Rb0.42Fe1.72Se2 [44], and γH = 2 and γσ = 21 for
Sr0.6K0.4Fe2As2 [45]. For BaFe2As2 [46] and PrFeAsO0.7 [47] very large values of the resis-
tivity anisotropy have been reported — γσ > 100 — as counterposed to the relatively low
anisotropies of the upper critical field (γH ∼ 1), typical for Fe-based superconductors [42].
It should be noted that existing experimental data on the pnictides are somewhat contra-
dictory: in [48] and [49] relatively low values γσ . 10 for BaFe2As2 and Ba(Fe1−xCox)2As2
are given. Still, we can see that there is experimental evidence of a Cooper-pair mass-
normal conductivity anisotropy mismatch in the Fe-based superconductors.

Previous calculations of the viscous drag tensor within the TDGL theory accounted
for the anisotropy mismatch only on the basis of a simplified model of a step-like order
parameter profile in the vortex core [40] (see also [50] for a study using the BS approach).
Of course, a detailed comparison with experimental data demands these calculations to
be generalized for a more realistic order parameter profile.

Vortex physics becomes much richer in superconducting and magnetic hybrids. Mag-
netism and superconductivity are known to be antagonistic phenomena: magnetic mo-
ments destroy Cooper pairs in two ways [51]. First, the induction B affects the orbital
motion of electrons, tearing apart the Cooper pairs. This so-called electromagnetic mech-
anism completely suppresses superconductivity when B exceeds the upper critical field
Hc2. Second, the exchange field in the magnetic material tends to align the electron spins
in the same direction, thus preventing the formation of spin-singlet Cooper pairs. This
is called the paramagnetic effect. Because of it, in materials with the Curie temperature
Θ smaller than Tc spin-singlet superconductivity exists only in a small temperature win-
dow below Θ [51], and in the case Tc . Θ a nonuniform Fulde-Ferrel-Larkin-Ovchinnikov
phase is expected to form [52, 53].

Within the last 14 years, a number of fascinating compounds have been discovered,
revealing the coexistence of ferromagnetism and superconductivity in the bulk (see [54] for
review): UGe2 [55] (Tc = 0.7 K) , URhGe [56] (Tc = 0.25 K), UCoGe [57, 58] (Tc = 0.8
K), and doped EuFe2As2 [59] (Tc = 25 K). Remarkably, in most of these compounds
Tc ≪ Θ. It is believed that superconductivity in these materials is of spin-triplet type,
with electron spins in a Cooper pair pointing in the same direction. This allows the
Cooper pairs to survive in the strong exchange field. Another interesting property of the
ferromagnetic superconductors is the incomplete ac Meissner effect [56, 57, 59], indicating
that these materials are in the spontaneous vortex state even in the absence of an external
magnetic field.

Magnetic materials support a special type of collective excitations — the spin waves
[60]. These waves, being essentially oscillations of the magnetization, are also called
magnons. Typically, the spin-wave frequency ω(q) in ferro- and antiferromagnets depends
monotonically on the wave-vector modulus |q|. In superconducting and magnetic hybrids
the spin-wave spectrum is significantly influenced by the additional superconducting or-
der. It has been shown that in antiferromagnetic [61] and ferromagnetic superconductors
[62, 63] the magnon spectrum in the Meissner state becomes nonmonotonic. A more real-
istic model of the ferromagnetic superconductor should take into account that the sample
is the mixed state. Ng and Varma [62] studied the coupled magnetic moment-vortex dy-
namics in the limit of long wavelength λw ≫ av, where where av is the inter-vortex
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distance. The magnon spectrum within the continuous medium approximation has been
determined. The opposite limit, λw . av, has not been studied previously.

The reverse influence of magnetism on vortex dynamics has been considered by Bu-
laevskii et al. [64, 65, 66, 67, 68, 69, 70, 71]. It has been demonstrated theoretically
that the vortex viscosity in magnetic superconductors is enhanced due to the radiation
of magnons by moving vortices [66, 69, 71]. This affects the current-voltage characteris-
tics of the sample, allowing to extract the spin-wave spectrum from these characteristics
[64, 68]. In [69] the occurrence of vortex-vortex attraction and formation of vortex clus-
ters in materials with a large magnetic susceptibility has been predicted. It should be
noted that the preceding papers [64, 65, 68] concentrated on the interaction of vortices
with magnons in antiferromagnetic compounds. Thus, an extension of the theory for
ferromagnetic superconductors is required.

The present thesis is devoted to the study of static and dynamic properties of Abrikosov
vortices in both ordinary and ferromagnetic superconductors. This work fills the outlined
above gaps in theory, namely:

• the exact vortex pinning potential for a small columnar defect (D ≪ ξ) with an
elliptic cross-section is evaluated. For a defect with a circular cross-section the
depinning current is determined.

• the viscosity tensor η̂ in an anisotropic superconductor with the parameter s0 ̸= 1
is calculated using the exact order parameter profile of a vortex;

• the short-wavelength (λw . av) magnon spectrum of a ferromagnetic superconduc-
tor in the mixed state is determined;

• the damping force connected with the generation of magnons, acting on moving
vortices in ferromagnetic superconductors is calculated.

In addition, several new effects are predicted:

• in the presence of a small transport current, a metastable bound state of a vortex
and a small columnar defect should occur;

• in anisotropic superconductors with the parameter s0 ̸= 1 the flux-flow conductivity
anisotropy should depend significantly on temperature even in the close vicinity of
Tc, where the TDGL theory is applicable;

• in superconducting (S) and ferromagnetic (F) hybrid systems with a large GL pa-
rameter the nonlocal electrodynamics may lead to vortex-vortex attraction. Then,
the transition from the Meissner to the mixed state will be a first order phase
transition.

The structure of the thesis is as follows. In Chapter 1 the problem of vortex pinning
on a small columnar defect is considered within the Ginzburg-Landau theory. The new
results are compared with those obtained previously within the London theory. In Chap-
ter 2 the vortex viscosity η̂ for an anisotropic superconductor with the parameter s0 ̸= 1
is calculated using the TDGL theory. Several asymptotic expressions for η̂ are derived,
and a variational principle is proposed to evaluate η̂ for superconductors with arbitrary
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parameters mab, mc, σab and σc. Chapter 3 is devoted to the study of the interplay be-
tween magnons and Abrikosov vortices in SF hybrid systems. The spin-wave spectrum of
a ferromagnetic superconductor in the mixed state is determined using the phenomeno-
logical London and Landau-Lifshitz-Gilbert equations [72]. The damping force acting
on moving vortices in ferromagnetic superconductors and SF-superlattices is calculated.
The cases of both a dc and ac driving force acting on vortices are considered. Finally, the
surface impedance of a ferromagnetic superconductor is determined. In Chapter 4 the
interaction of vortices in high-κ SF-hybrids with strong spatial dispersion of the magnetic
susceptibility is studied. It is shown that the vortices may be attracted to each other at
certain distances. Experimental consequences of this fact are discussed. In the conclusion
of the thesis the main results are summarized.
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Chapter 1

Abrikosov vortex pinning on a small
cylindrical cavity

1.1 Introduction

The problem of single-vortex pinning is generally formulated as follows. The system
(see Fig. 1.1a and b) contains a vortex and a defect, which is typically assumed to be of
cylindrical shape. The task is to determine the vortex energy as a function of its position,
and the depinning current density. The first theoretical study of individual vortex pinning
on a cylindrical cavity was carried out by Mkrtchyan and Schmidt [22], who analyzed
the problem using the London theory. Within this approach, the field of a vortex in a
superconductor is determined by the equation

−∇2B+
B

λ2
=

Φ0

λ2
z0δ

(2)(ρ−R0) (1.1)

with the boundary condition B = const on the boundary of the superconductor. Here, z0
is a unit vector along the z-axis, and the vector R0 specifies the position of the vortex in
the xy plane. The London equation (1.1) is suitable for the description of the vortex field
in high-κ superconductors, and may be used for the calculation of the pinning potential
in the situation depicted in Fig. 1.1a: the defect size D and the vortex-defect distance w
must be much larger than the coherence length.

In the mentioned paper [22] the pinning potential was determined for a defect with
a radius a ≪ λ. Later [23, 27], this analysis was extended to the case of larger cavities.
Buzdin and Feinberg [24] pointed out that the term B/λ2 in Eq. (1.1), responsible for
London screening, can be neglected when w ≪ λ and D ≪ λ. This observation allowed
them to establish an electrostatic analogy and to simplify considerably the solution for a
vortex interacting with a circular cavity: it was demonstrated that the full magnetic field
can be presented as the sum of the vortex self-field and the field of image vortices, situated
inside the cavity. Using the conformal transformation technique, pinning potentials for
more tricky columnar cavities have been derived [25, 26]. However, in the calculation
of the pinning potential for non-circular defects, only the field of the image vortices has
been transformed, while the modification of the self-field of the real vortex has not been
taken into account. This mistake has been corrected in [A2] by the author of the thesis.

For considerations of small defects, with D . ξ, the Ginzburg-Landau equation may
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Figure 1.1: The cross-section of the system. (a) The case when the London theory can
be applied: the defect size D and vortex-defect distance w are large as compared to the
coherence length. (b) The case studied in this Chapter: the defect is small (D ≪ ξ) and
may be situated inside the vortex core.

be used. The GL theory is based on the general Landau theory of second-order phase
transitions. Thus, the free energy of a superconductor in the GL approximation has the
form [6]

F =
H2
c

4πn0

∫ (
ξ2
∣∣∣∣(∇+

2ie

~c
A

)
ψ

∣∣∣∣2 − |ψ|2 + n−1
0

|ψ|4

2

)
d3r+

∫
(rotA)2

8π
d3r. (1.2)

Here, n0 is the Cooper pair concentration in the bulk of the superconductor (far from the
vortex), A is the vector potential, and ψ is the superconducting order parameter. The
equilibrium functions ψ(r) and A(r) minimize the free energy. Equating to zero the first
variation of F , we obtain the two equations

− ξ2
(
∇+

2ie

~c
A

)2

ψ − ψ + n−1
0 |ψ|2 ψ = 0, (1.3)

rot rotA =
4π

c
jS, (1.4)

where jS is the supercurrent:

jS = − c

4πλ2
|ψ|2

n0

(
A+

Φ0

2π
∇θS

)
. (1.5)

Here, θS = argψ, and λ = Φ0/(2
√
2πHcξ) (compare with Eq. (1)). The GL boundary

condition is

n

(
∇+

2ie

~c
A

)
ψ = 0, (1.6)

where n is the normal to the surface of the superconductor.
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Vortex pinning on a cylindrical defect within the GL theory has been studied in a
number of papers [11, 28, 29, 30, 31]. In the review by Blatter et al. [11] an analytical
estimate for the single-vortex pinning energy is given. The authors applied the variational
principle, taking into account the suppression of the order parameter inside the defect
and ignoring the local vortex distortion, induced by the boundary condition (1.6). This
estimate will be discussed below. In subsequent papers the GL equation was mostly solved
numerically. Maurer et al. [28] calculated the pinning energy for a vortex centered on a
circular insulating or metallic inclusion. Later [29], the depinning current for defects with
radii of 0.25ξ and larger was determined. Priour and Fertig [30] analyzed the interaction
of a vortex with a cylindrical hole with a square cross-section. In [31] the critical current
for a vortex lattice pinned on a set of defects with reduced critical temperature was
determined using numerical simulations and a variational procedure.

The present Chapter of the thesis is based on the paper [A2]. It is devoted to the
study of vortex pinning on a small cylindrical cavity, or insulating inclusion, with the
characteristic size of the cross-section D lying in the range ξ0 ≪ D ≪ ξ. Here, ξ0 is
the zero-temperature coherence length (in the case D ∼ ξ0 the correct description can
be obtained only on the basis of a microscopic theory [73, 74, 75, 76]). In Sec. 1.2.1
the general form of the pinning potential within the GL theory is derived. In Sec. 1.2.2
this result is used to evaluate the exact pinning potential and depinning current for a
cavity with a circular cross-section. In Sec. 1.2.3 the pinning potential for a defect in the
form of a general elliptic cylinder is determined. Finally, in Sec. 1.3 the GL results are
compared with the result obtained previously using the London theory [24, 25, 26]. The
correct pinning potential for an elliptic cavity with the size D ≫ ξ, D ≪ λ is presented.

1.2 Vortex pinning within the Ginzburg-Landau the-

ory

1.2.1 General form of the pinning potential

When solving Eqs. (1.3) - (1.6) we shall restrict ourselves to the case of a high-κ su-
perconductors. Then these equations can be significantly simplified. At small distances
r ≪ λ from the vortex center the vector potential can be neglected in Eqs. (1.3) and
(1.6) (see [77]). To prove this, let us make a simple estimate. The vortex field (in the
absence of the defect) is given by [6]

B = z0
Φ0

2πλ2
K0(r/λ), (r ≫ ξ) (1.7)

where K0 is the modified Bessel function of the second kind. Let us choose the gauge
where the order parameter phase coincides with the polar angle φ, and the vector potential
in the center of the vortex vanishes. In this gauge A has only the Aφ component, which
equals

Aφ(r) =
1

2πr

∫
ρ<r

Bzd
2ρ ≈ Φ0r

4πλ2
ln
λ

r
, r ≪ λ. (1.8)
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At r ≫ ξ ψ ≈ √
n0e

iφ, and |∇ψ| ≈ |ψ| /r. Hence, at r ≪ λ

|∇ψ| ≫
∣∣∣∣2e~cAψ

∣∣∣∣ . (1.9)

In this Chapter defects with the size D ≪ ξ are considered. It will be shown below that
the distortion of the vortex by such small pinning centers is very weak, so that Eq. (1.9)
holds even in the presence of the defect. Thus, further on we may neglect the vector
potential and consider the simplified GL equation

− ξ2∇2ψ − ψ + n−1
0 |ψ|2 ψ = 0 (1.10)

instead of Eq. (1.3). The boundary condition (1.6) takes the form

n∇ψ
∣∣∣∣
∂S

= 0, (1.11)

where S is the cross-section of the cavity, ∂S denotes the boundary of S, and n is the
outward normal to ∂S. The origin of coordinates is placed inside the defect. The second
boundary condition for Eq. (1.10) specifies the transport current density jtr far from the
vortex core:

− cΦ0 |ψ|2∇θS
8π2λ2n0

∣∣∣∣
ρ→∞

= jtr. (1.12)

Finally, since our system must contain one vortex, the following condition for the order
parameter phase arises: ∮

∇θSdl = 2π, (1.13)

where integration is over a wide contour surrounding the defect.

We expect that the equations (1.10) - (1.13) can be solved when jtr does not exceed
some value jd, and no solution exists when jtr > jd. Then it is natural to consider jd as
a depinning current.

We will solve Eqs. (1.10) - (1.13) in the case jtr < jd. If the transport current is much
smaller than the depairing current, the order parameter has the following asymptotics at
infinity:

ψ ≈
√
n0e

iφ′+iqρ, (1.14)

where φ′ is the polar angle measured from an axis passing through the center of the
vortex (φ′ will be explicitly defined below), and q = −8π2λ2jtr/cΦ0. This asymptotics
can be derived from Eqs. (1.10), (1.12) and (1.13) if one expands ψ in powers of ρ−1 and
neglects terms proportional to j2tr.

Now we make two assumptions concerning the behavior of the order parameter in the
vicinity of the defect.

(A) The order parameter phase reaches its asymptotic behavior at sufficiently small
distances from the origin: θS ≈ φ′+qρ when ρ ≥ R, where R is some radius in the
range ξ ≪ R ≪ q−1, λ.
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(B) The vortex is weakly distorted by a small defect and a small current. This means
that the solution of equations (1.10) - (1.13) can be presented in the form ψ =
ψ0 +ψ1, where ψ0 corresponds to an unperturbed vortex shifted from the origin by
a vector w (see Fig. 1.1b), and ψ1 is a small perturbation: |ψ1(ρ)| ≪

√
n0 when

ρ < R.

The assumption (B) is justified by the fact that the unperturbed vortex corresponds
to a local minimum of the free energy, so large distortions are not energetically favorable.
Both statements (A) and (B) can be verified by numerical calculations. In terms of the
vector w, the angle φ′ is defined as

tanφ′ =
y − wy
x− wx

.

Let us write down the equations for the function ψ1. Linearization of Eq. (1.10) yields

− ξ2∇2ψ1 − ψ1 + 2n−1
0 |ψ0|2 ψ1 + n−1

0 ψ2
0ψ

∗
1 = 0. (1.15)

Far from the vortex core, when the characteristic scale of the order parameter is much
larger than ξ, we may obtain from the GL equation

ψ ≈
√
n0

(
1− ξ2

2
(∇θS)2

)
eiθS .

Hence, according to the statement (A), the perturbation ψ1 = ψ − ψ0 of the order
parameter is given by

ψ1(ρ) =
√
n0ie

iφ′
(qρ) +O

(√
n0ξ

2q

ρ

)
, ρ ∼ R. (1.16)

The boundary condition for ψ1 at the defect border follows from Eq. (1.11):

(∇ψ1 +∇ψ0)n

∣∣∣∣
∂S

= 0. (1.17)

Thus, equations (1.15) - (1.17) are to be solved. Here, for clarity, we would like to
stress that the boundary condition (1.17) accounts for both the variations of the order
parameter modulus and phase. It is reduced to the London theory boundary condition,
∇θSn = 0, only if the vortex is far from the defect, i.e. w ≫ ξ.

To derive the solvability condition for the system (1.15) - (1.17) we may use a method
analogous to the one used in [77] to determine the viscous drag force acting on a moving
vortex. First, we introduce the auxiliary function ψd = d∇ψ0, where d is an arbitrary
constant unit vector, lying in the xy plane. ψd satifies the equation

− ξ2∇2ψd − ψd + 2n−1
0 |ψ0|2 ψd + n−1

0 ψ2
0ψ

∗
d = 0. (1.18)

Let us multiply Eq. (1.15) by ψ∗
d and subtract Eq. (1.18) multiplied by ψ∗

1 from it. When
we add the complex conjugate to the resulting equation we obtain

div (−ψ∗
d∇ψ1 + ψ1∇ψ∗

d − ψd∇ψ∗
1 + ψ∗

1∇ψd) = 0.
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Now we integrate this relation over the region ρ /∈ S, |ρ−w| < R and apply the Gauss
theorem: ∫

|ρ−w|=R (−ψ∗
d∇ψ1 + ψ1∇ψ∗

d − ψd∇ψ∗
1 + ψ∗

1∇ψd)n1dℓ

−
∫
∂S

(−ψ∗
d∇ψ1 + ψ1∇ψ∗

d − ψd∇ψ∗
1 + ψ∗

1∇ψd)ndℓ = 0, (1.19)

where n1 is the outward unit normal to the circle |ρ−w| = R. The first integral can be
calculated with the help of Eq. (1.16):∫

|ρ−w|=R
(−ψ∗

d∇ψ1 + ψ1∇ψ∗
d − ψd∇ψ∗

1 + ψ∗
1∇ψd)ndℓ ≈

32π3λ2n0

cΦ0

[d · (z0 × jtr)] .

(1.20)
Here, we neglected terms of the order of ξ2/R2, which appear due to variations of the
order parameter modulus. Note that the z axis is directed opposite to the magnetic field.

The second integral in Eq. (1.19) can be transformed using (1.17) and the Gauss
theorem: ∫

∂S
(−ψ∗

d∇ψ1 − ψd∇ψ∗
1 + ψ1∇ψ∗

d + ψ∗
1∇ψd)ndℓ

≈ S · div (ψ∗
d∇ψ0 + ψd∇ψ∗

0)

∣∣∣∣
ρ=0

+
∫
∂S

(ψ1∇ψ∗
d(0) + ψ∗

1∇ψd(0))ndℓ. (1.21)

Here and further we neglect terms which are much smaller than n0D
2/ξ3.

To proceed we have to determine the value of ψ1 at the defect boundary. Note that
near the cavity the characteristic scale of ψ1 is much smaller than ξ (since D ≪ ξ), so at
ρ ≪ ξ in (1.15) the dominating terms are those containing the derivatives of ψ1. Hence,
in the close vicinity of the cavity Eq. (1.15) is reduced to Laplace’s equation

∇2ψ1 = 0. (1.22)

The boundary condition can also be simplified:

∇ψ1n

∣∣∣∣
∂S

= −∇ψ0(0)n. (1.23)

Such simplification is acceptable since we are not interested in small corrections of the
order of

√
n0D

2/ξ2 to ψ1. Equations (1.22) and (1.23) are equivalent to an electrostatic
problem where ψ1 plays the role of the electric potential of a charged cylinder. Note that
these equations can not be derived within the electrostatic approximation for the London
theory [24], where variations of the superconducting phase are taken into account, but
the order parameter modulus is assumed to be constant.

The relation ∮
∂S

∇ψ1ndℓ = 0,

can be interpreted as a vanishing total “charge” of the cylinder. It provides that a solution
of equations (1.22) and (1.23) exists that decays like ρ−1 at infinity. This solution, which

we denote as ψ
(d)
1 , represents the irregular part of ψ1: it has singularities inside the defect.

We define the regular component of ψ1 as

ψ
(i)
1 = ψ1 − ψ

(d)
1 . (1.24)
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It is proved in Appendix A that the contribution of ψ
(i)
1 to the integral in the right-hand

side of equation (1.21) is negligible.
Combining Eqs. (1.19) - (1.21) and using the fact that ψ0 satisfies Eq. (1.10) we

obtain

−4πn0Φ0

H2
c c

[d · (z0 × jtr)] + S(d∇)
(
ξ2 |∇ψ0|2 − |ψ0|2 + |ψ0|4

2n0

) ∣∣∣∣∣
ρ=0

+ξ2
∫
∂S

[
ψ

(d)
1 ∇ψ∗

d(0) + ψ
(d)∗
1 ∇ψd(0)

]
ndℓ ≈ 0. (1.25)

Owing to the linearity of Eqs. (1.22) and (1.23) the solution can be presented in the form

ψ
(d)
1 = g(ρ) · ∇ψ0(0), (1.26)

where g is a real vector field defined by the relations

∇2g = 0, (n∇)g

∣∣∣∣
∂S

= −n, g

∣∣∣∣
ρ→∞

= 0. (1.27)

Then ∫
∂S

[
ψ

(d)
1 ∇ψ∗

d(0) + ψ
(d)∗
1 ∇ψd(0)

]
ndℓ = (d∇)

(
∇ψ0Ĝ∇ψ∗

0

) ∣∣∣∣
ρ=0

,

where Ĝ is a real symmetric matrix with components

Gij =

∫
∂S

ginjdℓ =

∫
ρ/∈S

∇gi∇gj d2ρ. (1.28)

Equation (1.25) transforms into

Φ0

c
[d · (z0 × jtr)]− (d∇w)Up = 0. (1.29)

Here, ∇w = ∂/∂w, and

Up = −S H2
c

4πn0

(
ξ2 |∇ψ0|2 − |ψ0|2 +

|ψ0|4

2n0

)∣∣∣∣∣
ρ=0

−ξ2 H2
c

4πn0

∇ψ0(0)Ĝ∇ψ∗
0(0). (1.30)

Since d is an arbitrary vector, it can be dropped, and we finally obtain the force balance
equation, connecting the vortex displacement w with the transport current jtr:

Φ0

c
(z0 × jtr)−∇wUp = 0. (1.31)

Here, the first term is the Lorentz force (compare with Eq. (4)) and the second term
is the pinning force: Fp = −∇wUp(w). Thus, we may conclude that Up is the pinning
potential. This potential has two components. The first one,

− S
H2
c

4πn0

(
ξ2 |∇ψ0|2 − |ψ0|2 +

|ψ0|4

2n0

)∣∣∣∣∣
ρ=0

, (1.32)
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appears due to the suppression of the order parameter inside the cavity (ψ = 0). Note that
the expression (1.32) is given in the review [11] as an estimate of the pinning potential.
The second component of Up,

− ξ2
H2
c

4πn0

∇ψ0(0)Ĝ∇ψ∗
0(0), (1.33)

is connected with the distortion of the vortex in the vicinity of the cavity. Generally, the
contributions (1.32) and (1.33) to Up are of the same order of magnitude.

Before we determine some pinning potentials explicitly, we would like to note that
our consideration can be easily generalized for the anisotropic case. Indeed, the GL free
energy of an anisotropic superconductor can be presented in the form

F =
H2
c

4πn0

∫ (
ξ2x

∣∣∣∣∂ψ∂x
∣∣∣∣2 + ξ2y

∣∣∣∣∂ψ∂y
∣∣∣∣2 + ξ2z

∣∣∣∣∂ψ∂z
∣∣∣∣2 − |ψ|2 + |ψ|4

2n0

)
d3r, (1.34)

where ξx, ξy and ξz are the coherence lengths for different directions. The scaling trans-
formation x̃ = x, ỹ = yξx/ξy, and z̃ = zξx/ξz reduces the free energy to the isotropic
form. Thus, we again arrive at Eqs. (1.10) - (1.12).

Now we will consider two types of defects.

1.2.2 A defect in the form of a circular cylinder

Let the defect be a circular cylinder with the radius a. When the origin is placed on the
axis of the cylinder, the decaying solution of equations (1.22) and (1.23) is

ψ
(d)
1 =

a2(∇ψ0 · ρ)
ρ2

, (1.35)

and the pinning potential is

Up(w) = −H
2
c a

2

4n0

(
2ξ2 |∇ψ0|2 − |ψ0|2 +

|ψ0|4

2n0

)∣∣∣∣∣
ρ=0

. (1.36)

The function ψ0 can be determined numerically from the GL equation (1.15), using
standard methods for the solution of ordinary differential equations. The details of these
simple calculations are omitted for brevity. A detailed numerical analysis of the function
ψ0 can be found in [37].

Equation (1.36) allows us to determine the pinning energy, Ep:

Ep = Up(∞)− Up(0) = 0.47H2
c a

2,

This value coincides with the numerical result given in [28] up to a factor of the order of
unity.

The profiles of the pinning potential and the pinning force are plotted in Fig 1.2. The
pinning force reaches its maximum at w = wcr = 0.84ξ, where Fp = Fcr = 0.252H2

c a
2/ξ.

When jtr > cFcr/Φ0, the force balance equation (1.31) has no solutions, hence

jd = cFcr/Φ0 = 0.252
cH2

c a
2

Φ0ξ
(1.37)
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is the depinning current. Note that jd is much smaller than the depairing current density

Jc =
2c ξH2

c

3
√
3Φ0

,

if a≪ ξ.
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Figure 1.2: Profiles of the pinning potential (a) and the pinning force (b) for a circular
defect.

When j < jd Eq. (1.31) has two solutions due to the nonmonotonic behavior of the
function Fp(w), but the solution with the larger vortex displacement is thermodynami-
cally unstable. Indeed, it can be easily proved that it corresponds to a saddle point of the
correction ∆F to the free energy of a vortex connected with the presence of the defect
and the transport current:

∆F = Up −
Φ0

c
[(z0 × jtr)w] .

Equation (1.37) predicts that the depinning current grows like a2 when the defect size
is increased. Obviously, this quadratic growth rate must slow down when the defect size
is of the order of the coherence length (otherwise, the depinning current would eventually
exceed Jc). Thus, for a ∼ ξ equation (1.37) should give an upper estimate for jd. This
argument is well confirmed by the fact that the numerical value of the depinning current
for the defect radius 0.25ξ,

jd = 0.01
H2
c ξc

Φ0

, (1.38)

given in [29], is 1.5 times smaller than our estimate.

An important conclusion following from the force balance equation (1.31) is the exis-
tence of a metastable bound state at j < jd, when the vortex center is situated outside
the cavity. In [29] this state has not been detected numerically. This disagreement with
our result may be due to the relatively large size of defects considered in the paper
(a ≥ 0.25ξ), and also due to the strong influence of the outer periphery of the cell where
the GL equation has been integrated.
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1.2.3 The case of an elliptic cylinder

Consider an elliptic defect with the cross-section

x2

a2
+
y2

b2
< 1,

where a > b. We shall determine the vector field g and the pinning potential. It is
convenient to use the elliptic coordinates (ζ, ϑ):

x =
√
a2 − b2 cosh ζ cosϑ, y =

√
a2 − b2 sinh ζ sinϑ.

The border of the defect corresponds to the value ζ = ζ0, where

sinh ζ0 =
b√

a2 − b2
, cosh ζ0 =

a√
a2 − b2

.

Equations (1.27) in the new coordinates read

∂2g

∂ζ2
+
∂2g

∂ϑ2
= 0, g

∣∣∣∣
ζ→∞

= 0,
∂gx
∂ζ

∣∣∣∣
ζ=ζ0

= −b cosϑ, ∂gy
∂ζ

∣∣∣∣
ζ=ζ0

= −a sinϑ. (1.39)

The solution is
gx = beζ0−ζ cosϑ, gy = aeζ0−ζ sinϑ. (1.40)

Using (1.28), we obtain the components of the matrix Ĝ:

Gxx = πb2, Gyy = πa2, Gxy = Gyx = 0. (1.41)

According to equation (1.30), the pinning potential is

Up = −H2
c

4n0

[
ab

(
ξ2 |∇ψ0|2 − |ψ0|2 +

|ψ0|4

2n0

)
+ ξ2b2

∣∣∣∣∂ψ0

∂x

∣∣∣∣2 + ξ2a2
∣∣∣∣∂ψ0

∂y

∣∣∣∣2
] ∣∣∣∣∣

ρ=0

. (1.42)

The potential well for the vortex now does not have cylindrical symmetry. As a result,
the vortex displacement w and the depinning threshold jd will depend on the direction
of the transport current.

1.3 Comparison with the London theory

In the paper [25] the pinning potential in the presence of a circular and elliptic cavity has
been derived within the London theory. This approach is applicable when the defect size
is much larger than the temperature-dependent coherence length, i.e., D ≫ ξ(T ). Under
certain conditions, the results from Section 1.2 can be extended to the case D ≫ ξ(T ).
Indeed, the calculations in Section 1.2 based on the following two statements: (i) |ψ1| ≪√
n0 and (ii): the quantity ∇ψ0 is approximately constant in the area occupied by the

cavity. These two conditions are satisfied when

D ≫ ξ and w ≫ D, (1.43)

20



so for a large defect and large vortex-defect distance the pinning potential (1.30) should
coincide with the one obtained within the London theory.

At large vortex-defect distances, w ≫ a, for a circular defect Eq. (1.36) gives

Up = −
(

Φ0

4πλ

)2
a2

w2
+ const. (1.44)

This result is in good agreement with equation (5) from [25]. For an elliptic hole Eq.
(1.42) yields in the w ≫ a limit

Up = −
(

Φ0

4πλ

)2
1

2

(
ab

w2
+
b2w2

y

w4
+
a2w2

x

w4

)
+ const, (1.45)

whereas the potential from [25] is

Up = −
(

Φ0

4πλ

)2(
a+ b

2

)2
1

w2
, (1.46)

which, obviously, does not coincide with (1.45). The reason of this discrepancy is ex-
plained below.

The derivation of the interaction energy between a vortex and a cavity in the London
approximation is based on the equation

Up =
Φ0Bim(w)

8π
, (1.47)

where Bim is the z projection of the field created by image vortices. This field can be
expressed as

Bim = Bz −
Φ0

2πλ2
ln

∣∣∣∣ λ2

ζ − ζ0

∣∣∣∣, (1.48)

where ζ = x+ iy, ζ0 = wx + iwy, and Bz is the full magnetic field, satisfying the Poisson
equation

∇2Bz = −Φ0

λ2
δ(ρ−w). (1.49)

The second term in the right-hand side of Eq. (1.48) represents the self field of the
vortex with the opposite sign. The image vortices are placed in such a way to provide
the fulfillment of the condition Bz = const on the boundary of the cavity. For a circular
defect with the radius a0 the image field at the position of the vortex is [24]

Bc
im(ζ0) =

Φ0

2πλ2
ln

(
1− a20

|ζ0|2

)
, (1.50)

To obtain the magnetic field in the presence of a non-circular defect, we may apply a
conformal transformationW = W (ζ) to the ζ plane. Since the form of Poisson’s equation
is not modified by such a transformation, the field distribution in the W plane is given
by

Bz(W ) = Bc
z(ζ(W )),
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where Bc
z(ζ) is the solution of Eq. (1.49) in the presence of a circular defect. Using the

definition (1.48) of the image field, we obtain

Bim(W0) = Bc
im(ζ(W0)) +

[
Φ0

2πλ2
ln

∣∣∣∣ λ

ζ(W )− ζ0

∣∣∣∣− Φ0

2πλ2
ln

∣∣∣∣ λ

W −W0

∣∣∣∣]∣∣∣∣
W=W0

, (1.51)

whereW0 = W (ζ0) specifies the position of the vortex in theW -plane. Hence, the pinning
potential equals

Up =

(
Φ0

4πλ

)2 [
ln

(
1− a20

|ζ(W0)|2

)
− ln

∣∣∣∣ dζdW (W0)

∣∣∣∣] . (1.52)

Here, the first logarithmic term originates from the transformation of the image field
(1.50), while the second term is connected with the modification of the self field of the
vortex. In [25] this term has not been taken into account. As a result, the isotropic
potential (1.46) has been obtained. In order to determine the correct pinning potential
for an elliptic cavity, we apply the modified Joukovsky transformation [25]:

W (ζ) =
a+ b

2

ζ

a0
+
a− b

2

a0
ζ
; (1.53)

Up(W0) =

(
Φ0

4πλ

)2ln
1−

∣∣∣∣∣ a+ b

W0 +
√
W 2

0 − a2 + b2

∣∣∣∣∣
2
− ln

∣∣∣∣∣1 + W0√
W 2

0 − a2 + b2

∣∣∣∣∣
+const.

(1.54)
For |W0| ≫ a this expression is in good agreement with the result obtained within the
GL theory (Eq. (1.45)).

1.4 Summary

The central results of this Chapter are the equations (1.27), (1.28) and (1.30), defining the
interaction energy of a vortex and a small cylindrical cavity (D ≪ ξ) with an arbitrary
cross-section. The problem of the pinning potential evaluation is reduced to a linear
Neumann problem for Laplace’s equation (for the solution of the latter various standard
procedures exist [78]). It should be noted that the method developed here can be applied
not only to bulk superconductors, but also to thin films with the vortices directed normal
to the film.

On the basis of Eqs. (1.27), (1.28) and (1.30) the exact pinning potential for a cavity
with an elliptic cross-section has been calculated (see Eq. (1.42)). The occurrence a
metastable bound state of the vortex and the defect (Fig. 1.1b) at low transport currents
has been predicted. This bound state may be observed, for example, using scanning
tunneling microscopy or a nano-SQUID [79]. For a cavity in the form of a circular
cylinder the depinning current has been determined.

The vortex-defect interaction was also considered within the London theory. The
relation (1.52) has been derived, allowing to calculate the pinning potential for complex
cavities, using the conformal transformation technique. The pinning potentials obtained
within the GL and London theories coincide with each other in the range of parameters
where both approaches are applicable.
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The results of this Chapter comprise an important basis for estimates of the critical
current in superconductors with small columnar defects. In addition, the present analysis
is relevant to recent experimental studies of the vortex ratchet effect [80, 81, 82, 83, 84, 85],
where an anisotropic pinning structure is a key element. Note that the experimental
conditions in [85] almost perfectly match the model used here: the antidots embedded
into the thin Al films represent insulating inclusions, and the typical temperatures are
very close to the critical temperature, so that the coherence length is larger than the
defect size. Thus, the obtained relations for the anisotropic pinning potential may be
useful for vortex ratchet design and for interpretation of future experiments in this field.
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Chapter 2

Resistivity of an anisotropic type-II
superconductor in the mixed state

2.1 Introduction

In the previous Chapter the case of a relatively low transport current has been studied,
when the vortex is pinned. In the opposite limiting case, when the current is sufficiently
strong, the interaction of vortices with defects becomes inessential, and the stationary
flux-flow regime sets in. In the first theoretical papers devoted to the study of the
flux-flow conductivity it has been pointed out that vortex motion is accompanied by
dissipation, having two origins: losses due to relaxation of the order parameter [86] and
ohmic losses associated with normal currents flowing through the vortex core [32]. Both
these mechanisms contribute to the vortex viscosity η (see Eq. (7)). A rigorous approach
to the evaluation of this quantity has been proposed by Schmid [33], and was later
developed by Gor’kov and Kopnin [34]. Their method is based on the time-dependent
Ginzburg-Landau (TDGL) equation

Γ

(
~
∂ψ

∂t
− 2ieΦψ

)
= − δF

δψ∗ . (2.1)

Here, Γ is a relaxation constant, Φ is the electric potential, and F is the GL free energy.
Using this approach, the viscosity η of an isolated vortex in an isotropic superconductor
has been calculated in the papers [36, 37, 38]. A study of the flux-flow conductivity
in the anisotropic (uniaxial) case, relevant to the cuprates [39] and Fe-pnictide super-
conductors [42], is given in [40] and [41] (see also the book [35]). When the parameter
s0 = mcσc/mabσab is equal to unity, the problem can be reduced to the isotropic form
[41]. The more complicated case of a Cooper pair mass-normal conductivity anisotropy
mismatch (s0 ̸= 1) has been considered in [40] on the basis of a simplified step-like order
parameter profile in a vortex.

The present Chapter of the thesis is mainly devoted to the study of the viscosity
tensor η̂ in the case s0 ̸= 1 using a realistic (sometimes, even exact) order parameter
profile of a vortex. In Sec. 2.2 the initial equations are given. In Sec. 2.3 some exact
asymptotic expressions for the vortex viscosity are derived. In Sec. 2.4 a variational
principle is established, which allows to obtain a universal approximate expression for η̂.
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Finally, in Sec. 2.5 the temperature dependence of the flux-flow conductivity anisotropy
is considered within a generalized TDGL theory.

2.2 Basic equations

The GL free energy of a uniaxial superconductor is given by

F =

∫ [
~2∇ψ∗ m̂

−1

2
∇ψ + aGL |ψ|2 +

1

2
bGL |ψ|4

]
d3r. (2.2)

Here, aGL and bGL are parameters that do not depend on coordinates, m̂ is the Cooper
pair mass tensor with the components mij = mab(δij + µeiej), where e is a unit vector
directed along the anisotropy axis, and µ is a dimensionless constant. The Cooper pair
concentration in the uniform state n0 equals |aGL| /bGL. Like in the previous Chapter,
we neglect the vector potential, assuming that the superconductor is in the high-κ limit.
Equations (2.1) and (2.2) are supplemented by the charge conservation law

∂ρe
∂t

+ div j = 0, (2.3)

where the full current density is

j = −2e~ |ψ|2 m̂−1∇θS − σ̂n∇Φ̃. (2.4)

Here, ρe is the electric charge density, σ̂n is the normal conductivity tensor with the
components σnij = σabδij + (σc − σab)eiej, and Φ̃ is the electrochemical potential. When
the Thomas-Fermi screening length is much smaller than all characteristic length scales of
the problem, one can neglect the difference between ∇Φ and ∇Φ̃ [36, 77]. The Thomas-
Fermi screening length is typically of the order of the interatomic distance, so we will
henceforth assume that ∇Φ ≈ ∇Φ̃.

Let us consider the orientation of the internal magnetic field at an angle φ0 to the
crystallographic c axis. We choose the coordinate frame (x, y, z) with the z axis coinciding
with the vortex axis and with the c axis lying in the xz plane (see Fig. 2.1). In this frame
the functions ψ and Φ do not depend on z, and the tensor η̂ is diagonal.

The derivation of the force balance equation (5) and of the explicit expression for
the viscous drag tensor may be found in [77] and [40]. However, in Appendix B, the
calculations are outlined for the reader’s convenience.

The full viscosity can be presented as the sum of the ohmic (Bardeen-Stephen [32])
and relaxational [86] contribution: η̂ = η̂oh + η̂p0. The latter is given by

(ηp0)xx = 2π~Γn0α1

(
m(φ0)

mab

)1/2

, (ηp0)yy = 2π~Γn0α1

(
mab

m(φ0)

)1/2

, (2.5)

where

m(φ0) =
mab(1 + µ)

1 + µ cos2 φ0

, (2.6)

and the constant α1 is given by Eq. (B20).
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Figure 2.1: The coordinate frame.

The components of the Bardeen-Stephen contribution, η̂oh, are

ηx ≡ [mab/m(φ0)]
1/2(ηoh)xx = −2n0Γ~

∫
f 2(ρ1)

y1
ρ21

(
u2Φx −

y1
ρ21

)
dx1dy1, (2.7)

ηy ≡ [m(φ0)/mab]
1/2(ηoh)yy = −2n0Γ~

∫
f 2(ρ1)

x1
ρ21

(
u2Φy −

x1
ρ21

)
dx1dy1. (2.8)

where u = ξab/lEab,

(x1, y1) = ξ−1
ab

√m(φ0)

mab

x, y

 , ρ1 =
√
x21 + y21, (2.9)

ξab and lEab are the coherence length and the electric field penetration depth in the
ab-plane:

ξab =

√
~2

2mab |aGL|
, lEab =

[
~σab/

(
8e2Γn0

)]1/2
. (2.10)

In a similar way the quantities ξc and lEc, related to the c-axis, may be introduced. The
function f(ρ) in Eqs. (2.7) and (2.7) is the dimensionless order parameter in an isotropic
vortex (see Eq. (B17)). It satisfies the equation

1

ρ

d

dρ

(
ρ
df

dρ

)
− f

ρ2
+ f − f 3 = 0, (2.11)

which follows from Eq. (B8). The boundary conditions are f(0) = 0, f(∞) = 1. The
functions Φx and Φy in Eqs. (2.7) and (2.8) should be determined from the linear equa-
tions

s(φ0)
∂2Φx

∂x21
+
∂2Φx

∂y21
=

(
u2Φx −

y1
ρ21

)
f 2(ρ1), (2.12)

s(φ0)
∂2Φy

∂x21
+
∂2Φy

∂y21
=

(
u2Φy −

x1
ρ21

)
f 2(ρ1), (2.13)

27



where

s(φ0) = 1 +

(
mcσc
mabσab

− 1

)
sin2 φ0

1 + µ cos2 φ0

> 0. (2.14)

The electric potential can be expressed in terms of Φx and Φy via

Φ =

ΦyVLy − Φx

√
m(φ0)

mab

VLx

 4Γe~
bGLσab

√
|aGL|
2mab

. (2.15)

Note that there is a relation connecting the components ηx and ηy:

ηy(s, u) = ηx

(
1

s
,
u√
s

)
. (2.16)

Equations (2.5), (2.7) and (2.8) can be written in a more compact form with the help
of the dissipation function, Wd[ψ,Φ] [77]:

Wd[ψ,Φ] = ∇Φσ̂n∇Φ +
2Γ

~

∣∣∣∣~∂ψ∂t − 2ieΦψ

∣∣∣∣2 . (2.17)

This function defines the dissipation rate in a unit volume. The viscosity tensor satisfies
the relation

VLη̂VL =

∫
z=0

Wd[ψ,Φ]d
2ρ, (2.18)

The disipation function consists of two parts, yielding the viscosity components η̂p0 and
η̂oh:

VLη̂p0VL = 2Γ~
∫
z=0

(
∂ |ψ|
∂t

)2

d2ρ, (2.19)

VLη̂ohVL =

∫
z=0

[
∇Φσ̂n∇Φ +

2Γ

~
|ψ|2

(
~
∂θS
∂t

− 2eΦ

)2
]
d2ρ. (2.20)

To avoid confusion, it should be noted that the component η̂oh, apart from the ohmic
losses, contains a part of the relaxational losses, as can be seen from Eq. (2.20). Nev-
ertheless, we will call η̂oh the ohmic vortex viscosity (or Bardeen-Stephen contribution),
following the terminology used in [35, 40, 77].

Now we will analyze two limiting cases.

2.3 Asymptotic expansions for the viscosity tensor

2.3.1 The limit lE ≪ ξ

Let us consider such materials where the electric field penetration depth is much smaller
than the coherence length:

lEab ≪ ξab, lEc ≪ ξc. (2.21)

This limiting case is more close to gapless superconductors with a high concentration of
magnetic impurities which are characterized by the ration ξ/lE =

√
12. The conditions
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(2.21) impose the following restrictions on the parameters s and u: u ≫ 1, s ≪ u2. In
this subsection we will analyze the case s . 1. The case 1 ≪ s ≪ u2 can be considered
in a similar way by dividing Eqs. (2.12) and (2.13) by s. We shall search the asymptotics
of the viscosity when u→ ∞ neglecting small terms of order higher than u−2.

The approximation used here is based on the fact that the characteristic length scale
for the functions Φx and Φy is u

−1. Hence, these functions reach their asymptotic behavior
at distances ρ1 ≪ 1 from the vortex axis, where the order parameter profile f(ρ1) is well
approximated by the first several terms of its Taylor series:

f 2(ρ) ≈ f2ρ
2
1 + f4ρ

4
1 + f6ρ

6
1.

We substitute this expansion into Eq. (2.12) and introduce the new variables ρ̃ = ρ1

√
u,

Φ̃x = Φxu
3/2:

∂2Φ̃x

∂ỹ2
+ s

∂2Φ̃x

∂x̃2
=

(
f2ρ̃

2 + f4
ρ̃4

u
+ ...

)(
Φ̃x −

ỹ

ρ̃2

)
. (2.22)

Further the tilde over x̃ and ỹ will be omitted. The solution of Eq. (2.22) can be expanded
in the powers of u−1:

Φ̃x = Φ(0)
x + u−1Φ(1)

x +Rx, (2.23)

where Φ
(0)
x and Φ

(1)
x satisfy the following relations:

∂2Φ
(0)
x

∂y2
+ s

∂2Φ
(0)
x

∂x2
= f2ρ

2Φ(0)
x − f2y, (2.24)

∂2Φ
(1)
x

∂y2
+ s

∂2Φ
(1)
x

∂x2
= f2ρ

2Φ(1)
x + f4ρ

4

(
Φ(0)
x − y

ρ2

)
, (2.25)

and Rx is a remainder term. It is proved in Appendix C that an analogous expansion
can be made in the integral in the right-hand side of Eq. (2.7):

ηx = −2n0Γ~
[
I1x(s)

u
+
I2x(s)

u2
+ o(u−2)

]
, (2.26)

where

I1x(s) =

∫
f2y

(
Φ(0)
x − y

ρ2

)
dx dy, (2.27)

I2x(s) =

∫
y

ρ2

[
f4ρ

4

(
Φ(0)
x − y

ρ2

)
+ f2ρ

2Φ(1)
x

]
dx dy. (2.28)

The viscosity component ηy can be calculated similarly:

ηy = −2n0Γ~
[
I1y(s)

u
+
I2y(s)

u2
+ o(u−2)

]
. (2.29)

Using Eq. (2.16) we obtain

I1y(s) = I1x(s
−1)

√
s, I2y(s) = I2x(s

−1)s. (2.30)

In principle, the functions I1x(s) and I2x(s) can be determined by numerical calculations,
however, in Section 2.4 some analytical expressions for these functions are given.
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In [40] the u ≫ 1 limit was considered using the Bardeen-Stephen model. This
approach is essentially based on the assumption about a step-like order parameter profile
within the core and does not allow to obtain a leading term of the order of u−1 in the
expansion (2.26).

The particular case s = 1 has been considered in a number of works mentioned above
[33, 36, 37, 38]. It corresponds to isotropic superconductors, or anisotropic superconduc-
tors with no anisotropy mismatch: (mcσc)/(mabσab) = 1. If s = 1, Eqs. (2.24) and (2.25)
can be solved exactly:

Φ(0)
x =

1− exp(−
√
f2ρ

2/2)

ρ2
y,

Φ(1)
x =

f4y

uf2

(
1

4
+

√
f2ρ

2

8

)
exp(−

√
f2ρ

2/2).

After some integration we obtain a simple relation for the viscous drag coefficients:

ηx = ηy = 2πn0Γ~α2(u), (2.31)

α2(u) ≈
√
f2
u

+
f4

2f2u2
=

0.583

u
− 1

8u2
. (2.32)

Here the value
√
f2 = 0.583 was taken from [37], and the relation f4 = −f2/4 follows

from Eq. (2.11).
It is appropriate to recall here the result obtained by Hu [37]:

α2 =
K0(δu)

δu ·K1(δu)
, (2.33)

where K0 and K1 are the modified Bessel functions of an imaginary argument and δ is a
fitting parameter. Eq. (2.33) was derived from the exact solution of Eq. (B12) with an
approximate order parameter profile:

f(ρ) =
ρ√

δ2 + ρ2
. (2.34)

According to Schmid [33] and Hu, the optimal value of δ is
√
2 which follows from a

variational principle. We can compare different values of α2(u). When u =
√
12 Eq.

(2.33) yields α2 = 0.186, Eq. (2.32) yields α2 = 0.158, while the numerical result is
α2 = 0.159 [38]. Thus, the relation (2.32) gives an error less than 1%. If we keep only the
term of order u−1 in Eq. (2.32), we will get a 6% error which increases with decreasing
u.

2.3.2 The limit s≫ u≫ 1

Consider the range of parameters s ≫ u2 and u & 1. In terms of lE, ξ and φ0 these
conditions read

lEc ≫ ξc, lEab . ξab, cos2 φ0 ≪
σcl

2
Eab

σabξ2ab
.

Thus, the magnetic field must make a small angle with the ab-plane.

30



When s ≫ u2, the term u2Φx in Eq. (2.12) is negligible compared to y1/ρ
2
1 in the

region ρ≪
√
s/u, so we immediately obtain from Eq. (2.7)

ηx ∼ ln s/u2.

More complicated calculations, which can be found in Appendix D, yield

ηx = 2π~Γn0

(
ln

√
s

u
− 1.475

)
, (2.35)

ηy = 2π~Γn0

(
ln

√
s

u
− 0.475

)
. (2.36)

Note that in Ref. [40] in the u≪ 1 limit similar expressions containing lnu−1 have been
derived. This similarity is not accidental: the presence of the logarithm ln(lE/ξ) is a
characteristic feature of the lE ≫ ξ limit.

2.4 A variational principle

In this subsection a simple variational procedure is suggested for the calculation of the
viscous drag tensor in the general case.

The electric potential Φ is determined by Eq. (B12), which can be viewed as a
condition of zero variational derivative of the functional∫

z=0

Wd[Φ]d
2ρ, (2.37)

where the dissipation function Wd is given by Eq. (2.17). This observation together with
Eq. (2.18) yield the variational formulation of our problem:

VLη̂VL = min
Φ

∫
z=0

Wd[Φ]d
2ρ. (2.38)

This relation and the symmetry condition ηxy = ηyx completely define the viscous drag
tensor. Note that Eq. (2.38) is in good agreement with the general principle of minimum
entropy production in stationary processes [87].

Let us rewrite Eq. (2.38) in the rescaled coordinate frame separately for both com-
ponents of the Bardeen-Stephen contribution:

ηx = η̃(s, 1, u), ηy = η̃(1, s, u), (2.39)

where

η̃(sx, sy, u) = 2n0Γ~u2 ·min
ϕ

∫ [
sx

(
∂ϕ

∂x

)2

+ sy

(
∂ϕ

∂y

)2

+
f 2(ρ)

u2

(
u2ϕ− y

ρ2

)2
]
dx dy.

(2.40)
We can obtain an upper estimate for the viscosity components if we substitute a trial

function into Eq. (2.40). To find an appropriate trial function consider the exact equation
for ϕ:

sx
∂2ϕ

∂x2
+ sy

∂2ϕ

∂y2
=

(
u2ϕ− y

ρ2

)
f 2(ρ). (2.41)
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The solution of this equation is an even function of x and an odd function of y, so its
Fourier series has the form

ϕ =
∞∑
n=0

ϕ2n+1(ρ) sin(2n+ 1)φ, (2.42)

where φ is the polar angle in the xy plane. When ρ is sufficiently large, ϕ ≈ y/(u2ρ2),
which means that the series in Eq. (2.42) contains only the first term at ρ → ∞. Thus,
the trial function

ϕt =
4ϕ̃(ρ)

sx + 3sy
sinφ (2.43)

has the correct parity and the correct asymptotics. Let us substitute this function into
Eq. (2.40):

η̃ ≈ 2n0Γ~πũ2min
ϕ̃

∫ ∞

0

ρ

(dϕ̃
dρ

)2

+
ϕ̃2

ρ2
+
f 2(ρ)

ũ2

(
ũ2ϕ̃− 1

ρ

)2
 dρ, (2.44)

where

ũ = u

(
sx
4

+
3sy
4

)−1/2

.

The differential equation for ϕ̃ is

− 1

ρ

d

dρ

(
ρ
dϕ̃

dρ

)
+
ϕ̃

ρ2
+ f 2(ρ)

(
ũ2ϕ̃− 1

ρ

)
= 0. (2.45)

Note that we obtain exactly the same equation if we substitute Φx = ϕ̃(ρ) sinφ into Eq.
(2.12) when s = 1 and u = ũ. This means that the trial function (2.43) reduces our
problem to an isotropic one. Unfortunately, an exact solution of Eq. (2.45) is unknown.
However, Schmid [33] found a solution with an approximate order parameter profile [see
Eq. (2.34)]:

ϕ̃ =
K1(ũδ)δ −

√
δ2 + ρ2K1(ũ

√
δ2 + ρ2)

δK1(ũδ)ũ2ρ
.

Using this function and the expression (2.34) for f we can calculate the right-hand side
of Eq.(2.44):

η̃ ≈ 2n0Γ~π
K0(δũ)

δũK1(δũ)
. (2.46)

We take δ = f ′(0)−1 = f
−1/2
2 in order to obtain the correct asymptotics when u → ∞,

s = 1 (this asymptotics is determined by f ′(0), see subsection 2.3.1). Finally, combining
(2.39) and (2.46) we get approximate relations for the components of η̂′:

ηx ≈ 2πn0Γ~
f ′(0)

2u

√
s+ 3

K0

(
2u

f ′(0)
√
s+3

)
K1

(
2u

f ′(0)
√
s+3

) , (2.47)
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ηy ≈ 2πn0Γ~
f ′(0)

2u

√
3s+ 1

K0

(
2u

f ′(0)
√
3s+1

)
K1

(
2u

f ′(0)
√
3s+1

) . (2.48)

No restrictions on the parameters s and u are implied here.
Let us check if these relations are in accordance with the results from Section 2.3.

Expanding ηx in the form (2.47) in the powers of u−1 when u ≫ 1 and s . 1 we
obtain the following expressions for the coefficients I1x and I2x, which were introduced in
subsection 2.3.1 (see Eq. (2.26)):

I1x(s) = −π
√
f2
√
s+ 3

2
, I2x(s) =

πf2(s+ 3)

8
. (2.49)

When s = 1

ηx = ηy = 2πn0Γ~
f ′(0)

u
+O(u−2),

which should be compared with Eq. (2.32). The perfect agreement between the exact
and approximate result is not surprising, because the trial function (2.43) is the exact
solution of our variational problem in the isotropic case.

The applicability of Eqs. (2.47) and (2.48) for s ̸= 1 has been checked using numerical
calculations. Equation (2.41) was solved in the region x > 0, y > 0 with the boundary
conditions

∂ϕ

∂x

∣∣∣∣
x=0

= 0, ϕ

∣∣∣∣
y=0

= 0.

A sufficiently large 450×450 mesh with a 0.03×0.03 unit cell has been used. The numerical
algorithm applied was the method of steepest descent. After the determination of the
function ϕ(ρ) numerical integration has been performed.

When s = 0 Eqs. (2.49) and (2.30) give

ηx = 2n0Γ~
1.59

u
+O(u−2),

ηy = 2n0Γ~
0.92

u
+O(u−2).

These analytical expressions are in a good agreement with the asymptotics derived by
numerical calculations:

ηx = 2n0Γ~
1.58

u
+O(u−2),

ηy = 2n0Γ~
0.86

u
+O(u−2).

When s≫ u2 Eqs. (2.47) and (2.48) give

ηx ≈ ηy ≈ 2π~Γn0 ln

√
s

u
,

which coincides with the main logarithmic term in Eqs. (2.35) and (2.36).
One can see that the agreement between the exact and approximate asymptotics is

quite well. This is a strong argument in favor of the applicability of Eqs. (2.47) and
(2.48) for intermediate values of s and u.

In Fig. 2.2 we plot the analytical and numerical φ0 dependencies of the diagonal
components of the full viscous drag tensor (η̂ = η̂p0 + η̂oh).
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Figure 2.2: The φ0 dependencies of the viscosity tensor components. Solid lines cor-
respond to analytical results (Eqs. (2.47) and (2.48)), dashed lines show the results
of numerical simulations. Here ηxx and ηyy are measured in the units η0 = ~Γn0,
ξab/lEab =

√
12.

2.5 Temperature dependence of the vortex viscosity

anisotropy

Within the framework of the TDGL equation (2.1) the viscosity anisotropy ηxx/ηyy does
not depend on temperature. However, the region of applicability of Eq. (2.1) is limited
by gapless superconductivity. In this section we consider a more general approach based
on the generalized TDGL equations [88] (see also [35] for review):

2~Γ
√
1 + qph |ψ|2 /n0

∂ |ψ|
∂t

= − δF

δ |ψ|
, (2.50)

Γ |ψ|2√
1 + qph |ψ|2 /n0

(
~
∂θS
∂t

− 2eΦ

)
=

~2

2
∇
(
|ψ|2 m̂−1∇θS

)
, (2.51)

qph =
32π2τ 2phTc(Tc − T )

7ζ(3) ~2
.

Here τph is the electron-phonon mean free time. In the isotropic case Eqs. (2.50) and
(2.51) are valid for dirty superconductors, when the temperature is close to Tc and vari-
ations of the order parameter in space and in time are sufficiently slow [35].

The main relations for the viscous drag tensor can be derived in same way as described
in section 2.2 and in Appendix B. As a result, we find that the viscosity still comprises two
terms representing two mechanisms of dissipation, but the viscosity components undergo
some changes. For example, Eq. (2.5) is modified as follows:

(η′p0)ij = 2π ~Γn0δij

∫ ∞

0

(
df

dρ

)2

ρ
√

1 + qphf 2(ρ)dρ. (2.52)
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To obtain the counterparts of Eqs. (2.7), (2.8), (2.12) and (2.13) one should make the
following substitutions in these equations:

u2 → u2√
1 + qph

,

f 2 →
√
1 + qphf

2√
1 + qphf 2

,

ηi → ηi
√
1 + qph, i = x, y. (2.53)

It can be seen from Eq. (2.51) that the electric field penetration depth is increased by
a factor (1 + qph)

1/4 as compared to Eq. (2.10). It may seem that at low temperatures
we would reach the lE ≫ ξ limit, which has been analyzed in [40]. However, this is not
quite true because of the different relative impacts of the two mentioned mechanisms
of dissipation in the simple and generalized TDGL models. Within the simple TDGL
theory the Bardeen-Stephen contribution and the relaxational term are of the same order
of magnitude in the lE ≫ ξ limit. On the contrary, in the generalized model the viscosity
is dominated by the relaxational term at low temperatures (see below).

It is obvious that all main relations from Sec. 2.3 can be derived again within the
generalized TDGL theory, but they are slightly modified. For example, Eq. (2.31) now
reads

ηx = ηy ≈ 2π ~Γn0

[√
f2
u

− 1 + 2qph
8u2

]
. (2.54)

Now consider the temperature dependence of the viscous drag tensor. The quantity
qph depends on the temperature T : (qph)

′
T < 0. Hence,

∂

∂T

(ηp0)xx
η0

=
∂

∂T

(ηp0)yy
η0

< 0,

where η0 = ~Γn0. On the other hand, the modified Eq. (2.40) can be written in the form

η̃(sx, sy, u) = 2n0Γ~u2min
ϕ

∫ [
sx
(
∂ϕ
∂x

)2
+ sy

(
∂ϕ
∂y

)2
+ f2(ρ)

u2
√

1+qphf2(ρ)

(
u2ϕ− y

ρ2

)2]
dx dy, (2.55)

if we leave Eqs. (2.39) unchanged. Hence,

∂

∂T

(ηoh)xx
η0

> 0;
∂

∂T

(ηoh)yy
η0

> 0.

At sufficiently low temperatures, when qph ≫ 1, s . 1 and u ∼ 1, it may happen that

(ηp0)xx ≫ (ηoh)xx, (ηp0)yy ≫ (ηoh)yy.

Then the viscosity anisotropy is determined by the relaxational term:

ηxx
ηyy

≈ (ηp0)xx
(ηp0)yy

=
1 + µ

1 + µ cos2 φ0

.
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Figure 2.3: Schematic temperature dependence of the viscosity anisotropy for φ0 = π/2.
The parameter ϵ is of the order of unity.

Note that ηx ̸= ηy when s ̸= 1 , so

ηxx
ηyy

̸= 1 + µ

1 + µ cos2 φ0

when qph . 1. We have proved that within the generalized TDGL theory the viscosity
anisotropy and the flux-flow conductivity anisotropy do depend on temperature. The
schematic T dependence of the ratio ηxx/ηyy is plotted in Fig. 2.3.

2.6 Summary

In the present Chapter the viscous flux-flow in anisotropic superconductors has been ana-
lyzed within the time-dependent Ginzburg-Landau theory. The Bardeen-Stephen contri-
bution to the viscous drag tensor η̂ has been calculated in the limits lE ≪ ξ and lEc ≫ ξc.
Unlike in the preceding works, in these calculations no simplifying assumptions concern-
ing the shape of the order parameter in a static vortex have been made. In addition,
a variational procedure has been suggested, which allowed to derive the relations (2.47)
and (2.48) suitable for arbitrary electric field penetration lengths (lEab and lEc), coherence
lengths (ξab and ξc) and orientation of the magnetic field. The mentioned approximate
relations for η̂ are in good agreement with numerical calculations.

The results obtained in this Chapter may be useful for interpretation of experimental
data on the flux-flow conductivity in anisotropic superconductors in weak magnetic fields
(B ≪ Hc2).

Vortex motion has also been considered within a generalized TDGL theory. It has
been found that the viscosity anisotropy may depend on temperature and, thus, the
flux-flow conductivity anisotropy may be altered by heating or cooling the sample.

36



Chapter 3

Interaction between spin waves and
vortices in
superconductor-ferromagnet hybrids

3.1 Introduction

In magnetic materials the long-wavelength magnetization dynamics is well described by
the simple phenomenological Landau-Lifshitz equation [3], or its generalization taking
into account dissipation – the Landau-Lifshitz-Gilbert equation [72]:

∂M

∂t
= γ

(
M× δF

δM

)
+

ν

M2

(
M× ∂M

∂t

)
. (3.1)

Here, M is the local magnetization of the ferromagnet (or the sublattice magnetization
in the case of a ferrimagnet), Γ is the gyromagnetic ratio, F is the free energy, and ν is a
relaxation constant. Using Eq. (3.1) it is easy to obtain the classical spin-wave spectrum
of a ferromagnet with an easy-axis type magnetocrystalline anisotropy [3]:

ω(q) = ωF (1 + L2q2), (3.2)

Here, ωF is the ferromagnetic resonance frequency, and L is a length of the order of the
Bloch domain wall width. The antiferromagnetic counterpart of Eq. (3.2) is [3]

ω(q) =
√
ω2
AF + s2AF q

2, (3.3)

where ωAF is the antiferromagnetic resonance frequency, and sAF is the velocity of
magnons with large wave numbers q. The spectra (3.2) and (3.3) do not account for
the magnetostatic interaction. If it is taken into account, the dispersion relations become
more complicated. For example, the ferromagnetic spectrum takes the form

ω2(q) = ω2
F

(
1 + L2q2 +

B0 − 4πM

Han

)(
1 + L2q2 +

B0 − 4πM

Han

+ 4π − 4π
(qe)2

q2

)
. (3.4)

Here, B0 is the magnetic induction in the sample, e is a unit vector directed along the
anisotropy axis, and Han is the anisotropy field, defining the ferromagnetic resonance
frequency: ωF = γHan.
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Figure 3.1: (a) The magnon spectrum in an antiferromagnetic superconductor at a fixed
direction of the wave vector [61]. (b) The spectra of magnons propagating normal to
the easy magnetization axis in a superconducting and ordinary ferromagnet. All graphs
correspond to a vanishing internal magnetic induction B0.

In magnetic superconductors the spin waves interact with the superconducting sub-
system through the exchange and anisotropy fields, which leads to a further modification
of the magnon spectrum. Buzdin [61] has shown that within the London approximation
the antiferromagnetic spectrum becomes non-monotonic – see Fig. 3.1a. Later [62, 63], a
similar result has been obtained for a ferromagnetic superconductor in the Meissner state
– see Fig. 3.1b. The presence of a minimum on the ω(q) dependence is closely related to
the appearance of a spiral magnetic order is some magnetic superconductors [51].

In later works the microwave surface impedance of a ferromagnetic superconductor
has been studied in detail [89], and the spectra of 2-dimensional surface and domain
wall magnons have been determined [90, 91]. In these papers it has been assumed that
the superconductor is in the Meissner state, while experimental studies suggest that the
ferromagnetic superconductors exhibit a spontaneous mixed state [55, 56, 57]. The spin-
wave spectrum in the vortex phase has been previously considered only by Ng and Varma
[62]. In this paper the coupled spin and vortex dynamics has been studied within the
continuous medium approximation, which is applicable in the limit of long wavelengths
λw: λw ≫ av, where aw is the intervortex distance.

In the papers [64, 65, 68, 69, 66] the reverse influence of magnons on vortex dynamics
has been analyzed. Bulaevskii, Hruška and Maley showed [64] that vortex motion may be
accompanied by Cherenkov generation of magnons. This new dissipation mechanism leads
to the appearance of an additional damping force acting on vortices, which is reflected
in the current-voltage characteristics of the sample. Thus, information about the spin-
wave spectrum can be extracted from the I-V curve of a magnetic superconductor. In
[65] an estimate of the magnetic contribution to the vortex viscosity in antiferromagnetic
borocarbides is given. In [68] it is proposed study the magnon spectrum in magnetic
superconductor by measuring the response of the material to a superposition of ac and
dc currents. The nonlinear magnetization dynamics (corresponding to spin-waves with
a large amplitude) was considered in [69]. The authors demonstrated numerically that
vortices in magnetic superconductors may form clusters, and moving vortices may create
domain walls, if the dissipation constant ν in Eq. (3.1) is sufficiently small.

In the papers [66, 70, 67, 71] vortex motion in systems with purely relaxational dy-
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namics of the magnetization has been considered:

τM
∂M

∂t
= −1

2

δF

δM
, (3.5)

where τM — is the relaxation time. Obviously, such systems do not support oscillating
magnon modes. In [66] a novel “polaronic” vortex pinning mechanism is proposed to
explain the unusual magnetization curves of borocarbides. The new pinning mechanism
appears due to the attraction of a vortex to magnetic moments which were polarized
by the same vortex. The influence of this effect on the ac response of the material has
been studied in [67]. In [70] it was proposed to improve the transport characteristics
of superconductors with a small London penetration depth by creating superconductor-
ferromagnet (SF) superlattices, where the “polaronic” pinning mechanism is realized.

In this Chapter of the thesis two problems are solved, concerning the interplay between
Abrikosov vortices and spin waves in SF-hybrids: the calculation of the magnon spectrum
in the presence of vortices, and the analysis of the ac and dc responses of vortices in the
presence of magnetic moments. The initial equations for both problems are derived in
Sec. 3.2. In Sec. 3.3 the spin wave spectrum in a ferromagnetic superconductor in the
mixed state is studied. The results of the paper [62] are extended to the case of short
wavelengths, λw . av, when Bragg scattering of magnons on the vortex lattice becomes
important. Then the spin-wave spectrum acquires a Bloch-like band structure. In Sec.
3.4 the damping force, connected with magnon generation, acting on moving vortices in
ferromagnetic superconductors and SF-superlattices is calculated. It is shown that the
magnetic contribution to the vortex viscosity can be extracted from the surface impedance
of a ferromagnetic superconductor.

3.2 Basic equations

Within the London approximation the free energy of a ferromagnetic superconductor can
be written as

F =

∫ [
1

8πλ2

(
A+

Φ0

2π
∇θS

)2

+
(B− 4πM)2

8π
+
α

2

(
∂M

∂xi

∂M

∂xi

)
+
KM2

⊥
2

− BHe

4π

]
d3r,

(3.6)
where α is an exchange constant, K is an anisotropy constant, M⊥ = M − (Me)e, and
He is the external magnetic field. All terms in Eq. (3.6) are integrated over the whole
space, except for the first term, which is integrated over the sample volume. We assume
M = 0 outside the sample, and |M| = const in the ferromagnetic superconductor.

Before considering the magnetization dynamics, we determine the equilibrium state
by minimizing F with respect to M, and then with respect to A and θS. The anisotropy
field Han = KM in the U-based ferromagnetic superconductors is typically very large
(see Table 3.1): it is comparable to or greater than the upper critical field. This means
that the inequality B ≪ Han holds for any internal field B that does not suppress
superconductivity. Then the transverse component of the magnetization M⊥ can be
estimated as M⊥ . B/K ≪ M . Since K ≫ 1, in a zero approximation with respect to
K−1 we can neglect the transverse magnetization (even in the anisotropy energy, which
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appears to be proportional to K−1). Then

F (A, θS) ≈
∫ [

1

8πλ2

(
A+

Φ0

2π
∇θS

)2

+
B2

8π
−BM0 −

BHe

4π
+ 2πM2

]
d3r, (3.7)

where M0 = Me. For an arbitrary shaped sample further minimization can not be
performed analytically. Here we assume the ferromagnetic superconductor to be an el-
lipsoid. The results derived below should be also valid in the extreme cases of slabs and
long cylinders. It is reasonable to assume that the average internal magnetic field B0 in
an ellipsoidal sample will be uniform (compare with a dielectric ellipsoid in a uniform
external field – see [92]). Denoting the superconductor volume as V , we can rewrite the
free energy as

F = V

(
fS(B0)−M0B0 −

B0He

4π

)
+

∫
r/∈V

[
B2

8π
− BHe

4π

]
d3r+ const, (3.8)

where the constant does not depend on the magnetic induction B, and fS is the free
energy density of the vortex lattice:

fS(B0) =

⟨
1

8πλ2

(
A+

Φ0

2π
∇θS

)2

+
B2

8π

⟩
. (3.9)

Averaging is performed over a volume that is much larger than the inter-vortex distance.
The function fS(B0) can be determined explicitly by solving the London equation (3.14)
with a given vortex lattice density, corresponding to the average field B0. To transform
the integral in Eq. (3.8) let us introduce several quantities: the self-field of the sample
BS = B−He, the magnetizationMS due to supercurrents, the effective full magnetization
Meff = M0 +MS, and the effective H-field Heff = BS − 4πMeff . Then the integral can
be transformed as ∫

r/∈V

[
B2

8π
− BHe

4π

]
d3r =

∫
r/∈V

B2
S

8π
d3r−

∫
r/∈V

H2
e

8π
d3r

=
∫ H2

eff

8π
d3r−

∫
r∈V

H2
eff

8π
d3r+ const = V

2
Meff

(
N̂ − N̂2

4π

)
Meff + const.

Here N̂ is the demagnetizing tensor, connecting the effective magnetization and effective
field inside the sample: Heff = −N̂Meff . Analytical and numerical values of N̂ can be
found in Ref. [93]. Finally, if we eliminate Meff using the relation

Meff = (4π − N̂)−1(B0 −He),

we obtain

F

V
= fS(B0)−M0B0 −

B0He

4π
+

1

8π
(B0 −He)N̂(4π − N̂)−1(B0 −He) + const. (3.10)

Here the only variable is the internal field B0, which should be determined from the
equation

∂F

∂B0

= 0. (3.11)
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Compound UGe2 UCoGe URhGe
Tc, K 0.7 0.8 0.25
Θ, K 50 3 9.5
λ, nm 1000 1200 900
Han, T ∼ 100 ∼ 10 ∼ 10
M , Gs 150 9 70
µU 1,4µB 0,07µB 0,3µB

ωF , Hz ∼ 1013 ∼ 1010 ∼ 1011

Vth, cm/s ∼ 107 ∼ 105 ∼ 107

K = Han/M ∼ 104 ∼ 104 ∼ 103 − 104

Table 3.1: Parameters of U-based ferromagnetic superconductors. Θ is the Curie temper-
ature, Han is the anisotropy field, µU is the magnetic moment per U atom, µB is the Bohr
magneton, ωF is the ferromagnetic resonance frequency (the estimate ωF ∼ 2µUHan/~
is used here), and Vth is the critical vortex velocity for magnon radiation (see Sec. 3.4).
The data have been taken from [94, 55, 95, 96].

Equations (3.10) and (3.11) define the equilibrium state of the ferromagnetic supercon-
ductor.

Now we proceed from statics to coupled vortex and magnetization dynamics. Taking
into account Eq. (3.6), we can rewrite the Landau-Lifshitz-Gilbert equation (3.1) as

∂M

∂t
= γ

(
α∇2M−KM⊥ +B

)
×M+

ν

M2

(
M× ∂M

∂t

)
. (3.12)

Considering the high-anisotropy limit (K ≫ 1), we assume the transverse magnetization
M⊥ ≡ m to be small: |m| ≪M . Then Eq. (3.12) can be linearized with respect to m:

∂m

∂t
= γ

(
α∇2m−Km+B

)
×M0 + γB×m+

ν

M2
M0 ×

∂m

∂t
. (3.13)

The magnetic field B satisfies the London equation, which should account for the normal
currents in the nonstationary case:

rot rotB+
B

λ2
=

κ

λ2
+ 4π rot rotm− 4πσn

c2
∂B

∂t
, (3.14)

where σn is the normal conductivity outside the vortex core, and κ is the vorticity:

κ = −Φ0

2π
rot∇θS = Φ0

∑
i

(
z0 +

dRi

dz

)
δ(ρ−Ri(z)). (3.15)

Here the z axis is directed along the average field B0, and the function Ri(z) defines the
shape of the i-th vortex. The vectors Ri and ρ lie in the xy plane. Vortex motion may
be described phenomenologically by the relaxation equation [62]

η
dRi(z)

dt
= − δF

δRi

, (3.16)

where η is a viscosity coefficient connected with dissipative processes in the vortex core
– see Chapter 2. Equations (3.13) - (3.16) comprise the basis for further analysis.
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3.3 Band structure of magnetic excitations in the

mixed state of a ferromagnetic superconductor

3.3.1 Equations for the magnetization Fourier components

In this section the magnon spectrum in a ferromagnetic superconductor in the presence
of an ideal vortex lattice will be determined.

In the following we will neglect the contribution of the normal currents in Eq. (3.14),
assuming that the inequality

λ−2 ≫ 4π

c
σnω

holds. This condition can be satisfied at sufficiently low temperatures, when the normal
conductivity is small.

For a start, let us determine the spectrum in the Meissner state. Then, we put κ = 0,
and

B,m ∼ e−iωt+ikzz+iqr,

where q = (qx, qy, 0). In Eq. (3.13) the nonlinear term B×m should be dropped. Then,
the solvability condition of the linear equations (3.13) (with ν = 0) and (3.14) gives the
magnon spectrum:

ω = ω0(q) ≡ γM
√
K1K2, (3.17)

K1(q, kz) = K̃ + αq2 − 4πk2z
λ−2+k2z+q

2 , (3.18)

K2(q, kz) = K̃ + αq2 − 4π(k2z+q
2)

λ−2+k2z+q
2 , (3.19)

where K̃ = K +αk2z . The high anisotropy of the U-based ferromagnetic superconductors
allows to simplify the expression for the frequency by expanding the root in Eq. (3.17)
in the powers of the small quantity (K1 −K2)/K1:

ω0(q, kz) ≈ γM

[
K̃ + αq2 − 2π(2k2z + q2)

λ−2 + k2z + q2

]
. (3.20)

A characteristic feature of this spectrum is the presence of a minimum at

q = qmin =

√√
2π
λ−2 − k2z

α
− λ−2 − k2z (3.21)

for sufficiently small kz (see Fig. 3.1b).
Now we turn to the more realistic case of a ferromagnetic superconductor in the mixed

state. If the external magnetic field is absent or parallel to the easy axis, the Abrikosov
vortices in equilibrium are directed along the magnetization vector. We assume the vortex
lattice to be triangular with the positions of the vortices given by the vectors

Ri0 = avy0p+ av

(√
3

2
x0 +

1

2
y0

)
n, (3.22)
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where p and n are integers. Then, the equilibrium vorticity κ0 and magnetic field Bv are

κ0 = Φ0z0
∑
i

δ(2)(ρ−Ri0), (3.23)

Bv = z0
∑
G<ξ−1

Bv(G)eiGr, Bv(G) =
Φ0

1 +G2λ2
· 2√

3a2v
, (3.24)

where G are the vectors of the reciprocal lattice:

G = pG1 + nG2, G1 =
4π√
3av

x0, G2 =
2π√
3av

x0 +
2π

av
y0. (3.25)

The linearized equations (3.13) and (3.14) take the form

∂m

∂t
= γM

[
α∇2m−

(
K +

Bv(r)

M

)
m+ b

]
× z0 +

ν

M
z0 ×

∂m

∂t
, (3.26)

−∇2b+
b

λ2
= 4π rot rotm+

1

λ2
κ1, (3.27)

where b = B − Bv and κ1 = κ − κ0. At this point, we will drop the last term, which
is responsible for dissipation, in Eq. (3.26). The linear correction to the equilibrium
vorticity is

κ1 = Φ0

∑
i

{
δ(ρ−Ri0)

d∆Ri

dz
− z0[∆Ri · ∇ρδ(ρ−Ri)]

}
, (3.28)

where ∆Ri(z) is the local displacement of the i-th vortex with respect to the equilibrium
state Ri0. Equation (3.16) after the evaluation of the variational derivative takes the
form

−η d
dt
∆Ri(z) =

Φ0

(2π)3/2

∫
k<ξ−1

−ikz(κ1k−4πmk)+ik(z0κ1k)
4π(λ2k2+1)

exp (ikRi + ikzz)d
3k

−
∑

G<ξ−1
B0Φ0(G∆Ri)G
4π(λ2G2+1)

, (3.29)

where for any function X(r) its Fourier transform Xk is defined as

Xk =
1

(2π)3/2

∫
X(r)e−ikrd3r.

We may rewrite Eqs. (3.26), (3.27) and (3.29) in the Fourier representation. If we do so,
we will find that these equations connect the Fourier components of the functions m, b
and κ corresponding to wave-vectors satisfying the condition

k = G+ k0, (3.30)

where k0 is a fixed arbitrary vector, and the vectorG runs over the whole reciprocal lattice
(3.25). Hence, the general solution of Eqs. (3.26), (3.27) and (3.29) can be presented as
a superposition of particular solutions having the form

m = e−iωt+ikzz+iqr
∑

G m(G)eiGr, (3.31)

b = e−iωt+ikzz+iqr
∑

G b(G)eiGr, (3.32)

κ1 = e−iωt+ikzz+iqr
∑

G κ1(G)eiGr, (3.33)
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where q is the quasi-wave vector in the xy-plane. The fact that the functions (3.31) -
(3.33) satisfy our equations represents a simple generalization of the Bloch theorem. The
condition (3.33) is equivalent to the following one:

∆Ri(z) = ∆Re−iωt+ikzz+iqRi . (3.34)

If we substitute (3.31), (3.32) and (3.34) into Eqs. (3.26), (3.27) and (3.29), we obtain
the system

iωη

Φ0

∆R =
∑

Gi<ξ−1

4πikzm(Gi) + B0k
2
z∆R

4π [1 + λ2(k2z + q2i )]
+
∑

Gi<ξ−1

B0

4π

[
qi(qi∆R)

1 + λ2(q2i + k2z)
− Gi(Gi∆R)

1 + λ2G2
i

]
,

(3.35)

− iω
γM

m(Gi) =
[
−(K̃ + αq2i )m(Gi) +

4π(k2z+q
2
i )m(Gi)−4πqi(qim(Gi))+B0λ−2ikz∆R

k2z+q
2
i +λ

−2

− 1
M

∑
G′ ̸=0

m(G′)Bv(Gi −G′)

]
× z0, (3.36)

where qi = q+Gi, and
K̃ = K +B0/M + αk2z . (3.37)

By solving Eqs. (3.35) and (3.36) the dispersion relation may be found.
First, we restrict ourselves to the case when the dissipation due to vortex motion is

negligible, i. e., η → ∞ and ∆R = 0. The role of thermal losses will be discussed in Sec.
3.3.4.

It has been mentioned that in the U-based compounds the magnetic anisotropy is
rather large. Using this fact one can make an approximation which will considerably
simplify the problem. Let the vectors qi have the components (qi cosαi, qi sinαi). For
qi = 0 the angle αi is arbitrary. We introduce the new variables

m′
ix = [cosαimx(Gi) + sinαimy(Gi)]

4

√
K1(qi)
K2(qi)

,

m′
iy = [cosαimy(Gi)− sinαimx(Gi)]

4

√
K2(qi)
K1(qi)

,

where K1 and K2 are defined by Eqs. (3.18), (3.19) (and K̃ is given by (3.37)). Here and
further we omit kz in the list of arguments of K1, K2 and ω0 for brevity. The quantities
m′
ix and m′

iy satisfy the equations

− iω
γM
m′
ix = −ω0(qi)

γM
m′
iy −

∑
Gj ̸=0

bij

[
m′
jy

4

√
K1(qi)K1(qj)

K2(qi)K2(qj)
cos (αi − αj)

−m′
jx

4

√
K1(qi)K2(qj)

K2(qi)K1(qj)
sin (αi − αj)

]
, (3.38)

− iω
γM
m′
iy =

ω0(qi)
γM

m′
ix +

∑
Gj ̸=0

bij

[
m′
jx

4

√
K2(qi)K2(qj)

K1(qi)K1(qj)
cos (αi − αj)

+m′
jy

4

√
K2(qi)K1(qj)

K1(qi)K2(qj)
sin (αi − αj)

]
, (3.39)

where bij = Bv(Gi −Gj)/M , and

ω0(q)

γM
≈ K + α(q2 + k2z) +

B0

M
− 2π(2k2z + q2)

λ−2 + k2z + q2
. (3.40)
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The main assumption of our approximation is that all fourth roots in Eqs. (3.38) and
(3.39) can be replaced by unity. Indeed,

4

√
K1(qi)K1(qj)

K2(qi)K2(qj)
− 1 ≈ 1

4

[
K1(qi)−K2(qi)

K2(qi)
+
K1(qj)−K2(qj)

K2(qj)

]
≪ 1.

It is convenient to introduce the variables m+
i = (m′

ix − im′
iy)e

−iαi and m−
i = (m′

ix +
im′

iy)e
iαi . Equations (3.38) and (3.39) yield

ω
γM
m+
i = ω0(qi)

γM
m+
i +

∑
Gj ̸=0

bijm
+
j , (3.41)

− ω
γM
m−
i = ω0(qi)

γM
m−
i +

∑
Gj ̸=0

bijm
−
j , (3.42)

It can be seen that the solutions of Eq. (3.42) coincide with those of (3.41), but the
frequencies have the opposite sign. A great advantage of Eq. (3.41) over Eq. (3.36) is
that it represents an eigenvalue problem for a real symmetric matrix, so simple numerical
and analytical procedures may be applied to solve it.

Equation (3.41) can be also derived if the uniaxial (z-axis) superconducting and ex-
change interaction anisotropy is taken into account. The only modification is that the
Fourier components of the field and the unperturbed frequencies are given by

Bv(G) =
Φ0

1 +G2λ2⊥
· 2√

3a2v
, (3.43)

ω0(q)

γM
= K + α||k

2
z + α⊥q

2 +
B0

M
− 2πk2zλ

2
⊥

1 + λ2⊥(k
2
z + q2)

−
2π(k2zλ

2
⊥ + q2λ2||)

1 + k2zλ
2
⊥ + q2λ2||

. (3.44)

Here the quantities α||, λ|| are related to the z axis, and α⊥, λ⊥ are related to the
perpendicular plane.

3.3.2 Calculations of the magnon spectra

To determine analytically the eigenvalues of the system (3.41) we may use a method,
which is equivalent to the weak-binding approximation for electrons in a crystal. We
will assume that several eigenvalues ω for a given vector q are close to ω0(q), and the
deviations ω − ω0(q) can be determined using the degenerate state perturbation theory.

Let us find the applicability conditions for this approximation. Consider the case
when ω ≈ ω0(qi),

∣∣m+
i

∣∣ ≥ ∣∣m+
j

∣∣ and all the quantities ω0(qj) are not close to ω0(qi) for
j ̸= i. Then the perturbation theory in its simplest form can be applied. It follows from
Eq. (3.41) that for i ̸= j

mj ≈
bijmiγM

ω0(qi)− ω0(qj)
.

Here and further the upper index ”+” will be omitted for brevity. The correction to the
unperturbed frequency ω0(qi) due to the fact that mj ̸= 0 equals

δω =
b2ijγ

2M2

ω0(qi)− ω0(qj)
.
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For the perturbation theory to be valid we have to demand at least |δω| ≪ |ω0(qi)− ω0(qj)|,
or  bij

(qi − qj)(qi + qj)
[
α− 2πλ−2

(λ−2+q2i )(λ
−2+q2j )

]


2

≪ 1 (3.45)

for all j ̸= i. Here we assumed kz = 0 for simplicity.
If we apply the perturbation theory for a degenerate state, we can permit the condition

(3.45) to be violated for Nj > 1 different indices j. The number Nj can be estimated as

Nj ∼ Sqa
2
v, (3.46)

where Sq is the area in the q-plane occupied by the vectors qj for which the condition

bij

|qi − qj| (qi + qj)
∣∣∣α− 2πλ−2

(λ−2+q2i )(λ
−2+q2j )

∣∣∣ ≥ 1 (3.47)

holds. To avoid solving secular equations for large matrices, we should demand Nq . 1.
Hence, the area Sq should not be too large. Restrictions on Sq are the most strong in
two cases: (i) qi is close to the value corresponding to the minimum of ω0(qi) and (ii) qi
is sufficiently large. To estimate Sq in the first case, we take qi equal to qmin (see Eq.
(3.21)). Now the values of the exchange constant α are required. An estimate for this
quantity can be obtained from the relation

α ∼ Θ/daM
2, (3.48)

where da is the interatomic distance. The relation (3.48) can be derived within the mean-
field theory for localized spins [97].1 Using the data from Table 3.1, assuming da ∼ 5
Å, we obtain α ∼ 10−10 cm2 for UCoGe, and somewhat smaller values for URhGe and
UGe2. Thus, in the U-based ferromagnetic superconductors α ≪ λ2, and qmin ≫ λ−1.
Note that in [A3] α has been estimated in a different way, and somewhat exaggerated
numbers have been obtained due to the use of incorrect values of L.

Returning to the calculation of Nq, for qi = qmin Eq. (3.47) gives

|qj − qmin|2 ≤
bij
4α
,

where it has been assumed that |qj − qmin| ≪ qmin. Then

Nq ∼ a2vqmin

√
bij
α

∼ av√
1 +G2λ2

√
Φ0

Mλα3/2
.

The requirement Nq . 1 for all G ̸= 0 leads to the condition

B0 &
Φ0

λ2

√
Φ0λ

Mα3/2
. (3.49)

1Equation (3.48) does not account for the easy-axis magnetocrystalline anisotropy. Thus, it gives an
upper estimate for α
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One can easily show that in the limit qi ≫ qmin Nq . 1 when

B0 &
Φ0

λ2
Φ0

Mα
. (3.50)

Thus, the inequalities (3.49) and (3.50) specify the weak-binding approximation applica-
bility conditions in the corresponding limiting cases.

Similar to the electron spectrum in solid matter, the magnon spectrum in our system
consists of bands separated by the gaps. Obviously, the gaps are the smallest on the
lines of the q plane where adjacent bands would intersect if the matrix elements bij
were negligible. On these lines ω ≈ ω0(qi) = ω0(qj) for some different indices i and j.
To find small corrections to the unperturbed frequency ω0(qi), within the weak-binding
approximation one should solve the simple secular equation∣∣∣∣∣ ω0(qi)−ω

γM
bij

bij
ω0(qi)−ω
γM

∣∣∣∣∣ = 0. (3.51)

Then, the frequency gap ∆ is

∆ = 2γBv(Gi −Gj). (3.52)

The spin wave spectrum was also analyzed numerically. The system (3.41) for 61
Fourier components m+

i has been solved (all other components were set equal to zero).
The diagonalization of the 61× 61 matrix has been performed using standard algorithms
provided by the GNU C Library. As the parameters those of UCoGe were used: λ =
1.2µm, α = 10−10cm2, K = 104,M = 9 emu/cm3. In all calculations kz = 0 was assumed,
and the quasi-wave vector q ran over the first Brillouin zone of the vortex lattice – see
Fig. 3.2.

O

A

B

C G1

G2

Figure 3.2: The first Brillouin zone for the vortex lattice. It is sufficient to calculate the
spectrum in the shaded area to determine the spectrum in the whole zone using symmetry
relations.

In Fig. 3.3a-c the magnon spectra in the lowest three bands for the average magnetic
field equal to

Bp =
Φ0

√
3

2π2

(
2π

α
− λ−2

)
. (3.53)
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are depicted. At this field ω0(0) = ω0(G1/2). It may be seen that the spectra in the
second and third bands have corners. These corners correspond to band intersection
lines in zero order perturbation theory. In fact, the corners are smoothed out, but this
may be visible only on a small-scale graph. In Fig. 3.3d,e two cross-sections of the 6
lowest bands are shown. The gaps between some bands are so small, that these bands
are undistinguishable on the graphs, so they are represented by one curve. At the field
B0 = Bp the numerical values of the gaps are well approximated by Eq. (3.52).
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Figure 3.3: The magnon spectra in the first (a) second (b) and third (c) bands. B0 = Bp.
The cross-sections of the lowest 6 bands along the lines OC (d) and OB (e) of the Brillouin
zone. ωFM = γ(MK +B0).

In Fig. 3.4 the same spectra for B0 = 0.1Bp are shown. As the field decreases, the
shape of the band structure changes qualitatively: in the center of the Brillouin zone some
complicated structure develops. This peculiar behavior is a consequence of the nonmono-
tonicity of the unperturbed spectrum (3.20) and is connected with a commensurability
effect: the spectra are deformed when ω0(0) > ω0(G1).

3.3.3 Symmetry considerations: intersections of bands

The calculations in the previous section were made assuming that the ferromagnet has
isotropic superconducting properties, but the results derived there are also qualitatively
valid for anisotropic (uniaxial and biaxial) superconductors. In this section we will an-
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Figure 3.4: The magnon spectra in the first (a) second (b) and third (c) bands. B0 =
0.1Bp. The cross-sections of the lowest 6 bands along the lines OC (d) and OB (e) of
the Brillouin zone. ωFM = γ(MK +B0).

alyze the properties of the band structure which appear only in materials with uniaxial
symmetry.

Let us consider the magnon spectrum in points of the Brillouin zone where the system
(3.41) admits a nontrivial symmetry group. We restrict ourselves to the case of a relatively
strong magnetic field, when ω0(qi) = ω0(qj) implies qi = qj, so that the nonmonontonicity
of the unperturbed spectrum (3.44) is irrelevant.

The point with the highest symmetry is the center of the Brillouin zone, where q = 0.
The corresponding symmetry group is

G0 = {Ri, σi}, i = 0..5, (3.54)

which is isomorphic to the group C6v. Here σi = Riσ0, and R and σ0 are defined as
follows:

R : mi = m(Gi) → m(T̂Gi),

T̂ =

(
cos π

3
− sin π

3

sin π
3

cos π
3

)
; (3.55)

σ0 : mi = m(Gix, Giy) → m(Gix,−Giy).

The characters for the irreducible representations of the group G0 are listed in Table 3.2.
Due to the presence of the two-dimensional representations B1 and B2 intersections of
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R0 R,R5 R2, R4 R3 σ0, σ2, σ4 σ1, σ3, σ5
A1 1 1 1 1 1 1
A2 1 1 1 1 -1 -1
A3 1 -1 1 -1 1 -1
A4 1 -1 1 -1 -1 1
B1 2 -1 -1 2 0 0
B2 2 1 -1 -2 0 0

Table 3.2: Character table of the group G0.

Represen- Band Solutions ω−ω0(G1)
γM

tation numbers m(T̂ kG1) = ...
A3 2 (−1)km(G1) −2b12 + 2b13 − b14
B1 3,4 e±2ikπ/3m(G1) −b12 − b13 + b14
B2 5,6 e±ikπ/3m(G1) b12 − b13 − b14
A1 7 m(G1) 2b12 + 2b13 + b14

Table 3.3: The solutions of Eq.(3.41) with q = 0 in the first order perturbation theory.

two bands appear in the center of the Brillouin zone. Indeed, consider the bands with
the numbers from 2 to 7. In the zero order perturbation theory ω(q = 0) = ω0(G1)
in all these bands. In the first order perturbation theory we have to take into account
the six components m(T̂ iG1), i = 0..5, where the matrix T̂ is defined by Eq. (3.55).
The solutions of the sixth-order eigenvalue problem can be found in Table 3.3. Here
b12 = Bv(G1)/M , b13 = Bv(G1 +G2)/M , b14 = Bv(2G1)/M . The pairs of bands 3,4 and
5,6 have a point of contact at q = 0.

Another point of high symmetry is the B point (see Fig. 3.2), where q = qB =
(G1 +G2)/3. The corresponding symmetry group is

GB = {Ri
B, σBi}, i = 0, 1, 2, (3.56)

where

RB : m(Gi) → m(T̂ 2Gi −G1),

σB0 : m(Gi) → m(σ̂OBGi),

σBi = Ri
BσB0,

and σ̂OB is the reflection operator with respect to the OB axis. The group GB is iso-
morphic to the group C3v. The characters of its irreducible representations are listed in
Table 3.4. The intersection of bands in the B point occurs at frequencies close to ω0(qB).
In the first order perturbation theory we have to take into account the elements m(0),
m(−G1), and m(−G2) in Eq. (3.41). The solutions of the eigenvalue problem are given
in Table 3.5. At this time, the first and second band have a point of contact.

Finally, an important remark should be made here concerning the symmetry of the
initial system (3.35) and (3.36). In Sec. 3.3.1 the approximate equation (3.41) has been
derived using the fact that the quantity K̃ is typically very large. As a by-product of this
simplification we gained the reflection symmetry operations σi and σBi, which are not
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R0
B RB, R

2
B σBi, i = 0, 1, 2

D1 1 1 1
D2 1 1 -1
E 2 -1 0

Table 3.4: Character table of the group GB.

Represen- Band Solutions ω−ω0(qB)
γM

tation numbers

E 1,2 m(−G1) = e±2πi/3m(0), −b12
m(−G2) = e∓2πi/3m(0)

D1 3 m(−G1) = m(−G2) = m(0) 2b12

Table 3.5: The solutions of Eq.(3.41) with q = qB in the first order perturbation theory.

present in the initial system (to be more accurate, the analogues of σi and σBi involve
complex conjugation, so these operations are not linear). The system (3.35) and (3.36)
for q = 0 and q = qB admits symmetry groups which are isomorphic to the groups C6

and C3, respectively, which have only one-dimensional irreducible representations. As a
result, a small gap exists between the the bands which had a point of contact within
Eq. (3.41). However, this gap is negligible (∆ ∼ γMbij/K̃) for materials with large
magnetocrystalline anisotropy, or at large average magnetic fields B0.

3.3.4 Influence of dissipation on the magnon spectrum

Now, let us discuss how the magnon spectrum is modified when dissipation is taken into
account. First, we consider losses due to vortex motion. Generally, it is rather difficult to
express the displacement amplitude ∆R in terms of m(Gi), using Eq. (3.35). However,
a simplification is possible in the high-η limit, when all terms in the right-hand side of
Eq. (3.35) containing ∆R can be neglected as compared to the relaxational term in the
left-hand side. For this approximation to be valid it is sufficient to demand

ωη

Φ0

≫ B0λ
−2, Hc1k

2
z , Hc1k

2, (3.57)

where Hc1 is the lower critical field [see Eq. (2)]. The condition (3.57) can be satisfied
in the clean limit, since the viscosity η grows with growing normal conductivity – see
Chapter 2.

Within our approximation

∆R =
∑

Gi<ξ−1

Φ0kzm(Gi)

ωη [1 + λ2(k2z + q2i )]
(3.58)

After substituting this into Eq. (3.36) we can repeat the calculations from Sec. 3.3.1 and
obtain the system (3.41) with

ω0(q, kz) = γM

(
K̃ + αq2 − 2π(2k2z + q2)

λ−2 + k2z + q2
− iB0Φ0k

2
z

ωη(1 + λ2(k2z + q2))2

)
,
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bij =
Bv(Gi −Gj)

M
− iB0Φ0k

2
z

ωη

1

[1 + λ2(k2z + q2i )][1 + λ2(k2z + q2j )]
.

Now we have an eigenvalue problem for a symmetric non-Hermitian matrix. Due to
dissipation the magnetic excitation levels are broadened, which can lead to the smearing
of the gaps between the energy bands. To observe the effects conneted with the presence of
the gap ∆ for qi ≈ qj (within the applicability region of the weak-binding approximation)
one should provide that

Bv(Gi −Gj)

M
& B0Φ0k

2
z

ωη(1 + λ2(k2z + q2i ))
2
. (3.59)

This means that the viscosity should be sufficienly large, or the longitudinal wave number
kz should be small so that vortex motion is not excited.

In metallic ferromagnets another important mechanism of dissipation exists, which is
due to magnon-conduction electron scattering [60]. This kind of dissipation is qualita-
tively accounted for by the last term in Eq. (3.13). The constant ν defines the magne-
tization relaxation time τr = ω−1ν/M . Data on this time in the U-based ferromagnetic
superconductors are not available yet. However, for rough estimates of the magnon spec-
trum broadening the typical values τr ∼ 10−9 − 10−8s for ordinary metallic ferromagnets
may be used [60].

3.3.5 Proposal for experimental detection of the gaps in the
magnon spectrum

In this section it will be demonstrated how the evidence of the gaps in the magnon
spectrum can be found using microwave probing. Consider an electromagnetic TE wave
with the wave vector k and amplitude H0 incident on a ferromagnetic superconductor
occupying the half-space x > 0 (see Fig. 3.5). For simplicity, we assume kz = 0.
Note that in a TM wave the field H would oscillate along the direction of the uniform
magnetization, hence, this wave does not excite magnons and is completely reflected. For
this reason, we consider further a TE wave. Such a wave excites three magnon modes
inside the ferromagnet: one propagating (q1) and two decaying modes (q2 and q′

2). The
wave vectors of these modes are determined from the two equations

ω2 = ω2
0(q) = γ2M2

(
K + B0

M
+ αq2

) (
K + B0

M
+ αq2 − 4πq2

q2+λ−2

)
, (3.60)

q2x = q2 − k2y. (3.61)

The propagating mode can be reflected back to the surface of the ferromagnet due to
Bragg scattering on vortices, if two conditions are fulfilled for some wave-vector q3:

q3 = q1 +G, (3.62)

ω0(q3) ≈ ω0(q1), (3.63)

where G = −Gx0 is a vector of the reciprocal lattice (3.25).
We will determine the amplitude H1 of the reflected electromagnetic wave. For the

evaluation of this amplitude the equilibrium field distribution Beq(r) in the material is
required:

Beq = 4πMz0e
−x/λ +Bv(r− xvx0) +B′

0(r). (3.64)
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Figure 3.5: An electromagnetic wave (k) incident on the flat surface of a ferromagnetic
superconductor, is partially reflected back as a wave with the wave vector k1. Inside the
material one propagating (q1) and two decaying magnon modes (q2 and q′

2) are excited.
The mode q1 undergoes Bragg reflection on the vortex lattice (represented by dots) and
transforms into the mode q3 propagating towards the sample surface.

Here, the first term represents the screened intrinsic magnetic field (we will assume that
there is no constant external field: He = 0), Bv is the vortex field given by Eq. (3.24),
xv specifies the shift of the vortex lattice with respect to the surface, and the term B′

0(r)
is responsible for the vortex lattice distortion in a surface layer with a thickness of the
order of λ.

We will consider a dense vortex lattice, so that α/a2v ≫ 1. To observe the effects
connected with Bragg reflection of magnons we have to demand q1 ∼ a−1

v , hence, αq21 ≫ 1.
The nonstationary component of the magnetization can be presented in the form

m ≈ m1(x)e
iq1r +m2e

iq2r +m′
2e
iq′

2r +m3(x)e
iq3r, (3.65)

where m1(x) andm3(x) vary slowly in space. In Appendix E, using a simple perturbation
theory, it is demonstrated that the influence of the screened intrinsic field on the magnon
modes is not essential. By similar reasons, the distortion field B′

0(r) also does not affect
significantly the spin wave amplitudes. Hence, we can considerm2 andm′

2 to be constant.
Now we determine the boundary conditions. Directly from Eq. (3.1) we obtain

∂m

∂x
(x = 0) = 0, (3.66)

The continuity condition for the tangential component of the magnetic field H reads

(H0 +H1) cos β = −4π
∑
i

(λ−2 + k2y)miy(0) + kyqixmix(0)

q2i + λ−2
, (3.67)
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where summation is performed over all 4 modes, and β is the angle of incidence – see
Fig. 3.5. The electric field inside the material is

E = −4πk
∑
i

qi ×mi

q2i + λ−2
eiqir. (3.68)

The continuity condition for the electric field reads

H1 −H0 = 4πk
∑
i

kymix(0)− qixmiy(0)

q2i + λ−2
, (3.69)

The wave number q′2 has a large modulus (q′22 ≈ −2ω/γMα) as compared to the other
wave numbers, and the corresponding magnetization component, m′

2, is small. It can
be neglected in Eqs. (3.67) and (3.69). To exclude m′

2 from Eq. (3.66), we note that
m′

2x ≈ im′
2y, hence

3∑
i=1

qix(mix(0)− imiy(0)) = 0,

or
3∑
i=1

qixmiy(0) = 0, (3.70)

since mix ≈ −imiy for i = 1, 2, 3. Now we have to find a connection between m1 and the
amplitude of the Bragg-reflected mode, m3. In these modes the magnetic field is small
as compared to α∇2m, so the linearized Landau-Lifshitz equation can be simplified as
follows:

ω

γM
m = K̃m− α∇2m+

1

M
Bv(r− xvx0)m. (3.71)

To find a link between the mentioned modes it is sufficient to conserve only two terms in
the Fourier series of the vortex field:

Bv(G)(eiG(x−xv) + e−iG(x−xv)),

whereG is the reciprocal lattice vector defined by Eqs. (3.62) and (3.63). By substituting
m = m1(x)e

iq1r + m3(x)e
iq3r into Eq. (3.71) and neglecting the second derivatives of

m1(x) and m3(x), we obtain

ivgx
∂m1

∂x
= ∆

2
e−iφv−iδxm3(x), (3.72)

ivgx
∂m3

∂x
= −∆

2
eiφv+iδxm1(x), (3.73)

where

vgx =
∂ω0

∂qx
(q1) = 2γMαq1x,

∆ = 2γBv(G) is the frequency gap [compare with Eq.(3.52)], φv = Gxv, and δ = 2q1x−G.
The two linearly independent solutions of Eqs. (3.72) and (3.73) are

m1(x) = (x0 + iy0)e
(ϵ−iδ/2)x,

m3(x) =
2ivgxeiφv

∆

(
ϵ− i δ

2

)
(x0 + iy0)e

(ϵ+iδ/2)x,
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ϵ = ±1

2

√
∆2

v2gx
− δ2 (3.74)

For |δ| < ∆/vgx we reject the growing solution, selecting the minus sign in Eq. (3.74).
For |δ| > ∆/vgx we select the solution where |m1| ≫ |m3| when |δ| ≫ ∆/vgx:

ϵ =
i

2

√
δ2 − ∆2

v2gx
for δ > 0, ϵ = − i

2

√
δ2 − ∆2

v2gx
for δ < 0. (3.75)

This choice of the sign allows to reject the solution with the negative x-component of the
group velocity. At x = 0 we have

m3(0) = Am1(0), (3.76)

A = 2ivgxeiφv

∆

(
ϵ− i δ

2

)
(3.77)

Now we are ready to write the system of linear equations which will allow us to determine
the amplitude of the reflected wave, H1. Equations (3.67), (3.69), (3.70) and (3.76) yield

q̃1xm̃1y + q2xm2y = 0, (3.78)

4π
iky q̃1x−λ−2−k2y

q21+λ
−2 m̃1y + 4π

ikyq2x−λ−2−k2y
q22+λ

−2 m2y = (H0 +H1) cos β, (3.79)

−4πk iky+q̃1x
q21+λ

−2 m̃1y − 4πk iky+q2x
q22+λ

−2m2y = H1 −H0, (3.80)

where

m̃1y = (A+ 1)m1y(0), q̃1x =
1− A

1 + A
q1x. (3.81)

Note that the problem of electromagnetic wave reflection from a superconductor in the
mixed state is formally equivalent to the same problem for a superconductor without
vortices with the only difference that q1x is replaced by q̃1x. From the system (3.78) -
(3.80) we find the reflection coefficient

RH =
H1

H0

=

λ−2q2x
q21+λ

−2 −
α(q21+λ

−2)

2π
q̃1x + e−iβ

(
kq2x

iky+q̃1x
q21+λ

−2 − kq̃1x
(iky+q2x)α(q21+λ

−2)

2πλ−2

)
λ−2q2x
q21+λ

−2 −
α(q21+λ

−2)

2π
q̃1x − eiβ

(
kq2x

iky+q̃1x
q21+λ

−2 − kq̃1x
(iky+q2x)α(q21+λ

−2)

2πλ−2

) . (3.82)

Here, the relation

αq21 −
2πq21

q21 + λ−2
= αq22 −

2πq22
q22 + λ−2

,

was used, which is valid in the large anisotropy limit. The expression for the reflectivity
coefficient can be simplified, if we take into account that q1 ≫ λ−1 and q2x ≈ iλ−1:

RH =
1 + ik2λ2e−iβ sin β +Q(i− kλe−iβ)

1− ik2λ2eiβ sin β +Q(i+ kλeiβ)
, (3.83)

where

Q =
αλ2q41
2π

q1xλ
1− A

1 + A
. (3.84)

55



In Eq. (3.83) some small terms were dropped which have a negligible effect on the
modulus of the reflectivity coefficient. Since the quantity A can take any value within
the circle |A| ≤ 1, so the only restriction on Q is ℜ(Q) ≥ 0.

When |A| = 1, Q is purely imaginary, and |R| = 1, i. e., the wave is completely
reflected. This is explained by the fact that in this range of parameters the frequency ω
is within the frequency gap, and magnons can not propagate in the sample.

Consider now frequencies far from the gap: δ ≫ ∆/vgx. In this case the magnons do
not interact with the vortex lattice, and the quantity Q is real and large: Q ≫ 1. From
Eq. (3.83) we obtain

1− |RH |2 =
4kλ cos β

Q
≪ 1. (3.85)

An interesting effect which follows from Eq. (3.83) is the complete transmission of
the wave for a frequency close to the frequency gap. Let us put RH = 0. Then,

Q ≈ i+ kλe−iβ. (3.86)

This is possible when A ≈ 1 and |A| < 1, i. e., the detuning from the gap must be very
small. For example, if kαλ4q51 ≫ 1

|δ| vgx
∆

− 1 ≈ 8π2k2 cos2 β

α2λ4q101
. (3.87)

Note, that for A ≈ 1 m1(0) ≈ m3(0). The effect of complete transmission is related to a
similar effect in a Fabri-Perrot resonator: in our system, the surface of the material and
the vortex lattice play the roles of the first and second mirrors, respectively.

We need to stress that the system must be finely tuned to make the dip in the R(ω)
dependence observable. Indeed, the parameter A must be equal to unity on the border
of the gap, which imposes a constraint on the parameters G and xv:

eiGxv = ±1. (3.88)

This condition may be satisfied by applying an external magnetic field.

3.4 Magnon radiation by moving Abrikosov vortices

3.4.1 The magnetic moment induced force acting on vortices:
general relations

In this section the response of vortices to an ac and dc current in ferromagnetic super-
conductors and SF-superlattices will be studied. Let the internal field B0 make an angle
θ with the magnetization easy axis. The z axis is directed along the vortices, which
are for simplicity assumed to be straight. Thus, the quantities Ri do not depend on z.
The initial equations for the magnetization and field in a ferromagnetic superconductor
were derived in Sec. 3.2. In SF-superlattices (see Fig. 3.6) the magnetic field satisfies
the London equation (3.14) with m = 0 in the superconducting layers. To obtain the
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corresponding equation in the magnetic layers, one should simply put λ = ∞ in Eq.
(3.14):

∂2B

∂z2
+∇2

ρB− 4πσF
c2

∂B

∂t
+ 4π rot rotm = 0. (3.89)

Here, σF is the conductivity of the ferromagnetic layers. In Eq. (3.89) the Josephson

Figure 3.6: A scheme of the SF multilayer system. The dashed lines denote vortices.

current between neighboring superconducting layers has been neglected, which can be
done in the case of a poorly transparent interface between layers, or when the magnetic
layers are sufficiently thick [98].

On the SF interface the following boundary conditions should be imposed:

Bz

∣∣∣∣
F

= Bz

∣∣∣∣
S

, (B− 4πM)x,y

∣∣∣∣
F

= (B− 4πM)x,y

∣∣∣∣
S

(3.90)

∂m
∂z

∣∣∣∣
F

= 0. (3.91)

Let us estimate the contribution of the normal currents flowing in the F-layers of the
multilayer system to the magnetic field. In Eq. (3.89) we put

∂B

∂t
≈ −(VL∇ρ)B,

where VL is the flux velocity. One can see that the influence of the normal currents on
the magnetic field is negligible, if the inequality

4πσF
c2

lVL ≪ 1

holds, where l is the characteristic in-plane length scale of the problem. Similar arguments
can be applied to the S-layers. Then, the normal currents in the SF-superlattice have a
negligible effect on the magnetic field when

VL ≪ c2

4πmax(σn, σF )l
, (3.92)
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where σn is the normal-state conductivity of the superconductor. In the case of a bulk
ferromagnetic superconductor, the analogue of Eq. (3.92) reads

VL ≪ c2

4πσnl.
(3.93)

As we will see, the main length scales of the problem are the inter-vortex distance av and
the domain wall width L =

√
α/K. Further on we will assume that Eqs. (3.92) and

(3.93) with l = min(av, L) are satisfied. Then, we may not take into account the normal
currents in Eqs. (3.14) and (3.89).

In Eqs. (3.14) and (3.89) it is convenient to present the magnetic field as the sum of
the vortex field h and the magnetization field bM , satisfying the relations

−∇2h+
h

λ2
=

Φ0

λ2
z0
∑
i

δ(2)(ρ−Ri), (3.94)

−∇2bM +
bM
λ2

= 4π rot rotm (3.95)

inside the superconductor, and

roth = 0, divh = 0, (3.96)

rotbM = 4π rotm, divbM = 0 (3.97)

in the ferromagnetic layers.
Now we proceed directly to the calculation of the magnetic moment induced force,

acting on vortices. The total force per unit length of the i-th vortex is

fi = − 1

Lv

∂F

∂Ri

, (3.98)

where Lv is the vortex length. Averaging fi over all vortices, we obtain the average force

f = − 1

LvNv

∑
i

∂F

∂Ri

, (3.99)

where Nv is the number of vortices. The magnetic moments interact with vortices via
the Zeeman-like term in the free energy:

FZ = −
∫

Mhd3r.

It can be shown (see Appendix F) that the part of the total force f , connected with the
magnetic moments, is

fM = − 1

LvNv

∫
mz∇hzd3r. (3.100)

For convenience, all further calculations in subsections 3.4.1 - 3.4.4 are carried out
for a ferromagnetic superconductor. In Sec. 3.4.5 it will be discussed how the obtained
results can be extended to the case of the multilayer system.
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In the Fourier representation Eq. (3.100) reads

fM =
4π2

Nv

i

∫
qmqzh

∗
qzd

2q, (3.101)

where for any function X(ρ) its Fourier transform is defined as

Xq =
1

(2π)2

∫
X(ρ)e−iqρd2ρ.

The quantity mq should be determined from Eq. (3.13). As we have seen, the term
γB×m leads to the appearance of the band structure of the magnon spectrum. However,
in the calculations of the force fM the relatively small band effects are insignificant, since
fM is determined by the integral of mq. Moreover, in the highly anisotropic U-based
superconductors (see Table 3.1) at B0 ≪ Hc2

|γB×m| ≪ |γKm×M0| .

For these reasons, the term γB×m in Eq. (3.13) may be neglected.
By Fourier transforming Eqs. (3.13), (3.94), and (3.95) we obtain

∂mq

∂t
= −γM0 ×

(
−(K + αq2)mq + bMq + hq

)
+

ν

M2
M0 ×

∂mq

∂t
. (3.102)

hqz =
Φ0

4π2(1 + λ2q2)

∑
i

e−iqRi(t). (3.103)

bMq = −4π
q× (q×mq)

q2 + λ−2
. (3.104)

It can be seen that the absolute value of the term bMq in Eq. (3.102) is much smaller
than |Kmq|. If ω is not very close to ωF , this term may be dropped.

Equation (3.102) is an inhomogeneous linear differential equation with constant coef-
ficients with respect to mq. It can be solved using standard methods. We are interested
in the z-component of the magnetization, which equals

mqz =
γMi
2

sin2 θ
∫ t
−∞ hqz(t

′)
{(

1 + i ν
M

)−1 × exp
[
−
(
1 + i ν

M

)−1
iω(q)(t− t′)

]
−
(
1− i ν

M

)−1
exp

[(
1− i ν

M

)−1
iω(q)(t− t′)

]}
dt′, (3.105)

where ω(q) is given by Eq. (3.2). In the small dissipation limit, ν ≪M , we have

mqz =
γMi
2

sin2 θ
∫ t
−∞ hqz(t

′)
{
exp

[(
−i− ν

M

)
ω(q)(t− t′)

]
×
(
1− i ν

M

)
− exp

[(
i− ν

M

)
ω(q)(t− t′)

] (
1 + i ν

M

)}
dt′. (3.106)

Then, the force fM takes the form

fM = 2π2γM
Nv

sin2 θ
∫
d2q

∫ t
−∞ hqz(t

′)h∗qz(t)×
{
exp

[(
i− ν

M

)
ω(q)(t− t′)

] (
1 + i ν

M

)
− exp

[(
−i− ν

M

)
ω(q)(t− t′)

] (
1− i ν

M

)}
qdt′. (3.107)
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3.4.2 Vortex motion under the action of a dc current

Let us consider the motion of vortices under the action of a constant external force (e.
g., spatially uniform and time-independent transport current). Then the positions of
individual vortices are given by

Ri(t) = Ri0 +VLt+∆Ri(t). (3.108)

Here the vectors Ri0 denote the vortex positions in a regular lattice, VL is the average
flux velocity, and ∆Ri(t) is responsible for fluctuations of vortices due to interactions
with pinning cites (⟨∆Ri(t)⟩ = 0). It should be stressed that the influence of pinning on
the flux velocity will be not taken into account here. The effect that will be important
for us is the vortex lattice distortion caused by impurities, which strongly influences the
efficiency of magnon generation.

The product of magnetic fields under the integral in Eq. (3.107) is

hqz(t
′)h∗qz(t) =

(
Φ0

4π2(1 + λ2q2)

)2

eiqVL(t−t′)K, (3.109)

K =
∑
i,j

exp [iq(Rj0 −Ri0) + iq(∆Rj(t)−∆Ri(t
′))].

We will analyze two cases when the sum in the right-hand side of the last relation can
be calculated.

First, let us assume that the inhomogeneities of the material are insignificant, so that
the vortex lattice is nearly perfect. We will put

⟨exp [iq(∆Rj(t)−∆Ri(t
′))]⟩ ≈ 1, (3.110)

where the averaging is over i. This assumption is valid when

∆Rcq ≪ 1, (3.111)

where ∆Rc is the characteristic displacement of vortices from their positions in a perfect
lattice. The inequality (3.111) must hold for all q giving a considerable contribution to
the integral in Eq. (3.107). Below it will be shown that this leads to the condition

∆Rc ≪ min(L, av). (3.112)

When this condition is satisfied, we may put

K =
4π2NvB0

Φ0

∑
G

δ(q−G), (3.113)

After integration over q and t′ the magnetic force (3.107) takes the form

fM = Φ0B0γM sin2 θ
∑

G,G<ξ−1

G

(1 + λ2G2)2
iω(G) + ν

M
GVL

ω2(G)− (VLG)2 − 2i ν
M
VLGω(G)

. (3.114)
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When the terms corresponding to G and −G are combined, this can be written as

fM = −γνB0Φ0 sin
2 θ

∑
G,G<ξ−1

G(GVL)

(1 + λ2G2)2
(GVL)

2 + ω2(G)

[ω2(G)− (GVL)2]2 + 4 ν2

M2 (GVL)2ω2(G)
,

(3.115)
where small terms of the order of ν/M in the numerator have been dropped. From this
it follows that the force has local maxima when for some G = G0 the condition

ω(G0) ≈ VLG0 (3.116)

is satisfied. This relation presents the well-known Cherenkov resonance condition. When
Eq. (3.116) holds, magnons with the wave vector G0 are effectively generated. If the
vortex velocity is close to a resonance value, in the sum in Eq. (3.115) we can drop all
terms except the two resonant terms corresponding to G0 and −G0. Then

fM ≈ −γνB0Φ0 sin
2 θ

G0

(1 + λ2G2
0)

2

ω(G0)

(ω(G0)−VLG0)2 +
ν2

M2ω2(G0).
(3.117)

It can be seen that the fM vs. VL dependence for a given vortex velocity direction exhibits
a Lorentzian-like peak with the width

∆VL =
ν

M
ω(G0)

VL
G0VL

.

The maximum value of fM is

|fM |max =
γM2B0Φ0G0 sin

2 θ

(1 + λ2G2
0)

2νω(G0)
. (3.118)

Another remarkable feature is that the force is directed at some angle to the velocity of
the vortices: fM is parallel to G0, and not VL. The angle between fM and VL may range
from 0◦ to 90◦. This effect also follows from Equation (3) in [66], though the authors did
not mention it, because it has been assumed that VL and fM are always parallel.

Let us discuss how the Cherenkov resonances influence the current-voltage character-
istics. Abrikosov vortex motion is governed by the equation

Φ0

c
jtr × z0 − ηVL + fM = 0. (3.119)

Taking the cross product of this relation and z0, we obtain the expression for the current
density

jtr = − cη

Φ0

VL × z0 +
c

Φ0

fM(VL)× z0. (3.120)

The relation between jtr and E is established via Faraday’s law (6). As follows from Eq.
(3.120), the vortex-magnetic moment interaction leads to an increase ∆jtr of the current
density at a given electric field E:

∆jtr =
c

Φ0

fM

(
c

B0

E× z0

)
× z0. (3.121)
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According to Eq. (3.117), near the Cherenkov resonance we have

∆jtr = γνB0c sin
2 θ

z0 ×G0

(1 + λ2G2
0)

2

ω(G0)[
ω(G0)− c

B0
(z0 ×G0)E

]2
+ ν2

M2ω2(G0)
. (3.122)

This relation indicates that the I-V curve exhibits a series of peaks corresponding to the
resonance electric fields given by

ω(G)− c

B0

(z0 ×G)E ≈ 0 (3.123)

Moreover, close to the resonance the additional current ∆jtr is directed along the vec-
tor z0 × G0 and not E. As a result, locally the resistance is anisotropic. Here, it is
important to take into account that generally the directions of the vectors G0 and VL

are not independent: it is known (for isotropic amorphous [99, 100] and polycrystalline
[101] materials) that a moving vortex lattice tends to reorientate itself so that its shortest
translation vector is either parallel or perpendicular to VL, depending on the the flux ve-
locity and magnetic field. This effect is a consequence of vortex interaction with pinning
centers or with the the quasiparticle tail of another vortex, as follows from theoretical
considerations [102, 103] and numerical simulations [104, 105, 106, 107]. In our case the
interaction of vortices with magnetic moments also should affect the vortex lattice orien-
tation. As a result, in amorphous and polycrystalline superconductors the resistivity may
remain isotropic even in the presence of magnetic moments. However, in monocrystalline
materials there is a competing effect: here, in the static case the energetically favorable
vortex nearest-neighbor directions are defined by the symmetry of the crystal [108]. When
vortices move, the interplay of the two mentioned effects yields the stationary orientation
of the vortex lattice. Then, the angle between VL and G0 may be a complicated function
of the current and magnetic field, and the anisotropy predicted by Eq. (3.122) is at least
partially preserved.

Considering macroscopic ferromagnetic superconductors and multilayer systems, care
should be taken when applying Eq. (3.122) to the whole sample: It is known that even
a small concentration of pinning sites destroys the long-range order in the vortex lattice
[109]. In fact, vortex lattice domains are formed in large superconducting samples; see
[108, 110, 111, 112, 113]. In monocrystalline samples, as mentioned above, the symmetry
of the crystal makes only few orientations of the vortex lattices energetically favorable.
This fact allows us to put forward a qualitative argument. Let us denote as G the set of all
reciprocal lattice vectors for all vortex lattice domains. Since there are only few possible
orientations of the domains, the set G consists of isolated points. When the applied
electric field satisfies Eq. (3.123) for some G ∈ G, the enhancement of the current should
be observable. Hence, even if there are several vortex lattice domains, the peaks on the
current-voltage characteristics are present. The measurement of the peak voltages at
different applied magnetic fields makes it possible to probe the magnon spectrum ω(q).

Now we turn to the opposite limiting case, when there is considerable disorder in
the vortex lattice. This situation may be realized in weak magnetic fields, B0 . Φ0/λ

2

(av & λ), when vortex-vortex interaction is weak and the lattice is easily destroyed by
defects and thermal fluctuations. Assuming that the quantities Rj(t) and Ri(t

′) for i ̸= j
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are not correlated, we find that

K = P
∑
i ̸=j

eiq(Ri0−Rj0) +Nv

⟨
eiq[∆Ri(t)−∆Ri(t

′)]
⟩
, (3.124)

where
P =

∣∣⟨eiq∆Ri(t)
⟩∣∣2 ,

and the averaging is over i. Next we assume that the vortex position fluctuations ∆Ri

are sufficiently large, so that P ≪ 1 for q & L−1. As we will see, the main contribution
to fM comes from q ∼ L−1, so the behavior of K at smaller q has a negligible effect on
the result derived in this subsection. For an estimate of the required characteristic value
of ∆Ri, we note that if the quantity Ri(t) has a Gaussian distribution function, then the
condition P ≪ 1 is satisfied for ⟨∆R2

i ⟩ ≫ L2.
Concerning the second term in the right-hand side of Eq. (3.124), one can see that⟨

eiq[∆Ri(t)−∆Ri(t
′)]
⟩
= 1,

when t = t′, and ⟨
eiq[∆Ri(t)−∆Ri(t

′)]
⟩
= P ≪ 1,

when |t− t′| → ∞. To proceed further, we put⟨
eiq[∆Ri(t)−∆Ri(t

′)]
⟩
= e−|t−t′|/τ(q),

where the time τ(q) is chosen so that ⟨|q[∆Ri(t)−∆Ri(t
′)]|⟩ ∼ 1 at t − t′ = τ(q). The

last assumption that will be used is that the vortex self-correlation time τ(q) is much
larger than ω(q)−1 at q ∼ L−1. Then, due to the small factor P , the contribution to fM
of the first term in the right-hand side of Eq. (3.124) can be neglected, and we can put

K = Nve
−|t−t′|/τ(q). (3.125)

After integration over t′, Eq. (3.107) yields

fM =
γMΦ2

0 sin
2 θ

4π2

∫
q<ξ−1

qd2q

(1 + λ2q2)2
iω(q)

[ω2(q)− (qVL)2 − 2i(qVL)τ
−1
1 (q)]

, (3.126)

where τ−1
1 (q) = τ−1(q) + νω(q)/M , and in the numerator terms proportional to ν/M

have been dropped. The main contribution to the integral comes from q lying in the
vicinity of two circles in the q-plane, given by ω(q) = ±qVL (this equation specifies the
Cherenkov resonance condition). Near the circle ω(q) = qVL we can make the following
transformation:

ω2(q)− (qVL)
2 − 2i(qVL)τ

−1
1 (q) ≈ 2ω(q)[ω(q)− qVL − iτ−1

1 (q)].

For the circle ω(q) = −qVL the transformations are analogous. Then

fM ≈ γMΦ2
0 sin

2 θ

4π2

∫
q<ξ−1

qd2q

(1 + λ2q2)2
ℜ i

ω(q)− qVL − iτ−1
1 (q)

. (3.127)
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The last fraction in the right-hand side resembles the expression

ℜ i

f(x)− iϵ
,

which reduces to −πδ(f(x)) when ϵ→ +0. Hence, the last factor in Eq. (3.127) also can
be replaced by a δ-function, when τ−1

1 (q) is sufficiently small. To derive the limitation on
τ−1
1 (q) we direct the qx-axis along VL and rewrite the denominator of the large fraction
in Eq. (3.127) as follows:

ωF (1 + L2q2)− qxVL − iτ−1
1 (q) = ωF

(
1− V 2

L

V 2
th

)
− iτ−1

1 (q) + ωFL
2

[(
qx −

VL
2L2ωF

)2

+ q2y

]
,

where Vth = 2ωFL is the magnon generation threshold velocity. Now it is evident that
the δ-function can be introduced in Eq. (3.127) when

τ−1
1 (q) ≪ ωF

∣∣∣∣V 2
L

V 2
th

− 1

∣∣∣∣ .
Then

fM ≈ −γMΦ2
0 sin

2 θ

4π

∫
q<ξ−1

qd2q

(1 + λ2q2)2
δ(ω(q)− qVL). (3.128)

Here, two points should be noted: (i) the expression for fM does not depend on the
dissipation rate and on the artificially introduced time τ(q); (ii) Equation (3.128) can
be derived from Eq. (3.115) in the limit of an extremely sparse vortex lattice, when
summation can be replaced by integration.

Technical details of integration in Eq. (3.128) are given in Appendix G. The final
result is

fM = −γMΦ2
0 sin

2 θ

8λ4ω2
F

[
1 +

(
VL
λωF

)2
]−3/2

Θ(VL − Vth)VL, (3.129)

where Θ is the Heaviside function. Equation (3.129) is valid for λ≫ L and

VL < max(Vth, ωF ξ(1 + L2ξ−2)

– see Appendix G. Thus, Eq. (3.129) is not applicable to the U-based ferromagnetic
superconductors (see Table 3.1) at VL > Vth, since these materials have L≪ ξ. Still, Eq.
(3.129) with appropriate modifications (see Sec. 3.4.5) may be applied to SF-superlattices
with ferromagnetic layers having a sufficiently large value of L.

As follows from Eqs. (3.121) and (3.129), at the electric field E = VthB0/c the average
current density should exhibit a stepwise increase by

∆jtr =
c

Φ0

fM(Vth) =
γMΦ0c sin

2 θ

8λ4ω2
F

Vth.

The maximum enhancement of the current density due to vortex-magnetic moment in-
teraction is reached at E =

√
2λωFB0/c and equals

∆jmax =
Φ0cγM sin2 θ

8
√
2λ3ωF33/2

.
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Figure 3.7: The magnon spectra in an (a) antiferromagnet and (b) ferromagnet. The
dash-dotted line is given by ω = VLq, where VL is the vortex velocity at which magnon
generation becomes efficient (VL = Vc for antiferromagnetic superconductors and VL = Vth
for superconductor-ferromagnet hybrids).

In [65] it has been predicted that in antiferromagnetic superconductors in the sparse
lattice limit the current enhancement ∆jtr is proportional to

√
VL − Vc (at VL > Vc),

where Vc is some critical velocity. This result is in contrast with the one obtained here:
we found that ∆jtr ∼ Θ(VL−Vth) near the magnon generation threshold. This difference
is due to different magnon spectra in ferromagnets and antiferromagnets – see Fig. 3.7.
In an antiferromagnet ω(q) is given by Eq. (3.3). As the vortex velocity is increased, the
resonance condition ω(q) = VLq is first satisfied at infinitely large q. However, at q ≫ ξ−1

the Fourier components hqz are exponentially small. Magnon generation becomes efficient

at q ∼ ξ−1, which is reached at a critical velocity that roughly equals Vc =
√
ω2
AF ξ

2 + s2AF .
In short, the generation threshold in antiferromagnetic superconductors corresponds to
an intersection of the curves ω = ω(q) and ω = VLq at q ∼ ξ−1 (see Fig. 3.7a), yielding a
∆jtr ∼

√
VL − Vc dependence. On the contrary, in ferromagnet-superconductor hybrids

at VL = Vth the curves ω = ω(q) and ω = VLq touch each other (see Fig. 3.7b). This fact
leads to a stepwise increase of the current at the threshold vortex velocity. Of course, the
step-like feature on the I-V curve may be observed only in hybrid systems with L & ξ.

Before proceeding to numeric estimates, a remark should be made concerning the
condition (3.112), providing that the ideal lattice approximation can be used. It follows
from Fig. 3.7b that near the generation threshold magnons with wave numbers q ≈ L−1

are generated. This means that for VL & Vth the main contribution to the integral in Eq.
(3.107) comes from q ∼ L−1. Thus, the condition (3.112) should be imposed to ensure
the applicability of the perfect lattice approximation.

Now, let us check whether it is possible to observe the features connected with the
Cherenkov resonances on the current-voltage characteristics of ferromagnetic supercon-
ductors and SF multilayers. First, it is important to note that the real magnon generation
threshold velocity V ′

th in the U-based ferromagnetic superconductors is larger than Vth
and is of the order of ωF ξ, since in these materials ξ ≫ L. As a result, instead of a
step-like increase of the current at a critical voltage we may expect a threshold behavior
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similar to the one described in [65] for superconducting antiferromagnets. We will esti-
mate the supercurrent density jth which is sufficient to accelerate the vortices up to the
velocity V ′

th. Equation (3.120) yields

jth ≈ cη

Φ0

V ′
th (3.130)

For the viscosity η we use the Bardeen and Stephen expression [32] (which is a good
estimate for relatively slow processes [114])

η = Φ0Hc2σn/c
2, (3.131)

For the normal state conductivity we may use Drude’s estimate

σn ∼ e2nℓ

mVF
.

Here n is the concentration of charge carriers, m is their mass, ℓ is the mean free path,
and VF is the Fermi velocity. Then

jth ∼ e2nℓHc2V
′
th

mcVF
. (3.132)

This value should be compared with the depairing current density which is given within
the BCS theory by

jcr ∼ en
∆

mVF
,

where ∆ is the superconducting gap. We demand jth ≪ jcr. Using the relation ∆ ∼ ~VF/ξ
(valid for clean superconductors) we can rewrite the inequality above as

V ′
th ≪ ξ

ℓ
VF , (3.133)

or

ωF ≪ VF
ℓ
. (3.134)

According to the estimates given in [55, 56, 57], in the U-based compounds ℓ is typically
of the order of 50 nm. The Fermi velocities are of the order of 108cm/s in UGe2 and
105cm/s in UCoGe and URhGe – see [115, 116, 117]. Thus, the inequality (3.133) is
satisfied in neither of these compounds, and the model used here breaks down at vortex
velocities below V ′

th. This is a consequence of the high magnetic anisotropy and large
quasiparticle mass in the U-compounds.

The situation seems to be more optimistic in SF superlattices. Certainly, we should
consider if Eq. (3.131) is valid for multilayers. A study of the vortex viscosity in super-
conductor/normal metal multilayers is presented in [118] and [119]. It has been shown
that the Bardeen-Stephen viscosity (3.131) may be significantly modified for vortices in-
clined with respect to the z-axis, or for strongly conducting normal metal layers. Still,
in our case Eq. (3.131) is a good order-of magnitude estimate for dS ∼ dF and σF . σn,
where dS and dF are the thicknesses of the superconducting and ferromagnetic layers (see
Fig. 3.6), respectively.
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Recently, a number of experimental papers [120, 121, 122, 123, 124, 125, 126, 127, 128,
129] have reported successful fabrication of high-quality YBa2Cu3O7/La2/3Ca1/3MnO3

superlattices. In [130] the value Han = 1200 Oe for La0.7Ca0.3MnO3 is given, though
it is noted that the anisotropy is significantly influenced by strain. Strictly speaking,
La0.7Ca0.3MnO3 withM = 530 emu/cm3 (see [130]) and K ∼ 2 is not in the K ≫ 1 limit,
which means that the magnetostatic term bMq in Eq. (3.102) cannot be ignored. However,
the order-of-magnitude estimate for Vth given here remains valid for ferromagnets with
K ∼ 1, and it can be applied to the mentioned compound.

The measured domain wall width in La0.7Ca0.3MnO3, denoted as δ in [131], is 12 nm.
Assuming γ ∼ µB/~, where µB is the Bohr magneton, we obtain the following estimate
for the vortex threshold velocity:

Vth = 2γHanL ∼ 104cm/s. (3.135)

The Fermi velocity in YBa2Cu3O7 is of the order of or greater than 107cm/s [132].
Thus, the condition (3.133) (with Vth in place of V ′

th) can surely be satisfied in the
cuprate/manganite superlattices.

Of course, the the Bardeen-Stephen estimate for the viscosity η may break down
at transport currents that are considerably smaller than the depairing current. This
may happen, for example, due to the Larkin-Ovchinnikov instability [133, 134] (in dirty
samples at high temperatures), or due to the overheating instability. These effects lead
to a dependence of η on E, and thus to a non-linear current-voltage characteristic. Still,
considering that vortex velocities 105 cm/s can be achieved in the linear flux-flow regime
in both high-temperature [135, 136] and low-temperature [137] superconductors, one can
expect the effects caused by the magnon radiation to be observable.

3.4.3 Vortex motion under the action of an ac current

As has been shown in Sec. 3.4.2, magnon generation in U-based ferromagnetic supercon-
ductors by a vortex array moving with constant velocity seems problematic due to the
high required vortex velocities. In this subsection we will study a more feasible approach
to magnon generation in magnetic superconductors, analyzing the case of a harmonic
external current acting on the vortices. Experimentally, the oscillating current in the
superconductor can be created using the microwave technique (for example, see [138]).
Then, the surface impedance yields information about the high-frequency properties of
the sample – see Sec. 3.4.4.

Before we calculate the force fM , we note that there is an obvious limitation on the
frequency ω for the applicability of the London approach, namely ~ω < ∆. On the other
hand, magnon radiation by vortices starts at ω > ωF . Hence, it is required that ~ωF < ∆
to make the resonant features described below observable.

Subjected to the action of a harmonic force, in the linear regime the vortices oscillate
harmonically:

Ri(t) = R′
i0 +Re−iωt +R∗e−iωt. (3.136)

Here R′
i0 are the equilibrium positions of the vortices, which are defined by vortex-vortex

interaction as well as pinning. The vectors R′
i0 do not necessarily form a regular lattice,

unlike Ri0. R is the amplitude of vortex oscillations. We will consider frequencies of
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the order of the ferromagnetic resonance frequency in ferromagnetic superconductors,
ωF ∼ 100GHz. This frequency is several orders of magnitude larger than the typical
depinning frequency [139]. This fact allows to neglect the influence of the pinning force
on vortex motion and to assume that the oscillation amplitudes of all vortices are equal
to R.

The product of the magnetic fields in Eq. (3.107) equals

hqz(t
′)h∗qz(t) =

[
Φ0

4π2(1+λ2q2)

]2
K′eiq(Ri(t)−Ri(t

′))

≈
[

Φ0

4π2(1+λ2q2)

]2
K′ {1 + iq[Ri(t)−Ri(t

′)]} , (3.137)

where

K′ =
∑
i,j

e−iqR
′
i0+iqR

′
j0 = Nv

⟨∑
j

e−iqR
′
i0+iqR

′
j0

⟩
. (3.138)

Here the averaging is over i. The linear with respect to R contribution to the force takes
the form

fM =
γMΦ2

0

8π2Nv
sin2 θ

∫
q<ξ−1 d

2q
∫ t
−∞

iK′qR
(1+λ2q2)2

(e−iωt − e−iωt
′
)

×
{
e[iω(q)−

ν
M
ω(q)](t−t′) − e[−iω(q)−

ν
M
ω(q)](t−t′)

}
qdt′ + c.c.

≈ γMΦ2
0

4π2Nv
sin2 θe−iωt

∫
q<ξ−1 d

2q K′(q)qR
(1+λ2q2)2

[
ω(q)

ω2(q)−ω2−2i ν
M
ωω(q)

− ω−1(q)
]
q+ c.c. (3.139)

Here c.c. denotes the complex conjugate. Like before, small terms of the order of ν/M
were dropped.

To proceed further, the explicit form of K′(q) is required. Again, we will consider the
cases of a perfect vortex lattice and a disordered array.

First, let us assume that pinning is sufficiently weak, so that

q∆Rc ≪ 1, (3.140)

where ∆Rc ∼ |R′
i0 −Ri0| is the characteristic deviation of the vortices from their positions

in a perfect lattice. The inequality (3.140) should hold for all q giving a considerable
contribution to the integral in Eq. (3.139). The characteristic value of q will be estimated
below.

For q∆Rc ≪ 1 we have

K′ =
4π2NvB0

Φ0

∑
G

δ(q−G). (3.141)

Substituting Eq. (3.141) into Eq. (3.139), assuming that the vortex lattice is either
square or regular triangular, we obtain

fM = iωηMRe−iωt + c.c., (3.142)

ηM = − iγMΦ0B0

2ω
sin2 θ

∑
G<ξ−1

G2

(1 + λ2G2)2

[
ω(G)

ω2(G)− ω2 − 2i ν
M
ωω(G)

− ω−1(G)

]
.

(3.143)
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Figure 3.8: (a) The ℑ(ηM) vs. magnetic field dependence at frequencies below the fer-
romagnetic resonance frequency for an ideal triangular vortex lattice [see Eq. (3.144)].
η0 = γMΦ2

0 sin
2 θ/(2λ4ω2

F ). The ηM vs. B0 dependencies at ω = 1.1ωF (b) and ω = 1.4ωF
(c). ν/M = 0.02.

Here, the complex quantity ηM has been introduced, playing the role of a generalized
vortex viscosity. Indeed, when ηM is purely real, the magnetic force is simply fM =
−ηMdRi/dt. In our system there is a phase shift between the vortex velocity and fM , and
the more general expression (3.142) is valid. Further on ηM will be called the magnetic
viscosity.

The ideal vortex lattice is likely to form when vortex-vortex interaction is sufficiently
strong, which may happen when the inter-vortex distance is sufficiently small. Let this
distance be much smaller than the London penetration depth, which means B0 ≫ Φ0/λ

2.
Then λG≫ 1 for all G ̸= 0, and

ηM ≈ − iγMΦ0B0ω

2λ4
sin2 θ

∑
G̸=0,G<ξ−1

G−2ω−1(G)
[
ω2(G)− ω2 − 2i

ν

M
ωω(G)

]−1

. (3.144)

Now we will consider the behavior of ηM in different frequency ranges. First, let
the frequency be below the ferromagnetic resonance frequency (ω < ωF ). Then magnon
generation is inefficient. However, if we put ν = 0, the force fM will not vanish below the
generation threshold, unlike in the case of constant vortex velocity. Instead, the magnetic
viscosity will be purely imaginary, signifying that there are no magnetic losses. In Fig.
3.8a the imaginary part of η vs. magnetic field B0 dependencies for different frequencies
(below ωF ) and for a fixed angle θ are plotted.

At frequencies above the ferromagnetic resonance frequency magnetic dissipation can
not be neglected, and the real part of ηM becomes significant. In Fig. 3.8b and c the
ηM vs. B0 dependencies for two frequencies and for a fixed angle θ and dissipation rate
ν/M = 0.02 are plotted. The graphs exhibit a sequence of Lorentzian-like (ℜ(ηM)) and N-
shaped (ℑ(ηM)) features, located at some resonant field values, BR, which are determined
from the relation

ω(G) = ω. (3.145)

For small fields these features may overlap, but the resonance corresponding to the highest
field remains well distinguishable. For a triangular vortex lattice the largest resonance
field equals

BR =

√
3

8π2

Φ0

L2

(
ω

ωF
− 1

)
,
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and for a square lattice

BR =
1

4π2

Φ0

L2

(
ω

ωF
− 1

)
.

Solving Eq. (3.145) with respect to G, we obtain

G = q0 ≡ L−1

√
ω − ωF
ωF

. (3.146)

Hence, the peaks on the ηM vs. B0 dependencies must be observable if the characteristic
deviation ∆Rc of the vortices from their positions in an ideal lattice satisfies

∆Rc ≪ min(q−1
0 , av). (3.147)

When ω < ωF one can see from Eq. (3.144) that the main contribution to ηM comes
from the vectors G for which ω(G) − ω is of the order of ωF − ω, since the terms on
the right-hand side of Eq. (3.144) are proportional to [ω(G)− ω]−1 when ν → 0. Then,
for an arbitrary frequency ω we obtain the following applicability condition for the ideal
lattice approximation:

∆Rc ≪ min

[
av, L

√
ωF

|ω − ωF |

]
. (3.148)

Note that when the frequency is close to ωF this condition is weaker than the one imposed
by Eq. (3.112).

Let us compare the values of ηM and of the main contribution to the viscosity, which
was denoted as η. When the resonance condition (3.145) is satisfied, we obtain from Eq.
(3.144)

ηM ∼ γMΦ0B0

λ4G2ω2

M

ν
.

Since B0G
−2 ∼ Φ0, and the lowest allowable value of ω is ωF = γMK, we have

ηM . Φ2
0

Kλ4ωF

M

ν
. (3.149)

Then, according to Eq. (3.131), the ratio of ηM to η is

ηM/η . M

ν

ξ2c2

Kλ4ωFσn
. (3.150)

For UCoGe, the U-superconductor with the lowest value of ωF , in [57] we find the value
12µΩcm for the normal resistivity, and the maximal value 200Å for the coherence length.
Using Table 3.1, we obtain

ηM/η ∼ M

ν
3× 10−5. (3.151)

Data on the ratioM/ν are not available yet. The small factor 10−5 in Eq. (3.151) appears
due to the large magnetocrystalline anisotropy of UCoGe: it can be seen from Eq. (3.150)
that ηM/η is proportional to K−2, since ωF = γMK. Hence, to increase the ratio of ηM
to η, compounds (or multilayer systems) with a lower anisotropy are preferable.

Now consider the situation when the vortex lattice is strongly distorted by pinning
centers. To obtain a qualitative understanding of the behavior of ηM in this case, we will
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calculate the magnetic viscosity under the assumption that the quantities R′
i0 and R

′
j0 for

i ̸= j are uncorrelated. In other words, there is even no short-range order in the vortex
lattice, so that the average concentration of vortices at a distance R from a given vortex
does not depend on R and equals B0/Φ0. Then

K′ = Nv+Nv

⟨∑
j(j ̸=i)

e−iqR
′
i0+iqR

′
j0

⟩
= Nv

(∫
B0

Φ0

e−iqRd2R+ 1

)
= Nv

[
4π2B0

Φ0

δ(q) + 1

]
.

(3.152)
It should be noted that the product hqz(t

′)h∗qz(t) does not decay with increasing t − t′,
unlike in the case of a constant driving force; see Eq. (3.125). This is explained by the
fact that the vortices oscillate close to their equilibrium positions and do not travel from
one pinning site to another. Thus, the positions Ri(t) and Ri(t

′) of a single vortex are
always well correlated, corresponding to an infinite correlation time τ(q).

With K′ given by Eq. (3.152) the magnetic viscosity takes the form

ηM = −iγMΦ2
0

4πω
sin2 θ

∫ ξ−1

0

q3dq

(1 + q2λ2)2

[
ω(q)

ω2(q)− ω2 − iϵ
− ω−1(q)

]
. (3.153)

Here, like in Sec. 3.4.2, we will assume that the imaginary term −iϵ (ϵ > 0) in the
denominator is an infinitesimal. To simplify the expression in the right-hand side of Eq.
(3.153), we note that the contribution to the integral from small q (q . λ−1) can be
neglected in the λ≫ L limit. Then we can put 1 + λ2q2 ≈ λ2q2, and cut the integral off
at q = λ−1:

ηM = − iγMΦ2
0

4πωλ4

∫ ξ−1

λ−1

dq

q

{
ω(q)

[ω + ω(q)][ω(q)− ω − iϵ]
− ω−1(q)

}
. (3.154)

Further integration is straightforward:

ηM =
γMΦ2

0 sin
2 θ

16λ4(ω − ωF )

{
1

ω
Θ(ω − ωF )Θ

[
ωF

(
1 +

L2

ξ2

)
− ω

]
+ i

4ω

πωF (ω + ωF )
ln
λ

ξ

}
,

(3.155)
when L≪ ξ. As above, at ω < ωF the magnetic viscosity is purely imaginary. However,
unlike in the case of a perfect vortex lattice, now the viscosity does not depend on the
magnetic field and has only one resonance at ω = ωF . In the limit B0 → 0 Eq. (3.144)
after summation transforms into (3.155), i.e., the cases of isolated vortices and chaotically
placed vortices are equivalent, like in Sec. 3.4.2.

As we have seen, at ω < ωF the magnetic viscosity is purely imaginary. Moreover, at
ω ≪ ωF the viscosity is proportional to ω. This signifies that the vortex can be ascribed
a mass per unit length, Mv, so that the equation of motion becomes

Mv
d2Ri

dt2
= fext, (3.156)

where fext includes all forces, except for the force fM . The mass is defined by

Mv =
iηM
ω

∣∣∣∣
ω=0

. (3.157)
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Using Eq. (3.144), we find that the magnetic contribution to the vortex mass for a perfect
lattice is

Mv =
γMΦ0B0

2λ4
sin2 θ

∑
G ̸=0

G−2ω−3(G) (3.158)

when B0 ≫ Φ0/λ
2. For a disordered array we may obtain from Eq. (3.153)

Mv =
γMΦ2

0

4πω3
F

sin2 θ

∫ ξ−1

0

q3dq

(1 + q2λ2)2(1 + L2q2)3
≈ γMΦ2

0 sin
2 θ

4πω3
Fλ

4
ln
λ

ξ
(λ≫ ξ ≫ L).

(3.159)
Let us estimate the characteristic magnetic contribution Mv to the vortex mass and
compare it with the electronic contribution (see, for example, [11]), which is present in
any superconductor:

Me =
2

π3

m2VF
~

. (3.160)

For URhGe, the values of ωF and λ can be found in Table 3.1. The electron mass and
Fermi velocity for one of the Fermi surface pockets of URhGe have been measured in
[117]. The values given there are m = 22me and VF = 4.4 × 105cm/s, where me is the
free electron mass. Then

Mv ∼
γMΦ2

0

4πω3
Fλ

4
∼ 10−24g/cm, Me ∼ 10−20g/cm.

It can be seen that the magnetic contribution to the vortex mass is negligible for URhGe.
Estimates for UGe2 and UCoGe yield the same result. This happens due to the very
large ferromagnetic resonance frequency ωF in these compounds: note that the right-
hand side of Eq. (3.159) contains ω−3

F . Thus, the magnetic massMv should be detectable
in materials with a smaller ferromagnetic resonance frequency.

Finally, a remark should be made concerning the connection between the vortex mass
enhancement in SF hybrids and the polaronic vortex pinning mechanism discussed in [66]
and [67]. In the mentioned papers purely dissipative vortex dynamics has been considered,
i. e., ν/M ≫ 1, which is in contrast to the case studied in the present Chapter. Thus,
the polaronic pinning mechanism contributes rather to the real part of ηM than to its
imaginary part, an it is not related to the vortex mass enhancement discussed here.

3.4.4 Connection between the vortex viscosity and the surface
impedance of a ferromagnetic superconductor

A simple experimental method to study vortex dynamics in type-II superconductors is
based on the measurement of the surface impedance. A possible geometry for such exper-
iment is depicted in Fig. 3.9. We will analyze the simplest situation, when the vortices
are perpendicular to the sample surface, and the probing electromagnetic wave with the
amplitude he is normally incident on this surface (note the difference with Sec. 3.3.5,
where a different geometry was considered). Then, for a non-magnetic superconduc-
tor (M0 = 0) theory [77, 140] predicts that in a wide range of parameters the surface
impedance Z(ω) equals

Z(ω) =

(
−iωµsρf

4π

)1/2

, (3.161)
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Figure 3.9: The geometry for the measurement of the vortex viscosity in a ferromagnetic
superconductor. The dashed lines denote vortices.

where µs is the static differential magnetic permeability,

µs =
dB0z

dHez

,

and ρf is the flux-flow resistance,

ρf =
BΦ0

c2η
.

Thus, the experimental value of the surface impedance provides information about the
viscosity coefficient η.

We will prove that for a ferromagnetic superconductor a range of parameters exists,
where Eq. (3.161) can be applied, if the magnetic viscosity is taken into account: η
should be replaced by η + ηM .

First, the applicability conditions of Eq. (3.161) for an ordinary superconductor
should be outlined. Within the continuous medium approximation used in [140] an al-
ternating external field he excites a long-wavelength and a short-wavelength mode in the
superconductor. For convenience, we will call these modes type-1 and type-2, and denote
the z-projections of their wave vectors as k1 and k2, respectively. These quantities are
explicitly defined by Equation (24) in [140]. To use the simple expression (3.161) for the
impedance, three conditions must be fulfilled: (i) |k1|λ ≪ 1, (ii) |k1| ≪ |k2|, and (iii)
|k2|Lz ≫ 1 (Lz is the sample thickness – see Fig. 3.9). According to [140], the conditions
(i) and (ii) are satisfied, if

ω ≪ ωC ≡ Φ0C
∗
44

B0λ2η
, (3.162)

where C∗
44 is an elastic modulus of the vortex lattice. This inequality presents a limitation

on the frequency. In the limit Hc1 ≪ B0 ≪ Hc2 the condition (3.162) can be weakened,
namely

ω ≪ ωB ≡ Φ0B0

4πλ2η
(ωB ≫ ωC). (3.163)

This follows directly from Equation (22) in [140].
Let us turn to the case of a ferromagnetic superconductor. We will assume the sample

is a slab with dimensions Lx, Ly and Lz, where Lz ≪ Lx, Ly – see Fig. 3.9. The x-axis,
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parallel to the large surface of the sample, is the magnetization easy-axis. In fact, the
slab geometry is not a key point, but the equilibrium magnetization must be parallel
to one of the sample surfaces. By applying an external field one can provide that the
internal field B0 is parallel to the z-axis. In the slab geometry the components of the
demagnetizing tensor are Nxx ≈ 0, Nyy ≈ 0, Nzz ≈ 4π. Then, according to Eq. (3.10), if
the external field is He = (−4πM, 0, Hez), the internal field is B0 = (0, 0, Hez).

When considering the surface impedance of a ferromagnetic superconductor, an addi-
tional complication arises due to the presence of new degrees of freedom, which are absent
in a conventional superconductor. These are the magnon modes, which can be directly
excited by an electromagnetic wave even in the absence of vortices [63, 89] (see also Sec.
3.3.5). However, in the geometry shown in Fig. 3.9 the excitation of these modes can be
avoided, as will be demonstrated below.

If the frequency is not too close to the ferromagnetic resonance frequency (|ω − ωF | /ωF
≫ K−1) we can neglect the magnetostatic interaction in the Landau-Lifshitz equation
when analyzing the additional magnon-like modes, as has been done in Sec. 3.4.1 (where
the term bMq has been dropped). Then, in the limit of small dissipation, Eq. (3.13) takes
the form

∂m

∂t
= −γM0 ×

(
α
∂2m

∂z2
−Km

)
. (3.164)

Equation (3.164) yields two modes, which will be labeled as type-3 and 4:

m = (z0 ∓ iy0)m3,4e
ik3,4z,

k3 = L−1
√

ω
ωF

− 1, k4 = iL−1
√

ω
ωF

+ 1, (3.165)

where m3 and m4 are scalar amplitudes. Note that the effects connected with the band
structure of the magnon spectrum (see Sec. 3.3) do not affect the modes 3 and 4, since
these magnetization waves propagate along the vortices and do not undergo Bragg scat-
tering on the vortex lattice.

Now suppose that the magnetic field he in the probing electromagnetic wave oscillates
along the x-axis, i. e., along the equilibrium magnetization (see Fig. 3.9). It is reasonable
to assume that inside the sample the alternating magnetic induction ⟨b⟩, averaged over
the xy-plane, is also parallel to the x-axis. It will be shown that this statement is self-
consistent. Indeed, for ⟨b⟩ parallel to M0 we see from Eqs. (3.13) and (3.66) that
∂⟨m⟩/∂t = 0. This means that the magnon-like type-3 and 4 modes are not excited.
In the type-1 and 2 modes ⟨m⟩ = 0, but ⟨b⟩ ≠ 0. Hence, these modes differ from
their analogues in non-magnetic superconductors only by the presence of the magnetic
contribution to the viscosity, ηM , which is due to the Fourier-components mq with q ̸= 0.
Then, according to [140], the internal field ⟨b⟩ will be parallel to the probing field he
(which follows from the London equation (3.14), if the deformation of the vortex lattice
is taken into account). Thus, we have proved the validity of our assumption, having
shown in addition that only the type-1 and 2 modes are excited.

Strictly speaking, the effective viscosity for the long-wavelength type-1 mode differs
from η+ ηM , because the vortices are not straight. However, since |k1| ≪ λ−1, the radius
of curvature of the vortices is sufficiently large to make this difference negligible.
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3.4.5 Extension of the results to the case of SF superlattices

In the end of this Chapter let us consider how the results from Secs. 3.4.2 and 3.4.3
can be extended to the case of SF multilayers with vortices oriented perpendicular to the
layers – see Fig. 3.6. Here, S and F are an ordinary type-II superconductor and ordinary
ferromagnet, respectively. We will assume the period d of the structure to be sufficiently
small (see below). Then, the generalization of the results from Secs. 3.4.2 and 3.4.3 is
straightforward, if two points are taken into account:

(i) Since the magnetic moments now occupy only a fraction of the sample, the force fM is
reduced by a factor of d/d′F , where d

′
F ≤ dF is the effective thickness of the ferromagnetic

layer. Formally, all expressions for fM , starting with Eq. (3.101), should be multiplied by
d′F/d. The quantities d

′
F and dF coincide, if the mutual influence of the superconducting

and magnetic orders is negligible. However, this is not the case for cuprate/manganite
superlattices. Experimental papers report giant superconductivity induced modulation
of the magnetization [125] and the suppression of magnetic order in the manganite layer
close to the SF interface [126, 127, 128, 129]. In the latter case, d′F < dF , but both
quantities are of the same order of magnitude.

(ii) Due to the fact that the structure is only partially superconducting, the in-plane
London penetration depth now equals λeff = λ(d/dS)

1/2 (see [141], for example). The
expression for the single vortex field

hqz ≈
Φ0

4π2(1 + q2λ2eff)
(3.166)

can be used if the period d of the structure is much smaller than the characteristic in-
plane length scale of the problem. To apply the results obtained for the case of a constant
driving force, we have to demand d≪ min(av, L), according to Sec. 3.4.2. The constraint
is somewhat weaker in the case of the harmonic driving current. Indeed, as we have seen
in Sec. 3.4.3, the main contribution to fM comes from q ∼ L−1

√
|ω/ωF − 1|, hence, the

limitation on the period of the structure is

d≪ min

[
av, L

√
ωF

|ω − ωF |

]
.

A study of the vortex viscosity in a SFS trilayer has been presented in [138]. In this
paper the flux-flow resistivity in Nb/PdNi/Nb structure was measured. It was found
that in the presence of the magnetic PdNi layer the flux-flow resistivity in Nb exceeds
the Bardeen-Stephen estimate [32], as if the vortex viscosity is reduced by the interaction
with magnetic moments. At first sight, this seems to contradict the prediction from the
present Chapter. However, this experiment can not be interpreted in the framework of
the model used here, since the ferromagnetic alloy PdNi does not possess a well-defined
magnetic anisotropy, and the magnon modes can not be characterized by a wave vector
q due to the lack of translational symmetry. Moreover, the dependence of the critical
temperature of Nb on the PdNi layer thickness signifies strong influence of the magnetic
order on superconductivity. The explanation of the viscosity reduction in the mentioned
experiment requires a more complicated microscopic treatment.
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3.5 Summary

In the present Chapter different aspects of the interplay between vortices and spin waves
in superconductor-ferromagnet hybrids have been analyzed. It has been shown that the
magnon spectrum in a ferromagnetic superconductor in the mixed state acquires a Bloch-
like band structure. The spectrum has been calculated both analytically and numerically.
The band structure changes qualitatively with varying applied field (see Figs. 3.3 and
3.4): as the field is lowered, a complicated structure develops in the center of the first
Brillouin zone. This behavior is a consequence of the nonmonotonicity of the spectrum
in the Meissner state.

Moving Abrikosov vortices in hybrid SF structures may radiate spin waves, which
leads to the appearance of a magnetic contribution fM to the damping force acting on
the vortices. It has been demonstrated that when the vortices are set in motion by a
dc current, either a series of resonances or a step should appear on the I-V curve: the
type of the resonant feature depends on the degree of ordering of the vortex lattice. The
mentioned effects should be observable in SF superlattices with a relatively low value of
the magnon generation threshold velocity Vth. For the case of a low-amplitude ac driving
current, the magnetic contribution ηM to the vortex viscosity has been calculated. This
quantity is purely imaginary at ω < ωF , signifying that additional dissipation is negligible,
but the vortex mass is increased. At ω > ωF magnons are generated, and ηM becomes
complex.

Both the vortex-induced gaps in the magnon spectrum and the magnetic viscosity ηM
affect the surface impedance Z and microwave reflectivity coefficient of the SF systems.
The gaps in the magnon spectrum are best probed in the geometry with the vortices
directed parallel to the sample surface – see Fig. 3.5. In this geometry dissipation
connected with vortex motion is avoided. On the other hand, to measure the quantity
ηM the perpendicular geometry may be used – see Fig. 3.9. Since ηM in the U-based
ferromagnetic superconductors is much smaller than the Bardeen-Stephen contribution
η, an experiment allowing to detect ηM should involve measurements of Z at different
frequencies and applied magnetic fields. The resonant features connected with ηM should
emerge on the Z(ω) or Z(B0) dependencies.

Generally, the influence of magnetic moments on vortex dynamics is stronger in struc-
tures with a lower value of the ferromagnetic resonance frequency. Thus, the mentioned
effects may be best observed in SF superlattices with F layers having a small magnetic
anisotropy.
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Chapter 4

Nonlocal electrodynamics and
vortex-vortex attraction in
superconductor-ferromagnet hybrids

4.1 Introduction

As has been said in the introduction to the Thesis, the Ginzburg-Landau (GL) theory al-
lows to classify all superconducting materials as either type-I or type-II superconductors,
according to their value of their parameter κ. A remarkable feature of type-II compounds
is that they support a vortex phase, which is stable due to the vortices always repelling
each other. On the contrary, in bulk type-I superconductors vortices are attracted to
each other, tending to merge into a single giant vortex. Thus, the GL theory states that
in uniform bulk superconductors the vortex-vortex interaction is either purely repulsive
(when κ > 1/

√
2) or purely attractive (κ < 1/

√
2). However, for more than 40 years

it has been known that this simple picture is incomplete. It has been found that in
materials with 1/

√
2 < κ . 1 (low-κ superconductors), such as pure Nb, at sufficiently

low temperatures the vortex-vortex interaction potential may become attractive at long
distances [142, 143, 144, 145] (note that this statement does not contradict the GL theory,
which is valid only in the close vicinity of Tc). As a result, the magnetization curve of the
superconductor acquires an unstable S-shape [146], and the transition from the Meiss-
ner state to the mixed state becomes a first-order phase transition: at the lower critical
field vortices enter the superconductor at a finite concentration (see the experimental
papers [147, 148] and references in [146, 149]). This phenomenon was coined “type-II/1
superconductivity” [148], as opposed to “type-II/2 superconductivity”, which stands for
ordinary type-II behavior. Later, analogous effects have been observed in the so-called
type-1.5 multiband superconductors [150, 151], where the coherence lengths for Cooper
pairs in different bands do not necessary coincide [152, 153].

In some cases the vortex-vortex interaction may be attractive also in high-κ supercon-
ductors. At low magnetic fields, B ≪ Hc2, the electrodynamics of these materials, being
essentially local, is well described within the London theory. Therefore, the reversal of
the magnetic field of a single flux line is a sufficient condition for vortex-vortex attrac-
tion [154, 155, 156, 157]. The field reversal indeed occurs in anisotropic non-magnetic
[154, 155, 156, 157] and magnetic [158] superconductors at certain orientations of the
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vortices. Then, their interaction potential is strongly anisotropic, the vortices penetrate
the sample in the form of separated chains [159], and the phase transition at Hc1 is still
of second order.

In the present Chapter a new mechanism of vortex-vortex attraction in SF hybrids is
discussed. Here, the attractive interaction may arise due to the spatial dispersion of the
magnetic susceptibility, which introduces a non-local relation between the current density
j and the vector potential A. The nonlocality scale here is the Bloch domain wall width
L. The nonlocal effects become strongly pronounced when L is of the order of or larger
than the London penetration depth λ. Then, the vortex-vortex interaction potential
and the phase diagram of the SF system undergo dramatic changes. In particular, the
phase transition from the Meissner state to the mixed state will be a first order phase
transition.1

The Chapter is structured as follows. In Sec. 4.2 the field of an isolated vortex in a
SF structure with large L is derived. In Sec. 4.3 the phase diagram of the SF system is
discussed. In the final Section 4.4 a summary of the obtained results is given, and some
systems suitable for the observation the new effects are proposed.

4.2 The vortex field and vortex-vortex interaction

potential in SF hybrids with large L

Figure 4.1: A schematic picture of the multilayer system.

First, we will consider an SF multilayer system – see Fig. 4.1. Let the magnetic
layers have an easy x-axis magnetocrystalline anisotropy. Like in the previous Chapter,
the Josephson current between neighboring S layers will be neglected, so that Josephson
vortices do not appear. Such approximation is valid in the case of insulating or sufficiently

1The mentioned effects do not take place in the U-based ferromagnetic superconductors, studied in
the previous Chapter. In these compounds L ≪ λ, thus, the influence of spatial dispersion on the vortex
lattice is negligible
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thick F layers, or in the presence of thin oxide interlayers between adjacent S and F layers.
Then, within the London approximation Eq. (3.6) may be used for the free energy of the
system. Let us rewrite this equation as

F =

∫ [
1

8πλ20

(
A+

Φ0

2π
∇θS

)2

+
(B− 4πM)2

8π
+
α0

2

(
∂M

∂xi

∂M

∂xi

)
+
K0M

2
⊥

2
− BHe

4π

]
d3r.

(4.1)
Here and further in this Chapter we will use the notations λ0, K0 and α0 to designate the
characteristics of individual layers, while α, K and λ are reserved for averaged charac-
teristics. Note that the superconducting and magnetic terms in Eq. (4.1) are integrated
only over the corresponding layers.

In the absence of an external field we may expect that the magnetization vectors in
neighboring F layers point in opposite directions, as shown in Fig. 4.1. This configuration
minimizes the magnetostatic energy. Then, an external field directed along the z axis
(normal to the layers) will induce Abrikosov vortices oriented also along the z-axis (see
Fig. 4.1).

Let us make the following transformations:

(B−4πM)2

8π
=

B2
M0

8π
+ B2

v

8π
+ BM0Bv

4π
−BvM0 −BM0M0

−BM0(M−M0)−Bv(M−M0) + 2πM2, (4.2)

where M0 is the magnetization in the absence of vortices, BM0 is the magnetic field
induced by M0, Bv is the magnetic field of the vortices (note that B = BM0 +Bv). The
magnetization modulus M is assumed constant, which is the case when T ≪ Θ. Now we
will consider the thin-layer limit, when the period of the structure is much smaller than
the size of the sample, the London penetration depth and all other in-plane length scales
of the problem. Then, the field induced in a magnetic layer by all other layers averages
to zero, and BM0 = 4πM0. Like in Chapter 3, we will assume the perpendicular to the
easy axis magnetization component m to be small: m≪M . If we keep in the right-hand
side of Eq. (4.2) all terms of the order of m2 and neglect higher order small terms (e. g.,
m4/M2), bearing in mind that Bv and m are of the same order of magnitude we obtain

(B−4πM)2

8π
= (BM0−4πM0)2

8π
+ B2

v

8π
−BM0(M−M0)−Bvm

≈ (BM0−4πM0)2

8π
+ B2

v

8π
+ 2πm2 −Bvm, (4.3)

since Mx −M0x ≈ −M0xm
2/(2M).

In Eq. (4.1) the vector potential and the superconducting phase can be presented as
A = AM0 + a and θS = θM0 + θ′, where AM0 and θM0 are induced by M0, and a and
θ′ are connected with the vortices. The field BM0 penetrates the superconducting layers
only on the sample edges and does not induce any supercurrents in the bulk, hence, we
can put

A+
Φ0

2π
∇θS = a+

Φ0

2π
∇θ′.

Thus, the free energy takes the form

F =
∫ [

1
8πλ20

(
a+ Φ0

2π
∇θ′
)2

+ α0

2

(
∂m
∂xi

∂m
∂xi

)
+ K0m2

2

+B2
v

8π
+ 2πm2 −Bvm− HeBv

4π

]
d3r+ F0, (4.4)
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where

F0 =

∫
(BM0 − 4πM0)

2

8π
d3r = const

does not depend on the external field and the concentration of vortices.
In the thin layer limit we may rewrite the free energy within the continuous medium

approximation. To do this we should multiply the superconducting and magnetic terms
by the corresponding filling factors dS/d and dF/d, where dS and dF are the thicknesses
of the superconducting and magnetic layers:

F=
∫ [

dS
8πλ20d

(
a+ Φ0

2π
∇θ′
)2

+ α0dF
2d

(
∂m
∂xi

∂m
∂xi

)
+ (K0 + 4π)dFm2

2d

+B2
v

8π
− dF

d
Bvm− HeBv

4π

]
d3r+ const. (4.5)

Here, unlike in Eq. (4.4), all terms are integrated over the whole sample. Now if we
minimize F with respect to m we obtain

m = (K0 + 4π − α0∇2)−1Bv, and

F =

∫ [
1

8πλ2

(
a+

Φ0

2π
∇θ′
)2

+
Bvµ̂

−1
zz Bv

8π
− BvHec

4π

]
d3r+ const, (4.6)

where µ̂zz is the permeability operator, given by

µ̂zz = 1 + 4π(K − 4π − α∇2)−1, (4.7)

and

λ = λ0
√
d/dS, α = α0d/dF , K = (K0 + 4π)d/dF . (4.8)

The same expression (4.6) can be derived for a bulk ferromagnetic superconductor.
Indeed, in this case the free energy (3.6) can be transformed as follows:

F =
∫ [

1
8πλ2

(
A+ Φ0

2π
∇θS

)2
+ B2

8π
−Bx(Mx −M)−Bymy −Bzmz

+α
2

(
∂m
∂xi

∂m
∂xi

)
+ Km2

2
− B(He+4πM0)

4π

]
d3r+ const. (4.9)

It can be seen that the magnetization M0 (which is now directed in the +x direction in
the whole sample) acts as an external field, which leads to the emergence of a spontaneous
mixed state in ferromagnetic superconductors with the vortices directed along M0. This
situation is not very interesting, since the spatial dispersion does not matter when the
magnetic field is parallel to M0. The influence of the spontaneous magnetization can
be compensated by an external field directed in the −x direction. If the sample has a
vanishing demagnetizing factor Nxx, the compensating field Hec simply equals −4πM0.
Let us substitute He = Hec +H′

e into Eq. (4.9), where H′
e is directed along the z-axis:

F =
∫ [

1
8πλ2

(
A+ Φ0

2π
∇θS

)2
+ B2

8π
+ Bxm2

2M
−Bymy −Bzmz

+α
2

(
∂m
∂xi

∂m
∂xi

)
+ Km2

2
− BH′

e

4π

]
d3r+ const. (4.10)
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From this relation it follows that in equilibrium the component Bx is of the order of or
smaller than m2/M , hence, the term containing Bxm

2 is much smaller than m2, and it
can be neglected. After the minimization of F with respect to m we arrive at Eqs. (4.6)
and (4.7) with H′

e in place of He. Thus, we may analyze FS superlattices with thin layers
and ferromagnetic superconductors on a common basis.

It should be noted that when K < 4π the state with M = Mx0 in a ferromagnetic
superconductor becomes unstable: the compensating external field flips the magnetization
vector. In a SF superlattice with K given by Eq. (4.8) the situation K < 4π is formally
impossible. Further we will assume that K > 4π.

Let us determine the magnetic field of a single vortex, directed along the z-axis. The
minimization of F with respect to a gives the London equation,

iq×Bvq = −q× (q× aq) = − 1

λ2
µzz(q)

[
aq +

Φ0

2π
∇θ′q

]
, (4.11)

where Bvq, aq and ∇θ′q are the 2D Fourier transforms of Bv, a and ∇θ′, and

µzz(q) = 1 +
4π

K − 4π + αq2
. (4.12)

The second term in the right-hand side is responsible for the nonlocal electrodynamics
generated by the magnetic subsystem (note that this term formally reminds the kernel
proposed by Dichtel [160] for low-κ superconductors). Using Eqs. (4.11) and (4.12) it
is easy to determine Fourier-transformed magnetic induction Bqz of an isolated vortes,
which can be presented in the form

Bqz =
Φ0

4π2λ2L2(q22 − q21)

[
1− L2q21
q2 + q21

− 1− L2q22
q2 + q22

]
, (4.13)

where

q21,2 =
α + λ2K − 4πλ2 ±

√
(α + λ2K − 4πλ2)2 − 4Kλ2α

2λ2α
, (4.14)

and L =
√
α/K, which coincides with the Bloch domain wall width in the case of a

ferromagnetic superconductor. If we recall that in an ordinary vortex

Bqz =
Φ0

4π2(1 + λ2q2)
, Bz =

Φ0

2πλ2
K0

(ρ
λ

)
,

we can easily perform the inverse Fourier transform of Eq. (4.13):

Bz =
Φ0

2πλ2L2(q22 − q21)

[
(1− L2q21)K0(q1ρ)− (1− L2q22)K0(q2ρ)

]
. (4.15)

The field H ≡ µ̂−1B can be calculated in a similar way:

Hz =
Φ0

2πλ2L2(q22 − q21)

[
(1− 4πK−1 − L2q21)K0(q1ρ)− (1− 4πK−1 − L2q22)K0(q2ρ)

]
.

(4.16)
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An interesting fact is that the quantities q1 and q2 become complex when Lmin < L <
Lmax, where

Lmin,max = λ[1∓
√
4πK−1]. (4.17)

Then, both Bz and Hz exhibit damped spatial oscillations. The situation resembles
the behavior predicted by Eilenberger [161] and Dichtel [160] for low-κ superconductors.
However, at L > Lmax the oscillations disappear: the fields change their sign once,
remaining negative at ρ→ ∞. Some graphs of Bz(ρ) and Hz(ρ) are shown in Fig. 4.2.

Figure 4.2: The H-field and magnetic induction profiles of a single vortex at different
temperatures T , corresponding to different values of the ratio L/λ(T ). µzz(0) = 5.
In linear scale graphs only one oscillation of the vortex fields can be seen because the
oscillation amplitude decays very rapidly with ρ.

Using Eq. (4.8), the vortex field sign revesal condition for a SF superlattice can be
written as

L0 > λ0

√
d

dS

[√
1 +

4π

K0

−
√

4πdF
dK0

]
, (4.18)

where L0 =
√
α0/K0.

4.3 The mixed state

Let us consider the case of a finite concentration of vortices. If the sample has a vanishing
demagnetizing factor Nzz, the free energy of the system at He = 0 (H′

e = 0 in the case
of a ferromagnetic superconductor) is

F =

∫
κHv

8π
d3r+ const, (4.19)

where κ = −Φ0 rot∇θS/(2π) is the vorticity, and Hv ≡ µ−1
zz Bv. The relation (4.19) can

be derived from Eq. (4.6) and the London equation, written in the form

rotHv = −λ−2

(
a+

Φ0

2π
∇θ′
)
.

It follows from Eq. (4.19) that the vortex-vortex interaction potential is proportional to
the H-field of an isolated vortex. Thus, the sign change of Hz(ρ) in Eq. (4.16) (or, more
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precisely, the sign change of its derivative) leads to the attraction of vortices. In our case
the unusual behavior of the vortex field is a consequence of the strong spatial dispersion
of µ̂zz, unlike in [154, 155, 156, 157, 158], where the sign reversal appeared due to the
anisotropy. In [69] it has been erroneously claimed that a large value of µzz is sufficient
for the attraction of vortices, so that the dispersion is not required. Indeed, if we put
α = 0 in Eq. (4.12), we obtain a simple renormalization of λ, which is a well-known fact
[51] and does not lead to any field reversal. Still, the numerical simulations presented in
[69] revealed the clusterization of vortices, apparently connected with the dispersion of
the permeability, which has been actually included in the model. This fact is in good
accordance with the analysis given in the present Chapter.

To determine the equilibrium state of a system containing many vortices, some numer-
ical simulations were performed. The relaxation to equilibrium of 800 vortices, confined
in a box with rigid walls, was modeled. The relaxation process was governed by the
equations

η
dRi

dt
= − ∂F

∂Ri

, (4.20)

where Ri is the position of the i-th vortex, and η is an arbitrary positive viscosity coef-
ficient. This algorithm allows to find a local minimum of the free energy. The relaxation
was stopped when all derivatives dRi/dt became sufficiently small. Some final vortex
configurations are shown in Fig. 4.3. The parameters K, L and λ were chosen so that
the vortex field oscillations were present. In this respect the calculations presented here
differ from those given in [162, 163, 164, 165, 166], where a non-oscillating attractive po-
tential was used to study the vortex structures in multiband superconductors. However,
the obtained pictures are similar to those given in the mentioned papers. Generally, we
can observe either a uniform hexagonal vortex state with several defects (Fig. 4.3a and b)
or vortex clusters with a regular internal hexagonal structure (Fig. 4.3c-f). No traces of
square configurations have been found, even when other parameters were used. Relying
on this observation, the magnetization curves of the SF system with Nzz = 0 were cal-
culated, assuming that the vortex lattice is triangular. The internal field component B0z

satisfies the relation

Hez = 4πV −1∂F/∂B0z, (4.21)

Several B0z vs. Hez curves for different temperatures T are shown in Fig. 4.4a. For
L > Lmin the curves are S-shaped, having an unstable part at low B0 (note the similarity
with Klein’s result [146] for low-κ superconductors). This means that the phase transition
at Hc1 is of first order. The jump of B0 at Hc1 is obtained by means of a Maxwell
construction. We can also extract the metastable regions from the magnetization curves.
In particular, the vortex state may exist at fields down to the overcooling field Hc1m,
corresponding to a minimum of Hez(B0) — see Fig. 4.4a. If the surface barrier for the
vortices is absent, the overheating field for the Meissner state isHc10 = Hez(0) = 4πfv/Φ0,
where fv is the energy per unit length of an isolated vortex. The low-field phase diagram is
shown in Fig. 4.4b. Here, it is assumed thatHc10 ∼ λ−2(T ), and Tc is well below the Curie
temperature, so that L and K are constants. The λ(T ) dependence has been taken from
a textbook [6]. The first order phase transition appears below some critical temperature
Tcr, which is determined from the condition L = Lmin(Tcr). Thus, by changing the
temperature we can switch between type II/2 and type II/1 behavior.
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a b c

d e f

Figure 4.3: (a)-(c) Delaunay triangulations of vortex configurations in a ferromagnetic
superconductors with µzz(0) = K/(K − 4π) ≫ 1 and Lµzz(0)/λ = 2. The size of the box
is (a) 50λ′ × 50λ′, (b) 60λ′ × 60λ′, and (c) 90λ′ × 90λ′, where λ′ =

√
Lλ. The fivefold-

and sevenfold-coordinated vortices, forming lattice dislocations, are marked as blue and
red points, respectively. (d),(e) Two realizations of a metastable state with different
(random) initial conditions. The dots denote vortices. Note that the configurations
with many clusters do not correspond to the absolute minimum of the free energy. (f)
Metastable configuration with 20 pinned (fixed) vortices, marked as red dots. In (d)-(f)
the size of the box is 150λ′ × 150λ′.

Experimentally vortex structures are usually observed in films with the external field
applied perpendicular to the film. In this geometry Nzz ≈ 4π, and B0z ≈ Hez, so
that the average vortex density is fixed. In a film of a ferromagnetic superconductor
with a thickness lz ≫ λ the vortex-vortex interaction remains attractive at intermedi-
ate distances, acquiring a long-range repulsive tail due to the unscreened magnetostatic
interaction through the free space. Then, an intermediate mixed state with coexisting
vortex and Meissner phase domains should occur [149]. The equilibrium magnetic field
in the vortex phase domains equals B0z(Hc1), which is obtained by minimizing the free
energy per vortex. Hence, the fraction of the sample volume occupied by the mixed state
is Hez/B0z(Hc1).

Generally, in the intermediate mixed state a superconductor may exhibit rather diverse
domain structures, depending on the experimental conditions [149]. To estimate the
characteristic size D of the vortex domains we will assume that the pattern has a stripe
structure, as shown in Fig. 4.5. Let us consider the free energy Fa per unit area of the film
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Figure 4.4: (a) The B0z vs. Hez dependencies [Eq. (4.21)] at low fields (Hez ≪ Hc2)
and µzz(0) = 4 (Lmin = 0.268λ̃, where λ̃ = λµzz(0)

−1/2 is the renormalized London
penetration depth [51]). The curves are indented for better visual separation. The jump
of B0z at Hc1 is marked as a red line. (b) The low-field phase diagram of a ferromagnetic
superconductor, or SF superlattice with µzz(0) = 10 and λ̃(T = 0) = L.

Figure 4.5: A schematic picture of the stripe domain structure in the intermediate mixed
state of a SF hybrid system at Hez ≈ B0z(Hc1)/2. The field lines for B′ = B −Hec are
shown.

at Hez ≈ B0z(Hc1)/2, when a half of the sample is in the mixed state. The contribution
to Fa from the mixed / Meissner state interfaces equals σslz/D, where σs is the surface
tension energy per unit area of the interface. Another contribution to Fa originates from
the magnetostatic energy concentrated in the regions with a thickness of the order of D
above and below the film, where the magnetic field is considerably inhomogeneous – see
Fig. 4.5. Hence,

Fa = C̃(D)B2
0z(Hc1)D + σslz/D + const, (4.22)

where C̃(D) is a function of the order of unity, weakly depending on D. The minimization
of Fa with respect to D yields D ∝

√
lz, which resembles the behavior of the magnetic

domains size in a ferromagnetic slab [92]. This estimate is valid when D is much larger
than the inter-vortex distance: D ≫

√
Φ0/B0z(Hc1).
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4.4 Summary and proposals for experiments

In this Chapter, using the London theory, it has been demonstrated that in a high-κ SF
systems with a large domain wall width L the superconducting electrodynamics becomes
strongly nonlocal. Then, the magnetic field of a single vortex may change its sign, and
even exhibit spatial oscillations. These peculiarities of the vortex field may be detected
using muon spin rotation [167]. The sign reversal of the vortex field leads to mutual
attraction of vortices at certain distances. As a result, the transition from the Meissner
state to the mixed state becomes a first order phase transition. Such unusual type-II/1
behavior should appear at sufficiently low temperatures, when L . λ, while in the vicinity
of Tc (when λ ≫ L) ordinary type-II/2 behavior is expected (see the phase diagram in
Fig. 4.4b). In a sample in the form of a slab, if the vortex-vortex attraction condition
L > Lmin is satisfied, an intermediate mixed state should emerge. This state may be
visualized using the Bitter decoration technique [149]. The described effects are quite
unexpected in high-κ materials.

Let us discuss particular systems, where the predicted effects may take place. The
U-based ferromagnetic superconductors [55, 56, 57] possess a rather strong magnetocrys-
talline anisotropy, and their domain wall thickness is very small, so the vortex attraction
condition, L > Lmin, can not be satisfied. Reliable data on the anisotropy of EuFe2As2
[59] are not available to date. The usage of SF superlattices provides much more free-
dom in manipulating the parameters, as we can select from a larger set of materials and
choose appropriate thicknesses dS and dF . To satisfy Eq. (4.18), a ferromagnet with a
large value of L0 is required, such as yttrium iron garnet [168] or permalloy [169], both
having L0 & 100 nm. As the superconducting material, niobium may be used (λ0 . 100
nm), which typically has a large parameter κ due to impurities, when prepared as a thin
film [170].
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Conclusion

The Thesis has been aimed at the solution of several theoretical problems concerning
vortex matter in superconducting systems. These problems include the calculation of the
dynamic response of vortices in magnetic and nonmagnetic superconductors, the determi-
nation of the vortex pinning potential, and the study of the vortex-vortex interaction in
superconductor-ferromagnet hybrids. Though considerations in this Thesis were based on
phenomenological theories (London, Ginzburg-Landau (GL) and Landau-Lifshitz-Gilbert
equations), both qualitative and quantitative predictions given here may be checked ex-
perimentally. The main obtained results are summarized below:

• Within the GL theory, a new approach for the calculation of the vortex pinning
potential on a small cylindrical insulating defect has been developed. It has been
shown that the shape of the potential well for a single vortex can be determined
by solving a linear problem (Eqs. (1.27) and (1.28)) instead of the complicated GL
equation. The exact pinning potential for a defect with an elliptic cross-section has
been determined. It appears that the width of the potential well, even in the case
of a very small defect, is of the order of the coherence length ξ. Due to this, at low
currents a bound state should exist, where the vortex center is located outside the
defect, but the vortex remains pinned. This state may be detected using scanning
tunneling microscopy or a nano-SQUID [79].

• Using the exact order parameter profile of a vortex, the vortex viscosity tensor η̂
has been calculated both numerically and analytically for a superconductor with
a Cooper pair mass-normal conductivity anisotropy mismatch (mcσc/mabσab ̸= 1).
It has been predicted that the flux-flow conductivity anisotropy may depend con-
siderably on temperature even in the close vicinity of Tc. These results may be
useful for the interpretation of experimental data on the resistivity of the strongly
anisotropic Fe-based and cuprate superconductors.

• It has been demonstrated that the magnon spectrum of a ferromagnetic super-
conductor in the mixed state has a Bloch-like band structure. The specrum was
calculated analytically and numerically. The gaps in the magnon spectrum can be
probed by measuring the surface impedance of the sample.

• In Sec. 3.4, the magnetic moment induced force fM , acting on moving vortices
in hybrid SF structures has been calculated in the cases of a dc and ac driving
force, and for both a perfect and disordered vortex lattice. When vortices radiate
magnons, the force fM is enhanced. As a result, certain resonant features should
appear on the I-V curve of the sample and on the surface impedance vs. frequency
and magnetic field dependencies.
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• It has been shown that in SF systems with a large domain wall width L & λ the
magnetic structure of vortices is significantly modified. In particular, the field of
a single vortex may change its sign, which may be confirmed experimentally using
the muon spin rotation technique [167]. The sign reversal of the vortex field results
in attractive interaction between vortices and a first order phase transition from
the Meissner to the mixed state. A consequence of this is the formation of an
intermediate mixed state in a slab (see Fig. 4.5). Then, the vortex phase domains
may be visualized using Bitter decoration.

Still, many questions remain open for future work. For example, it would be interest-
ing to develop a method for the vortex viscosity calculation at lower temperatures, where
the time dependent Ginzburg-Landau theory is not applicable. A microscopic calculation
of the vortex pinning potential on a columnar defect would be also very useful. Concern-
ing the interaction between vortices and magnetic moments in SF structures, there is
much room for the improvement of the model. In ferromagnetic superconductors, the in-
fluence of the alternating exchange field on the superconducting properties may be taken
into account. In addition, some limitations in Chapters 3 and 4 may be lifted by using
the Ginzburg-Landau theory (or a more complicated microscopic approach), allowing to
obtain a correct description on length scales of the order of ξ. Hopefully, for such fu-
ture research the present Thesis will serve as a source of objectives and a comparative
example.
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Appendix A

An estimate of the contribution of ψ
(i)
1 to the integral

in Eq. (1.21)

In this appendix we will demonstrate that the contribution from the function ψ
(i)
1 (see

(1.24)) to the pinning force is negligible. It is sufficient to prove that the absolute value
of the integral

I =

∫
∂S

(
ψ

(i)
1 ∇ψ∗

d(0) + ψ
(i)∗
1 ∇ψd(0)

)
ndℓ

is much smaller than n0D
2/ξ3.

The function ψ
(i)
1 has the following properties:

∇ψ(i)
1 n

∣∣∣∣
∂S

≈ 0, ∇2ψ
(i)
1 = 0, when ρ < ρ0, (A1)

where ρ0 is a quantity of the order of the coherence length. Let us introduce an auxiliary
function v defined by the relations

∇2v = 0, n∇v
∣∣∣∣
∂S

= ξn∇ψ∗
d(0), v

∣∣∣∣
ρ→∞

= 0.

The properties of this function are identical to those of ψ
(d)
1 : it is of the order of

√
n0Dξ

−1

at the defect border and decays like ρ−1 at infinity. For a smooth defect v ∼ √
n0D

2/(ξρ).
Now we make some simple calculations:

0 =

∫
ρ/∈S, ρ<ρ0

(
ψ

(i)
1 ∇2v − v∇2ψ

(i)
1

)
d2ρ = −

∫
∂S

ψ
(i)
1 ∇v ndℓ+

∫
ρ=ρ0

(
ψ

(i)
1

∂v

∂ρ
− v

∂ψ
(i)
1

∂ρ

)
dℓ.

Since ψ
(i)
1 ≈ ψ1 when ρ ∼ ρ0,

I = ξ−1

∫
ρ=ρ0

(
ψ1
∂v

∂ρ
− v

∂ψ1

∂ρ

)
dℓ+ c.c., (A2)

where c.c. denotes the complex conjugate. According to statement (B) from Sec. 1.2.1,
when ρ = ρ0 , |ψ1| ≪

√
n0, and |∂ψ1/∂ρ| ≪

√
n0/ξ, since the characteristic length scale

is ξ. Then it follows immediately from Eq. (A2) that |I| ≪ n0D
2/ξ3.
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Appendix B

Derivation of the force balance equation (5) and of

some general expressions for the viscosity tensor

In this appendix the relations (2.7), (2.8), (2.12) and (2.13) are derived. In Eqs. (2.1) and
(2.2) it is convenient to make a scaling of the variables: x′ = x(m(φ0)/mab)

1/2, y′ = y,
z′ = z, where m(φ0) is given by Eq. (2.6). We rewrite Eq. (2.1) in the form

Γ ~
∂ |ψ|
∂t

=
~2

2mab

[
∇′2 |ψ| − |ψ| (∇′θS)

2
]
− aGL |ψ| − bGL |ψ|3 , (B1)

Γ |ψ|2
(
~
∂θS
∂t

− 2eΦ

)
=

~2

2mab

∇′(|ψ|2∇′θ). (B2)

According to Eq. (2.3), the two-dimensional current j′ = (jx[m(φ0)/mab]
1/2, jy) satisfies

the relation
div′j′ = 0. (B3)

Here we left only the linear with respect toVL term. The derivative ∂ρe/∂t is proportional
to V 2

L , since in a static vortex ρe = 0. It follows from Eqs. (B2) and (B3) that

Γ |ψ|2
(
~
∂θS
∂t

− 2eΦ

)
= − ~

4e
∇′ (σ̃n∇′Φ) , (B4)

where we introduced the tensor σ̃n with components

σ̃nx′x′ = s(φ0)σab, σ̃ny′y′ = σab,

σ̃nx′y′ = σ̃ny′x′ = 0. (B5)

The parameter s(φ0) is given by Eq. (2.14). For a moving vortex one should search the
solution of Eqs. (B1), (B2) and (B3) in the form ψ = ψ(ρ′ − ṼLt), Φ = Φ(ρ′ − ṼLt),
where ṼL = (VLx[m(φ0)/mab]

1/2, VLy) and ρ′ = (x′, y′). We expand |ψ| and θS in powers
of VL up to the first order term, assuming the vortex velocity to be sufficiently small:

|ψ| ≈ Ψ0(ρ
′ − ṼLt) + Ψ1(ρ

′ − ṼLt), (B6)

θS ≈ θ0(ρ
′ − ṼLt) + θ1(ρ

′ − ṼLt). (B7)

Here Ψ0(ρ
′) and θ0(ρ

′) correspond to a static vortex. The functions Ψ1, θ1 and Φ are of
the order VL. We substitute (B6) and (B7) into Eqs. (B1), (B3) and (B4):

− aGLΨ0 − bGLΨ
3
0 +

~2

2mab

[
∇′2Ψ0 −Ψ0(∇′θ0)

2
]
= 0, (B8)
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~2

2mab

[
∇′2Ψ1 −Ψ1(∇′θ0)

2 − 2Ψ0∇′θ0 · ∇′θ1
]
− aGLΨ1 − 3bGLΨ

2
0Ψ1 = −Γ~(ṼL∇′)Ψ0

(B9)

div′j′0 = 0, j′0 = −2e ~Ψ2
0

mab

∇′θ0, (B10)

div′j′1 = 0,

j′1 = − 2e ~
mab

(2Ψ0Ψ1∇′θ0 +Ψ2
0∇′θ1)− σ̃n∇′Φ, (B11)

~σab
4e

[
s(φ0)

∂2Φ

∂x′2
+
∂2Φ

∂y′2

]
= ΓΨ2

0

(
2eΦ + ~ṼL · ∇′θ0

)
. (B12)

Now we introduce some new notations: Ψd = (d∇′)Ψ0, θd = (d∇′)θ0, j
′
d = (d∇′)j′0, where

d is an arbitrary vector. A simple equation connecting Ψd and θd can be obtained by
applying the operator d∇′ to Eq. (B8):

~2

2mab

[
∇′2Ψd −Ψd(∇′θ0)

2 − 2Ψ0∇′θ0 · ∇′θd
]
− aGLΨd − 3bGLΨ

2
0Ψd = 0. (B13)

The vector j′d satisfies the obvious relation div′j′d = 0. Let us multiply Eq. (B9) by Ψd,
subtract Eq. (B13) multiplied by ψ1 and integrate the resulting equation over a large
volume containing the whole vortex. After some simple algebra and integration by parts
we obtain

−Γ~
∫
(ṼL∇′)Ψ0Ψdd

3r′ = − ~
4e

∫
[(j′1 + σ̃n∇′Φ)∇′θd − j′d∇′θ1] d

3r′

= − ~
4e

∫
(σ̃n∇′Φ)∇′θdd

3r′ − ~
4e

∫
S
(j′1θd − j′dθ1)dS. (B14)

Here S is a surface far from the vortex axis. At large distances ρ′ ≫ ξab we have

j′1 ≈ −2e~ |aGL|
bGLmab

∇′θ1 = j′tr, θ1 = − bGLmab

2e~ |aGL|
(j′tr · ρ′) + const,

where j′tr is the transport current density which is constant. If we calculate the surface
integral in Eq. (B14) and make some simple transformations, we obtain the force balance
equation [40]

π~
e
d(j′tr × z0) = 2πΓ~(dṼL)

∫ ∞

0

(
dΨ0

dρ

)2

ρ dρ+
~σab
2e

∫ [
s(φ0)

∂2Φ

∂x′2
+
∂2Φ

∂y′2

]
(d∇′θ0)d

2ρ′.

(B15)
If we compare Eqs. (5) and (B15), we can see that the viscous drag tensor in the frame
(x′, y′, z′) should be defined as follows:

d · η̂′ṼL = 2πΓ ~(dṼL)
|aGL|
bGL

∫ ∞

0

(
df

dρ

)2

ρdρ+
~σab
2e

∫ [
s(φ0)

∂2Φ

∂x′2
+
∂2Φ

∂y′2

]
(d∇′θ0)d

2ρ′,

(B16)
where

f(ρ) ≡ Ψ0(ρξab)

√
bGL
|aGL|

. (B17)
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The components of the tensor η̂ in the frame (x, y, z) are given by

ηxx = [m(φ0)/mab]
1/2η′x′x′ , ηyy = [mab/m(φ0)]

1/2η′y′y′ (B18)

The right-hand side of Eq. (B16) contains two terms, representing two mechanisms of
dissipation. The viscous drag tensor due to relaxation of the order parameter is [36, 37,
40, 38]:

(η′p0)ij = 2π~Γ
|aGL|
bGL

α1δij, (B19)

α1 =

∫ ∞

0

(
df

dρ

)2

ρdρ = 0.279. (B20)

The second term in the right-hand side of Eq. (B16) defines the ohmic viscosity tensor
η̂′′oh, which is evaluated in Chapter 2:

d · η̂′ohṼL =
~σab
2e

∫ [
s(φ0)

∂2Φ

∂x′2
+
∂2Φ

∂y′2

]
(d∇′θ0)d

2ρ′. (B21)

Now, if we substitute Φ in the form (2.15) into Eqs. (B12) and (B21) and switch to the
coordinates (x1, y1) (see Eq. (2.9)) we obtain Eqs. (2.7), (2.8), (2.12) and (2.13).

92



Appendix C

Expansion of the vortex viscosity in the limit u≫ 1

In this Appendix Eq. (2.26) will be derived. First, we divide the integral in Eq. (2.7)
into two parts:

ηx = ηx1 + ηx2, (C1)

ηx1 = −2n0Γ~
∫
ρ1<ρ0/

√
u

f 2(ρ1)
y1
ρ21

(
u2Φx −

y1
ρ21

)
dx1dy1, (C2)

ηx2 = −2n0Γ~
∫
ρ1>ρ0/

√
u

f 2(ρ1)
y1
ρ21

(
u2Φx −

y1
ρ21

)
dx1dy1, (C3)

where ρ0 = u1/6+δ, δ ≪ 1/6. Note that the left-hand side of Eq. (2.12) is small when
ρ1 > ρ0/

√
u≫ u−1/2, so it can be accounted for by perturbation theory:

Φx =
y1
u2ρ21

+ Φx1 + Φx2 + ..., (C4)

Φx1 =
1

u4f 2(ρ1)

(
∂2

∂y21
+ s

∂2

∂x21

)
y1
ρ21
, Φx2 =

1

u6

[
1

f 2(ρ1)

(
∂2

∂y21
+ s

∂2

∂x21

)]2
y1
ρ21
.

The main contribution to the integral in Eq. (C3) is determined by small ρ1. The
integral of Φx2 is of the order of (uρ60)

−1 ≪ u−2, the integrals of higher-order terms are
also negligibly small, hence

ηx2 ≈ −2n0Γ~
I ′0x
u
, I ′0x =

∫
ρ>ρ0

y

ρ2

(
∂2

∂y2
+ s

∂2

∂x2

)
y

ρ2
dx dy. (C5)

Let us consider the component ηx1. In the new variables introduced in subsection 2.3.1
Eq. (C2) reads

ηx1 = −2n0Γ~
∫
ρ<ρ0

f 2

(
ρ√
u

)
y

ρ2

(
Φ̃x −

y

ρ2

)
dx dy. (C6)

Now we estimate the term Rx introduced in Eq. (2.23). It satisfies the following relation:

∂2Rx

∂y2
+ s∂

2Rx

∂x2
− uf 2

(
ρ√
u

)
Rx =

[
uf 2

(
ρ√
u

)
− f2ρ

2 − f4ρ4

u

] (
Φ

(0)
x − y

ρ2

)
+
[
uf 2

(
ρ√
u

)
− f2ρ

2
]

Φ
(1)
x

u
. (C7)
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Note that when ρ ≪
√
u the source in the right-hand side of (C7) can be presented

as S(x, y)u−2, where S(x, y) is some function independent of u. Since Eq. (C7) is a
screening equation, the function Rx(x, y, u) for small ρ does not depend on the behavior
of the source in the area of big ρ and can be presented as Rx = R̃x(x, y)u

−2. On the
other hand, when ρ≫ 1 the derivatives in the left-hand side of Eq. (C7) are small, hence
in the area 1 ≪ ρ≪

√
u

Rx ≈
1

u2

[
−f6ρ

4

f2

(
Φ(0)
x − y

ρ2

)
− f4ρ

2

f2
Φ(1)
x

]
, and |Rx| ≤

const

ρu2
. (C8)

Now we substitute Φ̃x in the form (2.23) into (C6):

ηx1 = −2n0Γ~
(
I ′1x
u

+
I ′2x
u2

+ I3x

)
, (C9)

where

I ′1x =

∫
ρ<ρ0

f2y

(
Φ(0)
x − y

ρ2

)
dx dy, (C10)

I ′2x =

∫
ρ<ρ0

y

ρ2

[
f4ρ

4

(
Φ(0)
x − y

ρ2

)
+ f2ρ

2Φ(1)
x

]
dx dy, (C11)

I3x =
∫
ρ<ρ0

[
f 2
(

ρ√
u

)
− f2ρ2

u
− f4ρ4

u2

] (
Φ

(0)
x − y

ρ2

)
y
ρ2
dx dy

+
∫
ρ<ρ0

[
f 2
(

ρ√
u

)
− f2ρ2

u

]
Φ

(1)
x

u
y
ρ2
dx dy +

∫
ρ<ρ0

f 2
(

ρ√
u

)
Rx

y
ρ2
dx dy. (C12)

One can easily prove that

Φ(0)
x =

y

ρ2
+

1

f2ρ2

(
∂2

∂y2
+ s

∂2

∂x2

)
y

ρ2
+O(ρ−9), (C13)

Φ(1)
x = O(ρ−3). (C14)

From Eqs. (C13), (C14) and (C8) we can see that all integrals in Eq. (C12) are of the
order ρ20/u

3. Thus |I3x| ≪ u−2, so it can be neglected. Also we can integrate in Eqs.
(C10) and (C11) over the whole xy plane: using Eqs. (2.27), (C5), (C10), (C13) and
(C11) one can prove that

|I ′0x + I ′1x − I1x(s)| ≪ u−1, (C15)

|I ′2x − I2x(s)| ≪ 1, (C16)

Finally, taking into account Eqs. (C1), (C5) and (C9) we obtain Eq. (2.26).
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Appendix D

Calculation of the vortex viscosity in the limit s≫ u &
1

In this Appendix Eqs. (2.35) and (2.36) will be derived. Here the calculations for the ηy
component are presented, since the calculations for the ηx component are less complicated.
First, we rewrite Eq. (2.13) in the form

s
∂2Φy

∂x2
− u2Φy +

x

ρ2
f 2(ρ) = −∂

2Φy

∂y2
− u2Φy

(
1− f 2(ρ)

)
. (D1)

The index “1” is omitted. It will be proved below that the terms in the right-hand side
of Eq. (D1) give a small contribution to the viscosity, so they can be neglected. Then
the solution of Eq. (D1) has the form

Φy ≈ Φy0 =

∫ +∞

−∞

x′f 2(ρ′)

x′2 + y2
exp(−u |x− x′| /

√
s)

2u
√
s

dx′, (D2)

where ρ′ =
√
x′2 + y2. Consider a quantity y0 in the range 1 ≪ y0 ≪

√
s/u (for example,

y0 = s1/4/u1/2). We divide the integral in Eq. (2.8) into three parts:

ηy = −2n0Γ~
[∫

|y|<y0 f
2(ρ) x

ρ2
u2Φy dx dy −

∫
|y|<y0 f

2(ρ)x
2

ρ4
dx dy

]
−4n0Γ~

∫
y>y0

f 2(ρ) x
ρ2

(
u2Φy − x

ρ2

)
dx dy, (D3)

Using the inequality

f 2(ρ) <
ρ2

A1 + ρ2
, (D4)

where A1 is some constant, we can estimate the first integral:∣∣∣∫|y|<y0 f 2(ρ) x
ρ2
u2Φy dxdy

∣∣∣ < y0u√
s

∫ |x||x′| exp(−u|x−x′|/
√
s)dx dx′

(x2+A1)(x′2+A1)

< consty0u√
s

(
ln

√
s
u

)2
≪ 1. (D5)

Here and further “const” denotes a constant independent of any parameters. The second
term in Eq. (D3) has the following asymptotics when y0 ≫ 1:∫

|y|<y0
f 2(ρ)

x2

ρ4
dx dy ≈ π ln y0 + Cy. (D6)
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The constant Cy will be evaluated below. The third integral in Eq. (D3) can be simplified
if we take into account that ρ > y0, ρ

′ > y0 and y0 ≫ 1, so we can substitute unity instead
of f 2:

∫
y>y0

f 2(ρ) x
ρ2

(
u2Φy − x

ρ2

)
dx dy ≈

∫∞
y0

(
πu√
s

∫ +∞
−∞

y exp
(
−u|x|√

s

)
x2+4y2

dx− π
2y

)
dy

= π
2

∫∞
0
dx
∫∞
y0
dy
(

4y
sx2/u2+4y2

− 1
y

)
e−x ≈ −π

4

∫∞
0

ln sx2

4y20u
2 e

−xdx

= π
2
ln y0 − π

4
ln s

4u2
+ π

2
C, (D7)

where C is the Euler constant:

C = −
∫ ∞

0

lnx · e−xdx ≈ 0.577.

Using (D3) - (D7) we obtain

ηy = 2π~Γn0

(
1

2
ln

s

4u2
+
Cy
π

− C
)
. (D8)

The component ηx can be calculated in a similar way:

ηx = 2π~Γn0

(
1

2
ln

s

4u2
+
Cx
π

− C
)
, (D9)

Cx = lim
y0→∞

(∫
|y|<y0

f 2(ρ)
y2

ρ4
dxdy − π ln y0

)
. (D10)

Now we evaluate Cx and Cy. Here the constant g′4 from [37] will be useful:

g′4 =

∫ ∞

0

[
f 2(ρ)− ρ2

1 + ρ2

]
ρ−1dρ = −0.3982. (D11)

It is easy to check that

Cx = πg′4 + lim
y0→∞

∫
|y|<y0,ρ>y0

y2ρ−4 dx dy = π

(
g′4 + ln 2− 1

2

)
.

Similarly,

Cy = π

(
g′4 + ln 2 +

1

2

)
.

Finally, the components of the viscous drag tensor take the form

ηx = 2π~Γn0

(
ln

√
s

u
+ g′4 − C − 1

2

)
, (D12)

ηy = 2π~Γn0

(
ln

√
s

u
+ g′4 − C +

1

2

)
. (D13)

If we substitute C and g′4 with their numerical values, we obtain Eqs. (2.35) and (2.36).
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Now it is necessary to prove our assumption concerning the right-hand side of Eq.
(D1). Consider it as a perturbation. The first order correction to the approximate
solution Φy0 has the form

Φy1 = R(1)
y +R(2)

y ,

R(1)
y =

∫ +∞

−∞

uΦy0(x
′, y)[1− f 2(ρ′)]

2
√
s

exp

(
−u |x− x′|√

s

)
dx′, (D14)

R(2)
y =

1

2u
√
s

∫ +∞

−∞

∂2Φy0

∂y2
(x′, y) exp

(
−u |x− x′|√

s

)
dx′. (D15)

The contribution of Φy1 to ηy is equal to

∆ηy = −2n0Γ~(I(1)y + I(2)y ),

where

I(1)y =

∫
f 2(ρ)

x

ρ2
u2R(1)

y dx dy, (D16)

I(2)y =

∫
f 2(ρ)

x

ρ2
u2R(2)

y dx dy. (D17)

It will be shown that
∣∣∣I(1)y

∣∣∣≪ 1 and
∣∣∣I(2)y

∣∣∣≪ 1 when s≫ u2.

A simple estimate for |Φy0| can be obtained with the help of (D4):

|Φy0| ≤ const
ln

√
s
u

u
√
s
. (D18)

Using the inequality

1− f 2(ρ) <
A2

A2 + ρ2
,

with A2 = const and Eq. (D18) we can estimate I
(1)
y :

∣∣I(1)y

∣∣ ≤ const
u√
s
ln

√
s

u
≪ 1.

For all x′ and y we can write∣∣∣∣ ∂2∂y2
(

1

x′2 + y2
f 2(ρ′)

)∣∣∣∣ ≤ const

(A3 + x′2 + y2)2
, (A3 = const)

whence ∣∣∣I(2)y

∣∣∣ ≤ const
s

∫ |x| exp
(
−u|x−x′|√

s

)
exp

(
−u|x′′−x′|√

s

)
(A3+x′′2)(A1+x2)

dx′dx′′dx

≤ const
s

ln
√
s
u

∫ exp

(
−u|x′′−x′|√

s

)
x′′2+A3

dx′dx′′ ≤ const√
su

ln
√
s
u

≪ 1

when u & 1.
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Appendix E

Estimate of the distortion of the decaying magnon

modes

In this Appendix we will consider the modification of the mode with the wave-vector q2

in the vicinity of the surface. This consideration can be simply generalized for all other
modes.

First, we note that q22 ≈ −λ−2 and q2x ≈ iλ−1, since |ky| ≪ λ−1 (this inequality
holds for frequencies, which are much smaller than the plasma frequency ωp ∼ cλ−1). We

substitute into Eq. (3.26) Bv = 4πMe−x/λ, and m ≈ m2e
−x/λ +m

(1)
2 e−2x/λ, where m

(1)
2

is the amplitude of the first-order correction, which is to be estimated. This correction
is determined from the following equations:

− iω

γM
m

(1)
2 + (K − 4αλ−2)m

(1)
2 × z0 =

(
b
(1)
2 − 4πm2

)
× z0, (E1)

− 3

λ2
b
(1)
2 = −16π

λ2
m

(1)
2y y0.

For ω ≈ γM(K + αq21), αq
2
1 ≫ 1 we find

m
(1)
2 ≈ 4π

αq21
m2. (E2)

Hence,
∣∣∣m(1)

2

∣∣∣≪ |m2|, so the small correction can be neglected.
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Appendix F

Derivation of equation (3.100)

To determine the force fM , one should calculate the variation of the free energy when all
vortices are shifted by an equal vector, and the magnetization is kept fixed. To simplify
the calculations we may use the fact that the free energy acquires the same variation if
the vortices are kept fixed, and the magnetization is shifted in the opposite direction.
Then

δF =

∫ (
δF

δA
δA+

δF

δM
δM

)
d3r.

According to the London equation δF/δA = 0 the first term in the right-hand side
vanishes. Also, the terms in Eq. (3.6) which depend only on M (e. g., the exchange
energy) are not affected by the magnetization shift. Hence, only the term

δF = −
∫

BδMd3r, (F1)

remains, and the force acting on a vortex is

(fM)xi =
1

NvLv

∫
B
∂M

∂xi
d3r = − 1

NvLv

∫
∂B

∂xi
Md3r

Presenting the magnetic field as B = h+ bM , we have

fM = fM1 + fM2. (F2)

(fM1)xi = − 1
NvLv

∫
∂bM

∂xi
Md3r,

(fM2)xi = − 1
NvLv

∫
∂h
∂xi

Md3r.

Note that the term fM1 does not depend on the vortex positions. Hence, to calculate
this term we can place the vortices anywhere in the superconductor. Let us position the
vortices in an area with uniform magnetization (M = const). Then, fM2 vanishes, and
fM = fM1. On the other hand, in the area with homogenous magnetization any identical
displacement of all vortices does not change the free energy, hence, the whole force fM
vanishes. Thus, fM1 = 0, and for any vortex positions fM = fM2. From this follows Eq.
(3.100).
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Appendix G

Evaluation of the integral in Eq. (3.128)

In this Appendix it is shown how the integral in Eq. (3.128) can be evaluated. Let us
introduce the dimensionless quantities l = L/λ, lv = VL/(ωFλ) and g = λq, and direct
the gx axis along VL. Then fMy = 0, and

fMx = −γMΦ2
0 sin

2 θ

4πλ3ωF

∫
g<λ/ξ

gxd2g
(1+g2)2

δ(1 + l2g2 − lvgx) = −γMΦ2
0 sin

2 θ

4πλ2VL

∫
g<λ/ξ

(1+l2g2)δ(1+l2g2−lvgx)
(1+g2)2

d2g

= −γMΦ2
0 sin

2 θ

4πλ2VL

[
l2
∫

g<λ/ξ

δ(1+l2g2−lvgx)
1+g2

d2g + (1− l2)
∫

g<λ/ξ

δ(1+l2g2−lvgx)
(1+g2)2

d2g

]
. (G1)

We will put VL > Vth ≡ 2ωFL, so that fMx ̸= 0. For simplicity, we will assume that

L2ξ−1 >
VL
2ωF

+

√(
VL
2ωF

)
− L2, (G2)

which is possible when ξ < L. Then, the whole circle 1 + l2g2 − lvgx = 0 lies in the
region g < λ/ξ. Now we make a coordinate shift, redesignating gx − lv/(2l

2) by gx:

fMx = −γMΦ2
0 sin

2 θ

4πλ2VL


∫

δ(g2 − g20)d
2g

1 + g2y +
(
gx +

lv
2l2

)2 + (l−2 − 1)

∫
δ(g2 − g20)d

2g[
1 + g2y +

(
gx +

lv
2l2

)2]2
 ,

(G3)
where

g20 = l−2

(
l2v
4l2

− 1

)
.

Integration over the modulus of g is now straightforward:

fMx = −γMΦ2
0 sin

2 θ

8πλ2VL

∫ 2π

0

dφ

1 + g20 +
l2v
4l4

+ lv
l2
g0 cosφ

+

∫ 2π

0

(l−2 − 1)dφ(
1 + g20 +

l2v
4l4

+ lv
l2
g0 cosφ

)2
 ,

(G4)
where φ is the polar angle in the g-plane. Integration can be completed using standard
methods or a table of integrals. The result is

fMx = −γMΦ2
0 sin

2 θ

8λ2VL
(l−2 + 1)

l2v
l4

[
(1− l−2)2 +

l2v
l4

]−3/2

. (G5)

If we return to dimensional variables and recall that L≪ λ, we obtain Eq. (3.129).
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J. Humĺıc̆ek, O. I. Lebedev, G. Van Tendeloo, B. Keimer, and C. Bernhard. Proxim-
ity induced metal-insulator transition in YBa2Cu3O7La2/3Ca1/3MnO3 superlattices.
Phys. Rev. B, 69:064505, Feb 2004.

[123] V. Peña, Z. Sefrioui, D. Arias, C. Leon, J. Santamaria, J. L. Martinez,
S. G. E. te Velthuis, and A. Hoffmann. Giant magnetoresistance in ferromag-
net/superconductor superlattices. Phys. Rev. Lett., 94:057002, Feb 2005.

[124] V. K. Malik, I. Marozau, S. Das, B. Doggett, D. K. Satapathy, M. A. Uribe-
Laverde, N. Biskup, M. Varela, C. W. Schneider, C. Marcelot, J. Stahn, and C. Bern-
hard. Pulsed laser deposition growth of heteroepitaxial YBa2Cu3O7/La0.67Ca0.33MnO3

superlattices on NdGaO3 and Sr0.7La0.3Al0.65Ta0.35O3 substrates. Phys. Rev. B,
85:054514, Feb 2012.

[125] J. Hoppler, J. Stahn, Ch. Niedermayer, V. K. Malik, H. Bouyanfif, A. J. Drew,
M. Rssle, A. Buzdin, G. Cristiani, H.-U. Habermeier, B. Keimer, and C. Bernhard.
Giant superconductivity-induced modulation of the ferromagnetic magnetization in a
cuprate-manganite superlattice. Nat. Mater., 8:315–319, 2009.

[126] J. Stahn, J. Chakhalian, Ch. Niedermayer, J. Hoppler, T. Gutberlet, J. Voigt,
F. Treubel, H-U. Habermeier, G. Cristiani, B. Keimer, and C. Bernhard. Magnetic
proximity effect in perovskite superconductor/ferromagnet multilayers. Phys. Rev. B,
71:140509, Apr 2005.

[127] A. Hoffmann, S. G. E. te Velthuis, Z. Sefrioui, J. Santamaŕıa, M. R. Fitzsimmons,
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[134] D. Babić, J. Bentner, C. Sürgers, and C. Strunk. Flux-flow instabilities in amor-
phous Nb0.7Ge0.3 microbridges. Phys. Rev. B, 69:092510, Mar 2004.

[135] Milind N. Kunchur. Unstable flux flow due to heated electrons in superconducting
films. Phys. Rev. Lett., 89:137005, Sep 2002.

[136] S. G. Doettinger, R. P. Huebener, and A. Kühle. Electronic instability during
vortex motion in cuprate superconductors. Regime of low and high magnetic fields.
Physica C, 251(34):285 – 289, 1995.

[137] W. Klein, R. P. Huebener, S. Gauss, and J. Parisi. Nonlinearity in the flux-flow
behavior of thin-film superconductors. J. Low Temp. Phys., 61(5-6):413–432, 1985.

[138] K. Torokhtii, N. Pompeo, C. Meneghini, C. Attanasio, C. Cirillo, E.A. Ilyina,
S. Sarti, and E. Silva. Microwave Properties of Nb/PdNi/Nb Trilayers. J. Super-
cond. Nov. Magn., 26(3):571–574, 2013.

[139] Y. Shapira and L. J. Neuringer. Magnetoacoustic attenuation in high-field super-
conductors. Phys. Rev., 154:375–385, Feb 1967.

[140] E. B. Sonin and K. B. Traito. Surface impedance of a type-ii superconductor in
dc magnetic fields parallel and tilted to the superconductor border. Phys. Rev. B,
50:13547–13556, Nov 1994.

[141] R. A. Klemm. Layered Superconductors, volume 1. Oxford University Press, Oxford,
2012.

[142] A. E. Jacobs. Interaction of Vortices in Type-II Superconductors near Tc. Phys.
Rev. B, 4:3029–3034, Nov 1971.

[143] Lorenz Kramer. Interaction of vortices in type II superconductors and the behavior
near Hc1 at arbitrary temperature. Z. Phys., 258(5):367–380, 1973.

[144] M.C. Leung. Attractive interaction between vortices in type-ii superconductors at
arbitrary temperatures. J. Low Temp. Phys., 12(1-2):215–235, 1973.

[145] E. H. Brandt. Microscopic theory of clean type-II superconductors in the entire
field-temperature plane. Phys. Status Solidi B, 77(1):105–119, 1976.

[146] U. Klein. Microscopic calculations on the vortex state of type II superconductors.
J. Low Temp. Phys., 69(1-2):1–37, 1987.

[147] U. Kumpf. Magnetisierungskurven von Supraleitern zweiter Art mit kleinen
Ginzburg-Landau-Parametern. Phys. Status Solidi (b), 44(2):829–843, 1971.

114



[148] J. Auer and H. Ullmaier. Magnetic Behavior of Type-II Superconductors with Small
Ginzburg-Landau Parameters. Phys. Rev. B, 7:136–145, Jan 1973.

[149] Ernst Helmut Brandt and Mukunda P. Das. Attractive vortex interaction and the
intermediate-mixed state of superconductors. J. Supercond. Nov. Magn., 24(1-2):57–
67, 2011.

[150] Victor Moshchalkov, Mariela Menghini, T. Nishio, Q. H. Chen, A. V. Silhanek,
V. H. Dao, L. F. Chibotaru, N. D. Zhigadlo, and J. Karpinski. Type-1.5 supercon-
ductivity. Phys. Rev. Lett., 102:117001, Mar 2009.

[151] Julien Garaud, Daniel F. Agterberg, and Egor Babaev. Vortex coalescence and
type-1.5 superconductivity in Sr2RuO4. Phys. Rev. B, 86:060513, Aug 2012.

[152] Egor Babaev and Martin Speight. Semi-Meissner state and neither type-I nor type-
II superconductivity in multicomponent superconductors. Phys. Rev. B, 72:180502,
Nov 2005.

[153] A. E. Koshelev and A. A. Golubov. Mixed State of a Dirty Two-Band Supercon-
ductor: Application to MgB2. Phys. Rev. Lett., 90:177002, Apr 2003.

[154] A. I. Buzdin and A. Y. Simonov. Penetration of inclined vortices into layered
superconductors. JETP Letters, 51(3):191–195, Feb 1990.

[155] V. G. Kogan, N. Nakagawa, and S. L. Thiemann. Interaction of vortices in uniaxial
superconductors. Phys. Rev. B, 42:2631–2634, Aug 1990.

[156] A. M. Grishin, A. Yu. Martinovich, and S. V. Yampol’skiy. Magnetic field inversion
and vortex chains in anisotropic superconductors. Sov. Phys. JETP, 70:1089, 1990.

[157] A.I. Buzdin and A.Yu. Simonov. Magnetization of anisotropic superconductors in
the tilted magnetic field. Physica C, 175(12):143 – 155, 1991.

[158] A.I. Buzdin, S.S. Krotov, and D.A. Kuptsov. Attraction of inclined vortices in
magnetic superconductors. Physica C: Superconductivity, 175(1 - 2):42 – 46, 1991.

[159] Simon J Bending and Matthew J W Dodgson. Vortex chains in anisotropic super-
conductors. J. Phys.: Condens. Matter, 17(35):R955, 2005.

[160] K. Dichtel. A nonlocal model of a single flux line. Phys. Lett. A, 35(4):285 – 286,
1971.
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