
HAL Id: tel-01128002
https://theses.hal.science/tel-01128002v1

Submitted on 9 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Web page segmentation, evaluation and applications
Andrés Sanoja Vargas

To cite this version:
Andrés Sanoja Vargas. Web page segmentation, evaluation and applications. Other [cs.OH]. Université
Pierre et Marie Curie - Paris VI, 2015. English. �NNT : 2015PA066004�. �tel-01128002�

https://theses.hal.science/tel-01128002v1
https://hal.archives-ouvertes.fr

Thése de Doctorat de l'Université Pierre et Marie Curie

Specialité

Informatique

École doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par

Andrés Fernando SANOJA VARGAS

Pour obtenir le grade de

DOCTEUR de l'UNIVERSITÉ PIERRE ET MARIE CURIE

Sujet de la thèse :

Segmentation de Pages Web, Évaluation et
Applications

Web Page Segmentation, Evaluation and
Applications

soutenue le 22 janvier 2015, devant le jury composé de :

Elisabeth MURISASCO Rapporteur Université de Toulon

Marta RUKOZ Rapporteur Université de Paris Ouest Nanterre

Matthieu CORD Examinateur UPMC Paris 6

Luc BOUGANIM Examinateur INRIA Paris-Rocquencourt

Pierre SENELLART Examinateur Télécom ParisTech

Stéphane GANÇARSKI Directeur de thèse UPMC Paris 6

ii

�Satisfaction lies in the e�ort, not in the attainment, full e�ort is full victory.�

Mahatma Gandhi

�La utopía está en el horizonte. Camino dos pasos, ella se aleja dos pasos y el horizonte

se corre diez pasos más allá. ¾Entonces para que sirve la utopía? Para eso, sirve para

caminar.�

Eduardo Galeano

iii

Abstract

Web pages are becoming more complex than ever, as they are generated by Content

Management Systems (CMS). Thus, analyzing them, i.e. automatically identifying and

classifying di�erent elements from Web pages, such as main content, menus, among oth-

ers, becomes di�cult. A solution to this issue is provided by Web page segmentation

which refers to the process of dividing a Web page into visually and semantically coherent

segments called blocks. The quality of a Web page segmenter is measured by its cor-

rectness and its genericity, i.e. the variety of Web page types it is able to segment. Our

research focuses on enhancing this quality and measuring it in a fair and accurate way.

We �rst propose a conceptual model for segmentation, as well as Block-o-Matic (BoM),

our Web page segmenter. We propose an evaluation model that takes the content as

well as the geometry of blocks into account in order to measure the correctness of a seg-

mentation algorithm according to a prede�ned ground truth. The quality of four state

of the art algorithms is experimentally tested on four types of pages. Our evaluation

framework allows testing any segmenter, i.e. measuring their quality. The results show

that BoM presents the best performance among the four segmentation algorithms tested,

and also that the performance of segmenters depends on the type of page to segment.

We present two applications of BoM. Pagelyzer uses BoM for comparing two Web pages

versions and decides if they are similar or not. It is the main contribution of our team to

the European project Scape (FP7-IP). We also developed a migration tool of Web pages

from HTML4 format to HTML5 format in the context of Web archives.

Keywords: Web page segmentation, Web applications, Evaluation, Web page analysis

Résumé

Les pages web sont devenues plus complexes que jamais, principalement parce qu'elles

sont générées par des systèmes de gestion de contenu (CMS). Il est donc di�cile de

les analyser, c'est-à-dire d'identi�er et classi�er automatiquement les di�érents éléments

qui les composent. La segmentation de pages web est une des solutions à ce problème.

Elle consiste à décomposer une page web en segments, visuellement et sémantiquement

cohérents, appelés blocs. La qualité d'une segmentation est mesurée par sa correction et

sa généricité, c'est-à-dire sa capacité à traiter des pages web de di�érents types. Notre

recherche se concentre sur l'amélioration de la segmentation et sur une mesure �able

et équitable de la qualité des segmenteurs. Nous proposons un modèle pour la seg-

mentation ainsi que notre segmenteur Block-o-Matic (BoM). Nous dé�nissons un mod-

èle d'évaluation qui prend en compte le contenu ainsi que la géométrie des blocs pour

mesurer la correction d'un segmenteur par rapport à une vérité de terrain. Ce modèle est

générique, il permet de tester tout algorithme de segmentation et observer ses perform-

ances sur di�érents types de page. Nous l'avons testé sur quatre segmenteurs et quatre

types de pages. Les résultats montrent que BOM surpasse ses concurrents en général

et que la performance relative d'un segmenteur dépend du type de page. En�n, nous

présentons deux applications développées au dessus de BOM. Pagelyzer compare deux

versions de pages web et décide si elles sont similaires ou pas. C'est la principale contri-

bution de notre équipe au projet européen Scape (FP7-IP). Nous avons aussi développé

un outil de migration de pages HTML4 vers le nouveau format HTML5.

Mots clés : segmentation des pages Web, applications Web, Evaluation, l'analyse des

pages Web

Acknowledgements

How can I describe my journey known as PhD? Let's say: a plethora of emotions and

cacophony of situations that have made me a stronger and wiser person. It has been,

certainly, the most important accomplishment of my professional life. What a rush!, it

was full of science, knowledge, friendship, culture, love and solidarity. All these years

have been shared with many wonderful people that I would like to thank.

I would like to express my gratitude and appreciations to my supervisor. Stéphane

Gançarski, who is the person who believed in me, encouraged me, and advised while I

was going though di�cult moments. Thanks for always teaching me giving the example,

your scienti�c rigor, your commitment, your humanity and solidarity.

Special thanks for Stéphane Gançarski and Ahlem Abbaci who struggled to �nd grants

funding my work. I am really grateful.

I thanks Elisabeth Murisasco, Marta Rukoz, Pierre Senellart, Luc Bougamin, Matthieu

Cord for accepting to be part of my PhD jury.

Thanks also to Stéphane Gançarski, Matthieu Cord and Zeynep Pelhivan working with

you in the EU project was a wonderful time.

Thanks to the Université Pierre et Marie Curie (UPMC), the Laboratoire d'Informatique

de Paris 6 (LIP6) and all their members and authorities.

Anne Doucet, has been a pillar for us during these years. Her advice and support were

invaluable and crucial for us. We will be always grateful of that.

It is a great privilege to spend these years in the Database group at LIP6, everybody

will always remain dear to me. You are, no doubt about it, the coolest team. My special

thanks for Bernd Amann, Hubert Naacke, Mohamed-Amine Baazizi, Camélia Constantin

and Benjamin Piwowarski. To current and past PhD students Miriam, Roxana, Zeynep,

Clément, Yifan, Kun, Ndiouma, Ibrahima, and especially my fellow o�ce-mates Jordi

and Nelly. Nelly thank for your friendship, support and advice, I am really grateful.

I would like to thanks Claudia Leon for her advice and friendship, and her encouragement

to come to France for my PhD. Thanks to Eugenio Scalise for his advice in the beginnings

of my PhD. I thanks the Universidad Central de Venezuela (UCV), its members and

authorities.

ix

I thank Martine Movosine for helping me and my family in our adaptation to the Parisian

life.

I wish to thank my parents. You have been a role model for each one of us. Always

caring for us, teaching us, encouraging us to be better persons, the family values and the

commitment. Thanks for being the coolest parents ever!

To my dear wife Carolina Sierraalta, my soul mate, my friend, my �media naranja�, this

achievement is also yours. I know these three years has been tough, but we demonstrate

that our love is more powerful that anything. There are more things to come in our

future but the key is to keep confronting them together as a team. Thanks to my

children, Fernando and Mariana, for your patience, love and been the coolest kids!

Andrés

Contents

Abstract v

Acknowledgements ix

Contents xi

List of Figures xv

List of Tables xvii

1 Web Page Segmentation and Evaluation 7

1.1 Preliminars . 8

1.1.1 Web applications . 8

1.1.2 Rendering . 8

1.1.3 Rendered DOM . 9

1.1.4 Element positioning . 9

1.2 Web Page Characteristics . 10

1.2.1 Web page characteristics from the rendered DOM 10

1.2.2 Characteristics related to the website 11

1.2.3 Glossary . 12

1.3 Web page segmentation . 13

1.3.1 Concepts . 14

1.3.2 Notation . 15

1.3.3 Top-down versus bottom-up . 16

1.3.4 Basic Approaches . 18

1.3.5 Hybrids Approaches . 21

1.3.6 Conclusion on Web page segmentation algorithms 26

1.3.7 Document processing and Web page segmentation 26

1.3.8 Summary Table . 28

1.3.9 Discussion . 28

1.4 Segmentation evaluation . 29

1.4.1 Classi�cation of evaluation methods 29

1.4.2 Segmentation correctness evaluation 31

1.4.3 Correctness measures in scanned document segmentation 32

1.4.4 State of the art on evaluating Web page segmentation 33

xi

Contents xii

1.4.5 Summary table . 35

1.4.6 Discussion . 35

2 Block-o-Matic (BoM): a New Web Page Segmenter 37

2.1 Preliminars . 37

2.2 Overview . 39

2.3 Fine-grained segmentation construction 40

2.4 Composite block and �ow detection . 42

2.5 Merging blocks . 45

2.6 Discussion . 47

3 Segmentation evaluation model 49

3.1 Model adaptation . 50

3.2 Representation of segmentation . 50

3.2.1 Absolute representation of a segmentation 51

3.2.2 Normalized Segmentation Representation 51

3.2.3 Block importance . 52

3.3 Representation of the evaluation . 53

3.3.1 Measuring text coverage . 54

3.3.2 Measuring block correspondence 54

3.4 Example . 57

3.4.1 Computing the importance . 58

3.4.2 Computing text coverage . 58

3.4.3 Computing block correspondence 59

3.5 Discussion . 61

4 Experimentation 63

4.1 Overview . 63

4.2 Block descriptors . 64

4.3 Tested segmentation algorithms . 64

4.3.1 BF (BlockFusion) . 65

4.3.2 BoM (Block-o-Matic) . 66

4.3.3 VIPS (Vision-based Web Page Segmentation) 66

4.3.4 jVIPS (Java VIPS) . 67

4.3.5 Summary . 68

4.4 Dataset construction . 68

4.4.1 Dataset organization . 69

4.4.2 Ground truth construction . 70

4.5 Experiments and results . 72

4.5.1 Setting the stop condition parameters 72

4.5.2 Setting the thresholds . 73

4.5.3 Computing block correspondence 73

4.5.4 Computing text coverage . 76

4.6 Discussion . 77

5 Applications 79

5.1 Pagelyzer . 79

5.1.1 How does it work? . 80

Contents xiii

5.1.2 Implementation . 81

5.1.3 Practical application . 83

5.1.4 Perspectives and outlook . 84

5.2 Block-based migration of HTML4 standard to HTML5 standard 85

5.2.1 Introduction . 85

5.2.2 Proposed solution . 87

5.2.3 Experiments . 87

5.2.4 Results . 92

5.2.5 Perspectives and outlook . 94

A HTML5 Content Categories 99

B Semantic HTML5 elements 103

C Web page segmentation evaluation metrics 105

C.1 Adjusted Rand Index . 105

C.2 Normalized Mutual Information . 106

C.3 Dunn Index . 106

C.4 Nested Earth Mover's Distance . 107

C.5 Precision, Recall and F1 score . 107

D Web Segmentation approaches details 109

D.1 Text-based . 109

D.2 Vision-based . 111

Bibliography 115

List of Figures

1 Example segmentation with poor precision 2

2 Example segmenter not generic . 3

1.1 Top-Down Segmentation strategy used in VIPS algorithm 17

1.2 Bottom-up segmentation strategy used in Gomory-HuPS algorithm 18

2.1 Segmentation model example . 40

2.2 Block detection based on content categories 41

2.3 Web page segmentation example showing the DOM based �ow and BoM
block �ow . 44

2.4 HTML5 content models. Source: http://www.w3.org 46

2.5 Merging blocks and labeling . 46

3.1 (a) Ground-truth segmentation. (b) Computed segmentation. (c) BCG. . 57

3.2 Normalized segmentations for ND=100 for an example web page 58

3.3 Grid for determining the importance on segmentation G of the example
page . 59

3.4 BCG for the four tested segmentations with tr = 0.1 61

4.1 Dataset architecture . 69

4.2 Screenshot of the MoB tool . 71

4.3 Average Cq score by categories for table 4.6 75

4.4 Average ICq score by categories for table 4.7 76

5.1 Change detection example in two Web page versions 80

5.2 Change detection �ow for image, structure and hybrid comparison types
in the prototype version . 82

5.3 Change detection �ow for image, structure and hybrid comparison types
in the �nal release . 83

5.4 Benchmarking results for Web QA . 84

5.5 Labels for the manual and computed segmentation 87

5.6 Precision and recall for the MIG collection 93

D.1 Text-based approach example on a web page. Source: [KN08] 111

xv

http://www.w3.org

List of Tables

1.1 Summary table for Web page segmentation algorithms in the state of the
art . 28

1.2 Summary table on Web page segmentation evaluation 35

3.1 Computed and average importance values with ti = 0.3 58

3.2 Text coverage for segmentations in the example 59

3.3 Block correspondence measures to segmentations in Figure 3.2 with tr = 0.1 60

3.4 Block correspondence measures (with importance) 60

4.1 Segmentation algorithms been evaluated 68

4.2 Segmentation algorithms parameters . 72

4.3 Segmentation evaluation parameters . 73

4.4 Correspondence metrics for the global collection with tr = 0.1 and tt = 1 . 73

4.5 Correspondence metrics with importance for the global collection with
tr = 0.1, tt = 1 and ti = 0.1 . 74

4.6 Cq average values by categories for the global collection with tr = 0.1 and
tt = 1 . 75

4.7 ICq average values by categories for the global collection with tr = 0.1,
tt = 1 and ti = 0.1 . 75

4.8 Text coverage values for each algorithm 77

5.1 MIG5 pages by categories . 88

5.2 Average values for correct, expected labels and error for the MIG5 collection 92

5.3 Correspondence metrics for the MIG5 collection with tr = 0.1 and tt = 1 . 93

A.1 HTML5 content categories. 99

B.1 HTML5 semantic elements . 103

xvii

A mis queridos hijos Fernando y Mariana

xix

Introduction

The main focus of this PhD thesis is to study the Web page segmentation and its cor-

rectness evaluation. In this section, we describe our motivations and the research issues.

At the end of the chapter, we present its overall organization.

Web pages are becoming more complex than ever, as they are usually not designed

manually but generated by Content Management Systems (CMS). Thus, analyzing them

automatically (i.e. identifying and classifying di�erent elements from Web pages, such

as main content, menus, user comments, advertising among others), becomes di�cult.

A solution to this issue is provided by Web page segmentation. Web page segmentation

refers to the process of dividing a Web page into visually and semantically coherent

segments called blocks.

Detecting blocks in a Web page is a crucial step for many applications, such as mobile

applications, information retrieval, Web archiving, among others. For instance, in the

context of Web archiving, segmentation can be used to extract interesting parts to be

stored. By giving relative weights to blocks according to their importance, it also allows

the detection of relevant changes (changes in important blocks) from distinct versions of

a page. This is useful for crawling optimization, as it allows tuning of crawlers so that

they will revisit pages with important changes more often [BSG11]. It also helps con-

trolling curation actions such as migrating a Web archive from ARC to WARC format, by

comparing the page version before and after the action. If the segmentation of the after-

version is equal to the before-version, then there is a high probability that the action is

performed correctly. Mobile applications use segmentation to optimize the visualization

of a Web page in small screen devices [CXMZ05]. For instance, mobile devices use the

zooming technique to show details of a Web page to the user. This technique is time

consuming and the time response is high. Using the segmentation, instead of zooming

the device presents to the user relevant blocks found in the segmentation, decreasing the

response time and user experience. Web archives can exploit the Web page segmenta-

tion for migrating from one format to another. For instance migrating Web pages from

1

Introduction 2

HTML4 to HTML5 format in order to reduce the dependency of emulation.

One of the main issues in Web page segmentation are the precision and genericity. A

segmentation is precise if its granularity is equal (or very close) to the granularity of

an ideal segmentation. A segmentation is generic if it performs well on (almost) all the

di�erent types of Web pages. The granularity of a segmentation represents to which

extent a segmentation divides a Web page into blocks.

Figure 1 shows an example of a segmentation which is not precise. The ideal segmentation

(at left) shows that the Web page should be divided in six blocks: block 1 the header,

block 2 the title and identi�cation of the author, block 3 the social media, block 4 the

main article, block 5 the related links and 6 the footer. The computed segmentation (at

right)1 has four blocks, two of them, blocks 1 and 4 being equals to the ones of the ideal

segmentation. The computed segmentation has merged the title and social media blocks,

and the main article with the related links. Applications that depend on segmentation

will not have precise information since, for example, the title of the page is mixed with

noisy social media and the main article is associated with links that are not relevant to

the content.

Figure 1: Example segmentation with poor precision

1VIPS algorithm is used to obtain the computed segmentation

Introduction 3

Figure 2 shows two segmentations using the same segmenter2 in two di�erent types

of pages. The Web page at the left is a forum segmented with high precision. The

segmenter is able to �nd all the elements relevant in a forum: header, question post,

global announcements, all the replies and the footer. At the right of the �gure a blog

page is segmented with poor precision, using the same segmenter. The header and

the footer are correctly detected but the navigation, the main content and the related

information are merged into one big blog. This is an example of a segmenter which is

not generic, because it is precise only for certain type of pages.

Figure 2: Example segmenter not generic

Most of existing segmenters pretend to emulate the user perspective by the means of

heuristic rules. Even formal approaches relies on these rules to �nd blocks. State of the

art algorithms are devoted to particular application needs and have customized heuristic

rules to �nd blocks. As a consequence there is a risk that they do not process properly all

the elements in the content of a Web page. This leads to lack of precision and genericity.

In order to solve these issues we developed Block-o-Matic (BoM), a new segmenter which

takes these two characteristics, precision and genericity, into account. We designed the

algorithm using the bottom-up strategy and following the vision-based approach. We

base our work on the W3C set of heuristic rules inherent for Web pages, particularly

using the W3C standard content categories. Using these rules for detecting and classi-

fying blocks gives genericity to our approach. To give a solution to the precision issue,

blocks are merged considering their size, their position and their label. They are �nally

organized in composite blocks (which de�ne the layout of the page). Intuitively, this

approach result in a more precise and generic segmentation. However, intuition it is not

2JVIPS algorithm is used to obtain both segmentations

Introduction 4

enough. We need to perform an evaluation which allows us measuring these two aspects

of the BoM algorithm.

When studying the literature about Web page segmentation, we noticed that there is no

full comparative evaluation of Web page segmentation algorithms. This is due to a wide

diversity of goals, a lack of a common dataset, and the lack of meaningful quantitative

evaluation schemes. Thus, we decided to de�ne common measures for better evaluating

the correctness of Web page segmentation algorithms.

Di�erent interpretations of correctness can be used with respect to segmentation. As

de�ned in the literature, the correctness of an algorithm is asserted when it complies

with a given speci�cation. In the case of Web page segmentation, such a speci�cation

cannot be established a priori, without a human judgment. Thus, we focus on evaluation

approaches based on a ground truth and developed a framework that includes correctness

metrics, an aggregated score and a tool that eases the manual design of a ground truth

by assessors.

We check if the ground truth matches with the computed segmentation given a vector of

metrics. These metrics are devoted to measure to what extent the segmentation di�ers

from the ideal segmentation. In the evaluation we consider the content and the blocks

rectangles given by segmenters. We built a dataset of 125 Web pages organized into

�ve type of pages. The pages were segmented by assessors and we tested four state of

the art Web page segmentation algorithms. The implementations of these algorithms

were adapted in order to �t into our evaluation framework. This approach to Web page

segmentation evaluation allows us measuring segmenters quality and giving observations

in terms of precision and genericity.

When exploring the connex domain of scanned document image segmentation, we found

that there are common problems in the segmentation and evaluation of Web pages and

scanned pages segmentation algorithms. These methods can not be used in a straight-

forward way with Web pages, however they gave us ideas and inspiration. Adapting this

methods to Web pages is challenging, since both document types are di�erent.

Our contribution consists in Block-o-Matic (BoM), a new approach to Web page seg-

mentation as well as a framework for its evaluation and two applications of BoM. We

give below a summary of those contributions, indicating the chapters where the details

can be found.

Introduction 5

Contribution 1 - Block-o-Matic We propose an original Web page segmentation

model based on the heuristic rules found in the W3C standard speci�cation. This con-

tribution allows solving the issues of precision and genericity in Web page segmentation.

It is presented in detail in Chapter 2.

Contribution 2 - Segmentation evaluation We propose an evaluation model that

exploits the content as well as the geometry of blocks in order to measure the correctness

of a segmentation algorithm according to a prede�ned ground truth. This contribution

is studied in detail in Chapter 3. The correctness of four state of the art algorithms

(including BoM) is experimentally tested on four types of pages (blog, enterprise, forum,

picture and wiki). We give the results and discuss them in chapter 4.

Contribution 3 - Applications We present two applications of the Block-o-Matic

Web page segmentation algorithm. We present an application, Pagelyzer, that uses BoM

for comparing two Web pages versions and decides if they are similar or not. Pagelyzer

is a tool developed in the context of the European project SCAPE. We present the use

of BoM for the migration of Web pages from HTML4 format to HTML5 format in the

context of Web archives. This is useful as this relieves archivist of keeping old HTML4

rendering engines. These two applications are presented in detail in Chapter 5.

This thesis is organized in 5 chapters. Chapter 1 presents the state of the art in Web

page segmentation and its evaluation. Chapter 2 presents Block-o-Matic, a new Web

page segmentation algorithm. Chapter 3 presents the evaluation model. Chapter 4

presents the evaluation results. Chapter 5 presents the applications. We conclude with

a contribution summary and the outlook which presents some possible future works.

Chapter 1

Web Page Segmentation and

Evaluation

In this chapter we present the state of the art in Web page segmentation and its eval-

uation. Web page segmentation consists in identifying and categorizing the regions (or

blocks) of interest in a Web page. The Web page segmentation is divided into two main

areas: detection and labeling of the di�erent blocks, and the classi�cation of the logical

role they play inside the Web page (header, footer, navigation, etc.). Web pages are

analyzed in a similar way as scanned documents in the optical character recognition

(OCR) domain though both sources are di�erent (elements/text vs. pixel/colors). We

took advantage of this similarity in our work.

We describe in this chapter the Web page characteristics (1.2), the Web page segmenta-

tion (1.3) and its evaluation (1.4). The Web page characteristics describe useful elements

that are taken into account when analyzing a Web page. We present how Web page seg-

mentation algorithms �nd blocks in the page based on those characteristics. Algorithms

can follow two main approaches: basic or hybrid. They can also be designed using the

top-down or bottom-up strategies. We also give an introduction to the evaluation of Web

page segmentation algorithms: state of the art, evaluation features, and a classi�cation

of evaluation methods.

7

Chapter 1. Web Page Segmentation and Evaluation 8

1.1 Preliminars

In this section we describe the Web applications in terms of their structure and their

rendering. These concepts are crucial to understand the Web page analysis. First, we

describe what is a Web application, how it is structured (1.1.1). Second, we present an

overview about the rendering of a Web page (1.1.2). Finally, we give details about the

rendered DOM version of a Web page (1.1.3 and 1.1.4).

1.1.1 Web applications

A Web application is an application that runs in a Web browser. It is developed using

Web technologies such as JavaScript, Hypertext Markup Language (HTML) and Cascad-

ing Style Sheets (CSS). It relies on a Web browser to render the application.

Web applications are structured with the n-tiers architectural style [Con02]. The most

common structure is the 3-tier application. The �rst tier is the Web browser (Firefox,

Google Chrome, etc). The second, or middle-tier, is an engine using some Web content

technology (PHP, Rails, etc.). The third tier is data storage (databases, documents, etc).

The Web browser sends a request to the middle tier, which runs the queries, possibly

updates the data sources and generates a Web page.

Web applications may use more complex structures. However as the Web page segment-

ation occurs commonly in the Web browser, the way a Web page is build is not relevant

for our work and we focus on the �rst tier only.

1.1.2 Rendering

An HTML document contains instructions for the browser on how the Web page has to

be presented to the user.

In order to materialize the Web page, a browser needs to download Web contents from

one or several websites. As we mentioned above, content can be HTML code, JavaScript

scripts, CSS styles, among others. The role of the rendering engine then is to display the

formatted content to user.

Chapter 1. Web Page Segmentation and Evaluation 9

Besides the formatted content, the rendering engine produces a Document Object Model1

(DOM) tree of the page. It is an interface that allows programs and scripts to dynamically

access and update the content, structure and style of a rendered page.

An image of the formatted content can be obtained from the rendered DOM. This image

is called rendered image or screenshot.

1.1.3 Rendered DOM

When the rendering is done, a Web page can be build based on the produced DOM tree.

This document includes all content, updates and styles processed in the rendering process.

We call this document Rendered DOM [Goo02]. At this point, the original HTML

document and the rendered DOM of the same page are not identical. The rendered one

is the HTML source code of the formatted content, while (obviously) the original HTML

document only contains the original HTML source code.

Thus, our work is based on this rendered DOM. Building it produces an overhead and

thus increases the analysis response time, but the analysis of a Web page is more complete

and accurate.

1.1.4 Element positioning

While constructing the rendered DOM, the engine determines the position of elements

based on their style properties. An element that is not a text element, determines its own

width and that of its children. Children must �t inside the parent box. In some cases,

this rule can be broken by positioning elements such as div in absolute (or static) way.

As a consequence, the order of elements in the DOM tree does not correspond to the

order of the formatted content when displayed. In other words, a child can be rendered

out of the parent box. That can lead to errors in the segmentation because the content

that a block is supposed to cover (or part of it), is rendered in a di�erent region of the

page.

1http://www.w3.org/DOM

Chapter 1. Web Page Segmentation and Evaluation 10

1.2 Web Page Characteristics

In this section we describe the Web pages characteristics. These characteristics are key

elements for Web page segmentation algorithms. They are related to the rendering (1.2.1)

or to websites (1.2.2). A glossary of terms is presented at the end of the section (1.2.3).

1.2.1 Web page characteristics from the rendered DOM

Web pages are speci�ed by an HTML document (source code), the associated Cascading

Style Sheets (CSS) and embedded JavaScript scripts. The rendered DOM W of a Web

page is obtained by a rendering engine (e.g. WebKit and Gecko) processing the speci�c-

ation (cf. 1.1.2). The characteristics of W are: the content, the visual presentation and

the positioning scheme. The visual presentation and positioning scheme are described in

detail in [CYWM04].

1.2.1.1 Content

An element is an object in the rendered DOM of a Web page. It always has an element

name and may also have attributes, child elements and text. The content of a Web

page is the root of the rendered DOM tree (W.root) and the text (W.text). W.text

is the result of concatenating all the text of the descendant of W.root. The CDATA

sections (textual part of a document that is not parsed) are not considered. Usually

these sections include, for instance JavaScript code or other information not directly

related to the textual content of the page.

According to the HTML5 speci�cation, each element belongs to a content category, or

simply category. For instance, an element either belongs to the �ow content or phras-

ing content (block-level category and inline-level category respectively in HTML 4.01

speci�cation). Appendix A list all the elements, content categories and the exceptions.

A category describes how the element is rendered, how it should be processed and the

type of content it can have. For instance, the element <article> belongs to the category

sectioning content. That makes it not visible in the formatted content (cf. Section

1.1.2) but it organizes the content. Now consider, an element <p> of the �ow content

category. Its rendering a�ects the formatted content by reserving some space for itself

Chapter 1. Web Page Segmentation and Evaluation 11

and its children elements (cf. Section 1.1.4). Elements belonging to sectioning content

are interpreted as blocks explicitly coded by the Web developer.

1.2.1.2 Visual Presentation

To facilitate browsing and attract attention, Web pages usually contain much visual

information in the HTML tags and attributes [YZ01]. The visual presentation is the

visual style of elements (visual cues). Typical visual cues include lines, blank areas,

colors, pictures, fonts, etc. Visual cues are very helpful to detect the segments in Web

pages. Usually, they are good candidates to be borders of blocks. Visual cues are related

to the CSS styles used in elements.

1.2.1.3 Positioning Scheme

Each element in the rendering of a Web page can be related with other elements from

up to four directions (up, down, left and right) and may contain (be contained in) some

other ones.

At rendering time, each element is materialized as a rectangular box 2 following the rules

de�ned in the Visual Formating Model 3. Block-level elements are containers for other

elements. From these two models we enumerate three concepts that helps to de�ne the

geometric characteristics of a Web page:

• Viewport : the rectangle associated with the body element which works as initial

container.

• Box : the rectangle corresponding to an element.

• Scheme: describe how boxes of a viewport are located with respect to each other.

1.2.2 Characteristics related to the website

A website has a function as a whole. Each page makes a contribution (blog, forum, etc.)

to this function. This implies that the page has to cover certain functionalities, such

2http://www.w3.org/TR/CSS2/box.html
3http://www.w3.org/TR/CSS2/visuren.html

Chapter 1. Web Page Segmentation and Evaluation 12

as the type of navigation used, or the type of layout according to that function. There

are several tools that help developers reaching the expected goal of a website, mainly:

templates and Content Management Systems (CMS).

A template is a pre-designed Web page, or set of Web pages, that anyone can modify/�ll

with its own content and images to setup a website. Templates allow to setup a website

making sure that it has all the functionalities required by its function. A CMS is a Web

application that allows editing and publishing website content from a central interface like

a Web browser. Its setup can be more complex than a template but it has the advantage

of being dynamic and a variety of templates can by applied to the same content.

Whatever the site type (template-based or CMS-based), we agree with [FdMdS+11] that

there are three important characteristics related to websites in the context of Web page

segmentation, we enumerate them:

• Function: is the purpose or objective of the website (i.e. a blog, a forum, ...)

• Template elements. Elements of a Web page that are present in other pages of the

same website. All of them together form the layout of the page.

• Label represent the role of these elements in the website. For instance, navigation

bars, copyrights, main content and advertisements.

The template elements are important to the segmentation since usually these elements

are used for organizing content, therefore it is highly probable that it organize smaller

blocks as well.

1.2.3 Glossary

The table below presents the terms described in this section and used along the whole

document.

Chapter 1. Web Page Segmentation and Evaluation 13

Term Description

Elements The objects in the rendered DOM W .

W.root The root element of the rendered DOM.

W.text The result of concatenating all the text of the descendant

elements of W.root

Category The content category of elements in the Web page. For ex-

ample, �ow content, phrasing content, sectioning content,

etc. Appendix A has a complete description of HTML5 con-

tent categories, elements and their exceptions.

Visual cues Formatting properties of elements obtained at rendering

time. For instance: lines, blank areas, colors, pictures, fonts,

etc

Box How the element's rectangle shape is to be drawn and how

its size is computed

Viewport De�ne the size of the body element which works as initial

container

Function The website goal. For instance: blog, wiki, etc.

Scheme De�nes how a box's coordinates are computed with respect

to another container box.

Template elements Elements of a Web page that are repeated in several pages

of the same website.

1.3 Web page segmentation

The segmentation of a Web page into meaningful components has emerged as an import-

ant Web document analysis task, since it supports many important applications.

Web page segmentation refers to the process of dividing a Web page into visually and

semantically coherent segments called blocks. Detecting these di�erent blocks is a cru-

cial step for many applications, such as mobile devices [XTL08], information retrieval

[CYWM03], Web archiving [SG10], Web accessibility [MBR07], evaluating visual quality

(aesthetics) [WCLH11], among others. In the context of Web archiving, segmentation

can be used to extract interesting parts to be stored. By giving relative weights to blocks

according to their importance, it also allows for detecting important changes (changes in

important blocks) between pages versions [PBSG10]. This is useful for crawling optimiz-

ation, as it permits tuning crawlers so that they will revisit pages with important changes

Chapter 1. Web Page Segmentation and Evaluation 14

more often [SG10]. It also helps for controlling preservation actions, by comparing the

page version before and after the action.

We �rst de�ne the concepts and notation (1.3.1 and 1.3.2), the Web page segmentation

approaches (1.3.4 and 1.3.5), the relationship between document processing and Web

page segmentation (1.3.7), a summary table of segmentations algorithms (1.3.8). Then

we end with a discussion (1.3.9).

1.3.1 Concepts

Inspired by the concepts presented by Tang [TS94] and Nie [NWM09], we describe the

Web page segmentation with the following abstractions:

• Page is a special block that represents the whole Web page and covers the whole

Viewport.

• Simple block is an element or a group of elements. It is also denoted simply as

Block. It is represented as a rectangular area resulting of merging the boxes of

elements. Each block has a label related with those of the underlying elements. It

is also associated with the text of those elements.

• Composite block is a special block that can contain other blocks. Usually such

blocks correspond to template elements.

• Block graph is a connected planar graph representing the blocks and their rela-

tionships (e.g. parent/child). It can be an edge-weighted graph (each edge has a

weight), or a vertex-weighted graph (each vertex has been assigned a weight). A

weight associated with a vertex usually represents how coherent a blocks is, while

a weight associated with an edge usually represents the cost of merging two blocks,

distance or similarity between blocks.

• Geometric model represents the set of blocks as a set of rectangles in a plane.

They are obtained from the scheme of the Web page. All rectangles are modeled

as quadruples (x,y,w,h), where x and y are the coordinates of the origin point and

w and h are the width and height of the rectangle. Blocks can be represented in the

plane as a hierarchy or a set of non-overlapping rectangles, called Manhattan layout

[TS94]. It can be hierarchical [CYWM03] or non-hierarchical [CKP08, KN08]. The

latter can be obtained from the former by only considering the leaves.

Chapter 1. Web Page Segmentation and Evaluation 15

• Stop condition is a prede�ned value (real number) used by algorithms that indicates

when a segmentation is achieved. It its based on the edge/vertex weights of the

block graph. An algorithm may have one or more stop conditions.

• Label is the role that a block plays in the Web page such as navigation, content,

header, footer, etc.

1.3.2 Notation

We present in this section several de�nitions, in order to have an uniform presentation of

Web page segmentations algorithms: all Web page segmentations algorithms presented

in the chapters 2, 3, 4 and 5 are described using this notation.

1.3.2.1 The segmentation function

The segmentation function Φ is described as follows:

ΦA (W, SC) −→
(
W ′A, GMA

)
(1.1)

where A is a Web page segmentation algorithm, W is the rendered DOM of a Web page,

SC is a set of stop conditions. W ′A is the block graph de�ned just below and GMA is a

set of rectangles representing the geometric model of the segmentation.

1.3.2.2 The block graph

The block graph is de�ned as a planar graph W ′A = (Blocks,Edges). Each vertex B

in Blocks corresponds to a rectangle in GMA (denoted B.rect) and a label (denoted

B.label). It is associated with a function weight on the edges and vertices, and two

subset of vertices: SimpleBlocks ⊂ Blocks (also called terminals), CompositeBlocks ⊂
Blocks, which includes a special vertex Page, labeled as the root of the graph.

The rectangle of the vertex Page covers the whole viewport of the Web page W and all

the blocks �t in. Thus,

∀B ∈ Blocks, B.rect ⊆ Page.rect

Chapter 1. Web Page Segmentation and Evaluation 16

The weight of a vertex B is noted as B.weight. The weight of an edge E is noted as

E.weight

Usually the block graph is a tree. However, some algorithms such as Homory-HuPS

[LLT11] and GraphBased [CKP08] de�ne it as a general planar graph.

In the following section we describe the di�erent strategies used to design Web page

segmentation algorithms: top-down and bottom-up.

1.3.3 Top-down versus bottom-up

There are mainly two kinds of strategies: top-down page segmentation and bottom-up

page segmentation. Each strategy guides the blocks extraction, and de�nes the way the

rendered DOM tree is traversed. These strategies are brie�y described in [AC11].

1.3.3.1 Top-down strategies

Top-down strategies start with the complete Web page as a block (Page) and partition

this block iteratively into smaller blocks using di�erent features of the content of the

Web page.

A good example of a top-down algorithm is the VIPS algorithm [CYWM03], detailed in

Section 1.3.5.1. It describes the block graph as a vertex-weighted tree. The algorithm

assigns to each block a weight value (Degree of Coherence or DoC), between 1 and

10, indicating how coherent blocks are. The algorithm de�nes the stop condition as

the Permitted Degree of Coherence (PDoC) that is established a priori and is used as

parameter. The algorithm stops if DoC > PDoC.

The example of Figure 1.1 has a PDoC value of 5. The Web page is �rst divided into

three big blocks (blocks 1,2 and 3) and the block graph is set accordingly. Figure 1.1a

shows the weight values assigned to each block .

For block 2, the same segmentation process is carried out recursively until we get blocks

where the value of DoC is less than PDoC. As a consequence, block 2 becomes a composite

block, and it is divided in 5 sub-blocks (blocks 2.1 to 2.5). Blocks 1 and 3 are left

untouched (Figure 1.1b). The algorithm stops because the stop condition is met, i.e. the

DoC of each block is greater than the PDoC.

Chapter 1. Web Page Segmentation and Evaluation 17

Figure 1.1: Top-Down Segmentation strategy used in VIPS algorithm

1.3.3.2 Bottom-up strategies

Bottom-up strategies start by selecting the leaf nodes in the DOM tree, which are con-

sidered as atomic units. They are aggregated with other nodes, in a iterative manner,

until the stop condition is met.

One example of this approach is the Gomory-HuPS Algorithm [LLT11]. The block graph

is represented as an edge-weighted planar graph. First the graph is constructed. Each

graph vertex (block) represents content information based on the DOM structure and

the visual information. DOM nodes are selected as blocks if they contain text, links and

pictures as children. In most of the cases these elements are leaves in the DOM tree.

Edges are added based on the location of blocks in the geometric model, i.e. an edge

is added between two blocks if they are closest neighbors. The weight of a block is the

normalized path similarity of two DOM nodes, using the edit tree distance in both paths.

This means that DOM nodes in the same subtree will get less weight than if they would

be located in a di�erent branch of the tree. Figure 1.2a shows the example Web page

and the DOM nodes selected. Figure 1.2b shows the initial block graph with its weights.

The algorithm iteratively evaluate two blocks i and j. If the weight of the edge between

these two vertex is below a parameter, both blocks are grouped. Figures 1.2c and 1.2d

show the �nal segmentation and the block graph assuming that the parameter value is

0.1.

Chapter 1. Web Page Segmentation and Evaluation 18

Figure 1.2: Bottom-up segmentation strategy used in Gomory-HuPS algorithm

1.3.4 Basic Approaches

This section presents the basic approaches for Web page segmentation: text-based (1.3.4.1),

image-based (1.3.4.3) and TagName-based (1.3.4.2). Basic approaches only take one

characteristic of Web pages into account.

Chapter 1. Web Page Segmentation and Evaluation 19

1.3.4.1 Text-based

In the �eld of text analysis, words, syllables and sentences have been widely used as

statistical measures to identify structural patterns in textual parts of Web documents.

It can be seen as a special form of segmentation [CM00]. Regular expressions have

been used to parse a Web page looking for blocks. Even if it is possible to use regular

expressions for this task, it is known that they are not the best choice, because HTML is

not a regular language. In text based approaches, the text can be extracted either from

the HTML source code of a Web page such as in [KN08] or from the rendered DOM

such as in [SSL11]. In contrast to regular expressions, the concept of text density and

link text density [SSL11, KN08] have been more accepted in the Web page segmentation

community.

Sun et el. [SSL11] work with the DOM nodes in order to �gure out the number of

characters and tags that each node contains. Then, they de�ne the Text Density of a

node as the ratio of the number of all characters to the number of all tags in a DOM

subtree. Furthermore, they de�ne the Composite Text Density as the same ratio, but

with the number of all hyperlinks characters and the number of all hyperlink tags in

the DOM subtree. The authors argue that a node with too many hyperlinks and less

text is less important, thus getting a low density value. A node that contains much

non-hyperlink text and few hyperlinks is more important, and receives a high density

value. Appendix D shows details of Sun method.

On the other hand, Kohlschuetter [KN08] de�nes the text density, based on word-

wrapping the page text at a constant line width wmax (in characters). The density of a

the block is the ratio of the number of tokens found to the number of lines in the block.

The wrapping width serves as a discriminator between sentential text (high density) and

template text (low density). The author proposes a value of wmax = 80 as optimal. The

task of detecting block-separating gaps on a Web page can be seen as �nding sibling text

portions with a signi�cant changes in the block-by-block text density. The decision of

when to merge two adjacent blocks is made by comparing them with respect to their

text densities. Kohlschuetter de�nes a threshold to determining when two blocks should

be merged. Appendix D shows more details on Kohlschuetter approach.

Text based approaches do not fully use all Web page characteristics. Therefore there are

some types of pages where those approaches fail. Using only text for segmenting a Web

page is incomplete because there are other important elements to take into account, such

as images, formatted content, among others.

Chapter 1. Web Page Segmentation and Evaluation 20

1.3.4.2 TagName-based

Although in the literature this approach is called DOM-based, the name that �ts the

best is TagName-based approach. Indeed, this approach analyses a Web page based on

its source code, i.e. the page is not rendered. In general, the blocks produced by these

methods tend to partition pages based on their pre-de�ned syntactic structure, i.e. the

HTML tags.

Several works following this approach have been published. Lin and Ho [LH02] propose a

simple partitioning method based on HTML table structures. Afterwards they compute

a content entropy to estimate the importance of each block. Li et al. [LPHL02] propose

improving Web search quality by segmenting Web pages into cohesive micro-units. The

segmentation procedure involves creating a tag tree which is similar to DOM and then

applying two heuristics to aggregate tree nodes into segments: merge headings with the

following content, and merge adjacent text paragraphs. Hattori et al. [HHMS07] combine

two di�erent methods for page segmentation. In the �rst method, a content-distance

based on the order of HTML tags is de�ned and the initial block is iteratively separated

at positions where the content-distance exceeds a dynamically estimated threshold. The

second method applies heuristic rules that are based on HTML tags. Vineel [Vin09]

de�nes a content size and an entropy value that measures the strength of local patterns

within the subtree of a node. Threshold values are de�ned for both measures to perform

page segmentation. Crivellari [CM00], descrie the DOM approach as �nding blocks can

be reduced to �nd sub-trees tagged with <TITLE>, <P>, <H1> <H3> and <META>

tags.

The advantage of this approach is that the analysis is very fast. However, looking only

at the tag names of a page may not provide enough information to segment a Web page.

The reasons lies in the following two aspects. First, the visual presentation is not taken

into consideration, so visually adjacent blocks may be far from each other in the structure

and detected wrongly. Second, tags such as <TABLE> and <DIV> are used not only

for content presentation but also for layout structuring. It is therefore di�cult to obtain

the appropriate segmentation granularity. For instance, it is sometimes not possible to

determine if a table cell <TD> holds a value or page content, if we only take its tag

name into consideration.

Chapter 1. Web Page Segmentation and Evaluation 21

1.3.4.3 Image-based

Image segmentation algorithms are applied to obtain the layout of a Web page from its

rendered image, i.e. on a snapshot of the rendered page (cf. Section 1.1.2). They do not

use neither the source code nor the rendered DOM of the Web page. Rendered images

of a Web page are di�erent from natural images in the sense that, it is easier to detect

objects in rendered images because they have sharp edges or color transitions.

This approach is motivated by the fact that the DOM does not always have direct access

to all the visible information. For example, if the page was formed using one �ash object

or is based on Java applets.

Pnueli et al. [PBSB09] propose a segmentation algorithm using edge analysis. It looks

for long edges horizontal or vertical, and then selects the rectangles that do not lie

within any other rectangle in the image. After this stage, the algorithm seeks for areas

containing information, and groups them into distinct layout elements. This process goes

recursively down until the level of individual elements, which may be text areas, images,

videos, buttons, edit boxes, etc. This approach has some di�culties to detect elements

that do not have rectangular shape, such as : radio buttons and text detectors. Once

the text areas have been detected, OCR is applied in order to obtain information about

the meaning of a layout object. For instance, a text can be a heading, a paragraph or a

hyperlink.

Cao et al. [CML10] propose a segmentation method where a Web page image is divided

into visually consentaneous sub-images by shrinking and splitting iteratively. First, the

Web page is saved as an image that is preprocessed by an edge detection algorithm such

as Canny [Sze10]. Then dividing zones are detected and the Web image is segmented

repeatedly until all blocks are indivisible.

This approach is limited as it does not access DOM information. For instance, in the

DOM it is clear when a text belongs to a heading or to a paragraph without no further

analysis.

1.3.5 Hybrids Approaches

This section presents the hybrid approaches for Web page segmentation: vision-based

(1.3.5.1), template-based (1.3.5.2), and graph-based (1.3.5.3). Hybrid approaches try to

Chapter 1. Web Page Segmentation and Evaluation 22

overpass the limitations of basic approaches, by taking into account several characteristics

at the same time. This can be seen as mixing several several approaches.

1.3.5.1 Vision-based

This approach mixes the following basic approaches and uses the following characteristics

(cf. Section 1.2):

Basic approaches Page characteristics

TagName-based visual cues
Text-based content

scheme

According to human perception, people view a Web page as a set of di�erent semantic

objects rather than a single object. Some research e�orts show that users always expect

that certain functionalities of a Web page (e.g. navigational links, advertisement bar)

appears at certain position of that page [Ber03]. Actually, when a Web page is displayed,

the spatial and visual cues can help the user to (unconsciously) divide the Web page into

several semantic parts. Therefore, it might be possible to automatically segment the

Web pages by using the spatial and visual cues. The vision-based content structure of a

page is obtained by combining the DOM structure and the visual cues.

The most known algorithm that follows this approach is VIPS, described by Cai et al. in

[CYWM03] already introduced in Section 1.3.3. They de�ne a Web page as a recursive

structure of non overlapping blocks. Using the scheme of the page a set of separators is

obtained. The Web page is �rst fragmented into several big blocks and the hierarchical

structure of this level is recorded. For each big block, the same segmentation process

is carried out recursively until we get su�ciently small blocks, i.e. blocks with a DoC

value greater than PDoC. The DoC is obtained from a set of heuristics rules. The value

depends on the children and on the text of the element under evaluation. Appendix D

gives more detail on the VIPS algorithm.

Another algorithm that follows this approach is presented in Zhang et al. [ZJKZ10].

They focus on �nding the set of nodes that are labeled as Content Row. A content row

is a set of leaf nodes of the rendered DOM tree which are horizontally aligned and are

siblings. Content rows are merged if there is an overlap between them. As a second step,

the block headers are detected. A content row is a block header except under certain

conditions. For instance if the content row contains a paragraph of text which breaks a

line or two vertically adjacent content rows share the same CSS style. The other heuristic

Chapter 1. Web Page Segmentation and Evaluation 23

rules for this algorithm can be consulted in Appendix D. Each detected block header is

a separator of two semantic blocks. A semantic block is a stack of vertically aligned

content rows. Although Zhang algorithm is very simple and e�cient (for wikis, forums

and blogs), it is not suitable for a general use. There are several Web pages where this

algorithm will fail, mainly pages designed in a not uniform way. For instance, artistic

designs where elements break the constraints of rendered positioning (cf. Section 1.1.4).

Several works following the vision-based approach have been published. Baluja's seg-

mentation system [Bal06] divides a Web page into nine segments using a decision-tree

which uses an information gain measure and geometric features. [CMZ03] proposes a

Web page analysis method based on support vector machine rules to detect parts of the

page that belongs to high level content block (header, body, footer or sidebars). For

each, it applies explicit and implicit separation detection heuristics to re�ne blocks. Vin-

eel [Vin09] de�nes a content size and an entropy value that measures the strength of local

patterns within the subtree of a node. Threshold values are de�ned for both measures

to perform page segmentation. [YS09] presents the Web page segmentation in terms of

representing how humans usually understand Web pages. It is based on the Gestalt the-

ory, a psychological theory that can explain human's visual perceptive processes. Four

basic laws, namely proximity, similarity, closure, and simplicity, are deduced from the

Gestalt theory and then implemented to simulate how human understand the layout of

Web pages. [Pop12] presents an adaptation of the VIPS algorithm using Java. It fol-

lows the same heuristics as the original algorithm. However the results are not exactly

equals because there are di�erences in the vertical separator detection. Akpinar et al.

[AY13] present a technical improvement of the VIPS algorithm, adapting it to current

Web standards and use them in the context of new applications.

The main issues with this approach is the possibility of ambiguous rules and an incom-

plete set of visual rules. For instance, this approach su�ers of the same problem as

TagName-based approaches, special rules are needed in order process all elements in

Web pages, such is the case of <TABLE>, , <P>, elements.

1.3.5.2 Template-based

This approach mixes the following approaches and uses the following characteristics (cf.

Section 1.2):

A large number of Web pages have a common template, which includes composite blocks

such as header, footer, left side bar, right side bar and a body. These content blocks

Chapter 1. Web Page Segmentation and Evaluation 24

Basic approaches Page characteristics

TagName-based visual cues
Vision-based content

scheme
template elements

typically follow certain layout design conventions which can be used to derive heuristic

rules for their classi�cation, based on the information of the rendered DOM tree. A

good example is the work of Chen et al. [CXMZ05] which consists of the following two

steps: high-level content block detection and further segmentation of content body. The

rendered DOM is traversed to classify each element as belonging to one of the prede�ned

high-level blocks category. To further identify �ner blocks within each content body,

a set of explicit and implicit separators are identi�ed. Explicit separators are HTML

elements such as <p>, <hr>, or <h1>, while implicit separators are the gaps

along the projection on the horizontal and vertical axes of blocks.

Fernandes et al. [FdMdS+11] present the segmentation from the website perspective.

They de�ne the block graph as an auxiliary tree called SOMtree, for Site Object Model,

which is the result of aggregating all the rendered DOM trees of the website to one

structure. The nodes of the SOMtree have the same attributes as the DOM elements

but with two extra attributes: a counter, with the number of pages where the element

occurs in the site and the list of pages where it occurs. For instance, if the website

has 3 pages (p1,p2 and p3), the SOM element <html> will have the counter = 3 and

pageList = {p1, p2, p3} The SOM tree is re�ned applying heuristic rules to merge those

elements, conforming blocks where they di�erence in their depth is below to a threshold

α (the stop condition).

There are some issues with the �nal segmentation. Elements tag names are not always

used accordingly to what they are de�ned for. Another issue is that a block not always

covers the content that lies in the same DOM sub-tree. This can lead to incorrect

segmentation on some pages.

This approach add large overhead to the segmentation process. If only one page has to

be segmented, the whole site need to be segmented also. Despite there exists several

scenarios where this behaviour is relevant, in the majority of the cases it is not.

Chapter 1. Web Page Segmentation and Evaluation 25

1.3.5.3 Graph-based

This approach mixes the following approaches and uses the following characteristics (cf.

Section 1.2):

Basic approaches Page characteristics

DOM-based visual cues
Text-based content

scheme

As explained above, relying on heuristic rules rise problems. To overcome those limita-

tions formal approaches have been developed for Web page segmentation. Chakrabarti

et al. [CKP08] propose an approach based on a weighted graph built over nodes of

the rendered DOM tree, where the cost of assigning pairs of DOM elements to di�erent

segments can be explicitly coded. This allows the de�nition of a global cost of a seg-

mentation, which can be minimized using well established graph clustering algorithms.

The approach is based on the following formulation. Given a rendered DOM tree, let N

be the set of nodes. A graph is constructed whose node set is N and whose edges have

a weight that represents a cost of placing the adjacent nodes in di�erent segments.

Hu et al. [HL14] de�ned two extra features to Chakrabarti's algorithm. The visual

features including the node's position, shape (aspect ratio), background color, types,

sizes, and colors of text. The content-based features capture the purpose of the content

and include the average size of sentences, the fraction of text within anchors, and tag

names. The edge weights are derived from these features using a regression function

learned from a set of manually labelled Web pages, where each DOM node is assigned a

segment ID.

Other authors have explored di�erent clustering algorithms. Liu et al. [LLT11] present

a Web page segmentation algorithm based on �nding the Gomory-Hu tree in a planar

graph. The algorithm �rst gets the rendered DOM of a Web page to construct a weighted

undirected graph, whose vertices are the leaf nodes of the DOM tree and the edges

represent the proximity relationship between vertices. Then it partitions the graph with

the Gomory-Hu tree based clustering algorithm. The task of Web page segmentation

is essentially to partition the constructed graph into groups such that the inner group

similarity is maximized while the inter group similarity is minimized. An example of

this algorithm is shown on Figure 1.2. It shows the grouping of blocks which edges in

the graph have a weight less than a parameter (0.2 in the �gure), forming seven groups

corresponding to the blocks.

Chapter 1. Web Page Segmentation and Evaluation 26

Algorithms following this approach have the advantage that they can be analytically

evaluated. However comparing them to others algorithms following other approaches is

not an easy task, as no available implementation exist.

1.3.6 Conclusion on Web page segmentation algorithms

A lot of approaches have been developed for page segmentation, most of them described in

[Yes11]. There are several approaches and interesting solutions. In general the algorithms

are designed with a given application in mind. That makes them e�cient only for some

particular application domains. The VIPS and GraphBased algorithms present a correct

approach to Web page segmentation, because the rules and logic applied are based on

some of the Web standards and characteristics intrinsic to Web pages. But, there is

a weakness in these approaches: the block detection depends heavily on tag names

(e.g. <table> and) and textual content. While heuristics rules have reasonable

limitations, formal approaches can handle a broader set of documents. However, the

graph-based approach needs test data to compute edge weights that might be expensive

in creation, and the densiometric-based approach is limited to textual contents while

images are not considered.

As seen in section 1.3.4.2, relying on tag names and textual information can lead to

unexpected results in some cases and implies de�ning special heuristics rules.

Our goal is to design a more general segmenter complying with the Web standards. Thus,

we must minimize the dependency of tag names or special heuristics rules. This may

lead to some accuracy loss for some page types, but should give better overall results.

1.3.7 Document processing and Web page segmentation

We observe that there is a clear relationship between page segmentation and the �eld

of computer vision. Segmenting and understanding scanned documents images is a very

well studied subject in the Document Processing domain [TS94, TCL+99]. In Docu-

ment Processing systems, the concepts of objects, zones or blocks are applied to de�ne

the geometric and logic structure of a document where each block is associated with a

category, its geometric information and a label. Processing a document comprises the

document analysis and understanding phases. Document images are analyzed to detect

blocks based on pixel information. Blocks are categorized, their geometric information

Chapter 1. Web Page Segmentation and Evaluation 27

is extracted and, in function of both features, a label is assigned. Moreover, by under-

standing what blocks contain (label) and where they are located (geometric model), it

is possible to merge them [FM81] and give them a reading order, or �ow [Meu05]. For

example, assume we have a title block and two paragraph blocks. The two paragraph

blocks should be merged, the title block should appear �rst, followed by the merged

paragraph block.

There are algorithms for Web page segmentation that include aspects of the Document

Processing approach. The �rst to do it is VIPS [CYWM03]. Its segmentation model

is based on the recursive geometric model proposed by Tang [TS94] for recognizing

regions in a document image. VIPS itself focuses mainly on the content and geometric

structure of a Web page. Although they do not explicitly include a logic structure,

they understand the document by extracting the blocks and by grouping them based on

separators. Kohlschütter [KN08] uses the relation between the pixel concepts with text

elements in the Web page domain. They transfer the concept of pixel to HTML text as

character data (the atomic text portion), an image region is translated to a sequence of

atomic text portions (blocks). They measure the density of each block and merge those

which are below a threshold tolerance using the BlockFusion algorithm. [NWM09] uses

segmentation, structure labeling and text segmentation and labeling to de�ne a random

�eld that leads the extraction.

The Web page segmentations algorithms presented in this section adapt methods from

the document processing domain. Actually, there is a vast knowledge in this domain

that we can exploit to de�ne new methods and techniques adapted to Web pages. We

think that adapting existing document processing methods and techniques to Web page

segmentation allow increasing the quality of the results that can be obtained from the

segmentation itself. The vision-based approach exploit this relationship, such as the

VIPS algorithm. The classi�cation and labeling of blocks are de�ned as posterior task

not included in the segmentation. In our work we also use document processing concepts

but within the bottom-up strategy (VIPS follows a top-down strategy). We are inspired

in a classi�cation method as described in [LPH01]. Every block corresponds to an item

in a prede�ned taxonomy based on the most basic categories. For scanned documents

we can cite some of them: paragraphs, title and �gures. In Web pages their equivalent

are the HTML5 content categories: phrasing, heading, embedded.

Chapter 1. Web Page Segmentation and Evaluation 28

Featured algorithm Approach Strategy Year Reference

Annotation Transcoding DOM-based Top-Down 2000 [AT00]

InfoDiscover Template-based Bottom-up 2002 [LH02]

MIU Ranking DOM-based Top-Down 2002 [LPHL02]

VIPS Vision-based Top-Down 2003 [CYWM03]

TOC-Adaptation Vision-based Top-Down 2003 [CMZ03]

DOMEntropy DOM-based Top-Down 2006 [Bal06]

Content-Distance DOM-based Top-Down 2007 [HHMS07]

Blockfusion Text-based Bottom-up 2008 [KN08]

GraphBased Graph-based Bottom-up 2009 [CKP08]

Node Entropy DOM-based Top-Down 2009 [Vin09]

E-GESTALT Vision-based Top-Down 2009 [YS09]

HPImage Image-based Top-Down 2009 [PBSB09]

Shrinking&Dividing Image-based Top-Down 2010 [CML10]

ContentRow Vision-based Top-Down 2010 [ZJKZ10]

Distance Clustering Graph-based Bottom-up 2011 [AC11]

Homory-HuPS Graph-based Bottom-Up 2011 [LLT11]

CETD DOM/Text-based Top-Down 2011 [SSL11]

SOMtree DOM-based Top-Down 2011 [FdMdS+11]

jVIPS Vision-based Top-Down 2012 [Pop12]

Improved-VIPS Vision-based Top-Down 2013 [AY13]

Block-o-Matic Vision-based Top-Down 2014 cf. Chapter 2

EVBE, EIFCE & EICTE DOM-based Top-Down 2014 [WT14]

Table 1.1: Summary table for Web page segmentation algorithms in the state of the
art

1.3.8 Summary Table

Table 1.1 presents a summary of the algorithms, classi�ed by the approach they follow,

the strategy used, the year of publication and the corresponding references.

1.3.9 Discussion

Most existing approaches are devoted to some application domains or to some page

types. Our aim is to produce a generic segmentation, without additional knowledge of

the content of the page and its context. Adapting Document Processing concepts allow

to enhance the Web page segmentation, for instance the geometry of blocks, the labels

and the reading order. Using the text content gives a more detailed segmentation for

certain domains, however what is gained in precision it is lost in genericity. A generic

segmentation algorithm should use only the characteristics related to the Web page

or website described in section 1.2 and Web content models de�ned in Web standards

instead of tag names. In chapter 2 we present a model for Web page segmentation. It is

Chapter 1. Web Page Segmentation and Evaluation 29

intended to be general and to be used as a common ground for describing segmentation

algorithms. Indeed, we would like to study and compare the segmentation algorithms

(including this one). Thus, in the following section we explore the evaluation of Web

page segmentation. Evaluating di�erent algorithms is a great challenge due to the lack

of genericity.

1.4 Segmentation evaluation

The question we address in this section is: how well do the presented approaches correctly

identify segments in nowadays Web pages? This question raises the issue of evaluating

page segmentation methods.

This section presents the di�erent methods used to evaluate segmentation algorithms

(1.4.1) and our interpretation of segmentation correctness (1.4.2). We investigated also

the connex domain of scanned page segmentation (1.4.3), since the issue of evaluating

such systems is quite similar with our problem. We present the state of the art on eval-

uating Web page segmentation (1.4.4), a summary (1.4.5), concluding with a discussion

(1.4.6).

1.4.1 Classi�cation of evaluation methods

Zhang et al. [ZFG08] present a complete classi�cation of image segmentation evaluation

methods. In this work we present an adaptation of their classi�cation to Web page

segmentation. The di�erent methods are:

1. Analytical: directly evaluates the segmentation algorithms themselves by analys-

ing their principles and properties

2. Empirical: indirectly judge the segmentation algorithms by applying them to test

data and measuring the quality of segmentation results. They can be divided into:

goodness methods and discrepancy methods:

• Goodness methods are methods where a segmentation is considered �ideal�

if it satis�es some conditions assessed by a human judgment. The latter

can be obtained from simple observation or by obtaining some features that

complements the observation. There is no need to have a priori knowledge of

the reference segmentation. The result is known as the goodness parameter.

Chapter 1. Web Page Segmentation and Evaluation 30

• Discrepancy methods are methods that compare the segmentation with a

�correct� or �ideal� segmentation. This ideal segmentation is also known as

ground truth. The author clarify that the goal of these methods is to �nd a

discrepancy parameters that allows to determine how far the two segmentation

are one from the others. A ground truth is de�ned a priori.

As there are several approaches for Web page segmentation, a natural question raised is

how to compare them?

As mentioned by Cardoso et al. [CCR05], analytical methods avoid the implementation

of algorithms and so they do not su�er from bias induced by evaluation experiments as

the empirical methods do. However, analytical methods can only be used if the models

of the two segmentation algorithms are similar, or if one can be transformed into the

other. For instance, the algorithms GraphBased and Homory-HuPS have a similar model.

Therefore they share the same type block graph and other characteristics of Web page

segmentation.

On the other hand the use of analytical methods is not so simple if we take two algorithms

with di�erent models. Consider the two algorithms, VIPS and Homory-HuPS. One

follows the vision-based approach while the other follows the graph-based approach.

The block graphs are di�erent (vertex-weighted tree vs. edge-weighted planar graph)

and the stop conditions are completely di�erent, but the geometric models are similar.

This implies that their can not be compared analytically because their characteristics

and properties are not similar.

In this work we focus on describing empirical evaluation methods. Indeed they are are

better suited for Web page segmentation. For use analytical methods a common formal

model is necessary, but with the current Web standards and technologies a formal model

is not possible since they rely on heuristics rules. Analytic evaluation is left for future

work, probably based on analytic methods found in Zhang survey on image segmentation

evaluation methods [Zha96].

In the remainder of this section we explore the Web page segmentation algorithms men-

tioned in the section 1.3.4 and section 1.3.5 and describe how authors evaluate their

algorithms. We gather all these experiences and present them in a comparative way.

Chapter 1. Web Page Segmentation and Evaluation 31

1.4.2 Segmentation correctness evaluation

Di�erent interpretations of correctness can be used with respect to segmentation. As

de�ned in the literature, the correctness of an algorithm is asserted when it complies with

a given speci�cation. The problem here is that such a speci�cation cannot be established

a priori, without a human judgment. Thus, we focus on evaluation approaches based

on a ground truth. We also investigated the correctness issue in the connex domain of

scanned page segmentation, since the issue of evaluating such systems is quite similar to

our problem.

Segmentation issues have been addressed for almost thirty years in the optical character

recognition (OCR) domain [CCMM98]. Automatic evaluation of (scanned) page seg-

mentation algorithms is a very well studied topic. Several authors have obtained good

results in performance and accuracy evaluation, as well in measuring quality assurance

[HKW99, ZG94, Bre02].

There are common problems in the evaluation of Web pages and scanned pages segment-

ation algorithms : the lack of a common dataset, a wide diversity of goals/applications,

a lack of meaningful quantitative evaluation, and inconsistencies in the use of document

models. This observation led us to closely study how segmentation is evaluated for

scanned pages.

There is a wide range of work around automatic evaluation based on a prede�ned ground

truth in the literature. Although Web pages and scanned pages are di�erent (pixels/col-

ors vs. elements/text), the way they are analyzed and the result of their segmentation are

similar. In both cases, blocks can be organized as a hierarchy or a set of non-overlapping

rectangles (Manhattan layout [TS94]).

The review that we made on Web page segmentation algorithms shows that authors

are interested in exploiting the geometric and visual aspects of the page. However, the

evaluation of the algorithms is constrained only in either the textual aspects of the content

or by using the observation. In order to have a more integral evaluation including these

three characteristics above mentioned (geometry, visual aspects and content), we need

another approach for example that of Shafait et al [SKB08]. They take into consideration

the visual and geometric aspects of a scanned document image and the content is measure

using a pixel-based representation (foreground pixels of the image are considered as the

content in the document). They measure the quality of a page segmentation by analysing

the errors in the size and position of the zone shapes (blocks).

Chapter 1. Web Page Segmentation and Evaluation 32

In the following section we describe their approach for scanned document segmentation

evaluation.

1.4.3 Correctness measures in scanned document segmentation

The evaluation of image segmentation is a very well studied area. For instance, [CCR05]

describe several metrics to measure the quality of the segmentation based in the distance

of each partition in an image segmentation. However, this method is designed for general

images not speci�cally for scanned documents. Its adaptation to Web pages is thus

not straightforward. [LPH01] measure the accuracy of a segmentation by determining

the label assigned to entities (paragraphs, title, table, etc) by an image segmentation

algorithms and their correspondence to a prede�ned taxonomy. This approach gets close

to what evaluation of Web segmentation needs, but they do not consider the content and

the geometric aspect of a scanned document as part of the evaluation. [SKB08] present a

vectorial score that identi�es the common classes of segmentation errors using a ground

truth of annotated scanned pages. We think that this approach covers all the needs of

Web page segmentation (with some adaptations and modi�cations) since they consider

the content, geometry and visual aspect of a scanned document in their evaluation model.

The correctness measures proposed by Shafait et al. [SKB08] evaluate to what extent a

set of text lines are equal to the ones of the ground truth, which ones are missing, which

lie into the bounding boxes and which ones are horizontally merged. They de�ne that a

text line is signi�cant if the amount of foreground pixels in each line is greater that two

threshold parameters, one relative and the other absolute. They build a bipartite graph

whose nodes represent the text lines in the ground truth, in one hand, and in the other

the text lines which represent the proposed segmentation. They assign a weight to the

edges of the graph according to the signi�cance of the ground truth vertices.

Based on the number of edges in the graph, seven measures are de�ned. They present

how far a proposed segmentation is from the ground truth. These metrics are:

• Total correct segmentations: the total number of one-to-one matches between the

ground-truth components and the segmentation components.

• Total oversegmentations: the total number of signi�cant edges that ground-truth

components have minus the number of ground-truth components to which at least

one signi�cant edge is incident.

Chapter 1. Web Page Segmentation and Evaluation 33

• Total undersegmentations: the total number of signi�cant edges that segmentation

components have minus the number of segmentation components to which at least

one signi�cant edge is incident.

• Oversegmented components: the number of ground-truth components having more

than one signi�cant edge.

• Undersegmented components: the number of segmentation components having

more than one signi�cant edge.

• Missed components: the number of ground-truth components that did not match

any foreground component in the proposed segmentation.

• False alarms: the number of components in the proposed segmentation that did

not match any foreground component in the ground truth segmentation.

We think that this model is well suited to Web page segmentation evaluation. As the

Web content is very di�erent from images content the rendering of both (images and

Web pages) lead to di�erent results. However with some adaptations this method is a

good candidate to evaluate segmentation algorithms. Not all the Shafait metrics are

relevant for Web page segmentation. Other metrics speci�c to Web pages are needed in

order to evaluate a Web page segmentation algorithm. These new metrics are described

in Chapter 3 as well as the adaptation of the model to Web pages.

1.4.4 State of the art on evaluating Web page segmentation

Some papers present the evaluation of their segmentation algorithms in an indirect way,

with respect to some speci�c task. For instance, they test the e�ciency of segmentation

based on for information retrieval rather than the Web page segmentation itself [LPHL02,

LH02, CYWM03]. We describe only the works where the evaluation focuses on the

performance of the segmentation algorithm itself.

The works presented in the state-of-the-art evaluate their segmentation using these met-

rics: Rand index (Rand), Adjusted Rand Index (AdjRand), Normalized Mutual Inform-

ation (NMI), Dunn index (Dunn), Nested Earth Mover's distance (EMD), Precision and

Recall (Prec & Rec), F1 score (F1), and custom heuristic rules (heuristics). These metrics

are detailed in Appendix C.

[CYWM03] selected 140 Web pages from popular sites listed in 14 main categories of

Yahoo directory, and human assessors gave them a goodness parameter which values

Chapter 1. Web Page Segmentation and Evaluation 34

are: perfect, satisfactory and failed. [CMZ03] evaluate their algorithm with the good-

ness parameter as Error, Good or Perfect. [Bal06] presents little information about the

evaluation of their segmentation algorithm. They describe with examples how their res-

ults can be visually evaluated by human assessors. Hattori et al. [HHMS07] present a

supervised evaluation based on precision and recall metrics. Human assessors are asked

to detect �correct� segments according to a ground truth in a dataset of 100 pages. The

precision is computed as the ratio of correct segments over the total segments in a Web

page. The recall metric is the number of correct segments over the number of all cor-

rect segments. The same technique was applied by Vineel [Vin09]. They evaluates the

algorithm over a dataset of 400 manually segmented Web pages.

[KN08] present three methods for evaluating the blockfusion algorithm. It is the �rst one

which evaluates the segmentation accuracy, the most relevant for our study. Kohlshuetter

and Chakrabarti [CKP08] use two cluster correlation metrics the Adjusted Rand Index

(AdjRand) and Normalized Mutual Information (NMI). Kohlschuetter uses 111 Web

pages coming from 102 di�erent websites while Chakrabarti uses 1088 pages from 105

di�erent websites. The build a ground truth with this set of pages to de�ne a comparable

segmentation. Their results are comparable but Kohlschuetter reports better results for

both metrics.

Yang [YS09] evaluates his algorithm de�ning a goodness parameter with the values:

error, not-bad and perfect. Human assessors were asked to evaluate the performance

of the algorithm. The results were compared to the VIPS [CYWM03] algorithm using

precision and recall as metrics.

The main issues with the evaluation present in the algorithms of the state of the art,

is that they exploit the content, geometric, and visual aspects of the page, but their

evaluation is reduced to either textual aspects of the content or by the judgment of

human assessors.

Another important issue are the datasets. Besides the Web archives, there are no Web

page dataset available from which rendered DOM can be build. For instance, the TREC

collection only stores the HTML source code, which makes it impossible to fully render

the page. We do not know about of other segmentation datasets, probably because

they are not publicly available or do not exist any more. As far as we know, the only

Web page segmentation dataset available is that of Kreuzer [Kre13]. They provide two

datasets of annotated Web pages publicly available4 5. They present also a method for

4https://github.com/rkrzr/dataset-random
5https://github.com/rkrzr/dataset-popular

https://github.com/rkrzr/dataset-random
https://github.com/rkrzr/dataset-popular

Chapter 1. Web Page Segmentation and Evaluation 35

Algorithm Type Sub-type Metrics Year Reference

Annotation Transcoding Empiric Goodness Heuristics 2000 [AT00]

VIPS Empiric Goodness Heuristics 2003 [CYWM03]

TOC-Adaptation Empiric Goodness Heuristics 2003 [CMZ03]

DOMEntropy Empiric Goodness Heuristics 2006 [Bal06]

Content-Distance Empiric Goodness Heuristics 2007 [HHMS07]

Blockfusion Empiric Discrepancy AdjRand, NMI 2008 [KN08]

GraphBased Empiric Discrepancy AdjRand, NMI 2008 [CKP08]

Node Entropy Empiric Goodness Heuristics 2009 [Vin09]

E-GESTALT Empiric Goodness Heuristics 2009 [YS09]

Shrinking&Dividing Empiric Discrepancy Nested-EMD 2010 [CML10]

ContentRow Empiric Discrepancy Prec & Rec 2010 [ZJKZ10]

Distance Clustering Empiric Discrepancy Dunn,Rand 2011 [AC11]

Homory-HuPS Empiric Discrepancy Prec & Rec 2011 [LLT11]

CETD Empiric Discrepancy Prec & Rec, F1 2011 [SSL11]

SOMtree Empiric Discrepancy AdjRand 2011 [FdMdS+11]

EVBE, EIFCE & EICTE Empiric Goodness Heuristics 2014 [WT14]

Table 1.2: Summary table on Web page segmentation evaluation

quantitative comparison of semantic Web page segmentation algorithms. This approach

mainly uses text content comparison in order to perform the match between ground truth

and segmentations blocks, which is not enough, since geometry of blocks plays a key role

in the segmentation.

1.4.5 Summary table

Table 1.2 shows the algorithms, the type and sub-type of the evaluation method used (cf.

Section 1.4.1), the metrics applyied, the year of publication and the referenced article.

1.4.6 Discussion

As shown in this section, evaluating segmentation algorithms is a big challenge. The

lack of a common base to express segmentation algorithms impacts their evaluation.

Even formal approaches of segmentation use empiric evaluation. Does it means that the

empirical evaluation is more natural when segmenting Web pages?

W3C standards and its technologies depend heavily on heuristics rules. As far as we

know there is no formal de�nition or model for Web pages. This lack of formality in Web

page standard and its technology impacts the way segmentation algorithms are designed

and evaluated. For this reason, even formal segmentation approaches end up relying

Chapter 1. Web Page Segmentation and Evaluation 36

on empirical methods to evaluate. We think that analytic evaluation methods could

be used when standards and its technologies will be formally de�ned. Meanwhile, we

rely on empirical methods to evaluate segmentation algorithms. We present an empirical

evaluation method that aims at being generic, whatever the approach used by algorithms.

Web page segmentation algorithms in the state of the art exploit the content, geometric,

and visual aspects of the page, but their evaluation is reduced to either textual aspects

of the content or by the judgment of human assessors. In order to have a more complete

evaluation these three aspects need to be considered.

Most of the metrics used to evaluate Web page segmentation algorithms are not well

suited because they evaluate only textual aspect of the segmentation. For that reason

we consider the metrics presented by Shafait (cf. Section 1.4.3) because all aspects of

the segmentation are taken into account.

Chapter 2

Block-o-Matic (BoM): a New Web

Page Segmenter

In this chapter we present BoM, our Web page segmentation approach. One of the main

features of BoM is that we segment a Web page without having previous knowledge

of its content and using only the heuristic rules de�ned by the W3C Web standards.

For instance, we detect blocks using HTML5 content categories instead of using the tag

names or text features. That gives genericity to BoM and allow it (in theory) segmenting

all types of Web pages.

Another feature of our approach is the introduction of methods and techniques of doc-

ument processing systems. We leverage existing techniques from the �eld of computer

vision for segmenting scanned documents, in order to adapt them to Web pages. This

produces more interesting results for the applications that depends on the segmentation,

such as the order of the blocks in the segmentation and their labels.

We present the concepts used along the chapter (2.1) and an overview of the segmentation

algorithm (2.3 to 2.5). Then we describe the di�erent parts of the algorithm (2.2). We

conclude with a discussion (2.6).

2.1 Preliminars

In this section we present the concepts used along the chapter. We use the notation

introduced in Section 1.3.2. We use the concepts of page, block, composite block and

37

Chapter 2. Block-o-Matic (BoM): a new Web Page Segmenter 38

block graph as de�ned in section 1.3.1.

Let W be the rendered DOM of a Web page. A segmentation ΦBoM of W is de�ned as

follows :

ΦBoM (W, pA, pD, pND) = (W ′BoM , GMBoM)

where W ′BoM is the block graph (a tree) of the segmentation, GMBoM is the geometric

model and pA, the stop condition. In BoM, the stop condition is the normalized area

parameter which is the proportional size of a block respect to the page. We include other

parameters used in the algorithm: pD is the Distance parameter used for merging blocks.

pND which is used to compute the normalized area and the weights of blocks. The pA

and pD parameters are described on detail in section 2.4 and 2.5. The pND is described

at the end of this section for computing the weight of a block.

Each block B is associated with its rectangle (B.rect), its label (B.label), its weight

(B.weight) as de�ned in Section 1.3.2, and a set of DOM elements (B.elements).

Consider W ′BoM as a rooted, planar and vertex-weighted tree. The root vertex is the

Page block, inner vertices are the composite blocks, terminal vertices are the simple

blocks.

The edges between blocks represent a hierarchical relationship of geometric containment.

In other words, consider Page, Bc and Bp ∈ Blocks, the following constraints apply:

1. For every pair of blocks (Bc, Bp), where Bp is the parent of Bc in the W ′BoM tree,

we write Bc child of Bp and Bp parent of Bc.

2. For every block Bc, child of Bp, Bc.rect is contained in Bp.rect

∀Bc, Bp, Bc child of Bp ⇒ Bc.rect ⊂ Bp.rect

3. The Page rectangle cover the whole page and all blocks �t inside it.

∀ b ∈ Blocks, b.rect ⊆ Page.rect

Only simple blocks are associated to DOM elements, thus for the page and composite

blocks the B.elements is an empty set.

Chapter 2. Block-o-Matic (BoM): a new Web Page Segmenter 39

The weight of a block is the normalized area of its rectangle. It is used to check the stop

condition (cf. section 1.3.1). Thus, the weight of a block B is:

B.weight = 0.1× B.rect.w ×B.rect.h× pND

Page.rect.w × Page.rect.h

where pND is the prede�ned constant. In this work we �x this value to pND=100, so

that both B.weight and pA belongs to the interval [0,10].

2.2 Overview

In this section we present the Web page segmentation model. It is an hybrid approach,

and it follows the bottom-up strategy, as de�ned in Chapter 1.3.3.

First, we describe the segmentation as a black box indicating its input and output. A

more detailed explanation follows, describing the three sub-processes that achieve the

�nal segmentation.

We de�ne the Web page segmentation as the process of �nding coherent regions of content

(blocks) into the rendered DOM (W) of a Web page. As a result, the block graph W ′BoM

and the geometric model GMBoM are produced. The block graph is a tree structure as

de�ned in section 2.1. Blocks of W ′BoM are ordered considering the reading order of the

page. This order is based on the rectangles of the geometric model of the segmentation

(cf. Section 1.3.1) rather than the DOM tree1 structure. In other words, the order of

blocks is more likely to have the same order as blocks are found in the segmentation

rather than the order found in the source code.

Figure 2.1 shows how a rendered Web page W is segmented. The output is the block

graph W ′BoM shown on the right side of the �gure and the geometric model in the center

of the �gure.

The sub-processes of the segmentation are:

1. Fine-grained segmentation construction. Builds the �ne-grained segmenta-

tion of W producing W ′BoM and GMBoM .

1In the whole section �DOM tree� stands for �rendered DOM tree� (cf. Section 1.1.3)

Chapter 2. Block-o-Matic (BoM): a new Web Page Segmenter 40

Figure 2.1: Segmentation model example

2. Composite block and �ow detection. Detects the composite blocks and the

�ow of blocks. This sub-process updates W ′BoM and GMBoM

3. Merging blocks. Merges blocks according to their area, distance, alignment,

labels and content categories. This sub-process produces the �nal version ofW ′BoM

and GMBoM .

In the following sections we detail the three sub-process of the segmentation.

2.3 Fine-grained segmentation construction

The idea of the �ne-grained segmentation is to �nd coherent blocks as small as possible.

It serves as a starting point for the whole process by creating a �rst version of the block

graph W ′BoM and the geometric model GMBoM . The condition C that a DOM element

must satisfy to be considered as a block is that it does not belongs to the following

content categories: text, phrasing, embedded, interactive or form-associated elements.

Appendix A has a complete description of HTML5 content categories, elements and their

exceptions. The value to the label (B.label) is the most inclusive content category of

its elements (B.elements). For instance, if the block has one element which content

Chapter 2. Block-o-Matic (BoM): a new Web Page Segmenter 41

category is �ow the label of the block is the same. If the block is associated with two

elements, one element in the embedded category and the other in the heading category,

the most inclusive category is �ow. Figure 2.4 shows which content category includes

other content categories.

The process begins from the leaves of the DOM tree, towards the W.root (cf. Section

1.2.1.1). If an element is found that meets the condition C above de�ned, the process

stops for this branch. Figure 2.2 shows how an element is selected as a block. Element li

is the �rst element that does not belong to the categories above listed, then it is marked

as a block and the label �ow is assigned. From the information obtained during this

sub-process a geometric model (cf. section 1.3.1) and a �rst version of the block graph

are built (cf. section 1.3.1).

Figure 2.2: Block detection based on content categories

Algorithm 1 shows the steps to build the �ne-grained segmentation. First, the rendered

DOM tree W is traversed and leaves elements are selected (line 5). If a selected element

does not match the condition C its parent become the current element (line 7-8).

The same process continues until either the W.root element (i.e.: the body element) is

reached or the current element meet the condition C. If the condition C is met a new

block is created (lines 10-11). The element becomes the block's element (line 12), the

block label is the element category (line 13), a new rectangle is created (line 14), the

geometric model is updated (line 15) and the weight is computed (line 17). The rectangle

is based on the box of the element (cf. section 1.2) and it is associated to the block (line

16). The block graph is updated with the new block b, adding an edge between the Page

Chapter 2. Block-o-Matic (BoM): a new Web Page Segmenter 42

block and block b (lines 18-19)

Data: Rendered DOM : W

Result: block graph W ′BoM , geometric model GMBoM

1 Blocks = {Page};
2 E = {};
3 W ′BoM = (Blocks,E);

4 GMBoM = {};
5 Terminal ← getTerminalElements(W);

6 foreach element ∈ Terminal do

7 while element 6= W.root and ¬C(element) do

8 element← element.parentElement;

9 end

10 if element 6= W.root then

11 create block b;

12 b.elements ← element;

13 b.label = element.category;

14 rect = createRectangleFromElement(element);

15 add rectangle rect to GMBoM ;

16 b.rect = rect;

17 b.weight = normalized_area(b);

18 add vertex b to W ′BoM ;

19 add edge (Page, b) to E;

20 end

21 end

Algorithm 1: Fine-grained segmentation construction algorithm

The �ne-grained segmentation form a �at segmentation, that is height(Page) = 1.

2.4 Composite block and �ow detection

Composite blocks usually are Web page regions that lie along separation lines. A separ-

ation line is the space that goes from one limit of the page to another without crossing

any block. A horizontal separation line S in a block is represented by the line formed by

the points (x1, y1) and (x2, y2), where y1 = y2 if it is horizontal, x1 = x2 if it is vertical.

The spaces found either at the beginning or at the end of the document are omitted.

Chapter 2. Block-o-Matic (BoM): a new Web Page Segmenter 43

Algorithm 2 shows the CompositeBlockDetection function in order to �nd the composite

blocks and the �ow of a segmentation. It accepts a composite block as input and outputs

the W ′BoM graph and the geometric model GM updated with new blocks (if any) and

including the computed order.

We start �nding the composite blocks in the Page block itself, considered as a compos-

ite. Two composite blocks are formed on both sides of the separation line (line 12). All

simple blocks that are covered by these new blocks are aggregated accordingly and be-

come their children blocks (line 22). The process stops if it is met one of two conditions:

their weights are below the prede�ned stop condition parameter (pA) or the horizontal

or vertical limits of the block are not those of the Page (line 1), i.e. if B.rect.x >

Page.rect.x and B.rect.w < Page.rect.w (respectively B.rect.y > Page.rect.y and

B.rect.h < Page.rect.h).

Figure 2.1 shows the separation lines, S1
page and S

2
page, found in the Page block, gener-

ating blocks 1, 2 and 3. On the same �gure, block 1 and 3 are not processed because

their weights are higher than pA, but the same process is applied to block 2. First the

horizontal separator S1
2 is discovered, generating the composite blocks 2.1 and 2.2. We

assume that the weight of block 2.2 is below the prede�ned stop condition parameter,

thus no further processing is needed. However, in block 2.1, two vertical separators S1
2.1

and S2
2.1 are found.

The reading order of blocks is build while detecting composite blocks. Following the

spirit of Meunier's algorithm [Meu05], we de�ne the �ow of blocks in the same order as

separators are detected and according to how the composite blocks are divided.

Figure 2.3 shows another example, which allows comparing the order induced by the

DOM structure and the order resulting from the composite block detection. Figure 2.3a

shows the composite blocks detected by the algorithm. The dotted lines in the W ′BoM

graph denotes the reading order of blocks. Figure 2.3b (top) shows the DOM elements

of the page, we see that the main_nav element (menu at the left of the page) is de�ned

after the article element (main content), but in the rendering of the page it appears at

its left. This example page uses the absolute position of elements (cf. Section 1.1.2) so

their position in the DOM does not correspond with the formatted content. In the same

�gure (left) we see the elements order after the rendering and (right) the order of blocks

found by the segmentation.

Chapter 2. Block-o-Matic (BoM): a new Web Page Segmenter 44

Figure 2.3: Web page segmentation example showing the DOM based �ow and BoM
block �ow

Chapter 2. Block-o-Matic (BoM): a new Web Page Segmenter 45

Data: block b
Result: W ′BoM and GMBoM updated

1 if b limits equals to Page and b.weight > pA then

2 Separators ← �ndSeparatorsIn(b);
3 foreach s ∈ Separators do
4 if s is horizontal then
5 rect1 = {b.rect.x, b.rect.y, b.rect.w, s.y1};
6 rect2 = {b.rect.x, s.y1, b.rect.w, b.rect.h};
7 else

8 rect1 = {b.rect.x, b.rect.y, s.x1, b.rect.h};
9 rect2 = {s.x1, b.rect.y, b.rect.w, b.rect.h};

10 end

11 add rectangles rect1, rect2 to GMBoM ;
12 create blocks b1, b2;
13 b1.rect = rect1;
14 b2.rect = rect2;
15 add vertices b1, b2 to W

′
BoM ;

16 add edge (b, b1) to E;
17 CompositeBlockDetection(b1);
18 add edge (b, b2) to E;
19 CompositeBlockDetection(b2);

20 end

21 else

22 update W ′BoM and GM to associate blocks covered by b
23 end

Algorithm 2: Composite blocks detection algorithm

2.5 Merging blocks

Once composite blocks are created, the merging process starts. This process allows

obtaining simple blocks the weight of which is greater than the prede�ned stop condition

parameter (pA). Two blocks are merged if the following heuristic rules are all satis�ed:

1. Their weights are less than the the prede�ned stop condition parameter.

2. The distance between them is below a prede�ned distance parameter pD.

3. Both blocks are horizontal or vertical aligned with a tolerance than no more that

pD pixels.

4. They are not aligned but one's rectangle covers completely the other's one.

5. Their label is not sectioning (cf. Section 1.2.1.1).

The rules are checked in the given order for e�ciency purpose: the �rst rules are most

discriminant.

Chapter 2. Block-o-Matic (BoM): a new Web Page Segmenter 46

Figure 2.4: HTML5 content models. Source: http://www.w3.org

Figure 2.5: Merging blocks and labeling

This process is repeated until no more merges are possible. Then we check if the propor-

tion of blocks with a weight less than pA is greater than a constant (for instance 75%).

If it is the case, all the children of the composite blocks are removed. If the composite

block has only one child, this latter is removed.

To illustrate the merging process, let pA = 4, pD = 50 and pND = 100. Figure 2.5

shows the merging process for the block 2.1.2 of an example page. Each blocks has its

weight and its label. In Figure 2.5a blocks a, b and c are merged because they are aligned

and the distance between them is less than pD. The label �ow is assigned. The same

applies for blocks e and h. However blocks d and f are too far. Blocks f and g are not

aligned. Figure 2.5b shows the result of merging those blocks and in a second round

the blocks d and e are merged because their distance is below the parameter pD and

they are aligned using the tolerance. Figure 2.5c show the merged blocks. Block f is

contained into block d, so they are merged and the label �ow is assigned. Figure 2.5c

shows the �nal merging, the process stops because the weight of both blocks a and d is

greater than the prede�ned stop condition pA = 4.

http://www.w3.org

Chapter 2. Block-o-Matic (BoM): a new Web Page Segmenter 47

Algorithm 3 presents details about the algorithm for merging blocks. We only consider

the composite blocks that have simple blocks as children and the weight of which is

greater than the prede�ned stop condition parameter (pA). If it is the case we try to

merge the children.

Data: composite block b
Result: W ′BoM , GMBoM updated

1 if b.weight > pA then

2 Children ← getChildren(b);
3 foreach child ∈ Children do
4 if child.weight < pA then

5 Siblings ← getSiblings(child);
6 foreach sibling ∈ Siblings do
7 if child and sibling are aligned then
8 if distance between child and sibling less than pD then

9 if labels of child and sibling are not sectioning then
10 merge sibling with child as child;
11 label child from both labels;

12 end

13 end

14 else

15 if child covers sibling then
16 merge sibling with child as child;
17 end

18 end

19 end

20 end

21 end

22 if |getChildren(b)| = 1 then
23 remove child of b;
24 end

25 if proportion of non merged small children is superior to 75% then

26 remove children of b;
27 end

28 else

29 remove children of b;
30 end

Algorithm 3: Merging algorithm

2.6 Discussion

In this section we presented our approach to Web page segmentation. We aim segmenting

a Web page without previous knowledge about its content. This allows segmenting

di�erent type of Web pages. The heuristic rules are based solely on rules de�ned in the

Web standards, such as content categories.

Chapter 2. Block-o-Matic (BoM): a new Web Page Segmenter 48

We do not do any assumption about the text. However, this can be a weakness because

in some cases analyzing the text can be relevant. For instance, two consecutive blocks

that talk about di�erent subjects should not be merged. Solving this issue would imply

studying the semantics of the block content and is out of the scope of this thesis.

There are three di�erent implementations of the BoM algorithm. One version is de-

veloped as a Ruby application, the second as a Java application and the third as a

JavaScript library. The Ruby version is intended as functional prototype, the Java ver-

sion to production environments for the European project SCAPE2 and the JavaScript

version for the open source community3.

Introducing concept and techniques from the computer vision �eld of scanned document

image segmentation allow having a more complete segmentation, as it contains more

useful information for applications than most of the other segmenters.

2http://www.openplanetsfoundation.org/blogs/2014-02-12-scape-qa-tool-technologies-behind-
pagelyzer-ii-web-page-segmentation

3https://github.com/openplanets/pagelyzer/tree/master/SettingsFiles/js

Chapter 3

Segmentation evaluation model

Evaluating web page segmentation algorithms is not an easy task. Usually, each al-

gorithm proposes its own adhoc validation mechanism that can not be really applied

to other approaches. This chapter attempts to close this gap by proposing a number of

evaluation metrics that essentially measure how well the generated segmentation maps to

a ground truth segmentation. This can be formulated as a graph matching problem, and

we propose a number of metrics based on the generated matching to assess the quality

of the generated blocks.

In this chapter, we present our evaluation model in order to measure the quality of a

segmentation according to a discrepancy parameter (i.e.: determine how far the two

segmentation are one from the others). The goal of the evaluation model is to compare

an automated segmentation of a web page W with the corresponding ground truth, in

order to determine its quality. Both segmentations are organized as non-hierarchical

Manhattan layout (cf. section 1.3.1), in other words, they are �at segmentations. Our

evaluation model is an adaptation to web pages of the model presented by [SKB08] for

scanned page segmentation evaluation (see Section 3.1). The ground truth is manually

designed, we explain in Section 4.4.2 how it was built for the evaluated collection. The

comparison focuses on block geometry and content. The quality of a segmentation is

evaluated by using the block correspondence and text covering measures. The block

correspondence measures allows knowing to what extent the generated blocks match

those of the ground truth. The text covering indicates to what extent the global content

(expressed as a number of words) of the generated blocks is the same as the content of

the page. At the end of the chapter an example is given to illustrate our approach.

49

Chapter 3. Segmentation evaluation model 50

We present the evaluation model adaptation (3.1), the representation of a segmenta-

tion (3.2), the representation of the evaluation (3.3), an example (3.4), �nishing with a

discussion (3.5).

3.1 Model adaptation

In order to adapt to web pages the model presented by Shafait et al. [SKB08] (cf. section

1.4.2) for scanned page segmentation evaluation we need to identify the di�erent aspects

of both type of documents. Shafait represent a segmentation of scanned documents

images using a pixel-based representation. Each foreground pixel belongs to a zone or

region. The evaluated documents (and the ground truth) must have the same dimension.

Their evaluation model de�nes several performance metrics to evaluate di�erent aspects

of the behavior of a scanned page segmentation in image form. These metrics allow

measuring the correspondence of each pair of rectangles the segmentation and the ground

truth. A region (or block) is signi�cant if it the amount of foreground pixels associated

with it is greater than a parameter.

By analogy, web pages consist of elements and text. In our adaptation, a block is

signi�cant if the amount of elements and text is greater than a parameter. Other features

of our model are intrinsic to web pages, such as the block importance and the text

coverage. They are explained in this chapter.

3.2 Representation of segmentation

In this section we model a segmentation in order to describe its evaluation. We describe

the absolute and normalized representation of a segmentation (3.2.1 and 3.2.2), as well

as the importance of blocks and how it is computed (3.2.3).

We present the concepts used along the chapter. We use the notation described in

Section 1.3.2. We use the concepts of page, block and block graph based on the concepts

described in section 1.3.1.

Chapter 3. Segmentation evaluation model 51

3.2.1 Absolute representation of a segmentation

Each block B is associated with its rectangle (B.rect), its label (B.label) and its weight

(B.weight) (cf. Section 1.3.2). To each B we add three values: the amount of elements

it covers (B.ec), the text associated to the block (B.text) in the original page W and

the importance (B.importance). Note that B.ec = |B.elements|.

The importance of a block depends on the area covered by its rectangle. Section 3.2.3

explain how it is computed.

An absolute segmentation for the rendered DOM W, using the algorithm A and SC a

set of stop conditions, is de�ned by the following function Φ (cf. Section 1.3.2):

ΦA(W,SC) −→
(
W ′A, GMA

)

where W ′A is the block graph and GMA is a set of rectangles representing the geometric

model of the segmentation.

Consider W ′A as a rooted, planar and vertex-weighted tree. The root vertex is the Page

block and the terminal vertices are the simple blocks. We consider the segmentation as

�at, that is the height(Page) ≤ 1. GMA is the geometric model of the segmentation

consisting of a set of rectangles.

3.2.2 Normalized Segmentation Representation

In order to compare two segmentations, we need to normalize the rectangles.

Given an absolute segmentation ΦA, the geometric model of its normalized version NΦA

�ts in a ND × ND square, where ND is a �xed value, called Normalized Document

Size. In our experimentation, we �xed this value to 100. Thus if NΦA is the normalized

segmentation of ΦA:

NΦA(W,SC) −→
(
NW ′A, NGMA

)
(3.1)

where NW ′A is the block graph of the normalized segmentation, NGMA is the normalized

geometric model. All the segmentation rectangles are normalized. Thus, the Page block

Chapter 3. Segmentation evaluation model 52

rectangle is normalized as:

NW ′A.Page.rect = {0, 0, ND,ND}

Each block rectangle is then normalized according to the stretch ratio of the page, i.e.

∀ b ∈ NW ′A, b.rect.x =
ND ×W ′A.Page.rect.x

W ′A.Page.rect.w

The other values of the block rectangle (y, w and h) are normalized in the same way.

3.2.3 Block importance

The regions in a web page are not all equally important. A block is more important

than another block if it contains more important information. Usually, important blocks

are located in the most visible part of the page. A good segmentation algorithm must

mostly �nd important blocks.

The block importance is obtained from the geometric model of the segmentation, that is

the spatial features. A segmentation is mapped to a grid of NP × NP, where NP is the

Normalized Partition Size. This grid can be represented as a matrix IM(NP,NP). Each

cell of the matrix (imij) is assigned with a value representing the importance that a block

has if it lies within this area. For instance, with the window spatial features de�ned by

Song et al. [SLWM04], a highest importance is assigned to blocks found in the middle

of the visible part of a web page, and a lower importance to blocks found outside of this

area.

The computed importance of a block is the sum of the cell values obtained by mapping

the block rectangle over the grid. The rectangle coordinates are divided by the constant

NP. This de�nes two intervals, one for each dimension. If i and j respectively belong

to those intervals, then the cell value imij is taken into account. Thus the computed

importance of a block B ∈W ′A.Blocks is:

computed_importance(B) =
∑
ij

imi,j (3.2)

where

• i ∈
[
round(B.rect.x

NP), round(B.rect.w
NP)

]
and,

Chapter 3. Segmentation evaluation model 53

• j ∈
[
round(B.rect.y

NP), round(B.rect.h
NP)

]

In order to uniformize the importance we de�ne B.importance as the average importance

of a blocks in a segmentation. The computed importance of each block is divided by the

sum of all the computed blocks importance in a segmentation. Thus the importance of

a block B ∈W ′A.Blocks is:

B.importance =
computed_importance(B)∑

b∈W ′
A.Blocks

computed_importance(b)
(3.3)

3.3 Representation of the evaluation

In this section we model the evaluation itself, described in terms of input and output.

We describe also the metrics used in for measuring the text covering (3.3.1) and the

block correspondence (3.3.2).

The evaluation is described as a function that takes two segmentations and four con-

stants as parameters. The two segmentations ΦG and ΦP are absolutes segmentations as

described in section 3.2 producing the block graphs W ′G and W ′P . The four parameters

are the relative tolerance (tr), the importance tolerance (ti), the Normalized Document

size (ND) and the Normalized Partition size (NP) as de�ned in section 3.2.1 and 3.2.2.

These parameters are described in detail in the following sections. The evaluation func-

tion returns a vector of metrics representing the quality of ΦP with respect to ΦG.

evaluate(ΦG, ΦP , tr, ti, ND, NP) = (text coverage metric, correspondence metrics)

(3.4)

The quality of a segmentation is measured in two complementary ways:

• Text covering : measures to which extent the global content (here expressed as the

number of words) of the blocks in W ′P is the same as the content of the page W .

• Block correspondence : measures how well the blocks of W ′P match with the ones

of W ′G.

The text coverage allow determining whether the segmentation has taken into account

all the parts of the web page in terms of textual content. The block correspondence takes

Chapter 3. Segmentation evaluation model 54

into account the location and geometry of block. It allows for detecting which blocks

were correctly discovered and which ones raised issues.

3.3.1 Measuring text coverage

The intuitive idea of evaluating the covering is to know if there is some content from the

original page not taken into account by the segmentation. The covering of a segmentation

ΦA is given by the TC function, which returns the proportion of words of W.text (cf.

Section 1.2.1) that appear in the blocks of W ′A, as follows :

TC(ΦA,W) =

∑
b∈W ′

A.Blocks

words(b.text)

words(W.text)

For simplicity we denote the function TC(ΦA,W) as TC. More complex functions can

be used to measure the text coverage, but this is left for future work.

3.3.2 Measuring block correspondence

The block correspondence indicates whether the blocks rectangles of a segmentation

match those of the ground truth.

Consider two normalized segmentations for a page W : a computed one NΦP and the

ground truth NΦG. The associated normalized block graphs are NW ′P (denoted P in

the rest of the section) and NW ′G (denoted G). Figures 3.1(a) and (b) give respectively

an example for G and P .

To compute the block correspondence, we build a weighted bipartite graph called block

correspondence graph (BCG). We start with an example and then give the algorithm.

As seen on Figure 3.1(c), nodes of the BCG are the blocks of P and of G. An edge is

added between each couple of nodes ni and nj such that the weight w(ni, nj) of the edge

is equal to the number of underlying HTML elements and text in the intersection of the

regions covered by the rectangle of each of the blocks corresponding to the two nodes. If

the blocks rectangles do not overlap in P and G, no edge is added.

Algorithm 4 shows how is built the BCG. If the blocks in P �ts perfectly with the

Chapter 3. Segmentation evaluation model 55

Data: nodes ni ∈ G,nj ∈ P
Result: vertex (ni,nj) and its weight (if apply)

1 if ni.rect is contained in nj .rect then
2 create vertex (ni,nj);
3 w(ni, nj) = ni.htmlcover + ni.textcover;

4 else if ni.rect contains nj .rect then
5 create vertex (nj ,ni);
6 w(ni, nj) = nj .htmlcover + nj .textcover;

7 else

8 /* no vertex is created */

9 w(ni, nj) = 0;

10 end

Algorithm 4: Algorithm for building the BCG graph

ground-truth blocks G, then the BCG will be a perfect matching. That is, each node in

the two component of the graph has exactly one incident edge. If there are di�erences

between the two segmentations, nodes of P or G may have multiples edges. If there is

more than one edge incident to a node n in P (resp. in G), n is considered oversegmented

(resp. undersegmented). Using these de�nitions, we can introduce several measures for

evaluating the correspondence of a web page segmentation algorithm.

Intuitively, if all blocks in G are in P , this means that the algorithm has a good quality.

If one set of blocks in G are grouped into one block in P or if one block in G is divided

in several blocks in P then there is an issue with respect to the granularity but no error.

We determine a segmentation error if one block in the ground truth is not found in the

computed segmentation or if there are blocks that were �invented� by the algorithm.

The metrics for block correspondence are de�ned as follows:

1. Correct segmentation Cc(ΦA), Cc for short. The number of one-to-one matches

between P and G. A one-to-one match is de�ned by a couple of nodes (ni, nj),

ni in P , nj in G, such that w(ni, nj) ≥ tr, where tr is a threshold that de�nes

how well a detected block must match to be considered as correct. For instance,

in Fig. 3.1, there is an edge between node 2 and node B and another one between

node 2 and node C. However, as the weight w(2, C) is less than tr, and the weight

w(2, B) is greater than tr, B is considered as a correct block. The metric value

for the example is Cc = 2 . Cc is the main metric for measuring the quality of a

segmentation.

2. Oversegmented blocks Co(ΦA), Co for short. The number of G nodes having

more than one edge. This metric measures how much a segmentation produced too

small blocks. However, those small blocks �t inside a block of the ground truth.

Chapter 3. Segmentation evaluation model 56

In the example of Fig. 3.1, node 6 of the ground truth is oversegmented in the

proposed segmentation. In the example, the metric value is Co = 2 because nodes

6 and 2 are both over-segmented.

3. Undersegmented blocks Cu(ΦA), Cu for short. The number of P nodes having

more than one edge. The same as above, but for big blocks, where blocks of the

ground truth �t in. For instance, on Fig. 3.1, node D of the proposed segmentation

is undersegmented with respect to the ground truth, and the value for the metric

is Cu = 1.

4. Missed blocks Cm(ΦA), Cm for short. The number of G nodes that have no

match with any in P. This metric measures how many blocks of the ground truth

are not detected by the segmentation. One example is node 3 shown in the Fig.

3.1 and the value of the metric is Cm = 1.

5. False alarms Cf (ΦA), Cf for short. The number of P nodes that have no match

with any in G. This metric measures how many blocks are �invented� by the seg-

mentation. For instance, in Fig. 3.1 node I has no correspondent in the ground

truth making the metric value as Cf = 1.

Each metric Cx has a version, noted ICx, that takes the importance of the blocks into

account. In other words, Cx can be seen as the metric when all the blocks have the same

importance. Cc is a positive measure, Cm and Cf are negative measures. Co and Cu are

�something in the middle�, as they count �not too serious� errors : found blocks could

match with the ground truth if they were aggregated or split. Note that the de�ned

measures cover all the possible cases when considering the matching between G and P .

Thus, the evaluate function returns a vector made of all the computed metrics, i.e.

evaluate(ΦG, ΦP , tr, ti, ND, NP) = (TC, Cx, ICx) (3.5)

To evaluate the quality of the segmentation we de�ne a score Cq, as the total number of

acceptable blocks discovered, i.e. Cq = Cc +Co +Cu and ICq = ICc + ICo + ICu. Note

that Cm is the complement of Cq where Cq + Cm = |G|.

Chapter 3. Segmentation evaluation model 57

Figure 3.1: (a) Ground-truth segmentation. (b) Computed segmentation. (c) BCG.

3.4 Example

In this section web show how for an example how the importance is computed (3.4.1),

the text coverage (3.4.2) and the correspondence measures (3.4.3).

In order to illustrate our approach let us assume four algorithms producing four ex-

ample absolute segmentations (ΦP1 , ΦP2 ,ΦP3 and ΦP4) and a ground truth (ΦG), and

the corresponding block graphs denoted P1, P2, P3, P4 and G, for the sake of readability

.

The evaluation function is represented as evaluate(ΦG, ΦPi , 0.1, 0.3, 100, 10). Where

G is the ground truth graph, Pi is any of the tested block graphs, tr = 0.1, ti = 0.3,

ND = 100 and NP = 10.

Figure 3.2 shows the di�erent normalized segmentations obtained with the four tested

algorithms. The Pages and blocks are normalized to �t in a ND×ND = 100×100 square.
The example Web page has four valid blocks: the logo, the search form, a set of images

and the footer. However there is, at the top of the page, some text colored with white,

therefore not visible to human assessor and it was not taken into account in the manual

segmentation.

Chapter 3. Segmentation evaluation model 58

Figure 3.2: Normalized segmentations for ND=100 for an example web page

Importance G1 G2 G3 G4

Computed 33 26 15 2

Average 0.43 0.34 0.19 0.02

Table 3.1: Computed and average importance values with ti = 0.3

3.4.1 Computing the importance

We compute the importance for the ground truth. Figure 3.3 shows the grid IM over

the normalized segmentation. The matrix IM is build following the recommendation of

Song, where blocks in the center of the visible area get highest values than those in the

exterior of this area. Based on IM we compute the importance of each block as follows:

the absolute importance for block G1 is the sum of cells im1,4, im1,8, im2,4 and im2,8.

Table 3.1 shows the computed and average importances for Figure 3.3.

3.4.2 Computing text coverage

For each segmentation, we get the amount of words in the page as well as for each

block. Table 3.2 shows the di�erent word count for the four tested segmentations and

the value of the TC function. Each Bi column represents the word count for a block in

Chapter 3. Segmentation evaluation model 59

Figure 3.3: Grid for determining the importance on segmentation G of the example
page

Segmentation B1 B2 B3 B4 B5 W TC

P1 11 0 10 1 18 40 1.00

P2 11 10 18 - - 40 0.97

P3 11 29 - - - 40 1.00

P4 11 11 18 - - 40 1.00

Table 3.2: Text coverage for segmentations in the example

the corresponding segmentation. Column W is the word count for the web page and TC

the proportion of text coverage for each tested segmentation.

All the segmentations present a good text coverage but segmentation P2 has missed two

regions of the page (the logo and the images), therefore it has some problems partitioning

the page.

From a human point of view, there is clearly an error in segmentation P2, because it

misses the block on the logo and the block over the images in the web page, and the

logo is an important region of the web page. Computing the block correspondence allows

giving more details on this error.

3.4.3 Computing block correspondence

The measures de�ned in Section 3.3 are represented on Table 3.3 and considering the

importance, in Table 3.4. The two �rst columns are respectively and, with respect to

Chapter 3. Segmentation evaluation model 60

Algorithm GTB PTB Cc Co Cu Cm Cf Cq TextCover

P1 4 5 4 0 0 0 1 4 1.00
P2 4 4 2 0 0 2 1 2 0.97
P3 4 2 0 0 1 0 1 1 1.00
P4 4 3 1 0 1 0 1 2 1.00

Table 3.3: Block correspondence measures to segmentations in Figure 3.2 with tr =
0.1

Algorithm IGTB IPTB ICc ICo ICu ICm ICf ICq

P1 2 3 2 0 0 0 1 2
P2 2 2 1 0 0 1 1 1
P3 2 2 0 0 1 1 1 1
P4 2 2 0 0 1 1 1 1

Table 3.4: Block correspondence measures (with importance)

the numbers of blocks in the ground truth (GTB) and the number of blocks obtained in

each segmentation (PTB) (IGTB and IPTB respectively considering the importance).

Figure 3.4 shows the four BCG graphs associated to each possible segmentation. The

solid lines represent the signi�cants edges, i.e. their weight is greater than the parameter

tr. The dotted lines represent the non signi�cant edges. For instance in segmentation

P1 node B1 has no edge, it is counted as false alarm. The other nodes have exactly one

edge, they are counted as correct block. In segmentation P2, nodes G1 and G3 have no

edges and they are thus counted as miss. B1 is a false alarm and G2 and G4 are correct

blocks. In segmentation P3, nodes G2, G3 and G4 of the ground truth have an edge with

the node B2, making B2 undersegmented. The block G1 is missing because the edge

between G1 and B2 is not signi�cant. In segmentation P4, node B2 is undersegmented

(corresponds to G2 and G3), B3 is correct (corresponds to G4) and G1 is missing.

If we take the importance into account we note that segmentation P1 has the best

performance with a score of ICq = 2. It matches the two important blocks in the ground

truth. Segmentation P2 is able to match one, but missed one. The segmentations P3 and

P4 present the same performance: one undersegmented loc and one important missed

block.

P2 and P3 have the same ICq score. However, one would prefer P2 to P3 since it matches

one important.

All segmentations present a false alarm. It corresponds to the white coloured block found

at the top of the page.

Chapter 3. Segmentation evaluation model 61

Figure 3.4: BCG for the four tested segmentations with tr = 0.1

3.5 Discussion

In this section we presented our approach to web page segmentation evaluation. It is

designed with the aim of evaluating web pages algorithms regardless of the approach

they follow and their internal speci�cation. We only consider the geometric model and

the content to perform the evaluation.

We adapt some of the metrics de�ned by Shafait (cf. Section 1.4.3) to web page seg-

mentation evaluation. We introduce an new metric, the Cq score. It is the aggregation

of the correct, under and over segmented blocks. Under and over segmentations are not

considered as an error, as it is in Shafait model. It indicates that the algorithm para-

meters are not set properly. We include also a version of these metrics considering the

importance.

Representing web page segmentation algorithms by their outcome (the block graphs and

their rectangles) allows us producing comparable versions on which we can compute

the text coverage and block correspondence measures. For each measure, we produce

a version that takes the importance into account. This allows favouring algorithm that

correctly detect important blocks.

Chapter 4

Experimentation

In this section we present our experimental evaluation of BoM and other algorithms,

according to the evaluation method described in section 3.3. A dataset composed of 200

pages annotated by human assessors is used as ground truth. Four algorithms (among

the ones introduced in Chapter 1) were evaluated, based on the measures de�ned in

Section 3.3. These measures evaluate di�erent aspects of a segmentation algorithm for

a given quadruple (page, render engine, algorithm, stop condition) as a parameter. In

section 4.1 we present an overview of the experimentation. In section 4.3 we present the

segmentations algorithms and how they are used in the experiments. In Section 4.2 the

block descriptors are introduced. Section 4.4 presents the dataset construction. Section

4.5 presents the experiments and the results. We conclude with a discussion in Section

4.6.

4.1 Overview

Our evaluation framework allows running di�erent Web page segmentation algorithms

on a collection of Web pages and measuring their correctness, as de�ned in Section 3.3.

Four algorithms are tested, adapted in such a way that it was possible to extract the

page, the block rectangles, the HTML and the word counts. At a glance, the framework

gets an URL, a collection and a prede�ned stop condition and produces the vector with

the scores described in Section 3.3.2, using the ground truth.

63

Chapter 4. Experimentation 64

A set of block descriptors are extracted from each evaluated algorithm. A block descriptor

describes the block in terms of its attributes, its geometry and other information neces-

sary to build the segmentation dataset.

4.2 Block descriptors

A block descriptor is used to describe the blocks into a segmentation. It contains the

algorithm name, the url, the document size, the amount of words in the Web page, the

stop condition, the id, its rectangle coordinates, the amount of elements and the text it

covers (cf. Section 3.2.1).

Each block B is described by a register with the following format:

Algorithm a string identifying the algorithm

url the Web page url

Document size The document size is expressed as width and

height

words(W.text) number of words in the Web page

Stop Condition The parameters of the algorithm

Block ID String identifying the block.

B.rect The block rectangle expressed in absolutes co-

ordinates x,y and width and height

B.ec The number of elements covered by the block

words(B.text) the number of words present in a block

Algorithms implementation must compute this information for evaluation purpose. We

choose the comma separated values (CSV) format for block descriptors.

4.3 Tested segmentation algorithms

In this section we give a short description of the algorithms we evaluated and how they

were adapted to obtain the block descriptors needed to evaluate them. We choose those

algorithms as a representative sample of the state of the art. We would have like to

include the GraphBased algorithm but no implementation is supplied by the authors.

Chapter 4. Experimentation 65

We adapted the implementation of the tested algorithms in order to get a �at segment-

ation and then the block descriptors needed for the comparison.

For algorithms where the source code was available (BoM, BlockFusion and JVIPS), the

adaptation has been made on the source code. For VIPS, the adaptation has been made

on the output.

In Sections 4.3.1 to 4.3.4 we describe the algorithms and their adaptation. In Section

4.3.5 we show a summary with technical details of the adaptation.

4.3.1 BF (BlockFusion)

In this section we give a short description of the Blockfusion (BF)[KN08] algorithm and

how we adapt Boilerpipe (which implements BF) to our experiments.

4.3.1.1 BF Description

The BlockFusion algorithm uses the text density as a valuable heuristic to segment

documents. The text density is calculated by taking the number of words in the text

and dividing it by the number of lines, where a line is capped to 80 characters. A HTML

document is then �rst preprocessed into a list of atomic text blocks. The density is

computed for each atomic block. Blockfusion use an HTML �le as input, not necessarily

rendered.

Iteratively, two adjacent blocks are merged if their text densities are below a certain

threshold ϑmax. The value of this threshold represents the stop condition of the seg-

mentation. The authors report that its optimal value is ϑmax ≈ 0.38 and we take it as

is. This algorithm use the bottom-up strategy (cf. section 1.3.3).

4.3.1.2 BF Adaptation

BF does not take the DOM into consideration during the segmentation. In order to

get the rectangles of the segmentation, we thus need to modify its implementation.

The BoilerPipe 1 application is modi�ed, changing the input and the output of the

1https://code.google.com/p/boilerpipe

https://code.google.com/p/boilerpipe

Chapter 4. Experimentation 66

application and modifying the TextBlock class merging procedure. Each text element

in the input Web page is wrapped into a span tag, with two extra attributes (rect and

words). These attributes represent the bounding box of that text element and its word

count, respectively. The method merge() of class TextBlock was modi�ed in order to

consider the span and both attributes. The output document then contains the span

elements contained in the text blocks chosen by BF with the corresponding rect and

words attributes. The B.rect and words(B.text) are taken from the attributes while the

B.ec has the value of one (1), representing the text element.

4.3.2 BoM (Block-o-Matic)

In this section we present the adaptation of the JavaScript implementation of the Block-

o-Matic segmentation algorithm2, described in Chapter 2.

The rectangles are taken from the simple blocks of the block graph W ′BoM . For each

terminal block the words(B.text) and the B.ec are extracted from the text elements and

from the associated DOM elements, respectively. The B.rect is extracted from the dim

attribute of the block class.

4.3.3 VIPS (Vision-based Web Page Segmentation)

In this section we give a short description of the VIPS Web page segmentation algorithm

[CYWM03] and its adaptation to obtain the block descriptors.

4.3.3.1 VIPS Description

The VIPS algorithm segments Web pages by analyzing their rendered version. It �rst de-

velops a vision-based content structure, which analyses the page with visual cues present

in the rendered page instead of the HTML source code. This structure is built by split-

ting a page into a 3-tuple consisting of a set of visual blocks, a set of separators, and a

function that describes the relationship (shared separators) between each pair of blocks of

a page. Separators are for example vertical and horizontal lines, images similar to lines,

headers and white-space. This structure is built by going top-down (cf. Section 1.3.3)

2https://github.com/asanoja/web-segmentation-evaluation/tree/master/

chrome-extensions/BOM

https://github.com/asanoja/web-segmentation-evaluation/tree/master/chrome-extensions/BOM
https://github.com/asanoja/web-segmentation-evaluation/tree/master/chrome-extensions/BOM

Chapter 4. Experimentation 67

through the DOM tree and taking both the DOM structure and the visual information

(position, color, font size) into account.

VIPS detects separators by splitting the page around the visual blocks so that no separ-

ator intersects with a block. Subsequently, it assigns weights to the separators, according

to certain prede�ned heuristic rules. From the visual blocks and the separators it can

then build the vision-based content structure of the page, using the Degree of Coherence

(DoC) of each block for determining the stop condition.

4.3.3.2 VIPS Adaptation

Using the Dynamic Linked Library (DLL) provided as implementation of VIPS3, we

parse the output XML document to obtain the four values.

The B.rect are obtained from the leaves nodes (LayoutNode elements) of the XML docu-

ment using the ObjectRect's attributes. The B.ec count is taken from the DOMCldNum

attribute and the words(B.text) from the content attribute of each LayoutNode.

4.3.4 jVIPS (Java VIPS)

In this section we describe the Java version of the VIPS algorithm [Pop12] and its ad-

aptation to our experiments.

4.3.4.1 JVIPS Description

jVIPS is another implementation of the VIPS model proposed by Cai [CYWM03]. Hence,

the prede�ned stop condition parameter is the same as VIPS : pDoC. JVIPS is imple-

mented in Java using the CSSBox rendering engine. The di�erence between VIPS and

jVIPS resides in two of the heuristic rules, the version of jVIPS prohibiting splitting

some blocks that VIPS would split. This implies that jVIPS often generates blocks as

wide as the Web page width.

3http://www.cad.zju.edu.cn/home/dengcai/VIPS/VIPS.html

http://www.cad.zju.edu.cn/home/dengcai/VIPS/VIPS.html

Chapter 4. Experimentation 68

This algorithm has been referenced and used in several projects, as an alternative to VIPS

in open source environments, so we think it is worthy to include it in our evaluation.

This algorithm uses the top-down strategy (cf. section 1.3.3).

4.3.4.2 JVIPS Adaptation

With jVIPS, obtaining the required data for evaluation was straightforward because

the source code is publicly available4. When the visual content structure is completed

(the stop condition is met) the B.rect, words(B.text) and B.ec are obtained from the

VisualStructure class attributes.

4.3.5 Summary

In Table 4.1 it is resumed the availability of an executable, the source code and technical

details of the implementation for each algorithm.

Algorithm Executable Source code Technical remarks

Blockfusion Yes Yes It is integrated deep inside
BoilerPipe application.

BoM Yes Yes Cross-browser implement-
ation. Ruby, Java and
JavaScript version available.
Can work also as browser
extension

VIPS Yes No Only for Microsoft operating
systems and for Internet Ex-
plorer version 6

JVIPS Yes Yes Java version of VIPS

Table 4.1: Segmentation algorithms been evaluated

4.4 Dataset construction

In this section we describe the method to build the dataset of annotated Web pages

(4.4.1) that serves as ground truth for the evaluation of segmentation algorithms. The

main motivation of this task is to evaluate the performance of our segmentation algorithm

Block-o-Matic (BoM) and compare it with state of the art algorithms. To accomplish

4https://github.com/tpopela/vips_java/

https://github.com/tpopela/vips_java/

Chapter 4. Experimentation 69

that, a set of pages have been crawled and annotated with the Manual-Design of Blocks

(MoB) tool to conform a Ground Truth (4.4.2).

The dataset can be consulted in http://www-poleia.lip6.fr/~sanojaa/BOM/inventory/.

4.4.1 Dataset organization

The dataset holds the o�ine version of Web pages, together with their segmentations

obtained by the di�erent algorithms (including the ground truth), organized in categories.

It is designed as a Web application organized in di�erent levels of detail. Figure 4.1

shows the general architecture of the dataset repository. Within a collection, each page

Figure 4.1: Dataset architecture

is rendered with di�erent rendering engines with di�erent prede�ned stop conditions

values. To each quadruple (page, render engine, algorithm, prede�ned stop condition)

corresponds a segmentation performed on that page, and rendered by that engine, using

one algorithm with a prede�ned stop condition. A set of block descriptors (cf. Section

4.2) and the vector scores are associated to the segmentation (cf. Section 3.3.2) Web

pages are taken from the GOSH (GOogle SearcH) collection that we built. It is described

below.

4.4.1.1 GOSH Collection

Web pages in this collection are selected with respect to their category. This selection

is based in the categorization made by Brian Solis [Sol14], �The Conversation Prism�.

It depicts the social media landscape from ethnography point of view. In this work,

we considered the �ve most common of these categories, namely Blog, Forum, Picture,

Enterprise and Wiki. For each category, a set of 25 sites have been selected using Google

http://www-poleia.lip6.fr/~sanojaa/BOM/inventory/

Chapter 4. Experimentation 70

search to �nd the pages with the highest PageRank. Within each of those sites, one page

is crawled 5. The GOSH collection contains 125 pages.

4.4.1.2 Rendering

Di�erent rendering engines are used. They are encapsulated using Selenium WebDriver6.

The Selenium Chrome driver is used for BoM and BF implementation while Internet

Explorer driver is used for VIPS implementation. The CSSBox rendering engine for

JVIPS.

4.4.1.3 Collection post-processing

A Web page rendered with di�erent engines may result in di�erences in the display. The

most common case are the white spaces between the window borders and the content.

We must assure that all renders of the same Web page have the same dimensions. For

that reason, we check the above mentioned white space and remove them.

The average importance is computed for all segmentations in the dataset (cf. Section

3.2.3)

4.4.2 Ground truth construction

The human assessor selects a set of elements that compose a block. Then we deduce the

bounding rectangle of the block and compute the word and elements count. This is a

time consuming and error prone task. To speed up the process we have developed the

tool MoB (Manual-design of Blocks)7. It assists human assessors to select the elements

that form a block and automatically extract all the information needed.

The tool provides to the user a partial segmentation with candidates blocks. These

blocks corresponds to the DOM elements that have content (e.g.: text and images). It

provides the following operations:

5https://github.com/asanoja/web-segmentation-evaluation/tree/master/dataset
6http://docs.seleniumhq.org/projects/webdriver
7http://www-poleia.lip6.fr/ sanojaa/BOM/

https://github.com/asanoja/web-segmentation-evaluation/tree/master/dataset
http://docs.seleniumhq.org/projects/webdriver

Chapter 4. Experimentation 71

Figure 4.2: Screenshot of the MoB tool

• Block selection. Click on the area of a block to select it.

• Fine block selection. Select blocks that are covered by other ones.

• Accept block. The selected block becomes a terminal block (leaf).

• Merge two blocks. After selecting two blocks make them one.

• Delete a block. Remove the selected block, its children are passed to the parent of

the deleted block.

• Insert block on element. Create a new block based on element clicked.

• Insert custom block. Given two coordinates draw a block.

• Add label. Assign a label to a block.

• Flatten segmentation. Remove non-terminal blocks.

• Resolve overlapping. Try to adjust blocks geometry to avoid overlapping (experi-

mental)

• Send to repository. Send current segmentation to the repository server becoming

part of the dataset.

Figure 4.2a shows the editing environment of the tool while in Figure 4.2b the �nal

segmentation (with block descriptors) is sent to repository.

The ground truth was assessed by human assessors at LIP6 laboratory. We plan to crawl

a bigger set of pages and to include other assessors to do this task.

Chapter 4. Experimentation 72

4.5 Experiments and results

In this section, we present the results of evaluating the four segmentation algorithms

described in Section 4.3. In Section 4.5.1 (respectively 4.5.2) we present how the para-

meters of the tested algorithms are set (respectively of the evaluation). Sections 4.5.3 to

4.5.4 present the results of the evaluation: block correspondence and text coverage.

The algorithms were evaluated on the GOSH collection based on the measures de�ned

in Section 3.3. These measures evaluate di�erent aspects of a segmentation algorithm

for a given quadruple (page, render engine, algorithm, granularity) as parameter.

4.5.1 Setting the stop condition parameters

The accuracy of the measures directly depends on the way the ground truth is built. If

the human assessors de�ned blocks of a certain granularity in the ground truth, the stop

condition of each algorithm need to be adjusted accordingly.

In the present work our goal is to detect blocks of medium size. We do not focus neither

in detecting only large blocks, such as header, menu, footer and content, or in detecting

blocks at a too high level of detail (sentences, links or single images). Instead, we focus

on detecting part of the page that represent signi�cant pieces of information, such as a

blog post, table of content, image and caption, set of images, forum response, and so

forth. This is a most challenging task for segmentation algorithms.

Thus, in the following experiments, the parameters were set accordingly, so that each

algorithm produces medium size blocks. In table 4.2 are listed the parameters used for

each algorithm.

Algorithm Parameter

Blockfusion ϑmax = 0.38

BoM pA = 5, pD = 50px, pND = 100

VIPS DoC = 4

JVIPS DoC = 4

Table 4.2: Segmentation algorithms parameters

Chapter 4. Experimentation 73

4.5.2 Setting the thresholds

Setting the relative threshold tr (cf. Section 3.3.2) is not so obvious, as the notion of

�good block� is quite subjective.

In this work, we �xed tr to 0.1 as we observed, on a signi�cant number of example, that

it corresponds to our notion of good block. In the future, we plan to perform supervised

machine learning with a large number of users to determine the right value. Each user

will annotate the segmentation blocks with the corresponding block in the ground truth

if (s)he thinks that the blocks su�ciently match. The ti parameter is set to 0.1, based

on our experience with the collection. Because rendering engines may produce some

small di�erences in their rendering, we introduce a geometric tolerance tt to help in the

comparison of the rectangles. The value of this parameter is �xed based on the experience

in working on the collection. It is category-dependent. In general cases blocks rectangles

do not di�ers in more than ± 2 pixels. For the whole collection, the best value appears

to be 1 pixel. In table 4.3 are listed the parameters used for the evaluation.

Algorithm Parameter

Relative threshold tr = 0.1

Importance threshold ti = 0.1

Geometric tolerance tt = 1

Table 4.3: Segmentation evaluation parameters

4.5.3 Computing block correspondence

We computed the di�erent metrics for block correspondence, as de�ned in Section 3.3.2.

Table 4.4 shows the scores (average of the metrics on all the documents of the collection)

obtained by the di�erent algorithms on the GOSH collection. The GTB column repres-

ents the total blocks in the ground truth. Table 4.5 shows the the average of the metrics

taking the importance into account. The IGTB column represents the total important

blocks in the ground truth.

Algorithm Cc Co Cu Cm Cf Cq GTB

BF 1.10 0.20 0.29 4.74 1.06 1.59 7.08

BoM 3.34 0.49 0.54 1.76 1.68 4.37 7.08

JVIPS 1.71 0.36 0.81 2.64 6.95 2.89 7.08

VIPS 1.55 0.40 0.73 2.56 2.53 2.69 7.08

Table 4.4: Correspondence metrics for the global collection with tr = 0.1 and tt = 1

Chapter 4. Experimentation 74

Algorithm ICc ICo ICu ICm ICf ICq IGTB

BF 0.57 0.15 0.28 1.57 0.64 1.00 2.76

BoM 1.41 0.18 0.32 0.70 0.77 1.91 2.76

JVIPS 0.43 0.17 0.48 1.47 1.06 1.08 2.76

VIPS 0.49 0.23 0.50 1.06 0.94 1.21 2.76

Table 4.5: Correspondence metrics with importance for the global collection with
tr = 0.1, tt = 1 and ti = 0.1

Several observations can be done:

• BoM obtain the best result for score Cq, as it is more accurate, thanks for its

high values of correct blocks Cc. It produces very few serious errors (Cm, Cf) with

respect to the other algorithms. It deals good with the chosen the stop condition

parameter, as indicated by its low values for Co and Cu. BoM present the highest

value for the ICq score, indicating that it does not miss many important blocks.

• BF obtain the worst result for Cq, but with a low level of false alarms. In other

words, BF does not detect all the correct blocks (mainly, it misses the blocks that

are not located in the center of the page) but detects good blocks, with a rather

good granularity. This is mainly due to the fact that BF uses the text density for

determining blocks. As the blocks on the sides of the pages have a low text density,

it is hard for BF to detect them. Important blocks are located in the center of the

visible area, that is where BF �nds the majority of blocks. For that reason the

score ICq is slightly better than the Cq score.

• VIPS and JVIPS have comparable results in terms of correct blocks and missed

blocks. However, JVIPS generates a lot of false alarms. This is due to a speci�c

heuristic rules used in JVIPS that tends to detect blocks as wide as the page width,

as mentioned in section 4.3.4. This is relevant for blocks like headers or footers, but

not for the content located in the center of the page. JVIPS present a better Cq

score that VIPS because it �nd slightly more correct blocks than VIPS. Conversely,

VIPS has better performance than JVIPS considering the important blocks. That

is maybe because JVIPS �nds important blocks as headers, navigation but misses

important blocks located at the visible part of the content.

In order to study the adequacy between segmentation algorithms and Web page categor-

ies, tables 4.6 and 4.7 list the values for the Cq and ICq metrics by category. Figure

4.3 and 4.4 show both scores obtained by the di�erent algorithms for the �ve categories

above mentioned. Each algorithm is represented by a color bar, the dashed lines are the

Chapter 4. Experimentation 75

Category BF BoM JVIPS VIPS AVG GTB

blog 1.32 4.11 2.79 2.68 2.72 7.26

enterprise 1.58 4.00 2.58 2.54 2.68 6.17

forum 2.75 6.38 4.19 3.50 4.20 10.69

picture 1.32 3.64 2.20 2.28 2.36 5.32

wiki 1.29 4.38 3.14 2.71 2.88 7.29

Table 4.6: Cq average values by categories for the global collection with tr = 0.1 and
tt = 1

Category BF BoM JVIPS VIPS AVG IGTB

blog 0.63 1.37 0.74 1.00 0.93 2.11

enterprise 1.13 2.13 1.38 1.46 1.52 2.88

forum 1.25 2.50 0.94 1.13 1.45 3.63

picture 1.04 1.92 1.00 1.24 1.30 2.68

wiki 0.95 1.71 1.24 1.14 1.26 2.67

Table 4.7: ICq average values by categories for the global collection with tr = 0.1,
tt = 1 and ti = 0.1

Figure 4.3: Average Cq score by categories for table 4.6

averages over all the collection. The AVG line represent the average correct blocks while

TAVG represent the average of expected blocks in the ground truth.

We make the following observations:

• The best results for Cq are obtained for the Picture collection. The reason is prob-

ably because picture pages have a regular and simple structure. This observation

also holds, though attenuated, for the Enterprise category. For the metric ICq the

best performance is for the blog category. The visible part of these kind of pages

are commonly formed by a header, lateral menus and the beginning of the blog

post. They are standard in almost all blogs.

Chapter 4. Experimentation 76

Figure 4.4: Average ICq score by categories for table 4.7

• The worst results for the Cq metric are obtained for the Forum category. The reason

for this, is probably that forum pages are constituted of several question/answers

blocks, each of them having a complex structure (including avatars, email addresses,

and so on) which is not easy to detect by algorithms. For the ICq metric the worst

performance is also for the forum category, probably because blocks that identify

the forum and the question are missed.

• BF performs well for Forum. As those kinds of pages contain many text (ques-

tion/responses) blocks, the text density is su�cient to detect most of them, but

not those surrounding the main content. Algorithms miss a lot of blocks in this

category. Even BoM, which performs over the average, still misses the half of the

blocks. The worst performance for the ICq score for BF is in the blog category. It

misses blocks of the top of the visible part of pages, which are usually considered

as important. This is mainly due to the fact that BF uses the text density for

determining blocks. As the blocks on the top of the pages have a low text density,

it is hard to BF to detect them.

• JVIPS has problems with the Blog collection. These pages do not have blocks that

occupy the whole width of the page. Instead, they have many small blocks alloc-

ated horizontally that JVIPS cannot detect. This observation also holds, though

attenuated, for the ICq category. Probably it misses the menus and the blog title.

4.5.4 Computing text coverage

We computed the text coverage as de�ned in Section 3.4.2. Table 4.8 gives the (rounded)

values for the whole collection and for each category of pages. The �rst observation is

that the coverage obtained by all the algorithms are quite high. This means that each

Chapter 4. Experimentation 77

Algorithm all forum blog wiki picture enterprise

BF 56 42 85 91 14 37

BoM 69 75 87 91 61 71

JVIPS 86 100 80 98 87 92

VIPS 95 96 95 94 95 95

Table 4.8: Text coverage values for each algorithm

of them is able to perform the basic task of text extraction. It appears that Blockfusion

does not perform well for Blog and Wiki. However, this is mainly due to the fact that,

for those categories, BF misses a lot of blocks (as seen above), thus misses their content.

4.6 Discussion

In this section we presented the experiments and results of applying our approach to Web

page segmentation evaluation. The experiments are designed in such a way that segment-

ation algorithms must �nd midsize pieces of information in Web pages. The results show

that BoM presents the best performance among the four segmentation algorithms tested.

This is due to the fact that the combination of both strategies (composite block detec-

tion and merging) presented used by BoM algorithm (cf. Chapter 2) is close to the way

assessors build and discover blocks in the ground truth.

After applying the evaluation model de�ned in Section 3 we observe that metric Cc

for the correct block has very low values. The concept of correct block is very strict

(same rectangle and content signi�cantly similar). This observation is shared with that

of Kreuzer et al. [Kre13]. They discuss the low values of the F-score measure of correct

blocks in their random and popular datasets. They report that for almost every evaluated

algorithm the correct blocks are very few.

However, we think that the model and the measures presented in this work helps to have a

more integral comparison of the segmentations. As we mentioned, an over-segmentation

is not an serious error, neither an under-segmentation. In fact, this appears frequently

in Web page segmentation. Kreuzer et al. only consider a block as correct or missed. By

taking into account the over and undersegmentation, it is possible to have a score (Cq)

that better represents the performance of a segmentation.

However, some precisions must be given concerning the adaptation of algorithms to our

model. Algorithms such as BF do not include any other information than text, thus it

is hard to adapt. It has some problems when a complete segmentation is expected, not

Chapter 4. Experimentation 78

only the main content text. The other three algorithms was not that hard to adapt, and

their segmentations are complete and comparables.

We do not include algorithms following the graph theoretic approaches since they are

hard to implement. Only the speci�cations are published in the articles. There is no

public implementation available. We tried to contact them but the responses were either

vague or evasive. Adding more algorithms is left as future work. However, the chosen

algorithms allow us testing our evaluation framework.

The inclusion of two versions of the metrics, one considering the importance and the other

not, allows us having a better understanding of the performance of a segmentation. That

allow us to observe how e�ective an algorithm can be under this particular situation. We

plan, as a future work, to extend the model with more metrics.

Chapter 5

Applications

In this chapter we present two applications of the BoM algorithm. We present the

Pagelyzer tool for Web page version comparison, which is the main contribution of the

LIP6 to the European Project SCAPE1 (5.1). Then we describe the migration of archived

Web pages from HTML4 to HTML5 format, in order to avoid emulation due to format

obsolescence (5.2).

5.1 Pagelyzer

Pagelyzer is a tool developed in the context of the European project SCAPE. It compares

two Web pages versions and decides if they are similar or not. Figure 5.1 shows two

versions of an example Web page. The blocks marked in green color are blocks the

content of which has changed from one version to another. Blocks with unchanged

content are in red.

Applications of Pagelyzer are mainly:

• Web harvesting : check if a crawl is correct and adjust crawl frequency (higher

frequency if page changes).

• Migration: check if migration (e.g. arc to warc) operation works correctly.

1http://www.scape-project.eu/

79

http://www.scape-project.eu/

Chapter 5. Applications 80

Figure 5.1: Change detection example in two Web page versions

5.1.1 How does it work?

Pagelyzer takes two urls and two browsers types (e.g. Firefox as default and chrome)

and one comparison type as input (image-based, hybrid or content-based) and output a

score indicating if they are similar or dissimilar.

It can be described in three steps:

1. For each url given as input, it captures the screen in PNG format and also pro-

duces an HTML document integrating the visual cues, called Decorated HTML.

This allows saving the state of a browser at capture time and make the solution

independent from a particular browser.

2. In a second step, each page is segmented using the BoM algorithm. At the end of

this step, two XML trees, representing the segmented Web pages are returned. The

XML format of such trees is called ViXML [PBSG10]. The Web page segmentation

is considered only for the structure and hybrid comparison types. For more details

about Web page segmentation, the reader can refer to Section 2.

3. In a third step, visual and structural descriptors are extracted. Images (snapshots)

are �rst described by color descriptors and also by SIFT descriptors. For image

representation, Bag of Words (BoWs) representation is used. Structural descriptors

are based on Jaccard indices and also based on the Vi-XML �les di�erences. The

structural and visual di�erences are merged to obtain a similarity vector used to

determine if the two urls are similar or disimilar, according to [LTGC12].

Chapter 5. Applications 81

5.1.2 Implementation

There are two releases: the functional prototype and the �nal release. The �rst version

of the tool was developed as a Ruby application while the �nal release was developed as

a Java JAR package.

5.1.2.1 Functional prototype

This version is composed of three components: capture, analyser and change detection

tools. It uses the Ruby version of BoM (cf. Section 2.6).

The capture tool, performs the �rst step of the Pagelyzer process. Web pages are pro-

cessed using Selenium Web driver. The visual cues are obtained through JavaScript

script that are injected to the browsers and the screen-shots are obtained using selenium

features.

In earlier versions of the tool, VIPS [CYWM03] was used to segment Web pages. Using

Block-o-Matic removes the VIPS restriction of using Internet Explorer as a Web browser

and also enhances the precision of visual block extraction and the hierarchy construc-

tion. Ruby 1.9.2 was used as programming language for implementing the segmentation

algorithm, Nokogiri libraries was used for HTML/XML manipulation.

Figure 5.2 shows the change detection process for each comparison type. For the image

comparison (considering only the activities within the long dashed boxes) the process

starts with two urls and two browsers for each url. For both url, the screenshot is taken

and passed as input to the Marcalizer component which �nally gives a score. Marcalizer

was developed by the MLIA team at LIP6.

In the same �gure, we describe the structure comparison (activities within the dotted

boxes). For the two urls, the decorated HTML is captured and passed as input to the

pageanalyzer.rb component. The latter produces as output two ViXML �les, one for each

url. They are the input for the ViDIFF.jar which produces a Delta �le, describing the

changes between the to versions according to [PBSG10]. This delta �le, together with

both xml �les, is the input to the Marcalizer component which gives the �nal score.

The hybrid comparison involves all the activities within the solid lined box. It shows

how both image and structure comparison type are merged using all components of the

system.

Chapter 5. Applications 82

Figure 5.2: Change detection �ow for image, structure and hybrid comparison types
in the prototype version

We chose the Ruby language because it allows producing a prototype rapidly. Indeed,

it was important to get feedback from other project contributors. This prototype has

been used for early testing, but it is not suitable as a product because it uses �les to

interchange data between components. While in a standalone con�guration this is no

major problem, in a high performance environment (like Hadoop) it adds an unnecessary

overhead and ine�cient use of resources.

5.1.2.2 Final release

In order to improve e�ciency (use of resources) in high performance computing environ-

ments, the option to use input data as streams and headless browsers has been chosen.

Screenshots and source code are captured directly from their hosting sites and processed

internally with no extra �les needed. Moreover, the Pagelyzer tool was rewritten with

the Java programming language in order to ease the integration of Marcalizer and with

other components developed by other teams in the SCAPE project. This version of

Pagelyzer uses the Java version of BoM (cf. Section 2.6).

Figure 5.3 shows the modi�cations made to the architecture of Pagelyzer for the �nal

release version. The ViDIFF component was removed and its functionality was included

Chapter 5. Applications 83

in the Marcalizer component. One of the major changes in this release is the replacement

of the capture component with a fork of the browser-shot-tool developed by the Internet

Memory Foundation (IM)2. The decorated HTML was replaced with by the JSON version

of a selenium webdriver instance. In this way the segmentation tool interact directly with

a browser instance. In order to optimize the con�guration in high performance computing

environments a con�guration �le was included. This minimize the parameters needed to

be passed for each invocation of the tool.

A demo of the �nal release is in http://scape.lip6.fr/scape-demo-sites/pagelyzer/.

It has been presented at the Scape �nal workshop joint with the DL'14 conference in

London. The source code can be accessed in the Github website https://github.com/

openplanets/pagelyzer

Figure 5.3: Change detection �ow for image, structure and hybrid comparison types
in the �nal release

5.1.3 Practical application

The �nal release was used to perform the correctness based benchmarks and validation

test for the SCAPE project Web QA work�ow. A dataset of 449 pairs of urls was used,

2https://github.com/sbarton/browser-shot-tool-mapred

http://scape.lip6.fr/scape-demo-sites/pagelyzer/
https://github.com/openplanets/pagelyzer
https://github.com/openplanets/pagelyzer

Chapter 5. Applications 84

annotated by the IM3.

Figure 5.4 shows the result of this process according to the di�erent annotations (Similar,

Dissimilar) and according to the page type (Blank page, HTML, image, etc). Total

values are calculated as a weighted mean by type. For HTML pages, visual and content

comparison result that Pagelyzer agreed with the manual annotation by 68% for visual

and 76% for content, which are promising results.

However, the hybrid approach, which is still on beta version, stays behind the other two

approaches while it should give better results.

bechmarks.png bechmarks.png

Figure 5.4: Benchmarking results for Web QA

5.1.4 Perspectives and outlook

The development of Pagelyzer is a successful story in the context of the Quality Assur-

ance Workpackage of SCAPE project. It can be used in other domains or context of

applications. Several members of the project contact us to help them to use this tool

(or part of it) to their own projects. A interesting application could be the project of

a national Web archive in Venezuela [San12]. This is still a draft project, but all the

3http://www.scape-project.eu/deliverable/d11-2-quality-assurance-work�ow-release-2-release-report

Chapter 5. Applications 85

insights and experience gained along this last three years can be very helpful to develop

a Web archive system adapted to this country.

5.2 Block-based migration of HTML4 standard to HTML5

standard

In this section we describe how to use the segmentation to migrate pages content from one

format to another. In 5.2.1, we reference other experiences where the HTML5 standard

has been chosen as a �nal format and we introduce the main issue of migrating HTML4

pages to HTML5 format. Finally in 5.2.2 we propose a solution to this issue (in the

context of Web archives). Some experiments are reported.

5.2.1 Introduction

Obsolescence, adjustment, and renewal are necessary parts of the development cycle.

Improvements usually require changes. That includes technologies, products, processes,

and people, as well. In July 2012, the WWW Consortium introduced a recommendation

for HTML54. It represents an important change regarding the preceding version of

HTML and the XHTML speci�cation. For instance it introduces the semantic tags

allowing browsers to easily access contents, audio and video among others. The �rst

question raised by HTML5 is: why to use it? Laws [Law13] discusses this from the

competition point of view and he concludes that organizations and publishers need to

be ready for this technological change if they want to outperform their competitors and

stay in the technological race. This raises another question: once publishers switch to

HTML5, what happens with the current HTML4 content?

In the context of Web archiving we are interested in what is going to happen to archived

content (HTML 4 and XHTML formats).

In general, Web archives store pages along with all their dependencies. We agree with

Rosenthal [RLRM05] that eventually, modern browsers will no longer be able to render

document in HTML4 or XHTML formats in a proper way. Thus, a strategy for their

preservation must be taken. Archivists must decide to perform either a emulation or

migration.

4The proposed recommendation is out September 2014

Chapter 5. Applications 86

In the context of digital preservation the emulation is �the replicating of functionality of

an obsolete system, but on the hard- and software environment in which the object is

rendered� [VdH07]. In other words emulation consists in recreating the environment in

which a Web page was originally created. This implies keeping old versions of tools or

old tools. Migration refers to transferring data to newer system environments [Gar96].

This includes converting a Web page �le from one �le format to that another so the

resource including its functionalities remains fully accessible.

Rosenthal also describes the di�culties of using only emulation. Its cost is very high in

terms of storage and operation. Conversely, migration of Web content from an obsolete

format to a current one seems to be a good strategy to minimize emulation, but it

increases data duplication and there is the risk of loosing document information in the

process. The obsolescence of Web content is usually associated with its presentation, that

is, its rendering and visual aesthetic. However, the document semantic should be also

taken into account also. The main goal of HTML5 is to improve the language, keeping it

readable by humans and by computers and useful, and able to enrich the semantic content

of documents. As an example, Park [PLR+10], present their experience in the migration

of ETD (Electronic Theses and Dissertations) from the PDF format to HTML5 format.

Most of ETD have linked multimedia documents and connected by hyperlinks (in PDF

format). Storing them in this format, requires to have the corresponding multimedia

readers, libraries and plug-in, as well. HTML5 is a convenient migration format because

in this way it is possible to have one single �le that has all of the content linked together,

including all of the multimedia information in the ETD and metadata available for Web

search indexing and other general tasks.

In the remainder of this section, we present why and how we use Web page segmentation

to perform the migration of HTML4 pages to HTML5 format.

Several e�orts have taken place in order to make uniform the migration from one format

to another [Pfe10]. Existing methods usually perform a tag-by-tag migration, in other

words they translate tags. However, it is di�cult to de�ne an appropriated translation

of HTML5 semantic tags (which de�nes the layout of the Web page) from HTML4 pages

where such tags do not exist. Semantic tags have no impact in the rendering of the page,

but they help to organize the content into coherent regions. Thus, using segmentation

seems relevant for the migration, which can be performed by segmenting HTML4 pages

and incorporating semantic tags to the result.

Chapter 5. Applications 87

5.2.2 Proposed solution

We propose to segment an HTML4 Web page, with the appropriate prede�ned stop

condition parameter so that the resulting blocks will correspond to the semantic tags in

the HTML5 format.

Then we compare the labels found by the segmentation with a manually labeled seg-

mentation as ground truth. If both versions are similar the migration is achieved. If

they are di�erent we measure how discrepant they are in order to determine the causes

and the possible actions to improve the migration method.

Finally, migration is evaluated in order to measure whether it has a�ected the rendering

of the Web page. We use for this an adaptation of the framework of Chapter 4.

Figure 5.5: Labels for the manual and computed segmentation

In the following section we describe the experiments to evaluate our migration approach.

5.2.3 Experiments

In this section we present the setup of experiments, their design and the measures used.

5.2.3.1 Experimentation design

The MIG5 collection is a subset of the GOSH collection presented in Section 4.4. It only

contains Web pages in HTML4 format. We keep the same categories organization (blog,

enterprise, forum, picture and wiki) in this collection.

Chapter 5. Applications 88

Category Pages

blog 5

enterprise 9

forum 14

picture 7

wiki 5

total 40

Table 5.1: MIG5 pages by categories

The �rst experiment is devoted to measure to what extent the labels found with the

Block-o-Matic segmentation algorithm match to those in a ground truth of manually

labeled blocks.

The second experiment aims of measuring if including the semantic elements a�ects the

rendering of the page. The block correspondence method, as presented in Section 3.4.3,

is used for evaluating the correctness of the migration. The segmentation of the original

Web page is used as a ground truth, while the segmentation of the migrated Web page

is the evaluated segmentation.

5.2.3.2 Ground truth building

Table 5.1 shows the organization of the MIG5 collection. It is composed of 40 pages

organized by category.

The MoB tool (cf. Section 4.4.2) is used to annotate the blocks. Besides specifying

the blocks, assessors assign a label to each block. Labels corresponds to a subset of the

semantic elements de�ned in the HTML5 speci�cation (header, footer, section, article,

nav, aside). Appendix B shows the complete list of semantic elements. The stop condition

for all the experiments is set to pA = 6. Indeed, through experiments, we noticed that

this value generates blocks likely to correspond to template elements (cf. Section 1.2.2).

The separation is set to pD = 30 because usually these regions can be very close one to

each other.

5.2.3.3 Assigning labels

The BoM labeling method is modi�ed to support the semantic elements as labels. Heur-

istics rules are de�ned in order to determine the label of each block. These rules assign

Chapter 5. Applications 89

labels depending on the position of a block and its relationship to the others blocks. A

block is treated di�erently if it resides in the visible part of the page (i.e. the part of the

page visible without using scrolling). For instance, a block is labeled as header if it is

the �rst block found vertically (on top of the page), it resides in the visible part of the

page, it is a simple block and it has siblings. A block with the same characteristics but

outside of the visible area and at the bottom of the page is labeled as footer.

For the labels section and nav, two additional conditions are considered. If the proportion

of elements a block covers is greater than a constant, it can be considered a section. If the

proportion of hyperlinks (i.e. <A> elements) a block covers is greater than a constant,

it can be considered a nav. Algorithm 5 describe the label assignment method for all

possible cases.

5.2.3.4 Measuring labels

The manual segmentation ΦG and the computed segmentation ΦP are formal de�ned

in Section 1.3.2. The manual segmentation, produced by assessors, takes the rendered

DOM of a Web page (W) in HTML4 �le format and produces the W ′G block graph. The

computed segmentation takes the same rendered DOM (W) and produces the W ′P block

graph.

We present the labels of a segmentation as a list of labels (labels(W ′A)). The order of

the list follows the reading order (cf. Section 2.4), considering only the leaves nodes.

Using the intersection of both list we get the amount of correct labels found by the

segmentation with respect to the ground truth. The correct_labels measure is de�ned

as:

correct_labels(W ′G,W
′
P) = labels(W ′G) ∩ labels(W ′P)

Figure 5.5, shows the labels for the manual and computed segmentation. The list of

labels from the manual segmentation is: { header, nav, aside, article, aside, article,

footer}. The list of labels for the computed segmentation is: { header, aside, article,

aside, article, footer}. For simplicity, we denote the labels with one letter. Thus, the list

of labels for both example segmentations are:

• labels(W ′G) = {H,N,D,A,D,A, F}

• labels(W ′P) = {H,D,A,D,A, F}

Chapter 5. Applications 90

Data: Block: b
Result: B.label

1 if b.weight > pA then

2 if b in the visible part of page then
3 if b is the �rst block on top then
4 if proportion of elements covered by b is greater than a constant then
5 if b is composite then
6 B.label=SECTION;
7 else if b has no siblings then
8 B.label=SECTION;
9 else

10 B.label=HEADER;
11 end

12 else

13 B.label=HEADER;
14 end

15 else if proportion of elements covered by b is greater than a constant then
16 if b is composite then
17 B.label=SECTION;
18 else

19 B.label=ARTICLE;
20 end

21 else if proportion of hyperlinks covered by b is greater than a constant then
22 B.label=NAV;
23 else if b is in the middle/center of the page then
24 B.label=ARTICLE;
25 else if b is the last block at bottom then

26 B.label=FOOTER;
27 else if b is at left/right of the page then
28 B.label=ASIDE;
29 else

30 B.label=ARTICLE;
31 end

32 else if b is the last block at bottom then

33 B.label=FOOTER;
34 else

35 B.label=ARTICLE;
36 end

37 end

Algorithm 5: Label assignment algorithm

Chapter 5. Applications 91

The migration of Figure 5.5 is not perfect since the segmentation did not �nd the block

labeled as nav. Instead, it found the block labeled as header covering the corresponding

region of the page. We measure this error with the Levenshtein distance [Nav01].

error(W ′G,W
′
P) = levenshtein_distance(labels(W ′G), labels(W ′P))

For the example the error is 1: it is su�cient to insert 1 label (N) in the computed

segmentation label list to produce the list of the ground truth.

We represent also the results in terms of precision and recall:

precision =
correct_labels(W ′G,W

′
P) + |labels(W ′G)|

|labels(W ′G)|

recall =
correct_labels(W ′G,W

′
P) + |labels(W ′G)|

correct_labels(W ′G,W
′
P)

5.2.3.5 Measuring rendering errors

In order to measure to what extent the migration a�ects the rendering of the migrated

Web page, we use the correspondence measures de�ned in Section 3.4.3. We do not

consider the metric version with importance.

We have two rendered DOM, W and W5, where W is the rendered DOM of a Web

page in HTML4 format and W5 is the rendered DOM of the migrated Web page. They

respectively produce the blocks graphs W ′P and W5′P . Setting the parameters tr = 0,

ti = 0, ND = 100 and NP = 10 we get the correspondence measures. We choose these

parameters because we want to evaluate all blocks, so we consider all as signi�cant and

all are equally important.

If we �nd only correct blocks then the migration may be perfect, if both segmenta-

tions produce the same segmentation there is a high probability that their rendering

is the same. If an oversegmentation or an undersegmentation occurs that means that

the inclusion of semantic elements in W5 modi�ed the size and position of the blocks,

therefore segmentations are di�erent. Blocks missed and false alarms are possible when

the rendering changes, slightly displacing content in the migrated version.

Chapter 5. Applications 92

category correct_labels(W ′G,W
′
P) |labels(W ′G)| error(W ′G,W

′
P) precision recall

blog 2.50 3.50 2.00 0.28 0.4

enterprise 2.22 3.55 2.38 0.37 0.60

forum 3.00 3.53 1.44 0.14 0.17

picture 2.55 3.00 1.55 0.14 0.17

wiki 2.20 3.00 1.90 0.26 0.36

Table 5.2: Average values for correct, expected labels and error for the MIG5 collection

5.2.4 Results

In this section we present the results of applying our approach to migrated Web pages

from HTML4 format to HTML5 format. We present how we measure the labels found by

the algorithm compared to the ground truth and the rendering errors using the evaluation

model presented in Chapter 3

5.2.4.1 Measuring labels

Table 5.2 shows the average values of the metrics de�ned in Section 5.2.3.4 for the MIG5

collection separated by categories. In general BoM produces a list of labels similar to

the ground truth. In average it adds 1.85 unexpected labels. This is probably due to the

introduction of semantic elements that a�ect the segmentation and the stop condition,

producing smaller blocks than expected. For instance, for a blog post with two para-

graphs, labeled as a whole in the ground truth, each paragraph become a block in the

migrated page generating one additional unexpected label. It is interesting that both

rendering looks equal but the segmentations di�ers.

Forum category presents the lowest error rate, because in general the question/response

region of the page is detected in both segmentation, as one block labeled as article. The

worst performance is for the enterprise category, because this type of pages are structured

with complex navigation and main content, and the probability of mislabeling is high.

Table 5.2 shows the precision and recall metrics. Figure 5.6 shows these metrics graph-

ically. The BoM algorithm has a high precision for the forum and picture categories.

As we mention earlier both type of pages produces small and simple list of labels, while

pages in the other categories their labeling is more complex, therefore less precision.

However, all results present high recall values indicating that the algorithm �nd enough

good labels but with a considerable error rate.

Chapter 5. Applications 93

Figure 5.6: Precision and recall for the MIG collection

Algorithm Cc Co Cu Cm Cf Cq GTB

blog 6.50 0.50 0.00 0.00 0.50 7.00 7

enterprise 4.00 0.33 0.33 1.11 2.77 4.67 6.45

forum 3.41 0.59 0.41 2.11 1.29 4.41 6.59

picture 2.71 1.00 0.29 2.00 0.71 4.00 6.71

wiki 6.00 0.0 0.00 0.60 0.40 6.00 6.6

Table 5.3: Correspondence metrics for the MIG5 collection with tr = 0.1 and tt = 1

5.2.4.2 Measuring rendering errors

Table 5.3 shows the average correspondence metrics, by category, for the MIG5 collection.

The values of the Cq metric shows that the performance of the algorithm in both versions

(original and migrated) is good. However, there are some missed blocks, particularly in

the enterprise, forum and picture categories because of shifting of blocks due to rendering

changes. But in both cases, the formatted content displayed is equal. Blog and wiki

categories present the best performance. The regions in these type of pages are simple

and the position and order of blocks are standard. The regions are well separated, making

it easy to segmentation algorithms like BoM to detect correct labels. For instance, almost

all pages in this categories start by a header followed by a navigation, then the aside at

left, the main article and the footer at the bottom of the page.

Chapter 5. Applications 94

5.2.5 Perspectives and outlook

In this section we presented our approach to block-based migration of Web pages from

HTML4 format to HTML5 format. Using the segmentation, we produce a migrated

version according to the HTML5 speci�cation. We analyzed how the algorithm assigned

labels to blocks in comparison to a ground truth of manually labeled segmentation.

The rendering errors were measured using the block correspondence metrics de�ned in

Section 3.3.2. The results show that, in the context of digital preservation, migrating

Web pages from one format to another is possible using the BoM Web page segmentation

algorithm, minimizing the emulation in Web archives. We show that there is no data loss

in the process and no important changes in the rendering (few false alarms). However

the segmentation is a�ected by the semantic tags. For instance, some browsers have no

default style for these elements, and they are taken by the algorithms as invisible or not

valid elements, therefore they are ignored. The evaluation model presented in Chapter

3 is very helpful to measure the performance and detecting the rendering errors. The

parameters and the stop conditions of the algorithm can be adjusted by category (using

Machine Learning techniques) to have better performance depending on page category.

This is left as future work.

There are still challenges to overcome. Our approach gives insights of the upcoming issue

raised by the migration of Web content in the context of Web preservation.

Conclusion

This thesis studies some problems raised by the segmentation of Web pages. It focuses

on di�erent points: the precision and genericity of the segmenter, as well as the accuracy

and fairness of the evaluation of segmenters. More speci�cally, we address the following

challenges and contribute as follows:

• We propose Block-o-matic (BoM) a new Web page segmentation algorithm. This

work is the �rst to take into account in the design of the segmenter, precision and

genericity as quality criteria of the segmentation. As our results show, it allows

segmenting di�erent type of Web pages without previous knowledge of the content,

with a better accuracy than the other tested segmenters. Thanks to a bottom-up

strategy and heuristic rules de�ned in the W3C standards, we achieve genericity

and precision.

• We propose a framework that allows us evaluating the correctness of segmentations

algorithms whatever of the approach they follow. To the best of our knowledge,

this is the �rst evaluation work that focuses on segmentation intrinsic properties,

which are content and blocks rectangles. Existing approaches do have evaluation,

but they are driven by speci�c applications and thus are not generic enough to

compare all the segmentations algorithms. Our approach is based on a ground

truth, built thanks to a tool (MoB) we developed and that substantially eases

the manual design of segmentation. Our dataset contains 125 pages, covering �ve

categories (25 pages per category).

• We present an evaluation model that de�nes several useful metrics for the evalu-

ation. One metric is devoted to the text extraction task, the other ones compute

how well the blocks detected by a given algorithm match the ones of the ground

truth. We use this model for evaluating and comparing four segmentation al-

gorithms, adapted in order to �t into our framework. The results show that the al-

gorithms perform reasonably for extracting text from pages. With respect to block

95

Conclusion 96

correspondence, results slightly depend on the category of the pages considered.

We include the importance in the evaluation model, so that algorithms that detect

important blocks get a better score. Our experiments show that BoM is the most

precise and generic algorithm in the evaluation. That is because it presents the low-

est occurrence of oversegmentations and undersegmentations (granularity issues)

and it works reasonably well in all type of pages considered in the evaluation.

• We present two applications using our segmentation algorithm and the evaluation

framework. Pagelyzer is a tool developed in the context of the European project

SCAPE which use BoM for comparing two Web pages versions to decide if they

are similar or not. In order to minimize the emulation in Web archives, we develop

a tool for migrating Web pages from HTML4 format to HTM5 format, using BoM.

In the rest of this chapter, we outline our plans for future work, and discuss possible

research topics beyond what has been addressed in the thesis.

Web page segmentation There are many directions for future work related to the

Web page segmentation. The labeling of blocks is a crucial task in Web page segmenta-

tion. It de�nes the role a block plays, therefore how it should be treated. In this thesis

we show that using the labels from HTML content categories allow us being generic.

However, it would be interesting to give a more precise description of the role a block

plays, in order to give more interesting information to applications that relies on the

segmentation. For instance, we may indicate if a block labeled as footer is an appendix,

an index or a verbose license agreement or if a block labeled as nav is a navigation of

�rst, second of third level.

The reading order is useful information given from the segmentation. As shown in

Chapter 5, it is a useful information to processes segmentation output. For instance, a

mobile application that relies on segmentation for visualizing a Web page, can give the

option to the viewer to read the page content, block by block, following the reading order.

Following intuition, in this thesis we studied the document processing domain looking

for insights for implementing the reading order in the Web page segmentation. We found

that usually the reading order follows the order that blocks are found. However, we think

that there is still space for more improvements, perhaps related to the type of pages and

include reading order measures in the evaluation.

The rectangle is the intrinsic shape of blocks. Block rectangles depend on page elements

boxes which are also rectangular. However, rectangles may overlap, causing ambiguities

Conclusion 97

in the visual presentation. This is an issue since the visual presentation is more and more

important for client applications. For instance in the example of the mobile application

mentioned above, while showing a block, parts of other blocks (overlaping) may be

included in the visualization. Thus, we plan to add support for non-manhattan layouts

in the segmentation. Instead of rectangles, polygons will be used.

We will study the new visual characteristics on Web pages (CSS3): background images,

animations, Ajax, among others. Intuitively, a solution to this issue is to consider the

visual cues as part of the content of the page. This may not be so simple. Indeed, this

is mainly the reason why the CSS exists, i.e. to separate the content of its presentation.

Evaluation There are many directions for future work around the evaluation. First,

we plan to use machine learning (ML) techniques for learning the tolerance parameter

tr. We also plan to use ML for discovering new relevant score functions, based on the

feedback of users giving a manual score to segmentations from a training set.

Second, we will continue to experiment segmentation algorithms on more pages and more

page categories. Our aim is to develop a complete evaluation framework in order to help

users in choosing the best segmentation algorithm depending on their application and

on the category of pages they manipulate. Of course, as the results show that some

algorithms have problems with some categories, they can also be used to help improving

the e�ciency of segmentation algorithms for those categories.

Third, we plan to evaluate the segmentation algorithms with respect to the type of task

that uses the segmentation. Task types include Web entity extraction, layout detection,

boilerpipe detection, visualization in small screen devices, and, in the context of digital

libraries, optimization of Web archives crawling, change detection between Web page

versions, among others. This implies de�ning scripts that perform the task (including

calls to segmentation) and de�ning new ad hoc metrics for each task. Also, we would like

to de�ne a generic model for Web page segmentation that can express all the existing

approaches. This would allow for an analytic evaluation of segmentation algorithms.

Fourth, we plan to include in the evaluation the reading order of the segmentation. A

good candidate is the metric introduced by Liang [LPH01]. Evaluating the reading order

is reduced to computing the number of moves required to obtain the reading order of the

ground truth from the one of the computed segmentation.

Appendix A

HTML5 Content Categories

In this section we list the HTML5 content categories and their exceptions. Table source

: http://www.w3.org/TR/html5/index.html

Table A.1: HTML5 content categories.

Category Elements Exceptions

Metadata content base; link; meta; noscript; script; style; tem-

plate; title

-

Flow content a; abbr; address; article; aside; audio; b; bdi;

bdo; blockquote; br; button; canvas; cite; code;

data; datalist; del; dfn; div; dl; em; embed; �eld-

set; �gure; footer; form; h1; h2; h3; h4; h5; h6;

header; hr; i; iframe; img; input; ins; kbd; key-

gen; label; main; map; mark; math; meter; nav;

noscript; object; ol; output; p; pre; progress; q;

ruby; s; samp; script; section; select; small; span;

strong; sub; sup; svg; table; template; textarea;

time; u; ul; var; video; wbr; Text

area (if it is a des-

cendant of a map

element)

Sectioning con-

tent

article; aside; nav; section -

Heading content h1; h2; h3; h4; h5; h6; -

Continued on next page

99

HTML5 Content categories 100

Table A.1 � continued from previous page

Category Elements Exceptions

Phrasing content a; abbr; audio; b; bdi; bdo; br; button; canvas;

cite; code; data; datalist; del; dfn; em; embed;

i; iframe; img; input; ins; kbd; keygen; label;

map; mark; math; meter; noscript; object; out-

put; progress; q; ruby; s; samp; script; select;

small; span; strong; sub; sup; svg; template; tex-

tarea; time; u; var; video; wbr; Text

area (if it is a des-

cendant of a map

element)

Embedded con-

tent

audio canvas embed iframe img math object svg

video

-

Interactive con-

tent

a; button; embed; iframe; keygen; label; select;

textarea;

audio (if the

controls attribute

is present); img

(if the usemap

attribute is

present); input (if

the type attribute

is not in the

Hidden state);

object (if the

usemap attrib-

ute is present);

video (if the con-

trols attribute is

present)

Sectioning roots blockquote; body; �eldset; �gure; td -

Form-associated

elements

button; �eldset; input; keygen; label; object;

output; select; textarea; img

-

Listed elements button; �eldset; input; keygen; object; output;

select; textarea

-

Submittable ele-

ments

button; input; keygen; object; select; textarea -

Resettable ele-

ments

input; keygen; output; select; textarea -

Labelable ele-

ments

button; input; keygen; meter; output; progress;

select; textarea

-

Continued on next page

HTML5 Content categories 101

Table A.1 � continued from previous page

Category Elements Exceptions

Reassociateable

elements

button; �eldset; input; keygen; label; object;

output; select; textarea

-

Palpable content a; abbr; address; article; aside; b; bdi; bdo;

blockquote; button; canvas; cite; code; data; dfn;

div; em; embed; �eldset; �gure; footer; form;

h1; h2; h3; h4; h5; h6; header; i; iframe; img;

ins; kbd; keygen; label; main; map; mark; math;

meter; nav; object; output; p; pre; progress;

q; ruby; s; samp; section; select; small; span;

strong; sub; sup; svg; table; textarea; time; u;

var; video

audio (if the con-

trols attribute is

present); dl (if the

element's children

include at least

one name-value

group); input (if

the type attribute

is not in the

Hidden state); ol

(if the element's

children include

at least one li ele-

ment); ul (if the

element's children

include at least

one li element);

Text that is not

inter-element

whitespace

Script-supporting

elements

script; template -

Appendix B

Semantic HTML5 elements

In this section we list the HTML5 semantic elements. Table source : http://diveintohtml5.info

Table B.1: HTML5 semantic elements

Element Description

<section> The section element represents a generic document or application section.

A section, in this context, is a thematic grouping of content, typically

with a heading. Examples of sections would be chapters, the tabbed

pages in a tabbed dialog box, or the numbered sections of a thesis. A

Web site's home page could be split into sections for an introduction,

news items, contact information.

<nav> The nav element represents a section of a page that links to other pages or

to parts within the page: a section with navigation links. Not all groups

of links on a page need to be in a nav element � only sections that

consist of major navigation blocks are appropriate for the nav element.

In particular, it is common for footers to have a short list of links to

common pages of a site, such as the terms of service, the home page, and

a copyright page. The footer element alone is su�cient for such cases,

without a nav element.

Continued on next page

103

Semantic HTML5 elements 104

Table B.1 � continued from previous page

Element Description

<article> The article element represents a component of a page that consists of

a self-contained composition in a document, page, application, or site

and that is intended to be independently distributable or reusable, e.g.

in syndication. This could be a forum post, a magazine or newspaper

article, a Web log entry, a user-submitted comment, an interactive widget

or gadget, or any other independent item of content.

<aside> The aside element represents a section of a page that consists of content

that is tangentially related to the content around the aside element, and

which could be considered separate from that content. Such sections

are often represented as sidebars in printed typography. The element

can be used for typographical e�ects like pull quotes or sidebars, for

advertising, for groups of nav elements, and for other content that is

considered separate from the main content of the page.

<hgroup> The hgroup element represents the heading of a section. The element

is used to group a set of h1�h6 elements when the heading has multiple

levels, such as subheadings, alternative titles, or taglines.

<header> The header element represents a group of introductory or navigational

aids. A header element is intended to usually contain the section's head-

ing (an h1�h6 element or an hgroup element), but this is not required.

The header element can also be used to wrap a section's table of contents,

a search form, or any relevant logos.

<footer> The footer element represents a footer for its nearest ancestor sectioning

content or sectioning root element. A footer typically contains informa-

tion about its section such as who wrote it, links to related documents,

copyright data, and the like. Footers don't necessarily have to appear

at the end of a section, though they usually do. When the footer ele-

ment contains entire sections, they represent appendices, indexes, long

colophons, verbose license agreements, and other such content.

<time> The time element represents either a time on a 24 hour clock, or a precise

date in the proleptic Gregorian calendar, optionally with a time and a

time-zone o�set.

<mark> The mark element represents a run of text in one document marked or

highlighted for reference purposes.

Appendix C

Web page segmentation evaluation

metrics

In this section we describe the metrics used for the evaluation of segmentation by al-

gorithms in the state of the art (cf. Section 1.4.4)

C.1 Adjusted Rand Index

The Rand index [Ran71] is a measure of the similarity between two data clusterings.

Given a set of n elements S = {o1, . . . , on} and two partitions of S to compare, X =

{X1, . . . , Xr}, a partition of S into r subsets, and Y = {Y1, . . . , Ys}, a partition of S into

s subsets, de�ne the following:

• a, the number of pairs of elements in S that are in the same set in X and in the

same set in Y

• b, the number of pairs of elements in S that are in di�erent sets inX and in di�erent

sets in Y

• c, the number of pairs of elements in S that are in the same set in X and in di�erent

sets in Y

• d, the number of pairs of elements in S that are in di�erent sets in X and in the

same set in Y

105

Web page segmentation evaluation metrics 106

The Rand index, R, is:

R =
a+ b

a+ b+ c+ d
(C.1)

Intuitively, a+ b can be considered as the number of agreements between X and Y and

c+ d as the number of disagreements between X and Y .

The Adjusted Rand index (AdjRand) [VEB09] is the corrected-for-chance of the Rand

index.

AdjRand =
Index− ExpectedIndex

MaxIndex− ExpectedIndex
(C.2)

Higher values indicate higher quality, with a maximum value of 1.

C.2 Normalized Mutual Information

This metric was introduced by Strehl and Ghosh [SG03]. It is the mutual information

between two partitioning normalized by the geometric mean of their entropies (H):

NMI(X,Y) =
I(X,Y)√
H(X)H(Y)

(C.3)

where, X and Y are the two partitions and H(X) and H(Y) their entropies.

This measure has been commonly used recently for computing the accuracy of clustering

algorithms.

As with AdjRAND, higher values indicate higher quality, with a maximum value of 1.

C.3 Dunn Index

The Dunn index aims to identify dense and well-separated clusters. It is de�ned as

the ratio between the minimal inter-cluster distance to maximal intra-cluster distance.

For each cluster partition, the Dunn index [Dun74] can be calculated by the following

formula:

Web page segmentation evaluation metrics 107

D = min
1≤i≤n

{
min

1≤j≤n,i 6=j

{
d(i, j)

max1≤k≤n d
′(k)

}}
(C.4)

where d(i, j) represents the distance between clusters i and j, and d
′
(k) measures the

intra-cluster distance of cluster k. The inter-cluster distance d(i, j) between two clusters

may be any number of distance measures, such as the distance between the centroids of

the clusters.

Alcic et al. [AC11] use this metric over a cluster of DOM elements, that is i,j and k are

blocks.

C.4 Nested Earth Mover's Distance

Given two set of features of an image, the Nested Earth Mover's Distance (Nested-

EMD) [CML10, RTG00] is a distance based on bipartite graph matching, de�ned as

the minimum cost of matching the bins (discretes intervals) of two histograms. It is

accepted as a general metric between signatures for image retrieval. Intuitively, given

two distributions, one can be seen as a mass of earth properly spread in space, the other

as a collection of holes in that same space. Then, the EMD measures the least amount

of work needed to the holes with earth. Here, a unit of work corresponds to transporting

a unit of earth by a unit of ground distance.

C.5 Precision, Recall and F1 score

These are common measures in information retrieval. Here, the segmentation is seen as

a task of retrieval of blocks. The precision is the fraction of retrieved instances that are

relevant, while the recall is the fraction of relevant instances that are retrieved. Both

precision and recall are therefore based on an understanding and measure of relevance.

In web page segmentation [SSL11, LLT11, ZJKZ10], precision is measured using block

instances as follows:

precision =
|{correctblocks} ∩ {blocksfound}|

|blocksfound|
(C.5)

Web page segmentation evaluation metrics 108

The recall is measured as:

recall =
|{correctblocks} ∩ {blocksfound}|

|correctblocks|
(C.6)

The F1 score is a measure that combines of the precision and recall measures.

It is the harmonic mean of precision and recall.

F1 =
precision · recall
precision+ recall

(C.7)

Appendix D

Web Segmentation approaches

details

In this section we show details of the web page segmentation approaches: text-based and

vision-based.

D.1 Text-based

In the �eld of text analysis, words, syllables and sentences have been widely used as

statistical measures to identify structural patterns in textual parts of web documents.

It can be seen as a special form of segmentation [CM00]. Regular expressions have

been used to parse a web page looking for blocks. Even if it is possible to use regular

expressions for this task, it is commonly accepted that they are not the best choice,

because HTML is not a regular language.

In text based approaches, the text can be extracted either from the HTML source code

of a web page or the rendered DOM. For instance Kohlschuetter [KN08] takes only an

input web page �le but Sun [SSL11] obtains the text from DOM nodes, (rendered DOM).

In contrast to regular expressions, the concept of text density and link text density

[SSL11, KN08] have been more accepted in the web page segmentation community. Sun

et el. [SSL11] work with the DOM nodes in order to �gure out the number of characters

and tags that each node contains. Then, statistical information can be added to the

node :

109

Web Segmentation approaches details 110

• CharNumber: number of all characters in its subtree

• TagNumber: number of all tags in its subtree.

Then, they de�ne the Text Density of a node TDi as the ratio of its CharNumber (Ci)

to its TagNumber (Ti) :

TDi =
Ci

Ti

where Ci is the number of all characters under i, Ti is the number of all tags under i.

Furthermore, they de�ne the Composite Text Density (CTDi), which adds additional

statistical information to each node as below:

• LinkCharNumber (LC) : number of all hyperlinks characters in its subtree

• LinkTagNumber (LT): number of all hyperlink tags in its subtree.

The authors argue that a node with too many hyperlinks and less text is less important,

thus getting a low density value. A node that contains much non-hyperlink text and few

hyperlinks is more important, and receives a high density value.

On the other hand, Kohlschuetter [KN08] de�nes the text density, word-wrapping the

page text at a constant line width wmax (in characters). The density ρ(bx) of the block

bx can be then formulated as follows:

ρ(bx) =
Number of tokens in bx
Number of lines in bx

(D.1)

The wrapping width is intended to serve as a discriminator between sentential text (high

density) and template text (low density). The author proposes a value of wmax = 80 as

optimal.

The task of detecting block-separating gaps on a web page can be seen as �nding neigh-

boured text portions with a signi�cant changes in the block-by-block text density.

Web Segmentation approaches details 111

The decision of when to merge two adjacent blocks is made by comparing them with

respect to their text densities. Kohlschuetter de�nes the slope delta between two adjacent

blocks x and y as:

∆ρ(x, y) =
|ρ(x)− ρ(y)|

max(ρ(x), ρ(y))
(D.2)

If the slope delta is below a certain threshold Θmax, it means that the blocks belong to

one single segment and should therefore be merged. The author reports that the optimal

value is Θmax = 0.38.

Figure D.1 shows an example of the blockfusion algorithm.

Figure D.1: Text-based approach example on a web page. Source: [KN08]

Text based approaches do not fully use all web page characteristics. Therefore there are

some types of pages where those approaches fail. Using only text for segmenting a web

page is still incomplete because there are other important elements to take into account,

such as images, formatted content, among others.

D.2 Vision-based

According to human perception, people view a web page as a set of di�erent semantic

objects rather than a single object. Some research e�orts show that users always expect

that certain functionalities of a web page (e.g. navigational links, advertisement bar)

appears at certain position of that page [Ber03].

Web Segmentation approaches details 112

Actually, when a web page is displayed, the spatial and visual cues can help the user to

(unconsciously) divide the web page into several semantic parts. Therefore, it might be

possible to automatically segment the web pages by using the spatial and visual cues

The vision-based content structure of a page is obtained by combining the DOM structure

and the visual cues. The most known algorithm that follows this approach is VIPS,

described by Cai et al. in [CYWM03].

They de�ne a web page as a triple Ω = (O,Φ, δ). O = Ω1,Ω2, . . . ,ΩN is a �nite set of non

overlapping blocks. Each block can be recursively viewed as a sub-web-page associated

with sub-structure induced from the whole page structure. Φ = {ϕ1, ϕ2, . . . , ϕT } is a
�nite set of separators, including horizontal separators and vertical separators. Every

separator has a weight indicating its visibility, and all the separators in the same have

the same weight. δ is the relationship of every two blocks in O and can be expressed as:

δ = O×O → Φ∪ {NULL}. Since each Ωi ∈ O is a sub-webpage of the original page, it

has similar content structure as Ω. Recursively, we have

Ωt
s =

(
Ot

s,Φ
t
s, δ

t
s

)
(D.3)

Ot
s =

{
Ω1
st,Ω

2
st, . . . ,Ω

Nst
st

}
(D.4)

Φt
s =

{
ϕ1
st, ϕ

2
st, . . . , ϕ

Tst
st

}
(D.5)

In the VIPS algorithm, instead of operating solely on the DOM tree, a vision-based

content structure of a page is deduced by combining the DOM structure and the visual

cues.

The web page is �rst fragmented into several big blocks and the hierarchical structure of

this level is recorded. For each big block, the same segmentation process is carried out

recursively until we get su�ciently small blocks, i.e. blocks with a DoC value greater

than PDoC.

An example of this algorithm can be seen in Figure 1.1 In the �rst round, the DoC blocks

1 and 3 is greater than the PDoC. An extra round is needed where block 2 is divided.

The process stop when blocks from 2.1 to 2.5 meet the criteria.

Web Segmentation approaches details 113

Another algorithm that follows this approach is presented in Zhang et al.[ZJKZ10]. They

focus on �nding the set of nodes that are labeled as Content Row. A content row is a

set of leaf nodes of the DOM tree which all the items arrange horizontally, which are all

siblings. Content rows are merged if there is an overlap between them.

As a second step, the block headers are detected. A content row is a block header except

if:

1. the height of the content row exceeds a threshold or the content row is not a block

header.

2. the content row contains a paragraph of text which breaks a line.

3. the words count of the �rst item of the content row on the left is larger than a

threshold.

4. two vertically adjacent content rows share the same CSS style.

5. its next content row does not locate beneath it.

Each detected block header detected is a separator of two semantic blocks. A semantic

block is a stack of vertically aligned content rows.

Although Zhang algorithm algorithm is very simple and e�cient (for wikis, forums and

blogs), it is not suitable for general use. There are several web pages where this algorithm

will fail, mainly pages designed in not uniform way. For instance artistic designs where

elements break the constraints of the block-level and inline-level content models.

The main issues with this approach are the possibility of ambiguous rules and an in-

complete set of visual rules. For instance, this approach su�ers of the same problem as

DOM-based approaches, special rules are needed in order process all elements in web

pages, such is the case of <TABLE>, , <P>, elements.

Bibliography

[AC11] Sadet Alcic and Stefan Conrad. Page segmentation by web content clus-

tering. In Proceedings of the International Conference on Web Intelligence,

Mining and Semantics, WIMS '11, pages 24:1�24:9, New York, NY, USA,

2011. ACM.

[AT00] Chieko Asakawa and Hironobu Takagi. Annotation-based transcoding for

nonvisual web access. In Proceedings of the Fourth International ACM

Conference on Assistive Technologies, Assets '00, pages 172�179, Arlington,

Virginia, USA, 2000. ACM.

[AY13] M.Elgin Akpinar and Yeliz Yesilada. Heuristic role detection of visual ele-

ments of web pages. In Florian Daniel, Peter Dolog, and Qing Li, editors,

Web Engineering, volume 7977 of Lecture Notes in Computer Science, pages

123�131. Springer Berlin Heidelberg, 2013.

[Bal06] Shumeet Baluja. Browsing on small screens: Recasting web-page segment-

ation into an e�cient machine learning framework. In Proceedings of the

15th International Conference on World Wide Web, WWW '06, pages 33�

42, New York, NY, USA, 2006. ACM.

[Ber03] Michael L Bernard. Criteria for optimal web design (design-

ing for usability). Technical report, University of West Flor-

ida, 2003. http://uwf.edu/ddawson/d3net/documents/web_usability/

optimal%20web%20design.pdf.

[Bre02] Thomas M Breuel. Representations and metrics for o�-line handwriting

segmentation. In Frontiers in Handwriting Recognition, 2002. Proceedings.

Eighth International Workshop on, pages 428�433, Ontario, Canada, 2002.

IEEE.

115

http://uwf.edu/ddawson/d3net/documents/web_usability/optimal%20web%20design.pdf
http://uwf.edu/ddawson/d3net/documents/web_usability/optimal%20web%20design.pdf

Bibliography 116

[BSG11] Myriam Ben Saad and Stéphane Gançarski. Archiving the web using page

changes patterns: A case study. In Proceedings of the 11th Annual Interna-

tional ACM/IEEE Joint Conference on Digital Libraries, JCDL '11, pages

113�122, Ottawa, Ontario, Canada, 2011. ACM.

[CCMM98] R Cattoni, T Coianiz, S Messelodi, and CM Modena. Geometric layout

analysis techniques for document image understanding: a review. ITC-irst

Technical Report, 9703(09), 1998.

[CCR05] Jaime S Cardoso and Luís Corte-Real. Toward a generic evaluation of image

segmentation. Image Processing, IEEE Transactions on, 14(11):1773�1782,

2005.

[CKP08] Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. A graph-theoretic

approach to webpage segmentation. In Proceedings of the 17th international

conference on World Wide Web, pages 377�386, Beijing, China, 2008. ACM.

[CM00] Franco Crivellari and Massimo Melucci. Web document retrieval using

passage retrieval, connectivity information, and automatic link weighting�

trec-9 report. In TREC9, page 611, Gaithersburg, USA, 2000. TREC.

[CML10] Jiuxin Cao, Bo Mao, and Junzhou Luo. A segmentation method for web

page analysis using shrinking and dividing. International Journal of Par-

allel, Emergent and Distributed Systems, 25(2):93�104, 2010.

[CMZ03] Yu Chen, Wei-Ying Ma, and Hong-Jiang Zhang. Detecting web page struc-

ture for adaptive viewing on small form factor devices. In Proceedings of

the 12th International Conference on World Wide Web, WWW '03, pages

225�233, New York, NY, USA, 2003. ACM.

[Con02] Jim Conallen. Building Web applications with UML. Addison-Wesley Long-

man Publishing Co., Inc., 2002.

[CXMZ05] Yu Chen, Xing Xie, Wei-Ying Ma, and Hong-Jiang Zhang. Adapting web

pages for small-screen devices. IEEE Internet Computing, 9(1):50�56, 2005.

[CYWM03] Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. Extracting content

structure for web pages based on visual representation. In Proceedings of

the 5th Asia-Paci�c Web Conference on Web Technologies and Applications,

APWeb'03, pages 406�417, Xian, China, 2003. Springer-Verlag.

[CYWM04] Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. Block-based web

search. In Proceedings of the 27th Annual International ACM SIGIR Con-

ference on Research and Development in Information Retrieval, SIGIR '04,

pages 456�463, New York, NY, USA, 2004. ACM.

Bibliography 117

[Dun74] Joseph C Dunn. Well-separated clusters and optimal fuzzy partitions.

Journal of cybernetics, 4(1):95�104, 1974.

[FdMdS+11] David Fernandes, Edleno Silva de Moura, Altigran Soares da Silva, Berthier

Ribeiro-Neto, and Edisson Braga. A site oriented method for segmenting

web pages. In Proceedings of the 34th International ACM SIGIR Conference

on Research and Development in Information Retrieval, SIGIR '11, pages

215�224, Beijing, China, 2011. ACM.

[FM81] King-Sun Fu and JK Mui. A survey on image segmentation. Pattern

recognition, 13(1):3�16, 1981.

[Gar96] Jhon Garret. Preserving digital information. Technical report, Commission

on Preservation and Access and the Research Libraries Group, 1996.

[Goo02] Danny Goodman. Dynamic HTML - the de�nitive reference: a compre-

hensive resource for HTML, CSS, DOM and JavaScript (2. ed.). O'Reilly,

2002.

[HHMS07] Gen Hattori, Keiichiro Hoashi, Kazunori Matsumoto, and Fumiaki Sugaya.

Robust web page segmentation for mobile terminal using content-distances

and page layout information. In Proceedings of the 16th International Con-

ference on World Wide Web, WWW '07, pages 361�370, Ban�, Alberta,

Canada, 2007. ACM.

[HKW99] Jianying Hu, Ramanujan Kashi, and Gordon Wilfong. Document image

layout comparison and classi�cation. In 1999. ICDAR '99. Proceedings of

the Fifth International Conference on Document Analysis and Recognition,

pages 285�288, Bangalore, India, Sep 1999.

[HL14] Jianying Hu and Ying Liu. Analysis of documents born digital. In David

Doermann and Karl Tombre, editors, Handbook of Document Image Pro-

cessing and Recognition, pages 775�804. Springer London, 2014.

[KN08] Christian Kohlschütter and Wolfgang Nejdl. A densitometric approach to

web page segmentation. In Proceedings of the 17th ACM conference on

Information and knowledge management, pages 1173�1182, New York, NY,

USA, 2008. ACM.

[Kre13] R. Kreuzer. A quantitative comparison of semantic web page segmentation

algorithms. Master's thesis, Universiteit Utrecht, 2013.

[Law13] Byron Laws. Seriously, another format? you must be kidding. CSE NEWS,

36(2):41, 2013.

Bibliography 118

[LH02] Shian-Hua Lin and Jan-Ming Ho. Discovering informative content blocks

from web documents. In Proceedings of the Eighth ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, KDD '02,

pages 588�593, Edmonton, Alberta, Canada, 2002. ACM.

[LLT11] Xinyue Liu, Hongfei Lin, and Ye Tian. Segmenting webpage with gomory-

hu tree based clustering. Journal of Software, 6(12):2421�2425, Dec 2011.

[LPH01] Jisheng Liang, Ihsin T. Phillips, and Robert M. Haralick. Performance

evaluation of document structure extraction algorithms. Computer Vision

Image Understanding, 84(1):144�159, October 2001.

[LPHL02] Xiaoli Li, Tong-Heng Phang, Minqing Hu, and Bing Liu. Using micro

information units for internet search. In Proceedings of the Eleventh Inter-

national Conference on Information and Knowledge Management, CIKM

'02, pages 566�573, New York, NY, USA, 2002. ACM.

[LTGC12] Marc Teva Law, Nicolas Thome, Stéphane Gançarski, and Matthieu Cord.

Structural and visual comparisons for web page archiving. In Proceedings of

the 2012 ACM Symposium on Document Engineering, DocEng '12, pages

117�120, New York, NY, USA, 2012. ACM.

[MBR07] Jalal U. Mahmud, Yevgen Borodin, and I. V. Ramakrishnan. Csurf: A

context-driven non-visual web-browser. In Proceedings of the 16th Inter-

national Conference on World Wide Web, WWW '07, pages 31�40, New

York, NY, USA, 2007. ACM.

[Meu05] Jean-Luc Meunier. Optimized xy-cut for determining a page reading order.

In Proceedings of the Eighth International Conference on Document Ana-

lysis and Recognition, ICDAR '05, pages 347�351, Washington, DC, USA,

2005. IEEE Computer Society.

[Nav01] Gonzalo Navarro. A guided tour to approximate string matching. ACM

Comput. Surv., 33(1):31�88, March 2001.

[NWM09] Zaiqing Nie, Ji-Rong Wen, and Wei-Ying Ma. Webpage understanding:

Beyond page-level search. SIGMOD Rec., 37(4):48�54, mar 2009.

[PBSB09] Ayelet Pnueli, Ruth Bergman, Sagi Schein, and Omer Barkol. Web page

layout via visual segmentation. Technical report, HP Laboratories, 2009.

[PBSG10] Zeynep Pehlivan, Myriam Ben-Saad, and Stéphane Gançarski. Vi-di�:

Understanding web pages changes. In Proceedings of the 21st Interna-

tional Conference on Database and Expert Systems Applications: Part I,

DEXA'10, pages 1�15, Berlin, Heidelberg, 2010. Springer-Verlag.

Bibliography 119

[Pfe10] Silvia Pfei�er. The De�nitive Guide to HTML5 Video. Apress, Berkely,

CA, USA, 1st edition, 2010.

[PLR+10] Sung Hee Park, Nicholas Lynberg, Jesse Racer, Philip McElmurray, and

Edward A Fox. Html5 etds. In Proceedigs of International Symposium on

Electronic Thesis and Dissertations, Austin, TX, USA, 2010.

[Pop12] Tomas Popela. Implementace algoritmu pro vizualni segmentaci www

stranek. Master's thesis, BRNO University of Technology, 2012.

[Ran71] William M Rand. Objective criteria for the evaluation of clustering meth-

ods. Journal of the American Statistical association, 66(336):846�850, 1971.

[RLRM05] David S. H. Rosenthal, Thomas Lipkis, Thomas Robertson, and Seth Mor-

abito. Transparent format migration of preserved web content. D-Lib

Magazine, 11(1), 2005.

[RTG00] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover's

distance as a metric for image retrieval. International Journal of Computer

Vision, 40(2):99�121, 2000.

[San12] Andrés Sanoja. Web archiving y su relevancia en el contexto de venezuela.

In José Luís Berroteran Nuñez-Mirian Carmona Rodríguez, editor, Con-

sideraciones Teórico-Políticas para la Cienca y Tecnología en la Revolución

Bolivariana Venezolana, pages 311�321. Publicaciones MPPCTI/ONCTI.

Ediciones Oncti, 2012.

[SG03] Alexander Strehl and Joydeep Ghosh. Cluster ensembles � a knowledge

reuse framework for combining multiple partitions. J. Mach. Learn. Res.,

3:583�617, March 2003.

[SG10] Myriam Ben Saad and Stéphane Gançarski. Using visual pages analysis

for optimizing web archiving. In Proceedings of the 2010 EDBT/ICDT

Workshops, EDBT '10, pages 43:1�43:7, New York, NY, USA, 2010. ACM.

[SKB08] F. Shafait, D. Keysers, and T.M. Breuel. Performance evaluation and

benchmarking of six-page segmentation algorithms. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 30(6):941�954, 2008.

[SLWM04] Ruihua Song, Haifeng Liu, Ji-Rong Wen, and Wei-Ying Ma. Learning block

importance models for web pages. In Proceedings of the 13th International

Conference on World Wide Web, WWW '04, pages 203�211, New York,

NY, USA, 2004. ACM.

Bibliography 120

[Sol14] Brian Solis. The conversation prism, 2014. https://conversationprism.

com.

[SSL11] Fei Sun, Dandan Song, and Lejian Liao. Dom based content extraction

via text density. In Proceedings of the 34th International ACM SIGIR

Conference on Research and Development in Information Retrieval, SIGIR

'11, pages 245�254, Beijing, China, 2011. ACM.

[Sze10] Richard Szeliski. Computer vision: algorithms and applications. Springer,

2010.

[TCL+99] Yuan Y Tang, Mb Cheriet, Jiming Liu, JN Said, and Ching Y Suen. Doc-

ument analysis and recognition by computers. Handbook of Pattern Recog-

nition and Computer Vision, edited by CH Chen, LF Pau, and PSP Wang

World Scienti�c Publishing Company, 1999.

[TS94] Yuan Y Tang and Ching Y Suen. Document structures: a survey. Interna-

tional journal of pattern recognition and arti�cial intelligence, 8(05):1081�

1111, 1994.

[VdH07] Je�rey Van der Hoeven. Emulation for digital preservation in practice:

The results. The International Journal of Digital Curation, 2(2):123�132,

Decembre 2007.

[VEB09] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic

measures for clusterings comparison: Is a correction for chance necessary?

In Proceedings of the 26th Annual International Conference on Machine

Learning, ICML '09, pages 1073�1080, Montreal, Quebec, Canada, 2009.

ACM.

[Vin09] Gujjar Vineel. Web page dom node characterization and its application to

page segmentation. In Proceedings of the 3rd IEEE International Confer-

ence on Internet Multimedia Services Architecture and Applications, IM-

SAA'09, pages 325�330, Piscataway, NJ, USA, 2009. IEEE Press.

[WCLH11] Ou Wu, Yunfei Chen, Bing Li, and Weiming Hu. Evaluating the visual

quality of web pages using a computational aesthetic approach. In Proceed-

ings of the Fourth ACM International Conference on Web Search and Data

Mining, WSDM '11, pages 337�346, Hong Kong, China, 2011. ACM.

[WT14] Chaw Su Win and Mie Mie Su Thwin. Web page segmentation and in-

formative content extraction for e�ective information retrieval. IJCCER,

2(2):35�45, 2014.

https://conversationprism.com
https://conversationprism.com

Bibliography 121

[XTL08] Yunpeng Xiao, Yang Tao, and Qian Li. Web page adaptation for mobile

device. In Wireless Communications, Networking and Mobile Computing,

2008. WiCOM '08. 4th International Conference on, pages 1�5, Dailan,

China, 2008.

[Yes11] Yeliz Yesilada. Web page segmentation: A review. Technical report, Univer-

sity of Manchester and Middle East Technical University Northern Cyprus

Campus, 2011.

[YS09] Xin Yang and Yuanchun Shi. Enhanced gestalt theory guided web page

segmentation for mobile browsing. In Web Intelligence and Intelligent

Agent Technologies, 2009. WI-IAT '09. IEEE/WIC/ACM International

Joint Conferences on, volume 3, pages 46�49, Milano, Italy, Sept 2009.

[YZ01] Yudong Yang and HongJiang Zhang. Html page analysis based on visual

cues. In Proceedings of the Sixth International Conference on Document

Analysis and Recognition, ICDAR '01, pages 859�864, Seattle, USA, 2001.

IEEE Computer Society.

[ZFG08] Hui Zhang, Jason E. Fritts, and Sally A. Goldman. Image segmentation

evaluation: A survey of unsupervised methods. Computer Vision and Image

Understanding, 110(2):260�280, 2008.

[ZG94] YJ Zhang and JJ Gerbrands. Objective and quantitative segmentation

evaluation and comparison. Signal processing, 39(1):43�54, 1994.

[Zha96] Y.J. Zhang. A survey on evaluation methods for image segmentation. Pat-

tern Recognition, 29(8):1335�1346, 1996.

[ZJKZ10] Aihua Zhang, Jiwu Jing, Le Kang, and Lingchen Zhang. Precise web page

segmentation based on semantic block headers detection. In Digital Con-

tent, Multimedia Technology and its Applications (IDC), 2010 6th Interna-

tional Conference on, pages 63�68, Seoul, South Korea, Aug 2010.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Web Page Segmentation and Evaluation
	1.1 Preliminars
	1.1.1 Web applications
	1.1.2 Rendering
	1.1.3 Rendered DOM
	1.1.4 Element positioning

	1.2 Web Page Characteristics
	1.2.1 Web page characteristics from the rendered DOM
	1.2.2 Characteristics related to the website
	1.2.3 Glossary

	1.3 Web page segmentation
	1.3.1 Concepts
	1.3.2 Notation
	1.3.3 Top-down versus bottom-up
	1.3.4 Basic Approaches
	1.3.5 Hybrids Approaches
	1.3.6 Conclusion on Web page segmentation algorithms
	1.3.7 Document processing and Web page segmentation
	1.3.8 Summary Table
	1.3.9 Discussion

	1.4 Segmentation evaluation
	1.4.1 Classification of evaluation methods
	1.4.2 Segmentation correctness evaluation
	1.4.3 Correctness measures in scanned document segmentation
	1.4.4 State of the art on evaluating Web page segmentation
	1.4.5 Summary table
	1.4.6 Discussion

	2 Block-o-Matic (BoM): a New Web Page Segmenter
	2.1 Preliminars
	2.2 Overview
	2.3 Fine-grained segmentation construction
	2.4 Composite block and flow detection
	2.5 Merging blocks
	2.6 Discussion

	3 Segmentation evaluation model
	3.1 Model adaptation
	3.2 Representation of segmentation
	3.2.1 Absolute representation of a segmentation
	3.2.2 Normalized Segmentation Representation
	3.2.3 Block importance

	3.3 Representation of the evaluation
	3.3.1 Measuring text coverage
	3.3.2 Measuring block correspondence

	3.4 Example
	3.4.1 Computing the importance
	3.4.2 Computing text coverage
	3.4.3 Computing block correspondence

	3.5 Discussion

	4 Experimentation
	4.1 Overview
	4.2 Block descriptors
	4.3 Tested segmentation algorithms
	4.3.1 BF (BlockFusion)
	4.3.2 BoM (Block-o-Matic)
	4.3.3 VIPS (Vision-based Web Page Segmentation)
	4.3.4 jVIPS (Java VIPS)
	4.3.5 Summary

	4.4 Dataset construction
	4.4.1 Dataset organization
	4.4.2 Ground truth construction

	4.5 Experiments and results
	4.5.1 Setting the stop condition parameters
	4.5.2 Setting the thresholds
	4.5.3 Computing block correspondence
	4.5.4 Computing text coverage

	4.6 Discussion

	5 Applications
	5.1 Pagelyzer
	5.1.1 How does it work?
	5.1.2 Implementation
	5.1.3 Practical application
	5.1.4 Perspectives and outlook

	5.2 Block-based migration of HTML4 standard to HTML5 standard
	5.2.1 Introduction
	5.2.2 Proposed solution
	5.2.3 Experiments
	5.2.4 Results
	5.2.5 Perspectives and outlook

	A HTML5 Content Categories
	B Semantic HTML5 elements
	C Web page segmentation evaluation metrics
	C.1 Adjusted Rand Index
	C.2 Normalized Mutual Information
	C.3 Dunn Index
	C.4 Nested Earth Mover's Distance
	C.5 Precision, Recall and F1 score

	D Web Segmentation approaches details
	D.1 Text-based
	D.2 Vision-based

	Bibliography

