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de faire des mathématiques ; Vincent Sécherre qui, directement et indirectement, a eu un rôle

important dans mon apprentissage de la représentation de Weil. Je suis ravi qu’ils soient tous
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à Catherine Donati-Martin directrice du laboratoire et à Yvan Martel, directeur lors de mon
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in fundo, merci à tou-te-s les “jeunes” : thésards, anciens thésards et post-docs du LMV, qui ont
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Introduction en français

Cette thèse traite différents problèmes de géométrie arithmétique. D’une coté on y étudie le

problème de relèvement locale de revêtements Galoisiens de courbes, d’une autre la généralisa-

tion du groupe metaplectique et de la représentation de Weil au cas d’un anneau quelconque.

Ces deux thèmes sont indépendantes par rapport à leur motivation historique et aux techniques

nécessaires à leur étude. Cependant, ils partagent plusieurs thématiques telles que la relation

entre caractéristique positive et nulle, les techniques non-Archimédiennes et le rôle de la théorie

de la ramification et des revêtements finis.

La première question s’insère dans le contexte des problèmes de relèvement. Ceux-ci sont

intimement liés au point de vu relatif en géométrie algébrique introduit par Grothendieck au

début des années ’60. Cela permet, en remplaçant l’étude des objets d’une catégorie par l’étude

de ses morphismes, de voir les objets relatifs comme avatars de la même structure “absolue”

et permet de comparaisons chaque fois qu’on dispose d’un morphisme entre les objets de base.

Dans le cas de problèmes de relèvement, le morphisme en question est l’application de réduction

d’un anneau à valuation discrète de caractéristique mixte R sur son corps résiduel K̃. Cela induit

une correspondance

{Objets/R} → {Objets/K̃}

pour nombreux objets en géométrie algébrique. En ce contexte, les problèmes de relèvement

demandent de décrire l’image de telle correspondance, c’est-à-dire une caractérisation des objets

en caractéristique positive qui proviennent de la caractéristique nulle de façon telle que les

propriétés géométriques fondamentales soient conservés. Par exemple, dans le cas des variétés

algébriques, le problème de relèvement demande si, à partir d’un schéma intégral, séparé et de

type fini X sur K̃, on peut trouver XR schéma plat, tel que sa fibre spéciale soit égale à X.

Dans la première partie de cette thèse, on y étudie le problème de relèvement de courbes

projectives et lisses avec un groupe fini d’automorphismes. On travaille avec un problème ana-

logue, de nature locale, en étudiant les relèvements à la caractéristique zéro d’un groupe fini

d’automorphismes de K̃[[t]]. Le résultats originaux principaux sur ce sujet ont été obtenus en

suivant deux approches différentes, mais complémentaires qu’on pourrait désigner d’arithmétique

et géométrique.

L’approche arithmétique consiste à travailler explicitement avec les propriétés de certains

formes différentielles. On fixe le groupe G = (Z/pZ)n, pour lequel les travaux de Raynaud ([?]),

Matignon ([38]) et Pagot ([47]) montrent que l’existence de certains espaces vectoriels de formes
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différentielles logarithmiques, dits espaces Lm+1,n, entraine l’existence de relèvements d’actions

locaux de G. Dans [47], l’existence de ces espaces est étudié pour certains valeurs de m. On

poursuit cet étude, en établissant une formule qui donne une nouvelle relation entre les pôles

et les résidus de ces formes différentielles, en permettant de simplifier la stratégie de Pagot et

de donner une condition nécessaire à l’existence d’espaces Lm+1,2 quand p = 3. Les calculs

impliqués sont purement de nature arithmétique, mais ils présentent une haute complexité

computationnelle. En principe, cette stratégie nous permettrait de décider l’existence d’espaces

L15,2, mais pour aboutir à un résultat il faut envisager une implémentation à l’ordinateur des

formules découvertes.

L’approche géométrique adresse le problème de relèvement dans une généralité majeure, en

faisant intervenir notions abstraites plus sophistiquées. On considère les actions locales d’un

groupe fini quelconque G et la notion d’arbre de Hurwitz, introduite par Henrio dans [31] et

partiellement généralisée par Brewis et Wewers dans [14]. L’arbre de Hurwitz est un objet

combinatoire associé à une action locale en caractéristique nulle, qui en encode à la fois la

géométrie des points fixes rigides et la théorie de la ramification. Il est utilisé pour donner

des conditions nécessaires - et, dans le cas où G = Z/pZ, aussi suffisantes - au relèvement de

certaines classes d’actions locales en caractéristique strictement positive. Le résultat principal

qu’on montre avec cet approche est une caractérisation de l’arbre de Hurwitz dans le cadre de la

géométrie analytique non-Archimédienne. On montre d’abord que l’arbre admet un plongement

canonique en tant qu’espace métrique dans le disque unitaire fermé de Berkovich sur K, le corps

de fractions de R. Cela nous permet de décrire les données de Hurwitz en utilisant les propriétés

analytiques des courbes de Berkovich. En particulier, on décrit les formes différentielles qui

entrainent les relèvement des actions de Z/pZ en termes d’un fibré un droite sur le disque

épointé, décrit explicitement et appelé faisceau des déformations. Cela est une première étape

vers une généralisation de ces formes différentielles pour G quelconque, problème qui intéresse

depuis longtemps les mathématiciens qui travaillent sur ces questions. Finalement on donne

une caractérisation de l’arbre de Hurwitz plongé en termes de théories diverses, qui ont été

reliées récemment avec les espaces de Berkovich par différents auteurs : la dynamique non-

Archimédienne, la géométrie tropicale et les groupes fondamentaux.

Dans la dernière partie de cette thèse, dans un travail commun avec Gianmarco Chinello,

on adresse le problème de définir le groupe metaplectique et la représentation de Weil sur

un anneau intègre. Ces notions apparaissent dans les travaux d’André Weil [62], où l’auteur

construit une représentation projective complexe du groupe symplectique qu’il l’étend ensuite

sur certains revêtements fini pour en obtenir une vraie représentation. Cette théorie s’est révélé

très fructueuse et riche de connexions avec des théories mathématiques très différentes : formes

modulaires, mécanique quantique et analyse harmonique entre autres. L’intérêt récent apporté

à la théorie des représentations `-modulaires et avec coefficients dans Znr` soulève naturellement

le problème de définir une telle représentation dans le cadre de ces théories (voir par exemple

l’introduction de [41] où cette question est formulée explicitement). Nous montrons qu’il y a

une réponse positive, en construisant plus en général une représentation de Weil à coefficients
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dans un anneau intègre satisfaisant certaines conditions supplémentaires.

Dans les chapitres 2 et 3 nous introduisons les outils qui seront exploités dans la suite, c’est-

à-dire la géométrie non-Archimédienne à la Berkovich et la théorie classique des relèvements

d’actions locales. Les résultat contenus dans le reste de la thèse sont à considérer originales sauf

mention spécifique du contraire.

Regardons plus en détail ces résultats ainsi que le contexte qui les entoure.

Relèvements de revêtements Galoisiens

Soit K̃ un corps algébriquement clos de caractéristique p > 0 et soit W (K̃) son anneau de

vecteurs de Witt, l’anneau à valuation discrète complet de caractéristique zéro minimal pour

la propriété d’avoir K̃ comme corps résiduel. Soit C̃ une courbe projective et lisse sur K̃. Des

résultats de Grothendieck en théorie des déformations ([29], III 7.3) assurent l’existence d’une

courbe relative lisse et projective sur W (K̃) telle que sa fibre spéciale soit C̃. On peut demander

si cette propriété s’étend aussi aux automorphismes de ces courbes: a-t-on Aut(C) = Aut(C̃)?

La reponse est. en général, négative : il y a en effet un morphisme Aut
W (K̃)

(C) → Aut
K̃

(C̃)

induit par la réduction modulo p, mais il n’est pas une bijection en général. Par exemple, si C

est une courbe de genre au moins 2 la borne de Hurwitz nous donne |Aut(C)| ≤ 84(g− 1), mais

il n’y a pas d’analogue en caractéristique strictement positive. L’exemple du modèle projective

de la courbe plane définie par y2 = xp − x, donné par Roquette ([53]) montre en fait que cette

courbe a genre (p − 1)/2 et groupe d’automorphismes d’ordre 2p(p2 − 1). Dans d’autres cas,

pourtant, les deux groupes d’automorphismes coincident. Par exemple, si C est la quartique de

Klein, d’équation x3y + y3z + z3x on a Aut(C) = PSL(2, 7) = Aut(C̃).

Il y a beaucoup d’autres exemples et contrexemples à ce problème, de nature si différente qu’il

ne semble donc pas pouvoir être traité directement. Il est mieux étudié d’un point de vue locale

et on peut montrer qu’une action sur C̃ se relève en caractéristique zéro si et seulement si elle se

relève localement sur l’ensemble des points qui ont stabilisateur non-trivial. Puisque la courbe

est lisse, ces actions locaux s’identifient avec des automorphismes de K̃-algèbres de K̃[[t]].

Relèvements locaux

Soit G ↪→ Aut(K̃[[t]]) un groupe fini d’automorphismes de K̃-algèbres. Le problème de relève-

ment peut être formalisé comme suit:

Question 0.0.1. Existe-t-il une extension R d’anneaux à valuation discrète sur W (K̃) et un

plongement G ↪→ Aut(R[[T ]]) tels que le diagramme

G //

$$

AutRR[[t]]

��

Aut
K̃
K̃[[t]]
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est commutatif ?

Si la réponse est positive, on dit que l’action locale de G se relève de la caractéristique p à la

caractéristique zéro. Cette question est lié à nombre d’autres interrogatifs. On peut demander

si, le groupe G fixé, toute action locale de G se relève à la caractéristique zéro. Dans ce cas G

est dit groupe de Oort local. On doit cette définition au fait que Oort ([45]) a conjecturé que

tout groupe cyclique satisfait cette condition. Cette conjecture a été montré par Pop ([50]) and

Obus-Wewers ([44]) en 2012. Le problème qui reste ouvert est maintenant une caractérisation

des groupes de Oort locaux. Dans [16]) Chinburg, Guralnick et Harbater formulent la conjecture

suivante:

Conjecture 0.0.2 (conjecture de Oort forte). Soit G un groupe fini. Alors chaque action locale

(K̃[[t]], G)se relève à la caractéristique zéro si et seulement si une des conditions suivantes est

vérifiée :

• le groupe G est cyclique

• le groupe G est dihédral d’ordre 2pn

• le groupe G est le groupe alterné A4 et p = 2.

Quand G est un groupe de Oort local, on peut demander de classifier tous les relèvements

possibles. Autrement, on peut demander une caractérisation des actions qui se relèvent. Des

techniques très différentes ont été utilisés pour répondre à ces questions. Ma contribution

concerne principalement l’existence de formes différentielles logarithmiques en caractéristique

positive et l’étude des arbres de Hurwitz en géométrie analytique non-Archimédienne.

Espaces Lm+1,n et relèvements

Considérons des actions locales du groupe G = (Z/pZ)n. Si on impose la condition que la

distance réciproque des points de ramification géométriques soit constante, l’existence d’un

relèvement local pour les actions de (Z/pZ)n est équivalent à l’existence d’espaces de formes

différentielles définis comme suit.

Definition 0.0.3 (Espaces Lm+1,n). Un Fp-espace vectoriel V de formes différentielles mero-

morphes sur P1
k est noté Lm+1,n si les propriétés suivantes sont vérifiées pour tout ω ∈ V :

1. dim(V ) = n ∈ N

2. La forme ω = df
f , ∃f ∈ k(t)

3. La forme ω a un seul zéro d’ordre m− 1 en {∞}.

Pagot étudie les espaces Lm+1,n dans [47] en formulant la conjecture (cfr section 2.3 of

[47], Remarque 2) qu’un Fp-espace vectoriel Lm+1,n existe si et seulement si pn−1(p− 1)|m, en

montrant que cela se vérifie si n = 2 et m+ 1 = p, m+ 1 = 2p et m+ 1 = 3p.

Dans le chapitre 4 on suppose qu’il existe un espace Lm+1,2, engendré par deux formes ω1 et
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ω2. En utilisant la combinatoire des pôles de ω1 et ω2 on montre une condition additionnelle sur

les résidus qui n’était pas exploité dans [47]. Cela nous permet de simplifier les preuves de [47]

et de pousser l’étude de l’existence d’espaces Lm+1,2 plus loin. En particulier nous montrons le

résultat suivant

Theorem 0.0.4. Soient

ω1 :=
u · z13∏3

j=1

∏5
i=1(1− xi,jz)

dz et ω2 :=
v · z13∏2

j=0

∏5
i=1(1− xi,jz)

dz, u, v ∈ k

deux formes différentielles méromorphes sur P1
k. Si l’espace 〈ω1, ω2〉 est un F3-espace L15,2, alors

N(uv ) = 0, où

N(x) =x84 − x83 − x81 + x80 + x79 + x78 − x77 + x76 − x73 − x72 + x71 − x70 + x69+

x66 + x64 − x63 + x62 − x60 − x59 + x56 + x55 + x53 − x51 + x50 − x49 + x48−

x47 − x45 + x43 + x42 − x40 + x38 + x36 − x35 − x34 − x33 − x32 − x31 − x29−

x28 + x27 − x26 − x25.

La technique principale de preuve est l’étude arithmétique des pôles de ω1 et ω2, formalisé

par le biais de certains polynômes s’annulant dans des sous-ensembles de pôles bien choisis.

Nous exprimons ensuite les conditions satisfaites par les pôles en termes des coefficients de tels

polynômes. Les formules de Newton nous permettent enfin de confronter les conditions ainsi

obtenues, en parvenant au résultat final.

Arbres de Hurwitz et disque de Berkovich

Les arbres de Hurwitz sont des objets mathématiques qui classifient les actions locales en car-

actéristique nulle. Les propriétés des automorphismes d’ordre p du disque p-adique, étudiées

par Green-Matignon ([28]) et Raynaud ([52]) ont été encodées par Henrio ([31]) qui a définit,

pour tout automorphisme σ ∈ AutRR[[T ]], un arbre métrique enraciné Hσ avec des données

supplémentaires qui encode la position relative des points de ramification et les propriétés de

la réduction de σ. Cet arbre est appelé arbre de Hurwitz, et les informations supplémentaires

données de Hurwitz. L’existence et compatibilité de certaines données de Hurwitz est une con-

dition nécessaire et suffisante pour l’existence d’automorphismes qui décrivent un arbre donné.

Brewis et Wewers ([14]) étendent la définition d’arbre de Hurwitz pour décrire les actions

locales d’un groupe fini quelconque. Dans leur définition, les données de Hurwitz sont définies

par des caractères provenant des représentations de G qui décrivent la théorie de la ramification

d’une action locale en caractéristique zéro donnée. Ces données sont appelés caractère d’Artin

et caractère de profondeur. Toutefois, cette généralisation est seulement partielle et la question

de définir un arbre de Hurwitz analogue à celui de [31] reste ouverte pour la plupart des groupes

finis.
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Dans le chapitre 5, on caractérise les arbres de Hurwitz comme des objets analytiques

non-Archimédiens, au sens de Berkovich. Le résultat central est le suivant :

Theorem 0.0.5. Soit TΛ l’arbre de Hurwitz associé à une action locale en caractéristique zéro

Λ : G ↪→ AutR(R[[T ]]). Alors, il existe un plongement canonique d’espaces métriques

TΛ ↪→M(K{T})

dans le disque fermé de Berkovich D(0, 1).

Ce théorème permet l’identification d’un sommet v ∈ V (TΛ) avec un disque fermé D•(v), et d’un

arête e ∈ E(TΛ) avec un disque ouvert D◦(e). Nous utilisons cette idéntification pour traduire

les données de Hurwitz en termes d’espaces analytiques. D’abord on prouve que le caractère de

profondeur δv de [14] coincide avec l’ evaluation de la fonction analytique σ(T )− T sur le point

qui correspond à v dans l’arbre de Hurwitz plongé. Ensuite, on donne une formulation similaire

pour le caractère d’Artin ae. Pour ce qui concerne les formes différentielles, le résultat principal

est le suivant

Theorem 0.0.6. Soit Λ : Z/pZ ↪→ Aut(R[[T ]]) une action locale en caractéristique zéro et soit

LΛ l’ensemble de ses points de ramification géométriques. Il existe un fibré en droites métrisé

ΩΛ sur D(0, 1) \ LΛ tel que la bonne donnée de déformation associée à un sommet v ∈ V (TΛ)

s’identifie avec une section d’un faisceau sur la réduction de Temkin Ω̃Λ, v.

La preuve de ce théorème relie sur la description explicite du fibré ΩΛ, et sur l’application d’un

résultat de Chambert-Loir et Ducros sur la réduction des fibrés vectoriels dans les espaces de

Berkovich (voir la séction 6 de [15]). L’emploi de la réduction des germes à la Temkin est

nécessaire pour décrire les bonnes données de déformation avec des fibrés en droite. Cela n’est

pas possible dans la situation classique, où les données de déformation sont définies sur un arbre

de droites projectives, où le faisceau des formes différentielles n’est pas localement libre. De

plus, la théorie des fibrés en droites métrisés a un caractère fortement combinatoire qui permet

de réaliser les calculs de façon explicite. Le faisceau ΩΛ peut être construit pour tout groupe

G et constitue un point de départ pour une généralisation maniable des bonnes données de

déformation.

La représentation de Weil et le groupe metaplectique

Dans l’article [18], nous définissons et décrivons explicitement la représentation de Weil sur

un domaine d’intégrité quelconque. Cette représentation et le groupe metaplectique ont été

introduits par André Weil dans son incontournable article [62], en ayant pour but de éclaircir

certains propriétés des fonctions theta présents dans les travaux de Siegel et d’explorer les im-

plications arithmétiques de cette construction. Cette théorie s’est révélés à la fois très profonde

et très fertile. Elle est à la base des travaux de Shimura sur les formes modulaires de poids

demi-entier et de ceux de Jacquet et Langlands sur les représentations automorphes dans un

contexte adélique.
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Dans la construction de Weil on considère F un corps local, X un espace vectoriel de dimen-

sion finie et Sp(W ) le groupe symplectique sur l’espace W = X × X∗. On note T le groupe

multiplicatif des nombres complexes de valeur absolue unitaire et χ : F → T un caractère

lisse non-trivial. En utilisant ce dernier, Weil montre l’existence d’une action sur Sp(W ) du

groupe de Heisenberg, définie à multiplication d’un élément de T près. Avec cela, il construit

un revêtement Mp(W ) de Sp(W ) par T , qui se manifeste naturellement avec un morphisme

Mp(W ) → GL(L2(X)), la représentation de Weil. Il montre enfin que Mp(W ) contient un

double revêtement de Sp(W ) sur lequel la représentation de Weil peut être restreinte.

Dans le chapitre 6, on suppose que F est non-Archimédien de caractéristique 6= 2 avec car-

dinalité de corps résiduel q = pe. On remplace T par le groupe multiplicatif d’un domaine

d’intégrité R tel que p ∈ R×, R contient une racine carrée de q et les racines pn-émes de l’unité

pour chaque n, ce qui assure l’existence d’un caractère lisse non-trivial χ : F → R×. Dans cette

généralité on est capables de reproduire les résultats de Weil, en montrant l’existence du groupe

métaplectique réduit, défini comme suit. On construit d’abord le groupe métaplectique Mp(W )

de façon telle à avoir une suite exacte courte

1 −→ R× −→ Mp(W )−→Sp(W ) −→ 1. (?)

Ensuite on donne une description d’un sous-groupe de Mp(W ), revêtement à deux feuillets de

Sp(W ), qui décrit dans H2(Sp(W ), µ2(R)) la classe provenant de la classe de H2(Sp(W ), R×)

associée à Mp(W ). Nous formalisons ce résultat de façon suivante.

Theorem 0.0.7. Soit car(R) 6= 2. Il existe un sous-groupe Mp2(W ) de Mp(W ) tel que la suite

exacte courte (?) se restraint en

1 −→ {±1} −→ Mp2(W )−→Sp(W ) −→ 1, (??)

suite exacte courte non scindée.

Il y a plusieurs problèmes qui se manifestent en travaillant dans la nouvelle généralité. Pour

surmonter ces difficultés nous considérons les mesures de Haar à valeurs dans R et des opéra-

teurs agissant sur les fonctions de Schwarz sur un F -espace vectoriel, à valeurs dans R. Cela

remplace les opérateurs unitaires considérés par Weil. En outre, puisqu’on admet R de car-

actéristique positive, les calculs diffèrent dans plusieurs situations, par exemple lorsqu’il faut

calculer explicitement les propriétés de la norme réduite sur les quaternions en relation avec

l’arithmétique de R.
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Chapter 1

Introduction

The common thread of this work is the comparison between mathematical objects of various

kinds (finite Galois covers of curves, logarithmic differential forms, representations of the sym-

plectic group and related entities) when they are defined over different base rings. This is an

extremely challenging topic, but also very wide, and we choose to concentrate our attention on

two specific issues: the problem of lifting Galois covers of curves to characteristic zero and the

problem of defining the Weil representation over rings of any characteristic.

The first question is an example of lifting problem. The relative point of view, that consists

in replacing the study of properties of objects of a category with the study of properties of its

morphisms, allows to consider relative objects as avatars of the same structure, and to compare

them whenever there is a morphism between the bases. In the case of lifting problems, the

morphism is the surjective reduction from a discrete valuation ring in mixed characteristic R

and its residue field K̃. This yields a correspondence

{Objects/R} → {Objects/K̃}

for a wide number of geometrical objects. Given this setting, lifting problems ask what is the

image of such a correspondence, or equivalently, what are the objects in positive characteristic

that come from objects in characteristic zero. Usually, the assumption that the lifting preserves

the geometry of the objects involved is made. For instance, when the objects are algebraic

varieties, the lifting problem can be rephrased by asking wether for a given integral separated

scheme of finite type over K̃ there exists a flat scheme over R whose special fiber is the initial

datum.

In the first part of this thesis, we study the problem of lifting a smooth projective curve

together with a finite group of its automorphisms. We work with the analog “local” problem, of

studying liftings of a finite group G of automorphisms of K̃[[t]]. The main original results on

this topic are obtained with two different, but complementary approaches. The first involves

explicit one, we fix the group G = (Z/pZ)n, and we use the fact (stated by Pagot in [47] using

methods coming from the paper [38] by Matignon) that the lifting of a G-action is yielded by the

existence of Fp-vector spaces of logarithmic differential forms on P1
K̃

(i.e. that can be written
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as df
f for f ∈ K̃(t)), with a unique zero at ∞. In [47], the existence of such vector spaces is

discussed in some cases. We establish a new formula involving the position of poles and the

value of residues of such forms, that in the case where p = 3 and n = 2 permits to simplify the

proofs of [47] and to find necessary conditions for lifting in cases that have not been studied

yet. The calculations involved are elementary, but they present a high level of computational

complexity. In principle, when p = 3 and n = 2, our approach provides a complete answer, but

in order to do this, the use of a computer is necessary.

The second approach address the lifting problem in a wider generality, but requires also

more sophisticated theoretical notions. We deal with a local action of any finite group G, and

with the two notions of Hurwitz tree existing in the literature: the first introduced by Henrio

in [31] for Z/pZ and the second by Brewis-Wewers for any finite group. The Hurwitz tree is

a combinatorial object which encodes both the geometry of fixed points of an automorphism

of finite order and the associated ramification data. It is used to give necessary (and, in the

case of Z/pZ, also sufficient) conditions for lifting actions to characteristic zero. The principal

result, that we show with this approach is that the Hurwitz tree is canonically embedded in the

Berkovich unit disc over K := Frac(R). This is the starting point for a study of the Hurwitz tree

as a non-Archimedean analytic object. We describe the Hurwitz data using analytic properties

of Berkovich curves. In particular, we describe the differential forms yielding liftings of Z/pZ-

actions in terms of a precise metrized line bundle on the pointed unit disc, that we call sheaf

of deformations. Finally, we give a characterization of the embedded Hurwitz tree in terms of

different theories that have been related with Berkovich spaces by recent developments: non-

Archimedean dynamics, tropical geometry and fundamental groups.

In the last part of this thesis, in a a joint work with Gianmarco Chinello, we address the

problem of defining the metaplectic group and the Weil representation over an integral domain.

These notions appear for the first time in the celebrated Acta paper of Weil [62], where the author

constructed a certain complex projective unitary representation of the symplectic group. This

representation has shown many interesting features, bridging between different mathematical

theories. The recent interest in `-modular representations, and in representations over Zur` ,

raises the question if such a representation could be defined in the framework of these theories

(see, for example, the introduction of [41], where this question appears explicitly). We show

that this question has a positive answer, by constructing a Weil representation with coefficients

in every integral domain satisfying certain assumptions.

In chapter 2 and in chapter 3 of the present work, we introduce the tools that will be

exploited in the following, namely non-Archimedean analytic geometry in the sense of Berkovich

and the techniques used in the study of lifting to characteristic zero local actions of finite groups

on curves. In the rest of the thesis, the main ideas stand on their own as original work, but

they contribute together to shed new light on some phenomena arising in the study of the local

lifting problem and of those number theoretical questions related to the Weil representation.

Let us discuss in a more detailed way the framework where these results are developed.
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Lifting Galois covers to characteristic zero

Let K̃ be an algebraically closed field of characteristic p > 0 and let W (K̃) be its ring of Witt

vectors, the minimal complete discrete valuation ring of characteristic 0 which has K̃ as residue

field. Let C̃ be a smooth projective curve defined over K̃. Then by results of Grothendieck

([29], III 7.3) there exists a relative smooth projective curve C defined over W (K̃) such that

its special fiber is C̃. One might ask if this “lifting property” applies also to automorphisms

of such curves : is Aut(C) = Aut(C̃)? The answer is negative, in general: there is indeed a

natural map Aut
W (K̃)

(C) → Aut
K̃

(C̃) induced by reduction modulo the maximal ideal, but it

is far from being bijective. For example, when C is of genus ≥ 2 one has the so called Hurwitz

bound: |Aut(C)| ≤ 84(g − 1) but there is no such analogue in positive characteristic. The

example of the projective model of the plane curve defined by equation y2 = xp − x was given

by Roquette in [53]. This is a curve of genus (p− 1)/2 and 2p(p2 − 1) automorphisms. Then it

violates the Hurwitz bound whenever p ≥ 5. In other cases we have a positive answer, like when

p 6= 2, 3, 7 and the curve is the Klein quartic (of equation x3y + y3z + z3x): in this situation

Aut(C) = PSL(2, 7) = Aut(C̃).

There exist several other examples of automorphisms of curves that admit liftings, as well as

many other counterexamples of automorphisms that do not lift to characteristic zero. This

problem is better studied locally, and in fact one can show that, if the action lift locally at every

point with nontrivial stabilizer, then there is a lifting of the global action. In this way it is

interesting to study automorphisms of K̃-algebras of K̃[[t]] and their liftings.

Local liftings

Let G ↪→ Aut(K̃[[t]]) be a finite group of automorphisms of K̃-algebras. The local lifting

problem asks the following question:

Question 1.0.8. Are there an extension R of discrete valued rings over the Witt vector ring

W (K̃) and an immersion G ↪→ Aut(R[[T ]]) such that the diagram

G //

$$

AutRR[[t]]

��

Aut
K̃
K̃[[t]]

commutes?

When the answer is positive we say that the local action of G in characteristic p lifts to

characteristic zero. This question raises a number of related interrogatives. For example it may

be asked wether or not a given group G is a local Oort group (i.e. all the local actions of G lift

to characteristic zero). Oort ([45]) conjectured that all cyclic groups satisfy this condition, and

this has been proved by Pop ([50]) and Obus-Wewers ([44]) in 2012. The Oort conjecture was

refined by Chinburg, Guralnick and Harbater ([16]) to the following:
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Conjecture 1.0.9 (Strong Oort conjecture). Let G be a finite group. Then every local action

(K̃[[t]], G) in characteristic p lifts to characteristic zero if and only if G is one of the following :

• a cyclic group

• the dihedral group of order 2pn for some n

• the alternating group A4.

If G is a local Oort group one may ask to parametrize all possible actions, if it is not one may

ask for a characterization of those action coming from characteristic zero and those who are

not. Several tools were used to partially answer these questions. Our contributions concern

mainly the existence of logarithmic differential forms in positive characteristic and the study of

Hurwitz trees in a non-Archimedean analytic context.

In discussing Hurwitz trees we chose to adopt a different viewpoint from the existing litera-

ture on this topic. Classically one fixes an action in characteristic p and supposes the existence

of a lifting. Then, this lifting is studied either looking for a contradiction or to obtain the

deformations providing the lifting explicitly. In this thesis, we do not fix a local action in char-

acteristic p, and we consider Hurwitz trees as objects on their own right. In this way, the role

of Hurwitz tree is intimately related to the deformation theory of torsors in characteristic zero,

and this perspective permits to study local actions in characteristic zero “in families”. As a

result of this difference, our definition of Hurwitz tree is more restrictive than the one of [31],

[14] or [11]. It corresponds to what is called “Hurwitz tree associated to an automorphism of

the p-adic open disc” in the literature.

Vector spaces of logarithmic differential forms in positive characteristic

When the mutual distance between the ramification points is constant, the existence of a local

lifting for the action of (Z/pZ)n is equivalent to the existence of n-dimensional vector spaces

of logarithmic differential forms over the projective line in characteristic p. Pagot studied such

spaces in [47], asking the following question

Question 1.0.10. Given a prime number p, and natural numbers n,m > 0 such that (m, p) = 1

do there exist Fp-vector spaces Lm+1,n of logarithmic differential forms on P1
k of dimension n

such that every ω ∈ Lm+1,n has m+1 simple poles and a single zero in {∞}?

He conjectures (see section 2.3 of [47], Remarque 2) that an Fp-vector space Lm+1,n exists if

and only if pn−1(p− 1)|m, and proves it for m+ 1 = p, m+ 1 = 2p and m+ 1 = 3p.

Suppose that a Lm+1,2 exists, and that it is generated by two logarithmic differential forms ω1

and ω2. In chapter 4 we provide additional algebraic conditions for the residues of ωi. Mixing

these conditions with combinatorial arguments in positive characteristic we can give shorter

proofs for the known results and go further in the study of the conjecture, treating the case

where p = 3 and m + 1 = 15. The main tool used is the combinatorics of the poles of the

differential forms, incarnated in this case by some polynomials having zeroes in a subset of the
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set of poles of ωi. We express the conditions satisfied by the poles in terms of the coefficients

of such polynomials, that are symmetric functions in terms of the poles. In this way we get the

necessary conditions for the existence of 〈ω1, ω2〉 as a Lm+1,2, in terms of the coefficients of ω1

and ω2.

Hurwitz trees and the Berkovich pointed unit disc

Hurwitz trees are mathematical objects parametrizing local actions in characteristic zero. The

properties of order p automorphisms of the p-adic disc studied by Green-Matignon ([28]) and

Raynaud ([52]) has been encoded combinatorially in an article by Henrio ([31]) by associating

to such an automorphism σ ∈ AutRR[[T ]] a rooted metric tree Hσ with additional information,

encoding the position of the ramification points and the reduction of the action of σ. The

tree is classically called Hurwitz tree, and the information, Hurwitz data. The existence and

mutual compatibility of Hurwitz data is a necessary and sufficient condition to the existence of

an automorphism giving rise to that Hurwitz tree.

Brewis and Wewers ([14]) extended the definition of Hurwitz tree in order to describe local

actions of any finite group G. In their definition, Hurwitz data are defined as characters arising

from representations of G, describing the ramification theory of the local action in characteristic

zero. They are called the depth character and the Artin character. Not all Hurwitz data are

generalized in this definition, and the question if a Hurwitz tree in the sense of [31] can be

defined for any finite group remains open.

In chapter 5, we characterize the Hurwitz tree as a non-Archimedean analytic object, in

the sense of Berkovich. We start by proving the following result

Theorem 1.0.11. Let TΛ be the Hurwitz tree associated to the local action of a finite group

in characteristic zero Λ : G ↪→ AutR(R[[T ]]). Then there is a metric embedding

TΛ ↪→M(K{T})

of the Hurwitz tree in the Berkovich closed unit disc D(0, 1) such that the image is contained

in the set of points fixed by the action on M(K{T}).

This theorem permits the identification of a vertex v ∈ V (TΛ) with a closed disc D•(v), and of

an edge e ∈ E(TΛ) with an open disc D◦(e). We exploit this identification to translate Hurwitz

data in analytic terms. We first prove that the depth character δv of [14] coincides with the

evaluation of the analytic function σ(T )− T on the point corresponding to v in the embedded

Hurwitz tree. We then give a similar formulation for the Artin character ae. The identification

permits to characterize the groups Gv as the stabilizers of closed discs D•(v), and helps proving

the following theorem, that gives an analytic description of good deformation data

Theorem 1.0.12. Let Λ : Z/pZ ↪→ Aut(R[[T ]]) be a local action in characteristic zero, having

LΛ as set of fixed points. Then there exists a metrized line bundle ΩΛ on D(0, 1) \ LΛ, such

that the good deformation datum associated to a vertex v ∈ V (TΛ) is a section of the (Temkin)

reduction Ω̃Λ, v at v.
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This theorem is proved by constructing explicitly the line bundle ΩΛ, and applying a result of

Chambert-Loir and Ducros on the reduction of vector bundles on Berkovich spaces (see section

6 of [15]). The use of Temkin reduction permits to describe a collection of good deformation

data using vector bundles. This is not the case in the classical setting, where the collection

of good deformation data is defined over a tree of projective lines, whose sheaf of differential

forms is not locally free. Moreover, the theory of metrized vector bundles on Berkovich curves

has nice combinatorial features (for instance the Poincaré-Lelong formula and the notion of

current are described in a combinatorial way), that permits explicit computable conditions.

The sheaf ΩΛ can be constructed for every group G, and constitutes a starting point for a

handful generalization of good deformation data.

Weil representation and metaplectic group

In the paper [18] we define and describe explicitly the Weil representation over any integral

domain. This representation has been introduced together with the metaplectic group by André

Weil in his Acta paper [62] in order to shed light on the results of Siegel on theta functions and

to formulate them in an adelic setting. This led to various developments in number theory, for

example the work of Shimura on modular forms of half-integral weight and the one of Jacquet

and Langlands on automorphic representations of adele groups.

The construction of Weil is as follows: he considers a local field F , a finite dimensional F -vector

space X and the symplectic group Sp(W ) over W = X ×X∗. He lets T be the multiplicative

group of complex numbers of unitary absolute value and χ : F → T be a non-trivial continuous

character. Using χ he shows the existence of an action of Sp(W ) over the Heisenberg group,

defined up to multiplication by an element of T . Therefore he constructs a cover Mp(W ) of

Sp(W ) such that ϕ lifts to a complex infinite representation of Mp(W ), the now-so-called Weil

representation. Finally he shows that Mp(W ) contains properly a double cover of Sp(W ) on

which the Weil representation can be restricted.

In chapter 6, we suppose that F is non-Archimedean of characteristic 6= 2 and residue field

of cardinality q = pe. We replace T by an integral domain R such that p ∈ R×, R contains

a square root of q and pn-th roots of unity for every n, to ensure the existence of a nontrivial

smooth character χ : F → R×. In this generality we are able to reproduce the results of Weil

showing the existence of the reduced metaplectic group, defined in the following way. Firstly we

construct the metaplectic group Mp(W ) in such a way to have a non-split short exact sequence

1 −→ R× −→ Mp(W )−→Sp(W ) −→ 1. (?)

Then, we give a description of a minimal subgroup of Mp(W ) which is a non-trivial extension

of Sp(W ), in our main theorem:

Theorem 1.0.13. Let char(R) 6= 2. There exists a subgroup Mp2(W ) of Mp(W ) such that the

short exact sequence (?) restricts to a short exact sequence

1 −→ {±1} −→ Mp2(W )−→Sp(W ) −→ 1 (??)
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that does not split.

Different kinds of problems occur in the new generality and the paper contains several new ideas.

We consider Haar measures with values in R and operators acting over the space of R-valued

Schwartz functions over an F -vector space instead of L2-functions, using Vignéras’ approach.

Moreover, allowing R to be of positive characteristic makes it necessary to change computations.

Despite these changes, the final result on the description of the metaplectic group holds still.
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Chapter 2

Non-Archimedean analytic geometry

This chapter is aimed to provide an introduction to non-Archimedean analytic spaces in the

sense of Berkovich. We fix k a field, which is complete for a (possibly trivial) non-Archimedean

valuation, we write ko for its valuation ring, koo for the unique maximal ideal and k̃ for the

residue field. We begin by defining a k-analytic space in whole generality and we explain

in details how to get such spaces as generic fibers of formal schemes defined over ko. This

description is fundamental for our results, because it permits to study on the generic fiber some

features of their formal models. Some of the tools that are introduced here, like the reduction

map and boundaries, are ideas that predate Berkovich’s theory. These notions are in fact

widely used also in Raynaud’s formal approach to Tate’s theory. Other, like Temkin theory

of reduction of analytic germs, are only possible on Berkovich spaces. In both cases we use

Berkovich formalism to define these tools, in such a way to prove the results of chapter 5 in a

homogeneous setting.

The second part of the chapter is dedicated to the study of k-analytic curves. The topology

and the graph theoretical properties of such curves permit to obtain a combinatorial description

of some of their features like the genus, the semi-stable reduction and the structure of vector

bundles. We detail these techniques, that we apply to the study pointed discs arising from

local actions in chapter 5. We concentrate finally on the interplay between positive and zero

characteristic, by describing Temkin reduction theory. This is used to relate vector bundles

on Berkovich pointed discs with sheaves of differential forms on the special fiber in chapter 5.

These theories are proper of Berkovich approach, and are the main motivation for choosing this

theory to describe local actions.

We decide to focus the attention on the results that are useful to this thesis. Consequently,

many important features of Berkovich spaces are not included in the present chapter. The

interested reader can find in the writings of Berkovich ([4] and [5]) the original references, that

contain the motivation and the construction of k-analytic spaces. Let us point out also the

excellent surveys by Conrad ([20]) and Ducros ([22]).
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2.1 Berkovich spaces

To avoid the problem of total disconnectedness (and the consequent lack of interest) of p-adic

analytic spaces treated in a näıve way, Tate establishes in the late ’60s the basis of rigid geometry.

In the spirit of scheme theoretic constructions he allows only convergent series on some closed

polydiscs in kn to be admissible functions, with the problem that the spaces obtained in such

a way are not topological spaces but they are endowed with a G-topology (namely it is clear

what a covering for these spaces is, but there’s no such a thing as an open set).

Slightly less than thirty years later Berkovich proposed another approach in which analytic

spaces are real topological spaces enjoying good properties (they are locally arc connected,

locally compact and Hausdorff). These spaces were originally constructed as spaces of norm for

spectral theory purposes, but they can be seen as obtained by adding to a rigid analytic space

the points with residue field of infinite degree over k. These “added” points will represent a

global point of view of what happens at closed non-Archimedean discs.

2.1.1 Construction and algebraic description

In modern geometric theories, spaces (algebraic, topological, differential or analytical) are firstly

defined locally and then properly glued in order to have at the same time a complete and

workable description. Berkovich spaces are no exception to this: the local bricks are given by

spectra of algebras of analytic functions. Let us describe this construction for a general Banach

ring, keeping in mind that the ultimate aim is to apply it to algebras of convergent functions.

Definition 2.1.1. Let (A, ‖·‖) be a Banach ring. A bounded multiplicative semi-norm over

A is a function x : A → R such that the following properties are satisfied for every a, b ∈ A:

• x(0) = 0;

• x(a+ b) ≤ x(a) + x(b);

• x(a ∗ b) = x(a)x(b)

• x(a) ≤ ‖a‖.

Definition 2.1.2. Let A be a Banach ring. We call analytic spectrum M(A) of A the

topological space of bounded multiplicative semi-norms over A endowed with the topology induced

by the product topology on RA.

Example 2.1.3. Consider A = Z normed with the euclidean absolute value ‖·‖∞. Since x(n) ≤
n = ‖n‖∞, every seminorm over Z is bounded by ‖·‖∞. Moreover Ostrowski’s theorem tells us

that every nontrivial norm over Q is either equivalent to an euclidean one or to a p-adic one,

therefore M(A) is made of the norm ‖·‖ε∞∞ , ‖·‖0 and ‖·‖εpp where 0 < ε∞ < 1 and 0 < εp <∞.

We have to add the semi-norms which are not norms. Looking at their possible kernels we notice
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that they are all and only the one induced by the trivial norm over Fp for every p (another way

to think at them is to let εp →∞). The topological picture that results is the following

| · |(2) | · |(3) | · |(5) | · |(p) · · ·

|| · ||0

|| · ||ε∞

|| · ||∞

|| · ||εp

ε

0

1

ε

0

∞

Notice that the maps

ε→ ‖·‖εp and ε→ ‖·‖ε∞

are homeomorphisms that make each edge in the picture topologically equivalent to a real interval.

Given x ∈ M(A) we define its residue field H(x) = ̂Frac(A/ ker(x)), and we remark

that every point x ∈ M(A) factorizes (as a character) through H(x). This remark motivates

the following notations: if x ∈ M(A) and f ∈ A we write f(x) for the image of f inside

H(x) = ̂Frac(A/ ker(x)) and |f(x)| for x(f).

Affinoid spaces

Analytic spectra are studied in various fashions. Several arithmetical applications can be stated

in this way (see for example [49] and [34]). It seems nevertheless proper to warn the reader

that it has not been proved if we can make the correspondence A →M(A) into an equivalence

of categories between the category of Banach rings and a suitable category of locally ringed

spaces. To get this correspondence we have to study a full subcategory of the category of

Banach k-algebras, that of k-affinoid algebras.

Definition 2.1.4. Fix a complete non-Archimedean field (k, | · |) and let r := (r1, . . . , rn) ∈ Rn.

We call k-affinoid algebra any Banach k-algebra A isomorphic to k{T1
r1
, . . . , Tnrn }/I where

k{T1

r1
, . . . ,

Tn
rn
} := {

∑
I=(i1,...,in)

aIT
I : |aI ||rI | → 0 when |I| → ∞, aI ∈ k}
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is the algebra of power series which converge in the polydisc of dimension n with multi-radius

r = (r1, . . . , rn) and I any ideal of this ring. The Banach norm on k{T1
r1
, . . . , Tnrn } is given by

the Gauss norm η0,r = ‖
∑
aIT

I‖sup := max |aI ||rI |. If for every i, ri ∈ |k×| (or equivalently

1 can be taken as ri for every i) A is called strictly k-affinoid.

It is important to stress this notation as in classical rigid geometry only strictly k-affinoid

algebras are considered whereas from Berkovich point of view every polydisc can be taken as

convergence domain.

We are now ready to study the class of analytic spaces obtained applying the M(·) functor to

these algebras.

Definition 2.1.5. A k-affinoid space is any topological space isomorphic to the analytic

spectrum of a k-affinoid algebra.

In ([4], S1.2) Berkovich shows that these spaces, despite their non-Archimedean base field,

have nice topological properties.

Fact 2.1.6. A k-affinoid space is a compact, locally arc connected and separated topological

space.

Unsing a universal property, we get a definition that permits to locate the subsets of an

affinoid space that behave like affinoid spaces.

Definition 2.1.7. Let A be a k-affinoid algebra and let V be a subset of M(A). We say that V

is an affinoid domain in M(A) if there exists a k-affinoid A-algebra AV for which the following

two properties hold

(1) The image of M(AV ) in M(A) coincides with V

(2) Every morphism of k-affinoid algebras A → B such that the image of M(B) is contained in

V factorizes uniquely through A → AV .

2.1.2 General k-analytic spaces, G-topology and regular functions

The affinoid spaces are the local bricks that form general k-analytic spaces in the sense of

Berkovich. The process of glueing is explained in [5], section 1.2. In the same paper, in section

1.3, the G-topology is defined over a k-analytic space, as well as a structure sheaf for this

Grothendieck topology. We briefly review in this section the results that are necessary for our

constructions.

Since affinoid spaces are compact, one can not perform glueing in the same way as scheme

theoretically, namely by glueing locally ringed spaces. Berkovich construction takes into account

this concern and relies on the notion of quasi-net and affinoid atlas.

Definition 2.1.8. A quasi-net on a locally separated topological space X is a collection τ of

compact separated subsets of X such that each x ∈ X has a neighborhood of the form ∪Vi for

finitely many Vi ∈ τ , with the property that x ∈ ∩Vi.
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The notion of quasi-net is defined in such a way to provide a substitute of the notion of open

covering in this setting.

Definition 2.1.9. A k-affinoid atlas on a locally separated topological space X is the datum

consisting of a quasi-net τ on X such that

(1) for all U,U ′ ∈ τ , the collection {V ∈ τ : V ⊆ U ∩ U ′} is a quasi-net on U ∩ U ′

(2) for each V ∈ τ , there is a k-affinoid algebra AV and a homeomorphism V ∼=M(AV ) such

that if V ′ ∈ τ and V ′ ⊂ V , then V ′ is a k-affinoid subdomain of M(AV ) with coordinate

ring AV ′.

The triple (X,A, τ) is called k-analytic space. If all AV are strictly k-analytic, then this triple

is called a strictly k-analytic space.

On these spaces is possible to define a Grothendieck topology that plays the role of the one

given by admissible coverings in Tate’s approach. The construction relies on the idea of an

analytic domain.

Definition 2.1.10. Let (X,A, τ) be a k-analytic space and let U ⊂ X be a subset of X. We

say that a family {Ui} ⊂ P(U) of subsets of U is a G-covering1 of U if {Ui} is a quasi-net

on U . A k-analytic domain is a subset of X which is G-covered by its affinoid subdomains.

The Grothendieck topology on X that has for objects the k-analytic subdomains of X and for

coverings of such objects, the G-coverings is called G-topology.

Let {Vi} be a finite affinoid covering of a k-affinoid space X =M(A). Berkovich proved in

[5], the following results for k-analytic spaces, using techniques from [10].

Theorem 2.1.11 (Tate acyclicity). For every finite Banach Amodule M , the Čech complex

0→M →
∏
i

M ⊗A AVi →
∏
i,j

M ⊗A AVi∩Vj → . . .

is exact and admissible.

As a corollary of this theorem one can extend the correspondence V 7→ AV in a sheaf over

XG. More precisely, for every k-analytic domain V ⊂ X which is G-covered by {Vi → V }, one

defines the ring OX(V ) := Ker (
∏
iAVi →

∏
i,j AVi∩Vj ). Thanks to Tate acyclicity’s theorem,

when V is an affinoid domain one gets OX(V ) = AV and, more in general, OX(V ) does not

depend on the G-covering.

Remark 2.1.12. This definition agrees, in parallelism with the notion of regular function in

algebraic geometry, with the one given by OX(V ) = Hom(V,A1,an
k ). In fact one can show that

1Here the G stands for “Grothendieck” as pointed out in [22]. There is no connection with the action of a
finite group G appearing in chapter 3 of this thesis.
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the sequence of sets

0→ Hom(V,A1,an
k )→

∏
i

Hom(Vi,A1,an
k ) ⇒

∏
i,j

Hom(Vi ∩ Vj ,A1,an
k )

is exact.

If we denote by |X| the site associated to the topology of the analytic spectrum and XG the

one associated to the G-topology, we can canonically construct a morphism of sites

XG → |X|.

In fact one can show that every open subset of X is a union of a locally finite family of k-

affinoid domains. As a result, the structure sheaf for the G-topology induces by push-forward

a structure sheaf for the Berkovich topology on any k-analytic space.

Fact 2.1.13. Let the valuation over k be nontrivial. Then the law A →M(A) can be extended

to a controvariant functor realizing equivalence of categories between k-affinoid algebras and

k-affinoid spaces.

Remark 2.1.14. Any spectrum of a general Banach ring can be endowed with a structure of

locally ringed space, by taking the uniform limit over rational functions (see [4], Definition

1.5.3). Nevertheless this notion does not coincides with the one just introduced.

By glueing affinoid spaces, one can construct k-analytic spaces that are not affinoid, as

shown in the following examples.

Example 2.1.15. Let D = ∪0<ρ<1M(k{ρ−1T}). For ρ2 > ρ1, the inclusions M(k{ρ−1
1 T}) ↪→

M(k{ρ−1
2 T}) define a k-affinoid atlas of D, which is then a k-analytic space. In the same

way one shows that A = ∪`<ρ<1M(k{ρT−1, T}) is a k-analytic space. We call open disc any

k-analytic space isomorphic to D. We call open annulus of length ` any k-analytic space

isomorphic to A.

Example 2.1.16. One can construct the projective line P1,an
k by glueingM(k{T}) andM(k{T−1})

along M(k{T, T−1}). Notice that the glueing of any other pair of strictly k-affinoid closed discs

with the same choice of orientation is isomorphic to P1,an
k .

2.2 Reduction techniques

We are particularly interested in using Berkovich spaces to understand the interplay between

positive characteristic and characteristic zero. The natural techniques arising in this context,

relate non-Archimedean analytic spaces with schemes in positive characteristic. From a global

point of view, this relation is obtained through the use of formal geometry, from a local point

of view, with the theory of reduction of analytic germs, developed by Temkin in [57]. In this

section we expose both these approaches, and how they allow to read on an analytic space the

properties of its reduction. Let us mention that Temkin theory has been refined by the same
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author in [58] with the use of graded commutative algebra, to include also the case of non strict

k-analytic spaces. We will never work in this situation, therefore we chose to expose only the

results of [57].

In [51], Raynaud suggested to study rigid spaces in the framework of formal geometry. His

intuition led to several applications, and it can be adapted very well to Berkovich spaces. More-

over, it permits to link the analytic theory over k with the algebraic theory over k̃, throughout

the notion of generic fiber and special fiber of a formal model. The fact that we can keep

track of the reduction of a model on the generic fiber, is a fundamental tool to establish our

results on lifting local actions.

Raynaud’s approach extends also to Berkovich spaces: to a strictly k-affinoid domain A, we

can associate M0(A) := {x ∈ M(A) | [H(x) : k] < ∞} which is a dense subset of M(A) in

bijection with Spm(A) ([5], section 1.6). It is a classical result ([5], S1.6.1) that the correspon-

denceM(A)→M0(A) extends to an equivalence of categories between strictly k-affinoid spaces

and rigid k-affinoid spaces with an admissible covering of finite type. With this equivalence it

is easy to see that the Grothendieck topology of rigid admissible coverings can be lifted to the

G-topology on any strict k-analytic space. This permits to subsume the results of Tate theory in

the framework of Berkovich theory, beginning with the fruitful description provided by methods

in formal geometry.

2.2.1 The Berkovich generic fiber of a formal scheme

We recall here some definition and results on the relations between formal and analytic geometry,

that we will use in the following chapters. Let X be a noetherian scheme over ko. In algebraic

geometry we encounter its special fiber Xs and its generic fiber Xη, which are naturally defined

by the cartesian diagrams below:

Xs

��

// X

��

Xη

��

// X

��
Spec(k̃) // Spec(ko) Spec(k) // Spec(ko)

In the first diagram Spec(k̃) ↪→ Spec(ko) is a closed immersion, hence Xs ↪→ X is also a closed

immersion. Let then X̂ be the formal completion of X along the ideal sheaf corresponding to

Xs in X. It is nowadays classical to consider the generic fiber of X̂ as an analytic space.

Formal models and reduction in Berkovich theory

Let X = Spf(A) be a flat formal scheme of finite presentation over ko. Define Xη =M(A⊗̂
ko
k)

and consider the subset Ao = {f ∈ A | ρ(f) ≤ 1}. It is a subring of A having an interesting

prime ideal Aoo = {f ∈ A | ρ(f) < 1}. We can then consider the k̃-algebra Ã = Ao/Aoo and

the scheme of finite type X̃ = Spec(Ã).
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Definition 2.2.1. We call Ã the residue algebra of A.

Whenever ψ : A → B is a continuous homomorphism of commutative Banach algebras, there

is an induced morphism ψo : Ao → Bo such that ψo(Aoo) ⊂ Boo. Then the morphism ψ̃ : Ã → B̃
is also defined naturally. Recall from 2.1.1 that any point x ∈ M(A) can be defined also by a

morphism χx : A → H(x). Then there is a homomorphism of k̃ algebras χ̃x : Ã → H̃(x).

Definition 2.2.2. Let X = Spf(A) be as above. The reduction map is the set theoretic

morphism

r̃ : Xη → X̃
x 7→ Ker(χ̃x).

Let A be a strictly k-affinoid algebra. The reduction map enjoys the following properties:

• The reduction map r̃ is anticontinuous: the preimage of an open (resp. closed) subset of

X̃ is a closed (resp. open) subset of Xη

• The reduction map r̃ is surjective

• The preimage r̃−1(x̃) of the generic point of an irreducible component of X̃ consists of

one point x ∈ Xη and one has k̃(x̃) ∼= H̃(x) where k̃(x̃) = Frac(Ã/r̃(x)).

More generally, for any X formal scheme separated and locally of finite presentation over Spf(R)

there is a reduction map r̃ : Xη → Xs.

Formal blowing-up

The relationship of a formal scheme with its special and generic fiber is investigated throughout

the notion of admissible blowing-up.

Definition 2.2.3. Let X be an admissible formal scheme having I as ideal of definition. Let

J be a coherent OX -module of open ideals. Then there is a map

ϕ : X ′ = lim−→
λ

Proj(
∞⊕
n=0

J n ⊗OX OX /I
λ+1) −→ X

which is called formal blowing-up of J on X .

We have the following properties for a formal blowing-up.

Fact 2.2.4. Let ϕ : X ′ → X be the formal blowing up of J on X . Then

• X ′ is an admissible formal S-scheme on which the ideal JO′X is invertible

• ϕ commutes with basechange

• Whenever ψ : Z → X is a morphism of formal S-schemes such that JOZ is invertible on

Z, then there is a unique S-morphism ψ′ : Z → X ′ such that ψ = ϕ ◦ ψ′.
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By functoriality of the previous constructions, an automorphism of R[[T]] induces also au-

tomorphisms over special and generic fibers.

Definition 2.2.5. If φ is an endomorphism of D, we obtain by tensorization a continue function

on the generic fiber (φη) and an endomorphism on the special fiber (φs).

2.2.2 Boundaries

A very useful concept when dealing with Berkovich spaces is that of Shilov boundary. This

notion, borrowed from the field of functional analysis, permits to define objects that blend

the combinatorial aspects of the theory together with the spectral analytic and the valuation

theoretical ones.

Definition 2.2.6. Let (A, ‖·‖) be a Banach k-algebra. The spectral norm of an element f ∈ A
is the real number defined by the formula ρ(f) = limn→∞‖fn‖

1
n = infn∈N‖fn‖

1
n .

Remark 2.2.7. The equality limn→∞‖fn‖
1
n = infn∈N‖fn‖

1
n is true by monotony of the sequence

‖fn‖
1
n , which comes from the submultiplicativity: ‖fn‖ ≤ ‖f‖n implies ‖fn‖

1
n ≤ ‖f‖ and in

the same way can be shown the fact that the sequence ‖fn‖
1
n is decreasing.

Definition 2.2.8. Let (A, ‖·‖) be a Banach k-algebra and we set X = M(A). We say that a

closed subset Γ of X is a functional boundary of X if it verifies

∀f ∈ A, sup
x∈X
{|f(x)|} = sup

x∈Γ
{|f(x)|} ∈ R.

We call Shilov boundary, noted ∂SX, the minimal functional boundary, when it is unique.

What relates the notion of spectral norm and the notion of boundary is the following (see [4],

Theorem 1.3.1):

Fact 2.2.9. Let A be a Banach ring, f ∈ A and X =M(A). Then

ρ(f) = sup
x∈X
|f(x)|.

Moreover, the following facts about the Shilov boundary of an affinoid space are also proved

by Berkovich in [4]:

Fact 2.2.10. Let X =M(A) be a k-affinoid space.

i) The Shilov Boundary ∂SX exists and it is finite

ii) For every x0 ∈ ∂SX then for every open neighborhood U of x there is f ∈ A and ε > 0

such that |f(x0)| = ρ(f) and {x ∈ X : |f(x)| > ρ(f)− ε} ⊂ U

iii) Let V ⊂ X be an affinoid domain. Then one has ∂SX ∩ V ⊂ ∂S(M(AV )) ⊂ ∂(X \ V ) ∪
(∂S ∩ V ), where ∂ is the boundary in the sense of topological spaces.
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Finally, let us mention a result that characterizes the boundary in terms of reduction :

Proposition 2.2.11. Let X be a flat formal scheme of finite presentation over ko. Then

i) Let Ξ be the set of generic points of the special fiber Xs. Then ∂SXη = {r̃−1(ξ) : ξ ∈ Ξ}.

ii) In the affine case, where Xs = Ã, the topological interior
◦
Xη coincides with r̃−1(Spm(Ã))

The cases of discs and annuli provide the first interesting computations of Shilov boundaries.

Example 2.2.12 (Discs and Annuli).

Let A = k{t}. Then the Shilov boundary is the singleton {η0,1}. To prove it, it suffices to

remark that the Banach norm over A is the Gauss norm.

Let now a ∈ ko be a nonzero element and consider the Banach k-algebra A = k{t, s}/(ts − a).

Then the Shilov boundary is {η0,1, η0,|a|}, which is just the Gauss point when |a| = 1.

2.2.3 Reduction à la Temkin

In this section, we sketch the construction of a functor of reduction of germs of analytic spaces,

following the original Temkin article [57]. Let |k×| 6= {1} and let X be a separated k-analytic

space. We explain how to associate to every x ∈ X a quasi-compact open subset in the Riemann-

Zariski space of H(x) over k̃.

Riemann-Zariski spaces

Let us start with the definition of Riemann-Zariski spaces.

Definition 2.2.13. Let L/K be a finite type extension of fields. The Riemann-Zariski space

of the extension L/K, noted PL/K , is the set of (equivalence classes of) valuations of L that

are trivial over K. The affine open subsets of PL/K are those of the form

PL/K{f1, . . . , fn} := {v ∈ PL/K : fi ∈ Ov ∀ i = 1, . . . , n}

for a choice of the n-uple {f1, . . . , fn} ∈ Ln. The space PL/K is endowed with the topology

having the open affine subsets as a basis.

The space PL/K is turned into a locally ringed space by defining a sheaf of rings OPL/K in

such a way that OPL/K (U) = {f : v(f) = 0 ∀ v ∈ U} ⊂ L. A vector bundle over PL/K is then

simply a locally free OPL/K -module of finite type. Its rank as a module is a constant function

and is then well defined: a rank one vector bundle is called line bundle.

Vector bundles of rank r are uniquely determined by 1-cocycles with values in GLr(OPL/K );

a 1-cocycle on PL/K with values in GLr(OPL/K ) defines the trivial bundle if and only if it is a

cobord.
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The reduction functor

The category Germs, introduced by Berkovich in [5], is the localization of the category of punc-

tual k-analytic spaces with respect to the system of morphisms (X,x)→ (Y, y) that induce an

isomorphism between X and an open neighborhood of y in Y . The category birk̃ has as objects

the triples (C, `, f) where C is a connected quasi-compact and quasi-separated topological space,

` is a field extension of finite type of k̃ and f is a local homeomorphism from C to P`/k̃.

The reduction is defined through the introduction of two other categories: V ark̃, the cate-

gory of triples (V, `, η), with V integral scheme of finite type over k̃, `/k̃ extension of finite

type and η : Spec(`) → V a k̃ morphism having as image the generic point of V . To any

such triple, define the topological space Val(V ) as the set of pairs (v, φ) with v ∈ P`/k̃ and

φ : Spec(Ov) → V morphism compatible with η, endowed with the weakest topology that

makes the maps α : Val(V ) → V and β : Val(V ) → P`/k̃ given by α(v, φ) = φ and β(v, φ) = v

continuous. One can show that β is a local homeomorphism.

The reduction is then constructed for the category Admko of pointed quasi-compact admissible

formal schemes over ko, by defining the correspondence

(X , x) 7→ red(X , x) = (Val(Vx̃), H̃(x), β) ∈ birk̃,

where Vx̃ is the closure of x̃ in Xs.

Definition 2.2.14. The reduction functor is the functor

Germs → birk̃

(X,x) 7→ (̃X,x)

obtained by the localization of the functor red : Admko → birk̃ with respect to formal admissible

blowing-ups.

The arrow (X,x) → (̃X,x) realizes a bijection between analytic domains in (X,x) and

nonempty quasi-compact open subsets of (̃X,x).

2.3 Curves

From now on, we concentrate our attention on the case of curves. As in other geometries, these

are easier to describe than objects of higher dimension.

Definition 2.3.1. Let k be a non-Archimedean complete field. A k-analytic curve is a k-

analytic space, separated and purely of dimension 1.

2.3.1 Types of points

Let C be a k-analytic curve and x ∈ C be a point having H(x) as residue field. Then, following

the properties of H(x) we have four exclusive different possibilities.
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I. The field H(x) is the completion of an algebraic extension of k; we say in this case that x

is of type 1;

II. The field H̃(x) is of finite type and transcendence degree 1 over k̃ and |H(x)×|/|k×| is

finite; we say in this case that x is of type 2;

III. The field H̃(x) is a finite extension of k̃ and |H(x)×|/|k×| is of rank one; we say in this

case that x is of type 3;

IV. The field H(x) is not as in the first case, but it admits an isometric embedding in an

immediate extension of k̂alg; we say in this last case that x is of type 4.

The affine line

Let A1,an
k be the analytification of the scheme theoretic affine line A1

k. It can be defined as a

space of multiplicative seminorms as follows:

A1,an
k = {x : k[T ]→ R+ multiplicative seminorm : x|k = | · |k}.

As before we write |f(x)| for the value of f at x. For every a ∈ k and ρ ∈ R+ write ηa,ρ for the

element of A1,an
k defined by

|f(ηa,ρ)| = sup
b∈D(a,ρ)

|f(b)|.

If the field k is algebraically closed there is an explicit description of these points in terms of

valuations of the form ηa,ρ.

Proposition 2.3.2. Let k be an algebraically closed field and x ∈ A1,an
k . Then

I. The point x is of type 1 if and only if x = ηa,0 for some a ∈ k;

II. The point x is of type 2 if and only if x = ηa,ρ for some a ∈ k and 0 < ρ ∈ |k×|;

III. The point x is of type 3 if and only if x = ηa,ρ for some a ∈ k and ρ /∈ |k×|;

IV. The point x is of type 4 if and only if x = infi(ηai,ρi) for a sequence of discs D(ai, ρi)

in k such that D(ai+1, ρi+1) ⊂ D(ai, ρi) and ∩iD(ai, ρi) = ∅. In particular, when k is

maximally complete, there are no points of type 4 in A1,an
k .

2.3.2 Semi-stable reduction

In studying covering of curves in characteristic 0 arising as lifting of covering in positive char-

acteristic, one has to check that the special fibers are smooth. Nevertheless, not every model

of a k-analytic curve has good reduction on the special fiber. The best one can have is to have

semi-stable reduction, after finite extension of k. One interesting feature of k-analytic curves

with semi-stable reduction, is that their models over ko can be parametrized in terms of points

of the k-analytic curve itself.
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Definition 2.3.3. Let C be a smooth k-analytic curve. We say that C has good reduction if

there exists C a formal model of C over Spf(ko) such that the special fiber Cs is smooth. We

say that C has semi-stable reduction if there exists C a formal model of C over Spf(ko) such

that the special fiber Cs has at most ordinary double points as singularities. In this case, when

Cs has only smooth irreducible components, C is said to have simple semi-stable reduction.

Let C be a smooth k-analytic curve with semi-stable reduction and C a formal model of C

with semi-stable special fiber Cs. Let r̃ : C → Cs be the reduction map. The set r̃−1(x) is

a k-analytic subspace of C, and it is called formal fiber of C at x. Using results of Bosch

and Lütkebohmert on semi-stable reduction for rigid analytic varieties, Berkovich ([4], Theorem

4.3.1.) proved the following

Proposition 2.3.4. Let x ∈ Cs be a point of the special fiber of C.

i) If x is the generic point of an irreducible component Ci of the special fiber, then there is a

unique point in the formal fiber at x, xi = r̃−1(x)

ii) If x is a smooth closed point of the special fiber of X. Then its formal fiber is an open disc

D ∈ C such that the relative boundary D̄ \D is equal to xi.

iii) If x ∈ Xs be a singular ordinary double point belonging to the components Ci and Cj .

Then its formal fiber is an open annulus A. If i 6= j, then the relative boundary Ā \ A is

equal to {xi, xj}.

To each model C of C with semi-stable reduction is associated the reduction graph Γ(Cs) of

its special fiber. This is the datum of a vertex for each irreducible component of Cs and two

vertices are joined by an edge if the associated components meet in an ordinary double point.

In particular, when the double point is given by a self intersection it gives rises to a loop in the

reduction graph. It is sometimes referred in the literature as dual graph. Let {vi} be the set

of vertices of Γ(Cs). We will denote by Ci the irreducible component of Cs that corresponds to

the vertex vi in the construction. The following result is classical (proved in [4]):

Theorem 2.3.5. Let C be a smooth k-analytic curve with semi-stable reduction and C a formal

model of C with semi-stable special fiber Cs Then the dual graph Γ(Cs) is canonically embedded

in C.

Proof. Let vi be a vertex of Γ(Cs), and let ξi be the generic point of the irreducible component

Ci. Then the embedding sends vi to r̃−1(ξi). By point i) of Proposition 2.3.4, this assignment is

well defined. Let e be the edge corresponding to an intersection of Ci and Cj in a double point

x ∈ Cs. Then e is sent to the unique path, in the annulus r̃−1(x), joining ξi and ξj . By point

iii) of Proposition 2.3.4, this assignment is also well defined.

The dual graph has also a canonical metric structure: let e be an edge of Γ(Cs). It corre-

sponds to a double point on Cs. On C, the local ring at this point is of the form ko[[X,Y ]]/XY −z
with z ∈ ko. One then sets the length of e to be the (k-adic) valuation of z.
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2.4 Functions on analytic curves

One of the features that is peculiar of Berkovich spaces with respect to other non-Archimedean

analytic theories, is the natural presence of combinatorial structures. This is strictly related to

the theory of regular functions and, more in general, sheaves of modules. We introduce in this

section the notion of skeleton and the one of vector bundle on a k-analytic curve, pointing out

the relations between these two objects.

2.4.1 The skeleton of a curve

Let C be a smooth, proper, connected k-analytic curve. If C is any ko-model with semi-stable

reduction for C, there is an associated subset S = SC of C called the skeleton of C. Berkovich

proved that the skeleton of C is homeomorphic to the dual graph Γ(Cs). It can therefore inherit

a metric structure: we may think at S as a finite graph in which each edge is identified to an

Euclidean line segment of some length, possibly infinite. By results of the previous section on

dual graphs, S is a subset of C. Berkovich proved also that SC is a deformation retract of C.

Definition 2.4.1. Let X be a k-affinoid space. We say that it is potentially isomorphic to

the unit disc if there exists a finite separable extension k′ of k such that the k′-affinoid space

X ⊗k k′ it is isomorphic to a finite sum of copies of the closed unit disc over k′.

Lemma 2.4.2. A connected k-affinoid domain V ⊂ A1,an
k is potentially isomorphic to the unit

disc if and only if its Shilov boundary is a singleton, ∂SV = {ξ}, such that V coincides with the

complement of the unique unbounded connected component of A1,an
k \ {ξ}.

Definition 2.4.3. Let C be a ko-curve with simple semi-stable reduction, and let O(C) be the

subset of Cη − ∂S(Cη) whose elements are points having an affinoid neighborhood potentially

isomorphic to the unit disc. The skeleton of C is defined to be the complement SC = O(C)c.

Remark 2.4.4. The definition of the skeleton by Berkovich is given for smooth k-analytic curves

admitting distinguished formal coverings with semi-stable reduction in section 4.3 of [4], and

generalized for nondegenerate pluri-stable formal schemes in chapter 4 of [6]. The characteriza-

tion above for models with simple semi-stable reduction is due to Thuillier ([59]) and fits better

to our purposes.

In [59], the following properties are shown for the skeleton SC.

Theorem 2.4.5. Let SC be the skeleton of a ko-curve with simple semi-stable reduction. Then

• the topological space underlying SC is a closed subset of Cη and there exists a retraction

τC : Cη → SC;

• for every open subset U of C then Uη is a polyhedral domain inside SC and the embedding

Uη ↪→ Cη induces an isomorphism SU
∼= SC ∩ Uη.
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• For every étale morphism C→ C′ of ko-curves with simple semi-stable reduction, there is

an induced morphism of polyhedra SC → SC′ such that the diagram

Cη
τC //

��

SC

��
C′η

τC′ // SC′

commutes.

Example 2.4.6. Let Â1
R := Spf(R{T}) be the formal affine line over R. Its generic fiber is

already a closed unit disc then its skeleton is just its boundary S(Â1
R) = {η0,1}.

Example 2.4.7. Let us consider the formal annulus Ce = Spf(R{S,T}ST−πe ). Its generic fiber is an

annulus of depth e over K having as a boundary the set {η0,1, η0,|πe|}. We claim that the skeleton

of C is exactly the (unique) segment joining these two points, namely the image of the map

[|πe|, 1] → Dη
r 7→ η0,r.

Take in fact an affinoid domain potentially isomorphic to the unit disc V and show that it can

not contain any point of this segment: the complementary C − V is in fact arcwise connected

and it contains 0. We have also {η0,1} ⊂ C −V , otherwise V would be of radius one, contained

in the unit disc and therefore containing 0. Then C − V contains the segment η0,|a| → η0,1 for

every V .

Conversely every other point is contained in such a V . We can in fact write this point as ηb,ρ

with |πe| ≤ |T (b)| ≤ 1 and ρ < |b|. Then there exists an ρ < ε < |b| such that the affinoid

domain {x : 0 ≤ |T (x)| ≤ ε} is a potentially isomorphic to the unit disc neighborhood of ηb,ρ.

Hence the claim is proved and S(Ce) is given by a polytope consisting of a single edge.

2.4.2 Vector bundles

We define and discuss some properties of vector bundles on k-analytic spaces, in particular in

the case of curves.

Definition 2.4.8. Let X be a k-analytic space. A vector bundle on X is a locally free of finite

rank sheaf of modules on the ringed site XG.

From the discussion of Section 2.1.2, this defines by restriction to the topological site |X| a

sheaf of OX modules, that may not be locally free. It is so in the case where X is good (i.e.

every x ∈ X has a neighborhood which is an affinoid domain).

Example 2.4.9 (Differential forms). Modules of differential forms for affinoid algebras can be

defined with derivations: whenever A is an affinoid algebra over K, then Ω1
A is the universal

object representing the functor Der(A, ·). This definition extends by glueing to define a vector

bundle over any k-analytic space X.
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Metrics on vector bundles and formal metrics

We briefly describe the notion of metric for a vector bundle on a Berkovich curve. A more

detailed description is found in section 6.2 of [15], or chapter 7 of [30] which are also our main

references. Let X be a k-analytic vector space, and E a vector bundle on X. A continuous

metric over E is a continuous map from the total space of E to R+ which is an ultrametric

norm on every fiber. This amounts to the following less concise but more standard definition.

Definition 2.4.10. A continuous metric over E is the datum, for every U analytic domain

in X, of a continuous map

‖·‖ : Γ(U,E) → C 0(U,R+)

s 7→ ‖s‖

such that

• for every analytic domain U of X and sections f ∈ Γ(U,OX) and s ∈ Γ(U,E), one has

‖fs‖ = |f |‖s‖ ;

• for every analytic domain U of X and sections s1, s2 ∈ Γ(U,E), one has ‖s1 + s2‖ ≤
max(‖s1‖, ‖s2‖) ;

• for every analytic domain U of X, section s ∈ Γ(U,E) and point x ∈ U ,

‖s‖(x) = 0 if and only if s(x) = 0.

An important class of metrics on a given vector bundle, are the formal metric, used in

chapter 5 to define the sheaf of deformations. Let E a vector bundle over a k-analytic space

X, and let (X , E) be a formal model of the couple (X,E). By this, we mean that X is a model

of X over ko and E is a formal vector bundle over X with an isomorphism Eη ∼= E. There is a

canonical way to associate to (X , E) a continuous metric on E, which goes as follows. For every

formal covering {Ui} such that E|Ui is triviali, we have that i, Ui,η is an analytic domain in X.

If (e1, . . . , en) is a trivialization of E on Ui, for every section s ∈ E(Ui,η) there exists a unique

n-uple (f1, . . . , fn) yielding s =
∑
fiei. The rule ‖s‖ = max(|f1|, . . . , |fn|) defines a metric on

E, that does not depend on the trivialization. This is called the formal metric associated to

the model (X , E). When E is a line bundle, this is a smooth metric.
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Chapter 3

Local actions on curves

Thorough this chapter, let K̃ be an algebraically closed field of characteristic p > 0. For every

complete discrete valuation ring R of characteristic zero, having K̃ as residue field, we denote

by K its fraction field and by $ a uniformizer of R. Such R is necessarily a finite extension of

complete DVR of the ring of Witt vectors W (K̃). In this chapter we introduce the local lifting

problem for action of finite groups on curves, briefly explaining results and techniques involved,

open problems, and related perspectives. We start by discussing the problem of lifting to

characteristic zero automorphism of curves, and we relate it with its local analogue, the problem

of lifting to characteristic zero automorphisms of K̃[[t]], the K̃-algebra of formal power series

with coefficients in K̃. The main strategy to prove results on liftings such automorphisms is to

study the behavior of liftings in characteristic zero. One then studies algebraic and arithmetic

properties of automorphisms of the ring R[[T ]] and their deformations, with the purpose of

obtain a description of their reductions. A particular care is needed in manipulating this objects.

For instance, the lifting problem asks to maintain the order of the automorphisms when reduced

in characteristic p and this is not always the case. We introduce the main techniques to deal

with such problems and the results that could be get in this way. The main object serving

this scope is called Hurwitz tree and has two main descriptions. The first one is introduced by

Henrio in [31] and deals only with actions of Z/pZ, the second one is defined by Brewis and

Wewers in [14] and is associated to any local action of a finite group, but the results that one can

get are less general. The reason is that in the Hurwitz tree for Z/pZ there are some differential

forms that make possible to have a classification of automorphisms in characteristic 0 with fixed

points. These differential form are not available for any G, even if we have a generalization by

Bouw and Wewers ([11]), in the very particular case of D2p. Moreover, in the case of (Z/pZ)n,

the situation boils down to the case Z/pZ plus certain compatibility conditions, by results of

Green and Matignon ([27] and [38]). At the end of the chapter we sketch how to construct a

Hurwitz tree for that keeps track of these results. This is used in chapter 4 where we deal with

explicit examples of actions of (Z/pZ)2 that do not lift. The general case is discussed in Chapter

5, where a characterization of Hurwitz trees in terms of non-Archimedean analytic geometry is

given.
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3.1 Local and global actions on curves

Definition 3.1.1. Let G be a finite group. A G-cover is a finite generically étale morphism

π : Y −→ X of (geometrically) connected normal schemes such that G ∼= Aut(Y/X) acts

transitively on the (geometric) fibers of π.

Let C be a smooth projective curve over K̃ and G ↪→ Aut(C) be a finite group of automorphisms

of C. Then the morphism C −→ C/G is aG-cover. Conversely, anyG-cover of smooth projective

curves C → D induces an embedding G ↪→ Aut(C).

Given CR be a flat (relative) curve over R such that CR⊗R K̃ = C (such curve is called a lift of

C to characteristic zero, and its existence is assured by an application of Grothendieck existence

theorem, cfr. [29], III 7.3), one would like to know if the automorphisms of the curve C can be

“lifted” to CR as well.

Definition 3.1.2. Let π : C −→ C ′ be a G-cover of smooth projective curves defined over

K̃. We say that π lifts to characteristic zero if there exists R/W (K̃) a finite extension of

complete DVR G-cover πR : CR −→ C ′R of lifts of C and C ′ respectively, such that its special

fiber is π.

Let x be a closed point of C. A faithful action of G over C induces an action of the stabilizer

Gx at the point x over the completed local ring ÔC,x ∼= K̃[[t]]. This is analogous to what happens

over CR and justifies the definition of a local action on a curve.

Definition 3.1.3. A local action in characteristic p is a pair (K̃[[t]], G) where G ⊂
AutK̃K̃[[t]] is a finite subgroup of automorphisms. A local action in characteristic 0 is

a pair (R[[T ]], G′) where G′ ⊂ AutRR[[T ]] is a finite subgroup.

The problem of lifting automorphisms of C to CR has then a natural local analogue.

Question 3.1.4 (Local lifting problem). Let (K̃[[t]], G) be a local action in characteristic p.

Does there exist a local action in characteristic 0 (R[[T ]], G) such that the diagram

G //

$$

AutRR[[T ]]

��
AutK̃K̃[[t]]

where the vertical arrow represents the reduction map, commutes ?

The answer is known to be positive when (|G|, p) = 1 by Grothendieck’s theory of special-

ization of the tame fundamental group (see [29] XIII, Corollaire 2.12) and when G is cyclic (as

proved by Pop in [50] using results of Obus-Wewers contained in [44]). There are also counterex-

amples in many other cases: Chinburg, Guralnick and Harbater formulated in [16] the following

conjecture

Conjecture 3.1.5. (Strong Local Oort Conjecture) If K̃ is an algebraically closed field of char-

acteristic p and G ⊂ AutK̃K̃[[t]] is a finite group, then the local action of G lift to characteristic
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0 if and only if G is either a cyclic group, or a dihedral group of order 2pn for some n, or p = 2

and G is the alternating group A4.

In the same paper they also provide counterexamples for all finite groups that are not on the

conjecture.

These advances are important for the original problem of lifting covers of curves. In fact it turns

out that the local information is sufficient to study the global one.

Fact 3.1.6 (Local-global principle). Let G ↪→ Aut(C) be a finite group of automorphisms and

let {x1, . . . , xn} be the set of points where G acts with nontrivial inertia. For each 1 ≤ j ≤ n,

let Gj be the inertia group of xj and let Gj ↪→ AutK̃K̃[[tj ]] be the induced local action. Then

the action of G over C lifts to charachteristic zero if and only if the local actions (Gj , K̃[[tj ]])

lift for every j.

This fact allows us to focus for the rest of the chapter on the local lifting problem, without

dropping the motivation involving the understanding of global actions and covers of curves.

3.2 Lifting local actions

Let us review some known facts about lifting local actions. We introduce in this section some of

the methods that are fundamental to the understanding of Hurwitz trees and their importance.

Lifting via reduction of coverings

In the same way as to faithful G-actions on curves correspond G-covers, one can reformulate

the local actions in terms of Galois covers. Given a local action (K̃[[t]], G) in characterstic p > 0

then K̃[[t]]G is of the form K̃[[z]] and we can ask to the cover K̃[[t]]
G−→ K̃[[z]] to be liftable to

a G-cover R[[T ]]
G−→ R[[Z]].

The point of view of G-covers and the one of G-actions are interchangeable, but one has to

be careful, when starting from a local G-cover in characteristic zero, to check that R[[T ]]
G−→

R[[T ]]G has good reduction. This amounts to check that R[[T ]]G is of the form R[[Z]] for some

Z ∈ R[[T ]]. This motivates the care to criteria of good reduction that is lavished in the following

sections.

3.2.1 Geometric local actions

We describe here how studying models of the unit disc, in the spirit of Section 2.2.1, provide a

deeper understanding of the properties of local actions.

The stably marked model

Let Λ = (G,R[[T ]]) be a local action in characteristic zero. This action naturally induces an

action on the (formal) spectrum of R[[T ]]. At first, this does not carry a lot of information at
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the level of topological spaces. We need indeed to perform a series of blow-up in such a way to

study more deeply the properties of Λ.

Lemma 3.2.1. For every Λ = (G,R[[T ]]) local action in characteristic zero, there exists a unique

minimal formal model XΛ/Spf(R) of the unit disc D(0, 1) such that the following properties are

satisfied

• The special fiber Xs is semistable;

• The group G acts over X without inertia (i.e. reduces to a proper action);

• Let LΛ = {x1, . . . , xm} be the set of ramification points for the action of G on the rigid

generic fiber D(0, 1). Then the set of specializations r(LΛ) consists of m distinct smooth

points of Xs.

Proof. We can suppose m 6= 1 (if m = 1 then the model is Spf(R[[T ]]) itself). Let then

e = min{vR(xj − x1) : j = 1, . . . ,m} and consider the admissible blowing up X1 → Spf(R[[T ]]),

of open ideal ($e, T −x1). Its special fiber X1,s is isomorphic to P1
K̃

and the specialization map

r1 : X1,η → X1,η is such that there are at least two distinct points in the set r1(LΛ). Each

element of this set is a closed point in X1,s. If |r1(LΛ)| = m then we are done, otherwise we can

perform a blowing up, with depth min{vR(xj−xi) : r1(xj) = r1(xi)}, of the point corresponding

to r−1
1 (r(xi)), for every r1(xi), to obtain a formal morphism X2 → X1 with |r2(LΛ)| > |r1(LΛ)|.

Repeating this operation one gets, in a finite number of steps, XΛ → X1 such that |r(LΛ)| = m.

This model satisfies the conditions above: each specialization is on a smooth distinct point of

Xs, which is by construction a tree of projective lines over K̃, hence semi-stable. Let us notice

also that, since these blowing up are performed with the minimal depth possible, then the model

obtained in this way is minimal.

Such a model XΛ is called stably marked model of the local action in characteristic zero Λ.

By construction, the irreducible components of its special fiber are all projective lines. This fact

is important when studying local actions on boundaries (cfr. Section 3.2.2).

Remark 3.2.2. Our definition of stably marked model differs from the one of [12] in the fact

that we associate a stably marked model to a local action in characteristic zero rather than to

a Galois covering of curves in positive characteristic. This is essentially due to the difference of

approaches outlined in the introduction of this chapter.

Example 3.2.3. Let p be odd, G = D2p and let R be in such a way that λ := ζp − 1 ∈ R.

Consider the G-cover

R[[Z]][X,Y ]

(Z − (X + λp/2)2, XY p +X + λp)
∼= R[[T ]]→ R[[Z]].

The dihedral group G is then realized as group of automorphism of R[[T ]] by the formulasσ(X) = X

σ(Y ) = ζpY
and

τ(X) = −X − λp

τ(Y ) = 1
Y

.
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Fixed points for σ if Y = 0, X = −λp and Z = (λp/2)2.

Fixed points for τ if Y = 1, X = −λp/2 and Z = 0.

3.2.2 Local actions on boundaries

Let Λ = (R[[T ]], G) be a local action in characteristic 0. Let ξ be the generic point of an

irreducible component of the special fiber of the stably marked model (any such point will

be called boundary point). We can look at ξ in the stably marked model where, being of

codimension 1, is a Weil divisor inside a normal scheme. Thanks to the following classical lemma

we can construct a valuation attached to a boundary point.

Lemma 3.2.4. Let A be a Noetherian local domain of dimension 1, m its unique maximal ideal.

Then the following are equivalent:

i) A is normal;

ii) Every non-zero ideal is a power of m;

iii) A is a discrete valuation ring.

Then, if we apply the lemma for the local ring OXΛ,ξ, which fits in the hypotheses (the stably

marked model is normal by definition yielding normality of OXΛ,ξ), we get a discrete valuation

vξ on K := Frac(OSσ ,ξ). It has the property that there exist a ∈ K, |a| < 1 and ρ ∈ R+ such

that:

• vξ(f) = n > 0 implies that f ∈ K has a zero of order n in the closed disc D(a, ρ).

• vξ(f) = −n < 0 implies that f ∈ K has a pole of order n in D(a, ρ).

• vξ(f) = 0 implies that f ∈ K has neither a zero nor a pole in D(a, ρ).

We define va,ρ to be a valuation as above: this is well defined because va,ρ = vb,ρ if and only if

a ∈ D(b, ρ).

Let ξ be as before, such that vξ = va,ρ and let z be a double point of XΛ,s.

Let R[[T ]]{T−1} = {
∑

i∈Z aiT
i : |ai| → 0 if i→ −∞}. Then we have an isomorphism

Oξ,z :=
̂̂

(OXΛ,x)ξ
∼−→ R[[ρ−1(T − a)]]{(T − a)−1}.

The valuation vξ extends naturally over the ring Oξ,z which is complete for vξ. Moreover its

residue field is isomorphic to k((t − ā)). It is endowed then with a discrete valuation vz :

k((t− ā))→ Z which depends only on z.

Definition 3.2.5. We call Gauss valuation centered in a of radius ρ, the valuation vξ. We

call residue valuation centered in a of radius ρ the valuation vz. The couple (vξ, vz) is therefore

a valuation of rank two over Oξ,z.
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Notice that the Gauss valuation depends on the closed disc D(a, ρ), as well as the residue

valuation depends on the open disc D(a, ρ)−. Namely, for any a′ ∈ D(a, ρ) such that |a′−a| = ρ,

we have that va,ρ = va′,ρ but the residue valuations are different.

We have an explicit description of the valuations vξ and vz.

Lemma 3.2.6. Let T be a parameter such that Oξ,z ∼= R[[T ]]{T−1} and let t be the class

of T in Oξ,z/$Oξ,z. Then vξ : R[[T ]]{T−1} → Q is such that vξ(
∑
aiT

i) = min(vR(ai)) and

vz : k((t))→ Z is the t-adic valuation.

Consider the action of Λ on the stably marked model. When ξ and z are as before, the

action induced by Λ on Oξ,z is described by a surjective morphism Y → X, where X ∼=
Spec(R[[T ]]{T−1}), that becomes a Gξ,z-cover Y ′ → X, for a subgroup H ≤ G, when one

takes the normalization Y ′ of Y . This cover corresponds to an extension of integrally closed

rings whose extension of fraction fields KY /KX is Galois with Galois group H. One can check,

by noticing that the choice of another double point on the same component correspond to a

translation by an element of R×, that the valuation of the different ideal vξ(DKY /KX ) does not

depend on the choice of z. This number is crucial when studying the reduction of local actions

at boundaries for the sake of the following result

3.3 The Hurwitz tree for Z/pZ

We describe in this section the role of the Hurwitz tree as an object parametrizing local actions

in characteristic zero in such a way to keep track of their reduction properties.

Notations: basics on trees

In what follows, the word tree denotes a finite oriented rooted tree T . This means that the set

V (T ) of its vertices is endowed with a partial order relation, denoted by v → v′, in such a way

that the following conditions are satisfied:

• there exists a unique v0 ∈ V (T ) with v0 → v for every v ∈ V (T ) ;

• for every couple v, v′ ∈ V (T ) such that v → v′ and such that there is no v′′ with v →
v′′ → v′ there is an unique edge connecting v and v′ ;

• conversely, for each edge of T joining two vertices v, v′ ∈ V (T ) these are such that v → v′

and such that there is no v′′ with v → v′′ → v′.

The vertex v0 is called the root of the tree. A vertex v such that there is no v′ ∈ V (T ) with

v → v′ is called a leaf. The couple associated to an edge e of T is noted vse → vte and they are

respectively called starting vertex and ending vertex of e. Finally, we set e−v for the unique

edge having v as ending vertex and E+(v) = {e ∈ E(TΛ) : vse = v}.
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Motivation: the deformation between Kummer and Artin-Schreier

Suppose that R is ramified over W (K̃) with ramification index divided by p−1. When G = Z/pZ
acts on R[[T ]] in such a way that the m ramification points have the same valuation the equation

of the covering is of the special Kummer type Xp = (1 + Tm). In order to deform this equation

to one reducing to an Artin-Schreier one, one needs to deform the equation.

Set X = 1 + βU and S = β
p
mT with β ∈ R. Then the equation becomes

(1 + βU)p = (1 + βpTm) ⇐⇒ (βU)p + p(βU)p−1 + · · ·+ pβU = βpTm

⇐⇒ Up + · · ·+ p

βp−1U = Tm. (3.1)

When vp(β) = 1
p−1 the reduction mod. p of this equation is up − cu = tm, with c 6= 0, that is,

an Artin-Schreier equation of which the original Kummer equation is a lift.

3.3.1 The Hurwitz tree associated to an automorphism of order p

The deformation from Kummer to Artin-Schreier (3.1) describe the lifting of some particular

local actions of Z/pZ. The underlying assumption is in fact that all the ramification points are

at the same mutual distance. Not all local actions are of this kind, but one can reduce every

action to those by a procedure of “disc shrinking”. The existence of appropriate deformations

permitting such a procedure is equivalent to the existence of some differential forms and to the

satisfaction of some compatibility conditions. The study of these requirements gives rise to the

definition of a Hurwitz tree for an automorphism of order p, as introduced in [31].

Definition 3.3.1 (Hurwitz trees of type Z/pZ). Let Λ = (Z/pZ, R[[T ]]) be a local action in

characteristic zero and let XΛ be the stably marked model of Λ and LΛ = {x1, . . . , xm} the set

of ramification points for the action of G on the rigid generic fiber D(0, 1). The Hurwitz tree

associated to Λ is the datum of a tree TΛ endowed with additional data (d, ε,m) constructed by

enriching the reduction graph of XΛ:

• the set of vertices is given by V (TΛ) = V (ΓXΛ
) ∪ LΛ, and the vertex arising from a

ramification point x is denoted by vx ;

• the set of edges is given by E(TΛ) = E(ΓXΛ
)∪LΛ and the edge arising from a ramification

point x is denoted by ex ;

• whenever an edge e ∈ E(ΓXΛ
) has vse and vte as respectively a starting vertex and an ending

vertex in the reduction graph, the same property holds still when we see e in E(TΛ) ;

• we have vtex = vx and vsex = v, the vertex whose corresponding irreducible component of

XΛ,s is the one where x specializes.

The additional data (d, ε,m) are given as follows:

• the datum d : V (TΛ) −→ Q is defined by d(v) = vξ(Dv), the valuation of the different

associated to the irreducible component ξ of XΛ,s corresponding to the vertex v ;
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• the datum ε : E(TΛ) → N ∪ ∞ describes a metric on the Hurwitz tree by associating

to each edge e ∈ E(ΓXΛ
) the thickness of the blowing up giving rise to the double point

corresponding to e, and to each edge ex ∈ LΛ the value ∞ ;

• the datum m : E(TΛ)→ Z is defined by m(e) = |{x : vte → vx}|−1. Morally, m(e) “counts”

the number of ramification points that specialize on components obtained by blowing up

the irreducible component corresponding to vte.

Remark 3.3.2. The value of d(v) for every vertex of the Hurwitz tree can be recovered from the

single value d(r0) at the root of the tree, by the formula

d(v) = d0 + (p− 1) ·
∑

e∈E0(v)

m(e)ε(e),

where E0(v) is the set of edges that form the unique path joining r0 and v.

Remark 3.3.3. In the original definition, the edges of the form ex are defined to be of length zero

were considered. This choice has the advantage to give sense to the quantity d(v) also when v

is a leaf. However this feature is irrelevant for our purposes and we decided to set ε(ex) = ∞.

In fact, in chapter 5 we show that this metric is more natural when considering Hurwitz trees

as non-Archimedean analytic objects.

An Hurwitz tree associated to a local action in characteristic zero satisfies the following prop-

erties:

H1. Let e ∈ E(TΛ) such that m(e) 6= 0. Then (m(e), p) = 1;

H2. For each vertex v ∈ V (ΓXΛ
) we have∑
e∈E+(v)

(m(e) + 1)− (m(e−v ) + 1) = 2

recalling that e−v is the unique edge having v as ending vertex and E+(v) = {e ∈ E(TΛ) :

vse = v};

H3. For each vertex v which is not a leaf, we have 0 ≤ d(v) ≤ vK(p);

H4. The vertex v is a leaf of ΓXΛ
if and only if d(v) = vK(p).

Example 3.3.4. Let ζ3 be a primitive third root of unity and σ be the automorphism of

Zur3 (ζ3,
√

3)[[T ]] given by T 7→ T−3
T−2 . It has order 3 and on the special fiber it reduces to the

automorphism σ̄ : Fp[[t]] → Fp[[t]] given by t 7→ t
t+1 . Solving the equation T = T−3

T−2 gives two

distinct fixed points that we call x0 and x1 (this number could be computed also noticing that

vt(σ̄(t)) = 1). We have v(x1 − x0) = vp(p)/2 which gives an Hurwitz tree with four vertices

{η0,1, P = η
0,3(− 1

2 ) , x0, x1} and three edges {e1, e2, e3} appearing as follows:
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η0,1

P

F1F0

The Hurwitz data attached to each edge are d0 = 0, m(e1) = 2;m(e2) = m(e3) = 0 and h(e1) =

0;h(e2) = 1;h(e3) = −1. From these is possible to calculate the depth at P: d(η
0,
√

3
3

) = 2 = vK(p)

which confirms the fact that it is a terminal branch.

3.3.2 Good deformation data

Recall that, for any faithfully flat and locally of finite type commutative group scheme G over a

scheme X with the fppf topology, the G-torsors over X are classified by the group H1(X,G).

In positive characteristic, when the group scheme is αp or µp, we have a description of this

group in terms of differential forms (see section III.4 of [39] for further details on torsors and

their relations with cohomology).

Proposition 3.3.5. Let X be a smooth variety over a perfect field of characteristic p > 0.

Then

H1(X,αp) = {ω ∈ H0(X,Ω1
X) : ω is locally exact }

and

H1(X,µp) = {ω ∈ H0(X,Ω1
X) : ω is locally logarithmic }.

For the local action in characteristic zero Λ = (Z/pZ, R[[T ]]), recall from 3.2.2 that on every

boundary point there is an induced Z/pZ-covering τ : R[[T ]]{T−1} → R[[Z]]{Z−1}. It is possible

to show that there is a group scheme G of order p on R such that R[[T ]]{T−1} → R[[Z]]{Z−1}
can be realized as a G-torsor. Then, on the special fiber, we have a torsor τs : k[[t]] → k[[z]]

under Gs. By the classification of group schemes of order p (cfr. [46]) we have only three

possibilities for Gs.

Definition 3.3.6. Let τ : R[[T ]]{T−1} → R[[Z]]{Z−1} be a G-torsor over R. Then we say that

τ has

• multiplicative reduction, if τs is a µp-torsor;

• additive reduction, if τs is an αp-torsor;

• étale reduction, if τs is a Z/pZ-torsor.

In the deformation from Kummer to Artin-Schreier (3.1), one starts with a torsor with

multiplicative reduction and ends up with a torsor with étale reduction. When one deals with

more general local actions of Z/pZ in characteristic zero, it may happen that the induced torsor

on some boundaries has additive reduction. One has the following result on the reduction of
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µp-torsors from K to K̃ (see Proposition 1.6. of [31]), which makes more precise Kato’s different

criterion in the case where G = Z/pZ.

Proposition 3.3.7. Let A = R[[T ]]{T−1}, and B a finite A-algebra of degree p which is

flat over R and such that A ∼= BZ/pZ. Let us suppose that the special fiber of the torsor

τ : Spec(B)→ Spec(A) is given by a purely inseparable extension of the residue field Ā ∼= K̃((t)).

Denote by δ the valuation of the different of the extension B/A. Then 0 ≤ δ ≤ vK(p) and we

have one of the following cases

1. If δ = vK(p), then τ has multiplicative reduction: the algebra B is such that

B =
A[X]

Xp − u
, u ∈ A×.

2. If 0 < δ < vK(p), then it is δ = vK(p)− n(p− 1) for some 0 < n < vK(p)
p−1 . In this case, τ

has additive reduction:

B =
A[X]

($nX+1)p−1
$pn − u

, u ∈ A×.

3. If δ = 0 then τ has étale reduction:

B =
A[X]

Xp −X − u1 +$ku2
, u1, u2 ∈ A× and k > 0.

Thanks to Propositions 3.3.5 and 3.3.7, one can attach to each vertex of the Hurwitz tree a

differential form that keeps track of the reduction of the torsor associated to boundary action

at that vertex.

Assignment 3.3.8. Let v ∈ V (TΛ) be a vertex of the Hurwitz tree associated to a local action in

characteristic zero Λ = (Z/pZ, R[[T ]]) such that v is not a leaf. Then to v corresponds a torsor

Spec(B)→ Spec(A) given by the local action at the boundary corresponding to v. The differential

form ωv is then defined according to the classification and the notations of Proposition 3.3.7.

1. When d(v) = vK(p), set ωv = dū
ū ;

2. When 0 < d(v) < vK(p), set ωv = dū;

3. When d(v) = 0, ωv = 0;

where ū denotes the reduction of u on Ā. Such differential forms are called good deformation

data.

In [31], Henrio proves that Hurwitz trees with good deformation data classify automorphisms

of the formal disc with fixed points. He also provides, by means of a “realizability criterion”,

necessary and sufficient conditions to the lifting of local actions to characteristic zero.
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3.4 Hurwitz trees of general type

The possibility to extend the definition of a Hurwitz tree associated to the action of any finite

group G ⊂ AutR(R[[T ]]) has been considered by several authors.

In [14], Brewis and Wewers propose such a generalization. As the Hurwitz tree associated to a

local action of Z/pZ, their construction describes the geometry of fixed points and the ramifica-

tion of the local action of G with respect to boundary valuations. To obtain such a description

they replace the numbers m(e), d(v), with representation theoretical virtual characters, coming

from the ramification theory for analytic curves developed by Huber ([33]). In the case of Z/pZ
these characters are uniquely determined by their value at a generator and the Hurwitz data

boil down to those of [31]. The possibility to extend good deformation data is still open, since

the theory of deformation of G-torsors is not understood for the great majority of finite group

schemes. Without these differential forms it is possible nevertheless to to get interesting neces-

sary conditions to lifting: the so-called “Hurwitz tree obstruction” defined in section 4.1 of [14]

is strictly stronger than the Bertin obstruction (cfr [8]).

3.4.1 Definition of Hurwitz tree

We recall here what is the definition of a Hurwitz tree for a general finite group G following

[14]. We first need some preliminaries on the role played by representations in the ramification

theory of the local action.

Valuations, characters and class functions

Let R(G,C) be the set of class functions of G (i.e. maps G → C which are invariant by

conjugation). It contains the set R+(G) of characters associated to representations of G and

we call R(G) the smallest subgroup of R(G,C) containing R+(G). The elements of R(G) are

called virtual characters. As explained in [54], S14.1, each Q-valued character (meaning an

element of R(G,Q) := R(G)⊗Z Q) is uniquely determined by a class function in R(G,C).

Recall also that the Gauss valuation and the residue valuations on R[[T ]] are defined respectively

by val0,1(
∑
aiT

i) := − log η0,1(
∑
aiT

i) = mini(vR(ai)) and valz(f) := ordt(f/$
val0,1(f)). With

these valuations we can define the objects that are necessary to generalize Hurwitz data: the

depth character and the Artin character.

Definition 3.4.1. The depth character associated to a local action in characteristic zero

Λ = (G,R[[T ]]) is the Q-valued character δΛ ∈ R(G,Q) associated to the class function defined

by

δΛ(σ) :=

−|G| · val0,1(σ(T )− T ) if σ 6= 1

|G|
∑

σ′∈G\{1} val0,1(σ′(T )− T ) if σ = 1.

The Artin character associated to Λ is the element of R(G) associated to the class function
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defined by

aΛ(σ) :=

−valz(σ(T )− T ) if σ 6= 1∑
σ′∈G\{1} valz(σ

′(T )− T ) if σ = 1.

These virtual characters are indeed characters arising from some representation. In fact, if

we let uG to be the character associated to the augmentation representation of G, we have the

formula

δΛ =

m∑
i=1

|Gi| · (hi − hi−1) · u∗Gi

where the G = Gh0 ⊃ · · · ⊃ Ghi ⊃ · · · ⊃ Ghm = {1} is the lower ramification filtration of G and

hi are the ramification jumps in this filtration (with h0 = 0). We notice from these relations

that the the depth character is intimately related to the ramification of the action of G at the

boundary, and in particular with the inertia of this action at the boundary.

We have a similar relation for the Artin character:

aΛ =
∑
x∈LΛ

u∗Gx ,

where Gx is the stabilizer of the ramification point x ∈ LΛ.

Construction

The Hurwitz tree is constructed by induction on the cardinality of the set of ramification points

|LΛ|. One firstly describes its structure in the case where it consists of a unique edge joining

two vertices, and then relates the general situation to this simpler one.

Definition 3.4.2. Let Λ = (G,R[[T ]]) be a local action of a finite group in characteristic zero.

The Hurwitz tree associated to Λ is an oriented metric tree (TΛ, ε) with a datum ([Gv], ae, δv)

as follows:

• for every vertex v ∈ V (TΛ), [Gv] is the conjugacy class of a subgroup of G and δv : G→ C
is a Q-valued character of G;

• For every edge e ∈ E(TΛ), ae : G→ C is a character of G.

When |LΛ| = 0 the Hurwitz tree is empty and there is nothing to say. When |LΛ| = 1 one

constructs the Hurwitz tree as follows:

• The tree consists of two vertices V (TΛ) = {r0, v} and one edge E(TΛ) = {e}. The metric

is such that ε(e) =∞;

• The conjugacy class of a subgroup is the whole group: Gr0 = Gv = G;

• The Q-valued character attached to vertices is δr0 = δv = δΛ, the depth character;

• The Z-valued character attached to the edge is ae = aΛ, the Artin character, which is in

this case equal to the augmentation character uG.
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Let now |LΛ| > 1 and x ∈ LΛ. Consider inside R the closed disc D• centered in x of radius

ρx = max{|x′ − x| : x′ ∈ LΛ}: it does not depend on x and it is the smallest closed disc

containing LΛ. Since LΛ is finite, there is a finite number of disjoint residue classes D◦j ⊂ D•

such that

LΛ,j := D◦j ∩ LΛ 6= ∅ and LΛ ⊂ ∪jD◦j .

The group G fixes D• and, for every j, a subgroup Gj ⊂ G fixes D◦j . The action of Gj induces on

D◦j is a local action in characteristic zero Λj := (Gj , R[[ρ−1
x (T −x)]]) with |LΛj | = |LΛ,j | < |LΛ|.

By induction there is a Hurwitz tree TΛj for every j, such that δΛj =, because it depends only

on D• and not on the residue classes D◦j .

The Hurwitz tree TΛ is constructed by glueing the trees TΛj :

• The vertices are defined by

V (TΛ) = ∪j(V (TΛj )/ ∼) ∪ {r0}

where the relation ∼ is such that v ∼ v′ if and only if v = v′ or v and v′ are both roots of

some TΛj .

• The edges are defined by E(TΛ) = ∪jE(TΛj ) ∪ {e0}.

• The metric is given by ε(e0) = − log(ρx) · |G|;

• The conjugacy class of a subgroup is set to be G = Gr0, as well as G = Gv for v any root

of TΛj ;

• The Q-valued character δΛ is attached to r0, the character δΛj is attached to any v root

of V (TΛj ) ;

• The Z-valued character aΛ is attached to e0, which is in this case equal to the augmentation

character uG;

• For every j, every v ∈ V (TΛj ) not a root, and e ∈ E(TΛj ), the Hurwitz data are those

induced by TΛj .

An Hurwitz tree defined in this way satisfies the following conditions:

H1. For every couple of vertices v, v′ such that v > v′ we have Gv ⊂ Gv′ up to conjugation.

When v0 is the root and v1 the only successor of v0 then Gv1 = Gv0 = G.

H2. The group Gb is nontrivial and cyclic for every b in the set of leaves B ⊂ V (T ).

H3. For every edge e ∈ E we have

δvte = δvse + εe · (ae − u∗G
vte

)

51



H4. Let b ∈ B be a leaf and let Pb ∼= Z/pnZ be the Sylow p-subgroup of Gb (which is unique

by H2). Then the character δb is given by the class function

δb(σ
a) =

−
pordp(a)+1

p−1 , a ∈ Z | a 6≡ 0 mod pn;

npn, σ = id.

3.4.2 Comparaison with the Hurwitz tree for Z/pZ

Brewis and Wewers remarked (cfr Remark 3.9. of [14]) that their construction of the Hurwitz

tree partially generalizes that of Henrio. In order to make this correspondence clear, we prove

their remark and we explicit the relations between the Hurwitz data in the two frameworks.

Proposition 3.4.3. Let (R[[T ]],Z/pZ) be a local action of Z/pZ. Then the Hurwitz tree of

section 3.3.1 is isomorphic, as a rooted metric tree, to the Hurwitz tree of section 3.4.2. Moreover

we have the following relations between the Hurwitz data

i) εe = ε(e) for every edge e;

ii) ae(σ) = −m(e)− 1 for every edge e;

iii) δv(σ) = −d(v)
p−1 for every vertex v.

Proof. To any closed disc D = D(a, ρ) ⊂ D(0, 1) one can associate a blowup XD → Spf(R{T}),
centered in (a,$) whose exceptional divisor is a projective line P1

R. In the construction of 3.4.2,

one associates a disc to each vertex of the Hurwitz tree. The set of all discs obtained in this

way gives the sequence of blowups that are necessary to construct the stably marked model

associated to σ. Each exceptional divisor corresponds then at the same time to a vertex in both

Hurwitz trees. It remains to show that the partial order relation on vertices is respected. To

do this, let Ev be the exceptional divisor corresponding to a vertex of the Hurwitz tree of 3.3.1.

Then v < v′ iff Ev′ is obtained by a blowing up a point of Ev and this is true if and only if

Dv′ ⊂ Dv, which gives the order relation on the Hurwitz tree of 3.4.2.

Let us now compare Hurwitz data. The thickness of the blowup associated to D(a, ρ) ⊂ D(0, 1)

is by construction the thickness of the annulus D(0, 1) \ D(a, ρ), then we get equality i).

For every σ ∈ Z/pZ of order p, one easily calculates uG(σ) = −1. Then the Artin character ae(σ)

is the opposite of the number of ramification points contained in the residue class associated to

e. With the description of 3.3.1, we get the second equality.

For an edge e starting from v and ending in v′ we have the formulas

d(v′) = d(v)+(p−1)(m(e)ε(e)) and δv′(σ) = δv(σ)+εe ·(ae−uG)(σ) = δv(σ)+εe ·(ae(σ)+1).

We then have δv′(σ) = δv(σ) − m(e)ε(e), using the relation just proved between the Artin

character and m(e). Notice also that every Hurwitz tree is a sub-Hurwitz tree of one having

a root v0 such that d(v0) = 0. This condition implies that the action at the boundary point

corresponding to v0 has trivial inertia. Therefore, for this Hurwitz tree δv0(σ) = 0 as well.
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Iterating the formulas above then gives for every vertex v:

d(v) = (p− 1)(
∑
i

(m(ei)ε(ei))) and δv(σ) = −
∑
i

(m(ei)ε(ei))

where the sum is taken over all the edges joining v0 with v, hence the third equality holds as

well.

3.5 The elementary abelian case

Let G = (Z/pZ)n. It is possible to use results of section 3.3.1 to lift each intermediate Z/pZ-

extension, but there are obstructions to the compatibility of these liftings. In the case of

equidistant points, the obstruction can be formulated by saying that the good deformation data

giving rise to each lifting form a k-vector space of dimension n.

In [27] the following congruence conditions are given for liftings of actions of (Z/pZ)2:

Theorem 3.5.1. Let G = Z/pZ × Z/pZ and, for i ∈ {1, . . . , p + 1}, let Gi be the distinct

subgroups of order p of G. Let λ = (G, K̃[[t]]) be a local action in characteristic p, inducing

p+ 1 Z/pZ-Galois covers

Spec(K̃[[t]]Gi)→ Spec(K̃[[t]]G)

with conductors mi + 1 and other p+ 1 Z/pZ-Galois covers

Spec(K̃[[t]])→ Spec(K̃[[t]]Gi)

with conductors m′i + 1. Suppose that m1 ≤ · · · ≤ mp+1. If there is a lifting to characteristic

zero of the local action λ, then only the following two situations can occur:

1. If m1 < m2, then m1 ≡ −1 mod p, m′1 = m2p −m1(p − 1), mi = m2 and m′i = m1 for

i ∈ {2, . . . , p+ 1}

2. If m1 = m2 then mi = m1 ≡ −1 mod p and m′i = m1 for 1 ≤ i ≤ p+ 1.

In both cases, the two covers Spec(K̃[[t]]Gi) → Spec(K̃[[t]]G) for i ∈ {1, 2} have (p−1)(m1+1)
p

geometric ramification points in common.

Conversely, ifm1 ≡ −1 mod p and if we suppose that we can lift Spec(K̃[[t]]Gi)→ Spec(K̃[[t]]G)

to characteristic zero for i ∈ {1, 2}in such a way that the liftings have (p−1)(m1+1)
p geometric

ramification points in common, then there exist a lift of λ to characteristic zero, given by the

normalization of the compositum of the two liftings.

This theorem has some immediate consequences on the Hurwitz trees associated to actions

of (Z/pZ)2. We see more in details in the following chapters how the structure of Hurwitz trees

is determined by explicit calculations allowing the existence of local actions in characteristic

zero with given properties.
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Chapter 4

Explicit calculations

Despite the fact that the local lifting problem has been studied for many years, it is difficult to

have explicit examples of actions that lift. The most direct approach to the problem would be

that of writing down explicit elements of K̃[[t]] and try to lift their coefficients. This method is

nevertheless not effective at all, when wild ramification occur. More in general, when G is not an

Oort group, finding a criterion to decide whether a given action lifts or not is an open problem

for every group. We think that it is worthwhile to spend some time on explicit calculation, in

order to understand the difficulties that arise in this framework. Combining this approach with

the more abstract one of chapter 5, we try to shed new light on different aspects of the local

lifting problem.

In the first part of the chapter we focus on the tree structure of an Hurwitz tree, and we

get some restrictions on the possible shapes of Hurwitz trees, using only the fact that we deal

with actions of finite groups on graphs. In the second part we study actions of G = (Z/pZ)n

in the case where the ramification points are all at the same mutual distance. In this case

the conditions on the existence of liftings reduce to prove that there are Fp vector spaces of

multiplicative good deformation data. Writing down their form, one finds explicit equations in

characteristic p, with the poles of those deformation data as unknowns, and their residues as

parameters, that have been studied by Pagot in [47]. We find a new condition on these residues,

that in the case where p = 3 determines them completely. Restricting to the case p = 3 and

studying the combinatorics of the poles we can reprove the results of Pagot and go further by

studying actions with more ramification points.

4.1 Combinatorial rigidity of Hurwitz tree

The Hurwitz tree is a quite complex object, in the sense that it encodes properties coming from

different behaviors of coverings in characteristic 0. We claim that we can infer some properties

of actions, just by studying the tree structure and knowing the group that acts on every vertex.

The main idea is that the Hurwitz subtreees contained in a given Hurwitz tree shall satisfy the

same defining properties. With this in mind, we can formulate some necessary conditions that

a tree shall satisfy in order to have a chance of giving rise to a Hurwitz tree. We do this by
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looking at the algebraic structure of the Tate algebra R{T}. Its reduction is the polynomial

algebra K̃[t], in which automorphisms of finite order are easy to understand. We study in this

way the “local lifting problem for closed discs”. Then, by studying local actions of open discs

on their closed subdiscs, we can find combinatorial properties satisfied by Hurwitz trees.

Let TΛ be an Hurwitz tree and let T ′ be a subtree of TΛ, rooted in a vertex v ∈ V (T ). From

the construction by induction of Section 3.4.1, there are Hurwitz data naturally induced by TΛ

on T ′. This Hurwitz subtree represents the restriction of the action of G on a disc Dv contained

in the unit disc. Following this correspondence, [Gv] is the conjugacy class of the biggest group

contained in G that fixes Dv.

We can then decompose an Hurwitz tree into several subtrees carrying actions of their stabilizer.

Let us try a systematic approach to this decomposition.

The simplest scenario it is the one with just a single fixed point b ∈ B. In this case the Hurwitz

tree has just one edge joining the root to the fixed point and G = Gb is a cyclic group.

4.1.1 Lifting actions to the closed unit disc

Let us begin the study of actions on closed discs, with a description of automorphisms of finite

order of the affine line in positive characteristic.

Proposition 4.1.1. Let σ̄ ∈ Aut(K̃[t]) be an automorphism of finite order. Then it is deter-

mined by one of the following rules:

• σ̄(t) = t

• σ̄(t) = ζm · t with (m, p) = 1

• σ̄(t) = t+ b with b ∈ K̃,

or by a composition of those.

Proof. Since σ̄ is surjective we have σ̄(t) = at + b with a 6= 0. The finiteness of its order gives

a further condition over the coefficients :

t = σ̄n(t) = ant+

n−1∑
i=0

aib

gives an = 1 and we have two options: either a = 1 or a = ζn (with n coprime with p). In

the first case the equation becomes t = t+ n · b giving n · b = 0. When b = 0 we have identity

and when b 6= 0 we have p = n (and we fall into the third option). In the second case a = ζn

satisfying automatically the condition
∑n−1

i=0 a
i = 0. Therefore σ̄ is a translation composed with

a rotation of order prime to p.

Remark 4.1.2. The Proposition 4.1.1, tells us that the problem of lifting local actions for the

closed unit disc is simpler than the one for open discs. Every rotation can be lifted just by

lifting the root of unity. In the case of translations, one may ask if they admit a lifting as an
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automorphism of order p of R{T}. If such lifting exists, it does not restrict to an automorphism

of R[[T ]]. This is in fact a behavior that appear only when studying closed discs.

This has some consequences at the level of automorphisms of closed discs in mixed char-

acteristic. The reduction of such actions are automorphisms of finite order of the affine line

over K̃. Applying the classification of Proposition 4.1.1 to this reduction, one gets the following

description of the behavior of the action on residue classes.

Corollary 4.1.3. Let σ ∈ Aut(R{T}) define a local action of Z/pnZ on the closed unit disc.

If there exist a ∈ m and an open unit disc D◦(a, 1) fixed by σ, then σ reduces to the identity

(σ̄ = id over K̃[t]). In other words a residue class is fixed by σ if and only if all residue classes

are fixed by σ.

Proof. Such action can not reduce to a nontrivial roto-translation. In fact the rotation compo-

nent is trivial because it is of order pn, and the translation component is trivial because at least

one point is fixed. Then the reduction of the whole action is trivial.

Remark 4.1.4. The corollary guarantees that every open unit subdisc is fixed whenever there

is a fixed open disc, but it does not assure the existence of fixed points in D(0, 1). There are,

in fact, actions of open discs without fixed points. However, it tells that, whenever a wildly

ramified action of a closed disc has fixed points, then it must necessarily reduce to the identity.

If we drop the assumption of wild ramification, we need to have two fixed residue classes to

assure that σ̄ is the identity.

Theorem 4.1.5. Let Λ = (G,R[[T ]]) be a local action in characteristic zero, let TΛ be the

associated Hurwitz tree and let v ∈ V (TΛ) be a vertex of this tree. Let Gv ∼= Z/pnZ for some

n ∈ N. Then, for every couple e′, e′′ ∈ E+(v), one has G
ve
′
t

= G
ve
′′
t

, and it is either G
ve
′
t

= Z/pnZ
or G

ve
′
t

= Z/pn−1Z.

Proof. Let σ be a generator of Gv. After the classification of Proposition 4.1.1, its reduction σ̄

is either the identity or a translation. In the first case, the stabilizer of any residue class is Gv

itself, in the second one, it is generated by σp (in fact such a translation has always order p),

which is an element of order pn−1.

This theorem, saying that one can not get rid all at once of the wildly ramification, has some

consequences on the structure of Hurwitz trees. For example, for a local action of Z/pnZ, this

implies that the edges between the root and a leaf of the Hurwitz tree are at least n + 1. The

same result could be obtained with classical ramification theory. In fact the higher ramification

jumps (which are strictly related to the number of ramification points) in the upper ramification

filtration of a Z/pnZ extension are always distinct (see [55], section 4), but this is somehow a

simpler argument. We shall mention on this subject, that the control of the distance between the

jumps in the ramification filtration plays a major role in the proof of the Oort conjecture both

in the article by Pop ([50]) and in the one by Obus and Wewers ([44]). It would be interesting

to deduce the properties of these jumps by elementary arguments, similar to those contained in

the present section.
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4.2 Lifting actions of elementary abelian p-groups

We consider in what follows liftings of local actions of G = (Z/pZ)n with m + 1 ramification

points. It is known that such local actions do not lift to characteristic zero in general. Neverthe-

less, there are examples of actions that lift, and the question of giving a criterium to determine if

a local action of an elementary abelian p-group lifts to characteristic zero is still open. The final

aim of such a study is to obtain a parametrization (or, at least, a classification) of local actions

in characteristic zero and their reduction. This problem has been studied in various fashions

by Raynaud in [52], by Green and Matignon in [27] and by Pagot, in [47]. Most of this work

has been done assuming that the ramification points of possible liftings have the same relative

distance from each other. We also make this assumption, calling such actions equidistant lift-

ings. The existence of equidistant liftings is discussed in the present section at first in the whole

generality, by exposing known results and proving- new conditions that permit us to go further

in this study. In a first instance, we relate the existence of those liftings with the existence of

some multiplicative good deformation data - that assure liftings of intermediate Z/pZ actions

(cfr. section 3.3.2) - together with certain compatibility conditions for these differential forms.

Then, we make further assumptions in order to establish additional constraints on the structure

of the liftings: first of all, we work with n = 2; then, we fix the number of ramification points.

We recall the cases studied by Pagot (m+ 1 = p, m+ 1 = 2p and m+ 1 = 3p) and we are able

to go further, finding additional conditions on the residues of multiplicative good deformation

data. These conditions permit to simplify the proofs of Pagot’s results, and to study explicitly

the cases where m + 1 = 4p and m + 1 = 5p. Finally we set p = 3. In this case, Green and

Matignon showed that there exist liftings with m + 1 = 12. With the previous results, we are

able to find necessary conditions for liftings, when m+1 = 15. Such conditions are expressed in

terms of a polynomial, that the coefficients of multiplicative good deformation data shall satisfy,

if they are mutually compatible.

4.2.1 Lifting intermediate Z/pZ-extensions

The results of Henrio, recalled in section 3.3.2, and those of Green-Matignon and Raynaud,

exposed in section 3.5, permit to relate equidistant liftings of (Z/pZ)n with liftings of their

Z/pZ sub-extensions. Recall that a lifting to characteristic zero of equidistant local actions

of the form (k[[t]],Z/pZ) with conductor m is equivalent to the existence of a multiplicative

good deformation datum, namely a logarithmic differential form ω ∈ ΩP1
k
, having a unique

zero of order m − 1 in ∞. Let xi ∈ k be the poles of ω and let hi ∈ F×p be the residue of ω in

xi. Finally, let x be a parameter for P1
k. Then we can write

ω =

m∑
i=0

hi
x− xi

dx =

m∑
i=0

hixi
1− xiz

dz

as well as

ω =
u∏m

i=0(x− xi)
dx =

uzm−1∏m
i=0(1− xiz)

dz
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after change of parameter z = 1
x . A comparison of the two formulas leads to the following set

of conditions that have to be satisfied by poles and residues :
∑m

i=0 hix
k
i = 0 ∀ 1 ≤ k ≤ m− 1 (∗)∏

i<j(xi − xj) 6= 0 (∗∗)

Conversely, any m+1-uple of couples {(xi, hi) ∈ k×F×p }i=0,...,m satisfying these equations gives

rise to a multiplicative good deformation datum ω. We call such {(xi, hi)} the characterizing

datum of ω.

The equations (∗) gives rise to a closed subvariety X ↪→ Am+1
k and the inequalities (∗∗) to

an open subvariety U ↪→ X. The conditions of existence of good deformation data are then

equivalent to the existence of rational points on U . Henrio then states a criterion for the

existence of a multiplicative good deformation datum (Proposition 3.16 in [31]), formulated in

terms of partitions of the set of residues of ω.

Definition 4.2.1. Let h = {h0, . . . , hm} be a m+ 1-uple of elements of F×p such that
∑
hi = 0.

A partition P of {0, . . . ,m} is called h-adapted, if
∑

j∈J hj = 0 for every J ∈ P.

Using the definition, we can state the criterion in the following way.

Proposition 4.2.2 (Partition condition). If there is a maximal h-adapted partition P of

{0, . . . ,m} such that |P| ≤
[
m
p

]
+ 1, then there is a m + 1-uple {x0, . . . , xm} of elements

of k and a multiplicative good deformation datum ω, such that {(xi, hi)} is the characterizing

datum of ω.

Sketch of proof. To every partition P of {0, . . . ,m}, one associates a closed subschemeXP ↪→ X,

defined by the equations Xi −Xj = 0 for every i, j that are in the same element of P. If P is

h-adapted, then XP ∼= A|P|
K̃

.

At this point, one shows that the irreducible components of X have dimension greater or equal

than
[
m
p

]
+ 2. Then, when there exists, as in the assumption, a maximal h-adapted partition

P of {0, . . . ,m} such that |P| ≤
[
m
p

]
+ 1, one shows that X \XP contains a K̃-rational point

of U . The coordinates of this point are exactly the m+ 1-uple {x0, . . . , xm} which gives rise to

ω.

When the number of poles of ω is a multiple of p this condition becomes quite restrictive:

Proposition 4.2.3. If m+ 1 = λp, then the partition condition is equivalent to ask that, after

possibly renumbering of the poles,

hi = h0 if i ≤ p− 1

hi = hp if p ≤ i ≤ 2p− 1

. . .

hi = h(λ−1)p if p(λ− 1) ≤ i ≤ λp− 1.
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Proof. Let P be a maximal h-adapted partition of {hi} with |P| ≤ λ.

Every set J ∈ P is of cardinality at most p. Otherwise, if we let J = {hi1 , . . . , hip , . . . , }, the

partition P is no more maximal, since the set {hi1 , hi1 + hi2 , hi1 + hi2 + hi3 , . . . , hi1 + · · ·+ hip}
contains necessarily the element 0. Moreover |J | ≥ p because |P| ≤ λ. Hence |J | = p for every

J ∈ P.

Let then J = {hi1 , . . . , hip}, we want to show that hij = hik for every j and k. To do this,

consider the set {hi1 , hi1 + hi2 , . . . , hi1 + hi2 + · · ·+ hip}. As above, it contains all the elements

of Fp because any repetition would result in a contradiction of the maximality of P. It is the

same for the set {hi2 , hi1 + hi2 , . . . , hi1 + hi2 + · · · + hip}, so that hi1 = hi2 . With analogous

arguments, one shows that hi1 = hij for every j.

Lemma 4.2.4. Let {(xi, hi)} be a characterizing datum for a multiplicative good deformation

datum ω. Then
m∑
i=0

xi = 0.

Proof. We write ω = uzm−1∏m
i=0(1−xiz)dz and we calculate u

∑
xi. Define the following m + 1-

dimensional diagonal matrix and m+ 1-dimensional vector

A =


x0 . . . 0
...

. . .
...

0 . . . xm

 , H =


h0

...

hm

 ,

and notice that u = tr(Aλp−1H).

Now, applying the Cayley-Hamilton theorem and using equations (∗), we get:

tr(A) ·Aλp−1H = AλpH

which gives, taking the traces on both sides, that (
∑m

i=0 xi)·u =
∑m

i=0 hix
λp
i = (

∑m
i=0 hix

λ
i )p = 0.

Since u 6= 0, we must have
∑m

i=0 xi = 0.

4.2.2 Fp-vector spaces of multiplicative good deformation data

We can use the results of section 4.2.1 to study equidistant lifting of (Z/pZ)n-actions. In this

case, the problem of lifting each intermediate p-extension in a compatible way is equivalent to

the existence of n-dimensional Fp-vector spaces of multiplicative good deformation data. We

denote such spaces by Lm+1,n. In [38], examples of these spaces are constructed for n = 2 and

p(p − 1)|m + 1. Pagot conjectures that this is the only possible case and proves the following

(cfr. Section 1.2. of [47]) :

Lemma 4.2.5. Let us assume that there exists a vector space Lm+1,n. Then m + 1 = λpn−1,

with λ ∈ N. If {ω1, . . . , ωn} ∈ Lm+1,n is a basis for this vector space, then any pair (ωi, ωj) with

i 6= j has exactly λ(p− 1)n−1 poles in common.
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Let n = 2 and suppose to have a Fp-vector spaces of multiplicative good deformation data

Lm+1,2 generated by two forms ω1 and ω2. By Lemma 4.2.5, we can partition the set of poles of

these forms in such a way that ω1 + jω2 has its poles in all but the set X(j) := {x(j)
1 , . . . , x

(j)
λ }

for j = 0, . . . , p− 1, and that ω2 has its poles in all but the set X(p) := {x(p)
1 , . . . , x

(p)
λ }. We can

then write

ω1 :=
uzm−1∏p

j=1

∏λ
i=1(1− x(j)

i z)
dz and ω2 :=

vzm−1∏p−1
j=0

∏λ
i=1(1− x(j)

i z)
dz, for suitable u, v ∈ k.

Then, we consider the p+ 1 polynomials P (j), for j ∈ {0, . . . , p}, defined by
P (0) =

∏λ
i=1(X − x(0)

i )

. . .

P (p) =
∏λ
i=1(X − x(p)

i )

which appear also in the article by Pagot (cfr. section 1.3. in [47]).

Our aim is to express the equations (∗) in terms of the coefficients of such P (j), which are

symmetric functions in the variables given by the poles. We set pn(X(j)) =
∑λ

i=1 x
(j)
i

n
the n-th

symmetric power sum and

Sn(X(j)) =


∑

i1<···<in x
(j)
i1
. . . x

(j)
in

if 1 ≤ n ≤ λ

1 if n = 0

0 if n > λ

the n-th elementary symmetric polynomial. The polynomials are defined in such a way to get

the following conditions on the Si(X
(j)):

Lemma 4.2.6. Let a = u
v and denote by Si(t1, . . . , tn) the i-th elementary symmetric polyno-

mial in the variables {t1, . . . , tn}. Then

(a+ j)Si(X
(j)) = aSi(X

(0)) + jSi(X
(p))

for every j ∈ {0, . . . , p}.

Proof. Let us suppose that j ∈ {1, . . . , p− 1}, otherwise we have a trivial equality. We have

ω1 =
uP (0)(x)dx∏p
k=0 P

(k)(x)
, ω2 =

vP (p)(x)dx∏p
k=0 P

(k)(x)
and ω1 + jω2 =

wjP
(j)(x)∏p

k=0 P
(k)(x)

which implies that wjP
(i)(x) = uP (0)(x)+ jvP (p)(x). Since the polynomials P (j) are monic and

of the same degree, one gets wj = u+ jv and then the claim.

Corollary 4.2.7. We have S1(X(j)) = S1(X(j′)) for every j, j′ ∈ {0, . . . , p}.

Proof. Lemma 4.2.4 gives
∑p

j=1 S1(X(j)) = 0 when applied to ω1 and
∑p−1

j=0 S1(X(j)) = 0 when

61



applied to ω2. We then have S1(X(0)) = S1(X(p)). Then, applying Lemma 4.2.6, we find

S1(X(j)) = S1(X(0)) for every j.

4.2.3 Actions of Z/3Z× Z/3Z

From now on, we suppose that n = 2, and that p = 3. The fundamental remark is that,

with these assumptions, the characterizing data for ω1 and ω2 satisfy the partition condition,

contained in Proposition 4.2.2. Some of the results contained in this section stay true when

assuming that the partition condition is satisfied, even for p 6= 3. Nevertheless, for every

p > 3, there are examples of multiplicative good deformation data not satisfying the partition

condition, as shown in section 1.1 of [47].

We investigate here the algebraic restrictions that the residues shall satisfy in order to appear

in the characterizing datum of a multiplicative good deformation datum. The main tool to prove

the results of this section is the combinatorics of the poles of the differential forms ω1 and ω2.

The features of such combinatorics are expressed via the set of variables X(j) = (x
(j)
1 , . . . , x

(j)
λ ),

and their symmetric functions pn(X(j)) and Sn(X(j)).

Notice that we have chosen the P (j) in such a way that the poles of X(1) have the same residues

for ω1 and ω2, whence the poles of X(2) have exactly the opposite residues when considered in

ω1 with respect as when considered in ω2. Then one loses no information in considering only the

residues of ω2 at poles of X(0): let us call h
(j)
i the residue of ω1 in x

(j)
i if j ∈ {1, . . . , p} and h

(0)
i

the residue of ω2 in x
(0)
i . They are all element of F×p and, by Proposition 4.2.3, the cardinality

of the set {x(j)
i : h

(j)
i = 1, j ∈ {1, 2, 3}} is a multiple of 3. If we define qn(X(j)) =

∑λ
i=1 h

(j)
i x

(j)
i

n
,

then the equations (*) become, for 0 ≤ k ≤ λp− 2,qk(X(1)) + qk(X
(2)) + qk(X

(3)) = 0

qk(X
(0))− qk(X(1)) + qk(X

(2)) = 0
.

Definition 4.2.8. Let S be a set of poles for a differential form ω ∈ Lm+1,2. Then S is said of

type (n1, . . . , np−1) if there are exactly ni poles in S with residue equal to i for every i ∈ F×p .

Example 4.2.9. The fact that q0(X(1)) + q0(X(2)) + q0(X(3)) = 0 and q0(X(0)) − q0(X(1)) +

q0(X(2)) = 0 implies that there exists at least a j with q0(X(j)) = 0. Hence, X(j) is a set of

poles of type (n1, n2) with n1 ≡ n2 mod 3.

The result in Example 4.2.9 has already some consequences in the study of configurations of

residues that cannot occur in spaces of good deformation data.

Proposition 4.2.10. Let λ = 5. Then there are at least two values of j ∈ {0, 1, 2, 3}, such that

X(j) is not of type (5, 0) or (0, 5).

Proof. With a proper choice of a basis for L15,2, we may suppose that X(0) is of type (4, 1) or

(1, 4), and that x
(0)
5 is the pole having residue different from the others. If all X(j) are of type

(5, 0) for j = 1, 2, 3, then we have x
(0)
5 = x

(0)
1 + x

(0)
2 + x

(0)
3 + x

(0)
4 , since S1(X(j)) is a constant.
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We have then that pk(x
(0)
1 , x

(0)
2 , x

(0)
3 , x

(0)
4 ) = p1(x

(0)
1 +x

(0)
2 +x

(0)
3 +x

(0)
4 )k for every k. This leads,

by Newton identities to get the relations

S2(x
(0)
1 , x

(0)
2 , x

(0)
3 , x

(0)
4 ) = 0

and

S3(x
(0)
1 , x

(0)
2 , x

(0)
3 , x

(0)
4 )S1(x

(0)
1 , x

(0)
2 , x

(0)
3 , x

(0)
4 ) = S4(x

(0)
1 , x

(0)
2 , x

(0)
3 , x

(0)
4 ).

After possible translation on the set of poles, we may take S1(X(0)) = 0 (or, equivalently,

x
(0)
5 = 0). But this would imply S4(x

(0)
1 , x

(0)
2 , x

(0)
3 , x

(0)
4 ) = 0, so that 0 ∈ {x(0)

1 , x
(0)
2 , x

(0)
3 , x

(0)
4 }.

This is a contradiction, since all the poles are distinct, by condition (∗∗).

Remark 4.2.11. With the same argument, we can show that Proposition 4.2.10 holds more in

general when λ ≡ −1 mod 3, assuming that X(0) is of type (λ − 1, 1) when λ > 5. This leads,

among other things, to show that, if λ = 2, X(j) are of type (1, 1) for every j. This is a simpler

proof of the one in [47], Theorem 2.2, second part.

We may suppose without loss of generalty that X(0) is a set of poles of type (n1, n2) with

n1 ≡ n2 mod 3, (i.e. it is of type (4, 1) or (1, 4)). From now on, we make this assumption, and

we study the possible types of X(1), X(2) and X(3). When λ = 5, we can also use a more direct

approach to determine the set of residues, in order to get an explicit form for the equation (∗).

Theorem 4.2.12. Let λ = 5. Then the sets of poles (X(j)) are of type (4, 1) or (1, 4) for every

j ∈ {0, 1, 2, 3}. More in general, for any λ, the (X(j)) are of type (n1, n2) with n1 ≡ n2 mod. 3.

Proof. To prove this result one can use a generalization of the construction of the proof of

Lemma 4.2.6. We start by writing down an identity that is used several times in this proof:

n∑
i=1

hi
X − xi

=

∑n−1
j=0

∑
i(−1)jhiSj(x1, . . . , x̂i, . . . , xn)Xn−1−j∏

i(X − xi)
.

We consider then the set of differential forms {ω∗j }j=0,...,3 defined by ω∗j =
∑5

i=1
hi

X−x(j)
i

dX, and

the polynomials Q(j) such that ω∗j = Q(j)(X)∏
i(X−x

(j)
i )
dX = Q(j)(X)

P (j)(X)
dX. Using the previous description

of differentials with simple poles, plus the relation

Sn(x1, . . . , x̂i, . . . , xn) =

n∑
k=0

(−1)kxki Sn−k(x1, . . . , xn),

we get

Q(j)(X) =

4∑
i=0

qi(X
(j))P̂

(j)
4−i(X),

where the “hatted” polynomials are defined by P̂
(j)
n (X) =

∑n
i=0 Sn−i(X

(j))Xi for every n ≤ 4.

Notice that the polynomials Q(1) and Q(2) are related to Q(0) and Q(3). In fact, from Lemma

4.2.6, one gets (a+j)P̂
(j)
n (X) = aP̂

(0)
n (X)+jP̂

(3)
n (X). Moreover, for k ≤ 13 we have qk(X

(j)) =
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qk(X
(3))− jqk(X(0)). From this we get

(a+ j)Q(j)(X) = jQ(3)(X)− ajQ(0)(X) +R(X), (4.1)

where R(X) := a
∑4

i=0 qi(X
(3))P̂

(0)
4−i(X) −

∑4
i=0 qi(X

(0))P̂
(3)
4−i(X), and does not depend on j.

From now on, we omit the variable X in the polynomials of the following equations, for the sake

of readability.

The relations between Q(j)s and P (j)s are made explicit by the relations ω2 = ω∗0 −ω∗1 +ω∗2 and

ω1 = ω∗1 + ω∗2 + ω∗3. These yieldQ(0)P (1)P (2) −Q(1)P (0)P (2) +Q(2)P (0)P (1) = v

Q(1)P (2)P (3) +Q(2)P (1)P (3) +Q(3)P (1)P (2) = u

Now, after Lemma 4.2.6 and Corollary 4.2.7 one has the relations (a + 1)P (1) = aP (0) + P (3)

and (a− 1)P (2) = aP (0) − P (3) that turn the previous conditions into

[a2Q(0) − a(a+ 1)Q(1) + a(a− 1)Q(2)]P (0)2
+ [(a− 1)Q(2) + (a+ 1)Q(1)]P (0)P (3)−

Q(0)P (3)2
= v(a2 − 1)

and

[−(a+ 1)Q(1) + (a− 1)Q(2) −Q(3)]P (3)2
+ [a(a+ 1)Q(1) + a(a− 1)Q(2)]P (0)P (3)+

a2Q(3)P (0)2
= u(a2 − 1).

We use now the relations between the Q(j), to get the formula

aQ(3)P (0)2 −RP (0)P (3) −Q(0)P (3)2
= v(a2 − 1).

Now, deg(R) ≤ 3, yielding deg(Q(3)) ≤ 3. But this means, by equation (4.1), that deg(Q(j)) ≤ 3

for every j. Then,
∑5

i=0 h
(j)
i vanishes for every j, and the theorem is proved. An analogous

argument permits to treat the case where λ > 5.

Remark 4.2.13. The decoupages ω2 = ω∗0 − ω∗1 + ω∗2 and ω1 = ω∗1 + ω∗2 + ω∗3 permit already to

exclude several possibilities. In fact, ω1, ω2 and ω∗0 have no poles at ∞, and this forces the ω∗j
to have the same residue at ∞. By Proposition 4.2.10, one excludes the case where this residue

is -1, and by Theorem 4.2.12 the case of residue equal to 1. This is a rather strong result:

in this way we have determined uniquely the possible values of residues h
(j)
i . After possibly

renumbering the poles (but still assuming that X(j) is a set of poles that are all not belonging

to the same differential form), we may in fact assume without loss of generality that h
(j)
i = 1 if

2 ≤ i ≤ 5, and h
(j)
1 = −1 for every j ∈ {0, 1, 2, 3}. This is what permits us to study completely

the case where λ = 5, finding explicitly the poles xi in this framework.
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4.2.4 The case “(4,1)”

Let p = 3 and λ = 5. Theorem 4.2.12 allows us to suppose, without loss of generality, that

h
(j)
1 = −1 for every j ∈ {0, 1, 2, 3} and that h

(j)
i = 1 for i ∈ {2, 3, 4, 5} and j ∈ {0, 1, 2, 3}. Recall

that we set p`(X
(j)) = x

(j)
1

`
+ · · ·+ x

(j)
5

`
, the `-th power sum symmetric polynomial. Then one

can reformulate the set of equations (∗) (respectively for ω1 and ω2) asp`(X(1)) + p`(X
(2)) + p`(X

(3)) = −x(1)
1

`
− x(2)

1

`
− x(3)

1

`

p`(X
(0))− p`(X(1)) + p`(X

(2)) = −x(0)
1

`
+ x

(1)
1

`
− x(2)

1

` (4.2)

Moreover, since these equations are invariant by translation and homothetic transformations,

we can suppose that the constant S1(X(j)) vanishes, and that x
(0)
1 = 1. For this change to

be admissible, one has only to show that x
(0)
1 6= 0 when S1(X(j)) = 0. This is true, since

x
(0)
1 − x

(1)
1 + x

(2)
1 = S1(X(j)) and the poles are distinct. From (4.2), with ` = 1, one gets the

following linear conditions on poles of ω1:x
(1)
1 + x

(2)
1 + x

(3)
1 = 0

x
(1)
1 − x

(2)
1 = 1

(4.3)

which gives x
(1)
1 = x

(3)
1 − 1 and x

(2)
1 = x

(3)
1 + 1. Once that one has these relations, it is not hard

to find the right hand side of the equations in terms of the sole number x
(3)
1 . To get the same

for the left hand side, we apply Newton identities, combined with the relations of Lemma 4.2.6,

to reduce the number of variables.

Proposition 4.2.14. There are the following relations between p`(X
(j))j=1,2, p`(X

(0)) and

p`(X
(3)):

•(a+ j)p2(X(j)) = ap2(X(0)) + jp2(X(3))

•(a+ j)2p4(X(j)) = (a+ j)(ap4(X(0)) + jp4(X(3))) + aj(p2(X(0))− p2(X(3)))2

•(a+ j)2p5(X(j)) = (a+ j)(ap5(X(0)) + jp5(X(3)))− aj((p2(X(0))− p2(X(3)))(S3(X(0))− S3(X(3))))

Proof. The first equation is proved by observing that S1(X(j)) = 0 entails p2(X(j)) = S2(X(j)).

Let us prove the relation in degree 4: Newton identities give

p4(X(j)) = −S2(X(j))p2(X(j))− S4(X(j)) for every j ∈ {0, 1, 2, 3}.

Then, using Lemma 4.2.6 and the relation in degree 2, we can write

(a+ j)2p4(X(j)) = −(aS2(X(0)) + jS2(X(3))(ap2(X(0)) + jp2(X(3)))− (a+ j)(aS4(X(0)) + jS4(X(3)))

= a(a+ j)(−S2(X(0))p2(X(0))− S4(X(0))) + j(a+ j)(−S2(X(3))p2(X(3))− S4(X(3)))+

aj(S2(X(0))− S2(X(3)))(p2(X(0))− p2(X(3)))

= (a+ j)(ap4(X(0)) + jp4(X(3))) + aj(p2(X(0))− p2(X(3)))2.
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With the same strategy we can compute the relation in the degree 5:

(a+ j)2p5(X(j)) = (aS3(X(0)) + jS3(X(3))(ap2(X(0)) + jp2(X(3)))− (a+ j)(aS5(X(0)) + jS5(X(3)))

= a(a+ j)(−S3(X(0))p2(X(0))− S5(X(0))) + j(a+ j)(−S3(X(3))p2(X(3))− S5(X(3)))−

aj(S3(X(0))− S3(X(3)))(p2(X(0))− p2(X(3)))

= (a+ j)(ap5(X(0)) + jp5(X(3)))− aj((p2(X(0))− p2(X(3)))(S3(X(0))− S3(X(3)))).

Proposition 4.2.14 is the key fact to perform our strategy. By expressing p`(X
(j)) in terms

of p`(X
(0)) and p`(X

(3)) we obtain the left hand side of equations (4.2) uniquely in terms of

power sums in the variables of X(0) and X(3). Since the right hand side is expressed in terms

of x
(3)
1 , we can explicit the x

(j)
i in terms only of x

(3)
1 . This proceeding, despite its elementary

nature, is computationally rather complex. We introduce then the following notations to help

us simplify the formulae.

Define αi = pi(X
(0)), βi = (pi(X

(0)) − pi(X
(3))), γi = (Si(X

(0)) − Si(X
(3))), δi = pi(X

(0))

and let j ∈ {1, 2}. If one wants to extend the results of Proposition 4.2.14 to homogeneous

polynomial of higher degree the following lemma turns out to be useful.

Lemma 4.2.15. For every couple of natural numbers i, k > 0 and every j ∈ {1, 2} we have

(aSi(X
(0))+jSi(X

(3)))(apk(X(0))+jpk(X(3)))−(a+j)[aSi(X
(0))pk(X(0))+jSi(X

(3))pk(X(3))] = −ajγiβk.

Proof.

(aSi(X
(0)) + jSi(X

(3)))(apk(X(0)) + jpk(X(3)))− (a+ j)[aSi(X
(0))pk(X(0)) + jSi(X

(3))pk(X(3))] =

aj(Si(X
(0))pk(X(3)) + Si(X

(3))pk(X(0))− Si(X
(0))pk(X(0))− Si(X

(3))pk(X(3))) =

aj(Si(X
(0))− Si(X

(3)))(pk(X(3))− pk(X(0))) = −ajγiβk.

Once the notations introduced, Proposition 4.2.14 transforms formulas (4.1) for ` = 2, 4, 5

into x
(1)
1

2
+ x

(2)
1

2
+ x

(3)
1

2
= a2

a2−1
β2

x
(1)
1

2
− x(2)

1

2
− x(0)

1

2
= α2 − a

a2−1
β2x

(1)
1

4
+ x

(2)
1

4
+ x

(3)
1

4
= a2

a2−1
β4 + a2

(a2−1)2β
2
2

x
(1)
1

4
− x(2)

1

4
− x(0)

1

4
= α4 − a

a2−1
β4 + a3+a

(a2−1)2β
2
2x

(1)
1

5
+ x

(2)
1

5
+ x

(3)
1

5
= a2

a2−1
β5 − a2

(a2−1)2β2γ3

x
(1)
1

5
− x(2)

1

5
− x(0)

1

5
= α5 − a

a2−1
β5 − a3+a

(a2−1)2β2γ3.
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The left hand sides can be easily calculated, using equalities 4.3:

x
(1)
1

2
+ x

(2)
1

2
+ x

(3)
1

2
= −1

x
(1)
1

2
− x(2)

1

2
− x(0)

1

2
= −x(3)

1 − 1

x
(1)
1

4
+ x

(2)
1

4
+ x

(3)
1

4
= −1

x
(1)
1

4
− x(2)

1

4
− x(0)

1

4
= x

(3)
1

3
+ x

(3)
1 − 1

x
(1)
1

5
+ x

(2)
1

5
+ x

(3)
1

5
= x

(3)
1 (1− x(3)

1

2
)

x
(1)
1

5
− x(2)

1

5
− x(0)

1

5
= x

(3)
1

2
(1− x(3)

1

2
)

so that the αi and βi can be explicited in terms of a, x
(3)
1 and γ3:

α2 = −1

a
− 1− x(3)

1

β2 =
1− a2

a2

α4 = x
(3)
1

3
+ x

(3)
1 − 1 +

a2 + 1

a3

β4 =
1− a4

a4

α5 = (x
(3)
1 +

1

a
)(x

(3)
1 − x

(3)
1

3
)− γ3

a

β5 =
a2 − 1

a2
x

(3)
1 (1− x(3)

1

2
)− γ3

a2
.

Remark 4.2.16. Since we are dealing with power sums in characteristic 3, when 3|i the compu-

tation of αi and βi gives a tautological condition and hence we are not interested in it.

Now we look for the values of δi and γi, in terms of the variables a and x
(3)
1 . In order to do

this, we relate the γi and δi with αi and βi, using Newton identities.

We get γ4 + β4 = α2β2 + β2
2 , δ4 = −α4 − α2

2, α5 = α2δ3 − δ5, and γ5 + β5 = δ3α2 + (α2 − β2)γ3.

Then

γ4 =
(a2 − 1)(ax

(3)
1 + 1)

a3

δ4 = −a
3x

(3)
1

3
+ a3x

(3)
1

2
− a2x

(3)
1 + a+ 1

a3
.

Moreover, evaluating the polynomial P (0) in x
(0)
1 = 1, we have that δ5 = S4(x

(0)
2 , . . . , x

(0)
5 ) =

δ4 − δ3 + δ2 + 1. Then on the one hand we have δ5 = −δ3 −
a3(x

(3)
1

3
+x

(3)
1

2
+x

(3)
1 )+a2(−x(3)

1 +1)+a+1

a3 ,
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and on the other hand it is δ5 = α2δ3 − α5. The two conditions give

δ3 =
γ3

1 + ax
(3)
1

+
a2(x

(3)
1

3
+ x

(3)
1

2
+ 1) + a(−x(3)

1 + 1) + 1

a2
(4.4)

δ5 = − γ3

1 + ax
(3)
1

+
a3(x

(3)
1

3
+ x

(3)
1

2
− x(3)

1 − 1) + a2(1− x(3)
1 ) + a− 1

a3
(4.5)

In the same spirit, evaluating P (3) in x
(3)
1 , one finds

δ5 − γ5 = x
(3)
1 (δ4 − γ4)− x(3)

1

2
(δ3 − γ3) + x

(3)
1

3
(δ2 − γ2) + x

(3)
1

5
.

This can be used to obtain a linear system in the variables γ3 and γ5:
−γ5 =

1+ax
(3)
1

3

1+ax
(3)
1

γ3 +
a3(−x(3)

1

2
−x(3)

1 −1)+a2(x
(3)
1 +1)+a(−x(3)

1

3
−x(3)

1 +1)−1

a3

γ5 =
−a2x

(3)
1

2
−a+1

a(1+ax
(3)
1 )

γ3 +
a3(−x(3)

1

4
−x(3)

1

3
−x(3)

1

2
+x

(3)
1 −1)+a2(−x(3)

1

3
+1)+a(−x(3)

1

3
+x

(3)
1 +1)−1

a3

One gets, when 1 + a2(x
(3)
1

3
− x(3)

1

2
) 6= 0, that

γ3 = − 1+ax
(3)
1

1+a2(x
(3)
1

3
−x(3)

1

2
)
· a

3(−x(3)
1

4
−x(3)

1

3
+x

(3)
1

2
+1)+a2(−x(3)

1

3
+x

(3)
1 −1)+a(x

(3)
1

3
+1)+1

a2

γ5 =
a5(−x(3)

1

7
−x(3)

1

6
−x(3)

1

5
+x

(3)
1

3
−x(3)

1

2
)+a4(−x(3)

1

6
−x(3)

1

4
+x

(3)
1

3
−x(3)

1

2
+1)

a3(1+a2(x
(3)
1

3
−x(3)

1

2
))

+

a3(−x(3)
1

6
−x(3)

1

5
+x

(3)
1

4
−x(3)

1

3
+x

(3)
1

2
−x(3)

1 )+a2(−x(3)
1

2
−x(3)

1 )+a(x
(3)
1

3
+x

(3)
1 +1)+1

a3(1+a2(x
(3)
1

3
−x(3)

1

2
))

.

Finally, substituting the value of γ3 in (4.4) and (4.4) we find
δ3 =

a3(x
(3)
1

6
−x(3)

1

4
+x

(3)
1

3
−x(3)

1

2
)+a2(x

(3)
1

2
−1)+a(−x(3)

1 −1)−x(3)
1

3
−x(3)

1

a(1+a2(x
(3)
1

3
−x(3)

1

2
))

δ5 =
a5(x

(3)
1

6
+x

(3)
1

4
+x

(3)
1

2
)+a4(x

(3)
1

4
+x

(3)
1

3
+1)+a3(x

(3)
1

3
+1)+a2(x

(3)
1

2
−x(3)

1 −1)−a−1

a3(1+a2(x
(3)
1

3
−x(3)

1

2
))

.

With these data we can, in principle find explicitly the poles of X(0) and X(3): they are respec-

tively the roots of

P (0)(x) = x5 + α2x
3 − δ3x

2 + δ4x− δ5

and of

P (3)(x) = x5 + (α2 − β2)x3 − (δ3 − γ3)x2 + (δ4 − γ4)x− (δ5 − γ5).

Moreover, since we know that P (j) = aP (0)+jP (3)

a+j (cfr. Lemma 4.2.6), this gives also the values

of X(1) and X(2). Once the poles expressed in terms of a and x
(3)
1 , one can directly verify if the

conditions expressed by equations (∗) are satisfied. Nevertheless, this proceeding is of a complex

computational nature, and it is not possible to do it directly by hand. To perform completely

this strategy, one shall be helped by computational algebra programs.
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A necessary condition for a

We give now a necessary polynomial condition that u and v shall satisfy, if a lifting of an

equidistant Z/3Z × Z/3Z-action with 20 ramification points exists. We get this condition by

computing α7 and β7 in two different ways. Firstly, in the same spirit of the calculations of the

preceding section. Then, using Newton formulas, and the fact that the values of αi, βi, γi, δi

are known for i ≤ 5. The same proceeding can be applied to every αi and βi for i ≤ 13,

but it is difficult to perform it by hand already for i = 8. If no contradiction arises, then

the configuration of poles, gives rise to a 2-dimensional vector space of multiplicative good

deformation data. Otherwise, there is no such lifting, for n = 2, p = 3 and λ = 5. We arrive at

the point of verifying a polynomial condition on the value of a, which is completely determined

by the values of poles.

With Newton identities one gets

p7(X(j)) = −S2(X(j))p5(X(j)) + S3(X(j))p4(X(j)) + S5(X(j))p2(X(j)),

hence, using the same calculations of Proposition 4.2.14,

(a+ j)2p7(X(j)) = (a+ j)(ap7(X(0)) + jp7(X(3))) +
aj

(a+ j)2
(β2(β5 − γ5) + γ4γ3 + β2

2δ3 −
a

a+ j
β2
2γ3).

The linear system in the variables α7 and β7 is then given byx
(3)
1 (x

(3)
1

2
− 1) = a2

a2−1
β7 + a2

(a2−1)2 (β2β5 − β2γ5 + γ4γ3 + β2
2δ3) + a2

(a2−1)3β
2
2γ3

x
(3)
1

4
(x

(3)
1

2
− 1) = α7 − a

a2−1
β7 + a3+a

(a2−1)2 (β2β5 − β2γ5 + γ4γ3 + β2
2δ3)− a5

(a2−1)3β
2
2γ3.

Making the terms explicit, this gives

β7 =
a9(x

(3)
1

6
+x

(3)
1

4
+x

(3)
1

2
)+a7(x

(3)
1

7
−x(3)

1

6
+x

(3)
1

5
+x

(3)
1

4
+x

(3)
1

3
−x(3)

1

2
−x(3)

1 )+a6(x
(3)
1

6
−x(3)

1

4
−x(3)

1

3
−x(3)

1

2
−x(3)

1 )

a5(a2−1)(1+a2(x
(3)
1

3
−x(3)

1

2
))

+

a5(−x(3)
1

7
−x(3)

1

5
+x

(3)
1

3
−x(3)

1

2
+x

(3)
1 +1)+a4(−x(3)

1

6
+x

(3)
1

4
−x(3)

1 −1)+a3(−x(3)
1

5
+x

(3)
1

4
−x(3)

1

3
−x(3)

1

2
−x(3)

1 )

a5(a2−1)(1+a2(x
(3)
1

3
−x(3)

1

2
))

+

a2x
(3)
1

4
+a(−x(3)

1

3
+x

(3)
1 )+x

(3)
1

3
+x

(3)
1

a5(a2−1)(1+a2(x
(3)
1

3
−x(3)

1

2
))

α7 =
a8(x

(3)
1

9
−x(3)

1

8
−x(3)

1

7
+x

(3)
1

6
)+a7(x

(3)
1

7
−x(3)

1

6
+x

(3)
1

5
+x

(3)
1

2
−x(3)

1 )+a6(−x(3)
1

9
+x

(3)
1

8
+x

(3)
1

7
+x

(3)
1

6
+x

(3)
1 −1)

a4(a2−1)(1+a2(x
(3)
1

3
)−x(3)

1

2
)

+

a5(−x(3)
1

7
+x

(3)
1

6
−x(3)

1

4
+x

(3)
1

3
+x

(3)
1

2
−x(3)

1 +1)+a4(x
(3)
1

6
−x(3)

1

4
−x(3)

1

3
+x

(3)
1 +1)+a3(−x(3)

1

5
+x

(3)
1

4
−x(3)

1

2
+x

(3)
1 −1)

a4(a2−1)(1+a2(x
(3)
1

3
)−x(3)

1

2
)

+

a2x
(3)
1

4
+a(−x(3)

1

3
+x

(3)
1 )+x

(3)
1

3
+x

(3)
1

a4(a2−1)(1+a2(x
(3)
1

3
)−x(3)

1

2
)

.

One can also calculate α7 and β7 with Newton identities, then getting the formulae

α7 = −δ2α5 + δ3α4 + δ5α2
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and

α7 − β7 = −(δ2 − γ2)(α5 − β5) + (δ3 − γ3)(α4 − β4) + (δ5 − γ5)(α2 − β2).

From the first equation we get

α7 =
a6(x

(3)
1

9
− x(3)1

8
− x(3)1

7
+ x

(3)
1

6
) + a5(x

(3)
1

7
+ x

(3)
1

5
+ x

(3)
1

4
+ x

(3)
1

2
− x(3)1 ) + a4(−x(3)1

6
− x(3)1

4
− x(3)1

3
− x(3)1

2
− 1)

a4(1 + a2(x3 − x2))
+

a3(x
(3)
1

5
− x(3)1

4
+ x

(3)
1

2
− 1) + a2(−x(3)1

4
+ x

(3)
1

3
+ x

(3)
1

2
+ 1) + a(x

(3)
1

3
− x(3)1 )− x(3)1

3
− x(3)1 − 1

a4(1 + a2(x3 − x2))
.

By comparing the two expressions for α7, we find that x
(3)
1 must be a root of the following

polynomial:

N1(X) =(−a7 + a5)X6 + (−a7 + a6 + a5 − a4)X4 + (a6 + a5 − a3 − a2)X3

+ (a6 + a5 + a4 + a2)X2 + (a6 + a5 + a4 − a3 + a2)X − a5 − a4 + a3 − a2 − 1.

From the second equation we get

β7 =
a7(x

(3)
1

6
+ x

(3)
1

4
+ x

(3)
1

2
) + a6(−x(3)1

5
− x(3)1

3
) + a5(−x(3)1

7
− x(3)1

6
− x(3)1

5
− x(3)1

4
+ x

(3)
1

3
− x(3)1 − 1)

a5(1 + a2(x3 − x2))
+

a4(−x(3)1

6
− x(3)1

5
+ x

(3)
1

3
− x(3)1 + 1) + a3(x

(3)
1

6
+ x

(3)
1

5
+ x

(3)
1

4
+ 1) + a2(−x(3)1

4
− x(3)1

3
− x(3)1

2
+ 1)

a5(1 + a2(x3 − x2))
+

a(−x(3)1

4
− x(3)1

3
+ 1) + x

(3)
1

3
+ x

(3)
1 + 1

a5(1 + a2(x3 − x2))
.

By comparison with the other formulation of β7, we find that x
(3)
1 is also a root of the polynomial

N2(X) =(−a6 − a5 + a4)X6 + (a8 + a6)X5 + (a7 − a6 + a5 + a4)X4+

(−a8 − a7 − a5 + a4)X3 + (a6 + a3 + a2)X2 + (a4 − a2 + a)X − a3 − a− 1.

To avoid a contradiction, N1 and N2 must have a root in common. A computation of their

resultant with Sage shows that it is a polynomial of degree 84 in the variable a. The result

obtained in this way is N(a) := Res(N1, N2) = a84−a83−a81 +a80 +a79 +a78−a77 +a76−a73−
a72 +a71−a70 +a69 +a66 +a64−a63 +a62−a60−a59 +a56 +a55 +a53−a51 +a50−a49 +a48−
a47− a45 + a43 + a42− a40 + a38 + a36− a35− a34− a33− a32− a31− a29− a28 + a27− a26− a25.

These calculations prove the following result.

Theorem 4.2.17. Let

ω1 :=
uz13∏3

j=1

∏5
i=1(1− x(j)

i z)
dz and ω2 :=

vz13∏2
j=0

∏5
i=1(1− x(j)

i z)
dz, with u, v ∈ k

be two multiplicative good deformation data for an equidistant action of Z/3Z. If the vector

space 〈ω1, ω2〉 is a two-dimensional F3-vector space, then N(uv ) = 0.

We have then, in principle, 59 possible values of a = u
v , allowing repetitions. But the
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value of a is completely determined by the x
(j)
i , and, more precisely, by the q14(X(j))s: in fact

u = q14(X(1))+q14(X(2))+q14(X(3)) and v = q14(X(0))−q14(X(1))+q14(X(2)). This is a strong

condition and it is not likely to be satisfied. Still, due to the complexity of these equations, we

are not able to perform a direct computation. To verify the compatibility of the poles and of

their power sums, with the equations found in this section, we shall use a computer program

like Sage. In this way, we would be able either to find the expected contradiction, or to show

that there is a lifting, yielding a counterexample in the conjecture of Pagot.

Final remarks

As the computation of this section show, a direct approach to some concrete case of the local

lifting problem is possible. Nevertheless, even in the simplest cases, the limits of this approach

are evident: the complexity of calculations grows enormously with the number of ramification

points and the behavior changes completely when p changes. This phenomenon is observed

in other tentatives of giving explicit description of local actions, both in positive and zero

characteristic. For example, the recent work of several authors (see for instance [17], [37] and

[9]) on finite order elements in the Nottingham group (i.e. the group of automorphisms of Fp[[T ]]

of the form T 7→ T + T 2f(T )), shows that it is a very hard problem even to describe order 4

automorphisms, when p = 2.

The main progresses in the general theory of local actions have been made by studying deeper

algebraic and arithmetic structures of such actions and their liftings. In the next chapter, we

introduce an approach that is based on non-Archimedean analytic geometry, with the purpose

to get a better understanding of the general phenomena arising in different problems related to

these actions.
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Chapter 5

Hurwitz trees in non-Archimedean

analytic geometry

We have seen that the Hurwitz tree plays a central role in the study of the local lifting problem.

It is nevertheless an abstract object, containing data whose mutual relation is sometimes myste-

rious. In this chapter we show that Hurwitz trees can defined also as non-Archimedean analytic

objects in the spirit of chapter 2. We have already suggested in the previous discussions, that

there are similarities between the world of Berkovich spaces and that Hurwitz trees. Now, we

make this correspondence explicit, namely we prove that there is a metric embedding of the

Hurwitz tree inside the Berkovich closed unit disc. The properties of Hurwitz trees can then be

studied in this new context and several generalizations are made.

We realize first the embedding, using the correspondences between the (Berkovich) generic

fiber and the (scheme theoretic) special fiber of the formal stably marked model over Spf(R).

Then we give a geometric sense to Hurwitz data, relating them with the evaluation of the analytic

function σ(T )− T , for σ ∈ G, on the embedded Hurwitz tree. Finally, for G = Z/pZ, we relate

good deformation data with vector bundles on the Berkovich disc pointed at ramification points,

and we study their reduction.

One of the motivations to study the Hurwitz tree as embedded in a K-analytic space is

that the theory of Berkovich spaces has been intensively studied in several fashions. In the last

years, for instance, there have been pointed out connections to and applications from several

domains of mathematics such as tropical geometry, non-Archimedean dynamical systems and

graph theory. We conclude the chapter by giving characterizations of the embedded Hurwitz

tree in relation to some of these theories, with the hope that a further study of the Hurwitz

tree from different perspectives can provide a better understanding of the deformations arising

in this way and of the local lifting problem. Much research has been developed around the

discovery of common patterns between Berkovich spaces and other mathematical objects, and

at a very fast pace. No claim for completeness or complete relevance is made for the choice of

the arguments of the last section. We shall mention for example the connexions with model

theory (cfr. the work [32] by Hrushovski and Loeser, exposed also by Ducros in his Séminaire
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Bourbaki [23]) that led to many important applications but are absent in this section, due to

our lack of knowledge of the subject.

Since we are now working with discrete valued fields, our notations are different form those

of chapter 2. For the reader that leapfrogged chapters 3 and 4, and to avoid confusion, we

precise the relationship between the two notations. We write k = K for a discrete valued

field, ko = R for its valuation ring, koo = m = {x ∈ R : |x| < 1} for the maximal ideal and

k̃ = K̃ := R/m for the residue field, which we suppose to be algebraically closed. Let us also

recall the notations we use, when dealing with closed and open discs in this chapter. We set

D(a, r) = {x ∈ K : |x − a| ≤ r} and D(a, r)◦ = {x ∈ K : |x − a| < r}. We use also open

and closed discs in the sense of Berkovich: we set D(a, r) = {x ∈ A1,an
K : |(T − a)(x)| ≤ r} and

D(a, r)◦ = {x ∈ A1,an
K : |(T − a)(x)| < r}.

5.1 Automorphisms of open and closed analytic unit discs

The first technical point, when relating the local lifting problem with Berkovich spaces, is in

the fact that in the first place we deal with formal power series K[[T ]], and in the second with

Tate series K{T}. Let us get a clearer vision of the correspondence between the analytic theory

of actions of G on these two K-algebras.

Recall that, for σ automorphism of finite order of the open unit disc, we denote by

σ̃ : Spm(R[[T ]]⊗K)→ Spm(R[[T ]]⊗K)

the induced correspondence of points of the generic fiber, which is in bijective correspondence

with elements of D(0, 1)◦.

Proposition 5.1.1. Let σ ∈ AutR(R{T}) be an automorphism such that σn = id with at least

a fixed point x0 ∈ m. Then it induces an automorphism of finite order σ◦ ∈ AutR(R[[T ]]).

Moreover we have σ̃◦(D(a, ρ)) = D(σ(a), ρ) for every D(a, ρ) ⊂ D(0, 1)◦.

Proof. We may suppose x0 = 0. Every disc centered in a fixed point is a fixed disc, then the

open unit disc is fixed. This means that σ can be restricted/extended to σ◦.

Once this action restricted, we compare |b− a| with |σ(b)− σ(a)|. By a theorem of structure of

finite order actions of open disc ([19], Lemma 14, pag.245) we have

σ◦(T ) = ζT (1 + α1T + α2T
2 + . . . ).

Then σ̃◦(b)− σ̃◦(a) = ζ((b− a) + α1(b2 − a2) + α2(b3 − a3) + . . . .

But we have also that |bn − an| = |b − a||bn−1 + abn−2 + · · · + an−1| < |b − a| since a, b ∈ m.

Therefore |b− a| = |σ(b)− σ(a)| so that b ∈ D(a, ρ) if and only if σ(b) ∈ D(σ(a), ρ).

The automorphism σ induces functorially an homeomorphism Σ : D(0, 1) → D(0, 1) given

by Σ(x) = x◦σ. We can deduce by previous proposition the following easy, but important, fact.

Corollary 5.1.2. A point ηa,ρ ∈ D(0, 1) is fixed for Σ if and only if Σ(D(a,R)) = D(a,R).
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Proof. By Proposition 5.1.1 we have that Σ(ηa,ρ) = ησ̃(a),ρ and then the lemma follows.

When the assumptions of the corollary are satisfied, the restriction of Σ on D(a,R) induces an

homeomorphism of Berkovich discs. We use this fact in the following sections, to relate the

Hurwitz tree with dynamical properties of the morphism Σ.

5.2 The Berkovich-Hurwitz tree

We study in this section the Hurwitz trees as non-Archimedean analytic objects. Firstly, we

show in which way they can be embedded, as metric trees, in D(0, 1). Then, we show how the

vertices, the edges and the Artin and depth character have an interpretation in terms of natural

structures of Berkovich curves. Once proved the embedding, one can introduce the Hurwitz data

in a completely formal way. Our aim is to avoid this construction, in favor of an intrinsic one,

that we get by showing that Hurwitz data have a precise meaning in terms of analytical objects.

This provides a further motivation for our approach and permits to formulate conjectures about

the interplay between non-Archimedean analytic geometry and ramification theory.

5.2.1 The embedding

We show that the Hurwitz trees embeds canonically in the Berkovich unit disc. This is the main

theorem of the Chapter, and the whole discussion that follows relies on this result.

Theorem 5.2.1. Let Λ = (G,R[[T ]]) be a local action in characteristic zero and let TΛ be the

Hurwitz tree associated to it. Then there is an embedding of topological spaces

ι : TΛ ↪→ D(0, 1).

Calling B the set of leaves of TΛ we also have that:

1. the embedding ι induces an isomorphism of metric spaces between TΛ−B and the skeleton

of the Berkovich curve D(0, 1) \ ι(B);

2. the image ι(V \ B) is the set of formal fibers of boundary points and ι(B) is the set of

fixed rigid points by the action of some σ ∈ G \ {id};

3. the functions σ(z)− z ∈ OD(0,1) are locally constant outside ι(TΛ).

Proof. The stably marked model having semi-stable reduction, the dual graph of its special fiber

is canonically embedded in D(0, 1) by Theorem 2.3.5. We shall then discuss only the embedding

of terminal edges and vertices. Let v be such a vertex. It is associated to a point of type 1 in

D(0, 1)−, which is of the form ηa,0, with a ∈ m and such that r̃(ηa,0) is a smooth point on the

special fiber, belonging then to a single irreducible component. We denote the generic point of

this component by ξv. There is a unique path that joins ηa,0 with the point r̃−1(ξv) (which is

unique by Proposition 2.3.4). Then the embedding is realized sending the terminal edge ending

in v to this path and v to ηa,0. This realizes the embedding for the construction of Henrio. By
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Proposition 3.4.3, it is realized also for the construction of Brewis-Wewers. Moreover realizing

the embedding in this way proves statement 2, by using Proposition 2.3.4.

Let us prove statement 1. Suppose firstly that |B| = 1. In this case we can use the calculation

of the skeleton of Ce in the example 2.4.7: let the unique fixed point be in 0, then we have

D(0, 1) \ {0} =
⋃
e∈Z
Ce

which makes the skeleton of D(0, 1) \ {0} homeomorphic to ]0, 1] (the homeomorphism being

given by r 7→ η0,r). Let now |B| > 1. Let b′ 6= b be any other leaf and note Db,b′ = D(0, 1)\{b, b′}.
For ΓK = Gal(K̄|K), we have a canonical surjective map

π : Db,b′ ⊗ K̄ → (Db,b′ ⊗ K̄)/ΓK ∼= Db,b′ .

Each point of the form ηb′,r with r ≤ |b′−b| is in the skeleton of Db,b′ . Moreover, if x is a point of

Db,b′ , not in the image of r 7→ ηb,r or r 7→ ηb′,r, then it has a neighborhood potentially isomorphic

to the unit disc. In fact, picking an element in π−1(x), it is of the form ηa,ρ in such a way that

b /∈ D(a, ρ). Then the affinoid domain π(D(a,min{|b − a|, |b′ − a|})) is a neighborhood of x

that is potentially isomorphic to the unit disc. This can be seen with Lemma 2.4.2. Repeating

this argument a finite number of times, one for every other element of B, we get the wanted

isomorphism.

To prove point 3: write σ(T )− T = πnu(T )P (T ) in the form given by Weierstrass preparation.

Then y(πnu(T )) is constant for every y ∈ Y and P (T ) =
∏
b∈B(T − b), which is constant on

any disc D(a, r) such that r < |b − a| for every b ∈ B (because for every x, y ∈ D(a, r) and

b ∈ B we have |x− b| = |y− b|). After possible basechange, every element of D(0, 1) \ ι(TΛ) has

a neighborhood of this form, by point 2. Then the claim is proved.

With this theorem and the characterization of points in section 2.3.2, we can perform the

following assignment:

Assignment 5.2.2.

• For each vertex v ∈ V , consider the point ι(v). It is of the form ηa,ρ for some closed disc

D(a, ρ), a ∈ R and 0 ≤ ρ < 1. We can then define the assignment of this closed disc as:

D• : V −→ {Closed subdiscs of R}
v 7−→ D(a, ρ).

• For each edge e ∈ E, starting in v and ending in v′, consider the closed disc D•(v). There

is a unique open disc D(c, ρ)− having the same radius as D•(v) and containing D•(v′).

We can then define the assignment of this open disc as:

D◦ : E −→ {Open subdiscs of R}
e 7−→ D(c, ρ)◦.
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The center c of D◦(e) is not well defined, but its residue class c̃ ∈ K̃ is unique. In the

following, we set cle := c̃.

Note that, following this assignment, the root of TΛ is sent to the unit disc D(0, 1). More in

general, for every v ∈ V (TΛ), every point ι(v) is of type 1 if v is a leaf of the Hurwitz tree, and

of type 2 otherwise.

After this assignment, the orientation on the Hurwitz tree is such that v → v′ if and only if

D•(v′) ⊂ D•(v).

We denote by D•(v) and D◦(e) the closed and open Berkovich discs with the same center and

radius as, respectively, D•(v) and D◦(e).

5.2.2 Translation of Hurwitz data

Let us fix a local action in characteristic zero (R[[T ]], G) and we denote by TΛ its Hurwitz tree.

Notice that the group Gv is the stabilizer of the subdisc D•(v). With the help of Assignment

5.2.2 we can express Artin and depth characters in the language of non-Archimedean analytic

geometry.

Proposition 5.2.3. Let (TΛ, G[v], ae, δv) be the Hurwitz tree associated to a local action in

characteristic zero (G,R[[T ]]). Then

δv(σ)

|Gv| − 1
= − log |(σ(T )− T )(x)| = vξ(σ(T )− T )

and

ae(σ) = vz(σ(T )− T )

for every σ ∈ G− {id}.

Proof. To each non-terminal vertex v of TΛ we associate a valuation

valv : H0(D•(v),OY ) ∼= R{T ′} → Q ∪ {∞}

defined by the formula

valv(
∑

aiT
′i) = min

i
{vR(ai)}.

If e is an edge of TΛ such that vse = v, then the valuation valv can be extended, with the

same definition on H0(D•(v),OY ) ∼= R[[T ′ − a]] ⊃ R{T ′}, where a ∈ D•(v). To the edge e we

associate the valuation

vale : H0(D•(e),OY )→ Q ∪ {∞}

defined by the formula

vale(f) = ordt′(λf)

where λ ∈ R is any element such that |λ| = π−valv(f) and f 7→ f̄ is the reduction map from
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R[[T ′]] to k[[t′]]. Let σ 6= 1. By sections 3.2 and 3.3 in [14] we have

δv(σ) = −|Gv|valv(σ(T ′)− T ′)

and

ae(σ) = vale(σ(T ′)− T ′).

Now, by the characterization of Lemma 3.2.6, valv and vale are the restrictions of the valuations

vξ and vz, and hence we can conclude.

Remark 5.2.4. Proposition 5.2.3 can be formulated also in terms of Huber adic spaces. In fact,

let e ∈ E be an edge of the Hurwitz tree, originating from a vertex v, and let σ ∈ G. Then,

the function f → (vξ(f), vz(f)) is a rank 2 valuation over K{T} corresponding to a point P

of Spa(K{T}). Proposition 5.2.3 says then that
(
δv(σ)
|Gv |−1 , ae(σ)

)
= |(σ(T ) − T )(P )|, in the

framework of adic geometry.

In this perspective, the Artin character is associated to an infinitesimal point next to its starting

vertex (it can be visualized as a “direction”) more than to an edge of the Hurwitz tree. The

correspondence between edges and residue classes representing these directions is explicitly given

by e 7→ D◦(e) of Assignment 5.2.2.

The importance of Proposition 5.2.3 is in the fact that the Artin and depth characters

contribute to generalize the results of the “equidistant case”. As an example, in chapter 4 is

shown how explicit calculations in this particular case permit to deduce properties related to

the Hurwitz tree of (Z/pZ)n. Nevertheless, these properties concern only the structure of metric

tree and the good deformation data, since the structure of characters is very simple under the

equidistant assumption. If one wants to pursue the study in this direction, the Proposition helps

to get more information about the structure of characters.

5.3 Analytic good deformation data

In chapter 3, Hurwitz trees for G = Z/pZ are endowed with good deformation data. In this

way, one obtains a parametrization of automorphisms of order p of R[[T ]] with fixed points.

More in general, to have a notion of good deformation datum for other finite groups that

provides such a parametrization, is an important advancement in the understanding of the local

lifting problem. Bouw and Wewers, in their paper [11], introduced such a definition for D2p,

to show that actions of such dihedral group admit a lifting. An analog strategy is outlined

by the same authors in [12], to show liftings of local actions of A4 for p = 2. Thanks to the

results of previous sections, we can propose a definition of good deformation datum in the

non-Archimedean analytic setting, as a section of the reduction, in the sense of Temkin, of a

particular metrized sheaf on D(0, 1) \ LΛ, that we construct in this section. We start by recall

the definition of good deformation data in the known cases, and we describe the problems that

arise when trying to formulate the compatibility conditions between good deformation data on

the special fiber of the stable marked model. We give, then a characterization of families of
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good deformation data in the Berkovich setting. Finally, This result, which is the central one

in this section, permits to propose a definition of good deformation datum for any finite group.

5.3.1 Good deformation data and the analytic sheaf of deformations

We have recalled in Section 3.3.2 the notion of good deformation datum for Z/pZ. In [11] and

[13] the authors propose a generalization of this notion for any cyclic-by-p group G = P oN to

show lifting to characteristic zero of actions of G = D2p. Let us recall their definition

Definition 5.3.1. Let G = P o N be a cyclic by p group with character χ, f ∈ K̃(z) and

ω = fdz ∈ Ω1
P1
K̃

. We call ω a good deformation datum for G if the following conditions are

satisfied:

D1 - The form ω is either logarithmic or exact;

D2 - If ω is logarithmic, then it has an unique zero on P1
K̃

at the point ∞;

D3 - There is a faithful action of N on Ω1
P1
K̃

such that

σ.ω = χ(σ) · ω

when σ ∈ N .

When N is trivial, this definition matches the one of Section 3.3.2. In the following we always

work with this more general definition.

Let Λ = (G,R[[T ]]) be a local action in characteristic zero for a cyclic-by-p group G. Let ϕ :

XΛ −→ S = Spf(R[[T ]]) be the canonical sequence of formal admissible blowing-ups associated

to the stably marked model. The special fiber SΛ,s has normal crossing singularities with a

finite set {si} of singular points. We set Dsing =
∑
si the divisor associated to those singular

points and we let ODsing be the sheaf of ideals over SΛ,s associated to Dsing, which is a Weil

divisor, but not an effective Cartier divisor. The sheaf ODsing , hence, is not invertible.

A collection of good deformation data arising from the action Λ can be described as a global

section of the sheaf ωΛ = I ⊗ΩSΛ,s
. This sheaf is never locally free, due to the non-smoothness

of SΛ,s. The best we can obtain is the following proposition.

Proposition 5.3.2. The sheaf ωΛ is invertible on the regular locus of SΛ,s.

Proof. It is sufficient to show the claim for the sheaf ΩSΛ,s
, since the support of I is contained

in the regular locus. Let Γs be the dual graph of SΛ,s and let {vi}i∈I be its set of vertices.

Recall from section 2.3.2 the correspondence vi 7→ Si between vertices of the dual graph and

irreducible components of the special fiber, and consider the open covering {Ui}i∈I of SΛ,s,

given in the following way: Ui = Svi \ {∞} if vi is a leaf of Γs and by the amalgamated sum

Ui =
∐
vi→vj (Svj \ {0})

∐
v→vi(Sv \ {∞}) otherwise. Now, Ui ∼= A1

k if vi is a leaf of Γs and

Pic(A1
k) is trivial. When vi is not a leaf, Ui is isomorphic to Spec(k[X,Yj ]/(X − aj)Yj), for

appropriate aj ∈ k. Then, on Ui the sheaf ΩSΛ,s
is generated by the set {dx, dyj} (for every j
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such that vi → vj) with relations yjdx− (x− aj)dyj . Hence it is locally free of rank one outside

the singular points.

Remark 5.3.3. The proof of Proposition 5.3.2 is indeed very classical in algebraic geometry. We

chose nevertheless to write it down completely in order to have an explicit description of the

trivializations of the sheaf ωΛ. This is crucial in order to investigate the relationship between

ωΛ and sheaves on D(0, 1).

Definition 5.3.4. For a local action in characteristic zero Λ = (G,R[[T ]]), the sheaf of

deformations of Λ is the metrized line bundle ΩΛ on D(0, 1) \ LΛ defined as follows:

• the trivializing G-covering is given by {Uv}v∈V (Γs) where

Uv = D•(v) \ (
⋃
v→w

D•(w)),

in particular when v is a leaf of V (Γs), then Uv is the pointed disc D•(v) \ (LΛ ∩ D•(v));

• the G-covering {Uv} is such that all intersections are of the form Uvw ∼=M(K{S,T}ST−1 ).The

cocycles gvw on Uvw are then given by multiplication by the function − 1
T 2 = −S2;

• the metric on ΩΛ is the formal metric induced by the couple (SΛ,Ω(DΛ)).

Remark 5.3.5. The sheaf of deformations is an analogue of the sheaf Ω(D) of differential forms

with possible poles on a prescribed divisor D. In this case, D is the divisor of rigid ramification

points, counted with multiplicity one. The pointed open disc is smooth, yielding locally freeness

for ΩΛ. This is one of the advantages of studying the reduction of the sheaf ΩΛ rather than ωΛ.

Let x ∈ D(0, 1) \ LΛ. Using the techniques of [15] about local reduction of metrized vector

bundles, one gets an invertible sheaf Ω̃Λ,x on the space (̃X,x) in the sense of Temkin’s reduction

theory (cfr. Section 2.2.3). Recall that, when x is a point of type 2, then (̃X,x) ∼= P1
K̃

and that,

for every f ∈ K̃[t], we defined (̃X,x){f} = {ν ∈ (̃X,x) : f ∈ Oν}.

Proposition 5.3.6. Let x ∈ D(0, 1)\LΛ. The sheaf Ω̃Λ,x is isomorphic to Ω1
P1
K̃

when x ∈ V (Γs),

and trivial otherwise.

Proof. The sheaf Ω̃Λ,x is defined by reduction of cocycles, as outlined in section (6.5.4) of [15].

Let O◦X,x = {f ∈ OX,x : |f | ≤ 1}, and let (gvw) be a cocycle on (X,x) with coefficients

in GLn(O◦X,x) with respect to a covering (Xv). Then, the family g̃vw is a cocycle on (̃X,x)

with coefficients in GLn(O
(̃X,x)

). Moreover, two cocycles that are cohomologous maintain this

property after reduction, just by reducing the cochain.

In our situation, the open covering is the usual affine covering on Proj(K̃[t, s]), and the cocycles

g̃vw are given by multiplication by −1/t2, which is exactly the cocycle defining Ω1
P1
K̃

, since

ds = −dt
t2

.
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Let v ∈ V (Γs). After identification of (̃X, v) with the suitable projective line in SΛ,s, for

the sake of Proposition 5.3.2, we have ωΛ
∼= Ω̃Λ,x outside the singular locus of SΛ,s. As a

consequence, a collection of good deformation data can be described as a collection of sections

ωv ∈ Ω̃Λ,v when v varies in the set of vertices of the Berkovich-Hurwitz tree that are not leaves,

satisfying the following conditions:

D′1 - The section ωv corresponds to a logarithmic differential form if v is a leaf of Γ(SΛ,s), and

to an exact differential form otherwise;

D′2 - If ωv corresponds to a logarithmic differential form, its simple poles are outside the open

quasi-compact subset

(̃X, v){ 1∏
e∈E+(v)(t− cle)

},

and the unique zero is in the complement of (̃X, v){t}. If ωv corresponds to an exact

differential form, its zeroes are outside the open quasi-compact subset

(̃X, v){ tm+1∏
e∈E+(v)(t− cle)

},

where m = |E+(v)|;

D′3 - In the case of dihedral action, the condition D3 of definition 5.3.1 is respected.

Remark 5.3.7. Looking at the definition of good deformation data in Section 3.3.2, we remark

that they are constructed as logarithmic (resp. exact) differential forms that are reduction of

forms that are already logarithmic (resp. exact) in characteristic zero. This suggests that it is

interesting to study the conditions of “logarithmicness” (resp. exactness) of differential forms

over R. It turns out that on smooth K-analytic spaces every differential form is locally exact

thanks to a version of Poincaré’s lemma (see chapter 1 of the book by Berkovich on integration

theory, [7]), and then it can be written in logarithmic form on some smaller disc. It would be

interesting to use this result in order to discuss the existence of good deformation data.

The reformulation of good deformation data as reductions of sections of metrized vector

bundles permits to get a new perspective on conditions to lift local actions to characteristic

zero. Given (G, K̃[[t]]) a local action in characteristic p, one can look at the Hurwitz trees of

possible liftings (those matching the ramification theory, the number of ramification points, and

so on), and study the existence of deformation sheaves whose reduction at vertices of those

Hurwitz trees gives the deformation data that one expects.

5.4 Characterizations of the Hurwitz tree

We explicit in this section how the embedded Hurwitz tree can be characterized in relation to

different theories, that have been linked to Berkovich spaces by several authors very recently.

The hope is to use the techniques arising in this way to get new conditions on the local lifting
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problem. In the first part, we give an account of how the Berkovich-Hurwitz tree is related to

the study of maps D(0, 1)− → D(0, 1)−, and their iterated behavior. In the second section, we

characterize the Berkovich-Hurwitz tree as the tropicalization of an affine line with respect to a

certain embedding. Finally, we discuss how the results developed in this chapter can be related

to the theory of tempered covers.

5.4.1 Dynamical properties

The action of G over can be seen also as a finite dynamical system, obtained by iteration of

the map g : D(0, 1)− → D(0, 1)−, induced by R[[T ]] → R[[T ]]G. The ramification locus of the

system plays an important role in the description of the system in several works (see [3] for a

general introduction to the subject and [24], [25] or [26] for a more specific discussion about the

structure of the ramification locus). In this spirit, it seems useful to study the Hurwitz tree in

relation with the ramification locus of g.

Proposition 5.4.1. The embedded Hurwitz tree is contained in the branch locus of the G-

covering D(0, 1)− → D(0, 1)− induced by the action of G.

Proof. Every point v of the tree as defined above is fixed by Σ, for some σ ∈ G. If v ∈ B, then

it is so by definition. Otherwise v = ηa,ρ for some a ∈ B and 0 < ρ < 1. By Corollary 5.1.2,

Σ(ηa,ρ) = ησ(a),ρ. Being a a fixed point, v turns out to be fixed as well.

The proof of Proposition 5.4.1 uses the fact that discs containing fixed points are fixed discs.

The converse is not true: there are in fact local actions of G without fixed points (a construction

of order pn automorphisms of the open unit disc with no fixed points using Lubin-Tate formal

groups can be found in section 3.3.3 of [28]). This entails also that the converse of proposition

5.4.1 is not true in general. An interesting question would be to characterize the branch locus in

general, in order to obtain a generalization of the Hurwitz tree. A useful Lemma in this sense,

is the following

Lemma 5.4.2. Consider a rigid point a ∈ mR. The value ρ(a) := |(σ(a) − a)| is exactly the

radius of the smallest disc fixed by Σ and centered in a.

Proof. The homeomorphism Σ fixes the point ηa,ρ(a) by the formula Σ(ηa,ρ(a)) = ησ(a),ρ(a).

Let us show the minimality: every disc ηa,ρ < ηa,ρ(a) is not fixed, otherwise Σ(ηa,ρ) = ηa,ρ would

imply ηa(σ(z)),ρ = ηa,ρ and then |σ(a)− a| ≤ ρ < ρ(a) leading to a contradiction.

Example 5.4.3. By Weierstrass preparation theorem, we have σ(T )−T = πn ·u(T ) ·P (T ) with

u(T ) unit in R[[T ]] and P (T ) ∈ R[T ] polynomial of degree m which reduces to tm ∈ K̃[t]. Then

|a(σ(T ) − T )| = p−n·vR(P (a)). As a consequence, if σ is an automorphism without fixed points,

the polynomial P (T ) is a constant and |a(σ(T )− T )| = π−n. Then, the fixed discs containing a

are all those of the form D(a, ρ) with ρ > π−n. This set may be bigger than the Hurwitz tree,

which consist in this case of the singleton {η0,1}.

Remark 5.4.4. Being its proof purely analytic, Lemma 5.4.2 holds also when σ has infinite order.
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5.4.2 The Berkovich-Hurwitz tree as tropicalization

The relationships between tropical geometry and Berkovich spaces have been studied by several

authors in the very recent years. In the article [48], Payne shows that analytifications, in the

sense of Berkovich, can be described as inverse limits of images of tropicalization maps. Baker,

Payne and Rabinoff make in [2] a detailed study of the Berkovich skeleton in the tropical setting.

We can describe the Hurwitz tree in the context of tropical geometry thanks to the following

result.

Theorem 5.4.5. Let Λ = (G,R[[T ]]) be a local action in characteristic zero, with set of

ramification points LΛ = {x1, . . . , xm}. Then the Berkovich-Hurwitz tree ι(TΛ) is isometric

to Trop(A1̂̄K , j), the tropicalization of the affine line A1̂̄K associated to the embedding

j : x ↪→ (x− x1, . . . , x− xm)

in the m-dimensional affine space Am̂̄K .

Proof. Let | · | := | · | ̂̄K be the non-Archimedean norm on ̂̄K. The tropicalization map A1̂̄K → Rm

associates to x ∈ A1̂̄K , the closure in Rm, of the m-uple

{|x− x1|, . . . , |x− xm|}.

Since all the ramification points are in R, if |x| ≥ 1, then Trop(x) = (|x|, . . . , |x|). At the

opposite, one of the coordinates of Trop(x) is zero if and only if x ∈ LΛ. Let now x ∈ D◦(0, 1).

Then the set LΛ can be split in two parts: the subset

Lx = {xi ∈ LΛ : |x− xi| ≤ |x− xj |∀1 ≤ j ≤ m}

and its complement in LΛ. For every subset LJ ⊂ LΛ, consider the set SJ = {x ∈ D◦(0, 1) :

Lx = LJ}. It is either the empty set or an annulus of the form D◦(e) \ D•(vte) for some edge

e ∈ E(TΛ). In this second case, the image Trop(SJ) is isometric to ι(e). In fact, when x varies

in SJ , we have that

|x− xi| =

constant ∀ x ∈ SJ if xi /∈ LJ
|x− xj | ∀ xj ∈ LJ if xi ∈ LJ

so that the image is homeomorphic to a rational interval. Then, its closure in Rm is a real

interval. It is easy to verify that the length of this interval is equal to the one of e in the

Hurwitz tree.

Conversely, every edge of the Hurwitz tree is associated to some LJ : it suffices to take LJ =

LΛ ∩ D◦(e).

Remark 5.4.6. The fact that Trop(D◦(e) \D•(vte)) coincides with ι(e) can be proved also using

the relation between the skeleton and the Newton polygon, discussed in section 2.4.1.

Payne shows in [48] that every tropicalization embeds in the Berkovich affine line A1,an
K . One
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can show that, after this embedding, the Hurwitz tree is not only isometric, but coincides with

D(0, 1) ∩ Trop(A1̂̄K , j).
5.4.3 Covers of Berkovich curves and metric structure of the Hurwitz tree

For an automorphism of the open (resp. closed) unit disc σ : R[[T ]] → R[[T ]] (resp. R{T} →
R{T}), we can functorially associate, as in Section 5.1, an automorphism Σ : D◦(0, 1) →
D◦(0, 1) (resp. D(0, 1) → D(0, 1)). When G = 〈σ〉, we get a covering D◦(0, 1) → D◦(0, 1)/G

(resp.D(0, 1)→ D(0, 1)/G), that can be investigated using the theory of coverings of k-analytic

curves. In this way, the study of the fundamental group of pointed unit discs in the Berkovich

setting intersects the study of the Hurwitz tree. Let us explicit this interrelation.

There are different notions of fundamental group for non-Archimedean analytic spaces. The

main issue in finding a suitable definition is that finite étale coverings do not induce topological

coverings in general. To provide a solution to this problem, a notion of (not necessarily finite)

étale morphism and étale fundamental group was given by De Jong [21]. Later, in [1], André

modified this notion to provide a more handful definition. His work resulted in the notion of

tempered fundamental group, classifying étale coverings (in the sense of De Jong) that become

coverings in the topological sense after pull-back by finite étale coverings. The great advantage

of this definition is that a tempered covering is always dominated by the universal covering (in

the topological sense) of a finite étale covering. In this sense, such a definition is much more

connected to our study of finite Galois covers of curves.

The tempered fundamental group is used in several works on non-Archimedean anabelian ge-

ometry. In [42], Mochizuki proves that one can reconstruct the graph of the stable reduction of

a Mumford curve from the tempered fundamental group of its analytification. In [36], Lepage

improves this result by showing that also the metric structure of the skeleton of such analytifi-

cation can be recovered from the tempered fundamental group, treating also the example of P1
K

minus a finite number of points (see [36]). In theorem 5.2.1, we proved that the Hurwitz tree

coincides with the skeleton of the pointed disc (P1
K \LΛ)∩D(0, 1). As a consequence, if T1 and

T2 be rooted metric trees that are not isomorphic as metric spaces, then, there exist a finite

group G and a local action in characteristic zero Λ = (R[[T ]], G) such that T1
∼= TΛ and no

other local action of group G has Hurwitz tree isomorphic to T2. This is related to the problem

of realizing abstract trees as Hurwitz trees, in order to parametrize G-covers of the unit disc.

More in general, the role of Berkovich-Hurwitz trees in the study of covers, is a problem that

we think deserves to be deepened.

Final remarks

In both the examples of this section, we have used exclusively results involving the topological

and the metric structure of the Hurwitz tree. Nevertheless, as we have seen, the Berkovich-

Hurwitz tree is a richer and deeper object. Further investigations in this direction may shed

new light not only on topics related to the main motivation for the definition of the Hurwitz

tree, i.e. the local lifting problem, but also on a wide spectrum of topics related to Berkovich
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spaces more in general. In this way, the Berkovich-Hurwitz tree becomes an object that can be

studied in its own right.
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Chapter 6

Weil representation and metaplectic

groups over an integral domain

This chapter deals with the Weil representation and the metaplectic group. In [62], Weil gives

an interpretation of the behavior of theta functions throughout the definition of the metaplectic

group with a complex linear representation attached to it, known as the Weil representation. A

central tool in his construction is the group T = {z ∈ C : |z| = 1}, in which most computations

are developed. We replace T with the multiplicative group of an integral domain R and we

construct a Weil representation in this more general context. The scope is to help fitting Weil’s

theory to give applications in number theoretical questions related to modular representations

(see, for example, [41]).

We start by defining objects that are analogue to those in Weil’s construction: the groups

B, B0(W ) and the metaplectic group Mp(W ). Then, we prove the main result of this chapter,

namely the existence of the reduced metaplectic group in this new generality.

The main problems in following Weil’s approach are the lack of complex conjugation and

complex absolute value. Because of this, Fourier and integration theory shall be adapted in the

new context: mainly we consider Haar measures with values in R and operators acting over the

space of R-valued Schwartz functions instead of L2-functions, using Vignéras’ approach (section

I.2 of [61]). Moreover, allowing R to be of positive characteristic makes it necessary to change

some formulas, for example in the proof of Theorem 6.4.1 to include the case where q2 = 1 in

R.

The chapter being independent from the rest of the thesis, we decided to completely reset

the notations. We hope that this does not generate confusion in the reader.

6.1 Notation and definitions

Let F be a locally compact non-archimedean field of characteristic different from 2. We write OF
for the ring of integers of F , we fix a uniformizer $ of OF , we denote p the residue characteristic

and q the cardinality of the residue field of F . Let R be an integral domain such that p ∈ R×.
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We assume that there exists a smooth non-trivial character χ : F −→ R×, that is a group

homomorphism from F to R× whose kernel is an open subgroup of F . These properties assure

the existence of an integer l = min{j ∈ Z |$jOF ⊂ ker(χ)} called the conductor of χ.

Quadratic forms

We denote by G any finite dimensional vector space over F .

We recall that a quadratic form on G is a continuous map f : G→ F such that f(ux) = u2f(x)

for every x ∈ G and u ∈ F and (x, y) 7−→ f(x+ y)− f(x)− f(y) is F -bilinear. A character of

degree 2 of G is a map ϕ : G→ R× such that (x, y) 7−→ ϕ(x+y)ϕ(x)−1ϕ(y)−1 is a bicharacter

(i.e. a smooth character on each variable) of G × G. We denote by Q(G) the F -vector space

of quadratic forms on G, by X2(G) the group of characters of degree 2 of G endowed with the

pointwise multiplication and by X1(G) the multiplicative group of smooth R-characters of G,

that is a subgroup of X2(G).

We denote by G∗ = Hom(G,F ) the dual vector space of G. We write [x, x∗] = x∗(x) ∈ F and

〈x, x∗〉 = χ ([x, x∗]) ∈ R× for every x ∈ G and x∗ ∈ G∗. We identify (G∗)∗ = G by means of

[x∗, x] = [x, x∗]. We have a group isomorphism

G∗ −→ X1(G)

x∗ 7−→ 〈 · , x∗〉.
(6.1)

Indeed if 〈x, x∗〉 = 1 for every x ∈ X then [x, x∗] ∈ ker(χ) for every x ∈ X and this implies that

x∗ = 0 since ker(χ) 6= F . The surjectivity follows by Theorem II.3 of [63] and I.3.9 of [61].

Definition 6.1.1. Let B be the bilinear map from (G × G∗) × (G × G∗) to F defined by

B
(
(x1, x

∗
1), (x2, x

∗
2)
)

= [x1, x
∗
2] and let F = χ ◦ B.

For a F -linear map α : G → H we denote by α∗ : H∗ → G∗ its transpose. If H = G∗

and α = α∗ we say that α is symmetric. We associate to every quadratic form f on G the

symmetric homomorphism ρ = ρ(f) : G → G∗ defined by ρ(x)(y) = f(x + y) − f(x) − f(y)

for every x, y ∈ G. Since char(F ) 6= 2, the map f 7→ ρ(f) is an isomorphism from Q(G) to

the F -vector space of symmetric homomorphisms from G to G∗ with inverse the map sending

ρ to the quadratic form f(x) = [x, ρ(x)
2 ]. We say that f ∈ Q(G) is non-degenerate if ρ(f) is

an isomorphism and we denote by Qnd(G) the subgroup of Q(G) of non-degenerate quadratic

forms on G. We remark that the composition with the character χ gives an injective group

homomorphism from Q(G) to X2(G).

Integration theory

Let dg be a Haar measure on G with values in R (see I.2 of [61]). We denote by S(G) the

R-module of compactly supported locally constant functions on G with values in R. We can

write every Φ ∈ S(G) as Φ =
∑

h∈K1/K2
xh1h+K2 where K1 and K2 are two compact open

88



subgroups of G, xh ∈ R, 1h+K2 is the characteristic function of h + K2 and the sum is taken

over the finite number of right cosets of K2 in K1.

The Fourier transform of Φ ∈ S(G) is the function from G∗ to R defined by

FΦ(g∗) =

∫
G

Φ(g)〈g, g∗〉dg (6.2)

for every g∗ ∈ G∗.

For every compact open subgroup K of G let K∗ = {g∗ ∈ G∗ | 〈k, g∗〉 = 1∀ k ∈ K} define a

subgroup of G∗. Notice that the map K 7→ K∗ is inclusion-reversing.

If L is any OF -lattice of G and l is the conductor of χ, then L∗ = {g∗ ∈ G∗ | g∗(L) ⊂ $l
FOF }.

Explicitly, if L =
⊕

i$
ai
F OF (with ai ∈ Z for all i) with respect a fixed basis (e1, . . . , eN ) of G,

then L∗ =
⊕

i$
l−ai
F OF with respect to the dual basis of (e1, . . . , eN ) of G∗. These facts imply

that K∗ is a compact open subgroup of G∗ for every compact open subgroup K of G.

Given a Haar measure dg on G such that vol(K ′, dg) = 1 we call dual measure of dg the Haar

measure dg∗ on G∗ such that vol(K ′∗, dg
∗) = 1.

The inverse Fourier transform of Ψ ∈ S(G∗) is the function from G to R defined by

F−1Ψ(g) =

∫
G∗

Ψ(g∗)〈g,−g∗〉dg∗ (6.3)

for every g ∈ G.

For every Ψ1,Ψ2 ∈ S(G∗), we denote by Ψ1 ∗ Ψ2 ∈ S(G∗) the convolution product defined

by

(Ψ1 ∗Ψ2)(x∗) =

∫
G∗

Ψ1(g∗)Ψ2(x∗ − g∗)dg∗

for every x∗ ∈ G∗.

Proposition 6.1.2. Formulas (6.2) and (6.3) give an isomorphism of R-algebras from S(G),

endowed with the pointwise product, to S(G∗), endowed with the convolution product.

Proof. The R-linearity of F and F−1 is clear from their definitions. Let now K be a compact

open subgroup of G and h ∈ G; we have that

F1h+K(g∗) =

∫
G
1K(g − h)〈g, g∗〉dg = 〈h, g∗〉

∫
K
〈g, g∗〉dg.

Moreover we have
∫
K〈g, g

∗〉dg = 〈k, g∗〉
∫
K〈g, g

∗〉dg for every k ∈ K and, since R is an integral

domain, we obtain that F1h+K(g∗) = vol(K, dg)〈h, g∗〉1K∗(g∗). Then FΦ ∈ S(G∗) for every

Φ ∈ S(G), since F is R-linear and Φ is a finite sum of the form
∑

h xh1h+K1 with xh ∈ R and

K1 a compact open subgroup of G.
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Denoting K∗∗ = {g ∈ G | 〈g, g∗〉 ∀g∗ ∈ K∗} we have that

F−1F1h+K(g) = vol(K, dg)

∫
G∗
〈h, g∗〉1K∗(g∗)〈g,−g∗〉dg∗ = vol(K, dg)

∫
K∗

〈h− g, g∗〉dg∗

= vol(K, dg)vol(K∗, dg
∗)1h+K∗∗ .

Moreover if L =
⊕

i$
ai
F OF is an OF -lattice of G as above then L∗∗ =

⊕
i$

l−(l−ai)
F OF = L.

Let now L be an OF -lattice and K be a compact open subgroup of G such that L ⊂ K; we can

write 1K =
∑

h∈K/L Ih+L and then we obtain

F−1F1K = vol(K, dg)vol(K∗, dg
∗)1K∗∗

= vol(L, dg)vol(L∗, dg
∗)
∑

h∈K/L

1h+L∗∗ = vol(L, dg)vol(L∗, dg
∗)1K .

This implies that K = K∗∗ and vol(K, dg)vol(K∗, dg
∗) = 1 for every compact open subgroup K

of G. This proves that F is an isomorphism whose inverse is F−1.

Finally for every Ψ1,Ψ2 ∈ S(G∗) we have

F−1(Ψ1 ∗Ψ2)(g) =

∫
G∗

∫
G∗

Ψ1(g∗1)Ψ2(g∗2 − g∗1)dg∗1〈−g, g∗2〉dg∗2

=

∫
G

Ψ1(g∗1)

∫
G

Ψ2(g∗3)〈−g, g∗3 + g∗1〉dg∗3dg∗1 = F−1(Ψ1)(g) ·F−1(Ψ2)(g)

where we have used the change of variables g∗2 7−→ g∗3 = g∗2 − g∗1.

Definition 6.1.3. Let G and H be two finite dimensional F -vector spaces and let dx and dy

be two Haar measures on G and H. If ν : G −→ H is an isomorphism then the module of ν is

the constant |ν| = d(νx)
dy , which means that we have∫

H
Φ(y)dy = |ν|

∫
G

Φ(ν(x))dx

where Φ ∈ S(H). Notice that it is an integer power of q in R.

If dx∗ and dy∗ are the dual measures on G∗ and H∗ of dx and dy, then |ν| = |ν∗| for every

isomorphism ν : G −→ H. Indeed if K is a compact open subgroup of G then

vol(K, dx) = |ν|−1vol(ν(K), dy) = |ν|−1vol(ν(K)∗, dy
∗)−1 = |ν|−1|ν∗|vol(ν∗(ν(K))∗, dx

∗)−1

and ν∗(ν(K))∗ = {g∗ ∈ G∗ | 〈ν(k), ν∗−1(g∗)〉 = 1 ∀ k ∈ K} = K∗. Then |ν| = |ν∗|.
Moreover if G = H and dx = dy we have that |ν| is independent of the choice of the Haar

measure dx on G.
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The symplectic group

From now on, let X be a finite dimensional F -vector space and let W be the F -vector space

X × X∗. We denote by Sp(W ) the group of symplectic automorphisms of W , said to be the

symplectic group of W , that is the group of automorphisms of W such that

B
(
σ(w1), σ(w2)

)
− B

(
σ(w2), σ(w1)

)
= B(w1, w2)− B(w2, w1), (6.4)

or equivalently, by (6.1), such that F
(
σ(w1), σ(w2)

)
F
(
σ(w2), σ(w1)

)−1
= F(w1, w2)F(w2, w1)−1.

Proposition 6.1.4. Every group automorphism σ : W −→W which satisfies (6.4) is F -linear.

Proof. Applying the change of variables w1 7→ uw1 with u ∈ F in the equality (6.4), we obtain

B
(
σ(uw1), σ(w2)

)
− B

(
σ(w2), σ(uw1)

)
= u

(
B(w1, w2) − B(w2, w1)

)
and then using (6.4) again

we obtain B
(
σ(uw1)−uσ(w1), σ(w2)

)
= B

(
σ(w2), σ(uw1)−uσ(w1)

)
for every w1, w2 ∈W . This

implies that B
(
σ(uw1)−uσ(w1), σ(w2)

)
= 0 for every w2 ∈ σ−1(0×X∗) and B

(
σ(w2), σ(uw1)−

uσ(w1)
)

= 0 for every w2 ∈ σ−1(X × 0). Then σ(uw1) = uσ(w1) for every w1 ∈W .

We can write every σ ∈ Sp(W ) as a matrix of the form

(
α β

γ δ

)
where α : X → X, γ : X → X∗,

β : X∗ → X and δ : X∗ → X∗ are F -linear. The transpose of σ is σ∗ =

(
α∗ γ∗

β∗ δ∗

)
which is an

automorphism of W ∗ = X∗ ×X such that |σ∗| = |σ|. Furthermore if ξ : X ×X∗ −→ X∗ ×X

is the isomorphism defined by (x, x∗) 7−→ (−x∗, x) and σI = ξ−1σ∗ξ =

(
δ∗ −β∗

−γ∗ α∗

)
, then we

have |σ| = |σI |. With these definitions, an element σ ∈ Aut(W ) is symplectic if and only if

σIσ = 1 and then the module of every symplectic automorphism is equal to 1.

Moreover we can remark that if σ ∈ Sp(W ) then α∗γ = γ∗α : X −→ X∗ and β∗δ = δ∗β :

X∗ −→ X are symmetric homomorphisms and α∗δ − γ∗β = 1 and δ∗α− β∗γ = 1.

We associate to every σ ∈ Sp(W ) the quadratic form defined by

fσ(w) =
1

2

(
B(σ(w), σ(w))− B(w,w)

)
.

It is easy to check that fσ1◦σ2 = fσ1 ◦ σ2 + fσ2 for every σ1, σ2 ∈ Sp(W ) and that

fσ(w1 + w2)− fσ(w1)− fσ(w2) = B(σ(w1), σ(w2))− B(w1, w2) (6.5)

for every σ ∈ Sp(W ) and w1, w2 ∈W .

Symplectic realizations of forms

We introduce some applications, similar to those in 33 of [62], with values in Sp(W ) and we

give some relations between them. When comparing our calculations with those of sections 6

and 7 of [62] it shall be remarked that we change most of the definitions because we consider
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matrices acting on the left rather than on the right, to uniform notation to the contemporary

standard. This affects also the formulas that explicit the relations between these applications.

Definition 6.1.5. We define the following maps.

• An injective group homomorphism from Aut(X) to Sp(W ):

d : Aut(X) −→ Sp(W )

α 7−→

(
α 0

0 α∗−1

)
.

• An injective map from Iso(X∗, X) to Sp(W ) where Iso(X∗, X) is the set of isomorphisms

from X∗ to X:

d′ : Iso(X∗, X) −→ Sp(W )

β 7−→

(
0 β

−β∗−1 0

)
.

We remark that d′(β)−1 = d′(−β∗) for every β ∈ Iso(X∗, X).

• An injective group homomorphism from Q(X) to Sp(W ):

t : Q(X) −→ Sp(W )

f 7−→

(
1 0

−ρ 1

)

where ρ = ρ(f) is the symmetric homomorphism associated to f .

• An injective group homomorphism from Q(X∗) to Sp(W ):

t′ : Q(X∗) −→ Sp(W )

f ′ 7−→

(
1 −ρ′

0 1

)

where ρ′ = ρ(f ′) is the symmetric homomorphism associated to f ′.

Let G be either X or X∗. If f ∈ Q(G) and α ∈ Aut(G) we write fα for f ◦ α.

Proposition 6.1.6.

(i) Let f ∈ Q(X), f ′ ∈ Q(X∗) and α ∈ Aut(X). Then d(α)−1t(f)d(α) = t(fα) and

d(α)t′(f ′)d(α)−1 = t′(f ′α
∗
).

(ii) Let α ∈ Aut(X), β ∈ Iso(X∗, X). Then d′(αβ) = d(α)d′(β) and d′(βα∗−1) = d′(β)d(α).

Proof.
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(i) We have d(α)−1t(f)d(α) =

(
α−1 0

0 α∗

)(
1 0

−ρ 1

)(
α 0

0 α∗−1

)
=

(
1 0

−α∗ρα 1

)
. It is easy

to check that the symmetric homomorphism associated to fα is −α∗ρα. With similar

explicit calculations the second equality can be proven as well.

(ii) We have d(α)d′(β) =

(
α 0

0 α∗−1

)(
0 β

−β∗−1 0

)
=

(
0 αβ

−α∗−1β∗−1 0

)
= d′(αβ), and

d′(β)d(α) =

(
0 β

−β∗−1 0

)(
α 0

0 α∗−1

)
=

(
0 βα∗−1

−(βα∗−1)∗−1 0

)
= d′(βα∗−1).

We have d(α)d′(β)d(α)−1 = d′(α ◦ β ◦ α∗) so that the group d(Aut(X)) acts on the set

d′(Iso(X∗, X)) by conjugacy in Sp(W ).

A set of generators for the symplectic group

Let us provide a description of Sp(W ) by generators and relations. We denote by Ω(W ) the

subset of Sp(W ) of elements σ =

(
α β

γ δ

)
such that β is an isomorphism. The set Ω(W ) is a

set of generators for Sp(W ) (cf. 42 of [62]). The precise statement is as follows.

Proposition 6.1.7. The group Sp(W ) is generated by the elements of Ω(W ) with relations

σσ′ = σ′′ for every σ, σ′, σ′′ ∈ Ω(W ) such that the equality σσ′ = σ′′ holds in Sp(W ).

Weil states also the following fact about the set Ω(W ) (cf. formula (33) of [62]).

Proposition 6.1.8. Every element σ ∈ Ω(W ) can be written as σ = t(f1)d′(β′)t(f2) for unique

f1, f2 ∈ Q(X) and β′ ∈ Iso(X∗, X).

Remark 6.1.9. Let σ =

(
α β

γ δ

)
∈ Ω(W ). Then σ = t(f1)d′(β)t(f2) where f1 and f2 are the

quadratic forms associated to the symmetric homomorphisms −δβ−1 and −β−1α. In particular

we have the formula (
α β

γ δ

)
=

(
1 0

δβ−1 1

)(
0 β

−β∗−1 0

)(
1 0

β−1α 1

)
.

6.2 The metaplectic group

Following Weil’s strategy we define the metaplectic group, attached to R and χ, as a central

extension of the symplectic group by R×. To do so, we shall construct the groups B0(W ) and

B0(W ). In particular, in Theorem 6.2.5 we characterize B0(W ) as central extension of B0(W )

by R×. This characterization permits to define the metaplectic group as fiber product over

B0(W ) of the symplectic group and B0(W ) and to show that the metaplectic group is a central

extension of the symplectic group by R×.

The main issue related to this group, rather than its formal definition, is to study the maps

µ : Sp(W )→ B0(W ) and π0 : B0(W )→ B0(W ), that depend both on R.
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6.2.1 The group B0(W )

Let A(W ) be the group whose underlying set is W ×R× with the multiplication law

(w1, t1)(w2, t2) = (w1 + w2, t1t2F(w1, w2))

where F is as in Definition 6.1.1. Its center is Z = Z(A(W )) = {(0, t), t ∈ R×} ∼= R×.

We denote by B0(W ) the subgroup of Aut(A(W )) of group automorphisms of A(W ) acting

trivially on Z, i.e. B0(W ) = {s ∈ Aut(A(W )) | s|Z = idZ}.

Proposition 6.2.1. Let s ∈ B0(W ). Then there exists a unique pair (σ, ϕ) ∈ Sp(W )×X2(W )

satisfying the property

ϕ(w1 + w2)ϕ(w1)−1ϕ(w2)−1 = F
(
σ(w1), σ(w2)

)
F(w1, w2)−1 (6.1)

such that s(w, t) = (σ(w), ϕ(w)t) for every w ∈ W and t ∈ R×. Conversely if the pair (σ, ϕ) ∈
Sp(W )×X2(W ) satisfies (6.1), then (w, t) 7→ (σ(w), ϕ(w)t) defines an element of B0(W ).

Proof. Let η : A(W ) −→ W and θ : A(W ) −→ R× such that s(w, t) = (η(w, t), θ(w, t)). For

every w1, w2 ∈W and t1, t2 ∈ R× we have

s((w1, t1)(w2, t2)) =
(
η(w1 + w2, t1t2F(w1, w2)), θ(w1 + w2, t1t2F(w1, w2))

)
s(w1, t1)s(w2, t2) =

(
η(w1, t1) + η(w2, t2), θ(w1, t1)θ(w2, t2)F(η(w1, t1), η(w2, t2))

)
.

Since s is a homomorphism then η is so and since s|Z = idZ then η(0, t) = 0 for every t ∈ R×.

These two facts imply that η(w, t) = η(w, 1) for every t ∈ R× so that σ, defined by σ(w) =

η(w, 1), is a group endomorphism of W . We have also

θ(w1 + w2, t1t2F(w1, w2)) = θ(w1, t1)θ(w2, t2)F(σ(w1), σ(w2)). (6.2)

Setting w2 = 0 and t1 = 1 and using the fact that θ(0, t) = t for every t ∈ R× (since s|Z = idZ)

we obtain that θ(w1, t2) = θ(w1, 1)t2 for every w1 ∈W and t2 ∈ R×. So, if we set ϕ(w) = θ(w, 1),

we obtain that s(w, t) = (σ(w), ϕ(w)t) and (6.2) becomes

ϕ(w1 + w2)t1t2F(w1, w2) = ϕ(w1)t1ϕ(w2)t2F(σ(w1), σ(w2))

that is exactly the condition (6.1). Furthermore, if we take σ′ ∈ End(W ) and ϕ′ : W −→ R×

such that s−1(w, t) = (σ′(w), ϕ′(w)t), then (w, t) = s(s−1(w, t)) = (σ(σ′(w)), ϕ(σ′(w))ϕ′(w)t)

that implies that σ is a group automorphism of W with σ−1 = σ′. Now, the left-hand side of

(6.1) is symmetric on w1 and w2, so σ verify the symplectic property and by Proposition 6.1.4,

σ ∈ Sp(W ). Furthermore the right-hand side of (6.1) is a bicharacter and so ϕ is a character of

degree 2 of W .

For the vice-versa, it is easy to check that (w, t) 7→ (σ(w), ϕ(w)t) is an endomorphism of A(W )

thanks to the property (6.1), and that it is invertible with inverse (w, t) 7→ (σ−1(w), (ϕ(σ−1w))−1t).
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Notice that it acts trivially on Z, so it is an element of B0(W ).

From now on, we identify an element s ∈ B0(W ) with the corresponding pair (σ, ϕ) such that

s(w, t) = (σ(w), ϕ(w)t). If s1, s2 ∈ B0(W ) and (σ1, ϕ1) and (σ2, ϕ2) are their corresponding

pairs, then the composition law of B0(W ) becomes s1 ◦s2 = (σ1, ϕ1)(σ2, ϕ2) = (σ1 ◦σ2, ϕ) where

ϕ is defined by ϕ(w) = ϕ2(w)ϕ1(σ2(w)). We observe that the identity element is (id, 1) and the

inverse of (σ, ϕ) is (σ−1, (ϕ ◦ σ−1)−1).

The projection π′ : B0(W ) −→ Sp(W ) defined by π′(σ, ϕ) = σ is a group homomorphism whose

kernel is {(id, τ), τ ∈ X1(W )}. Furthermore, by (6.5) and (6.1), we have an injective group

homomorphism

µ : Sp(W ) −→ B0(W )

σ 7−→ (σ, χ ◦ fσ)
(6.3)

such that π′ ◦ µ is the identity of Sp(W ). This means that B0(W ) is the semidirect product

of {(id, τ), τ ∈ X1(W )} and µ(Sp(W )) and in particular, by Propositions 6.1.7 and 6.1.8, it is

generated by µ(t(Q(X))), µ(d′(Iso(X∗, X))) and {(id, τ), τ ∈ X1(W )}.

Let us define some applications with values in B0(W ), similar to those in 6 of [62], composing

those with values in Sp(W ) with µ. We call them d0 = µ◦d, d′0 = µ◦d′, t0 = µ◦t and t′0 = µ◦t′.

6.2.2 The group B0(W )

We define A as the image of a faithful infinite dimensional representation of A(W ) over R and

B0(W ) as its normalizer in Aut(S(X)). Then we show that in fact B0(W ) is a central extension

of B0(W ) by R×.

A and B0(W )

For every w = (v, v∗) ∈ X × X∗ = W and every t ∈ R×, we denote by U(w, t) the R-linear

operator on S(X) defined by

U(w, t)Φ : x 7→ tΦ(x+ v)〈x, v∗〉

for every function Φ ∈ S(X). It can be directly verified that U(w, t) lies in Aut(S(X)) for every

w ∈W and t ∈ R×. With a slight abuse of notation we write U(w) = U(w, 1) for every w ∈W .

Let A = {U(w, t) ∈ Aut(S(X)) | t ∈ R×, w ∈W}. It is not hard to see that it is a subgroup of

Aut(S(X)) and that its multiplication law is given by

U(w1, t1)U(w2, t2) = U(w1 + w2, t1t2F(w1, w2)). (6.4)

Lemma 6.2.2. The map

U : A(W ) −→ A(W )

(w, t) 7−→ U(w, t).

is a group isomorphism.
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Proof. By (6.4) the map U preserves operations and it is surjective. For injectivity we have to

prove that if tΦ(x + v)〈x, v∗〉 = Φ(x) for every Φ ∈ S(X) and every x ∈ X then t = 1 and

(v, v∗) = (0, 0). If we take x = 0 and Φ the characteristic function 1K of any compact open

subgroup K of X, we obtain that t1K(v) = 1 for every K and so t = 1 and v = 0. Therefore

we have that 〈x, v∗〉 = 1 for every x ∈ X and so v∗ = 0 by (6.1).

Remark 6.2.3. The homomorphism U is a representation of A(W ) on the R-module S(X).

The group B0(W ) acts on A(W ) and so on A(W ) via the isomorphism in Lemma 6.2.2. This

action is given by

B0(W )× A(W ) −→ A(W )

((σ, ϕ), U(w, t)) 7−→ U(σ(w), tϕ(w)).

Moreover, we can identify B0(W ) with the group of automorphisms of A(W ) acting trivially on

the center Z(A(W )) = {t · idS(X) ∈ Aut(S(X)) | t ∈ R×} ∼= R×.

We denote by B0(W ) the normalizer of A in Aut(S(X)), that is

B0(W ) =
{
s ∈ Aut(S(X)) | sA(W )s−1 = A(W )

}
.

So, if s is an element of B0(W ), conjugation by s, denoted by conj(s), is an automorphism of

A(W ).

Lemma 6.2.4. The map

π0 : B0(W ) −→ B0(W )

s 7−→ conj(s)

is a group homomorphism

Proof. Clearly conj(s) is trivial on Z(A(W )) = {t · idS(X) ∈ Aut(S(X)) | t ∈ R×} and so it lies

in B0(W ). Moreover conj(s1s2) = conj(s1)conj(s2) so that π0 preserves the group operation.

Theorem 6.2.5. The following sequence is exact:

1 −→ R× −→ B0(W )
π0−→ B0(W ) −→ 1

where R× injects in B0(W ) by t 7→ t · idS(X).

We prove this theorem in paragraph 6.2.2. Before that, we need to construct, as proposed in

13 of [62], some “liftings” to B0(W ) of the applications d0, d′0 and t0.

Realization of forms on B0(W )

We fix a Haar measure dx on the finite dimensional F -vector space X with values in R. We

denote by dx∗ the dual measure of dx on X∗ and dw = dxdx∗ the product Haar measure on W .

From now on, we suppose that there exists a fixed square root q
1
2 of q in R. If ν is an isomorphism

of F -vector spaces and |ν| = qa is its module, we denote |ν|
1
2 = (q

1
2 )a ∈ R.
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Definition 6.2.6. We define the following maps.

• A group homomorphism d0 : Aut(X) −→ Aut(S(X)) defined by d0(α)Φ = |α|−
1
2 (Φ◦α−1)

for every α ∈ Aut(X) and every Φ ∈ S(X).

• A map d′0 : Iso(X∗, X) −→ Aut(S(X)) defined by d′0(β)Φ = |β|−
1
2 (FΦ ◦ β−1) for every

β ∈ Iso(X∗, X) and every Φ ∈ S(X), where FΦ is the Fourier transform of Φ as in (6.2).

We remark that d′0(β)−1 = d′0(−β∗) = |β|
1
2 F−1(Φ ◦ β).

• A group homomorphism t0 : Q(X) −→ Aut(S(X)) defined by t0(f)Φ = (χ ◦ f) · Φ for

every f ∈ Q(X) and every Φ ∈ S(X).

We shall now to prove that they are actually onto B0(W ) and that they lift in B0(W ) the

applications d0, d′0 and t0.

Proposition 6.2.7. The images of d0, d′0 and t0 are in B0(W ) and they satisfy

π0 ◦ d0 = d0 π0 ◦ d′0 = d′0 and π0 ◦ t0 = t0.

Proof. For every α ∈ Aut(X), Φ ∈ S(X), w = (v, v∗) ∈W and x ∈ X we have

d0(α)U(w)d0(α)−1Φ(x) = d0(α)U(w)|α|
1
2 (Φ ◦ α)(x) = Φ(α(α−1(x) + u))〈α−1(x), v∗〉

= Φ(x+ α(u))〈x, α∗−1(v∗)〉 = d0(α)U(w)Φ(x).

For every β ∈ Iso(X∗, X), Φ ∈ S(X), w = (v, v∗) ∈W and x ∈ X we have

d′0(β)U(w)d′0(β)−1Φ(x) = d′0(β)U(w)|β|
1
2 F−1(Φ ◦ β)(x)

=

∫
X

(∫
X∗

Φ(β(x∗))〈x1 + v,−x∗〉dx∗
)
〈x1, v

∗〉〈x1, β
−1(x)〉dx1

=

∫
X

(∫
X∗

Φ(β(x∗))〈−v, x∗〉〈x1,−x∗〉dx∗
)
〈x1, v

∗ + β−1(x)〉dx1

= Φ(β(v∗ + β−1(x)))〈−v, v∗ + β−1(x)〉

= Φ(x+ β(v∗))〈x,−β∗−1(v)〉〈v,−v∗〉 = d′0(β)U(w)Φ(x).

For every f ∈ Q(X), Φ ∈ S(X), w = (v, v∗) ∈W and x ∈ X we have

t0(f)U(w)t0(f)−1Φ(x) = χ(f(x))χ(f(x+ v))−1Φ(x+ v)〈x, v∗〉

= χ(f(v))−1〈x, ρ(v)〉−1Φ(x+ v)〈x, v∗〉 = t0(f)U(w)Φ(x).

These equalities prove at the same time that the images of d0, d′0 and t0 are in B0(W ) and that

they lift in B0(W ) respectively the applications d0, d′0 and t0.

Proposition 6.2.7 and the injectivity of d0 and t0 entail injectivity for d0 and t0. Moreover

Propositions 6.1.6 and 6.2.7 say that for every f ∈ Q(X), α ∈ Aut(X) and β ∈ Iso(X∗, X),
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the three elements d0(α)−1t0(f)d0(α), d′0(α ◦ β) and d′0(β ◦α∗−1) of B0(W ) differ, respectively

from t0(fα), d0(α)d′0(β) and d′0(β)d0(α) just by elements of R×. A direct calculation gives

d0(α)−1t0(f)d0(α) = t0(fα) d′0(α ◦ β) = d0(α)d′0(β) d′0(β ◦ α∗−1) = d′0(β)d0(α) (6.5)

so that in fact these elements are the identity.

Proof of Theorem 6.2.5

In this paragraph we give a proof of Theorem 6.2.5 that is fundamental for the definition of the

metaplectic group.

Firstly we prove that π0 is surjective: we know that B0(W ) is generated by µ(t(Q(X))),

µ(d′(Iso(X∗, X))) and {(id, τ), τ ∈ X1(W )} so that it is sufficient to prove that every ele-

ment in these sets is in the image of π0. By Proposition 6.2.7, this is proved for the sets

µ(t(Q(X))) and µ(d′(Iso(X∗, X))). Moreover by (6.1) we have that every character τ of

W is of the form τ(v, v∗) = 〈a, v∗〉〈v, a∗〉 for suitable a ∈ X and a∗ ∈ X∗. For every

w = (v, v∗) ∈ W and t ∈ R× we have (1, τ)U(w, t) = U(w, t · τ(w)) = U(w, t〈a, v∗〉〈v, a∗〉) =

U(a,−a∗)U(w, t)U(−a, a∗, 〈a,−a∗〉) and so (id, τ) = π0(U(a,−a∗)).

Let us now calculate the kernel of π0. For φ ∈ S(X ×X∗) we denote by U(φ) the operator on

S(X) defined by

U(φ) =

∫
W
U(w, φ(w))dw =

∫
W
φ(w)U(w)dw.

This means that for every Φ ∈ S(X) and every x ∈ X we have

U(φ)Φ(x) =

∫
W
φ(w)(U(w)Φ)(x)dw =

∫
W
φ(v, v∗)Φ(x+ v)〈x, v∗〉dvdv∗

where w = (v, v∗). Given P,Q ∈ S(X) we denote by φP,Q ∈ S(X ×X∗) the function defined by

φP,Q(v, v∗) =

∫
X
P (v′)Q(v′ + v)〈−v′, v∗〉dv′

for every v ∈ X, v∗ ∈ X∗. With this definition we obtain

U(φP,Q)Φ(x) =

∫
X

Φ(x+ v)

∫
X∗

∫
X
P (v′)Q(v′ + v)〈x− v′, v∗〉dv′dv∗dv

and using Proposition 6.1.2 we have

U(φP,Q)Φ(x) =

∫
X

Φ(x+ v)P (x)Q(x+ v)dv =

∫
X

Φ(v)Q(v)dvP (x).

If we denoted by [P,Q] =
∫
X P (x)Q(x)dx for every P,Q ∈ S(X) we have U(φP,Q)Φ = [Φ, Q]P .

Now, s is in the kernel of π0 if and only if it lies in the centralizer of A(W ) in Aut(S(X)).

If this is the case, then s commutes with U(φ) in End(S(X)) for every φ ∈ S(X × X∗), i.e.

s(U(φ)Φ) = U(φ)(s(Φ)). In particular s commutes with operators of the form U(φP,Q) for every
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P,Q ∈ S(X), that is [sΦ, Q]P = [Φ, Q]sP for every Φ, P,Q ∈ S(X). If we choose Φ = Q = 1K

where K is a compact open subgroup of X with vol(K, dx) ∈ R×, we can write

sP =
[sΦ, Q]

[Φ, Q]
P.

In other words s is of the form Φ 7→ tΦ for a suitable t ∈ R and t has to be invertible since s

is an automorphism. Hence ker(π0) ⊆ {t · idS(X) ∈ Aut(S(X)) | t ∈ R×}. The converse is true

because the center of a group is always contained in its centralizer.

Remark 6.2.8. In proving Theorem 6.2.5 the techniques used in [62] could be adapted to show

that ker(π0) ∼= R×, but not to prove surjectivity of π0.

6.2.3 The metaplectic group

We have just defined in (6.3) and Lemma 6.2.4 the group homomorphisms

µ : Sp(W ) −→ B0(W ) and π0 : B0(W ) −→ B0(W )

σ 7−→ (σ, χ ◦ fσ) s 7−→ conj(s).

The first one is injective, while the second one is surjective with kernel isomorphic to R×. We

remark that the definition of B0(W ) and these two homomorphisms depend on the choice of the

integral domain R and the smooth non-trivial character χ.

Definition 6.2.9. The metaplectic group of W , attached to R and χ, is the subgroup

MpR,χ(W ) = Sp(W )×B0(W )B0(W ) of Sp(W )×B0(W ) of the pairs (σ, s) such that µ(σ) = π0(s).

From now on, we write Mp(W ) instead of MpR,χ(W ). We have a group homomorphism

π : Mp(W ) −→ Sp(W )

(σ, s) 7−→ σ.

The morphism π0 is surjective and surjectivity in the category of groups is preserved under

base-change, therefore π is surjective. Moreover an element (σ, s) is in the kernel of π if and

only if s is in the kernel of π0, that is isomorphic to R×. Thus we obtain:

Theorem 6.2.10. The following sequence is exact:

1 −→ R× −→ Mp(W )
π−→ Sp(W ) −→ 1 (6.6)

where R× injects in Mp(W ) by t 7→ (id, t · idS(X)).

Since B0(W ) = B0(W )/R× and B0(W ) ⊂ Aut(S(X)), we may regard µ as a projective repre-

sentation of the symplectic group. Then, the metaplectic group is defined in such a way that

the map

Mp(W ) −→ B0(W )

(σ, s) 7−→ s
(6.7)

is a faithful representation on the R-module S(X) that lifts µ.
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6.3 The Weil factor

The sequence (6.6) constitutes the object of our study and the rest of the article is devoted to

study its properties. Following the idea of Weil, we define in this section a map γ that associates

to every non-degenerate quadratic form f on X an invertible element γ(f) ∈ R× (cfr. 14 of

[62]). This object, that we call Weil factor, shows up at the moment of understanding the

map π by lifting a description of Sp(W ) by generators and relations. The study of its properties

is at the heart of the results in [62]. We prove that similar properties hold for γ(f) ∈ R×.

The general idea is: we find the relation (6.2) in B0(W ) and we lift it into B0(W ) finding an

element of R× thanks to Theorem 6.2.5. Then we proceed in two directions: on one hand we

prove results that are useful to calculate γ(f) while on the other we use the Weil factor to lift

to Mp(W ) the relations of Proposition 6.1.7.

6.3.1 The Weil factor

Let f ∈ Qnd(X) be a non-degenerate quadratic form on X and let ρ ∈ Iso(X,X∗) be its

associated symmetric isomorphism. Explicit calculations in Sp(W ) give the equality

d′(ρ−1)t(f)d′(−ρ−1)t(f) = t(−f)d′(ρ−1). (6.1)

Moreover, applying Proposition 6.1.6, (6.1) is equivalent to
(
t(f)d′(ρ−1)

)3
=
(
d′(ρ−1)t(f)

)3
= 1.

It follows from equation (6.1) that

d′0(ρ−1)t0(f)d′0(−ρ−1)t0(f) = t0(−f)d′0(ρ−1). (6.2)

We denote s = s(f) = d′0(ρ−1)t0(f)d′0(−ρ−1)t0(f) and s′ = s′(f) = t0(−f)d′0(ρ−1). We have

by Proposition 6.2.7 and equation (6.2), π0(s) = π0(s′). Hence s and s′ differ by an element of

R×

Definition 6.3.1. Let γ(f) ∈ R× be such that s = γ(f)s′. We call γ(f) the Weil factor

associated to f ∈ Qnd(X).

By formulas (6.5) we have γ(f) =
(
t0(f)d′0(ρ−1)

)3
=
(
d′0(ρ−1)t0(f)

)3
.

We are now ready to investigate some properties of γ, starting from seeing what changes under

the action of Aut(X).

Proposition 6.3.2. Let f ∈ Qnd(X).

(i) We have γ(−f) = γ(f)−1.

(ii) For every α ∈ Aut(X) we have γ(fα) = γ(f).

Proof. Let f ∈ Qnd(X) be associated to the symmetric isomorphism ρ.

(i) We have γ(−f) =
(
t0(−f)d′0(−ρ−1)

)3
=
(
d′0(ρ−1)t0(f)

)−3
= γ(f)−1.
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(ii) The symmetric isomorphism associated to fα is α∗ρα. Then we have

γ(fα) =
(
t0(fα)d′0(α−1ρ−1α∗−1)

)3
=
(
d0(α)−1t0(f)d0(α)d0(α)−1d′0(ρ−1)d0(α)

)3
= d0(α)−1

(
t0(f)d′0(ρ−1)

)3
d0(α) = γ(f).

Proposition 6.3.2 gives actually a strong result in a particular case: if −1 ∈ (F×)2 and a2 = −1

with a ∈ F× then x 7→ ax is an automorphism of X. By Proposition 6.3.2 we have γ(f) =

γ(−f) = γ(f)−1, in other words γ(f)2 = 1. This does not hold in general for a local field F

without square roots of −1.

Let f ∈ Qnd(X) be associated to ρ and define ϕ = χ ◦ f . Notice that ϕ(−x) = ϕ(x). For every

Φ ∈ S(X), we denote by Φ ∗ ϕ the convolution product defined by

(Φ ∗ ϕ)(x) =

∫
X

Φ(x′)ϕ(x− x′)dx′

for every x ∈ X. We have that Φ ∗ ϕ ∈ S(X), indeed

(Φ ∗ ϕ)(x) =

∫
X

Φ(x′)ϕ(x− x′)dx′ = ϕ(x)

∫
X

Φ(x′)ϕ(−x′)〈x, ρ(−x′)〉dx′

= ϕ(x)

∫
X

Φ(x′)ϕ(x′)〈x′,−ρ(x)〉dx′ = |ρ|−
1
2 t0(f)d0(−ρ−1)t0(f)Φ(x)

where we have used that ϕ(x+ y) = ϕ(x)ϕ(y)〈x, ρ(y)〉 for every x, y ∈ X.

Now we state a proposition that gives a summation formula for γ(f) and that allows us to

calculate in Theorem 6.4.1 the value of γ for a specific quadratic form over F .

Proposition 6.3.3. Let f ∈ Qnd(X) be associated to the symmetric isomorphism ρ ∈ Iso(X,X∗)

and let s, s′ ∈ B0(W ) as in Definition 6.3.1. We set ϕ = χ ◦ f .

1. For every Φ ∈ S(X) and for every x ∈ X we have

sΦ(x) = |ρ|F (Φ ∗ ϕ)(ρ(x)) and s′Φ(x) = |ρ|
1
2 FΦ(ρ(x))ϕ(x)−1.

2. For every Φ ∈ S(X) and for every x∗ ∈ X∗ we have

F (Φ ∗ ϕ)(x∗) = γ(f)|ρ|−
1
2 FΦ(x∗)ϕ(ρ−1x∗)−1. (6.3)

3. There exists a sufficiently large compact open subgroup K0 of X such that for every

compact open subgroup K of X containing K0 and for every x∗ ∈ X∗, the integral∫
K ϕ(x)〈x, x∗〉dx does not depend on K. Moreover we have∫

K
ϕ(x)〈x, x∗〉dx = γ(f)|ρ|−

1
2ϕ(ρ−1x∗)−1 (6.4)

and we denote Fϕ =
∫
K ϕ(x)〈x, x∗〉dx.
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4. If K is a sufficiently large compact open subgroup of X, we have

γ(f) = |ρ|
1
2

∫
K
χ(f(x))dx. (6.5)

Proof.

1. For every Φ ∈ S(X) and every x ∈ X we have

sΦ(x) = d′0(ρ−1)t0(f)d′0(−ρ−1)t0(f)Φ(x)

= |ρ|
∫
X

∫
X

Φ(x1)ϕ(x1)〈x1,−ρ(x2)〉ϕ(x2)〈x2, ρ(x)〉dx1dx2

= |ρ|
∫
X

∫
X

Φ(x1)ϕ(−x1)〈x1,−ρ(x2)〉ϕ(x2)〈x2, ρ(x)〉dx1dx2

= |ρ|
∫
X

∫
X

Φ(x1)ϕ(x2 − x1)〈x2, ρ(x)〉dx1dx2 = |ρ|F (Φ ∗ ϕ)(ρ(x))

and s′Φ(x) = t0(−f)d′0(ρ−1)Φ(x) = t0(−f)|ρ|
1
2 F (Φ ◦ ρ)(x) = ϕ(x)−1|ρ|

1
2 F (Φ ◦ ρ)(x).

2. By the equality s = γ(f)s′ we have |ρ|F (Φ ∗ ϕ)(ρ(x)) = γ(f)|ρ|
1
2 FΦ(ρ(x))ϕ(x)−1 and

replacing ρ(x) by x∗ we obtain the equality (6.3).

3. Taking Φ = 1H for a compact open subgroup H of X in formula (6.3), we obtain∫
X

(1H ∗ ϕ)(x1)〈x1, x
∗〉dx1 = γ(f)|ρ|−

1
2 F1H(x∗)ϕ(ρ−1x∗)−1.

We want to calculate the integral in the left hand side. We can take a compact open

subgroup K0 of X large enough to contain both H and the support of 1H ∗ ϕ obtaining∫
X

(1H ∗ ϕ)(x1)〈x1, x
∗〉dx1 =

∫
K0

∫
H
ϕ|K0

(x1 − x2)dx2〈x1, x
∗〉dx1.

Now, we can prove that ϕ|K0
is locally constant and that we can change the order of the

two integrals, i.e.∫
X

(1H ∗ ϕ)(x1)〈x1, x
∗〉dx1 =

∫
H

∫
K0

ϕ|K0
(x1 − x2)〈x1, x

∗〉dx1dx2

=

∫
H

∫
K0

ϕ|K0
(x′1)〈x′1 + x2, x

∗〉dx′1dx2

= F1H(x∗)

∫
K0

ϕ|K0
(x′1)〈x′1, x∗〉dx′1.

Since F1H = vol(H)1H∗ and vol(H) 6= 0, we obtain the equality (6.4) for every x∗ ∈ H∗
and every H compact open subgroup of X. Now H∗ cover X∗, varying H, and so the

equality holds for every x∗ ∈ X∗ . It is clear that the equality holds also for every compact

open subgroup K of X containing K0.

4. Setting x∗ = 0 in (6.4) we obtain γ(f) = |ρ|
1
2

∫
K ϕ(x)dx = |ρ|

1
2

∫
K χ(f(x))dx.
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Remark 6.3.4. The second result in Proposition 6.3.2 is true more generally for every α′ ∈
Iso(X ′, X) where X ′ is a finite dimensional F -vector space. In fact if K ′ is a compact open

subgroup of X ′ large enough, f ∈ Qnd(X) and α ∈ Iso(X ′, X) by (6.5) we have

γ(f ◦ α) = |α∗ρα|
1
2

∫
K′
χ(f(α(x′)))dx′ = |ρ|

1
2 |α|

∫
X′
1α(K′)(α(x′))χ(f(α(x′)))dx′

= |ρ|
1
2

∫
X
1α(K′)(x)χ(f(x))dx′ = γ(f).

Symplectic generators in B0(W )

Definition 6.3.5. Let σ ∈ Ω(W ). By Proposition 6.1.8 we can write σ = t(f1)d′(β)t(f2) for

unique f1, f2 ∈ Q(X) and β ∈ Iso(X∗, X). We define a map r0 : Ω(W )→ B0(W ) by

r0(σ) = t0(f1)d′0(β)t0(f2)

for every σ ∈ Ω(W ).

Now we state a theorem that says how an equality σ′′ = σσ′ in Ω(W ) lifts to B0(W ). After a

comparison with section 15 of [62] the differences turn out to be the use of Fourier transform

for Schwartz functions and previous changes in notations. Finally we have clarified some points

and made them explicit.

Theorem 6.3.6. Let σ =

(
α β

γ δ

)
, σ′ =

(
α′ β′

γ′ δ′

)
and σ′′ =

(
α′′ β′′

γ′′ δ′′

)
be elements of Ω(W )

such that σ′′ = σσ′. Then

r0(σ)r0(σ′) = γ(f0)r0(σ′′)

where f0 is the non-degenerate quadratic form on X associated to the symmetric isomorphism

−β−1β′′β′−1 : X → X∗.

Proof. Since r0(σ)r0(σ′) and r0(σ′′) have the same image by π0, we can set r0(σ)r0(σ′) = λr0(σ′′)

where λ ∈ R× depends on σ, σ′. By Definition 6.3.5 we have

t0(f1)d′0(β)t0(f2)t0(f ′1)d′0(β′)t0(f ′2) = λt0(f ′′1 )d′0(β′′)t0(f ′′2 )

for suitable f1, f2, f
′
1, f
′
2, f
′′
1 , f

′′
2 ∈ Q(X). Setting f0 = f2 + f ′1, f3 = −f1 + f ′′1 and f4 = f ′′2 − f ′2

we obtain

d′0(β)t0(f0)d′0(β′) = d′0(β)t0(f0)d′0(−β′∗)−1 = λt0(f3)d′0(β′′)t0(f4)

where we have used that d′0(β′)−1 = d′0(−β′∗). By Remark 6.1.9 the symmetric homomorphisms

associated to f2 and f ′1 are ρ2 = −β−1α and ρ′1 = −δ′β′−1, hence the symmetric homomorphism

associated to f0 is ρ0 = ρ2 + ρ′1 = −β−1(αβ′ + βδ′)β′−1 = −β−1β′′β′−1 = −β′∗−1β′′∗β∗−1 that

is also an isomorphism.
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We set ϕi = χ ◦ fi for i = 0, 3, 4. For every Φ ∈ S(X) and x ∈ X we have

d′0(β)t0(f0)d′0(−β′∗)−1Φ(x) = |β|−
1
2 |β′|

1
2 F (F−1(Φ ◦ (−β′∗)) · ϕ0)(β−1x).

By Proposition 6.1.2 the Fourier transform of a pointwise product is the convolution product of

the Fourier transforms and then d′0(β)t0(f0)d′0(β′)Φ(x) = |β|−
1
2 |β′|

1
2

(
(Φ ◦ β′∗) ∗Fϕ0

)
(β−1x).

Using formula (6.4) we obtain

d′0(β)t0(f0)d′0(β′)Φ(x) = γ(f0)|ρ0|−
1
2 |β|−

1
2 |β′|

1
2
(
(Φ ◦ β′∗) ∗ (ϕ0 ◦ ρ−1

0 )−1
)
(β−1x)

= γ(f0)|β′′|−
1
2 |β′|

(
(Φ ◦ β′∗) ∗ (ϕ0 ◦ ρ−1

0 )−1
)
(β−1x)

= γ(f0)|β′′|−
1
2 |β′|

∫
X∗

Φ(β′∗(x∗))ϕ0(β∗β′′∗−1β′∗(x∗)− β′β′′−1(x))−1dx∗

= γ(f0)|β′′|−
1
2

∫
X

Φ(x1)ϕ0(−β′β′′−1(x) + β∗β′′∗−1(x1))−1dx1

where in the last step we have used the change of variables β′∗(x∗) 7→ x1. Furthermore we have

t0(f3)d′0(β′′)t0(f4)Φ(x) = |β′′|−
1
2

∫
X

Φ(x1)ϕ4(x1)ϕ3(x)〈x1, β
′′−1x〉dx1

and then

γ(f0)

∫
X

Φ(x1)ϕ0(−β′β′′−1(x) + β∗β′′∗−1(x1))−1dx1 = λ

∫
X

Φ(x1)ϕ4(x1)ϕ3(x)〈x1, β
′′−1x〉dx1.

We observe that the two sides are of the form ci
∫
X Φ(x1)ϑi(x1, x)dx1 for i = 1, 2, where ci ∈ R×

and ϑi are characters of degree 2 of X ×X. Since the equality holds for every Φ ∈ S(X) and

every x ∈ X, we obtain that c1 = c2 and ϑ1 = ϑ2 and so γ(f0) = λ.

6.3.2 Metaplectic realizations of forms

Definitions 6.1.5 and 6.2.6 allow us to define some applications from Aut(X), Iso(X∗, X) and

Q(X) to Mp(W ), similar to those in 34 of [62], that satisfy relations analogous to those of d0,

d′0 and t0.

Definition 6.3.7. Let Mp(W ) be as in Definition 6.2.9. We define the following applications.

• The injective group homomorphism d : Aut(X) −→ Mp(W ) given by d(α) = (d(α),d0(α))

for every α ∈ Aut(X).

• The injective map d′ : Iso(X∗, X) −→ Mp(W ) given by d′(β) = (d′(β),d′0(β)) for every

β ∈ Iso(X∗, X).

• The injective group homomorphism t : Q(X) −→ Mp(W ) given by t(f) = (t(f), t0(f)) for

every f ∈ Q(X).
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By Proposition 6.1.6 and by (6.5) we have

d(α)−1t(f)d(α) = t(fα) (6.6)

for every f ∈ Q(X) and α ∈ Aut(X). We have also d′(α ◦ β) = d(α)d′(β) and d′(β ◦ α∗−1) =

d′(β)d(α) for every α ∈ Aut(X) and β ∈ Iso(X∗, X).

As in Definition 6.3.5, we can define a map from Ω(W ) to Mp(W ). By Proposition 6.1.8 every

element σ ∈ Ω(W ) can be written uniquely as σ = t(f1)d′(β)t(f2): we define

r(σ) = t(f1)d′(β)t(f2) (6.7)

that is equivalent to write r(σ) = (σ, r0(σ)).

Let σ =

(
α β

γ δ

)
, σ′ =

(
α′ β′

γ′ δ′

)
and σ′′ =

(
α′′ β′′

γ′′ δ′′

)
be in Ω(W ) such that σσ′ = σ′′. By

Theorem 6.3.6 we have

r(σ)r(σ′) = γ(f0)r(σ′′) (6.8)

where f0 is the non-degenerate quadratic form on X associated to the symmetric isomorphism

−β−1β′′β′−1.

6.4 Fundamental properties of the Weil factor

In this section we find the possible values of γ(f) for every non-degenerate quadratic form f over

F . Proposition 6.3.3 gives a summation formula for γ(f) and we use it to prove that γ(n) = −1

where n is the reduced norm of the quaternion division algebra over F . In Theorem 6.4.7 we

see that γ is a R-character of the Witt group of F . Moreover we already know by Proposition

6.3.2 that γ(f)2 = 1 if F contains a square root of −1 and at the end of this section this is

generalized by saying that, for any F , γ(f) is a fourth root of unity in R.

For every positive integer m, we denote by qm the non-degenerate quadratic form qm(x) =∑m
i=1 x

2
i defined on the m-dimensional vector space Fm.

6.4.1 The quaternion division algebra over F

In this paragraph we use some results on quaternion algebras over F ([60]) to prove that if

char(R) 6= 2 the map γ : Qnd(X) −→ R× is non-trivial by means of a concrete example.

By Theorem II.1.1 of [60] we know that there exists a unique quaternion division algebra over

F (up to isomorphism) that we denote by A. The reduced norm n : A −→ F is a non-

degenerate quadratic form on the F -vector space underlying A and it induces a surjective group

homomorphism n|A× : A× −→ F×. Moreover by Lemma II.1.4 of [60], if v is a discrete valuation

of F such that v($) = 1 then v ◦ n is a discrete valuation of A; so we can consider the ring of

integers OA = {z ∈ A |n(z) ∈ OF } of A and fix a uniformizer $A of OA such that $2
A = $. The
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unique prime ideal of OA is $AOA and the cardinality of the residue field of A is q2 where q is

the cardinality of the residue field of F . According to Definition 6.1.3, we define the module of

x ∈ F (resp. z ∈ A), denoted by |x| (resp. |z|A), as the module of the multiplication (resp. right

multiplication) by x (resp. z). We can easily prove that |x| = q−v(x) and |z|A = |n(z)|2. We

denote by dx and dz the Haar measures on F and A such that vol(OF , dx) = vol(OA, dz) = 1.

Theorem 6.4.1. Let A be the quaternion division algebra over F and let n : A −→ F be the

reduced norm of A. Then γ(n) = −1.

In order to prove this theorem, we start by calculating |ρn|, where ρn ∈ Iso(A,A∗) is the

symmetric isomorphism associated to the quadratic form n, and then we prove that γ(n) does

not depend on the choice of the non-trivial character χ.

Lemma 6.4.2. If l is the conductor of χ, then |ρn| = q4l−2.

Proof. By Definition 6.1.3 with Φ = 1(OA)∗ , we have |ρn| = vol(ρ−1((OA)∗), dz)
−1. Moreover

ρn(z1)(z2) = tr(z1z̄2) for every z1, z2 ∈ A, where z 7→ z̄ is the conjugation of A (cf. page 1 of

[60]). Then we have the following equivalences:

z ∈ ρ−1((OA)∗)⇐⇒ 〈z, ρ(OA)〉 = 1⇐⇒ tr(zOA) ⊂ ker(χ).

We know that {z ∈ A | tr(zOA) ⊂ OF } is a fractional ideal (its inverse is called codifferent

ideal), and by Corollary II.1.7 of [60] it is exactly $−1
A OA. Then z ∈ ρ−1((OA)∗) if and only if

z ∈ $l$−1
A OA = $2l−1

A OA. Hence |ρn| = q4l−2.

Lemma 6.4.3. Let A and n as in Theorem 6.4.1. Then γ(n) does not depend on the choice of

the non-trivial smooth R-character χ of F .

Proof. We know that every non-trivial smooth R-character of F is of the form χa : x 7→ χ(ax)

with a ∈ F×; in particular the conductor of χa is l − v(a) where l is the conductor of χ.

Moreover, by (6.5) and Lemma 6.4.2, we have

γ(n) = |ρn|
1
2

∫
$−λA OA

χ(n(z))dz = q2l−1

∫
$−λA OA

χ(n(z))dz

for λ large enough. Now we fix a ∈ F× and we denote by γa(n) the value of γ(n) obtained

replacing χ by χa. Since n is surjective there exists za ∈ $v(a)OA such that n(za) = a. If we

take λ′ = λ+ v(a) we obtain

γa(n) = q2(l−v(a))−1

∫
$−λ

′
A OA

χa(n(z))dz = q2(l−v(a))−1

∫
$−λ

′
A OA

χ(n(zaz))dz

= q2(l−v(a))−1|za|−1

∫
$
−λ′+v(a)
A OA

χ(n(z))dz = q2l−1

∫
$−λA OA

χ(n(z))dz = γ(n)

which concludes the proof.
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Proof of Theorem 6.4.1. For every k ≥ 0, we fix a set of representatives ΞA,k of the classes of

OA modulo $k
AOA. We denote by Ξ×A,k ⊂ ΞA,k the set of representatives of

(
OA/$k

AOA
)×

and

by Ξ×F,k ⊂ ΞF,k ⊂ n(ΞA,k) two sets of representatives of
(
OF /$kOF

)×
and OF /$kOF .

By Lemma 6.4.3 we can suppose that the conductor of χ is 1, so that χ is trivial on $AOA but

not on OA. Then, for λ large enough, we have

γ(n) = q

∫
$−λA OA

χ(n(z))dz = q1+2λ

∫
OA

χ
(
$−λn(z)

)
dz

= q1+2λ
∑

z′∈ΞA,λ+1

∫
$λ+1
A OA

χ
(
$−λn(z′ + z)

)
dz

= q1+2λvol($λ+1
A OA, dz)

∑
z′∈ΞA,λ+1

χ
(
$−λn(z′)

)
= q−1

∑
z′∈ΞA,λ+1

χ
(
$−λn(z′)

)
.

Since n :
(
OA/$k+1

A OA
)×
−→

(
OF /$k+1OF

)×
is surjective and its kernel has cardinality

qk(q + 1), we have∑
z∈Ξ×A,k+1

χ($−kn(z)) = qk(q + 1)
∑

x∈Ξ×F,k+1

χ($−kx) = −qk(q + 1)
∑

x∈ΞF,k

χ($−k+1x)

that is 0 if k > 0 and −(q + 1) if k = 0. Notice that in the last equality we used that the sum

of the values of a non-trivial character over all elements of a finite group is 0.

Then we have that
∑

z′∈ΞA,k+1
χ
(
$−kn(z′)

)
=
∑

z′∈ΞA,k
χ
(
$−k+1n(z′)

)
for every k > 0 and we

obtain

γ(n) = q−1
∑

z′∈ΞA,1

χ(n(z′)) = q−1
(

1 +
∑

z′∈Ξ×A,1

χ(n(z′))
)

= q−1(1− (q + 1)) = −1.

Remark 6.4.4. The Theorem 6.4.1 corresponds to Proposition 4 of [62]. Weil proves it showing

that γ(n) is a negative real number of absolute value 1 and hence his proof does not suit in

our presentation. Our proof works for every integral domain R verifying our hypotheses but

requires F to be non-Archimedean.

6.4.2 The Witt group

In this paragraph we introduce the definition of Witt group of F and we prove that γ defines a

R-character of this group.

Let G1, G2 be two finite dimensional vector spaces over F and f1, f2 be two non-degenerate

quadratic forms on G1 and G2. We define f1 ⊕ f2 ∈ Qnd(G1 × G2) by (f1 ⊕ f2)(x1 ⊕ x2) =

f1(x1) + f2(x2) for every x1 ∈ G1 and x2 ∈ G2.
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Remark 6.4.5. If ρ1 : G1 → G∗1 and ρ2 : G2 → G∗2 are the symmetric isomorphisms associated to

f1 and f2, then ρ1⊕ ρ2 : G1×G2 → (G1×G2)∗, defined by (ρ1⊕ ρ2)(y1⊕ y2) = ρ1(y1)⊕ ρ2(y2)

is the symmetric isomorphism associated to f1 ⊕ f2. Indeed, calling this latter ρ1,2 , we have

[x1 ⊕ x2, (ρ1 ⊕ ρ2)(y1 ⊕ y2)] = f1(x1 + y1)− f1(x1)− f1(y1) + f2(x2 + y2)− f2(x2)− f2(y2) =

= (f1⊕ f2)(x1⊕ x2 + y1⊕ y2)− (f1⊕ f2)(x1⊕ x2)− (f1⊕ f2)(y1⊕ y2) = [x1⊕ x2, ρ1,2(y1⊕ y2)].

Definition 6.4.6. We say that f1 ∈ Qnd(G1) and f2 ∈ Qnd(G2) are equivalent (and we

write f1 ∼ f2) if one can be obtained from the other by adding an hyperbolic quadratic form of

dimension max{dim(G1),dim(G2)} −min{dim(G1),dim(G2)} (see [40]). We call Witt group

of F the set of equivalence classes of non-degenerate quadratic forms over F endowed with the

operation induced by (f1, f2) 7−→ f1 ⊕ f2.

Theorem 6.4.7. The map f 7→ γ(f) is a R-character of the Witt group of F.

Proof. Let G1 and G2 be two finitely dimensional vector spaces over F , f1 ∈ Qnd(G1) and

f2 ∈ Qnd(G2). Proposition 6.3.3 gives

γ(f1 ⊕ f2) = |ρ1 ⊕ ρ2|
1
2

∫
K1×K2

χ((f1 ⊕ f2)(x1 ⊕ x2))dx1dx2

for compact open subgroups K1 and K2 of G1 and G2, both large enough. Now, if we consider

1K1,∗ ∈ S(G∗1), 1K2,∗ ∈ S(G∗2) and 1K1,∗×K2,∗ ∈ S(G∗1 ×G∗2), Definition 6.1.3 gives

|ρ1||ρ2|
∫
G1

1K1,∗(ρ1(x1))dx1

∫
G2

1K2,∗(ρ2(x2))dx2 =

∫
G∗1

1K1,∗(x
∗
1)dx∗1

∫
G∗2

(x∗2)1K2,∗dx
∗
2 =

=

∫
G∗1×G∗2

1K1,∗×K2,∗(x
∗
1 ⊕ x∗2)dx∗1dx

∗
2 = |ρ1 ⊕ ρ2|

∫
G1×G2

1K1,∗×K2,∗(ρ1(x1)⊕ ρ2(x2))dx1dx2

and then |ρ1||ρ2| = |ρ1 ⊕ ρ2|. Hence we obtain

γ(f1 ⊕ f2) = |ρ1|
1
2 |ρ2|

1
2

∫
K1

χ(f1(x1))dx1

∫
K2

χ(f2(x2))dx2 = γ(f1)γ(f2).

We shall now to check that γ is equivariant on the equivalence classes of bilinear forms. To

see that, recall that f1 ∼ f2 if and only if there exist n ∈ N and an hyperbolic quadratic

form h(x) =
∑
xixi+n of rank 2n such that f1 = f2 ⊕ h. After what proven in the first part

γ(f1) = γ(f2) if and only if γ(h) = 1 and since every hyperbolic form is a sum of the rank 2 form

h2 : (x1, x2) 7→ x1x2 it’s sufficient to show that γ(h2) = 1. Now, if we apply the base change

x1 7→ x1 + x2 and x2 7→ x1 − x2 we obtain h2(x1 + x2, x1 − x2) = (x1 + x2)(x1 − x2) = x2
1 − x2

2

and Proposition 6.3.2 gives that γ(h2) = γ(q1 ⊕ (−q1)) = γ(q1)γ(q1)−1 = 1.

6.4.3 The image of the Weil factor

We exploit some classical results on quadratic forms over F to prove that γ takes values in the

group of fourth roots of unity in R.
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Definition 6.4.8. Let G1, G2 be two finite dimensional vector spaces over F and f1, f2 be two

non-degenerate quadratic forms on G1 and G2. We say that f1 and f2 are isometric if there

exists an isomorphism ϑ : G1 −→ G2 such that f1(x) = f2(ϑ(x)) for every x ∈ G1.

Notice that, by Remark 6.3.4, if f1 and f2 are isometric then γ(f1) = γ(f2). We know also

that there are only two isometry classes of non-degenerate quadratic forms on a 4-dimensional

vector space over F whose discriminant is a square in F×. One class is represented by the norm

n over the quaternion division algebra and the other by q2 ⊕ −q2. Moreover, if a, b ∈ F× and

(a, b) is the Hilbert symbol with values in R×, the quadratic form x2
1 − ax2

2 − bx2
3 + abx2

4 lies in

the first class if (a, b) = −1 and in the second one if (a, b) = 1. Furthermore by Theorems 6.4.7

and 6.4.1 we have that

γ(x2
1 − ax2

2 − bx2
3 + abx2

4) = (a, b) . (6.1)

In particular, for b = −1 we apply Theorem 6.4.7 to this formula to get the equalities

γ(q1)2γ(−aq1)2 = (a,−1) and γ(aq1)2 = (a,−1) γ(q1)2

by Proposition 6.3.2. Since every non-degenerate quadratic form is isometric to
∑m

i=1 aix
2
i for

suitable m ∈ N and ai ∈ F×, we have

γ(f)2 =
m∏
i=1

(ai,−1) γ(q1)2 = (D(f),−1) γ(q1)2m (6.2)

where D(f) is the discriminant of f . Notice that, since F is non-archimedean, then −1 is either

a square or a norm in F (
√
−1). Therefore γ(q4) = (−1,−1) = 1 and it follows that γ(f)4 = 1

for every non-degenerate quadratic form f over F as announced.

This is in fact the best possible result whenever −1 is not a square in F . Indeed, in this case,

there exists at least an element a ∈ F× such that (a,−1) = −1. For such an a, formula (6.1)

gives γ(q1 ⊕−aq1)2 = −1 and then a square root of −1 shall be in the image of γ.

Remark 6.4.9. This result shows also that, whenever −1 is not a square in F and char(R) 6= 2

(in which case X4 − 1 is a separable polynomial) then R contains a primitive fourth root of

unity. This fact has an elementary explaination: denote ζp an element of order p in R× and

consider the Gauss sum τ =
∑p−1

i=1

(
i
p

)
ζip ∈ R, where

(
i
p

)
is the Legendre symbol. The formula

τ2 =

(
−1

p

)
p

holds thanks to a classical argument that can be found, for example, in 3.3 of [35]. The fact that

−1 is not a square in F implies that
(
−1
p

)
= −1 and that q = pf with f odd. Since R contains

a square root of q, then there exists an element x ∈ R× such that x2 = p and (τ · 1
x)2 = −1:

there is a primitive fourth root of unity in R.
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6.5 The reduced metaplectic group

The metaplectic group, associated with R and χ, is an extension of Sp(W ) by R× through the

short exact sequence (6.6). We want to understand when this sequence does (or does not) split,

looking for positive numbers n ∈ N yielding the existence of subgroups Mpn(W ) of Mp(W ) such

that π|Mpn(W ) is a finite cyclic cover of Sp(W ) with kernel µn(R). We show that, for F locally

compact non-discrete non-archimedean field, it is possible to construct Mp2(W ). Then we prove

that, when char(R) 6= 2, n = 1 does not satisfy the condition above, namely that the sequence

(6.6) does not split. Finally we show what happens in the simpler case when char(R) = 2.

For a closer perspective we suppose that, for some n ∈ N, Mpn(W ) exists and we look at the

following commutative diagram with exact rows and columns

1

��

1

��
1 // µn(R) //

��

Mpn(W ) //

��

Sp(W ) //

id
��

1

1 // R× //

·n
��

Mp(W )
π //

ψn
��

Sp(W ) // 1

R×
id // R×

where µn(R) is the group of n-th roots of unity in R. The existence of a homomorphism

ψn : Mp(W ) −→ R× such that its restriction on R× is the n-th power map implies the existence

of the first line in the diagram. Indeed, if such ψn exists, let Mpn(W ) be its kernel; then π induces

a surjective homomorphism from Mpn(W ) to Sp(W ) whose kernel is Mpn(W ) ∩R× = µn(R).

Then, as in 43 of [62], the question to address is whether or not there exists ψn : Mp(W )→ R×

such that ψn|R× (x) = xn for every x ∈ R×.

Lemma 6.5.1. A R-character ψn : Mp(W ) −→ R× whose restriction on R× is the n-th power

map is completely determined by ψ̃n = ψn ◦ r : Ω(W ) −→ R× where r is as in (6.7).

Proof. Let (σ, s) ∈ Mp(W ). By Proposition 6.1.7 we can write σ as a product σ =
∏
i σi with

σi ∈ Ω(W ). We set (σ, s′) =
∏
i r(σi) where r is as in (6.7). Then, since ker(π) = R×, we

have that (σ, s) = c(σ, s′) for a suitable c ∈ R×. This implies that the values of ψn at (σ, s) is

ψn(c(σ, s′)) = cn
∏
i ψ̃n(σi).

By (6.8), the morphism ψ̃n of Lemma 6.5.1 shall verify the condition

ψ̃n(σ)ψ̃n(σ′) = γ(f0)nψ̃n(σ′′) (6.1)

for every σ =

(
α β

γ δ

)
, σ′ =

(
α′ β′

γ′ δ′

)
and σ′′ =

(
α′′ β′′

γ′′ δ′′

)
in Ω(W ) satisfying σ′′ = σσ′,

where f0 is a non-degenerate quadratic form on X associated to the symmetric isomorphism

−β−1β′′β′−1. Conversely we have:

110



Lemma 6.5.2. If ψ̃n : Ω(W ) −→ R× satisfies (6.1), then there exists a unique R-character ψn

of Mp(W ) such that its restriction to R× is the n-th power map and ψn ◦ r = ψ̃n.

Proof. Let (σ, s) ∈ Mp(W ). By Proposition 6.1.7 we can write σ as a product σ =
∏
i σi with

σi ∈ Ω(W ) and (σ, s) = c
∏

r(σi) for a suitable c ∈ R×. We define ψn(σ, s) = cn
∏
i ψ̃n(σi). We

have to prove that it is well defined. Let σ =
∏
j σj be another presentation of σ that differs

from
∏
i σi by a single relation σσ′ = σ′′; by (6.8) we obtain

(σ, s) = c
∏
i

r(σi) = γ(f0)c
∏
j

r(σj)

for a suitable f0 ∈ Qnd(X) and by (6.1) we have

ψn(σ, s) = cn
∏
i

ψ̃n(σi) = cnγ(f0)n
∏
j

ψ̃n(σj) = (c γ(f0))n
∏
j

ψ̃n(σj).

Now, since every presentation σ =
∏
k σk with σk ∈ Ω(W ) differs from

∏
i σi by a finite number

of relations σσ′ = σ′′, the definition ψn(σ, s) = cn
∏
i ψ̃n(σi) makes sense.

After these results the existence of a character ψn, and then of a subgroup Mpn(W ) of Mp(W )

as above, is equivalent to the existence of ψ̃n : Ω(W ) −→ R× that satisfies (6.1).

First of all we suppose that −1 is a square in F . By Proposition 6.3.2 we have γ(f)2 = 1 for

every f ∈ Qnd(X) and so ψ̃2 = 1 satisfies (6.1) with n = 2.

We suppose now that −1 is not a square in F . We fix a basis over the F -vector space X

and its dual basis over X∗. By definition of Ω(W ) we have that the determinant det(β) of β

with respect to these basis is not zero for every σ =

(
α β

γ δ

)
∈ Ω(W ). Moreover, since f0 is

associated to the symmetric isomorphism −β−1β′′β′−1 we have that the discriminant of f0 is

D(f0) = det(−β)−1 · det(−β′′) · det(−β′)−1. Hence taking ψ̃2(σ) = (det(−β),−1) γ(q1)2m for

every σ =

(
α β

γ δ

)
∈ Ω(W ) and using formula (6.2) we obtain the equality (6.1) with n = 2.

We have then proved the

Theorem 6.5.3. There exists a subgroup Mp2(W ) of Mp(W ) that is a cover of Sp(W ) with

kernel µ2(R). In particular, when char(R) 6= 2, Mp2(W ) is a 2-cover of Sp(W ).

Now we want to see if this reduction is optimal in the sense that there does not exist any

Mp1(W ) fitting into the diagram. If this is the case, then the group Mp2(W ) is the minimal

subgroup of Mp(W ) which is a central extension of Sp(W ) and therefore is called reduced

metaplectic group.

Theorem 6.5.4. Let char(R) 6= 2. Then there does not exist a character ψ : Mp(W ) → R×

such that ψ|R× = id.
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Proof. Let suppose the existence of such ψ. Then there exists a character ψ′ : Mp(F×F ∗)→ R×

such that ψ′|R× = id. In fact the extension by triviality

ι : Ω(F × F ∗) → Ω(W )

(
a b

c d

)
7→


a 0 b 0

0 1n−1 0 1n−1

c 0 d 0

0 1n−1 0 1n−1


is such that σ′′ = σσ′ yields ι(σ′′) = ι(σ)ι(σ′). Then ψ̃′ := ψ̃ ◦ ι satisfies the relation

ψ̃′(σ′′) = γ(f0)−1ψ̃′(σ)ψ̃′(σ′)

and Lemma 6.5.2 implies the existence of ψ′. Clearly ψ′ takes values 1 on the group of commu-

tators of Mp(F × F ∗). By (6.6) we have

t

(
c

1− a2
x2

)
d
(
a−1
)
t

(
− c

1− a2
x2

)
d (a) = t

(
c

1− a2
x2

)
t

(
− ca2

1− a2
x2

)
= t

(
cx2
)

for every a /∈ {0, 1,−1} in F and every c ∈ F . Then for every quadratic form f on F , t(f) is a

commutator of Mp(F × F ∗) and so ψ′(t(f)) = 1. By Definition 6.3.1 we obtain the equality

d′(ρ−1)t(f)d′(−ρ−1)t(f) = γ(f)t(−f)d′(ρ−1)

in Mp(F × F ∗) for every f ∈ Qnd(F ) associated to ρ and applying ψ′ we obtain γ(f) =

ψ′(d′(ρ−1)). So, if we denote by ρa the symmetric isomorphism associated to aq1 : x −→ ax2

we obtain

γ (aq1) = ψ′(d′(ρ−1
a )) = ψ′(d(2a))ψ′(d′(ρ−1

1 )).

Now, since every quadratic form f over F is of the form f(x) =
∑m

i=1 aix
2
i , we can conclude

that γ(f) =
∏m
i=1 ψ

′(d(2ai))ψ
′(d′(ρ−1

1 ))m depends only on m and on the discriminant. But this

implies that γ takes the same value on every non-degenerate quadratic form on a 4-dimensional

vector space over F with discriminant equal to 1. But this contradicts Theorem 6.4.1.

We shall remark that, if R has characteristic 2, then necessarily γ(f) = 1 for every quadratic

form f . Then Theorem 6.5.4 is clearly false and the sequence (6.6) splits yielding the existence

of Mp1(W ) ∼= Sp(W ).

Relationship with Steinberg theory

The theory of universal central extensions, as exposed for example in [56], permits us to show

additional features of the reduced metaplectic group. Since Sp(W ) is a perfect group, it has an

universal central extension ϑ : U → Sp(W ) and since the reduced metaplectic group Mp2(W )

is a central extension of it, there exists a unique map ϕ : U → Mp2(W ) such that π ◦ ϕ = ϑ.
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Moreover, by universal property of U , the image of ϕ is a central extension of Sp(W ) contained

in Mp2(W ) and in fact ϕ is surjective by Theorem 6.5.4. Then Mp2(W ) is contained in every

subgroup of Mp(W ) which is a central extension of Sp(W ) and in particular it is contained

in all its conjugates: Mp2(W ) is a normal subgroup of Mp(W ). Moreover the unique map

ϕ′ : U → Mp(W ) given by the universal property factorizes necessarily through ϕ.

In [56], Steinberg describes the structure of the universal central extension of any Chevalley

group by means of generators and relations and he also introduces the so-called Steinberg

symbol, which characterizes the kernel of this extension. It has already been noticed (see chapter

II of [43]) that the Hilbert symbol enjoys the same properties as the Steinberg symbol. We can

actually describe this relationship in our case by studying the behavior of ϕ on generators of U .

As an example, let us fix an identification of F with F ∗ and make this correspondence explicit in

the case of SL(2, F ). Let Λ be the free group generated by the set {x(u), y(u) : u ∈ F}. Define

w(u) = x(u)y(−u−1)x(u) and h(u) = w(u)w(−1). Then we have the following (cfr. section 6

of [56]):

Theorem 6.5.5. Consider the following relations on Λ:

A. x(u1 + u2) = x(u1)x(u2) and y(u1 + u2) = y(u1)y(u2);

B. w(u)x(v)w(−u) = y(−u−2v);

C. h(u1u2) = h(u1)h(u2).

Then A et B are a complete set of relations for the universal central extension U → SL(2, F )

and adding C, we obtain a complete set of relations for SL(2, F ).

Moreover if π′ : Λ/(A,B)→ Λ/(A,B,C) is the canonical projection, then every element of the

form h(u1)h(u2)h(u1u2)−1 ∈ kerπ′ coincides with the Steinberg symbol associated to u1 and

u2.

We remark that condition B implies x(u) = w(1)−1y(−u)w(1) and we can check that the map

φ : Λ/(A,B,C)→ SL(2, F ) given by y(u) 7→ t(uq1) and w(1) 7→ d′(−1
2) is an isomorphism such

that φ(x(u)) = d′(1
2)t(−uq1)d′(−1

2), φ(w(u)) = d′(−u
2 ) and φ(h(u)) = d(u). Theorem 6.5.5

assures the existence of a unique map ϕ : Λ/(A,B)→ Mp(2, F ) making the following diagram

commute

1 // kerπ′ //

��

Λ/(A,B)
π′ //

ϕ

��

Λ/(A,B,C) //

φ

��

1

1 // R× //Mp(2, F )
π // SL(2, F ) // 1.

Let us prove that the image of the Steinberg symbol by ϕ in R× is the Hilbert symbol.

We know that t and d′ are liftings of t and d′ to Mp(2, F ). Then ϕ(y(u)) = c1(u)t(uq1)

and ϕ(w(1)) = c2d
′(−1

2) for c1(u) and c2 suitable elements in R×. This gives ϕ(x(u)) =

c1(−u)d′(1
2)t(−uq1)d′(−1

2). Now, by relation A and B of Theorem 6.5.5 we have that c1(u1 +

u2) = c1(u1)c1(u2) and c1(u1u
2
2) = c1(u1) for every u1, u2 ∈ F and then c1(u) = 1 for every

u ∈ F . Using relations in section 6.3.2 and the definition of the Weil factor we obtain ϕ(w(u)) =
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γ(−uq1)d′(−u
2 ) and then ϕ(h(u)) = γ(q1 ⊕ −uq1)d(u). So we can calculate the image of the

Steinberg symbol: ϕ(h(u1)h(u2)h(u1u2)−1) = γ(q1 ⊕ −u1q1 ⊕ −u2q1 ⊕ u1u2q1) = (u1, u2) by

formula (6.1). This gives another proof of the fact that the Hilbert symbol satisfies all the

relations of the Steinberg symbol.

Notice that we have shown in this way that the images of d,d′ and t lie in Mp2(2, F ).

Further directions

We conclude by saying that we can restrict the representation of the metaplectic group given by

(6.7) to a representation of the reduced metaplectic group. This is the Weil representation

defined over R. As pointed out in the introduction, the relevance of having an explicit form for

this representation lies in the fact that its understanding has important applications. Consid-

ering R in whole generality may help understand more deeply the essential features underlying

results like Howe and Shimura correspondences. Let us mention also a more concrete question.

Given a morphism of rings R1 → R2 and fixed two smooth non-trivial characters χ1 : F → R1

and χ2 : F → R2, it would be interesting to study the relationships between metaplectic groups

and the Weil representation respectively over R1 and R2.
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[24] Xander Faber. Topology and geometry of the Berkovich ramification locus for rational

functions, II. Math. Ann., 356:819–844, 2013.

[25] Xander Faber. Topology and geometry of the Berkovich ramification locus for rational

functions. Manuscripta Mathematica, 2014.

[26] Charles Favre and Juan Rivera-Letelier. Théorie ergodique des fractions rationnelles sur
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Bois Marie 1960-61, directed by A.Grothendieck, with two papers by M.Raynaud, 1964.

[30] Walter Gubler. Local heights of subvarieties over non-Archimedean fields. J. Reine Angew.

Math., 498:61–113, 1998.

[31] Yannick Henrio. Arbres de Hurwitz et automorphismes d’ordre p des disques et couronnes

p-adiques formels. PhD thesis, Université de Bordeaux 1, 1999.
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