N

N

Modeling and control of server systems: application to
performance and dependability
Luc Malrait

» To cite this version:

Luc Malrait. Modeling and control of server systems: application to performance and dependability.
Automatic. Université de Grenoble, 2012. English. NNT: 2012GRENT100 . tel-01129094

HAL Id: tel-01129094
https://theses.hal.science/tel-01129094

Submitted on 2 Apr 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-01129094
https://hal.archives-ouvertes.fr

UNIVERSITE DE GRENOBLE

THESE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITE DE GRENOBLE
Spécialité : Automatique et Productique

Arrété ministérial : 7 ao(t 2006

Présentée par

Luc MALRAIT

These dirigée par Nicolas MARCHAND et Sara BOUCHENAK

préparée au sein du centre de recherche INRIA Grenoble Rhone-Alpes,

du laboratoire GIPSA-lab, département automatique

et de I'école doctorale Electronique, Electrotechnique, Automatique et
Traitement du Signal

Modeling and Control of Server Systems
Application to Performance and Dependability

These soutenue publiquement le 3 Juillet 2012,
devant le jury composé de :

Didier GEORGES, Président

Professeur a Grenoble INP

Gilles GRIMAUD, Rapporteur

Professeur a I'Université de Lille

Fabio GOMEZ-ESTERN AGUILAR, Rapporteur
Professeur a I'Université de Séville

Xiaoyun ZHU, Examinatrice

VMware Inc.

Sara BOUCHENAK, Directrice de thése

Maitre de conférences a I'Université de Grenoble
Nicolas MARCHAND, Co-Directeur de thése
Chargé de Recherche CNRS, GIPSA-Lab (Grenoble, France)

Acknowledgments

My first thought goes to my parents and my brothers, who continuously supported me
throughout the years. This achievement is also the fruit of their labor.

I want to express my deepest gratitude to Sara Bouchenak and Nicolas Marchand, who
supervised my thesis work. They provided me with the best working environment, and
I was very touched by their kindness.

I would like to thank the jury members, Didier Georges, Gilles Grimaud, Fabio Gomez-
Estern Aguilar and Xiaoyun Zhu for agreeing to review my thesis.

I also want to thank all the people who made this thesis possible.
Christian Commault for his help and patience.
Carlos Canudas-de-Wit for his guidance.

The members of the NeCS team and the control engineering department of Gipsa-Lab
from whom I have learned so much.

Chloé Codron for her support and all my dear friends.

Abstract

Server technology provides a means to support a wide range of on-line services and appli-
cations, such as web services, e-mail services, database services. However, their ad hoc
configuration poses significant challenges to the performance, availability and economical
costs of applications. In this thesis, we examine the impact of server configuration on the
central trade-off between service performance and service availability. First, we model
the behavior of single servers using fluid approximations. Second, we develop novel ad-
mission control laws of central server systems. We provide several control laws for differ-
ent combinations of quality-of-service and service level objectives. Among them, AM-% ,
the availability-maximizing admission control law, achieves the highest service availabil-
ity while meeting given performance objective; PM-% is a performance-maximizing ad-
mission control law that meets a desired availability target with the highest performance.
We evaluate our fluid model and control techniques on the TPC-C industry-standard
benchmark that implements a warehouse running on the PostgreSQL database server.
Our experiments show that the proposed techniques successfully improve performance
by up to 30 % while guaranteeing availability constraints. Furthermore, we extend this
work to distributed server systems, that are widely used by Internet applications in the
farm of server clusters and multi-tier systems. We present a distributed server model as
a non-linear continuous-time model using analogies with fluid transfer. We then state
an optimization problem for the control of distributed server systems. We provide an
admission control that allows to get the highest service availability while a target per-
formance level is guaranteed. Numerical evaluations of the proposed distributed model
and control are presented, and show that the optimal configuration of such systems is
not intuitive.

Contents

I

Context and Motivations

Introduction
1.1 Challenges and Background
1.2 Organization of the document
Background
2.1 Server systems
2.1.1 Client-server architecture
2.1.2 Session-based versus non session-based systems
2.1.3 Central servers versus distributed servers
2.2 Server workloado
2.3 Server admission control o
2.4 Quality of service e
2.4.1 Performance e
2.4.2 Availability
2.4.3 SLA . . . e
2.5 Open-loop vs. closed-loop control system
2.6 Summary L e e e

Related Work

3.1 General QoS managemento
3.1.1 Session-based admission control
3.1.2 Service degradationo
3.1.3 Service differentiation
3.1.4 Request scheduling oL

3.2 MPLcontrol e
3.2.1 Heuristic-based approaches
3.2.2 Model-based approaches
3.2.3 Linearcontrol e
3.2.4 Queuing theory approaches

3.3 Discussion

Motivations and Objectives

13

15
15
16

19
19
19
20
20
22
23
25
25
25
25
26
26

27
27
27
28
28
28
29
29
30
30
31
32

33

8 CONTENTS

4.1 Motivationso
4.1.1 Server workload variation 0oL
4.1.2 Impact of server control on performance
4.1.3 Impact of server control on availability

4.2 Objectives L

4.3 SUmMmaryo e e e e e e e e e e

IT Central Server Modeling and Control

5 Central Server Modeling
5.1 Methodology
5.2 Central server model
5.2.1 Model structure e
5.2.2 Model state variables.
5.2.3 Distinction between session-based and non session-based systems .
5.2.4 Model output variables
5.3 Summary e e e e e

6 Central Server Control
6.1 Problem statement: Trade-off between performance and availability
6.2 AM-%: availability-maximizing control
6.3 PM-%: performance-maximizing control
6.4 AA-PM-%: availability-aware performance-maximizing control
6.5 PA-AM-%: performance-aware availability-maximizing control
6.6 Summary e e e e

7 Central Server Experimental Evaluation
7.1 Experimental setup L
7.1.1 Estimation of throughputs
7.2 Model Evaluation
7.2.1 Model identification oo
7.2.2 Model validation
7.3 Control Evaluation
7.3.1 AM-€ evaluation
7.3.2 PM-€ evaluation
7.3.3 AA-PM-€ evaluation
7.3.4 PA-AM-€ evaluation
T4 Summary e e e e

IIT Distributed Server Modeling and Control

8 Distributed Server Modeling

39

41
41
42
42
43
44
45
46

47
47
47
49
50
50
51

53
53
54
54
54
55
56
57
60
63
64
65

67

69

CONTENTS

8.1 Methodology e
8.2 Distributed server model oo
8.2.1 Model structure
8.2.2 Model state variables.,
8.2.3 Model output variables,
8.3 Summary
Distributed Server Control
9.1 Motivation e e e
9.2 Availability-maximizing control of distributed servers
9.3 Discussion e e
9.3.1 Some hints to use the MPL*
9.3.2 On the saturated tiers assumption
10 Numerical Evaluation of Distributed Servers
10.1 Numerical setup L
10.2 dAM-% evaluation
IV Conclusions and Perspectives
11 Conclusion
11,1 Summaryo o e e e
11.2 Perspectives e

12 List of Publications

75
75
75
78
78
79

81
81
81

85

87
87
88

91

10

CONTENTS

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

4.1
4.2
4.3
4.4

5.1
5.2
5.3

7.1

7.2

7.3

7.4

7.5

7.6

7.7

Client-server architecture
Distributed server with n tiers
Flow of requests in a distributed server with n tiers.
Serial access of requests
Server Workload
Under-loaded server
Over-loaded server
Distributed server admission control
Closed-loop control scheme

Daily traffic volume to the 1998 world cup web site taken from[5]
Impact of server’s workload on throughput and latency
Impact of MPL on performance
Impact of MPL on availability

Model inputs/outputs
Accuracy of modeled abandonrate
Latency as a functionof N,

System behavior with a varying M PL and a fixed workload amount —
Real system (+) versus modeled system (solid line)
System behavior with varying M PL and workload amount — Real system
(+) versus modeled system (solid line)
System behavior upon workload mix variation — AM-%-based controlled
system versus non-controlled systemo
System behavior upon workload amount variation — AM-%-based con-
trolled system versus non-controlled system
System behavior upon quick workload amount variation — AM-%-based
controlled system versus non-controlled system
System behavior upon workload mix variation — PM-%-based controlled
system versus non-controlled systemo
System behavior upon workload amount variation — PM-%-based con-
trolled system versus non-controlled system

11

12

7.8

7.9

8.1
8.2

10.1

10.2

LIST OF FIGURES

System behavior upon workload amount variation — AA-PM-%-based

controlled system versus PM-%-based controlled system 63
System behavior upon workload amount variation — PA-AM-%-based

controlled system versus AM-%-based controlled system 64
Model inputs/outputs and internal states 71
Request flow in a three-tier distributed system 71

System behavior upon workload mix variation — dAM-%-based controlled
system vs. ad hoc controlled system 83
System behavior upon workload amount variation — dAM-%-based con-
trolled system vs. ad hoc controlled system 84

Part 1

Context and Motivations

13

Chapter 1

Introduction

1.1 Challenges and Background

A large variety of Internet services exists, ranging from web servers to e-mail servers [40],
streaming media services [18], e-commerce servers [4], and database systems [36]. These
services are usually based on the classical client-server architecture, where multiple
clients concurrently access an on-line service provided by a server, e.g. reading web
pages, sending emails or buying the content of a shopping cart. Such server systems
face varying workloads as shown in several studies [6, 13, 5|. For instance, an e-mail
server is likely to face a heavier workload in the morning than in the rest of the day,
since people usually consult their e-mails when arriving at work. In its extreme form, a
heavy workload may induce server thrashing and service unavailability, with underlying
economical costs. These costs are estimated at up to US$ 2.0 million/hour for Telecom
and Financial companies [19, 35].

A classical technique used to prevent servers from thrashing when the workload increases
consists in limiting the total number of concurrent client admitted to those servers. This
is also known as the multi-programming level (MPL) configuration of servers.

Existing solutions to server control follow different approaches. Some of them rely on ad
hoc techniques and heuristics, but do not provide any guarantee on the optimality of the
system configuration [9, 34, 31]. Other approaches apply linear control theory [38, 12].
This does unfortunately not capture the intrinsic nonlinear behavior of server systems.
Other solutions follow a queueing theory approach where the system can be accurately
modeled. But this is obtained at the expense of a hard model calibration process which
makes it unwieldy to use [41, 43, 37].

We believe that modeling server systems is necessary to provide quality-of-service (QoS)
guarantees. However, we argue that for the effective adoption of server modeling and
control, the models must accurately capture the dynamics and the nonlinear behavior

15

16 CHAPTER 1. INTRODUCTION

of server systems while being simple to deploy on existing systems.

In this thesis, we propose novel models and control laws for the on-line configuration
and reconfiguration of server systems to provide service performance and dependability
guarantees. We apply our solution first to central server systems, then to distributed
servers.

We present the design, implementation and evaluation of CONSER, our servers control
system. We apply a control engineering methodology in order to model and control the
QoS of server systems. We design and validate a non-linear continuous-time model of
central server systems from a fluid approximation and the observation of the system
dynamics. This model involves very few external parameters, which are easy to identify
and have a precise meaning. We design and implement non-linear feedback M PL control
laws for central server systems.

First, two variants of control laws are proposed. AM-% is an availability-maximizing
server control that achieves the highest service availability given a target performance
level objective. PM-% is a performance-maximizing server control that meets a desired
availability level objective with the highest performance. Furthermore, two additional
control laws are proposed for applying performance and availability optimization at
multiple levels, these are PA-AM-% and AA-PM-% laws.

An evaluation of CONSER is conducted on the TPC-C application, an industry-standard
benchmark implementing a warehouse, running on the PostgreSQL database server.
A wide range of application workload conditions was considered. The results of the
experiments conducted on central servers show that the proposed techniques provide
significant benefits on the performance and the availability of the controlled system
compared to ad hoc control solutions.

The thesis also proposes M PL control solutions for distributed server systems, i.e. sys-
tems consisting of multiple servers such as multi-tier systems and clustered servers. We
provide model and control solutions to guarantee QoS levels of distributed server sys-
tems. We design a nonlinear continuous-time model of distributed server systems and
apply optimal control theory to express the M PL configuration. We propose an instance
of M PL control law that that maximizes the availability of the system and guarantees
a performance level objective.

Numerical evaluations of the proposed model and control of distributed servers compare
the controlled system with ad hoc controlled systems, and shows that the former uses less
resources than the latter while providing better performance and availability guarantees.

1.2 Organization of the document

This thesis is organized in four main parts, respectively dedicated to presenting the
context and motivations of our work in Part I, the proposed central server modeling and

1.2. ORGANIZATION OF THE DOCUMENT 17

control in Part II, the proposed variants for modeling and control of distributed servers
in Part III, and our conclusions, perspectives and list of publications in Part IV. The
different Chapters constituting this document are as follows.

Part I. Context and Motivations

Chapter 2. Background. The background necessary to understand the rest of the
document is presented in Chapter 2. The Chapter first recalls the main architecture
of client-server computing systems, and describes how these systems organize in central
vs. distributed servers. It also discusses the workload of server systems, how it is charac-
terized, and how it dynamically varies over time. It then presents the quality-of-service
of such systems considering two aspects, namely performance and availability, before
introducing admission control techniques to provide quality-of-service guarantees.

Chapter 3. Related Work. A survey on the different strategies to manage servers
configuration in order to improve the quality-of-service (QoS) is presented in Chapter 3.
This Chapter first introduces general QoS management techniques, such as service degra-
dation, service differentiation, request scheduling. The Chapter then puts an emphasis
on admission control techniques, with a particular interest in M PL control. It thus
reviews different approaches in the related work such as heuristic-based approaches,
model-based solutions, linear control and queueing theory approaches.

Chapter 4 Motivations and Objectives. This Chapter first illustrates the dynam-
ics of server systems and their nonlinear behavior. It then illustrates the impact of server
M PL control on service performance and service availability, two antagonist quality-of-
service criteria. The Chapter then defines the objectives of our work.

Part II. Central Server Modeling and Control

Chapter 5. Central Server Modeling. A central server model is developed in Chap-
ter 5. This Chapter details the nature of the model input variables, state variables and
output variables. The Chapter then builds step by step the equations that govern the
interactions between the variables in the proposed model.

Chapter 6. Central Server Control. Central server M PL control is presented in
Chapter 6. This Chapter first states the objectives for the control design. Then four
feedback control laws are proposed. They take into account the trade-off between per-
formance and availability of server systems .

18 CHAPTER 1. INTRODUCTION

Chapter 7. Central Server Experimental Evaluation. The central server model
and control introduced in Chapter 5 and 6 are evaluated experimentally in Chapter 7.
This Chapter first describes the experimental setup. Then, the model parameters are
identified and the model is validated and compared with the real baseline system. The
evaluation of the proposed control laws is then described.

Part III. Distributed Server Modeling and Control

Chapter 8. Distributed Server Modeling. A distributed server model is developed
in Chapter 8. This Chapter details the nature of the model variables and builds, step
by step, the equations that govern their interactions.

Chapter 9. Distributed Server Control. Distributed servers M PL control is stud-
ied in Chapter 9. This Chapter first states the objectives for the optimal control design.
It then details the resolution steps for this problem. The Karush-Kuhn-Tucker necessary
conditions provide an explicit solution.

Chapter 10. Numerical Evaluation of Distributed Servers. The distributed
servers model and control introduced in Chapter 8 and 9 are evaluated numerically in
Chapter 10. The control evaluation compares the performance and availability of the
optimized system with an ad hoc controlled system.

Part I'V. Conclusions and Perspectives

Chapter 11. Conclusion. This Chapter draws the conclusions of this thesis. It also
discusses mid-term and long-term perspectives of this work.

Chapter 12. List of Publications. This Chapter lists the publications that present
the results of this thesis. This includes, among others, publications in IEEEE Trans-
actions on Computers, ACM SIGOPS Operating Systems Review, the European Con-
trol Conference (ECC), the IEEE/IFIP Dependable Systems and Networks Conference
(DSN).

Chapter 2

Background

The guarantee of the quality-of-service provided by Internet applications is a crucial
issue regarding the underlying economical and societal impacts. These applications rely
on server systems that host the service. In this Chapter, we present the necessary
background to understand the rest of the document. First, we describe server system
architectures. We then define server workload and admission control. Finally, we present
quality-of-service criteria and the feedback control concept.

2.1 Server systems

2.1.1 Client-server architecture

The client-server architecture is a classical model to build networked computing systems.
It is depicted in figure 2.1. Servers can provide some service whereas clients may request
a service. A Web server, for instance, is able to send web pages requested by clients over
the Internet. Clients and servers are hosted on different computers connected through a
communication network. In the following, we make no distinction between the computer
machine and the application hosted by that computer. Multiple clients may concurrently
access the same server.

S~ Server

Client request = = ~

n v

” Network

N
w

Figure 2.1: Client-server architecture

19

20 CHAPTER 2. BACKGROUND

2.1.2 Session-based versus non session-based systems

We consider two communication models that describe the interactions between clients
and servers: session-based systems and non session-based systems.

In session-based systems, a client may send several requests sequentially within the same
client session. Typically, when logging in a train ticket booking Web site, a client will
send a request and wait for the reply, repeating this process until he has purchased his
ticket. More generally, this model reflects that the flow of requests which is submitted
to a server depends not only on the number of clients that try to access the server, but
also on the server’s speed to handle requests.

In non session-based systems, clients who try to access the server are not willing to send
multiple requests. In this case, the flow of requests submitted to a server depends only
on the number of clients that try to access the server.

2.1.3 Central servers versus distributed servers

A central server is a system made of a unique server upon which the whole service is
based. Clients directly interact with the server by sending requests, as shown figure 2.1.

On the other hand, for scalability purposes, a server may be distributed into multiple
tiers. A distributed server is made of several servers interconnected by a local area net-
work. Here, the servers follow a multi-tier architecture, where each server is responsible
for a specific function. Server 1, server 2, ..., server n interact sequentially to build the
response to the client request. For instance, a front-end web server is responsible for
serving web pages, a middle-tier application server is responsible for the business logic of
the application, and a back-end database server is responsible for storing non ephemeral
data. Thus, server k may be seen as a client of server k£ + 1. Figure 2.2 illustrates such
a system.

. -~ - = - PR - N
. = - - ~ - - -

--

(7 (=— — ‘7 :
ey Rl Rl
\\ \‘ f 1
| 1

— M - M M M

Clnt

1 AY
\Server 1 Server k Server k+ 1 _ Server n/
~ P ~ --TT TS -=~ T TS e - -

S _-- ~-- ~o-"- ~--

-=~

Figure 2.2: Distributed server with n tiers

2.1.

SERVER SYSTEMS 21

More precisely, the following properties characterize such distributed server systems:

(P1)

(P2)

Requests arriving at tier 1 come from external clients. Requests arriving at tier k,
with £ > 1, come from tier kK — 1. Responses arriving to external clients come from
tier 1. Responses arriving at tier k, with & < n, come from tier k£ + 1. Figure 2.3
illustrates this property.

— -0 B B B -
I\HHI I\HHI I\HHI I\HHI

Client Server 1 Server k Server k+1 Server n

Figure 2.3: Flow of requests in a distributed server with n tiers

The handling of a request by tier k, with k£ > 1, is terminated when the associated
response is sent to tier £ — 1. The handling of a client request by a distributed
server is terminated when the associated response is sent to the client by the server
at tier 1.

A request being processed at tier k can generate several requests sequentially at
tier k + 1.

At any time, a request being processed at tier k can generate at most one request
at tier k + 1.

As a result of P(4), the number of concurrent requests at tier k& 4+ 1 is less or
equal than the number of concurrent requests at tier k. Figure 2.4 illustrates this
property. In this example, a request at tier k generates two requests at tier k + 1.
A connection is available when the process of a request, including the process of
the sub-requests, is terminated.

connection

connection
available request — svailable
’: P response 1 — taken
taken =0 request 2 . |=o° available
| ‘ ‘ ‘ ‘ ‘ ‘ response 2 ‘ ‘ ‘ ‘ taken
response - availabl
available — avatlable
\/ Server k Server k+1 v
time time

Figure 2.4: Serial access of requests

22 CHAPTER 2. BACKGROUND
2.2 Server workload

The server workload is characterized by the workload amount and workload mix that
we define in the following.

Workload amount. The server workload amount is the number of clients that try
to concurrently access the server. It is denoted as N. The workload amount may vary
over time. For instance, an e-mail service usually faces a higher workload amount in the
morning than in the rest of the day.

Workload mix. The server workload mix characterizes the nature of requests made
by clients. It is denoted as M. As an example, in an e-commerce application, the
workload mix can be characterized by read requests, to browse the catalog of products,
or by write requests, to perform a purchase. Actually, there is no existing precise way
to characterize a workload mix. This can be done, for instance, based on the ratio of
each type of request (e.g. TPC-C application [42]). The workload mix may also vary
over time. For example, when there is a special offer on a product, the proportion of
purchase requests will be higher.

Figure 2.5 illustrates how the server workload amount, i.e. the number of concurrent
clients N, and the server workload mix, i.e. the ratio of read, write and read/write
requests sent by the clients, can vary over time.

N Clients
Mix
PN Server
~read \ write _ -~ RN
] /
] \
— 'te b}
wie > ' Network - "
—read N S,
/’] 7/
___read ~ o 1
h \N - -

Figure 2.5: Server Workload

2.3. SERVER ADMISSION CONTROL 23

2.3 Server admission control

A server is able to concurrently handle multiple clients, this is known as a multipro-
grammed server (or multi-threaded server). However, a high number of concurrent
clients may induce server trashing. Admission control is a classical technique to prevent
a server from thrashing. In practice, servers have a static configuration parameter re-
sponsible for admission control. This parameter is the limit for the maximum number
of clients allowed to concurrently access a server, the Multi-Programming Level (M PL)
configuration parameter of a server. Above this limit, incoming client requests are re-
jected. Thus, a client request arriving at a server either terminates successfully with a
response to the client, or is rejected because of the server’s M PL limit. Therefore, due
to the M PL limit, among the N clients that try to concurrently access a server, only
N, clients actually access the server, with N, < M PL. Figures 2.6 and 2.7 illustrate
the case of admission control in a central server. In Figure 2.6, three clients try to con-
currently access the server while five concurrent accesses are allowed (M PL = 5). The
result is that admission control has no effect on the incoming client requests (N, = N).
In Figure 2.7, seven clients try to concurrently access the server while five concurrent
accesses are allowed (M PL = 5). The result is that two request are rejected (N, = 2)
because of admission control and five concurrent requests are accepted on the server
(Ne =5).

Clients Admission control Server
MPL =5
J——

Figure 2.6: Under-loaded server

In the case of a distributed server, admission control can be applied at each tier of the
architecture. Thus, similarly, a request arriving at tier k either terminates successfully
with a response to tier k — 1, or is rejected because of the k" server’s M PL limit. We
consider then the following property:

(P6) A client request rejected at tier k will cause the rejection of the mother request at
tier £ — 1, with £ > 1.

24 CHAPTER 2. BACKGROUND

Clients Admission control Server

Figure 2.7: Over-loaded server

As shown in figure 2.8, admission control may induce the rejection of requests at any tier
of the system. In this example, four clients are interacting with a two tiers distributed
server. Admission control limits the number of concurrent clients to four at tier 1
(MPL; = 4) and three at tier 2 (M PLgo = 3). The result is that one request is rejected

at tier 2 (N, = 1), four and three requests are respectively accepted at tiers 1 and 2
(Ne, =4 and N, = 3).

Clients Admission Server 1 Admission Server 2
control control

N, =

> >
\ /

o =1 Ne, =3

Figure 2.8: Distributed server admission control

2.4. QUALITY OF SERVICE 25

2.4 Quality of service

In this section, we focus describe the quality-of-service of server systems.

2.4.1 Performance

Service performance can be characterized by different metrics, which pertinence depends
on the application that is considered. The most relevant performance metrics of server
systems are usually the server throughput and the client request latency [32].

Server output throughput is the number of handled client requests per unit of time.
This metric is used to reflect the performance from the server-side, where a high through-
put is desirable.

Client request latency is defined as the time needed by the server to process a request.
The latency reflects the performance from the client side, where a low latency renders
the responsiveness of the system.

In the following, we will consider, in particular, the average latency as the performance
metric. It is denoted as L.

2.4.2 Availability

The availability of a service is characterized by its ability to be operational and to
serve clients. In the following, we consider client request abandon rate as a metric of
unavailability, the availability being 1 - abandon rate.

Request abandon rate is defined as the ratio between requests rejected due to admis-
sion control and the total number of requests that attempt to access a server. Request
abandon rate is denoted as a. A low request abandon rate (or abandon rate, for short)
is a desirable behavior that reflects service availability.

2.4.3 SLA

Service Level Agreement (SLA) is a contract negotiated between clients and their service
provider. Service performance and service availability are parts of the SLA. The SLA
specifies the service level objectives (SLOs) such as the maximum latency L,,q, and the
maximum abandon rate qu,., to be guaranteed by the service. For instance, a SLA
could state that 95% of client requests must be admitted to the service.

26 CHAPTER 2. BACKGROUND
2.5 Open-loop vs. closed-loop control system

An open-loop controller is based only on a mathematical model of the controlled system,
whereas a closed-loop controller uses the monitoring of the system outputs to continu-
ously adjust the control inputs (i.e. the tunable variables). This way, the outputs may
follow some references. This feedback allows, in particular, to guarantee performance
even with model uncertainties, and to reject possible disturbances. Figure 2.9 shows the
classical scheme of feedback control.

control

reference error input output
>€i> »{ Controller |—— System |——

Monitor

Figure 2.9: Closed-loop control scheme

2.6 Summary

In this chapter, we first presented the general organization of server systems, namely
their architecture and their communication model. We then defined the workload of
server systems in terms of workload amount and workload mix. We presented server
admission control as a means to control high loads of servers, and described quality-of-
service metrics to reflect server performance and availability. Finally, we introduced the
feedback control concept. This allowed us to describe the necessary background before
reviewing the related work in Chapter 3.

Chapter 3

Related Work

3.1 General QoS management

Previous work has noted that system configuration is a crucial issue for the performance
and availability of server systems [29, 30]. Much related work has been done in the
area of system QoS management [15], investigating techniques such as session-based
admission control, service degradation, service differentiation and request scheduling. In
the following, we review these techniques.

3.1.1 Session-based admission control

In session-based systems, applications rely on a communication model where a client
may send several requests sequentially within the same session. For instance, in an e-
commerce service, a client session consists of successive requests from the same client to
browse the on-line store and purchase goods. In that case, the client session terminates
after the client has confirmed the payment. For these systems, the completed session
throughput renders more effectively the quality-of-service than the request throughput.
Cherkasova and Phaal describe some characteristics of these systems and propose a
session-based admission control mechanism [10]. The proposed technique distinguishes
between incoming requests, depending on whether they belong to an existing session
or not. New sessions are accepted if the predicted server utilization remains below a
given threshold, otherwise, they are rejected. Different control policies derive from the
server utilization prediction accuracy. These techniques are evaluated numerically using
a simulation model of an e-commerce site.

27

28 CHAPTER 3. RELATED WORK
3.1.2 Service degradation

Service degradation is another technique of QoS management. Abdelzaher and Bhatti
describe in [2] three means of degrading a service content: lossy compression of images
included in web contents, reduction of the number of objects embedded in a web page and
reduction of local links. They renewed and derived a content degradation heuristic. The
heuristic gives, for a given ratio of web services, the expected performance improvement
in terms of reduction in server utilization. Considering two operating modes for a web
service, one serving the full content and one serving a degraded content, they define
a bottleneck resource utilization metric and implement a PI controller that maintains
this utilization metric at a given level by adjusting the ratio of incoming client requests
whose service content is degraded.

3.1.3 Service differentiation

Service differentiation techniques have been studied in order to provide different levels
of quality-of-service to different classes of clients. Abdelzaher et al. describe in [3] a
client prioritization policy based on web content adaptation. Using the same utilization
metric that is used in service degradation [2], they compute different utilization targets
for each class of clients, based on the current utilization of the system. They propose
then a decoupled control strategy which consists of using as many PI controllers as there
are client classes to meet the different utilization targets, by adjusting the web content
for each class. This approach is evaluated experimentally on a Apache web servers using
the httperf testing tool.

3.1.4 Request scheduling

Another QoS management technique is request scheduling. Server systems such as web
servers are applications able to process requests from concurrent clients. The order in
which these requests are processed by the server is usually determined by the scheduling
policy of the underlying operating system. Crovella et al. study in [11] the impact of
a request scheduling mechanism, at the application level, on service performance and
availability. They present a server architecture enhanced with request scheduling capa-
bilities and compare the impact of two scheduling policies on the mean response time.
Their experiments use the SURGE web workload generator[8] and show that the shorter-
job-first scheduling policy improves the average response time by up to 500% compared
to the first-in-first-out scheduling policy. As the shorter-job-first policy may lead the
server to a starvation state where long jobs (i.e. requests) are never processed, the au-
thors analyze the influence of the incoming request size distribution on the slowdown
represented by the ratio between request response time and service demand.

3.2. MPL CONTROL 29

3.2 MPL control

In the following, we briefly overview the work related to admission control, and par-
ticularly M PL control for server system management. The Multi-Programming Level
(M PL) is the maximum number of clients allowed to concurrently access a server. This
parameter is a static configuration parameter of a server and is known as MazClients
for the Apache web server, maz_connections for the MySQL database server. Different
works study the impact of this parameter on the performance and availability of server
systems and propose to tune it dynamically in order to meet service level objectives.

The improvement of server performance and availability is usually achieved by system
administrators using ad hoc tuning [9, 34]. Other approaches were studied such as
heuristic-based approaches, model-based approaches, linear control, and queuing theory
approaches. We discuss these approaches in the following.

3.2.1 Heuristic-based approaches

Menascé et. al. propose a heuristic for the management of the QoS of servers through the
determination of the multi-programming level (MPL) of servers using the hill-climbing
optimization technique [31]. They try to maximize a performance function by adjusting
the MPL and the maximum queue size of requests at each server. The performance
function is a weighted sum of three QoS metrics: the server-side response time, the
probability of rejection and the site throughput. They evaluate the proposed strategy
with the TPC-W benchmark and compare it against a non-controlled base system. They
show that a server system enhanced with the proposed framework is able to adapt its
configuration at high loads to meet service level objectives. Although performing well
in a variety of applications, the hill-climbing heuristic does not guarantee optimality.

A proxy-based approach for admission control and request scheduling is proposed by
Elnikety et al. [14]. A hill-climbing technique is also applied off-line to determine the
MPL value that maximizes the throughput of the system. An on-line prediction of the
server load is then performed to decide whether the incoming requests should be accepted
in the system. This admission control mechanism is enhanced with a shortest-job-first
request scheduling policy. A delay bound for longer requests is set to prevent them from
starvation. Experiments using the TPC-W benchmark show that this approach prevents
the system from thrashing and improves its performance under high load.

Other solutions to MPL identification were proposed specifically to some server tech-
nologies. In [39], Shroeder et al. present a heuristic based feedback control strategy
to automatically tune the M PL of a transactional database server. This consists in
decreasing the M P L value over time until the system throughput is close enough to the
maximum throughput. However, this technique does not apply to unknown and varying
workloads of database servers.

30 CHAPTER 3. RELATED WORK
3.2.2 Model-based approaches

Other approaches aim at modeling the system in order to characterize its capacity.
In [16], Heiss et al. conduct a simulation-based study and propose an analytic model
to adjust server M PL according to changing workloads. This model has one control
input that is the M PL, and one output that is a performance metric of the system.
It is assumed that the performance of the system can be modeled as a polynomial of
degree 2 according to the M PL. The coefficients of this polynomial are estimated on-line
using a recursive least-square estimator and the M PL that maximizes the parabola is
computed. This approach is correlated with the extremum seeking control algorithms
that are known to be very robust to system uncertainties. A parabola approximation
is used to represent the performance function. This restricts the use of this technique
to performance functions with a parabola shape and, thus, does not apply to criteria
such as request latency and abandon rate that usually underlie service level objectives
(SLOs) as perceived by clients.

Robertsson et al. [37] present a simple non-linear model of a server system for control
purposes. They design a PI controller that controls the server utilization by adjusting
the rate at which requests can be admitted to the system. A numerical evaluation of
the model is performed, as well as a numerical evaluation of the controlled system.

3.2.3 Linear control

Other works aiming at applying control theory to server systems appeared in the last
decade. A first approach consists in applying well-known linear control theory on
servers modeled as SISO (single-input single-output) or MIMO (multiple-inputs multiple-
outputs) black-boxes [38, 12]. This approach is often restricted to regulation problem,
that is maintaining a desired SLO. It is for instance not possible to model trashing phe-
nomena of saturating queues with linear models. Therefore, linear approaches are often
poor to control systems with nonlinear behavior.

In [38], admission control of a Lotus Notes server is derived. Architecturally, Lotus
Notes is a client-server system. Client software converts high-level user activity (mouse
clicks, etc.) into remote procedure calls (RPCs) that are sent to the server. The server
maintains a queue of these in-progress RPCs. Once an RPC is serviced, the appropriate
response is sent to the client. Clients operate in a synchronous manner - waiting for the
previous request to complete before sending a new request. The service level metric used
in this paper - that is the considered output to regulate - is the length of the queue of
in-progress RPC requests. The control consists in tuning the parameter that regulates
the number of users allowed to access the server at any time. The control is therefore
a session-level control as opposed to packet-level RPC objective. If a client is rejected,
no RPC from this client will be accepted. An ARMA model is derived [25] based on
experiments to derive a SISO transfer function of the system and a saturated integral

3.2. MPL CONTROL 31

control is applied to regulate the queue length of RPC requests according to a reference
value given by the administrator of the server.

A quite similar approach was taken in [12]. In this paper, an Apache web server is
considered and the SLOs - that is the output -considered here are the CPU and memory
utilization of the server. Concurrent access to a limited shared resource is known to
produce trashing phenomena similar to the ones considered in this thesis, however this
phenomena is not treated in [12]. The tuning parameters used to modify the CPU and
memory usage - that is the control of the Apache web server - are the maximum number
of clients that can connect to an Apache server, and the KeepAlive Timeout, which
determines how long an idle connection is maintained. The problem here is MIMO. For
this, an ARX model is derived [25] to obtain a state space representation of dimension
2 (actually, the outputs are the states). The SISO with two PI controllers and MIMO
with LQR control are compared to show the efficiency of the MIMO approach to regulate
CPU and memory usage to desired values.

3.2.4 Queuing theory approaches

Other approaches are based on non-linear models derived from queuing theory. Such
models are presented by Tipper et al. [41] and Wang et al. [43], where non-linear dynamic
models of queueing systems are derived from a fluid flow equation and steady state results
from the queueing theory.

In [23], Kihl et al. design a PI controller that controls the number of requests in the
system by adjusting the rate at which requests can be admitted to the system. The
model used to tune the controller parameters is a linearized version of the M/G/1 queue
model presented in [43]. A numerical evaluation is performed.

[21, 27] are other examples of the application of queuing theory models. However, they
are restricted to the control of performance and do not consider availability constraints.

In [21] a simple model based on the linearization of a queueing model around an equi-
librium point is presented. A self-tuning PI controller which aims at guaranteeing the
response time of a server system is then derived. An experimental evaluation is con-
ducted and shows that the closed-loop system behaves well around the equilibrium point.
However, when the workload mix varies, the system is not able to reach its objectives.

In [27] and [28], the same queueing model as [21] is used as a feed-forward queueing pre-
dictor in an adaptive control scheme. An experimental evaluation to compare the differ-
ent strategies is presented. It shows that the proposed queueing-model-based adaptive
control performs better than the PI control described in [21], particularly under varying
workloads. However, the queueing predictor relies on an off-line identification of the
mean service time. Thus, in case the actual workload highly differs from the workload
used to identify this parameter, one should expect the proposed queueing-model-based
adaptive control to behave like an adaptive-only control.

32 CHAPTER 3. RELATED WORK
3.3 Discussion

As discussed previously, several issues remain open in M PL control. First, we can no-
tice that model-based approaches, whether they are based or not on queueing theory,
provide a necessary framework to analyze and derive control strategies for server sys-
tems. However, the proposed models are either too simplistic to render performance and
availability metrics, or too complex to be robust enough to the workload variability and
its impact on the server behavior. Thus, there is a need for an analytic server model
which is generic enough to handle various characteristics of the workload and the server,
and which is able to provide an access to performance and availability metrics.

Second, none of the mentioned work provides a framework to guarantee both service
performance and availability objectives. Indeed most often, performance functions, that
are a mix of different server characteristics, are optimized through admission control but
the impact on the service performance and availability is never clearly controlled.

Finally, many strategies suffer from being over-parametrized or at least require that sev-
eral parameters are computed off-line, such as server capacity or service times. Some
attention should be given in that direction as these requirements are highly time con-
suming and prevent such solutions from being actually and quickly applied.

In this thesis, we precisely address these issues as described in the following Chapters.

Chapter 4

Motivations and Objectives

4.1 Motivations

In this Chapter, we first motivate our work by discussing server workload variation,
and showing the impact of server’s M PL control on service performance and service
availability. We then state the objectives of the thesis.

4.1.1 Server workload variation

As it was defined in Section 2.2, server workload is characterized by the workload amount,
i.e. the number of clients that try to concurrently access the server, and the workload
mix, i.e. the nature of the requests the clients send. The formal description of such
workloads is not straightforward [7], [33] since it deals with the human behavior. As we
can see in Figure 4.1, which represents the daily traffic volume to the 1998 football world
cup web site, the server workload amount is strongly varying over time. In this example,
we see that the number of requests received per day by the world cup web server can vary
up to 400% in one day. The highest peak, which occurs at 30th June, corresponds to the
game Argentina - England. We made an experiment to observe the impact of a server’s
workload on the throughput and the latency. The test bed comprises two dedicated
computers. One computer hosts the PostgreSQL 8.2.6 [36] database server and another
one hosts the client emulator. The TPC-C benchmark [42] is used to emulate a warehouse
system where a set of concurrent clients perform transactions on warehouses stored on a
database '. Figure 4.2 shows the impact of server’s workload amount on its performance
in terms of throughput and latency!. One can notice that when the workload amount
becomes too high, from 65 clients in this example, the latency is dramatically increasing
while the throughput is decreasing. This phenomena is known as trashing, and induces
service unavailability.

!Details on the underlying experimental test bed are given in Section 7.1.

33

CHAPTER 4. MOTIVATIONS AND OBJECTIVES

70 ¢ ‘ |]
|/
I
g 60 Start — J‘ [l ~End .
6 X |
o 50 r \ I 1
8 ‘
7] i
S 40+ El 1
= [
g |
« 30 r [1
9 I
P \
s 207 /
=
10 + N i
\J
S \7/\...,.,4/'\“//\‘/ . ~——)
May June July Aug

Figure 4.1: Daily traffic volume to the 1998 world cup web site taken from[5]

5 20
O Latency
+ Throughput
*, 3t 3
*
4k 1-1-.1 +* :: £y o116
3t + 1-****!
-l * 1.8"‘1F
+5 03
E +¥t* 8 880
8 3r + 8 12
g et o o ;
2 +1s g ©
[0}
[=2) “" 8o T
3. * o |, S
= + ° g o
= ‘j 0 o
H o 8
: 8
(T o go
1+ + ° -4
+
+ o
+
P 0028 © °
! g°890 o
i 00800°80
,#80000000000000890800™% |
0 10 20 30 40 50 60 70 80 920 100

Workload amount (#clients)

Figure 4.2: Impact of server’s workload on throughput and latency

4.1. MOTIVATIONS 35

4.1.2 Impact of server control on performance

A proxy-based approach was followed to be able to tune the concurrency on server side.
This proxy allows no more than M PL concurrent connections to the database server.
Figure 4.3 describes the impact of server’s M PL value on client request latency, when
the workload amount varies . Here, three values of M PL are considered, a low value (1),
a medium value (25) and a high value (75). The low M PL is very restrictive regarding
client concurrency on the server and thus, keeps the server under-loaded and implies a
low client request latency. In contrast, with a high M PL, when the server workload
amount increases client request latency increases too. Thus, a low M PL is desirable for
a low client request latency, i.e. a good service performance.

: : [«
: + MPL=1 : o9
10k L % MPL=25 | TR &Q,
: o MPL=75 : °§o°
- - : o]
R [3 S Oooo_
n :
> 5 08
e 2
9 b #
3 _D‘;?t}:
£y

0 20 40 60 80 100
Workload amount (#clients)

Figure 4.3: Impact of M PL on performance

4.1.3 Impact of server control on availability

Figure 4.4 describes the impact of M PL on client request abandon rate when the work-
load amount varies ' . A low M PL is very restrictive regarding client concurrency on
the server, and obviously implies a higher abandon rate compared to a high M PL which
accepts more clients. Thus, a high M PL is desirable for a low client request abandon
rate, i.e. a high service availability.

!Details on the underlying experimental tested are given in Section 7.1.

36 CHAPTER 4. MOTIVATIONS AND OBJECTIVES

1 T T T T
ool + mPL=1 |- AT U]
x MPL=25 5 5 3
0_8_ P I PRI
o MPL=75| : ‘ﬁmiﬂ“
? 07F - I ;#. i
>~ : : ""H :
e : : : 20N]
‘.q-)' 06 R ﬁ
e | L
g 05 +t{
c 04 SR t B I R €
3 4% : :
<L 03b s _.'!I-“,q. D R, g"’!
W i : gie
02 _‘ e B A ’x
+F : : "
S T R o }. """"""
: ; ; 53
0 20 40 60 80 100

Workload amount (#clients)

Figure 4.4: Impact of M PL on availability
4.2 Objectives

The previous observations showed that the server’s M PL and workload have a strong
influence on its quality-of-service. Whereas the server’s workload is difficult to charac-
terize, the server’s M PL is a tunable parameter. Thus it seems relevant to choose the
server’s M PL as a control parameter in order to fulfill QoS objectives. The observa-
tions also emphasize the nonlinearities that exist between the characteristic variables
of a server. Figures 4.3 and 4.4 show that performance and availability are antagonist.
A trade-off between performance and availability must be considered when acting on
server’s M PL. The control objectives have to take this behavior into account.

The objectives of our thesis are as follows:

e Design a model for central servers that is simple to use and which renders the
behaviors of server systems

e Design control laws that aim at guaranteeing QoS objectives in terms of perfor-
mance and availability

e Evaluate the proposed model and control laws experimentally on real settings

e Propose an extended model to handle more complex systems, such as distributed
servers

e Design control strategies for distributed servers

e Evaluate the proposed model and control for distributed servers

4.3. SUMMARY 37
4.3 Summary

In this chapter, we first presented our motivations to use the servers M PL as a dynamic
control variable to manage servers quality-of-service. We showed that server M PL has
a reciprocal impact on servers performance and availability. Then, we detailed our
objectives. In the following Chapters 5 and 6, we detail the design a central server
model and feedback control laws based on server M PL control.

38

CHAPTER 4. MOTIVATIONS AND OBJECTIVES

Part 11

Central Server Modeling and
Control

39

Chapter 5

Central Server Modeling

Mathematical modeling of server systems is not straightforward. A compromise between
empirical and first principles approaches has to be made. In this chapter, we present our
contributions in terms of a central server modeling. We describe first our methodology
and then develop the design of a general model.

5.1 Methodology

Numerous server models exist in the literature, but they are often too complex to be used
for control purpose, or too simple to render the behavior of such systems. We propose to
design a model from a first principle approach, enhanced with heuristic elements deduced
from observations. The goal is to get a description model that is useful for the design of
feedback control laws for server performance and availability. In that sense, the model
doesn’t need to render the microscopic phenomena involved in such systems. That is
the reason why we choose to build a continuous time model which captures the main
characteristics and dynamics of servers that reflect the state of the server in terms of
performance and availability.

Thus, we will consider all the variables of the system - that are most integers - as real
variables in R. This approximation usually has a low impact if the considered variables
take large values. The model variables can be divided into four classes.

Control inputs are the tunable parameters of a system.

Exogenous inputs represent the surrounding conditions that have an impact on
the system but which are not under control.

State variables are interdependent variables that are impacted by inputs.
Output variables are the measured or the controlled variables of a system, and

depend on the state of the system.

41

42 CHAPTER 5. CENTRAL SERVER MODELING

The approximation described above enables to write the infinitesimal variation of char-
acteristic state variables of the system with respect to time. Those variations can be
seen as fluid flows, e.g. client request flows in the present case; and a request queue on
the server is similar to a fluid tank [1]. The model is therefore built as a set of differential
equations - as for most physical systems in mechanics, physics, electricity, etc. - that
describes the time evolution of state variables. This approach is known to reproduce
the mean behavior of the system, in addition to some filtering of the measurements as
shown in section 7.1.

5.2 Central server model

5.2.1 Model structure

In the present case, we identify three state variables that describe and have an impact
on server performance and availability, namely the current number of concurrent client
requests in the server V., the server throughput 7, and the client request abandon rate
a. State variables are usually influenced by themselves and by input variables.

The inputs of the proposed model can be divided in two classes: controlled (also denoted
by control inputs) and uncontrolled inputs (denoted by exogenous inputs). The first class
includes the server M PL tunable parameter that can be used to control the admission
to the server. In the second class of input variables, we find the server workload amount
N and the server workload mix M.

In addition to input and state variables, the model has output variables such as the
average latency L to process a client request on the server. In the following, we describe
the proposed fluid model through the formulas of its state and output variables.

Exogenous
Inputs:

Server Outputs:
Control Input: N, L],

MPL —»

State: TO L » (v
a

Figure 5.1: Model inputs/outputs

5.2. CENTRAL SERVER MODEL 43

5.2.2 Model state variables

Among the N concurrent clients that try to connect to a server, M PL control autho-
rizes N, concurrent clients to actually enter the server, with 0 < N, < N and
0 < N, < MPL. It clearly means that the M PL is not a control in the classical
sense. If the server is not saturated, that is N < MPL, then the control M PL has
no effect on the system. The M PL acts as a saturation on the exogenous input N,.

Let cr(t,t+ dt) be the number of client connections created on the server between t and
t +dt, and cl(t,t + dt) be the number of client connections closed on the server between
t and t + dt.

Thus, a balance on N, between t and ¢ + dt gives

Ne(t+ dt) = Ne(t) + cr(t, t + dt) — cl(t, t + dt) (5.1)

Let T; be the incoming throughput of the server, measured as the number of client con-
nection demands per second. It comes that the number of connections created between
t and t + dt is

er(t,t+dt) = (1 —a(t)) - Ti(t) - dt (5.2)

where « is the abandon rate of the server.

Similarly, let T, be the outgoing throughput of the server, measured as the number of
client requests a server is able to handle per second. Thus, the number of connections
closed between t and t + dt is

cl(t,t +dt) = To(t) - dt (5.3)

Deriving from (5.1), (5.2) and (5.3), we have N,, the derivative of N,

Ne(t) = (1 - a(t)) - Ti(t) - Tolt) (5.4)

Moreover, we assume that the system reaches a steady state in a reasonably short period
of time A; this is particularly reflected in state variables outgoing throughput 7, and
abandon rate «. During this short period of time, the workload is relatively stable,
which is consistent with studies such as [5]. Thus, the dynamics of T, and a can be
approximated by first order systems through their derivatives as follows

where T, and & are the steady state values of respectively the outgoing throughput and
the abandon rate of the server.

44 CHAPTER 5. CENTRAL SERVER MODELING

The next step naturally consists in finding the expression of T, and @. A balance on the
number of served client requests (or outgoing requests) N, gives

No(t +dt) = Ny(t) + sr(t,t + dt)

where sr(t,t+4dt) is the number of served request between ¢ and ¢+dt. Since there are N,
concurrent clients on the server and the average client request latency is L, the number
of served requests during dt will be sr(t,t + dt) = %Ne. Thus, we get N, = %, that
is N

T=7

which is an expression of Little’s law [26].

By definition, & is equal to zero if N, is smaller than M PL, and & is equal to 1 —

if N = M PL. However, the stochastic nature of the client request arrival may lead to
situations where the measured average N, is smaller than M PL but where punctually,
the number of clients that try to access the server is actually higher than M PL, and thus,
some clients are rejected. We conducted an experiment on our test bed to observe the
evolution of the client request abandon rate when the server workload amount increases
and the M PL is equal to 25 '. The results are shown in Figure 5.2, which compares
the actual measured abandon rate with the naive model prediction of the abandon rate,
showing a mismatch between the two. In order to take this behavior into account, we

choose to write
_ Ne T,
MPL T;

This renders that the probability to reject a client connection is higher when the average
N, is close to MPL. Figure 5.2 shows that this improved method provides a more
accurate estimation of the abandon rate. Finally, it follows that

T1) = (Tm - %’?) (5.5)

-t (- H) on

5.2.3 Distinction between session-based and non session-based systems

In the case of a non-session based system, the incoming request throughput 7; is con-
sidered as an exogenous input.

In the case of a session based system, 7; must be considered as an internal variable
since it depends on the state of the system. Thus, one has to give the expression of T;
according to the inputs and the state of the system.

'Details on the underlying experimental test bed are given in Section 7.1.

5.2. CENTRAL SERVER MODEL 45

N
o
T

I D R A
)
P e Real system o
Naive model : o y

16/ mmmmm |mproved model| P S I 4 B

-
N
T

-
N
T

Abandon rate (%)

55 60 65 70 75 80
Workload amount (#clients)

Figure 5.2: Accuracy of modeled abandon rate

We define the Ly parameter as the ”think time” of the clients. This parameter represents
the time elapsed between the receipt by the client of a server response and the sending
of another request. The average time between arrivals of a client requests is then the
sum of the think time and the average latency of the accepted requests on the server,
that is (1 — a)L + L. Thus the incoming request throughput can be written as

N

T = m (5.7)

5.2.4 Model output variables

Now that we have defined the model state variables, the last step consists in expressing
the model output variable latency L. Latency obviously depends on the global load of
the server, i.e. the workload mix M and the number of concurrent clients on the server
Ne. We conducted an experiment on our test bed to observe the evolution of the client
request latency when the server workload amount increases ! . The server’s M PL is
set to 100, so that no client request can be rejected. Figure 5.3 describes the evolution
of latency L as a function of N,, for a given workload mix. One can see that a second
degree polynomial in N, is a good approximation of the latency L. Thus:

L(Ne, M, t) = a(M,t)N? + b(M,t)N, + c(M,t) (5.8)

!Details on the underlying experimental test bed are given in Section 7.1.

46 CHAPTER 5. CENTRAL SERVER MODELING

The parameter ¢ is positive as it represents the zero-load latency. a and b are also
positive since they model the processing time of requests.

25 ! ! ! ! ! !

Latency (s)

70

Figure 5.3: Latency as a function of N,

To sum up, the proposed fluid model is given by equations (5.4) to (5.8) that reflect
the dynamics of the state and outputs of server systems in terms of performance and
availability.

5.3 Summary

In this chapter, we first presented the methodology we used to handle the problem of
modeling server systems. We defined the model variables as input, output and state
variables. From a fluid flow equation and the Little’s law we derived a set of first order
differential equations that link these variables together. A distinction between session-
based and non session-based systems has been made as this characteristic has an impact
on the exogenous nature of the inputs. In the following Chapter 6, we use this model to
design and analyze feedback control laws for servers performance and availability. The
experimental evaluation of the proposed model is presented in Chapter 7.

Chapter 6

Central Server Control

6.1 Problem statement: Trade-off between performance
and availability

In the following, we study the trade-off between the performance and the availability
of server systems, and derive the optimal M PL control of server systems based on the
proposed fluid model, that is the optimal number of concurrent clients admitted to the
server with respect to a between the two QoS metrics.

We provide four variants of control laws. AM-% is an availability-maximizing server
MPL control that achieves the highest service availability given a fixed performance
constraint. Symmetrically, PM-% is a performance-maximizing server M PL control
that meets a desired availability target with the highest performance. In the present
case, service availability is measured as the client request acceptance rate (i.e. 1 - «),
and service performance is measured as the average client request latency (i.e. L).

AA-PM-€ and PA-AM-% are two other control laws that extend respectively PM-
% and AM-%as discussed in Sections 6.4 and 6.5 .

6.2 AM-%: availability-maximizing control

AM-% aims at guaranteeing a trade-off between service performance and service avail-
ability with the following properties:

(P1) the average client request latency does not exceed a maximum latency Ly, and
(P2) the abandon rate « is made as small as possible.

To that end, a feedback control law is proposed to automatically adjust the M PL server
control parameter in order to satisfy this trade-off. The basic idea behind this law is

47

48 CHAPTER 6. CENTRAL SERVER CONTROL

to admit clients in such a way that the average client request latency L is close (equal)
to Lmax. By construction, this maximizes the number of admitted clients N., which
induces a minimized abandon rate a.

A first approach could consist in solving Eq. (5.8) in such a way that L = Ly,ax. Although
accurately reflecting the system, such an approach is unwieldy since it requires the
knowledge of accurate values of parameter a, b and ¢ in equation 5.8, through an online
identification of these parameters since the workload may change over time.

We propose another approach which avoids this online identification of model’s param-
eters. It is a Lyapunov approach. First, let us assume that the dynamic of the load’s
variations is much smaller than the dynamic of T, and a. It follows:
L(N.) = aN2 +bN, + ¢
a(t) = a

To(t) =T,
We choose V(N,) = 2(L — Lyaz)? as a Lyapunov function candidate.
Then with (5.4) we get

V(N.) = (L — Linaz) (2aN. + b) (1 — M]\]ij> (T} — T)

Taking
N
MPL = 6.1
1+7, (L — Lmax) (6-1)

will give:

V(Ne) = =7, (L = Linas)*(T; — To)(2an +b)
In case of overload (T; — T, > 0), since 2aN, + b > 0, we have V(N,) < 0 for every
v, > 0. Invoking Lasalle’s Invariance principle, L globally asymptotically converges to

Lmam .

We also have to ensure that M PL takes positive finite values, that is 147, (L—Lmax) > 0.
This is guaranteed for v, < ﬁ

The proposed admission control technique requires a unique external parameter, that is
7, - This parameter has an impact on both convergence time of the control and stability
of the system.

In summary, it is interesting to notice that the feedback control law given in (6.1)
will reflect one of the following situations. If the current latency L is higher than L4,
property (P1) is not guaranteed and the control law will produce an M PL as a decreased
value of the current number of admitted concurrent clients N, (since (147, (L—Lmax)) >
1), which aims at meeting (P1). Symmetrically, if L is lower than Ly, property (P1)
holds but property (P2) may not hold, and the control law will produce an M PL as
an increased value of N, (since (1 + 7, (L — Lmax)) < 1), which aims at meeting (P2).
Finally, if L is equal to Ly,qz, both properties (P1) and (P2) hold.

6.3. PM-¢: PERFORMANCE-MAXIMIZING CONTROL 49

6.3 PM-%: performance-maximizing control

Similarly, PM-% aims at guaranteeing the following trade-off between service perfor-
mance and service availability where:

(P3) the client request abandon rate does not exceed a given maximum abandon rate

Omax,
(P4) with the lowest average client request latency.

In this context, (P4) will be ensured given (P3) if and only if the M PL converges to
the smallest value that guarantees @ < @unqz. It is obtained via a simple input-output
linearization approach [22], taking « as the output, to solve the problem

a = —1, (Oé - Oémax) (62)

with 7, > 0. Furthermore, since the workload remains relatively stable during a short
period of time, as stated previously, N, = 0. Then, from equations (5.4) and (5.6), we
get

a(t) = —%a(t) (1 _ MNT%> (6.3)

Thus, from Eq. (6.2) and (6.3) and with the following control applied to M PL, « will
converge to Qumaz

N,
MPL = —— ¢ (6.4)
a—7v (& — omax)

where 7/ = v, A.

We also have to ensure that M PL takes positive finite values, that is 04—7(’1 (—amax) > 0.
This is guaranteed for 7/ < —21

1—amax *

The proposed admission control technique requires a unique external parameter, that is
Y- This parameter has an impact on both convergence time of the control and stability
of the system.

In summary, it is interesting to notice that the feedback control law given in (6.4) will
reflect one of the following situations.

50 CHAPTER 6. CENTRAL SERVER CONTROL

6.4 AA-PM-%: availability-aware performance-maximizing
control

The AA-PM-% availability-aware performance-maximizing control law is an M PL con-
trol law that extends the previously presented PM-% law. Indeed, as we will see in
Chapter 7, Figure 7.7 illustrates the behavior of PM-% where the client request abandon
rate is kept below a service level limit while the request latency is minimized. However,
this may result in a situation where client request latency has a reasonable value (i.e. a
low value) whereas client requests are rejected. For instance, Figures 7.7(b) and 7.7(c)
respectively show that between the 14" and 37" minutes of the experiment, 10% of
client requests are rejected while request latency is below 8 seconds. During that period
of time, and if availability is prioritized over performance, availability could be maxi-
mized (i.e. rejection rate minimized) as long as performance meets a given service level
objective (i.e. request latency is below a limit). Then, as long as availability objective
is guaranteed (i.e. abandon rate is below a limit), performance is maximized.

Thus, AA-PM-% aims at guaranteeing the following trade-off between server perfor-
mance and availability, with a priority to availability as follows:

(P5) the client request abandon rate does not exceed a given maximum abandon rate

amax 9

(P6) furthermore, the client request abandon rate is minimized as long as request latency
does not exceed a given maximum latency L.y, and

(P7) the request latency is minimized as long as abandon rate reaches its limit qumax.

Therefore, the AA-PM-% control law takes into account two limits, a request abandon
rate limit and a request latency limit. This law consists in applying the AM-%-based
control when the latency is below its limit. Then if the load is too heavy to guarantee
both performance and availability constraints, AA-PM-% switches to the PM-%-based
control.

6.5 PA-AM-%: performance-aware availability-maximizing
control

Similarly, PA-AM-% extends the previously proposed AM-% law with service level
limits for both performance and availability, and a priority of performance over avail-
ability. Thus, PA-AM-% aims at guaranteeing the following trade-off between server
performance and availability:

(P8) the client request latency does not exceed a given maximum latency Lyax,

6.6. SUMMARY 51

(P9) moreover, the client request latency is minimized as long as request abandon rate
does not exceed a given maximum abandon rate qunax, and

(P10) the request abandon rate is minimized when the latency reaches its maximum
authorized limit.

Thus, PA-AM-% consists in first applying the PM-%-based control when the abandon
rate is below its limit. Then if the load is too heavy to guarantee both availability and
performance constraints, PA-AM-% switches to the AM-%-based control.

6.6 Summary

In this Chapter we first drew up the objectives of the proposed control strategies. Based
on these objectives, we built the AM-%control, that achieves the highest service avail-
ability given a fixed performance constraint, and the PM-%control, that achieves the
highest performance given a fixed service availability constraint. The design methods
we used in Sections 6.2 and 6.3 ensure the stability of the closed loop system for both of
these strategies. Two other control laws, namely AA-PM-%and PA-AM-%, that pro-
vide another compromise between performance and availability have been introduced.
The experimental evaluation of these control laws is presented in Chapter 7.

52

CHAPTER 6. CENTRAL SERVER CONTROL

Chapter 7

Experimental Evaluation: Central
Server Modeling and Control

The proposed central server fluid model and control laws introduced in Chapter 5 and
6 are evaluated in the present Chapter. The Chapter first describes the underlying
experimental setup, before presenting experimental evaluation results of modeling and
control.

7.1 Experimental setup

The evaluation of the proposed fluid model has been conducted using the TPC-C bench-
mark [42]. TPC-C is an industry standard benchmark from the Transaction Processing
Council that models a realistic database server application as a warehouse system where
clients request transactions on warehouses stored on a database server. TPC-C comes
with a client emulator which emulates a set of concurrent clients that remotely send re-
quests to the database server. The TPC-C client emulator allows to specify the number
of concurrent clients to launch (i.e. the workload amount N). It also specifies the client
think time, that is the inter-arrival time between two consecutive client requests. We
extended the client emulator in order to be able, on the one hand, to vary the workload
amount IV over time, and on the other hand, to vary the workload mix M over time. For
the latter extension, we considered two mixes of workload, one consisting of read-only
requests, and another consisting of a mix of read-write requests.

Our experiments have been conducted on a set of two computers connected via a
100 Mb/s Ethernet LAN, one computer dedicated to the database server and another
to the client emulator. The database server is PostgreSQL 8.2.6 [36]. The proposed
model was implemented using an online monitoring of the system which allows to main-
tain the state of the model. Well-known Kalman filtering techniques were therefore
applied [20]. Both client and server machines run Linux Fedora 7. The server machine

53

54 CHAPTER 7. CENTRAL SERVER EXPERIMENTAL EVALUATION

is a 3 GHz processor with 2GB RAM, while the clients’ computer is a 2 GHz processor
with 512MB RAM.

7.1.1 Estimation of throughputs

Some variables like throughputs are not directly accessible on the system. Indeed,

throughputs corresponds to a fluid-based approximation of discrete phenomena. Through-
puts are therefore estimated using the measurement of the amount of the corresponding

discrete variable that are available. For instance, the output throughput 7, is estimated

using the number of connections ¢l that are release after client request termination. Sim-

ilarly, the input throughput is deduced using the number of new connections cr for new

client requests. Denoting generically T, a throughput and ¢ the corresponding discrete

variable, we have the following equation:

T.=c

If T, can not be measured, ¢ is usually simply accessible. Therefore, we build the
following classical observer:

T. = é+Li(c—2¢)

¢ = Lo(c—¢)

where T, and ¢ represent the filtered estimated values of T, and ¢. The gain L = (Lq Lo)
can then be tuned using the optimal framework as in [20]. A discretized version of the
observer can be used for implementation purpose. Usually, tuning the cut frequency
of the filter is not difficult since ¢ corresponds to variables with fast changes (e.g. the
instantaneous number of connections is rapidly varying) while the whole dynamics of
the server remains quite slow. It is therefore easy to smooth ¢ without any influence on
the closed loop server control.

7.2 Model Evaluation

7.2.1 Model identification

Figure 7.1 describes the case of an open loop system where the workload amount N trying
to access the database server is fixed (to 100 clients) and where the M PL value of the
server varies (see Figure 7.1(a)). Figures 7.1(b), 7.1(c) and 7.1(d) show the evolution
over time of respectively the number IV, of concurrent clients admitted in the server, the
outgoing throughput T, and the abandon rate a, for both the real system (+) and the
model (solid line).

7.2.

MODEL EVALUATION

MPL.

80

700
601
501
=® 40t
30+

201

55

o 1 2 s p 5 6 1 2 s P 5 6 7
time (h) time (h)

(a) Varying M PL with a fixed workload amount (b) Admitted concurrent clients

o
3

#

4
o

oS
~

rejection rate (%)
o
o

Throughput (req/s)

oS
o

o

1 2 s 4 s 6 7
time (h)

(¢) Throughput

(d) Abandon rate

Figure 7.1: System behavior with a varying M PL and a fixed workload amount — Real
system (+) versus modeled system (solid line)

Results show that the model accurately reflects the behavior of the real system. For in-
stance, we can observe a thrashing phenomenon of the server when T,, decreases whereas
N, increases. And the model is able to render that behavior, which would not be possible
without an over-linear term with respect to N, in Equation (5.8).

7.2.2 Model validation

Figure 7.2 illustrates the case of a dynamic open loop system where both the workload
amount N and the server M PL vary over time (see Figure 7.2(a)). Figures 7.2(b), 7.2(c)
and 7.2(d) present the evolution over time of respectively the number N, of concurrent
clients admitted in the server, the outgoing throughput 7, and the abandon rate «, for
both the real system (+) and the modeled system (solid line).

Results show that the model is able to render the dynamic behavior of the real system.

56 CHAPTER 7. CENTRAL SERVER EXPERIMENTAL EVALUATION

o 1 2 3 4 5 o 1 2 3 4 5 6
time (h) time (h)

(a) Varying M PL and workload amount (b) Admitted concurrent clients

o
~

o
0
&

o
w

@ S
=3 E
5] ° 0.25
= ©
3
o c
5 g
g s
£ ©
£
[, +
» ‘
0 1 2 3 4 5 6 2 3
time (h) time (h)
(¢) Throughput (d) Abandon rate

Figure 7.2: System behavior with varying M PL and workload amount — Real system
(4) versus modeled system (solid line)

7.3 Control Evaluation

This section presents the results of the evaluation of the implemented feedback con-
trollers presented in Chapter 6 when applied to the PostgreSQL database server that
runs the TPC-C benchmark. The results of the experiments conducted with the AM-
% availability-maximizing controller are presented in Section 7.3.1, and then the results
of the PM-% performance-maximizing controller are described in Section 7.3.2.

We used the same experimental environment as the one described in Section 7.1. The
proposed controllers were deployed as follows. A proxy-based approach was followed
to implement the AM-% and PM-% controllers where a proxy stands in front of the
database server to implement real-time feedback server control.

7.3. CONTROL EVALUATION 57

7.3.1 AM-% evaluation

In this section, we evaluate the proposed AM-% availability-maximizing feedback con-
troller presented in Section 6.2. Here, we consider a performance constraint limiting
the maximum average client request latency to L. = 8s. To ensure the stability of
the controller, we initialize AM-¢ with 7, = 0.1. This value satisfies the constraint
v, < ﬁ obtained in Section 6.2, and is a compromise between responsiveness and
stability.

The role of AM-% is thus to guarantee that performance constraint while maximizing
service availability, through on-line feedback control of the server M PL. We use two
scenarios to evaluate this controller, each one illustrating a variation of one of the two
exogenous input variables of the system, i.e. the first scenario considers a changing
workload mix M, and the second scenario handles a varying workload amount N.

AM-%¢ with workload mix variation

Figure 7.3 describes the first scenario where the workload mix varies from M1 to M2
twice (c.f. Figure 7.3(a)), while the workload amount N is of 80 clients. The workload
mix M1 consists of read-only requests while the workload mix M2 generates read-write
requests. The average request processing time differs from one mix to another. As an
example, when 10 clients enter the system, the average processing time with mix M1 is
0.23s and the one with mix M2 is 0.55s. Figures 7.3(d), 7.3(b) and 7.3(c) present the
variation over time of respectively the server M PL, the average client request latency
and the client request abandon rate, comparing two ad hoc controlled base systems, the
first one with M PL = 25 and the second one with M PL = 40, with a closed loop-based
controlled system. Notice that the sudden change of MPL after the 10th, 20th and 30th
minutes correspond to workload mix changes, which also has an impact on the latency
and abandon rate.

Results demonstrate that the AM-% controller is able to dynamically adjust M PL in
order to guarantee the latency performance constraint while keeping the service avail-
ability to its maximum, with an abandon rate minimized to 0% with M1 and to 10%
in average with M2. Whereas none of the two ad hoc controlled base systems is able to
guaranty the QoS, with a latency overhead of up to 25% with ad hoc control 2 and an
abandon rate overhead of up to 28% with ad hoc control 1.

AM-¥¢ with workload amount variation

Figure 7.4 presents another dynamics of the system, that is the variation of the server
workload amount N over time (c.f. Figure 7.4(a)) when the workload mix remains at
M?2. Figures 7.4(d), 7.4(b) and 7.4(c) present the variation over time of respectively
the server M PL, the average client request latency and the client request abandon rate,

58 CHAPTER 7. CENTRAL SERVER EXPERIMENTAL EVALUATION

14 : : : :
Latency with ConSer
ol Latency with ad—hoc control 1
ol Latency with ad—hoc control 2
IIIIIII Lmax
10
X
E z
° >
] 2
k4 2
= :
0 5 10 15 20 25 30 3 20
Time (min) Time (min)
(a) Workload mix (b) Latency
40 : : : : : 70 - - - -
—— Abandon rate with ConSer —— MPL with ConSer
35 = Abandon rate with ad—hoc control 1 1 6o|| " =r=" MPL with ad-hoc control 1
Abandon rate with ad—hoc control 2 MPL with ad—-hoc control 2
30 .
g
P 25|
(E —
201 o
5 =
©
& 15
Q
<
10 [k~
5
ol 0

0 5 10 15 20 25 30 35 40

Time (min) Time (min)
(¢) Abandon rate (d) MPL of controlled system

Figure 7.3: System behavior upon workload mix variation — AM-%-based controlled
system versus non-controlled system

comparing two ad hoc controlled base systems with the controlled system. Notice that,
due to TPC-C client think time, the number of active clients at any given time may be
different from (lower than) the actual load generated by TPC-C client emulator at that
time. Results show that the controlled M PL is able to adjust its value to the optimal
value so that the performance constraint is guaranteed. Whereas in the case of the ad
hoc controlled system 1, the latency grows up to 11.5 s, with an overhead of up to 44 %
compared to the controlled system. The ad hoc controlled system 2 allows to guaranty
the performance constraint but the abandon rate grows up to 40 %, with an overhead
of up to 14 %.

In the controlled system, the abandon rate is maintained at 0% with up to 70 clients.
Then, the abandon rate increases with the increase of concurrent clients in the system,
to attain its highest value when the number of clients is maximum, in order to keep
latency below the target maximum latency. Notice that at the end of the experiment
(between the 40th and 50th minutes), it seems justifiable to have a high abandon rate

7.3. CONTROL EVALUATION 59

100 14 . .

%l — Latency with ConSer
_ 12 Latency with ad—hoc control 1
2 80r Latency with ad—-hoc control 2
) 10 i
5 70 I'max
£ —_
= 6or <L
=1 >
2 so0f 2
£ s
o 40f ©
]
< 30
<
o
= 20

10f

0

0 10 20 30 40 50

Time (min) Time (min)
(a) Workload amount (b) Latency

I
S

—— MPL with ConSer
6ol == MPL with ad-hoc control 1
MPL with ad-hoc control 2

= Abandon rate with ConSer
----- Abandon rate with ad-hoc control 1
Abandon rate with ad—hoc control 2

)
a

Abandon rate (%)
3 & 8 & 8
MPL

o

0 10 20 30 40 50

0 10 20 30
Time (min) Time (min)
(¢) Abandon rate (d) MPL of controlled system

Figure 7.4: System behavior upon workload amount variation — AM-%-based controlled
system versus non-controlled system

since latency attains its maximum authorized value (c.f. Figure 7.4(d)) and client request
rejection is necessary at that time to guaranty the latency constraint.

AM-%¢ with sudden workload amount variation

Figure 7.5 presents the behavior of the system for a quick variation of workload amount
(c.f. Figure 7.5(a)) when the workload mix remains at M1. Figures 7.5(d), 7.5(b) and
7.5(c) present the variation over time of respectively the server M PL, the average client
request latency and the client request abandon rate, comparing the non-controlled base
system with the controlled system. Results show that the controlled M PL is able to
adjust its value to the optimal value so that the performance constraint is guaranteed.
Whereas in the case of the non-controlled system, the latency grows up to 17 s, with an
overhead of up to 110 % compared to the controlled system. In the controlled system,

60 CHAPTER 7. CENTRAL SERVER EXPERIMENTAL EVALUATION

the abandon rate is mainained at 0% until the workload amount changes (i.e. during the
first half of the experiment).

100 : — Latency with control '

Workload amount (#clients)
Latency (s)

[5 10 15 20
Time (min) Time (min)

(a) Workload amount (b) Latency

I
S

)
a

©
S

N
o

il [
= Abandon rate with control =
= Abandon rate without control

Abandon rate (%)
a8

=)

o
o

10 15 20 0 5 10 15 20
Time (min) Time (min)

o

S)

o
o

(¢) Abandon rate (d) MPL of controlled system

Figure 7.5: System behavior upon quick workload amount variation — AM-%-based
controlled system versus non-controlled system

7.3.2 PM-¥ evaluation

In this section, we evaluate the proposed PM-% performance-maximizing feedback con-
troller presented in Section 6.3. Here, we consider an availability constraint limiting
the maximum client request abandon rate to qne = 10%. To ensure the stability of
the controller, we initialize PM-% with 4/ = 0.3. This value satisfies the constraint
v < = O:élmax obtained in Section 6.3, and is a compromise between responsiveness and

stability.

The role of PM-% is thus to guarantee this availability constraint while maximizing
service performance, through on-line feedback control of the server M PL.

7.3. CONTROL EVALUATION 61

PM-%¢ with workload mix variation

Figure 7.6 presents the variation of system behavior and dynamic control when the
exogenous input variable of workload mix M changes. In Figure 7.6(a), the workload
mix varies from M1 to M2 two times when the workload amount N is of 80 clients. The
workload mix M1 consists of read-only requests while the workload mix M2 generates
read-write requests. Figures 7.6(d), 7.6(b) and 7.6(c) present the variation over time
of respectively the server M PL, the client request abandon rate and the average client
request latency, comparing two ad hoc controlled base systems with a controlled system.
Here again, we notice a sudden change in the MPL when the workload mix suddenly
changes, with an impact on the latency and abandon rate. Results demonstrate that the
PM-% controller is able to dynamically adjust M PL in order to guaranty the abandon
rate constraint while keeping service performance to its maximum, with an average
latency minimized to 4 s with M1 and to 6 s with M2. Whereas none of the two ad hoc
controlled base systems is able to guaranty the QoS, with a latency overhead of up to
66% with ad-hoc control 2 at 14th and 35th minute, and an abandon rate overhead of
up to 250% with ad hoc control 1 at 15th and 41th minute.

40

T T T —x
Abandon rate with ConSer

35h == Abandon rate with ad—hoc control 1
ol = = = Abandon rate with ad—hoc control 2

Workload mix
Abandon rate (%)

0 5 10 15 20 25 30 35 40
Time (min) Time (min)

(a) Workload mix (b) Abandon rate

— Latency with ConSer —— MPL with ConSer
1l == Latency with ad-hoc control 1 : 1 6o =" MPL with ad-hoc control 1
- = = Latency with ad—hoc control 2 = = =MPL with ad-hoc control 2

=
-

MPL

— T R - - -

0 5 10 15 20 25 30 35 40 [5 10 15 20 25 30 35 40
Time (min) Time (min)

(c¢) Latency (d) MPL of controlled system

Figure 7.6: System behavior upon workload mix variation — PM-%-based controlled
system versus non-controlled system

62 CHAPTER 7. CENTRAL SERVER EXPERIMENTAL EVALUATION

PM-%¢ with workload amount variation

Figure 7.7 shows the variation of the system behavior with an increasing workload
amount (c.f. Figure 7.7(a)) and a constant workload mix of read-write requests. Fig-
ures 7.7(d), 7.7(c) and 7.7(b) present the variation over time of respectively the server
MPL, the average client request latency and the client request abandon rate, compar-
ing the non-controlled base system with the controlled system. Results show that the
controlled M PL is able to adjust its value to the optimal value so that the availability
constraint is guaranteed. We can notice that before the 15th minutes of the experiment,
the controlled system does not reject any request since too few clients are trying to
connect to the server. In the case of the ad hoc controlled system 1 (respectively the ad
hoc controlled system 2), the abandon rate grows up to 40 % (respectively 32%), with
an overhead of up to 400 % (respectively 320%) compared to the controlled system.

100 40 T T . . -
" —— Abandon rate with ConSer I
355 v Abandon rate with ad—hoc control 1 u iH
@ sof 1 Abandon rate with ad-hoc control 2| ui§ %
5 Ly p—) Su-d
L 1f = max o
< EYd
= eof e® s
5 © :
B 40p £
o Q
< 30p <
5
= 20
10(-
° i i i i
[10 20 30 40 50
Time (min) Time (min)
(a) Workload amount (b) Abandon rate
14 , , 70 , , ,
—— Latency with ConSer —— MPL with ConSer
12 = Latency with ad-hoc control 1 : 6o =" MPL with ad-hoc control 1
Latency with ad-hoc control 2 MPL with ad—hoc control 2
10(- v 3 50f ;
@«
2 gl 4 40
5 g
5 by
g o oy o =l
e S A 1 - L [Y SRR, SUPUP P PE ey | F |/ .1 | S
4t 20t
2t 10f
[e B

0 10 20 30 40 50 0 10 20 30 40 50

Time (min) Time (min)
(c¢) Latency (d) MPL of controlled system

Figure 7.7: System behavior upon workload amount variation — PM-%-based controlled
system versus non-controlled system

7.3. CONTROL EVALUATION 63

7.3.3 AA-PM-¥ evaluation

We conducted experiments with AA-PM-% that are presented in Figure 7.8. This figure
shows the variation of the system behavior according to an increasing workload amount
(cf. Figure 7.8(a)) and a constant workload mix of read-write requests. The results show
that while AA-PM-% provides similar latency guaranties as PM-% (cf. Figure 7.8(c)),
the former is also able to improve service availability compared to the latter (cf. Fig-
ure 7.8(b)). Indeed, between 15th and 30th minute, PM-% throws away 10 % of client
requests against 0% for AA-PM-%. The performance degradation during this period
remains low with a 25 % overhead on the latency in average with AA-PM-%.

100 ‘ ‘ ‘ ‘ 40 : : :
—— Abandon rate with PM-C
or 85 1mm Abandon rate with AA-AM-C
@ sot
c 30|
L 7o} =
2 8
= 6ot @ 2
S ©
% 501 é 20t
b 4or G 15}
e} Q
< 30r <
5 B
= 20t
10f S
o ; ; ; ; o
0 10 20 30 40 50) 10
Time (min) Time (min)
(a) Workload amount (b) Abandon rate
14 : : 70 ‘ ‘ ‘ ‘ T
—— Latency with PM-C 3
1ol == Latency with AA-PM-C 601 : : [
--aL il
max dy
10} 501 R
— !IYs! ,',‘!‘n v
n L) -1 -
Bk e Al _, 4of ‘,,!i
o o ' 2
5 = PETELr Y]
w o 30[- P v
— !
.
'
4F 20r Skt
2 10} P
0 i i i i 0 = i i i i
) 10 20 30 40 50) 10 20 30 40 50
Time (min) Time (min)
(¢) Latency (d) MPL of controlled system with AA-PM-%

Figure 7.8: System behavior upon workload amount variation — AA-PM-%-based con-
trolled system versus PM-%-based controlled system

64 CHAPTER 7. CENTRAL SERVER EXPERIMENTAL EVALUATION

7.3.4 PA-AM-¥ evaluation

We conducted experiments with the PA-AM-% controller and we present their results
in Figure 7.9. This figure shows the variation of the system behavior according to an
increasing workload amount (c.f. Figure 7.9(a)) and a constant workload mix of read-
write requests.

Here, PA-AM-% specifies that latency should not exceed Liyax = 8s and is reduced as
long as abandon rate remains below apax = 10%. Figure 7.9(a) shows that the server
workload amount is increasing over time while the workload mix remains at M 2. Figures
7.9(b) and 7.9(c) show that during the first 40 minutes of the experiment the abandon
rate with PA- AM-% remains below 10% while the latency is slightly improved compared
to AM-%. Indeed, latency may be reduced by up to 54%.

100 14 ; ;
—— Latency with AM-C
of 1ol = Latency with PA-~AM-C
% 80 1 === Lmax
% 701 10
3 —
= 6of L
3 >
8 s g
o aof 3
@
S ot
5
= 200
1of
% 10 20 3 20 50 % 10 20) 20 50
Time (min) Time (min)
(a) Workload amount (b) Latency
40 ; ; ; 70
—— Abandon rate with AM-C
35 1= Abandon rate with PA-AM-C 601
30+
— 50
X
=~ 251
Q
© _, 4of
c 20r o
§ . = 30 § gt
g 15 A \ .ij" 1."
<10 ; LTS 201 : "s""i":"!
o =y = TN, Y
i Wt By AR
10t Y o R
5 “|1| : . h;:"#‘!&‘lﬂ'l'r v
[1 0 oIl L Lelis i : :
0 10 20 30 0 10 20 30 40 50
Time (min) Time (min)
(¢) Abandon rate (d) MPL of controlled system with PA-AM-%

Figure 7.9: System behavior upon workload amount variation — PA-AM-%-based con-
trolled system versus AM-%-based controlled system

7.4. SUMMARY 65
7.4 Summary

In this Chapter we have experimentally evaluated the model developed in Chapter 5
and the control laws designed in Chapter 6. We first identified the model parameters
using an input-output data set. We successfully validated the proposed fluid model and
control laws to dynamically control an on-line database server with various scenarios.

66

CHAPTER 7. CENTRAL SERVER EXPERIMENTAL EVALUATION

Part 111

Distributed Server Modeling and
Control

67

Chapter 8

Distributed Server Modeling

8.1 Methodology

In this Chapter, we extend results of the previous Chapters to systems with multiple
servers, such as multi-tier distributed servers (c.f. Section 2.1.3). Whereas using fluid
approximation to model a server is rare in the literature and quasi restricted to linear
approximations, as far as we know, this thesis is the first study to derive a fluid model for
multi-tier servers. This chapter proposes a dynamic model of multi-tier server systems
based on the model proposed in the previous Chapter. Using fluid approximations, we
derived differential equations that allow to render the of such systems.

8.2 Distributed server model

8.2.1 Model structure

A multi-tier server system consists in a series of n servers serially connected through
a communication network. Here, external clients send requests to the front-end server,
which itself acts as a client of a back-end server (see Figure 8.1). As a reminder of
Sections 2.1.3 and 2.3, the following properties characterize such systems:

(P1) Requests arriving at tier 1 come from the clients. Requests arriving at tier k, with
k > 1, come from tier k — 1. Responses arriving at the clients come from tier 1.
Responses arriving at tier k, with & < n, come from tier k + 1 (see Figure 2.3).

(P2) The handling of a request by tier k, with & > 1, is terminated when the associated
response is sent to tier £ — 1. The handling of a client request by a distributed
server is terminated when the associated response is sent to the client by the server
of the first tier.

69

70 CHAPTER 8. DISTRIBUTED SERVER MODELING

(P3) A request being processed at tier k can generate several requests sequentially at
tier k + 1.

(P4) At any time, a request being processed at tier k can generate at most one request
at tier k+ 1.

(P5) As aresult of P(4), the number of current requests at tier k+1 is less or equal than
the number of current requests at tier k (see figure 2.4): Vk € [1;n—1], N > Njp41.

(P6) A client request rejected (because of the MPL limit) at tier k will cause the
rejection of the mother request at tier £ — 1, with &£ > 1.

For each tier k, we define:
o T, ,ﬁ, the incoming throughput at tier k.
e T, the outgoing throughput at tier k.
e T}, the rejection throughput caused by M PL at tier k.
e N, the number of concurrent requests admitted at tier k.
e MPLy, the server’s M PL at tier k.

e)\, the probability that a request being processed at tier kK — 1 generates requests
at tier k.

e 1}, if a request on tier £ — 1 generates subsequent requests on tier k, the average
number of subsequent requests is V.

e S}, the processing time of a request on tier k.

Basically, the incoming, outgoing and rejection throughputs, respectively 7, ,i, T2 and T}
are expressed in number of requests per second. N and M PL are positive integers.
A € R belongs to the interval [0, 1] and Sy is a time in seconds. From property P(6) we
deduce that the rejection throughput 7" of the whole system can be expressed as

T = f:T,g
k=1

8.2.2 Model state variables

In Figure 8.2, we propose a methodology to model the dynamic behavior of the sys-
tem. Each server is considered as a group of tanks. The numbered arrows of figure 8.2
represent the flows of requests in a three-tier system as follows:

@ Incoming client requests arrive at tier 1.

@ Requests may be rejected at tier 1 because of M PL;.

8.2. DISTRIBUTED SERVER MODEL 71

e < Ak e ~_An
T, B e T
To |Server 1 I Server k T Server n
= .7 | N LT | N LT | N,
Client
et e wmpL—t wmpn,—t

Figure 8.1: Model inputs/outputs and internal states

@ Some requests accepted at tier 1 generate subsequent requests at tier 2.

@ Other requests accepted at tier 1 do not generate subsequent requests at tier 2.
@ Requests sent to tier 2.

@ Requests rejected at tier 2 because of M P L.

@ Requests accepted at tier 2.

@ Requests processed by tier 2 that are sent back to tier 1 for a final processing.

@ Requests processed by tier 2 that are sent back to tier 1 for further processing.

@ Requests processed by tier 1 that are sent back to the client.

5 Server 1 T3 Server 2 13 Server 3

Figure 8.2: Request flow in a three-tier distributed system

72 CHAPTER 8. DISTRIBUTED SERVER MODELING

For k < n we have:

. - ng
g = (1= M) - (T = T) — = (8.1)
. ; n
ke = ke (TF —TF) — SL; (8.2)
. Vibr—1 N3
= —— - — 8.3
nk73 Vk—‘,—l k+1 Sk ()
. 1 Nk.4
g = —— Tgp——o— 8.4
k4 Vit k+1 Sy (8.4)
And
finy = BTGP (8.5)
With
Nip,1
TP = = 8.6
P = e (5.6)
Tl§+1 = %}an’?’fm"l <k<n (8.7)
T = %k”k#lfm <k<n (8.8)
And with the processing time of requests on server k
. ag (Nk—Nk+1)+bk for k<mn

Where

n 4

i=k j=1

8.2.3 Model output variables

We are interested in two QoS metrics that reflect service performance and service avail-
ability, respectively, client request latency and client request abandon rate. According
to the transition probability described before, the average client request latency is

n k
L=> S [NV
k=1 j=1

By definition, the abandon rate is the ratio between requests rejected due to admission
control and the total number of requests received by the system. It may be written as
T?"

o=
Tl

8.3. SUMMARY 73
8.3 Summary

Based on the distributed server model introduced in this Chapter, we will discuss how
to control the M PL of the servers at the different tiers of such systems in Chapter 9.

74

CHAPTER 8. DISTRIBUTED SERVER MODELING

Chapter 9

Distributed Server Control

9.1 Motivation

In Chapter 6, we presented different M PL control strategies for central servers. As we
have seen in Chapter 8, distributed server systems are more complex to model, and they
also exhibit more control inputs that can be used to achieve given objectives. These
control inputs are the different M PLs at each tier of the system. Our approach consists
in applying a centralized control policy, where the knowledge of the global system’s
state is used to compute each M PL. In the following, we study the trade-off between
performance and availability of distributed server systems for this approach, and derive
the optimal M PL control based on the proposed fluid model. This is the optimal number
of concurrent clients admitted to the server at each tier of the system with respect to a
given trade-off.

9.2 dAM-%": availability-maximizing control of distributed
servers

We propose the d AM-€ distributed availability-maximizing control that aims to provide
the following objectives:

(O1) the average client request latency does not exceed a maximum latency Lq., and
(O2) the rejection throughput 7" is made as small as possible

We state and solve an optimization problem to meet the previous objectives. We assume
that all the parameters of the model are known. Practically, an on-line identification
of these parameters would be necessary if the nature of the workload may change over
time. Otherwise, an off-line identification is sufficient. The optimization problem con-
sidered here is to find MPL* = (MPLy, MPL3, ..., M PLY) that minimizes the rejection

75

76 CHAPTER 9. DISTRIBUTED SERVER CONTROL

throughput at tier 1 and maintains the client requests average latency under L;,,, when
the system faces a high load. For that we consider the system is saturated, which means

Vk‘E[l;’l’L], Ny = MPLy
We express the steady-state of the system as follows:

V(i,j) € [Lin] x [1;4], ;=0

That is ,
0=1T7-17 - T"

From 8.10 and 8.1 we get

n k n
Vi—1| MPLy — MPLjyq Vi.—1| MPL,
=S (- [T - [T -
4 (k+1) L j V; S + L=1 k v S
(9.1)

Then the cost function to minimize, that is the global rejection throughput 7", may be
written as:

T =T —T¢ (9.2)
where
S(t)— ak[MPLk(t)—MPLk+1(t)]+bk fork=1,...,n—1
R anMPLy,(t) + by, for k=n

In order to force the system not to exceed a given maximal latency L., specified in
the SLO, the constraint to consider is

L S Lmam (9-3)
where L is defined by:
n k
L= S [[\V (9.4)
k=1 j=1

Taking M PL, 1 := 0, the definition of S; becomes:
Sk(t) =ap [MPLE(t) — MPLp1(t)] +b, fork=1,....n
For N, = M PLy, it gives in equation (9.4):

L= Z ag [MPL, — MPLj 1]+ by -

||::]»

k=1
n n k n k
= MVAIMPLy +) axMPLy - H ANV =Y axMPLiy - [NV + (H by
k=2 j=1 k=1 j=1 =1 \j=1
n—1 k n
=aiMVIMPLy + Z H | - (arp1Aet1 Vg —ag) - MPLg oy + H %
k=1 |j=1 k=1 \j=1

9.5)

9.2. AVAILABILITY-MAXIMIZING CONTROL OF DISTRIBUTED SERVERS 77

To solve this problem we write the first order Karush-Kuhn-Tucker necessary condi-

tions [24]. Assuming M PL* is a local minimum for the optimization problem, then
there exists a unique p* such that

VMPL[,(MPL*,M*) =0 (9.6)

W (LIMPL*) — Lipaz) = (9.7

we>0 (9.8)

where the Lagrangian is given by £L=T" + (L — Lyaz)-

By differentiating the Lagrangian with respect to MPL = (MPLy MPLy ... MPL,)
we get, using the fact that the input throughput 77 is not dependent of the MPL’s
choices:

M==H(1-A2)by
. —W + pag Vi
(A=) (1-X2)b (A1—)X)(1—A3)b:
: (¢11A1+bl)22 : - (a222+l‘7/2)2 = + NAIV&(GQAQ‘/Q —(11)
(LG5 a-raee [H e) e L
(a2A2+b2)2 (a3A3+b3)2 + p -H1 AiVi(azA3Vs — az)
b
[Tow-Y%]arnitne [Toe-SD]armbs o
(an—2An_2+bn_2)? - (an—1An_1+bn—1)? +u l:[/\jVj(a7171An71V"71 _0"72)
[T e a-rmitns [FL0=Y) o
T (@ 1Bnitba)? (anMPLn+bn>2 il H AjVi(@nAnVn = an-1)
where A, = MPL,; — MPLy, k <n.
Equation (9.6) gives for u* # 0 at line &k of (9.9):
k V-1
. bp(1 = X)) TT O — =)
L
MPL* = MPLZ—H + — | b+ jk (9.10)
ag
wrar TT AjV;
j=1
and at line n:
n
Vi—1
bn IT (A — l{/k)
k=1
MPLy = — | ~by + . (9.11)
" u*an H)\ka
k=1
Then equation (9.7) gives for pu* > 0
L(MPL*) = Lipas (9.12)

78 CHAPTER 9. DISTRIBUTED SERVER CONTROL

Putting (9.10) and (9.11) in (9.12) gives after some fastidious calculations:

1 n—1 k W — 1 k bk
W= |2y = I (v - 5 TT s
mazr | p—q j=1 =1
2
. Vi — 1\ T by
+ Ak — MeVe—| (913
S

We finally obtain an explicit expression of M PL* with (9.11), (9.10) and (9.13). This
minimizes the rejection throughput 7" ensuring the latency is lower than the SLO’s
requirements assuming all tiers at each level are saturated.

9.3 Discussion

9.3.1 Some hints to use the M PL*

There is probably many ways to use the optimal configuration M PL*. The aim of this
subsection is to give the two more intuitive ones.

A first solution consist in directly setting the M PL* = (MPLy MPL% ... MPLY) on
the n tiers. This is probably the simplest one but probably also the less robust since
there is no closed-loop control on each tier. Results using this approach are given in the
next chapter.

A second approach consists in finding a fictive maximal latency Ly, for each tier that
achieves a global latency of L., latency. Using the expression of the latency (9.4), it
follows that taking

k
Lipa, =Sk [[NV (9.14)
j=1

and when all tiers are saturated, the global latency is such that:

n n k
L=Lpg = ZLkmaz = Zsk H)‘J‘/ﬁ
i—1 k=1 j=1

Clearly, using AM-% availability-maximizing control presented in section 6.2 page 47
with maximal latency set-point Ly, . will ensure that the average latency Ly of tier k
will remain below Ly, . The overall latency will, that way, remain below the latency

Lmam-

9.3. DISCUSSION

9.3.2 On the saturated tiers assumption

79

Clearly, the optimal control result relies on the assumption that all tiers are saturated,
that is Ny = M PLy, for all k. Applying this control approach when the tiers are not
saturated may, however, lead to over-conservative strategy. Indeed, assuming the tier ¢

is not saturated:
N; < MPL;

The latency introduced by the data processing on the tier will lower that expected. It

is given by:
S, — ak(Nk_Nk+1)+bk for k<n

As previously, defining Nj41 := 0, it unifies the expression for all k£ € {0,...,n}:

Sk = a (Ng — Ngy1) + b
If all the tiers are saturated except the ith tier, it gives:

ak(MPLk—MPLk+1)+bk fork:yé{i,i—l}
Sk = a; (Ny — MPL; 1)+ b;
ai—1 (MPL;_1 — N;) + bi1

In the throughput expression (9.1) it gives:

n

k
V.—1| MPL, — MPL
=3 (- M) [N - i bt
j=1

o Vj Sk
ki i+l
i
Vi—1| N;— MPL,
+ (1 _)‘i—i-l) H)‘J _ JV i = i+1
- f i
7=1
i—1
Vi—1| MPL;—; — N;
1— N Y -
+ =2 ([T v 5
7=1
n
Vi —1| MPL,
+ [T 2 -
k1 Vk Sn
and in the latency expression (9.5):
n—1 k
L =aMViMPL;y + Z H AiVil - (apg1 M1 Vi —ag) - MPLy

k=1 | j=1
k#i—1

k i1
+ H AiVi | b + H ANiVil - (@idiVi —ai—1) - N;
k=1 \j=1 j=1

3

(9.15)

(9.16)

80 CHAPTER 9. DISTRIBUTED SERVER CONTROL

Recomputing the partial derivative of the Lagragrian £ with respect to the tiers MPL’s
gives:

(A1—)(1 A2)by

_W + paiA Vi

[H(A —V’“] (1=xi_2)bis [H(M*ka)](l Aio1)bi—2 i—3

(a; 3A _3+bi—3)? - (ai—20i_2+bi_2)2 tu Hl)\jvj(lli—z)\i—QVi—Q—ai—ii)
2
[H(Ak*] [CE) [H(Ak*)](1 Ai)bi-1 i—2
(ai—28i_2tbi2)? T (@A MPLi =N+)F T H H AiVj(ai-1Ai-1Vi1 — ai—2)
VupLl = 0 (9.17)
[T o= Y axiem [H(Arv’“ >](1 Ml g
NPT (@s1Biri+birn)? +l‘]_1;[1 AiVilair1 At Vi — ai)

[H(Arvk >](1 o [H(Ar)](1 An)bn s
(@n 287 2%bn 3)? T (aa 1An b 1)2 +“ U AiVi(@n-1An-1Vn-1 — an-2)

e) [s e
(an— 1An 1+6n_1)2 - (anJ\IPLn+bn)2 +tu H AiVi(an Vi — an-1)

Since at the optimum, this partial derivative of the Lagrangian vanishes, (9.10) keeps
unchanged for k < i — 2 while M PL} , is given by:

i—1 B
bi—1(1—=X) TT (N — Vjvjl)

1 i—
MPL}_; = N; + — —bi—1 + ji_ll (9.18)
“ praiy TT AjVj
j=1

where p* still denotes the optimal value of u. For k > i+ 1, Vypr L(MPL*, u*) = 0
gives summing the n — i last row of (9.17):

0w -S| = aen | F1 0w 2% 0,

k=1
(@i[N; — MPL,] + b;)? (anMPL* + by,)?

an H()‘J -

=1 Y j=1

i

SIS | (YRR AT
J

Chapter 10

Numerical Evaluation:
Distributed Server Modeling and
Control

10.1 Numerical setup

In this Chapter, we simulate a three-tier server system with the model described in

Chapter 8. We chose the following model parameters for this numerical evaluation:
ay = 0.04

by = 0.0125
az = 0.08
by = 0.025
a3 = 0.08
bs = 0.05

10.2 dAM-% evaluation

In this section, we evaluate the proposed dAM-% distributed availability-maximizing
optimal controller presented in Chapter 9. Here, we consider a performance constraint
limiting the maximum average client request latency to L., = 8s . The role of dAM-
% is thus to guarantee that performance constraint while maximizing service availability,
through server M PL control. We use two scenarios to evaluate this controller, each one
illustrating a variation of one of the two exogenous input variables of the system. The
first scenario considers a changing workload mix M, and the second scenario handles a
varying workload amount V.

81

82 CHAPTER 10. NUMERICAL EVALUATION OF DISTRIBUTED SERVERS

dAM-%¢ with workload mix variation

Figure 10.1 describes the first scenario where the workload mix varies from M1 to M2
twice (c.f. Figure 10.1(a)) while the incoming throughput of client requests is 30 requests
per second. Workload mix M1 represents a mix in which 85% of service requests at tier
1 generate subsequent requests at tier 2, that is Ay = 0.85. Workload mix M2 represent
a mix in which 95% of service requests at tier 1 generate subsequent requests at tier 2,
that is A2 = 0.95. For both mixes, V2 and V3 are equal to 1.5. The average processing
time differs from one mix to another since the load distribution across the system tiers
differs.

Figures 10.1 present the variation over time of the average client request latency and the
client request abandon rate, comparing three ad hoc controlled base systems against the
proposed optimized system. Table 10.2 gives the different M PL for each configuration:

MPL1 | MPL2 | MPL3
ad-hoc control 1 96 96 96
ad-hoc control 2 40 40 40
ad-hoc control 3 50 30 10
optimal control for Mix 1 96 40 24
optimal control for Mix 2 74 41 24

Table 10.1: M PL Configurations

Ad hoc control 1 is a front-tier admission control policy that allows 96 concurrent client
requests in the system. Figure 10.1(b) this configuration does not meet the objectives
since the average client requests latency is far above 8 seconds for both mixes (18.5s for
mix M1 and 20.6s for mix M2).

Ad hoc control 2 is a more restrictive front-tier admission control that keeps the latency
below the 8s limit for mix M1 (7.6s) but not for mix M2 (8.5s).

Ad hoc control 3 is a distributed control policy which is more efficient than the two previ-
ous strategies since it keeps the client request latency below the limit and allows to reject
less requests (see Figure 10.1(c)). Compared to these ad hoc controls, CONSER optimal
control provides the best compromise since it meets the performance objective, keeping
the latency at the 8s limit, while maximizing the system availability, with an abandon
rate between 73 and 76% for both mixes.

dAM-%¢ with workload amount variation

Figure 10.2 presents the evolution of the system when the server workload amount
N is varying over time (c.f. Figure 10.2(a)) and the workload mix remains at M1.
Figures 10.2(b) and 10.2(c) present the variation over time of the average client request
latency and the client request abandon rate, comparing three ad hoc controlled base

10.2. DAM-¢ EVALUATION 83

oL
§ & 14] ——ad-hoc control 1: MPL = (96,96,96) il
° = —— ad-hoc control 2: MPL = (40,40,40)
K g ||| ——ad-hoc control 3: MPL = (50,30,10)
H § 12 Conser: MPL* = (74,41,24) 1
H RN -

1 10 B

| — | ———
L prems—— e— et ——
R i
i i i i i i ‘.] | f
0 5 10 15 20 25 30 o 5 10 15 20 25 30
Time (min) Time (min)
(a) Workload Mix (b) Latency

—— ad-hoc control 1: MPL = (96,96,96)
—— ad-hoc control 2: MPL = (40,40,40)
—— ad-hoc control 3: MPL = (50,30,10)

Abandon rate (%)

Conser: MPL* = (74,41,24)

| | 1 1 1
5 10 15 20 25 30
Time (min)

(¢) Abandon rate

Figure 10.1: System behavior upon workload mix variation — dAM-%-based controlled
system vs. ad hoc controlled system

systems with CONSER base system. Results show that CONSER, ad hoc control 2 or ad
hoc control 3 base systems meet the performance objective while ad hoc control 1 system
does not achieve this goal, with a client request latency up to 18.5s. Figure 10.2(c) show
that from the 8" minute of the simulation, the client request abandon rate obtained
with CONSERis lower than the one obtained with any of the proposed ad hoc control.
The abandon rate obtained with CONSER is in average 13% lower than the one with ad
hoc control 1 and ad hoc control 2, 1.5% lower than the one with ad hoc control 3.

84 CHAPTER 10. NUMERICAL EVALUATION OF DISTRIBUTED SERVERS

6 —— ad-hoc control 1: MPL = (96,96,96)]
5 —— ad-hoc control 2: MPL = (40,40,40)
§- 14 : : —— ad-hoc control 3: MPL = (50,30,10) q
20+ 3 —— Conser: MPL* = (96,40,24)
E P T T IXITEY REPPISPLRY DU Loax B
5)
3 ot :
é 15 B &
> 3
£ 8
§ o
£ o

0 I I I I I I f I I I I I

0 5 10 15 25 30 0 5 10 15 25 30
Time (min) Time (min)
(a) Workload Amount (b) Latency

0.

0.8

0.7+

06
g
% 05
c
]
D o04f
o
-1
<

0.3

0.2

—— ad-hoc control 1: MPL = (96,96,96)
——— ad-hoc control 2: MPL = (40,40,40)
o1 —— ad-hoc control 3: MPL = (50,30,10)| |
Conser: MPL* = (96,40,24)
; ; ; ; ; ‘
00 5 10 25 30

15
Time (min)

(c) Abandon rate

Figure 10.2: System behavior upon workload amount variation — dAM-%-based con-
trolled system vs. ad hoc controlled system

Part 1V

Conclusions and Perspectives

85

Chapter 11

Conclusion

11.1 Summary

This thesis is a contribution to the management, quality-of-service and optimization of
computing server systems, such as database servers, web servers, etc.

Server systems can host many different applications that can be accessed remotely
through a network. The Internet is an environment that makes an intensive usage
of such systems, and this usage has grown dramatically in recent years. The devel-
opment of new technologies, such as the mobile Internet, and also the expansion of
the range of cloud services that are available might explain that. Server systems have
a dynamic behavior and face varying workloads. In its extreme form, a heavy work-
load may induce server thrashing and service unavailability, with underlying economical
costs. Admission control is a classical technique used to prevent servers from thrashing
when the workload increases consists in limiting the total number of concurrent client
admitted to those servers. This is also known as the multi-programming level (MPL)
configuration of servers. We believe that modeling server systems is necessary to provide
quality-of-service (QoS) guarantees. However, we argue that for the effective adoption of
server modeling and control, the models must accurately capture the dynamics and the
nonlinear behavior of server systems while being simple to deploy on existing systems.

In this thesis, we first presented the general organization of server systems, namely
their architecture and their communication model. We define their workload in terms
of workload amount and workload mix. We describe quality-of-service metrics to reflect
server performance and availability, and introduce the feedback control concept.

We then provided an overview of existing approaches that aim at managing server sys-
tems quality-of-service.

In this thesis, we proposed novel models and control laws for the on-line configuration
and reconfiguration of server systems to provide service performance and dependability

87

88 CHAPTER 11. CONCLUSION

guarantees. We apply our solution first to central server systems, then to distributed
servers. We present the methodology we used to handle the problem of modeling such
systems. We first define the model variables as input, output and state variables. We
then derive a set of first order differential equations that link together dynamically
these variables from a fluid flow equation and the Little’s law. We build the AM-
%and PM-%controls laws. The stability of the closed loop system for both of these
strategies is proven. Finally two other control laws, namely AA-PM-€and PA-AM-%,
are introduced.

We also propose a distributed server model. We build step by step the equations that
govern the interactions between the model variables. The Karush-Kuhn-Tucker necessary
conditions provide an explicit solution for the optimal control of distributed servers.

We present the design, implementation and evaluation of CONSER, our servers control
system. We apply a control engineering methodology in order to model and control the
QoS of database server systems. We present the experimental and numerical evaluation
of the server model and control laws. The results obtained on an industry standard
benchmark are conclusive. The model parameters have been identified easily and the
validation results show that the model is able to render the main dynamics of the system.
The controlled system behaves as expected with a quick convergence time.

The results of the experiments conducted on central servers show that the proposed
techniques provide significant benefits on the performance and the availability of the
controlled system compared to ad hoc control solutions. Furthermore, numerical eval-
uations of distributed servers compare the controlled system with ad hoc controlled
systems, and show that the former uses less resources than the latter while providing
better performance and availability guarantees.

11.2 Perspectives

The results of this thesis open the door to prospective directions. In the following, we
discuss a number of interesting research directions that can complement or extend our
work.

The proposed central server model and control have been applied successfully to a
database server. We believe that they could be easily applied to other sever systems
with multi-programming such as web servers, application servers, etc. Furthermore, real
experiments to evaluate the proposed distributed server model would allow a better vali-
dation of this model. Target experimental environments could consider multi-tier server
systems consisting of a web tier, a business tier and a database tier.

In this thesis, we used the client request response time as a performance metric, and
the client request abandon rate as the dependability metric. Although these metrics
are widely used, we believe that our work could be extended to other quality-of-service

11.2. PERSPECTIVES 89

metrics.

Finally, we focused in this thesis on admission control techniques. However, we believe
that a combination of admission control with other techniques could further improve the
QoS. Other complementary techniques include service differentiation, degradation and
service provisioning to enable fully elastic cloud.

90

CHAPTER 11.

CONCLUSION

Chapter 12

List of Publications

[01] Luc Malrait, Sara Bouchenak, and Nicolas Marchand. Experience with CONSER:
A System for Server Control Through Fluid Modeling. IEEE Transactions on Com-
puters, 60:951-963, 2011.

[02] Luc Malrait. Qos-oriented control of server systems. ACM SIGOPS Operating Sys-
tems Review, 44(3):59-64, August 2010.

[03] Luc Malrait. Qos-oriented control of server systems. In Proceedings of the Fifth
Inter- national Workshop on Feedback Control Implementation and Design in Com-
puting Systems and Networks, FeBiD’10, pages 16-21, 2010. ACM.

[04] Luc Malrait, Sara Bouchenak, and Nicolas Marchand. Modelisation et controle d'un
serveur. In Actes de Toulouse’2009 (RenPar’19 / SympA’13 / CFSE’7), Toulouse,
France, 2009.

[05] Luc Malrait, Nicolas Marchand, and Sara Bouchenak. Average Delay Guarantee in
Server Systems Using Admission Control. In 8th Workshop on time delay systems,
Sinaia, Romania, 2009.

[06] Luc Malrait, Nicolas Marchand, and Sara Bouchenak. Modeling and Control of
Server Systems: Application to Database Systems. In Proceedings of the European
Control Conference, ECC"09, Budapest, Hungary, August 2009.

[07] Luc Malrait, Sara Bouchenak, and Nicolas Marchand. Fluid modeling and control
for server system performance and availability. In IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN) , pages 389-398. IEEE , 2009.

91

92

BIBLIOGRAPHY

Bibliography

[

T. Abdelzaher, Ying Lu, Ronghua Zhang, and D. Henriksson. Practical application
of control theory to Web services. American Control Conference, June 2004.

Tarek F. Abdelzaher and Nina Bhatti. Web content adaptation to improve server
overload behavior. Comput. Netw., 31(11-16):1563-1577, 1999.

Tarek F. Abdelzaher, Kang G. Shin, and Nina Bhatti. Performance guarantees
for web server end-systems: A control-theoretical approach. IEEE Trans. Parallel
Distrib. Syst., 13(1):80-96, 2002.

Amazon.com Inc, 2007. http://www.amazon.com/.

Martin Arlitt and Tai Jin. Workload Characterization of the 1998 World Cup Web
Site. Technical Report HPL-1999-35(R.1), HP Laboratories Palo Alto, September
1999.

Martin Arlitt and Carey L. Williamson. Web server workload characterization: the
search for invariants. SIGMETRICS Perform. Eval. Rev., 24(1):126-137, 1996.

Martin F. Arlitt and Carey L. Williamson. Internet web servers: workload charac-
terization and performance implications. IEEE/ACM Trans. Netw., 5(5):631-645,
1997.

Paul Barford and Mark E. Crovella. Generating representative web workloads for
network and server performance evaluation. In Proceedings of Performance '98/SIG-
METRICS 98, pages 151-160, July 1998. Software for Surge is available from Mark
Crovella’s home page.

Martin Brown. Optimizing Apache Server Performance, February 2008.
http:/ /www.serverwatch.com /tutorials/article.php/3436911.

Ludmila Cherkasova and Peter Phaal. Session-based admission control: A mecha-
nism for peak load management of commercial web sites. IEEE Trans. Comput.,
51(6):669-685, 2002.

Mark E. Crovella, Robert Frangioso, and Mor Harchol-Balter. Connection schedul-
ing in web servers. In Proceedings of the 2nd conference on USENIX Symposium on

93

94

[12]

[13]

[14]

[15]

[16]

[25]

BIBLIOGRAPHY

Internet Technologies and Systems - Volume 2, pages 22-22, Berkeley, CA, USA,
1999. USENIX Association.

Yixin Diao, N. Gandhi, J.L. Hellerstein, S. Parekh, and D.M. Tilbury. Using MIMO
Feedback Control to Enforce Policies for Interrelated Metrics With Application to
the ApacheWeb Server. Network Operations and Management Symposium, 2002.

John A. Dilley. Web Server Workload Characterization . Technical Report HPL-
96-160, HP Laboratories, December 1996.

Sameh Elnikety, Erich Nahum, John Tracey, and Willy Zwaenepoel. A Method for
Transparent Admission Control and Request Scheduling in E-Commerce Web Sites.
In 13th international conference on World Wide Web, New York, NY, May 2004.

Jordi Guitart, Jordi Torres, and Eduard Ayguadé. A survey on performance man-
agement for internet applications. Concurr. Comput. : Pract. Exper., 22(1):68-106,
2010.

Hans-Ulrich Heiss and Roger Wagner. Adaptive Load Control in Transaction Pro-
cessing Systems. In 17th International Conference on Very Large Data Bases, San
Francisco, CA, 1991.

J. Hyman, A. A. Lazar, and G. Pacifici. Joint Scheduling and Admission Control for
ATS-based Switching Nodes. In ACM SIGCOMM), Baltimore, MA, August 1992.

Apple Inc. Quicktime streaming server, 2007,
http://www.apple.com/quicktime/streamingserver/.

Iron Mountain. The Business Case for Disaster Recovery Planning: Calculating the
Cost of Downtime, 2001. http://www.ironmountain.com/dataprotection/resources/
CostOfDowntimelrnMtn.pdf.

Rudolph Emil Kalman. A New Approach to Linear Filtering and Prediction Prob-
lems. Transactions of the ASME-Journal of Basic Engineering, 82(1):35-45, 1960.

Abhinav Kamra. Yaksha: A self-tuning controller for managing the performance
of 3-tiered web sites. In In International Workshop on Quality of Service (IWQoS,
pages 47-56, 2004.

Hassan Khalil. Nonlinear Systems. Prentice Hall, 2002.

M. Kihl, A. Robertsson, and B. Wittenmark. Analysis of admission control mecha-
nisms using non-linear control theory. 8th IEEE International Symposium on Com-
puters and Commumnication, pages 1306—-1311 vol.2, July 2003.

H.W. Kuhn and A.W. Tucker. Nonlinear programming. In Proceedings of the
Second Berkeley Symposium on Mathematical Statistics and Probability, pages 481—
492, 1951.

1.D. Landau. Identification Et Commande Des Systemes. HERMES, 1988.

BIBLIOGRAPHY 95

[26]

[27]

[28]

J. D. C. Little. A proof for the queueing formula L = A W. Operation Research,
9:383-387, 1961.

Xue Liu, Jin Heo, Lui Sha, and Xiaoyun Zhu. Adaptive control of multi-tiered web
applications using queueing predictor. In 10th IEEE/IFIP Network Operations and
Management Symposium (NOMS), pages 106-114, 2006.

Xue Liu, Jin Heo, Lui Sha, and Xiaoyun Zhu. Queueing-model-based adaptive
control of multi-tiered web applications. IEEE Transactions on Network and Service
Management, 5(3):157-167, 2008.

Chris Loosley, Frank Douglas, and Alex Mimo. High-Performance Client/Server.
John Wiley & Sons, November 1997.

Evan Marcus and Hal Stern. Blueprints for High Awvailability. Wiley, September
2003.

D. A. Menascé, D. Barbara, and R. Dodge. Preserving QoS of E-Commerce Sites
Through Self-Tuning: A Performance Model Approach. In ACM Conference on
Electronic Commerce, Tampa, FL, October 2001.

Daniel A. Menascé and Virgilio Almeida. Capacity Planning for Web Services:
metrics, models, and methods. Prentice Hall PTR, Upper Saddle River, NJ, USA,
2001.

Daniel A. Menascé, Virgilio A. F. Almeida, Rodrigo Fonseca, and Marco A. Mendes.
A methodology for workload characterization of e-commerce sites. In EC ’99: Pro-

ceedings of the 1st ACM conference on FElectronic commerce, pages 119-128, New
York, NY, USA, 1999. ACM.

Microsoft. Optimizing Database Performance. http://msdn.microsoft.com/en-
us/library /aa273605(SQL.80).aspx.

North American Systems International Inc. The True Cost of Downtime, 2008.
http://www.nasi.com/downtime_cost.php.

PostgreSQL, 2008. http://www.postgresql.org/.

A. Robertsson, B. Wittenmark, M. Kihl, and M. Andersson. Admission control for
web server systems - design and experimental evaluation. 48rd IEEE Conference
on Decision and Control, December 2004.

S. Parekh and N. Gandhi and J. Hellerstein and D. Tilbury and T. Jayram and J.
Bigus. Using Control Theory to Achieve Service Level Objectives In Performance
Management. Real-Time Syst., 23(1-2):127-141, 2002.

Bianca Schroeder, Mor Harchol-Balter, Arun Iyengar, Erich Nahum, and Adam
Wierman. How to determine a good multi-programming level for external schedul-
ing. In 22nd International Conference on Data Engineering, Atlanta, GA, April
2006.

96 BIBLIOGRAPHY

[40] Sendmail.org, 2007. http://www.sendmail.org/.

[41] D. Tipper and M.K. Sundareshan. Numerical methods for modeling computer net-
works under nonstationary conditions. IEEE Journal on Selected Areas in Commu-
nications, 8(9):1682-1695, December 1990.

[42] TPC-C. Tpc transaction processing performance council, 1992.
http://www.tpc.org/tpcc/.

[43] Wei-Ping Wang, D. Tipper, and S. Banerjee. A simple approximation for modeling
nonstationary queues. IEEE INFOCOM, March 1996.

