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ABSTRACT

When a failure occurs in the Linux kernel, the kernel emits an error report called “kernel
oops”, summarizing the execution context of the failure. Kernel oopses describe real
Linux errors, and thus can help prioritize debugging efforts and motivate the design of

tools to improve the reliability of Linux code. Nevertheless, the information is only meaningful if
it is representative and can be interpreted correctly.

In this thesis, we study a collection of kernel oopses over a period of 8 months from a repository
that is maintained by Red Hat. We consider the overall features of the data, the degree to which
the data reflects other information about Linux, and the interpretation of features that may
be relevant to reliability. We find that the data correlates well with other information about
Linux, but that it suffers from duplicate and missing information. We furthermore identify some
potential pitfalls in studying features such as the sources of common faults and common failing
applications.

Furthermore, a kernel oops provides valuable first-hand information for a Linux kernel
maintainer to conduct postmortem debugging, since it logs the status of the Linux kernel at the
time of a crash. However, debugging based on only the information in a kernel oops is difficult. To
help developers with debugging, we devised a solution to derive the offending line from a kernel
oops, i.e., the line of source code that incurs the crash. For this, we propose a novel algorithm
based on approximate sequence matching, as used in bioinformatics, to automatically pinpoint
the offending line based on information about nearby machine-code instructions, as found in a
kernel oops. Our algorithm achieves 92% accuracy compared to 26% for the traditional approach
of using only the oops instruction pointer. We integrated the solution into a tool named OOPSA,
which would relieve some burden for the developers with the kernel oops debugging.
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RÉSUMÉ

Lorsqu’une erreur survient dans le noyau Linux, celui-ci émet un rapport d’erreur appelé
"kernel oops" contenant le contexte déxécution de cette erreur. Les kernel oops décrivent
des erreurs réelles de Linux, permettent de classer les efforts de débogage par ordre

de priorité et de motiver la conception d’outils permettant d’améliorer la fiabilité du code de
Linux. Néanmoins, les informations contenues dans un kernel oops n’ont de sens que si elles sont
représentatives et qu’elles peuvent être interprétées correctement.

Dans cette thèse, nous étudions une collection de kernel oops provenant d’un dépôt maintenu
par Red Hat sur une période de huit mois. Nous considérons l’ensemble des caractéristiques
de ces données, dans quelle mesure ces données reflètent d’autres informations à propos de
Linux et l’interprétation des caractéristiques pouvant être pertinentes pour la fiabilité de Linux.
Nous constatons que ces données sont bien corrélées à d’autres informations à propos de Linux,
cependant, elles souffrent parfois de problèmes de duplication et de manque d’informations. Nous
identifions également quelques pièges potentiels lors de l’étude des fonctionnalités, telles que les
causes d’erreurs fréquentes et les causes d’applications défaillant fréquemment.

En outre, un kernel oops fournit des informations précieuses et de premir̀e main pour un
mainteneur du noyau Linux lui permettant d’effectuer le débogage post-mortem car il enregistre
l’état du noyau Linux au moment du crash. Cependant, le débogage sur la seule base des
informations contenues dans un kernel oops est difficile. Pour aider les développeurs avec le
débogage, nous avons conçu une solution afin d’obtenir la ligne fautive à partir d’un kernel
oops, i.e., la ligne du code source qui provoque l’erreur. Pour cela, nous proposons un nouvel
algorithme basé sur la correspondance de séquences approximative utilisé dans le domaine de
bioinformatique. Cet algorithme permet de localiser automatiquement la ligne fautive en se
basant sur le code machine à proximité de celle-ci et inclus dans un kernel oops. Notre algorithme
atteint 92% de précision comparé à 26% pour l’approche traditionnelle utilisant le débogueur
gdb. Nous avons intégré notre solution dans un outil nommé OOPSA qui peut ainsi all eger le
fardeau pour les développeurs lors du débogage de kernel oops.
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1
INTRODUCTION

Starting from the general background of our work, in this beginning chapter, we illustrate
the research problems that this thesis is trying to resolve, and we then list the contribu-
tions that we made in this attempt. We conclude this chapter with a brief note on how

this thesis is organized.

1.1 Motivation

The Linux kernel is used today in environments ranging from embedded systems to servers. It
resides in the core of numerous distributions of operating systems, such as Android, Debian
and Fedora, etc. While the Linux kernel is widely regarded as being stable for ordinary use, it
nevertheless still contains bugs [103], i.e. defects in the software. The Linux kernel is inevitably
buggy for three major reasons. First, it consists of a huge code base, i.e. over 15 million lines of
code, and continues to grow [33]. It is extremely challenging to ensure correctness on such a huge
code base. Second, the development and maintenance of the Linux kernel are highly dynamic.
There is a major release of the Linux kernel every 3 months, to which over a thousand developers
all over the world contribute. The introduction of new code as well as the fixes of existing bugs
bring new bugs to the kernel. Third, the Linux kernel offers a huge variety of services (devices
drivers, file systems, etc.), and each of them comes with a range of configuration options, which
results in a huge number of configuration settings for the Linux kernel [119]. Therefore, it
is essentially impossible to exhaustively test the Linux kernel for all possible configurations.
Due to these reasons, it is impossible to eliminate bugs from the Linux kernel. As long as the
Linux kernel evolves, the bugs would persist, but at a tolerable rate thanks to the continuous
engineering effort.
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Other than the measures that prevent bugs slipping into the Linux kernel as much as
possible, Linux kernel developers often resort to the postmortem debugging. Debugging is the
process of localizing bugs in software, finding their root causes and providing fixes for them.
Postmortem debugging refers to the approach of debugging a bug after its manifestation, rather
than predicting the bug.

The manifestation of a bug involves some errors, which are unusual states in the software.
Since a bug is often hard to reproduce, it is critical to catch and document errors for later
debugging. In order to facilitate debugging, developers commonly equip software with error-
reporting capacity, so that the software can automatically generate information about errors
when they occur. The generated error reports are then collected and later serve as an important
starting point in finding bugs.

Following the same practice, Linux kernel developers have designed the kernel to generate a
specific kind of error report, called a kernel oops, whenever the kernel crashes. Between 2007 and
2010, kernel oopses were collected in a repository under the supervision of kernel.org, the main
website for distributing the Linux kernel source code. There used to be a mailing list [125] that
was aimed at discussing and addressing the most frequent kernel oopses. Similarly, the practice
of maintaining and debugging error reports has also been adopted in Windows [97] and Mac
OS X [1]. Error reports from Windows have been used for tasks such as prioritizing debugging
efforts, detecting the emergence of malware, and monitoring the resurgence of bugs [44]. Indeed,
the data in such repositories has the potential to help developers and software researchers alike
identify the important trouble spots in the software implementation.

In this thesis, we study error reports in the context of the Linux kernel, i.e. kernel oopses.
The critical nature of many of usage scenarios of the Linux kernel means that it is important to
understand and quickly address the errors in the Linux kernel that are encountered by real users.
In this thesis, we intend to approach the above two goals respectively with a systematic study on
a large collection of kernel oopses and a tool to help developers better debug kernel oopses.

1.2 Research Problem

Our objects of study are kernel oopses, which are a specific kind of error reports. A kernel oops
is emitted from the Linux kernel, at the time of crash. Given a kernel oops, kernel developers
need to understand the information contained in the kernel oops, and then find the problem that
triggered the kernel oops. Therefore, concerning kernel oopses, our research problem concerns
two aspects: kernel oops comprehension and kernel oops debugging. In brief, kernel oops
comprehension concerns understanding of the information carried by a kernel oops, as well as the
knowledge that can be extracted from a collection of kernel oopses, while kernel oops debugging
focuses on the actions that one can take towards finding and fixing the problem that triggers the
kernel oops. We discuss each aspect in detail in the following sections.

2
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1.2.1 Kernel Oops Comprehension

A kernel oops holds key information about the status of the Linux kernel during the crash.
A kernel oops is designed to be concise, unlike another similar error report, e.g. the kernel
dump [111], which is a snapshot of data in the memory and whose size ranges from several
hundred MBs to several GBs. The conciseness of kernel oops facilitates its transfer. But inevitably
there is certain information that is skipped in a kernel oops, which requires developers to recover
and derive this information from the content of the kernel oops.

Kernel oopses are generated automatically in the Linux deployments at the users’ sites.
But the collection of kernel oops is voluntary with the authorization of users. Since Septem-
ber 2012, Red Hat has revived the collection of Linux kernel oopses in the repository at
oops.kernel.org [12], which receives oops reports from any Linux distribution. This repos-
itory reopens the possibility of using kernel oopses to understand the real errors encountered
by Linux kernel users. Nevertheless, extracting knowledge from a collection of kernel oopses
is difficult. The Linux kernel has a number of properties that make interpreting kernel oopses
challenging.

The first major challenge in interpreting the Linux kernel oops is that of origin obscurity.
One of the most critical pieces of information about a kernel oops is its origin, i.e. the source
code that generates the kernel oops and the hardware platform that runs the source code.
However, it is hard, if not impossible, to accurately identify the origin of a kernel oops. The Linux
kernel is highly configurable, exists in many versions, and is packaged into many distributions
such as Fedora, Debian, Android, etc. Within a kernel oops, this version information is poorly
documented. Even given the exact version number, it is not easy to associate the source code with
the kernel oops. Because each distribution can customise the Linux kernel, it is hard to track
all the customisations. As to the other part of origin information, the hardware platform, it is
not necessarily present in a kernel oops. The Linux kernel runs on a vast number of hardware
platforms, among which there are many proprietary ones where the companies would not bother
to put their platform information in a kernel oops. Indeed, we observed quite a lot kernel oopses
with the platform information stated as To be filled. We suspect that this is partially due to
privacy concerns, as many companies are not willing to reveal too much information in an error
report even they agree to submit the report for trouble shooting. Or it is simply because the
administrators of the system do not bother to fill the field.

The second major challenge in interpreting the Linux kernel oops is the issue of format
inconsistency. First, kernel oopses are generated in an ad-hoc manner, i.e. the structure and
the content of a kernel oops depend on the type of error that triggered it. For instance, a NULL-
pointer dereference error generates a kernel oops that contains a machine code snippet around
the memory address referred by the instruction pointer, but this code snippet is not present
in kernel oopses that are triggered by some hardware related errors. Second, an oops can be
transferred in different ways by different Linux distributions. For security and performance
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reasons, the Linux kernel does not itself submit kernel oopses to the repository, but only have
them written to a kernel log file. Different Linux distributions provide their own user-level
applications for retrieving oopses from these log files and submitting them to the repository.
These tools might decide to skip certain information in a kernel oops. For instance, we noticed
that recent versions of Fedora remove the random ID within a kernel oops during submission.

Due to the above challenges, it is difficult to extract all the necessary information from kernel
oopses and draw reliable conclusion about the information. In Chapter 3, we conduct a systematic
study on a recent repository of kernel oopses. In addition, we detail the challenges that we
encountered and the solutions we proposed.

1.2.2 Kernel Oops Debugging

A collection of kernel oopses as a whole provides some insight about the Linux kernel. On the
other hand, an individual kernel oops has the potential to help kernel developers with their
daily work. The main tasks of a kernel developer include adding new functionalities to the Linux
kernel, as well as addressing the problems that have been identified in the implementation of
existing functionalities. A kernel oops is useful in the latter task. Indeed, as a crash report,
a kernel oops documents an instantaneous image of the kernel state at the time of the crash.
Therefore, a kernel oops provides first-hand information about the manifestation of a bug in the
Linux kernel, which is essential for addressing the bug later. At the same time, a kernel oops is
logged primarily at the level of machine code, which makes it difficult to interpret, drastically
limiting its practical benefit. Thus, it is desirable for kernel developers to have techniques or
tools that can help them with the debugging of individual kernel oopses.

A fundamental part of debugging any software crash including a kernel oops is to identify
the offending line, i.e., the line of the source code at which the crash occurs. To illustrate the
importance of knowing the offending line and the difficulty of obtaining it from a kernel oops,
even in a favourable case when it is possible to interact with the user who encountered the crash,
we describe a real case [28] from the Linux kernel bugzilla. A user named Jochen encountered
frequent crashes on his XFS file system and filed a bug report that included a kernel oops. A
developer named Dave took charge of the report, and started to debug the issue. As Dave did not
have access to the compiled kernel that Jochen had used, he instructed Jochen to go through a
series of procedures on the victim machine in order to produce the offending line information. In
all, it took 16 comment exchanges before another user, Katharine, who had the same problem,
managed to obtain the offending line. Dave then quickly figured out the source of the bug and
provided a corresponding patch.

One solution to get the offending line information would be to instrument the Linux kernel to
include the offending line number in the kernel oops. Yet, this is not a viable solution. First of all,
the strategy is intrusive, which requires an update of the Linux kernel. Since some users have
their own customised Linux kernel, an update to the kernel might require users to recompile
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and reload the kernel. This requirement could hinder the adoption of the solution. Secondly,
the instrumentation would introduce an overhead to the Linux kernel runtime, in addition to
inflating the Linux kernel image size. Indeed, a recent proposal (September, 2012) [70] to extend
the Linux kernel to make it possible to include line number information was rejected, as it
would incur a too great (albeit small) space overhead (10MB) in a running kernel. Last and most
importantly, the solution does not solve the problem of debugging the large number of reports
already available in the kernel oops repository, which possess a potential to boost the reliability
of the Linux kernel if we could make use of them.

Therefore, a desirable solution for the problem of pinpointing the offending line of a kernel
oops would be having an automatic tool that can locate the offending line, given an existing
kernel oops, without any human intervention or system instrumentation.

1.3 Contribution

We conduct our work with regards to the two aspects of our research problem described above. In
this section, we list the contributions that we have made in resolving the problem.

Kernel oops comprehension. We study how we can interpret Linux kernel oopses to draw
conclusions about Linux kernel reliability. To this end, we perform a study of over 187,000 Linux
kernel oopses, collected in the repository maintained by Red Hat between September 2012 and
April 2013. We first study properties of the data itself, then correlate properties of the data with
independently known information about the state of the Linux kernel, and then consider some
features of the data that can be relevant to understanding the kinds of errors encountered by
real users and how these features can be accurately interpreted. The main lessons learned are as
follows:

• The number of oopses available in the repository for different versions varies widely,
depending on which Linux distributions have adopted the version and the strategies used
by the associated oops submission tools.

• The repository may suffer from duplicate and missing oopses, since the available informa-
tion does not permit identifying either accurately.

• Identifying the service causing a kernel crash may require considering the call stack, to
avoid merging oopses triggered in generic utility functions. The call stack, however, may
contain stale information, due to kernel compilation options.

• Analyses of the complete stack must take into account that the kernel maintains multiple
stacks, only one of which reflects the current process’s or interrupt’s execution history.
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• Kernel executions may become tainted, indicating the presence of a suspicious action in
the kernel’s execution history. Oopses from tainted kernels may not reflect independent
problems in the kernel code.

Kernel oops debugging. We help kernel developers to debug a kernel oops through pinpoint-
ing the offending line of the kernel oops. To this end, we propose a novel algorithm based on
approximate sequence matching, as used in bioinformatics, to automatically pinpoint the offend-
ing line based on information about nearby machine-code instructions as found in a kernel oops.
We further integrate our approach into an automatic tool named OOPSA that takes only the
kernel oops as input and produces the offending line number.

To evaluate OOPSA, we conducted a series of experiments on 100 randomly selected examples
from the kernel oops repository and the Linux kernel bugzilla. OOPSA achieves 92% accuracy
in pinpointing the offending line, compared to the 26% accuracy obtained through the state-of-
the-art approach. In addition, our algorithm has the linear complexity in the size of the crashing
function. For the kernel oopses that we have tested, it takes on average 31ms to produce the
result on a current commodity machine. Therefore, our solution is effective and efficient, and
thus it can ease the burden on a Linux kernel developer in debugging a kernel oops.

In resolving this problem, we have made the following contributions:

• We quantify the difficulty of finding the offending line in an oops generated by an older
kernel.

• We propose and formalize an algorithm using approximate sequence matching for identify-
ing the line of source code that led to the generation of an oops.

• We show that the complexity of our algorithm is linear in the size of the crashing function.

• We show that our approach is effective, achieving an accuracy of 92% on 100 randomly
selected examples.

1.4 Organization

The rest of this thesis is organized as follows: Chapter 2 gives literature reviews in the domain
of this thesis. Chapter 3 addresses the aspect of kernel oops comprehension, with regard to the
kernel oops repository. Chapter 4 discusses our solution to pinpoint the offending line of a kernel
oops, which concerns the aspect of kernel oops debugging. Chapter 5 discuss some work that is
related to the techniques that we devised in Chapter 4. Chapter 6 concludes this thesis.
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2
BACKGROUND

In this chapter, we give a review of the literature on the domains that are related to our work.
We focus on improving the reliability of the Linux kernel through helping Linux kernel
developers better debug the faults that are encountered by users. Overall, our work falls

into the domain of software debugging. More specifically, our work can be further classified as
one of the techniques of software fault localization which is one of the most critical activities
that are involved in software debugging. We developed a technique to help developers pinpoint the
offending line of a kernel oops. The technique is inspired by the sequence alignment algorithms
which were initially proposed in bioinformatics domain. In this chapter, we review these three
subjects to serve as the background knowledge of this thesis.

2.1 Software Debugging

Software bugs are defects that reside in software and cause software to behave abnormally. The
abnormal behaviours of software lead to economic loss and damage. A public report [45] from
NIST (US National Institute of Standards and Technology) in 2002 stated that software bugs
cost the US economy 59.5 billion dollars annually. Therefore, it is of great interest for developers
to reduce software bugs during the software development process.

The process of locating and fixing defects in software is called software debugging. It takes
developers a significant amount of time and resources during the development of software. It
is estimated that debugging activities account for 30%~90% of labor expended for a software
project [24]. Therefore, techniques and tools that can help developers with software debugging
tasks can have a significant impact on the cost and quality of software.

Software debugging is a broad topic that covers various software artefacts such as source code,
bug and error reports, etc. Concerning all the activities of software debugging, there have been
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a number of works [57, 58, 80, 128] dedicated to bug reproduction, which aim to produce a bug
in a repeatable manner in order to help developers identify the key factors that trigger the bug.
Nevertheless, bug reproduction is expensive and most of the time it requires the involvement
of end users or full control over the execution environment. Given the above restriction, it is
thus a challenge for developers to conduct bug reproduction in real world. We focus on the
forensic analysis, particularly error report debugging which aims to diagnose and analyse the
manifestation of bugs, instead of reproducing bugs. As the background knowledge, we review bug
reproduction and error report debugging in the rest of this section.

2.1.1 Bug Reproduction

Being able to reproduce a bug is crucial for debugging, especially for concurrency bugs, yet it is
notoriously difficult due to non-deterministic factors such as program inputs, memory status,
and thread scheduling. A spectrum of techniques are proposed to address the bug reproduction
problem, ranging from record-replay techniques [57, 58, 79, 96, 126] that capture the non-
deterministic information online, to execution synthesis techniques [128, 133] that rely on
offline simulation and analysis. Several hybrid techniques [80, 81, 104, 137] attempt to explore
the balance between online recording and offline searching. To demonstrate the idea of bug
reproduction and its limitations, we review in detail a recent work [59] about reproducing
concurrency bugs as follows:

CLAP: Recording Local Executions to Reproduce Concurrency Failures. Huang et
al. [59] proposed the technique CLAP to reproduce concurrency bugs. CLAP consists of two
key steps. First, it logs the local execution paths of threads at runtime, which is called online
processing. Second, after the manifestation of a current bug, it constructs and synthesizes
constraints that are necessary for the bug to manifest, including both intra- and inter-thread
constraints, and then it uses a constraint solver to produce a global schedule that respects all
the constraints. The step is also referred as offline processing. CLAP has several advantages.
The main advantage of CLAP is that its logging is substantially cheaper than that performed
by previous solutions [80, 81, 137], which log the memory status of the program, or which add
memory barriers for synchronization [58, 79, 137]. Therefore, it minimises the perturbation
to the runtime, and thus reduces the possibility of not being able to reproduce the bug due to
the extra overhead caused by the perturbation. Secondly, CLAP works on a range of relaxed
memory models, such as Total Sequential Order (TSO) and Partial Sequential Order (PSO) [122],
in addition to sequential consistency. Finally, CLAP can parallelize constraint solving, which
mitigates the scalability issues.

CLAP is implemented on top of LLVM [78] and KLEE-2.9 [29], with the STP constraint
solver [42]. It adopts the Ball-Larus [20] path profiling algorithm to log the paths for multi-
threaded C/C++ programs, which incurs 9.3%-269% runtime overhead. CLAP captures all the
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necessary execution constraints of concurrent programs with the formula © =©path ^©bug ^
©so ^©rw ^©mo, where

• ©path (Path Constraints): The path constraints are derived from the symbolic execution
of the logged paths of thread execution, i.e. a conjunction of constraints that specify the
conditions of each branch taken by the threads.

• ©bug (Bug Manifestation Constraints): The bug manifestation constraints are expressed
as predicates over the final program state. For example, a NULL pointer dereference error
such as a –> b can be defined as Va = NULL.

• ©so (Synthronization Order Constraint): The synchronization order constraints consist
of two types of constraints that are dictated by the synchronization operations, i.e. the lock-
ing constraints enforced by the lock/unlock operations, and the partial order constraints
implied by the fork/join and wait/signal operations.

• ©rw (Read-Write Constraints): The Read-Write constraints state that the value of a Read
operation should be associated with a most recent Write operation.

• ©bug (Memory Order Constraints): The memory constraints express the memory model
of a program, such as TSO, PSO and sequential consistent.

The above constraints are complete, with regards to all concurrency situations, because the
intra-thread data and control-flow dependencies are captured by ©path and ©bug constraints, and
the inter-thread dependencies are captured by ©so,©rw and ©mo constraints. In addition, CLAP
also models the number of context switching during the thread scheduling as a constraint. This
allows it to reproduce a bug with a schedule of least context switching, which is more realistic for
the manifestation of a concurrency bug, since the more context switching that it requires, the
less likely the scheduler runs into the case and the less likely that a bug will appear.

CLAP can be considered as a part of the state-of-the-art in bug production, particularly
for concurrency bugs which are the most difficult ones to reproduce. Yet, despite of all its
advancement, the techniques of bug reproduction intrinsically impose a strong restriction on its
usage scenario, i.e. an instrumented software run in a controlled execution. This restriction can
only be met by the consensus and the cooperation of users, if the software is deployed in real
world, or in an in-house testing environment on which developers have the full control.

In the case of the Linux kernel debugging, typically the Linux kernel developers have no
access to the environment of users. Therefore, bug reproduction is not realistic in this common
case. Instead, kernel developers more often resort to error report debugging, i.e. they receive error
reports that are generated and collected on the machines, without the user intervention, and
start debugging from that point on. The entire debugging process has no input or at least the
minimal feedbacks from users. We fit our work into this scenario, and devise our solution bearing
this assumption. Next, we review some related work on error report debugging.
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2.1.2 Error Report Debugging

An error report is a text message generated by software at the time of failure. The message
contains some predefined strings, and more importantly, the values of some parameters concern-
ing the running status of software. An error report serves two purposes: First, it notices users
about the status of a running software; Second, it provides an important piece of information for
developers to conduct software debugging. Out of the first purpose, the capability of generating
error report is necessary for all software. And it is also practical to have the capability for both
users and developers. Not surprisingly, the practise of generating, collecting and debugging error
reports is universally adopted in all operating systems, e.g. Windows, Macintosh and Linux.

Windows Error Reporting (WER) [44, 97] is a post-mortem error debugging system that
collects and processes error reports generated by the Windows operating system as well as over
7000 third-party applications from a billion machines. WER consists of both a client and a server
service. The client service runs on users’ machines, monitoring the status of Windows operating
system as well as applications on top of the system. Once an error occurs, the client service
intercepts and reports the error message to the server service. Before sending, the error message
is hashed and compressed, in order to avoid duplicated reports and to reduce the traffic load.

Due to the wide adoption of Windows system, WER receives millions of reports daily, which
requires enormous engineering force to be able to fully take care of. Thus, one of the primary
goals of WER is to help programmers prioritize and debug the most urgent issues reported from
users. For this, WER groups the error reports into buckets based on a series of criteria, such
as the crashing program name, the exception code, and the trapping instruction offset. Ideally,
the error reports within a bucket correspond to a specific bug, or at least correlated bugs. The
strategy of bucketing is essential to WER, as it helps developers concentrate their debugging
effort. Later, a tool named ReBucket [35] proposed another method of bucketing for WER, which
is to cluster crash reports based on call trace.

Similarly, on the Linux platforms, there is a kind of error report, called kernel oops, which is
generated during the Linux kernel crash. Unlike WER, there is no systematic way on the Linux
platforms to gather and analyze kernel oopses. Kernel oopses are kept on log files in the client
machine. Each Linux distribution (e.g. Debian, Fedora) has its own tool set to extract and submit
kernel oopses. In addition, each distribution has its own repository to collect kernel oopses.

It is not so intuitive to collect a large amount of error reports from the Linux kernel for
study. One of the reasons is that the Linux kernel is relatively stable, as the quality of the Linux
kernel code has improved significantly, e.g., the number of faults per line has dropped over the
past 20 years [32, 103]. It is relatively rare, if not unlikely, to observe the crash of the Linux
kernel. Some researchers then applied a technique called fault injection to artificially inject
faults into the software system. For instance, Gu et al. [46] performed a series of fault injection
experiments on the Linux kernel of version 2.4.20, to simulate the Linux kernel crash. Their goal
was to analyze and quantify the response of the Linux kernel in various crashing scenarios. Most
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recently, Yoshimura et al. [132] did an empirical study on the Linux kernel as well with fault
injection. Their goal was to quantify the damage that could be incurred at the crash time of the
Linux kernel.

Other than above work, to our knowledge, there is few work that studies kernel oopses from
the real-world, rather than the ones generated through fault injection. Since September 2013,
the kernel oops repository (oops.kernel.org) [12] that can receive kernel oops reports from all
Linux deployments has been revived by Red Hat. The repository opens a new opportunity for a
systematic study of kernel oopses. We intend to fill this gap with this thesis.

2.2 Software Fault Localization

This thesis addresses the issue of debugging the Linux kernel oopses, which ultimately is to
help kernel developers quickly locate the faults in Linux kernel that cause the kernel oopses.
Therefore, in this section, we cover the general background of software fault localization, and
present some software fault localization techniques. First, we classify the basic and essential
terminology [14] in this domain as follows:

Definition 2.1 (Failure). A failure is an event that occurs when the delivered service deviated
from the correct service.

Definition 2.2 (Error). An error is a system state that may cause a failure.

Definition 2.3 (Fault). A fault is the cause of an error in the system.

A failure is the phenomenon observed by the users. A fault is the defect residing in the source
code that eventually leads to the failure of the system. During the manifestation of a failure, the
system encounters some errors.

We illustrate the relationship between these three concepts in the following figure. The
symbol 99K indicates that the causal relationship, i.e. the concept on the left hand side triggers
the occurrence of the concept on the right hand side. But the relationship is NOT strong, which is
why we put it in dash, i.e. the presence of the left one does not always imply the occurrence of the
right one. For instance, the existence of faults in a software system does not always render the
system into failure. Most of the failures only manifest in certain corner cases.

Fault 99KError 99KFailure

Software fault localization is the activity of identifying the exact locations of program faults in
source code [131]. DeMillo et al. [38] analysed the debugging process and observed that developers
consistently perform four tasks when attempting to locate faults in a program: 1). identify
statements involved in failures – those executed by failed test cases; 2). narrow the search by
selecting suspicious statement that might contain faults; 3). hypothesise about suspicious faults
4). and restore program variables to a specific state.
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Most of the works about software fault localization, as we list in Table 2.1, are concerned
with the second task above. They are often built on the assumption that there are abundant test
cases, and one can obtain the code coverage information after the execution of test cases. The
code coverage includes the information about whether a statement or a block of statements is
involved in certain run of execution. The collection of code coverage information is also the first
task of fault localization, as listed above, and is often achieved by instrumentation [4]. However,
there is little work concerning about the first task of fault localization. In this thesis, we address
this task, in terms of pinpointing the offending line of kernel oops, in the context of Linux kernel
debugging.

In the rest of this section, we review the techniques of software fault localization presented in
Table 2.1.

Table 2.1: A general classification of fault localization techniques [91]

techniques references
spectrum-based Tarantula [64], Ochiai [5–7], Pinpoint [30]
program slicing slicing survey [120], program slicing [130], dynamic slicing [10, 134, 135]

2.2.1 Spectrum-Based Fault Localization

We first explain the basic idea behind spectrum-based localisation techniques. As examples, we
then review two state-of-the-art techniques (Tarantula [64], Ochiai [5]) in detail.

Definition 2.4 (Program Element). The source code of a program P can be represented as a
set of basic elements, where each element ei can be a statement, a block from the control flow
graph, a function, a component, etc., i.e. P = {e1, e2, ...en}.

Definition 2.5 (Faulty Element). A faulty element f is an element from a faulty program P, i.e.
f 2 P, where the fault resides.

Definition 2.6 (Program Spectrum). A program spectrum [109] S is a mapping between a
set of program elements denoted as E = {e1, e2, ...en} and the result of a specific execution of the
program (i.e. a passed or failed test case) denoted as R, i.e. S = hE,Ri.

A program spectrum is usually generated and collected after the execution of a test case. It
can then be viewed as an execution trace of program, which represents the behaviours of the
program under a certain circumstance. A collection of program spectra can give a global view of
the behaviour of a program.

We give an example of a kind program spectrum called a program hit spectrum in Figure 2.1.
On the left side, there is a matrix where each row corresponds to the involvement of each program
element in an execution. The values in each column i represent the involvement of the element
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ei in the executions. For instance, the value at the starting position (1, 1) of the matrix is 1,
which says that element e1 is involved in the execution that produces E1, while the value to
its right at (1, 2) indicates that element e2 is NOT involved in the execution that produces E1.
On the right side of Figure 2.1, there is a vector that represents the results (passed or failed) of
each execution. For example, the value R1 is 0, which indicates that the execution that produces
E1 passes without any error. While the value R4 is 1, which indicates the the execution that
produces E4 fails. There are other forms of program spectra, which one can find in the empirical
study conducted by Harrold et al. [52].

E1
E2
E3
E4
E5

2

6666664

1 0 0 0 0
1 1 0 0 0
1 1 1 1 1
1 1 1 1 1
1 1 1 0 1

3

7777775
()

R1
R2
R3
R4
R5

2

6666664

0
0
0
1
0
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7777775

Figure 2.1: An example of program spectrum

Definition 2.7 (Suspiciousness Score). Given a faulty program P = {e1, e2, ...en} and a col-
lection of program spectra T = {S1,S2, ...Sn}, we then define !(ei,T) as a suspiciousness score
function that gives a quantitative score of the likelihood that the element ei is a faulty element,
given the circumstances specified by T.

Following the example of the program spectrum in Figure 2.1, we give an example of sus-
piciousness scores in Figure 2.2. Given the collection of program spectra hEi,Rii, we assign a
suspiciousness score for each element ei (listed in the bottom row of the table), based on the
suspiciousness score function in the tool Tarantula [64] which we would discuss later. Among
all the elements, element e4 is the most suspicious one. As one can see from the figure, the
involvement of element e4 is the most consistent with the result of the execution. Especially, if
the element e4 is involved, then the execution most likely fails. Otherwise, the execution pass.

E e1 e2 e3 e4 e5 R
E1 1 0 0 0 0 0
E2 1 1 0 0 0 0
E3 1 1 1 1 1 0
E4 1 1 1 1 1 1
E5 1 1 1 0 1 0
! 0.50 0.56 0.62 0.71 0.50

Figure 2.2: An example of suspiciousness score

Spectrum-based Fault Localization. Given the above definitions, spectrum-based fault
localization techniques aim to find a good suspiciousness score function that can identify true

13



CHAPTER 2. BACKGROUND

faulty elements with high suspiciousness values. A good suspiciousness score function ranks the
true faulty elements on top and filters out the non-faulty elements, so that it can help developers
to quickly locate the fault and thus accelerate the debugging process.

The general approach of spectrum-based fault localization often employs statistical analysis
on the association of each program element with execution failures, based on the intuition that
the stronger the association, the more likely the fault is located in the element. We now present in
detail two state-of-the-art tools, named Tarantula [64] and Ochiai [5], that follow this approach.

Tarantula. Jones et al. [64] presented a tool named Tarantula to assist developers locating
faulty statements within a program. The fundamental idea of Tarantula is to create a visualisation
of the source code in which individual statements are coloured according to their participation
in a given test suite. Tarantula is unique in its colouring schema, compared to other similar
solutions [9, 18]. The colouring schema of Tarantula consists of two components: colour and
brightness. Its colour range spreads across the entire spectrum from red to yellow, and from
yellow to green. At one end, the red colour is used to mark the statements that are only involved
in the failed test cases. At the other end, the green colour marks the statements that are only
involved in the passed test cases. In the middle of the spectrum, the yellow colour marks the
statements that are involved in both the passed and failed test cases. The more a statement
is involved in failed test cases, i.e. the higher the percentage of failed test cases that cover the
statement, the more reddish the statement is marked, and vice versa for the green colouring.
The more a statement is involved in failed test cases, the brighter is its colour. The authors refer
to their solution as a continuous approach, as opposite to the discrete colouring schema [9] that
marks the statements with only three basic colours (red, yellow and green) regardless the degree
of their participation in the outcome of a given test suite.

Although being able to help developers to locate faulty statement, Tarantula has some
limitations: I). the colouring of statements might be misleading for debugging. There is no
absolute causal relation between the red colour and the faulty statements. In the experiments
conducted by the authors, for certain cases there are no statement from the faulty program that
is marked in the red colour range, i.e. false negative. For instance, a fault that resides in the
initialization part of a program is exercised by both passed and failed test cases, thus it is marked
as yellow-ish instead of reddish. And around 20% of the non-faulty statements are marked as
reddish, i.e. false positive. II). the input of the tool is NOT intuitive to obtain. The tool requires
the association of each statement with the result of each test case, in addition to the source code
and test cases. The authors mentioned that in the experiments they instrumented the program
and run the program under abundant test cases until almost every statement is exercised by at
least 30 test cases. The details about how they instrumented the program and how they provided
the test cases are not given in the paper. These implicit details impose heavy burdens on users of
the tool.
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The suspiciousness score function ! employed by Tarantula is defined as:

!t(e,T)=
nf (e)
Nf

ns(e)
Ns

+ nf (e)
Nf

where the inputs are a program element e and a collection of program spectra T and

• Ns is the number of program spectra that are associated with a successful execution of the
program;

• Nf is the number of program spectra that are associated with a failed execution of the
program;

• ns(e) is a function that counts the number of program spectra that are associated with a
successful execution of the program and involve element e;

• nf (e) is a function that counts the number of program spectra that are associated with a
failed execution of the program and involve element e;

In the definition of !t, the component nf (e)
Nf

represents the percentage of failing executions
that involve a program element e. This component serves as the numerator within !t, and thus
the bigger the value of the component, the higher the suspiciousness value. This embodies the
intuition that the more frequently an element is involved in a failing execution of program, the
more likely it is the faulty element. Similarly, the component ns(e)

Ns
represents the percentage of

successful executions that involve a program element e. The component serves as part of the
denominator of !t(e,T), which embodies the intuition that the more frequently an element is
involved in successful execution of program, the less likely it is the faulty element.

But there are some exceptions to the above intuitions. For instance, the initialization part
of a program might appear in all program spectra including the ones with success execution of
program. At the same time, it might be faulty itself. In this case, its suspiciousness score !t(e,T)
would be 0.5, based on the above formula, and the faulty statements would be marked in yellow
instead of red.

Overall, the suspiciousness score function of Tarantula is simple yet reasonable in a certain
sense. It explains the effectiveness of the solution as well as its limitations.

Ochiai. Abreu et al. [5] applied the Ochiai coefficient [95] that was first used to compute genetic
similarity in molecular biology as the suspiciousness score function in spectrum-based fault
localization. They conducted experiments on the Siemens fault benchmark suite [60], and observed
on average a 5% improvement on accuracy comparing to the aforementioned Tarantula [64], with
an improvement of up to 30% in specific cases.
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The suspiciousness score function based on the Ochiai coefficient can be represented as
follows:

!o(e,T)=
nf (e)

p
Nf § (nf (e)+ns(e))

=
nf (e)

p
Nf §n(e)

where the inputs are a program element e and a collection of program spectra T and

• nf (e) is a function that counts the number of program spectra that are associated with a
failed execution of the program and involve element e;

• ns(e) is a function that counts the number of program spectra that are associated with a
successful execution of the program and involve element e;

• n(e) is a function that counts the number of program spectra that are associated with any
execution (either successful or failed) of the program and involve element e. We can know
that n(e)= nf (e)+ns(e), from the above definitions;

• Nf is the number of program spectra that are associated with a failed execution of the
program;

To explain the intuition behind the definition of !o, we transform !o into !0
o =!2

o =
nf (e)§nf (e)

Nf §n(e) =
nf (e)
Nf

§ nf (e)
n(e) . The new function !0

o retains the monotonicity property of the original function !o,
i.e. !o(e1,T)>!o(e2,T)()!0

o(e2,T)>!0
o(e2,T), since 8e,!o(e,T)>= 0. Therefore, we can claim

that the new function is equivalent to the original one, given the task of finding the most
suspicious program element that is faulty.

The new function !0
o consists of a product of two components: nf (e)

Nf
and nf (e)

n(e) . The component
nf (e)
Nf

represents the percentage of failing executions that involve a program element e, with
regards to the total number of failed executions. Thus the bigger the value of the component, the
higher the overall suspiciousness value. This embodies the intuition that the more frequently an
element is involved in a failing execution of program, the more likely it is the faulty element. The
component nf (e)

n(e) represents the percentage of executions that involve the element e and result
in failure, with regards to the total number of appearances of the element e. This embodies the
intuition that the more determined that the association between the program element e and the
failed executions is, the more likely the element is the faulty element. In the extreme case, all
the executions that are associated with the program element e are failed, i.e. nf (e)

n(e) = 1.

However, there is a general limitation to the ! functions is that, it does not help to identify
the faulty element, if all the program elements participate in the test cases at an equal frequency.
For example, if all the elements are involved in all the test cases, then they will all have the same
suspiciousness score. The fault could be some logic mistake in the program that fails to handle
certain corner cases.
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Other Statistical Techniques. Spectrum-based fault localization can be classified as a statis-
tical technique, since its goal is to rank the most likely faulty program elements based on the
historical execution information of the program. There have been a few other works [61, 85, 86, 88]
that are related to this perspective. For instance, Jeffrey et al. [61] proposed to rank the more sus-
picious statements that could alter the result of execution, instead of considering all statements
as suspicious as done for Tarantula [64] and Ochiai [5]. To find the more suspicious statements,
the authors first instrument the program through the Valgrind [4] framework. Then they alter
the output value of each statement to see whether the new output value can correct the result of
failing execution, if so, the statement is suspicious to be faulty. Their experiments show that their
approach is effective and outperforms Tarantula, based on the same testing suite (Siemens [60])
as used for Tarantula.

2.2.2 Program Slicing

Program slicing is a source-to-source transformation of a program, which was first introduced
by Weiser [130] in 1981. Slicing is inspired by the observation that in daily work programmers
perceive the source code as some specific portions of interest instead of paying attention to
every detail. Over the years, the techniques of program slicing have been applied in multiple
domains, such as program debugging and program maintenance. For instance, given an erroneous
behaviour of a program, a programmer may examine the source code and narrow it down to the
faulty code that leads to the error. The process of narrowing [136] can be achieved by program
slicing. In the context of program maintenance, before making any change to the source code,
a programmer needs to evaluate the impact of the changed code. To better see the impact, it is
helpful to have the slices that involved the changed code.

The work of this thesis is related to program slicing in two ways. First, generally program
slicing is applied to the source code of a program, whereas, we apply program slicing to assembly
code, to find a closely-knit group of instructions surrounding the crashing instruction. Secondly,
the goal of this thesis is to help developers debug the crash reports from the Linux kernel. We do
this by identifying the offending line that triggered the crash report. Starting from the offending
line, one can conduct program slicing to infer the statements that lead to the offending line,
which can further help developers to find the root cause of the crash. In the rest of this section,
we explain some basic concepts involved in program slicing, the general techniques to do program
slicing, and the development of program slicing techniques.

Definition 2.8 (Slicing Criterion). A slicing criterion defines a specific point of interest in a
program, which is the starting point from which to do slicing. A slicing criterion of a program P
can be represented as a tuple hs,V i, where s is a statement in P and V is a set of the variables
that are involved in the statement s.
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Definition 2.9 (Backward Program Slice). A backward program slice is a list of program
statements that have an impact on a given slicing criterion.

Definition 2.10 (Forward Program Slice). A forward program slice is a list of program state-
ments that are affected by a given slicing criterion.

In general, a slice is a subset of a program that preserves a specified projection of the
behaviours of a program. There can be many different slices for a given program and slicing
criterion. But there is always at least one slice for a given slicing criterion — the program itself.

The problem of finding a minimal slice is in general unsolvable. A simple reason for this
is that in order to identify the statements involved in a slice, one should be able to determine
whether a program halts, which is undecidable. Weiser [130] proved that, there does not exist an
algorithm to find statement-minimal slices for arbitrary programs.

Although there does not exist an optimal slicing algorithm, it is possible to construct a
sub-optimal slicing algorithm. In 1984, Ottenstein et al. [101] are the first ones who proposed
to use PDG (Program Dependency Graph) to do slicing. A PDG is a graph that represents
both the data flow and the control flow relations within the program. However, the original
PDG-based slicing algorithm might yield incorrect results, since it could not handle correctly
the unstructured control statements such as goto, continue and break, etc. Later on, slicing
techniques [8, 19, 31], based on variants of the PDG, have been proposed to deal with the problem
of unstructured control flow. As an alternative to PDG, in 1985, Bergeretti and Carré [27] used
the notion of information-flow relation to construct a slicing algorithm. The information flow
relation represents the value dependency relation between two variables with regarding to a
statement. For instance, for the assignment statement v1 = v2 +1, one can see that the value
of the variable v1 on exiting the statement, depends on the value of variable v2 on entering
the statement. Therefore, we say that there is an information flow relation between v1 and v2

regarding the statement v1 = v2 +1. For more work about program slicing, one can refer to the
survey conducted by Tip [120] .

Next we give a brief classification of the techniques of program slicing:

Static VS. Dynamic. The techniques of program slicing can be classified as static or dynamic
slicing. The original program slicing [130] only looks at the source code to find the slices for all
possible executions of program, and is later referred as static slicing. Dynamic slicing [10, 134,
135] bounds the slicing process to a certain execution history of the program. The number of
slices resulting from static slicing increases exponentially with the number of branches along the
slice. The result of dynamic slicing tends to be more focused, but it requires additional inputs
beyond the source code, such as error-inducing test cases.

Backward VS. Forward. One can classify the slicing as backward slicing or forward slicing,
based on the direction of slicing. Originally, program slicing [130] started from the slicing criterion
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and then traced backward to search for statements that could impact the values in the slice
criterion. Therefore, program slicing by default is also referred as backward program slicing. On
the other hand, forward program slicing [27] looks for statements that might be affected by the
values involved in the slicing criterion. Although the goals are different, backward and forward
slices can be computed in a similar way.

Executable VS. Closure. When program slicing [130] was first introduced, the author insisted
on that the resulting slice should be an executable program. The later developments of program
slicing [56, 110] lose this restriction, i.e. the slice is not necessarily executable but a closure that
respects the dependencies imposed by the slicing criterion.

2.3 Sequence Alignment

A sequence is a general concept that represents a list of elements. For instance, in C programs,
a string is represented as a sequence of characters. In biology, one has sequences of DNA, RNA,
amino acids, etc. In this section, we review the concepts and algorithms of sequence alignment
which is applied in this thesis. Sequence alignment is an operation to align/match two sequences
in order to identify the similar and dissimilar parts. Sequence alignment is frequently performed
in computational biology. Its usefulness is predicated on the assumption that a high degree
of similarity between two sequences often implies similar function and/or three-dimensional
structure, as shown in the following scenario:

A usage scenario of sequence alignment in biology [121]. When a new genome is se-
quenced, the usual first analysis performed is to identify the genes and hypothesize their functions.
Hypothesizing their functions is most often done using sequence similarity algorithms, as follows.
One first translates the coding regions into their corresponding amino acid sequences. One then
searches for similar sequences in a protein database that contains sequenced proteins (from related
organisms) and their functions. Close matches allow one to make strong conjectures about the
function of each matched gene. In a similar way, sequence similarity can be used to predict the
three-dimensional structure of a newly sequenced protein, given a database of known protein
sequences and their structures.

Apart from biology, the study and application of sequence alignment is also of interest in
software engineering. Previous works have applied sequence alignment in software debugging [51,
90], in the study of software artefacts [107, 108], etc. We have applied sequence alignment to
pinpoint the offending line of a kernel oops [47].

In the rest of the section, we first give some formal definitions about sequence alignment,
and then we present some algorithms to conduct sequence alignment. Finally, we review how
sequence alignment is applied in different domains, particularly software engineering.
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2.3.1 Definitions

In this section, we give some formal definitions [121] about sequences, and sequence alignments.

Definition 2.11 (Sequence). A sequence S is represented as S[1...n] where S[i] represents the
element at the index i within the sequence S. The sequence starts from the element S[1] and
ends at the element S[n]. The size of the sequence is n, denoted as |S| = n. Let © be the domain
of all valid sequence elements. The bottom element ?›© is referred to as a gap, which serves as
a placeholder in a sequence. A sequence that contains solely gaps is NOT empty, i.e. |S| 6= 0.

Definition 2.12 (Substring VS. Subsequence). A substring bS is a contiguous list of elements
extracted from a sequence S, denoted as bS = S[i... j] where 1 ∑ i ∑ j ∑ n. A subsequence S̄
is derived from a sequence S by deleting some elements without changing the order of the
remaining elements.

We emphasize the difference between substring and subsequence, since they might be confused
in different scenarios. In the following sections, we mainly use substrings.

Definition 2.13 (Prefix VS. Postfix). Given a substring bS = S[i... j] extracted from a sequence
S, if i = 1, we also refer to the substring bS = S[1... j] as a prefix; if j = |S|, we also refer to the
substring bS = S[i...|S|] as a postfix.

Definition 2.14 (Global Sequence Alignment). Given two sequences S1 and S2, the global
sequence alignment between S1 and S2, can be defined as a function G(S1,S2)= (S0

1,S0
2) where:

I). S0
1 and S0

2 are sequences that may contain gaps. II). The sizes of sequences S0
1 and S0

2 are the
same, i.e. |S0

1| = |S0
2| III). Removing gaps from S0

1 and S0
2 leaves S1 and S2 respectively.

Definition 2.15 (Local Sequence Alignment). Given two sequences S1 and S2, the local
sequence alignment between S1 and S2, can be defined as a function L(S1,S2)= (S0

1,S0
2) where:

I). S0
1 and S0

2 are sequences that may contain gaps. II). The sizes of sequences S0
1 and S0

2 are
the same, i.e. |S0

1| = |S0
2| III). Removing gaps from S0

1 and S0
2 leaves two substrings cS1 and cS2,

respectively.

The definitions of global sequence alignment and local sequence alignment differ in the condi-
tion III. Given two sequences with limited size, the number of both global sequence alignments
and local sequence alignments is infinite, due to the possibility of adding arbitrarily many gaps
within the sequences. A local sequence alignment between two sequences can be obtained by doing
a global sequence alignment between a pair of substrings extracted from the given sequences
respectively. In the above usage scenario in biology, local sequence alignment is applied.

Definition 2.16 (Element Similarity). Let S1 and S2 be two sequences, one can measure the
similarity of two elements S1[i] and S2[ j] with a similarity function !(S1[i],S2[ j]) 2R. One can
also compare the similarity between an element ≤ and a gap (the bottom element ?), i.e. !(≤,?).
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There are infinite number of similarity functions. In principle, the results of a similarity
function can be classified into three cases: match, mismatch and gap match, as follows:

Match is the case where two elements are equal and neither is a gap.
=) !(≤1,≤2) where (≤1 = ≤2)^ (≤1 6=?)

Mismatch is the case where two elements are NOT equal, and neither of them is gap.
=) !(≤1,≤2) where (≤1 6= ≤2)^ (≤1 6=?)^ (≤2 6=?)

Gap Match is the case where at least one of the two elements is gap.
=) !(≤1,≤2) where (≤1 6= ≤2)^ ((≤1 =?)_ (≤2 =?))

Based on the three cases, the choices for the value assignment of each case is also infinite.
But in principle, the overall assignment should be reasonable and well balanced. For instance,
the similarity value of a match should be greater than that of a mismatch, and the similarity
value should be proportional to the actual degree of similarity between elements in some specific
domain. Here is one example of a similarity function:

!(≤1,≤2)=

8
>>>><

>>>>:

2, if !(≤1,≤2) is a match

°1, if !(≤1,≤2) is a mismatch

°1, if !(≤1,≤2) is a gap match

Definition 2.17 (Sequence Similarity). Let S1 and S2 be two sequences and |S1| = |S2|. One
can measure the similarity of the two sequences with a function ≠(S1,S2).

A simple sequence similarity function can be built on top of the element similarity function,
by accumulating the similarity value for each corresponding pair of elements between the two

sequences, i.e. ≠(S1,S2) =
|S1|P
i=0

!(S1[i],S2[i]) as shown in Figure 2.3. This is a commonly used

strategy to construct a similarity function.

A C G U ? C ? ? G
| | | | | | | | |
? ? U U C C A A G

Figure 2.3: The layout of two aligned sequences, where the top sequence is S0
1 = ACGU?C??G

and the bottom sequence is S0
2 =??UUCCAAG, and ≠(S0

1,S0
2)=°1°1°1+2°1+2°1°1+2= 0

In the above summation-based sequence similarity function, we compare each pair of elements
independently without taking into account their positions in the sequences. Given the same set
of element pairs, one would have the same similarity value for any order, based on the above
function. In certain cases, one also takes the ordering of corresponding pairs into account, for
similarity measurement. For instance, two aligned sequences with contiguous gap matches might
be considered be more similar than the ones with evenly distributed gap matches. One then can

21



CHAPTER 2. BACKGROUND

design another sequence similarity function that differentiates the position of aligned elements,

such as ≠0(S1,S2)=
|S1|P
i=0

!0(S1[i],S2[i], i).

Definition 2.18 (Optimal Global Sequence Alignment). Given two sequences S1 and S2, and
a sequence similarity function ≠, we define optimal global sequence alignment OG(S1,S2) as the
global sequence alignment that has the maximal value as defined by ≠, i.e. OG(S1,S2)= (S0

1,S0
2),

where 8G(S1,S2), ≠(S0
1,S0

2)∏≠(G(S1,S2)).

Definition 2.19 (Optimal Local Sequence Alignment). Given two sequences S1 and S2, and a
specific sequence similarity function ≠, we define optimal local sequence alignment OL(S1,S2) as
the local sequence alignment that has the maximal value as defined by≠, i.e. OL(S1,S2)= (S0

1,S0
2),

where 8L(S1,S2), ≠(S0
1,S0

2)∏≠(L(S1,S2)).

2.3.2 Global Sequence Alignment Algorithms

Given the above definitions, we first give the algorithms to calculate the optimal global sequence
alignment. Since the algorithm to calculate the optimal local sequence alignment is quite similar
with the global one, we explain it afterwards.

In order to explain the global sequence alignment algorithm, we introduce the function
Optimal Prefix Alignment Value V (i, j) below.

Definition 2.20 (Optimal Prefix Alignment Value). Given two sequences S1 and S2, and a
specific sequence similarity function ≠, we define the optimal prefix alignment value V (i, j) 2R
(1∑ i ∑ |S1|)^ (1∑ j ∑ |S2|) , as the value of the optimal global sequence alignment between the
prefixes cS1 = S1[1...i] and cS2 = S2[1... j], i.e. V (i, j)=≠(OG(S1[1...i],S2[1... j])).

The problem of finding the optimal global sequence alignment between two sequences S1

and S2, often reduces to calculating V (|S1|, |S2|), the optimal prefix alignment value between S1

and S2 (a sequence is a prefix of itself). The value of V can be calculated in a recursive manner,
following the formulas below:

V (0,0) = 0(2.1)

V (i,0) = V (i°1,0) + !(S1[i],?)(2.2)

V (0, j) = V (0, j°1) + !(?,S2[ j])(2.3)

V (i, j) = max(V (i°1, j°1) + !(S1[i],S2[ j]),(2.4)

V (i°1, j) + !(S1[i],?),

V (i, j°1) + !(?,S2[ j]))

1. Formula 5.1 assigns the value of aligning two empty sequences as 0. This is also the bottom
rule allowing the calculation to terminate.
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2. Formula 5.2 divides the optimal global sequence alignment between the prefix S1[1...i] and
an empty sequence into two parts: I). aligning the tail element S1[i] with a gap ?, which
has the value of !(S1[i],?) II). aligning the rest of elements, i.e. the prefix S1[1..(i°1)],
with the empty sequence, which is represented as V (i°1,0).

3. Like Formula 5.2, Formula 5.3 calculates the optimal prefix alignment value V (0, j) between
the prefix S2[1... j] and an empty sequence.

4. Formula 5.4 says that in order to obtain V (i, j), one should take the maximal value among
the three possible global sequence alignments: I). aligning the elements S1[i] with S2[ j],
then aligning the rest of the sequences (i.e. S1[1...(i°1)],S2[1...( j°1)]). II). aligning the
element S1[i] with a gap ?, then the rest sequences, i.e. V (i°1, j). III). aligning the element
S2[ j] with a gap ?, then the rest sequences, i.e. V (i, j°1).

Based on the above formulas, one can derive a recursive algorithm to calculate the optimal
global sequence alignment value, as shown in Algorithm 1.

Algorithm 1 A recursive algorithm to calculate the optimal global-sequence-alignment value
Input: sequences S1[1...i],S2[1... j]; element similarity function !

Ouput: optimal global-sequence-alignment value V (i, j)
1: procedure GSA
2: if |S1| == 0 and |S2| == 0 then
3: return 0
4: else if |T| == 0 then
5: return GSA(S1[1...(i°1)], S2) + !(S1[i], ?)
6: else if |S| == 0 then
7: return GSA(S1, S2[1...(i°1)]) + !(?, S2[i])
8: else
9: return

10: max(GSA(S1[1...(i°1)], S2[1...( j°1)]) + !(S1[i], S2[ j]),
11: GSA(S1[1...(i°1)], S2[1... j]) + !(S1[i], ?),
12: GSA(S1[1...i], S2[1...( j°1)]) + !(?, S2[ j]))
13: end if
14: end procedure

The recursive algorithm is intuitive, yet inefficient. The execution of the above algorithm
forms a three-way tree, where each node represents one invocation of the recursive function GSA.
Therefore, its complexity is proportional to the size of the tree, which is exponential in the size of
the longer sequence, i.e. O(3max(|S1|, |S2|)).

To optimise the above algorithm, we can apply dynamic programming [25]. Indeed, the
problem with Algorithm 1 is that it repeatedly recalculates intermediate results (i.e. V (i, j) where
0 ∑ i < |S1|,0 ∑ j < |S2| ) during the execution. If we store the intermediate results and reuse
them later as shown in Algorithm 2, which is essential idea of dynamic programming, it could
greatly improve the performance.
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In Algorithm 2, we create a matrix dpm of size (|S1|+1)£(|S2|+1) to hold all the intermediate
results as well as the final result. Each element dpm[i][ j] corresponds to an optimal prefix
alignment value V (i, j), i.e. the optimal value of the global alignment between the substrings
S1[1...i] and S2[1... j].

Algorithm 2 Calculate the optimal global-sequence-alignment value by dynamic programming
Input: sequences S1[1...i],S2[1... j]; element similarity function !

Ouput: optimal global-sequence-alignment value V (i, j)
1: procedure GSA_dp
2: // creates a matrix with size (|S1|+1)£ (|S2|+1)
3: dpm √make_matrix(|S1|+1, |S2|+1)
4:
5: // computes the Formula: V (0,0)= 0
6: dpm[0][0] √ 0
7:
8: // computes the Formula: V (i,0)=V (i°1,0) + !(S1[i], ?)
9: for i = 1! |S1| do

10: dpm[i][0] √ dpm[i°1][0] + !(S1[i], ?)
11: end for
12:
13: // computes the Formula: V (0, j)=V (0, j°1) + !(?, S2[ j])
14: for j = 1! |S2| do
15: dpm[0][j] √ dpm[0][ j°1] + !(?, S2[ j])
16: end for
17:
18: // computes the Formula: V (0, j)= max(V (i°1, j°1) + !(S1[i], S2[ j]),
19: // V (i°1,0) + !(S1[i], ?),
20: // V (0, j°1) + !(?, S2[ j]))
21: for i = 1! |S1| do
22: for j = 1! |S2| do
23: dpm[i][j] √max (
24: dpm[i°1][ j°1] + !(S1[i],S2[ j]),
25: dpm[i°1][ j] + !(S1[i],?),
26: dpm[i][ j°1] + !(?,S2[ j]))
27: end for
28: end for
29:
30: return dpm[|S1|][|S2|]
31: end procedure

Through dynamic programming, the complexity of the Algorithm 2 reduces to be polynomial
in the size of the input sequences. Overall, the entire algorithm is composed of two simple loops
and one nested loop. The computation of the nest loop between the lines 21 and 28 dominates
the algorithm, whose task is to populate values in the matrix dpm with (|S1|£ |S2|) iterations.
Therefore, its complexity is O(|S1|§ |S2|), where |S1| and |S2| are the sizes of the input sequences.
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2.3.3 Example

We now demonstrate how the global sequence alignment Algorithm 2 works on an example.
Given the same input sequences (S1 = ACGUCG and S2 =UUCCAAG) and the same similarity
function (!) as in Figure 2.3, the values of the matrix dpm after running Algorithm 2 are
shown in Figure 2.4. The algorithm fills the values one by one from top to bottom and from
left to right. For each cell dpm[i][ j] in the matrix, the algorithm looks at its neighbouring
elements in three directions (i.e. up, left and up-left), in order to derive its value V (i, j). The
logic corresponds to the statements between line 21 and 28 in Algorithm 2. For example, for
the cell dpm[2][4] (marked in a box ), its neighbours in the up, left and up-left directions are
respectively dpm[1][4]=°1, dpm[2][3]=°3 and dpm[1][3]=°3. To obtain the value for dpm[2][4],
there are three candidate alignments to evaluate. The first candidate is to align the element
S2[2]=U with a bottom ? element and the preceding substring S2[1...1]=U with the substring
S1[1...4]= ACGU . The resulting value is dpm[1][4]+!(?,S2[2])=°1°1=°2. The remaining two
candidates are from the left direction dpm[2][3]+!(S1[4],?)=°3°1=°4 and the up-left direction
dpm[1][3]+!(S1[4],S2[2])=°3+2=°1. As a result, the optimal value for dpm[2][4] is -1, which
results from aligning the elements S1[4] and S2[2], and the substrings S1[1...3] and S2[1...1].
Finally, at the end of the Algorithm 2, we get the optimal value of the global alignment between
the two sequences S1[1...6] and S2[1...7], which is stored at the bottom-right cell dpm[7][6].

Specially, the cells that lie at the upper and left edges of the matrix have only one relevant
neighbour to evaluate, except for the starting point dpm[0][0] whose value is predefined (i.e. 0).
The values at the upper edge (the first column dpm[§][0]) are the results of aligning each prefix
cS1 with a sequence of gaps, and likewise the values at the left edge (the first row dpm[0][§]) are
the results of aligning each prefix cS2 with a sequence of gaps.

i 0 1 2 3 4 5 6
j A C G U C G
0 0 °1 °2 °3 °4 °5 °6
1 U °1 °1 °2 °3 °1 °2 °3
2 U °2 °2 °2 °3 °1 °2 °3
3 C °3 °3 0 °1 °2 1 0
4 C °4 °4 °1 °1 °2 0 0
5 A °5 °2 °2 °2 °2 °1 °1
6 A °6 °3 °3 °3 °3 °2 °2
7 G °7 °4 °4 °1 °2 °3 0

Figure 2.4: The layout of the matrix dpm in the dynamic programming Algorithm 2, when the
input are S1 = ACGUCG and S2 =UUCCAAG

From the populated matrix dpm, we can extract the optimal global sequence alignments,
in addition to the optimal value. Starting from the optimal value at the bottom-right, we trace
backwards towards the starting point dpm[0][0]. Along the way, we select the neighbour that
helps to yield the value of the current cell, as the next step in the trace. For instance, at the cell
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dpm[2][4], we can infer that it must be the neighbouring cell dpm[1][3] that actually contributes
to dpm[2][4], based on the previous formulas. In certain cases, two or three neighbours might
yield the same value for the current cell, e.g. dpm[5][5], dpm[4][4] and dpm[3][1], etc. We then
can choose any of them as the next step. This implies that there might be more than one
alignment that yield the same optimal value. The example given in Figure 2.3 is actually one of
the possible optimal global alignments, with the resulting sequences as S0

1 = ACGU?C??G and
S0

2 =??UUCCAAG. We mark the trace to obtain this optimal global alignment in both bold
and red in Figure 2.4.

2.3.4 Local Sequence Alignment Algorithm

In this section, we illustrate how to obtain an optimal local sequence alignment, starting from a
definition as follows:

Definition 2.21 (Optimal Postfix Alignment Value). Given two sequences S1 and S2, and a
specific sequence similarity function ≠, we define the optimal postfix alignment value eV (i, j) 2R
(1∑ i ∑ |S1|)^ (1∑ j ∑ |S2|), as the value of the optimal global sequence alignment among all the
postfixes that are derived from the substrings cS1 = S1[1...i] and cS2 = S2[1... j].

Similarly to the problem of finding the optimal global sequence alignment, the problem
of finding the optimal local sequence alignment between two sequences S1 and S2 reduces to
calculating the optimal postfix alignment value for all postfix pairs that are derived from the
prefix pairs of the input sequences S1 and S2.

As a reminder, the goal of optimal local sequence alignment is to find the best pair of substrings
that give the maximal similarity value (see Definition 2.19). To enumerate all possible substring
pairs between two sequences S1,S2, we first enumerate all prefix pairs between S1 and S2,
and then for each prefix pair we enumerate all the postfix pairs. Therefore, the optimal local
sequence alignment value is the maximal value among all the optimal postfix alignment values
max( eV (i, j)) where (1 ∑ i ∑ |S1|)^ (1 ∑ j ∑ |S2|). The value of eV can be calculated in a recursive
manner, following the formulas below:

!(x,?)< 0 !(?, x)< 0 !(x, x)> 0 x 6=?(2.5)

eV (i,0) = 0(2.6)

eV (0, j) = 0(2.7)

eV (i, j) = max( 0,(2.8)

eV (i°1, j°1) + !(S1[i],S2[ j]),
eV (i°1, j) + !(S1[i],?),

eV (i, j°1) + !(?,S2[ j]))
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1. Formula 5.5 defines some constraints on the similarity function ! to make sure that the
function is reasonable: I). aligning a non-bottom element with a bottom element has a
negative similarity value, since they are dissimilar. II). aligning two identical non-bottom
elements has a positive similarity value.

2. Formulas 5.6 and 5.7 state that the optimal postfix alignment value between an empty
sequence and any other sequence is zero, where the resulting alignment is empty. All other
alignments, which involve some gap matches, have a negative value, based on the Formula
5.5.

3. Formula 5.8 says that in order to obtain eV (i, j), one should take the maximal value among
the four possible local sequence alignments: I). an empty alignment, i.e. aligning nothing
from the sequences. II). aligning the elements S1[i] with S2[ j], then aligning the rest of the
sequences (i.e. S1[1...(i°1)],S2[1...( j°1)]). III). aligning the element S1[i] with a gap ?,
then the rest of the sequences, i.e. eV (i°1, j). IV). aligning the element S2[ j] with a gap ?,
then the rest of the sequences, i.e. eV (i, j°1).

Given the above rules, we can calculate eV (i, j) recursively for a given input, starting from
eV (0,0). We give an example below in Figure 2.5 to show how it works on the same input as in
Figure 2.4.

i 0 1 2 3 4 5 6
j A C G U C G
0 0 0 0 0 0 0 0
1 U 0 0 0 0 2 1 0
2 U 0 0 0 0 2 1 0
3 C 0 0 2 1 1 4 3
4 C 0 0 2 1 0 3 3
5 A 0 2 1 1 0 2 2
6 A 0 2 1 0 0 1 1
7 G 0 1 1 3 2 1 3

Figure 2.5: The matrix of eV (i, j), when the input sequences are S1 = ACGUCG and S2 =
UUCCAAG

Figure 2.5 shows a matrix of values, referred as M, where each cell M[i][ j] represents an opti-
mal postfix alignment value eV (i, j), with the input sequences S1 = ACGUCG, S2 =UUCCAAG,
and the same similarity function ! as used in Figure 2.4 (i.e. !(match)= 2; !(mismatch)= °1;
!(gap_match)=°1). The optimal local sequence alignment value between S1 and S2 is the maxi-
mal value within the matrix M, which in the example is located in M[3][5] (marked in a box ).
The position of the optimal local sequence alignment value is unknown before the calculation,
which is different from the optimal global sequence alignment value that is always located in the
bottom-right corner of the matrix.

27



CHAPTER 2. BACKGROUND

Starting from M[3][5] and following the trace (marked in bold and red), we can reconstruct
the optimal local sequence alignment by re-applying the Formulas 5.6 ~5.8. The result is S0

1 =UC,
S0

2 =UC, which is different from the optimal global sequence alignment (i.e. S0
1 = ACGU?C??G;

S0
2 =??UUCCAAG). The optimal local sequence alignment usually can obtain a higher similar-

ity value (4 VS. 0), compared to its optimal global sequence alignment, since it is not obliged to
align the entire two sequences, where the dissimilar parts between them brings some penalty to
the similarity value.

Other than the optimal local sequence alignment, one can also use the matrix M to find a list
of sub-optimal local sequence alignments, which correspond to highly similar parts of the two
sequences. For instance, starting from the second largest value in the matrix M, i.e. 3, we find a
list of sub-optimal local sequence alignments, such as S0

1 = ACG; S0
2 = AAG that are derived from

the cell M[7][3]= 3, and S0
1 =UCG; S0

2 =UCC starting from M[4][6]= 3. This insight is applied
in the usage scenario of sequence alignment in biology, as we mentioned in the introduction of
sequence alignment.

2.3.5 Applications of Sequence Alignments

We now discuss the origin and the applications about the concept of sequence alignment. Global
sequence alignment was first proposed in 1970 by Needleman & Wunsch [100] in biology, in order
to search for similarities in the amino acid sequence of two proteins. From the similarities of
amino acid sequences, it is then possible to determine whether significant homology of function
exists between the proteins. The homology implies the possible evolution of proteins. Later in
1981, Smith & Waterman [39] introduced the problem of local sequence alignment in biology.
Both alignments are implemented based on the systematic study of dynamic programming by
Belleman [25] in 1957. Finally, a number of authors have studied the question of how to construct
a good scoring function for sequence comparison, to meet the matching criteria of different
scenarios [11, 68].

Approximate string matching is another form of sequence alignment, which is the technique of
finding strings that matches a pattern approximately (rather than exactly). Formally, approximate
string matching can be defined as: Given a pattern string P = p1 p2...pm and a text string T =
t1t2...tn, find a substring Ti, j = ti ti+1...t j in T, which, of all substrings of T, has the smallest edit
distance to the pattern P. One common instance of edit distance, called Levenshtein distance [82],
is the minimal number of single-character edits (i.e. insertion, deletion or substitution) required
to change one string into the other. Approximate string matching with Levenshtein distance as
measure can reduce into local sequence alignment, since the deletion and insertion operations of
string matching are equivalent to gap matches in sequence alignment and the substitution is
equivalent to a mismatch.

By changing the metrics of edit distance, we can transform approximate string matching
into several other interesting problems. For instance, if we only allow insertion and deletion, not
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substitution, then we can apply approximate string matching to solve the problem of longest
common subsequence (LCS) [55], which is to find the longest common subsequence of all sequences
in a set of sequences (often just two). If we allow only the substitution operation, the edit distance
becomes Hamming distance [50] that is the minimum number of substitutions required to
change one string into the other. Hamming distance was initially used to model the bit flipping
error in telecommunication. It was later applied in several disciplines including information
theory, code theory and cryptography. As another instance of edit distance, Damerau-Levenshtein
distance [34] extends Levenshtein distance, to allow a transposition of two adjacent characters
(i.e. switching positions), in addition to insertion, deletion and substitution. Since the above four
operations correspond to more than 80% of human misspellings, as observed by Damerau [34],
Demarau-Levenshtein distance is used to detect and correct spelling errors.

Sequence alignment has also been applied in software engineering, especially on mining
software repositories (i.e. collection of data about software artifacts, such as source code, or bug
reports, etc.). Global sequence alignment itself presents a method to measure the similarity
between two sequences, which can serve as a similarity function during the data clustering. Han
et al. [51] applied sequence alignment on call traces (i.e. sequences of function calls) to cluster
error reports that might originate from certain performance related bugs. Lo et al. [90] mined
program execution traces, which are sequences of state transitions generated from the Finite
State Automata that are derived from the source code. They clustered the program execution
traces in order to infer API specifications automatically. Ramanathan et al. [107] studied another
form of program execution traces that are logs generated from the execution of instrumented
binaries. They aimed to identify the longest common sequence between traces generated from
two revisions of program, to allow developers to perform impact analysis more accurately during
program testing and software maintenance.

2.4 Summary

In this chapter, we have covered some background knowledge about this thesis. The main goal of
this thesis is to help Linux kernel developers better debug the faults that are encountered by
users. Therefore, overall, our work falls into the domain of software debugging. Particularly,
we focus on the scenario of error report debugging, which, in the case of Linux kernel debugging,
is more common and practical than the bug reproduction scenario. We have given some detailed
reviews on each of the above subjects.

In this thesis, we proposed a technique to pinpoint the offending line from a kernel oops,
which gives Linux kernel developers an important clue to proceed oops debugging. Thus, our
work can be further classified as one of the techniques of software fault localization which is
one of the most critical activities that are involved in software debugging. We then discussed
some state-of-the-art techniques in this domain, including spectrum-based fault localization and
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program slicing.
The technique we have designed to pinpoint the offending line is inspired by the sequence

alignment algorithms which were initially proposed in bioinformatics domain. To give more
insight about sequence alignment algorithms, we give some background knowledge about se-
quence alignment in this chapter. Particularly, we presented the definitions and the algorithms
for the global and local sequence alignments, and their applications in other domains.
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ALL ABOUT KERNEL OOPS

Kernel oopses collected from real world deployments possess knowledge that is of interest
to Linux kernel developers. If extracted, the knowledge can help developers better
understand the issues that trigger kernel oopses. To this end, in this chapter, we perform

a study of over 187,000 Linux kernel oopses, collected in the oops repository (oops.kernel.org)
maintained by Red Hat between September 2012 and April 2013. We consider the overall
features of the data, the degree to which the data reflects other information about Linux, and the
interpretation of features that may be relevant to reliability. We find that the data correlates well
with other information about Linux, but that it suffers from duplicate and missing information.
We furthermore identify some potential pitfalls in studying features such as the sources of
common faults and common failing applications.

The rest of this chapter is organized as follows. Section 3.1 illustrates the key features
of a kernel oops, and the workflow around the generation and transmission of a kernel oops.
Section 3.2 gives an overview of the data and studies its internal consistency, focusing on the
possibility of duplicate or missing oopses. Section 3.3 compares properties of the oopses to existing
information about the Linux kernel, including versions and their release date, distributions
and their associated versions, hardware architectures, and the most error-prone services. Then,
Section 3.4 studies some features of the data that can be relevant to understanding kernel
reliability, including the frequency of different error types, failing functions, reasons for entering
the kernel, and the impact of previous kernel events. Section 3.5 then describes the threats to the
validity of our study. Finally, we conclude in Section 3.6.
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3.1 Background

We first present the key features of kernel oopses, the code that triggers their generation, and
the workflow that results in their being submitted to the repository maintained by Red Hat.

3.1.1 Key Features of a Kernel Oops

A kernel oops [123] consists of the information logged by the Linux kernel when a crash or
warning occurs. It is composed mostly of attribute : value pairs, in which each value records a
specific piece of information about certain attribute of the system. The format and content of a
kernel oops depend somewhat on the cause of the oops and the architecture of the victim machine.
We focus on the x86 architecture (both 32-bit and 64-bit), which currently represents almost all
of the oopses found in the kernel oops repository.

Figure. 3.1 shows a (slightly simplified) sample kernel oops1 from the repository. This example
illustrates a typical kernel oops generated by x86 code in the case of a runtime exception. Some
values are omitted (marked with ...) for brevity. We highlight the key features, and explain them
as follows:

Oops description A kernel oops begins with a description of the cause of the oops. Our oops
was caused by NULL-pointer dereference (line 1).

Error site The IP (Instruction Pointer) field indicates the name of the function being executed
at the time of the oops, the binary code offset at which the oops occurred in that function, and the
binary code size of that function. This information is also indicated by the value of the registers
EIP for the 32-bit x86 architecture and RIP for the 64-bit x86 architecture. Lines 2, 9 and 26 each
show that in our example oops, the error occurred within the function anon_vma_link.

Die counter The Oops field includes information about the die counter, between square brack-
ets, which indicates how many serious errors have occurred since the system was booted. Our
oops is the third such error (line 3).

Process name The comm field indicates the name of the process being executed when the
error occurred. Our oops was generated during the execution of gnome-panel (line 13).

Taint The Tainted field gives a sequence of characters, amounting to a bitmap, recording
whether some events have previously occurred in the kernel execution. In our example, the
Tainted field on line 7 contains ‘G’ indicating that no proprietary module has been loaded into
the kernel and ‘D’ indicating that a kernel oops has previously occurred. The latter is consistent
with the value of the die counter.

1ID in the kernel oops repository maintained by Red Hat: 5095a67440bfca031f0007e3
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1 BUG: unable to handle kernel NULL pointer dereference at (null)
2 IP: [<c10a1ca1>] anon_vma_link+0x24/0x2b *pde = 00000000
3 Oops: 0002 [#3] SMP
4 last sysfs file: /sys/devices/LNXSYSTM: 00/LNXSYBUS:00 /PNP0C0A:

00/power_supply/BAT1/charge_full
5 Modules linked in: rndis_wlan rndis_host cdc_ether...
6 [last unloaded: scsi_wait_scan]
7 Pid: 2452, comm: gnome-panel Tainted: G D (2.6.32-5-6 #1) Aspire 5920
8 EIP: 0060: [<c10a1ca1>] EFLAGS: 00010246 CPU: 0
9 EIP is at anon_vma_link+0x24/0x2b
10 EAX: f6f84404 EBX: f6f84400 ECX: eb4aa5b4 EDX: 00000000
11 ESI: eb4aa580 EDI: eb4aa5d8 EBP: ef76a5d8 ESP: f61c3eb8
12 DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068
13 Process gnome-panel (pid: 2452, ti=f61c2000 task=ef4a1100 task.ti=f61c2000)
14 Stack:
15 00000006 ef76a630 c102efe8 d42a7a40 00000000 00000004...
16 Call Trace:
17 [<c102efe8>] ? dup_mm+0x1d5/0x389
18 [<c102fb0c>] ? copy_process+0x91b/0xf2d
19 [<c1030258>] ? do_fork+0x13a/0x2bc
20 [<c10b1f41>] ? fd_install+0x1e/0x3c
21 [<c10b9504>] ? do_pipe_flags+0x8a/0xc8
22 [<c113c603>] ? copy_to_user+0x29/0xf8
23 [<c1001dae>] ? sys_clone+0x21/0x27
24 [<c10030fb>] ? sysenter_do_call+0x12/0x28
25 Code: 02 31 db 89 d8 5b c3 56 89 c6 53 8b 58 3c 85 db...
26 EIP: [<c10a1ca1>] anon_vma_link+0x24/0x2b SS: ESP 0068: f61c3eb8
27 CR2: 0000000000000000
28 ---[ end trace 4dbb248fc567ac92 ]---

Figure 3.1: A sample kernel oops

Version Following the taint bits, the Tainted field indicates the build version of the Linux
kernel and possibly the machine model, defined by the vendor. Line 7 shows that our oops was
generated by Linux version 2.6.32.

Call trace The call trace contains the list of return pointers into the sequence of nested function
calls that led to the oops. Lines 16-24 show the call trace of our oops.

Oops ID A kernel oops may end with a string of the form –-[ end trace XXXX ]–-, where
XXXX represents the identifier associated with the kernel oops. The identifier (oops_id) is repre-
sented as a 16-character hexadecimal string. It represents the current value of a global variable
that is initialized to a 64-bit random number on the first oops within a given boot and is then
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Table 3.1: The information found in common kinds of oopses

oops type id version taint die cnt cmd stack top call trace general cause
CNTXT_BLOCK £ £ £ £ blocking call in a non-blocking context
CNTXT_SCHED £ £ £ £ call schedule in an atomic context
CNTXT_CALL £ £ £ £ func call violates context dependent rules

PT_MAP £ £ £ £ invalid entry in the page mapping table
PT_STATE £ £ £ £ inconsistent or invalid page table
BUG_ON £ £ £ £ £ £ £ assertion failure
INV_PTR £ £ £ £ £ £ £ null pointer/bad page dereference

WARN £ £ £ £ £ £ warning
SOFT_LOCK £ £ £ £ £ one CPU is stuck

GPF £ £ £ £ £ £ £ violation of hardware protection mechanisms

incremented each time an oops containing an oops id is generated. Line 28 shows the oops id of
our oops.

3.1.2 Types of Kernel Oopses

While many of the kernel oopses in the Red Hat repository contain the above features, this is not
always the case. Indeed, a kernel oops is generated by ad-hoc print statements in the kernel code.
Thus, the format of an oops can vary for each error type. Furthermore, because oopses include
architecture-specific information, such as register names and memory addresses, the format of a
kernel oops can vary by architecture.

Most of the text in the oops shown in Table 3.1 is generated by the function __die, shown
in Figure. 3.2. This function is used for most severe errors. In __die, most of the work is
done by the call to show_registers (line 7), which prints the registers but also prints other
information, including the call trace. The function __die, however, is not used for all kinds of
errors. For example, when the memory manager detects a page containing invalid flags, it uses
bad_page (Figure. 3.3) to generate an oops. bad_page does not use show_registers. Instead it
uses dump_stack, which prints the call trace, but not the register information. Finally, a further
variation in the oops structure is introduced by the fact that generation of the call trace is
ultimately controlled by a configuration flag. Table 3.1 lists a collection of common x86 error
types and the features that may be included in the corresponding oopses.

In addition to __die and to ad hoc oops generating functions, such as bad_page, the Linux
kernel also provides the oops-generating macros BUG and WARN, and variants, for generating bug
and warning messages, respectively. These macros are executed for diverse reasons, but generate
their oopses in a fixed format. We designate oopses generated by the WARN macros as warnings
and all others as bugs.
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1 int __kprobes __die(const char ∗str, struct pt_regs ∗regs, long err)
2 {
3 unsigned short ss;
4 unsigned long sp;
5 printk(KERN_EMERG "%s: %04lx [#%d] ", str, err&0xffff, ++die_counter);
6 printk("SMP \n");
7

8 if (notify_die(DIE_OOPS, str, regs, err, ...) == NOTIFY_STOP)
9 return 1;

10 show_registers(regs);
11 ... // initialize ss, sp

12 printk(KERN_EMERG "EIP: [<%08lx>] ", regs°>ip);
13 print_symbol("%s", regs°>ip);
14 printk(" SS:ESP %04x:%08lx\n", ss, sp);
15 return 0;
16 }

Figure 3.2: Function __die (simplified), called on many kinds of system faults

1 static void bad_page(struct page ∗page)
2 {
3 ... // code to limit the frequency of reports

4 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
5 current°>comm, page_to_pfn(page));
6 printk(KERN_ALERT
7 "page:%p flags:%p count:%d mapcount:%d
8 mapping:%p index:%lx\n",
9 page, (void ∗)page°>flags, page_count(page),

10 page_mapcount(page), page°>mapping, page°>index);
11 dump_stack();
12 out:
13 __ClearPageBuddy(page);
14 add_taint(TAINT_BAD_PAGE);
15 }

Figure 3.3: Function bad_page (simplified), called on detecting a bad page

3.1.3 Workflow around Kernel Oopses

The life cycle of a kernel oops is composed of three phases: generation, collection, and submission.
Our understanding of this workflow is based on our study of the related tools and on our
experiments in which we generated an oops and observed its path to the repository.

The Linux kernel itself is in charge of generation, which is ultimately performed through the
kernel printing function printk. This function writes to the kernel message buffer (/proc/kmsg).
The generated message is then asynchronously fetched by the kernel service ‘klogd’, which
outputs the contents of the buffer to the system logging files. This strategy implies that some
oops messages may be missed or corrupted, if e.g., the message buffer overflows, or if the kernel
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crashes before the message is picked up by klogd.

Collection and submission are then taken care of by tool sets that are bundled with various
distributions of Linux. Fedora provides ABRT (the Automatic Bug Reporting Tool) [2], which
collects C/C++ and Python application crash reports, and as well as kernel oopses. ABRT consists
of several services, including abrtd (daemon to detect crashes), abrt-gui and abrt-applet (GUI
for the management of error reports), and abrt-oops (kernel oops parser). Debian and Ubuntu
provide kerneloops [3], which is dedicated to kernel oopses. kerneloops includes the kerneloops
daemon, kerneloops-applet and kerneloops-submit, to collect kernel oopses, to ask for permission
to submit them, and to submit them, respectively. Different toolsets have different strategies for
storing, parsing, and submitting kernel oopses. For example, ABRT truncates the end marker of
a kernel oops including the oops_id, while kerneloops preserves this information.

The kernel oops toolsets submit oopses to both the public repository oops.kernel.org [12]
and the corresponding repository for each Linux distribution. ABRT first parses kernel oopses
from system logging files, stores them in its local file system, and then asks the user whether
to submit them. It keeps the parsed kernel oopses persistent and hashes the content to detect
duplicates. Kerneloops keeps oopses in memory after parsing, and detects duplicates only within
these known oopses. Kerneloops thus risks submitting duplicate oopses if it is restarted. We have
reproduced this behavior.

3.2 Properties of the Raw Data

We now study the data in the Red Hat kernel oops repository. We first give an overview of the
sources of these kernel oopses, in terms of the associated Linux kernel version and the associated
Linux distribution. We then consider the possibility of duplicate or missing oopses.

Oops origins As shown in Table 3.1, most oops kinds contain architecture-specific information,
such as register names and memory addresses. We consider only architecture-specific oopses for
the x86 processor family, including both 32-bit and 64-bit x86 architectures, as well as all non
architecture specific oopses. This amounts to over 99% of the available 187,342 oopses.

Figure. 3.4 shows the number of reports for each Linux kernel version represented in the
repository. The version information is taken from the Tainted field, as described in Section 3.1.1.
The Linux kernel is made available as a series of subreleases, starting with a series of “rc” (release
candidate) versions before the primary release, followed by the release itself, followed by a series
of bug-fixing releases, having increasing minor release numbers (e.g., 2.6.32.14 or 3.6.4). We do
not distinguish between these subreleases. For 7% of the reports, there is no version information.
These reports are typically associated with oopses for which the entire report is a single line of
text indicating the problem.
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Figure 3.4: Number of reports per Linux version (log scale) and release year
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Figure 3.5: Number of reports per Linux distribution and reporting tool used

Figure. 3.5 shows the number of reports per Linux distribution, with the Fedora information
broken down into the individual Fedora releases. Oopses contain no specific field for distribution
information. Instead, we try to deduce the distribution from the version information. Some
distributions, such as Fedora or Ubuntu, include a string indicating the distribution explicitly,
with Fedora also including the number of the Fedora release. In other cases, such as Debian and
Suse, we have used other information, such as filename paths or comments related to the version
name found on the Internet. We find that most reports are for Debian or Fedora. This is likely
due to the support in these distributions for kernel oops reporting, via the kerneloops and ABRT
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utilities, rather than the popularity or reliability of the distributions themselves.
The number of reports from Fedora varies widely by release, with Fedora 11, 17 and 18 having

the most reports. The number of reports seems to be mainly affected by the strategy taken by
Fedora for collecting and transmitting the reports. For example, whether the oops reporting tool
is installed by default, and whether it asks the user for permission to send a report or whether
reports are sent automatically. Red Hat appears to have experimented with sending more and
more reports automatically in Fedora 17 and 18, i.e., once the new repository was available.
Nevertheless, this effort seems to have been rolled back at the end of the considered period, due
to an outage of the repository between late February and early March 2013.

In some cases, the version information contains only the number of the Linux version, with
no added distribution information. In these cases, we consider that the kernel is not associated
with a particular distribution, and instead has been specifically compiled and installed by the
user from the code at the Linux kernel website, kernel.org. Such oopses may come from more
advanced users.

Duplicate oopses Ideally, each error that occurs in the system would correspond to exactly
one oops in the repository. In practice, however, we find many probable duplicates.

Concretely, we have observed the following kinds of probable duplicates: i. Identical reports.
We detect these by using the SHA1 hash of each original raw message. ii. Reports that are
identical modulo fragments of kernel time stamps or log level markers. Such text is normally
removed by the parsers of the kernel oops tool sets. For duplicate detection, we remove these
timestamps before computing the SHA1 hash. iii. Finally, a prefix or suffix of a report may be
missing. For duplicate detection, we parse the reports, and consider to be duplicates reports for
which the only difference as compared to another oops is that some fields are missing. We refer to
such reports as being subsumed.

Figure. 3.6 shows the percentage of reports that may be duplicates of another oops for
each Linux distribution, considering those found to be identical by the SHA1 hash and by
subsumption. Overall, we observe a rate of duplicates of 40%. Further, in Figure. 3.7, we look
closely at the duplicates from one particular Linux distribution, Fedora, which is one of the main
contributors to the data in the repository. We observe that, although Fedora has used ABRT,
having a sophisticated duplicate detection mechanism, since Fedora 12, many of the Fedora
reports, particularly the warnings, appear to be duplicates. Recall, however, that ABRT discards
the oops id, so we are missing a crucial piece of information that could distinguish reports. Figure.
3.8 shows the percentage of oopses with no oops id, for versions having at least 1000 reports.
Finally, Debian has the largest number of duplicates, at over 10,000. However, it has the largest
number of reports overall (Figure. 3.5), and so this number makes just over 12% of its total.

In summary, Linux distributions that are supposed to result in few duplicates, seem to result
in many, although the oops id is missing so we cannot be sure. And Linux distributions that
are supposed to be likely to result in duplicates do result in duplicates, but at a relatively low
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Figure 3.6: Duplicate reports per Linux distribution
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Figure 3.7: Duplicate reports per Fedora release
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Figure 3.8: Percentage of reports without oops ids per Linux version. Version with one star have
at least 1000 reports, while versions with two stars have at least 10,000 reports. This convention
is followed in subsequent figures.
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rate. Thus, subsequently, we consider all reports, whether or not they appear to be duplicates.
This strategy may magnify the importance of some kinds of oopses, in particular warnings,
which are the most common possibly duplicated reports, but it does accurately reflect the kind of
information that is provided to the user of the repository.

Missing oopses It is intrinsically difficult to accurately count the number of missing reports,
because such reports are not present in the repository. Nevertheless, we can estimate their
number from the various counters and historical information that are found in some kinds of
reports (see Table 3.1). Specifically, we consider i. the oops id, ii. the die counter, and iii. the
taint. The oops id is a random number generated on the first oops id generating oops on each boot
and incremented for each subsequent such oops. Because the initial value is random, gaps may
indicate either missing reports or the starting value for a new boot. Thus, the oops id itself is not
a reliable means of detecting missing reports. The die counter is initially 0, and is incremented
and then printed on several kinds of oopses. When the die counter is greater than 1, there should
be a preceding oops in the same boot with the preceding die counter value. Any such oops id that
is not present represents a missing oops. Finally, the taint word in an oops indicates whether
there is at least one previous bug or warning within the current boot. For a report with either
‘D’ (die) or ‘W’ (warn) taint and with an oops id, the immediately previous oops id should also be
present. Again, any such oops id that is not present represent a missing report.

Over all of the versions, we find 7852 oopses where there is an oops id and the die counter
reaches a value greater than 1, and 51% of these where the expected previous die counter is
missing. Furthermore, we find 37265 oopses where there is an oops id and the taint indicates
a previous bug or warning, and 47% of these where the expected previous oops id is missing.
In each case, we require that the version information be present and identical, to try to avoid
confusion between oops ids that are identical but unrelated. These results consistently show a
high rate of missing oopses in cases where multiple oopses occur within a single boot.

While our results suggest a high rate of missing oopses, the validity of this conclusion is
called into question by the small number of oopses taken into account: 4% in the die counter
case and 20% in the taint case. The scope of our analysis is indeed constrained by the need to
take into account the oops id. As we have noted, Fedora’s ABRT, used starting with Fedora 12,
removes the oops id from a kernel oops. While only 0.2% of the reports have a die counter greater
than 1 but no oops id, 11% have taint indicating a previous bug or warning but no oops id. Thus,
it is impossible to assess missing oopses in these cases. Nevertheless, based on the ratio of the
number of oopses missing according to the taint information to the total number of oopses plus
the missing number, it appears that overall, we are missing at least 9% of the oopses.

The oops id In principle, the problem of detecting duplicate and missing reports could be
resolved if the kernel would associate a unique identifier with each boot, and a counter, analogous
to the die counter, that is incremented on each oops. A step in this direction is already present
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with the oops id. Nevertheless, some observations about the oops id reveal challenges that can be
encountered in implementing such a scheme.

To be useful, the proposed boot identifier must be unique. We have observed that the current
oops id is not always unique. In the extreme, the oops ids 4eaa2a86a8e2da22, a7919e7f17c0a727,
and 0000000000000002 occur with 35, 27, and 21 different version strings, respectively. Overall,
we have 28 such non-unique oops ids. Some may be due to corruption of the oops id counter. Others
may be due to incrementing such a corrupted value; for instance, we also find 0000000000000003,
etc., up to 0000000000000008, in decreasing amounts. Still it is possible that some of these
duplicated oops ids result from weaknesses in the random number generator.

Starting in Linux 3.3,2 the implementation of the Linux random number generator was
improved to take advantage of hardware-level random number generation facilities, if available.
Such facilities are available for the x86 architecture. Indeed, after Linux 3.3, our only duplicates,
taking into account the version string, are 0000000000000002 and nearby oops ids, as well as
a7919e7f17c0a727. These may thus represent corrupted oops id values. On the other hand, as
shown in Figure. 3.8, we also have relatively few oopses for those versions that contain oops ids.

Likewise, for the proposed counter to be useful, the process of incrementing it on each oops
must be well-defined. Currently, in the Linux kernel, neither the oops id nor the die counter is
incremented atomically, meaning that these computations are subject to race conditions. Indeed,
introducing locks could reduce the amount of information available, e.g., if the lock itself were to
become corrupted due to the error.

Finally, in the context of the repository, the boot id and counter have to be transmitted to the
repository reliably. This is not he case of recent Fedora oopses, where ABRT strips the oops id.

Stale pointer A kernel oops normally contains a call trace which lists the function invocation
trace to the crashing function. However, correctly using the call trace to find the caller of the
crashing function, could be tricky, and requires understanding the kernel call trace generation
process. As an optimization, the kernel is compiled such that the stack frames do not contain a
frame pointer. This optimization implies that the kernel is not able to unambiguously identify
return pointers on the stack. Instead, it scans the stack to find addresses that could correspond
to an address within a function. For each such address, it determines whether its position
corresponds to the expected offset from its stack base pointer register. If this property is not
satisfied, the pointer is referred to as stale and the name of the corresponding function is
annotated with a question mark ? in the call trace field of kernel oops. Stale pointers are common,
and may arise when function pointer arguments are passed via the stack or when the stack
contains uninitialized local variables whose locations coincide with the positions of previously
stored return pointers. It may also occur that the base pointer register does not correspond to
any of the stack positions containing return pointers, and thus the entire call trace is considered

2Kernel patch cf833d0b9937874b50ef2867c4e8badfd64948ce
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to be stale. The latter phenomenon is illustrated by the call trace in our sample kernel oops in
Figure. 3.1 (lines 17 to 24).

To address the issue of stale pointers, when consulting the call trace, we find the service
associated with the topmost non-stale pointer, if available. If there is no non-stale pointer, we fall
back on taking the function at the top of the call trace.

3.3 Correlation with External Information

To help establish the representativeness of the data in the kernel oops repository, we compare
the properties of the oops data to some independent observations about the Linux kernel. In this,
we study the kernel versions and Linux distributions associated with the oops reports, and the
architectures from which the reports originate.

Linux version. As shown in Figure. 3.4, we have at least 1000 reports from Linux kernel
versions ranging from 2.6.25, released in April 2008, to 3.8, released in February 2013. Four
versions, from Linux 3.6 to Linux 3.9, were released in the period covered by our study. For the
recent versions, we might expect that the number of reports would increase when the version is
released, then remain stable for the period in which it is the most recent version, and then finally
decrease when a new release appears. Earlier versions are typically used by users who have a
need for stability, rather than new functionality. We might expect the number of reports from
such versions to be fairly stable, but to decrease over a long period of time.

The top two graphs of Figure. 3.9 show the number of reports per day for the older versions
for which we have the most reports: 2.6.29, 2.6.30, 2.6.32, and 3.2. For these versions, the number
of reports per day is fairly stable, modulo a few spikes and periods in which there are no reports
at all. Excluding the days on which we have no reports, 2.6.29 has on average 39 reports per day,
2.6.30 has on average 32 reports per day, and 2.6.32 has on average 287 reports per day. In each
case the number of reports per day is relatively constant across the considered time period. These
results substantiate our hypothesis. However, for Linux 3.2, we have only 90 reports per day,
which is fewer than for Linux 2.6.32, even though Linux 3.2 is more recent. Thus, it appears to
be necessary to take into account other factors than just the age of the Linux version.

The bottom graph of Figure. 3.9 shows the number of reports per day for the recent versions
for which we have the most reports: 3.6 and 3.7. As expected, the number of reports for Linux 3.6
increases sharply in early November 2012, shortly after the release of Linux 3.6 at the end of
September 2012, and the number of Linux 3.6 reports starts to decline in late January 2013, as
the number of reports from Linux 3.7, which was released in December 2012, rises. Note that in
each case, reports start to appear in large numbers roughly one month following the release date.
This can be ascribed to the fact that users typically do not adopt each version as it is released, but
wait for the subsequent more stable subreleases, in which essential bug fixes have been applied.
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Figure 3.9: Prevalence of reports from selected Linux versions over time (versions for which there
are at least 5000 reports)

While versions 3.6 and 3.7 fit the expected pattern, we do not have the same pattern with
Linux 3.8, which was released in mid February 2013, well within the considered period. We have
very few reports for this version, typically 25 or fewer per day. Again, we conclude that other
factors must be involved.

Linux distribution. To better understand the reason for the number of reports per version,
we consider also the association of the various Linux versions with the various Linux distribu-
tions (e.g., Fedora, Debian, Ubuntu etc.). Indeed, most users of the Linux kernel use the kernel
provided with their Linux distribution, and upgrade the kernel as the distribution suggests to do
so.
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Figure 3.10: Prevalence of reports from different distributions for different versions, for which
there are at least 1000 reports (* referred to Figure 3.8)

Figure. 3.10 shows the prevalence of kernel oopses for each Linux kernel and for each Linux
distribution, for those versions for which we have at least 1000 reports. Most versions have
most reports from either Debian or Fedora, but not both. Reports from Linux 2.6.26, 2.6.32, and
3.2 are almost entirely from Debian. Linux 2.6.26 was the kernel of Debian 5.0, released in
2009, Linux 2.6.32 was the kernel of Debian 6.0, released in 2011, and Linux 3.2 is the kernel
of Debian 7.0, released in 2013. In particular, within the considered time period, Debian 6.0
was the current “stable” version, used by most Debian users, and Debian 7.0 was the current
“testing” version. This explains the constant, relatively high number of reports for Linux 2.6.32,
observed in Figure. 3.9, and the constant but lower number of reports for Linux 3.2. We expect
that the number of reports for Linux 3.2 will rise, now that it is used in the current Debian
“stable” version, as of May 2013.

As shown in Figure. 3.10, many of the versions not used by the Debian releases mostly
have reports from Fedora. Figure. 3.11 breaks down all of the versions for which we have any
report from Fedora by the rate of the various Fedora releases as compared to the number of
Fedora reports for that version. We find that the earliest Linux version associated with each
Fedora release in the oopses is always the one that was shipped with that Fedora release. For
instance, oopses from Fedora 9 appear with Linux 2.6.25, which is the default kernel of Fedora
9. Furthermore, we also see how the Linux kernel shipped with a Fedora release changes over
time, and then how one Fedora release is subsumed by the next one. Fedora 9 oopses occur with
Linux 2.6.25 through 2.6.27, at which point they are replaced by oopses from Fedora 10. 2.6.27 is
indeed the default kernel of Fedora 10. Thus, the initial appearance of oopses from one specific
version of Fedora distribution is always associated with the default Linux kernel version that is
shipped with the Fedora distribution. Furthermore, the association of Fedora distribution with
the Linux kernel version evolves over time, as also indicated in Figure. 3.11. For instance, Fedora
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Figure 3.11: Prevalence of reports from different Fedora distributions for different versions (all
versions for which there is at least one Fedora report are included)

11 initially was shipped with the Linux kernel version 2.6.29, its kernel then was upgraded to the
version 2.6.30. Later it skipped the version 2.6.31 and was upgraded with the version 2.6.32. One
can observe the similar trend with the Fedora 16, which started with the Linux kernel version
3.1 and stopped at the version 3.4.

Hardware architecture. Figure. 3.12 shows the number of bug and warning reports found
in the repository for the 32-bit and 64-bit x86 architectures. We determine the architecture by
the size of instruction addresses in the call trace and the values in the registers, whichever is
available. We furthermore only consider reports for which a version and error type are available,
representing 91% of the total number of reports. There are few reports for versions 2.6.18 and
3.9, and thus the information for these versions may not be representative.

We expect that the number of users of 32-bit architectures is declining, and thus there should
be fewer reports from such architectures for more recent kernels. Indeed, starting with version
2.6.36, the rate of reports from 32-bit machines is almost always much lower than the rate of
reports from 64-bit machines from versions prior to 2.6.36, particularly in terms of the rate
of reports that represent bugs. Most Linux x86 code is shared between both the 32 and 64-bit
architectures, and so this drop off is not likely to be due to an improvement in the quality of the
32-bit specific code. Thus, we conclude that the recent releases of Linux have fewer 32-bit reports
simply because the 32-bit architecture has fewer users.

3.4 Features Related to Kernel Reliability

We now consider how to correctly interpret various features of an oops that may be useful in
assessing kernel reliability.
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Figure 3.12: Prevalence of reports from 32 and 64 bit machines
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Figure 3.13: Prevalence of the 8 most common events (bugs or warnings)

Error types. Figure. 3.13 shows the frequency of various bugs and warnings, across the
various versions, for the oopses specifying a version. In every case, warnings (WARN) make up the
largest share of the oopses. Many of these warnings come from the same functions. Figure. 3.14
and 3.15 show that in some versions, a single function may be the source of over 90% of the
warnings, for either the 32-bit or 64-bit architecture. We furthermore observe that it is useful to
distinguish between these architectures, because some kinds of warnings that are prominent on
one architecture are less common or absent on the other. For example, the warning in default_-
send_IPI_mask_logical is common on the 32-bit architecture, but the function is not used on
the 64-bit architecture.
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Figure 3.14: Top 8 warning-generating functions, 32-bit architecture
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Figure 3.15: Top 8 warning-generating functions, 64-bit architecture
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Figure 3.16: Top 6 services containing invalid pointer references

Call trace top origin. Several works on Linux code have identified drivers as a main source of
faults, e.g., based on the results of static analysis [32, 103]. A kernel oops repository provides an
opportunity to determine whether drivers are the main source of errors encountered in practice.
We consider invalid pointer references (INV_PTR), a common kind of serious error (Figure. 3.13),
and study the service associated with each oops. We approximate the service as the top-level
subdirectory containing the definition of the function in which the invalid reference occurs.

Figure. 3.16 shows the top 6 services in which invalid pointer references occur. Additionally,
there are a number of cases where the service is unknown because the invalid reference occurs in
an external function, that is not part of the kernel source tree (unknown), and where the service is
unknown because the call to the function itself represents the invalid reference (bad address).

While driver functions do make up a large percentage of the functions in performing an invalid
pointer reference, such errors occur in other services as well. Notably, in Linux 3.3, 3.6, and 3.7
there are many errors in kernel code. To understand why, we have also studied the names of
the functions in which invalid pointer references most frequently occur. One such function is the
primitive locking function _raw_spin_lock, which is defined in the kernel subdirectory. Because
locking is such a basic functionality of the Linux kernel, it is not likely that the fault is in the
definition of _raw_spin_lock itself, but rather in its caller, which may have attempted to lock an
invalid lock. To identify the service associated with the caller, we search for the name of the calling
function at the top of the call trace. We find that 74% of the failing calls to _raw_spin_lock come
from file system functions.

Spikes. As shown in Figure. 3.9, there are two significant spikes in the oopses per day for
Linux 3.6, on November 9, 2012 and late January, 2013. Such spikes can potentially dominate
other data and distort assessments of reliability. As shown in Figure. 3.13, most of the reports for
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Figure 3.17: Common warnings by day for Linux 3.6

these versions are warnings. Thus, we study the frequency of warnings by day for Linux 3.6 to
see if the number of oopses per day has an impact on the frequencies of these warnings.

Figure. 3.17 shows the rate of warnings from the most common warning-generating functions
during the period in which there are the most oopses for Linux 3.6. While the rate of warnings
from the most common warning-generating functions changes over time, there is no significant
difference between November 9 or January 16 and the surrounding days. Thus, the spikes on these
days affect the number of reports present, but not their relative number, and the information for
these days can be safely combined with the rest.

Trigger action. We next consider the action that caused the kernel to be entered, which
provides another perspective on which kernel services are error prone. Actions include those
that are initiated by the kernel, such as booting and creating a kernel thread, those that are
initiated by applications, such as system calls, and those that are initiated by devices, such as
interrupts. To identify the trigger action, we analyze the bottom of the call trace. In doing so,
we must take into account stale pointers, as was described above. But we also must take into
account the particular structure of Linux call traces.

For both 32-bit and 64-bit x86 architectures, Linux manages a linked list of stacks, comprising
a process stack, an interrupt stack, and, on 64-bit x86 architectures, a set of exception stacks.3

For the 32-bit x86 architecture, there is an explicit annotation of an interrupt stack only if both
an interrupt stack and a process stack are present. Thus, there is an ambiguity; if an interrupt
occurs when no process is running in the kernel, then there is only one stack and no delimiter.

3On the 64-bit x86 architecture, a serious interrupt is referred to as an exception.
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Figure 3.18: Stack bottoms of interrupt and process stacks

We thus classify a 32-bit call trace containing only a single stack as representing an interrupt
stack if the bottom function of the call trace is an interrupt function, such as common_interrupt
or apic_timer_interrupt. For the 64-bit x86 architecture, interrupt stacks are delimited by IRQ
and EOI (End Of Interrupt) and exception stacks are delimited by the name of the exception and
EOE (End Of Exception). There is no ambiguity in this case.

To identify the action that triggered an error, we consider the bottom-most non-stale function
in the current stack, if any, or if there is no non-stale pointer, then the bottom-most stale function
in the current stack. This strategy covers 89% of the reports, excluding those for which there is
no call trace or for which the architecture cannot be determined. We have manually classified
these functions according to what kind of action they represent: system boot, creation of a kernel
thread, the idle process, an interrupt, a page fault, a system call, or support for virtualization.
Figure. 3.18 shows the results for interrupt and process stacks for the 32-bit and 64-bit x86
architectures, considering only those functions that occur at least 50 times. We have only 420
occurrences of an exception stack, and none of the stack bottoms satisfied this threshold.

Most of the results are as could be expected: the trigger action for an interrupt stack is always
an interrupt, and the most common trigger action for a process stack is a system call. We do have
a small anomaly, that is not visible in the graph, for 64-bit process stacks. Although the interrupt
stack is in principle unambiguous for the 64-bit x86 architecture, we have over 350 cases where
an interrupt function appears at the bottom of what seems to be a 64-bit x86 process stack. All of
these instances come from Suse. Indeed, only 5 Suse reports out of the 1139 having a call trace
have an interrupt stack delimiter, and thus we conjecture that the Suse oops reporting tool may
eliminate them.
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Table 3.2: Taint types
Loaded code: Specific errors:
P: Proprietary module loaded. M: Machine check exception.
G: No proprietary module loaded. B: System has hit bad_page.
F: Module forcibly loaded. U: Userspace-defined naughtiness.
R: Module forcibly unloaded. A: ACPI table overridden.
C: drivers/staging modules loaded. I: Severe firmware bug.
O: Out-of-tree modules loaded. S: SMP with non-SMP CPU.
Generic errors:
D: Previous die. W: Previous warning.
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Figure 3.19: Number of occurrences of individual taint bits

Impact of taint. Because the Linux kernel is intended to be a long-running system and
because it must meet stringent performance requirements, it cannot keep available in memory
an unbounded history of its actions. Thus, an oops primarily provides an instantaneous picture of
the state of the kernel. Nevertheless, when certain kinds of events have occurred in the kernel
execution, the kernel may have been left in an unreliable state. Thus, a small amount of historical
information is recorded, known as taint, which amounts to a one-word bit map recording the
previous occurrence of various events. The events considered involve the inclusion of suspect code
in the kernel, and the previous occurrence of specific and generic errors. We list all types of taint
bit in Table.3.2. The presence of taint can reduce the credibility of an oops as a record of an error
in the kernel.

Figure. 3.19 shows the number of occurrences of the individual taint bits across the reports.
Only reports that have taint information are included, amounting to 93% of the reports. Almost
half of these reports have no taint (no). For these oopses, there is the greatest likelihood that the
source of the problem is captured in the oops, rather than depending on some previous action. Of
the remainder, two thirds (G) do not involve proprietary modules, meaning that maintainers can
reconstruct the execution environment using code that is freely available. Of those that do not
involve proprietary modules, 45% do involve external modules (O), implying some extra work for
the maintainer to find the relevant code. Finally, 6% of the reports containing taint information
derive from kernels that include so-called “staging” drivers (C). These immature drivers are
integrated into the kernel so that they can keep up with kernel changes as they mature. The
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kernels involved may be development kernels. Few of the reports come from kernels that have
previously experienced the specific errors represented by the taint field (M through S); only the
numbers of machine check exceptions (M) and bad pages (B) are non-negligible. Finally, 6% of
the reports containing taint information come from kernels that have previously experienced a
serious error (D), and 28% come from kernels that have previously experienced a warning (W).

3.5 Threats to Validity

The overall goal of our study is to identify the potential threats to validity in using kernel oopses
as an indicator of Linux kernel reliability. Our study itself, however, may suffer from threats to
validity, related to our interpretation of the studied data. To ensure the representativeness of the
data, the author studied a collection of data over a period of 8 months. To ensure the validity of
the analysis, the author also studied the source code of the user-level oops-reporting tools (i.e.
ABRT from Fedora and kerneloops from Debian), and duplicated the process of generation and
submission of kernel oopses to the repository.

3.6 Conclusion

The Linux kernel, due to its wide adoption, has been studied extensively in previous works [98,
102, 117, 132]. In this chapter, rather than studying the source code of the Linux kernel, the
author studied a specific error report (i.e. kernel oops) generated from the Linux kernel. The
author has provided a comprehensive analysis of the Linux kernel oopses available in the recently
revived oops repository maintained by Red Hat. The analysis has revealed the information
available in the repository, but also the challenges involved in interpreting it. As studies of
repositories such as those of Windows and Mozilla have shown, an oops repository has great
potential to shed light on the reliability of the Linux kernel, as well as to help study development
practices. The results can serve as a guideline for the correct interpretation of the results of
future research studies.
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KERNEL OOPS DEBUGGING

Debugging a kernel oops remains a daunting task for the Linux kernel developers. Indeed,
Linus Torvalds once teased, “How to track down an Oops...The main trick is having
5 years of experience with those pesky oops messages ;-)" [123]. By debugging, here we

restrict ourself to a smaller and yet critical goal — locating the offending line, instead of finding
the root cause of a bug. The reason is twofold: I). a kernel oops does not necessarily correspond
to a bug which is a more abstract concept of software defect. It is simply an instance of the
manifestation of a software error. Multiple bugs might trigger the same kernel oops. II). the
offending line is well-defined and useful information for a Linux kernel developer to initiate the
process of finding the root cause of a bug, while the root causes of bugs vary from case to case and
there is no uniform representation of root cause.

Yet, even this goal is not easy to achieve. Since a kernel oops is intended to provide only
a compact status information for debugging, lots of information is missing from there. Given
the limited information provided by a kernel oops, a Linux developer may have difficulty to
reconstruct the crashing image of the Linux kernel, not to mention reproducing the crashing
scenario. Therefore, Linux developers tend to rely on the cooperation of users when debugging a
reported kernel oops. As illustrated in Chapter 1, for a kernel oops report [28] from the Linux
kernel bugzilla, it took 16 rounds of comment changes between a developer and several users to
finally figure out the offending line of the kernel oops.

In contrast to the bugzilla case, in a more common scenario, when a developer finds an oops
in the kernel oops repository that may be relevant to his code, there is no associated user that
the developer can contact. This compounds the difficulty of locating the offending line. Several
options remain. If the developer can deduce the exact version and distribution from the oops,
then he may be able to retrieve a precompiled version of that kernel with debugging information
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from that distribution, if such a kernel is available. Alternatively, the developer can compile the
kernel file containing the crashing function from the same Linux version, to try to recreate the
victim kernel’s binary code. If either of these is successful, the developer can load the kernel
code into the debugger gdb and request the source code line corresponding to the instruction
pointer mentioned in the oops. A second option is to disassemble the small snippet of binary code
surrounding the crash site, that is found in oopses corresponding to the more severe types of bugs,
and then match the result against the assembly code of the crashing function. A third option is to
analyze the semantics of the instructions found in the disassembled code snippet, to relate this
semantics to the source code.

In this chapter, we argue that the second approach, of matching the disassembled code
snippet to the assembly code of a locally compiled kernel, is the most promising. The first
approach, using the instruction pointer, is lightweight but brittle, especially in the common case
where it is not possible to retrieve the distribution’s original debugging kernel. In contrast, the
code snippet used in the second approach provides more context information, and is thus more
tolerant to variations in locally generated code. The third approach, relating the semantics of
the disassembled code snippet directly to the source code, is very difficult, due to the different
levels of abstraction involved. The second approach nevertheless has the disadvantage that the
matching process is tedious and error prone, especially for the many large kernel functions. To
make the second approach practical, we propose to automate the matching process, based on a
variant of approximate string matching, as used in bioinformatics [121].

The rest of the chapter is organized as follows. Section 4.1 gives an illustration of the state-of-
the-art approaches to obtaining the offending line. Section 4.2 presents the outline of our matching
algorithm. Section 4.3 instantiates this algorithm with some domain-specific design choices. We
then evaluate our solution in Section 4.4. Finally, we conclude this chapter in Section 4.6.

4.1 State-of-the-Art

In this section, we revisit the content of a kernel oops presented in Chapter 3 and explain the
existing approaches to finding the offending line. We then present some statistics that illustrate
the difficulty of the latter process.

4.1.1 Revisit Kernel Oops

A kernel oops documents the internal state of the Linux kernel at the time of a failure. It is
represented in plain text, and comprises a number of fields. Each field represents one aspect of
the system state in the form of a key-value pair.

We have already given a detailed description of the contents of a kernel oops in Section 3.1.1.
Here we revisit some of the key fields (marked in box) of a kernel oops shown in Figure 4.1,
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1 BUG: unable to handle kernel NULL pointer dereference at 00000008
2 IP: [<c10fb360>] xfs_da_do_buf+0x4da/0x5e1
3 Oops: 0000 [#1] PREEMPT SMP
4 Modules linked in: nfs lockd nfs_acl sunrpc w83627hf ...
5 Pid: 2725, comm: rm Tainted: P 2.6.36-gentoo-r5 #10
6 EIP: 0060:[<c10fb360>] EFLAGS: 00010246 CPU: 0
7 EAX: 00000001 EBX: f60da400 ECX: fbd5a730 EDX: 00000000 ...
8 Stack: 0012c096 00000000 f64cabc0 f64ca5dc d853fb40 ...
9 Call Trace:
10 [<c1020717>] ? get_parent_ip+0xb/0x31
11 [<c102086e>] ? sub_preempt_count+0x7c/0x89
12 [<c111f85e>] ? xfs_remove+0x1b3/0x2e0 ...
13 Code: f0 00 c7 45 b8 00 00 00 00 74 13 8b 4d 18 8d 55 f0 b8 01 00

00 00 e8 06 fa ff ff 89 45 b8 83 7d 14 01 0f 85 82 00 00 00 8b 55
<8b> 4a 08 8b 51 08 8b 01 0f c8 86 f2 0f b7 d2 81 fa ee fb 00 00

14 ---[ end trace 118398ff1b25f91d ]---

Figure 4.1: XFS kernel oops

which are used by the standard approaches to find the offending line. Particularly, we highlight a
previously neglected field called code snippet that is essential to our approach.

Oops description In our example, the oops was triggered by NULL-pointer dereference, as
indicated by the brief description of the cause of the oops at Line 1.

Error site The IP (Instruction Pointer, line 2) field indicates the name (xfs_da_do_buf) of the
function being executed at the time of the oops, i.e., the crashing function, the binary code offset
(0x4da) at which the oops occurred, and the binary code size (0x5e1) of the crashing function.

Kernel version A string (2.6.36-gentoo-r5) following the value of the attribute Tainted (line
5) indicates the Linux kernel version (2.6.36, maintained between October 2010 and February
2011) from which the kernel oops was generated. The string may also indicate the distribution of
the Linux kernel, here Gentoo.

Code snippet Some kernel oopses, for the more severe faults, contain a binary code snippet
(line 13) indicating the 64 bytes of binary code surrounding the error site (43 bytes before the
trapping instruction and 20 after), regardless of instruction boundaries. Within this snippet, the
first byte of the instruction that causes the crash is marked by <>. We refer to this instruction as
the trapping instruction.
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4.1.2 Pinpointing the Offending Line

We now consider in more detail the three options for pinpointing the offending line that were
proposed in the introduction, in terms of the example in Figure 4.1. We place ourselves in the
situation where a kernel with debugging information corresponding to the offending instruction
is not available, as finding such debugging kernels is difficult for versions that do not correspond
to a current release of the given distribution, and even if possible requires somewhat obscure
distribution-specific knowledge.

Gdb To use gdb on the instruction pointer found in the kernel oops, we first need to obtain
binary code with debugging information for the file containing the crashing function. For this,
we download the kernel version corresponding to the version (2.6.36) listed in the kernel oops
from the mainline kernel repository kernel.org. We then create a default configuration file,
using the command make ARCH=i386 defconfig because the oops contains 32 bit addresses.
In the configuration file, to obtain debugging information, we then manually select the op-
tion CONFIG_DEBUG_INFO and unselect the option DEBUG_INFO_REDUCED. We then use the lo-
cal version of gcc (in our case, gcc 4.7.2 (Debian 4.7.2-5)) to compile the file containing the
crashing function, using the command make ARCH=i386 fs/xfs/xfs_da_btree.o. Finally, we
load the resulting object file into gdb and obtain the offending line with the command list
*(xfs_da_do_buf+0x4da).

Having followed this procedure, we obtain a line that is five lines away from the one indicated
in the bugzilla discussion. There are furthermore several lines at which a NULL pointer derefer-
ence could occur between the line identified by gdb and the actual offending line. This approach
is clearly too brittle for practical use.

Assembly code matching For this approach, we first obtain a locally compiled debugging ker-
nel, as above. We then use the Linux kernel script decodecode, with the environment parameter
AFLAGS=--32 | --64 indicating the architecture, to disassemble the code snippet. Next, we use
gdb with the command disassemble xfs_da_do_buf to disassemble the crashing function. We
must then manually match the two sequences of assembly code to find the offset of the instruction
in the locally compiled crashing function that most probably matches the trapping instruction
in the code snippet. This offset can then be used with gdb as in the previous case, to get the
offending line.

In the case of the oops shown in Figure 4.1 the locally compiled crashing function consists of
459 instructions, as compared to the 19 instructions in the code snippet. The large size of the
crashing function makes the matching process tedious and error prone. Indeed, an exact match is
not likely, due to the use of different compilers or compiling options, which causes differences
in both the choice of instructions and the order in which they appear. These problems can be
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1 int elv_may_queue(struct request_queue ∗q, int rw)
2 {
3 struct elevator_queue ∗e = q°>elevator;
4 if (e°>ops°>elevator_may_queue_fn)
5 return e°>ops°>elevator_may_queue_fn(q, rw);
6 return ELV_MQUEUE_MAY;
7 }

Figure 4.2: The source code of the crashing function elv_may_queue

code snippet crashing function

<+0> push %ebx <+0> push %ebp
<+1> mov %eax,%ebx <+1> mov %esp,%ebp
°°° <+3> call 0x1414 (<+4>)
<+3> mov 0xc(%eax),%eax <+8> mov 0xc(%eax),%ecx
<+6> mov (%eax),%eax <+11> mov (%ecx),%ecx
<+8> mov 0x38(%eax),%ecx <+13> mov 0x38(%ecx),%ecx
<+11> xor %eax,%eax °°°
<+13> test %ecx,%ecx <+16> test %ecx,%ecx
<+15> je 0x38 <+21> <+18> je 0x1428 <+24>
<+17> mov %ebx,%eax °°°
<+19> call *%ecx <+20> call *%ecx
<+21> pop %ebx <+22> pop %ebp
<+22> ret <+23> ret
°°° <+24> xor %eax,%eax
°°° <+26> pop %ebp
°°° <+27> nop
<+23> lea 0x4c(%edx),%eax <+28> lea 0x0(%esi,%eiz,1),%esi
°°° <+32> ret

Figure 4.3: An example of assembly code matching

somewhat alleviated if the instruction pointer indicates that the trapping instruction is very near
the beginning or end of the function. Our example, however, does not have this property.

At the other end of the spectrum, we consider an oops derived from the much smaller function
shown in Figure 4.2. Figure 4.3 shows the correspondence between the code snippet in the oops
and the assembly code obtained from locally compiling the crashing function. By comparing the
sequence of opcodes, we can see that the trapping instruction at offset <+8> in the code snippet
corresponds to the instruction at offset <+13> in the locally compiled crashing function. The
debugging information then indicates that the instruction at offset <+13> of the crashing function
originates from the statement at line 4 in Figure 4.2, which is the offending line. During the
matching process, some gaps, marked by ---, are required, and we can see that the compilers
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have taken different decisions in compiling the conditional test, marked with arrows at offsets
<+15> and <+18>, respectively. These issues complicate the matching even for a small example.

Semantics matching For this approach, we use decodecode as above to obtain the assembly
code of the code snippet and download the kernel version mentioned in the oops, but do not
compile it. For simplicity, we illustrate this approach using only our second example (Figures 4.2
and 4.3). We reason as follows: I) The trapping instruction at the offset <+8> is a memory access
operation, due to the operand 0x38(%eax), which implies that the offending line involves a pointer
dereference. II) Right above the trapping instruction, there is a similar instruction at the offset
<+6> that operates on the same register as the trapping instruction. Thus, the offending line likely
contains two successive pointer-dereferences, i.e., it has the form a ! b ! c, for some expression
a, and some fields b and c. III) Following the trapping instruction, there is a branching test at the
offset <+15> which should correspond to a conditional test in the source code. IV) Furthermore,
the result of the trapping instruction is stored in the register %ecx, which is used later at offset
<+19> as a function pointer (call §%ecx). Thus, the offending line should evaluate to a function
pointer for a following invocation. Line 4 in the crashing function is the only one that satisfies all
of the above properties, and is indeed the offending line.

Although successful in this case, this approach is clearly not systematic enough for fre-
quent use, particularly for large or complex crashing functions, such as the one associated with
Figure 4.1. Nevertheless, we use this approach, combined with some manual matching of the
assembly code to validate our results obtained in Section 4.4.

4.1.3 Properties of Oopsing Functions

To better understand the problems confronting a kernel developer, we have studied various
properties of the oopses collected during the first 8 months of the existence of the kernel oops
repository.

Data set Between September 1, 2012 and May 1, 2013, the kernel oops repository received
187,342 kernel oopses. Many are warnings, and thus only 22,316 contain a code snippet. Our
approach requires the presence of both a code snippet and a function name. 3263 of the code
snippets contain only “Bad EIP value” or “Bad RIP value” indicating an invalid instruction
pointer. Of the remaining 19,053 oopses, 897 do not give a name for the crashing function, only
an address, again indicating an invalid instruction pointer. Finally, the kernel oops repository
contains many duplicate reports [48]. Of the oopses containing both a function name and a code
snippet, 5192 have a unique combination of function name, crashing instruction offset, function
size, and code snippet. We consider only these oopses in the rest of this section. We summarise
the above classification about the data set in Table. 4.1.
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Table 4.1: Statistics about the data set

category count reduction
all oopses 187,342

165,026
with code snippet 22,316

3,263
with valid instruction pointer 19,053

897
with crashing function name 18,156

12,864
not duplicated 5192
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Figure 4.4: Function size for unique oopses containing both a code snippet and function name

Size of the crashing function As the size of the crashing function increases, it becomes
more difficult to scan through its assembly code to find instructions that look similar to the
disassembled code snippet. Figure 4.4 shows the sizes in bytes of the crashing functions indicated
in our oopses, ordered from smallest to largest.1 This figure shows one point per oops, even though
multiple oopses may refer to the same function. 20% of the unique oopses involve functions
containing more than 500 bytes, making manual scanning for a close match to a 64-byte code
snippet impractical. Three oopses refer to a function that contains over a million bytes. This
is a large memory region used by a kernel module added by VirtualBox, and is not part of the
mainline kernel.2

Compiler effects A major source of variation in the sequence of instructions generated by
compiling a kernel is the version of the compiler used. To measure this effect, we consider
three compilers: gcc 4.6.1 (Ubuntu/Linaro 4.6.1-9ubuntu3), gcc 4.7.2 (Debian 4.7.2-5), and gcc

1We use the number of bytes indicated in the oops; the number of instructions is not available.
2https://forums.virtualbox.org/viewtopic.php?f=7&t=30037
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Table 4.2: Distribution of sampled crashing functions

category not universal not included in kernel conf not generate obj files the rest
percentage 25% 18% 3% 54%

4.8.1 (Ubuntu/Linaro 4.8.1-10ubuntu9). For simplicity, we test these compilers on a single ver-
sion, Linux 3.7, released in 2012. For this kernel, we generate a configuration file using make
ARCH=x86_64 defconfig. Linux 3.7 represents 12% of our considered oopses, and is the second
most common version mentioned. The most common version, representing 57% of the oopses, is
Linux 2.6.32, first released in 2009. Our compilers, however, generate many warnings on the
Linux 2.6.32 code, and we want to avoid comparing invalid code.

Our single tested kernel version and configuration may not cover all the crashing functions of
our 5192 oopses. There are 1557 such functions, of which 25% are either not defined in Linux 3.7,
are only defined in architecture-specific code (arch directory) for an architecture other than x86,
or are only defined in header files, which do not generate an independent object file in which we
can find the binary code definition. Finally, for 18% of the 1557 functions, the defining file is not
included in our kernel configuration, and for 3% of the 1557 functions, at least one compiler does
not generate code, perhaps due to inlining. This leaves just over 850 distinct crashing functions
whose assembly code we can compare. We summarise the above statistics in Table. 4.2.

For each compilation result, we first obtain the assembly code, using the command objdump
–disassemble, and then rewrite the output to abstract away all information except the opcode,
any constants, and any constant offsets used in indirect references. This eliminates the effect
of compiler choices such as register names and branch offsets, and focuses on information
that is likely to stand out as the developer scans the code. To estimate the difference between
two compilation results we apply the unix tool diff to these abstracted versions, and then
divide the sum of the number of differences by twice the number of instructions found in the
smaller compiled function, to normalize the results. As a baseline, we also compute the difference
in size between the smaller and larger compiled functions as a percentage of the size of the
smaller compiled function. Finally, we distinguish between small functions, for which the smaller
compiled function contains 50 instructions or less, medium functions, for which the smaller
compiled function contains 250 instructions or less, and large functions, for which the smaller
compiled function contains more than 250 instructions. The number of functions in each category
varies slightly depending on which compilers are being compared.

The results are shown in Table 4.3. In each case, the comparison on instruction opcodes
and operands shows a much greater rate of change than the comparison on code size. Thus,
many changes must be within the shared part of the code; there is not, for example, simply
a new sequence of code added at the end of the function. Furthermore, we see that the rate
of changes increases as the function size increases and as the distance between the compiler
versions increases. All these variations make manual matching complex.
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Table 4.3: Compiler comparison.

1 gcc version 2 gcc versions
4.6.1! 4.7.2 4.7.2! 4.8.1 4.6.1! 4.8.1

function instr sz # instr sz # instr sz #
size diff diff fns diff diff fns diff diff fns
small 14% 8% 353 14% 4% 350 23% 11% 354
medium 17% 4% 404 21% 4% 402 28% 6% 397
large 32% 3% 102 32% 4% 102 40% 5% 103

Instr diff is the rate of difference in the instructions. Sz diff is the rate of difference in the function sizes. #fns is the number of
functions that are small, medium, or large, respectively.

4.2 Automating Assembly Code Matching

Our goal is to automate the matching of the disassembled code snippet against the disassembled
locally compiled crashing function, as previously illustrated in Figure 4.3. We take inspiration
from approximate sequence matching, used in bioinformatics [115, 121]. We begin with some
definitions, and then propose a matching algorithm that focuses on each possible counterpart to
the trapping instruction and its surrounding context. This matching algorithm uses an algorithm
for matching a code sequence against a prefix of another code sequence, which we present next.
Finally, we consider the complexity of the complete approach. Some design decisions related to
the particular properties of assembly language instructions are deferred to Section 4.3.

4.2.1 Definitions

We refer to disassembled code snippet as the code snippet, C, and the disassembled locally
compiled crashing function as the local function, L. We first define some properties of sequences,
and then describe sequence matching:

Definition 4.1. For a sequence S, let S[i] denote the element at the position i, and |S| denote the
length of S. We also define a special element called a gap, denoted ?.

Definition 4.2. For a sequence S of length n and any 1∑ i ∑ j ∑ n, bS = S[i... j] is a substring of
S and bS = S[1... j] is a prefix of S.

Definition 4.3. For sequences S1 and S2, we define an anchored alignment of S1 with S2,
written Align(S1,S2), as any (S0

1,S0
2) where: I) S0

1 and S0
2 are sequences that may contain gaps.

II) |S0
1| = |S0

2|. III) Removing gaps from S0
1 leaves S1. IV) Removing gaps from S0

2 leaves a prefix
of S2.

Anchored alignment is a variant of the global alignment and local alignment used in
bioinformatics [115, 121]. Global alignment matches two complete sequences, while local align-
ment matches subsequences of those sequences. Anchored alignment matches a complete se-
quence against a prefix of another sequence, with gaps allowed. Figure 4.5 shows an example.
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S1[1] ? S1[2] S1[3] S1[4] ? ? S1[5]
| | | | | | | |

S2[1] S2[2] S2[3] S2[4] ? S2[5] S2[6] S2[7] . . .
Figure 4.5: Align(S1,S2), where |S1| = 5 and |S2|∏ 7

C[1] ... C[t] ... C[m]

S[1] ... S[ j] ... S[i] ... S[k] ... S[n]

anchor

Figure 4.6: Anchored sequence matching schema

In general, to find the offending line, it is not sufficient to use any match; instead, we want
one that is considered to be best according to some scoring function. Indeed, the challenge in
performing alignment is to determine where to place gaps to obtain the highest possible score.

Definition 4.4. For elements s1 and s2, let the function score(s1, s2) be a measure of the similarity
between s1 and s2.

The precise definition of the score function is orthogonal to the problem of matching, and is
deferred to the next section. Nevertheless, we require that a match with a gap have a negative
score, to make it unfavorable to match a gap with itself.

Definition 4.5. For sequences S0
1 and S0

2 of length n, which may contain gaps, we define the

similarity between S0
1 and S0

2, as Sim(S0
1,S0

2)=
nP
i

score(S0
1[i],S0

2[i]).

Definition 4.6. For sequences S1 and S2, let £ be the set of all possible anchored alignments
between S1 and S2, i.e., Align(S1,S2). Then, the optimal anchored alignment of S1 with S2,
written Alignopt(S1,S2), is the one of {µ 2£ |8µ1 2£,Sim(µ)∏Sim(µ1)}.

4.2.2 Anchored Sequence Matching

We define anchored sequence matching to select a counterpart instruction from the local function,
that matches well against the trapping instruction, taking the contexts of these instructions into
account. First, we select a set of anchor points, likely candidates for the counterpart instruction
from the local function. Next, starting from each anchor point, we compute the optimal match
between the preceding and following fragments of the code snippet and of the local function,
respectively. Finally, we select the anchor point with the maximal overall similarity value as the
counterpart instruction.

Algorithm 3 presents the anchored sequence matching algorithm. Lines 2-6 perform some
initializations, including splitting the code snippet into three parts: the part before the trapping
instruction, C_left, the trapping instruction, trap, and the part following the trapping instruction,
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C_right. C_left is reversed, because we want to match the sequence to the left of the trapping
instruction backwards from the trapping instruction (cf. Figure 4.6). Lines 8-22 then iterate over
the possible anchor points. For each one, the local function is split into L_left, anchor, and L_right,
with L_left reversed (lines 9-12), analogous to C_left. Optimal anchored alignment is then used
via the function align to match C_left against L_left, and C_right against L_right, and to obtain
the resulting similarity score (lines 13-14). We also compute the similarity score of the trapping
instruction and the chosen anchor point (line 15). If the sum of these scores is greater than the
best score recorded so far, then the current anchor point is recorded as the best match (lines
16-21). The final result is then the best collected anchor point (line 23).

Algorithm 3 The anchored sequence matching algorithm
1: function ASM(List C, List L, List anchors, Int t)
2: best_anchor √°1
3: max_score √ min_value
4: C_left √ reverse(C[1..t°1])
5: trap √ C[t]
6: C_right √ C[t+1..C.length]
7:
8: for i = 1 ! anchors.length do
9: L_left √ reverse(L[1..t°1])

10: anchor √ L[i]
11: L_right √ L[t+1..L.length]
12:
13: left_score √ align(C_left, L_left)
14: right_score √ align(C_right, L_right)
15: anchor_score √ score(trap, anchor)
16: total_score √ left_score + right_score + anchor_score
17:
18: if (total_score > max_score) then
19: max_score √ total_score
20: best_anchor √ i
21: end if
22: end for
23: return best_anchor
24: end function

4.2.3 Anchored Alignment

Anchored sequence matching uses anchored alignment, Align( bC, bL), to match the code snippet
substrings bC before and after the trapping instruction against the context bL of each proposed
anchor point. Algorithm 4 shows a straightforward recursive implementation. For each pair of
nonempty sequences this algorithm takes the maximum value produced by three possibilities:
matching the heads of each sequence with each other and the tails of each sequence recursively
with each other, or matching the head of one sequence with a gap and the tail of that sequence
recursively with the other sequence. The remaining lines address the empty sequence cases. If
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the code snippet substring is empty (line 3), the result is 0, reflecting the fact that it need only be
matched against a prefix of the local function substring. On the other hand, if the local function
substring is empty (line 4), the result is the product of the length of the remaining code snippet
substring and the gap score, effectively matching the remaining code snippet substring to gaps.

Algorithm 4 A recursive anchored alignment algorithm
1: function alignrc(List bC, List bL)
2: match ( bC, bL) with
3: | ([ ], _) ! 0
4: | (_, [ ]) ! | bC|£gap_score
5: | (c::ct, l::lt) !
6: let gap_score = score(?, ?) in
7: let head_score = score(c, l) in
8: let no_gap = align(ct, lt) + head_score in
9: let cs_gap = align(ct, bL) + gap_score in

10: let lk_gap = align( bC, lt) + gap_score in
11: return max(no_gap, cs_gap, lk_gap)
12: end function

The recursive algorithm constructs a three-way tree of execution, in which each branch has
height at most | bC| + |bL|. | bC| has fixed size, and except when the local function is very small,
| bC|∑ |bL|. The complexity is thus O(3|bL|).

The recursive algorithm recomputes the scores of many possible alignments. To avoid this in-
efficiency, we use dynamic programming [25], as shown in Algorithm 5. This algorithm populates
an array dpm of size (| bC|+1)£ (|bL|+1). The value stored in dpm[i][ j] represents the similarity of
the best alignment between bC[1..i] and bL[1.. j]. As anchored alignment requires matching the
complete code snippet substring but only a prefix of the local function substring, we take the best
value found anywhere in the row dpm[| bC|][§] as the result. This is in contrast with the dynamic
programming implementation of global alignment [115, 121], in which the iterative computation
is the same, but the result is dpm[| bC|][|bL|].

The dynamic programming algorithm (shown in Algorithm 5) starts by initializing the zero
column of every row with a multiple of the gap score (lines 6-8), reflecting the need to match
the elements of the code snippet substring against gaps when the local function substring runs
out. It then initializes the zero row of every column with a multiple of the gap score (line 10-12),
reflecting the cost of pushing the initial match of the code snippet substring past a prefix of
the local function substring, which requires matching the elements of that prefix to gaps. The
remainder of the algorithm iterates over the elements of the array, starting from the elements
with the smallest indices, representing the early parts of each sequence and moving towards the
elements with the largest indices, representing the later parts of the sequences. For each pair of
offsets, the algorithm considers the possibilities that the sequence elements represented by the
current position match (line 18), or that one or the other is matched against a gap (lines 19-20).
In each case, the matching score or the gap score is added to the previously computed value found
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Algorithm 5 Anchored alignment by dynamic programming
1: function Aligndp(List bC, List bL)
2: // init matrix with zero
3: dpm √make_matrix(0..| bC|,0..|bL|,0)
4: gap_score √ score(?, ?)
5:
6: for i = 1! | bC| do
7: dpm[i][0] √ i § gap_score
8: end for
9:

10: for j = 1! |bL| do
11: dpm[0][j] √ j § gap_score
12: end for
13:
14: for i = 1! | bC| do
15: for j = 1! |bL| do
16: head_score √ score( bC[i], bL[ j])
17: dpm[i][j] √max (
18: dpm[i°1][ j°1] + head_score,
19: dpm[i°1][ j] + gap_score,
20: dpm[i][ j°1] + gap_score)
21: end for
22: end for
23: return score_opt(dpm[| bC|])
24: end function

in the array at the position corresponding to the effect of the match on the two subsequences. The
result for the current array element is the maximum result produced by any of these three cases.
Once the array is filled, the result is the largest score anywhere in the row representing the end
of the code snippet substring. The complexity of the algorithm is proportional to the size of the
array i.e., O(| bC|£ |bL|).

4.2.4 Optimization

We then further optimize Algorithm 5 by reducing the number of columns in the matrix, represent-
ing the distance into the local function substring for which it is worth considering a match. Indeed,
in the tail of bL, the penalty of the leading gap alignment could eventually outweigh even a perfect
alignment score for the remaining code snippet substring. Therefore, the optimal alignment can
only involve instructions found within a certain distance R from the start of bL. Let max_score be
the maximal alignment value for two elements, i.e., the score when the elements match perfectly,
gap_score be the alignment value if either element is a gap, and min_score be the minimal
alignment value, i.e., the score when two elements are matched, but they are vastly different.
Then, R is the smallest value such that | bC|£min_score> | bC|£max_score+ (R° | bC|)£gap_score,
i.e., R > | bC|£ ((min_score°max_score+gap_score)/gap_score), since gap_score is negative. This
inequality says that a complete mismatch of each element of the code snippet substring at the
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beginning of the local function substring could provide a higher alignment score than any perfect
alignment that appears later in the sequence, beyond a sequence of gaps. Thus, we can just
populate the matrix up to column R, instead of the full length |bL|. The inequality also shows that
R is of the same order of magnitude as | bC|, as the least R satisfying the inequality is bounded by
a constant multiple of | bC|.

This optimization reduces the complexity of sequence alignment to O(| bC|£R). Since (min_score
° max_score + gap_score) / gap_score is a positive constant, the complexity becomes O(| bC|2).
Because the Linux kernel limits the length of the code snippet substring to a small constant (64
bytes), O(| bC|2) amounts to a constant.

The anchored sequence matching algorithm uses the dynamic programming based sequence
alignment algorithm twice per anchor point. As the complexity of the latter is constant, due to
the restricted size of the code snippet, the overall complexity of Anchored Sequence Matching is
linear in the number of anchor points.

4.3 Design Decisions

The matching algorithm is independent of how anchor points are selected and how the score
associated with a match between two elements is determined. We now address these issues. We
also consider the need to normalize the input in some cases and address the possibilities of ties.

4.3.1 Anchor Point Selection

The complexity of the Anchored Sequence Matching algorithm is proportional to the number of
anchor points. The accuracy of the algorithm also depends heavily on the selection of anchor
points. All suspicious points in the source sequence should be included as anchor points to ensure
the soundness of the algorithm. However, we found that taking all points in the source sequence
as possible anchor points hurts the accuracy, as some incorrect anchor points could obtain higher
scores than the true counterpart point.

Our experiments showed that the counterpart instruction is often consistent with the trapping
instruction in three ways: 1). The type of the opcode 2). The addressing modes of the operands
3). The offsets used in indirect addressing modes. For example, the instructions <mov 0x68(%rcx),

%rcx> and <mov 0x68(%rax),%rax> have the same opcode type (mov), the same addressing mode
(an indirect memory access for the source operand and a direct register access for the target
operand), and the same offset of any indirect address (0x68), although they use different registers.
Furthermore, we consider two instructions to be of the same type even if they operate on operands
of different sizes (e.g. movl vs. movq) or their triggering conditions are opposite (e.g. je vs. jne).

We define a function compare(i1, i2) that compares two instructions i1 and i2 based on the
above criteria. The result is a triple htype, mode, offseti where each element corresponds to a
binary value that represents the comparison result with respect to he corresponding criterion,
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e.g.,
compare(

<mov 0x68(%rcx),%rcx>

<mov 0x68(%rax),%rax>

)= h1,1,1i

There are usually multiple anchor point candidates in the source sequence. To prioritize their
selection, we build three queues based on the above criteria. The high-priority queue consists
of the anchor points that satisfy all three criteria, i.e., {i | compare(i, t)= h1,1,1i}. The medium-
priority queue consists of the ones that have the same instruction type as the trapping instruction,
i.e., {i | compare(i, t)= h1,§,§i}. And the low-priority queue consists of all the instructions in the
local function. For the matching, we select the first non-empty queue following the order of the
priority.

4.3.2 Scoring Function Design

The scoring function should measure the similarity of two related elements as well as the
unlikelihood for the matching of two unrelated elements. The comparison between two elements
can result in a match, a mismatch, or a gap match (i.e., either element is empty). A match should
have a higher score than a mismatch, and we previously argued that a gap match should have
a negative score, to eliminate the match (?,?) in any optimal solution [121]. We propose two
possible scoring functions, differing in how much information about the instructions that they
take into account.

Our first scoring function based on opcode, score, considers two instructions to be a match
if they have the same type of opcode, i.e., compare(i1, i2) = h1,§,§i, and any other comparison
between two instructions to be a mismatch. We assign the scores 2 for a match, -1 for a mismatch,
and -1 for a gap match [121]. In practice, we have observed that the gap_match value should not
be lower than the mismatch value, or the algorithm will almost never assign a gap.

Our second scoring function based on both opcode and operands, score0, further refines the
match case, following the comparison criteria proposed for the anchor point selection. For those
instructions with both source and target operands, we give one point bonus if the addressing
modes of the operands of the two instructions match, and another point if the offsets of indirect
addressing modes match as well:

score0(i1, i2)=

8
><

>:

2+mode+offset, if type= 1

score, otherwise
where htype,mode,offseti= compare(i1, i2)

4.3.3 Breaking Ties

Our algorithm selects anchor points and runs the sequence matching algorithm for each of them
in order to identify the anchor point with the highest matching score. In case of a tie, we increase
the score of each result with the best score by score0(trap,anchor), thus doubling the weight of
the anchor point. The strategy favours the anchor point that is more similar to the trapping
instruction. If this computation again produces a tie, we then select the anchor point that occurs
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Table 4.4: Distribution of trapping instructions

opcode mov* cmp* test add and ud2 inc bts
count 73 14 5 2 2 2 1 1

earlier in the local function. This strategy is based on the observation that e.g., if the oops is due
to a dereference of a pointer that is NULL already at the beginning of the function, then only the
first dereference attempt will be executed.

4.3.4 Input Normalization

The disassembled code snippet or local function may contain instructions such as <nop> (no
operation), or <xchg %ax,%ax> (exchange the values of registers), that have no impact on the result
of the execution, but that may e.g., improve memory alignment. We refer to these instructions
as junk instructions. The junk instructions might interfere with our matching, since they could
unnecessarily incur the cost of a mismatch or a gap match if the compiler of the victim kernel
and the compiler of the local function do not introduce them according to the same strategy. We
thus remove all junk instructions before matching.

4.4 Evaluation

We have implemented our approach as a tool named OOPSA. 3 We now evaluate OOPSA, presenting
our experimental data and settings, the performance benchmarking, and an analysis of the failure
cases.

4.4.1 Experimental Data

We have selected 100 kernel oops samples, of which 90 come from the kernel oops repository [12]
and 10 are from the attachment of bug reports in the Linux kernel bugzilla [69]. OOPSA requires
that a kernel oops have the following properties: I). It should contain a code snippet that can be
properly decoded. II). Gcc should be able to generate debugging information mapping between
the source code and assembly code of the crashing function. Among the kernel oopses satisfying
these properties, we randomly selected the 100 samples. The distribution of trapping instructions
among these 100 kernel oopses is shown in Table 4.4, with 73 being variants of the mov instruction.
Furthermore, in 95 out of 100 cases, the trapping instruction involves a memory-based operation.
In 19 cases an operand is a constant, which can make the instruction more distinguishable.
Finally, the number of instructions for the code snippet is between 10 and 27, with 18 on average.

To evaluate OOPSA, we establish the ground truth for each kernel oops of the 100 cases by
manually inferring the offending line through the semantic matching (cf., Section 4.1.2). The

3OOPSA rhymes with a French phrase “où ça?" (where is it?).
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reason we chose 100 as the amount of sampling, is because the above analysis requires up to
several hours per oops which limits the number of cases that we can consider. For some of the
bugzilla samples, the offending line is given in the subsequent discussion.

4.4.2 Experimental Settings

Our experiments use a 64 bit machine(Debian 3.2.54-2), the easily accessible mainline source
code from kernel.org corresponding to the version mentioned in the kernel oops, gcc version
4.7.2 (Debian 4.7.2-5), and a kernel configuration file generated by the standard command
make ARCH=i386|x86_64 defconfig, specifying a 32 or 64-bit architecture, as indicated by the
oops. Thus, our approach does not burden the developer with hunting down distribution-specific
debugging kernels or recreating the exact build environment used to create the victim kernel.
The default compiling configuration as stated previously allows us to generate the assembly code
for almost all crashing functions in our samples. For those exceptional cases (7 out of 100), we
then used the .config file of Debian 3.2.54-2 machine, compiled the source file directly and chose
the default value for every prompt option, in order to generate the assembly code for the crashing
function.

Our experiments measure both the accuracy and the running time of our solution. Accuracy
is measured as the percentage of cases where the result is consistent with the established ground
truth. Running time is measured as the average execution time per sample, over the 100 samples,
including the time for parsing the input, the time for running the matching algorithm, and the
time for generating the output. We measure the running time on a Mac mini with an Intel Core
i5 2.5 GHz.

Our tool, OOPSA, is implemented in OCaml, consisting of the parsing of the kernel oops, the
parsing of assembly code, and the matching algorithms. The implementation amounts to 1645
lines of OCaml code. This OCaml code is compiled into optimized native code for the evaluation.

4.4.3 Performance Benchmarking

Overall, OOPSA automatically identifies the correct offending line in 92 cases (92% accuracy),
while the approach merely relying on the instruction pointer only identifies the correct offending
line in 26 cases (26% accuracy). For these 26 cases, OOPSA works as well.

In Section 4.3, we proposed several designs concerning the anchor point selection, the scoring
function, the matching score adjustment and the input normalization. We now evaluate the
impact of these design decisions.

The algorithms for anchor point selection and for the scoring function affect the treatment of
every oops, and thus we consider them together. Table 4.5 shows the accuracy and the running
time for each possible combination. Using every instruction as an anchor point, combined with the
scoring function that takes only the type of the opcode into account gives the worst accuracy (64%).
Extending the scoring function to also take properties of the operands into account improves the
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Table 4.5: Performance with core settings

Scoring Function Anchor Point Selection
No Yes

opcode based 64% / 450ms 86% / 20ms
opcode-operand based 72% / 838ms 90% / 33ms

Table 4.6: Performance with peripheral settings

Input Normalization Score Adjustment
No Yes

No 90% / 33ms 91% / 33ms
Yes 91% / 31ms 92% / 31ms

accuracy (72%), but at a heavy performance penalty (>80%) since it requires more sophisticated
parsing for each instruction. On the other hand, just with the operand type based scoring function,
simply applying anchor point selection gives a greater improvement in accuracy (86%), because
it eliminates anchor points that mislead the algorithm, and also greatly improves the running
time (22 times faster), because the complexity of the matching algorithm is linear in the number
of anchor points. Further augmenting with the type-operand based scoring function, we obtain
the best accuracy (90%). We furthermore note that the observed improvements in the number of
correct results are monotonic; the number of correct results improves, while no previously correct
results become incorrect.

Table 4.6 shows the impact of augmenting the use of the anchor point selection algorithm and
the scoring function based on both the opcode and properties of the operands with the elimination
of junk instructions and the treatment of ties. These optimizations, although not essential, help
OOPSA deal with certain corner cases and have little impact on the running time.

For all the results shown in Tables 4.5 and 4.6, we have applied the optimization that reduces
the size of matrix considered in the underlying dynamic programming algorithm, as presented in
Section 4.2.3. The optimization greatly improves the running time of our solution, regardless of
the other settings. Without this optimization, for example, the running times in the bottom row
of Table 4.5 rise to 4253ms and 112ms respectively, an increase of up to over 5 times.

4.4.4 Failure Case Analysis

In six cases, either the local function is organized is a way that is profoundly different from the
code snippet, so that the sequence matching algorithm is misled, or there are several very similar
subsequences in the local function, and the sequence matching cannot distinguish among them.
These cases break our assumption that the neighborhood of the counterpart instruction is more
similar to that of the trapping instruction than that of any other instruction. For example, in one
case, the crash occurs one line before a branching statement. In the code snippet, the branch is

70



4.5. THREATS TO VALIDITY

implemented using the jne instruction, while in the local function, the branch is implemented
using its opposite, je, changing drastically the instruction order. In another case, the oops is
generated by a use of the BUG_ON macro, which occurs twice in the crashing function, in almost
identical contexts. Both occurrences thus get the same score.

Second, our anchor point selection algorithm assumes that the opcode of the counterpart
instruction is at least of the same type as the trapping instruction. In two cases, this assumption
does not hold, leading to failure. For instance, in one case, the trapping instruction is a memory-
access operation <movzwl 0x54(%rbx),%eax> followed by a test <test $0x2,%al>, while the counterpart
instruction is a test <testb $0x2,0x54(%rbx)> combining both operations. As a result, the counterpart
instruction is overlooked by the anchor point selection mechanism, since there are several
candidates that match the trapping instruction better.

To address these cases, we plan to integrate more semantic analysis, such as data flow
analysis, into the matching algorithm. One observation from the above example is that the <test

$0x2,%al> instruction has a data dependency on the trapping instruction movzwl over the register
%al. It should be noted that the test instruction is more identifiable, especially with a constant
operand, since it appears less frequently than the variants of mov instruction. Thus, it may be
more effective to find a counterpart instruction for the test instruction, instead for the trapping
instruction, and to work back from there. We leave this as future work.

4.5 Threats to Validity

In this section, we discuss the threats to the various types of validity of our solution.

Construct Validity Does the accuracy metric actually measure the accuracy of our solution?
The accuracy of the measurement depends on the ground truth. For each kernel oops sample, we
establish the ground truth (its offending line) through both the assembly code matching and the
semantic matching approaches. We found at least 3 pieces of evidence to support our assessment
in each case. In addition, in certain samples from the Linux kernel bugzilla, the ground truth is
given in the comments following the kernel oops, which reconfirms our assessment. There might,
nevertheless, be some mistakes in our assessment.

Internal Validity Are the underlying assumptions of our sequence matching algorithm valid
in practice? Our main assumptions are: I). If we find the counterpart instruction for the trapping
instruction, then we can find the offending line. II). The counterpart instruction is situated in a
neighborhood that is the most similar to the one of the trapping instruction. The first assumption
depends on the functionality of gdb, which holds for all cases in our experiment. The second may
not hold if the instruction sequence of the crashing function that led to the oops is significantly
different from that of the mainline kernel. This can occur if the configuration options or source
code are different; Linux is open source software, and anyone can freely recompile the kernel
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under different configuration options and even modify the source code. Alternatively, as described
in Section 4.4.4, there is a risk that the algorithm might be misled by multiple very similar
regions of code within the crashing function.

External Validity To which extent does the solution generalize to new kernel oopses, or to
different platforms? We argue that the samples in our experiments are representative, since
they are extracted from well recognized sources: the kernel oops repository and the Linux kernel
bugzilla. We are not aware of any other resources that provide more representative kernel oopses.

There are currently around 4400 kernel oopses with code snippets in the kernel oops repository.
We obtained 92% accuracy on the 90 randomly selected samples from the repository. According
to the sample size calculator,4 our solution should work for at least 95%(°5.55) of all qualified
kernel oopses. Therefore, we have a relatively high confidence that our solution works for any
kernel oops that satisfies the properties listed in Section 4.4.

Furthermore, our sequence matching algorithm is primarily designed to locate a counterpart
point in one sequence for a point of interest in another sequence. It is independent of the platform
and the programming language. Therefore, it should be applicable to any scenario having a
similar goal.

4.6 Conclusion

In this chapter, we have shown how to use approximate sequence matching to identify the
offending line of a kernel oops. Our approach is fully automatic, from extracting the code snippet
from the oops and obtaining the source code to returning the offending line. As such, our approach
has great potential to help developers take advantage of the recently established kernel oops
repository.

In future work, we will consider how to improve the accuracy of our approach, possibly
by applying analyses such as dataflow analysis to the code snippet. We will also evaluate our
approach on a larger set of oopses, and consider whether our approach could be relevant to other
kinds of software.

4http://www.surveysystem.com/sscalc.htm
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RELATED WORK

Our anchored sequence alignment algorithm is designed to align a snippet of assembly
code sequence to a longer assembly code sequence, given that the two sequences are
generated from the same source code but with different compiling settings (compiler,

compiling options, etc.). In another sense, our algorithm can also be used to measure the similarity
of two assembly code sequences. Two similar assembly code sequences might be compiled from
similar source code, or even the same source code but with different compiling settings as in our
case. Based on this intuition, our algorithm could also be applied in another domain called code
clone detection. In the case of copy right violation, where a software product copies some parts
of source code from another software product, our algorithm is more practical. Because the source
code of software product is often not available, we then can only conduct code clone detection at
the binary level (assembly code). Therefore, we review some related work in clone detection in
this chapter.

5.1 Clone Detection

Code cloning [26, 114] occurs when fragments of code are copied and pasted with or without
adaptation within or across software. It is a common phenomenon in software development. As
shown in previous studies [16, 112], a significant fraction (between 7% and 23%) of code in a
typical software system has been cloned. The practise of cloning is often intentional [72] and
can be useful in some ways [13]. For example, to add a new feature into a software, a developer
might prefer to reuse some existing code, as doing so is less likely to introduce errors than
crafting completely new code. Meanwhile, it could be also harmful in software maintenance and
evolution [65]. If the reused code is buggy, then the bug could proliferate through clones.
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Code clone detection is essential for several purposes: I). refactoring: in certain circum-
stance, fewer code clones means better code quality, while it is also considered to be a good
practice to reuse some stable code instead of rewriting the code. A study conducted on a large
telecommunication software system by Lagüe et al. [77] shows that a significant number of clones
were removed due to refactoring, meanwhile the overall number of clones increased due to the
faster rate of clone introduction. II). debugging: if there is a bug in a code fragment, it is quite
likely that its clones would have the same bug, or some other issues [41, 83]. III). protecting
intellectual property: reusing the source code from some third-party software without properly
following its licence policy could cause some legal issues [53, 54].

In this section, we first define some basic concepts related to code clones. Then, we review
some techniques and tools that perform code clone detection on the source code and the binary
code respectively.

5.1.1 Definitions

In this section, we give a taxonomy that is commonly used by different techniques and tools
related to clone detection.

Definition 5.1 (Code Fragment). A code fragment (CF) is a sequence of code lines, including
comments between lines [114]. A CF can be identified with three attributes: the source file where
the CF resides, the beginning line of the CF within the file and the ending line of the CF. These are
denoted as CF = (FileName,BeginLine,EndLine).

Definition 5.2 (Code Clone). A code fragment CF1 is a code clone of another code fragment
CF2, iff they are similar by certain measure of similarity which can be defined as a function in the
form of Sim(CF1,CF2). Two similar code fragments form a clone pair (CF1,CF2).

There is not a universal definition of the similarity of code fragments. Other than 100%
identical, some may claim that two code fragments that share more than 90% code of their code
form a code clone, while others might argue that 80% is sufficient.

Definition 5.3 (Clone Class). A set of code fragments, among which each pair is a clone pair,
forms a clone class.

Definition 5.4 (Clone Type). Given a clone pair, one can classify it as 4 types (i.e. Type-1, Type-2,
Type-3, Type-4), based on the degree of textual difference in the code.

The categories range from a difference in layout or comments, which does not alter the
syntactic or semantic meaning of the code lines, to a significant textual difference between two
code fragments whose semantics are equivalent or at least approximately equivalent. We describe
the clone types below in an incremental and recursive manner.

Type-1: Identical code fragments, except for variations in whitespace, layout and comments.
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Type-2: Extends Type-1 clones with additional variations in identifier names, literals or data
types.

Type-3: Extends Type-2 clones with further modifications such as added, changed, or removed
statements.

Type-4: Clones with more significant syntactical variations than Type-3, that still share equiva-
lent or similar semantics.

5.1.2 Source Code Clone Detection

Clone detection at the source code level has been well studied in the literature. Combining the
classification of Roy et al. [114] and that of Jiang et al. [62], the techniques to detect source code
clones can be grouped into four categories, based on the model used to represent source code, as
shown in Table 5.1. We give a brief introduction for each category as follows:

Table 5.1: Classification [62, 114] of clone detection techniques at the source code level

techniques references
string-based Dup [15–17], Johnson [63], Marcus et al. [92], Roy et al. [113], Livieri et al. [89]
token-based CCFinder [66], Gemini [124] CP-Miner [84], RTF [21], MOSS [118], JPLAG [105]
tree-based DECKARD [62], CloneDR [22, 23], Wahler et al. [127], Mayrand et al. [93]

graph-based GPLAG [87], Ferrante et al. [40], Weiser [130], Komondoor et al. [73, 74]

String-based: A program is parsed into a number of strings, usually divided by lines. A
contiguous sequence of strings is grouped into a code segment. Two code segments are clones if
their constituent strings match.

Token-based: A program is parsed into a number of tokens, i.e. the grammatical elements of a
programming language, such as keywords, variable names and operators, etc.. Compared to the
string-based approach, the token-based approach is usually more robust against code changes
such as formatting and spacing.

Tree-based: A program is parsed into an abstract syntax tree (AST) where each node is a token
within the program. The similarity of two code segments is then measured by matching the
subtrees.

Graph-based: A program is parsed into a program dependence graph (PDG) [40], which
combines the control flow graph (CFG) and the data dependency graph (DDG). Code clone
detection is modelled as finding isomorphic subgraphs. This technique tends not to scale well.
We give more details about PDG and the problem of graph isomorphism in the review of
GPLAG [87] below.
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Following the above classification, we select a tool (marked in bold in Table 5.1) from each
category and elaborate the techniques that it uses.

Dup: A Program for Identifying Duplicated Code. Baker [15] developed a tool called Dup,
that finds occurrences of duplicated or related code (clones) in large software systems to aid
software maintenance and debugging. Baker chose a string-based (line-for-line) approach, based
on the assumption that code cloning is accomplished by means of an editor, and thus the resulting
clones will be largely the same line-for-line, or will be related in some systematic way such as
variable renaming. The tool was applied to the source code of the X Window System and to part
of a larger AT&T software system, and detected up to 38% of the entire code as being clones.
However, the identified clones are less justifiable, especially for two cases: the initialization of
large tables and the switch-case statements, where the code inherits a repetitive pattern but
should not be considered as clones. Another shortcoming about the tool is that the code fragments
identified in clones usually do not correspond exactly to subtrees in the AST tree of the program,
or to any obvious semantic unit.

Dup works in two modes: exact matching and parameterized matching. Exact matching finds
Type-1 clones, while parameterized matching finds Type-2 clones for which there is a one-to-one
mapping between the corresponding variables in the clones. In exact matching, the tool first
hashes each line of code to an integer and then constructs a sequence of integers from the input
files. Then the tool uses a suffix-tree-based algorithm [94] to find the groups of longest common
substrings within the generated sequence. Each group of common substrings corresponds to a code
clone class. The suffix-tree-based algorithm is linear in the input, and a suffix tree can be built
in time linear in the size of the input, for a fixed alphabet [94]. The parameterized matching is
similar to the exact matching, except for two additional operations. The parameterized matching
first replaces some tokens that could be candidates to be a parameter, then does an exact matching
on the transformed code. Given the results produced by the exact matching, the parameterized
matching filters out the ones that do not meet the one-to-one correspondence constraint between
the parameters.

CCFinder: A Multilinguistic Token-Based Code Clone Detection System for Large
Scale Source Code. Kamiya et al. [66] proposed a token-based clone detection algorithm
and implemented it as a tool named CCFinder. CCFinder can detect clones within a single
source file as well as across different files written in the same programming language. The
authors applied the tool to several industrial and open-source projects in C, C++, Java, COBOL
and a PL/I-like language. In addition, they claimed that the tool can be easily adapted to other
programming languages. The tool can detect clones with different line breaks or different iden-
tifier names, i.e. Type-1 and Type-2 clones according to Definition 5.4. In a case study, they
showed that CCFinder can find 23% more clones as compared to the string-based (line-by-line)
tool Dup [15].
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CCFinder performs clone detection in three main steps: I). Code Tokenization: the input
source files is parsed into tokens according to the lexical rules of the programming language. The
tokens of all source files are then concatenated into a single token sequence, so that finding clones
across multiple files is performed in the same way as finding clones in a single file. II). Token
Normalization: the parsed tokens are normalized based on some predefined rules, to tolerate
the diverse syntactical formats and some slight variation of code between clones. For instance, the
tool replaces each identifier related to a type, variable or constant with a special token, so that
it can detect the Type-2 clones. III). Substring Extraction: to the normalized token sequence,
the tool applies the O(n) suffix-tree matching algorithm [49, 129] to extract lists of common
substrings, which correspond to groups of code clones.

DECKARD: Scalable and Accurate Tree-Based Detection of Code Clones. Jiang et
al. [62] proposed a novel algorithm for identifying similarity of subtrees and applied it to the AST
of source code in order to detect code clones. More specifically, they proposed a representation
model to capture the characteristics of a subtree with numerical vectors. Then, they measure
the similarity of code fragments as the Euclidean distance between vectors. With the similarity
function, they cluster the code fragments to identify the clone classes by using locality sensitive
hashing (LSH) [36, 43]. LSH constructs a family of hashing functions that can hash two similar
vectors to the same value with an arbitrary possibility as well as hashing two distant vectors to
two remote values with an arbitrary possibility. This property of LSH allows the authors to avoid
doing pairwise comparison which has a quadratic complexity and is expensive in practise. They
integrated their algorithm into a tool named DECKARD. They conducted experiments on the
Linux kernel and the JDK, to show that DECKARD is both scalable and accurate.

GPLAG: Detection of Software Plagiarism by Program Dependence Graph Analysis.
To detect source code plagiarism, Liu et al. [87] proposed a PDG-based [40] plagiarism detection
tool named GPLAG, which has been found to be more effective than the token-based algorithms
such as MOSS [118] and JPLAG [105]. In order to make GPLAG scalable to large programs,
the authors devised both lossless and lossy filters to prune the plagiarism search space. They
conducted experiments on some UNIX command tools (i.e. join, bc, less and tar) to show that
GPLAG is both effective and efficient.

GPLAG is built based on the observation that a plagiarised program is semantically equivalent
to the original program. As the semantics of a program can be presented as a PDG, the plagiarism
detection problem then reduces to isomorphism testing of PDGs. The definitions of some essential
concepts that are involved in GPLAG are defined, as follows:

Definition 5.5 (Program Dependence Graph). The program dependence graph G for a pro-
cedure P is a 4-tuple element G = (V ,E,µ,±), where
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• V is the set of program vertices in P, where each vertex could be a condition of control-flow,
or a data manipulation operation such as a variable declaration, a value assignment, etc.

• E 2V £V is the set of dependency edges.

• µ : V ! S is a function assigning node types
S = {ControlFlowNode, DataDependencyNode} to program vertices.

• ± : E ! T is a function assigning dependency types
T = {ControlFlowEdge, DataDependencyEdge} to edges.

The size of a graph G is defined as the number of its vertices, i.e. |G| = |V |.

Definition 5.6 (Graph Isomorphism). A bijective function f : V !V 0 is a graph isomorphism
from a graph G = (V ,E,µ,±) to a graph G0 = (V 0,E0,µ0,±0) if

• the types of corresponding vertices match, i.e. µ(v)=µ0( f (v))

• there exists a corresponding edge between the corresponding vertices,
i.e. 8e = (v1,v2) 2 E °!9e0 = ( f (v1), f (v2)) 2 E0 ^ ±(e)= ±0(e0)
and 8e0 = (v01,v02) 2 E0 °!9e = ( f °1(v1), f °1(v2)) 2 E ^ ±0(e0)= ±(e)

Definition 5.7 (∞-Isomorphism). A graph G is ∞-isomorphic to G0 if there exists a subgraph
S µG such that S is isomorphic to G0, and |G0| = |S|∏ ∞|G|,∞ 2 (0,1].

The authors consider 5 common disguises that one may employ to plagiarise a program, as
listed in Table 5.2. For each disguise, they argue that the essential part of the original PDG
is unchanged, although the code appearance might be changed significantly. To compare two
programs, GPLAG first parses them into two sets of PDGs, where each PDG corresponds to a
procedure/function. Then GPLAG checks whether one function is plagiarised from another by
checking whether their PDGs are isomorphic. For the latter check they use ∞-isomorphism which
is less strict than the standard isomorphism, in order to counter some tricker disguises that
might alter the PDG of the original program. The definition of ∞-isomorphism allows a graph g
to be isomorphic to a smaller graph g0, as long as the size of g0 is not too small (∏ ∞|g0|). This
helps to detect the code insertion disguise. They set ∞ to 0.9 in their experiments, arguing that
the effort of disguising more than 10% of a PDG is almost equivalent to rewriting the code, thus
any effort beyond that threshold would contradict to the incentive of plagiarism which is to save
effort.

Since subgraph isomorphism testing is in general a NP-complete problem, it could become
intractable once the size of graph exceeds a certain limit. It is thus important to reduce the
search space of the problem, which is the cartesian product (|%|§ |%0|) of the sizes of the two PDG
sets % and %0 extracted from the programs to compare. The authors devised a lossless and a
lossy filter to reduce the number of PDG pairs. The lossless filter is based on the definition of
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Table 5.2: Common measures of plagiarism disguise

Measure Description
Format alteration Insert and remove blanks and/or comments.

Identifier renaming Change the names of a function or its local variables.
Statement reordering Reordering statements without altering data dependency.
Control replacement Switch the if{} branches, replace the loop statement for{} with while{} or vice versa.

Code insertion Insert some junk code that does not interfere with the logic of the original program.

∞-isomorphism. For two graphs g and g0, if |g0| < ∞|g| then g cannot be ∞-isomorphic to g0. The
filter is lossless in the sense that no pair of ∞-isomorphic PDGs is falsely excluded. The lossy filter
is built on a similarity likelihood testing model named the G-test [106] that operates on the vertex
histogram. This might generate some false negatives but is significantly cheaper to compute than
isomorphism testing. The lossy filter allows users to tune the performance of GPLAG between
efficiency and accuracy.

Code plagiarism is similar to clone cloning, in the sense that the correct results of code
plagiarism detection are all qualified as code clones. However, they are different in several
aspects: I). code cloning is a behaviour with several motivations of which plagiarism is only one.
II). the semantics of plagiarised code is generally equivalent to that of the original code, while it is
not necessarily true for a pair of code clones. For instance, one can copy an existing function and
adapt it into a different usage scenario. III). the threshold of 10% PDG differences between the
plagiarised code and its origin does not necessarily apply to code clones in general. For example,
the adapted function in the previous example might be significantly different from its origin, in
terms of the PDG.

5.1.3 Binary Code Clone Detection

In this section, we present a series of tools that can be used to detect code clones at the binary
level. We summarize the techniques employed by these tools in Table 5.3.

Table 5.3: Clone detection techniques employed at the binary level

references
string
literal n-gram CFG

sequence
alignment others

TRACY [37], PLDI’14 X X k-tracelet, SAT
Rendezvous [71], MSR’13 X X X text indexing and querying (CLucene)

BAT [54], MSR’11 X data compression, binary delta comparison
Sæbjørnsen et al. [116], ISSTA’09 X clustering, LSH (Locality-sensitive Hashing)

TRACY: Tracelet-based code search in executables. David and Yahav [37] proposed a
tracelet-based clone detection algorithm at the binary level. A tracelet is a sequence of instructions
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that are bounded by control-flow instructions, i.e., a basic block in the control-flow graph (CFG)
parsed from the instruction sequence of a function. As the first part of their algorithm, the authors
enumerate a k-tracelet set from the CFG, where each k-tracelet is composed of k directly-linked
tracelets. To determine whether two functions are clones, the authors propose to compare the
k-tracelet elements pairwise between the two functions. If the percentage of matched k-tracelets
exceeds a threshold Æ, the functions are considered to match to each other. They calculate the
similarity of two tracelets as the edit distance of the sequences of instructions involved in the
tracelets. To improve the matching result, they first globally align the two instruction sequences
composed from k-tracelets, and then use a constraint solver (SAT/SMT) to rewrite the aligned
sequences to neutralise certain non-deterministic effects of compiler, such as assigning different
registers for different optimisation levels, and finally recalculate the similarity of the rewritten
sequences.

The authors did not provide an analysis of the complexity of their algorithm. But it is likely
to be expensive. First, the algorithm involves a cartesian product between two sets of k-tracelets,
where the size of each set is roughly proportional to the size of the corresponding function.
Additionally, it invokes a constraint solving for each comparison, which is shown to take half of
the time of the comparison. As a future work, the authors proposed to skip the constraint solving
step in certain cases.

Rendezvous: A search engine for binary code. Khoo et al. [71] proposed a search engine
called Rendezvous that enables indexing and searching for code in binary form. They abstract the
assembly code with a statistical model as used in the domain of information retrieval (IR). Their
model involves breaking up code into tokens and assigning a probability to the occurrence of each
token in a reference corpus. They used the model to index a repository of binary code and also to
construct a query string for a given binary in order to search for its clones in the repository. More
specifically, they employed the schemes listed in Table 5.4 to index the binary code. We give a list
of definitions for the concepts involved in this search engine as follows:

Table 5.4: Information retrieval schemes for assembly code

scheme example references
instruction mnemonic n-gram [mov,sub] [sub,mov] [99]
instruction mnemonic n-perm { mov, sub } [67]

control flow sub-graph (k-graph) [...jmp] ... ! [...je] [75]
extended control flow sub-graph ! [...jmp] ... ! [...je] ! [71]

data constant $0xBEEF [54, 71]

Definition 5.8 (instruction mnemonic). An instruction mnemonic is a textual description of
the hexadecimal encoding of an operation code (opcode) in an instruction.

80



5.1. CLONE DETECTION

The instruction mnemonic is architecture and platform dependent. Different processors have
a different set of mnemonics. The same mnemonic might correspond to different opcodes: for
instance, the opcodes 0x8b and 0x89 have the same mnemonic, mov.

Definition 5.9 (data constant). Within the assembly code, a data constant is of three types: an
integer operand, a NULL-terminated string operand, or an offset for memory addressing. For
example, in the instruction <mov 0x4(%eax), 0x1>, there are two data contants: 0x4 and 0x1.

Definition 5.10 (n-gram). A sequence consisting of n tokens, e.g. [t1, t2, t3]. The uniqueness and
the order of the tokens involved in a n-gram distinguish it from other n-grams, i.e. [t1, t2, t3] 6=
[t2, t3, t1].

Definition 5.11 (n-perm). A set consisting of n tokens, e.g. {t1, t2, t3}. Permutating the tokens
within a n-perm does not generate a new n-perm, i.e. {t1, t2, t3}= {t2, t3, t1}

Definition 5.12 (k-graph). A sub-graph consisting of k nodes where each node is connected by
at least one edge to at least one other node, i.e. ({v1,v2, ...vk}, {e1, e2, ...}).

Definition 5.13 (extended k-graph). A k-graph extended with a virtual node v§ that represents
the complete set of external nodes that have connections (e§1, e§2...) to the internal nodes (v1,v2, ...vk)
of the k-graph, i.e. ({v1,v2, ...vk,v§}, {e1, e2, ..., e§1, e§2...})

Definitions from 5.10 to 5.13 are schemes that can be used to capture various semantic or
structural aspects of binary code. The instruction mnemonic n-gram and n-perm schemes partially
capture the semantics of binary code. The n-gram enforces the order of terms (instructions) as
well as the content. However, a slight reordering of the sequence of instructions could have
no effect on the execution output. To capture this property, one can use the n-perm scheme by
removing the order constraint of the n-gram. The k-graph scheme and its extended form capture
the control-flow structure of the binary code. When the value of k is small (e.g. 3), there could
be a lot of duplication among the k-graphs, while the extended k-graph can help to distinguish
identical k-graphs in this case. And finally the data constant is one of the invariant features
of binary code, based on the observation that data constants typically do not change with the
compiler or compiler optimisation.

To index a given binary code, the Rendezvous engine extracts terms using all of the above
schemes (i.e. n-gram, n-perm, k-graph and extended k-graph) and composes them together to
construct a signature for the code. The signature is also used as a query to search for code clones
in a reference corpus. The authors conducted experiments on functions from the GNU C library
(glib) and the coreutils library. The functions are compiled both with the compiler gcc and clang
under various levels of optimisation. The results of their experiments show that Rendezvous is
able to retrieve cloned functions across binaries generated from different compilers and different
optimisation levels, with a high efficiency and recall. Nevertheless, there is a threat to the
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internal validity of their experiments, which is that it is possible that the gcc and clang compilers
naturally produce similar binary code, at least for the software in the repository, and likewise,
the results of different levels of compiler optimisation may be similar, at least with the -O1 and
-O2 options of gcc in the experiments.

BAT: Binary Analysis Tool. To detect violations of the GNU General Public Licence, Hemel
et al. [54] developed a tool called BAT (Binary Analysis Tool) for code clone detection in binaries.
Given a binary, such as a firmware image, archive or compressed file (i.e. RAR, ZIP, tar, etc.),
BAT detects clones from repositories of packages in source or binary form. Their definition of
code clone includes the result of “copy and paste” cloning at the source code level, as well as the
inclusion of third-party packages into the final binary through component composition methods
such as static linking. BAT is thus designed to detect code clones at a coarse-grain level, i.e. API
library, source code files, etc., instead of function clones. BAT comprises three clone detection
techniques: scanning for string literals, detecting similarity through data compression, and
detecting similarity by computing binary deltas.

A binary executable contains some string literals, such as constant strings in print statements,
copyright strings, license strings and so on, that are unlikely to change among code clones [53].
The intuition of the string-literal based approach is that, if one finds that a large number of
string literals extracted from a given binary also occur in another binary foo, it is reasonable to
conclude that the binary contains a clone of some code in foo. As the requisite of BAT, they first
built a string database that contains the string literals extracted from the source code files within
a repository of open source packages. They then used the Unix sed script to strip comments
from the source files and a regular expression to extract the remaining string literals. For the
binary input, they used the GNU strings tool to extract the string literals. Finally, they designed
a method to rank the list of packages that might be contained as clones in the given binary.

The main idea of the data-compression based clone detection technique is that if the con-
catenation of the subject binary and a binary from a precompiled open-source package has a
smaller compression size than the sum of the sizes resulting from compressing each of them
individually, then this is an evidence of redundancy between the two, and therefore cloning. They
devised a metric to measure the “improvement” of compression if a binary contains a clone of a
package from the repository. A crucial factor to make the technique work is the selection of the
compression algorithm. In practice, the selected compression algorithm should be able to have
a sliding window large enough to hold both files at the same time. Otherwise, the compression
might not be able to fully exploit redundancy between the two files.

Finally, the binary-delta based clone detection technique is essentially a variant of the data
compression method. The main idea is that, for a package x from the pre-compiled software
repository, if the delta (diff ) to reconstruct x from a given binary y is sufficiently small, which
says a large part of x appear in y, then it indicates cloning.
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The limitations of these approaches are that they all require a repository of pre-compiled
binaries to check against and their results are architecture dependent. In addition, the data
compression and delta comparison techniques are computationally intensive.

Detecting Code Clones in Binary Executables. Sæbjørnsen et al. [116] designed a practical
clone detection algorithm for binary executables, based on clustering of feature vectors. A feature
vector is a vector that contains a list of values, where each value is a digital representation of
certain feature, e.g. count of instructions in a sequence. They represent the assembly code of
a function as a list of feature vectors. Then they approximate the dissimilarity between two
functions by the distance between vectors (such as Euclidean distance). They cluster the obtained
feature vectors, where elements within the same clustering bucket are considered to be clones to
each other.

To abstract binary code into feature vectors, they first extract a list of n-grams from a
sequence of instructions. For each n-gram, they construct a feature vector, where each element
is the occurrence count for a specific feature, such as the mnemonic mov, the type of operand
(i.e. register, memory, constant), or the combination of the mnemonic and the type of the first
operand in an instruction, etc. To reduce the space consumption as well as the computation
time, they compressed the feature vectors using run-length encoding. Finally, they applied the
locality-sensitive hashing (LSH) algorithm proposed in DECKARD [62] to do the clustering.

Miscellaneous. A code clone, by definition, is essentially two pieces of code that are similar
to each other to certain degree. However, there does not seem to be a universal definition of
whether two code snippets are clones of each other. For instance, one might claim 70% similarity
is sufficient to be classified as code clone, while others might argument that 80% should be
the threshold. Therefore, the validity of a code clone dataset is often under question. Recently,
Krutz and Le [76] attempted to construct an validated code clone dataset as the test input for
future research on clone detection. They ran multiple clone detection tools on a set of open source
software projects and had the results manually cross-checked by experts.

5.2 Summary

In another sense, our anchored sequence alignment algorithm can also be used to measure the
similarity between two assembly code sequences, since essentially the algorithm find the best
matching point to align two sequences. Based on this intuition, our algorithm could also be
applied in code clone detection at the binary code level. Therefore, in this chapter, we have also
reviewed some related work in this domain, both on the source code and binary code levels. In
order to detect a copy right violation, where a software product copies some parts of source code
from another software product, code clone detection techniques at binary level are more practical,
since the source code of commercial software products is often not available.
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CONCLUSION

To conclude, in this thesis, we have studied a specific kind of error report, i.e. a kernel oops
from a real-world repository. Our work concerns two aspects of kernel oopses, i.e. kernel
oops comprehension and kernel oops debugging. We detail our contributions respectively

as follows:

Kernel oops comprehension. A kernel oops is a software artefact produced by the Linux
kernel. A collection of kernel oopses potentially contains information that relates to the reliability
of the Linux kernel. Therefore, we studied how we can interpret Linux kernel oopses to draw
valid conclusions about Linux kernel reliability.

To this end, we have performed a study of over 187,000 Linux kernel oopses, collected in a
repository maintained by Red Hat between September 2012 and April 2013. We first studied
properties of the data itself, then correlated properties of the data with independently known
information about the state of the Linux kernel, and then considered some features of the data
that can be relevant to understanding the kinds of errors encountered by real users and how
these features can be accurately interpreted. The main lessons learned are as follows:

• The number of oopses available for different versions varies widely, depending on which
Linux distributions have adopted the version and the strategies used by the associated
oops submission tools.

• The repository may furthermore suffer from duplicate and missing oopses, since the avail-
able information does not permit identifying either accurately.

• Identifying the service causing a kernel crash may require considering the call stack, to
avoid merging oopses triggered in generic utility functions. The call stack, however, may
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contain stale information, due to kernel compilation options.

• Analyses of the complete stack must take into account the fact that the kernel maintains
multiple stacks, only one of which reflects the current process’s or interrupt’s execution
history.

• Kernel executions may become tainted, indicating the presence of a suspicious action in
the kernel’s execution history. Oopses from tainted kernels may not reflect independent
problems in the kernel code.

Kernel oops debugging. As a crash report, a kernel oops records the state information of the
Linux kernel at runtime. Therefore, it serves as important information for kernel developers to
debug an issue within the Linux kernel that triggered a kernel oops. We help the kernel developer
to debug a kernel oops through pinpointing the offending line of the kernel oops.

To this end, we proposed a novel algorithm based on approximate sequence matching, as used
in bioinformatics, to automatically pinpoint the offending line based on information about nearby
machine-code instructions, as found in a kernel oops. We further implemented our approach
as an automatic tool named OOPSA that takes only the kernel oops as input and produces the
offending line number.

To evaluate OOPSA, we conducted a series of experiments on 100 randomly selected examples
from the kernel oops repository and the Linux kernel bugzilla. OOPSA achieves 92% accuracy,
compared to the 26% accuracy obtained through the state-of-the-art approach with the debugging
tool GDB. In addition, our algorithm has complexity linear in the size of the crashing function.
For the kernel oopses that we have tested, it takes on average 31ms to produce the result on
a current commodity machine (2.5 GHz Intel Core i5). Therefore, our solution is effective and
efficient, and thus it can ease the burden on a Linux kernel developer in debugging a kernel oops.
In resolving this problem, we made the following contributions:

• We quantified the difficulty of finding the offending line in an oops generated by an older
kernel.

• We proposed and formalized an algorithm using approximate sequence matching for identi-
fying the line of source code that led to the generation of an oops.

• We showed that the complexity of our algorithm is linear in the size of the crashing function.

• We showed that our approach is effective, achieving an accuracy of 92% on 100 randomly
selected examples.
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6.1 Future Work

Expanding the survey of the kernel oopses. The study we conducted in Chapter 3 is based
on the data collected between September 2012 and April 2013 in the kernel repository. The
repository itself is constantly receiving kernel oops reports from Linux kernel deployments in
real world. The lesson we learned from the experiments concern the properties of the content
of kernel oopses, which are unlikely to change over time, e.g. the fact that the call stack in a
kernel oops might be corrupt. However, the distribution of different kernel oopses varies over
time, e.g. there might be more kernel oopses submitted from Debian than Fedora during certain
time period. Thus, it would be interesting to re-conduct our experiments on a more recent data
set from the kernel oops repository to have new results.

Moreover, as a more systematic approach, it might be worthwhile to build a set of scripts or
tools that can be run periodically to re-perform the predefined experiments and to generate new
results. The results could give developers more awareness on the current trend of kernel oopses
so that they could prioritise their debugging effort, i.e. debugging the most frequently-reported
kernel oopses. Indeed, as one can see from the current portal of the kernel oops repository
oops.kernel.org [12], the site already shows rankings based on some attributes of kernel oops,
e.g. the top guilty functions where the crashes occur. Some of our statistical experiments can
complement the existing rankings and provide more perspectives on the kernel oops dataset.
These experiments are good candidates to be fully automated and be re-run whenever possible.

Locating the NULL-pointer variable. Our tool OOPSA can help developers to narrow down
the region of source code to search, from the hundreds of lines of code within the crashing
function to a single offending line, which saves much human effort. However, the granularity of
the result could be further improved. As we have observed from the results, the offending line is
often a compound statement that may involve several pointer variables and the fault is often
NULL-pointer dereference. In these cases, given the offending line, developers must still identify
the exact variable that is the root cause of the NULL-pointer dereference. Therefore, it would be
more helpful if the tool could automatically identify the NULL-pointer variable.

One of our directions of future work is to enhance our tool towards the above end. This could
involve static code analysis on both the source code and the assembly code, which seems to be
much more complicated than our current solution. However, it might not always be possible to
obtain a result, due to the insufficient information. This enhancement is likely to be beneficial
but remains as a challenge.

Program slice starting from the offending line. Our tool pinpoints the offending line,
which is the last line of code that the Linux kernel ran before the kernel crash. The offending
line is often the statement that involves e.g. a NULL-pointer dereference that triggers the crash.
However, the offending line is not necessarily the root cause of the fault that leads to the crash,
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but rather a starting point for developers to trace the cause. For example, the root cause of the
crash might be some statement before the offending line, which accidentally frees the memory
of the pointer variable that is dereferenced in the offending line. Thus, to find the root cause,
developers should look into the code that may have impact on the offending line.

The statements that have impact on the offending line form a backward program slice [130].
The offending line together with all the pointer variables involved in the offending line can be
considered as the slicing criterion. Within the program slice, there lies the root cause of the
kernel crash. Therefore, another improvement that can be done given the offending line from
our tool, is to perform backward program slicing starting from the offending line. The resulting
program slice would save the debugging effort of developers, and help them to locate the root
cause of the kernel oops more efficiently.

Many papers and tools provide algorithms for program slicing. However, effectively doing
the program slicing of the offending line might also demand locating the NULL-pointer variable
as explained in previous paragraph. Without discerning the actual NULL-pointer variable in
the offending line, one would need to do multiple slices on each pointer variable involved in
the offending line. Even so, overall, it would still save the effort of developers by giving all the
possible program slices which would otherwise need to be derived by the developers manually.

Binary code clone detection. In this thesis, we align machine code sequences by comparing
their similarity instruction-wise, using the semantics of assembly code, as well as sequence-wise,
using the largest common subsequence of instruction sequences [100]. The algorithms and the
methodologies that we devised are related to the ones used in the domain of binary code clone
detection. We have reviewed the state-of-the-art on code clone detection in this thesis, to explore
the possibility of applying our techniques to binary code clone detection. We are optimistic that
our techniques might help to advance the state-of-the-art of binary code detection. Therefore, this
remains a direction of future work.

Applicability to other platforms. In this thesis, we have targeted the Linux platform, and
studied a specific kind of error report, i.e. a kernel oops, that is generated by the Linux kernel.
Our work has been motivated and inspired by the study done on the error reports of the Windows
platform [35, 44]. On the other hand, our work is distinguished from previous works in terms
of the platform-specific usage scenarios and the algorithms we have designed. Our tool allows
developers to pinpoint the offending line without instrumenting the system and without human
intervention, which make it more suitable for postmortem debugging. Therefore, it would be
interesting to see whether and how our work can be applied other platforms, i.e. Windows and
Macintosh. This remains as a future work.
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For those who prefer French, I present the Introduction, the Kernel Oops Debugging, and
the Conclusion chapters of this thesis in French within this appendix.

A.1 Introduction

Dans ce chapitre, nous expliquons les problèmes que nous essayons de résoudre, et ensuite nous
montrons les contributions que nous avons faites dans cette tentative. À la fin de ce chapitre,
nous donnons une brève note sur le contenu de cette thèse.

A.1.1 Motivation

Le noyau Linux est aujourd’hui utilisé partout dans le monde numérique, allant des systèmes
embarqués aux serveurs. Il réside au cœur de nombreuses distributions de systèmes d’exploitation,
comme Android, Debian et Fedora. Bien que le noyau Linux soit largement considéré comme étant
stable pour un usage ordinaire, néanmoins, il contient encore des bugs [103], i.e. des défauts dans
le logiciel. Le noyau Linux est inévitablement bogué pour trois principales raisons. Tout d’abord,
il dispose d’une énorme base de code de plus de 15 millions de lignes de code continuant de
croître [33]. Il est extrêmement difficile de s’assurer de l’exactitude sur cette énorme base de code.
Deuxièmement, le développement et la maintenance du noyau Linux sont très dynamiques. Il y a
une version majeure du noyau Linux tous les 3 mois à laquelle plus d’un millier de développeurs
du monde entier contribuent. L’introduction d’un nouveau code ainsi que les correctifs de bogues
existants apporte de nouveaux bogues dans le noyau Linux. Troisièmement, le noyau Linux offre
une grande variété de services (pilotes de périphériques, systèmes de fichiers, etc.) et chacun d’eux
dispose d’une gamme d’options de configuration, ce qui entraîne un grand nombre de paramètres
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de configuration pour le noyau Linux [119]. Par conséquent, il est pratiquement impossible de
tester exhaustivement le noyau Linux pour toutes les configurations possibles. Pour ces raisons,
il est impossible d’éliminer tous les bugs sur le noyau Linux. Les bugs persisteront tant que le
noyau Linux évoluera mais à un taux tolérables grâce à un effort d’ingénierie continu.

Outre les mesures empêchant les bugs de se glisser dans le noyau Linux autant que possible,
les développeurs du noyau Linux ont souvent recours au postmortem debugging (le débogage
post-mortem). Le débogage est un processus permettant de localiser des bugs dans le logiciel, de
trouver leurs origines et de fournir des correctifs. Le débogage post-mortem se réfère à l’approche
de débogage d’un bug après sa manifestation, plutôt que de prédire un bug.

La manifestation d’un bug implique des erreurs qui sont des états inhabituels du logiciel.
Comme un bug est souvent difficile à reproduire, il est essentiel d’intercepter et d’enregistrer
les erreurs dues à celui-ci pour un débogage a posteriori. Afin de faciliter le débogage, les
développeurs équipent couramment les logiciels avec une infrastructure de rapport d’erreurs, de
sorte que le logiciel puisse générer automatiquement des informations sur les erreurs quand elles
se produisent. Les rapports d’erreurs générés sont ensuite recueillis et servent plus tard de point
de départ principal pour trouver des bugs.

Suivant cette même pratique, les développeurs du noyau Linux ont conçu celui-ci afin qu’il
génére un type spécifique de rapport d’erreurs, appelé kernel oops, chaque fois que le noyau
Linux plante. Entre 2007 et 2010, les kernel oopses ont tous été recueillis dans un dépôt sous la
supervision de kernel.org, le site principal de la distribution du code source du noyau Linux. Il
y avait une liste de diffusion [125] utilisée pour discuter et résoudre les kernel oopses les plus
fréquents. De la même manière, l’habitude de maintenir et de déboguer des rapports d’erreurs a
également été adoptée dans les systèmes Windows [97] et Mac OS X [1]. Les rapports d’erreurs
du systéme Windows ont été utilisés pour des tâches telles que définir les priorités des efforts de
débogage, détecter l’émergence des logiciels malveillants et suivre de la résurgence des bugs [44].
En effet, les données contenues dans ce dépôt ont le potentiel d’aider les développeurs et les
chercheurs à identifier les problèmes importants dans l’implémentation du logiciel.

Dans cette thèse, nous étudions les rapports d’erreurs dans le contexte du noyau Linux, i.e. les
kernel oops. Le caractère critique de la plupart des scénarios d’utilisation du noyau Linux signifie
qu’il est important de comprendre et de résoudre rapidement les erreurs dans le noyau Linux qui
sont rencontrées par des utilisateurs dans le monde réel. Nous abordons respectivement les deux
objectifs ci-dessus, avec une étude systématique sur une grande collection de kernel oops et un
outil pour aider les développeurs à mieux déboguer des kernel oopses.

A.1.2 Problème de Recherche

Nos objets d’étude sont les kernel oopses qui représentent un type particulier de rapports
d’erreurs. Un kernel oops est émis par le noyau Linux lorsqu’un crash se produit. En partant d’un
kernel oops, les développeurs du noyau Linux doivent comprendre l’information contenue dans
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celui-ci puis trouver l’origine du problème qui l’a déclenché. Par conséquent, à propos des kernel
oopses, notre problème de recherche porte sur deux aspects: la compréhension des kernel
oops et le débogage des kernel oops. En bref, la compréhension des kernel oops réside dans
la compréhension de l’information portée par un kernel oops ainsi que la connaissance qui peut
être extraite à partir d’une collection de kernel oops, tandis que le débogage de kernel oops se
concentre sur les actions que l’on peut prendre en vue de trouver et de régler le problème qui
déclenche le kernel oops. Nous discutons chaque aspect en détail dans les sections suivantes.

A.1.2.1 Compréhension de Kernel Oops

Un kernel oops contient des informations clés sur l’état du noyau Linux lors d’un crash. Un
kernel oops est conçu pour être concis, contrairement à d’autres rapports d’erreurs similaires, par
example, un kernel dump [111], qui est un instantané des données situées dans la mémoire et
dont la taille varie de plusieurs centaines de Mo à plusieurs Go. La concision d’un kernel oops
facilite son transfert mais inévitablement, il y a certaines informations qui ont été omises dans
un kernel oops. Par conséquent, cela exige de la part des développeurs de récupérer et de dériver
cette informations du contenu du kernel oops.

Les kernel oopses sont générés automatiquement dans le déploiement de Linux sur les
sites des utilisateurs mais la récupération des kernel oopses est une action volontairede la part
des utilisateurs. Depuis Septembre 2012, Red Hat a relancé la récupération de kernel oops
dans le dépôt situé à oops.kernel.org [12] qui reçoit des rapports de kernel oops de toutes
les distributions de Linux. Ce dépôt redonne alors la possibilité d’utiliser les kernel oops afin
de comprendre les erreurs rencontrées par les utilisateurs du Linux. Néanmoins, il est difficile
d’extraire des connaissances à partir d’une collection des kernel oopses. Le noyau Linux a des
propriétés qui rendent l’interprétation des kernel oops difficile.

Le premier défi majeur dans l’interprétation du kernel oops est l’origine obscure. L’une des
informations les plus critiques dans un kernel oops est son origine, c’est à dire le code source qui
génère le kernel oops et la plate-forme matérielle qui exécute le code source. Cependant, il est
difficile, voire impossible, d’identifier avec précision l’origine d’un kernel oops. Le noyau Linux
est fortement configurable, existe en de nombreuses versions et est intégré dans de nombreuses
distributions comme Fedora, Debian, Android, etc. Dans un kernel oops, l’information de son
origine est mal enregistrée. Même avec le numéro de version exact, il n’est pas facile d’associer
un kernel oops avec son code source. Comme chaque distribution de Linux peut personnaliser
le noyau Linux, il est difficile de suivre toutes les personnalisations. Quant à l’autre partie de
renseignements sur l’origine, la plate-forme matérielle, elle n’est pas nécessairement présente
dans un kernel oops. Le noyau Linux fonctionne sur un grand nombre de plates-formes matérielles,
parmi lesquelles beaucoup sont propriétaires et dont les entreprises ne prennent pas la peine
de remplir les informations de plate-forme dans le kernel oops. En effet, nous avons observé
beaucoup de kernel oopses avec l’informations de plate-forme ayant pour dénomination To be
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filled (à remplir). Nous soupçonnons que cela est en partie dû à des problèmes de confidentialité
car de nombreuses entreprises ne sont pas disposées à révéler trop d’informations dans un
rapport d’erreurs, même si elles acceptent de soumettre le rapport pour résoudre le problème.
Cela peut être aussi simplement dû au fait que les administrateurs du système ne prennent pas
la peine de remplir le champ.

Le deuxième défi majeur pour l’interprétation des kernel oopses est le problème de la forme
incohérente. Tout d’abord, les kernel oopses sont générés de manière ad-hoc, c’est-à-dire que
la structure et le contenu d’un kernel oops dépendent du type d’erreur qui l’a déclenché. Par
exemple, un déréférencement de pointeur non valide déclenche un kernel oops contenant un code
machine extrait autour de l’adresse mémoire du pointeur d’instruction, mais ce fragment de code
n’est pas présent dans les kernel oopses qui sont déclenchés par des erreurs liées au matériel.
Deuxièmement, un kernel oops peut être transmis de manière différente selon la distribution
de Linux utilisée. Pour des raisons de sécurité et de performance, le noyau Linux ne soumet
pas de kernel oopses vers le dépôt mais les écrits dans un fichier de journalisation du noyau.
Les différentes distributions de Linux fournissent leurs propres applications pour récupérer
des kernel oopses de ce fichier de journalisation et les soumettre au dépôt. Ces applications
pourraient décider de ne pas inclure certaines informations dans un kernel oops. Par exemple,
nous avons remarqué que les versions récentes de Fedora suppriment l’identifier d’un kernel oops
lors de la soumission.

En raison des défis décrits ci-dessus, il est difficile d’extraire toutes les informations néces-
saires des kernel oopses et d’en tirer des conclusions fiables sur les informations. Dans le
chapitre 3, nous effectuons une étude systématique sur de récents kernel oopses contenu dans
un dépôt. En outre, nous détaillons les défis que nous avons rencontrés et les solutions que nous
avons proposées.

A.1.2.2 Débogage de Kernel Oops

Une ensemble de kernel oops donne un aperçu sur le noyau Linux. D’un autre côté, un kernel oops
individuel a le potentiel d’aider les développeurs du noyau Linux dans leur travail quotidien. Les
principales tâches d’un développeur du noyau Linux sont d’ajouter de nouvelles fonctionnalités
au noyau, ainsi que de résoudre les problèmes qui ont été identifiés dans l’implémentation des
fonctionnalités existantes. Un kernel oops est utile pour cette dernière tâche. En effet, en tant
que rapport d’erreur, un kernel oops enregistre une image instantanée de l’état du noyau au
moment du crash. Par conséquent, un kernel oops fournit des informations de première main
sur la manifestation d’un bug dans le noyau Linux, ce qui est essentiel pour résoudre ce bug
plus tard. Dans le même temps, un kernel oops est enregistré principalement au niveau du code
machine, ce qui le rend difficile à interpréter et limite considérablement son utilité. Ainsi, il
est souhaitable pour les développeurs du noyau Linux d’avoir des techniques ou des outils qui
peuvent les aider au débogage de kernel oops individuel.
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Une partie fondamentales pour le débogage de tout crash de logiciel, y compris un kernel oops,
est d’identifier l’offending line (la ligne fautive), c’est-à-dire la ligne du code source à laquelle
le crash s’est produit. Afin d’illustrer l’importance de connaître la ligne fautive et la difficulté
à l’obtenir à partir d’un kernel oops, même dans un cas favorable où il est possible d’interagir
avec l’utilisateur qui a rencontré le crash, nous montrons un cas réel [28] extrait du bugzilla du
noyau Linux. Un utilisateur nommé Jochen a rencontré des crashs fréquents sur son système de
fichiers XFS et a déposé un rapport de bogue comprenant un kernel oops. Un développeur nommé
Dave a pris en charge le rapport et a commencé à déboguer le problème. Comme Dave n’avait pas
accès au noyau que Jochen avait utilisé, il a conduit Jochen au travers d’une série de procédures
à effectuer sur sa machine afin de produire les informations à propos de la ligne fautive. Au total,
il a fallu 16 échanges de commentaires avant qu’une autre utilisatrice, Katharine, qui a eu le
même problème, ait réussi à obtenir la ligne fautive. Dave a rapidement compris la cause du
bogue et a ensuite fourni un correctif correspondant.

Une solution pour obtenir les informations de ligne fautive serait d’instrumenter le noyau
Linux pour inclure le numéro de la ligne fautive dans un kernel oops. Cependant, ce n’est pas
une solution viable. Tout d’abord, la stratégie est intrusive car elle nécessite une mise-à-jour du
noyau Linux. Comme des utilisateurs ont leur propre noyau Linux personnalisé, une mise-à-jour
du noyau les obligerai à recompiler et recharger leur noyau. Cette exigence pourrait entraver
l’adoption de la solution. Deuxiémement, l’instrumentation introduirait un surcoût d’exécution du
noyau Linux, en plus d’augmenter la taille de l’image du noyau. En effet, une récente proposition
(Septembre 2012) [70] pour étendre le noyau Linux afin d’inclure le numéro de la ligne du code
source a été rejetée, car il exige un trop grand (bien que limité d’un certain point de vue) espace
supplémentaire (10 Mo) dans le noyau. Pour finir et certainement le plus important, la solution ne
résout pas le problème du débogage d’un grand nombre de rapports de kernel oops déjà disponible
dans le rṕertoire, et qui possèdent un potentiel pour renforcer la fiabilité du noyau Linux s’il était
possible de s’en servir.

Par conséquent, une solution souhaitable pour le problème de localisation précise de la ligne
fautive d’un kernel oops serait d’avoir un outil automatique permettant de localiser celle-ci, en
ayant uniquement un seul kernel oops, sans aucune intervention humaine ni instrumentation du
système.

A.1.3 Contribution

Nous conduisons notre recherche au sujet de ces deux aspects de notre problème de recherche
décrit ci-dessus. Dans cette section, nous listons les contributions que nous avons faites afin de
résoudre le problème.

Compréhension de kernel oops. Nous étudions comment nous pouvons interpréter les
kernel oopses pour en tirer des conclusions à propos de la fiabilité du noyau Linux. À cette fin,
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nous effectuons une étude sur plus de 187 000 de kernel oopses, recueillis dans un dépôt maintenu
par Red Hat entre Septembre 2012 et Avril 2013. Nous étudions d’abord les caractéristiques
des données, puis nous les corrélons avec des informations connues indépendamment de l’état
du noyau Linux. Pour finir, nous prenons en compte certaines caractéristiques des données
qui peuvent être utiles pour comprendre les types d’erreurs rencontrées par les utilisateurs et
comment ces caractéristiques peuvent être interprétées de façon précise. Les enseignements
principaux que nous en avons tirés sont les suivants:

• Le nombre de kernel oopses disponibles dans le dépôt pour les versions différentes du noyau
Linux est très variable. Cela dépend des outils de soumission pour les kernel oopses et de
leurs stratégies sur chaque distribution de Linux.

• Le dépôt peut avoir des doublons ou des kernel oopses manquants car les informations
disponibles ne permettent pas de vérifier l’un ou l’autre de fao̧n précise.

• Identifier le service qui a déclenché un kernel oops peut nécessiter l’examen de la pile
d’appel (call trace), afin d’éviter de fusionner les kernel oopses déclenchés dans des fonctions
génériques.

• La pile d’appel, cependant, peut contenir des informations périmées, en raison des options
de compilation.

• Les analyses de la pile complète d’appels de fonction doivent tenir compte du fait que le
noyau maintient plusieurs piles, dont seulement l’une d’entre elles enregistre l’historique
du processus courant ou de l’exécution de l’interruption.

• L’exécutions du noyau Linux peut être contaminé, indiquant la présence d’un action sus-
picieuse dans l’historique de l’exécution du noyau.

• Les kernel oops contaminés peuvent ne pas refléter les problémes indépendants dans le
code du noyau Linux.

Débogage de kernel oops. Nous aidons les développeurs du noyau Linux à déboguer un
kernel oops en localisant avec précision la ligne fautive du kernel oops. Pour cela, nous proposons
un nouvel algorithme basé sur la correspondance approximative de séquences, utilisé en bio-
informatique, afin d’identifier automatiquement la ligne fautive en se basant sur le code machine
situé à proximité du point de crash que l’on trouve dans un kernel oops. Nous intégrons notre
approche dans un outil automatique nommé OOPSA /où ça/, qui prend uniquement des kernel
oopses en entrée et produit les numéros des lignes fautives.

Pour évaluer OOPSA, nous avons effectué un série d’expériences sur 100 exemples choisis
au hasard dans le dépôt de kernel oopses et du bugzilla du noyau Linux. OOPSA obtient 92% de
précision dans l’identification de la ligne fautive, par rapport à la précision de 26% obtenue par

94



A.2. DÉBOGAGE DE KERNEL OOPS

l’approche de l’état de l’art actuel. De plus, notre algorithme une complexité linéaire en fonction
de la taille de la fonction qui cause le crash. Pour les kernel oopses que nous avons testé, OOPSA

prend en moyenne 31ms pour produire le résultat sur une machine actuelle. Par conséquent,
notre solution est efficace et efficiente, elle peut donc alléger la charge d’un développeur du noyau
Linux pour le débogage des kernel oopses.

En résolvant ce problème, nous avons fait les contributions suivantes:

• Nous quantifions la difficulté à trouver la ligne fautive dans un kernel oops généré par un
noyau Linux plus ancien.

• Nous proposons et formalisons un algorithme qui utilise la correspondance approximative
de séquences pour l’identification de la ligne du code source qui a déclenchée un kernel
oops.

• Nous montrons que la complexité de notre algorithme est linéaire en fonction de la taille de
la fonction qui cause le crash.

• Nous montrons que notre approche est efficace et atteint une précision de 92% sur 100
exemples choisis au hasard.

A.1.4 Organisation

Le reste de cette thèse est organisé comme suit: Le chapitre 2 présente l’état de l’art du domaine
de cette thèse. Le chapitre 3 aborde l’aspect de la compréhension des kernel oopses qui viennent
d’un dépôt maintenu par Red Hat. Le chapitre 4 discute de notre solution pour identifier la ligne
fautive d’un kernel oops, dans le contexte du débogage de kernel oops. Le chapitre 5 discute des
travaux qui sont liés aux techniques que nous avons conçu dans le Chapitre 4. Le chapitre 6
conclut cette thèse.

A.2 Débogage de Kernel Oops

Dans cette section, nous discutons de l’algorithme principal que nous avons conçu pour iden-
tifier la ligne fautive d’un kernel oops. L’objectif principal de l’algorithme est d’automatiser
la mise en correspondance de l’extrait de code machine avec le code machine de la fonction
compilée localement. Nous nous inspirons de l’alignement approximatif des séquences utilisé
en bio-informatique [115, 121]. Nous commençons par quelques définitions et ensuite nous pro-
posons un algorithme de correspondance qui se concentre sur chaque contrepartie possible à
l’instruction fautive et à son contexte environnant. Cet algorithme de correspondance utilise un
autre algorithme pour faire correspondre le préfixe d’une séquence avec une autre séquence de
code, que nous présentons ci-après.

95



APPENDIX A. APPENDIX A

A.2.1 Définitions

Nous nous référons à l’extrait de code désassemblé comme étant le code extrait, C, et à la fonction
compilé localement comme étant la fonction locale, L. Nous définissons d’abord quelques
propriétés de séquence puis nous décrivons la correspondance de séquence:

Definition A.1. Pour une séquence S, on note S[i] l’élément à la position i et |S| représente la
longueur de S. Nous définissons également un élément spécial appelé écart, noté ?.

Definition A.2. Pour une séquence S de longueur n et pour tout (i, j) tels que 1 ∑ i ∑ j ∑ n,
bS = S[i... j] est une sous-chaîne de S et bS = S[1... j] est un préfixe de S.

Definition A.3. Pour les séquences S1 et S2, nous définissons un alignement ancré de S1 avec
S2, noté Align(S1,S2), comme n’importe quel couple (S0

1,S0
2) tel que I). S0

1 et S0
2 sont des séquences

qui peuvent contenir des écarts. II). |S0
1| = |S0

2|. III). La suppression des écarts de S0
1 laisse S1.

IV). La suppression des écarts de S0
2 laisse un préfixe de S2.

L’alignement ancré est une variante de l’alignement global et de l’alignement local utilisé
en bioinformatique [115, 121]. L’alignement global fait correspondre deux séquences complètes,
tandis que l’alignement local fait correspondre des sous-séquences de ces séquences. l’alignement
ancré fait correspondre une séquence complète à un préfixe d’une autre séquence, comprenant ou
non des écarts. La Figure A.1 présente un exemple.

S1[1] ? S1[2] S1[3] S1[4] ? ? S1[5]
| | | | | | | |

S2[1] S2[2] S2[3] S2[4] ? S2[5] S2[6] S2[7] . . .
Figure A.1: Align(S1,S2), où |S1| = 5 et |S2|∏ 7

En général, utiliser n’importe quelle correspondance pour trouver la ligne fautive ne suffit
pas. À la place, nous choisissons la meilleure correspondance à l’aide d’une fonction de notation.
En effet, le défi d’un alignement est de déterminer l’emplacement des écarts afin d’obtenir le
score le plus élevé possible.

Definition A.4. Soit les éléments s1 et s2, alors la fonction score(s1, s2) est une mesure de la
similarité entre s1 et s2.

La définition précise de la fonction score est orthogonale au problème de l’alignment et est
reportée à la prochaine section. Néanmoins, nous requérons qu’une correspondance avec un
écart ait un score négatif afin de le rendre défavorable lors d’une correspondance d’un écart avec
lui-même.

Definition A.5. Soit les séquences S0
1 et S0

2 de longueur n, pouvant contenir des écarts, alors nous

définissons la similarité entre S0
1 et S0

2, comme Sim(S0
1,S0

2)=
nP
i

score(S0
1[i],S0

2[i]).

96



A.2. DÉBOGAGE DE KERNEL OOPS

C[1] ... C[t] ... C[m]

S[1] ... S[ j] ... S[i] ... S[k] ... S[n]

anchor

Figure A.2: Le schéma de l’alignment ancré des séquences

Definition A.6. Soit les séquences S1 et S2, alors nous définissons µ comme l’ensemble de tous
les alignements possibles ancrés entre S1 et S2, i.e., Align(S1,S2). Alors, l’alignement ancré
optimal entre S1 et S2, noté alignopt(S1,S2), est un élément de l’ensemble {µ 2£ |8µ1 2£,Sim(µ)∏
Sim(µ1)}.

A.2.2 L’alignment Ancré des Séquences

Nous définissons la correspondance d’alignements ancrés de séquences comme un processus
permettant de sélectionner l’instruction homologue, une instruction appartenant à la fonction
locale et correspondant au mieux à l’instruction fautive, tout en prenant en compte le contexte
de ces instructions. Tout d’abord, nous sélectionnons un ensemble de points d’ancrage, les
candidats possibles appartenant à la fonction locale pour l’instruction homologue. Ensuite, à
partir de chaque point d’ancrage, nous calculons respectivement la correspondance optimale
entre les fragments précédents et suivants de l’extrait de code et de la fonction locale. Enfin,
nous sélectionnons le point d’ancrage avec la valeur de similarité maximale pour l’instruction
homologue.

L’Algorithme 6 présente l’algorithme de l’alignment ancré des séquences. Les lignes 2-6
effectuent les initialisations, y compris le fractionnement de l’extrait de code en trois parties:
la partie précédent l’instruction fautive, C_left, l’instruction fautive, trap, et la partie suivant
l’instruction fautive, C_right. Le séquence C_left est inversé car nous voulons faire correspondre
la séquence à gauche de l’instruction fautive, précédent l’instruction fautive (cf. Figure A.2).
Les lignes 8-22 itérent sur tous les points d’ancrage possibles. Pour chaque point d’ancrage, la
fonction locale est divisée en L_left, anchor, et L_right, avec L_left inversé (lignes 9-12), de façon
analogue à C_left. L’algorithme d’alignement ancré optimal est ensuite utilisé par la fonction
align pour aligner C_left avec L_left, et C_right avec L_right pour obtenir le score de similarité
(lignes 13-14). Nous calculons également le score de similarité de l’instruction fautive et du point
d’ancrage choisi (ligne 15). Si la somme de ces scores est supérieure au meilleur score trouvé
jusqu’à présent, le point d’ancrage actuel est enregistré comme étant la meilleure correspondance
(lignes 16-21). Le résultat final est alors le meilleur point d’ancrage (ligne 23).

97



APPENDIX A. APPENDIX A

Algorithm 6 L’algorithme de l’alignment ancré des séquences
1: function ASM(List C, List L, List anchors, Int t)
2: best_anchor √°1
3: max_score √ min_value
4: C_left √ reverse(C[1..t°1])
5: trap √ C[t]
6: C_right √ C[t+1..C.length]
7:
8: for i = 1 ! anchors.length do
9: L_left √ reverse(L[1..t°1])

10: anchor √ L[i]
11: L_right √ L[t+1..L.length]
12:
13: left_score √ align(C_left, L_left)
14: right_score √ align(C_right, L_right)
15: anchor_score √ score(trap, anchor)
16: total_score √ left_score + right_score + anchor_score
17:
18: if (total_score > max_score) then
19: max_score √ total_score
20: best_anchor √ i
21: end if
22: end for
23: return best_anchor
24: end function

A.2.3 L’alignment Ancré

L’alignement ancré des séquences utilise la fonction align( bC, bL) pour faire correspondre l’extrait
de code des chaînes de caractères bC précédent et suivant l’instruction fautive au contexte bL de
chaque point d’ancrage proposé. L’Algorithme 7 présente une mise-en-œuvre récursive et simple.
Pour chaque paire de séquences non-vides, cet algorithme prend la valeur maximale produite
par deux possibilités: faire correspondre le début de chaque séquence avec entre eux et la fin de
chaque séquence entre elles récursivement ou faire correspondre le début d’une séquence avec un
écart et la fin de cette séquence récursivement avec l’autre séquence. Les lignes suivantes traitent
les cas des séquences vides. Si la sous-chaîne d’extrait de code est vide (ligne 3), le résultat est
0, reflètant le fait que cela doit être simplement associé à un préfixe de la sous-chaîne de la
fonction locale. D’autre part, si la sous-chaîne de la fonction locale est vide (ligne 4), le résultat
est le produit de la longueur de la sous-chaîne de l’extrait de code restant et du score de l’écart,
correspondant effectivement à la sous-chaîne de l’extrait de code restant avec les écarts.

L’algorithme récursif construit un arbre à trois voies d’exécution dans lequel chaque branche
a une hauteur au plus de | bC|+ |bL|. | bC| a une taille fixe, et sauf si la fonction locale est très petite,
on a | bC|∑ |bL|. La complexité est par conséquent O(3|bL|).

L’algorithme récursif recalcule les scores de plusieurs alignements possibles. Pour éviter cette
inefficacité, nous utilisons la technique de programmation dynamique [25] comme indiqué dans
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Algorithm 7 Un algorithme récursif d’alignement ancré
1: function alignrc(List bC, List bL)
2: match ( bC, bL) with
3: | ([ ], _) ! 0
4: | (_, [ ]) ! | bC|£gap_score
5: | (c::ct, l::lt) !
6: let gap_score = score(?, ?) in
7: let head_score = score(c, l) in
8: let no_gap = align(ct, lt) + head_score in
9: let cs_gap = align(ct, bL) + gap_score in

10: let lk_gap = align( bC, lt) + gap_score in
11: return max(no_gap, cs_gap, lk_gap)
12: end function

l’algorithme 8. Cet algorithme remplit une matrice DPM de taille (| bC|+1)£ (|bL|+1). La valeur
stockée dans la cellule dpm[i][ j] représente le score de similarité du meilleur alignement entre
bC[1..i] et bL[1.. j]. Comme l’alignement ancré nécessite de faire correspondre la sous-chaîne de
l’extrait complet de code, mais seulement un préfixe de la chaîne de la fonction locale, nous prenons
la meilleure valeur qui est trouvée n’importe où dans la ligne dpm[| bC|][§] comme le résultat.
Ceci contraste avec l’implémentation utilisant la programmation dynamique de l’alignement
global [115, 121], dans lequel le calcul itératif est le même, mais le résultat est dpm[| bC|][|bL|].

Algorithm 8 L’alignement ancré par la programmation dynamique
1: function Aligndp(List bC, List bL)
2: // init matrix with zero
3: dpm √make_matrix(0..| bC|,0..|bL|,0)
4: gap_score √ score(?, ?)
5:
6: for i = 1! | bC| do
7: dpm[i][0] √ i § gap_score
8: end for
9:

10: for j = 1! |bL| do
11: dpm[0][j] √ j § gap_score
12: end for
13:
14: for i = 1! | bC| do
15: for j = 1! |bL| do
16: head_score √ score( bC[i], bL[ j])
17: dpm[i][j] √max (
18: dpm[i°1][ j°1] + head_score,
19: dpm[i°1][ j] + gap_score,
20: dpm[i][ j°1] + gap_score)
21: end for
22: end for
23: return score_opt(dpm[| bC|])
24: end function

L’algorithme utilisant la programmation dynamique (présenté dans l’Algorithme 8) commence
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par l’initialisation de la colonne d’indice zéro de chaque ligne avec un multiple du score de l’écart
(lignes 6-8), ce qui refléte la nécessité de faire correspondre des éléments de la sous-chaîne de
l’extrait de code avec des écarts lorsque la sous-chaîne de la fonction locale est terminée. La ligne
d’indice zéro de chaque est ensuite initialisée avec un multiple du score de l’écart (ligne 10-12),
reflétant le coût de pousser l’alignement initial d’une sous-chaîne d’un extrait de code après un
préfixe de la chaîne de la fonction locale, ce qui nécessite l’alignement des éléments de ce préfixe
avec des écarts. Le reste de l’algorithme itére sur tous les éléments de la matrice, en partant des
éléments ayant les plus petits indices (représentant les premières parties de chaque séquence) et
se déplaçant vers les éléments ayant les plus grands indices (représentant les parties ultérieures
de chaque séquence). Pour chaque paire de décalages, l’algorithme considère les possibilités que
les éléments de la séquence représentées par la position courante correspondent (ligne 18), ou que
l’un ou l’autre corresponde à un écart (lignes 19-20). Dans chaque cas, le score de correspondance
ou le score d’écart est ajouté à la valeur calculée précédemment contenue dans la matrice à la
position correspondant à l’effet de la correspondance sur les deux sous-séquences. Le résultat
pour l’élément actuel de la matrice est le résultat maximal produit par l’un de ces trois cas. Une
fois que le tableau est rempli, le résultat est le plus grand score situé dans la ligne, représentant
la fin de la sous-chaîne d’extrait de code. La complexité de l’algorithme est proportionnelle à la
taille de la matrice, i.e. O(| bC|£ |bL|).

A.3 Conclusion

Dans cette thèse, nous avons étudié un type particulier de rapport d’erreurs, i.e. un kernel oops
qui vient d’un dépôt du monde réel. Notre travail concerne deux aspects des kernel oopses: la
compréhension de kernel oops et le débogage de kernel oops. Nous détaillons nos contributions
comme suit:

Compréhension de kernel oops. Un kernel oops est un artefact de logiciel qui est généré
par le noyau Linux. Une collection de kernel oopses contient potentiellement des informations
liées à la fiabilité du noyau Linux. Par conséquent, nous avons étudié la façon dont nous pouvons
interpréter les kernel oopses pour en tirer des conclusions valables sur la fiabilité du noyau
Linux.

Nous avons effectué une étude sur plus de 187 000 kernel oopses qui ont été recueillis
dans un dépôt maintenu par Red Hat entre Septembre 2012 et Avril 2013. Nous avons tout
d’abord étudié les caractéristiques de ces données, puis nous avons corrélé les caractéristiques
avec des informations connues indépendamment de l’état du noyau Linux. Nous avons pris en
compte certaines caractéristiques de ces données pouvant être utiles pour comprendre les types
d’erreurs rencontrées par les utilisateurs, et la façon précise dont ces caractéristiques peuvent
être interprétées. Les enseignements principaux que nous avons tirés sont les suivants:
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• Le nombre de kernel oopses disponibles dans le dépôt pour les versions différentes du noyau
Linux est très variable Cela dépend des outils de soumission pour les kernel oopses et de
leurs stratégies sur chaque distribution de Linux.

• Le dépôt peut avoir des doublons ou des kernel oopses manquants car les informations
disponibles ne permettent pas de vérifier l’un ou l’autre de fao̧n précise.

• Identifier le service qui a déclenché un kernel oops peut nécessiter l’examen de la pile
d’appel (call trace), afin d’éviter de fusionner les kernel oopses déclenchés dans des fonctions
génériques.

• La pile d’appel, cependant, peut contenir des informations périmées, en raison des options
de compilation.

• Les analyses de la pile complète d’appels de fonction doivent tenir compte du fait que le
noyau maintient plusieurs piles, dont seulement l’une d’entre elles enregistre l’historique
du processus courant ou de l’exécution de l’interruption.

• L’exécutions du noyau Linux peut être contaminé, indiquant la présence d’un action sus-
picieuse dans l’historique de l’exécution du noyau.

• Les kernel oops contaminés peuvent ne pas refléter les problémes indépendants dans le
code du noyau Linux.

Débogage de kernel oops. Comme un rapport d’erreur, un kernel oops enregistre des infor-
mations d’état du noyau Linux lors de l’exécution. Par conséquent, il contient des informations
essentielles pour les développeurs de déboguer le probléme dans le noyau Linux qui a déclenché
un kernel oops. Nous aidons le développeur du noyau Linux de déboguer un kernel oops par
localiser avec précision la ligne fautive.

Nous avons proposé un nouvel algorithme basé sur l’algorithme de la correspondance approx-
imatif de séquence, originé de la bio-informatique, afin d’identifier automatiquement la ligne
fautive basé sur l’informations des codes matériels à proximité du point d’écrasement que l’on
trouve dans un kernel oops. Nous avons intégré notre approche dans un outil automatique nommé
OOPSA /où ça/, qui ne prend que des kernel oopses en entrée et produit les numéros des lignes
fautives.

Pour évaluer OOPSA, nous avons effectué un série d’expériences sur 100 exemples choisis
au hasard dans le dépôt du kernel oops et du bugzilla du noyau Linux. OOPSA a réalisé 92% de
précision dans l’identification de la ligne fautive, par rapport à la précision de 26% obtenu par
l’approche courante. De plus, notre algorithme a la complexité linéaire en fonction de la taille de
la fonction qui s’écrase. Pour les kernel oopses que nous avons testé, il prend 31ms en moyens
pour produire le résultat sur une machine actuel. Par conséquent, notre solution est efficace et
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efficient, et donc il peut alléger la charge sur un développeur du noyau Linux pour la tâche de
déboguer des kernel oopses.

En résoudrant ce problème, nous avons fait les contributions suivantes:

• Nous avons quantifié la difficulté à trouver la ligne fautive dans un kernel oops généré par
un noyau Linux plus ancien.

• Nous avons proposé et formalisé un algorithme qui utilise la correspondance approximative
de séquences pour l’identification de la ligne du code source qui a déclenchée un kernel
oops.

• Nous avons montré que la complexité de notre algorithme est linéaire en fonction de la
taille de la fonction qui cause le crash.

• Nous avons montré que notre approche est efficace et atteint une précision de 92% sur 100
exemples choisis au hasard.

A.3.1 Perspectives

Étendre l’étude des kernel oopses. L’étude que nous avons faite dans le Chapitre 3 est basé
sur des données recueillies entre Septembre 2012 et Avril 2013 dans un dépôt de kernel oopses.
Le dépôt reçoit constamment des rapports de kernel oopses à partir des déploiements du noyau
Linux dans le monde réel. Les leçon que nous avons apprises concernant les caractéristiques du
contenu d’un kernel oops sont peu susceptibles de changer au fil du temps. Par exemple, la pile
d’appel dans un kernel oops court toujours le risque d’être contaminé. Cependant, la distribution
de kernel oops des différents noyaux varie au cours du temps. Par exemple, il pourrait y avoir
plus de kernel oopses de Debian par rapport á Fedora pendant certaines périodes de temps. Ainsi,
il serait intéressant de re-conduire nos expériences sur des données plus récentes dans le dépôt
de kernel oopses afin d’avoir des nouveaux résultats.

En outre, dans le cadre d’une approche systématique, il pourrait être intéressant de construire
un ensemble de scripts ou d’outils pouvant être exécutés périodiquement et des expériences
prédéfinies permettant de générer des nouveaux résultats. Les résultats pourraient donner aux
développeurs une plus grande sensibilisation sur la tendance actuelle des kernel oopses afin
qu’ils puissent établir une priorité dans leurs efforts de débogage, i.e. déboguer les kernel oopses
les plus fréquents. En effet, comme on peut le voir sur le portail actuel du dépôt de kernel oopses
(oops.kernel.org [12]), le site montre déjà des classements basés sur des attributs de kernel
oops, par exemple, les fonctions qui font crasher le noyau le plus fréquemment. Une partie de nos
expériences statistiques peuvent compléter les classements existants et offrir plus de perspectives
sur l’ensemble des données sur les kernel oopses. Ces expériences sont de bons candidats pour
être entièrement automatisées et être ré-exécutés à la demande.
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Localisation d’un pointeur NULL. Notre outil (OOPSA) peut aider les développ-eurs à
identifer la région du code source à rechercher, partant de plusieurs centaines de lignes de
code d’une fonction coupable à la ligne de code fautive, ce qui permet d’économiser des efforts
d’ingénierie. Cependant, la granularité des résultats pourraient encore être améliorée. Comme
nous l’avons observé dans les résultats obtenus, la ligne fautive est souvent une instruction
composée qui implique plusieurs variables de pointeur, et la faute est souvent due au déréférence
d’un pointeur NULL. Dans ces cas, compte tenu de la ligne fautive, les développeurs doivent
encore identifier la variable exacte qui est la cause de racine de la déréférence d’un pointeur
NULL. Par conséquent, l’outil serait plus utile s’il pouvait identifier plus précisement la variable
de pointeur NULL.

L’une de nos perspectives de travail est d’améliorer notre outil afin de pouvoir remplir cet
objectif. Cela pourrait employer de l’analyse statique de code, à la fois sur le code source (C)
et le code assembleur, ce qui semble être beaucoup plus complexe que notre solution actuelle.
Cependant, il ne serait pas toujours possible d’obtenir un résultat, notamment en raison de
l’insuffisance des informations. Cette amélioration est susceptible d’être bénéfique, mais reste
comme un défi.

Portion de programme partant de la ligne fautive. Notre outil identifie la ligne fautive
qui est la derniẽre ligne de code que le noyau Linux exécute avant le crash du noyau. La ligne
fautive est souvent une instruction qui implique, par exemple, le déréférencement d’un pointeur
NULL qui provoque le crash. Cependant, la ligne fautive ne désigne pas nécessairement l’origine
de la faute mais plutôt un point de départ pour les développeurs afin de la retrouver. Par
exemple, l’origine de la faute pourrait être une instruction précédent la ligne fautive qui libère
accidentellement une zone mémoire référencée par un pointeur et qui est ensuite accédée par la
ligne fautive. Ainsi, pour trouver l’origine du problème, les développeurs devraient se pencher
sur le code qui a un impact sur la ligne fautive.

Les états qui ont un impact sur la ligne fautive sont appelés “la portion arrière du pro-
gramme” [130]. La ligne fautive avec l’ensemble des variables de pointeur impliqués dans la ligne
fautive peuvent être considérés comme le critère de découpe du programme. Dans cette portion du
programme réside la cause principale du noyau Linux. Par conséquent, compte tenu de la ligne
fautive donnée par notre outil, une autre candidat d’amélioration est d’effectuer le tranchage de
programme en arrière à partir de la ligne fautive. La portion du programme obtenue permettrait
d’économiser du temps débogage pour les développeurs et de les aider à identifier les origines
principales des kernel oopses plus efficacement.

De nombreux documents et outils fournissent des algorithmes pour une portion du programme.
Cependant, en effectuer la découpe de programme en partant de la ligne fautive pourrait égale-
ment nécessiter de localiser la variable de pointeur NULL comme expliqué dans le paragraphe
précédent. Sans discerner la variable de pointeur NULL dans la ligne fautive, on aurait besoin
de faire plusieurs découpes sur chaque variable pointeur impliquée dans la ligne fautive. Cela
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étant dit, donner toutes les portions possibles du programme économiserait tout de même les
efforts des développeurs au lieu que ce soit eux qui les extraient manuellement.

La détection de clone de code binaire. Dans cette thèse, nous alignons des séquences de
code machine en comparant leur similitude instruction par instruction, en utilisant la sémantique
du code assembleur, mais également séquence par séquence, en utilisant la plus grande sous-
séquence commune de séquences d’instructions [100]. Les algorithmes et les méthodes que nous
avons conçus sont aussi utilisés dans le domaine de la détection de clone de code binaire. Nous
avons revu l’état de l’art des travaux sur la détection de clone de code dans cette thèse afin
évaluer la possibilité d’appliquer nos techniques à ce domaine. Nous sommes confiants sur le fait
que nos techniques peuvent contribuer à faire avancer l’état de l’art de la détection de clone de
code binaire. Par conséquent, cela reste une perspective poru des travaux ultérieurs.

L’applicabilité à d’autres plates-formes. Dans cette thèse, nous avons ciblé la plate-forme
Linux et étudié un type particulier de rapport d’erreurs i.e., les kernel oopses qui sont générés
par le noyau Linux. Notre travail a été motivé et inspiré par les études effectuées sur les rapports
d’erreurs de la plate-forme Windows [35, 44]. D’autre part, notre travail se distingue des travaux
antérieurs en terme de scénarios d’utilisation spécifiques à la plateforme et les algorithmes que
nous avons conçus. Notre outil (OOPSA) permet aux développeurs d’identifier la ligne fautive sans
instrumentation du système et sans intervention humaine, ce qui rend plus facile le débogage. Par
conséquent, il serait intéressant de voir dans quelle mesure notre travail pourrait être appliqué
sur d’autres plates-formes comme Windows et Macintosh.
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