
HAL Id: tel-01128964
https://theses.hal.science/tel-01128964

Submitted on 10 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sampling the solutions of differential systems
Christian Paul Chan Shio

To cite this version:
Christian Paul Chan Shio. Sampling the solutions of differential systems. General Mathematics
[math.GM]. Université Nice Sophia Antipolis, 2014. English. �NNT : 2014NICE4114�. �tel-01128964�

https://theses.hal.science/tel-01128964
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE NICE-SOPHIA ANTIPOLIS - UFR Sciences

École Doctorale de Sciences Fondamentales et Appliquées

THÈSE

pour obtenir le titre de

Docteur en Sciences

de l’UNIVERSITÉ de Nice-Sophia Antipolis

Discipline: Mathematiques

présentée et soutenue par

Christian Paul CHAN SHIO

Échantillonner les solutions de systèmes
différentiels

Sampling the solutions of differential systems

Thèse dirigée par Francine DIENER
soutenue le 11 decembre 2014

Jury:
M. Eduardo MENDOZA Professeur, Université des

Philippines Diliman

Rapporteur

M. Gauthier SALLET Professeur Émérite, Université

de Lorraine

Rapporteur

M. Augustin FRUCHARD Professeur, Université de

Haute-Alsace

Examinateur

Mme. Francine DIENER Professeur, Université de Nice-

Sophia Antipolis

Directeur de Thèse

Acknowledgments

First giving thanks to the almighty God and saviour Jesus Christ, without

whom nothing would be possible.

There have been a large number of people who have been instrumental in

the success of my doctorate. The biggest and most heartfelt thanks go to my

supervisor, Francine Diener, without whom I would not have probably reached

this point. Thank you for your support and encouragement, especially during the

times when I was down and did not feel my work was good enough. Thank you

for your patience and generosity with your time to this inexperienced researcher.

I have learned a lot from all the discussions we had over the past three years and

I know I have emerged from this experience as a better mathematician because

of you.

I am grateful to my reporters and jury members, Gauthier Sallet, Eduardo

Mendoza and Augustin Fruchard for their helpful comments, corrections, and

suggestions, all of which have provided substantial improvement to my work.

Thanks also to Marc Diener for the discussions and for reading and improving

parts of my work.

I give special acknowledgment to the scholarship programme of European

Union, Erasmus Mundus Mobility with Asia (EMMA), which offered me the

financial support for doing this PhD research. My special thanks also to all

EMMA administrative staffs who were there whenever I was in need. Also, our

local EMMA coordinators, Dr. Jumela Sarmiento and Dr. Reggie Marcelo back

home in Ateneo for encouraging me and supporting my application.

This was the first time I have been away from home for an extended period

of time. I thank my parents who have been very supportive of my decision

to study abroad. Also, the company of several friends and co-students, not

only in France but even elsewhere in Europe were instrumental in keeping me

sane and prevented me from being homesick. In particular, I would like to

thank Stephanie, Bridge, EC, Jas, Joy, Bien, Huong, Aparna, Sijie, Bugs, Shine,

Cherry, Joebell. Thank you also to my churchmates, especially Arbie, Choy,

Mariz, Fides, Emily, Beth, Rommel, for their prayers and support.

3

Introduction en français

Beaucoup de phénomènes naturels, par exemple en biologie, sont modélisés

par des systèmes d’équations différentielles. Ces modèles contiennent habituelle-

ment de nombreux coefficients que nous pouvons souhaiter ajuster à des données

observées. Toutefois, en raison des erreurs de mesure de la variabilité des condi-

tions expérimentales et d’autres incertitudes, il peut se révéler impossible de leur

assigner une valeur précise. Une option plus réaliste est de considérer ces coeffi-

cients comme des variables aléatoires, et donc, de modéliser les phénomènes au

moyen de systèmes differentiels à équations différentielles avec des coefficients

aléatoires.

Motivation et problèmes abordés

Cette thèse vise à construire des outils efficaces pour les non-mathématiciens

qui souhaitent comprendre et appliquer des systèmes différentiels à coefficients

aléatoires. De fait, notre contribution se situe plus au niveau d’aides concrètes à

l’utilisation de ces modèles et d’exemples instructifs utiles à leur compréhension

plutôt qu’au niveau de résultats mathématiques généraux. Je me suis efforcé

d’étudier les systèmes différentiels à coefficients aléatoires au moyen d’une ap-

proche de simulation. Ce qui place notre étude au croisement de celles des

systèmes différentiels, des probabilités et des statistiques.

La première partie de ce travail examine la loi à un instant t∗ fixé de la

solution y(t; θ), issue d’une condition initiale donnée, d’une equation differentelle

y′ = g(y; θ). Il existe de nombreux scénarios pratiques où cette connaissance serait

très utile. Par exemple, en pharmacocinétique, il est important de connâıtre la

quantité d’un certain agent pathogène restante, plusieurs heures après qu’un

certain médicament ait été adminstré. Cependant, il peut y avoir une certaine

variabilité de l’effet du médicament en fonction des caractéristiques des individus.

La connaissance de la distribution des solutions à l’instant t∗ peut permettre au

médecin de mieux comprendre les mécanismes d’assimilation du médicament.

D’autre part, étant donné que l’estimation des paramètres est essentielle

pour tout modèle mathématique, il est également important de développer des

méthodes pour estimer les paramètres d’un système d’équations différentielles à

partir de la connaisance une solution en un nombre fini d’instants. Ce problème

est traité dans la deuxième partie de ce travail ; comment estimer les paramètres

5

6 INTRODUCTION EN FRANÇAIS

d’un système de différentiel connaissant les valeurs de la solution sur un en-

semble fini d’instants. C’est un problème classique lequel les méthodes dis-

ponibles sont nombreuses. Cependant, la plupart de ces méthodes sont des

méthodes déterministes qui fournissent seulement une estimation ponctuelle des

paramètres. Dans notre approche, nous proposons plusieurs méthodes alterna-

tives permettant de donner une distribution de valeurs des coefficients suscep-

tibles d’être les bons coefficients, plutôt qu’une estimation ponctuelle. Cela nous

permet non seulement de prendre en considération les erreurs et les incertitudes

sur les données, mais aussi, de fournir au besoin une estimation ponctuelle.

Plan de la thèse

Cette thèse est structurée en quatre chapitres et une annexe.

Le chapitre 1 donne une examen de plusieurs resultats de probabilité et

d’équations différentielles qui sont nécessaires pour le reste de la thèse. Les

concepts de probabilité abordés comprennent des résultats de convergence, des

transformations de lois, et des resultats sur les châınes de Markov. Pour les

équations différentielles, je rappelle quelque résultats de différentiabilité de la

solution par rapport aux conditions initiales et aux coefficients et je présente les

principaux exemples utilisés par la suite.

Le chapitre 2 se propose de décrire la loi à un instant donné t∗ des solutions

d’un système de équations différentielles y′ = g(y; θ) où θ sont des coefficients qui

l’on suppose aléatoires. La distribution de la variable aléatoire y(t∗) se révèle être

beaucoup plus difficile à détermine que ce que l’on peut le penser d’abord. Notre

contribution apporte des réponses partielles. Pour l’étude de la distribution au

temps t∗, on a, en effet, besoin de prendre au moins deux choses en considération :

d’une part, que l’on peut rencontrer lois n’ayant aucun moments finis, et d’autre

part, que pour certains systèmes différentiels, le problème de l’explosion en temps

fini représente un obstacle pour les simulations. En outre, nous montrons sur un

exemple qu’un développement de la variable aléatoire y(t∗) en chaos polynomial

peut donner une bonne approximation de cette loi, au moins dans certains cas

simples.

Á partir du chapitre 3, nous attachons notre attention à l’estimation des co-

efficients d’un système d’équations différentielles lorsqu’on connait les valeurs

d’une solution en un petit nombre d’instants. Nous présentons d’abord une

méthode de Monte Carlo simple, la méthode de rejet, qui permet de construire

un échantillon de valeurs des coefficients θ compatibles avec les données. Nous

offrons un aperçu des propriétés de cette méthode, indiquons comment choisir

les différents paramètres qui doivent être choisis lors de la mise en œuvre de

la méthode. Nous montrons également qu’il est possible d’améliorer l’efficacité

de cette méthode en utilisant une nouvelle approche en deux étapes que nous

appelons méthode de rejet séquentiel.

INTRODUCTION EN FRANÇAIS 7

Le dernier chapitre (chapitre 4) présente une généralisation du chapitre

précédent, où l’on remplace la méthode de Monte Carlo de base par des algo-

rithmes plus élaborés, la methode MCMC dite ≪ Markov Chain Monte Carlo ≫ et

l’algorithme de Monte Carlo séquentiel. Comme dans le chapitre précédent,

notre contribution consiste principalement à expliquer sur des exemples com-

ment mettre en œuvre ces algorithmes, mais aussi à fournir des indication sur

la meilleure manière de sélectionner les différents paramètres nécessaires à cette

mise en œuvre afin d’obtenir des résultats intéressants.

Une grande partie de notre recherche a consisté à réaliser des expériences

avec Scilab. L’annexe fournit le code source de certains des programmes utilisés

pour produire les résultats et les figures dans le texte. Comme pour le choix des

expériences discutées du texte, plutôt que de fournir une liste exhaustive, cette

annexe fournir un aperçu de la variété des programmes qui ont été préparés au

cours de ce travail. Ces programmes et quelques autres sont disponibles sous

forme de fichiers exécutables (.sce) sur ma page web http://math.unice.fr/

~chanshio.

http://math.unice.fr/~chanshio
http://math.unice.fr/~chanshio

Conclusion en français

Dans cette thèse, nous avons étudié les systèmes differentiels à coefficients

aléatoires au moyen de simulations. Nous avons pu voir que la loi des solutions

de tel système à un instant t∗ donné étant souvent impossible à calculer ex-

plicitement, même dans les cas les plus simples. Il est nécessaire de recourir à

des simulations de Monte Carlo pour l’étude de cette loi. Cependant, simuler

cette loi n’est pas toujours possible. Dans le cas d’une équation de Riccati dont

les solutions explosent en temps fini, nous avons vu qu’une compactification de

l’espace permet de représenter néanmoins son histogramme. Une autre possi-

bilité envisagée est de calculer une approximation de cette loi au moyen d’un

développement en chaos polynomial.

Concernant l’estimation des coefficients d’un système d’équations différentielles

qui sont compatibles avec une trajectoire donnée, nous avons décrit l’algorithme

de rejet qui produit une distribution de probabilité des meilleurs coefficients pos-

sibles. Cela fournit non seulement la possibilité de prendre en considération les

erreurs et les incertitudes sur les données, mais aussi, de fournir au besoin une

estimation ponctuelle. En supposant que la valeur réelle des coefficients existe,

nous l’avons vu à travers plusieurs exemples que pour des cas de dimension faible

et un assez petit seuil ε, on peut ainsi obtenir une distribution a posteriori qui

permet de calculer bonnes estimations des coefficients θ. Toutefois, lorsque le

nombre de coefficients augmente ou lorsque ε est trop petit, nous avons vu que

pourcentage d’éléments acceptés diminue (et donc la taille de l’échantillon), et

cela conduit alors à des estimations moins précises. C’est pourquoi nous avons

proposons une méthode d’échantillonnage qui utilise les connaissances acquises

au cours des premières itérations. Ceci permet d’augmenter le taux d’acceptation.

En utilisant des methodes alternatives comme la méthode MCMC appelée Mar-

kov Chain Monte Carlo et la methode Monte Carlo séquentielle, nous avonsvu

enfin qu’on peut aussi augmenter ce taux d’acceptation et diminuer les risques

de rester bloquer dans un minimum local de la distance.

9

Résumé long en français

Beaucoup de phénomènes naturels, par exemple en biologie, sont modélisés

par des systèmes d’équations différentielles. Ces modèles contiennent habituel-

lement de nombreux coefficients qu’on peut souhaiter ajuster à des données ob-

servées. Mais en raison des erreurs de mesures, de la variabilité des conditions

expérimentales et d’autres incertitudes, il peut se révéler impossible, et bien sou-

vent illusoire, de leur assigner une valeur précise. Une option plus réaliste est de

considérer ces coefficients comme des variables aléatoires et donc de modéliser les

phénomènes étudiés au moyen de systèmes différentiels à coefficients aléatoires.

Comme de tels modèles sont souvent utilisés par des non-mathématiciens, cette

thèse a pour origine le souhait de construire des outils efficaces pour de tels scien-

tifiques afin de leur permettre de mieux comprendre et d’utiliser plus facilement

ces systèmes à coefficients aléatoires. De fait, notre contribution se situe plutôt

au niveau d’aides concrètes à l’utilisation de ces modèles et d’exemples instruc-

tifs utiles à leur compréhension plutôt qu’au niveau de résultats mathématiques

généraux. Principalement, l’étude de ces systèmes d’équations différentiels à co-

efficients aléatoires est faites ici au moyen de simulations, ce qui place notre

étude au croisement du domaine des systèmes différentiels, de celui des probabi-

lités et celui des statistiques. Toutes les simulations et intégrations numériques

de systèmes différentiels ont été faites en utilisant Scilab.

La première partie de ce travail, intitulée ≪ Loi des solutions à l’instant t∗ ≫ 1

étudie la loi à un instant t∗ > 0 fixé de la solution y(t; θ), issue d’une condition

initiale donnée, d’une équation différentielle y′ = g(y; θ). La quantité y(t∗; θ) est

une variable aléatoire qui est simplement l’image à l’instant t∗ de la loi des co-

efficients aléatoires θ par la dynamique associée à l’équation différentielle. Il y

a beaucoup de situations où une bonne connaissance de la loi de y(t∗; θ) peut

être utile. Par exemple en pharmacocinétique, il est important de connaitre la

quantité de certains pathogènes qui subsiste plusieurs heures après l’administra-

tion d’un médicament. Mais il y a sans doute de la variabilité dans les effets

du médicament selon les caractéristiques des patients auxquels il est administré.

1qui suit un chapitre de préliminaires où ont été regroupés les principaux résultats classiques
utilisés dans la thèse, tels que la dépendance des solutions d’un système différentiel par rapport
à ses coefficients ou la loi des grands nombres

11

12 RÉSUMÉ LONG EN FRANÇAIS

La connaissance de la distribution des solutions à l’instant t∗ peut permettre au

praticien de mieux comprendre les mécanismes d’assimilation du médicament.

L’étude de la loi de y(t∗; θ) n’est pas aussi simple qu’il peut sembler au pre-

mier abord. En général, on ne peut pas exprimer cette loi de probabilité comme

l’image des coefficients aléatoires θ par une fonction mathématique connue (sauf

si l’équation différentielle est intégrable par quadrature). Il est donc naturel

d’avoir recours à une approche par simulation pour obtenir un histogramme per-

mettant de se faire une idée de cette loi. Mais nous montrons que cette approche

par simulation rencontre néanmoins au moins deux problèmes. Le premier que

nous présentons dans le cas de l’équation différentielle la plus simple, linéaire et

dépendant d’un unique coefficient aléatoire, est lié à la simulation de l’inverse

d’une gaussienne, qui est l’exemple le plus simple de loi de probabilité n’ayant

aucun moment fini. L’histogramme de la loi simulée ne laisse apparaitre, dans la

fenêtre où on le représente qu’une partie seulement de ses valeurs, l’autre partie

étant constituée de valeurs si ≪ dispersées ≫ à l’infini qu’elles en deviennent in-

visibles à distance “finie”. Ce phénomène persiste même si l’on élargit la fenêtre

parce que les valeurs hors fenêtre gardent toujours une mesure substantielle (d’où

l’absence de moments finis pour cette loi). Nous montrons comment contourner

ce problème en concentrant aux deux extrémités de l’histogramme les valeurs

qui tombent hors de la fenêtre. Mais notre étude se limite à un seul exemple et

la solution proposée propose seulement un moyen de représenter graphiquement

la loi. Le second problème apparâıt lorsque parmi les solutions simulées certaines

explosent en temps fini. Nous étudions ce problème sur l’exemple d’une équation

de Riccati, toujours dans le cas simple où un seul coefficient est aléatoire. La

simulation d’un échantillon de valeurs de y(t∗; θ), devient tout simplement im-

possible dans ce cas, même si sa taille est petite et même si l’instant y(t∗) choisi

n’est pas trop grand car au moins une solution simulée va exploser avant l’ins-

tant t∗. Pour surmonter cette difficulté, nous proposons une compactification de

l’ensemble des solutions de l’équation de Riccati par une transformation du type

y ↦ Y = 1
y qui permet de suivre la solution qui explose dans la second carte.

Les deux problèmes précédents montrent des difficultés rencontrées dans l’ap-

proche par simulation et donc l’utilité d’une approche alternative pour l’étude

de la loi de la variable aléatoire y(t∗; θ). Nous présentons une telle approche

alternative qui consiste à calculer une approximation de la loi de probabilité

considérée au moyen d’un développement appelé chaos polynomial. L’approxi-

mation se calcule en projetant la variable aléatoire sur une base orthogonale de

variables aléatoires qui est construite à partir d’une variable aléatoire donnée

et de ses images par une famille de polynomes orthogonaux. On peut s’assurer

que ce développement converge en probabilité, et même quelquefois en norme

L2, vers la variable étudiée. Toujours en choisissant des examples simples nous

RÉSUMÉ LONG EN FRANÇAIS 13

vérifions que ces développements, même tronqués à un petit nombre de termes,

peuvent fournir de bonnes approximations de la loi étudiée.

La seconde et la troisième partie de ce travail sont consacrées à l’étude de

méthodes d’estimation des coefficients d’un système différentiel y′ = g(y; θ), y
étant cette fois de dimension l, lorsqu’on connait une solution ≪ discrète ≫, c’est-

à-dire une solution y(t; θ) en un nombre fini d’instants (t0, t1, . . . , tk). C’est un

problème classique et les méthodes pour le résoudre pourraient remplir des livres

entiers. Mais la plupart de ces méthodes sont déterministes en ce sens qu’elles

fournissent une valeur unique des paramètres θ et, la plupart du temps, peu ou

pas d’indication sur la précision de la valeur fournie. Si l’on pense à améliorer

cette estimation ponctuelle en calculant des intervalles de confiance pour ces

estimations, ce qui d’ailleurs n’est pas facile en général, on réalise que ces inter-

valles sont déjà une façon de remplacer l’estimation ponctuelle par le calcul d’un

ensemble de valeurs possibles. Nous poursuivons dans cette direction en choisis-

sant d’explorer ici des méthodes de type Monté Carlo qui conduiront au calcul

d’une loi de probabilité pour les coefficients plutôt que de leur estimation ponc-

tuelle. Cela permet à la fois de prendre en compte les erreurs et incertitudes des

données observées mais aussi d’en déduire au besoin une estimation ponctuelle.

La première méthode, dont l’étude fait l’objet de cette deuxième partie intitulée

≪ Estimer les coefficients : une première approche ≫, concerne la méthode dite

méthode de rejet. Elle consiste à choisir un échantillon θ1, θ2, . . . , θN de taille N ,

dont la loi, dite prior, a été choisi convenablement, puis de ne garder les θ ob-

tenus seulement si la distance ρ de la solution, correspondant à cette valeur θ,

calculée aux instants (t0, t1, . . . , tk) avec celles de la solution discrète de référence

n’excède pas un seuil ε choisi. Un choix naturel pour le prior est celui d’une loi

uniforme sur le produit cartésien d’intervalles qui représentent chacun un inter-

valle de valeurs possibles pour l’un des coefficient. Bien que cette méthode soit

plutôt näıve et facile à mettre en œuvre, elle donne souvent des résultats satis-

faisants requiert de nombreux choix préalables, notamment celui du prior, de la

distance, du seuil et de la taille de l’échantillon. Et lorsque ces choix ne sont pas

fait de façon convenable, la méthode devient inopérante. C’est la raison qui a

motivée l’étude détaillée de ses propriétés.

Les échantillons que la méthode de rejet produit ont d’intéressantes pro-

priétés. Lorsque le seuil ε choisi est assez petit, ils sont contenus dans un ellipsöıde

dont on peut calculer le demi axe principal en fonction des valeurs propres de la

Hessienne de ρ(θ) évaluée au point θ0 qui réalise le minimum de cette distance.

Le pourcentage de valeurs de l’échantillon qui ne sont pas rejetés, est donc, pour

ε assez petit, facile à estimer et indépendant de la taille N de l’échantillon, si

ce n’est que sa variabilité sera plus faible lorsque N est plus grand. Comme ce

14 RÉSUMÉ LONG EN FRANÇAIS

pourcentage décroit lorsque ε décroit ou que le nombre de coefficients incon-

nus croit, il est important, si l’on ne veut pas produire des échantillons presque

vides ou même vides, de trouver le moyen d’assurer un taux d’acceptation suf-

fisamment élevé. Cet objectif est facile à atteindre si l’on parvient à choisir le

prior suffisamment ≪ concentré ≫ dans la “bonne” région. C’est dans ce but que

nous proposons une approche nouvelle de la méthode de rejet, méthode en deux

étapes, que nous appelons méthode de rejet séquentielle. Elle consiste à construire

un premier (et petit) échantillon selon la méthode de rejet classique puis à pour-

suivre l’èchantillonnage mais cette fois en utilisant un prior de loi gaussienne

ayant comme espérance et covariance, la moyenne et la covariance empirique

calculées sur l’échantillon obtenu à la première étape. On peut vérifier sur des

exemples que le taux d’acceptation de la méthode de rejet séquentielle est nette-

ment plus grand que celui de la méthode de rejet classique et qu’en fait ce taux

devient, sous certaines conditions, indépendant de ε.

Il existe bien sûr des méthodes plus élaborées que la méthode de rejet, no-

tamment la méthode MCMC dite Monté Carlo Markov Chain et la méthode de

Monté Carlo séquentielle. Leur étude fait l’objet de la dernière partie de cette

thèse. Elles sont, l’une et l’autre des améliorations de la méthode de rejet et per-

mettent notamment, tout comme la méthode de rejet séquentielle introduite dans

la partie précédente, d’augmenter le taux d’acceptation. On obtiendra ainsi, pour

une taille de l’échantillon de départ N donné, soit sensiblement plus de points

dans l’échantillon retenu pour un ε donné et donc une meilleure connaissance

de la loi des coefficients (et une meilleurs estimation ponctuelle au besoin), soit,

un échantillon de même taille mais constitué de points acceptés pour un ε plus

petit, donc des points plus précis.

L’algorithme MCMC utilise, à chaque étape de la construction de l’échantillon,

des petits mouvements locaux autours de la valeur précédente tirant partie du

fait que la distance ρ est une fonction continue de θ puisque les solutions du

système différentiel le sont également. Une fois trouvé un premier θ non rejeté,

on va ainsi choisir le point suivant ≪ à proximité ≫. En incorporant alors à la

condition d’acceptation, une contrainte supplémentaire dite condition de Me-

tropolis on peut appliquer la théorie des chaines de Markov pour établir que

l’échantillon ainsi construit aura la même loi que celle des échantillons obtenus

par la méthode de rejet. Après avoir présenté ce résultat, on applique la méthode

MCMC à différents exemples, on examine les propriétés des échantillons ainsi

obtenus et on les compare à ceux de la méthode de rejet.

Parmi les problèmes que l’on peut rencontrer en appliquant la méthode

MCMC, figure celui d’échantillons qui ne parviennent pas à s’étaler dans l’en-

semble de la région explorée parce qu’ils restent bloqués à proximité d’un mini-

mum local de ρ qui n’est pas nécessairement le minimum global dont on cherche

RÉSUMÉ LONG EN FRANÇAIS 15

à approcher. On peut éviter ce problème (ou réduire le risque de le subir), en

utilisant la méthode de Monté Carlo séquentielle. L’idée est d’améliorer le prior

utilisé pour échantillonner, au fur et à mesure de la construction de l’échantillon,

en choisissant une suite décroissante de valeurs de ε, dont la plus petite est la

valeur choisie initialement. Pour chaque ε, un échantillon est construit par un

choix aléatoire au sein de l’échantillon précédent dans lequel des poids ont été

attribués à chaque élément, modifiant ainsi le prior du prochain échantillon, et

un mouvement local autours du point obtenu, similaire à celui qui est fait dans

l’algorithme MCMC, est effectué. Nous montrons sur quelques exemples com-

ment la méthode peut être mise en œuvre puis nous expliquons pourquoi la

distribution de l’échantillon final ainsi construit a bien la même distribution que

les échantillons obtenus par la méthode de rejet.

Introduction

Many natural phenomena, for example in biology, are modeled using sys-

tems of differential equations. These models usually involve coefficients that are

computed from observed data. However, due to measurement error in the data,

variability in experimental conditions, or other uncertainties, it may not be pos-

sible to assign a specific value to the coefficients of the differential equations.

A more appropriate way to specify these coefficients might then be to consider

them as random variables, and thus, to model the phenomenon using a system

of differential equations with random coefficients.

Motivation and Problems Addressed

This thesis stems from the desire to build efficient tools for non-mathematicians

who wish to understand and apply systems of differential systems with random

coefficients. As such, our contribution is more on ideas, practical usage, and

interesting examples instead of general mathematical results. Here, I have at-

tempted to study systems of differential equations with random coefficients using

a simulation approach. This places us therefore in the crossroads of the fields of

differential equations, probability, and statistics.

In the first part, given the distribution of the coefficients in a system of dif-

ferential equations with random coefficients, we wish to look at the resulting

distribution of the solution at some fixed time t∗. There are many practical

scenarios where this knowledge would be very useful. For example, in pharma-

cokinetics, it is important to know the quantity of a certain pathogen remaining

several hours after a certain drug is administered. However, there may be some

variability in the effect of the drug depending on the characteristics of the indi-

viduals. Knowing the distribution of the solution at that time t∗ can give the

medical practitioner a better understanding of the assimilation mechanisms of

the drug.

On the other hand, since coefficient estimation is central to any mathemat-

ical modeling, it is also important to further develop methods to estimate the

parameters of a system of differential equations based on the knowledge of a dis-

crete trajectory. This problem is addressed in the second part of this work; that

is, how to “best” estimate the parameters of a differential system, given only the

values of its solution for a finite set of time points. This is a popular problem

17

18 INTRODUCTION

where the various available methods easily cover several books. However, most

of these methods are deterministic methods which provide just a point estimate

of the parameters. In our approach, we propose several variations of a method

to give a distribution of points which are likely to be the true coefficients, instead

of just a single point estimate. This allows us to not only take into consideration

the errors and uncertainties in the known data, but at the same time, to provide

a point estimate if necessary.

Outline of the Thesis

This thesis is structured into four chapters and an appendix as follows:

Chapter 1 provides a review of several concepts in probability and differen-

tial equations which are necessary for the remainder of the work. The proba-

bility concepts discussed include convergence results, transformations of laws,

and Markov chains. For differential equations, I review the necessary results on

differentiability of the solution with respect to initial conditions and coefficients.

Chapter 2 is mainly concerned with the problem of describing the law at

a fixed time t∗ of a system of differential equations y′ = g(y; θ) where θ are

coefficients which are random variables. This produces a random variable y(t∗)
whose distribution turns out to be much more difficult than what one would

initially think. Our contribution consists of partial answers to this problem.

In particular, we shall show that when studying the distribution at time t∗, one

needs to take at least two things into consideration: first, that one may encounter

laws without finite moments, and second, that for certain differential systems,

the problem of explosion at finite time can be encountered and represent an

obstacle for simulations. In addition, we show on an example that an expansion

of the required random variable y(t∗) using polynomial chaos may give a good

approximation and thus provide a tool to solve the problem, at least in the

simplest cases.

Beginning with Chapter 3, our focus shifts to that of determining the best

distribution of the coefficients in a system of differential equations given some

data ȳ. We first introduce a simple Monte Carlo sampling method, the rejection

method, to obtain a collection of points that are “close” to ȳ. We provide some

insights on the properties of this method, as well as interesting advice on how to

choose the different parameters that need to be chosen when implementing the

method. We also show that it is possible to improve the efficiency of this method

by using a new two-step approach which we call sequential rejection sampling.

The final chapter (Chapter 4) is an extension of the previous chapter, where

we replace the basic Monte Carlo sampling method with more sophisticated

tools. These tools are based on the Markov chain Monte Carlo and Sequential

Monte Carlo algorithms in statistics. As in the previous chapter, our contribution

centers on not only providing a friendly introduction to the algorithms, but also

INTRODUCTION 19

on some commentary on how to select the different parameters of these methods

for getting interesting results.

A large portion of our research involved implementing and performing exper-

iments in Scilab. The appendix provides the source code of some of the programs

used to produce the results and figures in the text. As in the choice of exper-

iments discussed in the text, rather than being an extensive list, this appendix

is designed to give the reader a glimpse of the variety of programs which were

prepared during the course of this work. These programs and a few others are

available as .sce files in my web page http://math.unice.fr/~chanshio.

http://math.unice.fr/~chanshio

Contents

Acknowledgments 3

Introduction en français 5

Conclusion en français 9

Résumé long en français 11

Introduction 17

Chapter 1. Preliminaries 23

1.1. Probability 23

1.2. Differential Equations 33

1.3. Higher-dimensional ellipsoids 35

1.4. Five Main Examples 37

Chapter 2. Law of the Solution at time t∗ of a Differential Equation with

Random Coefficients 41

2.1. An example in the linear case 41

2.2. An example in the Riccati case 46

2.3. Polynomial Chaos 51

Chapter 3. Estimating coefficients of systems of differential equations: a

first approach 63

3.1. An example using a logistic model 63

3.2. An overview of ODE coefficient estimation methods 65

3.3. The rejection sampling algorithm 67

3.4. An analysis of the rejection sample 69

3.5. Improving the method 83

3.6. Application to perturbed model data 90

Chapter 4. Estimating coefficients of systems of differential equations:

further approaches 99

4.1. A Markov chain Monte Carlo method 99

4.2. A Sequential Monte Carlo method 108

Conclusion 115

21

22 CONTENTS

Bibliography 117

Appendix A. Scilab code 121

CHAPTER 1

Preliminaries

In this chapter, we first provide a brief review of the tools in probability

theory (Section 1.1) and differential equations (Section 1.2) that will be necessary

in the upcoming chapters. In Section 1.3, a simple formula of the volume of an

ellipsoid is recalled, and finally, we shall give in the last section (Section 1.4)

a short introduction to the examples of differential systems that we will use to

illustrate our results in the next chapters.

1.1. Probability

1.1.1. Convergence results. Unless stated otherwise, we assume that all

the random variables defined within a sequence {Xn} are defined in the same

probability space (Ω,F ,P). Also, all expectations are to be taken over the

probability measure P.

Definition 1.1. Let {Xn} be a sequence of random variables. We say that

{Xn} converges in probability to the random variable X if for every ε > 0,

lim
n→∞

P(∣Xn −X ∣ ≥ ε) = 0.

We denote convergence in probability of {Xn} towards X by a right arrow

with a P on top; that is, Xn
PÐ→X.

Definition 1.2. Let {Xn} be a sequence of random variables. We say that

{Xn} converges in distribution to the random variable X if for almost all x,

lim
n→∞

Fn(x) = FX(x),

where Fn and FX are the cumulative distribution functions of Xn and X, respec-

tively.

We denote convergence in distribution of {Xn} towards X by a right arrow

with a D on top; that is, Xn
DÐ→X.

While convergence in probability always implies convergence in distribution,

the converse is not always true. However, if {Xn} converges in distribution to a

constant, then it can be shown that the sequence also converges in probability

to that same constant.

23

24 1. PRELIMINARIES

Definition 1.3. Let X be a random variable. The characteristic function

of X is defined by ϕ(t) = ϕX(t) = E(eitX).

The following proposition, which follows directly from the definition, provides

two important properties of the characteristic function.

Proposition 1.4. Let X and Y be independent random variables and a any

real number. Then

(1) ϕX+Y (t) = ϕX(t)ϕY (t)
(2) ϕaX(t) = ϕX(at)

The following result relates pointwise convergence of the characteristic func-

tion and the convergence in distribution of the corresponding random variables.

A proof of this theorem can be found in many probability books, for example,

in Section 18.1 of Williams [47].

Theorem 1.5. (Lévy’s Continuity Theorem)

Let {Xn} be a sequence of random variables and let {ϕn} be the corresponding

sequence of characteristic functions. If ϕn(t) → ϕ(t) for all t ∈ R, then Xn
DÐ→

X.

The following important theorem is central in providing the theoretical basis

for sampling from a given distribution, which we shall be doing extensively in

the upcoming chapters.

Theorem 1.6. (Weak Law of Large Numbers)

Let {Xn} be a sequence of independent and identically distributed (iid) ran-

dom variables with finite mean µ. Then

Xn ∶=
1

n

n

∑
i=1

Xi
PÐ→ µ.

Proof. Let ϕX(t) be the characteristic function of the random variable X.

Since µ exists, the Taylor expansion of ϕX(t) can be expressed as follows:

ϕX(t) = 1 + itµ + o(t), t→ 0.

By Proposition 1.4, we can write the characteristic function of Xn as

ϕXn
(t) = ϕ{∑ni=1Xi} (

t

n
)

= [ϕXi (
t

n
)]
n

= [1 + itµ
n

+ o(t
n
)]
n

.

1.1. PROBABILITY 25

This converges pointwise to eitµ as n → ∞, as we shall prove in the following

lemma.

Lemma 1.7. Let (zn)n∈N be a sequence of complex numbers that converges

to z in C. Then (1 + zn
n
)n → ez as n→∞.

Proof. Let ζ ∈ C for which ∣ζ ∣ ≤ 1. Then the principal value of log(1 + ζ) has

power series expansion

log(1 + ζ) =
∞
∑
n=1

(−1)n−1 ζ
n

n
= ζ − ζ

2

2
+ ζ

3

3
− ...

Thus, for any ζ for which ∣ζ ∣ ≤ 1/2,

(1.1) ∣ log(1 + ζ) − ζ ∣ ≤ ∣ζ ∣2

since

∣ log(1 + ζ) − ζ ∣ ≤ ∣ζ ∣2
2

+ ∣ζ ∣3
3

+ ∣ζ ∣4
4

+ ...

≤ ∣ζ ∣2
2

(1 + ∣ζ ∣ + ∣ζ ∣2 + ...)

= ∣ζ ∣2
2

1

1 − ∣ζ ∣
≤ ∣ζ ∣2

Now suppose that zn → z in C. Since zn
n → 0 as n→∞, by (1.1), we have

n log (1 + zn
n

) = n(zn
n
+ o(1

n2
))

= zn + o(
1

n
)

which converges to z as n→∞. Therefore

(1 + zn
n

)
n

= exp(n log (1 + zn
n

))→ exp(z).

◻
Returning to the proof of the Weak Law of Large Numbers, note that since

ϕXn
(t) converges to eitµ, by the Lévy’s Continuity Theorem (Theorem 1.5),

Xn
DÐ→ µ. Since the limit is a constant, convergence in distribution also implies

convergence in probability. ◻
The Law of Large Numbers provides the theoretical framework for the valid-

ity of results that are drawn from an iid sample from a distribution. It can also

be used to show that the histograms of these samples converge in probability

to the distribution they were drawn from, as the following “histogram theorem”

states.

26 1. PRELIMINARIES

Proposition 1.8. Let θ1, θ2, ..., θn be a sequence of iid random variables

with probability density function π defined on Rm. Then, for all measurable sets

A ⊂ Rm, one has
1

n

n

∑
i=1

1{θi∈A}
PÐ→ π(A)

where π(A) = ∫A π(θ)dθ.

Proof. Recall that if θ1, θ2, ..., θn are independent variables, g(θ1), g(θ2), ...,
g(θn) are independent as well, provided g is a measurable function. Since A is

a measurable set, 1{θi∈A} is a measurable function of θ1, θ2, ..., θn. Thus, letting

g to be the indicator function with respect to θi ∈ A, it follows that 1{θi∈A},

i = 1,2, ..., n are independent random variables. By Theorem 1.6,

1

n

n

∑
i=1

1{θi∈A}
PÐ→ E(1{θ1∈A}) = P (θ1 ∈ A) = π(A).

◻

Definition 1.9. If a sample (θi)i=1,2,...,n has the property of Proposition 1.8,

then we shall say that the sample has asymptotically the law π.

1.1.2. Transformations. Denote by FX the cumulative density function

(or cdf) of a continuous random variable X. We define the generalized inverse

cdf of X as follows:

F −1
X (y) = min{x ∶ FX(x) ≥ y}, y ∈ [0,1].

With this definition, we have

(1.2) {FX(X) ≤ Y } = {X ≤ F−1
X (Y)}

Proposition 1.10. For any continuous random variable X, the random vari-

able Y = FX(X) has a uniform distribution over [0,1].

Proof. Let Y = FX(X). Then clearly, the support of Y is over [0,1]. Fur-

thermore, for y ∈ [0,1] and using (1.2),

FY (y) = P(FX(X) ≤ y)
= P(X ≤ F −1

X (y))
= FX(F−1

X (y))
= y

which is the cdf of a uniform [0,1] random variable. ◻
The following result is often used when generating random numbers from

any probability distribution given its cdf by beginning from a randomly selected

number between 0 and 1. For brevity, we shall denote a uniform random variable

on [a, b] from this point onwards as U[a, b].

1.1. PROBABILITY 27

Proposition 1.11. Let U be a U[0,1] random variable, and let Y = F−1
X (U).

Then Y has the same distribution as X.

Proof. It suffices to show that the cdf of Y is equal to FX . Since FX is a

monotonic function, using (1.2) gives

FY (x) = P(F −1
X (U) ≤ x) = P(U ≤ FX(x)) = FX(x),

as required. ◻
Another concept which we will need is that of orthogonal polynomials. Let

S be a subset of R or Rm, or, as we will have in the next chapter, a subset of the

set of square integrable random variables. Then we have the following definition:

Definition 1.12. Let N = {0,1, ...} or {0,1, ...,N}. A system of orthogonal

polynomials is a set of polynomials {Φn}n∈N , with N ⊂ N and deg(Φn) = n that

are orthogonal over a domain S with respect to a real positive measure α. That

is, for every m,n ∈ N , we have

(1.3) ∫
S

Φm(x)Φn(x)dα(x) = γ2
nδmn,

where δmn is the Kronecker delta function which is 1 if m = n and 0 otherwise

and

γ2
n = ∫

S
Φ2
n(x)dα(x).

In general, we shall assume that the measure α has a density w. In this case,

(1.3) reduces to

∫
S

Φm(z)Φn(z)w(z)dz = γ2
nδmn,

if α is continuous, where the integral is replaced by a summation if α is a discrete

measure. If we define the inner product of polynomials Φm and Φn as

⟨Φm,Φn⟩ ∶= ∫
S

Φm(z)Φn(z)w(z)dz,

then we have the following alternative way to characterize orthogonality of Φm

and Φn:

⟨Φm,Φn⟩ = γ2
nδmn

where γn =
√

⟨Φn,Φn⟩.
A particular class of orthogonal polynomials is the set of Hermite polynomi-

als, which are generated when α has a standard normal density. The following

formula defines the standardized nth degree Hermite polynomial Hn(x):

Hn(x) = (−1)nex2/2 d
n

dxn
e−x

2/2, n ∈N.

In particular, the following are the first five Hermite polynomials:

H0(x) = 1 H3(x) = x3 − 3x

H1(x) = x H4(x) = x4 − 6x2 + 3

H2(x) = x2 − 1 H5(x) = x5 − 10x3 + 15x

28 1. PRELIMINARIES

1.1.3. The Reciprocal Gaussian Distribution. Let X be a random

variable with pdf fX , and let g be a one-to-one function of X. If g−1 repre-

sents the inverse of g, it is easy to show that the pdf of Y = g(X) is given by

fY (y) = fX(g−1(y))∣ ddyg
−1(y)∣ for all y in its support. Denote the normal distri-

bution with mean µ and variance σ2 as N(µ,σ2). If we assume that σ > 0, then

we can easily see from this formula that the pdf of the random variable Y = 1/X,

where X ∼ N(µ,σ2) is

(1.4) f(y) = 1

y2
√

2πσ
exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1

2

⎛
⎝

1
y − µ
σ

⎞
⎠

2⎫⎪⎪⎪⎬⎪⎪⎪⎭
, y ≠ 0

Remark 1.13. Notice that the reciprocal Gaussian distribution is in fact a

special case of a ratio distribution. In particular, it has a generalized Cauchy

distribution, but where the numerator is a degenerate Gaussian distribution with

mean 1 and variance 0.

We now derive several interesting properties of this reciprocal Gaussian dis-

tribution.

First, the pdf of Y = 1/X where X ∼ N(µ,σ2) is bimodal. Indeed, if one

computes the critical points of (1.4) with respect to y, we obtain

(1.5) y = −µ ±
√
µ2 + 8σ2

4σ2
.

This gives two distinct peaks of the distribution f of Y .

While the distribution is always bimodal, the two modes are often of different

heights. In some cases, the left mode can be so small and remotely located that

it is negligible with respect to the other mode. For example, in the case where

µ = 4.5 and σ = 1, (1.4) and (1.5) tell us that the negative critical point occurs

at around y = −2.45, where the corresponding height is just a negligible 4×10−7.

Figure 1.1 shows graphs of the two cases, where the left mode is substantial in

the first and insignificant in the second.

Another interesting property of this reciprocal random variable is that none

of its moments exist. As we will see in the next proposition, it is linked to the

fact that f(0) > 0 in any Gaussian distribution.

Proposition 1.14. Let X be a continuous random variable with pdf f having

a support which contains 0. If f(0) > 0, then E(1
X) = +∞.

1.1. PROBABILITY 29

(a) Two modes case. Here, µ = 1 and
σ = 2.

(b) “Single” mode case. Here, µ = 4.5
and σ = 1. The second mode at y ≈
−2.45 is virtually invisible.

Figure 1.1. Two possible graphs of the pdf of Y = 1/X, where
X is normally distributed.

Proof. By definition, and decomposing x ↦ f(x)/x into its positive and

negative parts,

E(1

X
) = ∫

∞

−∞

1

x
f(x)dx

= ∫
∞

0

1

x
f(x)dx − ∫

0

−∞

1

∣x∣f(x)dx(1.6)

We show that the first term of (1.6) is infinite (both are, actually), and thus

the expression is undefined. Since f is continuous at 0, then for every ε > 0, we

can find a δ > 0 such that ∣x∣ < δ implies ∣f(x)−f(0)∣ < ε. Now suppose we choose

ε = f(0)− b, where 0 < b < f(0). Then, there exists a δ > 0 such that f(x) > b for

all x ∈ (−δ, δ). Thus,

∫
+∞

0

1

x
f(x)dx ≥ ∫

δ

0

1

x
f(x)dx

≥ ∫
δ

0

b

x
dx

= +∞

◻

Proposition 1.15. Let r and s be positive integers with s > r. If the rth

moment of a random variable X is not finite, then the sth moment of X is not

finite as well.

Proof. We prove the contrapositive of this statement instead. That is, we

show that if the sth moment is finite, then the rth moment must be finite as

well. Consider the function f(x) = xs/r. Since s > r, f is convex. By Jensen’s

30 1. PRELIMINARIES

inequality,

E(∣X ∣s) = E[(∣X ∣r)s/r] ≥ {E(∣X ∣r)}s/r.
If E(∣X ∣r) < 1, then E(∣X ∣r) is obviously finite. On the other hand, if E(∣X ∣r) ≥
1, then {E(∣X ∣r)}s/r ≥ E(∣X ∣r), and so the rth moment must be finite because

E(∣X ∣r) is bounded above by the finite value E(∣X ∣s). Therefore, in either sce-

nario, we have proven that the rth moment is finite. ◻

Combining the two previous propositions, it is then clear that Y = 1
X , where

X ∼ N(µ,σ2), has no finite moments.

Remark 1.16. The existence of the moments of a random variable is central

to many major results in classical probability theory. For example, the Central

Limit Theorem and Chebyshev’s Inequality require the first two moments of a

random variable to exist. The Law of Large Numbers, on the other hand, assumes

that the mean is well-defined. In the situation where the moments exist, studying

the properties of a random variable can be fairly straightforward, as most of the

classical results are at our disposal.

1.1.4. Markov chains. Since our state space is typically Rm or a subset

of it, we need to consider general state space Markov chain theory. To facilitate

understanding, we have chosen to present all definitions and results using Rm

as the state space instead of a more general space E. The following exposition

shall be mainly based on the book by Robert and Casella [34].

Definition 1.17. Let B(Rm) be the set of Borel subsets of Rm. The tran-

sition kernel is a function K defined on Rm × B(Rm) such that

(i) ∀θ ∈ Rm, K(θ, ⋅) is a probability measure

(ii) ∀B ∈ B(Rm), K(⋅,B) is measurable.

Definition 1.18. Given a transition kernel K, a sequence X0,X1, ...,Xn, ...

of random variables is a Markov chain of kernel K, denoted by (Xn)n∈N if,

for any n and any B ∈ B(Rm),

P(Xn+1 ∈ B∣X0, ...,Xn) = P(Xn+1 ∈ B∣Xn)(1.7)

= ∫
B
K(Xn, dx).(1.8)

The following lemma, which will be useful to prove that the sequence we will

construct is a Markov chain, is an extension to non-countable sets of a result by

Pardoux [31].

Lemma 1.19. Let h be a mapping from Rm ×Rm into Rm. Let X0, Y1, Y2, ...

be mutually independent Rm-valued random variables and (Xn){n∈N} be defined

1.1. PROBABILITY 31

recursively by

Xn+1 = h(Xn, Yn+1), n ∈N.
Then {Xn;n ∈N} is a Markov chain.

Proof. First, we claim that for any i = 1,2, ..., n, Xi can be written as a

function of X0, Y1, Y2, ...Yi alone. If this is true, then Yn+1 will be independent

of X0,X1, ...,Xn by the Disjoint Blocks Theorem (see Theorem 3.10, page 76 of

[18]) since X0,X1, ...,Xn would then be functions of random variables different

from and all independent of Yn+1.

To prove our claim, we use a simple induction argument. Certainly, the

claim is true when i = 2 as X2 = h(X1, Y2) = h(h(X0, Y1), Y2), which is ex-

clusively a function of X0, Y1, Y2. Now suppose that Xk can be written as a

function of X0, Y1, ..., Yk. By definition, Xk+1 = h(Xk, Yk+1). But Xk is a func-

tion of X0, Y1, ..., Yk by the inductive hypothesis, and so Xk+1 is a function of

X0, Y1, ..., Yk+1.

Now denote by fX0,X1,...,Xk the joint distribution of X0,X1, ...,Xk. Then

P(Xn+1 ∈ B∣X0,X1, ...,Xn) = ∫
B

P(X0 ∈ dx0, ...,Xn+1 ∈ dxn+1)
P(X0 ∈ dx0, ...,Xn ∈ dxn)

= ∫
h(Xn,Yn+1)∈B

P(X0 ∈ dx0, ...,Xn ∈ dxn, Yn+1 ∈ dyn+1)
P(X0 ∈ dx0, ...,Xn ∈ dxn)

= ∫
h(Xn,Yn+1)∈B

P(Yn+1 ∈ dyn+1)

= ∫
B
P(Xn+1 ∈ dxn+1∣Xn)

= P(Xn+1 ∈ B∣Xn)

where we used the claim to obtain the third equality from the second. ◻

We now give a quick summary of the important properties and results in

Markov chain theory that we will need later.

Definition 1.20. A Markov chain is ϕ-irreducible for a probability measure

ϕ on Rm if for all measurable sets A ⊂ Rm with ϕ(A) > 0, we have

P(τA <∞∣X0 = x) > 0 ∀x ∈ Rm.

where

τA ∶= inf{n ∈N ∶Xn ∈ A}.
A Markov chain is irreducible if it is ϕ-irreducible for some probability dis-

tribution ϕ.

In simple terms, irreducibility means that all “interesting” sets of Rm can

be reached, regardless of the starting point x.

32 1. PRELIMINARIES

Definition 1.21. (Def. 6.19 in [34]) A ϕ-irreducible chain (Xn) is small if

there exists an m ∈N∗ and a nonzero measure νm(A) such that

Km(x,A) ≥ νm(A)

for all x ∈ C and all A ∈ B(Rm).

Definition 1.22. (Def. 6.23 in [34]) A ϕ-irreducible chain (Xn) has a

cycle of length d if there exists a small set C, an associated integer M , and a

probability distribution νM such that d is the gcd of the set

{m ≥ 1;∃δm > 0 such that C is small for νm ≥ δmνM}.

It can be shown that the number d is independent of the small set C and

thus intrinsically characterizes a Markov chain (Xn). If the largest integer d

satisfying Definition 1.22 is 1, then we say that (Xn) is aperiodic.

Definition 1.23. A probability measure π is said to be invariant for the

transition kernel K (and for the associated chain) if

π(B) = ∫
S
K(x,B)π(x)dx, ∀B ∈ B(Rm)

where S is the state space of the Markov chain.

In this case, the invariant distribution is also referred to as stationary since

X0 ∼ π implies that Xn ∼ π for every n, which means that the Markov chain is

stationary in its distribution.

An alternative way to prove that a certain distribution π(x) is the stationary

distribution of a Markov chain is to show that the Markov chain satisfies the

detailed balance property, which is made precise in the following lemma.

Lemma 1.24. Suppose that a Markov chain with transition kernel K satisfies

π(a)K(a, b) = π(b)K(b, a) for some probability distribution π(a). Then π(a) is

the stationary distribution of the chain.

Proof. Let S be the state space of the Markov chain. For any measurable

set B,

∫
a∈S

K(a,B)π(a)da = ∫
a∈S ∫b∈BK(a, b)π(a)db da

= ∫
a∈S ∫b∈BK(b, a)π(b)db da

= ∫
b∈B

(∫
a∈S

K(b, a)da)π(b)db

= ∫
b∈B

π(b)db,

1.2. DIFFERENTIAL EQUATIONS 33

since ∫a∈SK(b, a)da = 1. ◻

Before we can consider what happens with the long-term behavior of a

Markov chain, it is necessary to define what metric we will use to compare

the distributions. If µ and ν are two measures defined on Rm, we shall consider

the total variation distance norm:

(1.9) ∣∣µ − ν∣∣ ∶= sup
A⊂E

∣µ(A) − ν(A)∣

where A must be measurable. Suppose we denote the nth transition proba-

bilities by Kn(x, ⋅). More precisely, K1(x,A) ∶= K(x,A) and Kn+1(x,A) ∶=
∫RmKn(x, dy)K(y,A) for n ∈N. Then, we have the following asymptotic result.

Theorem 1.25. Suppose (Xn)n≥0 is an irreducible, aperiodic Markov chain

on Rm with transition kernel K and stationary distribution π. Then

∣∣Kn(x, ⋅) − π(⋅)∣∣→ 0

under the total variation norm (1.9) for π-a.e. and for all x ∈ Rm.

The proof of this theorem is based on several lemmas which describe prop-

erties of Markov chains with respect to irreducibility and aperiodicity. One may

refer to Meyn and Tweedie [27] or Casella and Robert [34] for the detailed proof.

1.2. Differential Equations

In this section, we give several results based on an l-dimensional differential

system

(1.10)
dy

dt
= g(t, y), y(t0) = y0.

where y ∶ R→ Rl, g ∶ R ×Rl → Rl, and y0 ∈ Rl.
In later sections, we shall occasionally need to look at second-order Taylor

expansions of functions of the coefficients of a system of differential equations.

For such an expansion to be well-defined, it is necessary that the differential

system satisfies certain properties. For this, we need to review a few theorems

in differential systems theory.

For the first theorem, we shall express the solution y(t) and the initial point

y0 in terms of its components as follows:

y(t; y0) = {y1(t, y0), y2(t, y0), ..., yl(t, y0)}

y0 = {y10, y20, ..., yl0}

Theorem 1.26. Let g(t, y) be continuous and satisfy a Lipschitz condition

on y on the region R defined by

∣∣y − y0∣∣ ≤ a, ∣t − t0∣ ≤ b.

34 1. PRELIMINARIES

Then there exist a′ > 0 and b′ > 0 such that the solution y(t, y0) of (1.10),

considered as a function of t and its initial value y0 is of class C1 with respect

to both Y0 and t simultaneously, for any (t, y0) in a region

∣∣y − y0∣∣ ≤ a′ < a, ∣t − t0∣ ≤ b′ < b.

The proof of this theorem can be found in most differential equation text-

books, for example, as Theorems 8 and 9 in Hurewicz [16].

This theorem is a local result that, in fact, is still true more globally. When

the solution y(t, y0) exists in a region, then it is a C1 function of (t, y0) simul-

taneously in the whole region as C1 is a local property.

Corollary 1.27. Consider a system of differential equations in which the

functions gi depend upon any number of coefficients µ1, ..., µm

(1.11)
dyi
dt

= gi(y1, y2, ..., yl;µ1, µ2, ..., µm; t), i = 1,2, ..., l

If each of the gi’s has partial derivatives with respect to y1, y2, ..., yl; µ1, µ2, ..., µm

continuous in some (l +m + 1)-dimensional region R, then the solutions

(1.12) yi(t; y10, y20, ..., yl0;µ1, µ2, ..., µm), i = 1,2, ..., l

will have partial derivatives in µ1, µ2, ..., µm continuous in all their arguments

over any subset of R where the solutions (1.12) are defined.

Proof. We consider the coefficients µ1, µ2, ..., µm as new variables, and add

the equations

(1.13)
dµj

dt
= 0, j = 1,2,,m

to the system (1.11). Then, all the conditions of Theorem 1.26 are still satisfied

by the system formed by combining the equations (1.11) and (1.13). Hence, the

solutions yi are of class C1 with respect to “initial values” of the µj ’s. But since

the µj ’s are taken as constants with respect to t, the result follows. ◻
In general, we shall require that our solutions are twice differentiable with

respect to their coefficients. It turns out that by the two previous results, we

simply need that f be also of class C2 as well.

Corollary 1.28. If f is of class C2, then the solution y(t, y0;λ) of the

differential system dy
dt = g(y, λ) is also of class C2.

Proof. Our proof will be based on that given by Cartan in [2]. It suffices to

prove that the partial derivatives ϕ′y(y, λ) and ϕ′λ(y, λ) of the solution ϕ with

respect to y and the coefficients λ are of class C1.

To do this, we first note that ϕ′y(y, λ) is the solution of the differential system

dy

dt
= g′y(ϕ(u,λ), λ) ⋅ y(t), y(t0) = 1,

1.3. HIGHER-DIMENSIONAL ELLIPSOIDS 35

where the right-hand side of the equation is of class C1 in both x and λ. Thus,

its solution must be a function of class C1 by Theorem 1.26. Similarly, ϕ′λ(x,λ)
is the solution of

dz

dt
= f ′x(ϕ(u,λ), λ) ⋅ z(t) + f ′λ(ϕ(t, u, λ), λ)

where z(t0) = 0. Once again, the right-hand side of the equation is of class C1,

thus the solution is also of class C1 in (u,λ) by Theorem 1.26. Thus ϕ′x(x,λ)
and ϕ′λ(x,λ) are both of class C1, as required. ◻

1.3. Higher-dimensional ellipsoids

Proposition 1.29. Let A be a positive definite l × l matrix and x ∈ Rl. The

volume of the l-dimensional ellipsoid Aε = {x ∈ Rl, x′Mx < ε} is given by

V (Aε) =
(πε)l/2

Γ(l2 + 1)
⋅ (detM)−1/2.

where Γ is the gamma function defined by

Γ(u) = ∫
∞

0
zu−1e−zdz.

Proof. It suffices to compute for the volume Vl of the l-dimensional sphere of

radius
√
ε. This is because the l-dimensional ellipsoid xTAx < ε is just a linear

transformation of the l-dimensional sphere of radius ε using the transformation

x = A−1/2y, so we can then deduce that

(1.14) V (Aε) = (detA)−1/2 ⋅ Vl.

To compute the volume of the l-dimensional sphere of radius r, we compute

its surface area Sl indirectly. To do this, we first note that

(1.15) (∫
∞

−∞
e−x

2

dx)
l

= ∫
∞

−∞
⋯∫

∞

−∞
e−(x

2
1+x22+...+x2l)dxldxl−1...dx1.

Converting to hyperspherical coordinates, we have

x2
1 + x2

2 + ... + x2
l = r2

and

dx1dx2...dxl = rl−1drdΩl−1.

36 1. PRELIMINARIES

where dΩl−1 contains all the angular factors. Thus,

∫
∞

−∞
⋯∫

∞

−∞
e−(x

2
1+x22+...+x2l)dx1...dxl = ∫

∞

0
e−r

2

rl−1dr∫ dΩl−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Sl

= ∫
∞

0
e−r

2

rl−2 ⋅ 1

2
⋅ 2rdr ⋅ Sl

= ∫
∞

0
e−r

2(r2)
l
2
−1 ⋅ 1

2
⋅ 2rdr ⋅ Sl

= 1

2
∫

∞

0
e−uu

l
2
−1du ⋅ Sl

= 1

2
Γ(l

2
) ⋅ Sl

Since ∫ +∞−∞ e−x
2
dx = √

π, the left side of (1.15) has a value of πl/2. Thus, we

have

πl/2 = 1

2
Γ(l

2
)Sl

which gives

(1.16) Sl =
πl/2

1
2Γ(l2)

The volume of our l-dimensional sphere is then

Vl(
√
ε) = ∫

√
ε

0
Sl ⋅ rl−1dr = Slε

l/2

l
.

Substituting in (1.16) yields

(1.17) Vl =
(πε)l/2
l
2Γ(l2)

= (πε)l/2

Γ(l2 + 1)
Substituting back to (1.14),

(1.18) V (Aε) =
(πε)l/2

Γ(l2 + 1)
⋅ (detA)−1/2

◻

Proposition 1.30. Let X = (X1,X2, ...,Xm) be the random vector that rep-

resents the coordinates of a point chosen uniformly on or within the unit m-

sphere S0 = {x ∈ Rm ∶ ∣∣x∣∣ ≤ 1}. Then E(X2
i) = 1

m+2 for i = 1,2, ...,m.

The idea of the proof is to note that for all x ∈ Rm, the limit of

P(r ≤ ∣∣x∣∣ ≤ r + dr)
rm−1dr

is a constant C as dr → 0. Since ∫ 1
0 C ⋅ rm−1dr = 1, then C =m. Thus,

(1.19) E(∣∣x∣∣2) = ∫
1

0
mrm+1dr = m

m + 2
.

1.4. FIVE MAIN EXAMPLES 37

By the symmetry of the support, E(∣∣x∣∣2) = mE(X2
i) for all i ∈ {1,2, ...,m}.

Combining this and (1.19) gives the desired result.

1.4. Five Main Examples

In this section, we introduce the five different systems of differential equations

that we will use to test the methods that will be introduced in the next chapters.

1.4.1. Logistic Model. The logistic model is one of the simplest non-linear

differential equations. It is used to model the growth of a quantity y which

exhibits a damping effect. That is, it grows more slowly as it approaches a

certain threshold value K. It is given by the following differential equation:

dy

dt
= ry (1 − y

K
)

where r represents the intrinsic growth rate and K the threshold. This model is

used to represent various phenomena including the growth of a population, the

concentration of reactants and products, or even the saturation of a market.

In most practical applications, the initial point y0 of a logistic model is always

in between its two constant solutions y = 0 and y =K. However, if we allow y0 to

be negative or to be above the threshold value K, we can encounter the problem

of explosion in finite time. This means that there exists a finite time t̄ for which

limt→t̄ y(t) is equal to +∞ or −∞. We shall see later in Section 2.2 that this

can become an obstacle for the simulation of the solution at a fixed time t∗ of a

differential equation with random coefficients.

1.4.2. Harmonic Oscillator. The harmonic oscillator has its roots in clas-

sical mechanics in physics. It is used to represent any system that experiences a

restoring force F proportional to the displacement, x. For example, in a spring-

mass system, we know that when a spring is stretched or compressed by a mass

for a certain length, the spring exerts a force proportional to (but to the oppo-

site direction of) the displacement. We shall only look at the case of a simple

harmonic oscillator, where the only force acting on the system is F . By using

Newton’s second law, we can write this system in terms of the second-order

differential equation as
d2x

dt2
= −kx

where k is an elastic coefficient. This can be written as the following system of

differential equations:

(1.20)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dx

dt
= −ay

dy

dt
= bx

38 1. PRELIMINARIES

where a and b are unknown positive coefficients.

It is not difficult to show that the general solution to this system is given by

(1.21)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x(t) = K1 cos
√
abt −K2 sin

√
abt

y(t) = K1

√
b

a
sin

√
abt +K2

√
b

a
cos

√
abt

where K1 and K2 are arbitrary constants.

1.4.3. Lotka-Volterra Model. The Lotka-Volterra Model is a classic model

of predator-prey population dynamics. If we let x and y represent the size of the

population of a prey and a predator, respectively, we can write the model as a

system of differential equations with four coefficients α,β, γ and δ as follows:

(1.22)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dx

dt
= αx − βxy

dy

dt
= γxy − δy

The coefficients α and γ represent the growth rates of the prey and predator,

respectively. On the other hand, β is the rate of predation and δ is the loss rate

of predators through means such as natural death or emigration. In the model,

the predators thrive when there are plentiful prey. However, once the predator

population outstrips the prey population, the predators decline in number. This

allows the prey population to increase again, and this cycle of growth and decline

continues periodically. Like the harmonic oscillator, as the dynamics of this

system are well-understood and somewhat regular, it will be used initially to

study the basic properties of our coefficient estimation methods.

It is possible to reduce this system to one involving only two unknown coef-

ficients. This can be done by making the substitution X = x, Y = β
δ y, and τ = δt.

In this case,

dX

dτ
= dX

dt
⋅ dt
dτ

= 1

δ
⋅ dX
dt

= 1

δ
(αX − βX ⋅ δ

β
Y)

= AX −XY

1.4. FIVE MAIN EXAMPLES 39

if we let A = α
δ . Similarly, we can write

dY

dτ
= dY

dt
⋅ dt
dτ

= 1

δ
⋅ dY
dt

= 1

δ
⋅ β
δ
⋅ (γX ⋅ δ

β
Y − δ ⋅ δ

β
Y)

= BXY − Y

by choosing B = γ
δ .

1.4.4. The Repressilator. The repressilator is a popular toy model for

gene regulatory systems which was proposed by Michael B. Elowitz and Stanis-

las Leibler in 2000 [9]. It consists of three genes connected in a feedback loop,

where each gene transcribes the repressor protein for the next gene in the loop.

The dynamic of the messenger RNAs of the three geners are given by m1(t),
m2(t), m3(t), while the dynamic of the three repressor-proteins produced are

represented by p1(t), p2(t), and p3(t). Transcription and degradation are as-

sumed to have a linear dynamic while repression is given by a nonlinear term

α/(1 + pn). The model is represented by the following system of six equations

and four coefficients (α0, γ, α, β):

(1.23)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dm1

dt
= −m1 +

α

1 + pγ3
+ α0

dp1

dt
= −β(p1 −m1)

dm2

dt
= −m2 +

α

1 + pγ1
+ α0

dp2

dt
= −β(p2 −m2)

dm3

dt
= −m3 +

α

1 + pγ2
+ α0

dp3

dt
= −β(p3 −m3)

For most of the values of coefficients, the dynamic is oscillatory and shows

sustained oscillations for some specific values of the coefficients.

1.4.5. A Simplified Circadian Cycle Model. The most complex model

that we will be using is that of a simplified model for the mammalian circadian

clock constructed by Comet et. al. in [3]. It is based on a model proposed by

Leloup and Golbeter for circadian oscillations in mammals involving interlocked

negative and positive regulations of certain genes by their protein products and

consisting of 16 differential equations. By excluding the dynamics of one protein

40 1. PRELIMINARIES

and the phosphorylation of several other proteins, Comet successfully trans-

formed this system to one that still adequately captures the 24-hour oscillatory

behavior of the original model, but now consisting of only 4 equations and 12

coefficients (K,γ, k1, k2, k3, k4, kd1, kd2, kd3, kd4, v1, v2). The model is given by

the following system:

(1.24)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dp1

dt
= v1

Kγ

Kγ + cγ2
− k3p1p2 + k4c1 − kd1p1

dp2

dt
= v2

Kγ

Kγ + cγ2
− k3p1p2 + k4c1 − kd2p2

dc1

dt
= k3p1p2 − k4c1 − k1c1 + k2c2 − kd3c1

dc2

dt
= k1c1 − k2c2 − kd4c2

where the equations represent the dynamics of cystolic PER protein (p1), CRY

protein (p2), cystolic PER-CRY protein complex (c1) and nuclear PER-CRY

protein complex (c2). We will use this 4-dimensional differential system to test

our methods on a system with a large number of coefficients.

CHAPTER 2

Law of the Solution at time t∗ of a Differential

Equation with Random Coefficients

In this chapter, we wish to study the law of the solution at time t∗ of a differ-

ential equation with random coefficients. In Section 2.1, we begin to examine the

problem in what is probably the simplest case, which is on a linear differential

equation. We shall show that even in this case, our only option to have an idea

on the distribution of the solution may be Monte Carlo simulation. In the next

section (2.2), we give an example of where direct Monte Carlo simulation may

not even be possible. As an alternative, in the final section, we give a short ex-

position of polynomial chaos, which may be used to approximate certain random

variables using orthogonal polynomials as basis. We illustrate how this method

can be used to study the law of the solution at time t∗ of certain differential

systems.

2.1. An example in the linear case

Consider a differential equation of the form

y′ = g(y; θ)

with one or more unknown coefficients θ = (θ1, θ2, ..., θm) ∈ Rm and a fixed initial

condition y(0) = y0. We assume that the coefficient θ is a random variable and

that we know its law. Then, for a fixed time t∗ > 0, y(t∗) is a random variable

which depends on θ. We are interested in the general problem of studying

the probability distribution function (pdf), or law, of y(t∗). When the system

possesses an explicit solution, the question seems to be easy. We shall see shortly

that this problem, even in the easiest cases, is not as simple as it seems.

As a first example, consider the very simple linear differential equation y′ =
−Ay +B, where the initial point y(0) = y0 is fixed, and exactly one of A and B

is a random variable. Assume first that A = a is fixed, and B ∼ N(µ,σ2). To

determine the law of y(t∗), we begin by computing the solution to the linear

differential equation. The explicit solution of the differential equation at time t∗

is given by

(2.1) y(t∗) = (y0 −
B

a
) e−at∗ + B

a

41

42 2. LAW OF THE SOLUTION AT TIME t∗ OF A RANDOM ODE

We can rewrite this as

y(t∗) = y0e
−at∗ +B (1 − e−at∗

a
) ,

which we can identify as a linear function of the Gaussian random variable B.

Thus, y(t∗) ∼ N(µ̃, σ̃2), where

µ̃ = µ(1 − e
−at∗

a
) + y0e

−at∗

and

σ̃2 = σ2 (1 − e
−at∗

a
)

2

.

Thus, we obtain a family of Gaussian distributions depending on the chosen

values of y0, a and t∗. Furthermore, when t∗ becomes large, the family of

Gaussian laws N(µ̃, σ̃2) has a different limiting behaviour depending on the

sign of a. If a > 0, the first term of (2.1) tends to 0 regardless of the value of

B. Therefore, we would expect the law of y(t∗) to be close to the Gaussian

distribution with mean µ/a and variance σ2/a2. On the other hand, if a < 0,

then y(t∗) does not tend to any distribution. This is because y(t∗) converges

to either +∞ or −∞, depending on the sign of y0 − B
a . As limt∗→∞ σ

2 = +∞, we

would therefore expect y(t∗) to consist of arbitrarily spread large positive and

large negative values.

When A is random while B = b is fixed, the situation becomes a lot more

complicated. In this case, the solution is now

(2.2) y(t∗) = (y0 −
b

A
) e−At∗ + b

A

In this case, the second term of (2.2) has a form similar to that of the reciprocal

Gaussian distribution in Section 1.1.3. On the other hand, the first term is a

product of two random variables, with the first looking like a shifted reciprocal

Gaussian, while the second being a lognormal random variable. The resulting

distribution is certainly not one of the well-known distributions. Furthermore,

we cannot write analytically its distribution.

The most natural way to obtain an idea of the shape of this distribution

is through a typical Monte Carlo simulation. Suppose we fix b to be equal to

1, and consider the differential equation y′ = −Ay + 1, where A ∼ N(1,4), the

initial point y0 = −1, and t∗ = 10. To obtain an estimate of the pdf, we generate

1000 values of A using grand function of Scilab, and compute the solution of

the differential equation at time t∗ using the ode command. The histplot

command can then be used to construct the histogram of the resulting values

y(t∗). Figure 2.1a shows the histogram of the resulting values if we let Scilab

automatically choose the classes of the histogram.

2.1. AN EXAMPLE IN THE LINEAR CASE 43

(a) Histogram after letting scilab
choose the classes

(b) Histogram over the interval (−3,3)

Figure 2.1. Histograms of the values of the solution of the dif-
ferential equation y′ = −Ay + 1 when t∗ = 10 and A takes of
1000 values from N(1,4). The histograms were drawn using the
histplot command in Scilab and 50 classes.

Clearly, this histogram does not provide a satisfactory result. This is because

Scilab automatically constructs classes with equal class sizes between the lowest

and highest values y(t∗). However, in this case, the range of values for y(t∗) is

too wide, and the frequency of larger values seems to be small compared to the

smaller values. Thus, all the smaller values were bunched up into a single class.

Since most of the sampled values of y(t∗) seem to be small values, one

possible workaround is to draw the histogram only over a small interval around

0. Figure 2.1b shows the histogram over (−3,3). While this seems to solve the

problem of displaying the histogram, estimating the area under the curve for

the given interval shows that the area is clearly less than 1. Thus, our graph

fails to account for a good portion of the observations. Recalling the graph of

the reciprocal Gaussian distribution from the previous chapter (see Figure 2.2

below), we see that it seems to be missing one of its modes.

A third, and better, option would be to “cut” the values at some point,

which we now describe more precisely. Let a1, a2, ..., an be a sample from A, and

let {yi} ∶= {y(t∗; y0, ai)} be the values of the corresponding solutions at time

t∗. Choose an upper bound yhi and a lower bound ylo. Then for each i where

yi > yhi, re-define yi = yhi. Otherwise, yi remains the same. A similar procedure

can be done for those values which are below ylo. Since all the values are now

in between −5 and 5, we can display the whole histogram properly, as shown in

Figure 2.2, but also considering the extreme values.

Figure 2.2 helps us understand why we were having a lot of difficulty in

displaying our histogram properly. Although they do not seem to be much when

taken as a class of the original histogram, there are in fact a lot of values with

high absolute value on both ends, as indicated by the two outer bars.

44 2. LAW OF THE SOLUTION AT TIME t∗ OF A RANDOM ODE

Figure 2.2. Histogram of {yi}. The theoretical pdf of the recip-
rocal Gaussian 1/X, where X ∼ N(1,4) is superimposed to the
graph.

Can we approximate the percentage of the distribution represented by each

of the two peaks in the side? The answer is yes, and it turns out that this follows

rather easily from the solution of the linear differential equation. Going back to

(2.2), we see that for A > 0, y(t∗) is close to 1
A when t∗ is large enough. On the

other hand, if A < 0, y(t∗) behaves like (y0 − 1
A)e−At∗ when t∗ is large enough,

which is either a large positive or a large negative value depending on the sign

of y0 − 1
A .

The above observations can be summarized in the following result, which

allows us to approximate the percentage of observations represented by the two

bars at the ends.

Proposition 2.1. Consider the differential equation y′ = −Ay + 1, where

y(0) = y0. Then

(1) {A∣ lim
t→∞

y(t) = −∞} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∅, if y0 > 0

{A∣A < 1
y0

} , otherwise

(2) {A∣ lim
t→∞

y(t) =∞} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{A∣A < 0} , if y0 > 0

{A∣ 1
y0

< A < 0} , otherwise

Proof. To show (1), we recall from (2.2) that the solution to the linear

differential equation can be written analytically as

y(t) = (y0 −
1

A
) e−At + 1

A
.

2.1. AN EXAMPLE IN THE LINEAR CASE 45

As t →∞, y(t) → −∞ if and only if A < 0 and y0 < 1
A . If y0 is positive, then no

such A exists since 1/A is always negative. On the other hand, if y0 < 0, then

{A∣A < 0 ∩ y0 <
1

A
} = {A∣Ay0 > 1 ∩A < 0}

= {A∣A < 1

y0
}

which completes the proof of the first assertion. The second statement follows in

largely a similar manner. In this case, y(t)→∞ if and only if A < 0 and y0 > 1
A .

If y0 > 0, the second inequality always holds provided A < 0. On the other hand,

if y0 < 0, then

{A∣A < 0 ∩ y0 >
1

A
} = {A∣Ay0 < 1 ∩A < 0}

= {A∣ 1

y0
A < 0}

◻

Using this proposition, we can now approximate the percentage of obser-

vations represented by the two bars. In our specific example, y0 = −1 and

A ∼ N(1,4), so P(A < 1
y0

) = P(A < −1) ≈ 0.1587 and P(1
y0

< A < 0) = P(−1 < A <
0) ≈ 0.1499. As the sample size n = 1000 is quite large, the histogram theorem

(Proposition 1.8) applies, so we expect close to 15.9% of the observations on the

left bar and nearly 15% on the right bar. After taking the average percentage

for five samples of size 1000, we obtained 16.8% for the left bar and 16.7% for

the right bar, which compares favorably with our estimates.

Looking back at Figure 2.2 once more, notice that the observations outside

the two bars closely match the distribution of the positive part of the recip-

rocal Gaussian. This is not completely surprising since we have seen that y(t)
converges to 1/A as t→∞. Unfortunately, we are unable to state a precise prob-

abilistic statement that describes this observation. We know from the histogram

theorem (Proposition 1.8) that the probability of each class in the histogram con-

verges in probability to the corresponding area under the distribution of 1/A.

However, the distribution of Y converges to the positive half of 1/A only when

t∗ is large enough. The difficulty of transforming Proposition 2.1 into a precise

result about the law of y(t∗) is in stating precisely how large both the sample

size n and time t∗ should be simultaneously. Indeed, the law of y(t∗) when θ is

random is well-estimated by a sample only when t∗ is large enough but has no

limit when t∗ tends to +∞. This problem is true in general even if we choose

other values of y0, µ, σ, or b.

Remark 2.2. This value of t∗ for which the distribution of the small values

becomes close to that of the positive half of the reciprocal Gaussian distribution is

46 2. LAW OF THE SOLUTION AT TIME t∗ OF A RANDOM ODE

not that large. For example, in Figure 2.3, we see that even when t∗ is as small

as 4, the distribution of the small values already fits the expected distribution

very well.

(a) t∗ = 0.5 (b) t∗ = 1

(c) t∗ = 2 (d) t∗ = 4

Figure 2.3. Histogram of yi, where y0 = −1 and A ∼ N(1,4) for
various values of t∗, with the graph of the pdf of the reciprocal
Gaussian distribution included for comparison. In all cases, yhi =
5, ylo = −5, and the sample size is n = 1000.

2.2. An example in the Riccati case

So far, we have seen that even in the very basic case of a linear differential

equation, one often needs to resort to Monte Carlo simulations to approximate

the law of y(t∗). We shall now show that, unfortunately, such simulations may

be ineffective to find the law of y(t∗) in certain differential equations.

Suppose we wish to study the law of the sample of solutions at time t∗ of

a Riccati equation x′ = Ax2 + Bx + C, where the coefficients A, B, and C are

either random variables or constants. One natural way to do this would be to

repeatedly sample A, B, and C from their corresponding distributions using

some statistical software, and then to compute the solution at a specific time

t∗, as in the previous section. While this procedure looks simple, the behavior

2.2. AN EXAMPLE IN THE RICCATI CASE 47

of the solution of Riccati equations can easily cause problems when computing

these solutions numerically, as we shall now show in a specific example.

Example 2.3. Consider the logistic differential equation y′ = −Ry(1 − y),
where the initial point is y(0) = 2, and R is Gaussian with mean 1 and standard

deviation 2. As before, we use Scilab to generate a sample of size 1000 and

calculate the solution at the times 0,0.01,0.02, ...,1. Unfortunately, we will most

probably be unable to generate the 1000 trajectories, because we will get an

error of the following form:

lsoda-- at t (=r1), mxstep (=i1) steps

needed before reaching tout

where i1 is : 500

where r1 is : 0.2739585931588D+00

Warning: Result may be inaccurate.

The problem is due to the explosion of some solutions of the differential

equation y′ = −Ry(1−y) in finite time. To understand why this occurs, consider

for example, the case where R > 0 and y0 = y(0) > 1. Straightforward integration

gives us the solution of the differential equation as

(2.3) y(t) = 1

1 + a0eRt

where a0 = 1−y0
y0

. Since y0 > 1, a0 is clearly negative. Then, as t approaches

the positive value t̄ = 1
R ln(− 1

a0
), the denominator of (2.3) approaches 0, and so

limt→t̄ y(t)→ +∞. (Similarly, it is not difficult to verify that if R < 0 and y0 < 0,

then limt→t̄ y(t) → −∞.) Note that this value of t̄ could be quite small. For

example, if R ≈ −2.5301136, then t̄ ≈ 0.274, as given in the error message in the

previous example. In fact, any R < − ln 2 ≈ −0.69 will result in an explosion at a

time t̄ < 1. Under the assumption that R ∼ N(1,4), this has a 20% probability in

every sample. Thus, even if we are only interested in the histogram of the values

of the solution at a certain time t∗, we will most likely be unable to obtain this,

due to the existence of these poles.

In the case of a Riccati equation, there is a way to overcome this problem:

each solution may be extended to +∞ or −∞. To see this, one can make a change

of manifold and take a look at two maps instead of one. Suppose that we wish

to study the general differential equation

(2.4) y′ = Ay2 +By +C.

Suppose that the differential equation has two real constant solutions α1 and α2.

Then we can rewrite (2.4) as y′ = A(y − α1)(y − α2). Now let z = 1
y−α1

. Then

48 2. LAW OF THE SOLUTION AT TIME t∗ OF A RANDOM ODE

y = α1 + 1
z , and

z′ = − 1

(y − α1)2
y′

= −z2A(y − α1)(y − α2)

= −z2A
1

z
(1

z
+ (α1 − α2))

= −A + βz,

where β = A(α1 − α2). Here, y(t) and z(t) are two expressions of the same

trajectory in the two charts.

To implement the two charts numerically (see Example 2.6 below), we can

set an upper bound U and a lower bound L, and suppose that the second chart is

produced using the mapping z = 1/(y −α1). Starting from the logistic equation,

suppose that the solution reaches a value of U at time t1. Since the graph

would typically grow to infinity, we switch to the corresponding linear differential

equation, where it must satisfy z(t1) = 1/U . This transformation avoids the

problem of y(t) going to infinity in finite time because as y(t)→∞, z(t) remains

defined, and decreases instead to 0. A similar procedure can be applied when

y(t) goes to −∞, where we move to the linear equation when the trajectory

crosses the lower bound L. Thus, the method allows us to avoid the errors

brought about by the pole in finite time of the Riccati equation by converting

the equation to its linear version. To combine the results into one histogram,

every time we switch to the second map and obtain z(t∗), we simply store the

corresponding value in the original map, which is α + 1/z(t∗).
Geometrically, this corresponds to a change of chart which transforms R2 into

a cylinder, where we join y = +∞ and y = −∞ together. This means that once

we “reach” +∞, we will be able to continue, but now passing through negative

values.

Example 2.4. Going back to the equation y′ = −Ry(1 − y) in Example 2.3,

the corresponding linear differential equation based using the constant solution

α1 = 0 is z′ = Rz − R, where R has a Gaussian distribution with mean µ and

variance σ2, and z = 1/y. The solution of the converted differential equation is

(2.5) z(t) = (z0 − 1)eRt + 1.

As before, due to the exponential nature of the solution, the distribution of y(t∗)
quickly resembles the behavior when t →∞. Thus, provided t∗ is large enough,

we expect the resulting distribution to depend on the value of R. Looking at

the direction fields of our differential equation (see Figure 2.4), we see that if

R > 0, y(t) goes to +∞ as t → ∞. These will all then converge to 0 through

negative values after we apply our transformation. Furthermore, if R < 0, y(t)

2.2. AN EXAMPLE IN THE RICCATI CASE 49

converges to 1 from above. Thus, we would expect the distribution of y(t∗) to

consist of values which are concentrated just below 0 and above 1, with nothing

in the interval (0,1).

(a) R > 0 (b) R < 0

Figure 2.4. Some solutions of y′ = −Ry(1 − y). Here, we show
the two possible cases, depending on the sign of R. In the first
case, R = 0.25 > 0, while in the second, R = −0.25 < 0.

Our intuition is validated when we construct the histogram of y, as shown

in Figure 2.5. We constructed two histograms, one when t∗ = 1, while the other

is when t∗ = 5. In our original case, since the chosen t∗(= 1) is quite small, there

remains a good percentage of values which are to the much greater than 1 or

much less than 0, as seen in Figure 2.5a. These represent those values which have

not yet reached the limit, which is either 0 or 1. As t∗ increases, the histogram

quickly approaches that of two Dirac masses at 0 and 1. In Figure 2.5b, we see

that almost all the values are close to 0 and 1.

(a) Histogram when t∗ = 1. (b) Histogram when t∗ = 5.

Figure 2.5. Histogram of y(t∗), where the initial point is y0 = 2.
All values greater than yhi = 5 and less than ylo = −5 are set to 5
and −5, respectively.

50 2. LAW OF THE SOLUTION AT TIME t∗ OF A RANDOM ODE

In the next example, we shall show that the reciprocal Gaussian distribution

that we introduced in Section 1.1.3 can also appear in the context of a Riccati

equation.

Example 2.5. Consider the distribution of the value of the solution at time

t∗ of y′ = −Ry2+y, where R ∼ N(1,4) and y(0) = y0 < 0. Then, the corresponding

linear differential equation after performing the reciprocal transformation is z′ =
R − z. An analysis of the direction field of the Riccati equation shows that one

reaches a pole in finite time when R > 0 and y0 < 0 or if y0 < 1/R and R < 0.

After performing the transformation which we introduced above, the resulting

value at y(t∗), where t∗ is large, for these two cases can be shown to converge

to 1/R. If y0 = −2 and t∗ = 10, the resulting histogram is shown in Figure 2.6:

(a) Histogram of y(t∗) (b) Histogram of z(t∗)

Figure 2.6. The histogram of both charts for a sample of size
1000 of y(10) where y′ = −Ry2 + y and R ∼ N(1,4). The theo-
retical distribution for the reciprocal Gaussian where the normal
random variable is N(1,4) is sketched for comparison.

In the above histogram, all values greater than yhi = 5 and less than ylo = −5

are set to 5 and −5, respectively. One can see this almost replicates the reciprocal

Gaussian pdf except for the region where 1/y0 < R < 0, where the values of y(10)
are known to converge to 0 as t→∞. Here T = 10, which is already quite large.

However, if y0 is large negative (say, y0 = −20), the probability of this region

is small, and so we obtain a pdf which is very close to that of the reciprocal

Gaussian distribution.

Clearly, there is an overlap in the information provided by the two graphs

in Figure 2.6. However, we can avoid this by choosing appropriate intervals in

the two charts. For example, if we take the histogram of y(t∗) over the interval

(a1, a2), where 0 < a1 < a2, the values for the intervals (−∞, a1) ∪ (a2,+∞) is

captured by taking the histogram of z(t∗) over (1/a2,1/a1). Thus, taking two

charts can be thought of as another way to “see” the values which are spread

out (big positive or negative values).

2.3. POLYNOMIAL CHAOS 51

Example 2.6. In the previous section, we examined the distribution of y(t∗)
for the linear differential equation y′ = −Ay + 1. The corresponding Riccati

equation is z′ = −z2 + Az. The approximate distribution was constructed by

“cutting” the histogram by setting all values beyond yhi = 5 and ylo = −5 to 5

and -5, respectively. The idea of two charts which we have just discussed can be

used as an alternative to show the full results. In particular, Figure 2.7 displays

y over (−1,1) and the corresponding quadratic z also over (−1,1), which, when

combined, show a “complete picture” of the distribution of Y on a circle.

(a) Histogram of y(t∗) for (−1,1) (b) Histogram of z(t∗) for (−1,1)

Figure 2.7. The histogram of both charts for a sample of size
1000 of y(5) where y′ = −Ay + 1 and A ∼ N(1,4).

2.3. Polynomial Chaos

In the previous section, we have already seen several ways to study the

distribution of the solution at time t∗ of a system of differential equations with

random coefficients. These have mainly relied on direct Monte Carlo simulations

and some workarounds to be able to display the histogram of the results properly.

However, the idea to use a two chart representation to study the law with a

Monte Carlo approach even when some solutions explode in finite time (and

thus before t∗) which is helpful for Riccati equations will no longer be possible

for more general equations or systems. Thus there is a need to look at other

approaches when Monte Carlo simulation no longer works.

In this section, we explore another approach, which involves constructing

expansions to approximate the law of the solutions at time t∗. This will use the

concept of polynomial chaos, which shall provide us with basis random variables

to approximate a given random variable. The first section gives the basic con-

cepts of generalized polynomial chaos (gPC) expansions, as described by Xiu and

Karniadakis in their paper [48], as well as in the subsequent book by Xiu [49].

The second part explains how these expansions can be used to approximate the

law that we are looking for in this chapter.

52 2. LAW OF THE SOLUTION AT TIME t∗ OF A RANDOM ODE

2.3.1. Introduction and Definitions.

Definition 2.7. Let V be the Euclidean vector space of square integrable ran-

dom variables normed by ∣∣V ∣∣2 = E(V 2) for all V ∈ V. Let Z ∈ V be a given ran-

dom variable with finite moments. A generalized Z-polynomial chaos (gPC) is a

sequence of random variables Φ0(Z),Φ1(Z), ...,Φk(Z), ..., where Φ0,Φ1, ...,Φk, ...

are orthogonal polynomials of degree 0,1,...,k,... respectively. That is, we have

E(Φj(Z)Φk(Z)) = γkδjk

where δjk is the Kronecker delta, which is 1 if j = k and 0 otherwise, and γk =
E(Φ2

k(Z)) are positive constants.

It is customary to normalize the elements in Γp in some manner, so as to

obtain a unique gPC of each order j ≤ p. There are many ways to do this. In

principle, we can construct an orthonormal basis by requiring that E(Φ2
j(Z)) = 1

for each j. A second option would be to set the leading coefficient of Φj to be

1. In both cases, this would define a unique gPC basis function of order p. We

shall choose the second option, and so from this point on, whenever we mention

the gPC basis function Φp(Z), it shall refer to the element of Γp which has a

leading coefficient of 1.

Example 2.8. Depending on what distribution we choose for the given ran-

dom variable Z, we obtain a different set of gPC basis polynomials. Table 2.1

lists the gPC basis random variables of degrees 0 to 3 where Z is either N(0,1)
or U(−1,1).

Table 2.1. The generalized polynomial chaos basis random vari-
ables of degrees 0 to 3

Degree Distribution of Z:
N(0,1) U(−1,1)

Φ0(Z) 1 1
Φ1(Z) Z Z
Φ2(Z) Z2 − 1 Z2 − 1

3
Φ3(Z) Z3 − 3Z Z3 − 3

5Z

To obtain the basis given above, we can proceed in a recursive manner by

using a series of orthogonalization procedures. Assume first that Z ∼ N(0,1).
Clearly, Φ0(Z) = 1. Then Φ1(Z) is a linear function Z +a such that E(Z +a) = 0

(by orthogonality with Φ0(Z)). This implies that a = 0, so Φ1(Z) = Z. Next,

Φ2(Z) is a quadratic function Φ2(Z) = Z2 + bZ + a such that it is orthogonal

to both Φ0(Z) and Φ1(Z). A straightforward computation leads to a = −1 and

b = 0, so Φ2(Z) = Z2 − 1. All the higher order basis functions can be computed

2.3. POLYNOMIAL CHAOS 53

in a similar manner. A similar procedure but using Z ∼ U(−1,1) gives us the

random variables in the third column. ◻

Remark 2.9. The gPC basis functions above are, in fact, of the form of

classical orthogonal polynomials. For example, for Z ∼ N(0,1), the function

Φk are the Hermite polynomials, while for Z ∼ U(−1,1), they are the Legendre

polynomials.

Remark 2.10. It also follows from the definition of the gPC basis functions

that E(Φk(Z)) = 0 for k > 0. This follows because E(Φk(Z)) = E(Φ0(Z) ⋅
Φk(Z)) = 0. Thus the Φk(Z) are all centered random variables for k > 0.

2.3.2. Approximation using polynomial chaos. For the succeeding dis-

cussion, we shall focus only on the polynomial chaos basis functions produced

when Z has a standard normal distribution. The main interest in gPC is that

they can be used to approximate random variables Y .

Let Y be an L2-integrable with known distribution. We define the Nth order

gPC orthogonal projection, or the N th order gPC expansion of Y as

(2.6) PNY =
N

∑
k=0

ykΦk(Z)

where

(2.7) yk =
1

γk
E[Y Φk(Z)] = E[Y Φk(Z)]

E[Φ2
k(Z)]

are known as the modes of the expansion.

The convergence properties of these expansions are very similar to that of

the classical Fourier approximation. For functions f belonging to L2([−π,π]),
we know that the approximation using the Fourier basis converges to f in mean-

square. While these gPC expansions approximate random variables and not

functions, it turns out that they retain a similar convergence property. In fact,

it can be shown that the orthogonal projection defined above converges in mean-

square to Y in the case where Y = f(Z) is a function of the random variable Z on

which the polynomial chaos is built. That is, in this case, we have ∣∣Y −PNY ∣∣→ 0

as N → ∞, where the norm is the standard mean-square norm ∣∣Y ∣∣2 = E(Y 2).
This convergence follows directly from the corresponding result for real functions.

For a proof, we refer to Theorem 6.2.3 in [10] in the case where f is bounded

and [5] for the unbounded case.

To see an example on how to construct such an expansion, we will now

approximate a lognormal random variable using a Gaussian gPC.

54 2. LAW OF THE SOLUTION AT TIME t∗ OF A RANDOM ODE

Proposition 2.11. Let Y = eZ be a lognormal random variable, where Z ∼
N(0,1). Then the polynomial chaos expansion for Y is given by

Y = e1/2
∞
∑
k=0

1

k!
Hk(Z),

where Hk(Z) is the Hermite polynomial of order k in the variable Z.

Proof. We have already explained in Example 2.8 that when Z is gaussian,

the Z-gPC is the family Hk(Z) of Hermite polynomials of order k. In this

proof, we will only show that the coefficient for the first four terms is true by

constructing the polynomial chaos expansion of order 3. The remaining terms

can be obtained in a similar manner.

To do this, as the polynomial chaos bases of orders 0 to 3 are the ones given

in the second column of Table 2.1, we want to show that

P3Y = e1/2 [1 +Z + 1

2
(Z2 − 1) + 1

6
(Z3 − 3Z)] .

For this, note that Y = ∑4
k=0 ykΦk(Z). To find the coefficients of the expansion,

we need to apply (2.7).

First, we have

y0 = E(Y) = e1/2

as the expectation of eZ , where Z ∼ N(0,1) is e1/2.

Furthermore,

y1 =
E(Y Z)
E(Z2) = E(eZZ)

E(Z2) = e1/2

since

E(eZZ) = 1√
2π
∫

∞

−∞
zeze−

1
2
z2dz

= e1/2
√

2π
∫

∞

−∞
ze−

1
2
(z−1)2dz

= e1/2∫
∞

−∞

1√
2π
ze−

1
2
(z−1)2dz

´¹¹¸¹¹¶
mean of N(1,1)

= e1/2.

To compute y2:

y2 =
E(Y Φ2(Z))
E((Z2 − 1)2) = E(eZ(Z2 − 1))

E(Z4 − 2Z2 + 1)
Here, the numerator can be computed as follows:

E(eZ(Z2 − 1)) = 1√
2π
∫

∞

−∞
(z2 − 1)e1/2 ⋅ e−

1
2
(z−1)2dz

2.3. POLYNOMIAL CHAOS 55

= e1/2 [∫
∞

−∞

1√
2π
z2e−

1
2
(z−1)2dz − ∫

∞

−∞

1√
2π
e−

1
2
(z−1)2dz]

= e1/2

In the second to the last line, the first term is equal to 2 since it is the same

as E(Z̃2) = V arZ̃ + µ2 where Z̃ ∼ N(1,1), while the second term is 1 since it is

the mean of a N(1,1) random variable. On the other hand, the denominator is

2 since E((Z2 − 1)2)) = E(Z4 − 2Z2 + 1) = 3 − 2 + 1 = 2. Thus, y2 = 1
2e

1/2 = 1
2!e

1/2.

Finally, to compute y3, we have

y3 =
E(Y Φ3(Z))
E(Φ2

3(Z))
The denominator is equal to 6 since

E(Φ2
3) = E((Z3 − 3Z)2) = E(Z6 − 6Z4 + 9Z2) = 15 − 18 + 9 = 6

On the other hand, the numerator can be computed as follows:

E(eZ(Z3 − 3Z)) = e1/2∫
∞

−∞

1√
2π

(z3 − 3z)e−
1
2
(z−1)2dz

= e1/2[E(Z̃3) − 3E(Z̃)],where Z̃ ∼ N(1,1)
= e1/2.

In the last step, we used the fact that the third non-central moment of a Gaussian

random variable with mean µ and variance σ2 is µ2 + 3µσ2, and so for µ = σ = 1,

is equal to 4. Thus, y3 = 1
6e

1/2 = 1
3!e

1/2. ◻

Figure 2.8 gives a comparison between the pdf of a lognormal random variable

f(Z) = eZ and the histogram of the pth order polynomial chaos expansion of

Y = f(Z). We can see that while the histogram of the first-order expansion does

not capture the shape of the pdf very well, the higher-order expansions quickly

become more accurate approximations of the true pdf.

(a) Order 1 (b) Order 3 (c) Order 5

Figure 2.8. Comparison of the lognormal pdf with a histogram
of its polynomial chaos expansion of successive orders 1, 3, and
5.

56 2. LAW OF THE SOLUTION AT TIME t∗ OF A RANDOM ODE

As we have seen in the example above, if Y can be written as a function

of Z, the computation of its coefficients is rather straightforward. However, in

most cases, the only thing we know is the distribution of the random variable

in question. In this case, one cannot compute E(Y ⋅Φk(Z)) in the numerator of

f̂k because the dependence between Y and Z is unknown. It is still possible to

construct a gPC expansion of Y , but with slightly weaker convergence properties.

Let FX represent the cdf of the random variable X, and denote by IX the support

of X. Then, recall from Proposition 1.11 that Y has the same distribution as

F−1
Y (FZ(Z)). We can then rewrite the expression for yj in (2.7) as follows:

yj =
EZ[F −1

Y (FZ(Z))Φj(Z)]
E[(Φj(Z))2]

Note that while Y and F−1
Y (FZ(Z)) have the same distribution, they are

not the same random variables. Thus, unlike the mean-square convergence in

the previous case, the best result we can obtain on PNf in this case is that it

converges in probability to f .

Proposition 2.12 (Theorem 5.7 in [49]). Let Y be a random variable with

cdf FY (y) and assume E(Y 2) is finite, and let Z be a random variable with

cdf FZ(z), and finite moments such that its gPC basis functions exist with

E[Φm(Z)Φn(Z)] = δmnγn for all m,n ∈ N . Let

(2.8) YN =
N

∑
k=0

akΦk(Z)

where

(2.9) ak =
1

γk
EZ[F −1

Y (FZ(Z))Φk(Z)], 0 ≤ k ≤ N

Then YN converges to Y in probability.

Proof. Denote by Ỹ the function G(Z) = F −1
Y (FZ(Z)). By Proposition 1.11,

Ỹ has the same probability distribution as that of Y , and so must have a finite

second moment as well. Thus,

E[Ỹ 2] = ∫
IY
y2f(y)dy

= ∫
1

0
(F−1

Y (u))2du

= ∫
IZ

(F−1
Y (FZ(z)))2f(z)dz,

which is finite. Thus, Ỹ is a mean-square integrable function of Z. Since (2.8)

is in fact the orthogonal projection of Ỹ using the Nth-degree gPC basis, YN

converges in mean square to Ỹ . But this implies that YN also converges in

2.3. POLYNOMIAL CHAOS 57

probability to Ỹ , since convergence in probability follows from L2 convergence.

Since Ỹ and Y have the same distribution, the result follows. ◻

Remark 2.13. Polynomial chaos expansions can also be used to approximate

the means and variances of random variables. In particular, we have for any

N ≥ 0,

(2.10) E(PNY) = y0 and V ar(PNY) = E
⎡⎢⎢⎢⎢⎣

N

∑
j=1

y2
jΦ

2
j(Z)

⎤⎥⎥⎥⎥⎦
To see this, note that

E(PNY) = E [
N

∑
i=0

yiΦi(Z)] = y0,

since the expectation of Φi(Z) for i ≥ 1 is 0 from Remark 2.10. On the other

hand, to compute the approximate variance, we have

V ar(PNY) = E[(PNY −E(PNY))2]

= E

⎡⎢⎢⎢⎢⎣

⎛
⎝
N

∑
j=0

yjΦj(Z) − y0
⎞
⎠

2⎤⎥⎥⎥⎥⎦

= E

⎡⎢⎢⎢⎢⎣

⎛
⎝
N

∑
j=0

yjΦj(Z)
⎞
⎠

2

− 2y0

N

∑
j=0

yjΦj(Z) + y2
0

⎤⎥⎥⎥⎥⎦

= E

⎡⎢⎢⎢⎢⎣

N

∑
j=0

y2
jΦ

2
j(Z) + 2∑

i≠j
yiyjΦi(Z)Φj(Z) − 2y0

N

∑
j=0

yjΦj(Z) + y2
0

⎤⎥⎥⎥⎥⎦

= y2
0 +E

⎡⎢⎢⎢⎢⎣

N

∑
j=1

y2
jΦ

2
j(Z)

⎤⎥⎥⎥⎥⎦
− 2y2

0 + y2
0

= E

⎡⎢⎢⎢⎢⎣

N

∑
j=1

y2
jΦ

2
j(Z)

⎤⎥⎥⎥⎥⎦
2.3.3. Application to a system of differential equations with ran-

dom coefficients. We now describe how we can use polynomial chaos expan-

sions to estimate the law of the solution at t∗, y(t∗), of a differential equation

with random coefficients. First, we shall explain the principle of the method and

then illustrate how it works on two examples.

Consider the differential system y′ = g(y; θ) where θ consists of one or more

random coefficients. Let y(t; θ) be the solution and assume that θ is a function

f(Z) of a given random variable Z having finite moments. Since for any t, y(t; θ)
will, in effect, be a random variable, then we can construct the Z-polynomial

chaos expansion of y(t; θ)

(2.11) PNy(t; θ) =
∞
∑
i=0

yi(t, θ)Φi(Z),

58 2. LAW OF THE SOLUTION AT TIME t∗ OF A RANDOM ODE

where Φi(Z) is the ith-degree Z-gPC. Indeed, for all t for which the solution

y(t; θ) exists, this random variable is a function of θ and thus a function of Z.

Also, we can construct the Z-gPC expansion of θ:

(2.12) θ =
∞
∑
i=0

θiΦi(Z)

The idea of the method is the following: if it is possible to compute the

modes yi(t∗) of y(t∗; θ), then the pdf of the sequence

y0(t∗), y0(t∗) + y1(t∗)Φ1(Z), y0(t∗) + y1(t∗)Φ1(Z) + y2(t∗)Φ2(Z), ...

will give a sequence of pdfs that approximates better and better the pdf of the

random variable y(t∗; θ) we are interested in.

The computation of the coefficients yi(t) is straightforward, even if it usually

involves heavy computation. From the differential equation, we have

d

dt
(
∞
∑
i=0

yi(t)Φi(Z)) = g (
∞
∑
i=0

yi(t)Φi(Z);
∞
∑
i=0

θiΦi(Z)) .

After term by term differentiation of the left-hand side and Taylor expansion

of g on the right-hand side, we end up, after performing a projection of the above

equation onto each element of the basis {Φi(Z)}, with a system of differential

equation having the different modes yi(t) as variables.

Example 2.14. Consider the linear differential equation y′ = −Ay, where A is

assumed to be lognormal based from a N(0,1) random variable, and the initial

point y(0) = 1. In this case, y(t∗) = (y(0))e−At∗ , whose law we can compute

explicitly. Also, since all the values of A are positive, we shall not encounter the

problems encountered in the section 2.1. We shall only take the second order

polynomial chaos expansions of A and y using the Hermite polynomials. That

is, we approximate A by ∑2
i=0 aiΦi(Z) and y(t) by ∑2

i=0 yi(t)Φi(Z).
From Proposition 2.11, we know the value of the coefficients ai in the ex-

pansion for A. In particular, the second-order gPC expansion of A is given

by

P2A = e1/2(Φ0(Z) +Φ1(Z) + 1

2
Φ2(Z)).

In addition, the initial condition has a trivial gPC expansion, where y0(0) = 1

and yi(0) = 0 for all i ≥ 1.

If we replace A and y by their corresponding second order gPC expansions,

we obtain

d

dt
[

2

∑
i=0

yi(t)Φi(Z)] = − [e1/2 (Φ0(Z) +Φ1(Z) + 1

2
Φ2(Z))] [

2

∑
i=0

yi(t)Φi(Z)] .

Expanding and taking the projection with each basis Φj(Z), j = 0,1,2, we obtain

the following differential system satisfied by y0(t), y1(t), y2(t):

2.3. POLYNOMIAL CHAOS 59

(2.13)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y′0(t) = −e1/2[y0(t) + y1(t) + y2(t)]
y′1(t) = −e1/2[y0(t) + 2y1(t) + 2y2(t)]
y′2(t) = −e1/2[y0(t) + 2y1(t) + 6y2(t)]

Notice that the resulting system is, in fact, a system of coupled linear differen-

tial equations, which can either be solved analytically or using any computational

program.

Figure 2.9 compares the resulting histogram of 1000 simulations of the value

of the solution of the differential equation at t∗ = 5 with 1000 simulations of the

gPC approximation of the solution evaluated at t∗ = 5. As before, notice that

while the accuracy of the approximation is not that good when the order of the

expansion is low (for example, when it is degree 2), it quickly converges to the

true histogram as the order increases.

The main weakness of the gPC method in computing an expansion of the

law of y(t∗) is the computational issue. Even with just a single random coeffi-

cient and just using second-order polynomial chaos expansions, one can already

end up with a rather complicated system like (2.13) to be solved. Indeed, it is

easy to see that this system in the modes y′is quickly increases in dimension as

the number of equations and random coefficients increases. Also, when there

are multiple random coefficients, one will need to incorporate in their gPC ex-

pansions the correlations between these coefficients. Thus, one will often need

to use a very low order gPC expansion for each random coefficient, or include

certain simplifying assumptions even to assume that the unknown random coef-

ficients are independent. The good news is that, when the computation of the

first modes yi(t) is tractable, even a low order expansion already produces quite

a good approximation.

Example 2.15. To have an idea on how the computation may become rather

heavy, we now consider a second example. Stanescu and Charpentier [42] show

how to use polynomial chaos expansions to approximate the solution of a sim-

plified Monod model of microbial growth. In a Monod model, the rate of growth

depends on the amount of necessary nutrients. There are at least two differential

equations, one for the microorganism population, and another for the amount

of each nutrient. If there is an abundant supply of nutrients, the model resem-

bles that of an exponential growth model. As the amount of available nutrients

decreases, then so does the growth rate as well. This is usually used to model

60 2. LAW OF THE SOLUTION AT TIME t∗ OF A RANDOM ODE

(a) From the original differential sys-
tem

(b) Order 2

(c) Order 3 (d) Order 4

Figure 2.9. Comparison of the pdf of y(5) with a histogram
of the polynomial chaos expansion of various orders. The upper
left graph is that of the histogram of y(5), simulated directly.
Graphs (B), (C), (D) represent the corresponding approximate
histograms of the gPC expansions of y(5) of orders 2, 3, and 4,
respectively. For each histogram, the horizontal axis represents
the value of y(5) while the vertical axis gives the corresponding
relative frequency.

the growth of microorganisms in test tubes, where there is no convection or dif-

fusion of either microbes or nutrients. Under certain simplifying assumptions1,

the resulting system is given as follows:

(2.14)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dx

dt
= µxy

K + yx
dy

dt
= µyy

K + yx

1The assumptions include the following: first, that there is just a single necessary nutrient;
second, that the microbial death rate is proportional to the size of the population; and third,
that the rate of microbial growth is given by the Monod kinetics reactions, µ(y) = µxy

K+y , where

µx is the maximum specific growth rate and K is the value of y where the specific growth rate
µ(y) has half its maximum value.

2.3. POLYNOMIAL CHAOS 61

The variables x and y represent the mass concentration of the microbes and

the soluble nutrients per unit volume, respectively. The coefficients which are

assumed to be random variables include the maximum specific growth rate µx,

the half-growth concentration rate K, and the quantity µy. It will be assumed

that these three coefficients are independent and functions of three iid N(0,1)
random variables Z1, Z2, Z3.

We express each quantity in terms of its gPC expansion of order N :

µx = µx0 + µx1Φ1(Z1) + ... + µxNΦN(Z1)
µy = µy0 + µy1Φ1(Z2) + ... + µyNΦN(Z2)
K =K0 +K1Φ1(Z3) + ... +KnΦN(Z3)

For x and y, the gPC expansions need to consider the contributions of all

three random variables, and will thus be three-dimensional chaos expansions. In

this case, there will be more than one gPC basis of each order. In particular, the

order n polynomial chaos basis random variables consists of all possible products

of the single-variable gPC of the three random variables defined by

Φi(Z) = Φi1(Z1)Φi2(Z2)Φi3(Z3)

where i1 + i2 + i3 = n. For example, the second-order expansion of x will have 10

terms, and have the form

x(t) = x0(t) + x1(t)Φ1(Z1) + x2(t)Φ2(Z2) + x3(t)Φ3(Z3) + x4(t)Φ1(Z1)Φ2(Z2)
+x5(t)Φ1(Z1)Φ3(Z3) + x6(t)Φ1(Z1)Φ3(Z3) + x7(t)(Φ1(Z1))2

+x8(t)(Φ2(Z2))2 + x9(t)(Φ3(Z3))2

If we include all the cross-product terms between the Φi’s, it can be shown that

there will be a total of P + 1 terms in the expansion for x and y, where

(P + 1) = (N + 3)!
N !3!

where N is the chosen order of the gPC expansion.

Denote by Γ0,Γ1, ...,ΓP a particular ordering of these P + 1 terms. Note

that the elements Γi, i = 0,1,2, ..., P will depend on a different combination

of random variables among Z1, Z2, Z3 based on the ordering, and will not be

indicated explicitly. Rewriting the first equation as

(K + y)dx
dt

= µxxy

and then substituting the PC expansions, we get

⎛
⎝
P

∑
k=0

KkΓk +
P

∑
j=0

yjΓj
⎞
⎠
P

∑
i=0

dxi
dt

Γi =
P

∑
i=0

P

∑
j=0

P

∑
l=0

xiyjµxlΓiΓjΓl.

62 2. LAW OF THE SOLUTION AT TIME t∗ OF A RANDOM ODE

As before, we shall require that the residual be orthogonal on the subspace

spanned by the basis functions. To do this, we need to take the inner product

of the above equation with each of the basis functions. For example, doing this

with the basis function ΓL gives

P

∑
i=0

P

∑
j=0

(Kk + yj)⟨ΓiΓj ,ΓL⟩
dxi
dt

=
P

∑
i=0

P

∑
j=0

P

∑
l=0

xiyjµxl⟨ΓiΓjΓl,ΓL⟩,

which is a matrix equation for the vector of unknown variables x0, x1, ..., xP , y0,

y1, ..., yP . One can then proceed to solve for the coefficients using a sequential

method such as an explicit Runge-Kutta method.

CHAPTER 3

Estimating coefficients of systems of differential

equations: a first approach

In the previous chapter, our study has focused on one aspect of the forward

problem for differential systems, which is to describe and analyze the behavior

of the state variables over time. However, the inverse problem, which is the

estimation of the coefficients of a differential system based on known data on one

or more trajectories, is not as well-studied, especially in a statistical perspective.

In this chapter, we begin to study a possible solution to the inverse problem.

After briefly looking at a crude method for a logistic differential equation in Sec-

tion 3.1 and two other types of coefficient estimation techniques in Section 3.2,

we examine in Section 3.3 a simple, yet effective stochastic method known as

rejection sampling to generate a sample of the coefficients. Then in Section 3.4,

we give some of the properties of this method, and illustrate them using simu-

lations. The remaining two sections, Sections 3.5 and 3.6 show how to improve

the basic method, and also, how the method performs on perturbed data.

3.1. An example using a logistic model

We begin by considering a coefficient estimation problem in a single differ-

ential equation. Consider the problem of estimating the coefficients r and K in

the logistic differential equation

y′ = ry (1 − y

K
)

that best fit some given data. It is possible to construct an estimate of r and

K without the help of a computer. To do this, first note that we can write the

logistic differential equation as

(3.1)
y′

y
= r (1 − y

K
) .

We can think of this as a linear regression problem with independent variable y,

slope −r/K, intercept r, and dependent variable y′/y. If the given data are the

points (t1, y1), (t2, y2), ..., (tk, yk), we can approximate the value of y′/y in (3.1)

using a difference approximation for the derivative, which gives

τi =
yi+1 − yi
ti+1 − ti

⋅ 1

yi
, i = 1,2, ..., k − 1.

63

64 3. ESTIMATING ODE COEFFICIENTS: A FIRST APPROACH

One can then compute the regression coefficients and, consequently, r and K

using the classical linear regression formulas.

Example 3.1. Suppose we wish to fit a logistic model to the following set

of data:

t 0 1 2 3 4 5 6 7 8 9 10 12 14 18

y 4 7 12 19 28 48 70 103 140 176 205 238 256 265

The corresponding data for the transformed model is

t 0 1 2 3 4 5 6 7 8 9 10 12 14

τ 0.75 0.71 0.58 0.47 0.71 0.46 0.47 0.36 0.26 0.16 0.08 0.04 0.01

Then the regression coefficients are r = 0.6588 and −r/K = −0.0026, so K ≈
253. The graph of the resulting logistic model is given in Figure 3.1.

Figure 3.1. Graph of the given data (represented by the o’s)
and the corresponding logistic curve of best fit obtained using a
linear regression approach.

Based on Figure 3.1, one can see that the resulting fit is not very good. One

of the main reasons for this is probably the large discrepancy between the slope

of the tangent line at each time point and the difference approximation we used

for the slope. Moreover, this method is difficult or even impossible to apply to

more general differential systems. Fortunately, there are more advanced methods

that are available to solve this problem, some of which we will review in the next

section. In any of these methods, the main challenge is the estimation of the

derivative (and often, even the second derivative) of the solution.

3.2. AN OVERVIEW OF ODE COEFFICIENT ESTIMATION METHODS 65

3.2. An overview of ODE coefficient estimation methods

In this section, we will give an overview of two of the most used methods to

estimate the coefficients of a system of differential equations, following [20] and

[30]. The first is a Newton (or quasi-Newton) method for minimizing a distance

to the data. The second, a collocation method, starts by approximating the data

by splines in order to compute an “approximate” derivative of the solution.

We will consider the system of differential equations of the form

(3.2) y′ = g(y; θ)

with several unknown coefficients θ = (θ1, θ2, ..., θm) ∈ Rm and assume that we

have known values of y at times T = {t0, t1, ..., tk}, denoted ȳ(T), where ȳ(T) is

defined as follows:

t t0 t1 ⋯ tk

ȳ(t) ȳ0 ȳ1 ⋯ ȳk

We assume that y ∈ Rl, so our differential system consists of l variables and

m unknown coefficients. We shall denote by yi(t; θ) (or simply yi(t)) and yi,

i = 1,2, ..., l the ith component of y(t; θ) and ȳ(T), respectively. Our problem is

to compute the best possible coefficients θ for which the corresponding solution

y(t; θ) of (3.2) fits the data ȳ(T) = (ti, yi)i=0,1,...,k.

3.2.1. Quasi-Newton methods. Our presentation of this method is mainly

based on [28]. Here, one uses the sum of squares of the Euclidean distance as

the measure of the distance between the trajectory corresponding to a value θ∗

of the coefficients in (3.2) and the known data ȳ(T):

ρ(θ∗) =
k

∑
i=1

∣∣y(ti; θ∗) − yi∣∣2.

The objective is to determine θ for which ρ(θ) achieves its minimum value. This

is done by estimating iteratively the value of θ for which the gradient of ρ is

equal to the zero vector. Two ways to do this (which also work for more general

problems) include Newton’s method and Quasi-Newton methods.

In Newton’s method, we start by assuming a starting point θ0 in the domain.

Given θk, we compute the next iterate as follows:

θk+1 = θk − αk∇2[ρ(θk)]−1∇ρ(θk),

where ∇ρ and ∇2ρ are the gradient and Hessian of ρ, respectively. To do this,

one usually needs to replace ∇ρ and ∇2ρ by approximations based on difference

ratios. The coefficient αk is a step length chosen in such a way to ensure fast

convergence to the minimum of ρ. This process is continued until the norm of

∇ρ(θk) is less than some small given ε > 0.

66 3. ESTIMATING ODE COEFFICIENTS: A FIRST APPROACH

The part of Newton’s method which requires the most computational power

is the computation of the inverse of the Hessian. Quasi-Newton methods pro-

vide an attractive alternative in that they do not require the computation of

this inverse Hessian at each step. Instead, they use an approximation which is

updated after each step to take into account the additional knowledge gained

during the step. The most effective Quasi-Newton updating formula was pro-

posed by Broyden, Fletcher, Goldfarb, and Shanno, and is known as the BFGS

method. This is the default optimization method in many software programs,

for example, in Scilab [38].

The BFGS and Quasi-Newton methods have been well-studied by mathe-

maticians, and their theoretical properties are well-established. As long as the

step lengths and the Hessian approximations Bk produced satisfy certain con-

ditions1, they are known to converge quickly to the minimum. However, if the

initial guess chosen is too far from the minimum, these methods may either di-

verge, or converge to a local minimum. Also, as these are deterministic methods,

they only produce a point estimate of the coefficients.

3.2.2. Collocation methods. In this type of method, one estimates the

coefficients θ of (3.2) by first using the known data to construct an approximation

ŷi(t) of each component yi(t) of the solution of (3.2) in terms of a basis function

expansion

ŷi(t) =
Ji

∑
j=1

cijφij(t),

where cij are real numbers and φij are usually smooth piecewise-polynomial

real functions known as splines. The number Ji of such functions used for the

expansion depends on the amount of variation in ȳi: the more critical points

the solution has, the larger Ji must be [33]. Then, to ensure fidelity with the

equations of the differential system, this approximation and the corresponding

approximate derivative are substituted in the differential equation (3.2). The

coefficients which minimize the distance between ŷ′ and g(ŷ; θ) using some norm

are our resulting estimates.

This type of method has been available since 1982, in which Varah [45]

used cubic splines and a least squares criterion to estimate the coefficients of a

differential system. More recently however, Ramsay et. al. in [33] improved this

method by changing the criterion to be optimized into a penalized least squares

criterion:

J =∑
i

{wi∣∣ȳi(t) − ŷi(T)∣∣2 + PENi(ŷ)}

1In particular, if there exists a constant M such that ∣∣Bk ∣∣∣∣B
−1
k ∣∣ ≤ M for all k where Bk is

positive definite for all k, and the step lengths αk satisfy sufficient decrease and curvature
conditions such as the Wolfe conditions. (see [28], p. 45 for more details)

3.3. THE REJECTION SAMPLING ALGORITHM 67

In the above equation, the wi’s are weights assigned so that the normalized

error sum of squares are of roughly comparable sizes, and PENm(ŷ) measures

the extent to which ŷi satisfies the ODE system. For example, one choice of

PENi(ŷ) could be

PENi(ŷ) = ∫
⎛
⎝
dŷi(t)
dt

− gi(ŷ; θ)
⎞
⎠

2

dt,

where the integration is over an interval which contains the times of measure-

ment T . Ramsay showed through numerical experiments that this method pro-

vides nearly unbiased estimates for the coefficients when simulating a FitzHugh-

Nagumo model with Gaussian error.

Thus, by increasing the number of unknown coefficients from m to m +
∑i Ji, the method allows us to handle problems with a lot of peaks and valleys.

The spline basis expansion ŷi provides us with the flexibility to capture more

complex behavior between two data points, instead of just fitting a smooth curve

between them. However, as the process usually involves minimizing a least-

squares based criterion using, for example, a quasi-Newton method, it inherits

the same disadvantages as in previous sections.

3.3. The rejection sampling algorithm

In this section, we describe a method that provides an alternative way to

estimate θ. Instead of computing just a point estimate for θ, we wish to obtain

the best possible distribution for the coefficients that fit the known data instead.

The main idea is to produce a large sample of possible coefficients from some

proposal distribution π0, to compare the resulting trajectories with the known

data, and to keep only those coefficients which give trajectories “close enough”

to the data.

Here, we shall focus on the simplest way to do this, which is known as the

rejection sampling (RS) method. The idea for this method was introduced as

early as 1984 in a paper by Rubin [37] but was generalized by Pritchard et. al.

[32] in 1999 in the context of population genetics. To estimate the coefficients

of a system of differential equations, the method proceeds as follows: we begin

by generating a sample {θ∗i }i=1,2,...,N of possible values of the coefficients from

the prior distribution π0(θ). We assume that this distribution has support S0

which is usually compact. For each element θ∗ of the sample, we compute the

solution y(t; θ∗) of the differential equation (3.2) and keep its values y(T ; θ) at

times T = {t0, t1, ..., tk}. Then, for a convenient measure ρ(θ∗) of the distance

between the trajectory corresponding to the value θ∗ of the coefficient and the

known data ȳ(T), if ρ(θ∗) < ε, where ε is a specified threshold constant, we

68 3. ESTIMATING ODE COEFFICIENTS: A FIRST APPROACH

keep θ∗, and consider it as part of the sample from our approximate posterior;

otherwise, we disregard this value. This process can then be repeated N times,

or until we have some chosen number, say n, accepted values of θ. One can then

construct the histogram of a sample of values from this distribution, or compute

the summary statistics from the sample. Here, the measure

(3.3) ρ(θ∗) = ρ({y(ti; θ∗), i = 1, ..., k},{yi, i = 1, ..., k}).

can be, for example, the sum of squares of the Euclidean distance

ρ(θ∗) =
k

∑
i=1

∣∣y(ti; θ∗) − yi∣∣2

or other ones. We shall call the sample produced in this manner a rejection

sample.

Definition 3.2. Let θ1, θ2, ..., θN be an i.i.d. sample from π0 and let n be

the largest ν for which there exists a sequence of integers (ik)k=1,2,...,ν such that

1 ≤ i1 < i2 < ... < iν ≤ N and ρ(θik) < ε for all k. We call θi1 , θi2 , ..., θin a

rejection sample of size n. The acceptance rate of this sample is given by

τRS = n/N .

For simplicity, whenever no confusion arises, we shall denote a rejection

sample of size n as θ1, θ2, ..., θn instead of θi1 , θi2 , ..., θin .

Remark 3.3. By construction, for a given ε, the rejection sample θ1, θ2, ..., θn

is drawn from the distribution

(3.4) πε(θ∣ȳ) =
π0(θ)1Aε(θ)
∫Aε π0(θ)dθ

,

where Aε is the acceptance region

(3.5) Aε = {θ ∈ S0∣ρ(θ) < ε}.

Example 3.4. Before studying the properties of rejection samples, let us

first see how the method works on the logistic equation which we studied in

Example 3.1. Here, θ = (r,K), and we take the uniform distribution over [0,1]×
[100,300] as our prior distribution π0 for θ. The value of ε is chosen as 1300,

which represents an average error of 10 units for each of the 13 time points

which are allowed to vary. The method is run for N = 5000 iterations, and for

this particular run, we ended up with 65 accepted coefficients. The mean of

the accepted values is approximately (0.5349,267.61) while the θi that gives the

smallest distance is about (0.5351,265.94). The results are given in the following

figure. One can see that the fit is better compared to that of the crude least

squares method in Example 3.1. Notice that even with a relatively large value of

ε, the resulting sample is distributed in a small elliptical region, which is nothing

else than Aε.

3.4. AN ANALYSIS OF THE REJECTION SAMPLE 69

(a) Plot of the resulting sample in the
rectangle which is the support S0 of the
prior

(b) Graph of the logistic curve with
“minimum distance” coefficients

Figure 3.2. Results for logistic model using rejection sampling
algorithm

3.4. An analysis of the rejection sample

In this section, we shall assume that the observed data are the actual values

of the trajectory y(T ; θ) where the value of the coefficient is θ0 and the time

points are given by T = {t0, t1, ..., tk}. In this case, we shall call θ0 the “true”

value of the coefficient. While this may not be consistent with actual data, this

assumption is useful to study separately the accuracy of the method and its

robustness with respect to noisy data. We shall look at the application of the

method to a more “realistic” problem with noise in section 3.6.

3.4.1. The acceptance region. In this section, we will study the size and

shape of the acceptance region Aε, defined by (3.5). We shall mainly focus on

just two-variable coefficient estimation problems. Such a simple model will allow

us to understand the properties more easily, as this will make the graph of the

acceptance region Aε easier to visualize.

The size and shape of the region Aε are clearly dependent on the value of

ε and the differential system through the function ρ(θ). Obviously, as soon as

ε is larger than the maximum of ρ(θ) for θ ∈ S0, the acceptance region will be

the entire support S0. Otherwise, it will be helpful to look at the contour map

for ρ(θ) to understand the shape of the acceptance region better. Let us first

take a look at the contour map of ρ(θ) for some examples. Figure 3.3 gives the

contour maps for ρ(θ) for the two-coefficient Lotka-Volterra model introduced

in Section 1.4.3, for two different values of θ0 are shown.

These contour maps were obtained in scilab by evaluating ρ(θ) for a 70 by

70 grid of evenly-spaced values in [−1,2] × [−1,4]. The contour2d command

is called to produce only the contours for ρ = 0.1,0.5,1,2,3,4 for clarity. The

contour line for ε = 1 is highlighted. One can see that for ε small enough, the

contour2d

70 3. ESTIMATING ODE COEFFICIENTS: A FIRST APPROACH

(a) True coefficient value: θ0 = (a, b) =
(1,1), initial point (0.5,1.5)

(b) True coefficient value: θ0 = (a, b) =
(0.5,2), initial point (1,0.4)

Figure 3.3. Contour maps for the two-coefficient Lotka-Volterra
model. In both cases, we assume that the “discrete” trajectory is
defined for T = {0,1,2, ...,7}, ρ is the sum of squared differences,
and we draw only those values of (a, b) within the region [−1,2]×
[−1,4]. The point in red corresponds to θ0.

boundary of Aε looks like an ellipse. It turns out that this is to be expected,

even for higher-dimensional cases. As we have assumed in this section that θ0

is a “true” value of the parameter, thus, by definition ρ(θ0) = 0 and θ0 is the

minimum of ρ. We can then make the following remark:

Remark 3.5. If the prior distribution is chosen such that θ0 belongs to its

support, then whenever the system is of class C2, one can expect that the region

ρ < ε has the shape of an ellipsoid around θ0 as soon as ε is small enough.

Indeed, y(T ; θ) is also of class C2, and consequently, ρ(θ) as well. Thus, we

can take the second-order Taylor expansion of ρ at its minimum θ0:

ρ(θ) = ρ(θ0) + (∇ρ(θ0))T∆θ + 1

2
∆θTH(ρ(θ0))∆θ +O(∣∣∆θ∣∣3)

where ∆θ = θ−θ0, ∇ and H are the gradient and Hessian of ρ respectively. Since

θ0 is a minimum value of ρ, ∇ρ(θ0) is the zero vector. Thus, if we fix ε and

neglect the higher-order terms, the set of possible θ for which ρ(θ) < ε, satisfies
1
2∆θTH(ρ(T, θ0))∆θ < ε, or equivalently,

(3.6)
1

2
∆θTH(ρ(θ0))∆θ < ε,

which has the interior of an ellipsoid around θ0 as a graph because H is positive

definite.

However, we note that the value of ε that is “small enough” varies depending

on the differential system. This can be seen in Figure 3.4a, where we have the

contour map for ρ for the harmonic oscillator (see equation 1.20). On the other

3.4. AN ANALYSIS OF THE REJECTION SAMPLE 71

(a) Contour map for the harmonic os-
cillator model, where the “true” coef-
ficients a = 0.8, b = 1.5, initial point
(0.3,0.2), times T = {0,0.5,1, ...,3},
and limited to the range [0,7] × [0,7]

(b) Contour map for the competing
species model

Figure 3.4. Contour maps

hand, Figure 3.4b is for a non-oscillatory differential system, the competing

species model

(3.7)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dy1

dt
= ay1 − y2

1 − 0.5y1y2

dy2

dt
= by2 − 0.5y2

2 − 1.5y1y2

where the reference trajectory has “true” coefficients a = 4, b = 2.5, initial

point (0.5,3), times T = {0,0.5,1, ...,3} and range [0,10] × [−5,5]. In both

examples, ρ is the sum of squared differences. As before, only a few contour

lines are included in both figures for clarity. From these, notice that for the

contour to become approximately an ellipse, ε must be around 0.1 in the case of

our harmonic oscillator. However, in our competing species example, Aε is still

close to an ellipse even when ε = 7.

In contrast, for larger values of ε, there is no reason that the acceptance

region will be an ellipse. In fact, it may even be neither centered at θ0, nor

consist of a single region. To show how the shape of ρ may change dramatically,

an example is given in Figure 3.5, where we have separated the contour lines of

ρ for the harmonic oscillator in Example 3.4a.

Furthermore, we encounter a very interesting situation when ε = 2. Here,

the acceptance region consists of several closed regions. This occurs when ρ(θ)
has several local minima. As this existence of several minima is important to

understand not only in the case of the rejection sampling method but in all such

methods which use the minimisation of a criterion ρ, let us examine now more

closely how and when this phenomenon occurs. To do this, we look at an even

72 3. ESTIMATING ODE COEFFICIENTS: A FIRST APPROACH

Figure 3.5. Shape of acceptance regions for the harmonic oscil-
lator as ε increases

Figure 3.6. Contour map for the harmonic oscillator with only
two points for T

simpler example, which is the harmonic oscillator with a = 1, b = 1.5 and initial

point (2,0.5), but now with just two points in the reference trajectory, at t = 0

and t = 2. We still use the sum of the squared differences as our metric, with

only one term in this case. The resulting contour map over S = [0,10] × [0,10]
is shown in Figure 3.6.

We see that within S, ρ(θ) achieves a (global) minimum three times – aside

from (a, b) = (1,1.5) which we expected to obtain, we also have two other global

minima, which occur at around (1 + pπ/
√

1.5,1.5(1 + pπ/
√

1.5)), for p = 1,2. To

see this, note first from (1.21) that while the period of the entire solution is

equal to 2π/
√
ab, the amplitude of y(t) varies, and is equal to

√
b
a . But if we

fix b/a = 1.5 which is the same as the true value (1,1.5), the solution at t = 2

reduces to

(3.8)

⎧⎪⎪⎨⎪⎪⎩

x(a) = K1 cos 2
√

1.5a −K2 sin 2
√

1.5a

y(a) = K1

√
1.5 sin 2

√
1.5a +K2

√
1.5 cos 2

√
1.5a

3.4. AN ANALYSIS OF THE REJECTION SAMPLE 73

(a) (b)

Figure 3.7. Graphs of x(t) and y(t) for four different choices
of (a, b). In order along the line segment from (0.8,1.5) to (4,3),
we have ∧,x,o,∗. Due to the periodic nature of the trajectories,
the distance of each point from the data is not monotonically
increasing as you go farther from the true coefficients.

This has a period of π/
√

1.5. Thus, ρ = 0 for a = 1 + pπ/
√

1.5 and b = 1.5a

for any integer p. Here, we can achieve the minimum value for ρ with many

different ordered pairs (a, b). This is related to the problem of identifiability of

any optimization method. For all our succeeding discussions after this section,

we will assume that the coefficients θ are uniquely identifiable.

When there are more than two points in our data that need to be satisfied,

it becomes more difficult to understand precisely the mechanism that results in

multiple local minima. It seems, however, that having multiple sets of coeffi-

cients giving the exact global minimum becomes rarer. In the case of ε = 2 in

Figure 3.4a, we see that while there are multiple local minima, there is only

one global minimum, and this is at (0.8,1.5). To help understand what exactly

happens with ρ, consider the line segment in the ab-plane joining (1,1.5) and

the point (4,3), which is a point close to one of the local minima. As you go

along this line segment, ρ increases initially, and then decreases until you reach

(4,3). To see why this is the case, we divide the line segment into 3 equal parts.

Then, we will plot the trajectories for (0.8,1.5), (1.87,2), (2.93,2.5), and (4,3).
Using these points as our coefficients, we then plot in the t − x and t − y planes

the resulting seven points in the discrete trajectory.

We see in Figure 3.7 that due to the periodic nature of the trajectories, the

distance from the data at each time point is not monotonically increasing as

you go farther away from (0.8,1.5). While the points obtained using (a, b) =
(2.93,2.5) are farther than those from (a, b) = (1.87,2), those at (a, b) = (4,3)
are generally closer than those from (2.93,2.5).

74 3. ESTIMATING ODE COEFFICIENTS: A FIRST APPROACH

Example 3.6. The problem of multiple local maxima can also occur in more

complicated systems with periodic behavior. Consider the system used to model

circadian cycles as defined in (1.24). Suppose all the coefficients are known

except for k1 and kd4, where these coefficients have values based on the “common

coefficients” in page 85 of [3]. Substituting these reduces the differential system

to the following:

(3.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dp1

dt
= 2 ⋅ 0.415

0.415 + c15
2

− 0.08p1p2 + k4c1 − kd1p1

dp2

dt
= 2.2 ⋅ 0.415

0.415 + c15
2

− 0.08p1p2 + 0.06c1 − 0.05p2

dc1

dt
= 0.08p1p2 − 0.06c1 − k1c1 + 0.06c2 − 0.05c1

dc2

dt
= k1c1 − (0.06 + kd4)c2

The known data is assumed to be the actual trajectory when k = 0.08 and

kd4 = 0.45 when T = {0,11,12,50,51,52,53,54}. We see in Figure 3.8 of the

presence of two disjoint regions in Aε in this case.

Figure 3.8. The contour plot for ρ(θ), where the initial point
is chosen to be (1.5,2,1,0.5).

Based on the two previous examples, it seems reasonable therefore to claim

the following:

Conjecture 3.7. Suppose that ρ(θ) is the metric to be minimized when

estimating the coefficients θ in a system of differential equations y = g(y; θ),

3.4. AN ANALYSIS OF THE REJECTION SAMPLE 75

where ρ is as defined in (3.3). Then ρ has several local minima if the solution

y(t; θ) is periodic, and where the period is a function of θ.

3.4.2. Point estimation. Using the accepted coefficients produced by our

method, there are two natural ways to construct an estimate for θ0: one can

either take the average θ̂ave of the entire rejection sample or take θ̂min, which

is the one which produces the minimum distance from the given data using the

metric ρ. We shall see in this section that for the case where θ0 is the true value

of the coefficients, the one which produces the minimum distance is clearly the

better choice.

As previously mentioned, the two summary statistics from the rejection sam-

ple θ1, θ2, ..., θn will be the sample average, denoted by θ̂ave and the minimum

distance, denoted θ̂min. These are defined more precisely as follows:

θ̂ave =
1

n

n

∑
i=1

θi,

where the sum is taken component-wise, and

θ̂min = ArgMin
θ∈{θ1,θ2,...,θn}

ρ(θ).

By the Law of Large Numbers, we know that θ̂ave converges almost surely to the

expectation of θ with distribution π0(θ∣ρ(θ) < ε). This need not be equal to θ0,

especially for large ε. This is true even for a uniform prior, as the region may

not be centered on θ0, as we have seen in the previous section. In contrast, θ̂min

has a very nice property as an estimator for θ0, as we now show.

Proposition 3.8. Let θ1, θ2,..., θn be a rejection sample for threshold value

ε > 0 to estimate the coefficients θ in a differential equation y′ = g(y; θ), and let

ρ̂n(θ) = min{ρ(θ1), ρ(θ2), ..., ρ(θn)}.

Assume also that the prior distribution π0 for the rejection sample is absolutely

continuous. If θ0 = ArgMin
θ∈S0

ρ(θ), then ρ̂n(θ)
PÐ→ ρ(θ0) as the sample size n tends

to ∞.

Proof. Let ρi denote the distance ρ(θi). For any K > 0, first note that, as

θ1, ..., θn is a rejection sample and thus i.i.d., we have

(3.10) P(ρ̂n(θ) ≤K) = 1 − [P(ρ1 ≥K)]n

Indeed:

P(min(ρ1, ρ2, ..., ρn) ≤K) = 1 −P(min(ρ1, ρ2, ..., ρn) ≥K)
= 1 −P(ρ1 ≥K,ρ2 ≥K, ..., ρn ≥K)
= 1 − [P(ρ1 ≥K)]n

76 3. ESTIMATING ODE COEFFICIENTS: A FIRST APPROACH

Thus, for any α > 0, n > 0,

{∣ρ̂n(θ) − ρ(θ0)∣ < α} = {ρ(θ0) − α < ρ̂n(θ) < ρ(θ0) + α}
= {ρ̂n < ρ(θ0) + α} ∖ {ρ̂n ≤ ρ(θ0) − α}

As {ρ̂n < ρ(θ0) − α} ⊂ {ρ̂n ≤ ρ(θ0) + α}, we have

P(∣ρ̂n(θ) − ρ(θ0)∣ < α) = P(ρ̂n < ρ(θ0) + α) −P(ρ̂n ≤ ρ(θ0) − α)
= [P(ρ1 > ρ(θ0) − α)]n − [P(ρ1 ≥ ρ(θ0) + α)]n,(3.11)

where the last line follows from (3.10). The limit of the first term of (3.11)

as n → ∞ is 1 since by definition, ρ(θ0) is the minimum. On the other hand,

the limit of the second term is 0 since P(ρ1 ≥ ρ(θ0) + α) < 1 from the absolute

continuity of π0(θ). Thus, limn→∞P(∣ρ̂n(θ) − ρ(θ0)∣ < α) = 1, and so ρ̂n(θ)
converges in probability to ρ(θ0). ◻

As an illustration of Proposition 3.8, let us consider a simple example that

shows that increasing the sample size does not improve θ̂ave but significantly

improves θ̂min. Tables 3.2 and 3.1 show how the resulting estimates θ̂ave and

θ̂min vary when estimating the coefficients in the repressilator model (see equa-

tion 1.23) as the size of the sample increases while holding everything else con-

stant. Here, we assume that the true values of the coefficients are (α,α0, γ, β) =
(1000,1,2,5) and the ε = 2000. Looking at the results in Table 3.1, we can see

that ρ̂N(θ̂ave) does not decrease for the estimates using θ̂ave as N increases. How-

ever, the values of α̂0ave, α̂ave, γ̂ave and β̂ave are consistently around 1010, 1.30,

2.05, and 5.8, respectively, which we can assume to be close to the actual expec-

tation of the distribution π(θ∣ρ(θ) < 2000). In contrast, the results in Table 3.2

show that while the values of ρ̂N(θ̂min) may not always decrease monotonically

as N increases (due to the random nature of the sample), there is still a clear

trend of decrease for ρ as N →∞. This exactly illustrates Proposition 3.8.

Table 3.1. Results of θ̂ave = (α̂ave, α̂0ave, γ̂ave, β̂ave) for ε = 2000.
True value: α = 1000, α0 = 1, n = 2, β = 5, prior distribution:
uniform over [800,1200] × [0,4] × [0,7] × [0,10]

N α̂ave α̂0ave γ̂ave β̂ave ρ̂N(θ̂ave)
500 1004.3 1.1800 2.0730 6.1476 265.03
1000 1008.0 1.3508 2.0534 5.6957 337.78
2000 1005.1 1.3364 2.0394 5.7085 412.41
4000 1022.3 1.2380 2.0354 5.8069 342.04
8000 1010.5 1.3224 2.0521 5.8860 403.34
16000 1011.0 1.2886 2.0409 5.8135 390.4

3.4. AN ANALYSIS OF THE REJECTION SAMPLE 77

Table 3.2. Results of θ̂min = (α̂min, α̂0min, γ̂min, β̂min) for ε =
2000. True value: α = 1000, α0 = 1, γ = 2, β = 5, prior distribution:
uniform over [800,1200] × [0,4] × [0,7] × [0,10]

N α̂min α̂0min γ̂min β̂min ρ̂N(θ̂min)
500 1158.6 0.2709 1.7097 3.8584 352.06
1000 1142.2 0.7723 1.9288 4.8699 138.67
2000 914.4 0.2616 1.801 4.0841 136.64
4000 819.77 0.9172 2.0406 5.143 37.59
8000 845.32 0.9282 2.0363 5.0312 38.71
16000 859.59 0.9781 2.0452 5.1839 26.57

Remark 3.9. Given that we have a fixed number of accepted elements in

the sample in each case, the point estimates obtained using both the average and

the minimum distance get more precise as ε decreases. This is not surprising

because as ε decreases, the algorithm becomes more selective. Also, since for

small ε, the graph of Aε becomes that of an ellipsoid, we can deduce that as

ε → 0, the acceptance region converges to that of a point ellipsoid centered at

the minimum θ0. Thus, πε(θ∣ȳ(T)) will tend to the Dirac distribution in this

unknown value.

However, in practice, this will not be the case since as ε decreases, the ac-

ceptance rate also decreases, as we will state more formally in the next section.

In all our results in this section, we have assumed that θ0 is a “true” value

of the coefficients, and so the known data ȳ is generated perfectly as a solution

of the differential system when θ = θ0. In section 3.5.3 below, we will revisit the

question of which is the best estimate for θ. We will see that we can do even

better by combining the minimum and an average.

3.4.3. The acceptance rate. An important factor in the success of the

rejection approach is the size of the rejection sample. As we have seen in the

previous section, the larger the resulting rejection sample, the higher the chances

of obtaining a more accurate estimate for θ using the minimum distance estima-

tor. In the discussion that follows, we will see how the acceptance rate is affected

by the sample size N , the maximum threshold ε, and the number of coefficients

m.

Let θ1, θ2, ..., θN be an i.i.d. sample from π0. Define the corresponding ran-

dom variables Ii = 1{θi∈Aε}, i = 1,2, ...,N . Then, I1, I2, ..., IN are i.i.d. Bernoulli

random variables with success probability

(3.12) τ = P(θ ∈ Aε) = ∫
Aε
π0(θ)dθ.

78 3. ESTIMATING ODE COEFFICIENTS: A FIRST APPROACH

Thus, by the Law of Large Numbers, as N →∞, the rejection sampler acceptance

rate τRS converges in probability to τ .

Remark 3.10. When the prior distribution π0 is uniform, (3.12) implies that

the acceptance rate is simply the ratio of the volumes of Aε and S0.

Furthermore, by the Central Limit Theorem,

√
N (1

N

N

∑
i=1

Ii − τ)
DÐ→ N (0, τ(1 − τ)).

This means that provided N is large enough, a 95% confidence interval for the

acceptance rate τRS is approximately given by τ ± 1.64
√

τ(1−τ)
N . Since the max-

imum of τ(1 − τ) occurs when τ = 0.5, a conservative estimate for the length of

the confidence interval is 1.64/
√
N . In general, τ cannot be computed directly,

and we will use its estimator τRS instead. For large N , this confidence interval

implies that we can actually expect the acceptance rate to be more or less the

same, and to be on a narrow range around τ .

Example 3.11. Consider the acceptance rate when estimating the coeffi-

cients of a harmonic oscillator model as the size N of the rejection sample in-

creases. The plot of N in relation to the acceptance rate is given in Figure 3.9.

One can see that for small values of N , the amplitudes of the oscillations are

larger. However, as N increases, we can see that the acceptance rate remains in

a small region around 0.002.

Although the sample size N may not play a large role on the acceptance rate

of our sample, it is clear that this is not the same with the maximum threshold

ε. In fact, for any sample θ1, θ2, ..., θN , the asymptotic acceptance rate τ is a

nondecreasing function of ε. To see why this is so, denote by τNε the acceptance

rate associated with the threshold ε and let ε1 < ε2. Then Aε1 ⊂ Aε2 , and so

τNε1 = P(θ ∈ Aε1) ≤ P(θ ∈ Aε2) = τNε2 , thus, this inequality also holds for the

asymptotic acceptance rate.

When the prior distribution is uniform, we can say even more about τ . In

particular, the rate of increase of the acceptance rate is of the order l/2, where

l is the dimension of the coefficient space, as we shall now show.

Proposition 3.12. Suppose that the rejection method is used to estimate θ

in the differential system y′ = g(y; θ), where the known data ȳ consists of the

actual points for y(t; θ) when θ = θ0. Assume also that θ is l-dimensional, and

that the prior distribution is uniform on its support. Then, the acceptance rate

τRS satisfies

(3.13) lim
N→∞

τRS =
(2πε)l/2

Γ(l2 + 1)
√
∏li=1 λi

3.4. AN ANALYSIS OF THE REJECTION SAMPLE 79

Figure 3.9. Acceptance rate for a harmonic oscillator as a func-
tion ofN . We set the “true” coefficients to be (0.8,1.5), the initial
point as (0.3,0.2), T = {0,0.5,1, ...,3}, and ε = 0.1.

where λ1, λ2, ..., λl are the eigenvalues of the Hessian matrix of ρ(θ0) and Γ is

the gamma function

Γ(x) = ∫
∞

0
ux−1e−udu.

Proof. Since θ0 is a true value of the coefficients and ε is small enough, by

(3.6), the acceptance region reduces to the ellipsoid

(3.14) ∆θTH(ρ(θ0))∆θ < 2ε,

where H(ρ) is the Hessian of ρ. Since H is a Hessian matrix, it is symmetric,

and so we can diagonalize it with an orthogonal matrix Q:

H = QΛQT ,

where Λ is the diagonal matrix of eigenvalues of H. Substituting in (3.14), we

get

2ε > ∆θTQΛQT∆θ

ε > vT (1

2
Λ) v(3.15)

where v = QT∆θ. Since det Λ is simply the product of the eigenvalues λ1, λ2, ..., λl

of H, by Proposition 1.29, we can conclude that the volume of the ellipsoid is

(3.16)
(πε)l/2

Γ(l2 + 1)
⋅ (det

1

2
Λ)

−1/2
= (2πε)l/2

Γ(l2 + 1)
√
∏li=1 λi

,

80 3. ESTIMATING ODE COEFFICIENTS: A FIRST APPROACH

which is as claimed. As the asymptotic acceptance rate is simply the ratio of

volumes when the prior distribution is uniform, the proof is complete. ◻

Remark 3.13. Letting v = (x1, x2, ..., xl)T in (3.15), we can convert the

ellipsoid (3.6) to the unrotated ellipsoid

1

2
(λ1x

2
1 + λ2x

2
2 + ... + λlx2

l) = ε,

where λ1, λ2, ..., λl are the eigenvalues of H. This tells us that the lengths of the

semi-principal axes of (3.6) are
√

2ε

λ1
,

√
2ε

λ2
, ...,

√
2ε

λl
.

Example 3.14. We return to the logistic model in Example 3.4, where we

found that the best fit coefficients were approximately r0 = 0.5351 and K0 =
265.94. Recall that in that example, the prior distribution was chosen to be

uniform on the rectangle [0,1]×[100,300]. Assuming the initial point (0,4), the

objective function that we wish to minimize can be computed exactly as

ρ(r,K) =
13

∑
i=0

(4Kerti

K − 4 + 4erti
− ȳi) ,

where (ti, yi) are the 14 data points which were previously given. Assuming

that θ0 = (r0,K0), we shall use ε−ρ(θ0) ≈ 1266.2 on the right-hand side of (3.6).

Using a symbolic computation program such as Maple, one can compute the

Hessian of ρ at θ0:

(3.17) H =
⎛
⎝

2516643.593 2220.7277

2220.7277 6.264013

⎞
⎠
,

which has eigenvalues λ1 = 4.3044 and λ2 = 2516645.6. This means that the semi-

principal axes are
√

2532.4/4.3044 ≈ 24.255 and
√

2532.4/25616645.6 ≈ 0.03172.

If we assume that the prior distribution π0 is uniformly distributed on its support,

the acceptance rate is thus τ = π(24.255)(0.03172)/200 ≈ 0.01208. Since the

acceptance rate that we obtained from the sample before was 65/5000 = 1.3%

and the sample size was N = 5000, the 95% confidence interval for τ is thus

0.013 ± 1.645

√
(0.013)(0.987)

5000
= (0.01036,0.01564),

which contains the asymptotic acceptance rate τ = 0.01208.

Table 3.3 shows the 95% confidence interval for the asymptotic acceptance

rate when estimating the coefficients of the two-coefficient Lotka-Volterra model.

Here, we assumed that the true values of the coefficients are a = 1 and b = 1,

initial point (1,0.5), T = {0,1, ...,7}, N = 1000, and a uniform prior distribution

over the square [0,3] × [0,3]. We see that as ε decreases, τ also decreases.

3.4. AN ANALYSIS OF THE REJECTION SAMPLE 81

Table 3.3. Results for Lotka-Volterra with a = 1, b = 1 when ε varies

ε 95% confidence interval for τ (in percent)

3 (5.14,6.62)
2 (3.51,4.77)
1 (1.20,2.00)

0.5 (0.63,1.25)

Aside from the size of ε, there are other factors which affect the acceptance

rate. Clearly, if θ is of large dimension, one will get a low acceptance rate. We

illustrate this in the following example.

Example 3.15. Consider the repressilator model for gene regulatory net-

works (1.23). We assume that the initial point is at (0,2,0,1,0,3) and that

there is a true value of the coefficients, namely (α0, γ, β,α) = (1,2,5,1000). Seven

points were chosen to represent the trajectory, in particular at t = 0,1,2,3, 4,5,6.

The prior distribution is uniformly distributed on [0,2] × [1.5,2.5] × [0,10] ×
[900,1100]. We produced a sample of size 10000, and kept only those which

yield trajectories having a maximum distance of 60. The number of unknown

coefficients is different in each experiment. As the acceptance rate varies on

each experiment, we take the average of the acceptance rate when producing

five separate rejection samples (which we shall call five runs later). The results

are given in Table 3.4, along with the corresponding acceptance rate.

Table 3.4. Acceptance rate of the repressilator (1.23) when the
number of unknown coefficients varies. The results shown are the
average acceptance rate for five separate runs.

Coefficients fixed Average acceptance rate (in percent)

None 0.404
α 0.474

α,α0 1.372
α,α0, γ 10.2

From Table 3.4, we see that as the dimension of the coefficient space increases,

the corresponding acceptance rate decreases, where it is less than 1 percent for

the case of 3 or more variables. This is even if the support of the prior distribution

that we have chosen covers a region which is a small neighborhood of θ0. This

means that one will need a larger sample to obtain a relatively accurate estimate

of θ. We will see in the next chapter several methods to alleviate this situation.

While it may seem logical that the acceptance rate τ varies directly as the

size of the support of π0, this is not true in general. As an example when

this is not the case, consider again the repressilator model (1.23) with true

82 3. ESTIMATING ODE COEFFICIENTS: A FIRST APPROACH

Figure 3.10. Acceptance rate of the repressilator model (1.23)
as a function of the maximum α0 in the prior

coefficients (α0, γ, b, α) = (1,2,5,1000), initial point (0,2,0,1,0,3), time points

T = {0,1,2, ...,7}, and ε = 10000. We compare the acceptance rates using a

uniform prior, but this time, where the intervals for γ, b and α are [0,4], [0,10],
and [800,1200], and α0 is from the interval [0, α+0], where α+0 ranges from 3 to

7 in increments of 0.5. The average acceptance rate when five separate rejection

samples (five runs) is given in Figure 3.10.

We can see that as α+0 increases, the acceptance rate actually also increases,

which is completely counterintuitive. The reason for this apparent “paradox”

is the shape of the acceptance region. Figure 3.11 shows the scattermatrix for

the four coefficients in θ. We can see in the scatterplot on the third row, second

column that as the value of α0 increases, the height of the acceptance region

with respect to the variable γ also increases. Thus, the ratio of the added region

which is part of the acceptance region is bigger than that of the original region,

which results in an increased acceptance rate. Furthermore, it is interesting to

note the similarity of the shapes of Figure 3.10 and the scatterplot of α0 vs γ,

which is, of course, not surprising, since the acceptance rate for a uniform prior

depends exclusively on the acceptance region.

However, if the current support S∗ already contains the entire acceptance

region Aε, it is not difficult to see by choosing any S containing S∗, that the

acceptance rate will then decrease, as our intuition dictates. This is given in the

next proposition.

3.5. IMPROVING THE METHOD 83

Figure 3.11. Scattermatrix of the accepted elements of the sam-
ple of our chosen repressilator model. The height of the accepted
region in the scatterplot of α0 vs. γ is increasing as α0 increases
(third row, second column).

Proposition 3.16. Suppose that the acceptance region Aε is bounded. Then

there exists an S∗ such that for any S′ ⊃ S∗, then τS′ ≤ τS∗.

Proof. Choose an S∗ which completely contains Aε. Then for any S′ ⊃ S∗,

V (S′) ≥ V (S∗), where V (⋅) represents the volume of the region. Since V (Aε)
remains constant in both cases, it follows from Remark 3.10 that τS′ ≤ τS∗ . ◻

Remark 3.17. There are two main reasons why the cardinality of the rejec-

tion sample can become 0:

(1) The ε is too small, and so the acceptance rate is too small such that

the chosen sample size N is not able to obtain enough elements.

(2) The chosen support does not contain any values of θ for which ρ(θ) < ε.
The first case can easily be avoided by choosing an ε which is of the appropriate

scale with respect to the actual values of the solution for the time points being

studied. A method to do this will be introduced in the next section. The

second situation will often occur in the case of prior distribution with bounded

support, and especially for higher dimensional coefficient estimation. This can be

overcome by revising the prior to cover a larger range of values in each variable.

3.5. Improving the method

In this section, we describe three ways to improve the basic rejection method

which we have introduced in the previous section.

84 3. ESTIMATING ODE COEFFICIENTS: A FIRST APPROACH

3.5.1. Sequential Rejection Method. A simple way to increase the ac-

ceptance rate would be to choose an improved prior distribution based on the

result of a preliminary sample. A natural way to do this would be to begin with

a uniform prior for, say, the first 10% of the desired sample. Provided this gives

a sufficiently large number of accepted values so that it can adequately represent

the acceptance region Aε, we can compute the mean vector µ and the covariance

matrix Σ for this sample. Then, for the remaining 90% of the sample, one can

change to a multivariate Gaussian distribution with mean and covariance matrix

equal to that of the preliminary sample. It turns out that the remaining part

has approximately the same acceptance rate, regardless of the value of ε, as we

shall prove shortly. For this, we first need the following technical result.

Proposition 3.18. Let Y be a random vector of dimension m whose compo-

nents are the coordinates of a point chosen uniformly within and on the ellipsoid

yTAy < 2ε, where A is positive definite and ε is constant. Then the covariance

matrix ΣY of Y is equal to 2ε
m+2A

−1.

Proof. Instead of working on the actual ellipsoid directly, assume first that

the support is on the unit sphere centered at the origin. More precisely, let

X = (X1,X2, ...,Xm) be a random vector whose components are the coordinates

of a point chosen uniformly within the m-dimensional unit ball xTx < 1. As

the support is symmetric about the origin, the mean of each coordinate and the

covariance between any two coordinates must be 0. By Proposition 1.30 and the

exchangeability of the Xi’s, the variance of each Xi must be 1
m+2 . Thus, the

covariance matrix of X is given by ΣX = 1
m+2Im, where Im is the m×m identity

matrix.

Now note that our required ellipsoid yTAy < 2ε is just a linear transformation

of the unit ball. In particular, we have Y =
√

2εA−1/2X, or equivalently, X =
1√
2ε
A1/2Y . Here, we can compute the inverse and the square root of the matrix

since A is positive definite. Thus, the covariance matrix of Y is

ΣY =
√

2ε(A−1/2)TΣX

√
2εA−1/2

= 2ε(A−1/2)T 1

m + 2
ImA

−1/2

= 2ε

m + 2
A−1,

as required. ◻
An interesting corollary of the previous technical result is that, under some

conditions, the acceptance rate for the second part of the sample as we described

above, is actually constant even if ε is decreased, as we shall now show.

Corollary 3.19. Suppose that the acceptance region Aε is exactly an ellip-

soid, and that the uniform distribution on Aε has covariance matrix Σ. If Y is

3.5. IMPROVING THE METHOD 85

drawn from another prior distribution with covariance matrix Σ, then P(Y ∈ Aε)
is independent of ε.

Proof. By Remark 3.5, µ and Σ are the mean vector and covariance matrix

of a uniform distribution within the ellipsoid (∆θ)TH(ρ(θ))∆θ < 2ε defined in

(3.6). This means that by Proposition 3.18, Σ = 2ε
m+2H

−1, or that H = 2ε
m+2Σ−1.

Thus, the probability of an arbitrary Y to be within the acceptance region is

given by

P((∆θ)TH∆θ < 2ε) = P((∆θ)T 2ε

m + 2
Σ−1∆θ < 2ε)

= P((∆θ)′Σ−1∆θ <m + 2),

which is independent of ε. ◻
If we assume that the sample covariance is not too far from Σ and that Aε

is close to an ellipsoid, then Corollary 3.19 implies that the strategy of sampling

with any distribution with covariance matrix Σ will give the same acceptance

rate regardless of the value of ε. Thus, if the new distribution is chosen well, this

can allow us to obtain a high acceptance rate even if the value of ε is small. One

such good choice for the distribution is the multivariate Gaussian distribution.

Remark 3.20. If the second part of the sample is drawn from a Gauss-

ian distribution, one can even compute the fixed acceptance rate. Let X be a

m-dimensional multivariate Gaussian random vector with mean vector µ and

positive-definite covariance matrix Σ. It is known in multivariate analysis that

(X − µ)′Σ−1(X − µ) has the chi-squared distribution with m degrees of free-

dom. (For a proof, one can refer, for example, to Result 4.7 in Johnson and

Wichern [17].) Taking the cumulative distribution then allows us to compute

P(x′Σ−1x < k) for any constant k.

Example 3.21. We now illustrate the performance of a sequential rejection

method in a toy example. As before, consider the repressilator model (see (1.23))

with true coefficients (α0, γ, β,α) = (1,2,5,1000), starting point (0,2,0,1,0,3),
T = {0,0.5,1, ...,3}, and sample size N = 5000. One can observe from the result

in Table 3.5 that the average among the five runs of the minimum ρ decreases as

ε decreases. This is not completely surprising, as we are obtaining approximately

the same number of points in a region which contains less points of high distance

ρ. Thus, we would intuitively expect the minimum distance to also decrease.

Furthermore, we also see that as ε decreases in the problem, the acceptance rate

remains approximately the same in the sequential method, unlike that of the

plain rejection method (for instance, see Table 3.3).

While the method provides a significant improvement from the acceptance

rate of the basic rejection sampling algorithm, it also suffers from some problems.

86 3. ESTIMATING ODE COEFFICIENTS: A FIRST APPROACH

Table 3.5. Results using sequential rejection, sample size N =
5000, where the first 500 are used as a preliminary sample. The
prior distribution is uniform over [0,7]×[0,4]×[0,10]×[800,1200],
and the average acceptance results of 5 runs are shown below.

ε Min. distance Acceptance rate

1200 8.97 66.04
1000 7.67 65.23
800 5.26 62.67
600 4.6 62.45

In practice, we do not know what the shape of the acceptance region Aε is. If

Aε is too far from an ellipsoid, the Gaussian prior in the second part of the

sample may not be very effective in increasing the acceptance rate. Also, this

method is dependent on having a good estimate of Σ. However, if the size of the

initial sample is not large enough, the covariance matrix S of this sample may

not approximate Σ very well. Furthermore, increasing the size of the sample is

not a guarantee of an improved covariance matrix estimate as S is known as an

inconsistent estimator for Σ. Despite these problems, performing a sequential

method still remains a good choice. We will be looking at a more sophisticated

sequential algorithm again later in Section 4.2.

3.5.2. Choosing the value of ε. Another important consideration when

using the method is choosing an appropriate value of the maximum threshold

ε. If ε is chosen too large, then the method will simply accept all the elements

in the sample, making the process useless. On the other hand, if ε is too small,

then the acceptance rate will be too small, and we run the risk of not getting any

accepted elements in the sample. We shall now provide a logical way to choose ε

based on the support of our prior distribution and the differential system which

we shall use to model the data.

To obtain a reasonable value of ε, one needs to have an idea of the order of

magnitude of ρ(θ). Suppose that, as before, we take as measure of distance the

sum of squared differences

ρ(θ) =
k

∑
j=0

(y(tj ; θ) − ȳj)2,

where ȳ is assumed to be the model data for θ = θ0. Our objective is to construct

an estimate of a “typical value” of ρ(θ).
The main idea of our approximation for ε involves computing an estimate of

y(tj ; θ) − ȳj = y(tj ; θ) − y(tj ; θ0) for a fixed time tj . Since θ is m-dimensional, a

3.5. IMPROVING THE METHOD 87

simple way to do this is to use the total differential

(3.18) y(tj ; θ) − y(tj ; θ0) ≈
m

∑
i=1

{ ∂y
∂θi

(θ0)}∆θi

where the superscript i denotes the ith component of the coefficient vector and

∆θi = (θi − θi0). The partial derivative in (3.18) can be estimated using a finite

difference estimate

(3.19) εij =
y(tj ; θ1

0, θ
2
0, ..., θ

i
0 + h, ..., θm0) − y(tj ; θ1

0, ..., θ
m
0)

h
.

where h is a small increment (for example, around 10−6).

We are then left with the choice of θ0 and ∆θi = θi − θi0 to be used in the

computation. In general, we have no idea of what θ0 is exactly (otherwise, we

would not be estimating it using our method!). The most logical guess we could

make is that it is at the center of the support of the prior distribution. Thus,

assuming that our prior distribution is a box (θmin1 , θmax1) × (θmin2 , θmax2) × ... ×
(θminm , θmaxm) on Rm, this gives us the estimate

θ∗0 = (θ
min
1 + θmax1

2
, ...,

θminm + θmaxm

2
) .

On the other hand, we can think of the size of ∆θi as an estimate of the maximum

difference we are willing to accept between the ith component of θ and the true

θ0. This can be chosen as a fraction p of the length of the interval for that

coefficient. That is,

∆θi,∗ = p(θimax − θimin).
Based on our experiments, we recommend choosing p to be between 0.1 and 0.2.

Using the above choices, we are able to obtain an estimate for y(tj ; θ) − ȳj .
Substituting this estimate in ρ(θ), we end up with the following estimate for ε:

(3.20) εest =
k

∑
j=0

m

∑
i=0

(εij∆θi,∗)2

The following example illustrates how εest can be computed in the case of

the repressilator (1.23).

Example 3.22. Consider the repressilator model (1.23), where we assume

that the initial point is at (0,2,0,1,0,3) and the model coefficients to be (α0, γ, β,α) =
(1,2,5,1000). Suppose the known data is at the times T = {0,1,2, ...,7}, and

that the prior distribution is uniformly distributed on [0,2]× [1.5,2.5]× [0,10]×
[900,1100]. Also, we choose p = 0.1 Then θ∗0 = (1,2,5,1000) and the value of

∆θi,∗ for i = 1,2,3,4 are 0.2,0.1,1, and 20, respectively. A series of finite dif-

ference computations would then allow us to compute εest ≈ 865. This gives

approximately a 1% acceptance rate.

88 3. ESTIMATING ODE COEFFICIENTS: A FIRST APPROACH

We shall revisit this method of choosing ε in a more complicated example

later in Section 3.6.3.

3.5.3. Another best estimate. Even if the choice of the minimum dis-

tance estimate introduced in Section 3.4.2 is usually better than the average, we

lose in taking the minimum distance estimate the benefit of taking an average

between several good estimates in order to average the different errors and get

something in the interior of all t he estimates. This observation gives the idea

of a new way to deduce an estimate of the coefficient from the rejection sample,

that we will now explain and illustrate with an example.

The main idea is the following: if we average the d best values of the coef-

ficients θ in terms of the distance ρ, and if we increase the number of values in

this average, the result will initially be located around θ0 before it tends, as d

increases, towards the mean of the distribution π(θ∣ρ(θ) < ε). Thus, taking the

mean of these few initial θ’s can often give a better result than just choosing the

one with the minimum distance.

More precisely, let θ1, θ2, ..., θn be a rejection sample. Denote by ρ(θ(1)),ρ(θ(2)),
...,ρ(θ(n)) the distances ρ(θ1), ρ(θ2), ..., ρ(θn) arranged in increasing order. This

consequently defines the reordering of the sample from the best (lowest ρ) to the

least θ(1), θ(2), ..., θ(n). Let

θ̄d =
1

d

d

∑
i=1

θ(i)

for some d, 1 ≤ d ≤ n. The least mean estimator is given by

(3.21) θ̂leastmean(d) = ArgMin
θ∈{θ̄1,...,θ̄d}

ρ(θ).

After computing θ̂leastmean(d) for a large number of numerical experiments,

it has been observed that in most cases, this estimator produces coefficients

with the least distance when d = 10. Also, we note that the minimum distance

estimate θ̂min is equal to θ̂leastmean(1).

Example 3.23. We apply this choice of best estimate to compute a best guess

of θ in the simplified Lotka-Volterra model introduced in (1.22). Figure 3.12

shows the evolution of θ̂leastmean in estimating the coefficients of a Lotka-Volterra

model as d increases.

In Figure 3.12a, we observe that when d increases, ρ(θ̂leastmean(d)) initially

decreases, and then increases until it stabilizes at a certain point. By the Law

of Large Numbers, this point is the value of ρ for the center of Aε. Figure 3.12b

illustrates why ρ(θ̂leastmean(d)) decreases initially before it increases again. The

coefficients θ̄d are initially located around θ0 for small values of d, before they

tend towards the center of Aε as d increases.

3.5. IMPROVING THE METHOD 89

(a) Typical graph of ρ(θ̂leastmean(d))
as d increases

(b) Evolution of θ̂leastmean(d) as d in-
creases. The red circle represents the
minimum distance point, and the red
’x’ are the model coefficients.

Figure 3.12. Evolution of θ̂leastmean(d) as the number of ele-
ments d increases for the coefficients in a Lotka-Volterra model
with model coefficients (a, b) = (0.5,2). The initial point of
the model data is at (1,0.5) and the time points are at T =
{0,0.5,1, ...,3}. The prior distribution is uniform over [0,3] ×
[0,3].

By choosing θ̂leastmean(10), we get a substantial improvement in the distance

of the estimate. In this particular run that we did, the least distance is when

θ = θ̄6, where ρ = 0.0001, vs. ρ = 0.0028025. While the result will not always

be the same, we will obtain an improvement by choosing θ̂leastmean(10) than

θ̂leastmean(1) most of the time.

Furthermore, empirical results suggest that this strategy becomes even more

effective when estimating the coefficients in a differential system with a higher

dimension of the coefficient space. In our repressilator model with 6 unknown

coefficients, in 25 out of 30 runs, the absolute maximum for ρ(θ̄leastmean) occurs

within the first 10 means. In all of the runs, the “minimum distance” estimator is

improved. In Comet et.al.’s simplified circadian cycle system (with 12 unknown

variables) which we introduced in Section 1.4.5, in all 12 runs made, the absolute

minimum occurs within the first 5. In 9 out of 12 of these runs, the minimum

distance estimator is improved.

3.5.4. Implementing the Method. Although the method which we have

described is quite simple, one will quickly realize that there are a large number

of parameters that need to be chosen when implementing it. Without a careful

choice of these parameters, one can easily obtain a rejection sample of size 0. As

such, we now provide a short summary of the steps needed to apply the rejection

90 3. ESTIMATING ODE COEFFICIENTS: A FIRST APPROACH

method to produce a distribution of coefficients of a differential system that best

fits some known data.

(1) Choose an initial prior distribution π0 for the unknown coefficients, and

an initial sample size.

(2) Choose a proper ε. To do this, one can use the procedure outlined in

Section 3.5.2, and choose the percentage of the range to be around 10

to 20 percent. The resulting acceptance rate will vary depending on the

differential system, but empirical results suggest it will be at least 3%.

(3) Provided we obtain a reasonably large rejection sample in the previous

step, change the prior distribution to a Gaussian distribution, with a

mean equal to the sample mean and covariance matrix equal to a frac-

tion of the sample covariance (around 10% would be a typical choice).

(4) After we obtain the rejection sample θ1, θ2, ..., θn, the scattermatrix of

these samples can be obtained to visualize the estimated law of θ. How-

ever, if a point estimate is required, arrange the θi’s in increasing order

based on the metric ρ. Then compute θ̂leastmean(10) based on the pro-

cedure introduced in Section 3.5.3.

3.6. Application to perturbed model data

In this section, we examine the robustness of the rejection method when

estimating the coefficients of a differential system using perturbed “model” data.

This means that our known data ȳ no longer corresponds exactly to the discrete

trajectory for a particular value of the coefficients θ. We shall call such perturbed

data more simply as noisy data. Dealing with noisy data is more realistic as there

is no such thing as “exact data.” This is not only because measurement errors

are unavoidable in real-life data, but mainly because any differential system

used to model a natural phenomenon will necessarily be an oversimplification

of reality, as it is essentially impossible to capture all the factors at work in a

certain phenomenon. Even when it is possible to do so, this would entail an

unnecessarily complicated system having a very large numbers of equations and

coefficients. Thus, while a simpler system would not be able to capture reality

exactly, it will still be useful in understanding the dynamics of the process.

This section is comprised of three parts. In the first part, we give some

comments on how to generate noisy data and why we decided not to run most

of our experiments using noisy data. The remaining part of the chapter can

be divided into two parts. In section 3.6.2, we shall go back to each of the

properties of the rejection method introduced in section 3.4 and verify whether

each of these continues to hold for noisy data. Then, we shall apply our method

to fit the coefficients of the circadian cycle model introduced in Section 1.4.5

based on simulated noisy data.

3.6. APPLICATION TO PERTURBED MODEL DATA 91

3.6.1. Some comments on noisy data. For all our discussion in this

chapter so far, we have decided to use “exact data”, that is, where the given

data corresponds to the trajectory of the differential system for a fixed value of

θ = θ0, instead of using simulated noisy data. This choice was intentional, and

we shall explain why very shortly. To do this, we first briefly explain how we

can produce theoretical noisy data.

There are many ways to produce theoretical perturbed data. Here, we shall

only mention two possibilities. As before, let y′ = g(y; θ) be the differential

system used to model the data, where θ consists of the unknown coefficients to

be estimated. Assume that the known data are at times T = {t0, t1, ..., tk}, with

values ȳ(T) = (ȳ0, ..., ȳk).

(1) A first option is to incorporate an additive error to each component of

ȳ(T). Usually, this additive error is represented as a Gaussian vector

ε = (ε1, ε2, ..., εk), where each εi is multivariate Gaussian with mean 0

and a fixed covariance matrix. Thus, the original model data ȳ(T)
becomes ȳ(T) + ε. This can be interpreted as the typical measurement

error for our known data.

(2) A second possibility is to perturb the coefficient θ. This can be done

in several ways. One option is to make the model data ȳ(T) be the

solution of y′ = g(y; θ + ε) for an error term ε with the appropriate di-

mensions. Another, more general, way could be to choose a distribution

of θ around the “true” value θ0. Take a sample of size k for θ from this

distribution. Then, to compute ȳ(tk), we compute the value of the so-

lution at the time tk for the differential equation y′ = g(y; θ), but with

boundary condition y(tk−1) = ȳ(tk−1; θk−1), where ȳ(tk−1; θk−1) is the

point obtained using θ = θk−1. This type of error can be encountered

for example when there are varying environmental conditions as time

elapses, like when the temperature of the environment is changing.

For example, consider the competing species model,

dy1

dt
= ay1 − y2

1 − 0.5y1y2 = y1(a − y1 − 0.5y2)

dy2

dt
= by2 − 0.5y2

2 − 1.5y1y2 = y2(b − 0.5y2 − 1.5y1)

where T = {0,0.5,1, ...3}, initial point (x, y) = (1,0.5), and model coefficients

(a, b) = (1,1.5). The corresponding graph of the phase plane of the differential

equation is given in Figure 3.13.

Assuming a Gaussian perturbation with mean 0 and standard deviation 0.1,

the typical graphs of the perturbed data using the methods mentioned above

are given in Figure 3.14. One can see that the dynamics of the trajectory may

92 3. ESTIMATING ODE COEFFICIENTS: A FIRST APPROACH

Figure 3.13. Phase plane of the competing species model where
a = 1 and b = 1.5. The red lines correspond to the graphs of
a − y1 − 0.5y2 = 0 and b − 0.5y2 − 1.5y1 = 0. The separatrix is
somewhere in the region between the two lines.

become completely different. This is because perturbing the data or the coeffi-

cients may either cause the initial point to cross the separatrix, the target θ to

move, or the location of the separatrix to move. Any of these cases may alter

the trajectory drastically.

As with any coefficient estimation method, it is clear that if the amount of

simulated noise is too large, it will be difficult, or even impossible, to recover the

unperturbed value of the coefficient θ using any coefficient estimation method

with a reasonable degree of accuracy. This is partly because the shape of the

resulting discrete trajectory may become drastically different from the possible

trajectories of the proposed differential model. However, this is not a cause for

concern in general, as this becomes a problem with the choice of model, instead

of the coefficient estimation method. As we will discuss further in the next

section, if the perturbation is small enough so as to maintain the general shape

of ρ, the resulting estimate for θ will not be drastically different. Hence, studying

the method using exact data will not give us significantly different results than

with these noisy data. An additional advantage with using exact data is that it

allows us to check whether inaccuracies in the estimate are due to the method

itself rather than the size of the perturbation.

3.6.2. Re-examining the properties of the rejection method. In sec-

tion 3.4, we examined some properties of the rejection method when we were

trying to estimate the coefficients of a differential system based on known data

produced from a specific value θ0 of the coefficients. We now re-examine the

same properties, but this time, for noisy data.

3.6. APPLICATION TO PERTURBED MODEL DATA 93

(a) Actual graph of the competing
species model for a = 1, b = 1.5, and ini-
tial point (1,0.5).

(b) Effect of perturbing the data using
option (1)

(c) Effect of perturbing the data using
option (2)

Figure 3.14. One possible scenario after the two types of per-
turbation are applied to the competing species model.

In Remark 3.5, we saw that the acceptance region becomes approximately

an ellipsoid if ε is small enough. Recall that the result was obtained by writing

out the Taylor expansion of ρ(θ) for the differential equation y′ = g(y; θ) given

in (3.2). When the known data does not correspond exactly to a specific value

of θ, this will continue to be true as long as g (and therefore ρ) is of class C2,

and the minimum value of ρ is achieved for a value of θ in the interior of S. In

this case, there will still be a value θ∗0 which gives the minimum ρ and one can

still compute the Taylor expansion of ρ, as given before. However, note that

the minimum ρ will not usually be equal be 0. Thus, it is possible to have no

accepted values if the chosen ε is too small. Also, this value θ∗0 will no longer be

the value of θ corresponding to the unperturbed case.

Next, we note that Proposition 3.8 still holds true, and the minimum distance

estimator ρ̂n defined before still converges in probability to the minimum distance

ρ(θ0). However, since the minimum ρ is no longer 0, it is no longer clear that

the θ0 with minimal distance gives us the best estimate for θ. We give one such

example on a very simple Lotka-Volterra coefficient estimation problem.

94 3. ESTIMATING ODE COEFFICIENTS: A FIRST APPROACH

Example 3.24. Suppose we wish to estimate the coefficients in the two-

coefficient Lotka-Volterra model described in Section 1.4.3. We assume that the

true coefficients are θ = (a, b) = (0.5,2), the initial point is (1,0.5), and the

time points T = {0,0.5,1,1.5,2,2.5,3}. The prior distribution is assumed to be

uniform over [0,3]× [0,3]. A set of perturbed data using option (1) is shown in

Figure 3.15.

(a) (b)

Figure 3.15. Graphs of x(t) (A) and y(t) (B) for the original
data (in blue) and noisy data (in red). The noisy data were
produced by adding a Gaussian term with mean 0 and standard
deviation 0.2 to each coordinate in the original trajectory.

In this case, the resulting contour map for ρ(θ) is given in Figure 3.16. One

can see that for the small values of ε provided, the shape of the region enclosed

by Aε remain approximately ellipses. However, the coefficients θ which give the

minimum ρ have shifted to around (0.6,1.9). If we run the rejection method for

ε = 1, notice that the center of the ellipse is closer to our target value (0.5,2)
than the coefficients that give the minimum ρ, so the mean appears to be the

better estimate in this case.

Unfortunately, the values y(ti), i = 0,1,2, ..., k are not independent. However,

if they were, we can gain some insight as to what will be the new minimum point

θ∗0 . To do this, one may look at the distribution of ρ(θ). Assuming that the

error for each data point is Gaussian with mean 0 and variance σ2, each term

y(ti; θ)−ȳ is now Gaussian with mean y(ti; θ)−ȳ and variance σ2. If each of these

k differences can be assumed to be independent, then ρ(θ)/σ2 has a noncentral

chi-squared distribution with k degrees of freedom, with noncentrality coefficient

λ =
k

∑
i=1

(y(ti; θ) − ȳ
σ

)
2

.

Finally, since all the acceptance rate results we obtained are independent of

the data ȳ, these still apply for the case of inexact data. However, for a fixed

3.6. APPLICATION TO PERTURBED MODEL DATA 95

Figure 3.16. Contour map of ρ(θ) when estimating θ in a
Lotka-Volterra model assuming the known data in Figure 3.15

value of ε, the acceptance region Aε will be of smaller size than before. Thus,

the corresponding acceptance rate will also be smaller. This further aggravates

the acceptance rate problem for systems with a large number of dimensions, as

we recall from Proposition 3.12 that the decrease in acceptance rate is of order

l/2 as the dimension l increases.

3.6.3. Application of the method. We shall now use the rejection sam-

pling method and the steps outlined in Section 3.5.4 to estimate the coefficients

in simplified circadian cycle model which we introduced in Section 1.4.5. Recall

that the system consists of 4 differential equations and 12 variables.

We begin by generating the model data for the differential system (1.24).

The coefficients chosen were K = 0.4, γ = 15, k1 = 0.08, k2 = 0.06, k3 = 0.08, k4 =
0.06, kd1 = 0.05, kd2 = 0.05, kd3 = 0.05, kd4 = 0.45, v1 = 2, v2 = 2.2. Here, we obtain

oscillations which have decreasing amplitudes, as the value of kd4 is greater than

0.412182, the bifurcation point as computed in [3]. However, the results remain

largely unchanged even if we choose kd4 < 0.412182. Graphing the solution

of the differential equation for the chosen coefficients, one can show that the

first complete oscillation occurs after around every 12 units. Since there is no

reason to believe that the data which we will obtain will correspond exactly

to one ”period”, we assume that we are given the discrete trajectory at time

points 0,1,2, ...,7, which corresponds to around half a period. We incorporate a

small measurement error by adding a Gaussian term with mean 0 and standard

deviation 0.15 for the first three variables, and mean 0 and standard deviation

0.05 for the last variable. The standard deviations were chosen to be different

for each variable to take into account the approximate sizes of the values of

96 3. ESTIMATING ODE COEFFICIENTS: A FIRST APPROACH

(a) t vs. p1 (b) t vs. p2

(c) t vs. c1 (d) t vs. c2

Figure 3.17. Graphs of the “true” trajectories (in red) and the
perturbed trajectories (in blue) for each of the 4 variables.

each variable. A comparison of the model data and perturbed data is given in

Figure 3.17.

The prior distribution is chosen to be uniform, where the lower and upper

bounds are given in the table below:

Variable Minimum in prior Maximum in prior Reference value

K 0 1 0.4

γ 0 20 15

k1 0 0.2 0.08

k2 0 0.2 0.06

k3 0 0.2 0.08

k4 0 0.2 0.06

kd1 0 0.2 0.05

kd2 0 0.2 0.05

kd3 0 0.2 0.05

kd4 0 0.5 0.45

v1 0 5 2

v2 0 5 2.2

3.6. APPLICATION TO PERTURBED MODEL DATA 97

We shall use the guidelines we proposed in Section 3.5.4 in running the

rejection and sequential rejection method. First, we shall choose ε ≈ 27, which

corresponds to the value obtained when we use the total differential estimate in

Section 3.5.2 with θ as the center of the support, h = 10−6, and p = 0.12. We shall

do two sets of ten runs, the first set being a basic rejection method with 10000

iterations. For the second set of ten runs, we shall use the sequential rejection

method introduced in the previous section, with an initial sample of size 2000.

We then run another 10000 iterations, but now with a multivariate Gaussian

distribution with mean and covariance equal to the corresponding mean and

covariance of the initial sample. We shall take as point estimate θ̂leastmean(10),
where we chose the minimum among the first 10 averages.

The results using both the basic rejection method and the sequential rejection

method are given in Tables 3.6. Aside from the improved acceptance rate, we

can see a substantial improvement in the average distance of our point estimate

to the given perturbed data.

Table 3.6. Results when applying the rejection method, with
and without the sequential improvement, to estimate the coeffi-
cients in Comet’s simplified circadian cycle model. For each of
the ten runs, θ̂leastmean(10) and the corresponding distance ρ is
computed.

Sequential rejection for ε = 27 Basic rejection for ε = 27
Average acceptance 50.46% 3.487%

Average distance 2.13 3.25

An even more interesting comparison is provided by Figure 3.18, where we

graph the trajectories resulting from the “best guess” coefficient estimates using

the sequential rejection method with the actual data. We graph the trajectories

resulting from two different values of θ obtained from the 10 runs: the value of

θ̂leastmean(10) that produced the smallest ρ (in red), and the one which produced

the biggest ρ (in green). These represent the best and worst scenarios when

estimating the coefficients using the sequential rejection method. We can see

that even with the limited amount of information provided by eight points of

data, the method can give coefficients that fit the known data well, even in a

twelve dimensional problem.

98 3. ESTIMATING ODE COEFFICIENTS: A FIRST APPROACH

(a) Graph of t vs. p1 (b) Graph of t vs. p2

(c) Graph of t vs. c1 (d) Graph of t vs. c2

Figure 3.18. Graphs of the resulting trajectories using the
worst and best coefficients (as given in the previous table) using
the sequential rejection method. The graphs in red are using the
“best” coefficients, the ones in green are the “worst” coefficients,
and the ones in blue are those of the perturbed data.

CHAPTER 4

Estimating coefficients of systems of differential

equations: further approaches

In this chapter, we discuss two alternative ways to sample from and explore

the acceptance region Aε. Both methods discussed use “local moves” where the

next sample is chosen in a neighborhood of the previous accepted value, unlike

that of the rejection sample (or RS for short). While these methods still target

the same region Aε, we shall see how these can produce a larger acceptance

rate and avoid many of the disadvantages of the RS method discussed in the

previous chapter. This will also allow us to be able to handle higher dimensional

coefficient spaces.

4.1. A Markov chain Monte Carlo method

An interesting old algorithm, Markov Chain Monte Carlo (or MCMC for

short), introduced by Metropolis et. al. in 1953, will allow us to improve the

RS algorithm by increasing effectively the acceptance rate. In this section, we

will provide a detailed exposition on an MCMC-based algorithm to estimate the

coefficients in a system of differential equations. After a short presentation of the

method, we shall prove its theoretical validity. Several properties of the method

are then provided, which are illustrated by simulation examples.

4.1.1. Presentation of the Algorithm. The method which we shall in-

troduce is based on an MCMC scheme introduced by Marjoram et. al. in [21].

In the MCMC technique, we wish to sample from a possibly intractable dis-

tribution π(θ). To do this, we perform a random walk inside the support of

π by generating a trajectory of a Markov Chain which has π(θ) as stationary

distribution. Theorem 1.25 then guarantees that provided the Markov chain is

irreducible and aperiodic, the law of the resulting trajectory converges in the

total variation norm (recall equation (1.9)) to π(θ). In addition, we are also

assured that the average of the first n values in the trajectory converges almost

surely to the expected value of θ as n→∞ (see Theorem 17.0.1 in [27]).

To estimate the coefficients of a system of differential equations, we apply

the same concept, but now to find the same posterior distribution πε(θ∣ȳ) as

in the rejection method in the previous chapter. Let y′ = g(y; θ), ȳ(T), π0(θ),
S0, and ρ(θ) be defined as in the previous chapter. We begin with an initial

99

100 4. ESTIMATING ODE COEFFICIENTS: FURTHER APPROACHES

guess θ0 of the coefficients for i = 1,2, Instead of drawing coefficients θi+1

independently of θi from π0, we now choose a proposal distribution q(θi, θ∗),
which defines the conditional distribution of the next proposed sample θ∗ given

the current sample θi. In any case, for reasons which will be made clear shortly,

the proposal distribution must be chosen such that q(θ∗, θi) > 0 if and only if

q(θi, θ∗) > 0, which is satisfied in the case of a Gaussian q. For example, one can

choose q(θi, θ′) to be the kernel of a Gaussian distribution with mean θi and a

fixed covariance matrix Σ.

We produce our sequence of coefficients (θi)i∈N recursively as follows. If the

proposed sample θ∗ satisfies ρ(θ∗) < ε, then the probability to accept θ∗, that is,

the probability for θi+1 to be set to θ∗, is defined by

(4.1) α(θi, θ∗) =
π0(θ∗)q(θ∗, θi)
π0(θi)q(θi, θ∗)

1{ρ(θ∗)<ε} ∧ 1.

where the ∧ denotes the minimum between the two quantities. Otherwise, θi+1

remains equal to the previous value θi. Note that α is well-defined because of

the small condition that we imposed on the proposal distribution q.

Two special cases of α need to be emphasized. First, if the proposal distribu-

tion q is symmetric around its mean, then the acceptance probability α reduces

to

α(θi, θ∗) =
π0(θ∗)
π0(θi)

1{ρ(θ∗)<ε} ∧ 1

In this case, one has an easy interpretation of the acceptance criterion – assuming

ρ(θ∗) < ε, one always accepts the proposed sample θ′ if it has a greater likelihood

than θi based on π0. Otherwise, one still has a probability of accepting θ∗, but

proportional to the ratio of the likelihoods of θ∗ and θi. Secondly, if in addition

to q being symmetric around its mean, the prior distribution π0 is also uniformly

distributed on its support, then the second condition always holds. In this case,

the MCMC algorithm will accept any θ such that ρ(θ) < ε. Thus, aside from

having a fixed starting point and the “prior” distribution which varies in each

iteration, we see that its acceptance condition becomes the same as the rejection

method in the previous chapter. We shall initially look at the method in this

simplest case later, and then afterwards, examine the effect of choosing a non-

uniform prior distribution on the sample.

To help in understanding how the method works, we now take a look at a

very simple example.

Example 4.1. We apply the MCMC method to estimate the coefficients r

and K in the logistic differential equation y′ = ry(1 − y/K), and using the same

data as in Example 3.1. For the moment, we consider the simplest case, where

the prior distribution π0 is uniformly distributed over [0,1] × [100,300] and the

proposal distribution is chosen as multivariate Gaussian, centered around the

4.1. A MARKOV CHAIN MONTE CARLO METHOD 101

previous value θi. That is,

π(θi, θ∗) =
1

2π∣Σ∣−1/2 e
− 1

2
(θ∗−θi)′Σ−1(θ∗−θi),

where we assume at the moment that

Σ =
⎛
⎝

0.1 0

0 3600

⎞
⎠
,

which is equivalent to a standard deviation of slightly under 1/3 the interval of

each variable. We assume that the starting point is exactly in the middle of the

support; that is, (r0,K0) = (0.5,200). Finally, as in Example 3.4, the maximum

threshold is ε = 1300. For this particular run, we obtained 307 accepted elements.

The mean of the coefficients in the trajectory is (0.5373,266.43), while the θi that

gives the minimum distance is (0.5381,264.99), both of which are very close to

the ones obtained in Example 3.4. The graph of the resulting sample is shown in

Figure 4.1. Notice that the acceptance region in Figure 4.1a is virtually the same

as before, except that we have a higher number of points within Aε. Figure 4.1b

shows the curve of the solution to the logistic equation corresponding to the

value of θ which gives the smallest ρ (the “minimum distance” coefficients).

(a) (b)

Figure 4.1. Results for logistic model using the MCMC algo-
rithm. The first figure (left) is a plot of the resulting sample in
the rectangle which is the support S0 of the prior π0. The second
figure (right) is the graph of the solution of the logistic equation
with “minimum distance” coefficients as previously described.

We shall see in Section 4.1.2 that under certain conditions, as the length of

the chain increases, the elements produced in one trajectory of this method will

have as distribution πε(θ∣ȳ), which is the same as that of the rejection method

introduced in the previous chapter. Also, we shall introduce a way to choose

both the starting guess and the covariance matrix Σ of the proposal distribution

more systematically.

102 4. ESTIMATING ODE COEFFICIENTS: FURTHER APPROACHES

4.1.2. Computation of the posterior distribution. In this section, we

shall show that we can generate a Markov Chain which has πε(θ∣ȳ) as its sta-

tionary distribution. This will be done in two steps. First, we shall prove that

the sample produced by the algorithm is a trajectory of a Markov chain. Then,

we shall show that this Markov chain has a stationary distribution, and that it

converges to this distribution. We begin by formalizing the MCMC algorithm

that we introduced as a sequence of random variables (Xn)n∈N.

Definition 4.2. Suppose that q is a transition kernel on Rm × B(Rm),

θ0 ∈ S0, X0 = δθ0. Let (Un)n≥1 be an iid sequence of random variables uni-

formly distributed on (0,1) independent of X0, and define the sequence (Xn)n≥1

of random variables on S0 as follows:

(4.2) Xn+1 = q(Xn, ⋅) ⋅ 1{Un+1<α(Xn,X∗
n} +Xn ⋅ 1{Un+1≥α(Xn,X∗

n)},

where X∗
n = q(Xn, ⋅). Any X1,X2, ...,Xn generated this way is called an MCMC

sample.

This defines the same random sequence as the MCMC algorithm that we

described in the previous section. Indeed, the first term sets Xn+1 = X∗
n with

probability α(Xn,X
∗
n), while the second term makes Xn+1 equal to the previous

value Xn as the complement with probability 1 − α(Xn,X
∗
n).

Theorem 4.3. The MCMC sequence defined by (4.2) is a trajectory of a

Markov chain of kernel

(4.3) K(x, z) = α(x, z)q(x, z) + (1 − ∫
x≠z

α(x, z)q(x, z)dz)1{x=z}

Proof. To show that the sequence (Xn)n∈N is a Markov chain, note that

Xn+1 can be expressed in the form h(Xn, Yn+1), where Yn+1 = Un+1 . Thus, by

Lemma 1.19, {Xn} is indeed a Markov chain.

Next, we compute the kernel of this Markov chain. Let A be any subset of

S0. Then

K(x,A) = P(Xn+1 ∈ A∣Xn = x)
= P(Y ∈ A and Xn+1 = Y ∣Xn = x) +P(x ∈ A and Xn+1 = x∣Xn = x)

= ∫
A
q(x, y)α(x, y)dy + ∫Y 1{x∈A}(1 − α(x, y))q(x, y)dy

where Y is the support of q. Taking the limiting case when A = {z} gives the

desired result. ◻

In the next theorem, we will show that the Markov chain which we have

introduced in Theorem 4.3 has πε(θ∣ȳ) as stationary distribution.

Theorem 4.4. Let πε(θ∣ȳ) = π0(θ)1Aε(θ)
∫Aε π0(θ)dθ

, where Aε = {θ ∈ S0∣ρ(θ) < ε}, and

any kernel of a Markov chain q(θ, θ∗) satisfying the condition that q(θ, θ∗) > 0 if

4.1. A MARKOV CHAIN MONTE CARLO METHOD 103

and only if q(θ∗, θ) > 0. Then the distribution πε(θ∣ȳ) is a stationary distribution

of the Markov chain defined by (4.2).

Proof. By Lemma 1.24 and Theorem 4.3, it suffices to show that

(4.4) πε(θ∣ȳ)K(θ, θ∗) = πε(θ∗∣ȳ)K(θ∗, θ)

If θ = θ∗, the equality follows trivially. Therefore, assume that θ ≠ θ∗.

Assume first that α(θ, θ∗) < 1. Then α(θ∗, θ) = 1 and

πε(θ∣ȳ)K(θ, θ∗) = πε(θ∣ȳ) ⋅ q(θ, θ∗)α(θ, θ∗)

= πε(θ∣ȳ) ⋅ q(θ, θ∗) ⋅
π0(θ∗)q(θ∗, θ)
π0(θ)q(θ, θ∗)

1{ρ(θ∗)<ε}

= π0(θ)
∫Aε π0(θ)dθ

⋅ q(θ, θ∗) ⋅ 1Aε(θ
∗)π0(θ∗)q(θ∗, θ)
π0(θ)q(θ, θ∗)

= π0(θ∗)1Aε(θ∗)
∫Aε π0(θ∗)dθ∗

⋅ q(θ∗, θ)

= πε(θ∗∣ȳ)K(θ∗, θ)

as K(θ, θ∗) = q(θ, θ∗) when θ ≠ θ∗ and α(θ, θ∗) = 1. The proof for the case when

θ ∈ Aε and α(θ, θ∗) = 1 follows in a similar manner.

◻

While the preceding theorem guarantees that the Markov chain defined by

(4.2) has indeed πε(θ∣y) as stationary distribution, we still need to make sure

that the Markov chain converges to the said distribution. If we want to use

this Markov chain to produce a sample that will approximate the distribution

πε(θ∣ȳ), then q must be chosen so that the Markov chain is πε-irreducible and

aperiodic (for example, if q is Gaussian). In this case, Theorem 1.25 guarantees

that the law of the MCMC sequence Xn converges in the total variation norm

(recall Equation 1.9) to the stationary distribution πε(θ∣ȳ).
Since the MCMC method uses local moves instead of randomly choosing

around the support of the prior distribution, one can imagine that a larger per-

centage of the sample would tend to fall into the acceptance region Aε. This is

true in general, provided that the perturbation provided by the proposal distri-

bution is small enough. However, to be able to describe exactly this phenomenon,

we need to first define the MCMC acceptance rate.

Definition 4.5. Let X0,X1,X2, ...,Xn be an MCMC sample and let Ii ∶
1{Xi≠Xi−1} be the corresponding sequence of i.i.d. Bernoulli random variables.

The acceptance rate of this sample is given by

τMCMC = 1

N

N

∑
i=1

Ii.

104 4. ESTIMATING ODE COEFFICIENTS: FURTHER APPROACHES

4.1.3. Properties of an MCMC Sample. In this section, we examine

the properties of an MCMC sample, and compare it to the rejection sample

which we introduced in the previous chapter.

Choosing Σ and the proposal distribution

Central to the success of an MCMC trajectory is the proper choice of the

proposal distribution. The most natural choice would be for q to be Gaussian,

and centered on the previous value of θ, and with a covariance matrix of Σ. In

this case, one needs to choose Σ with care. It is well known that, if the jump

variances for each variable are too large, then we would expect most proposals to

be either rejected, or even possibly, jump out of the support. If the variances are

too small, then the acceptance rate increases, but we run the risk of not being

able to explore the support adequately, or getting stuck in one of the disjoint

regions centered on a local minimum.

Example 4.6. Consider again the harmonic oscillator, and suppose ε = 2.

Recall that the acceptance region consists of three disjoint, closed regions, as in

Figure 3.5. Suppose we set our starting point to be, for example, at the point

θ′ = (3.5,3.5), which is in one of the regions surrounding a local minimum (but

which is not the global minimum). We assume that the covariance matrix of

the proposal distribution is 1
δ2
I2, where I2 is the 2 × 2 identity matrix. If we

choose a very large δ, it is easy to see that, although our acceptance rate would

be quite large, there is large probability of getting stuck in this “wrong” region.

Again, as the acceptance rate will vary in between samples, we take the average

when producing five separate samples. Table 4.1 shows that the average over

five separate runs for the minimum ρ(θ) and acceptance rate as we vary δ where

the starting point is θ′.

We can see in Table 4.1 that as the value of δ increases (and so the “jumps”

become smaller), the acceptance rate also increases, which corresponds to our

intuition. However, the minimum distance is increasing despite the larger num-

ber of accepted elements. This is because more and more values get stuck in the

region which contains the local minimum.

Table 4.1. Results using MCMC, 1000 elements in the sample,
prior distribution: uniform over [0,7]×[0,7]. Average acceptance
rate of 5 runs shown.

δ Acceptance rate Minimum distance No. of runs with minimum > 1

1 50.4 0.0179 0
1.5 62.42 0.3298 1
2 69.4 0.6514 2

2.5 75 1.6198 5

4.1. A MARKOV CHAIN MONTE CARLO METHOD 105

There is no clear rule to choose δ, or more generally, to choose the covariance

matrix of the proposal distribution. In specific cases, there are available results

from MCMC theory to obtain the optimal acceptance rate. The most well-

known result is that of Gelman, Roberts, and Gilks [13] who showed that for

a target density of the form π(x1, x2, ..., xd) = f(x1)f(x2)...f(xd) for some one-

dimensional smooth density and proposal distributions of the form N(0, σ2Id),
the optimal acceptance rate is about 0.44 when d = 1, and decreases to 0.234 for

a d-dimensional target distribution where d → ∞. This result was later shown

to be true even for several other target densities. For example, Rosenthal and

Roberts showed that the result still holds even for target densities of the form

π(x) =
d

∏
i=1

Cif(Cixi),

where the Ci’s themselves are iid from some fixed distribution. For details on

these and other developments on the optimal scaling of a random walk MCMC,

one can refer to Section 4.2 in [36].

Burn-in

Burn-in refers to the practice of discarding a certain number (or percentage)

of iterations at the start of an MCMC run. In theory, if the Markov chain is

run for an infinite amount of time, then we are guaranteed that the distribution

of the values in any trajectory of the Markov chain will converge to that of the

stationary distribution. However, when one has a finite chain (which any MCMC

run will necessarily produce) and the starting point is a region of low probabil-

ity, the chain may not be able to spend enough time in the regions of higher

probability to ensure that early points are not disproportionally represented in

the resulting sample. This problem is especially important when computing es-

timates, such as the mean, from the resulting samples, as the mean is sensitive

to outliers.

There is no fixed rule as to how many iterations are to be disregarded, and

whether burn-in is even needed. For example, Gelman et. al. propose in [11]

to burn-in the first half of the generated chain. However, they themselves also

admit that discarding the early runs may not be the most efficient approach,

as it decreases the size of the sample and may increase the error of estimation.

Thus, it seems better just to choose a “good” starting point in an area which,

we hope, is of high probability. Geyer [14] in fact argues that any trajectory

started anywhere near the center of the stationary distribution does not require

burn-in. He calls this practice harmless, but unncessary, and goes on to say that

“any point you don’t mind having in a sample is a good starting point.”

To test whether burn-in has any effect when estimating the coefficients in a

differential system using an MCMC approach, we apply it to the repressilator

106 4. ESTIMATING ODE COEFFICIENTS: FURTHER APPROACHES

(see section 1.4.4). We examine the results of throwing away the first elements of

the MCMC sample of size 5000, where the number of elements discarded ranges

from 0 to 2500 in multiples of 500. To choose a starting point, we first run a

rejection sample with 500 iterations, and use the coefficients that produce the

minimum distance as our starting point, while we use δ = 0.25 for the sample

covariance matrix. Table 4.2 shows the effect of burn-in on the average distance

for 5 runs of ρ(θ), where θ is either the minimum distance (θ̂min) and the mean

(θ̂ave). We see that there is no advantage obtained by discarding the initial

samples.

Table 4.2. Average value of ρ(θ̂) for 5 runs, where ε = 1000,
θ = (α,α0, γ, β) = (1000,1,2,5) are the “true” values of the coef-
ficients, and the prior distribution is uniform over [800,1200] ×
[0,7] × [0,4] × [0,10].

No. of samples Average distance

discarded ρ(θ̂min) ρ(θ̂ave)
0 9.834 281.972

500 9.834 287.196
1000 10.568 289.862
1500 14.886 279.866
2000 16.104 293.024
2500 17.388 315.98

In addition, Figure 4.2 below shows the effect of a burn-in phase in the

acceptance rate and the resulting estimate. We see that other than the quantity

of plotted points, there is no significant difference in the distribution of the

resulting plots.

4.1. A MARKOV CHAIN MONTE CARLO METHOD 107

(a) Full sample (b) First half discarded

Figure 4.2. Scatter matrix of the MCMC sample based on the
entire sample (a) and where the first half of the sample is dis-
carded (b) in the example of the repressilator (see Section 1.4.4).
Here, we assume that the “true” values for the coefficients are
α0 = 1, γ = 2, β = 5, α = 1000, and that we know the solution at
T = {0,0.5,1,1.5,2,2.5,3}.

4.1.4. Comparison between RS and MCMC. In this section, we com-

pare the rejection method and the MCMC methods in estimating the coefficients

of the repressilator once again. To do this, we perform simulation experiments

with 5000 runs for both methods. To choose the starting point and the covari-

ance matrix of the MCMC algorithm, we begin with 500 runs of the rejection

method. Provided that we get a sufficient number of accepted samples, we shall

choose the θ = (α,α0, γ, β) that gives the minimum ρ as the starting point of the

MCMC run, and 1/4 of the covariance matrix of the accepted samples as the

covariance matrix of our Gaussian proposal distribution q.

Table 4.3. Results using RS and MCMC in the case of the re-
pressilator, 1000 runs, prior distribution: uniform over [0,7] ×
[0,4] × [0,10] × [800,1200], average acceptance rate of 5 trials is
shown.

ε Rejection MCMC
Min. distance Acceptance rate Min. distance Acceptance rate

1200 27.73 8.384 11.488 58.34
1000 13.79 5.812 8.176 59.18
800 30.69 3.724 5.896 58.976
600 17.75 2.332 5.144 58.476
400 32.49 1.152 4.168 59.724

Table 4.3 provides the results of 5000 runs of both RS and MCMC methods

as ε decreases. As already mentioned before, the acceptance rate of the rejection

108 4. ESTIMATING ODE COEFFICIENTS: FURTHER APPROACHES

method decreases as ε decreases. Thus, although each of the accepted samples

should, in theory, have a smaller distance from θ0, the minimum distance does

not decrease in an analogous manner because the decreasing number of accepted

samples is no longer able to cover enough of Aε.

In contrast, the coefficients θ obtained using MCMC and the minimum dis-

tance metric become more and more accurate as ε decreases, as evidenced by the

decreasing minimum ρ. This is due to the acceptance rate for MCMC remaining

approximately fixed regardless of the value of ε. This acceptance rate is equal to

τ = ∫
θ∈S ∫θ′∈S α(θ, θ

′)dθ′dθ,

where α is the acceptance probability defined in (4.1). This will be the case

provided the starting point is chosen so that it is sufficiently close to the true

value. In our case, we ensured that this occurs with large probability by choosing

it to be the θ with the minimum distance, and requiring that the number of

accepted samples in the preliminary sample is sufficiently large.

4.2. A Sequential Monte Carlo method

As we have already seen in the previous sections, one key factor in obtaining

a good distribution and consequently a good estimate of the coefficients in a

system of differential equations using our simulation-based method is obtaining

a relatively large acceptance rate. In fact, one can really only have a good

confidence in our results if we are able to produce a sufficiently large sample

of points in a small neighborhood of the “best” coefficient θ0. However, as the

dimension of the coefficient space grows, it becomes increasingly difficult, or

even impossible to choose a prior distribution that is centered well-enough on

the good region in Rm to obtain a high acceptance rate. It then becomes even

more important to have an efficient way to sample from the relevant parts of the

support of our chosen prior distribution.

In this section, we shall examine a method based on Sequential Monte Carlo

(SMC) ([40], [44]) which not only helps alleviate the aforementioned problem,

but also that of getting stuck in local minima of S0. Variants of this method

are now widely used in many fields such as statistics, signal processing, and

mathematical finance. We shall provide a straightforward presentation of a Se-

quential Monte Carlo method to sample from our target distribution πε(θ∣ȳ)
(recall equation (3.4)). After presenting the method in Section 4.2.1, we provide

a short introduction to the theoretical basis of our SMC method in Section 4.2.2.

4.2.1. Presentation of the method. The method which we shall now

present is based on that given by Toni et. al. in [44]. In this method, the

objective is still to produce samples from our target distribution πε(θ∣ȳ). Here,

4.2. A SEQUENTIAL MONTE CARLO METHOD 109

the samples are usually called populations and any element of a sample a particle.

However, to avoid having a problem with low acceptance rate associated with a

small ε, we shall do this sequentially, beginning from a much higher ε1 than our

target threshold ε and gradually decreasing it until we reach ε.

To do this, we begin by choosing a prior distribution π0 for θ and a sequence of

decreasing thresholds ε1 > ε2 > ... > εS = ε. The number and choice of thresholds

εi will not only define how many populations of samples the method will go

through, but also how fast the law will converge towards our desired distribution.

Next, we need to choose one Markov kernel qs(θ, θ∗) for each s = 1,2, ..., S. For

example, we can choose the Markov kernel to be multivariate Gaussian centered

on the current element of the sample and with a fixed covariance matrix. To

simplify matters, we can choose the same kernel for each s as we did for MCMC

in the previous section. This kernel will determine how our particles will move

around the coefficient space. Finally, we need to specify the number of accepted

particles Ns we wish to have in each population. For simplicity, we will take

Ns = N for all s. If N is chosen large enough, we shall see later that the law of

the population produced converges to our target distribution in a manner that

will be made precise.

To obtain the first population of particles, one proceeds as in the rejec-

tion method presented in Section 3.3 using a (possibly high) threshold ε1. This

means that we shall generate one set of coefficients θ∗ from π0(θ), and com-

pute a measure of distance ρ(θ∗) from θ∗ to the known data ȳ(T), where ρ is

defined as in (3.3). As before, we keep θ∗ only if ρ(θ∗) < ε1. This is repeated

until we obtain N accepted particles θ
(1)
1 , θ

(1)
2 , ..., θ

(1)
N . We then assign specific

weights W
(1)
1 ,W

(1)
2 , ...,W

(1)
N to each particle, which will be necessary for the

proper convergence of the resulting empirical distribution defined by the θ
(1)
i ’s

and W
(1)
i ’s. For this first population, we assign equal weight to each particle,

and so W
(1)
i = 1/N for i = 1,2, ...,N .

Suppose now that we have the particles θ
(s−1)
i , i = 1,2, ...,N for the (s −

1)st population, with corresponding weights W
(s−1)
i , i = 1,2, ...,N . To obtain

the particles θ
(s)
i , i = 1,2, ...,N for the next population, we begin by taking

a sample θ∗ from θ
(s−1)
1 , θ

(s−1)
2 , ..., θ

(s−1)
N , where the probability of selection is

proportional to their previously computed weights W
(s−1)
1 ,W

(s−1)
2 , ...,W

(s−1)
N .

We then simulate a new particle θ∗∗ from θ∗ using the Markov kernel qs, which we

shall only keep if ρ(θ∗∗) < εs. If θ∗∗ is accepted, we shall assign it a preliminary

weight of

w
(s)
i (θ∗∗) = π0(θ∗∗)

∑Ni=1W
(s−1)
i Ks(θ(s−1)

i , θ∗∗)
.

110 4. ESTIMATING ODE COEFFICIENTS: FURTHER APPROACHES

This process is repeated until we obtain N accepted samples. Once all N

samples for population s have been generated, we normalize the preliminary

weights. That is, we adjust the weight for each particle proportionally so that

when taken together, the N particles sum up to 1:

W
(s)
i =

w
(s)
i

∑Ni=1w
s
i

.

The procedure which we have just described can then be repeated until we obtain

the particles for population S, corresponding to our desired threshold εS = ε. The

result of the method is a “particle estimate”

π̂s(θ) =
N

∑
i=1

W
(s)
i δ

θ
(s)
i

(θ)

of our target distribution πε(θ∣ρ(θ) < ε).
To give us an idea of how this SMC-based method works in practice, we now

apply the method to a simple example.

Example 4.7. We apply the sequential monte carlo method on the repres-

silator method, where the model coefficients are α0 = 1, γ = 2, β = 5, α = 1000,

and for the time points T = {0,0.5,1, ...,3}. The sequence of thresholds is chosen

as {1200,800,400}. The Markov kernel Km for the 2nd and 3rd populations is

assumed to be Gaussian centered on the selected value θ∗ and with covariance

matrix equal to 1/9 of the covariance of the 500 samples in the previous popula-

tion. The results given in Table 4.4 are the average over 5 separate runs of the

method.

Table 4.4. Results of SMC for ε = {1200,800,400}. True value:
α = 1000, α0 = 1, γ = 2, β = 5, prior distribution: uniform over
[800,1200] × [0,4] × [0,7] × [0,10]

ε No. of runs Acceptance rate Minimum distance

1200 6062 8.25% 25.91
800 1175 42.56% 14.24
400 1987 25.17% 13.3

Comparing our results to those in Table 4.3, our acceptance in the first

population is virtually the same as that of the rejection method. This was to

be expected since the first population was effectively a rejection run with ε =
1200. However, we see the improvement in the acceptance rate in the succeeding

populations due to the local moves, with both being above 25% on the average.

The minimum distance is not as good as that produced by MCMC. This is

because of the number of accepted samples. Recall from Proposition 3.8 of the

convergence in probability of minimum distance estimate. As we only limited

4.2. A SEQUENTIAL MONTE CARLO METHOD 111

ourselves to 500 samples, the MCMC method with the larger number of runs

will have a bigger chance of getting a “better” result. Figure 4.3 shows the

scattermatrix of the accepted coefficients in the third population (ε = 400), which

is similar to the scattermatrices we obtained for MCMC in Figure 4.2.

Figure 4.3. Scattermatrix for the repressilator method using
the sequential monte carlo method.

Thus, at first glance, it seems that SMC is clearly inferior to MCMC. How-

ever, there are several important points one needs to consider. In our MCMC

method, we recall that there was a significant chance of getting trapped in lo-

cal minima. Here, the chance of encountering this problem is substantially less.

Also, the fact that we start with a substantially higher ε and gradually decrease

to our desired target ε allows us to start at a much higher acceptance rate. This

allows us to overcome the low acceptance rates in the initial phase of the rejec-

tion or MCMC method. This becomes especially helpful as the dimension of the

coefficient space increases.

4.2.2. Some words about the general theory. Consider a density π on

S0, where π ∶ S0 → R+ is known pointwise. Importance sampling is a general

method to estimate properties of π or to obtain a “particle approximation” of

functions of random variables with density π by using only samples from another

distribution η. Of course, we assume that η(θ) > 0 for (almost) all θ for which

π(θ) > 0. The distribution η is often called the importance distribution or the

instrumental distribution.

112 4. ESTIMATING ODE COEFFICIENTS: FURTHER APPROACHES

Let ϕ be any measurable function. Importance sampling is based on a simple

change of measure, given by the following identity:

Eπ(ϕ(θ)) = ∫ ϕ(θ)π(θ)dθ

= ∫ ϕ(θ)π(θ)
η(θ)η(θ)dθ

= ∫ ϕ(θ)w(θ)η(θ)dθ

= Eη(ϕ(θ)w(θ)),

where

(4.5) w(θ) = π(θ)
η(θ)

and η(θ) > 0 for almost all θ with ϕ(θ)π(θ) ≠ 0. This means that instead of

sampling from π(θ) directly, we can take an iid sample θ1, θ2, ..., θN from η(θ)
instead, and correct the bias resulting from sampling from the wrong distribution

by using the weight w(θ). It is assumed that we know the values of π(θi) and

η(θi), and that it is easy to sample from η. This gives us the following empirical

approximation of π:

π(θ) =
N

∑
i=1

wiδθi(θ)

where

(4.6) wi = π(θi)/η(θi).

An alternative method which can be even more useful in most cases is se-

quential importance sampling (SIS). In SIS, the target distribution π = πM is

obtained through a series of intermediate distributions πs, s = 1, ..., S − 1. In

each step, we use importance sampling to sample from each πs using an im-

portance distribution ηs that we will now define recursively. First, consider a

Markov chain of kernel q(⋅, ⋅) on the support of π. At time s = 1, we can begin

by choosing η1 = π1. Given ηs−1, the next importance distribution ηs is given by

(4.7) ηs(θs) = ∫ ηs−1(θs−1)Ks(θs−1, θs)dθs−1,

We can then perform importance sampling using this proposal distribution. At

each step s, the weights can be computed using the same formula as before

(see 4.6), but using πs and ηs instead of π and η. Since ηs cannot usually be

computed pointwise, a typical solution is to approximate it by using the Monte

Carlo estimate

ηNs−1Ks(θs) =
1

N

N

∑
i=1

Ks(θs−1, θs).

4.2. A SEQUENTIAL MONTE CARLO METHOD 113

Thus, at the step s, the weighted discrete measure is

π̂s(θ) =
1

N

N

∑
i=1

W
(s)
i δ

θ
(s)
i

(θ),

where W
(s)
i = w(s)i /∑Nj=1w

(s)
j is a “particle approximation” of πs.

The main disadvantage with the SIS approach is the problem of weight de-

generacy. This means that after just a few steps, most of the weight tends to

become concentrated on a very small number of particles. This is undesirable

as it wastes a large part of the computational time without exploring the entire

support. To solve this problem, one can perform resampling. Instead of sim-

ply evolving the weights, we sample from the previous population at each step.

The algorithm, which is often called Sequential Importance Resampling (SIR),

is given as follows:

A1. Initialize the particles θ
(1)
i ∈ S0 by generating N independent samples

with law π0.

A2. Initialize the weights W
(1)
i as in SIS.

A3. At each time step j < S, resample the population according to the

current weights W
(j)
i , that is, for each i = 1,2, ...,N replace θ

(j)
i by

θ∗ = θ(j)
I(i), where I(i) is a random index from {1,2, ...,N}, selected with

probabilities proportional to the weights W
(j)
1 ,W

(j)
2 , ...,W

(j)
N .

A4. Simulate a new particle θ∗∗ ∈ S0 from the particle θ∗ according to the

Markov kernel qj . This will now become the value of θ
(j+1)
i .

A5. Update the weights using the same formula as in SIS, and produce

W
(i)
j+1.

The algorithm that we have introduced consists in building a sequence of

populations

{θ(1)1 , ..., θ
(1)
N },{θ(2)1 , ..., θ

(2)
N }, ...,{θ(S)1 , ..., θ

(S)
N }

and weights

{W (1)
1 , ...,W

(1)
N },{W (2)

1 , ...,W
(2)
N }, ...,{W (S)

1 , ...,W
(S)
N }.

The weights are defined by induction as follows:

W (1)(θ) = 1

N

ws(θ) =
π0(θ)1ρ(θ)<εs(θ)

∑Ni=1W
(s−1)
i q(θ(s−1)

i , θ)

W (s)(θ) = w(s)(θ)
∑Ni=1w

(s)
i (θ)

114 4. ESTIMATING ODE COEFFICIENTS: FURTHER APPROACHES

The sth population is a sample of size N from the previous population s− 1

with the law

ηs(θ) =
N

∑
i=1

W s−1
i q(θs−1

i , θ)1ρ(θ)<εs

The last population obtained by this algorithm will have a law which is a

good approximation of the target distribution πε(θ∣ȳ) in the following sense:

Proposition 4.8. The SMC algorithm is such that the law of the last pop-

ulation {θ(S)1 , θ
(S)
2 , ..., θ

(S)
N } with weights {W (S)

1 ,W
(S)
2 , ...,W

(S)
N }

(4.8) π̂S(θ) =
N

∑
i=1

W
(S)
i δ

θ
(S)
i

(θ)

converges when N tends to infinity to πε(θ∣ȳ).

Conclusion

In this thesis, we have studied differential systems with random coefficients

using a simulation approach. For the problem of computing the law of the

solution at time t∗ of a differential equation with random coefficients, we have

seen that even in simplest cases, one will usually obtain a distribution where

the pdf cannot be computed explicitly, and for which we need to rely on Monte

Carlo simulation. However, we have also seen that this may not be effective in all

cases. In the case of a Riccati equation where the solution explodes in finite time,

displaying the histogram on a compact manifold using two charts is an effective

way to draw the histogram. Another possibility would be to approximate the

distribution using a polynomial chaos expansion.

For the question of computing a best distribution of the coefficients of a

system of differential equations that fits a known trajectory, we have described

the rejection sampling algorithm, which produces a distribution of points which

have a high probability to be the true coefficients. This gave us the flexibility to

not only take into consideration the errors and uncertainties in the known data,

but at the same time, to still provide a point estimate if necessary. Assuming

that a true value of the coefficients exists, we have seen through several examples

that for low dimension problems and a small enough maximum threshold ε for

the accepted coefficients, one can obtain a posterior distribution which allows

us to compute good point estimates for the unknown coefficients θ. However,

when either ε decreases or the number of coefficients increases, we have seen

that percentage (and thus, number) of accepted elements decreases, and which

generally results in less accurate estimates. These led us to sampling methods

which somehow use the knowledge obtained in the first few iterations. Some

possibilities which we have seen to be very effective in increasing the acceptance

rate include the sequential rejection method, or using methods based on the

Markov chain Monte Carlo and Sequential Monte Carlo algorithms.

115

Bibliography

[1] Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle Markov chain Monte Carlo

methods. J.R. Statistical Soc. 72(3): 269-342.

[2] Cartan, H. (1967) Calcul Différentiel: Hermann, Paris.

[3] Comet, J.-P., Bernot, G., Das, A., Diener, F., Massot, Camille, and Cessieux, A. (2012).

“Simplified Models for the Mammalian Circadian Clock.” In Proceedings of the 3rd Inter-

national Conference on Computational Systems-Biology and Bioinformatics, eds. Chan, J.

H., Meechai, A., and Kwoh, C. K., 127-138. DOI: 10.1016/j.procs.2012.09.014

[4] Cosma, I. A. and Evers, L. (2010). Markov chains and Monte carlo methods.

[5] Courant, R. and Hilbert D. (1953). Methods of Mathematical Physics. John Wiley & Sons,

New York.

[6] Del Moral, P. (2004). Feynman-Kac formulae - Genealogical and Interacting Particle Sys-

tems with Applications: Springer, New York.

[7] Del Moral, P., Doucet, A., and Jasra, A. (2006). Sequential Monte Carlo samplers. J.R.

Statistical Soc. 68(3): 411-436.

[8] Doucet, A. and Johansen, A. M. (2011), “Particle filtering and smoothing: Fifteen years

later.” In Handbook of Nonlinear Filtering, eds. Crisan, D. and Rozovsky, B., Oxford Uni-

versity Press.

[9] Elowitz, M. B. and Leibler, S. (2000). A synthetic oscillatory network of transcriptional

regulators. Nature 403: 335-338.

[10] Funaro, D. (1992). Polynomial Approximation of Differential Equations. Springer-Verlag,

Berlin.

[11] Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004) Bayesian Data Analysis,

2nd ed: Chapman & Hall, New York.

[12] Gelman, A., Bois, F.Y., and Jiang, J. (1996). Physiological pharmacokinetic analysis using

population modeling and informative prior distributions. Journal of the American Statisical

Association 91: 1400-1412.

[13] Gelman, A., Gilks, W. R., and Roberts, G. O. (1997). Weak convergence and optimal

scaling of random walk Metropolis algorithms. Annals of Applied Probability, 7(1): 110-120.

[14] Geyer, C. (1996). “Introduction to Markov chain monte carlo.” In Markov Chain Monte

Carlo in Practice, ed. Gilks, W.R., Richardson, S., and Spiegelhalter, D. J., 59-74. Chapman

& Hall, London.

[15] Ghanem, R. and Spanos, P. (1991). Stochastic Finite Elements: A Spectral Approach:

Springer-Verlag, New York.

[16] Hurewicz, W. (1958). Lectures on Ordinary Differential Equations: The M.I.T. Press,

Cambridge, U.S.A.

[17] Johnson, R. A. and Wichern, D. W. (2007). Applied Multivariate Statistical Analysis:

Pearson Prentice Hall, U.S.A.

[18] Karr, A. F. (1993). Probability: Springer-Verlag, New York.

117

118 BIBLIOGRAPHY

[19] Levy dit Vehel, P. (2014). A Systematic Approach to Financial Model Validation. Ph.D.

Thesis. University of Nice-Sophia Antipolis: France.

[20] Liang, H. and Wu, H. (2008). Parameter Estimation for Differential Equation Models Using

a Framework of Measurement Errors in Regression Models. J. Am. Stat. Assoc. 103(484):

1570-1583.

[21] Marjoram, P., Molitor, J., Plagnol, V., and Tavaré S. (2003). Markov Chain Monte Carlo

without likelihoods. Proceedings of the National Academy of Sciences 100 (26): 15324-15328.

[22] McKinley, T., Cook, A. R., and Deardon, R. (2009). Inference in Epidemic Models without

Likelihoods. The International Journal of Biostatistics, 5(1): 24.

[23] Marin, J.-M., Pudlo, P., Robert C. P., and Ryder, R. J. (2012). Approximate Bayesian

Computational Methods. Statistics and Computing 22(6), 1167-1180.

[24] Marsaglia, G. (1964). Ratios of Normal Variables and Ratios of Sums of Uniform Variables.

Mathematical note 348, Boeing Scientific Research Laboratories, USA.

[25] Marsaglia, G. (2006). Ratios of Normal Variables. Journal of Statistical Software 16(4):

1-10.

[26] Marsaglia, George (1972). Choosing a Point from the Surface of a Sphere. The An-

nals of Mathematical Statistics 43(2), 645-646. doi:10.1214/aoms/1177692644. http://

projecteuclid.org/euclid.aoms/1177692644.

[27] Meyn, S. P. and Tweedie, R. L. (2008). Markov Chains and Stochastic Stability, 2nd ed:

Cambridge University Press, U.K.

[28] Nocedal, J. and Wright, S.J. (1999). Numerical Optimization: Springer-Verlag, New York.

[29] Oladyshkin, S. and Nowak, W. (2012). Data-driven uncertainty quantification using the ar-

bitrary polynomial chaos expansion. Reliability Engineering & System Safety, 106: 179190,

2012. DOI: 10.1016/j.ress.2012.05.002.

[30] Osborne, M. R. (2008). The Bock iteration for the ODE estimation problem. http://

maths-people.anu.edu.au/~mike/Bock60.pdf, retrieved April 4, 2014.

[31] Pardoux, E. (2008). Markov Processes and Applications: Algorithms, Networks, Genome

and Finance: John Wiley & Sons, Ltd, Chichester, UK.

[32] Pritchard, J., Seielstad, M., Perez-Lezaun, A., Feldman, M. (1999). Population growth of

human Y chromosomes: a study of Y chromosome microsatellites. Molecular Biology and

Evolution 16: 1791-1798.

[33] Ramsay, R., Hooker, G., Campbell, D., Cao, J. (2007) Parameter estimation for differential

equations: a generalized smoothing approach. Journal of the Royal Statistical Society 69(5):

741-796.

[34] Robert, C. and Casella, G. (2004). Monte Carlo Statistical Methods, 2nd ed: Springer-

Verlag, New York.

[35] Robert, C. (1991). Generalized inverse normal distributions. Statistics & Probability Letters

11: 37-41.

[36] Rosenthal, J. (2011). “Optimal Proposal Distributions and Adaptive MCMC.” In Handbook

of Monte Carlo, ed. Brooks, A., Gelman, A., Jones, G.L., Meng X.L., 93-111. Chapman &

Hall, New York.

[37] Rubin, D. B. (1984). Bayesianly Justifiable and Relevant Frequency Calculations for the

Applied Statistician. The Annals of Statistics 12: 1151-1172.

[38] Scilab help: Optim - Nonlinear optimization routine. https://help.scilab.org/doc/5.

3.3/en_US/optim.html. Retrieved March 7, 2014.

doi:10.1214/aoms/1177692644
http://projecteuclid.org/euclid.aoms/1177692644
http://projecteuclid.org/euclid.aoms/1177692644
10.1016/j.ress.2012.05.002
http://maths-people.anu.edu.au/~mike/Bock60.pdf
http://maths-people.anu.edu.au/~mike/Bock60.pdf
https://help.scilab.org/doc/5.3.3/en_US/optim.html
https://help.scilab.org/doc/5.3.3/en_US/optim.html

BIBLIOGRAPHY 119

[39] Baudin, M., Couvert, V., and Steer, S. Optimization in scilab. https://www.scilab.org/

content/download/.../optimization_in_scilab.pdf. Scilab consortium, retrieved March

12, 2014.

[40] Sisson S. A., Fan, Y., and Tanaka, M. (2007). Sequential Monte Carlo without likelihoods.

Proceedings of the National Academy of Sciences 104(6): 1760-1765.

[41] Sisson S. A., and Fan, Y. (2011). “Likelihood-Free MCMC.” In Handbook of Monte Carlo,

ed. Brooks, A., Gelman, A., Jones, G.L., Meng X.L., 313-335. Chapman & Hall, New York.

[42] Stanescu, D., and Chen-Charpentier, B.M. (2008). Random coefficient differential equation

models for bacterial growth. Mathematical and Computer Modelling 50(2009), 885-895.

[43] Tierney, L. (1996). “Introduction to general Markov chain theory.” In Markov Chain Monte

Carlo in Practice, ed. Gilks, W.R., Richardson, S., and Spiegelhalter, D. J., 59-74. Chapman

& Hall, London.

[44] Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M. (2009). Approximate Bayesian

computation scheme for parameter inference and model selection in dynamical systems.

Journal of the Royal Society Interface 6(31): 187-202.

[45] Varah, J. M. (1982). A Spline Least Squares Method for Numerical Parameter Estimation

in Differential Equations. SIAM J. Sci. and Stat. Comput. 3(1): 2846.

[46] Vershynin R. (2012). Approximating the moments of marginals of high dimensional distri-

butions. Journal of Theoretical Probability 25: 655-686.

[47] Williams, D. (1991). Probability with Martingales: Cambridge University Press, U.S.A.

[48] Xiu, D., and Karniadakis, G.E. (2002). The Wiener-Askey Polynomial Chaos for Stochastic

Differential Equations. SIAM J. Sci. Comput. 24(2): 619-644.

[49] Xiu, D. (2010). Numerical Methods for Stochastic Computations: A spectral method ap-

proach: Princeton University Press, New Jersey, U.S.A.

https://www.scilab.org/content/download/.../optimization_in_scilab.pdf
https://www.scilab.org/content/download/.../optimization_in_scilab.pdf

APPENDIX A

Scilab code

In this appendix, we provide the scilab code used to run the rejection,

MCMC, and SMC methods in Chapters 3 and 4. We also include the code

used to generate some of the figures in the entire thesis. For a more compre-

hensive collection of the source code in this work, one may refer to the following

website: http://math.unice.fr/~chanshio

The following program, rs-mcmc-repressilator.sce, produces a sample of ac-

cepted parameters using the rejection method described in Chapter 3, and the

MCMC method described in Section 4.1. One can easily switch between the

methods by choosing the value of the variable mode, with mode=1 correspond-

ing to rejection and mode=2 corresponding to MCMC.

///

// This program implements the rejection and MCMC method to estimate the

// parameters in a repressilator model.

///

clear;

funcprot(0);

time1=getdate(’s’);

for im=1:1

// im=1;

// parameters for the "known" trajectory

minval=0; // lower bound of interval

maxval=7; // upper bound of interval

numintervals=8; // number of points

accept=0; // just a counter for the number of accepted samples

delta=1000;

// true values of a and b (to be plotted in graph)

true_a=1000; true_a0=1; true_n=2; true_b=5;

// value of a and b in the ODE; equal to the true ones initially to generate

// the known trajectory, but this will be changed for each step.

a=true_a; b=true_b; n=true_n; a0=true_a0;

// number of runs

121

http://math.unice.fr/~chanshio

122 A. SCILAB CODE

numsamples = 2500;

// which method? (1 = rejection, 2 = MCMC)

method = 2;

// use burn-in or not? (0 or 1)

burnin = 0;

// index of the first accepted sample in MCMC

firstaccept = 1;

// starting guess (only for MCMC)

start_a=grand(1,1,’unf’,800,1200);

start_a0=grand(1,1,’unf’,0,2);

start_n=grand(1,1,’unf’,0,6);

start_b=grand(1,1,’unf’,0,10);

// initial point of the differential system

t0=0;

u0=[0;2;0;1;0;3];

t=linspace(minval,maxval,numintervals);

// defines the repressilator ODE

function dy=g(t,u)

dy(1) = -u(1)+a/(1+(u(6))^n)+a0;

dy(2) = -b*(u(2)-u(1));

dy(3) = -u(3)+a/(1+(u(2))^n)+a0;

dy(4) = -b*(u(4)-u(3));

dy(5) = -u(5)+a/(1+(u(4))^n)+a0;

dy(6) = -b*(u(6)-u(5));

endfunction

// get the sum of squares difference

function mydiff=getSSdiff(x,y)

mydiff = delta + 1;

if size(x) == size(y) then

diff=(x-y);

mydiff = sum(diff .* diff);

end;

endfunction

// Multivariate gaussian pdf

function val=mnpdf(x,mean,sigma)

k = size(mean,"r");

val=abs(det((2*%pi)^k * sigma))^(-0.5)*exp(-0.5*(x-mean)’ *inv(sigma)*(x-mean));

endfunction

y=ode(u0,t0,t,g);

mysample = zeros(4,numsamples+1); // initialize vector of samples

if method==2 then

mysample(:,1)=[900;1.5;1.5;7.5]; // chosen starting guess (expect to get 1,1)

end

A. SCILAB CODE 123

myls = zeros(1,numsamples); // vector of differences

covmat = [10000,0,0,0; 0,0.25,0,0; 0,0,2.25,0; 0,0,0,6.25]; // covariance matrix (only

for MCMC)

for i=1:numsamples

// method 1: rejection

if method == 1 then

a=grand(1,1,’unf’,800,1200);

a0=grand(1,1,’unf’,0,2);

n=grand(1,1,’unf’,0,6);

b=grand(1,1,’unf’,0,10);

params=[a,a0,n,b];

mysample(:,i+1) = mysample(:,i)

proposed=ode(u0,t0,t,g);

// current metric: sum of squared differences

ls=getSSdiff(proposed,y);

myls(i) = ls;

if ls <= delta then

accept = accept + 1;

mysample(:,accept) = [a;a0;n;b];

//myls(accept) = ls;

end

if modulo(i,2000)==0 then

mprintf("Current run: %i \n", i);

//mprintf("Number of accepted values: %i \n",accept);

end

else

// start MCMC

d=grand(1,’mn’,mysample(:,i),covmat);

a=d(1); a0=d(2); n=d(3); b=d(4);

//end;

mysample(:,i+1) = mysample(:,i)

// Compute the first sum of squares distance. This is necessary so that there

// will be a distance stored for the first sample in case it is rejected

if i == 1 then

myls(i) = getSSdiff(ode(u0,t0,t,g),y);

else

// ensures vector of differences has similar indices as vector of samples

myls(i) = myls(i-1);

end;

if (a<=1200)&(a>=800)&(a0<=2)&(a0>=0)&(n<=6)&(n>=0)&(b<=10)&(b>=0) then

proposed=ode(u0,t0,t,g);

124 A. SCILAB CODE

// current metric: sum of squared differences

ls=getSSdiff(proposed,y);

if i == 1 then

myls(i) = ls;

end

if ls <= delta then

u = rand(1,1);

num = mnpdf(d,mysample(:,i),covmat);

den = mnpdf(mysample(:,i),d,covmat);

if u <= num/den then

if accept == 0 then

firstaccept = i;

end

mysample(:,i+1) = [a;a0;n;b];

accept = accept + 1;

myls(i) = ls;

end

end

end

end

end

mprintf("\nRun No.: %i",im);

mprintf("\nNumber of accepted values: %i \n", accept);

if method==1 then

// Rejection

[p,q] = min(myls(1:accept));

mysample = mysample(:,1:accept);

else

// MCMC

if burnin == 1 then

myls = myls(:,firstaccept:numsamples);

mysample = mysample(:,firstaccept:numsamples);

end

[p,q] = min(myls);

end

mmean = mean(mysample,’c’);

mstdev = stdev(mysample,’c’);

if method==2 then

// +1, because the first position is occupied by the initial point

mprintf("Best guess: a=%f a0=%f n=%f b=%f \n",

mysample(1,q+1),mysample(2,q+1),mysample(3,q+1),mysample(4,q+1));

else

mprintf("Best guess: a=%f a0=%f n=%f b=%f \n",

mysample(1,q),mysample(2,q),mysample(3,q),mysample(4,q));

A. SCILAB CODE 125

end

mprintf("Mean of accepted values: a=%f, a0=%f, n=%f, b=%f \n",

mmean(1),mmean(2),mmean(3),mmean(4));

mprintf("SD of accepted values, a=%f, a0=%f, n=%f, b=%f \n", mstdev(1), mstdev(2),

mstdev(3), mstdev(4));

mprintf("\nTime elapsed: %i seconds \n", getdate(’s’) - time1);

//end

s = size(mysample);

if s < 0 then

xset("window",0);

clf();

// plot all the accepted points (initial point plot bug not yet fixed)

plot(mysample(1,:),mysample(2,:),’x’);

// plot the "true" values of a and b

plot(true_a,true_b,’.r’);

mtlb_axis([minunf,maxunf,minunf,maxunf]);

end

end

The following program, smc-repressilator.sce, estimates the parameters in a

repressilator model using the SMC method described in Section 4.2.

///

// This program implements the SMC method to estimate the parameters in

// a repressilator model.

///

clear;

funcprot(0);

// to track total run time.

starttime = getdate(’s’);

rand(’seed’,starttime);

// parameters for the time the known data are given

minval=0; // lower bound of interval

maxval=7; // upper bound of interval

numintervals=8; // number of division points of interval

popcounter = 0;

// number of accepted samples needed per population

numsamples = 500;

// thresholds for sum-of-squares error

deltas=[5000;3000;2000;1000];

z=size(deltas);

populations = z(1);

// the variable "runcounter" below records the number of runs needed to generate the

126 A. SCILAB CODE

// required number of accepted samples (indicated by "numsamples" above)

runcounter = zeros(1,4);

// "true values" of the parameters

a=1000; a0=1; n=2; b=5;

// initial value of the ODE

u0 = [0;2;0;1;0;3];

t0 = 0;

// time points of the model data

t=linspace(minval,maxval,numintervals);

// define the repressilator ODE

function dy=g(t,u)

dy(1) = -u(1)+a/(1+(u(6))^n)+a0;

dy(2) = -b*(u(2)-u(1));

dy(3) = -u(3)+a/(1+(u(2))^n)+a0;

dy(4) = -b*(u(4)-u(3));

dy(5) = -u(5)+a/(1+(u(4))^n)+a0;

dy(6) = -b*(u(6)-u(5));

endfunction

// return the value of the multivariate normal pdf

function val=mnpdf(x,mean,sigma)

k = size(mean,"r");

val=abs(det((2*%pi)^k * sigma))^(-0.5)*exp(-0.5*(x-mean)’*inv(sigma)*(x-mean))

endfunction

// computes the distance via the sum of squared differences

function mydiff=getSSdiff(x,y)

mydiff = deltas(popcounter+1)+1;

if size(x) == size(y) then

diff=(x-y);

mydiff = sum(diff .* diff);

end;

endfunction

// get the index in the array arr which contains the largest value <= th (using binary

search)

function ind = getmaxindex(arr,th)

ind = 1;

found = 0;

mid = ceil(length(arr)/2);

bottom = 1; top = length(arr);

while (found <> 1) // just to prevent infinite loops

if arr(mid) <= th then

if mid == length(arr) then

found = 1;

ind = mid;

elseif (arr(mid+1) > th) then

A. SCILAB CODE 127

found = 1;

ind = mid+1;

else

bottom = mid;

mid = ceil((mid + top)/2);

end

else

if mid == bottom then

found = 1;

ind = bottom;

end

top = mid;

mid = floor((bottom + mid)/2);

end

end;

endfunction

y=ode(u0,t0,t,g);//[1.0474206 1.7477874 1.4509635 0.6791915 0.1743489 0.6147745

0.2994606 1.5345684; 0.4437047 0.7159919 1.3118426 1.9396839 1.3564853 0.3901931

0.7139732 0.4825672]

//y=ode(u0,t0,t,g)+myrand; // assumed observed data for comparison

// Vector of particles (each row is one population)

// In reality, we don’t have to store all the intermediate populations, but they will

// be useful for looking at the evolution of the estimated distribution.

mysamplea = zeros(populations,numsamples);

mysamplea0 = zeros(populations,numsamples);

mysamplen = zeros(populations,numsamples);

mysampleb = zeros(populations,numsamples);

// vector of weights

weights = ones(populations,numsamples);

// just to assess if the code runs properly

randval = zeros(1,numsamples);

myls = zeros(numsamples);

// Main loop to compute the accepted parameters

while (popcounter < populations)

w = 0;

i = 1;

runcount = 0;

while i <= numsamples

if popcounter > 0 & i == 1 then

aa =

[mysamplea(popcounter,:);mysamplea0(popcounter,:);mysamplen(popcounter,:);mysampleb(popcounter,:)]

psd = 1/9*cov(aa’);

end;

// First population: just a typical ABC-rejection sample from the prior distribution

if popcounter == 0 then

// a = grand(1,1,’nor’,mu,sd);

a = grand(1,1,’unf’,800,1200);

128 A. SCILAB CODE

a0 = grand(1,1,’unf’,0,7);

n = grand(1,1,’unf’,0,4);

b = grand(1,1,’unf’,0,10);

else

// Second population and later: Choose one of the particles

// in the previous population at random, based on their weights.

// take a random value

randval(i) = rand();

// find which sample corresponds to this random number.

j = getmaxindex(cum,randval(i));

current_value =

[mysamplea(popcounter,j);mysamplea0(popcounter,j);mysamplen(popcounter,j);mysampleb(popcounter,j)]

// take a Gaussian sample centered on current_value

sampled = grand(1,’mn’,current_value,psd);

// these are now our proposed parameter values.

a=sampled(1); a0=sampled(2); n=sampled(3); b=sampled(4);

end

// Simulate a candidate dataset using the sampled parameter

cand=ode(u0,t0,t,g);

// metric: sum of squared differences

ls = getSSdiff(cand,y);

// if accepted, we store the result, including the distance

if ls <= deltas(popcounter+1) then

myls(popcounter+1,i) = ls;

mysamplea(popcounter+1,i) = a;

mysamplea0(popcounter+1,i) = a0;

mysamplen(popcounter+1,i) = n;

mysampleb(popcounter+1,i) = b;

i = i + 1;

end

runcount = runcount+1;

end

// normalize the weights

//if popcounter == 1 & i=1 then

// psd = cov(mysample’);

//end

// after the first population, the computation of the weights becomes more

complicated.

if popcounter >=1 then

for k=1:numsamples

den = 0;

// compute the numerator of the weight - currently, it’s uniform

num = 1/(400*7*4*10);

// sum for denominator

for l=1:numsamples

A. SCILAB CODE 129

old =

[mysamplea(popcounter+1,l);mysamplea0(popcounter+1,l);mysamplen(popcounter+1,l);mysampleb(popcounter+1,l)];

new =

[mysamplea(popcounter+1,k);mysamplea0(popcounter+1,k);mysamplen(popcounter+1,k);mysampleb(popcounter+1,k)];

den = den + weights(popcounter,l)*mnpdf(old,new,psd);

end

weights(popcounter+1,k)=num/den;

end

end

// normalize the weights

weights(popcounter+1,:) = weights(popcounter+1,:)/sum(weights(popcounter+1,:));

// Display the results of the current population

endtime = getdate(’s’);

mprintf("Population %i complete, total time elapsed now: %i seconds \n",

popcounter+1, endtime-starttime);

mprintf("Number of trials: %i \n", runcount);

[p,q] = min(myls(popcounter+1,:));

// Compute and display the distance of the "best guess" parameters from the known

data.

a=mysamplea(popcounter+1,q); a0=mysamplea0(popcounter+1,q);

n=mysamplen(popcounter+1,q); b=mysampleb(popcounter+1,q);

mprintf("Minimum distance: %f \n", getSSdiff(y,ode(u0,t0,t,g)));

// prepare parameters for the next population, if any.

starttime = endtime;

popcounter = popcounter + 1;

cum = cumsum(weights(popcounter,:));

runcounter(1,popcounter) = runcount;

end

This program generates the histograms in Figure 2.7 at time maxval = 5

of the linear equation y′ = −A ∗ y + 1 and its corresponding Riccati equation

z′ = −z2 + Az where A ∼ N(1,4), and using the change of manifold technique

strategy discussed in section 2.2.

//

// This program computes the histogram at time T=maxval of a logistic ODE with random r

// using two "charts" to avoid the problem of poles in finite time of the logistic ODE.

//

clear;

funcprot(0)

// parameters of the Gaussian distribution.

// for r

mu1=1;

sd1=2;

// for K (K is fixed, and equal to 1 at the moment)

130 A. SCILAB CODE

mu2=1;

sd2=0;

//minval=0 // lower bound of interval

maxval=5 // upper bound of interval

//interval=(maxval-minval)/100 // distance between consecutive data points

numofruns=1000; // number of samples.

// generate a sample from the normal distribution

myrand=grand(numofruns,1,’nor’,mu1,sd1);

//myrand2=grand(numofruns,1,’nor’,mu2,sd2);

seuil = 5;

bas = -5;

// initial parameters of the ODE. With our logistic ODE with K=1, we will encounter

// the problem of pole in finite time if the sampled r is positive.

t0=0;

//t=minval:interval:maxval;

z = zeros(1,numofruns);

for i=1:numofruns

function udot=g1(t,u)

udot = -myrand(i)*u+1;

endfunction

function udot=g2(t,u)

udot = -u^2+myrand(i)*u;

endfunction

startpoint = -1;

// Stay in logistic

//if (myrand(i)<0 & startpoint > 1/myrand(i)) then

//if ((myrand(i)<0 & startpoint > 1) | (myrand(i)> 0 & startpoint < 0))

if (myrand(i)>startpoint) then

u0 = startpoint;

z(i) = ode(u0,t0,maxval,g1);

//u0=-2;

else

// Convert to linear

//u0=-0.5;

u0 = 1/startpoint;

z(i) = 1 ./ ode(u0,t0,maxval,g2);

end

end

z1 = z;

for i=1:numofruns

A. SCILAB CODE 131

if z1(i) > seuil then z1(i) = seuil;

else if z1(i) < bas then z1(i) = bas;

end

end

end

clf();

y1 = linspace(0.01,5.01,100);

a1 = exp(-((y1-0)^(-1)-mu1)^2 ./(2*sd1^2));

b1 =(sqrt(2*%pi)*(y1-0)^2*sd1)^(-1);

c1 = a1.*b1;

xset("window",0);

clf();

histplot(100,z1);

//plot(y1,c1);

mtlb_axis([-1,1,0,1.5]);

//mtlb_axis([-3,3,0,1]);

xtitle("","Y","f(Y)");

axes = gca();

//axes.auto_ticks = ["off","off","off"];

//axes.x_ticks = tlist(["ticks", "locations","labels"],.. // continuation in next line

// [0 1 2 3 4 5], ["0", "1", "2", "3","4", "5"]);

//axes.y_ticks = tlist(["ticks", "locations","labels"],.. // continuation in next line

// [0 0.2 0.4 0.6 0.8 1 1.2], ["0","0.2","0.4","0.6","0.8","1"]);

//[0 0.1 0.2 0.3 0.4 0.5], ["0", "0.1", "0.2", "0.3","0.4", "0.5"]);

//axes.sub_ticks=[3,4];

axes.font_size=3;

axes.x_label.font_size=3;

axes.y_label.font_size=3;

z2 = 1 ./z;

for i=1:numofruns

if z2(i) > seuil then z2(i) = seuil;

else if z2(i) < bas then z2(i) = bas;

end

end

end

a2 = exp(-(y1-mu1) .^2 ./(2*sd1^2));

b2 =(sqrt(2*%pi)*sd1) .^(-1);

c2 = a2.*b2;

xset("window",1);

clf();

histplot(100,z2);

//plot(y1,c2);

mtlb_axis([-1,1,0,3]);

xtitle("","Z","f(Z)");

132 A. SCILAB CODE

axes = gca();

axes.font_size=3;

axes.x_label.font_size=3;

axes.y_label.font_size=3;

The following code produces the contour plots of the distance function ρ(θ)
for the harmonic oscillator x′ = −ay, y′ = bx in Figure 3.4a.

//

// This program draws the contour plot of the distance function Rho of the solution

// of the harmonic oscillator to the known data. This is done by computing Rho

// over a grid of test parameters within the support of the prior distribution.

//

clear;

clf();

funcprot(0);

// Time points where we have known data. We assume the intervals are regular.

minval=0; // lower bound of interval

maxval=3; // upper bound of interval

numintervals=7; // number of points (for the linspace)

// true values of the model parameters a and b

true_a=1.5; true_b=1.5;

// value of a and b in the ODE; equal to the true ones initially to generate

// the known trajectory, but this will be changed for each step.

a=true_a; b=true_b;

// initialize the differential system

t0=0;

u0=[1;0.5];

t=linspace(minval,maxval,numintervals);

// initialize the grid of points. Here, we assume that the support is [0,3]x[0,3], and

we have a 101x101 grid of points in the support for which we will compute the value

of Rho.

xx = linspace(0,3,101);

yy = linspace(0,3,101);

// setup harmonic oscillator differential system

function dy=g(t,u)

dy(1) = -a*u(2);

dy(2) = b*u(1);

endfunction

A. SCILAB CODE 133

// get the sum of squares difference / value of Rho

function mydiff=getSSdiff(x)

diff=(x-y);

mydiff = sum(diff .* diff);

endfunction

// generate the "reference trajectory" / known data

y=ode(u0,t0,t,g);

// produce a vector myls which will store all the Rhos

sizea = prod(size(xx));

sizeb = prod(size(yy));

myls = zeros(sizea,sizeb);

// this loop computes the value of Rho for each test parameter value

for i=1:sizea

for j = 1:sizeb

a=xx(i); b=yy(j);

proposed=ode(u0,t0,t,g);

myls(i,j)=getSSdiff(proposed);

end

end

// construct the contour map.

contour2d(xx,yy,myls,linspace(0,5,11));

// change thickness of one particular contour. Here we chose the 5th from the largest,

or where epsilon = 3.

tmp = gce();

curve = tmp.children;

curve(5).children.thickness = 3;

The following program, data.sce, produces the perturbed data which was

used in the Section 3.6. It gives the user three options:

(1) Add a small Gaussian error to each component of the solution of the

reference trajectory,

(2) Change the reference parameters when producing each point in the

perturbed trajectory.

The result is two sets of perturbed data, which is found in the arrays y1 and y2,

and the corresponding plots of these points. In this case, we used the competing

species model (3.7).

//

// This program was used to produce data using the two types of noise which were

// discussed in the first part of Section 3.6 in the text.

//

funcprot(0);

134 A. SCILAB CODE

// specify the times where the data is known

minval=0;

maxval=3;

numintervals=7;

t=linspace(minval,maxval,numintervals);

// reference values of the parameters

a=1; b=1.5;

new_a=a; new_b=b;

// initial point of the differential system

t0=0;

u0=[1;0.5];

function dy=g1(t,u)

dy(1) = a*u(1) - (u(1))^2 - 0.5*u(1)*u(2);

dy(2) = b*u(2) - 0.5*(u(2))^2 - 1.5*u(1)*u(2);

endfunction

function dy=g2(t,u)

dy(1) = new_a*u(1) - (u(1))^2 - 0.5*u(1)*u(2);

dy(2) = new_b*u(2) - 0.5*(u(2))^2 - 1.5*u(1)*u(2);

endfunction

// first option: add a small Gaussian noise to each entry.

myrand1=grand(2,numintervals,’nor’,0,0.1);

y1=ode(u0,t0,t,g1)+myrand1;

xset("window",0);

clf();

plot(y1(1,:),y1(2,:));

// second option: change the parameters randomly in between each two times.

y2=zeros(2,numintervals);

y2(:,1)=u0;

for i=2:numintervals

new = grand(1,’mn’,[a;b],[0.01,0;0,0.01]);

new_a = new(1);

new_b = new(2);

y2(:,i) = ode(y2(:,i-1),t(i-1),t(i),g2);

end

xset("window",1);

clf();

plot(y2(1,:),y2(2,:));

	Acknowledgments
	Introduction en français
	Conclusion en français
	Résumé long en français
	Introduction
	Chapter 1. Preliminaries
	1.1. Probability
	1.2. Differential Equations
	1.3. Higher-dimensional ellipsoids
	1.4. Five Main Examples

	Chapter 2. Law of the Solution at time t* of a Differential Equation with Random Coefficients
	2.1. An example in the linear case
	2.2. An example in the Riccati case
	2.3. Polynomial Chaos

	Chapter 3. Estimating coefficients of systems of differential equations: a first approach
	3.1. An example using a logistic model
	3.2. An overview of ODE coefficient estimation methods
	3.3. The rejection sampling algorithm
	3.4. An analysis of the rejection sample
	3.5. Improving the method
	3.6. Application to perturbed model data

	Chapter 4. Estimating coefficients of systems of differential equations: further approaches
	4.1. A Markov chain Monte Carlo method
	4.2. A Sequential Monte Carlo method

	Conclusion
	Bibliography
	Appendix A. Scilab code

