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Chapter 1

Introduction

The model setting

What is the best strategy to find a missing object? It is clear that a systematic search may take a much longer time than a search involving some randomness. Let us look at a dog trying to find a ball in a garden. Typically, the dog will choose at random a direction, run for a (random) time in this direction and then search around the point it has reached for another random time. This means that not only the dog uses randomness, but also choose a two-phases strategy also called intermittent. The ballistic phases while the dog runs along straight lines alternate with some more systematic search following some kind of Brownian motion. This intermittent dynamics can also be observed in many biological phenomena. A typical example is water transport in confining media: the two phases are there diffusion in the bulk on one hand and surface exploration after adsorption (by hydrogen bond for instance). Other examples which are more linked to a strategy are facilitated search on DNA with phases of pure bulk diffusion and chain sliding, or vesicle transportation in living cells with phases of active transport by motor proteins or passive diffusion in the cytoplasm. This problem has been considered in [START_REF] Bénichou | Mean first-passage time of surface-mediated diffusion in spherical domains[END_REF][START_REF] Bénichou | Intermittent search strategies[END_REF] and this Ph.D thesis is a continuation of this work.

The first model which was considered in the references [START_REF] Bénichou | Mean first-passage time of surface-mediated diffusion in spherical domains[END_REF][START_REF] Bénichou | Intermittent search strategies[END_REF] (the model called 2-D) is that of a disk. A particle diffuses in it and seek to exit this disk through a "target", which is an interval on the boundary. In order to reach this goal, the particle alternates diffusion steps in the disk with diffusion along the boundary circle after adsorption for instance by hydrogen bond or some similar physical phenomenon. This boundary phase consists in some Brownian motion within very small distance to the circle, small meaning of the order of the size of the atoms that are there. In particular we model the ending of this boundary phase by saying that the particle is located then at distance a > 0 (a is small that is of the order of the size of the atoms there) from the circle; it loses its attraction to the boundary and starts a new bulk diffusion from there. It is then reasonable to say that boundary phases last for a random time following an exponential law. The parameters for this model are D 1 , D 2 , respectively the "speed" of diffusion on the boundary and the bulk phase, the small distance a, the parameter λ of the exponential law introduced before and which is half of the size of the target. In [START_REF] Bénichou | Mean first-passage time of surface-mediated diffusion in spherical domains[END_REF], the authors show that for some values of D 1 , D 2 , a, there is indeed a choice of λ minimizing t 1 (λ), the expectation of the time necessary to reach the target. The problem can also be stated in 3-D, as it was already done in [START_REF] Bénichou | Mean first-passage time of surface-mediated diffusion in spherical domains[END_REF].

The purpose of this work is three-fold.

(i) We begin by considering a model of surface-mediated diffusion with alternating phases of bulk and surface diffusion for a disk (2-D case). We provide rigorous mathematical formulation and resolution of the espace problem for surface-mediated diffusion. This formula involves the Sturm-Liouville theory applied to an appropriate self-adjoint operator. Considering an orthonormal basis of eigenvectors for this operator allows us to derive a new spectral representation of the mean exit time from the disk. In contrast to [START_REF] Bénichou | Optimal reaction time for surface-mediated diffusion[END_REF][START_REF] Bénichou | Mean first-passage time of surface-mediated diffusion in spherical domains[END_REF][START_REF] Rupprecht | Exact mean exit time for surface-mediated diffusion[END_REF][START_REF] Rupprecht | Kinetics of active surface-mediated diffusion in spherically symmetric domains[END_REF] in which the mean exit time relied on matrix inversions, the new spectral representation is more explicit and particularly well-suited to investigate the asymptotic behavior of the mean exit time in the limit of large desorption rate λ. For a point-like target ( = 0), we obtain the asymptotic behavior:

t 1 = A 1 √ λ + A 2 + A 3 √ λ + O 1 λ
, with explicit formulas for coefficients A i . For extended targets ( > 0), we establish the asymptotic approach to a finite limit T . The main result of this work is a rigorous proof that t 1 is asymptotically increasing. In addition, we show numerical evidence that t 1 = T -C 1 √ λ +O 1 λ , with C 1 > 0. This statement implies a somewhat counter-intuitive conclusion that the pure bulk phase is never an optimal search strategy.

(ii) From the model of the disk, we develop our problem to the models of the sphere (3-D case) and rectangle (Torus case). In these models, we investigate the similar problem as in the disk. In particular, by introducing self-adjoint operators, we using the orthonormal basis of eigenvectors of those operators to derive the spectral representation for t 1 . Then we investigate the asymptotic behavior of t 1 at large λ for both cases = 0 and > 0. Especially, for 3-D case, mathematically, use the spectral representation shows that (t 1 ) =0 is always infinite (which is easily observed in physics). We also consider numerical asymptotic behavior of t 1 to show that

t 1 >0 = T -C 1 √ λ + O 1
λ in these three models.

(iii) We introduce a new model called rectangle or torus model. In this model the particle moves in the rectangle [-π, π] × [-R, R] whose sizes are pairwise identified (that is why we also call this model torus model) and we investigate how the shape elongation affects the mean exit time. Changing the rectangle aspect ratio, one can significantly reduce the mean exit time, enhancing the search efficient D 2,crit below which the surface diffusion is always optimal, and prove that D 2,crit monotonously grows with R. If D 2 is not too small, the "gain" of the intermittent search strategy over surface diffusion as a function of R is shown to have a maximum. In other words, for a given set of parameters (a, , D 1 , D 2 ) the mean exit time can be optimized with respect to R, under the conditions that we identify.

Main results

In Ref. [START_REF] Bénichou | Mean first-passage time of surface-mediated diffusion in spherical domains[END_REF], the authors present a computation of the mean exit time t 1 to the target on the surface of a 2-D or 3-D spherical domain, which is based on an integral equation that can be solved analytically. Although an exact expression of t 1 can be given, it is not fully explicit, requiring the inversion of an infinite dimensional matrix. They then propose a method to approximate the mean exit time based on the fact that the matrix which they have to solve can be approximate by a diagonal matrix for small . They also show analytically that the mean exit time can be minimized as a function of the desorption rate from the surface.

Following their models, we introduce in chapter 3, 4 (2-D case and 3-D case) of this thesis another approach of the problem by using compact, self-adjoint operators. While not so different from [START_REF] Bénichou | Mean first-passage time of surface-mediated diffusion in spherical domains[END_REF], this approach is useful to control the resolvent of the main operator (or the infinite dimensional matrix in [START_REF] Bénichou | Mean first-passage time of surface-mediated diffusion in spherical domains[END_REF]) and allows us to use of the orthonormal basis of eigenvectors given by the spectral theorem for self-adjoint operators. This method lead us to obtain the spectral representation of the mean exit time, suitable in investigating the asymptotic behavior in the limit of large desorption rate λ. With this approach, we prove that the mean exit time eventually increases at large λ. As a result, there exists a minimum at positive λ if the derivative d t 1 dλ | λ=0 < 0. This proof leads us to determine the critical ratio for D 2 /D 1 , which called (D 2 /D 1 ) crit , so that t 1 has a minimum at some positive λ if (D 2 /D 1 ) > (D 2 /D 1 ) crit . This critical ratio has already been established in [START_REF] Bénichou | Mean first-passage time of surface-mediated diffusion in spherical domains[END_REF], but our study is more rigorous.

In the general case of > 0, we prove that t 1 converges to a finite limit as λ → ∞. Although the spectral representation of t 1 allows us to show that t 1 >0 is eventually increasing to a finite limit, we cannot give an explicit asymptotic development for t 1 . Therefore, in the rest of each chapter 3, 4, we use numerical computation to investigate the asymptotic behavior of the mean exit time. Even though our observations are conjectural, their validity is reinforced by the fact that they lead to the right asymptotics (Ref. [START_REF] Singer | Narrow escape. I[END_REF][START_REF] Singer | Narrow escape. II. The circular disk[END_REF][START_REF] Singer | Narrow escape. III. Non-smooth domains and Riemann surfaces[END_REF]) in the limit → 0.

We also show the precise asymptotic development of the mean exit time for the case = 0: in this case t 1 diverges as λ → ∞ in 2-D case. The 3-D case is a different from the 2-D one in the sense that the exit time t 1 is infinite either from Chapter 2

Mathematical background

In this chapter, we would like to present some mathematical facts that we use in this thesis.

Separable Hilbert Space

In this thesis, we approach the problem of searching time by introducing compact, self-adjoint operators, which have an orthonormal basis of eigenvectors that we put to use for our purposes. Therefore, in this section, we first would like to recall some properties of separable Hilbert space. In this thesis we will consider several (real) Hilbert spaces, all of which being separable. Every separable Hilbert space is unitarily equivalent to 2 (N). Therefore all separable Hilbert spaces have an orthonormal basis, i.e. an orthonormal family (e n ) n≥0 such that V ect ({e n } n≥0 ) is dense in H. In such a basis we have

f = ∞ n=0 f, e n e n , (2.1.1) 
this equality being seen as a limit in H of partial sums. Moreover, we have Parseval's formula

f 2 = ∞ n=0 | f, e n | 2 , (2.1.2)
and f, g = ∞ n=0 f, e n g, e n . In the case when H = L 2 ([-π, π]) and e n := t → e int , Eq. (2.1.1) called the Fourier representation or Fourier series of f and f, e n called Fourier coefficients of f .

Examples that we will use Example 2.1.1 (Even Fourier series). In chapter 3 and chapter 5, at first our original system of equations is stated on L 2 ([-π, π]) space. However, by the symmetry of the problem, we consider the space of even functions in L 2 ([-π, π]) or equivalently the space L 2 ([0, π]), which is a separable Hilbert space. In the language of Hilbert spaces, the set of functions {e n , n ≥ 0}, where e 0 = 1 √ π , e n = 2 π cos nθ, n ≥ 1, is an orthonormal basis for the space of L 2 ([0, π]) of squareintegrable functions of [-π, π]. Indeed, this space is actually a separable Hilbert space with an inner product given for any two elements f and g by: 

f, g = π 0 f (x)g(x)dx.
+ sin(n-m)θ n-m π 0 if m = n 1 π sin 2nθ 2n + θ π 0 if m = n = 0 if m = n 1 if m = n If n = 0, then e 0 , e m =    π 0 1 √ π 2 π cos mθdθ if m = 0 π 0 1 √ π 1 √ π dθ if m = 0 = √ 2 π sin mθ m π 0 if m = 0 1 π θ| π 0 if m = 0 = 0 if m = 0 1 if m = 0 .
This proves that (e n ) n≥0 is an orthonormal system. It remains that this system generates a dense subspace of L 2 ([0, π]). To prove that we consider a function f in L 2 ([0, π]) and extend to [-π, π] as an even function f . We know that f is the limit in L 2 of its Fourier series, which is a cosine series.

A Fourier representation for a function f in this L 2 ([0, π]) is written as

f = ∞ n=0 f, e n e n = ∞ n=0 a n cos nx.
where

a 0 = 1 π f, 1 = 1 π π 0 f (x)dx, a n = 2 π f, cos nx = 2 π π 0 f (x) cos nxdx.
Example 2.1.2 (Legendre polynomials). In chapter 4, we consider the following Laplace operators:

         ∆f (r, x) = 1 r 2 d dr r 2 df dr + 1 r 2 ∆ ∂ f (x), ∆ ∂ f (x) = d dx (1 -x 2 ) df dx , (2.1.3) (2.1.4) with r ∈ [0, 1], x ∈ [-1, 1] (see Eqs. (4.1.5), (4.1.6)).
In order to solve these Laplacians, we have to look for homogeneous harmonic functions

f (r, θ) = r n g(θ), (2.1.5) 
that is, solutions of Laplace equation ∆f = 0. We get

∆f = 1 r 2 d dr r 2 d(r n g) dr + 1 r 2 (r n g) (2.1.6) = 1 r 2 d dr (nr n+1 g) + r n-2 ∆ ∂ g = r n-2 (n(n + 1)g + ∆ ∂ g) . (2.1.7)
Consequently, ∆f = 0 iff ∆ ∂ g = -n(n + 1)g, that is g is an eigenfunction of ∆ ∂ for the eigenvalue -n(n + 1). The Legendre polynomials can be defined in various way. One definition is in terms of Rodrigues' formula:

The above equation

∆ ∂ g = -n(n + 1)g is defined on L 2 ([-1, 1], dx), is equivalent to (1 -t 2 )y -2ty + n(n + 1)y = 0, ( 2 
P n (t) = 1 2 n n! d n dt n (t 2 -1) n .
(2.1.9)

In this version of Legendre polynomials they are normalized so that P n (1) = 1.

There is also the following recurrence relation:

P 0 = 1 P 1 = t (n + 1)P n+1 = (2n + 1)tP n -nP n-1 .
In addition, the set of e n e n (x) = 2n+1 2 P n (x), n ≥ 0 , where P n are Legendre polynomials, is an orthonormal basis for the space L 2 ([-1, 1], dx) of square-integrable functions on [-1, 1]. This space is a separable Hilbert space with an inner product given for two elements f , g by:

f, g = 1 -1 f (x)g(x)dx. A Fourier representation for a function f is this L 2 ([-1, 1]) is written as f = ∞ n=0 f, e n e n = ∞ n=0 a n P n (x),
where a n = 2n+1 2 f, P n (x) .

Poisson summation formula

Proposition 2.1.1 (Poisson summation formula). Let f be a continuous function in L 1 (R), and ϕ be defined by

ϕ(t) = 1 2π +∞ -∞ f (x)e -itx dx, (2.1.10) If f satisfies these two conditions (i) F (x) = +∞ k=-∞ f (x + k2πα) converges normally on [-π, π]. (ii) +∞ n=-∞ |ϕ(n/α)| < ∞, then the function F is periodic with period 2πα, F (n) = 1 α ϕ(n/α) and the Fourier se- ries of F converges normally to F on [-πα, πα]. Hence, F (x) = n∈Z 1 α ϕ(n/α)e inx/α . In particular, +∞ k=-∞ f (k2πα) = +∞ n=-∞ 1 α ϕ(n/α). (2.1.11)
Proof. We can easily observe that F is 2πα-periodic. Considering the Fourier series representation of F , we get

F (x) = +∞ n=-∞ F (n)e inx α ,
where

F (n) = 1 2πα πα -πα F (x)e -inx/α dx (2.1.12) = 1 2πα πα -πα +∞ k=-∞ f (x + k2πα)e -inx/α dx.
(2.1.13)

Since +∞ k=-∞ f (x + 2kπα) converges normally on [-πα, πα], we can rearrange the sum and the integral of (2.1.12) and obtain

F (n) = 1 2πα +∞ k=-∞ πα -πα f (x + 2kπα)e -inx/α dx = 1 2πα +∞ k=-∞ (2k+1)πα (2k-1)πα f (t)e -int/α dt = 1 2πα +∞ -∞ f (t)e -int/α dt = 1 α ϕ(n/α).
By the condition (ii

) that +∞ n=-∞ |ϕ(n/α)| < ∞, we have +∞ n=-∞ 1 
α ϕ(n/α)e inx/α converges normally on R towards a continuous function G and moreover Ĝ(n) = 1 α ϕ(n/α) = F (n), which implies that G = F . Therefore, by definition of the Fourier series of f , we have

F (x) = +∞ n=-∞ F (n)e inx α = +∞ n=-∞ 1 α ϕ (n/α) e inx α .
Choosing x = 0, we get

+∞ k=-∞ f (2kπα) = +∞ n=-∞ 1 α ϕ n α .
Take f (x) = e -|x| , we will derive the identity

e 2πα + 1 e 2πα -1 = 1 π ∞ n=-∞ α n 2 + α 2 .
(2.1.14) Indeed, we have that sup

[-πα,πα] |f (x + 2kπα)| = sup [-πα,πα] e -|x+2kπα| = e -(2k-1)πα , k ∈ Z + e (2k+1)πα , k ∈ Z - We hence obtain that k∈Z sup [-πα,πα] |f (x + 2kπα)| < ∞ or F (x) = k∈Z |f (x + 2kπα)| normally converges on [-π, π].
We next consider

ϕ(t) = 1 2π ∞ -∞ f (x)e -itx dx = 1 2π ∞ -∞ e -|x| e -itx dx = 1 2π 0 -∞ e x(1-it) dx + ∞ 0 e -x(1+it) dx = 1 2π 1 1 -it + 1 1 + it = 1 π 1 1 + t 2 .
We can observe that ∞ n=-∞ |ϕ(n/α)| < ∞. Therefore, f satisfies two conditions of Proposition 2.1.1. By applying formula (2.1.11) for f , we get

+∞ k=-∞ e -|2kπα| = ∞ n=-∞ 1 α 1 π 1 1 + n α 2 dx = 1 π ∞ n=-∞ α α 2 + n 2 dx.
(2.1.15)

Use the Taylor expansion 1 1-x = ∞ n=0 x n , (|x| < 1), for the left-hand side of (2.1.15), we obtain 

∞ k=-∞ e -|2kπα| = 2 ∞ k=0 e -2kπα -1 = 2 1 -e -2πα -1 = 1 + e -2πα

Operator theory

One of the main tools of this thesis is the use of spectral theorem for self-adjoint compact operators. We describe now this theory:

Compact operator

Definition 2.2.1 (Compact operator). Let E, F be two normed (real or complex) spaces; we say that a linear mapping u of E into F is compact iff for any bounded subset B of E, u(B) is relatively compact in F . An equivalent condition is that for any bounded sequence (x n ) in E, there is a subsequence (x n k ) such that the sequence (u(x n k )) converges in F . Theorem 2.2.2. The compact operator are a norm-closed, two-side, *-ideal in L(H). That is:

1. If {T n } is a sequence of compact operator and

T n → T in L(H), then T is compact. 2. If S is compact and T is bounded, then ST and T S are compact. 3. T is compact iff T * is compact.

Self-adjoint operator

Definition 2.2.3 (Adjoint operator). Let H be a Hilbert space and u : E → E a bounded operator, the adjoint u * is defined by

∀f, g ∈ H, u(f ), g = f, u * (g)
The adjoint u * is unique and (u * ) * = u.

If u is continuous, then u * is continuous and u * = u in L (E). Definition 2.2.4 (Self-adjoint operator). An operator u in a Hilbert space E is called self-adjoint (or hermitian) if u * = u; the mapping x, y → u(x), y = u(y), x is then a hermitian form on E. The self-adjoint operator u is called positive if the corresponding hermitian form is positive; one writes then u ≥ 0.

Spectral theorem

Theorem 2.2.5 (Spectral theorem for compact self-adjoint operator). Suppose T is a compact, self-adjoint operator on a Hilbert space E. There exists an orthonormal basis of E consisting of eigenvectors of T . The eigenvalues form a sequence converging to 0 and the eigenspaces associated to non-zero eigenvalues are finite dimensional.

Sturm-Liouville theory

We recall here the definitions of the Sobolev space H 1 and H 1 0 (Ref. [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF]) Definition 2.2.6 (Sobolev space). Let Ω ⊂ R N be an open set and let p ∈ R with 1 ≤ p ≤ ∞.

The Sobolev space H 1 (Ω) defined by

H 1 = {u ∈ L 2 (Ω)|∃g 1 , g 2 , ..., g N ∈ L 2 (Ω) such that Ω u ∂ϕ ∂x i = - Ω g i ϕ, ∀ϕ ∈ C ∞ C (Ω), i = 1, N }
The space H 1 (Ω) is a separable Hilbert space, equipped with the scalar product

u, v H 1 = u, v L 2 + N i=1 ∂u ∂x i , ∂v ∂x i L 2 = Ω uv + N i=1 ∂u ∂x i ∂v ∂x i .
The associated norm is

u H 1 = u 2 2 + N i=1 ∂u ∂x i 2 2 1/2 H 1 0 (Ω) denotes the closure of C 1 C (Ω) in H 1 (Ω).
The space H 1 0 , equipped with the H 1 scalar product, is a Hilbert space. 

-(pu ) + qu = f. (2.2.2)
Let us define operator T on L 2 (I) such that T (f ) = u.

Theorem 2.2.9. The operator T is a compact, self-adjoint and positive.

We have that ker T = 0 and by the spectral theorem for the compact, self-adjoint operator, there exists a Hilbert basis of the eigenvectors of T and the associated eigenvalues form a real positive sequence µ n = 1/λ n which converge to 0.

Discrete model for equations

This section gives an explanation for the original equations (Eqs. (3.2.1), (3.2.2) in 2-D case or Eqs. (5.1.1), (5.1.2) in the rectangle case) that we use for our problems.

Mean first-passage time for bulk diffusion

Let us consider a symmetric domain D with the boundary ∂D. A particle starts at position z and moves inside the bulk (inside the domain) with a 2-D Brownian motion. We aim to establish the equation of the time t 2 (z) for the particle starts at position z = (x, y) inside the boundary to reach the target on the boundary. Let δθ be a step of motion and δt be the time increment between successive steps. The quantity t 2 (z) is the time for each path times the probability of the path, averaged over all particle trajectories:

t 2 (z) = k P k (z)(t 2 ) k (z) = 4 i=1 1 4 (t 2 (z i ) + δt) = 1 4 [t 2 (x -δθ, y) + t 2 (x + δθ, y) + t 2 (x, y -δθ) + t 2 (x, y + δθ)] + δt (2.3.1)
Eq. (2.3.1) implies

(δθ) 2 4δt ∆t 2 = -1, (2.3.2) 
where

∆t 2 (x, y) = t 2 (x -δθ, y) + t 2 (x + δθ, y) + t 2 (x, y -δθ) + t 2 (x, y + δθ) -4t 2 (x, y) (δθ) 2 (2.3.3)
We assume that (δθ) 2 4δt = D 2 for some positive constant D 2 (the diffusion coefficient of the Brownian motion in 2-D), then we get

D 2 ∆t 2 = -1.
(2.3.4)

Mean first-passage time for surface diffusion

Here we consider a particle starts at position θ on the boundary ∂D of the symmetric domain D. In order to establish the equation for the diffusion on a 1-D symmetric boundary, we denote by δθ a step of motion and δt the time increment between successive steps. Let t 1 (θ) be the mean time to reach the target when a particle starts at position θ on the boundary. We also let p be the probability for the Brownian motion to leave the boundary at position θ (on the boundary). In this model, we assume that p = λδt, where λ is a positive constant. The quantity t 1 is the time for each path times the transition probability of the path, average over all particle trajectories:

(x, y) (x -, y) (x + , y) (x, y + ) (x, y -) 1/4 1/4 p = 1/4 1/4
t 1 (θ) = 1 -p 2 [t 1 (θ -δθ) + δt] + 1 -p 2 [t 1 (θ + δθ) + δt] + p [t 2 (r 0 , θ)] = 1 -p 2 t 1 (θ -δθ) + 1 -p 2 t 1 (θ + δθ) + pt 2 (r 0 , θ) + (1 -p)δt, (2.3.5) 
where (r 0 , θ) the position inside the bulk. From (2.3.5), one gets

(δθ) 2 2δt t 1 (θ + δθ) + t 1 (θ -δθ) -2t 1 (θ) (δθ) 2 + 1 δt p 1 -p [t 2 (r 0 , θ) -t 1 (θ)] = -1, (2.3.6) 
We assume that (δθ) 2 2δt = D 1 for some positive constant D 1 (the diffusion coefficient of the Brownian motion). Let δt → 0, δθ → 0 and recall that p = λδt, then we get the equation for the diffusion on the symmetric boundary:

D 1 t 1 (θ) + λ[t 2 (r 0 , θ) -t 1 (θ)] = -1.
(2.3.7)

Furthermore, we can show that the time that the particle remains on the boundary follows an exponential law with parameter λ. Let us denote by X the index of the first step that the particle moves inside the bulk and Y the time that the particle remains on the boundary. Then we have

θ θ - θ + (r 0 , θ) p 1-p 2 1-p 2 Figure 2.2:
The movement of the particle on the boundary Y = (X -1)δt. We compute the probability of {X = n}, which means the event of the particle leave the boundary at n th step

P(X = n) = P(X 1 = 1, ..., X n-1 = 1, X n = 0) = (1 -p) n-1 p, (2.3.8) 
where {X i = 1} (resp. {X i = 0}) is the event that the particle stays on the boundary (resp. leaves the boundary) at step i.

Then we can compute the density function for Y

P(Y = T ) = P ((X -1)δt = T ) = P X = T δt + 1 = (1 -p) T δt p.
(2.3.9)

We recall that p = λδt, then

P(Y = T ) = (1 -λδt) T δt λδt (2.3.10) = e -λT λδt, (2.3.11) 
since

lim n→∞ 1 + λ n n = e λ .
Hence, Y is a random variable has exponential distribution with rate parameter λ.

Chapter 3

2D-case

In this chapter, we solve the problem for the simplest model of the disk (Fig. 3.1). We start from the original system of equations for the exit time that has been introduced in Ref. [START_REF] Bénichou | Mean first-passage time of surface-mediated diffusion in spherical domains[END_REF] by using integral equations. However, our approach is different. We introduce two self-adjoint operators: a smoothing convolution operator V and a Sturm-Liouville operator T . Then we consider the self-ajoint operator V T V for which we use an orthonormal basis of eigenvectors. This consideration allows us to obtain the spectral representation of t 1 and this is particularly appropriate to investigate the asymptotic behavior in the limit of large desorption rate λ.

We first consider t 1 for the case of point-like target (i.e. = 0). In this case, we obtain a much more precise asymptotic development. We are able to derive an exact asymptotic of the behavior for

t 1 =0 = A 1 √ λ + A 2 + A 3 √ λ + O 1 λ
, where A i are constants, by Theorem 3.2.1. Consequently, t 1 goes to infinity as λ → ∞. In addition, we prove that d t 1 =0 dλ > 0 at large λ. Therefore, there exists a minimum

of t 1 =0 at λ > 0 if d t 1 =0 dλ λ=0
< 0. This property gives a method to determine the critical ratio for D 2 D 1 under which t 1 =0 has a minimum at some positive λ. The critical ratio has already been studied in [START_REF] Bénichou | Mean first-passage time of surface-mediated diffusion in spherical domains[END_REF] but our conclusion is more rigorous.

In the next part, we study the case of extended target (i.e. > 0). In previous research (Ref. [START_REF] Bénichou | Mean first-passage time of surface-mediated diffusion in spherical domains[END_REF]), the authors show the exact expression for the mean exit time and propose a method to approximate t 1 , but they do not study its asymptotic behavior. In this work, although we cannot rigorously derive such a precise asymptotic development, we are able to prove that t 1 >0 converges to a finite limit T as λ → ∞ (Theorem 3.2.3) and that t 1 >0 increases at large λ (Theorem 3.2.4 ), thus providing is a rigorous proof of the existence of the minimum of t 1 >0 attained for some positive λ if d t 1 >0 dλ λ=0

< 0. Therefore, the intermittent strategy is justified in this case. Moreover, this study shows that pure bulk dynamics is never optimal.

Although the consideration of the spectral representation of t 1 shows that

3.1. INTRODUCTION R θ r λ a D 1 D 2 target Figure 3.1: Surface-mediated diffusion in 2-D case t 1 >0
is eventually increasing to a finite limit, we cannot rigorously derive a precise asymptotic development. We would obtain such a development if we knew the asymptotics for the eigenvalues λ n and the spectral weight ψ n . If we have proved rigorously that λ n ∼ 1 n 2 (see Appendix A), the rest of the chapter consists in a numerical treatment giving evidence to the prediction ψ n ∼ 1 n 3 , and thus that

t 1 >0 = T -C 1 √ λ + O 1 λ with C 1 > 0.
In addition, these considerations allow us to understand the transition between the > 0 case and the pure point target one namely that t 1 ∼ ln 1 as → 0.

Introduction

Many transport and search processes exhibit intermittent character when different modes of motion are alternated. Typical examples are animals foraging (with phases of rapid relocation and slow exploration), facilitated search mechanism on DNA (with phases of pure bulk diffusion and chain sliding), vesicle transportation in living cells (with phases of active transport by motor proteins and passive diffusion in the cytoplasm), water transport in confining media (with phases of pure bulk diffusion and surface exploration) [START_REF] Bénichou | Intermittent search strategies[END_REF][START_REF] Bressloff | Stochastic models of intracellular transport[END_REF]. The intermittence is often expected to facilitate transport and search processes, e.g., by reducing the mean search time necessary to reach a target (food, specific DNA sequence, nucleus, or reaction zone in the above examples). In particular, the mean exit time from a bounded domain through an opening (a target) on the boundary has been actively studied during the last decade [START_REF] Redner | A Guide to First-Passage Processes[END_REF][START_REF]First-Passage Phenomena and Their Applications[END_REF]. For pure bulk diffusion, Singer et al. derived the asymptotic behavior of the mean exit time in the narrow escape limit (when the size of the target is small) [START_REF] Singer | Narrow escape. I[END_REF][START_REF] Singer | Narrow escape. II. The circular disk[END_REF][START_REF] Singer | Narrow escape. III. Non-smooth domains and Riemann surfaces[END_REF][START_REF] Schuss | The narrow escape problem for diffusion in cellular microdomains[END_REF][START_REF] Reingruber | Diffusion in narrow domains and application to phototransduction[END_REF]. Isaacson and Newby developed uniform in time asymptotic expansions in the target radius of the first passage time density for the diffusing molecule to find the target [START_REF] Isaacson | Uniform asymptotic approximation of diffusion to a small target[END_REF]. The escape problem for an intermittent process with phases of surface and pure bulk diffusion (the so-called surface-mediated diffusion) has been recently solved for rotation-invariant domains [START_REF] Bénichou | Optimal reaction time for surface-mediated diffusion[END_REF][START_REF] Bénichou | Mean first-passage time of surface-mediated diffusion in spherical domains[END_REF]. The known eigenbasis for the Laplace operators governing pure bulk and surface diffusions allowed one to express the mean exit time in a closed matrix form. Under well-defined conditions, the mean exit time was shown to be minimized at an optimal desorption rate that characterizes switching from surface to pure bulk diffusion. These results have been extended in various directions [START_REF] Rupprecht | Exact mean exit time for surface-mediated diffusion[END_REF][START_REF] Rupprecht | Kinetics of active surface-mediated diffusion in spherically symmetric domains[END_REF][START_REF] Calandre | The interfacial territory covered by surface-mediated diffusion[END_REF][START_REF] Calandre | Splitting probabilities and interfacial territory covered by 2d and 3d surface-mediated diffusion[END_REF]]. An alternative master equation approach for discrete (on-lattice) surface-mediate diffusion (also called the bulk-mediated surface diffusion) has been proposed [START_REF] Revelli | Bulk mediated surface diffusion: non markovian desorption with finite first moment[END_REF][START_REF] Rojo | Intermittent pathways towards a dynamical target[END_REF][START_REF] Rojo | Enhanced diffusion through surface excursion: A master-equation approach to the narrow-escape-time problem[END_REF][START_REF] Rojo | Enhanced transport through desorption-mediated diffusion[END_REF].

In the work, we propose a rigorous spectral analysis of the above escape problem. We focus on surface-mediated diffusion in the unit disk and derive a spectral representation of the mean exit time. This representation is well suited to investigate the asymptotic behavior of the mean exit time in the limit of large desorption rate λ. For a point-like target, we show that the mean exit time diverges as √ λ. For extended targets, we establish the asymptotic approach to a finite limit. In both cases, the mean exit time is shown to asymptotically increase as λ tends to infinity. We also revise the optimality regime of surface-mediated diffusion. Although the presentation is limited to the unit disk, the spectral approach can be extended to other domains such as rectangles or spheres.

A self-adjoint operator formulation

We study the following model of surface-mediated diffusion in the unit disk D = {z ∈ C : |z| < 1} whose boundary ∂D includes an exit (or a target) of angular size 2 (i.e., an arc of the unit circle between πand π + ), with 0 ≤ ≤ π. A starting point e iθ is taken on the unit circle. If the starting point is located on the target then the process is immediately stopped. Otherwise, the particle moves along the circle according to a Brownian motion with the diffusion coefficient D 1 for a duration of min{τ λ , τ }, where τ λ is a random variable with exponential law of parameter λ ≥ 0, and τ is the first hitting time of the target. If τ ≤ τ λ then the process stops. If τ > τ λ then the particle is relocated at time τ λ along the normal inside the disk at a distance 0 < a ≤ 1 to start there a 2D Brownian motion with the diffusion coefficient D 2 . This motion is stopped after hitting back the unit circle, and the same procedure is restarted from this last hitting point. We define t 1 (θ) as being the expected time to reach the target. Similarly, for 0 ≤ r < 1, we define t 2 (re iθ ) as being the expected time to reach the target starting from the point re iθ inside the unit disk.

It has been shown in [START_REF] Bénichou | Mean first-passage time of surface-mediated diffusion in spherical domains[END_REF] that these two functions satisfy the following system of equations:

           D 1 ∆ S 1 t 1 (θ) + λ[t 2 (1 -a)e iθ -t 1 (θ)] = -1 D 2 ∆t 2 = -1 t 2 (e iθ ) = t 1 (θ) (θ ∈ [-π, π]) t 1 (θ) = 0 if θ ∈ [-π, -π + ] ∪ [π -, π] (3.2.1) (3.2.2) (3.2.3) (3.2.4)
where

∆ = ∂ 2 ∂r 2 + 1 r ∂ ∂r + 1 r 2 ∆ S 1 (3.2.5)
is Laplace operator in polar coordinates in R 2 , and

∆ S 1 = ∂ 2 ∂θ 2 (3.2.6)
is the Laplace operator on the boundary S 1 .

Let us notice that, by symmetry, t 1 (θ) is an even function so it is sufficient to determine it on L 2 ([0, π]).

The solution to Eq. (3.2.2) is the sum of the particular solution 1-r 2 4D 2 to the inhomogeneous (Poisson) equation ∆u = -1 D 2 , u| ∂D = 0, and the solution to the Dirichlet problem ∆v = 0, v| ∂D = t 1 .

Since t 1 is even it may be represented as a cosine series

t 1 (θ) = n≥0 a n cos nθ, from which t 2 (re iθ ) = 1 -r 2 4D 2 + n≥0 a n r n cos nθ.
Eq. (3.2.1) then becomes

t 1 (θ) = - 1 D 1 1 + λ 1 -(1 -a) 2 4D 2 + λ D 1 U (t 1 )(θ), (3.2.7)
where U is the operator on L 2 ([0, π]) defined by

U n≥0 x n cos nθ = n≥1 x n (1 -(1 -a) n ) cos nθ.
This operator can also be written as U = V 2 , where

V n≥0 x n cos nθ = n≥1 x n 1 -(1 -a) n cos nθ. (3.2.8) Next we introduce the Sturm-Liouville operator T defined on L 2 ([0, π -]) as T f = u, where u = f u (0) = u(π -) = 0. (3.2.9)
The operator T is negative self-adjoint. Finally, we define T = -ET R as an operator on L 2 ([0, π]), where R :

L 2 ([0, π]) -→ L 2 ([0, π -]
) is the natural restriction, and

E : L 2 ([0, π -]) -→ L 2 ([0, π]
) is the natural extension by 0. The operator T can be written explicitly as

T (f )(θ) =      π- θ θ 1 0 f (θ 2 )dθ 2 dθ 1 , 0 ≤ θ < π -, 0, π -≤ θ ≤ π. (3.2.10)
One can easily check that the eigenbasis of this operator is

ν n = (1 -/π) 2 (n + 1/2) 2 , u n = 2 π-cos (n+1/2)θ 1-/π , 0 ≤ θ ≤ π -, 0, π -≤ θ ≤ π. (3.2.11)
These eigenvectors form an orthogonal basis of

L 2 [0, π-] by Sturm-Liouville theory. Since T is negative, -ET R is non-negative. Moreover, let us check that T is a self-adjoint operator on L 2 ([0, π]) since T is self-adjoint. Let f , g be in L 2 ([0, π]): -T f, g = ET Rf, g = π- 0 T (Rf ) g = π- 0 T (Rf ) Rg = π- 0 Rf T (Rg) = π 0 f ET R(g) = -f, T g ,
which proves the claim, since the operator ET R is negative.

The operator T allows us to translate Eq. (3.2.7) into

t 1 = 1 D 1 1 + λ 1 -(1 -a) 2 4D 2 T (1) - λ D 1 T U (t 1 ). (3.2.12)
From Eq. (3.2.12), which was actually stated in Ref. [START_REF] Bénichou | Mean first-passage time of surface-mediated diffusion in spherical domains[END_REF][START_REF] Bénichou | Intermittent search strategies[END_REF], one can formally solve for t 1 in

t 1 = 1 D 1 1 + λ 1 -(1 -a) 2 4D 2 I + λ D 1 T U -1 ( T (1)).
The problem is that T U is not self-adjoint, as a consequence we would have a bad control of the resolvent

I + λ D 1 T U -1
. The main idea to avoid this problem is to apply the operator V to both sides of Eq. (3.2.12) to get, writing s 1 = V (t 1 ),

s 1 = 1 D 1 1 + λ 1 -(1 -a) 2 4D 2 V T (1) - λ D 1 V T V (s 1 ), (3.2.13) 
which can be solved in s 1 as

s 1 = 1 D 1 1 + λ 1 -(1 -a) 2 4D 2 I + λ D 1 V T V -1 (ψ), (3.2.14) 
where ψ = V T (1). This is an exact solution of the original problem for a fixed starting point. We emphasize that the operators V and T , as well as the function ψ = V T (1), are given explicitly. At first thought, this representation looks similar to the mean exit time found in [START_REF] Bénichou | Mean first-passage time of surface-mediated diffusion in spherical domains[END_REF] (see also [START_REF] Rupprecht | Exact mean exit time for surface-mediated diffusion[END_REF][START_REF] Rupprecht | Kinetics of active surface-mediated diffusion in spherically symmetric domains[END_REF]). Although both derivations are conceptually similar, the major advantage of the present approach is the use of the self-adjoint operator V T V . This feature allows one to invert the operator

(I + λ D 1 V T V ) in Eq. (3.2.16
) and to express the mean exit time in a spectral form (see below).

The case of a randomly distributed starting point on the circle with uniform law is of particular interest. This is equivalent to averaging the mean exit time over the starting points that we denote as

t 1 = 1 π π 0 dθ t 1 (θ) = 1 π t 1 , 1 .
Using Eqs. (3.2.12) and (3.2.14), we can write

π t 1 = 1 D 1 1 + λ 1 -(1 -a) 2 4D 2 T (1), 1 - λ D 1 T V (s 1 ), 1 = 1 D 1 1 + λ 1 -(1 -a) 2 4D 2 T (1), 1 - λ D 1 s 1 , ψ , (3.2.15) 
from which it follows that the knowledge of s 1 allows to compute t 1 :

t 1 = 1 πD 1 1 + λ 1 -(1 -a) 2 4D 2 T (1), 1 - λ D 1 I + λ D 1 V T V -1 ψ, ψ . (3.2.16) 
By spectral theorem there exists an orthonormal basis of L 2 ([0, π]) which diagonalizes the self-adjoint operator V T V . More precisely, L 2 ([0, π]) is the orthogonal direct sum of ker(V T V ) and Im(V T V ) and we obtain this orthonormal basis by completing any orthonormal basis of ker(V T V ) with the basis formed by the normalized eigenvectors associated with positive eigenvalues.

To identify these two spaces let us notice first that ker V is the one dimensional space of constant functions. Thus

ker(V T V ) is the space of functions f ∈ L 2 ([0, π]) such that T (V f ) is constant. But since RV f = (T (RV f )) , RV f ≡ 0. Therefore we state that f ∈ ker(V T V ) ⇒ supp(V f ) ⊂ [π -, π]
, and this implication is easily seen to be an equivalence. With a slight abuse of language, we write ker(

V T V ) = V -1 (L 2 (π -, π)). It follows that Im(V T V ) = V (L 2 ([0, π -])).
We call (e n ) n≥0 the orthonormal basis of Im(V T V ) such that V T V e n = λ n e n and λ n ↓ 0 as n → ∞.

When = 0, the eigenbasis e n is simply formed by cosine functions, and the analysis is straightforward (see below). When > 0, we first observe that ψ = V T (1) = V T (ϕ 0 ) (recall that ψ appears in Eq. (3.2.14)) where

ϕ 0 = 1 on [0, π -), -π- on [π -, π]. (3.2.17)
so that π 0 ϕ 0 = 0, and thus there exists

ψ 0 ∈ L 2 ([0, π]) such that ϕ 0 = V ψ 0 . (3.2.18)
It follows that ψ ∈ Im(V T V ) and we can write

ψ = n≥1 ψ n e n , (3.2.19) 
with coefficients (ψ n ) n forming a sequence in 2 (N), ψ n = ψ, e n . Using this representation, Eq. (3.2.14) is formally solved as

s 1 = 1 D 1 1 + λ 1 -(1 -a) 2 4D 2 n≥1 ψ n 1 + λ D 1 λ n e n . (3.2.20) 
Plugging this expression into Eq. (3.2.16) we obtain

t 1 = 1 πD 1 1 + λ 1 -(1 -a) 2 4D 2 T (1), 1 - λ D 1 n≥0 ψ 2 n 1 + λ D 1 λ n . (3.2.21)
This spectral representation is particularly well-suited for the asymptotic analysis of the mean exit time. We then consider the behavior of t 1 for distinguish cases of = 0 and > 0.

Point-like target ( = 0)

We first consider the case of = 0. Although such a target is not accessible for 2D pure bulk diffusion, it can still be reached through 1D surface diffusion. In this case, one easily gets

T (cos nθ) = -T (cos nθ) = cos nθ-(-1) n n 2 (n ≥ 1), T (1) = -T (1) = π 2 -θ 2 2 , (3.2.22) so that V T V (cos nθ) = 1-(1-a) n n 2 cos nθ (n ≥ 1), V T V (1) = 0. (3.2.23)
One concludes that

λ n = 1-(1-a) n n 2 (n ≥ 1), 0 (n = 0), e n = 2/π cos nθ (n ≥ 1), 1/π (n = 0). (3.2.24)
For n ≥ 1, we have

ψ n = ψ, e n = V T (1), e n = 2/π T (1), V (cos nθ) = 2/π 1 -(1 -a) n π 2 -θ 2 2 , cos nθ = √ 2π 1 -(1 -a) n (-1) n+1 n 2 , (3.2.25) while ψ, 1 = V T (1), 1 = T (1), V (1) 
= 0. Substituting this expression into Eq. (3.2.21), we get

t 1 =0 = 1 πD 1 1 + λ 1 -(1 -a) 2 4D 2   T (1), 1 - n≥1 2π λ D 1 (1 -(1 -a) n ) n 2 n 2 + λ D 1 (1 -(1 -a) n )   = 1 πD 1 1 + λ 1 -(1 -a) 2 4D 2 T (1), 1 -2π n≥1 1 n 2 + 2π n≥1 1 n 2 + λ D 1 (1 -(1 -a) n ) . (3.2.26) 
From Eq. (3.2.22), we get

T (1), 1 =0 = π 0 dθ π 2 -θ 2 2 = 1 3 π 3 . (3.2.27)
We also know the value of the Riemann zeta function 

ζ(2) = n≥1 1 n 2 = π 2 6 . ( 3 
t 1 =0 = 2 D 1 1 + λ 1 -(1 -a) 2 4D 2 n≥1 1 n 2 + λ D 1 (1 -(1 -a) n ) . ( 3 

.2.29)

We retrieved the exact representation of the mean exit time for point-like target that was first derived in [START_REF] Bénichou | Optimal reaction time for surface-mediated diffusion[END_REF]. Furthermore, as follows, we give an exact asymptotic behavior for this expression, show that t 1 =0 is eventually increasing to infinity at large λ and determine the optimality condition for t 1 =0 has a minimum.

Let us state the following theorem:

Theorem 3.2.1. Let us define I(λ) = n≥1 1 n 2 + λ D 1
(1-εn) . If n≥1 n 4 ε n < ∞ then we have the asymptotic for I(λ) such that

I(λ) = π √ D 1 2 1 √ λ - D 1 2λ + D 1 λ n≥1 ε n 1 -ε n + O 1 λ 2 . (3.2.30)
Proof. We can rewrite the sum

I(λ) = n≥1 1 n 2 + λ D 1
(1-εn) as

I(λ) = n≥1 1 n 2 + λ D 1 + λ D 1 n≥1 ε n n 2 + λ D 1 (1 -ε n ) n 2 + λ D 1 (3.2.31)
Let us put

I 1 (λ) = n≥1 1 n 2 + λ D 1 , (3.2.32) 
and

I 2 (λ) = λ D 1 n≥1 ε n n 2 + λ D 1 (1 -ε n ) n 2 + λ D 1 (3.2.33) = D 1 λ n≥1 ε n 1 + n 2 D 1 λ 1 -ε n + n 2 D 1 λ (3.2.34)
According to the Poisson summation formula (see the mathematical background 2.1.1), we get that

I 1 (λ) = n≥1 1 n 2 + λ D 1 = π √ D 1 2 √ λ e 2π λ D 1 + 1 e 2π λ D 1 -1 - D 1 2λ , (3.2.35) = π √ D 1 2 √ λ + π √ D 1 2 √ λ 2 e 2π λ D 1 -1 - D 1 2λ , = π √ D 1 2 √ λ - D 1 2λ + O e -2π λ D 1 , (3.2 

.36)

In order to estimate the second term I 2 (λ) we write

I 2 (λ) = D 1 λ J 2 (λ), (3.2.37)
where

J 2 (λ) = n≥1 ε n 1 + n 2 D 1 λ 1 -ε n + n 2 D 1 λ . ( 3 

.2.38)

We have 

ε n 1 + n 2 D 1 λ 1 -ε n + n 2 D 1 λ ≤ ε n 1 -ε n , ∀n ≥ 1. (3.2.39) Since n≥1 ε n < n≥1 n 4 ε n < ∞, there exists n 0 such that ∀n ≥ n 0 , ε n ≤ 1/2, which implies n≥1 ε n 1 -ε n ≤ n≥1 2ε n < ∞. ( 3 
J 2 (λ) → n≥1 n 1 -ε n < ∞ as λ → ∞. (3.2.41)
We hence rewrite J 2 (λ) as

J 2 (λ) = n≥1 ε n 1 -ε n + n≥1 K n (λ), (3.2.42) 
where

K n (λ) = εn 1+ n 2 D 1 λ 1-εn+ n 2 D 1 λ -εn 1-εn . We have K n (λ) = - D 1 λ ε n n 2 1 -ε n 2 -ε n + n 2 D 1 λ 1 + n 2 D 1 λ 1 -ε n + n 2 D 1 λ = - D 1 λ ε n (2 -ε n )n 2 (1 -ε n ) 2 1 + n 2 λ D 1
(2-εn)

1 + n 2 D 1 λ 1 + n 2 λ D 1 (1-εn) = - D 1 λ ε n (2 -ε n )n 2 (1 -ε n ) 2 - D 1 λ ε n (2 -ε n )n 2 (1 -ε n ) 2     1 + n 2 λ D 1 (2-εn) 1 + n 2 D 1 λ 1 + n 2 λ D 1 (1-εn) -1     = - D 1 λ ε n (2 -ε n )n 2 (1 -ε n ) 2 - D 2 1 λ 2 ε n (2 -ε n )n 4 (1 -ε n ) 2 1 2-εn -1 1-εn -1 - n 2 λ D 1 (1-εn) 1 + n 2 D 1 λ 1 + n 2 λ D 1 (1-εn) = - D 1 λ ε n n 2 A n (λ) - D 2 1 λ 2 ε n n 4 B n (λ) (3.2.43)
where

A n (λ) = (2 -ε n ) (1 -ε n ) 2 , (3.2.44) B n (λ) = 2 -ε n (1 -ε n ) 2 1 2-εn -1 1-εn -1 - n 2 λ D 1 (1-εn) 1 + n 2 D 1 λ 1 + n 2 λ D 1 (1-εn) (3.2.45) The fact that n≥1 ε n < ∞ implies |A n (λ)| ≤ 8, and |B n (λ)| ≤ 1 (1-εn) 2 ≤ 4, ∀n ≥ n 0 which mean A n (λ) and B n (λ) are bounded. Since n≥1 ε n n 2 < n≥1 ε n n 4 < ∞ and A n (λ), B n (λ) bounded, we get n≥1 ε n n 2 A n (λ) < ∞ and n≥1 ε n n 4 B n (λ) < ∞. Therefore, I(λ) = I 1 (λ) + D 1 λ n≥1 ε n 1 -ε n + D 1 λ n≥1 ε n 1 + n 2 D 1 λ 1 -ε n + n 2 D 1 λ - ε n 1 -ε n = I 1 (λ) + D 1 λ n≥1 ε n 1 -ε n - D 2 1 λ 2 n≥1 ε n n 2 A n (λ) - D 3 1 λ 3 n≥1 ε n n 4 B n (λ) = π √ D 1 2 √ λ - D 1 2λ + D 1 λ n≥1 ε n 1 -ε n + O 1 λ 2 . (3.2.46)
We would like to show the asymptotic behavior of t 1 =0 . For 0 < a < 1, let us put ε n = (1a) n and note that n≥0 n 4 ε n < ∞. By applying Theorem 3.2.1 to Eq. (3.2.29), we can obtain the asymptotic for t 1 =0 :

t 1 =0 = 2 D 1 1 + λ 1 -(1 -a) 2 4D 2 π √ D 1 2 √ λ - D 1 2λ + D 1 λ n≥1 ε n 1 -ε n + o( 1 λ ) = 1 -(1 -a) 2 4D 2 √ D 1 π √ λ + 1 -(1 -a) 2 4D 2 2 n≥1 ε n 1 -ε n -1 + π √ D 1 1 √ λ + 2 n≥1 ε n 1 -ε n -1 1 λ + O 1 λ 2 = A 1 √ λ + A 2 + A 3 √ λ + O 1 λ , (3.2 

.47)

where

A 1 = 1 -(1 -a) 2 4D 2 π √ D 1 , (3.2 

.48)

A 2 = 1 -(1 -a) 2 4D 2 2 n≥1 (1 -a) n 1 -(1 -a) n -1 , (3.2 
.49)

A 3 = π √ D 1 . (3.2.50)
Eq. (3.2.47) gives us the asymptotic behavior of t 1 =0 . As a consequence, t 1 =0 tends to infinity as λ → ∞.

We then show that t 1 =0 is increasing at λ large enough ( t 1 =0 is eventually increasing). We compute d t 1 =0 dλ (from Eq. (3.2.29)) and show that d t 1 =0 dλ > 0 for large λ:

d t 1 =0 dλ = 2 D 1 1 -(1 -a) 2 4D 2 n≥1 1 n 2 + λ D 1 (1 -(1 -a) n ) + 1 + λ 1 -(1 -a) 2 4D 2 n≥1 1-(1-a) n D 1 n 2 + λ D 1 (1 -(1 -a) n ) 2    (3.2.51) = 2D 1 λ 2 1 -(1 -a) 2 4D 2 n≥1 n 2 1 -(1 -a) n + n 2 D 1 λ 2 - 1 D 1 n≥1 1 -(1 -a) n 1 -(1 -a) n + n 2 D 1 λ 2 . (3.2.52)
Recall that a ∈ (0, 1), there exists n 0 such that

n 2 - 1 -(1 -a) n D 1 > 0, ∀n ≥ n 0 . (3.2.53) 
We then rewrite Eq. (3.2.52) as

d t 1 =0 dλ = 2D 1 λ 2 1 -(1 -a) 2 4D 2    n 0 -1 n=1 n 2 -1-(1-a) n D 1 n 4 1-(1-a) n n 2 + D 1 λ 2 + ∞ n=n 0 n 2 -1-(1-a) n D 1 n 4 1-(1-a) n n 2 + D 1 λ 2    . (3.2.54)
We have the first sum in Eq. (3.2.54) is finite which means there exists a positive M such that

n 0 -1 n=1 n 2 -1-(1-a) n D 1 n 4 1-(1-a) n n 2 + D 1 λ 2 ≤ M, ∀λ > 0. (3.2.55)
Moreover, the numerator of the second sum is strictly positive (recall Eq. (3.2.53)), hence

lim λ→∞ ∞ n=n 0 n 2 -1-(1-a) n D 1 n 4 1-(1-a) n n 2 + D 1 λ 2 = ∞ n=n 0 n 2 -1-(1-a) n D 1 (1 -(1 -a) n ) 2 = +∞. (3.2.56)
By combining (3.2.55), (3.2.56) and using the fact that D 1 > 0, D 2 > 0, 0 < a < 1, we obtain that d t 1 =0 dλ > 0 when λ large enough which means t 1 =0 is eventually increasing, as illustrated on Fig. 3.2a.

Finally, we find the optimality condition for D 2 such that t 1 =0 has a minimum at a positive λ. Since d t 1 =0 dλ > 0 when λ large enough, a sufficient condition is that (use (3.2.51))

d t 1 =0 dλ λ=0 = 2 D 1 1 -(1 -a) 2 4D 2 n≥1 1 n 2 - 1 D 1 n≥1 1 -(1 -a) n n 4 < 0. (3.2.57)
The Eq. (3.2.57) is equivalent to

1 -(1 -a) 2 4D 2 π 2 6 < 1 D 1 n≥1 1 -(1 -a) n n 4 ⇔D 2 > D 2,crit := D 1 π 2 (1 -(1 -a) 2 ) 24 n≥1 1-(1-a) n n 4 . (3.2.58)
We retrieved the optimality condition first reported in [START_REF] Bénichou | Optimal reaction time for surface-mediated diffusion[END_REF]. The relation (3.2.58) determines the critical value of the pure bulk diffusion coefficient D 2,crit , which for small a can be approximated as

lim a→0 D 2,crit = D 1 π 2 24 2a n≥1 na n 4 = D 1 π 2 12ζ(3) ≈ 0.68D 1 . (3.2.59) If D 2 D 1 > D 2,crit D 1 , then t 1 =0
as a function of λ has a minimum at positive λ, and the intermittent search is optimal. 

Extended target ( > 0)

In contrast to a point-like target, the mean exit time t 1 to an extended target ( > 0) is expected to converge in a finite limit T as λ → ∞ because the mean exit time of reflecting Brownian motion (i.e., the limiting case a = 0) is finite (which is proved in [START_REF] Singer | Narrow escape. II. The circular disk[END_REF]). In this section, we give a proof that t 1 converges to finite limit T when λ → ∞ for all a and then we analyze the asymptotic behavior of t 1 .

We first prove the following theorem Theorem 3.2.2. For (λ n ) defined as the eigenvalues of the operator V T V and (ψ n ) defined as the spectral weight of the function V T (1) in the orthonormal basis (e n ) of the operator V T V , where V and T are defined in (3.2.8) and (3.2.10) we have

(i) n≥1 ψ 2 n λn = T (1), 1 , (ii) n≥1 ψ 2 n λ 2 n < +∞, (iii) n≥1 ψ 2 n λ 3 n = +∞. Proof. (i),(ii). First we define ẽn = 1 λ n T V e n , (3.2.60) 
so that V ẽn = e n . Recall ψ = V T (1) (see Eq. (3.2.14)). Let u ∈ L 2 ([0, π]) such that V (u) = 1, hence ψ = V T V (u).
u must be of the form ψ 0 + u ⊥ , where u ⊥ ∈ ker(V T V ) and ψ 0 defined in (3.2.18). Let

u n = u, e n = 1 λ n u, V T V e n = 1 λ n V T V u, e n = ψ n λ n . (3.2.61)
This computation gives the proof of (ii) that n≥1

ψ 2 n λ 2 n < ∞. Besides, since V (u) = 1, we have T (1), 1 = T V (u), V (u) = V T V (u), u = n≥1 m≥1 u n u m V T V (e n ), e m = n≥1 ψ 2 n λ n , (3.2.62)
which proves (i).

(iii). Equation (3.2.60) implies that, -λ n ẽ n = V e n on L 2 ([0, π -]). Let m, n be integers, and we establish:

λ n ẽ n , ẽ m = -λ n ẽ n , ẽm = V e n , ẽm = e n , V ẽm = e n , e m = δ m,n . (3.2.63) Setting n = √ λ n ẽn , we get that ( n ) is an orthonormal system of L 2 ([0, π]) due to (3.2.63). Next assume that n≥1 ψ 2 n λ 3 n < ∞: then the above computation shows that n≥1 ψn λn ẽn is a function of the Sobolev space H 1 ([0, π]).
Before continuing, let us observe that the operator

I -V is regularizing which means for all f ∈ L 2 ([0, π]) we have V f = f + g where g ∈ C ∞ ([0, π]). This implies that V n≥1 ψ n λ n ẽn = n≥1 ψ n λ n ẽn + g, g ∈ C ∞ . (3.2.64)
On the other hand

V n≥1 ψ n λ n ẽn = n≥1 ψ n λ n e n , (3.2.65) 
and thus

u 0 = n≥1 ψn λn e n ∈ H 1 . But u 0 minimizes v 2 2 on the set of v such that π 0 (V v -1) 2 = 0, π π-V v = -(π-)
. By the theory of constrained extrema, v must be of the form λV

1 [π-,π[ = λ1 [π-,π[ +g with g ∈ C ∞ . But such a function cannot be in H 1 .
We have thus proven (iii). Remark 3.2.1. Setting λ = 0 into Eq. (3.2.21), the expression (i) in Theorem 3.2.2 can be identified to the mean exit time for surface diffusion phase:

t 1 λ=0 = 1 πD 1 n≥1 ψ 2 n λ n = 1 πD 1 T (1), 1 = (π -) 3 3πD 1 . ( 3 

.2.66)

We may now state the main theorems of this work:

Theorem 3.2.3. The mean exit time t 1 defined in (3.2.21) converges to a finite limit as λ → ∞.

Proof. We recall that

t 1 = 1 πD 1 1 + λ 1 -(1 -a) 2 4D 2 T (1), 1 - λ D 1 n≥0 ψ 2 n 1 + λ D 1 λ n (3.2.21).
From theorem 3.2.2 we deduce

lim λ→∞ n≥1 λψ 2 n 1 + λ D 1 λ n = D 1 n≥1 ψ 2 n λ n = D 1 T (1), 1 . (3.2.67)
As a consequence, the quantity

T (1), 1 -λ D 1 n≥0 ψ 2 n 1+ λ D 1
λn converge to 0 as λ → ∞.

Substituting T (1), 1 by n≥1 ψ 2 n λn in Eq. (3.2.21) (use (i) in Theorem 3.2.2), we get 

t 1 = 1 πD 1 1 + λ 1 -(1 -a) 2 4D 2 n≥1 ψ 2 n λ n - λ D 1 n≥1 ψ 2 n 1 + λ D 1 λ n = 1 π 1 λ + 1 -(1 -a) 2 4D 2 n≥1 ψ 2 n λ n D 1 λ + λ n . ( 3 
ψ 2 n λ n D 1 λ + λ n = n≥1 ψ 2 n λ 2 n < ∞, (3.2.69) 
from which

T := lim λ→∞ t 1 = 1 -(1 -a) 2 4πD 2 n≥1 ψ 2 n λ 2 n , (3.2.70) 
i.e., we proved that the limit T is finite and got its spectral representation.

Remark 3.2.2. Since t 1 λ→∞ -→ T , we then rewrite t 1 as

t 1 = 1 π 1 λ + 1 -(1 -a) 2 4D 2 n≥1 ψ 2 n λ 2 n + n≥1 ψ 2 n λ n D 1 λ + λ n - ψ 2 n λ 2 n = T + 1 πλ n≥1 ψ 2 n λ 2 n - 1 π 1 λ + 1 -(1 -a) 2 4D 2 n≥1 ψ 2 n λ n D 1 λ + λ n (3.2.71)
which leads us to 

T -t 1 = - S πλ + D 1 λ 1 -(1 -a) 2 4πD 2 n≥1 ψ 2 n λ 2 n λ n + D 1 λ + D 1 πλ 2 n≥1 ψ 2 n λ 2 n λ n + D 1 λ , ( 3 
ψ 2 n λ 2 n D 1 λ + λ n = n≥1 ψ 2 n λ 3 n = ∞. (3.2.73)
Note that S is bounded (by (ii) in Theorem 3.2.2), from Eq. (3.2.73) we conclude that at large λ,

D 1 λ 1 -(1 -a) 2 4πD 2 n≥1 ψ 2 n λ 2 n λ n + D 1 λ S πλ , (3.2 

.74)

and

D 1 λ 1 -(1 -a) 2 4πD 2 n≥1 ψ 2 n λ 2 n λ n + D 1 λ D 1 πλ 2 n≥1 ψ 2 n λ 2 n λ n + D 1 λ . (3.2.75)
Consequently, from (3.2.74), (3.2.75), we state that

D 1 λ 1-(1-a) 2 4πD 2 n≥1 ψ 2 n λ 2 n( λn+ D 1 λ )
is the leading term of the right-hand side of Eq. (3.2.72) and since Tt 1 λ→∞ -→ 0, this leading term must tends to 0 as λ → ∞. Hence, we can rewrite the third term

D 1 πλ 2 n≥1 ψ 2 n λ 2 n( λn+ D 1 λ )
in the right-hand side of Eq. (3.2.72) as o 1 λ and then we obtain the asymptotic behavior of t 1 

t 1 = T - D 1 λ 1 -(1 -a) 2 4πD 2 n≥1 ψ 2 n λ 2 n λ n + D 1 λ + S πλ + o 1 λ . ( 3 
t 1 = T - D 1 λ 1 -(1 -a) 2 4πD 2 n≥1 ψ 2 n λ 2 n λ n + D 1 λ + O(λ -1 ), (3.2 

.77)

from which the principle part of t 1 is indeed non-decreasing as λ → ∞.

To complete the proof, we differentiate Eq. (3.2.71) (the exchange of derivative and sum is easily established):

π d t 1 dλ = - S λ 2 + 1 λ 2 D 1 (1 -(1 -a) 2 ) 4D 2 n≥1 ψ 2 n λ n λ n + D 1 λ 2 + D 1 λ 3 n≥0 ψ 2 n (2λ n + D 1 /λ) λ 2 n (λ n + D 1 /λ) 2 , (3.2.78) Since lim λ→∞ n≥1 ψ 2 n λ n λ n + D 1 λ 2 = n≥1 ψ 2 n λ 3 n = +∞ (3.2.79)
and

S = n≥1 ψ 2 n λ 2 n < ∞, (3.2.80) 
we imply for λ large enough,

1 λ 2 D 1 (1 -(1 -a) 2 ) 4D 2 n≥1 ψ 2 n λ n λ n + D 1 λ 2 - S λ 2 > 0. (3.2.81)
Besides, we also have

D 1 λ 3 n≥0 ψ 2 n (2λn+D 1 /λ) λ 2 n (λn+D 1 /λ) 2 ≥ 0. We hence imply that d t 1
dλ is positive at large λ which means t 1 is asymptotically monotonously increasing.

Next, we find the optimality condition for D 2 such that t 1 >0 has a minimum at a positive λ. Returning to formula (3.2.21), we have

π d t 1 dλ = 1 -(1 -a) 2 4D 1 D 2 T (1), 1 - λ D 1 n≥1 ψ 2 n 1 + λλn D 1 + 1 D 1 1 + λ (1 -(1 -a) 2 ) 4D 2    - 1 D 1 n≥1 ψ 2 n 1 + λλn D 1 + λ D 1 n≥1 ψ 2 n λn D 1 1 + λλn D 1 2    .
(3.2.82)

In particular, one gets

π d t 1 dλ λ=0 = 1 -(1 -a) 2 4D 1 D 2 T (1), 1 + 1 D 2 1 - n≥1 ψ 2 n . (3.2.83) Since ψ = V T (1) = n≥1 ψ n e n , π d t 1 dλ λ=0 = 1 -(1 -a) 2 4D 1 D 2 T (1), 1 - 1 D 2 1 V T (1) 2 , (3.2.84)
which becomes negative when

V T (1) 2 > D 1 4D 2 1 -(1 -a) 2 T (1), 1 . (3.2.85)
We recall that ψ = V T (1) = V T (ϕ 0 ) = V T V (ψ 0 ) (as ϕ 0 defined in (3.2.17) and ϕ 0 = V (ψ 0 )). Thus (3.2.85) is equivalent to 

V T V (ψ 0 ) 2 > D 1 4D 2 1 -(1 -a) 2 V T V (ψ 0 ), ψ 0 . ( 3 
D 2,crit = D 1 (1 -(1 -a) 2 ) T (1), 1 4 V T (1) 2 , (3.2.87)
then t 1 starts first to decrease with λ, passes through a minimum then monotonously increases. We retrieved the optimality condition first reported in [START_REF] Bénichou | Optimal reaction time for surface-mediated diffusion[END_REF]. Most importantly, we proved that this condition is necessary and sufficient for optimality of surface-mediated diffusion. In fact, the second optimality condition from [START_REF] Bénichou | Optimal reaction time for surface-mediated diffusion[END_REF], t 1 λ=0 < t 1 λ=∞ , is not necessary because of the asymptotic growth of t 1 as λ → ∞. In particular, the optimality diagrams from [START_REF] Bénichou | Optimal reaction time for surface-mediated diffusion[END_REF][START_REF] Bénichou | Mean first-passage time of surface-mediated diffusion in spherical domains[END_REF] can be simplified by removing the region of pure bulk diffusion which is never an optimal search strategy. 

Note that T (1)(θ) = (π-) 2 -θ 2 2 for θ ∈ [0, π -) (see (B.1.2)), we have ψ(θ) = V T (1)(θ) = V (π -) 2 -θ 2 2 = V 2 π ∞ n≥1 cos nθ (π -) 2 -θ 2 2 , cos nθ = 2 π ∞ n≥1 cos nθ 1 -(1 -a) n (π -) 2 -θ 2 2 , cos nθ = 2 π ∞ n≥1 cos nθ 1 -(1 -a) n (-1) n-1 (π -) cos n + sin n n n 2 . ( 3 
D 2,crit = D 1 π(π -) 3 (1 -(1 -a) 2 ) 24 n≥1 1 -(1 -a) n n 4 (π -) cos n + sin n n 2 -1
.

(3.2.89)

Numerical asymptotic behavior

In previous section, we showed the asymptotic behavior of t 1 >0 in Eq. (3.2.76). Nevertheless, it is not an explicit formula. We thus aim to precise the asymptotic behavior (3.2.76) of t 1 as λ → ∞ by investigating on the eigenvalues λ n and the spectral weights ψ n . We first state the following theorem whose proof will be given in Appendix A: Theorem 3.3.1. Let (λ n ) n≥1 be the decreasing sequence of eigenvalues of the operator V T V , where the operators T and V are defined in Eqs. (3.2.9) and (3.2.8). We have

λ n ∼ A n -2 , (3.3.1)
where A depends only on .

Showing that λ n ∼ n -2 has an significant role in presenting the asymptotic behavior of t 1 >0 , but it is not sufficient. It is necessary to investigate the spectral weight ψ n . We believe that the asymptotic behavior ψ 2 n ,

ψ 2 n ∼ n -6 , (3.3.2)
which is not proved rigorously. However, in this section, we focus on showing the numerical evidences for ψ 2 n and also for λ n . These results lead us to the behavior of t 1 in formula (3.3.13) and (3.3.14). In addition, considering the numerical asymptotic behaviors of λ n and ψ 2 n also leads to the conclusion that T ∼ ln 1 in the case of a → 0 as shown explicitly in Eq. (3.3.21).

For point-like target ( = 0), Eqs. (3.2.24) and (3.2.25) imply the existence of two distinct asymptotic behaviors for small a:

(i) λ n an -1 , ψ 2 n 2πan -3 (na 1), (3.3.3) 
i.e., there exists c 1 , c 1 , n 1 , 1 such that for all n ∈ n 1 , 1 a , we have

1 c 1 < λ n an -1 < c 1 , 1 c 1 < ψ 2 n 2πan -3 < c 1 .
(ii)

λ n n -2 , ψ 2 n 2πn -4 (na 1) (3.3.4) 
i.e., there exists c 2 , c 2 , n 2 such that for all n with na ≥ n 2 , we have

1 c 2 < λ n n -2 < c 2 , 1 c 2 < ψ 2 n 2πn -4 < c 2 .
For extended targets ( > 0), we do not have the explicit formulas for the eigenvalues λ n and the spectral weights ψ 2 n . Hence, this case is analyzed by numerical computations (see Appendix B.1 for computational details). By observations, we distinguish two regimes for λ n , as for the point-like target, for small and large n (see Figure 3.3):

(i) λ n Ãa, n -1 (na 1) (3.3.5)
i.e., there exists c 1 , n 1 , 1 such that for all n ≥ n 1 but na < 1 , we have

1 c 1 < λ n Ãa, n -1 < c 1 , (ii) 
λ n A n -2 (3.3.6)
i.e. there exists c 2 , n 2 such that for all n with na ≥ n 2 we have

1 c 2 < λ n A n -2 < c 2 ,
where Ãa, , A are two constants. The second (large n) asymptotic relation is proved with the constant A does not depend on a by Theorem 3.3.1. In turn, the transition between two asymptotic regimes is determined by 1/a (and is independent of ). Note also that A → 1 as → 0 according to Eq. (3.3.4). One can see that these asymptotic relations accurately approximate the eigenvalues λ n . The behavior of A is shown on Fig. 3.5a. As expected, it does not depend on a. These numerical results show the evidence for the expression:

A = (1 -/π) 2 , (3.3.7)
which accurately reproduces A on the whole range of from 0 to π.

According to (3.3.3), the coefficient Ãa, is equal to a when = 0. We plot therefore Ãa, /a on Fig. 3.5b, where this ratio approaches 1 as → 0, and 0 as → π.

Moreover, this ratio weakly depends on a (curves for a = 0.001 and a = 0.1 almost coincide).

Figure 3.4 shows that the asymptotic behavior of the spectral weights ψ 2 n is more complicated. One can distinguish three asymptotic regimes:

(i) ψ 2 n Ba, n -3 (max{na, n } 1), (3.3.8) 
i.e. there exists c 1 , n 1 , 1 such that for all n ≥ n 1 but max{na, n } < 1 , we have

1 c 1 < ψ 2 n Ba, n -3 < c 1 , (ii) 
ψ 2 n B a, n -4 (min{na, n } 1 max{na, n }), (3.3.9) 
i.e., there exists c 2 , n 2 , 2 such that for all n with max{na, n } ≥ n 2 but min{na, n } < 2 , we have (iii)

1 c 2 < ψ 2 n B a, n -4 < c 2 ,
∝ n -3 ∝ n -4 ∝ n -6 ε -1 a -1 (a) (a 
∝ n -3 ∝ n -4 ∝ n -6 a -1 = ε -1 (c) (c) 
ψ 2 n B a, n -6 (min{na, n } 1), (3.3.10) 
i.e., there exists c 3 , n 3 such that for all n with min{na, n } ≥ n 2 , we have

1 c 3 < ψ 2 n B a, n -6 < c 3 ,
where Ba, , B a, , B a, are constants.

In order to observe all three regimes, one needs 1 min{1/a, 1/ } max{1/a, 1/ }, i.e., either a 1, or a 1. For instance, if a or is not small enough, the first regime with n -3 may not be well established (Fig. 3.4a,b). If a ∼ , the intermediate regime disappears, as illustrated on Fig. 3.4c. When → 0, max{1/a, 1/ } → ∞, the third regime disappears, and one retrieves two regimes for point-like targets.

The behavior of the coefficients B a, and Ba, is shown on Fig. 3.5c,d. As expected from Eq. (3.3.3), Ba, /(2πa) approaches 1 as → 0 (point-like target). Moreover, such normalized coefficient weakly depends on a (at least for small a). The behavior of B a, is more complicated. Given that T should converge to the mean exit time for pure bulk diffusion, defined by t 1 b , as a → 0 ( t 1 b = lim a→0 T = lim a→0 t 1 λ=∞ ), from Eq. (3.2.70) one gets

n≥1 ψ 2 n λ 2 n 2πD 2 t 1 b a . (3.3.11) 
Since λ n A n -2 is independent of a, one concludes that B a, ∼ 1/a as a → 0. For this reason, we plot aB a, on Fig. 3.5c. For large , two curves for a = 0.001 and a = 0.1 do coincide, as expected. However, strong deviations emerge at small . In fact, one needs to consider much smaller a to get coinciding curves over the whole considered range of . We conclude that the reflection distance a plays an important role, especially for small targets.

Although the above asymptotic regimes for λ n and ψ 2 n remain conjectural, we will investigate their consequences for the asymptotic behavior of the mean exit time t 1 . Using the asymptotic relations for large n, we get

n≥1 ψ 2 n λ 2 n λ n + D 1 λ ∼ ∞ 1 B a, x -6 A 2 x -4 A x -2 + D 1 λ dx = B a, A 3 ∞ 1 dx 1 + x 2 D 1 λA ∼ B a, A 5/2 π 2 λ D 1 . (3.3.12)
Plugging (3.3.12) into (3.2.76), we get the asymptotic behavior of the mean exit time t 1

t 1 = T - C 1 √ λ + O 1 λ , (3.3.13) 
where (note that t 1 is obtained in the limit N → ∞ according to Eq. (3.2.68)). With the conjecture that ψ 2 n ∼ n -6 , we can check that for fixed λ,

C 1 = C a, √ D 1 D 2 , C a, = (1 -(1 -a) 2 ) B a, 8A 5 
f (N ) = f (∞) - B a, A 2 1 N + B a, A 2 D 1 A λ 3/2 arctan A λ D 1 1 N (3.3.15) = f (∞) + c N + o 1 N , (3.3.16)
where

f (∞) = ∞ n=1 ψ 2 n λn( D 1 λ +λn)
. Indeed, we have that

f (∞) = f (N ) + ∞ n=N ψ 2 n λ n D 1 λ + λ n . (3.3.17)
Using again the asymptotic relations of λ n and ψ 2 n for large n, we obtain

∞ n=N ψ 2 n λ n D 1 λ + λ n ∼ ∞ N B a, x -6 A x -2 A x -2 + D 1 λ dx = B a, A 2 ∞ N x -4 dx x -2 + D 1 λA (3.3.18) By changing variable t = x -1 , we get ∞ n=N ψ 2 n λ n D 1 λ + λ n ∼ B a, A 2 1/N 0 t 2 dt t 2 + D 1 λA = B a, A 2 1 N - D 1 λA 3/2 arctan A λ D 1 1 N , (3.3.19) 
which implies Eq.(3.3.15).

In practice, we used the fourth order polynomial fit of f (N ) versus 1/N for N from 1000 to 20000 to extrapolate the value f (∞).

Figure 3.6 shows the mean exit time t 1 as a function of λ for a small target ( = 0.01) and two values of a: 0.01 and 0.001. In both cases, the mean exit time passes through a minimum at some intermediate desorption rate λ c and then approaches the maximum as λ → ∞. One can clearly see that the optimal value λ c , as well as the height of the maximum at λ → ∞, depend on a. Although both considered values a = 0.001 and a = 0.01 are small, the limiting mean exit time T changes significantly. The asymptotic relation (3.3.13) (shown by thin solid lines) accurately captures the limiting behavior. Furthermore, we consider the case of the double limit λ → ∞ and a → 0. When → 0, we use Eqs. (3.3.5) and (3.3.8) to get

T = 1 -(1 -a) 2 4πD 2 n≥1 ψ 2 n λ 2 n (3.3.20) = 1 -(1 -a) 2 4πD 2   1/ n=1 Ba, n -3 Ã2 a, n -2 + ∞ n=1/ B a, n -4 Ã2 a, n -2   = 1 -(1 -a) 2 4πD 2 Ba, Ã2 a, ln 1 + O( ) . (3.3.21)
This logarithmic divergence is similar to the result from Ref. [START_REF] Singer | Narrow escape. I[END_REF][START_REF] Singer | Narrow escape. II. The circular disk[END_REF][START_REF] Singer | Narrow escape. III. Non-smooth domains and Riemann surfaces[END_REF] which describes the mean exit time for non-intermittent pure bulk diffusion (2D Brownian motion) in the narrow escape limit ( → 0). Interestingly, the double limit can be taken separately: as λ → ∞, the limiting value T exists for any finite a. Chapter 4

3D-case

Chapter 4 is the analogue of chapter 3 for the sphere (Fig. 4.1). We investigate here the analogous problem, that is we consider the given system of equations of the exit time on the sphere (which has been shown in [START_REF] Bénichou | Mean first-passage time of surface-mediated diffusion in spherical domains[END_REF]) and by using self-adjoint operators, we find the spectral representation for t 1 . As in the case of the disk, we can prove that t 1 >0 is eventually increasing to a finite limit T at λ → ∞. Since we improve the model from 2-D into 3-D, in this chapter, we also study the numerical asymptotic behavior of t 1 >0 and obtain

t 1 >0 = T -C 1 √ λ + O 1
λ . The main differences between the 3-D case and the 2-D one are that:

• In a sphere, a point-like target ( = 0) is not reachable neither from the bulk nor from the surface. In 2-D case, a random variable X(θ, ω), which is the time for a particle starts at position θ from the 1-D surface to reach a point-like target, is finite almost surely and t 1 (θ) = X(θ, ω)dP (ω) = E[X(θ, ω)] is also finite but t 1 → +∞ as λ → +∞. In 3-D case, it is intuitively clear that the time to reach the point-like target either from the surface or from the bulk is infinite almost surely because the Brownian motion does not hit a point neither in 2-D nor in 3-D. This implies that t 1 = E[X(θ, ω)] = ∞ and t 1 = +∞, where X(θ, ω) is the time for a particle to reach the point-like target from the 2-D surface. We can retrieve that t 1 = +∞ by computation using the spectral representation for t 1 (see section 4.1.1). • The role played by (cos nθ) in 2-D is now replaced by the Legendre polynomials (P n (x)).

In 2-D, we use the {cos nθ} as an orthogonal basis in L 2 ([0, π]). It has an important role in solving Laplace equation on R 2 , since {cos nθ} are the eigenfunctions of the Laplacian ∆ S 1 on the sphere S 1 (defined in (3.2.6)). In 3-D, we have to solve the Laplacian in R 3 . By cylindrical symmetry, our problem becomes solving the Laplacian ∆ 1 on L 2 ([0, 1] × [0, π]) (defined in (2.1.3)) which depends only on two variables: the radius distance r and the polar angle θ (see Example 2.1.2 in the Mathematical Backgrounds). It would be useful if we use the eigenfunctions of the Laplacian ∆ 1 S 2 on the sphere S 2 (defined in (2.1.6)), which are the Legendre polynomials {P n (cos θ)} as an orthogonal basis to solve the problem. By changing the variable x = cos θ, the space L 2 ([0, π], sin θdθ) changes into L 2 ([-1, 1], dx) and the Lengendre polynomials we considered are now {P n (x)} (see Example 2.1.2 in the Mathematical Backgrounds). The self-adjoint operators T that we introduce in each chapter is a particular case for the inverse of the Laplacians ∆ S 1 on the boundary S 1 (2-D) , or ∆ 1 S 2 on the boundary S 2 (3-D). Therefore, investigating each problem in the basis set by the eigenvectors of the Laplacian ∆ -1 S 1 (in 2-D) and ∆ -1 S 2 (in 3-D) plays an important role. However, finding the eigenvalues and eigenvectors of operator T in this chapter is not obvious. We have a much more limited knowledge of the quantities involved in 3-D than in 2-D. For instance, in 2-D, we know the exact value of λ n ( T ) = (1-/π) 2 n(n+1) ∼ A n -2 and we are able to show that the coefficient A = 1π 2 , converges to 1 as → 0, while in 3-D we cannot. Besides, the numerical computation becomes more complicated with the Legendre polynomials P n (x) than with cos nθ. This leads us to limit the numerical computation to < 0.7. • Considering the numerical asymptotic behavior of the eigenvalues λ n and the spectral weights ψ n leads us to draw out the asymptotic behavior of T as → 0. In 2-D, we showed that T ∼ ln 1 when a → 0. In 3-D, we will show that when a → 0 for small , T ∼ 1 (Eq. (4.2.11)). As we shall see the rest is similar.

A self-adjoint operator formulation

Similar to 2D case, we introduce the model for the intermittent dynamics for 3D case as follows:

The particle moves in a sphere of radius 1. Let , a be small positive numbers. The target is a small region of the sphere such that the elevation angle (in standard spherical coordinates) is between 0 and . The starting point (θ, φ) is chosen on the surface of the unit sphere. If it is inside the target, the process is immediately stopped. If not then the particle moves on the surface of the sphere according to a 2-D Brownian motion with speed D 1 for a duration of min(T, τ ) where T is a random variable with exponential law of parameter λ > 0 and τ is the hitting time of the target. If τ ≤ T then the process stops. If τ > T then we move the particle at time T along the normal inside the sphere at a distance a and start there a 3-D Brownian motion with speed D 2 stopped when we hit back the boundary, from there we start the same procedure. Due to the cylindrical symmetry, our problem is independent of the azimuthal angle φ. We define t 1 (θ) as being the expected time to reach the target. Similarly we define, for Two functions t 1 (θ) and t 2 (r, θ) satisfy the following system of equations (see Ref. [START_REF] Bénichou | Mean first-passage time of surface-mediated diffusion in spherical domains[END_REF]): The original equations thus become In order to solve Eq. ( 4.1.6), we write t 2 (r, x) as u(r)+v(r, x) where u(r) = 1-r 2 6D 2 is the particular solution to the inhomogeneous (Poisson) equation ∆u = -1 D 2 , u| ∂S = 0, and v(r, x) is the solution to the Dirichlet problem ∆v = 0, v| ∂S = t 1 .

                   D 1 ∂ 2 t 1 ∂θ 2 + 1 tan θ ∂t 1 ∂θ + λ[t 2 (1 -a, θ) -t 1 (θ)] = -1 for θ ∈ [ , π] D 2 ∂ 2 ∂r 2 + 2 r ∂ ∂r + 1 r 2 ∂ 2 ∂θ 2 + 1 r 2 1 tan θ ∂ ∂θ t 2 (r, θ) = -1 t 2 (1, θ) = t 1 (θ) (θ ∈ [0, π]) t 1 (θ) = 0 if θ ∈ [0, ] (4 
                   D 1 d dx (1 -x 2 ) dt 1 dx + λ[t 2 (1 -a, x) -t 1 (x)] = -1 for x ∈ [-1, α ], D 2 d 2 t 2 (r, x) dr 2 + 2 r dt 2 (r, x) dr + 1 r 2 d dx (1 -x 2 ) dt 2 (r, x) dx = -1, t 2 (1, x) = t 1 (x), t 1 (x) = 0 for x ∈ [α , 1], ( 4 
Using the Legendre polynomial for the expansion of t 1 we get

t 1 (x) = n≥0 a n P n (x), (4.1.10) 
where P n stands for the Legendre polynomial of order n.

Then, we can rewrite t 2 in the following form

t 2 (r, x) = 1 -r 2 6D 2 + n≥0 r n a n P n (x). (4.1.11)
We again define operators U , V on

L 2 ([-1, 1]) which satisfy that U = V 2 U n≥0 a n P n (x) = n≥1 a n (1 -(1 -a) n )P n (x), (4.1.12) V n≥0 a n P n (x) = n≥1 a n 1 -(1 -a) n P n (x). (4.1.13)
By using these operators, Eq. (4.1.5) thus is rewritten as

D 1 d dx (1 -x 2 ) dt 1 dx = -1 -λ 1 -(1 -a) 2 6D 2 + λU (t 1 ), (4.1.14)
We hence get the solution t 1

t 1 = 1 D 1 1 + λ 1 -(1 -a) 2 6D 2 T (1) - λ D 1 T U (t 1 ). (4.1.15)
where T is defined by

T = -ET R, (4.1.16)
with T is an operator defined on the operator R :

L 2 ([-1, α ]), T f = y means      d dx (1 -x 2 ) dy dx = f (x); x ∈ [-1, α ]
L 2 ([-1, 1]) -→ L 2 ([-1, α ]
) is the natural restriction, and E :

L 2 ([-1, α ]) -→ L 2 ([-1, 1]
) is the natural extension by 0.

We note that T is a compact, self-adjoint and non-positive operator, by the same method as in 2-D, we get that T is an self-adjoint, non-negative operator on L 2 ([-1, 1]).

We next apply the operator V to both sides of Eq. ( 4.1.15) to get, writing s 1 = V (t 1 ),

s 1 = 1 D 1 1 + λ 1 -(1 -a) 2 6D 2 V T (1) - λ D 1 V T V (s 1 ), (4.1.19)
which can be solved in s 1 as

s 1 = 1 D 1 1 + λ 1 -(1 -a) 2 6D 2 I + λ D 1 V T V -1 (ψ), (4.1.20) 
where ψ = V T (1).

The property self-adjoint of the operator V T V allows us to invert the operator (I + λ D 1 V T V ) in Eq. (4.1.20) and to express the mean exit time in a spectral form. We are interested in the case of a randomly distributed starting point on the sphere with uniform law which equivalents to averaging the mean exit time over the starting points as 

t 1 = 1 2 1 -1 t 1 (x)dx = 1 2 t 1 , 1 . ( 4 
2 t 1 = 1 D 1 1 + λ 1 -(1 -a) 2 6D 2 T (1), 1 - λ D 1 T V (s 1 ), 1 = 1 D 1 1 + λ 1 -(1 -a) 2 6D 2 T (1), 1 - λ D 1 s 1 , ψ , (4.1.22)
from which it follows that the knowledge of s 1 allows to compute t 1 :

t 1 = 1 2D 1 1 + λ 1 -(1 -a) 2 6D 2 T (1), 1 - λ D 1 I + λ D 1 V T V -1
ψ, ψ . with coefficients ψ n = ψ, e n is a sequence in 2 (N). Using this representation, we solve Eq. ( 4.1.20):

s 1 = 1 D 1 1 + λ 1 -(1 -a) 2 6D 2 n≥1 ψ n 1 + λ D 1 λ n e n . ( 4 

.1.25)

Plugging this expression into Eq. ( 4.1.23) we obtain

t 1 = 1 2D 1 1 + λ 1 -(1 -a) 2 6D 2 T (1), 1 - λ D 1 n≥1 ψ 2 n 1 + λ D 1 λ n . (4.1.26)
In the following subsections, we investigate the asymptotic behavior of the mean exit time for the cases of = 0 and > 0 by using this spectral representation.

Point-like target ( = 0 or α = 1)

In this situation, a target is unreachable either from the bulk or from the surface. A mathematical explanation can be seen as follows. We note that the operator T can be written explicitly as

T (f )(θ) =    α x 1 1-x 2 1 x 1 -1 f (x 2 )dx 2 dx 1 , -1 ≤ x < α , 0, α ≤ x ≤ 1. (4.1.27)
From which, refer to [START_REF] Bénichou | Mean first-passage time of surface-mediated diffusion in spherical domains[END_REF], we can get for n ≥ 1

T (P n )(x) =    -T (P n )(x) = α x 1 1-x 2 1 x 1 -1 P n (x 2 )dx 2 dx 1 = Pn(x)-Pn(α ) n(n+1) , -1 ≤ x < α , 0, α ≤ θ ≤ 1, ( 4 
.1.28) and for n = 0

T (P 0 )(x) = T (1)(x) =    -T (1)(x) = α x 1 1-x 2 1 x 1 -1 dx 2 dx 1 = ln 1-x 1-α , -1 ≤ x < α , 0, α ≤ x ≤ 1. (4.1.29)
In the case of = 0, one easily gets

T (P n )(x) = -T (P n )(x) = 1 n(n+1) [P n (x) -1] (n ≥ 1), T (1)(x) = -T (1)(x) = +∞ (n = 0). (4.1.30) Assume that operator I + λ D 1 T U -1
exists then (4.1.15) can be rewritten as

t 1 = 1 D 1 1 + λ 1 -(1 -a) 2 6D 2 I + λ D 1 T U -1 T (1) (4.1.31)
The right-hand side of (4.1.31) equals to infinity because of (4.1.30). It implies that t 1 (x) must be infinity when α = 1 and certainly,

t 1 =0 = t 1 α =1 = +∞. 4.1.2 Extended target ( > 0 or α ∈ [-1, 1))
When > 0, as for the disk, it can be shown that the mean exit time t 1 is eventually increasing to a finite limit T as λ → ∞. Although in 3-D case, there are differences in definition of the operators V and T from 2-D case, we still can state the same theorem as Theorem 3.2.2 whose proof is completely the same in L 2 [-1, 1] space. We note that from (4.1.29) we have

T (1), 1 = α -1 T (1)dx = α -1 ln 1 -x 1 -α dx = 2 ln 2 1 -α - 1 + α 2 . (4.1.32)
We hence get the following remark from Eq. (4.1.26):

Remark 4.1.1. The mean exit time for surface diffusion phase is: 3) allows us to determine the critical value for the bulk diffusion coefficient, D 2,crit , which bulk excursions are beneficial. The existence of the optimal value λ (that minimizes the function t 1 ) depends on this value. If

t 1 λ=0 = 1 2D 1 T (1), 1 = 1 D 1 ln 2 1 -α - 1 + α 2 . ( 4 
T := lim λ→∞ t 1 = 1 -(1 -a) 2 12D 2 n≥1 ψ 2 n λ 2 n . ( 4 
t 1 = T - D 1 λ 1 -(1 -a) 2 12D 2 n≥1 ψ 2 n λ 2 n λ n + D 1 λ + S 2λ + o 1 λ , ( 4 
D 2 > D 2,crit , with D 2,crit = D 1 (1 -(1 -a) 2 ) T (1), 1 6 V T (1) 2 (4.1.37)
Refer to Eq. (B.1.8), we have 

V T (1) 2 = ∞ n=1 ψ 2 n = n≥1 (1 -(1 -a) n ) (2n + 1) 4n 2 (n + 1) 4 [(n + 1 + nα )P n (α ) + P n-1 (α )] 2 ( 
D 2,crit = D 1 2(1 -(1 -a) 2 ) 6 ln 2 1 -α - α + 1 2 n≥1 (1 -(1 -a) n ) (2n + 1) 4n 2 (n + 1) 4 [(n + 1 + nα )P n (α ) + P n-1 (α )] 2 -1 , (4.1.39)
then t 1 starts first to decrease with λ, passes through a minimum at λ > 0 then monotonously increases. We again retrieved the optimality condition for 3-D case reported in [START_REF] Bénichou | Optimal reaction time for surface-mediated diffusion[END_REF]. 

Numerical asymptotic behavior

This section aims to show the numerical asymptotic behavior of t 1 ( > 0) by investigating the asymptotic relations of λ n and ψ n (as in 2-D case). There are some restrictions in this 3-D case:

• Since the numerical computation becomes more complicated with the Legendre polynomials P n (x) (n big) in this 3-D case than with cos nθ in 2-D case (see Section B.2) when is big ( ≥ 0.7), we limit ourselves in the cases of ≤ 0.7. • In 3-D case, we cannot give a rigorous proof for the asymptotic behavior of λ n as n → ∞ since we do not know the eigenvalues of the operator T , λ n ( T ). However, we believe that ψ 2 n ∼ 1 n 6 as n → ∞ which as a result leads us to the asymptotic behavior Tt 1 >0 ∼ 1 √ λ (see (4.2.9) and (4.2.10)). The difference compares to 2-D case is the behavior of the mean exit time for nonintermittent pure bulk diffusion T ∼ 1/ (see Eq. (4.2.11)) while in 2-D case, we have T ∼ ln(1/ ). We can see Appendix B.2 for computational details of the eigenvalues λ n and the spectral weight ψ 2 n .

We first plot λ n versus n (in the log-log scale) (Fig. 4.3) and observe that there are two distinguish regimes for the eigenvalues λ n , for small and large n:

(i) λ n Ãa, n -1 (na 1), (4.2.1) 
i.e. there exists c 1 , n 1 , 1 such that for all n ≥ n 1 but na < 1 , we have

1 c 1 < λ n Ãa, < c 1 , (ii) 
λ n A n -2 (na 1), (4.2.2) 
i.e., there exists c 2 , n 2 , 2 such that for all n with na ≥ n 2 , we have

1 c 2 < λ n A < c 2 ,
where Ãa, and A are two constants.

From Fig. 4.3, we can see that A does not depend on a and it is close to 1 when is close to 0. We also can state a conjecture that the transition between two asymptotic regimes is determined by 1/a (and is independent of ).

In the case of the sphere, we do not have the explicit computation of λ n ( T ). Therefore, we cannot find the exact formula of A . Nevertheless, since the operator T does not depend on a A does not depend on a, moreover, the numerical results suggest that A → 1 as → 0 (see Fig. 4.5a).

We then plot ψ 2 n versus n (in the log-log scale) (Fig. 4.4). In 3-D case, the asymptotic behavior of ψ 2 n is more complicated than in 2-D case. We can distinguish three asymptotic regimes: (i)

∝ n -3 ∝ n -6 ∝ n -2 1/ ε 1/a (b)
ψ 2 n ∼ Ba, n -2 (max{na, n } 1), (4.2.3) 
i.e., there exists c 1 , n 1 , 1 such that for all n ≥ n 1 and max{na, n } < 1 , we have

1 c 1 < ψ 2 n Ba, n -2 < c 1 , (ii) 
ψ 2 n ∼ B a, n -α (min{na, n } 1 max{na, n }), (4.2.4) 
i.e., there exists c 2 , n 2 , 2 such that for all n with max{na, n } ≥ n 2 and min{na, n } < 2 , we have

1 c 2 < ψ 2 n B a, n -α < c 2 , (3 ≤ α ≤ 4.5), (iii) 
ψ 2 n ∼ B a, n -6 (min{na, n } 1), (4.2.5) 
i.e., there exists c 3 , n 3 , 3 such that for all n with max{na, n } ≥ n 3 , we have

1 c 3 < ψ 2 n B a, n -6 < c 3 ,
where Ba, , B a, , B a, are constants.

The second regime is not easy to observe: when a, the power law α seems to be 3; otherwise, when a , α ∼ 4.5. If 1 min{1/a, 1/ } max{1/a, 1/ }, i.e., either a 1, or a 1 then we can observe all three regimes. If a or is not small enough, the first regime with n -2 may not be well established (Fig. 4.4d). If a ∼ , the second regime disappears, as illustrated on Fig. 4.4c. Fig. 4.4a,b show the difference in the second regime between the case of a and a . When → 0, max{1/a, 1/ } → ∞, the third regime disappears, and one retrieves two regimes for point-like targets ( = 0). When = 0, we can obtain the asymptotic behavior of ψ 2 n from their explicit computation (refer to Eqs. (B.2.7), (B.2.8) with = 0):

(i) ψ 2 n ∼ Ba n -2 (na 1), (4.2.6) 
i.e., there exists c 1 , n 1 , 1 such that for all n ≥ n 1 and na < 1 , we have

1 c 1 < ψ 2 n Ba n -2 < c 1 , (ii) 
ψ 2 n ∼ B a n -3 (na 1), (4.2.7) 
i.e., there exists c 2 , n 2 , 2 such that na ≥ n 2 , we have

1 c 2 < ψ 2 n B a n -3 < c 2 ,
where Ba , B a are constants.

In the same argument as on the disk, we get that

n≥1 ψ 2 n λ 2 n 6D 2 t 1 b a . (4.2.8) 
Since the eigenvalues λ n A n -2 is independent of a, it implies that B a, ∼ 1/a as a → 0. Therefore, we plot aB a, on Fig. 4.5b. The similar results as in 2-D are observed: for large , three curves for a = 0.001, a = 0.01 and a = 0.1 seem to be coincide, as expected, but strong deviations emerge at small . In conclusion, the reflection distance a plays an important role, especially for small targets.

Although above the asymptotic regimes for λ n and ψ 2 n remain conjectural, we investigate their consequences for the asymptotic behavior of the mean exit time. Using the asymptotic relations for large n, we get

n≥1 ψ 2 n λ 2 n λ n + D 1 λ ∼ ∞ 1 B a, x -6 A 2 x -4 A x -2 + D 1 λ dx = B a, A 3 
∞ 1 dx 1 + x 2 D 1 λA ∼ B a, A 5/2 π 2 λ D 1 .
From this asymptotic relation and Eq. (4.1.35), we obtain the asymptotic behavior for t 1 ,

t 1 = T - C 1 √ λ + O 1 λ , (4.2.9) 
where

C 1 = C a, √ D 1 D 2 , C a, = (1 -(1 -a) 2 ) B a, 8A 5/2 . (4.2.10) 
Figure 4.6 shows the mean exit time t 1 as a function of λ, with = 0.01, D 1 = 1, D 2 = 5 and three values of a: a = 0.1, 0.01 and 0.001. In all cases of a, the mean exit time passes through a minimum at some positive desorption rate λ c and then approaches the maximum as λ → ∞. The optimal value λ c as well as the height of the maximum at λ → ∞ depend on a. The limiting mean exit time T changes significantly with different small a. The asymptotic relation (4.2.9) accurately captures the limiting behavior.

Furthermore, understanding the asymptotic behavior of λ n and ψ 2 n also help us to investigate the relationship between t 1 and , a. Although we do not have enough investigations about λ n and especially, ψ 2 n , we can consider the case of nonintermittent bulk diffusion with reflex boundary (a → 0), which formally correspond to the double limit λ → ∞ and a → 0, in the narrow escape limit ( → 0). For a fixed very small a, when → 0, Eqs. (4.2.1) and (4.2.3) give us

lim λ→∞ t 1 = T = 1 -(1 -a) 2 12D 2 n≥1 ψ 2 n λ 2 n = 1 -(1 -a) 2 12D 2   1/ n=1 Ba, n -2 Ã2 a, n -2 + 1/a n=1/ B a, n -α Ã2 a, n -2 + ∞ n=1/a B a, n -6 A 2 n -4   = 1 -(1 -a) 2 12D 2

Ba, Ã2

a,

1 + o 1 , (4.2.11) 
where α ≥ 3.

Although we do not know more information about the Ãa, and Ba, , Eq. (4.2.11) gives us the divergence of T with 1/ , which is similar to the result from Ref. [START_REF] Singer | Narrow escape. I[END_REF][START_REF] Singer | Narrow escape. II. The circular disk[END_REF][START_REF] Singer | Narrow escape. III. Non-smooth domains and Riemann surfaces[END_REF]. 

Chapter 5

Torus case

In this chapter, we describe an extension of the above problem to rectangles. We compute the mean exit time from a rectangle through a hole on its surface. As for the disk, we develop a spectral approach to this escape problem in which the mean exit time is explicitly expressed through the eigenvalues of a self-adjoint operator. This representation is well-suited to investigate the asymptotic behavior of the mean exit time in the limit of large desorption rate λ. Similar to the disk case, we show that the mean exit time diverges as √ λ for a point-like target and establish the asymptotic approach to a finite limit for extended targets. In all cases, the mean exit time is shown to asymptotically increases as λ goes to infinity. Most importantly, we investigate the role of the shape elongation on the optimality condition of surfacemediated diffusion. In particular, we prove that D 2,crit , the critical value for D 2 under which t 1 has a minimum at some positive λ, increases as the rectangle height R increases from a/2 to ∞. This leads us to the conclusion that the function f (R) = t 1 min t 1 λ=0 has a minimum, i.e., there is an "optimal rectangle" for which the gain of surface-mediated diffusion over pure surface diffusion is maximal.

A self-adjoint operator formulation

We consider surface-mediated diffusion on a rectangle [-π, π] × [-R, R] when a target is located on horizontal edges. For convenience, the target is split into four pieces which are located near four corners:

[-π, -π + ] × (-R), [-π, -π + ] × R, [π -, π] × (-R) and [π -, π] × R.
This problem can be mapped onto the complex plane by periodically extending the rectangular pattern in both directions. The mapped target appears as an interval of length 2 which is periodically repeated in two directions: [(2k + 1)π -+ (2j + 1)Ri, (2k + 1)π + + (2j + 1)Ri], j, k ∈ Z. The "surface" is represented by horizontal lines at y = (2j + 1)R, j ∈ Z. This problem is also equivalent to diffusion on a torus.

A particle starts at a point x 0 +iy 0 . If this point lies on one of "surface" horizontal lines, i.e., y 0 = (2j + 1)R for some j ∈ Z, and it does not belong to the target, then a one-dimensional Brownian motion with the diffusion coefficient D 1 is started on target boundary

a x r R -R R -a -π π a D 2 D 1 λ (x 0 , r 0 )
Figure 5.1: Surface-mediated diffusion in Torus (rectangle) case this line. If the particle has not reached the target during a random time distributed by an exponential law with parameter λ > 0, then the particle is moved from its current position (x 1 , y 0 ) to the point (x 1 , y 0 + a), from which a two-dimensional Brownian motion with the diffusion coefficient D 2 is started, until it reaches again a line y = (2j + 1)R for some j ∈ Z, for which the procedure starts over.

For a process started from a "surface" point (x, (2j + 1)R), the mean exit time t 1 (x) is a 2π-periodic even function. When the process is started from a "bulk" point (x, y), the mean exit time t 2 (x, y) is a 2π-periodic on the real line and 2R-periodic on the imaginary line.

Refer to the Mathematical Background 2.3, we establish the original equations where the operator T is defined as in Chapter 3, i.e. T = -ET R as an operator on L 2 ([0, π]), with T is defined as in Eqs. (3.2.9), R is the natural restriction from L 2 ([0, π]) to L 2 ([0, π -]) and E is natural extension by 0 from L 2 ([0, π -]) to L 2 ([0, π]). Applying the operator V to both sides of Eq. (5.1.19), we get, writing s 1 = V (t 1 ),

s 1 = 1 D 1 1 + λ R 2 -(R -a) 2 2D 2 V T (1) - λ D 1 V T V (s 1 ),
which can be solved in s 1 as

s 1 = 1 D 1 1 + λ R 2 -(R -a) 2 2D 2 I + λ D 1 V T V -1 (ψ), (5.1.20) 
where ψ = V T (1).

The feature that V T V is self-adjoint allows us to invert (I + λ D 1 V T V ) and to express the mean exit time in a spectral form. We are interested in

t 1 = 1 π π 0 dx t 1 (x) = 1 π t 1 , 1 .
Hence, using Eqs. (5.1.19) and (5.1.20), we can write

π t 1 = 1 D 1 1 + λ R 2 -(R -a) 2 2D 2 T (1), 1 - λ D 1 T V (s 1 ), 1 = 1 D 1 1 + λ R 2 -(R -a) 2 2D 2 T (1), 1 - λ D 1 s 1 , ψ , (5.1.21) 
from which it follows that the knowledge of s 1 allows to compute t 1 :

t 1 = 1 πD 1 1 + λ R 2 -(R -a) 2 2D 2 T (1), 1 - λ D 1 I + λ D 1 V T V -1
ψ, ψ .

(5. 1.22) As for the disk, we can state that there is an orthonormal basis (e n ) n≥0 of Im(V T V ) in L 2 ([0, π]) such that V T V e n = λ n e n and λ n ↓ 0 as n → ∞. When = 0, the eigenbasis (e n ) is simply formed by cosine functions, and the analysis is straightforward (see below). When > 0, we can write in spectral representation as

ψ = n≥1 ψ n e n ,
with coefficients (ψ n ) n forming a sequence in 2 (N), ψ n = ψ, e n . Using this representation, Eq. (5.1.20) is formally solved as

s 1 = 1 D 1 1 + λ R 2 -(R -a) 2 2D 2 n≥1 ψ n 1 + λ D 1 λ n e n .
Plugging this expression into Eq. (5.1.22) we obtain

t 1 = 1 πD 1 1 + λ R 2 -(R -a) 2 2D 2 T (1), 1 - λ D 1 n≥1 ψ 2 n 1 + λ D 1 λ n . (5.1.23)
This spectral representation is almost identical to Eq. (3.2.21) for the disk, the only difference relies in the eigenvalues λ n and spectral weights ψ n (once D 2 is rescaled appropriately). Note that the surface extension 2π and the bulk "width" 2R between two horizontal edges for rectangles correspond to the disk perimeter 2π and disk diameter 2R, respectively. While the disk is characterized by a single length scale (the radius of the disk=1), the advantage of rectangles is a possibility to separate these scales and thus to investigate the role of shape elongation.

Point-like target ( = 0)

For a point-like target ( = 0), the only difference with the disk lies in the eigenvalues λ n for which Eq. (3.2.24) is replaced by

λ n = 1 -cosh n(R-a) cosh nR 1 n 2 (n ≥ 1), 0 (n = 0), e n = 2/π cos nx (n ≥ 1), 1/π (n = 0).
(5.1.24) For n ≥ 1, we have

ψ n = ψ, e n = V T (1), e n = 2/π T (1), V (cos nx) = 2/π 1 - cosh n(R -a) cosh nR π 2 -x 2 2 , cos nx = √ 2π 1 - cosh n(R -a) cosh nR
(-1) n+1 n 2 , (5.1.25) while ψ, 1 = V T (1), 1 = T (1), V (1) = 0. Substituting this expression into Eq. (5.1.23), we get

t 1 =0 = 1 πD 1 1 + λ R 2 -(R -a) 2 2D 2   T (1), 1 - n≥1 2π λ D 1 1 -cosh n(R-a) cosh nR n 2 n 2 + λ D 1 1 -cosh n(R-a) cosh nR   = 1 πD 1 1 + λ R 2 -(R -a) 2 2D 2 T (1), 1 -2π n≥1 1 n 2 + 2π n≥1 1 n 2 + λ D 1 1 -cosh n(R-a) cosh nR = 2 D 1 1 + λ R 2 -(R -a) 2 2D 2 n≥1 1 n 2 + λ D 1 1 -cosh n(R-a)
cosh nR .

(5.1.26)

Defining ε n ≡ cosh n(R-a) cosh nR , we have for 0 < a < 2R:

n≥0 n 4 ε n ∼ n 0 n=0 n 4 e n(R-a) + e -n(R-a) e nR + e -nR + ∞ n=n 0 n 4 e -na < ∞. (5.1.27) 
As for the disk, one can use Theorem 3.2.1 to obtain the asymptotic of the mean exit time t 1 =0 as λ → ∞

t 1 =0 = 2 D 1 1 + λ R 2 -(R -a) 2 2D 2 π √ D 1 2 √ λ - D 1 2λ + D 1 λ n≥1 ε n 1 -ε n + O( 1 λ ) = R 2 -(R -a) 2 2D 2 √ D 1 π √ λ + R 2 -(R -a) 2 2D 2 2 n≥1 ε n 1 -ε n -1 + π √ D 1 1 √ λ + 2 n≥1 ε n 1 -ε n -1 1 λ + O 1 λ = A 1 √ λ + A 2 + A 3 √ λ + O 1 λ , (5.1 

.28)

where

A 1 = R 2 -(R -a) 2 2D 2 π √ D 1 , (5.1.29) A 2 = R 2 -(R -a) 2 2D 2 2 n≥1 cosh n(R -a) cosh nR -cosh n(R -a)
-1 , (5.1.30) dλ > 0 at large λ, from which combine with Eq. (5.1.28) allows us to conclude that t 1 =0 asymptotically increases to infinity as λ → ∞, as illustrated on Fig. 5.2a.

A 3 = π √ D 1 . ( 5 
As a result, if ∂ t 1 =0 ∂λ λ=0

< 0, then t 1 =0 has a minimum in terms of λ. We compute 

∂ t 1 =0 ∂λ λ=0 = 2 D 1 R 2 -(R -a) 2 2D 2 n≥1 1 n 2 - 1 D 1 n≥1 1 -cosh n(R-a) cosh nR n 4 < 0 ⇔ R 2 -(R -a) 2 2D 2 π 2 6 < 1 D 1 n≥1 1 -cosh n(R-a) cosh nR n 4 ⇔ D 2 > D 2,crit = D 1 π 2 (R 2 -(R -a) 2 ) 12 n≥1 1- cosh n(R-a) cosh nR n 4 . ( 5 

Extended target ( > 0)

As for the disk, the mean exit time t 1 to an extended target ( > 0) converges to a finite limit as λ → ∞. Theorem (3.2.2) can be proved for rectangles case in the same way as in Sec. 3.2.2, we have

n≥1 ψ 2 n λ n = T (1), 1 , n≥1 ψ 2 n λ 2 n < ∞, n≥1 ψ 2 n λ 3 n = ∞.
(5.1.33)

Consequently, Eqs. (5.1.23), (5.1.33) yield the mean exit time for surface diffusion phase:

t 1 λ=0 = 1 πD 1 n≥1 ψ 2 n λ n = 1 πD 1 T (1), 1 = (π -) 3 3πD 1 .
(5.1.34) Plugging Eq. (5.1.33) into Eq. (5.1.23), we obtain

t 1 = 1 π 1 λ + R 2 -(R -a) 2 2D 2 n≥1 ψ 2 n λ n D 1 λ + λ n .
(5.1.35)

In the limit λ → ∞, Eq. (5.1.35) yields the mean exit time for the bulk diffusion phase:

T = lim λ→∞ t 1 = R 2 -(R -a) 2 2πD 2 n≥1 ψ 2 n λ 2 n .
(5.1.36) Remark 5.1.1. From (5.1.36) and (5.1.33), we obtain the asymptotic behavior for t 1 : 

t 1 = T - D 1 λ R 2 -(R -a) 2 2πD 2 ∞ n=1 ψ 2 n λ 2 n λ n + D 1 λ + S πλ + o 1 λ . ( 5 
D 2,crit = D 1 (R 2 -(R -a) 2 ) T (1), 1 2 V T (1) 2 = D 1 π(π -) 3 (R 2 -(R -a) 2 ) 12 n≥1 1 -cosh n(R-a) cosh nR n 4 (π -) cos n + sin n n 2 -1 , (5.1 

.38)

then t 1 starts first to decrease with λ, passes through a minimum then monotonously increases.

Dependence on the value R

The rectangle case allows one to investigate the role of the domain elongation on the optimality condition for surface-mediated diffusion. In fact, the shape of a disk is fully characterized by a single length scale, its radius K (where in this thesis we fix as 1 and stretch the other parameters into scale 1/L). In turn, the rectangle has two sides 2πL (again, in this thesis, we fix L = 1) and 2R representing two length scales. Changing the aspect ratio π/R, one can study how the mean exit time and the search efficiency depend on the domain elongation.

First, we will show that D 2,crit increases to infinity as R → ∞. On other words, surface-mediated diffusion becomes less and less efficient for rectangles elongated in the vertical direction. In the opposite limit R = a/2, every reflection by distance a moves the particles back to the (opposite) surface, fully excluding the bulk diffusion phase. As a consequence, there should exist an optimal value of R for which the intermittent search strategy is most efficient. Proof. It is convenient to write Eq. (5.1.38) as

D 2,crit = D 1 π(π -) 3 (R 2 -(R -a) 2 ) 12 n≥1 f n g n -1 , (5.2.1) 
where

f n = 1 n 4 (π -) cos n + sin n n 2 ,
(5.2.2) 

g n = 1 - cosh n(R -a) cosh nR , ( 5 
| n≥1 f n g n | ≤ (π -) 2 ζ(4) + 2(π -)ζ(5) + ζ(6) < ∞. ( 5 

.2.14)

As a consequence, the sum in Eq. (5.2.1) remains bounded, while

R 2 -(R-a) 2 → ∞ as R → ∞ so that D 2,crit → ∞ as R → ∞ that completes the proof.
Theorem 5.2.2. For D 2,crit defined in Eq. (5.1.38), we have

D 2,crit → D 1 ∆ a, as R → a 2 , (5.2.15) 
where

∆ a, = D 1 π(π -) 12 a n≥1 f n n tanh na 2 -1 , (5.2.16) 
and f n are defined in Eq. (5.2.2).

Proof. Setting R = ξ + a 2 , D 2,crit can be rewritten as

D 2,crit = D 1 π(π -) 3 12 2aξ n≥1 f n g n -1
, (5.2.17) with g n is defined in (5.2.3) and is rewritten as

g n = 1 - cosh n a 2 -ξ cosh n a 2 + ξ . ( 5 

.2.18)

We would like to prove that n≥1 f n gn ξ converges to n≥1 f n n tanh na 2 as ξ → 0. Indeed, we have that

g n (ξ) = 1 - e n(ξ-a 2 ) + e n(-ξ+ a 2 ) e n(ξ+ a 2 ) + e -n(ξ+ a 2 ) = e n(ξ+ a 2 ) -e n(-ξ+ a 2 ) + e -n(ξ+ a 2 ) -e n(ξ-a 2 )
e n(ξ+ We get

∞ n=1 f n g n (ξ) ξ - ∞ n=1 f n 2n e n a 2 -e -n a 2 e n a 2 + e -n a 2 ≤ ∞ n=1 |f n | g n (ξ) ξ -2n e n a 2 -e -n a 2 e n a 2 + e -n a 2 ≤ ∞ n=1 |f n | |F(n, ξ)| ξ ≤ 6ξ ∞ n=1 |f n |n 2 ≤ ξM → 0 as ξ → 0, (M < ∞) (5.2.31) since |f n | ≤ (π -) 2 n 4 + 2(π -) n 5 + 1 n 6 .
Therefore,

lim ξ→0 ∞ n=1 f n g n (ξ) ξ = ∞ n=1 f n 2n e n a 2 -e -n a 2 e n a 2 + e -n a 2 = ∞ n=1 f n 2n tanh na 2 .
(5.2.32) that implies Eq. (5.2.16) and completes the proof.

In particular, as a → 0, one gets

lim a→0 ∆ a, = π(π -) 3 6 n≥1 f n n 2 -1 . ( 5 

.2.33)

Finally, if → 0, f n goes to π 2 /n 4 so that ∆ 0,0 = 1. This is not surprising that the limiting case R → a/2 corresponds to pure surface diffusion phase.

According to Theorems 5.2.1 and 5.2.2, D 1 ∆ a, is the minimal value of the critical diffusion coefficient D 2 , crit under fixed a, , D 1 and variable R. One can thus distinguish two cases for fixed a, , D 1 and R varying from a/2 to infinity:

(1) If D 2 < D 1 ∆ a, then for any R ≥ a/2, D 2 < D 2,crit (R) (since D 2,crit (R) is a
increasing function of R) implying that the minimal value of t 1 is reached at λ min = 0: t 1 min = t 1 λ=0 . On other words, surface diffusion is optimal for any R ≥ a/2 in that case.

(

) If D 2 > D 1 ∆ a, then there exists a value R 0 such that D 2 , crit(R 0 ) = D 2 . Hence, (2a) when a/2 < R ≤ R 0 , one has ∆ < D 2,crit (R) ≤ D 2 = D 2,crit (R 0 ) 2 
, so that there is an optimal value of λ min > 0 that minimizes t 1 ;

(2b) when R 0 < R, D 2,crit (R) > D 2 , and the optimal value of λ min = 0: t 1 min = t 1 λ=0 , i.e., surface diffusion is optimal.

Note that that limiting case R = a/2 means the particle always stays on the boundary, so that t 1 min = t 1 λ=0 .

The above arguments can be reformulated in terms of the ratio f (R) = t 1 min t 1 λ=0 , i.e., the "gain" in the search time that intermittent surface-mediated diffusion may be bring as compared to pure surface diffusion. By construction, f (R) ≤ 1. From the above results, we have f (a/2) = 1. If D 2 /D 1 exceeds ∆ a, , then there exists R 0 such that D 2,crit (R 0 ) = D 2 . In this case, ∀R > R 0 , f (R) = 1. Hence, we conclude that there exists an optimal value R min ∈

[a/2, R 0 ] which gives f (R min ) = min R {f (R)}.
In other words, one can determine the rectangular shape (i.e., R min ) which provides the highest "gain" in the search time.

Numerical asymptotic behavior

As in previous chapters, the purpose of this section is giving the numerical asymptotic behavior of T , the mean exit time for non-intermittent pure bulk diffusion. Although we have another parameter R in this rectangle case, we obtain the same results as in 2-D case:

• We can state Theorem 5.3.1 which is an analogue of Theorem 3.3.1. The proof for those theorems are given generally in Appendix A. • We believe that ψ 2 n ∼ n -6 as n → ∞, from which combines to Theorem 5.3.1, we obtain the asymptotic behavior Tt 1 ∼ 1 √ λ (see Eqs. (5.3.9), (5.3.10)).

• The asymptotic behavior of T , the mean exit time for non-intermittent pure bulk diffusion is T ∼ ln(1/ ) (see Eq. (5.3.12)). The following theorem, stated similarly to Theorem 3.3.1 in 2-D case, shows the asymptotic behavior of λ n as n → ∞. Theorem 5.3.1. Let (λ n ) n≥1 be the decreasing sequence of eigenvalues of the operator V T V , where the operators T and V are defined in Eqs. (3.2.9) and (5.1.17). We have

λ n ∼ A n -2 , (5.3 

.1)

where A depends only on . For the spectral weights, we believe that ψ 2 n ∼ 1 n 6 as n → ∞ (shown in Fig. 5.5). Consequently, Theorem 5.3.1 and this conjecture lead to the asymptotic behavior of t 1 >0 in the formulas (5.3.9) and (5.3.10). The rest of this section is devoted for being evidence to these conjectures. Since it is limited by the pertubations of λ n and ψ 2 n when is big, in this chapter we limit ourselves at ≤ 1.2.

The next part gives the numerical computations of the eigenvalues λ n and the spectral weights ψ 2 n (see Appendix B.3 for computational details). Figure 5.4 allows one to distinguish in three kinds of regimes for λ n , for small, intermediate, and large n as in the following conjecture: Conjecture 5.3.2. Let (λ n ) n≥1 be defined in Theorem 5.3.1, we have (i)

λ n A (1) a,R, n 0 (max{na, n(2R -a)} 1), (5.3.2) 
i.e., there exists c 1 , n 1 , 1 such that for all n ≥ n 1 and max{na, n(2Ra)} < 1 , we have

1 c 1 < λ n A (1) a,R, n 0 < c 1 , (ii) 
λ n A (2) a,R, n -1 (max{na, n(2R -a)} 1 min{na, n(2R -a)}), (5.3.3) 
i.e., there exists c 2 , n 2 , 2 such that for all n, max{na, n(2R-a)} ≥ n 2 and min{na, n(2Ra)} < 2 , we have

1 c 2 < λ n A (2) a,R, n -1 < c 2 , (iii) 
λ n A n -2 (min{na, n(2R -a)} 1), (5.3.4) 
i.e., there exists c 3 , n 3 such that for all n, min{na, n(2Ra)} ≥ n 3 , we have

1 c 3 < λ n A n -2 < c 3 , where A (1) a,R, , A (2) 
a,R, and A are three constants.

Theorem 5.3.1 proves the third (large n) asymptotic relation for λ n and shows that the constant A weakly depends on a and R.

In Fig. 5.4, the transition between three asymptotic regimes is determined by 1/(2Ra) and 1/a (and is independent of ). One can see that these asymptotic relations accurately approximate the eigenvalues λ n .

The behavior of A is shown on Fig. 5.6b and Fig. 5.7b. As expected, it weakly depends on a and R. Although it is limited by ≤ 1.2, these numerical results show

A = (1 -/π) 2 .
(5.3.5)

According to the first case in Theorem C.0.1, the coefficient A

a, is equal to a(2Ra)/2 when = 0. In Figs. 5.6a and 5.7a, we plot n is more complicated. For each triple value of (a, R, ), one can distinguish three asymptotic regimes: 

circles), 0.01 (stars), 0.1 (plus), and 1 (triangle); and (c) for = 0.01, R = 0.1 and three values of a: 0.001 (circles), 0.01 (stars) and 0.1 (plus). Solid lines show the asymptotic relations a(2Ra)/2n 0 , a/n, (2Ra)/n and 1/n 2 . The coefficient A in front of n -2 relation is close to 1 for all small targets, except for = 1, see Eq. (5.3.5). The first plot shows that λ n weakly depends on . The second plot shows that for R = R 1 (1 < R 1 < a), there are three separated kinds of regimes of λ n , the coefficient in front of n -1 relation is close to 2R 1a; for R = R 2 (1 < R = a), the second regime disappears; for R = R 3 (1 < a < R), there are three separated kinds of regimes of λ n , the coefficient in front of n -1 relation is close to a; for R = R 4 (R ≥ 1), the first regime disappears. In the last plot, it shows the dependence of λ n in terms of a. Similar to the second plot, the second regime disappears when a 2 = R. 

a,R, /(a(2R-a)), B

a, /(πa(2R-a)), and B 

a, /(a(a + 2δ)), B

a, /(πa(a + 2δ)), and Ba, /(2π) from Conjectures (5.3.2), (5.3.3) versus . Four curves for fixed R = 0.1 and two values of a: a = 0.1 and a = 0.01 coincide that illustrates the independence of A ( 4) of a.

Although the above asymptotic regimes for λ n and ψ 2 n remain conjectural, we use the asymptotic relations of λ n and ψ n (for large n), to get the asymptotic behavior of t 1 >0 . Consequently, we get

t 1 = T - C 1 √ λ + O 1 λ , (5.3.9) 
where

C 1 = C a,R, √ D 1 D 2 , C a,R, = (R 2 -(R -a) 2 ) B (4) a,R, 8A 5/2 . 
(5.3.10) Figures 5.8 and 5.9 show the mean exit time t 1 as a function of λ for = 0.01, R = 2 and three values of a: 0.001, 0.01 and 0.1 (Fig. 5.8) and for = 0.01, a = 0.01 and four values of R: 0.0055, 0.01, 0.1 and 2 (Fig. 5.9). In the cases of R big (R = 2), the mean exit time passes through a minimum at some intermediate desorption rate λ c and then approaches the maximum as λ → ∞. One can clearly see that the optimal value λ c as well as the height of the maximum at λ → ∞ depend on a and R.

In the cases of R small (R = 0.0055, R = 0.01, R = 0.1), the mean exit time seems to be decreasing at the end which is contrary to Theorem (5.1.1). However, this is not a contradiction. In those cases, the facts are that R 2 -(Ra) 2 is very small while λ is not big enough and it is limited in computing λ n and ψ 2 n for n is not big enough. Hence, the second term in the formula of the function d t 1 dλ (which can be computed from Eq. ( 5 (5.3.11) is not big enough to make d t 1 dλ > 0. In order to observe the eventual increase of t 1 in those cases, one needs λ large enough (λ > 10 6 ), hence, it is necessary to solve more λ n and ψ 2 n (n 10 4 ).

π d t 1 dλ = - S λ 2 + 1 λ 2 D 1 (R 2 -(R -a) 2 ) 2D 2 n≥1 ψ 2 n λ n λ n + D 1 λ 2 + D 1 λ 3 n≥0 ψ 2 n (2λ n + D 1 /λ) λ 2 n (λ n + D 1 /λ) 2 ,
In the final part, we focus on the behavior of the mean exit time t 1 >0 in the case of λ → ∞, a is very small, and R big enough. In this situation, when → 0, Hence, we conclude that λ n (A + B) ∼ cn -s .

We turn back to prove the Theorem A.0.4. We consider the eigenpairs of the operator V T V , where T is defined in Eq. (3.2.9), and V is defined by -

V (E n ) = √ 1 -ε n E n = 1 - m≥1 α m ε m n E n 1 - 1 2 ε n E
V T V = T -(K N + R N ) T -T (K N + R N ) + (K N + R N ) T (K N + R N ) = T -K N T -T K N + K N T K N + K N T R N + R N T K N
R N T -T R N + R N T R N ≤ R N T + T R N + R N T R N ≤ c R N ≤ cλ N (R) ≤ cε N , since λ N (R) = m≥1 α m ε m n ≤ ε N .
Hence, refer to Lemma A.0.8, we get that λ n (V T V ) ∼ λ n ( T ).

Particularly, in Chapters 3 and 5, as the operator T is defined in Eq. (3.2.9), we have λ n ( T ) = ν n ∼ A n -2 where ν n = (1-/π) 2 (n+1/2) 2 is defined in Eq. (3.2.11). Consequently, we get that λ n (V T V ) ∼ A n -2 and A 1π 2 .

n(2Ra) < 2 , then we have Since n(2Ra) < 2 , na > n 2 , we get 

1 - ∞ i=1 ( 2 ) i 1 i! - 1 (i + 1)! + e -n2 - 1 + ∞ i=1 ( 2 ) i (i+1)! 2 ≤ 1 -cosh n(R-a) cosh nR n(2R -a) ≤ 1, 1/2 -2 -e -n 2 -2 ∞ i=1 1 (i + 1)! ≤ 1 -cosh n(R-a)
a,R n -3 and 2πn -4 , where B

(2) a,R can be 2πa or 2π(2Ra). In the case a (R ≥ 1), the first regime disappears and B 
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2

  For m, n ≥ 1, we have thate n , e m = [cos(n + m)θ + cos(nm)θ] dθ if m = n
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 227228 If I = [a, b] is an interval on R, p ∈ C 1 (I) is a function ≥ α > 0 on I, and q ∈ C(I) is a real function. Then there exists a Hilbert basis (e n ) of L 2 (I) and a real sequence λ n → +∞ such that e n ∈ C 2 (I), e n (a) = e n (b) = 0 and -(pe n ) + qe n = λ n e n (2.2.1) on I. For all f ∈ L 2 (I), there exists a unique function u ∈ H 2 (I) ∩ H 1 0 (I) such that

Figure 2 . 1 :

 21 Figure 2.1: Discrete model of 2-D motion

Figure 3 . 2 :

 32 Figure 3.2: Mean exit time t 1 as a function of λ for = 0 (a) and = 0.01 (b), with a = 0.01 and D 1 = 1. When D 2 = 0.5 < D 2,crit (blue solid line), t 1 monotonously increases with λ so that the smallest mean exit time corresponds to λ = 0 (surface diffusion without intermittence). When D 2 = 2 > D 2,crit (red dashed line), t 1 starts first to decrease with λ, passes through a minimum and monotonously increases to infinity. For point-like target (a), thin solid lines indicate the leading term of the lower bound 1-(1-a) 2

4D 2 √

 2 D 1 π √ λ from Eq. (3.2.47). Note that the upper bound, which is larger by a -1/2 , strongly overestimates the mean exit time. Finally, correction terms of the order λ -1/2 are negligible for large λ. For extended target (b), horizontal lines indicate the limiting values of the mean exit time as λ → ∞. Symbols present the diagonal approximation which is shown in[START_REF] Bénichou | Mean exit time for surface-mediated diffusion: spectral analysis and asymptotic behavior[END_REF].

Figure 3 . 3 :

 33 Figure 3.3: Eignvalues λ n of the operator V T V for (a) a = 0.001 and three values : 0.01 (circles), 0.1 (crosses), and 1 (triangles); and (b) for = 0.01 and three values of a: 0.001 (circles), 0.01 (crosses), and 0.1 (triangles). Solid lines show the asymptotic relations a/n and 1/n 2 , while vertical dotted lines indicate the separation 1/a between these asymptotic regimes. The coefficient A in front of n -2 relation (see (3.3.6)) is close to 1 for all small targets, except for = 1, see Eq. (3.3.7).

Figure 3 . 4 :

 34 Figure 3.4: Spectral weights ψ 2 n (shown by red solid line) for (a) a = 0.001 and = 0.1; (b) a = 0.1 and = 0.001; and (c) a = = 0.01. In the first two plots, three asymptotic regimes can be distinguished according to Eqs. (3.3.8), (3.3.9),(3.3.10) while the intermediate regime disappears in the last plot.

Figure 3 . 5 :

 35 Figure 3.5: Coefficients A , Ãa, /a, aB a, , and Ba, /a from Eqs. (3.3.5),(3.3.6) (3.3.8), (3.3.10) versus . Two curves for a = 0.001 and a = 0.1 coincide, that illustrates the independence of A and à /a of a.

Figure 3 . 6 :

 36 Figure 3.6: The mean exit time t 1 as a function of λ for = 0.01, D 1 = D 2 = 1, and two values of a: 0.01 (solid line) and 0.001 (dashed line). Two horizontal lines indicate the mean exit times for surface diffusion t 1 λ=0 ≈ 3.2586 from Eq.(3.2.66) and for pure bulk diffusion t 1 b = lim a→0 t 1 λ=∞ ≈ 5.2929 from which showed in [3]. Thin lines show the asymptotic behavior (3.3.13) where T and C 1 are computed from Eqs. (3.2.70), (3.3.14).
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 241 Figure 4.1: Surface-mediated diffusion in 3-D case

4 )

 4 Let us put x = cos θ then the space L 2 ([0, π],sin θdθ) transforms to L 2 ([-1, 1], dx).

y

  (α ) = 0 and y does not blow up at x = -1,

( 4 .

 4 1.23) As the same reason as in 2D case, there is an orthonormal basis (e n ) n≥0 on L 2 ([-1, 1]) of Im(V T V ) such that V T V e n = λ n e n and λ n ↓ 0 as n → ∞. When = 0 i.e. α = 1, the eigenbasis (e n ) is Legendre polynomials of order n, e n = P n (x). When > 0 i.e. α < 1, for ψ = V T (1) defined in(4.1.20), one can prove that ψ ∈ Im(V T V ) as in 2-D and write ψ = n≥1 ψ n e n , (4.1.24)
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 411 For (λ n ) defined as the eigenvalues of the operator V T V and (ψ n ) defined as the spectral weight of the function V T (1) in the orthonormal basis (e n ) of the operator V T V , where V and T are defined in (3.2.8) and (4.1.17) 

Figure 4 .

 4 Figure 4.2 shows that there is a critical value of D 2 , D 2,crit , such that if D 2 > D 2,crit , the mean exit time t 1 first decreases with λ, passes through a minimum at λ > 0 and then increases to a finite limit. Vice versa, if D 2 < D 2,crit , the mean exit time monotonously increases with λ to a finite limit.

Figure 4 . 2 :

 42 Figure 4.2: Mean exit time t 1 as a function of λ for = 0.01 with a = 0.001 and D 1 = 1. When D 2 = 1.9 < D 2,crit ≈ 1.9997 (blue solid line), t 1 monotonously increases with λ so that the smallest mean exit time corresponds to λ = 0 (surface diffusion without intermittence). When D 2 = 4 (or D 2 = 10) > D 2,crit (red dashed line), t 1 starts first to decrease with λ, passes through a minimum and monotonously increases to infinity.

Figure 4 . 3 :

 43 Figure 4.3: Eigenvalues λ n of the operator V T V for (a) a = 0.01 and four values : 0.001 (circles), 0.01 (stars), 0.1 (plus), and 0.7 (triangles); (b) a = 0.1 and four values : 0.001 (circles), 0.01 (stars), 0.1 (plus), and 0.7 (triangles); and (c) for = 0.01 and three values of a: 0.001 (circles), 0.01 (stars), and 0.1 (plus). Solid lines show the asymptotic relations a/n and 1/n 2 , while vertical dotted lines indicate the separation 1/a between these asymptotic regimes. The coefficient A in front of n -2 relation is close to 1 for all small targets, see (4.2.2).

Figure 4 . 4 :

 44 Figure 4.4: Spectral weights ψ 2 n (shown by red solid line) for (a) a = 0.01 and = 0.1; (b) a = 0.1 and = 0.01; (c) a = = 0.01; and (d) a = 0.1 and = 0.7. In the first two plots, three asymptotic regimes can be distinguished according to Eqs. (4.2.3), (4.2.4), (4.2.5), while the intermediate regime disappears in the third plot and the first regime disappears in the last plot.

Figure 4 . 5 :

 45 Figure 4.5: Coefficients A , aB a, from Eqs. (4.2.2), (4.2.5) versus . Three curves for a = 0.001, a = 0.01 and a = 0.1 coincide that illustrates the independence of A of a.
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 46 Figure 4.6: The mean time t 1 as a function of λ for = 0.01, D 1 = D 2 = 5, and three values of a: 0.1 (green line), 0.01 (blue line) and 0.001 (red line).

Figure 5 . 2 :

 52 Figure 5.2: Mean exit time t 1 as a function of λ for = 0 (a) and = 0.01 (b), with a = 0.01 and D 1 = 1. When D 2 = 0.5 < D 2,crit (blue solid line), t monotonously increases with λ so that the smallest mean exit time corresponds to λ = 0 (surface diffusion without intermittence). When D 2 = 2 > D 2,crit (red dashed line), t 1 starts first to decrease with λ, passes through a minimum and monotonously increases to infinity.
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 521 D 2,crit defined in Eq. (5.1.38) monotonously increases to infinity as R → ∞.

Figure 5 . 3 :

 53 Figure 5.3: Functionf (R) = t 1 min t 1 λ=0 versus R with fixed D 1 = 1, D 2 = 2, a = 0.01, = 0.01, R ∈ [a/2, 1].The minimum is obtained at R ∼ 0.08 where f (R = 0.08) = 0.594.
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  -a) , this ratio approaches 1 as → 0.

Figure 5 .

 5 Figure 5.5 shows that the asymptotic behavior of the spectral weights ψ 2n is more complicated. For each triple value of (a, R, ), one can distinguish three asymptotic regimes:

Figure 5 . 4 :

 54 Figure 5.4: Eigenvalues λ n of the operator V T V (from left to right, up to down) for (a) a = 0.01, R = 0.0055 and four values : 0.001 (circles), 0.01 (stars), 0.1 (plus) and 1 (triangle); (b) for = 0.01, a = 0.01 and four values of R: 0.0055 (circles), 0.01 (stars), 0.1 (plus), and 1 (triangle); and (c) for = 0.01, R = 0.1 and three values of a: 0.001 (circles), 0.01 (stars) and 0.1 (plus). Solid lines show the asymptotic relations a(2Ra)/2n 0 , a/n, (2Ra)/n and 1/n 2 . The coefficient A in front of n -2 relation is close to 1 for all small targets, except for = 1, see Eq. (5.3.5). The first plot shows that λ n weakly depends on . The second plot shows that for R = R 1 (1 < R 1 < a), there are three separated kinds of regimes of λ n , the coefficient in front of n -1 relation is close to 2R 1a; for R = R 2 (1 < R = a), the second regime disappears; for R = R 3 (1 < a < R), there are three separated kinds of regimes of λ n , the coefficient in front of n -1 relation is close to a; for R = R 4 (R ≥ 1), the first regime disappears. In the last plot, it shows the dependence of λ n in terms of a. Similar to the second plot, the second regime disappears when a 2 = R.
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 55 Figure 5.5: Spectral weights ψ 2 n (shown by red solid line) for (a) a = 0.01, R = 0.1 and = 0.001; (b) a = 0.01, R = 1 and = 0.1; (c) a = R = = 0.01; (d) a = 0.01, R = 0.0055 and = 0.1; (e) a = 0.001, R = 0.01 and = 0.1; and (f) a = 0.001, R = 0.1 and = 0.01. In (a) and (f), there are four distinguished asymptotic regimes (the second regime in Conjecture 5.3.3 is separated into two different regimes), while the first regime disappears in (b) and the intermediate regimes disappears in (c).
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 56 Figure 5.6: Coefficients A (4) , 2A

( 4 )Figure 5 . 7 :

 457 Figure 5.7: Coefficients A (4) , 2A

  n≥1

  Figures 5.8 and 5.9 show the mean exit time t 1 as a function of λ for = 0.01, R = 2 and three values of a: 0.001, 0.01 and 0.1 (Fig.5.8) and for = 0.01, a = 0.01 and four values of R: 0.0055, 0.01, 0.1 and 2 (Fig.5.9). In the cases of R big (R = 2), the mean exit time passes through a minimum at some intermediate desorption rate λ c and then approaches the maximum as λ → ∞. One can clearly see that the optimal value λ c as well as the height of the maximum at λ → ∞ depend on a and R.In the cases of R small (R = 0.0055, R = 0.01, R = 0.1), the mean exit time seems to be decreasing at the end which is contrary to Theorem (5.1.1). However, this is not a contradiction. In those cases, the facts are that R 2 -(Ra) 2 is very small while λ is not big enough and it is limited in computing λ n and ψ 2 n for n is not big enough. Hence, the second term in the formula of the function d t 1 dλ (which can be computed from Eq. (5.1.23) with S = n≥1 ψ 2 n λ 2 n ):

Figure 5 . 9 :

 59 Figure 5.9: The mean time t 1 as a function of λ for = 0.01, a = 0.01, D 1 = 1,D 2 = 5, and four values of R: 0.0055 (solid red line), 0.01 (dash-dot blue line), 0.1 (dot green line) and 2 (dash pink line).

  Proof. Indeed, by applying (A.0.10), if we choose N (n) = n δ , with δ < 1, then we obtain from (A.0.10) thatc(n + n δ ) -s (1 + o(1))ρ n δ ≤ λ n (A + B) ≤ c(nn δ ) -s (1 + o(1)) + ρ n δ , Let n → ∞, we have cn -s (1 + o(1)) ≤ λ n (A + B) ≤ cn -s (1 + o(1)).

V

  nwhere {E n } are the eigenvectors of the operatorV , 0 ≤ ε n ≤ 1 and α m = Π m k=1 α-k+1 k are binomial coefficients. In this thesis, ε n can either be (1a) n (0 ≤ a ≤ 1) (2-D case) or be cosh n(R-a) cosh nR (0 ≤ a ≤ 2R, R > 0) (rectangle case). The last approximate equality is valid for ε n → 0 as n → ∞. Putting R(E n ) = T V = (I -R) T (I -R) = T -R T -T R -R T R.Let us denote by K N the image of the orthonormal projection on the first N th eigenvectors of R and R N the image of the orthonormal projection on the rest eigenvectors of R. By definition, R = K N + R N . Then,

  these operators have the finite rank, which equal toN -R N T -T R N + R N T R N . (A.0.11)We note that rank(K N ) = N and in formula (A.0.11), whenever there is a K N , we have an operator of rank N . Moreover, -R N T -T R N + R N T R N has the norm dominated by the N th eigenvalue of R:

1 -

 1 cosh n(Ra) cosh nR = 1cosh na + sinh na tanh nR = 1 -e na + e -na 2 + e nae -na 2 2R-a) + e -na -e n(2R-a) e 2nR + 1 = e n(2R-a) -1 e n(2R-a) + e -na + e -na e n(2R-a) + e -na -e n(2R-a) e 2nR + 1 = e n(2R-a) -1 e n(2R-a) + e -na + 1e n(2R-a) e 2nR + 1 = ∞ i=1 n i (2R-a) i i! ∞ i=0 n i (2R-a) i i! + e -na -1 -∞ i=1 n i (2R-a) i i! e 2nR + 1 . (C.0.5) Divide 1 -cosh n(R-a) cosh nRby n(2Ra) we get 1 -cosh n(R-a)

c 2 2 ∞ i=1 1 (

 221 = 1/2 + 2 + e -n 2 + i+1)! .

Figure C. 2 :

 2 Figure C.2: Coefficients ψ 2 n for = 0, a = 0.01 and four values R: (a) R = 1 ; (b) R = 0.1 ; (c) R = 0.01 and (d) R = 0.0055. Straight lines show the asymptotic relations πa(2Ra)n -2 , B

  = 2πa; in the case b (1 < a < R), there are three separated regimes πa(2Ra)n -2 , 2πan -3 and 2πn -4 ; in the case c (1 < R = a), the second regime disappears; in the case d (1 < R < a), there are three separated regimes πa(2Ra)n -2 , 2π(2Ra)n -3 and 2πn -4 .

  .2.40) From (3.2.39), (3.2.40), by Lebesgue dominated convergence theorem, we obtain

  lim λ→∞ t 1 = T , the right-hand side of Eq. (3.2.72) must converges to 0 as λ → ∞. Besides, thank to Theorem 3.2.2 we have

	where S = n≥1 Again, since lim ψ 2 n λ 2 n λ→∞ .	n≥1	.2.72)

  Since (3.2.74) hold for large λ and S is bounded,the first correction term of Eq. (3.2.76) dominates over the second one, i.e.

.2.76) Theorem 3.2.4. The function λ → t 1 , where t 1 defined in (3.2.21), is eventually increasing as λ → +∞, or equivalently, d t 1 dλ > 0 at large λ. Moreover, if d t 1 dλ λ=0

< 0, then the function t 1 passes through a minimum.

Proof.

  .2.86) Remark 3.2.3. The inequality (3.2.85) determines the critical value for the pure bulk diffusion coefficient D 2,crit above which pure bulk excursions are beneficial. The existence of the optimal value λ (that minimizes the function t 1 ) depends on this ratio. If D 2 > D 2,crit , with

  .1.33) Due to theorem 4.1.1, we obtain the following Theorems 4.1.2 and 4.1.3 which can be proved in a similar way with Theorems 3.2.3 and 3.2.4. Theorem 4.1.2. The mean exit time t 1 defined by (4.1.26) converges to a finite limit T as λ → ∞, where

  Plugging (4.1.32) and (4.1.38) into (4.1.37), we obtain

4.1.38) 

  .1.32) If D 2 > D 2,crit , then t 1 =0 has a minimum.

  .1.37) We also have the following theorem whose proof is similar to the Theorem 3.2.4. The function λ → t 1 , where t 1 defined in (5.1.23) is asymptotically increasing as λ → +∞. Moreover, if then the function t 1 passes through a minimum which is located at λ min > 0.Remark 5.1.2. The theorem (5.1.1) allows us to determine the critical value for the bulk diffusion coefficient D 2,crit above which bulk excursions are beneficial. The existence of the optimal value λ (that minimizes the function t 1 ) depends on this ratio. If D 2 > D 2,crit , with

	Theorem 5.1.1. d t 1 dλ λ=0	< 0,

3.2. A SELF-ADJOINT OPERATOR FORMULATION

Remerciements

for these two functions t 1 , t 2 :

(5.1.1) (5.1.2) (5.1.3) (5. 1.4) and

(5. 1.5) is the Laplace operator in Cartesian coordinates of the xr-plane. By symmetry, t 1 (x) is an even function so it is sufficient to determine it on [0, π] where it can be represented as a cosine series

with unknown coefficients a n . As for the disk, the solution to Eq. (5.1.2) can be written as

where u(r) is the particular solution to the inhomogeneous (Poisson) equation ∆u = -1 D 2 , u| ∂T = 0 and v(x, r) is the general solution to the Dirichlet problem ∆v = 0, v| ∂T = t 1 (∂T is the "surface" of the rectangle). Solving the Poisson equation gives us We identify the coefficients and use the condition a n = 0 to obtain b n (r)n 2 b n (r) = 0.

(5.1.12)

From Eq. (5.1.12), we write b n (r) which is the solution of Eq. (5.1.12) as b n (r) = α sinh nr + β cosh nr. Once more time, we define operators U , V on L 2 ([0, π]) satisfy U = V 2 : U n≥0

x n cos nx = n≥1

x n 1 -cosh n(Ra) cosh nR cos nx, (5.1.16) and V n≥0

x n cos nx = n≥1

x n 1 -cosh n(Ra) cosh nR cos nx.

(5.1.17)

Eq. (5.1.1) then is rewritten as

from which we obtain the solution t 1

(5. 1.19) i.e., f n are independent of R.

Setting R = a + δ, one can rewrite

and

.

(5.2.5)

Taking the derivative of D 2,crit with respect to δ yields

where

(5.2.9)

Writing h n = hn cosh 2 n(a+δ) , where

we will show that hn > 0 for δ > -a/2.

Taking the derivative with respect to δ, one finds

Finally, hn vanishes at δ = -a/2. We conclude that hn > 0 for δ > -a/2 and any n ≥ 1. As a consequence, h n > 0 for all δ > -a/2 and all n ≥ 1 so that D 2,crit monotonously where E(n, ξ) = (e n a

2 -e -n a

2 )

e n(ξ+ a 2 ) +e -n(ξ+ a

2 ) . We have

(5.2.20)

Since

for some t 0 ∈ [0, 1], where 

a,R, n -2 (max{na, n(2Ra)} 1), (5.3.6) i.e., there exists c 1 , n 1 , 1 such that for all n ≥ n 1 and max{na, n(2Ra)} < 1 , we have

i.e., there exists c 2 , n 2 , 2 such that for all n, max{na, n(2R-a)} ≥ n 2 and min{na, n(2Ra), n } < 2 , we have

a,R, n -6 (min{na, n(2Ra), n } 1),

i.e., there exists c 4 , n 4 such that for all n, min{na, n(2Ra), n } ≥ n 4 , we have

a,R, n -6

The second regime is more complicated. It can be two separated regimes (Fig. 5.5 a,f) (if min{1/a, 1/(2Ra)} < 1/ ), it can be only one regime (Fig. 5.5d,e) or it does not happen (Fig. 5.5 c). In order to observe all the regimes, one needs 2Ra = a = , 2Ra = 0 and a, 1. If 2Ra, a or is not small enough, the first regime (see (5.3.6)) may not be well established (Fig. 5.5 b). If a ∼ , a ∼ 2Ra, 2Ra ∼ the second regime disappears, as illustrated on Fig. 5.5c. Finally, when → 0, max{1/a, 1/ , 1/(2Ra)} → ∞, the last regime disappears, and one retrieves three regimes for point-like targets (see Theorem C.0.1).

The behavior of the coefficients B 

a,R, /(πa(a + 2δ)) approaches 1 as → 0 (point-like target). Moreover, such normalized coefficient weakly depends on a and R (either curves for a = 0.01, a = 0.1 in Fig. 5.7c or curves for R = 0.0055, R = 0.01, R = 0.1 in Fig. 5.6c almost coincide). 

a,R,

with α > 3. This logarithmic divergence is similar to the result from Ref. [START_REF] Singer | Narrow escape. III. Non-smooth domains and Riemann surfaces[END_REF] which describes the mean exit time for non-intermittent bulk diffusion (2D Brownian motion) in the narrow escape limit ( → 0).

Appendix A

Asymptotic behavior of the eigenvalues of the operator V T V

Proof of Theorems 3.3.1 and 5.3.1. We state the following theorem which generalizes Theorem 3.3.1 and 5.3.1: Theorem A.0.4. Let (λ n ) n≥1 be the decreasing sequence of eigenvalues of the operator V T V , where the operators T is defined in Eq. (3.2.9) and the operator V is defined by

with E n are the orthonormal eigenvectors of V and 0 ≤ ε n ≤ 1.

We have

where A depends only on .

Proof. In order to prove this statement, we first investigate the following problem: Let A and B are two compact, positive, self-adjoint operators. We assume that the eigenvalues of the operator A are ordered in a decreasing sequence:

We recall the variational principle as following

The max is taken over F , the subspace associated with the first n eigenvectors of A.

We state the following lemmas which will be needed to prove the Theorem A.0.4.

Lemma A.0.6. We make the assumption that λ n (A), λ n (A + B) are the n th eigenvalues of the operators A and A + B. Then, we have

where . define the norm of an operator in L 2 [a, b] space.

Proof. Let F (A) be the subspace of L 2 [a, b] associated with the first n eigenvectors of A. For all x ∈ F (A), we have

According to the variational principle, we have

Besides, we have

It follows from Eqs. (A.0.5) and (A.0.6) that

This gives

Again, according to the variational principle, we thus get

In the same manner, if we take F (A + B) be associated to the first n eigenvectors of A + B, we can get

and the lemma A.0.6 follows.

Lemma A.0.7. With the notations used in Lemma A.0.6, if rank(B)

By the variational principle, we have

Consequently,

So, we conclude that

The second inequality in (A.0.7) of this Lemma is obtained when we put A = A+B, B = -B, n = n-rank(B) and apply the conclusion (A.0.8) for A , B and n instead of A, B and n.

We now call π N be the orthogonal projection on the first N eigenvectors of B.

By the property of an orthogonal projection, we can rewrite

We note that

By applying lemma A.0.6, we get ∀ n ≥ N ,

From (A.0.9), we obtain

According to lemma A.0.7,

We can thus conclude that 

Appendix B Numerical computation of spectral characteristics

B.1 2-D case

We briefly present a numerical algorithm to compute the spectral characteristics λ n and ψ n . In order to compute the eigenvalues λ n and the eigenvectors e n of the operator V T V , we get an explicit representation of this operator in the basis cos nθ. First, we find

and

from which the expansion of T (cos nθ)

where the coefficients T mn are defined by

, (m = 0; n = 0). (B.1.4)

In turn, the operator V has a diagonal representation:

Combining these results, the operator V T V is represented by the infinite-dimensional matrix VTV whose elements are

and [VTV] m,n = 0 if m = 0 or n = 0. Solving the eigenvalues {λ n } and the eigenvectors {e n } of the operator V T V is equivalent to finding the eigenpairs of the associated matrix VTV. Note that this matrix is symmetric. The matrix VTV is diagonalized in Matlab that finds the eigenvalues λ n and the coefficients v mn determining the orthonormal basis {e n } n≥0 as

The spectral weights ψ n are then given as

where

and ψ, 1 = V T (1), 1 = T (1), V (1) = 0.

In our computation, the size of matrix V T V in this 2-D case is 22000 × 22000.

B.2 3-D case

We briefly present a numerical algorithm to compute the spectral characteristics λ n and ψ n . In order to compute the eigenvalues λ n and the eigenvectors e n of the operator V T V , we get an explicit representation of this operator in the basis {P n (x)}. First, we find

and

from which the expansion of

where the coefficients T mn are defined by

In turn, the operator V has a diagonal representation:

Combining these results, the operator V T V is represented by the infinite-dimensional matrix VTV whose elements are

Solving the eigenvalues {λ n } and the eigenvectors {e n } of the operator V T V is equivalent to finding the eigenpairs of the associated matrix VTV. Note that this matrix is symmetric. The matrix VTV is diagonalized in Matlab that finds the eigenvalues λ n and the coefficients v mn determining the orthonormal basis {e n } n≥0 as

The spectral weights ψ n are then given as

where

and ψ, 1 = V T (1), 1 = T (1), V (1) = 0. In 3-D case, we compute matrix [V T V ] N ×N with the size N = 22000.

B.3 Rectangle case

We briefly present a numerical algorithm to compute the spectral characteristics λ n and ψ n . In order to compute the eigenvalues λ n and the eigenvectors e n of the operator V T V , we get an explicit representation of this operator in the basis cos nθ. First, we find

and

from which the expansion of T (cos nθ)

where the coefficients T mn are defined by

In turn, the operator V has a diagonal representation:

Combining these results, the operator V T V is represented by the infinite-dimensional matrix VTV whose elements are

and [VTV] m,n = 0 if m = 0 or n = 0. Solving the eigenvalues {λ n } and the eigenvectors {e n } of the operator V T V is equivalent to finding the eigenpairs of the associated matrix VTV. Note that this matrix is symmetric. The matrix VTV is diagonalized in Matlab that finds the eigenvalues λ n and the coefficients v mn determining the orthonormal basis {e n } n≥0 as

The spectral weights ψ n are then given as

where

and ψ, 1 = V T (1), 1 = T (1), V (1) = 0.

In the rectangle case, since we have one more parameter R and it requires to run much more the computation of the eigenvalues λ n and spectral weights ψ 2 n (for different values of a, R, ). In the restriction of the time, in our computations, we compute matrix V T V in the size of 10 4 × 10 4 .

Appendix C

Proof of Theorem 5.1.1

Theorem C.0.1. For point-like target ( = 0), Eqs. (5.1.24) and (5.1.25) imply for fixed R and small a the existence of the following distinct asymptotic behaviors:

(3) If na 1 and n(2Ra) 1 then λ n an -1 and ψ 2 n 2πan -3 , i.e. ∃ c 3 , c 3 , n 3 , 3 , such that ∀n , with n(2Ra) ≥ n 3 but na < 3 , we have

Proof. Indeed, Eqs. (5.1.24) , (5.1.25) gives us:

1 which means ∃ 1 , n 1 such that ∀n ≥ n 1 , we have na < 1 and n(2Ra) < 1 , then we have

where the numbers B k appearing are Bernoulli numbers. Divide 1 -cosh n(R-a) cosh nR by n 2 a(2Ra)/2 we get

Since na < 1 , n(2Ra) < 1 ∀n ≥ n 1 , we have nR < 1 and

Therefore, we obtain

where

If na 1 n(2Ra) which means ∃ 3 , n 3 such that ∀n: n(2Ra) ≥ n 3 , but na < 3 , then we have

(C.0.9)

cosh nR by na we get

(C.0.11) Therefore,we obtain

where 

a,R n -1 and n -2 , where A

a,R can be a or a + 2δ (δ = 2Ra). We observe that in the case a (R ≥ 1), the first regime disappears and A

(2) a,R = a; in the case b (1 < a < R), there are three separated regimes a(2Ra)/2n 0 , an -1 and n -2 ; in the case c (1 < R = a), the second regime disappears; in the case d (1 < R < a), there are three separated regimes a(2Ra)/2n 0 , (2Ra)n -1 and n -2 .

PROCESSUS DE TRANSPORT INTERMITTENT SUR SURFACES

Résumé : Comment les protéïnes trouvent-elles leur chemin vers les rares endroits des molécules d'ADN où elles peuvent perpétuer le processus de vie? De nombreuses études récentes tendent à prouver que seule une dynamique intermittente, c'est à dire à (au moins) deux régimes permet ce processus. L'objet principal de cette thèse est une étude rigoureuse d'un modèle simplifié de dynamique intermittente. Dans ce modèle la molécule alterne des dynamiques browniennes dans le "bulk" et sur la "surface" (i.e. la molécule d'ADN dans l'exemple plus haut) jusqu'à ce qu'elle atteigne sa cible, une petite fenêtre sur la surface: le temps passé par la molécule à la surface est naturellement modélisé comme une variable exponentielle de paramètre λ. Le principal résultat de la thèse est que quels que soient les paramètres, la recherche purement "par le bulk" n'est jamais optimale, ce qui légitime la thèse de la dynamique intermittente. On y caractérise aussi le cas où le temps optimal est atteint pour λ > 0.

L'outil mathématique nouveau est l'introduction d'un opérateur autoadjoint et de sa base orthonormée de vecteurs propres. Cette étude permet d'obtenir une développement asymptotique à λ grand du temps moyen d'atteinte de la cible. Par ailleurs, un modèle nouveau est introduit: c'est celui du tore qui porte un paramètre supplémentaire, à savoir son module. Il est montre dans cette thèse que certains valeurs du modules conduisent à prouver que la stratégie intermittente est considérablement meilleure que celle de la pure diffusion dans le bulk.

Mots clés : le temps moyen de sortie, la diffusion de surface médiée, le transport intermittent, les processus de recherche, d'analyse spectrale.

INTERMITTENT TRANSPORT PROCESSES ON SURFACES

Abstract : How do proteins find their way towards the rare places on DNA molecules where they need to go in order to perpetuate the life process? Many recent works tend to show that only an intermittent dynamics, that is a dynamics with two or more regimes, allows this process. The main goal of this PhD is a rigorous study of a simplified model of intermittent dynamics. In this model the molecule alternates diffusion in the bulk with a different kind of diffusion on the surface until it reaches its target consisting in a small window on the surface. The time spent by the molecule on the surface is naturally modeled as following an exponential law with parameter λ. The main result of this thesis is to show that, whatever the parameters are, a pure bulk strategy is never optimal, thus reinforcing the hypothesis of intermittent dynamics. One also characterizes the case where the optimal timed is attained for λ > 0.

The new mathematical tool is the introduction of a self-adjoint operator and the use of its orthonormal basis of eigenvectors. This tool allows to obtain a precise asymptotic behavior of the mean exit time for λ large. Besides that a new geometrical model is developed, called the torus model. This new model carries a new parameter, namely its modulus. It is shown in this thesis that for some values of the modulus the optimized exit time is significantly (allowing experimental checking for instance) shorter than the pure bulk search. Keywords : mean exit time, surface-mediated diffusion, intermittent transport, search processes, spectral analysis.
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