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General Introduction

In this thesis we address the problem of reconstructing the transcription profile from

RNA-Seq reads in cases where the reference genome is available but without making use

of existing annotation. An important result of this work consists in the design of a new

model for the RNA-Seq read counts. We also extend the analysis to account for multiple

conditions and notably design a method to estimate regions with difference in expression

(DE) without using previously defined transcription units.

The first chapter consists of an introduction to the biological context and high-

throughput sequencing where particular attention is paid to presenting the transcriptome

investigation by RNA-Seq. RNA-Seq results in the determination of the sequences of

transcript fragments (reads). Mapping the reads to genomic positions reveals the regions

that are transcribed. The distribution of reads mapped to positions within such a region

should present some property of homogeneity. Based on this, we expect that significant

changes in read coverage along the genome can point to transcription breakpoints.

The second chapter deals with statistical methods that can be used in the analysis

of series of counts. In the framework of State Space Models (SSM), models that pertain

to estimating latent trajectories from series of observations, we present current methods

for parameter and latent trajectory reconstruction. The Sequential Monte Carlo (SMC)

methods are particularly fit for inference in complex SSMs. We focus on presenting

Particle Monte Carlo Markov Chain and in particular the Particle Gibbs, a Monte Carlo

Markov Chain algorithm that uses SMC updates of the latent profile as a proposal.

In the third chapter we present our contribution for the RNA-Seq read count model,

the inference transcription profile by using Particle Gibbs and the reconstruction of DE

regions. Our initial work used Negative Binomial distributions to model the read count

emission given the expression level (hidden trajectory). The analysis of several data-

sets proved that this model is not generally valid. To address this issue we develop

a mechanistic model which accounts for the randomness generated within all RNA-Seq

protocol steps. Such a model is particularly important for the assessment of the credibility

intervals associated with the transcription level and coverage changes. Parameter values

within this model can be further used to describe protocol characteristics.



In the fourth chapter we describe the transcription profile reconstruction. We describe

a SSM accounting for the read count profile for observations and transcription profile

for the latent variable. For the transition kernel we design a mixture model combining

the possibility of making, between two adjacent positions, no move, a drift move or a

shift move. Then we detail our approach for the reconstruction of the transcription

profile and the estimation of parameters using the Particle Gibbs algorithm. We analyse

the accuracy of our Particle Gibbs implementation and compare it to the Sequential

Importance Resampling algorithm. We then evaluate the results obtained in breakpoint

identification and compare them to those obtained with other methods. This work was

published in a Bioinformatics paper ”Parseq: reconstruction of microbial transcription

landscape from RNA-Seq read counts using state-space models” [Mirauta et al., 2014].

In the fifth chapter we complete the results by presenting an approach for analysing

differences in expression without making use of existing annotation. The proposed method

first approximates these differences for each base-pair and then aggregates continuous DE

regions. We published this work in the proceedings of the ICIAP 2013 conference [Mirauta

et al., 2013].

In the closing chapter of our thesis we try to summarize our observations on the genome

wide analysis in a SSM framework using SMC methods and discuss possible extensions of

this work. We also point out the perspectives of developing RNA-Seq evaluation criteria

based on the the new parametrisation of the read count model.



Chapter 1

The Biological Context

We introduce in this chapter the biological context of this thesis on transcriptome re-

construction using high-throughput sequencing and notably RNA-Seq data. We describe

here: 1) the main mechanisms of transcription, 2) the transcriptome sequencing protocols,

3) the main characteristics of RNA-seq data, and 4) current methods in transcriptome

reconstruction from RNA-Seq data.

All cellular organisms synthesize molecules with similar biological processes. The De-

oxyriboNucleic Acid (DNA) molecules encode genetic information and influence through

subsequent processing the organisms’ phenotype. The processing steps are described in

what is known as the central dogma of molecular biology which states that the flow of

genetic information within a biological system goes through three distinct steps. The first

step consists in the replication of the DNA. The second consists in the transcription of

DNA information into an intermediary molecule, the RiboNucleic Acid (RNA) molecules.

Following transcription, the translation process uses specific processed RNA molecules to

encode a different class of macromolecules: the proteins. Some RNA molecules perform

cellular functions without undergoing translation.

Detecting the regions that are transcribed into RNA, and the rate of transcription in

different conditions represents an important step in understanding the cellular activity.

We will focus our discussion on RNA molecules and, in the first part of this chapter we

will describe several RNA types and present the general mechanisms of RNA synthesis

and post processing. Post transcriptional RNA regulation is of interest for our work in the

measure it affects the nature and levels of the RNA in the different cellular compartments.

1
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After a short digression into the history of transcriptome analysis we present the recent

technologies, with a focus on the sequencing of RNA. A crucial step in the evolution of

RNA analysis was the development of a method for the determination of the sequence of

nucleic acids within a transcript. Hybridisation arrays and sequencing protocols allow a

fast, accurate and quantitative detection of transcribed regions. We review a few popular

transcriptome sequencing protocols and finally detail the RNA-Seq protocol. We give

a canonical representation of the complete flow of the RNA-Seq protocol: from RNA

selection to the mapping of fragments to DNA regions. This representation is important

for our understanding of RNA-Seq data and we will refer to it several times in the next

chapters.

Then, we detail the characteristics of sequences issuing from RNA-Seq protocols. Pro-

tocols and technology can have a significant influence and can introduce several types of

biases. We describe the different sources of bias which were identified.

To end this chapter, we summarize the questions addressed in our analysis and notably

the estimation of transcription breakpoints and transcription levels, and the detection

of regions that have a different expression between two conditions. We present a few

popular methods for the reconstruction of transcript boundaries and analysis of differential

expression.
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1.1 The Transcriptome

1.1.1 A Brief Introduction to Molecular Biology

Molecular biology finds its origins in the 19th century following advancements in mi-

croscopy and biochemistry and started to be an intensive research field during the scien-

tific exuberance of the early 20th century. Early research had a focus on the isolation and

classification of macromolecules and resulted in the identification of the main biological

polymers: DNA, RNA and proteins. Further on, biochemistry led to the identification of

molecular differences between DNA and RNA [Frank, 1941]. Between the 1950’s and the

1960’s three major discoveries were made: the determination of the double helix structure

of the DNA, the central dogma of molecular biology, and the genetic code that explains

protein encoding in nucleotide sequence. The second one, restated in [Crick, 1970], refers

to a hypothesis (that since became a paradigm) which states the relation between DNA,

RNA and proteins and thus allows shaping the description of the molecular landscape of

the cell.

AA
AA

AA

aa
intron

exon

Nuclear membrane

pre-mRNA

nascent RNA

mature RNA

5' cap

Cytoplasm

Nucleus

AAAAAA

Protein

AAAAAA

AAAAAA

tRNA
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DNA

Eukaryotes
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ncRNA siRNA
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Prokaryotes

nascent RNA

DNA

rRNAncRNAs

Figure 1.1: Transcription of DNA into RNA and translation of RNA into proteins. We show

most frequent steps for eukaryotes (top) and prokaryotes (bottom).
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It is now well established that protein synthesis in a cell is done in a two-step process:

• Transcription: genetic information is copied from the DNA into an intermediary

molecule (RNA).

• Translation: protein polymers are synthesized using the messenger RNA (mRNA)

template. In prokaryotes, the translation is coupled to transcription in the sense that

it can occur co-transcriptionally. In eukaryotes, the translation uses mature mRNAs

and takes place in the cytoplasm (after the export of mRNA to the cytoplasm).

1.1.2 The RNA Molecules

The RNA is a heteropolymer, a chain of different types of molecules. The monomers

(named nucleotides) contain a ribose sugar (with carbons numbered from 1’ to 5’), a

phosphate group and one out of the 4 bases: Adenine, Cytosine, Guanine and Uracil (A,

C, G and U). The nucleotides are covalently (sharing of electron pairs) bonded though a

phosphate group attached to the 3’ position of one ribose and the 5’ position of the next.

To refer to one monomer we will use both nucleotides (nt) and basepairs (bp) in reference

to the building blocks of the DNA double helix. RNA is composed of nucleotides closely

related to those found in the DNA with uracil replacing thymine. Unlike DNA, the RNA

has the ribose sugar instead of the deoxyribose making the bonds less resistant and it is

in general single stranded. Typical RNA lengths range between 102 and 104 nucleotides

(106 to 109 for a typical genome length).

We can identify three classes of RNA given their transcription and post transcription

processing status:

1. nascent RNA. These RNAs are in the course of being transcribed and are located

in the nucleus.

2. precursor RNA (pre-RNA). These RNAs have been transcribed and currently un-

dergo post-transcriptional processing in the nucleus.

3. mature RNA. These are RNAs that underwent post transcriptional processing. The

mature RNAs can be located in either the nucleus or in the cytoplasm.
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The RNAs play a wide range of roles in the cell. In the sense of the central dogma of

molecular biology, the RNA serves as a template for protein synthesis (translation). The

RNAs that play this role belong to the class of messenger RNAs (mRNA).

A heterogeneous group of RNAs are involved in mRNA regulation (tuning of the

amount of specific mRNA molecules within a cell). In eukaryotes several types of non

coding RNAs (ncRNA) are known to repress transcription, impede RNA translation or

promote degradation. Some of the best known are two small RNAs: the microRNAs

(miRNA) (single strand 21-22 nt) and small interfering RNAs (siRNA) (double strand

20-25 nt). The miRNA and siRNA regulate mRNA by controlling its interaction with a

protein complex (RNA-induced silencing complex - RISC) resulting in translation blocking

and respectively mRNA cleavage (reviewed in [Lee et al., 2004]). Other ncRNAs, the long

noncoding RNAs (lncRNA) - (200+ nt), are involved in various mechanisms of regulation

(reviewed in [Rinn and Chang, 2012]).

Other classes of RNAs have functions in the translation process. The small nuclear

RNA (snRNA) - (150 nt) are involved in the pre-RNA splicing. The transfer RNA (tRNA)

- small (80 nt) transfers associated amino acids to the ribosome according to a three-

nucleotide sequence complementarity requirements (the genetic code). The ribosomal

RNA (rRNA) - long (1000+ nt) is a component of the ribosome (the translation machin-

ery).

1.1.3 The RNA Synthesis: Transcription

The RNA synthesis is a complex process that can be divided in several steps: initiation,

elongation and termination. During initiation, an enzyme known as the RNA polymerase

(RNApol) attaches, through the mediation of several associated molecules, to the template

DNA strand.

In prokaryotes the sigma factor is the subunit of the RNApol that recognizes the

promoter, a region upstream the Transcription Starting Site (TSS) (figure 1.2). There

are two main structurally unrelated families: σ70 (most frequent) and the σ54 (reviewed in

[Kazmierczak et al., 2005]). Sigma factor binds sites (SFBS) are usually organised in two

boxes positioned at approximatively -35 and -10 nt upstream of the TSS that show some

level of sequence consensus. For illustration, in the σ70 family, the σ70 subfamily binds to

promoters presenting sequences related to the consensus TTGACA at -35 and TATAAT
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Eukaryotes
Transcript

TSS 5' UTRPromoter Intron Exon 3' UTR TTSEnhancer

TSS 5' UTRPromoter Gene 2 Gene 3 3' UTR TTS

Transcript - Operon

Gene 1

Prokaryotes
Transcript

TSS 5' UTRPromoter 3' UTR TTS

Figure 1.2: Transcription in eukaryotes and prokaryotes. A typical transcriptional unit is

composed from translated regions (exons) and untranslated regions (introns and UTRs). The

boundaries are named Transcription Start Site and Termination Site (TSS and TTS). We show

also the regions where the transcription factors mediate RNA polymerase binding (enhancer and

promoter).

(the Pribnow box) at -10 [Schaller et al., 1975]; the σ32 subfamily recognizes the consensus

CTTGA at -35 and GNCCCCATNT at -10 (E.coli, [Wang and deHaseth, 2003]), where N

denotes any nucleotide. The sigma factors of the family σ54 shows similarly a consensus

sequence between -26 and -10 nt upstream TSS [Francke et al., 2011].

Three different types of RNA polymerases coexist in eukaryotic cells (RNApol I for

rRNAs, RNApol II for mRNA and RNApol III for ncRNA). In this case, the RNAPol

binds through a more complex process usually mediated by several transcription factors

and enhanced by other regions (enhancers). There is a wide range of consensus forms for

transcription factors binding sites (e.g. the TATA boxes -25 bp upstream for RNApol II)

[Yang et al., 2007].

RNA polymerase leaves the promoter (promoter clearance) to start transcription

elongation. Factors impeding clearance (like the affinity of promoter-RNApol bonds) may

induce the release of the nascent transcripts (2 to 15 nt. long), a process known as abortive

initiation [Goldman et al., 2009].

During elongation the RNApol creates a copy of the DNA coding strand (the com-

plement of the template strand) by base pairing free nucleotides to the template DNA
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strand. The RNA molecule is extended from 5’ to 3’ (where 5’ denotes the 5th carbon of

the ribose backbone). The elongation process can be paused and the same gene can be

transcribed simultaneously by several RNAPols. Transcription takes place with a rate of

several dozens nucleotides per second (for RNA pol II it has been estimated at 18 − 42

nt. per second [Prez-Ortn et al., 2007]).

Transcription termination occurs at sites called Transcription Termination Sites

(TTS) after the RNA pol receives termination signals (related mostly to sequence pat-

terns):

• Prokaryotes: specific sequences that foster loop formation and weak poly(A)-poly(U)

structures and thus destabilize the RNA-DNA hybrid are a sign for transcript ter-

mination [Carafa et al., 1990]. Termination can also involve additional molecules

that interact with the RNAPol and force it to detach from the DNA (e.g. binding

of the Rho factor to the mRNA [Richardson, 2002]).

• Eukaryotes: termination processes depended on the type of RNAPol (reviewed in

[Richard and Manley, 2009]). For RNAPol I termination requires a specific DNA-

binding termination factor (unlike the prokaryotic Rho factor which binds to the

RNA). RNAPol II termination is coupled with 3’-end processing and may occur be-

tween a few base pairs to several kilobases downstream from the 3’-end of the mature

RNA. RNAPol III terminates after a poly(A) sequence (not requiring previous RNA

loop structures).

Processing of precursor transcripts (pre-RNA) differs greatly between the do-

mains of life. In general terms the processing includes boundary (5’ and 3’ ends) and

internal changes.

• Prokaryotes: these changes are known to be less frequent. They include: 1) con-

version of the triphosphate from the 5’-end of nascent RNAs (above 20nt) into a

monophosphate, 2) synthesis of poly(A) tails for some transcripts (that can promote

degradation).

• Eukaryotes have a more complex processing (explained in more details in [Lodish

et al., 2000]). Common transcript changes include:
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– 5’ capping. Immediately after transcription initiation the 5’-end is processed:

1) the terminal phosphate group is removed; 2) a guanine is added to the end,

3) the guanine is 7-methylated and 4) eventually the following two bases are

also methylated. Small variations exist between RNA families.

– Template-independent addition of As at the 3’-end, in a process called polyadeny-

lation. Most mRNAs and some ncRNAs (like lncRNA) have poly(A) tails. The

preRNA is first cleaved by an endonucleases that recognizes conserved motifs

like AUUAAA at 10 -35 nucleotides upstream the cleavage site. After this,

poly(A) polymerase synthesizes the poly(A) tail. The polyadenylation is im-

portant for the export of the mature RNA from the nucleus and the translation.

– Splicing [Berget et al., 1977; William Roy and Gilbert, 2006] is the RNA modi-

fication step that consists in removing non-coding sequences called introns and

joining the protein-coding sequences called exons. A given pre-mRNA molecule

can be spliced at different junctions (alternative splicing) to result in a variety

of mature mRNA molecules, each containing different combinations of exons.

These combinations are called isoforms.

– Editing is a relatively rare process which consists in changes to the RNA se-

quence.

Because eukaryotic transcription and translation is done in different compartments,

the mRNAs must be exported (transported) from the nucleus to the cytoplasm through

the nuclear pores.

After a certain amount of time the RNA degrades into its component nucleotides

with the assistance of ribonucleases. In prokaryotes this process involves degradation of

5’-and 3’ ends by exonucleases and internal cleavage by endonuclease (a more detailed

description in [Evguenieva-Hackenberg and Klug, 2011]) and typically occurs after a few

minutes. In eukaryotes the degradation is done mainly by exonucleases through shortening

of poly(A) tails and de-capping. The mRNA half lives tends to be longer in eukaryotes

(it is up to several hours whereas the synthesis (transcription) takes less than a minute

for a typical transcript).
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1.2 High-Throughput Sequencing

The RNA and DNA molecules have a natural sequential organization enforced by cova-

lent bonds. Beside detecting macromolecule composition [Frank, 1941], a step forward

in their analysis consisted in the identification of the arrangement of composing sub-

units (nucleotides). In genomics, the term sequencing pertains to methods that aim

at determining the sequence of monomers in polymers (nucleotides in the case of DNA

and RNA). The sequencing methods build upon physicochemical properties of DNA and

RNA. They consist in the reconstruction of the complementary strand with the incor-

poration of labelled nucleotides or use complementarity to associate molecules to known

sequences through hybridization. The first sequencing methods concerned the determi-

nation of peptide amino-acid sequences through partial hydrolysis. They were performed

by Sanger in 49-51 and were followed by several methods to determine the DNA sequence

(among which Wu [1972] using synthetic labelled oligonucleotides). After 1990, with the

advent of sequencing by chain termination and the development of DNA arrays, genome

wide sequencing became possible. We describe here shortly the Sanger chain termination

method, the sequencing by ligation and focus on the sequencing by synthesis:

• Sequencing by chain termination (Sanger). The first approaches [Sanger et al.,

1977] consisted in two steps: 1) polymer synthesis by incorporation of common de-

oxynucleosidetriphosphates (dNTPs) and of modified dNTPs that terminate DNA

strand elongation and 2) size selection. Sequences obtained after addition of modi-

fied dNTPs of only one type (only Adenine for example) and selected for the size k

(by electrophoresis) provide information about the presence of the nucleotide (Ade-

nine in the example) at position k. In this protocol 4 different mixtures are required

(one for each dNTP) to determine the complete sequence. Current Sanger protocols

use fluorescent dyes to distinguish the bases in the same electrophoresis.

• Sequencing by synthesis (Solexa-Illumina). Sequencing by synthesis reveals the

sequence of a DNA polymer during the synthesis of its complementary strand en-

zymatically with marked (fluorescent) nucleotides. In current Solexa-Illumina pro-

tocols sequencing requires several preparation steps and is done in a multi-cycle

process but synthesis is done in parallel for the entire library. The DNA material is

usually fragmented and fragments within a given range are selected. Then, adaptors
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are ligated at one or both ends and the fragments are bound to a flowcell (a surface

with separately contained lanes). To increase signal strength, each fragment is am-

plified into a clonal cluster with approximatively a thousand copies of one original

molecule fragment.

The multi-cycle process is started to construct and determine step by step the

complementary strand of each molecule in each cluster. During a cycle, several

actions are performed for all clusters: 1) labelled nucleotides (incorporating addi-

tional molecules that stop elongation) are added to the flowcell ; 2) nucleotides

are incorporated (by DNA polymerase) in the growing strand (the complement of

the template sequence); 3) images of the flowcell are capture allowing the detec-

tion of dominant labels (corresponding to a nucleotide) for each cluster and 4) free

nucleotides, blocking molecules, and fluorescent groups are removed to allow for a

new cycle. At each step the sequence corresponding to each cluster is obtained by

assessing the nucleotide dominantly incorporated. The blocking molecules impede

the addition of two nucleotides to the same sequence in the same cycle.

• Sequencing by ligation (SOLiD) extends the growing chain by ligating oligonu-

cleotides (instead of using polymerases to add single nucleotides like in sequencing

by synthesize). It is done in two steps: 1) labelled oligos are hybridized to the target

(which is single stranded) and 2) the 5’ of the growing strand is ligated (by using

ligase) with the 3’ of the oligo. The result consists in a label (colour) sequence that

is afterwards used to infer the nucleotide sequence. Issues were reported concerning

palindromic and repeated regions [Huang et al., 2012].

While the initial Sanger protocol determined one sequence at a time, the Illumina

and SOLiD are high-throughput protocols, i.e. they process in parallel tens of millions of

sequences. Currently, Illumina second generation platforms are dominating the sequencing

industry. According to the information on www.illumina.com and www.appliedbiosystems.com

websites, both Illumina and SOLiD systems are comparable in terms of sequencing costs

and throughput: 25 Gb of mappable reads per day at 70euro per Gb for the Illumina

HiSeq2000 and 6 Gb of mappable reads per day at 45 euro per Gb for SOLiD (as of

September 2014). Read length ranges between 30 bp (early Illumina) and several hun-

dreds (SOLiD). Each run produces 100 million+ reads. Both Illumina and SOLiD can
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sequence one end of the fragments (single-end reads) or both (paired-end or mate pairs).

Paired-end reads represent pairs of reads where each one was obtained through sequencing

of one fragment end. The region between the pair of reads is called insert. Mate pair

reads have a longer insert size and in this case the fragments are circularized and the

regions containing both ends (which are now connected) are sequenced. Longer sequences

(above 20kbp) can be obtained using third generation sequencing protocols (e.g. Helicos

Bioscience and Pacific Biosciences).

Biological material
cDNA or DNA fragments
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Amplified Biological material
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in contigs.

Figure 1.3: Canonical steps for sequencing the DNA. The biological material (DNA from DNA-

protein complexes, cDNA obtained from RT of RNA, DNA fragments, etc.) is amplified to

reach a sufficient amount for sequencing. Sequencing is performed on the amplified molecules in

a multi-cycle process on full fragments or only fragment ends. The reads are then aligned to a

reference genome or assembled into contiguous longer segments to reconstruct original molecules.
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There is a wide range of DNA sequencing protocols but in principle they follow the

canonical steps depicted in figure 1.3. The biological material, and thus the biological

questions to be answered, drive several approaches to library construction. We briefly

discuss some of the most interesting protocols for selecting the biological material:

• Chip-Seq [Barski et al., 2007] aims to identify the binding sites of DNA-associated

proteins. The biological material is selected through immunoprecipitation (ChIP)

of DNA-protein complexes after covalent cross-linking of DNA and proteins. Se-

quencing is performed on the DNA regions detached from these complexes.

• 3C-Seq [Dekker et al., 2002] or Chromosome Conformation Capture aims to capture

DNA regions that interact directly or indirectly. The biological material is obtained

by cross-linking interacting regions on the genome and subsequent digestion of non

cross linked segments.

• BS-Seq (or Bi-Seq) [Krueger et al., 2012] aims to identify methylated positions

(cytosines), i.e. positions that have and additional CH3 group. Non-methylated

Cytosines from DNA molecules treated with bisulfite change into uracil. The ge-

nomic position of BS-Seq reads can be determined by aligning the non-C nucleotides.

By examining at the genomic positions of the cytosines the corresponding nucleotide

found in the reads one can estimate the percentage of methylation.

• Tn-Seq [van Opijnen et al., 2009] aims to analyse the fitness of specific genomic

changes. A marker is inserted in a random manner by a transposon into the genomes

of an organism. The same population is sequenced after a period of selection.

Sequencing regions surrounding the marker allows the determination of positions

where the insertion has a positive or negative impact on fitness (typically by gene

inactivation).
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1.3 Methods for Transcriptome Investigation

Currently, the transcriptome investigation is done through array hybridisation or high-

throughput sequencing.

Taking advantage of hybridisation properties of single strand DNA, the array based

technologies can be used for investigating the transcriptome (Microarrays [Schena et al.,

1995] and Tiling arays [Bertone et al., 2004]). In a typical array experiment, a population

of transcripts are first reverse transcribed (RT) and marked with fluorescent dyes or

biotin. Then the marked cDNA molecules are hybridised on an array. A DNA microarray

consists in a collection (103 to 105) of DNA probes (of known sequence) attached to a

solid surface. After washing, the molecules that contain sequences complementary to

the attached probes will remain on the array. Subsequent scanning and analysis of the

light intensity allows the determination and quantification of the cDNA and therefore

RNA molecules that are present in the library. Contrary to the classic microarrays, the

tiling arrays include genome-wide selected probes. It permits the quantification of the

expression level at each position present in the probes without prior information on the

transcribed regions.

As for hybridisation based methods, the sequencing of RNA molecules relies on

the reverse transcription of RNAs into cDNA. The ribonucleic chain is less resistant to

hydrolysis than the deoxyribonucleic chain (due to its additional hydroxyl group). Recent

technological developments lead allow direct RNA sequencing [Ozsolak et al., 2009] but

these protocols are not yet applied on a large scale. Including the RT and post sequencing

steps that assign a read to its genomic position, a canonical RNA sequencing protocol

involves the steps presented in figure 1.4.

The RNA-Seq [Mortazavi et al., 2008; Wang et al., 2009] aims to profile the complete

transcriptome without prior knowledge of the transcribed regions. The procedure starts

with the isolation of the RNA molecules of interest. After DNA depletion common RNA

libraries may target different populations of RNAs such as poly(A) RNA (selected by bind-

ing the molecules on poly(T) beads), or small ncRNA (isolated by size selection). Other

techniques include transcripts involved in RNQ -protein complexes like Ribosome profil-

ing (RibSeq) for transcripts active in translation or Global run-on-sequencing (GRO-seq)

for nascent transcripts. RNA molecules are usually further fragmented. The fragments
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are Reverse Transcribed (RT) into cDNA molecules. In most current protocols, before

RT, strand labelling and degradation of RT unmarked cDNA products allow to maintain

strand information. A size selection step may be performed before or after RT. The li-

brary preparation includes also end repairing and adapter ligation steps. After library

preparation, sequencing may be performed using standard techniques.

RNA

?

Fragmentation

Size selection

Reverse Transcription

cDNA fragments

?

Amplification

Sequencing

Reads

?

Alignment on
reference genome

gene 1 gene 2

Figure 1.4: Canonical RNA-Seq flow protocol steps. Beside the steps presented in figure

1.3 the RNA-Seq includes RT of RNA into DNA. Strand specificity of reads aligned to

the genome is assured at this step.

For protocols aiming at sequencing transcript boundaries the libraries are enriched in

molecules containing the transcripts 5’-ends or 3’-ends. Cap analysis of gene expression
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(CAGE) [Shiraki et al., 2003; Takahashi et al., 2012] and differential RNA-Seq (dRNA-

Seq) [Borries et al., 2012] are two such methods that aim to sequence 5’ ends of transcripts:

• Cap analysis of gene expression (CAGE) and its unamplified HeliscopeCAGE version

[Kanamori-Katayama et al., 2011] may be applied to sequence transcripts with 5’

cap (eukaryotic mRNAs). After capturing of 5’-ends, fragments that have the exact

same length obtained with restriction enzymes are joined (with the corresponding

adaptors) in a continuous vector and this vector is then sequenced. The resulting

tags are counted providing quantitative evaluation of the frequency of using a specific

TSS. The CAGE protocol was built upon Serial analysis gene expression protocol

(SAGE) [Velculescu et al., 1995].

• Differential RNA-Seq (dRNA-Seq) is used for the analysis of primary transcripts

in bacteria. It aims at distinguishing 5’-ends of the primary transcripts (bearing

a 5’ triphosphate) from those generated through RNA processing and degradation

(bearing a 5’ monophosphate). To this end it creates two libraries from which one is

enriched in primary transcripts using monophosphate sensitive exonucleases (TEX

- terminator exonuclease or TAP - tobacco acid phosphatase). Detection of primary

transcripts 5’-ends is achieved through a differential analysis of the two libraries.
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1.4 RNA-Seq Data

RNA-seq reads represent transcript fragments and thus, when aligned to a reference

genome, should map relatively uniform within transcribed regions. In figure 1.5 we show

an example of reads aligned to the genome for C.albicans. A simple visual analysis of

this example spotlights some issues with respect to the read coverage. First, we observe

reads that map outside known (probable) transcription units. These might correspond to

unknown genuine transcripts or to a background noise. Second, within a transcript the

read coverage is not very uniform and more, we observe frequently coverage gaps.

Read counts

Reads aligned to
reference genome

Genome positions

Annotation

0

10

3

3

Figure 1.5: Integrative Genomics Viewer (IGV) [Thorvaldsdottir et al., 2013] screen shot of

RNA-Seq reads aligned on the genome of C.albicans. Bottom lane: genomic positions. Middle

lane: reads aligned on the genome represented by directed blocks. The direction of the block

represents the read sense comparing to the reference strand. Top lane: read counts. We count

the number of reads with the 5’ end at a genomic position. For illustration, there are 3 reads

(corresponding to the red bar) with the 5’end mapping at position 401k.

The canonical RNA-Seq protocol (Figure 1.4) has several steps that induce random-

ness of the results and possibly biases. In the most simple scenario we expect that the

fragmentation, amplification and selection of reads are done homogeneously along a tran-

script and that read coverage shows only variability issued from independent identically

distributed fragment sampling processes along the sequence. Real datasets prove that

read coverage is affected by other factors and that several forms of bias exist. The high
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dependency of the data on the protocol conditions [Khrameeva and Gelfand, 2012] makes

it difficult to trace back at which step of the protocol the biases occur and in the same

time impede drawing general conclusions. Thus, we shall limit ourselves to describe some

observations on biases that are recurrently mentioned in literature and we will focus on

those observed in Illumina protocols. In the Results chapter 3, we discuss bias observed

in several bacterial and simple eukaryotic datasets.

Read counts may be influenced by the transcript sequence, the position of the read

5’-end relative to transcription boundaries and the transcript conformation.

Regions with elevated GC content tend to have a lower read coverage [Benjamini and

Speed, 2012]. One explanation [Aird et al., 2011] is related to the PCR amplification that

drops down for both very low (10%) and high (70-90%) local GC content (the later only

for high heating rates). This might be caused by poor denaturation due to strong GC

pairing, poor access of the PCR primer and slow elongation due to template secondary

structure.

Beyond the GC content, the genomic sequence surrounding the read 5’-end

may also affect the uniformity of read distribution [Li et al., 2010; Hansen et al., 2010].

This influence is mediated by the formation of structures that impede primer binding

in RT, the preference of primer non-random flanking tags to specific RNA sequences, or

PCR amplification.

Besides the RNA sequence the biases may be induced by other factors. The con-

formation of RNAs which is partially induced by the sequence and partially by the

environmental conditions is thought to influence the count distributions [Li et al., 2010;

Jackson et al., 2014]. Secondary and tertiary transcript structures might impede random

fragmentation, reverse transcription and amplification.

Count distribution within a transcript might be affected by the position relative to

transcript boundaries. Results concerning this bias show a wide range of behaviours.

In Bohnert and Ratsch [2010] it was observed that for a C. elegans dataset (poly(A)

enriched) the read coverage is higher close to the 5’ end and lower close to the 3’ end. On

the other hand [Wan et al., 2012] and references within conclude that RNA degradation

affects read coverage in a different way: counts are expected to be higher at the 3’ ends

when RT is done on poly(A) RNAs.

It has also been found that palindromic sequences are under-represented in se-
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quencing by ligation results. A hypothesis to explain this bias invokes the possibility of

forming hairpin structures that could impede oligo-sequence hybridization [Huang et al.,

2012].

Artefacts may also be related to sequencing, read mapping (notably for low-complexity

and almost repeated regions) and DNA contamination. Sequencing and alignment arte-

facts can be in general mitigated by increasing read lengths. As errors tend to accumulate

at the read 3’-end, proper read quality trimming helps improving alignment results. DNA

contamination might lead to the presence of reads in otherwise non transcribed regions.

In conclusion, read coverage seems to be influenced by several sources of bias. Most

of them are related to the transcript sequence and might originate from any of the proto-

cols steps: RT, fragmentation, amplification and sequencing. While biases have various

manifestations, these tend to be alike for a same protocol in the same conditions.
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1.5 Transcriptome Investigation with RNA-Seq

There is a wide range of questions that can be addressed by using RNA-Seq data. Its

current use is done mainly on data from a single organism but RNA-Seq may also be

applied in a pluri-organism context (metatranscriptomics) to elucidate the transcriptional

activity of an ecosystem [Gilbert and Hughes, 2011; Leimena et al., 2013].

A first category of results that can be derived from the analysis of the genome wide read

coverage pertain to transcript identification. The reads represent transcript fragments

and, after mapping on the genome, provide information of the location of transcripts. If

the reference genome sequence is not available, contigs assembled from overlapping reads

can help identifying the transcripts even if their genomic origin remains concealed. A step

further, the reads and in particular the junction reads that span splicing positions allow

the reconstruction of different isoforms of a gene.

Second, the read coverage of a particular genomic region provides information on

the proportion of the corresponding transcript in the library. The aggregation of count

within the boundaries of a transcript allow the estimation of the relative expression

level (intensity of transcription) up to isoform level.

Third, a traditional question is, starting from two or more controlled experiments,

to identify the set of elements that exhibit differential expression. Answering this

question is an important step towards formulating a biological hypothesis or for instance

deriving disease biomarkers.

Fourth, the sequence of reads overlapping a genomic position provide information on

RNA post transcription processing. Differences in nucleotides between the reads stack

and a genomic position might reveal RNA editing [Park et al., 2012; Ramaswami et al.,

2013]. This point is not addressed in this thesis.

1.5.1 Transcript Quantification

The number of RNA-Seq reads corresponding to a genomic region is related to the steady-

state quantity of transcripts issued from that region (resulting from the equilibrium be-

tween transcription and degradation). Thus, the reads can be used for a quantitative

description of the transcriptome. Once reads are assigned to transcripts (by alignment on

a reference genome or by assembling in transcription contigs) quantification can be done
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at unit or at position level. For a unit, the sum of reads within the unit’s boundaries

provides a measure for the transcription level. For a position t, counts can correspond

either to the number of reads whose 5’-ends map at position t, i.e. reads starting at

position t, or to the number of reads overlapping the position t, i.e. the presence of the

genomic position t in the read population. The total number of reads in an RNA-Seq

experiment is arbitrary scaled in several protocol steps and depends on: the quantity of

initial RNA, the number of amplification cycles, the rate of fragmentation, the selection

and the amount of sequencing. Therefore measurement of expression level (transcription

intensity) needs to be done in a relative manner.

The ”Reads Per Kb per Million reads” [Mortazavi et al., 2008] (RPKM) tries to

approximate the molar concentration of an exon in the total transcript population. For a

total number of mapped reads C (known also in the literature as coverage or sequencing

depth), an exon g with boundaries g5′ and g3′ , length lg = |g3′−g5′+1| and Cg the number

of reads mapped within its boundaries, we write: RPKMg =
Cg · 103/lg
C/106

. This provides

for a unit g the average reads per position Cg/lg scaled by the sequencing depth.

The expression quantification at isoform level can be done using junction reads [Wang

et al., 2008] or directly from the exon expression level [Richard et al., 2010]. For two

units gi and gj of a gene g, the second option tests the difference in their expression xgi

and xgj to conclude if the two were jointly transcribed or if they might originate also

from different transcripts. The approach (algorithm CASI from Richard et al. [2010])

supposes a Poisson distribution for the total counts within an unit (mean equal to unit

expectation). Further on, the authors optimise the proportion of isoforms in order to

explain the exon counts (algorithm POEM).

1.5.2 Methods for Transcript Reconstruction

Detecting transcription boundaries from global RNA-Seq data raises interesting and com-

putationally difficult problems. We will present in this section some popular approaches

and notably we will focus on methods that use the reference genome to identify the po-

sition of the reads. Methods that do not use reference genome, i.e. de novo methods,

assemble transcripts from overlapping reads. A large number of methods of both types

are reviewed in Martin and Wang [2011].

Reference based methods [Trapnell et al., 2010; Guttman et al., 2010; McClure et al.,
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2013] and our own [Mirauta et al., 2014] begin with the alignment of reads on the genome.

In specific cases, existing genome annotation (including ORFs or CDSs) provides sufficient

information for transcript identification. In such scenarios the annotation (usually limited

to CDSs) needs to be extended to include the 5’-UTRs and 3’-UTRs and to approximate

the transcription boundaries. To extend a transcript g, the reads from its neighbourhood

are assigned probabilities to be issued from g, from a background noise or from adjacent

transcripts. One option to do so is by building a model for the distribution of the count

of reads [McClure et al., 2013]. Other options assign reads based on some distance.

For example reads that overlap a transcript have a high probability to belong to that

transcript.

Cufflinks [Trapnell et al., 2010] aims at constructing the smallest set of transcripts that

”explains” the reads observed in a RNA-Seq experiment. Transcripts are assembled from

the mapped fragments (single-end reads or joined paired-end reads) sorted by reference

position. Fragment overlapping is examined to build a connection graph. The connected

fragments are predicted to belong to the same transcript. Isoform structure can be inferred

from the path of fragment contigs and expression levels can be estimated after allocation

of the reads to the inferred transcripts.

While this assembly approach provides insightful results at a computationally afford-

able cost and can use reads overlapping exon-junctions as direct evidence for splicing

[Wang et al., 2010], it has also some intrinsic limitations. The most obvious is that lim-

ited depth of sequencing combined with technical biases may cause gaps that lead to

artificial splits in the transcript structure. Irrespective of the sequencing depth, this ap-

proach is also unable to point to overlapping transcripts caused by promoter multiplicity

and incomplete termination. However, these two mechanisms contribute substantially to

transcriptome complexity in organisms with compact genomes [Nicolas et al., 2012].

1.5.3 Methods for Differential Expression Analysis

The question of identifying units with a significant difference in expression between bi-

ological conditions translates, in statistical terms, into detecting significant changes of

expression level, after accounting for the sources of experimental and biological variabil-

ity. However, this traditional statistical standpoint does not consider the magnitude of

the effect, and authors proposed to overcome this limitation by directly testing whether
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fold change is above a given level [McCarthy and Smyth, 2009].

The analysis of Differential Expression (DE) usually starts from predefined units of

possible change, such as genes, exons or transcript isoforms. In this case, after cumulating

counts at unit level (see section 1.5.1), one can estimate the statistical significance of the

differences [Anders and Huber, 2010; Robinson et al., 2010; Trapnell et al., 2012]. The vari-

ability of read counts within a unit observed when re-sequencing the same library has been

described as almost compatible with a Poisson distribution [Marioni et al., 2008]. How-

ever, when compared between samples (or replicate libraries), it exhibits over-dispersion

and the negative binomial distribution is often used to accommodate this behaviour.

Replicating the data sets permits to account for the biological and technological variabil-

ity and mitigates the incertitude on expression level estimation. Challenging problems

arise when the units of potential DE are unknown. In this case, one faces the problem of

having to simultaneously delineate the boundaries of the DE region and estimating the

magnitude of change.

Approaches to tackle this problem group in two categories. The first category con-

sists of estimating the transcript structures from the different datasets (used separately

or jointly) and then applying DE detection methods on predefined units. The second

category computes the DE profile from the read coverage in the two conditions and then

segment this profile into DE regions. The first option is made possible by several methods

cited in the previous subsection that deal with transcript reconstruction. In this case, the

DE units are derived from the estimated transcript structure and DE changes within those

units remain invisible. Inferring DE regions directly from the DE profile provide a more

detailed view of DE landscape but may raise problems concerning the correspondence to

previous annotation. Using multiple replicates, Frazee et al. [2014] estimates first the DE

at single base-pair resolution and then reconstructs the DE regions .

When we consider more than one condition, the depth of sequencing (e.g. the total

number of reads produced) will directly affect the transcript expression level. Under a

perfectly controlled experiment, this level is expected to scale linearly with the depth. In

such conditions scaling by the read coverage (like in RPKM) should provide a satisfactory

solution. However, Bullard et al. [2010] highlighted that in most transcriptomes samples a

small fraction of the genes makes up most of the molecular mass, and thus simple scaling

by the total coverage ratio could lead to very unstable normalization. Similarly to the
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strategies for microarray data normalization (compared in [Bolstad et al., 2003]) several

options, including notably quantile normalisation, can be adopted for RNA-Seq data (see

detailed comparison in [Dillies et al., 2013])

In the next chapters we will present methods and results pertaining to transcription

breakpoint estimation from changes in read coverage given a known genome sequence. The

expression level is jointly estimated with the breakpoints. More briefly we will address

also the differential expression question.
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Chapter 2

Statistical Methods for Transcription

Profile Reconstruction

In this chapter we describe the statistical methods which are the underlying basis of

our approach for genome-wide transcription profile reconstruction. While RNA-Seq read

counts provide various ways to detect transcript boundaries, our aim in this study is

to develop a principled strategy for the approximation of the expression levels and the

estimation of transcription breakpoints from longitudinal changes in the read coverage.

We decide to approach this task in a state space model (SSM) framework. SSMs are a class

of models that describe the probabilistic dependence between observed measurements and

a latent (hidden) state variable. Along this thesis we use (yt)t=1:T (or y1:T ) notation for a

sequence of size T of observations and (xt)t=1:T (or x1:T ) for the hidden trajectory (path).

We introduce the general filtering and smoothing recursions used for SSM inference.

In discrete state space or Gaussian (linear) models the path reconstruction admits exact

solutions. In general though, the SSMs raise mathematical challenges and hidden path

reconstruction requires Monte Carlo approximations to resolve computational obstacles.

We present Sequential Monte Carlo (SMC) algorithms that provide practical solutions

for filtering and smoothing. With a view to achieve exactness, we choose for transcrip-

tion profile approximation a recent Particle Monte Carlo Markov Chain method coined

Particle Gibbs. Without being exhaustive we mention also other methods for trajec-

tory reconstruction and parameter estimation within Bayesian and Maximum Likelihood

frameworks.

25
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2.1 The Estimation of Transcription Boundaries

2.1.1 Change Point Detection

Estimating transcription boundaries can be considered a classical problem of change point

(breakpoint) detection where the sequence of observations (yt)t=1:T needs to be partitioned

into homogeneous segments. Here T is the genomic sequence length and yt the read counts

observed at the position t.

The basic method aims at partitioning the sequence into a predefined number of

segments. It involves the following components:

• K segments delimited by K − 1 breakpoints b1:K−1;

• (x̃k)k=1:K parameters for the segments (bk−1 : bk)k=1:K , (b0, bK - genome extremities);

• a cost function C(y1:T ; b1:K−1, x̃1:K) =
∑

k=1:K

∑
t∈(bk−1:bk)

C(yt; x̃k).

The cost C(y1:T ; b1:K−1, x1:K) measures how the partition b1:K−1 with segment parameters

x̃1:K fit the observed data y1:T . Of great interest is the cost of a partition with optimized

segment parameters

C(y1:T ; b1:K−1) =
∑
k=1:K

min
x̃k

∑
t∈(bk−1:bk)

C(yt; x̃k).

Popular cost functions include the square error SS(yt; x̃) = (yt − x̃)2 and the minus log

likelihood L(yt; x̃) = log π(yt | x̃).

There are
(
K−1
T−2

)
ways of partitioning the genome, and solutions to this need to be built

considering this high dimensionality. Several partitioning methods can provide efficient

solutions (reviewed in [Killick et al., 2012]). A first method, the binary segmentation,

reduces the search by iteratively estimating single change point segmentations. In this

algorithm an additional breakpoint that minimizes the cost is added at each step.

Dynamic programming, a term coined by Belmann in 1954 in the ”Theory of dynamic

programming”, pertains to exact methods that deal with complex (multi-stage) problems

by breaking them down into simpler sub-problems. For the partitioning problem it opti-

mizes at each step C(yt0:t1 ; k), the cost of the optimal partition with k segments for the

t0 : t1 sequence. The recursion writes: C(y1:t; k) = min
k−1<s<t

(C(y1:s; k − 1) + C(ys+1:t; 1)).
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The computational cost O(KT 2) can be improved up to being linear in T with simple

(limiting breakpoint search using prior information on breakpoint positions or segment

length [Huber et al., 2006]) or more sophisticated pruning methods [Rigaill, 2010; Killick

et al., 2012].

Applications of these change point detection methods on genomic questions include

work on CHG data analysis [Picard et al., 2005] and transcriptome reconstruction with

data from tiling arrays [Huber et al., 2006] (with square error cost function) or Next-

Generation Sequencing [Cleynen et al., 2014b] (with Poisson and Negative Binomial like-

lihood cost). A description of methods for multivariate scenarios is given in [Lavielle and

Teyssire, 2006; Picard et al., 2011].

2.1.2 State Space Models

The State Space Models (SSMs) are other commonly used tools for change-point detec-

tion. These allow flexible assumptions on the chain to be partitioned and can provide an

extended range of results on longitudinal dynamics.

The SSMs are models aiming at the reconstruction of the latent states x1:T , not directly

available, from the observed measurements y1:T . For this it uses probabilistic models to

link observations to the latent space and to describe the latent space dynamics. The SSM

we use incorporate single data emission densities π(yt | xt) =: e(yt;xt) and a Markov model

for the latent variable xt with values in the state space Ωx and governed by the transition

kernel π(xt | xt−1) =: k(xt;xt−1). SSMs with discrete Ωx state space are often, and in

particular in the computational biology literature, referred to as Hidden Markov Models

(HMM). SSM models might be built on various choices of the emission and transition

models.

Mild assumptions on the transcription profile and on the count emission allow us to

design a standard SSM (DAG in figure 2.1), this framework can accommodate more

complicated scenarios for transcription dynamics and emission. The theoretical model

we present could be applied also for the higher-order Markov chains and emission models

where the counts yt depend locally on the hidden path (π(yt | xt−k:t+k)) or on the hidden

path and previous observations (π(yt | xt−k:t+k, y1:t−1)). Solutions to these models may

demand simple adjustments to the model densities and recurrence relations or may require

state space augmentation (transforming the problem into a standard SSM with a higher
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yt−1 yt

. . . // xt−1

OO

k(xt;xt−1) // xt

e(yt;xt)

OO

// . . .

Figure 2.1: Direct Acyclic Graph (DAG) for a standard Space State Model. Variables: (yt)t≥1

observations and (xt)t≥1 hidden states. yt depends only on xt according to the e(yt;xt) density;

x is a first order Markov chain with transition density k(xt;xt−1).

dimension state space).

2.1.3 Sequential Hidden Path Reconstruction in SSM

In the context of general SSMs, the reconstruction of the hidden trajectory from the

sequence of the observations, i.e. the analysis of x1:T | y1:T , is done in a sequential

manner. It utilizes a decomposition of the complete density π(x1:T | y1:T ) according to

the DAG from figure 2.1) into ”pieces” that can be expressed in terms of emission (e) and

hidden transitions (k) densities. The decomposition writes

π(x1:T | y1:T ) =
1

π(y1:T )
· e(y1 | x1) · π(x1) ·

∏
t=2:T

e(yt | xt) · k(xt | xt−1)

∝ e(y1 | x1) · π(x1) ·
∏
t=2:T

e(yt | xt) · k(xt | xt−1), (2.1)

where the ∝ (proportional) symbol indicates equality up to a constant between two den-

sities.

In the context of genomic analysis, we are generally interested in complete path re-

construction π(x1:T | y1:T ) and in the marginal distribution π(xt | y1:T ). For a position t

there are several quantities of interest that can be combined in the recurrence relations

allowing latent path reconstruction:

• π(xt | y1:t−1) - prediction. The distribution of xt conditioned by the previous obser-

vations y1:t−1 is obtained by integrating over all the possible xt−1 values,

π(xt | y1:t−1) ∝
∫
π(xt−1 | y1:t−1)︸ ︷︷ ︸

filtering t−1

· k(xt | xt−1) d xt−1.
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• π(xt | y1:t) - filtering. The distribution of xt conditioned by the observations up

to the current position y1:t is given by the prediction density updated with the

likelihood of current observed data yt,

π(xt | y1:t) ∝ π(xt | y1:t−1)︸ ︷︷ ︸
prediction t

· e(yt | xt). (2.2)

• π(xt | y1:T ) - smoothing. The distribution of xt accounting for the complete sequence

of observations y1:T may be written in terms of filtering and prediction;

π(xt | y1:T ) ∝ π(xt | y1:t)︸ ︷︷ ︸
filtering t

·
∫ smoothing t+1︷ ︸︸ ︷
π(xt+1 | y1:T )k(xt+1 | xt)

π(xt+1 | y1:t)︸ ︷︷ ︸
prediction t+1

d xt+1. (2.3)

We can write similar recursions for complete or partial trajectories x1:t. Notably, the

prediction computation writes π(x1:t | y1:t−1) ∝ π(x1:t−1 | y1:t−1)
filtering t−1

· k(xt | xt−1). Aiming at

x1:t instead of xt makes obsolete the integration over π(x1:t−1).

The same type of recurrence relation may be used for the likelihood computation. The

likelihood of the complete series of observations decomposes π(y1:T ) = π(y1)
∏
t=2:T

π(yt |

y1:t−1) where each step writes as

π(yt | y1:t−1) =

∫ ∫
e(yt | xt) · k(xt | xt−1) · π(xt−1 | y1:t−1)︸ ︷︷ ︸

filtering t−1

d xt−1 dxt. (2.4)

2.1.3.1 Hidden Trajectory Reconstruction in Discrete SSMs

Non-approximate and non-asymptotic solutions for filtering, prediction, smoothing and

likelihood computation tasks exist in two cases: 1) discrete state spaces and 2) lin-

ear/Gaussian observation emission and hidden kernel. We will present first a Forward-

Backward algorithm for the discrete state space context and then the Kalman filter for

the Gaussian context.

The classical Forward-Backward algorithm [Rabiner, 1989] computes π(xt | y1:T ) by

using forward and backward quantities

π(xt | y1:T ) =

forward t︷ ︸︸ ︷
π(xt, y1:t) ·

backward t︷ ︸︸ ︷
π(yt+1:T | xt)

π(y1:T )
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Computation of forward and backward quantities involve the recurrence relations

– forward - π(xt, y1:t) =
∑
xt−1

π(xt−1, y1:t−1)︸ ︷︷ ︸
forward t−1

· π(xt | xt−1) · π(yt | xt),

– backward - π(yt+1:T | xt) =
∑
xt+1

π(yt+2:T | xt+1)︸ ︷︷ ︸
backward t+1

· π(xt+1 | xt) · π(yt | xt).

Both Forward and Backward steps build on the same principles as in equation 2.2 with

a sum replacing the integration. In the particle filtering literature this algorithm, with

small variations, is known also as the Two Filter algorithm [Doucet and Johansen, 2009].

Algorithm 1 Forward Filtering - Backward Smoothing

Objective: Compute π(xt | y1:T ) for each t = 1 : T and state value xt ∈ Ωx (Ωx discrete).

Forward filtering, computation of π(xt | y1:t):

1. For t = 1

π(x1 | y1) ∝ π(x1) · e(y1 | x1) with
∑

x1∈Ωx

π(x1 | y1) = 1.

2. From t = 2 to t = T

- prediction: π(xt | y1:t−1) ∝
∑

xt−1∈Ωx

π(xt−1 | y1:t−1)·k(xt | xt−1);
∑

xt∈Ωx

π(xt | y1:t−1) = 1

- filtering: π(xt | y1:t) ∝ π(xt | y1:t−1) · e(yt | xt);
∑

xt∈Ωx

π(xt | y1:t) = 1.

Backward smoothing, computation of π(xt | y1:T ):

1. For t = T use π(xT | y1:T ) computed during forward filtering.

2. From t = T − 1 to t = 1 compute

π(xt | y1:T ) = π(xt | y1:t) ·
∑

xt+1∈Ωx

π(xt+1 | y1:T ) · k(xt+1 | xt)
π(xt+1 | y1:t)

.

The algorithm 1 is a variant of the Forward Backward algorithm that uses filtering

and smoothing recurrence relations (2.2 and 2.3) and illustrates for a discrete state space

our approach for the continuous case.
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2.1.3.2 Hidden Trajectory Reconstruction in Continuous Gaussian SSMs

In the continuous space, exact solutions exist for Gaussian SSMs. The Kalman Filter

[Kalman, 1960] deals in its standard description with such models governed both in latent

space and in observation measurement by Gaussian distributions. In a simple form the

SSM writes

xt = axt−1 + vt i.e. xt ∼ N (axt−1, σ
2
v)

yt = hxt + wt i.e. yt ∼ N (hxt, σ
2
w),

where yt and xt are the observations and latent variables and vt and wt are white mea-

surement errors of standard deviations σv and σw.

The Kalman filter (KF) provides a reconstruction of xt | y1:t that minimizes the mean

square error (MSE). It involves two steps at each position of the sequence:

1. Prediction x∗t = ax̂t−1.

2. Correction

x̂t = x∗t + (yt − y∗t )︸ ︷︷ ︸
measurement residual

· var(x∗t )h

var(y∗t )︸ ︷︷ ︸
Kalman Gain

. (2.5)

Here, x∗t represents the prediction based on x̂t−1 and the latent chain transition, x̂t

the KF estimate obtained after the correction of x∗t based on the observation yt and

y∗t = hx∗t the predicted observation. The variance var(y∗t ) may be computed as var(E(y∗t |
x∗t )) + E(var(y∗t | x∗t )) = σ2

vh
2 + σ2

w according to the law of total variance. The variance

of x∗t is σ2
v . Intuitively we first make predictions based only on the transition rule and

then we correct them with the observed gap from the data. We weight this gap by the

proportion of variance in data prediction explained by the variance in the hidden chain

prediction.

Within a Bayesian framework the path reconstructed with the KF corresponds also to a

MAP estimate (discussed by [Chen, 2003]). For a Gaussian SSM we can derive analytically

the marginal distributions associated with prediction, filtering and smoothing problems.

To illustrate this, we write the update step π(xt | yt, xt−1) ∝ π(yt | xt) · π(xt | xt−1) which
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coincides with the KF recursion we presented above

π(xt | yt, xt−1) ∝ exp

(
−(x− a xt−1)2

2σ2
v

)
· exp

(
−(y − hxt)2

2σ2
w

)
∝ exp

(
−σ

2
w + σ2

vh
2

2σ2
vσ

2
w

(
x− a xt−1σ

2
w + y h σ2

v

σ2
w + σ2

vh
2

)2
)

= N (xt;mean =
a xt−1σ

2
w + y h σ2

v

σ2
w + σ2

vh
2

, sd2 =
σ2
vσ

2
w

σ2
w + σ2

vh
2

)

where we denote N (x;µ, σ2) the density at x of N (µ, σ2). The mode of the posterior

density and the minimum MSE are obtained for x̂t =
a xt−1σ

2
w + yt hσ

2
v

σ2
w + σ2

vh
2

= a xt−1 + (yt −

a xt−1 h)
hσ2

v

σ2
w + σ2

vh
2

and is the same as the KF estimator from 2.5.

Extended Kalman Filter deals with more complex models by using Taylor approxima-

tions. Switching linear models, that have a natural adaptation to change point detection,

can be approached using the Kalman filter principles [Zymnis et al., 2008].
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2.2 Sequential Monte Carlo

The Sequential Monte Carlo (SMC) methods are a new class of Monte Carlo based solu-

tions to sequential problems (in the general case the approximation of {π(x1:t)}t≥1) that

are particularly useful for to SSM inference. Further on we will use in this manuscript

SMC with reference only to SSM models, i.e. for the target density π(x1:T | y1:T ). The

principles of Monte Carlo methods are based on the laws of large numbers. The approxi-

mation π
MC

(x1:T | y1:T ) of π(x1:T | y1:T ) is obtained as

π
MC

(x1:T | y1:T ) =
∑
p=1:P

δ{xp1:T }(x1:T ),

where (xp1:T )1:P is a sample of size P drawn (asymptotically) from the target π(x1:T | y1:T ).

As sampling directly a RT (R is the real space) state space becomes impossible even

for small values of T, the trajectories xp1:T are build in a sequential manner. In practice

the SMC methods for SSMs make use of the recurrence relations described in section

2.1.3. If update quantities raise sampling issues, as it is usually the case, the Importance

sampling (IS) techniques can provide effective solutions. In an IS scheme, the target

density π(x1:T | y1:T ) is approximated by using a weighed sample (wp, xp1:T )1:P , drawn from

an instrumental function (named also proposal or importance function) q(x1:T ). The IS

weights are computed as wp =
π(xp1:T |y1:T )

q(xp1:T )
. The IS principles are grounded on on a simple

relation
∫
π(x1:T | y1:T ) dx1:T =

∫ π(x1:T |y1:T )
q(x1:T )

dq(x1:T ) which permits the approximation

π
IS

(x1:T | y1:T ) =
∑
p=1:P

wpδ{xp1:T }(x1:T ).

2.2.1 Sequential Importance Resampling - SIR

In a typical SMC filtering algorithm, the Sequential Importance Resampling (SIR) [Gor-

don et al., 1993; Doucet and Johansen, 2009] the sample of P particles has a sequential,

Monte Carlo build-up. In the algorithm 2, at each position t=1:T the approximation

of π(x1:t | y1:t) builds on a sample of P particles (wp, xp1:t)p=1:P . These particles are

constructed up to position t − 1 from the SMC approximation of π(x1:t−1 | y1:t−1) and

extended to position t in an IS manner. This construction associates to each parti-

cle the IS weight wpt . The particle-weight association (xp1:t, w
p
t )p=1:P represents (asymp-

totically) a weighted sample from π(x1:t | y1:t) and approximates it by π
SMC

(x1:t) =
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∑
p=1:P

wpt δ{xp1:t}(x1:t). Resampling according to the weights (wpt )p=1:P leads to an unweighted

approximation
∑

p=1:P

δ
{x
a
p
t

1:t}
(x1:t). Here we introduce an additional variable apt defined in the

particle index space 1 : P and that accounts for the resampled indices and thus the

particle ancestry. Resampling is not required for the algorithm validity and alternative

algorithms like Sequential Importance Sampling (SIS) exist where weights are simply

propagated along each of the particles.

Algorithm 2 Sequential Importance Resampling

Objective: recursively approximate x1:t | y1:t for t=1:T.

1. For t = 1 and for p = 1 : P :

(a) draw xpt ∼ q1(x1) where q1(x1) is a proposal density,

(b) compute the unnormalized wp1 =
π(y1|xp1)π(xp1)

q1(xp1)
and normalized W p

1 =
wp1∑

p=1:P
wp1

weights.

2. For t=2:T and for p=1:P,

(a) draw the index of the ancestor particle apt−1 from the weights
(
W p
t−1

)
1:P

such

as P (apt−1 = k) = W k
t ,

(b) draw xpt ∼ qt(xt;x
apt−1

t−1 ),

(c) compute the unnormalized particle weights wpt =
π(xpt |x

a
p
t−1
t−1 )π(yt|xpt )

qt(x
p
t ;x

a
p
t−1
t−1 )

and normal-

ized weights W p
t =

wpt∑
p=1:P

wpt
.

The P particles ending in (xpT )1:P represent asymptotically a weighted sample from π(xT |
y1:T ) with weights (W p

T )1:P . Furthermore, a complete trajectory x̃p1:T for a particle p can

be reconstructed by backtracking.

3. Set pT = p the index at position T of the particle to be reconstructed and assign

x̃pT = xpTT . For t = T to t = 2 set pt−1 = aptt and x̃pt−1 = x
pt−1

t−1 .

The trajectories (x̃p1:T ,W
p
T )p=1:P represent a weighted sample of π(x1:T | y1:T ).

The proposal can be a position-specific density conditioned on the local observations and

previous sampled values: qt(xt;xt−1) = f(xt;xt−1, y). The alternative algorithm SIS does
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not include the resampling step 2a. With this change, the particle weights need to account

for all the past update weights. For SIS the tasks in step 2 therefore change to

(a’) draw xpt ∼ qt(xt;x
p
t−1),

(b’) compute wpt = W p
t−1 ·

π(xpt |x
p
t−1)π(yt|xpt )

qt(x
p
t ;xpt−1)

and W p
t =

wpt∑
p=1:P

wpt
.

The SIS reconstruction based on steps a’ and b’ provides a weighted sample approximation

π
SMC

(x1:t | y1:t) =
∑
1:P

W p
t · δ{xp1:t}(x1:t). (2.6)

The reconstruction using importance sampling and thus instrumental densities can

possibly lead to particles with very low importance weights (W p
t ). Propagating these

particles has two detrimental effects: computation resources are consumed on unlikely

trajectories and the size of the final particle sample representativeness will be reduced.

This motivates the resampling step 2a which can be considered as a filter to discard

unfitted particles. After resampling the approximation can be done using the unweighed

sample
(
x
apt
1:t

)
1:P

and it writes

π
SMC

(x1:t | y1:t) =
1

N

∑
1:P

δ
{x
a
p
t

1:t}
(x1:t). (2.7)

2.2.1.1 The Resampling Step: How and When

The drawing of (apt )p=1:P indices needs to preserve the particle weights: P (apt = k) = W k
t .

A first option consists in independent draws of indices and sums to a multinomial sampling

scheme. After drawing the number of particle off-springs n1:P by multinomial sampling

n1:P ∼ M(P,W 1:P
t ), indices can be assigned in order to (apt )p=1:P as a

∑
j=1:p−1

nj :
∑
j=1:p

nj

t = p.

This option, even if valid, has a significant additional variance (computed as excess of

the 2.7 over the 2.6 estimators). This motivated methods that tend to generate for each

particle a number of off-springs np close to the expected number W p
t · P . The systematic

and residual sampling implement this idea. While both methods ensure a minimum

number of off-springs for the particle p equal to bW p
t · P c (the integer part of W p

t ·P ), the

procedures differ.

Systematic sampling consists in drawing an initial value u ∼ U(0, 1) and setting the

number of off-springs npt to the cardinal value of the set { ` : P ·
∑

j=1:p−1

W j
t < u + ` ≤
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P ·
∑
j=1:p

W j
t }. We can first compute n1

t = bP ·W 1
t + 1− uc and then for p = 2 : P compute

recursively npt = bP ·W p
t − (

∑
j=1:p−1

njt − 1 + u−
∑

j=1:p−1

P ·W p
t )c .

In Residual sampling first set for each particle an initial number of off-springs n′pt =

bW p
t · P c. In a second step draw the residual R = P −

∑
j=1:P

bW j
t · P c off-springs (n′′pt

for each particle). The n′′1:P
t can be drawn using a multinomial (or systematic) sampling

scheme with weights
W p
t −bW

p
t ·P c

R
. The final number of off-springs is npt = n′pt + n′′pt .

More details on these resampling techniques are discussed in [Hol et al., 2006; Chopin

and Singh, 2013].

While the standard SIR involves resampling at each position, its frequency can be

modulated without affecting the validity of the algorithm. In SMC literature ([Doucet

and Johansen, 2009] among others), a frequent criteria pertains to sample representative-

ness. The Effective Sampling Size value ESS = 1/
∑

p=1:P

(W p)2 (described in [Liu, 2008])

measures the changes in the variance by using the proposal instead of the target and in

other words the loss in efficiency.

To explain in more detail the ESS we look at the estimation efficiency for the expecta-

tion of a generic function h(x) (E =
∫
h(x) dπ(x)). We consider two estimators Êπ

ESS
and

Êπ̂ where the first one is obtained using an unweighted sample of size ESS drawn under

π(x) and the later a weighted sample (W,x)1:P , of size P, drawn under an instrumental dis-

tribution q. The ESS gives the size of a sample drawn under π(x) for which the variance of

the two estimators is approximatively equal, i.e.
∫

(Êπ
ESS
−E)2 dπ(x) ≈

∫
(Êπ̂−E)2 dq(x).

In a more simple interpretation
∑

p=1:P

(W p)2 is the probability of drawing the same sample

index in two independent drawings for a population with weights W 1:P . This probabil-

ity is 1
P

for an unweighted sample of size P. Thus, the ESS also represents the size of

an unweighted sample with a probability
∑

p=1:P

(W p)2 of drawing consecutively the same

index.

The resampling frequency choice is a matter of algorithm efficiency and has no influence

on its asymptotic accuracy and other criteria may be considered (like the number of

particles with weights under a threshold or the maximum weight value).
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2.2.1.2 Backward Sampling

The resampling step induces a degeneracy phenomenon: the coalescence of trajectories

associated to the particles. After a number of resampling events all the present particles

have the same ancestor, i.e. the hidden trajectories that can be backtracked for each of

them coalesce.

To get a hint of the time before coalescence we look at a simplified SSM with no

observations and for which sampling is done under the transition kernel (q(xpt ;x
p
t−1) =

π(xpt | x
p
t−1)). In this case, at each step, the weights wpt =

π(xpt |x
p
t−1)

q(xpt ;xpt−1)
equal to 1, and,

for a multinomial resampling procedure, the average Time to the Most Recent Common

Ancestor (TMCRA) of all the particles is less or equal to 2P · (1 − 1
P

) [Mohle, 2004].

Because more uneven weights lead to faster coalescence, in practice proposals have a

significant impact on the time to coalescence.

Forward Filtering provides a particle sample (xp1:T )1:P from π(x1:T | y1:T ) but, due to

coalescence the approximation in one SIR run would use only one particle for positions

before T − TMCRA. Even if asymptotically correct, the filtering can thus not provide a

good approximation with practical P and for high T values.

We can reconsider in a backward algorithm the values proposed during filtering and

thus suppress the coalescence effects. The Backward Smoothing [Godsill et al., 2004;

Doucet and Johansen, 2009] builds upon equation 2.3 which, for a filtering approximation

π(xt | y1:t) ≈
∑

p=1:P

W p
t δ{xpt }(xt) leads to the smoothed approximation πb(xt | y1:T ) =∑

p=1:P

W p
t δ{xpt }(xt)·

∫ π(xt+1|y1:T )k(xt+1|xpt )

π(xt+1|y1:t)
dxt+1. From this we can derive the smoothed weights

W p
t|T of the xpt sampled values,

W p
t|T = W p

t ·
∑
l=1:P

W l
t+1|T · k(xlt+1 | xpt )∑P

k=1 W
k
t · k(xlt+1 | xkt )

,

that allow the Backward Smoothing approximation πb(xt | y1:T ) ≈
∑

p=1:P

W p
t|T δ{xpt }(xt).

A related option is the Backward Sampling (algorithm 3) [Godsill et al., 2004; Doucet

and Johansen, 2009; Chopin and Singh, 2013] which backward reconstructs the trajectories

reconsidering the filtering samples. It starts from the decomposition π(x1:T | y1:T ) =

π(xT | y1:T )
∏

t=T−1:1

π(xt | xt+1, y1:T ) and recursively extends backward the x∗t:T trajectory

according to the π(xt | xt+1, y1:T ) ∝ π(xt | y1:t) · k(xt+1 | xt) approximation

πb(xt | x∗t+1, y1:T ) ∝ W p
t · k(x∗t+1 | x

p
t ).
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Similarly we can write the weights W p
t|t+1 ∝ W p

t · k(x∗t+1 | x
p
t ), where

∑
p=1:P

W p
t|t+1 = 1, and

the approximation πb(xt | x∗t+1, y1:T ) ≈
∑

p=1:P

W p
t|t+1 δxpt (xt).

The approximation of π(xt | y1:T ) is computed directly during Backward Smoothing

and as a marginal from π(x1:T | y1:T ) in Backward Sampling.

Algorithm 3 Backward sampling

Objective: backward sample a trajectory x∗1:T from the sample (xp1:T , w
p
1:T )1:P generated

with the SIR particle filter.

For t = T ,

1. Draw the index p?T from 1 : P indices with (wpT )1:P weights.

Set x∗T = x
p∗T
T .

For t = T − 1 : 1,

1. For p = 1 : P compute wpt|t+1 ∝ wpt · π(xpt | x∗t+1) weights of π(xpt | x∗t+1, y1:T )

2. Draw the index p?t from 1 : P indices with weights
(
wpt|t+1

)
1:P

. Set x∗t = x
p∗t
t

We show empirical results that illustrate the Backward sampling improvement in re-

sults, section 4.2.4.
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2.2.2 Particle Markov Chain Monte Carlo - PMCMC

Even with backward smoothing, the SMC approximation is not precise for a practical

number of particles and thus highly influenced by the instrumental function. To tackle

with the exactness issue recent methods use the convergence properties of the MCMC

algorithms. The Particle MCMC (PMCMC) algorithms provide exact sampling methods

for finite sample sizes P and for any valid instrumental function q by plugging the SMC

approximation π
SMC

(x1:T | y1:T ) as a proposal in a MCMC algorithm. These iterative

algorithms allow to obtain a correlated sample
(
x

(n)
1:T

)
n≥1

distributed, after a period of

burn in, under the target π(x1:T | y1:T ). Further on in this chapter we simplify, in order

to ease reading, the writing for the complete sequences x1:T , y1:T to x and y.

The Metropolis Hastings (MH), a MCMC algorithm on which the PMCMC is built,

aims to construct a Markov chain (xn)n≥1 with the target π(x) as stationary distribution.

The transition k(x(n);x(n−1)) is built in two steps:

1. draw x̃ from an instrumental function q: x̃ ∼ q(x;x(n−1)),

2. set x(n) = x̃ with probability ρ(x̃;x(n−1)) = min
(
1, q(x(n−1);x̃)·π(x̃)

q(x̃;x(n−1))·π(x(n−1))

)
and x(n) = x(n−1) otherwise.

The Markov chain transition kernel is k(x(n);x(n−1)) = q(x(n);x(n−1)) · ρ(x(n);x(n−1)) +

δ{x(n−1)}(x
(n))
∫
q(x(n);x(n−1)) · (1 − ρ(x(n);x(n−1))) dx(n). It satisfies the detailed balance

π(x(n−1)) · k(x(n);x(n−1)) = π(x(n)) · k(x(n−1);x(n)) and therefore it has π(x) as stationary

density.

A MH algorithm for SSM with a SMC particle approximation as instrumental function

would write as:

1. propose x∗1:T ∼ π
SMC

(x1:T | y1:T ),

2. set x
(n)
1:T = x∗1:T with probability min

(
1,

π
SMC

(x
(n−1)
1:T |y1:T ) · π(x∗1:T |y1:T )

π
SMC

(x∗1:T |y1:T ) · π(x
(n−1)
1:T |y1:T )

)
and other-

wise set x
(n)
1:T = x

(n−1)
1:T .

In practice though, we do not have access neither to π
SMC

(x
(n−1)
1:T | y1:T ) and π

SMC
(x∗1:T |

y1:T ) nor directly to
π
SMC

(x
(n−1)
1:T |y1:T )·π(x∗1:T |y1:T )

π
SMC

(x∗1:T |y1:T )·π(x
(n−1)
1:T |y1:T )

and therefore we cannot compute the accep-

tance probability and thus we cannot build the Markov chain. While we can compare the

particles reconstructed within the same SMC run (through the particle weights), x
(n−1)
1:T

and x∗1:T are obtained in different runs.
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2.2.3 Particle Independent Metropolis Hastings - PIMH

The acceptance probability can be replaced by min

(
1,

π∗SMC(y1:T )

π
(n−1)
SMC (y1:T )

)
, where the π(n)

SMC
(y1:T )

is a likelihood approximation from the nth SMC run [Andrieu et al., 2010].

In the SMC framework and with the current notations the likelihood writes: π(n)
SMC

(y1:T ) =∏
t=1:T

1
P

∑
p=1:P

w
p(n)
t where (w

p(n)
t )p=1:P are the unnormalized particles weights at position t

computed during the nth SMC run. This formula can be derived from equation 2.4 that,

after a change in the integration density to q(x) and using the filtering approximation of

π(xt−1 | y1:t−1) by an unweighted sample x1:P
t−1, writes as π(yt | y1:t−1)≈ 1

P

∑
p=1:P

e(yt|xpt )·k(xpt |x
p
t−1)

q(xp;xpt−1)

and consequently π
SMC

(yt | y1:t−1) = 1
P

∑
p=1:P

wpt

In [Andrieu et al., 2010], the authors establish that the PIMH update create a Markov

chain converging to π(x1:T | y1:T ). They obtain this result by considering this density as

the marginal in a state space augmented by all SMC variables.

Algorithm 4 Particle Independent Metropolis Hastings

Objective: build a
(
x

(n)
1:T

)
n≥1

correlated sample drawn from π(x1:T | y1:T ).

For iteration n = 1 : N

1. Run SMC (SIR) targeting π(x1:T | y1:T )

(a) compute π
SMC

(y1:T ) =
∏
t=1:T

1
P

∑
p=1:P

wpt ,

(b) sample a particle x∗1:T according to the particle weights (WT )p=1:P .

2. With probability min

(
1,

π
SMC

(y1:T )

π
(n−1)
SMC (y1:T )

)
set x

(n)
1:T = x∗1:T and π(n)

SMC
(y1:T ) = π

SMC
(y1:T ).

Otherwise, set x
(n)
1:T = x

(n−1)
1:T and π(n)

SMC
(y1:T ) = π(n−1)

SMC
(y1:T ).

Intuitively, we build the Markov chain x
(n)
n≥1 by always accepting trajectories drawn

from SMC run associated with higher estimated values of the likelihood and reject with

some probability those with a smaller likelihood estimated values.
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2.2.4 Conditional SMC Update - CSMC

Another way to deal with the comparison of two particles x
(n−1)
1:T and x∗1:T is to have them

both in the same SMC run. In this case the comparison can be done using the importance

weights.

Algorithm 5 Conditional SMC update

Objective: build a correlated sample
(
x

(n)
1:T

)
n≥1

such that π(x
(n)
1:T | y1:T ) is preserved. The

Markov chain is built on a kernel K
CSMC

(x
(n)
1:T ;x

(n−1)
1:T , y1:T ) that draws x

(n)
1:T from a SMC

that has the trajectory x
(n−1)
1:T as one of the particles.

1. For t = 1

(a) For p = 1 : P − 1 draw xp1 from the proposal density q1(xp1).

Set xP1 = x
(n−1)
1 .

(b) For p = 1 : P compute the weights: unnormalized wp1 =
π(y1|xp1)π(xp1)

q(xp1)
and

normalized W p
1 =

wp1∑
p=1:P

wp1
.

2. For t = 2 to t = T

(a) For p = 1 : P − 1 draw index of the ancestor particle apt−1 from weights(
W p
t−1

)
1:P

such as P (apt−1 = k) = W k
t−1. Set the ancestor of the last particle

aPt−1 = P .

(b) For p = 1 : P − 1, draw xpt from the proposal qt(x
p
t ;x

apt−1

t−1 ). Set xPt = x
(n−1)
t .

(c) For p = 1 : P , compute the weights: wpt =
π(yt|xpt )·π(xpt |x

a
p
t−1
t−1 )

qt(x
p
t ;x

a
p
t−1
t−1 )

and W p
t =

wpt∑
p=1:P

wpt
.

3. Backtrack x
(n)
1:T from

(
xp1:T , w

p
1:T , a

p
1:T−1

)
1:P

:

(a) Draw pT from 1 : P indices with weights (wpT )1:P and set x
(n)
T = xpTt−1.

(b) For t = T to t = 2 do: pt−1 = aptt−1 and x
(n)
t−1 = x

pt−1

t−1 .

Setting one particle to the trajectory from the n− 1 sweep might result, when sampling

the final particles, in the same trajectory for the sweep n. Moreover, even if we sampled a

different particle, this new trajectory will be the same as the old trajectory for positions
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before the last common particle ancestor (see coalescence in section 2.2.1.2).

In the place of the backtrack step (algorithm 5, step 3) we can use the backward

sampling (algorithm 3) that reconstructs a trajectory x
(n)
1:T from (xp1:T , w

p
1:T )1:P and thus

suppresses this behaviour that impedes the MCMC mixing a long sequence. A second

option to tackle this issue is to make the update by blocks, i.e. each update is done on

segments of reduced size T. We present in the results chapter implementations of the

block update and backward sampling CSMC.
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2.3 Parameter Estimation for SSMs

Until this point we focused on the reconstruction of the hidden trajectory x1:T from the

observations y1:T at supposed known values of parameters Θ (emission and transition

parameters). In a practical case, the parameters are often not known and we need to

estimate them.

The direct analysis of the complete data likelihood π(y1:T | Θ) and posterior π(Θ | y1:T )

is generally not possible because it involves a high dimensional integration π(y1:T | Θ) =∫
π(y1:T , x1:T | Θ) dx1:T . In most cases, the same quantities for π(y1:T , x1:T | Θ) and

π(Θ | x1:T , y1:T ) are much more tractable. In both the Bayesian and Maximum Likelihood

frameworks, the algorithms for the estimation of parameters (based on π(y1:T | Θ) and

π(Θ | y1:T )) are intimately connected to the reconstruction of the hidden trajectory.

2.3.1 Maximum Likelihood Estimators

Within the Maximum Likelihood framework, we present Stochastic Expectation Max-

imisation (SEM) [Celeux et al., 1995] and Maximum Likelihood via Iterator Filtering

(MIF) [Ionides et al., 2006] algorithms. SEM simplifies the computation required by the

Expectation Maximisation algorithm by using Monte Carlo approximations during the

expectation step. MIF implements a different option, that involves parameter update

during trajectory reconstruction, and results in local parameter optimisations. The local

estimations are used to derive global parameter values.

Maximum Likelihood (ML) methods aim to maximise the likelihood probability of

observed data ΘML = argmax
θ

π(y | θ). Maximum A Posteriori (MAP)methods are an

extended version of ML with a prior on the parameters: ΘMAP = argmax
θ

π(y | Θ) · π(Θ).

The Expectation Maximisation is a classic iterative algorithm for models with latent

variables that aims to increase the likelihood at each sweep. The algorithm decomposes

in two steps and writes for a SSM as:

1. E-step: compute Q(Θ; Θ(n)) =
∫

log(π(x1:T , y1:T | Θ)) · π(x1:T | y1:T ,Θ
(n)) dx1:T

2. M-step: compute Θ(n+1) = arg max
Θ

Q(Θ; Θ(n))

As we already mentioned, the complete data likelihood π(x1:T , y1:T | Θ) is easier to com-

pute than the incomplete data likelihood π(y1:T | Θ).
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The models where the E-Step requires tedious or intractable integration to com-

pute Q(Θ; Θ(n)), this quantity can be approached with Monte Carlo approximations.

The Stochastic EM (SEM) and Monte Carlo EM (MCEM), described among several

other stochastic EM methods in Celeux et al. [1995], reduce the difficulty of computing

Q(Θ; Θ(n)) to sampling π(x1:T | y1:T ,Θ). In MCEM sample of size P is used to approx-

imate computation of the expectation. High values of P lead to estimations closer to

deterministic EM. For P = 1 the MCEM reduces to the SEM algorithm. The SMC al-

gorithms are a viable alternative to generate such samples [Lindsten, 2013]. In a SEM

algorithm, for a SMC approximation, the E-step integration of Q(Θ; Θn) is replaced by

the simulation of one trajectory. This simplifies the M-step to maximizing the complete

data likelihood π(x
(n)
1:T , y1:T | Θ). Due to its stochastic E-step, the SEM algorithm builds a

Markov chain
(
Θ(n)

)
n>1

that, instead of converging to a point value like the EM does, con-

verges under mild assumptions to a stationary distribution around the ML value [Nielsen,

2000].

Algorithm 6 Stochastic EM

1. Set a random initial value for Θ(1);

2. Repeat (until convergence):

(a) Stochastic E-step: sample x
(n)
1:T from π(x1:T | y1:T ,Θ

(n))

(b) M-step: compute Θ(n+1) = argmax
Θ

π(Θ | x(n)
1:T , y1:T )

The Maximum Likelihood via Iterator Filtering (MIF) [Ionides et al., 2006; Breto

et al., 2009] uses another strategy to build a Θ(n) series converging to the ML. A few

precisions need to be made concerning the MIF algorithm that we present for illustration

purpose (algorithm 7). First, in the original algorithm [Breto et al., 2009] the initial value

x0 is estimated and included as a separate variable. Beside simplification we omit x0 also

because such a state does not fit our model. In algorithm 7, we sample the x1 values from

the distribution π(x1 | Θ). Second, as in the original algorithm we present here sampling

done by a prior kernel proposal. We believe that using a more complex proposal would not

invalidate its properties if the importance weights are modified correspondingly. Third,
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the parameter Θ can be multivariate (we omitted this for simplicity purposes). In this

case σ becomes a covariance matrix Σ and steps 2b, 2c and 3 are done for each component

of Θ.

Algorithm 7 Maximum Likelihood via Iterator Filtering

For n = 1 initialize randomly Θ(1);

For n in 2 : N

1. For t = 1

(a) Set Θ̄0 = Θ(n) draw Θp
0 ∼ N (Θ(n), bσ(n));

2. For t in 1 : T

(a) For p in 1 : P sample

• draw xpt ∼ π(xpt | x
apt−1

t−1 ,Θ
p
t−1); If t = 1 draw from xpt ∼ π(xpt | Θ

p
t−1);

• compute W p
t ∝ e(yt | xpt ,Θ

p
t−1) such as

∑
p=1:P

W p
t = 1;

• draw apt particle index from weights (wpt )p=1:P

• draw Θp
t ∼ N (Θ

apt
t−1, σ

n);

(b) compute Θ̄t = 1
N

∑
p=1:P

Θ
apt
t−1 the sample mean of

(
Θ
apt
t−1

)
p=1:P

(c) compute Vt = 1
N

∑
p=1:P

(Θp
t )

2 − ( 1
N

∑
p=1:P

Θp
t )

2 the variance mean of (Θp
t )p=1:P

3. Θ(n+1) = Θ(n) + V1 ·
∑
t=1:T

1
Vt

(Θ̄t − Θ̄t−1)

The maximum likelihood estimate for Θ is obtained as Θ(N). Here, the super(sub)-

scripts (n), p and t refer to : the sweep n, the particle p and the position t. apt represents the

index of the p particle after resampling; σ(n) represents the parameter proposal variance

σ(n) = sn−1σ with 0 < s < 1, and b > 0 represents an initial scaling factor for the same

variance.
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2.3.2 Parameter Estimation with PMCMC Methods

Within the Bayesian framework we present two recent methods: Particle Marginal Metropo-

lis Hastings (PMMH) and Particle Gibbs [Andrieu et al., 2010].

2.3.2.1 Particle Marginal Metropolis Hastings

If we adopt a Monte Carlo Markov chain strategy that aims at sampling the joint dis-

tribution x,Θ | y and makes a joint update at the sweep n, the standard Metropo-

lis Hastings acceptance ratio for the proposed values (x∗,Θ∗) drawn from the proposal

q(x,Θ;x(n−1),Θ(n−1)) writes

min

(
1 ,

q
(
x(n−1),Θ(n−1);x∗,Θ∗

)
· π(x∗,Θ∗ | y)

q (x∗,Θ∗;x(n−1),Θ(n−1)) · π(x(n−1),Θ(n−1) | y)

)
. (2.8)

The joint density π(x,Θ | y) decomposes as π(x | y,Θ) ·π(Θ | y). Our quantity of interest

is Θ | y and we assume that x | Θ, y is well aproximated by the SMC runs. This suggests

using the proposal q(x∗,Θ∗;x(n−1),Θ(n−1)) = π
SMC

(x∗ | y,Θ∗) · qΘ(Θ∗; y,Θ(n−1)). The ac-

ceptance ratio (equation 2.8) would write
π
SMC

(x(n−1)|y,Θ(n−1))·qΘ(Θ(n−1);y,Θ∗) ·π(x∗|y,Θ∗) ·π(Θ∗|y)

π
SMC

(x∗|y,Θ∗)·qΘ(Θ∗;y,Θ(n−1)) ·π(x(n−1)|y,Θ(n−1)) ·π(Θ(n−1)|y)

and for a perfect SMC approximation, i.e. π
SMC

(x | y,Θ) = π(x | y,Θ) would simplify to

qΘ(Θ(n−1); y,Θ∗) · π(Θ∗ | y)

qΘ(Θ∗; y,Θ(n−1)) · π(Θ(n−1) | y)
(2.9)

We write π(Θ | y1:T ) ∝ π(y1:T | Θ)·π(Θ). The left term of the product is the likelihood

we compute in equation 2.4 and approximate it in section 2.2.3 for a SIR algorithm as

π
SMC

(y1:T | Θ) =
∏
t=1:T

1
P

∑
p=1:P

wpt , (wp unnormalized weights).

In [Andrieu et al., 2010], the authors prove that the Particle Marginal Metropolis

Hasting (algorithm 8), a Metropolis Hastings - algorithm with the acceptance ratio from

the equation 2.9 computed using the likelihood SMC approximation indeed leaves π(Θ |
y1:T ) invariant despite the fact that the SMC approximation is not perfect.
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Algorithm 8 Particle Marginal Metropolis Hastings

Objective: build a correlated sample
(
Θ(n)

)
n=1:N

from the target π(Θ | y1:T ).

For iteration n = 1 : N

1. Draw Θ∗ from qΘ(Θ∗; Θ(n−1)).

2. Run SMC for x | y,Θ∗ to compute π
SMC

(y | Θ∗) =
∏
t=1:T

1
P

∑
p=1:P

wpt .

3. With probability min

(
1,

qΘ(Θ(n−1);Θ∗) ·π
SMC

(y|Θ∗) ·π(Θ∗)

qΘ(Θ∗;Θ(n−1)) ·π(n−1)
SMC (y|Θ(n−1)) ·π(Θ(n−1))

)
set Θ(n) = Θ∗ and

π(n)
SMC

(y | Θ(n)) = π
SMC

(y | Θ∗)
If not, set Θ(n) = Θ(n−1) and π(n)

SMC
(y | Θ(n)) = π(n−1)

SMC
(y | Θ(n−1))

PMMH efficiency (mixing in
(
Θ(n)

)
n≥1

) highly depends on the SMC likelihood ap-

proximation (see also P. Fearnhead discussion on [Andrieu et al., 2010]).

2.3.2.2 Particle Gibbs

In a general Gibbs algorithm, each sweep updates the joint π(x1:T ,Θ | y1:T ) in two steps:

1. update x1:T | Θ and y1:T ,

2. update Θ | x1:T and y1:T .

In Particle Gibbs the trajectory update is done through the CSMC algorithm. The

parameter update can recurs to various sampling techniques preserving Θ | x1:T , y1:T .

Such techniques include sampling from the conditional posterior distribution (directly,

sometimes referred to as Gibbs-type move or mediated by importance densities) and

MCMC methods (like MH for example). For multivariate Θ we can adopt a Gibbs strategy

and proceed to the update of parameters by blocks instead of a joint update of all the

parameters.
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Algorithm 9 Particle Gibbs

Objective: build a sample
(
x

(n)
1:T ,Θ

(n)
)
n≥1

from the target distribution π(Θ, x1:T | y1:T ).

For iteration n = 1 : N

1. Run CSMC targeting π(x1:T | y1:T ,Θ
(n−1)) and draw one trajectory x

(n)
1:T

2. Update Θ(n) such as π(Θ | x(n)
1:T , y1:T ) is preserved.
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2.4 The Choice of the Instrumental Function in Im-

portance Sampling

The fitness of the instrumental function q (also referred to as the proposal or importance

function) to a target distribution π is a crucial factor in any Monte Carlo estimation. In

SMC notably, the Importance Sampling schemes make use intensively of the proposal func-

tions (named in this context importance functions). The general Importance Sampling

approximation uses the equivalence of π(x) with π(x)
q(x)
· q(x). The quantities w(x) = π(x)

q(x)

represent the importance weights (for which we use wp notation for the weight of xp

sampled value). The importance distribution q can be virtually any function that dom-

inates the target π distribution (i.e. q(x) > 0 for π(x) > 0). To ensure finite variance∫
(h(x)f(x)

q(x)
)2 dq(x) − (

∫ h(x)f(x)
q(x)

dq(x))2 we usually choose q(x) such as the ratio h(x)f(x)
q(x)

is

bounded, i.e. ∃M ∈ R such as h(x)f(x)
q(x)

< M [Cappe et al., 2005; Doucet and Johansen,

2009]. The choice of a proposal may be done with a regard to computational efficiency,

fitness to target function and variance of estimators.

Computational efficiency is influenced by the sample size and the costs of proposal sam-

pling and density computation. In the Sequential Importance Sampling filtering frame-

work for SSM the general target is π(xt | xt−1, yt) ∝ π(xt | xt−1) · π(yt | xt). Its product

writing suggests proposals that address each term. A classic choice is the prior kernel

[Cappe et al., 2005] q(xt;xt−1) = π(xt | xt−1). The computation of the weights simplifies

in this case to wt = π(yt | xt).

It is important to notice that the choice of the prior kernel eliminates the need of

density computation for the hidden kernel. This decreases the cost of computation. For

SSMs where these densities are not available, the partial black-box SSMs, these proposal

choices might be the only practical solutions. In a general scenario though, as they include

only partial information, they often require high sample sizes for target approximation.

In classical IS, the fitness of a proposal is measured by a ”distance”, like the relative

entropy (Kullback-Leibler divergence) or derived from the Effective Sample Size (dis-

cussed in section 2.2.1), between target and proposal. The Kullback-Leibler (KL) writes

KL(π||q) =
∫

ln π(x)
q(x)

π(x) dx. Its approximation by a sample (xp)p=1:P generated under

q(x) writes KL(π||q) ≈
∑

p=1:P

ln π(xp)
q(xp)

· wp.

To improve proposal fitness a proposal parameter tuning step might be added in SMC
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algorithms. We consider a general mixture proposal q(x;α,Θ) =
∑

d=1:D

αd · qd(x) where

in this section α = (αd)d=1:D and Θ = (Θd)d=1:D. Two classes of parameters can be

optimized: the mixture parameters α and proposal component parameters Θ. We will

discuss an adaptive method, the Population Monte Carlo (PMC) implemented in versions

aiming at optimizing the mixture weights (D-kernel PMC [Douc et al., 2007]) or both

the mixture weights and the parameters (MPMC) [Cappe et al., 2007]. In an adaptive

algorithm the proposal function is updated according to the fitness of previous obtained

samples to the target. The principle of PMC resides on the fact that updating the proposal

does not jeopardize the fundamental importance sampling identity.

Algorithm 10 Mixture Population Monte Carlo

Objective: estimate the parameters (α = (αd)d=1:D and Θ = (Θd)d=1:D of a mixture

proposal q(x;α,Θ) =
∑

d=1:D

αd qd(x; Θd) that maximize
∫

ln q(x;α,Θ)π(x) dx.

For iteration n , n = 1 : N ,

1. Generate a sample (xp)p=1:P from the n− 1 proposal mixture q(x;α(n−1),Θ(n−1))

2. Compute the importance weights wp = π(xp)

q(xp;α(n−1),Θ(n−1))
and W p = wp∑

p=1:P
wp

3. Compute the mixture posterior probabilities

ρ(xp;α
(n−1)
d ,Θ

(n−1)
d ) =

α
(n−1)
d · qd(xp; Θ

(n−1)
d )

q(xp;α(n−1),Θ(n−1))

4. Update the weights α
(n)
q = (α

(n)
1 ..α

(n)
D ):

α
(n)
d =

∑
p=1:P

W p · ρ(xp;α
(n−1)
d ,Θ

(n−1)
d )

5. Update the parameters Θ(n) = (Θ
(n)
1 ..Θ

(n)
D ):

Θ
(n)
d = argmax

Θd

∑
p=1:P

W pρ(xp;α
(n−1)
d ,Θ

(n−1)
d ) ln qd(x

p; Θd)

The parameters αN and ΘN maximize
∫

ln q(x;α,Θ)π(x) dx and minimize the KL diver-

gence of q(x;α,Θ) from π(x),
∫

ln π(x)
q(x;α,Θ)

π(x) dx =
∫

ln π(x) dπ(x)−
∫
q(x;α,Θ)π(x) dx.



Chapter 3

A New Model for RNA-Seq Read

Counts

We begin the results section by exploring the diversity of the data issued from RNA-Seq

protocols. For this analysis we include datasets from some of the most studied species of

bacteria and small eukaryotes. In the most simple scenario, where variability would be

introduced only by random sampling of the molecules that are sequenced, reads should

have an uniform distribution over regions with the same expression level and read counts

should follow a Poisson distribution. The experimental data-sets we study indicate that

the read counts distribution is more complex than that. We show results on nine data-

sets concerning two types of biases: one related related to random local sequence scaling

and the other due to position within a transcript. We pay a particular attention to the

possibility of a bias associated to the RNA conformation and its relation to the presence

of G and C nucleotides. We observe that bias is reproducible for data sets with the

same origin but can manifest in different forms for different organisms and studies. To

circumvent difficulties that could be induced by explicitly including all bias sources, we

rather design a robust over-dispersed read count model.

In our first attempts we try to account for the variability of counts inside regions

with expected homogeneous coverage by using a Negative Binomial (NB) distribution.

However, we observe a significant discrepancy between the data and the NB with respect

to the relation between mean, variance and the percentage of positions that have no counts

(zero-counts) within a transcript. This prompted us to search for a more accurate model

51
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that would make sense from a mechanistic perspective. Within the canonical RNA-Seq

flow we consider the randomness introduced at each step and build an intricate mixture

model for the count distribution.
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3.0.1 RNA-Seq Datasets

Data-set SRA Publication Protocol∗ Use

B. anthracis SRR028684 Passalacqua et al. [2009] s/36∗∗ \

B. subtilis SRR064325 Lasa et al. [2011] s/36 \

C. albicans 1 SRR492978 Vandeputte et al. [2012] s/79 \\

C. albicans 2 NA NA s/50 \\

C. albicans 3 NA NA s/50 \\

E. coli 1 SRR915698 Li et al. [2013] s/100 \\

E. coli 2 SRR794856 McClure et al. [2013] s/100 \\\

E. coli 3 SRR794832 McClure et al. [2013] s/100 \\

F. psychrophilum 1 NA NA s/50 \

F. psychrophilum 2 NA NA s/50 \

H. phylori SRR031126 Sharma et al. [2010] s/76 \\

P. acnes SRR850805 Lin et al. [2013] s/75∗∗∗ \\

S. aureus SRR397557 Lasa et al. [2011] p/76 \\

S. cerevisiae 1 SRR121907 Dijk et al. [2011] s/50∗∗∗∗ \\\∇

S. cerevisiae 2 SRR1042851 Guydosh and Green [2014] s/50 \\

S. cerevisiae 3 SRR815616 Rouskin et al. [2014] s/50 \\

S. cerevisiae 4 SRR927162 Dijk et al. [2011] s/50∗∗∗∗ ∇

Table 3.1: List of data-sets analysed in this thesis. ∗ the default protocol is Illumina ;∗∗ no

strand specificity ;∗∗∗ FRT-Seq data. ∗∗∗∗ SOLiD data. Except S. aureus data set (paired-end)

sequencing was done on single reads of length indicated in the protocol column. The ”use”

column indicates the type of analysis performed on the data-sets: \ we estimated parameters of

the new read count model , \\ in addition we analysed read count distribution bias, \\\ in addition

we evaluated the approximation of transcription borders using Parseq, and ∇ these data-sets

were used in evaluating differential expression results. C. albicans 2-3 and F. psychrophilum

1- 2 are unpublished Illumina datasets that were provided respectively by the Laboratory of

Computational and Quantitative Biology, Paris (F. Devaux group) and by the Mathematics,

Informatics and Genome Laboratory, Jouy-en-Josas, France.
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3.0.2 Notations

Throughout the following chapter we use the following probability distributions:

• P(λ) is the Poisson distribution parametrized by mean λ (and P(x;λ) denotes to

the corresponding density at point x);

• NB(m,κ) is the Negative Binomial distribution with mean m and overdispersion κ;

• Γ(m,κ) is the Gamma distribution with mean m and shape 1
κ

(scale= m · κ, var=

m2 · κ);

• U(a, b) is the uniform distribution between a and b;

• 1{c} and 1{c}(x) are the indicator functions whose values are 1 if condition c is true,

and respectively if x=c, and 0 otherwise;

• δd is the Dirac delta function with unit mass at point d.
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3.1 Bias in RNA-Seq Read Counts

The RNA-Seq protocol consists in several steps that generate randomness and might

introduce bias in the read distribution within a transcript. Bias factors may be intrinsic

to transcripts or pertaining to the protocol itself. Intrinsic bias might be related to the

transcript’s sequence and to other transcript characteristics (length, secondary structure).

We investigate in this section the bias on 9 datasets (E. coli 1-3 , C. albicans 1-3

and S. cerevisiae 1-3). We show briefly results related to the influence of the sequence

composition in regions surrounding the 5’ end of a read and to the position relative to

transcript boundaries. We continue with a study on the impact of RNA conformation

(the secondary structure).

The nucleotides composing the sequences surrounding the 5’-end of a read were shown

to correlate to specific scaling of read counts (section 1.4). We computed coefficients for

each nucleotide type in a window w of lag 10 on each side by using the Poisson regression

option from mseq [Li et al., 2010]. Mseq uses a Poisson model of mean xgt parametrized

as ln xgt = lnxg +
∑
k∈w

∑
n∈{A,C,G}

ξkn1{n}(nt+k) where g represents the index of homogeneous

expression units, t is a genomic position within g, nt represents the nucleotide at the

position t, 1{n}(nt+k) equals 1 if nt+k = n and 0 otherwise and ξkn is the scaling coefficient

for nucleotide n at position k relative to the read 5’-end. The Mseq coefficients ξ have

base level for the nucleotide T, ξkT = 0. Here, these coefficients were centred such that,

taking into account the chromosome composition, the average value eξ
k
n is 1. We show in

figure 3.1 scaled coefficients: ξ̃nk = ξnk − ln(
∑
n

eξ
n
k ).

The results presented in (figure 3.1) suggest that there is a high influence of positions

in a window of ± 5 bp. This influence is highly correlated for datasets issued from the

same series of experiments (≈0.98 correlation of ξ−10:10
T for C. albicans 2 vs. 3 and E. coli

2 vs. 3) but not necessarily correlated among datasets from the same organism.

Initial versions of our application to estimate transcript boundaries, Parseq, incorporated

the scaling coefficients computed from the ξ̃nk ’s in the emission function (section 4.1.1).

We computed for each position a scaling coefficient ξt as the sum of the coefficients for

all the nucleotides in the window ξt =
∑

k∈w
∑

n∈{A,C,G,T} ξ̃
n
k1{n}(nt+k). We included

these into our emission function by simply scaling the emission expectation by ξt.
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Figure 3.1: Local sequence coefficients computed with a Poisson linear model (mseq) for a

window of 21 bp around the 5’ end of the read. Colours: green - A, blue - C, orange - G, red

- T. Y-axis: logarithms of scaling coefficients ξ (ex.: for E. coli 2 a nt. T (red) at position -1

scales the expected counts by eξ̃
T
k = e0.95).
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The longitudinal bias is also widely commented in the literature (section 1.4). We

investigated read coverage close to ORF boundaries (figure 3.2). The change in coverage

at the 5’-ends and 3’-ends ranges from very small (S. cerevisiae 1) to significant progression

upward (S. cerevisiae 3) or significant sudden changes (C. albicans 1). Our main work

relates to estimating transcript boundaries based on differences in read coverage. We show

in section 4.1.2 that including a component (denoted drift) to account for progressive

changes improves the results. Significant sudden changes, as we notice in C. albicans

1 or E. coli 2 may lead to the incorrect identification of transcript boundaries and are

partially addressed by a local correlation variable (denoted s in section 3.2). Importantly,

the central transcript regions seem to have an uniform coverage. We use these regions

when evaluating emission model parameters (section 3.3).
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Figure 3.2: Count coverage on the first and last 500 bp of ORFs (grey areas) and on 200 bp

upstream/downstream the ORF borders. For each position in an ORF we computed the average

in a 51 bp window centred on the position and then scaled this value by the ORF average. Then,

we average over the ORFs with lengths in 1000 - 2000 bp range and coverage above 0.5 reads/bp.
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3.1.1 Bias Induced by RNA Conformation and GC Content

We are interested in evaluating the possible influence of the RNA conformation on

RNA-Seq data. We speculate that, due to its high local correlation, the RNA secondary

structures might be at the origin of the local correlations observed in several datasets

(figure 3.7). We focus on investigating the RNA secondary structure impact on read

counts and specifically we ask the question if transcript positions that are part of a stems,

i.e. involved in a base-pair, have different count expectation. We define a variable ρt for

the preference of a position to be in a base-pair, ρt ∈ [0, 1] with ρt = 1 when the position

t is in a base-pair in all conditions and ρt = 0 if the position t is always in a loop.

A transcript might adopt several conformations and these are often unstable. Also, few

genome-wide experimental determinations of the RNA secondary structures are currently

available. We start this analysis by relying on predicted transcript conformation. We use

RNA2Dfold, a minimum free energy prediction application from the ViennaRNA package

[Lorenz et al., 2011] to approximate secondary structures in ORF regions. Transcript

length and temperature play determining roles in transcript conformation. We do not have

access to these informations and design a method that tries to obtain robust secondary

structure estimations independent of temperature and transcript length. For this we

predict structures for different transcript lengths (ORFs and ORFs extended on each side

with 50, 100 and 150 bp) and 4 values for the temperature parameter: 30◦C, 35◦C, 37◦C

and 40◦C. We derive the values of the ρt by averaging the 16 predictions.

We do a second analysis using experimental genome-wide pairing scores for S. cere-

visiae obtained with Parallel Analysis of RNA Structure (PARS) [Kertesz et al., 2010].

Genome-wide pairing scores were derived from a differential analysis of two RNA-Seq

count profiles obtained using two different enzymes: RNase V1 which preferentially cleaves

phosphodiester bonds from the 3’-ends of double-stranded RNA and RNase S1 which pref-

erentially cleaves phosphodiester bonds from the 3’-ends of single-stranded. We use pair

scores computed in [Kertesz et al., 2010] (SRP003175) from merged score profiles.

We perform the analysis of count (yt) distribution for given pairing preferences (ρt) for

6 data sets (E. coli 1-2 , C. albicans 1-2 and S. cerevisiae 2-3). PARS data were included

in the analysis for S. cerevisiae 2-3. For all datasets we consider only ORFs with lengths

between 500 and 2000 bp and having a mean 5’-end read count per position above 0.5
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and at least 200 positions with positive counts. For a rough analysis of the base-paring

conditional count expectation, E(yt | ρt), we compute estimates for three ranges of ρt

values: [0, 0.1], (0.1, 0.9], (0.9, 1].

Results, illustrated for S. cerevisiae 2 in figure 3.3 (top left), suggest that there is

a significant difference between the expectation of counts for positions with high base-

pairing preference (ρt > 0.9) and those with low preference (ρt < 0.1). Similarly, on

results not included in the figure 3.3, we observe that the count expectation is with 20%

lower for high base-pair preference positions for E. coli 1 , C. albicans 1 and S. cerevisiae

3 data-sets. Surprisingly, we notice a significant difference but in the opposite sense (25%

higher count expectation in high base-pair preference positions) for C. albicans 2. We

did not register any difference for E. coli 2. Importantly, this difference does not depend

on the method used for the approximation of the base-pair profile ρ1:T and is similar

for the RNA conformation predicted to minimize the free energy (RNAfold) and for the

experimental data (PARS).

Next, we try to investigate the mechanisms underlying the correlation of the RNA

conformation with the counts. The GC base-pair has stronger bounds than AT or AU

base-pairs with three hydrogen bonds instead of two. Therefore the G and C positions

(GC further-on) might have a higher probability to be in a stem structure (in our data
EGCt=1(ρt)

EGCt=0(ρt)
≈ 1.1 and

Eρt>0.9(GCt)

Eρt<0.1(GCt)
≈ 1.3 for both RNAfold and PARS data). Also, GC rich

regions are known to have potentially biased read counts (see section 1.4). These suggest

that the variable GCt (indicating the presence of G or C at position t) could explain

partially read count bias associated to the base-pairing.

First, we confirm that the counts have a significant difference between GC and AT

positions. For E. coli 1 , S. cerevisiae 2-3 and C. albicans 1 the GC positions have in aver-

age up to 30% less counts (illustrated only for S. cerevisiae 2 in figure 1.4). Interestingly,

for E. coli 2 and C. albicans 2 the GC positions have up to 30% more reads and for S.

cerevisiae 1 no bias was observed.

Second, we try to disentangle the influence of GC and ρ on read count. For this, we ex-

amine the read distribution within the three ranges of base-pair preference separately for

GC and AT positions. We show results in figure1.4 for S. cerevisiae 2 (PARS base-pairing

approximation) and E. coli 1-2 (RNAfold base-pairing approximation). The count expec-

tation estimators are computed as µ̂i,j = exp{
∑
g

ln
µ̂gρt∈Ri,GC=j

µ̂gρt∈R1,GC=0
}, where µ̂gρt∈Ri,GC=j repre-
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Figure 3.3: Base-pairing and GC correlation with the read counts. The box-plots summarize

data at the ORF level for different contexts. Contexts distinguished for ρt: low(ρt ≤ 0.1),

interm (ρt ∈ (0.1, 0.9]) and high (ρt ∈ (0.9, 1]). Contexts distinguished for the GC status: 0 if

AT (green) and 1 if GC (orange).

sents the average of counts for positions with ρt in range Ri ∈ {[0, 0.1], (0.1, 0.9], (0.9, 1]}
and GC content j for the ORF g.

We observe that count averages for AT and GC positions taken separately (green and

orange box plots) have significantly smaller changes with increasing base-pair preference

than when the two CG contexts are pooled. Without providing sufficient quantitative

proof, it suggests that the secondary structure and specifically the base-pairing has a weak

influence on read counts once the GC influence is removed. The observed correlation of

base-pairing with the read count bias is due mainly to the base-pairing correlation with

the GC content. There is still a residual bias that either might point to an influence of

the secondary structure or might be explained by analysing the base-pairing correlation

to a more complete sequence composition.
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3.2 A Mechanistic Model for RNA-Seq Read Counts

The variability of read counts observed when re-sequencing the same library has been

described as almost compatible with a Poisson distribution [Marioni et al., 2008]. However,

when compared between samples (or even replicate libraries), the distribution exhibits

over-dispersion and the negative binomial (NB) distribution is often used to accommodate

this behavior [Robinson et al., 2010; Anders and Huber, 2010]. RNA-Seq counts often show

a high overdispersion (example in figure 3.4). Like Cleynen et al. [2014a], we relied on the

NB in our first attempts of modelling the count distribution within transcripts. Indeed, it

seems required to involve a mixed Poisson distribution in order to account simultaneously

for the incompressible variance of the final sampling by sequencing (Poisson) and for the

extra-variability introduced by randomness in library preparation and by position-specific

biases that can be introduced at all steps of the protocols. In this context, the NB, viewed

as a Gamma-Poisson mixture (yt ∼ Poisson(xtzt) where zt follows a Gamma distribution

with mean 1 and variance φ), stands as the most tractable model [Karlis and Xekalaki,

2005].

Counts
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Genome positionGenome positions
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Figure 3.4: Two examples of the distribution of RNA-Seq read counts on a region of 1500 bp

on the Watson strand of E. coli 1 (data-set 1) and E. coli 2 (data-set 2). Blue and green bars:

counts of read 5’ ends. Grey lines: segments with relatively homogeneous read coverage in the

data-set 2. Blue boxes: annotated transcripts.

Based on two real data-sets, we examined the distribution of read-counts inside Open

Reading Frames (ORF), regions expected to be homogeneous in terms of expression level.

Namely, we asked whether the NB could capture the relationships between mean and
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variance and simultaneously account for the fraction of positions with zero-counts (figure

3.5). Both characteristics are expected to impact directly on the decision to predict read-

counts at distant positions as originating from the same transcript. The most obvious

discrepancy between the data and the NB is with respect to the zero-counts: given the

mean and the variance of the empirical distribution, the fraction of positions with zero-

counts under the NB assumption tends to be too low for low expression levels and too

high for high expression levels.

Figure 3.5: Read count variance and zero fraction within regions of homogeneous expression

(ORFs). Data sets: S. cerevisiae 1 (left) E. coli 2 (right). Each long ORF (region without in-

frame stop codon) identified on the genome is represented by a dot. Dashed lines show the fit of

the negative binomial model with overdispersion parameter estimated via variance (reads2/bp2)

versus mean (reads/bp) regression; plain lines show the fit with the Parseq model.

The usual parametrization of the NB with overdispersion parameter φ mentionned

above is also contradicted by the data. Indeed, the variance increases markedly faster

than the mean x even for very low expression level, in sharp contrast with the prediction

that the variance should write x + φx2. In the Poisson-mixture context, breaking this

behaviour, that arises from law of total variance, implies that the relationship between
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the mixing distribution and x is more subtle than a simple scaling. This prompted us to

search for a more accurate model that would make sense from a mechanistic perspective.

We developed a new RNA-Seq read count emission model that fits much better the

characteristics of the real data than the simple NB (figure 3.5). Its construction intends

to account for the three main steps of the experimental protocol (figure 3.6): (i) ini-

tial molecule sampling and fragmentation, (ii) amplification, and (iii) final sampling by

sequencing.

RNA

?

Fragmentation

Size selection

Reverse Transcription

ft number of initial cDNA fragments

xt expression level

st local bias

ft ∼ P(
xt
a
· st)

cDNA fragments

?

Amplification

Sequencing

at amplification of mean a

at ∼ Γ(a, κ)
Reads

?

Alignment on
reference genome

gene 1 gene 2

yt counts of 5’ ends at position t

yt ∼ P(ft · at)
E(yt | xt) = xt

Figure 3.6: Canonical RNA-Seq protocol steps including: i) RNA fragmentation and Reverse

Transcription; ii) cDNA amplification and iii) final read sampling by sequencing. In the right

we show variables that model quantities at each step.

Number of fragments ft. In the absence of biases, transcript positions have homo-

geneous fragmentation probabilities. Thus ideally ft should follow a Poisson distribution

ft ∼ P(xt
a

). The ratio xt
a

represents the expected count at position t corrected by the
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mean amplification. We account for possible overdispersion induced by the first steps of

the protocol (fragmentation, RT, size selection) by using a random scaling factor st of

mean 1. For simplicity, we choose a Gamma distribution for st with shape 1
ks

and write

the distribution of ft as

ft | xt, st ∼ P(
xt
a
· st)

ft | xt ∼ NB(
xt
a
, κs). (3.1)

In the datasets we included in our study it seems that the counts within a transcript tend

to cluster in islands with relatively homogeneous coverage. These islands (outlined by

grey bars in figure 3.4) are of range 5-50 bp and are often separated by segments with

very low counts. Though we could relate this local correlation to various RNA-Seq steps,

we choose to consider it as anterior to amplification. Our choice is based on the intuition

that the local correlation might be due to specific regions having a higher fragmentation

or RT initiation probability. We include the local correlation of molecule scaling by taking

st as a piece wise constant variable π(st | st−1) = αs · δst−1(st) + (1 − αs) · Γ(st; 1, 1
κs

),

where the 1
1−αs is the average correlation window length.

Amplification. PCR amplification and depth of sequencing scale the number of frag-

ments prior to their identification. Each fragment is multiplied according to a random

distribution of mean a (we take a Gamma for convenience). The amplification coefficient

for fragments with 5′ − end in position t is

at ∼ Γ(a, κ), (3.2)

where at is the expected number of sequenced reads for an initial cDNA fragment.

Final read sampling. The count of reads aligned to the position t (yt) comes from a

simple Poisson distribution with mean equal to the abundance of amplified fragments

yt | ft, at ∼ P(ft · at). (3.3)

For the estimation of amplification parameters we pay a particular attention to isolated

counts, i.e. positions with positive counts in regions with close to zero average count. In

some datasets (e.g. E. coli 2 in figure 3.7) we observed a high number of isolated counts
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with with values at 1 while simultaneously having high amplification coefficients. This

excess possibly represents non amplified reads. We add a probability p1 to have counts

of 1. This term is important only for the isolated counts and thus we will not consider

it in writing the statistics for read distribution within ORFs. Also, we do not consider

it in the Parseq emission model (section 4.1.1), the distribution of isolated reads being

accounted by a more general background distribution.

From the equations 3.1, 3.2 and 3.3 we can write the distribution of counts for a given

expression level xt and local correlation st as

yt | xt, st =
∞∑
ft=0

P(ft;
xtst
a

) · NB(yt; ft · a, κ). (3.4)
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3.3 Estimation of Read Count Model Parameters

For practical reasons we decided to estimate the parameters of the read count model (i.e.

κ, a, κs, αs and p1) directly from the characteristics of the read count distribution within

transcripts without using the expression profile reconstruction.

The estimation relies on the distribution of isolated counts and on the distribution

of reads within ORFs. For the later we consider the relationships between mean and

variance, mean and the fraction of zero-counts (frequency of positions with a count equal

to zero) and the autocorrelation of counts. Most of the parameters play a role in all these

relationships and we decide to estimate them simultaneously.

3.3.1 Relationships between Parameters and Count Distribu-

tion

In isolated counts, i.e. positive read counts occurring in regions with very low coverage,

for a position t, the observed counts are very likely issued from a single initial molecule

(ft = 1) because xt is very small. Thus the distribution of these positions is shaped only

by amplification. From isolated counts we derive relations for the parameters p1, α and

κ. This distribution π(yt | ft = 1, yt > 0) =: πis(yt) writes

πis(yt) = (1− p1) · NB(yt; a, κ)

1−
(

1
aκ+1

) 1
κ

· 1{yt≥1} + p1 · 1{yt=1}. (3.5)

From the ORF count distribution we use relationships between count variance and

mean, and zero-counts and mean, to derive relations for amplification parameters and

scaling of fragments. From the equation 3.4, after integration over the possible values

of st and assuming the autocorrelation effects are mitigated, the density of the marginal

distribution yt | xt writes

π(yt | xt) =
∑
ft≥0

NB(ft;
xt
a
, κs) · NB(yt; fta, κ). (3.6)

Using the law of total variance and writing the probability of zero-counts we obtain

V(yt | xt) = (κ+ κs + κsκ) · x2
t + xt · (1 + aκ+ a), (3.7)

P(yt = 0 | xt) =
∑
ft≥0

NB(ft; a, κs) · NB(0; fta, κ). (3.8)
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We draw the attention of the reader that the variance expression V(yt | xt) changes in

the case of missing amplification (k = 0, a = 0) to V(yt | xt) = (κs) · x2
t + xt (the variance

of a NB).

Count correlations is induced in our model by the scaling variable st. For an ORF

g and a lag ` the count autocorrelation is derived from the transition kernel of st and

writes

cor(yt+`, yt | xg) =
x2
g · κs
σ2
g

· α`s, (3.9)

where σ2
g is the variance of the counts in ORF g and can be approximated empirically or

derived from equation 3.7. In practice we compute it empirically.

We aim to fit the distribution of ˆcor1` , the estimator of the lag 1 correlation (cor(yt+1, yt))

obtained from the lag ` empirical correlation. We compute it by averaging the lag ` count

autocorrelation over the set of ORFs (G) and then correcting for the lag by taking the `

root: ˆcor1` = [ 1
G

∑
g=1:G

corg(yt+`, yt)]
1/`.

3.3.2 Read Count Model Parameter Optimisation

For the simultaneous estimation of parameters we need to find comparable statistics

between the four data-sources we use (the distribution of isolated counts and the three

indicators of the distribution of counts within ORFs).

The coefficient of determination R2 can be compared between heterogeneous datasets

and permits the optimisation of the complete set of parameters. This coefficient indicates

how well a statistical model fits the data-set and is computed as the ratio between the

sum of squares of residuals and the total sum of squares

1−R2 =

∑
k(vk − ṽk)2∑
k(vk − v̄)2

,

where ṽk is the model predicted value, vk is the observed data, and v̄ = 1
K

∑
k=1:K

vk. A

coefficient R2 = 1 means the predictions ṽ perfectly fit the data (R2 = 0 or R2 < 0

indicate that the predictions are unrelated to the observed data). We denote θ the vector

of parameters {p1, κ, a, κs, αs} and compute the coefficients of determination for each data

source.
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For the isolated counts, we write the coefficient R2 based on the histogram of the

empirical density πis(y) for y ≥ 1

1−R2
is(θ) =

∑
y(π̂is(y)− πis(y; θ))2∑
y(π̂is(y)− π̄is(y))2

. (3.10)

For the zero-counts and variance versus mean relationships we write the R2 coefficients

1−R2
var(θ) =

∑
g(Vθ(yt | xg)− σ2

g)
2∑

g(σ
2
g − Eg(σ2

g))
2

, (3.11)

1−R2
zero(θ) =

∑
g[(Pθ(yt = 0 | xg)− z0

g)
2∑

g(z
0
g − Eg(z0

g))
2

, (3.12)

where we use g = 1 : G for the index of an ORF index with empirical mean of the read

counts xg, empirical variance of the reads counts σ2
g , and empirical fraction of zero-counts

z0
g .

The R2 coefficient for the count correlation aims to fit the distribution of the lag 1

correlation (cor(yt+1, yt)) obtained empirically from the lag ` empirical correlation and

writes

1−R2
cor(θ) =

∑
l(corθ

1/l
l − ˆcor1`)

2)∑
l( ˆcor1` − 1

L

∑
l=1:L

ˆcor1`)2
. (3.13)

The parameters a, κ, κs, αs and p1 are obtained by the joint optimisation on θ of

equations 3.10, 3.11 ,3.12 and 3.13: R2
tot(θ) = R2

is(θ) +R2
var(θ) +R2

zero(θ) +R2
cor(θ).

We draw an uncertainty region for these parameters by building a Markov chain con-

strained to values close to the optimized R̃2
tot = max

θ
R2
tot(θ). We propose Gaussian dis-

tributed moves with variance σ2 and accept values with R2
tot > 0.8 · R̃2

tot. For a parameter

θ the acceptance probability of a proposed θ∗ value at iteration (n+ 1) writes

min

(
1,1{R2

θ∗>0.8·R̃2
tot}

(θ∗)
N (θ(n); θ∗, σ)

N (θ∗; θ(n), σ)

)
.

3.3.3 Practical Implementation of the Density with the New

Count Model

The new density (equation 3.4) is computational intensive as it requires summing over the

possible values of ft. We tackle this by pre-computing for the optimized set of parameters

the density values for the full range of observed counts and for a discrete set of values of
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the product xt · st and of ft. In practice we set the values of xt · st within the range of

probable values (0, 10 ·max
g
xg), where we remind that xg is the count expectation for the

ORF g. During pre-computation, for each value of xt · st we sum over a set of ft values

for which the Poisson probability P(ft;
xtst
a

) is more than 10−6.

To compute the density for given values of yt and xt · st we perform linear approxima-

tions using the closest grid values.
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3.4 Parameter Values for the Read Count Model

The distribution of isolated counts and the identification of homogeneous expression seg-

ments are required for the parameter estimation (procedure described in section 3.3). In

practice we use the following criteria to define these distributions:

• isolated counts: positions with positive counts and less than 4 additional reads in a

400 bp window;

• homogeneous expression segments: the central part of the open reading frames

(ORFs, regions without stop codons in a particular reading frame) that are too long

to occur by chance and that correspond thus very likely to coding sequences. We

select ORFs above 400 bp and we discard the first and last 100 bp to account for

uncertainty on the position of the start codon and coverage effects that can occur

at the borders of the transcripts (see figure 3.2).

Within ORFs we encounter two autocorrelation effects: small islands (5-50 bp) of very

correlated counts and long range correlation due to coverage smooth progressive changes.

Because we focus on the short range correlation we perform the estimation of autocor-

relation on relatively short ORFs (200 -1000 bp) and for correlation windows between 1

and 20.

In figure 3.7 we illustrate the estimation procedure. For each data-set R2 coefficients

are maximized simultaneously for the distributions of isolated counts, variance and zero

counts and autocorrelation. Interestingly we observe that the datasets that we used

for our first analysis (and for which we will present results on transcription boundaries

estimation) show the highest levels of amplification (E. coli 2-3, S. cerevisiae 1). For

these datasets, a NB model does not fit well the variance vs . mean and zero-counts

vs. mean relationships. Other data-sets, like E. coli 1, show a perfect fit with the NB

and very reduced amplification (a ≈ 0 and ks ≈ 0.2). The amount of autocorrelation

differs between data-sets . While we can have practically no autocorrelation (αs ≈ 0.1

and therefore the average autocorrelation window size ws = 1
1−αs is ≈ 1 for S. cerevisiae

1), some datasets have long local correlation windows (size 14 for C. albicans 1). In the

data-sets C. albicans 1 and E. coli 1 we also notice the effect of the correlation induced

by smooth progressive changes (grey histogram).
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Figure 3.7: Estimation of the read counts parameters (a, κ, κs, α and p1) for data-sets E. coli 1-

2, C.albicans 1 and S.cerevisiae 1. Right plots: distribution of isolated reads (reads with positive

counts and less than 4 additional reads in a 400 bp window). Middle plots: variance and zero

counts distribution vs mean for ORFs. Each point represents an ORF. Left: autocorrelation

of counts in ORFs; black bars represent autocorrelation for small and average length ORFs

(200-1000 bp); gray bars autocorrelation for long ORFs (≥1000 bp). Red line: mixture model

estimation; Green line: NB estimation; Blue line: Poisson estimation.
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In figure 3.8 we show estimation results on 16 data-sets. As expected, parameter values

for datasets coming from the same run or study are very similar ( E. coli 2-3, C. albicans

2-3 and F. psychrophilum 1-2). We find that most values for the autocorrelation window

are in the interval (4, 8). High autocorrelation window sizes (ws) coupled with high scaling

(κs) might pose problems in disentangling transcription breakpoints from local shifts in

coverage induced by bias. Several data-sets show low amplification values. For these, the

estimation can be done by approximating the emission model with a NB distribution.

Finally, the low degree of parameter correlation, and notably the low correlation between

κ and κs, indicates that the read count distribution is affected by several independent

factors.
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Figure 3.8: Landscape of parameter values (a, κ, κs, ws = 1
1−αs ) obtained for the count

mechanistic model. We show log2 values of the parameters for several datasets from yeast and

bacteria. We perform pairwise investigations (frames 1-6) and a PCA analysis for the first 3

components (frames 7 and 8). Each color corresponds to a data-set, the legend is shown in frame

9. For each parameter we show a ”close to optimal” interval (i.e. for which R2 ≥ 0.8 · R̃2
tot).

The optimal value is shown by a black dot.
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Chapter 4

Parseq: from read counts to the

transcription profile

We present in this chapter our method, named Parseq, for the reconstruction of the

transcription landscape. We design a State Space Model where the observations are the

read counts and the latent variable the expression level. The emission, i.e. dependency

between observations and latent variables is built upon the new count emission model.

The transition kernel for the expression level is a mixture model that accounts for the

possibility of not changing the level and of smooth or significant level changes. Transcrip-

tional landscape reconstruction is then conducted with a Sequential Monte Carlo method,

the Particle Gibbs. We show here procedures to estimate the model parameters and to

approximate transcription levels at base-pair resolution.

We include in this chapter several results concerning the application of Monte Carlo

methods. We demonstrate empirically Particle Gibbs improvements in exactness over

Forward filtering using a validation method of our design. This method can also be used

to capture implementation errors. Next, we present a study on performances increase

by using different proposal functions and we adapt a proposal tuning algorithm. Parseq

results were evaluated on two datasets from S. cerevisiae and E. coli. We compare calling

of transcribed positions and transcription breakpoints estimation with two other methods:

Cufflinks and Rockhopper.

75
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4.1 A SSM for Transcription Levels and Read Counts

We summarize the multiple layers of variables involed in our probabilistic model and the

conditional dependence between the variables through a Directed Acyclic Graph (DAG)

in figure 4.1.
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Figure 4.1: The DAG of the Parseq model. Main variables: y = (yt)t≥1, the sequence of

observations (read counts); x = (xt)t≥1, the latent expression level, and s = (st)t≥1, the local

scaling/correlation variable. Auxiliary variables have been added to ease the design of the

MCMC algorithm: o = (ot)t≥1 indicating if the observation has been generated by the outlier

model; bkx = (bkx,t)t≥1 and bks = (bks,t)t≥1 indicating the type of transition between adjacent

positions on x (shift, drift, no-change) and on s. Parameters are inserted in the DAG by curved

arrows. Emission variables that were integrated out in the final formula (at, ft), are not shown.

Of note, transition kernels for x and s as well as the emission model for y write as mixtures

of several types of distributions. In line with the classical data augmentation strategy,
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auxiliary variables (o, bku, and bks) have been added to disambiguate the contribution of

the different components for these mixtures in order to facilitate the design of the MCMC.

4.1.1 Emission Model for the Read Counts

In the section 3.2 we describe a mechanistic model for the RNA-Seq counts y distribution.

We remind that yt corresponds to the number of reads with 5’-ends mapping at position

t. Given the number of fragments sampled before the PCR ft, and the amplification

coefficient at, the distribution of the observed read count for a position t is a Poisson

distribution P(ft · at). In the emission model we want to consider also cases where the

reads at a specific position originate from technical errors. Thus we introduce two emission

components that model the background noise and outliers. The first wants to account for

low isolated counts that might be the product of pervasive transcription, misalignment

and contaminating DNA. We assume that the background noise consists in reads with

fragment counts ft of 1 and they have a zero-truncated Poisson distribution with mean at.

The outliers component aims mainly to capture amplification errors (high isolated counts).

We assume outliers have an uniform distribution on the count distribution range. Thus,

the emission density writes as a mixture

e(yt; ft, at) = (1− εb − εo) · P(yt; ft · at) + εb · P−{0}(yt; 1 · at) + εo · U(yt; 0 . . . b) ,

where ε, εb, εo represent the probabilities of for ’normal’, background and outlier emission.

From the distributions of the number of molecules and of the amplification (ft ∼
P(xt·st

a
) , at ∼ Γ(a, κ)) we rewrite the emission in terms of expression level xt and local

scaling st as

e(yt;xt, st) = (1− εb − εo) ·
∞∑
ft=0

P(ft;
xtst
a

) · NB(yt; fta, κ)

+ εb · NB−{0}(yt; a, κ) + εo · U(yt; 0 . . . b) .

This corresponds to a mixture of three components whose type is recorded in variable ot.

• with probability 1 − εb − εo the observed read counts depends on the underlying

transcription level whose distribution writes itself as a mixture

yt ∼
∞∑
ft=0

P(ft;
xtst
a

) · NB(yt; fta, κ).

In this case ot = ’normal’.
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• with probability εb the observed read counts come from the background noise, whose

distribution is shaped by amplification but the initial of number of molecules is

assumed to be small (this corresponds to xt = 1 given yt ≥ 1). The distribution

of these counts arising from background noise writes thus as the zero-truncated NB

distribution NB−{0}(a, κ).In this case ot = ’background’.

• with probability εo the observed read counts come from an uniform distribution

between 0 and b (in practice b is set to max(y)). In this case ot = ’outlier’.

4.1.2 Longitudinal Model of Transcriptional Level

The transcription landscape requires a state space that distinguishes expressed (xt > 0)

and non-expressed (xt = 0). The Markov transition kernel k(xt;xt−1) needs to reflect the

probability of change between these states. In this section we will describe such a kernel

that tries to mimic the transcription changes. The simplest mixture kernel writes

1{xt−1=0} [(1− η) δ0(xt) + η f(xt)] + 1{xt−1>0} [(1− β0) g(xt;xt−1) + β0 δ0(xt)] ,

where η and β0 are probabilities for expression status change, f and g are generic densities

for xt > 0, 1 denotes the indicator function that serves to indicate whether t − 1 is an

expressed or non-expressed position and δ0 denotes the Dirac delta function with mass at

point 0 that gives a non-zero probability for regions with 0 transcription level.

This simple model hinders the complete description of expression level changes. Fol-

lowing a similar work on tiling array data [Nicolas et al., 2009], transitions within tran-

scribed regions (incorporated in g) further subdivide into three types. We account for

unchanged transcription level and for changes that differ by their amplitudes and are

referred as shifts (large amplitude) and drifts (small amplitude).

The shifts correspond to changes of transcription level within transcribed regions –

accounting for transcription initiation and termination sites in presence of overlapping

transcription units. The coexistence of shifts and drifts is designed to pull apart well de-

fined initiation or termination sites internal to transcribed regions from smoother changes

in measured transcriptional levels that can have a biological origin (e.g., random termi-

nation events) or can reflect technical artefacts (e.g., longitudinal bias caused by mRNA

capture and fragmentation protocols).
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Our complete Markov transition kernel k(xt;xt−1) for transcriptional level writes

1{xt−1=0} ·
[
(1− η)δ0(xt) + ηf(xt)

]
+

1{xt−1>0} ·
[
αδxt−1(xt) + βf(xt) + β0δ0(xt) + γugu(xt;xt−1) + γdgd(xt;xt−1)

]
,

where the parameters η ∈ (0, 1) and (α, β, β0, γu, γd) ∈ (0, 1)5 with α+β+β0 +γu+γd = 1

define the probabilities of the different types of moves. The terms f(xt), gu(xt;xt−1) and

gd(xt;xt−1) are probability densities for the transcription level xt: at the beginning of a

transcribed region or after a shift ; after an upward drift , and after a downward drift ,

respectively.

Understanding the kernel mixture is made easier by looking at each component and

by recording the type of the change between positions t−1 and t in the auxiliary variable

bkx,t:

• When t− 1 is in a non-expressed region (xt−1 = 0):

– An expressed region starts with probability η. In this case bkx,t = ’shift out of 0’.

We use an exponential shift distribution with rate ζ (density ζ · e−xt·ζ).

– The non-expressed region continues with 1−η. In this case bkx,t = ’no-change in 0’

and the distribution of xt is a point mass at xt−1 = 0 (density δ0(xt)).

• When t is in an expressed region (xt−1 > 0):

– The expression level remains unchanged with probability α. In this case bkx,t =

’no-change’ and the distribution of xt is a point mass at xt−1 > 0 (density

δxt−1(xt)).

– The expression level exhibits a small amplitude change (drift) upward with

probability γu. In tis case bkx,t = ’upward drift’ and the distribution of xt

is such that xt/xt−1 is drawn from an exponential distribution with rate λu

(density of xt is (λu/xt−1) · e−λu·(xt−xt−1)/xt−1).

– The expression level exhibits a small amplitude change (drift) downward with

probability γd. In tis case bkx,t = ’downward drift’ and the distribution of xt

is such that xt−1/xt is drawn from an exponential distribution with rate λd

(density of xt is (xt−1/xt) · (λd/xt) · e−λd·(xt−1−xt)/xt).
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– The expression level changes to a value independent of the previous position

with probability β. In this case bkx,t = ’shift’ and the density of xt is drawn

from an exponentional distribution with rate ζ (density ζ · e−xt·ζ).

– The expressed region ends with probability β0. In this case bkx,t = ’shift to 0’

and the distribution of xt is a point mass at 0 (density δ0(xt)).

The Markov transition kernel for the local scaling term s writes:

ks(st; st−1) = αs · δst−1(st) + (1− αs) · Γ(st; 1,
1

κs
) . (4.1)

This corresponds to a piecewise constant Gamma (parametrisation in 3.0.2) distributed

value with mean 1 and standard deviation 1/
√
κs (shape κs and scale 1/κs). The proba-

bility of change between t − 1 and t is αs and the type of move (’move’ or ’no-move’) is

recorded in bks,t.

Transcript borders are detected on the basis of significant changes in read counts.

Therefore, high variability in read counts can lead to breakpoint over-predictions resulting

in a loss of specificity when not properly incorporated in the model. We palliated this

need by introducing the two different components in our model: the drift term on the

transition kernel for progressive variations as opposed to the abrupt changes modeled by

shifts, and the local scaling Markov-dependent variable s intended to capture short-range

autocorrelations. We analysed models that don not account for the drift moves or local

correlations and we illustrate this on the data-set S. cerevisiae 1 (see results in table 4.3).
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4.2 Reconstruction of the Transcription Landscape

In this section we will describe how the recent SMC developments discussed in chapter

2 can provide an exact solution to approximating the expression level profile. First,

we show a PG complete algorithm that aims at estimating the expression profile and

at disentangling short-range correlations due to local bias and long range correlations

that should have a biological meaning. This MCMC algorithm combines filtering done

through CSMC and smoothing done through Backward sampling for trajectory update

and sampling from the posterior distribution for parameter update. The CSMC results in

highly correlated trajectories and, with a view to improve mixing, we design an additional

step in the Gibbs algorithm. Besides updating x | s,Θ, y and s | x,Θ, y we mitigate the

negative correlation of x and s by introducing a new update x · s | Θ, y. While this step

improves mixing it has an additional computation cost. We take also a block update

option. Initially this was mainly a recourse against the inertia induced by coalescence in

CSMC approximations of long sequences. Backward sampling greatly improves mixing

and does not require the splitting of long sequences. We mantain the block update with

longer block sizes for memory efficiency.

The implementation of complex MCMC algorithms such as the ones we use is error

prone and might lead to errors in parameter and trajectory approximation hard to detect.

In the same time the correctness of results might be influenced by factors intrinsic to the

method (e.g. several SMC methods provide accurate estimations only asymptotically).

We implement a strategy to verify the algorithm accuracy. We discuss next the choice of

the instrumental function. This is of high importance for Monte Carlo estimations and

we present the construction of our expression level proposal and a simple adaptive Monte

Carlo method for the optimisation of weights in a mixture proposal.

The complete Parseq workflow for estimating breakpoints and reconstructing tran-

scripts requires the identification of positions with high breakpoint probability. We im-

plement a post-processing step of the Parseq results that uses local score procedures

for detecting regions with high breakpoint probability and for assembling transcription

continuous units. We end this section with an evaluation of breakpoint estimation on

S. cerevisiae 1 and E. coli 2. We use for comparison purposes the results obtained from

two popular algorithms: Cufflinks and Rockhopper.
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4.2.1 Particle Gibbs for Expression Level Reconstruction

We implement a Particle Gibbs algorithm aiming to sample the joint distribution

x, s,bkx,bks,o, α, γu, γd, β, β0, η, ζ, εo, εb,︸ ︷︷ ︸
Θ

| y

Each PG sweep (n = 1 : N) consists of updating one or a subset of the variables (x,

s and the parameters) according to their conditional distribution:

• Update x preserving x | s,Θ,y with CSMC by blocks (algorithm 11).

• Update s preserving s | x,Θ,y with CSMC by blocks (similar to algorithm 11).

• Simultaneous x and s update preserving x, s | Θ,y with CSMC by blocks (alg. 13)

• Update of o according to o | x, s,Θ,y. This conditional distribution is sampled

directly (Gibbs-type update).

• Update of bkx according to bkx | s,x,o,Θ,y (the variables written in gray do not

play a role in the conditional distribution). This conditional distribution is sampled

directly (Gibbs-type update).

• Update of bks according to bks | s,x,o,bkx,Θ,y. This conditional distribution is

sampled directly (Gibbs-type update, that consists simply of differentiating ’move’

and ’no-move’ based on s).

• Update of (α, γu, γd, β, β0) according to α, γu, γd, β, β0 | s,x,o,bkx,bks, η, ζ, εo, εb,y.

This conditional distribution is sampled directly (Gibbs-type update).

• Update of η according to η | s,x,o,bku,bks, α, γu, γd, β, β0, ζ, εo, εb,y. This condi-

tional distribution is sampled directly (Gibbs-type update).

• Update of ζ according to ζ | s,x,o,bkx,bks, α, γu, γd, β, β0, η, εo, εb,y. This condi-

tional distribution is sampled directly (Gibbs-type update).

• Update of (εo, εb) according to εo, εb | s,x,o,bkx,bks, α, γu, γd, β, β0, η, ζ,y. This

conditional distribution is sampled directly (Gibbs-type update).
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We will discuss in detail the first step, i.e. the CSMC update of x1:T preserving

x1:T | s1:T ,Θ, y1:T . In our context an additional difficulty comes from the length of the

1 : T sequence which for filtering algorithms leads to poor mixing for any reasonable

number of particles and that also might pose memory issues in a straight implementation.

4.2.2 The Block Update Conditional SMC

We implemented a block update version of the Particle Gibbs algorithm to circumvent

these problems. Of note, our piecewise constant models for x and s impose restriction

on the selection of the blocks to ensure reversibility of the Markov chain generated by

the Particle Gibbs MCMC. The procedure to select the blocks is explained after the

description of the block update by Conditional SMC.
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Algorithm 11 The block update Conditional SMC

Objective: sample x
(n)
t0:t1 | x

(n−1)
1:T ,Θ(n−1), y1:T for any 0 ≤ t0 < t1 ≤ T .

1. For t = t0,

(a) For the first P − 1 particles 1 ≤ p < P , draw xpt0 from the proposal

qx,t0(xpt0 ;x
(n−1)
t0−1 ). Set xNt0 = x

(n−1)
t0

(b) For 1 ≤ p ≤ P , compute the particle weights wpt0 =
kx(xpt0

;x
(n−1)
t0−1 )·e(yt0 ;xpt0

,st0 )

qx,t0 (xpt0
;x

(n−1)
t0−1 )

Compute W p
t0 =

wpt0∑
p=1:P

wpt0

2. From t = t0 + 1 to t = t1,

(a) If 1/
∑

p=1:P

(W p
t−1)2 > P/4 (ESS > P/4) then apt = p for 1 ≤ p ≤ P .

(b) If 1/
∑

p=1:P

(W p
t−1)2 ≤ P/4 then for p = 1 : P − 1 draw index of the ancestor

particle apt from weights (W p
t−1)1:P . Set aPt = P and (W p

t−1)1:P = 1
P

.

(c) For p = 1 : P−1, draw xpt from the proposal density qx,t(x
p
t ;x

apt
t−1). Set xPt = xt.

(d) For p = 1 : P compute particle weights wpt = W
apt
t−1 ·

kx(xpt ;x
a
p
t
t−1)·e(yt;xpt ,st)

qx,t(x
p
t ;x

a
p
t
t−1)

Compute W p
t =

wpt∑
p=1:P

wpt

3. For t = t1,

(a) Each particle p has a probability proportional to wpt1 · kx(x
(n−1)
t1+1 ;xpt1).

(b) Backward sample (algorithm 12) x
(n)
t0:t1 from

(
xpt0:t1

)
p=1:P

with filtering weights(
wpt0:t1

)
p=1:P

The trajectory s between positions t0 and t1 > t0 (st0:t1) is updated using a similar

algorithm in which ks and qs replace kx and qx.

If xt1+1 > 0 the probability of proposing xt1+1 is zero. Thus, all the new trajectories

created by this algorithm will have a breakpoint between position t1 and t1 + 1. Due to

the choice of the, which includes the mass δ{xt−1}(xt), we have a non zero probability of a

piecewise segment xt1:t1+1. This imposes some constraints on the choice of the block xt0:t1
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on which the algorithm is applied in order to fulfill the reversibility condition required for

an MCMC algorithm. In practice, we select blocks that have breakpoints on their last

position (between t1 and t1 + 1) or that ends in a non-expressed region (xt1+1 = 0).

These blocks are obtained by picking randomly (uniformly, except for the first position

to which a greater probability is attributed) the position t0 and setting t′1 = t0 + `.

For algorithms without backward sampling ` is the integer part of a gamma distributed

random variable with shape min{5/(1 − α), P} (or min{5/(1 − αs), P} when updating

s) and scale 1. This choice prevents the length of the block to be much longer than P

as the updates become then less efficient due to degeneracy of the sampled trajectories.

Backward sampling algorithms allow us to deal with longer sequences and we set ` = 10000

to limit the memory usage. Then, for each segment (t0, t
′
1) we update the block (t0, t1)

where t1 is the last breakpoint (a shift or a drift) or the last position where xt = 0 before

t′1. With this procedure a given block has the same probability to be selected for update

after and before the update which warrants global reversibility provided that each update

of a given block is itself reversible (e.g. verifies detailed balance condition).

Initially we used a backtrack strategy to reconstruct the trajectory x∗t0:t1
from the filter-

ing generated sample
(
xpt0:t1

)
p=1:P

using the particle ancestor index
(
apt0:t1

)
p=1:P

: for each

t = t1 : t0 set p?t−1 = a
p?t
t and x?t−1 = x

p?t−1

t−1 . To improve mixing we implement a Backward

sampling (algorithm 3) that accounts for the aforementioned Parseq kernel specificities,

namely that k(xt | xt−1) is a mixture including a Dirac mass in xt−1 (algorithm 12).

Algorithm 12 Backward sampling

Objective: backward sample a trajectory x∗t0:t1
from t = t1 to t = t0 from a filtering

generated sample
(
xpt0:t1

)
p=1:P

with filtering weights
(
wpt0:t1

)
p=1:P

1. Draw index p?t1 and set x?t1 = x
p?t1
t1

2. For t = t1 : t0 + 1 do:

(a) if x
a
p?t
t
t−1 6= x?t then draw the p?t−1 index from P (p?t−1 = p) ∝ wpt−1|t where weights

wpt−1|t = k(x?t | x
p
t−1) · wpt−1. Set x?t−1 = x

p?t−1

t−1

(b) else p?t−1 = a
p?t
t and x?t−1 = x

a
p?t
t
t−1
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4.2.3 Particle Gibbs with Simultaneous Update of x and s

The previous section describes our block update Particle Gibbs for x and s according to

their respective conditional distributions x | s,Θ,y and s | x,Θ,y. It is thus possible

to combine these algorithms in a more global MCMC algorithm to sample x, s | Θ,y or

x, s,Θ | y. However, it can be noticed that the distribution of the observed read count yt

depends on the product xt · st rather than xt and st taken individually. We expect thus

some negative correlation between xt and st in the posterior distribution.

This motivated the development of another block update Particle Gibbs algorithm

that can update x while preserving as much as possible the product xt · st by applying

simultaneous modifications to s (algorithm 13). For the sake of clarity let zt denote the

product xt · st. If xt > 0 the model can be rewritten in terms of x and z instead of x

and s; the trajectory of z being fully determined by the trajectory of x and the values of

zt at breakpoint positions {t : bks,t = ’change’}. The Conditional SMC update described

below targets π(xt0:t1 | xt<t0 , xt>t1 , zt0 , z{t0<t≤t1:bks,t=’change’},Θ, xt0:t1 > 0, y1:T ). The new

values of s are obtained after updating x when reverting to the original parametrization

of the model in terms of x and s, by using the relation st = zt/xt at breakpoint positions

{t : bks,t = ’change’}.
The procedure to select a block xt0:t1 consists of: selecting randomly t′0, searching

for t0 = min{t ≥ t′0 : xt0 > 0}, setting t′1 = t0 + l where l is a random variable with

mean min{5/(1 − α), P} (see subsection 4.2.2), and then searching for t1 = max{t1 ≤
t′1 : xt0:t1 > 0}. Let t0,s and t1,s denote max{t ≤ t0 : bks,t = ’change’} and min{t ≥ t1 :

bks,t+1 = ’change’}, respectively.
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Algorithm 13 Conditional SMC for simultaneous update of x and s

Objective: sample xt0:t1st0:t1 | xt<t0 , xt>t1 , zt0 , z{t0<t≤t1:bks,t=’change’},Θ, xt0:t1 > 0, y1:T .

1. For t = t0,

(a) For p = 1 : P − 1 draw xpt from the qx,t0(xpt0 ;x
(n−1)
t0−1 ). Set xPt0 = x

(n−1)
t0

(b) For p = 1 : P , set spt0 = zt0/x
p
t0 where zt = xtst

(c) For p = 1 : P , compute particle weights

wpt0 =
kx(x

p
t0 ;x

(n−1)
t0−1 ) · e(yt0 ; zpt0) · 1{xpt0>0} · πs(spt0)/xpt0

qx,t0(xpt0 ;x
(n−1)
t0−1 )

·
t0−1∏
t=t0,s

e(yt;x
(n−1)
t , spt0)

Compute W p
t0 = wpt0/

∑
p=1:P

wpt0 . In the numerator, the term πs(s
p
t0)/xpt0 corre-

sponds to πz(zt0 | xt0) where zt = xt ·st. The extra term
∏t0−1

t=t0,s
e(yt;x

(n−1)
t , spt0)

accounts for the modified distribution of the observed read count between the

last breakpoint on s, t0,s, and t0 − 1.

2. From t = t0 + 1 to t = t1,

(a) If 1/
∑P

p=1(W p
t−1)2 > P/4 then apt = p for p = 1 : P .

(b) If 1/
∑P

p=1(W p
t−1)2 ≤ P/4 then for p = 1 : P −1 draw index of ancestor particle

apt from weights (wpt−1)p=1:P . Set aPt = P and (W p
t )p=1:P = 1/N .

(c) For p = 1 : P − 1, draw xpt from qx,t(x
p
t ;x

apt
t−1). Set xPt = x

(n−1)
t .

(d) If bks,t = ’no change’ then for p = 1 : P , set spt = s
apt
t−1 and compute particle

weights wpt = W
apt
t−1 ·

kx(xpt ;x
a
p
t
t−1)·e(yt;zpt )

qx,t(x
p
t ;x

a
p
t
t−1)

; W p
t = wpt /

∑
p=1:P

wpt .

(e) If bks,t = ’change’ then, for p = 1 : P , set spt = z
(n−1)
t /xpt and compute weights

wpt = W
apt
t−1 ·

kx(xpt ;x
a
p
t
t−1)·e(yt;zpt )·1{xpt >0}·πs(s

p
t )/xpt

qx,t(x
p
t ;x

a
p
t
t−1)

; W p
t = wpt /

∑
p=1:P

wpt .

The extra term in the numerator πs(s
p
t )/x

p
t corresponds to πz(z

p
t | x

p
t ).

3. For t = t1,

(a) Update weights wpt1 = W p
t1 · kx(xt1+1;xpt1) ·

∏t1,s
t=t1+1 e(yt;xt, s

p
t1),where the last

term corresponds to the distribution of counts up to the next breakpoint on s.

(b) Backward sample {x, s}(n)
t0:t1 from the filtering sample ({x, s}pt0:t1)p=1:P with fil-

tering weights (wpt0:t1)p=1:P (algorithm 12).

(c) Propagate the modifications in s down to position t0,s and up to position t1,s

by setting s
(n)
t = s

(n)
t0 for t0,s ≤ t < t0 and s

(n)
t = s

(n)
t1 for t1 < t ≤ t1,s.
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4.2.4 Empirical Analysis of Exactness for CSMC and SIR

We design an algorithm for the detection of eventual errors in the implementation of

our algorithm (due to implementation or method issues) and use it in the same time to

perform empirical analysis of SMC accuracy. Its strategy relies on the idea of running an

extended version of MCMC in which we add a step to each sweep where the observations

y are sampled from their conditional distribution y | x,Θ. The algorithm samples then

the joint distribution y, x,Θ instead of x,Θ | y. If the algorithm is precise, the empirical

distribution of Θ should correspond exactly to the prior distribution (which is the marginal

of the joint distribution y, x,Θ).

Our final algorithm relies on Conditional SMC updates of the hidden trajectories x

and s which provide an exact MCMC algorithm (termed Particle Gibbs) for sampling

their distribution given the observed y. In preliminary versions of this work we relied on

a simpler algorithm that consisted in forward SMC filtering and subsequent backtracking

of the trajectory of one sample particle. For a finite number of particles, this simpler

algorithm provides a trajectory that is only approximatively distributed according to the

target conditional distribution. To illustrate the impact of using an approximate algorithm

(MCMC based on SIR) instead of an exact algorithm (Particle Gibbs based on Conditional

SMC) we run the extended algorithm using a toy model. This is a simplification of the

Parseq model with a mixture kernel built from ’no change’ and exponential moves π(xt |
xt−1) = α·δ{xt−1}(xt)+(1−α)·λe−λ·xt . We use a Poisson distribution: π(yt | xt) = P(yt, xt)

for the emission. In practice we fix λ = 1 and use for α a Beta prior of shapes 10 and

2 (giving a prior expectation of 10/12). In order to increase the convergence speed, the

extended algorithm was run on a short sequence (T=200 bp). The number of particles and

other SMC settings are detailed in table 4.1. We perform our analysis on SIR and CSMC

filtering approximations. We study the effects of introducing backward sampling, of using

’good’ and ’bad’ proposals and of various SMC set-ups (see table 4.1). The results shown

in figure 4.2 are illustrating the difference in precision between CSMC and SIR. We analyse

the estimation of the parameter α, the kernel mixture weight. The histograms represent

the posterior distribution of α obtained as a marginal approximation from π(y1:T , x1:T , α).

In case of exact estimation, the red line representing the prior π(α) = α9·(1−α)
β(10,2)

should fit

the empirical distribution (histogram).
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Experiment SMC Backward sampling Proposal Number of particles (P)

A SIR No qk 200

B and B∗ SIR No q∗ 200 (B) and 2000 (B∗)

C CSMC No qk 200

D and D∗ CSMC No q∗ 200 (D) and 100 (D∗)

E SIR Yes q∗ 200

F and F ∗ CSMC Yes q∗ 200 (F) and 100 (F ∗)

Table 4.1: List of SMC algorithms and corresponding set-ups submitted to accuracy analysis.

We test two proposals: the prior kernel qkt (xt;xt−1) = π(xt | xt−1) and a mixture with a

component that does not fit the target q∗t (xt;xt−1) = 0.95 · δ{xt−1}(xt) + 0.05 · λe−2·xt . We

indicate in the last column the numer of particles used for the SMC approximation.

First, for the kernel prior proposal and P=200 particles the filtering methods SIR and

the CSMC have comparable good performance (panels A and C).

Second, we decrease the fit of the proposal to the target and use a fixed weight mixture

with an λ = 2 exponential parameter (model kernel has λ = 1). This proposal writes

qt(xt;xt−1) = 0.95 · δ{xt−1}(xt) + 0.05 · λe−2·xt . For this proposal and P=200, the SIR

filtering results in a significant decrease in accuracy. As expected, increasing the number of

particles to P=2000 improves SIR filtering estimation (panel B∗). CSMC filtering requires

less particles to provide exact estimation (panel D). While for P=200 results show a good

accuracy, for P=100 the histogram does not fit the prior distribution. One important

reason for the CSMC degeneracy is the low update length. Indeed going backward we

update at iteration n on average 20 positions from of x
(n−1)
:T for P=100 and 50 positions

for P=200. Using the prior kernel proposal we updated 80 positions for P=200. A low

update length implies a high inertia within PG sweeps.

Third, we use backward sampling (12) to reconstruct the trajectories. While the SIR

algorithm has no significant increase in precision (panel E) we notice that CSMC results

in good estimations for both P=200 and P=100 (panels F and F∗).

In conclusion, for proposals that require a significant sample size to approximate the

target and a moderate number of particles the SIR algorithm has markedly biased results.

For the same set-up the CSMC leads to an accurate estimation.
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Figure 4.2: Analysis of exactness for SMC algorithms - a toy model. We show the estimation of

the transition kernel parameter α. In the left we show histograms of the marginal distribution

of α (from π(y1:T , x1:T , α)). The red line represents the prior density of α. Exact estimation

supposes that the marginal distribution corresponds to the prior. In the right we show the

values of α along the 200k sweeps (thinning step of 10). For each scenario we indicate the SMC

method, the number of particles, and we mentioned if we used the prior kernel proposal and if

we performed backward sampling. We make a summary of the scenarios A, B, B∗, C, D, D∗,E,

F, F∗ in the table 4.1.
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4.2.5 The Choice of the Proposal Function

The efficiency of a SMC algorithm, here the Particle Gibbs, depends heavily on the

choice of an appropriate proposal kernel. In this work we relied on two position-specific

proposals qx,t and qs,t that aim at drawing new values of xt and st near their target

posterior distributions.

In the SMC context sampling needs to be done from the target π(xt | xt−1, yt). It

is difficult to evaluate how the efficiency on the smoothed approximations of complete

trajectories is determined by the efficiency of proposals that aim at filtering extensions.

Therefore we do not limit to the analysis of instrumental functions approximating the

optimal filtering proposal, qt(xt;xt−1) = π(xt | xt−1, yt), and we investigate other classes

of instrumental functions that try to approximate π(xt | xt−1, y1:T ). We review in section

2.4 the general validity criteria that a proposal function needs to fulfil. Besides these

criteria a proposal needs to be efficient, i.e. needs to permit target approximation with a

practical sample size and needs to be easy to sample from.

Simple proposal functions

First, as computational time is a significant issue, we ask ourselves if simple proposals

like the prior kernel can be used for practical SMC set-ups.

The prior kernel is a proposal that is computational efficient and simplifies the particle

weights computation to evaluating the emission ( see section 2.4). Also, in our SSM model

sampling from the transition kernel π(xt | xt−1) can be done directly. However, this

proposal can not sample well the regions where data proves to be significantly different

from the levels accounted by the transition kernel.

Then, we ask if we can use a proposal built upon the posterior of the emission density

qt(xt) = π(xt | yt). The target distribution is a mixture where components include Dirac

mass functions (δ{0} and δ{xt−1}). Therefore the proposal is not valid (it exists xt = xt−1

such as qt(xt) = 0 and π(xt) > 0).

Mixture proposal functions

We decide to design a mixture proposal that includes partially the transition kernel com-

ponents and accounts at the same time for the observations. As observations are highly

variable, we decide to account for a window k of observations starting from position t.
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This proposal for the expression level xt writes as

qxt(xt;xt−1) = 1{xt−1=0} ·
[
(1− ηq) · δ0(xt) + ηq · ζqe−xtζq

+1{xt−1>0} ·
[
αq1 · δxt−1(xt) + (1− αq1) · lt(xt)

]
, (4.2)

where 1 − ηq and αq1 play the same role as the kernel parameters, i.e. represent the

probability of not changing the expression level if the previous position has the value 0

and respectively above 0. The density lt(xt) is itself a mixture

lt(xt) = αq2 · δ0(xt) + αq3 · E(xt, ζq) + αq4 · qyt:t+k−1
(xt) , (4.3)

where qyt:t+k−1
(xt) is a density that depends on the observations in the window t : t+ k − 1

(built as a posterior for a simplified model).

Initially we used an approximate emission model, i.e. a Poisson distribution of rate

xt. The Poisson has a Gamma density for its conjugate prior. If we consider an exponen-

tial prior distribution with rate ζp for the expression level and assume constant expression

level, the posterior π(xt | yt:t+k−1) (a Gamma density) writes Γ(xt,

∑
i=0:k−1

yt+i+1

k+ζq
, 1∑
i=0:k−1

yt+i+1
)

of scale k + ζp and shape
∑

i=0:k−1

yt+i + 1 (density parametrisation in 3.0.2).

Slow convergence in regions with high local scaling bias motivated a more complex

approximation of qyt:t+k−1
(xt). We approximate it as a Poisson of rate xt · st. In this case,

the posterior π(xt | yt:t+k−1, st:t+k−1) writes as Γ(xt,

∑
i=0:k−1

yt+i+1∑
i=0:k−1

st+i+ζq
, 1∑
i=0:k−1

yt+i+1
) a Gamma

distribution which, compared to the previous Gamma has scale
∑

i=0:k−1

st+i + ζq in order

to account for position scaling of the expression level. The density from 4.3 writes

lt(xt) = αq2 · δ0(xt) + αq3 · E(xt, ζq) + αq4 · Γ(xt,

∑
i=0:k−1

yt+i + 1∑
i=0:k−1

st+i + ζp
,

1∑
i=0:k−1

yt+i + 1
) (4.4)

In practice, for the datasets presented in results, we have set ζq = 0.1, k = 3, 1− ηq =

0.9, αq1 = 0.9 and αq2 = αq3 = αq4 = 1/3.

For the local scaling s we build a qs,t following the same mixture principles:

qs,t(st; st−1) =
9

10
δsit−1

(sit) +
1

20
Γ(st,

∑
i=0:k−1

yt+i + 1

k · xt + 1
,

1∑
i=0:k−1

yt+i + 1
) +

1

20
E(st+1; rate = 1).
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Adaptive mixture proposal

In later versions of Parseq we try to optimize the weights of proposal components. For

this we implement in the algorithm 14, the MPMC adaptive scheme (algorithm 10).

We design a mixture proposal with 6 components of weights αq = (αq0 : αq5). Specifi-

cally, we enrich the mixture from 4.4 by having two components dependent on the obser-

vations qt(xt; yt:t+2) with weight αq4 and qt(xt; yt:t+8) with weight αq5 (k=3 and k=9 for

the Gamma distribution from equation 4.4). The proposal for xt writes

qt(xt;xt−1, αq) = 1{xt−1=0}·
[
αq0 · δ0(xt) + (1− αq0) · E(xt; ζq)

]
+

1{xt−1>0}·
[
αq1 · δxt−1(xt) + αq2 · δ0(xt) + αq3 · E(xt, ζq) +

αq4 · qyt:t+2(xt) + αq5 · qyt:t+8(xt)
]
. (4.5)

Algorithm 14 Particle Gibbs with sequential adaptive proposal

Objective: optimize the weights αq = (αqd)d=0:5 of a mixture proposal qt(xt;xt−1, αq) de-

fined in equation 4.5 in order to minimize its divergence from the target πt(xt | xt−1, y1:T ).

For n = 1 : N :

1. run CSMC aiming at x1:T | Θ(n−1), s
(n−1)
1:T , y1:T using qt(xt;xt−1, α

(n−1)
q ) proposal

(algorithm 11);

2. draw x
(n)
1:T using backward sampling (algorithm 12);

3. for each position t compute posterior proposal weights:

- for d = 1 : 5 compute α
(n)
td ∝ α

(n−1)
qd · qtd(x

(n)
t )

qt(x
(n)
t )

such as
∑
d=1:5

α
(n)
td = 1,

- for d = 0 compute α
(n)
t0 = α

(n−1)
q0 · qt0(x

(n)
t )

qt(x
(n)
t )

;

4. for d = 0 : 5 compute average proposal weights α
(n)
qd =

∑
t=1:T

α
(n)
td .

Continue with further non adaptive Particle Gibbs sweeps using a proposal with compo-

nent weights α
(N)
q .

We present in figure 4.3 results for using various proposals: the prior kernel, the

mixture and the mixture with adapted weights. We illustrate this on for runs done with
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Parseq (using Particle Gibbs with backward sampling) on E. coli real and synthetic data-

sets (expression and counts generated according to the Parseq model). First, in-line with

other results shown in figure 4.2, we observe that increasing the number of particles P

greatly improves the update frequency for all proposal densities. Second, the adaptive

proposal improves the update frequency for both average and low number of particles.

For a low number of particles (P = 20) there is a remarkable difference (bottom-left

plot). When the target function is well approximated (by using ’good’ proposals or high

number of particles) the difference is less important. Third, we notice that for high

expression values, the proposals containing components dependent on observations have

better update frequency. Interestingly, this difference can be noticed also for the synthetic

data-set where the prior kernel proposal is equal to the simulation model kernel.
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Figure 4.3: The performance of PG for different proposals for the approximation of the ex-

pression level. Data: 1 Mbp from E. coli real and synthetic data. SMC set-up: 220 sweeps,

burn-in of 20, tinning step 5, number of particles P=100 or P=20. Brown: prior kernel

αq = (0.99, 0.97, 0.15, 0.15, 0, 0); Blue: mixture of kernel and observation components with fixed

weights αq = (0.99, 0.9, 0.1
4 ,

0.1
4 ,

0.1
4 ); Green: mixture of kernel and observation components with

adapted weights αq ≈ (0.999, 0.99, 0.001, 0.004, 0.003, 0.006) for all runs. X -axis: expression

level ranges [ei, ei+1). The frequency of particle update is computed as 1
N

∑
n=1:N1{x(n+1)

t 6=x(n)
t }

for x̄t ∈ [ei, ei+1).
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4.2.6 Estimation of the Parameters

The Bayesian framework adopted in this work allows in principle the estimation of the

complete set of parameters within the same MCMC algorithm. However, most of the

parameters of the emission model (i.e. κ, a, κs and αs) are estimated from the charac-

teristics of the read-counts without hidden path reconstruction (section 3.3). We choose

here to estimate these parameters beforehand in order to improve the MCMC mixing with

respect to the other parameters.

Estimation of parameters characterizing the dynamics of the expression level was car-

ried out within a Bayesian framework. The following priors were used for the different

parameters:

• (α, γu, γd, β, β0) ∼ Dirichlet(concentration parameters = 100, 1, 1, 1, 1),

• η ∼ Beta(shape1 = 1, shape2 = 100),

• ζ ∼ Exponential(rate = 1),

• (1− εb − εo, εb, εo) ∼ Dirichlet(concentration parameters = 100, 1, 1)

We show in section 4.2.10 the posterior distribution of these parameters and conver-

gence plots for the S. cerevisiae 1 data set.

4.2.7 Breakpoint Posterior Identification with Local Score

Due to residual uncertainty on the exact breakpoint positions, the posterior position-

specific breakpoint probability could not be used directly to establish breakpoint predic-

tions. It is indeed necessary to cluster the adjacent positions that could correspond to

a same breakpoint. We use for this purpose a local score approach (used in a slightly

different form also by Nuel [2006]).

The local score was defined by the classical recurrence relation st = max{st−1 + zt −
m, 0}, where st is the score at position t, zt is the signal in which we search enriched

regions, m is a penalty greater than the average of zt. In our context, zt = π(bx,t =

’shift’, xt > c | y,Θ) where c is the cut-off on expression level (see subsection 4.3.3). We

select regions with positive score from the first positive value to the maximum local score

in the region. To avoid overlooking downstream high scoring segments, after the end



96 4 Parseq: from read counts to the transcription profile

position of each of these segments, the current position t is set to the one following the

local maximum and the score st is set back to a null value. The penalty value m represents

a correction for background signal. In the same time the value of m controls the minimal

distance between consecutive breakpoints. It can be computed from the mean value over

the whole sequence or locally. In practice, for the two datasets S. cerevisiae and E. coli

m was set to 0.005 and c at respectively 0.1 and 0.5.

For each high scoring segment defined by the above procedure, we computed the

cumulated probability of breakpoint
∑t2

t=t1
π(bkx,t = ’shift’, xt > c | y,Θ) between the

segments end-points t1 and t2. We use this cumulated probability as a confidence value

of the breakpoint prediction. Segments with cumulated probability greater than 1 and

therefore corresponding to more than one breakpoint were divided in subsegments with

equal and subunitary cumulated probability.

Finally, for each segment, a point-estimate of the position of the breakpoint was ob-

tained as the segment mid-point in terms of cumulated probability.

4.2.8 Reconstruction of Transcription Units

While it is important for practical reasons, defining transcription units might hinder the

rich information provided by the continuous transcription profile. By the standard defini-

tion, the transcription units should have homogeneous expression level and be delimited

by breakpoints in the expression profile. In a larger sense, the transcribed regions can

be defined as those regions that have continuous high transcription probability. With

the Parseq results we can aim for the reconstruction of both the transcription units and

transcribed regions.

First, we can reconstruct units with homogeneous expression level by considering re-

gions contained between two breakpoints estimates. If the breakpoint uncertainty leads

to missing start/end breakpoints we can limit the reconstructed units only within high

transcription probability regions. It is also important to mention that, for breakpoints

within a transcribed regions, the expression profile cannot be used to disentangle between

the possible cases of adjacent or overlapping transcripts.

For the reconstruction of transcribed regions we can use the profile of transcription

probability approximated during Parseq. Several ad hoc methods can be used to achieve

this purpose. In one of them we delimit regions with continuous transcription probability
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above a given threshold. We then merge the regions that are separated by a distance

that has no biological meaning and discard regions that are smaller than the minimum

expected transcript length. In another method, we use a strategy similar to the local score

and construct the continuous regions where locally the average transcription probability

is above a given threshold. We detail the last proposed strategy in the section 5.3.4 for

the reconstruction of DE units and illustrate also transcript reconstruction in figure 6.2.
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4.2.9 The Parseq Work-flow

By design the PG algorithm (section 4.2.1) permits to tackle parameter estimation and

transcriptional landscape reconstruction simultaneously but our software Parseq subdi-

vides the problem in three successive steps for practical reasons (figure 4.4).

Figure 4.4: The Parseq work-flow: from parameter estimation to reconstruction of tran-

scriptional landscape.

The parameters of the read-count emission model are estimated and the emission den-

sity corresponding to the different values of xtst are tabulated (step 1). PG iterations are

too time-consuming to be performed on a single CPU for genomes of moderate sizes such

as the yeast Saccharomyces cerevisiae (≈ 12 Mbp). The time and memory complexity are

O(P ·T ·N) and respectively O(T ) with T the sequence length, P the number of particles

and N the number of PG sweeps. In order to distribute computation on independent

CPUs, we decide to subdivide each chromosome in fragments (≈ 1 Mbp each), to perform
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parameter estimation separately on these fragments, and then to select a common set of

parameters based of the obtained results (step 2). Posterior sampling of transcriptional

landscape trajectories x is then carried out on a different CPU for each genome fragment,

but with common parameters (step 3). With an Intel Core i7-3610QM CPU @ 2.30GHz,

each complete sweep of the MCMC algorithm was recorded to take ≈ 1 min for 1 Mb

using P = 150 particles in each Conditional SMC updates. In the results shown in this

chapter, we use 2200 sweeps, including 200 burn-in sweeps, for parameter estimation (step

2), and 2200 sweeps for making predictions at fixed parameters (step 3). For these results

we do not incorporate the backward sampling step. On a 4 CPU computer the complete

procedure took slightly less than 3 days for a 12 Mb genome with this algorithm set-up.

The recent addition of the backward sampling and the proposal optimisation (discussed

in section 2.4) made possible the utilisation of a smaller number of particles (P = 50).

This greatly improved computation time and make it possible to obtain results for a 4Mb

genome (like B.subtilis) overnight.

The output of the algorithm is a sample of transcriptional landscape trajectories drawn

from x|y,Θ that conveys rich information about the actual transcriptional landscape.

Here these trajectories served to estimate the expected value of xt, the 95% credibility

interval of xt, and the probability of xt > 0 (transcribed position), together with the prob-

ability of the different types of breakpoints along the sequence. Because of the posterior

uncertainty on the exact position of each breakpoint we further aggregate the breakpoint

probabilities at adjacent positions into small regions with high cumulative probabilities

using a local-score approach (section 4.2.7). According to the direction of the change

in expression level, the breakpoints were identified as up-shifts or down-shifts. In order

to better distinguish genuinely expressed regions from (biological or technological) back-

ground noise we also realize the relevance of computing the probability for xt to be above

a selected cut-off and to predict the breakpoints that lead the trajectory x above this

cut-off. Transcriptional landscape reconstruction is illustrated on fig. 4.5.
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Figure 4.5: Transcriptional landscape reconstruction with Parseq. Example of results on a

10 kbp region of the first strand of S. cerevisiae chromosome V (dataset SRR121907). From

top to bottom: read counts (dots) and the estimated expression profile (blue line) with its 95%

credibility interval (light blue area); annotated CDSs (arrows) complemented with specific data

sets of 5’-ends and 3’-ends (brown); probability of transcription with a cut-off on expression level

set to 0+ (light orange) or 0.1 reads/bp (orange); Local score in high scoring segments for the

detection of breakpoints associated with up-shifts and down-shifts (red). This example illustrates

the detection of overlapping transcription units (up-shifts before YER140W and YER141W) and

incomplete termination sites (down-shift after YER138W-A).

4.2.10 Parameter Estimates

The parameters were estimated with Parseq MCMC algorithm. Preliminary runs indi-

cated that it is difficult to estimate simultaneously the frequency (γu and γd) and the

amplitude (λu and λd) of the drifts (slow convergence behaviour typical of a flat likeli-

hood function). This is not really surprising as several small amplitude drift moves can

be difficult to distinguish from one drift move of larger amplitude. Therefore, we fix

λu = λd = 5.0 which corresponds to a drift average change of 20%.

The table 4.2 summarizes the results obtained on S. cerevisie 1 and E. coli 2 datasets.

The figure 4.6 illustrates the convergence (parmeters) of the algorithm.
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S. cerevisiae E. coli

parameter mean(a) sd.(b) mean(a) sd.(b)

parameters of the read-count emission model

a 1.9 - 6.3 -

κ 1.2 - 0.6 -

ε 0.00067 0.0014 0.0019 0.00042

εo 0.0000020 0.0000043 0.0000011 0.0000012

transition kernel for the local scaling variable s

αs 0.53 - 0.64 -

κs 2.9 - 4.6 -

transition kernel for the expression level u

α 0.97 0.0071 0.97 0.0058

γu 0.011 0.0033 0.014 0.011

γd 0.013 0.0038 0.018 0.012

β0 0.00060 0.00011 0.00056 0.00016

β 0.00080 0.00016 0.00047 0.0000090

η 0.00072 0.00012 0.00080 0.00016

ζ 1.18 0.28 0.70 0.22

λu, λd (fixed) 5.00 - 5.00 -

(a) mean and (b) standard-deviation across the 1 Mbp subdivisions of the genome.

Table 4.2: Parseq parameters estimated on S. cerevisie1 and E. coli 2 data-sets. Parameter

estimates are first obtained separately for each chromosome subdivision of ≈ 1Mb with Parseq.

We average the sampled values after discarding 1/10th of the sweeps (burn-in). Parameter

estimates are then averaged between genome fragments to obtain the final set of parameters

used for expression level reconstruction (column ’mean’).
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Figure 4.6: Parameter estimation on the S. cerevisiae 1 dataset: chromosome VI strand+

(sequence size 270kbp; left histogram and convergence plot) and complete genome (2.400kbp,

right histogram). Left and right columns: histograms of the sampled values approximating the

marginal posterior distributions. The complete genome histogram includes sampled values from

for all chromosomes and both strands. Middle column: convergence plot along 2000 sweeps with

a thinning step of 10 and excluding a 200 sweeps burn-in.
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4.3 The Evaluation of Parseq Results

The accuracy of transcriptional landscape reconstruction was assessed from two different

standpoints: the number of transcribed positions that can be correctly called based on the

estimated value of xt, and the number of transcript 5’-ends and 3’-ends at less than 50 bp

of an identified up-shift and down-shift, respectively. To establish the lists of predictions

we use a probability cut-off set to 0.5 for both the probability of xt > c (where c is an

expression threshold) and the cumulative probability of shift in the small region delineated

by local-score approach. When comparing the predictions with a reference annotation we

needed to take into account that Parseq models the distribution of the 5’-end of the reads.

For this reason, the regions predicted as transcribed by Parseq were extended of l3 bp on

their 3’-ends and the same correction needs to be applied to the predicted down-shifts

before comparing with transcript 3’-ends (adjusted to 50 bp for the simulated data set).

To report results in terms of sensitivity and positive predictive values (PPV) we compute

the fraction of the true positives that could be matched to a prediction ( TP
TP+FN

) and the

fraction of the predictions that could be matched to a true positive ( TP
TP+FP

).

Parseq predictions were systematically compared with the results of Cufflinks v2.1.1

[Trapnell et al., 2010], a method for transcript assembly which is based on read overlap-

ping. For E. coli we compare our results also with Rockhopper [McClure et al., 2013].

Rockhopper makes use of existing annotation to estimate the transcription boundaries

and read count distribution. To compare Cufflinks, Parseq and Rockhopper on the same

basis we design a strategy to use Rockhopper to obtain transcript boundaries estimates

without using annotation but in the same time to allow the estimation of read counts

distribution. We divide the genome in 10 regions and we run Rockhopper 10 times when

each time we exclude from the annotation one region. We assemble results obtained for

each region where annotation is missing to obtain genome wide transcript boundaries

estimates.

4.3.1 Evaluation of Results on Synthetic Data

The difficulty to find a reference annotation that could be considered as a gold standard

motivated the idea of starting the results analysis with synthetic data sets. If for SMC

performance we generate synthetic data using a model incorporating the read count model
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described in section 3.2, for evaluating the results we use Flux simulator v1.2 [Griebel

et al., 2012] (an application aiming at modelling RNA-Seq experiments in silico that tries

to mimic the protocol steps). RNA-seq reads of length 50 bp were simulated specifying

uniform RNA fragmentation. We allow no variability in TSS and pA positions to be able

to accurately assess the performance of transcript border detection (parameters TSS MEAN

and POLYA SCALE set to NaN). Due to the lack of variability in transcript borders and to

Flux Simulator fragmentation model, strong read count peaks at transcript borders were

obtained with default fragmentation parameters. To modify this unrealistic behaviour

we increase the fragmentation rate up to an average fragment length of 20 (FRAG UR D0

10, FRAG UR DELTA 1, FRAG UR ETA 20) before size selection. After size-selection lengths are

normally distributed around length 100 (standard deviation 2).

For both real and synthetic data-sets we perform the alignment using Bowtie 1 v0.12.7

[Langmead et al., 2009] allowing only 1 mismatch in a 5 bp seed (-n 1), and discarding

multiple alignments (-m 1). We use IGVTools [Thorvaldsdottir et al., 2013] to compute

the 5’ end read counts.

First we ask how estimation results change with increasing coverage. Strand-specific

datasets of increasing sequencing depth (between 0.025 and 0.4 reads/bp after mapping)

were simulated with the Flux simulator using the sequence and annotation of the Sac-

charomyces cerevisiae S288C chromosome IV. We increase the depth according to two

scenarios: i) for scenario 1 we keep constant the initial number of mRNA molecules (30k)

and vary amplification parameters (reads to molecules ratio from 5:1 to 80:1) and ii) for

scenario 2 we maintain constant the amplification coefficient(reads to molecules ratio of

20:1) and vary the initial number of mRNA molecules from 7,5k to 120k. The sequencing

depth increased similarly in both scenarios from 150k to 2400k reads.

The results obtained on synthetic data are summarized in fig. 4.7. While both

Parseq and Cufflinks perform well when the depth of sequencing exceeds an average of

0.12 reads/bp, below this level differences between the two methods become evident. Even

though they do not have the same sensitivity-specificity trade-off, it appears clearly that

the results obtained by Parseq are better. The model-based approach adopted in Parseq

makes it possible to extrapolate transcription across coverage gaps, and this results in a

better calling of transcribed positions (not shown) and transcript borders. The mechanis-
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Figure 4.7: Impact of sequencing depth on transcript borders prediction in synthetic data. Two

scenarios were considered to achieve higher sequencing depth: increasing the amount of ampli-

fication (left column) or increasing the number of initial molecules before amplification (right

column). The evolution of the amplification coefficient µa estimated by Parseq distinguishes

the two scenarios (top row). The results of Parseq and Cufflinks (default parameters) are rep-

resented by continuous and dashed lines, respectively (middle and bottom rows). The results

were very similar for 5’-ends and 3’-ends and were pooled here.

tic interpretation of our new emission model is also well supported by the results: Parseq

estimation of the amplification coefficient (µa, top plots) distinguishes remarkably well

the two scenarios considered in our simulations where sequencing depth increases either

as a consequence of higher amplification or as a consequence of higher number of initial

molecules sampled.

4.3.2 Evaluation on Real Data

On synthetic data both the model-based approach of Parseq and the read-overlapping

approach of Cufflinks perform well at detecting transcribed positions and transcript bor-

ders once the sequencing depth becomes high enough (0.12 reads/bp in our simulations).

However, despite the efforts made on the simulation pipeline to mimic the different types

of artifacts, the synthetic data does not have the complexity of a real data set.
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For evaluation on real data we chose strand-specific, single-end, data sets from two

major model micro-organisms: the yeast Saccharomyces cerevisiae (dataset S. cerevisiae

1) and the bacterium Escherichia coli (dataset E. coli 2). The S. cerevisiae 1 data-

set was sequenced on a SOLiD platform and published in a study on regulatory non-

coding RNAs [Dijk et al., 2011]. It has a read-length of 50 bp and a sequencing depth of

1.6 reads/bp after mapping. The E. coli 2 data-set was sequenced on an Illumina platform

and published toghether with the presentation of the Rockhopper work-flow for bacterial

RNA-Seq data processing [McClure et al., 2013]. It has a read-length of 100 bp and a

sequencing depth of 2.4 reads/bp after mapping.

As a reference annotation for the transcribed positions in S. cerevisiae, we relied on

the 5874 coding sequences (CDSs) found in the S. cerevisiae database SGD [Cherry et al.,

2012] and lists of untranslated regions (UTRs) mapped from RNA-Seq experiments in

Yassour et al. (2009) (5200 5’UTRs and 5295 3’UTRs). To better assess the accuracy of

the prediction of transcripts 5’- and 3’-ends, we also include comparison with experimental

data that aimed at mapping precisely these sites: 4393 transcriptional start sites (TSSs)

[Zhang, 2005], and 7977 polyadenylation sites (pAs) [Ozsolak et al., 2010]. For E. coli we

use annotations available in the RegulonDB database [Salgado et al., 2013] (2438 promot-

ers and 2647 operons) and also the sequence-based predictions of 2260 rho-independent

transcription terminators obtained with Petrin software [Carafa et al., 1990].

Importance of drift and local correlations. On real data, taking into account the

local correlations and the drift prove to be important as indicated not only by their

estimated values but also by the accuracy of transcript border detection. IBy monitoring

the accuracy in terms 5’-ends and 3’-ends detection, we assessed the effect of these two

model components on the quality of the inference. The results are reported in table

4.3 and confirm that taken individually the drift and the local correlations improve the

results. Moreover, the results also demonstrate that the two terms are complementary

rather than redundant since their combination lead to further improvements. As reported

in table 4.3, the introduction of local scaling allowed a dramatic decrease of the coefficient

of variation of the estimated expression level within annotated genes. At this point, we

would like to recall that this better smoothing of the expression level comes with of a

huge increase of the credibility intervals (4.5). That illustrates the cost implied by the
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Parseq components included in the model

drifta + + - -

autocorrelationb + - + -

5’-ends number 6,689 13,881 15,994 31,428

TSS sensitivity 64% 70% 74% 79%

TSS PPV 48% 28% 25% 15%

3’-ends number 6,287 11,880 16,613 32,357

pAs sensitivity 60% 63% 70% 74%

pAs & 3’UTR PPV 57% 34% 29% 17%

CVc within CDSs 0.37 0.57 0.43 0.59

Table 4.3: Impact of drift and local scaling. Results obtained on S. cerevisiae 1 chr. IV (both

strands) with expression cut-off 0.1 reads/bp. a drift is removed by setting γu = γd = 0.

b short-range autocorrelation is removed by setting αs = 0.c coefficient of variation. PPV

represents the Positive Predictive Value.

existence of correlated overdispersion and the difficulty that goes with it when comparing

expression levels between regions of the genome.

The evaluation of the complete Parseq model. Table 4.4 presents a detailed break-

down of the results according to the different sets of reference annotations which could

be considered to assess accuracy. In this context, we find that the probability of xt > 0

(expression cut-off 0+) is not necessarily the most relevant to compare the prediction

of transcribed positions with a reference annotation. The best trade-offs are obtained

near 0.1 reads/bp on the S. cerevisiae data-set, and 0.25 reads/bp on the E. coli data-set.

These values are in agreement with the presence of a large number of positions associated

with low expression level, resembling a background noise (section 4.3.3). The accuracy

of the detection of transcribed position is remarkable (e.g., 83% sensitivity, 90% PPV

with the 0.1 reads/bp expression cut-off on S. cerevisiae) but very similar to Cufflinks. In

keeping with our observations on synthetic data, this suggests that detecting transcribed

positions is easy at high sequencing depth and consequently the model-based approach

implemented in Parseq provides only small benefits. The accurate identification of tran-

script borders is by far more challenging. For instance, on S. cerevisiae 5’-ends, with
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the same 0.1 reads/bp expression cut-off, the sensitivity reaches 64% and the PPV 48%.

On E. coli, PPVs remain acceptable but sensitivity values are much lower. This could

be due to a combination of: lower quality of the data (µa estimated to 6.15 in E. coli

versus 1.18 in S. cerevisiae, adjusted l3 is 50 bp for S. cerevisiae versus 160 bp for E. coli);

lower quality of the annotation taken as reference (e.g., Petrin predictions are expected to

contain substantial numbers of false positives and false negatives); higher proportion of

genes with low or no expression and thus for which promoters and terminators cannot be

detected (with the 0+ expression cut-off, sensitivity for detection of transcribed regions

is only 0.81 in E. coli versus 0.91 in S. cerevisiae). On both data sets and for 5’-ends and

3’-ends alike, Parseq results are consistently better than the ones obtained by Cufflinks,

particularly in terms of sensitivity. This confirms our expectations as Cufflinks reconstruc-

tion ignores the possibility of overlapping transcripts and thus overlooks transcript-ends

in these configurations. We also include in our comparison the predictions made on E.

coli by Rockhopper (Table 4.4). As we are interested here in de-novo predictions but this

software could not run without annotations, we discard successively the annotation on

one-tenth of the genome and recorded the predictions on it. Parseq and Cufflinks provide

results markedly better than Rockhopper in this comparison set-up.
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S. cerevisiae

Reference Parseq Cufflinks Rockhopper

Transcripts Sensitivity CDSs & UTRs 0.83 (0.91) 0.83(0.87) –

PPV CDSs & UTRs 0.90 (0.68) 0.90 (0.81) –

5’ End Number 6,689 (8,353) 5,484 (13,622) –

Sensitivity TSSs 0.64 (0.65) 0.43 (0.45) –

PPV TSSs & 5’UTRs 0.48 (0.4) 0.49 (0.22) –

3’ End Number 6,287 (7,440) 5,484 (13,622) –

Sensitivity pAs 0.60 (0.62) 0.43 (0.44) –

PPV pAs & 3’UTRs 0.57 (0.51) 0.51 (0.22) –

E. coli

Transcripts Sensitivity Operons 0.56 (0.81) 0.60 (0.75) 0.21 (0.39)

PPV Operons 0.76 (0.57) 0.72 (0.61) 0.91 (0.86)

5’ End Number 1,846 (2,193) 1,577 (7,962) 2,949 (4,401)

Sensitivity Promoters 0.24 (0.25) 0.15 (0.23) 0.12 (0.19)

PPV Prom. & 5’Oper. 0.49 (0.42) 0.34 (0.11) 0.24 (0.23)

3’ End Number 1,327 (1,342) 1,577 (7,962) 2,949 (4,401)

Sensitivity Terminators 0.12 (0.11) 0.08 (0.13) 0.03 (0.08)

PPV Term. & 3’Oper. 0.35 (0.32) 0.24 (0.08) 0.07 (0.11)

Table 4.4: Detection of transcribed positions and transcript borders on data-sets S. cerevisiae 1

and E. coli 2. Predictions and reference data were matched based on a ± 50 bp distance cut-off.

Outside parentheses: results obtained after applying a stricter expression cut-off. S. cerevisiae:

0.1 reads/bp for Parseq, 100 fragments per transcript for Cufflinks. E. coli: 0.25 reads/bp cut-off

for Parseq, 200 fragments/transcript for Cufflinks, z = 0.2 for Rockhopper. Between parentheses:

0+ reads/bp for Parseq, 5 fragments/transcript for Cufflinks, z = 0.01 for Rockhopper.
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Figure 4.8: Impact of varying the expression cut-off on the accuracy of predictions. Results are

shown for the datasets S. cerevisiae 1 and E. coli 2 (right panel). The performance obtained for

three types of features are reported on the same plot: transcribed positions (grey area, upper

right corner), transcript 5’-ends (black lines) and 3’-ends (grey lines). Solid lines: results of

Parseq for expression cut-offs increasing from 0+ to 0.5 reads/bp for S. cerevisiae and 0+ to

1.5 reads/bp for E. coli. Dashed lines: results of Cufflinks for minimum fragments required per

transcripts increasing from 5 to 500. Bullet points: E. coli results of Rockhopper with z = 0.2.

Completing results presented in table 4.4 we show in figure 4.8 how the choice of

the expression cut-off modifies the results. It allows also a thorough comparison of the

predictions made by Parseq and Cufflinks independently of the particular value taken for

this cut-off. It also appears that the choice of a particular distance cut-off does not modify

the relative ranking of the three approaches: Parseq, Cufflinks and Rockhopper (see SI

from [Mirauta et al., 2014]).
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4.3.3 Choice of a Cut-off on Expression Level

We notice in our estimates of x that many regions outside annotated genes are associated

with a low but non-null expression level. Genuine pervasive transcription and background

noise of the technology could contribute to this low expression signal. There are many

situations where, whatever the origin (biological or experimental) of this low expression

signal, we can be interested in predicting a set of expressed segments that does not contain

these regions with low but non-null expression signal. To select an appropriate cut-off

for expression level thresholding we examine the marginal distribution of the estimated

expression levels x (figure 4.9). For both data sets we observe an accumulation of po-

sition associated with low expression inconsistent with the behaviour of an exponential

distribution (which is linear in log density). In practice, we set our expression cut-off to

0.1 reads/bp for S. cerevisiae 1 and 0.25 reads/bp for E. coli 2 when calling transcripts

and breakpoints.

Figure 4.9: Marginal distribution of the estimated expression levels x on S. cerevisiae 1and E.

coli 2 data sets. In this log-density vs. expression level plot an exponential distribution corre-

sponds to a straight-line, as observed in the left part of the blue segments. Below 0.1 reads/bp

in S. cerevisiae 1 and 0.25 reads/bp in E. coli 2 a sharp accumulation is visible (red segment).

The cut-off on expression level that served for calling transcripts and breakpoints were set to

these values (vertical dotted red line).



112 4 Parseq: from read counts to the transcription profile



Chapter 5

The analysis of multiple conditions

We present in this chapter results for the detection of positions and regions exhibiting

differential expression (DE) between two conditions. Our approach approximates first the

relative change in expression level for each position, then estimates the DE at a base-pair

resolution and finally reconstructs DE regions.

Starting from two or more controlled experiments two types of question can be ad-

dressed:

(a) which genomic regions exhibit differential expression (DE) between conditions,

(b) how may the transcript annotation be improved when combining multiple datasets.

In this section we focus on the DE analysis. In statistical terms, the DE question

translates into detecting significant changes of expression level, after accounting for pos-

sible sources of experimental and biological variability. While the classic approaches to

identifying DE use predefined transcription units, e.g. genes and exons, we address this

question in the context where such units are not available. This problem setting allows

the identification of DE units that might not correspond to existing annotation. In the

same time, we are confronted with a new problem, which is to reconstruct the DE units

from a genome wide comparison of read counts coverage.

We want to provide a statistically sounded way of estimating the fold change and

calling regions exhibiting DE above a given fold change level c between two data-sets.

We base our method on the separate estimation of the expression level on each data-

set, denoted u = (ut)t≥1 and v = (vt)t≥1, with Parseq (section 4.2.9). We present first

113
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simple methods to compute genome-wide profiles of differential expression, i.e. obtain fold

change estimates at base-pair resolution. Using Parseq expression profile samples we can

compute point estimates of the fold change and also provide a credibility interval. The

next step consists in calling DE at position level. For this we consider a DE threshold

and compute the DE probability, which is the probability of the fold change to be above

the DE threshold. Finally, we reconstruct the DE units, i.e. continuous regions where

locally the DE probability is above a given threshold.

In the conclusion chapter we also discuss the design of a SSM model built for sev-

eral sets of observations (conditions). This aims on one hand to estimate breakpoints

in the expression profile that do not present differences between conditions (consensus

breakpoints) and on the other hand to estimate directly the DE profile.

5.1 The Fold Change at Base-Pair Resolution

Our goal is to estimate the fold change at a base-pair resolution, that is to estimate the

change between ut and vt where t is the position on the genome. For this reason, all our

variables refer to the position resolution and we often omit to write the position index t.

A direct point estimate is provided by the ratio of posterior means r̂RM = ū
v̄

where

ū and v̄ are expectations of the posterior distributions of the expression levels u and

v as sampled by the Parseq algorithm. To incorporate the information on uncertainty

embedded in the posterior distribution we also consider fold-change estimate based on

the posterior distribution of the ratio r = u
v
. A natural way of doing it is to consider

the empirical distribution of the sample (r)1≤i≤N2 = (u
iu

viv
)1≤iu≤N,1≤iv≤N where N is the

sample size drawn from each posterior using Parseq and iu and iv the sample indexes.

The ratio distribution has already attracted attention in sample survey and many other

areas. Multiple approximation were proposed, either from large sample or hypothesizing

a Gaussian distribution of the variables. A more general approach was also proposed

[Fieller, 1954] to derive confidence intervals.

Here, we also analyse the results obtained with an approximation of the posterior

distribution of the ratio r = u
v

build on the hypothesis that the posteriors on expres-

sion levels u and v can be well approximated by a gamma distribution. Namely, ` ∼
γ(κ`, θ`), ` = {u, v}, where the parameters κ` and θ` represent the shape and the scale
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parameters of the gamma distribution. In practice, the examination of the posterior dis-

tributions suggests that this assumption is roughly justified in all of our data-sets for

positions that do not have a significant mass at 0. Rescaling v by θu
θv

brings the two

gamma distributions to the same scale while keeping the shapes unchanged allowing an

explicit form of the ratio distribution. The ratio r̃ = u
v
· θv
θu

has a Beta prime distribution

B′(κu, κv) with density

π(r̃) =
r̃κu−1 · (1 + r̃)−(κv+κu)

β(κu, κv)
, (5.1)

where β refers to the beta function. The parameters κ and θ can be estimated for each

individual posterior using the method of the moments or by maximum likelihood. By

default we use the moment estimates of κ and θ which gives κ̂` = ū2
`/σ̂

2
` and θ̂` = σ̂2

`/ūl,

where σ̂2
` and û` are the sample estimates for the variance and mean.

We approximate the fold change and the differential expression above a given threshold

c by using these three estimation methods:

1. RM - the point estimate based on the ratio of posterior means r̂RM

2. DR-e - the posterior distribution of the ratio r as approximated by its empirical

distribution;

3. DR-β’ posterior distribution of the ratio r as derived from the Beta prime approx-

imation r̃ ∼ B′(κu, κv).
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5.2 The Estimation of Differential Expression

At position level we derive the DE at a given fold change c from the cumulative prob-

ability above c (tail function). We denote by dt the probability of DE for the position t

and we compute it for each method as follows

RM: 1{r̂RM≥c}; DR-e:
1

N2

1:N2∑
iu,v

1{uiu
viv
≥c} and DR-β′:

∫ ∞
c θv
θu

β′κu,κv(r) dr.

In a similar manner we can determine positions having a given fold change c. We define a

precision level and build a precision interval [c1, c2] around the target fold value. We then

identify positions with point estimators in this interval (for RM) or with a cumulative

probability P (c1 ≤ r ≤ c2) greater than a probability threshold (for DR-e and DR-β′).

Read coverage variability induces uncertainty in the estimation of the expression level,

which in turn can lead to discontinuities in the annotation of DE regions.

In order to reconstruct continuous regions with high DE probability, we use an

ad hoc method inspired from the local score strategy. We aim to determine continuous

regions where locally the average DE probability dt value is above a given threshold. We

use this local approach to account for possible gaps in the DE profile signal resulting

local local differences in coverage between the two conditions that are two short to have

a biological meaning. We compute a local score ρt according to the recursion

ρt = min(1,max(ρt−1 + dt −m, 0)),

where m is the DE probability threshold. We choose first [t0 : t′1] segments with ρt0−1 = 0,

ρt0:t′1
> 0 and ρt′1+1 = 0. Then we perform a backward recursion on [t0 : t′1] using the same

formula ρt = min(1,max(ρt+1 + dt −m, 0)) and select the region [t0 : t1] where ρt1+1 = 0

and ρt0:t1 > 0. The second step is done to assure reversibility in region selection. In

contrast to the classic local score approach, we limit the ρt to 1 to avoid effects related to

the region length (which is proportional to the cumulative DE probability).
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5.3 Evaluation of Differential Expression Estimation

The difficulty raised by evaluating our strategy on real data motivated the use of synthetic

datasets. We use synthetic data to evaluate the detection of DE at base-pair resolution

and of DE regions. The relevance on real cases is shown on the detection of DE positions.

5.3.1 Synthetic and Real Data-sets

Currently available RNA-Seq simulators (simNGS[Massingham, 2011], Flux simulator)

do not account for the coverage variability that we observe on real datasets (section 3.4).

Thus, we decide to generate synthetic data by taking transcript expression values from

S. cerevisae 1 data-set and generating counts according to a dispersion estimated by

Parseq on real datasets.

We simulate data for the first 6 chromosomes of S. cerevisiae using transcripts from the

SGD annotation [Cherry et al., 2012]. For the ”wild” data set (v) we set the expression

level for each transcript to the value computed from real data (S. cerevisae 1). This value

is obtained by averaging the counts of reads corresponding to each transcript. For the

”mutant” data set (u) we use the same expression levels but we over expressed randomly

15% of the transcripts (corresponding to 200 transcripts) with folds change values of 1/4,

2, 4 or 8. To increase resemblance to real data we integrate local coverage scaling (s,

section 3.2). To do this we generate a local scaling profile using the parameters αs and

κs estimated by Parseq and scale the count expectation. Conditioning on the expression

profile and local scaling we sample read counts according to a Negative Binomial y`,t ∼
NB(s`,t · `t, φ), where ` ∈ {u, v}, s`,t and `t are the local scaling and the expression level

at position t and φ is the over-dispersion (φ = 2 in the simulated data-sets).

We also include in our evaluation data from a study on regulatory non-coding RNAs,

Xrn1-sensitive unstable transcripts (XUTs), in S. cerevisae [Dijk et al., 2011]. XUTs

accumulate in the mutant condition and their loci thus correspond to DE regions. We

compare a mutant condition S. cerevisiae 4 and a wild condition S. cerevisiae 1 (data-set

description in table 3.1).

We then run Parseq to estimate the expression profile for both data sets and obtained

2 samples of expression trajectories ui and vi, i=1:N. For each condition we run 2200

Parseq sweeps with a thinning step of 10 and we discard the 200 sweeps burn-in.



118 5 The analysis of multiple conditions

Results using Parseq estimates were systematically compared with the estimation

based on a sliding 100 bp window average of the read counts (SW). In order to avoid

border effect (border smoothing), the SW estimate was constrained to the regions cov-

ered by at least one read.

For comparison at bp level we consider those positions where Parseq estimated average

levels and SW values are above a background value (here 0.01 reads / bp). Reconstruction

of DE regions included all values and we set to the background value all expression values

below it. Estimation of parameters for the fold change distribution is done as described

in the methods. However, in the cases where the degeneracy of the particles lead to an

underestimation of the variance we threshold the coefficient of variation cv to 0.001 and

then recalculate the variance: σ̂`t = `t · cv.

Given a level of fold change c, the results are assessed from three different standpoints:

detection of positions with c fold change, of positions with at least c fold change, and the

detection of DE regions of level c or above.

Of main relevance, the comparison of results obtained using RM on one side, and

DR-e and DR-β′ on the other, motivate the choice of approximating the expression level

distribution.

5.3.2 Evaluation of Fold Change Estimation

We consider a ± 25% precision around the correct fold change and threshold the cumula-

tive probability (% of ratio values falling in the precision interval) at 0.3 in order to call

DE positions for DR-e and DR-β′.

Increasing this threshold will provide very high PPV but with significant sensitivity

loss while, in reverse, at lower thresholds sensitivity can reach 1 but with very low PPV.

All results based on Parseq expression level estimations are significantly better in both

sensitivity and PPV that those obtained using SW (table 5.1). While DR-e and DR-β′

show high sensitivity values for a moderate PPV decrease comparing to RM, the DR-β′

seems to achieve a better trade-off between these two indicators.
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DR-e DR-β′ RM SW

Fold Sens. PPV Sens. PPV Sens. PPV Sens. PPV

2 0.93 0.08 0.75 0.13 0.51 0.18 0.34 0.09

4 0.86 0.44 0.73 0.55 0.46 0.61 0.32 0.31

8 0.89 0.52 0.70 0.63 0.45 0.70 0.35 0.51

Table 5.1: Detection of change magnitude at position resolution. Synthetic data results. Posi-

tions expressed in any dataset lower than 0.01 reads/bp were disregarded. We show sensitivity

and positive predictive values. Three fold values (2, 4, 8) were evaluated (precision of ± 25%

and cumulative probability threshold of 0.3).

5.3.3 Evaluation of DE Calling at Base-Pair Precision

We discuss first results obtained for the synthetic data-sets and then, we show also results

on real data. For the synthetic data, the estimation was done at bp precision for thresholds

ranging from 2-fold to 8-fold. RM method performs better than SW mainly in terms

of positive predictions (figure 5.1 left panel). DR-e and DR-β′ results depend on the

probability threshold. High sensitivity values are obtained by lowering the cumulative

probability threshold to 0.25 with the cost of having PPV values similar to the SW

method. It is important to notice the similar behaviour of the DR-e and DR-β′ which

sustains the choice of the gamma distributions in modelling the expression level.

We also evaluate (figure 5.1 right panel) the accuracy of DE calling at position resolu-

tion in a comparison between two real data-sets S. cerevisiae 4 (mutant) and S. cerevisiae

1 (wild). As in [Dijk et al., 2011], we scaled the reconstructed mutant expression profile

such that levels of tRNA and snoRNA is equal between the two data sets and we excluded

already annotated regions [Cherry et al., 2012] from the DE analysis. To minimize the

detection of UTRs we also excluded an additional 100 bp on both sides of each annotated

gene. The positive predictive values are similar for all DE thresholds and methods. On

the contrary, the sensitivity is decreasing with increasing DE thresholds suggesting that

XUT detection needs to be done at low (approx 2) fold change thresholds. For given

thresholds above c = 4 the sensitivity can be increased significantly for the DR-e and DR-

β′ methods by calling DE positions with a low cumulative probability threshold (0.25)
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Figure 5.1: Detection of DE at position level for synthetic (left) and real (right) datasets.

X-axis: DE threshold. Y-axis: Sensitivity (top) and PPV (bottom). Methods: DR-e (blue

band), DR-β′ (green band), RM (red line) and SW (black dots). Borders for DR-e and

DR-β′ bands: Sensitivity - top and low represent the 0.25 and 0.75 cumulative probability

thresholds; PPV - top and low represent 0.75 and 0.25 thresholds.

without significant PPV loss.

5.3.4 Calling of DE Regions

Finally, we evaluate DE region detection on synthetic datasets. We compare the borders

of DE reconstructed units against those of transcripts with simulated fold change above

the same threshold. Sensitivity reaches values above 50% for all methods and most DE

thresholds (table 5.2). Parseq based approaches have a net improvement in PPV with DR-

e and DR-β′ having slightly higher sensitivity than RM. We illustrate the reconstructed

DE units in figure 6.2.
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DR-e DR-β′ RM SW

Fold Sens. PPV Sens. PPV Sens. PPV Sens. PPV

≥ 2 0.72 0.20 0.72 0.25 0.69 0.25 0.66 0.12

≥ 4 0.57 0.43 0.58 0.39 0.54 0.39 0.63 0.26

≥ 8 0.43 0.39 0.48 0.38 0.38 0.35 0.44 0.23

Table 5.2: Accuracy in 5’-end detection of DE regions for a 50 bp distance cut-off. Results

are shown for 3 values of DE thresholds. Estimated DE regions below 100 bp were

discarded.

We did not include in the evaluation of calling DE (at base-pair precision or at region

level) the results obtained by using DER Finder [Frazee et al., 2014] as this method, which

follows the same approach, i.e. reconstructs DE regions from DE at base-pair resolution,

was available after the publication of our own. We plan to include its results in further

evaluation studies.
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Chapter 6

Conclusions and Perspectives

We presented in this thesis a model-based approach for analysing the RNA-Seq read count

profiles along the genome. Our work aimed at the reconstruction of the transcription pro-

file from one RNA-Seq data-set and at the estimation of regions with different expression

between two conditions. This led to the development of two algorithms: Parseq [Mirauta

et al., 2014] and Pardiff [Mirauta et al., 2013].

Parseq implements a statistical approach to estimate the local transcription levels and

to identify transcript borders without making use of existing annotation. This transcrip-

tional landscape reconstruction relies on a state-space model to describe transcription level

variations in terms of abrupt shifts and more progressive drifts. A compound distribution

of read counts was developed to capture the characteristics of RNA-Seq data.

Pardiff describes a method to reconstruct the regions having significant changes in

expression between two conditions without making use of predefined annotation and data

sets replicates. This method is based on estimates of DE at position level and mitigates

the lack of replicates by accounting for the uncertainty in expression level estimation.

From a methodological standpoint our work also demonstrates the feasibility of analysing

genome-scale data within the framework of state-space models. We summarize here our

contribution to modelling the RNA-Seq data and discuss possible extensions.
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6.1 A New RNA-Seq Read Count Model

In section 3.2 we developed a new model for the distribution of RNA-Seq read counts

within regions with constant expression level (transcripts). We believe that this will

allow on one hand to better estimate the credibility intervals for the expression level and

transcription breakpoints, and on the other hand a better quantitative evaluation of the

characteristics of RNA-Seq data-sets. In particular, the model addresses amplification

effects and local correlation of counts by incorporating corresponding parameters.

For the data-sets (e.g. S. cerevisiae 1 and E. coli 2) where the amplification parameters

were estimated to significant values a comparison to a Parseq model relying on a NB

emission revealed a net improvement in the specificity of breakpoints at similar sensitivity

and more realistic credibility intervals (in the sense that they are compatible with constant

expression along the transcripts).

We expect that a more comprehensive study, including data-sets from various pro-

tocols, may reveal associations between protocol characteristics and the values of the

parameters from the read count model. Such an association might facilitate the choice of

the protocol according to the specific experimental task. During the preliminary analysis

of the parameter we encountered a few specific questions. Could the excess of counts in 1

of the isolated counts distribution reveal possible shortcomings of the amplification step?

More generally we pose the question of their origin: are they caused by DNA contamina-

tion, by antisense artefacts or by background transcription? A second question is related

to the local count correlations, a bias with a significant influence on the reconstruction

of transcription units. We chose to incorporate it in our model through a variable s that

scales the number of initial cDNA molecules but in theory we could build a model that

accounts for correlation in subsequent steps (like PCR amplification). In order to detect

possible causes of local scaling we started an investigation on the correlation of read counts

with the secondary structure. Our first results revealed that such correlation exists but it

is mainly explained by a controlling variable (the G and C sequence content). It would be

interesting to extend this analysis to study correlations of the local scaling variable with

the secondary structure, the GC local content and other sequence related bias sources.

We also show other results concerning the bias due to sequence and position relative to

the transcript boundaries. These results confirm already published work and support the



Designing State Space Models for Genome Wide Analysis 125

approach with shift and drift, and the incorporation of the local scaling variable. These

aim to account for technological artefacts and tackle the problem of modelling the bias.

The bias analysis confirmed also that local correlation and other types of bias (figures 3.1

and 3.2) are highly similar for the same protocol conditions (as also stated in [Khrameeva

and Gelfand, 2012])

6.2 Designing State Space Models for Genome Wide

Analysis

We have built a SSM aiming at the reconstruction of the expression profile. Besides the

expression level, the SSM incorporated the variable s to account for local correlations.

While the two variables have confounding effects on the read count we can disentangle

their trajectories making use of the different tempo of their longitudinal dynamics (short

vs. long range). The design of the transition models aimed to distinguish between the

two hidden profiles. For x we developed a transition kernel that accounts for ’no changes’,

smooth changes and shifts in level and for s we designed a piece-wise kernel with a Gamma

of mean 1 stationary distribution. In previous versions we estimated the values of the

local correlation parameters along with the other parameters within the PG algorithm.

In our later implementation we used pre-computed values (section 3.3). The success of

distinguishing those two effects is an important illustration of the potential of performing

analysis in SSM framework.

It is worth mentioning that the Dirac masses, which account in the transition kernels

for maintaining the same level, pose some implementation difficulties. While we can avoid

these problems by alternative designs, that account only for smooth changes and shifts,

the Dirac masses prove to be computationally efficient and seems relevant from a biological

point of view.

A SSM can be designed on a complex Bayesian hierarchy. For example we can incor-

porate in the SSM variables accounting for missing data (e.g. for positions where reads

were discarded due to multiple mapping on the genome). For this we implemented the

option of incorporating a variable mt that takes the value 0 if the position t is in a re-

peated region and 1 otherwise. The emission writes e(yt;xt, st,mt) and takes the value
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1 if mt = 0 and e(yt;xt, st) otherwise. In principle, we could also design SSMs for the

genome wide analysis from multiple datasets eventually generated with different proto-

cols (e.g. global and 5’-end sequencing). Such models might aim to capture alternative

transcription breakpoints or to return breakpoint consensus, to directly approximate DE

positions or to return a more robust reconstruction of the local correlation profile.

For data produced with the same RNA-Seq protocol (that should have a high similarity

in bias) we propose a SSM (DAG in figure 6.1) aiming at the identification of alternative

transcription breakpoints. Slight changes in the design (introducing xde variable to control

for DE at position t and considering the same breakpoints for the two data-sets) can lead

to a SSM aiming at detecting the differences in expression.
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Figure 6.1: DAG for SSM for two data-sets. The variables y1,x1, bkx1 and respectively y2,x2,

bkx2 represent the counts, expression levels and breakpoints for the two data-sets. The local

correlation s is the same in the two data-sets. The variable bkde accounts for the alternative

usage of the breakpoints, bkde,t = 1{bkx1,t=bkx1,t}. For simplicity we do not show parameters as

in the augmented state space described in figure 4.1.
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6.3 Applying Sequential Monte Carlo Methods on

Genome-Wide Scale

Our choice for the Particle Gibbs algorithm with backward sampling was instrumental in

obtaining the transcription profile reconstruction. The PG algorithm, like most Monte

Carlo approaches, is computationally intensive. We reduced the overall computation cost

by combining the optimisation of proposals and backward sampling of trajectories (that

allowed approximations using a lower number of particles and PG sweeps). To confirm the

benefits of our choice of the PG algorithm we performed an analysis of the accuracy of this

algorithm and of the Sequential Importance Resampling. We present empirical results in

section 4.2.4 for several algorithm set-ups and various proposals. These illustrate that

accurate estimation is reached by PG (using CSMC) in most scenarios and even for a

small number of particles (P). The trajectory update using the SIR algorithm instead of

CSMC shows biased estimations for unfitted proposals and practical numbers of particles.

We observed also that CSMC and SIR require backward sampling for long sequences to

tackle the particle coalescence issue. By a simple rule of thumb the size of the update

trajectory should not be much longer than P if only filtering is used.

Aiming at improving particle mixing we searched for efficient proposals. We developed

a mixture proposals with fixed weights but position dependent components. Next, based

on an adaptive strategy, the Population Monte Carlo, we tuned the proposal by optimizing

the weights to get closer to π(xt | xt−1, y1:T ), the kernel of the heterogeneous Markov chain

π(x1:T | y1:T ) we want to reconstruct. With this adaptive strategy we manage to improve

particle mixing within Particle Gibbs sweeps and this improvement proves to be more

important for low number of particles (section 4.2.5). In the algorithms presented in this

thesis the proposals have genome-wide constant weights. In the future we may want to

further optimize the proposal and estimate mixture weights that could differ between

positions. We believe that these may allow a further decrease in the number of particles.

Proposal tuning may answer a more practical question we asked ourselves: is the

proposal optimisation for filtering updates (aiming at π(xt | xt−1, yt)) the best way to

achieve global smoothed approximations or is it outperformed by proposals that generate

a sample close to the kernel of the ”smoothed” values π(xt | xt−1, y1:T )?

The adaptive proposal can be complemented by an adaptive setting of the number



128 6 Conclusions and Perspectives

of particles used for a position. Indeed, on positions where proposals sample values

approximate well the target it is not needed to use a high sample size. The definition of

a criteria for setting the number of particles is related to the proposal fit and may rely on

its evaluation by the ESS or KL divergence (see also [Fox, 2001]).

A last point we want to underline in this section is related to the number of trajectories

reconstructed at each PG. In the algorithms we present (for e.g. algorithm 11 we back-

ward sample one trajectory. Backward sampling can reconstruct several trajectories and

respectively obtain several correlated samples from the marginal distributions π(xt | y1:T )

that can be used for improve the efficiency of the algorithm in estimating the credibility

intervals.

6.4 Results in Estimating the Transcription and DE

Profiles

The algorithms we developed, Parseq and Pardiff, permit in-depth analysis at genome-

wide scale of RNA-Seq data. The running time does not depend much on the depth of

the sequencing, but is proportional to genome length, which makes them more suited to

microbial genomes. For long and less condensed genomes, the computation time would

greatly benefit from using an adaptive number of particles. However, while the memory

print is kept to an almost constant value, the current implementation needs significant

changes in the structure of the output data to be compatible with long (109) genomes.

From RNA-Seq datasets, Parseq algorithm in conjunction with Pardiff can provide a

wide range of results including both point estimators and credibility intervals. Notably,

direct results include for one data-set the approximations of genome-wide expression level,

the estimations of transcript breakpoints and of the transcript probability at base-pair

resolution. For two conditions, these results are complemented by the approximation of

fold change and estimation of DE probability at base-pair resolution. The reconstructed

profiles give also insights on the transcriptional units, transcription regions and DE re-

gions. We illustrate the possible results that can be obtained by using Parseq and Pardiff

in figures 4.5 (for one data-set) and 6.2 (for two data-sets).

Some biological questions and notably those involving correlation studies of the ex-
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ORF

Genomic positions

Counts cond 1

Counts cond 2

Expression cond1
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Figure 6.2: The transcribed and DE results obtained with Parseq and Pardiff on a region of

25kbp (chromosome 5, plus strand) from two data-sets of C. albicans - 1 (brown) and 2 (green).

Top lanes: 5’ counts; expression profile; average fold change and DE probability for a DE

threshold of 2 (blue lanes). Bottom lanes: DE (blue) and transcription (brown and green) units

reconstructed with the ad hoc method (section 5.2) from the DE and transcription probabilities

(average unit probability displayed bellow); ORF (dark blue).

pression with various genome-wide data (replication origins, methylation profiles, histone

maps, etc.) can be best answered considering the genome wide expression profiles. Also,

the genome wide profiles could be integrated in a more natural fashion with results of

various protocols or obtained on different data-sets. For both cases, the availability of

confidence scores and credibility intervals could be relevant for more robust analysis.

Other biological questions require the determination of expression level or DE at tran-

scription unit level. For such studies, the RNA-Seq data may be used to build a reference

annotation as a part of a compendium of experiments (as done from tiling array data

[Nicolas et al., 2012]) or to complete, as in [Lin et al., 2013], results from protocols tar-

geting more specifically the sequencing of transcript ends (CAGE, dRNA-Seq, TIF-Seq

[Pelechano et al., 2013], etc.). While it greatly facilitates the genetic analysis, the associ-

ation of one genomic region to one transcription unit does not capture the real diversity

of transcriptomes. Direct isoform quantification is possible by mate pair sequencing of

transcript ends or by sequencing the complete sequences of initial mRNAs but these tech-

nologies are not yet popular. The expression level changes within expressed regions might
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provide valuable insights for the identification of boundaries for dominant isoforms.

Historically, the sequencing protocols kept the pace with technological advancements

in microscopy, biochemistry and computation. Tuning conditions and materials will most

likely generalize protocols aiming at direct RNA sequencing methods (like [Ozsolak et al.,

2009]) and single-molecule sequencing (like [Eid et al., 2009]). While it is unlikely that

randomness and noise will be eliminated we believe that the current dominant bias (per-

taining to sequence content) will be mitigated. We believe that, whatever the technological

evolutions may be, the SMSs can be the answer to a wide range of problems pertaining

to genome-wide analysis. The recent developed PMCMC algorithms are valuable tools

for obtaining precise approximations even in complex SSMs.
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