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Abstract

In order to combine the advantage of standardization with those of customization, modular design has
been increasingly used by OEMs (Original Equipment Manufacturers) in complex system development.
Different from traditional design, modular design advocates entrusting lead suppliers with full
responsibility of a module. In this case, suppliers are involved much eatlier in design, and start
collaborating with OEMs from the conceptual design phase. This characteristic of modular design makes
it impossible to define the product concept before choosing suppliers, as is normally done in the
traditional way. Instead, the product concepts and supplier possibilities need to be considered
simultaneously. However, this unbreakable link between a module and its supplier is rarely considered in
design support methods. Most existing methods treat architecture and supplier as two separate issues. In
this work, we propose the Architecture & Supplier Identification Tool (ASIT), which considers
performance of both suppliers and their modules. The ASIT is capable of generating all possible
product/system architectures based on customer requirements with consideration of new technologies
and new suppliers. The overall performance of each architecture is estimated using data of existing
products and expert knowledge. Appropriate candidates are identified, taking into account their customer
requirements satisfaction, overall uncertainty, and environmental impact, to be considered in conceptual
design. The utilization of ASIT is illustrated in a powertrain design case study. Comparing the results from
different methods shows that ASIT is an interesting decision support tool for OEMs to identify suppliers

and architectures regarding their overall performance.

Key words: Complex system, modular design, eatly conceptual design, architecture and supplier

identification, customer requirements satisfaction, uncertainty, environmental impact estimation



Résumeé

Afin de combiner les avantages de la normalisation et de la personnalisation, «la conception modulaire »
est utilisée de plus en plus par les OEMs (Original Equipment Manufacturers) dans le développement de
systéemes complexes. Différente de la conception traditionnelle, la conception modulaire confie I'entic¢re
responsabilité d’'un module aux fournisseurs principaux. Dans ce cas, les fournisseurs commencent a
collaborer avec les OEMs beaucoup plus tot dans le processus de conception, et patticipent a la
conception des systemes depuis la phase de la conception conceptuelle. Avec une approche « conception
modulairey, il n’est plus possible de définir le concept produit avant le choix de leurs fournisseurs, comme
on le fait en conception traditionnelle. Par contre, les concepts produits et leurs fournisseurs doivent étre
examinés simultanément au début de la conception conceptuelle. Cependant, le lien incassable entre un
module et son fournisseur est rarement pris en compte dans les méthodes de support de la conception. La
plupart des méthodes existantes traitent le choix d’architecture et le choix de(s) fournisseur(s) comme
deux sujets d’aide au choix sépatés. Dans notre travail, nous proposons une méthode et un outil appelé
«Architecture & Supplier Identification Tool (ASIT)», qui considére conjointement les performances des
fournisseurs et celles de leurs modules. L’ASIT est capable de générer toutes les architectures possibles
(toutes les combinaisons a modules donnés) en fonction des besoins client, en tenant compte des
nouvelles technologies et des nouveaux fournisseurs. La performance globale de chaque architecture tient
compte a la fois P'architecture et de ses fournisseurs, elle est estimée a partir de données de produits
existants et de connaissances expertes. Les candidats appropriés (binémes architectures/fournisseurs) sont
identifiés (en tenant compte de leur degré de satisfaction clients, de 'incertitude globale, et de I'impact
environnemental) pour étre considéré dans la conception conceptuelle. L'utilisation d’ASIT est illustré par
une étude de cas de conception du groupe motopropulseur. La comparaison des résultats a d’autres
méthodes montre que 'approche ASIT constitue un outil d’aide a la décision intéressant pour les OEMs,
elle permet lidentification simultanée des fournisseurs et des architectures qui garantissent une

performance globale.

Mots clés : Systeme complexe, conception modulaire, conception conceptuelle préliminaire, identification
d’architecture et fournisseur, satisfaction des exigences des clients, incertitude, estimation de I'impact

environnemental
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Résumeé étendu

Contexte

Un systeme complexe est un systeme avec de nombreux composants, interconnexions, interactions, et
interdépendances qui est difficile a décrire, comprendre, prévoir, gérer, concevoir et/ou changer (Magee &
de Weck, 2004). A cause de la complexité inhérente aux systemes complexes, leur conception n'est

presque jamais faite a partir de zéro, mais principalement a partir de systémes existants.

Aujourd'hui, afin de combiner les avantages de la normalisation et de la personnalisation, de plus en plus
de OEMs (Original Equipment Manufacturers) commencent a utiliser «la conception modulaire» pour le
développement de systéemes complexes. La conception modulaire décompose un systéme en plusieurs
modules qui sont étroitement couplées (Gershenson, Prasad, & Zhang, 2003). Les interfaces entre les
modules dans une structure de systtme donné sont en général spécifiées et normalisées (Ro, Liker, &
Fixson, 2007). Par conséquence, le changement d’un module du systeme ne nécessite pas de changements
dans d'autres parties du systeme (Hoetker, 2000). Cette caractéristique permet aux OEMs, d'une part de
réduire les couts du fait de la normalisation, d'autre part de changer les modules plus librement selon les

exigences du systeme, ou encore pour bénéficier d’avances technologiques.

L'utilisation de la conception modulaire influence directement la structure des entreprises (Ro et al., 2007).
Afin de gérer le time to market et le cott, la conception et la fabrication des modules sont souvent sous-
traitées aupres de différents fournisseurs. Ces fournisseurs gerent et coordonnent eux aussi la conception
et I'assemblage des modules a grande échelle a travers les fournisseurs du 2ieme niveau. Par rapport aux
fournisseurs de systemes congus de maniere traditionnelle, les fournisseurs principaux lors d’une
conception modulaire participent beaucoup plus t6t dans le processus de conception du systéme
(normalement depuis la phase de conception conceptuelle), ils travaillent de facon plus autonome en
raison de leur responsabilité entiere des modules qui leur sont confiés. Cette structure d'entreprise permet
aux OEMs de coopérer avec les nouveaux fournisseurs plus librement en comparaison avec les entreprises
utilisant la conception traditionnelle. En raison de l'importance croissante et de l'indépendance des
fournisseurs, les OEMs sont plus attentifs a la sélection de leurs fournisseurs, afin d'optimiser le résultat
final. Le fait que les fournisseurs participent depuis la phase de conception conceptuelle, il est nécessaire

I'évaluer les architectures potentiels et les fournisseurs potentiels dés la phase de conception conceptuelle.

L'utilisation de la conception modulaire change le processus de développement de produits chez les
OEMs. Dans le processus de conception traditionnelle, la sélection de concept et la sélection des
fournisseurs sont en général séparées et réalisées par différents départements de TOEM et ce dans
différentes phases de conception. La plupart du temps, les concepts du systéme sont identifiés et
sélectionnés par des experts dans le département de recherche et développement, les pieces (composants)
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qui vont étre sous-traitées sont décidées, puis le département de gestion des fournisseurs commencent a
identifier et sélectionner les fournisseurs de chaque piece (composant). En conception modulaire, les
fournisseurs participent dés la phase de conception conceptuelle, ce qui signifie qu'il ya une phase ou les
fournisseurs potentiels et les concepts potentiels sont explorés simultanément, les fournisseurs qui vont
participer dans la conception conceptuelle sont a identifier. Nous appelons cette phase "La phase

d'identification de l'architecture et des fournisseurs".

Dans la phase d'identification de I'architecture et des fournisseurs, les OEMs doivent explorer toutes les
possibilités d’architectures répondant aux besoins client (en tenant compte des nouvelles technologies et
de nouveaux fournisseurs potentiels), en estimant leurs performances. Normalement, la génération
d’architectures fournit un grand nombre de possibilités, correspondant a un grand nombre de fournisseurs.
Toutefois, il n'est ni possible, ni approprié d'impliquer tous ces fournisseurs en conception. Par
conséquent, le nombre de fournisseurs doit étre limité et ce au regard de leurs performances. L'objectif
ptincipal de la phase d'identification de l'architecture et des fournisseurs est donc d'identifier les
fournisseurs et les architectures ayant les meilleures performances, et ceci dans la phase de conception

conceptuelle.

Toutefois, du fait de l'absence de méthode systématique et d’outil de soutien pour cette phase,
l'identification de l'architecture et des fournisseurs se fait dans la plupart du temps par brainstorming dans
les entreprises. En méme temps, les OEMs ont tendance a se précipiter dans la phase du choix
d'architecture et des fournisseurs sans explorer un certain nombre de possibilités et donc sans en estimer

leur performance globale.

Afin de soutenir les OEMs a travers la phase d'identification de l'architecture et des fournisseurs, un outil

d'aide a la décision est nécessaire.

Objectif

Ce travail de recherche vise a soutenir les OEMs dans leur phase d'identification de l'architectutre et des

fournisseurs lors de la conception modulaire de systeme complexe.

L’objectif principal est donc :

OBJECTIF DE LA RECHERCHE:

Développer une méthode qui soutient les OEMs (donneurs d’ordres) dans Pidentification
des fournisseurs et des architectures qualifiés qui doivent étre considérés dans la phase de

conception conceptuelle en conception modulaire.



Vue d’ensemble des tfravaux de recherche

Etat de I'art

La plupart des méthodes existantes traitent des méthodes de choix d’architecture et de choix de(s)
fournisseur(s) comme deux sujets d’aide au choix séparés. C’est pour cela que nous n’avons trouvé que
quatre études qui tiennent compte simultanément ces deux aspects. Dans ces quatre études, Chiu &
Okudan (2011) et Nepal et al. (2012)ont proposés des méthodes qui aident a la décision de la sélection
simultanée des concepts et des fournisseurs. Zhang et al. (2008) and Zhang & Huang (2010) quant a eux,
ont proposé des méthodes pour la configuration simultanée de la plateforme produits et de sa chaine
d'approvisionnement. Cependant, toutes ces méthodes nécessitent une grande quantité de données

précises, ce qui n'est pas disponible dans la phase d'identification de l'architecture et des fournisseurs.

Question de recherche
Comme le révele Iétat de Part, il n'existe actuellement aucune méthode d’aide a la décision appropriée

pour la phase d'identification de I'architecture et des fournisseurs, un outil de soutien est donc nécessaire.

Basé sur l'objectif de la recherche, nous définissons la question de recherche comme la suit :

QUESTION DE RECHERCHE:

Comment identifier les fournisseurs et les architectures qualifiés qui doivent étre considérés

dans la phase de conception conceptuelle?

Objectives spécifiés
Afin de structurer les travaux de recherche, nous avons spécifié les objectifs de recherche en deux étapes

principales :



OBJECTIF 1: DEVELOPPER LA METHODE DE BASE

Proposer une méthode orientée par les exigences client, qui utilise les données existantes et les
connaissances d'experts (stockée a l'aide d'une base de données efficace). Générer toutes les
architectures possibles (en tenant compte des nouvelles technologies et de nouveaux fournisseurs),
évaluer les performances des architectures possibles(en tenant compte de la satisfaction des
exigences, et du niveau d'incertitude de développement de I'architecture, et ce en considérant a la
fois l'architecture et ses fournisseurs), puis identifier un nombre limité d'architectures et leurs

fournisseurs ayant une performance appropriée.

OBJECTIF 2: DEVELOPPER DES PLUG-INS A LA METHODE

Ajouter I'estimation de I'impact environnemental dans la méthode proposée.

Apports et perspectives

Contribution

La contribution la plus importante de ce travail est la proposition d'un outil support pour la phase
d'identification de l'architecture et des fournisseurs en conception modulaire de systémes complexes, cet
outil est un outil d'identification des candidats proposés. Les architectures et les fournisseurs du systeme

sont simultanément considérés en utilisant principalement des données qualitatives.

La méthode proposée ASIT (Architecture & Supplier Identification Tool) a pour objectif d'aider les
OEMs a bénéficier d’une réelle flexibilité en conception modulaire permettant d’intégrer de nouvelles
technologies et de nouveaux fournisseurs a I'étape de génération de l'architecture. La satisfaction des
exigences, l'incertitude globale, ainsi que l'impact environnemental sont envisagés dés le début de la

conception.

Selon les différents besoins des OEMs, il est possible d'ajouter des plug-ins dans le ASIT pour estimer les

architectures et les fournisseurs de différents points de vue.

Ce travail propose également une structure de base de données pour les OEMs leur permettant de stocker
des données existantes et des estimations d'experts de maniére plus efficace. Cette structute sert également
de guide pour aider les OEMs a reconnaitre les types de données nécessaires a l'exploration des
possibilités et a 'estimation de la performance globale des architectures dans la phase d'identification de

'architecture et fournisseur.

Limites et perspectives
Comme toutes les méthodes d'estimation destinées a la conception conceptuelle, une limite majeure de ce

travail est liée a la collecte des données. Pour générer de nouvelles architecture il faut intégrer de nouvelles

4



technologies et de nouveaux fournisseurs, ces nouvelles informations sont extrémement difficiles a
traduire en données pertinentes. Par conséquent, bien que le ASIT s'efforce de réduire la quantité de
données requises, les OEMs doivent toutefois faire de gros efforts pour construire la base de données et
collecter les données pertinentes. La réduction de données exigées par ASIT peut étre un sujet de

recherche intéressant.

Pour l'estimation de la performance, ce travail prend en compte trois critéres: la satisfaction des exigences
des clients, l'incertitude globale au long du développement de produit, et I'impact environnemental. Outre
que ces trois criteres, il y a d'autres facteurs qui sont intéressants a prendre en compte dans la phase
d'identification de l'architecture et des fournisseuts, tels que le cott et les délais du développement. Dans
les méthodes existantes, l'estimation de ces deux facteurs nécessite en générale une grande quantité de
données quantitatives, donc impropres a la phase d'identification de l'architecture et fournisseur. De futurs

travaux de recherche pourraient se pencher sur cette difficulté.

En raison de I'absence de base de données efficace dans les OEMs, nous n’avons pas pu appliquer ASIT a
un cas industriel. En collaboration avec des OEMs, il sera intéressant de tester le ASIT pour en mesure sa

performance.



Infroduction

1.1 Context

1.1.1  Modular design for complex systems
A complex system is a system with numerous components and interconnections, interactions or
interdependencies that are difficult to describe, understand, predict, manage, design, and/or change
(Magee & de Weck, 2004). Due to the inherent complexity of complex systems, their design is almost

never done from scratch, but mainly based on redesign of existing products.

The product architecture is “the scheme by which the function of the product is allocated to physical

components”(Ulrich, 1995). An architecture can be integral or modular (Muffatto & Roveda, 2002).

Nowadays, in order to combine advantages of standardization and customization, more and more OEMs
(Original Equipment Manufacturers) start to use “modular design” for the development of complex
systems. The current “modular design” can be traced back to eatly 1930s, to the modular design of
machine tools (Ito, 2008). Since then, modular design has been gradually used in the design of industrial
instrument, home appliance, high-rise building, automotive, and so on. The modular design decomposes a
system into different modules that are tightly coupled within and loosely connected to the rest of the
system (Gershenson et al., 2003). The interfaces shared among modules in a given system architecture are
usually specified and standardized (Ro et al., 2007), therefore the objective is that the changes in one
module of the system do not require changes in other parts of the system (Hoetker, 2006). This
characteristic on one hand helps OEMs to reduce cost because of standardization, on the other hand gives
OEMs more flexibility to change modules according to the evolving system requirements, thus profit

from the rapid updating of technology.

The use of modular design also influences the structure of companies (Ro et al., 2007). In order to manage
time-to-market and cost, the design and manufacturing of modules is usually outsourced to different lead
suppliers. These suppliers manage and coordinate the design and assembly of large-scale modules across

2nd-tier suppliers. Compare to suppliers in traditional design methods, the lead suppliers in modular design
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are involved much earlier in the design process of the system (normally from conceptual design), and are
able to work more independently because of their full responsibility for an entire module. This company
structure allows OEMSs to cooperate with new suppliers more freely compare to traditional design.
Because of the increasing importance and independence of the suppliers, OEMs are paying more attention

to suppliers that they are working with, in order to optimize the outcome of the final product.

The fact that suppliers are involved from conceptual design requires considering product architecture
possibilities and potential suppliers that will design and manufacture the modules simultaneously in early

modular design phase.

1.1.2  The architecture & supplier identification phase in engineering
design

The utilization of modular design is changing OEMs’ product development process.

The engineering design process is normally composed of 5 phases (as shown in Figure 1-1) with slightly
different steps in each phase according to different authors (Ogot & Okudan-Kremer, 2004). It is
noteworthy that the engineering design is usually an iterative process, which is not represented in Figure
1-1.

Traditional engineering design process Modular design

* Define customer needs
* Problem statement

; ]
« Define customer needs i i
i i
| |
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1 |
| 1
| i
| |
| |
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« Define evaluation criteria
*  Analyze existing products

1 i
/* Analyze existing products :

i|* Explore new technologies and new suppliers

i|* Generate concepts $
H

H
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« Develop detailed technical drawings E f * Develop detailed technical drawings i
o Testing : i+ Testing :

H Production T D \ N I
*<, * Define production process E i+ Define production process

E * Production of products * Production of products

Figure 1-1 Engineering design process

In traditional engineering design (as shown on the left of Figure 1-1), the system concept selection and
supplier selection are usually separated and carried out by different departments of the OEM in different
design phases. Most of the times, the system concepts are identified and selected by experts in the
research and development department, the parts that are going to be outsourced are decided, and then the

supplier management department starts to identify and select adequate suppliers for each part.
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However, in modular design (as shown on the right of Figure 1-1), suppliers need to be involved from the
conceptual design phase, which means that there is a phase where supplier possibilities are explored
simultaneously with concept possibilities, and potential suppliers that are going to be involved in
conceptual design are identified together with architecture possibilities. We call this phase “the

Architecture & Supplier Identification Phase”.

In the “Architecture & Supplier Identification Phase”, OEMs ate supposed to explore all architecture
possibilities based on customer needs (with consideration of new technologies and new suppliers), and
estimate their performances. Normally the architecture generation provides a larger number of
possibilities, indicating a long list of suppliers. However, it is neither possible nor appropriate to involve
all these suppliers into conceptual design. Therefore, the number of suppliers must be limited and the
most suitable ones should be identified. The main goal of the “Architecture & Supplier Identification
Phase” is therefore identifying the suppliers and architectures with potentially best overall performance, in
order to consider them in conceptual design, and in further negotiation. These suppliers and architectures

should form a high quality pool for architecture and supplier selection.

1.1.3 Need of decision support tool for architecture & supplier
identification

As presented in the previous section, the OEMs are supposed to explore all possible architectures and

identify the best candidates in the Architecture & Supplier Identification Phase.

However, due to the lack of systematic method and supporting tool for this phase, the architecture and
supplier identification is still done by brainstorming in most of the companies (Jankovic, Holley, &
Yannou, 2012; Moullec, Bouissou, Jankovic, & Bocquet, 2012). At the same time, OEMs tend to rush
into the architecture and supplier selection phase without exploring all possibilities and estimating their

overall performance.

In order to support OEMs through the architecture and supplier identification phase, a decision support

tool is needed.

1.2 Research objective

In order to bridge this gap observed in companies, this work aims at supporting OEMs in the

Architecture & Supplier Identification phase in modular complex system design.

The main objective of this work is:



RESEARCH OBJECTIVE:

Develop a method that supports OEMs to identify all qualified suppliers and architecture

possibilities that could be involved in the conceptual design phase of modular design.

A list of more developed and specified research objectives is presented in Chapter 2.3.

1.3 Research methodology

This research is carried out by following five main steps: defining research objective, defining research
questions, specifying research objectives, proposing solutions, and analysing the influence of the proposed

solution, as shown in Figure 1-2.

e © o0 .6

Research
objective

Figure 1-2 Research process

The research objective mainly derives from discussions with people from OEMs such as Airbus, PSA, and
Renault. During the discussions, we discovered the need of an architecture and supplier identification

support tool within these companies.

By carrying out literature review, we proved the lack of suitable tool for the Architecture & Supplier
Identification phase, and defined the research question. The research objective is then further specified in

order to lead the solution proposition.
As stated by Eckert, Clarkson, & Stacey(2003):

“Radically different approaches can often only be developed if one steps away from
industrial practice to look at the real structure of a problem, and does not engage with the
more mundane concern of people in process.”

The method development in this thesis is also done “one step away from industry”’. However, it has

always been under supervision of people with many years of industrial experience. The utilization of
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developed method is illustrated using a simplified industrial case —powertrain design for a plug-in hybrid

vehicle.

The validation of the proposed method is done by comparing results with other design supporting
methods, and analysing influence of proposed method on architecture and supplier identification results.
Nowadays, database used varies from company to company, and information sharing between OEMs and
their potential suppliers are of different level. Therefore, it was difficult for us to find all information
required by the proposed method in any companies’ existing database. Because of this reason, we
compared the method to existing tools to observe influence on result it may bring to the architecture and

supplier identification.

1.4 Dissertation structure

This doctoral dissertation adopts a recent spring-up format — a format that uses published or submitted
scientific articles as main chapters. Utilization of this format requires the PhD candidate and supervisors
to have a clear overview of the PhD project since the very beginning, separate the research work into

relatively independent parts, and publish each part as scientific paper.

This format makes the research work more organized, the objective of each part more clear, and the
contribution of each part validated by publication. However, this format also causes a certain degree of

repetition among different articles, for which we ask for kind understanding of readers.

The main contribution of this PhD project is represented by the following three scientific papers

published or submitted:

® Ye, Y, Jankovic, M., Kremer, G.E., Bocquet, J.-C., 2014, "Managing Uncertainty in Potential
Supplier Identification", Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 28(4)

® Yun YE, Marija JANCOVIC & Gul E. KREMER (2014). Understanding the Impact of
Subjective Uncertainty on Architecture Generation and Supplier Identification in Early Complex
Systems Design. Swbmitred to ASCE-ASME Journal of Risk and Uncertainty in Engineering
Systems

®* Ye, Y, Jankovic, M., Kremer, G.E.,Yannou, B., Leroy, Y.,Bocquet, J.-C., 2014, “Integration of
Environmental Impact Estimation in System Architecture & Supplier Identification”, submitted to

Journal of Mechanical Design

Relationships between chapters are shown in Figure 1-3.
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Research overview

2.1 State of the art

In order to respond to the needs of an architecture & supplier identification tool for modular design, we
first focused on early design support methods that consider architecture and supplier simultaneously

during our literature review.

Since most of the existing methods treat architecture and supplier as two separate issues(Gunasekaran,
1998), we found only four studies that simultaneously consider these two aspects. A more detailed

literature review can be found in 3.2.3.

Chiu & Okudan (2011) proposed an interesting integrative methodology that helps to make product
design and supply chain decisions simultaneously. This method uses comparatively precise quantitative
data such as shape and stiffness of components, and mainly focuses on optimizing overall cost and lead
time of the architecture. This method is not suitable for the Architecture & Supplier Identification phase
mainly because that the quantitative data required in this method makes it impossible to consider new
technologies and new suppliers. However, exploring all possibilities by integrating new technologies and
suppliers is one of the most important objectives of the Architecture & Supplier Identification phase.
Nepal et al. (2012) also proposed a method that matches product architecture with supply chain design.
Same as the previous method, this method also requires precise quantitative data and mainly focuses on

cost and lead-time optimization.

Zhang et al. (2008) and Zhang & Huang (2010) proposed methods for simultaneous configuration of
platform products and supply chain. The two works used mixed integer linear programming model and
game theoretic approach respectively. These two methods require a bigger mount of quantitative data than

the previously presented methods during calculation and optimization.

As it can be seen from the literature review, all existing methods that interactively consider product
architecture and supply chain issues require large amount of precise quantitative data. However, in the

Architecture and Supplier Identification phase, information is usually lacking because of new technology
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and supplier integration. Therefore, existing methods are not suitable for the Architecture and Supplier

Identification phase.

The literature review that is specific to each research question is presented in detail in Chapters 3 (for
design methods that consider simultaneously architectures and suppliers), Chapter 4 (for consideration of

subjective uncertainty), and Chapter 5 (for methods that consider environmental impact in early design).

2.2 Research question

As it can be seen from the literature review, there is currently no existing method that can be used in the
Architecture & Supplier Identification phase, where precise quantitative data is not available. An

innovative supporting tool that is suitable for this phase is needed.

Based on the research objective, we defined the research question as:

RESEARCH QUESTION:

How to identify all qualified suppliers and architecture possibilities that should be involved in

conceptual design phase of modular design?

2.3 Specified research objectives

Since this dissertation adopts the article-oriented format, an overall organization of the research is needed

at the beginning of the PhD thesis. Therefore, we first specified the research objectives:

SPECIFIED RESEARCH OBJECTIVES:

® Propose a customer requirements oriented method
® Use existing data and expert knowledge
o Propose a database structure to efficiently organize OEM’s existing data and expert
knowledge
®  Generate all possible architectures (considering new technologies and new suppliers)
® Evaluate the overall performance of architectures
o The criteria considered during evaluation should depend on the needs of the OEM,
but should at least contain requirements satisfaction of an architecture, uncertainty
level of architecture development, and lifecycle environmental impact
o When evaluating the overall performance of an architecture, the architecture itself
and its supplier should be both considered
® Identify a limited number of architectures and suppliers with the most appropriate

performance. to be considered in conceptual desion
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The definition of specific research objectives is mainly based on the characteristics of the Architecture &
Supplier Identification phase (e.g. new technology and new supplier integration, uncertainty estimation),
issues that are attracting increasing attention in the industrial design world (e.g. environmental impact

estimation), as well as discussion with OEMs (e.g. the need of an efficient database structure).

However, it is difficult to meet all research objectives at once. Therefore, we regrouped the research

objectives into two separate parts, which form the two main stages of our research:

OBJECTIVE 1: DEVELOP THE CORE METHOD

Propose a customer requirements oriented method, which uses existing data and expert knowledge
(stored using an efficient database structure). Generate all possible architectures (considering new
technologies and new suppliers), evaluate performance of architectures (including requirements
satisfaction of an architecture, and uncertainty level of architecture development regarding both
architecture and its suppliers), and identify a limited number of architecture and supplier with the

most appropriate performance.

OBJECTIVE 2: DEVELOP PLUG-INS FOR THE METHOD

Add the lifecycle environmental impact estimation into the proposed method.

Therefore, the first part of this thesis consists of developing the core method, while the second part aims
at adding an “environmental impact estimation” plug-in on top of the core method and demonstrating

how to add customized estimation factors.

In the following sections, chapter 3 and 4 belongs to the first stage. The core method (ASIT) is proposed
in chapter 3. When estimating the overall development uncertainty, the expert estimation uncertainty is
not taken into account in chapter 3. Therefore, in chapter 4, the sensitivity of the proposed method
regarding expert estimation uncertainty is studied in order to find out whether it is necessary to consider
expert estimation related uncertainty when estimating overall development uncertainty. In chapter 5, the

“environmental impact estimation” plug-in is developed and is inserted into ASIT.
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Paper#1. Managing Uncertainty in Potential
Supplier Identification

Published in:

Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 28(4), 2014

Yun YE!, Marija JANKOVIC}, Giil E. KREMER?, Jean-Claude BOCQUET!
1 Laboratoire Génie Industriel, Ecole Centrale Paris, Chdtenay-Malabry, France

2Engineering Design and Industrial Engineering, The Pennsylvania State University, University Park, PA, USA

Abstract. As a benefit of modularization of complex systems, Original Equipment Manufacturers (OEMs) can
choose suppliers in a less constricted way when faced with new or evolving requirements. However, new
suppliers usually add uncertainties to the system development. Since suppliers are tightly integrated into the
design process in modular design and therefore greatly influence the outcome of OEM’s products, the
uncertainty along with requirements satisfaction of the suppliers and their modules should be controlled
starting from potential supplier identification. In addition, to better satisfy new requirements, the potential
supplier identification should be combined with architecture generation to enable the new technology
integration. In this paper, we propose the Architecture & Supplier Identification Tool (ASIT), which generates
all possible architectures and corresponding suppliers based on new requirements through matrix-mapping
and propagation. Using ASIT, the overall uncertainty and requirements satisfaction of generated architectures
can be estimated and controlled. The proposed method aims at providing decision support for early design of
complex systems, thereby helping OEMs have an integrated view of suppliers and system architectures in
requirements satisfaction and overall uncertainty.

Keywords. complex systems design, modularity, potential supplier identification, uncertainty management
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3.1 Introduction

In order to reduce complexity and increase manageability of complex systems, one of the principles used
in systems engineering is to cluster system elements into larger chunks (Chiriac et al., 2011); this is known
as modularization. The design and manufacturing of these modules is often outsourced to different
suppliers for reducing or managing time-to-market and cost. Consideration of interfaces (Tripathy &
Eppinger, 2011), cost reduction (Nepal et al, 2012), platform policy (Zhang et al, 2008) and new
technology integration (Chiu & Okudan, 2011) require integrating suppliers starting in early design stages.
Since suppliers are getting more and more tightly integrated into the design process in complex system
design (Le Dain et al., 2011), they form, together with the OEM, an extended enterprise (Nguyen Van,
2000), and greatly influence the outcome of OEM’s final products.

In modular design, interfaces shared among modules in a given system architecture are usually specified
and standardized (Ro et al., 2007), so that changes in one module of the system normally do not require
changes in other parts of the system (Hoetker, 2006). This gives OEMs the ability to choose suppliers

more freely vis-a-vis the evolving system requirements.

Before choosing suppliers for a new system, OEMs usually first identify a group of potential suppliers, let
them submit proposals, and then choose a suitable supplier for each module after negotiation. The focus
of this work is about this stage where the group of potential suppliers is identified. Normally, OEMs tend
to use those suppliers with which they have a prior history of cooperation, since past interactions usually
improve communication between buyer and suppliers (Levinthal & Fichman, 1991; Singh & Mitchell,
1996). This leads to faster, cheaper procurement and more successful system development (Hoetker,
2005). However, existing suppliers may not always satisfy all new requirements of an OEM for the system.
In such situations, the OEM has to find new suppliers with suitable new modules and technical
capabilities. The integration of new suppliers and modules is facilitated by the modularity of system.
However, these new suppliers and modules usually add uncertainty due to various reasons (e.g., suppliet’s
capabilities to cooperate well with the OEM, technological uncertainty of new modules, and the uncertain

compatibility between modules).

These uncertainties due to new supplier and module integration may impact decision-making of an OEM
on identifying potential suppliers, as attested by several studies. For instance, Janssen et al. (2010) assessed
the influence of presenting data with or without the uncertainty information on decision-making; a
statistically significant shift in preferences was observed when uncertainty information was presented. In
addition, uncertainty integration was also found important in system architecture generation (Marie-Lise et
al., 2012), which we think should be considered simultaneously with supplier identification, in order to
consider possible new technologies to better satisfy new requirements. However, very few methods
considered uncertainty while integrating assessment of supplier capabilities in system architecture
generation. With the Architecture & Supplier Identification Tool (ASIT), we respond to the need for

controlling overall system uncertainty by combining architecture generation and supplier identification.
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In this paper, section 3.2 addresses different concepts of modularity as well as approaches that are
specifically designed for supplier selection. Section 3.3 discusses different types of uncertainty, and argues
for the need to integrate uncertainty information in early design. The overall ASIT process is presented
and discussed. In section 3.4, a case study on powertrain design is used to illustrate ASIT. In order to
study if the consideration of uncertainty changes choices made in supplier identification, we also compare
ASIT with Concept Selection Method (CSM) by King & Sivaloganathan (1999). CSM is a well-known
deterministic approach for concept evaluation that does not consider overall uncertainty. The difference in
results of these two approaches is discussed in section 3.5. Finally, we provide a discussion of advantages

and limit of the ASIT and present our conclusions in section 3.6 and 3.7, respectively.

3.2 Background

3.2.1 Modularity in complex systems
A complex system is a system with numerous components and interconnections, interactions or
interdependencies that are difficult to describe, understand, predict, manage, design, and/or change
(Magee & de Weck, 2004). Systems and complex systems can be decomposed into different levels of
modules, and the number of modules increases as the grain size of modules decreases (Chiriac et al., 2011).
An example decomposition of a vehicle system is shown in figure 3-1(Van Eikema Hommes, 2008). In
this context, a module is defined as a chunk that is tightly coupled within and loosely connected to the rest
of the system (Gershenson et al., 2003). Normally, different levels of modules are also systems or complex
systems themselves. The method proposed in this paper applies for systems and complex systems at any
level of their decomposition. For example, the case study illustrates applying the method on a powertrain,

which is a complex system, and also a first level module in figure 3-1.

Level 0 [ Vehicle system ]
I .
Level 1 C] [ Powertrain ] [ Chassis ]
[ | — l —
Level 2 [ ] [ Engine ] [Transmission] [Suspension ] [ Steerlng [ Braklng

s (o) (e ) C 1 C )

Figure 3-1 Partial decomposition of a vehicle system

3.2.2 Modularity in buyer - supplier relations
According to Fixson & Park (2008), there is a substantial literature stream suggesting that many products
are becoming more modular over time. The modularity of products leads to modularity of organizations
(Garud et al. 2009). For example, in their empirical work, Ro et al. (2007) found that the emergence of

modularity in product design is changing the structure of the extended enterprises in the American auto
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industry. The traditional U.S. supplier management model is as shown on the left of figure 3-2. According
to Ro et al. (2007), in the traditional supplier management model, the parent department (e.g. chassis
department) is further divided into more specialized functional departments (e.g. suspension, steering and
braking). Each of the functions is undertaken by an OEM release engineer who manages the first-tier

suppliers. In this case, the OEM directly interacts with their suppliers.

The desired form of the U.S. supplier model is called “the systems integrator model” (Ro et al., 2007),
which is shown on the right of figure 3-2. In this form, a lead supplier manages and coordinates the design
and assembly of large-scale modules and systems across a number of other suppliers. In this case, the
OEM needs to communicate only with the integrator suppliers, i.e. the OEM is concerned about the high
level modules (e.g., chassis, powertrain, etc.). The integrator suppliers work more independently in this
case, and the structure of the extended enterprise is more loose and flexible, implying the formation of a

“modular organization”.

OEM OEM
Ghassis ,7‘ Chassis 'ﬂ\
[ I 1 /' \\\
(oem ) ( oeM ) ([ OEM ) ’ \
Release Release Release / 'NTEGRATOR \
Engineer Engineer Engineer Chassis
\_Suspension J \_Steering ) \_ Braking ) / \\
1%t Tier 1st Tier 15t Tier 1t Tier MODULE 1t Tier
Supplier Supplier Supplier Supplier SUPPLIER Supplier
\_Suspension ] { Steering ) L Braking ) Suspension Corner Braking

Figure 3-2 Influence of modularity on supplier management model (adopted from (Ro, Liker, &Fixson, 2008))

The ease of reconfiguration of organizational actors in modular organizations allows “modular
innovation”, by which firms improve their products by incorporating improvements in various product
modules that may occur at different rates for different modules (Langlois & Robertson, 2002). It also
allows a firm to select the best supplier for a given module at a given time (Garud & Kumaraswamy, 1995).
The proposed supplier identification tool in this paper assumes that the context in which the tool is used
reflects the above mentioned buyer-supplier relations and that the tool is proposed as a decision support

tool for the said context.

3.2.3

Petersen et al. (2005) demonstrated that “A careful and complete analysis of potential suppliers, leading to

Supplier identification and selection methods

the selection of a supplier with the right capabilities and culture to work on the project was positively
associated with effective decision making by the project team during the new product development
process”. There are hundreds of prior works concerning supplier identification and selection. Most of the
supplier selection methods are provided under the traditional product development decision making

process, i.e., first the product architecture is fixed by the OEM, then production/manufacturing method is
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decided; based on these decisions, suppliers are selected (Nepal et al., 2012). In these methods, product
architectures are fixed before supplier selection. The supplier selection is usually based upon financial and
managerial criteria such as quality, cost, delivery, and other performances. In early design, however, such
data is not necessarily available and is also uncertain. Reviews of supplier selection criteria can be found in
works of Ha & Krishnan (2008), Chiu & Okudan (2011) and Ye et al. (2013). The published supplier
selection methods under this context are often Multi-Criteria Decision Making (MCDM) methods using
mathematical, statistical, artificial intelligence or a combination of these methods. Surveys of these
methods can be found in various publications such as by de Boer et al. (2001), Ha & Krishnan (2008) and
Chiu & Okudan (2011).

Because of the emergence of modularity, suppliers are more involved in the product design phase.
Therefore, companies have started to consider supply chain issues during product development. For
example, studies were carried out for matching product development and supply chain design. Ulkii &
Schmidt (2011) studied the matching between product modularity level and the supply chain
configurations, i.e. the buyer-supplier collaboration level during product design. Pero et al. (2010) studied
how new product development and supply chain variables were related to each other; they found that
innovation had a strong effect on supply chain complexity and matching product features with supply
chains improved performance. Some methods are also provided to address product development and
supply chain issues simultaneously. Lamothe et al. (2006) proposed a mixed integer linear programming
model to help choose product family variants in a way that the operating cost of the supply chain
delivering the product is optimized. More specifically, we have found three studies that consider product
design and supplier selection conjointly. Zhang et al. (2008) developed a mixed integer linear
programming model to support product platform design. The main objective was to balance the
commonality and variety of the product platform. The suppliers were considered simultaneously with the
product platform to reduce cost. Chiu & Okudan (2011) proposed a graph theory based method
considering product design and supply design simultaneously. In their work, product functions, assembly
issues, and supply chain performance were considered in early product design stage. The main objective
was to optimize product cost and lead-time. Nepal et al. (2012) proposed a fuzzy logic based framework
to tackle product design and supply chain design at the same time. Their objective was to minimize the
total supply chain costs, and maximize total supply chain compatibility. The relevant state-of-the-art in

concurrent product and supply chain design is summarized by Gan & Grunow (2013).

As can be seen above, among existing studies, Zhang et al. (2008), Chiu & Okudan (2011), and Nepal et al.
(2012) addressed product architecture generation and supplier selection simultaneously. All of these
consider the cost issue as their main objective. Chiu & Okudan (2011) also considered lead-time, and
Nepal et al. (2012) tackled supply chain compatibility issue. However, none of the existing works
considered overall uncertainty, which is, in our opinion, an important issue in early design. Because of the

frequent high level innovation integration and uncertainty in early complex system design, we address this

gap-
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3.3 Proposition for Uncertainty Information Integration

3.3.1 Uncertainty sources in supplier identification
De Weck et al. (2007) defined uncertainty as “an amorphous concept that is used to express both the
probability that certain assumptions made during design are incorrect as well as the presence of entirely
unknown facts that might have a bearing on the future state of a product or system and its success in the
marketplace.” Funtowicz & Ravetz (1993) stated that the uncertainty comprises information about the

simplifications made during the translation of a natural system into a model.

Many previous works classified uncertainty for early product and system design (Clarkson & Eckert, 2005;
McManus & Hastings, 2006; De Weck et al. 2007). The risk management in early design was also
investigated by Lough et al. (2009), Van Wie et al. (2005), Altabbakh et al. (2013) and others. In the
context of this work, we consider the underlying uncertainty of choosing new suppliers and new modules

(possibly using new technologies) during supplier identification.

We identified three sources of uncertainty in using new suppliers and modules: (1) uncertainty related to
suppliers’ capabilities to cooperate well with the OEM, (2) the probability that a module can be
successfully developed, and (3) the compatibility between the modules. For example, supplier A may be
able to provide a module B which potentially satisfies the requirements well. However, in reality, the
supplier A may not be able to cooperate well with the OEM, and the module B may not be successfully
developed. Moreover, even though the module B is developed, it may not be compatible with other
modules. In our opinion, these uncertainties should be considered when reviewing the high satisfaction

score of supplier A.

3.3.2 Architecture and Supplier Identification Tool
In order to integrate the previously discussed system architecture uncertainties together with supplier
capability related uncertainties, we propose the Architecture & Supplier Identification Tool (ASIT). ASIT
is a matrix-based method containing information related to requirements, functions, modules, suppliers,
and uncertainties. The main objective is to support decision making of the design team in architecture
generation and supplier identification. Figure 3-3 presents an overview of the ASIT, which contains four

phases that are automated by a MatLab program.
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Figure 3-3 Overview of the ASIT

Due to uncertainty management, complex systems ate rarely designed from scratch. Therefore, project
documents regarding the requirements, functions, and modules usually exist; thus, design information is
captured and reused. This information capture and reuse is often facilitated through software (e.g.,
DOORS). However, various types of data are rarely stored in one place. The idea of ASIT is to store
critical, high-level data (pertaining to functions but also requirements, modules, and other types of
information) on previous projects within a matrix system. The matrix system is composed of a Design

Structure Matrix (DSM) and six Domain Mapping Matrices (DMMs), as shown in figure 3-4.
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Figure 3-4 The matrix system used in ASIT

When starting a new project, usually the project manager organizes a one to three day workshop to discuss
innovation integration, different system architectures, as well as other constraints. These workshops are
attended by experts of different domains in order to cover overall system knowledge. With the support of
the matrix system in ASIT, the experts can choose the adequate existing requirements from the list, and if
necessary add new requirements to it. Based on the requirement-function relations stored in matrix M1,
the existing functions related to the defined requirements can be found. Fundamentally, this is a cognitive
phase tackling new and existing requirements, where experts will discuss and allocate them to existing
functions or create new functions. The functions, in this context, can be seen as translations of
requitements to technical language, describing what the module/system should do from a technical point
of view. Experts also discuss module types that are needed based on functions, and relations between new
functions and module types. Matrices M1 and M2 can be updated after these discussions. The main
difficulty in this phase is the expression of requirements and functions due to various semantic
possibilities. Here, we assume that designers/engineers are able to define and use a shared language and

understanding. Clearly, semantic consistency in reference to functions and other terms is needed.

After the update of matrices M1 and M2, the ASIT can automatically point to (calculate) unsatisfied
requirements by existing products using matrices M1, M2 and M7. In phase two, new suppliers and new
modules (possibly with new technologies) that can potentially satisfy the unsatisfied requirements are
found externally, or proposed by experts, and thereby updating matrices M2 and M3. Then, ASIT
automatically generates all possible architectures based on the function — module relations provided in
matrix M2. In phase three, uncertainty of generated architectures is calculated based on uncertainty of
modules, compatibility between modules, and uncertainty of suppliers’ capabilities. The needed

information is provided by a group of experts and stored in matrices M4, M5, and M6. The requirements
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satisfaction by generated architectures is also calculated. Finally, in phase four, using the uncertainty
threshold and the requirements satisfaction threshold defined by the experts, the generated architectures

are filtered to identify potential architectures and corresponding suppliers.

As explained above, information stored in the matrix system comes from two sources: (1) information
estimated by experts, and (2) information from existing products. A group of experts work together to
provide expert estimation by using predefined levels (as shown in figure 3-5 and 3-6). The information on
existing products is considered already stored in the matrix system, as after each project, the related data in
the matrix system is updated based on project outcomes. The expert estimation contains four types of
information: (1) percentages used in matrix M1, representing the level a function fulfils a requirement, (2)
satisfaction levels used in matrix M2, representing how well a module satisfies a function, (3) probabilities
as defined in figure 3-6, describing uncertainties in matrices M4, M5, and M6, and (4) binary information,

used to define whether one element belongs to another element (matrices M3 and M7).

The satisfaction levels used in ASIT are defined as “interval scales” (Stevens, 1946), so that operations
such as addition, subtraction, multiplication by a real number are meaningful. Ten levels (1-10) are used
for representing satisfaction, “1” is defined as “very inadequate solution”, and “10” is defined as “ideal
solution”. The unit of measurement is 1/10 of the satisfaction difference between “1” and “10”. The
descriptive meanings for the satisfaction levels are adapted from Fiod-Neto and Back’s parameter value
scores (Fiod-Neto& Back, 1994, pp. 35-45), and are shown in figure 3-5. “0” is used to represent “the
module does not provide the function”. During workshops, experts use the linguistic terms in figure 3-5

to provide their estimations, then the linguistic terms are quantified using 1-10 scale equivalents.

Linguistic terms Satisfaction level

Very inadequate solution 1
Weak solution

Tolerable solution

Adequate solution

Satisfactory solution

Good solution with few drawbacks
Good solution

Very good solution

0 00 N O U kR W N

Solution better than requirements

=
o

Ideal solution

Figure 3-5 Linguistic terms for satisfaction levels (Fiod-Neto& Back, 1994)

Probabilities are also often provided using linguistic terms by experts (Meyer & Booker, 2001). Many
previous works provided natural language terms associated with probabilities (e.g., Boehm (1989), Conrow
(2003), Hamm (1991), Lichtenstein & Robert (1967), and Moore (1983)). However, in these previous
works, the proposed probability-related terms were different (Hillson, 2005). Therefore, based on
linguistic terms listed in works of Hillson (2005) and Halliwell & Shen (2009), we propose a list of
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linguistic terms as shown in figure 3-6. The experts provide their estimations using these linguistic terms
for ASIT.

Linguistic terms Probability
Impossible 0
Nearly impossible 0.1
Very unlikely 0.2
Quite unlikely 0.3
Possible 0.4
Even chance 0.5
Better than even chance 0.6
Quite likely 0.7
Very likely 0.8
Nearly certain 0.9
Certain 1

Figure 3-6 Linguistic terms for probabilities

In the next section, a powertrain design case is used to illustrate the implementation of ASIT.

3.4 Implementation

3.4.1 Case Study Description
We use the powertrain design for a motor vehicle to demonstrate the utilization of ASIT. Due to
innovation integration as well as fuzziness in early design (Marie-Lise et al., 2012; De Weck et al., 2007), a
vehicle is usually decomposed into two or three levels of subsystems at this stage. The powertrain is one
of the high-level subsystems that can be further decomposed. The main objective in designing a
powertrain is to provide adequate propulsion with minimal use of fuel while emitting minimal hazardous
by-products or pollutants. For the sake of simplicity, only gas engine and hybrid engine architectures are

considered for the powertrain in this case study.

A powertrain is a system of mechanical parts in a vehicle that first provides energy, and then converts it in
order to propel the vehicle. In a traditional gas-engine vehicle, the engine provides power converted from
other sources of energy. The transmission then takes the power, or output, of the engine and, through
specific gear ratios, slows it down and transmits it as torque. Through the driveshaft, the engine’s torque is
transmitted to the final drive (wheels, continuous track, etc.) of the car. In hybrid electric vehicles, besides
the four modules mentioned above, batteries provide electrical energy, and electric motors are used to
transform electric energy into torque. Therefore in this study, we consider six types of modules: engine,

battery, transmission, electric motor, driveshaft and final drive.

In general, when considering couplings that exist within a powertrain system as well as new architectures
that are emerging due to new technologies (e.g., hybrid and electric vehicle), the powertrain can be
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considered as a complex system. Michelena & Papalambros (1995) also stated that “in practice, this task is
completed incrementally by trial and error and is costly and time consuming.” Further, as a system of
variables to be optimized it is overwhelming; Wagner (1993) showed through tested mathematical models
that a powertrain system design can have 87 design relations, 127 variables, and 57 degrees of freedom.
However, in this case study, not all subsystems and technologies are considered in order to simplify the

explanations.

Due to the increasing demand of lower emissions and higher fuel efficiency, the OEM plans to design a
new powertrain for their motor vehicle to better satisfy market needs. The new powertrain needs to satisfy
6 requirements (requirements (1) to (5) are adapted from (Michelena & Papalambros, 1995))), including: (1)
fleet averaged corporate average fuel economy (CAFE) standard (Violation of this standard results in
proportional fines.), (2) acceleration time (This directly relates to customer perceived performance.), (3)
Cruising velocity at gradient (Relates to the speed at which vehicle can climb a 6% gradient in forth gear.),
(4) The 0-60 mph time (This requirement relates to average speed vehicle acceleration over the speed
range of the engine.), (5) Greenhouse gas emissions (This measure shows a vehicle's impact on climate
change in terms of the amount of greenhouse gases (e.g., CO2) it emits.), and (6) Rechargeable by external
electric power (This requirement indicates that the OEM would like to develop a plug-in hybrid electric
vehicle using rechargeable batteries, the new trend in the market). These requirements can be satisfied by
certain functions (e.g., transform energy to torque), and each of the functions is satisfied by one or more
modules (Ulrich & Eppinger, 2000). For the new powertrain development, the OEM expects optimum
performance of the system, but at the same time, the uncertainty of system development has to be

controlled.

3.4.2 Phase | - Requirements satisfaction by existing products
For the new powertrain design, a list of requirements is defined by a group of experts. The aim of this
phase is to use ASIT to calculate how the OEM’s existing powertrains satisfy these requirements, and

which functions are not satisfied, pointing to the need for new module development.

Existing information is stored in the ASIT matrix system. When starting a new project, the matrices M1
and M2 need to be updated by experts with new requirements and functions. Identification of
requirements requires experts first to choose appropriate existing requirements, and then add new
requirements to the list, if necessary. By using the requirement — function relations in matrix M1,
functions that satisfy these requirements are allocated. Experts allocate newly identified requirements to
existing functions or add new functions. With new requirements and functions added, the requirement —
function relations in matrix M1, and function satisfaction by modules in matrix M2 are estimated by
experts. The updated matrix M1 is shown in figure 3-7, where the requirement “rechargeable by external

electric power” is a new requirement, and the function “accept recharge” is a new function.
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Figure 3-7 M1: Requirement — function relations

The updated matrix M2 is shown in figure 3-8, where a new function is added, and module types needed

are also identified by experts.
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Figure 3-8 M2: Function satisfaction by modules

After M1 and M2 are updated, ASIT leverages information from M1, M2 and M7 (see figure 3-9) to
estimate requirements satisfaction by existing systems. The M7 is an excerpt of the OEM’s existing
powertrains. In this case study, the OEM successfully developed two types of powertrains in the past (i.e.
regular gas engine powertrain and hybrid, as shown in matrix M7 in figure 3-9), which are used as
foundations for the new product development. In matrix M7, “1” represents “the module belongs to the

architecture”, and “0” represents “the module does not belong to the architecture”.
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Figure 3-9 M7: Composition of existing products

In order to propagate the function satisfaction by modules (figure 3-8) to the function satisfaction by
architectures, the composition of the existing powertrains (matrix M7, figure 3-9) is considered. How a
system satisfies a function depends on the capability of its relevant modules. When there is only one
module in the product that is designed to satisfy a function, the satisfaction level of the function by the
product is considered the same as the satisfaction level of the function by the module. When there are
multiple modules satisfying the function, the satisfaction level is defined as the average of satisfaction
levels of the modules. For example, the gas powertrain has only one module (the engine 1) fulfilling the
function “provide power”. Therefore, if the “engine 17 satisfies the “provide power” function at level 8,
the gas powertrain should also satisfy this function at level 8, as shown in matrix Mfun-arch in figure 3-10.
The satisfaction levels here represent “how good a module is with regards to a function” qualitatively.
Taking the average of satisfaction levels is a simplification adopted in this work; the weights of modules

for satistying a function can also be considered.
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Figure 3-10 Function satisfaction level of existing products
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In order to propagate the satisfaction of functions to the satisfaction of requirements (by existing
products), the requirement — function relations (M1, figure 3-7) are used. Numbers in this matrix
represent the percentage that a function satisfies a requirement. The sum of each row of the matrix can be
greater or equal to 0 and smaller or equal to 1, since the requirements may be only partly satisfied. For

propagating the satisfaction of functions to the satisfaction of requirements, we use the formula:

M =M xM

req—arch fun—arch

The requirements satisfaction of the existing powertrains is shown in figure 3-11.
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Figure 3-11 Requirement satisfaction of existing products

We define that the level 5 represents the “satisfactory solution”, and we further define that a requirement
is unsatisfied if its satisfaction level is lower than 5 by at least one architecture. Therefore, the
requirements “0-60 mph time”, “low greenhouse gas emission”, and “rechargeable by external electric
power” are unsatisfied. Using M1 in figure 3-7, one can see that the requirement “0-60 mph time” is
related to the function “provide power”; the requirement “low greenhouse gas emission” is related to the
function “respect environment”; and the requirement “rechargeable by external electric power” is related
to the function “accept recharge”. Then, by using M2 in figure 3-8, one can see that the satisfaction of
these three functions depends on the engine and the battery. Therefore, new engines and batteries that can

potentially satisfy these functions need to be identified.

3.4.3 Phase Il - Generating solutions
The objective of this phase is to find/propose potential new solutions for unsatisfied functions by experts,
and then use ASIT to generate all possible architectures. After searching for new modules provided either
by new or existing suppliers, two new engines and two new batteries are found. Both engines are from
new suppliers; one of the new batteries is from a new supplier, while the other one is from an existing
supplier of the OEM. The matrix system including M2 (function satisfaction by modules), and M3

(suppliers) is updated by using expert estimations on new modules and suppliers.
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The updated function satisfaction by modules is shown in M’2 in figure 3-12. It can be seen that the two
new engines perform well for functions “respect environment” and “economize fuel”, but not as much
for “provide power” in comparison to existing modules. The two new batteries perform well in satisfying

“provide power” and “accept recharge” but for other functions they do not show much advantage.
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Figure 3-12 M’2: Function satisfaction by modules (with new modules)

As indicated by experts during phase 1 when identifying module types, the powertrain of a plug-in hybrid
electric vehicle needs an engine, a battery, a transmission, an electric motor, a driveshaft and a final drive.
Therefore, by taking one module from each type of modules mentioned in M2, all possible architectures

are generated (see figure 3-13).

Possible architecture 2
Possible architecture 4
Possible architecture 7
Possible architecture 10
Possible architecture 12

Engine 1
Engine 2
Engine 3
Engine 4
Battery 1
Battery 2
Battery 3
Transmission 1
Electric motor 1
Driveshaft 1
Final drive 1

Modules

plelelelololelolo|o |w— |Possible architecture 1

plolelelolo|elo e |o|o |Possiblearchitecture 3

pelelelelolelololo|o | |Possible architecture 5

mlele e lolelololo |- |o [Possible architecture 6

plelm e lol-lol~|o|o |o |Possiblearchitecture 8

elelelelelolololo|o |w— |Possiblearchitecture 9

plelelelelololo e |o|o |Possiblearchitecture 11
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Figure 3-13 Generated possible architectures

3.4.4 Phase lll - Evaluating possible architectures
The objective of this phase is to use ASIT to calculate uncertainty and requirements satisfaction of all

possible architectures. The calculation of requirements satisfaction is mainly based on M’2, while the
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uncertainty information is provided by a group of experts and stored in M4 (compatibility between

modules), M5 (uncertainty of each module), and M6 (uncertainty of suppliers’ capabilities).

The matrix M4 shows interface compatibilities between modules due to innovation integration. We define
that ‘not compatible” is equal to “0”, “perfectly compatible” is equal to “1”, and a number between “0”
and “1” represents the probability that the two modules work well together. Compatibility between
modules in existing products is defined as “1”, while other compatibilities are between 0 and 1. M4 is
symmetrical, and the elements describing the relations between modules, which satisfy the same function,
do not need any interpretation (since they will never be used in the same architecture). The matrix M5
represents the uncertainty of modules. Similar to the definition of compatibility, we define “not mature at
all” as “0” and “mature” as “1”, a number between “0” and “1” represents the probability that the module
can be developed successfully by the supplier. Similarly, the matrix M6 represents the probability that a
supplier and the OEM can work well together. The matrix M3 represents the relations between modules

and suppliers, where the number “1” represents that the supplier provides the module.

Since module uncertainty, supplier uncertainty and compatibility between modules can all be considered in
probabilistic terms, we define the uncertainty of an architecture as the product of all its modules’
uncertainties, its suppliers’ uncertainties and the compatibilities between the modules, because of the

independence of probabilities. The matrices M3, M4, M5 and M6 are shown in figure 3-14.

Ms Ms
1.0/1.0]0.6/0.5/1.0]0.8]0.2]1.0[1.0[1.0{1.0] Uncertainty |1.0[0.5]0.8]1.0]0.3]1.0]1.0]1.0[1.0
— i
518]<|<

N T E pall Il Bl il el el el
v v v |z = Z|E|L|S|B glulelolu|lo|lulw|la
5555622 2|58 2z HEREHEEEEHEE
SESsSE8EESE|E 2 3|3|33|3|3|3]3

0.2/0.0/0.31.0[0.3]1.0[1.0|Engine 1 1| o o ol o o of of 0

1.0[0.5/0.2[1.0/1.0/1.0|1.0|Engine 2 1 o/ ol o o o of o 0

0.2/0.8/0.60.8/0.6|0.8|0.8|Engine 3 o 1/ o] of o of of of g

0.2/0.6/0.9|0.8/0.8|0.6|0.8|Engine 4 ol of 1) of o of of o g
0.2/1.0{0.2|0.2 1.0/1.0/1.0[1.0Battery 1 ol of o 1/ o] of of o] g
0.0/0.5|0.8|0.6 0.7/0.8|0.8|0.8|Battery 2 0l Of 0f 1l 0] 0] 0] O] O
0.3/0.2/0.6/0.9 0.9/0.8(0.9/0.8|Battery 3 ol of ol of 1] of of of g
1.0/1.0/0.8|0.8|1.0{0.7/0.9]  [1.0/1.0[1.0|Transmission1 | 0 o] o o] of 1| of of o
0.3/1.0/0.6/0.8|1.0(0.8|0.8|1.0 1.0|1.0JElectricmotor 1] 0| 0] O 0| O O] 1| 0| 0
1.0/1.0/0.8[0.6/1.0{0.8/0.9{1.0[1.0] [1.0]Driveshaft 1 0l of o] of o of of 1 @
1.0[1.0/0.8[0.8/1.0[0.8[0.81.0[1.0/1.0] |Final drive 1 ol ol o o o of of o 1
M, M,

Figure 3-14 M3, M4, M5& M6: Uncertainty information

Done in a similar way as in calculating the requirements satisfaction by existing products, the requirements
satisfaction by possible architectures is calculated using the matrix M’2 (in figure 3-12) and the matrix M1
(in figure 3-7). In this case, we assume equal importance of the requirements (this assumption can be
changed if needed), an overall requirements satisfaction score is obtained for each architecture X by
calculating the average of its requirements satisfaction regarding each requirement Y, as shown by the
equation:
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Opverall requirements satisfaction of X =% Z (Satisfaction of Y by X)

Y=1..6

The obtained uncertainties and satisfaction levels are presented in figure 3-15. Considering the lack of
precision in expert estimation, only two decimal numbers are kept for the results. The “uncertainty”
represents the overall uncertainty level of an architecture. The bigger the number, the greater the level of
confidence we have for the architecture. The “satisfaction” represents the satisfaction level of the
requirements by an architecture. The bigger the number, the better the architecture satisfies the

requirements.

Architecture 1) 2 3| 4 5 6 7 8 9 10 11| 12
Uncertainty  |0.06{1.00|0.02|0.02|0.00|0.14)0.02(0.02]0.00|0.01|0.00{0.00
Satisfaction 4.7314.5214.64(4.53|6.72|6.05(6.18|6.07|7.38|7.17/7.29|7.18

Figure 3-15 Uncertainty and requirements satisfaction of all possible architectures

3.4.5 Phase IV - Architecture filtering

The aim of this phase is to use ASIT to filter possible architectures by their uncertainties and the

requirement satisfaction levels. The thresholds are provided by experts.

The OEM tends to keep the architectures with the best performance while rejecting highly uncertain
architectures in view of the uncertainty related to the project. In this project, the uncertainty threshold is
set to 0.02, and the satisfaction threshold is set to 5. Thus, all architectures with uncertainty lower than
0.02 and satisfaction level lower than 5 are rejected. After filtering, 3 out of the 12 generated architectures

remain (architectures 6, 7, 8), as shown in figure 3-10, for final consideration.

Architecture il 2| 3| 4 s| e 7] 8| 9| 10 11| 12
Uncertainty _ |0.06]1.00/0.02[0.02|0.08]0.14]0.02|0.02]0.00]0.02|0.00]0.00
Satisfaction  |4.73|4.52|4.64|4.53]6.72|6.05]6.18]6.07]7.38]7.17]7.29]7.18

Figure 3-16 Uncertainty and satisfaction filtering of possible architectures

The composition of the architectures 6, 7, and 8 can be found in figure 3-13, and the suppliers for the
modules are recorded in matrix M3 in figure 3-14. Since the modules “engine 17, “battery 17 and “battery
3” do not belong to any of the three selected architectures, these three modules are deleted from the initial
list. With regard to suppliers, only suppliers that are contributing to selected modules are kept for further

consideration. That is why the supplier 5 is not considered further.

Finally, for battery, transmission, electric motor, driveshaft and final drive, only one supplier remains; for

the engine, three potential suppliers are identified for further negotiation.

3.5 Comparison

There are several possibilities to compare the ASIT to others, including the method proposed by Bryant et

al. (2005), change propagation method proposed by (Clarkson, Simons, & Eckert, 2004), and risk
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management in early design proposed by (Lough et al., 2009). However, in order to investigate how
consideration of uncertainty changes supplier identification, we choose to compare the ASIT to a similar
matrix-based method that does not consider uncertainty. The Concept Selection Method (CSM) proposed
by King & Sivaloganathan (1999) is a well-known matrix based approach which ranks different concepts
with consideration of function satisfaction. The consideration of function satisfaction is rare in complex
system generation approaches, and that is why CSM was chosen for the comparison (see figure 3-17 for

the main differences).

The CSM uses two matrices to represent function satisfaction by modules and compatibility between
modules, respectively. For each architecture, the summation of function satisfaction and the product of
the compatibility score are multiplied, providing an overall score for each architecture. The CSM and the
ASIT use different scales for inputs. The CSM requires that “the total score for all modules with respect
to each function to equal 1.0”, and the compatibility between two modules is represented using a 0 — 2

scale. In order to allow the comparison, the inputs of the two methods are normalized.

Differences CSM ASIT

Objective Ranking potential architectures Identifying potential suppliers

. . . A clustering of architectures and
. A ranking of architectures by using i . ] )
Results provided . . o suppliers by using satisfaction and
satisfaction and compatibility scores .
uncertainty threshold

Estimation target The satisfaction of functions The satisfaction of requirements

One function is satisfied by only one One function can be satisfied by one
concept and each concept can satisfy ~ or more modules, and one module
only one function can satisfy several functions

Definition of
modules/concepts

Consideration of

. No Yes
uncertainty

Figure 3-17 Main differences between CSM and ASIT

In CSM, overall scores for each architecture are calculated and ranked (see figure 3-18). In ASIT, only the
architectures with requirements satisfaction and uncertainty above the thresholds are identified, with a set

of suppliers contributing to a given architecture design (figure 3-18).
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CsMm ASIT

(Ranking by score) (Clustering: satisfaction25, uncertainty>0.02)

Ranking Architecture Score Architecture Satisfaction Uncertainty Supplier

1 2 114.90 7 6.18 0.02 2,4,6,7,89

2 6 22.90 8 6.07 0.02 3,4,6,7,8,9

3 12 19.78 6 6.05 0.14 1,4,6,7,8,9

4 10 14.03

5 1 13.10

6 7 11.42

7 8 8.62

8 4 7.23

9 3 77

10 1 6.75

11 9 6.20

12 5 0

Figure 3-18 Comparing results of CSM and ASIT

One can see on the left side of the table that when compatibility is considered as part of the performance,
the architecture 2 receives a very high score. This is because this architecture is an existing architecture,
and thus the “compatibility performance” is very high. Therefore, when adding the “function satisfaction
performance” and the “compatibility performance” together, this architecture receives a good
performance score although the “function satisfaction performance” alone is not good enough. We can
also see that on the left side of the table, the architecture 12 is ranked as the third best architecture.
However, it is not among the remaining architectures when considering overall uncertainty, since its
uncertainty is lower than the set uncertainty threshold (0.02). Further analysis reveals that the module
“battery 3” in the architecture 12 is of uncertainty value 0.2, which means that although this module can
potentially provide very good performance, its development is estimated to be very uncertain, and the
probability that its supplier works well with the OEM is low (0.3). The same situation can be found for
other architectures such as architectures 10 and 11. Uncertainty consideration implies that certain potential
architectures (5, 9, 10, 11, 12) are eliminated, resulting in the elimination of supplier 5 providing battery 3
used in architectures 9,10,11,12. As explained before, the battery 3 provides very good performance;
however, its uncertainty is very low (In this work, we define “uncertainty = 0” as “not certain at all” and

“uncertainty = 17 as “perfectly certain”).

3.6 Discussion

We have seen that the consideration of overall uncertainty influences the result of potential supplier
identification. This is because the suppliers, which are potentially high performing but also highly
uncertain, are excluded based on the risk that the OEM is willing to take on for the project. In financial
terms, return is always accompanied by risk. High return options usually also have high risk. That is why
return/risk trade-offs are necessary when making financial decisions. Using the corollary in engineering

design, the concepts with better performance might also have higher uncertainty. Therefore, we propose
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to consider both performance and uncertainty when making decisions in architecture generation and
potential supplier identification. In addition, we have also seen that when considering performance and

uncertainty, the two should be considered separately to prevent mixing up the two different indicators.

As proposed in this work, ASIT can assist OEMs in considering performance and uncertainty when
identifying suppliers. The use of matrices as a database form in ASIT provides two main advantages when
using this tool in eatly design of complex systems. Firstly, the usage of matrices is practical since the
number of modules is limited, as only the first tier suppliers are considered. The explicit form of matrices
makes the relations between elements clear, facilitating comprehension and communication between
experts. In addition, the storage of two dimension matrices does not require special techniques. This
flexibility enables companies to continue using tools that they are familiar with. Standardization in terms
of the vocabulary used while describing requirements, functions, etc. also ensures consistency. The
matrices used in ASIT are organized as a matrix system. There are prior works that also use matrix
systems, such as the Quality Function Deployment (QFD) (Rosenthal, 1992), the concept selection
method (King & Sivaloganathan, 1999), the architecture generation method (Bryant et al., 2005), and the
multiple-domain design scorecard method (Jankovic et al., 2012). With the mapping flow of requirement —
function — module — supplier — uncertainty, ASIT is the first tool to incorporate supplier and uncertainty
information, which allows integrating uncertainty information when considering architecture and supplier

simultaneously, and features a “variable” view of the design (i.e., design is not fixed).

However, there are several limitations in this work. Firstly, as an initial step towards introducing
uncertainty to supplier identification combined with architecture generation, the sources of uncertainty
considered in this work may not be exhaustive. Although the information used is mostly from expert
estimation, we have not considered the subjectivity in expert estimation. The sensitivity of ASIT regarding
this type of uncertainty should be investigated in future works to verify the robustness of this tool.
Secondly, with specific regards to performance, only requirements satisfaction is considered in this paper.
Many other types of performance are also important in the supplier identification (e.g., sustainability,
product cost and lead-time, etc). We believe that the feasibility of getting this type of information in early
complex system design stage needs to be considered. Thirdly, the weights of requirements, and the
importance of modules for satisfying a function (when the function is satisfied by more than one module)
are considered to be equal in this paper. It might be fruitful to explore using varying weights. Moreover,
several studies pointed out the need for investigating the impact of preference aggregation and
collaborative expert estimation. We believe that this is an important issue and it should be tested within an
industrial setting. The work of Clemen & Winkler (1999) and Keeney (2009) set a good basis for future
research in this aspect. Regarding the validation of the proposed tool, it will be necessary to test the tool in

an industrial environment in the future.

3.7 Conclusions

Potential supplier identification is the phase of preparing supplier candidates for supplier selection by the

OEMs. Because of the use of modular design in complex systems, the suppliers are more and more
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involved in system design, which makes the technical ability of suppliers more important to better satisfy
system requirements. However, using novel architectures and suppliers with potentially better

performance often comes with higher uncertainty as well.

In this paper, we proposed ASIT (Architecture & Supplier Identification Tool), which uses both
requirement satisfaction and uncertainty thresholds to filter possible architectures and suppliers. The
uncertainty related to suppliers’ capabilities to cooperate well with the OEM, the technological uncertainty
in new modules, and the uncertainty of compatibility between modules are considered. To the best of our
knowledge, ASIT is the first supplier identification tool that combines architecture generation where the
overall uncertainty is controlled. By comparing to a method, which does not consider uncertainty using a
case study of powertrain design, it is shown that considering uncertainty impacts the result of the supplier

identification, and that uncertainty should be considered independently from the performance.

Suppliers with potentially high performance may also have high uncertainty. The utilization of ASIT in
supplier identification has the potential in balancing risk and return for the OEM while identifying optimal

suppliers.
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Abstract. The Architecture & Supplier Identification Tool (ASIT) is a design support tool, which enables
identification of the most suitable architectures and suppliers in early stages of complex systems design, with
consideration of overall requirements satisfaction and uncertainty. During uncertainty estimation, several
types of uncertainties that are essential in early design (i.e., uncertainty of modules due to new technology
integration, compatibility between modules, and supplier performance uncertainty) have been considered in
ASIT. However, it still remains unclear whether expert estimation uncertainties should be taken into account.
From one perspective, expert estimation uncertainties may significantly influence the overall uncertainty
since early complex systems design greatly depends on expert estimation; but from another perspective, it is
also possible that expert estimation uncertainties should be neglected because it is much smaller in scale
comparing to other types of uncertainties in this stage. In order to understand how expert estimation
uncertainties (especially subjective uncertainty) influence the architecture and supplier identification results
achieved using ASIT, a comprehensive study of possible modelling approaches has been discussed; and the
type-1 fuzzy sets and the 2-tuple fuzzy linguistic representation are selected to integrate these subjective
uncertainties in ASIT. A powertrain design case is used to compare results when considering subjective
uncertainties versus not considering them. Finally, the consideration of subjective uncertainty in early
conceptual design and other design stages is discussed.

Keywords: expert estimation uncertainty, subjective uncertainty, early conceptual design stage, early
complex systems design, fuzzy set theory, 2-tuple fuzzy linguistic representation
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4.1 Introduction

In early design phases of complex systems, the OEMs (Original Equipment Manufacturers) strive to
explore possibilities, delay decisions, and at the same time control both the performance and the
uncertainty of the future system (Ye, Jankovic, Kremer, & Bocquet, 2014). Nowadays, more and more
OEMs tend to involve their suppliers early in design in the context of an extended enterprise (Nguyen
Van, 20006), especially in airplane and automotive industries. For example, Airbus has several thousand
suppliers from more than 100 countries (Airbus Group, 2014). Among these suppliers, some are called
first-tier suppliers, such as Snecma and Roll Royce for engines. These first-tier suppliers usually have the
full responsibility of an entire module, and are involved since eatly conceptual design phase of the system
in most of the times. Therefore, it is important to consider the performance and uncertainty of these
suppliers when estimating performance and uncertainty of the future system. However, very few methods
consider both system architecture design as well as supplier information (Ye et al., 2014). In order to fill
this gap, we proposed an Architecture & Supplier Identification Tool (ASIT) (Ye et al., 2014) to support
design teams when considering these issues. Given the lack of data, fuzziness and different uncertainties
inherent to early design, ASIT takes into account uncertainties related to interfaces, suppliers’ capability,
and the capability of one subsystem/module to reach a certain performance. These data are estimated by
experts using predefined linguistic terms (as shown in Tab.4-1 and Tab.4-2), and these linguistic terms are

then translated to related numerical scales to facilitate calculation.

We have observed that when using information comes from expert estimation, many researchers tend to
use methods such as fuzzy sets (e.g. J. (Ray) Wang, 2001), rough sets (e.g. Zhai, Khoo, & Zhong, 2009),
etc. to model the information in order to represent the expert estimation uncertainties. Because of the
integration of new technologies, new modules and new suppliers, ASIT also greatly relies on expert
estimation. However, different from most of the existing design supporting methods, ASIT works in the
design phase called “early conceptual design stage”, where overall uncertainty level is much greater than in
later design stages. Therefore, it is unclear whether using mathematical methods to model expert

estimation will influence the overall results.

In this paper, we propose to analyse the influence of considering expert estimation uncertainties on ASIT

result by answering the following two research questions:

1. Which uncertainty modeling method is most suitable for representing the expert estimation

uncertainties within the context of ASIT?
2. How does the consideration of expert estimation uncertainties influence the results of ASIT?

In the following sections, we start by giving an overview of the ASIT, and the uncertainties caused by
expert estimation in ASIT. In section three, we give a review of different uncertainty representation
methods that can be used to represent subjective uncertainty. The suitability of the uncertainty
representation methods is analysed based on the characteristics of the eatly design stage and the ASIT,
making up the set of comparison criteria. In section four, the operations of fuzzy sets, the selection of

suitable membership functions, and the utilization of defuzzification methods are discussed. In section
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five, the selected representation methods are integrated into ASIT by using a powertrain case study. In

section six, the results are compared and discussed before conclusions are presented in section seven.

4.2 The Expert Estimation Uncertainty in ASIT

The ASIT is an early design support tool that aims at generating possible system architectures with the list
of suppliers that are co-designing the system. First, possible architectures are generated by integrating new
technologies in order to better satisfy new requirements. Then, the generated architectures are filtered by
uncertainty and requirement satisfaction thresholds in order to identify the architectures with relatively
high performance and low uncertainty. Three major types of uncertainties had been taken into account: (1)
uncertainties related to capability of one subsystem/module to reach defined system performances, (2)

interface related uncertainties, and (3) uncertainty related to supplier capabilities.

The ASIT contains four phases, as shown in Fig.4-1. In phase one, the satisfaction of new requirements
by OEM’s existing products is calculated by using data of existing products stored in database.
Subsequently, the un-satisfied requirements, un-satisfied functions, and responsible modules types for the
un-satisfaction are found through mapping of “requirement — function — module type”. In phase two, new
solutions for the responsible module types are found by experts in existing or new supplier companies.
Then, all possible architectures are generated by taking one module from each module type. In phase three,
uncertainty of generated architectures is calculated based on experts’ estimation of the three types of
uncertainties; the requirements satisfaction level of architectures is calculated based on experts’ estimation
about “function satisfaction by modules”. Finally, in phase four, by using the uncertainty and
requirements satisfaction thresholds (which are defined by the OEM based on the tolerance of
requirements satisfaction, and the risk that they are willing to take), the generated architectures are filtered

to identify potential architectures and corresponding suppliers.
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Figure 4-1 Overview of ASIT

During the process of ASIT, experts are mainly solicited for two types of information: satisfaction levels,
and uncertainties. Although expert evaluations are often expressed in an informal way, there are many
methods to make them more precise. The mostly used method is the pre-defined linguistic terms or
ordinal scales. In ASIT, the satisfaction levels (Fiod-Neto & Back, 1994) and uncertainties are predefined
as shown in Tab.4-1 and Tab.4-2. Here, the two forms (i.e., linguistic and numerical) are provided together

since the linguistic terms provide explanatory notes while the numerical levels facilitate aggregation

Table 4-1 Satisfaction levels

Linguistic terms

Satisfaction level

Yery inadegquate solution

Weak solution

Tolerable solution

Adequate selution

Satisfactory salution

Good solution with few drawbacks
Good solution

Very good solution

Solution better than requirements

Ideal soluticn

1

[ S I Y N .

=
o

Table 4-2 Probabilities
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Linguistic terms Probability

Impossible 0

Nearly impossible 0.1
Very unlikely 0.2
Quite unlikely 0.3
Possible 0.4
Even chance 0.5
Better than even chance 0.6
Quite likely 0.7
Very likely 0.8
Nearly certain 0.9
Certain 1

Expert knowledge is seen by Meyer and Booker (2001) as “what is known by qualified individuals,

responding to complex, difficult (technical) questions, obtained through formal expert elicitation”.

As human beings, experts generate two categories of uncertainty: aleatory (random) and epistemic
(subjective) (Medsker, Tan, & Turban, 1995). The aleatory uncertainty is also referred to as inherent
uncertainty, irreducible uncertainty, and variability. It describes uncertainty due to random variation or
inherent variation (Booker, Anderson, & Meyer, 2003). This type of uncertainty is considered rooted in
the way that the brain processes information (Dror & Charlton, 2006). The epistemic uncertainty is also
referred to as subjective uncertainty and reducible uncertainty. The fundamental cause of this type of
uncertainty is incomplete information or incomplete knowledge of some characteristic of the system or
the environment (Oberkampf, Helton, & Sentz, 2001). Aleatory and epistemic uncertainties both exist in
expert estimation. However, in early conceptual design phase of complex systems, very limited amount of
information is available, which causes high level of epistemic uncertainty. In comparison to the epistemic
uncertainty, the aleatory uncertainty, in this phase, is much smaller in scale. Therefore when integrating the
two types of uncertainties, the aleatory uncertainty can be covered by the epistemic uncertainty. That is

why we propose to consider only the epistemic uncertainty in the context of this study.

One of the strategies to reduce epistemic uncertainty in complex system design is to use expert group
evaluations (Medsker et al., 1995).In this study, we assume that a group of experts is used for each
estimation, in order to prevent the situation that one expert does not have enough knowledge in a specific

domain.

According to the discussion above, one can see that the most important uncertainty caused by expert
estimation in ASIT is the subjective (epistemic) uncertainty, which is caused by the lack of information in
carly design. In order to test the sensitivity of the ASIT to this type of uncertainty, we need to first choose
a suitable uncertainty representation method to model this type of uncertainty. In the next section, several
approaches that can model the subjective uncertainty are investigated and discussed according to the

characteristics of the early design stage, the ASIT, and subjective uncertainties within ASIT.
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4.3 Representing Subjective Uncertainty in ASIT

In order to identify the most suitable method for representing subjective uncertainty in ASIT, we have
compiled uncertainty representation methods that have been the most commonly used for representing

this type of uncertainty (NG & Abramson, 1990; Oberkampf et al., 2001; Booker et al., 2003):

. Subjective probability theory,

. Imprecise probability theory,

. Evidence (Dempster-Shafer) theory,
. Fuzzy sets,

. Possibility theory

. Interval analysis theory, and

. Rough sets.

Epistemic uncertainty has been traditionally modelled as probability distributions. The probability theory
has four perspectives including classical, empirical, subjective and axiomatic probabilities (Asadoorian &
Kantarelis, 2005). The expert estimation can be modelled as subjective probability, which represents an
individual’s measure of belief that an event will occur. The information gathered for the distribution could
be a mixture of limited experimental data and a person’s experience, ot the elicitation of multiple expert
opinions (Oberkampf et al, 2001). The main concern of this method is that the “fuzziness” of
information is usually lost since in probability theory, an event either occurs or not (NG & Abramson,

1990).

The imprecise probability (Walley, 1991) is a generalization of probability theory; it is used when a unique
probability distribution is hard to identify. In imprecise probability, a lower probability and an upper

probability are used instead of one single probability. For an uncertain event A, instead of assigning a

single probability P(A), the imprecise probability assigns an interval [ P(A), P( A)} with0 < P(A) S;( A<,

where P(A) is the lower probability for A, I_D(A) is the upper probability for A, and AA =P(A)— P(A) is
the imprecision for event A (Coolen, 2004). Similar to the probability theory, the fuzziness of information

is thought to be lost when using imprecise probability.

The evidence (Dempster-Shafer) theory (Dempster, 1967; Shafer, 19706) is a generalization of the Bayesian
theory of subjective probability. It allows considering the confidence one has in the probabilities assigned
to the outcomes. The evidence theory uses an interval to represent the probabilities with a lower bound
called “believe” and an upper bound called “plausibility”’. The “believe” is the sum of the evidence that

supports the hypothesis, while the “plausibility” is 1 minus the sum of the evidence that opposes the
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hypothesis. According to NG & Abramson (1990), one obvious problem of the evidence theory is its

implementation complexity since experts must provide all the beliefs for all subsets of possible hypotheses.

In 1965, Zadeh (1965) started a revolution in uncertainty thinking by introducing the fuzzy set theory.
This theory uses a membership function to represent the degree of membership of an element to a set of
objects. The degree to which an element belongs to a set is defined by a value between 0 and 1; the higher
the value is the greater its belongingness, and an element can partly belong to a fuzzy set. The fuzzy set is
widely used in describing linguistic information since it can effectively represent the gradual changes of
people’s perception of a concept in a certain context (Dalalah & Magableh, 2008). Moreover, the fuzzy set
theory also allows mathematical operations that help to provide quantitative methods to deal with

qualitative data.

The possibility theory (Zadeh, 1999; Dubois & Prade, 1988; Cooman, Ruan, & Kerre, 1995) is an
extension of the theory of fuzzy sets. It can be used to express the vague terms used by human experts

with precision and accuracy (NG & Abramson, 1990).

Interval analysis (Moore, 1979; Kearfott & Kreinovich, 1996) is an approach that treats an interval as a
new kind of number (Moore, 1979) and follows the following elementary properties (R. Moore &
Lodwick, 2003):

[a,b]+[c,d]=]a+c,b+d] )
la,b]—[c,d]=[a—d,b—c] @
[a,bllc,d]=[min(ac,ad,bc,bd), max(ac,ad,bc,bd)] 3)

[a.b)+[e.d)=[a.b)[1/d.1/ €] G ope 0% [e.d] (g

The rough sets theory (Pawlak, 1982) uses a pair of sets to give the lower and upper approximation of the
original set. This theory is used when objects are characterized by the same information and thus are
indistinguishable (Pawlak, 1997). Each rough set has boundary-line elements, which cannot be properly

classified by using the available knowledge.

These methods have all been used in previous works to represent expert’s subjective uncertainty. However,
it is not clear how to choose a method according to a specific context (e.g., for ASIT). In order to identify
approaches that can be seen as most suitable in the context of ASIT, we propose to consider the following

four criteria:

1. The method is able to represent numerical levels: In ASIT, experts use predefined linguistic
terms and related numerical levels to represent their estimation. Therefore, the chosen method should be

able to represent these types of dis-continuous numerical levels.
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2. The method requires reasonable amount of information: In ASIT, the estimation is provided
by experts. Due to the limitations in time, budget and human capacity, the amount of information

required by the mathematical representation has to be reasonable.

3. The method should capture the “fuzziness” of expert estimation: Human knowledge is
P P g

imprecise. The chosen method should be able to capture this kind of imprecision.

4. Support multi-criteria group decision making: The aim of the potential supplier identification
is to provide candidates for the supplier selection, which is usually a multi-criteria group decision making
problem. In order to be able to use the supplier identification results directly in the supplier selection stage,
the selected uncertainty representation method should be able to combine with other methods to support

the multi-criteria group decision making.

With regard to the first criterion (representing the numerical levels), the rough set theory is not suitable
since it assumes that some of the elements are characterized by the same information hence
indistinguishable. However, the elements defined by the numerical levels are clearly distinguishable (e.g.,
numbers 1 — 10 used in Tab.4-1).

In view of the second criterion (requiring reasonable amount of information), the evidence theory is
inappropriate. According to the principles of evidence theory, experts need to provide 2x beliefs for each
estimation, where x represents the number of elements. For example, when using satisfaction levels
provided in Tab.4-1, x is equal to 10. Therefore, when estimating “how well module A satisfies function
B”, experts need to provide 210 beliefs. With the increase of module and function counts, the number of

estimation needed increases accordingly.

The third criterion (capturing the “fuzziness” of expert estimation) makes the subjective probability theory,
the imprecise probability theory, the possibility theory and the interval analysis theory inappropriate since

they are not designed to capture the “fuzziness”.

With regards to the fourth criterion (support multi-criteria group decision making), many fuzzy set based

multi-criteria group decision making methods exist, including:

. Fuzzy set theory + TOPSIS (Chen, Lin, & Huang, 2000),
. Intuitionistic fuzzy sets + TOPSIS (Boran, Geng, Kurt, & Akay, 2009),
. Fuzzy AHP (Kahraman, Cebeci, & Ulukan, 2003; Haq & Kannan, 2006; Chan, Kumar, Tiwati,

Lau, & Choy, 2008),

. Fuzzy AHP + cluster analysis (Bottani & Rizzi, 2008),
. Fuzzy ANP (Vinodh, Anesh Ramiya, & Gautham, 2011),
. Fuzzy ANP + TOPSIS (Oniit, Kara, & Isik, 2009),
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. Fuzzy multi-objective programming (Amid, Ghodsypour, & O’Brien, 2006),

. Fuzzy arithmetic operation (Bayrak, Celebi, & Taskin, 2007),

. Fuzzy SMART (Chou & Chang, 2008),

. Fuzzy QFD (Bevilacqua, Ciarapica, & Giacchetta, 2000),

. Fuzzy DEMATEL + TOPSIS (Dalalah, Hayajneh, & Baticha, 2011).

With regard to previously discussed criteria, the fuzzy set theory appears to be the most suitable
mathematical representation to express subjectivity in expert estimations. In recent years, several branches
of fuzzy set theory were developed; the most popular ones among these with applications in supplier

identification and selection are:

. Type-1 fuzzy sets (e.g., Oniit et al., 2009),

. Interval type-2 fuzzy sets (e.g., Chen & Lee, 2010),

. Intuitionistic fuzzy sets (e.g., Boran et al., 2009),

. 2-tuple fuzzy linguistic representation (e.g., Wang, 2010).

The type-1 fuzzy sets is the same as the ordinary fuzzy set theory. The re-name is for the purpose of
distinguishing from the type-2 fuzzy sets. This theory uses a membership function to represent the degree
of membership of an element to a set of objects. The degree to which an element belongs to a set is
defined by a value between 0 and 1.Higher the value is the greater its belongingness and an element can
partly belong to a fuzzy set. The fuzzy set is widely used in describing linguistic information since it can
effectively represent the gradual changes of people’s perception of a concept in a certain context (Dalalah

& Magableh, 2008). It is also widely used for representing human uncertainty.

The interval type-2 fuzzy sets is a simplified form of type-2 fuzzy sets, which is defined by Mendel and
John (2002) based on Zadeh’s Extension Principle (Zadeh, 1975). The type-2 fuzzy sets is able to model
one additional degree of uncertainty than the type-1 fuzzy sets. In type-1 fuzzy sets the membership
functions are crisp, but in type-2 fuzzy sets the membership functions are themselves fuzzy. Therefore, a
type-2 membership function is a three-dimensional membership function, which is sometimes difficult to
understand and define. The interval type-2 fuzzy sets simplified the fuzziness of the primary membership
function of type-2 fuzzy sets by assuming that the fuzziness of the primary membership function is equal
to one. Therefore, the interval type-2 fuzzy sets can be seen as composed of an upper membership
function and a lower membership function, which are both of type-1 membership functions. The main
problem with using this representation for representing expert estimation is that it might be already
difficult for experts to define one membership function; defining two is even harder. Moreover, in the

context of representing expert estimation, the definition of the second membership function does not
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provide further understanding of the problem. Consequently, the interval type-2 fuzzy sets does not seem

to be an effective way to represent subjective uncertainty in expert estimation.

The intuitionistic fuzzy sets was proposed by Atanassov (19806) twenty years after Zadeh’s fuzzy sets. The
intuitionistic fuzzy sets use dual membership degrees in each of the sets by giving both a degree of
membership and a degree of non-membership. Similar to the interval type-2 fuzzy sets, it might be
difficult for experts to define two membership functions for each estimation; thus, the intuitionistic fuzzy

sets do not seem convenient for representing subjective uncertainty in expert estimation either.

The 2-tuple fuzzy linguistic representation is developed by Herrera & Martinez (2000) based on the fuzzy
set theory and the symbolic method (Delgado, Verdegay, & Vila, 1993). The linguistic values (e.g., expert
estimation) are usually modelled as fuzzy sets. When aggregating the linguistic values (fuzzy sets), the
result usually does not exactly match any of the initial linguistic terms, and thus an approximate linguistic
term must be found. However, the imprecision of this approximation is lost. In the 2-tuple fuzzy linguistic
representation, the linguistic information is expressed by a 2-tuple (s,a) , where § represents the
approximate linguistic term, and o represents the imprecision of this approximation. This representation

can efficiently prevent the loss of information and thus help the ranking of alternatives.

Given the discussion above, we think that the type-1 fuzzy sets and the 2-tuple fuzzy linguistic
representation are both suitable for the representation of subjectivity in expert estimations in the case of
carly design and ASIT. Therefore, we propose to use these two approaches to represent the subjective
uncertainty and compare them to the initial results where subjectivity is not taken into account. Before
integrating the two fuzzy methods into ASIT, the fuzzy techniques to be used should be defined, e.g., the
operations of fuzzy sets, the selection of suitable membership functions, and the utilization of

defuzzification methods. These issues are discussed in the next section.

4.4 Fuzzy Techniques for Representing Subjective Uncertainty in
ASIT

Many different fuzzy membership functions exist. It is not possible and not appropriate to test all of them
in this work. Therefore, it is necessary to identify the most appropriate membership function within our
research context. In addition, the simplification for fuzzy number operations should also be investigated,

since operations such as the multiplication of several fuzzy members can be very tedious.

A fuzzy number is a special fuzzy set N ={(x, &, (x)),xe R} where x is a real value R :—c0 < X <+oo and

i, (x) is a continuous mapping from R, to (0,1) (Hag& Kannan, 2006). Operations of fuzzy numbers

can be defined based on the extension principle proposed by Zadeh (1975). If M and N are fuzzy
numbers, membership of M (*)N is defined as follow (Gao, Zhang, & Cao, 2009) :

Mo (2) = sup min{; (x), it ()} M

Z=x%y
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Where * stands for any of the four algebraic operations including addition, subtraction, multiplication and

division.

Fuzzification is the process of making a crisp quantity fuzzy (Ross, 2009, p. 93), which is normally the first
step in using fuzzy set theory. The main objective of fuzzification is to define a membership function for
each fuzzy quantity. The most commonly used membership functions for linguistic terms are triangular,
trapezoidal, left shoulder, right shoulder, Gaussian and Sigmoid (Garibaldi & John, 2003). Among the
various shapes of membership functions, the triangular membership function has been frequently used in
many fuzzy set applications (Pedrycz, 1994). Chou and Chang (Pedrycz, 1994) have explained the reason
of the popularity of the triangular membership function: “Undoubtedly, if the semantics of a certain
linguistic term has to be specified, then the simplest form of the membership function one could think of
would be to provide a modal (typical) value of the considered term along with the lower and upper
bounds. The distribution of the grades of membership between these boundaries is then linear — an
acceptance of any other form of relationship to bear some legitimacy may definitely call for some auxiliary
information about the membership values to be furnished at the selected intermediate points distributed
within these bounds.” In this paper, we propose to use the triangular fuzzy membership function mainly
because of the lack of information in early conceptual design stage. As presented previously, experts use
predefined linguistic terms and numerical levels to give their estimation. Therefore, we have two types of
information for defining a fuzzy membership function: (1) the estimation that is given by a group of
experts; (2) the predefined numerical levels, and the distance between the levels. When using the triangular
membership function, we can assign the expert estimation as the mode of the triangular fuzzy number,
and twice the distance between two adjacent levels as the support. To the best of our knowledge, other
types of membership functions all require more information than this. Therefore, we propose to use the
triangular membership function to model experts’ subjective uncertainty in ASIT in early conceptual

design stage.

The basic features of triangular fuzzy numbers can be found in the work of Dubois and Prade (1978), and
the basic operations can be found in the work of Chou and Chang (2008). A triangular fuzzy number can

be denoted as N = (I,m,u), its membership function g, (x): R —[0,1] is represented as (Chang, 1996):

! x— ! , xell,m],
m—I1 m—I
My (x) = ! x— , X€[m,ul, @)
m—u m-—u
0, otherwise.

Where [<m<u, l, m and U are the lower bound of the support, the core, and the upper bound of the

support of N, respectively.

Given two triangular fuzzy numbers A=(a1,a2,a3)and B=(b,,b,.b,), operations of fuzzy numbers are

shown below:
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Addition of two fuzzy numbers @ :
A®B=(a,+b,a,+b,,a,+b,) (3)
Addition of a real number k and a fuzzy number @:
k@® B =(k+b,.k+b,,k+b,) 4
Multiplication of a real number 4 and a fuzzy number & :
k ® B = (kb,, kb, kb,) (5)

Although the multiplication of a real number and a fuzzy triangular number is easy to calculate, the higher
level operation (i.e., multiplication of two or several fuzzy numbers) is cumbersome with insurmountable
computational effort (Triantaphyllou, 2000). Gao et al. (2009) demonstrated that the result from
multiplication of two triangular fuzzy numbers is not a triangular fuzzy number, and the result can be
obtained by using nonlinear programming method, analytical method, computer drawing method and

computer simulation method. Gao et al. (2009) demonstrated that by using analytical method, for two

triangular fuzzy numbers such as A = (4,,a,,a,), B = (b,,b,,b,), the membership function of N = A(x)Bs:

—(ab, +ba, —2a,b,) ++[(ab, —ba,)* +4(a, —a,)(b, —b,)x ab <x<ap,
2a, —a,)(b,— b))

©)

—(a;b, + bya, —2a,b;) — \/(rz3b2 —b,a,)’ +4a, —a,)(b, —b,)x
,a,b, < x<ab,
2(a, —a,)(b, —b,)

0, otherwise

Hy(x)=

One can notice that the multiplication of several fuzzy numbers requires significant computational effort
to obtain precise results. Therefore, in order to facilitate its application in engineering problems, a
simplified formula is usually used (Chiou, Tzeng, & Cheng, 2005; Tzeng & Huang, 2011):

A® B = (ab,,a,b,,ab,) @)

In decision making problems, usually a single scalar is preferred as output of a fuzzy process in order to
facilitate ranking or selection. To transform fuzzy results into a scalar, defuzzification is performed.
Defuzzification is defined as a mapping of fuzzy sets to elements of the universe considered significant
with respect to this fuzzy set (Runkler, 1997). Widely used defuzzification methods are maximum (max)
membership principle, centroid method, weighted average method, mean max membership, center of
sums, and center of largest area(Ross, 2009).Within the context of this study, the triangular fuzzy
membership functions are used, which are peaked output functions with their maximum equal to the
“significant element”. Since in peaked output functions, the max membership principle is commonly used
(Ross, 2009), we propose to use this defuzzification method in the 2-tuple linguistic representations. The

max membership principle is given by the expression (Ross, 2009):
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Ui (z%)2 p;(z), forallze Z 8)
Where z* is the defuzzified value.

In the 2-tuple linguistic representation, the single number obtained from defuzzification is transformed
again to the initial expression domain (i.e., the predefined linguistic terms). The 2-tuple linguistic
representation uses a 2-tuple (s, ) to represent the results, where s refers to the closest linguistic of the
information, « is a numerical value expressing the value of the translation from the original result to the

closest linguistic term (Herrera & Martinez, 2000).

Definition: Let § = {s,..., s, } be a linguistic term set and Be[0,g] a value representing the result of a

symbolic aggregation operation. Then, the 2-tuple that expresses the equivalent information to 4, which

is obtained with the following function (adopted from Herrera & Martinez, 2000):
A:[0, g] = Sx[-0.56i,0.56i) (9)

S;s i = round(f3)

(10)
a=p-i, ae[-0.56i,0.56i)

A(p) = (s;,c),with {
Where round () is the usual round operation, s has the closest term to “f”, and “@” is the value of the

symbolic translation. d7 is the gap between 7and /-7 for i€ {l,2,...g}.

Because of the lack of additional information in early conceptual design stage, the isosceles triangular
membership function issued in this work. We assume that the support of the triangular fuzzy number is
twice the predefined scale, which indicates the assumption that the group of experts are able to choose the
correct linguistic term. In case of greater or smaller subjective uncertainty, the support of the triangular
fuzzy number can also be changed, but the principle and the reasoning of this work remains the same, and

the results obtained in this work will not be greatly influenced.

In the next section, the two fuzzy methods are integrated into ASIT by using a powertrain design case.

4.5 The Power Train Design Case

This powertrain design case is used to show the initial ASIT results, and the integration of subjective

uncertainties by using the two selected fuzzy methods.

A powertrain is a system of mechanical parts in a vehicle that first provides energy, then converts it in
order to propel the vehicle. Due to the increasing demand of lower emissions and higher fuel efficiency,
the OEM plans to design a new powertrain for their motor vehicle to better satisfy market needs.
Although the powertrain is normally an in-house subsystem, with only few modules outsourced (the
battery and the engine for example), we assume in this case study that each module in the powertrain is

planned to be outsourced to one supplier, for the purpose of illustration. The powertrain design case used
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in this work is very similar to the one used in Ye et al. (2014), the data used is the same except the added

uncertainty information shown in Figure 6. See (Ye et al., 2014) for more information about ASIT and the

powertrain design case.

4.5.1 ASIT without Considering Subjective Uncertainty
In phase 1 and 2 in ASIT, the satisfaction of new customer needs by existing products is estimated, the
modules that should be improved are identified, and new modules are found. In phase 3, experts start
providing estimation on satisfaction levels and uncertainties, after the generation of all possible
architectures in which new modules are integrated. Since the subjective uncertainty studied in this work is
caused by expert estimation, we decided to focus on phases 3, 4, and 5 in this case study because of space

limitation. Please see Ye et al. (2014) for further information about the other phases of ASIT.

We assume that modules that can potentially sufficiently satisfy new requirements are found. All possible
architectures with integration of these new modules are generated, as shown in Fig.4-2. The number “1”

represents that the module belongs to the architecture, while the “0” represents the module does not

belong to the architecture.

Possible architecture 2
Possible architecture 3
Possible architecture 4
Possible architecture 5
Possible architecture 7
Possible architecture 9
Possible architecture 11

Engine 1
Engine 2
Engine 3
Engine 4
Battery 1
Battery 2
Battery 3
Transmission 1

Modules

Electric motor 1
Driveshaft 1
Final drive 1

wlelelelololelolo|o | |Possiblearchitecture 1
wlelelelolelolo o |- |o |Possiblearchitecture 6
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Figure 4-2 Generation of all possible architectures

In phase 3, in order to calculate the overall uncertainty and satisfaction level of each architecture,
estimations are provided by experts. Since the structure of the product is complex and the requirements
vary from project to project, it is difficult for experts to estimate how well a product satisfies a
requirement directly. In comparison, it is much easier to estimate how well a module satisfies a function,
as shown in Fig.4-3. The numbers in Fig.4-3 represent satisfaction levels defined in Tab.4-1. For example,
the “engine 17 is a “weak solution” for satisfying the function “respect environment”. Therefore, using
the information in Tab.4-1, the satisfaction level 2 is assigned to this estimation. Since the significant
figures include all the precise digits and the first estimated digit (Serway & Jewett, 2013), we keep two

significant figures for the estimation.
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Figure 4-3 Function satisfaction level by modules

Then, by using the composition of architectures (Fig.4-2), the “satisfaction of functions by modules” is
propagated to the “satisfaction of functions by architectures”. For simplicity, we assume that how an
architecture satisfies a function depends on how the modules in the architecture satisfy the function. The
satisfaction level of a function by an architecture is defined as the average of its modules’ satisfaction

levels of this function.

The “satisfaction of functions by architectures” is then propagated to the “satisfaction of requirements by
architectures” by using the relations between requirements and functions (Fig.4-4). The requirement —
function relations in Fig.4-4 represent the percentage that a function satisfies a requirement. For example,

the requirement “CAFE standard” is satistied 50% by the function “Economize fuel”, 50% by “provide

power”.
Functions
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Figure 4-4 Requirement-function relations

For propagating the satisfaction of functions to the satisfaction of requirements, we have used:

M = Ml XMﬁm—arch (l 1)

req—arch

Assuming equal importance of the requirements (this assumption can be changed if needed), an overall

requirements satisfaction score is obtained for each of the possible architectures by calculating the average
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(Fig.4-5). This score represents how well the architecture satisfies the entire requirements (with a 1-10

scale). We round the final result to two significant figures.

Architecture 1 2| 3| 4 5| 6/ 7] 8 9 19| 11| 12
Satisfaction 4.7| 45| 4.6| 4.5| £3| 61| 6.2| 6.1| 74| 7.2| 7.3| 7.2

Figure 4-5 Requirements satisfaction (without considering expert uncertainty)

The overall uncertainty of an architecture is calculated based on uncertainty of modules (M5 in Fig.4-06),
compatibility between modules (M4), and uncertainty of suppliers’ capabilities (M6). In addition, the
matrix M3 represents the supplier of each module. Since the uncertainties and compatibilities can all be
considered as probabilities, “the overall uncertainty of an architecture” is defined as the product of all its
modules’ uncertainties, its suppliers’ uncertainties, and the compatibilities between its modules (because of
the independence of probabilities). Experts provide their estimations by using the linguistic terms defined

in Tab.4-2. These linguistic terms are then converted to related numerical scales.
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Figure 4-6 Uncertainty information

The overall uncertainties of possible architectures are shown in Fig.4-7, which represents the percentage
that an architecture can be developed without any problem. The confidence that one company has on the

capabilities of a given supplier is also integrated in this overall uncertainty.

Architecture 1 2 3 4 5 6 7 8 gl 19| 11 12
Uncertainty  |0.060 1| 0.16| 0.18(0.020| 6.37| 0.15| 0.15(0.010|0.080|0.040|0.050f

Figure 4-7 Uncertainty (without considering expert uncertainty)
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4.5.2 Taking into Account Subjective Uncertainty in ASIT

4521 Using Type-1 Fuzzy Sets
One approach that has been identified as suitable for representing subjective uncertainty is the Type-1

Fuzzy Sets. Using this method, each expert’s estimation of satisfaction levels (using Tab.4-1) is converted

to a 1-10 fuzzy number scale. The isosceles triangular membership functions are used as shown in Fig,4-8.

These fuzzy numbers are then aggregated by using fuzzy operations defined in section 4.

Hy (%)
N. N N N,

10

1 2 3 4 5 6 7 8 9 10

Satisfaction levels

Figure 4-8 Fuzzy numbers for satisfaction levels

Let us take the satisfaction of requirement “CAFE standard” by architecture 6 as an example to
demonstrate the calculation. In order to calculate how the architecture 6 satisfies the requirement “CAFE
standard”, the functions “Economize fuel” and “Provide power” need to be considered since they each
satisfy 50% of this requirement (Fig.4-4). The possible architecture 6 is composed of modules “engine 27,
“battery 27, “transmission 17, “electric motor 17, “driveshaft 17, and “final drive 1”. In order to calculate
how the architecture satisfies the function “Economize fuel”, we need to calculate the average of how the

engine 2 and the battery 2 satisfy this function. Therefore:

FSL, =(0.5x4)® (0.5®(9,10,11))
=2®(4.5,5,5.5)=(6.5,7,7.5)

Here, the satisfaction level “4” is not converted to fuzzy number, since the engine 2 is an existing module.
Therefore, the information of engine 2 comes from previous projects, instead of expert estimation, so that
the subjective uncertainty is not considered. Using the same principle, satisfaction of function ‘“Provide

power” can be calculated. Then, the satisfaction of requirement “CAFE standard” can be calculated by:

RSL, =(0.5®(6.5,7,7.5) ®(0.5®(5,5.5,6))
=(3.25,3.5,3.75) ®(2.5,2.75,3)
=(5.75,6.25,6.75)

Assuming equal importance of the requirements (which can be changed in necessary), an overall
requirements satisfaction score is obtained by calculating the average for each possible architecture (shown

in Fig.4-9).
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Architecture 1 2 3 4
Satisfaction 47| 45 {4.3,4.6.5.0) {4.2,4.5,4.9)
Architecture 5 5 7 8
Satisfaction {5.7,6.3,6.8} {5.5,6.1,6.6} {5.3,6.2,7.1) {5.2,6.1,7.0}
Architecture 9 10 11 12
Satisfaction (6.9.7.47.9) 16.6,7.2,7.7) {6.4,7.38.2) {6.3,7.2,8.1}

Figure 4-9 Requirements satisfaction by using type-1 fuzzy sets (before values)

The requirements satisfactions obtained in Fig.4-9 can be illustrated using triangular fuzzy numbers as

shown in Fig.4-10, with the threshold set at 6.

Hy(X)

9 10
Satisfaction levels

Figure 4-10 Requirements satisfaction by using type-1 fuzzy sets (membership functions)

In this case, it is obvious that architectures 1, 2, 3, and 4 are below the satisfaction threshold (since the
entire fuzzy number is below the threshold), while architectures 9, 10, 11, and 12 are above the threshold.
The situation for architectures 5, 6, 7, and 8 is more complicated, because they are partly above and partly

below the threshold. We will discuss this kind of situations later in this chapter.

When estimating uncertainty of modules (M5), compatibility between modules (M4), and uncertainty of
suppliers’ capabilities (MO6), probability levels are needed as given in Tab.4-2. In order to integrate
subjective uncertainty, we convert each numerical level in Tab.4-2 into a triangular fuzzy number. The
membership function of the fuzzy number set is shown in Fig.4-11. Since “0” represents “impossible” and
“1” represents “certain”, which both have precise definitions and thus have low fuzziness level, we keep

them as crisp values during fuzzification.

The overall uncertainty of an architecture is defined as the product of all its modules’ uncertainties, its
suppliers’ uncertainties and the compatibilities between the modules. Therefore, the multiplication of
several triangular fuzzy numbers is needed. Simplified ad described in section 4, the result achieved is

shown in Fig.4-12.

01 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1
Probabilities

Figure 4-11 Fuzzy membership function for possibilities
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Architecture 1 2 3 4

Uncertainty 0.060 1 {0.060,0160.39)| {0.069,0.18,0.43}
Architecture 5 6 7 3
Unicertainty {0,0.016,0.054) {0.17,0.37,0.72) {0.035,0.15,0.58) {0.035,0.15,0.58}
Architecture 9 10 1 12

Uncertainty  (0.0035,0.015,0.043}| {0.026,0.082,0.22}| {0.0065,0.043,0.21}| {0.0090,0.054,0.26}

Figure 4-12 Uncertainty using type-1 fuzzy sets (values)
The illustration of the overall uncertainties is shown in Fig.4-13, with the threshold set at 0.1.

TP

0.8 0.9 1
Probabilities

Figure 4-13 Uncertainty using type-1 fuzzy sets (membership functions)

In this case, it is quite obvious that architectures 1, 5, and 9 are below the threshold, while the
architectures 2, 6, 3, 4, and 7 are above threshold. However, it is more difficult to define the situation of

architectures 10, 11, and 12.

Now, we propose to focus on the fuzzy results that are partly above and partly below the threshold for

both satisfaction levels and uncertainties, as shown in Fig.4-14.

8 0 0.1 0.2 0.3
Satisfaction levels Probabilities

Figure 4-14 fuzzy results that are partly above the threshold

The utilization of fuzzy methods is to the purpose of considering fuzziness in human estimation, which is
also represented in the results shown in Fig.4-14. Therefore, when considering whether these results pass
the threshold, the fuzziness should also be considered, which means that the belongingness of these
results to the set that passes the threshold is also fuzzy. Therefore, we think that each of these results
should have a degree of “passing the threshold”, and whether the architecture or supplier belongs to the

identified architecture or supplier depends on decision maker’s tolerance about the result.

There are many ways to represent decision makers’ tolerance level. In this work, as an example, we use the
a-cut to represent the tolerance, and define that the result passes the threshold if the maximum value of
the fuzzy number after the a-cut passes the threshold. With this definition, the decision totally depends on
the value of a— which represents the tolerance level of the decision maker (bigger o is, smaller the

tolerance is).
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For example, if we set « at 0.7 for the overall uncertainty as shown in Fig.4-15, the architectures 10 and 12

will pass the threshold and the architecture 11 does not pass the threshold.

Probabilities
Figure 4-15 Using « -cut to represent tolerance level

However, the purpose of using the a-cut is only to show that these kinds of fuzzy results should be
considered fuzzy regarding their belonging to the identified candidates. They can be boss below or above
the threshold regarding decision makers’ tolerance. Therefore, in architecture and supplier identification

results, we represent this kind of candidates as “possible candidates depend on tolerance level”.

4522 Using 2-Tuple Fuzzy Linguistic Representation
The 2-tuple fuzzy linguistic representation is exactly the same as the type-1 fuzzy sets from fuzzification
until obtaining fuzzy results (shown in Fig.4-9 and Fig.4-12). After obtaining fuzzy results, the 2-tuple
fuzzy linguistic representation defuzzifies the results, and converts the defuzzification result back to the

closest initial linguistic terms, and the distance between the original results to the closest linguistic term.

According to the reasoning in section 4, the max membership principle is used for defuzzification, and the

results are shown in Fig.4-16 and Fig.4-17.

Architecture 1 2| 3| 4 5 6 7 8 9 10f 11] 12
Satisfaction 4.7| 4.5| 4.6/ 45| 6.3| 6.1| 6.2] 6.1| 7.4] 7.2 7.3] 7.2

Figure 4-16 Requirements satisfaction after defuzzification

Architecture 1 2 3 4 5 6 7 8 9] 10| 11| 12
Uncertainty 0.060 1| 0.16] 0.18(0.020( 0.37| 0.15| 0.15]0.010|0.080(0.040{0.050]

Figure 4-17 Uncertainty after defuzzification

When using the 2-tuple fuzzy linguistic representation, a 2-tuple is (s,a) used, where s represents the

closest linguistic term, and a represents the distance. For example, the overall requirements satisfaction
level of architecture 1 is equal to 4.7 (see Fig.4-16), its closest linguistic terms is represented by the level 5,
which is “a satisfactory solution”. The distance between 4.7 and 5 is equal to -0.3. That is why in 2-tuple
fuzzy linguistic representation, the overall requirements satisfaction level of architecture 1 is (N5, -0.3).
The results of requirement satisfaction and uncertainty by using the 2-tuple fuzzy linguistic representation

are shown in Fig.4-18 and Fig.4-19, respectively.
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Architecture 1 2 3 4 5 6
Satisfaction |(N5,-0.3)| (N5,-0.5)| (N5,-0.4)| (N5,-0.5)| (N6,0.3)| (N6,0.1)
Architecture 7 8 9 10 11 12
Satisfaction | (N6,0.2)| (N6,0.1)| (N7,0.4)| (N7,0.2)|] (N7,0.3)| (N7,0.2)

Figure 4-18 Requirements satisfaction using 2-tuple linguistic representation

Architecture 1 2 3 4 5 6
Uncertainty |(Pg.1, -0.040) (1,0)| (Pp.2,-0.04)| (Pg2,-0.02) (0,0.016)| (Pp.4,-0.03)
Architecture 7 8 9 10 19 12
Uncertainty | (Po3-0.05)[ (Pp3-0.05)| (0,0.015)|(Po.1,-0.018)|  (0,0.043)|(Pg.1,-0.046)

Figure 4-19 Uncertainty using 2-tuple fuzzy linguistic representation

4.6 Comparison of Results and Discussion

In section 5, we obtained the requirements satisfaction levels and uncertainties for each of the
architectures. The threshold is set at 6 or N6 for satisfaction levels and 0.1 or P0.1 for uncertainty to filter
the generated architectures. The potential supplier identification results obtained without considering
subjective uncertainty, considering subjective uncertainty by using type-1 fuzzy sets and 2-tuple linguistic

representation are compared in Fig.4-20.

Without Integrating Expert Uncertainty
(Clustering: satisfaction26, uncertainty=0.1)

Architecture Satisfaction Uncertainty Supplier

6 6.1 0.37 1,4,6,7,8,9
7 6.2 0.15 2,4,6,7,8,9
8 6.1 0.15 3,4,6,7,8,9

Integrating Expert Uncertainty
with type-1 fuzzy sets
(Clustering: satisfaction=6, uncertainty=0.1)

Architecture Satisfaction Uncertainty Supplier
6 (5.56.1,6.6) (0.17,0.37,0.72)  1,4,6,7,89
7 (5.36.2,8.1) (0.0350.150.58) 2,4,67,89
8 (526.1,7.0) _(0.0350.15058) _ 346789 _
110 (6.6,7.2,7.7) (0.026,0.082,022) 156,789 |
11 (6.4,7.3,8.2) (0.0069,0.043,021) 2,56,7,89 |
12 (6.3,7.2,8.1)  (0.0090,0.054,0.26) 3,5,6,7,89 |

Integrating Expert Uncertainty
with 2-tuple fuzzy linguistic representation
(Clustering: satisfaction=Ng, uncertainty=P, ;)

Architecture Satisfaction Uncertainty Supplier

6 (Ng,0.1) (Pg.4,-0.03) 1,4,6,7,8,9
7 (Ng,0.2) (Pg.2,-0.05) 2,4,6,7,8,9
8 (Ng,0.1) (Pg.2,-0.05) 3,4,6,7,8,9
10 (N5,0.2) (Pg.1,-0.018) 1,5,6,7,8,9
12 (N7,0.2) (Po.1,-0.046) 3,5,6,7,8,9

Figure 4-20 Comparison of supplier identification results

60



Upon comparison of the results, we can see that without considering subjective uncertainty, ASIT
identifies three architectures (architectures 6, 7 and 8), which are also identified with consideration of

subjective uncertainty using the two fuzzy methods.

When using type-1 fuzzy sets, three “possible architectures depend on tolerance level” are also identified
(number 10, 11 and 12). Whether these three architectures belong to the identified architectures depends

on the decision makers’ tolerance level.

When using the 2-tuple fuzzy linguistic representation, aside from architectures 6, 7 and 8, two additional
architectures (10, 12) are identified. This expansion of the result scope is because that the 2-tuple fuzzy
linguistic representation converts the defuzzification result to the initial linguistic terms, which rounds up

the results, thus increases the tolerance level.

From the comparison one can observe that (1) the architectures and suppliers identified without
considering subjective uncertainty are also identified with consideration of subjective uncertainty by using
the two fuzzy methods; (2) considering subjective uncertainty enlarges the result scope mainly because the
consideration of subjective uncertainty increases the level of tolerance (i.e. more tolerant) when filtering

candidates.

However, the tolerance level can also be changed without considering subjective uncertainty, and by
simply changing the thresholds. As shown in Fig.4-21, by changing the uncertainty threshold to 0.05, the
same result scope can be obtained as integrating subjective uncertainty using 2-tuple linguistic
representation. By changing the uncertainty threshold to 0.04, same results can be obtained as using type-1

fuzzy sets to model subjective uncertainty.

Without Integrating Expert Uncertainty

Satisfaction Uncertainty Identified Identified
threshold threshold architecture supplier
6 1,4,6,7,8,9

6 01 7 2,4,6,7,8,9

8 3,4,6,7,8,9

6 1,4,6,7,8,9

7 2,4,6,7,8,9

6 0.05 8 3,4,6,7,8,9

10 1,5,6,7,8,9

12 3,5,6,7,8,9

6 1,4,6,7,8,9

7 2,4,6,7,8,9

& 6103 8 3,4,6,7,8,9

10 1,5,6,7,8,9

11 2,5,6,7,8,9

12 3,5,6,7,8,9

Figure 4-21 Changing thresholds without considering subjective uncertainty

According to the analysis above, we found that (1) the result of ASIT without considering subjective

uncertainty is reliable because the identified architectures are also within the result scope with
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consideration of subjective uncertainty; (2) same results as considering subjective uncertainty can be
obtained without considering subjective uncertainty by simply changing the value of thresholds. Therefore,
we conclude that the consideration of subjective uncertainty does not considerably influence ASIT results,

so that it is not necessary to consider the subjective uncertainty in ASIT in early conceptual design stage.

However, it is very important to note that this conclusion is obtained under the situation of using
triangular membership functions and which is due to the lack of information in early conceptual design
stage. In other design stages, this conclusion may not valid since when more information is available,
other types of fuzzy membership functions can be used, which may lead to different results. This result
also points out that under certain situation, it is not useful to consider expert estimation uncertainty.

Considering expert estimation uncertainty without analyzing the situation may result in waste of effort.

There are still several limitations in this work. Firstly, although the max membership principle is
demonstrated as a proper choice for defuzzification, it is still interesting to test other defuzzification
methods, which may lead to different outcomes. Secondly, we assumed that using a group of experts is
able to correct the cognitive bias of each expert. However, the cognitive bias is still an interesting issue
that is worth investigating further under the topic of expert uncertainty. In addition, this work is carried

out specifically in the context of ASIT. It may benefit from a generalization to a broader context.

4.7 Conclusions

Due to innovation integration in early design phases, aside from previous project data, expert estimations
are often used. In this work, we investigated how subjective uncertainty resulting from expert estimations
influences the result of ASIT, which is an early design support tool proposed in our previous work. It is
important to understand to what extent this approach can be used, and can yield robust results in

industrial context, and whether it is necessary to consider subjective uncertainty in ASIT.

After analysing different uncertainty representation methods for subjective uncertainty, both Type-1 and
2-tuples fuzzy sets have been found suitable for representing this type of uncertainty in ASIT. A
powertrain design case has been used to compare the results of the original ASIT and the results with
integration of subjective uncertainties. The comparison shows that considering subjective uncertainty
enlarges the result set (more architectures and suppliers are identified) because the consideration of
subjective uncertainty increases the level of tolerance (i.e. more tolerant) when filtering candidates.
However, the initial set without considering subjective uncertainty is found in this larger set, and same
results as considering subjective uncertainty can be obtained without considering subjective uncertainty by
simply changing the value of thresholds. Therefore, considering subjective uncertainty in ASIT will not
have a considerable impact on the overall ASIT results, so that it is unnecessary to consider subjective

uncertainty in ASIT in early conceptual design stage.

The result of this work is only valid in the context of early conceptual design, where information is

extremely lacking, so that only triangular membership function can be used. The result also pointed out
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that it is not always necessary to consider expert estimation uncertainty. Before considering this type of

uncertainty, the context should be analysed to prevent the waste of effort.
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Abstract. With the emergence of environmental legislations in many countries, the importance
placed upon environmental protection has been raised to a new level, especially for industrial
activities. Considering environmental issues as early as possible, starting with the design stage, is
expected in order to better manage and diminish environmental impact. Commensurate progress
has been made in method/tool development for use in environmental impact estimation; however,
very few of these methods allow integrating this estimation early in the design process — a critical
point of deciding for potential product concepts and suppliers. In this paper, we propose a tool
that integrates environmental impact estimation into architecture and supplier identification, in
order to conjointly consider requirements satisfaction as well as uncertainty due to new module
and new supplier integration. This tool is developed to support OEM (Original Equipment
Manufacturer) decision-making in the context of an extended enterprise. A case study is presented
to illustrate a plausible implementation.

Keywords. environmental impact estimation, architecture generation, supplier identification, early
design stages
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5.1 Introduction

Industrial activity has long been blamed for many of the environmental problems (Humphreys, Wong, &
Chan, 2003). The current understanding is that becoming environment-friendly not only enables
companies to create new business but also lower costs (Nidumolu, Prahalad, & Rangaswami, 2009).
Attesting to this, Drumwright's data (1994) shows that in the U.S., 75% of consumers say that their
purchasing decisions are affected by a company’s environmental reputation, and 80% say that they would
pay more for environment-friendlier goods. At the same time, because of the emergence of environmental
legislations (e.g., The Waste Electrical & Electronic Equipment Directive (WEEE) of European Union),
some non-environment-friendly products may now cost companies a lot to dispose (e.g., lithium batteries
for pay phones, bought by British Telecom) (Lamming & Hampson, 1996). Being “green and competitive”
is increasingly adopted as the win-win position (Porter & Linde, 1995); companies around the world have
changed their way of purchasing, developing products, and marketing as they adopt this position as their

corporate strategy (Sharma, 2000; Pujari, Wright, & Peattie, 2003; Drumwright, 1994).

In otrder to control the overall environmental impact of a product/system, it is widely recognized that
OEMs (Original Equipment Manufacturers) should take the environmental issues into account eatly
during the design of the product/system (Bhamra et al., 1999). However, current environmental impact
estimation methods lack capabilities for considering new customer requirements, new modules, and new

suppliers simultaneously.

In our previous works, we proposed an Architecture & Supplier Identification Tool (ASIT) for early
design, which aims at controlling overall uncertainty and product requirements satisfaction, with
simultaneous consideration of new requirements, modules, and suppliers. In this paper, we further
enhance ASIT by adding an environmental impact estimation capability, in order to respond to the
growing need of environmental protection. As shown in Fig.5-1, the Architecture & Supplier
Identification Tool with Environmental impact estimation (ASIT-E) proposed in this paper takes three
main inputs (i.e., new requirements, new modules, and new suppliers) to generate all possible architectures
and to identify best suppliers. Input used is partly from data on previous projects, and partly from expert
estimation and suppliers. Three thresholds (i.e., environmental impact, requirements satisfaction, and
project uncertainty) are used to filter architectures and suppliers in order to provide a list of qualified

candidates for further negotiation and selection.
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Inputs:

* Newrequirements
* New modules
* New suppliers

i
Thresholds:

* Requirementssatisfaction —— AS‘T-E
* Project uncertainty
* Environmentalimpact

Outputs:

A list of potential
architectures & suppliers

Figure 5-1 Overview of ASIT-E

In this paper, we first introduce the relevant background in section 5.2, including summaries on pertinent
works, environmental directives and indicators along with a delineation of research focus. In section 5.3,
an overview of ASIT-E is provided before a powertrain design case is used to demonstrate the proposed
tool in section 5.4. In section 5.5, ASIT-E is compared to ASIT to show the influence on architecture and
supplier identification results when environmental issues are considered. In section 5.6, the results are

discussed before conclusions are provided in sections 5.7.

5.2 Background

Grisel & Duranthon (2001), in their book, suggested that in order to tackle environmental issues globally,
a combination of a lifecycle method and a multi-criteria method should be used. Considering entire
product lifecycle avoids shifting environmental impact downstream (i.e., lowering of environmental
impact in one step may exacerbate the problem in another step), while using multi-criteria methods helps
to consider impacts from all sources. The ASIT-E considers the entire lifecycle of a product and uses
carefully identified environmental indicators to reflect possible environmental problems in each lifecycle

phase.

5.2.1 Consideration of environmental issues in architecture and supplier
identification

In recent years, the consideration of environmental issues in supplier selection has attracted a lot of
attention, as predicted by Lloyd (1994):“In the future, environmental pressures will increase. Social,
economic, business, financial and legal measures are going to force companies to set up environmental
management systems. They will have to include as a key sub-system the appraisal and monitoring of
suppliers.” Given this attention, several methods and tools have been proposed. For example, Humphreys
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et al. (2003) identified quantitative and qualitative environmental criteria that fall into 7 environmental
categories, using which suppliers are selected. Handfield, Walton, Sroufe & Melnyk (2002) identified the
top 10 criteria for supplier environmental performance, and the top 10 most easily assessed criteria based
on interviews with companies. They propose to use Analytical Hierarchy Process (AHP) multi-criteria
decision method to assess suppliers along environmental dimensions. Bai & Sarkis (2010) used other
methods to make decisions under uncertainty for the supplier selection problem, namely grey system and
rough set methodologies. In their methods, the “triple-bottom-line” selection factors (i.e., economic,
environmental as well as social factors) are integrated. These authors mainly focus on identifying

appropriate environmental factors and proposing/selecting multi-criteria decision making methods.

Based on our review of the literature, we assert that very few methods and tools consider product
architecture possibilities as well as suppliers when dealing with environmental issues. We found only three
research works that are closely related. Two of these, the works of Krikke, Bloemhof-Ruwaard & Van
Wassenhove (2003) and Chung, Kremer & Wysk (2014) focus on selecting modular structures of products
to optimize product lifecycle performances in a closed-loop supply chain environment. In these two
studies, product components are fixed, and authors seek to group these components in different ways to
form modules in order to optimize environmental as well as other performance measures. The third study,
carried out by Taghaboni-Dutta, Trappey & Trappey (2010), proposed a platform where suppliers can
upload their green parts, and OEMs can find environmental friendly alternatives for their products more

easily.

Previously discussed literature underlines that when evaluating environmental impacts during design,
existing methods mostly consider only existing technologies and components. However, early design
phases are characterized by uncertainties and consideration of new possibilities, involving new
technologies, new modules, and new suppliers. The necessity to innovate requires the consideration of
new technologies and suppliers; thus, there is a need to allow evaluation (even if roughly) of new modules

or suppliers.

5.2.2 Research focus: Product lifecycle phases
The European Union’s Waste Framework Directive (European Commission, 2008) requires that the EU
member states apply the following waste! management activities in a priority order: 1) prevention?, 2)

preparing for re-use?, 3) recycling?, 4) other recovery, and 5) disposalC.

1 Waste: Any substance or object which the holder discards or intends or is required to discard (European

Commission, 2008).

2 Prevention: Measures taken before a substance, material or product has become waste, that reduce the
quantity of waste, the adverse impacts of the generated waste on the environment and human health, or

the content of harmful substances in materials and products (European Commission, 2008).
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With increasing demand of waste management expressed by the above and other legislations as well as
customers, the closed-loop production and supply chain have been attracting attention both in academia
and industry. The closed-loop production is the kind of production process where EOL (end-of-life)
products are re-used (at the level of parts, or entire product) or recycled (at the level of material), to
produce new identical products. The closed-loop supply chain is the form of supply chain often used
along with closed-loop production, where collection points and reverse-feed centres are built to collect

and process EOL products (Georgiadis & Besiou, 2010).

As part of the environmental impact estimation tool proposed in this paper, we adopt the context of a
closed-loop production and supply chain, as shown in Fig. 5-2. The lifecycle phases considered in ASIT-E
are presented in the outside layer of frames. The ASIT-E supports customization through lifecycle phases;
OEMs can choose to use a subset of the lifecycle phases proposed in Fig. 5-2, or adding other phases

according to their domain of activity.

pr’\:gjcutliin ]—[Transportation]—{ Assembly ]—[Transportation]—[ Storage ]—-[ Utilization }

Suppliers OEM oI55 Customers
e |__centers |

ol

Reverse Collection
1 .
centers points

Re-use p 1
! I (Module) l7 Inspection & )
) classification Collection
Recycle \
(Material) l l
[ Other ] [ Disposal ]
recovery

Figure 5-2 Product lifecycle phases considered in ASIT-E (Ozkir & Bagligil, 2012)

3 Re-use: Any operation by which products or components that are not waste are used again for the same

purpose for which they were conceived (European Commission, 2008).

4 Recycling: Any recovery operation by which waste materials are reprocessed into products, materials or

substances whether for the original or other purposes (European Commission, 2008).

> Recovery: Any operation the principal result of which is waste serving a useful purpose by replacing
other materials which would otherwise have been used to fulfill a particular function, or waste being

prepared to fulfill that function, in the plant or in the wider economy (European Commission, 2008).

6 Disposal: Any operation which is not recovery even where the operation has as a secondary consequence
y y

of reclamation of substances or energy (European Commission, 2008).
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Ideally modules are produced by suppliers using recycled materials, to be transported to the OEM.
Assembly is carried out in OEM facilities, and transported to the distribution centre, and then to
customers. The EOL products are collected at collection points and sent to reverse-feed centres, where
reusable high quality modules are separated for minor repair, and then reuse in new products. Non-

reusable parts are either recycled as material, sent for other recovery, or disposed.

5.2.3 Environmental directives & indicators
This section presents the environmental indicators used in ASIT-E, whose selection is informed by prior
works. The selection of environmental indicators depends greatly on OEM’s particular needs, including
but not restricted to product category, local legislations, strategy, etc. Therefore, we aim at providing an
idea of choosing suitable indicators, and demonstrate their utilization within ASIT-E; during their
implementation, OEMs can freely choose other indicators since the structure of ASIT-E supports this

flexibility.

In order to consider potential environmental impact sources comprehensively, both product architecture
and supplier related environmental indicators should be considered. The supplier related indicators allow
revealing environmental impact generated in the phases of manufacturing and supplier-OEM
transportation, while the architecture related indicators consider the characteristic of a particular product
concept (e.g., toxic material used), and its potential performance during utilization (e.g., consumption of

electricity).

Regarding supplier related environmental indicators, we adopt indicators from the work of Handfield et al.
(2002), where the top 10 criteria for supplier environmental performance have been identified based on
interview sat companies. Normally, environmental performance of suppliers is evaluated by the
procurement department, using a long list of criteria. This evaluation is usually carried out when the
product concept is decided. However, in ASIT-E, the purpose is to weed out unqualified suppliers at the
very early stages of product development, in parallel with concept definition. Therefore, we seek to

identify the most important and easily accessible environmental indicators.

In the work of Handfield et al. (2002), six indicators are considered both important and easily accessible:
(1) ISO 14001 certified, (2) use of ozone depleting substances, (3) use of EPA 17 hazardous materials, (4)
environmental friendly packaging, (5) use of recycled material, and (6) public disclosure of environmental
record. We regroup “use of ozone depleting substances” and “use of EPA 17 hazardous materials” into
module related indicators since they ate design/product specific. We consider the following four

indicators in ASIT-E as supplier related indicators.

1) ISO 14001 certified
2) Environmental friendly packaging
3) Use of recycled material

4) Public disclosure of environmental record
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In order to avoid environmental legislation violations by the eventual product, we abstracted indicators
from legislations that the product must conform to. Although many governments have introduced
environmental regulations and directives, we mainly focus on the European Union, and three specific

directives that are most related to complex system development:

1) Waste Electrical & Electronic Equipment Directive (WEEE);
2) Restriction of Hazardous Substances Directive (RoHS);

3) European Eco-design Directive (Erp).

The WEEE (European Commission, 2014c) is the European Community directive on Waste Electrical
and Electronic Equipment, which sets collection, recycling and recovery target for all types of electrical
goods. This directive requires that, starting from 2016, the minimum collection rate shall be 45% of the
total weight of WEEE collected in a given year. The percentage is calculated based on the average weight
of EEE placed on the market in the three preceding years. The recovery rate and the recycle rate are also
defined for each category of EEE for different periods. For example, for category 1 or 10, for the period
between August 13, 2012 and August 14, 2015, the minimum recovery and recycling rate should be: 80%

and 75%, respectively.

The RoHS (Restriction of Hazardous Substances Directive (European Commission, 2014b), newest
version: 2011/65/EU) restricts the use of six hazardous materials in the manufacture of all types of
electrical and electronic equipment. This directive restricts the use of the six substances with maximum

concentration values tolerated by weight in homogeneous materials (see Fig. 5-3).

Material Maximum concentration rate
(by weight)
1 |Lead (Pb) 0.10%
2 |Mercury (Hg) 0.10%
3 |Cadmium (Cd) 0.01%
4 |Hexavalent chromium (Cr6+) 0.10%
5 |Polybrominated biphenyls (PBB) 0.10%
6 |Polybrominated diphenyl ether (PBDE) 0.10%

Figure 5-3 Restricted Materials by RoHS

The European Eco-design Directive (Directive 2009/125/EC (European Commission, 2014a)) aims at
establishing a framework for setting eco-design requirements for “energy-related products”. The ultimate
aim of this directive is to urge manufacturers of energy-using products to reduce the energy consumption
and other negative environmental impacts of their products at the design stage. While the directive’s
primary aim is to reduce energy use, it also aims at enforcing other environmental considerations,

including: materials use, polluting emissions, waste issues, and recyclability.

Using the literature on these three directives, we identified the most important indicators (shown in Fig. 5-
4). For example, we choose to focus on electricity consumption for energy consumption, and consider

2

CO2 emission for polluting emissions. The definition of “scarce material” is adopted from the list of
“critical raw materials” defined by European commission (The ad-hoc Working Group, 2010). The final

waste is not considered in ASIT-E, mainly because it can be covered by material recoverability and the use
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of hazardous materials; the recoverability is inversely proportional to the final waste, and if no hazardous
material is used, the final waste is not going to be hazardous either. The indicators used in ASIT-E are

customizable.

Directives Indicators Indicators considered
abstracted from the for early complex
directives system design

Theoretical
recyclability

| Theoretical

recyclability

Hazardous Hazardous
material use material use

WEEE
. Scarce material
Material use -
ROHS J Energy Electricity
consumption consumption
Water Water
consumption consumption
Erp

|
Polluting emission—{ﬂ/

Final waste issues

Figure 5-4 Indicator identification from directives

We regroup the indicators related to architectures and suppliers into three categories (shown in Fig. 5-5) in
order to use them in different steps within ASIT-E. The first group of indicators relates to modules, while
the second group relates to environmental capability of suppliers. The third group of indicators relates to
both architectures and suppliers and the entire lifecycle of the product. For example, the electricity
consumption can occur during production, transportation, product use, and disposal. In ASIT-E, we use
the first and second group of indicators to filter out modules and suppliers, in order to avoid unqualified
candidates; then, use the remaining modules to generate architectures. Finally, indicators from the third

group are estimated for the entire lifecycle for each product architecture.

Module related Supplier related Architecturerelated
Theoret!ga] 1SO 14001 Electr|C|t'y
recyclability consumption

Hazardous Environmental Water
material use friendly packaging consumption
Scarce material Use of recycled CO2 emission
use material
Public disclosure of
environmental
record

Figure 5-5 Environmental indicators used in ASIT-E
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5.3 Environmental impact estimation in system architecture and
supplier identification: proposition of ASIT-E

The work of Hallstedt, Ny, Robért, & Broman (2010) indicates that suitable decision support tools are
needed for companies to successfully integrate environmental benefits into their business goals and plans.
Lamming & Hampson (1996) also affirm that there is a need to develop practical solutions to meet
environmental challenges. In this section, we propose such a decision support tool for OEMs to assist

their environmental impact estimation during architecture and supplier identification.

The ASIT-E is an enhanced version of ASIT (Architecture & Supplier Identification Tool) proposed by
Ye, Jankovic, Kremer, & Bocquet (2014). ASIT-E adds consideration of environmental issues to better
satisfy the needs of OEMs. As shown in Fig. 5-6, ASIT-E starts from estimation of new requirements
satisfaction by existing products; identifies requirements that are not satisfied; and finds new modules
(possibly from new suppliers) that can potentially better satisfy the requirements. The potential modules
set is filtered by the module and supplier related environmental indicators in order to weed out the
inadequate modules and suppliers. All possible architectures are then regenerated using qualified modules.
Then, the requirements satisfaction and uncertainty of architectures are estimated; architectures are
filtered by requirements satisfaction and uncertainty thresholds. Finally, the environmental impact of the
remaining architectures is estimated; and the environmental impact threshold is used to filter the
architectures once again. A list of qualified architectures and suppliers is generated as candidates for
further negotiation. The ASIT-E steps (listed on the left side of Fig. 5-6) are automated by a Matlab
program. The steps highlighted with a dark background are specific to ASIT-E (not included in ASIT).
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Figure 5-6 Overview of ASIT-E

ASIT-E uses a matrix system (shown in Fig. 5-7) as database. Due to uncertainty management, complex
systems are rarely designed from scratch. Project documents regarding requirements, functions, and
modules usually exist. Normally, this information is captured and reused using software such as DOORS.
However, different types of data are rarely stored in one place. The idea behind ASIT and ASIT-E
databases is to store critical, high-level data from previous projects within one matrix system, to facilitate

information organization, acquisition, and utilization.

ASIT has seven matrices in its matrix system: matrices 1, 2, and 3, represent requirements, function,
module relations; matrices 4, 5 and 6 represent uncertainty information: the compatibility between
modules (4), uncertainty of modules (5), and uncertainty of suppliers’ capabilities (7). Matrix 7 represents
composition of existing products. In addition to these seven matrices, ASIT-E has five more matrices (8-
12). Matrices 8 and 9 represent module related and supplier related environmental indicators, respectively;
while matrices 10, 11, and 12 represent architectures’ performance in lifecycle related environmental

indicators (i.e., electricity consumption, water consumption, and CO2 emission).
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Figure 5-7 Matrix system used in ASIT-E

When starting a new project, usually the project manager organizes a 1-3 day workshop to discuss
innovation integration, different system architectures, as well as other constrains. These workshops are
attended by experts of different domains in order to cover overall system knowledge. The ASIT-E is
conceived for use during this kind of a workshop, and the matrix system can be filled in part by the group
of experts attending the workshop, and by data from existing products as well as information provided by
suppliers. When filling the matrix system, experts use predefined linguistic terms of satisfaction levels and
probabilities as shown in Fig.5-8 and Fig. 5-9. When estimating satisfaction levels, “0” is used to represent

that “the module does not provide the function”.

Linguistic terms Satisfaction level

Very inadequate solution 1
Weak solution

Tolerable solution

Adequate solution

Satisfactory solution

Good solution with few drawbacks
Good solution

Very good solution

LT= R - HE = T ¥ — R VE R N

Solution better than requirements

Ideal solution

=
o

Figure 5-8 Satisfaction levels (Fiod-Neto& Back, 1994)
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Linguistic terms Probability

Impossible 0

Nearly impossible 0.1
Very unlikely 0.2
Quite unlikely 0.3
Possible 0.4
Even chance 0.5
Better than even chance 0.6
Quite likely 0.7
Very likely 0.8
Nearly certain 0.9
Certain 1

Figure 5-9 Probabilities

In the next section, a powertrain design case is used to illustrate the utilization of ASIT-E.

5.4 The Powertrain Design Case

5.4.1 Case description
We use the design of a plug-in hybrid electric powertrain to show utilization of ASIT-E. A powertrain is a
system of mechanical parts in a vehicle that first provides energy, and then converts it in order to propel
the vehicle. The main objective in designing a powertrain is to provide adequate propulsion with minimal

use of fuel while emitting minimal hazardous by-products or pollutants.

This case study involves three types of powertrains: the traditional gas powertrain, the hybrid electric
powertrain, and the plug-in electric powertrain. In a traditional gas powertrain, the engine provides power
converting from other sources of energy (e.g., gasoline). The transmission then takes the power, or output,
of the engine and, through specific gear ratios, slows it and transmits it as torque. Through the driveshaft,
the engine’s torque is transmitted to the final drive (wheels, continuous track, etc.) of the car. A
conventional hybrid electric powertrain utilizes both a combustion engine and an electric motor to
provide power. The batteries are used to store electrical energy. The plug-in hybrid electric powertrain is
the powertrain that utilizes rechargeable batteries that can be restored to full-charge by connecting to an
external electric power source (such as a normal electric wall socket). The plug-in hybrid electric
powertrain has great potential to reduce greenhouse gas emissions, since it uses no fuel during its all-
electric range; normally, the combustion engine works only when the batteries are depleted. An example

of the plug-in hybrid electric powertrain is shown in Fig.5-10.
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Figure 5-10 Toyota Prius Plug-in Hybrid Electric Powertrain (Beissmann, 2011)

Due to the increasing demand of higher fuel efficiency and lower CO2 emission, the OEM plans to design
a new plug-in hybrid electric powertrain for their motor vehicle to better satisfy market needs. The new
powertrain needs to satisfy mainly six requirements (requirements 1-4 are adapted from Michelen &
Papalambros, (1995)): (1) Corporate Average Fuel Economy (CAFE) standard: Europe currently requires
54 miles per UK gallon, violation of this standard results in proportional fines, (2) Acceleration time: This
directly relates to customer perceived performance, (3) Cruising velocity at gradient: Relates to the speed
at which vehicle can climb a 6% gradient in forth gear, (4) Greenhouse gas emissions: This measure shows
a vehicle's impact on climate change in terms of the amount of greenhouse gases (e.g., CO2) it emits. (5)
Rechargeable by external electric power, and (6) Long All-Electric Range (AER): This indicates the driving

range of the vehicle using only power from its electric battery pack, in charge-depleting mode.

The powertrain design case used in this paper is similar to the one used in our previous work (Ye et al,,

2014). Here, the case study focuses specifically on the environmental impact estimation.

5.4.2 Phase I- Requirements satisfaction by existing products
Complex systems are rarely designed from scratch. OEMs usually try to improve their existing products to
satisfy new requirements. However, it is usually not clear which module should be improved and for
which function of the module. In ASIT, we proposed to first estimate how well OEM’s existing products
satisfy the new requirements. By using matrix mapping, the unsatisfied requirements can be traced to
unsatisfied functions, and finally to responsible modules. Thereby, OEMs know exactly which modules

and functions to improve.

With support of the matrix system, experts can choose adequate existing requirements from the list; and if
necessary, add new requirements to it. Based on the requirement-function relations stored in matrix M1,
the existing functions related to defined requirements can be found. The requirements — function relations
for new requirements are provided by experts using percentages (representing the contribution of a
function to a requirement), as shown in Fig.5-11. Experts only need to fill out the white area of the matrix,

because the other information is filled automatically using information from existing products.
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M1: Requirement - function relations

Please fill out the white area of the matrix with
adequate value*:

Functions
[
gl
El=
o|®
| c 3
sl
P
M]_ g = 2 8|3 E S
2le|g|z|2|0| ¥
2l2|9|5|E|x|8
<|B[8[E[£[3(8|8
2lo(8[L|EIE|8|5
AHHEEEHE
Jlala|s=|El&|<
CAFE standard 110 |0 |0 [0 [0 |0 |0
)
EAcceIerationtime 0 |0 |0.3(0.3]0.2|0.2|0 [0
5Cruisingvelocitvatgradient 0 |0 |0.3[0.5[0 |0.2|0 [0
‘5 |Low greenhouse gas emission 0 |0 |0 [0 [0 |0 |1 [0
§Rechargeablebyexternalelectricpowero 0 [0 |0 [0 [0 |0 |1
Long all-electric range 0 |1 |0 [0 [0 |0 |0 [0

*Use percentages O - 1 for estimation

Figure 5-11 Requirement — function relations

Experts also discuss module types that are needed based on functions, and relations between new
functions and module types. How well each module satisfies the new functions is also provided by experts,

using satisfaction levels, as shown in Fig.5-12.

M2: Function satisfaction by modules

Please fill out the white area of the matrix with
adequate value*:
Modules
| 2

Gl

Mz -~ 8| E ':'r; qé

v ofZ|E|lL[(ES]|T

£ cls|lelE(8|5

@ @ E 5§22

w w(o|-|lw|T|uw

Save fuel 3] 2/ O] Of O] O] O

Store electricenergy 0l 0] 8 0O O] O O

o Provide power 8 5 0] 0] 7/ O O

'19;; Transform energy to torque 0l 0 0 7] 0 O O

S [Transmit torque to final drive| 0| O] O] O] O 8 O

“ [Interact with surface 0] of of o of of 8
Reduce CO2 emission 5| 5/ 0l of of of O
Accept recharge 0l 0] 1] 0] O] O] O
*Use satisfaction levels 1- 10 for estimation, put 0 if the module

does not provide the function

Figure 5-12 Function satisfaction level by modules

The OEM has successfully developed two types of powertrains in the past (e, a traditional gas
powertrain, and a hybrid electric powertrain), which are used as foundations for the new powertrain
development. M7 (Fig.5-13) shows the composition of the two powertrains. We assume that this

information is already stored in the database, as it is updated after each project.
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Transmission 1
Electric motor 1
Driveshaft 1
Final drive 1

Modules

£

|8

M, g8
gl=

wnl|LQ

© >
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Engine 1 11 0
Engine 2 0 1
Battery 1 0] 1
1 1

of 1

1] 1

1 1

Figure 5-13 Composition of existing powertrains

By using M1, M2, and M7, ASIT-E can calculate how well the existing products satisfy the requirements.
ASIT-E converts “how module satisfies functions (in M2)” to “how an existing product satisfies functions”
using product composition in M7. The satisfaction of a function by a product is defined as the average of
satisfaction levels of the modules in the product that are designed to fulfil the function. For example, the
hybrid powertrain has two modules (engine 2 and electric motor 1) fulfilling the function “provide power”.
Therefore, if the “engine 17 satisfies the “provide power” function at level 5 and “electric motor 17

satisfies the function at level 7, then the gas powertrain satisfies this function at level 6 (average of 5 and

7), as shown in matrix Mfun-arch in Fig.5-14.

£
cl 8
sl5
3
M, 218
glz
wl|o
@ | >
[C1E3
Engine 1 1| 0O
Engine 2 o 1
& |Battery 1 0 1
'§ Transmission 1 i 1
= |Electric motor 1 o 1 =
Driveshaft 1 1| 1 -l
Final drive 1 1 1 e 5
o t|3
M B8
- fun-arch E e
] o|o
c|5 als
2|glala w| S
M, - |2 2[ElS)|2 S|z
o of2|E Rllee -
S §ls Save fuel 3 ]2
& E|5|E|2|5|E :
Store electric energy 0 |8
Save fuel 3] 2| of of o 0] 0 d s |6
Store electric energy ol of 8 o of of o 2 Provide power
« [Provide power 8l s| ol o 7/ ol o .% Transform energy to torque |7 (7
'% Transform energy totorque | 0| 0| 0| 7| 0| 0| 0 S [Transmit torque to final drive(8 |8
5 o R0 K RO G RO & [interact with surface 8 |8
L i Reduce CO2 emission 5 |5
Reduce CO2 5| 5/ of of of 0] 0 i
Accept recharge 0 0o 10 oo o0 Accept recharge 01

Figure 5-14 Function satisfaction level by existing products

Then, the requirement — function relations (M1) are used to propagate the satisfaction of functions to the

satisfaction of requirements using the formula:

M M XM

req—arch = 1 fun—arch
The requirements satisfaction of existing powertrains is shown in Figure 5-15.
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Mfun-arch

Save fuel

Store electric energy
Provide power

Transform energy to torque
Transmit torque to final drive|
Interact with surface
Reduce CO2 emission

Functions

~

O || [N 0O | Gas powertrain
H %N [ [N |Hybrid powertrain

Accept recharge
Functions
gl2
o|o £
sl= ©
2|e = Mreq-arch =]
s |1215]8|e [ N
S <|E|8 t
M, HNHEHEE 23
L2(2|86|S|s|a|B o|lo
= 2 S|z o £ als
s|8[2|E[Z|2(3|8 ol|s
29| 8|L|E|8|8x >
AR EHEEEEE: =
= -
HEIEEEEEE CAFE standard 3.0[2.0
CAFE standard 1 Jo Jo [o Jo [o [o |o £ [Acceleration time 7.7]7.1
B e o — - -
£ [Acceleration time 0 |0 10.3]0.3/0.2/0.20 |0 E |Cruising velocity at gradient 7.5|6.9
isi i i 0.3/0.5/0 Py
§cm's'"gvej°c'tyatgrad'_e"_t Ll e o ‘5 |Low greenhouse gas emission 5.0/5.0
5fowe fos amisenon o o100 jolo 1 o g Rechargeable by external electric power|0.0[1.0
= Py = y ex i w .0[1.
IR by external electricpower/0 [0 [0 [0 Jo Jo [0 [1 < s
|Long all-electric range 0 [1 0 o [o [0 ]o |o Long all-electric range 0.0[8.0

Figure 5-15Requirement satisfaction of existing products

Since level 5 is defined as the default “satisfactory solution” (which can be changed if necessary), the
requirements “CAFE standard”, “rechargeable by external electric power”, and “long all-electric range”
are unsatisfied. Shown in Fig. 5-16,the requirement “CAFE standard” is related to the function “save fuel”,
the requirement “rechargeable by external electric power” is related to the function “accept recharge”, and
the requirement “long all-electric range” is related to the function “store electric energy” . Using M2, it
can be seen that the satisfaction of these three functions depends only on the engine and the battery.

Therefore, new engines and batteries, which can potentially satisfy these functions, need to be developed.
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Figure 5-16 Matrix mapping for finding responsible modules

5.4.3 Phase lI- Module, supplier filtering & solution generation
The objective of this phase is to (1) find/propose potential new solutions by experts for unsatisfied
functions, (2) use module related environmental indicators (theoretical recyclability, hazardous material
use, and scarce material use) and supplier related environmental indicators (ISO 14001, environmental
friendly packaging, use of recycled material, and public disclosure of environmental record)to filter
solutions, and (3) generate all possible architectures with integration of the new modules that meet the

standards.

After searching for new modules provided either by new or existing suppliers, four new engines (engine
#3, #4, #5, and #6) and five new batteries (batteties #2, #3, #4, #5, and #0) are found. The simplified

descriptions of these modules are shown in Fig. 5-17.

Supplier Module Main Material Fuel (for engine)
#1 Engine 1 [Steel Diesel
#1 Engine 2 |Steel Gasoline
#1 Engine 3 JAluminum Gasoline
#2 Engine 4 |[Steel Hydrogen
#3 Engine 5 [Steel Hydrogen
H#4 Engine 6 |[Steel CNG (Compressed Nature Gas)

#5 Battery 1 INiMH (Nickel Metal Hybride)

#o Battery 2 |LiFePO,

#6 Battery 3 |Lithium-ion

#7 Battery 4 |Lithium-ion

#7 Battery 5 |Nickel-Cadmium

#8 Battery 6 |Carbon Nanotube Electrode Lithium
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Figure 5-17 Engines and Batteries

The module-related indicators and supplier-related indicators are used to control the environmental
impact of these modules and their suppliers, before integrating these modules into architectures. Ideally,
the estimation of these two types of indicators is based on information provided by suppliers. However,
the quality of information provided by suppliers varies a lot. Therefore, if the information from suppliers
is not complete, OEMs can rely on expert estimation. In the worst case, if experts are not able to provide
estimations of a certain indicator, OEM can consider other indicators. Sometimes, for the same indicator,
different OEMs may have different interpretations. For example, for “environmental friendly packaging”,
OEM can consider the recyclability of packaging material, or the mass of packing material per mass of the
module. In this work, we focus on illustrating the overall implementation of the ASIT-E structure, rather
than proposing a detailed estimation method for each indicator. The estimations of module-related and

supplier-related environmental indicators are shown in Fig. 5-18 and Fig. 5-19, respectively.

M8: Module related environmental indicators

‘ Please fill out the white area of the matrix with adequate value:
Module related environmental indicators
‘ Hazardous material Theoretical Scarce material use
use recyclability

The module's Theoretical Consider scarcity

propability of material recycling and quantity of

satisfying RoHS rate (by weight) scarce material

Supplier Module (Probability: 0-1) (Percentage: 0-1) (Satisfaction: 1-10)
#1 Engine 1 0.9 0.9 7
#1 Engine 2 0.9 0.9 U
#1 Engine 3 0.9 0.9 4
#2 Engine 4 0.9 0.9 7
#3 Engine 5 0.9 0.9 7
Engine 6 0.9 0.9 74
#5  Battery 1 0.8 0.8 4
Battery 2 0.8 0.7 6
#6 Battery 3 0.8 0.7 6
#7  Battery4 0.8 0.7 6
#7 Battery 5 0.1 0.6 6
#8 Battery 6 0.8 0.7 6

Figure 5-18 Estimation of module related environmental indicators
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M9: Supplier related environmental indicators

Please fill out the white area of the matrix with adequate value:
Supplier related environmental indicators
1SO 14001 Use of recycled Environmental Public disclosure of
material friendly packaging i | record
Possesion of Capability of using Recycling rate of Disclosed information
15014001 recycled material packaging comparing to desired
certification information
PP Modul (Satisfaction: 1 or 10) (Satisfaction: 1-10) (Percentage: 0-1) (Ratio: 0-1)
#1 Engine 1
#1 Engine 2 10 8 0.7 0.5
#1 Engine 3
#2 Engine 4 10 7 0.8 0.6
#3 Engine 5 10 2 0.7 0.2
#4 Engine 6 10 6 0.7 0.7
#5 Battery 1 10 8 0.7 0.4
so R Eattery2 10 7 06 0.6
#6  Battery3
#7 Battery 4 1 7 0.4 03
#7 Battery 5
#8 Battery 6 10 6 0.8 0.6

Figure 5-19 Estimation of supplier related environmental indicators

In order to filter the modules and suppliers, experts are asked to provide thresholds for environmental
indicators (see Fig. 5-20). The thresholds for some of the indicators come from environmental directives
(e.g., hazardous material use and theoretical material recyclability). For others, the threshold setting is for
the purpose of getting an appropriate number of candidates when exploring the design space, and can be

one of the decision parameters for experts.

Thresholds for module & supplier related indicators

Please fill out the white area of the matrix with adequate value:
Threshold
Hazardous material use 0.7
Theoretical recyclability 0.7
Scarce material use 5
1SO 14001 5
Use of recycled material 5
Environmental friendly packaging 0.5
Public disclosure of environmental record 0.5

Figure 5-20 Thresholds for module & supplier related indicators

Using the thresholds provided, we can see that (in Fig. 5-21) engines 3 and 5 and batteries 1 and 5 are
weeded out; and the suppliers 3, 5, and 7 are eliminated. However, since the supplier 7 provides battery 4

also, the battery 4 should be weeded out because of the unsatisfactory performance of its supplier.
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Module related i | indicators Suppli lated envir | indicators
Hazardous Theoretical Scarce material use 1SO 14001 Use of recycled Environmental Public disclosure of
material use recyclability material friendly packaging  environmental record
(Probability: 0-1) (Percentage: 0-1) (Satisfaction: 1-10) (Satisfaction: 1 or 10) (Satisfaction: 1-10) (Percentage: 0-1) (Ratio: 0-1)

0.7 0.7 5 5 5 0.5 0.5
Module Supplier
Engine 1 0.9 0.9 7
Engine 2 0.9 0.9 7 # 10 8 0.7 0.5
Engine 3 0.9 0.9 Ca)
Engine 4 0.9 0.9 7 #2 10 7 0.8 0.6
Engine 5 0.9 0.9 7 #3 10 2 ) 0.7 (02)
Engine 6 0.9 0.9 7 #4 10 6 0.7 0.7
Battery 1 0.8 0.8 C 2) #5 10 8 0.7 @
Battery 2 0.8 0.7 =% 6 10 7 06 06
Battery 3 0.8 0.7 6
Battery 4 0.8 0.7 6
Battery5  ( 0.1) 0.6 6 W @ Z
Battery 6 x4 0.7 6 #8 10 6 0.8 0.6

Figure 5-21 Filtering using module and supplier related indicators

When estimating environmental performance, battery 5 (Nickel-Cadmium Battery) received a very low
score for “Hazardous material use” since one of the core material in this battery is Cadmium, which is
toxic. For scarce material use, Engine 3 received a low score because of the utilization of Aluminum.
Battery 1 (NiMH) uses approximately 4.5 kg of rare earth metals, while the Li-based batteries contain only

about 1 kg of rare earths (Ford, 2012). The supplier 5 does not have an effective reverse logistic system,
and the supplier 7 does not have ISO 14001 certification.

After filtering, new modules that were found appropriate are added into database, and the matrix M2 is
updated by experts (shown in Fig.5-22).

M2: Function satisfaction by modules

Please fill out the white area of the matrix with
adequate value*:
Modules
=l e
£12lz]3
P ey e e
ceccel|ls s gla|E8=
@ % ® @ EE LGz F
& 65§ §|d & d|F|ms|iE
Save fuel 3| 2110, 7| o of of Oof 0] 0 O
Store electric energy 0| 0 0 of 7 5(10, of of 0] 0
gProvidepower 8 5| S| 7[ of of of 0f 7| Of O
%Transformenergtotorque 0] 0 0| of o o Of 7] Oof O] O
gTransmittorquetofinaldrive 0l 0l of o of of of of o] 8 O
* linteract with surface 0| Of Of Ol 0, 0 of of of of 8
Reduce CO2 emission 5| 5/10| 8 0| Of of of of O OI
Accept recharge o of of of 8 8 o of of o o
*Use satisfaction levels 1- 10 for estimation, put 0 if the module
does not provide the function

Figure 5-22 Function — module relations with new modules

The relations between modules and suppliers are also provided by experts, indicating which module is

provided by which supplier.
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M3: Module - supplier relations

Please fill out the white area of the matrix with
adequate value or unit:
O = ~
- N S O 0 O = o -
T 5 53388583
Tk T Ter Teb Teb Tew Te Teb Teb
a A A O O A A QA O
- T T T T T T T - |
L Y Y Y B B N I 2 )
Engine 1 100 0 00 O0O0TO
Engine 2 1 00 0 00O0O0OO
Engine 4 0| 1) o[ 0] of o] of of O
Engine 6 0l O] 1| o] Of of of Of O
Battery 2 0| 0L O] 1) of O] O] O] O
Battery 3 0l O] Of 1| O] Oof Of of O
Battery 6 0, G 8 0 1 G G O O
Transmission 1 0 00O0OOT1O0TGO0O
Electric motor 1 0 00O0OOOT1IQO0TO0
Driveshaft 1 00O0O0OOOGOT1O0
Final drive 1 0 00O0OOOT O 1
*Use 0 or 1 for estimation

Figure 5-23 M3: module — supplier relations

Based on modules shown in M2 in Fig.5-22, all possible architectures are generated (Fig.5-24) by taking
one module from each module type, since the powertrain of a plug-in hybrid electric vehicle is composed

of an engine, a battery, a transmission, an electric motor, a driveshaft and a final drive.

Possible architecture 31

Engine 1
Engine 2
Engine 4
Engine 6
Battery 2
Battery 3
Battery 6
Transmission 1
Electric motor 1
Driveshaft 1
Final drive 1

Modules

wlelelelolole|o|o|o | |Possible architecture 7

wlelelelolo!lslo o |~ |o | Possible architecture 8

elelelelolo e lo |- |o |o | Possible architecture 10

wlelelelolo e = lo o |o | Possible architecture 12

wlolelelolwlolo|o|o | |Possible architecture 13

wlelelelolelolo o |~ |o | Possible architecture 14

wlelelelolwlolo |- |o o |Possible architecture 16

mlelelelolelo]e lo o |o | Possible architecture 18

wlelelelelololo o |~ |o | Possible architecture 32

wlolelelelolelo |- |o |o |Possible architecture 34

mlelelelelolo e lo o |o | Possible architecture 36

[ = I 1= I k=R [ =R (=R =2 =2

Figure 5-24 Generated possible architectures

5.4.4 Phase llI- Evaluating uncertainty & requirements satisfaction
The objective of this phase is to calculate uncertainty and requirements satisfaction of all possible
architectures. Three types of uncertainty are considered when calculating the overall uncertainty of an
architecture: (1) interface compatibilities between modules due to innovation integration, (2) the
uncertainty of modules (representing the probability that the module can be developed successfully by
suppliers), and (3) the probability that a supplier and the OEM can work well together. ASIT-E is based
on expert estimation for these three types of uncertainty, shown in Fig. 5-25, Fig. 5-26, and Fig. 5-27.
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M4: Compatibility between modules

Please fill out the white area of the matrix with
adequate value*:

=1 -
§2czy
N o (.} e
T@mW®EELGFE 2 ¢
W W w w o oo ok W T
Engine 1 0.2]0.0[0.3]1.0 0.3 1.0 1.0
Engine 2 0.7/0.5/0.4/1.0 1.0 1.0 1.0
Engine 4 0.5]0.80.6{0.8[0.6]0.8]0.8|
Engine 6 0.5/0.6[0.9]0.8]0.8]0.6]0.8
Battery 2 0.2[0.7]0.5]0.5 0.9/0.9/0.8[0.8
Battery 3 0.0{0.5[0.8[0.6 0.7/0.8]0.8[0.8
Battery 6 0.3(0.4[0.6[0.9 0.9[0.8[0.9]0.8
Transmission1 1.0 1.0[0.8[0.8[0.9[0.7[0.9] 101010
Electricmotor1 0.3 1.0/0.6[0.8]0.9]0.8[0.8]1.0 1.0 1.0
Driveshaft 1 1.0 1.0/0.8[0.6/0.8[0.8[0.9]1.0 1.0 1.0

Final drive 1 1.0 1.0/0.8]0.8]0.8]0.8]0.8/1.0 1.0 1.0

*Use probabilities 0- 1 for estimation

Figure 5-25 Expert estimation of compatibility between modules

MS5: Uncertainty of modules

Please fill out the white area of the matrix with
adequate value*:

Engine 1
Engine 2
Engine 4
Engine 6
Battery 6
Transmission 1
Electric motor 1
driveshaft 1
Final drive 1

Uncertainty

S | Battery 2
B Battery 3

=
o
=
o
[=)
<
[=)
<
[=)
H
(=
o
-
o
=
o
-
o

*Use probabilities 0- 1 for estimation

Figure 5-26 Expert estimation of module uncertainty

M6: Uncertainty of suppliers

Please fill out the white area of the matrix with
adequate value*:

o «- N

- N < O 0 O = = -

- A — - - — — A —

L 9 9 90 90 0 0 0 QO

S5 aaaaaaas

(oL o T« I o Y o T o Tl o W = B o )

= = = = = = = = =

v N v NN NN v v uvH un

Uncertainty  1.0[0.5/0.8]1.0[0.4]1.0 1.0 1.0 1.0

*Use probabilities 0- 1 for estimation

Figure 5-27 Expert estimation of supplier uncertainty
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Since module uncertainty (the probability that the module can be developed successfully), supplier
uncertainty (the probability that the OEM and the supplier can work well together) and compatibility
between modules can all be considered in probabilistic terms, we define the uncertainty of an architecture
as the product of all its modules’ uncertainties, its suppliers’ uncertainties and the compatibilities between

the modules. This definition anchors on the independence of probabilities.

Done in a similar way as in calculating the requirements satisfaction by existing products, the requirements
satisfaction by possible architectures is calculated using the matrix M2 (in Figure 5-22) and the matrix M1
(in Figure 5-11). In this case, we assume equal importance of the requirements (this assumption can be
changed if needed), an overall requirements satisfaction score is obtained for each of the possible

architectures by calculating the average of all requirements satisfaction scores for the architecture.

The obtained uncertainties and satisfaction levels are presented in Figure 5-28. The “overall uncertainty”
represents the overall confidence level of an architecture. Bigger the overall uncertainty is greater the level
of confidence we have for the architecture. The “requirement satisfaction” represents the satisfaction level

of the requirements by an architecture. Bigger it is, better the architecture satisfies the requirements.

Architecture 7 8 10 12 13 14 16 18 31 32 34 36
Overall uncertainty 0.02 0.29 0.02 0.04 0.00 0.16 0.02 0.03 0.01 0.02 0.00 0.01
Requirement satisfaction 6.3 6.0 82 7.4 6.0 57 78 7.1 7.0 67 88 8.1

Figure 5-28 Uncertainty and requirements satisfaction for possible architectures

5.4.5 Phase IV- Uncertainty & requirements satisfaction filtering
The aim of this phase is to filter possible architectures by their uncertainties and requirement satisfaction

levels.

By asking experts to define uncertainty and satisfaction thresholds, ASIT-E can filter architectures in

order to keep architectures with best performances while rejecting highly uncertain ones.

In order to obtain an adequate number of candidates, the uncertainty threshold is set to 0.02, and the
satisfaction threshold is set to 6.5. All architectures with uncertainty lower than 0.02 and satisfaction level
lower than 6.5 are eliminated. After filtering, only 5 out of the 12 generated architectures remain
(architectures 10, 12, 16, 18, 32), as shown in Fig. 5-29, for final consideration. By using matrix mapping,

it can be seen that engine 1 is filtered out.
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Figure 5-29 Uncertainty and satisfaction filtering of possible architectures

5.4.6 Phase V- Estimating architecture related indicators & filtering
The objective of this phase is to filter remaining architectures using their performances in electricity
consumption, water consumption and CO2 emission. The reason that this step is not done in parallel with
uncertainty and requirements satisfaction filtering is that the estimation of these three environmental
indicators require relatively more information and processing. Therefore, it is necessary to reduce the

number of architectures first by uncertainty and requirements satisfaction thresholds.

The electricity consumption, water consumption and COZ2 emission during the entire life time of an
architecture depend on a lot of factors, and are difficult to estimate. Therefore at the conceptual stage of
engineering design, we can only expect to have a rough idea about these three factors in order to compare
options. Although “the entire life time of an architecture” is considered, it is neither efficient nor possible

to consider all lifecycle phases for each indicator. Therefore, we consider only the most important phases

for each indicator.

Another important factor to consider during estimation is the lifespan of each module. Because of our
focus on the closed-loop supply chain, and according to WEEE, we consider that modules in an EOL
system are collected and then re-used if they did not attain their lifespan. Therefore, if other characteristics
of two modules are the same, but one has longer lifespan than another, we should consider that the

module with longer lifespan is more environmentally friendly.

With the consideration of the most important lifecycle phases, and the lifespan of each module, the three
indicators are calculated according to estimations provided by experts based on their experience, and

information provided by suppliers. Finally, thresholds are used to filter architectures, to identify candidates.
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5.4.6.1 Lifecycle phase selection, lifespan, and unit

Before estimation, ASIT-E asks experts to select the most important lifecycle phases for each indicator

according to the type of system being designed (shown in Fig. 5-30). Normally, a phase is neglected if one

of the criteria is satisfied:

1) The consumption or emission is negligible comparing to other phases;

2) The consumption or emission of the phase is similar for all possible architectures, therefore does

not affect the comparison between architectures.

Important lifecycle phases for indicators

Please select the most important lifecycle phases for each indicator:

Product type: Module Supplier- OEM  Assembly ~ OEM - storage Storage Utilization

automoblie powertrain  production  transportation transportation

Electricity consumption v v

Water consumption v

CO2 emission v N \
Collection Inspection & Re-use Recycle Otherrecovery  Disposal

classification (module) (material)
Electricity consumption
Water consumption v )

CO2 emission

Figure 5-30 Lifecycle phases selection for indicators

ASIT-E also asks for the estimation of a lifespan for each module and for the entire architecture (shown

in Fig. 5-31). The units that will be used for estimation are also defined in order to facilitate further

integration.

Lifespan & unit

Please fill the white area of the matrix
with adequate lifespan or unit:
Lifespan estimation Lifespan (year)
Architecture  Powertrain 12
Engine 2 25
Engine 4 35
Module Engine 6 15
Battery 2 10
Battery 3 6
Battery 6 12
Unit definition Unit
Electricity consumption T)
Water consumption kL
CO2 emission t

Figure 5-31 Lifespan estimation & unit definition
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In ASIT-E, we assume that the lifespan of the entire system under design (the powertrain in this case) is
defined. This lifespan can be defined according to OEMs requirements on the system lifespan or
according to market average. In this case study, we assume that the OEM wants the powertrain to last for

about 12 years. The service unit of a powertrain is defined as “serve in a vehicle for 12 years”.

Using the lifespan of modules and system, the module depletion can be calculated, which represents the

used up percentage of a module (e.g., engine) when serving a system (e.g., powertrain) (Fig. 5-32).

Module |Module Lifespan (year) Module depletion per System
Engine 2 25 12/25 — 1/2

Engine 4 35 12/35 —~ 1/3

Engine 6 15 12/35 ==1

Battery 2 10 12/10 —~ 1

Battery 3 6 12/6 = 2

Battery 6 12 12/12 =1

*System lifespan =12 years

Figure 5-32 Module depletion per system

The module depletion is an approximation of quotient of system lifespan and module lifespan. When the
module depletion is bigger than or equal to 1, it is approximated to the nearest integer; when it is between

0 and 1, it is approximated to a fraction whose denominator is an integer between 1 and 10.

In order to facilitate the value integration of different lifecycle phases, the estimation of the three
indicators are provided using approximated quantitative values. The units of estimation are provided by

experts based on data from previous projects.

5.4.6.2 Estimation of architecture related environmental indicators
The electricity consumption, water consumption, and CO2 emission are estimated by experts using
predefined units. For the phase “utilization”, the environmental impact is considered for the entire

lifespan of the system (12 years in this case).

M10: Electricity consumption

Please fill out the white area of the matrix with adequate value*:
Electricity Consumption
Archi e Core modul ppli dule depleti dule production (T))  Utilization (TJ)

#10 Engine 4 #2 1/3 0.2 2
Battery 2 #6 1 0.1

#12 Engine 6 #4 il 0.1 25
Battery 2 #6 al 0.1

#16 Engine 4 #2 1/3 0.2 20
Battery 3 #6 2 0.07

#s Engine 6 #4 al 0.1 30
Battery 3 #6 2 0.07

422 Engine 2 #1 1/2 0.1 20
Battery 6 #8 il 0.15

*Use approximated quantitative for estimation

Figure 5-33 Experts’ estimation of electricity consumption
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M11: Water consumption

Please fill out the white area of the matrix with adequate value*:
Water consumption

Architecture Core modul: ppliers Module depleti Moduls Recycle  Disposal
production (kL) (kL) (kL)
#10 Engine 4 #2 1/3 0.4 0.1 0.2
Battery 2 #6 il 0.2 0.1 0.1
#12 Engine 6 #4 1 0.3 0.1 0.2
Battery 2 #6 1 0.2 0.1 0.1
#16 Engine 4 #2 1/3 0.4 0.1 0.2
Battery 3 #6 2 0.2 0.3 0.2
#s Engine 6 #4 1 0.3 0.1 0.2
Battery 3 #6 2 0.2 0.3 0.2
432 Engine 2 #1 1/2 0.3 0.1 0.2
Battery 6 #8 1 0.3 0.1 0.3

*Use approximated quantitative for estimation

Figure 5-34 Experts’ estimation of water consumption

M12: CO2 emission

Please fill out the white area of the matrix with adequate value*:
CO, Emission
Architect: Core ppl dul Modul: dul pp OEM tation |Utilization
modules depletion Jweight (kg) [production| Ajr | Rail | Road |Maritime| (tCO;)
(tCO;) | (km) [ (km) | (km) | (km)
Engine 4 #2 70 0.3
410 ngine 1/3 0 | 3000 0
Battery 2 #6 1 200 0.5 0 500
#12 Engine 6 #4 1 150 0.25 0 500 10
Battery 2 #6 1 200 0.5 0 500
#16 Engine 4 #2 1/3 70 0.3 0 | 3000 0
Battery 3 #6 2 150 0.5 0 500
#18 Engine 6 #4 il 150 0.25 0 500 10
Battery 3 #6 2 150 0.5 0 500
- Engine 2 #1 1/2 100 0.25 0 | 8000 R
Battery 6 #8 1 100 0.6 0 200 | 8000
*Use approximated quantitative for estimation

Figure 5-35 Experts’ estimation of CO2 emission

The area with a grey background is filled in automatically by ASIT-E. For example, in Fig. 5-35, the CO2
emission in module production for the same module is the same. Therefore, when experts estimated the
CO2 emission for manufacturing engine 4 in architecture 10, the CO2 emission for producing engine 4 in

architecture 16 can be filled by ASIT-E using the same value.

Different from other phases, the CO2 emission of transportation is not estimated directly by experts due
to its complexity. Instead, ASIT-E asks experts to provide estimation of module weight and transportation

distance by different transportation means. For calculation of COZ2 emission, we use equation:
CO,emission = emission factor (depends on transportation mode) X massxdistance
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The emission factors is an average value that depends on transportation mode, and are adopted from
ADEME (2010) as shown in Fig. 5-36.

Emission Factors (g CO,/kg.km)
| Air Rail Road Maritime
Emission factor | 0.61 0.062 0.074 0.15

Figure 5-36 Emission factors (adopted from ADEME (2010))

After calculation, the CO2 emission estimates of architectures in different lifecycle phases are shown in
Fig. 5-37.

Architecture Core  Suppliers Module Module  Supplier-OEM Utilization
modules depletion | production transportation (tCO,)

(tcoy) (tcoz)

410 Engine 4 #2 1/3 0.3 0.0013 0
Battery 2 #6 1 0.5 0.0074

412 Engine 6 #a4 1 0.25 0.0056 10
Battery 2 #6 1 0.5 0.0074

416 Engine 4 #2 1/3 0.3 0.0013 0
Battery 3 #6 2 0.5 0.0056

#18 Engine 6 #4 1 0.25 0.0056 10
Battery 3 #6 2 0.5 0.0056

432 Engine 2 #1 1/2 0.25 0.0050 8
Battery 6 #8 1 0.6 0.1215

Figure 5-37 Calculation of CO2 emission for transportation

5.4.6.3 Calculation of environmental indicators & architecture filtering
Estimations of each indicator for each module/atrchitecture are integrated to calculate the environmental
performance of each possible powertrain regarding COZ2 emission, water consumption, and electricity

consumption. The powertrains are then filtered to get the final architecture and supplier candidates.

We have seen that the powertrain is composed of six modules. Since in this case study, the transmission,
electric motor, driveshaft, and final drive are the same for all architectural options, we consider only the

two core modules (which are different from concept to concept) — engine and battery for comparison.
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Module
production

Utlllzatlon

Electricity
consumption

Architecture
(Powertrain)

Module
production
Water Supplier - OEM
consumption transportation

Module
production

Recycle material

Figure 5-38 Integration of architecture related indicators

As a first step of integration, we calculate the electricity consumption, water consumption, and CO2
emission for each powertrain concept separately, before integrating these three indicators for each concept
during the second step. These three indicators are estimated for different lifecycle phases for the
powertrain in the previous section. Therefore, it is sufficient to add consumption/emission of each phase
up to get the overall value for the entire lifecycle, as estimates are quantitative. However, the lifespan of a
module plays an important role in the calculation. For example, if two batteries are needed (one by one)
for the lifecycle of powertrain, the pollution of producing the battery should be counted twice. Therefore,
when adding the pollution of each lifecycle phase, a factor that is related to lifespan of each module
should be considered for module related phases; we call this: “module depletion factor”, or “fn”. The
module depletion factor used here is shown in Fig. 5-39. The module depletion factor depends also on the

type of architecture being considered.
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Module Depletion Facotr (fn)

Module depletion (n)
n=1 n<1
1 n

[hey

Module production

Supplier - OEM transportation
Assembly

OEM - storage transportation
Storage

Utilization

Collection

Inspection & classification
Re-use (module)

Recycle (material)

Other recovery

Disposal

Lifecycle phases
3 3 53 O R P R P R P 3 3|y

P PP OR P PP PP

Figure 5-39 Module depletion factor

Assume n = 1/3 (for engine #4 for example), which means that the engine #4 can serve 3 powertrains in
its lifespan. Therefore, the module production and supplier-OEM transportation should be counted 1/3
times in each powertrain lifecycle. From the lifecycle “assembly” to “inspection & classification”, the
estimations are all based on the entire powertrain (e.g., the assembly is the assembly of the entire
powertrain, not assembly of the module). Therefore, the lifespan of each module does not influence these
lifecycle phases. If the module can be used in 3 powertrains, it can be re-used twice and
recycled/recovered/disposed once. Therefore, for each powertrain lifecycle (12 years), the pollution of

reuse should be counted 2/3 times, and recycled/recovered/disposed should be counted 1/3 times.

For the calculation of indicators, we use electricity consumption of architecture #10 as an example.
Architecture #10 is composed of core modules engine #4 and battery #2. The important lifecycle phases
are module production and utilization; therefore, it is sufficient to calculate electricity consumption of
each important phase and then sum them up.

Module Module Utilization
Archi e Core modul depleti production (TJ) ()

#10 S I:m_-l 04 P
Battery 2 0.

Module Depletion Facotr (fn)

Module depletion (n)
1 | n=1| n<l |«

i [n

>
Module production n
Supplier - OEM transportation n
Assembly 1
OEM - storage transportation 1
Storage 1
Utilization 1
1
1
0
n
n
n

Collection

Inspection & classification
Re-use (module)

Recycle (material)

Other recovery

Disposal

Lifecycle phases

B R R OR R PR R R R

Figure 5-40 Integration
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For the phase of module production, module depletion factor needs to be considered for the two modules:
Engine 4: Module depletion =n = 1/3

— Module depletion factor for module production fn(E4) =n =1/3

Battery 2: Module depletion = 1

— Module depletion factor for module production fz(B2) = 1

Therefore, electricity consumption of module production of architecture 10 is:

Jfn(E4)xElectricity consumption of producing E4 + fn(B2)xElectricity consumption of producing B2

=%><0.2+1><0.1

=0.17(17)
The electricity consumption when using architecture 10 (for 12 years) is 25 T7J.

The electricity consumption of the entire cycle of architecture #10 is:

Electricity consumption of production + Electricity consumption of utilization
=0.17+25
=25.17(1J)

The water consumption and CO2 emission follow the same principle as electricity consumption. The

environmental impact estimates for the three architecture related indicators are shown in Fig. 41.

Architecture Supplier Electricity Water CO2 emission
consumption consumption (t)
(1)) (kL)
#10 #2,H6 25.17 0.67 0.61
#12 #4,H6 25.20 1.00 10.76
#16 #2,H6 30.21 1.07 1.11
#18 H#4,#6 30.24 1.40 11.27
#32 #1,48 20.20 1.00 8.85

Figure 5-41 Environmental impact calculation

In order to facilitate filtering, the values of the three indicators are normalized within each indicator

category, by dividing the biggest value within the category, as shown in Figure 5-42.

Architecture Supplier | Electricity Water CO2 emission
consumption consumption (t)
(T)) (kL)
#10 H#2,46 0.83 0.48 0.05
#12 #4,46 0.83 0.71 0.96
#16 #2,#6 1.00 0.76 0.10
#18 #4,#6 1.00 1.00 1.00
#32 #1,48 0.67 0.71 0.79

Figure 5-42 Normalized environmental impact
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Assuming equal importance of each indicator (this can be changed if necessaty), the overall environmental
impact of each architecture is calculated by adding the three indicators for each architecture. The result is
then normalized through dividing by the biggest value. For normalized overall input, the smaller the value

is, the less the environmental impact of the architecture becomes.

Architecture Supplier Overall Normalized
environmental  overall impact
impact
#10 #2,#6 1.37 0.46
#12 #4,#6 2.50 0.83
#16 #2,#6 1.86 0.62
#18 #4,#6 3.00 1.00
#32 #1,#8 2.17 0.72

Figure 5-43 Normalized overall environmental impact

Finally, experts can set a threshold for the normalized overall impact in order to filter the potential

architecture set with a certain level of environmental impact.

The environmental threshold in this case set at 0.8; therefore, architectures with environmental impact
bigger that 0.8 are eliminated. The architectures and suppliers, after filtering, are shown in Fig. 5-44, which

are candidates for OEM’s further negotiation.

Architecture Core modules Module description Suppliers

10 Engine 4 (new) Steel, hydrogen 2 (new)
Battery 2 (new) LiFePO, 6 (new)

16 Engine 4 (new) Steel, hydrogen 2 (new)
Battery 3 (new) Lithium-ion 6 (new)

3 Engine 2 (existing) Steel, gasoline 1 (existing)
Battery 6 (new) Carbon nanotube electrode lithium 8 (new)

Figure 5-44 Identified potential architectures and suppliers

5.5 Comparison

In order to see how consideration of environmental issues influences the architecture and supplier
identification results, we compare the result obtained by using ASIT-E to the result obtained using ASIT
(where environmental issues are not considered) by using the same case study. Choosing to compare to

ASIT is also because of the fact that there is currently no other similar method to ASIT-E.

Using ASIT, the modules shown in Fig. 5-17 are all used for generating possible architectures, without
filtering by module related and supplier related environmental indicators. The generated possible

architectures are shown in Fig. 5-45.
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Figure 5-45 Generated possible architectures

Experts are asked to provide estimation on function satisfaction by modules, and module - supplier

relations as shown in Fig. 5-46 and Fig. 5-47, respectively.

M2: Function satisfaction by modules

Please fill out the white area of the matrix with adequate value*:

Modules

T 3Aup [euly

T HeysaAp

T J030W 2133

T UOISSIWSUBIL

9 Asanieg
s Aaneg
v Aaneg
€ Aianeg
7 Aianeg
T Aayjeg

g9auidu3
gausu3
pauidug
€auiBug
Zauidug
Taudu3

0|0000087563100000
8| 5 6| 5/ 6 7| 0 Of 0 of of of Of 7| Of O

0l O] O] Of 0, Oof o of of of of of 7| o] of 0

0] 0] 0, 0 00 O] O O] O] O] O O] O] O] 0] 8

5| 5/ 5/10/10, 8 O] 0 o] of of of of of of O

O Ol Ol 0, o, of 1] 8 8 8 7/ 9 of of o 0

Save fuel

Store electric energy
Provide power

Transmit torque to final drive] 0| 0| O O] 0/ of 0] of o] of of o] of O 8 O

Interact with surface
Reduce CO2 emission
Accept recharge

Transform energy to torque

suonouny

*Use satisfaction levels 1- 10 for estimation, put 0 if the module does not

provide the function

Figure 5-46 Function — module relations with new modules (ASIT)
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M3: Module - supplier relations

Please fill out the white area of the matrix
with adequate value or unit:
.-annvmwr\oumaﬁﬁ
S STy RN U
g888888888¢g¢8g
AAAAAAAAIAA A
Engine 1 100000000O0GO0O
Engine 2 1.0 000000000O00O
Engine 3 1[ o o of of of of of of of of o
Engine 4 o 1 of of o o of of of o o o
Engine 5 ol of 1/ of of of of of of of of o
Engine 6 ol of of 1] of of of of of o of o
Battery 1 000010000000
Battery 2 o of of of of 1] of of of o of o
Battery 3 o of of of of 1] of of of o of o
Battery 4 0l o of of of of 1] o of of of 0
Battery 5 o of of of ofl of 1 of of o of o
Battery 6 ol of of of ofl of of 1 of o of o
Transmission 1 000O0OO0OOOTI11IO0O0OO
Electric motor 1 0 00O0OOOOOTI1IO0TO0
Driveshaft 1 0000O0O0O0O0OGOT10
Final drive 1 0000O0O0O0OOGOG O 1
*Use 0 or 1 for estimation

Figure 5-47 Module - supplier relations (ASIT)

The uncertainty information is also provided by experts as shown in Fig. 5-48, Fig. 5-49, and Fig. 5-50.

M4: Compatibility between modules

Please fill out the white area of the matrix with adequate value*:
=
§2z3
TIPS ETEEIEEEELE
EEEECET ST IO T oE § 2
Bww e wm e B E R B E G B
W W W W uw W o oomaoaoaok-oov o
Engine 1 0.1020.0010.20310031010
Engine 2 1.00.7 0.5 0.8 0.8 0.4 1.0 1.0 1.0 1.0
Engine 3 0.40.80.80.70.50.6 0.8 0.7 0.7 0.8
Engine 4 0.50.5 0.8 0.7 0.6 0.6 0.8 0.6 0.8 0.8
Engine 5 0.3050.80.70.60.60.7 0.7 0.8 0.8
Engine 6 0.4 0.5 0.6 0.6 0.5 0.9 0.8 0.8 0.6 0.8
Battery 1 0.1 1.0/0.4[0.5[0.3[0.4 1.01.01.0 1.0
Battery 2 0.2[0.7]0.8]0.5|0.5/0.5| 0.90.90.80.8
Battery 3 0.0[0.5[0.8[0.8|0.8]0.6| 0.70.80.80.8
Battery 4 0.1/0.80.7[0.7]0.7[0.6 0.90.90.809
Battery 5 0.2(0.80.5[0.6/0.6[0.5 0.80.80.9 0.9
Battery 6 0.3]0.4/0.6[0.6/0.6[0.9 09080908
T ission1 1.0 1.0[0.8[0.8]0.7]0.8[1.0[0.9]0.7]0.9[0.8[0.9] 1.01.01.0
Electricmotor1 0.3 1.0[0.7[0.6[0.7/0.8[1.0[0.9[0.8]0.9[0.80.8]1.0 1010
Driveshaft 1 1.0 1.0[0.7]0.8[0.8]0.6/1.0[0.8[0.8[0.8]0.9[0.9]1.0 1.0 1.0
Final drive 1 1.0 1.00.8]0.8[0.8[0.81.0|0.8[0.80.9]0.9]0.8]1.0 1.0 1.0
*Use probabilities 0- 1 for estimation

Figure 5-48 Expert estimation of compatibility between modules (ASIT)
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MS5: Uncertainty of modules
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Figure 5-49 Expert estimation of module uncertainty (ASIT)
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Figure 5-50 Expert estimation of supplier uncertainty (ASIT)

Similar to the results obtained using ASIT-E, shown in Fig.5-28, uncertainty and requirements satisfaction

for possible architectures by using ASIT are shown in Fig. 5-51. Using the thresholds, 16 architectures out
of 36 remain after filtering, as shown in Fig. 5-51.

Architecture 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Overall uncertainty 0.03 1.00 0.11|0.05]0.03|0.07 0.02 0.290.09]0.02]0.02|0.04]0.00 0.16|0.07]0.03]0.03 0.03
Requirement satisfaction 5.4 5.0 59 |72 [73 |64 6.4 6.0 [6.9 |82 [83 |74 |6.0 57 |66 [7.8 |79 7.1

Architecture 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Overall uncertainty 0.01 0.34] 0.08] 0.03] 0.03] 0.04] 0.02 0.30 0.05| 0.02] 0.02] 0.03| 0.01] 0.02] 0.01 0.00 0.00 0.01
Requirement satisfaction 6.2 5.8 6.8 8.0 81 7.3] 55 52 61| 73] 7.4 66/ 7.0 6.7 76 88 89 8.1

Figure 5-51 Uncertainty and requirements satisfaction for possible architectures (ASIT)

In ASIT, only requirements satisfaction and uncertainty are considered, but not the environmental issues.
Therefore, more concepts are identified using ASIT than using ASIT-E, as expected. The identified
engine-battery combinations using ASIT-E and ASIT are shown in Fig. 5-52. The three concepts
identified by ASIT-E are also identified by ASIT, which are represented by bold lines.
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Engines E1l E2 E3 E4 ES E6

Batteries B1 B2 B3 B4 B5 B6

—— ldentified combination using ASIT-E
Identified combination using ASIT

Figure 5-52 Result comparison of ASIT-E and ASIT

It can be seen from Fig. 5-52 that when environmental issues are not considered, engines 3, 5, 6, and
batteries 1, 4, 5 are all among the identified concepts. However, according to RoHS, the material cadmium
contained in battery 5 is among hazardous materials, and its utilization is restricted. Battery 1 (NiMH
battery) uses approximately 4.5kg of rare earth metals, which is much higher than other batteries (which
normally use around 1kg of rare earth). The battery 5 is eliminated because the unsatisfactory condition of
its supplier, who does not have ISO14001 certification, has low capability of using environmental friendly
packaging, and at the same time out-dated public disclosure of environmental record. As for engines:
engine 3 is filtered out by ASIT-E because of its high quantity of aluminium utilization, since aluminium is
among the rare earth materials. Engine 6 is eliminated due to its suppliet’s incapability of using recycled
materials, and the lack of public disclosure of environmental record. Finally, engine 6 is not among ASIT-
E’s final candidate list because of its unsatisfactory performance regarding CO2 emission, water

consumption and electricity consumption during its entire lifecycle.

5.6 Discussion

The comparison between ASIT-E and ASIT showed that the consideration of environmental issues can
effectively weed out many options that have different types of environmental problems. By using ASIT-E,
OEMs are able to have a general idea about all possible architecture options with regards to their
environmental performances. Moreover, since ASIT-E is built upon ASIT, the architecture’s requirements

satisfaction capability and uncertainty are also estimated.

By integrating the environmental plug-in into ASIT, we also show the flexible structure ASIT affords to
easily add plug-ins. One possible future work would be developing other plug-ins for ASIT to better
manage cost, time-to-market, and other factors. The environmental plug-in itself is also very flexible.
According to OEMs’ different needs, the environmental indicators as well as lifecycle phases can also be

customized.

However, there are several limitations of ASIT that should be acknowledged. Data collection at or access
to data on potential suppliers is challenging. Although required for many countries, the public disclosure

of environmental record of suppliers does not guarantee reliable information; however, more and more
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suppliers have started to provide their eco-profile. In the near future, we believe that such disclosures will
become code of practice for suppliers; until then, OEMs can also rely on expert estimation to get

approximate environmental information.

Another limitation of this work is about methods for calculating the environmental indicators; different
OEMs may have different interpretation of the same environmental indicator. Therefore, in this work, it is
not practical to provide one indicator calculation method that can be used by all OEMs. Therefore, we
focused on illustrating the overall structure of ASIT-E rather than proposing an indicator calculation
method. However, we think that developing adequate methods for calculating environmental indicators is

a very important issue, and should be investigated in the future.

5.7 Conclusion

This paper discusses the development rationale, and illustrates the utilization of a new early design support
tool — ASIT-E, which aims at supporting OEMs in identifying environmental friendly concepts, and

suppliers with better requirements satisfaction and lower uncertainty.

This tool is illustrated using the case of a plug-in hybrid vehicle powertrain design. Through comparison
of ASIT-E results to those of a similar method that does not consider environmental issues, we see that
ASIT-E affords weeding out of options that have environmental problems. The flexible structure of
ASIT-E allows OEMs to customize it by defining their own environmental indicators, lifecycle phases, as

well as methods for calculating different indicators.

Although most contemporary suppliers still do not fully share their eco-profiles, the introduction of
environmental legislations and increasing demand of consumers should make data collection for ASIT-E
easier in the future. The ASIT-E database also provides a list of necessary data for estimating

environmental performance in early design.
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Conclusion and perspective

6.1 Conclusion

In this thesis, we proposed an Architecture & Supplier Identification Tool (ASIT) to support OEMs in

modular complex systems design. The work is presented in three research articles.

In the first article (presented in Chapter 3), we proposed the core method of ASIT. ASIT is a customer
requirements oriented method based on existing data and expert knowledge. ASIT is able to generate all
possible architectures (considering new technologies and new suppliers), evaluate performance of
architectures (including requirements satisfaction, and the overall uncertainty level regarding both
architecture and its suppliers), and identify a limited number of architectures and suppliers that should be
involved in the conceptual design phase with regard to the overall uncertainty of an architecture. The
utilization of ASIT is illustrated using a powertrain design case study. It is difficult to find all data required
by ASIT in OEMs’ existing database. Therefore, we validated ASIT by comparing its result with other
design support methods. Since there is currently no other decision support method for the Architecture &
Supplier Identification phase, we compared ASIT with CSM, which is a well-known matrix-based
approach for concept evaluation. One main difference between ASIT and CSM is that ASIT considers
architectures and suppliers simultaneously while CSM considers only product concepts. Since ASIT is
designed for the Architecture & Supplier Identification phase, where new technologies and new suppliers
are integrated, another big difference between ASIT and CSM is that ASIT considers the overall
uncertainty when evaluating architectures and suppliers, while CSM does not. The comparison of results
showed that ASIT is able to identify architectures and suppliers with best customer requirements
satisfaction while at the same time eliminating architectures and suppliers with high uncertainty level in

order to manage the overall risk.

In ASIT, we considered three types of uncertainties when estimating the overall uncertainty: (1)
uncertainty related to suppliers’ capabilities to cooperate well with the OEM, (2) the probability that a
module can be successfully developed, and (3) the compatibility between the modules. Since in the

conceptual design phase information is extremely limited due to new technology and supplier integration,

106



performance evaluation mainly depends on expert estimation. Therefore, the expert estimation related
uncertainty may also influence the estimation result thus change identified architectures and suppliers. In
order to analyse the sensitivity of ASIT regarding expert estimation related uncertainty, in the second
article (presented in Chapter 4), we compared candidates identified by ASIT with consideration of expert
uncertainty and ASIT without considering expert uncertainty. The comparison showed that the expert

uncertainty does not influence the identification result of ASIT, and that ASIT is robust.

In the third article (presented in Chapter 5), we developed an “environmental impact estimation” plug-in
for ASIT in order to consider lifecycle environmental impact of architectures during performance
estimation. By adding this plug-in into ASIT, we also demonstrated the possibility of considering other
estimation factors in ASIT thus customize ASIT according to different needs of OEMs. A powertrain

design case that is similar as was done in the first article is used to demonstrate utilization of the method.

6.2 Contribution

The most important contribution of this work is the proposition of a design decision support tool for the
Architecture & Supplier Identification phase for modular design, which is the first candidate identification
tool developed for this phase. System architectures and suppliers are considered simultaneously, using

imprecise qualitative data due to the characteristic of this phase.

The proposed method (ASIT) is able to help OEMs to benefit from the flexibility of modular design by
integrating new technologies and new suppliers at the architecture generation stage. Moreover, the
requirements satisfaction, the overall uncertainty, as well as lifecycle environmental impact of architectures
are considered in order to meet OEMs’ needs of controlling overall risk and environmental impact in eatly

design stage.

According to different needs of OEMs, it is possible to add plug-ins into ASIT to estimate architectures
and suppliers from different perspectives. The customization is shown in Paper#3, after adding an

environmental impact control plug-in into ASIT.

This work also proposes a database structure for OEMs to store existing data and expert estimation more
efficiently. Because of different situations that OEMs are currently in, data required by the database may
not be available in all OEMs. The database structure proposed in this work also can serve as a directive to
help OEMs to recognize the necessary types of data needed for exploring all possibilities and estimating

overall architecture performance in the Architecture & Supplier Identification phase.

6.3 Limitations & Future Research Plans

Like all other estimation methods for early design, one of the major limitations of this work is the
collection of data. Because of the integration of new technologies and new suppliers in the Architecture &
Supplier Identification phase, the information of new options is extremely lacking. Therefore, although
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ASIT strives to reduce the quantity of data required, OEMs still need to put in effort to build the database
and greatly depend on expert estimation. For future works, improvements in reducing data required and in

proposing better ways of data collection is necessary.

Regarding performance estimation of possible architectures and suppliers, this work considers three
criteria: customer requirements satisfaction, overall development uncertainty, and product lifecycle
environmental impact. Besides these three criteria, there are other factors that are good to consider in the
Architecture & Supplier Identification phase, such as cost and lead-time. In existing methods, the
estimation of these two factors usually requires massive quantitative data, thus unsuitable for the
Architecture and Supplier Identification phase. In future works, adequate estimation methods of cost and
lead-time, as well as other factors should be developed. Since ASIT is a framework that is easy to insert
plug-ins. Authors can also develop performance estimation plug-ins of divers factors for ASIT, in order to

get a more global estimation of architectures’ performance.

In this thesis, the utilization of ASIT is illustrated by a powertrain design case. In future works, it will be
interesting to test ASIT with more complex products and products in other industries. Because of
different nature of products, it is possible that ASIT needs to be modified in other industries and for other

products.

For more complex products, it will be interesting to use ASIT by different levels of decomposition. The
number of modules that should be considered in each level of decomposition is limited by the fact that
ASIT depends on expert estimation, thus has limited capacity for estimation. For example, when
considering the design of an airplane, the airplane should firstly be decomposed into high level modules,
then, each module can be decomposed again to lower levels. The ASIT can be used for each level of
decomposition. However, the link within ASIT should be developed to be able to use estimation of lower
levels directly in the estimation of higher levels. The ASIT can be used iteratively until the estimation of an
entite product is done. Besides, the adequate number of modules to be considered during each

decomposition should also be studied.
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Appendix

The proposed Architecture & Supplier Identification Tool (ASIT) is automated by a MatLab program.

The main activities of ASIT are as shown in Figure 6-1.

The Architecture & Supplier Identification Tool (ASIT)

Activities Matrix system

Take information
from M1, M2, M7

Take information
from M2

Take information
— from M1, M2, M4,
M5, M6

Take information
from M3

v
Output
= Potential architectures
=  Potential suppliers

Figure 6-1 Main activities of ASIT

The main algorithm blocks are the followings:

1.Generate all possible architectures

function [Mapal] = all_possible_architectures (M2)

SGENERATE_ALL_POSSIBLE_ARCHITECTURES Generate all possible architectures
from combinations of components

% M2: module - function relations

% See also BLOCK_CYCLE
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% Note: NO error (input, internal, etc.) handling

v_components = sum (M2, 2);

row_dimension sum (v_components) ;

col_dimension = prod(v_components);
Mapa = zeros (row_dimension, col_dimension);
from_row = 1;

forcomponent_idx=1:size (v_components, 1)

cycle_length = prod(v_components (1l:component_idx));

till_row = from_row+v_components (component_idx)-1;
block = block_cycle (v_components (component_idx), cycle_length);
Mapa (from_row:till_row, l:end) = repmat (block, 1,
col_dimension/cycle_length);

from_row = till _row + 1;
end
function [block] = block_cycle (number_of_ components, cycle_length)

$BLOCK_CYCLE Generate all possible architectures from combinations of
components

% Dblock = BLOCK_CYCLE (N, C) Builds a block (= matrix) based on number of
components N and cycle length C.

% Note that N must be wholelydivisble by C; otherwise, an error is thrown.
% See also GENERATE ALL_POSSIBLE_ARCHITECTURES

% Note: Hardly any error (input, internal, etc.) handling

if (mod(cycle_length, number_of_components) ~= 0)

error ('Cycle length not divisble by # components.');
end

length_run_of_ones = cycle_length/number_of_components;
run_of_ones = ones(l, length_run_of_ones);

block = zeros (number_of_components, cycle_length);
block_row = zeros(l, cycle_length);
block_row(l:length_run_of_ones) = 1;

block (1l,:) = block_row;

foridx = 2:number_of_components

block_row = circshift (block_row, [0 length_run_of_ones]);
block (idx, :) = block_row;

end
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2. Estimate uncertainty & satisfaction of generated architectures

function [ Mca ] = uncertainty_of_architectures( Mapa, m4, m5,m36)

SUNCERTAINTY_ OF_ARCHITECTURES calculates the overall uncertainty of each
architecture, considering module uncertainty, supplier uncertainty, and
compatibility

%$Mapa: all possible architectures

%m4: compatibility

$m5: module uncertainty

$m36: supplier uncertainty - a combination of m3 and mé6
Mca = zeros(l, size(Mapa,2));

$component number in architecture:
nb_component = size(find(Mapa(:,1)~=0),1);

$combination number of components in architecture:
ifnb_component~=0

nb_combination = nchoosek (nb_component, 2) *2;

else

nb_combination=0;

end

fornb_col = 1l:size (Mca, 2)

$calculate maturity of module:

maturity_arch_vec_1 = zeros(nb_component,l);
maturity_arch_vec_2 = nonzeros (Mapa(:, nb_col).*mb);

for kl=l:size(maturity_arch_vec_2,1);

maturity_arch_vec_1(kl) = maturity_arch_vec_2 (kl);
end
maturity_arch = prod (maturity_arch_vec_1,1);

%calculate uncertainty of suppliers:
maturity_sup_vec_1l = zeros (nb_component,l);
maturity_sup_vec_2 = nonzeros (Mapa(:, nb_col).*m36);

for kl=l:size(maturity_sup_vec_2,1);
maturity_sup_vec_1(kl) = maturity_sup_vec_2 (kl);

end

maturity_sup = prod (maturity_sup_vec_1,1);

%$calculte compatibility:
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%1l.generate a block for components of each architecture:
comp_block = repmat (Mapa(:,nb_col),1l,size(Mapa,l));

%$2.the compatibility matrix related to the architecture:
comp_matrix = comp_block.*m4.* (comp_block)"';

%$3.the product of compatibility:
[I,J] = find (comp_matrix);

V = zeros (nb_combination,1);
for k2 = 1l:size(I,1)

V(k2) = m4(I(k2),J(k2));
end

comp_arch = sqgrt (prod(V,1))

%$certainty of architecture:
cert_arc = maturity_arch * comp_arch * maturity_sup;

Mca (l,nb_col) = cert_arc;
end

end
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