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APPROCHE DU MODE LOCAL "ETENDU" ET EFFET ISOTOPIQUE DANS DES MOLECULES POLYATOMIQUES.

Les spectres de rotation-vibration à haute résolution sont l'unique source d'information sur des caractéristiques moléculaires telles que les interactions intramoléculaires, les états et propriétés de ces molécules. La détermination des paramètres de raies spectrales permet d'accéder à ces caractéristiques moléculaires et d'en déduire les paramètres de structure, le champ de force intramoléculaire, le potentiel intermoléculaire, les moments électrique et magnètique. Ces informations sont essentielles dans de nombreux problèmes de la chimie physique. D'une façon générale, la dynamique interne d'une molécule est déterminée par la fonction potentielle intramoléculaire. Par conséquent l'un des problèmes importants de la spectroscopie moléculaire, quand elle s'applique à l'investigation des propriétés rovibrationnelles de molécules polyatomiques, est la détermination d'une fonction potentiel intramoléculaire. Conna ître la fonction potentielle permet de résoudre l'équation de Schrödinger rovibrationnelle pour une molécule, ce qui autorise ensuite d'utiliser les valeurs propres E α et les fonctions propres ψ α dans de nombreux problèmes de physique et de chimie fondamentales et appliquées.

Il y a deux méthodes pour déterminer la fonction potentielle d'une molécule. La première méthode consiste à utiliser les calculs ab initio. Les méthodes directes permettent d'obtenir une surface d'énergie potentielle moléculaire de très grande qualité. Parallèlement, il y a de nombreux problèmes en physique moléculaire qui nécessitent non seulement une bonne connaissance qualitative mais aussi quantitative -et de très bonne qualité-des paramètres de la fonction potentielle. Le deuxième groupe de méthodes s'intitule "les méthodes variationnelles". Elles utilisent des données expérimentales de très grande précision comme données initiales dans une procédure d'ajustement des paramètres de la fonction potentielle. Mais les "meilleures" des méthodes variationnelles présentent des défauts qui restreignent leurs applications pour des molécules ayant plus de 3 ou 4 atomes. On comprend aisément ces défauts si on se souvient que toute méthode variationnelle est une procédure itérative nécessitant de construire des matrices hamiltoniennes de très grandes dimensions dans une base donnée, qui sont ensuite diagonalisées un grand nombre de fois. Le deuxième problème concerne le choix d'un système de coordonnées vibrationnelles pour écrire le hamiltonien de la molécule. C'est un choix particulièrement important car : 1. On peut utiliser plusieurs jeux de coordonnées internes si on veut obtenir la formulation la mieux adaptée pour la partie cinétique de l'hamiltonien d'une molécule quelconque. Jusqu'à maintenant on utilise un schéma de construction pour cette partie cinétique de l'hamiltonien : les coordonnées normales. Mais même en utilisant ces coordonnées normales pour la détermination de la fonction potentielle, nous montrerons ci-après que ceux-ci ne sont pas nécessairement adaptés. Nous cherchons une base qui doit être la plus générale possible pour toutes molécules polyatomiques et qui permette de représenter la partie cinétique du hamiltonien de la façon la plus générale et la plus simple pour toutes molécules polyatomiques. Et cette base doit être libre des défauts des coordonnées normales. 2. Comme écrit précédemment, le problème des schémas de construction usuels implique des matrices hamiltoniennes de très grandes dimensions, que nous devons construire et diagonaliser un grand nombre de fois. Les valeurs propres de ces matrices peuvent être obtenues avec une précision satisfaisante en utilisant, par exemple, une théorie des perturbations.

Ceci explique l'intérêt croissant d'une détermination qualitative des paramètres des fonctions potentielles moléculaires. Le Laboratoire de Spectroscopie Moléculaire de l'Université d'Etat de Tomsk en collaboration avec le Laboratoire Interdisciplinaire Carnot de Bourgogne de l'Université de Bourgogne ont développé et réalisé des méthodes pour la détermination de fonctions potentielles quelque soit la symétrie des molecules et quelque soit le nombre de noyaux les constituant. Cependant, parfois l'information sur les paramètres de la fonction potentielle ne suffit pas. Les spectres de molécules isotopiques constituent une source d'information supplémentaire car leurs propriétés physiques et chimiques sont très proches des propriétés de la molécule mère, bien que leurs spectres soient très différents. Pour résoudre de nombreux problèmes de physique chimie, il est essentiel d'avoir des informations sur les relations isotopiques entre les caractéristiques moléculaires et spectroscopiques et les paramètres des raies spectrales. Mais seulement un petit nombre de relations sont connues dans la littérature scientifique pour un petit nombre de molécules et de paramètres spectroscopiques. C'est pourquoi le développement d'une théorie de la substitution isotopique est fondamental.

Le but de ce travail de thèse est donc d'appliquer le mode local étendu et la théorie de la substitution isotopique aux molécules polyatomiques de type XY 2 (C 2v ), XY 3 (C 3v ) et XY 4 (T d ) et d'en déduire des paramètres spectroscopiques et des paramètres de résonance afin de prédire les spectres de ces molécules. Ce travail de thèse consistera donc à résoudre les problèmes suivants :

• Modification et développement de la théorie de la substitution isotopique et de l'approche du mode local étendu appliquées aux molécules polyatomiques XY 2 (C 2v ), XY 3 (C 3v ) et XY 4 (T d ) ;

• Détermination de relations générales pour les paramètres spectroscopiques des molécules étudiées en fonction des paramètres de la fonction potentielle intramoléculaire par la théorie des perturbations et des opérateurs tensoriels irréductibles ;

• Détermination de relations isotopiques permettant de relier différents types de paramètres (paramètres des blocs matriciels diagonaux, paramètres d'interaction de Coriolis et de Fermi) de différents isotopomères de la molécule de méthane avec les paramètres spectroscopiques de la molécule mère CH 4 ;

• Détermination d'une transformation des coordonnées dans le hamiltonien d'une molécule polyatomique qui permette d'écrire le hamiltonien sous une forme simple et qui s'applique pour toute substitution isotopique.

Résumé de la thèse :

Le premier chapitre de la thèse est consacré à la description des principes et méthodes de la théorie rovibrationnelle nécessaire à la compréhension à la partie originale de ce travail dont entre autres : la méthode de construction d'un hamiltonien quantique dans un système de coordonnées intramoléculaires pour une molécule polyatomique quelconque ; la méthode de résolution du problème rovibrationnel par les opérateurs rotationnels effectifs ; une première présentation sur la théorie des perturbations and la théorie des opérateurs tensoriels irréductibles.

Le deuxième chapitre de la thèse présente une étude théorique de la surface d'énergie potentielle intramoléculaire pour des molécules polyatomiques. Nous présentons ici une approche du choix d'un hamiltonien approprié à des systèmes moléculaires polyatomiques qui permette de résoudre efficacement le problème de la détermination d'une surface d'énergie potentielle par la construction et la diagonalisation de matrices de très grande dimension. Dans cette approche, le hamiltonien a une expression "simple" et peut être utilisé pour toute molécule polyatomique de caractère normal et pour tout dérivée isotopique de cette molécule. Nous considérons des molécules avec deux liaisons équivalentes X-Y. La réduction de la matrice hamiltonienne sera décrite.

Le troisième chapitre de la thèse concerne une étude théorique de la molécule CH 4 . Basée sur l'approche mode local étendu, une expression simple du paramètre d'ambigüité sinγ est estimée pour la molécule CH 4 , puis, en utilisant des relations empiriques entre les constantes de force F i..j , des relations simples sont obtenues entre les différents paramètres spectroscopiques de la molécule de méthane. Nous comparons ces valeurs avec des résultats expérimentaux et obtenons des corrélations trés satisfaisantes entre les paramètres prédits et les paramètres déduits des observations expérimentales.

Le chapitre quatre de la thèse concerne une étude théorique de la molécule CH 2 D 2 . Basée sur l'approche mode local étendu et sur la théorie de la substitution isotopique, nous déduisons des ensembles de relations analytiques simples entre différents paramètres spectroscopiques (fréquences harmoniques, coefficients d'anharmonicité, coefficients rovibrationnels, différents types de paramètres d'interaction de Fermi et de Coriolis) pour la molécule de CH 2 D 2 . Tous ces coefficients s'expriment comme des fonctions simples de quelques paramètres spectroscopiques initiaux de la molécule mère CH 4 . Des calculs tests avec ces relations isotopiques montrent que, même en l'absence totale d'informations sur l'isotopomère CH 2 D 2 , les résultats numériques sont en très bonne corrélation avec les données expérimentales mais aussi les calculs ab initio. 
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Introduction

High resolution rotation-vibration spectra of molecules are unique and definitive information source about character of intramolecular interactions, states and properties of molecules. Determined parameters of spectrum lines contain information about very important characteristics of molecules, such as structure parameters, intramolecular force field, intermolecular potential, electric and magnetic moments. This information is very important for many problems of chemical physics.

Internal dynamic of a molecule generally is determined by intramolecular potential function. Therefore one of the important problems of molecular spectroscopy, which deals with investigation of ro-vibration properties of polyatomic molecules, is a problem of determination of a intramolecular potential function. This problem is very important because knowledge of a potential function is the basis for solving the rovibrational Schrödinger equation for a molecule, which allows us to use eigenvalues E α and eigenfunctions ψ α in many problems of physics and chemistry and many applications.

There are two basic methods to determine a potential function of a molecule. The first method is use of ab initio calculations. Direct methods allow to receive high-quality potential energy surface of a molecule. At the same time there are many problems in molecular physics, which need not only qualitative but also high-quality quantitative knowledge of parameters of potential function. The second group of methods is so-called "variational" methods. They use high-quality experimental ro-vibrational data as initial data in fitting procedure of the parameters of potential function. But even the best of variational methods have some defects, which restrict their applications for molecules with more then 3-4 atoms. It is very easy to explain these defects if we remember that each variational method is an iterative procedure, which constructs huge dimensional Hamiltonian matrix in some basis and then diagonalizes it many times. The second problem is connected with the choice (selection) of vibration coordinates in the Hamiltonian of a molecule. It is important because:

1. We use different sets of internal coordinates if we want to obtain the best view of kinetic part of the Hamiltonian for arbitrary molecule. Up to now there is one scheme to construct the kinetic part of the Hamiltonian for arbitrary polyatomic molecule: one can use normal coordinates. Though if we will use normal coordinates in the determination of a potential function, it will be unsuitable (see below why). We have to use basis, which, on the one hand, will be universal and, on the other hand, allows us to represent kinetic part in the universal and simple form for any polyatomic molecule. And this basis has to be free of defects of normal coordinates.

2. As I already wrote the problem of traditional schemes is huge dimensions of Hamiltonian matrices, which we have to construct and diagonalize many times. Eigenvalues of these matrixes can be obtained with reasonable accuracy, using, for instance, the perturbation theory.

These facts explain an increasing interest to the qualitative determination of the parameters of molecular potential functions. The Laboratory of Molecular Spectroscopy of Tomsk State University in collaboration with the Laboratoire Interdisciplinaire Carnot de Bourgogne de l'Université de Bourgogne develop and realize methods for the determination of intramolecular potential functions for polyatomic molecules whatever the symmetry of the molecules and the number of nuclei in it.

However, sometimes information about parameters of potential function is not enough. A source of supplementary information is spectra of isotopic substituted molecules, because their chemical and physical properties are closely coupled with properties of the mother molecule, but spectra are very different.

To solve many problems of chemical physics it is important to have information about isotopic relations between spectroscopic and molecular characteristics and parameters of spectral lines. But in the literature the relations are known for a small number of molecular and spectroscopic parameters. It is known that such relations can be obtained from the known theory for a limited number of cases. That is why the development of isotopic substitution theory is very important.

In accordance with the above said, the goal of the present work is to apply, proceeding from the modern understanding of the theory of molecular spectra, the "expanded" local mode approach and isotopic substitution theory for polyatomic molecules of XY 2 (C 2v ), XY 3 (C 3v ) and XY 4 (T d ) type, and on this base to determine different spectroscopic parameters and resonance interaction parameters, that allow to predict spectra of these molecules. The concrete realization of the given goal consists in solving the following tasks:

• Modification and development of isotopic substitution theory and "expanded" local mode approach to XY 2 (C 2v ), XY 3 (C 3v ) and XY 4 (T d ) polyatomic molecules;

• Determination of general formulae for spectroscopic parameters of investigated molecules as functions of parameters of intramolecular potential surface on the base of operator perturbation theory and Irreducible Tensorial Sets Theory;

• Determination of isotopic relations, which allow to connect different types of spectroscopic parameters (parameters of diagonal blocks, Coriolis and Fermi interaction parameters) for various isotopomers of methane molecule with spectroscopic parameters of the mother molecule CH 4 ;

• Determination of coordinates transformation in the Hamiltonian of a polyatomic molecule, which allows to present the Hamiltonian in a simple form and at the same time to apply it for any isotopic modification.

Basic content

The first chapter of the thesis is devoted to the description of the principles and some methods of the ro-vibrational theory necessary for the understanding of the original part of the work including the method of construction of quantum-mechanical Hamiltonian in the intramolecular coordinates for an arbitrary polyatomic molecule; the method of solving the ro-vibrational problem using the effective rotational operators; the basic overview about the operator perturbation theory and Irreducible Tensorial Sets Theory.

The second chapter of the thesis is about the theoretical investigation of the intramolecular potential energy surface of polyatomic molecules. We present here an approach for a determination of the Hamiltonian of polyatomic molecules that allows one to successfully solve the problem of potential energy surface determination via construction and diagonalization of a Hamiltonian matrix of large dimension. In the suggested approach, the Hamiltonian is very simple and can be used both for any "normal" polyatomic molecule and for any isotopic species of a molecule. Molecules with two equivalent X-Y bonds are considered. Reduction of a Hamiltonian matrix is described.

The third chapter of the thesis is concerned with the theoretical investigation of the CH 4 molecule. On the base of the "expanded" local mode approach, a simple expression of the ambiguity parameter sin γ of the CH 4 molecule is estimated and then, using empirical relations between F i..j force coefficients, simple relations between different spectroscopic parameters of the methane molecule are derived. Comparison with corresponding experimental values is made, that shows more than satisfactory correlations between both (predicted and obtained from experimental data) sets of parameters.

The fourth chapter of the thesis describes the theoretical investigation of the CH 2 D 2 molecule. On the base of a compilation of the "expanded" local mode approach and the general isotopic substitution theory, sets of simple analytical relations between different spectroscopic parameters (harmonic frequencies, anharmonic coefficients, ro-vibrational coefficients, different kinds of Fermi-and Coriolis-type interaction parameters) of the CH 2 D 2 molecule are derived. All of them are expressed as simple functions of a few initial spectroscopic parameters of the mother CH 4 molecule. Test calculations with the derived isotopic relations show that, in spite of a total absence of initial information about the CH 2 D 2 isotopomer, the numerical results of the calculations have a very good correlation both with experimental data and results of ab initio calculations.

The fifth chapter of the thesis describes the theoretical investigation of the CH 3 D and CHD 3 molecules. Operator perturbation theory and the symmetry properties of the axially symmetric XYZ 3 (C 3v ) type molecules are used for the determination of the spectroscopic parameters in the form of functions of structural parameters and parameters of the intramolecular potential function. Several relations between sets of spectroscopic parameters of these molecules are obtained. The "expanded" local mode approach and the general isotopic substitution theory are used to estimate the relations between spectroscopic parameters of CH 3 D and CHD 3 , on the one hand, and with the T d symmetric isotopic species, CH 4 , on the other hand. Test calculations with the isotopic relations show that, even in the total absence of initial information about the CH 3 D and CHD 3 species, numerical results of calculations are in a good agreement both with experimental data and results of ab initio calculations.

This thesis then ends with a conclusion, detailed analytical relations given in appendices and an updated list of references.

Chapter 1

Methods of theoretical investigation of molecular spectra

In this chapter we present some basic ingredients and results of the rotation-vibration theory [1,2,3] necessary to the understanding of this thesis.

Rotation-vibration Hamiltonian of a molecule

A theoretical description of a natural phenomenon implies to build a mathematical model in order to describe this phenomenon. Mathematical models can be constructed in different ways if one wants to take into account physical processes that really occur in nature. In connection with this there is the problem of choice of physically confirmed / affirmed (substantiated) mathematical models of investigated objects. The use of non appropriate models creates different kinds of errors, not only quantitative but also qualitative. In the problem of molecular spectroscopy this goal may be summarized in the construction of a correct Hamiltonian of a molecular system. Solutions of the Schrödinger equation will depend on the choice and on the form of the Hamiltonian operator.

From a physical point of view, a molecule is a physical system, which contains atomic nuclei and electrons. Therefore if we want to determine precisely the energy levels of a molecule, we need to solve the Schrödinger equation with a Hamiltonian that depends on the coordinates of all nuclei and spins of all particles in the molecule and that takes into account all kinds of interactions between all these degrees of freedom. This is a huge and difficult scientific problem. The precise resolution of the Schrödinger equation with as so complicate as possible Hamiltonian is an extremely huge task and barely unsolvable when the number of degrees of freedom increases. A realistic way to express a theoretical description of a molecular spectra consists to use different kinds of approximations in the construction of the Hamiltonian of a molecule.

Typically, non-relativistic Hamiltonians that are used in molecular spectroscopy have the following form

H = T nucl + T el + V, (1.1) 
where T nucl and T el are respectively operators of kinetic energy of nuclei and electrons. V represents an operator of potential energy of molecule, which contains energy of electron-nucleus attraction and energy of electron-electron and nucleus-nucleus repulsion. Therefore, the operators T nucl , T el and V , in a Cartesian system of coordinates, may be expressed as follows

T nucl = - 2 2 N 1 m N ∂ 2 ∂x 2 N + ∂ 2 ∂y 2 N + ∂ 2 ∂z 2 N , T el = - 2 2 i 1 m el ∂ 2 ∂x 2 i + ∂ 2 ∂y 2 i + ∂ 2 ∂z 2 i , V = i, j>i e 2 r ij + N, N >N Z N Z N r N N - i,N eZ N r iN , (1.2) 
where m N and m el denote the masses of nuclei and electron; e and Z N -electron charge and nucleus charges; r ij (resp. r N N ) is the distance between particles i and j (resp. N and N ).

x N , y N , z N and x i , y i , z i are, respectively, the coordinates of the nuclei and electrons in the chosen Cartesian space-fixed system.

It should be noted that the operator (1.2) is rather written in the following standard form

T nucl = - 2 2 N,α=x,y,z 1 m N ∂ 2 ∂x 2 N α , T el = - 2 2 i,α=x,y,z 1 m el ∂ 2 ∂x 2 i,α , V = i, j>i e 2 r ij + N, N >N Z N Z N r N N - i,N eZ N r iN . (1.3) 
As the molecular translational motion energy of the center of mass of the system is not taken into account, then the most convenient and most frequently applicable procedure for describing molecular states is the one wherein the state functions depend on molecular orientation (rotational variables) with respect to the space-fixed coordinate system and relative arrangement of particles forming the molecule (vibrational variables). In this connection, the problem consists in the transformation of a classical-or quantum-mechanical Hamiltonian (for example, (1.1)) from a space-fixed system of coordinates to a molecule-fixed one. This transformation may be described as follows: the molecular Hamiltonian as a function of generalized coordinates x n and derivatives with respect to them, ∂/∂x n , can always be transformed to a system of new generalized coordinates q m if the transformation laws for the coordinates and the derivatives

x n = f n (q m ), ∂/∂x n = f n (q m , ∂/∂q l ) (1.4)
are known. It is known that if the transformation (1.3) is nonsingular, i.e., the Jacobian of the transformation D(∂x n /∂q m ) is nonzero, then the relations such as Eqs. (1.3) for partial derivatives can always be uniquely determined. It is important to note that many different types of transformation (1.3) may be chosen for a given molecular system. One may want for instance to eliminate the spin variables, or to chose a system of coordinates that takes into account the symmetry of the molecule, or to prefer another system of coordinates where identical bonds may be treated uniformly, etc. However, whatever the choice of coordinates, the eigenvalues must coincide and of course one should be able to convert the eigenfunctions defined in a set of coordinates to another ensemble of eigenfunctions defined in another set of coordinates. Thus the choice of a precise type of coordinates depends of the available physical data or for some more suitable application or because it may reduce the size of the problem to a computational solvable one. At present, it is known that one of the most successful and powerful choice of coordinates is

x N α = R α + β=x,y,z K αβ r N β , x iα = R α + β=x,y,z K αβ r iβ , (1.5) 
which enables one to separate out different types of motions in the molecule. Here x N α and x iα are the components of vectors describing the positions of the N th nucleus and the ith electron in a space-fixed system of coordinates; R is the vector of the origin of the molecule-fixed system of coordinates with respect to the space-fixed one; K is the matrix of directional cosines of angles between the axes of old and new systems. The molecule-fixed system of coordinates is determined in such a way that its origin is at the center of mass of the molecule. Mathematically this condition reads:

N m N r N β + i m el r iβ = 0. (1.6) 
Here r iβ are the components of the ith electron in the molecule-fixed system, and r N β are expressed as

r N β = r e N β + λ m -1/2 N l N βλ Q λ , (1.7) 
Q λ (1) are vibrational coordinates. We shall here choose the constants r e N β and l N βλ in such a way that, as in the vibration-rotation theory of spectra, the following conditions will be fulfilled:

• r N β coincides with r e N β when the nuclei are in the equilibrium positions;

• the molecule-fixed system of axes coincides with the principal axes of inertia of the molecule when the nuclei are in the equilibrium positions;

• the vibrations are normal (2) [3,4];

• the Eckart conditions (3) [2, 3, 5] are fulfilled. (1) Coordinates Q λ have dimension сm•g 1/2 . Often used nondimensional coordinates q λ = 2πcω λ 1/2 Q λ , c is the speed of light, ω λ are the harmonic frequencies of a molecule. Values l N βλ are nondimensional. (2) Vibrations are called normal if the operator that describes system of harmonic oscillators is

λµ α λµ -i ∂ ∂Q λ -i ∂ ∂Q µ + λµ β λµ Q λ Q µ , α λµ = β λµ = 0 if λ = µ.
( 3) The Eckart conditions are:

N,β,γ ε αβγ m 1/2
N r e N β l N γλ = 0, N m N r e N α r e N β = 0, α = β.

Taking into account the independence of the vibrational coordinates Q λ , these requirements can be written as

N,β,γ ε αβγ m 1/2 N r e N β l N γλ = 0, 1 ≤ λ ≤ 3N -6, α = x, y, z, (1.8) 
N,α l N αλ l N αµ = δ λµ , ≡ l • l = 1Id , (1.9)

W λµ = ∂ 2 V ∂Q λ ∂Q µ Q=0 = 0, 1 ≤ λ = µ ≤ 3N -6, (1.10) 
N m N r e N α r e N β = 0, α = β (thus 3 equations), (1.11)

∂V ∂Q λ Q=0 = 0, 1 ≤ λ ≤ 3N -6, (1.12) 
where V is the molecular potential function; ε αβγ -is the completely antisymmetric tensor. To the relations (1.7) - (1.11) we shall add the condition (1.5) which can be represented as Formally, 3N conditions (1.10) -(1.12) are sufficient to determine 3N parameters r e N β ; and 3N (3N -6) relations (1.7) -(1.9) and (1.13) are sufficient to determine 3N (3N -6) constants l N βλ . The transformation of the coordinates (1.4) is thereby set in concrete form.

However, the scheme described by the relations (1.4) -(1.13) which introduces new coordinates has an essential disadvantage. Since the origin of the new coordinate axes is placed at the center of mass of the total molecule, to determine the electronic and nuclear coordinates at every moment in time it is necessary to know not only the nuclear configuration but also the arrangement of all electrons relative to the nuclei (see conditions of Eq. (1.12)). At that point the problem is substantially complicated.

The use of a new coordinates system in which both r N β and r iβ are determined not with reference to the center of mass of the total molecule, but with reference to the center of mass of the nuclei is more natural. In this case the position of the coordinate axes depends only on the nuclear configuration and, hence, they can always be determined easily. As was shown in [6] in this case the coordinates transformation law takes the form

x N α = R α + β K αβ r e N β + λ l N βλ √ m N Q λ - m el M i r iβ , x iα = R α + β K αβ r iβ - m el M j r jβ , (1.15) 
where now r N β and r iβ are the nucleus and electron positions in the system of reference whose origin is fixed at the center of mass of the nuclei, and

M = N m N + i m el
is the total mass of the molecule. In this case, the equations for determining r e N β and l N βλ have the same form as Eqs. (1.7) - (1.11) and (1.13) had previously, but now r e N β and r iβ are used in place of r e N β and r iβ . Condition (1.12) now takes the form: N m N r e N β = 0.

(1. 16)

Being now aware of the way the coordinates are transformed (see Eqs. (1.14)), it is possible to determine the transformation law for the operators P N α = -i ∂ ∂x N α and P iα = -i ∂ ∂x iα . As it is shown in [3,6] they have the form

P iα = m el M P α +
β=x,y,z

K αβ P iβ , P N α = m N M P α + β=x,y,z K αβ λ √ m N l N βλ P λ - γδχ=x,y,z m N ε βγχ r e N γ I -1 χδ N δ - m el M N j P jβ , (1.17) 
where M N = N m N is the total mass of the nuclei; P α is conjugate impulse to coordinate of translation of molecule as a whole; P λ is conjugate impulse to Q λ and I χδ are elements of the tensor of moments of inertia which depend on Q λ . Operators N α have the form

N α = J α -G α -L α ,
where J α are the components of the total angular momentum;

G α = λµ ζ α λµ Q λ P µ
are the components of vibrational angular momentum and

L α = βγ ε αβγ i r iβ P iγ
are the components of the electron angular momentum. Finally, after different kind of straightforward transformations, wave function normalization in new coordinates, etc. the Hamiltonian assumes the form [3,6] 

H = α P 2 α 2M + 1 2m el iα P 2 iα + 1 2M N α i P iα 2 + 1 2 λ P 2 λ + 1 2 αβ (J α -G α -L α ) µ αβ (J β -G β -L β ) + V - 2 8 α µ αα , (1.18) 
where µ αβ are the elements of the matrix of inverse moments of inertia. The first term in (1.17) describes a translational motion of the total molecule as a whole, the second term describes the "kinetic energy" of the relative electron motion, the third term is present because of the difference between the center of mass of the nuclei and the center of mass of the total molecule and describes the so-called "mass isotopic energy shift", the fourth and fifth describe ro-vibration motion of nuclei core and its rotation, the operator V is the transform of expression (1.2) and the last term -( 2 /8) α µ αα is called Watson term.

Formula (1.17) is an expression of the Hamiltonian of a polyatomic molecule in internal coordinates. The coordinates transformation used here can be applied to more complicated cases, for example to take into account spin effects, external magnetic or electric fields, etc. It should be noted that the Hamiltonian transformation from (1.1), (1.2) to (1.17) here before can be used only for nonlinear molecules.

Born-Oppenheimer approximation

To consider intramolecular potential energy surface (PES) it is needed to discuss about the Born-Oppenheimer approximation [4]. The Hamiltonian of a free molecule without external fields is a sum of kinetic energy of nuclei and electrons and their electrostatic interaction (1.1). Different small quasirelativistic additions, effects dealing with spin-spin and spin-orbit interactions, etc. can be taken into account by using perturbation theory. As already mentioned above, exact solution of the Schrödinger equation with Hamiltonian (1.1) for polyatomic molecules can not be obtained. Consequently it is convenient to consider another form for the Hamiltonian (1.17). It was shown in [2] that the Hamiltonian (1.17) may be expressed has a sum of three parts

H = H el + ∆H 1 + ∆H 2 ,
where

H el = 1 2m el iα P 2 iα + V - 2 8 α µ αα , ∆H 1 = α P 2 α 2M + 1 2 λ P 2 λ + 1 2 αβ µ αβ (J α -G α )(J β -G β ), ∆H 2 = 1 2M N α i P iα 2 + 1 2 αβ µ αβ (L α L β -(J α -G α )L β -L α (J β -G β )).
(1. 19) Solution of the Schrödinger equation in the Born-Oppenheimer approximation consists of two parts:

• the motion of electrons in the field of slow-moving nuclei;

• the motion of the nuclei in the effective field of the electrons.

The first part is a solution of stationary Schrödinger equation with Hamiltonian H el :

H el ψ el n (∆r N K ) = E n (∆r N K )ψ el n (∆r N K ) ≡ V n (∆r N K )ψ el n (∆r N K ). (1.20) 
It should be noted that eigenfunctions and eigenvalues of H el depend on distance between nuclei ∆r N K as a parameter. Potential function is some parameterization of points of V n (∆r N K ) when n is fixed for different values of ∆r N K . A widely used method to obtain the PES of a molecule is the use of different ab initio calculations. However the accuracies in the determination of vibrational-rotational line positions in present experiments are 10 5 -10 6 times greater. It is clear that even the best results of direct PES-calculations should be improved on the basis of these experimental data. That's why there are semi-empirical methods in which is solved the Schrödinger equation with Hamiltonian (effective Hamiltonian of isolated electronic state): The two first terms of rhs of (1.22) are written in Born-Oppenheimer approximation; the third and fourth (resp.) terms of rhs of (1.22) are adiabatic and nonadiabatic (resp.) correction to Born-Oppenheimer approximation. It has been shown in [2] that these two last terms lead to correcting terms of order κ 4 for the following ro-vibrational Hamiltonian

H ef f n = V n (∆r N K ) + ψ el
H = 1 2 λ P 2 λ + 1 2 αβ µ αβ (J α -G α )(J β -G β ) + V, (1.22) 
where κ = m el M 1/4 which is sometimes called the Born-Oppenheimer parameter.

Within the Born-Oppenheimer approximation, the PES remains unchanged for all isotopomers. This fact is extremely important because it allows to use experimental informations about rotational-vibrational spectra of all possible isotopomers of a molecule.

Isotopic Substitution Theory

There are presently many problems in rotational-vibrational spectroscopy in which can be used these isotopic properties of the PES, for example for the determination of the molecular structure, parameters of the potential function, dipole moment, etc. This can be done using relations between spectroscopic parameters of the mother molecule and its different isotopic modifications [8].

As the normal coordinates are functions of atomic masses, then parameters as harmonic frequencies, anharmonic parameters, etc. are functions of atomic masses too. Therefore to obtain the isotopic relations between the molecular and spectroscopic constants of different isotopomers one should consider the relationships between the coordinates of the mother molecule and its isotopically substituted modifications. Thus it is necessary to consider system of coordinates transformation in isotopic substituted molecule and determine the parameters of this transformation.

Let the Hamiltonians

H(x) = N α P 2 N α 2m N + V (x N α ), (1.23) 
and

H (x) = N α P 2 N α 2m N + V (x N α ) (1.24)
be the Hamiltonians of the reference molecule and its arbitrary isotope. Here x N α are the coordinates of nucleus number N and P N α = -i ∂/∂x N α .

The isotope operator H (x) (1.25) differs from the reference molecule Hamiltonian H(x) (1.24) only in the denominator in the first term, but the potential function in both these operators is the same. It is convenient to represent the operator H (x) (1.25) as

H (x) = H(x) - N α m N -m N 2m N m N P 2 N α , (1.25) 
where H(x) is the Hamiltonian of the reference molecule (1.24). The second term of the rhs of (1.26) can be interpreted as an operator which is responsible for variations in the molecular spectrum due to isotopic substitution.

To solve our problem it is necessary to make transformation from Cartesian coordinates

x N α in the space-fixed system to intramolecular coordinates in the Hamiltonian (1.24) and also in the Hamiltonian of the isotopic species (1.25). This transformation put the Hamiltonians in the Watson form [7], which satisfies the Eckart conditions.

It should be noted that the transformation from x N α of space-fixed system to intramolecular coordinates q is not the only one leading from the operator H (x) to the operator H (q). It is known that there are many of nonsingular coordinates transformations that transform the Hamiltonian operator of the isotope. As a result we will have Hamiltonian in intermediate form. The set of nonsingular coordinate transformations form a group [9]. Therefore there is coordinate transformation in the group which allows to transfer from intermediate form to Watson form of the Hamiltonian.

At the same time, the intermediate operator has a property that is very important for the subsequent analysis: except for the masses m N all the other parameters occurring in this Hamiltonian are the reference molecule parameters, i.e., the harmonic frequencies ω λ , the anharmonic constants k λ...µ , the equilibrium parameters, the moments of inertia, the transformation coefficients, etc. If now the transformation from intermediate form to Watson form is determined, one can transform Hamiltonian directly to the Watson operator, keeping the dependence on the reference molecule parameters. Comparing the result thus obtained with the standard Watson operator, one can obtain isotopic relations between the molecular parameters.

In the first step one should determine the transformation coefficients l N αλ . It was shown [8] that transformation coefficients of a substituted isotopomer are functions of characteristics of a mother species

l Kγλ = αµ K e αγ m N m N 1/2 l Kαµ β λµ , (1.26) 
where indices N , K numerate atoms of the molecule; parameters of the isotopic substituted molecule are marked with a apostrophe ( ); indices α, γ indicate x, y or z; λ, µ numerate vibrational modes; m N and m N are masses of nuclei of mother and isotopic substituted molecules, respectively; K e αγ is the matrix that provide a rotation of the molecular equilibrium coordinate axes from a mother species to a substituted one under isotopic substitution; β λµ are the elements of the matrix that is inverse to the matrix {α λµ } with the elements α λµ . It is possible to show [8] that the following condition holds

ν α λν α µν = A λµ = N α m N m N l N αλ l N αµ , (1.27) ν 
A λν W ν α νµ = α λµ W µ .

(1. 28) This is a set of nonlinear equations for determining the parameters α λµ . As is well known this set of equations has a nontrivial solution only when the condition

det{AW -W } = 0 (1.29)
is fulfilled. Here A is the symmetric matrix with the elements A λν , W and W are the diagonal matrices whose elements are the squares of the reference and substituted molecule harmonic frequencies, respectively (W λν = ω 2 λ δ λν and W λν = ω 2 λ δ λν ). Using the isotope harmonic frequencies ω λ determined by Eq. (1.31) and inserting them into Eqs. (1.29) and (1.30), one can define the parameters α λµ as well.

The elements of the rotation-matrix K e αβ satisfy the conditions

α K e αβ K e αγ = α K e βα K e γα = δ βγ (1.30) and β J e αβ K e βγ = I e γγ K e αγ , (1.31) 
where I e γγ are equilibrium moments of inertia of isotopomer, and

J e αβ = γδξ ε αγξ ε βδξ j e γδ , (1.32) 
where

j e γδ = j e δγ = N m N r e N γ r e N δ -K m K r e Kγ L m L r e Lδ N m N . (1.33) 
Here r e N α are the equilibrium Cartesian coordinates of the nucleus of the mother molecule in the molecular coordinate system.

Also we need to know isotopic relations for anharmonic parameters [8]:

k λ µ ν = λ≤µ≤ν (λ ,µ ,ν ) ω λ ω µ ω ν ω λ ω µ ω ν 1/2 k λµν α λλ α µµ α νν + + 2 πc 1/2 i (λ ,µ ν ) ω 2 i (ω λ ω µ ω ν ) 1/2 α iλ α i µ ν . (1.34)
All values in Eq. (1.36) are determined below except α i µ ν ; k λ...µ -parameters are anharmonic force constants corresponding to nondimensional normal coordinates. The values α i µ ν also are known but they are complicated functions of molecular parameters, thus we give their expressions in [8,10]).

(λ ,µ ,ν ) and (λ ,µ ν ) denote summation over all permutations of different indices from the set {λ µ ν }. In this case, one will assume that for the indices {λ µ ν } not separated by a comma the condition µ ≤ ν is fulfilled.

Thus using the formulae here-before, the set of nontrivial relations for molecular parameters of different isotopomers can be obtained. As a first step one needs to know transformation coefficients, to analyze parameter of ambiguity (explanations concerning the notion of parameter of ambiguity, for the CH 4 molecule, will be more precisely developed in Chapter 3, Section 3.2. Reader may also see [11,12]) and to apply it to Eqs. (1.29) - (1.35). As a result we will obtain the relations between molecular parameters of different isotopomers.

Operator Perturbation Theory

In our investigations one needs to describe the molecule as a quantum system. And there is a question: how may we solve the Schrödinger equation and obtain the eigenvalues and eigenfunctions of this quantum system? It is known that the eigenvalues are energy levels of the quantum system, and the eigenfunctions allow to calculate the transition probabilities and average values of physical quantities of the molecule. But the exact solutions of the Schrödinger equation can be found only in a small number of simple cases (for example for molecular ion H + 2 ). That's why in most of the problems one should use perturbation theory [4]. Let us suppose that the Hamiltonian of a given physical system is of the form H = H 0 + h. Here h is a small correction (or perturbation) to the unperturbed operator H 0 , i.e. E h << E 0 where E 0 represent the eigenvalues of H 0 and E h the contribution due to h, of course the eigenfunctions and eigenvalues of H 0 are supposed to be known. The Hamiltonian can be expanded into separate parts, in our case, we suppose that the development of h is possible as a polynomial expansion of the parameter κ:

H = H 0 + ∞ n=1 H n (κ n ).
(1.35)

κ n indicates that the operator H n is small if compared with H 0 and that H n-1 > H n for all n > 0. We have now to solve the Schrödinger equation using the traditional perturbation theory. However, in molecular spectroscopy, operators H n (κ n ) may be functions of others variables, than the ones include in the H 0 operator. If the perturbative operator h depends on the same variables as the operator H 0 , then matrix elements of operator h calculated in the eigenfunctions of the operator H 0 are known. If the operator h depends on the same variables as H 0 and also others variables, then matrix elements of the operator h calculated in the eigenfunctions of the operator H 0 are not determined.

In most of the cases different kinds of so-called methods of effective operators are used [3]. The goal of these methods is: if one cannot obtain the solutions of the Schrödinger equation with the Hamiltonian H (mainly due to the mathematical difficulty to solve analytically, exactly or even approximatively, the Schrödinger equation), then one try to find another Hermitian operator H that satisfies the next properties: The operator H that satisfied the conditions (1) -( 2), is called effective Hamiltonian for the subset B. For instance, for an isolated electronic state one can construct the effective rotationalvibrational operator, also for the isolated electronic-vibrational state one can construct the effective rotational operator. One of the methods of construction of the effective rotational operators was developed in [3]. This method is based on the use of projection operators [2,3]. Results obtained in [3] allow to determine effective operator and to express parameters of the symmetrized Hamiltonian as analytical functions of parameters of the initial vibrational-rotational Hamiltonian.

Consider that the Hamiltonian of the described system is a function of two types of variables (for instance vibrational variables and rotational variables) and can be expressed as

H = H 0 (a) + h(a, b), (1.36) 
where H 0 (a) is the zeroth-order operator (unperturbed operator), a and b are the sets of variables the Hamiltonian depends on, h(a, b) is a perturbative contribution depending on both a and b variables. It is known in quantum mechanics theory, that for the abstract quantum system it is possible to obtain eigenvalues of any Hermitian operator (not only the Hamiltonian operator). For this we need to consider a complete, if possible orthonormal, set of functions, then to construct the matrix and then to diagonalize this matrix from which we may deduce the eigenvalues and eigenfunctions of the operator.

We denote E a and |α the eigenvalues and eigenfunctions of the operator H 0 , noting that it is always possible to build |α as a complete orthonormal set of functions. E a and |α depend on the a-variable. Let |i be any set of functions, on which the perturbative operator h is acting, such that the dimension of basis |i is equal to the dimension of the Hilbert space which describes the physical problem associated with h. These functions depend on the variables a and b and may also satisfy normalizing conditions. The set of functions |α, i = |α |i is a complete orthonormal set of functions of the operator H = H 0 + h. In that case one can determine eigenvalues and eigenfunctions of the operator (1.38) as in the known scheme [4]: to construct the matrix of the operator H in the basis |α, i , then to diagonalize this matrix by a unitary transformation A H → H = A † H A.

(1.37)

Elements of the diagonal matrix H are the eigenvalues of the Hamiltonian H and the eigenfunctions |Ψ β of the operator H will have the following form

|Ψ β (a, b) = αi A β,αi |α, i , (1.38) 
where A β,αi are the elements of the unitary matrix A that diagonalizes the initial matrix H. However, the process of construction and diagonalization of the matrix H can be divided into two steps: 1. to construct the matrix α|H|β in the basis |α (in that case the matrix elements α|H|β depend on b-variables). In general, the elements of the matrix α|H|β will be nonzero. 2. to construct the matrix i| α|H|β |j and determine the eigenvalues of the operator H (see (1.37), (1.38)).

But one can do it in another way. Instead of H, we decide to consider the operator:

H = G † HG. (1.39)
Here G is an unitary operator and

G = exp i ∞ n=1 g n (κ n ) , (1.40) 
where g n = g n (a, b) is an Hermitian operator of order (∼ κ n ). Now one need to construct the matrix α|H |β as for the initial operator H. Let's divide the space L α of wave functions |α into two subspaces L α 0 and L α with L α = L α 0 + L α (the space L α 0 is a finite-dimensional space). Thus all matrix elements α|H |β are divided into four sets of elements: The operator H ef f is called the effective operator of a system of N states |α 0 1 ,|α 0 2 , . . . ,|α 0 N . The most interesting case is when H ef f is reduced into a 1 × 1 dimension matrix. In that case H ef f is called the effective operator of an isolated state and it has the following form [3]: .41) where E α are eigenvalues of the α-state.

α 0 |H |β 0 , α 0 |H |β , α |H |β 0 , α |H |β .
H [0] = E 0 + 0|h|0 + α =0 0|h|α α|h|0 E 0 -E α + + α =0,β =0 0|h|α α|h|β β|h|0 (E 0 -E α )(E 0 -E β ) - 1 2 α =0 0|h|0 0|h|α α|h|0 + 0|h|α α|h|0 0|h|0 (E 0 -E α ) 2 + . . . ( 1 
But in practice there are many cases of systems with two, three and more interacted states. The effective operator of a system with resonances has the next form [3,13,14] (taking into account the third-order corrections of the perturbation theory):

H xy = H xy (0) + H xy (1) + H xy (2) + H xy (3) + . . . , (1.42) 
where the operators H xy (n) are

H xy (0) = E x δ xy , H xy (1) = x|h|y , H xy (2) = 1 2 α ∈Ω x|h|α α|h|y 1 E x -E α + 1 E y -E α H xy (3) = 1 2 α,β ∈Ω x|h|α α|h|β β|h|y 1 (E x -E α )(E x -E β ) + 1 (E y -E α )(E y -E β ) - - 1 2 x ∈Ω α ∈Ω x|h|α α|h|x x |h|y (E y -E α )(E x -E α ) - 1 2 x ∈Ω α ∈Ω x|h|x x |h|α α|h|y (E x -E α )(E x -E α ) (1.43)
and Ω is the space of all interacted states. The formulae here-before allow to connect parameters of the vibrational-rotational Hamiltonian with fundamental molecular constants.

On the base of results in (1.46) one can obtain the form of diagonal blocks of the effective operator H xx . The operator h = H -H 0 has the next form:

h = ∞ n=1 h n (κ n ).
(1.44)

For molecules of different symmetry the form of operators h n is not the same.

The diagonal block H xx can be expressed as follows (for asymmetric top molecules):

(hc) -1 H xx = λ ω λ v λ + 1 2 + λµ x λµ v λ + 1 2 v µ + 1 2 + . . . + γ B e γ - γ α γ λ v λ + 1 2 J 2 γ + + 1 2 αβγδ τ e αβγδ J α J β J γ J δ + . . . (1.45) 
One can see that the formulae for spectroscopic parameters as a functions of fundamental parameters of a molecule and the resonant blocks of the effective Hamiltonian can be easily obtained.

Choice of unitary transformation for effective Hamiltonian

It is known that an effective Hamiltonian of an isolated vibrational state |v is expressed as:

H ef f [v] = |v v|H vv (1.46)
It should be noted that an effective rotational Hamiltonian is determined with some ambiguity, because we can make unitary transformation:

H ef f (1) = pqr
A pqr (J p x J q y J r z + J r z J q y J p x ) = P + pqr A pqr (J p x J q y J r z + J r z J q y J p x ) P = P + H ef f (2) P.

(1.47)

1. The difference between operators H ef f (1) and H ef f (2) is into difference between coefficients A pqr and A pqr ;

2. The unitary operator P, which is also a rotational operator, can be written as

P = exp[ı pqr S pqr (J p x J q y J r z + J r z J q y J p x )]
where S pqr are coefficients, which are not determined uniquely.

The goal is to chose an operator P, that is the coefficients S pqr , such that it simplifies the initial effective Hamiltonian, by reducing the number of total calculations within the transformed Hamiltonian, or/and such that it gives a more diagonal Hamiltonian, etc. But, for instance in the case of a step-by-step diagonalization process by multi-contact transformations, as the main condition imposed on P is to let invariant the already diagonalized first orders of the transformed Hamiltonian, this condition does not defined on a unique way, does not impose without ambiguity the choice of the operator P at a certain order of the contact transformation.

Thus we can make a particular choice of the operator P i.e. of the coefficients S pqr , such that it leads to a convenient form of the effective transformed Hamiltonian.

Basis of the Irreducible Tensorial Sets Theory

On the base of methods, described in the previous paragraphs, one can efficiently construct the Hamiltonian of a molecule as a quantum system. It allows to determine energies, transition probabilities, different fundamental parameters, etc. of a molecule. However, for molecules of high symmetry (for example the methane molecule) the obtained Hamiltonians of these molecules may have complicated form. On the other hand, we can improve (simplify) the process of constructing and the final form of the Hamiltonian using theorems and statements of the Irreducible Tensorial Sets Theory.

The Irreducible Tensorial Sets Theory is a powerful theoretical tool in physics to describe the molecule as a quantum system. It is known that in the frame of Irreducible Tensorial Sets Theory it is possible to construct linear combinations of the operators or wave functions that are symmetrized in accordance with the irreducible representations (irrep) of a symmetry group of the described quantum system.

Irreducible tensors.

Consider a set of orthonormal functions as being a vector in a n-dimensional vector space L n . This vector x with components x i (i = 1, 2, . . . , n) transforms to another vector x = gx under operations g of the group G of linear transformations. The components of the vector x are:

x i = gx i = j T ji (g)x j .
(1.48)

We can construct products x i y j of two vectors x and y (with components x i and y j ) of the space L n that are transformed under operations g ∈ G as

(x i y j ) = g(x i y j ) = k,l T ki (g)T lj (g)x k y l = kl T kl,ij (g)x k y l , (1.49) 
where the matrix T kl,ij (g) is the direct product of the matrices T ki (g) and T lj (g). The set of n 2 values (as products x i y j ) transformed under operations g is called a tensor of the second order. We denote this tensor A ij .

The tensor A ij is a symmetric tensor if A ij = A ji . The tensor A ij is an antisymmetric tensor if A ij = -A ji . Any tensor of the second order may be split into symmetric and antisymmetric parts:

A ij = 1 2 [A ij + A ji ] + 1 2 {A ij -A ji } (1.50)
Analogously it is possible to construct the tensor A i 1 i 2 ...i l , where l is the order of the tensor.

The tensor

A i 1 i 2 ...i l is a set of n l values, A i 1 i 2 ...i l = l k=1 x (k)
i k , transformed under operations g (as in (1.48)) as:

A i 1 i 2 ...i l = j 1 j 2 ...j l l k=1 T j k i k (g) A j 1 j 2 ...j l .
(1.51)

The matrices of the transformation (1.51) for different g ∈ G form the representation of the group G which is called tensor representation of the lth order. In general, this representation is a reducible representation because it is product of l representations of nth order (1.48).

A vector is a tensor of first order. A scalar is a tensor of zeroth order. An irreducible tensor of symmetry Γ of the group G of linear transformations is a set (4) 

of [Γ] values Ψ (Γ)
i , which transform under operations g of the group G in accordance with the irreducible representation T (Γ) of the group G:

gΨ (Γ) i = Ψ (Γ) i = j T (Γ) ji (g)Ψ (Γ) j , (1.52) 
here i ≡ {i 1 , i 2 , ...i l } and j ≡ {j 1 , j 2 , ...j l } If G is the SO(3) group, then the set of (2J + 1) values Ψ (J)

i , transformed under irreducible representation D (J) , is called the spherical tensor of rank J. For example, the set of (2J + 1) spherical functions Y M J (M = -J, ..., J) is the irreducible tensor of rank J. We can add two irreducible tensors φ

(Γ) i and Ψ (Γ) i , if they are both transformed under irreducible representation D (Γ) of the group G: φ (Γ) i + Ψ (Γ) i = χ (Γ) i .
(1.53)

As a result we obtain the irreducible tensor χ (Γ)

i , transformed under the same irreducible representation D (Γ) . The direct product of two irreducible tensors is defined as

χ (Γ) k ≡ [φ (γ 1 ) × Ψ (γ 2 ) ] (Γ) k = ij φ (γ 1 ) i • Ψ (γ 2 ) j • F γ 1 iγ 2 j (Γ)k , (1.54) 
( 4) [Γ] denotes the dimension of the irrep Γ.

where F are Clebsch-Gordan coefficients (we will discuss this point in the next section of this paragraph). As a result we obtain the irreducible tensor χ (Γ) , transformed under irreducible representation D (Γ) . The D (Γ) is contained in the expansion of the direct product D (γ 1 ) × D (γ 2 ) . An irreducible tensor operator is the set of operators P (Γ)

i , transformed under operations R of the symmetry group of the space, in which these operators act on, in accordance with irreducible representation D (Γ) of this group:

R -1 P (Γ) i R = k [D (Γ) (R)] k i P (Γ)
k .

(1.55)

Clebsch-Gordan coefficients.

It is known [18] that the product of two irreducible representations of the group G is, in the general case, a reducible representation, and it can be expanded into a sum of irreducible representations as:

D (γ 1 ) × D (γ 2 ) = Γ n(Γ)D (Γ) .
(1.56)

The expansion (1.56) is a Clebsch-Gordan series and coefficients of this expansion can be calculated (see [5,18,19]). The Clebsch-Gordan coefficients are the coefficients

F γ 1 i 1 γ 2 j 2 (nΓ)j
, defined in (1.54), which perform the explicit direct sum decomposition of the tensor product of two irreducible representations

D (γ 1 ) × D (γ 2 ) into irreducible representations D (Γ) [Ψ (γ 1 ) × Ψ (γ 2 ) ] (nΓ) j = i 1 i 2 F γ 1 i 1 γ 2 i 2 (nΓ)j Ψ (γ 1 ) i 1 Ψ (γ 2 ) i 2 , (1.57) 
where n ≡ n(Γ).

One may also find many others notations for Clebsch-Gordan coefficients:

F γ 1 i 1 γ 2 i 2 (nΓ)j ≡< γ 1 i 1 γ 2 i 2 |(nΓ)j >≡ γ 1 γ 2 nΓ i 1 i 2 j . (1.58) 
If one considers only unitary transformations, it exists an unitary transformation from basis

Ψ (γ 1 ) i 1 Ψ (γ 2 ) i 2 to Ψ (nΓ) j
through unitary matrix elements < γ 1 i 1 γ 2 i 2 |(nΓ)j > (as can be seen from (1.57)).

Wigner introduces another notation for the Clebsch-Gordan coefficients which are called

3Γ-symbol γ 1 γ 2 γ 3 i 1 i 2 i 3
. They are defined following:

γ 1 γ 2 γ 3 i 1 i 2 i 3 = [γ 3 ] 1/2 γ 1 γ 2 γ 3 i 1 i 2 i 3 . (1.59)
The 3Γ-symbols have symmetry properties. An even permutation of the columns leaves the value unchanged

γ 1 γ 2 γ i 1 i 2 i = γ 2 γ γ 1 i 2 i i 1 = γ γ 1 γ 2 i i 1 i 2 , (1.60) 
while an odd permutation is equivalent to a multiplication by (-1) γ 1 +γ 2 +γ :

γ 1 γ 2 γ i 1 i 2 i = (-1) γ 1 +γ 2 +γ γ 2 γ 1 γ i 2 i 1 i = (-1) γ 1 +γ 2 +γ γ 1 γ γ 2 i 1 i i 2 . (1.61)
For the molecules we are concerned with in this report, the possible values of (-1) Γ are given by:

1. for C 2v point symmetry group: (-1)

A 1 = (-1) B 1 = (-1) B 2 = 1, (-1) A 2 = -1
2. for C 3v point symmetry group: (-1)

A 1 = (-1) E = 1, (-1) A 2 = -1
3. for T d point symmetry group: (-1)

A 1 = (-1) E = (-1) F 2 = 1, (-1) A 2 = (-1) F 1 = -1
If one of the representations in the 3Γ-symbol is the totally symmetric representation (A 1 ), then we can use the following formula:

A 1 Γ Γ i i = δ ΓΓ δ ii [Γ] -1/2 . (1.62)
There are orthogonality properties for the 3Γ-symbols

ijk Γ 1 Γ 2 Γ i j k 2 = δ(Γ 1 Γ 2 Γ), (1.63) 
where

δ(Γ 1 Γ 2 Γ) = 1 if Γ 1 , Γ 2 , Γ satisfy the triangular condition ((Γ 1 ⊗ Γ 2 ) ⊃ Γ)
, and is zero otherwise.

6Γ-and 9Γ-symbols.

The next invariant quantities are 6Γ-symbols. They are defined by a sum over products of four 3Γ-symbols

Γ 1 Γ 2 Γ 3 Γ 4 Γ 5 Γ 6 = σ 1 σ 2 σ 3 σ 4 σ 5 σ 6 Γ 1 Γ 2 Γ 3 σ 1 σ 2 σ 3 Γ 1 Γ 5 Γ 6 σ 1 σ 5 σ 6 × × Γ 4 Γ 2 Γ 6 σ 4 σ 2 σ 6 Γ 4 Γ 5 Γ 3 σ 4 σ 5 σ 3 (1.64)
for point symmetry groups.

The form into which we have introduced the 6Γ-symbol makes it a simple matter to derive its symmetry properties. It remains invariant by any permutation of the columns. The 6Γ-symbol is also invariant if upper and lower arguments are interchanged in any two columns.

If one of the representations in the 6Γ-symbol is the totally symmetric representation (we denote (A 1 ) this irrep), then we can use the following formula:

Γ 1 Γ 2 Γ 3 A 1 Γ 5 Γ 6 = (-1) Γ 1 +Γ 2 +Γ 3 δ Γ 2 Γ 6 δ Γ 3 Γ 5 [Γ 2 ] 1/2 [Γ 5 ] 1/2 (1.65)
The next invariant quantities are 9Γ-symbols. The 9Γ-symbols are defined by the relation:

     Γ 1 Γ 2 Γ 3 Γ 4 Γ 5 Γ 6 Γ 7 Γ 8 Γ 9      = σ 1 ,σ 2 ,...,σ 9 Γ 1 Γ 2 Γ 3 σ 1 σ 2 σ 3 Γ 4 Γ 5 Γ 6 σ 4 σ 5 σ 6 Γ 7 Γ 8 Γ 9 σ 7 σ 8 σ 9 × × Γ 1 Γ 4 Γ 7 σ 1 σ 4 σ 7 Γ 2 Γ 5 Γ 8 σ 2 σ 5 σ 8 Γ 3 Γ 6 Γ 9 σ 3 σ 6 σ 9 .
(1.66)

The 9Γ-symbols can be calculated as sums over triple-products of 6Γ-symbols where the summation extends over all Γ admitted by the triangle conditions in the factors:

     Γ 1 Γ 2 Γ 3 Γ 4 Γ 5 Γ 6 Γ 7 Γ 8 Γ 9      = Γ [Γ] Γ 1 Γ 2 Γ 3 Γ 6 Γ 9 Γ Γ 4 Γ 5 Γ 6 Γ 2 Γ Γ 8 Γ 7 Γ 8 Γ 9 Γ Γ 1 Γ 4 . (1.67)
It is clear that we may permute the rows or columns in the matrix forming the 9Γ-symbol, or transpose rows and columns like in a matrix, producing at most a change of sign of the numerical value. An even permutation or a transposition clearly leaves the symbol unchanged.

An odd permutation of rows or columns produces a sign change of (-1) R , where R =

9 i=1 Γ i .
There are 6 possible permutations of three rows, 6 possible permutations of three columns, and together with the 2 symmetries related to the diagonals, these account for the 72 = 2 × 6 × 6 symmetry operations to construct others 9Γ-symbols.

Algebra of irreducible tensors.

As we already said in the beginning of this paragraph, we can add two irreducible tensors if they are both transformed under the same irreducible representation. Also we can construct the direct tensor product of two irreducible tensors A (γ 1 ) and B (γ 2 ) transformed respectively under irreducible representations D (γ 1 ) and D (γ 2 ) of the group G. This product is a linear combination

ij F (γ 1 )i(γ 2 )j (Γ)k A (γ 1 ) i B (γ 2 ) j
of (resp.) components i and j of (resp.) tensors A (γ 1 ) and

B (γ 2 ) with Clebsch-Gordan coefficients F (γ 1 )i(γ 2 )j (Γ)k
. As a result we obtain the components k of a irreducible tensor [A (γ 1 ) ⊗ B (γ 2 ) ] (Γ) transformed under irreducible representation D (Γ) of the group G:

[A (γ 1 ) ⊗ B (γ 2 ) ] (Γ) k = ij F (γ 1 )i(γ 2 )j (Γ)k A (γ 1 ) i B (γ 2 ) j .
(1.68)

We can re-write (1.68) for irreducible tensors of the point symmetry groups as:

[A (γ 1 ) ⊗ B (γ 2 ) ] (Γ) k = σ 1 σ 2 Γ γ 1 γ 2 k σ 1 σ 2 A (γ 1 ) σ 1 B (γ 2 ) σ 2 . (1.69)
In general, irreducible tensor operators do not commute. Therefore in the general case, ) , where a, b, c are irreducible representations of any group. One can construct direct product for three, four, and more tensors. But in that case we have many possibilities. For example, for three tensors A (a) , B (b) , C (c) it can be constructed different products [[A (a) 

[A (a) ⊗ B (b) ] (c) = [B (b) ⊗ A (a) ] (c
⊗ B (b) ] (d) ⊗ C (c) ] (f ) , [A (a) ⊗ [B (b) ⊗ C (c) ] (d ) ] (f ) , [[A (a) ⊗ B (c) ] (d ) ⊗ C (c) ] (f ) ,
etc. These products can be connected to each other if they have the same final symmetry (f ).

Wigner-Eckart theorem.

We need now to examine the Wigner-Eckart theorem. It states that a matrix element of an operator of any physical value can be expressed as the product of two factors, one of which is so-called reduced matrix element which depends on the choice of basis and operator, and the other is a Clebsch-Gordan coefficient, which contains information about symmetry. The name derives from physicists Eugene Wigner and Carl Eckart who developed the formalism as a link between the symmetry transformation groups of space (applied to the Schrödinger equation) and the laws of conservation of energy, momentum, and angular momentum. The Wigner-Eckart theorem reads:

ψ (γ 1 ) σ 1 |P (Γ) σ |ψ (γ 2 ) σ 2 = F (γ 1 )σ 1 (γ 2 )σ 2 (Γ)σ ψ (γ 1 ) P (Γ) ψ (γ 2 ) . (1.70)
Here ψ (γ 1 ) P (Γ) ψ (γ 2 ) is the reduced matrix element. To use the Wigner-Eckart theorem it means that one should calculate the matrix element ψ

(γ 1 ) σ 1 |P (Γ) σ |ψ (γ 2 ) σ 2
for one component of the operator P . And as soon as this one is calculated then after using this theorem to calculate all matrix elements for any component of the operator P you just need to know Clebsch-Gordon coefficients.

Moreover, it avoid to calculate the matrix element for which the Clebsch-Gordan coefficient is equal to zero. In addition, if matrix elements must be calculated, the Wigner-Eckart theorem frequently offers a way of significantly reducing the computational effort.

"Expanded" local mode approach

In this section there is a small review of local mode method [15,16] and "expanded" local mode approach [11,12].

The local mode method was found to be very efficient for the study of fine rotational structure in highly excited vibrational states of some types of polyatomic molecules [15,16]. In the case of XY 2 (C 2v symmetry) molecules, the so-called strict local mode approach allowed to obtain [17] a series of very simple relationships between some rotational-vibrational and resonance interaction parameters, under the conditions that read:

1. the mass M of the central nucleus X is far greater than the masses m of the nuclei Y, i.e.

in the limit (m/M ) = 0;

2. the equilibrium interbond angle Y XY → π/2;

3. only changes in valence bond lengths are taken into account in the potential function, and deformational motion is totally absent in a molecule.

These strict local mode conditions are very stringent for most real situations in rotationalvibrational spectra. The following question could be interesting: how is it possible, on the one hand, to "soften" the above-mentioned stringent conditions of the strict local mode approach and, on the other hand, to keep the results in a simple form? In Refs. [11,12] was derived a new method called "expanded" local mode model. It is shown, that the "expanded" local mode approach allows one to predict vibration-rotational energy spectra not only for the stretching bands, but also for deformational overtone and combination bands on the basis of initial spectroscopic information about the ground state and a few of the lowest stretching vibration bands. The clue point of the "expanded" local mode model is the possibility to present the transformation coefficients l N αλ of a molecule in the form of simple analytical expressions. In its turn, as it follows from the general vibration-rotation theory, transformation coefficients are just the values from which all spectroscopic parameters of a molecule depend on. It means that if it would be possible to express all the transformation coefficients in a as simple as possible form, then one may expect that any spectroscopic parameter of a molecule can be presented in a simple form.

Chapter 2

Determination of the intramolecular potential energy surface of polyatomic molecules

One of the most important problems in the molecular physics, which deals with the study of the vibrational-rotational properties of polyatomic molecules, is the determination of the intramolecular potential energy surface (PES) of a molecule in a given electronic state. This issue is important because knowledge of the PES allows to solve the vibration-rotation Schrödinger equation for a molecule and to obtain eigenvalues E α and eigenfunctions ψ α , which can be used in many problems of physics and chemistry.

There are two main methods to obtain the PES of a molecule. The first way is to use the direct ab initio calculations (see, for example, [99] - [27]). Direct methods allow to obtain a high quality topography of the multidimensional potential surface of a molecule. At the same time, there are many problems in molecular physics that require not only qualitative but accurate quantitative knowledge of PES-parameters. That's why there is the second group of methods (methods of quantitative PES determination) which are called "variational" methods because they use highly accurate experimental vibrational-rotational data as initial data in the fitting procedures of the PES-parameters [START_REF] Whitehead | Variational calculation of vibration-rotation energy levels for triatomic molecules[END_REF] - [43]. But even the best among the recent modifications of variational methods are not free of large imperfections that strongly restrict their application to molecules with more than three or four atoms. The problem is in the huge dimensions of the Hamiltonian matrices used during the diagonalization process (these dimensions increase when the number of atoms increases). The second problem is connected with the correct choice of vibrational coordinates used in the Hamiltonian of a molecule (see, for example, [41] - [48]). For example, we can choose normal coordinates Q λ (see, for example, [2,49]), curvilinear coordinates ∆r and ∆α, symmetrized coordinates S, Morse coordinates y = (1 -exp(-a∆r)), etc. In fact, normal coordinates allow to present the kinetic part of the Hamiltonian of a molecule in a simple form but they are not suitable for the problem of determination of the PES of a molecule. However curvilinear coordinates, symmetrized coordinates and Morse coordinates, which are isotopically invariant, describe the PES of a molecule very well. Therefore it would be suitable to suggest a set of internal vibrational coordinates that would allow one to construct the Hamiltonian in a as simple as possible form for the further construction and diagonalization of the Hamiltonian matrix.

Transformation coefficients of a polyatomic molecule

It is known that transformation coefficients l N αλ are the values which all spectroscopic parameters of a molecule depend on. Transformation coefficients are parameters of the coordinates transformation from the Cartesian coordinates of nuclei of a molecule to internal vibrational coordinates (see section 1.1). This transformation can be written as (in the frame of the Born-Oppenheimer approximation):

x N α = R α + β K αβ (r e N β + λ m -1/2 N l N βλ Q λ ), (2.1) 
where l N αλ can be determined from the following system of equations

N m 1/2 N l N βλ = 0, 1 ≤ λ ≤ 3N -6, β = x, y, z, (2.2) 
N βγ

ε αβγ m 1/2 N r e N β l N γλ = 0, 1 ≤ λ ≤ 3N -6, α = x, y, z, (2.3) 
N α l N αλ l N αµ = δ λµ , ≡ l • l = 1Id , (2.4) 
and

∂ 2 V ∂Q λ ∂Q µ Q=0 = 0, 1 ≤ λ = µ ≤ 3N -6. (2.5) 
It should be noted that 1) in equations (2.5) one needs to define a form of the potential function of the molecule and 2) that the coefficients l N αλ are connected to the normal coordinates Q λ through the Eq. (1.7). The number of transformation coefficients l N αλ is exactly equal to the total number of equations (2.2) -(2.5), thus the system has a solution. But some equations (for example (2.4)) are not linear and the solution is not unique (for instance the relative vibration phases is not uniquely determined, and the numbering of vibrations having the same group symmetry is also not unique). We know that the potential function depends on the vibrational coordinates and these coordinates can be chosen in different ways. If we want to take into account different isotopic modifications of a molecule then we prefer to chose isotopically invariant set of vibrational coordinates, for example, curvilinear coordinates ∆r and ∆α. More exactly ∆r N K = r N K -r N K e are changes of bond lengths and r N K are:

r N K = α (r N α -r Kα ) 2 1/2 .
(2.6)

Here ∆r N K are functions of equilibrium coordinates r e N α and transformation coefficients l N αλ .

On the same way, ∆α N KL are changes of angles between bonds

∆α N KL = α N KL -α N KL e = arccos(cos α N KL ) -α N KL e , (2.7) 
where cos α N KL are:

cos α N KL = ( α (r Kα -r N α )(r Kα -r Lα ) r N K r LK . (2.8)
In the next step it is enough to define the quadratic part of the potential function to determine l N αλ . It can be written as

V (2) = 1 2 ij f ij ξ i ξ j , (2.9) 
where ξ i ≡ ∆α N KL or ∆r N K Thus we can construct the system of equations (2.2) -(2.5) in the explicit form for any polyatomic molecule.

Connection between curvilinear coordinates and normal coordinates for polyatomic molecule

In this paragraph, we will consider only molecules of XY n type with n = 2, 3, 4 of (resp.) C 2v , C 3v and T d symmetry, which we are concerned with in this thesis, consequently, we will study a scheme of coordinates transformation for any polyatomic molecule to connect normal coordinates Q λ and curvilinear coordinates ∆r XN ≡ ∆r N , ∆α N XK ≡ ∆α N K .

It should be noted that the set of vibrational coordinates ∆r N and ∆α N K can be connected to the vibrational coordinates Q λ (using (2.2), (2.3), (2.4), (2.5)) by the expressions

∆r N = λ C N λ Q λ + 1 2 λµ C N λµ Q λ Q µ + 1 6 λµν C N λµν Q λ Q µ Q ν + ..., (2.10) 
where

C N λ = 1 r e α (r e N α -r e Xα )(m -1/2 N l N αλ -m -1/2 X l Xαλ ), (2.11) 
C N λµ = 1 r e (b N λµ -C N λ C N µ ), (2.12 
)

C N λµν = 1 r 2 e (3C N λ C N µ C N ν -C N λ b N µν -C N µ b N λν -C N ν b N λµ ), (2.13) 
and

b N λµ = α (m -1/2 N l N αλ -m -1/2 X l Xαλ )(m -1/2 N l N αµ -m -1/2 X l Xαµ ). (2.14)
Here r e is the equilibrium bond length X -Y, r e N β and r e Xβ (β = x, y, z) are the equilibrium Cartesian coordinates of the nuclei in the molecular fixed coordinates system. The dimensions of the coefficients C N ... are:

[C N λ ] = g -1/2 , [C N λµ ] = g -1 cm -1 , [C N λµν ] = g -3/2 cm -2 (see footnote (1) page 5).
For the changes of angles between bonds we have the following expressions

∆α N K = λ C N K λ Q λ + 1 2 λµ C N K λµ Q λ Q µ + 1 6 λµν C N K λµν Q λ Q µ Q ν + ..., (2.15) 
where

C N K λ = 1 sin α e 1 r e {j N K (C N λ + C K λ ) -A N K λ }. (2.16)
Here we denote

j N K = 1 r 2 e α (r e N α -r e Xα )(r e Kα -r e Xα ), (2.17) 
and

A N K λ = 1 r e α {(m -1/2 N l N αλ -m -1/2 X l Xαλ )(r e Kα -r e Xα ) +(m -1/2 K l Kαλ -m -1/2 X l Xαλ )(r e N α -r e Xα )}, (2.18) 
where α e is the value of the equilibrium interbond angle. Higher order coefficients C N K λµ and C N K λµν in (5.6) have considerably more complicated forms

C N K λµ = - 1 sin α e P N K λµ - cos α e sin 3 α e P N K λ P N K µ , (2.19) 
and

C N K λµν = - 1 sin α e P N K λµν - cos α e sin 3 α e (P N K λ P N K µν + P N K µ P N K λν + P N K ν P N K λµ ) - 1 + 2 cos 2 α e sin 5 α e P N K λ P N K µ P N K ν , (2.20) 
where

P N K λ = 1 r e A N K λ + r 2 e j N K F N K λ , (2.21) 
P N K λµ = 1 r 2 e b N K λµ + r e (A N K λ F N K µ + A N K µ F N K λ ) + r 2 e j N K F N K λµ , (2.22) 
and

P N K λµν = (b N K λµ F N K ν + b N K λν F N K µ + b N K µν F N K λ ) +r e (A N K λ F N K µν + A N K µ F N K λν + A N K ν F N K λµ ) + r 2 e F N K λµν , (2.23) with b N K λµ = α (m -1/2 N l N αλ -m -1/2 X l Xαλ )(m -1/2 K l Kαµ -m -1/2 X l Xαµ ), (2.24) 
F N K λ = 1 r e (D N λ + D K λ ), (2.25) 
F N K λµ = 1 r e (D N λµ + D K λµ ) + (D N λ D K µ + D N µ D K λ ), (2.26) 
F N K λµν = 1 r e (D N λµν + D K λµν ) +(D N λ D K µν + D K λ D N µν + D N µ D K λν + D K µ D N λν + D N ν D K λµ + D K ν D N λµ ), (2.27) 
and

D N λ = - 1 r 2 e C N λ , (2.28) 
D N λµ = - 1 r 2 e C N λµ + 2 r 3 e C N λ C N µ , (2.29) 
D N λµν = - 1 r 2 e C N λµν + 2 r 3 e (C N λ C N µν + C N µ C N λν + C N ν C N λµ ) - 6 r 4 e C N λ C N µ C N ν .
(2.30)

The dimensions of coefficients C ... are:

[C N K λ ] = g -1/2 cm -1 , [C N K λµ ] = g -1 cm -2 and [C N K λµν ] = g -3/2 cm -3 (see footnote (1) page 5).
It is important to note that the formulae, presented here, in spite of their complicated form, are simple enough in numerical results in applications. The presence of symmetry in a molecule leads to the presence of symmetry in the C-coefficients as well.

Hamiltonian of polyatomic molecule in R i -coordinates

As it was already said the success of the construction and subsequent diagonalization of a Hamiltonian matrix of huge dimension directly depends on the choice of vibrational coordinates. For example, using of normal coordinates in the Hamiltonian is not suitable for the problem of the determination of the molecular PES because of the appearance of extremely large nondiagonal elements in the Hamiltonian matrix. In this case, not only the reduction of large-dimension matrix to submatrices of smaller dimension, but even its direct diagonalization is impossible because of the presence of extremely large anharmonic terms in the Hamiltonian connected with the stretching vibrations. In order to take into account our wish to simultaneously consider different isotopic species of a molecule, curvilinear vibrational coordinates ∆r N (≡ ∆r N ) and ∆α (≡ ∆α N K ), which are isotopically invariant, are most suitable for the representation of the potential function of the Hamiltonian (but the kinetic part has a very complicated form [START_REF] Bekhtereva | On the semi-empirical determination of intramolecular potential energy surface of polyatomic molecule: Application to hydrogen sulfide, hydrogen selenide, and water molecules[END_REF] - [54]). For simplicity of understanding we consider initially a three-atomic molecule XY 2 of C 2v symmetry which is represented in the Figure 2.1. In this case, the potential function of the XY 2 (C 2v ) molecule can be written as (here ∆r 1 and ∆r 3 are connected with stretching vibrations, ∆α is connected with the bending vibration in the XY 2 (C 2v ) molecule): The present study aims at finding a new type of vibrational coordinates that would allow to keep the advantages of both the kinetic part and the potential function, but would be, more or less, free of their disadvantages. Namely, we would like that this new set of vibrational coordinates keeps a form of the kinetic operator as simple as possible and, at the same time, be free of large values of the nondiagonal matrix elements caused by the potential function and be valid in isotopic substitution.

V = 1 2 f rr (∆r
As an example we consider XY 2 (C 2v ) molecule. It is known [2] that the Hamiltonian of a molecule (in the frame of the Born-Oppenheimer approximation) consists of two parts: the kinetic operator T and the potential function

V H = T + V, (2.32) 
and

H ≡ T 1 + T 2 + V = λ P 2 λ 2 + 1 2 αβ µ αβ G α G β + V.
(2.33)

Here P λ = -i ∂ ∂Q λ . G α = λµ ζ α λµ Q λ P µ (2.34)
are the components of the vibrational angular momentum.

ζ α λµ = βγ ε αβγ N l N βλ l N γµ (2.35)
are Coriolis coefficients. We see that the kinetic operator in (5.24) has a very simple form. Also in the potential function we can use Morse coordinates y i = 1-exp(-a∆r i ) instead of the stretching coordinates ∆r i because these coordinates describe large stretching vibrations efficiently. The advantage is the absence of extremely large values of nondiagonal matrix elements caused by the potential function V . In this case both parts T and V should be transformed to expressions depending on the same set of vibrational coordinates. In this context, two possibilities should be considered:

1. the potential function is written as

V = V (y 1 , y 3 , ∆α) (y N = 1 -exp(-a∆r N ), N = 1, 3)
and Q λ coordinates in the kinetic part T are transformed in coordinates y 1 , y 3 and ∆α or 2. coordinates y 1 , y 3 , ∆α in the potential function V can be transformed into the coordinates Q λ , which the kinetic part T depends on.

The first possibility was realized in [START_REF] Бехтерева | Об определении потенциальных функций молекул H 2 CO, PH 3 и CH 4 на основе экспериментальных данных // Известия Вузов[END_REF]. In accordance with the symmetry properties of the XY 2 (C 2v ) molecule the potential function has the form

V = V 1 (y 1 , y 3 ) + V 2 (Q 2 ) + V 3 (y 1 , y 3 , Q 2 ), (2.36) 
where

V 1 (y 1 , y 3 ) = D(y 2 1 + y 2 3 ) + 1 6 a 111 (y 3 1 + y 3 3 ) + 1 24 a 1111 (y 4 1 + y 4 3 ) + a 13 y 1 y 3 + 1 2 a 113 (y 2 1 y 3 + y 1 y 2 3 ) + 1 4 a 1133 y 2 1 y 2 3 + 1 6 a 1113 (y 3 1 y 3 + y 1 y 3 3 ) + ..., (2.37) 
is the part that described changes of bond lengths;

V 2 (Q 2 ) = (2πcω 2 ) 2 2 Q 2 2 + 1 6 a 222 Q 3 2 + 1 24 a 2222 Q 4 2 + ..., (2.38) 
is the part that described changes of angle between bonds;

V 3 (y 1 , y 3 , Q 2 ) = a 12 (y 1 + y 3 )Q 2 + 1 2 a 112 (y 2 1 + y 2 3 )Q 2 + 1 2 a 122 (y 1 + y 3 )Q 2 2 +a 123 y 1 y 3 Q 2 + 1 6 a 1112 (y 3 1 + y 3 3 )Q 2 + 1 4 a 1122 (y 2 1 + y 2 3 )Q 2 2 + 1 6 a 1222 (y 1 + y 3 )Q 3 2 + 1 2 a 1123 (y 2 1 y 3 + y 1 y 2 3 )Q 2 + 1 2 a 1223 y 1 y 3 Q 2 2 + ... (2.39)
is the part that described interactions between stretch and bending vibrations. The first term in (5.28) is the potential function of two Morse oscillators. It was shown in [START_REF] Bekhtereva | On the semi-empirical determination of intramolecular potential energy surface of polyatomic molecule: Application to hydrogen sulfide, hydrogen selenide, and water molecules[END_REF] - [START_REF] Бехтерева | Об определении потенциальных функций молекул H 2 CO, PH 3 и CH 4 на основе экспериментальных данных // Известия Вузов[END_REF] that if to transform the kinetic operator (5.24) to the coordinates y 1 , y 2 , ∆α then the main part of the kinetic operator consists of two parts: kinetic operator of two Morse oscillators and kinetic operator of harmonic oscillator for bending vibration. But, in any case, the kinetic operator is not suitable for applications because of its complicated form. After this remark, let us introduce a new set of vibrational coordinates (the second possibility), but as a first step we have to consider a transformation as

Q λ = α λ Q λ , (2.40) 
where

α λ = µ 1/2 Y ≡ (m Y m X /(m Y + m X )) 1/2
for λ = 1 or 3 (stretching vibrations) and α λ = 1 for λ = 2 (bending vibration). Thus the kinetic part of the Hamiltonian (5.24) is:

H = - 2 2µ Y ( ∂ 2 ∂ Q 2 1 + ∂ 2 ∂ Q 2 3 ) - 2 2 ( ∂ 2 ∂ Q 2 2 ) + V. (2.41)
Firstly, we see that, the first parenthesis of rhs of (2.41) can be interpreted as the kinetic energy of two uncoupled Morse oscillators. It should be noted that coordinates Q 1 and Q 3 are not normal coordinates. Secondly we introduce the following combinations of the coordinates

R 1 = Q 1 + Q 3 , (2.42) 
R 3 = Q 1 -Q 3 .
(2.43)

In that case the coordinates R 1 and R 3 (resp.) have the meaning of change of bond lengths X-Y 1 and X-Y 2 . The coordinate R 2 = Q 2 has the meaning of change of interbond angle.

It is important to note that the new coordinates R λ , introduced in this way, keep the main part T 1 of the kinetic operator in (5.24) in the exact and very simple form:

T 1 = - 2 2µ Y ∂ 2 ∂R 2 1 - 2 2µ Y ∂ 2 ∂R 2 3 - 2 2 ∂ 2 ∂R 2 2 .
(2.44)

Here µ Y has the meaning of a reduced mass of a fragment XY N (N = 1, 3). The second part T 2 of the kinetic operator T in (5.24) is considerably smaller then the main part T 1 , and it can be transformed without difficulties to the new set of coordinates. It is possible to express the following relations between the ∆r N , ∆α and R λ coordinates

∆r N = R N + F N (R 1 , R 2 , R 3 ) ≡ R N + λ f N λ R λ + λµ f N λµ R λ R µ + ..., (2.45) 
and

∆α = C 2 R 2 + F (R 1 , R 2 , R 3 ) ≡ C 2 R 2 + λ f λ R λ + λµ f λµ R λ R µ + ... (2.46) 
where

F N (R 1 , R 2 , R 3 ) and F (R 1 , R 2 , R 3
) are small corrections of the first terms and the absolute values of the coefficients f... in (5.38), (5.39) are decreasing quickly with increasing order of the coordinates R λ in the rhs of those equations. All the coefficients f N λ..µ can be obtained in analytical form on the basis of equations (5.2) -(5.5) and (5.7) -(5.21), however even the simplest of them are so cumbersome that it is not suitable to keep them in analytical form.

We introduce one more set of coordinates, and turn now from the coordinates R 1 and R 3 to Morse-type coordinates

R N = 1 a N p≥1 1 p! y p N , (2.47) 
where N = 1, 3.

Then the potential function V (y 1 , R 2 , y 3 ) can be written as

V = V 0 + V 1 (y 1 , y 3 ) + V 2 (R 2 ) + V 3 (y 1 , R 2 , y 3 ), (2.48)
where V 0 is the main zero-order term defined as

V 0 = D(y 2 1 + y 2 3 ) + (2πcω 2 ) 2 2 R 2 2 , (2.49) 
(a 1 = a 3 because of the equivalence of the bonds X-Y 1 and X-Y 2 )

V 1 (y 

V 2 (R 2 ) = 1 6 a 222 R 3 2 + 1 24 a 2222 R 4 2 + ..., (2.51) 
V 3 (y 1 , R 2 , y 3 ) = a 12 (y 1 + y 3 )R 2 + 1 2 a 112 (y 2 1 + y 2 3 )R 2 + 1 2 a 122 (y 1 + y 3 )R 2 2 +a 123 y 1 y 3 R 2 + 1 6 a 1112 (y 3 1 + y 3 3 )R 2 + 1 4 a 1122 (y 2 1 + y 2 3 )R 2 2 + 1 6 a 1222 (y 1 + y 3 )R 3 2 + 1 2 a 1123 (y 2 1 y 3 + y 1 y 2 3 )R 2 + 1 2 a 1223 y 1 y 3 R 2 2 + ... (2.52) 
The parameters D, a 111 , ..., a 1223 in (5.42) -(5.45) can be easily expressed as functions of the parameters of the initial expression of the potential function in (5.22).

As a result, one can see from (5.37) and (5.42) that the main zeroth-order part H 0 of the Hamiltonian is a sum of two Morse-type oscillators for the stretching type coordinates R 1 and R 3 and of a harmonic oscillator for the bending type coordinate R 2 :

H 0 = N =1,3 - 2 2µ N ∂ 2 ∂R 2 N + Dy 2 N + - 2 2 ∂ 2 ∂R 2 2 + (2πcω 2 ) 2 2 R 2 2 .
(2.53)

The solution of the Schrödinger equation with the Hamiltonian (5.46) is well known (see, for example, [START_REF] Efremov | Vibrational-rotational spectrum of diatomic molecules with the James-Coolidge-Vernon potential[END_REF][START_REF] Spirko | The development of a new Morseoscillator based rotation-vibration Hamiltonian for H + 3[END_REF]). The eigenvalues of the harmonic oscillator have the form:

E v /hc = ω 2 v + 1 2 . (2.54)
The eigenvalues of the Morse oscillator have the form

E n = 2D k n + 1 2 - D k 2 n + 1 2 2 , (2.55) 
where k = √ 2µD a

. The corresponding eigenfunctions are the Hermitian polynomials and Morse functions, [START_REF] Efremov | Vibrational-rotational spectrum of diatomic molecules with the James-Coolidge-Vernon potential[END_REF][START_REF] Spirko | The development of a new Morseoscillator based rotation-vibration Hamiltonian for H + 3[END_REF]. Obtained eigenvalues and eigenfunctions allow to construct the matrix of the whole Hamiltonian without any difficulties.

Reduction of a Hamiltonian matrix of large dimension

In the previous section it was suggested a coordinates transformation, which allows to construct the Hamiltonian of a molecule in such a form that it provides a possibility to diagonalize the Hamiltonian matrix, in principle, of arbitrary dimension on the base of perturbation theory.

Here we discuss the general algorithm of the procedure of diagonalization of large-dimensional Hamiltonian matrices and present formulae that can be obtained on the basis of the well known Van Vleck transformation [79]. Of course, the scheme, based on the perturbation theory, gives only an approximation to the "exact" molecular PES. However, when the direct diagonalization does not allow to obtain any result at all, even approximate results obtained in the framework of the perturbation calculations are suitable.

We assume that the nondiagonal matrix elements of the Hamiltonian matrix are considerably smaller than the diagonal elements (the coordinates representation, described in the previous section, can be considered as a reasonable basis for this assumption). Also we can assume that the diagonal matrix elements h pp are values of order κ 0 and the nondiagonal elements h pq (p = q) are of order κ 1 (κ is a small parameter). It is possible to show that using only one Van Vleck transformation

b kl = G † 1 HG 1 kl , (2.56) 
with the unitary operator G 1 = exp(ig 1 ), allows one to transform the large-dimensional initial matrix H to a new matrix B with the elements b kl as in (5.59) (here g 1 ∼ κ 1 ). Let us try to determine this operator. Thus we expand the operator G into series and substitute it in (5.59):

b kl = pq < k|{1Id -ig 1 + 1 2 (ig 1 ) 2 + ...}|p > h pq < q|{1Id + ig 1 + 1 2 (ig 1 ) 2 + ...}|l > . (2.57)
The following condition is required:

h kk < k|ig 1 |l > -< k|ig 1 |l > h ll + h kl = 0.
(2.58)

< k|ig 1 |l >= h kl h ll -h kk .
(2.59)

The diagonal elements < k|ig 1 |k > can be considered as equal to zero.

It should be noted that if g 1 ∼ κ 1 then, in general case (when h kk h kl ), the matrix elements (5.62) are values of order κ 1 . But in some situations (so-called resonance situations) the denominator in the (5.62) may be not a small value. Thus < k|ig 1 |l > may become huge and this fact contradicts the initial condition.

In accordance with this remark the matrix b kl should satisfy the following properties:

1. matrix B should be divided into a set of sub-blocks. Out-of-block elements of the transformed matrix B are of order κ 2 ;

2. diagonal elements of the sub-blocks are calculated with the general formula

b kk = h kk + i ∈Ω k h ki h ik h kk -h ii , (2.60) 
where Ω k is the space of all states interacting with the state |k . Analogously the nondiagonal matrix elements b kl of the sub-blocks are obtained by the formula (k, l ∈ Ω):

b kl = h kl + 1 2 i ∈Ω k h ki h il ( 1 h kk -h ii + 1 h kk -h ll
).

(2.61)

Thus we can diagonalize each block separately. The algorithm presented above allows to divide the matrix into sub-blocks and then to determine the eigenvalues of the Hamiltonian with an accuracy of order κ 3 . But we see from (5.60) that in nondiagonal matrix elements there are terms with operator ig 1 in second and third power. Therefore we can use a second Van Vleck transformation with another unitary operator G 2 = exp(ig 2 ), where g 2 ∼ κ 2 . It will give corrections of order κ 4 only, both to the diagonal and nondiagonal elements of the sub-blocks. It can be shown that the quantitative criteria for the possibility to reduce the initial Hamiltonian matrix to a set of sub-matrices are determined by the following conditions:

1. if the nondiagonal elements h kl of the initial Hamiltonian matrix does not satisfy the condition

h kl h ll -h kk < κ, (2.62) 
then the submatrices of the spaces generated by the states |k and |l should be considered as one matrix involving these spaces in order to take into account this condition between nondiagonal elements (see Figure 2.2);

. 2. if the out-of-block elements of the transformed matrix B does not satisfy the condition The matrix elements of the resonance blocks can be calculated with the following formulae

. . . . . k l k l m H(h )= ac mm km h - kk h h < k h kl h - kk h ll < k
b kl = j∈Ω k h kj h jl (h ll -h jj ) + i ∈Ω k ,i ∈Ω l h ki h il 2 1 h ll -h ii + 1 h kk -h ii < κ 2 , (2.63) (k ∈ Ω k , l ∈ Ω k ),
b kk = h kk + i ∈Ω k h ki h ik h kk -h ii + i,l ∈Ω k (i =l) h ki h il h lk (h kk -h ii )(h kk -h ll ) - m∈Ω k (m =k),i ∈Ω k h km h mi h ik (h mm -h ii )(h kk -h ii ) ...... + O(κ 4 ), (2.64) 
and

b kl = h kl + 1 2 i ∈Ω k h ki h il 1 h kk -h ii + 1 h ll -h ii + i,j ∈Ω k (i =j) h ki h ij h jl (h kk -h ii )(h ll -h jj ) - 1 2 i ∈Ω k ,m∈Ω k (m =k h km h mi h il (h ll -h ii )(h mm -h ii ) - 1 2 i ∈Ω k ,m∈Ω k (m =l) h lm h mi h ik (h kk -h ii )(h mm -h ii ) ...... + O(κ 4 ).
(2.65)

Chapter 3

"Expanded" local mode approach applied to the methane molecule Methane (CH 4 ) is one of the main prototypical hydrocarbons and is very important for many applications ranging from our understanding of the chemical bonding, structure and quantum dynamics, reaction kinetics in geology, astrophysics, atmospheric and environmental science. On that reason, since many years both the vibrational and ro-vibrational spectra of methane are a subject of numerous studies (see, for example, [23,60,61]).

It should be noted that, in spite of the many-years essential efforts, only the region below 6000 cm -1 was analyzed in details with a high resolution. Only some separate small wave regions above 6000 cm -1 have been discussed in [23,24,63]. At the same time, the absence of correct experimental information about some of the important -for such kind analysis-vibrational bands (e.g., ν 1 + ν 2 and ν 1 + ν 3 ) leads to ambiguity in the values of some of the spectroscopic parameters. Analogous situations have been arisen also in analysis of the methane isotopomers: CH 2 D 2 [57] - [59] and CH 3 D/CHD 3 [60]. One of the ways to eliminate such kind of ambiguities is to derive some relations between the parameters of the used model. It will reduce the number of varied parameters and will make the varied parameters more stable and physically suitable.

Compilation of isotopic substitution theory and "expanded" local mode approach

As it was already said, to eliminate the ambiguities in the spectroscopic parameters and to make the varied parameters more stable, it is necessary to derive relations between these parameters. As it has been applied to the methane CH 4 molecule some of such type relations are known in the literature [61]. They have been obtained on the base of the so-called strict local mode approach (see section 1.7). But unfortunately the strict local mode approach assumes only the presence of stretching vibrations. At the same time, bending vibrations are also important for the understanding of the processes in the methane molecule.

The presence of the deformation motion can be taking into account if we will use the "expanded" local mode approach, that was described in [62] and applied to asymmetric and symmetric top molecules [11,12], [63] - [64] (see also section 1.7). It is known [11,12] that the clue point of the "expanded" local mode approach is the possibility to present the transformation coefficients l N αλ of a molecule in the form of simple analytical expressions. It was shown, that peculiarities of some XY 2 (C 2v symmetry) and XY 3 (C 3v symmetry) molecules allow to obtain such simple expressions. At the same time, spectroscopic parameters of a polyatomic molecule are functions of the transformation coefficients. It means that these spectroscopic parameters can be also expressed in a simple form. Therefore simple relations between different spectroscopic parameters can be obtained.

In this chapter we consider the methane molecule. It is a spherical top molecule. The structure of this molecule is presented in Figure 3.1 Table 3.1. Characters of the irreducible representations of the T d symmetry group.

T d E 8C 3 3C 2 6σ d 6S 4 A 1 1 1 1 1 1 A 2 1 1 1 -1 -1 E 2 -1 2 0 0 F 1 3 0 -1 -1 1 
F 2 3 0 -1 1 -1
It should be noted that methane is a molecule of high symmetry and because of this, the structure of the spectra of the methane molecule is very complicated even for qualitative analysis.

Estimation of the parameter of ambiguity sin γ of methane molecule

It is known that transformation coefficients l N αλ of a polyatomic molecule can be determined by solving system of equations (2.2) -(2.5) (see section 2.1). The equations (2.5) have the form of derivatives of the potential function V . This kind of equations cannot be written in the exact form if we do not know the exact form of the potential function, and we cannot solve whole system (2.2) -(2.5). Thus some transformational coefficients, which have to be determined from (2.5), are called ambiguity parameters, and transformational coefficients are functions of these ambiguity parameters. For the XY 4 (T d symmetry) molecule there is one ambiguity parameter, which is called sin γ [65] and all l N αλ depend on sin γ. The exact transformation coefficients l N αλ of the XY 4 molecule have a very simple form presented in Table 3.2 [65]. We need to obtain sin γ in a as simple as possible form. 

N α/λ 1 2 1 2 2 3 x 3 y 3 z 4 x 4 y 4 z 1x D C 1 C 2 A 3 -B 3 -B 3 A 4 B 4 B 4 2x -D -C 1 -C 2 A 3 -B 3 B 3 A 4 B 4 -B 4 3x -D -C 1 -C 2 A 3 B 3 -B 3 A 4 -B 4 B 4 4x D C 1 C 2 A 3 B 3 B 3 A 4 -B 4 -B 4 5x 0 0 0 F 0 0 E 0 0 1y -D -C 1 C 2 -B 3 A 3 B 3 B 4 A 4 -B 4 2y D C 1 -C 2 -B 3 A 3 -B 3 B 4 A 4 B 4 3y -D -C 1 C 2 B 3 A 3 -B 3 -B 4 A 4 B 4 4y D C 1 -C 2 B 3 A 3 B 3 -B 4 A 4 -B 4 5y 0 0 0 0 F 0 0 E 0 1z -D 2C 1 0 -B 3 B 3 A 3 B 4 -B 4 A 4 2z -D 2C 1 0 B 3 -B 3 A 3 -B 4 B 4 A 4 3z D -2C 1 0 -B 3 -B 3 A 3 B 4 B 4 A 4 4z D -2C 1 0 B 3 B 3 A 3 -B 4 -B 4 A 4 5z 0 0 0 0 0 F 0 0 E a) Here D = 1 2 √ 3 , C 1 = 1 2 √ 6 , C 2 = 1 2 √ 2 , A 3 = 1 2 sin γ µ m H , A 4 = 1 2 cos γ µ m H , B 3 = cos γ/2 √ 2, B 4 = sin γ/2 √ 2, E = -2 cos γ µ m C , F = -2 sin γ µ m C , µ = m H m C /(4m H + m C ).
In the literature such type ambiguity parameters (in general) have been estimated from the analysis of equations (at λ = µ)

∂ 2 V ∂Q λ ∂Q µ Q=0 = 0, 1 ≤ λ ≤ 3N -6, (3.1) 
where V is the intramolecular potential function of a molecule. For the methane molecule the value of the sin γ was estimated from analysis of a) relations between the harmonic frequencies ω λ of the CH 4 [53,66] and CH 2 D 2 [57], CH 3 D, CHD 3 [60] isotopic species, b) experimental values of Coriolis coefficients [35]. It is necessary to note that the Coriolis coefficients of any polyatomic molecule are

ζ α λµ = N βγ αβγ l N βλ l N γµ , (3.2) 
where α, β, γ = x, y, z; λ, µ = 1, 2 1 , 2 2 , 3 x , 3 y , 3 z , 4 x , 4 y , 4 z distinguish between different vibrational mode components; is totaly antisymmetric tensor. There are two possibilities: a) necessary information about value of sin γ can be obtained on the base of the relations of the isotopic substitution theory [10] λ

A λµ ω 2 λ α νλ = α νµ ω 2 ν (3.3) and ν α νλ α νµ = A λµ , (3.4) 
where

A λµ = δ λµ - N α (m N -m N ) m N l N αλ l N αµ , (3.5) 
l N αλ are the transformation coefficients of the mother molecule presented in the Table 3.2. We can obtain connections between harmonic frequencies of different isotopic species as functions of the parameter sin γ by solving the equations (2.12) and (2.13). It allows to obtain the value of sin γ on the base of known experimental values of harmonic frequencies. b) sin γ can be estimated from experimental value of the Coriolis coefficient in accordance with (2.11). For the methane molecule it is easy because the value of one of the Coriolis coefficients ζ α 3x,3y is very close to zero (ζ α 3x,3y

1 [35]). Thus if to assume that ζ α 3x,3y = 0, then we can determine sin γ as:

sin γ = 3 5 . (3.6) 
As a result, all the transformation coefficients l N αλ from Table 3.2 can be expressed in a very simple form, presented in the Table 3 

a αβ λ = 2 γδκ αγκ βδκ N m 1/2 N r e N γ l N γλ , (3.7) 
where r e N γ are the equilibrium coordinates of atoms. 

N α/λ 12 1 2 2 3 x 3 y 3 z 4 x 4 y 4 z 1x 1 2 √ 3 1 2 √ 6 1 2 √ 2 1 4 -1 2 √ 3 -1 2 √ 3 1 2 √ 2 1 2 √ 6 1 2 √ 6 2x -1 2 √ 3 -1 2 √ 6 -1 2 √ 2 1 4 -1 2 √ 3 1 2 √ 3 1 2 √ 2 1 2 √ 6 -1 2 √ 6 3x -1 2 √ 3 -1 2 √ 6 -1 2 √ 2 1 4 1 2 √ 3 -1 2 √ 3 1 2 √ 2 -1 2 √ 6 1 2 √ 6 4x 1 2 √ 3 1 2 √ 6 1 2 √ 2 1 4 1 2 √ 3 1 2 √ 3 1 2 √ 2 -1 2 √ 6 -1 2 √ 6 5x 0 0 0 -1 2 √ 3 0 0 -1 √ 6 0 0 1y -1 2 √ 3 -1 2 √ 6 1 2 √ 2 -1 2 √ 3 1 4 1 2 √ 3 1 2 √ 6 1 2 √ 2 -1 2 √ 6 2y 1 2 √ 3 1 2 √ 6 -1 2 √ 2 -1 2 √ 3 1 4 -1 2 √ 3 1 2 √ 6 1 2 √ 2 1 2 √ 6 3y -1 2 √ 3 -1 2 √ 6 1 2 √ 2 1 2 √ 3 1 4 -1 2 √ 3 -1 2 √ 6 1 2 √ 2 1 2 √ 6 4y 1 2 √ 3 1 2 √ 6 -1 2 √ 2 1 2 √ 3 1 4 1 2 √ 3 -1 2 √ 6 1 2 √ 2 -1 2 √ 6 5y 0 0 0 0 -1 2 √ 3 0 0 -1 √ 6 0 1z -1 2 √ 3 1 √ 6 0 -1 2 √ 3 1 2 √ 3 1 4 1 2 √ 6 -1 2 √ 6 1 2 √ 2 2z -1 2 √ 3 1 √ 6 0 1 2 √ 3 -1 2 √ 3 1 4 -1 2 √ 6 1 2 √ 6 1 2 √ 2 3z 1 2 √ 3 -1 √ 6 0 -1 2 √ 3 -1 2 √ 3 1 4 1 2 √ 6 1 2 √ 6 1 2 √ 2 4z 1 2 √ 3 -1 √ 6 0 1 2 √ 3 1 2 √ 3 1 4 -1 2 √ 6 -1 2 √ 6 1 2 √ 2 5z 0 0 0 0 0 -1 2 √ 3 0 0 -1 √ 6

Relations between force parameters of the CH 4 molecule

It is known [33] that all rotational and vibrational spectroscopic parameters (except Coriolis coefficients) depend on the harmonic frequencies ω λ and anharmonic force coefficients (c λµν and d λµνξ ). We can estimate a relative value of the ω λ , c λµν and d λµνξ and to derive corresponding simple analytical relations between them on the base of analysis of the quadratic F ij , cubic F ijk and quartic F ijkl force constants of the intramolecular potential function V of the methane molecule

V = V (2) + V (3) + V (4) + ..., (3.8) 
where the quadratic part V (2) in symmetrized coordinates has the form: ).

V (2) = 1 2 F 11 S 2 1 + 1 2 F 22 (S 2 2a + S 2 2b ) + 1 2 F 33 (S
(3.9)

The cubic V (3) , quartic V (4) parts of the intramolecular potential function are cumbersome and they are presented in Appendix 1. Data about some different sets of F i...j parameters [67,68,69] were used to obtain relations between force parameters. It was found that the following simple relations between F i...j parameters are suitable for satisfactory description of different anharmonic force parameters c λµν , The analysis of data from [67,68,69] shows that we can use the following relations between the parameters F 11 , F 111 and F 1111 of the potential function (2.17)

d
F 111 ≈ - 3 ρ e F 11 , (3.14) 
and In relations (2.28) the superscript (1) denotes parameters obtained in the model that does not take into account resonance interaction between states (ν 1 ν 2 ν 3 ν 4 ) and (ν 1 ν 2 ± 1ν 3 ν 4 ∓ 1). The superscript (2) denotes parameters obtained in the model that takes into account such type resonance interaction.

F
To illustrate the efficiency of the obtained results, column 2 of Tables 3.4 and 3.5 contains numerical results with the formulae (2.22), (2.27) and (2.28). It should be noted that in those calculations only two parameters (ρ e and F 11 or ω 3 and B e ) are independent. The "basic" "experimental" value of the parameter ω 1 was taken from [73]. b) Necessary for the calculations, the value of the parameter ρ e = 1.0855 Å was taken from [59].

The values of all other parameters are estimated on the base of these two initial ones. For comparison, columns 3 and 4 of Tables 3.4 and 3.5 (resp.) contain the values of corresponding vibrational parameters from [67,53] and rotational-vibrational parameters from [35,72] (resp.). One can see good correlation in most of the cases between the results obtained on the base of derived relations and the results obtained on the base of both the ab initio calculations [67] and the fit of experimental data [53,35,72]. In Table 3.5 some more or less significant discrepancies can be seen between calculated and "experimental" values of the parameters Y (differences respectively equal +0.0040 cm -1 and -0.0080 cm -1 ). These differences can be easily explained if one take into account that, in accordance with the general vibrational-rotational theory (see, for example [2]), there is a strong connection between the rotational parameters of strongly interacting vibrational states (states (0100) and (0001) in our case) and resonance Coriolis interaction parameter [35]. It should be mentioned that numerical value of the parameter X

X 1(1,F 2 ) E,F 2 = -9.63 cm -1
1(1,F 2 ) E,F 2
was reproduced in [35] from earlier paper [74], where X

1(1,F 2 ) E,F 2 = (-9.63 ± 0.42) cm -1 .
Thus the decreasing of the absolute value of the parameter X (resp.) up to -0.0016 cm -1 and -0.0068 cm -1 (resp.). These values already are close to the values of the parameters Y predicted on the base of the relations. a Calculated on the base of the values of ω 1 from [73] and ρ e from [59]. All the other parameters are obtained from the relations (2.25) with the using of the value of the parameter Y 3 as an initial one.

b Resonance interaction between the states

(v 1 v 2 v 3 v 4 ) and (v 1 v 2 ± 1v 3 v 4 ∓ 1) not taken into account. c Resonance interaction between the states (v 1 v 2 v 3 v 4 ) and (v 1 v 2 ±1v 3 v 4 ∓1) is taken into account.
Finally, one should remark that the obtained simple relations give a correct qualitative picture of the peculiarities in the complicated spectra of the methane molecule. The described simple model with only two free parameters gives not so good quantitative correspondence between values calculated on their basis and high accurate experimental data. However, such kind simple two-parameter model can provide satisfactory quantitative prediction. 

Band

Calc. Calc. Exp.

(v 1 v 2 v 3 v 4 ; l 2 l 3 l 4 ; Γ) I a) II b) [3] 1 2 3 4
As an illustration we give experimental values of the band centers for the three polyads of the methane molecule [37] (N = 1 2 , 1 and 3 2 , where N = ν 1 + ν 2 2 + ν 3 + ν 4 2 and ν 1 , ν 2 , l 2 , ν 3 , l 3 , ν 4 , l 4 are the vibrational quantum numbers of the considered states) in column 4 of Table 3.6. The same band centers values, that were predicted on the base of two parameters ω 1 = 3040.38 cm -1 [73] and x 11 = -12.518 cm -1 [59], are shown in the column 2 of Table 3.6. One can see not so good correspondence between data in columns 2 and 4. But the situation can be improved if we will use these two parameters ω 1 and x 11 not from the literature, but adapted to the experimental data. As an example, in column 3 of Table 3.6 there are results of prediction obtained on the base of the values ω 1 = 3016.215 cm -1 and x 11 = -10.546 cm -1 (these lasts have been obtained from the fit of five band centers: 2ν 2 (A 1 ), 2ν 2 (E), 2ν 4 (A 1 ), 2ν 4 (E) and 2ν 4 (F 2 )). One can see better correspondence between predicted and experimental data unlike the first case.

Obtained results can be used in the analysis of ro-vibrational spectra of high exited vibrational states of the methane molecule. Also the obtained results allow to obtain analogous simple relations between different spectroscopic parameters of isotopomers of the methane molecule, on the one hand, and to express any spectroscopic parameter of any isotopomer as a simple function of one or two spectroscopic parameters of the mother CH 4 molecule, on the other hand. Such kind relations are very important for the study of complicated ro-vibrational spectra of the methane isotopomers, especially in high frequency spectral region.

Chapter 4 "Expanded" local mode approach applied to the methane molecule: isotopic substitution CH 2 D 2 ← CH 4

One of the most important and fundamental problems of chemical physics is the correct extraction of physical information from high resolution spectra of molecules. This information is necessary for the precise determination of intramolecular multi-dimensional potential surfaces, which can be used in numerous applied problems of chemical physics, astrophysics and planetology, the study of Earth atmosphere and environmental problems, etc. The solution of a problem of correct extraction of physical information from high resolution spectra is based on the realization of two closely connected problems: mathematical modeling of intramolecular effects and interactions (first of all, intramolecular potential energy surface (PES)) and methods of assignments of spectral lines in experimentally recorded spectra. The last (assignments of spectral lines), in many cases, is a very complicated problem, especially for the highly excited vibrational states with the presence of numerous accidental interactions.

As it was already said in the previous chapter, information about the methane molecule and its different isotopic species is very important and interesting in numerous both pure scientific and applied problems of science. But spectra of methane are complicated for analysis, especially in the short wave region. The only way to solve this problem as correctly as possible is a qualitative prediction of line positions in the short wave region on the basis of spectroscopic parameters (rotational coefficients, harmonic frequencies and anharmonic coefficients, different kinds of Coriolis-and Fermi-type interaction coefficients). However the number of spectroscopic parameters in the Hamiltonian model is so huge that their correct determination from the longer wave spectra and further use in the prediction of line positions in the shorter wave region is practically impossible. The possibility to solve this problem is the reduction of the number of spectroscopic parameters in the Hamiltonian model to a minimum possible number. It can be done, for example, using relations between spectroscopic parameters of both the mother species, and relations between spectroscopic parameters of the mother and its different isotopic species.

It was already shown (see Chapter 3 and [21,64]) that the problem of determination of the relations between spectroscopic parameters of a mother molecule can be solved for some types of polyatomic molecules as a result of compilation of the "expanded" local mode approach [12,62] and isotopic substitution theory [8,10]. In the present chapter we apply the scheme described in the Chapter 3 to derive isotopic relations for different spectroscopic parameters for the substitution CH 2 D 2 ← CH 4 in methane molecule. As the first step we can use "expanded" local mode approach and isotopic substituted theory for the methane molecule (see Chapter 3), that allow to obtain transformation coefficients l N αλ for CH 2 D 2 molecule in a simple form. Equations (1.28) can be used for it, where l N αλ on the right hand side should be taken from Table 3 

   =    1/ √ 2 -1/ √ 2 0 -1/ √ 2 -1/ √ 2 0 0 0 -1    . ( 4 
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Here C = On the base of the obtained results, formulae for different spectroscopic parameters, which are known from the general vibrational-rotational spectroscopy (see, for example, [78]), and formulae of the operator perturbation theory (see, for example, [2,79,78,71]), we can derive very simple relations between different spectroscopic parameters in an analytical form. It is necessary to have information about harmonic frequencies ω λ , cubic k λµν and quartic k λµνξ normal mode force parameters of the CH 2 D 2 molecule. All these values can be obtained on the base of knowledge of the parameters of the intramolecular potential function V , which for the methane molecule has the following form [70] 

αβλ a λ αβ 1 1 1 -15F 2 2 2 35F 1 1 2 25F 2 2 3 -13F 1 1 3 14F 2 2 4 -5F 1 1 4 -15F 3 2 5 17F 2 1 6 -12F 1 3 8 -15F 2 1 7 -11F 1 3 9 -11F 3 1 8 -15F 2 3 5 17F 3 1 9 -11F 3 3 1 -24F 1 2 6 -12F 3 3 2 14F 1 2 7 -11F 3 3 3 -4F 2 
V = V (2) + V (3) + V (4) + ..., (4.4) 
where the quadratic part V (2) reads (in the symmetrized coordinates): Cubic V (3) and quartic V (4) parts are cumbersome, and you can find them in Appendix 1 [70].

V (2) = 1 2 F 11 S 2
To obtain the analytical form of relations between the parameters F ij , F ijk and F ijkl in (3.4) and (3.5), on the one hand, and normal mode force parameters ω λ , k λµν , k λµνξ , on the other hand, we need [70]:

1. to take into account relations between the parameters F ij , F ijk , F ijkl and f rr , f rα , f αα , f rrr , etc., which can be obtained on the base of the following relations [70]

S A 1 1 = 1 2 (r 1 + r 2 + r 3 + r 4 ) , S E 2 1 = 1 2 √ 3 (2α 12 -α 13 -α 14 -α 23 -α 24 + 2α 34 ) , S E 2 2 = 1 2 (α 13 -α 14 -α 23 + α 24 ) , S F 2 3x = 1 2 (r 1 -r 2 + r 3 -r 4 ) , S F 2 3y = 1 2 (r 1 -r 2 -r 3 + r 4 ) , S F 2 3z = 1 2 (r 1 + r 2 -r 3 -r 4 ) , S F 2 4x = 1 √ 2 (α 24 -α 13 ) , S F 2 4y = 1 √ 2 (α 23 -α 14 ) , S F 2 4z = 1 √ 2 (α 34 -α 12 ) . (4.6)
2. to use formulae, which connect ∆r N /∆α N K vibrational coordinates of a molecule with its normal coordinates Q λ [87] ∆r

N = λ C N λ Q λ + 1 2 λµ C N λµ Q λ Q µ + 1 6 λµν C N λµν Q λ Q µ Q ν + ..., (4.7) 
and

∆α N K = λ C N K λ Q λ + 1 2 λµ C N K λµ Q λ Q µ + 1 6 λµν C N K λµν Q λ Q µ Q ν + ... (4.8) 
The 
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E ν 1 ...ν 9 = λ ω λ ν λ + 1 2 + λµ x λµ ν λ + 1 2 ν µ + 1 2 + ..., (4.11) 
and in an effective rotational parameter

B ν 1 ...ν 9 β = B e β - λ α β λ ν λ + 1 2 + ..., (4.12) 
where λ, µ = 1, ..., 9; α = x, y, z.

Harmonic frequencies ω λ

Harmonic frequencies of the CH 2 D 2 molecule can be obtained from the system of equations, which follows from (2.12)

det(AW -ω 2 E) = 0, (4.13) 
where A is the matrix with elements A λµ , defined in (2.14), W is the diagonal matrix with elements W λλ = ω 2 λ , E is the unit matrix. If one take into account Table 3.2 and (2.22), then the following relations can be obtained from the solution of the system (3.13):

ω 2 1 120 = ω 2 1 125 = ω 2 2 18 + 27 √ 3 = ω 2 3 28 = ω 2 4 23 -5 √ 3 = ω 2 5 62 -22 √ 3 = ω 2 6 129 = ω 2 7 49 -19 √ 3 = ω 2 8 69 + √ 3 = ω 2 9 19 + √ 3 . (4.14)
Numerical values of the harmonic frequencies ω λ of the CH 2 D 2 molecule, obtained on the base of relations (3.14), using only one initial parameter ω 1 = 3040.38 cm -1 of the CH 4 molecule [21], are presented in column I of Table 4.4. For comparison, Table 4.4 contains the values of the same harmonic frequencies obtained from analysis of experimental data [57] (column II) and from ab initio calculations (column III). a) Calculated on the base of (3.14). b) Taken from analysis of experimental data [57]. c) Taken from ab initio calculations [67].

It should be noted that the calculated values (columns I) are systematically smaller (2-4 cm -1 ) then those deduced from experiments (column II) or from ab initio calculations (column III). We can explain this fact, because in relations (3.14) we used the harmonic frequency ω 1 of the CH 4 molecule from [21] as an initial value. The correspondence between data in columns I and II, III can be improved by simply shifting the initial value of ω 1 to a few cm -1 higher. But if one remembers that harmonic frequencies ω λ of the CH 2 D 2 molecule were obtained without any information about the CH 2 D 2 molecule, the results can be considered as quite satisfactory.

It should be explained why we choose the parameter ω 1 = 3040.38 cm -1 as an initial parameter. Columns 2 -7 of Table 4.5 contain values of harmonic frequencies of CH 4 molecule from different references, and besides both from old publication [72] (for example, 1979) and a new one [53] (2014). Column 8 contains "relative error" = 100% × (ω max i -ω min i )/ω min i . We see, that the smallest error is 0.5 % for ω 1 . We could have also used ω 3 as an initial parameter because its relative error is approximately the same as for ω 1 (has the same magnitude). Taking into account (3.7), (3.8), (3.14), data of Table 4.2 and formulae (IV.20) from [78] we can obtain isotopic relations between anharmonic coefficients x λµ in the following form: It should be noted that we took into account the presence of possible Fermi-resonance interactions between the following pairs of vibrational states:

x 11 = - 7 3 B e = 9 
(..v 2 ..v 4 ..)/(..v 2 ± 1..v 4 ∓ 2..), (..v 2 ..v 7 ..)/(..v 2 ± 1..v 7 ∓ 2..), (..v 1 ..v 3 ..)/(..v 1 ± 1..v 3 ∓ 2..), (..v 1 ..v 9 ..)/(..v 1 ± 1..v 9 ∓ 2..), (..v 3 ..v 6 ..v 7 ..)/(..v 3 ± 1..v 6 ∓ 1..v 7 ± 1..), (..v 5 ..v 6 ..v 9 ..)/(..v 5 ± 1..v 6 ∓ 1..v 9 ± 1..), (..v 4 ..v 8 ..v 9 ..)/(..v 4 ± 1..v 8 ∓ 1..v 9 ± 1..), (..v 5 ..v 7 ..v 8 ..)/(..v 5 ± 1..v 7 ± 1..v 8 ∓ 1..).
To illustrate the correctness of the obtained relations, Table 4.6 (column I) contains results of calculations with the relations (3.15). Here, as in the previous subsection for harmonic frequencies, only one initial parameter x 11 = -12.518 cm -1 of the CH 4 molecule from [21] was used. This value of initial parameter was chosen for the same reason as for harmonic frequencies in the previous case. Analogous analysis was made for anharmonic coefficients of CH 4 molecule and the smallest "relative error" is equal 0.7 % for x 11 . For others anharmonic coefficients x 12 , x 13 , ...x 44 relative errors are varied from 1.2 % (x 13 ) until 643 % (x 22 ).

For comparison, column II of Table 4.6 contains values of corresponding x λµ -parameters obtained on the base of ab initio calculations [67]. If we take into account that the values of 45 x λµ -parameters in column I were calculated without any information about the CH 2 D 2 molecule, using only one x 11 parameter of the CH 4 mother molecule, the correlation between values in both columns can be considered as more than satisfactory, with the exception of parameters x 13 , x 19 , x 24 , x 33 , x 36 , x 37 , x 44 , x 56 , x 59 , x 67 , x 69 , x 89 and x 99 . Differences in the values of the mentioned parameters can be explained if we take into account the next fact: we used the above mentioned set of vibrational resonance interactions to produce the isotopic relations (3.15). The values of the parameters in column II were calculated by Martin et al. [67] from ab initio F ij force parameters by taking into account only two types of vibrational interactions:

(..v 2 ..v 7 ..)/(..v 2 ± 1..v 7 ∓ 2..), (..v 4 ..v 8 ..v 9 ..)/(..v 4 ± 1..v 8 ∓ 1..v 9 ± 1..).
To illustrate the quality of the approach presented in this thesis we calculated the x λµ -parameters on the base of the same ab initio F ij force parameters from [67], but we took into account all above mentioned resonance interactions. Table 4.6. Anharmonic parameters of the CH 2 D 2 molecule (in cm -1 ).

Parameter I a) II b) III c) IV d) Parameter I a) II b) III c) IV d)
x a) Calculated on the base of (3.15). b) Taken from ab initio calculations, [67]. c) Calculated on the base of ab initio F i..j parameters from [67], but with taking into account the same set of resonance interactions, those were used to obtain isotopic relations (3.15). d) Taken from analysis of experimental data [57]. e) Was fixed in [57] to the value of corresponding parameter from [67].

The results of these calculations are presented in column III of Table 4.6. One can see more than satisfactory correlations between the corresponding values in columns I and III. This fact can be considered as a good confirmation of the correctness and efficiency of the obtained isotopic relations (3.15). It should be noted that for comparison, column IV of Table 4.6 contains fitted -deduced from experiment -values of the x λµ -parameters from [67]. Discrepancies between values of some parameters in columns I and IV can be explained by the fact that the analysis of experimental data in [67] was made by taking into account considerably smaller number of resonance interactions than was made in present analysis. 

B e β = 4πcI e ββ , (4.16) 
where

I e ββ = N m N γ (r e N γ ) 2 -(r e N β ) 2 . (4.17)
The values r e N γ (γ = x, y, z) are equilibrium coordinates of nuclei of the CH 2 D 2 molecule, that can be obtained on the base of equilibrium coordinates r e N γ of the CH 4 molecule and equation (3.1). Thus we obtain: 

B e = 3 2 B e x = 31 
B e x = 3.53324 cm -1 , B e y = 3.07734 cm -1 , B e z = 4.33625 cm -1 .
We obtain isotopic relations for ro-vibrational coefficients α β λ using general formulae from [78], equations (3.7), (3.8), (3.14) and data of Table 4.3: 

Y 3 = 10 11 Y 1 = - 3 2 α x 1 = - 6 5 α x 2 = 4α x 3 = 19 10 α x 4 = -2α x 5 = -2α x 6 = - 37 10 α x 7 = - 12 5 α x 8 = 63 2 α x 9 = -
28 25 α z 1 = - 17 4 α z 2 = - 4 5 α z 3 = 22 25 α z 4 = 4α z 5 = - 3 2 α z 6 = - 12 5 α z 7 = - 9 10 α z 8 = 3α z 9 = - 2 16πρ 4 e cm 3/2 H F 1/2 11 (4.19)
It should be noted that we took into account resonance interactions between all deformational states and also between the pairs of states: b) Taken from analysis of experimental data [81].

(..v 1 ..v 6 ..)/(..v 1 ± 1..v 6 ∓ 1..), (..v 2 ..v 8 ..)/(..v 2 ± 1..v 8 ∓ 1..). Table 4.7. Ro-vibrational coefficients α β λ of the CH 2 D 2 molecule (in 10 -2 cm -1 ). βλ I a) II b) III c) βλ I a) II b) III c) βλ I a) II b) III c) x1 2.
b) Taken from Table 11 of [72].

Column I of Table 4.7 contains results of calculations of the ro-vibrational coefficients α β λ on the base of (3.19) with using only one parameter Y 3 of the CH 4 molecule. For comparison column II of Table 4.7 contains values of corresponding parameters, which were obtained from the fit of experimental data [81]. We can see good correlation between all pairs of values. Also column III presents ro-vibrational coefficients from [72]. Differences between the values of the α β λ -coefficients (with λ = 3, 5, 7, 9) in column III and columns I, II appeared because in [72] resonance interactions were not taken into account.

Isotopic relations between spectroscopic parameters of the CH 4 and CH 2 D 2 species: Fermi-type interactions

It is known that Fermi-type resonance interactions in the C 2v -symmetry molecules as CH 2 D 2 are described by an operator of the following form [82]:

H vṽ = vṽ F 0 + vṽ F K J 2 z + vṽ F J J 2 + vṽ F KK J 4 z + vṽ F KJ J 2 z J 2 + vṽ F JJ J 4 + ... + vṽ F xy (J 2 x -J 2 y ) + vṽ F Kxy {J 2 z , (J 2 x -J 2 y )} + + 2 vṽ F Jxy J 2 (J 2 x -J 2 y ) + ..., (4.20) 
where first term is the pure vibrational part of the interaction, all other terms describe different types of rotational dependencies of the Fermi-type interaction caused by the presence in a molecule of rotation-vibration interactions. Analysis of the rotation-vibration spectra of CH 2 D 2 molecule shows [67,81,83] that the following six types of pure vibrational resonance interactions should be taken into account if we want to describe correctly high resolution spectra of that molecule:

1. interaction of the type v|...|ṽ To describe the main pure vibrational part of the Darling-Dennison interaction, the following formula was derived on the base of the operator perturbation theory (Chapter 1, Section 1.4):

≡ v λ ...v µ |...|v λ ± 2...v µ ∓ 2 , with λ = 4, µ = 7, or λ = 1, µ = 6; 2. interaction of the type v|...|ṽ ≡ v λ ...v µ ...v ν |...|v λ ± 2...v µ ∓ 1...v ν ∓ 1 , with λ = 9, µ = 3, ν = 4; 3. interaction of the type v|...|ṽ ≡ v λ ...v µ ...v ν ...v ξ |...|v λ ± 1...v µ ± 1...v ν ∓ 1...v ξ ∓ 1 , where (a) λ = 4, µ = 5, ν = 7, ξ = 9, (b) λ = 3, µ = 7, ν = 5, ξ = 9, (c) λ = 4, µ = 9, ν = 5, ξ = 7, (d) λ = 3, µ = 9, ν = 5, ξ = 7, (e) λ = 1, µ = 7, ν = 4, ξ = 6; 4. interaction of the type v|...|ṽ ≡ v λ ...v µ |...|v λ ± 1...v µ ∓ 2 , where (a) λ = 1, µ = 3, or 9, (b) λ = 2, µ = 4, or 7; 5. interaction of the type v|...|ṽ ≡ v λ ...v µ ...v ν |...|v λ ± 1...v µ ∓ 1...v ν ∓ 1 , where (a) λ = 6, µ = 3, ν = 7, or µ = 5, ν = 9, (b) λ = 8, µ = 4, ν = 9, or µ = 5, ν = 7;
v λ ...v µ |...|v λ + 2...v µ -2 = v λ + 2...v µ -2|...|v λ ...v µ = v λ + 1 2 1/2 v λ + 2 2 1/2 v µ 2 1/2 v µ -1 2 1/2 (λλ,µµ) F 0 , (4.21) 
where

(λλ,µµ) F 0 = k λλµµ + k λλλ k λµµ 2 1 ω λ + 3ω λ 4ω 2 µ -ω 2 λ + k µµµ k λλµ 2 1 ω µ + 3ω µ 4ω 2 λ -ω 2 µ -k 2 λλµ 1 ω µ + 1 2ω λ -ω µ -k 2 λµµ 1 ω λ + 1 2ω µ -ω λ + ξ =λ,µ k 2 λµξ 4 1 ω λ -ω µ -ω ξ + 1 ω µ -ω λ -ω ξ - ξ =λ,µ k λλξ k µµξ 4 1 2ω λ + ω ξ + 1 2ω µ + ω ξ + ξ =λ,µ k λλξ k µµξ 4 1 2ω λ -ω ξ + 1 2ω µ -ω ξ - β B e β ζ β λµ 2 ω λ + ω µ 2 ω λ ω µ . (4.22) 
In equation (3.22), if ξ = 1, and λ or µ = 3 and/or 9, then the whole sum

1 2ω λ -ω 1 + 1 2ω µ -ω 1
in the next to last term should be omitted. Also, if ξ= 2, and λ or µ = 4 and/or 7, then the whole sum

1 2ω λ -ω 2 + 1 2ω µ -ω 2
in the next to last term should be omitted. If to take into account equations (3.7), (3.8), (3.14), (3.18) and data from Table 4.2, one obtains:

32 3
B e = -101 11 (44,77) F 0 = -23 50 (11,66) 

F 0 = πcm H ρ 2 e . (4.23) 
To illustrate the correctness of the obtained isotopic relations (3.23), results of estimation are shown in the first two lines of column I of Table 4.8. For comparison, column II presents the values of the same parameters obtained from an analysis of experimental rotation-vibration spectra [81]. Except for the second and the last parameter, one can see satisfactory correspondence of both results.

As analysis shows, to derive analogous formulae (as (3.21) and (3.22)) for the higher order interaction parameters F K , F J , etc. in equation (3.20), it is necessary to take into account fourth order perturbation theory. On the one hand, it is a separate difficult problem and, on the other hand, values of these parameters must be 10 3 -10 4 times smaller than values of the main (λλ,µµ) F 0 parameters. Because of these reasons we do not discuss here isotopic relations for these F K , F J , etc. parameters. (17,46) F 0 -7.54 (3.29) -7.03 (37,59) F 0 -15.70 (3.29) -17.42 (39,57) F 0 24.58 (3.29) 23.02 (45,79) F 0 8.31 (3.29) 7.44 (49,57) F 0 20.19 (3.29) 19.86 a Calculated on the basis of isotopic relations.

(..v 1 ..v 4 ..v 6 ..v 7 ..)/(..v 1 ± 1..v 4 ∓ 1..v 6 ∓ 1..v 7 ± 1..)
(..v 3 ..v 5 ..v 7 ..v 9 ..)/(..v 3 ± 1..v 5 ∓ 1..v 7 ± 1..v 9 ∓ 1..)
(..v 3 ..v 5 ..v 7 ..v 9 ..)/(..v 3 ± 1..v 5 ∓ 1..v 7 ∓ 1..v 9 ± 1..)
(..v 5 ..v 5 ..v 7 ..v 9 ..)/(..v 4 ± 1..v 5 ± 1..v 7 ∓ 1..v 9 ∓ 1..)
(..v 4 ..v 5 ..v 7 ..v 9 ..)/(..v 4 ± 1..v 5 ∓ 1..v 7 ∓ 1..v 9 ± 1..)
(..v 1 ..v 9 ..)/(..v 1 ± 1..v 9 ∓ 2..) (1,99) F 0 -164.96 (3.45) -158.02 (..v 1 ..v 3 ..)/(..v 1 ± 1..v 3 ∓ 2..) (1,33) F 0 -87.98 (3.45) -95. 50 
(..v 2 ..v 4 ..)/(..v 2 ± 2..v 4 ∓ 2..) (2,
b Obtained from analysis of experimental data [81].

Interaction of the ν λ ...ν µ ...ν ν |...|ν λ ∓ 2...ν µ ± 1...ν ν ± 1 type
It can be shown using the operator perturbation theory, that the resonance interaction of the type v λ ...v µ ...v ν |...|v λ ∓ 2...v µ ± 1...v ν ± 1 is described by the following expression:

v λ ...v µ ...v ν |...|v λ -2...v µ + 1...v ν + 1 = v λ -2...v µ + 1...v ν + 1|...|v λ ...v µ ...v ν = v λ 2 1/2 v λ -1 2 1/2 v µ + 1 2 1/2 v ν + 1 2 1/2 (λλ,µν) F 0 , (4.24) 
where

(λλ,µν) F 0 = k λλµν + 3k λλλ k λµν 2 1 3ω λ + ω λ (ω µ + ω ν ) 2 -ω 2 λ + k λµµ k λµν 2 ω µ + ω ν ω λ (ω λ -ω µ -ω ν ) + 3ω µ -ω ν (ω λ + ω µ -ω ν )(ω λ -2ω µ ) + k λνν k λµν 2 ω µ + ω ν ω λ (ω λ -ω µ -ω ν ) + 3ω ν -ω µ (ω λ + ω ν -ω µ )(ω λ -2ω ν ) +k λλµ k µµν ω µ 4ω 2 λ -ω 2 µ + ω µ ω ν (2ω µ + ω ν ) + k λλν k µνν ω ν 4ω 2 λ -ω 2 ν + ω ν ω µ (2ω ν + ω µ ) -2k λλµ k λλν ω λ ω µ (2ω λ -ω µ ) + ω λ ω ν (2ω λ -ω ν ) + ξ =λ,µ,ν k λµξ k λνξ 2 ω ξ (ω λ -ω µ ) 2 -ω 2 ξ + ω ξ (ω λ -ω ν ) 2 -ω 2 ξ + ξ =λ,µ,ν k λλξ k µνξ 4 2ω λ + ω µ + ω ν -2ω ξ (2ω λ -ω ξ )(ω µ + ω ν -ω ξ ) - 2ω λ + ω µ + ω ν + 2ω ξ (2ω λ + ω ξ )(ω µ + ω ν + ω ξ ) -2 β B e β ζ β λµ ζ β λν ω λ + ω µ (ω λ + ω ν ) ω λ ω µ ω ν . (4.25)
In equation (3.25) the first term in the last square bracket should be omitted when 2ω λ ≈ ω ξ (resonance situation).

We take again into account equations (3.8), (3.8), (3.14), (3.18) and data from Table 4.2 and obtain the following simple isotopic relation for the resonance interaction parameter (99,34) F 0 , which is essential for the CH 2 D 2 molecule:

32 3 B e = - 85 2 (99,34) F 0 = πcm H ρ 2 e (4.26)
The result of numerical estimation on the base of relation (3.26) and the result obtained from experimental data are presented in Table 4.8. If we take into account a small absolute value of the (99,34) F 0 parameter, the result of the theoretical estimation can be considered as more than satisfactory, in spite of the difference in sign of the calculated and experimental values.

For the same reason as in the previous case, we do not consider here higher order interaction parameters F K , F J , etc.

Interaction of the v λ ..v µ ..v ν ..v ξ |..|v λ ∓ 1..v µ ∓ 1..v ν ± 1..v ξ ± 1 type
Analogously to the previous resonance situation, it is possible to obtain the following expression, which describe the resonance interaction of the type v

λ ...v µ ...v ν ...v ξ |...|v λ ∓ 1...v µ ∓ 1...v ν ± 1...v ξ ± 1 : v λ ...v µ ...v ν ...v ξ |...|v λ -1...v µ -1...v ν + 1...v ξ + 1 = v λ -1...v µ -1...v ν + 1...v ξ + 1|...|v λ ...v µ ...v ν ...v ξ = v λ 2 1/2 v µ 2 1/2 v ν + 1 2 1/2 v ξ + 1 2 1/2 (λµ,νξ) F 0 , (4.27) 
where

(λµ,νξ) F 0 = k λµνξ + κ,θ=λ,µ (κ =θ) k κκθ k κνξ 2 1 ω θ + 1 ω ν + ω ξ -ω κ - 1 2ω κ + ω θ + 1 ω κ + ω ν + ω ξ - κ,θ=λ,µ (κ =θ) η,τ =ν,ξ (η =τ ) k κκη k κθτ 2 1 ω η + 1 ω κ + ω θ -ω τ + 1 2ω κ -ω η + 1 ω κ + ω τ -ω θ + η,τ =ν,ξ (η =τ ) k ηητ k ηλµ 2 1 ω τ + 1 ω λ + ω µ -ω η - 1 2ω η + ω τ + 1 ω η + ω λ + ω µ - κ,θ=λ,µ (κ =θ) η,τ =ν,ξ (η =τ ) k κηη k θητ 2 1 ω κ + 1 ω η + ω τ -ω θ + 1 2ω η -ω κ + 1 ω θ + ω η -ω τ + ρ =λµνξ k λµρ k νξρ 4 1 ω λ + ω µ -ω ρ + 1 ω ν + ω ξ -ω ρ - 1 ω ν + ω ξ -ω ρ + 1 ω λ + ω µ + ω ρ - ρ =λµνξ η,τ =ν,ξ (η =τ ) k ληρ k µτ ρ 4 1 ω λ -ω η -ω ρ + 1 ω τ -ω µ -ω ρ + 1 ω µ -ω τ -ω ρ + 1 ω η -ω λ + ω ρ + β 2B e β ω λ ω µ ω ν ω ξ ζ β λµ ζ β νξ ω µ -ω λ ω ξ -ω ν - β 2B e β ω λ ω µ ω ν ω ξ ζ β λν ζ β µξ (ω ν + ω λ ) ω µ + ω ξ + ζ β λξ ζ β µν ω λ + ω ξ ω µ + ω ν . (4.28)
As in the previous case, using equations (3.7), (3.8), (3.14), (3.18), (3.28) and data of Table 4.2 we obtain the following simple isotopic relations: (45,79) F 0 = 43 20 (37,59) F 0 = 14 5 (49,57) 

32 3 B e = 34 5
F 0 = 23 10 (39,57) F 0 = - 15 2 (17,46) F 0 = πcm H ρ 2 e . (4.29) 
Results of estimation of the values of interaction parameters (45,79) F 0 , (37,59) F 0 , (49,57) F 0 , (39,57) F 0 and (17,46) F 0 are presented in column I of Table 4.8. The values of corresponding parameters obtained from analysis of experimental data from [81] are presented in column II of Table 4.8.

Fermi-type interaction v λ ...v µ |...|v λ ± 1...v µ ∓ 1 
1. Pure vibrational interaction coefficient, (λ,µ) F 0 . Formula for (λ,µ) F 0 -coefficient was obtained on the base of operator perturbation theory in the following form:

v λ ...v µ |...|v λ + 1...v µ -1 = v λ + 1...v µ -1|...|v λ ...v µ = v λ + 1 2 1/2 v µ 2 1/2 (λ,µ) F 0 , (4.30) 
where

(λ,µ) F 0 = 3 2 k λλλµ V λ + 3 2 k λµµµ V µ + ξ =λ,µ k λµξξ V ξ - i =j i,j=λ,µ 3k iii k iij 4 10 3ω i + 1 ω j + 6ω i + ω j 4ω 2 i -ω 2 j V i + i =j i,j=λ,µ k iij k ijj 4 2ω j 4ω 2 i -ω 2 j - 6ω j + ω i 4ω 2 j -ω 2 i - 4ω i + ω j ω i ω j V i - ξ =λ,µ 3k λµξ k ξξξ 2ω ξ 2ω 2 ξ -ω λ -ω µ 2 ω 2 ξ -ω λ -ω µ 2 V ξ - ξ =λ,µ,ν ν =λ,µ k λµν k νξξ 2ω ν 2ω 2 ν -ω λ -ω µ 2 ω 2 ν -ω λ -ω µ 2 V ξ - i =j i,j=λ,µ ξ =λ,µ k iij k iξξ 2 2 ω i + 1 ω j + 1 2ω i -ω j V ξ + ξ =λµ 2k λξξ k µξξ ω ξ ω 2 λ -4ω 2 ξ + ω ξ ω 2 µ -4ω 2 ξ V ξ + ξ =λ,µ ν =λ,µ,ξ k λξν k µξν 4 ω ξ + ω ν ω 2 λ -ω ξ + ω ν 2 + ω ξ + ω ν ω 2 µ -ω ξ + ω ν 2 V ξ - i =j i,j=λ,µ ξ =λ,µ k iiξ k ijξ 4 2 ω i -ω j ω i -ω j 2 -ω 2 ξ + 3ω i + ω j + 2ω ξ 2ω i + ω ξ ω i + ω j + ω ξ V ξ - i =j i,j=λ,µ ξ =λ,µ k iiξ k ijξ 8 4 ω i -ω j 2 -8ω 2 ξ ω ξ ω i -ω j 2 -ω 3 ξ + 3ω i + ω j + 2ω ξ 2ω i + ω ξ ω i + ω j + ω ξ V i + ξ =λ,µ β 2B e β ζ β λξ ζ β µξ ω 2 ξ + ω λ ω µ ω ξ ω λ ω µ V ξ - i =j i,j=λ,µ ξ =λ,µ k iiξ k ijξ 4 3ω i + ω j -2ω ξ 2ω i -ω ξ ω i + ω j -ω ξ V ξ + i =j i,j=λ,µ ξ =λ,µ k iiξ k ijξ 8 3ω i + ω j -2ω ξ 2ω i -ω ξ ω i + ω j -ω ξ V i + ξ =λ,µ ν =λ,µ,ξ k λξν k µξν 8 1 ω λ + ω ξ -ω ν + 1 ω µ + ω ξ -ω ν V ξ - ξ =λ,µ ν =λ,µ,ξ k λξν k µξν 8 1 ω λ + ω ν -ω ξ + 1 ω µ + ω ν -ω ξ V ξ . (4.31) 
Here

V i = v i + ṽi 2 + 1 2 ,
v i and ṽi are vibrational quantum numbers in the left and right wave functions of equation (3.30). When i = 3 and ξ = 1, or i = 4 and ξ = 2, then the third and fourth terms from the end in (3.31) should be omitted because of resonance interactions between corresponding vibrational states. For the same reason, when ξ = 7 and ν = 6, or ξ = 9 and ν = 8, then the next to last term should be omitted; when ν = 7 and ξ = 6, or ν = 9 and ξ = 8, then the last term should be omitted.

2. Ro-vibrational interaction coefficients, (λ,µ) F K , (λ,µ) F J and (λ,µ) F xy . Formulae for corresponding (λ,µ) F .. -coefficients were obtained in the following form:

v λ ...v µ |...|v λ + 1...v µ -1 = v λ + 1...v µ -1|...|v λ ...v µ = v λ + 1 2 1/2 v µ 2 1/2 (λ,µ) F .. , (4.32) 
where

(λ,µ) F .. = (λ,µ) F K , (λ,µ) F J , or (λ,µ) F xy ; 2 (λ,µ) F K = 2 (λ,µ) F z -(λ,µ) F x -(λ,µ) F y , (4.33 
)

2 (λ,µ) F J = (λ,µ) F x + (λ,µ) F y , (4.34 
)

2 (λ,µ) F xy = (λ,µ) F x -(λ,µ) F y , (4.35) 
and

(λ,µ) F α = 3 γ B e α 2 B e γ ω λ ω µ 4πc a αγ λ a αγ µ + 2 ω λ B e α 2 4πc 1/2 a αα λ k λλµ (ω µ + ω λ ) 2 -2ω 2 µ ω µ ω λ (2ω λ -ω µ ) + 2 ω µ B e α 2 4πc 1/2 a αα µ k λµµ (ω λ + ω µ ) 2 -2ω 2 λ ω λ ω µ (2ω µ -ω λ ) + ξ =λµ B e α 2 2ω ξ 4πc 1/2 a αα ξ k ξλµ 2ω 2 ξ -(ω λ -ω µ ) 2 ω ξ [ω 2 ξ -(ω λ -ω µ ) 2 ] - ξ =λµ B e α ζ α ξλ B e α ζ α ξµ (ω λ + ω ξ )(ω µ + ω ξ ) ω ξ ω λ ω µ 1 ω ξ -ω λ + 1 ω ξ -ω µ - ξ =λµ B e α ζ α ξλ B e α ζ α ξµ (ω λ -ω ξ )(ω µ -ω ξ ) ω ξ ω λ ω µ 1 ω ξ + ω λ + 1 ω ξ + ω µ . (4.36) 
In equation (3.36), α = x, y, z; if ω ξ ≈ ω λ , or ω ξ ≈ ω µ , then the before last line should be put to zero. Such kinds of resonance interaction correspond to a one situation in the CH 2 D 2 molecule, when λ = 3 and µ = 4. Therefore, isotopic relations were obtained in the following form: (3,4) 

F 0 = 92 75 B e 1 2 V 1 + 23 10 V 2 - 13 5 V 3 - 2 125 V 4 - 27 100 V 5 - 57 10 V 6 + 39 10 V 7 + 17 5 V 8 + 11 20 V 9 (4.37)
and (3,4) F y = 6 5 (3,4) 

Y 3 = 5 2 (3,4) F x = - 8 5
F z = - 2 16πcρ 4 e F 1/2 11 m 3/2 H (4.38)
Numerical results with relations (3.38) are: (3,4) F x = -0.0134 cm -1 , (3,4) F y = 0.0209 cm -1 , (3,4) 

F z = -0.0278 cm -1 .
Only one parameter Y 3 of the CH 4 molecule was used as the initial one. Corresponding values of these parameters taken from analysis of experimental data [81] are: (3,4) F x = -0.0163 cm -1 , (3,4) F y = 0.0159 cm -1 , (3,4) 

F z = -0.0327 cm -1 .
If to take into account that predicted values were obtained without any information about CH 2 D 2 molecule, the theoretical prediction can be considered as more than satisfactory.

Interaction of the v λ ..v µ ..|...|v λ ± 1..v µ ∓ 2.. and v λ ..v µ ..v ν ..|...|v λ ± 1...v µ ∓ 1...v ν ∓ 1.. types
It is known that the main parts of such kinds of interactions are proportional to the corresponding cubic anharmonic parameters k λµν :

v λ ..v µ ..|..|v λ + 1..v µ -2.. = v λ + 1..v µ -2..|..|v λ ..v µ .. = v λ + 1 2 1/2 v µ 2 1/2 v µ -1 2 1/2 (λ,µµ) F 0 , (4.39) 
where

(λ,µµ) F 0 = k λµµ , (4.40) 
and

v λ ..v µ ..v ν ..|..|v λ + 1..v µ -1..v ν -1.. = v λ + 1..v µ -1..v ν -1..|..|v λ ..v µ ..v ν .. = v λ + 1 2 1/2 v µ 2 1/2 v ν 2 1/2 (λ,µν) F 0 , (4.41) 
where

(λ,µν) F 0 = k λµν . (4.42)
Thus the isotopic relations can be derived in the following form:

- 17 5 B e ω 3 = 8 3
(1,99) F 0 = 5 (1,33) 

F 0 = - 13 2 (2,44) F 0 = - 13 2 
(2,77) F 0 = 2 (6,37) F 0 = 2 (6,59) F 0 = -6 (8,49) F 0 = 21 (8,57) It is known [82] that Coriolis-type interactions for arbitrary asymmetric molecule of C 2v symmetry group are described by the three types of coupling operators H vṽ , (v = ṽ). If the product Γ = Γ v ⊗ Γ ṽ of symmetry species of the states v and ṽ is equal to B 1 , then states v and ṽ are connected by Coriolis resonance interaction of the following form:

F 0 = 15 2 (6,27) F 0 . (4.43)
H vṽ = iJ z H (1) vṽ + {J x , J y } + H (2) vṽ + H (2) vṽ {J x , J y } + +{iJ z , (J 2 x -J 2 y )} + H (3) 
vṽ + H

(3)

vṽ {iJ z , (J 2 x -J 2 y )} + + ..., (4.44) 
where {A, B} + = (AB + BA). If Γ = B 2 , then Coriolis interaction has the form:

H vṽ = iJ y H (1) 
vṽ + H

(1)

vṽ iJ y + {J x , J z } + H (2) vṽ + H (2) vṽ {J x , J z } + +{iJ y , (J 2 x -J 2 y )} + H (3) 
vṽ + H

(3)

vṽ {iJ y , (J 2 x -J 2 y )} + + ... (4.45) 
If Γ = A 2 , then we have Coriolis interaction in the form:

H vṽ = iJ x H (1) 
vṽ + H

(1)

vṽ iJ x + {J y , J z } + H (2) vṽ + H (2) vṽ {J y , J z } + + {iJ x , (J 2 x -J 2 y )} + H (3) 
vṽ + H

(3)

vṽ {iJ x , (J 2 x -J 2 y )} + + ... (4.46) 
Operators

H (i) vv , i = 1, 2, 3, ... in equations (3.46) -(3.48
) have the form:

H (i) vṽ = 1 2 vṽ C i + vṽ C i K J 2 z + 1 2 vṽ C i J J 2 + vṽ C i KK J 4 z + vṽ C i KJ J 2 z J 2 + 1 2 vṽ C i JJ J 4 + vṽ C i KKK J 6 z + vṽ C i KKJ J 4 z J 2 + vṽ C i KJJ J 2 z J 4 + 1 2 vṽ C i JJJ J 6 + ... (4.47) 
Analysis of ro-vibrational spectra of CH 2 D 2 molecule [57,81,83] shows that the following types of Coriolis interactions should be taken into account: Coriolis interaction v|...|ṽ

1. interaction of the type v|...|ṽ ≡ v λ ...v µ |...|v λ ± 1...v µ ∓ 1 , with different combinations of indexes λ, µ = 3, 4, 5, 7, 9 λ = µ, or λ = 1, µ = 1, or λ = 2, µ = 8; 2. interaction of the type v|...|ṽ ≡ v λ ...v µ |...|v λ ± 1...v µ ∓ 2 ; in this case µ = 3, 4, 5, 9, if λ = 6, or µ = 3, 4, 5, 7, if λ = 8; 3. interaction of the type v|...|ṽ ≡ v λ ...v µ ...v ν |...|v λ ± 1...v µ ∓ 1...v ν ∓ 1 ,
≡ v λ ...v µ |...|v λ ± 1...v µ ∓ 1
The main interaction operators in (3.46) -(3.49) have the following form:

v λ ..v µ |..|v λ + 1..v µ -1 = v λ + 1..v µ -1|..|v λ ..v µ * = iJ α v λ + 1 2 1/2 v µ 2 1/2 (λ,µ) C α + (J α J β + J β J α ) v λ + 1 2 1/2 v µ 2 1/2 (λ,µ) C αβ , (4.48) 
where

(λ,µ) C α = -2 B e α ζ α λµ ω µ + ω λ ω λ ω µ , (4.49) 
and

(λ,µ) C αβ = 3 2 γ B e α B e β B e γ ω λ ω µ 4πc a αγ λ a βγ µ + a αγ µ a βγ λ + √ 2B e α B e β 4πc 1/2 a αβ λ k λλµ ω λ (ω µ + ω λ ) 2 -2ω 2 µ ω µ ω λ (2ω λ -ω µ ) + a αβ µ k λµµ ω µ (ω λ + ω µ ) 2 -2ω 2 λ ω λ ω µ (2ω µ -ω λ ) + ξ =λ,µ B e α B e β 2ω ξ 4πc 1/2 a αβ ξ k λµξ 2ω 2 ξ -ω λ -ω µ 2 ω ξ ω 2 ξ -ω λ -ω µ 2 - ξ =λ,µ B e α ζ α λξ B e β ζ β µξ + B e α ζ α µξ B e β ζ β λξ (ω λ -ω ξ )(ω µ -ω ξ ) 2ω ξ ω λ ω µ 1 ω µ + ω ξ + 1 ω λ + ω ξ + ξ =λ,µ B e α ζ α µξ B e β ζ β λξ + B e α ζ α λξ B e β ζ β µξ (ω λ + ω ξ )(ω µ + ω ξ ) 2ω ξ ω λ ω µ 1 ω µ -ω ξ + 1 ω λ -ω ξ . (4.50)
In formula (3.52), if ω ξ ≈ ω λ , or ω ξ ≈ ω µ , then the last term should be omitted. Isotopic relations obtained on the base of equations (3.50) -(3.52) have the following form: (1,6) C z = -43 (2,8) C y = -10 (3,5) C x = -88 5 (3,7) C z = 31 5 (3,9) C y = -43 5 (4,5) C x = 28 5 (4,7) C z = 285 (4,9) C y = -54 5 (5,7) C y = 76 5 (5,9) C z = -10 (7,9) 

32 3 B e = -99
C x = πcm H ρ 2 e (4. 51 
)
and 8) C xz = 9 5 (3,4) C xx = -9 5 (3,4) C yy = 22 25 (3,4) C zz = 7 5 (3,5) C yz = 2 (3,7) C xy = 28 25 (3,9) 

Y 3 = 10 11 Y 1 = 9 5 (1,6) C xy = -(2,
C xz = - 17 10 (4,5) C yz = -(4,7) C xy = -6 (4,9) C xz = 3 5 (5,7) C xz = 17 20 (5,9) C xy = 19 10 (7,9) C yz = - 2 16πcρ 4 e F 1/2 11 m 3/2 H . (4.52)
Calculations on the base of relations (3.53) - (3.54) give the results which are presented in columns I of Table 4.9. For comparison columns II contain values of corresponding interaction parameters obtained from analysis of experimental data from [81]. One can see good correspondence between these two sets of results. Table 4.9. Coriolis interaction parameters of the Coriolis interaction v|...|ṽ

ν λ ν µ |...|ν λ + 1ν µ -1 -type resonance interactions (in cm -1 ). α λ µ I a) II b) α β λ µ I c) II b) z 1 
≡ v λ ...v µ |...|v λ ± 1...v µ ∓ 2
It is possible to show that the resonance interaction of the type v|...|ṽ ≡ v λ ...v µ |...|v λ ± 1...v µ ∓ 2 can be obtained as:

v λ ..v µ |..|v λ + 1..v µ -2 = v λ + 1..v µ -2|..|v λ ..v µ * = iJ α v λ + 1 2 1/2 v µ 2 1/2 v µ -1 2 1/2 (λ,µµ) C α +(J α J β + J β J α ) v λ + 1 2 1/2 v µ 2 1/2 v µ -1 2 1/2 (λ,µµ) C αβ , (4.53) 
where

(λ,µµ) C α = β 2 √ 2B e α B e β ζ β λµ 4πc 1/2 a αβ µ ω λ + ω µ ω µ ω λ -3 B e α ζ α λµ k µµµ ω λ ω µ 2ω λ ω µ ω 2 λ -ω 2 µ + 2ω µ + ω λ 3ω µ +2 B e α ζ α λµ k λλµ ω λ ω µ 2ω λ ω µ ω 2 λ -ω 2 µ + ω 2 λ ω µ 2ω λ -ω µ + ξ =λ,µ B e α ζ α λξ k µµξ 2 ω λ ω ξ ω λ -ω ξ ω λ + ω ξ + ω λ -ω ξ 2ω µ + ω ξ - ω λ + ω ξ ω λ -ω ξ - ω λ + ω ξ 2ω µ -ω ξ + ξ =λ,µ B e α ζ α µξ k λµξ 2 ω µ ω ξ ω ξ -ω µ ω ξ + ω µ + ω ξ -ω µ ω λ + ω ξ -ω µ + ω ξ + ω µ ω µ -ω ξ + ω ξ + ω µ ω λ -ω µ + ω ξ . (4.54)
In formula (3.56), if ξ= 1 and λ= 6; or if ξ= 2 and λ= 8; or if ξ= 1 and µ= 3, or 9; or if ξ= 2 and µ= 4, or 7, then the two last terms in the before last square brackets should be omitted. If ω ξ = 3, 4, 5, 7, or 9; or if ω λ ≈ (ω µ + ω ξ ), then the two last terms in the last square brackets should be omitted. As in the previous section we do not obtain here formulae for the (λ,µµ) C αβ -coefficients because in that case we have to take into account fourth order perturbation theory. As in the previous resonance situation we can obtain simple isotopic relations: (6,33) C z = 42 5 (6,55) C z = 18 (8,33) C y = -9 5 (8,44) C y = 24 5 (8,77) C y = 93 25 (8,99) 

- 32 3 B e Y 3 1/2 = 18 5
C y = 3/2 4πcρ 3 e m 5/4 H F 1/4 11 . (4.55) 
Column I of Table 4.10 contains values of Coriolis-interaction parameters (λ,µµ) C α calculated on the base of (3.57). Column II of Table 4.10 contains values of corresponding parameters from [81].

Table 4.10. Some Coriolis interaction parameters (λ,µν) C α of the CH 2 D 2 molecule (in cm -1 ). Taken from analysis of experimental data [81].

α λ µ ν I a) II b)
Coriolis interaction v|...|ṽ ≡ v λ ...v µ ...v ν |...|v λ ± 1...v µ ∓ 1...v ν ∓ 1 To describe the v|..|ṽ ≡ v λ ..v µ ..v ν |..|v λ ± 1..v µ ∓ 1.
.v ν ∓ 1 -type Coriolis interactions the following formula was obtained:

v λ ..v µ ..v ν |..|v λ + 1..v µ -1..v ν -1 = v λ + 1..v µ -1..v ν -1|..|v λ ..v µ ..v ν * = iJ α v λ + 1 2 1/2 v µ 2 1/2 v ν 2 1/2 (λ,µν) C α +(J α J β + J β J α ) v λ + 1 2 1/2 v µ 2 1/2 v ν 2 1/2 (λ,µν) C αβ , (4.56) 
where As in the previous case we do not consider the (λ,µν) C αβ -parameters. Isotopic relations for (λ,µν) C α coefficients were obtained in the following form:

(λ,µν) C α = 2 √ 2B e α ω λ ω µ ω ν 4πc 1/2 × β a αβ λ B e β ζ β µν ω ν -ω µ + a αβ µ B e β ζ β λν (ω λ + ω ν ) + a αβ ν B e β ζ β λµ ω λ + ω µ + B e α ζ α µν k λµµ + k λνν ω ν -ω µ ω µ ω ν 1 ω λ + 1 ω µ + ω ν + ω µ + ω ν ω µ ω ν B e α ζ α νµ k λµµ 1 ω ν -ω µ + 1 ω λ -2ω µ + B e α ζ α µν k λνν 1 ω µ -ω ν + 1 ω λ -2ω ν + B e α ζ α λµ k λλν ω λ ω µ 4ω λ ω µ ω 2 λ -ω 2 µ + 2ω λ ω λ + ω µ -ω ν ω ν (2ω λ -ω ν ) + B e α ζ α λν k λλµ ω λ ω ν 4ω λ ω ν ω 2 λ -ω 2 ν + 2ω λ ω λ + ω ν -ω µ ω µ 2ω λ -ω µ -B e α ζ α λµ k µµν ω λ ω µ 4ω λ ω µ ω 2 λ -ω 2 µ + 2ω µ ω λ + ω µ + ω ν ω ν 2ω µ + ω ν -B e α ζ α λν k µνν ω λ ω ν 4ω λ ω ν ω 2 λ -ω 2 ν + 2ω ν ω λ + ω ν + ω µ ω µ 2ω ν + ω µ + ξ =λ,µ,ν B e α ζ α νξ 2 k λµξ ω ν ω ξ ω ξ -ω ν ω ξ + ω ν + ω ξ -ω ν ω ξ + ω λ -ω µ - ω ξ + ω ν ω ξ -ω ν + ω ξ + ω ν ω ξ -ω λ + ω µ + ξ =λ,µ,ν B e α ζ α µξ 2 k λνξ ω µ ω ξ ω ξ -ω µ ω ξ + ω µ + ω ξ -ω µ ω ξ + ω λ -ω ν - ω ξ + ω µ ω ξ -ω µ + ω ξ + ω µ ω ξ -ω λ + ω ν + ξ =λ,µ,ν B e α ζ α λξ 2 k µνξ ω λ ω ξ ω λ -ω ξ ω λ + ω ξ + ω λ -ω ξ ω µ + ω ν + ω ξ - ω λ + ω ξ ω λ -ω ξ + ω λ + ω ξ ω µ + ω ν -ω ξ . ( 4 
- 32 3 B e Y 3 1/2 = - 18 5 
(1,39) C y = 2 (2,47) C z = 93 25 (2,49) C y = 33 20 (8,45) C z = 11 5 (8,47) C x = 34 25 (8,79) C z = up to some cm -1 ) in comparison with absolute errors in predicted values for rotational ones.

2. Comparing the experimental and synthetic spectra on Figure 4.2, parts V and IV, one can see that the correspondence of line positions between the two mentioned spectra is better that the correspondence in line strengths. This is due to the following fact: when we calculated the line positions we took into account the presence of the resonance interactions between bands ν 4 +2ν 9 , ν 2 +ν 9 and ν 3 +2ν 4 , on the one hand, and some of the "dark" bands ν 4 + ν 7 + ν 9 , 2ν 7 + ν 9 , ν 4 + ν 5 + ν 7 , etc., on the other hand. Simultaneously, because only transitions with low values of quantum number J are presented in the experimental low-temperature spectrum, the line strengths in the synthetic spectrum were estimated on the base of only three main dipole moment parameters (one dipole moment parameter for one band). The ratio of absolute values of the mentioned main dipole moment parameters was taken as 1 : 1.8 : 1/ √ 5 for bands ν 4 + 2ν 9 , ν 2 + ν 9 and ν 3 + 2ν 4 . Because of the absence of information about "dark" bands, all their dipole moment parameters were taken as zero.

3. The experimental spectrum on Figure 4.2, part V was recorded [57,81] at a pressure of 3 mbar, the Doppler profile for the line shape was used in the construction of the synthetic spectra.

In conclusion it should be noted that in spite of the fact of the total absence of initial information about the CH 2 D 2 molecule (since only two parameters of the СH 4 molecule were used as the initial information in the derived isotopic relations), one can see more than satisfactory correlations between the synthetic and experimental spectra which can be considered as good confirmation of the validity of the obtained results. In this chapter we present analogous isotopic substitution result (as in Chapter 4) for the axially symmetric deuterated methane species CH 3 D and CHD 3 . Operator perturbation theory [71] and the symmetry properties of the axially symmetric XYZ 3 (C 3v ) type molecules are used for the determination of the spectroscopic parameters in the form of functions of structural parameters and parameters of the intramolecular potential function. The "expanded" local mode approach and the general isotopic substitution theory are used to estimate the simple relations between spectroscopic parameters of CH 3 D and CHD 3 molecules, on the one hand, and mother CH 4 molecule, on the other hand.

Symmetrized operators and wave functions of the XYZ 3 (C 3v ) molecule using Irreducible Tensorial Sets Theory

The XYZ 3 (C 3v ) molecule is a symmetric top molecule which has six vibrational modes of the A 1 or E symmetry. There are three nondegenerate modes q j (j = 1, 2, 3) ∈ A 1 and three doubly degenerate modes q λ 1 and q λ 2 (λ = 4, 5, 6) ∈ E. Because of presence of doubly degenerate modes in a symmetric top molecules, their ro-vibrational spectra are very complicated, especially in excited overtone and combination bands. The way to study such kind of molecules is to use their symmetry properties on the base of results of the Irreducible Tensorial Sets Theory [88] - [90].

Rotational irreducible operators

The basic first-rank irreducible rotational operators R Ω(K) m (m = 0, ±1, ..., ±K) can be chosen in the following form [3], [88] - [90]:

R 1(1) 1 = - 1 √ 2 (J x -iJ y ) ≡ -J + , R 1(1) -1 = 1 √ 2 (J x + iJ y ) ≡ J -, R 1(1) 0 = J z ≡ J 0 . (5.1)
Here Ω is the total degree of rotational operators J α , α = x, y, z (for example, for Ω = 1, R 1(...)

...

∼ J α , for Ω = 2, R 2(...)
... ∼ J α J β , etc.); the indices K and m indicate the irreducible representation D (K) of the SO(3) symmetry group and its mth line. In that case, irreducible rotational operators R Ω+1(K+1) m can be constructed from corresponding irreducible rotational operators R 1) l (l = 0, ±1) of lower degrees and ranks, [3], using the following relation:

Ω(K) m (m = 0, ±1, ... ± K) and R 1(
R Ω+1(K+1) m = l=-1,0,1 √ 2K + 3 (-1) K-1+ m K 1 K + 1 m -l l -m R Ω(K) m-l R 1(1) l . (5.2) Irreducible rotational operators R Ω(K) m
with K < Ω (the parity of Ω and K must be the same, [3]) are constructed as:

R Ω(K) m = R K(K) m (R 2(0) ) (Ω-K)/2 , (5.3) 
where

R 2(0) = - 1 √ 3 J 2 0 + 1 2 (J + J -+ J -J + ) = - 1 √ 3 (J 2 x + J 2 y + J 2 z ). (5.4) Different rotational operators R Ω(K,nΓ) σ
, that are symmetrized in accordance with the irreducible representations Γ of the C 3v symmetry group, can be constructed from the operators R Ω(K) m using the following relation [3,91]:

R Ω(K,nΓ) σ = m (K) G m nΓσ R Ω(K) m . (5.5) 
Here (K) G m nΓσ are so-called reduction matrix elements, which are determined for concrete point symmetry group. In particular, for the C 3v symmetry group these elements taken from [3] are presented in Appendix 2. Taking into account (4.1) -(4.5) and data from Appendix 2, then one can construct all possible irreducible rotational operators of the C 3v symmetry group. As an illustration the first of them (for SO 3 and C 3v symmetry groups) are presented in Appendix 3.

Symmetrized vibrational operators

The coordinates q j and conjugate operators p j = -i ∂/∂q j (j = 1, 2, 3) are nondegenerate and therefore belong to the totally symmetric irreducible representation A 1 . Thus we discuss here only doubly degenerate vibrations q λs (λ = 4, 5, 6 and s = 1, 2) and their conjugate p λs . If to take into account symmetry properties of these operators [3,78], it is possible to construct pairs of coordinates q λ,E 1 = q λ 1 = 1 2 (q - λ + q + λ ) and q λ,E 2 = -q λ 2 = i 2 (q + λ -q - λ ) (λ = 4, 5, 6), which are transformed in accordance with the first and second line of the irreducible representation E of the C 3v symmetry group. Analogously, we can construct pairs of operators

p λ,E 1 = p λ 1 = 1 2 (p - λ + p + λ ) and p λ,E 2 = -p λ 2 = i 2 (p + λ -p - λ )
belonging to the irreducible representation E. Here the operators q + λ /p + λ and q - λ /p - λ are creation and annihilation operators that increase, or decrease the value of the quantum number l in vibrational functions, where |v l are eigenfunctions of a doubly degenerate harmonic oscillator:

v + 1 l ± 1|q ± |v l = ∓ v ± l + 2 2 1/2 , v -1 l ± 1|q ± |v l = ± v ∓ l 2 1/2 , (5.6) 
and

v + 1 l ± 1|p ± |v l = ∓i v ± l + 2 2 1/2 , v -1 l ± 1|p ± |v l = ∓i v ∓ l 2 1/2 , (5.7) 
The symmetry properties of the first degree vibrational operators allow to construct the symmetrized second-, third-, etc., degrees of vibrational operators. One can use the general formula [88,89]:

(A Γ ⊗ B Γ ) γ σ = [γ] ss γ Γ Γ σ s s A Γ s B Γ s , (5.8) 
where [γ] is dimension of irreducible representation γ. For C 3v symmetry group

[A 1 ] = [A 2 ] = 1
and [E] = 2. The values γ Γ Γ σ s s are 3Γ-symbols of a point symmetry group that satisfy the conditions:

γ Γ Γ σ s s = Γ Γ γ s s σ = Γ γ Γ s σ s = (-1) γ+Γ+Γ Γ γ Γ s σ s = = (-1) γ+Γ+Γ γ Γ Γ σ s s = (-1) γ+Γ+Γ Γ Γ γ s s σ .
(5.9)

Here (-1)

A 1 = (-1) E = -(-1) A 2 = 1; symbol ⊗ denotes tensorial product.
For C 3v group the non-zero 3Γ-symbols are:

A 1 A 1 A 1 = A 1 A 2 A 2 = 1, A 1 E E 1 1 = A 1 E E 2 2 = A 2 E E 1 2 = - A 2 E E 2 1 = 1 √ 2 , E E E 1 2 2 = - E E E 1 1 1 = 1
2 . Now we can construct any vibrational operator belonging to an irreducible representation of the C 3v symmetry group.

Vibration-rotation Hamiltonian in a symmetrized form

Before to present the Hamiltonian in a symmetrized form, we remind that in general rotation-vibration theory [2,6,62] the Hamiltonian of any polyatomic normal molecule (i.e. nonlinear molecule without large amplitude vibrations) can be presented in the following form:

H vib.-rot. /hc = 1 2 a ω a (p 2 a + q 2 a ) + 1 2 αβ µ αβ (J α -G α )(J β -G β ) + abc k abc q a q b q c + abcd k abcd q a q b q c q d + ..., (5.10) 
where

G α = a, b>a ζ α ab ω b ω a 1/2 q a p b - ω a ω b 1/2 q b p a (5.11)
and

1 2 µ αβ = 1 2 µ e αβ + a µ a αβ q a + ab µ ab αβ q a q b + ... = B e α δ αβ - √ 2 a B e α B e β ω 1/2 a a αβ a q a + 3 2 γab B e α B e β B e γ ω 1/2 a ω 1/2 b a αγ a a γβ b q a q b + ..., (5.12) 
where

ζ α ab = N βγ αβγ l N βa l N γb . (5.13) 
Here αβγ is a totally antisymmetric tensor, xyz = yzx = zxy =yxz =xzy =zyx = 1 (and zero otherwise),

a αβ b = a αβ b 4πc 1/2 , (5.14) 
and

a αα b = 2 βγ (δ βγ -δ αβ δ αγ ) N m 1/2 N r e N β l N γb , (5.15) 
a αβ b = -2 N m 1/2 N l N αb r e N β , α = β, (5.16 
)

B e α = 4πcI e αα = 4πc N r e N β 2 + r e N γ 2 -1
.

(5.17)

It is known that the Hamiltonian in (4.10) can be transformed to the symmetrized form:

H vib.-rot. /hc = [Γ a ] 2 a ω a (p a ⊗ p a ) A 1 + (q a ⊗ q a ) A 1 + 1 2 nm γγ γ µ n,γ (q) ⊗ J γ -G γ ⊗ J γ -G γ m,γ A 1 + V anh. , (5.18) 
The anharmonic part of the intramolecular potential energy surface for the XYZ 3 molecule is presented in Appendix 4.

Symmetrized vibrational functions

On the base of principles of the Irreducible Tensorial Sets Theory, a general vibrational function |vγσ for the ZXY 3 (C 3v ) molecule can be constructed as:

|vγσ = |v 1 v 2 v 3 {[(v 4 l 4 γ 4 ) ⊗ (v 5 l 5 γ 5 )] γ 45 ⊗ (v 6 l 6 γ 6 )} γ σ , (5.19) 
where |v 1 v 2 v 3 is a wave function of the nondegenerate vibrational modes q 1 , q 2 and q 3 . Wave functions which depend on the doubly degenerate vibrational modes q 4σ , q 5σ and q 6σ (σ = 1, 2) are the tensorial products of symmetrized elementary vibrational functions of the separate degenerate modes (v 4 l 4 γ 4 ), (v 5 l 5 γ 5 ) and (v 6 l 6 γ 6 ). The symmetrized vibrational functions 

(v λ l λ γ λ ), λ = 4,
|v, I ± = (-i φ ) √ 2 |v 1 v 2 v 3 [|v λ l λ > |v µ l µ > |v ν l ν > ± |v λ -l λ > |v µ -l µ > |v ν -l ν >] ; |v, II ± = (-i ϕ ) √ 2 |v 1 v 2 v 3 [|v λ -l λ > |v µ l µ > |v ν l ν > ± |v λ l λ > |v µ -l µ > |v ν -l ν >] ; |v, III ± = (-i χ ) √ 2 |v 1 v 2 v 3 [|v λ l λ > |v µ -l µ > |v ν l ν > ± |v λ -l λ > |v µ l µ > |v ν -l ν >] ; |v, IV ± = (-i ψ ) √ 2 |v 1 v 2 v 3 [|v λ l λ > |v µ l µ > |v ν -l ν > ± |v λ -l λ > |v µ -l µ > |v ν l ν >] .
(5.20)

Here the phases can be equal to ±i or ±1; pairs of functions [... ± ...] with the signs ± are transformed in accordance with the E irreducible representation of the C 3v group, or belong to the A 1 /A 2 irreducible representations.

Effective rotational Hamiltonian matrix: symmetry properties

In accordance with general rotation-vibration theory [2,3,78] the Hamiltonian of a molecule can be reduced to a set of so-called effective Hamiltonians, or in general case, to a set of effective operator matrices in the form:

H vib.-rot. = a,b |a b|H a,b , (5.21) 
where |a and b| are vibrational functions; operators H 

H vib.-rot. = vlγ,v l γ nΓ,n Γ [(|v l γ ⊗ v l γ |) nΓ ⊗ H n Γ vlγ,v l γ ] A 1 , (5.22) 
where labels γ, γ and Γ can be A 

H vA λ ,vA λ = |vA λ vA λ |{E vA λ + A vA λ (J 2 x + J 2 y ) + B vA λ J 2 z -D vA λ J J 4 -D vA λ JK J 2 J 2 z -D vA λ K J 4 z +H vA λ J J 6 + H vA λ JK J 4 J 2 z + H vA λ KJ J 2 J 4 z + H vA λ K J 6 z + L vA λ J J 8 + ... +{[( 1 2 vA λ + 1 2 vA λ J J 2 + vA λ K J 2 z + ...), (J 3 + -J 3 -)] + +[( vA λ J z + vA λ J J z J 2 + vA λ K J 3 z + ...), (J 3 + + J 3 -)] + + h vA λ (J 6 + + J 6 -) + ...}.
(5.23)

Here B vA λ , C vA λ , D vA λ J , D vA λ JK , D vA λ K , H vA λ J , H vA λ JK , H vA λ KJ , H vA λ K , L vA λ J , .
.. are the rotational and centrifugal distortion parameters. Operators (J 3 + + J 3 -) connect rotational states |Jk and |Jk

(-J ≤ k, k ≤ J) with different values of the quantum numbers k,namely ∆k = k -k = ± 3. They account for the a 1 /a 2 splittings of K = 3 (K = |k|) levels. Parameters A λ J / A λ J , A λ K / A λ K , .
.. describe the J and K dependencies of the main A λ / A λ parameter. The expression [..., ...] + denotes an anticommutator.

Diagonal blocks of E symmetry

For doubly degenerate vibrational states the operator H vE,vE is

H vE,vE = H (1) vE,vE + H (2) vE,vE + H (3) vE,vE , (5.24) 
where

H (1) vE,vE = (|vE 1 vE 1 | + |vE 2 vE 2 |){E vE + A vE (J 2 x + J 2 y ) + B vE J 2 z -D vE J J 4 -D vE JK J 2 J 2 z -D vE K J 4 z + H vE J J 6 + H vE JK J 4 J 2 z +H vE KJ J 2 J 4 z + H vE K J 6 z + L vE J J 8 + ... +{[( 1 2 vE + 1 2 vE J J 2 + vE K J 2 z + ...), (J 3 + -J 3 -)] + + [( vE J z + vE J J z J 2 + vE K J 3 z + ...), (J 3 + + J 3 -)] + }, (5.25) 
H (2) vE,vE = (|vE 1 vE 2 | -|vE 2 vE 1 |){η vE J z + η vE J J z J 2 + η vE K J 3 z + η vE JJ J z J 4 + η vE JK J 3 z J 2 +η vE KK J 5 z + η vE JJJ J z J 6 + η vE JJK J 3 z J 4 + η vE JKK J 5 z J 2 + η vE KKK J 7 z + ...}, (5.26) 
and 

H (3) vE,vE = (|vE 2 vE 2 | -|vE 1 vE 1 |){[iA vE , (J + -J -)] + + [B vE , (J + + J -)] + +[C vE , (J 2 + + J 2 -)] + + [iD vE , (J 2 --J 2 + )] + + [F vE , (J 4 + + J 4 -)] + + [iG vE , (J 4 --J 4 + )] + } +(|vE 1 vE 2 | + |vE 2 vE 1 |){[A vE , (J + + J -)] + + [iB vE , (J --J + )] + +[iC vE , (J 2 + -J 2 -)] + + [D vE , (J 2 + + J 2 -)] + + [iF vE , (J 4 + -J 4 -)] + + [G vE , (J 4 + + J 4 -)] + }, (5.27) 
A vE = 1 2 α v + 1 2 α v J J 2 + α v K J 2 z + 1 2 α v JJ J 4 + α v JK J 2 J 2 z + α v KK J 4 z + ... +α v JJK J 4 J 2 z + ... + α v JKK J 2 J 4 z + ..., B vE = β v J z + β v J J z J 2 + β v K J 3 z + β v JJ J 4 J z + β v JK J 2 J 3 z + ..., C vE = 1 2 γ v + 1 2 γ v J J 2 + γ v K J 2 z + 1 2 γ v JJ J 4 + γ v JK J 2 J 2 z + ... + γ v JJK J 4 J 2 z + ..., D vE = δ v J z + δ v J J z J 2 + δ v K J 3 z + δ v JJ J z J 4 + δ v JK J 2 J 3 z + ..., F vE = 1 2 κ v + 1 2 κ v J J 2 z + κ v K J 2 z + 1 2 κ v JJ J 4 + κ v JK J 2 J 2 z + ..., G vE = θ v J z + θ v J J z J 2 + θ v K J 3 z + θ v JJ J z J 4 + θ v JK J 2 J 3 z + .... ( 5 

Coriolis Interaction blocks of the

A 1 -E, or A 2 -E type
Operators, which describe Coriolis interaction, connect vibrational states of the A 1 /A 2 and E symmetry, and they have the following form:

H vA 1 ,v E = |vA 1 v E 1 |{[iA vA 1 ,v E , (J + -J -)] + + [B vA 1 ,v E , (J + + J -)] + + [C vA 1 ,v E , (J 2 + + J 2 -)] + +[iD vA 1 ,v E , (J 2 --J 2 + )] + + [F vA 1 ,v E , (J 4 + + J 4 -)] + + [iG vA 1 ,v E , (J 4 --J 4 + )] + } +|vA 1 v E 2 |{[A vA 1 ,v E , (J + + J -)] + + [iB vA 1 ,v E , (J --J + )] + + [iC vA 1 ,v E , (J 2 + -J 2 -)] + +[D vA 1 ,v E , (J 2 + + J 2 -)] + + [iF vA 1 ,v E , (J 4 + -J 4 -)] + + [G vA 1 ,v E , (J 4 + + J 4 -)] + } (5.29)
and

H vA 2 ,v E = -|vA 2 v E 2 |{[iA vA 2 ,v E , (J + -J -)] + + [B vA 2 ,v E , (J + + J -)] + + [C vA 2 ,v E , (J 2 + + J 2 -)] + +[iD vA 2 ,v E , (J 2 --J 2 + )] + + [F vA 2 ,v E , (J 4 + + J 4 -)] + + [iG vA 2 ,v E , (J 4 --J 4 + )] + } +|vA 2 v E 1 |{[A vA 2 ,v E , (J + + J -)] + + [iB vA 2 ,v E , (J --J + )] + + [iC vA 2 ,v E , (J 2 + -J 2 -)] + +[D vA 2 ,v E , (J 2 + + J 2 -)] + + [iF vA 2 ,v E , (J 4 + -J 4 -)] + + [G vA 2 ,v E , (J 4 + + J 4 -)] + }.
(5.30)

Operators A vA i v E , B vA i v E , ... can be obtained on the base of (4.28) if to replace parameters α v , β v , ... by α va i ,v e , β va i ,v e , ... (i = 1,2).

Coriolis interaction blocks of the

A 1 -A 2 type
The operator of the A 1 -A 2 Coriolis type interaction has the form:

H vA 1 ,v A 2 = |vA 1 v A 2 |{η vA 1 ,v A 2 J z + η vA 1 ,v A 2 J J z J 2 + η vA 1 ,v A 2 K J 3 z + η vA 1 ,v A 2 JJ J z J 4 + η vA 1 ,v A 2 JK J 3 z J 2 +η vA 1 ,v A 2 KK J 5 z + η vA 1 ,v A 2 JJJ J z J 6 + η vA 1 ,v A 2 JJK J 3 z J 4 + η vA 1 ,v A 2 JKK J 5 z J 2 + η vA 1 ,v A 2 KKK J 7 z + ...}. (5.31) Fermi interactions of the A 1 -A 1 , A 2 -A 2 or E -E type
In accordance with symmetry properties, operators of the Fermi-type interactions have the same form as the diagonal operators in (4.23) -(4.28). All the spectroscopic parameters, such as E vγ , A vγ , ..., η vE , ..., α v ,... should be replaced by the corresponding interaction parameters, such as F vγ,v γ , ..., η vE,v E , ..., α v,v ,...

H vA λ ,v A λ = |vA λ v A λ |{F vA λ ,v A λ + F vA λ ,v A λ A (J 2 x + J 2 y ) + F vA λ ,v A λ B J 2 z -F vA λ ,v A λ D J J 4 -F vA λ ,v A λ D JK J 2 J 2 z -F vA λ ,v A λ D K J 4 z + F vA λ ,v A λ H J J 6 + F vA λ ,v A λ H JK J 4 J 2 z +F vA λ ,v A λ H KJ J 2 J 4 z + F vA λ ,v A λ H K J 6 z + F vA λ ,v A λ L J J 8 + ... +[(F vA λ ,v A λ J z + F vA λ ,v A λ J J z J 2 + F vA λ ,v A λ K J 3 z + ...), (J 3 + + J 3 -)] + +F vA λ ,v A λ h (J 6 + + J 6 -) + ..., } (5.32) 
where λ = 1, or 2; and

H vE,v E = H (1) vE,v E + H (2) vE,v E + H (3) vE,v E , (5.33) 
where

H (1) vE,v E = (|vE 1 v E 1 | + |vE 2 v E 2 |){F vE,v E + F vE,v E J (J 2 x + J 2 y ) + F vE,v E K J 2 z -F vE,v E JJ J 4 -F vE,v E JK J 2 J 2 z -F vE,v E KK J 4 z + F vE,v E JJJ J 6 + F vE,v E JJK J 4 J 2 z +F vE,v E JKK J 2 J 4 z + F vE,v E KKK J 6 z + ... +[(F vE,v E J z + F J vE,v E J z J 2 + F K vE,v E J 3 z + ...), (J 3 + + J 3 -)] + ...}, (5.34) 
H (2) vE,v E = (|vE 1 v E 2 | -|vE 2 v E 1 |){η vE,v E J z + η vE,v E J J z J 2 + η vE,v E K J 3 z + η vE,v E JJ J z J 4 +η vE,v E JK J 3 z J 2 + η vE,v E KK J 5 z + η vE,v E JJJ J z J 6 + η vE,v E JJK J 3 z J 4 + η vE,v E JKK J 5 z J 2 +η vE,v E KKK J 7 z + ...}, (5.35) 
and

H (3) vE,v E = (|vE 2 v E 2 | -|vE 1 v E 1 |){[iA vE,v E , (J + -J -)] + + [B vE,v E , (J + + J -)] + +[C vE,v E , (J 2 + + J 2 -)] + + [iD vE,v E , (J 2 --J 2 + )] + + [F vE,v E , (J 4 + + J 4 -)] + +[iG vE,v E , (J 4 --J 4 + )] + } +(|vE 1 v E 2 | + |vE 2 v E 1 |){[A vE,v E , (J + + J -)] + + [iB vE,v E , (J --J + )] + +[iC vE,v E , (J 2 + -J 2 -)] + + [D vE,v E , (J 2 + + J 2 -)] + + [iF vE,v E , (J 4 + -J 4 -)] + +[G vE,v E , (J 4 + + J 4 -)] + }, (5.36) A vE,v E = 1 2 α vv + 1 2 α vv J J 2 + α vv K J 2 z + 1 2 α vv JJ J 4 + α vv JK J 2 J 2 z + α vv KK J 4 z + ... +α vv JJK J 4 J 2 z + +α vv JKK J 2 J 4 z + ..., B vE,v E = β vv J z + β vv J J z J 2 + β vv K J 3 z + β vv JJ J 4 J z + β vv JK J 2 J 3 z + ..., C vE,v E = 1 2 γ vv + 1 2 γ vv J J 2 + γ vv K J 2 z + 1 2 γ vv JJ J 4 + γ vv JK J 2 J 2 z + ... + γ vv JJK J 4 J 2 z + ..., D vE,v E = δ vv J z + δ vv J J z J 2 + δ vv K J 3 z + δ vv JJ J z J 4 + δ vv JK J 2 J 3 z + ..., F vE,v E = 1 2 κ vv + 1 2 κ vv J J 2 z + κ vv K J 2 z + 1 2 κ vv JJ J 4 + κ vv JK J 2 J 2 z + ..., G vE,v E = θ vv J z + θ vv J J z J 2 + θ vv K J 3 z + θ vv JJ J z J 4 + θ vv JK J 2 J 3 z + ....
(5.37)

Effective rotational Hamiltonian matrix: perturbation theory

For calculation of different spectroscopic parameters we use the so-called projection modification of operator perturbation theory [71]. In this modification the matrix of effective operator has the form (4.21) -(4.37). The rotational operators H i,j in the rhs of (4.21) can be obtained in the following form:

H i,j = E 0 i δ ij + i|h|j + 1 2 k ∈Ω ij i|h|k k|h|j 1 E 0 i -E 0 k + 1 E 0 j -E 0 k + k,l ∈Ω ij i|h|k k|h|l l|h|j 1 (E 0 i -E 0 k )(E 0 i -E 0 l ) + 1 (E 0 j -E 0 k )(E 0 j -E 0 l ) - 1 2 k ∈Ω ij ; m∈Ω ij i|h|m m|h|k k|h|j (E 0 i -E 0 k )(E 0 m -E 0 k ) - 1 2 k ∈Ω ij ; m∈Ω ij i|h|k k|h|m m|h|j (E 0 j -E 0 k )(E 0 m -E 0 k ) + ...O(κ 4 ).
(5.38)

Here E 0 i and |i are eigenvalues and eigenfunctions of the Hamiltonian H 0 :

H 0 |i = E 0 i |i ; (5.39)
H 0 is the zeroth-order operator (operator of a sum of harmonic oscillators) of the vibrationrotation Hamiltonian (4.10),

H vib.-rot. ≡ H 0 + h. (5.40)
The Ω ij is the space of states |i and |j , which are degenerate or interact with each other. Using of symmetry adapted operators and wave functions in general formula is a complicated problem even for using up to second order, do not speak about third and higher orders of the operator perturbation theory. On that reason, for calculations we used special codes realized on the base of analytical computer language MAPLE. 5.4 Some spectroscopic parameters of the XYZ 3 (C 3v ) molecule as functions of structural and PES parameters In this section using all the above information we describe the scheme for deriving general formulae for the most important spectroscopic parameters of the Hamiltonian of the XYZ 3 (C 3v ) molecule as functions of structural parameters (r e XY , r e Y Z , α e XY Z ) and parameters k a...c of the intramolecular potential energy surface (see Appendix 4).

Anharmonic coefficients x ab /x l λ lµ
It is known [2,78] that vibrational energy E vA λ in (4. 23) or E vE in (4.25) of a symmetric top molecule is determined in the following form:

E v... = a ω a (v a + d a 2 ) + a≤b x ab (v a + d a 2 )(v b + d b 2 ) + λ≤µ x l λ lµ l λ l µ + ..., (5.41) 
where d = 1 for nondegenerate vibrations which are denoted by i, j, l, m and d = 2 for doubly degenerate vibrations which are denoted by λ, µ, ν, etc.

Using of the operator perturbation theory with the operator (4.10) and symmetrized vibrational functions (4.20) (the phase coefficients of functions from Appendix 5 should be taken into account also) allows to obtain the following relations for anharmonic coefficients:

x ii = 3 2 k iiii - 15 4 k 2 iii ω i - 1 2 j =i k 2 iij ω j - j =i k 2 iij 8(ω j + 2ω i ) - j =i k 2 iij 8(ω j -2ω i ) , (5.42) 
x ij = k iijj - 3k iii k ijj ω i - 3k jjj k iij ω j - l =i,j k iil k jjl ω l - k 2 ijj 2(ω i + 2ω j ) + k 2 iij 2(ω j + 2ω i ) + k 2 ijj 2(ω i -2ω j ) + k 2 iij 2(ω j -2ω i ) - l =i,j k 2 ijl 8 1 ω i + ω j + ω l - 1 ω i + ω j -ω l - 1 ω i -ω j -ω l + 1 ω i -ω j + ω l , (5.43) 
x iλ = k iiλλ - 3k iii k iλλ ω i - j =i k iij k jλλ ω j - k 2 iλλ 2(ω i + 2ω λ ) + k 2 iλλ 2(ω i -2ω λ ) - µ =λ k 2 iλµ 8 { 1 ω i + ω λ + ω µ - 1 ω i + ω λ -ω µ + 1 ω i -ω λ + ω µ - 1 ω i -ω λ -ω µ } + ω 2 i + ω 2 λ ω i ω λ B e x (ζ x iλ 2 ) 2 ,
(5.44)

x λλ = 3 2 k λλλλ - i k 2 iλλ 2ω i - 15k 2 λλλ 4ω λ - µ =λ k 2 λλµ 2ω µ - i k 2 iλλ 8(ω i + 2ω λ ) - µ =λ k 2 λλµ 8(ω µ + 2ω λ ) - i k 2 iλλ 8(ω i -2ω λ ) - µ =λ k 2 λλµ 8(ω µ -2ω λ ) , (5.45 
)

x λµ = k (1) λλµµ + 1 2 k (2) λλµµ - i k iλλ k iµµ ω i - k 2 λλµ 2(ω µ + 2ω λ ) + k 2 λλµ 2(ω µ -2ω λ ) - k 2 λµµ 2(ω λ + 2ω µ ) + k 2 λµµ 2(ω λ -2ω µ ) - i k 2 iλµ 16 { 1 ω i + ω λ + ω µ + 1 ω i + ω λ -ω µ + 1 ω i -ω λ + ω µ + 1 ω i -ω λ -ω µ } - ν =λ,µ k 2 λµν 8 { 1 ω λ + ω µ + ω ν - 1 ω λ + ω µ -ω ν + 1 ω λ -ω µ + ω ν - 1 ω λ -ω µ -ω ν } + ω 2 λ + ω 2 µ ω λ ω µ {B e x (ζ x λ 1 µ 2 ) 2 + B e z 2 (ζ z λ 1 µ 2 ) 2 }, (5.46) 
x l λ l λ = - 1 2 k λλλλ + 21 4 k 2 λλλ ω λ + µ =λ k 2 λλµ 2ω µ + i k 2 iλλ 8(ω i + 2ω λ ) - µ =λ k 2 λλµ 8(ω µ + 2ω λ ) + i k 2 iλλ 8(ω i -2ω λ ) - µ =λ k 2 λλµ 8(ω µ -2ω λ ) + B e z (ζ z λ 1 λ 2 ) 2 , (5.47) 
and

x l λ lµ = i k 2 iλµ 16 1 ω i + ω λ + ω µ - 1 ω i + ω λ -ω µ - 1 ω i -ω λ + ω µ + 1 ω i -ω λ -ω µ + k 2 λλµ 2 2 ω µ - 1 ω µ + 2ω λ - 1 ω µ -2ω λ } + k 2 λµµ 2 { 2 ω λ - 1 ω λ + 2ω µ - 1 ω λ -2ω µ - ν =λ,µ k 2 λµν 8 1 ω λ + ω µ + ω ν - 1 ω λ + ω µ -ω ν - 1 ω λ -ω µ + ω ν + 1 ω λ -ω µ -ω ν +B e z (ζ z λ 1 µ 2 ) 2 -2B e x (ζ x λ 1 µ 2 ) 2 + 2B e z ζ z λ 1 λ 2 ζ z µ 1 µ 2 .
(5.48)

It should be noted that obtained formulae for x ab agree with analogous general equations from [78]. At the same time, there are differences in expressions for the x l...l... -parameters, which are caused by splittings of vibrational energy levels.

Ro-vibrational coefficients α β b

Ro-vibrational coefficients α β a are parameters which describe the main part of the vibrational dependence of the rotational parameters B v β : 

B v β = B e β - b α β b (v b + d b 2 ) + ... ( 5 
a xx i = a yy i , a zz i (i = 1, 2, 3), a xz λ 1 = a zx λ 1 = a yz λ 2 = a zy λ 2 , a xx λ 1 = -a yy λ 1 = -a xy λ 2 = -a yx λ 2 (λ = 4, 5 , 6) 
and

B e x = B e y
Taking into account these relations, general formulae (4.11) -(4.17) and using the operator perturbation theory one obtains following relations for α β b -coefficients:

α β i = - 3 2 (B e β ) 3 ω i ( a ββ i ) 2 - 3 √ 2 ω 3/2 i (B e β ) 2 a ββ i k iii - j =i √ 2 ω 3/2 j (B e β ) 2 a ββ j k iij - λ (B e x ζ x iλ 2 ) 2 ω i ω λ (ω i + ω λ ) 2 ω i -ω λ - (ω i -ω λ ) 2 ω i + ω λ (1 -δ βz ), (5.50) 
α x λ = α y λ = - 3 4 (B e x ) 2 ω λ {2B e x ( a xx λ 1 ) 2 + B e z ( a xz λ 1 ) 2 } - i √ 2 ω 3/2 i (B e x ) 2 a xx i k iλλ - µ =λ (B e x ζ x λ 1 µ 2 ) 2 ω λ ω µ (ω λ + ω µ ) 2 ω λ -ω µ - (ω λ -ω µ ) 2 ω λ + ω µ - i (B e x ζ x iλ 2 ) 2 2ω i ω λ (ω λ + ω i ) 2 ω λ -ω i - (ω λ -ω i ) 2 ω λ + ω i , (5.51) 
and

α z λ = - 3 2 B e x (B e z ) 2 ω λ ( a xz λ 1 ) 2 - i √ 2 ω 3/2 i (B e z ) 2 a xx i k iλλ - µ =λ (B e z ζ z λ 1 µ 2 ) 2 ω λ ω µ (ω λ + ω µ ) 2 ω λ -ω µ - (ω λ -ω µ ) 2 ω λ + ω µ . (5.52) 
Equilibrium rotational parameters B e β and α αβ b -coefficients are determined on the base of (4.14) -(4.17).

Centrifugal distortion coefficients D J , D JK , D K and parameter

Centrifugal distortion coefficients D J , D JK , D K and parameter , which are responsible for the a 1 /a 2 splittings in (K = 3) rotational states in vibrational states of A 1 or A 2 symmetry, have the following form:

D A λ J = D E J = i { (B e x ) 2 a xx i ω i } 2 + λ { (B e x ) 2 a xx λ 1 ω λ } 2 , (5.53) 
D A λ JK = D E JK = i 2(B e x ) 2 a xx i ω 2 i {(B e z ) 2 a zz i -(B e x ) 2 a xx i } + λ 2(B e x ) 2 ω 2 λ {2(B e z ) 2 ( a xz λ 1 ) 2 -(B e x ) 2 ( a xx λ 1 ) 2 }, (5.54) 
D A λ K = D E K = i { (B e x ) 2 a xx i -(B e z ) 2 a zz i ω i } 2 + λ { B e x ω λ } 2 {(B e x a xx λ 1 ) 2 -(2B e z a xz λ 1 ) 2 }, (5.55) 
and

A λ = E = λ 1 ω 2 λ (B e x ) 3 B e z a xx λ 1 a xz λ 1 .
(5.56)

Parameters of Coriolis splitting η vE , Coriolis interaction parameters η vA 1 ,vA 2 and Fermi interaction parameters η vnE,vmE

Using the (-2B e z G z J z ) part of the Hamiltonian H vib.-rot. from (4.10) at the first order of the operator perturbation theory, we can obtain the main parts of three different types of spectroscopic parameters: parameters of Coriolis splittings η vE (4.26), parameters of Coriolis interaction η vA 1 ,vA 2 (4.31) and parameters of Fermi interaction η vnE,vmE (n, m = 1, 2, ... and n = m) (4. 35), which describe interactions between vibrational states having the same set of quantum numbers v a , but different sets of quantum numbers l λ . The result has the following form:

η vΓ,vΓ = -2iB e z (c λ ζ z λ 1 λ 2 l λ + c µ ζ z µ 1 µ 2 l µ + c ν ζ z ν 1 ν 2 l ν ), (5.57) 
where η vΓ,vΓ = η vE,vE ≡ η vE is a parameter of the k -l splitting in (4.26); η vΓ,vΓ = η vA a) In that column a type of parameter is presented: Γ Γ = E corresponds to the η vE k-l splitting parameter of (4.26); Γ Γ = A 1 /A 2 corresponds to the η vA 1 ,vA 2 Coriolis interaction parameter of (4.31); Γ Γ = E/E corresponds to the η vE,vE Fermi interaction parameter of (4.35).

l λ l µ l ν c λ c µ c ν Γ Γ a) l λ l µ l ν c λ c µ c ν Γ Γ a) 1 0 0 1 E 1 3 0 1 1E 2 0 0 -1 E 1 3 0 1 2E 3 0 0 -1 A 1 /A 2 1 3 0 1 1E/2E 4 0 0 1 E 2 3 0 -1 1E 5 0 0 -1 E 2 3 0 -1 2E 6 0 0 -1 A 1 /A 2 2 3 0 1 1E/2E 1 1 0 -1 -1 E 1 1 1 1 1 -1 1E 1 1 0 -1 1 A 1 /A 2 1 1 1 1 2E 1 2 0 -1 1 E 1 1 1 1 3E 1 2 0 -1 -1 A 1 /A 2 1 1 1 1 1 1 A 1 /A 2 2 2 0 1 1 E 1 1 1 1 -1 2E/3E 2 2 0 1 -1 A 1 /A 2 1 1 1 -1 1 3E/2E
As an illustration of the correctness of obtained relations we can mention the results of independent high resolution analysis of the ν 5 and 2ν 5 bands of the CHD 3 molecule from [92] and [93]. The parameter η v 5 =1E = 3.565753 cm -1 from [92] and η v 5 =2E = (-2 × 3.596929) cm -1 from [93]. We can see good agreement between both values. As one more illustration we can see the results of a preliminary ro-vibrational analysis of the ν 5 + ν 6 hybrid band of 13 CH 3 D, [94], which can be compared with the result of the analysis of the fundamental bands ν 5 and ν 6 , [95]. In [95], k -l splitting parameters are: η v 5 =1E = -2.643331 cm -1 and η v 6 =1E = 6.283671 cm -1 . In accordance with Table 5.1 we can calculate parameters: η v 5 =v 6 =1A 1 ,v 5 =v 6 =1A 2 = 8.927002 cm -1 and η v 5 =v 6 =1E = -3.640340 cm -1 . The corresponding parameters obtained from a preliminary fit to experimental data for the ν 5 + ν 6 hybrid band have the values: 8.82 cm -1 and -3.53 cm -1 . We can see more than satisfactory agreement between both pairs of values.

Parameters of the a 1 /a 2 (K = 1) rotational splittings γ vE , Coriolis interaction parameters γ vA λ ,vE and Fermi interaction parameters γ vnE,vmE Parameters γ vE , which describe the a 1 /a 2 (K = 1) rotational splittings in the vibrational states of E symmetry, the Coriolis interaction parameters γ vA λ ,vE and the Fermi interaction parameters γ vnE,vmE are the main parameters related to the operators 

(J 2 + + J 2 -)/(J 2 + -J 2 -) (see (
γ vΓ,vΓ = d (v) λ γ λ + d (v) µ γ µ + d (v) ν γ ν , (5.58) 
where λ, µ, ν are different and

γ λ = - 3 8 (B e x ) 2 B e z ω λ a xz λ 1 2 - 3 √ 2 (B e x ) 2 a xx λ 1 k λλλ ω 3/2 λ - µ 1 √ 2 (B e x ) 2 a xx µ 1 k λλµ ω 3/2 µ - i B e x ζ x iλ 2 2 4ω i ω λ (ω i + ω λ ) 2 ω i -ω λ + (ω i -ω λ ) 2 ω i + ω λ .
(5.59)

When changing the equation (4.59), which is given for γ λ , for γ µ and γ ν we should change index λ on the rhs of (4.59) into µ and ν. For

v λ + v µ + v ν ≤ 4 nonzero values of coefficients d (v) ... are presented in Table 5.2.
As in the previous case, equations (4.58) -(4.59) allow to predict different parameters on the base of known values of parameters γ v λ =1E of the fundamental bands which can be determined with high accuracy from the analysis of a 1 /a 2 (K = 1) splittings in the fundamental bands. This result is important for prediction of resonance interaction parameters which are strongly correlated. We can see from Table 5.2 that the a 1 /a 2 (K = 1) splitting parameters γ vE are nonzero for the fundamental bands ν λ , but equal to zero for the first overtone 2ν λ and combination ν λ + ν µ bands. As an illustration of the correctness of obtained equation (4.59) we calculate parameters γ v 5 =1E and γ v 6 =1E for CH 3 D and CHD 3 molecules on the base of information about parameters of intramolecular potential function from [67]. The results are:

γ v 5 =1E = -1.03 × 10 -3 cm -1 , γ v 6 =1E = -16.9 × 10 -3 cm -1
(5.60)

for CH 3 D molecule and

γ v 5 =1E = -5.87 × 10 -3 cm -1 , γ v 6 =1E = 12.1 × 10 -3 cm -1 (5.61)
for CHD 3 molecule. It should be noted that we take into account all possible resonance interactions. The same parameters are calculated in [92,96]:

v λ l λ v µ l µ v ν l ν Γ v λ l λ v µ l µ v ν l ν Γ d (v) λ d (v) µ d (v
γ v 5 =1E = 0.723 × 10 -3 cm -1 , γ v 6 =1E = -17.53 × 10 -3 cm -1 (5.62)
for CH 3 D molecule and

γ v 5 =1E = -5.948 × 10 -3 cm -1 , γ v 6 =1E = 16.8 × 10 -3 cm -1 (5.63)
for CHD 3 molecule. We can see good agreement between calculated and experimental values for the γ v 6 =1E (CH 3 D) and γ v 5 =1E (CHD 3 ) parameters. The agreement between calculated and experimental values for the γ v 5 =1E (CH 3 D) and γ v 6 =1E (CHD 3 ) parameters is not so good. But these discrepancies can be considered as acceptable if one takes into account that:

1. in one case, the discrepancy is about 25 % of the absolute value of the parameter γ v 6 =1E calc.

(CHD 3 ), 2. in the case of the parameter γ v 5 =1E (CH 3 D) the discrepancy is comparable with discrepancies for the parameters γ v 6 =1E (CH 3 D) and γ v 5 =1E (CHD 3 ) even with different signs of experimental and calculated values. It should be noted that we used the ab initio PES from [67] in our calculations. Thus, relatively large difference between the values

γ v 6 =1E calc.
and

γ v 6 =1E
exp.

for CHD 3 molecule can be explained by possible uncertainties in PES parameters.

Parameters β vE , Coriolis interaction parameters β vA λ ,vE and Fermi interaction parameters β vnE,vmE

The parameters β vE in (4.27) -(4.28), Coriolis interaction parameters β vA λ ,vE in (4.29) -(4.30) and Fermi interaction parameters β vnE,vmE in (4.36) -(4.37) are the main parameters related to the operators [(J + ± J -), J z ] + . All these parameters can be expressed in the following form:

β vΓ,vΓ = d (v) λ β λ + d (v) µ β µ + d (v) ν β ν , (5.64) 
where the nonzero coefficients d (v) ... have the same form as in (4.59) and can be used from Table 5.2. The parameters β λ have the following form: At first we determine transformation coefficients l N γa (in accordance with (1.28)) for CH 3 D and CHD 3 isotopomers. To realize this, it is necessary:

β λ = 3 √ 2 8 (B e x ) 2 B e z ω λ a xx λ 1 a xz λ 1 + 3 2 (B e x )(B e z ) a xz λ 1 k λλλ ω 3/2 λ + µ 1 2 (B e x )(B e z ) a xx µ 1 k λλµ ω 3/2 µ + µ =λ B e x ζ x µ 1 λ 2 B e z ζ z µ 1 λ 2 2 √ 2ω λ ω µ (ω µ + ω λ ) 2 ω µ -ω λ + (ω µ -ω λ ) 2 ω µ + ω λ . ( 5 
1. to solve the system of equations (1.29) -(1.30) and 2. to determine the elements K e αγ of matrix, that provide a rotation of the molecular equilibrium coordinate axes from a mother molecule to a substituted one. The corresponding matrix is obtained in the following form: 

   K e xx K e xy K e xz K e yx K e yy K e yz K e zx K e zy K e zz    =    2/3 -1/6 -1/6 0 -1/2 1/2 1/3 1/3 1/3    ( 5 
-47C -5C 17C 63C 0 14C 0 5C 0 2x 23C 3C -9C 15C 28C -40C 31C 24C -11C 3x 23C 3C -9C 15C -28C -40C -31C 24C 11C 4x 0 0 0 -C 0 18C 0 51C 0 5x 0 0 0 -26C 0 11C 0 -36C 0 1y 0 0 0 0 -2C 0 -58C 0 30C 2y 40C 5C -15C 28C 47C 31C -4C -11C 11C 3y -40C -5C 15C -28C 47C -31C -4C 11C 11C 4y 0 0 0 0 -C 0 18C 0 51C 5y 0 0 0 0 -26C 0 11C 0 -36C 1z 16C 2C 43C -23C 0 34C 0 38C 0 2z 16C 2C 43C 11C 20C -17C -29C -19C -33C 3z 16C 2C 43C 11C -20C -17C 29C -19C -33C 4z 5C -80C -12C 0 0 0 0 0 0 5z -15C 31C -32C 0 0 0 0 0 0 a Here C = 1 50 √ 3
As an illustration of the quality of obtained results, column I of Table 5.5 contains numerical values of harmonic frequencies of the CH 3 D and CHD 3 molecules calculated on the base of isotopic relations (4.63) -(4.64). The initial value of the parameter ω 1 = 3040.38 cm -1 of CH 4 was taken from [87]. For comparison column II of Table 5.5 contains values of the same parameters obtained from ab initio calculations [67]. Thus, the values of harmonic frequencies in column I were obtained without any information about the CH 3 D and CHD 3 molecules, and the results can be considered as extremely satisfactory. On the base of formulae obtained in Section 5.4, equations (2.19) -(2.21) and data from Tables 5.3 and 5.4 we obtain the following approximate relations between anharmonic coefficients: 

0 6C 0 16C 2x -C 23C -10C 15C 26C -6C 7C -42C 34C 3x -C 23C -10C 15C -26C -6C -7C -42C -34C 4x 0 0 0 -0.7C 0 70C 0 -14C 5x 0 0 0 -37C 0 -18C 0 32C 1y 0 0 0 0 -0.4C 0 -10C 0 -62C 2y -2C 40C -17C 26C 45C 7C 2C 34C -4C 3y 2C -40C 17C -26C 45C -7C 2C -34C -4C 4y 0 0 0 0 -0.7C 0 70C 0 -14C 5y 0 0 0 0 -37C 0 -18C 0 32C 1z 0.1C 16C 38C -22C 0 37C 0 9C 2z 0.1C 16C 38C 11C 19C -18C -32C -5C -8C 3z 0.1C 16C 38C 11C -19C -18C 32C -5C 8C 4z -83C -9C -11C 0 0 0 0 0 5z 24C -17C -44C 0 0 0 0 0 a Here C = 1 50 √ 3
x 11 ≈ - 7 3 B e = - 7 
x 45 = 3 2 x 46 = -30x 55 = -245x 56 = 7x 66 = - 7 2 x l 4 l 4 = -65x l 4 l 5 = 17x l 4 l 6 = -40x l 5 l 5 = - 27 2 x l 5 l 6 = 25x l 6 l 6 , (5.72) 
for CHD 3 . Analogous relations are obtained for ro-vibrational coefficients α β b : 

Y 3 = -
Y 3 = - 2 16πρ 4 e cm 3/2 H F 1/2 11 = - 39 20 α x 1 = -2α x 2 = - 11 5 α x 3 = - 42 25 α x 4 = 13 2 α x 5 = 25 2 α x 6 = - 18 5 α z 1 = - 8 5 α z 2 = 10 3 α z 3 = -7α z 4 = 44 
(..v 1 ..v 5 ..)/(..v 1 ± 1..v 5 ∓ 2..), (..v 3 ..v 5 ..)/(..v 3 ± 1..v 5 ∓ 1..)
for CH 3 D and

(..v 1 ..v 5 ..)/(..v 1 ± 1..v 5 ∓ 2..), (..v 2 ..v 6 ..)/(..v 2 ± 1..v 6 ∓ 2..), (..v 3 v 4 v 5 ..)/(..v 3 ± 1v 4 ∓ 1v 5 ± 1..), (..v 3 ..v 6 ..)/(..v 3 ± 1..v 6 ∓ 1..)
for CHD .

As an illustration of correctness of obtained relations (4.67) -(4.68) columns 2 and 5 of Table 5.6 contain predicted values of x λµ -parameters. It should be noted that only one initial parameter x 11 = -12.513 cm -1 of the CH 4 molecule was taken into account from [87]. For comparison columns 3 and 6 contain values of corresponding parameters obtained on the base of ab initio calculations from [67]. 

(..v 1 ..v 5 ..)/(..v 1 ± 1..v 5 ∓ 2..), (..v 2 ..v 6 ..)/(..v 2 ± 1..v 6 ∓ 2..).
At the same time, in [67] these interactions were not taken into account. For comparison, columns 4 and 7 of Table 5.6 contain experimental values of the x λµ -parameters from [60].

We can see agreement between the parameters in most cases. However, there are differences between predicted and experimental values of the 6 parameters x 11 , x 14 , x 15 , x 45 , x l 4 l 4 , x l 4 l 5 of CH 3 D molecule and 5 parameters x 22 , x 23 , x 26 , x 56 , x l 5 l 6 of CHD 3 molecule. In this case, the discrepancies can be explained by the fact that in [60] the following resonance interaction was not taken into account: At the same time, predicted values of the α x 3 and α x 6 parameters differ very much from corresponding experimental values. To understand the situation, it is necessary to take into account that:

(..v 2 ..v 6 ..)/(..v 2 ± 1..v 6 ∓ 2..).
1. The band ν 5 was considered in [92] as an isolated state. As it is seen from the discussion after equation (4.70) (for CHD 3 ), resonance interactions also were absent at the derived relations for the α x 5 and α z 5 coefficients.

2. The bands ν 3 and ν 6 have been considered as interacted in [92]. In this case, as it follows from the symmetry properties of the XYZ 3 (C 3v ) molecule, that interaction is described by the operator of Coriolis interaction blocks of the A 1 -E or A 2 -E type (4.29). It means, that this interaction, on the one hand, does not affect on the C (v 3 =1) and C (v 6 =1) (as the consequence, on the α z 3 and α z 6 ) parameters, but, on the other hand, strongly connects with each other the B (v 3 =1) and B (v 6 =1) (α x 3 and α x 6 ) parameters.

To illustrate what above said, Figure 5.2 shows the dependence of the experimental values of α x 3 (curve A) and α x 6 (curve B) on the value of resonance interaction parameter α (4.29). The dash horizontal lines (1) and ( 2) correspond to the values of the α x 3 and α x 6 parameters predicted with the obtained relations (4.70). The dash vertical line I indicates the experimental value of Coriolis interaction parameter α ≡ α =1.701 cm -1 from [92]. In this case, the crossing of the line I with curves A and B (resp.) indicate the experimental values of the parameters α x 3 and α x 6 (resp.) from [92]. To construct the curves A and B, we took experimental ro-vibrational 

( 2 )

Figure 5.2: Dependence of the experimental values of α x 3 and α x 6 with respect to the value of resonance interaction parameter α . energy levels of the states (v 3 = 1) and (v 6 = 1) from [92]. Then we changed the value of the resonance interaction parameter α with a step of 0.01 cm -1 and, for any fixed value of the parameter α, made a fit of the same set of spectroscopic parameters. As the analysis showed (and as one would expect because of strong correlation between parameters α x 3 and α x 6 , on the one hand, and resonance interaction parameter α, on the other hand), quality of fits (rms deviation) was practically unchanged for all fits, but the values of the α x 3 and α x 6 parameters obtained from fits were changed in accordance with the curves A and B. It should be mentioned, that the vertical dash line II on this figure corresponds to the value of the resonance interaction parameter α =1.836 cm -1 , that was obtained from the theoretical prediction in the present paper on the base of isotopic relation. In this case, one can see that the curves A and B cross the lines (1) and ( 2) just very close to the line II. It means that the fit, being made with the theoretically predicted value of the resonance interaction parameter α gives the "experimental" values of α [97] and [98]. One can see satisfactory correlation of both results with the exception of the parameter of CHD 3 . Discrepancy in calculated and "experimental" value of the parameter can be explained by the fact that in [98] the value of was not varied, but was fixed. The variable parameter in [98] was h 3 . At the same time, in [98] the parameters and h 3 are strongly correlated (as determined from the fit): a change of the parameter will lead to a change of the parameter h 3 without change of quality of the fit. To summarize, taking also into account good correlations between calculated and experimental values of all others parameters in Table 5.8, one can conclude that the value = 0.0000054 cm -1 is correct. Calculated on the base of (4.73). b) Taken from analysis of experimental data [97]. c) Calculated on the base of (4.74). d) Taken from analysis of experimental data [98].

Isotopic relations for η vΓ,vΓ , γ vΓ,vΓ and β vΓ,vΓ

As in the previous case, on the base of relations (4.63) -(4.66) in formulae (4.57) -(4.61) we can obtain the following simple relations for coefficients η vΓ,vΓ , γ vΓ,vΓ and β vΓ,vΓ : for CHD 3 .

B e = -10η 4 = 95 49 η 5 = - 17 20 η 6 , (5.77) 
Y 3 = -
To illustrate correctness of the derived relations, we compared result of calculations on the base of these relations with the experimental data from [92] and [96]. For the CH 3 D molecule we have = -3.097.

Finally one must remark that on the base of the operator perturbation theory and symmetry properties of the axially symmetric molecules we determined a set of relations which allows one to connect with each other different types of spectroscopic parameters (parameters of diagonal blocks, Coriolis, and Fermi interaction parameters) of the XYZ 3 and XY 3 (C 3v ) molecules. On that base, numerous isotopic relations are derived for the CH 3 D ←CH 4 and CHD 3 ←CH 4 substitutions in the methane molecule.

The following important remarks should be made. A study of highly excited vibrational states very often oblige to take into account a large number of different interacting states. In this case, a lot of correlations between different parameters of diagonal and resonance blocks of the effective Hamiltonian appear. As a result, simultaneous determination of all parameters of an effective Hamiltonian from a fit of experimental data is impossible, as a rule. At the same time, existence of derived relations between parameters allows one to theoretically predict values of many of them with satisfactory accuracy.

Conclusion

In this work we have considered the very important physical problem of the theoretical investigation of polyatomic molecules of XY 2 Z 2 (C 2v ), XYZ 3 (C 3v ), XY 4 (T d ) type. Using isotopic substitution theory, operator perturbation theory and symmetry properties of the axially symmetric molecules in the framework of the "expanded" local mode approach, we determined a set of relations, which allow one to connect different types of spectroscopic parameters (parameters of diagonal blocks, Coriolis, and Fermi interaction parameters) for various isotopomers of XY 2 Z 2 (C 2v ), XYZ 3 and also XY 3 (C 3v ) molecules. Numerous isotopic relations are derived for the CH 2 D 2 ← CH 4 , CH 3 D ← CH 4 and CHD 3 ← CH 4 substitutions in methane. We have illustrated the success of these relations by comparing spectroscopic experiment and theory.

Obtained simple analytical relations allow to predict (or connect) directly the spectroscopic parameters of the effective Hamiltonians of different isotopomers, without passing through time-consuming numerical calculations of energy levels using the multidimensional potential hypersurface. The importance of our results can be seen for following reasons. In the analysis of the high-resolution rovibrational spectra of highly excited states it is often necessary to include many interacting vibrational levels. In such situation, a lot of correlations between different parameters of diagonal and resonance blocks of the effective Hamiltonian appear. As a result, we can not determine simultaneously all parameters of an effective Hamiltonian from a fit of experimental data. By using the numerous simple theoretical relations derived in the present work, one can then remove many of the correlations and ambiguities. Thus it is possible to obtain a successful analysis of complex spectra of one isotopomer by using theoretical predictions obtained from the relations to spectroscopic parameters of another isotopomer. It is also possible to use the theoretical relations derived in this work in a simultaneous analysis of spectroscopic data for several different isotopomers. Thus the results of the present work will be extremely useful in many spectroscopic analysis in the future.

Also in the present work we present a simple Hamiltonian model, which allows to considerably simplify the realization of the procedure of determination of the potential energy surface in comparison with more cumbersome standard methods.

The main results of the this work are:

• modification and applying of the general isotopic substitution theory and "expanded" local mode approach to XY 4 (T d ) molecule and its isotopomers XY 2 Z 2 (C 2v ) and XYZ 3 (C 3v ), and on this base simple isotopic relations for spectroscopic parameters were obtained;

• obtaining of general formulae for spectroscopic parameters for the considered molecules;

• construction of the Hamiltonian operator in a simple form which can be used for any "normal" polyatomic molecule and for any isotopic species of a molecule.

Appendix 1. Intramolecular potential function of the methane molecule ) .

V (3) = 1 6 F 111 S 3 1 + 1 2 F 122 S 1 (S 2 2a + S 2 2b ) + 1 2 F 133 S 1 (S
V (4) = 1 24 F 1111 S 4 1 + 1 4 F 1122 S 2 1 (S 2 2a + S 2 2b ) + 1 4 F 1133 S 2 1 (S 2 3x + S 2 3y + S 2 3z ) + 1 2 F 1134 S 2 1 (S 3x S 4x + S 3y S 4y + S 3z S 4z ) + 1 4 F 1144 S 2 1 (S 2 4x + S 2 4y + S 2 4z ) + 1 6 F 1222 S 1 (S 3 2a -3S 2a S 2 2b ) + √ 3 4 F 1233 S 1 S 2b (S 2 3x -S 2 3y ) - 1 √ 3 S 2a (S 2 3x + S 2 3y -2S 2 3z ) + √ 3 2 F 1234 S 1 S 2b (S 3x S 4x -S 3y S 4y ) - 1 √ 3 S 2a (S 3x S 4x + S 3y S 4y -2S 3z S 4z ) + √ 3 4 F 1244 S 1 S 2b (S 2 4x -S 2 4y ) - 1 √ 3 S 2a (S
(5.82)

Figure 5.3: The nomenclature of the rotational states.

Appendix 3. Symmetrized rotational operators

In this Appendix we present the first (with the degree Ω ≤ 3) non-zero irreducible rotational operators of the SO(3) and C 3v symmetry groups.

Rotational operators symmetrized in the SO(3) symmetry group

In accordance with the equations (4.1) -(4.3), the symmetrized rotational operators R Ω(K) n (0 ≤ Ω ≤ 3 and 0 ≤ K ≤ 3) can be obtained in the following form:

R 1(1) 0 = J 0 J 0 |Jk >= k|Jk > R 1(1) +1 = -J + = - 1 √ 2 (J x -iJ y ) J + |Jk >= 1 √ 2 (J(J + 1) -k(k + 1)) 1 2 |Jk + 1 > R 1 (1) 
-1 = J -= 1 √ 2 (J x + iJ y ) J -|Jk >= 1 √ 2 (J(J + 1) -k(k -1)) 1 2 |Jk -1 >, R 2(2) 0 = 3 2 J 2 0 - 1 √ 6 J 2 R 2(2) ±1 = ∓ 1 √ 2 [J 0 , J ± ] + R 2 (2) 
±2 = J 2 ± R 2(0) 0 = - 1 √ 3 J 2 , R 3(3) 0 = - 3 √ 10 J 2 J 0 + 5 2 J 3 0 + 1 √ 10 J 0 R 3(3) ±1 = ± 3 2 √ 15 J ± J 2 ∓ √ 15 4 (J ± J 2 0 + J 2 0 J ± ) ± 3 4 √ 15 J ± R 3(3) ±2 = √ 3 2 (J 0 J 2 ± + J 2 ± J 0 ) R 3(3) ±3 = ∓J 3 ± R 3(1) ±1 = ± 1 √ 3 J 2 J ± R 3(1) 0 = - 1 √ 3 J 2 J 0 ,
where

J 2 = α J 2 α .
Rotational operators symmetrized in the C 3v symmetry group

The use of the results of the above sub-section in the general relations (4.5) allows one to determine rotational operators symmetrized in the C 3v group:

R 1(1,A 2 ) = J 0 = J z R 1(1,E) 1 = - i √ 2 (J --J + ) = J y R 1(1,E) 2 = 1 √ 2 (J -+ J + ) = J x , R 2(0,A 1 ) = - J 2 √ 3 R 2(2,A 1 ) = - 3 2 J 2 0 + 1 √ 6 α J 2 α R 2(2,1E) 1 = 1 2 ([J 0 , J -] + + [J 0 , J + ] + ) R 2(2,1E) 2 = i 2 ([J 0 , J -] + -[J 0 , J + ] + ) R 2(2,2E) 1 = - 1 √ 2 J 2 + + J 2 - R 2(2,2E) 2 = i √ 2 J + --J 2 + ,
and

R 3(1,A 2 ) = - J 2 J 0 √ 3 R 3(1,E) 1 = i √ 6 J 2 (J --J + ) R 3(1,E) 2 = - 1 √ 6 J 2 (J -+ J + ) R 3(3,A 1 ) = i √ 2 J 3 --J 3 + R 3(3,1A 2 ) = - 1 √ 2 J 3 -+ J 3 + R 3(3,2A 2 ) = 3 √ 10 J 2 J 0 - 5 2 J 3 0 - 1 √ 10 J 0 R 3(3,1E) 1 = i √ 2 3 2 √ 15 (J + -J -)J 2 - √ 15 4 (J + -J -)J 2 0 + J 2 0 (J + -J -) + 3i 4 √ 30 (J + -J -) R 3(3,1E) 2 = 1 √ 2 3 2 √ 15 (J + + J -)J 2 - √ 15 4 (J + + J -)J 2 0 + J 2 0 (J + + J -) + 3 4 √ 30 (J + + J -) R 3(3,2E) 1 = i √ 3 2 √ 2 J 0 (J 2 + -J 2 -) + (J 2 + -J 2 -)J 0 R 3(3,2E) 2 = - √ 3 2 √ 2 J 0 (J 2 + + J 2 -) + (J 2 + + J 2 -)J 0 .
Федеральное 

Введение

Современная теоретическая колебательно -вращательная спектроскопия молекул является важным источником количественной и качественной информации о квантово -механических характеристиках объектов микромира. А именно, из полученной экспериментальной информации на основе знания тонкой структуры спектров, можно определить многочисленные характеристики молекул, которые дают возможность исследовать более сложные эффекты внутримолекулярной природы. В частности, оказывается возможным извлекать из спектров информацию о структурных постоянных, межмолекулярному и внутримолекулярному силовому полю, мультипольных моментах, и т.д. Такая информация является чрезвычайно важной при решении многих не только академических, но и прикладных задач физики, химии, астрофизики, атмосферной оптики и других областей науки.

Важной частью понимания процессов, протекающих в молекуле, является знание корректной информации о внутримолекулярной потенциальной функции, которая определяет внутреннюю динамику, процессы, происходящие в молекуле. Поэтому важной является задача определения параметров потенциальных функций молекул.

Способам решения данной проблемы в физики и химии молекул уделяется большое внимание уже в течение многих лет. Существуют два основных пути решения этой проблемы. Первая группа методов, которые довольно широко используются, -это ab initio вычисления. Тем не менее, в настоящее время точность таких методов хуже экспериментальных точностей примерно на 4 -5 порядков для молекул с большим числом атомов. Точность расчетов, в принципе, может быть улучшена, но это потребует увеличения мощностей и времени счета в разы, так что задача становится практически нереализуема.

Существует группа альтернативных методов определения многомерных потенциальных поверхностей молекул -так называемые полуэмпирические методы. Они основаны, с одной стороны, на построении корректной модели гамильтониана многоатомной молекулы на основе колебательно -вращательной теории и, с другой стороны, на наличии точной экспериментальной информации о спектрах высокого разрешения исследуемых молекул в различных диапазонах (видимом, инфракрасном, микроволновом). В большой группе полуэмпирических методов можно выделить подгруппу вариационных методов, обладающих высокой точностью, среди которых можно упомянуть MORBID-метод, разработанный Йенсеном, расчёты, основанные на методе Монте-Карло и расчёты, использующие преобразование Ван-Флека. Однако, вариационные методы, несмотря на все их достоинства, обладают и недостатками. В частности, они не применимы к молекулам более чем с 3 -4 атомами, поскольку это требует слишком больших компьютерных ресурсов и вре-мени счета. Данный недостаток обусловлен тем, что данная группа методов основана на прямом многократном построении матрицы колебательно -вращательного гамильтониана в выбранном базисе и последующей ее диагонализации (так называемая итерационная процедура). Даже для самых простейших двухатомных молекул это приводит к необходимости построения матриц размерности вплоть до сотен столбцов и строк. Появление каждой дополнительной степени свободы увеличивает размеры соответствующих матриц на 2-4 порядка.

Таким образом, одной из задач молекулярной спектроскопии и физики молекул является разработка подходов и методов для определения внутримолекулярной потенциальной функции многоатомных молекул, по возможности имеющих достоинства и исключающих недостатки известных на настоящее время подходов. Коллектив лаборатории молекулярной спектроскопии на протяжении последних лет занимался разработкой и реализацией подобного рода методов. Важным является то, что разрабатываемые методы не зависят от типа симметрии молекул и количества в ней ядер, таким образом, их можно использовать не только для исследования трёх -пятиатомных молекул, но и молекул с большим числом атомов с минимальными изменениями.

Однако, зачастую, информации о параметрах потенциальной функции молекулы оказывается недостаточно. Источником дополнительной информации в таких случаях являются спектры изотопозамещенных модификаций, чьи физические и химические свойства тесно связаны со свойствами "материнской" молекулы, а спектры, в то же время, могут различаться очень сильно.

Также важной является информация об изотопической зависимости различных спектроскопических и молекулярных параметров. Однако, известные в литературе изотопические соотношения в большинстве своем являются правилами сумм и произведений и справедливы лишь для небольшого числа молекулярных и спектроскопических параметров. Вместе с тем известно, что такого рода соотношения возможно получить в рамках известной теории только для очень ограниченного числа случаев. В этой связи дальнейшее развитие теории изотопозамещения представляется чрезвычайно важным.

Совокупность проблем современной теоретической спектроскопии, перечисленная выше, а также их значимость при решении проблем во многих областях науки -все это говорит об актуальности исследований, направленных на разработку эффективных методов определения параметров потенциальных поверхностей и различных спектроскопических параметров произвольных многоатомных молекул.

Перечисленные выше проблемы современной теоретической колебательно-вращательной спектроскопии, а также практическая значимость для многочисленных задач астрофизики, атмосферной оптики, химии молекул и т.д., определяют актуальность исследований, выполненных в данной работе.

Данная работа посвящена исследованию эффекта изотопозамещения в многоатомных молекулах, удовлетворяющих "расширенному" приближению локальных мод.

В соответствии с вышесказанным целями настоящей работы являются:

• исследование эффекта изотопозамещения в многоатомных молекулах, удовлетворяющих "расширенной" модели локальных мод, что в дальнейшем позволяет использо-вать дополнительную информацию о различных изотопозамещенных модификациях молекул для решения обратных спектроскопических задач;

• разработка эффективного, применимого к молекулам с произвольным числом атомов и различной симметрией метода определения внутримолекулярной потенциальной функции;

• разработка алгоритмов и создание программ для осуществления развитых подходов для различного типа многоатомных молекул.

Конкретная реализация поставленной цели заключается в решении следующих задач:

• Модификация и распространение развитых ранее теории изотопозамещения и "расширенного" метода локальных мод на молекулы типа XY

4 симметрии T d , XY 2 Z 2 симметрии C 2v и XYZ 3 симметрии C 3v ;
• На основе операторной теории возмущений и теории неприводимых тензорных операторов получение общих формул, позволяющих связать спектроскопические параметры исследуемых молекул с параметрами внутримолекулярной потенциальной функции;

• Определение координатного представления гамильтониана произвольной многоатомной молекулы, который позволил бы построить точный оператор кинетической части таким образом, чтобы он был применим к молекулам с произвольным числом атомов, был прост при практических расчетах (по сравнению с уже известными операторами) и был применим к любой изотопической модификации исследуемой молекулы;

Основные методы исследования. Для решения перечисленных задач применялась теория неприводимых тензорных операторов, операторная теория возмущений, теория изотопозамещения, "расширенный" метод локальных мод, вычислительные методы с использованием языков программирования FORTRAN и MAPLE.

Научные положения, выносимые на защиту:

• Возникающая в рамках "расширенной" модели локальных мод возможность определить в простой аналитической форме константы форм колебаний отдельных типов многоатомных молекул позволяет, используя результаты общей теории изотопозамещения, определить также в простой аналитической форме константы форм колебаний любых изотопопроизводных данной молекулы.

• Наличие аналитической зависимости между константами форм колебаний различных изотопомеров молекул, удовлетворяющих "расширенной" модели локальных мод дает возможность получить в аналитической форме простые соотношения как между различными спектроскопическими параметрами материнской молекулы, так и между спектроскопическими параметрами различных изотопомеров.

• Разработанный в диссертации метод определения внутримолекулярных многомерных потенциальных поверхностей нормальных молекул на основе специального координатного представления открывает возможность как существенно упростить решение проблемы описания внутренней динамики молекул, так и расширить класс и число исследуемых молекул по сравнению с известными в теоретической спектроскопии методами.

Достоверность результатов, полученных в работе, подтверждается:

• строгостью используемых моделей и математических методов, непротиворечивостью результатов и выводов, их согласованностью с результатами других авторов и согласием с результатами соответствующих экспериментальных исследований.

• хорошим совпадением результатов расчетов по полученным изотопическим соотношениям с результатами расчетов параметров как ab initio-методами, так и полуэмпирическими методами.

Научная новизна работы определяется следующими факторами:

• В результате компиляции положений и результатов теории изотопозамещения и "расширенного" метода локальных мод получен ряд новых, ранее неизвестных изотопических соотношений между различными спектроскопическими параметрами различных изотопических модификаций молекулы метана.

• Разработанный новый подход к проблеме определения внутримолекулярной потенциальной функции характеризуется простотой и эффективностью реализации и применим для молекул с произвольным числом атомов и произвольной симметрии.

Научная ценность заключается в следующем:

• Развитая и апробированная на молекуле метана компиляция теории изотопозамещения и "расширенного" приближения локальных мод позволяет получить многочисленные, ранее не известные изотопические соотношения между различными спектроскопическими параметрами различных изотопомеров молекулы метана, и на этой основе предсказывать параметры спектральных линий той или иной изотопической модификации даже в условиях полного отсутствия информации о последней.

• Развитые в диссертации методы позволяют разрешить целый ряд проблем, возникающих при интерпретации спектров сильно взаимодействующих колебательновращательных полос изотопомеров метана, связанных с неоднозначностями и сильной корреляцией спектроскопических параметров.

• Результаты исследования позволяют распространить развитый подход на аналогичные исследования более сложных молекул, в частности молекул C 2 H 4 и CH 3 XY.

Практическая значимость работы: разработанные модели и методы, а также результаты, полученные на их основе, позволяют упростить процедуру описания сложных колебательно -вращательных спектров изотопомеров метана в высоковозбужденных колебательных состояниях.

Внедрение результатов. Результаты по теме диссертации использовались при выполнении совместных научных исследований Томского государственного университета и университетов Бургундии (Франция), Оулу (Финляндия), Цюриха (Швейцария), а также представленные в диссертационной работе результаты используются при чтении курсов лекций "Современные проблемы молекулярной спектроскопии" и "Физика атомов и молекул" в Томском государственном университете. Полученные результаты могут быть использованы в организациях, занимающихся спектроскопией высокого разрешения, газоанализом атмосферы и т.д., таких как: Томский государственный университет, Институт оптики атмосферы СО РАН (г. Томск), Институт прикладной физики РАН (г. Нижний Новгород), Институт спектроскопии РАН (г. Троицк, Московская область).

Апробация работы. Материалы, вошедшие в диссертацию, докладывались и обсуждались на следующих научных конференциях:

• 21-ом Международном коллоквиуме по молекулярной спектроскопии высокого разрешения (Кастелламара ди Стабия, Италия, 2009).

• 16-ой Всероссийской научной конференции студентов -физиков и молодых ученых (Волгоград, Россия, 2010).

• 21-ой Международной конференции по молекулярной спектроскопии высокого разрешения (Познань, Польша, 2010).

• 17-ой Всероссийской научной конференции студентов -физиков и молодых ученых (Екатеринбург, Россия, 2011).

• 22-ом Международном коллоквиуме по молекулярной спектроскопии высокого разрешения (Дижон, Франция, 2011).

• 22-ой Международной конференции по молекулярной спектроскопии высокого разрешения (Прага, Чехия, 2012).

• 23-ом Международном коллоквиуме по молекулярной спектроскопии высокого разрешения (Будапешт, Венгрия, 2013).

Работа выполнялась при финансовой поддержке:

• Грант французского правительства на написание диссертации под совместным научным руководством (Томский Государственный Университет, Томск, Россия -Университет Бургундии, Дижон, Франция, 2011 -2014).

• Стипендии некоммерческого фонда "Династия"(2011, 2013, 2014).

• Стипендия Правительства Российской Федерации (приказ № 935 от 19 ноября 2012).

• Совместный грант РФФИ-CNRS (Россия -Франция) № 07-02-92164.

• Грант РФФИ № 09-02-09533.

Вклад автора при получении результатов настоящей работы состоит в следующем:

• совместно с проф., д.ф.-м.н. Е. С. Бехтеревой, д.ф.-м.н. О. Н. Уленековым и проф. К. Леруа участие в постановке задач;

• совместно с И. Б. Болотовой разработка математического аппарата на основе теории возмущений, а также получение соотношений и связей между различными спектроскопическими параметрами для молекул CH 4 , CH 2 D 2 , CH 3 D, CHD 3 ;

• совместно с проф., д.ф.-м.н. Е. С. Бехтеревой и проф. К. Леруа разработка алгоритмов и создание программ на языке MAPLE.

• совместно с проф., д.ф.-м.н. Е. С. Бехтеревой и д.ф.-м.н. О. Н. Уленековым разработка нового метода определения внутримолекулярной потенциальной функции, применимого к молекулам с произвольным числом атомов и произвольной симметрии.

Публикации. Основные результаты диссертации опубликованы в 12 печатных работах (из них 5 статей в изданиях, рекомендуемых ВАК и 7 тезисов всероссийских и международных конференций).

Структура и объем диссертации. Диссертационная работа состоит из введения, пяти глав, пяти приложений и заключения общим объемом 142 страницы, в том числе содержит 9 рисунков, 29 таблиц и список цитируемой литературы из 134 наименований.

Основное содержание работы.

Во введении обоснована актуальность темы, кратко изложены предмет исследований и структура диссертации, сформулированы цели работы, защищаемые положения, научная и практическая значимость работы.

Первая глава диссертации посвящена описанию необходимых для понимания оригинальной части работы принципов и некоторых методов колебательно -вращательной теории, включающих способ построения квантово -механического гамильтониана во внутримолекулярных координатах для произвольной многоатомной молекулы; метод решения колебательно -вращательной задачи с использованием эффективных вращательных операторов; основные сведения из операторной теории возмущения.

Вторая глава диссертации посвящена теоретическому исследованию молекулы CH 4 и на основе "расширенного" приближения локальных мод получению простых соотношений между различными спектроскопическими параметрами исследуемой молекулы.

В третьей главе диссертации рассматриваются проблемы, связанные с применением теории изотопозамещения и "расширенного" приближения локальных мод к одной из изотопозамещенных модификаций молекулы метана CH 2 D 2 .

В четвертой главе диссертации рассматриваются вопросы, связанные с двумя другими изотопомерами молекулы метана CH 3 D и CHD 3 . Для исследуемых молекул были получены ранее неизвестные в литературе результаты для спектроскопических параметров, многочисленных резонансных параметров.

В пятой главе диссертации рассматриваются вопросы, связанные с корректным определением внутримолекулярной потенциальной функции многоатомной молекулы.

Выводы по работе сформулированы в заключении. Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего профессионального образования "Национальный исследовательский Томский государственный университет" , федеральном государственном бюджетном образовательном учреждении высшего профессионального образования "Национальный исследовательский Томский политехнический университет" и Университете Бургундии за период с 2008 по 2014 гг. Основное содержание диссертации изложено в работах [21,22,75,76,77,84,85,86,87,80,[START_REF] Ulenilov | On the intramolecular potential function of the formaldehyde molecule // Abstract 21 st Colloquium on High Resolution Molecular Spectroscopy[END_REF][START_REF] Фомченко | Об определении внутримолекулярной потенциальной функции многоатомных молекул: формальдегид // Материалы 16-ой Всероссийской научной конференции студентов-физиков и молодых ученых[END_REF].

Глава 1

Некоторые методы теоретического исследования спектров молекул

Данная глава носит обзорный характер, поэтому в ней коротко обсуждаются некоторые сведения из общей теории колебательно-вращательных взаимодействий в молекулах [1,2,3], которые необходимые для изложения и понимания оригинальной части работы.

Колебательно-вращательный гамильтониан

Необходимое условие корректного теоретического описания природных явлений -это построение математических моделей данных явлений. Однако, математическая модель может быть построена по-разному, с учетом реально происходящих в природе процессов. Следовательно, возникает проблема выбора физически обоснованных математических моделей объектов, которые мы изучаем. Построение и дальнейшее использование неадекватных моделей приводит в появлению ошибок, причём не только количественных, но и качественных. В задачах молекулярной спектроскопии данная проблема сводится к построению корректного гамильтониана молекулы. Решения уравнения Шрёдингера будут зависеть от того, в каком виде выбирается оператор Гамильтона H исследуемой молекулы.

При рассмотрении с физической точки зрения, молекула представляет из себя систему, состоящую из атомных ядер и электронов. Таким образом, для того, чтобы точно описывать уровни энергии молекулы, нужно решить уравнение Шрёдингера с гамильтонианом, который зависит от координат и спинов всех частиц, входящих в молекулу, а также который учитывает все виды взаимодействий между этими частицами. Построение такого гамильтониана -это непростая задача. Точное решение уравнения Шрёдингера с таким гамильтонианом -нерешаемая задача. Поэтому для теоретического описания спектров молекул необходимо использовать различного рода приближения в построении гамильтонианов молекул.

В молекулярной спектроскопии чаще всего используются нерелятивистские гамильтонианы, или, другими словами, гамильтонианы следующего вида:

H = T nucl + T el + V, (1.1) 
где T nucl и T el -операторы кинетической энергии ядер и электронов; V -оператор потенциальной энергии молекулы, включающей энергию притяжения электронов к ядрам и энергию межэлектронного и межъядерного отталкивания. Операторы T nucl , T el и V имеют вид:

T nucl = - 2 2 N 1 m N ∂ 2 ∂x 2 N + ∂ 2 ∂y 2 N + ∂ 2 ∂z 2 N , T el = - 2 2 i 1 m el ∂ 2 ∂x 2 i + ∂ 2 ∂y 2 i + ∂ 2 ∂z 2 i , V = i,j>i e 2 r ij + N,N >N Z N Z N r N N - i,N eZ N r iN , (1.2) 
где m N и m el -массы ядер и электронов; Z N и e -заряды ядер и электрона; r ab -расстояние между a-й и b-й частицами. Отметим, что x N и x i -это координаты ядер и электронов в декартовой пространственно -фиксированной системе (ПФС). Наряду с этим известно, что более удобно (и это чаще всего используется) описывать состояния молекулы, когда функции состояний зависят от ориентации молекулы (вращательные переменные) в ПФС и от относительного расположения ядер молекулы (колебательные переменные). Т.е. используют связанные с молекулой координатные системы.

В связи со сказанным выше, при исследовании молекул возникает задача, заключающаяся в том, чтобы, на основе классического или квантового гамильтониана (1.1), записанного в ПФС, перейти к квантово-механическому гамильтониану в связанной с молекулой системе координат. Далее коротко опишем процедуру перехода от оператора (1.1) -(1.2) к оператору, зависящему от трансляционных, вращательных и колебательных переменных.

Гамильтониан молекулы зависит от системы обобщенных координат x n и их производных ∂/∂x n , и его можно преобразовать к системе новых обобщённых координат q m , если известен закон преобразования для координат и их производных:

x n = f n (q m ), ∂/∂x n = f n (q m , ∂/∂q l ). (1.3) 
Известно, что, если преобразование (1.3) не особенное (якобиан преобразования не равен нулю) то соотношения (1.3) для производных могут быть найдены, и только единственным образом. Заметим, что в процессе перехода к новым координатам можно получить бесконечно много окончательных выражений для гамильтониана, поскольку формулы перехода можно задать бесконечным числом способов, но все полученные гамильтонианы, однако, должны иметь совпадающие наборы собственных значений и переходящие друг в друга при преобразованиях наборы собственных функций. Выбор преобразования координат определенного вида зависит от того, насколько будет удобен новый гамильтониан в отличие от исходного с точки зрения математики или физики. Наиболее удачным считается следующее преобразований координат, поскольку оно позволяет разделить различные виды движения в молекуле:

x N α = R α + β K αβ r N β , x iα = R α + β K αβ r iβ ,
(1.4) где x N α и x iα -компоненты векторов, описывающих положения N -го ядра и i-го электрона в пространственной системе координат; R α -компоненты вектора начала молекулярной системы координат относительно пространственной; K -матрица направляющих косинусов углов между осями исходной и новой систем. Также вводится условие, что начало молекулярной системы координат находится в центре масс всей молекулы:

N m N r N β + i m el r iβ = 0, (1.5) 
где r iβ -компоненты координат i-го электрона в молекулярной системе; координаты N -го ядра r N β имеют вид:

r N β = r e N β + λ m -1/2 N l N βλ Q λ , (1.6) 
где r e N β и l N βλ в общем случае произвольны; Q λ (1) -колебательные координаты. Выберем r e N β и l N βλ так, чтобы выполнялись следующие условия:

• r N β совпадает с r e N β , когда ядра находятся в положениях равновесия;

• оси молекулярной системы совпадают с главными осями инерции молекулы, когда ядра находятся в положениях равновесия;

• колебания являются нормальными [3,4];

• выполняются условия Эккарта [2,3,5].

Данные условия можно записать математически в следующем виде с учетом того, что колебательные координаты Q λ являются независимыми:

N,β,γ ε αβγ m 1/2 N r e N β l N γλ = 0, (1.7) 
N,α (1.13)

l N αλ l N αµ = δ λµ , (1.8) 
W λµ = ∂ 2 V ∂Q λ ∂Q µ Q=0 = 0, λ = µ, (1.9) 
(1) Координаты Q λ имеют размерность см•г 1/2 . Часто используются безразмерные координаты q λ = 2πcω λ 1/2 Q λ . Величины l N βλ безразмерны.
Приведённые 3N условий (1.10) -(1.12) определяют 3N параметров r e N β , а 3N (3N -6) соотношений (1.7) -(1.9) и (1.13) -3N (3N -6) констант форм колебаний l N βλ . Т. е. можно задать преобразование координат (1.4) в явном виде.

Однако, более удобной является другая схема введения новых координат, которую мы рассмотрим ниже, поскольку данная схема обладает существенным недостатком, а именно, для определения координат электронов необходимо знать расположение всех электронов относительно ядер в каждый момент времени, что существенно усложняет задачу.

Теперь определим новые координаты таким образом, чтобы r N β и r iβ отсчитывались от центра масс не всей молекулы, а только системы ядер. В таком случае положения ядер может быть всегда легко определено. В работе [6] показано, что в этом случае формулы преобразования координат имеют вид: На основе преобразования координат (1.14), можно определить закон преобразования операторов [3,6] показано, что они будут выглядеть следующим образом:

x N α = R α + β K αβ r e N β + λ l N βλ √ m N Q λ - m el M i r iβ , x iα = R α + β K αβ r iβ - m el M j r jβ , (1.14 
P N α = -i ∂ ∂x N α и P iα = -i ∂ ∂x iα . В
P iα = m el M P α + β K αβ P iβ , P N α = m N M P α + β K αβ λ √ m N l N βλ P λ - γδχ m N ε βγχ r e N γ I -1 χδ N δ - m el M N j P jβ , (1.16) 
где M N = N m N -суммарная масса ядер; P α -сопряжённый импульс координате поступательного движения молекулы как целого; P λ -импульс, сопряжённый Q λ и I χδэлементы тензора момента инерции, зависящие от координат Q λ . Операторы N α имеют вид

N α = J α -G α -L α , где J α -компоненты полного; G α = λµ ζ α λµ Q λ P µ -колебательного и L α = βγ ε αβγ i r iβ P iγ
-электронного угловых моментов. В результате сложных преобразований, упрощений, нормировки волновых функций в новых координатах гамильтониан примет вид [3,6]: 

H = α P 2 α 2M + 1 2m el iα P 2 iα + 1 2M N α i P iα 2 + 1 2 λ P 2 λ + 1 2 αβ (J α -G α -L α ) µ αβ (J β -G β -L β ) + V - 2 8 α µ αα , (1.17 

Приближение Борна -Оппенгеймера

Поскольку в данной работе исследуется внутримолекулярная потенциальная функция молекулы (ВМПФ) многоатомной молекулы, то следует кратко описать приближение Борна -Оппенгеймера [4], поскольку в рамках данного приближения возникает само понятие о ВМПФ, а также о равновесной структуре молекулы. Как уже было показано в предыдущем параграфе, оператор Гамильтона для свободной молекулы при отсутствии внешних полей записывается в виде выражения (1.1), т. е. суммы кинетической энергии ядер и электронов и потенциальной энергии их притяжения и отталкивания. Для задач, рассматриваемых в колебательно -вращательной спектроскопии, малые добавки, обусловленные спин -спиновыми, спин -орбитальными взаимодействиями, различного рода квазирелятивистскими эффектами, при необходимости могут быть учтены по теории возмущений. Также выше было отмечено, что точное решение уравнения Шрёдингера с таким гамильтонианом невозможно. Необходимо преобразовать оператор Гамильтона таким образом, чтобы попытаться решить уравнение Шредингера с ним. Перейдем к гамильтониану вида (1.17). Известно [2], что гамильтониан (1.17) можно разбить на три части, различных по порядку малости:

H = H el + ∆H 1 + ∆H 2 , где H el = 1 2m el iα P 2 iα + V, (1.18 
)

∆H 1 = α P 2 α 2M + 1 2 λ P 2 λ + 1 2 αβ µ αβ (J α -G α )(J β -G β ), (1.19 
)

∆H 2 = 1 2M N α i P iα 2 + 1 2 αβ µ αβ (L α L β -(J α -G α )L β -L α (J β -G β )).(1.20)
Таким образом, в приближении Борна -Оппенгеймера решение уравнения Шрёдингера разбивается на две части:

• о движении электронов в поле медленно движущихся ядер;

• и о движении ядер в эффективном поле электронов.

Математически первую задачу можно записать как решение стационарного уравнения Шрёдингера с гамильтонианом H el в следующем виде:

H el ψ el n (∆r N K ) = E n (∆r N K )ψ el n (∆r N K ) ≡ V n (∆r N K )ψ el n (∆r N K ). (1.21)
Заметим, что собственные значения гамильтониана H el , параметрически зависящие от расстояний между ядрами ∆r N K , называются внутримолекулярной потенциальной функцией.

Для решения электронной задачи используются ab initio методы. Но, как уже было замечено во введении, ab initio методы по точности хуже на пять-шесть порядков экспериментальных точностей в видимом и ИК диапазонах. И до тех пор, пока точности ab initio методов не будет улучшены достаточно для рассмотрении хотя бы трех-, четырех-атомных молекул, ВМПФ будет определяться полуэмпирическими методами, основанными на решении уравнения Шредингера с гамильтонианом вида (эффективный гамильтониан изолированного электронного состояния):

H ef f n = V n (∆r N K ) + ψ el n |∆H 1 |ψ el n + ψ el n |∆H 2 |ψ el n + m =n ψ el n |∆H 1 + ∆H 2 |ψ el m ψ el m |∆H 1 + ∆H 2 |ψ el n E n -E m + ... (1.22) 
Первое слагаемое в выражении (1.22) соответствует приближению Борна -Оппенгеймера, второе и третье слагаемые соответствуют адиабатическому приближению и неадиабатическим поправкам к приближению Борна -Оппенгеймера. Можно показать [2], что после учёта этих поправок появляются малые добавки порядка κ 4 к параметрам колебательновращательного гамильтониана (1.22) В приближении Борна -Оппенгеймера потенциальная функция остается одной и той же для всех изотопических модификаций молекулы, что очень важно, потому что это дает возможность использовать экспериментальные данные о колебательно-вращательных спектрах всех возможных изотопомеров рассматриваемой молекулы.

H = 1 2 λ P 2 λ + 1 2 αβ µ αβ (J α -G α )(J β -G β ) + V, (1.23 

Теория изотопозамещения

В настоящее время сложился определенный круг задач колебательно-вращательной спектроскопии, в которых используются изотопические свойства молекул, например, для определения структуры молекул, параметров потенциальной функции, дипольного момента молекул и т.д. В данном параграфе обсуждаются основные соотношения из общей теории изотопозамещения [8], связывающие молекулярные и спектроскопические постоянные материнской молекулы и ее произвольной изотопозамещённой модификации.

В общем случае есть возможность определить изотопические соотношения для спектроскопических параметров различных изотопомеров. Т. к. нормальные координаты зависят от масс атомов, то спектроскопические параметры (например, гармонические частоты, параметры ангармоничности) тоже, в свою очередь, зависят от масс атомов. Если знать связь между наборами координат рассматриваемых изотопомеров, то можно в общем виде получить изотопические соотношения для спектроскопических параметров этих изотопомеров.

Введем гамильтонианы материнской молекулы и ее произвольного изотопомера в следующем виде:

H(x) = N α P 2 N α 2m N + V (x N α ) (1.24) и H (x) = N α P 2 N α 2m N + V (x N α ), (1.25) 
где x N α -координаты N -го ядра в молекуле с массой m N ; P N α = -i ∂/∂x N α . Апостроф относится к величинам, описывающим изотопозамёщенную молекулу. Важно отметить, что представленные гамильтонианы отличаются только значениями масс ядер в знаменателях первых слагаемых, а потенциальная функция, записанная в приближении Борна-Оппенгеймера, остается неизменной. Как следствие, нетрудно показать, что гамильтониан изотопозамещённой молекулы можно записать в следующем виде:

H (x) = H(x) - N α m N -m N 2m N m N P 2 N α . (1.26) 
В данном выражении второе слагаемое описывает эффекты, обусловленные изотопозамещением.

Далее необходимо перейти от декартовых координат x N α пространственно-фиксированной системы к молекулярной системе координат. Причем, введенные внутримолекулярные координаты должны удовлетворять условиям Эккарта и условию нормировки колебатель-ных координат (см. Параграф 1.1). Известно [7], что переход от координат в ПФС к внутримолекулярным координатам переводит гамильтониан материнской молекулы в гамильтониан Уотсона.

При таком координатном преобразовании гамильтониан изотопа также переходит в гамильтониан Уотсона, при этом внутримолекулярные координаты также удовлетворяет условиям Эккарта и условию нормировки колебательных координат.

Однако, существует некоторая неоднозначность в определении координатного преобразования, ведущего к уотсоновскому виду гамильтониана изотопомера, а именно, такого рода преобразование не является единственным. Если ввести любое неособенное координатное преобразование и записать гамильтониан H (x) в этих координатах, то данный гамильтониан H (x) будет "промежуточным". Известно также, что совокупность неособенных координатных преобразований образует группу [9]. Значит можно найти преобразование, осуществляющее переход от "промежуточных" к координатам, удовлетворяющим условиям Эккарта для изотопозамещённой молекулы. При этом промежуточный гамильтониан изотопомера может быть приведен к уотсоновскому виду. Т.е. можно перейти от оператора H x к оператору уотсоновского вида несколькими способами через "промежуточный" оператор.

Введение "промежуточного" оператора важно в связи со следующим фактом: известно [8], что гамильтониан изотопомера можно представить в виде:

H (x) = H(x) + h. (1.27) 
Если нормальные координаты основной молекулы выбрать как промежуточные, то оператор h будет зависеть от масс атомов и постоянных основной молекулы. При определении второго преобразования можно сразу получить оператор в уотсоновском виде, что непосредственно позволяет получить изотопические соотношения между параметрами материнской молекулы и рассматриваемого изотопомера. В первую очередь необходимо определить l N αλ -параметры. В работе [8] показано, что в общем случае константы форм колебаний l Kγλ изотопомера можно выразить в виде:

l N γλ = αµ K e αγ m N m N 1/2 l N αµ β λµ , (1.28) 
где K e αγ -элементы матрицы, определяющей поворот молекулярной системы координат при переходе от исходной к изотопозамещённой модификации; индексы N и K обозначают атомы молекулы; параметры, относящиеся к изотопозамещённой молекуле обозначены апострофом ( ); α, γ обозначают x, y или z компоненты; λ и µ нумеруют соответствующие нормальные координаты; m N и m N -массы ядер материнской молекулы и ее изотопомера; β λµ -элементы матрицы, обратной к матрице {α λµ }, причем матрица {α λµ } определяет переход от нормальных координат материнской молекулы к координатам изотопомера. Матричные элементы {α λµ } определяются из решения данной нелинейной системы уравнений [8]:

ν α λν α µν = A λµ = N α m N m N l N αλ l N αµ , (1.29) ν A λν W ν α νµ = ν α λν W ν , (1.30) 
приводящими к вековому уравнению

det{AW -W } = 0, (1.31) где A -матрица с элементами A λν ; W и W -диагональные матрицы, причем W λν = ω 2 λ δ λν и W λν = ω 2
λ δ λν ; ω λ и ω λ -гармонические частоты материнской молекулы и ее изотопозамещённой модификации.

Элементы K e αβ можно найти из следующих условий:

α K e αβ K e αγ = α K e βα K e γα = δ βγ (1.32) и β J e αβ K e βγ = I e γγ K e αγ , (1.33) 
где I e γγ -равновесные моменты инерции изотопомера; J e αβ определяются следующим образом:

J e αβ = γδξ ε αγξ ε βδξ j e γδ (1.34) и j e γδ = j e δγ = N m N r e N γ r e N δ -K m K r e Kγ L m L r e Lδ N m N , (1.35) 
где r e N α -декартовы координаты ядер материнской молекулы в положении равновесия в молекулярной системе координат.

Также известны [8] изотопические соотношения между ангармоническими параметрами:

k λ µ ν = λ≤µ≤ν (λ ,µ ,ν ) ω λ ω µ ω ν ω λ ω µ ω ν 1/2 k λµν α λλ α µµ α νν + + 2 πc 1/2 i (λ ,µ ν ) ω 2 i (ω λ ω µ ω ν ) 1/2 α iλ α i µ ν , (1.36) 
где k λ...µ -параметры ангармоничности в потенциальной функции, записанной в безразмерных нормальных координатах Q λ ; величины α i µ ν представляют из себя довольно сложные функции молекулярных параметров (формулы для них приведены в работах [8], [10]). Знаки (λ ,µ ,ν ) и (λ ,µ ν ) соответствуют суммированию по всем перестановкам различных индексов из набора {λ µ ν } (для индексов, не разделенных запятой, выполняется µ ≤ ν ).

Таким образом, используя вышеописанные формулы, можно получить целый ряд нетривиальных соотношений между различными спектроскопическими и молекулярными параметрами различных изотопомеров. Для этого необходимо определить константы форм колебаний, а значит и проанализировать параметры неоднозначности (подробный анализ можно найти в работах [11,12]), и применить к полученным результатам формулы (1.29) -(1.35).

Операторная теория возмущения

На различных стадиях исследования молекулы необходимо всестороннее исследование ее как квантового объекта. И здесь исследователь сталкивается с проблемой -это решение уравнения Шрёдингера. Полученные на основе решения уравнения Шредингера собственные значения и собственные функции очень важны при описании процессов, происходящих в молекуле, поскольку первые определяют возможные энергии рассматриваемого объекта, вторые же определяют вероятности переходов, средние значения различных физических величин. Однако, точное решение уравнения Шрёдингера известно только для самых простых молекулярных систем (например, для молекулярного иона H + 2 ). Как уже было сказано, для произвольной многоатомной молекулы решить уравнение Шредингера невозможно. Для решение подобных задач чаще всего используется теория возмущений [4] (причем, существуют различные ее варианты). Оператор Гамильтона рассматриваемой системы выбирают в виде суммы оператора нулевого приближения H 0 , решение уравнения Шредингера с которым известно, и малой добавки h:

H = H 0 + h.
(1.37)

При этом в классической теории возмущений [4] операторы H 0 и h зависят от одних и тех же переменных. В то же время, гамильтониан можно записать в виде суммы слагаемых различного порядка малости:

H = H 0 + ∞ n=1 H n (κ n ). (1.38) 
В выражении (1.38) оператор H n является малым по сравнению с H 0 , причем порядок малости равен κ n , где κ = (m e /M ) 1/4 [2]; m e -масса электрона; M -средняя масса ядер молекулы. Можно переобозначить оператор H n (κ n ) как h и решать уравнение Шрёдингера в соответствии с классической теорией возмущений. Однако, в классическом подходе оператор возмущения h должен быть функцией тех же переменных, что и оператор H 0 . Но при исследовании молекул оказывается, что операторы H n (κ n ) зависят не только от переменных оператора нулевого приближения, а также и от других переменных. Например, в колебательно-вращательной задаче начальным приближением является чисто колебательный оператор H 0 , а возмущение зависит не только от колебательный, но и от угловых переменных. В классической теории возмущений [4] результат представляет из себя суммы различных комбинаций матричных элементов, т.е. чисел. Если же посчитать матричные элементы операторов возмущения на собственных функциях оператора нулевого приближения, то получим уже не числа, а операторы, которые в общем случае не коммутируют. Т.е. в результате появляются неэрмитовы вклады в оператор энергии. Поэтому использование классической теории возмущений невозможно для рассмотрения реальных задач теории молекул.

Для решения подобного рода задач были разработаны различные вариации так называемого "метода эффективных операторов" [3]. Он заключается в следующем: если решить уравнение Шрёдингера с исходным гамильтонианом H по каким-то причинам невозможно, пытаются построить (по определенных схемам) некоторый другой эрмитов оператор H , который бы обладал двумя важными свойствами:

1) уравнения Шрёдингера с новым оператором H можно решить в явном виде;

2) множество B всех решений уравнения Шрёдингера с оператором H тождественно совпадает с некоторым подмножеством B множества A решений уравнения Шрёдингера с оператором H.

Оператор H , удовлетворяющий условиям (1) -( 2), называют эффективным оператором на подмножестве B.

В работе [3] был развит один из способов построения эффективного вращательного оператора, основанный на использовании операторов проектирования [2,3]. Полученные результаты в работе [3] позволяют построить эффективный оператор в симметризованном виде, а также выразить параметры симметризованного гамильтониана в виде аналитических функций параметров исходного колебательно-вращательного гамильтониана.

Предположим, что гамильтониан рассматриваемого квантового объекта является функцией двух типов переменных, причем его можно представить в виде: 

H = H 0 (a) + h(a, b), (1.39 
H → H = A † H A. (1.40)
Учитывая свойства унитарного преобразования, можно сделать вывод, что элементы диагональной матрицы H являются собственными значениями оператора H, а собственные функции оператора H можно определить на основе соотношений: 

Ψ β (a, b) = αi A β,αi |α, i , (1.41 
H = G † HG, (1.42) 
где G -произвольный унитарный оператор, лишь с одним ограничением: оператор (G -1) является малым по сравнению с единичным оператором. Данное условие выполняется, если оператор G имеет вид: N . Рассмотрим самый простой случай, когда матрица эффективного оператора вырождается в операторную матрицу размерности 1×1. Тогда эффективный оператор называют эффективным оператором выделенного состояния и он принимает вид [3]:

G = exp i ∞ n=1 g n (κ n ) , (1.43 
H [0] = E 0 + 0|h|0 + α =0 0|h|α α|h|0 E 0 -E α + + α =0,β =0 0|h|α α|h|β β|h|0 (E 0 -E α )(E 0 -E β ) - - 1 2 α =0 0|h|0 0|h|α α|h|0 + 0|h|α α|h|0 0|h|0 (E 0 -E α ) 2 + . . . , (1.44) 
где E α -собственные значения состояния α. В качестве другого примера, чаще встречающегося на практике, можно рассмотреть ситуацию с наличием двух и более резонирующих состояний. Эффективный оператор при наличии резонансов записывается в следующем виде [3], [13], [14] (с точностью до 3-го порядка теории возмущений):

H xy = H xy (0) + H xy (1) + H xy (2) + H xy (3) + . . . , (1.45) 
где операторы H xy (n) представляют собой

H xy (0) = E x δ xy , H xy (1) = x|h|y , H xy (2) = 1 2 α ∈Ω x|h|α α|h|y 1 E x -E α + 1 E y -E α , H xy (3) = 1 2 α,β ∈Ω x|h|α α|h|β β|h|y 1 (E x -E α )(E x -E β ) + 1 (E y -E α )(E y -E β ) - - 1 2 x ∈Ω α ∈Ω x|h|α α|h|x x |h|y (E y -E α )(E x -E α ) - 1 2 x ∈Ω α ∈Ω x|h|x x |h|α α|h|y (E x -E α )(E x -E α ) , (1.46) 
Ω -пространство резонирующих состояний. Выражения, приведенные выше, позволяют получить соотношения между параметрами колебательно-вращательного гамильтониана и фундаментальными характеристиками молекулы. Используя выражения (1.46) можно получить выражения для диагональных блоков эффективного гамильтониана H xx . Оператор возмущения h = H -H 0 , т.е., в соответствии со сказанным выше, может быть записан в виде разложения по степеням малого параметра

κ: h = ∞ n=1 h n (κ n ).
(1.47)

Для молекул разной симметрии явный вид операторов h n будет различным.

"Расширенное" приближение локальных мод

В данной диссертации проводится исследование молекул, удовлетворяющих "расширенному" приближению локальных мод [11,12]. Поэтому хотелось бы сказать несколько слов об этом приближении. Но для начала следует объяснить, что такое традиционная модель локальных мод [15,16].

В традиционной модели локальных мод для отдельных классов молекул, которые удовлетворяют определенным условиям, можно ввести локализованные вдоль валентных связей колебательные координаты, причем такие, что возможно существенно упростить, по сравнению с обычной теорией колебательно-вращательных взаимодействий, процесс описания различного типа эффектов в молекулах почти без какого-либо качественного и даже количественного ухудшения результатов.

При использовании традиционной модели локальных мод [15,16] становится возможным получить целый ряд связей между различными спектроскопическими характеристиками молекул, что позволяет с высокой точностью предсказывать характеристики спектров высокого разрешения в высоковозбуждённых колебательных состояниях. Предсказываемые величины затем могут быть использованы в решении различных задач физики, химии, астрофизики (например, при исследовании механизмов химических реакций, описании внутренней динамики исследуемых молекул и т.д.).

Однако, традиционное приближение локальных мод нельзя применять для произвольного типа молекул, поскольку существуют некоторые ограничения. Для молекул типа XY 2 симметрии C 2v (асимметричный волчок), XY 3 симметрии C 3v (симметричный волчок) и XY 4 симметрии T d (сферический волчок), рассмотренных в работе [17] должны выполнять следующие условия:

1) m Y /m X → 0 (т.е. отношение масс -малая величина); 2) равновесный угол YXY → π/2 (для молекул типа XY 2 (C 2v ) и XY 3 (C 3v ));
3) в модели рассматриваются только валентные колебания, а деформационные колебания полностью отсутствуют.

Данные условия являются достаточно жесткими, поскольку они не позволяют рассматривать значительное число молекул, а также не учитывают наряду с валентными и деформационные колебания. Поэтому авторами работ [11,12] было разработано "расширенное" приближение локальных мод. На примере молекул типа XY 2 (C 2v ) [11] и XY 3 (C 3v ) [12], показано, что результаты традиционной модели локальных мод могут быть получены на основе свойств так называемых параметров неоднозначности в константах форм колебаний молекул. Также был получен способ определения этих параметров, что позволило расширить границы применимости модели локальных мод. Следует отметить, что ключевым моментом расширенного метода локальных мод является информация о так называемых константах форм колебаний молекулы, а именно возможность представить их в виде простых аналитических выражений. Также из колебательно-вращательной теории известно, что все спектроскопические параметры являются функциями констант форм колебаний. Следовательно, можно получить простые выражения для всех спектроскопических параметров.

Таким образом, "расширенное" приближение локальных мод [11,12], разработанное как более общий метод, дало возможность: 1) получить общие соотношения для спектроскопических параметров молекул, связанных с деформационными колебаниями;

2) принять во внимание не только валентные, но и деформационные колебания;

3) получить результаты, позволяющие описывать центробежные эффекты.

Теория неприводимых тензорных операторов

Понятия операторов физических величин и волновых функций очень часто используются в физике, в том числе и для описания поведения молекулы как квантовой системы. Известно, что можно построить линейные комбинации исходных операторов (волновых функций), так, что они будут преобразовываться при операциях из группы симметрии системы по неприводимым представлениям этой группы, т.е. представить операторы и волновые функции в симметризованной форме. Симметризованные комбинации операторов называются неприводимыми тензорными операторами, а симметризованные комбинации волновых функций -неприводимыми тензорными наборами функций. В алгебре неприводимых тензоров используются такие понятия, как коэффициенты Клебша-Гордана, 3Γ-, 6Γ-символы, приведённые матричные элементы, изоскалярные множители и др. Мы рассмотрим данные понятия ниже. Они позволяют существенно упростить большинства квантово-механических расчетов.

Неприводимые тензоры.

Набор из n ортонормированных функций можно рассматривать как вектор в n-мерном векторном пространстве L n . При операциях g из группы G линейных преобразований пространства L произвольный вектор x с компонентами x i (i = 1, 2, . . . , n) преобразуется в другой вектор x = gx с компонентами, которые можно связать с исходным вектором с помощью следующего преобразования:

x i = gx i = j T ji (g)x j
(1.48)

Из компонент x i и y j двух произвольных векторов x и y пространства L n можно построить произведения x i y j , которые при операциях g ∈ G будут преобразовываться по правилу:

x i y j = g(x i y j ) = k,l T ki (g)T lj (g)x k y l = kl T kl,ij (g)x k y l (1.49)
где T kl,ij (g) = T ki (g)×T lj (g). Введем определение: тензором второго порядка A ij называется совокупность n 2 величин, преобразующихся под действием операции g (по аналогии с n 2 произведений x i y j координат двух произвольных векторов x и y из L n ).

Если

A ij = Aji, то A ij -симметрический тензор, если A ij = -A ji , то A ij -антисиммет- рический тензор. Любой тензор A ij
второго порядка можно представить как сумму его симметрической и антисимметрической частей:

A ij = 1 2 [A ij + A ji ] + 1 2 {A ij -A ji } (1.50)
Аналогично можно ввести тензор l-го порядка A i 1 i 2 ...i l , который является совокупно-

стью n l величин A i 1 i 2 ...i l = l k=1 x (k)
i k , преобразующихся под действием операций g (как показано в выражении (1.48)) следующим образом:

A i 1 i 2 ...i l = j 1 j 2 ...j l l k=1 T j k i k (g) A j 1 j 2 ...j l (1.51)
Совокупность матриц преобразования из выражения (1.51) для различных g ∈ G называют представлением группы G. Также его называют тензорным представлением l-го порядка. Это представление, в общем случае, приводимо, т.к. является произведением l n-мерных представлений (1.48). Скаляр является тензором нулевого порядка. Вектор -тензор первого порядка, поскольку он преобразуется по (1.48).

Неприводимый тензор симметрии Γ группы G линейных преобразований -это совокупность [Γ] (2) величин Ψ Γ i , преобразующихся при операциях g группы G по неприводимому представлению T Γ группы G:

gΨ Γ i = Ψ Γ i = j T Γ ji (g)Ψ Γ j .
(1.52)

(2) размерность представления Γ

Под индексами i и j в общем случае понимают наборы индексов i ≡ i 1 , i 2 , ... и j ≡ j 1 , j 2 , .... Также можно ввести понятие неприводимого тензорного набора функций как совокупности Γ величин Ψ Γ i . Например, для группы вращений SO(3) набор из (2J +1) величин Ψ Γ i , преобразующихся по неприводимому представлению D (j) , является сферическим тензором ранга J. Другими словами, если рассматривать произвольный набор базисных функций, преобразующихся по неприводимому представлению, то этот набор формирует компоненты неприводимого тензора.

Рассмотрим алгебраические операции, которые определены для неприводимых тензоров:

• Операция сложения тензоров. Если сложить два тензора φ Γ i и Ψ Γ i , преобразующихся по одному и тому же неприводимому представлению D (Γ) группы G, то получим неприводимый тензор, преобразующийся по тому же неприводимому представлению

D(Γ) в виде: φ (Γ) i + Ψ (Γ) i = χ Γ i , (1.53) 
• Операция связывания (или свертки) тензоров. Если связать два тензора φ

γ 1 i и Ψ γ 2 i , то в результате получим неприводимый тензор, преобразующийся по неприводимому представлению D (Γ) ∈ D γ 1 × D γ 2 в виде: χ Γ k ≡ [φ (γ 1 ) × Ψ (γ 2 ) ] Γ k = ij φ (γ 1 ) i • Ψ (γ 2 ) j • F γ 1 iγ 2 j (Γ)k ; (1.54) где F γ 1 iγ 2 j (Γ)k
-коэффициенты Клебша-Гордана.

Аналогично (1.51), можно ввести определение тензорного оператора, как набора операторов, преобразующихся друг через друга при линейных преобразованиях пространства, в котором действуют эти операторы.

Неприводимый тензорный оператор -набор операторов P (Γ)

i , преобразующихся при операциях R группы симметрии пространства по неприводимому представлению D (Γ) этой группы:

R -1 P (Γ) i R = k [D (Γ) (R)] k i P (Γ) k . (1.55)
Как и для неприводимых тензоров, для неприводимых тензорных операторов также определены алгебраические операции сложения и связывания. Они имеют вид, аналогичный выражениям (1.53), (1.54), если в них заменить величины φ γ , Ψ γ и χ γ на операторы.

Коэффициенты Клебша-Гордана точечных групп симметрии.

Известно [18], что можно построить произведение двух неприводимых представлений группы G, которое в общем случае является приводимым, т.е. может быть представлено как сумма неприводимых представлений (в виде ряда Клебша-Гордана):

D (Γ 1 ) × D (Γ 2 ) = γ n(γ)D (Γ) .
(1.56)

Коэффициенты ряда (1.56) могут быть получены на основе теории характеров [5,18,19]. Коэффициенты Клебша-Гордана

F γ 1 i 1 γ 2 j 2 (nΓ)j -коэффициенты, которые осуществляют линей- ное преобразование базиса Ψ γ 1 i 1 Ψ γ 2 i 2 прямого произведения представлений D (Γ 1 ) × D (Γ 2 ) к набору базисов Ψ (nΓ) j ≡ [Ψ (γ 1 ) × Ψ (γ 1 ) ] (nΓ) j на неприводимые части D (Γ) : [Ψ (γ 1 ) × Ψ (γ 1 ) ] (nΓ) j = i 1 i 2 F γ 1 i 1 γ 2 j 2 (nΓ)j Ψ (γ 1 ) i 1 Ψ (γ 2 ) i 2 ,
(1.57)

где n ≡ n(Γ). Коэффициенты Клебша-Гордана также часто обозначают по-другому:

F γ 1 i 1 γ 2 j 2 (nΓ)j ≡< γ 1 i 1 γ 2 j 2 |nΓj >≡ γ 1 γ 2 nΓ i 1 i 2 j .
(1.58) Т.к. общее количество функций Ψ nΓ j должно быть равно общему количеству произведений

Ψ γ 1 i 1 Ψ γ 2 i 2 , то коэффициенты Клебша-Гордана < γ 1 i 1 γ 2 j 2 |nΓj > образуют матрицу (γ 1 γ 2 ) A порядка n γ 1 n γ 2 с элементами (γ 1 γ 2 ) A i 1 i 2 ,nΓj = < γ 1 i 1 γ 2 j 2 |nΓj >.
Вигнер [20] ввел другие величины, так называемые 3Γ-символы

γ 1 γ 2 γ 3 i 1 i 2 i 3 , кото-
рые являются более симметричными по сравнению с коэффициентами Клебша-Гордана, и отличающиеся от них лишь числовым множителем:

γ 1 γ 2 γ 3 i 1 i 2 i 3 = [γ 3 ] 1/2 γ 1 γ 2 γ 3 i 1 i 2 i 3 (1.59)
Полагают, что значение 3Γ-символа не изменяется при циклической перестановке столбцов:

γ 1 γ 2 γ i 1 i 2 i = γ 2 γ γ 1 i 2 i i 1 = γ γ 1 γ 2 i i 1 i 2 (1.60)
Значение 3Γ-символа меняется на величину (-1) γ 1 +γ 2 +γ при нециклической перестановке столбцов:

γ 1 γ 2 γ i 1 i 2 i = (-1) γ 1 +γ 2 +γ γ 2 γ 1 γ i 2 i 1 i = (-1) γ 1 +γ 2 +γ γ 1 γ γ 2 i 1 i i 2 (1.61) В данном соотношении (-1) γ 1 +γ 2 = (-1) γ 1 (-1) γ 2 , причем обычно полагают, что (-1) Γ = -1, если Γ -нечетное представление, (-1) Γ = 1, если Γ -четное представление или Γ -ни четное, ни нечетное представление.
Если в 3Γ-символ входит хотя бы одно полносимметричное представление, то значение такого 3Γ-символа вычисляется следующим образом:

A 1 Γ Γ i i = δ ΓΓ δ ii [Γ] -1/2 (1.62)
Известно [20], что

ijk Γ 1 Γ 2 Γ i j k 2 = δ(Γ 1 Γ 2 Γ) (1.63) где δ(Γ 1 Γ 2 Γ) = 1, если представления Γ, Γ 1 и Γ 2 удовлетворяют условию треугольника, т.е. Γ ∈ (Γ 1 ⊗ Γ 2 ). Если данное условие не выполняется, то δ(Γ 1 Γ 2 Γ) = 0.
6Γ-и 9Γ-символы.

Из суммы произведений четырех 3Γ-символов можно построить 6Γ-символ по следующему правилу:

Γ 1 Γ 2 Γ 3 Γ 4 Γ 5 Γ 6 = σ 1 σ 2 σ 3 σ 4 σ 5 σ 6 Γ 1 Γ 2 Γ 3 σ 1 σ 2 σ 3 Γ 1 Γ 5 Γ 6 σ 1 σ 5 σ 6 × × Γ 4 Γ 2 Γ 6 σ 4 σ 2 σ 6 Γ 4 Γ 5 Γ 3 σ 4 σ 5 σ 3 (1.64)
для кристаллографических точечных групп. На основе свойств симметрии 3Γ-символов можно показать, что 6Γ-символы тоже обладают свойствами симметрии, а именно они не меняются при любой перестановке столбцов и при одновременном переворачивании любых двух столбцов.

Если 6Γ-символ содержит полносимметричное представление, то значение данного символа можно вычислить так:

Γ 1 Γ 2 Γ 3 A 1 Γ 5 Γ 6 = (-1) Γ 1 +Γ 2 +Γ 3 δ Γ 2 Γ 6 δ Γ 3 Γ 5 [Γ 2 ] 1/2 [Γ 5 ] 1/2 (1.65)
Из суммы произведений шести 3Γ-символов можно построить 9Γ-символ следующим образом: 

   Γ 1 Γ 2 Γ 3 Γ 4 Γ 5 Γ 6 Γ 7 Γ 8 Γ 9    = σ 1 ,σ 2 ,...,σ 9 Γ 1 Γ 2 Γ 3 σ 1 σ 2 σ 3 Γ 4 Γ 5 Γ 6 σ 4 σ 5 σ 6 Γ 7 Γ 8 Γ 9 σ 7 σ 8 σ 9 × × Γ 1 Γ 4 Γ 7 σ 1 σ 4 σ 7 Γ 2 Γ 5 Γ 8 σ 2 σ 5 σ 8 Γ 3 Γ 6 Γ 9 σ 3 σ 6 σ 9 . Γ 4 Γ 5 Γ 6 Γ 2 Γ Γ 8 Γ 7 Γ 8 Γ 9 Γ Γ 1 Γ 4 , ( 1 

Алгебра неприводимых тензоров.

Как уже говорилось, для неприводимых тензоров (тензорных операторов) можно ввести алгебраические операции, такие как сложение тензоров одинакового ранга (одинаковой симметрии), в результате которой получается тензор такого же ранга (симметрии), умножение неприводимого тензора на произвольное комплексное число и связывание тензоров различного ранга (симметрии). Рассмотрим более подробно операцию связывания неприводимых тензоров.

Под операцией связывания двух неприводимых тензоров A (γ 1 ) и B (γ 2 ) , преобразующихся по неприводимым представлениям

D (γ 1 ) и D (γ 2 ) группы G, понимается линейная комбинация ij F γ 1 iγ 2 j (Γ)k A (γ 1 ) B (γ 2 ) из компонент i и j тензоров A (γ 1 ) и B (γ 2 ) с коэффициен- тами Клебша-Гордана F γ 1 iγ 2 j (Γ)k . Данная линейная комбинация, формирующая компоненты тензора [A (γ 1 ) ⊗ B (γ 2 ) ] (Γ)
k , который преобразуется по неприводимому представлению D (Γ) группы G, называется неприводимым тензорным произведением:

[A (γ 1 ) ⊗ B (γ 2 ) ] (Γ) k = ij F γ 1 iγ 2 j (Γ)k A (γ 1 ) i B (γ 2 ) j
.

(1.68) Т.к. в большинстве случаев (для кристаллографических точечных групп) коэффициенты Клебша-Гордана могут быть выбраны вещественными, то для тензоров, неприводимых относительно кристаллографических точечных групп, соотношения (1.68) примут вид:

[A (γ 1 ) ⊗ B (γ 2 ) ] (Γ) k = σ 1 σ 2 Γ Γ 1 Γ 1 σ σ 1 σ 2 A (γ 1 ) σ 1 B (γ 2 ) σ 2 . (1.69) В общем случае [A (Γ 1 ) ⊗ B (Γ 2 ) ] (Γ 3 ) = [B (Γ 2 ) ⊗ A (Γ 1 )
] (Γ 3 ) , где Γ 1 , Γ 2 , Γ 3 -неприводимые представления произвольной группы, т.к. неприводимые тензорные операторы не коммутируют.

С другой стороны, можно построить тензорное произведение не только из двух, но также из трех, четырех и более неприводимых тензоров. Но в данном случае существует много возможностей. Например, из трех неприводимых тензоров можно построить различные тензорные произведения: [[A (a) (a) ⊗C (c) ] (d) ⊗C (c) ] f и т.д. Все эти произведения можно связать друг с другом, если они имеют одинаковую симметрию (ранг).

⊗B (b) ] (d) ⊗C (c) ] f , [A (a) ⊗[B (b) ⊗C (c) ] (d) ] f , [[A
Теорема Вигнера-Эккарта.

Теорема Вигнера-Эккарта говорит, что матричный элемент от оператора любой физической величины можно разделить на два сомножителя -коэффициент Клебша-Гордана, который содержит информацию о симметрии задачи, и так называемый приведенный матричный элемент, зависящий от конкретного вида базиса и операторов:

ψ γ 1 v 1 σ 1 |P Γ s |ψ γ 2 v 2 σ 2 = F γ 1 σ 1 γ 2 σ 2 Γs ψ γ 1 v 1 P Γ ψ γ 2 v 2 , (1.70) 
где v 1 , v 2 -индексы, характеризующие функцию ψ, кроме индексов симметрии γ или σ;

ψ γ 1 v 1 P Γ ψ γ 2 v 2
-приведённый матричный элемент -это характерная величина набора матричных элементов (его значение не зависит от выбора базиса представлений группы). Для получения приведенного матричного элемента

ψ γ 1 v 1 P Γ ψ γ 2 v 2 необходимо вычислить про- стейший (с точки зрения вычислений) матричный элемент ψ γ 1 v 1 σ 1 |P Γ s |ψ γ 2 v 2 σ 2 .
Тогда, используя коэффициенты Клебша-Гордана и выражение (1.70) можно рассчитать все остальные матричные элементы с данными значениями индексов γ 1 , γ 2 и Γ.

Из теоремы Вигнера-Эккарта видно преимущество использования формализма неприводимых тензорных операторов при описании квантовых явлений, т.к. оно значительно упрощает определение матричных элементов, сводя эту процедуру к вычислению стандартных сумм произведений коэффициентов Клебша-Гордана.

Также следует привести следующее соотношение, которое может быть полезным для расчетов сложных приведенных матричных элементов:

ψ d v | A a ⊗ B b c |ψ d v = (-1) d+d +c [c] v e a b c d d e ψ d v A a ψ e v ψ e v B b ψ d v (1.71)
1.7 Неоднозначность определения эффективного гамиль-

тониана. Редукция

Для изолированного колебательного состояния эффективный гамильтониан примет вид:

H ef f [v] = |v v|H vv (1.72)
Следует заметить, что при записи эффективного вращательного гамильтониана возникает неоднозначность, потому что он определен с точностью до унитарного преобразования. Следовательно, это можно записать так:

H ef f (1) = pqr
A pqr (J p x J q y J r z + J r z J q y J p x ) = P + pqr A pqr (J p x J q y J r z + J r z J q y J p x ) P = P + H ef f (2) P (1.73) Заметим, что 1. Операторы H ef f (1) и H ef f (2) отличаются только коэффициентами A pqr и A pqr ; 2. Оператор P -унитарный, зависящий от вращательных операторов J α , может быть записан в виде:

P = exp[ı pqr S pqr (J p x J q y J r z + J r z J q y J p x )]
где S pqr -произвольные коэффициенты.

На основе вышесказанного можно сделать вывод: т.к. коэффициенты S pqr выбираются произвольным образом, то неоднозначность в их определении можно использовать для упрощения эффективного вращательного гамильтониана. В частности, в 1968 гoду Дж.К.Ж.Уотсон [16] показал, что можно выбрать параметры S pqr таким образом, чтобы существенно упростить построенный на основе свойств симметрии эффективный гамильтониан молекул типа асимметричного волчка для изолированного колебательного состояния (так называемая A редукция). Произвол в выборе параметров S pqr дает возможность убрать из эффективного гамильтониана для молекул типа XY 2 один из шести квартичных центробежных параметров, 3 из 10 секстичных, 5 из 14 октичных постоянных и т.д. Тогда эффективный вращательный оператор принимает следующий вид [16]:

H = E + [A - 1 2 (B + C)]J 2 z + 1 2 (B + C)J 2 + 1 2 (B -C)J 2 xy - -∆ K J 4 z -∆ JK J 2 z J 2 -∆ J J 4 -δ K [J 2 z , J 2 xy ] + -2δ J J 2 J 2 xy + +H K J 6 z + H KJ J 4 z J 2 + H JK J 2 z J 4 + H J J 6 + h K [J 2 xy , J 4 z ] + + ... +L K J 8 z + L KKJ J 6 z J 2 + L KJ J 4 z J 4 + ... (1.74)
Данное выражение для эффективного вращательного гамильтониана до сих пор очень часто используется в многочисленных задачах колебательно -вращательной спектроскопии.

Глава 2 "Расширенное" приближение локальных мод применительно к молекуле метана

Данная глава диссертации описывает метод, известный как "расширенное" приближение локальных мод, применительно к молекуле метана. Результаты, представленные в данной главе, опубликованы в работах [21,22].

Метан (CH 4 ) является молекулой -прототипом для большого числа органических соединений, и, как следствие, играет важную роль в задачах физической химии. Информация о спектрах метана представляет интерес также для проблем геологии, астрофизики, планетологии, атмосферной оптики и многих других. По этой причине в течение многих лет колебательно -вращательные спектры высокого разрешения метана являлись и до сих пор являются объектом многочисленных исследований (см. например [23] - [52]).

Следует отметить, что несмотря на многочисленные усилия в течение уже более 50-ти лет целого ряда научных коллективов, занимающихся спектроскопией высокого разрешения метана, его спектры до последнего времени были интерпретированы только до 6000 см -1 . Имеющаяся высокоточная экспериментальная информация о спектрах метана в более коротковолновом диапазоне уже в течение более чем десяти лет не поддается интерпретации и анализу (только отдельные небольшие диапазоны коротких длин волн выше 6000 см -1 были проинтерпретированы детально [23,24]). Недавно [53] были экспериментально зарегистрированы и также предварительно теоретически проанализированы спектры высокого разрешения молекулы метана в широком спектральном диапазоне от 6000 см -1 до 12000 см -1 . Проведенный анализ позволил, с одной стороны, получить с высокой точностью (более чем 0,001 cм -1 ) центры двенадцати новых колебательновращательных полос и (на основе анализа 95 экспериментальных центров полос молекулы CH 4 ) набор колебательных спектроскопических параметров. Только в последние годы начались систематические исследования спектров метана в районе свыше 6000 см -1 [36], [54] - [56]. Вместе с тем, отсутствие корректной экспериментальной информации о некоторых важных для такого вида анализа колебательных полосах (например ν 1 + ν 2 и ν 1 + ν 3 ) приводит к неоднозначности в величинах спектроскопических параметров. Аналогичная ситуация возникает при рассмотрении изотопомеров метана CH 2 D 2 [57] - [59] и CH 3 D/CHD 3 [60]. Один из путей исключения подобного рода неоднозначностей -вывод соотношений между параметрами используемой модели. С одной стороны, это позволяет уменьшить количество варьируемых параметров и, с другой стороны, сделать параметры более стабильными и корректными с точки зрения физики молекулы.

Компиляция теории изотопозамещения и "расширенного" приближения локальных мод

Как уже отмечалось выше, чтобы исключить неоднозначности в величинах спектроскопических параметров и сделать их более стабильными, необходимо получить соотношения между параметрами. Применительно к молекуле метана, некоторые из подобного рода соотношений известны в литературе [61]. Они были получены на основе так называемого "метода локальных мод". Но, как уже было сказано ранее, в классической модели локальных мод рассматриваются только валентные колебания, в то время как деформационные колебания также играют чрезвычайно важную роль в понимании процессов, происходящих в молекуле.

Рассматривать деформационные колебания наряду с валентными позволяет "расширенное" приближение локальных мод, которое было подробно описано [62] и применено к молекулам типа симметричного и асимметричного волчка [11,12], [63,64]. Как известно [11,12], основой "расширенного" приближения локальных мод является возможность представить константы форм колебаний молекулы l N αλ в виде простых аналитических выражений. И, как было показано в литературе, особенности некоторых молекул типа XY 2 симметрии C 2v и XY 3 симметрии C 3v позволяют получить подобного типа простые выражения. В то же самое время, если вспомнить, что все спектроскопические параметры многоатомной молекулы являются функциями констант форм колебаний, то можно надеяться, что эти параметры также могут быть получены в виде простых аналитических выражений. Как следствие, могут быть получены простые соотношения между различными спектроскопическими параметрами.

В данной главе рассматривается молекула метана. Эта молекула принадлежит к молекулам типа сферического волчка. Структура молекулы изображена на Рисунке 2.1.

Группа симметрии молекулы CH 4 изоморфна точечной группе симметрии T d . Эта группа имеет пять неприводимых представлений, характеры которых приведены в Таблице 2.1. Таблица 2.1. Характеры неприводимых представлений группы T d .

T d E 8C 3 3C 2 6σ d 6S 4 A 1 1 1 1 1 1 A 2 1 1 1 -1 -1 E 2 -1 2 0 0 F 1 3 0 -1 -1 1 
F 2 3 0 -1 1 -1
Можно отметить, что молекула метана обладает высокой симметрией. Это обстоятельство приводит к настолько сложной структуре спектров метана, что, зачастую, оказывается затруднительным даже качественное описание спектров. Рис. 2.1: Равновесная конфигурация молекулы CH 4 .

Константы форм колебаний многоатомной молекулы

Как известно, константы форм колебаний l N αλ -это такие величины, от которых зависят практически все величины в колебательно -вращательной теории (т.е. в той или иной мере являются функциями этих величин). Из теории колебательно -вращательных взаимодействий [2] известно, что константы форм колебаний определяются как параметры координатных преобразований от декартовых пространственно -фиксированных координат к внутримолекулярным координатам. Поскольку в данной работе используется приближение Борна -Оппенгеймера, то это преобразование наиболее разумно выбрать в следующем виде:

x N α = R α + β K αβ (r e N β + λ m -1/2 l N βλ Q λ ), (2.1) 
где l N αλ определяется из решения следующей системы уравнений:

N m 1/2 N l N βλ = 0, (2.2) 
N βγ

ε αβγ m 1/2 N r e N β l N γλ = 0, (2.3) N α l N αλ l N αµ = δ λµ (2.4) и ( ∂ 2 V ∂q λ ∂q µ ) q=0 = 0, λ = µ. (2.5)
Отметим, что число уравнений в точности равно числу параметров l N αλ , значит система имеет решение. Однако, т.к. некоторые уравнения не являются линейными, то возникает вопрос об однозначности найденного решения. Также стоит отметить, что (2.5) задано в неявной форме и требует задания потенциальной функции молекулы. Во-первых, относительно неоднозначности определения констант форм колебаний из приведенной выше системы уравнений. Можно показать, что для разных молекул неоднозначность проявляется лишь в двух формах: изменения фаз колебаний и изменение нумерации колебаний в совокупности колебательных координат одной симметрии. Однако это не влияет на результаты расчетов фундаментальных величин (может появиться неоднозначность в выборе фаз колебаний и/или индексов у параметров потенциальной функции).

По поводу второго замечания можно сказать следующее: т.к. потенциальная функция может быть представлена как функция различных колебательных координат, и, в тоже время, нам необходимо учитывать различные изотопические модификации молекулы, то следует использовать изотопически инвариантный набор координат (напомним, что рассмотрение в данной работе ведется в рамках приближения Борна -Оппенгеймера). В качестве примера рассмотрим естественные координаты ∆r и ∆α. Более точно будет записать

∆r N K = r N K -r N K e -изменения длин валентных связей, причем r N K = α (r N α -r Kα ) 2 1/2 .
(2.6)

Видно, что ∆r N K является функцией равновесных координат ядер r e N α и параметров l N αλ . Изменения углов между связями ∆α N K могут быть определены следующим образом:

∆α N KL = arccos(cos α N KL ) -α N KL e , (2.7) 
где cos α N KL определяется как

cos α N KL = α (r Kα -r N α )(r Kα -r Lα ) |r N K ||r LK | . (2.8)
Приведенные формулы являются общими и применимы для любой многоатомной молекулы.

Далее нам необходимо задать потенциальную функцию молекулы, причем для определения параметров l N αλ будет достаточно ее квадратичной части. В самом общем виде ее можно записать как:

V (2) = 1 2 ij f ij ξ i ξ j , (2.9) 
где ξ i = ∆α N KL или ∆r N K . Учитывая все вышесказанное, можно легко построить систему уравнений в явном виде. Причем, данная схема работает для произвольной многоатомной молекулы, независимо от числа атомов в ней.

Параметр неоднозначности sinγ для молекулы метана

Как уже отмечалось выше, весьма важным является знание параметров неоднозначности sinγ. Для молекул симметрии T d существует лишь один такой параметр.

Точный вид констант форм колебаний для молекулы типа XY 4 симметрии T d представлен в Таблице 2.2 [65]. Все l N αλ -параметры являются функциями одного параметра неоднозначности sinγ. Необходимо определить параметр sinγ в как можно более простой и удобной для дальнейшего использования форме. Таблица 2.2. Константы форм колебаний l N αλ молекулы CH 4 . a)

N α/λ 1 2 1 2 2 3 x 3 y 3 z 4 x 4 y 4 z 1x D C 1 C 2 A 3 -B 3 -B 3 A 4 B 4 B 4 2x -D -C 1 -C 2 A 3 -B 3 B 3 A 4 B 4 -B 4 3x -D -C 1 -C 2 A 3 B 3 -B 3 A 4 -B 4 B 4 4x D C 1 C 2 A 3 B 3 B 3 A 4 -B 4 -B 4 5x 0 0 0 F 0 0 E 0 0 1y -D -C 1 C 2 -B 3 A 3 B 3 B 4 A 4 -B 4 2y D C 1 -C 2 -B 3 A 3 -B 3 B 4 A 4 B 4 3y -D -C 1 C 2 B 3 A 3 -B 3 -B 4 A 4 B 4 4y D C 1 -C 2 B 3 A 3 B 3 -B 4 A 4 -B 4 5y 0 0 0 0 F 0 0 E 0 1z -D 2C 1 0 -B 3 B 3 A 3 B 4 -B 4 A 4 2z -D 2C 1 0 B 3 -B 3 A 3 -B 4 B 4 A 4 3z D -2C 1 0 -B 3 -B 3 A 3 B 4 B 4 A 4 4z D -2C 1 0 B 3 B 3 A 3 -B 4 -B 4 A 4 5z 0 0 0 0 0 F 0 0 E a) Здесь D = 1 2 √ 3 , C 1 = 1 2 √ 6 , C 2 = 1 2 √ 2 , A 3 = 1 2 sinγ µ m H , A 4 = 1 2 cosγ µ m H , B 3 = cosγ/2 √ 2, B 4 = sinγ/2 √ 2, E = -2cosγ µ m C , F = -2sinγ µ m C , µ = m H m C /(4m H + m C ).
В литературе подобные параметры неоднозначности оцениваются из анализа следующего условия на потенциальную функцию (при λ = µ): Как уже было сказано, существует две возможности: 1) Необходимая информация о значении параметра sinγ может быть получена на основе соотношений теории изотопозамещения [10]:

∂ 2 V ∂Q λ ∂Q µ Q=0 = 0, ( 2 
λ A λµ ω 2 λ α νλ = α νµ ω 2 ν (2.12) и ν α νλ α νµ = A λµ , (2.13) 
где 

A λµ = δ λµ - N α (m N -m N ) m N l N αλ l N αµ , ( 2 
N α/λ 1 2 1 2 2 3 x 3 y 3 z 4 x 4 y 4 z 1x 1 2 √ 3 1 2 √ 6 1 2 √ 2 1 4 -1 2 √ 3 -1 2 √ 3 1 2 √ 2 1 2 √ 6 1 2 √ 6 2x -1 2 √ 3 -1 2 √ 6 -1 2 √ 2 1 4 -1 2 √ 3 1 2 √ 3 1 2 √ 2 1 2 √ 6 -1 2 √ 6 3x -1 2 √ 3 -1 2 √ 6 -1 2 √ 2 1 4 1 2 √ 3 -1 2 √ 3 1 2 √ 2 -1 2 √ 6 1 2 √ 6 4x 1 2 √ 3 1 2 √ 6 1 2 √ 2 1 4 1 2 √ 3 1 2 √ 3 1 2 √ 2 -1 2 √ 6 -1 2 √ 6 5x 0 0 0 -1 2 √ 3 0 0 -1 √ 6 0 0 1y -1 2 √ 3 -1 2 √ 6 1 2 √ 2 -1 2 √ 3 1 4 1 2 √ 3 1 2 √ 6 1 2 √ 2 -1 2 √ 6 2y 1 2 √ 3 1 2 √ 6 -1 2 √ 2 -1 2 √ 3 1 4 -1 2 √ 3 1 2 √ 6 1 2 √ 2 1 2 √ 6 3y -1 2 √ 3 -1 2 √ 6 1 2 √ 2 1 2 √ 3 1 4 -1 2 √ 3 -1 2 √ 6 1 2 √ 2 1 2 √ 6 4y 1 2 √ 3 1 2 √ 6 -1 2 √ 2 1 2 √ 3 1 4 1 2 √ 3 -1 2 √ 6 1 2 √ 2 -1 2 √ 6 5y 0 0 0 0 -1 2 √ 3 0 0 -1 √ 6 0 1z -1 2 √ 3 1 √ 6 0 -1 2 √ 3 1 2 √ 3 1 4 1 2 √ 6 -1 2 √ 6 1 2 √ 2 2z -1 2 √ 3 1 √ 6 0 1 2 √ 3 -1 2 √ 3 1 4 -1 2 √ 6 1 2 √ 6 1 2 √ 2 3z 1 2 √ 3 -1 √ 6 0 -1 2 √ 3 -1 2 √ 3 1 4 1 2 √ 6 1 2 √ 6 1 2 √ 2 4z 1 2 √ 3 -1 √ 6 0 1 2 √ 3 1 2 √ 3 1 4 -1 2 √ 6 -1 2 √ 6 1 2 √ 2 5z 0 0 0 0 0 -1 2 √ 3 0 0 -1 √ 6

Соотношения между силовыми параметрами молекулы метана

Известно [33], что все вращательные и колебательные спектроскопические параметры (кроме коэффициентов Кориолиса) зависят от гармонических частот ω λ и параметров ангармоничности (c λµν и d λµνξ ). По этой причине необходимо оценить относительные величины ω λ , c λµν и d λµνξ и получить соответствующие аналитические соотношения между ними. Мы сделали это на основе анализа квадратичных F ij , кубичных F ijk и квартичных F ijkl , параметров внутримолекулярной потенциальной функции V молекулы метана:

V = V (2) + V (3) + V (4) + ..., (2.17) 
где квадратичная часть V (2) имеет вид (в симметризованных координатах): В выражении (2.18) представлена только квадратичная часть V (2) . Кубичная V (3) , квартичная V (4) и т.д. части внутримолекулярной потенциальной функции приведены в Приложении 1.

V (2) = 1 2 F 11 S 2 1 + 1 2 F 22 (S 2 2a + S 2 2b ) + 1 2 F 33 (S
Для получения соотношений между силовыми параметрами потенциальной функции были использованы данные о различных наборах F i...j параметров [67] - [69]. В результате были получены следующие простые соотношения между F i...j параметрами, которые применимы для воспроизведения с удовлетворительной точностью ( (2.26)

Соотношения между спектроскопическими параметрами молекулы метана

В качестве завершающего этапа данного исследования, используя полученные простые соотношения между коэффициентами Кориолиса, гармоническими частотами, c-и d-параметрами, были получены соотношения между спектроскопическими параметрами молекулы CH 4 . В данном случае основные формулы для спектроскопических параметров были взяты из литературы [33], [67] - [71]. В результате были получены простые соотношения, связывающие различные колебательные x λµ , колебательно-вращательные Y λ параметры и параметры тетраэдрических расщеплений, в следующем виде: 

x 11 =

= 13Y

(2) 2

= Y 3 = 6 11 Y (1) 4 = 17 5 Y (2) 4 = - 2 16πcρ 4 e (m 3 H F 11 ) 1/2 ≈ - 11 3 B 2 e ω 3 = - 33 49 
x 2 11 ω 3 . (2.28) 
В соотношениях (2.28) верхний индекс (1) обозначает параметры, полученные на основе модели, не учитывающей резонансное взаимодействие между состояниями (ν 1 ν 2 ν 3 ν 4 ) и (ν 1 ν 2 ±1ν 3 ν 4 ∓1). Верхний индекс (2) обозначает параметры, полученные на основе модели, учитывающей данный тип резонанса. Чтобы проиллюстрировать корректность представленных результатов, в Таблицах 2.4 и 2.5 представлены численные результаты, полученные на основе формул (2.27) и (2.28). Следует подчеркнуть, что в данных вычислениях было использовано только два независимых "начальных" параметраρ e и F 11 или ω 3 и B e . Величины всех остальных параметров были оценены только на основе этих двух. В качестве сравнения, в колонках 3 и 4 Таблиц 2.4 и 2.5 приведены величины соответствующих колебательных параметров из работ [67] и [53] и колебательно-вращательных параметров из работ [35] и [72]. В большинстве случаев можно видеть хорошую корреляцию между результатами, полученными на основе аналитических соотношений, и результатами, полученными, с одной стороны, на основе ab initio вычислений [67] и, с другой стороны, "фитинга" экспериментальных данных [35,53,72]. Некоторые различия в значениях, представленных в Таблицах 2.4 и 2.5 можно видеть лишь между вычисленными и "экспериментальными" значениями параметров Y (разница составляет +0.0040 см -1 и -0.0080 см -1 соответственно). 

(v 1 v 2 v 3 v 4 ) и (v 1 v 2 ± 1 v 3 v 4 ∓ 1) не принимали во внимание. c Учитывали резонансное взаимодействие между состояниями (v 1 v 2 v 3 v 4 ) и (v 1 v 2 ±1v 3 v 4 ∓1).
Однако данное несоответствие может быть легко объяснено, если принять во внимание, что в соответствии с основами колебательно -вращательной теории (см. например [2]), существует, с одной стороны, жесткая связь между вращательными параметрами сильновзаимодействующих колебательных состояний (в нашем случае состояний (0100) и (0001)) и, с другой стороны, резонансное взаимодействие типа Кориолиса с параметром

X 1(1,F 2 ) E,F 2 = -9.63 см -1 [35]. Однако, следует отметить, что численное значение параметра X 1(1,F 2 ) E,F 2
было воспроизведено в работе [35] из более ранней публикации [74], где значение параметра X

1(1,F 2 ) E,F 2 = (-9.63 ± 0.42) см -1 . Можно видеть, что уменьшение абсолютного значения параметра X 1(1,F 2 ) E,F 2 на 0.42 см -1 меняет значение "экспериментальных" величин параметров Y (2) 2 и Y (2) 4
до -0.0016 см -1 и -0.0068 см -1 соответственно. В свою очередь, эти величины уже близки к величинам

Y (2) 2 и Y (2)
4 , предсказанными на основе соотношений. В качестве резюме следует отметить, что полученные простые соотношения дают корректную качественную картину, помогающую описать особенности в сложных спектрах молекулы метана. В то же время, не должно казаться странным, что описанная простая модель только с двумя свободными входными параметрами дает не очень хорошее количественное соответствие предсказываемых величин с высокоточными экспериментальными данными. Однако, как показывает анализ, даже такая простая двухпараметрическая модель может обеспечивать более чем удовлетворительное количественное предсказание. В качестве иллюстрации в колонке 4 Таблицы 2.6 приведены экспериментальные значения центров полос для трех полиад молекулы метана [37] В качестве примера в колонках 3 Таблицы 2.6 представлены результаты, полученные при значениях ω 1 = 3016.215 см -1 и x 11 = -10.546 см -1 , рассчитанных на основе "фитинга" пяти центров полос: 2ν 2 (A 1 ), 2ν 2 (E), 2ν 4 (A 1 ), 2ν 4 (E) и 2ν 4 (F 2 ). Можно видеть значительно лучшее соответствие между предсказанными и экспериментальными данными по сравнению с первым случаем.

(N = 1 2 , 1 и 3 2 , где N = ν 1 + ν 2 2 +ν 3 + ν 4 2 и ν 1 , ν 2 , ν 3 , ν 4 -
Полученные результаты могут быть использованы при анализе колебательно -вращательных спектров молекулы метана в высоковозбужденных колебательных состояниях. Также можно ожидать, что полученные результаты позволят получить аналогичные простые соотношения между различными спектроскопическими параметрами изотопомеров метана, а также получить соотношения, связывающие спектроскопические параметры изотопомера с параметрами "материнской" молекулы в виде простых функций одногодвух спектроскопических параметров молекулы CH 4 . В этой связи сложно переоценить важность такого типа результатов в исследовании колебательно -вращательных спектров изотопозамещенных модификаций молекулы метана, особенно в высокочастотном диапазоне. Также следует заметить, что количественная точность соотношений может быть улучшена, если увеличить число свободных параметров до трех -четырех. Таблица 2.6. Центры полос трех полиад молекулы CH 4 (в см -1 ).

Полоса

Расчет Расчет Эксп.

(v 1 v 2 v 3 v 4 ; l 2 l 3 l 4 ; Γ) I a) II b) [3] 1 2 3 4
Глава 3

"Расширенное" приближение локальных мод применительно к молекуле метана: CH 2 D 2 ←CH 4

Данная глава диссертации описывает рассмотренное выше "расширенное" приближение локальных мод, применительно к изотопозамещенной модификации молекулы метана CH 2 D 2 . Результаты данного исследования были опубликованы в работах: [75] - [77].

Среди многочисленных проблем химической физики, одной из наиболее важных является проблема корректного извлечения информации из спектров высокого разрешения молекул. Данный тип информации необходим для более точного определения многомерных внутримолекулярных потенциальных поверхностей, поскольку используется в многочисленных задачах астрофизики и планетологии, изучения земной атмосферы, проблемах окружающей среды и т.д. Решение данной проблемы основано на реализации двух связанных друг с другом задач: математическом моделировании внутримолекулярных процессов и методов интерпретации спектров высокого разрешения. Интерпретация спектров является довольно сложной задачей, особенно для высоковозбужденных состояний с различными типами взаимодействий.

Как уже было сказано в предыдущей главе диссертации, информация о молекуле метана и ее различных изотопических модификациях является чрезвычайно важной и интересной для многих областей науки. Но, в то же время, спектры метана являются чрезвычайно сложными, особенно в коротковолновом диапазоне, поэтому необходимо использовать другой путь для получения точной информации о данной молекуле. Единственный путь решения данной проблемы -качественное предсказание положений линий в коротковолновом диапазоне на основе знания спектроскопических параметров (вращательных коэффициентов, гармонических частот и коэффициентов ангармоничности, различного рода резонансных параметров). Однако, число параметров в гамильтониане так велико, что их корректное определение и дальнейшее использование в предсказании линий спектра практически невозможно. Чтобы разрешить данную проблему, необходимо уменьшить число спектроскопических параметров в гамильтониане до минимально возможного набора. Это может быть реализовано, например, как за счет получения соотношений между спектроскопическими параметрами материнской молекулы, так и между параметрами материнской молекулы и ее изотопозамещенных модификаций.

В предыдущей главе диссертации обсуждалось решение проблемы определения соотношений между параметрами материнской молекулы на основе компиляции теории изотопозамещения и "расширенного" приближения локальных мод. В данной главе, как уже было сказано выше, на основе компиляции результатов традиционной теории изотопозамещения, [8,10], и "расширенного" приближения локальных мод, [12,62], разработан подход, позволяющий с помощью только двух произвольных параметров (определяемых, например, из экспериментальных спектров) предсказывать значения подавляющего большинства спектроскопических параметров (центров полос и ангармонических колебательных постоянных, резонансных параметров, вращательных постоянных и коэффициентов центробежного искажения и т.д.) важной с точки зрения многочисленных приложений молекулы метана CH 4 и ее дважды дейтерированной модификации CH 2 D 2 . Группа симметрии молекулы CH 2 D 2 изоморфна точечной группе симметрии C 2v . Если использовать модель локальных мод и подход, который был описан во второй главе данной диссертации, то для молекулы метана, в соответствие с основными положениями теории изотопозамещения, все величины в правой части формулы (1.28) можно получить в чрезвычайно простом виде. Как следствие, есть надежда, что и константы форм колебаний изотопозамещенной молекулы также будут получены в простом виде.

Следует отметить, что в формулу (1.28) входят следующие величины: константы форм колебаний молекулы CH 4 (Таблица 2.3), определяемые из решения нелинейной системы уравнений (1.29) -(1.31) матричные элементы α λµ и элементы матрицы, определяющей поворот молекулярной системы координат при переходе от исходной к изотопозамещенной модификации, заданной следующим образом:

   K e xx K e xy K e xz K e yx K e yy K e yz K e zx K e zy K e zz    =    1/ √ 2 -1/ √ 2 0 -1/ √ 2 -1/ √ 2 0 0 0 -1    (3.1) 
Поэтому, используя все, что указано выше, получаем константы форм колебаний молекулы CH 2 D 2 , которые представлены в Таблице 3.1.

Таблица 3.1. Константы форм колебаний l N αλ для молекулы CH 2 D 2 .

N α/λ 1 2 3 4 5 6 7 8 9 1x -C -33C 13C -40C 0 0 0 -32C -23C 2x -C -33C 13C -40C 0 0 0 32C 23C 3x -33C 5C -47C -3C 0 -35C -32C 0 0 4x -33C 5C -47C -3C 0 35C 32C 0 0 5x 20C 24C 17C 35C 0 0 0 0 0 1y 0 0 0 0 35C -C -41C 0 0 2y 0 0 0 0 -35C -C -41C 0 0 3y 50C -6C -35C -8C 0 47C -13C 0 0 4y -50C 6C 35C 8C 0 47C -13C 0 0 5y 0 0 0 0 0 -26C 41C 0 0 1z -3C -48C -5C 38C 0 0 0 -45C 4C 2z 3C 48C 5C -38C 0 0 0 -45C 4C 3z 0 0 0 0 50C 0 0 C 52C 4z 0 0 0 0 -50C 0 0 C 52C 5z 0 0 0 0 0 0 0 36C -33C Здесь C = 1 50 √ 3 .
Зная константы форм колебаний l N αλ , можно определить зависящие от них величины, например, Кориолисовы коэффициенты ζ α λµ и колебательно -вращательные коэффициенты a αβ λ , [2,6]: 

ζ α λµ = βγ αβγ N l N βλ l N γµ (3.2) 
1 1 1 -15F 2 2 2 35F 1 1 2 25F 2 2 3 -13F 1 1 3 14F 2 2 4 -5F 1 1 4 -15F 3 2 5 17F 2 1 6 -12F 1 3 8 -15F 2 1 7 -11F 1 3 9 -11F 3 1 8 -15F 2 3 5 17F 3 1 9 -11F 3 3 1 -24F 1 2 6 -12F 3 3 2 14F 1 2 7 -11F 3 3 3 -4F 2 2 1 -60F 3 3 4 15F Здесь F = √ 3 25 (I e ) 1/2 , I e = 8 3 m H ρ 2 e -равновесный момент инерции молекулы CH 4 .
3.2 Силовые параметры внутримолекулярной потенциальной функции для молекулы CH 2 D 2 в нормальных координатах

Следующим шагом, на основе уже полученных результатов, теории колебательновращательных взаимодействий (см. например [78]), где есть формулы для некоторых спектроскопических параметров, таких как коэффициенты ангармоничности, колебательновращательные коэффициенты и т.д. и формул, полученных на основе операторной теории возмущений (см. например [2,71,78,79]), можно получить в аналитической форме чрезвычайно простые связи между различными спектроскопическими постоянными. При этом, как показывает анализ, необходимо иметь также информацию о гармонических частотах ω λ , кубических k λµν и квартичных k λµνξ параметрах молекулы CH 2 D 2 . Все вышеперечисленные величины могут быть найдены на основе знания параметров внутримолекулярной потенциальной функции V , которая для молекулы метана выглядит следующим образом [70]:

V = V (2) + V (3) + V (4) + ..., (3.4) 
где квадратичная часть V (2) имеет вид (в обозначении симметризованных координат):

V (2) = 1 2 F 11 S 2 11 + 1 2 F 22 S 2 2a + S 2 2b + 1 2 F 33 S 2 3x + S 2 3y + S 2 3z +F 34 (S 3x S 4x + S 3y S 4y + S 3z S 4z ) + 1 2 F 44 S 2 4x + S 2 4y + S 2 4z . (3.5) 
Здесь не представлены кубичная V (3) и квартичная V (4) части внутримолекулярной потенциальной функции (3.4), потому что они имеют очень громоздкий вид, но читатель может найти их в Приложении 1 [70]. Чтобы найти соотношения между параметрами F ij , F ijk и F ijkl в уравнениях (3.4) и (3.5) в аналитическом виде, с одной стороны, и ω λ , k λµν , k λµνξ , с другой стороны, нужно: 1) принять во внимание связи между параметрами F ij , F ijk , F ijkl и f rr , f rα , f αα , f rrr , и т.д., которые можно получить из следующих соотношений [70]:

S 1 = 1 2 (r 1 + r 2 + r 3 + r 4 ) , S 2 1 = 1 2 √ 3 (2α 12 -α 13 -α 14 -α 23 -α 24 + 2α 34 ) , S 2 2 = 1 2 (α 13 -α 14 -α 23 + α 24 ) , S 3x = 1 2 (r 1 -r 2 + r 3 -r 4 ) , S 3y = 1 2 (r 1 -r 2 -r 3 + r 4 ) , S 3z = 1 2 (r 1 + r 2 -r 3 -r 4 ) , S 4x = 1 √ 2 (α 24 -α 13 ) , S 4y = 1 √ 2 (α 23 -α 14 ) , S 4z = 1 √ 2 (α 34 -α 12 ) ; (3.6) 
2) использовать связь естественных координат ∆r N /∆α N K молекулы с нормальными координатами Q λ [80]:

∆r N = λ C N λ Q λ + 1 2 λµ C N λµ Q λ Q µ + 1 6 λµν C N λµν Q λ Q µ Q ν + ... (3.7) 
и 

∆α N K = λ C N K λ Q λ + 1 2 λµ C N K λµ Q λ Q µ + 1 6 λµν C N K λµν Q λ Q µ Q ν + ... (3.8 
E ν 1 ...ν 9 = λ ω λ ν λ + 1 2 + λµ x λµ ν λ + 1 2 ν µ + 1 2 + ... (3.11) 
и в выражении для эффективного вращательного параметра:

B ν 1 ...ν 9 β = B e β - λ α β λ ν λ + 1 2 + ... (3.12) 
где λ, µ = 1, ..., 9; α = x, y, z.

Гармонические частоты ω λ

Из уравнения (2.12) следует, что гармонические частоты молекулы CH 2 D 2 могут быть найдены из решения следующей системы уравнений:

det(AW -ω 2 E) = 0, (3.13) 
где A -матрица с элементами A λµ , определяемые на основе уравнения (2.14), W -диагональная матрица с элементами W λλ = ω 2 λ , E -единичная матрица. Если также принять во внимание данные Таблицы 2.2, уравнение (13) из [21] и решить систему уравнений (3.13), то получаем:

ω 2 1 120 = ω 2 1 125 = ω 2 2 18 + 27 √ 3 = ω 2 3 28 = ω 2 4 23 -5 √ 3 = ω 2 5 62 -22 √ 3 = ω 2 6 129 = ω 2 7 49 -19 √ 3 = ω 2 8 69 + √ 3 = ω 2 9 19 + √ 3 . (3.14) 
Численные значения гармонических частот ω λ молекулы CH 2 D 2 , полученные на основе соотношений (3.14) с использованием лишь одного первоначального параметра ω 1 молекулы CH 4 из работы [21], представлены в колонке I Таблицы 3.4. Для сравнения, в Таблице 3.4 также представлены значения гармонических частот, полученных из анализа экспериментальных данных [57] (колонка II) и из ab initio вычислений [67] (колонка III). Следует отметить, что, как видно из сравнения данных в колонке I, с одной стороны, и колонок II -III, с другой стороны, рассчитанные величины систематически меньше (примерно на 2-4 см -1 ), чем полученные на основе экспериментальных данных или ab initio расчетов. Данный факт можно объяснить тем, что в приближенных формулах (3.14) в качестве исходного параметра используется гармоническая частота ω 1 молекулы CH 4 из [21]. Конечно можно улучшить соответствие между данными в колонках I и II -III за счет увеличения ω 1 на несколько см -1 . Однако, если принять во внимание, что гармонические частоты ω λ молекулы CH 2 D 2 были получены без использования какой-либо информации о самой молекуле CH 2 D 2 , то согласие между результатами можно рассматривать как вполне удовлетворительное.

Коэффициенты ангармоничности x λµ

Чтобы получить изотопические соотношения между коэффициентами ангармоничности x λµ , нужно принять во внимание формулы (IV.20) из работы [78], формулы (3.7), (3.8), (3.14) и данные Таблицы 3.2. Как следствие, можно получить следующие простые соотношения между x-параметрами: 

x 11 = - 7 3 B e = 9 
Важно отметить, что при получении данного результата были учтены резонансы Фермитипа между следующими парами колебательных состояний:

(..v 2 ..v 4 ..)/(..v 2 ± 1..v 4 ∓ 2..), (..v 2 ..v 7 ..)/(..v 2 ± 1..v 7 ∓ 2..), (..v 1 ..v 3 ..)/(..v 1 ± 1..v 3 ∓ 2..), (..v 1 ..v 9 ..)/(..v 1 ± 1..v 9 ∓ 2..), (..v 3 ..v 6 ..v 7 ..)/(..v 3 ± 1..v 6 ∓ 1..v 7 ± 1..), (..v 5 ..v 6 ..v 9 ..)/(..v 5 ± 1..v 6 ∓ 1..v 9 ± 1..), (..v 4 ..v 8 ..v 9 ..)/(..v 4 ± 1..v 8 ∓ 1..v 9 ± 1..), (..v 5 ..v 7 ..v 8 ..)/(..v 5 ± 1..v 7 ± 1..v 8 ∓ 1..).
В качестве иллюстрации корректности полученных соотношений в Таблице 3.5 (колонка I) представлены результаты вычислений по формулам (3.15). Здесь, так же как и выше для гармонических частот, для расчетов использовался только один параметр x 11 молекулы CH 4 [21]. Для сравнения, в колонке II Таблицы 3.5 приведены величины соответствующих x λµ -параметров, полученных на основе ab initio-вычислений [67]. Если учесть, что величины коэффициентов x λµ в колонке I были определены без какой-либо информации о молекуле CH 2 D 2 , а с использованием лишь одного параметра x 11 материнской молекулы CH 4 , то можно сделать вывод о хорошем соответствии между экспериментальными и предсказанными теоретически величинами, за исключением параметров x 13 , x 19 ,

x 24 , x 33 , x 36 , x 37 , x 44 , x 56 , x 59 , x 67 , x 69 , x 89 и x 99 . Таблица 3.5. Коэффициенты ангармоничности молекулы CH 2 D 2 (в см -1 ).

Параметр I a) II b) III c) IV d) Параметр I a) II b) III c) IV d)
x e) Фиксированы значениям соответствующих параметров из работы [57].

Разница в значениях этих параметров обусловлена тем, что при получении соотношений (3.15) нами были приняты во внимание указанные выше резонансные взаимодействия. В то же время, при оценках параметров, стоящих в колонке II (которые взяты из работы [67]), были использованы ab initio F ij силовые параметры с учетом только двух резонансов:

(..v 2 ..v 7 ..)/(..v 2 ± 1..v 7 ∓ 2..), (..v 4 ..v 8 ..v 9 ..)/(..v 4 ± 1..v 8 ∓ 1..v 9 ± 1..).
Чтобы проиллюстрировать качество описываемого в данной главе метода, были рассчитаны коэффициенты x λµ на основе тех же самых ab initio F ij силовых параметров из [67], но с учетом уже всех указанных выше резонансных взаимодействий. Результат данных вычислений представлен в колонке III Таблицы 3.5. Можно видеть более чем удовлетворительное согласие между соответствующими значениями параметров в колонках I и III. Данный факт является хорошим подтверждением корректности и эффективности полученных изотопических соотношений (3.15).Также в качестве сравнения в колонке IV Таблицы 3.5 приведены экспериментальные величины коэффициентов x λµ из работы [67]. Несоответствия между величинами некоторых коэффициентов ангармоничности в колонках I и IV можно объяснить тем, что анализ экспериментальных данных в [67] также был проведен с учетом меньшего числа пар резонансных взаимодействий, чем в проведенном выше анализе.

Равновесные вращательные постоянные B e β и колебательно -вращательные коэффициенты a β λ Равновесные вращательные постоянные B e β молекулы CH 2 D 2 можно легко определить по следующей известной формуле:

B e β = 4πcI e ββ , (3.16) 
где

I e ββ = N m N γ (r e N γ ) 2 -(r e N β ) 2 . (3.17) 
Величины r e N γ (γ = x, y, z) -равновесные координаты ядер молекулы CH 2 D 2 , полученные на основе равновесных координат r e N γ молекулы CH 4 и соотношения (3.1). В результате было получено: В то же время, в работе [59] были получены следующие значения параметров B e α :

B e = 3 2 B e x = 31 
B e x = 3.53333 см -1 ; B e y = 3.09718 см -1 ; B e z = 4.37215 см -1 .

Можно видеть хорошее согласие между теоретическими и экспериментальными результатами. Для того, чтобы получить изотопические соотношения между колебательно -вращательными коэффициентами α β λ мы воспользовались известными формулами IV.18 из работы [78], уравнениями (3.7), (3.8), (3.14) и данными Таблицы 3.3. В результате были получены следующие соотношения: 

Y 3 = 10 11 Y 1 = - 3 2 α x 1 = - 6 5 α x 2 = 4α x 3 = 19 10 α x 4 = -2α x 5 = -2α x 6 = -
28 25 α z 1 = - 17 4 α z 2 = - 4 5 α z 3 = 22 25 α z 4 = 4α z 5 = - 3 2 α z 6 = - 12 5 α z 7 = - 9 10 α z 8 = 3α z 9 = - 2 16πρ 4 e cm 3/2 H F 1/2 11 . (3.19) 
Следует отметить, что при выводе формул (3.19) была принята во внимание близость друг к другу значений гармонических частот ω 3 , ω 4 , ω 5 , ω 7 и ω 9 , а также учтено наличие резонанса между состояниями:

(..v 1 ..v 6 ..)/(..v 1 ± 1..v 6 ∓ 1..), (..v 2 ..v 8 ..)/(..v 2 ± 1..v 8 ∓ 1..).
В колонке I Таблицы 3.6 представлены результаты расчета колебательно -вращательных коэффициентов α β λ , выполненного на основе соотношений (3.19) с использованием только одного параметра Y 3 молекулы CH 4 . Для сравнения в колонке II представлены значения соответствующих коэффициентов, полученных из анализа экспериментальных данных, [81]. Можно видеть хорошее соответствие между обоими совокупностями результатов. Также для сравнения в колонке III приведены данные из работы [72]. Разницы в величинах α β λ -коэффициентов (с λ = 3, 5, 7, 9) из колонки III, с одной стороны, и из колонок I и II, с другой стороны, обусловлены тем, что авторы работы [72] вообще не учитывали резонансных взаимодействий. Таблица 3.6. Колебательно -вращательные коэффициенты 

α β λ молекулы CH 2 D 2 (в 10 -2 см -1 ). βλ I a) II b) III c) βλ I a) II b) III c) βλ I a) II b) III c) x1 2.
H vṽ = vṽ F 0 + vṽ F K J 2 z + vṽ F J J 2 + vṽ F KK J 4 z + vṽ F KJ J 2 z J 2 + vṽ F JJ J 4 + ... + vṽ F xy (J 2 x -J 2 y ) + vṽ F Kxy {J 2 z , (J 2 x -J 2 y )} + + 2 vṽ F Jxy J 2 (J 2 x -J 2 y ) + ... (3.20) 
Здесь первое слагаемое описывает чисто колебательное взаимодействие, остальные слагаемые описывают различные типы вращательных зависимостей взаимодействия Фермитипа, обусловленного присутствием в молекуле колебательно -вращательных взаимодействий. Анализ колебательно -вращательных спектров молекулы CH 2 D 2 показал [67,81,83], что для корректного описания спектров высокого разрешения нужно учесть следующие шесть типов чисто колебательных резонансных взаимодействий: 1). взаимодействие типа v|...|ṽ

≡ v λ ...v µ |...|v λ ± 2...v µ ∓ 2 , с λ = 4, µ = 7 или λ = 1, µ = 6; 2). взаимодействие типа v|...|ṽ ≡ v λ ...v µ ...v ν |...|v λ ± 2...v µ ∓ 1...v ν ∓ 1 , с λ = 9, µ = 3, ν = 4; 3). взаимодействие типа v|...|ṽ ≡ v λ ...v µ ...v ν ...v ξ |...|v λ ± 1...v µ ± 1...v ν ∓ 1...v ξ ∓ 1 , где (a) λ = 4, µ = 5, ν = 7, ξ = 9, (b) λ = 3, µ = 7, ν = 5, ξ = 9, (с) λ = 4, µ = 9, ν = 5, ξ = 7, (d) λ = 3, µ = 9, ν = 5, ξ = 7, (e) λ = 1, µ = 7, ν = 4, ξ = 6. 4). взаимодействие типа v|...|ṽ ≡ v λ ...v µ |...|v λ ± 1...v µ ∓ 2 , где (a) λ = 1, µ = 3 или 9, (b) λ = 2, µ = 4 или 7; 5). взаимодействие типа v|...|ṽ ≡ v λ ...v µ ...v ν |...|v λ ± 1...v µ ∓ 1...v ν ∓ 1 , где (a) λ = 6, µ = 3, ν = 7 или µ = 5, ν = 9, (b) λ = 8, µ = 4, ν = 9 или µ = 5, ν = 7; 6). взаимодействие типа v|...|ṽ ≡ v λ ...v µ |...|v λ ± 1...v µ ∓ 1 , где λ = 3 и µ = 4. Взаимодействие Дарлинга-Деннисона ν λ ...ν µ |...|ν λ ± 2...ν µ ∓ 2
Чтобы описать главную (чисто колебательную) часть взаимодействия Дарлинга -Деннисона, на основе операторной теории возмущений (см. параграф 1.4) было получено следующее выражение:

v λ ...v µ |...|v λ + 2...v µ -2 = v λ + 2...v µ -2|...|v λ ...v µ = v λ + 1 2 1/2 v λ + 2 2 1/2 v µ 2 1/2 v µ -1 2 1/2 (λλ,µµ) F 0 , (3.21) 
где

(λλ,µµ) F 0 = k λλµµ + k λλλ k λµµ 2 1 ω λ + 3ω λ 4ω 2 µ -ω 2 λ + k µµµ k λλµ 2 1 ω µ + 3ω µ 4ω 2 λ -ω 2 µ -k 2 λλµ 1 ω µ + 1 2ω λ -ω µ -k 2 λµµ 1 ω λ + 1 2ω µ -ω λ + ξ =λ,µ k 2 λµξ 4 1 ω λ -ω µ -ω ξ + 1 ω µ -ω λ -ω ξ - ξ =λ,µ k λλξ k µµξ 4 1 2ω λ + ω ξ + 1 2ω µ + ω ξ + ξ =λ,µ k λλξ k µµξ 4 1 2ω λ -ω ξ + 1 2ω µ -ω ξ - β B e β ζ β λµ 2 ω λ + ω µ 2 ω λ ω µ . (3.22) 
В выражении (3.22) если ξ = 1 и λ или µ = 3 и/или 9, то вся сумма

1 2ω λ -ω 1 + 1 2ω µ -ω 1
в предпоследнем слагаемом должна быть положена равной нулю. Также, если ξ= 2 и λ или µ = 4 и/или 7, то вся сумма

1 2ω λ -ω 2 + 1 2ω µ -ω 2 в предпоследнем слагаемом полагается равной нулю.
Если принять во внимание выражения (3.7), (3.8), (3.14), (3.18) и данные Таблицы 3.2, то нетрудно получить следующие простые соотношения: (44,77) F 0 = -23 50 (11,66) 

32 3 B e = - 101 11 
F 0 = πcm H ρ 2 e . (3.23) 
Чтобы проиллюстрировать корректность полученных результатов (3.23), были проведены расчеты, результаты которых приведены в первых двух строках Таблицы 3.7 (колонка I). Для сравнения в колонке II приведены величины тех же параметров, полученных из анализа экспериментального колебательно -вращательного спектра [81]. Можно видеть хорошее соответствие обоих результатов. Как показывает анализ, чтобы получить формулы (аналогичные выражениям (3.21), (3.22)) для параметров взаимодействия более высоких порядков F K , F J и т.д., необходимо в выражении (3.20) учесть четвертый порядок теории возмущений. С одной стороны, подобного рода расчеты для пятиатомной молекулы довольно громоздки и, с другой стороны, величины этих параметров в 10 4 -10 5 раз меньше величин главных вкладов (λλ,µµ) F 0 , поэтому мы не рассматриваем здесь изотопические соотношения для этих параметров. (..v 1 ..v 6 ..)/(..v 1 ± 2..v 6 ∓ 2..) (11,66) ) Вычислены на основе изотопических соотношений. b) Получены из анализа экспериментальных данных, [81].

(..v 5 ..v 7 ..v 8 ..)/(..v 5 ± 1..v 7 ± 1..v 8 ∓ 1..) (8,57) F 0 - 20.95 (3.45) -33.31 a 
Взаимодействие типа ν λ ...ν µ ...ν ν |...|ν λ ∓ 2...ν µ ± 1...ν ν ± 1

Используя операторную теорию возмущений, можно показать, что резонансное взаимодействие типа v λ ...v µ ...v ν |...|v λ ∓2...v µ ±1...v ν ±1 описывается следующим выражением:

v λ ...v µ ...v ν |...|v λ -2...v µ + 1...v ν + 1 = v λ -2...v µ + 1...v ν + 1|...|v λ ...v µ ...v ν = v λ 2 1/2 v λ -1 2 1/2 v µ + 1 2 1/2 v µ + 1 2 1/2 (λλ,µν) F 0 , (3.24) 
где

(λλ,µν) F 0 = k λλµν + 3k λλλ k λµν 2 1 3ω λ + ω λ (ω µ + ω ν ) 2 -ω 2 λ + k λµµ k λµν 2 ω µ + ω ν ω λ (ω λ -ω µ -ω ν ) + 3ω µ -ω ν (ω λ + ω µ -ω ν )(ω λ -2ω µ ) + k λνν k λµν 2 ω µ + ω ν ω λ (ω λ -ω µ -ω ν ) + 3ω ν -ω µ (ω λ + ω ν -ω µ )(ω λ -2ω ν ) +k λλµ k µµν ω µ 4ω 2 λ -ω 2 µ + ω µ ω ν (2ω µ + ω ν ) + k λλν k µνν ω ν 4ω 2 λ -ω 2 ν + ω ν ω µ (2ω ν + ω µ ) -2k λλµ k λλν ω λ ω µ (2ω λ -ω µ ) + ω λ ω ν (2ω λ -ω ν ) + ξ =λ,µ,ν k λµξ k λνξ 2 ω ξ (ω λ -ω µ ) 2 -ω 2 ξ + ω ξ (ω λ -ω ν ) 2 -ω 2 ξ + ξ =λ,µ,ν k λλξ k µνξ 4 2ω λ + ω µ + ω ν -2ω ξ (2ω λ -ω ξ )(ω µ + ω ν -ω ξ ) - 2ω λ + ω µ + ω ν + 2ω ξ (2ω λ + ω ξ )(ω µ + ω ν + ω ξ ) -2 β B e β ζ β λµ ζ β λν ω λ + ω µ (ω λ + ω ν ) ω λ ω µ ω ν . (3.25) 
В выражении (3.25) первое слагаемое в предпоследней строке опускается в случае резонанса, когда значения 2ω λ и ω ξ близки. Если снова учесть выражения (3.8), (3.8), (3.14), (3.18) и данные Таблицы 3.2, то, используя выражение (3.25), можно получить следующее простое изотопическое соотношение для резонансного параметра (99,34) F 0 рассматриваемого типа, который является существенным для молекулы CH 2 D 2 :

32 3 B e = - 85 2 (99,34) F 0 = πcm H ρ 2 e . (3.26) 
Как и раньше, результат, полученный на основе выражения (3.26) и результат, полученный на основе экспериментальных данных, представлены в Таблице 3.7. Если учесть малость абсолютной величины параметра (99,34) F 0 , то результат теоретической оценки можно рассматривать как вполне удовлетворительный, несмотря на различие в знаках вычисленной и предсказанной теоретически величины. По той же причине, что и в предыдущем пункте, мы не рассматривали параметры более высоких порядков F K , F J , и т.д.

Взаимодействия типа v λ ..v µ ..v ν ..v ξ |..|v λ ∓ 1..v µ ∓ 1..v ν ± 1..v ξ ± 1 Аналогично рассмотренным выше ситуациям, можно показать, что взаимодействия типа v λ ...v µ ...v ν ...v ξ |...|v λ ∓ 1...v µ ∓ 1...v ν ± 1...v ξ ± 1 описываются следующим выражением: v λ ...v µ ...v ν ...v ξ |...|v λ -1...v µ -1...v ν + 1...v ξ + 1 = v λ -1...v µ -1...v ν + 1...v ξ + 1|...|v λ ...v µ ...v ν ...v ξ = v λ 2 1/2 v µ 2 1/2 v ν + 1 2 1/2 v ξ + 1 2 1/2 (λµ,νξ) F 0 , (3.27) 
где выражение для параметров (λµ,νξ) F 0 имеет следующий вид:

(λµ,νξ) F 0 = k λµνξ + κ,θ=λ,µ (κ =θ) k κκθ k κνξ 2 1 ω θ + 1 ω ν + ω ξ -ω κ - 1 2ω κ + ω θ + 1 ω κ + ω ν + ω ξ - κ,θ=λ,µ (κ =θ) η,τ =ν,ξ (η =τ ) k κκη k κθτ 2 1 ω η + 1 ω κ + ω θ -ω τ + 1 2ω κ -ω η + 1 ω κ + ω τ -ω θ + η,τ =ν,ξ (η =τ ) k ηητ k ηλµ 2 1 ω τ + 1 ω λ + ω µ -ω η - 1 2ω η + ω τ + 1 ω η + ω λ + ω µ - κ,θ=λ,µ (κ =θ) η,τ =ν,ξ (η =τ ) k κηη k θητ 2 1 ω κ + 1 ω η + ω τ -ω θ + 1 2ω η -ω κ + 1 ω θ + ω η -ω τ + ρ =λµνξ k λµρ k νξρ 4 1 ω λ + ω µ -ω ρ + 1 ω ν + ω ξ -ω ρ - 1 ω ν + ω ξ -ω ρ + 1 ω λ + ω µ + ω ρ - ρ =λµνξ η,τ =ν,ξ (η =τ ) k ληρ k µτ ρ 4 1 ω λ -ω η -ω ρ + 1 ω τ -ω µ -ω ρ + 1 ω µ -ω τ -ω ρ + 1 ω η -ω λ + ω ρ + β 2B e β ω λ ω µ ω ν ω ξ ζ β λµ ζ β νξ ω µ -ω λ ω ξ -ω ν - β 2B e β ω λ ω µ ω ν ω ξ ζ β λν ζ β µξ (ω ν + ω λ ) ω µ + ω ξ + ζ β λξ ζ β µν ω λ + ω ξ ω µ + ω ν . (3.28) 
Как и в предыдущем случае, используя выражения (3.28), (3.7), (3.8), (3.14), (3.18) и данные Таблицы 3.2, можно получить следующие простые изотопические соотношения для весьма важных параметров взаимодействия в молекуле CH 2 D 2 : 32 3 B e = 34 5 (45,79) F 0 = 43 20 (37,59) F 0 = 14 5 (49,57) F 0 = 23 10 (39,57) F 0 = -15 2 (17,46) 

F 0 = πcm H ρ 2 e . (3.29) 
Результаты оценки величин параметров (45,79) F 0 , (37,59) F 0 , (49,57) F 0 , (39,57) F 0 и (17,46) F 0 можно видеть в Таблице 3.7 (колонка I) вместе с величинами соответствующих параметров, полученных на основе анализа экспериментальных данных из работы [81] (представлены в колонке II Таблицы 3.7).

Взаимодействия Ферми

-типа v λ ...v µ |...|v λ ± 1...v µ ∓ 1 a)
Коэффициент чисто колебательного взаимодействия (λ,µ) F 0 . Формула для (λ,µ) F 0 -коэффициента получена на основе операторной теории возмущений и имеет вид:

v λ ...v µ |...|v λ + 1...v µ -1 = v λ + 1...v µ -1|...|v λ ...v µ = v λ 2 1/2 v µ + 1 2 1/2 (λ,µ) F 0 , (3.30) 
где выражение для параметра (λ,µ) F 0 представляет собой: 

(λ,µ) F 0 = 3 2 k λλλµ V λ + 3 2 k λµµµ V µ + ξ =λ,µ k λµξξ V ξ - i =j i,j=λ,µ 3k iii k iij 4 10 3ω i + 1 ω j + 6ω i + ω j 4ω 2 i -ω 2 j V i + i =j i,j=λ,µ k iij k ijj 4 2ω j 4ω 2 i -ω 2 j - 6ω j + ω i 4ω 2 j -ω 2 i - 4ω i + ω j ω i ω j V i - ξ =λ,µ 3k λµξ k ξξξ 2ω ξ 2ω 2 ξ -ω λ -ω µ 2 ω 2 ξ -ω λ -ω µ 2 V ξ - ξ =λ,µ,ν ν =λ,µ k λµν k νξξ 2ω ν 2ω 2 ν -ω λ -ω µ 2 ω 2 ν -ω λ -ω µ 2 V ξ - i =j i,j=λ,µ ξ =λ,µ k iij k iξξ 2 2 ω i + 1 ω j + 1 2ω i -ω j V ξ + ξ =λµ 2k λξξ k µξξ ω ξ ω 2 λ -4ω 2 ξ + ω ξ ω 2 µ -4ω 2 ξ V ξ + ξ =λ,µ ν =λ,µ,ξ k λξν k µξν 4 ω ξ + ω ν ω 2 λ -ω ξ + ω ν 2 + ω ξ + ω ν ω 2 µ -ω ξ + ω ν 2 V ξ - i =j i,j=λ,µ ξ =λ,µ k iiξ k ijξ 4 2 ω i -ω j ω i -ω j 2 -ω 2 ξ + 3ω i + ω j + 2ω ξ 2ω i + ω ξ ω i + ω j + ω ξ V ξ - i =j i,j=λ,µ ξ =λ,µ k iiξ k ijξ 8 4 ω i -ω j 2 -8ω 2 ξ ω ξ ω i -ω j 2 -ω 3 ξ + 3ω i + ω j + 2ω ξ 2ω i + ω ξ ω i + ω j + ω ξ V i + ξ =λ,µ β 2B e β ζ β λξ ζ β µξ ω 2 ξ + ω λ ω µ ω ξ ω λ ω µ V ξ - i =j i,j=λ,µ ξ =λ,µ k iiξ k ijξ 4 3ω i + ω j -2ω ξ 2ω i -ω ξ ω i + ω j -ω ξ V ξ + i =j i,j=λ,µ ξ =λ,µ k iiξ k ijξ 8 3ω i + ω j -2ω ξ 2ω i -ω ξ ω i + ω j -ω ξ V i + ξ =λ,µ ν =λ,µ,ξ k λξν k µξν 8 1 ω λ + ω ξ -ω ν + 1 ω µ + ω ξ -ω ν V ξ - ξ =λ,µ ν =λ,µ,ξ k λξν k µξν 8 1 ω λ + ω ν -ω ξ + 1 ω µ + ω ν -ω ξ V ξ . (3.31) где V i = v i +ṽ i 2 + 1 2 ; v i и ṽi -колебательные
) Коэффициенты колебательно -вращательного взаимодействия (λ,µ) F K , (λ,µ) F J и (λ,µ) F xy .
Формулы для соответствующих (λ,µ) F .. -коэффициентов были получены в виде:

v λ ...v µ |...|v λ + 1...v µ -1 = v λ + 1...v µ -1|...|v λ ...v µ = v λ + 1 2 1/2 v µ 2 1/2 (λ,µ) F .. , (3.32) 
где (λ,µ) F .. = (λ,µ) F K , (λ,µ) F J или (λ,µ) F xy ;

2 (λ,µ) F K = 2 (λ,µ) F z -(λ,µ) F x -(λ,µ) F y , (3.33) 
2 (λ,µ) F J = (λ,µ) F x + (λ,µ) F y , (3.34) 
2 (λ,µ) F xy = (λ,µ) F x -(λ,µ) F y , (3.35) 
и выражение для параметра (λ,µ) F α (α = x, y, z) имеет вид:

(λ,µ) F α = 3 γ B e α 2 B e γ ω λ ω µ 4πc a αγ λ a αγ µ + 2 ω λ B e α 2 4πc 1/2 a αα λ k λλµ (ω µ + ω λ ) 2 -2ω 2 µ ω µ ω λ (2ω λ -ω µ ) + 2 ω µ B e α 2 4πc 1/2 a αα µ k λµµ (ω λ + ω µ ) 2 -2ω 2 λ ω λ ω µ (2ω µ -ω λ ) + ξ =λµ B e α 2 2ω ξ 4πc 1/2 a αα ξ k ξλµ 2ω 2 ξ -(ω λ -ω µ ) 2 ω ξ [ω 2 ξ -(ω λ -ω µ ) 2 ] - ξ =λµ B e α ζ α ξλ B e α ζ α ξµ (ω λ + ω ξ )(ω µ + ω ξ ) ω ξ ω λ ω µ 1 ω ξ -ω λ + 1 ω ξ -ω µ - ξ =λµ B e α ζ α ξλ B e α ζ α ξµ (ω λ -ω ξ )(ω µ -ω ξ ) ω ξ ω λ ω µ 1 ω ξ + ω λ + 1 ω ξ + ω µ . (3.36) 
В выражении (3.36), если ω ξ ≈ ω λ или ω ξ ≈ ω µ , то предпоследняя строка выражения (3.36) полагается равной нулю. В молекуле CH 2 D 2 такой тип резонанса соответствует только одному случаю: λ = 3 и µ = 4. Следовательно, изотопические соотношения имеют вид:

(3,4) F 0 = 92 75 B e 1 2 V 1 + 23 10 V 2 - 13 5 V 3 - 2 125 V 4 - 27 100 V 5 - 57 10 V 6 + 39 10 V 7 + 17 5 V 8 + 11 20 V 9 (3.37) 
и

Y 3 = 5 2
(3,4) F x = -8 5 (3,4) F y = 6 5 (3,4) 

F z = - 2 16πcρ 4 e F 1/2 11 m 3/2 H . (3.38) 
Численные результаты, полученные в соответствии с соотношениями (3.38) имеют вид:

(3,4) F x = -0.0134 см -1

(3,4) F y = 0.0209 см -1

(3,4) F z = -0.0278 см -1 (3.39) 
В качестве исходного, как и раньше, был использован лишь один параметр (параметр

Y 3 молекулы CH 4
). Для сравнения, здесь приводятся также величины соответствующих параметров, взятых из анализа экспериментальных данных, [81]:

(3,4) F x = -0.0163 см -1 (3,4) F y = 0.0159 см -1 (3,4) F z = -0.0327 см -1 (3.40) 
Если учесть, что предсказанные величины были получены без какой-либо информации о молекуле CH 2 D 2 , то можно отметить более чем удовлетворительное соответствие между предсказанными и экспериментальными величинами.

Взаимодействия типа v λ ..v µ ..|...|v λ ±1..v µ ∓2.. и v λ ..v µ ..v ν ..|...|v λ ±1...v µ ∓ 1...v ν ∓ 1..
Хорошо известно, что главные части взаимодействий такого типа пропорциональны соответствующим кубическим параметрам ангармоничности k λµν , а именно,

v λ ..v µ ..|..|v λ + 1..v µ -2.. = v λ + 1..v µ -2..|..|v λ ..v µ .. = v λ + 1 2 1/2 v µ 2 1/2 v µ -1 2 1/2 (λ,µµ) F 0 , (3.41) где (λ,µµ) F 0 = k λµµ , (3.42) и v λ ..v µ ..v ν ..|..|v λ + 1..v µ -1..v ν -1.. = v λ + 1..v µ -1..v ν -1..|..|v λ ..v µ ..v ν .. = v λ + 1 2 1/2 v µ 2 1/2 v ν 2 1/2 (λ,µν) F 0 , (3.43) где (λ,µν) F 0 = k λµν . (3.44)
На этой основе изотопические соотношения легко могут быть получены в виде:

- 17 5 B e ω 3 = 8 3
(1,99) F 0 = 5 (1,33) F 0 = -13 2 (2,44) F 0 = -13 2 (2,77) F 0 = 2 (6,37) F 0 = 2 (6,59) F 0 = -6 (8,49) F 0 = 21 (8,57) F 0 = 15 2 (6,27) Известно, [82], что взаимодействие типа Кориолиса для произвольной молекулы типа асимметричного волчка симметрии C 2v можно описать тремя типами связанных операторов H vṽ (v = ṽ). В этом случае, если произведение Γ = Γ v ⊗ Γ ṽ типов симметрии состояний v и ṽ равно B 1 , то состояния v и ṽ связаны резонансом Кориолиса следующего вида:

H vṽ = iJ z H (1) vṽ + {J x , J y } + H (2) vṽ + H (2) vṽ {J x , J y } + +{iJ z , (J 2 x -J 2 y )} + H (3) 
vṽ + H

(3) vṽ {iJ z , (J 2 x -J 2 y )} + + ... (3.46) где {A, B} + = (AB + BA) -антикоммутатор. Когда Γ = B 2 , то применяют данный вид оператора:

H vṽ = iJ y H (1) 
vṽ + H

(1)

vṽ iJ y + {J x , J z } + H (2) 
vṽ + H

(2)

vṽ {J x , J z } + +{iJ y , (J 2 x -J 2 y )} + H (3) 
vṽ + H

(3)

vṽ {iJ y , (J 2 x -J 2 y )} + + ... (3.47) 
И если Γ = A 2 , то имеем взаимодействие Кориолиса данного вида:

H vṽ = iJ x H (1) 
vṽ + H

(1)

vṽ iJ x + {J y , J z } + H (2) vṽ + H (2) vṽ {J y , J z } + + {iJ x , (J 2 x -J 2 y )} + H (3) 
vṽ + H

(3) vṽ {iJ x , (J 

H (i) vṽ = 1 2 vṽ C i + vṽ C i K J 2 z + 1 2 vṽ C i J J 2 + vṽ C i KK J 4 z + vṽ C i KJ J 2 z J 2 + 1 2 vṽ C i JJ J 4 + vṽ C i KKK J 6 z + vṽ C i KKJ J 4 z J 2 + vṽ C i KJJ J 2 z J 4 + 1 2 vṽ C i JJJ J 6 + ... (3.49) 
Как и в предыдущем параграфе, анализ колебательно -вращательных спектров молекулы CH 2 D 2 [57,81,83] 

v λ ..v µ |..|v λ + 1..v µ -1 = v λ + 1..v µ -1|..|v λ ..v µ * = iJ α v λ + 1 2 1/2 v µ 2 1/2 (λ,µ) C α + (J α J β + J β J α ) v λ + 1 2 1/2 v µ 2 1/2 (λ,µ) C αβ , (3.50) 
где B e = 99 (1,6) C z = 43 (2,8) C y = 10 (3,5) C x = 88 5 (3,7) C z = -31 5 (3,9) C y = 43 5 (4,5) C x = -28 5 (4,7) C z = -285 (4,9) C y = 54 5 (5,7) C y = -76 5 (5,9) C z = 10 (7,9) (1,6) C xy = - (2,8) C xz = 9 5 (3,4) C xx = -9 5 (3,4) C yy = 22 25 (3,4) C zz = 7 5 (3,5) C yz = 2 (3,7) C xy = 28 25 (3,9) C xz = -17 10 (4,5) C yz = - (4,7) C xy = -6 (4,9) C xz = 3 5 (5,7) C xz = 17 20 (5,9) C xy = 19 10 (7,9) C yz = - Для взаимодействия указанного типа, нами было показано, что:

(λ,µ) C α = -2 B e α ζ α λµ ω µ + ω λ ω λ ω µ , (3.51) 
a αβ λ k λλµ ω λ (ω µ + ω λ ) 2 -2ω 2 µ ω µ ω λ (2ω λ -ω µ ) + a αβ µ k λµµ ω µ (ω λ + ω µ ) 2 -2ω 2 λ ω λ ω µ (2ω µ -ω λ ) - ξ =λµ B e α ζ α λξ B e β ζ β µξ + B e α ζ α µξ B e β ζ β λξ (ω λ -ω ξ )(ω µ -ω ξ ) 2ω ξ ω λ ω µ 1 ω µ + ω ξ + 1 ω λ + ω ξ + ξ =λµ B e α ζ α µξ B e β ζ β λξ + B e α ζ α λξ B e β ζ β µξ (ω λ + ω ξ )(ω µ + ω ξ ) 2ω ξ ω λ ω µ 1 ω µ -ω ξ + 1 ω λ -ω ξ . ( 3 
C x = πcm H ρ 2 e . (3.53) и Y 3 = 10 11 Y 1 = 9 5
v λ ..v µ |..|v λ + 1..v µ -2 = v λ + 1..v µ -2|..|v λ ..v µ * = iJ α v λ + 1 2 1/2 v µ 2 1/2 v µ -1 2 1/2 (λ,µµ) C α +(J α J β + J β J α ) v λ + 1 2 1/2 v µ 2 1/2 v µ -1 2 1/2 (λ,µµ) C αβ , (3.55) 
где (6,33) C z = 42 5 (6,55) C z = 18 (8,33) C y = -9 5 (8,44) C y = 24 5 (8,77) C y = 93 25 (8,99) C y = В колонке I Таблицы 3.9 вы можете видеть параметры взаимодействия Кориолиса (λ,µµ) C α , полученные на основе выражения (3.57). Соответствующие параметры из работы [81] представлены в колонке II Таблицы 3.9. Таблица 3.9. Некоторые параметры взаимодействий Кориолиса (λ,µν) 

(λ,µµ) C α = β 2 √ 2B e α B e β ζ β λµ 4πc 1/2 a αβ µ ω λ + ω µ ω µ ω λ -3 B e α ζ α λµ k µµµ ω λ ω µ 2ω λ ω µ ω 2 λ -ω 2 µ + 2ω µ + ω λ 3ω µ +2 B e α ζ α λµ k λλµ ω λ ω µ 2ω λ ω µ ω 2 λ -ω 2 µ + ω 2 λ ω µ 2ω λ -ω µ + ξ =λµ B e α ζ α λξ k µµξ 2 ω λ ω ξ ω λ -ω ξ ω λ + ω ξ + ω λ -ω ξ 2ω µ + ω ξ - ω λ + ω ξ ω λ -ω ξ - ω λ + ω ξ 2ω µ -ω ξ + ξ =λµ B e α ζ α µξ k λµξ 2 ω µ ω ξ ω ξ -ω µ ω ξ + ω µ + ω ξ -ω µ ω λ + ω ξ -ω µ + ω ξ + ω µ ω µ -ω ξ + ω ξ + ω µ ω λ -ω µ + ω ξ . (3 
v λ ..v µ ..v ν |..|v λ + 1..v µ -1..v ν -1 = v λ + 1..v µ -1..v ν -1|..|v λ ..v µ ..v ν * = iJ α v λ + 1 2 1/2 v µ 2 1/2 v ν 2 1/2 (λ,µν) C α +(J α J β + J β J α ) v λ + 1 2 1/2 v µ 2 1/2 v ν 2 1/2 (λ,µν) C αβ , (3.58) 
где = -18 5 (1,39) C y = 2 (2,47) C z = 93 25 (2,49) C y = 33 20 (8,45) C z = 11 5 (8,47) C x = 34 25 (8,79) C z = Данная глава диссертации описывает рассмотренное выше "расширенное" приближение локальных мод, применительно к изотопозамещенным модификациям молекулы метана CH 3 D и CHD 3 . Результаты были опубликованы: [84] - [87].

(λ,µν) C α = 2 √ 2B e α ω λ ω µ ω ν 4πc 1/2 × β a αβ λ B e β ζ β µν ω ν -ω µ + a αβ µ B e β ζ β λν (ω λ + ω ν ) + a αβ ν B e β ζ β λµ ω λ + ω µ + B e α ζ α µν k λµµ + k λνν ω ν -ω µ ω µ ω ν 1 ω λ + 1 ω µ + ω ν + ω µ + ω ν ω µ ω ν B e α ζ α νµ k λµµ 1 ω ν -ω µ + 1 ω λ -2ω µ + B e α ζ α µν k λνν 1 ω µ -ω ν + 1 ω λ -2ω ν + B e α ζ α λµ k λλν ω λ ω µ 4ω λ ω µ ω 2 λ -ω 2 µ + 2ω λ ω λ + ω µ -ω ν ω ν (2ω λ -ω ν ) + B e α ζ α λν k λλµ ω λ ω ν 4ω λ ω ν ω 2 λ -ω 2 ν + 2ω λ ω λ + ω ν -ω µ ω µ 2ω λ -ω µ -B e α ζ α λµ k µµν ω λ ω µ 4ω λ ω µ ω 2 λ -ω 2 µ + 2ω µ ω λ + ω µ + ω ν ω ν 2ω µ + ω ν -B e α ζ α λν k µνν ω λ ω ν 4ω λ ω ν ω 2 λ -ω 2 ν + 2ω ν ω λ + ω ν + ω µ ω µ 2ω ν + ω µ + ξ =λµν B e α ζ α νξ 2 k λµξ ω ν ω ξ ω ξ -ω ν ω ξ + ω ν + ω ξ -ω ν ω ξ + ω λ -ω µ - ω ξ + ω ν ω ξ -ω ν + ω ξ + ω ν ω ξ -ω λ + ω µ + ξ =λµν B e α ζ α µξ 2 k λνξ ω µ ω ξ ω ξ -ω µ ω ξ + ω µ + ω ξ -ω µ ω ξ + ω λ -ω ν - ω ξ + ω µ ω ξ -ω µ + ω ξ + ω µ ω ξ -ω λ + ω ν + ξ =λµν B e α ζ α λξ 2 k µνξ ω λ ω ξ ω λ -ω ξ ω λ + ω ξ + ω λ -ω ξ ω µ + ω ν + ω ξ - ω λ + ω ξ ω λ -ω ξ + ω λ + ω ξ ω µ + ω ν -ω ξ . ( 3 
В данной главе диссертации рассматривается задача определения соотношений, позволяющих на основе фундаментальных параметров (параметров внутримолекулярной потенциальной функции и структурных параметров молекулы) определить различные спектроскопические характеристики молекулы типа симметричного волка и тем самым существенно облегчить решение задач интерпретации сложных колебательно -вращательных спектров в высоковозбужденных состояниях. Основой для решения задачи является операторная теория возмущений (в нашем случае использовалась так называемая матричная формулировка операторной теории возмущений, [71]), общий вид колебательно -вращательного гамильтониана произвольной многотомной молекулы, полученный ранее в работе [6], теоремы и результаты теории неприводимых тензорных систем, [88] - [90].

Симметризованные операторы и симметризованные

волновые функции молекулы типа XYZ 3 в представлении неприводимых тензорных операторов Молекула типа XYZ 3 (C 3v ) -это симметричный волчок, который имеет 9 колебательных степеней свободы симметрии A 1 или E. В данном случае, три невырожденные моды q j (j = 1, 2, 3) ∈ A 1 и три дважды вырожденные моды q λ 1 и q λ 2 (λ = 4, 5, 6) ∈ E. Присутствие дважды вырожденных мод в молекуле типа симметричного волчка приводит к сложной картине колебательно -вращательных спектров исследуемой молекулы. По этой причине, наиболее эффективный подход при изучении такого вида молекул -использование свойств симметрии на основе результатов теории неприводимых тензорных операторов.

Вращательные неприводимые операторы

Обычно элементарные неприводимые вращательные операторы R Ω(K) m группы вращений SO(3) берутся в следующем виде, [3], [88] - [90]:

R 1(1) 1 = - 1 √ 2 (J x -iJ y ) ≡ -J + , R 1 (1) 
-1 = 1 √ 2 (J x + iJ y ) ≡ J -, R 1(1) 0 = J z ≡ J 0 . (4.1) 
Здесь используются следующие обозначения: Ω -полная степень вращательного оператора J α , α = x, y, z (например, для Ω = 1, R 1(...)

...

∼ J α , для Ω = 2, R 2(...)
...

∼ J α J β и т.д.); индексы K и m обозначают неприводимое представление D (K) группы симметрии SO(3) и его компоненту, в соответствии с которой операторы R Ω(K) m изменяются под действием операций группы SO(3). В этом случае, неприводимые вращательные операторы R Ω+1(K+1) m могут быть построены, используя соответствующие неприводимые вращательные операторы R

Ω(K) m (n = 0, ±1, ... ± K) и R 1(1) l (l = 0, ±1), [3]: R Ω+1(K+1) m = l=-1,0,1 C K+1 m K m-l,1 l R Ω(K) m-l R 1(1) l , (4.2) 
где C K+1 m K m-l,1 l известные в литературе коэффициенты Клебша-Гордана, [90]. Неприводимые вращательные операторы R Ω(K) m с K < Ω (в данном случае четность Ω и K должны быть одинаковы, [3]) определяются как

R Ω(K) m = R Ω=K(K) m (R 2(0) ) (Ω-K)/2 , (4.3) где R 2(0) = - 1 √ 3 J 2 0 + 1 2 (J + J -+ J -J + ) = - 1 √ 3 (J 2 x + J 2 y + J 2 z ). (4.4) 
Различные вращательные операторы R Ω(K,nΓ) σ

, симметризованные в соответствии с неприводимыми представлениями Γ группы симметрии C 3v , могут быть легко построены из рассмотренных выше операторов R Ω(K) m , используя следующие общие соотношения, [3,91],

R Ω(K,nΓ) σ = m (K) G m nΓσ R Ω(K) m . (4.5) 
Так называемые элементы матрицы редукции (K) G m nΓσ для группы C 3v могут быть взяты из [3] (они представлены в Приложении 2). Если учитывать уравнения (4.1) -(4.5) и данные Приложения 2, то можно легко построить все возможные неприводимые вращательные операторы группы симметрии C 3v . В качестве иллюстрации некоторые из них (как для группы симметрии SO 3 , так и для C 3v ) приведены в Приложении 3.

Симметризованные колебательные операторы

Поскольку операторы координаты q j и соответствующие операторы импульсов p j = -i ∂/∂q j (j = 1, 2, 3) невырожденные, они, как следствие, относятся к полносимметричному неприводимому представлению A 1 . Поэтому мы обсудим в данном разделе лишь дважды вырожденные колебания q λs (λ = 4, 5, 6 и s = 1, 2) и соответствующие им импульсы p λs . В этом случае, если принять во внимание свойства этих операторов (смотри, например, [3,78]), то возможно построить пары координат q λ,E 1 = q λ 1 = 1 2 (q - λ + q + λ ) и q λ,E 2 = -q λ 2 = i 2 (q + λ -q - λ ) (λ = 4, 5, 6), которые преобразуются в соответствии с первыми и вторыми строками неприводимого представления E группы симметрии C 3v , соответственно. Аналогично можно построить пары операторов импульсов p λ,E

1 = p λ 1 = 1 2 (p - λ + p + λ ) и p λ,E 2 = -p λ 2 = i 2 (p + λ -p - λ )
. Здесь операторы q + λ /p + λ и q - λ /p - λ являются операторами рождения и уничтожения, которые увеличивают или уменьшают значение квантового числа l в колебательных функциях |v l (|v l -собственные функции дважды вырожденного гармонического осциллятора):

v + 1 l ± 1|q ± |v l = ∓ v ± l + 2 2 1/2 , v -1 l ± 1|q ± |v l = ± v ∓ l 2 1/2 , (4.6) 
и v + 1 l ± 1|p ± |v l = ∓i v ± l + 2 2 1/2 , v -1 l ± 1|p ± |v l = ∓i v ∓ l 2 1/2 , (4.7) 
Свойства симметрии элементарных (первого порядка) колебательных операторов позволяют нам строить симметризованные операторы второго, третьего и т.д. порядков. Чтобы построить операторы такого типа, можно использовать общее соотношение [88,89]:

(A Γ ⊗ B Γ ) γ σ = [γ] ss γ Γ Γ σ s s A Γ s B Γ s , (4.8 
)

где [γ] -размерность неприводимого представления γ (для группы C 3v [A 1 ] = [A 2 ] = 1 и [E] = 2).
γ Γ Γ σ s s -так называемые 3Γ-символы точечной группы симметрии (более детально см. [3,88]), которые удовлетворяют условиям:

γ Γ Γ σ s s = Γ Γ γ s s σ = Γ γ Γ s σ s = (-1) γ+Γ+Γ Γ γ Γ s σ s = = (-1) γ+Γ+Γ γ Γ Γ σ s s = (-1) γ+Γ+Γ Γ Γ γ s s σ . (4.9) 
Здесь (-1) A 1 = (-1) E = -(-1) A 2 = 1; символ ⊗ обозначает тензорное произведение. Для группы C 3v не равные нулю следующие 3Γ-символы:

A 1 A 1 A 1 = A 1 A 2 A 2 = 1, A 1 E E 1 1 = A 1 E E 2 2 = A 2 E E 1 2 = - A 2 E E 2 1 = 1 √ 2 , E E E 1 2 2 = - E E E 1 1 1 = 1 2 .
Сказанное выше позволяет нам строить любой колебательный оператор, который будет принадлежать к тому или иному неприводимому представлению группы C 3v .

Колебательно -вращательный гамильтониан в симметризованной форме

Информация, изложенная в предыдущем параграфе, позволяет нам описать колебательно -вращательный гамильтониан молекулы в форме, которая будет адаптирована к свойствам симметрии молекулы. Прежде чем представить гамильтониан в такой форме, мы хотели бы отметить, что в соответствии с общей колебательно -вращательной теорией (см. [2,6,62]), гамильтониан молекулы может быть представлен в следующей форме:

H vib.-rot. /hc = 1 2 a ω a (p 2 a + q 2 a ) + 1 2 αβ µ αβ (J α -G α )(J β -G β ) + abc
k abc q a q b q c + abcd k abcd q a q b q c q d + ... .

(4.17)

Нетрудно показать, что гамильтониан в выражении (4.10), приведенный к симметризованной форме (по схеме, описанной выше), будет иметь следующий вид:

H vib.-rot. /hc = [Γ a ] 2 a ω a (p a ⊗ p a ) A 1 + (q a ⊗ q a ) A 1 + 1 2 nm γγ γ µ n,γ (q) ⊗ J γ -G γ ⊗ J γ -G γ m,γ A 1 + V anh. , (4.18) 
Ангармоническая часть внутримолекулярной потенциальной энергетической поверхности для молекулы типа XYZ 3 представлена в Приложении 4.

Симметризованные колебательные функции

В соответствии с основными принципами теории неприводимых тензорных операторов, колебательные функции |vγ v σ для молекул типа ZXY 3 (C 3v ) могут быть построены в следующем виде:

|vγ v σ = (v 1 v 2 v 3 ) {[(v 4 l 4 γ 4 ) ⊗ (v 5 l 5 γ 5 )] γ 45 ⊗ (v 6 l 6 γ 6 )} γ σ . (4.19) 
Где (v 1 v 2 v 3 ) -волновая функция невырожденных колебательных мод q 1 , q 2 и q 3 . Волновые функции, которые зависят от дважды вырожденных колебательных мод q 4σ , q 5σ и q 6σ (σ = 1, 2) определяются как тензорное произведение симметризованных функций отдельных невырожденных мод (v 4 l 4 γ 4 ), (v 5 l 5 γ 5 ) и (v 6 l 6 γ 6 ) (симметризованное колебательные функции (v λ l λ γ λ ), λ = 4, 5, 6 представлены в Приложении 5). Если использовать общую формулу (4.8), то можно показать, что симметризованные функции (4.19) могут быть представлены в виде одной из четырех комбинаций: 

|v, I ± = (-i φ ) √ 2 (v 1 v 2 v 3 ) [|v λ l λ > |v µ l µ > |v ν l ν > ± |v λ -l λ > |v µ -l µ > |v ν -l ν >] ; |v, II ± = (-i ϕ ) √ 2 (v 1 v 2 v 3 ) [|v λ -l λ > |v µ l µ > |v ν l ν > ± |v λ l λ > |v µ -l µ > |v ν -l ν >] ; |v, III ± = (-i χ ) √ 2 (v 1 v 2 v 3 ) [|v λ l λ > |v µ -l µ > |v ν l ν > ± |v λ -l λ > |v µ l µ > |v ν -l ν >] ; |v, IV ± = (-i ψ ) √ 2 (v 1 v 2 v 3 ) [|v λ l λ > |v µ l µ > |v ν -l ν > ± |v λ -l λ > |v µ -l µ > |v ν l ν >] (4 
H vib.-rot. = vlγ,v l γ nΓ [(|v l γ ⊗ v l γ |) nΓ ⊗ H nΓ vlγ,v l γ ] A 1 , (4.22) 
где, в соответствии с наличием трех неприводимых представлений группы C 3v , индексы γ, γ и Γ могут принимать значения A 1 , A 2 или E. В этом случае, различные комбинации индексов γ, γ , Γ в выражении (4.22) приводят к различному виду вращательных операторов

H nΓ vlγ,v l γ .
Диагональные блоки A 1 и/или A 2 симметрии

Основные свойства симметрии молекулы типа ZXY 3 (C 3v ) позволили нам получить операторы диагональных блоков A 1 и/или A 2 симметрии в следующем виде: 

H vA λ ,vA λ = |vA λ vA λ |{E vA λ + A vA λ (J 2 x + J 2 y ) + B vA λ J 2 z -D vA λ J J 4 -D vA λ JK J 2 J 2 z -D vA λ K J 4 z +H vA λ J J 6 + H vA λ JK J 4 J 2 z + H vA λ KJ J 2 J 4 z + H vA λ K J 6 z + L vA λ J J 8 + ... +{[( 1 2 vA λ + 1 2 vA λ J J 2 + vA λ K J 2 z + ...), (J 3 + -J 3 -)] + +[( vA λ J z + vA λ J J z J 2 + vA λ K J 3 z + ...), (J 3 + + J 3 -)] + + h vA λ (J 6 + + J 6 -) + ...}. (4.23) Здесь B vA λ , C vA λ , D vA λ J , D vA λ JK , D vA λ K , H vA λ J , H vA λ JK , H vA λ KJ , H vA λ K , L vA λ J , ... -вращательные пара- метры и параметры центробежного искажения. Операторы (J 3 + + J 3 -) связывают враща- тельные состояния |Jk и |Jk (-J ≤ k, k ≤ J) с разными значениями квантовых чисел k, а именно, ∆k = k -k = ± 3. Они ответственны за a 1 /a 2 расщепление уровней с K=3 (K = |k|). Параметры A λ J / A λ J , A λ K / A λ K , ... описывают J -и K -зависимости главного A λ / A λ параметра
vE,vE = (|vE 1 vE 1 | + |vE 2 vE 2 |){E vE + A vE (J 2 x + J 2 y ) + B vE J 2 z -D vE J J 4 -D vE JK J 2 J 2 z -D vE K J 4 z + H vE J J 6 + H vE JK J 4 J 2 z +H vE KJ J 2 J 4 z + H vE K J 6 z + L vE J J 8 + ... +{[( 1 2 vE + 1 2 vE J J 2 + vE K J 2 z + ...), (J 3 + -J 3 -)] + + [( vE J z + vE J J z J 2 + vE K J 3 z + ...), (J 3 + + J 3 -)] + }, (4.25) 
H (2) vE,vE = (|vE 1 vE 2 | -|vE 2 vE 1 |){η vE J z + η vE J J z J 2 + η vE K J 3 z + η vE JJ J z J 4 + η vE JK J 3 z J 2 +η vE KK J 5 z + η vE JJJ J z J 6 + η vE JJK J 3 z J 4 + η vE JKK J 5 z J 2 + η vE KKK J 7 z + ...}, (4.26) и H (3) 
vE,vE = (|vE 2 vE 2 | -|vE 1 vE 1 |){[iA vE , (J + -J -)] + + [B vE , (J + + J -)] + +[C vE , (J 2 + + J 2 -)] + + [iD vE , (J 2 --J 2 + )] + + [F vE , (J 4 + + J 4 -)] + + [iG vE , (J 4 --J 4 + )] + } +(|vE 1 vE 2 | + |vE 2 vE 1 |){[A vE , (J + + J -)] + + [iB vE , (J --J + )] + +[iC vE , (J 2 + -J 2 -)] + + [D vE , (J 2 + + J 2 -)] + + [iF vE , (J 4 + -J 4 -)] + + [G vE , (J 4 + + J 4 -)] + }, (4.27) 
A vE = 1 2 α v + 1 2 α v J J 2 + α v K J 2 z + 1 2 α v JJ J 4 + α v JK J 2 J 2 z + α v KK J 4 z + ... +α v JJK J 4 J 2 z + ... + α v JKK J 2 J 4 z + ..., B vE = β v J z + β v J J z J 2 + β v K J 3 z + β v JJ J 4 J z + β v JK J 2 J 3 z + ..., C vE = 1 2 γ v + 1 2 γ v J J 2 + γ v K J 2 z + 1 2 γ v JJ J 4 + γ v JK J 2 J 2 z + ... + γ v JJK J 4 J 2 z + ..., D vE = δ v J z + δ v J J z J 2 + δ v K J 3 z + δ v JJ J z J 4 + δ v JK J 2 J 3 z + ..., F vE = 1 2 κ v + 1 2 κ v J J 2 z + κ v K J 2 z + 1 2 κ v JJ J 4 + κ v JK J 2 J 2 z + ..., G vE = θ v J z + θ v J J z J 2 + θ v K J 3 z + θ v JJ J z J 4 + θ v JK J 2 J 3 z + .... (4.28) 
В выражении (4.25) E vE , B vE , ..., vE параметры имеют то же значение, как и соответствующие параметры в выражении (4.23) с той лишь разницей, что хотя операторы

(J 3 + + J 3 -) связывают вращательные состояния |Jk и |Jk с ∆k = k -k = ± 3, они не расщепляют a 1 /a 2 уровни. Оператор H vE,vE 2 описывает k -l расщепления; операторы дру- гого типа (J n + ± J n -) связывают вращательные состояния |Jk и |Jk , где ∆k = k -k = ± n. Причем операторы с n = 2m обуславливают a 1 -a 2 расщепления уровней энергии с K = m. Блоки взаимодействия Кориолиса A 1 -E, или A 2 -E типа
Операторы, описывающие взаимодействие Кориолиса, связывают колебательные состояния A 1 /A 2 и E симметрии, и имеют следующий вид:

H vA 1 ,v E = |vA 1 v E 1 |{[iA vA 1 ,v E , (J + -J -)] + + [B vA 1 ,v E , (J + + J -)] + + [C vA 1 ,v E , (J 2 + + J 2 -)] + +[iD vA 1 ,v E , (J 2 --J 2 + )] + + [F vA 1 ,v E , (J 4 + + J 4 -)] + + [iG vA 1 ,v E , (J 4 --J 4 + )] + } +|vA 1 v E 2 |{[A vA 1 ,v E , (J + + J -)] + + [iB vA 1 ,v E , (J --J + )] + + [iC vA 1 ,v E , (J 2 + -J 2 -)] + +[D vA 1 ,v E , (J 2 + + J 2 -)] + + [iF vA 1 ,v E , (J 4 + -J 4 -)] + + [G vA 1 ,v E , (J 4 + + J 4 -)] + } (4.29) и H vA 2 ,v E = -|vA 2 v E 2 |{[iA vA 2 ,v E , (J + -J -)] + + [B vA 2 ,v E , (J + + J -)] + + [C vA 2 ,v E , (J 2 + + J 2 -)] + +[iD vA 2 ,v E , (J 2 --J 2 + )] + + [F vA 2 ,v E , (J 4 + + J 4 -)] + + [iG vA 2 ,v E , (J 4 --J 4 + )] + } +|vA 2 v E 1 |{[A vA 2 ,v E , (J + + J -)] + + [iB vA 2 ,v E , (J --J + )] + + [iC vA 2 ,v E , (J 2 + -J 2 -)] + +[D vA 2 ,v E , (J 2 + + J 2 -)] + + [iF vA 2 ,v E , (J 4 + -J 4 -)] + + [G vA 2 ,v E , (J 4 + + J 4 -)] + }. ( 4 

.30)

Операторы A vA i v E , B vA i v E , ..., и т.д. можно получить на основе (4.28) заменой параметров α v , β v , ... на α va i ,v e , β va i ,v e , ..., и т.д. (i = 1,2).

Блоки взаимодействия Кориолиса

A 1 -A 2 типа
Оператор взаимодействия Кориолиса A 1 -A 2 типа имеет вид:

H vA 1 ,v A 2 = |vA 1 v A 2 |{η vA 1 ,v A 2 J z + η vA 1 ,v A 2 J J z J 2 + η vA 1 ,v A 2 K J 3 z + η vA 1 ,v A 2 JJ J z J 4 + η vA 1 ,v A 2 JK J 3 z J 2 +η vA 1 ,v A 2 KK J 5 z + η vA 1 ,v A 2 JJJ J z J 6 + η vA 1 ,v A 2 JJK J 3 z J 4 + η vA 1 ,v A 2 JKK J 5 z J 2 + η vA 1 ,v A 2 KKK J 7 z + ...}. (4.31) Взаимодействие Ферми A 1 -A 1 , A 2 -A 2 или E -E типа
В соответствии со свойствами симметрии, операторы взаимодействия типа Ферми имеют точно такую же форму, как и диагональные операторы (4.23) -(4.28). Конечно, все спектроскопические параметры, такие как E vγ , A vγ , ..., η vE , ..., α v ,... и т.д., должны быть заменены на соответствующие параметры взаимодействия F vγ,v γ , ..., η vE,v E , ..., α v,v ,... и т.д.:

H vA λ ,v A λ = |vA λ v A λ |{F vA λ ,v A λ + F vA λ ,v A λ A (J 2 x + J 2 y ) + F vA λ ,v A λ B J 2 z -F vA λ ,v A λ D J J 4 -F vA λ ,v A λ D JK J 2 J 2 z -F vA λ ,v A λ D K J 4 z + F vA λ ,v A λ H J J 6 + F vA λ ,v A λ H JK J 4 J 2 z +F vA λ ,v A λ H KJ J 2 J 4 z + F vA λ ,v A λ H K J 6 z + F vA λ ,v A λ L J J 8 + ... +[(F vA λ ,v A λ J z + F vA λ ,v A λ J J z J 2 + F vA λ ,v A λ K J 3 z + ...), (J 3 + + J 3 -)] + +F vA λ ,v A λ h (J 6 + + J 6 -) + ..., }, (4.32) 
где λ = 1 или 2; и

H vE,v E = H (1) vE,v E + H (2) vE,v E + H (3) vE,v E , (4.33) 
где

H (1) vE,v E = (|vE 1 v E 1 | + |vE 2 v E 2 |){F vE,v E + F vE,v E J (J 2 x + J 2 y ) + F vE,v E K J 2 z -F vE,v E JJ J 4 -F vE,v E JK J 2 J 2 z -F vE,v E KK J 4 z + F vE,v E JJJ J 6 + F vE,v E JJK J 4 J 2 z +F vE,v E JKK J 2 J 4 z + F vE,v E KKK J 6 z + ... +[(F vE,v E J z + F J vE,v E J z J 2 + F K vE,v E J 3 z + ...), (J 3 + + J 3 -)] + ...}, (4.34) 

H

(2)

vE,v E = (|vE 1 v E 2 | -|vE 2 v E 1 |){η vE,v E J z + η vE,v E J J z J 2 + η vE,v E K J 3 z + η vE,v E JJ J z J 4 +η vE,v E JK J 3 z J 2 + η vE,v E KK J 5 z + η vE,v E JJJ J z J 6 + η vE,v E JJK J 3 z J 4 + η vE,v E JKK J 5 z J 2 +η vE,v E KKK J 7 z + ...}, (4.35) 
и Коэффициенты ангармоничности x ab /x l λ l µ Известно [2,78], что колебательная энергия (E vA λ или E vE в выражениях (4.23), (4.25)) молекулы типа симметричного волчка определяется следующим выражением:

H (3) vE,v E = (|vE 2 v E 2 | -|vE 1 v E 1 |){[iA vE,v E , (J + -J -)] + + [B vE,v E , (J + + J -)] + +[C vE,v E , (J 2 + + J 2 -)] + + [iD vE,v E , (J 2 --J 2 + )] + + [F vE,v E , (J 4 + + J 4 -)] + +[iG vE,v E , (J 4 --J 4 + )] + } +(|vE 1 v E 2 | + |vE 2 v E 1 |){[A vE,v E , (J + + J -)] + + [iB vE,v E , (J --J + )] + +[iC vE,v E , (J 2 + -J 2 -)] + + [D vE,v E , (J 2 + + J 2 -)] + + [iF vE,v E , (J 4 + -J 4 -)] + +[G vE,v E , (J 4 + + J 4 -)] + }, (4.36) 
A vE,v E = 1 2 α vv + 1 2 α vv J J 2 + α vv K J 2 z + 1 2 α vv JJ J 4 + α vv JK J 2 J 2 z + α vv KK J 4 z + ... +α vv JJK J 4 J 2 z + +α vv JKK J 2 J 4 z + ..., B vE,v E = β vv J z + β vv J J z J 2 + β vv K J 3 z + β vv JJ J 4 J z + β vv JK J 2 J 3 z + ..., C vE,v E = 1 2 γ vv + 1 2 γ vv J J 2 + γ vv K J 2 z + 1 2 γ vv JJ J 4 + γ vv JK J 2 J 2 z + ... + γ vv JJK J 4 J 2 z + ..., D vE,v E = δ vv J z + δ vv J J z J 2 + δ vv K J 3 z + δ vv JJ J z J 4 + δ vv JK J 2 J 3 z + ..., F vE,v E = 1 2 κ vv + 1 2 κ vv J J 2 z + κ vv K J 2 z + 1 2 κ vv JJ J 4 + κ vv JK J 2 J 2 z + ..., G vE,v E = θ vv J z + θ vv J J z J 2 + θ vv K J 3 z + θ vv JJ J z J 4 + θ vv JK J 2 J 3 z + .... ( 4 
H i,j = E 0 i δ ij + i|h|j + 1 2 k ∈Ω ij i|h|k k|h|j 1 E 0 i -E 0 k + 1 E 0 j -E 0 k + k,l ∈Ω ij i|h|k k|h|l l|h|j 1 (E 0 i -E 0 k )(E 0 i -E 0 l ) + 1 (E 0 j -E 0 k )(E 0 j -E 0 l ) - 1 2 k ∈Ω ij ; m∈Ω ij i|h|m m|h|k k|h|j (E 0 i -E 0 k )(E 0 m -E 0 k ) - 1 2 k ∈Ω ij ; m∈Ω ij i|h|k k|h|m m|h|j (E 0 j -E 0 k )(E 0 m -E 0 k ) + ...O(κ 4 ). ( 4 
E v... = a ω a (v a + d a 2 ) + a≤b x ab (v a + d a 2 )(v b + d b 2 ) + λ≤µ x l λ lµ l λ l µ + ..., (4.41) 
где d = 1 для невырожденных колебаний i и d = 2 для дважды вырожденных колебаний λ.

Использование операторной теории возмущений с оператором (4.10) и симметризованных волновых функций (4.20) (фазовый коэффициент функции также должен учитываться, как показано в Приложении 5) позволило нам получить следующие выражения для коэффициентов ангармоничности:

x ii = 3 2 k iiii - 15 4 k 2 iii ω i - 1 2 j =i k 2 iij ω j - j =i k 2 iij 8(ω j + 2ω i ) - j =i k 2 iij 8(ω j -2ω i ) , (4.42) 
x ij = k iijj - 3k iii k ijj ω i - 3k jjj k iij ω j - l =i,j k iil k jjl ω l - k 2 ijj 2(ω i + 2ω j ) + k 2 iij 2(ω j + 2ω i ) + k 2 ijj 2(ω i -2ω j ) + k 2 iij 2(ω j -2ω i ) - l =i,j k 2 ijl 8 1 ω i + ω j + ω l - 1 ω i + ω j -ω l - 1 ω i -ω j -ω l + 1 ω i -ω j + ω l , (4.43) 
x iλ = k iiλλ - 3k iii k iλλ ω i - j =i k iij k jλλ ω j - k 2 iλλ 2(ω i + 2ω λ ) + k 2 iλλ 2(ω i -2ω λ ) - µ =λ k 2 iλµ 8 1 ω i + ω λ + ω µ - 1 ω i + ω λ -ω µ + 1 ω i -ω λ + ω µ - 1 ω i -ω λ -ω µ + ω 2 i + ω 2 λ ω i ω λ B e x (ζ x iλ 2 ) 2 , (4.44) 
x λλ = 3 2 k λλλλ - i k 2 iλλ 2ω i - 15k 2 λλλ 4ω λ - µ =λ k 2 λλµ 2ω µ - i k 2 iλλ 8(ω i + 2ω λ ) - µ =λ k 2 λλµ 8(ω µ + 2ω λ ) - i k 2 iλλ 8(ω i -2ω λ ) - µ =λ k 2 λλµ 8(ω µ -2ω λ ) , (4.45) 
x λµ = k

(1) λλµµ + 1 2 k (2) λλµµ - i k iλλ k iµµ ω i - k 2 λλµ 2(ω µ + 2ω λ ) + k 2 λλµ 2(ω µ -2ω λ ) - k 2 λµµ 2(ω λ + 2ω µ ) + k 2 λµµ 2(ω λ -2ω µ ) - i k 2 iλµ 16 { 1 ω i + ω λ + ω µ + 1 ω i + ω λ -ω µ + 1 ω i -ω λ + ω µ + 1 ω i -ω λ -ω µ } - ν =λ,µ k 2 λµν 8 { 1 ω λ + ω µ + ω ν - 1 ω λ + ω µ -ω ν + 1 ω λ -ω µ + ω ν - 1 ω λ -ω µ -ω ν } + ω 2 λ + ω 2 µ ω λ ω µ {B e x (ζ x λ 1 µ 2 ) 2 + B e z 2 (ζ z λ 1 µ 2 ) 2 }, (4.46) 
x l λ l λ = -

1 2 k λλλλ + 21 4 k 2 λλλ ω λ + µ =λ k 2 λλµ 2ω µ + i k 2 iλλ 8(ω i + 2ω λ ) - µ =λ k 2 λλµ 8(ω µ + 2ω λ ) + i k 2 iλλ 8(ω i -2ω λ ) - µ =λ k 2 λλµ 8(ω µ -2ω λ ) + B e z (ζ z λ 1 λ 2 ) 2 , (4.47) 
и

x l λ lµ = i k 2 iλµ 16 1 ω i + ω λ + ω µ - 1 ω i + ω λ -ω µ - 1 ω i -ω λ + ω µ + 1 ω i -ω λ -ω µ + k 2 λλµ 2 2 ω µ - 1 ω µ + 2ω λ - 1 ω µ -2ω λ } + k 2 λµµ 2 { 2 ω λ - 1 ω λ + 2ω µ - 1 ω λ -2ω µ - ν =λ,µ k 2 λµν 8 1 ω λ + ω µ + ω ν - 1 ω λ + ω µ -ω ν - 1 ω λ -ω µ + ω ν + 1 ω λ -ω µ -ω ν +B e z (ζ z λ 1 µ 2 ) 2 -2B e x (ζ x λ 1 µ 2 ) 2 + 2B e z ζ z λ 1 λ 2 ζ z µ 1 µ 2 . (4.48)
Следует отметить, что полученные формулы для x ab хорошо согласуются с аналогичными результатами из [78]. В то же время, существуют некоторые различия в выражениях для x l λ lµ , обусловленные расщеплениями колебательных уровней энергии.

Колебательно -вращательные коэффициенты α β b

Колебательно -вращательные коэффициенты α β a -это параметры, которые описывают главный вклад в колебательную зависимость вращательных постоянных B v β : 

B v β = B e β - b α β b (v b + d b 2 ) + ... ( 4 
(i = 1, 2 или 3); a xz λ 1 = a zx λ 1 = a yz λ 2 = a zy λ 2 , и a xx λ 1 = -a yy λ 1 = -a xy λ 2 = -a yx
α β i = - 3 2 (B e β ) 3 ω i ( a ββ i ) 2 - 3 √ 2 ω 3/2 i (B e β ) 2 a ββ i k iii - j =i √ 2 ω 3/2 j (B e β ) 2 a ββ j k iij - λ (B e x ζ x iλ 2 ) 2 ω i ω λ (ω i + ω λ ) 2 ω i -ω λ - (ω i -ω λ ) 2 ω i + ω λ (1 -δ βz ), (4.50) 
α x λ = α y λ = - 3 4 (B e x ) 2 ω λ {2B e x ( a xx λ 1 ) 2 + B e z ( a xz λ 1 ) 2 } - i √ 2 ω 3/2 i (B e x ) 2 a xx i k iλλ - µ =λ (B e x ζ x λ 1 µ 2 ) 2 ω λ ω µ (ω λ + ω µ ) 2 ω λ -ω µ - (ω λ -ω µ ) 2 ω λ + ω µ - i (B e x ζ x iλ 2 ) 2 2ω i ω λ (ω λ + ω i ) 2 ω λ -ω i - (ω λ -ω i ) 2 ω λ + ω i , (4.51) 
и Параметры центробежного искажения D J , D JK , D K и параметр Параметры центробежного искажения D J , D JK , D K и параметр , ответственные за a 1 /a 2 расщепление вращательных уровней с (K = 3) колебательных состояний A 1 or A 2 симметрии, имеют следующий вид:

α z λ = - 3 2 B e x (B e z ) 2 ω λ ( a xz λ 1 ) 2 - i √ 2 ω 3/2 i (B e z ) 2 a xx i k iλλ - µ =λ (B e z ζ z λ 1 µ 2 ) 2 ω λ ω µ (ω λ + ω µ ) 2 ω λ -ω µ - (ω λ -ω µ ) 2 ω λ + ω µ . ( 4 
D A λ J = D E J = i { (B e x ) 2 a xx i ω i } 2 + λ { (B e x ) 2 a xx λ 1 ω λ } 2 , (4.53) 
D A λ JK = D E JK = i 2(B e x ) 2 a xx i ω 2 i {(B e z ) 2 a zz i -(B e x ) 2 a xx i } + λ 2(B e x ) 2 ω 2 λ {2(B e z ) 2 ( a xz λ 1 ) 2 -(B e x ) 2 ( a xx λ 1 ) 2 }, (4.54) 
D A λ K = D E K = i { (B e x ) 2 a xx i -(B e z ) 2 a zz i ω i } 2 + λ { B e x ω λ } 2 {(B e x a xx λ 1 ) 2 -(2B e z a xz λ 1 ) 2 }, (4.55) 
и В качестве иллюстрации корректности полученных результатов, мы использовали результаты независимого анализа полос ν 5 и 2ν 5 молекулы CHD 3 , представленные в работах [92] и [93]. В данном случае, η v 5 =1E = 3.565753 см -1 из [92] и η v 5 =2E =(-2 × 3.596929) см -1 из [93]. Можно видеть хорошее соответствие результатов. В качестве еще одного примера можно рассмотреть результаты предварительного анализа полосы ν 5 + ν 6 молекулы 13 CH 3 D, [94], которые можно сравнить с результатами анализа фундаментальных полос ν 5 и ν 6 , [95]. В данном случае, параметр k -l расщепления [95]: η v 5 =1E = -2.643331 см -1 и η v 6 =1E = + 6.283671 см -1 . В соответствии с Таблицей 4.1 можно рассчитать параметры: 

A λ = E = λ 1 ω 2 λ (B e x ) 3 B e z a xx λ 1 a xz λ 1 . ( 4 
η vΓ,vΓ = -2iB e z (c λ ζ z λ 1 λ 2 l λ + c µ ζ z µ 1 µ 2 l µ + c ν ζ z ν 1 ν 2 l ν ). ( 4 
λ l µ l ν c λ c µ c ν Γ Γ a) l λ l µ l ν c λ c µ c ν Γ Γ a) 1 0 0 1 E 2 2 0 1 -1 A 1 /A 2 2 0 0 -1 E 1 3 0 1 1E 3 0 0 -1 A 1 /A 2 1 3 0 1 2E 4 0 0 1 E 1 3 0 1 1E/2E 5 0 0 -1 E 2 3 0 -1 1E 6 0 0 -1 A 1 /A 2 2 3 0 -1 2E 1 1 0 -1 -1 E 2 3 0 1 1E/2E 1 1 0 -1 1 A 1 /A 2 1 1 1 1 1 -1 1E 1 2 0 -1 1 E 1 1 1 1 -1 1 2E 1 2 0 -1 -1 A 1 /A 2 1 1 1 -1 1 1 3E 2 2 0 1 1 E 1 1 1 1 1 1 A 1 /A 2 a) В данной колонке описан тип параметра: Γ Γ = E соответствует η vE -параметрам k -l расщепления (4.26); Γ Γ = A 1 /A 2 соответствует η vA 1 ,vA
η v 5 =v 6 =1A 1 ,v 5 =v 6 =1A 2 = +8.927002 см -1 и η v 5 =v 6 =1E = -3.640340 см -1 . Параметры,
γ vΓ,vΓ = d (v) λ γ λ + d (v) µ γ µ + d (v) ν γ ν , (4.58) 
где λ, µ, ν различны и Так же, как и в предыдущем параграфе, уравнения (4.58) -(4.59) позволяют нам предсказывать различные параметры на основе известных уже наиболее корректно определенных параметров γ v λ =1E фундаментальных полос. Особенно важен полученный результат для предсказания резонансных параметров, которые очень часто определяются из "фитинга" с низкой точностью. Из Таблицы 4.2 видим, что параметры a 1 /a 2 (K = 1) расщепления γ vE отличны от нуля для фундаментальных полос ν λ , но равны нулю для комбинационных полос ν λ + ν µ . В качестве иллюстрации корректности полученных выражений (4.59) нами были рассчитаны параметры γ v 5 =1E и γ v 6 =1E для молекул CH 3 D и CHD 3 на основе информации о параметрах внутримолекулярной потенциальной функции из [67]. Были получены следующие результаты:

γ λ = - 3 8 (B e x ) 2 B e z ω λ a xz λ 1 2 - 3 √ 2 (B e x ) 2 a xx λ 1 k λλλ ω 3/2 λ - µ 1 √ 2 (B e x ) 2 a xx µ 1 k λλµ ω 3/2 µ - i B e x ζ x iλ 2 2 4ω i ω λ (ω i + ω λ ) 2 ω i -ω λ + (ω i -ω λ ) 2 ω i + ω λ ( 4 
γ v 5 =1E = -1.03×10 -3 см -1 , γ v 6 =1E = -16.9×10 -3 см -1 для молекулы CH 3 D и γ v 5 =1E = -5.87×10 -3 см -1 , γ v 6 =1E = 12.1×10 -3 см -1
для молекулы CHD 3 (следует отметить, что в данном случае были приняты во внимание возможные резонансные взаимодействия). Те же самые параметры рассчитаны в [92,96]: 

γ v 5 =1E = 0.723×10 -3 см -1 , γ v 6 =1E = -17.53×10 -3 см -1 для молекулы CH 3 D и γ v 5 =1E = -5.948×10 -3 см -1 , γ v 6 =1E = 16.8×10 -3 см -1 для молекулы CHD 3 . Можно отметить хоро- шее соответствие между рассчитанными и экспериментальными значениями параметров γ v 6 =1E (CH 3 D) и γ v 5 =1E (CHD 3 ). Соответствие же между рассчитанными и эксперименталь- ными величинами параметров γ v 5 =1E (CH 3 D) и γ v 6 =1E (CHD 3 ) хуже. Однако,
v λ l λ v µ l µ v ν l ν Γ v λ l λ v µ l µ v ν l ν Γ d (.
β vΓ,vΓ = d (v) λ β λ + d (v) µ β µ + d (v) ν β ν , (4.60) 
где ненулевые коэффициенты d (...) ... имеют тот же вид, как и в уравнении (4.59). Параметры β λ определяются следующей формулой: 

β λ = 3 √ 2 8 (B e x ) 2 B e z ω λ a xx λ 1 a xz λ 1 + 3 2 (B e x )(B e z ) a xz λ 1 k λλλ ω 3/2 λ + µ 1 2 (B e x )(B e z ) a xx µ 1 k λλµ ω 3/2 µ + µ =λ B e x ζ x µ 1 λ 2 B e z ζ z µ 1 λ 2 2 √ 2ω λ ω µ (ω µ + ω λ ) 2 ω µ -ω λ + (ω µ -ω λ ) 2 ω µ + ω λ . ( 4 
-5C 17C 63C 0 14C 0 5C 0 2x 23C 3C -9C 15C 28C -40C 31C 24C -11C 3x 23C 3C -9C 15C -28C -40C -31C 24C 11C 4x 0 0 0 -C 0 18C 0 51C 0 5x 0 0 0 -26C 0 11C 0 -36C 0 1y 0 0 0 0 -2C 0 -58C 0 30C 2y 40C 5C -15C 28C 47C 31C -4C -11C 11C 3y -40C -5C 15C -28C 47C -31C -4C 11C 11C 4y 0 0 0 0 -C 0 18C 0 51C 5y 0 0 0 0 -26C 0 11C 0 -36C 1z 16C 2C 43C -23C 0 34C 0 38C 0 2z 16C 2C 43C 11C 20C -17C -29C -19C -33C 3z 16C 2C 43C 11C -20C -17C 29C -19C -33C 4z 5C -80C -12C 0 0 0 0 0 0 5z -15C 31C -32C 0 0 0 0 0 0 a Здесь C = 1 50 √ 3 
Таблица 4.4. Константы форм колебаний l N αλ молекулы CHD 3 в рамках "расширенного" метода локальных мод. a) В качестве сравнения в колонках 4 и 6 Таблицы 4.6 приведены величины соответствующих коэффициентов x λµ , полученных на основе ab initio вычислений, [67]. Если принять во внимание, что величины коэффициентов x λµ в колонках 2 и 5 были рассчитаны без какой либо информации о молекулах CH 3 D и CHD 3 , используя лишь один начальный параметр x материнской молекулы CH 4 , то можно говорить о хорошей корреляции между величинами, исключая параметры x 15 , x 26 , x 55 , x 66 , x l 5 l 5 и x l 6 l 6 молекулы CHD 3 . Несовпадения данных величин можно объяснить, если принять во внимание следующие факты: при получении изотопических соотношений (4.67) были учтены резонансные взаимодействия следующего типа (..v 1 ..v 5 ..)/(..v 1 ± 1..v 5 ∓ 2..) и (..v 2 ..v 6 ..)/(..v 2 ± 1..v 6 ∓ 2..). В то же самое время, в работе [67] эти типы резонансных взаимодействий не были учтены. Для сравнения колонки 4 и 7 Таблицы 4.6 содержат экспериментальные величины коэффициентов ангармоничности x λµ из работы [60]. И снова можно видеть хорошее согласие для большинства параметров. Однако, есть различия между предсказанными и экспериментальными величинами x 11 , x 14 , x 15 , x 45 , x l 4 l 4 , x l 4 l 5 для молекулы CH 3 D и x 22 , x 23 , x 26 , x 56 , x l 5 l 6 для молекулы CHD 3 . В данном случае несоответствие можно объяснить отсутствием учета взаимодействий типа (..v 2 ..v 6 ..)/(..v 2 ± 1..v 6 ∓ 2..) в работе [60]. Составляет трудность понять расхождения в величинах параметров x 45 , x l 4 l 4 и x l 4 l 5 молекулы CH 3 D. Одной из возможных причин может быть сильное взаимодействие между упомянутыми выше параметрами, что может вызвать некорректности в процессе "фитинга".

N α/λ 1 2 3 4 5 6 8 9 1x 2C -46C 20C 60C 0 6C 16C 0 2x -C 23C -10C 15C 26C -6C 7C -42C 34C 3x -C 23C -10C 15C -26C -6C -7C -42C -34C 4x 0 0 0 -0.7C 0 70C -14C 0 5x 0 0 0 -37C 0 -18C 32C 0 1y 0 0 0 0 -0.4C 0 -10C 0 -62C 2y -2C 40C -17C 26C 45C 7C 2C 34C -4C 3y 2C -40C 17C -26C 45C -7C 2C -34C -4C 4y 0 0 0 0 -0.7C 0 70C 0 -14C 5y 0 0 0 0 -37C 0 -18C 0 32C 1z 0.1C 16C 38C -22C 0 37C 9C 0 2z 0.1C 16C 38C 11C 19C -18C -32C -5C -8C 3z 0.1C 16C 38C 11C -19C -18C 32C -5C 8C 4z -83C -9C -11C 0 0 0 0 0 5z 24C -17C -44C 0 0 0 0 0 a Здесь C =
Y 3 = - 2 16πρ 4 e cm 3/2 H F 1/2 11 = -2α x 1 = - 22 25 α x 2 = 2α x 3 = - 42 25 α x 4 = 28 25 α x 5 = - 19 25 α x 6 = - 3 5 α z 1 = -3α z 2 = 7 5 α z 3 = -3α z 4 = -α z 5 = 21 
(..v 1 ..v 5 ..)/(..v 1 ± 1..v 5 ∓ 2..), (..v 3 ..v 5 ..)/(..v 3 ± 1..v 5 ∓ 1..) ( 
Чтобы проиллюстрировать корректность полученных соотношений для колебательно -вращательных коэффициентов α β b , рассмотрим результаты анализа спектров высокого разрешения полос ν 3 , ν 5 и ν 6 , [92]. В колонке 2 Таблицы 4.7 представлены параметры α β b (β = x, z; b = 3, 5, 6), рассчитанные на основе соотношений (4.70). Величины соответствующих α-параметров, полученные на основе "фитинга" экспериментальных данных, [92], представлены в колонке 3. Можно видеть более чем удовлетворительное согласие между предсказанными и экспериментальными значениями для параметров α x 5 , α z 5 , α z 3 и α z 6 . В то же время, предсказанные значения параметров α x 3 и α x 6 значительно отличаются от экспериментальных величин. Для лучшего понимания ситуации необходимо принять во внимание, что:

1. Полоса ν 5 рассматривалась в работе [92] как изолированное состояние. При получении соотношений (4.70) также отсутствовали какие-либо резонансные взаимодействия для параметров α x 5 и α z 5 .

2. Полосы ν 3 и ν 6 в работе [92] рассматривались как взаимодействующие состояния. Как следует из свойств симметрии молекулы типа XYZ 3 (C 3v ), взаимодействие описывается оператором (4.29). Таким образом, взаимодействие, с одной стороны, не влияет на параметры

C (v 3 =1) и C (v 6 =1) (и, как следствие, на α z 3 и α z 6 ), но, с другой стороны, тесно связывает друг с другом параметры B (v 3 =1) и B (v 6 =1) (α x 3 и α x 6 ).
Чтобы проиллюстрировать сказанное выше, на Рисунке 4.2 показана зависимость экспериментальных величин α x 3 (график A) и α x 6 (график B) от величины параметра резонансного взаимодействия α (см. выражение (4.29)). Штриховые горизонтальные линии (1) и (2) соответствуют значениям параметров α x 3 и α x 6 , предсказанным на основе соотношений (4.70). Штриховая вертикальная линия I отмечает экспериментальное значение параметра взаимодействия Кориолиса α ≡ α =1.701 см -1 , взятого из Таблицы 9 в работе [92]. Пересечение линии I и графиков A и B дает нам значения экспериментальных величин параметров α x 3 и α x 6 из работы [92]. При построении графиков A и B, использовались экспериментальные колебательно -вращательные уровни энергии состояний (v 3 = 1) и (v 6 = 1) из работы [92]. Затем изменялось значение параметра взаимодействия α с шагом 0.01 см -1 и, для каждого фиксированного значения параметра α, был проведен "фитинг" того же самого набора спектроскопических параметров. Как показал анализ, (и, как и 

Рис. Колонки 3 и 5 содержат соответствующие экспериментальные величины для основного колебательного состояния из работ [97] и [98]. Можно видеть удовлетворительное согласия полученных результатов, за исключением параметра молекулы CHD 3 . Ошибка в вычисленном и "экспериментальном" значении параметра можно объяснить тем фактом, что в работе [98] параметр не варьировался, а был зафиксирован. Варьировался же параметр h 3 . В то же время (см [98]), параметр и h 3 , определяемые из "фитинга" , сильно связаны друг с другом. Это означает, что при изменении параметра , будет изменяться параметр h 3 без какого либо ухудшения качества "фитинга". В итоге следует отметить, что если принять во внимание хорошее соответствие между вычисленными и экспериментальными величинами всех остальных параметров в Таблице 4.8, то можно сделать вывод, что значение параметра = 0.0000054 см -1 является корректным.

Изотопические соотношения для параметров η vΓ,vΓ , γ vΓ,vΓ и β vΓ,vΓ Следует отметить, что на основе операторной теории возмущений и свойств симметрии аксиально -симметричных молекул, удалось получить набор соотношений, связывающих различные спектроскопические параметры (параметры диагональных блоков, Кориолисовы и Ферми параметры взаимодействия) молекул типа XYZ 3 и/или XY 3 (C 3v ). Были выведены различные изотопические соотношения для следующих ситуаций изотопозамещения в молекуле метана: CH 3 D ←CH 4 и CHD 3 ←CH 4 .

Важно упомянуть, что при исследовании высоковозбужденных колебательных состояний, очень часто необходимо учитывать большое число различных взаимодействующих состояний. В этом случае появляется очень много связей между различными параметрами диагональных и резонансных блоков эффективного гамильтониана (4.10) -(4.37). В результате, оказывается невозможно одновременное определение всех параметров эффективного гамильтониана из процедуры "фитинга" экспериментальных данных. Полученные изотопические соотношения между параметрами позволяют теоретически предсказывать величины большинства параметров с удовлетворительной точностью.

Глава 5

Определение параметров потенциальной функции многоатомных молекул

Одной из наиболее важных проблем молекулярной физики, возникающей при изучении колебательно -вращательных свойств многоатомных молекул, является проблема определения внутримолекулярной потенциальной функции (ВМПФ) произвольной молекулы для данного электронного состояния. Данная проблема важна, поскольку знание потенциальной функции позволяет корректно построить гамильтониан молекулы, а значит, как следствие, решить колебательно -вращательное уравнение Шредингера и определить собственные значения E α и собственные функции ψ α . Последние могут затем быть использованы в различных областях как чисто академических, так и прикладных задач.

Существует две основные группы методов определения ВМПФ молекулы. Во-первых, можно использовать прямые ab initio методы [67,99], [100] - [START_REF] Carter | The Geometry of Formaldehyde[END_REF]. Они позволяют получить высококачественную конфигурацию многомерной потенциальной поверхности молекулы. В то же самое время, в молекулярной физике существует множество проблем, нуждающихся не только в качественных, но и в высокоточных количественных данных о параметрах потенциальной функции. Поэтому выделяют вторую группу методов -так называемые "вариационные" методы, поскольку они используют высокоточные экспериментальные колебательно -вращательные данные как начальные данные в варьировании параметров потенциальной функции [START_REF] Whitehead | Variational calculation of vibration-rotation energy levels for triatomic molecules[END_REF] - [START_REF] Wang | A finite basis representation Lanczos calculation of the bend energy levels of methane[END_REF]. Но даже лучшие среди современных модификаций вариационных методов не свободны от несовершенств, которые ограничивают их применение к молекулам с более чем тремя-четырьмя атомами. Проблема заключается в огромных размерностях матриц гамильтониана, которые затем многократно диагонализуются (размер матрицы увеличивается с увеличением количества атомов). Вторая проблема связана с выбором колебательных координат, используемых при построении гамильтониана молекулы. В качестве таких координат можно выбрать, например, нормальные координаты Q λ , естественные координаты ∆r и ∆α, симметризованные координаты S, координаты Морзе y = (1 -exp(-a∆r)) и др. При этом, нормальные координаты позволяют представить в весьма удобном и простом виде кинетическую часть гамильтониана молекулы. Остальные упомянутые выше три типа координат являются изотопически инвариантными и хорошо описывают "потенциальную" часть гамильтониана. В связи с вышесказанным, возника-ет задача построения гамильтониана молекулы в как можно более простой форме, что требует установления связей между различного типа колебательными координатами.

Результаты, представленные в данной главе, были опубликованы в работах: [80,[START_REF] Ulenilov | On the intramolecular potential function of the formaldehyde molecule // Abstract 21 st Colloquium on High Resolution Molecular Spectroscopy[END_REF][START_REF] Фомченко | Об определении внутримолекулярной потенциальной функции многоатомных молекул: формальдегид // Материалы 16-ой Всероссийской научной конференции студентов-физиков и молодых ученых[END_REF] 5.1 Связь естественных координат с нормальными координатами многоатомной молекулы Отметим, что набор естественных координат ∆r XN ≡ ∆r N и ∆α N XK ≡ ∆α N K , используемых для записи потенциальной функции, может быть связан с нормальными координатами Q λ , используемыми для более удобной записи кинетической части. В данном параграфе приведена схема данных координатных преобразований для произвольной многоатомной молекулы. Для удобства рассмотрим трех -пяти атомные молекулы типа XY n (n = 2, 3, 4) симметрии C 2v , C 3v и T d соответственно.

Используя выражения (2.2), (2.3), (2.4), (2.5) можно получить следующие соотношения:

∆r N = λ C N λ Q λ + 1 2 λµ C N λµ Q λ Q µ + 1 6 λµν C N λµν Q λ Q µ Q ν + ..., (5.1) 
где

C N λ = 1 r e α (r e N α -r e Y α )(m -1/2 N l N αλ -m -1/2 Y l Y αλ ), (5.2) 
C N λµ = 1 r e (b N λµ -C N λ C N µ ), (5.3) 
C N λµν = 1 r 2 e (3C N λ C N µ C N ν -C N λ b N µν -C N µ b N λν -C N ν b N λµ ) (5.4) и b N λµ = α (m -1/2 N l N αλ -m -1/2 Y l Y αλ )(m -1/2 N l N αµ -m -1/2 Y l Y αµ ). (5.5) Здесь r N -длина связи X -Y N , m N -масса ядра Y N , m 2 -масса ядра X, r e -равновесная длина связи X -Y, r e N β и r e 2β -равновесные декартовы координаты ядер в связанной с моле- кулой системе координат. Коэффициенты C N ... имеют следующие размерности: [C N λ ] = г -1/2 , [C N λµ ] = г -1 см -1 , [C N λµν ] = г -3/2 см -2
. Для изменений углов между валентными связями имеем следующие выражения:

∆α N K = λ C N K λ Q λ + 1 2 λµ C N K λµ Q λ Q µ + 1 6 λµν C N K λµν Q λ Q µ Q ν + ..., (5.6) 
где

C N K λ = 1 sin α e 1 r e {j N K (C N λ + C N µ ) -A N K λ }. (5.7) Здесь j N K = 1 r 2 e α (r e N α -r e Y α )(r e Kα -r e Y α ) (5.8) и A N K λ = 1 r e α {(m -1/2 N l N αλ -m -1/2 Y l Y αλ )(r e Kα -r e Y α ) + (m -1/2 K l Kαλ -m -1/2 Y l Y αλ )(r e N α -r e Y α )}, (5.9) 
где α e -величина равновесного угла между связями. Коэффициенты для более высоких порядков разложения C N K λµ и C N K λµν (смотри выражение (5.6)) имеют более сложный вид:

C N K λµ = - 1 sin α e P N K λµ - cos α e sin 3 α e P N K λ P N K µ (5.10) и C N K λµν = - 1 sin α e P N K λµν - cos α e sin 3 α e (P N K λ P N K µν + P N K µ P N K λν + P N K ν P N K λµ ) - 1 + 2 cos 2 α e sin 5 α e P N K λ P N K µ P N K ν , (5.11) 
где

P N K λ = 1 r e A N K λ + r 2 e j N K F N K λ , (5.12) 
P N K λµ = 1 r 2 e b N K λµ + r e (A N K λ F N K µ + A N K µ F N K λ ) + r 2 e j N K F N K λµ (5.13) и P N K λµν = (b N K λµ F N K ν + b N K λν F N K µ + b N K µν F N K λ ) + r e (A N K λ F N K µν + A N K µ F N K λν + A N K ν F N K λµ ) + r 2 e F N K λµν . (5.14) Здесь b N K λµ = α (m -1/2 N l N αλ -m -1/2 Y l Y αλ )(m -1/2 K l Kαµ -m -1/2 Y l Y αµ ), (5.15) 
F N K λ = 1 r e (D N λ + D K λ ), (5.16 
)

F N K λµ = 1 r e (D N λµ + D K λµ ) + (D N λ D K µ + D N µ D K λ ), (5.17) 
F N K λµν = 1 r e (D N λµν + D K λµν ) + (D N λ D K µν + D K λ D N µν + D N µ D K λν + D K µ D N λν + D N ν D K λµ + D K ν D N λµ ) (5.18) и D N λ = - 1 r 2 e C N λ , (5.19) 
D N λµ = - 1 r 2 e C N λµ + 2 r 3 e C N λ C N µ , (5.20) 
D N λµν = - 1 r 2 e C N λµν + 2 r 3 e (C N λ C N µν + C N µ C N λν + C N ν C N λµ ) - 6 r 4 e C N λ C N µ C N ν . (5.21) 
Как и выше, можно увидеть, что коэффициенты C ... имеют следующие размерности:

[C N K λ ] = г -1/2 см -1 , [C N K λµ ] = г -1 см -2 и [C N K λµν ] = г -3/2 см -3
. Важно отметить, что полученные в данном параграфе формулы, несмотря на их довольно сложный вид, могут быть легко использованы для получения результатов в численном виде. Также, если молекула обладает какой-то симметрией, это приводит к симметрии в наборах C-коэффициентов.

Гамильтониан многоатомной молекулы в координатах R i

Как уже отмечалось выше, успешное построение и диагонализация матриц гамильтониана большой размерности напрямую зависит от выбора колебательных координат. Например, если записать гамильтониан в нормальных координатах, то кинетическая его часть будет иметь довольно простой вид, в то время как в потенциальной функции будут присутствовать большие по абсолютному значению параметры ангармоничности, которые создают проблемы при расчетах. Также нормальные координаты не являются изотопически инвариантными, поэтому неудобны при рассмотрении различных изотопомеров. Если же использовать гамильтониан, записанный в изотопически инвариантных естественных ∆r и ∆α или симметризованных координатах S i , то его кинетическая часть будет иметь сложный вид, но потенциальная функция, в свою очередь, будет иметь очень простой вид. Например, потенциальная функция молекулы типа XY 2 симметрии C 2v имеет вид:

V = 1 2 f rr (∆r 2 1 + ∆r 2 3 ) + 1 2 f αα ∆α 2 + f rr ∆r 1 ∆r 3 + f rα (∆r 1 + ∆r 3 )∆α + 1 6 
f rrr (∆r 3 1 + ∆r Поэтому нашей задачей было разработать подход, который позволит построить точный гамильтониан молекулы, причем, с одной стороны, будет простым и, с другой стороны, будет применим к произвольного типа молекулам.

В качестве примера рассмотрим трехатомные молекулы симметрии C 2v (в последующем при необходимости описываемый подход можно расширить для описания других типов молекул).

Известно [2], что гамильтониан многоатомной молекулы в приближении Борна -Оппенгеймера можно разделить на две части: кинетическую часть и потенциальную функцию:

H = T + V, (5.23) 
причем

H ≡ T 1 + T 2 + V = λ P 2 λ 2 + 1 2 αβ µ αβ G α G β + V. (5.24) Здесь Q λ и P λ = -i ∂ ∂Q λ -операторы колебательных координат и импульсов; G α = λµ ζ α λµ Q λ P µ (5.25) 
-операторы колебательного углового момента, зависящие от Кориолисовых коэффициентов,

ζ α λµ = βγ ε αβγ N l N βλ l N γµ (5.26) 
-Кориолисовы коэффициенты, которые являются функциями констант форм колебаний. Из выражения (5.24) видно, что оператор кинетической энергии имеет чрезвычайно простой вид. Потенциальная функция может быть взята в виде функции любого набора колебательных координат. Однако, наиболее удобными являются координаты Морзе типа, поскольку они позволяют эффективно описывать валентные колебания молекул. Поэтому мы будем стремится к такому виду гамильтониана, чтобы в дальнейшем было возможно в качестве начального приближения использовать гамильтониан типа Морзе. Таким образом, если потенциальная функция записана в координатах Морзе, а кинетическая часть в нормальных координатах, то необходимо привести обе части гамильтониана к одному набору координат. Существует две возможности:

1. записать потенциальную функцию в виде V = V (y 1 , y 3 , ∆α) (y N = 1 -exp(-a∆r N ), N = 1, 3), а в кинетической части перейти к координатам y 1 , y 3 и ∆α или 2. записать кинетическую часть в простом виде (5.24) и в потенциальной функции также перейти к нормальным координатам Q.

Первая возможность была реализована в работе [START_REF] Бехтерева | Об определении потенциальных функций молекул H 2 CO, PH 3 и CH 4 на основе экспериментальных данных // Известия Вузов[END_REF]. В соответствии со свойствами симметрии молекулы и с точностью до четвертых степеней колебательных координат, потенциальная функция была взята в следующей форме:

V = V 1 (y 1 , y 3 ) + V 2 (Q 2 ) + V 3 (y 1 , y 3 , Q 2 ), (5.27) 
где часть потенциальной функции V 1 (y 1 , y 3 ) = D(y ≡ (m Y m X /(m Y + m X )) 1/2 для λ = 1 или 3 (валентные колебания) и α λ = 1 для λ = 2 (деформационные колебания). Тогда кинетическая часть гамильтониана (5.24) примет вид:

Q λ = α λ Q λ , (5.31 
H = - 2 2µ Y ∂ 2 ∂ Q 2 1 + ∂ 2 ∂ Q 2 3 - 2 2 ∂ 2 ∂ Q 2 2 .
(5.32)

Видим, что первые два слагаемых описывают кинетическую энергию двух несвязанных осцилляторов Морзе. Заметим, что координаты Q 1 и Q 3 нормальными уже не являются, поэтому могут рассматриваться как координаты ∆r этих осцилляторов [START_REF] Efremov | Vibrational-rotational spectrum of diatomic molecules with the James-Coolidge-Vernon potential[END_REF]. Если теперь разложить потенциальную функцию по переменным Q 1 и Q 3 Морзе типа и координате Q 2 , связанной с деформационным колебанием, то полный гамильтониан будет иметь простой вид. А это позволяет, в свою очередь, построить матрицу гамильтониана в довольно простом виде на функциях типа Морзе для валентных колебаний и на функциях гармонического осциллятора для деформационного колебания. Однако, для большего удобства введем следующие комбинации координат:

R 1 = Q 1 + Q 3 (5.33) R 2 = Q 1 -Q 3 .
(5.34)

В таком виде координаты имеют смысл изменения длин валентных связей X-Y 1 и X-Y 2 и они упрощают использование свойств симметрии молекулы. В общем виде рассмотренное выше преобразование координат можно записать так: (5.36)

Q λ = µ α λµ R µ , (5.35 
Следует заметить, что новые координаты R λ сохраняют простой вид главного вклада T 1 кинетической части гамильтониана (5.24):

T 1 = - 2 2µ 1 ∂ 2 ∂R 2 1 - 2 2µ 2 ∂ 2 ∂R 2 3 - 2 2 ∂ 2 ∂R 2 2 .
(5.37)

Здесь µ 1 и µ 2 -приведенные массы фрагментов X-Y 1 и X-Y 2 соответственно. Второе слагаемое T 2 в кинетической части выражения (5.24) также может быть легко преобразовано к новому набору координат. Также возможно определить связь между естественными координатами ∆r, ∆α и новыми координатами R λ : ) преобразуются по антисимметричному представлению группы симметрии молекулы. На основании вышесказанного можно записать потенциальную функцию молекулы в следующем виде: В результате из выражений (5.37) и (5.42) можно увидеть, что гамильтониан в нулевом приближении H 0 представляет собой сумму двух осцилляторов Морзе для валентных колебаний R 1 и R 3 и гармонического осциллятора для деформационного колебания R 2 :

∆r = R N + F N (R 1 , R 2 , R 3 ) ≡ R N + λ f N λ R λ + λµ f N λµ R λ R µ + ..., (5.38) 
и ∆α = C 2 R 2 + F (R 1 , R 2 , R 3 ) ≡ C 2 R 2 + λ f λ R λ + λµ f λµ R λ R µ + ... (5.39) где F N (R 1 , R 2 , R 3 ) и F (R 1 , R 2 , R 3 
V = V 0 + V 1 (y 1 , y 3 ) + V 2 (R 2 ) + V 3 (
H 0 = N =1,3 - 2 2µ N ∂ 2 ∂R 2 N + Dy 2 N + - 2 2 ∂ 2 ∂R 2 2 + (2πcω 2 ) 2 2 R 2 2 .
(5.46)

Решение уравнения Шредингера с оператором (5.46) хорошо известно [START_REF] Efremov | Vibrational-rotational spectrum of diatomic molecules with the James-Coolidge-Vernon potential[END_REF][START_REF] Spirko | The development of a new Morseoscillator based rotation-vibration Hamiltonian for H + 3[END_REF]. Собственные значения гармонического осциллятора для координаты R 2 имеют вид:

E v /hc = ω 2 v + 1 2 .
(5.47)

Собственные значения осциллятора Морзе для координат R 1 и R 3 имеют вид:

E n = 2D k n + 1 2 - D k 2 n + 1 2 2 , (5.48) 
где k = √ 2µD a

. Соответствующие собственные функции -это полиномы Эрмита и функции Морзе [START_REF] Efremov | Vibrational-rotational spectrum of diatomic molecules with the James-Coolidge-Vernon potential[END_REF][START_REF] Spirko | The development of a new Morseoscillator based rotation-vibration Hamiltonian for H + 3[END_REF]. Полученные собственные значения и собственные функции позволяют легко построить матрицу полного гамильтониана молекулы. Заметим также, что полученный гамильтониан является точным и в результате небольших модификаций может быть использован для анализа произвольной изотопической модификации любой многоатомной нормальной молекулы. Также данный метод является довольно простым и удобным для практического использования. Используются следующие обозначения: λ = 1 -полносимметричное валентное колебание, λ = 2, 3 -дважды вырожденное валентное колебание, λ = 4 -колебание связи Y -Z в изотопомерах метана. Все остальные λ обозначают деформационные колебания. Можно показать, что, как и для молекулы типа XY 2 , свойства симметрии исследуемых молекул дают возможность построить набор соотношений между коэффициентами C N λ : Можно показать, что если ввести новый набор колебательных координат в соответствии с выражением (5.35), то рассмотренные выше условия будут выполняться, если выбрать ненулевые коэффициенты α λµ в следующем виде: (5.58)

C 1 1 = C 2 1 = C 3 1 = c, C 1 2 = -2C 2 2 = -2C 3 2 ≈ ± √ 2C 1 1 = ± √ 2c, C 1 3 = 0, C 2 3 = -C 3 3 ≈ C 1 1 3 2 = ∓c 3 
α 11 = α 12 = α 13 = C 1 1 ∓ √ 2C 2 

Редукция матрицы гамильтониана большой размерности

Как уже было упомянуто, при определении потенциальной функции многоатомной молекулы возникает еще одна проблема, а именно, необходимость многократного построения и диагонализации матриц гамильтониана большой размерности. Это требует огромных затрат времени и машинных ресурсов, с одной стороны, и ограничивает объекты исследования молекулами с малым числом атомов, с другой стороны. Поэтому в данном параграфе приведены расчетные формулы, которые могут быть получены на основе известных преобразований Ван-Флека [79], для упрощения процедуры диагонализации матриц больших размерностей. Данная схема основана на операторной теории возмущений.

Предположим, что недиагональные элементы матрицы гамильтониана много меньше чем ее диагональные элементы (координатные преобразования, описанные в предыдущем параграфе, позволяют получить матрицу гамильтониана именно в таком виде). Обозначим элементы матрицы как h ij . Таким образом, диагональные элементы h ii порядка κ 0 , недиагональные элементы h ij (i = j) порядка κ 1 (κ -порядок малости). Введем в рассмотрение матрицу b kl , связанную с первой унитарным преобразованием: 

b kl = (G + 1 hG 1 ) kl , (5.59 
b kk = h kk + i ∈Ω k h ki h ik h kk -h ii , (5.63) 
где Ω -пространство резонирующих состояний. Недиагональные элементы в резонансных блоках будут иметь вид (k, l ∈ Ω):

b kl = h kl + 1 2 i ∈Ω k h ki h il 1 h kk -h ii + 1 h kk -h ll .
(5.64)

Далее уже необходимо диагонализовать каждый из блоков по отдельности. Описанная выше процедура позволяет привести матрицу к блочно-диагональному виду и впоследствии определять собственные значения гамильтониана с точностью до величин третьего порядка малости по κ. Однако, как видно из выражения (5.60), в матричных элементах недиагональных блоков помимо самых больших вкладов, остаются вклады от вторых и более степеней оператора ig 1 . Следовательно, рассмотренное преобразование матрицы гамильтониана необходимо проделать еще раз, но уже с другим унитарным оператором G 2 = exp(ig 2 ), где ig 2 -оператор второго порядка малости по сравнению с единичным. По аналогии можно определить добавки в диагональные и недиагональные элементы резонансных блоков и вклады в элементы недиагональных блоков. При подобного рода расчетах необходимо тщательно следить за выполнением начальных условий: 

Трехатомная молекула

В качестве исходной информации был использован 141 центр полос с v max.

bend. = 4 и n max stretch. = 7 из работы [START_REF] Halonen | Fermi resonances and local modes in water, hydrogen sulfide, and hydrogen selenide[END_REF]. Использование только шести параметров в разработанной модели (а именно, D, a, a 13 , ω 2 , a 122 , a 1122 ) позволяет воспроизвести 141 центр полос молекулы H 2 S со средним квадратичным отклонением 0.96 см -1 . Такой результат более чем удовлетворительный, если учесть, что подход был разработан в рамках приближения Борна -Оппенгеймера, а среднее квадратичное отклонение в этом приближении для такого типа молекул, как сероводород, может достигать 0.5 -2.0 см -1 . Аналогичная процедура "фитинга" , выполненная для 141 центра полос молекулы D 2 S из работы [START_REF] Halonen | Fermi resonances and local modes in water, hydrogen sulfide, and hydrogen selenide[END_REF] с тем же самым набором их шести параметров, дала еще более хорошие результаты со средним квадратичным отклонением 0.58 см -1 . Тестовые вычисления такого типа показывают, что разработанный подход позволяет воспроизводить результаты с точностью не хуже, чем точность других, более сложных методов.

В качестве еще одной иллюстрации возможностей обсуждаемого подхода, рассмотрим проблему определения внутримолекулярной потенциальной функции молекулы сероводорода. Поскольку данный метод позволяет использовать экспериментальную информацию о всех возможных изотопических модификациях молекулы, то рассмотрим три основных изотопомера сероводорода: H 2 S, D 2 S и HDS. Полученные результаты сравнивались с аналогичными результатами из работ [99], [START_REF] Halonen | Fermi resonances and local modes in water, hydrogen sulfide, and hydrogen selenide[END_REF] - [START_REF] Tyuterev | An accurate isotopically invariant potential function of the hydrogen sulphide molecule[END_REF]. Следует отметить, что в тестовых вычислениях, приведенных ниже, не было целью воспроизвести параметры ВМПФ сероводорода лучше, чем самые точные уже известные результаты (например, из [START_REF] Polyansky | The potential energy surface of hydrogen sulfide[END_REF] или [START_REF] Tyuterev | An accurate isotopically invariant potential function of the hydrogen sulphide molecule[END_REF]). В нашем случае предлагается приближенный метод, точность которого сравнима с величинами поправок, обусловленными адиабатическими поправками. В то же самое время, можно без каких-либо трудностей применить данный метод к молекулам более чем с тремя -четырьмя атомами.

Следует сделать еще одно небольшое замечание: один из изотопомеров молекулы сероводорода (а именно, HDS) не имеет эквивалентных связей. По этой причине, в соответствии с разработанным подходом, коэффициенты α λµ из (5. [START_REF] Halonen | Fermi resonances and local modes in water, hydrogen sulfide, and hydrogen selenide[END_REF].

Следует сделать два замечания: во-первых, a-параметры для различных изотопомеров и для различных связей молекулы HDS варьировались отдельно; во-вторых, дополнительно к набору силовых параметров f ... был использован еще один параметр y 11122 из (5.45). Этот параметр был введен для того, чтобы улучшить описание высоковозбужденных состояний молекулы H 2 S. Конечно, параметр y 11122 является функцией параметров потенциальной функции f ... из (5.22). Однако, число параметров f ... , от которых зависит y 11122 настолько велико, что лучше не переобозначать данный параметр, а оставить в первоначальном виде.

Следует отметить, что величины параметров потенциальной функции, полученные в процессе варьирования, хорошо согласуются с соответствующими величинами параметров, известных в литературе (например, [99], [START_REF] Halonen | Fermi resonances and local modes in water, hydrogen sulfide, and hydrogen selenide[END_REF] - [START_REF] Tyuterev | An accurate isotopically invariant potential function of the hydrogen sulphide molecule[END_REF]).

В колонках 2 Таблиц 5.3 -5.5 представлены величины экспериментальных центров полос трех изотопических модификаций молекулы сероводорода. В колонке 3 Таблицы 5.3 указаны источники литературы, из которых взяты эти данные. Качество "фитинга" иллюстрирует колонка 4 Таблицы 5.3 и колонки 3 Таблиц 5.4 и 5.5, поскольку в них представлены разности ∆ = v exp. -v calc. между экспериментальными уровнями энергии и вычисленными с параметрами из колонки 2 Таблицы 5.2. Поскольку данное исследование выполнялось в приближении Борна -Оппенгеймера, значения ∆ иллюстрируют более чем удовлетворительное согласие разработанного метода. Колонки 5 -7 Таблицы 5.3, колонки 4 -5 Таблицы 5.4 и колонка 4 Таблицы 5.5 содержат аналогичные результаты из работ [99], [START_REF] Halonen | Fermi resonances and local modes in water, hydrogen sulfide, and hydrogen selenide[END_REF] - [START_REF] Polyansky | The potential energy surface of hydrogen sulfide[END_REF]. Можно видеть хорошее согласие между представленными наборами величин. ) Экспериментальные центры полос взяты из работы [START_REF] Ulenikov | Joint ro-vibrational analysis of the HDS high resolution infrared data[END_REF].

Четырехатомная молекула

В качестве следующего шага рассмотрим четырехатомную молекулу формальдегида. Т.к. нам важно продемонстрировать эффективность разработанного подхода, то будем использовать потенциальную функцию молекулы H Чтобы реализовать разработанный в данном параграфе метод определения внутримолекулярной потенциальной функции, необходимо иметь в качестве начальной информации экспериментальные данные о колебательных центрах полос. В данной ситуации использовались 279 центров полос из работы [START_REF] Bouwens | Pure vibrational spectroscopy of S 0 formaldehyde by dispersed fluorescence[END_REF], большинство из которых были получены из спектров флуоресценции с точностью 1.0 -2.0 см -1 . В этом случае, максимальные значения колебательных квантовых чисел: v max В заключении следует сказать, что разработанный в данной главе диссертации метод построения гамильтониана многоатомной молекулы позволяет ввести базис, удобный для построения и диагонализации матриц большой размерности, что в дальнейшем ведет к значительному упрощению процедуры определения внутримолекулярной потенциальной функции по сравнению с более громоздкими стандартными методами. Данный подход дает результаты чуть хуже, чем уже известные методы для трех-и четырехатомных молекул, но зато он позволяет успешно решать задачи для молекул с большим числом атомов. 

V = V 0 + V 1 (y 1 , y 5 , y 2 ) + V 2 (R 3 , R 4 , R 6 ) + V 3 (

Заключение

В диссертационной работе рассмотрен ряд важных вопросов, связанных с теоретическим исследованием многоатомных молекул типа XY 2 Z 2 симметрии C 2v , XYZ 3 симметрии C 3v , XY 4 симметрии T d . На основе операторной теории возмущений и теории неприводимых тензорных операторов были получены общие формулы, позволяющие связать спектроскопические параметры исследуемых молекул с параметрами внутримолекулярной потенциальной функции. На основе "расширенного" приближения локальных мод и теории изотопозамещения было определено большое количество ранее не известных связей между различными спектроскопическими характеристиками как основной изотопической модификации многоатомной молекулы, так и между спектроскопическими характеристиками основной и любой из ее изотопозамещенных модификаций. В качестве иллюстрации рассматривались молекулы СH 2 D 2 , CH 3 D, CH 4 , CHD 3 , для которых сформулирована модель, позволяющая с высокой точностью теоретически предсказывать свойства параметров спектральных линии (фактически -строить синтетические спектры) при полном отсутствии какой либо информации об этой молекуле (только два параметра основной модификации используются при этом). Разработан простой, применимый к молекулам с произвольным числом атомов и различной симметрии метод определения внутримолекулярной потенциальной функции, эффективность которого была проверена на примере трехатомной молекулы сероводорода и четырехатомной молекулы формальдегида, а именно, на основе экспериментальных данных были определены параметры потенциальной функции для этих молекул. В диссертации были поставлены и решены следующие задачи:

1. Развитие теории изотопозамещения для молекул, удовлетворяющих расширенной модели локальных мод применительно к метану и его дейтерированным изотопическим модификациям; Title: "Expanded" local mode approach and isotopic effect in polyatomic molecules.

Abstract: In this thesis, on the base of the "expanded" local mode approach and general isotopic substitution theory we obtain sets of simple analytical relations between spectroscopic parameters (harmonic frequencies, anharmonic coefficients, ro-vibrational parameters, different kinds of Fermi and Coriolis-type interaction parameters) of the CH 2 D 2 , CH 3 D and CHD 3 molecules. All of them are expressed as simple functions of spectroscopic parameters of the mother CH 4 molecule. Test calculations with the isotopic relations show that even without including prior informations about the isotopic species, numerical results of calculations are in a good agreement both with experimental data and results of ab initio calculations. On the base of operators perturbation theory and the symmetry properties of the axially symmetric XYZ 3 (C 3v ) type molecules, we derive general formulae for the determination of the spectroscopic parameters in the form of functions of structural parameters and parameters of the intramolecular potential function. We present also an approach for determination of the Hamiltonian of polyatomic molecules that allows to solve the problem of potential energy surface determination via the construction and the diagonalization of a Hamiltonian matrix of large dimension.

Key words: Molecular spectroscopy, methane molecule, deuterated species, local mode model, isotopic relations, rotational and vibrational parameters, intramolecular potential function.

Titre : Approche du mode local "étendu" et effet isotopique dans des molécules polyatomiques.

Résumé : Dans cette thèse, sur la base de l'approche du mode local "étendu" et de la théorie générale de la substitution isotopique, nous obtenons un ensemble de relations analytiques simples entre les paramètres spectrocopiques (fréquences harmoniques, coefficients d'anharmonicité, paramètres rovibrationnels, différents types de paramètres d'interaction de Fermi et de Coriolis) des molécules de CH 2 D 2 , CH 3 D et CHD 3 . Tous ces paramètres sont exprimés en termes de relations simples à partir des paramètres spectroscopiques de la molécule mère CH 4 . Des calculs tests avec des relations isotopiques montrent que même sans introduire d'informations majeures sur les espèces isotopiques, les résultats numériques de ces calculs sont en bon accord avec les données expérimentales et les calculs ab initio. A partir de le théorie des opérateurs de perturbation et des propriétés de symétrie des molécules axiales XYZ 3 (C 3v ), nous déterminons des formules générales permettant la détermination des paramètres spectroscopiques sous la forme de fonctions des paramètres structuraux et des paramètres de la fonction potentiel intramoléculaire. Nous présentons aussi une approche permettant la détermination du hamiltonien de molécules polyatomiques qui permet de résoudre le problème de la description de la surface d'énergie potentielle via la construction et la diagonalisation d'une matrice hamiltonienne de grande dimension.

Mots clefs : Spectroscopie moléculaire, molécule de méthane, espèces deutérées, le modèle mode local, relations isotopiques, paramètres rotationels et vibrationnels, fonction potentiel intramoléculaire.
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 12 N r e N β + i m el r iβ = 0, (thus only 3 equations where r e N β are involved), (1.13) N m l N βλ = 0, 1 ≤ λ ≤ 3N -6, β = x, y, z. (1.14)

1 )

 1 exact or enough precise, analytical solutions of the Schrödinger equation with the operator H can be determined; 2) the set B ≡ {E H , ψ H } of the eigenvalues and eigenfunctions of the Schrödinger equation with the operator H is identical to a subset B of the set A of the eigenvalues and eigenfunctions of the Schrödinger equation with the operator H.

Let's choose

  the operator G in such a way that all elements of the set α 0 |H |β and α |H |β 0 are equal to zero. It means that one can determine eigenvalues and eigenfunctions of the operator H (and also the operator H) by diagonalization of the constructed matrix i| α|H |β |j . It means that the matrix α|H |β can be reduced to the block-diagonal form (Jordan's form) by appropriate reordering of the basis, which means by appropriate permutations of the columns and rows. Thus the matrix i| α|H |β |j may be divided into two sub-matrices, which can be diagonalized separately. If we are interested only in the energy levels of the sub-space generated by the |α 0states then it is enough to diagonalize the sub-matrix i|H ef f |j ≡ i| α 0 |H |β 0 |j .
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 21 Figure 2.1: Structure of the XY 2 (C 2v ) molecule.
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 22 Figure 2.2: Scheme of the Hamiltonian matrix reduction after check-up of the condition (5.65).
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 23 Figure 2.3: Scheme of the Hamiltonian matrix reduction after check-up of the condition (5.66).
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 31 Figure 3.1: Equilibrium structure of the CH 4 molecule.

4. 1

 1 Transformation, Coriolis and ro-vibrational coefficients of the CH 2 D 2 molecule The CH 2 D 2 molecule is an asymmetric top molecule. The geometrical structure of this molecule is represented in Figure 4.1.
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 41 Figure 4.1: Equilibrium structure of the CH 2 D 2 molecule.
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 143 (I e ) 1/2 , I e = 8 3 m H ρ 2e is the equilibrium moment of inertia of the CH 4 molecule.

4. 2

 2 Normal mode force parameters of the CH 2 D 2 molecule

m 3 H 1 / 4 =k 367 =

 314367 -24k 111 = 118k 112 = 410k 113 = -285k 114 = 135k 122 = 137k 123 = -355k 124 = 62k 133 = 65k 134 = 700k 144 = 71k 155 = -125 16 k 166 = 58k 167 = 79k 177 = 98k 188 = -67k 189 = 32k 199 = 40k 222 = 670k 223 = -300k 224 = -300k 234 = -77k 244 = 600k 255 = 143k 266 = 90k 267 = -78k 277 = 87 7 k 288 = -147k 289 = -2050k 299 = 445k 333 = 910k 334 = 722k 344 = -300k 355 = -100k 366 = 49 2 -122k 377 = 780k 388 = -157k 389 = 167k 399 = -952k 444 = 314k 455 = -162k 466 = 51k 467 = -151k 477 = 138k 488 = -71k 489 = 108k 499 = -71k 568 = 614 25 k 569 = 255k 578 = -158k 579 ;

20 x 11 = 10x 12 37 = 5x 38 = -17x 39 = 41x 44 =

 111237383944 -29x 45 = 12x 46 = -7x 47 =

  Equilibrium rotational parameters B e β and ro-vibrational coefficients a β λ Equilibrium rotational parameters B e β of the CH 2 D 2 molecule can be determined by the following formula

18 )

 18 Numerical values of the B e β parameters were calculated on the base of relations (3.18) with the initial value B e = 5.29986 cm -1 of the CH 4 molecule:

α y 8 =

 8 -5α y 9 = -

6 .

 6 interaction of the type v|...|ṽ ≡ v λ ...v µ |...|v λ ± 1...v µ ∓ 1 , where λ = 3 and µ = 4. Darling-Dennison interaction ν λ ...ν µ |...|ν λ ± 2...ν µ ∓ 2

4. 5

 5 Isotopic relations between spectroscopic parameters of the CH 4 and CH 2 D 2 species: Coriolis-type interactions

  with µ/ν = 3/9 and λ = 1, 6, or µ/ν = 4/7, 4/9 and λ = 2, or µ/ν = 4/5, 7/9 and λ = 8.

  6 -0.57 -0.73 x y 1 6 -0.019 -0.018 y 2 8 -1.32 -1.38 x z 2 8 0.033 0.034 x 3 5 -5.68 -6.15 y z 3 5 -0.024 -0.024 z 3 7 -3.23 -3.16 x y 3 7 -0.017 -76 x y 5 9 -0.039 -0.039 x 7 9 -5.68 -5.75 y z 7 9 -0.018 -0.017 a) Calculated on the base of (3.53). b) Taken from analysis of experimental data[81]. c) Calculated on the base of (3.54).

  Calculated on the base of (3.57). b)

. 57 )

 57 Here, if ω µ ≈ ω ν , then third term in(3.59) should be omitted. If λ= 1 and µ=3 or 9; or if λ= 2 and µ=4 or 7, then the first part of the third term should be omitted. Analogously, if λ= 1 and ν=3 or 9; or if λ= 2 and ν=4 or 7, then the second part of the third term should be omitted. If ξ = 3, 4, 5, 7 or 9, then the second parentheses in the eighth and ninth terms should be omitted. For the resonance situations (λ = 1 and ξ = 6; λ = 6 and ξ = 1; λ = 2 and ξ = 8; λ = 8 and ξ = 2) the second parentheses in the last term should be omitted.

Figure 4 .

 4 Figure 4.2: A small part of the high-resolution spectrum of CH 2 D 2 in the region 3450 -3460 cm -1 . The four bottom parts (I -IV) present simulated spectra. Traces I -II -III show respectively the lines belonging to the bands, ν 4 +2ν 9 , ν 2 +ν 9 and ν 3 +2ν 4 . The sum of simulated spectra (I -II -III) is given by part IV. The top part (V) shows the experimentally recorded spectrum [57]. Experimental conditions: absorbtion path length, 10 m; sample pressure, 3 mbar; instrumental resolution, 0.0027 cm -1 ; temperature 78 K.

Chapter 5 "

 5 Expanded" local mode approach applied to the methane molecule: isotopic substitutions CH 3 D ← CH 4 and CHD 3 ← CH 4

  .28) E vE , B vE , ..., vE parameters in (4.25) have the same meaning as the corresponding ones in (4.23) with an exception: although the operators (J 3 + + J 3 -) connect rotational states |Jk and |Jk with ∆k = k -k = ± 3, they do not split a 1 /a 2 levels. The operator H vE,vE 2 describes the k -l splittings. Operators (J n + ± J n -) connect rotational states |Jk and |Jk , where ∆k = k -k = ± n. The operators with n = 2m provide the a 1a 2 splittings of energy levels with K = m.

. 65 )

 65 When changing the equation (4.61), which is given for β λ , for β µ and β ν we should change index λ on the rhs of (4.61) into µ and ν.It should be mentioned that all obtained results can be applied for any symmetric top XYZ 3 (C 3v ) molecule. Furthermore they are also valid for any symmetric top XY 3 (C 3v ) molecule taking into account that there are only two doubly degenerate vibrational modes in XY 3 instead of three in XYZ 3 .5.5 Isotopic relations for CH 3 D and CHD 3 moleculesIn this section using the results derived before we obtain simple isotopic relations between most important spectroscopic parameters of isotopomers CH 3 D and CHD 3 and the spectroscopic parameters of the mother molecule CH 4 . At first we should consider the transformation coefficients l N γa , the Coriolis coefficients ζ α ab , ro-vibrational coefficients a αβ a and the normal mode force field parameters of the CH 3 D and CHD 3 molecules. Transformation coefficients, harmonic frequencies and equilibrium rotational parameters of CH 3 D and CHD 3 As it was already said, CH 3 D and CHD 3 molecules are symmetric top molecules. The geometrical structure of these molecules is represented in Figure 5.1.

Figure 5 . 1 :

 51 Figure 5.1: Equilibrium structure of CH 3 D and CHD 3 molecules ("derived" from mother CH 4 molecule in the center).
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 663 both for CH 3 D and CHD 3 molecules. From solution of equations (1.29) -(1.30) we can obtain harmonic frequencies ω a , ro-vibrational coefficients α ab and therefore transformation coefficients l N γa from (1.28). For harmonic frequencies the results are: molecule. Transformation coefficients l N γb for CH 3 D and CHD 3 molecules are presented in Tables 5.3 and 5.4. The equilibrium rotational parameters B e α can be obtained on the base of (4.62):

32 πcm H ρ 2 e 46 = 7x 55 = 4x 56 = -92x 66 = -x l 4 l 4 = 7x l 4 l 5 = 51x l 4 l 6 = -34x l 5 l 5 = 5 2 x l 5 l 6 = -18x l 6 l 6 (

 24655566645666 

25 α z 5 = - 29 25 α z 6 ( 5 . 74 )

 6574 for CH 3 D. Concerning the relations (4.67) -(4.70) that were derived, we took into account the presence of resonance interactions between pairs of vibrational states:

a)

  It is more difficult to explain the discrepancies in the values of parameters x 45 , x l 4 l 4 and x l 4 l 5 of CH 3 D molecule. One possible reason may be a (strong) correlation between the corresponding parameters which can lead to incorrectly fitted values.To illustrate correctness of obtained relations for ro-vibrational coefficients α β b , we consider results of high resolution analysis of the ν 3 , ν 5 and ν 6 bands of CH 3 D molecule[92]. Column 2 of Table5.7 presents values of parameters α β b (β = x, z; b = 3, 5, 6) predicted on the base of obtained relations. Values of corresponding α-parameters obtained from the fit of experimental data[92] are shown in column 3. One can see more than satisfactory correlation between predicted and experimental values for the α x 5 , α z 5 , α z 3 and α z 6 parameters. Table 5.7. Some α β b parameters of the CHD 3 molecule (in cm -1 ). Parameter Calc. a) Exp. b) Exp. c) Calculated on the base of relations (4.70). b) Experimental values from [92]. c) "Experimental" values corrected in accordance with Figure 5.2.

3 .

 3 Here B e and ω 1 are the parameters of the mother CH 4 molecule. Values with "prime" belong to isotopically substituted species.

2 16πρ 4 cm 3/ 2 F 1 /2 11 = 5 =

 221115 -38γ 4 = 32γ 5 = 2γ 6 = 15β 4 = -8β 5 -42γ 6 = 18β 4 = 7β 5 = 30β 6 (5.80)

2 N

 2 потенциальная функция молекулы; ε αβγ -полностью антисимметричный тензор. Добавим к соотношениям (1.7) (1.11) условие (1.5), которое можно представить в виде N l N βλ = 0.

  ) где r N β и r iβ -положения ядер и электронов в системе, начало которой фиксировано в центре масс ядер; молекулы. Уравнения для определения параметров преобразования r e N β и l N βλ имеют такой же вид, как и (1.7) -(1.11), (1.13) (вместо r e N β и r iβ стоят r e N β и r iβ ). Условие на центр масс (1.12) примет немного другой вид: N m N r e N β = 0. (1.15)

  ) где µ αβ -элементы матрицы обратных моментов инерции, усреднённые по электронным переменным; κ = m el M 1/4 -параметр малости Борна -Оппенгеймера, M -средняя масса ядер молекулы, m el -масса электрона.

. 67 )где Γ 1 , Γ 2 , 9 i=1Γ

 67129 Γ 3 , ... -неприводимые представления точечных групп симметрии молекул. Если сделать четное количество перестановок строк или столбцов и затем транспонировать 9Γ-символы, то его значение не изменится. Значение 9Γ-символа изменится на величину (-1) R , где R = i , если совершить нечетное количество перестановок строк или столбцов. Следовательно, свойства симметрии позволяют получить 3! × 3! × 2 = 72 9Γсимволов из одного известного. Также на основе свойств симметрии 9Γ-символов можно сделать вывод, что если 9Γ-символ имеет две одинаковые строки или столбца и (-1) R = -1, то он равен нулю.

36c 111 =

 111 -177c 122 = 11c 133 = 268c 134 = -51c 144 = 585c 222 = -137c 233 = -41c 234 = -205c 244 = 26 5 c 333 = 45c 334 = 43c 444 = -1144 = -10d 2222 = -10 41 d 2233s = -5 22 d 2233t = 5d 2244s = 20d 2244t = 10 33 d 3333s = -2 3 d 3333t = -10 69 d 3344sa = -d 3344 sb = -d 3344t = 10 3 d 4444s = -10d 4444t = 23 200 πcm H ρ 2

Таблица 2 . 4 .

 24 Колебательные спектроскопические параметры молекулы12 CH 4 (в см -1

3. 1 Рис. 3 . 1 :

 131 Константы форм колебаний, колебательно -вращательные и Кориолисовы коэффициенты молекулы CH 2 D 2 Молекула CH 2 D 2 принадлежит к молекулам типа асимметричного волчка. Структура молекулы изображена на Рисунке 3.1. Равновесная конфигурация молекулы CH 2 D 2 .

2 .Здесь D = 1 50Таблица 3 . 3 .

 2133 Отличные от нуля Кориолисовы коэффициенты ζ α λµ молекулы CH 2 D 2 . Отличные от нуля колебательно -вращательные коэффициенты a λ αβ молекулы CH 2 D 2 .

πρ e c 2 F 11 m 3 H 1 / 4 =k 367 = 3 . 3 2 В

 2314367332 ) где коэффициенты C N ... и C N K ...имеют достаточно сложный вид. Читатель может найти их в работе[80].Если принять во внимание уравнения(3.4) -(3.8), данные Таблицы 3.1 и соотношения (2.19) -(2.21), то нетрудно получить два набора простых соотношений между силовыми постоянными c ijk /c ijkl материнской молекулы CH 4 и силовыми постоянными k ijk /k ijkl молекулы CH 2 D 2 :36c 111 = -9 -24k 111 = 118k 112 = 410k 113 = -285k 114 = 135k 122 = 137k 123 = -355k 124 = 62k 133 = 65k 134 = 700k 144 = 71k 155 = -125 16 k 166 = 58k 167 = 79k 177 = 98k 188 = -67k 189 = 32k 199 = 40k 222 = 670k 223 = -300k 224 = -300k 234 = -77k 244 = 600k 255 = 143k 266 = 90k 267 = -78k 277 = 87 7 k 288 = -147k 289 = -2050k 299 = 445k 333 = 910k 334 = 722k 344 = -300k 355 = -100k 366 = 49 2 -122k 377 = 780k 388 = -157k 389 = 167k 399 = -952k 444 = 314k 455 = -162k 466 = 51k 467 = -151k 477 = 138k 488 = -71k 489 = 108k 499 = -71k 568 = 614 25 k 569 = = 255k 578 = -158k 579 ; 1288 = -k 1289 = 2k 1299 = -6k 2333 = 6k 2334 = -6k 2344 = -14k 2355 = -7 10 k 2366 = k 2367 = -9k 2377 = 4k 2388 = 3k 2389 = -4k 2579 = 18k 3333 = 4k 3334 = 10k 3344 = 17k 3355 = --14k 3388 = -3k 3389 = 2k 3399 = 7k 3444 = 4k 3455 = -10k 4444 = -5k 4455 = -3k 4489 = 15k 4499 = -2k 4568 = -Изотопические соотношения между спектроскопическими параметрами ω λ , x λµ , B e β , α β λ молекулы CH 4 и молекулы CH 2 D качестве следующего шага, на основе результатов (3.9) -(3.10) и Таблиц 3.2 и 3.3, можно получить изотопические соотношения между различными спектроскопическими параметрами при замещении CH 2 D 2 ← CH 4 . Сначала рассмотрим гармонические частоты ω λ , коэффициенты ангармоничности x λµ , равновесные вращательные постоянные B e β и колебательно -вращательные коэффициенты a β λ , т.е. величины, присутствующие в выражении для невозмущенных колебательных уровней:

Таблица 3 . 4 .

 34 Гармонические частоты молекулы CH 2 D 2 (в см -1 ). Параметр I a) II b) III c)

20 x 11 = 10x 12 37 =

 111237 5x 38 = -17x 39 = 41x 44 = -29x 45 = 12x 46 = -7x 47 =

  постоянных, полученные на основе соотношений (3.18) с использованием вращательной постоянной молекулы CH 4 B e = 5.29986 см -1 в качестве начального параметра имеют следующие значения: B e x = 3.53324 см -1 ; B e y = 3.07734 см -1 ; B e z = 4.33625 см -1 .

Таблица 3 . 7 .

 37 Параметры колебательных резонансов в молекуле CH 2 D 2 (в см -1 ).

  квантовые числа в левой и правой волновых функциях в выражении (3.30). Когда i = 3 и ξ = 1 или i = 4 и ξ = 2, то третье и четвертое слагаемые с конца в выражении (3.31) следует опустить из-за резонансного взаимодействия между соответствующими колебательными состояниями. По той же самой причине при ξ = 7 и ν = 6 или ξ = 9 и ν = 8; при ν = 7 и ξ = 6 или ν = 9 и ξ = 8 следует опустить предпоследнее и последнее слагаемые в выражении (3.31).

  b

  показал, что перечисленные выше три типа резонанса Кориолиса следует принять во внимание в следующих парах взаимодействующих состояний: 1). взаимодействия типа v|...|ṽ≡ v λ ...v µ |...|v λ ± 1...v µ ∓ 1 с различными комбинациями индексов λ, µ = 3, 4, 5, 7, 9, λ = µ или λ = 1, µ = 1 или λ = 2, µ = 8; 2). взаимодействия типа v|...|ṽ ≡ v λ ...v µ |...|v λ ± 1...v µ ∓ 2 ,в данном случае µ = 3, 4, 5, 9, если λ = 6 или µ = 3, 4, 5, 7, если λ = 8; 3). взаимодействия типа v|...|ṽ ≡ v λ ...v µ ...v ν |...|v λ ±1...v µ ∓1...v ν ∓1 c µ/ν = 3/9 и λ = 1, 6 или µ/ν = 4/7, 4/9 и λ = 2 или µ/ν = 4/5, 7/9 и λ = 8. Взаимодействия Кориолиса v|...|ṽ ≡ v λ ...v µ |...|v λ ± 1...v µ ∓ 1 Можно показать, что в данном случае, главный вклад в уравнениях (3.46) -(3.49) имеет вид:

  с выражениями (3.53) -(3.54) дают результаты, представленные в колонке I Таблицы 3.8. В качестве сравнения, в колонке II представлены величины соответствующих параметров, полученных на основе анализа экспериментальных данных [81]. Можно видеть хорошее согласие представленных результатов. Таблица 3.8. Параметры резонансных взаимодействий Кориолисаν λ ν µ |...|ν λ + 1ν µ -1 -типа (в см -1 ). α λ µ I a) II b) α β λ µ I c) II b) z16 -0.57 -0.73 x y 1 6 -0.019 -0.018 y 2 8 -1.32 -1.38 x z 2 8 0.033 0.034 x 3 5 -5.68 -6.15 y z 3 5 -0.024 -0.024 z 3 7 -3.23 -3.16 x y 3 7 -0.017 -5.26 -5.32 x z 5 7 -0.056 -0.054 z 5 9 3.74 3.76 x y 5 9 -0.039 -0.039 x 7 9 -5.68 -5.75 y z 7 9 -0.018 -0.017 a) Вычислены на основе уравнения (3.53). b) Взяты из анализа экспериментальных данных, [81]. c) Вычислены на основе уравнения (3.54). Взаимодействия Кориолиса v|...|ṽ ≡ v λ ...v µ |...|v λ ± 1...v µ ∓ 2
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 59 Здесь, если ω µ ≈ ω ν , то скобки в четвертой строке выражения (3.59) следует положить равной нулю. Если λ= 1 и µ=3 или 9; или если λ= 2 и µ=4 или 7, то первое слагаемое в четвертой строке полагают равным нулю. Аналогично, если λ= 1 и ν=3 или 9; или если λ= 2 и ν=4 или 7, то второе слагаемое в четвертой строке следует положить равным нулю. Если ξ = 3, 4, 5, 7 или 9, то вторые скобки во второй и третей строках с конца следует положить равными нулю. В случае резонанса (λ = 1 и ξ = 6; λ = 6 и ξ = 1; λ = 2 и ξ = 8; λ = 8 и ξ = 2) вторые скобки в последней строке полагают равными нулю.Как и в предыдущем пункте, мы не рассматриваем (λ,µν) C αβ -параметры. Что касается изотопических соотношений для коэффициентов (λ,µν) C α , они были получены в виде:

(4. 10 )

 10 Операторы G α и µ αβ в выражении (4.10) имеют следующую форму: q a q b + ... l N βa l N γb (4.13) ( αβγ -это полностью антисимметричный тензор, xyz = yzx = zxy =yxz =xzy = zyx ), -δ αβ δ αγ )

λ 2 (

 2 λ = 4, 5 или 6), кроме того, B e x = B e y . Если учесть данные соотношения и основные формулы (4.11) -(4.17), затем применить операторную теорию возмущений, то можно получить следующие выражения для параметров α β b :

5 α z 6 ( 4 6 ( 4

 6464 .70) для CH 3 D, соответственно. При получении соотношений (4.67) -(4.70) были учтены резонансные взаимодействия между следующими парами колебательных состояний:

Таблица 4 . 7 .

 47 Некоторые значения параметров α β b молекулы CHD 3 (в см -1 ). Параметр Вычисл. a) Эксп. b) Эксп. c) Вычислены на основе соотношений (4.70). b) Экспериментальные величины из работы [92]. c) "Экспериментальные" величины, скорректированные в соответствие с Рисунком 4.2.

== -38γ 4 = 32γ 5 = 2γ 6 = 15β 4 = -8β 5 5 =

 456455 Также, как и в предыдущем случае, использование соотношений (4.63) -(4.66) в выражениях (4.57) -(4.61) позволяет получить следующие простые соотношения для параметров η vΓ,vΓ , γ vΓ,vΓ и β vΓ,vΓ : B e = -10η 4 -42γ 6 = 18β 4 = 7β 5 = 30β 6 (4.78) для молекулы CHD 3 .В качестве иллюстрации корректности полученных соотношений, сравним результаты вычислений на основе соотношений с экспериментальными данными из работ[96] и[92].

) где α λ = µ 1

 1 

) где для молекулы типа XY 2 :α 12 =

 212 α 21 = α 23 = α 32 = 0, α 22 = 1, α 11 = α 13 = α 33 = -α 31 = C 1 1 -

i = 1 , 3 .y n 1 y m 3 + y m 1 y n 3 ) и (y n 1 y m 3 ∂∂R 1 + y m 1 y n 3 ∂∂R 3 )y m 3 -y m 1 y n 3 ) и (y n 1 y m 3 ∂∂R 1 -y m 1 y n 3 ∂ ∂R 3

 1333133333133 ) -малые добавки; абсолютные величины коэффициентов f... в выражениях(5.38),(5.39) быстро убывают с возрастанием степени координаты R λ . Заметим, что все коэффициенты f N λ..µ можно получить в аналитической форме на основе выражений (5.2) -(5.5) и (5.7) -(5.21), однако они имеют достаточно громоздкий вид и хранятся в памяти компьютера.Следующим шагом введем еще один набор координат и перейдем в гамильтониане от координат R 1 и R 3 к координатам Морзе типа по следующей формуле: Также введем обозначениеR 2 = Q 2 .В качестве еще одного важного момента необходимо рассмотреть симметрию новых введенных координат. Напомним, что молекула типа XY 2 относится к точечной группе симметрии C 2v . При операции "С 2 " и отражении в плоскости, перпендикулярной плоскости молекулы, координата R 1 переходит в R 3 и наоборот. При отражении в плоскости молекулы и тождественном преобразовании координаты R 1 и R 3 не меняются. Координата R 2 симметрична относительно любого преобразования из группы C 2v . Тем же свойствам симметрии обладают и производные по введенным координатам. Следовательно, комбинации (инвариантны относительно операций из группы симметрии молекулы, а комбинации (y n 1

5. 3

 3 Применение разработанного метода к молекулам типа XY 3 и ZXY 3 с тремя эквивалентными связями В предыдущем параграфе рассматривалась молекула типа XY 2 (C 2v ). Однако, разработанный для нее подход можно распространить на любую многоатомную молекулу с несколькими эквивалентными связями (как, например, связи X -Y в молекуле типа XY 2 ). Важным в данном случае является правильный выбор коэффициентов α λµ в (5.35). Они должны быть выбраны в таком виде, чтобы: 1. представить оператор кинетической энергии T 1 в простом и удобном виде и 2. не нарушать справедливость координатных преобразований (5.38), (5.39). Как показывает анализ, данные условия выполняются для целого ряда многоатомных молекул (не только с двумя, но и с большим количеством эквивалентных связей), причем данный вывод следует из свойства симметрии молекул, которые определяют соотношения между коэффициентами C N λ и C λ . В данном параграфе рассматривается координатное преобразование для молекул типа XY 3 и ZXY 3 симметрии C 3v с тремя эквивалентными связями X -Y на примере четырехатомных молекул PH 3 , AsH 3 и пятиатомных молекул CH 3 D, CHD 3 . В качестве иллюстрации был проведен расчет коэффициентов C N λ для рассматриваемых молекул (Таблица 5.1).

1 .

 1 Численные значения (в а.е.м. -1/2 ) коэффициентов C первого порядка для аксиально симметричных молекул. данной таблице представлены только коэффициенты C λ N , связанные с валентными колебаниями, поскольку они являются наиболее важными при выводе коэффициентов α в (5.50) и(5.56). Значения всех остальных коэффициентов C λ N много меньше представленных.

C 4 4 . ( 5 . 51 )

 4551 для молекул CH 3 D/CHD 3 :α 44 = 1 Коэффициенты α λλ = 1, где λ = 4 -6 для молекул PH 3 /AsH 3 и λ = 5 -9 для молекул CH 3 D/CHD 3 .Можно показать, что:Все остальные α λµ обращаются в ноль. Можно показать, что оператор кинетической энергии T 1 в данном случае примет простой вид:

2 :

 2 Схема редукция матрицы гамильтониана большой размерности после проверки условия (5.66).

5. 6

 6 Проверка эффективности разработанного подхода на примере трехатомной (сероводород) и четырехатомной (формальдегид) молекул Чтобы проверить эффективность разработанного подхода, с одной стороны, и сравнить его с традиционными методами определения ВМПФ, были выполнены вычисления для трехатомной H 2 S и четырехатомной H 2 CO молекул.

  35) для молекулы HDS следует выбрать в следующем виде:α λµ = 0, λ = µ, α 22 = 1,информации были использованы экспериментальные данные о 88 центрах полос трех изотопических модификаций исследуемой молекулы из работ[START_REF] Ulenikov | High resolution vibrational-rotational spectrum of H 2 S in the region of the ν 2 fundamental band[END_REF] -[START_REF] Ulenikov | Joint ro-vibrational analysis of the HDS high resolution infrared data[END_REF]. В процессе варьирования были получены 16 параметров потенциальной функции из(5.22), которые представлены в Таблице 5.2 (в скобках указан 1σ статистический доверительный интервал). Таблица 5.2. Параметры потенциальной функции молекулы сероводорода.a) 

Таблица 5 . 3 .

 53 Центры полос молекулы H 2 S (в см-1 

2

 2 CO в виде (5.41) -(5.45) (а не в (5.22)), поскольку такой вид более удобен при отдельном рассмотрении различных изотопических модификаций молекулы. Поскольку в молекуле H 2 CO шесть колебательных координат: 1. два эквивалентных валентных колебания H -C, 2. одно валентное колебание C = O, 3. два эквивалентных деформационных колебания H -C -O в плоскости молекулы, 4. одно внеплоскостное деформационное колебание (H -C -H) -O, то кинетическая часть гамильтониана будет иметь вид: индексы 1 и 5 соответствуют валентным колебаниям связей C -H, индекс 2 -валентному колебанию связи C -O, индексы 3, 6 и 4 -деформационным колебаниям в плоскости молекулы и внеплоскостному колебанию, соответственно. КоординатыR 2 , R 3 и комбинация (R 1 + R 5 ) являются полносимметричными (A 1 ), координата R 4 имеет симметрию B 1 , координата R 6 и комбинация (R 1 -R 5 ) -симметрию B 2 (в соответствии с группой симметрии C 2v молекулы H 2 CO). Учитывая свойства симметрии исследуемой молекулы можно легко построить потенциальную функцию в соответствии с выражениями (5.41) -(5.45). Для тестовых вычислений не будем здесь учитывать кубичную часть потенциальной функции, учтем лишь квадратичную, квартичную и секстичную части:

4 = 10 , v max 2 = 6 , v max 3 = 3 , v max 6 = 5 , v max 1 = v max 2 = 2 .

 410263365122 В результате процедуры варьирования был получен набор из 35 параметров, которые представлены в Таблице 5.6. Данный набор параметров воспроизводит начальные экспериментальные данные со среднеквадратичным отклонением 1.8 см -1 , что сравнимо с экспериментальными точностями.

1 -

 1 δ N,0 ) -1/2 (δ m,3N + (-1) (J+3N ) δ m,-3N ) 2δ N,0 )(1 + δ N,0 ) -1/2 (δ m,3N + (-1) (J+3N +1) δ m,-3N ) ,3N +1 + (-1) (J+3N +1) δ m,-(3N +1) ), ,3N +1 + (-1) (J+3N ) δ m,-(3N +1) ) (J) G m (N +1+{(J-1)/3})E1 = (-i) J √ 2 (δ m,3N +2 + (-1) (J+3N ) δ m,-(3N +2) ) (J) G m (N +1+{(J-1)/3})E2 = (-i) J-1 √ 2 (δ m,3N +2 + (-1) (J+3N +1) δ m,-(3N +2) )Индекс N принимает следующие значения:N = 0, 1, ..., {J/3} для состояний A 1 и A 2 симметрии; N = 0, 1, ..., {(J -1)/3} для состояний E симметрии.Номенклатура вращательных состояний показана на Рисунке 5.3.

  

  

  

  Introduction 1 Methods of theoretical investigation of molecular spectra 1.1 Rotation-vibration Hamiltonian of a molecule . . . . . . . . . . . . . . . . . . . 1.2 Born-Oppenheimer approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Isotopic Substitution Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Operator Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 Choice of unitary transformation for effective Hamiltonian . . . . . . . . . . . . 1.6 Basis of the Irreducible Tensorial Sets Theory . . . . . . . . . . . . . . . . . . . Hamiltonian of polyatomic molecule in R i -coordinates . . . . . . . . . . . . . . . 2.4 Reduction of a Hamiltonian matrix of large dimension . . . . . . . . . . . . . . . 3 "Expanded" local mode approach applied to the methane molecule 3.1 Compilation of isotopic substitution theory and "expanded" local mode approach 3.2 Estimation of the parameter of ambiguity sin γ of methane molecule . . . . . . . 3.3 Relations between force parameters of the CH 4 molecule . . . . . . . . . . . . . 3.4 Relations between spectroscopic parameters of the CH 4 molecule . . . . . . . . . 4 "Expanded" local mode approach applied to the methane molecule: isotopic substitution CH 2 D 2 ← CH 4 4.1 Transformation, Coriolis and ro-vibrational coefficients of the CH 2 D 2 molecule . 4.2 Normal mode force parameters of the CH 2 D 2 molecule . . . . . . . . . . . . . . 4.3 Isotopic relations between spectroscopic parameters ω λ , x λµ , B e β , α β λ of the CH 4 and CH 2 D 2 species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Isotopic relations between spectroscopic parameters of the CH 4 and CH 2 D 2 Isotopic relations between spectroscopic parameters of the CH 4 and CH 2 D 2 species: Coriolis-type interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6 Synthetic spectrum of the CH 2 D 2 molecule, constructed on the base of isotopic relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.7 "Expanded" local mode approach . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Determination of the intramolecular potential energy surface of polyatomic molecules 2.1 Transformation coefficients of a polyatomic molecule . . . . . . . . . . . . . . . 2.2 Connection between curvilinear coordinates and normal coordinates for polyatomic molecule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 species: Fermi-type interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5

  Here f... are the parameters of the intramolecular potential function. It is important to note that the previous description in terms of curvilinear coordinates ∆r and ∆α can be generalized for other types of vibrational coordinates used for the description of vibrations in polyatomic molecules.

	2 1 + ∆r 2 3 ) + f + 1 2 1 6 f rrr (∆r 3 1 + ∆r 3 3 ) +	1 6	f ααα ∆α 3 +	1 2	f rrr (∆r 2 1 ∆r 3 + ∆r 2 3 ∆r 1 )
	+	1 2	f		

αα ∆α 2 + f rr ∆r 1 ∆r 3 + f rα (∆r 1 + ∆r 3 )∆α rrα (∆r 2 1 + ∆r 2 3 )∆α + 1 2 f rαα (∆r 1 + ∆r 3 )∆α 2 + f rr α ∆r 1 ∆r 3 ∆α + ... (2.31)

Table 3 .

 3 2. Transformation coefficients l N αλ of the CH 4 molecule. a)

Table 3 .

 3 3. Transformation coefficients l N αλ for the CH 4 molecule (simple form).

  λµνξ and different spectroscopic parameters of the CH 4 molecule

	2 3	F 244 = -	7 3	F 222 = -	2 3	F 444 = ρ e F 144 =	4ρ 2 e 5	F 122 = -ρ e F 234 = 2ρ e F 344 =	ρ 2 e 2	F 233
	= ρ 2 e F 334 = -2ρ 2 e F 134 =	ρ 3 e 90	F 111 =	ρ 3 e 90	F 333 =	ρ 3 e 90	F 133 = -	ρ 2 e 30	F 11 ,	(3.11)
	and											
		F 4444(2) = 2F 4444(1) = 2F 2244(2) = 4F 2222 = -	13ρ e 7	F 3444(1) = -	39ρ e 7	F 3444(2)
		= -	19ρ 2 e 7	F 3344(3) = -	57ρ 2 e 7	F 3344(1) =	24ρ 2 e 7	F 2334 = -	24ρ 2 e 7	F 2233(1)
		= -	12ρ 2 e 7	F 2233(2) =	18ρ 3 e 7	F 3334(1) =	18ρ 3 e 7	F 3334(2) =	ρ 4 e 70	F 1111 =	ρ 4 e 70	F 1133
		=	ρ 4 e 70	F 1333 =	ρ 4 e 70	F 3333(1) =	ρ 4 e 70	F 3333(2) ,	(3.12)
	all the others F ijkl parameters have been taken equal to zero, ρ e is the equilibrium distance
	between the nuclei C and H.				
	The following simple relations between the harmonic frequencies of the CH 4 molecule were
	obtained from (2.19):						
								ω 2 1 120	=		ω 2 2 32	=	ω 2 3 81 + 28	√	3	=	ω 2 4 72 -28 √	3	.	(3.13)
								F 33 267	=	F 11 272	=	4F 22 97ρ 2 e	=	3F 44 67ρ 2 e	= -	2F 34 19ρ e	,	(3.10)

λµν and quartic d λµνξ anharmonic parameters can be obtained 36c 111 = -177c 122 = 11c 133 = 268c 134 = -51c 144 = -585c 222 = -137c 233

  As a next step we can obtain simple relations between different spectroscopic parameters of the CH 4 molecule using relations between Coriolis coefficients, harmonic frequencies, c-and d-parameters. As the result, we produce a set of simple relations that connect different vibrational x λµ , rotational-vibrational Y λ and different tetrahedral splitting parameters

	x 11 =	21 32	x 12 =	4 17	x 13 = 80x 14 = 80x 22 =	28 25	x 23 =	13 5	x 24 =	11 25	x 33 =	9 5	x 34
	=	23 10	x 44 = -28G 22 = -	21 20	G 33 = 13G 34 = -	13 5	G 44 = 20S 34 = -30T 23 = 25T 24
	= -	19 5	T 33 = -27T 44 = -	7 32πcm H ρ 2 e	≈ -	7 3	B e ,	(3.18)
	and																
		10 11	Y 1 = -	17 44	Y	(1) 2	= 13Y	(2) 2	= Y 3 =	6 11	Y	(1) 4	=	17 5	Y	(2) 4	= -	2 e (m 3 16πcρ 4 H F 11 ) 1/2
		≈ -	11 3	B 2 e ω 3	≈ -	33 49	x 2 11 ω 3	.	(3.19)
																		1111 ≈	8 e ρ 2	F 11 .	(3.15)
	Taking into account relations (2.19) -(2.24), then the following approximate relations for
	cubic c = -41c 234 = -205c 244 =	26 5	c 333 = 45c 334 = 43c 444 = -	9 πcρ e	2 F 11 H m 3	1/4	, (3.16)
	and																
	2 3	d 1111 = -	10 29	d 1122 =	1 10	d 1133 = -	10 47	d 1144 = -10d 2222 = -	10 41	d 2233s = -	5 22	d 2233t
	= 5d 2244s = 20d 2244t =	10 33	d 3333s = -	2 3	d 3333t = -	10 69	d 3344sa =	1 4	d 3344 sb
	= -d 3344t =	10 3	d 4444s = -10d 4444t =	23 200 πcm H ρ 2 e	≈	92 75	B e .	(3.17)
	3.4 Relations between spectroscopic parameters of the CH 4
	molecule							

Table 3 .

 3 4. Vibrational spectroscopic parameters of the 12 CH 4 molecule (in cm -1 ).

	Parameter	From	From	From	Parameter	From	From From
				(2.22), (2.27)	[67]	[53]		(2.22), (2.27)	[67]	[53]
	1			2	3	4	1	2	3	4
	ω 1	a)	3040.38	3036.2	3040.38	x 34	-6.954	-8.243 -8.212
	ω 2			1570.05	1570.4	1569.87	x 44	-5.443	-5.854 -6.508
	ω 3			3158.40	3157.1	3153.38	G 22	0.447	-0.426 0.366
	ω 4			1345.53	1345.3	1346.10	G 33	11.922	11.544 9.406
	x 11	b)	-12.518	-12.476	-12.560	G 34	-0.962	-0.742 -0.715
	x 12		-19.075	-18.485	-14.453	G 44	4.815	5.020 5.026
	x 13		-53.202	-52.487	-52.562	T 23	0.416	0.406 0.357
	x 14		-0.156	-0.706	-3.516	T 24	-0.501	-0.907 -0.906
	x 22		-0.156	-0.295	-1.159	T 33	3.294	3.246 3.332
	x 23		-11.176	-12.847	-11.907	T 44	0.463	0.535 0.545
	x 24		-4.815	-5.207	-5.571	S 34	-0.625	0.016 -0.022
	x 33		-28.450	-28.336	-25.615		

a) 

Table 3 .

 3 5. Rotational-vibrational spectroscopic parameters of the 12 CH 4 molecule (in cm -1 ).

	Parameter From	From	From
					(2.28)	[35]	[72]
	1				2	3	4
	Y 3	a		-0.0334 -0.0357 -0.0434
	Y 1			-0.0367 -0.0377
	Y	(1) 2	b	0.0864	0.0879
	Y	(2) 2	c	-0.0026 -0.0066
	Y	(1) 4	b	-0.0612	-0.0648
	Y	(2) 4	c	-0.0098 -0.0018

Table 3 .

 3 6. Values of band centers of three lowest polyads of the CH 4 molecule (in cm -1 ).

  .1) The obtained transformation coefficients l N αλ of the CH 2 D 2 molecule are presented in Table 4.1. Table 4.1. Transformation coefficients l N αλ of the CH 2 D 2 molecule in the frame of the "expanded" local mode model.

	N α/λ	1	2	3	4	5	6	7	8	9
	1x									

Table 4 .

 4 2. Non-zero values of Coriolis coefficients ζ α λµ of the CH 2 D 2 molecule.

	1 50 √	3 .			
	Knowledge of the l N αλ allows to determine values which depend on l N αλ , for example,
	Coriolis coefficients ζ α λµ and ro-vibrational coefficients a αβ λ	[2, 6]
			ζ α λµ =	αβγ	l N βλ l N γµ ,	(4.2)
				βγ	N
	and				
		a αβ λ	= 2	αγκ βδκ	m N r e 1/2 N γ l N δλ .	(4.3)
			γδκ		N
	If we will take into account the data from Table 4.1, then the ζ α λµ and a αβ λ	will have the form
	presented in Tables 4.2 and 4.3.			

  of simple relations between normal mode force parameters c ijk /c ijkl of the mother molecule CH 4 and k ijk /k ijkl of the isotopomer CH 2 D 2

	coefficients C N ... and C N K ...	have been presented in section 2.2.
	Taking into account (3.4) -(3.8), data of Table 4.1 and relations (2.19) -(2.21) we can
	obtain two sets 36c 111 = -	πρ e c 9	2 F 11

  Isotopic relations between spectroscopic parameters ω λ , x λµ , B e β , α β λ of the CH 4 and CH 2 D 2 species As a next step, on the base of (3.9) -(3.10) and Tables 4.2 and 4.3 we can obtain isotopic relations between different spectroscopic parameters under substitution CH 2 D 2 ← CH 4 . At first we consider harmonic frequencies ω λ , anharmonic coefficients x λµ , equilibrium rotational parameters B e

					11 10	k 6788 =	7 5	k 6789 =	7 10	k 6799
	= 5k 7777 = -	7 25	k 7788 = 3k 7789 = 3k 7799 =	11 20	k 8888 = 24k 8889 = -	7 5	k 8899
	= -3k 8999 =	11 10	k 9999 .					(4.10)
	4.3						

β and ro-vibrational coefficients a β λ , i.e. the values presented in the unperturbed vibrational energies

Table 4 .

 4 4. Harmonic frequencies of the CH 2 D 2 molecule (in cm -1 ).

	Parameter	I a)	II b)	III c)
	ω 1	3103.07 3104.42 3102.5
	ω 2	2233.62 2237.99 2236.9
	ω 3	1468.64 1472.31 1470.9
	ω 4	1051.01 1054.44 1053.1
	ω 5	1356.72 1361.24 1360.1
	ω 6	3152.33 3159.79 3156.5
	ω 7	1113.34 1117.78 1116.2
	ω 8	2334.24 2339.57 2337.1
	ω 9	1263.74 1267.46 1265.7

Table 4 .

 4 5. Harmonic frequencies of the CH 4 molecule (in cm -1 ).

	Parameter	[53]	[87]	cc-pVDZ, [101] cc-pVTZ, [101] cc-pVQZ, [101]	[72]	Error (%)
	ω 1	3040.38 3040.38	3040.4	3034.7	3036.2	3025.5	0.5
	ω 2	1569.87 1570.05	1550.5	1570.8	1570.4	1582.7	2.0
	ω 3	3153.38 3158.40	3175.0	3153.9	3157.1	3156.8	0.7
	ω 4	1346.10 1345.53	1333.8	1344.0	1345.3	1367.4	2.5

Table 4 .

 4 8. Parameters of vibrational interactions in the CH 2 D 2 molecule (in cm -1 ).

	Type of interaction	Parameter	I a)	Equation	II b)
		(34,99) F 0	-1.34	(3.26)	1.75

(..v 1 ..v 6 ..)/(..v 1 ± 2..v 6 ∓ 2..)

(11,66) 

F 0 -123.44 (3.23) -126.44 (..v 4 ..v 7 ..)/(..v 4 ± 2..v 7 ∓ 2..) (44,77) F 0 -6.18 (3.23) -14.23 (..v 3 ..v 4 ..v 9 ..)/(..v 3 ± 1..v 4 ± 1..v 9 ∓ 2..)

Table 4 .

 4 

8 also contains results of numerical estimations of the interaction parameters with isotopic relations (3.45) (column I) and corresponding values obtained from an analysis of experimental data (column II). One can see good correlation of both sets of parameters.

  It should be noted that calculated values were determined without any information about CH 2 D 2 molecule (only two parameters B e and Y 3 of the CH 4 molecule were used as the initial values). Correspondence between predicted values and values obtained from experimental data can be considered as quite satisfactory.Table4.11. Some Coriolis interaction parameters (λ,µν) C α of the CH 2 D 2 molecule (in cm -1 ). These three bands are the strongest bands in the region 3450 -3460 cm -1 . An experimental spectrum recorded in the same region at a temperature 78 K in[57, 81] is shown on the part V, Figure4.2.

	α λ µ ν	I a)		II b)
	x 8 4 7 0.626 0.591
	y 1 3 9 -0.383 -0.317
	y 2 4 9 0.370 0.327
	z 2 4 7 0.689 0.763
	z 8 4 5 0.834 0.906
	z 8 7 9 1.013 0.825
	a) Calculated on the base of (3.60).		
	Some remarks concerning these synthetic spectra should be made:
	1. Comparing the synthetic spectra on Figure 4.2, parts I -IV, one can see that the spectra
	of separate bands are moved with respect to each other by values of 2 -4 cm
		3/2
	4πcρ 3 e m	5/4 H F	1/4 11

.

(4.58)

Numerical results calculated on the base of relations

(3.60) 

are shown in column I of Table 4.11. Column II contains values of corresponding parameters obtained from experimental data [81]. b) Taken from analysis of experimental data [81].

4.6 Synthetic spectrum of the CH 2 D 2 molecule, constructed on the base of isotopic relations Results of previous sections of this chapter give us the possibility to expect that: 1. Analogous results can be derived for more complicated molecules for which the methane is the prototype molecule; 2. Obtained results can be useful in the study of complicated ro-vibrational structures of high excited vibrational states of the CH 2 D 2 molecule because they give a good prediction of qualitative picture of spectra. As an illustration, on Figure 4.2, part IV we present a small part of the synthetic ro-vibrational spectrum of the CH 2 D 2 molecule in the region 3450 -3460 cm -1 . The synthetic spectrum, part IV, is a compilation of three individual synthetic spectra of the bands ν 4 + 2ν 9 (part I), ν 2 + ν 9 (part II) and ν 3 + 2ν 4 (part III). -1 . At the same time, the relative line positions in all three bands are correct. It is caused by the fact that the isotopic relations derived in this chapter give values of good relative accuracy for all predicted spectroscopic parameters (vibrational parameters, rotational parameters and resonance ones) of the CH 2 D 2 molecule (differences are of the order of some percents), but considerably worse absolute values for vibrational parameters (error

  5, 6 are presented in Appendix 5. It is possible to show (using general formula (4.8)) that the symmetrized functions (4.19) can be presented in the form of one of these four combinations:

  a,b depend on rotational operators J α , summation is carried out over all degenerate and interacting vibrational states. As XYZ 3 molecule has C 3v symmetry, the rotational operators H

a,b and vibrational functions |a and b| in (4.19) should have properties of irreducible tensorial sets belonging to the C 3v symmetry group. It means that they can be written in a form which takes into account the symmetry properties of rotational operators and vibrational functions:

  1 , A 2 or E (in accordance with irreducible representations of the C 3v group). Thus different combinations of indices γ, γ and Γ in (4.22) lead to different forms of operators H n Γ vlγ,v l γ . Diagonal blocks of A 1 and/or A 2 symmetry Symmetry properties of the ZXY 3 (C 3v ) molecule allow one to obtain operators of diagonal blocks of the A 1 and/or A 2 symmetry in the following form:

  1 ,vA 2 is a parameter of Coriolis resonance interaction in (4.31); η vΓ,vΓ = η vnE,vmE is a parameter of Fermi interaction in (4.35); λ, µ, ν are different combinations of values 4, 5 and/or 6; l λ , l µ and l ν are vibrational quantum numbers in wave functions (v 1 , v 2 , v 3 , v 4 , l 4 , v 5 , l 5 , v 6 , l 6 ); nonzero coefficients c λ for the most common situations are presented in Table5.1. It is important to note that dependence of parameters η ... on the values of quantum numbers l λ /l

µ /l ν is not trivial, and relation (4.57) does not depend on the values of quantum numbers v λ /v µ /v ν . Obtained Table

5

.1. Values of nonzero coefficients c from (4.57), used for determination of parameters η.

  4.27) -(4.28), (4.29) -(4.30) and (4.36) -(4.37)). On the base of the Hamiltonian (4.10) -(4.17) and general equation (4.38) we can show that all these effects are described by the following parameters:

Table 5 .

 5 2. Values of nonzero coefficients d from (4.59), (4.60), used for determination of parameters γ vΓ,vΓ and β vΓ,vΓ .

Table 5 .

 5 3. Transformation coefficients l N αλ of CH 3 D in the frame of the "expanded" local mode approach.a) 

	N α/λ	1	2	3	4	5	6	7	8	9
	1x									

Table 5 .

 5 4. Transformation coefficients l N αλ of CHD 3 in the frame of the "expanded" local mode approach.a) 

	N α/b	1	2	3	4	5	6	7	8
	1x	2C -46C 20C	60C				

Table 5 .

 5 5. Harmonic frequencies of the CH 3 D and CHD 3 molecules (in cm -1 ).Anharmonic coefficients x ab /x l λ lµ and ro-vibrational coefficients α β b of CH 3 D and CHD 3

	Parameter	I a)	II b)
		CH 3 D	
	ω 1	3071.44 3071.4
	ω 2	2284.20 2285.2
	ω 3	1340.31 1339.8
	ω 4	3157.12 3156.8
	ω 5	1509.73 1508.1
	ω 6	1187.97 1188.1
		CHD 3	
	ω 1	3130.22 3130.5
	ω 2	2192.31 2191.3
	ω 3	1025.81 1025.4
	ω 4	2337.47 2337.0
	ω 5	1321.20 1321.4
	ω 6	1055.56 1055.5

a) 

Calculated on the base of (4.63) -(4.64). b) Taken from ab initio calculations

[67]

.

Table 5 .

 5 6. Anharmonic coefficients x λµ (in cm-1 ).If one takes into account that the 47 values of the x λµ -parameters in columns 2 and 5 were calculated without any information about CH 3 D and CHD 3 molecules and using only the x 11 parameter of the CH 4 mother molecule, one can see satisfactory agreement in most cases, with the exception of the 6 parameters x 15 , x 26 , x 55 , x 66 , x l 5 l 5 and x l 6 l 6 of CHD 3 . The differences in the values of these parameters can be explained by the fact that in isotopic relations (4.67) we took into account the following resonance interactions:

			CH 3 D			CHD 3	
	Parameter	Calc. a)	[96] b)	Exp. c)	Calc. d)	[96] b)	Exp. c)
	x	-17.883	-17.197	-5.321	-62.590	-59.221	-58.994
	x	-1.841	-1.878	-2.555	-2.086	-2.204	-2.905
	x	-1.669	-0.981	4.884	-9.780	-9.731	-9.193
	x	-75.108	-72.771	-99.022	2.235	2.184	2.337
	x	-19.258	-19.016	-9.179	-41.727	-21.111	-21.367
	x	-5.690	-5.612	-7.233	-0.501	-0.309	-1.406
	x	-34.772	-31.167	-27.944	-8.941	-8.826	1.139
	x	-6.259	-6.739	-7.312	15.648	15.727	3.096
	x	1.788	1.639	-7.730	-39.118	-37.352	-42.727
	x	-3.338	-3.331	-3.522	-4.173	-4.017	-5.220
	x	-22.354	-22.266	-17.587	-10.432	4.674	-2.489
	x	-6.954	-6.802	-7.759	-7.153	-7.230	-6.188
	x	-10.431	-9.440	-10.517	-8.345	-8.449	-6.977
	x	-2.504	-2.033	-2.908	-1.391	-1.029	-2.795
	x	-2.086	-1.091	-3.073	1.043	1.638	3.445
	x	-31.295	-31.611	-32.402	-20.863	-18.601	-16.349
	x	-18.777	-14.611	-8.373	-7.153	-7.195	-8.454
	x	-8.345	-7.686	-9.304	-8.345	-8.402	-11.044
	x	-1.788	-1.874	-4.417	0.417	-4.604	-4.552
	x	-3.130	-4.068	-5.090	0.051	0.055	4.919
	x	0.136	0.261	0.261	-1.788	-5.500	-5.306
	x l 4 l 4	12.518	12.636	28.539	8.941	8.252	8.560
	x l 4 l 5	-1.788	-1.721	-7.062	0.193	-0.060	3.584
	x l 4 l 6	-0.245	-0.230	3.160	-0.736	-0.729	1.143
	x l 5 l 5	0.368	0.384	2.380	0.313	5.403	5.095
	x l 5 l 6	-5.007	-5.056	-4.684	0.927	0.921	5.894
	x l 6 l 6	0.695	0.645	1.516	-0.501	3.251	2.871

  x 3 and α x 6 parameters very close to theoretically predicted ones. Obtained values of α x 3 and α x 6 parameters are shown in column 4 of Table 5.7. One can see very good correlation between values α presented in the second and fourth columns. Centrifugal distortion coefficients D J , D JK , D K and parameter It is known from (4.14) -(4.17) that coefficients a .. .. are proportional to 1/ B e .. . It means that both the centrifugal distortion coefficients D J , D JK , D K and parameter are proportional to

	(B e .

. ) 3 /ω 2 .. . Using relations (4.63) -(4.66) in formulae (4.53) -(4.56), we can obtain the following result:

Table 5 .

 5 8 illustrates the correctness of the obtained relations. Results of calculation with isotopic relations are shown in columns 2 and 4 of Table 5.8. Columns 3 and 5 present corresponding experimental values for the ground vibrational states from

Table 5 .

 5 8. Centrifugal distortion coefficients D J , D JK , D K and parameter (in cm -1 ).

		CH 3 D		CHD 3
	Parameter	Calc. a)	Exp. b)	Calc. c)	Exp. d)
	D J 10 4	0.503	0.526	0.479	0.495
	D JK 10 4	1.189	1.264	-0.372	-0.383
	D K 10 4	-0.761	-0.790	0.130	0.134
	10 4	0.030	0.032	0.054	-0.289

a) 

  +F 134 S 1 (S 3x S 4x + S 3y S 4y + S 3z S 4z ) + +F 333 S 3x S 3y S 3z + F 334 (S 3x S 3y S 4z + S 3y S 3z S 4x + S 3x S 3z S 4y ) +F 344 (S 3x S 4y S 4z + S 3y S 4z S 4x + S 3z S 4x S 4y ) + F 444 S 4x S 4y S 4z , (5.81)

												2 3x + S 2 3y + S 2 3z )
	+	1 2	F 222 S 2a (S 2 2a -3S 2 2b ) +	1 2	1 2 F 233 S 2a S 2 3z -F 144 S 1 (S 2 4x + S 2 4y + S 2 4z ) 1 2 S 2a S 2 3x -1 2 S 2a S 2 3y +	√ 3 2	S 2b S 2 3x -	√ 3 2	S 2b S 2 3y
	+F 234 S 2a S 3z S 4z -	1 2	S 2a S 3x S 4x -	1 2	S 2a S 3y S 4y +	√ 2 3	S 2b S 3x S 4x -	√ 2 3	S 2b S 3y S 4y
	+	1 2	F 244 S 2a S 2 4z -	1 2	S 2a S 2 4x -	1 2	S 2a S 2 4y +	√ 2 3	S 2b S 2 4x -	√ 2 3	S 2b S 2 4y

  F 1333 S 1 S 3x S 3y S 3z +F 1334 S 1 (S 3x S 3y S 4z + S 3x S 3z S 4y + S 3y S 3z S 4x ) + F 1344 S 1 (S 3x S 4y S 4z + S 3y S 4x S 4z + S 3z S 4x S 4y ) -F 2234(2) )S 2a S 2b (S 3y S 4y -S 3x S 4x ) +F 2334 S 2a S 3x S 3y S 4z -F 3344(2) (S 3x S 3y S 4x S 4y + S 3x S 3z S 4x S 4z + S 3y S 3z S 4y S 4z )

	+	F 3333(2) (S 2 3x S 2 3y + S 2 3x S 2 3z + S 2 3y S 2 3z ) +	1 4	F 4444(2) (S 2 4x S 2 4y + S 2 4x S 2 4z + S 2 4y S 2 4z )
	+	F 3334(1) (S 3 3x S 4x + S 3 3y S 4y + S 3 3z S 4z ) +	1 6	F 3444(1) (S 3x S 3 4x + S 3y S 3 4y + S 3z S 3 4z )
	+	F 3334(2) (S 2 3x + S 2 3z )S 3y S 4y + (S 2 3x + S 2 3y )S 3z S 4z + (S 2 3y + S 2 3z )S 3x S 4x
	+	F 3444(2) S 3x S 4x (S 2 4y + S 2 4z ) + S 3y S 4y (S 2 4x + S 2 4z ) + S 3z S 4z (S 2 4x + S 2 4y )
	+ 4z ) + + F 3344(1) (S 2 3x S 2 4x + S 2 3y S 2 4y + S 2 3z S 2 F 3344(3) S 2 3x (S 2 4y + S 2 4z ) + S 2 3y (S 2 4x + S 2 4z ) + S 2 3z (S 2 4y + S 2 4x
	2 4x + S 2 4y -2S 2 4z ) + +F 1444 S 1 S 4x S 4y S 4z + 1 24 F 2222 (S 2 2a + S 2 2b ) 2 + 1 4 F 2233(1) S 2 2a S 2 3z +	1 4	F 2233(2) S 2 2b S 2 3z
	+ +	1 16 √ 3 (F 2233(1) + 3F 2233(2) )S 2 2a (S 2 3y + S 2 3x ) + 8 (F 2233(1) -F 2233(2) )S 2a S 2b (S 2 3y -S 2 3x ) + 1 16	(3F 2233(1) + F 2233(2) )S 2 2b (S 2 3y + S 2 3x ) 1 4 F 2244(1) S 2 2a S 2 4z + 1 4 F 2244(2) S 2 2b S 2 4z
	+ +	1 16 √ 3 (F 2244(1) + 3F 2244(2) )S 2 2a (S 2 4y + S 2 4x ) + 8 (F 2244(1) -F 2244(2) )S 2a S 2b (S 2 4y -S 2 4x ) + 1 16	(3F 2244(1) + F 2244(2) )S 2 2b (S 2 4y + S 2 4x ) 1 2 F 2234(1) S 2 2a S 3z S 4z + 1 2 F 2234(2) S 2 2b S 3z S 4z
	+ +	1 8 √ (F 2234(1) + 3F 2234(2) )S 2 2a (S 3y S 4y + S 3x S 4x ) + 3 4 (F 2234(1) 1 2 S 3y S 3z S 4x -1 2 S 3x S 3z S 4y + 1 (3F 2234(1) + F 2234(2) )S 2 2b (S 3y S 4y + S 3x S 4x ) 8 √ 3 2 S 1 2 S 3x S 4y S 4z -1 2 S 3y S 4x S 4z + √ 3 2 S 2b (S 3x S 4y S 4z -S 3y S 4x S 4z )
	+	1 24	F 3333(1) (S 4 3x + S 4 3y + S 4 3z ) +	1 24	F 4444(1) (S 4 4x + S 4 4y + S 4 4z )

2b (S 3y S 3z S 4x -S 3x S 3z S 4y ) +F 2344 S 2a S 3z S 4x S 4y -
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2 "Расширенное" приближение локальных мод применительно к молекуле метана 2.1 Компиляция теории изотопозамещения и "расширенного" приближения локальных мод . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2

  бесконечномерными, а значит мы не можем диагонализовать матрицу гамильтониана по схеме, описанной выше. Рассмотрим другой путь решения проблемы построения и дальнейшей диагонализации матрицы гамильтониана. В качестве первого шага построим матрицу α|H|β на функциях |α . Следовательно матричные элементы α|H|β будут операторами, зависящими от переменных b. Вторым шагом построим и попробуем диагонализовать матрицу i| α|H|β |j . В общем случае операторная матрица α|H|β будет полностью заполнена. Таким образом, построив для операторной матрицы α|H|β числовую i| α|H|β |j , можно определить собственные значения и собственные функций исходного оператора H с помощью процедуры диагонализации, описанной в выражениях (1.40), (1.41). Но существует и другая возможность. Можно заменить оператор H другим оператором вида:

) где A β,αi -элементы унитарной матрицы A, которая диагонализует матрицу исходного оператора. Отсюда следует, что задачу можно решить, выбрав соответствующий набор функций |i . Тем не менее описанная выше схема не подходит для практической реализации в задачах молекулярной спектроскопии, поскольку собственные функции оператора нулевого приближения H 0 образуют бесконечномерный базис. Это приводит к тому, что все матрицы становятся

  Целесообразно выбрать оператор G в таком виде, чтобы все элементы α 0 |H |β или α |H |β 0 обратились в нули. Если теперь построить числовую матрицу i| α|H |β |j , то она примет такой же вид, как и матрица α|H |β . Чтобы определить собственные значения оператора H (и, соответственно, оператора H), необходимо диагонализовать построенную матрицу. Известно, что определитель матрицы не меняется при перестановке её строк и столбцов, поэтому можно привести матрицу α|H |β к блочно-диагональному виду. Таким образом, матрица i| α|H |β |j разобьется на независимые подматрицы, диагонализация которых может выполняться независимо. Отметим, что подматрица i|H ef f |j является конечномерной по индексам α и β. Переобозначим операторную матрицу α 0 |H |β 0 как H ef f . Тогда, если рассматривать только уровни энергии, порождаемыми состояниями |α 0 , то нет необходимости диагонализовать всю матрицу i| α|H |β |j , достаточно диагонализовать лишь ее подматрицу i|H ef f |j (Рисунок 1.1).

	Рис. 1.1: Графическое представление матрицы гамильтониана с выделенной подматрицей
	резонирующих состояний

) где g n = g n (a, b) -малые эрмитовы операторы порядка κ n . Для введенного оператора H повторяется та же процедура, что и для исходного гамильтониана H, а именно, строится матрица α|H |β . Т.к. оператор G произвольный, это дает возможность выбрать его таким образом, чтобы определенные элементы матрицы α|H |β обратились в нуль. Для этого пространство L α волновых функций |α разбивается на два произвольных подпространства L α 0 и L α так, что L α = L α 0 + L α , причем необходимо, чтобы пространство L α 0 было конечномерным. Тогда все матричные элементы α|H |β разобьются на четыре совокупности элементов: α 0 |H |β 0 , α 0 |H |β , α |H |β 0 , α |H |β . Оператор H ef f называют эффективным оператором системы N состояний |α 0 1 ,|α 0 2 , . . . ,|α 0

  = x, y, z; λ, µ = 1, 2 1 , 2 2 , 3 x , 3 y , 3 z , 4 x , 4 y , 4 z характеризуют различные колебательные моды; -полностью антисимметричный тензор.

	λµ = что соответствует требованию "нормальности" колебательных координат Q ζ α N βγ αβγ l N βλ l N γµ , где α, β	.10) (2.11)

λ (здесь Vвнутримолекулярная потенциальная функция). В случае молекулы метана величина параметра sinγ была оценена из анализа: а) соотношений между гармоническими частотами ω λ молекул CH 4

[53, 66]

, CH 2 D 2

[57]

, CH 3 D, CHD 3

[60] 

и б) экспериментальных значений коэффициентов Кориолиса

[35]

. Необходимо отметить, что коэффициенты Кориолиса произвольной многоатомной молекулы имеют вид:

  Константы форм колебаний, l N αλ , для молекулы CH 4 .

	Таблица 2.3.			
	Далее на основе экспериментальных значений гармонических частот можно найти пара-
	метр sinγ в аналитической форме или численно.
	2) Параметр sinγ может быть оценен на основе экспериментальных значений коэффи-
	циентов Кориолиса в соответствии с выражением (2.11). Данная возможность осуществ-
	ляется проще по сравнению с первой, поскольку в молекуле метана величина одного из
	коэффициентов Кориолиса, а именно ζ α 3x,3y , очень близка к нулю. Это дает возможность
	(поскольку все коэффициенты Кориолиса являются функциями только констант форм
	колебаний) рассматривать соотношения ζ α 3x,3y = 0 в качестве уравнения для определения
	произвольного параметра sinγ. Решая это уравнение, можно показать, что:
		sinγ =	3 5	.	(2.15)
	Такое простое значение sinγ позволяет получить чрезвычайно простые результаты для
	констант форм колебаний, представленные в Таблице 2.3.
	В свою очередь, это позволяет получить очень простые результаты для коэффициентов
	Кориолиса ζ α λµ (2.11) и колебательно-вращательных коэффициентов:
	a αβ λ = 2	αγκ βδκ		m 1/2 N r e N γ l N γλ ,	(2.16)
	γδκ		N	
	где r e N γ -равновесные координаты ядер молекулы.

.14) 

и l N αλ -константы форм колебаний "материнской" молекулы, представленные в Таблице 2.2. Решая уравнения (2.12) и (2.13) получим связь между гармоническими частотами различных изотопических модификаций как функции параметра неоднозначности sinγ.

  1-1,5%) параметров ангармоничности c λµν , d λµνξ и различных спектроскопических параметров молекулы CH 4 :

								F 33 267	=	F 11 272	=	4F 22 97ρ 2 e	=	3F 44 67ρ 2 e	= -	2F 34 19ρ e	,	(2.19)
	2 3	F 244 = -	7 3	F 222 = -	2 3	F 444 = ρ e F 144 =	4ρ 2 e 5	F 122 = -ρ e F 234 = 2ρ e F 344 =	ρ 2 e 2	F 233
	= ρ 2 e F 334 = -2ρ 2 e F 134 =	ρ 3 e 90	F 111 =	ρ 3 e 90	F 333 =	ρ 3 e 90	F 133 = -	ρ 2 e 30	F 11 ,	(2.20)
	и											
		F 4444(2) = 2F 4444(1) = 2F 2244(2) = 4F 2222 = -	13ρ e 7	F 3444(1) = -	39ρ e 7	F 3444(2)
		= -	19ρ 2 e 7	F 3344(3) = -	57ρ 2 e 7	F 3344(1) =	24ρ 2 e 7	F 2334 = -	24ρ 2 e 7	F 2233(1)
		= -	12ρ 2 e 7	F 2233(2) =	18ρ 3 e 7	F 3334(1) =	18ρ 3 e 7	F 3334(2) =	ρ 4 e 70	F 1111 =	ρ 4 e 70	F 1133
		=	ρ 4 e 70	F 1333 =	ρ 4 e 70	F 3333(1) =	ρ 4 e 70	F 3333(2) ,	(2.21)
	все другие параметры F ω 2 1 120	=		ω 2 2 32	=	ω 2 3 81 + 28	√	3	=	ω 2 4 72 -28 √	3	.	(2.22)
	Также анализ данных из работ [67] -[69] показывает, что можно использовать следующие
	соотношения между параметрами F 11 , F 111 и F 1111 потенциальной функции (2.17):
													F 111 ≈ -	3 ρ e	F 11	(2.23)
	и											
													F 1111 ≈	8 e ρ 2	F 11 .	(2.24)
	Если учесть еще и выражения (2.19) -(2.24), то получим следующие приближенные
	соотношения между кубичными c λµν и квартичными d λµνξ параметрами ангармоничности:

ijkl положены равными нулю. Величина ρ e -равновесное расстояние между ядрами С и H. Из уравнения (2.19) следуют соотношения для гармонических частот молекулы CH 4 :

  ).

	Параметр	Из				Из	Из	Параметр	Из	Из	Из
				(2.22), (2.27)			[67]	[53]	(2.22), (2.27)	[67]	[53]
	1			2				3	4	1	2	3	4
	ω 1	a)	3040.38	3036.2	3040.38	x 34	-6.954	-8.243 -8.212
	ω 2			1570.05	1570.4	1569.87	x 44	-5.443	-5.854 -6.508
	ω 3			3158.40	3157.1	3153.38	G 22	0.447	-0.426 0.366
	ω 4			1345.53	1345.3	1346.10	G 33	11.922	11.544 9.406
	x 11	b)	-12.518			-12.476	-12.560	G 34	-0.962	-0.742 -0.715
	x 12		-19.075			-18.485	-14.453	G 44	4.815	5.020 5.026
	x 13		-53.202			-52.487	-52.562	T 23	0.416	0.406 0.357
	x 14		-0.156			-0.706	-3.516	T 24	-0.501	-0.907 -0.906
	x 22		-0.156			-0.295	-1.159	T 33	3.294	3.246 3.332
	x 23		-11.176			-12.847	-11.907	T 44	0.463	0.535 0.545
	x 24		-4.815			-5.207	-5.571	S 34	-0.625	0.016 -0.022
	x 33		-28.450			-28.336	-25.615
					Параметр	Из	Из	Из
									(2.28)	[35]	[72]
					1				2	3	4
					Y 3	a		-0.0334 -0.0357 -0.0434
					Y 1			-0.0367 -0.0377
					Y	(1) 2	b	0.0864	0.0879
					Y	(2) 2	c	-0.0026 -0.0066
					Y	(1) 4	b	-0.0612	-0.0648
					Y	(2) 4	c	-0.0098 -0.0018
	a Рассчитаны на основе параметра ω 1 , взятого из работы [73] и ρ e из работы [59]. Все
	остальные параметры получены на основе соотношений (2.25) с использованием первона-
	чального значения параметра Y 3 .

a) "Основное" "экспериментальное" значение параметра ω 1 было взято из

[73]

. b) Необходимое для вычислений значение параметра ρ e = 1.0855 Å было взято из

[59]

. Таблица 2.5. Колебательно -вращательные спектроскопические параметры молекулы

12 

CH 4 (в см -1 ). b Резонансное взаимодействие между состояниями

  Вычислены на основе ab initio F i..j силовых параметров из работы[67], но с учетом того же набора резонансных взаимодействий, что и при получении изотопических соотношений, уравнение(3.15).

	11	-27.82 -27.34 -27.34 -25.30	x 39	0.74	0.65	0.65 -0.18
	x 12	-1.25	-0.83	-0.83	-3.29	x 44	-0.31 -4.49 -0.05 -5.21
	x 13	-29.59	-7.25 -30.07 -15.23	x 45	0.43	0.51	0.51	1.47
	x 14	-1.79	-2.05	-2.05	-2.42	x 46	-1.04 -1.41 -1.41 -1.14
	x 15	-10.43 -11.75 -11.75 -11.75 e)	x 47	1.79	0.73	0.73 -0.87
	x 16	-112.66 -115.08 -115.08 -114.11	x 48	-13.61 -15.62 -14.99 -15.62 e)
	x 17	-8.35	-8.79	-8.79	-7.77	x 49	-1.39 -1.91 -1.91 -2.57
	x 18	-0.01	0.40	0.40	-9.22	x 55	-2.24 -2.21 -2.21 -2.65
	x 19	-28.45	-6.14 -28.22	-0.62	x 56	-21.91 -12.87 -22.72 -11.91
	x 22	-13.61 -14.13 -14.13 -10.45	x 57	-0.18	0.39 -0.15	0.39 e)
	x 23	-1.79	-2.07	-2.07	-3.61	x 58	-7.82 -9.66 -8.79 -9.66 e)
	x 24	-16.47	0.85 -16.93	-0.57	x 59	1.79 -8.76	2.43 -9.67
	x 25	-6.95	-7.32	-7.32	-7.32 e)	x 66	-31.30 -31.64 -31.64 -31.57
	x 26	1.25	-0.51	1.81	-0.51 e)	x 67	-18.97 -11.27 -18.29 -11.06
	x 27	-10.43	-8.02 -10.33	-1.75	x 68	3.13	3.72	3.72	3.72 e)
	x 28	-60.09 -59.73 -59.74 -58.07	x 69	-20.86 -10.82 -22.01 -12.73
	x 29	-4.17	-4.34	-4.34	-7.67	x 77	-1.96 -1.88 -1.88 -6.59
	x 33	-1.12	-6.73	-1.03	-5.19	x 78	-5.96 -7.00 -6.97 -7.00 e)
	x 34	-1.79	-1.54	-1.54	-1.98	x 79	2.50	3.59	3.59	2.46
	x 35	-0.25	-0.45	-0.45	-0.45 e)	x 88	-18.30 -18.58 -18.58 -15.26
	x 36	-31.30 -22.15 -32.35 -21.51	x 89	-8.35 -15.62 -7.78 -9.15
	x 37	2.63	-7.53	2.68	-7.31	x 99	1.25 -4.35	1.17	5.26
	x 38	-3.50	-3.07	-3.07	-3.90					

a) 

Вычислены на основе уравнения (3.15). b) Взяты из ab initio вычислений,

[67]

. c) d) Взяты из анализа экспериментальных данных,

[57]

.

  (..v 4 ..v 7 ..)/(..v 4 ± 2..v 7 ∓ 2..)(..v 3 ..v 4 ..v 9 ..)/(..v 3 ± 1..v 4 ± 1..v 9 ∓ 2..) (..v 1 ..v 4 ..v 6 ..v 7 ..)/(..v 1 ± 1..v 4 ∓ 1..v 6 ∓ 1..v 7 ± 1..)(17,46) F 0 ..v 5 ..v 7 ..v 9 ..)/(..v 3 ± 1..v 5 ∓ 1..v 7 ± 1..v 9 ∓ 1..)(37,59) F 0 ..v 5 ..v 7 ..v 9 ..)/(..v 3 ± 1..v 5 ∓ 1..v 7 ∓ 1..v 9 ± 1..)(39,57) F 0 ..v 5 ..v 7 ..v 9 ..)/(..v 4 ± 1..v 5 ± 1..v 7 ∓ 1..v 9 ∓ 1..)(45,79) F 0 ..v 5 ..v 7 ..v 9 ..)/(..v 4 ± 1..v 5 ∓ 1..v 7 ∓ 1..v 9 ± 1..)(49,57) F 0 ..v 6 ..v 7 ..)/(..v 3 ± 1..v 6 ∓ 1..v 7 ± 1..) (..v 5 ..v 6 ..v 9 ..)/(..v 5 ± 1..v 6 ∓ 1..v 9 ± 1..) (..v 4 ..v 8 ..v 9 ..)/(..v 4 ± 1..v 8 ∓ 1..v 9 ± 1..)

		F 0	-123.44	(3.23)	-126.44
		(44,77) F 0	-6.18	(3.23)	-14.23
		(34,99) F 0	-1.34	(3.26)	1.75
			-7.54	(3.29)	-7.03
	(..v 3 -15.70	(3.29)	-17.42
	(..v 3 24.58	(3.29)	23.02
	(..v 5 8.31	(3.29)	7.44
	(..v 4 20.19	(3.29)	19.86
	(..v 1 ..v 9 ..)/(..v 1 ± 1..v 9 ∓ 2..)	(1,99) F 0	-164.96	(3.45)	-158.02
	(..v 1 ..v 3 ..)/(..v 1 ± 1..v 3 ∓ 2..)	(1,33) F 0	-87.98	(3.45)	-95.50
	(..v 2 ..v 4 ..)/(..v 2 ± 2..v 4 ∓ 2..)	(2,44) F 0	67.68	(3.45)	72.75
	(..v 2 ..v 7 ..)/(..v 2 ± 2..v 7 ∓ 2..)	(2,77) F 0	67.68	(3.45)	65.01
	(..v 3 (6,37) F 0	-219.95	(3.45)	-218.61
		(6,59) F 0	-219.96	(3.45)	-229.11
		(8,49) F 0	73.32	(3.45)	68.45

  .56) В уравнении(3.56) нужно учесть следующие условия: 1) если ξ= 1 и λ= 6; или если ξ= 2 и λ= 8; или если ξ= 1 и µ= 3 или 9; или если ξ= 2 и µ= 4 или 7, то два последних слагаемых в предпоследней квадратной скобке следует положить равными нулю; 2) если ω ξ = 3, 4, 5, 7, или 9; или если ω λ ≈ (ω µ + ω ξ ), то два последних слагаемых в последней строке также следует положить равными нулю. Как и в предыдущем параграфе, мы не получаем здесь формулы для коэффициентов взаимодействия (λ,µµ) C αβ , потому что для реализации этого необходимо принять во внимание четвертый порядок теории возмущений.

	Используя ту же информацию, что и в предыдущем разделе, получаем изотопические
	соотношения:					
	-	32 3	B e Y 3	1/2	=	18 5

  C α в молекуле CH 2 D 2 (в см -1 ). Взаимодействия Кориолиса v|...|ṽ ≡ v λ ...v µ ...v ν |...|v λ ±1...v µ ∓1...v ν ∓1 Для описание взаимодействия Кориолиса типа v|..|ṽ ≡ v λ ..v µ ..v ν |..|v λ ±1..v µ ∓1..v ν ∓1 было получено выражение:

	α λ µ ν	I a)	II b)
	y 8 3 3 0.077 0.084
	y 8 4 4 -0.077 -0.069
	y 8 7 7 0.287 0.259
	y 8 9 9 0.370 0.405
	z 6 3 3 0.383 0.367
	z 6 5 5 0.164 0.171
	x 8 4 7 0.626 0.591
	y 1 3 9 -0.383 -0.317
	y 2 4 9 0.370 0.327
	z 2 4 7 0.689 0.763
	z 8 4 5 0.834 0.906
	z 8 7 9 1.013 0.825
	a) Вычислены на основе уравнений (3.57) или (3.60).	
	b) Взяты из анализа экспериментальных данных, [81].	

  D 2 , т.к. они дают возможность качественно предсказывать спектры молекул. В качестве иллюстрации корректности и работоспособности полученных результатов, нами был построен синтетический колебательно -вращательный спектр молекулы CH 2 D 2 , небольшая часть которого представлена на Рисунке 3.2.IV (в районе 3450 -3460 см -1 ). Синтетический спектр (Рисунок 3.2.IV) представляет из себя компиляцию трех отдельных синтетических спектров полос ν 4 + 2ν 9 (Рисунок 3.2.I), ν 2 + ν 9 (Рисунок 3.2.II) и ν 3 + 2ν 4 (Рисунок 3.2.III). Указанные три полосы являются наиболее сильными, расположенными в районе 3450 -3460 см -1 . Экспериментальный спектр, зарегистрированный в том же диапазоне при температуре 78 К на Фурье спектрометре Bruker IFS 125 в Федеральном Это вызвано следующим фактом: когда мы вычисляли положения линий, мы учитывали присутствие резонансных взаимодействий между полосами ν 4 +2ν 9 , ν 2 +ν 9 и ν 3 +2ν 4 , с одной стороны, и некоторые "темные" полосы (ν 4 + ν 7 + ν 9 , 2ν 7 + ν 9 , ν 4 + ν 5 + ν 7 и т.д.), с другой стороны. В то же Рис. 3.2: Сравнение экспериментального и синтетического спектра молекулы CH 2 D 2 в диапазоне 3450 -3460 см -1 . время, т.к. в экспериментальном низкотемпературном спектре присутствуют только переходы с малыми значениями квантового числа J, то интенсивности линий в синтетическом спектре были оценены на основе учета только одного главного параметра дипольного момента для каждой полосы; отношение абсолютных величин этих параметров было оценено как 1 : 1.8 : 1/ √ 5 для полос ν 4 + 2ν 9 , ν 2 + ν 9 и ν 3 + 2ν 4 , соответственно. Кроме того, из-за отсутствия информации о "темных" полосах, все их параметры дипольного момента были приняты равными нулю.

	3.6 Синтетический спектр молекулы CH 2 D 2 , построен-
	ный на основе результатов исследования изотопиче-
	ской зависимости
	3/2 e m 4πcρ 3 5/4 H F Численные результаты, полученные на основе (3.60), показаны в колонке I Таблицы 3.9. 1/4 11 . (3.60) Колонка II содержит величины соответствующих параметров, рассчитанных на основе экс-периментальных данных, [81]. Следует заметить, что вычисленные величины были опре-делены без какой-либо информации о молекуле CH 2 D 2 (только используя два параметра B e и Y 3 молекулы CH 4 ). Таким образом, соответствие между предсказанными величи-нами и величинами, полученными на основе анализа экспериментальных данных, может рассматриваться как вполне удовлетворительное. Результаты, полученные в предыдущих параграфах данной главы, позволяют нам предположить, что: 1. аналогичные результаты могут быть получены для более сложных молекул, для которых молекула метана является прототипом; 2. полученные результаты могут быть полезны при изучении сложных колебательно -вращательных структур высоковозбужденных колебательных состояний молекулы CH 2 Университете высоких технологий (Цюрих, Швейцария) [57, 81], представлен на Рисунке 3.2.V. Следует сделать некоторые замечания относительно данных синтетических спектров: 1. Из сравнения спектров на Рисунках 3.2.I -3.2.IV можно видеть, что спектры от-дельных полос смещаются относительно друг друга на значения порядка 2 -4 см -1 . В то же самое время, относительное положение линии во всех трех полосах более или менее правильно. Это обусловлено тем, что полученные в данной главе диссерта-ции изотопические соотношения дают хорошую относительную точность в величинах всех спектроскопических параметров (как колебательных и вращательных, так и ре-зонансных параметров) молекулы CH 2 D 2 (ошибка составляет порядка нескольких процентов), но хуже при оценках абсолютных значений колебательных параметров (ошибка в 1-2 процента соответствует нескольким см -1 ) по сравнению с абсолютной ошибкой в предсказываемых вращательных параметрах. 2. Из сравнения экспериментальных и синтетических спектров на рисунках 3.2.V и 3.2.IV можно видеть, что соответствие положений линий в упомянутых спектрах "Расширенное" приближение локальных мод применительно к молекуле метана: CH 3 D←CH 4 и лучше, чем соответствие в интенсивностях линий. Глава 4 CHD 3 ←CH 4

  .20) Фазы могут быть равны ±i или ±1; пары функций [... ± ...] со знаками ± преобразуются в соответствии с E неприводимым представлением группы C 3v или же относятся к неприводимым представлениям A 1 /A 2 , соответственно. b| -колебательные функции; операторы H a,b зависят только от вращательных операторов J α , суммирование выполняется по всем вырожденным и/или взаимодействующим колебательным состояниям. В нашем случае, поскольку молекула XYZ 3 имеет симметрию C 3v , как вращательные операторы H a,b , так и колебательные функции |a и b|, в уравнении (4.19) должны обладать свойствами неприводимых тензорных наборов, относящихся к группе симметрии C 3v . Другими словами, они могут быть записаны с учетом свойств симметрии вращательных операторов и колебательных функций в следующем виде:

	4.2 Матрица эффективного вращательного гамильтони-
	ана: свойства симметрии	
	В соответствии с общей колебательно -вращательной теорией (см., например, [2, 3,
	78]), гамильтониан молекулы может быть записан в виде набора так называемых эф-
	фективных операторов Гамильтона, или, в более общем случае, матриц эффективного
	оператора:		
	H vib.-rot. =	|a b|H a,b ,	(4.21)
	a,b		
	где |a и		

  . Выражение [..., ...] + обозначает антикоммутатор. Для дважды вырожденных колебательных состояний оператор H vE,vE имеет вид: H vE,vE = H

	Диагональные блоки E симметрии
		(1) vE,vE + H vE,vE + H (2) vE,vE , (3)	(4.24)
	где	
	H	(1)

  Ω ij -пространство резонирующих состояний.Использование симметризованных операторов и симметризованных волновых функций в формуле (4.38) является сложной задачей даже для расчета второго порядка теории возмущений, не говоря уже о третьем и более высоких порядках. По этой причине, вычисления были реализованы на основе аналитических языков программирования MAPLE и MATHEMATICA. В следующих параграфах диссертации представлены результаты вычислений для наиболее важных спектроскопических параметров молекулы типа XYZ 3 .

		.38)
	Здесь E 0 i и |i -собственные значения и собственные функции оператора Гамильтона H 0 :
	H 0 |i = E 0 i |i ;	(4.39)
	H 0 -оператор нулевого приближения (представляет из себя сумму гармонических осцил-
	ляторов) колебательно -вращательного гамильтониана (4.10),	
	H vib.-rot. ≡ H 0 + h.	(4.40)
	4.4 Спектроскопические параметры молекулы типа XYZ 3
	(C 3v ) как функции структурных параметров и пара-
	метров внутримолекулярной потенциальной функ-
	ции	
	В данном параграфе, используя упомянутую выше информацию, описана схема по-
	лучения основных результатов, определяющих наиболее важные спектроскопические па-
	раметры гамильтониана H vv молекулы типа XYZ 3 (C 3v ), как функции структурных пара-
	метров (r e XY , r e Y Z , α e XY Z и α e Z i Y Z j ) и параметров k a...c внутримолекулярной потенциальной
	функции (смотри Приложение 4).	

  .56) Параметры расщепления Кориолиса η vE , параметры взаимодействия Кориолиса η vA 1 ,vA 2 и параметры взаимодействия Ферми η vnE,vmE Если использовать оператор (-2B e z G z J z ), который является частью колебательновращательного гамильтониана H vib.-rot. (4.10), то, используя первый порядок операторной теории возмущений, можно получить главные части трех различного типа спектроскопических параметров: параметры Кориолисова расщепления η vE (выражение (4.26)), параметры Кориолисова взаимодействия η vA 1 ,vA 2 (выражение (4.31)) и Ферми взаимодействия η vnE,vmE (n, m = 1, 2, ... и n = m) (выражение (4.35)), которые описывают взаимодействие между колебательными состояниями, имеющими одинаковый набор квантовых чисел v a , но различные квантовые числа l λ . Результат может быть записан в следующем виде:

  .57) Здесь η vΓ,vΓ = η vE,vE ≡ η vE -параметр k -l расщепления в выражении (4.26); η vΓ,vΓ = η vA 1 ,vA 2 -параметр Кориолисова взаимодействия в выражении (4.31); η vΓ,vΓ = η vnE,vmEформула позволяет объединить друг с другом не только параметры k-l расщепления в колебательных состояниях симметрии E, но и некоторые параметры Кориолисова и Ферми взаимодействия.

	Таблица 4.1. Ненулевые значения коэффициентов c, выражение (4.57), используемые для
	определения параметров η.
	l

параметр Ферми взаимодействия в выражении (4.35); λ, µ, ν принимают значения 4, 5 или 6; l λ , l µ и l ν -колебательные квантовые числа волновых функций (v 1 , v 2 , v 3 , v 4 , l 4 , v 5 , l 5 , v 6 , l 6 ); Коэффициенты c λ для более общих случаев представлены в Таблице 4.1. Важно отметить, что, во-первых, зависимости параметров η ... от значений квантовых чисел l λ /l µ /l ν не тривиальны, во-вторых, данное соотношение не зависит от квантовых чисел v λ /v µ /v ν . Так же эта общая

  полученные из предварительной подгонки экспериментальных данных для полосы ν 5 + ν 6 , имеют следующие значения: +8.82 см -1 и -3.53 см -1 , соответственно. Можно видеть хорошее соответствие между обеими парами величин.Параметры вращательного расщепления a 1 /a 2 (K = 1)γ vE , параметры взаимодействия Кориолиса γ vA λ ,vE и параметры взаимодействия Ферми γ vnE,vmE Параметры γ vE (описывают вращательно расщепление a 1 /a 2 (K = 1) в колебательных состояниях симметрии E), параметры Кориолисова взаимодействия γ vA λ ,vE и параметры Ферми взаимодействия γ vnE,vmE стоят перед операторами(J 2 + + J 2 -)/(J 2 + -J 2 -) (см.выражения (4.27) -(4.28), (4.29) -(4.30) и (4.36) -(4.37), соответственно). Можно показать, используя выражения (4.10) -(4.17) для гамильтониана и формулу (4.38), что все эти эффекты описываются следующими параметрами:

  .59) (для γ µ и γ ν индекс λ в правой части уравнения (4.59) должен быть заменен на µ или ν соответственно). Для v λ + v µ + v ν ≤ 4 ненулевые значения коэффициентов d(...) ... представлены в Таблице 4.2.

  его можно рассматривать как удовлетворительное, если принять во внимание следующее: 1. в последней ситуации разница составляет примерно 25 % от абсолютной величины параметра γ v 6 =1E (CHD 3 ); 2. в случае параметра γ v 5 =1E (CH 3 D) разница сравнима с разницей в двух других случаях для параметров γ v 6 =1E (CH 3 D) и γ v 5 =1E (CHD 3 ). Таблица 4.2. Ненулевые значения коэффициентов d, (выражения (4.59), (4.60)), используемые для определения параметров γ vΓ,vΓ и β vΓ,vΓ .

  Следует отметить также, что в наших вычислениях были использованы параметры потенциальной функции, определенные с помощью ab initio методов[67]. И если первоначальные параметры потенциала изменятся, то результаты расчета тоже изменятся. Параметры β vE , параметры взаимодействия Кориолиса β vA λ ,vE и параметры взаимодействия Ферми β vnE,vmE Параметры β vE , выражения (4.27) -(4.28), параметры Кориолисова взаимодействия β vA λ ,vE , выражения (4.29) -(4.30) и параметры Ферми взаимодействия β vnE,vmE , выражения (4.36) -(4.37), стоят в гамильтониане перед операторами [(J + ± J -), J z ] + . Можно показать, что эти параметры имеют следующий вид:

									λ	.)	d	(..) µ	d	(..) ν
	11	00	00	E	11	00	00	E		2
	20	00	00 A 1 22	00	00	E		4
	11	11	00	E	11	11	00 A 1		2	2
	11	11	00	E	11	11	00 A 2		2	-2
	31 31 31	00 00 00	00 00 00	E E E	31 33 33	00 00 00	00 00 A 1 E 00 A 2	2 √ 2 √	4 3 3
	11	20	00	E	11	20	00	E		2
	11	22	00	E	11	22	00 A 1		2
	11	22	00	E	11	22	00 A 2		2
	11	11	11 1E 11	11	11 2E		2
	11	11	11 1E 11	11	11 3E		2
	11	11	11 2E 11	11	11 3E		2
	11	11	11 1E 11	11	11 A 1		2
	11	11	11 1E 11	11	11 A 2		-2
	11	11	11 2E 11	11	11 A 1		2
	11	11	11 2E 11	11	11 A 2		-2
	11	11	11 3E 11	11	11 A 1		2
	11 40	11 00	11 3E 11 00 A 1 42	11 00	11 A 2 00 E -4 √ -2 3
	42	00	00	E	44	00	00	E	-4
	20 20 20 20	20 22 22 22	00 A 1 22 00 E 22 00 E 22 00 E 22	20 22 22 22	00 00 00 A 1 E E 00 A 2 -2 2 √ 2 √ √	4 2 2 2
	11	31	00	E	11	31	00 A 1		2	4
	11 11 11 11 11 11 11	31 31 31 31 31 31 31	00 00 00 00 A 1 11 E 11 E 11 E 11 00 A 2 11 00 A 1 11 00 A 2 11	31 33 33 33 33 33 33	00 A 2 00 1E 00 2E 00 1E 00 1E 00 2E 00 2E		2	-4 √ 6 √ 6 √ 6 √ 6 -√ 6 -√ 6
	11	33	00 1E 11	33	00 1E		2
	11	33	00 2E 11	33	00 2E	-2

  .61) Следует сделать важное замечание. Все полученные результаты применимы для любой молекулы типа симметричного волчка XYZ 3 (C 3v ). Более того, они применимы также для любой молекулы типа XY 3 (C 3v ) если принять во внимание, что в молекуле XY 3 присутствуют три дважды вырожденных колебания. В данном параграфе на основе уже имеющейся информации будут получены простые изотопические соотношения для наиболее важных спектроскопических параметров изотопозамещенных модификаций CH 3 D и CHD 3 как функции спектроскопических параметров материнской молекулы CH 4 . Чтобы получить такого рода соотношения, необходимо для начала рассмотреть константы форм колебаний l N γa , Кориолисовы ζ α ab , колебательно -вращательные a αβ a коэффициенты и силовые параметры молекул CH 3 D и CHD 3 в нормальных координатах. Как уже было сказано, молекулы CH 3 D и CHD 3 принадлежит к молекулам типа симметричного волчка. Структура молекул изображена на Рисунке 4.1. В качестве первого шага рассмотрим (в соответствии с выражением (1.28)) и определим константы форм колебаний l N γa изотопозамещенных модификаций CH 3 D и CHD 3 . Равновесная структура молекул CH 3 D и CHD 3 . 2. получить элементы K e αγ матрицы, определяющей вращение равновесной молекулярной системы координат при переходе от исходной к изотопозамещенной модификации.

	Таблица 4.3. Константы форм колебаний l N αλ молекулы CH 3 D в рамках
			"расширенного" метода локальных мод. a)
	N α/λ		1			2					3			4		5	6	7	8	9
	1x	-47C													
	Эта проблема решается довольно просто. Соответствующая матрица была получена в
	следующем виде:															
		K e xx K e xy K e xz						2/3 -1/6 -1/6	
	 	K e yx K e yy K e yz		  =	 		0	-1/2	1/2	 	(4.62)
		K e zx K e zy K e zz								1/3	1/3	1/3
	4.5 Изотопические соотношения для молекул CH 3 D и CHD 3 как для молекулы CH ω 2 1 120 = ω 2 1 119 + 2 √ 3 = ω 2 2 66 + √ 3 = ω 2 3 6 + 10 √ 3 = ω 2 4 119 + 6 √ 3
		=	ω 2 4 119 + 6	√	3	=	ω 2 5 14 + 9	√	3	=	ω 2 6 1 + 10	√	3	(4.63)
	для молекулы CH 3 D и													
		ω 2 1 120	=	ω 2 1 122 + 3	√	3	=	ω 2 2 52 + 6	√	3	=	ω 2 3 5 + 5 √	3	=	ω 2 4 64 + 4	√	3
	Константы форм колебаний, гармонические частоты и равновесные = ω 2 5 14 + 5 √ 3 = ω 2 6 11 + 2 √ 3 (4.64)
	вращательные постоянные для молекул CH 3 D и CHD 3 для молекулы CHD 3 . Константы форм колебаний l N γb для молекул CH 3 D и CHD 3 пред-
	ставлены в Таблицах 4.3 и 4.4 соответственно.

Чтобы реализовать это, необходимо: 1. решить систему уравнений (1.29) -(1.30) и Рис. 4.1: 3 D, так и для молекулы CHD 3 . Таким образом, из решения системы уравнений (1.29) -(1.30) были получены гармонические частоты ω a , коэффициенты α ab и, как следствие, константы форм колебаний l N γa из выражения (1.28). Ниже представлены полученные результаты для гармонических частот:

  гармонических частот молекул CH 3 D и CHD 3 , рассчитанные на основе изотопических соотношений (4.63) -(4.64) (вторая колонка). В качестве начального "экспериментального" параметра ω 1 было взято значение из работы[80]. Для сравнения, в третьей колонке Таблицы 4.5 представлены величины соответствующих гармонических частот, полученных на основе ab initio вычислений,[67]. Следует отметить, что несмотря на то, что гармонические частоты во второй колонке были получены без какой либо информации о молекулах CH 3 D и CHD 3 , можно видеть хорошее соответствие сравниваемых величин. Таблица 4.5. Гармонические частоты молекул CH 3 D и CHD 3 (в см -1 ). 46 = 7x 55 = 4x 56 = -92x 66 = -x l 4 l 4 = 7x l 4 l 5 = 51x l 4 l 6 = -34x l 5 l = -65x l 4 l 5 = 17x l 4 l 6 = -40x l 5 l 5 = -27 2x l 5 l 6 = 25x l 6 l 6 .

	Равновесные вращательные параметры B e α также можно легко определить на основе приближенных соотношений между коэффициентами ангармоничности:
	выражения (4.62): x 11 ≈ -= 11 5 x 16 = 7 3 B e = -9 25 x 22 = 2x 23 = -7x 24 = 23B e x = 23B e y = 17B e z = 17B e 7 32 πcm H ρ 2 e = 7 10 x 11 = 34 5 x 12 = 15 4 x 25 = 14 25 x 26 = 15 2 x 13 = 9 5 x 33 = 3 18 x 14 = 6 x 34 5 и 61B e x = 61B e y = 76B e z = 38B e для молекул CH 3 D и CHD 3 , соответственно. = 5x 35 = 6x 36 = 2 5 x 44 = 2 3 x 45 = 3 2 x 5 = 5 2 x l 5 l 6 = -18x l 6 l 6	13 20	x 15	(4.65) (4.66) (4.67)
	и	В качестве иллюстрации правильности полученных результатов, в Таблице 4.5 пред-
	I a) x 11 = 6x 12 = II b) 32 25 x 24 = 3x 25 = 1 5 6 5 x 26 = x 13 = -7 4 x 33 = 28 5 x 45 = = 8 25 7 32 πcm H ρ 2 7 e x 22 = -B e = -= 25x 16 = x 11 ≈ -7 3 7 5 4 5 x 23 = = 9x 35 = -12x 36 = 3 5 x 44 = 4 3 2 x 46 = -30x 55 = -245x 56 = 7x 66 x 14 = 3 10 x 15 3 2 x 34 = -7 2 x l 4 l 4 (4.68) Выражение (4.67) справедливо для молекулы CH 3 D, выражение (4.68) справедливо для молекулы CHD 3 . Аналогичные результаты были получены для колебательно -вращатель-ставлены численные значения Параметр ных коэффициентов α β b :
				CH 3 D
			ω 1	3071.44 3071.4
			ω 2	2284.20 2285.2
			ω 3	1340.31 1339.8
			ω 4	3157.12 3156.8
			ω 5	1509.73 1508.1
			ω 6	1187.97 1188.1
				CHD 3
			ω 1	3130.22 3130.5
			ω 2	2192.31 2191.3
			ω 3	1025.81 1025.4
			ω 4	2337.47 2337.0
			ω 5	1321.20 1321.4
			ω 6	1055.56 1055.5
	a) Вычислены на основе выражений (4.63) -(4.64).
	b) Получены на основе ab initio вычислений, [67].
		1 50 √	3	

Коэффициенты ангармоничности x ab /x l λ l µ и колебательно -вращательные коэффициенты α β b для молекул CH 3 D и CHD 3 Полученные в Параграфе 4.4 формулы, с одной стороны, а также выражения (2.19) -(2.21) и данные Таблиц 4.3 и 4.4, с другой стороны, позволяют получить набор следующих

  -(4.70). В данном случае, также как и в предыдущем, был использован лишь один начальный параметр x 11 молекулы CH 4 , взятый из работы[80]. Таблица 4.6. Коэффициенты ангармоничности x λµ (в см -1 ).

	4.71) (4.72) Таблица 4.6 (колонки 2 и 5) иллюстрируют корректность полученных соотношений для молекулы CH 3 D и (..v 1 ..v 5 ..)/(..v 1 ± 1..v 5 ∓ 2..), (..v 2 ..v 6 ..)/(..v 2 ± 1..v 6 ∓ 2..), (..v 3 ..v 6 ..)/(..v 3 ± 1..v 6 ∓ 1..), (..v 3 v 4 v 5 ..)/(..v 3 ± 1v 4 ∓ 1v 5 ± 1..) для молекулы CHD 3 . CHD 3 Параметр Вычисл. a) [96] b) Эксп. c) Вычисл. d) [96] b) Эксп. c) x -17.883 -17.197 -5.321 -62.590 -59.221 -58.994 x -1.841 -1.878 -2.555 -2.086 -2.204 -2.905 x -1.669 -0.981 4.884 -9.780 -9.731 -9.193 x -75.108 -72.771 -99.022 2.235 2.184 2.337 x -19.258 -19.016 -9.179 -41.727 -21.111 -21.367 x -5.690 -5.612 -7.233 -0.501 -0.309 -1.406 x -34.772 -31.167 -27.944 -8.941 -8.826 1.139 x -6.259 -6.739 -7.312 15.648 15.727 3.096 x 1.788 1.639 -7.730 -39.118 -37.352 -42.727 x -3.338 -3.331 -3.522 -4.173 -4.017 -5.220 x -22.354 -22.266 -17.587 -10.432 4.674 -2.489 x -6.954 -6.802 -7.759 -7.153 -7.230 -6.188 x -10.431 -9.440 -10.517 -8.345 -8.449 -6.977 x -2.504 -2.033 -2.908 -1.391 -1.029 -2.795 x -2.086 -1.091 -3.073 1.043 1.638 3.445 x -31.295 -31.611 -32.402 -20.863 -18.601 -16.349 x -18.777 -14.611 -8.373 -7.153 -7.195 -8.454 x -8.345 -7.686 -9.304 -8.345 -8.402 -11.044 x -1.788 -1.874 -4.417 0.417 -4.604 -4.552 x -3.130 -4.068 -5.090 0.051 0.055 4.919 x 0.136 0.261 0.261 -1.788 -5.500 -5.306 x l 4 l 4 12.518 12.636 28.539 8.941 8.252 8.560 x l 4 l 5 -1.788 -1.721 -7.062 0.193 -0.060 3.584 x l 4 l 6 -0.245 -0.230 3.160 -0.736 -0.729 1.143 x l 5 l 5 0.368 0.384 2.380 0.313 5.403 5.095 x l 5 l 6 -5.007 -5.056 -4.684 0.927 0.921 5.894 x l 6 l 6 0.695 0.645 1.516 -0.501 3.251 2.871 a) Вычислены на основе выражения (4.67). b) Взяты из работы [96]. c) Взяты из анализа экспериментальных данных из работы [60]. (4.67) CH 3 D d) Вычислены на основе выражения (4.68).

  , и параметра резонансного взаимодействия α, с другой стороны), качество "фитинга" (среднеквадратичное отклонение) было практически неизменно, но при этом значения параметров α x 3 и α x 6 , полученных на основе "фитинга" , изменились в соответствие с графиками A и B. Следует заметить, что штриховая вертикальная линия II на Рисунке 4.2 соответствует значению параметра резонансного взаимодействия α =1.836 см -1 , который был теоретически предсказан на основе изотопических соотношений.Можно видеть, что графики A и B пересекают линии (1) и (2) очень близко к линии II. Это означает, что "фитинг" , проведенный на основе теоретически предсказанной величины параметра резонансного взаимодействия α, позволяет получить "экспериментальные" величины параметров α x 3 и α x 6 , причем очень близкие к теоретически предсказанным. Полученные значения параметров α x 3 и α x 6 представлены в колонке 4 Таблицы 4.7. Можно видеть очень хорошее соответствие между величинами α во второй и четвертой колонках.Параметры центробежного искажения D J , D JK , D K и параметр Из выражений (4.14) -(4.17) следует, что коэффициенты a .. .. пропорциональны 1/ B e .. . Следовательно параметры центробежного искажения D J , D JK , D K , и параметр пропорциональны (B e .. ) 3 /ω 2 .. . Действительно, если использовать соотношения (4.63) -(4.66) в формулах (4.53) -(4.56), то получаем следующий результат:

	4.2: Зависимость экспериментальных величин α x 3 и α x 6 от величины параметра резо-нансного взаимодействия α . следовало ожидать, вследствие сильного взаимодействия между параметрами α x 3 и α x 6 , e ω 2 1 = 8 25 D J = 13 98 D JK = -11 52 D K = 27 5 (4.73) и B 3 e ω 2 1 = 42 125 D J = 54 125 D JK = -31 25 D K = 3 (4.74) для молекул CH 3 D и CHD 3 , соответственно. Здесь B e и ω 1 -параметры материнской моле-кулы CH 4 . Величины, обозначенные штрихом, относятся к изотопозамещенным модифи-кациям. Таблица 4.8 иллюстрирует корректность полученных соотношений. Результаты вычислений по изотопическим соотношениям представлены в колонке 2 и 4 Таблицы 4.8. CH 3 D CHD 3 Параметр Вычисл. a) Эксп. b) Вычисл. c) Эксп. d) D J 10 4 0.503 0.526 0.479 0.495 D JK 10 4 1.189 1.264 -0.372 -0.383 D K 10 4 -0.761 -0.790 0.130 0.134 10 4 0.030 0.032 0.054 -0.289 a) Вычислены на основе выражения (4.73). с одной стороныB 3 b) Взяты из анализа экспериментальных данных [97].

Таблица 4.8. Параметры центробежного искажения D J , D JK , D K и параметр (в см -1 ). c) Вычислены на основе выражения (4.74). d) Взяты из анализа экспериментальных данных

[98]

.

  )∆α + f rαα (∆r 1 + ∆r 3 )∆α 2 + f rr α ∆r 1 ∆r 3 ∆α + ...(5.22) 

			3 3 ) +	1 6	f ααα ∆α 3 +	1 2	f rrr (∆r 2 1 ∆r 3 + ∆r 2 3 ∆r 1 )
	+	1 2	f rrα (∆r 2 1 + ∆r 2 3		

  V 3 (y 1 , y 3 , Q 2 ) = a 12 (y 1 + y 3 )Q -часть, описывающая взаимодействие валентных и деформационных колебаний. Первое слагаемое в (5.28) -это потенциальная функция двух осцилляторов Морзе. В работах[START_REF] Бехтерева | Об определении потенциальных функций молекул H 2 CO, PH 3 и CH 4 на основе экспериментальных данных // Известия Вузов[END_REF][START_REF] Bekhtereva | On the semi-empirical determination of intramolecular potential energy surface of polyatomic molecule: Application to hydrogen sulfide, hydrogen selenide, and water molecules[END_REF] было показано, что если в кинетической части гамильтониана (5.24) перейти к координатам y 1 , y 3 и ∆α и показать, что главный вклад будет при этом иметь вид кинетической части двух несвязанных осцилляторов Морзе и будет изолирован от кинетической части деформационного колебания, то в начальном приближении задача может быть решена для двух независимых осцилляторов Морзе и гармонического осциллятора для деформационного колебания. Другими словами, можно определить внутримолекулярную потенциальную функцию произвольной многоатомной молекулы. Недостатком данного подхода является то, что оператор кинетической энергии имеет неудобный и громоздкий вид для практического использования. Поэтому рассмотрим вторую возможность построения гамильтониана, а именно подберем такой набор координат, который позволит сохранить простоту как кинетической части, так и потенциальной функции. Для этого сделаем простое преобразование:

	-описывает колебания, связанные с изменениями длин валентных связей;
	V 2 (Q 2 ) =	(2πcω 2 ) 2 2	Q 2 2 +	1 6	a 222 Q 3 2 +	1 24	a 2222 Q 4 2 + ...	(5.29)
	-часть, связанная с изменением угла между связями, и
						2 +	1 2	a 112 (y 2 1 + y 2 3 )Q 2 +	1 2	a 122 (y 1 + y 3 )Q 2 2
	+a 123 y 1 y 3 Q 2 +	1 6	a 1112 (y 3 1 + y 3 3 )Q 2 +	1 4	a 1122 (y 2 1 + y 2 3 )Q 2 2
	+	1 6	a 1222 (y 1 + y 3 )Q 3 2 +	1 2	a 1123 (y 2 1 y 3 + y 1 y 2 3 )Q 2 +	1 2	a 1223 y 1 y 3 Q 2 2 + ...
									(5.30)
					2 1 + y 2 3 ) +	1 6	a 111 (y 3 1 + y 3 3 ) +	1 24	a 1111 (y 4 1 + y 4 3 ) + a 13 y 1 y 3
	+	1 2	a 113 (y 2 1 y 3 + y 1 y 2 3 ) +	1 4	a 1133 y 2 1 y 2 3 +	1 6	a 1113 (y 3 1 y 3 + y 1 y 3 3 ) + ...
									(5.28)

  y 1 , y 3 , R 2 ), (y 1 , R 2 , y 3 ) = a 12 (y 1 + y 3 )R Параметры D, a 111 , ..., a 1223 в выражениях (5.42) -(5.45) могут быть легко записаны как функции параметров первоначального выражения для потенциальной функции в естественных координатах (5.22).

								(5.41)
	где						
							V 0 = D(y 2 1 + y 2 3 ) +	(2πcω 2 ) 2 2	R 2 2 ,	(5.42)
	V 1 (y 1 , y 3 ) =	1 6	a 111 (y 3 1 + y 3 3 ) +	1 24	a 1111 (y 4 1 + y 4 3 ) + a 13 y 1 y 3 +	1 2	a 113 (y 2 1 y 3 + y 1 y 2 3 )
		+	1 4	a 1133 y 2 1 y 2 3 +	1 6	a 1113 (y 3 1 y 3 + y 1 y 3 3 ) + ...,	(5.43)
						V 2 (R 2 ) =	1 6	a 222 R 3 2 +	1 24	a 2222 R 4 2 + ...,	(5.44)
	и						
	V 3 2 +	1 2	a 112 (y 2 1 + y 2 3 )R 2 +	1 2	a 122 (y 1 + y 3 )R 2 2
			+a 123 y 1 y 3 R 2 +	1 6	a 1112 (y 3 1 + y 3 3 )R 2 +	1 4	a 1122 (y 2 1 + y 2 3 )R 2 2
			+	1 6	a 1222 (y 1 + y 3 )R 3 2 +	1 2	a 1123 (y 2 1 y 3 + y 1 y 2 3 )R 2 +	1 2	a 1223 y 1 y 3 R 2 2 + ...
								(5.45)

  ) где унитарный оператор G = exp(ig 1 ) является малым по сравнению с единичным оператором и позволяет перейти от первоначальной матрицы гамильтониана большой размерности к новой матрице B с элементами b ij . Здесь g 1 -произвольный эрмитов оператор первого порядка малости по отношению к гамильтониану. Попробуем определить этот оператор исходя из требования обращения в нуль самых больших вкладов в недиагональных элементах преобразованной матрицы(5.59). Для этого разложим оператор G в ряд и подставим в выражение для b kl : Получаем недиагональные матричные элементы оператора ig 1 :< k|ig 1 |l >= h kl h ll -h kk . (5.62) Диагональные элементы < k|ig 1 |k > можно положить равными нулю. Следует сделать важное замечание: т.к. задача решается при условии, что оператор ig 1 -величина первого порядка малости, то, в общем случае (когда h kk h kl ) матричные элементы (5.62) действительно являются величинами первого порядка малости. Однако, в некоторых ситуациях (так называемые резонансы) разница в знаменателе выражения (5.62) может оказаться малой величиной. Тогда < k|ig 1 |l > уже не будет малой величиной, что противоречит начальным условиям. В соответствии с вышесказанным, несколько изменим начальные условия для матрицы b kl -не будем требовать обращения в нуль ее элементов, соответствующих резонансным ситуациям. Тогда она будет удовлетворяет следующим свойствам: 1. матрица b kl может быть разбита на подматрицы, причем в отдельные блоки будут объединены резонирующие состояния; 2. диагональные элементы преобразованной матрицы будут иметь вид:

	b kl =	ij	< k|{1 -ig 1 +	1 2	(ig 1 ) 2 + ...}|i > h ij < j|{1 + ig 1 +	1 2	(ig 1 ) 2 + ...}|l > .	(5.60)

Потребуем, чтобы с точностью до вкладов второго порядка малости недиагональные матричные элементы b kl обращались в нуль. Данное требование означает, что выполняются следующие условия:

h kk < k|ig 1 |l > -< k|ig 1 |l > h ll + h kl = 0.

(5.61)

  1. < k|ig 1 |l >= h klh ll -h kk малы или не малы по сравнению с единицей. Элементы, для которых не выполняется условие Если данному условию удовлетворяют все элементы недиагональных блоков, то на данном этапе необходимо лишь добавить поправки в элементы резонансных блоков. Если же для каких-то матричных элементов это условие не выполняется, то необходимо строить резонансные блоки уже на втором этапе (Рисунок 5.2).Также имеет смысл привести здесь выражения для матричных элементов резонансных блоков.b kk = h kk + i ∈Ω k h ki h ik h kk -h ii + i,l ∈Ω k (i =l) h ki h il h lk (h kk -h ii )(h kk -h ll ) -m∈Ω k (m =k),i ∈Ω k h km h mi h ik (h mm -h ii )(h kk -h ii ) ...... + O(κ 4 ),(5.67)b kl = h kl + 1 2 i ∈Ω k h ki h il 1 h kk -h ii + 1 h ll -h ii + i,j ∈Ω k (i =j) h ki h ij h jl (h kk -h ii )(h ll -h jj ) ∈Ω k ,m∈Ω k (m =k h km h mi h il (h ll -h ii )(h mm -h ii ) ∈Ω k ,m∈Ω k (m =l) h lm h mi h ik (h kk -h ii )(h mm -h ii ) ...... + O(κ 4 ).(5.68)В итоге, после реализации описанный выше схемы расчета, получаем собственные значения исходного гамильтониана с точностью до поправок порядка κ 4 .

				k l							m
	-	1 2				h kl h -kk h ll	< k		
	-	1 2	k l								mm h < k km h -kk h
	H(h )= ac								
										. . . .
												. .
	Рис. 5.1: Схема редукция матрицы гамильтониана большой размерности после проверки
	условия (5.65).										
	2. При выполнении второго преобразования для недиагональных блоков необходимо
	учесть, что									
	b kl =	j∈Ω k	h kj h jl (h ll -h jj )	+	i ∈Ω k ,i ∈Ω l	h ki h il 2	1 h ll -h ii	+	1 h kk -h ii	< κ 2 ,	(5.66)
						h kl h ll -h kk	< κ		(5.65)

нужно объединить в резонансные блоки (Рисунок 5.1). i i

  ) В скобках указаны неоднозначности, равные стандартным ошибкам. b) Параметры a для молекул H 2 S и D 2 S обозначены a H и a D , соответственно. Аналогично, для молекулы HDS, параметры a для связей S -H и S -D обозначены a H HDS и a D HDS , соответственно. c) Параметр y 11122 из (5.45) использовался лишь в молекуле H 2 S. В данном случае, расчеты были приведены с безразмерной координатой R 2 .

			1.42589(805)
	f rr	aJ Å-2	4.2860587(924)
	f rr	aJ Å-2	-0.233600(740)
	f rα	aJ Å-1	0.10217(661)
	f αα	aJ	0.758639(636)
	f rrr	aJ Å-3	-20.6047(839)
	f rr α	aJ Å-2	-1.0400(457)
	f rαα	aJ Å-1	-0.61012(912)
	f ααα	aJ	0.21301(741)
	f rrrr	aJ Å-4	71.091(849)
	f rrr r	aJ Å-4	0.38381(759)
	f rrαα	aJ Å-2	0.44713(672)
	y 11122	см -1 c)	0.03414(747)
	r e	Åd)	1.3356
	α e	град. d)	92.12

ad) Взят из работы

  ).Полоса Значение Источник ∆, вычисл. ∆,[START_REF] Halonen | Fermi resonances and local modes in water, hydrogen sulfide, and hydrogen selenide[END_REF] ∆,[START_REF] Kozin | Fourfold clusters of rovibrational energy levels for H 2 S studied with a potential energy surface derived from experiment[END_REF] ∆,[START_REF] Polyansky | The potential energy surface of hydrogen sulfide[END_REF] ∆,[99] Таблица 5.4. Центры полос молекулы D 2 S (в см -1 ). a) Экспериментальные центры полос взяты из работы[START_REF] Liu | Global fit of the high-resolution infrared spectrum of D 2 S[END_REF]. Таблица 5.5. Центры полос молекулы HDS (в см -1 ).a) 

			Полоса	Значение ∆, вычисл. ∆, [116]
		Полоса 1	Значение ∆, вычисл. ∆, [115] ∆, [116] 2 3 4
		1	2ν 2 + ν 3	2 4638.86437 -2.09 3	4	-1.78		5
		ν 2	2ν 1 + ν 2	855.40416 0.34 4767.69431 -1.83	-0.4	-0.59	-0.02
		ν 1	2ν 3	1896.43154 0.38 5147.35539 0.13	-0.5	-0.61	0.58
		ν 3	1910.18375 -0.23 ν 1 + ν 2 + ν 3 5525.26664 2.16	0.3	-1.01	0.05
		3ν 2	3ν 1	2549.07336 0.29 5560.54225 -0.87	-0.4	0.59	-0.33
		ν 1 + ν 2 ν 2 + 2ν 3	2742.66570 0.86 6139.73928 2.54	-0.2	1.56	0.33
		ν 2 + ν 3 ν 1 + 2ν 3	2754.45192 0.03 7047.15309 0.83	0.1	-0.73	-0.26
		2ν 2 + ν 3 2ν 2 + 2ν 3	3593.12888 0.23 7123.89641 -1.29	-0.3	-2.36	-0.72
		2ν 1	3ν 3	3753.470 7577.84009 -0.04 -0.63	-0.7	-0.38	0.67
		ν 1 + ν 3 ν 2 + 3ν 3	3757.45948 -0.38 8548.90007 0.94	-0.1	-1.28	0.85
		2ν 3		3809.154		0.01		-0.4		0.36
		ν 1 + 3ν 2	4417.95894 0.44		1.7		-0.56
		3ν 2 + ν 3	4426.08293 0.58		0.9		-1.08
		2ν 1 + ν 2	4589.226		0.56		-0.2		0.36
		ν 1 + ν 2 + ν 3	4592.18104 -0.34		0.0		0.45
		ν 2 + 2ν 3	4643.477		0.40		0.1		-0.08
		ν 1 + 2ν 2 + ν 3 5421.3007 -0.53		0.9		-0.11
		3ν 1		5560.15		0.11		-0.5		1.00
		2ν 1 + ν 3	5560.74		-0.14		-0.4		1.14
		ν 1 + 2ν 3	5647.13		-0.43		-0.9		1.64
		3ν 3		5672.89		0.82		-0.9		0.15
		3ν 1 + ν 2	6384.63		-0.47		-0.4		0.75
	1	2 2ν 1 + ν 2 + ν 3 6384.99 3	4	-0.71	5	-0.3	6	0.87	7	8
	ν 2	1182.5769 [119]	0.41		-0.6		0.14		-0.33	-8.82
	2ν 2	2353.9655 [120]	0.02		-1.0		0.14		-0.19	-21.43
	ν 1	2614.4074 [120]	0.61			0.2	-0.25		0.02	-5.64
	ν 3	2628.4552 [120] Полоса	-0.59 Значение ∆, вычисл. ∆, [116] 0.4 -0.10	-0.34	-2.19
	3ν 2	3513.7909 [121] 1	-0.50 2		-1.6 3		0.62 4		0.05	-38.51
	ν 1 + ν 2	3779.1667 [121] ν 2	1.44 1032.71556 0.19	1.3	0.12 0.06		0.13	-15.78
	ν 2 + ν 3	3789.2693 [121] ν 1	-0.50 1902.85624 0.01	0.0	-0.39 0.15		0.08	-10.88
	4ν 2	4661.6770 [122] 2ν 2	-0.36 2056.96580 -0.36 -2.8	2.20 0.10		0.11	-60.32
	ν 1 + 2ν 2 4932.6992 [122] ν 3	1.21 2621.45594 0.17	3.0	-0.21 -0.33		0.35	-29.95
	2ν 2 + ν 3 4939.1044 [122] ν 1 + ν 2	-0.68 2924.97773 -0.14	0.2	-0.72 0.10		0.44	-23.35
	2ν 1	5144.9862 [122] 3ν 2	0.61 3072.49232 -0.70	0.6	-0.53 0.52		-0.31	-7.77
	ν 1 + ν 3	5147.2205 [122] ν 2 + ν 3	-1.47 3634.33224 0.73	0.5	0.10 -1.14		-0.05	-6.78
	2ν 3	5243.1014 [122] 2ν 1	-0.19 3756.32989 -0.28 -0.3	-0.28 0.31		-0.43	-7.34
	5ν 2	5797.2372 [123] ν 1 + 2ν 2 3938.63701 -0.60 1.09		5.41 0.03		0.61	-87.26
			ν 1 + ν 3	4522.65030 0.85		-0.55	

a) 

  y 1 , y 5 , y 2 , R 3 , R 4 , R 6 ), (5.71) где V 0 = D H-C y 2 1 + y 2 5 + D C-O y 2 2 + V 3 (y 1 , y 5 , y 2 , R 3 , R 4 , R 6 ) = 1 48

											i	(2πcω i ) 2 2	R 2 i ,	(5.72)
	V 1 (y 1 , y 5 , y 2 ) =	1 24	a 1111 y 4 1 + y 2 5 +	1 4	a 1155 y 2 1 y 2 5 +	1 6	a 1115 y 1 y 5 y 2 1 + y 2 5
	+	1 24	a 2222 y 4 2 +	1 6	a 1112 y 3 1 + y 3 5 y 2 +	1 2	a 1152 y 1 y 5 (y 1 + y 5 ) y 2 +	1 4	a 1122 y 2 1 + y 2 5 y 2 2
	+	1 2	a 1522 y 1 y 5 y 2 2 +	1 6	a 1222 (y 1 + y 5 ) y 3 2 +	1 48	a 112222 y 2 1 + y 2 5 y 4 2 +	1 24	a 152222 y 1 y 5 y 4 2 + ...,
											(5.73)
					V 2 (R 3 , R 4 , R 6 ) =	1 24	i=3,4,6	a iiii R 4 i +	1 4	3,4,6 i,j>i	R 2 i R 2 j +	1 6!	i=3,4,6	a iiiiii R 6 i
					+	1 48	i,j=3,4,6	a iiiijj R 4 i R 2 j + ...,	(5.74)
											i=3,4,6	a 11iiii y 2 1 + y 2 5 R 4 i +	1 8	3,4,6 i,j>i	a 11iijj y 2 1 + y 2 5 R 2 i R 2 j
	+	1 24	i=3,4,6	a 15iiii y 1 y 5 R 4 i +	1 4	3,4,6 i,j>i	a 15iijj y 1 y 5 R 2 i R 2 j +	1 8	i=3,4,6	a 1122ii y 2 1 + y 2 5 y 2 2 R 2 i
	+	1 4	3,4,6	a 1522ii y 1 y 5 y 2 2 R 2 i +	1 48	i=3,4,6	a 22iiii y 2 1 + y 2 5 R 4 i +	1 8	3,4,6 i,j>i	a 22iijj y 2 2 R 2 i R 2 j
	+	1 48	i=3,4,6	a 2222ii R 4 2 R 2 i + ...	(5.75)
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  Таблица 5.6. Параметры потенциальной функции молекулы H 2 CO.a) 

	Параметр Ед. измер.	Значение	Параметр Ед. измер.	Значение
	1	2	3	1	2	2
	a H-C	Å-1	1.964(50)	a 3333	aJ	-0.000030(14)
	a C-O	Å-1	1.985(22)	a 3344	aJ	0.000026(23)
	D H-C	aJ	0.60496(71) a 3355	aJ	-0.00503(96)
	D C-O	aJ	1.71507(84) a 3366	aJ	-0.000490(49)
	ω 3	см -1	1533.5(49)	a 4444	aJ	0.00000(38)
	ω 4	см -1	1178.3(12)	a 4455	aJ	-0.00312(62)
	ω 6	см -1	1258.7(40)	a 4466	aJ	0.000222(53)
	a 1111	aJ	0.140(37)	a 5555	aJ	0.141(15)
	a 1122	aJ	-0.442(65)	a 5566	aJ	0.00057(20)
	a 1133	aJ	-0.00503(53) a 6666	aJ	-0.000026(12)
	a 1144	aJ	-0.00306(32) a 333344	aJ	0.000002(2)
	a 1155	aJ	-0.1057(86) a 333366	aJ	0.000025(11)
	a 2233	aJ	-0.0126(33) a 334466	aJ	-0.000131(14)
	a 2244	aJ	-0.01333(82 a 336666	aJ	-0.000011(10)
	a 2255	aJ	-0.443(78)	a 444444	aJ	-0.000032(10)
	a 2266	aJ	0.00710(58) a 444466	aJ	-0.000012(3)
	r e C-H	Åb)	1.1033			
	r e C-O	Åb)	1.2096			
	α e	град. b)	116.19			

a) 

Величины в скобках -1σ статистические доверительные интервалы. b) Взято из работы

[100]
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  2. Получение в аналитическом виде зависимости спектроскопических постоянных (как различных параметров диагональных блоков эффективной вращательной матрицы, так и резонансных параметров) от фундаментальных характеристик молекул XYZ 3 симметрии C 3v , XY 2 Z 2 симметрии C 2v , XY 4 симметрии T d . На этой основе получены простые связи как между различными спектроскопическими параметрами материнской молекулы CH 4 , так и многочисленные изотопические соотношения для дейтерированных модификаций метана, CH 2 D 2 , CH 3 D и CHD 3 ; 3. Разработка метода определения внутримолекулярных многомерных потенциальных поверхностей нормальных молекул на основе специального координатного представ-ления, который позволяет как существенно упростить решение проблемы описания внутренней динамики молекул, так и расширить класс и число исследуемых молекул по сравнению с известными в теоретической спектроскопии методами. +F 134 S 1 (S 3x S 4x + S 3y S 4y + S 3z S 4z ) + +F 333 S 3x S 3y S 3z + F 334 (S 3x S 3y S 4z + S 3y S 3z S 4x + S 3x S 3z S 4y ) +F 344 (S 3x S 4y S 4z + S 3y S 4z S 4x + S 3z S 4x S 4y ) + F 444 S 4x S 4y S 4z , (S 3x S 4x + S 3y S 4y + S 3z S 4z ) + S 2b (S 3x S 4x -S 3y S 4y ) -1 √ 3 S 2a (S 3x S 4x + S 3y S 4y -2S 3z S 4z ) F 1333 S 1 S 3x S 3y S 3z +F 1334 S 1 (S 3x S 3y S 4z + S 3x S 3z S 4y + S 3y S 3z S 4x ) + F 1344 S 1 (S 3x S 4y S 4z + S 3y S 4x S 4z + S 3z S 4x S 4y ) +F 1444 S 1 S 4x S 4y S 4z + + 3F 2234(2) )S 2 2a (S 3y S 4y + S 3x S 4x ) + 1 8 (3F 2234(1) + F 2234(2) )S 2 2b (S 3y S 4y + S 3x S 4x ) -F 2234(2) )S 2a S 2b (S 3y S 4y -S 3x S 4x ) +F 2334 S 2a S 3x S 3y S 4z -1 2 S 3y S 3z S 4x -1 2 S 3x S 3z S 4y +

												Приложение 1
				Внутримолекулярная потенциальная функция
												молекулы метана
	V (3) =	1 6	F 111 S 3 1 +	1 2	F 122 S 1 (S 2 2a + S 2 2b ) +	1 2	F 133 S 1 (S 2 3x + S 2 3y + S 2 3z )
	+	1 6	F 222 S 2a (S 2 2a -3S 2 2b ) +	1 2	1 2 F 233 S 2a S 2 3z -F 144 S 1 (S 2 4x + S 2 4y + S 2 4z ) 1 2 S 2a S 2 3x -1 2 S 2a S 2 3y +	√ 3 2	S 2b S 2 3x -	√ 3 2	S 2b S 2 3y
	+F 234 S 2a S 3z S 4z -	1 2	S 2a S 3x S 4x -	1 2	S 2a S 3y S 4y +	√ 2 3	S 2b S 3x S 4x -	√ 2 3	S 2b S 3y S 4y
	+	1 2	F 244 S 2a S 2 4z -	1 2	S 2a S 2 4x -	1 2	S 2a S 2 4y +	√ 2 3	S 2b S 2 4x -	√ 2 3	S 2b S 2 4y
	V (4) =	1 24	F 1111 S 4 1 +		1 4	F 1122 S 2 1 (S 2 2a + S 2 2b ) +	1 4	F 1133 S 2 1 (S 2 3x + S 2 3y + S 2 3z )
	+ + + F 1234 S 1 + 1 2 F 1134 S 2 1 1 4 1 6 F 1222 S 1 (S 3 2a -3S 2a S 2 2b ) + √ 3 4 F 1233 S 1 S 2b (S 2 F 1144 S 2 1 (S 2 4x + S 2 4y + S 2 4z ) 3x -S 2 3y ) -1 √ S 2a (S 2 3x + S 2 3y -2S 2 3z ) 3 √ 3 2 √ 3 4 F 1244 S 1 S 2b (S 2 4x -S 2 4y ) -1 √ 3 S 2a (S 2 4x + S 2 4y -2S 2 4z ) + 1 24 F 2222 (S 2 2a + S 2 2b ) 2 + 1 4 F 2233(1) S 2 2a S 2 3z + 1 4 F 2233(2) S 2 2b S 2 3z
	+ +	1 16 √ 3 (F 2233(1) + 3F 2233(2) )S 2 2a (S 2 3y + S 2 3x ) + 8 (F 2233(1) -F 2233(2) )S 2a S 2b (S 2 3y -S 2 3x ) + 1 16	(3F 2233(1) + F 2233(2) )S 2 2b (S 2 3y + S 2 3x ) 1 4 F 2244(1) S 2 2a S 2 4z + 1 4 F 2244(2) S 2 2b S 2 4z
	+ +	1 16 √ 3 (F 2244(1) + 3F 2244(2) )S 2 2a (S 2 4y + S 2 4x ) + 8 (F 2244(1) -F 2244(2) )S 2a S 2b (S 2 4y -S 2 4x ) + 1 16	(3F 2244(1) + F 2244(2) )S 2 2b (S 2 4y + S 2 4x ) 1 2 F 2234(1) S 2 2a S 3z S 4z + 1 2 F 2234(2) S 2 2b S 3z S 4z
	+ (F 2234(1) + 1 8 √ 3 4 (F 2234(1) √ 2 3	S

2b (S 3y S 3z S 4x -S 3x S 3z S 4y )

Le chapitre cinq de la thèse concerne une étude théorique des molécules CH 3 D et CHD 3 . Nous utilisons la théorie des perturbations et les propriétés de symétrie des molécules de type XYZ 3 (C 3v ) pour déterminer les paramètres spectroscopiques sous forme de fonctions des paramètres structuraux et des paramètres de la fonction potentielle intramoléculaire. Nous en déduisons plusieurs ensembles de relations entre les paramètres spectroscopiques de ces molécules. L'approche mode local étendu et la théorie de la substitution isotopique sont utilisées pour estimer les relations entre paramètres spectroscopiques de CH 3 D et CHD 3 , et avec la molécule tétraédrique CH 4 . Des calculs tests avec ces relations isotopiques montrent que, même en l'absence totale d'informations sur les espèces CH 3 D et CHD 3 , les résultats numériques sont en très bonne accord avec les données expérimentales mais aussi les calculs ab initio.La thèse se termine avec une conclusion, les relations analytiques détaillées en appendice et une liste de références récentes.

general equation (4.57) allows to connect with each other not only parameters of the k -l splitting in the vibrational states of E symmetry, but also some Coriolis and Fermi interaction parameters.

a) Calculated on the base of (4.67). b) Taken from[96]. c) Taken from analysis of experimental data[60]. d) Calculated on the base of (4.68).

(1.66) Используя определение 6Γ-символа, можно показать, что 9Γ-символ выражается в виде комбинации 6Γ-символов:   Γ 1 Γ 2 Γ 3 Γ 4 Γ 5 Γ 6 Γ 7 Γ 8 Γ 9    = Γ [Γ] Γ 1 Γ 2 Γ 3 Γ 6 Γ 9 Γ

Т.к. экспериментальный спектр (Рисунок 3.2.V) был снят[57, 81] при давлении 3 мбар, то при построении синтетических спектров использовался доплеровский контур линии.В заключение следует отметить более чем удовлетворительную корреляцию между экспериментальным и синтетическим спектрами, несмотря на тот факт, что синтетический спектр был построен без какой либо информации о молекуле CH 2 D 2 , а только на основе знания двух параметров материнской молекулы СH 4 .

Index N takes the following values: N = 0, 1, ..., {J/3} for the states of A 1 and A 2 symmetry; N = 0, 1, ..., {(J -1)/3} for the states of E symmetry. The nomenclature of the rotational states is shown in Figure 5.3.

Appendix 4. Anharmonic part of intramolecular potential energy surface of the XYZ 3 molecule

Here we present the anharmonic part of the intramolecular potential energy surface of the XYZ 3 molecule in symmetrized form:

anh. + ..., where V

anh. = i≤j≤l k ijl q i q j q l + i,λ≤µ

anh. = i≤j≤l≤m k ijlm q i q j q l q m + i≤j,λ≤µ

Appendix 5. Symmetrized wave functions of doubly degenerate harmonic oscillator

Here, in the symmetrized functions (v l γ) the value l ≥ 0. At the same time, functions |v l are the eigenfunctions of a doubly degenerate harmonic oscillator (see, e.g., Eqs. (III.9) -(III.10) of [78]), and l = -v, -v + 2, -v + 4, ..., v -4, v -2, v in those |v l functions.

• Для молекул с тремя эквивалентными связями оператор кинетической энергии T 1

(5.37), записанный в новых координатах, примет вид:

.

(5.53)

• Связь между естественными координатами ∆r/∆α и новыми введенными координатами R i будет иметь такую же форму, что и в выражениях (5.38), (5.39). Конечно, коэффициенты f λ...µ будут другими, но все рассуждения, сделанные в предыдущем параграфе, остаются верными.

Выражение (5.54) верно лишь для молекул типа XY 3 . Однако, можно легко показать, что для пятиатомных молекул CH 3 D/CHD 3 (или в общем случае для молекул типа ZXY 3 ) данное выражение примет вид:

Применение разработанного метода к молекулам типа XY 4 с четырьмя эквивалентными связями

В данном параграфе рассмотрим молекулы с четырьмя эквивалентными связями на примере молекулы CH 4 . Для рассматриваемой молекулы аналитические выражения для коэффициентов C λ N имеет очень сложный вид, поэтому для анализа воспользуемся их численными значениями. Следует отметить, что симметрия молекулы CH 4 позволяет получить следующие соотношения между коэффициентами C λ N (их численные значения приведены в 6 колонке Таблицы 5.1):

(5.55)

Тогда соответствующие коэффициенты α в выражении (5.35) следует взять в следующем виде: 

Вращательные операторы, симметризованные в группе C 3v

Используя предыдущие результаты и соотношение (4.5), мы можем определить вращательные операторы, симметризованные в группе C 3v :

Приложение 4

Ангармоническая часть внутримолекулярной потенциальной функции молекулы типа XYZ 3

Ангармоническая часть внутримолекулярной потенциальной функции молекулы типа XYZ 3 в симметризованной форме имеет вид:

anh. + V

anh. + ..., где V

anh. = i≤j≤l k ijl q i q j q l + i,λ≤µ

anh. = i≤j≤l≤m k ijlm q i q j q l q m + i≤j,λ≤µ

λλµν (q λ 1 2 + q λ 2 2 )(q µ 1 q ν 1 + q µ 2 q ν 2 ) + k

λλµν (q λ 1 q µ 2 -q λ 2 q µ 1 )(q λ 1 q ν 2 -q λ 2 q ν 1 )

k λλλµ (q λ 1 2 + q λ 2 2 )(q λ 1 q µ 1 + q λ 2 q µ 2 ). В симметризованных функциях (v l γ) l ≥ 0. В то же самое время, функции |v l являются собственными функциями дважды вырожденного гармонического осциллятора (см, например, выражения (III.9) -(III.10) в работе [78]) и -v ≤ l ≤ v.