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Merci à Nicolas Paparoditis dont j’admire l’enthousiasme et l’énergie qu’il consacre au laboratoire.
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Reconstruction de modèles 3d photoréalistes de façades à partir de données
image et laser terrestre

On souhaite détecter puis modéliser les façades de bâtiments à partir des données acquises par le véhicule de
numérisation mobile de l’ign, le Stéréopolis. Il s’agit de trouver une représentation géométrique des façades
adaptée aux données (signal lidar/laser et images optiques). La méthode doit être automatique et rendre
possible la modélisation d’un grand nombre de façades afin de contribuer à la production de maquettes
numériques de villes. Les verrous techniques proviennent de l’acquisition mobile en environnement urbain
non contrôlé (géoréférencement du véhicule, densité variable de points lidar...), ils proviennent du signal
lidar, issu d’une technologie relativement récente et pour lequel le processus de traitement n’est pas encore
consensuel : faut-il exploiter ou non la géométrie capteur? Enfin, la quantité de données pose le problème
du passage à l’échelle. Afin d’analyser la géométrie des nuages de points 3D lidar, nous avons proposé des
attributs décrivant pour chaque point la forme de l’environnement local (linéaire-1D, planaire-2D ou
volumique-3D). Les plans principaux des façades sont extraits automatiquement des données lidar grâce à
un algorithme streamé de détection de rectangles verticaux. Nous avons développé deux modèles qui sont
initialisés par ces rectangles. Une grille irrégulière dont chaque case, parallèle au plan principal peut
avancer ou reculer. Une grille déformable qui est ”poussée par les rayons lasers jusqu’aux point lasers”.
Enfin, nous avons montré comment la grille déformable peut être rendue cohérente avec les images optiques
en alignant les discontinuités géométriques de la grille avec des discontinuités radiométriques des images.

Reconstruction of photorealistic 3D models of facades from terrestrial images
and laser data

One wishes to detect and model building façades from data acquired by the ign mobile scanning vehicle, the
Stereopolis. It is a question of finding a geometric representation of facades appropriate to the data (
lidar/laser signal and optical images). The method should be automatic and enable the modeling of a large
number of facades to help the production of digital city models. Technical obstacles come from the mobile
acquisition in uncontrolled urban environment (vehicle georeferencing, variable lidar point density...), they
come from the lidar signal, retrieved from a relatively new technology for which the process is not yet
consensus : does one operates into sensor geometry or not? Finally, the amount of data raises the problem
of scaling up. To analyze the geometry of lidar 3D point clouds, we proposed attributes describing for each
point the shape of the local surroundings (linear-1D, planar-2D or volume-3D). The facade main planes are
automatically extracted from lidar data through a streamed detection algorithm of vertical rectangles. We
developed two models that are initialized by these rectangles. An irregular grid in which each cell, parallel
to the main plane can move forward or backward. A deformable grid which is ”pushed by the laser beams
toward the laser points”. Finally, we showed how the deformable grid can be made consistent with the
optical images aligning the geometric discontinuities of the grid with radiometric discontinuities of the
images.

Mots clés

Bâtiment, Urbain, Façade, Détection, Modélisation, Terrestre, Mobile, Numérisation Laser, Cartographie
Mobile, LIDAR, Nuage de Points, La Géométrie, Voisinage Adaptif, Sélection d’Échelle, Dimensionnalité,
Rectangles Verticaux, Grille Irrégulière, Déformable Grille 2.5D, Système de Coordonnées Prismatique,
Fusion LIDAR Images

Key words

Building, Urban, Facade, Detection, Modeling, Terrestrial, Mobile, Laser Scanning, Mobile Mapping,
LIDAR, Point Cloud, Geometry, Adaptive Neighborhood, Scale Selection, Dimensionality, Vertical
Rectangles, Irregular Grid, 2.5D Deformable Grid, Prismatic Coordinate System, Fusing LIDAR Images
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0.1 Contexte : la modélisation urbaine

Le laboratoire MATIS développe depuis de nombreuses années des recherches sur la modélisation 3D
automatique des bâtiments en milieu urbain. Ces ”villes en 3D” répondent à plusieurs besoins [1]:

Voir et comprendre Visualiser simplement la ville pour mieux comprendre les sujets traités. La
maquette 3D numérique se substitue à la traditionnelle maquette physique.

Analyser La maquette 3D devient un outil d’analyse par le biais d’un interfaçage avec d’autres types de
simulateurs. Elle facilite les études d’impact dans les différents domaines de l’environnement : (bruit,
pollutions, inondations,...) ou de la sécurité (Incendies, accidents urbains, interventions policières ou
militaires...). Elle peut être utilisée pour la prévention des risques et pour la gestion des crises :
permettre aux services de sécurité civile de rapidement visualiser les accès in 3D.

Concevoir et voir les projets d’urbanisme et d’architecture Comparer les projets de façon objective et
claire pour prendre les bonnes décisions. Les applications sont nombreuses : Instruction des permis de
construire, concours d’architecture, grands aménagements urbains, éclairage public...

Communiquer Présenter et expliquer les décisions prises. Par exemple lors de sessions publiques.
Montrer les stratégies urbaines en visualisant la ville d’hier, d’aujourd’hui et de demain. Montrer et
valoriser la ville sur les sites grands public (GoogleEarth, Geoportail). Développer le eTourisme.

Echanger Intégrer les données techniques dans les systèmes d’informations géographique (SIG) dans les
cartes 3D et inversement. Partager les informations 3D avec les différents services et les entreprises
qui en ont besoin : implantation d’antennes relais pour téléphones portables, passage de conduites,
mobilier urbain, ...

L’objectif est de satisfaire au mieux ces différents besoins, à l’aide de modélisations précises, complètes et
fonctionnelles (répondant aux besoins de l’utilisateur). L’amélioration technologique des systèmes
d’acquisition permet d’obtenir des données plus précises et en plus grande quantité, mais parallèlement, les
algorithmes doivent gagner en efficacité et s’adapter aux nouveaux problèmes que posent par exemple la
quantité des données acquises. La classification introduite dans [2] décrit les différents niveaux de détail
(level of detail, LoD).
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LoD0 modèle de région, modèle de terrain 2.5D.
Précision attendue : plusieurs mètres
Capteurs concernés : Images optiques verticales (' 50 cm)

Laser aéroporté (un point pour 2 ou 3 m2)
Radar interférométrique

LoD1 modèle de ville ou de site, modèle en ”blocs” sans structure de toit.
Précision attendue : métrique
Capteurs concernés : Images optiques verticales (' 50 cm)

Laser aéroporté (1 à 2 points / m2)

LoD2: modèle de ville ou de site, texturé, avec des structures de toit différenciées.
Précision attendue : décimétrique
Capteurs concernés : Images optiques verticales (' 10 cm)

Images optiques obliques
Laser aéroporté (plusieurs points / m2)

LoD3 modèle de ville ou de site, modèle architectural.

LoD4 modèle d’intérieur. modèle architectural dans lequel on peut se déplacer.

De LoD2 à LoD3

L’outil actuel de production de modèles 3D de bâtiments IGN, appelée Bati3D se base uniquement sur des
données aériennes. Les bâtiments sont modélisés par des polyèdres (LoD2) et les façades sont donc des
rectangle. Les textures des façades sont parfois de mauvaise qualité, en effet, bien que les façades soient
toujours vues par l’avion, l’angle de vue peut être rasant (au pire 6o), ce qui produit des textures très
étirées, comme on le voit sur la figure 1.
De nouveaux systèmes d’acquisition sont apparus: les systèmes aéroportés avec une prise de vue oblique et
les véhicules d’acquisition mobile. Ces systèmes permettent d’obtenir de nouveaux points de vue sur la ville
et notamment les façades. Cette thèse se focalise sur la reconstruction des façades texturées (LoD3), à
partir de données acquises par le Stéréopolis. Le Stéréopolis est le véhicule de numérisation mobile terrestre
développé par le laboratoire MATIS (IGN) depuis quelques années, il image les rues à l’aide de caméras
optiques et de dispositifs de numérisation lidar. La vue des façades depuis la rue est cruciale, car c’est le
point de vue ”humain”, il permet de voir les devantures de magasins, les numéros et noms de rues, les
portes, les fenêtres... Il perd en précision vers le haut des bâtiments, ce qui explique la nécessité des prises
de vues obliques qui font le ”relais” entre la vue aérienne verticale et la vue depuis la rue. Cependant, le
travaux de cette thèse utilisent exclusivement les données terrestres, la fusion de données constituant un
sujet de recherche à part entière. En outre, le point de vue terrestre est pour le moment celui qui permet
d’approcher au plus les façades.

0.2 Pour quelles applications?

Les données brutes acquises par le Stéréopolis durant un tour de quelque centaines de mètres sont très
volumineuse. Ce sont des millier d’images et des milliards de points 3D laser. Naviguer dans de telles
données n’est pas simple ni intuitif. L’information est morcelée et peut être redondante entre plusieurs
images, les nuages de points sont éparses et peuvent contenir des problèmes de géoréférencement. Détecter
et modéliser géométriquement les façades permet de compiler ces données dans un modèle plus facilement
exploitable, qui servira à améliorer le modèle Bati3D, ils pourront aussi être intégrés dans la plateforme de
navigation immersive iTowns. (iTowns permet de naviguer virtuellement dans une acquisition du
Stéréopolis depuis internet. L’objectif est, à terme d’intégrer les différents éléments du mobilier urbain et de
permettre une interaction avec eux.) La modélisation des façades permet aussi d’extraire des informations
(empreinte au sol des bâtiments, hauteur, taille, nombre de fenêtres...) ces modèles peuvent aussi être
comparés entre eux, utilisés tels quel pour les besoins de films ou de jeux vidéo, ou servir à la génération
procédurale de modèles de bâtiments.
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(a) Bati-3D ign (b) Aerial view (c) Building = Polyhedron

Figure 1: Bati-3D, Paris

0.3 Sujet

L’objectif est de modéliser et de texturer automatiquement les façades urbaines à partir des données
Stéréopolis (imagerie visible ou thermique terrestre, points laser). Cette reconstruction devra couvrir 2
aspects:

Géométrie: il s’agit de trouver le meilleur type de représentation géométrique possible pour une façade,
afin d’obtenir le meilleur compromis généricité/robustesse possible lors de la reconstruction. Cette
reconstruction devra exploiter au mieux la représentation choisie et le type de données afin de
produire un modèle cohérent avec celles-ci.

Cohérence avec les images: l’objectif est de générer des modèles cohérent avec les images pour
l’application texturation (la texturation à proprement parler ne fait pas partie de la thèse).

0.4 Verrous techniques

Données

Les données lidar utilisés sont incomplètes: elles sont acquises depuis la rue, et les voitures, les arbres, ou
des bâtiments peuvent cacher partiellement les façades. De plus, par nature, les nuages de points
fournissent une information incomplète car ponctuelle. Se pose le problème de savoir comment pallier le
manque d’information entre les points.
Ces données peuvent aussi contenir des erreurs de géoréférencement; est-il possible de proposer une
méthode capable de traiter des données mal géoréférencées?
La fusion des données image et laser pose différents problèmes : Les données laser sont plus fiables et de
nature géométriques, alors que les données images sont plus précises et de nature radiométrique. Il faut
faire interagir ces deux types de donnée en exploitant au mieux les spécificités de chacune.

Volume de données et automatisation

Les algorithmes proposés doivent permettre de traiter de manière automatique le volume de données acquis
par le Stéréopolis en un temps raisonnable.

Modélisation

Les façades sont des éléments très structurés et géométriques (murs plans, fenêtres rectangulaires,
répétition des motifs...) Cependant, il y a une grande variabilité et on trouve aussi de nombreux objets
”inclassables”: plantes sur les balcons, volet ouvert, ornement... Le problème est donc de trouver un modèle
qui permette d’appréhender tous les cas différents (généricité) mais qui soit malgré tout capable de fournir
un modèle robuste aux perturbations.
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Par ailleurs, il faut trouver un modèle adapté, d’une part aux données en entrée, et d’autre part aux objets
(les façades) que l’on souhaite modéliser. Il faut donc trouver un modèle qui permette la meilleure
intégration de ces aspects techniques/”bas-niveau” et sémantiques/”haut-niveau”.
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Ground Truth,
External knowledge

2. Acquisition
System

3. Acquired Data1. Real Data

Modelled Data

7. Model Fitting6. Model

4. Data Analysis
5. Feature Extraction

Figure 2: Vue d’ensemble des étapes de modélisation. La scène réelle (1) est échantillonnée par un capteur (2).
Les données données obtenues (3) peuvent être analysées (4), on peut en extraire de l’information, des primitives
géométriques (5). Cette analyse, ainsi que la connaissance des données réelles nous aide à imaginer un modèle adapté
(6). Il faut ensuite faire correspondre ce modèle avec les données (7) pour enfin obtenir la modélisation.

0.5 De l’acquisition à la modélisation

La figure 2 montre les différentes étapes de modélisation. Un système d’acquisition permet d’extraire de
l’information des données réelles sous forme d’un signal. Notre objectif est d’utiliser au mieux ces données
acquises pour modéliser les données réelles. Pour cela, une étape d’analyse et d’observation des données
réelles ainsi que des données acquises doit aboutir à un modèle susceptible de représenter au mieux les
données. Il faut enfin faire correspondre le modèle avec les données pour obtenir la modélisation.
Les données acquises fournissent une vision partielle et inexacte de la réalité. Il faut faire attention que
l’objectif final est une modélisation des données réelles et non des données acquises. Cependant,les données
acquises sont notre seule moyen de connâıtre les données réelles, à l’exception de connaissances a priori sur
les objets à modéliser.
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0.6 Positionnement de la thèse

On peut trouver d’autres thèses sur la modélisation de façade comme les trois suivantes [3], [4] et [5]. dont
les principale étapes de modélisation sont décrites ici.

Pu [3] : Une modélisation fondée sur la connaissance.

• Extraction de régions planes dans les nuages de points.

• Sémantisation de chaque région.

• Faire correspondre les régions avec une forme appropriée (polyèdre ou B-spline).

• Intégration des images : On fait correspondre les lignes détectées dans les images avec les bords du
modèle géométrique.

• Modèle texturé de façon semi-automatique avec les images.

Boulaassal [4] : Une modélisation vectorielle.

• Réduction le bruit de mesure. suppression des points faux et indésirables.

• Segmentation du nuage de points en régions planes. RANSAC+Croissance de région

• Extraction des contours des régions planes.

• Calculs d’intersection entre les contours.

• Obtention d’un modèle vectoriel.

Deschaud [5] : Une modélisation hybride sous forme de primitives pour les surfaces planes et
d’un maillage pour le reste du modèle.

• décimation du nuage de points en entrée : sélection des points qui maximisent une approximation de
la courbure locale.

• Calcul des normales en chaque point.

• Débruitage des nuages de points.

• Segmentation en zones planes et non planes : croissance de voxels.

• Triangulation des zones non planes.

• Colorisation et texturation.

La méthode proposée est différente car nous abordons le problème de détection automatique des façades
dans les nuages de points, nous avons aussi tenté de contourner l’étape de segmentation en régions planes
qui est coûteuse en temps de calcul. De plus, nous nous sommes orienté vers une approche qui tente de tirer
parti d’informations autres que la position des échos lidar, à savoir le temps d’acquisition de chaque point,
la position du capteur, des rayons laser... La thèse proposée s’oriente donc plus vers des questions
méthodologiques de traitement des données lidar et de passage à l’échelle.
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Méthode proposée

• Descripteurs géométriques locaux, en particulier un indice de verticalité qui permet de favoriser les
points 3D appartenant à une surface plane et verticale dans l’étape suivante de détection des façades.

• Détection streamée de rectangles verticaux supposés correspondre aux plans principaux des façades à
l’aide d’un algorithme de type RANSAC.

• Deux modélisations proposées initialisés grâce aux rectangles verticaux :
-Grille irrégulière : détection des discontinuités verticales et horizontales et attribution d’une
profondeur à chaque case de la grille.
-Grille déformable : surface 2.5D initialisée par le rectangle vertical et se déformant vers les points

0.7 Organisation de la thèse

Analyse

Les données lidar sont décrites dans le chapitre 1 avec leurs spécificités et les problèmes associés à leur
traitement. Une méthode générale pour analyser la géométrie locale dans les nuages de points est proposée
dans le chapitre 2. Les problèmes de passage à l’échelle sont évoqués dans le chapitre 3 et on explique
pourquoi on favorise une approche qui traite des buffers temporels de l’acquisition.

Détection

Dans le chapitre 4, la méthode pour extraire les rectangles de façade est développée.

Modélisation

Les chapitres suivants traitent de la modélisation des façades. Le chapitre 5 propose une modélisation
sémantique à l’aide de grilles irrégulières. On étudie les méthodes pour relier les points laser en topologie
capteur dans le chapitre 6. Le chapitre 7 propose une modélisation photo-consistante grâce à une grille
déformable qui est initialisée le long du rectangle estimé avec la méthode du chapitre 4 et est en quelque
sorte ”poussée par les rayons lasers jusqu’aux point lasers”. Enfin le chapitre 8 détaille la méthode pour
faire correspondre les discontinuités de la grille déformable avec les discontinuités détectées dans les images
optiques.

0.8 Principales contributions

Nous avons défini des descripteurs de dimensionalité en formalisant des descripteurs géométriques locaux
classique. nous en avons dérivé deux nouveaux attributs. Une valeur d’entropie évaluant la pertinence des
descripteurs de dimensionnalité qui permet de sélectionner automatiquement, pour chaque point, une taille
de voisinage optimale pour la description ”dimensionnelle”. Un valeur de verticalité dont on se sert pour
détecter les façade et qui s’avère efficace pour la classification de scènes urbaines. Nous avons proposé une
méthode simple et efficace de détection de rectangles verticaux adaptée aux données lidar mobiles
terrestres. En particulier, nous avons mis en évidence l’intérêt de pondérer la sélection aléatoire des points
dans ransac selon un critère de pertinence, ici, le critère de verticalité. Le modèle de grille irrégulière nous a
permis de mettre en évidence des algorithmes efficaces de traitement des points lidar, comme la détection
des discontinuités horizontales et verticales. Nous avons soulevé la question de l’utilisation d’informations
autres que la position des échos lidar, et mis en évidence certaines limites des nuages de points désorganisés,
en particulier pour la reconstruction de surfaces. Nous avons alors montré l’intérêt d’utiliser la géométrie
capteur grâce à un théorème qui encourage à mailler les surfaces selon l’ordre d’acquisition des points. Un
modèle de grille déformable 2.5D a été proposé. Il permet de modéliser les façades en s’adaptant à
l’orientation des rayons laser et de la façade grâce à un système de coordonnées original baptisé ”système de
coordonnées prismatique”. Enfin nous avons exploré la possibilité de rendre cette grille cohérente avec les
images optiques acquises en même temps.
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0.9 Résumé des chapitres

Chapitre 1

Dans ce chapitre, nous avons décrit les données lidar et mis en avant les forces et les faiblesses de ces
données. Les données acquises par les véhicules d’acquisition mobile dans les environnements urbains
semblent complexe à exploiter.
les principaux problèmes sont les suivants : En plus d’être de nature éparses (points 3D) et
échantillonnées de manière inhomogène, les données sont nécessairement incomplètes : de nombreux
paramètres ne peuvent être contrôlés comme la vitesse et la trajectoire du véhicule. Les capteurs embarqués
sont contraints de capturer l’information à partir du point de vue de la rue, le long de la trajectoire du
véhicule. Par exemple, les volumes des bâtiments ne peuvent être appréhendés en entier. On doit
s’accommoder de morceaux de façades, partiellement masqués par des objets au premier plan tels que les
voitures, les arbres ou d’autres façades. Les données sont donc incomplètes, mais elles peuvent aussi être
redondantes si le trajet d’acquisition contient des boucles, les erreurs de géoréférencement peuvent créer des
incohérences entre ces données redondantes. Les données Lidar sont obtenues par des systèmes qui
mettent en jeux différentes technologies. Les erreurs de chaque technologie ont différentes amplitudes. Le
géoréférencement du véhicule est à l’origine des plus grandes imprécisions, c’est pourquoi on souligne le
risque d’avoir des incohérences entre les données redondantes mais acquises à différents moments de
l’acquisition et donc géoréférencées différemment.
Il est difficile de comprendre la répartition des points, et pourtant, la position des échos est la seule
information disponible pour deviner la géométrie de la scène numérisée. On est par exemple tenté de se fier
à la densité de points comme indice de confiance, pourtant cette densité peut être due aux conditions
d’acquisition (véhicule arrêté à un feu rouge). En fait, la position des échos est uniquement due
-aux erreurs de mesure près- à la géométrie de la scène, alors que la densité de points dépend
en grande partie des conditions d’acquisition.
Lorsque les échos sont exprimés dans le système de coordonnées τ,Θ, R, (τ : temps d’acquisition, Θ : angle
de tir vertical, R : distance au capteur), on observe une très grande régularité selon τ,Θ, en effet, les pulse
laser sont émis avec une fréquence régulière. En revanche, R dépend uniquement de la distance aux objets.
Ce système de coordonnées met aussi en évidence la densité de points quasi surfacique (surface τ,Θ).
Le système de coordonnées τ,Θ, R est indépendant de la position du capteur. ce qui est intéressant si
les données sont mal géoréférencées. De plus, ces coordonnées sont rapide à obtenir car elles découlent
directement du processus d’acquisition et peuvent fournir des hypothèses pour la reconstruction de surface.
En effet, les surfaces détectées peuvent être approximées par un maillage τ,Θ. Cependant ce maillage peut
se replier sur lui-même à cause de rebroussements du balayage laser.
Notre conclusion est que, même si cela amène de nouveaux problèmes, il est dommage d’utiliser
exclusivement les points 3D. La géométrie capteur, et en particulier le système de coordonnées τ,Θ, R
permet de retrouver une structure dans le nuage de points et de séparer les informations qui viennent des
conditions d’acquisition (τ,Θ) de celles qui viennent des données numérisées (R).

Chapitre 2

L’objectif de ce chapitre était de fournir une méthode simple, générique et automatique pour décrire la
géométrie autour de chaque écho lidar. Les deux questions auxquelles nous avons tenté de répondre sont :

• Trouver des attributs géométriques génériques pour décrire tout nuage de point.

• Trouver une méthode automatique pour choisir automatiquement le voisinage adapté à chaque point.

Pour cela, des attributs sont dérivés de l’approche classique de ”tensor voting”. Les attributs sont calculés
dans un voisinage sphérique autour de chaque écho. Ils décrivent la dimensionnalité (1D, 2D ou 3D) du
voisinage en fonction que la répartition des échos dans le voisinage est plutôt linéaire (1D), planaire (2D) ou
volumique (3D). La taille de voisinage la plus appropriée est sélectionnée dans un intervalle de tailles
potentielles grâce à l’attribut d’entropie Ef .
Il n’est pas nécessaire d’avoir de connaissances à priori sur la répartition des points, la densité ou le motif
du balayage laser. Cependant, on a vu que d’une part, la description géométrique obtenue permet de
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déduire ces différentes caractéristiques, et d’autre part, une connaissance de ces caractéristiques permet de
bien borner les tailles de voisinage afin d’obtenir un résultat qui décrive la géométrie des objets scannés et
qui soit autant que possible indépendant de la configuration d’acquisition. Autrement dit, l’algorithme peut
être lancé une première fois afin d’analyser les caractéristiques du nuage de point et d’affiner les paramètres
pour lancer l’algorithme une seconde fois.
Les avantages d’un simple sous-échantillonnage spatial sont aussi mis en avant pour s’abstraire de la
répartition de points induite par la configuration d’acquisition.

Chapitre 3

Le passage à l’échelle impose certaines contraintes dans la conception des algorithmes. En particulier, il est
nécessaire de découper les nuages de points afin d’appliquer les traitements sur des blocs plus petits.
Différents choix sont envisageables, (Semantic, Spatial/Dimensionnel: temporal (1d), espace (3D), ou
espace-temps (4D)). Dans notre contexte, la méthode la plus judicieuse semble être de conserver la
structure originelle des nuages de points, en effet, les points sont enregistrés dans l’ordre d’acquisition et
sont donc organisés naturellement selon la dimension temporelle. C’est donc la méthode la plus directe,
mais elle présente aussi d’autre avantages. Un intervalle de temps correspond à un segment de trajectoire
du véhicule durant l’acquisition. La position du capteur est donc bornée dans l’espace-temps, ainsi les
points acquis durant cet intervalle sont toujours proches temporellement et souvent proches spatialement.
Traiter les points par buffers temporels est donc une méthode

• rapide

• adaptée aux environnement changeants : non mélange de points appartenant à différentes époques.

• adaptée aux géoréférencement du véhicule : la dérive du géoréférencement est progressive et varie
donc peu sur un court intervalle de temps.

C’est le choix retenu pour la détection des façades en sous forme de rectangles verticaux dans le chapitre 4.
Cela permet de surmonter les problèmes du volume de données et du géoréférencement.

Chapitre 4

Nous avons présenté un algorithme streamé de détection de rectangles verticaux à partir des données lidar
acquises par le Stéréopolis. Un RANSAC modifié est appliqué sur des buffers (avec recouvrements) de
points 3D acquis durant un même intervalle de temps. Le descripteur de verticalité (chapitre 2) est utilisé
pour favoriser les points appartenant à des zones planes et verticales. Les morceaux de façade (rectangles
verticaux) sont extraits puis fusionnés selon un critère de distance et un critère de recouvrement. Les
rectangles fusionnés les plus pertinents sont conservées. La construction du graphe de fusion est
quadratique en nombre de morceaux, mais ce nombre est négligeable par rapport au nombre de points.
Les régions verticales planaires ont montré leur utilité dans la géolocalisation fine : La dérive du véhicule
peut être détectée grâce au décalage entre les rectangles qui correspondent à la même façade. les rectangles
détectés sont utilisés pour initialiser les modèles de façade proposés dans cette thèse, à savoir une
modélisation sémantique avec des grilles irrégulières dans le chapitre chapitre 5 et une grille déformable
2.5D dans le chapitre 7.

Chapitre 5

Nous avons proposé un modèle de façade à l’aide de grilles irrégulières. Ce modèle est calculé à partir d’un
nuage de points. Au préalable, un rectangle vertical correspondant au plan principal de la façade a été
détecté. Seuls les points inclus dans ce rectangle et suffisamment proches du plan principal sont pris en
compte. Le rectangle est découpé en une grille irrégulière à l’aide de droites horizontales et verticales
placées au niveau des principales discontinuités géométriques. Pour ce faire, on accumule les points
horizontalement et verticalement, puis on calcule la variation de profondeur des points par rapport au plan
principal. Les discontinuités sont des maxima de variation de profondeur. Ces discontinuités permettent de
découper le rectangle en un ensemble de rectangles/cases. Pour chaque case, on a ensuite cherché la
profondeur optimale en fonction des points se projetant dedans. On a préféré borner le nombre total de
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profondeurs possibles, afin de permettre par exemple que toutes les cases qui contiennent une partie d’un
même mur puissent avoir la même profondeur. Guidé par ce choix, un algorithme de discrétisation des
profondeurs à été proposé. C’est une variante des ”k-means” qui trouve automatiquement le nombre
optimal k de profondeurs. Pour cela, on tente de minimiser à la fois un terme d’attache au données et le
nombre k. Il reste ensuite à associer une de ces k profondeurs à chaque case. Le modèle obtenu est une grille
irrégulières dont chaque case en en retrait ou en avant par rapport au plan principal. Ce modèle suppose
donc que les façades sont constituées d’éléments rectangulaires parallèles entre eux. D’autres approches ont
été étudiées pour déterminer la profondeur de chaque case, notamment un algorithme de graph-cut.

Chapitre 6

Nous avons démontré que pour reconstruire une surface continue à partir d’un signal lidar, mailler les
points adjacents en topologie capteur (maillage capteur) est une solution appropriée car elle prend
naturellement en compte des contraintes logiques imposées par les rayons laser. Cependant, la géométrie de
la scène scannée se résume rarement à une simple surface continue.
Si le capteur est en face de la surface, on peut avoir confiance dans la continuité entre les échos adjacent,
alors que si le capteur voit la surface avec un angle rasant, il peut exister des cavités entre deux échos
adjacents qui contiennent une portion cachée de la surface et qui contredisent la continuité entre échos
adjacents. L’angle d’incidence fournit donc un moyen simple de mesurer la fiabilité du lidar dans la
détection de surfaces continues.
Bien que la continuité entre les échos adjacents ne soit pas fiable à cent pourcent, la surface continue
fournie par le maillage capteur a toujours un sens physique : c’est l’interface entre ce qui est vu et non vu
par le capteur. Ce maillage est donc intéressant à utiliser mais le principal obstacle est qu’il peut se replier
sur lui-même si le balayage laser rebrousse chemin.

Chapitre 7

On a présenté une approche pour reconstruire la géométrie des façades à partir des données lidar. On
souhaitait des surfaces cohérentes avec les données, et en particulier les images optiques acquises en même
temps. La structure algorithmique proposée permet de reconstruire des grilles 2.5D dans un système de
coordonnées 3D choisi par l’utilisateur. La grille est initialisée le long du plan principal de la façade, puis
elle se déplace itérativement vers les échos dans une seule dimension (orthogonale au plan principal pour un
système de coordonnées cartésien). Nous avons défini un système de coordonnées adapté au point de vue du
capteur : le système de coordonnée prismatique qui est une généralisation du système de coordonnées
cartésien. Il permet de tirer parti de la géométrie capteur tout en étant topologiquement cohérent avec
l’espace 3D Les grilles obtenues sont adaptées à la navigation immersive et d’autres applications qui
nécessitent des modèles 3D compacts et détaillés. Elles pourraient aussi être utilisées pour analyser la
structure grammaticale des façades ou l’extraction de fenêtres.

Chapitre 8

On texture les grilles 2.5D avec les images optiques acquises en même temps. Dans ce chapitre, on
s’intéresse à améliorer la texturation de la grille déformable par des images optiques. Quand on projette les
images sur la grille, les endroits les plus sensibles aux imprécisions du modèle géométrique sont les
discontinuités au niveau des bords d’objets. Si les discontinuités géométriques ne correspondent pas tout à
fait aux discontinuités radiométriques dans les images optiques, on peut avoir des phénomènes de bavure
particulièrement désagréables visuellement. On a donc proposé une méthode pour faire correspondre les
discontinuités géométriques avec les discontinuités radiométriques (moins fiables mais plus précises). Les
discontinuités géométriques sont extraites dans la grille, Les discontinuités radiométriques sont extraites
dans les images. Ce sont des segments 2D qui sont projetés sur la grille afin d’obtenir des segments 3D. Ces
segments sont appariés avec les discontinuités géométriques. On ne conserve que ceux qui sont suffisamment
proches d’une discontinuité géométrique. Les segments image conservées sont utilisés pour recalculer la
grille déformable : On relance la déformation itérative de la grille, mais cette fois, la contrainte de lissage
est réduite au niveau des segments image, on autorise ainsi des déchirures plus fortes à l’endroit précis des
discontinuités image.
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Les résultats de la texturation sont satisfaisants car on peut vérifier la cohérence entre les données lidar et
image optique. Cependant, la précision du modèle texturé n’est pas homogène: d’une part il y a une
différence de résolution entre le modèle géométrique issu des données lidar et les données images : la
texture image est plus résolue que la surface 3D. Et d’autre part on subit les limitations d’une approche
”point de vue unique”: la géométrie et la texture apparaissent d’autant plus imprécises qu’on s’éloigne de
ce point de vue. On ne peut pas inventer de l’information et il parâıt donc difficile d’améliorer les résultats
à partir ces seules données. En revanche une fusion avec d’autres jeux de données pourrait être imaginée.
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Résumé substantiel 7
0.1 Contexte : la modélisation urbaine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
0.2 Pour quelles applications? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
0.3 Sujet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
0.4 Verrous techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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Introduction

0.10 Context: urban modeling

The MATIS laboratory developed researchs over many years on the automatic 3D modeling of buildings in
urban areas. These ”3D” cities serve several purposes [1]:

Visualize and understand Simply view the city to better understand the subjects. 3D Digital model
replaces the traditional physical model.

Analyze The 3D model is an analytical tool through an interfacing with other simulator types. It
facilitates impact studies in different areas of the environment: (noise, pollution, floods... ) or safety
(Fire, urban accidents, police or military interventions... ), It can be usefull for risk prevention and
management crises : allow civil security services to quickly view access in 3D.

Design and visualize the urban and architectural projects. Compare projects objectively and clearly to
make the right decisions. The applications are numerous : Instruction building permits, architectural
competitions, large urban, street lighting, ...

Communicate Present and explain decisions. For example during public sessions. Show urban strategies
by visualizing the city of yesterday, today and tomorrow. Demonstrate and promote the city on major
public sites (GoogleEarth, Geoportail). Develop eTourism.

Exchange Integrate technical data in information systems (GIS) maps in 3D and vice versa. Share 3D
information with the various services and companies who need it : antennas for implementation
mobile phones, crossing lines , street furniture, ...

The objective is to best meet these needs, using specific models, complete and functional (meeting the
needs of the user). Technological improvement of acquisition systems provides more accurate data and in
greater quantity, but at the same time algorithms need to increase efficiency and adapt to new problems
posed for example by the increasing amount of acquired data. Classification introduced in [2] describes the
different levels of detail (LoD).

LoD0 Regional model – 2.5D Digital Terrain Model
Expected accuracy : several meters
Involved sensors : Vertical optical images (' 50 cm)

Airborne Laser (one point per 2 or 3 m2)
Radar interferometry

LoD1 City / Site model – ”block model” without roof structures
Expected accuracy : meter
Involved sensors : Vertical optical images (' 50 cm)

Airborne Laser (1 to 2 points / m2)

LoD2 City / Site model – textured, differentiated roof structures
Expected accuracy : decimeter
Involved sensors : Vertical optical images (' 10 cm)

Obliques optical images
Airborne Laser (several points / m2)
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(a) Bati-3d ign (b) Aerial view (c) Building = Polyhedron

Figure 3: Bati-3d, Paris

LoD3 City / Site model – detailed architecture model

LoD4 Interior model – ”walkable” architecture models

From LoD2 to LoD3

The current IGN production tool of 3D building models called Bati3D is solely based on aerial data. The
buildings are modeled as polyhedra (LoD2) and facades are therefore rectangles. The quality of facade
textures is sometimes poor. Indeed, although facaces are always seen by the aircraft, the viewing angle can
be grazing (at worst 6o) which produces very stretched textures, as shown in figure 3.

Recently, new acquisition systems have emerged: airborne systems with oblique viewpoint and terrestrial
mobile acquisition vehicles. These systems provide new perspectives on the city and particularly on the
facades. This thesis focuses on the reconstruction of textured facades (LoD3) from data acquired by the
Stereopolis. The Stereopolis is the mobile mapping system developed by the MATIS laboratory (IGN) for
some years, it scans the streets using optical cameras and scanning lidar devices. The facade view from the
street is crucial because it is the ”human” point of view, it allows to see shop fronts, street numbers and
street names, doors, windows... precision is lost towards the top of buildings, which explains the necessity
of acquiring aerial oblique views which may act as an intermediary between the vertical aerial view and the
view from the street. However, the work of this thesis uses only terrestrial data, data fusion constitutes a
research topic in its own right. In addition, the terrestrial viewpoint is the one that allows at this time, to
get the closest possible to the facades.

0.11 For which applications?

The raw data acquired by the Stereopolis during a tour of a few hundred meters is very large. These are
thousands of images and billions of 3D lidar points. To navigate into such data is not simple or intuitive.
The information is redundant and can be fragmented between multiple images, point clouds are sparse and
may contain georeferencing problems. To detect facade and model 3D geometry can help to compile this
data in a more easily exploitable model, that could improve the Bati3D model and could also be integrated
into the immersive navigation platform iTowns (iTowns allows to navigate virtually in a Stereopolis
acquisition from Internet. The goal is eventually to integrate the different elements of street furniture and
allow interaction with them. ) Information can be extracted from facade models (footprint of buildings,
height , size, number of windows ... ) and these models can also be compared to each other, used as is for
the purpose of movies or video games, or for procedural generation of synthetic building models.
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0.12 Topic

The objective is to automatically model urban facades from Stereopolis data (visible or thermal imaging
and terrestrial laser points). This reconstruction will cover two aspects:

Geometry It is a question of finding the best possible type of geometric representation for a facade in
order to obtain the best generic/robustness compromise as possible in the reconstruction. This
reconstruction should fully exploit the representation chosen and type of data to produce a coherent
model therewith.

Consistency with images The generated model has to be consistent with the images for texture
mapping purposes (texture mapping itself is not part of the thesis).

0.13 Technical obstacles

Data

Input lidar data is incomplete: it is acquired from the street, and cars, trees, or buildings may partially hide
the facades. In addition, by nature, point clouds provide incomplete because sparse information. This raises
the question about how to overcome the lack of information between points.
The data may also contain georeferencing errors; is it possible to propose a method able to handle poorly
georeferenced data?
The fusion of image and laser data poses different problems: Laser data is more reliable and geometrical by
nature, while image data is more precise but radiometric. We need both types of data to interact and to
exploit the best characteristics of each.

Volume of data and automation

The proposed algorithms should allow to automatically process the volume data acquired by the Stereopolis
in a reasonable time.

Modeling

Facades are highly structured and geometric (flat walls, rectangular windows, repeating patterns...).
However, there is a great variability and there are also many ” unclassifiable” objects: plants on balconies,
open shutters, ornaments... The problem is to find a model that enables to understand all the different
cases (generic) but which is nevertheless able to provide a robust model against disruptions.
Furthermore, we must find a suitable model, firstly to the input data, secondly to the objects (facades) that
we aim to model. We must find a model that enables the better integration of these technical/”low-level”
and semantic/”high-level” aspects.
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Ground Truth,
External knowledge

2. Acquisition
System

3. Acquired Data1. Real Data

Modelled Data

7. Model Fitting6. Model

4. Data Analysis
5. Feature Extraction

Figure 4: Overview of modeling steps. The actual scene (1) is sampled by a sensor (2). Acquired data (3) can be
analyzed (4), one can extract information, geometric primitives (5). This analysis, as well as knowledge of the actual
data helps us to imagine a suitable model (6). One then matches the model with the data (7) to finally get the output
modelled data.

0.14 From acquisition to modeling

Figure 4 shows a diagram with the different modeling stages. An acqusition system retrieves information of
the actual data as a signal. Our goal is to make the best use of these acquired data to model the actual
data. For this, an analysis and observation step of the actual data as well as the acquired data should lead
to a model that can well represent the data. Finally, one matches the model with the data to obtain the
numerical modeling.
The acquired data provides a partial and inaccurate view of reality. Be careful that the ultimate goal is a
numerical modeling of real data and not of the acquired data. However, the acquired data are our only way
to know the actual data, with the exception of a priori knowledge about the objects we want to model.
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0.15 Positioning of the thesis

One can find other theses on the modeling front as the following three [3] [4] and [5]. whose main modeling
steps are described here.

Pu [3] : Knowledge based reconstruction.

• Extracts planar features from terrestrial laser point clouds.

• Determines the semantic meaning of each feature.

• Features fitted to some appropriate shapes such as polygons and B-spline surfaces.

• Integration of imagery : Image lines are matched with model edges which are generated from laser
data.

• Images are semi-automatically mapped to the models as textures.

Boulaassal [4] : Vectorial modeling.

• Noise reduction. Outlier removal.

• Segmentation of the PCD into planar regions. RANSAC+Region growing.

• Edge extraction of planar regions.

• Finding intersections between edges.

• Obtaining the vectorial model.

Deschaud [5] : Hybrid modeling as primitives for flat surfaces and a mesh for the remainder
of the model.

• Input point cloud decimation: selection of points that maximize an approximation of the local
curvature.

• Normal calculation at each point.

• Denoising point clouds.

• Segmentation into planar and non-planar areas: voxels growing.

• Triangulation of non-planar areas.

• Colorizing and texturing.

The proposed method is different because we address the problem of automatic detection of facades in the
point cloud, we also tried to bypass the step of segmentation in planar regions which is expensive in
computation time. In addition, we oriented towards an approach that tries to take advantage of more
information than the position of the lidar echoes, namely the acquisition time of each point, the position of
the sensor and the laser beams... The proposed thesis has been moving in the direction of methodological
issues in lidar data processing and scaling up.
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Proposed Method

• local geometric descriptors, in particular a vertical index that can promote the 3D points that belong
to a vertical flat area in the facade detection step.

• Streamed Detection of vertical rectangles supposed to correspond to the main facade planes using a
RANSAC-type algorithm.

• Two proposed models initialized with the vertical rectangles:
-Irregular Grid : Detection of horizontal and vertical discontinuities and assign a depth to each grid
cell.
-Deformable Grid : 2.5D surface initiated by the vertical rectangle and deformed towards the 3D
points.

0.16 Structure of the thesis

Analysis

The lidar data is described in Chapter 1 with its specificities and processing problems. A general method to
analyze the local geometry in point clouds is given in Chapter 2. The problem of scaling up is discussed in
Chapter 3 and we explain why we favor an approach with temporal buffers.

Facade detection

In Chapter 4, the method to extract the facade rectangles is developed.

Facade modeling

The following chapters deal with facade modeling. Chapter 5 provides a semantic modeling with irregular
grids. We study methods to connect 3D laser points in sensor topology in Chapter 6. Chapter 7 offers a
photo-consistent modeling thanks to a deformable grid which is initialized along a rectangle estimated in
Chapter 4 and is somehow ”driven by the laser beams towards the 3D points”. Finally, chapter 8 details the
method to match the discontinuities of the deformable grid with discontinuities detected in the optical
images.

0.17 Main contributions

We defined dimensionality descriptors formalizing classical local geometric descriptors. we derived two new
attributes. An entropy value evaluating the relevance of the dimensionality descriptors that allows to
automatically select, for each point, an optimal neighborhood size for the ”dimensional” description. A
verticality value which is used to detect facades and which is effective for urban scene classification. We
proposed a simple and effective method for detecting vertical rectangles adapted to mobile terrestrial lidar
data. In particular, we highlighted the interest of weighting points for random selection in ransac according
to a relevance criterion, here, the verticality criterion. The irregular grid model has allowed us to identify
effective algorithms to process lidar points, such as the detection of horizontal and vertical discontinuities.
We raised the issue of using more information than the lidar echoe locations, and highlighted some
limitations of unorganized point clouds, especially for surface reconstruction. We then showed the value of
using the sensor geometry by a theorem that encourages to mesh surfaces following the acquisition order of
the lidar points. A deformable 2.5D grid was proposed. It allows to model facades adapting to the
orientations of the laser beams and the facade with a original coordinate system called ”prismatic
coordinate system”. Finally we explored the possibility of making this coherent grid with optical images
acquired at the same time.
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Chapter 1

Description of the lidar data
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1.3.2 (τ,Θ) space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.4 What lidar systems can tell us in addition to echo locations? . . . . . . . . . . 35

1.4.1 From τ,Θ image to sparse point cloud, the loss of continuity . . . . . . . . . . . . 35

1.4.2 Beam carving: detecting empty areas. . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

In this chapter, we present the lidar data. The lidar principle is briefly explained, then we present some
characteristics of this signal and derived data types, In particular, the point cloud data (PCD) that contain
punctual locations of lidar echoes. The different techniques involved in the echo location are listed. We
detail the geolocation step that converts echo coordinates from sensor reference frame to absolute reference
frame. We show how this step is particularly difficult and important in the case of mobile acquisition
systems. Some specificities of lidar PCD are then described. We try to understand the echo distribution.
The sparse aspect of such data is stressed, and we investigate which other information could be provided by
the acquisition configuration knowledge and by lidar signal. Finally, conclusions are drawn.

1.1 Capturing the geometry with reflected light

Lidar technology

The operating principle of lidar systems is detailed in the thesis of Mallet [6], you can also find a
description in French in the thesis of Boulaassal [4]. Remote sensing by laser or lidar, (”light detection and
ranging”) is an optical measurement that consists of a transmitter which emits a laser beam to a target and
a sensor that collects the emitted beam after reflection on the target. The analysis of the returning beam,
gives informations about the target location. In particular, the round trip time of the beam allows to
deduce the distance between the sensor and the target (as the speed of light is known).

Return signal: the full-waveform

As shown in figure 1.1, the return signal gives the light intensity in function of time. An intensity peak
corresponds to the beam return after the round trip to the target. It indicates when the beam hit the
target and we deduce the laser ”echo” location on this target. Please note that thereafter, we indifferently
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Intensity

Figure 1.1: Return Signal: the full-waveform. An echo corresponds to a maximum of returning signal intensity. Two
echoes are represented.

Figure 1.2: Lidar echoes (blue) acquired by the Streopolis. The lidar beams of a sweep line are displayed in red.
(The car is not to scale).

use the terms ”point” and ”echo”. The shape of the return signal called ”full-waveform” can be more
complex than a simple Dirac. The larger the laser footprint is, the more the response is spread over time,
leading to flattened peak. The laser may also be reflected many times which produces several echoes and
several peaks. The full-waveform analysis is the topic of [6]. This allows a detailed analysis of the signal
that leads to precise results.

Point cloud data (PCD)

However, the signal is mostly processed on line and the output is a point cloud data (PCD). Indeed, lidar
systems are often able to operate with a high frequency and they allow to acquire not one but many points.
For example the RIEGL used on the Stereopolis allows to acquire 5 million points per second. The 3D
echoes are recorded, they are sorted according to the acqusition order: the xyz coordinates, GPS acquisition
time, intensity value and beam angle are stored in a file.

Lidar Sweep

The lidar sweep is performed in order to optimize the scene sampling. The beams should be scattered
homogeneously in all the directions. However the high frequency acquisition often produces a higher echo
density along the scanline. Several sweeping patterns exist, but in the context of this thesis, we consider
that the sweep plane is perpendicular to the vehicle trajectory as in figure 1.2.
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1.2 Obtaining the absolute location of echoes

1.2.1 Static and mobile acquisition procedures

Although the lidar principle remains the same, several acquisition procedures can be distinguished,
depending on whether the lidar device is static or mounted on a mobile platform, and whether the
acquisition is terrestrial or aerial.

Stationary Terrestrial Laser Scanning (STLS) : The lidar device is static, it can be installed on a
tripod. The whole device rotates horizontally (360°) while the laser sweeps vertically.

Mobile Terrestrial Laser Scanning (MTLS) : The lidar device is embedded in a vehicle such as a car.
The Mobile Mapping Systems (MMS) can acquire data on a larger scale by moving through the
streets of a city for example.

Aerial Laser Scanning (ALS) : The lidar device is airborne. The laser often sweeps perpendicularly to
the flying object trajectory. Such systems provide data from the sky and can cover extensive
landscapes.

1.2.2 Sensor geolocation

The lidar system provides the echo locations relative to the sensor: the orientation is known mechanically
with the shooting angle and the distance is measured thanks to the return signal. If an absolute location of
the echoes is needed, a geolocation step is then necessary. It therefore takes two independent steps to
obtain this absolute location:

1. Positioning the echo relative to the sensor (lidar measurement).

2. Positioning the sensor relative to the world (geolocation).

In STLS, the second step consists of defining the geolocation of a single stationary spot. To obtain the
absolute position of the echoes, the single rotation and translation is applied to all the echoes. The two
steps are independent: a geolocation error may shift or rotate the position of the whole PCD, but it
does not induce relative positioning error between the echoes. Such a PCD from stationary acquisition is
said to be ”rigid” because the relative position between echoes is reliable and is not affected by the
georeferencing step.
On the contrary, in MTLS and ALS, the georeferencing step can induce relative positioning errors between
echoes. The sensor is moving during the acquisition, and at each time, the sensor geolocation has to be
found again. As a consequence, the geolocation of each echo may refer to a different sensor geolocation.
The sequence of these successive sensor positions draws the path traveled by the vehicle during the
acquisition. Pictorially, we try to georeference the full trajectory of the vehicle. The mobile laser scans are
”non-rigid” because they may be distorted by this trajectory estimation.
In any case, the position of the echoes is more reliable in the sensor reference frame than in the absolute
reference frame because the georeferencing step is added. In the next section we will see how the ”local”
sensor coordinates are converted into the global coordinates.

1.3 Converting sensor coordinates (τ,Θ, R) into real space
coordinates (x, y, z)

1.3.1 Sensor topology

We consider the following acquisition configuration: The laser scans perpendicularly to the trajectory, with
a vertical angle Θ. This is often the airborne configuration and the RIEGL lidar of the Stereopolis is
mounted this way, as explained in [7]. Such acquisition configuration have been used to acquire the
Vaihingen Dataset [8], [9]. The PCD, the sensor displacement and the laser beams are shown in figure 1.3
and 1.2.
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(a) PCD, altitude in black and white) (b) Laser Beams and trajectory

Figure 1.3: Vaihingen Dataset.

(a) Top View (b) Points projected in the (τ,Θ) space

Figure 1.4: The dataset in (x, y, z) space (a) and (τ,Θ) space (b). In Aerial Datasets, the sensor is almost orthogonal
to the scene, the projection deformation is thus low.

Let P (x, y, z) an echo acquired at τ time,

P (x, y, z) = Sτ +R cosΘ
−→
Uτ +R sinΘ

−→
V (1.1)

−→
Tτ

R

Θ

−→
Uτ

−→
V

P

Sτ

Sτ is the position of the sensor at τ .
R is the distance between Sτ and P .
Θ is the angle between the horizontal
plane and the laser beam.
V is a vertical unit vector.
Uτ = Tτ × V , with Tτ the unit vector
of the vehicle displacement at τ .

−→
Tτ

R

Θ −→
Uτ

−→
V P

Sτ

Each term has specific features that imply various accuracies and value distributions as shown in table 1.1.
Some terms depend on the geolocation system, and some others only depend on the lidar system. The
coordinate system (τ,R,Θ) is special because it represents the sensor point of view and is independent of
the geolocation system. As displayed in figure 1.4, the dataset in the (x, y, z) space and the (τ,Θ) space
looks similar because the trajectory is almost straight and far from the acquired scene.
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Sτ R Θ
Accuracy depends on Vehicle Positioning System Lidar Measurement Mechanical Measurement

Accuracy is - + +++
Density depends on Vehicle Trajectory and Speed Scanned Objects Distance Lidar Firing Frequency

Distribution Regularity ? If Constant Speed If Smooth Surfaces Yes

Table 1.1: Accuracy and Distribution of Sτ , R and Θ.

Time
0 13.2s 

1 2

3

4

Figure 1.5: This PCD had been acquired while the Stereopolis performed a right angle turn. The trajectory is
displayed in black, and we noted four locations that also noted in all the following pictures of this acquisition. We
thus call it ”1-2-3-4”. The points are colored according to their acquisition time.
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Figure 1.6: Various viewing angles (a-b-c-d), and sensor projection (e) for the ”1-2-3-4” dataset, colored according to
the reflectance. The trajectory is straight in the (τ,Θ) projection, and the point cloud is homogeneously dense, while
the point density may strongly vary in the (x, y, z) space. Some shadows (null density) appear behind the people
and bikes (c). One can see the scanlines on a facade (a). The point density is lower on the road part far from the
trajectory (d). The point distribution is scattered in the trees (d) in such case, the (τ,Θ) point-connectivity has no
sense.
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1.3.2 (τ,Θ) space

The lidar sweep produces pulses at regular intervals of time τ and firing angles Θ. Hence, echo distribution
in (τ,Θ) space is very homogeneous and structured. Each echo can be linked with the next point acquired,
(τ connectivity) and with the point on the next scanline that has the same angle (Θ connectivity). It may
be helpful to work with the images because they do not suffer from the problems of geolocation. In these
images, the points are neighbors according to the τ,Θ connectivity that do not necessarily corresponds to a
spatial neighborhood, ie to neighboring points in such image can be far in the (x, y, z) space.

Compared to ALS, (fig:1.4), in MTLS acquisition,
the behaviors of τ and Θ are less easy to under-
stand. In the figure 1.5, the PCD had been acquired
while the Stereopolis performed a right angle turn.
The acquisition time τ is displayed for each echo.
The corresponding (τ,Θ) image is strongly distorted
(fig:1.6),
The virtual tube displayed on the right is an iso-
surface (iso-R) The blue rectangle mapped on it is
an example of (τ,Θ) image. Assuming That All the
echoes are at the same distance from the sensor, they
would belong to a iso-R (tube). the echo distribution
would then be very homogeneous along this iso-R.
Actually, the R variation disperses the echoes and
destroys this regularity, as explained in figure 1.6.

Θ

τ

The point density is roughly uniform in the (τ,Θ) space. But it is no longer homogeneous in the (x, y, z)
space. In the next chapter we will see the problems raised by this variable point density.

1.4 What lidar systems can tell us in addition to echo locations?

The point density depends both on the acquisition configuration and on the scanned objects, While the
sensor remoteness induces a density reduction in PCD, in image data it causes an increase in the area that
is projected onto a pixel. This mechanism preserves the continuity -the sensor connectivity- in image
structure.

1.4.1 From τ,Θ image to sparse point cloud, the loss of continuity

Comparison between image and point cloud data

If we draw a comparison between the echoes and the image pixels (fig 1.7), the further the sensor is, the
sparser the echoes are: the sensor remoteness deletes the echo connectivity in PCD. On the contrary, the
image pixels remain related, regardless the distances of objects from the sensor. This comes from the sensor
layout: a card is covered by sensor cells. The photons arriving on the map are collected by the cell they
encounter. Each cell integrates the photons that come from its visibility cone. A pixel value is the result of
this integration. The visibility cones partition the 3D space, There is no gap between the visibility cones of
neighbor cells, the neighbor pixels correspond to neighbor areas in the 3D space. It is interesting to note
that the sensor remoteness implies a density reduction in PCD, while in images, it implies an integration of
photons that come from a larger area. The surface of this area projected on a single pixel grows as
(R tan(δθ))2, with R the distance to the sensor and δθ the visibility cone angle. An image remains therefore
a continuous surface, whatever the distance to the objects. The neighbor pixels always correspond to
neighbor areas, but the surface of these areas varies from pixel to pixel. The lidar PCD are sparse, because
the beams footprints are not overlapping. The neighborhood relations between echoes are also more
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(a)

Image Lidar

(b)

Figure 1.7: Sensor remoteness: comparison between point cloud and image data.
(a) Photography: Each sensor cell integrates the photons that come from its visibility cone.
(b) There is a continuity between image pixels, because the visibility cones partition the 3D space, while the lidar
point clouds are sparse, because the beams footprints are not overlapping.

complex to draw, because the sensor location and orientation vary from echo to echo, while the pixels are
acquired in the same time by a rigid system of sensor cells.

Failing to keep sensor connectivity between echoes, we will analyze the density variation according to the
sensor location.

The causes of density variation

r

r

r r rrr

r

1 2 3 4

Figure 1.8: Causes of density variation. Point density depends on the sensor distance (1), and this distance depends
on the surface geometry (2). Density is also decreased in porous areas (3) or by occluders (4).

The acquisition configuration (vehicle trajectory, shooting frequency, shooting angles...) gives many clues to
understand the echo distribution. Indeed, for a given echo, if the sensor location (Sτ ) and the shooting
angle (Θ) are known, the lidar beam can be positioned in space, and as the echo cannot be elsewhere than
along the beam, the only missing information is R (sensor-echo distance). This is also the only information
which depends on the scanned object: the scanned object determines where the beam path is stopped...
while the beam path itself is determined by the acquisition configuration. In sensor coordinate system, the
acquisition configuration is responsible for the echo distribution in two dimensions (τ and Θ), while the
scanned objects scatter echoes in the third dimension (R).
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r

Intensity

(a)

Amount of information

Vacuum Density Matter Density

(b)

(c)

Figure 1.9: Matter, vacuum and amount of information.
(a) An echo corresponds to a maximum of returning signal intensity.
(b) The matter density can be measured according to the lidar echoes that indicates the presence of matter. The
areas with no echoes are not necessarily empty of matter, they are actually empty of information. The laser beams
go through the empty areas, we can thus measure the vacuum density according to the beams.
(c) Lidar beams and echoes represented by a visibility cone and an ellipsoid.

Unpredictable density

One might think that the knowledge of the acquisition configuration could allow to estimate the echo
density as a function of R. The echo density actually decreases with the sensor remoteness (when R↗),
but as illustrated in figure 1.8, the relation between the echo density and R is more complex and depends
not only on the acquisition configuration (viewing angle, scanning frequency ...) but also on the scanned
object geometry. If the geometry is simple, as a flat surface, the density is easy to predict. However, if the
density is lower than expected, many causes are possible: complex geometry, occluders, semi-transparent or
porous objects, tree foliage...
In sum, the echo distribution depends on the scene geometry that can be arbitrarily complex, providing
sparse PCD with a variable echo density. The point density cannot be used as it is, as a confidence measure
of the data. It is correlated with acquisition conditions, especially the distance to the sensor. The point
density can be inferred thanks to the coordinate system τ,Θ, R for a given geometric modeling.

1.4.2 Beam carving: detecting empty areas.

Contrary to image data that preserves pixel connectivity in a continuous surface, the sensor connectivity is
lost in PCD while the laser beams encounter objects at various distances and the echoes are scattered in 3D
space. Moreover, in mobile laser scanning, the sensor displacements makes the sensor connectivity more
complex and less useful to understand the true connectivity between echoes in 3D space. In summary, PCD
provide punctual information with no obvious connectivity structure.

How to guess the geometry between points

When one wants to estimate the geometry of a scanned scene through a PCD, the question is to guess the
missing information between points.
- Do the points belong to the same surface? Or else, is there an empty gap between them?
- Which points are connected and which are not?
- And if some points are connected, how to interpolate a surface between them?
The issue of connecting the points or not is often tackled thanks to some assumptions:

”The close points are connected.”

”The points belonging to the same plane are connected.”
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Figure 1.10: Lidar echoes colored according to their intensities and lidar beams (white).
Top-Left: During this acquisition, the lidar swept on one side, and we see that the vehicle did a U-turn.
Top-Right: We see the data as if we where inside the buildings. The beams are mostly stopped by the facade walls,
but some go through the windows.
Bottom: The facades are masked by foreground objects such as trees or other facades. These occlusions create shadows
on the facade walls. These areas empty of echoes are difficult to interpret: are they holes or masked areas? The lidar
beams lift a part of the ambiguity: If the beams go through the area, this is a hole, else, this is a hidden area and
there is no information about it.

However, these geometric assumptions are not always satisfied. If there is no information between points,
there is no way to guess the true geometry between points (unless one has a priori on the scene, or for
example if one has detected a known object).

Beams indicate the empty areas

An echo corresponds to a returning signal intensity peak and is usually stored as a 3D point, but, lidar
measure contains more information than the echo locations. The cone formed by the laser beam delimit the
area explored by the sensor, we call it ”visibility cone”. It corresponds to an empty area, and is truncated
by the encountered objects. If the laser beams are displayed (fig: 1.10), the data appears more dense than if
only the points are displayed.

As we have seen, point clouds are difficult to handle because we do not know what happens between the
points. In a simple PCD, the absence of information is confused with the presence of vacuum. Thanks to
the beams, we can clarify the problem by identifying the empty areas, thereby restraining the possible area
for surface reconstruction.
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A more complex way to model the lidar signal

In order to reduce the lack of information between echoes we can try to better exploit the signal: the lidar
signal can be converted into more complex geometrical primitives (fig: 1.9). The actual lidar echo is located
into an uncertainty ellipsoid which size depends both on the laser footprint and on the measure accuracy.
The laser beams could be modeled by cones. A geometric model would be based on volumes containing an
homogeneous matter density, as sketched in figure 1.9, with empty cones and full ellipsoids. But such a
modeling implies to calculate the unions and the intersections of cones and ellipsoids, which is very
complex, and would result in complex output shapes.

However, it appears that the two types of information are provided: the beams indicate the empty areas
while the echoes indicate the presence of matter.

The lidar systems measure the impermeability to light

The presence of matter and the presence of vacuum are incompatible. Unless we take into account the areas
semi-permeable to laser beams such as tree foliage or window glass. These areas that contain both echoes
and beams, both matter and vacuum. We could then suggest an impermeability measure. Indeed, vacuum
quantization and matter quantization, can cooperate in this measure: Impermeability is decreased along the
beam paths while echoes vote for impermeability.

Quantizing the acquired information

The beams materialize the space portion explored by the sensor. Beyond the echoes, there is no information
anymore. It is possible to determine if any space volume has been explored or not, and to count the number
of beams that passed through and the number of echoes that lie into. Hence, it is possible to measure the
amount of information acquired in any space volume. On the one hand, this allows to associate a reliability
score to any geometrical modeling. For instance, a surface reconstructed thanks to many echoes is more
reliable than a surface interpolated between only three echoes. On the other hand, this allows to distinguish
between an unexplored area that contains no information and an area pierced by laser beams that indicate
the presence of vacuum.

In summary, two types of quantities can be measured.

• Amount of vacuum amount of matter, impermeability measure.

• Amount of information.

Quantify the amount of information could help to manage more clearly the holes in lidar data. In addition,
it may facilitate data fusion giving priority to the dataset that contains more information, or the more
reliable information

1.5 Conclusion

Main obstacles

Processing lidar data acquired from MMS in urban environment seems challenging. In addition to be
inherently sparse, and unevenly sampled, the data is necessarily incomplete: many parameters cannot be
controlled such as the vehicle speed or trajectory, the on-board sensors are constrained to capture
information from the street point of view, along the vehicle trajectory. For instance, the building volumes
cannot be apprehended in their wholeness. We have to deal with facade pieces, partially hidden by
occluders, such as cars, trees or other facades. The data is therefore incomplete, but can be redundant if
some loops are performed during the acquisition. However, the redundant data may be inconsistent because
of some georeferencing errors.
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What to keep in mind

The lidar data are provided by systems that require many different technologies. Errors from each
technology have different magnitude. Georeferencing errors are currently the most important. Taking into
account this diversity in the data processing can yield better results.
The lidar data can take several forms (PCD, full-waveform ...). PCD are simple to process and compact but
suffer from heterogeneous point density, while the full-waveform takes up more space in memory and is
geometrically more complex, but contains more information. It seems important to think about the choice
of the data type. Anyway, it is possible to use other information provided by the lidar systems such as the
sensor location for each echo, and the acquisition order, that are simple features, light in memory and that
bring valuable geometric information.
The coordinate system τ,Θ, R is independent to the sensor geolocation. It can be useful if the dataset
contains self-registration errors. In addition, these coordinates are rapid to obtain as they relate to the
acquisition process and they provide hypothesis for surface reconstruction. However, the ”sensor geometry”
is not always topologically consistent with the true geometry of scanned objects.
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Local Geometry Analysis of
Unorganized Lidar Point Clouds
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This chapter is an extension of the work presented in [10].
In this chapter, we study methods that automatically characterize the local geometry in unorganized lidar
point clouds. We exclusively use the geometrical information contained into the 3D coordinates of the
echoes. Nor the echo intensities, nor the sensor locations and the echo number are taken into account. We
aim at a method as neutral as possible to provide low level features that describe the local geometry around
each 3D point. The proposed approach computes 3D structure tensors in spherical neighborhoods of various
sizes. Some ”dimensionality” descriptors are derived that are combinations of the 3D structure tensor
eigenvalues, they indicate whether point distribution in the neighborhood is more linear (1D), planar (2D)
or volumetric (3D).
In section 2.3 we describe the ”dimensionality” descriptors. In section 2.4 we investigate the way to retrieve
an optimal neighborhood size for each point.

2.1 Introduction

Point cloud data from airborne and terrestrial devices provide a direct geometrical description of the 3D
space. Such information is reliable, of high accuracy but spatially irregular and not dense. However, the
underlying structures and objects may be detected among sets of close 3D points. The local geometry is
estimated by the distribution of points in the neighborhood. Finding the best neighborhood for each point
is a main issue for a large variety of common processes: data down sampling, template fitting, feature
detection and computation, interpolation, registration, segmentation, or modeling purposes. The notion of
neighborhood and its fundamental properties are fully described in [11].
The neighbors of a lidar point are traditionally retrieved by finding the k nearest neighbors or all the points
included in a small restricted environment (sphere or cylinder) centered on the point of interest. The main
problem stems from the fact that the k and environment radius values are usually :

• heuristically chosen,

• and assumed to be constant for the whole point cloud, instead of being guided by the data.

This does not ensure that all these neighbors belong to the same object as the current point. Therefore, its
local description may be biased when including several distinct structures, and provides erroneous feature
descriptors. Moreover, the relative variation in the spatial extent of geometrical structures is ignored. For
aerial datasets, problems will occur at the borders between objects and for objects which size is inferior or
close to the neighborhood size. For terrestrial datasets, in addition, the point density may significantly
fluctuate due to foreground object occlusion, dependence on distance and relative orientation of the objects
[12], leading to data sparseness or irregular sampling.
This chapter aims at proposing a methodology to find the optimal neighborhood radius for each 3D point
on a lidar point cloud. An ”optimal” neighborhood is defined as the largest set of spatially close points that
belong to the same object as the point of interest. The inclusion of points lying on different surfaces is
prohibited. The context of the study is rather general: in order to be applicable both on terrestrial static
(TLS) and terrestrial mobile (MMS), and airborne (ALS) datasets, the method is simply based on the point
location, without requiring knowledge on intensity, echo number or full-waveforms. The topology resulting
from the sequential acquisition of the data is also considered to be lost (”unorganized” point cloud),
preventing the adoption of specific scan line grouping methods [13]. Furthermore, the process is designed
out of the scope of any application, even if the final goal is indeed to be beneficial to any application
requiring a correct local description around each 3D point.
The problem of scale selection has been mainly tackled for surface reconstruction and feature extraction of
scanned opaque objects. Several approaches have therefore been developed for noisy point clouds and
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irregular sampling issues. Most of them are surface-based i.e., they try to fit a curve or a surface of some
form to the 3D point cloud [14]. Finding the optimal group that well represents the local geometrical
properties is performed using indicators such as the normal and/or the curvature [15, 16, 17, 18]. For
instance, it is retrieved by minimizing the upper bound on angular error between the true normal and the
estimated one. Starting for the minimal possible subset around the point of interest, the neighborhood is
iteratively increased until the angular variance reaches a predefined threshold [19]. Such works have been
theoretically improved by Lalonde et al. [20], no more requiring knowledge on the data distribution, and
applied to mobile mapping datasets. An alternative work, based of the expression of the positional
uncertainty, is introduced in [21] for processing TLS datasets. However, these methods are effective for
smoothly varying surfaces and may not be adapted to real anthropic surfaces acquired with various kinds of
lidar systems. Furthermore, the model-based assumption does not hold when dealing with objects without
predefined shapes (e.g., vegetated areas) or with noise stemming for relief high frequencies (e.g., chimneys
and facades for ALS data or pedestrians and points inside buildings for TLS data). Consequently, in our
context, a more suitable solution is to directly compute shape features [22, 18], i.e., low-level primitives
that may capture the variability of natural environments.
The proposed methodology is developed in Section 2.2. The shape features are described in Section 2.3.
The computation of the optimal neighborhood radius embedded in a multi-scale framework is proposed in
Section 2.4. Results on various laser scanning datasets are presented in Section 2.6, some possible
applications are proposed in Section 2.7, and conclusions are drawn in Section 2.8.

2.1.1 Datasets

In order to assess the relevance of the proposed approach for various point densities, point distributions and
points of view, three kinds of lidar datasets are tested: airborne, terrestrial static, and acquired with a
mobile mapping system (named ALS, TLS, and MMS, respectively).

ALS:

The algorithm was tested on four airborne datasets. The first one (ALSG) has been acquired over Biberach
(Germany), covering both residential and industrial areas as well as a city center with small buildings
(point density of 5 pts/m2). The second dataset (ALSR) features a ground truth and concerns a residential
area in Russia, with 5 pts/m2 [23]. The third one covers the dense city center of Marseille (France), with
high buildings, and thus sparse points on the building facades (ALSF ). Three parallel strips are present:
the point density therefore varies between 2 and 4 pts/m2 (for one strip and for the overlapping areas,
respectively). Finally the fourth is an open dataset of Toronto (Canada) that contains very high
skyscrapers and a crane (ALSC).

TLS:

The terrestrial scans acquired over the Agia Sanmarina church (Greece) have been processed [21]. The
dataset first offers a large variety of structures of various sizes as well as sparse vegetation on the ground.
Furthermore, the point density significantly varies with the orientation of the surfaces with respect to the
scanner position (TLSG).
We also display the results on a dataset acquired by ourselves in the ign courtyard (TLSF ).

MMS:

Datasets over two urban areas (France and United States, respectively MMSF and MMSU ) from distinct
mobile mapping systems have been processed [24]. Such datasets also include man-made objects of various
sizes and shapes, with varying point densities. The two specificities of MMS datasets are (1) gaps in the
point cloud due to the occlusion of foreground objects, and (2) vertical privileged directions in the point
clouds due to the sequential acquisition by lines. MMSU is manually labeled with numerous object classes.
MMSF was acquired by the Stereopois.
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Figure 2.1: The neighborhood can be fixed (same shape and size for all the points) or adaptive.

Figure 2.2: An adaptive cylindrical neighborhood is used
by [11] for aerial datasets.

2.1.2 Neighborhood choices

We aim at a local analysis, so we focus on the points contained in a neighborhood around each point. Some
possible neighborhoods choices are presented.
In order to perform a local analysis, the geometrical descriptors are computed on subset of surrounding
points. The results depends on this neighborhood choice.

Neighborhood Shape : Cylindrical or Spherical?

Cylindrical neighborhoods are suitable for a surface or 2.5D analysis, the point distribution can also be
analyzed in a preferred direction, while isotropic spherical neighborhoods provide a more neutral analysis in
3D space.
The choice of the points that are included into the neighborhood depends on the neighborhood shape. An
adaptive cylindrical neighborhood is used by [11] for aerial datasets. The neighborhood is initialized by an
infinite vertical cylinder centered on each point, then, the cylinder orientation and height are adapted to
the estimated surface. This adaptive neighborhood highlights the fact that the cylinder orientation have to
be chosen. The cylinder orientation allows to include more or less points in the neighborhood along a
privileged direction : the direction of the cylinder axis (often z axis) is specifically considered. In [11], The
initial cylinder axis direction is z, the adapted cylinder is then oriented along the normal of a local plane
estimation. In both cases, the cylinder is oriented according to the normal of an assumed surface: the
elevation axis is orthogonal to the horizontal plane that approximates the earth surface. This adaptive
neighborhood system can be seen as a coarse-to-fine approach to retrieve the local surface from a rough
horizontal plane estimation. Indeed, using a cylindrical neighborhood leads to perform a surfacing or 2.5D
analysis. Aerial datasets are often considered as 2.5D; there are three reasons for this:

1. As the plane flies over the scene, only the top of the objects are detected, and the acquired data
corresponds to a surface that overlays the scene (except with semi-permeable elements as foliage).

2. The z coordinate range is lower than the ranges of x and z.
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3. Some applications such as landcover classification aim to provide a 2D data analysis.

For these reasons, the point distribution is mainly horizontal, and the elevation is sometimes considered as
a feature, more than a spatial coordinate. The infinite vertical cylinder neighborhood is equivalent to a 2D
circular neighborhood and it corresponds to this horizontal cartographic point of view. It can be used to
evaluate the variation of z and quantify the penetration into the vegetation. And also to detect objects that
behave differently depending on z, as trees (trunk and foliage). The cylindrical neighborhood may also be
adapted to the estimated surface, one could say ”projected” on it. Under some assumptions of continuous
smooth surface, the cylindrical neighborhood is shown to be more precise compared to the spherical
neighborhood for surface curvature estimation [25].
However, we aim to provide a 3D geometrical description. For this purpose, the spherical neighborhood is
preferred: isotropy and rotation invariance are ensured such that the computed shape descriptors are not
biased by the shape of the neighborhood. Furthermore, r is the single parameter to be optimized.

Fixed vs Adaptive

An adaptive neighborhood avoids object mixing, but the feature comparison between different points has
then less sense because they are performed on neighborhoods of different sizes or/and cardinalities.
The neighborhoods can be the same for all the points (fixed size and shape), or adapted to the context
(fig:2.1). The adaptive neighborhood focuses on the only object that contains the point. It allows to avoid
object mixing and may provide a more precise geometry description. An adaptive neighborhood is dynamic:
a first step (that requires an initial neighborhood) is needed to analyze the geometry and deduce the
adapted shape. Two or more steps are thus necessary to adapt the neighborhood. A problem of adaptive
neighborhoods is that the results for each point are less comparable because the neighborhoods are not
equivalent. The ideal would be to compare neighborhoods that have the same shape, size and number of
points. The constant size neighborhoods provide a geometry description at a given scale. This seems to be
the more rational choice to compare the geometrical behaviors. However, as the point density varies, the
number of points in such neighborhoods may vary from one (if the point is an outlier), to n points. For
instance, in the MMS datasets there is often a greater point density at the bottom of the facade (close to
the sensor) than at the top (far from the sensor). This may produce various results while the facade
geometry remains unchanged from the bottom to the top. At the opposite, the ”k-nearest neighbors”
neighborhoods allow to maintain a constant number of points, but the size varies. A spatial pruning may
help to obtain more comparable neighborhoods, as explained in section 2.5.3. The ”point density” issue is
more detailed in chapter 1.

2.2 Proposed Method

2.2.1 Description

Our methodology aims at finding the optimal neighborhood radius for each lidar point, working directly
and exclusively in the 3D domain, without relying on surface descriptors (such as normals) or structures
(such as triangulations or polygonal meshes). It is composed of two main steps:

1. Computation of three dimensionality features for each point, between predefined minimal and
maximal neighborhood scale. These features describe the distribution of the points in 3D space, and
more exactly, the matching between the local point cloud and each of the three dimensionalities
(linear, planar or volumetric).

2. Scale selection: retrieval of the neighborhood radius for which one dimensionality is most dominant
over the two others.

The three dimensionality features (a1D-a2D-a3D) are computed exhaustively, at each point and for each
acceptable neighborhood scale, from the local covariance matrix. An isotropic spherical neighborhood,
centered on the point of interest, is adopted for this purpose. These low-level features, as well as the
automatic set up of the radius lower and upper bounds are described in Section 2.3.
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Figure 2.3: Neighborhood denomination.
The neighborhood VrP of a point P at scale r is defined as the set of points
Pk verifying :
Pk ∈ VrP ⇔ ‖P− Pk‖ ≤ r.

Then, the optimal radius is retrieved by comparing the behaviors of these three features between the
minimal and maximal acceptable radius. Two radius-selection criteria are tested to evaluate each scale and
find the most relevant value. This multi-scale analysis is performed in order to capture variation in shape
when aggregating points for an object distinct from the object of interest (edge effect or outliers). It is also
useful in case of significant density variation and lack of support data for gathering points over a large
volume while ensuring the conservation of the prevailing dimensionality.
Finally, our method presents three interesting characteristics:

• Definition of a confidence index of the saliency of one dimensionality over the two other ones.

• Multi-scale analysis and automatic set up of the bounding scales.

• Labeling of each point according to its privileged dimensionality, providing an interesting basis for
segmentation and classification algorithms.

2.3 Shape Features

In this section, we describe the shape features computed in a spherical neighborhood around each lidar
echo. The 3D structure tensor gives the average behavior of the points around the centroid. It indicates
how the point distribution is stretched or squeezed along three orthogonal directions/dimensions. We derive
”dimensionality” features to quantify whether the points are rather distributed in one, two or three
orthogonal directions in the neighborhood. and a labeling indicating the most predominant behavior
(fig 2.7).

1D : linear distribution

2D : planar distribution

3D : scatter distribution

2.3.1 Notation

The neighborhood VrP of a point P at scale r is defined as the set of points Pk verifying :

Pk ∈ VrP ⇔ ‖P− Pk‖ ≤ r. (2.1)

The proximity order of the points from P is noted k. P1 is the closest point to P and P⇔ P0. See fig 2.3.

2.3.2 Principal Component Analysis and 3D Structure tensors

A classical approach consists in performing a Principal Component Analysis (PCA) of the 3D coordinates
of VrP [18, 26]. This statistical analysis uses the first and second moments of VrP, and results in three
orthogonal vectors centered on the centroid of the neighborhood. The PCA synthesizes the distribution of
points along the three dimensions [27], and thus models the principal directions and magnitudes of
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r

(a) The shape of VrP is represented
by an oriented ellipsoid.

(b) The tensor function C is decomposed into a rotation R and a scaling
√

Λ.

Figure 2.4: An ellipsoid shape to estimate point distribution in the neighborhood.

variation of the point distribution around the center of gravity. These magnitudes are combined to provide
shape descriptors for each of the three dimensions. More advanced features based on harmonics or spin
images [28, 29] are not necessary since the segmentation task, which indeed requires contextual knowledge,
is not tackled in this paper.

Let xi =
(
x
i

y
i

z
i

)T
and x̄ = 1

n

∑
i=1,n xi the center of gravity of the n lidar points of VrP.

Given M =
(
x1 − x̄ ... xn − x̄

)T
, the 3D structure tensor is defined by C = 1

nMT M. Since C is a
symmetric positive definite matrix, an eigenvalue decomposition exists and can be expressed as
C = RΛRT , where R is a rotation matrix, and Λ a diagonal, positive definite matrix, known as eigenvector
and eigenvalue matrices, respectively (fig:2.4). The eigenvalues are positive and ordered so that
λ1 ≥ λ2 ≥ λ3 > 0. ∀j ∈ [1, 3], σj =

√
λj , denotes the standard deviation along the corresponding

eigenvector −→vj . Thus, the PCA allows to retrieve the three principal directions of VrP, and the eigenvalues
provide their magnitude. The average distance, all around the center of gravity, can also be modeled by a
surface. The shape of VrP is then represented by an oriented ellipsoid. The orientation and the size
informations are divided between R and Λ : R turns the canonical basis into the orthonormal basis
(−→v1,−→v2,−→v3) and

√
Λ transforms the unit sphere to an ellipsoid (σ1, σ2 and σ3 being the lengths of the

semi-axes). As enhanced in Figure 2.6 and for instance in [26], such an ellipsoid reveals the linear, planar or
volumetric behavior of the neighborhood i.e., whether the point set is spread in one, two or three
dimensions (blue, gray, and green ellipsoids in Figure 2.6, respectively).

2.3.3 Smoothed geometry

The geometrical analysis provided by the structure tensors have some limitations that we will try to exhibit
thanks to a synthetic data set (fig 2.5). The centroid is calculated for the 1024 nearest neighbors of each
point. The centroid set is more compact than the point set and the ridge is smoothed. The PCA describes
the behavior of the points that lie in a sphere that is centered on the point, but the eigenvectors and the
ellipsoid are centered on the centroid. The geometric description therefore ”moves” towards the centroid. In
conclusion, this method provides smoothed results that badly describes sharp edges.

2.3.4 Dimensionality features and labeling

Various geometrical features can be derived from the eigenvalues. Several indicators have already been
proposed [30, 31], and the following ones have been selected (Figure 2.9) to describe the linear (a1D), planar
(a2D), and scatter (a3D) behaviors within VrP:

a3D =
σ3
µ

, a2D =
σ2 − σ3

µ
, a1D =

σ1 − σ2
µ

,

σ3 σ2 − σ3 σ1 − σ2

0 σ3 σ2 σ1
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(a) (b)

(c) (d)

Figure 2.5: Centroid displacement. This synthetic dataset contains 10000 points randomly scattered in a rectangle
bent at right angle (a). The centroid is calculated for the 1024 nearest neighbors of each point. In (b), (c) and (d),
the displacements between each point (blue) and its centroid (black) are displayed.
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Figure 2.6: Three examples of ellipsoids (blue, gray and
green) computed over three areas of interest of distinct
dimensionalities for the TLSG dataset (a tripod over a
low and sparse vegetation – height colored).

where µ is the normalization coefficient. Both choices µ = σ1 and µ =
∑
d=1,3 σd are conceivable. But with

µ =
∑
d=1,3 σd, the values are not equally bounded. For instance, by remembering that 0 ≤ σ3 ≤ σ2 ≤ σ1,

a3D ≤ 1/3 while a2D ≤ 1/2. In order to extend intervals to [0, 1], some coefficients are applied in [32] and
they obtain

A1D =
σ1 − σ2∑
d=1,3 σd

, A2D = 2
σ2 − σ3∑
d=1,3 σd

, A3D = 3
σ3∑

d=1,3 σd
,

We preferred µ = σ1, because it directly implies a1D, a2D, a3D ∈ [0, 1] and because the features are more
comparable (especially A3D that is often smaller than A1D and A2D). In conclusion, we employ the
following formulas:

a1D =
σ1 − σ2
σ1

a2D =
σ2 − σ3
σ1

a3D =
σ3
σ1

The dimensionality labeling (1D, 2D or 3D) of VrP is defined by:

d∗(VrP) = arg max
d∈[1,3]

[a
dD

]. (2.2)

If σ1 � σ2, σ3 ' 0, a1D will be greater than the the two others so that the dimensionality labeling d∗(VrP )
results to 1. Contrariwise, if σ1 , σ2 � σ3 ' 0, a2D i.e., the planar behavior will prevail. At last,
σ1 ' σ2 ' σ3 implies d∗(VrP ) = 3.
As a1D, a2D, a3D ∈ [0, 1] and a1D + a2D + a3D = 1, the three features can be considered as the probabilities
of each point to be labeled as 1D, 2D, or 3D. It will help us to select the most appropriate neighborhood
size by finding which radius favors the most one dimensionality (see Equation 2.3).

2.3.5 Derive a normal vector from the structure tensor

In flat areas, a plane estimation is provided by the structure tensor. −→v1 and −→v2 belong to this plane, and −→v3,
the third eigen vector is orthogonal to it. −→v3 is thereby a normal vector. The main weakness of −→v3 as
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Figure 2.7: From structure tensors to dimensionality features and labellings.

Figure 2.8: Dimensionality labeling d∗ displayed in the dimensionality space.
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Figure 2.9: Behaviors of the three dimensionality features (TLSG dataset).
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Figure 2.10: Intensity, dimensionality features and labeling (TLSG dataset).
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Figure 2.11: Entropy feature, optimal neighborhood radius and optimal number of neighbors (TLSG dataset).
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Figure 2.12: Normal vector (TLSG dataset).

normal vector is the noise-sensitivity: the plane outliers included in the neighborhood alter the plane
estimation. However, in the next section (2.4), an optimal neighborhood size selection is proposed
according to the dimensionality features, that may favor the flattest neighborhood. As will be explained,
the size selection do not favor the flat neighborhood in every cases, but -roughly- only if the area is labeled
as 2D. As shown in figure, the normals seem correct along the walls and are noisy in the bush. Anyway
normals do not make sense in non-surface areas.
The proposed method allows to directly derive normal vectors that are maybe not optimal, but reliable,
especially in planar areas.

Normal Orientation

The sensor location indicates the orientation of the reflected surface, and thus the orientation of the
estimated normal to this surface. As shown on figure 2.13, the extremal cases are when the normal (−→n ) to

the surface is detected with a grazing angle, the normal is then orthogonal to the beam (
−→
b ) (highest and

lowest arrows). For any detected surface, the inequality −→n .
−→
b ≤ 0 is therefore ensured, which enables to

choose the normal orientation (⇔ normal sign).

Figure 2.13: The Far Side of the Moon: If all the beams have the same direction, the sensor can only see a half of a
spherical object.

2.3.6 Dimensionality features at several scales

The features can be calculated for several neighborhood sizes as in [33] where an approach very similar to
ours allows to quantify the dimensionality (1D,2D or 3D) of a neighborhood (fig 2.14). This multi-scale
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Figure 2.14: Multiscale analysis from the paper [33]

attributes are used as inputs for a classification in geomorphology (rivers, coastal environments, cliffs,...).
This classification is considered as efficient especially in separating vegetation from the rest of the data.
The geometric properties thus depend on the neighborhood size, and the dimensionalities calculated at
several sizes are not redundant, on the contrary they improve classification. However, we assume the
existence of an optimal size for the dimensionality calculation. In fact, this is not contradictory with a
multi-scale framework: If the dimensionalities are computed at several octaves, the optimal size can be
retrieved in between the size bounds of each octave. Such multi-scale framework has not been investigated.
In the following section, we focus on an automatic way to obtain the optimal size, with no a priori
knowledge about the echoes distribution and the scanned objects.

2.4 Scale selection

2.4.1 Optimal neighborhood radius

In order to find a optimal neighborhood size, A radius-selection criterion have been developed, namely the
entropy feature Ef .

As presented in Section 2.2, the dimensionality features are computed for increasing radius values between
a lower bound and an upper bound (rmin and rmax, respectively). Their set up is presented in Section 2.5.
They represent the minimal and maximal acceptable neighborhood radius according to the area of interest
and the sensor. The [rmin, rmax] space has been sampled in 16 values, which is a suitable trade-off between
tuning accuracy and computing time. Since the radius of interest is usually closer to rmin than to rmax, the
r values are not linearly increased but with a square factor. This allows to have more samples near the
radius of interest and less when reaching the maximal values.
A radius-selection criterion have been developed, namely the entropy feature Ef .
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Figure 2.15: Overview of the scale selection method.
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Figure 2.16: The entropy value is displayed in the dimensionalities space.

2.4.2 How to define a radius-selection criterion?

The problem is that in the absence of ground truth, or a clearly identified primitive such as a plane or a
straight line, there is no way to verify which neighborhood is best. The neighborhoods have to be compared
together in order to select the more relevant.

In [34], the ellipsoids are progressively merged. The merging process continues or stops according to a
criterion formulated as a threshold on a distance measure, defined on the merge candidate ellipsoids. Two
criteria are proposed, based on a density-distance and a shape-distance. Optimizing the density implies to
be as close as possible to the points (to the data). It is thus a data criterion, as the variance used in [35]. If
the ellipsoids are merged according to the shape-distance, distance to the data is minimized, the merging
tries to reduce the redundancy, and thus, to output a simpler model. For instance, the flat ellipsoids of the
ground may be merged into a unique ”ground ellipsoid”. This modeling may loose some details of the
terrain relief (move away from the data), but it decreases the number of ellipsoids. The shape-distance is
thus a MDL criterion (Minimum Length Description).

In the merging process, the ellipsoids are compared by pair, and there is not the notion of ”most relevant
ellipsoid” in the shape-distance. We tested density criteria that were not convincing, because the density is
too dependent on the neighborhood size, moreover, density and dimensionality are also dependent.

As we are not able to qualify the geometrical features, we decided to design a criterion that asses the
adequacy with the proposed description. This is the purpose of the entropy Feature Ef .

2.4.3 Entropy Feature Ef

a measure of unpredictability is given by the Shannon entropy of the discrete probability distribution
{a1D, a2D, a3D}:

Ef (VrP) = −a1D ln(a1D)− a2D ln(a2D)− a3D ln(a3D). (2.3)

Figure 2.16 gives the spatial representation of this entropy value.
The lower Ef (VrP) is, the more one dimensionality prevails over the two other ones.
The relevance of scale selection is demonstrated in Figure 2.17.
This criterion allows to define an optimal radius r∗Ef that minimizes Ef (VrP) in the [rmin, rmax] space :

r∗Ef = arg min
r∈[rmin, rmax]

Ef (VrP). (2.4)

A dimensionality labeling is then provided by : d∗(V
r∗Ef
P ).

2.5 Bounding scales

The optimal neighborhood radius is retrieved between predefined lower and upper bounds. They depend on
various characteristics, and are therefore specific to each dataset.
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Figure 2.17: Illustration of the relevance of the entropy feature for scale selection (building roof in ALSG). Left: 3D
point cloud (height colored). One can see the two main roof parts and a central superstructure. Right: 3D point
cloud colored with Ef computed for one point of interest (pink dot). The color of each neighbor Pk corresponds to the
Ef value, computed on the smallest neighborhood containing Pk. The entropy first decreases until the neighborhood
reaches the edge of the roof (blue circle – optimal size). Then, the entropy increases and becomes maximum when
the neighborhood gathers distinct objects (red circle), here the ground and a chimney.

2.5.1 Lower Bound

The choice of the lower bound is driven by (1) the noise level; (2) the scan sampling; (3) the scene
geometry; and (4) computational constraints :

(1) The noise level

Local scattering may appear for linear or planar surfaces. It may stem from sensor noise or unfavorable
geometrical configurations (e.g., laser beam nearly parallel to a surface). Shape features are then biased
and the point cloud may locally be erroneously labeled as ”volumetric”. The knowledge of the intensity of
such noise is a prerequisite for solving this issue. Alternatively, the minimum size can be estimated
applying the methods mentioned in Section 2.1 for this purpose.

(2) The scan sampling

The laser beam deflection system or the kind of mapping device may create point clouds with very irregular
landscape sampling (low values in one direction and larger values in the orthogonal one). This is particularly
true for MMS since datasets are acquired line by line with forward motion of the device. To cope with this
issue, the rmin value is increased until VrP blends points belonging to at least two different scan lines.
In fact, there are two causes of the scan sampling.
Survey specifications: The point density, the overlapping ratio between stripes...
Scan pattern that depends on the technology (polygon mirror or optical fiber).

(3) The scene geometry

As on facades in ALS or cross-roads facades in MMS, where the points are scattered, the point sampling is
due to the scene geometry.

(4) Computational constraints

A minimal number of points is required for the PCA. We consider relevant statistics start with 10 points. If
the two first above-mentioned issues are not problematic, the point density directly provides the lower
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(a) (b)

Figure 2.18: Pruning of the Lucerne dataset: A point is kept in every 0.4m3 voxel. Original distribution (a) and
sub-sampled (b).

bound.

2.5.2 Upper Bound

The selection of the upper bound is not critical and can be tuned with the knowledge of the lower
frequencies of the relief i.e., the size of the largest objects in the scene. For TLS and MMS datasets, this
corresponds to facades (typically 3 m) whereas for ALS data, ground regions and large buildings are
involved. As Ef remains almost constant for these large planar areas, a cut-off value around 5 m works well,
even if in practice 3-4 m are sufficient.

2.5.3 Spatial Pruning

The spatial pruning may appear as the ”easy way” to bypass point density problem. Indeed, spatial pruning
is easy and fast to perform, and the resulting point set is lighter. But it allows to become independent of
the lidar sampling and thus to obtain a more homogeneous point distribution. At the lowest scales, point
distribution depends on acquisition (noise, lidar sweeping method...), and do not reflect the ”true”
geometry. As explained previously, we prefer to avoid too small neighborhoods thanks to lower bounds.
Another way to abstract from the noise level is the spatial pruning. We use the following algorithm:

Spatial Pruning

Inputs : the PCD, the voxel width w.

Voxelize the Space : A data structure is created to accumulate the points in
the voxels. For this purpose, we use a C++ map. In order to associate a
key to each voxel, we build an Hilbert space-filling curve with a resolution
level equal to w. The curve index can then be computed for each point,
indicating in which voxel the point lies. Using such a map allows to create
only the voxels that are not empty.

For each not empty voxel, the centroid is computed and the closest point
to the centroid is kept.

The point density is bounded by a maximum value of w−3 (1 point per voxel). This upper bound is a
security:

• If a ”fixed radius” neighborhood is used, the number of points per neighborhood is limited. This is
not the case in the original PCD, where a neighborhood (in a high point density area) can contain an
arbitrarily large number of points. Such ”crowded” neighborhoods are time consuming and it is useful
to avoid its.

• If a ”k-nearest neighbors” neighborhood is used, the same high point density areas lead to arbitrarily
small neighborhood sizes in the original PCD. It is also useful to avoid its, because the strong size
variations make the neighborhoods comparisons less significant.
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(a)

(b)

Figure 2.19: Dimensionality labellings in ALSC : comparison between the dataset before (top) and after a spatial
pruning (bottom). The spatial pruning kept one point per cubic meter. In the original dataset, the point distribution
highlights the scan lines that are labeled in 1D. The spatial pruning allows to abstract from this acquisition-dependent
distribution and the points are labeled in 2D.

The neighborhood size varies less whether with ”fixed radius” or ”k-nearest neighbors”. The more
homogeneous density reinforces the correlation between the neighborhood size and its number of points.
The choice of the neighborhood type is thus less important.
The spatial pruning is a simple way to avoid many problems caused by density variation. Even if it induces
a loss of accuracy, it seems to be useful in many situations:

A fast PCD analysis. The pruning allows to control the number of points and the computation time.

Initialization. For the same reasons, some algorithms can be initialized with a pruned PCD, and then
enhanced with the original one.

Computations at large scales. At large scales, the neighborhoods contain numerous points and are
redundant with the neighborhoods of nearby points. In fact, all the points are not useful anymore,
that is why a pruning is appropriate. However, we may want to continue to store the results for all
points of the original PCD. For this purpose, it is possible to work with two PCD: the original one
and the pruned. The neighborhoods are built around each original point, but the spatial requests are
performed in the pruned PCD. Hence, a ”pruned” neighborhood is built for each original point.

2.5.4 Precision vs Robustness

Selecting an optimal radius is also a trade off between precision and robustness.
This section does not offer some techniques to bound the radius search space. We only highlight the fact
that there is an underlying trade off between precision and robustness. Enhancing one of these criteria is
often at the expense of the other. This is a reason explaining the difficulty to retrieve an optimal radius:
two incompatible criteria are involved. However, the scale bounds may ensure minimum scores of precision
and robustness.

Precision is the smallest significant scale. It increases if the calculations are made locally, and therefore, if
the radius decreases. The maximum of precision is reached just above the scale below which the
model no longer describes the data (the noise level for instance).

Robustness is the confidence that can be placed in the signal analysis. It therefore increases with the
number of points. the maximum of robustness is reached when all the points of the same shape are
included into the neighborhood, and before including points from other shapes.

These observations allow to redefine the lower bound as the maximum expected precision, and the upper
bound as

58



Different shapes are mixed
in the neighborhood.

Sub-sampling, noise....
Point distribution 

does not reflect
 the scene geometry.

Toward the greatest precision Toward the greatest robustness
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Figure 2.20: Trade off between precision and robustness. The search space of the optimal radius can be defined as
the intersection between a ”precision tolerance zone” and a ”robustness tolerance zone”.
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Figure 2.21: Comparison between constant and optimal neighborhood size on a synthetic dataset. The results are
sharper with the optimal neighborhood: Most of the points are labeled in 2D, except on the ridge and the edges.

The lower bound is a trade off between the maximum precision, i.e. the smallest r, and the minimum
robustness, i.e. the smallest k.

The upper bound is a trade off between the minimum precision, i.e. the greatest r, and the maximum
robustness, i.e. the greatest k.

We thereby obtain four bounds for the search space of r∗, as sketched in section 2.20.

2.6 Results

2.6.1 Scale selection

Synthetic dataset

In figure 2.21, a comparison is drawn between constant and optimal neighborhood sizes on a synthetic
dataset. The dataset contains 10000 points randomly scattered in a rectangle bent at right angle. the
attributes are computed for a constant number of neighbors k = 1024 (top row) and for an optimal size
32 ≤ k ≤ 1024 that minimizes Ef (bottom row). The plane detection is more sharper with the optimal
neighborhood as we see with the normal feature z−→v3 and a

2D
. The optimal value k (gray background) is

noisy, despite the fact that the data is synthetic and the surfaces perfectly plane. Actually, these plane
surfaces lead to the noisy result: a

2D
is great whatever the setting of k. Ef is then low for all k, and the
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Figure 2.22: Radius selection (r∗) and dimensionality labeling for ALSG dataset.

Figure 2.23: Radius selection (r∗) and dimensionality labeling for ALSF dataset.

optimal size selection is more random. However, when the points are close to the ridge and the edges, the
optimal size is most often small. The result is then sharper than with the constant size, this also ensures
that the normals stay orthogonal to the plane.

Real datasets

The six datasets have been processed with the proposed approach. Scale selection results are displayed in
Figures 2.11, 2.22, 2.23 and 2.24, using the Ef criterion. The observed behaviors are those theoretically
expected, which confirms the effectiveness of our multi-scale analysis using Ef :

Planar areas exhibit high radius values for ALS and TLS datasets (see Figures 2.11, 2.22 and 2.23). This is
particularly true for the TLS dataset since the multi-scale analysis allows to overtake the noise level.

Lowest scales correspond to border areas, allowing to retrieve building and vegetation edges for ALS
datasets, windows in MMS datasets (Figures 2.24), or small architectural elements in TLS.

The algorithm allows to select high values when no predominant dimensionality is found for small and
medium radius values. A sufficient number of 3D points is collected to retrieve a coherent dimensionality :
1D for wires and poles (Figures 2.24), 2D for building facades in ALS datasets (e.g., highest values in
Figure 2.23 which correspond to a few number of points lying on the facades of high buildings) or 3D for
vegetated areas (all datasets).

The method deals well with varying point densities. Such variation may come from the number of
overlapping strips for ALS datasets (a lower radius size is necessary when two overlapping strips exist for an
area of interest, see Figure 2.23), from occlusions or from the fluctuating incidence angle of the laser beam
on the surfaces for TLS or MMS datasets (Figure 2.24).

Object mixing

In figure 2.21, It is observed that the 3D label the ridge is the result of mixing points from two planes. The
object mixing is also observed in figure 2.27 even if the optimal radius selection is performed. If many lines
belong to the same plane as in in figure 2.27(1), the plane is detected instead of the lines. At the between
the crane trunk and the crane arm, the mixing of these linear structures is labeled 3D. This labeling is not
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Figure 2.24: Radius selection (r∗) and dimensionality labeling for MMSU dataset.

ledge, column...

parking meter
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Figure 2.25: Dimensionality features and labellings compared with a manual labeling of the Oakland dataset. One
can check visually the consistency between our automatic labeling and many semantic objects such as the ledges and
columns (1D), the facades (2D) and the foliage (3D).
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Figure 2.26: Dimensionality labeling statistics for two datasets available with ground truth.
(a) ALSR dataset: the five main classes have been conserved.
(b) MMSU dataset: the 59 classes have been condensed into four classes according to their shape (1D: wires, poles,
trunks etc. – 2D: wall, door, facade etc. – 3D: foliage, grass etc. – Clutter: objects without specific shapes). The
number of points for each class is indicated inside brackets.

wrong, as it corresponds to the actual behavior of the points in these areas, but this is not what we
expected. Two situations can be identified.

Multi-scale: the geometry varies from scale to scale, as the lines that belong to a plane. This case has also
been encountered with scan lines and high-voltage lines. One solution would be to store, not one, but
many optimal radii and the associated dimensionalities. Indeed, there is only one Ef minimum, but
several local Ef minima. A multi-scale analysis could be considered, it is interesting to keep in mind
that the shapes at large scales are the fusion of shapes at smaller scales.

Shape edges and intersections: In these limit cases, we would like to extend the shape properties to the
edges or across a junction with another shape. To extend the properties of a shape imply to identify
this shape as more relevant than the others. One way would be to select certain relevant shapes and
to extend their properties to the points belonging to this shape. This is possible with region growing
methods. One other way would be a point selection in the neighborhood (RANSAC) in order to avoid
the object mixing. However, the scale selection is already a kind of point selection, because many
point sets are tested (the neighborhoods of various radii).

To our opinion, the proposed method provides a geometrical description that is not the best one in
many cases (plane estimation, edges...). If the application indicates the searched primitives, such as
planes, the method can be tuned, or another method can be performed in order to extract the plane.
However, if we just want to analyze the geometry, nothing indicates if a plane is more relevant at the
roof ridge than the proposed 3D geometric description. A more complex or oriented geometrical
analysis may be biased. That is why we think that an advantage of this method is to be simple and
easy to understand. This is thereby a good tool for many application.

The effectiveness of the scale selection process can be assessed by observing the predominant dimensionality
that has been retrieved (1D, 2D or 3D ?) for various objects of interest. Comparisons with manually labeled
ALS and MMS data have been performed (cf. Figure 2.25 and 2.26). For both datasets, planar objects are
correctly retrieved, with few errors corresponding to building edges or small urban items, especially for ALS
data. Besides, objects with one privileged dimension such as poles, wires or trunks are mainly labeled as 1D
(MMSU dataset, in Figure 2.26b). However, since these objects are in fact cylindrical with a small width
(e.g., trunks or traffic lights), they may look planar or volumetric for medium-sized neighborhoods.
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Figure 2.27: Radius selection (r∗) and dimensionality labeling for ALSC . Some unexpected behavior on the crane :
(1) The cables are labeled 2D instead of 1D.
(2) The junction between the trunk and the arm is labeled 3D instead of 1D. The mixing of several objects leads to
a label of greater dimension.
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Figure 2.28: Radius selection (r∗) and dimensionality labeling for ALSC . The facades are well detected as flat areas
even if the point density is very low. The optimal radius is then great (red).
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Figure 2.29: Radius selection (r∗) and dimensionality labeling for TLSF . The optimal radius increases from the sensor
location (empty circle at top-left) toward the remote areas at right, and the ground is still labeled 2D despite the
scanning pattern arranged in lines. The tree labeling separates the trunk (2D), the branches (1D) and the foliage
(3D). The optimal radius also behaves differently : small on the trunk, less small on the branches and much greater
in the foliage.
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Figure 2.30: Improvements in shape feature computation using an optimal neighborhood radius per point. adD and
a∗dD are the shape feature for dimensionality d, computed with neighborhoods of constant size and adaptive size,
respectively. The constant neighborhood size corresponds to the 30 nearest neighbors of each point.

Conversely, volumetric objects such as trees may locally look planar. This happens for large objects low
point densities or when no multiple scatterings are found with vegetated areas. Such phenomena is limited
for genuine 3D acquisitions (TLS or MMS datasets), whereas it is clearly enhanced for 2.5D data such as
for the ALSR data (Figure 2.26a). High vegetation areas are principally labeled as planar, which is due to
the dense canopy cover. Nevertheless, as displayed in Figure 2.22, such effect almost disappears when 3D
points are acquired within tree canopies.

2.6.2 Comparisons with constant neighborhood size

The adaptive size strategy allows to retrieve a correct number of points to estimate the local dimensionality
of the point set. Such strategy may be compared with the results achieved with neighborhoods of fixed size
for a whole dataset.
Firstly, the three shape features are computed with both strategies for four classes of interest of the ALSR
dataset (Figure 2.30). One can see that the planar behavior of ground and building points is improved with
the adaptive size. Besides, for vegetated areas, the volumetric behavior is slightly enhanced, however this
happens in conjunction with an increase of the planar behavior (dense canopies). Secondly, in addition to
improved shape features, Figure 2.31 shows that the privileged dimensionality is also better retrieved with
the adaptive strategy (MMSF dataset). This is particularly true for trees (1D→3D), small building facades
elements (1D→2D), and tree trunks (2D→1D). Furthermore, since the geometrical analysis is less affected
by the 3D point distribution, the labeling procedure is far less noisy.

2.7 Dimensionality features as a toolbox.

In this section, some possible usages of the dimensionality features are detailed.

2.7.1 Derivation of horizontality and verticality scores

The local analysis that have been developed allows to derive simple descriptors. We propose here an
Horizontality and a Verticality score. we assume that an horizontal area is a flat and horizontal surface. As
well, a vertical area is assumed to be a flat and vertical surface. For each point pi, a normal vector is
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Figure 2.31: Dimensionality labeling for the MMSF dataset using a constant neighborhood size for the whole point
cloud (left), and the optimal value per point selected with Ef (right). The constant neighborhood size corresponds
to a 1 m radius.
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0
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Figure 2.32: Constant vs optimal radius. In dimensionality space (triangles), points are evenly distributed in a
neighborhood of constant size (a) when they are pushed toward the corners by the scale selection method (b):
minimize Ef means avoiding the uncertainty area in the middle of the triangle (Ef max).
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Figure 2.33: Horizontality , and Verticality scores computed for a MMS dataset.

provided by −→v3 and the and the flatness is measured by a2D. The scores are thereby defined:

Horizontality = a2D|z−→v3 | Verticality = a2D(1− |z−→v3 |)

In figure 2.33, they are computed on a MMS dataset. All flat and horizontal surfaces: road, sidewalks, but
also car roofs and hoods obtain a high Horizontality score. As well, all flat and vertical surfaces: facade
walls, tree trunks, poles or streetlights obtain a high Verticality score.
Such descriptors may also be useful for ground or facade extraction. Even if many other objects are
detected, they provide a simple and powerful way to filter points. The relevance of the Verticality feature
has been assessed for the semantic interpretation of 3D point cloud data in [36]. A classifier-independent
ranking procedure made it second among 21 features.

2.7.2 Using dimensionalities in various applications

The dimensionality features and labellings have been tested and used in the MATIS laboratory for different
applications.

Tree extraction in MMS data

The data is segmented according to the labels: poles:1D, facade:2D, foliage:3D and an attribute of
cylindricity allows to detect the tree trunks. The trees are then detected and individualized [37].

Registration of lidar PCD

The Iterative Closest Point (ICP) algorithm is improved by using the features calculated from the structure
tensors, according to our radius-selection method. Two features are well-suited for registration : Ef and the
omnivariance (product of σ1, σ2 and σ3) both highlight salient shapes as the building corners and edges [38].

Segmentation

In annex, a mean shift segmentation is proposed.

2.8 Conclusion

The objective of this chapter was to provide a simple, general and automatic method to provide a
description of the geometry around each lidar echo. For this purpose, some features are derived from a
classical ”tensor voting” approach. The features are computed in a spherical neighborhood around each
echo. They describe the dimensionality (1D, 2D or 3D) of the distribution of the echoes included in such a
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neighborhood. The most appropriate neighborhood size is automatically selected among a range of
potential sizes according to the entropy feature Ef .
Results on distinct lidar point clouds acquired with airborne, terrestrial and mobile mapping systems under
various conditions showed the effectiveness of the proposed method. No a priori knowledge or assumption
on the point cloud distribution, density, laser scan pattern, object size or underlying structures was
required to achieve such results. Several experiments demonstrated how favorably our method performed
compared to constant neighborhood sizes, and how relevant such approach is. Finally, the prevailing
dimensionality and the scale of interest for the underlying object are found for each point, providing
interesting cues for many potential subsequent segmentation or classification algorithms.
To conclude, we would like to stress a characteristic of the dimensionality descriptors: they are
understandable and meaningful. To our opinion, this is a strong advantage from the user perspective: their
behaviors are predictable, allowing to derive tools for specific applications.

In the remainder of this thesis...

In chapter 3 we investigate the ways to optimize the computation of these descriptors for large amounts of
data. For MMS data, we explain our choice to perform a streamed computation. In chapter 4 we detect the
facades according to the Verticality score.
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Chapter 3

Scaling up
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Automatic algorithms performed on a great amount of data require an adapted strategy to browse into the
data and to isolate consistent subsets in order to perform algorithms locally. One can exploit the raw data
organization, but the data can also be restructured.
In the following, such choices are presented and discussed. Especially the different ways the data can be
organized or browsed:

• Semantic,

• Spatial/Dimensional: temporal (1D), Three-dimensional space (3D), or Space-time (4D).

The semantic partitioning corresponds to an ideal segmentation of the dataset, in accordance with the
scanned objects. Such approach implies a knowledge about the content of the data. But the dataset can
also be structured or browsed without any a priori knowledge, according to one or several dimensions (time,
x, y, z...). The dimensions have to be chosen when building a space partitioning data structures (octree,
kd-tree...) that speeds up the access to close points.
We finally explain why a temporal partitioning is preferred for facade detection according to our dataset.

3.1 Data structure: how to split the data?

3.1.1 Semantic partitioning

Processing a voluminous PCD rarely requires to handle the whole dataset in the same time. In many
applications we would like to handle each PCD subset associated with a single scanned object
independently. For this purpose we need a partitioning that perfectly matches with the scanned objects, i.e.
all echoes of a single object are clustered in a single partition. This way, each object/partition could be
handled independently, and the topological relationships between objects could be explored through a
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graph linking the partitions. Note that this object partitioning is not unique. Regarding our facade
building example, according to the chosen scale, the objects can be:

• the building bricks,

• the floors and the roofs,

• the entire buildings

• or the building blocks.

Leading to as much partitionings as possible scale levels. A multiscale partitioning is feasible, combining all
the ”scale-level” partitionings. It consists in a tree structure where each node is an object, the child nodes
are the included sub-objects, and the leaves are the 3D points. This tree structure allows to efficiently
retrieve the corresponding 3D points of every node-object. We believe that such a semantic tree would be
very useful, facilitating many applications in urban scene analysis. This ”Holy Grail” could be achieved
with the combined efforts of several algorithms that detect each object type independently, but not only:
even if the objects are often spatially isolated from the others, many cases remain ambiguous. The objects
are often mixed, hidden or sub-sampled, in addition there are always some objects that do not fit any
category. Rules and constraints must be used to reduce the choices and to achieve a good semantic tree. In
conclusion, we cannot expect to obtain a semantic tree thanks to a low-level approach. The plane primitive
detection that we propose in the next chapter cannot rely on such a partitioning. Conversely, the detected
primitives could contribute to construct the semantic tree.

3.1.2 Spatial data structures

Splitting and Sorting

Partitioning the data is helpful in two optimization ways:

Memory: handling the whole dataset is rarely necessary and it is memory consuming. Processing blocks is
more efficient, and often equivalent.

Time: the spatial requests according to one or several dimensions, are faster if the data is structured in
accordance with these dimensions: the spatial data structures (SDS) such as octree or kd-tree allows
to speed up the requests in O(log n). A ”semantic tree” could also fulfill this role.

The role of the data structure is to connect elements that are geographically close. This is what allows
faster access to neighbors of an element instead of searching throughout the entire data. The memory
constraint imposes to split the data while the time constraint imposes to connect the different data
components together. These requirements are almost opposite. The idea behind the tree structure is to
separate the components that are distant (spatial tree) or that belong to different objects (semantic tree).
Sometimes, the tree is not built on the whole dataset, a partitioning is then performed at two scale levels:

1. Data is split into large pieces : semantic ”City blocks” [39] or horizontal grid squares for aerial data
[40].

2. A dedicated spatial data structure (octree, kd-tree,...) is then constructed for each piece.

It should be noted that there are problems on the edge when cutting blocks, while kd/octree only accelerate
queries without affecting the calculation. Indeed, the objects to the edges of a block may be cut. How to
maintain the integrity of these objects? It is necessary to leave a margin, and therefore work on overlapping
blocks.

Dimensional partitioning

The spatial trees are often three-dimensional (xyz): the 3D space is split into voxels (octree) or into boxes
that contain the same number of points (k-d tree).
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3.1.3 Echoes are time-ordered in the raw data

Besides their spatial organization in the 3D space, lidar echoes acquired by the Stereopolis have also a time
coordinate. By the way, they are stored in the order they was acquired: the data is natively sorted in
chronological order. Linearly browsing through the raw data has therefore a physical sense! With a
temporal partitioning, two scans of the same object acquired at different times are not processed together.
It could be seen as a drawback but we see that as an advantage because urban areas are dynamic
environments, and many things might have changed between two scans of the same place: cars and
pedestrians might have moved, windows and doors might have been opened or closed... All this advocates
to consider two scans of the same place as different objects, which simply lie at the same geographic
location. Obviously, these objects should be associated (but not assimilated) for registration or change
detection purposes, but not for primitive extraction or object detection. Finally, lidar echoes are space-time
points. We did not investigate a 4D partitioning, the proposed algorithm is performed on temporal buffers.
Some other arguments explained below encouraged us to follow this direction.

3.2 Along the trajectory

The vehicle trajectory constitutes the backbone of an acquisition. Indeed, all the acquired data and
especially the location measures in the sensor reference frames are tied to it, in the sense that it provides
the sensor geolocations.

3.2.1 Trajectory: definition

We define the trajectory as the successive sensor locations during the acquisition. The trajectory is a 4D
element that maps each acquisition time τ with a sensor location. The trajectory is thus equivalent to the
function Sτ defined in chapter 1, section 1.3.

3.2.2 Vehicle geolocation

Obtaining the vehicle geolocation is challenging: MMS are usually equipped with a Global Navigation
Satellite System (GNSS). In satellite denied environments (urban canyon, tunnel...) the GNSS is relayed by
an inertial navigation system (INS) in order to ensure a continuous geolocation. However, the INS may
drift which leads to errors of a few tenths of a centimeter. This is a relatively great error (' 1 m) beside the
positioning error echo-sensor (' 0.01 m). Moreover these errors in the trajectory estimation affect
differently each echo. As can be suggested by an analogy with a spine, each laser beam is rigidly fixed to
the sensor position, but the sensor positions are uncertain and may move, causing the displacement of the
associated beams and echoes (fig 3.1). In other words, the error in trajectory geolocation is propagated in
the echo geolocations. This error varies along the trajectory, and it can also affect differently each echo. For
example, an angular variation causes displacements that are all the more important, if the echoes are
remote. As well, if there are actually georeferencing errors, the distance between the echoes is not reliable
and it is difficult to correct these biases without knowing the estimated trajectory. In mobile laser scans,
the relative location between echoes thus depends on the georeferencing process.

Figure 3.1: Georeferencing error propagation. The estimated trajectory may be deformed, involving the displacements
of the laser beams rigidly fixed to it. A small error in trajectory estimation (black and gray lines) can imply a greater
error in the echo location.
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3.2.3 Relative position errors between echoes

The mobile laser scans are ”non-rigid” because they may be distorted by the trajectory estimation. If the
georeferencing of the vehicle is inaccurate, leading to a wrong trajectory estimation, the relative position
between the echoes is not reliable. However, a local consistency is maintained in the PCD, and this is
actually a temporal locality: the relative position error between two echoes acquired in a short time interval
is ensured to be low and the drift of the navigation system is progressive. The data is consistent over a time
interval, but it can be shifted gradually during the acquisition. Such a shift can be highlighted when the
vehicle passes several times at the same place and comparing these successive acquisitions as in figure 3.2.
It is clear that the echoes detected the same objects, but the georeferencing causes a shift. It is not possible
to handle the whole dataset because the inconsistent echoes from the different epochs are mixed. However,
such redundancy in the data can be used to self-register the PCD.

3.2.4 Self-registration

We will not discuss the methods of self-registration and other techniques to improve or correct geolocation
but you can refer to the relating literature [41] [42]. The self-registration allows to register two parts (or
more) of the same acquisition that correspond to the same place. As the geolocation error is supposed to be
smooth along the trajectory, the deformation that register the two parts can be propagated along the
trajectory. The registration is strongly related to the trajectory estimation. In fact, the output is nothing
but a good trajectory estimation: assuming that the positioning sensor-echo is ok, the trajectory contains
the sensor position at each instant and allows to replace the echoes in the absolute reference frame.
If no self-registration is performed, it is not possible to handle the whole dataset but it remains possible to
handle temporal sections of the PCD.

3.3 Computing the local geometrical features along the
trajectory

As shown in figure 3.3, the computation of local features are not optimal when performed on the whole
dataset. using a temporal buffer gives better results and is also faster.

3.4 Conclusion

For MMS data, the local geometrical features computation can be streamed, and it is even preferable if the
data is not self-registered.
Scaling up imposes some constraints in the algorithm design. In particular, it is necessary to cut the point
clouds to apply processings on smaller blocks. Different choices are possible (Semantic, Spatial/Dimensional
: temporal (1D) , Three-dimensional space (3D), or Space-time (4D)). In our context, the most sensible
approach seems to be to keep the original structure of the point cloud, Indeed , the points are stored in the
order of acquisition and are naturally organized according to the temporal dimension. This is the most
direct method, but it has also other benefits. A time interval corresponding to a segment of the vehicle
path during acquisition. The sensor location is thus bounded in space-time, and points acquired during this
interval are always close temporally and often close spatially. Processing temporal buffers is a method

• fast

• adapted to the changing environment : no mixing of points from different epochs.

• suited to the vehicle georeferencing : georeferencing drift is gradual and therefore varies little over a
short time interval.

This is the choice made for the facade detection as vertical rectangles in chapter 4. This overcomes the
problems of data volume and georeferencing.
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(a)

(b) (c)

Figure 3.2: Shift between echoes acquired at three different times (three shades of gray).
(a) During the same acquisition this street side have been scanned three times (three shades of gray). The data is
shifted between the three epochs.
(b) and (c) Horizontal projection of the points in the xy-plane. The points lie on a facade. One can see the facade
footprint repeated three times. The more scatter areas correspond to the window columns. At right, the zoom
highlights the echo distribution (c). The spotted distribution is caused by the vertical lidar sweep. that concentrate
the echoes along vertical scan lines on the facade walls.

73



1
2 3 4

(a)

1

(b)

2

(c)

3

(d)

0

1

D1
0

1

D2
0

1

D3

Figure 3.3: Dimensionalities computed on the dataset ”1-2-3-4” (Presented in chapter 1, figure 1.5).
(a) GPS Time.
(b) Dimensionalities computed on the whole dataset. A facade is 3D (green) except for the area that corresponds
to the car shadow (zoom 1) where there is only one scan pass, and the dimensionality is more 2D (gray). The 3D
labeling of the rest of the facade thus corresponds to a registration shift.
(c) Dimensionalities computed with a streamed buffer of 10 000 points. This buffer size is too low: there is an artifact
on the road (zoom 2). The labeling is 1D not because of the road shape but because of the buffer shape.
(d) Dimensionalities computed with a streamed buffer of 100 000 points. This buffer size seems suitable: There is
neither registration problems, nor artifacts (zoom 3).
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Chapter 4

Streamed Vertical Rectangle
Detection
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This chapter is an extension of the work presented in [43].
The high level of detail of data collected by mobile lidar mapping systems allows for fine geometrical
modeling of urban environment. This high level of detail makes the amounts of data required to model an
entire city huge. Consequently, efficient methods are needed to detect the main scanned structures in order
to split the modeling of a whole city into smaller parts (blocks, building, facades,...) Whereas numerous
works focus on the fine reconstruction of certain types of urban objects (facades, trees, signalization,...) the
detection of such objects in large amounts of data remains quite unexplored, making these methods hardly
scalable. In this paper, we aim to automate a necessary step in fine facade modeling over large areas:
detecting the main facade rectangles present in the scene. This seemingly simple task faces the scaling
problem and other difficulties that often leads to perform it in a semi-automatic way, by pre-selecting
manually areas containing each facade or resorting to a cadastral database [44], a 3D model [45] or aerial
lidar data [46]. However, automation of this treatment is necessary to enable the modeling of large-scale
urban scenes.

4.1 Introduction

4.1.1 The dataset

The dataset used for this study was acquired by the Stereopolis in a dense urban area by a mobile mapping
system and consists of 3 loops over a 300m trajectory. The Lidar is a RIEGL fixed on the roof of the
vehicle. Scanning axis is vertical and each sweep records 201 echos. Beam angles with horizontal plane are
between 0°and 80°(fig 1.2). The dataset is displayed in figure 4.1(a) and contains approximately 10 million
points. As the scan is performed at constant rate, and the mobile mapping vehicle is moving at variable
speed (it even stops at traffic lights), the point density along the trajectory is very variable. The simplest
way to deal with this issue is to filter out points to ensure a reasonable maximum density.

75



(a) Whole dataset (b) Detected rectangles

Figure 4.1: Whole view of the dataset used to test the method (a), and the detected rectangles (b).

4.1.2 Plane detection

Primitive detection (rectangle, planes) is a widely studied problem, and many efficient methods have been
proposed and improved. Our aim is to find the most appropriate method to solve our problem. Common
primitive detection methods such as Hough or RANSAC do not scale well to large datasets as their
complexity is more than linear. This problem can be addressed in two (non exclusive) ways:

1. Improve the performance of the detection method.

2. Partition the data into smaller blocks.

Several authors have proposed methodologies to improve the performance of facade detection methods. For
instance, [44] proposes to accelerate the Hough transform algorithm by thresholding the accumulation in
parameter space with an upper bound above which plane hypotheses are directly accepted. Other methods
take advantage of repeated structures in facades in order to filter and consolidate point clouds ([47] and
[48]). In the proposed method, point filtering is performed in a probabilistic way with RANSAC : we
increase the probability that RANSAC selects points belonging to vertical planes (which contain many
points). More precisely, the probability to select a point is calculated based on local geometrical features
(see section 4.2.1).

The problem of rectangle detection in ALS data has been studied in [49], Flat areas with no holes are
extracted in the whole PCD by a RANSAC algorithm. The best rectangle is then fitted thanks to a novel
method: the rectangle rotates into the extracted flat area in order to find the best orientation and size.
After plane detection, the modeling consistency have to be controlled. Only the planes that belong to the
surface of scanned objects have to be kept, and these plane pieces have to intersect well together (surface
continuity).

But if the dataset is not too voluminous and complex, one can use a greedy algorithm: a plane
arrangements allow to retrieve the object volumes among a set of intersecting planes.

In our context, the plane detection cannot be performed in one time on the whole dataset, first because we
aim to deal with a large amount of data and we look for a streamed workflow, second because, in our
acquisition, the path contains loops, and the data acquired at the same place at several passages are not
consistent with each other: there is a spatial shift caused by the vehicle geolocation inaccuracy (see
chapter 3). Although a self-registration could be done before the plane detection, we prefer to develop a
method that could be streamed or even performed in real-time.
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(a) (b)

(c) (d)

Figure 4.2:
(a) Input data : a lidar point cloud.
(b) Probability that a point belongs to a flat vertical area.
(c) Line segment soup (colored rectangles).
(d) Output : detected rectangles (pink).

4.2 Proposed Method

The proposed method is divided into three steps:

1. Weighting points : Local geometrical features are computed on each point. This step allows to
weight 3D points with a probability that they belong to a facade.

2. Finding line segments : The journey of the vehicle is replayed. At regular intervals, a weighted
RANSAC is performed on points accumulated in a buffer. The buffer contains points acquired around
the current position. The line segments with sufficient scores are kept. At the end of this step, a line
segment soup is obtained.

3. Merging line segments : The line segments computed with RANSAC are connected together
according to a distance criterion (CD) and an overlap criterion (CO). The connectivity is checked on
each pair of line segments. Then, a graph is drawn, linking the connected line segments. Finally, the
connected component are extracted, connected line segments are merged and the resulting facades are
filtered.

Data processing are illustrated from the input point cloud to the output detected rectangles in figure 4.2.
We will now describe these three steps in detail.
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4.2.1 Weighting Points

The first step of the algorithm is an analysis of the
local geometry on the whole dataset. We use the
Verticality score defined in chapter 2 to define a
probability Pf that a 3D point belongs to a flat ver-
tical area (see figure at right).

Pf = Verticality

This step can be performed in stream, and as shown
in chapter 3 it is even preferable if the data is not
self-registered. The points belonging to a local ver-
tical plane have a higher probability to belong also
to a vertical wall. The probability Pf is thus in-
tended to favor points according to the local geomet-
ric analysis. Hence, a central idea of this chapter is
to combine a small-scale analysis with a primitive
detection on a larger scale. This will be done by ex-
ploiting the probability Pf in two different manners
in a RANSAC algorithm.

10

Probabilities that each 3D point belongs to a flat
vertical area. Pf ∈ [0, 1]. Values are stronger on
facades, but also on large tree trunks.

4.2.2 Finding Line Segments

Facade detection in 2D: To tackle the problem of facade detection in laser scans, some assumptions are
commonly made [50]:

• A facade is roughly planar

• The main plane is supposed vertical

Even if this verticality assumption is strong, it is verified in most cases and allows to reduce the problem of
facade detection in 3D to the simpler problem of segment detection in 2D. Hence, 3D points are usually
accumulated in horizontal pixel maps [39], or planes [51], in which lines are searched instead of planes. The
lines may be found using the Hough transform or RANSAC. Both methods are adequate for detecting
simple primitives in noisy data. Multiple planes detection: Using RANSAC, problems appears when
several planes have to be detected. This difficulty can be overpassed by modifying the algorithm : a
minimum description length criterion is used to estimate the model parameters [52] or an order constraint
favors some plane orientations [4]. In our approach, RANSAC is performed on overlapping blocks and many
plane hypotheses are found and then compared to keep the most relevant. We will now search for vertical
planes in the data based on a RANSAC algorithm that we modified by exploiting Pf in both point selection
process and primitive score computation. Moreover, the RANSAC will not be performed on the whole data
but on overlapping blocks.
First, we note that the facade planes are vertical, we do not need to look for planes in 3D but simply for
lines in a projection of the points in the horizontal plane. If a 2D line reaches a sufficient score, it is kept. It
is then converted into a line segment according to the inlier points : inliers that are farthest of each other
are chosen to bound the line segment.
Streamed detection: RANSAC is not performed at once on the full data, but on overlapping point
buffers. A point buffer will be associated to the trajectory interval of the vehicle while acquiring these
points. If we call Ltraj the length of the trajectory and s ∈ [0, Ltraj ] the curvilinear coordinate of the
vehicle center position along the trajectory, we can define the kth buffer as the points acquired while s lies
in the interval:

[kLgap, kLgap + Lbuffer]

where Lgap is the distance between two successive interval lower bounds and Lbuffer the buffer length (fig
4.3). Hence, the overlap between two successive buffers is equal to Loverlap = Lbuffer −Lgap and buffers are
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Figure 4.3: Sketch of two point buffers, according to a virtual position of the vehicle t and the next one (t + 1) shifted
with Lgap.

Figure 4.4: Illustration of the point selection with non uniform probability.

overlapping if Lbuffer > Lgap. In our experiments, we have chosen Lgap = 2, 5 m and Lbuffer = 10 m which
induces a buffer overlap of 7.5 m = 75%. Such a large overlap increases robustness at the cost of a slight
increases in computation time.

Weighted RANSAC: On each buffer, a weighted RANSAC is performed. RANSAC iterates two steps:
random selection of two points to define a 2D line and computation of a line score. The line with the best
score after a certain number of iteration is returned. We introduce the probability Pf in each step:

1. The probability to select a point pi among all points is P (pi) =
Pf (pi)∑

Pf
. To implement this, we

compute the sums:

Si =

i∑
k=1

P (pk)/

n∑
k=1

P (pk)

then to select the points, we use a uniform sample u ∈ [0, 1] and select the point pi for which
u ∈ [Si, Si+1] (see fig 4.4).

2. Whereas in RANSAC, the score of a line is its number of inliers, we compute the line score by adding
individual inlier scores taking into account Pf and also the coherence between the estimated normal
−−→e3pi of the point neighborhood and the normal of the line −→nL:

Score(pi) = Pf (pi)× |−−→e3pi .
−→nL|

Score(L) =
∑

d(pi,L)<dmax

Score(pi)

where d(pi,L) is the orthogonal distance between a point pi and the line L.

Injecting Pf in the point selection allows to find the most pertinent lines much faster. Injecting it in the
score ensures that the detected lines are really along physical planes (walls).

The graph 4.5 shows that using the Pf suppresses noise for the plane detection.

Distance weighting: RANSAC is very sensible to the inlier threshold. In particular points near the
threshold distance will be randomly classed as inliers or outliers if their distance is slightly above or
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Figure 4.5: Point distribution around the estimated plane: histogram of the signed orthogonal distances to the plane
(blue). And accumulation of the Pf (black).

Figure 4.6: Both Rect(d) and G(d) can be used to add the scores of each point to the score of a line, depending on
their orthogonal distance d to this line. Rect(d) is parameterized by the maximal distance for inliers dmax and G(d)
is parameterized with σ.

beneath the threshold. Summing Score(pi) over all inliers is equivalent to summing Rect(di)× Score(pi)
over all points in the buffer where

Rect(d) =

{
1 if d ≤ dmax
0 if d > dmax

The problem comes from the fact that Rect(d) is not continuous near dmax. We propose to make the score
continuous by replacing Rect with a Gaussian function G (cf figure 4.6).
Finally, each line is restricted to the smallest segment containing all the inliers. The method has been
tested with σ = 0.1 m, 0.5 m and 1 m. The best results were obtained for σ = 0.1 m which allows for the
best precision. The output of this step is a soup of all the line segments provided by RANSAC on all
buffers. In the next step, we will merge the segments of this soup that match the same line.

4.2.3 Merging Line Segments

The line segments found in the previous step can be arbitrarily cut by the buffer bounds, The aim of this
step is to merge the segments that potentially belong to the same line. Thereby, the detected facade
footprints will correspond to the line segments obtained after the merging individual segments. The
connectivity of every pair of 2D line segments is evaluated with a distance criterion (equation 4.1) and an
overlap criterion (equation 4.2) that we will now detail for two line segments [OV ] and [AB].

Distance Criterion:

Let −→u be a unit vector and −→n a normal vector of [OV ]. We define

D[OV ]([AB]) =
|
−→
OA.−→n |+ |

−−→
OB.−→n |

2
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Figure 4.7: The distance of [AB] to [OV ] (fig a) and the overlap between [OV ] and [AB] projected on (OV ) (fig b).

the mean of orthogonal distances of A and B to (OV ) (fig 4.7.a): In order to obtain a symmetric function,
we define:

D([OV ], [AB]) =
D[OV ]([AB]) +D[AB]([OV ])

2

Finally the symmetric distance criterion writes:

CD([OV ], [AB]) ≡ D([OV ], [AB]) < r σ, r ≥ 1 (4.1)

Two line segments satisfy this criterion if the distance is lower than a maximal tolerance r σ where σ is the
sigma of G (fig 4.6). Empirically, we fixed it to 5 σ. If two line segments are along the same line, their
orthogonal distance D is zero, even if they are distant while being on the same line. This is why we also
need to measure the overlap between the segments.

Overlap Criterion:

Assuming
−−→
OV .
−−→
AB ≥ 0, let:

O[OV ]([AB]) = min(
−−→
OV .−→u ,

−−→
OB.−→u )−max(

−−→
OO.−→u ,

−→
OA.−→u )

the overlapping part of the projection of [AB] on (OV ) (fig 4.7.b). This value is positive if the projection of
[AB] is effectively overlapping [OV ]. Once again, a symmetrized overlap value is given by :

O([OV ], [AB]) =
O[OV ]([AB]) +O[AB]([OV ])

2

Finally the overlap criterion writes:

CO([OV ], [AB]) ≡ O([OV ], [AB]) > s Loverlap, s ∈]0, 1[ (4.2)

Empirically, we set the minimum overlap (s Loverlap)
to 2.5× Loverlap.

Merge:

To merge the segments globally, we create a merge graph where the nodes are the segments, and an edge
between two nodes means that the corresponding segments should be merged (they satisfy both criteria).
Each connected component of this graph correspond to a set of segments to be merged together. For each
connected components with sufficiently high score (sum of individual inliers scores) an unique plane is
estimated (least squares fit) from all the inliers of the segments to merge. The condition to keep connected
component is a threshold on the sum of inlier scores. This means that a very large number of poor inliers
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Figure 4.8: Top view of a facade. Detected line (pink).

can be turned into a facade, whereas a small number of good inliers on a narrow facade could be rejected.
Instead, average score could be chosen, favoring small vertical flat areas. But the sum yields better results
because the facades differ from other urban objects by their size.
As explained in chapter 3, it may happen that the relative point location is good, while the absolute
geolocation is less accurate. In such a case, especially if the vehicle performed some loops during the
acquisition, some segments extracted at different acquisition times could be merged, whereas this is a
geolocation error that brought them closer. For this reason, one may willing to not perform a global merge.

• It is possible to check a temporal constraint when the graph edges are built, in order to avoid edges
that link segment too distant in time.

• It is also possible to build the graph dynamically, adding and removing segments as the temporal
buffer moves.

Rectangle Delimitation:

The plane obtained by this merging procedure should be delimited to form a facade rectangle (fig 4.1(b)).
We developed this methodology as a focusing step which enables to isolate blocks of points corresponding
to individual facades from a large amount of data, such that one can simply choose the smallest vertical
rectangle containing all inliers.
The choice of rectangle delimitation however depends on the application, in particular if a topology
between the rectangles is required. Recovering this facade topology is complex: facade rectangles have to be
consistent with the 3D volumes of underlying scene. Topology can be refined by computing intersections
between rectangles or deleting areas with low point density. Clues to detect facade bounds are provided by
images, where the sky-building limit is protruding and continuous [53], contribution of aerial data can also
facilitate this task by exploiting another point of view.

4.3 Results

The algorithm detects most facades from the scanned scene with a high precision, orthogonal distance of
inliers to planes reveals visually the relevance of the results (fig 4.8 and 4.9). A few over and
under-detection problems were encountered: aligned trees have trunks that present a locally flat and
vertical shape so the plane passing through the alignment will have a good score at the expense of the
facade behind. This problem of tree rows can be circumvented by extracting trees with another algorithm
such as that presented in [37]. Conversely, facades too highly occluded by trees or with a direction too
orthogonal to the trajectory have too few points to be correctly detected.
We encountered no example of over-segmentation in our test area: all the segments corresponding to the
same facade were always merged. Concerning under-segmentation, it is natural in the case of urban scenes
as adjacent facades often share the same plane, so they cannot be distinguished based on our method. To
separate coplanar facades, other merging criteria should be used such as the discontinuities in facade
heights [39], exploiting the alignments of fine features such as windows [54] or analyzing accumulations of
the vertical image gradient [55].
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70 cm0

Figure 4.9: Detected rectangles (pink) overlaid on point cloud and orthogonal distance to the closest plane.

10 cm0

Figure 4.10: Orthogonal distance to the closest plane. The accuracy of our approach is depending on σ (fig 4.6). Here,
one can see two different facades. They are oriented along the same direction, but they are slightly shifted : the right
one is darker. Both have been matched with the same main plane because this shift is lower than 5 σ (equation 4.1).
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Figure 4.11: Point cloud data without outliers. Inlier points of a detected rectangle have the same color. It happens
one facade to be swept several times. Then, a shift due to georeferencing problems may appear between detected
rectangles, as the yellow and the dark ones at the forefront.

4.4 Conclusions

We presented a streamed vertical rectangle detection algorithm which automates facade database
production from terrestrial laser scans. This algorithm overcomes the volume of data and georeferencing
problems, and provides an initial analysis of urban scenes. A modified RANSAC is performed on
overlapping buffers of 3D points acquired during the same time interval. Facade parts are thus extracted
from the datasets in linear time (in number of 3D points) and constant memory complexity. Facade parts
are then merged and the most relevant facade planes are kept. The construction of the merge graph is
quadratic in the number of segments, but this number is negligible compared to the number of points.
The vertical planar regions have proved their benefit in fine localization [56] (fig 4.11). The vehicle drift can
be detected thanks to shifted rectangles that correspond to the same facade, then, rectangle matching could
enable registration refinement. In [41], the rectangles are fitted with the facade rectangles of the bati-3d
model in order to perform a non-rigid registration.
In this thesis, the detected rectangles are used to initialize facade models. Two approaches have been tested
: a semantic modeling with irregular grids (chapter 5) and a deformable 2.5D grid (chapters 7 and 8).
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Chapter 5

Semantic Modeling : Irregular Grid
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In this chapter, we consider the geometric reconstruction of facades with a model that takes into account
the facade structure. The chosen model is a grid that cuts the facade according to the main horizontal and
vertical geometric discontinuities. The facade is divided into rectangles that may contain a window, a door,
a part of the wall, or any other item. In a second step, we try to estimate the depth of each rectangle, and
to merge neighboring rectangles that match the same element.
The input data is only PCD, but we present a state of the art of methods that use either PCD or images.
The proposed algorithm requires a plane estimation of the main facade wall. For this purpose, we use the
work of the chapter 4 that is automatic and does not individualize facades of buildings if they are perfectly
aligned. Thus, the input data is not necessarily the facade of a single building. However, the methods of
this chapter may help to individualize the facades of a building row.

5.1 Introduction

5.1.1 Urban modeling : complexity behind simplicity

Urban elements offer a wide variety of shapes, sizes and materials. Urban scenes are thus heterogeneous,
but paradoxically, very structured. The relative locations, the sizes, the shapes and the other object
properties are, most of the time, ruled by many human conventions. For instance, the cars are supposed to
be on the road, to have four wheels and to be less than x meter high. Detecting urban elements should be a
textbook case: the models are well known and parametrized. But this apparent simplicity hides more
complexity and the task is not as simple as it sounds. This paradox is due to our perception of things: As a
human being, I know these rules and I perceive them more strongly as I use them to recognize the elements
and to understand the situation. In addition, the complexity is combinatorial: as well as associated toy
building bricks produce an infinity of buildings, the urban unit rules may produce an infinity of urban
scenes. The facades are a typical case of ruled and structured urban elements, composed of finite building
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Figure 5.1: MMS PCD of a street scene on the horizontal plane. The facade footprint appears clearly, but it can be
complex. This is not always a continuous straight line. There are interruptions because of the trees that mask the
facade and reduce the number of points projected on it. The facade may contain walls at different depths, resulting
in multiple lines (not always parallel) onto the footprint. Finally, we see that the footprint line is sometimes curvy:
it follows the contour of elements that are against the wall as the gutter.

(a) Gi: The facade is structured
according to an irregular grid.

(b) Rc: The facade contains
rectangular elements.

(c) SR: The facade elements are
symmetric and/or repetitive.

Figure 5.2: Structure Assumptions

bricks that are associated with respect to many rules, and as well, this architectural language generates a
profusion of facades, with specific styles for each country and even for each city. Moreover, as the
architecture is an art, beside architectural rules, there are architectural exceptions. Some facade sculptures
or ornaments are unique and make the modeling task more complex.

5.1.2 Facade Reconstruction under Structure Assumptions

Facade Modeling is a vastly studied topic [57]. Numerous authors propose to reconstruct the facades using
knowledge based approaches, assuming there is a regular grid structure, looking for rectangular objects, or
symmetries and repetitions. The facade structure is considered necessary for a good reconstruction [58].
Indeed seeking of well-defined objects (size, shape ...) is not obvious in point cloud data (PCD). Grammar
rules are used to palliate the lack of information. Despite an apparent simplicity, facade structures and
grammars are actually complex to automatically recover, to the extent that an operator is deemed
necessary to get the desired results [59].

Facade reconstruction, whether from images, lidar data, or both, is usually based on more or less strong
structure assumptions. There are three main families, ordered from most restrictive to least restrictive
below.

Gi: The facade is structured according to an irregular grid.

Rc: The facade contains rectangular elements (windows, doors...).

SR: The facade elements are symmetric and/or repetitive.
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We can see that: Gi ⊂ Rc ⊂ SR. Indeed, Gi implies that the structure is formed by a set of contiguous
rectangles, so Gi is a subset of Rc. And as the rectangles are symmetric elements, Rc is a subset of SR
In image processing, Gi is searched in orthorectified images, and the horizontal and vertical gradients or
similarity scores are computed to retrieve the grid lines [55]. The Grid structure is very rigid and is often
not adapted to the whole facade, that is why Burochin et al. propose a hierarchical approach that allows
more flexibility in the facade model [54]. Gi is a global approach, which is both a strength and a weakness:
the grid can be detected robustly and the similar boxes can be factored [60], but the details are destroyed,
and, above all, only the very regular facades can be gridded this way.
The Rc assumptions is less rigid. It is true that most of the facades contain rectangular windows. They are
matched in images thanks to a rjMCMC process [61], or with a mean shift [62]. In [63], the window corners
and shapes are learned. Window detection in lidar data is often based on edge detection, the windows being
areas empty of points ([64], [65], [66], [67], [68] and [69]).
In most of the cited papers, the detected rectangles or objects (windows, doors...) are used to retrieve a
grid Gi [70], or a more complex structure thanks to a grammar [71].
Other methods use more general assumptions such as the predominance of right angles. [72] proposes to
build a 3D model from images by plane arrangements, adding horizontal or vertical planes where
information lacks. Although such approaches are adapted to human constructions, objects that do not fit
the model cause artifacts [73].
Another line of research is the detection of repetitions and symmetries (SR assumption). This topic have
been thoroughly studied by Mitra et al. for meshes and PCD [74], [75], [76], [77], [78]. The repetitions (that
are not necessarily sequenced according to Gi [79]) prove that the information is redundant. One can
consider that the repeating patterns form the facade texture [70], the repetitions are then detected
statistically, but not understood. One can also assume that the repetitions and symmetries are some
grammar operators: understanding the facade geometric logic is then desired. Detecting repetitions require
to deal with the uneven sampling of the ranks scan [80]. Instead of replacing missing parts by flat or smooth
surfaces, some papers offer to ”consolidate” and fill the holes thanks to the repetitive structures [81], [82].
A more general approach proposes to reconstruct a surface thanks to the inherent redundant patterns [83].
The surface interpolation is made similarly in areas that are similar. Such method are impressive, but for
the time being, the detection of repetitive elements is complex and requires manual assistance [84].
Although knowledge based approaches are promising, detecting facade structures and grammars remains
difficult, as evidenced by the need for human intervention. In addition, such methods cannot handle old
style facades, complex ornaments, and any unexpected object which does not match the model. Maybe
hybrid reconstructions (surface/shape) are more appropriate to these contexts and could help the facade
structure to emerge [85].

5.2 Irregular Grid

Our research on facade modeling began with an irregular grid. This approach thus belongs to the category
Gi of section 5.1.2. We chose this category because considering the point density in our datasets, the
stronger assumption seemed necessary to obtain reliable results.

5.2.1 Overview

The proposed method splits the facade into an irregular grid. The grid lines correspond to the main
geometrical discontinuities. For each grid box, the best depth is searched according to the points belonging
to the box. Different approaches have been tested for this purpose, and in particular a graph cut. A box
classification is suggested but we have not tested it.

5.2.2 Initialization

For each detected facade rectangle (using the method developed in 4, an irregular grid is computed. The
facade rectangle is used to define a coordinate system (u, v, h) in which the points can be expressed. u and
v correspond to the horizontal and vertical coordinates along the plane, and h is the signed orthogonal
distance to the plane. In figure 5.4, the points are projected according to u and v.
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Figure 5.3: Irregular grids for some facades. The facades are colored according to the distance to the main facade
plane. The horizontal and vertical discontinuities have been computed with a discretization step ustep = vstep = 2cm.
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Figure 5.4: Horizontal and vertical projections of the facade points.

5.2.3 Point Selection

The points are projected on the estimated vertical plane. The points are kept only if they lie in the
rectangle (bound u and v), and if the orthogonal distance to the plane is lower than a threshold: |h| = 4m.
This threshold is chosen to include all the points that could belong to the facade

5.2.4 Detect the main horizontal and vertical discontinuities

In order to detect the vertical discontinuities, the points are accumulated on the horizontal plane (fig: 5.1),
then the depth discontinuities are calculated along the facade footprint. This is easy to implement when the
points are expressed according to (u, v, h): the points are sorted according to u, then, we move along the u
direction, and for each discretization step ustep, a discontinuity score Ds is computed. For this purpose, we
use a 1D Canny-Deriche edge detector [86]. (Formula in annex 9.2). For each us, Ds is equal to the sum for
each point Pi(ui, vi, hi) of the depth value hi, convolved with the Canny-Deriche function CD applied to the
relative u position.

Ds =
∑

hiCD(ui − us) (5.1)

It is not necessary to compute this exact formula with all the points. Only the points included in a u-buffer
centered on us may be kept, because lim

x→±∞
CD(x) = 0. The main vertical discontinuities are the values of u

for which Ds is a local maximum.
The horizontal discontinuities are detected exactly the same way, we just use v instead of u. The main
discontinuities are used to draw the lines of the irregular grid. Some results are shown in figure 5.3.

Pros and Cons

The main drawback of the grid is also the goal: simplification. We wish to assign the same vertical edges to
windows vertically aligned, and the algorithm succeeds in this. Nonetheless, if the vertical edges of the
windows and doors, or the roof structures for instance, are too close, they are merged in a single
discontinuity. The facade has to be structured according to the same grid from bottom to top and left to
right. Besides, only the rectangular shapes are handled by this method. These problems appear in figure
5.6.

5.2.5 Depth Discretization

The last step is to associate a depth (h) to each grid box. This is not obvious, because each box contains
many points, and sometimes many objects, as in the boxes corresponding to the balconies. Another
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Figure 5.5: Dk according to k.

constraint is to ensure continuity between the boxes that correspond to the same wall (or more generally
the same object). That is why we decided to keep a finite number of depths, and to associate to each box
the one that fits the best. For this purpose, we performed a segmentation of the depth histogram using a
k-means clustering algorithm that provides k discretized depths.

k-means clustering

Given a set of depths (h1, h2, ... hn), k-means clustering partitions the n depths into k sets (k ≤ n)
Sk = {S1, S2, ..., Sk} so as to minimize in each cluster Si the distances to the centroid µi. The partition is
equal to:

arg min
Sk

Dk with Dk =
k∑
i=1

∑
hj∈Si

(hj − µi)2

This algorithm partitions the depth histogram into k clusters. In order to discretize the depth space with k
values, one representative depth is associated to all the depths of each cluster. For each cluster Si, the most
natural representative is µi. The discretization algorithm thereby replaces any depth h by the nearest µi.
Nevertheless, we do not known beforehand how many discretized depths are required. In other words, we
need to determine an optimal value for k. As the search space is one-dimensional, the k-means clustering is
fast and several values of k can be tested.

MDL k-means

Finding an optimal k (kopt) may be seen as a problem of minimum description length (MDL). One wants to
describe a set of depths (h1, h2, ... hn), with k values. So the description length is proportional to k. The
smaller is k, the smaller is the description length, but the greater is k, the smaller is the distance to the
data Dk. A satisfying solution is therefore a trade off between k and Dk.
Increasing k from 1 to kmax, the first new centroids are very ”useful” because they strongly decrease Dk,

the more centroids are added, the less useful they are. The curve of Dk according to k resembles
1

k
(see

fig 5.5). One way to choose kopt is to approximate the function Dk by a curve C = c1 + c2/k and then to
estimate the curve inflection point i, this corresponds to the highest utility decline. the intersection between
the tangent at i and the abscissa axis gives an acceptable value k, located after i.
This method works well, but in practice, we prefer to start from a minimum value kmin = 8 because this is
not weighty to store such a few number of depths, while it is impossible to distinguish the different object
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types if all boxes are associated to the same depth. The main problems are not due to this depth
discretization method, they come from the assumption that the facade is formed of parallel planar surfaces.
If the main plane was improperly initialized, or if the facade is formed of several non-parallel planes, the
boxes are oriented obliquely relative to the real plane, and we get stair steps to model a flat surface.

5.2.6 Assign a Depth to each Box

In order to assign a depth to each box, the simplest way is to choose for each box the discretized depth that
minimizes the distances to the points belonging to the box (sum of the squared distances). This method is
not robust to the outliers and it happened that some boxes that should belong to the wall are assigned to
another depth. That is why we tested a global approach in order to penalize depth variations. For this
purpose, we used a graph cut algorithm.

Graph Cut

We tested a graph cut algorithm in order to find a continuous surface that contains the maximum of points.
The graph cut algorithm computes a surface that separates space into two parts. One part contains the
graph node named the ”source” and the other part contains the ”sink” node. The source is placed on the
vehicle trajectory and the sink is placed behind the facade. This algorithm needs a finite number of nodes
that correspond to partitioning volumes of R3. The surface goes through the boundaries between these
volumes (these boundaries are the edges of the graph). The space must therefore be segmented. For this,
we chose to split the space with planes orthogonal to u, v and h. These planes correspond to the horizontal
and vertical discontinuities, and the discretized depths. They are not necessarily equally spaced and they
cut the space into voxels of various sizes as shown in figure 5.7. Each voxel is considered as a node, and is
linked with its 6 neighbors. Each edge is a rectangle between two voxels. The edge weight is equal to the
number of lidar beams ”stopped” by the edge. We consider that the beam is stopped if it intersects the
rectangle and if the echo lies in the voxel behind. The results do not correspond to the expectation, as
shown on figure 5.8. This is disappointing to see that the windows are not retrieved. This comes from the
fact that the graph cut is a global approach that does not care about the facade structure! The irregular
grid is semantic, because the boxes correspond to semantic objects such as windows or doors. We think
that the graph cut would be appropriate to a finer grid, in a low level approach. A solution for the irregular
grid would be an analysis of depth histograms in each box.

Depth histogram analysis

Indeed, we do not really look for the most exact box depth, but we want the boxes that contain the same
objects to receive the same treatment: in fact we want to classify the boxes. We did not tested a box
classification, we only present some ideas. The grid itself offers some features such as the position and the
box sizes, especially for the windows which are similarly sized and aligned. The point depth distribution
seems also interesting. In order to analyze it, the depth histograms are displayed as in figure 5.10. Most of
the time, the distribution is uni, bi or trimodal. The behaviors are often similar for similar objects, the
modes seem thereby useful for classification. However, we may encounter the problems displayed in figure
5.11 as set out below.

(a) The wall plane is not parallel with the estimated main plane. Even if the main plane is well estimated,
this may be another wall differently oriented. The modes are different while this is the same wall. If
the boxes are displayed with a rectangle parallel to the main plane, the result will resembles a
staircase.

(b) The vertical lines are too close. The right window is over-segmented.

(c) The facade is occluded by trees.
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Figure 5.6: Depth Discretization. Only the grid boxes that contain enough points are displayed. The boxes are
colored according to their depth values. We do not always understand the meaning of the boxes that do not necessarily
correspond to a clearly identifiable object such as a window or balcony. In addition, all windows have no associated
box. Indeed, shuttered windows have the same depth as the wall and are therefore not highlighted by a differently
colored box. However, boxes highlight the overall structure of the facade. One can observe specific behaviors on each
floor, such as the first floor balconies, and one can see that the box sizes and positions vary between buildings of the
same alignment. Boxes could therefore provide clues for understanding the facade grammar.
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Figure 5.7: Sketch of graph construction for graph cut algorithm. Left, the space partitioning is shown in 2D (v, h).
The space is split according to the horizontal discontinuities, and the discretized depths. The lidar point lies in the
gray voxel. We record it in the weight of the edge of the gray voxel which intersected the lidar beam (red). The
dotted line is an example of output surface. This output surface is supposed to go through the most weighted edges.
Right, the voxel is shown in 3D.

Figure 5.8: Surfaces from graph cut
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Figure 5.9: Surfaces from graph cut. For the 3 points of view, the surface is displayed with the point (colored
according to the distance to the wall, black=0 → white≥10cm. and without the points.

2

2

3

1

Figure 5.10: For each grid box, the depth histogram is displayed in pink.
1 On the walls, most of the time there is a unimodal distribution.
2 On the windows, the distribution is often bimodal. The peaks are greater for the bottom window, because the
sensor is closer, which results in a greater point density.
3 On the balconies, a trimodal or even more complex distribution may be seen.
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(a) Non Parallel Plane

(b) Bad Grid

(c) Occlusions

Figure 5.11: Some problems in irregular grid modeling.
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5.3 Conclusion

We have proposed a facade model with irregular grids. This model is calculated from a point cloud. First, a
vertical rectangle corresponding to the main plane of the facade has been detected. Only 3D points
included in this rectangle and sufficiently close to the main plane are taken into account. The rectangle is
divided in an irregular grid with vertical and horizontal lines placed at the principal geometrical
discontinuities. To do this, we accumulate the points horizontally and vertically, then the point depth
variations are calculated (depth relative to the main plane). The discontinuities are the depth variation
maxima. These discontinuities allow to cut the rectangle into a set of rectangles/boxes. For each box, we
then search the optimal depth based on points projected in it. We preferred to limit the total number of
possible depths, allowing for example all boxes that contain a part of the same wall to have the same depth.
Guided by this choice, a depths discretization algorithm was proposed. It is a variant of the ”k-means” that
automatically finds the optimal number k of depths. We try to minimize both a data term and the number
k. The remaining task is to associate one of these k depths to each box. The resulting model is an irregular
grid where each box moves back or forward relative to the main plane. This model therefore assumes that
the facades are composed of parallel rectangular elements. Other approaches have been studied to
determine the depth of each box as a graph- cut algorithm.
The proposed irregular grid is a semantic approach. Indeed, although purely geometric assumptions are
made: vertical and horizontal discontinuities, parallel plane... Grid boxes correspond to objects such as
doors and windows and we hope that their geometric modelings correspond to our human
perception-representation of the object (window behind the wall, balcony forecourt...) and we even hope
that all the boxes that contain the same object type are similarly modeled. However, this does not
necessarily reflect the reality (closed shutter open window ...). In addition, all non-rectangular and
”unclassifiable” objects are problematic. We drew two conclusions from this observation.

• First, it takes us away from our goal: to provide a photorealistic modeling. Irregular grid are not
suitable to represent all the structures that can be found in the Parisian facades.

• Second, the proposed depth discretization method is too simplistic. We did not go further, but we
think that a box classification according to the depth histograms of each box might provide better
results. The geometric modeling might be done in a second step, given the classification results.

For this thesis purpose, we opted for a low level approach, consistent as possible with the data. Indeed, we
believe that a processing step is missing in facade modeling from lidar data. Trying to detect structure into
PCD implies to manage the density variation that can both depend on underlying objects and acquisition
context (more details about point density in chapter 1). A more ”acquisition independent” data is needed.
The proposed ”deformable grid” of the next chapter trying to fulfill this role.
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Chapter 6

Direct meshing in sensor topology
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The lidar data is sparse and a main issues is to manage gaps between areas where there is information
(echoes and beams). A sub-problem is to determine whether two neighboring echoes belong to the same
object (or the same surface). If they do, we can connect them or interpolate a surface between them.
Otherwise, this surface does not make sense. We therefore raises the question of interpolation of the
geometric information between echoes. We propose some ”sensor oriented” methods to link echoes
using information such as the acquisition time or the firing angle. But we also evaluate the limits of such
low-level approaches.

6.1 Connectivity of successive echoes

Lidar echoes acquired successively have a high probability to be neighbors in 3D space. If the sensor is in
front of the surface, one can have confidence in the fact that there is continuity between successive echoes,
whereas if the sensor sees the surface with a grazing angle, cavities may exist between two successive echoes
that hide a portion of the surface and contradict the continuity between successive echoes. The incidence
angle thus provides a simple measure of the lidar reliability in detecting a continuous surface.
We then investigate the relevance of liking the points along the scan lines. We observe that, forgetting the
possible noise measurement, it may provide the most precise surface estimation.

6.1.1 Incidence angle variation

Level of accuracy and acquisition frequency of lidar systems tends to increase. The consecutive pulses are
getting closer such that the footprints may overlap. ensuring a strong continuity between consecutive
points, to such an extent that we may wonder if the output data would not be these scanlines rather than
the echoes. It would be lighter to handle a line rather than thousands of points. Moreover, lines would
bring more information for surface reconstruction. However, scanlines do not always follow the relief of the
objects. Sometimes scanlines just link different objects acquired consecutively. Relation between
scanlines and scanned objects is complex, but many clues are contained within. We propose
here a simple way to analyze the scanned scene thanks to scanlines. A graph is build with echoes and four
kinds of edges (a,b,c,d) that highlight neighborhood relationships between lidar echoes. Some edges follow
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Figure 6.1: Edge color code.

object surfaces, they link echoes that belong to the same object and some others separate echoes that
belong to distinct objects.
Screen shots from real data are analyzed in this section. Edge coloring is detailed here (figure 6.1).

(a) Each echo p is linked with the sensor location s. These edges cross the empty area before echoes.

(b & c) Each echo is linked with the echo(es) acquired during the next shot (q). The cosine of incidence

angle is estimated by :
−→sp
||−→sp||

×
−→sq
||−→sq||

. These kinds of edges may belong to the object surface reliably

(b), or not (c) depending on the incidence angle. But this is only an arbitrary distinction according to
a threshold thr.

(d) Each echo is linked with the other echo(es) acquired during the same shot. As well as in (b & d), only
the context confirms the nature of this edge.

The edges are displayed for a short acquisition duration, this dataset S is fully shown in figure 6.2, and
figure 6.3 zoom on four interesting regions. The main observation is that there are numerous multi-echoes
(black). Multiple surfaces are also detected from the same point of view. It is thus not possible to assume
that neighboring points in acquisition geometry are neighbors in the 3D space. Another observation is that
the ”unreliable links” (pink) often correspond to a link between two different objects, in other words, they
deserve to be unreliable because they do not link neighbor points. Moreover, some detection artifacts can
produce echoes along these grazing beams. The lidar measure is thus less reliable for the grazing angles,
and even lidar points do not guarantee the presence of a surface. Moreover, a surface exactly aligned along
the laser beam is less probable than a geometric discontinuity (fig: 6.2).
To conclude, the ”reliable links” indicate a continuous surface while the ”unreliable links” indicates a
geometrical discontinuity, or a surface, but this surface is not certain, even if there are some lidar echoes on
it.
When the links between successive echoes are displayed, one can observe that they often connect echoes
lying on the same object surface, except when the incidence angle is grazing: in this case, the two successive
echoes more often belong to two different objects. In all cases, the continuity between successive echoes is
not one hundred percent reliable, however, the mesh that connects neighboring echoes in sensor topology
has a relevance that we will try to formalize theoretically.
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3

(a) Grazing angle causes (b) Dataset S

Figure 6.2: A grazing angle may correspond to:
(a-1) a surface aligned with the laser beam.
(a-2) a strong depth variation of the same surface.
(a-3) an empty area between two objects.
(b)Dataset S: The data is displayed as if the car were in front of us. All the laser beams (gray) start from the same
point that corresponds to the sensor location.
The color code is detailed in figure 6.1.
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(a) Balcony

(b) Window

(c) Semi-reflective surface

(d) Improbable surfaces

Figure 6.3: Zooms on the dataset S. Unreliable links and multi-echoes in real cases. Color code detailed in fig6.1.
(a)Some beams are stopped by a balcony, some other go through.
(b)Most of the beams go through the window, except those stopped by window bars.
(c)A semi-reflective surface induces some multi-echoes (black edges).
(d)Do the two inclined planes that contain pink edges (unreliable links) correspond to true surfaces? It is more
probable that the pink edges connect two distant walls rather they belong to a surface having exactly the same
orientation as the beams. However, the lowest plane contains many echoes. In fact, the echoes along the pink edges
are due to a detection artifact.
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Figure 6.4: Undecidable cases. Some echoes are distributed as in (a): AB=BC=CD=DA. A polygonal chain that
connects all the echoes or a subset is reconstructed. If we only try to minimize a criterion as the chain length as in
(b), (c) and (d), some cases are undecidable as between (b) and (c). Using the sensor topology may allow to decide.
For instance, if intersections between the chain and the beams are forbidden (except at the echo locations), the chain
(e) is preferred to the chain (f). As well the chain (g) intersects a beam and is thereby inconsistent with the sensor
information.

6.1.2 Theoretical relevance of scan order

When reconstructing a continuous surface detected by the lidar signal, meshing echoes that are neighbors in
sensor topology naturally integrates logical constraints imposed by the laser beams, namely that the
reconstructed surface can not be intersected by the half-lines of the laser beams, neither before nor after the
echoes.

Before the echo, it is assumed that the laser beam passes through an empty area, the reconstructed
surface would then be pierced by the laser beam.

After the echo, there is no more information since the beam was reflected and returned in the other
direction. This corresponds to an area not seen by the sensor and one therefore invents information if
the surface is reconstructed at this location.

Within the context of surface reconstruction, we consider the data acquired from a static lidar system that
emits laser beams from a fixed center O. All the echoes are assumed to belong to a continuous surface. We
would like to approximate this surface by a triangulation in which each echo is a vertex. We first analyze a
similar case in 2D, with a polygonal chain that links all the echoes. If we try to find the optimal chain
according to a distance criterion such as the chain length, the solution is not obvious, and some cases are
undecidable as in figure 6.4 where two possibilities are equivalent. Our intuition is that the sensor topology
may bring information to solve such dilemma. For instance, one may avoid that the reconstructed chain or
surface mesh intersects the laser beams. Indeed, the echo is assumed to locate the first encountered surface
after an empty area. Such constraint allows to reduce the search space to solutions coherent with our
acquisition knowledges. We propose a stronger constraint: the reconstructed surface is intersected by each
half-line supporting a beam only once, at the echo location. Intersecting such half-line between the sensor
location and the echo is not consistent with the assumption that the laser beam goes through an empty
area before the echo. And intersecting the half-line after the echo indicates that the surface is reconstructed
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Figure 6.5: Illustration of the theorem 6.1.2. Order of the Pi along the polygonal chain (pink).
Either this order is a monotonic function of i that is the Θ rank of the Pi (a), or there is at least one beam (gray)
that intersects the chain somewhere else than at the echo location (b).

Pi

Pk

Pj

O
Θ

Figure 6.6: Illustration of the demonstration 6.1.2.
If Pi, Pj , Pk are in ascending order of Θ (ie i < j < k) and Pi and Pk are consecutive along C, Bj intersects the
polygonal chain (pink) somewhere else than at Pj .

in an area unexplored by the sensor which corresponds to invent data where there is no information. It
highlights the relevance of connecting the echoes according to the sensor topology. We consider a set of N
echoes Pi and the corresponding laser beams Bi in 2D. Each beam Bi is a half-line starting from a point O
and is defined by its shooting angle Θi. An echo Pi is defined by the pair (Θi, Ri), with Ri the distance to
O and i the ascending rank of Pi according to Θ.

Given a polygonal chain C that goes through each Pi once time, let S(i) be the order of Pi along this chain.
We can observe that S is a bijective function of [1, N ] in [1, N ].

Theorem:

Let Pi and O be some 2D points, and let each Bi be a half-lines starting from O and passing through the
corresponding Pi. Let C be a polygonal chain that goes through each Pi once time and let S(i) be the
order of Pi along this chain. Either S is a monotonic function, or there is at least one half-line Bi

that intersects C more than once.

The second possibility is equivalent to : ”there is at least one half-line Bi that intersects C somewhere else
than at Pi. These two possibilities are illustrated in figure 6.5.

Demonstration:

The demonstration is illustrated in figure 6.6. If N < 3, S is monotonic. Else, if the function is not
monotonic, there is at least one interchanging, so one can find at least one triplet Pi, Pj , Pk such as
i < j < k and |S(i)− S(k)| = 1 (ie Pi and Pk are consecutive along C).

C is assumed to go through Pj so C intersects Bj at Pj , and as Bj is between Bi and Bk, Bj intersects the
line segment PiPk. C is therefore intersected twice by Bj .
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(a) PCD, altitude in black and white) (b) Laser beams (c) Sensor mesh

Figure 6.7: Vaihingen Dataset.

Generalization

In 3D, for a static lidar system that emits laser beams from a fixed center O, each echo can be located
according to its polar coordinates Θ,Φ, R. The theorem extension would be the following : only the surface
meshes which triangulation is non overlapping in Θ,Φ are intersected once by each half-line supporting a
laser beam.
The sensor mesh is an appropriate solution to reconstruct a continuous surface. However, the geometry of
the scanned scene rarely amounts to a single continuous surface.
Does the continuous surface provided by the sensor mesh then make sense?
We will see that it still has a physical meaning. We will see how to leverage it and what are the obstacles,
especially in the case of terrestrial mobile acquisition.

6.2 Sensor mesh: A primitive for surface reconstruction

The interface between what is seen and not seen by the sensor

Finding topological structure of objects from an unorganized point cloud is complex. The most probable
surface is often searched, leaving decisions of points linking and holes filling to thresholds or assumptions.
In fact, the objects are not sampled from every point of view. The sensor generally sees only one side of the
objects, whereas an hidden part remains unknown and impossible to reconstruct. The acquisition result is
thus a partial view of the scene. Rather than detecting the whole object volumes, the lidar discovers an
empty volume between the sensor and the objects, ”carved” by the laser beams. The object surfaces stop
the laser beams and bound the sensor visibility area. Lidar echoes are thus located on object surfaces, and
more generally at the interface between what is seen and not seen by the sensor. Assuming that this
interface is a surface, reconstructible surface pieces (corresponding to the visible part of the objects) are
also pieces of this interface. Therefore, we consider this interface and the ways to reconstruct it. This is an
image in sensor projection. Points can be simply and rapidly meshed following the neighborhood
relationships in sensor geometry. This ”näıve” meshing has some shortcomings, but more sophisticated
techniques adopting the sensor viewpoint may allow to benefit from sensor geometry.
In this thesis we neglect the noise (' 1cm). That is why we only focus on points linking and holes filling.

τ,Θ mesh

When points are projected in the (τ,Θ) space, a mesh structure appears if each point is linked with the
next point acquired, and with the point on the next scanline that has the same Θ. We calculated this mesh
for the open dataset acquired on Vaihingen ([8] and [9]). In fact, we used a slightly more complex
algorithm, because the PCD is first pruned in the (τ,Θ) space, thanks to the method proposed in section
2.5.3. We then link the points of the sub-sampled dataset, according to the 4-neighbor neighborhood. As
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(b) Sensor mesh

Figure 6.8: Some problems appear when modeling the data with the sensor mesh.
(1) Some areas are empty of echoes, because of the water reflectivity (the river and a pool), and the point density is
lower at the acquisition border. Should we interpolate the mesh or not?
(2) The trees are really not surface. The echoes altitudes are distributed between ground and treetops and the mesh
is crumpled.
(3) One outlier is sufficient to distort the mesh.

1

2

Figure 6.9: The incidence of incidence. Depending on the viewing angle, the house facades are reconstructed
differently.
(1) The facade has not been seen and is badly estimated.
(2) Some echoes lie on the facade that can be better estimated.
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some points do not have 4 neighbors, there may be holes. The result is shown in the figure 6.7. It allows us
to visualize the data projected into the (τ,Θ) space (fig:1.4) The data is not distorted that much, because
the plane is high, and trajectory quite straight. This simple and very fast geometric reconstruction has
some drawbacks, enumerated in figure 6.8. The reconstruction is very faithful to the data (fig:6.9) there are
both pros and cons to this.

6.2.1 Mesh folding and other limitations

Using the sensor projection allows efficient and accurate results, as for the normal calculation [87]. The
benefits and challenges of using the acquisition geometry are well shown by Frueh et al. [88]. In particular,
they explain the reversal scan order problem: the sensor mesh may fold on itself in (x, y, z) space (fig:
6.10). This is caused by the reversal scan order as shown in fig: 6.11. The curvature of the vehicle
trajectory is the source of laser beam crossings that make points out of sequence along τ , whereas the order
is always kept along Θ(fig: 6.12). In addition to this order reversal problem, the neighborhood relationships
established according to the sensor geometry does not necessarily make sense in 3D space. Some objects are
not surface, such as trees, generating scattered points. The windows, both transparent and reflective,
induce the detection of several surfaces for the same (τ,Θ) area. In these cases, the 2.5D mesh structure is
no longer adequate to represent the data. Mention may also be made of the multi-echoes that share the
same (τ,Θ), and of the laser shots oriented toward the sky that generate ”no returning” beams. In sum, the
nearest neighbors in sensor geometry are not necessarily the most suitable, because the sensor geometry is
trajectory dependent (mesh folding), and because the geometry of the underlying objects may be too
complex or sub-sampled.

6.2.2 Solutions to mesh folding problem

Despite these drawbacks, it seems interesting to use the sensor coordinate system (τ,Θ, R) that highlights
the almost-regular and almost-2.5D data structure. The main hurdle is the absence of bijection due to the
possible laser beam crossings.

• Frueh et al. propose in [51] to segment the dataset into parts where they are sure that the reversal
scan order cannot happen. For this purpose, the dataset is split according to the trajectory curvature:
”By removing these “turn” scans and splitting the path at the “turning points”, we obtain path
segments with low curvature that can be considered as locally quasi-linear”.

• In chapter 7, we propose to use a coordinate system that imitates the sensor coordinate system while
ensuring a bijection with the (x, y, z) coordinate system.

Both methods are complementary, The first one offers a smart way to segment the acquisition along the
trajectory, while the second can be used when we want to process any path segment, without taking care of
the trajectory curvature.
Folding is not necessarily a problem, it can be a solution to the self-registration problem. Indeed, the
overlapping surfaces may be matched, for example by comparing the intensity values.

6.3 Conclusion

We demonstrated that in order to reconstruct a continuous surface from lidar signal, meshing echoes that
are adjacent in sensor topology (sensor mesh) is an appropriate solution because it naturally integrates
logical constraints imposed by the laser beams. However, the geometry of the scanned scene rarely amounts
to a single continuous surface.
If the sensor is in front of the surface, one can have confidence in the fact that there is continuity between
adjacent echoes, whereas if the sensor sees the surface with a grazing angle, it may exist cavities between
two adjacent echoes that contain an hidden portion of the surface and that contradict the continuity
between adjacent echoes. The incidence angle thus provides a simple measure of the lidar reliability in
detecting a continuous surface.
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Figure 6.10: The regular mesh in (τ,Θ) space, folding on itself in the (x, y) space.
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Figure 6.11: Folding of the sensor mesh (violet) due to the trajectory curvature.
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Figure 6.12: Scan order is kept when passing from (Θ, R) to (x, z). This is not the case when passing from (τ,R) to
(x, y).
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Despite the continuity between adjacent echoes is not one hundred percent reliable, the continuous surface
provided by the sensor mesh has always a physical meaning : this is the interface between what is seen and
not seen by the sensor. This mesh is therefore interesting to use, but the main obstacle is that it can fold
on itself if the laser sweeping turns back.
In this chapter, we proposed some approaches to link the echoes using acquisition knowledges such as sensor
location, acquisition time and firing angle. Such information is quickly obtained and the proposed methods
are fast and simple to implement. But these are not only low-level methods that optimize the computing
time. They involve knowledges that are not contained in PCD. They can thereby provide better results as
highlighted by the theoretical relevance of scan order. However, injecting knowledge has a cost: Geometrical
objects more complex than 3D points are handled as the ”τ,Θ mesh” whose topology is not always
consistent with the real 3D topology. Nonetheless, We believe that such approaches should be encouraged,
and more generally the use of all available information about the lidar signal and the acquisition
configuration. Indeed, the tendency is always to move towards more accurate results. Beside technological
performances, this is the inclusion of a maximum of information in the algorithms that allows better results.
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This chapter is an extension of the work presented in [89].
Reconstructing fine facade geometry from MMS lidar data remains a challenge: in addition to being
inherently sparse, the point cloud provided by a single street point of view is necessarily incomplete. We
propose a simple framework to estimate the facade surface with a deformable 2.5D grid. Computations are
performed in a ”sensor-oriented” coordinate system that maximizes consistency with the data. The
algorithm allows to retrieve the facade geometry without prior knowledge. It can thus be automatically
applied to a large amount of data in spite of the variability of encountered architectural forms. The 2.5D
image structure of the output makes it compatible with storage and real-time constraints of immersive
navigation.

7.1 Introduction

7.1.1 Motivations

We aim at automatically reconstructing a fine photorealistic facade model (lod3). In this chapter, we focus
on the geometrical modeling. The geometry is extracted from lidar data and has to be in accordance with
the optical images acquired in the same time and used for texture mapping. Apart from being
photo-consistent, the model has also to be sufficiently compact for scaling up.

7.1.2 Facade modeling

Facade Modeling is a vastly studied topic [57]. Numerous articles offer to reconstruct the facades using
knowledge based approaches, This subject is developed in chapter 5, but the apparent simplicity of the
facade structures, and the underlying grammars is actually complex to automatically detect, to the extent
that an operator is deemed necessary to get the desired results [59].

Although such knowledge based approaches are promising, Detecting facade structures and grammars
remains difficult, as evidenced by the need for human intervention. In addition, such methods cannot
handle old style facades, complex ornaments, and any unexpected object which does not match the model.
Maybe hybrid reconstructions (surface/shape) are more appropriate to these contexts and could help the
facade structure to emerge [85].

Other methods use more general assumptions like the predominance of right angles. [72] proposes to build a
3D model from images by an arrangements of planes, adding horizontal or vertical planes where there is an
absence of information. Although such approaches are adapted to human constructions, objects that do not
fit the model cause strange artifacts [73].

Another line of research is the detection of repetitions and symmetries [74]. The repetitions that are not
necessarily sequenced according to a grid structure [79] may form a kind of low-level grammar. Detecting
repetitions require to deal with the uneven sampling of the ranks scan [80]. Density varies depending on the
distance of echoes to the sensor, but also on occluders. Facades are partially hidden, and density decreases
toward the top of the buildings. Instead of replacing missing parts by flat or smooth surfaces, some papers
offer to ”consolidate” and fill the holes thanks to the repetitive structures [81], [82]. But here again, the
detection of repetitive elements in PCD is complex and requires manual assistance [84].

We opted for a low level approach, consistent as possible with the data. Indeed, we believe that a
processing step is missing in facade modeling. Trying to detect structure into PCD implies to manage the
density variation that can both depend on underlying objects and acquisition context (fig:7.1). We want to
abstract from such problems thanks to a data modeling more ”acquisition independent”. This reason
oriented us toward a surface reconstruction method. As we will see, many methods have already been
proposed but we focus on those that benefit from sensor informations.
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Figure 7.1: Causes of density variation. Point density depends on the sensor distance (1), and this distance depends
on the surface geometry (2). Density is also decreased in porous areas (3) or by occluders (4).

Figure 7.2: Graph from [94]. The Lidar beams are used in rough estimation.

7.2 Surface reconstruction

7.2.1 Computer vision

Even if many interesting works about surface reconstruction from unorganized PCD still occur ([25], [90]),
this is a widely studied topic and a lot of solution have already been proposed. A sate-of-the-art can be
found in [91]. In the field of computer vision, the studied PCD often contain a well sampled handmade
object, as the famous stanford bunny. The problems of objects mixing and sub-sampled objects are not
tackled, the objective is to retrieve the object surface, despite a complex topology, noise, outliers and holes.
A major issue seems to delete the noise while preserving the object features. For this purpose, a new
approach is developed in [92]: Digne et al. try to minimize the displacement of each point to the
reconstructed model. Our context and the technical obstacles are not exactly the same. first because we
work with data acquired from an uncontrolled environment, inducing occlusions, sub-sampling, density
variation and object mixing. Second because we think that we can benefit from the knowledge of
acquisition context (sensor location, acquisition time of each point...).

An original approach [93] proposes to sketch the surface under the following assumption: the surface is very
smooth or even linear according to one direction. The surface is then reconstructed by drawing the same
profile along this direction.

7.2.2 Carving oriented approaches

In MMS data, the problem of sparse data is complex. Whether to detect holes in continuous mesh [4], or to
fill its in a holed mesh [5]. In fact, the underlying problem is that the topology can be arbitrarily complex
under the sub-sampled PCD. The carving approach brings a solution to this topological problem: The
volume preexists and is modified as and when. Carving approach was initially proposed to reconstruct 3D
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from images [95], but the same idea can be applied to lidar data. Even if the sensor location is unknown
[96], it is possible to constrain the surface reconstruction by estimating the sensor viewing angle. Obviously,
if the sensor location is known, it is even easier to carve the scene with the beams. The major problem is
the memory space requisite to voxelize the 3D space. In [94], a surface is first estimated, and then deformed
to ensure the consistency with the lidar beams (fig:7.2). Using a surface, the main carving shortcoming is
bypassed, which is the amount of memory required to represent the volume of the scene into voxels.

7.2.3 Sensor perspective

Carving methods benefit from the knowledge of the areas explored by the sensor (the carving beams). One
can also adopt the sensor point of view. Namely, one place itself in the coordinate system corresponding to
the sensor perspective. Using such a coordinate system allows efficient and accurate results, as for the
calculation of normal [87]. Optical images are written in the sensor coordinate system. By comparing,
optical images and lidar data, we will try to evidence the interests of working in such sensor coordinate
system.

7.2.4 Lidar vs image

If lidar data and optical image are compared for 3D surface reconstruction, at first glance, lidar data seems
more suitable: the distance to the reflecting objects is directly measured while the optical image
information is radiometric. Photogrammetric techniques allow to recover the geometry if problems of
radiometry and distortion are overcome. Photogrammetry involves complex algorithms to determine the
relative positions between the images and the sensor, and to match keypoints. However, some advantages
over the Lidar systems are listed by [97] in a kind of Tablets of Stone of the photogrammetry supremacy
(see in annex). Most of these ”advantages” don’t lie in the nature of the systems, but in the seniority of the
technologies associated to photography and their intensive use
Vision maturity. Photographs are ubiquitous in our lives. This results in low-cost devices, light and
powerful. Similarly in software, algorithms for image processing have acquired maturity and algorithms
such as SIFT, JPEG are very accomplished and optimized. Thus, the solutions are numerous and accessible
to acquire and efficiently handle a large amount of images. Comparatively, Lidar point cloud data type are
little known to the general public and less used. Anyway, this is a strong technical and economical
advantage so that there is a comeback of photogrammetry [98], [99].
A Question of Methodology? An interesting point is that many of the 16 advantages of [97] are about
methodology. To our opinion, the way the signal is processed is very important and can strongly enhance
the results. The proposed ”deformable grid” is inspired by the comparison between lidar and image data
structures. Indeed, we regretted the PCD lack of structure, and especially the loss of connectivity between
echoes.

7.2.5 Depth images

As explained in chapter 1 the connectivity between lidar echoes is more complex to draw than the
4-neighbors connectivity in images. However the sensor connectivity also exists in PCD as shown in chapter
6 and allows to reconstruct a surface mesh that links the lidar echoes. This surface mesh is comparable to a
depth image in sensor topology. A depth image is associated to a coordinate system (u, v, h). u and v
locate the pixel in the image, and h is the distance to the sensor. More precisely, u and v locate the pixel
along a half-line (iso-uv) starting from the sensor. In optical images, all the iso-uv start from the same
point and there is a bijection between (u, v, h) and (x, y, z). One can see that any function that associates h
with every pair u, v is a non self-intersecting surface in (u, v, h) (an example in 2D, figure 7.3). Under some
assumptions, in particular, if there is a bijection between and (u, v, h) and (x, y, z), this surface is also a non
self-intersecting surface in (x, y, z). For example, a depth image (width × height) is a function which
associates h with every pair u, v such as 0 ≤ u < width and 0 ≤ v < height. In lidar data, such a surface
would be interpolated from the echoes according to the echo depth values (fig 7.4) but, as explained in
chapter 6 (where (u, v, h)⇔ (τ,Θ, R)), the sensor displacement during the acquisition disorganizes the laser
beams (iso-uv) that can intersect each other. A bijection is therefore not guaranteed between (u, v, h) and
(x, y, z) which may induce auto-intersections in the surface (Mesh folding in in chapter 6). The sensor
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Figure 7.3: A non self-intersecting line (pink) is a function that maps u to h. u is an angular coordinate, and h is
the distance from O.
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Figure 7.4: Interpolations between the lidar echoes. Three functions f0, f1 and f3 that maps u to d are also some
possible interpolations between the lidar echoes (black dots).

coordinate system cannot be used as is to generate a surface, but many of its interesting properties have
been highlighted in chapter 6. Our idea is to use a coordinate system that aligns as far as possible the
iso-uv with the laser beams, but that provides a bijection with (x, y, z). This way, a 2.5D surface could be
generated in such coordinate system, approximating the sensor mesh, but avoiding topological problems.
The facade as a depth image. In this chapter, we wish to reconstruct the facade surface. This surface is
assumed to be a 2.5D surface with depth variations from a plane that approximates the main vertical wall.
This prompts us to build the coordinate system as follows: u and v refer to the pixel location along the
plane and the iso-uv are oriented according to the laser beams. Such coordinates systems are proposed in
section 7.4, after an overview of the algorithm.

7.3 Overview
A 2.5D grid is fitted to the geometrical primitives. In the 2.5D grid coordinate system, any 3D point is
defined by u and v that locate the point on the grid, and h that is the depth from the u-v plane. The main
steps and the inputs of the algorithm are depicted thereafter and in figure 7.5.
Initialization. A vertical rectangle approximating the main facade wall is calculated as in [43]. It provides
the u-v plane and the grid boundaries. The 2.5D grid is placed on this rectangle and the depth of each grid
pixel is set to zero.
Primitive accumulation in the grid pixels. The primitives (lidar points, triangles or line segments) are
projected onto the u-v plane in order to accumulate the primitive depths h into the grid pixels: for any
kind of primitive, whenever the intersection between a primitive and a pixel is not empty, the primitive
depth is accumulated in the pixel.
Iterative deformation of the grid. The grid is then iteratively deformed to draw near the primitives.
An optimal h is searched for each pixel according to the depths of the primitives that are projected in, and
according the neighboring pixel depths. Only the h coordinates are changed, the pixels therefore move
along their iso-uv. This process is performed several times in order to converge to a satisfactory solution,
despite bad initializations, outliers and empty pixels. The strategy for pixel depth computation serves to
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Figure 7.5: Workflow of grid fitting to the primitives.

handle cases where many primitives have been accumulated in one pixel. The depth interpolation for empty
pixel is made locally, according to a smooth parameter explained in section 7.5. Each input is independent
from the others. As well, the strategy for pixel depth computation can be chosen separately, however if the
grid resolution or some other parameter is changed between two iterations, the primitive accumulation must
be performed again.

7.4 Coordinate systems

The best way to accumulate the primitives in the grid pixels is to project the primitives onto the u-v plane,
following the laser beam directions. Unfortunately, the beams can intersect together and do not guarantee a
unique solution for the point projection. That is why the cylindrical coordinate system and the induced
projection (sec:7.4.1) and the prismatic coordinate system (sec:7.4.2) are proposed to accumulate the
primitives. In section 7.4.3, the reasons that led us to develop these coordinate system are explained by
means of examples. The choice of the 2.5D grid coordinate system and the induced projection is important
because it affects the primitives accumulation and it determines the direction of the pixel displacements
(orthogonal to the u-v plane if Cartesian coordinate system). Our first intuition was to use a Cartesian
coordinate system. This favors perpendicular angles, which are prevalent in human buildings. However, it
causes problems that could be avoided using the sensor coordinate system, described in the chapter that
corresponds to our acquisition configuration (a rotating laser, scanning vertically and perpendicular to the
trajectory). But, as we explained in the chapter , the main limitation when using the sensor coordinate
system is the absence of bijection between x, y, z and u, v, h. Therefore, we developed two ”sensor-oriented”
coordinate system that ensure the bijection while remaining close to the sensor coordinate system.

The ”cylindrical” coordinate system is the most intuitive approximation of the sensor coordinate
system. that is why it is detailed below, in a didactic way, but the second coordinate system is more
suitable for facade reconstruction.

This is a generalization of the Cartesian coordinate system called ”prismatic” coordinate system.
Instead of being orthogonal to the plane, the iso-uv are oriented toward the sensor location.
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Coordinate Definition Highly correlated with

t Projection of P on
−→
t axis. Sτ

r Distance btw
−→
t axis and P . R

θ Angle of rotation around
−→
t axis Θ

Table 7.1: Relation between sensor and cylindrical coordinates

7.4.1 Cylindrical coordinate system

t

r
θ

Figure 7.6: Cylindrical coordinate system (t, r, θ).

If the laser sweep is vertical and the vehicle trajectory is quite straight, a cylindrical coordinate system is a
good approximation of the sensor coordinate system. It maintains as best possible the separation between
terms of sensor equation (see in chapter 1.1) that have different accuracies and different point distribution.
Table 7.1 details correlations between these terms and the cylindrical coordinates. For instance, r and θ are
close to R and Θ, but R and Θ are expressed in a basis that depends on time (sensor position and
orientation are moving), while a bijection exists between (x, y, z) and (t, r, θ). This way, every point of the
3D space can be expressed in the same cylindrical coordinate system.

Computation

Estimate the trajectory axis. The trajectory, is approximated by a straight line. To obtain this
trajectory axis, a PCA is applied to the trajectory points (the sensor location of each point) in order
to retrieve the PCA principal direction. Be aware that the trajectory points are very close and very
redundant. It is slower and unnecessary to use all points for the calculation. But it can also cause a
loss of precision. For this, it is preferable to apply the PCA on a percentage of points. The unit
vector of the trajectory axis is denoted by

−→
t .

Compute the
{−→
t ,−→u ,−→v

}
basis. Let −→v be a unit vector of the vertical axis, and −→u such as

−→
t ×−→v = −→u . The set of vectors

{−→
t ,−→u ,−→v

}
forms an orthonormal basis of R3. Every point (x, y, z)

can be expressed in this basis.

Convert x, y, z into cylindrical coordinates. Then, u and v can be converted to the polar coordinates
r, θ such as r =

√
u2 + v2 and θ = atan2(v, u).

The cylindrical coordinate system is the one that most resembles the sensor coordinate system. It would be
the equivalent for a perfectly straight vehicle trajectory. However, we preferred to use a more appropriate
coordinate system. The prismatic coordinate system is actually a gradual adaptation of the cylindrical
coordinate system to our problem. We went from polar to Cartesian coordinate. Then we looked for a
suitable system when the laser beams are not aligned but converge or diverge because of trajectory
curvatures. We have had the idea of this prism that fits the average behavior of the beams between the
trajectory and the facade.
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7.4.2 Prismatic coordinate system

The prismatic coordinate system is a generalization of the Cartesian coordinate system that aligns the
iso-uv along the laser beams. We propose a new way to accumulate the points in the facade grid. The idea

v

h
u

A′

A B

B′′

A′′

Facade GridSensor Grid

Figure 7.7: The points are accumulated in the pixels of the facade grid. The accumulation volume of a given pixel
is shown in red. It extends to infinity behind the grid.

is to use a virtual sensor grid. For each pixel of the facade grid, there is a corresponding pixel on the sensor
grid. Ideally, the following property is ensured: any laser beam passing through a facade pixel passes
through the corresponding sensor pixel (fig: 7.7). The virtual sensor grid is positioned in order to approach
this ideal.
The function that associates prismatic coordinates (u, v, h) to the space coordinates (x, y, z) is explained in
the 2D and 3D cases. Then a method to place the grid is proposed.

2D formulation.

We place ourselves in the horizontal plane (fig:7.8). We look for the (u, h) coordinates of a point P (x, y).
[AA′] symbolizes the sensor location, and [BB′] the facade footprint. The laser beam is approximated by a
ray [ab) that passes through P and intersects (AA′) in a and (BB′) in b, such that

−→
Aa = u

−−→
AA′ and

−→
Bb = u

−−→
BB′ (7.1)

The straight line (ab) is thus the iso-u of P .
The position of P on [ab) is given by h. We propose to use the following equation that sets h as the signed
distance to b normalized by |ab|, b being the virtual intersection of the facade plane and the laser beam.

h =
−→
bP .

−→
ba

|ba|2
(7.2)

We will show how to find u for a given point P in order to obtain the couple (u, h). In this context, P , A,

A′, B and B′ are known. As P lies on (ab), we have:
−→
aP ×

−→
ab = 0 We will rewrite this equality to show up

116



u
u

h

P
A′

A

B′

B

b

a

Figure 7.8: 2D formulation

u and prove that it is equivalent to:

u2(
−−→
BB′ ×

−−→
AA′) + u(

−→
AP ×

−−→
BB′ −

−−→
BP ×

−−→
AA′) +

−→
AP ×

−−→
AB = 0

As cross product is distributive, we have
−→
aP ×

−→
ab = (

−→
aA+

−→
AP )× (

−→
aA+

−−→
AB +

−→
Bb)

−→
aP ×

−→
ab =

−→
aA× (

−→
aA+

−−→
AB +

−→
Bb) +

−→
AP × (

−→
aA+

−−→
AB +

−→
Bb)

−→
aP ×

−→
ab =

−→
aA×

−→
aA+

−→
aA×

−−→
AB +

−→
aA×

−→
Bb+

−→
AP ×

−→
aA+

−→
AP ×

−−→
AB +

−→
AP ×

−→
Bb

We focus on each underbraced term.
−→
aP ×

−→
ab =

−→
aA×

−→
aA︸ ︷︷ ︸

(1)

+
−→
aA×

−−→
AB︸ ︷︷ ︸

(2)

+
−→
aA×

−→
Bb︸ ︷︷ ︸

(3)

+
−→
AP ×

−→
aA︸ ︷︷ ︸

(4)

+
−→
AP ×

−−→
AB +

−→
AP ×

−→
Bb︸ ︷︷ ︸

(5)

(1)
−→
aA×

−→
aA = 0

By remembering that
−→
Aa = u

−−→
AA′ and

−→
Bb = u

−−→
BB′ and that the cross product is anticommutative, we get :

(5)
−→
AP ×

−→
Bb = u

−→
AP ×

−−→
BB′

(3)
−→
aA×

−→
Bb =

−→
Bb×

−→
Aa = u2

−−→
BB′ ×

−−→
AA′

(2+4)
−→
aA×

−−→
AB +

−→
AP ×

−→
aA = (

−−→
BA+

−→
AP )×

−→
aA =

−−→
BP ×

−→
aA = −

−−→
BP ×

−→
Aa = −u

−−→
BP ×

−−→
AA′

which is equivalent to:

u2(
−−→
BB′ ×

−−→
AA′) + u(

−→
AP ×

−−→
BB′ −

−−→
BP ×

−−→
AA′) +

−→
AP ×

−−→
AB = 0 (7.3)

So we obtain a quadratic equation of the form αu2 + β u + γ = 0 that allows two solutions for u. Note

that if
−−→
AA′ and

−−→
BB′ are collinear, α =

−−→
BB′ ×

−−→
AA′ = 0, and the equation becomes
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βu+ γ = 0⇔ u = −γ
β

, giving us the unique solution for u. In the general case (
−−→
AA′ and

−−→
BB′ not collinear),

one solution corresponds to a degenerate case, that brings a and b far from P . One can verify that, defining

q = −β + sign(β)
√

∆

2
and ∆ = β2 − 4αγ, the two roots of the quadratic equation are ud =

q

α
and us =

γ

q
.

As lim
α→0

ud = ±∞ and lim
α→0

us = −γ
β

. ud is a degenerate solution and us, the searched value for u.

Special cases.

If AA′ and BB′ are collinear, and ||AA′|| = ||BB′||, b is the orthogonal projection of P on (BB′), this is
then a Cartesian coordinate system.

If |AA′| → 0, we obtain a kind of angular coordinate system.

3D formulation.

B

B′

B′′

A

A′

A′′

ba P

v
v

u u

h

Figure 7.9: 3D formulation

As in figure 7.9,
−−→
AA′⊥

−−→
AA′′ and

−−→
BB′⊥

−−−→
BB′′. For our application, we assume that

−−→
AA′′ and

−−−→
BB′′ are

collinear.
u and v are the horizontal and vertical coordinates of P in both the basis {AA′, AA′′} and {BB′, BB′′}. h
is the signed distance to b.
−→
Aa = u

−−→
AA′ + v

−−→
AA′′

118



−→
Bb = u

−−→
BB′ + v

−−−→
BB′′ and h =

−→
bP .

−→
ba

|ba|2

Placing the grids.

The rectangle with the B, B′ and B′′ corners is placed along the facade wall. The rectangle with the A, A′

and A′′ corners is placed along the trajectory in order to align laser beams with iso-uv. For this purpose,
we only adapt the horizontal position of the rectangle. It is vertical with an height close to zero because the

location of the sensor is not supposed to move vertically.
−−→
AA′ is fitted with RANSAC, by selecting

randomly pairs of laser beams. Each pair of laser beams is a potential couple AB,A′B′ defining a prismatic
coordinate system. The score of each pair must reflect the alignment between the laser beams and the
iso-uv. The score is thus the sum of the dot products between the laser beam and the iso-uv of each 3D
point.

7.4.3 Comparison between Cartesian and prismatic coordinate systems

The orthogonal and prismatic coordinate systems are compared through some examples in figures 7.10,
7.11, 7.12 and 7.13. Many problems in pixel accumulation and surface reconstruction can be avoided using
a ”sensor-oriented” coordinate system such as the prismatic one.

7.5 Deformable grid

7.5.1 Iterative grid deformation

We solve the problem of finding an optimal depth h for each grid pixel as an energy minimization with a
data term that shifts h to the primitives, and a smoothness term that retains h close to the neighboring
pixels. Each iteration, the depth of each pixel is moved from hn to hn+1.

hn hpixelhneigh h

hn+1 = hn + λpixel(hpixel − hn)︸ ︷︷ ︸
Data Term

+λneigh(hneigh − hn)︸ ︷︷ ︸
Smoothness Term

(7.4)

hn : previous h
hpixel : h estimated from primitives accumulated in the pixel.
hneigh : h estimated from the neighboring pixel depths (at n).
As the hneigh values are taken into account in the calculation of hn+1, and as we want to avoid that the pixel
browsing order modifies the result, The grid is browsed two times: firstly, each depth is computed according
to the hneigh values at n, and stored in a temporary variable htmp, secondly, each depth is set to htmp.
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7.5.2 Strategy for pixel depth computation

The strategy for hpixel and hneigh calculation may vary according to the data or the desired output. In our
case, we use a bilateral filter that allows discontinuities like at window edges, but smooths the wall flat

surfaces. Pixel depth is computed thanks to the following equations, where exp(− x2

2σ2
) is denoted by

G(σ, x).

hpixel =

∑
G(σh, hi)hi∑
G(σh, hi)

(7.5)

Where hi is the depth value of the ith primitive accumulated in the pixel. The Gaussian function weights
the contribution of each hi. If an hi is far from the current depth, its contribution is low. This allows a
relative independence to the outliers. The smoothness term is provided by the depth values of the eight
neighbor pixels. Hence, the neighbors depth is given by:

hneigh =

8∑
i=1

G(σh, hi)G(σd, di)hi

8∑
i=1

G(σh, hi)G(σd, di)

(7.6)

hi is the hpixel value of the ith neighbor pixel. di is the distance between the pixel center (u, v) and the ith

neighbor pixel center (ui, vi). If the depth of a neighbor pixel is far from the current pixel depth, its
contribution is low, allowing a discontinuity at the edge between these pixels. The values of σh and σd have
to be fixed, one can choose the grid accuracy that is, the length of a pixel side.
Some other strategies are possible. For instance, the closest point from the facade plane can be kept. The
median would give a robust estimation if there are many point. Other quantile values would be used if the
closest or furthest points are looked for.

7.5.3 Primitives

Points / Lidar echos:

If many pixels are empty of 3D points, the iterative process may be slow to converge. A solution is to start
with a low resolution grid (large pixels). This allows to initialize a more precise grid. This procedure can be
repeated many times, the same way a scale-space pyramid is built.

Triangles:

The advantage of the triangles over the points is that they provide surfaces. This allows the algorithm to
converge more rapidly. Thus, the triangle soup provided by sensor geometry can be used as input.

Line segments:

Line segments extracted from scan lines can be accumulated in grid pixels. This option is mentioned
because many papers perform processes such as classification on scanlines [100]. simplified scanlines are
more compact than points and their projections could intersect more pixels.

Mixed primitives:

Nothing prevents to accumulate heterogeneous primitives.

7.6 Results

In order to assess the results, we observed the median distance of the points from the grid, and more
generally, the percentage of points that lie within a certain distance from the grid (fig:7.14). The smooth
term λneigh controls the grid deformation and allows to move more or less close to the points. The
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advantage of a smooth surface contrary to a surface close to the points is its simplicity. We would like to
measure the surface simplicity. We realized that the simplest surface: the plane has also the lower area.
The surface complexity increases with the area. In figure 7.15 a 2D graph position different grids according
to the grid area (abscissa) the median point-surface distance (ordinate). The ”best” grid (close to the
points and simple) would lie at bottom left while the ”worst” grids (far to the points and complex) would
lie at top right. For this purpose, the surface area is computed We display some visual results, showing the
precision of the proposed method, despite the low point density (fig: 7.16). Parameter adjustments permits
a compromise between a smooth surface as in figure 7.17 (a), and more rugged and closer to the points,
7.17 (c). Some other results are displayed in figures 7.18 and 7.19

7.7 Conclusion

We presented an approach to reconstruct facade geometry from lidar data. We aimed at surfaces consistent
with the data, especially the optical images acquired in the same time. The proposed framework allows to
reconstruct 2.5D grids in a coordinate system adapted to the sensor point of view. For this purpose, we
introduced a prismatic coordinate system and the induced projection that is a generalization of the
Cartesian coordinate system the induced orthogonal projection. It allows to benefit from the sensor
geometry while providing a coordinate system topologically consistent with the 3D space. The output 2.5D
grids are suitable for immersive navigation and other applications that need compact and detailed 3D
models. They could also be used as inputs for facade structure analysis, in particular for window detection
or grammar rules extraction.
Lidar echoes all belong to a quasi-surface that is the interface between what is seen and not seen by the
sensor. This is not a surface because of the multi- echo phenomenon, moreover, all what is detected by the
lidar is not a continuous surface (foliage, semi-reflective windows...). However, if a continuous surface is
sampled, it is a part of this interface. These observations provide strong incentives to reconstruct surfaces
according to the sensor meshing. However, it one has to solve the problem that the sensor mesh can fold on
itself. Our intuition about this that the main question is : How to move from the sensor coordinate
system τ,Θ, R to the 3D space coordinate system x, y, z? In this chapter we propose an intermediary
coordinate system (prismatic) which combines advantages of both coordinate systems, considering that
whatever the coordinate system in which are expressed in points, the information given by the position of
the echo is always true. We can therefore choose any coordinate system.
Other solutions are undoubtedly possible. For example working in 6D space τ,Θ, R, x, y, z to perform an
initial segmentation into almost flat regions, then compare these regions together to manage the problem of
folding surfaces and finally merge the regions corresponding to a same surface.
In the in the next chapter, we would like to texture the grid with optical images. For this task, our
framework should allow us to deal with images (that are also 2.5D grids in image coordinate system) and to
project image pixels onto the grid.

7.8 Future works

This grid framework could be used with other data types and for other applications.

Digital elevation model and digital terrain model.

Fullwaveform. We investigate the way to recover the surface from fullwaveform data. The results
(fig:7.20) are promising.
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(a) (b) (c) (d)

Figure 7.10: The facade in profile and a wall light are sketched. The points are accumulated on the vertical plane,
according to a Cartesian coordinate system (a), (b) and a prismatic coordinate system (c), (d). Cartesian coordinate
system leads to accumulating points from distant beams in a same pixel (a), causing an ambiguity in the choice of the
surface (b). prismatic coordinate system is more consistent with the scan (c) and leads to a surface reconstruction
with less ambiguity (d).
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Figure 7.11: Laser beams (a). Surface reconstructed in a Cartesian coordinate system (b) and a prismatic coordinate
system (c). The use of Cartesian coordinate system may leads to a surface that ”goes through” the wall because it is
attracted by points of the room ceiling behind the facade (1). The surface is also attracted to a wall light (2). The
surface reconstructed using the prismatic coordinate system follows the beam trajectory, it goes trough the window
(1) and wraps the wall light (2).
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Figure 7.12: Loss of Accuracy
(a) Laser beams partially entering a cavity.
(b) The iso-uv (purple) are along the laser beams, points are distributed homogeneously in the pixels. This is the best
configuration for surface reconstruction: there is one point per pixel, there is no ambiguity in depth computation.
(c) Cartesian coordinate system, iso-uv (pink) orthogonal to the wall. Three points are accumulated in the same pixel
(2) while there is no point in some other pixels (1).

(a) (b)
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(c)

Figure 7.13: Inconsistency between the surface and the laser beams
(a) An object hides a part of the wall behind.
(b) Prismatic coordinate system: The reconstructed surface does not fit everywhere with the actual surfaces, but is
not pierced by the laser beams.
(c) Cartesian coordinate system: The reconstructed surface is intersected by two laser beams (1).
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Figure 7.14: This graph shows the percentage of points that lie within a certain distance from an estimated surface.
The results are compared for three surfaces: a plane, and two deformable grids calculated with the same parameters,
except for the coordinate system used to accumulate the points. The points are closer to the ”prismatic coordinate
system” grid and the ”Cartesian coordinate system” grid and finally the plane.
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Figure 7.15: The ”prismatic coordinate system” grid have been calculated for different resolutions, and eleven pairs
(λpixel, λneigh) : (0, 1), (0.1 , 0.9), (0.2 , 0.8), (0.3 , 0.7), ... (1 , 0). The median distance of the points to the surface
(data term), and the surface area which shows how the model is simple (small area) or complex (large area), are
observed. When λpixel ↗ and λneigh ↘, the surface is deforming from a very simple surface: the original rectangle
with an area of 530m2, to a more complex surface that is closer to the points.

Figure 7.16: Grid constructed for a facade (left). Detail of the grid (right).
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(a) λpixel = 0.01 and λneigh = 0.99 (b) λpixel = 0.10 and λneigh = 0.90 (c) λpixel = 0.90 and λneigh = 0.10

Figure 7.17: Three parameterizations for the same facade piece (three-quarters and profile view). From (a) to (b) and
(c), the data term increases and the smoothness term decreases. The surface becomes less simple and more rugged,
but closer to the lidar points.
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Figure 7.18: Some results on a facade with complex architectural patterns. Shapes are well approximated thanks
to the deformable grid (Prismatic coordinate system). However, the model gives an impression of material that is
melting or flowing down. This is because the surface covers all hidden areas that can actually be empty. However,
with this single street point of view, it is impossible to know if such areas are empty or full.
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(a) Behind the Facade - interior building viewpoint (b) In front of the Facade - street viewpoint

(c) In front of the Facade - top viewpoint

(d) In front of the Facade - far viewpoint

(e) Orthogonal Depth Map

Figure 7.19: Deformable grid calculated according to a prismatic coordinate system. The surface goes trough the
widows and goes up to the room ceilings (a). An orthogonal depth map is generated from this surface (e). Such a
depth map is compact and simple to visualize.

If the deformable grid is built according to a sensor-oriented
coordinate system (pink), this is a 2.5D surface in this sys-
tem. However, an ”orthogonal depth map” can be obtained.
For this purpose, another grid is placed in the main vertical
plane (violet), and for each pixel, a straight line orthogonal
to the plane is drawn. This line intersects the deformable
grid in one (1) or several points (2). The closest point to
the plane is kept to calculate this pixel depth.

2 2

1 1
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Figure 7.20: The fullwave is discretized into 3D points that are weighted according to their amplitude value (white= 0
→ dark). The grid is deformed according to the weighted points. The proposed framework allows to handle the
numerous points.
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Chapter 8

Combining image and lidar by
matching discontinuities
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Figure 8.1: Cutting line hypothesis. A line segment in the 2D image (1) can correspond to a geometric discontinuity.
This discontinuity (3) is located somewhere in a 3D surface (2) that we call ”cutting line hypothesis”.

8.1 Introduction

In this chapter, a method is proposed to merge the image and lidar data acquired at the same time by the
Stereopolis. Fusing lidar and image data is a topic that is not widely explored in the context of building
modeling. An example of refinement of window edges and crossbars can be found in [101]. The 3D model
provided by the lidar data is refined with 3D features extracted from images thanks to photogrammetric
methods: the line segments that correspond to window edges and crossbars are selected to reconstruct a
more precise window structure.

There is not a sufficient overlap in the Stereopolis images to apply a photogrammetric approach. The
images can only provide radiometric information (texture) and cutting line hypothesis (see section 8.1.1).
So the image data has been used to refine the grid at the discontinuities and to texture the grid. The main
obstacles are detailed in section 8.1.2. Then an overview (section 8.2) and the main steps of the method are
described (section 8.3).

8.1.1 Cutting line hypothesis

Only radiometric discontinuities can be detected in a single image, but they may correspond to geometric
discontinuities. The radiometric discontinuities are thereby hypothesis of geometric discontinuities. The 3D
locations of such discontinuities are unknown, but, if the images are oriented and if the distortion is known,
the location of each pixel is restricted to a half-line starting from the sensor location. Only the distance to
the sensor is missing. By extension, an edge (a line segment) extracted from a 2D image is located into an
infinite surface in 3D as shown in figure 8.1. As well a 2D polyline in the image is located into a beam
starting from the sensor location. The ”cutting line hypothesis” correspond to such radiometric
discontinuities that form a cutting beam into the 3D space.

8.1.2 Technical obstacles to texture mapping

In the previous chapter, a 2.5D grid is reconstructed from the lidar data, modeling the facade surface. As
the Stereopolis acquires both lidar data and optical images, this grid can be textured by projecting the
images acquired concomitantly with the lidar echoes.

This task raises several problems that we present in the order they appear.
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(1) Flat area

(2) Discontinuities

Figure 8.2: Various point density along the surface leads to heterogeneous reliability of the interpolation. Surface
interpolation is simpler on flat areas than on discontinuities. The echoes on both sides of a discontinuity are further
than usual, making discontinuity a large area with no information.

Registration

We have to know the position and orientation of the images relatively to lidar data. Fortunately, this is our
case, and it is assumed that these prerequisites are met; lidar and image data are properly registered. That
is why we do not address the issue of multi-source registration.

Geometric imprecision of the grid

However, even if the image is perfectly registered with the grid, it is not sufficient to project the image on
the grid. Indeed, the grid is less accurate compared to the images, the geometrical information contained in
the lidar echoes have been interpolated between the echoes, and sometimes, a choice have been made
between several echoes: the grid is an hypothesis of the facade geometry, that is very reliable close to the
echoes, but more approximative around. There is also a 2D simplification of the facade geometry. When a
pixel is projected on it, we are not ensured to obtain its true 3D position. The error may be low on flat
surfaces as on the walls that are well estimated, but the mismatching is critical along the geometrical
discontinuities that are very clear and sharp in images and harder to retrieve in lidar data: surface
interpolation in a non-flat area is of course harder, but moreover, the echoes on both sides of a discontinuity
are further than usual, making a discontinuity a large area with no information (fig 8.2). In sum, the grid
discontinuities are smooth and inaccurate compared to the image discontinuities. If images are projected on
the grid, some smudges may appear along the discontinuities.

Image discontinuities are more precise but unreliable

The grid discontinuities are smooth and inaccurate, but they are reliable because they correspond to
geometrical discontinuities. To the contrary, image discontinuities are sharp and accurate, but they
correspond to radiometric discontinuities that are not necessarily correlated with a geometrical variation.
Numerous phenomenon may produce strong radiometric variations on a flat surface (no geometric
variation) such as shadows, printings, change of materials... So we cannot allow all image discontinuities to
affect the deformation of the geometric model. That is why we intend to use only the image discontinuities
that match a grid discontinuity.

Radiometric normalization of several images and image stitching

If several images are projected on the grid, radiometric variations between images may lead to a
”patchwork” texture. Image equalization and stitching are necessary. These topics is not investigated. In
the following, we present the texture mapping of a single image. Anyway, this problem can be handled
independently from our method.

8.2 Overview

As far as possible, we would like to allow the grid to move into in order to match the grid discontinuities
with the image discontinuities. The ”2.5D grid algorithm” outputs a surface interpolated between the
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echoes. Insofar as this interpolation is not unique and is not guaranteed to be the best one, it is possible to
replay this algorithm, adding image information. We want to allow sharper discontinuities along the image
discontinuities. The algorithm contains a smoothness term that imposes depth continuity between
neighboring pixel, We can imagine to cut this pixel connectivity along the image discontinuities. The
images discontinuities are not reliable, so they are filtered and those which match to a grid discontinuity are
kept. The discontinuities are modeled with line segments. In order to match the segments in the 3D space,
the depths of the image segments have to be estimated. Assuming the image position and orientation are
known, an image segment lies in a beam starting from the image sensor, but the distance to the sensor is
unknown. Assuming an image segment lies on the grid, the corresponding 3D segment is therefore located
at the intersection between the beam and the grid.
Thereby, the filtered image segments are used to release continuity constraint along the grid discontinuities.
The grid is then recalculated, making the discontinuities sharper and consistent with the image
discontinuities. Finally it is possible to perform the texture mapping: the image is projected on this latter
grid.

8.3 Main steps

8.3.1 Computing the deformable grid

Please refer to Chapter 7.

8.3.2 Extracting discontinuities in the grid

The grid is converted into a generalized depth image. The 2D segments are extracted in the depth image.
For this purpose, we resort to the algorithm proposed in [, taillandier2002reconstruction] and we use it as
is. We obtain 2D segments in the (u, v) space that can be directly converted to 3D segments in the (u, v, h)
space. Finally, the xyz coordinates are calculated from uvh coordinates.

8.3.3 Extracting 2D segments in the optical image

Again, we use the algorithm of [102] as is, in order to extract 2D segments si in the optical image.

8.3.4 Estimating the third coordinate of the image segments thanks to the grid

We want to immerse the 2D segments si into 3D space. They are in 2D in the image space (i, j, k). The
coordinates ij locate a point on a half-line extending from the optical sensor position. The unknown
coordinate k is the distance to the sensor. We can estimate this distance if we intersect the half-line with
our grid.
In practice, the grid pixels are less numerous than the image pixels. This is why we prefer to estimate the
coordinates ij of each grid pixel. In fact, we simply consider each grid pixel as a 3D point and we calculate
its ij coordinates. We obtain a set of 5d points πg(x, y, z, i, j) that allows the mapping between ij and xyz.
For any pair ij, an xyz estimation is given by the xyz coordinates of the closest point π in the (i, j) space.
This method is used to retrieve the xyz coordinates of the ends of each image segment si. The search time
is in O(#si.#πg) if there are #πg grid pixels and #si image segments. In order to reduce this search time,
a 2D spatial indexing tree is built with the set of points πg in the (i, j) space. The search time is then in
O(#si. log(#πg)).
After this step, xyz coordinates are associated to the ends of each segment si.

8.3.5 Matching grid segments with image segments

For each sg, we seek the nearest image segment(s) si. To avoid search among all the si, a 6d spatial
indexation tree is built on the si set. The six dimensions are the coordinates of the middle of si and of the
unit direction vector of si. For each point sg, the K nearest neighbors are searched. And we keep those
that verify a distance and an overlap criteria. The image segments that are kept are called si

b

Some implementation details are exposed below.
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Figure 8.3: Overview
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Comparing unit vectors: bypass the sign problem

The unit vector of a line segment ab can be equally defined by −→u =
−→
ab/||

−→
ab|| or −−→u =

−→
ba/||

−→
ba||. So, there is

a problem with the sign of the unit vectors in the search space: if −→w is close to −→u , −−→w that is at the
opposite of the unit sphere should also be close to −→u . To bypass this problem, for each segment, we store
two segments in the tree, one with −→u and the other with −−→u . Whatever the sign of −→w , −→w will be close to
one of the two segments.

Tuning the number K of nearest neighbors

K is an optimization parameter that should not modify the final result. The smaller is K, the faster is the
algorithm. However, if K is too small, some image segments that verify the criteria may be forgotten (ie the
final result is modified). K has to be chosen small, but not too small. In our experiments, we set K = 100.

Distance and overlap criteria

We want to keep the image segments si that are similar and close to a grid segment sg. For this purpose, a
distance score D(si, sg) and an overlap score O(si, sg) are defined. Then, si fulfills the distance and overlap
criteria if D(si, sg) < Dmax and O(si, sg) < Omin. The thresholds Dmax and Omin have to be tuned
depending on the grid resolution. Omin also permits to filter the segments that are too small.

We call di(C) the orthogonal distance between C and the straight line AiBi.
The distance score writes:

D(A1B1, A2B2) =
d1(A2) + d1(B2) + d2(A1) + d2(B1)

4
(8.1)

Let si(C) =
−−−→
AiBi.

−−→
AiC

Let us define an overlap score of AjBj projected on AiBi.
If we assume that si(Bi) ≥ si(Ai) and si(Bj) ≥ si(Aj), then
Oi(AjBj) = min(si(Bi), si(Bj))−max(si(Ai), si(Aj)).
And the overlap score writes:

O(A1B1, A2B2) =
O1(A2B2) +O2(A1B1)

2
(8.2)

8.3.6 Enhancing the surface discontinuities

The last part of the algorithm consists in using the image discontinuities to enhance the surface estimation.
For this purpose, the deformable grid algorithm is replayed, but we now allow a tears along the
discontinuities: whenever a segment si

b intersects the line segment connecting the center points of two
neighboring pixels, A tear is allowed at the edge between these two pixels. The interplay of the two pixels is
cut in their depth calculation. Concretely, the weight of hneig is divided by 100.

8.3.7 Texture mapping

The last step is the projection of the image pixels onto the grid. Many image pixels may fall onto the same
grid pixel. The choice of the resulting rgb value (mean, median) have not been tackled. We tested our
method with the mean value of the image pixels that fall into the grid pixel.

8.4 Results

The results are displayed and commented in figures 8.4, 8.5, 8.6 and 8.7.
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(a) (b)

Figure 8.4: Image discontinuities (dark blue) and surface discontinuities (purple). The image discontinuities are more
accurate but do not always correspond to a geometric discontinuity, as we can see with the street number 212 hidden
in the picture (a).
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Figure 8.5: Output grid textured with an image: defects 	 and qualities ⊕.
1 → The point density and the image resolution decreases toward the facade top. This results in a smoother and less
accurate result 	, but it reflects the acquisition/data.
2 → The radiometry variation (halo) does not alter the model geometry ⊕.
3 → At the balconies, lidar echoes lie at various depths: balcony, window, behind the window. the surface depth
reliability suffers from these multiple depth possibilities 	.
4 → The ledge modeling is sharper below than overhead because of the lidar sensor point of view 	 but it reflects
the acquisition/data.
5 → The wall light geometry has been detected and the projected pixels correspond to it ⊕, but there are also wall
pixels. The result is not satisfactory, probably due to the strong geometric distortion 	.
6 → Texture smudge at the window edge 	.
7 → Window bar well detected ⊕.
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Figure 8.6: Output grid textured with an image. The point of view is close to the sensor point of view, this is the
one that showcases the most the result: texture distortions appear all the more we move away from this viewpoint.

8.5 Conclusion

In this chapter, we focused on improving the texturing of the deformable grid with optical images. When
images are projected on the grid, the most sensitive areas to geometric inaccuracies of the grid are the
discontinuities at the objects edges. If the geometrical discontinuities do not match well the radiometric
discontinuities in optical images, one can see some smudges particularly unpleasant visually. So we
proposed a method for matching geometric discontinuities with radiometric discontinuities (less reliable but
more accurate). Geometric discontinuities are extracted in the grid, and radiometric discontinuities are
extracted from the images. These are 2D segments which are projected onto the grid to obtain 3D
segments. These segments are matched with the geometric discontinuities. We keep only those which are
sufficiently close to a geometric discontinuity. Image segments that are kept are used to recalculate the
deformable grid: the iterative grid deformation is rerun, but this time the smoothing constraint is reduced
at the image segments, thus allows higher tears at the precise location of image discontinuities.
The results are satisfactory for texturing, one can check the consistency between lidar data and optical
images. However, the accuracy of the textured model is not homogeneous : on the one hand there is a
difference in resolution between the geometric model from lidar data and image data : the textured image
resolution is better than the 3D surface resolution. on the other hand the limitations of a ”single
viewpoint” approach are experienced : geometry and texture appear all the more imprecise the further we
are from from this point of view. One can not invent information and it is therefore difficult to improve the
results from only these datasets. In contrast, a fusion with other datasets could be imagined.

137



Figure 8.7: Comparison between the textured grid and an image. On the left, the textured grid and the lidar echoes
(blue). On the right, an image. The point density is low relative to the image resolution, however, the geometric
model is consistent with the texture. The main problems remain at the discontinuities (edges of balconies, window
edges). Despite the discontinuity matching algorithm, there are smudges texture. The discontinuities are at the limit
of visibility of the lidar sensor and the image sensor. So these are areas that are poorly seen or unseen and where the
lack of information needs to be interpolated. This explains the visually imperfect results.
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Conclusion

Chapter 1

In this chapter, we have described the lidar data and highlighted strengths and weaknesses of this data.
Processing lidar data acquired from MMS in urban environment seems challenging.
Main problems are: in addition to be inherently sparse, and unevenly sampled, the data is
necessarily incomplete: many parameters cannot be controlled such as the vehicle speed or trajectory, the
on-board sensors are constrained to capture information from the street point of view, along the vehicle
trajectory. For instance, the building volumes cannot be apprehended in their wholeness. We have to deal
with facade pieces, partially hidden by occluders, such as cars, trees or other facades. The data is therefore
incomplete, but can be redundant if some loops are performed during the acquisition. However, the
redundant data may be inconsistent because of some georeferencing errors. We have to deal with facade
pieces, partially obscured by foreground objects such as cars, trees or other buildings. The data is
incomplete, it may also be redundant if the acquisition path contains loops, georeferencing errors can
produce inconsistencies in redundant data. The Lidar data is obtained by systems which involve
different technologies. The errors of each technology have different amplitudes. Vehicle georeferencing is the
source of the greatest inaccuracies, that is why we emphasize the risk to have inconsistencies if the data
contains redundant parts acquired at different times of the acquisition and thus georeferenced differently.
It is difficult to understand the point distribution and yet the echo location is the only available information
to guess the scanned scene geometry. For example, one is tempted to rely on the point density as a
confidence index, while this density may be due to acquisition conditions (vehicle stopped at a red light).
In fact, the echo location is only due to -except for measurement errors- the scene geometry,
while the point density largely depends on acquisition conditions.
When echoes are expressed in the coordinate system τΘ, R, (τ : acquisition of time , Θ: vertical firing angle,
R: distance sensor), a very high regularity is observed according to τΘ. Indeed, the laser pulse is emitted
with a regular frequency. Quite the opposite, R only depends on the distance to objects and is
unpredictable. This coordinate system also highlights that point density is near to a surface density (τ,Θ
surface).
The coordinate system τ,Θ, R is independent of the sensor georeferencing. This is useful if the data is
poorly georeferenced. Moreover, these coordinates are quick to obtain because they stem directly from the
acquisition process and can provide hypotheses for surface reconstruction. Indeed , the detected surfaces
may be approximated by a mesh tauΘ. However, this mesh can be folded on itself if the laser sweeping
turns back.
Our conclusion is that, even if it brings new problems, it is a pity to use only the 3D points. The sensor
geometry, and in particular the coordinate system τ,Θ, R highlights the point cloud regular structure. and
allows to separate information coming from the acquisition conditions (τ,Θ) to those who comes from the
scanned data (R).

Chapter 2

The objective of this chapter was to provide a simple, generic and automatic method to describe the
geometry around each lidar echo. The two issues we tried to answer are:

• Find generic geometrical attributes to describe any point cloud.

• Find an automatic method to automatically select the neighborhood adapted to each point.
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For this purpose, the attributes are derived from the classical ”tensor voting” approach. Attributes are
calculated in a spherical neighborhood around each echo. They describe the dimensionality (1D, 2D or 3D)
depending if the echo distribution in the neighborhood is rather linear (1D) , planar (2D) or volume (3D).
The most appropriate neighborhood size is selected within a range of potential sizes through an entropy
feature Ef .
It is not necessary to have a priori knowledge about the echo distribution, the density or pattern of the
laser scan. However, we have observed that on the one hand, the obtained geometrical description allows to
deduce these different characteristics, and secondly, a knowledge of these characteristics can well bound the
neighborhood sizes to obtain a result that describes the geometry of scanned objects and that is, as far as
possible, independent on the acquisition configuration. In other words, the algorithm can be started once to
analyze the characteristics of the point cloud and fine-tune the parameters to run the algorithm again.
The advantages of a simple spatial sub-sampling are also highlighted to abstract from the point distribution
induced by the acquisition configuration.

Chapter 3

Scaling up imposes some constraints in the algorithm design. In particular, it is necessary to cut the point
clouds to apply processings on smaller blocks. Different choices are possible (Semantic, Spatial/Dimensional
: temporal (1D) , Three-dimensional space (3D), or Space-time (4D)). In our context, the most sensible
approach seems to be to keep the original structure of the point cloud, Indeed , the points are stored in the
order of acquisition and are naturally organized according to the temporal dimension. This is the most
direct method, but it has also other benefits. A time interval corresponding to a segment of the vehicle
path during acquisition. The sensor location is thus bounded in space-time, and points acquired during this
interval are always close temporally and often close spatially. Processing temporal buffers is a method

• fast

• adapted to the changing environment : no mixing of points from different epochs.

• suited to the vehicle georeferencing : georeferencing drift is gradual and therefore varies little over a
short time interval.

This is the choice made for the facade detection as vertical rectangles in chapter 4. This overcomes the
problems of data volume and georeferencing.

Chapter 4

We presented a streamed vertical rectangle detection algorithm which automates facade database
production from terrestrial laser scans. This algorithm overcomes the volume of data and georeferencing
problems, and provides an initial analysis of urban scenes. A modified RANSAC is performed on
overlapping buffers of 3D points acquired during the same time interval. Facade parts are thus extracted
from the datasets in linear time (in number of 3D points) and constant memory complexity. Facade parts
are then merged and the most relevant facade planes are kept. The construction of the merge graph is
quadratic in the number of segments, but this number is negligible compared to the number of points.
The vertical planar regions have proved their benefit in fine localization [56] (fig 4.11). The vehicle drift can
be detected thanks to shifted rectangles that correspond to the same facade, then, rectangle matching could
enable registration refinement. In [41], the rectangles are fitted with the facade rectangles of the bati-3D
model in order to perform a non-rigid registration.
In this thesis, the detected rectangles are used to initialize facade models. Two approaches have been tested
: a semantic modeling with irregular grids (chapter 5) and a deformable 2.5D grid (chapters 7 and 8).

Chapter 5

We have proposed a facade model with irregular grids. This model is calculated from a point cloud. First, a
vertical rectangle corresponding to the main plane of the facade has been detected. Only 3D points
included in this rectangle and sufficiently close to the main plane are taken into account. The rectangle is
divided in an irregular grid with vertical and horizontal lines placed at the principal geometrical
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discontinuities. To do this, we accumulate the points horizontally and vertically, then the point depth
variations are calculated (depth relative to the main plane). The discontinuities are the depth variation
maxima. These discontinuities allow to cut the rectangle into a set of rectangles/boxes. For each box, we
then search the optimal depth based on points projected in it. We preferred to limit the total number of
possible depths, allowing for example all boxes that contain a part of the same wall to have the same depth.
Guided by this choice, a depths discretization algorithm was proposed. It is a variant of the ”k-means” that
automatically finds the optimal number k of depths. We try to minimize both a data term and the number
k. The remaining task is to associate one of these k depths to each box. The resulting model is an irregular
grid where each box moves back or forward relative to the main plane. This model therefore assumes that
the facades are composed of parallel rectangular elements. Other approaches have been studied to
determine the depth of each box as a graph- cut algorithm.

Chapter 6

We demonstrated that in order to reconstruct a continuous surface from lidar signal, meshing echoes that
are adjacent in sensor topology (sensor mesh) is an appropriate solution because it naturally integrates
logical constraints imposed by the laser beams. However, the geometry of the scanned scene rarely amounts
to a single continuous surface.
If the sensor is in front of the surface, one can have confidence in the fact that there is continuity between
adjacent echoes, whereas if the sensor sees the surface with a grazing angle, it may exist cavities between
two adjacent echoes that contain an hidden portion of the surface and that contradict the continuity
between adjacent echoes. The incidence angle thus provides a simple measure of the lidar reliability in
detecting a continuous surface.
Despite the continuity between adjacent echoes is not one hundred percent reliable, the continuous surface
provided by the sensor mesh has always a physical meaning : this is the interface between what is seen and
not seen by the sensor. This mesh is therefore interesting to use, but the main obstacle is that it can fold
on itself if the laser sweeping turns back.

Chapter 7

We presented an approach to reconstruct facade geometry from lidar data. We aimed at surfaces consistent
with the data, especially the optical images acquired in the same time. The proposed framework allows to
reconstruct 2.5D grids in a coordinate system adapted to the sensor point of view. For this purpose, we
introduced a prismatic projection that is a generalization of the orthogonal projection and the
corresponding coordinate system. It allows to benefit from the sensor geometry while providing a
coordinate system topologically consistent with the 3D space. The output 2.5D grids are suitable for
immersive navigation and other applications that need compact and detailed 3D models. They could also be
used as inputs for facade structure analysis, in particular for window detection or grammar rules extraction.

Chapter 8

In this chapter, we focused on improving the texturing of the deformable grid with optical images. When
images are projected on the grid, the most sensitive areas to geometric inaccuracies of the grid are the
discontinuities at the objects edges. If the geometrical discontinuities do not match well the radiometric
discontinuities in optical images, one can see some smudges particularly unpleasant visually. So we
proposed a method for matching geometric discontinuities with radiometric discontinuities (less reliable but
more accurate). Geometric discontinuities are extracted in the grid, and radiometric discontinuities are
extracted from the images. These are 2D segments which are projected onto the grid to obtain 3D
segments. These segments are matched with the geometric discontinuities. We keep only those which are
sufficiently close to a geometric discontinuity. Image segments that are kept are used to recalculate the
deformable grid: the iterative grid deformation is rerun, but this time the smoothing constraint is reduced
at the image segments, thus allows higher tears at the precise location of image discontinuities.
The results are satisfactory for texturing, one can check the consistency between lidar data and optical
images. However, the precision of the textured model is not homogeneous : on the one hand there is a
difference in resolution between the geometric model from lidar data and image data : the textured image
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resolution is better than the 3D surface resolution. on the other hand the limitations of a ”single
viewpoint” approach are experienced : geometry and texture appear all the more imprecise the further we
are from from this point of view. One can not invent information and it is therefore difficult to improve the
results from only these datasets. In contrast, a fusion with other datasets could be imagined.

8.6 Perspectives

Toward an upgradable model : time, precision, reliability

In this thesis , we worked with terrestrial mobile lidar and image data. We encountered difficulties in data
fusion, whether with data of the same type but acquired at different times, or with different data types,
precision and reliability can vary.
The trend is to acquire an increasing volume of data. Data fusion becomes unavoidable to create new
digital models and to improve the existing ones. We are moving towards a increasingly upgradable models:
models should be able to be modified by operators or by adding new data. We designed the deformable grid
for this purpose.
However, when one wants to automate such processes, an hurdle soon emerges: What if two sources are
contradictory? It seems that the solution is to take into account three aspects in the model:

time : the digitized objects, even those that may seem static as facades change over time. One must
therefore work in 4D rather than 3D.

precision : This is the level of the finest detail of the proposed model. It depends on the acquisition
system and is intrinsically linked to the model. Indeed, two different models can be consistent if they
represent two different levels of detail. To take account of this precision score, two modelling choices
seem possible.
-The most precise model, which is a fusion of sources that maximizes precision.
-And a more flexible model that is multi-resolution.

reliability or robustness: Accuracy is not sufficient to describe the data, a confidence index is required to
make a choice when two sources are contradictory. Reliability is correlated with precision in a
complex way : ”more precise” does not mean ”more reliable”. Instead, One gains reliability if one
accepts losing in level of detail. It seems to us that it would be an interesting line of research to
design a multi-resolution model that allows to explicitly handle this opposition precision/reliability.

Precision and reliability depend on the acquisition system, and notably the measurement noise. It seems
essential to be able to assess these criteria, whether for lidar echoes or for image pixels. This is possible if
the acquisition systems are known, but the information -as the information of pixel depth in images- can
emerge during the processing. Similarly, the model precision and reliability can evolve independent of
geometry: Merging new data can strengthen the position of a mesh without deforming it, or conversely, it
may reduce reliability by providing contradictory information.
Thus, precision and robustness are required to an upgradable model. Otherwise, how to decide whether or
not it is necessary to modify the existing model if contradictory information is provided?
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Chapter 9

Annex

Contents
8.6 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9.1 Definitions and Acronyms

PCD : Point Cloud Data
ALS : Airborne Laser Scan/Scanning
TLS : Terrestrial Laser Scan/Scanning
MS : Mobile Laser Scan/Scanning
MMS : Mobile Mapping System
LoD : Level of Detail

9.2 Canny-Deriche edge detector

The Canny-Deriche edge detector presented in [86].
cst = 1− 2e−a cosw + e−2a

c =
cst

e−a sinw

k =
cst(a2 + w2)

2ae−a sinw + w − we−2a

CD(x) =
−ck

a2 + w2
sin(wx)e−a−|x|

9.3 Sixteen Advantages of the Photogrammetric 3D workflow
over the Directly Measured Laser Point Cloud

From [97].

Accuracy and Errors 1. Large area rigid camera image block geometry via AT at a sub-pixel accuracy

2. Error checking using redundant observations as a system-inherent verification

3. Internal accuracy measures from redundancy

4. Geometric accuracy by AT superior to a reliance on GPS�IMU to fuse patches into seamless
coverage

5. Greater point density → for better defined discontinuities

Economy 6. Superior data collection efficiency with faster vehicles, larger swaths
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7. Single workflow within aerial application, all image-based

8. Single workflow across widely varying applications (aerial, street-side and indoor)

9. No occlusions using no-cost along-track high image overlaps

Data Types 10. 2D-image information augmenting 3D data points

11. Multi-spectral image classification

12. Urban facade textures available at no cost from the air at image edges

13. Images document details → example street signs can be read automatically

Miscellaneous 14. Perspective exists towards Real time 3DVision via “supercomputer in match box”

15. Full automation needs image redundancy → lidar adds little to automation

16. Scene interpretation is becoming important and needs imagery → lidar adds little

9.4 Mean Shift Segmentation

We propose to segment the PCD according to the dimensionality features. The mean shift algorithm
presented in [103] is used for this purpose.

The classical mean shift

We chose mean shift, because it requires only one parameter : the radius of the spherical neighborhood used
to compute the centroid. In fact, we will see that we introduce another parameter. The classical algorithm
is the following :

Inputs : a PCD
Parameter : the spherical neighborhood radius r.
Output : each point associated to a region.
while the points move (pi 6= ci) do

for all point pi do
Compute the centroid ci of the points included in the neighborhood centered on pi

end for
for all point pi do

Move pi to the ci.
end for

end while

Optimization

At each iteration, we apply the spatial pruning explained in the appendix 2.5.3 that keeps only one point
per voxel. As the points are moving increasingly closer, the pruning reduces gradually the number of points.
The only difference in the mean shift algorithm, is that we introduce weights in the mean computation:

1. After the first pruning, the n points included in a voxel are replaced by one point that represents the n
points formerly found in the voxel, the weight of this representative point is then n.

2. After the second pruning, the points pi included in a voxel are replaced by one point pr, but this time,
each pi has a weight ni. The weight of pr is thus

∑
ni.

x. After the xth pruning, The weight of a representative point is the sum of the weights of the points
contained in the voxel.

In fact, a point is always weighted by the number of points it represents. If the weights are initialized to
one in the original PCD, one can see that at every step (1,2,x), the resulting weight is the sum of the
weights in each voxel.
The pruning makes the algorithm faster, but less accurate. The loss of accuracy depends on the voxel
width, and we can choose it lower than the data estimated accuracy. Moreover, the accuracy is greater than
the voxel width because the computations are performed on 3D points that keep their accuracy.
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(a) Colored Altitude

(b) a3 = 8, r = 1m (c) a3 = 8, r = 2m (d) a3 = 8, r = 4m (e) a3 = 8, r = 8m (f) a3 = 8, r = 16m

(g) r = 8m, a3 = 0 (h) r = 8m, a3 = 8 (i) r = 8m, a3 = 16 (j) r = 8m, a3 = 32 (k) r = 8m, a3 = 64

Figure 9.1: Mean shift ”2D” for various r and a3 values.
Pictures (b) to (f): the region sizes increase with r.
Pictures (g) to (k): when a3 increases, the normal values are more important in the segmentation process.

Using dimensionalities

Tree algorithms are proposed, adapted to the tree dimensionalities.

1D : the points along linear objects share the same orientation estimated by −→v1.
A 6D mean shift is performed in (x, y, z, x−→v1 , y−→v1 , z−→v1) space. The x, y, z coordinates have not
necessarily the same order of magnitude than the −→v1 coordinates. This is why the −→v1 norm has to be
determined in order to balance the relative importance of these two triplets. Let a1 = ||−→v1|| this
parameter.

2D : the points share the same normal vector estimated by −→v3.
A 6D mean shift is performed in (x, y, z, x−→v3 , y−→v3 , z−→v3) space. As well as in the 1D case, the parameter
a3 = ||−→v3|| has to be tuned.

3D : the mean shift is performed in the x, y, z space.

Results

The r and a3 parameters influence is highlighted in figure 9.1. The r value have to be chosen according to
the scale of interest. In figure 9.1 (d) (e) and (f), we can see that if r = 4m, the regions correspond to the
roofs, and if r = 8 or 16m, the points of a whole house or tree are aggregated in a same region.
Figures 9.2 and 9.3 show the mean shift segmentation. In fact, this is the result of the three segmentations
previously explained. It is not necessary to perform each segmentation on the whole dataset. For instance,
the 2D segmentation produces many small regions in the areas that are not planar. That is why we keep
only the points that have a value a2D greater than a threshold equal to 0.6. The dataset is thresholded with
a1D > 0.6 and a3D > 0.3. These thresholds are empirical, the a3D is lower than the others in order to get all
the points in the tree foliages that are sometimes more 1D or 2D. The thresholding allow to optimize the
computation time, but they do not enhance the results, they only avoid small regions that we remove after
anyway. The regions can be used as primitives for visualization or other applications such as registration.
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On the last picture, a Cuboid is computed to display the structure tensor of each region : the cuboid edges
are aligned with −→v1,−→v2 or −→v3 and the edge half widths are equal to σ1, σ2 or σ3.
The algorithm have been tested on data acquired by the Stereopolis in Paris 6 (fig 9.2 and 9.3). And on the
open ALS dataset of Lucerne (Switzerland). The results are shown in figure 9.1, 9.4 and 9.5.
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(a) Intensity values

(b) Points colored per regions

(c) Points linked to their region centroid

(d) Cuboids displaying each region

Figure 9.2: Mean shift segmentations. a = 8 and r = 1m
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Figure 9.3: More views of mean shift segmentation.
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(a) Altitude
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Figure 9.4: Local Features and Mean Shift Segmentations with tree radius parameters.149
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Figure 9.5: Dimensionality features and Cuboids from mean shift segmentation (a = 8 and r = 1m)
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[10] J Demantké, C Mallet, N David, and B Vallet. Dimensionality based scale selection in 3d lidar point
clouds. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,
Laser Scanning, 2011.

[11] S. Filin and N. Pfeifer. Neighborhood systems for aiborne laser data. Photogrammetric Engineering
and Remote Sensing, 71(6):743–755, 2005.

[12] S. Soudarissanane, R. Lindenbergh, M. Menenti, and P. Teunissen. Incidence angle influence on the
quality of terrestrial laser scanning points. International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences, 38 (Part 3/W8):183–188, 2009.

[13] O. Hadjiliadis and I. Stamos. Sequential classification in point clouds of urban scenes. In International
Symposium on 3D Data Processing, Visualization and Transmission (3DPVT), Paris, France, 2010.

[14] M. Pauly, L. Kobbelt, and M. Gross. Point-based multiscale surface representation. ACM
Transactions on Graphics, 25(2):177–193, 2006.

151



[15] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface reconstruction for
unorganized point clouds. Computer Graphics, 26(2):71–78, 1992.

[16] M. Zwickler, M. Pauly, O. Knoll, and M. Gross. Pointshop 3d: An interactive system for point-based
surface editing. In ACM SIGGRAPH, pages 322–329, San Antonio, TX, USA, 2002.

[17] T. Dey and J. Sun. An adaptive MLS surface for reconstruction with guarantees. In Symposium on
Geometry Processing, pages 43–52, Vienna, Austria, 2005.

[18] D. Belton and D. Lichti. Classification and segmentation of terrestrial laser scanner point clouds
using local variance information. International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences, 36 (Part 5):44–49, 2006.

[19] N.J. Mitra, A. Nguyen, and L. Guibas. Estimating surface normals in noisy point cloud data.
International Journal of Computational Geometry and Applications, 14(4-5):261–276, 2004.

[20] J.F. Lalonde, R. Unnikrishnan, N. Vandapel, and M. Herbert. Scale selection for classification of
point-sampled 3-D surfaces. Technical Report CMU-RI-TR-05-01, Robotics Institute, Pittsburgh, PA,
USA, 2005.

[21] K.-H. Bae, D. Belton, and D. Lichti. A closed-form expression of the positional uncertainty for 3D
point clouds. IEEE TPAMI, 31(4):577–590, 2009.

[22] S. Gumhold, X. Wang, and R. Macleod. Feature extraction from point clouds. In International
Meshing Roundtable, pages 293–305, Newport Beach, CA, USA, 2001.

[23] R. Shapovalov, A. Velizhev, and O. Barinova. Non-associative markov networks for 3D point cloud
classification. International Archives of Photogrammetry, Remote Sensing and Spatial Information
Sciences, 38 (Part 3A):103–108, 2010.

[24] D. Munoz, D. Bagnell, N. Vandapel, and M. Hebert. Contextual classification with functional
max-margin markov networks. In IEEE CVPR, Miami, FL, USA, 2009.

[25] Julie Digne. Inverse Geometry: From the raw point cloud to the 3D surface - Theory and Algorithms.
PhD thesis, ENS Cachan, 2010.

[26] H. Gross, B. Jutzi, and U. Thoennessen. Segmentation of tree regions using data of a full-waveform
laser. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,
36 (Part 3/W49A):57–62, 2007.

[27] C.K. Tang, G. Medioni, P. Mordohai, and W.S. Tong. First order augmentations to tensor voting for
boundary inference and multiscale analysis in 3-D. IEEE TPAMI, 26(5):594–611, 2004.
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